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Abstract

A new method for reconstruction of coronal magnetic fields as force-free fields (FFFs) is presented. Our method
employs poloidal and toroidal functions to describe divergence-free magnetic fields. This magnetic field
representation naturally enables us to implement the boundary conditions at the photospheric boundary, i.e., the
normal magnetic field and the normal current density there, in a straightforward manner. At the upper boundary of
the corona, a source surface condition can be employed, which accommodates magnetic flux imbalance at the
bottom boundary. Although our iteration algorithm is inspired by extant variational methods, it is nonvariational
and requires far fewer iteration steps than most others. The computational code based on our new method is tested
against the analytical FFF solutions by Titov & Démoulin. It is found to excel in reproducing a tightly wound flux
rope, a bald patch, and quasi-separatrix layers with a hyperbolic flux tube.

Unified Astronomy Thesaurus concepts: Solar magnetic fields (1503); Solar corona (1483); Computational
methods (1965)

1. Introduction

To understand physical processes in the solar corona and
their connection with dynamics of the heliosphere, information
about the coronal magnetic field is indispensable. Measure-
ments of coronal magnetic fields have been made by use of
radio observations (White et al. 1991; Alissandrakis &
Chiuderi Drago 1995; Brosius et al. 1997; Lee et al. 1998;
White 2005), by spectropolarimetry of near-infrared lines (Lin
et al. 2004; Tomczyk et al. 2008; Judge et al. 2013;
Plowman 2014; Dima & Schad 2020), or by utilizing a
magnetic-induced transition line in Fe X and other Fe X and
Fe XI lines in extreme-UV (Landi et al. 2020). These
techniques as of today, however, can only provide a coarse
2D map of the line-of-sight magnetic field, the magnitude of
the magnetic field, or a pointwise vector field. Coronal
magnetic field strengths have also been indirectly estimated
from observations of coronal loop oscillations (Nakariakov &
Ofman 2001; Van Doorsselaere et al. 2008) and of coronal
mass ejections (Jang et al. 2009; Gopalswamy et al. 2012).
These indirect measurements are too locally confined to give us
a geometrical picture of the coronal magnetic field. On the
other hand, the magnetic field vectors in the photosphere have
been measured by spectropolarimetry with a rather sufficiently
high resolution and accuracy to produce a vector magnetogram,
which is a 2D map of the 3D vector field (Beckers 1971;
Harvey 1985; Solanki 1993; Lites 2000).

With photospheric vector magnetograms available, there
have been efforts to reconstruct coronal magnetic fields.
Although the real corona is fully dynamic, the magnetic field
that can be generated by one vector magnetogram without
knowing its prehistory is a static field. A magnetohydrostatic

(MHS) field under gravity requires the information of pressure
(and temperature if not isothermal) at the photospheric level in
addition to the vector magnetogram (Grad & Rubin 1958;
Wiegelmann et al. 2007; Zhu & Wiegelmann 2018), but such
information is not readily available yet. Since the plasma β, the
ratio of plasma pressure and magnetic pressure, in the corona,
especially in active regions, is much less than unity (Iwai et al.
2014; see for comparison Rodríguez Gómez et al. 2019), the
approximation of the coronal magnetic field to a force-free field
(FFF) has been prevalent. An FFF in a domain V is a vector
field B such that

J B J B r B0 , 1( ) ( )a´ =  =  ´ =
B 0. 2· ( ) =

As in Equation (1), we will omit constant coefficients in
Maxwell’s equations by a proper normalization throughout this
paper. From Equations (1) and (2), we have

B 0 3· ( )a =

i.e., α is constant along each field line. If the scalar field α is
constant everywhere in V, Equations (1) and (2) form a linear
vector Helmholtz equation

B B 0, 42 2 ( )a + =

and its solution, an FFF with a constant α, is a linear force-free
field (LFFF; Aly 1992). If α at the boundary ∂V is nonconstant,
the scalar field α(r) for r ä V is an unknown, and such an FFF
is a nonlinear force-free field (NLFFF). Since the scalar α in
the photosphere is far from constant, reconstruction of a
coronal magnetic field is seeking an NLFFF.
The earliest attempts of constructing an NLFFF used an

algorithm, in which the three components of the vector field
were computed from the photospheric boundary successively
upward plane by plane (Nakagawa 1974; Wu et al. 1985,
1990), as if a time-dependent hyperbolic partial differential
equation (e.g., an advection equation) were solved marching

The Astrophysical Journal, 937:11 (19pp), 2022 September 20 https://doi.org/10.3847/1538-4357/ac8b0e
© 2022. The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

1

https://orcid.org/0000-0001-7263-7754
https://orcid.org/0000-0001-7263-7754
https://orcid.org/0000-0001-7263-7754
https://orcid.org/0000-0002-8047-6396
https://orcid.org/0000-0002-8047-6396
https://orcid.org/0000-0002-8047-6396
https://orcid.org/0000-0003-2161-9606
https://orcid.org/0000-0003-2161-9606
https://orcid.org/0000-0003-2161-9606
https://orcid.org/0000-0002-3418-8449
https://orcid.org/0000-0002-3418-8449
https://orcid.org/0000-0002-3418-8449
https://orcid.org/0000-0002-5700-987X
https://orcid.org/0000-0002-5700-987X
https://orcid.org/0000-0002-5700-987X
mailto:gchoe@khu.ac.kr
http://astrothesaurus.org/uat/1503
http://astrothesaurus.org/uat/1483
http://astrothesaurus.org/uat/1965
http://astrothesaurus.org/uat/1965
https://doi.org/10.3847/1538-4357/ac8b0e
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ac8b0e&domain=pdf&date_stamp=2022-09-16
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ac8b0e&domain=pdf&date_stamp=2022-09-16
http://creativecommons.org/licenses/by/4.0/


along the time coordinate, whose role was taken by the vertical
coordinate z in the FFF solver. As already pointed out by Grad
& Rubin (1958), an MHS equation has imaginary character-
istics like an elliptic equation (e.g., Poisson equation) as well as
real characteristics like a hyperbolic equation. Thus, solving a
force-free equation, which is semielliptic, as a Cauchy problem
is ill posed, so that the successive integration algorithm cannot
avoid exponentially growing errors as going up to a higher
altitude (Aly 1989; Amari et al. 1997; McClymont 1997). For
this reason, the algorithm is now seldom used, but it has left a
legacy of the much-used term “extrapolation.” In this paper, we
will use the term “reconstruction” instead of the somewhat
misleading “extrapolation” to refer to solving for a coronal
magnetic field with certain boundary conditions.

Among a variety of coronal NLFFF solvers that have been
proposed so far (for a review, see Aly & Amari 2007;
Wiegelmann & Sakurai 2021), there are two major groups of
methods that are practically used these days: (1) Grad–Rubin
methods (current-field iteration methods) and (2) variational
methods. The former were originally proposed by Grad &
Rubin (1958) and have been applied in diverse formulations
and algorithms (Sakurai 1981; Amari et al. 1999, 2006;
Wheatland 2006). The Grad–Rubin methods in common
employ an iteration procedure, in which the domain is first
loaded with a field-aligned electric current Jn+1= α nBn

satisfying Equation (3) for Bn at the iteration step n and
J n B n· ˆ · ˆa = specified at the boundary points (footpoints)

having one sign of the normal field component B nBn ·= ^ in
∂V, and then Bn+1 is updated by solving the equation
∇× Bn+1= Jn+1. Although the Grad–Rubin problem, which
is to solve Equations (1)–(2) with Bn given at every point of ∂V
and α only in the part of ∂V with one sign of Bn, is known to be
well posed for |α|< αm<∞ (Bineau 1972; Boulmezaoud &
Amari 2000), it has not yet been rigorously proved whether the
Grad–Rubin iteration procedure always converges to a solution
or not. However, numerical codes based on the Grad–Rubin
method have successfully been applied to real solar problems
demonstrating its usefulness (Bleybel et al. 2002; Régnier &
Amari 2004; Régnier & Priest 2007; Petrie et al. 2011;
Mastrano et al. 2020).

In the variational methods, we solve for the magnetic field
that extremizes (actually minimizes) a certain functional, which
is usually a volume integral involving a magnetic field, with
certain boundary conditions and some additional constraints if
any. For example, if a certain field line connectivity is imposed
in V and the conjugate footpoints of each field line are fixed in
∂V, and if the magnetic field in V is varied under the ideal
magnetohydrodynamic (MHD) condition without footpoint
motions in ∂V so that the first two constraints may be
maintained, the magnetic field that minimizes the functional

B BW dV
1

2 V
·ò= , the total magnetic energy in the domain

V, is an FFF (Grad & Rubin 1958; Chodura & Schlüter 1981).
A sufficient condition for δW� 0 is that the fictitious plasma
velocity is proportional to the Lorentz force, i.e., v∝ J× B.
This physically implies that the force-free state can be
approached by removing the kinetic energy, into which the
excessive potential energy is converted, from the system
possibly by a hypothetical friction and/or viscous diffusion.
However, the problem of reconstructing the coronal magnetic
field is quite different from that treated by Chodura & Schlüter
(1981). Since we do not know the field connectivity before-
hand, we need to lift the ideal MHD condition and the

constraint of field connectivity intentionally. Instead we have to
impose the normal current density Jn or three components of B
at ∂V. Then, an energy-decreasing evolution tends to deplete
magnetic helicity through its dissipation within the system and
transport through the boundary (Berger 1984). Thus, maintain-
ing Jn or B at ∂V requires winding up field line footpoints there.
Magnetofrictional methods for coronal FFF reconstruction
either alternate stressing and relaxing steps explicitly (Mikić &
McClymont 1994; Roumeliotis 1996; Jiao et al. 1997) or are
inherently equipped with a rather automatic re-stressing
mechanism (Valori et al. 2005, 2010; Inoue et al. 2014; Guo
et al. 2016; Jiang & Feng 2016). Since the magnetofrictional
codes are more or less modified forms of MHD solvers, they
can employ free boundary conditions, also called open
boundary conditions, at the outer boundary (lateral and top
boundaries for a box-shaped domain; e.g., Valori et al. 2010).
This flexibility in the outer boundary conditions helps the
system to evolve toward a force-free state in most cases, but it
is uncertain what mathematical problem the resulting force-free
state is the solution of.
Another group of the most widely used variational methods

comprises the so-called optimization methods, in which the
functional

J B
BL

B
dV 5

V

2

2
2⎡

⎣⎢
⎤
⎦⎥

∣ ∣ ( · ) ( )ò=
´

+ 

is to be minimized (Wheatland et al. 2000). The simplest choice
of the boundary condition well-posing this variational problem
is ∂B/∂t= 0, which can straightforwardly be implemented.
There has been a concern that a boundary condition giving all
three components of magnetic field results in an overspecified
problem in contrast to the Grad–Rubin formulation (Grad &
Rubin 1958; Boulmezaoud & Amari 2000). However, available
observational data of photospheric magnetic field and the
boundary conditions employed at the outer boundary (lateral
and top boundaries for a box-shaped domain) can hardly satisfy
the compatibility relations of FFFs (Aly 1989; Wiegelmann &
Sakurai 2021). The mathematically clear formulation of the
optimization methods tells us that specifying all three
components of the magnetic field at the entire boundary works
for minimizing the functional L in Equation (5) to a value,
which is not necessarily zero, even if the compatibility
conditions are not met. This robustness is a great merit of the
optimization method as is its well-posedness as a variational
problem. It is, however, a shortcoming of the method that the
outcome strongly depends on what B is given at the outer
boundary (Wiegelmann et al. 2006a). It should be also noted
that in the optimization method, the nonzero ∇ ·B term arises
not merely from numerical discretization errors, but rather from
the non-divergence-free form of ∂B/∂t required for reducing
the functional L given above6. As a remedy for this concern, it
has been suggested to impose ∇ ·B= 0 as a constraint using a
Lagrange multiplier in the variational procedure (Nasiri &
Wiegelmann 2019). It has also been tried to purge the final

6 Also in magnetofrictional methods, nonzero ∇ · B terms are often
intentionally included in the induction equation to create a parallel electric
field to induce magnetic reconnection and in the momentum equation to
remove magnetic charge out of the system (Valori et al. 2010; Inoue et al.
2014).
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solution of nonzero ∇ ·B by postprocessing (Rudenko &
Dmitrienko 2020), which, however, entails an unignorable
change in either the normal or tangential component of
magnetic field at the bottom boundary.

In addition to the two classes of methods above, the
boundary integral method, also called boundary element
method, has also been used for practical purposes (He &
Wang 2008; Guo et al. 2019; He et al. 2020). This method is
quite similar to the Green function method for partial
differential equations, and a surface integral involving a
reference function over the photospheric boundary needs to
be evaluated to obtain B at each coronal point at every iteration
step (Yan & Sakurai 2000; Yan & Li 2006). It is a merit of the
boundary integral method that a finite computational domain
does not need to be set up, nor any artificial boundary
conditions at the outer boundary, because it assumes a semi-
infinite domain and a finite total magnetic energy in it.

All of the aforementioned methods solve an FFF problem
with Bn and Jn or B as the bottom boundary condition. The
problems so posed aim to reconstruct coronal magnetic fields
with the vector magnetograms at hand. Our new method
presented here also tackles such problems. However, FFF
problems may be posed in different ways depending on one’s
interest. If it is necessary or desirable to impose a certain field
connectivity, one can use a magnetofrictional method using
Euler potentials (e.g., Choe & Cheng 2002) or the fluxon method
using thin, piecewise linear flux tubes called fluxons for
magnetic field description (DeForest & Kankelborg 2007). In
another problem setting, an FFF solution was sought with a flux
rope initially placed at a desired location (van Ballegooijen 2004;
van Ballegooijen et al. 2007). Here, only Bn is imposed at the
bottom boundary and Jn comes out of the solution.

With such a variety of methods for coronal FFF reconstruc-
tion available today, we still want to present a new method,
which has the following properties.

1. The magnetic field is described in a way ensuring
divergence-freeness.

2. The boundary conditions at the bottom boundary,
Bz(z= 0), and Jz(z= 0), are straightforwardly implemen-
ted once and for all.

3. The lateral and top boundary conditions can accommo-
date magnetic flux imbalance at the photospheric
boundary.

4. Fewer iteration steps are required for convergence than
in most other methods.

5. The numerical code is robust and equally operative for
simple and complex field geometries.

Let us make some remarks on the above items. The most
fundamental way of describing a divergence-free (solenoidal)
vector field is using a vector potential such that B=∇× A.
Imposing Bz at the boundary z= 0 would be readily done by
fixing appropriate Ax and Ay at the boundary once and for all.
However, Jz or Bx and By cannot be determined by the values of
A at the boundary only. Therefore, we have to adjust some
components of A at z= 0 at every iteration step in keeping with
the evolution inside the domain (e.g., Roumeliotis 1996). Thus,
items (1) and (2) cannot be realized together when vector
potentials are being used. In this paper, we describe magnetic
fields with two scalar functions Φ and Az, named poloidal and
toroidal functions, which will be explained in detail in
Section 2. Such a field description has never been tried in

numerical computation of solar magnetic fields whether static
(FFF included) or dynamic. In our formulation, the divergence-
freeness of B is guaranteed, and Bz is solely represented by Φ,
and Jz by Az. Thus, setting boundary conditions at z= 0 is done
once and for all.
With regard to item (3), we note that the total positive and

negative fluxes are generally not equal in magnitude in the
magnetogram of any active region. The imbalanced fluxes are
often coerced into achieving balance by preprocessing
(Wiegelmann et al. 2006b), or are accommodated in FFF
computations by assuming certain symmetries across the lateral
boundaries (Seehafer 1978; Otto et al. 2007). In our model, we
set up the lateral boundaries as rigid conducting walls so that
no magnetic flux may escape the domain through the
boundaries, and field lines tangential to them may slide freely
during iterations. As for the top boundary, we employ a source
surface condition, in which the magnetic field should have only
the normal component (Bz), but no tangential components
(Bx= By= 0). Thus, the unpaired extra magnetic flux at the
bottom boundary is connected to the top boundary so that the
condition B n dS 0

S
∮ · ˆ = should be met. The source surface

boundary condition at the outer corona was first suggested by
Altschuler & Newkirk (1969) and has since been widely
applied to potential field models. A theory of NLFFFs with a
source surface boundary condition was put forward by Aly &
Seehafer (1993), but FFF reconstruction with Bn and Jn
together or B as the bottom boundary condition and with the
source surface condition at the top boundary has not been
attempted before the present paper.7

New NLFFF solvers must be tested against known analytical
FFFs before being applied to solar vector magnetograms.
Currently two analytical NLFFF solutions are widely used as
reference fields. The FFF models by Low & Lou (1990,
hereafter LL) are exact analytical solutions, which involve
modestly sheared magnetic fields without flux ropes. The
models by Titov & Démoulin (1999, hereafter TD) are
approximate analytical solutions involving a flux rope and a
background magnetic field in equilibrium. Most NLFFF solvers
presented so far have well reproduced the LL fields,
particularly when the analytic solutions are used as boundary
conditions at all six boundaries (Schrijver et al. 2006). The TD
models are more difficult to reconstruct, especially in
generating a single flux rope structure, but a few codes have
done the job well (Valori et al. 2010; Jiang & Feng 2016). We
have also tested our new code against those analytical models,
focusing more on the TD models, which have much more
complex field topology than the LL models.
In this paper, we present a new method of coronal FFF

reconstruction and its test against analytical models. Its
application to a solar active region will be given in a
subsequent paper. In Section 2, the poloidal and toroidal
representation of the magnetic field is expounded. Then, we
define the problems to be solved and explain our numerical
algorithm in Section 3. In Section 4, we present the tests of our
new method for TD models in comparison with other methods.
Lastly, a discussion and summary are provided in Section 5.

7 In van Ballegooijen et al. (2000), van Ballegooijen (2004), and van
Ballegooijen et al. (2007), a source surface condition was employed at the top
boundary, but it was not intended to solve an FFF problem, in which both Bn
and Jn (or B) are imposed as the bottom boundary conditions.
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2. Poloidal–Toroidal Representation of Magnetic Field

Let us now consider a domain that encloses a star, but
excludes the star, and set up a coordinate system such that the
stellar surface is a coordinate surface of one coordinate named
ξ. For example, if the domain is the space exterior to a
spherical star of radius R, the stellar boundary is the surface
r= R, i.e., ξ= r, and the natural choice of the coordinates
would be spherical coordinates (r, θ, j). If the domain is a
semi-infinite space above a plane, the planar stellar boundary
is the surface z= 0, i.e., ξ= z, and the natural choice of
the coordinates would be Cartesian coordinates (x, y, z)
or cylindrical coordinates (ρ, j, z). A magnetic field (a
solenoidal vector field) in such a domain can in general be
decomposed into a poloidal field BP and a toroidal field BT

(Elsasser 1946; Lüst & Schlüter 1954; Chandrasekhar &
Kendall 1957; Backus 1958, 1986; Chandrasekhar 1961;
Rädler 1974; Stern 1976; Low 2006, 2015; Berger &
Hornig 2018; Yi & Choe 2022), i.e.,

B B B , 6P T ( )= +

in which

B , 7P ( ) ( )x=  ´  ´ F

B . 8T ( )x=  ´ Y

Here r̂x = in spherical coordinates and ẑx = in Cartesian
or cylindrical coordinates. The scalar fields Φ and Ψ,
respectively, are called poloidal and toroidal scalar functions
(Backus 1986) or Chandrasekhar–Kendall functions (Mon-
tgomery et al. 1978; Low 2006). We will simply name them the
poloidal and toroidal functions in this paper, and we will call
the magnetic field description given by Equations (6)–(8) the
poloidal–toroidal representation (hereafter PT representation).8

As can be seen in Equations (7) and (8), BP and BT are
individually divergence-free (solenoidal), and thus so is B. This
is one of the merits of the PT representation when used in
numerical computation. Even if a numerical expression of B is
not exactly divergence-free, the discretization error does not
increase with time (iterations) nor accumulate in some places.
Thus, we are relieved of the concern about ∇ ·B.

We can decompose a magnetic field B(r) into two parts as

B r B r B r , 9t n( ) ( ) ( ) ( )= +

in which B r n n Bn ( ) ˆ ( ˆ · )= , where n̂ ∣ ∣x x=   , is the
component of B(r) normal to a constant-ξ surface containing
the point r, and B r B n n Bt ( ) ˆ ( ˆ · )= - is the tangential
component. Equation (8) tells us that BT has only tangential
components to the constant-ξ surfaces, i.e.,

n B 0, 10Tˆ · ( )=

and any field line of BT entirely lies in a coordinate surface of ξ.
On the other hand, BP has both tangential and normal

components in general, and

n B n BB . 11n Pˆ · ˆ · ( )= =

This property is valid for an arbitrary scalar field ξ. However,
not all formulations in the form of Equations (6)–(8) with an
arbitrary ξ are qualified to be called a standard PT representa-
tion, which additionally demands that the curl of a poloidal
field be a toroidal field as the curl of a toroidal field is a
poloidal field, i.e.,

B , 12P ( )x ´ =  ´ Q

where Θ is another scalar field. This requirement is met when
the constant-ξ surfaces are either parallel planes or concentric
spheres (Rädler 1974; Yi & Choe 2022). In other words, it is
required that ξ= f (r), a function of r only in spherical
coordinates, or ξ= f (z), a function of z only in Cartesian and
cylindrical coordinates. Fortunately, stars, the Sun included, are
almost perfectly of a spherical shape, and the base of an
individual active region can well be approximated as a plane. In
a standard PT representation, Equation (12) shows that

n B 0, 13Pˆ · ( ) ´ =

and it follows that

n B n BJ . 14n Tˆ · ˆ · ( )=  ´ =  ´

In the coronal FFF reconstruction, what is good about
Equations (11) and (14) is that Bn and Jn can be fully described
by the functions Φ and Ψ in a constant-ξ surface only. In a
Cartesian coordinate system,

B B , 15n z xy
2 ( )= =  F

J J , 16n z xy
2 ( )= =  Y

where

x y
17xy

2
2

2

2

2
( ) =

¶
¶

+
¶
¶

is the 2D Laplacian operator in a z const.= plane. In a
spherical coordinate system,

B B , 18n r
2 ( )= =  Fqj

J J , 19n r
2 ( )= =  Yqj

where

r r

1

sin
sin

1

sin
202

2 2 2

2

2
⎛
⎝

⎞
⎠

( )
q q

q
q q j

 =
¶
¶

¶
¶

+
¶
¶qj

is the 2D Laplacian operator in an r const.= surface (sphere).
Since the forms of ∇xy

2 and 2qj do not include any normal
derivatives, Bn and Jn are fully described by the boundary
values of Φ and Ψ only. Thus, implementing the boundary
conditions Bn and Jn in a numerical grid is quite
straightforward.
In this paper, we will confine ourselves to rectangular

domains with Cartesian coordinates. In the vector potential

8 The PT representation has also been called the Mie representation
(Backus 1986) or the Chandrasekhar–Kendall representation (Montgomery
et al. 1978; Low 2006) crediting Mie (1908) and Chandrasekhar & Kendall
(1957), respectively. However, the credited works only addressed solutions of
linear vector Helmholtz equations, to which linear FFFs also belong. For such a
field, Φ and Ψ are not independent of each other, while for a general magnetic
field, Φ and Ψ are independent. The existence and uniqueness of Φ and Ψ for an
arbitrary B were first treated by Backus (1958), and Chandrasekhar’s
description of general magnetic fields by two independent scalar functions
was first given in his single-authored book (Chandrasekhar 1961).
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description of magnetic field,

A

A

J
z

A

z
A , 21

z z

xy xy xy z

2

2

( · )

( · ) ( )

=
¶
¶

 - 

=
¶
¶

 - 

where x y
x y

xy ˆ ˆ =
¶
¶

+
¶
¶

is the 2D ∇-operator and

A x yA Axy x yˆ ˆ= + . The above equation shows that at least
first-order normal derivatives of two components of A are
required for describing Jz(z= 0). Thus, the boundary values of
some components of A must be changed according to the
variation of A inside the domain. This laborious adjustment of
A(z= 0) can be avoided when the gauge

A 0 22xy xy· ( ) =

is employed, not only at the boundary z= 0, but also inside the
domain. The gauge (22) is satisfied when

A r z r , 23xy ( ) ˆ ( ) ( )= ´ F

where Φ is an arbitrary scalar field defined in the domain. Thus,
the vector potential under this gauge is in the form

A z zA , 24zˆ ˆ ( )= ´ F +

and the resultant magnetic field is in the form

B z zA . 25z(ˆ ) ˆ ( )=  ´ ´ F +  ´

Comparing the above Equation (25) with Equations (6)–(8), we
can see that the Φ in Equation (25) is nothing but the poloidal
function Φ in Equation (7), and the Az is−Ψ in Equation (8). In
this paper, the Φ above is our poloidal function, but for our
toroidal function, Az is taken instead of−Ψ. Therefore, we
have the following expressions for the respective three
components of B and J, to be used for our numerical
computation:

B
x z

A

y
, 26x

z⎛
⎝

⎞
⎠

( )= -
¶
¶

¶F
¶

+
¶
¶

B
y z

A

x
, 27y

z⎛
⎝

⎞
⎠

( )= -
¶
¶

¶F
¶

-
¶
¶

B
x y

. 28z

2

2

2

2
( )=

¶ F
¶

+
¶ F
¶

J
x

A

z y
, 29x

z 2⎛
⎝

⎞
⎠

( ) ( )=
¶
¶

¶
¶

+
¶
¶

 F

J
y

A

z x
, 30y

z 2⎛
⎝

⎞
⎠

( ) ( )=
¶
¶

¶
¶

-
¶
¶

 F

J
A

x

A

y
. 31z

z z
2

2

2

2
⎜ ⎟
⎛
⎝

⎞
⎠

( )= -
¶
¶

+
¶
¶

The first terms on the right-hand sides of Equations (26) and
(27) are the 2D curl-free (irrotational) part of the tangential
magnetic field B B x yB Bt xy x yˆ ˆ= = + , and the second terms
form its 2D divergence-free (solenoidal) part. The same is true
for J J x yJ Jt xy x yˆ ˆ= = + given by Equations (29) and (30).

A remark should be made that the PT representation
in a Cartesian coordinate system demands special
treatment when the magnetic field is periodic in x and y

(Schmitt & von Wahl 1992). In our FFF calculations of this
paper, we do not employ a periodic boundary condition and
thus are relieved of such special attention. See Appendix A for
some details.
Before the present paper, the PT representation has been

used in construction of FFFs or MHS equilibria. However,
these works are related to LFFFs or a special class of MHS
equilibria. For LFFFs, the toroidal function and poloidal
functions are related by Ψ= αΦ, where const.a = , and the
poloidal function is a solution of a linear Helmholtz equation
∇2Φ+ α2Φ= 0. This linear problem was treated by an
eigenfunction expansion (Chandrasekhar & Kendall 1957;
Nakagawa & Raadu 1972) and by constructing Green’s
function based on eigenfunctions (Chiu & Hilton 1977). An
MHS equilibrium is described by

J B p 0,r y´ -  -  =

where p is the plasma pressure and ψ is the gravitational
potential. One can then express the current density in the form
of

J B ,ã m y= +  ´ 

in which J B˜ ( · ) ( · )a y y=   , and μ is a function of
B ·∇ψ and ψ (see Low 1991, for details). In general MHS
equilibria, it holds that B 0· ã = , i.e., ã is a function of each
field line. In a special class of MHS equilibria, in which

const.ã = everywhere, it holds that ãY = F, and the poloidal
function Φ satisfies an equation 02 2 ã F + F - = , where
 is a certain function of μ (Neukirch & Rastätter 1999). This
problem was solved with a Green’s function method with an
eigenfunction decomposition by Petrie & Neukirch (2000).
Thus, all of the previous works employing the PT representa-
tion have solved linear problems for the poloidal function only.
Construction of NLFFFs employing independent poloidal and
toroidal functions was proposed by Neukirch (1999), but has
not been worked out in detail.

3. Numerical Algorithm and Modeling

3.1. Numerical Algorithm

As pointed out by Grad & Rubin (1958), an FFF problem
given by Equations (1) and (2) is semielliptic and semihyper-
bolic. The hyperbolic nature of the problem lies in
Equation (3), which is called a magnetic differential equation
(Kruskal & Kulsrud 1958). The Grad–Rubin-type procedure
includes a solver of the magnetic differential equation,
practically putting more weight on the hyperbolic nature of
the problem. In variational methods, the elliptic nature is more
emphasized, and the hyperbolic nature is rather implicitly
considered. Our new algorithm is more inclined to variational
methods in that we solve elliptic equations at every iteration
step with the hyperbolic nature of the problem considered in
the source terms. However, it is not variational because we do
not try to extremize any functional. The rationale and details of
our new method are given below.
Let us simply consider a magnetofrictional evolution of the

magnetic field under ideal MHD condition. Then, the electric
field is given by E=− v×B after a proper normalization
removing constants involved in unit systems. We can set

v r
J B

t
B

, , 32
2

( ) ( )n=
´
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where ν(r, t) is an arbitrary scalar field, which may be set to
unity in nondimensionalized equations. Then

E
J B B

J b b J

J J J
B

, 33

2



( ) ˆ ( ˆ · )

( )

=-
´ ´

= -

= - = ^

in which b B Bˆ = is a unit vector in the direction of B, and
J b b J ˆ ( ˆ · )= and J⊥= J− J∥ are, respectively, component
vectors of J parallel and perpendicular to B. Therefore, the
induction equation (Faraday’s law) reads

B
J J J

t
. 34( ) ( )¶

¶
= - ´ = - ´ -^

Since the right-hand side of this equation involves second-order
spatial derivatives of B, it is a parabolic equation. As t→∞ ,
both sides of the parabolic equation go to zero. The asymptotic
state ∇× J⊥= 0 means that J⊥=∇f, where f is a certain
scalar field. If the field line footpoints at the boundary are fixed,
E= 0 at the boundary and ∇f= 0 everywhere in the domain.
In the coronal FFF problems, the stressing (winding) and the
relaxing (unwinding) are alternating or they indistinguishably
coexist. In any case, as t→∞ , the stressing is reduced to zero,
and the asymptotic state is such that J⊥= 0, i.e., J= J∥, a
force-free state.

Now the PT representation has two variables describing
magnetic field, Φ and Az (=−Ψ), which are directly related to
Bz and Jz by Equations (28) and (31), respectively. From
Equation (34), we can write down the evolutionary equation of
Bz and Jz as

B

t
B

J

x

J

y
, 35z

z
y x2  

⎜ ⎟
⎛
⎝

⎞
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( )¶
¶

=  +
¶

¶
-

¶

¶

J
J

t z
J J , 36z

z z
2 2

 · ( )¶
¶

=
¶
¶

 -  + 

where t is a sort of “pseudo-time.” Setting the right-hand sides
of these equations to zero (t=∞ ) gives the following force-
free conditions:

B
J

y

J

x
, 37z

x y2   ( ) =
¶

¶
-

¶

¶

J

J

J J
z

J
z
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z z
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It would be more than desirable to solve for Bz and Jz at once,
but the right-hand sides of the above equations are so highly
nonlinear as to make such an attempt appear hopelessly
difficult. The left-hand sides of the equations are linear and
purely elliptic while the hyperbolic nature of the FFF equations
is contained on the right-hand sides. With this understanding,
we propose the following iteration procedure:

B
J

y

J

x
, 39z

n x
n

y
n

2 1   ( ) =
¶

¶
-

¶

¶
+

B , 40xy
n

z
n2 1 1 ( ) F =+ +

J

J

J J
z

J
z

, 41

z
n

z
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xy z
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xy
n

2 1 2
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·
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¶
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¶
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+

A J , 42xy z
n

z
n2 1 1 ( ) = -+ +

in which the superscript denotes the iteration step. Here we are
to solve simple 3D Poisson equations for Bz and Jz with source
terms evaluated with known values. Then, the poloidal function
Φ and the toroidal function Az are updated by solving 2D
Poisson equations at each z const.= plane, and all of the other
variables at the (n+ 1)th step are calculated from Φn+1 and
Az

n 1+ by Equations (26), (27), (29), and (30). The iteration
procedure given by Equations (39)–(42) is not variational
because it does not try to extremize any functional. The
iteration step n is far from representing any pseudo-time
because we are already at t=∞ . Although we currently
cannot present a mathematical proof of the convergence of our
algorithm, our tests with many different real and artificial
magnetograms have never failed in convergence. A similar
iterative method was used for solving 2D steady-state Navier–
Stokes equations described in stream function and vorticity
(Roache 1975).

3.2. Boundary and Initial Conditions

In this paper, we consider a rectangular domain V=
{(x, y, z)| 0� x� Lx, 0� y� Ly, 0� z� Lz}

9. Its boundary
consists of six planes. The z= 0 plane corresponds to the
coronal base, and the z= Lz plane is an artificial top boundary
of the corona. The lateral boundary of an active region corona
consists of four planes: x= 0, x= Lx, y= 0, and y= Ly. A
numerical grid is set up in the computational domain such that
G= {(i, j, k)| i= 0, 1, 2,K,Nx, j= 0, 1, 2,K,Ny, k= 0, 1,
2,K,Nz}.
At the bottom boundary (z= 0), Bz and Jz are given, which

are readily translated into Φ and Az by solving 2D Poisson
equations Bxy z

2 F = and A Jxy z z
2 = - once for all. Although

imposing Bz and Jz at z= 0 is straightforward owing to the PT
representation of magnetic field, evaluating the right-hand side
of Equation (41) at the grid plane k= 1 is somewhat tricky
because the finite difference form of the z-derivative term

J
z

xy ·¶
¶

 at k= 1 (the first grid plane above the bottom

boundary) requires the value of J∥ at k= 0 (z= 0). As can be
seen in Equations (29) and (30), Jx and Jy involve a second-
order z-derivative ∂2Φ/∂z2, which cannot unambiguously be
defined at z= 0. However, the term J∥(z= 0) does not need to
be evaluated at all. Since the equations we are solving
(Equations (37) and (38)) already represent a stationary state
(t=∞ ), we should rather set J⊥(z= 0)= 0. Using the relation
∇ · J∥=−∇ · J⊥, we can rewrite Equation (38) as

J

J

J J
z

J
z

J

z
. 43

z z

xy z xy xy
z

2 2

2
2

2





·

· ( )

 =  +
¶
¶



=  +
¶
¶

 +
¶
¶

^

^

9 A domain V = {(x, y, z)| xa � x � xb, ya � y � yb, za � z � zb} can always
be expressed in that form by a displacement of the origin.
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The stationary condition J⊥(z= 0)= 0 allows us to evaluate
the second term in the rightmost side of the above equation
straightforwardly. The implementation of the boundary condi-
tion at z= 0 is thus completed. We have tried another method,
which uses a plausible relation

J Bx y z x y x y, , 0 , , 0 , , 0 , 44xy xy ( ) ( ) ( ) ( )a= = *

in which α= Jz/Bz and Bxy* is the observed horizontal magnetic
field. Using this relation corresponds to employing the
observed three components of the magnetic field at z= 0 and
enforcing the force-free condition at the bottom boundary. The
results of both methods are compared for many cases, and they
turn out to be surprisingly similar to each other.

The magnetogram of an active region generally does not
have the same positive and negative magnetic fluxes because
some field lines are connected to the outside of the active
region as closed fields or to the solar wind as open fields. We
want to accommodate such a flux imbalance in the new FFF
construction method. Previous attempts to consider a flux
imbalance have placed image polarities of opposite signs
outside the real domain (Seehafer 1978; Otto et al. 2007).
These methods, however, may make a considerable flux go out
of or come into the real domain through the lateral boundary,
and thus the constructed field configuration may undesirably
depend on the field connection between the real domain and the
image domains rather than on the field connection within the
real domain alone. In our study, we rather confine all of the flux
within the computational domain except the flux passing
through the top boundary. Magnetic field lines thus cannot
penetrate the lateral boundary, but can be tangential to it. The
effects of other boundary conditions allowing nonzero magn-
etic flux through the lateral boundary are discussed in
Section 5.

In regard to the lateral boundary (x= 0, Lx, y= 0, Ly), the
unit outward normal vector to the boundary is denoted by n̂, the
normal component vector of a vector field F is denoted by
F n n Fn ˆ ( ˆ · )= , its tangential component vector is denoted by
F n F n F Fn ˆ ( ˆ)= ´ ´ = - , and the normal derivative is
denoted by nn ˆ ·¶ ¶ = . Since we have to solve four
Poisson equations, i.e., Equations (39)–(42), at every iteration
step, we have set up four boundary conditions, respectively, on
Bz, Φ, Jz, and Az at the lateral boundary. To make this boundary
impenetrable to magnetic field, i.e., Bn = 0, we choose the
following boundary conditions:

B

n
0, 45z ( )¶

¶
=

n
p const., 461 ( )¶F

¶
= =

J 0, 47z ( )=

A 0. 48z ( )=

As can be seen in Equations (26) and (27), the conditions of
Equations (46) and (48) result in Bn = 0. The 2D Poisson
Equation (40) gives the following constraint:

n
dl B dS, 49z∮ ( )ò

¶F
¶

=

in which dl is an unsigned line element surrounding the 2D
domain at z const.= , and dS is the area element in the plane.

Then, p1 in Equation (46) is given by

p
L L

B dx dy
1

2 2
. 50

x y

L L

z1
0 0

y x

( )
( )ò ò=

+

If an infinite plane is a perfectly conducting rigid wall
impenetrable to the magnetic field, the magnetic field on one
side of the wall can be regenerated by replacing the wall by an
image field beyond the wall in such a way that Bt is symmetric
and Bn is antisymmetric across the boundary. In our case, the
lateral boundary consists of four finite planes, and the magnetic
flux in each z const.= plane is unmatched, which does not
realize an exact symmetry or antisymmetry across each
boundary plane. Nevertheless, the local symmetry condition
of Equation (45) turns out to be in practice a good choice for
our situation too. The image field beyond an infinite wall also
gives Jt= 0 and ∂Jn/∂n= 0. The boundary condition of
Equation (47) is also inspired by this picture.
At the top boundary, we employ a source surface condition

(Altschuler & Newkirk 1969; Aly & Seehafer 1993). The
purpose of this boundary condition is not only to mimic the
upper corona, where the solar wind carries out the open
magnetic field, but also to provide an exit for the imbalanced
magnetic flux. The source surface boundary condition is simply
given by

B z L B z L 0, 51x z y z( ) ( ) ( )= = = =

B

z
0. 52z

z Lz

( )¶
¶

=
=

The condition of Equation (51) results in

J z L 0, 53z z( ) ( )= =

implying that no current can escape or come in through the top
boundary. Since Jn = 0 at the lateral boundary in the final
force-free state, it follows that

J dx dy 0, 54
z

z
0

( )ò =
=

i.e., the positive and negative currents through the bottom
boundary should be balanced. This constraint must be fulfilled
by preprocessing of the magnetogram data. The source surface
condition at the top boundary is known to create a magnetic
field null-line at the boundary and a current sheet connected to
it in the domain (Zwingmann et al. 1985; Platt &
Neukirch 1994) except for potential fields. This point will be
discussed in relation to our numerical solutions in Section 5.
To start the iteration procedure given by Equations (39)–(42),

we need zeroth step (n= 0) values of Bz, Φ, Jz, and Az, which
may be called initial conditions. So far, many numerical
calculations for FFFs have taken potential fields for their initial
conditions (Schrijver et al. 2006). In the PT representation, a
potential field is prescribed by

B 0, 55az
2 ( ) =

B , 55bxy z
2 ( ) F =

J 0, 55cz ( )=

A 0, 55dz ( )=

in which the last line results from Equation (55c) and our lateral
boundary condition of Equation (48). Since Equations (55c)
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and (55d) do not match our boundary conditions at z= 0, the
potential field as an initial condition will have awkward
bending of field lines just above the bottom boundary. Instead
of starting with a current-free state, we rather want to load the
entire domain with currents. The simplest way for this would
be to set

J B 0. 56( ) ´ =  ´  ´ =

This field is prescribed by

B 0, 57az
2 ( ) =

J 0, 57bz
2 ( ) =

with Bxy z
2 F = and A Jxy z z

2 = - . In our experience, this
initial field reduces the number of iteration steps required for
convergence compared with the potential field as an initial
condition.

4. Tests of Our New Method Against the Titov–Démoulin
Models

4.1. Flux Ropes and Bald Patches of Titov–Démoulin Models

As with other numerical methods, our method is to be tested
with a computational code built upon it against known
analytical solutions. So far most existing codes have been
tested against the analytical model by Low & Lou (1990),
which represents a class of moderately sheared magnetic fields,
and have shown good to excellent performances (Schrijver
et al. 2006). Our own variational code “variational FFF code in
vector potential formulation (VFVP)” that we developed earlier
(see Appendix B) and the code based on our new method
“nonvariational FFF code in poloidal–toroidal formulation
(NFPT)” also are found to be working as well for the Low &
Lou model as other codes are (Schrijver et al. 2006; Inoue et al.
2014), and we do not feel the necessity of presenting the results
here. In this paper, we present the performance of the codes in
reproducing the NLFFF model by Titov & Démoulin (1999). In
this analytical model, a flux rope carrying a helical FFF and
ambient fields generated by two magnetic charges and a line
current underneath the surface are in equilibrium. Each Titov–
Démoulin (TD) model is prescribed by six free parameters: R
the major radius of the torus, a the minor radius, L the half-
distance between two magnetic charges, q the magnitude of the
magnetic charge, d the distance between the photosphere and
the subsurface line current lying along the symmetry axis of the
torus, and I0 the subsurface line current. The toroidal current I
in the torus is determined by the force balance condition. The
field line twist number Nt at the surface of the entire (closed)
torus also comes out from these parameters. The coronal part of

the torus, which lies above the photospheric plane, has a twist
Ncor at its surface

N
N d

R
cos . 58t

cor
1 ⎛

⎝
⎞
⎠

( )
p

» -

Table 1 lists the parameters prescribing the three TD models to
be presented in this paper. It is to be noted that since the TD
model employs a thin flux tube approximation assuming a high
aspect ratio (A= R/a? 1), the minor radius of the flux tube
may not be uniform along its axis in numerical models with a
modest A, particularly when lateral and top boundary
conditions are differently prescribed from those of the
analytical models.
Comparison of numerical results and reference models can

first be made by their appearance. In each TD model, there is
only one flux rope involved. It is thus a touchstone of different
numerical models whether one flux rope is well reproduced
with the characteristic features of the analytical model. Figure 1
shows the field lines of the flux rope in model TD1 (refer to
Table 1) obtained from (a) the analytical model, (b) our new
code NFPT, (c) our earlier code VFVP, and (d) the
optimization code in the SolarSoftWare (SSW), which is
available in the public domain.10 All field lines are traced from
the same footpoints, one group in the positive polarity area and
the other in the negative polarity area of the flux rope in the
analytical model. The field lines traced from the positive and
negative footpoints of the magnetic axis of the flux rope in the
analytical model are rendered thicker than other field lines. The
field lines of NFPT and VFVP apparently express a single flux
rope while those of SSW show two separated flux tubes. The
two magnetic axis field lines obtained from our new code
NFPT overlap with each other as in the analytical model, but
those from our earlier code VFVP are slightly off if not as
much as those from SSW. Since we do not have observational
data at the lateral and top boundaries in practical situations, all
numerical computations here use the data of the analytical
model at the bottom boundary only, and proper artificial
boundary conditions are used for the lateral and top boundaries.
For the same TD model, Wiegelmann et al. (2006a) also
reported two separated flux tubes crossing each other when the
analytical solution is used only at the bottom boundary,
whereas their constructed field bears a remarkable resemblance
to the analytical model when the analytical solution is imposed
at the lateral and top boundaries too.
Beyond mere appearance, we can quantitatively compare

numerical models with analytical solutions using so-called
“figures of merit” devised by Schrijver et al. (2006), which will

Table 1
Parameters Prescribing Three TD Models

Model R (106 m) a (106 m) L (106 m) d (106 m) q (1012 Wb ) I0 (10
12 A) Nt (turns)

a No. of Grid Points

TD1b 110 35 100 50 100 −13 2.577 151 × 251 × 101
TD2c 100 35 60 60 80 −3 8.8 151 × 251 × 101
TD3d 110 32.5 50 50 100 −7 5.0 257 × 351 × 201

Notes.
a The field line twist at the surface of the entire closed torus, which is larger than the twist of the coronal part of the torus.
b Used in Wiegelmann et al. (2006a).
c Case 5 of Demcsak et al. (2020).
d Used in Török et al. (2004).

10 http://sprg.ssl.berkeley.edu/~jimm/fff/optimization_fff.html
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also be called “performance metrics” in this paper. Although
we will use the same notations for them as in Schrijver et al.
(2006), the definitions of those and other metrics are reiterated
here for readers’ convenience.
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in which i denotes each grid point in the computational domain,
M is the total number of grid points, b is the reference magnetic
field, and B is the numerical solution. Ideally, the reference
field b should be the exact solution under the same boundary
conditions used by the numerical solutions B. However, the
boundary conditions for b and B are inevitably different if the
lateral and top boundary values of b are not known to those
who construct B. Also, the analytical exactness is different
from numerical exactness in a grid of finite resolution.
Furthermore, the analytical model of Titov & Démoulin

Figure 1. Field lines of model TD1. Each row shows a side view and a top view for (a) the analytical model, (b) the numerical solution by our new code nonvariational
FFF code in poloidal–toroidal formulation (NFPT),” (c) the numerical solution by our earlier code variational FFF code in vector potential formulation (VFVP),” and
(d) the numerical solution by the optimization code in SolarSoftWare (SSW), which employs a potential field solution at the lateral and top boundaries. Field lines in
all models are traced from the same footpoints. The black and white brightness in the photosphere represents the polarity of the line-of-sight magnetic field component,
i.e., white for positive and black for negative. The thin field lines in magenta are traced from certain positive footpoints of the analytical flux rope and those in cyan
from negative footpoints. The thick field lines are drawn from the two footpoints of the magnetic axis (blue from the positive and pink from the negative) of the
analytical flux rope. For the analytical model (a) and the numerical model (b), the thick field lines overlap with each other. For the numerical model (c), they are
slightly off, but the overall structure shows one flux rope. For the numerical model (d), thick field lines are quite separated and the overall structure indicates the
presence of two flux tubes rather than one.
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(1999) is an approximate solution. For these reasons, some
authors have (e.g., Valori et al. 2010; Guo et al. 2016) relaxed
the analytical solution in a numerical grid to obtain a reference
field. In this paper, however, we use the unprocessed analytical
solutions as reference fields in spite of the possible loss of
performance scores. The metricCWsin was originally devised by
Wheatland et al. (2000), in which a different notation σJ was
given to it, but the current naming has become more popular
afterwards. While the metrics Cvec, CCS, En¢, Em¢ , and ò are
based on the comparison of the numerical solution with the
reference field, the metric CWsin only judges the force-freeness
of the numerical solution itself. If the reference field and the
numerical solution are exactly identical, the former five metrics
should be all 1. For an exact FFF, CWsin should be 0. In some
literature and also in this paper, another quantity òp is
presented, which is the magnetic energy of a solution in units
of the potential field energy.

B

B
, 65p

i i

i p i

2

,
2


∣ ∣
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( )=

å
å

where Bp the potential magnetic field. This metric uses the
potential magnetic field as the reference field and indicates the
nonpotentiality of the solution, which may be due to the
deviation of the solution from the exact FFF as well as to the
difference of the exact FFF and the potential field.

Table 2 lists the seven performance metrics for TD1 derived
from the analytical solution and the three numerical solutions,
NFPT, VFVP, and SSW. The presented value of CWsin for the
analytical solution is obtained by assigning the analytical
magnetic field to a numerical grid and evaluating the current
density by a finite-difference method, and hence it deviates
from zero inevitably. As for the first five metrics, the scores are
ranked in order of VFVP, NFPT, and SSW. However, we have
already seen that the field obtained by VFVP does not show as
much resemblance to the analytical solution as that by NFPT. It
is only in TD1 that VFVP’s scores are better than NFPT’s. For
other TD models, NFPT turns out to exceed VFVP in all
metrics, as we shall see further below (Tables 3 and 4). In
contrast to the metrics by Schrijver et al. (2006), the scores of
the metricCWsin are ranked in order of NFPT, VFVP, and SSW,
reflecting best the resemblance of the numerical solutions to
the TD field featured by one flux rope. The metric CWsin is
independent of the choice of the lateral and top boundary
conditions and evaluates the force-freeness of a solution itself.
It is interesting that the apparent resemblance depends more on
the exactness (force-freeness) of the solution than its numerical

proximity to a reference solution. In other TD models too, the
NFPT code conspicuously outperforms others in CWsin.
Figure 1 shows that field lines are more and more loosely

wound as we go from (b) to (d). To compare the performance
of different numerical methods, we have also compared the
twist of the numerical solutions with that of the analytical one.
The twist of a field line denoted by CB is only meaningfully
defined about another field line denoted by CA, and we thus
denote the twist of CB around CA by Tw(CA, CB). In the case of
a flux rope, its magnetic axis would be the most meaningful
choice for CA. In numerical solutions, the magnetic axes traced
from the positive polarity and from the negative polarity can be
different if more than one flux tube appear in a numerical
solution, as in the cases of VFVP and SSW. Thus we have to
calculate two sets of twist with two magnetic axes traced from
different polarity areas. The twist is solely defined by serial
local connections between two curves, and the following
formula is valid for open curves as well as for closed curves
(Tyson & Strogatz 1991; Berger & Prior 2006):

t u
u

Tw C C
d

ds
ds,

1

2
, 66A B

C
A
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( ) ˆ ˆ · ˆ ( )òp
= ´

in which t
rd

ds
A

Aˆ = , where s is the arclength of the curve CA, is a

unit tangent vector to CA, and u u uˆ ∣ ∣= , where u is a vector
connecting a point in CA to a close point in CB in such a way
that u t 0A· ˆ = . With this method, we have measured the twist
of 24 field lines, whose footpoints are in a circle of radius r
centered at a magnetic axis footpoint at z= 0 , and have taken
an average over them.

Tw r
Tw r B r z

B r z

, , , 0

, , 0
, 67i i z i

i z i

1
24

1
24

( )
( )∣ ( )∣

∣ ( )∣
( )

q q

q
á ñ =

å =

å =
=

=

in which (r, θi) is the polar coordinates of the ith field line
footpoint, and θi= iπ/12. Circles of five different radii,
r/r0= 1, 2, 3, 4, and 5 where r0= 7Mm, are taken in the
positive and negative polarity areas, respectively, so that 10
mean values of twist in units of turns (2π radians) are obtained
for each solution and are plotted in Figure 2. As shown in the
figure, the mean twists of field lines traced from the positive
polarity side and from the negative side for the same r are
indistinguishable. It is remarkable that the twists of the NFPT
solution are closest to those of the analytical solution. The
twists obtained by VFVP fall a little short of the twists of the
former two solutions, and the SSW yields quite small twists, as
seen in Figure 1.

Table 2
Performance Metrics of Different Solutions for Model TD1

Solution Cvec CCS En¢ Em¢ ò òp CWsin

Analytical 1.000 1.000 1.000 1.000 1.000 2.407 0.080a

NFPT 0.935 0.898 0.590 0.534 0.643 1.573 0.102
VFVP 0.947 0.946 0.671 0.628 0.739 1.781 0.298
SSW 0.920 0.942 0.556 0.472 0.537 1.293 0.662

Note.
a This value is not zero in a numerical grid.

Table 3
Performance Metrics of Different Solutions for Model TD2

Solution Cvec CCS En¢ Em¢ ò òp CWsin

Analytical 1.000 1.000 1.000 1.000 1.000 2.125 0.127a

NFPT 0.985 0.987 0.832 0.833 0.803 1.953 0.045
VFVP 0.923 0.931 0.630 0.627 0.605 1.288 0.172
SSW 0.891 0.943 0.569 0.560 0.482 1.024 0.366

Note.
a This value is not zero in a numerical grid.
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Previously, the twist of a field line was sometimes measured
by the following formula (Inoue et al. 2011, 2014):

Tw dl
1

4
, 68

CB

( )òp
a=

in which α= B · J/B2, and l is the arclength of the field line
CB. This method is possibly subject to criticism in that a twist
cannot be defined for one curve alone. With an implicit
assumption that a magnetic axis of a flux rope takes the role of
CA, the equation can be made meaningful with a correction that
the line integral should be taken over the magnetic axis CA, dl
being the arclength of CA, and necessarily under the condition
that the toroidal current density should be uniform over each
cross-sectional area of the flux tube where the field line CB lies.
We have compared the twists by Equation (66) and those by
Equation (68) without modification for all of the solutions
of TD1, and have found that the latter method tends to
overestimate the twists, which is attributed to the larger length
of CB than CA. The discrepancy is found to grow with r,
because the length ratio of CB to CA increases with r.

The model TD2 (see Table 1) characteristically has a bald
patch, which is a segment in a polarity inversion line, where
locally concave upward field lines touch the photosphere (Titov
et al. 1993). A bald patch is a possible location of a solar

prominence of inverse polarity (Lee et al. 1995; Mackay et al.
2010), and it can develop into a current sheet (Low 1992;
Cheng & Choe 1998), where magnetic reconnection may take
place (Delannée & Aulanier 1999). In TD models, a bald patch
appears only with a sufficiently large twist of the flux rope
(Titov & Démoulin 1999). TD models with bald patches have
been reproduced in several numerical solutions (Valori et al.
2010; Jiang & Feng 2016; Demcsak et al. 2020). The
parameters of our TD2 are the same as those of Case 5 in
Demcsak et al. (2020), in which a Grad–Rubin-type code
(Wheatland 2007) was used. Figure 3 shows the top and side
views of four TD2 solutions, (a) analytical, (b) NFPT, (c)
VFVP, and (d) SSW. As in the case of TD1, the NFPT solution
reproduces one flux rope with a single magnetic axis of the
analytical solution. The solutions by VFVP and SSW produce
two flux tubes. The two flux tubes by SSW are widely
separated. All four models show bald patches, but the
endpoints of the bald patch field lines are quite differently
located. The footpoint positions of the bald patch field lines
apparently indicate their writhes (Berger & Prior 2006). The
footpoints and the S-shaped appearances of the bald patch field
lines in the NFPT solution and the analytical solution are quite
close, although the field lines in the latter are slightly longer
and their apex reaches a higher altitude. While the separation of
the magnetic axes of two flux tubes is smaller in VFVP than in
SSW, the writhe of the bald patch field lines is larger in SSW
than in VFVP. Compared with the solution by Demcsak et al.
(2020), the analytical solution and the NFPT solution show
larger writhes of bald patch field lines than their result, while
the VFVP and SSW solutions show smaller writhes. Limited
to TD models, nonvariational methods (NVPT and a Grad–
Rubin-type code) seem to be better at revealing topological
features of the field than variational methods (VFVP
and SSW).
The performance metrics of the four solutions for TD2 are

listed in Table 3. The NFPT solution exceeds other numerical
solutions in all metric scores, and it particularly stands out in
CWsin. It is again suggested that the force-freeness represented
by CWsin is more important in reproducing topological features
of the fields, e.g., flux ropes and bald patches, than other
metrics.

4.2. Hyperbolic Flux Tubes in the Titov–Démoulin Models

If a magnetic field is purely 2D, i.e., if it depends on two
coordinates and its field lines lie in parallel planes, an X-shaped
field configuration has two surfaces called separatrices
intersecting each other at a line called a separator. The field
lines in each quadrant may locally be approximated by
hyperbolas near the X-point, and they have discontinuous
connectivities across separatrices. The separator may be
deformed into a current sheet, where magnetic reconnection

Table 4
Performance Metrics of Different Solutions for Model TD3

Solution Cvec CCS En¢ Em¢ ò òp CWsin Eq,bot
a Eq,whole

b

Analytical 1.000 1.000 1.000 1.000 1.000 2.542 0.121 0 0
NFPT 0.978 0.968 0.765 0.725 0.788 2.009 0.094 0.670 0.813
SSW 0.958 0.972 0.672 0.586 0.659 1.675 0.388 3.736 1.357

Notes.
a The error metric for the Q values at the bottom boundary only.
b The error metric for the Q values in the whole computational domain.

Figure 2. Mean twists of different solutions in units of turns for TD1. Twenty-
four field line footpoints are chosen in each circle of radius r/r0 = 1, 2, 3, 4,
and 5, where r0 = 7 Mm, in both positive (P) and negative (N) polarity sides,
and an average is taken to give the mean twist as a function of r at z = 0. The
mean twists of field lines traced from the positive footpoints and those from the
negative footpoints are almost indistinguishable. The twist of NFPT is quite
close to that of the analytical solution (TD). The SSW solution shows the least
twist in magnitude.
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can take place (Syrovatskii 1981). If we add a smooth third
component of magnetic field dependent on two coordinates to a
purely 2D magnetic field, two field lines, whose endpoints are
very close with a former separatrix between them, have a large
separation at the other ends (Longcope & Strauss 1994). Thus,
the field connectivity is everywhere continuous. In a 3D
situation, separatrices and separators appear if null points or
bald patches are present in the domain. Otherwise, the field
connectivity is everywhere continuous, but there may exist
quasi-separatrix layers (QSLs), across which the separation
between the ends of field lines, which are very close
somewhere in the domain, is very large (Priest & Forbes 1992;
Démoulin et al. 1996). Quite similarly to the 2.5D situation, the
field lines in the vicinity of the intersection of two QSLs look
like hyperbolas when they are projected onto the plane normal
to the intersection. This structure is called a hyperbolic flux
tubes (HFTs), and its magnetic axis is a quasi-separator (QS;
Titov et al. 2002, 2003). A current sheet is likely to be formed
in an HFT by magnetic pinching induced by suitable footpoint
motions and consequently magnetic reconnection ensues (Titov
et al. 2003). To find an HFT, Titov et al. (2002) proposed a
squashing factor (or degree) Q, which represents how much a
cross section of a flux tube is deformed at the other side, as
follows:
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in which X x y Y x y, , , [ ( ) ( )]    is a vector function connect-
ing a footpoint (x±, y±) to its conjugate footpoint (xm, ym). The
flux surface of an HFT is an isosurface of Q with Q? 2.

To see how well numerical FFF solvers reproduce a TD field
containing an HFT, we have constructed the model TD3 in
Table 1 and calculated the squashing factor Q by tracing field
lines to the boundary from every grid point in the domain. The
upper row of Figure 4 shows the Q value in the y= 0 plane,
which is a vertical plane cutting the TD flux rope at its apex.
Apparently the Q color maps show an X-shaped configuration,
which is a typical feature of an HFT. The X-shaped structure
manifested by the same color scheme of Q is most conspicuous
in the analytical solution, then in the NFPT solution, and rather

faint in the SSW solution. Figure 4 also shows field lines
passing through three boxed areas in the y= 0 plane, a black
box above the axis of HFT, a light green box in the vicinity of
the HFT axis, and an orange box just below it. The upper field
lines above the HFT form one flux rope in the analytical and
NFPT solutions and two flux ropes in the SSW solution. The
light green field lines are supposed to cover a part of the QSL.
The structure of the QSL is best revealed in the analytical
solution and then in the NFPT solution.
Figure 5 shows the Q value in the z= 0 plane in black and

white brightness, superposed with the Bz level contours,
positive in red and negative in blue. In all three solutions, the
Q distributions below the central part of the flux ropes
(−1< y< 1) are quite similar, but in the vicinity of the flux
rope legs, the Q distributions are noticeably different. The Q
map of the analytical solution has hook-like structures, which
almost surround the flux rope footpoint areas. The result of our
NFPT also shows hook-like structures, which, however, are a
little smaller and thinner than the analytical ones. In the Q map
by SSW, the hooks are not fully wound, but are broken in the
middle.
Apparently the difference in the Q maps of TD3 is somewhat

similar to the difference in the bald patch fields lines of TD2
shown in Figure 3. To assess the proximity of the overall Q
distribution of a numerical model to the analytical one, we
devise the following metric:

E
M

q Q

q

1
, 70q

i

i i

i

∣ ∣
∣ ∣

( )å=
-

where i is the grid-point index, M is the total number of grid
points, q is the squashing factor of the analytic model, and Q is
the squashing factor of a numerical solution. If the numerical
solution is identical to the analytical one, the metric Eq should
be zero. We have evaluated the values of Eq in the z= 0 plane
(Eq,bot) as well as in the whole computational domain (Eq,whole)
and have listed them in Table 4 along with the performance
metrics. The error metric Eq,bot of NFPT is about one-fifth that
of SSW. However, the error metric Eq,whole does not show so
much difference as Eq,bot, which may be attributed to the larger
portion of grid points with small q (Q also) in the whole
domain than in the bottom plane only.

Figure 3. Field lines of model TD2. The upper row (1) shows top views and the lower row (2) side views of the magnetic axis field lines in blue and pink and the bald
patch field lines in red. Each column represents (a) the analytical model, (b) the numerical solution by our new code NFPT, (c) the numerical solution by our earlier
code VFVP, and (d) the numerical solution by the optimization code in SSW. The black and white background brightness in the photosphere represents the polarity of
the line-of-sight magnetic field component, i.e., white for positive and black for negative. The magnetic axis field lines in all models are traced from the same positive
(blue) and negative (pink) footpoints. The bald patch field lines (red) are traced from the bald patch in the polarity inversion line.
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In an HFT, the Q value attains a maximum in a line called a
QS (Titov et al. 2002). It corresponds to an X-line in a 2.5D
magnetic field and may be called the magnetic axis of an HFT.
If one tries to find a QS and the HFT in its neighborhood rather
than to find the entire structure of a QSL, one may not want to
take the trouble of evaluating Q, which requires finding the
conjugate footpoint pairs by field line tracing. Here we propose
a rather simple “local” method of locating a QS and HFT. In a
plane normal to a QS, field lines projected onto this plane are
like hyperbolas, and the magnetic field in this plane has the
following property:
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in which x¢ and y¢ are arbitrary Cartesian coordinates in this
plane. Since we do not know the location of the QS from the

beginning, we just calculate ^ in a plane normal to the local
magnetic field. Then, we set
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so that we may focus on candidate points for a QS. Although
the isocontours of HQ would not follow the shape of a QSL, the
maximum of HQ is expected to be located on the QS. Figure 6
shows a color map of HQ in the y= 0 plane made from the
analytical solution of TD3 superposed with white isocontours
of Q. While Q contours are useful for identifying a QSL
structure, an HQ map (or contours) is advantageous for locating
a QS. As both Q and HQ are useful for finding an HFT, their
distributions in the bottom plane (z= 0) are expected to be
similar. This is confirmed by Figure 7, in which the maximum
value of HQ in a field line is expressed by the brightness of the
brown color at its footpoint in z= 0, and the isocontours of

Figure 4. The squashing factor Q maps in the y = 0 plane and field lines of TD3 showing QSLs and HFTs. Each column regards (a) the analytical solution, (b) the
NFPT solution, and (c) the SSW solution. The first row shows Q color maps and three boxed areas, through which the field lines shown in other rows are passing. The
black box (R1) lies above the quasi-separator (QS; magnetic axis of the HFT), the light green box (R2) encloses the QS, and the orange box (R3) lies below the QS.
The second to fourth rows show three sets of field lines passing through the three boxes in different perspectives. The field lines through R1 represent the TD flux rope.
They are given in red when field lines are traced from the positive polarity side of the flux rope and in blue when traced from the negative polarity side. The analytical
and NFPT solutions show one flux rope, but the SSW solution shows two flux ropes. The field lines through R2 given in light green form a part of the QSL. The QSL
structure is most conspicuously shown in (a), then in (b), and faintly in (c).
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Q= 100 are given in blue for the analytical solution, the NFPT
solution, and the SSW solution of TD3. The figure shows that
the distributions of the two quantities are quite consistent. For
practical purposes, we do not need to find the maximum of HQ

is each field line. One may roughly draw field lines globally
and construct an HQ distribution in a suspected region. Then,
HQ can be a quick tool for locating a QS and an HFT.

5. Discussion and Summary

5.1. Efficiency and Effectiveness of the Computational Code

Our NFPT code requires solving two 3D Poisson
Equations (39) and (41) and two 2D Poisson Equations (40)
and (42) for k= 1, 2,..., Nz planes in each iteration step. In the

code, the Poisson equations are solved by a direct solver
package FISHPACK (Swarztrauber & Sweet 1975) quite
efficiently and accurately. The computational time per iteration
step required by NFPT is about 10 times that of VFVP and
about twice that of SSW. However, the number of iteration
steps required for convergence by NFPT is about one-tenth of
that by VFVP or SSW. In our TD2 calculations, the NFPT code
required about 200 iteration steps while the other codes
demanded at least 2500 steps. In terms of the computational
resources required for producing a solution, the NFPT is
comparable to the VFVP and uses far fewer resources than
the SSW.
A problem described by a set of partial differential equations

is well posed if the imposed boundary conditions and
constraints yield a unique solution. Although a problem is
mathematically well posed, its numerical implementation may
not be so for diverse reasons. Among others is the method of
information transfer between the boundary and the inner
computational domain, inherent to the numerical method. In
order to see whether the boundary condition is well reflected in
the solution consistently throughout the computational domain,
we have devised the following test. Suppose that a numerical
solution has been constructed in a domain

V x y z x L y L z L, , 0 , 0 , 0x y z0      {( )∣ }=

with a numerical grid

G i j k i N j N

k N
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Then, one can construct a numerical solution in a domain
reduced in z, i.e., in

V x y z x L y L z z L, , 0 , 0 , 0z x y z00      {( )∣ }= <

with a numerical grid
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where k0Δz= z0 with Δz= Lz/Nz, using the former numerical
solution at z= z0 (k= k0) as a boundary condition at the bottom

Figure 5. The squashing factor Q maps in the z = 0 plane in black and white brightness and the isocontours of Bz for (a) the analytical solution, (b) the NFPT solution,
and (c) the SSW solution for TD3. The red contours represent Bz > 0, and the blue ones represent Bz < 0.

Figure 6. The color map of HQ in the y = 0 plane superposed with the
isocontours of Q for the analytical solution of TD3. While the Q contours
delineate the cross-sectional structure of a QSL, the HQ map quite well reveals
the QS, which is the magnetic axis of an HFT.
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boundary of the new domain. At this time, we should not use
the former solution as the initial condition, nor impose any
known solutions as the boundary conditions at the lateral and
top boundaries of Gk0. If the numerical solutions with grids G0

and Gk0 are identical in the domain Gk0, it can be said that the
bottom boundary and the solution in the domain are
consistently connected. For TD2, we have employed a
numerical grid with (Nx, Ny, Nz)= (150, 250, 100). To perform
the above test, we have chosen k0= 10, 20, 30, 40, and 50 and
constructed numerical solutions with the NFPT code in five
different grids Gk0, in all of which the numerical solutions
obtained in the original grid G0 are used as bottom boundary
conditions at k= k0 of Gk0. To compare the numerical solutions
in the original grid and in each reduced grid, we have evaluated
five performance metrics by Schrijver et al. (2006) in the
domain Gk0, using the solution obtained in each reduced grid
Gk0 for B and the solution in the original grid G0 for b in
Equations (59)–(63). The results are given in Table 5. The
metrics Cvec and CCS are 0.999 for all k0 while other metrics
show a slight tendency of degradation with increasing k0. These
scores of NFPT are unrivaled with those of variational codes
(VFVP and SSW), all the more so with increasing k0, unless
fixed values of the field are prescribed at all boundaries. Thus,
it can be said that the PT representation and its natural way of

imposing boundary conditions are self-consistent to generate an
unambiguous solution in the whole domain. It is also suggested
that this test be performed on other numerical methods to be
developed.

5.2. Discussion on Lateral and Top Boundary Conditions

The lateral boundary condition we have used in this paper
does not allow any magnetic flux to cross the lateral boundary.
Any imbalanced flux at the photospheric boundary is thus
ducted through the top boundary. Previously, other boundary
conditions have been proposed, which allow a nonzero normal
magnetic field at the lateral boundary (e.g., Seehafer 1978; Otto
et al. 2007). These boundary conditions assume image
polarities across the lateral boundary by a plane symmetry or
a line symmetry of a certain parity so that there may be field
lines connecting the polarity patches in the real domain and
those in the image domains. Thus, the field configuration in the
real domain is more or less affected by the field connection
across the lateral boundary. Since there are several methods of
placing image polarities, the resulting field configuration
depends on the method chosen (Otto et al. 2007). By
mathematical reasoning alone, one can hardly tell which
boundary condition is superior to others . Our nonpenetrating
wall condition, which is also an artificial boundary condition, is
not an exception. As far as a more or less isolated active region
is concerned, however, the connections between the real
(observed) polarities and the image polarities may rather be
considered undesirable. For TD2, we have tested four different
lateral boundary conditions, one of which is our nonpenetrating
condition, in order to see how much magnetic flux passes
through the lateral and top boundaries and how close the
numerical solution is to the reference field. The four lateral
boundary conditions are as follows:

(BC1) ∂Bz/∂n= 0, Jz= 0.

(BC2) Bz= 0, ∂Jz/∂n= 0.

Figure 7. The maximum HQ value of each field line rooted in the z = 0 plane given in brownish brightness and the blue contours for Q = 100 for (a) the analytical
solution, (b) the NFPT solution, and (c) the SSW solution for TD3. The HQ maps and the Q contours show common features.

Table 5
Performance Metrics of the NFPT Solutions for Model TD2 in Reduced Grids

k0 Cvec CCS En¢ Em¢ ò

10 0.999 0.999 0.955 0.953 0.948
20 0.999 0.999 0.955 0.949 0.959
30 0.999 0.999 0.947 0.942 0.944
40 0.999 0.999 0.936 0.931 0.914
50 0.999 0.999 0.924 0.919 0.890

Note. For all of the metrics, the numerical solution in the grid G0 is taken for
the reference solution b, and the numerical solution in the grid Gk0 is taken
for B.
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(BC3) Bz= 0, Jz=0.

(BC4) ∂Bz/∂n= 0, ∂Jz/∂n= 0.

In BC1, which is taken in the present paper, Bn = 0, and Jn is
not necessarily zero, but must be zero in a force-free state. In all
of the other cases, Bn≠ 0. In BC2, Bt= 0, Jn = 0, and Jt is not
necessarily zero, but must be zero in a force-free state. Thus,
the magnetic field passing through the lateral boundary in BC2
is a potential field. For BC1 and BC2 both, the force-free
coefficient α is antisymmetric across the lateral boundary, and
neither condition can be accommodated in LFFF models. Since
there is no current flowing through the lateral and top
boundaries with BC1 and BC2, the current at the bottom
boundary must be preprocessed so that the net current may be
zero. In BC3 and BC4, there are normal magnetic currents as
well as normal magnetic fields crossing the lateral boundary.
Since the force-free coefficient α is symmetric across the lateral
boundary, these boundary conditions can be used for the LFFF
model, as BC3 was adopted by Seehafer (1978). The line
symmetry boundary condition by Otto et al. (2007) has not
been tried here.

In Table 6, the total unsigned magnetic flux through the
lateral boundary Fl, the total unsigned flux through the top
boundary Ft, and the total unsigned open flux Fopen= Fl+ Ft

are given in units of the total unsigned flux through the bottom
boundary Fb. Performance metrics are also given for each case.
The total unsigned open flux is the smallest with BC1, and the
lateral flux of other cases is almost comparable to that. The
performance metrics are best with BC1, which implies that the
numerical solution is closest to the reference field among other
cases. Since the lateral magnetic flux is also expected to depend
on the domain’s aspect ratio, we have also tried to run the code
in a domain, the height of which is twice the original Lz while
the x- and y-sizes are unchanged. The ratios of boundary fluxes
to the bottom flux in this case are given in the last three
columns of Table 6. The flux through the top boundary is
significantly reduced for all cases compared with the value in
the original domain. However, the total open flux through the
lateral and top boundaries is either slightly decreased (BC3 and
BC4) or even increased a little (BC2). With BC1, the total open
flux is significantly decreased by doubling the domain size.
Although not given in Table 6, the performance metrics are
best with BC1 in the double-sized domain too. Based on this
investigation about the boundary conditions and the code
performance, it is carefully suggested that our boundary
condition (BC1) would be the best choice for reconstruction
of a rather isolated active region and that it would relieve one

from worrying about where and how to put image polarities
and current sources outside the domain.
It should be noted that the TD models have a perfect flux

balance at the bottom boundary, and the open flux is caused by
the boundary conditions, not by a flux imbalance. When we use
a source surface condition given by Equations (51) and (52) at
the top boundary, there must be a polarity inversion line where
Bz=0 at this boundary unless the bottom magnetic field is
totally unidirectional. From the source surface condition and
the force-free condition, J(z= Lz)= 0. Thus, the open field is a
potential field. A surface emanating from the null-line to the
bottom boundary is a separatrix surface, across which field
topology discontinuously changes from “closed” to “open” as
well as “nonpotential” to “potential.” Since there is no reason
for the field direction to be continuous across this separatrix,
this surface must be a current sheet (Zwingmann et al. 1985;
Platt & Neukirch 1994). As we do not know in advance where
the footpoints of the separatrix are located at the bottom
boundary, the footpoint line may lie where Jz≠ 0 unless we
have a wide enough buffer area with Jz = 0 and Bz≠ 0 at the
bottom boundary. This is an intrinsic problem of our model,
which causes those performance metrics evaluating the
proximity of the numerical solution to the reference field to
deviate from 1 even though the solution in the closed flux
region is quite similar to the reference field. The metric CWsin
measuring the force-freeness, however, is minimally affected
except near the separatrix. To see whether the null-line with a
singular transverse current exists at the top boundary and
whether a separatrix current sheet exists in the domain, we have
plotted the distributions of Bz and J= |J| at the top boundary
and that of J in the vertical plane x= 0 in Figure 8. Because the
value of the numerically evaluated current density highly
depends on magnetic field strength, and the null-line and the
separatrix are in a weak field region, the features we are
seeking do not stand out conspicuously, but they are still
identifiable in the figure. As we have expected, the major field
structure with strong currents lies in the closed flux region, and
we have thus been able to reproduce the significant geometrical
features of the reference TD fields as given in the previous
section.

5.3. Summary

In summary, we have presented a new method of
constructing a coronal FFF based on a poloidal–toroidal
representation of magnetic field. The PT representation allows
us to impose the boundary conditions Bn and Jn at the
photospheric boundary once for all with only the boundary
values of the poloidal and toroidal functions. With rigid,

Table 6
Boundary Fluxes and Performance Metrics for Different Boundary Conditions

BC Fl/Fb Ft/Fb (Fl + Ft)/Fb Cvec CCS En¢ Em¢ CWsin F Fl b d( ) F Ft b d( ) F F Fl t b d(( ) )+

BC1 0.0 0.259 0.259 0.985 0.987 0.832 0.833 0.0450 0.0 0.0746 0.0746
BC2 0.244 0.0534 0.298 0.977 0.977 0.807 0.805 0.0552 0.324 0.00213 0.327
BC3 0.424 0.0630 0.487 0.914 0.916 0.617 0.607 0.0590 0.462 0.00839 0.470
BC4 0.329 0.257 0.586 0.963 0.960 0.749 0.738 0.0980 0.327 0.0417 0.368

Note. The total unsigned magnetic flux through the bottom boundary is denoted by Fb, the total unsigned flux through the lateral boundary by Fl, and the total
unsigned flux through the top boundary by Ft. The total open flux is Fl + Ft. The three flux ratios obtained in a domain with a double size in z are designated by the
subscript d.
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conducting slip wall boundary conditions at the lateral
boundaries and a source surface condition at the top
boundary, a magnetic flux imbalance at the bottom boundary
can be accommodated. Since no current can escape the
computational domain, the current at the bottom boundary
must be preprocessed so that the net current through it may be
zero. At the top boundary, a rigid, conducting slip wall
condition can also be used instead of the source surface
condition. With this condition, however, a flux imbalance at
the bottom boundary is not allowed, and thus the Bn data there
must be preprocessed. Our new method is nonvariational in
the sense that the converging sequence toward the solution
does not extremize any conceivable functional. It rather
directly targets a solution, but iterations are needed because of
the high degree of nonlinearity. Thus, it requires far fewer
iteration steps than variational methods although one iteration
step requires more computational resources than the latter.
We have tested the NFPT code based on the new method
against the analytical FFF models by Titov & Démoulin
(1999) with other available variational codes, our own VFVP
code, and the optimization code in SSW. Our new NFPT code
exceeds others in reproducing characteristic features of TD
models, for example, one flux rope with a proper twist, a bald
patch with a proper writhe, and QSLs with an HFT. The
NFPT code also produces the best scores in most performance
metrics (Schrijver et al. 2006), especially in CWsin measuring
the solution’s own force-freeness. An application of the
NFPT code has also been made to the vector magnetograms
of a real active region, which will be reported in a subsequent
paper shortly.
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cantly. This work has been supported by the National Research
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forschung, Göttingen, Germany, and they appreciate the fruitful
interactions with researchers there.
Software: SolarSoft (Freeland & Handy 1998), FISHPACK
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Appendix A
On the PT Representation of a Periodic Field in Cartesian

Coordinates

Here we will plainly expound why a special treatment is needed
in a PT representation in a Cartesian coordinate system when the
magnetic field is periodic in two directions spanning a toroidal
field surface. Our account here is a readable revision of previous
studies (e.g., Schmitt & von Wahl 1992, and references therein).
Consider a magnetic field periodic in x and y with

wavelengths (periods) λx and λy, respectively. Taking ξ= z,
we have

B
x z y

, A1x ⎛
⎝

⎞
⎠

( )= -
¶
¶

¶F
¶

-
¶Y
¶

B
y z x

. A2y ⎛
⎝

⎞
⎠

( )= -
¶
¶

¶F
¶

+
¶Y
¶

We may define two vector fields F and G such that

F x y x yF F
z

, A3x y ⎛
⎝

⎞
⎠

ˆ ˆ ˆ ˆ ( )= + = Y + -
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¶

G x y x yG G
z

. A4x y ⎛
⎝
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ˆ ˆ ˆ ˆ ( )= + =
¶F
¶
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Note that F and G are also periodic in x and y. We can then
write

z FB , A5x ˆ · ( ) ( )=  ´

z GB . A6y ˆ · ( ) ( )=  ´

We consider a 2D rectangular domain Sz= {(x, y,
z)|0� x� λx, 0� y� λy} and apply Stokes’ theorem to have

F rB dS d , A7
S

x z
Sz z

∮ · ( )ò =
¶

G rB dS d . A8
S

y z
Sz z

∮ · ( )ò =
¶

In the line segments x= 0 and x= λx, F(x, y, z) or G(x, y, z) is
the same, but dr is in the opposite direction. The same is true
for the line segments y= 0 and y= λx. Thus, the contour
integrals should be zero. However, the surface integrals may
not be zero even if B is periodic. Such a field cannot simply be
expressed in the form of Equations (A1) and (A2). In such
cases, we define the following functions of z only:

B z B dS
1

, A9x
x y S

x z0
z

( ) ( )òl l
=

Figure 8. The magnetic field null-line at the top boundary and the separatrix
surface emanating from it. (a) The distribution of Bz(z = Lz) is given as a color
map. The positive polarity is given in red and the negative in blue. The null-line
is given in white. (b) The magnitude of current density J = |J| at the top
boundary is given in darkness of red. The high J region delineates the null-line
in (a). (c) The magnitude of current density J = |J| in the vertical plane x = 0 is
given in darkness of blue. The outer boundary of the blue region has a slight
enhancement in J, and it indicates the intersection of the separatrix current
sheet with the plane x = 0.
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B z B dS
1

. A10y
x y S

y z0
z

( ) ( )òl l
=

Then, the surface integrals of Bx− B0x and By− B0y are zero,
and only B x xB Bx x0 0ˆ ˆ- - can be expressed by the standard
PT representation in the form of Equations (A1) and (A2).

A similar argument applies to Bz given by Equation (28).
Applying the divergence theorem to the 2D domain Sz, we have

B dS
n

dl, A11
S

z z
Sz z

∮ ( )ò =
¶F
¶¶

in which dl= |dr|. For Φ periodic in x and y, the contour
integral is zero, but the surface integral of Bz may not be zero
even if Bz is periodic. We then define

B B dS
1

. A12z
x y S

z z0
z

( )òl l
=

Note that B0z is not a function of z, but a constant, owing to the
constraint ∇ ·B= 0 combined with the periodicity of B in x
and y.

To sum up, a magnetic field B periodic in Cartesian
coordinates x and y is generally expressed as

B z z B , A130(ˆ ) ˆ ( )=  ´ ´ F + ´ Y +

in which

B x y zB z B z B A14x y z0 0 0 0( ) ˆ ( ) ˆ ˆ ( )= + +

is so called a “mean flow” (Schmitt & von Wahl 1992). When
periodic boundary conditions are explicitly imposed in two
Cartesian coordinates, one should consider the mean flow.
Since we do not employ a periodic boundary condition, a mean
flow is not a consideration in our paper.

Appendix B
On Our Earlier Variational NLFFF Code in Vector

Potential Formulation

Before the NLFFF code based on a PT representation, we
had developed and used a variational NLFFF code using a
vector potential formulation of magnetic field. Since this code
is based on a magnetofrictional method (Chodura & Schlü-
ter 1981), the algorithm is as simple as

A
r J

t
t, , B1( ) ( )n

¶
¶

= - ^

in which t is a pseudo-time, ν(r, t) is a proper coefficient
maximizing the convergence rate, and J⊥= B× (J× B)/B2.
To expedite the convergence, we equip the code with a gradient
descent algorithm (Chodura & Schlüter 1981). When a vector
potential A is used to describe the magnetic field, we cannot
set all three components of A at z= 0 fixed, in order to impose
Bz and Jz there. In a magnetofrictional code by Roumeliotis
(1996), Az(x, y, 0) was set fixed, and Ax(x, y, 0) and Ay(x, y, 0)
were varied at every time step. In our variational code, we set
Ax(x, y, 0) and Ay(x, y, 0) once for all to fix Bz(x, y, 0), and
the solution of the following 2D Poisson equation is given as
Az(x, y, 0) at every time step,

AA J
z

, B2xy z z z xy
z

2
0 ,obs

0

⎡
⎣

⎤
⎦

∣ · ( ) = - +
¶
¶

=
= +

in which Jz,obs is the boundary condition of Jz derived from an
observation, and the z-derivative is evaluated using a one-sided
finite differencing. The computed Jz(x, y, 0) is thus equated
with Jz,obs at every time step. Our variational code is working
very well for moderately sheared fields (e.g., Low &
Lou 1990), but shows a little weakness for magnetic fields
with flux ropes as with other variational codes. This motivated
us to devise the new formulation presented in this paper, in
which the imposition of the bottom boundary condition is tidy
and effective.
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