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Deutsche Zusammenfassung

Im Bereich der Datenverarbeitung stehen wir oft vor dem Problem, ein hochdimen-
sionales Signal aus linearen Messungen rekonstruieren zu müssen. Dabei stellen wir
in vielen Anwendungen, wie der bildgebenden Diagnostik (engl: medical imaging) in
der Medizin, fest, dass die Signale oft dünnbesetzt (engl.: sparse) sind, d.h., dass die
meisten Einträge des Signals null oder zumindest sehr klein sind. Vor ungefähr zehn
Jahren hat sich Compressed Sensing als neuartige Methode zur Rekonstruktion von
dünnbesetzten Signalen aus linearen Messungen hervorgetan.

In dem ersten Abschnitt dieser Dissertation beschäftigen wir uns mit der Theorie
der s-Zahlen (engl.: s-numbers). Unser Hauptaugenmerkt liegt hierbei auf der Un-
gleichung von Carl, welche das asymptotische Verhalten einiger wichtiger s-Zahlen
abschätzt. Das Hauptresultat in diesem Abschnitt ist ein Beweis der Ungleichung
von Carl für den Fall von Gelfand Zahlen auf quasi-Banach Räumen. Im Kontext
von Compressed Sensing können wir dieses Resultat dann insbesondere nutzen, um
eine Schranke für die Mindestanzahl an benötigten linearen Messungen herzuleiten,
aus welchen wir dünnbesetzte Signale zufriedenstellend rekonstruieren können.

Das Ausgangsproblem von Compressed Sensing beschäftigt sich mit der Rekon-
struktion von Signalen aus linearen Messungen. In vielen Anwendungen erhalten
wir allerdings nur Zugang zu nichtlinearen Messungen, mit welchen wir uns in den
weiteren Abschnitten der Arbeit befassen. Zunächst betrachten wir das Problem
des sogenannten 1-Bit Compressed Sensing. Hier erhalten wir lediglich die Vorze-
ichen der linearen Messungen und dadurch sehr viel weniger Informationen als im
klassischen Compressed Sensing. Dennoch ist es möglich, das Signal (bis auf ein
skalares Vielfaches) mit der gleichen Ordnung an Messungen zu rekonstruieren. Um
das Problem des 1-Bit Compressed Sensing zu lösen, wurden bereits einige Rekon-
struktionsalgorithmen vorgeschlagen. Wir werden uns dabei auf die ℓ1-Support
Vector Machines beschränken, welche häufig eine Anwendung bei Problemen des
Maschinellen Lernens (engl.: Machine Learning) finden.

Nachdem wir das Problem des 1-Bit Compressed Sensing besprochen haben, wid-
men wir uns der Approximation von Ridge Funktionen. Diese können wir auf zwei
verschiedene Arten interpretieren: Auf der einen Seite, im Kontext von Compressed
Sensing, können die Ridge Funktionen als Verallgemeinerung des 1-Bit Compressed
Sensing Problems verstanden werden. Anstelle der Vorzeichen der Messwerte erhal-
ten wir hier eine beliebige, unbekannte nichtlineare Störung der Messwerte. Dabei
ist allerdings zu bemerken, dass wir bei der Approximation von Ridge Funktionen die
zusätzliche Annahme treffen, dass die Nichtlinearität differenzierbar ist und somit
das Vorzeichen der Messwerte hier nicht als Nichtlinearität gewählt werden kann.

Auf der anderen Seite bemerken wir, dass die Approximation von Funktio-
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nen in vielen Veränderlichen oft unter dem Fluch der Dimensionalität leidet. Be-
merkenswert ist, dass selbst die gleichmäßige Approximation von beliebig oft dif-
ferenzierbaren Funktionen unter diesem Fluch leidet. Da wir aber dennoch an der
Approximation von Funktionen in vielen Veränderlichen interessiert sind, müssen
wir weitere strukturelle Annahmen treffen. Eine der einfachsten dieser Annahmen
ist die der Ridge Funktionen, nämlich, dass die Funktionen konstant entlang von
Hyperebenen sind.



Abstract

In data processing we often aim for the recovery of signals in very high dimensions
from linear measurements. In many applications such as medical imaging, it turns
out that the signal of interest is sparse (or allows a sparse representation in a certain
dictionary), i.e., most of its entries are zero or at least very small. Some ten years ago,
compressed sensing emerged as a novel method for the recovery of sparse signals in
high dimensions, where the sparsity assumption is used to heavily reduce the needed
number of linear measurements.

In the first main part of this thesis we deal with the theory of s-numbers. Our
main interest is the so-called Carl’s inequality, which estimates the asymptotic be-
havior of important instances of s-numbers such as the Gelfand numbers. The main
result in this part is given by Carl’s inequality for Gelfand numbers on quasi-Banach
spaces. In particular, in the context of compressed sensing Carl’s inequality can be
used to estimate the minimal needed number of linear measurements in order to
obtain reasonable approximations of a sparse signal.

The basic setting of compressed sensing deals with the recovery of sparse signals
from linear measurements. However, many applications gain only access to nonlin-
ear measurements. Thus, in the remaining part of this thesis we discuss specific
nonlinearities in the measurement process. More precisely, first we will discuss the
problem of 1-bit compressed sensing, where we only obtain the signs of the linear
measurements. Although getting less information from the measurement process,
it is still possible to recover the signal (up to some scalar multiple) from the same
amount of linear measurements as in the usual compressed sensing setting. Recently,
several algorithms where proposed to solve the 1-bit compressed sensing problem.
We will analyze the so-called ℓ1-support vector machines, which are often used in
machine learning applications.

After discussing the 1-bit compressed sensing problem, we will discuss the ap-
proximation of ridge functions, which we can interpret in the following two ways.
On the one hand, in the context of compressed sensing we can interpret the ap-
proximation of ridge function as a generalization of the 1-bit compressed sensing
problem. Instead of the sign, here the measurements get disturbed by some un-
known nonlinearity. However, in the theory of ridge functions we usually assume a
differentiability condition on the nonlinearity, which is obviously not fulfilled for the
sign function.

On the other hand, we observe that the approximation of multivariate functions
in high dimensions often suffers from the curse of dimensionality. It turns out that
even the approximation of arbitrarily often differentiable multivariate functions is
intractable in general. Hence, if we still want to approximate multivariate functions
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in high dimensions, we have to assume further structure. One of the probably
simplest structures we can think of is given by ridge functions, which are constant
along hyperplanes.
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would like to thank Martin Schäfer, Irena Bojarovska, Jackie Ma, Philipp Petersen,
Friedrich Philipp, Wang-Q Lim, Axel Flinth, Ali Hashemi, Maximilian März, Anja
Hedrich, Anja Peter, Annika Preuß, Mones Raslan, Maximilian Leitheiser, Martin
Genzel and Sandra Keiper. It is a pleasure for me to be a part of this group, where
I have learned a lot during the seminars and further discussions, but where I also
had a lot of fun during our social events and our daily lunch breaks.

I also would like to thank Aicke Hinrichs for the fruitful collaboration and the
very nice time in Linz.

I would like to thank Martin Genzel, Sandra Keiper, Martin Schäfer, Jackie Ma
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Chapter 1

Introduction

1.1 Overview

In many applications such as medical imaging we want to deduce information of a
certain signal from measured data. Through technological progress, we are facing
two kinds of phenomena in this context. On the one hand, we are able to collect
more and more data; on the other hand, we obtain efficient tools to compress data
without losing quality. Typical examples are more and more improved sensing de-
vices having a higher resolution, such as the MRI machine in medical imaging. But
also companies as Google or Facebook increase the amount of stored data. Recent
studies expect the total amount of worldwide collected data to double every other
year, hence, the growth is exponentially fast. When describing this phenomenon
with all of its aspects, the blurry keyword Big Data became popular. One of the
main challenges in modern data sciences is to handle the huge amount of data we
collect nowadays.

In many of those applications the measuring process follows a linear structure.
Mathematically formulated, we aim for the reconstruction of the signal x ∈ Rd from
linear measurements

y = Ax (1.1)

for a known sensing matrix A ∈ Rm,d and observed data y ∈ Rm. Clearly, basic linear
algebra teaches us that we cannot recover x from y if we have less measurements
than unknowns, i.e., if m < d. Nevertheless, to speed up sensing operations or
even not to exceed computational power if the ambient dimension d is large, we
want to reduce the amount of required measurements m. To still recover the signal
x, we certainly have to introduce further assumptions, e.g., by incorporating prior
knowledge on the signal.

In many applications the signals of interest follow a specific structure. For in-
stance, the MRI machine wants to produce an image of a certain part of the human
body which we know in advance. Using this prior knowledge, Lustig, Donoho, and
Pauly were able to reduce the required number of measurements while keeping the
resolution unchanged. This in the end leads to a reduction of the scanning time [38].

Introducing the structural assumption on the signal often allows a sparse repre-
sentation in a certain dictionary which is known in advance. That is, if we represent
the (unknown) signal with respect to this (known) dictionary, most of its coefficients
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2 CHAPTER 1. INTRODUCTION

are zero or at least very small, in which case we call the signal sparse or compressible,
respectively. For instance, medical images have a sparse representation with respect
to a wavelet basis [31].

Compressed sensing emerged around 2006 [17, 19, 35, 37] as a novel method for
the recovery of sparse vectors x ∈ Rd from linear measurements as in (1.1). Due to
its solid mathematical background the theory has been intensively investigated with
applications in many different areas such as image processing, biology, medicine,
astronomy, radar communication, and material sciences.

Let us highlight that the main difficulty in compressed sensing is that we only
know x to be sparse, i.e., that it only has a few nonzero entries. As we have no prior
knowledge on the locations, we cannot delete the zeros and corresponding columns
in A to get an overdetermined linear system. Hence, if we want to recover x, we
have to reconstruct both, the entries and their locations.

Surprisingly, it turns out that we can exactly recover an s-sparse signal x ∈ Rd

with s << d nonzero entries from only m = O(s log(d)) linear measurements. Here,
the number of measurements only depends logarithmically on the underlying dimen-
sion d leading to a heavy reduction of measurements compared to classical linear
algebra methods requiring m = d. Clearly, by having less measurements than un-
knowns, classical linear algebra tools cannot be applied to solve the linear equation
(1.1) for x. Since the emergence of compressed sensing, several reconstruction algo-
rithms have been developed. In [25] the authors proposed to use the so-called basis
pursuit

∆1(y) := arg min
w∈Rd

∥w∥1 subject to Aw = y,

which has emerged as a suitable method to recover sparse signals and we will, there-
fore, focus on. Other famous algorithms in the area of compressed sensing are the
orthogonal matching pursuit (OMP) [88], the compressive sampling matching pur-
suit (CoSaMP) [81], and the iterative hard thresholding (IHT) [8], to mention just
a few of them. In the following we state some of the ongoing research topics related
to the area of compressed sensing which we will work on in this thesis.

1.1.1 Performance over Classes

To solve the linear system (1.1) for x, not only the reconstruction algorithm such as
the basis pursuit is important, but also the choice of the measurement matrix A itself.
For the usual problem of compressed sensing random matrices with subgaussian
entries as normally distributed or Bernoulli variables turn out to perform very well
with overwhelmingly high probability [6, 27]. Unfortunately, random matrices are
often not useful in practice since the measurement process usually obeys a certain
structure. To mention only one example, in MRI the acquired samples are given as
Fourier coefficients of the signal [38].

However, in many applications we do not only have to take certain drawbacks
from the measurement limitations into account, often also more information on
the original signal is known. For instance, in some applications such as wireless
communications, we have the additional prior knowledge that the original signal has
to lie on a grid [100]. We refer to [41, 66] for recent results concerning the recovery
of sparse signals lying on a grid.
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Another example is given by group sparsity. Here we partition the indices 1, . . . , d
into groups, where we assume coefficients belonging to the same group to tend to
be zero or nonzero simultaneously. This phenomenon often appears in applications
such as microarray analysis, where genes in a family share a similar sequence of
DNA building blocks. The authors of [103] derived a bound on the number of
samples needed to recover a block sparse signal. We also refer to [60] dealing with
the advantages of group sparsity.

Concluding, for each practical application the measurement and reconstruction
procedure has to consider given limitations of the particular sensing device, but also
further prior knowledge other than sparsity has to be taken into account. Afterwards
the performance of the particular measurement and reconstruction method has to
be analyzed and compared to optimal benchmarks, which also have to be derived.

1.1.2 Nonlinear Compressed Sensing

The problem of compressed sensing was introduced to recover a signal x from an
underdetermined linear system (1.1), where the signal structure, namely the sparsity,
is taken into account. However, in many applications it might happen that we
do not have access to linear measurements. A very simple example is given by
analog to digital conversion, where the values get quantized which destroys the
linear measurement process. Modeling the known or even unknown nonlinearity as
function f instead of the linear system (1.1), we get the measurements

y = f(Ax),

which we will denote as semiparametric single index model. Driven by various ap-
plications, it is natural to ask how to proceed with these nonlinear measurements.

One particular application is given by 1-bit compressed sensing, where we are left
over with quantization in its extreme case, i.e., with the particular choice f = sign.
Here we only get the ±1 measurements

y = sign(Ax). (1.2)

The problem of 1-bit compressed sensing was first introduced by Baraniuk and
Boufounos in [10] with rapidly growing publications on this subject afterwards, where
we, in particular, want to highlight the work of Plan and Vershynin [96]. Surprisingly,
it turns out that we only need the same amount of measurements m = O(s log(d))
compared to the usual compressed sensing theory if we want to recover an s-sparse
signal x from (1.2). From this point of view we can neglect the impact of extreme
quantization, but let us point out that one clearly needs another recovery algorithm
besides the classical basis pursuit.

Another example is given by X-ray crystallography, where one aims to recover
the three dimensional structure of a certain crystal from diffraction patterns. In
contrary to 1-bit compressed sensing, here we lose the information about the phase,
that is, we obtain the measurements

y = |Ax|.

This problem is denoted as phase retrieval [4, 5, 18]. While traditionally no sparsity
prior on the signal x is assumed here, some research has been done in this direction,
cf. [111].
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In the previous two examples the nonlinearity f was known, for 1-bit compressed
sensing we chose f = sign and in the phase retrieval problem f was taken to be the
absolute value. Nevertheless, in many applications the function f is even unknown.
For the general approach with unknown nonlinearity we refer to the recent work
[98].

1.1.3 Approximation of Multivariate Functions

In many areas such as data analysis, learning theory, bioinformatics, parametric
PDEs or financial mathematics, functions depending on a large number of variables
play a crucial role. In these applications an immense amount of computational
power is used to analyze those multivariate functions, thus results on the numerical
behavior of multivariate functions become more and more important.

Unfortunately, it turns out that multivariate problems often suffer from the so-
called curse of dimensionality, that is, the minimal number of operations needed
to achieve a satisfying solution of the certain problem grows exponentially fast in
the underlying dimension. Clearly, if the ambient dimension is large, exponentially
many operations exceed every practicable computational power and the problem
gets infeasible.

The curse of dimensionality was observed many times in the literature and ap-
pears in a vast amount of situations. One of the probably most impressive results
is that even the uniform approximation of infinitely differentiable functions is in-
tractable [83].

To mention another situation where the curse appears, let us stress that many
chemical reactions run very fast. Hence, the function which returns the amount of
chemical compounds in a given sample can be well approximated by an indicator
function: Either the reaction took place and there are (almost) only chemical com-
pounds of the outcome, or the reaction did not start. Unfortunately, it turns out
that the approximation of monotone or convex functions also suffers from the curse
of dimensionality [58], which transfers to the approximation of indicator functions of
convex sets. Hence, we cannot tractably recover indicator functions of convex sets,
which gets even worse when dealing with more complicated sets.

To overcome the curse of dimensionality, one might introduce structural condi-
tions on the function of interest. In the area of information based complexity it was
possible to achieve positive results on the tractability, e.g., by using tensor product
constructions, where we refer to the monographs [84–86]. Another approach is to
require the function f to allow a sparse representation in a known dictionary. For
instance, shearlets provide optimally sparse approximations of so-called cartoon-like
functions [49, 50, 70].

One might also reduce the complexity by considering functions which are defined
on a d-dimensional space but only depend on some of the variables. That is, for
some unknown indices i1, . . . , ik ∈ {1, . . . , d} with k << d we want to approximate
the function

f : Rd → R, x ↦→ f̃(xi1 , . . . , xik
),

for some f̃ : Rk → R. For the study of functions of few variables in high dimensions,
we refer to [33, 101, 114].
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Another structural assumption to overcome the curse of dimensionality is given
by considering functions which are constant along some unknown manifolds. Here
one clearly has to make further restrictions on the manifolds, since every function
is constant along its level sets. The probably simplest instances of nontrivial mani-
folds are given by hyperplanes and spheres, leading to so-called ridge functions and
translated radial functions, which we will introduce later on in more detail.

1.2 Contributions

In the following subsections we collect and explain the main contributions of the
present thesis.

1.2.1 Carl’s Inequality for Quasi-Banach Spaces

The theory of the so-called s-numbers emerged from studies of geometry of Banach
spaces and operators between them but found applications in many other areas.
Our main interest is the so-called Carl’s inequality [21], which relates the asymp-
totic behavior of approximation-, Gelfand-, and Kolmogorov numbers to the entropy
numbers and is one of the most important tools in the theory of s-numbers.

More explicit, if T : X → Y is a bounded linear operator between two Banach
spaces X and Y , Carl’s inequality states that for any α > 0 there exists a constant
γα only depending on α such that for any n ∈ N it holds

sup
1≤k≤n

kαek(T ) ≤ γα sup
1≤k≤n

kαsk(T ),

where ek denotes the k-th entropy number of T and sk stands either for the k-th
approximation, Kolmogorov, or Gelfand number, cf. Chapter 4 for exact definitions.
Although the original proof of Carl only holds for the case of Banach spaces, it was
already observed in [7, 47] or [39, Section 1.3.3] that Carl’s inequality easily extends
to the case of quasi-Banach spaces and approximation or Kolmogorov numbers.

Recently, the s-numbers and in particular Carl’s inequality were used in the area
of compressed sensing to provide general lower bounds for the performance of sparse
recovery methods, cf. [17, 35] and also [9, 45]. In its basic setting, compressed
sensing studies pairs of (linear) measurement maps A : Rd → Rn and (nonlinear)
recovery maps ∆: Rn → Rd such that the error x − ∆(Ax) is small for all vectors
belonging to a certain set K ⊂ Rd, e.g., the set of all s-sparse vectors. The search
for the optimal recovery pair (A, ∆) is expressed as compressive n-width, which is
defined as

En(K, Y ) = inf
(A,∆)

sup
x∈K

∥x − ∆(Ax)∥Y ,

where Y denotes a (quasi-)norm on Rd. Based on previous work in approximation
theory and information based complexity [79, 82, 95] it was observed in [27, 35, 65]
that the compressive n-width are equivalent to the so-called Gelfand n-width of a
symmetric and subadditive set K ⊂ Rd, which itself are related to Gelfand numbers.

In the field of compressed sensing the unit balls Bd
p of the spaces ℓd

P usually serve
as a good model for compressible signals and the error of reconstruction is often
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measured in the euclidean ℓ2-norm. Consequently, Donoho investigated the decay
of the compressive n-width En(Bd

p , ℓd
2) for 0 < p < 1 by using Carl’s inequality for

Gelfand numbers [35]. Unfortunately, the argument presented by Donoho contains a
crucial flaw. In [21] Carl’s inequality was only proven for the case of Banach spaces,
hence, it cannot be applied in the case when p < 1. This gap was corrected in
[44] with a completely different approach using techniques from compressed sensing.
The question whether Carl’s inequality also holds in the case of quasi-Banach spaces
remained open, and indeed the authors of [44] expressed their belief that “Carl’s
theorem actually fails for Gelfand widths of general quasi-norm balls”.

The main result of Chapter 4 is that Carl’s inequality also holds for the case
of quasi-Banach spaces and Gelfand numbers. As an application, we also fill the
gap in Donohos argument and give an alternative proof for the bound of En(Bd

p , ℓd
2)

contained in [44].

1.2.2 Non-Asymptotic Analysis of ℓ1-Support Vector Machines

In 1-bit compressed sensing we aim to recover a sparse signal x ∈ Rd from nonlinear
measurements of the form

yi = sign(⟨ai, x⟩), i = 1, . . . , m.

Note that, instead of x, we could also aim to recover the hyperplane Ex = {w ∈ Rd |
⟨x, w⟩ = 0} ⊂ Rd through the origin with normal vector x, which separates the two
sets C+ = {xi | yi = +1} and C− = {xi | yi = −1}. Indeed, up to sign and scale, x
and Ex are uniquely determined by each other.

In machine learning, support vector machines (SVMs) are standard classifica-
tion methods which are constructed to find a plane E ⊂ Rd separating two classes
C+, C− ⊂ Rd. While there are usually several planes (or none) separating the two
classes, SVMs search for the hyperplane which not only separates the two classes,
but also maximizes the distance to them.

Since their introduction by Vapnik and Chervonenkis [108] SVMs where studied
intensively and many different variants where developed. We will concentrate on
the so-called soft margin SVMs [28], which allow for misclassification by introducing
so-called slack variables. Due to their robustness against noise, they are the most
frequently used SVMs nowadays. In its most common form, the soft margin SVM
is given by the optimization problem

min
w∈Rd

ξ∈Rm

1
2∥w∥2

2 + λ
m∑

i=1
ξi subject to yi⟨ai, w⟩ ≥ 1 − ξi

and ξi ≥ 0

for a trade-off parameter λ > 0 and slack variables ξi.
The term ∥w∥2

2 reflects the search for a hyperplane maximizing the distance to the
two groups. Hence, a reasonable requirement is the existence of such a hyperplane.
So far, no further assumption on the true classifier is made. A certain drawback
of SVMs, as the variant given above, is that they perform rather badly when the
number of measurements is much smaller than the ambient dimension of sample
points ai, i.e., if m << d [46]. To overcome this drawback, the authors of [46]
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proposed the bet on sparsity principle, suggesting that one should ”use a procedure
that does well in sparse problems, since no procedure does well in dense problems”.

In this spirit, to aim for sparse classifiers, the authors of [12] proposed to replace
the Euclidean norm ∥w∥2 in the definition of the SVM by the ℓ1-norm ∥w∥1 =∑d

j=1 |wj |, which was also motivated by the success of Lasso [107]. For the success
of Lasso in the framework of 1-bit compressed sensing we also refer to the recent
work [97].

Support vector machines with ℓ1-penalty, which we will refer to as ℓ1-SVM, were
further popularized in [116] and various variants of it became a standard tool in
analysis of high-dimensional classification problems with sparsity constraints. The
ℓ1-SVMs found numerous applications, e.g., in bioinformatics [56, 112, 115], and are
closely related to other popular methods like elastic nets [117] or sparse principal
component analysis (sPCA) [118].

The performance of SVMs was studied intensively in the literature, where we
highlight the remarkable results of Steinwart stating that various SVMs are consis-
tent, i.e., they recover the true classifier x if the number m of measurements tends
to infinity [104, 105].

In Chapter 5 we analyze the ℓ1-SVM in the framework of 1-bit compressed sens-
ing. In particular, we show that the ℓ1-SVM recovers an s-sparse signal x from only
O(s log(d)) measurements, which is the same rate as for the usual compressed sens-
ing and goes in hand with other recent results on this topic [96]. Further, we will
consider a modification of the ℓ1-SVM by adding an additional ℓ2-constraint which
is recalled as doubly regularized support vector machine [113] and which we will de-
note as ℓ1,2-SVM. We will show that it still recovers an s-sparse signal from only
m = O(s log(d)) measurements, but the performance on other parameters improves.

1.2.3 Approximation of Ridge Functions

To overcome the curse of dimensionality in the reconstruction of multivariate func-
tions, we restrict to the approximation of functions following a certain structure. We
focus on the approximation of ridge functions, which are constant along an unknown
hyperplane and can be written as

f : Rd → R, x ↦→ f(x) = g(⟨a, x⟩)

for an unknown function g : R → R, called the ridge profile, and some unknown
a ∈ Rd, called the ridge vector. The approximation of ridge functions from point
queries was initiated by Cohen, Daubechies, DeVore, Kerkyacharian and Picard [26]
and was further developed in a series of recent papers [42, 55, 80].

The study of ridge functions is by no means new in mathematics. For example,
they very often appear in statistics such as econometrics in the frame of so-called
single-index models [59] or in physics as plane waves [13]. A difference between our
approach and the usual setting in statistical learning is that we suppose that we can
freely choose the sampling points of f , i.e., they are not given in advance. Also, note
that ridge functions appeared in mathematical analysis of neural networks [15, 93]
and they form the building blocks of so-called ridgelets, which were introduced by
Candés and Donoho [16].

Furthermore, in approximation theory the simple structure of ridge functions
motivated the question whether general functions can be well approximated by sums
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of ridge functions with pioneering work [76], where the term ”ridge function” was
first introduced, and also [72]. A survey on approximation by sums of ridge functions
is given in [94].

The authors of [26] studied ridge functions defined on the cube [0, 1]d with
stochastic ridge vector, i.e., a = (a1, . . . , ad) satisfies aj ≥ 0 and

∑d
j=1 aj = 1.

Under the further assumption that the ridge profile g : [0, 1] → R is a Cs-function for
some s > 1, they proposed an optimal recovery method. First, they sample f along
the base points ti(1, . . . , 1) for ti ranging from 0 to 1. This gives function values of
g at ti which can be used to find a suitable approximation ĝ of g. Afterwards they
sample f at the padding points η(1, . . . , 1)+µbi for some constants µ, η and random
Bernoulli vectors bi and used a compressing sensing approach for the recovery of a.

The approximation scheme presented in [26], which we have described above,
heavily relies on the quite restrictive assumption aj ≥ 0. By using a completely
different approach, in particular changing the approximation order, the authors of
[42] were able to drop this assumption. Based on the simple observation

∇ f(x) = g′(⟨a, x⟩)a,

they first approximated the gradient of f at sampling points ξj from finite differences
(f(ξj + εϕi) − f(ξj))/ε for some random vectors ϕi. Afterwards, by employing
techniques from compressed sensing, this gives an approximation â of a and the
problem reduces to find an approximation of the univariate function g, which can
be done by basic numerical algorithms as spline interpolation.

This approximation scheme requires the function f to be defined on the unit ball
in Rd and g to be twice continuously differentiable. Further, it can also be used to
find an approximation for the more general model

f(x) = g(Ax)

for some unknown arbitrary matrix A ∈ Rk,d with rank(A) = k << d.
In this thesis we will close some gaps and answer some open questions left so far

in the analysis of [42].
The ridge functions considered in [42] are defined on the unit ball of Rd, whose

geometry perfectly fits together with the structure of ridge functions using the scalar
product. Although the possibility of extending the analysis to ridge functions defined
on other domains was already mentioned, no further steps in this direction were done.
We study ridge functions defined on the unit cube [−1, 1]d in detail. To adapt the
approximation scheme to this case, the crucial component will be the use of the sign
of a vector, which is defined componentwise. Although the mapping x ↦→ sign(x)
is obviously not continuous and the two vectors sign(x1) and sign(x2) may be far
from each other, although x1 and x2 are close, we observe that for fixed a ∈ Rd

the map x ↦→ ⟨a, sign(x)⟩ is continuous in a. This observation allows us to imitate
the approximation scheme of [42] for this setting and also partly shows how one can
adapt it to further domains.

Another open question which was only briefly discussed in [42] is the approxima-
tion of ridge functions from noisy measurements, which is an important step for any
practical application. Since we approximate the gradient of f from finite differences
leading to approximation errors which we will denote as deterministic noise, we have
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two different kinds of noise in this setting. To handle random noise we present an
algorithm using the so-called Dantzig selector from [20], which was already proposed
in [42].

The third main topic we will discuss is adaptability of the methods to similar
function classes. More concrete, we consider translated radial functions

f(x) = g(∥a − x∥2
2)

for an unknown univariate function g and a center point a ∈ Rd. Translated radial
functions are constant along spheres centered in a, in contrary to ridge functions
which are constant along hyperplanes perpendicular to the ridge vector. Following
the study of ridge functions we develop an approximation scheme which recovers the
center point a and, in particular, even works when the function f has a singularity
there.



10 CHAPTER 1. INTRODUCTION



Chapter 2

Preliminaries and Notation

In this chapter we collect basic notation which we will use in the remainder of this
thesis.

In this thesis we restrict to real-valued signals. The dimensions of the underlying
spaces are denoted by m and d, where we usually assume m < d. To avoid confusion,
the entries of x ∈ Rd are denoted with subindex j, i.e., by xj , j = 1, . . . , d and the
entries of y ∈ Rm are denoted with subindex i by yi, i = 1, . . . , m. The entries of
a matrix A ∈ Rm,d with m rows and d columns will be denoted by aij ∈ R, where
1 ≤ i ≤ m and 1 ≤ j ≤ d. Further, the rows of A will be denoted by ai ∈ Rd,
i = 1, . . . , m.

The ℓp-norm of a given vector x ∈ Rd and some 0 < p < ∞ is defined by

∥x∥p :=

⎛⎝ d∑
j=1

|xj |p
⎞⎠1/p

, (2.1)

which gets complemented by putting for p = ∞ and p = 0

∥x∥∞ := max
j∈[d]

|xj | and ∥x∥0 := #{j ∈ [d] | xj ̸= 0}. (2.2)

Here #X denotes the cardinality of the set X and [d] = {1, . . . , d} denotes the set
of natural numbers from 1 to d. Note

lim
p→0

∥x∥p
p = ∥x∥0 and lim

p→∞
∥x∥p = ∥x∥∞,

which makes the definition of the ℓ0- and ℓ∞-norm quite reasonable. It is well known
that the ℓp-norm defines a norm for 1 ≤ p ≤ ∞ and a quasi-norm for 0 < p < 1.
Even more, defining the scalar product

⟨x, y⟩ = yT · x =
d∑

j=1
xjyj (2.3)

for x, y ∈ Rd makes (Rd, ∥ · ∥2) a Hilbert space. In contrary, the ℓ0-norm does not
define a norm, since it is, for instance, not homogeneous, i.e., ∥λx∥0 ̸= |λ| · ∥x∥0
for general λ ∈ R and x ∈ Rd. Further, for 0 < p < ∞ and x ∈ Rd we define the
ℓp,∞-quasi-norm by

∥x∥p,∞ := max
j∈[d]

j1/px(j), (2.4)

11
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Figure 2.1: Sketch of the unit balls B2
p for p ∈ {1/2, 1, 2, ∞}.

where (x(j)) denotes a non-increasing rearrangement of the absolute entries of x.
In the following we will denote R

d endowed with the (quasi-)norm ‖ · ‖p simply
by �d

p and the (open) unit balls in �d
p by

Bd
p := {x ∈ R

d | ‖x‖p < 1}. (2.5)

Figure 2.1 illustrates the open unit balls Bd
p for different choices of p.

Applying a real-valued function to some vector x ∈ R
d has to be understood

componentwise. For instance, the entries of the positive- and negative parts x+, x− ∈
R

d of x are given by

(x+)j = [xj ]+, (x−)j = [−xj ]+, (2.6)

where we set [t]+ := max{t, 0} for some t ∈ R.



Chapter 3

Background of Compressed
Sensing

In this chapter we recall basic concepts and tools from the area of compressed
sensing, which we will need in the remainder of this thesis. As it is not our aim to
develop the theory of compressed sensing but rather to use it, we will only give a very
focused presentation and refer the interested reader to [9, 40] for recent overviews
and to the detailed book [45] and references therein.

In the first section we introduce basic definitions and properties concerning the
recovery of sparse vectors from linear measurements such as the nullspace property
(NSP) and the restricted isometry property (RIP). We will further introduce the
so-called basis pursuit as a particular recovery method.

The second section deals with tools from probability theory, where we will see
that random matrices yield optimal recovery rates and, in particular, satisfy the
NSP and the RIP with overwhelmingly high probability.

The third section of this chapter then treats the recovery of sparse vectors from
noisy linear measurements. Here we distinguish between two different kinds of noise,
namely deterministic noise, which we assume to be small with respect to some norm,
and random Gaussian noise, where we assume the entries to be normally distributed
with small variance.

3.1 Recovery of Sparse Vectors

The basic problem in compressed sensing is to recover signals x ∈ Rd from linear
measurements

yi = ⟨ai, x⟩, i = 1, . . . , m (3.1)

for some measurement vectors a1, . . . , am ∈ Rd, where we assume to have less mea-
surements than unknowns, i.e., m < d. If A ∈ Rm,d denotes the matrix with rows
ai, we set y = (yi) ∈ Rm and we can rewrite (3.1) as

y = Ax. (3.2)

Since we have less measurements than unknowns, basic linear algebra knowledge
tells us that (3.2) has infinitely many solutions. To still be able to recover x as

13
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the unique solution, we have to infer further knowledge. In compressed sensing we
impose the structural assumption of sparsity, i.e., the signal has only few nonzero
entries where both, the entries and their positions are unknown.

Definition 3.1. A vector x ∈ Rd is called s-sparse if ∥x∥0 ≤ s. The set of all
s-sparse vectors in Rd is denoted by

Σd
s := {x ∈ Rd | ∥x∥0 ≤ s}.

The assumption of sparsity is very restrictive. To get closer to real-life applica-
tions, it is important to also consider vectors which are not truly sparse, but can
only be approximated very well by sparse vectors. This concept will be referred to
as compressibility, which we will measure by the best s-term approximation:

Definition 3.2. The error of the best s-term approximation of x ∈ Rd with respect
to the ℓp-norm for some p > 0 is given by

σp
s(x) := min

w∈Σd
s

∥x − w∥p.

Further, x̂ ∈ Σd
s is called the best s-term approximation of x, if ∥x − x̂∥p = σp

s(x).

Remark 3.3. The compressibility of a certain vector x ∈ Rd will often be expressed
by assuming the ratio ∥x∥p/∥x∥q to be small for 0 < p < q and p ≤ 1. Indeed, in
that case it follows (cf. [45, Proposition 2.3])

σq
s(x) ≤ 1

s1/p−1/q
∥x∥p.

A first naive approach to recover the sparse vector x from (3.2) is to solve the
minimization problem

∆0(y) = arg min
w∈Rd

∥w∥0 subject to Aw = y, (P0)

i.e., to search for the sparsest among all solutions of the linear equation. Unfortu-
nately, it turns out that any algorithm solving (P0) can be used to solve the so-called
exact cover problem, which is known to be NP-hard, cf. [9, Theorem 1]. Therefore,
the minimization problem (P0) turns out to be infeasible for practical implementa-
tion. To overcome this drawback, in the next sections we will treat the following
two topics:

i) We are interested in a (convex) relaxation of (P0), which can be solved in a
reasonable time and gives at least a good approximation of the ground truth
signal x.

ii) Not only the reconstruction algorithm is important, but also the measurement
matrix A. Hence, we will discuss matrices A allowing a recovery of x from the
underdetermined linear system (3.2).
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3.1.1 Basis Pursuit

One of the first ideas to relax the �0-minimization (P0) is to replace the �0-norm by
the �p-norm for some p > 0 small, since for any x ∈ R

d it holds

‖x‖0 = lim
p→0

‖x‖p
p.

This leads to the minimization problem

Δp(y) := argmin
w∈Rd

‖w‖p subject to Aw = y. (Pp)

As we can see in Figure 3.1, a first intuition suggests that this minimization problem
indeed gives sparse solutions for 0 < p ≤ 1. Second, we observe that the minimiza-
tion problem (Pp) is convex only for p ≥ 1. Since convex optimization problems
turn out to be practicably solvable [11], in the following we will restrict to the
choice p = 1, which we will recall as �1-minimization or as basis pursuit [25]:

Δ1(y) := argmin
w∈Rd

‖w‖1 subject to Aw = y. (P1)

Although we restrict to the convex case p = 1, there is also lots of work for p < 1 as
well [24, 43, 77].

Figure 3.1: Solution of (Pp) for different values of p ∈ {1/2, 1, 2}. We observe that
the solution x̂1 coincides for the choices p = 1/2 and p = 1 and, in particular, is 1-
sparse in that case. Furthermore, for p = 2 the solution x̂2 differs and is not sparse.
For the concrete construction of this figure, we have chosen the signal x = (1, 0) and
the measurement vector a1 = (1/2, 1)T . And indeed, the solution x̂1 coincides with
x, but the solution x̂2 is quite different.

The next lemma shows that the basis pursuit is not only convex, but can even be
reformulated as a linear program. Although this result is already well known, we will
recall its proof, since we will use the linear reformulation for numerical experiments
later on.

Lemma 3.4 ([25]). The basis pursuit can be formulated as a linear problem, i.e.,
with linear functional and linear constraints.
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Proof. Splitting every vector w ∈ Rd into its positive- and negative part w+ :=
[w]+ ∈ Rd and w− := [−w]+ ∈ Rd (cf. (2.6)), we observe

∥w∥1 =
d∑

j=1
(w+)j +

d∑
j=1

(w−)j ,

y = Aw = Aw+ − Aw− = [A, −A]
(

w+
w−

)
.

The solution w∗ ∈ Rd of the basis pursuit (P1) and the solution z∗ ∈ R2d of

arg min
z∈R2d

2d∑
j=1

zj subject to z ≥ 0, [A, −A]z = y. (3.3)

therefore satisfy z∗ = (w∗
+; w∗

−).

3.1.2 Null Space Property

The success of recovery algorithms as the basis pursuit (P1) not only depend on the
sparsity of the signal x ∈ Rd, but also on the amount of measurements m and the
matrix A ∈ Rm,d. For instance, assume that there is a 2s-sparse vector v ∈ Rd in
the kernel

ker(A) := {w ∈ Rd | Aw = 0}

of A. Then we can split v into two s-sparse vectors v1, v2 ∈ Rd with v = v1 − v2 and
we obtain

0 = Av = A(v1 − v2) = Av1 − Av2,

i.e., Av1 = Av2. Hence, v1 and v2 give the same measurements y = Av1 = Av2 and
we cannot recover v1 or v2 only from the knowledge of y and A using any kind of
method. We conclude that the kernel of A must not contain any 2s-sparse vector if
we want to recover every s-sparse vector.

Lemma 3.5 ([27]). Let A ∈ Rm,d and let 2s ≤ m. Then there exists a decoder
∆: Rm → Rd with

∆(Ax) = x

for all s-sparse signals x ∈ Σd
s if and only if

Σd
2s ∩ ker(A) = {0}.

The previous lemma gives a sufficient and necessary condition for the existence
of a decoder ∆ which recovers all sparse vectors, but it is not clear how this decoder
looks like. In particular, ∆ can depend on the sparsity level s or on the measurement
matrix A. In order to formulate a similar result using the basis pursuit as fixed
recovery method, we have to strengthen the requirement on the kernel of A in the
following way:
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Definition 3.6. A matrix A ∈ Rm,d is said to have the null space property (NSP)
of order s if for all v ∈ ker(A)\{0} and all index sets T ⊂ [d] with #T ≤ s, it holds

∥vT ∥1 < ∥vT c∥1,

where vT ∈ Rd denotes the vector v restricted to the indices of T , i.e., with (vT )i = vi

if i ∈ T and vi = 0 otherwise.

If A satisfies the NSP of order s, it necessarily holds ker(A)∩Σd
2s = {0}. Indeed,

assume that there exists a 2s-sparse vector v ∈ ker(A). Let T be the index set of
the s largest entries of v (in magnitude). It follows

∥vT ∥1 ≥ ∥vT c∥1

in contradiction to the NSP. Further, it turns out that the NSP indeed guarantees
the recovery of sparse vectors using the ℓ1-minimizer (P1):

Theorem 3.7 ([45]). Every s-sparse vector x ∈ Rd is the unique solution of the
basis pursuit (P1) if and only if the measurement matrix A ∈ Rm,d satisfies the null
space property of order s.

The null space property of order s is equivalent to the exact recovery of every
s-sparse vector using the ℓ1-minimizer. But since the vectors we aim to recover in a
realistic setting are usually only sparse in idealized situations, we have to adapt the
previous theorem for also allowing compressible signals. A first step in this direction
is given by the following slightly strengthened version of the NSP:

Definition 3.8. A matrix A ∈ Rm,d is said to have the stable null space property
(sNSP) of order s with constant 0 < ρ < 1, if it holds

∥vT ∥1 ≤ ρ∥vT c∥1

for every v ∈ ker(A)\{0} and every set T ⊂ [d] with #T ≤ s.

To measure the compressibility of a certain signal, we introduced the notion of
the best s-term approximation. Consistently, we would like to control the error of
reconstruction between the ground truth compressible signal x and the recovered x̂
in terms of the error of the best s-term approximation of x.

Theorem 3.9 ([45]). If A ∈ Rm,d has the sNSP of order s with constant 0 < ρ < 1,
then, for every x ∈ Rd, it holds

∥x − x̂∥1 ≤ 2(1 + ρ)
1 − ρ

· σ1
s(x), (3.4)

where x̂ denotes a solution of the basis pursuit (P1).

Remark 3.10. If x is s-sparse, the error of its best s-term approximation vanishes:
σ1

s(x) = 0. In that case the previous theorem yields ∥x − x̂∥1 = 0, i.e., x̂ = x,
which can also be seen by Theorem 3.7. In that sense the previous Theorem 3.9
can be understood as a generalization of Theorem 3.7, although we have a stricter
requirement on A, namely that it satisfies the sNSP instead of the NSP.
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3.1.3 Restricted Isometry Property

In this section we introduce the so-called restricted isometry property, which was
first introduced by Candès and Tao [19] and gives another access to the recovery of
sparse signals.

Definition 3.11. A matrix A ∈ Rm,d satisfies the restricted isometry property (RIP)
of order s, if there exists a constant δ > 0 such that

(1 − δ)∥x∥2
2 ≤ ∥Ax∥2

2 ≤ (1 + δ)∥x∥2
2 (3.5)

holds for every s-sparse x ∈ Σd
s . The RIP-constant δs > 0 of A is defined as smallest

constant δ, such that (3.5) holds.

If the matrix A satisfies the RIP of order s with small RIP constant δs, it almost
behaves like an isometry on the set of s-sparse vectors. In particular, in that case the
mapping w ↦→ Aw is injective on the set Σd

s . Hence, the RIP should guarantee the
recovery of sparse signals using a certain decoder. This simple intuition gets further
manifested, since the RIP of order 2s trivially implies Σd

2s ∩ ker(A) = ∅, which is,
according to Lemma 3.5, a necessary and sufficient condition for the recovery of
s-sparse vectors. Moreover, it turns out that we can even use the basis pursuit for
the reconstruction:

Theorem 3.12 ([14, 27]). Let δ > 0 and let A ∈ Rm,d satisfy the RIP of order 2s
with RIP constant δ2s ≤ δ < 1/3. For every x ∈ Rd it then holds

∥x − ∆1(Ax)∥1 ≤ Cσ1
s(x),

where the constant C only depends on δ.

Note that the previous theorem implies the exact reconstruction of s-sparse vec-
tors, hence, combined with Theorem 3.7 we deduce that the RIP of order 2s implies
the NSP of order s.

Corollary 3.13 ([9, 27]). If A ∈ Rm,d satisfies the RIP of order 2s with RIP
constant δ2s < 1/3 then A satisfies the NSP of order s.

The RIP compares the length of x ∈ Rd and the measured y = Ax ∈ Rm.
Similarly we can also compare their scalar products in the following way:

Definition 3.14. A matrix A ∈ Rm,d is said to have the restricted orthogonality of
order (s, s′) if there exists a constant θ > 0 such that

|⟨Av, Aw⟩| ≤ θ∥v∥2∥w∥2 (3.6)

holds for all s-sparse vectors v ∈ Σd
s and all s′-sparse vectors w ∈ Σd

s′ . The smallest
value for θ > 0 such that (3.6) holds will be called the restricted orthogonality
constant and will be denoted by θs,s′ .

Lemma 3.15 ([45]). Let A ∈ Rm,d satisfy the restricted orthogonality of order (s, s′)
with constant θs,s′. Then A also satisfies the RIP of order s + s′ and it holds

θs,s′ ≤ δs+s′ ≤ 1
s + s′

(
sδs + s′δs′ + 2

√
ss′θs,s′

)
.

In particular, if s′ = s, we get θs,s ≤ δ2s and δ2s ≤ δs + θs,s.
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3.2 Tools from Probability Theory

So far we introduced the null space property (NSP), the stable null space property
(sNSP) and the restricted isometry property (RIP) as criteria on the matrix A
in order to formulate stability results for the recovery of sparse or compressible
signals using the basis pursuit. But we have not yet discussed how we can construct
matrices satisfying one of the mentioned properties. Furthermore, we have also
not yet discussed the dependency on the amount of measurements m needed for
the reconstruction, although this is one of the crucial ingredients in the theory of
compressed sensing.

To answer both questions, a major breakthrough is obtained by the use of random
matrices. It will turn out that random (subgaussian) matrices yield optimal recovery
rates and satisfy the NSP and RIP with overwhelmingly high probability, provided
that m = O(s log(d)). This means, that the amount of measurements m only has to
grow logarithmically in the underlying dimension d. In particular, if the dimension
d is very large, this leads to a heavy reduction of needed measurements compared
to usual methods from linear algebra, where one typically needs m ≥ d.

The aim of this section is to formulate and discuss related results for random
matrices. We start introducing basic notations and tools from probability theory,
with a final discussion on concentration inequalities such as Hoeffding’s inequality or
the Bernstein inequality. For a more detailed introduction to probability theory in
the framework of compressed sensing, we refer the interested reader to [45, Chapter
7 and 8].

3.2.1 Preliminaries from Probability Theory

Let (Ω, A,P) denote a probability space over Ω with σ-algebra A ⊂ P(Ω) and
probability measure P, where P(Ω) denotes the power set of Ω and the probability
of an event B ∈ A will be denoted by P(B). A real valued measurable function X
over Ω will be called random variable. The expected value of X is given by

E(X) :=
∫

Ω
X(ω) dP(ω). (3.7)

Note P(X ≥ t) = E
(
X{X≥t}

)
, where XB : Ω → R denotes the characteristic function

of a set B ∈ A, i.e.,

XB(ω) =
{

1, if ω ∈ B,

0, else.

The function t ↦→ P(X ≤ t) is called distribution of X and it holds

E(X) =
∫ ∞

0
P(X ≥ t) d t −

∫ ∞

0
P(X ≤ −t) d t. (3.8)

Theorem 3.16 (Markov’s inequality). Let X be a random variable. Then it holds

P(|X| ≥ t) ≤ E(|X|)
t

(3.9)

for every t > 0.
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The quantity

Var(X) := E
(
(X − E(X))2

)
is called variance of the random variable X and the covariance Cov(X1, X2) of two
random variables X1, X2 is given by Cov(X1, X2) = E((X1 −E(X1))(X2 −E(X2))).

A function φ : R → [0, ∞) is called density function of X if

P(t1 ≤ X ≤ t2) =
∫ t2

t1
φ(t) d t

holds for all t1 < t2. If X has a density function φ and g : R → R is measurable, it
follows

E
(
g(X)

)
=
∫
R

g(t)φ(t) d t. (3.10)

We will call the random variables X1, . . . , Xm to be independent, if

P(X1 ≤ t1, . . . , Xn ≤ tm) = P(X1 ≤ t1) · . . . · P(Xm ≤ tm)

holds for every t1, . . . , tm ∈ R. In particular, if X1, X2 are independent, it follows

E(X1X2) = E(X1)E(X2)

and if they have density functions φ1, φ2, their joint density function φ is given by

φ(t1, t2) = φ1(t1)φ2(t2). (3.11)

That is, for any measurable set B ⊂ R2, it holds

P((X1, X2) ∈ B) =
∫

B
φ1(t1)φ2(t2) d t1 d t2.

A collection X1, . . . , Xm of independent random variables all of which have the same
distribution are called independent and identically distributed (i.i.d.).

If the entries of a vector X ∈ Rd are random variables, X is called a random
vector and if the entries aij of a matrix A ∈ Rm,d are random variables, we call A a
random matrix.

Theorem 3.17 (Jensen’s inequality). Let f : Rd → R be convex and let X ∈ Rd be
a random vector. Then it holds

f(EX) ≤ E f(X).

3.2.2 Bernoulli and Gaussian Variables

A random variable X is called subgaussian, if there exist some constants β, κ > 0,
such that

P(|X| ≥ t) ≤ βe−κt2 (3.12)

holds for every t > 0. In this section we will concentrate on two important examples
of subgaussians, namely Gaussian and Bernoulli variables.
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Definition 3.18. i) A random variable ξ given by

ξ =
{

+1 with probability 1/2,

−1 with probability 1/2
(3.13)

is called Bernoulli variable.

ii) A random variable g with E g = µ, Var g = σ2 and density function φ given by

φ(t) = 1√
2πσ2

exp
(

−(t − µ)2

2σ2

)
, (3.14)

is called normally distributed or Gaussian variable. In that case we simply
write g ∼ N (µ, σ2). If µ = 0 and σ2 = 1, i.e., g ∼ N (0, 1), we will call g
standard normally distributed.

Remark 3.19. i) If aij are i.i.d. Bernoulli or Gaussian variables, we will call
A = (aij) ∈ Rm,d Bernoulli- or Gaussian matrix, respectively. Further, the
scaled matrix A/

√
m will be called normalized Bernoulli- or Gaussian matrix.

ii) In the literature Bernoulli variables are often allowed to have arbitrary entries
from a discrete set, each with a constant probability. Here we restrict ourselves
to the entries ±1, both with a probability of 1/2. These are often also called
Rademacher variables.

iii) A Gaussian vector g ∈ Rd with normally distributed entries g1, . . . , gd will be
denoted by

g ∼ N (µ, Σ),

where Σ ∈ Rd,d denotes the symmetric covariance matrix with entries σij =
Cov(gi, gj) and µ ∈ Rd is the vector of expected values µj = E gj .

Bernoulli and Gaussian variables are indeed subgaussian: For t > 0 and a
Bernoulli variable ξ we get

P(|ξ| ≥ t) =
{

1, if t ≤ 1,

0, if t > 1.

In both cases we can estimate this probability from above by e1e−t2 . For a mean-zero
Gaussian variable g ∼ N (0, σ2) we get

P(|g| ≥ t) = 2√
2πσ2

∫ ∞

t
exp

(
−s2

2σ2

)
d s =

√
2√

πσ2

∫ ∞

0
exp

(
−(s + t)2

2σ2

)
d s

≤
√

2√
πσ2

exp
(

−t2

2σ2

)∫ ∞

0
exp

(
−s2

2σ2

)
d s = exp

(
−t2

2σ2

)
.

Let g ∼ N (0, σ2) be normally distributed. Then sign(g) is a Bernoulli variable
and if ξ is a Bernoulli variable independent of g, their product ξg ∼ N (0, σ2) is
again normally distributed. Further, if g ∼ N (µ, σ2), we get

λ(g − τ) ∼ N
(
λ(µ − τ), λ2σ2

)
(3.15)
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for any λ, τ ∈ R and if g1 ∼ N (µ1, σ2
1) and g2 ∼ N (µ2, σ2

2) are independent, it holds

g1 + g2 ∼ N
(
µ1 + µ2, σ2

1 + σ2
2

)
, (3.16)

which is recalled as 2-stability of Gaussian variables. Combining (3.15) and (3.16),
for any w ∈ Rd we in particular get

1
∥w∥2

·
⟨ 1√

m

m∑
i=1

ãi, w
⟩

∼ N (0, 1) (3.17)

for i.i.d. random vectors ã1, . . . , ãm ∈ Rd with ãi ∼ N (0, id). The next lemma
collects further basic properties of Gaussian variables and vectors which we will
need later on, cf. [52, Corollary 5.2] and [45, Proposition 8.1].

Lemma 3.20. i) For g ∼ N (0, 1) it holds

E |g| =
√

2√
π

. (3.18)

ii) If g ∈ Rd has i.i.d. entries gj ∼ N (0, 1) and v, w ∈ Rd are orthogonal, the
random variables ⟨g, w⟩ and ⟨g, v⟩ are independent.

iii) Let g ∈ Rd be a random Gaussian vector with entries gj ∼ N (0, 1). Then it
holds

√
2d√
π

≤ E ∥g∥2 ≤
√

d and E ∥g∥∞ ≤
√

2 log(2d). (3.19)

Further, if the gj are independent and d ≥ 2, we obtain√
log(d)

4 ≤ E ∥g∥∞ . (3.20)

3.2.3 Concentration Inequalities

The concentration of measure phenomenon describes that (Lipschitz-) functions on
a high-dimensional probability space often heavily concentrate around their means.
One of the typical examples in this direction (without randomness) is that most of
the volume of the unit ball in Rd concentrates around its equator.

In the area of compressed sensing we often encounter sums of random variables:
If we choose the sensing matrix A = (aij) ∈ Rm,d to be a random Bernoulli or
Gaussian matrix, we obtain the measurements

yi = (Ax)i = ⟨ai, x⟩ =
d∑

j=1
aijxj .

Hoeffding’s inequality and the Bernstein inequality provide useful tools to bound
the tails of such sums and are two out of many examples for the concentration of
measure phenomenon. In particular, Bernstein inequality can be used to prove
the RIP for subgaussian matrices. For a detailed overview on the concentration of
measure phenomenon we refer the interested reader to [74].
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Theorem 3.21 (Hoeffding’s inequality). Let X1, . . . , Xm be a sequence of indepen-
dent mean-zero random variables with |Xi| ≤ Bi almost surely for all i = 1, . . . , m
and constants Bi > 0. Then, for all t > 0, it holds

P
(

m∑
i=1

Xi ≥ t

)
≤ exp

(
−t2

2
∑m

i=1 B2
i

)

and

P
(⏐⏐⏐ m∑

i=1
Xi

⏐⏐⏐ ≥ t

)
≤ 2 exp

(
−t2

2
∑m

i=1 B2
i

)
.

Applying Hoeffding’s inequality to a sum of Bernoulli variables we deduce the
following corollary.

Corollary 3.22. Let ξ1, . . . , ξm be i.i.d. Bernoulli variables. Then it holds

P
(⏐⏐⏐ 1

m

m∑
i=1

ξi

⏐⏐⏐ ≥ u

)
≤ 2 exp

(
−mu2

2

)
(3.21)

for any u > 0.

The Bernstein inequality provides a useful generalization of Hoeffding’s inequal-
ity to sums of unbounded independent random variables as Gaussian variables. How-
ever, note that the following theorem is only one out of many possible versions, which
can be found in [45, Corollary 7.32].

Theorem 3.23 (Bernstein inequality). Let X1, . . . , Xm be a sequence of independent
mean-zero random variables with P(|Xi| ≥ t) ≤ βe−κt for some constants β, κ > 0,
all t > 0 and i = 1, . . . , m. Then it holds

P
(⏐⏐⏐ m∑

i=1
Xi

⏐⏐⏐ ≥ t

)
≤ 2 exp

(
−(κt)2/2
2βm + κt

)
.

Using the Bernstein inequality we deduce the following concentration inequality,
which is the main ingredient to show the RIP for subgaussian matrices, cf. [45,
Lemma 9.8].

Lemma 3.24. Let A = (aij) ∈ Rm,d be a random matrix with i.i.d. subgaussian
entries such that E⟨ai, x⟩2 = ∥x∥2

2 holds for all x ∈ Rd. It follows

P
(⏐⏐⏐m−1∥Ax∥2

2 − ∥x∥2
2

⏐⏐⏐ ≥ t∥x∥2
2

)
≤ 2 exp

(
−c′t2m

)
(3.22)

for all x ∈ Rd and 0 < t < 1, where the constant c′ only depends on the subgaussian
parameter β, κ.

Remark 3.25. If A is a random Bernoulli or Gaussian matrix with standard nor-
mally distributed entries, it follows

E
(
⟨ai, x⟩2

)
=

d∑
j,k=1

E(aijaik)xjxk =
d∑

j=1
x2

j = ∥x∥2
2

and we can apply the previous Lemma 3.24. In that case, the right hand side of
(3.22) can even be improved by 2 exp

(
−m(t2/4 − t3/6)

)
, cf. [45, Exercise 9.2].
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The next theorem gives a deviation inequality for the supremum of Gaussian
processes, cf. [74, Theorem 7.1] or [96, Theorem 5.2].

Theorem 3.26 (Gaussian Concentration Inequality). Let T be a finite set and G =
(Gt)t∈T a centered Gaussian process, i.e., Gt is normally distributed with E(Gt) = 0
for any t ∈ T . Then, for any u > 0, one has

P
(

sup
t∈T

Gt ≥ E sup
t∈T

Gt + u
)

≤ exp
(

−u2

2σ2

)
,

where σ2 = sup
t∈T

EG2
t < ∞.

Remark 3.27. To avoid measurability issues on the supremum of random variables,
we assumed the set T to be finite. However, the result can be extended to (infinite)
separable sets of a metric space, e.g. for subsets T of the open unit ball Bd

p ⊂ Rd.

3.2.4 RIP and NSP for Random Matrices

Based on the concentration inequality (3.22) we obtain that random subgaussian
matrices satisfy the RIP with overwhelmingly high probability, cf. [6, Theorem 5.2].

Theorem 3.28 ([6]). For 0 < δ < 1 let m ≥ c0s log(d/s) and let A ∈ Rm,d be a
random matrix satisfying (3.22). Then A/

√
m satisfies the RIP of order s with RIP

constant 0 < δs ≤ δ with probability at least 1 − 2e−c1m, where the constants c0 and
c1 may only depend on δ.

Remark 3.29. Following Lemma 3.24, subgaussian matrices, such as Gaussian- or
Bernoulli matrices, satisfy the concentration inequality (3.22), so they also satisfy
the RIP with high probability.

From Theorem 3.28 we obtain that random subgaussian matrices indeed satisfy
the RIP and the NSP with overwhelmingly high probability. But there is also another
surprising fact: the number of measurements only has to scale as m = O(s log(d/s).
That is, we only need about s log(d) measurements to exactly recover an s-sparse
signal in Rd, i.e., by not knowing the position of the nonzero entries we only lose
a factor log(d). Furthermore, ignoring the logarithmic term, m has to scale linear
with the unknowns s, which clearly is the best we can hope for.

Figure 3.2 shows a numerical example for the dependency of m on d and on s.
Here we can also observe another typical phenomenon in the theory of compressed
sensing, namely that a phase transition phenomenon appears, i.e., that there is a
sharp boundary between configurations where the recovery works and where it does
not work. This goes, in particular, in hand with the theory of the concentration of
measure phenomenon, where one observes that random constructions either work or
fail with overwhelmingly high probability in high dimensions.

Closely related to the RIP is the concentration inequality (3.22), which shows
that the length of a vector x is almost preserved by a subgaussian matrix A. Applied
to the pairwise distances of n points x1, . . . , xn ∈ Rd, we obtain the following lemma
of Johnson and Lindenstrauss.
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Figure 3.2: Illustration of the dependency of m on d (left) and s (right) of the
basis pursuit with respect to a subgaussian measurement matrix. For the left image
we choose s = 10 fixed. Afterwards, for values of d ranging from 0 to 1000 and
values of m ranging from 0 to 80 we did the following experiment n = 100 times
and plotted the average error: For each pair (d, m) we generated a random s-sparse
vector x ∈ Rd using the Matlab command sprandn. Afterwards, we generated
a normalized Gaussian matrix A ∈ Rm,d (cf. Remark 3.19) using the Matlab
command randn. Once we have A and x, we set y = Ax and we then run the basis
pursuit (P1) to obtain the recovered vector x̂. Afterwards, we just calculated their
Euclidean distance ∥x − x̂∥2. The right images were constructed analogously, but
there the dimension d = 500 was fixed and we let the ratios s/d range from 0 to 0.2
and m/d range from 0 to 0.5.

Theorem 3.30 ([62]). Let 0 < ε < 1 and x1, . . . , xn ∈ Rd. If m ≥ C log(n)ε−2 for
some constant C, then there exists a Lipschitz mapping L : Rd → Rm such that

(1 − ε)∥xi − xj∥2
2 ≤ ∥L(xi) − L(xj)∥2

2 ≤ (1 + ε)∥xi − xj∥2
2

holds for all i, j = 1, . . . , n.

3.3 Recovery from Noisy Measurements

In this section we focus on the recovery of sparse vectors x ∈ Rd from noisy linear
measurements of the form

y = Ax + η + z.

The term η ∈ Rm represents deterministic noise, e.g., given by rounding errors or
calculations up to machine precision. Those errors can typically be controlled, since
we know their appearance in advance. Hence, we assume η to be small with respect
to some norm on Rm. The second term z ∈ Rm represents random Gaussian noise
with normally distributed entries.
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3.3.1 Deterministic Noise

In this subsection we deal with deterministic noise η ∈ Rm only, i.e., we want to
recover the signal x from linear measurements

y = Ax + η. (3.23)

Here we assume η to be small in the sense that ∥η∥ ≤ ε for some ε > 0 and some
norm ∥ · ∥ on Rm. We aim for a reconstruction scheme such that the error between
the recovered and the true signal can be controlled by the noise level ε and the
compressibility of x. For this purpose we replace the basis pursuit (P1) by the
convex minimization problem

∆1,ε(y) = arg min
w∈Rd

∥w∥1 subject to ∥Aw − y∥ ≤ ε, (P1,ε)

which we will recall as ℓ1,ε-minimizer or as basis pursuit denoising. The follow-
ing strengthened version of the stable null space property guarantees the satisfying
reconstruction of x using (P1,ε).

Definition 3.31. The matrix A ∈ Rm,d is said to satisfy the robust null space
property (rNSP) of order s with constants 0 < ρ < 1 and τ > 0 and with respect to
the norm ∥ · ∥, if for all T ⊂ [d] with #T ≤ s and all v ∈ Rd, it holds

∥vT ∥1 ≤ ρ∥vT c∥1 + τ∥Av∥.

We obtain the following result, cf. [45, Theorem 4.19].

Theorem 3.32. Suppose that A ∈ Rm,d satisfies the rNSP of order s with constants
ρ, τ . Any solution x̂ ∈ Rd of the ℓ1,ε-minimizer (P1,ε) with y = Ax + η and ∥η∥ ≤ ε
then satisfies

∥x − x̂∥1 ≤ 2(1 + ρ)
1 − ρ

σ1
s(x) + 4τ

1 − ρ
ε. (3.24)

Remark 3.33. The previous Theorem 3.32 does not require any assumption on the
signal x. However, the error estimate depends on the best s-term approximation of
x, hence, it only gives a useful error bound if x is compressible.

Furthermore, if ε = 0, the recovery algorithm (P1,ε) coincides with (P1). In
that case also the estimate (3.24) of Theorem 3.32 coincides with the estimate (3.4)
of Theorem 3.9, where we assumed A to satisfy the sNSP instead of the rNSP. If
additionally x is even s-sparse, Theorem 3.32 yields a perfect reconstruction of x as
Theorem 3.7 for the NSP.

The following theorem shows that the RIP with sufficient small RIP constant
implies the rNSP. Consequently, the RIP yields error bounds on the reconstruction,
cf. [45, Theorem 6.12 and 6.13].

Theorem 3.34. If A ∈ Rm,d satisfies the RIP of order 2s with RIP constant δ2s <
4/

√
41, then A satisfies the rNSP of order s with constants ρ, τ only depending on

δ2s.
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Theorem 3.35. Let A ∈ Rm,d satisfy the RIP of order 2s with RIP constant δ2s ≤
4/

√
41. For any x ∈ Rd let x̂ ∈ Rd be a solution of the ℓ1,ε-minimizer (P1,ε) with

y = Ax + η and ∥η∥2 ≤ ε. Then it follows

∥x − x̂∥1 ≤ Cσ1
s(x) + C ′√sε, (3.25)

∥x − x̂∥2 ≤ C ′
√

s
σ1

s(x) + C ′ε (3.26)

for some constants C, C ′ > 0 only depending on δ2s.

The ℓ1,ε-minimizer (P1,ε) needs prior knowledge of some ε > 0 such that ∥η∥ ≤ ε.
Since η corresponds to deterministic noise as rounding errors, in some situations such
an ε can be calculated in advance. However, in some applications it might happen
that we cannot give an explicit choice for ε, hence, we cannot use the ℓ1,ε-minimizer
there. A reasonable hope in these applications is that the small error η does not have
a big impact, so that we can still use the basis pursuit (P1) to achieve satisfactory
reconstructions.

The idea to formulate an appropriate theorem is to search for a small vector
u ∈ Rd in the preimage of η under A such that

y = Ax + η = A(x + u).

Then we can use the ℓ1-minimizer to recover the compressible vector x + u from y,
which should be a good approximation to x.

Let us stress that the existence of u ∈ Rd is not the main problem here, since
A ∈ Rm,d maps from the higher-dimensional space Rd to lower-dimensional space
Rm and should be at least surjective. But the existence of u is not what we actually
need, since we have to ensure x+u to be compressible, which in general only holds if
u has a small length. Before going further let us first introduce the so-called J-norm,
which is given by

∥η∥J := max
{

√
m∥η∥∞;

√
m

log(d/m)∥η∥2

}
. (3.27)

The closed unit ball with respect to the J-norm will be denoted by UJ := {η ∈ Rm |
∥η∥J ≤ 1}.

Theorem 3.36 ([34, 73]). Let A ∈ Rm,d be a normalized Bernoulli matrix and let
d ≥ log(6)2m. Then there exists a constant C such that with probability at least

1 − e−
√

md

for every η ∈ UJ there exists a u ∈ Rd with Au = η and ∥u∥1 ≤ C.

This theorem gives a bound on the ℓ1-norm on u. With a slight modification we
can also bound the ℓ2-norm of u as follows, cf. [45, Chapter 11] and also [34]:

Theorem 3.37 ([34, 45]). Let A ∈ Rm,d be a normalized Bernoulli matrix according
to Remark 3.19 with d ≥ log(6)2m and let δ > 0. Then there exist some universal
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constants C1, C2 and some constants C3, C4 depending on δ such that with probability
at least

1 − 2e−C1m − e−
√

md

for each η ∈ UJ , there exists a u ∈ Rd with Au = η and

∥u∥1 ≤ C3, ∥u∥2 ≤ C4

√
log(d/m)/m.

3.3.2 Gaussian Noise

Now we want to discuss the reconstruction of sparse vectors from noisy measurements
of the form

y = Ax + z, (3.28)

where the entries zi ∼ N (0, σ2) of z are i.i.d. normally distributed with small
variance σ > 0. In contrary to deterministic noise e from the previous section, the
expected norm of z grows with the number of measurements m:

E ∥z∥2
2 =

m∑
i=1

E z2
i =

m∑
i=1

σ2 = mσ2.

In this case the approaches from deterministic noise lead to error bounds depending
on the norm of z, hence they grow with the number of measurements m. This
phenomenon is recalled as noise folding, cf. [3] for more details. To overcome the
drawback of noise folding, Candès and Tao suggested to use the so-called Dantzig
selector [20].

Definition 3.38. For a matrix A ∈ Rm,d and constants λd, σ > 0 the Dantzig
selector ∆DS(y) of some input vector y ∈ Rm is defined as

∆DS(y) := arg min
w∈Rd

∥w∥1 subject to ∥AT (y − Aw)∥∞ ≤ λdσ. (3.29)

Assume that A ∈ Rm,d is a normalized Bernoulli matrix with entries ±1/
√

m
and let y = Ax + z be according to (3.28). For 1 ≤ j ≤ d we then get

(AT z)j =
m∑

i=1
aijzi = σgj

for some i.i.d. gj ∼ N (0, 1), where we used the 2-stability of Gaussian variables
(3.16). We apply the estimate (3.19) on the ℓ∞-norm of a Gaussian vector to end
up with

E ∥AT (y − Ax)∥∞ = E ∥AT z∥∞ ≤ σ
√

2 log(2d).

Following this simple calculation, we get the idea that λd should, up to some con-
stants, scale as

√
log(d) in the definition of the Dantzig selector.
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Theorem 3.39 ([20]). Let A ∈ Rm,d be a normalized Bernoulli matrix with RIP
constant δ2s and restricted orthogonality constant θs,2s obeying

δ2s + θs,2s < 1.

For x ∈ Rd with ∥x∥p,∞ ≤ R for some R > 0, p ≤ 1, z ∈ Rm with i.i.d. entries
zi ∼ N (0, σ2) for some σ > 0 and λd =

√
2 log(d), it then holds

∥∆DS(Ax + z) − x∥2
2 ≤ min

1≤t≤s
2C log(d)

(
tσ2 + R2t1−2/p

)
(3.30)

with high probability and a constant C only depending on δ2s and θs,2s.

Remark 3.40. i) If m = O(s log(d)), Theorem 3.28 shows that a normalized
Bernoulli matrix A ∈ Rm,d has the RIP of order 3s such that δ2s + θs,2s < 1
holds with high probability. Hence, in the presence of random Gaussian noise,
we need the same order of measurements as in the noiseless case.

ii) The main advantage of Theorem 3.39 compared to previous results for de-
terministic noise is that the error bound does not grow with the number of
measurements m, although the expected norm of the noise z does. Never-
theless, getting more information on the signal by increasing the number of
measurements should lead to better reconstruction and smaller error, but the
estimate (3.30) only implicitly depends on m via s.
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Chapter 4

s-Numbers and Carl’s Inequality

In this chapter we will give a short introduction to the theory of s-numbers for
operators between quasi-Banach spaces. The main motivation in the context of this
thesis is given by Carl’s inequality [21], which compares the asymptotic behavior of
the entropy numbers with certain important so-called s-functions. One particular
instance of those s-functions are the Gelfand numbers, which are equivalent to the
so-called compressive n-width. The compressive n-width describe the performance
of the measure and reconstruction procedure in compressed sensing and by applying
Carl’s inequality we can deduce a lower bound on the minimal needed amount of
measurements.

In this chapter we mainly present the results of [57], which was joint work with
Aicke Hinrichs and Jan Vyb́ıral.

4.1 Quasi-Banach Spaces

In this section we collect some basic concepts about quasi-Banach spaces. For more
details we refer the interested reader to [64].

If X is a real vector space, we say that a map ∥ · ∥X : X → [0, ∞) defines a
quasi-norm on X if

i) ∥x∥X = 0 only holds for x = 0,

ii) ∥λx∥X = |λ| · ∥x∥X holds for any λ ∈ R and x ∈ X and

iii) if there exists a constant CX ≥ 1 such that the quasi-triangle inequality

∥x1 + x2∥X ≤ CX(∥x1∥X + ∥x2∥X) (4.1)

holds for all x1, x2 ∈ X. We will recall CX as quasi-triangle constant of X.

The open unit ball of X endowed with the quasi-norm ∥ · ∥X will be denoted by

BX := {x ∈ X | ∥x∥X < 1}.

If the quasi-norm ∥ · ∥X satisfies the so-called p-triangle inequality

∥x1 + x2∥p
X ≤ ∥x1∥p

X + ∥x2∥p
X for all x1, x2 ∈ X (4.2)

for some 0 < p ≤ 1, we will call it a p-norm. The fundamental Theorem of Aoki-
Rolewicz states that every quasi-norm is at least equivalent to some p-norm:

31
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Theorem 4.1 ([1, 99]). Every quasi-norm is equivalent to some p-norm.

Definition 4.2. Let ∥ · ∥X be equivalent to some p-norm ∥| · ∥|X on X. If X is
complete with respect to the metric induced by ∥| · ∥|pX , it is called a quasi-Banach
space. Further, if the norm ∥ · ∥X itself defines a p-norm, we will recall X as a
p-Banach space.

If M ⊂ X is a linear subspace of X, we define the quotient space X/M as set of
all equivalence classes [x], where x1, x2 ∈ X are said to be equivalent if x1 −x2 ∈ M .
The usual definition of the addition [x1] + [x2] := [x1 + x2] and scalar multiplication
λ · [x] := [λx] makes X/M again a vector space. Further, if ∥ · ∥X defines a (quasi)-
norm on X, the quotient norm ∥ · ∥X/M on X/M is defined by

∥[x]∥X/M := inf
y∈M

∥x − y∥X .

Lemma 4.3. Let X be a p-Banach space and let M be a linear subspace of X. Then
∥ · ∥X/M defines a p-norm on X/M .

Proof. To show the p-triangle inequality let [x1], [x2] ∈ X/M and let ε > 0. Then,
by definition of ∥ · ∥X/M , there exist v1, v2 ∈ M such that

∥x1 − v1∥X ≤ (1 + ε)∥[x1]∥X/M and ∥x2 − v2∥X ≤ (1 + ε)∥[x2]∥X/M .

Since ∥ · ∥X defines a p-norm on X we deduce

∥[x1 + x2]∥p
X/M ≤ ∥x1 + x2 − v1 − v2∥p

X ≤ ∥x1 − v1∥p
X + ∥x2 − v2∥p

X

≤ (1 + ε)p(∥[x1]∥p
X/M + ∥[x2]∥p

X/M ).

Letting ε → 0 yields the claim.

If T : X → Y is a linear operator between the two quasi-Banach spaces X and
Y , its operator norm is given by

∥T∥ := sup
x∈X

∥x∥X≤1

∥Tx∥Y .

We will call the operator T to be bounded, if its operator norm is finite. The set of
all bounded linear operators from X to Y will be denoted by L(X, Y ).

Lemma 4.4. Let T, T ′ : X → Y and S : Y → Y0 be bounded linear operator between
the quasi-Banach spaces X, Y, Y0. Then it holds

i) ∥Tx∥Y ≤ ∥T∥ · ∥x∥X for every x ∈ X,

ii) ∥ST∥ ≤ ∥S∥ · ∥T∥,

iii) ∥T + T ′∥ ≤ CY

(
∥T∥ + ∥T ′∥

)
, where CY denotes the quasi-triangle constant of

Y and

iv) it holds

∥T∥ = inf{ε > 0 | T (BX) ⊂ εBY }.
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Proof. Although the properties listed above are well known, we recall their proofs
to verify their validity for quasi-Banach spaces.

i) For any x ∈ X we get

∥Tx∥Y =
T ( x

∥x∥X

)
Y

· ∥x∥X ≤ sup
x′∈X

∥x′∥X≤1

∥Tx′∥Y · ∥x∥X = ∥T∥ · ∥x∥X .

ii) By plugging in the definition of the operator norm and using i), we obtain

∥ST∥ = sup
x∈X

∥x∥X≤1

∥STx∥Y0 ≤ sup
x∈X

∥x∥X≤1

∥S∥ · ∥Tx∥Y = ∥S∥ · ∥T∥.

iii) We obtain

∥T + T ′∥ = sup
x∈X

∥x∥X≤1

∥(T + T ′)x∥Y ≤ sup
x∈X

∥x∥X≤1

CY

(
∥Tx∥Y + ∥T ′x∥Y

)

≤ CY

(
sup
x∈X

∥x∥X≤1

∥Tx∥Y + sup
x′∈X

∥x′∥X≤1

∥T ′x′∥Y

)
= CY

(
∥T∥ + ∥T ′∥

)
,

as claimed.

iv) Using i), for every x ∈ BX we get

∥T (x)∥Y ≤ ∥T∥ · ∥x∥X ≤ ∥T∥,

hence, T (BX) ⊂ ∥T∥ · BY and it follows

inf{ε > 0 | T (BX) ⊂ εBY } ≤ ∥T∥.

To show the reverse inequality, let 0 < ε < ∥T∥. By definition of the oper-
ator norm, there then exists some x0 ∈ BX with ∥Tx0∥Y > ε, which implies
T (BX) ̸⊂ εBY .

4.2 s-Numbers

For the sake of completeness, we start this section with the general setting of the
theory of s-numbers and afterwards, we will have a closer look on the approximation-,
entropy and Gelfand numbers. For a detailed introduction to the theory of s-numbers
we refer the interested reader to [23, 90–92].

Let X, Y denote two quasi-Banach spaces. A map s which maps any bounded
linear operator T ∈ L(X, Y ) to the real valued sequence (sn(T ))n∈N is called s-
function or s-scale and sn(T ) is called n-th s-number of T , if it holds

i) ∥T∥ = s1(T ),

ii) 0 ≤ sn+1(T ) ≤ sn(T ),
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iii) sn(T +T0) ≤ CY

(
sn(T )+∥T0∥

)
, where CY denotes the quasi-triangle constant

of Y and T0 : X → Y is another bounded linear operator,

iv) sn(LTR) ≤ ∥L∥ · sn(T ) · ∥R∥ for all bounded linear operators L : Y → Y0 and
R : X0 → X for some quasi-Banach spaces X0, Y0,

v) rank(T ) < n implies sn(T ) = 0 and

vi) sn(id : ℓn
2 → ℓn

2 ) = 1

for every n ∈ N. If only conditions i)-iv) are satisfied, s is called a pseudo s-function.

4.2.1 Approximation Numbers

Definition 4.5. The n-th approximation number en(T ) of a bounded linear operator
T : X → Y between the two quasi-Banach spaces X and Y is defined by

an(T ) := inf
S : X→Y

rank(S)<n

∥T − S∥, (4.3)

where rank(S) := dim(S(X)) denotes the dimension of the image of S.

Lemma 4.6. The approximation number defines an s-number.

Proof. To demonstrate that the properties i)-vi) of s-numbers easily follow from
Lemma 4.4, we only give a proof of property iii). For this purpose let T1, T2 : X → Y
be two bounded linear operators and let n ∈ N. It follows

an(T1 + T2) = inf
S : X→Y

rank(S)<n

∥T1 + T2 − S∥ ≤ inf
S : X→Y

rank(S)<n

CY

(
∥T1 − S∥ + ∥T2∥

)
= CY

(
an(T1) + ∥T2∥

)
,

which we wanted to show.

Corollary 4.7. Let s be any s-number and let T : X → Y be a bounded operator.
For any n ∈ N it then holds

sn(T ) ≤ CY an(T ),

where CY denotes the quasi-triangle constant of Y .

Proof. Let s be any s-function and let T : X → Y be a bounded linear operator.
Further, for n ∈ N let S : X → Y be any linear operator with rank(S) < n. Using
property iii) from the definition of s-numbers, it follows

sn(T ) = sn(T − S + S) ≤ CY

(
sn(S) + ∥T − S∥

)
= CY ∥T − S∥

and taking the infimum over S yields the claim.
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4.2.2 Entropy Numbers

Definition 4.8. The n-th entropy number en(T ) of a bounded linear operator
T : X → Y between the two quasi-Banach spaces X and Y is defined by

en(T ) := inf
{

ε > 0
⏐⏐⏐T (BX) ⊂

2n−1⋃
j=1

(yj + εBY ) for some y1, . . . , y2n−1 ∈ Y

}
.

In the definition of the entropy numbers en(T ) we can either work with the closed
or the open unit ball on X. While usually the closed unit ball is used, we will work
with the open unit ball for technical reasons.

If T has finite rank less than n, we still need some balls to cover the image of T .
Hence, in that case we get

0 = CY an(T ) < en(T ),

and according to Corollary 4.7 the entropy numbers do not define an s-scale. How-
ever, the next lemma collects basic properties of entropy numbers in the spirit of
s-number theory.

Lemma 4.9. Let T : X → Y be a bounded linear operator between the two quasi-
Banach spaces X and Y . Then:

i) It holds e1(T ) ≤ ∥T∥ with equality if Y is a Banach space.

ii) The entropy numbers are monotonically decreasing, i.e., for n ∈ N it holds

en(T ) ≥ en+1(T ).

iii) For every n ∈ N and T ′ ∈ L(X, Y ) it holds

en(T + T ′) ≤ CY

(
en(T ) + ∥T ′∥

)
.

iv) It holds

en(LTR) ≤ ∥L∥ · en(T ) · ∥R∥

for every n ∈ N and bounded operators R : X0 → X, L : Y → Y0.

Proof. i) First we observe

e1(T ) = inf{ε > 0 | T (BX) ⊂ (y + εBY ) for some y ∈ Y }
≤ inf{ε > 0 | T (BX) ⊂ εBY } = ∥T∥,

so it remains to show the reverse inequality if Y is a Banach space. For this
purpose let y ∈ Y and ε > 0 be such that T (BX) ⊂ (y + εBY ). For every
x ∈ BX we then get

∥Tx∥Y = 1
2∥Tx − y + y + Tx∥Y ≤ 1

2
(
∥Tx − y∥Y + ∥Tx + y∥Y

)
< ε,

hence, T (BX) ⊂ εBY and the claim follows from

{ε > 0 | T (BX) ⊂ (y + εBY ) for some y ∈ Y } ⊂ {ε > 0 | T (BX) ⊂ εBY }.
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ii) This statement directly follows from the definition, since

{
ε > 0

⏐⏐⏐T (BX) ⊂
2n−1⋃
j=1

(yj + εBY ) for some y1, . . . , y2n−1 ∈ Y

}

⊂
{

ε > 0
⏐⏐⏐T (BX) ⊂

2n⋃
j=1

(yj + εBY ) for some y1, . . . , y2n ∈ Y

}
.

iii) For any ε > 0 let η = en(T ) + ε. Due to the definition of entropy numbers,
there exists some y1, . . . , y2n−1 ∈ Y such that for any x ∈ BX there is some
1 ≤ j ≤ 2n−1 with ∥Tx − yj∥Y < η. It follows

∥(T + T ′)x − yj∥Y ≤ CY

(
∥Tx − yj∥Y + ∥T ′x∥Y

)
≤ CY

(
η + ∥T ′∥

)
.

Hence,

(T + T ′)(BX) ⊂
2n−1⋃
j=1

yj + CY

(
η + ∥T ′∥

)
BY ,

which implies en(T + T ′) ≤ CY

(
η + ∥T ′∥

)
. Letting η → en(T ), i.e., ε → 0,

yields the claim.

iv) For R : X0 → X it holds R(BX0) ⊂ ∥R∥BX , which gives

T
(
R(BX0)

)
⊂ ∥R∥ · T (BX) ⇒ en(TR) ≤ ∥R∥ · en(T ).

To show the second claim en(LT ) ≤ ∥L∥ ·en(T ), we set η = en(T )+ε for some
ε > 0. Then there exists some y1, . . . , y2n−1 ∈ Y , such that for every x ∈ BX

there is some 1 ≤ j ≤ 2n−1 with ∥Tx − yj∥Y ≤ η. It follows

∥LTx − Lyj∥Y0 ≤ ∥L∥ · ∥Tx − yj∥Y ≤ η∥L∥,

hence

LT (BX) ⊂
2n−1⋃
j=1

Lyj + η∥L∥BY0 ,

which implies en(LT ) ≤ η∥L∥ =
(
ε + en(T )

)
· ∥L∥. Letting ε → 0 yields the

claim.

Remark 4.10. By similar arguments, property iii) of the previous Lemma 4.9 can
be generalized to

en+n′−1(T + T ′) ≤ CY

(
en−1(T ) + en′(T ′)

)
for n, n′ ∈ N and T, T ′ ∈ L(X, Y ), cf. [47, Theorem 14].

Closely related to entropy numbers are the so-called ε-nets, which we define as
follows:
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Definition 4.11. A set N ⊂ X is called an ε-net of K ⊂ X, if for all x ∈ K there
exists a z ∈ N such that

∥x − z∥X < ε.

Although one usually only requires ∥x − z∥X ≤ ε in the definition of ε-nets,
we will work with the strict inequality to avoid technical issues later on. The next
lemma is an analogue of [90, Proposition 12.1.13] for entropy numbers of identity
mappings between quasi-Banach spaces, cf. [57, Lemma 2.1].

Lemma 4.12 ([57]). Let X be a real d-dimensional p-Banach space. Then it holds

en(id : X → X) ≤ 41/p2− n−1
d

for all n ∈ N.

Proof. First of all let us note that en(T ) ≤ 1 holds for every n ∈ N. If we choose
n ∈ N such that (n − 1)/d ≤ 2/p, it follows

en(id : X → X) ≤ 1 = 41/p2−2/p ≤ 41/p2− n−1
d .

Hence, it only remains to consider the case (n − 1) > 2d/p. For ε > 0 we choose a
maximal subset {x1, . . . , xN } of BX such that

∥xi − xj∥X > ϵ

holds for all i ̸= j. It follows:

i) BX ⊂
⋃N

i=1(xi + εBX), so the xi form an ε-net of BX .

ii) The sets xi + ε
21/p BX are mutually disjoint.

Using the p-triangle inequality, for any y ∈ BX and i = 1, . . . , N we further getxi + ε

21/p
· y


X

≤
(

∥xi∥p
X + εp

2 · ∥y∥p
X

)1/p

≤
(

1 + εp

2

)1/p

,

which implies

N⋃
i=1

(
xi + ε

21/p
BX

)
⊂
(

1 + εp

2

)1/p

BX .

Comparing the volumes of both sets with respect to any translation invariant mea-
sure on X yields

N

(
ε

21/p

)d

vol(BX) = vol
(

N⋃
i=1

(
xi + ε

21/p
BX

))
≤ vol

((
1 + εp

2

)1/p

BX

)

=
(

1 + εp

2

)d/p

vol(BX),
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where we used the σ-additivity of the volume for the first equality. It follows

N ≤
(

21/p

ε

)d (
1 + εp

2

)d/p

=
(

1 + 2
εp

)d/p

.

Now we choose ε > 0 to be

ε =
(

2

2
p(n−1)

d − 1

)1/p

< 1, such that N ≤
(

1 + 2
εp

)d/p

= 2n−1,

where we used p(n − 1)/d > 2 to ensure ε < 1. Hence, we found a covering of BX

using less then 2n−1 balls of radius ε > 0, and we end up with

en(id : X → X) ≤ ε =
(

2

2
p(n−1)

d − 1

)1/p

≤ 41/p2− n−1
d .

Remark 4.13. With similar arguments as above, we can show that a bounded
operator T : X → Y is of rank r if and only if

c · 2
−(n−1)

r ≤ en(T ) ≤ C · ∥T∥ · 2
−(n−1)

r

for some universal constants c, C > 0 and all n ∈ N, cf. [23, (1.3.36)] or [47, Lemma
23].

4.2.3 Gelfand Numbers

Definition 4.14. The n-th Gelfand number cn(T ) of a bounded linear operator
T ∈ L(X, Y ) between the two quasi-Banach spaces X and Y is defined by

cn(T ) := inf
M⊂X

codim M<n

sup
x∈M

∥x∥X≤1

∥Tx∥Y ,

where the infimum is taken over all linear subspaces M of X with codim(M) :=
dim(X/M) < n.

Using the quasi-triangle inequality and basic properties of the operator norm
collected in Lemma 4.4, one easily observes that the Gelfand numbers indeed define
an s-function.

Lemma 4.15. The Gelfand numbers define an s-function.

The next lemma collects two further properties of Gelfand numbers, which we
will use later on.

Lemma 4.16. Let T : X → Y be a bounded linear operator between the two quasi-
Banach spaces X and Y . Then:

i) If X is d-dimensional, we get cn(T ) = 0 for every n > d.

ii) If X and Y are d-dimensional and T is bijective, it holds cd(T ) = ∥T −1∥−1.
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Proof. i) Choosing M = {0} ⊂ X, we get codim M = d. For any n > d it follows

0 ≤ cn(T ) ≤ sup
x∈{0}

∥Tx∥Y = 0.

ii) The claim follows from

cd(T ) = inf
M⊂X

codim M<d

sup
x∈M

∥x∥X≤1

∥Tx∥Y = inf
x∈X

∥Tx∥Y

∥x∥X
= inf

y∈Y

∥y∥Y

∥T −1y∥X
= ∥T −1∥−1.

4.3 Carl’s Inequality

For the sake of completeness, we define the n-th Kolmogorov number dn(T ) of T by

dn(T ) := inf
L⊂Y

dim L<n

sup
x∈X

∥x∥X≤1

inf
z∈L

∥Tx − z∥Y , (4.4)

where the infimum is taken over all linear subspaces L of Y with dimension less
than n. To avoid confusion, we denoted the Kolmogorov numbers with upper index
n, since later on we will also discuss the so-called Gelfand n-width, which we will
denote by dn.

If T : X → Y is a bounded linear operator between the two (quasi-)Banach spaces
X and Y , Carl’s inequality [21] states that for any α > 0 there exists a constant
γα > 0, such that for every n ∈ N it holds

sup
k∈[n]

kαek(T ) ≤ γα sup
k∈[n]

kαsk(T ).

Here sk(T ) either stands for the k-th Gelfand-, approximation-, or Kolmogorov
number. Although the original proof of Carl heavily relies on the Hahn-Banach
Theorem, which fails for quasi-Banach spaces [63], it easily extends to the case of
quasi-Banach spaces and approximation- or Kolmogorov numbers, cf. [7, 47] and
also [39, Section 1.3.3]. Unfortunately, the proof does not extend to the case of
Gelfand numbers, which we will explain in the next section. Afterwards, we will fill
the remaining gap by showing Carl’s inequality for quasi-Banach spaces and Gelfand
numbers using a new approach.

4.3.1 Carl’s Inequality for Banach Spaces

In this section we assume X and Y to be Banach spaces. We will describe the original
proof of Carl and point out that it heavily relies on the Hahn-Banach Theorem, which
is used for both spaces, X and Y .

In the first step, Carl showed the inequality only for the case of approximation
numbers as follows:

Theorem 4.17 ([21, 23]). Let T : X → Y be a bounded linear operator between the
Banach spaces X, Y . Then for any α > 0 there exists a constant γα > 0 such that
for any n ∈ N, it holds

sup
k∈[n]

kαek(T ) ≤ γα sup
k∈[n]

kαak(T ).
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Proof. By monotonicity, it is enough to prove the statement only for the case n = 2N

and N ∈ N, which we explain in iv) in the proof of Theorem 4.22. For j = 1, . . . N
let Sj ∈ L(X, Y ) be such that

rank(Sj) < 2j and ∥T − Sj∥ ≤ 2a2j (T ),

where we set S0 = 0. Then it follows

rank(Sj − Sj−1) < 2j + 2j−1 < 2 · 2j = 2j+1

and we can decompose T as

T = T − SN +
N∑

j=1
(Sj − Sj−1).

For natural numbers n1, . . . , nN , which we will determine later, we deduce

en1+...+nN −(N−1)(T ) = en1+...+nN −(N−1)

⎛⎝T − SN +
N∑

j=1
(Sj − Sj−1)

⎞⎠
≤ ∥T − SN ∥ +

N∑
j=1

enj (Sj − Sj−1), (4.5)

where we applied Remark 4.10 for the last inequality. Since rank(Sj −Sj−1) < 2j+1,
we can apply Remark 4.13 to get

enj (Sj − Sj−1) ≤ C · 2
−(nj −1)

2j+1 · ∥Sj − Sj−1∥

≤ C · 2
−(nj −1)

2j+1 · (∥Sj − T∥ + ∥T − Sj−1∥) (4.6)

≤ C · 2
−(nj −1)

2j+1 · 2 (a2j (T ) + a2j−1(T )) ≤ 4C · 2
−(nj −1)

2j+1 · a2j−1(T )

for some constant C > 0. Combining the previous two estimates (4.5), (4.6) yields

en1+...+nN −(N−1)(T ) ≤ 2a2N (T ) + 4C
N∑

j=1
2

−(nj −1)
2j+1 a2j−1(T ). (4.7)

Next we bound both summands of the right hand side of (4.7). For the second
summand we obtain

N∑
j=1

2
−(nj −1)

2j+1 a2j−1(T ) =
N∑

j=1
2

−(nj −1)
2j+1 −α(j−1) · 2α(j−1)a2j−1(T )

≤
N∑

j=1
2

−(nj −1)
2j+1 −α(j−1) · sup

1≤k≤N

(
2(k−1)

)α
a2k−1(T )

≤
N∑

j=1
2

−(nj −1)
2j+1 −α(j−1) · sup

1≤k≤2N

kαak(T ) (4.8)
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and for the first summand we recognize

a2N (T ) ≤ 2−αN sup
1≤k≤2N

kαak(T ). (4.9)

Combining (4.7), (4.8) and (4.9), we conclude

en1+...+nN −(N−1)(T ) ≤

⎛⎝4C
N∑

j=1
2

−(nj −1)
2j+1 −α(j−1) + 2−αN+1

⎞⎠ · sup
1≤k≤2N

kαak(T ).

For K ∈ N with 1 + α ≤ K ≤ 2 + α we now put

nj = 1 + K(N − j)2j+1.

By induction, one easily comprehends

n1 + . . . + nN − (N − 1) = 1 + K
N∑

j=1
(N − j)2j+1 = 1 + 4K(2N − N − 1)

≤ 4K2N

and, since 1 + α ≤ K ≤ 2 + α, it follows
N∑

j=1
2

−(nj −1)
2j+1 −α(j−1) =

N∑
j=1

2−K(N−j)−α(j−1) = 2−KN+α
N∑

j=1
2(K−α)j

= 2−KN+α · 2K−α 2N(K−α) − 1
2K−α − 1 ≤ 2K2−αN

2K−α − 1 ≤ 42−αN 2α.

Using the monotonicity of the entropy numbers, we finally end up with

en1+...+nN −(N−1)(T ) ≤ e4K2N (T ) ≤ 16C2−αN 2α sup
1≤k≤2N

kαak(T ).

The claim now follows using further monotonicity arguments.

Remark 4.18. Using the Theorem of Aoki-Rolewicz 4.1, the proof easily extends
to the case of quasi-Banach spaces, cf. [47, Proposition 24].

After showing the inequality for approximation numbers, Carl used the so-called
injectivity and surjectivity of the entropy numbers [90, Proposition 12.1.8], to con-
clude the validity also for Gelfand and Kolmogorov numbers. Although these state-
ments extend to the case of Kolmogorov numbers [7, Lemma 1], they completely fail
for the case of Gelfand numbers, which we will discuss now.

Let Y ∗ := L(Y,R) denote the dual space of some Banach space Y . Endowed
with the operator norm makes Y ∗ again a Banach space, whose closed unit ball
BY ∗ = {T ∈ Y ∗ | ∥T∥ ≤ 1} will be denoted in the following simply by S. Then we
define the operator

ι : Y → ℓ∞(S), y ↦→ (y′(y))y′∈S , (4.10)

where the intuitive definition

∥s∥ℓ∞(S) := sup
y′∈S

|sy′ |, s = (sy′)y′∈S ∈ ℓ∞(S)
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makes ℓ∞(S) a Banach space. Using the Theorem of Hahn-Banach, for any y ∈ Y
we obtain

∥ι(y)∥ℓ∞(S) = sup
y′∈S

|y′(y)| = ∥y∥Y , (4.11)

so ι defines an isometric embedding. Further, let us observe that the space ℓ∞(S)
has the so-called extension property. That is, for any subspace M of a Banach space
X let Ũ : M → ℓ∞(S) be a bounded and linear operator. Then there exists an
extension U : X → ℓ∞(S) of Ũ such that

∥Ũ∥ = ∥U∥ and Ũx = Ux for every x ∈ M.

Indeed, since Ũ is bounded, for any y′ ∈ S the mapping

Ũy′ : M → R, x ↦→ y′(Ũx)

is an element of the dual space of M . By the Theorem of Hahn-Banach there exists
an extension Uy′ : X → R of Ũy′ , i.e., it holds ∥Ũy′∥ = ∥Uy′∥ and for every x ∈ M
we get Ũy′(x) = Uy′(x). Finally, the operator

U : X → ℓ∞(S), x ↦→ (Uy′(x))y′∈S

yields the desired properties of an extension of Ũ . Equipped with the isometric
embedding ι and the extension property, we now deduce the following lemma.

Lemma 4.19. Let X, Y be two Banach spaces and let T ∈ L(X, Y ). For every
k ∈ N it holds

i) ek(T ) ≤ 2ek(ι ◦ T ),
ii) ck(T ) = ak(ι ◦ T ),

where ι : Y → ℓ∞(S) denotes the isometric embedding from (4.10).

Proof. i) Let (ι ◦ T )(BX) be covered by N = 2k−1 balls of radius ε and center
points s1, . . . , sN ∈ ℓ∞(S), i.e.,

(ι ◦ T )(BX) ⊂
N⋃

j=1
B(ε, sj).

Since we do not know if the points sj are in the image of ι ◦ T , for every
j = 1, . . . , N we choose some xj ∈ X such that (ι ◦ T )(xj) ∈ B(ε, sj). Using
the triangle inequality, for every s ∈ B(ε, sj) we obtain

∥s − (ι ◦ T )(xj)∥ℓ∞(S) ≤ ∥s − sj∥ℓ∞(S) + ∥sj − (ι ◦ T )(xj)∥ℓ∞(S) < 2ε,

hence B(ε, sj) ⊂ B(2ε, (ι ◦ T )(xj)). Since ι is isometric, we found a covering
of T (BX) with center points T (xj) and radius 2ε, which shows the claim.

ii) We prove the claim in two steps:



4.3. CARL’S INEQUALITY 43

”≤:” By Corollary 4.7, the approximation numbers are larger than the Gelfand
numbers. It follows

ck(T ) = inf
codim M<k

sup
x∈M

∥x∥≤1

∥Tx∥Y = inf
codim M<k

sup
x∈M

∥x∥≤1

∥(ι ◦ T )x∥ℓ∞(S)

= ck(ι ◦ T ) ≤ ak(ι ◦ T ).

”≥:” For n ∈ N let M be any subspace of X with codim M < n. Using the
extension property of ℓ∞(S), we can extend Ũ := ι ◦ T |M to an operator
U : X → ℓ∞(S) such that

∥U∥ = ∥Ũ∥ = ∥ι ◦ T |M ∥ = ∥T |M ∥.

The operator L := Ũ −U has rank strictly smaller than n and we conclude

an(ι ◦ T ) ≤ ∥ι ◦ T − L∥ = ∥U∥ = ∥T |M ∥.

The claim now follows by taking the infimum over all subspaces M .

Using the previous Lemma 4.19, Carl’s inequality with respect to Gelfand num-
bers now simply follows from

sup
1≤k≤n

kαek(T ) ≤ 2 sup
1≤k≤n

kαek(ι ◦ T ) ≤ 2γα sup
1≤k≤n

kαak(ι ◦ T ) ≤ 2γα sup
1≤k≤n

kαck(T ).

Let us again highlight the use of the Theorem of Hahn-Banach: While showing
that ι defines an isometric embedding, we used the Theorem of Hahn-Banach for
the Banach space Y . And to prove the second claim of Lemma 4.19, we used the
extension property, which was shown by using the Theorem of Hahn-Banach for the
Banach space X.

4.3.2 Carl’s Inequality for Quasi-Banach Spaces

In this section we will fill the remaining gap by showing Carl’s inequality for Gelfand
numbers on quasi-Banach spaces with an alternate proof, which is based on the
following lemma, cf. [57, Lemma 3.2].

Lemma 4.20 ([57]). Let T : X → Y be a bounded operator between a p-Banach
space X and a q-Banach space Y . Further, let

a) (Mn)n∈N be a sequence of finite codimensional subspaces of X,

b) δn =
∏n

i=1 εi, where (εn)n∈N is a sequence of positive numbers with εn ≤ 1 for
each n ∈ N and where we set δ0 = 1,

c) for every n ∈ N let Mn ⊂ BX/Mn
be an εn-net of the unit ball of X/Mn and

d) for every n ∈ N let Nn ⊂ 21/pBX be a lifting of Mn, i.e., Nn contains exactly
one element of each equivalence class [x] ∈ Mn.
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Then, for every x ∈ BX , there exist sequences (xn)n∈N and (zn)n∈N, such that for
every n ∈ N it holds xn ∈ Nn, zn ∈ Mn and

i) ∥zn∥X < 41/p,

ii) ∥x −
∑n

k=1 δk−1(xk + zk)∥X < δn and

iii) ∥Tx −
∑n

k=1 δk−1Txk∥q
Y ≤ (∥T∥δn)q + 4q/p∑n

k=1 δq
k−1∥T |Mk

∥q,

where ∥T |Mk
∥ denotes the operator norm of T restricted to the subspace Mk.

Proof. First we will prove i) and ii) by induction and from that we will deduce iii).
Let x ∈ BX and n = 1. Since N1 ⊂ X is a lifting of the ε1-net M1, there exists

x1 ∈ N1 and z1 ∈ M1 such that

∥x − δ0(x1 + z1)∥X = ∥x − (x1 + z1)∥X < ε1 = δ1.

Using the p-triangle inequality on X we further get

∥z1∥p
X ≤ ∥x − (x1 + z1)∥p

X + ∥x∥p
X + ∥x1∥p

X < εp
1 + 1 + 2 ≤ 4.

Next we assume that the conditions i) and ii) hold for some n ∈ N and we verify
them for n + 1. First we observe 1

δn

(
x −

n∑
k=1

δk−1(xk + zk)
)

X

< 1,

and since Nn+1 is a lifting of the εn+1-net Mn+1, there exists some xn+1 ∈ Nn+1
and some zn+1 ∈ Mn+1 such that 1

δn

(
x −

n∑
k=1

δk−1(xk + zk)
)

− (xn+1 + zn+1)


X

< εn+1,

which proves ii). The bound for zn+1 again easily follows from the p-triangle in-
equality by

∥zn+1∥p
X

≤ 1
δp

n

⎛⎝x −
n+1∑
k=1

δk−1(xk + zk)


p

X

+
x −

n∑
k=1

δk−1(xk + zk)


p

X

+ ∥δnxn+1∥p
X

⎞⎠
≤ 1

δp
n

(
δp

n+1 + δp
n + 2δp

n

)
= εp

n+1 + 1 + 2 ≤ 4.

It remains to deduce iii) from i) and ii). Here we use the q-triangle inequality on Y
to concludeTx −

n∑
k=1

δk−1Txk


q

Y

≤
Tx −

n∑
k=1

δk−1T (xk + zk)


q

Y

+
n∑

k=1
δq

k−1∥Tzk∥q
Y

≤ ∥T∥q

x −
n∑

k=1
δk−1(xk + zk)


q

X

+
n∑

k=1
δq

k−1∥T |Mk
∥q∥zk∥q

Y

≤ (∥T∥δn)q +
n∑

k=1
δq

k−14q/p∥T |Mk
∥q.
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Taking the infimum over all linear subspaces Mk and using the bound for the
entropy numbers from Lemma 4.12, we can deduce the following estimate for the
entropy numbers by terms of the Gelfand numbers, cf. [57, Theorem 3.3].

Lemma 4.21 ([57]). Let T : X → Y be a bounded operator between the p-Banach
space X and the q-Banach space Y with 0 < p, q ≤ 1 and let (kj)j∈N and (mj)j∈N
be sequences in N. Then, for any n ∈ N, it holds

ek1+...+kn+1−n(T )q ≤ 4nq/p · 2
−q

n∑
j=1

kj −1
mj ∥T∥q + 4q/p

n∑
k=1

4q(k−1)/p · 2
−q

k−1∑
j=1

kj −1
mj

cmk+1(T )q.

Proof. For each j ∈ N, let Mj ⊂ X be a linear subspace of X with codim Mj =
dim X/Mj = mj . Furthermore, for j, k ∈ N we set

εj = 41/p · 2
−(kj −1)

mj , δk =
k∏

j=1
εj = 4k/p · 2

−
k∑

j=1

kj −1
mj

.

Using the upper bound from Lemma 4.12 we get

ekj
(id : X/Mj → X/Mj) ≤ 41/p · 2

−(kj −1)
mj = εj .

Lemma 4.20 now provides a covering of T (BX) using 2k1+...kn−n center points, and
following iii) from this lemma we obtain the estimate

ek1+...+kn−n+1(T )q

≤ (∥T∥δn)q + 4q/p
n∑

k=1
δq

k−1∥T |Mk
∥q

= 4nq/p · 2
−q

n∑
j=1

kj −1
mj ∥T∥q + 4q/p

n∑
k=1

4q(k−1)/p · 2
−q

k−1∑
j=1

kj −1
mj ∥T |Mk

∥q.

Taking the infimum over all linear subspaces Mk with codim Mk = mk yields the
claim.

With the previous lemma we are ready to prove Carl’s inequality, cf. [57, Theo-
rem 1.1], which is the main result of this chapter.

Theorem 4.22 ([57]). Let T : X → Y be a bounded linear operator between two
quasi-Banach spaces X and Y . For α > 0 there exists a constant γα such that, for
any n ∈ N, it holds

sup
k∈[n]

kαek(T ) ≤ γα sup
k∈[n]

kαck(T ). (4.12)

Proof. Before proving the theorem, let us make the following simplifications:

i) According to the Theorem of Aoki-Rolewicz 4.1, the quasi-norms on X and
Y are equivalent to a p-, respectively to a q-norm with 0 < p, q ≤ 1. Since
equivalence does not change the claim of Carl’s inequality, we may assume
without loss of generality that X and Y are already a p- and a q-Banach
space, respectively.
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ii) Since both sides of Carl’s inequality are homogeneous, i.e., multiplying the
operator T by some positive factor does not change the inequality, we can
assume that ck(T ) ≤ k−α holds for all k ∈ [n]. In particular, it follows

c1(T ) = ∥T∥ ≤ 1.

iii) Clearly, it is enough to show that

nαen(T ) ≤ γα sup
k∈[n]

kαck(T ) (4.13)

holds for every n ∈ N. Indeed, in that case it follows

sup
k∈[n]

kαek(T ) ≤ sup
k∈[n]

γα sup
j∈[k]

jαcj(T ) = sup
k∈[n]

γαkαck(T ).

iv) By monotonicity of the Gelfand and entropy numbers, it is also enough to prove
Carl’s inequality for n = C2N , where C ∈ N denotes a universal constant and
N ∈ N. Indeed, assume that we have already shown (4.13) for every n = C2N .
For ñ ∈ N let N ∈ N be such that C2N−1 ≤ ñ ≤ C2N . Then, by monotonicity,
it follows

ñαeñ(T ) ≤ (C2N )αeC2N−1(T ) ≤ (2C)αγα sup
k∈[C2N−1]

kαck(T )

≤ γ̃α sup
k∈[ñ]

kαck(T ),

where we set γ̃α := (2C)αγα.
Using those simplifications, we now proceed with the proof of the claim. For any
α > 0 and N ∈ N we choose some β > α and we set mj = 2N−j , j = 1, . . . , N . In
order to apply Lemma 4.21, for j = 1, . . . , N we further set

kj = ⌈2N−j(2/p + β) + 1⌉, εj = 41/p · 2
−(kj −1)

mj .

Since (kj − 1)/mj ≥ 2/p + β, it follows εj ≤ 2−β and Lemma 4.21 yields

ek1+...+kN +1−N (T )q

≤ 4Nq/p · 2
−q

N∑
j=1

kj −1
mj ∥T∥q + 4q/p

N∑
k=1

4q(k−1)/p · 2
−q

k−1∑
j=1

kj −1
mj

cmk+1(T )q

≤ 4Nq/p · 2−2Nq/p−Nqβ + 4q/p
N∑

k=1
4q(k−1)/p · 2−2q(k−1)/p−q(k−1)β(mk + 1)−qα

= 2−Nqβ + 4q/p
N∑

k=1
2−q(k−1)β(2N−k + 1)−qα, (4.14)

where we used the assumption ck(T ) ≤ k−α. We further estimate by
N∑

k=1
2−q(k−1)β(2N−k + 1)−qα ≤

N∑
k=1

2−q(k−1)β · 2−(N−k)qα

= 2qβ · 2−Nqα
N∑

k=1
2−qkβ · 2kqα = 2qβ2−Nqα

N∑
k=1

2kq(α−β)

≤ C02qβ2−Nqα2Nq(α−β) ≤ C12−Nqα, (4.15)
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where the constants C0 and C1 only depend on α, β, p and q. Combining (4.14) and
(4.15), we arrive at

ek1+...+kN +1−N (T )q ≤ 2−Nqβ + C14q/p2−Nqα ≤ C22−Nqα.

Now let C ∈ N be such that 1 + β + 2/p ≤ C. Then it follows

1 − N +
N∑

j=1
kj = 1 − N +

N∑
j=1

⌈2N−j(2/p + β) + 1⌉

≤ 1 − N +
N∑

j=1
(2N−j(2/p + β) + 2)

= N + 1 + (2/p + β)(2N − 1) ≤ C2N

and, finally, we obtain

eC2N (T )q ≤ ek1+...+kN +1−N (T )q ≤ C22−Nqα ≤ C3(C2N )−αq

for a constant C3, which is independent of N . Setting γα = c1(T )α · C
1/q
3 we get

(C2N )αeC2N (T ) ≤ C
1/q
3 ≤ γα sup

k∈[C2N ]
kαck(T ),

as claimed.

Using Carl’s inequality, we can easily compare the Lorentz quasi-norms of (ek(T ))k∈N
and (ck(T ))k∈N, cf. [57, Theorem 3.4] and [23, Theorem 3.1.2]. For this purpose we
will make use of Hardy’s inequality (cf. [23, Lemma 1.5.3]), which states that

n∑
k=1

kt/s−1
(1

k

k∑
j=1

σq
j

)t/q
≤
(
1 + s

s − q

) n∑
k=1

kt/s−1σt
k (4.16)

holds for a sequence of nonnegative, decreasing numbers 0 ≤ σn ≤ . . . ≤ σ1, 0 <
s, t < ∞ and 0 < q < min{s, t}, cf. [57, Theorem 3.4].

Theorem 4.23 ([57]). Let T : X → Y be a bounded linear operator between the
quasi-Banach spaces X and Y . Then, for every 0 < s ≤ ∞ and 0 < t < ∞, there
exists a constant Cs,t > 0, such that for every n ∈ N, it holds

(
n∑

k=1
kt/s−1ek(T )t

)1/t

≤ Cs,t

(
n∑

k=1
kt/s−1ck(T )t

)1/t

.

Proof. For 0 < s < ∞ and 0 < t < ∞, let α > max{1/s, 1/t}. Using Carl’s
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inequality, we obtain
n∑

k=1
kt/s−1ek(T )t =

n∑
k=1

kt/s−1−tα(kαek(T ))t

≤
n∑

k=1
kt/s−1−tα

(
sup
l∈[k]

lαel(T )
)t

≤ γt
α

n∑
k=1

kt/s−1−tα
(

sup
l∈[k]

lαcl(T )
)t

≤ γt
α

n∑
k=1

kt/s−1−tα
(

sup
l∈[k]

lcl(T )1/α
)αt

≤ γt
α

n∑
k=1

kt/s−1−tα
(

sup
l∈[k]

l∑
j=1

cj(T )1/α
)αt

= γt
α

n∑
k=1

kt/s−1−tα
( k∑

j=1
cj(T )1/α

)αt
= γt

α

n∑
k=1

kt/s−1
(1

k

k∑
j=1

cj(T )1/α
)αt

,

where we used the monotonicity of Gelfand numbers for the last inequality. Next,
with the choice q = 1/α we apply Hardy’s inequality (4.16) to end up with

γt
α

n∑
k=1

kt/s−1
(1

k

k∑
j=1

cj(T )1/α
)αt

≤ γt
α

(
1 + s

s − 1/α

) n∑
k=1

kt/s−1ck(T )t,

which finishes the proof for the case s < ∞. The claim for s = ∞ now easily follows
by taking the limit s → ∞ and noting that s/(s − 1/α) → 1 for s → ∞.

4.4 Encoder-Decoder Performance

Recently, Gelfand and entropy numbers were used in the area of compressed sensing
[17, 35] to determine the performance of optimal encoder-decoder pairs, which we
will discuss in this section.

In its basic setting, compressed sensing studies pairs (A, ∆) of linear measure-
ment maps

A : X → Rm,

which is called the encoder, and in general nonlinear recovery maps

∆: Rm → X

for some (quasi-)normed space X, which we will call the decoder. The aim is to find
a particular pair (A, ∆), such that for each signal x ∈ K of a known set K ⊂ X,
e.g. the set of s-sparse signals in Rd, the error of reconstruction

∥x − ∆(Ax)∥X

is small. For a fixed set K ⊂ X the performance of a particular encoder/decoder
pair (A, ∆) is given as its worst case error

ε(A, ∆, K, X) := sup
x∈K

∥x − ∆(Ax)∥X .

Since we are interested in the best possible performance, we define the compressive
n-width of K by taking the infimum over all pairs (A, ∆), i.e., we set

En(K, X) := inf{ε(A, ∆, K, X) | A : X → Rn linear, ∆: Rn → X}.

It turns out that the compressive n-width of K is closely related to the so-called
Gelfand n-width of K, which we define as follows:
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Definition 4.24. The Gelfand n-width dn(K, X) of a subset K ⊂ X of a (quasi-
)normed space X is defined by

dn(K, X) := inf
codim M≤n

sup
x∈M∩K

∥x∥X ,

where the infimum is taken over all linear subspaces M of X with codim(M) =
dim(X/M) ≤ n.

The Gelfand numbers can be seen as a generalization of the Gelfand width in
the following way: Let ∥ · ∥1 and ∥ · ∥2 denote two quasi-norms on the vector space
X and let B1 = {x ∈ X | ∥x∥1 ≤ 1} denote the closed unit ball in X with respect to
∥ · ∥1. For the identity operator id : (X, ∥ · ∥1) → (X, ∥ · ∥2) and any n ≥ 2 we obtain

cn(id : X → X) = inf
M⊂X

codim M<n

sup
x∈M

∥x∥1≤1

∥x∥2 = inf
M⊂X

codim M<n

sup
x∈M∩B1

∥x∥2

= dn−1(B1, ∥ · ∥2). (4.17)

The following well known theorem shows the equivalence of compressive- and Gelfand
n-width, cf. [45, Theorem 10.4].

Theorem 4.25. Let K ⊂ X be a subset of a (quasi-)normed space X. If K is
symmetric, i.e., if K = −K, it holds

dn(K, X) ≤ En(K, X).

If there further exists a constant C > 0 such that K + K ⊂ CK, then it holds

En(K, X) ≤ Cdn(K, X).

The measurement map A : X → Rn is called adaptive, if the i-th measure-
ment ai(x) of Ax = (a1(x), . . . , an(x)) is allowed to depend on the previous results
a1(x), . . . , ai−1(x). In the previous theorem we restricted to nonadaptive measure-
ment maps A, although the same result also holds in the adaptive case. Hence,
adaptivity does not improve the worst case performance, which justifies our restric-
tion to nonadaptive encoders A.

If we choose X = Rd and K = Σd
s to be the set of all s-sparse vectors in Rd, it

holds K = −K and the previous Theorem 4.25 translates any lower bound on the
Gelfand n-width into a lower bound for the compressive n-width. But since K + K
is not a subset of CK for any C > 0, we cannot deduce upper bounds in the same
way.

4.5 Gelfand Numbers for ℓp-Balls

Our main motivation for Carl’s inequality is the relationship between compressive
n-width of a given set K ⊂ Rd and its Gelfand width. Hence, we are in particular
interested in Gelfand numbers of the open unit balls Bd

p ⊂ Rd for some 0 < p ≤ 1,
since they serve as a good model for compressible signals in Rd, as we already
highlighted in Remark 3.3.
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We start with the following Theorem of Kuhn and Schütt [69, 102] on entropy
numbers for the identity operator between ℓd

q and ℓd
p with 0 < p ≤ q ≤ ∞. There

we will use the notation A ≍ B, meaning that the two quantities A and B are
equivalent, i.e., that there exists two constant C0, C1 > 0 such that

C0A ≤ B ≤ C1A.

Theorem 4.26. [69, 102] For 0 < p ≤ q ≤ ∞ and m ∈ N it holds

en(id : ℓd
p → ℓd

q) ≍

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if 1 ≤ n ≤ log(d),(

1+log(d/n)
n

)1/p−1/q
, if log(d) ≤ n ≤ d,

2−n/dd1/q−1/p, if d ≤ n,

(4.18)

where the constants of equivalence do not depend on d and n.

By applying Carl’s inequality to the identity operator id : ℓd
p → ℓd

2 and using the
previous result of Kuhn and Schütt, Donoho obtained a lower bound for the Gelfand
number cn(id : ℓd

p → ℓd
2) with 0 < p ≤ 2 and, consequently, also for the compressive

n-width En(Bd
p , ℓd

2) [35]. Unfortunately, this proof contained a crucial flaw, namely
that Carl’s inequality was only proven for Banach spaces at that time and could not
be used for ℓd

p with p < 1. This gap was solved in [44], where the authors used a
completely different approach avoiding the use of Carl’s inequality.

Since we provided an alternate proof for Carl’s inequality working also for quasi-
Banach spaces, we will now reproduce the lower bound for the Gelfand numbers, cf.
[57, Theorem 4.1.]. The proof follows the original proof of Carl and Pisier with only
minor modifications, cf. [22, Corollary 2.6.].

Theorem 4.27 ([22, 44, 57]). For d ∈ N, 1 ≤ n ≤ d and 0 < p < 2 it holds

C min
{

1,
1 + log(d/n)

n

} 1
p

− 1
2

≤ cn(id : ℓd
p → ℓd

2) ≤ C ′ min
{

1,
1 + log(d/n)

n

} 1
p

− 1
2

,

(4.19)

where the constants C, C ′ > 0 do not depend on d or n.

Proof. The upper bound of this inequality was already provided in [109], so we will
only prove the lower bound.

For brevity let us set α = 1/p−1/2 > 0. For any n ∈ N such that log(d) ≤ n ≤ d
we use Carl’s inequality 4.22 and the Theorem of Kuhn and Schütt 4.26 to get

C0nα(1 + log(d/n))α ≤ n2αen(id : ℓd
p → ℓd

2) ≤ sup
k∈[n]

k2αek(id : ℓd
p → ℓd

2)

≤ γ2α sup
k∈[n]

k2αck(id : ℓd
p → ℓd

2) (4.20)

for some constants C0, γ2α > 0. For λ > 1, which we will fix later on, we split this
supremum into two parts, namely into

sup
k∈[n]

k2αck(id : ℓd
p → ℓd

2) ≤ sup
1≤k≤⌊ n

λ
⌋
k2αck(id : ℓd

p → ℓd
2) + sup

⌊ n
λ

⌋<k≤n
k2αck(id : ℓd

p → ℓd
2),

(4.21)
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where ⌊t⌋ = max{k ∈ N | k ≤ t} denotes the largest natural number not larger than
t > 0. Now we estimate both summands of the right hand side of (4.21) separately.
For the first summand we use the upper bound of (4.19), to arrive at

sup
1≤k≤⌊ n

λ
⌋
k2αck(id : ℓd

p → ℓd
2) ≤ C ′ sup

1≤k≤⌊ n
λ

⌋
k2α min

{
1,

1 + log(d/k)
k

}α

≤ C ′ sup
1≤k≤⌊ n

λ
⌋
kα(1 + log(d/k))α ≤ C ′

(
n(1 + log(λd/n))

λ

)α

, (4.22)

where we used the fact that the function t ↦→ t(1 + log(d/t)) monotonically in-
creases on the interval [1, d] (since its derivative is positive) and it holds n/λ < d by
assumption. Using λ > 1 we further estimate

C ′
(

n(1 + log(λd/n))
λ

)α

= C ′
(

n(1 + log(λ) + log(d/n))
λ

)α

≤ C ′
(1 + log(λ)

λ
· n(1 + log(d/n))

)α

. (4.23)

Next we estimate the second summand of the right hand side of (4.21) by using the
monotonicity of Gelfand numbers

sup
⌊ n

λ
⌋<k≤n

k2αck(id : ℓd
p → ℓd

2) ≤ n2αc⌈ n
λ

⌉(id : ℓd
p → ℓd

2), (4.24)

where ⌈t⌉ = min{k ∈ N | k ≥ t} denotes the smallest natural number not smaller
than t > 0. Combining the estimates (4.20), (4.21), (4.22), (4.23) and (4.24), we
end up with

γ2αc⌈ n
λ

⌉(id : ℓd
p → ℓd

2) ≥
(1 + log(d/n)

n

)α (
C0 − C ′γ2α

(1 + log(λ)
λ

)α)
.

Observing that (1 + log(λ))/λ → 0 for λ → ∞, there exists some λ0 > 1 such that

c⌈ n
λ0

⌉(id : ℓd
p → ℓd

2) ≥ C ′′
(1 + log(d/n)

n

)α

(4.25)

holds for all n ∈ N with log(d) ≤ n ≤ d and a constant C ′′ > 0. Let us note that
(4.25) still remains true in the case n < λ0 with only minor modifications on the
argument. If n < λ0, the first supremum in (4.21) becomes empty and (4.25) simply
follows from (4.20) and (4.24).

Next we show the claim for all k ∈ N with log(d) ≤ k ≤ d/λ0 if such a k exists.
We set n = ⌊λ0(k − 1) + 1⌋ such that ⌈n/λ0⌉ = k and n ≤ λ0k. Since log(d) ≤ n ≤ d
we can apply (4.25) to obtain

ck(id : ℓd
p → ℓd

2) = c⌈n/λ0⌉(id : ℓd
p → ℓd

2) ≥ C ′′
(1 + log(d/n)

n

)α

and by using the monotonicity of the function t ↦→ (1 + log(d/t))/t we arrive at

ck(id : ℓd
p → ℓd

2) ≥ C ′′
(1 + log(d/n)

n

)α

≥ C ′′
(1 + log(d/(λ0k))

λ0k

)α

≥ C ′′

λα
0 (1 + λ0)α

(1 + log(d/k)
k

)α

.
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Hence, we have shown the claim for all log(d) ≤ k ≤ d/λ0 and it remains to consider
the two cases k < log(d) and d/λ0 < k ≤ d. If k < log(d), we again use the
monotonicity to get

ck(id : ℓd
p → ℓd

2) ≥ c⌈log(d)⌉(id : ℓd
p → ℓd

2) ≥ C ′′
(1 + log(d) − log(log(d))

log(d)

)α

≥ C ′′′,

and if d/λ0 < k ≤ d, the claim follows from

ck(id : ℓd
p → ℓd

2) ≥ cd(id : ℓd
p → ℓd

2) = ∥ id : ℓd
2 → ℓd

p∥−1 = 1
dα

=
(1 + log(d/d)

d

)α

,

where we used the second part of Lemma 4.16.

The previous theorem provides an upper and lower bound on the Gelfand num-
bers cn(id : ℓd

p → ℓd
2) of the identity operator from ℓd

p to ℓd
2. Hence, by equivalence

of Gelfand and compressive n-width, from the previous Theorem 4.26 we can now
deduce the result of Donoho, cf. [35, Theorem 1].

Corollary 4.28 ([35]). For R > 0 and 0 < p < 2 it holds

En(RBd
p , ℓd

2) ≍ R min
{

1,
1 + log(d/n)

n

} 1
p

− 1
2

,

where the constants of equivalence do not depend on n or d.

Proof. By (4.17) and Theorem 4.25 we get

En(RBd
p , ℓd

2) ≍ dn(RBd
p , ℓd

2) = Rdn(Bd
p , ℓd

2) = Rcn+1(id : ℓd
p → ℓd

2).

Applying the previous Theorem 4.27, we end up with

En(RBd
p , ℓd

2) ≍ Rcn+1(id : ℓd
p → ℓd

2) ≍ R min
{

1,
1 + log(d/(n + 1))

n + 1

} 1
p

− 1
2

≍ R min
{

1,
1 + log(d/n)

n

} 1
p

− 1
2

,

as claimed.

Remark 4.29. If we are interested in an encoder/decoder pair, which reconstructs
every signal x ∈ Bd

p with an accuracy of ε > 0, i.e., if we want

En(RBd
p , ℓd

2) ≍ R min
{

1,
1 + log(d/n)

n

} 1
p

− 1
2

< ε,

we need at least

n > (1 + log(d/n))(R2ε−2)
p

2−p

measurements. By choosing p = 1 we in particular get

n > (1 + log(d/n))R2ε−2,

which goes in hand with the results of compressed sensing presented in Chapter 3.



Chapter 5

Sparse Recovery from Binary
Measurements via ℓ1-Support
Vector Machines

In Chapter 3 we discussed the recovery of sparse signals x ∈ Rd from linear mea-
surements Ax = y. But in some applications the sensing process might not follow
a linear structure. For example, in analog-to-digital conversion we have to take
quantization as specific nonlinearity into account. The problem of 1-bit compressed
sensing deals with quantization in its most extreme case, that is, with the recovery
of x from 1-bit measurements of the form

yi = sign(⟨ai, x⟩), i = 1, . . . , m (5.1)

for some measurement vectors ai ∈ Rd, where sign(t) = +1 if t ≥ 0 and sign(t) = −1
if t < 0 denotes the sign of t ∈ R. Here the quantizer takes the form of a comparator
to zero, which is a quite inexpensive and fast hardware device. Hence, it would be
beneficial if we could already recover x only from its single bit information (5.1).

Before going on, let us note that the measurements (5.1) are independent of the
length of x, i.e., rescaling x by a positive factor does not change the yi. Therefore,
we usually assume x to be normalized, i.e., ∥x∥2 = 1. Furthermore, even if we know
that the signal x is s-sparse, we observe that x is usually not uniquely determined
by the ai’s, yi’s and s. Indeed, typically x lies in the open set

m⋂
i=1

{w ∈ Rd | yi · sign(⟨ai, w⟩) > 0},

which then also contains a small neighborhood of x. Any other s-sparse signal
x0 ̸= x contained in this neighborhood then gives the same measurements (5.1) as
x. Hence, from only knowing ai, yi and s we cannot distinguish between x and x0,
so we cannot expect to recover x exactly by any method whatsoever and the best
we can hope for is to achieve at least a good approximation.

The problem of 1-bit compressed sensing was originally introduced by Boufounos
and Baraniuk in 2008 [10] followed by several lines of research, for example see
[2, 51, 96] and references therein. Among all algorithms proposed for the recovery
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of x from (5.1) let us highlight the convex maximization problem analyzed in [96],
which is given by

max
w∈Rd

m∑
i=1

yi⟨ai, w⟩ subject to ∥w∥2 ≤ 1, ∥w∥1 ≤ R (5.2)

for some parameter R > 0 controlling the sparsity level of the solution.
Theorem 5.1 ([96]). Let a1, . . . , am ∈ Rd be i.i.d. standard Gaussian vectors, let
x ∈ Rd with ∥x∥2 = 1 and ∥x∥1 ≤ R and assume that the measurements y1, . . . , ym

are given by (5.1). Then there exist constants c, C > 0 such that for any ε > 0 with

m ≥ Cε−2R2 log(2d/R2)

any solution x̂ of (5.2) satisfies

∥x − x̂∥2
2 ≤ ε

with probability at least 1 − 8 exp(−cε2m).
Remark 5.2. The previous theorem is only a simplified version of the results pre-
sented in [96]. The authors generalized the compressibility conditions ∥x∥2 = 1 and
∥x∥1 ≤ R by assuming that x lies in a (known) set K ⊂ Rd with small Gaussian mean
width ω(K), which can be understood as effective dimension of K. Furthermore,
they also considered noisy measurements and they gave uniform recovery results.

Returning to the initial problem of 1-bit compressed sensing, we want to recover
the sparse classifier x ∈ Rd from its nonlinear measurements (5.1). An approxi-
mation x̂ ∈ Rd of x should, therefore, be at least consistent with (most of) the
measurements, i.e., for (almost every) i = 1, . . . , m, it should hold

sign(⟨ai, x̂⟩) = yi = sign(⟨ai, x⟩).

This means that the hyperplane Ex̂ = {w ∈ Rd | ⟨w, x̂⟩ = 0} ⊂ Rd with normal
vector x̂ (almost) separates the two sets

C+ = {ai | yi = +1} and C− = {ai | yi = −1}

from each other. From this point of view, instead of searching for an approximation
x̂ of x, we could equivalently also search for a hyperplane separating C+ and C−.
Since there are in general infinitely many of those hyperplanes, we have to choose
one of them. But this is exactly the problem of the so-called support vector machines
(SVMs), which seek for the separating hyperplane maximizing the distance (with
respect to some norm) to both sets C+ and C−. Hence, SVMs are suitable for the
problem of 1-bit compressed sensing. The aim of this chapter is to analyze the
so-called ℓ1-SVM in order to prove a similar approximation result as Theorem 5.1,
which describes the performance of Algorithm (5.2).

5.1 Support Vector Machines

The aim of this section is to introduce and discuss the so-called soft margin and the
hard margin SVMs. Since they seek for a hyperplane which separates two (finite)
sets C+ and C− from another while simultaneously maximizing the distance to both
of them, we start this section by calculating the distance of some point in Rd to a
given hyperplane with respect to a general norm.
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5.1.1 Distance to Hyperplanes

We start this section with the definition of the dual norm, which will turn out to
be helpful to characterize the distance of some points ai ∈ Rd, i = 1, . . . , m to a
hyperplane E ⊂ Rd. After calculating this distance we can easily formulate the
optimization problem of support vector machines.

Definition 5.3 (Dual norm). The dual norm ∥ · ∥′ of the norm ∥ · ∥ on Rd is defined
by

∥ · ∥′ : Rd → [0, ∞), w ↦→ sup
v∈Rd

∥v∥=1

⟨v, w⟩ = sup
v∈Rd

∥v∥=1

|⟨v, w⟩|.

Example 5.4. For 1 ≤ p ≤ ∞ let 1 ≤ q ≤ ∞ be such that 1/p + 1/q = 1, where we
set q = ∞ if p = 1 and vice versa. Then

∥ · ∥′
p = ∥ · ∥q and ∥ · ∥′

q = ∥ · ∥p.

Lemma 5.5. Let ∥ · ∥ denote a norm on Rd. Then we have the following:

i) The dual norm ∥ · ∥′ of ∥ · ∥ defines a norm on Rd.

ii) ∥ · ∥ and its dual norm ∥ · ∥′ satisfy the Cauchy-Schwarz inequality, i.e.,

|⟨v, w⟩| ≤ ∥v∥ · ∥w∥′

holds for every v, w ∈ Rd.

iii) It holds (∥ · ∥′)′ = ∥ · ∥.

Proof. i) Clearly the dual norm is nonnegative and positive homogeneous, so it
remains to prove the triangle inequality. For any w1, w2 ∈ Rd we obtain

∥w1 + w2∥′ = sup
v∈Rd

∥v∥=1

⟨v, w1 + w2⟩ = sup
v∈Rd

∥v∥=1

(⟨v, w1⟩ + ⟨v, w2⟩)

≤ sup
v∈Rd

∥v∥=1

⟨v, w1⟩ + sup
v∈Rd

∥v∥=1

⟨v, w2⟩ = ∥w1∥′ + ∥w2∥′.

ii) Let v, w ∈ Rd with v ̸= 0, then we get

|⟨v, w⟩| = ∥v∥ ·
⏐⏐⏐⟨ v

∥v∥
, w⟩

⏐⏐⏐ ≤ ∥v∥ · sup
ṽ∈Rd

∥ṽ∥=1

|⟨ṽ, w⟩| = ∥v∥ · ∥w∥′.

iii) For w ∈ Rd we consider the functional ⟨·, w⟩ : Rd → R, v ↦→ ⟨v, w⟩. Its operator
norm with respect to ∥ · ∥ is given by

∥⟨·, w⟩∥ = sup
v∈Rd

∥v∥=1

⟨v, w⟩ = ∥w∥′

and using the theorem of Hahn-Banach we end up with

∥w∥ = sup
v∈Rd

∥⟨·,v⟩∥=1

⟨v, w⟩ = sup
v∈Rd

∥v∥′=1

⟨v, w⟩ = ∥w∥′′.
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Next we want to calculate the distance

d∥·∥(a, E) := inf
v∈E

∥a − v∥ (5.3)

of some point a ∈ Rd to the hyperplane E ⊂ Rd with respect to the norm ∥ · ∥.
Furthermore, P∥·∥(a, E) ∈ E is called proximum of a onto E with respect to ∥ · ∥ if
it is a minimizer of the distance, i.e., if it holdsa − P∥·∥(a, E)

 = inf
v∈E

∥a − v∥. (5.4)

Note that we only consider the finite-dimensional vector space Rd. Hence, by conti-
nuity arguments, there always exists at least one proximum. Although the distance
of some point to the hyperplane is always unique, the proximum P∥·∥(a, Ew) however
may not. There might be more than one proximum if the unit ball with respect to
the norm ∥ · ∥′ contains a straight line segment, such as the unit ball with respect
to the ℓ1- or the ℓ∞-norm.

Before we will go on with the general case, i.e., with respect to some arbitrary
norm on Rd, let us first consider the particularly well known case of the Euclidean
norm.

For w ∈ Rd\{0}, let Ew = {v ∈ Rd | ⟨v, w⟩ = 0} denote the hyperplane with
normal vector w. For a point a ∈ Rd it is well known that the proximum of a onto Ew

with respect to the Euclidean norm ∥ · ∥2 is given by the orthogonal projection of a
onto Ew. Hence, we can represent the proximum P∥·∥2(a, Ew) as a linear combination
of a and w, i.e., for some λ ∈ R we have

P∥·∥2(a, Ew) = a + λw. (5.5)

Since P∥·∥2(a, Ew) is contained in Ew, we observe

0 =
⟨
P∥·∥2(a, Ew) , w

⟩
= ⟨a, w⟩ + λ∥w∥2

2.

Therefore, P∥·∥2(a, Ew) = a − ⟨a, w⟩/∥w∥2
2 · w and the distance d∥·∥2(a, Ew) between

the hyperplane Ew and a with respect to the ℓ2-norm is given by

d∥·∥2(a, Ew) =
P∥·∥2(a, Ew) − a


2

= ∥a + λw − a∥2 = |⟨a, w⟩|
∥w∥2

.

Using the duality ∥ · ∥′
2 = ∥ · ∥2, the distance d∥·∥2(a, Ew) can also be express by

d∥·∥2(a, Ew) = |⟨a, w⟩|
∥w∥′

2
.

The next theorem shows that this formula remains true for an arbitrary norm ∥ · ∥
on Rd, if we replace the term ∥w∥′

2 by ∥w∥′, cf. [78, Theorem 2.2].

Theorem 5.6 ([78]). Let ∥ · ∥ be a norm on Rd and for w ∈ Rd\{0}, let Ew =
{v ∈ Rd | ⟨v, w⟩ = 0} ⊂ Rd denote the hyperplane with normal vector w. Then the
distance of some point a ∈ Rd to the hyperplane Ew with respect to ∥ · ∥ is given by

d∥·∥(a, Ew) = |⟨a, w⟩|
∥w∥′ . (5.6)
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Furthermore, the proximum P∥·∥(a, Ew) of a onto Ew is given by

P∥·∥(a, Ew) = a − ⟨a, w⟩
∥w∥′ · arg max

∥v∥=1
⟨v, w⟩. (5.7)

Remark 5.7. The proximum P∥·∥(a, Ew) is not always unique. However, if it is not
uniquely determined, every proximum is still of the form (5.7) with only possible
different choices for the maximizer of arg max∥v∥=1⟨v, w⟩.

Proof. This result is by far not new and, for instance, contained in [78, Theorem
2.2.]. But since the proof there is based on the so-called Karush-Kuhn-Tucker saddle
point sufficient optimality criterion which we have not discussed here, we will give
an alternate proof instead.

We start calculating the proximum P∥·∥(a, Ew) first, which afterwards allows us
to easily calculate the distance between a and Ew. For this purpose we assume
a ̸∈ Ew, i.e., ⟨a, w⟩ ̸= 0, since otherwise the statement follows trivially.

Following the calculation for the ℓ2-norm (5.5), let us first find the right direction
e ∈ Rd with ∥e∥ = 1 such that

P∥·∥(a, Ew) = a + λe (5.8)

for some λ ∈ R. Since the proximum has to be contained in the hyperplane Ew, we
obtain

0 =
⟨
P∥·∥(a, Ew) , w

⟩
= ⟨a, w⟩ + λ⟨e, w⟩.

Further, using the assumption ⟨a, w⟩ ̸= 0, we get

P∥·∥(a, Ew) − a
 = |λ| =

⏐⏐⏐⏐⟨a, w⟩
⟨e, w⟩

⏐⏐⏐⏐ = min
v∈Ew

∥a − v∥.

Minimizing over |λ| yields

e = arg max
∥v∥=1

⟨v, w⟩ and λ = ⟨a, w⟩
⟨e, w⟩

= ⟨a, w⟩
∥w∥′ .

Combined with (5.8) this results into

P∥·∥(a, Ew) = a − ⟨a, w⟩
∥w∥′ · arg max

∥v∥=1
⟨v, w⟩

and

d∥·∥(a, Ew) = ∥a − P∥·∥(a, Ew)∥ = |λ| = |⟨a, w⟩|
∥w∥′ ,

as claimed.
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5.1.2 Hard Margin Support Vector Machines

Given a norm ∥ · ∥ on Rd and measurements

yi = sign(⟨ai, x⟩), i = 1, . . . , m (5.9)

of the signal x ∈ Rd for certain measurement vectors ai ∈ Rd, a support vector
machine searches for the hyperplane Ew ⊂ Rd with normal vector w ̸= 0, which is
on the one hand consistent with the measurements, i.e., such that

yi = sign(⟨ai, x⟩) = sign(⟨ai, w⟩), i = 1, . . . , m (5.10)

and, on the other hand, simultaneously maximizes the distance to the sample points
ai. Here we define the distance of the sample points to the hyperplane as minimal
distance, i.e.,

d∥·∥(a1, . . . , am, Ew) := min
i∈[m]

d∥·∥(ai, Ew). (5.11)

If A ∈ Rm,d denotes the matrix with rows ai, to shorten notation, we set d∥·∥(A, Ew) =
d∥·∥(a1, . . . , am, Ew). Further, by Theorem 5.6, this distance is given by

d∥·∥(A, Ew) = min
i∈[m]

|⟨ai, w⟩|
∥w∥′ . (5.12)

If we multiply the normal vector w by a factor λ ̸= 0, the hyperplane Ew does not
change, i.e., it holds Ew = Eλw for any λ ̸= 0. Hence, without loss of generality we
may assume that w is normalized with respect to the dual norm ∥ · ∥′. Combining
(5.10) and (5.12), we end up with the following definition for the (hard margin)
SVM.

Definition 5.8. Let ∥ · ∥ be any norm on Rd and for x, a1, . . . , am ∈ Rd let

yi = sign(⟨ai, x⟩), i = 1, . . . , m.

Then, the optimization problem

max
w∈Rd

∥w∥′=1

{
min
i∈[m]

yi⟨ai, w⟩
}

(5.13)

is called (hard margin) support vector machine.

Remark 5.9. i) The support vector machine (5.13) does not always have a
unique solution. But since we are maximizing the continuous function w ↦→
mini∈[m] yi⟨ai, w⟩ over the compact set S∥·∥′ := {w ∈ Rd | ∥w∥′ = 1}, there
always exists at least one maximizer.

ii) For fixed yi and ai, note that w ↦→ mini∈[m] yi⟨ai, w⟩ is a concave function.
Moreover, instead of maximizing over {w ∈ Rd | ∥w∥′ = 1} in (5.13) we could
also maximize over the convex unit ball {w ∈ Rd | ∥w∥′ ≤ 1}. Hence, the hard
margin SVM (5.13) can be recast as a convex optimization problem.
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Lemma 5.10. Suppose that the SVM (5.13) has two different maximizers x̂1, x̂2 ∈
Rd. Then every point in the line segment

x̂1x̂2 := {λx̂1 + (1 − λ)x̂2 | λ ∈ [0, 1]}

from x̂1 to x̂2 also maximizes (5.13) and is normalized with respect to the dual norm
∥ · ∥′.

Proof. Let x̂1 and x̂2 be two different maximizers of (5.13) and let λ ∈ (0, 1). Setting
x̂λ = λx̂1 + (1 − λ)x̂2 we first observe

∥x̂λ∥′ = ∥λx̂1 + (1 − λ)x̂2∥′ ≤ λ∥x̂1∥′ + (1 − λ)∥x̂2∥′ = 1.

Further, using that x̂1 and x̂2 are maximizers of (5.13), we obtain

min
i=1,...,m

yi⟨ai,
x̂λ

∥x̂λ∥′ ⟩ = 1
∥x̂λ∥′

(
min
i∈[m]

λyi⟨ai, x̂1⟩ + (1 − λ)yi⟨ai, x̂2⟩
)

≥ 1
∥x̂λ∥′

(
λ min

i∈[m]
yi⟨ai, x̂1⟩ + (1 − λ) min

i∈[m]
yi⟨ai, x̂2⟩

)
= 1

∥x̂λ∥′

(
max
w∈Rd

∥w∥′=1

{
min
i∈[m]

yi⟨ai, w⟩
})

≥ max
w∈Rd

∥w∥′=1

{
min
i∈[m]

yi⟨ai, w⟩
}

.

To not end up with a contradiction, it must hold equality, i.e., we get

1
∥x̂λ∥′

(
max
w∈Rd

∥w∥′=1

{
min
i∈[m]

yi⟨ai, w⟩
})

= max
w∈Rd

∥w∥′=1

{
min
i∈[m]

yi⟨ai, w⟩
}

.

This implies ∥x̂λ∥′ = 1 and x̂λ is another maximizer of (5.13), as claimed.

Corollary 5.11. If the support vector machine (5.13) has no unique maximizer, the
unit sphere S∥·∥′ = {w ∈ Rd | ∥w∥′ = 1} contains a straight line segment.

Assume that the hyperplane Ew does not contain any sample point ai and is
consistent with the measurements yi, i.e., it holds yi⟨ai, w⟩ > 0 for i = 1, . . . , m. By
rescaling the normal vector w of Ew (which does not change the hyperplane), we
can always achieve yi⟨ai, w̃⟩ ≥ 1, where we set w̃ = λw for some λ > 0. This simple
observation motivates the following equivalent reformulation of the SVM (5.13):

min
w∈Rd

∥w∥′ subject to yi⟨ai, w⟩ ≥ 1 (5.14)

The next lemma shows that the two optimization problems (5.13) and (5.14) are
indeed equivalent.

Lemma 5.12. Let x̂ be a maximizer of the support vector machine (5.13) and let
x̃ be a minimizer of (5.14). Then, using the notation of Definition 5.8, x̃/∥x̃∥′ is a
maximizer of (5.13) and x̂/d∥·∥(A, Ex̂) is a minimizer of (5.14). Further, it holds

d∥·∥(A, Ex̃) = min
i∈[m]

d∥·∥(ai, Ex̃) = min
i∈[m]

min
v∈Ex̃

∥ai − v∥ = 1
∥x̃∥′ . (5.15)
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Proof. A proof of this well known result is contained in [29, Theorem 9.13.] with the
particular choice ∥ · ∥ = ∥ · ∥′ = ∥ · ∥2. To show that the arguments presented there
also hold in the general case, we recast its proof with only minor modifications.

We start by showing the statement (5.15). Since x̃ is a minimizer of (5.14) it
holds

min
i∈[m]

yi⟨ai, x̃⟩ = 1

and, using Theorem 5.6, we observe

d∥·∥(A, Ex̃) = min
i∈[m]

d(ai, Ex̃) = min
i∈[m]

|⟨ai, x̃⟩|
∥x̃∥′ = 1

∥x̃∥′ .

Next let us show that x̃/∥x̃∥′ is a maximizer of (5.13). Towards a contradiction, we
assume that

max
w∈Rd

∥w∥′=1

{
min

i=1,...,d
yi⟨ai, w⟩

}
= d∥·∥(A, Ex̂) > d∥·∥(A, Ex̃) = 1

∥x̃∥′ .

Setting x0 = x̂/d(A, Ex̂) implies yi⟨ai, x0⟩ ≥ 1 for i = 1, . . . , m. Hence, x0 is feasible
for (5.14) and we end up with

∥x0∥′ = ∥x̂∥′

d∥·∥(A, Ex̂) = 1
d∥·∥(A, Ex̂) <

1
d∥·∥(A, Ex̃) = ∥x̃∥′,

which is a contradiction to the assumption that x̃ is a minimizer of (5.14).
It remains to show that x1 = x̂/d∥·∥(A, Ex̂) is a minimizer of (5.14). We observe

min
i∈[m]

yi⟨ai, x1⟩ = min
i∈[m]

yi⟨ai, x̂⟩
d∥·∥(A, Ex̂) = 1,

which in particular shows yi⟨ai, x1⟩ ≥ 1 for i = 1, . . . , m. Hence, x1 is feasible for
(5.14) and it remains to show ∥x1∥′ = ∥x̃∥′. Since x̂ is a maximizer of (5.13), it
holds d(A, Ex̃) ≤ d(A, Ex̂) = d(A, Ex1) and we arrive at

1
∥x1∥′ = min

i∈[m]

yi⟨ai, x1⟩
∥x1∥′ = d(A, Ex1) ≥ d(A, Ex̃) = 1

∥x̃∥′ ,

from which the statement follows.

For sample points a1, . . . , am and measurements y1, . . . , ym let x̂ ∈ Rd be a min-
imizer of the hard margin SVM (5.14). Then there is no sample point ai contained
in the so-called margin

M := {v ∈ Rd | −1 < ⟨v, x̂⟩ < 1}, (5.16)

which explains why we denote (5.14) (and the equivalent formulation (5.13)) as
hard margin SVMs. Furthermore, there are always sample points ai lying on the
boundary of M . This means, the set

SV := {ai | 1 = |⟨ai, x̂⟩|}
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is not empty and we denote its elements as support vectors. By construction, those
support vectors already determine the solution x̂ of the hard margin SVM and the
other sample points ai ̸∈ SV are completely ignored by the SVM. Typically, there
are only few support vectors. Hence, the vector v ∈ Rm with entries vi = 1 if
ai ∈ SV and vi = 0 else is sparse. But note that the support vectors and, therefore,
also the nonzero entries of v depend on the sample points ai. Hence, here we have
another type of sparsity compared to the usual setting of compressed sensing, where
the nonzero entries of the signal are fixed in advance.

Although the sparsity of the support vectors can be used to reduce the compu-
tational complexity, this restriction also brings a major drawback. Namely, if only
few vectors already determine the separating hyperplane, most of the other sample
points are completely ignored. This can lead to unsatisfactory results, for instance,
if few of the sample points ai do not fit into the structure of the remaining samples,
but are much closer to the origin than the other, cf. Figure 5.1. To overcome this
drawback, an idea is to introduce weights ξi ∈ [0, 1], which interpolate between the
two states of being a support vector or not. The weight ξi should be close to one
if the sample point ai should have a big influence for the separating hyperplane. If
those choices are done carefully, this would lead to a compressible vector (ξi) ∈ Rm,
instead of the sparse vector v.

A second major drawback of hard margin SVMs is their behavior in the presence
of misclassifications as a particular kind of noise. This means, if some of the sample
points ai get misclassified such that, instead of the true label yi, we observe the
flipped value ỹi = −yi, in general, no separating hyperplane exists anymore. Hence,
in that case the hard margin SVMs completely fail, since the set of hyperplanes they
are optimizing over is empty.

In order to overcome both mentioned drawbacks which, in particular, makes the
SVMs more robust for practical purposes, in the next subsection we will introduce
the so-called soft margin support vector machines.

Figure 5.1: Due to misclassifications, no separating hyperplane between the blue
and the red points exists (left) and a hyperplane which is already determined by few
outliers, which do not exactly fit with the structure of the remaining points (right).

5.1.3 Soft Margin Support Vector Machines

Support vector machines became a standard tool in the analysis of high dimensional
classification problems and are used in many different areas. However, in practice
the measurement processes are usually corrupted by noise, which often leads to
misclassifications. For instance, if a doctor has to distinguish whether a patient has
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a certain disease, his/her guess might be wrong. In that case a separation of the
two classes by a hyperplane is probably not possible anymore.

To overcome this drawback and to make the SVMs applicable for practical pur-
poses, we introduce so-called slack variables ξi ≥ 0. The slack variables should give
the possibility that some sample point ai lies ”on the wrong side” of the separating
hyperplane or, similar, in the margin M given by (5.16). That is, comparing with
the hard margin SVM (5.14), the slack variables should give the possibility that it
holds yi⟨ai, w⟩ < 1 for some of the sample points ai. Nevertheless, we still want
to find the hyperplane that, at least in some sense, maximizes the distance to the
two sets {ai | yi = +1} and {ai | yi = −1}. Hence, by allowing sample points ai

satisfying yi⟨ai, w⟩ < 1, we simultaneously have to penalize them. This gives the
idea to define the soft margin support vector machine by

min
w∈Rd

ξ∈Rm

∥ξ∥1 + λ∥w∥′ subject to yi⟨ai, w⟩ ≥ 1 − ξi (5.17)

for a trade-off parameter λ > 0.

Remark 5.13. Following our motivation for the slack variables, it is not clear why
we particularly chose the ℓ1-norm of ξ as penalizer. This freedom leads to different
versions of soft margin SVMs. For instance, with the choice of the ℓ2-norm we obtain
the optimization problem

min
w∈Rd

ξ∈Rm

∥ξ∥2 + λ∥w∥2
2 subject to yi⟨ai, w⟩ ≥ 1 − ξi,

which is often denoted as ℓ2-SVM. In a similar way, a huge amount of different SVMs
are generated and can be found in the literature.

As for the hard margin SVM there are several equivalent reformulations of (5.17)
which we will discuss in the remaining part of this subsection. We start with the
following minimization problem which avoids the explicit use of the slack variables
ξi:

min
w∈Rd

m∑
i=1

[
1 − yi⟨ai, w⟩

]
+ + λ∥w∥′ (5.18)

for a trade-off parameter λ > 0, where [t]+ := max{t, 0} denotes the positive part
of t ∈ R. Before proving the equivalence between (5.18) and (5.17), for brevity we
introduce the so-called hinge loss

fx : Rd → R, w ↦→ 1
m

m∑
i=1

[
1 − yi⟨ai, w⟩

]
+ (5.19)

and we set f̃x := m · fx. Here the subindex x indicates the dependency of fx and f̃x

on x via yi = sign(⟨ai, x⟩).

Lemma 5.14. Let (w∗, ξ∗) ∈ Rd × Rm be a minimizer of (5.17) and let ŵ ∈ Rd be
a minimizer of (5.18). Then w∗ also minimizes (5.18) and, conversely, (ŵ, ξ̂) is a
minimizer of (5.17), where we set ξ̂i =

[
1 − yi⟨ai, ŵ⟩

]
+.



5.1. SUPPORT VECTOR MACHINES 63

Proof. By definition of ξ̂i we obtain ∥ξ̂∥1 = f̃x(ŵ) and

1 − ξ̂i = 1 −
[
1 − yi⟨ai, ŵ⟩

]
+ ≤ 1 − (1 − yi⟨ai, ŵ⟩) = yi⟨ai, ŵ⟩,

hence, (ξ̂, ŵ) is feasible for (5.17). Since (ξ∗, w∗) is a minimizer of (5.17), it follows

∥ξ∗∥1 + λ∥w∗∥ ≤ ∥ξ̂∥1 + λ∥ŵ∥ = f̃x(ŵ) + λ∥ŵ∥. (5.20)

Further, one easily observes ξ∗
i ≥ 0 and we get

1 − ξ∗
i ≤ yi⟨ai, w∗⟩ ⇒ ξ∗

i ≥
[
1 − yi⟨ai, w∗⟩

]
+,

which yields ∥ξ∗∥1 ≥ f̃x(w∗). Using that ŵ minimizes (5.18) and applying (5.20) we
obtain

f̃x(ŵ) + λ∥ŵ∥ ≤ f̃x(w∗) + λ∥w∗∥ ≤ ∥ξ∗∥1 + λ∥w∗∥ ≤ f̃x(ŵ) + λ∥ŵ∥.

Hence, it must hold equality which, combined with (5.20), yields the claim.

Next we will use duality arguments to show that (5.18) also has the two equivalent
formulations

min
w∈Rd

f̃x(w) subject to ∥w∥′ ≤ R (5.21)

for a parameter R > 0 and

min
w∈Rd

∥w∥′ subject to f̃x(w) ≤ τ (5.22)

for a parameter τ > 0. We obtain the following theorem:

Theorem 5.15. i) Let w∗ ∈ Rd be a minimizer of (5.18) for some λ > 0. Then
there exists a τ ≥ 0 such that w∗ minimizes (5.22) as well.

ii) Let τ ≥ 0 be such that (5.22) has the unique minimizer w∗ ∈ Rd. Then there
exists a R ≥ 0 such that (5.21) also has the unique minimizer w∗.

Proof. i) With τ = f̃x(w∗) ≥ 0 for any w ∈ Rd with f̃x(w) ≤ τ we get

τ + λ∥w∗∥′ = f̃x(w∗) + λ∥w∗∥′ ≤ f̃x(w) + λ∥w∥′ ≤ τ + λ∥w∥′,

where we used that w∗ ∈ Rd is a minimizer of (5.18) for the second last step.
Hence, ∥w∗∥′ ≤ ∥w∥′ and w∗ also minimizes (5.22).

ii) If w∗ = 0, the claim follows trivially, so let us assume w∗ ̸= 0. For w ̸= w∗

with ∥w∥′ ≤ ∥w∗∥′ =: R, it then follows

f̃x(w) > τ ≥ f̃x(w∗),

since otherwise w would be another minimizer of (5.22). Hence, w∗ also is the
unique minimizer of (5.21).
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To show the equivalence of (5.18), (5.21) and (5.22), it remains to show that any
minimizer of (5.21) can be translated into a minimizer of (5.18). For that we follow
[45, Appendix B.5].

For a fixed R > 0 we define the Lagrange function L : Rd × [0, ∞) → R by

L(w, λ) := f̃x(w) + λ(∥w∥′ − R). (5.23)

The Lagrange dual problem is then given by

max
λ≥0

min
w∈Rd

L(w, λ). (5.24)

We are interested in interchanging the maximum with the minimum here, which we
will then use to prove the desired equivalence of (5.21) and (5.18). First, for any
w ∈ Rd we observe

max
λ≥0

L(w, λ) = max
λ≥0

f̃x(w) + λ(∥w∥′ − R) =
{

f̃x(w), if ∥w∥′ − R ≤ 0,

∞, else,

which gives the identity

min
w∈Rd

max
λ≥0

L(w, λ) = min
w∈Rd

∥w∥′≤R

f̃x(w). (5.25)

Further, for any λ ≥ 0 we get the estimate

min
w∈Rd

∥w∥′≤R

f̃x(w) ≥ min
w∈Rd

∥w∥′≤R

f̃x(w) + λ(∥w∥′ − R) ≥ min
w∈Rd

f̃x(w) + λ(∥w∥′ − R), (5.26)

where the first inequality holds since ∥w∥′ − R ≤ 0. Combining (5.25) with (5.26)
and taking the maximum with respect to λ ≥ 0 yields

min
w∈Rd

max
λ≥0

L(w, λ) = min
w∈Rd

∥w∥′≤R

f̃x(w) ≥ max
λ≥0

min
w∈Rd

L(w, λ),

which is referred to as weak duality. Since f̃x is a convex function and there exists
a w ∈ Rd (for instance w = 0) such that ∥w∥′ − R < 0, the so-called Slater’s
condition (see, for instance, [45, Theorem B.26] or [11, 5.2.3.]) states that we even
have equality, i.e.,

min
w∈Rd

max
λ≥0

L(w, λ) = max
λ≥0

min
w∈Rd

L(w, λ), (5.27)

which is referred to as strong duality. Now let λ∗ ≥ 0 be a maximizer of the right
hand side and let w∗ be a minimizer of the left hand side of (5.27), that is,

max
λ≥0

L(w∗, λ) = min
w∈Rd

max
λ≥0

L(w, λ) = max
λ≥0

min
w∈Rd

L(w, λ) = min
w∈Rd

L(w, λ∗).

In particular, we get

min
w∈Rd

L(w, λ∗) ≤ L(w∗, λ∗) ≤ max
λ≥0

L(w∗, λ) = min
w∈Rd

L(w, λ∗),
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yielding

L(w∗, λ∗) = max
λ≥0

L(w∗, λ) = min
w∈Rd

L(w, λ∗).

From this, for any λ ≥ 0 and w ∈ Rd we deduce the so-called saddle point inequality

L(w∗, λ) ≤ L(w∗, λ∗) ≤ L(w, λ∗). (5.28)

Equipped with the saddle point inequality we can now show the missing part
of the proof of the equivalences between (5.18), (5.21) and (5.22), namely that any
minimizer of (5.21) can be translated into a minimizer of (5.18).

Theorem 5.16. Let w∗ be a minimizer of (5.21) for some R > 0. Then there exists
a λ ≥ 0 such that w∗ minimizes (5.18).

Proof. By continuity of the function λ ↦→ min
w∈Rd

f̃x(w) + λ(∥w∥′ − R) and

lim
λ→∞

min
w∈Rd

f̃x(w) + λ(∥w∥′ − R) = −∞,

there exists a maximizer λ∗ ≥ 0 of the Lagrange dual problem (5.24). Applying the
saddle point inequality (5.28), we end up with

f̃x(w∗) + λ∗∥w∗∥′ ≤ f̃x(w) + λ∗∥w∥′

for every w ∈ Rd, hence, w∗ minimizes (5.18).

5.2 Recovery via ℓ1-Support Vector Machines

In 1-bit compressed sensing [10, 96] we aim for the reconstruction of a sparse or
compressible classifier x ∈ Rd from its 1-bit measurements

yi = sign(⟨ai, x⟩), i = 1, . . . , m (5.29)

for some measurement vectors ai ∈ Rd, as we have already discussed in the beginning
of this chapter. Following the theory of compressed sensing, to encourage sparsity
in the reconstruction we may incorporate the ℓ1-norm into the recovery algorithm.
This idea leads to the so-called ℓ1-SVM

min
w∈Rd

m∑
i=1

[
1 − yi⟨ai, w⟩

]
+ subject to ∥w∥1 ≤ R (5.30)

for some parameter R > 0 [12, 116]. Compared to the soft margin SVM (5.21), we
have replaced the dual norm ∥w∥′ with the particular choice ∥w∥1, meaning that
the ℓ1-SVM (5.30) maximizes the distance of the sample points ai to the separating
hyperplane with respect to the ℓ∞-norm, cf. Lemma 5.5. Note that this is in
particular an example where we cannot guarantee the existence of unique minimizers.

The main goal of this section is to analyze the performance of (5.30) in the
non-asymptotic regime, i.e., for fixed d and m we want to get error bounds on the
difference between the true classifier x and its approximation x̂. For this let us first
fix the model setup for our analysis.
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Using the ℓ1-SVM (5.30) we aim to recover the true classifier x ∈ Rd from the
1-bit measurements (5.29) with some i.i.d. Gaussian measurement vectors

ai = rãi ∈ Rd, ãi ∼ N (0, id) (5.31)

for a fixed scaling parameter r > 0. We assume x to be ℓ2-normalized and com-
pressible in the form

∥x∥2 = 1, ∥x∥1 ≤ R (5.32)

for some R > 0. Note that if x is s-sparse with ∥x∥2 = 1, it follows from the
Cauchy-Schwarz inequality that

∥x∥1 ≤
√

s.

Hence, we interpret (5.32) in the way that x is effectively s = R2-sparse. Further,
for brevity, we set

K := R · Bd
1 = {w ∈ Rd | ∥w∥1 ≤ R}. (5.33)

A minimizer of the ℓ1-SVM (5.30) will be denoted by x̂, i.e.,

x̂ := arg min
w∈Rd

m∑
i=1

[
1 − yi⟨ai, w⟩

]
+ subject to ∥w∥1 ≤ R.

Before we will go on let us summarize the assumptions we have made.

Standing Assumptions I

i) The true classifier x ∈ Rd, which we want to approximate, is compressible
in the way that ∥x∥2 = 1 and ∥x∥1 ≤ R for some R > 0.

ii) For a scaling parameter r > 0 we take the measurement vectors ai = r·ãi ∈
Rd for some i.i.d. ãi ∼ N (0, id).

iii) The measurements are given by yi = sign(⟨ai, x⟩).

iv) We denote fx(w) =
∑m

i=1[1 − yi⟨ai, w⟩]+ and K = {w ∈ Rd | ∥w∥1 ≤ R}.

v) x̂ denotes a minimizer of the ℓ1-SVM, i.e., x̂ = arg minw∈K fx(w).

Remark 5.17. We introduced the additional scaling parameter r > 0 for the Gaus-
sian measurement vectors. This additional parameter is not needed for the 1-bit
compressed sensing algorithm (5.2), since the objective function there is actually
linear in the ai’s. Hence, multiplying ai by a positive factor does not change the
minimizer of (5.2).
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However, this situation completely changes for the ℓ1-SVM. Assume that we
choose r << 1 sufficiently small, then it follows

[1 − yi⟨ai, w⟩]+ = [1 − ryi⟨ãi, w⟩]+ = 1 − ryi⟨ãi, w⟩,

so the optimization problem (5.30) can actually be reformulated as

min
w∈K

m∑
i=1

[
1 − yi⟨ai, w⟩

]
+ = min

w∈K

m∑
i=1

1 − yi⟨ai, w⟩ = m − max
w∈K

m∑
i=1

yi⟨ai, w⟩.

Using the duality ∥ · ∥′
1 = ∥ · ∥∞ we can further simplify to

max
w∈K

m∑
i=1

yi⟨ai, w⟩ = R

 m∑
i=1

yiai


∞

.

Furthermore, this maximum is achieved if we choose a 1-sparse w ∈ K with nonzero
entry at the position of the largest entry of

∑m
i=1 yiai.

Hence, in that case the ℓ1-SVM will always return a 1-sparse solution, no matter
what the ground truth signal x is. We conclude that the parameter r might play an
important role and should not be chosen too small. This we will also demonstrate
in the numerical experiments at the end of this chapter.

The aim of the remainder of this section is to show that x̂ (or actually x̂/∥x̂∥2)
is a good approximation of x, i.e., that their difference is small. For this proof we
adapt the ideas of [96].

Remembering the definition (5.19) of the function fx, we first observe

0 ≤ fx(x) − fx(x̂)

=
(
E fx(x) − E fx(x̂)

)
+
(
fx(x) − E fx(x)

)
+
(
E fx(x̂) − fx(x̂)

)
≤ E

(
fx(x) − fx(x̂)

)
+ 2 sup

w∈K
|fx(w) − E fx(w)|.

Rearranging the terms yields

E
(
fx(x̂) − fx(x)

)
≤ 2 sup

w∈K
|fx(w) − E fx(w)|. (5.34)

Here the expectation has to be understood as follows: For independent copies a′, a′
i

of ai we define

E fx(w) := Ea′

[ 1
m

m∑
i=1

[
1 − y′

i⟨a′
i, w⟩

]
+

]
= Ea′

[
1 − y′⟨a′, w⟩

]
+, (5.35)

where we set y′
i = sign(⟨a′

i, x⟩). With this interpretation of the expected value, we
indeed get

E fx(x̂) ≤ sup
w∈K

E fx(w),

since x̂ is independent of the a′
i’s, although it clearly depends on the variables ai.

For brevity, in the following we will not use the additional variables a′
i, but the

expected values always have to be understood as described above.
Following (5.34), it remains to bound the right hand side of this inequality from

above and the left hand side from below by terms of the distance between x and
x̂. With our Standing Assumptions I we obtain the following result, whose proof is
given in section 5.2.3, cf. [67, Theorem II.3]:
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Theorem 5.18 ([67]). Let d ≥ 2, 0 < ε < 0.18, r >
√

2π(0.57 − επ)−1 and

m ≥ Cε−2r2R2 log(d)

for a constant C > 0. With our Standing Assumptions I it then holds

x − x̂

∥x̂∥2


2

≤

x − x̂
∥x̂∥2


2

⟨x, x̂
∥x̂∥2

⟩
≤ C ′

(
ε + 1

r

)
(5.36)

with probability at least 1 − γ exp(−C ′′ log(d)) for some positive constants γ, C ′, C ′′.

Remark 5.19. i) The first inequality of (5.36) implies that ⟨x, x̂⟩ > 0.

ii) In the previous Theorem 5.18 we use the constants γ, C, C ′ and C ′′ only for
simplicity. More explicit, by taking

m ≥ 4ε−2
(
16

√
2π + 19rR

√
2 log(2d)

)2
,

it holds

∥x − x̂/∥x̂∥2∥2
⟨x, x̂/∥x̂∥2⟩

≤ 2e1/2
(

πε +
√

2π

r

)

with probability at least

1 − 8
(

2 exp
(

−r2R2 log(2d)
16

)
+ exp

(− log(2d)
16

))
.

iii) If we introduce an additional parameter t > 0 in Theorem 5.18 and choose

m ≥ 4ε−2
(
16

√
2π + (18 + t)rR

√
2 log(2d)

)2
,

nothing but the probability changes to

1 − 8
(

2 exp
(

−t2r2R2 log(2d)
16

)
+ exp

(
−t2 log(2d)

16

))
.

The two main ingredients for the proof of Theorem 5.18 are given by Theorem
5.20, which estimates the right hand side of (5.34) and is the main result of section
5.2.1, and Theorem 5.28, which estimates the left hand side of (5.34) and is the
main result of section 5.2.2.

5.2.1 Estimate of the Right Hand Side of (5.34)
We want to show that

sup
w∈K

|fx(w) − E fx(w)|

is small with high probability. Therefore, we will first estimate its mean

µ := E
(

sup
w∈K

|fx(w) − E fx(w)|
)

(5.37)
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and afterwards use concentration inequalities to bound the probability

P
(

sup
w∈K

|fx(w) − E fx(w)| ≥ µ + t

)

for t > 0. This approach is inspired by the proof of [96, Theorem 1.1] and relies on
standard techniques from [74, 75]. We obtain the following result (cf. [67, Theorem
II.1]), whose proof is given at the end of this subsection.

Theorem 5.20 ([67]). For any u > 0, it holds

sup
w∈K

|fx(w) − E fx(w)| ≤ 16
√

2π + 18rR
√

2 log(2d)√
m

+ u

with probability at least

1 − 8
(

2 exp
(

−mu2

32

)
+ exp

(
−mu2

32r2R2

))
.

1. Step: Estimate of the Mean µ

To estimate the mean µ we will make use of the following three lemmas, cf. [67,
Lemma III.1-III.3].

Lemma 5.21 ([67]). For independent Bernoulli variables ξ1, . . . , ξm and any λ1, . . . , λm ∈
R and t ∈ R, it holds

P
(

m∑
i=1

ξi
[
λi
]
+ ≥ t

)
≤ 2P

(
m∑

i=1
ξiλi ≥ t

)
.

Proof. Plugging in the definition of [·]+ we first observe

P
(

m∑
i=1

ξi
[
λi
]
+ ≥ t

)
= P

⎛⎝∑
λi≥0

ξiλi ≥ t

⎞⎠ .

If every λi is positive, the claim follows trivially. So assume that λj < 0 holds for
at least one j ∈ [m]. It follows

P
( m∑

i=1
ξi
[
λi
]
+ ≥ t

)

= P
( ∑

λi≥0
ξi
[
λi
]
+ ≥ t

)
·
[
P
( ∑

λi<0
ξiλi ≥ 0

)
+ P

( ∑
λi<0

ξiλi < 0
)]

= P
( m∑

i=1
ξi
[
λi
]
+ ≥ t

)
P
( ∑

λi<0
ξiλi ≥ 0

)
+ P

( m∑
i=1

ξi
[
λi
]
+ ≥ t

)
P
( ∑

λi<0
ξiλi < 0

)
.

By symmetry of the Bernoulli variables ξi, it holds

P
( ∑

λi<0
ξiλi < 0

)
≤ P

( ∑
λi<0

ξiλi ≥ 0
)

.
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We finish the proof by

P
(

m∑
i=1

ξi
[
λi
]
+ ≥ t

)
≤ 2P

( m∑
i=1

ξi
[
λi
]
+ ≥ t

)
P
( ∑

λi<0
ξiλi ≥ 0

)
≤ 2P

( m∑
i=1

ξiλi ≥ t

)
,

where we used the independency of the ξi’s for the last inequality.

Lemma 5.22 ([67]). For a1, . . . , am ∈ Rd and K ⊂ Rd according to (5.31) and
(5.33) let

µ̃ := E
(

sup
w∈K

⟨ 1
m

m∑
i=1

ai, w
⟩)

. (5.38)

Then, for any u > 0, it holds

P
(

sup
w∈K

⟨ 1
m

m∑
i=1

ai, w
⟩

≥ µ̃ + u

)
≤ exp

(
−mu2

2r2R2

)
. (5.39)

Proof. Using the 2-stability of Gaussian variables (3.17) we get

σ̃2 := sup
w∈K

E
(⟨ 1

m

m∑
i=1

ai, w
⟩2
)

= sup
w∈K

r2∥w∥2
2

m
· E g2 = r2R2

m
(5.40)

for g ∼ N (0, 1). Applying Theorem 3.26 we end up with

P
(

sup
w∈K

⟨ 1
m

m∑
i=1

ai, w
⟩

≥ µ̃ + u

)
≤ exp

(
−u2

2σ̃2

)
= exp

(
−mu2

2r2R2

)

as claimed.

Lemma 5.23 ([67]). Let the Standing Assumptions I be fulfilled and let ξ1, . . . , ξm

be i.i.d. Bernoulli variables, which are independent of the a′
is. For µ ∈ R defined by

(5.37) it then holds

µ ≤ 2E sup
w∈K

⏐⏐⏐ 1
m

m∑
i=1

ξi
[
1 − yi⟨ai, w⟩

]
+

⏐⏐⏐. (5.41)

Proof. For brevity we set

Ai(w) :=
[
1 − yi⟨ai, w⟩

]
+, A′

i(w) :=
[
1 − y′

i⟨a′
i, w⟩

]
+,

where a′
i denote independent copies of ai and y′

i = sign(⟨a′
i, x⟩). In the following, we

will denote the expected value with respect to a′
i by E′ and the expected value with

respect to ai by E. Using E′ (A′
i(w)−E′ A′

i(w)
)

= 0 for i = 1, . . . , m we first observe

µ = E sup
w∈K

⏐⏐⏐ 1
m

m∑
i=1

(
Ai(w) − EAi(w)

)⏐⏐⏐
= E sup

w∈K

⏐⏐⏐ 1
m

m∑
i=1

(
Ai(w) − EAi(w)

)
− E′ (A′

i(w) − E′ A′
i(w)

)⏐⏐⏐
= E sup

w∈K

⏐⏐⏐ 1
m

m∑
i=1

E′ (Ai(w) − A′
i(w)

)⏐⏐⏐.
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Next we apply Jensen’s inequality (cf. Theorem 3.17) to conclude

µ = E sup
w∈K

⏐⏐⏐ 1
m

m∑
i=1

E′ (Ai(w) − A′
i(w)

)⏐⏐⏐ ≤ EE′ sup
w∈K

⏐⏐⏐ 1
m

m∑
i=1

(
Ai(w) − A′

i(w)
)⏐⏐⏐.

Since A′
i(w) is an independent copy of Ai(w), their difference Ai(w) − A′

i(w) is
equally likely positive or negative. Hence, we can multiply Ai(w) − A′

i(w) by some
Bernoulli variable ξi independent of ai and a′

i, without changing its distribution. It
follows

µ ≤ EE′ sup
w∈K

⏐⏐⏐ 1
m

m∑
i=1

(
Ai(w) − A′

i(w)
)⏐⏐⏐ = EE′ sup

w∈K

⏐⏐⏐ 1
m

m∑
i=1

ξi
(
Ai(w) − A′

i(w)
)⏐⏐⏐

≤ EE′ sup
w∈K

(⏐⏐⏐ 1
m

m∑
i=1

ξiAi(w)
⏐⏐⏐+ ⏐⏐⏐ 1

m

m∑
i=1

ξiA′
i(w)

⏐⏐⏐) ≤ 2E sup
w∈K

⏐⏐⏐ 1
m

m∑
i=1

ξiAi(w)
⏐⏐⏐

= 2E sup
w∈K

⏐⏐⏐ 1
m

m∑
i=1

ξi
[
1 − yi⟨ai, w⟩

]
+

⏐⏐⏐,
as claimed.

Equipped with the Lemmas 5.21, 5.22 and 5.23 we can now deduce the following
estimate for µ, cf. [67, Lemma III.4].

Lemma 5.24 ([67]). Let the Standing Assumptions I be fulfilled. Then it holds

µ = E sup
w∈K

(
fx(w) − E fx(w)

)
≤ 8

√
2π + 8rR

√
2 log(2d)√

m
. (5.42)

Proof. Let ξ1, . . . , ξm be i.i.d. Bernoulli variables. Using Lemma 5.23 and the iden-
tity (3.8) for the expected value in terms of probabilities, we obtain

µ = E sup
w∈K

(
fx(w) − E fx(w)

)
≤ 2E sup

w∈K

⏐⏐⏐ 1
m

m∑
i=1

ξi
[
1 − yi⟨ai, w⟩

]
+

⏐⏐⏐
= 2

∫ ∞

0
P
(

sup
w∈K

⏐⏐⏐ 1
m

m∑
i=1

ξi
[
1 − yi⟨ai, w⟩

]
+

⏐⏐⏐ ≥ t

)
d t.

Note that we cannot apply Lemma 5.21 directly to this expression. However, by
using similar arguments as in the proof of Lemma 5.21, we obtain

µ ≤ 4
∫ ∞

0
P
(

sup
w∈K

⏐⏐⏐ 1
m

m∑
i=1

ξi
(
1 − yi⟨ai, w⟩

)⏐⏐⏐ ≥ t

)
d t

≤ 4
∫ ∞

0
P
(

sup
w∈K

(⏐⏐⏐ 1
m

m∑
i=1

ξi

⏐⏐⏐+ ⏐⏐⏐ 1
m

m∑
i=1

ξiyi⟨ai, w⟩
⏐⏐⏐) ≥ t

)
d t (5.43)

≤ 4
∫ ∞

0
P
(⏐⏐⏐ 1

m

m∑
i=1

ξi

⏐⏐⏐ ≥ t/2
)

+ P
(

sup
w∈K

⏐⏐⏐ 1
m

m∑
i=1

ξiyi⟨ai, w⟩
⏐⏐⏐ ≥ t/2

)
d t.

Using Corollary 3.22 the first summand can be further estimated by∫ ∞

0
P
(⏐⏐⏐ 1

m

m∑
i=1

ξi

⏐⏐⏐ ≥ t/2
)

d t ≤ 2
∫ ∞

0
exp

(
−mt2

8

)
d t = 2

√
2π√
m

. (5.44)
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To estimate the second summand, we observe that ξiyi is a Bernoulli variable inde-
pendent of ai, hence ⟨ai, w⟩ and ξiyi⟨ai, w⟩ are identically distributed. We get∫ ∞

0
P
(

sup
w∈K

⏐⏐⏐ 1
m

m∑
i=1

ξiyi⟨ai, w⟩
⏐⏐⏐ ≥ t/2

)
d t

= 2
∫ ∞

0
P
(

sup
w∈K

⏐⏐⏐ 1
m

m∑
i=1

⟨ai, w⟩
⏐⏐⏐ ≥ t

)
d t = 2E

(
sup
w∈K

⏐⏐⏐ 1
m

m∑
i=1

⟨ai, w⟩
⏐⏐⏐)

= 2RE
 1

m

m∑
i=1

ai


∞

,

where we used the duality ∥ · ∥′
1 = ∥ · ∥∞ for the last equality. Using again the

2-stability of Gaussian variables (3.16) we get 1√
m

∑m
i=1 ai ∼ N (0, id) and estimate

(3.19) yields

2RE
 1

m

m∑
i=1

ai


∞

≤ 2R
√

2 log(2d)√
m

. (5.45)

Putting (5.43), (5.44) and (5.45) together, we get

µ ≤ 4
(

2
√

2π√
m

+ 2R
√

2 log(2d)√
m

)
= 8

√
2π + 8R

√
2 log(2d)√

m
,

as claimed.

2. Step: Using Concentration Inequalities

In this step we want to show that fx(w) uniformly concentrates around its mean,
i.e., we want to estimate the probability that fx(w) deviates anywhere on K far
from its mean. We start with [67, Lemma III.5], which is a modified version of the
second part of [96, Lemma 5.1], cf. also [75, Chapter 6.1].

Lemma 5.25 ([67]). Let ξ1, . . . , ξm be i.i.d. Bernoulli variables and let the Standing
Assumptions I be fulfilled. Then, for µ ∈ R defined by (5.37) and any t > 0, it holds

P
(

sup
w∈K

|fx(w) − E fx(w)| ≥ 2µ + t

)
≤ 4P

(
sup
w∈K

⏐⏐⏐ 1
m

m∑
i=1

ξi
[
1 − yi⟨ai, w⟩

]
+

⏐⏐⏐ ≥ t/2
)

.

(5.46)

Proof. Using Markov’s inequality 3.16, let us first note

1
2 = 1 −

E sup
w∈K

|fx(w) − E fx(w)|

2µ
≤ 1 − P

(
sup
w∈K

|fx(w) − E fx(w)| ≥ 2µ

)
= P

(
|fx(w) − E fx(w)| < 2µ for all w ∈ K

)
,

which yields

1
2 P

(
sup
w∈K

|fx(w) − E fx(w)| ≥ 2µ + t

)

≤ P
(
|fx(w) − E fx(w)| < 2µ for all w ∈ K

)
· P
(

sup
w∈K

|fx(w) − E fx(w)| ≥ 2µ + t

)
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for any t ≥ 0. Next let a′
i, y′

i and f ′
x be independent copies of ai, yi and fx,

respectively. It follows

P
(
|fx(w) − E fx(w)| < 2µ for all w ∈ K

)
· P
(

sup
w∈K

|f ′
x(w) − E′ f ′

x(w)| ≥ 2µ + t

)

≤ P
(

sup
w∈K

⏐⏐(fx(w) − E fx(w)
)

−
(
f ′

x(w) − E′ f ′
x(w)

)⏐⏐ ≥ t

)

= P
(

sup
w∈K

⏐⏐fx(w) − f ′
x(w)

⏐⏐ ≥ t

)

and since [1 − yi⟨ai, w⟩]+ − [1 − y′
i⟨a′

i, w⟩]+ is equally likely positive or negative, we
can multiply it with some Bernoulli variable ξi without changing its distribution and
we end up with

P
(

sup
w∈K

|fx(w) − E fx(w)| ≥ 2µ + t

)
≤ 2P

(
sup
w∈K

⏐⏐fx(w) − f ′
x(w)

⏐⏐ ≥ t

)

= 2P
(

sup
w∈K

⏐⏐⏐ 1
m

m∑
i=1

ξi
([

1 − yi⟨ai, w⟩
]
+ −

[
1 − y′

i⟨a′
i, w⟩

]
+
)⏐⏐⏐ ≥ t

)

≤ 4P
(

sup
w∈K

⏐⏐⏐ 1
m

m∑
i=1

ξi
[
1 − yi⟨ai, w⟩

]
+

⏐⏐⏐ ≥ t/2
)

as claimed.

Combining Lemma 5.21 with the previous Lemma 5.25 we deduce the following
result on the uniform concentration of fx around its mean, cf. [67, Lemma III.6].

Lemma 5.26 ([67]). Let the Standing Assumptions I be fulfilled and let µ and µ̃ be
defined by (5.37) and (5.38). Then, for any u > 0, it holds

P
(

sup
w∈K

|fx(w) − E fx(w)| ≥ 2µ + 2µ̃ + u

)
≤ 8

(
2 exp

(
−mu2

32

)
+ exp

(
−mu2

32r2R2

))
.

(5.47)

Proof. Let ξ1, . . . , ξm be i.i.d. Bernoulli variables. Applying first Lemma 5.25 with
t = 2µ̃ + u and afterwards using Lemma 5.21 we get

P
(

sup
w∈K

|fx(w) − E fx(w)| ≥ 2µ + 2µ̃ + u

)

≤ 4P
(

sup
w∈K

⏐⏐⏐ 1
m

m∑
i=1

ξi
[
1 − yi⟨ai, w⟩

]
+

⏐⏐⏐ ≥ µ̃ + u/2
)

≤ 8P
(

sup
w∈K

⏐⏐⏐ 1
m

m∑
i=1

ξi(1 − yi⟨ai, w⟩)
⏐⏐⏐ ≥ µ̃ + u/2

)
.
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Using Corollary 3.22 and Lemma 5.22 we end up with

P
(

sup
w∈K

⏐⏐⏐ 1
m

m∑
i=1

ξi(1 − yi⟨ai, w⟩)
⏐⏐⏐ ≥ µ̃ + u/2

)

≤ P
(⏐⏐⏐ 1

m

m∑
i=1

ξi

⏐⏐⏐ ≥ u/4
)

+ P
(

sup
w∈K

⏐⏐⏐ 1
m

m∑
i=1

⟨ai, w⟩
⏐⏐⏐ ≥ µ̃ + u/4

)

≤ 2 exp
(

−mu2

32

)
+ exp

(
−mu2

32r2R2

)

which finishes the proof.

Combining the two results of Lemma 5.24 and Lemma 5.26 we can finally give a
proof of Theorem 5.20:
Proof of Theorem 5.20. Using Lemma 5.26 it holds

P
(

sup
w∈K

|fx(w) − E fx(w)| ≥ 2µ + 2µ̃ + u

)
≤ 8

(
2 exp

(
−mu2

32

)
+ exp

(
−mu2

32r2R2

))
,

so it remains to estimate µ and µ̃.
By invoking the duality ∥ · ∥′

1 = ∥ · ∥∞ from (3.19), which estimates the ℓ∞-norm
of a Gaussian vector, we obtain

µ̃ = E
(

sup
w∈K

⟨ 1
m

m∑
i=1

ai, w
⟩)

= RE
 1

m

m∑
i=1

ai


∞

≤ rR
√

2 log(2d)√
m

.

Furthermore, Lemma 5.24 yields

µ ≤ 8
√

2π + 8rR
√

2 log(2d)√
m

,

which finishes the proof. �

5.2.2 Estimate of the Left Hand Side of (5.34)
The aim of this section is to give a lower bound for the expected value

E
(
fx(w) − fx(x)

)
= E

[
1 − y⟨a, w⟩

]
+ − E

[
1 − y⟨a, x⟩

]
+ (5.48)

for w ∈ Rd\{0} with ∥w∥1 ≤ R. We will first estimate both expected values of the
right hand side of (5.48) separately and combine them later for an estimate of their
difference. We start with the following characterization of the expected values, cf.
[67, Lemma III.11]:

Lemma 5.27 ([67]). Let x ∈ Rd and fx : Rd → R be according to (5.32) and (5.19).
For w ∈ Rd\{0}, we set c = ⟨x, w⟩ and c′ =

√
∥w∥2

2 − c2. Then it holds

i) E fx(x) = 1√
2π

∫
R

[
1 − r|t|

]
+e−t2/2 d t,

ii) E fx(w) = 1
2π

∫
R2

[
1 − cr|t1| − c′rt2

]
+ exp

(
−t2

1 − t2
2

2

)
d t1 d t2.
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Proof. i) Since ∥x∥2 = 1 for any a = rã with ã ∼ N (0, id) it holds 1
r ⟨x, a⟩ ∼

N (0, 1). Using the density function (3.14) of Gaussian variables and the iden-
tity (3.10) we get

E fx(x) = E
[
1 − |⟨a, x⟩|

]
+ = 1√

2π

∫
R

[
1 − r|t|

]
+e

−t2
2 d t,

as claimed.

ii) If c′ = 0 the claim follows from part i), so let us assume that it holds c′ ̸= 0.
For some Gaussian variable a = rã ∈ Rd for some r > 0 and ã ∼ N (0, id) we
set

g := 1
c′ (⟨a, w⟩ − c⟨a, x⟩) = 1

c′

d∑
i=1

ai(wi − cxi).

From the 2-stability of Gaussian variables (3.16) we observe that g is normally
distributed with E g = 0. To calculate the variance of g we first calculate the
covariance of ⟨a, x⟩ and ⟨a, w⟩ by

Cov
(
⟨a, x⟩, ⟨a, w⟩

)
= E

(
⟨a, x⟩⟨a, w⟩

)
= E

⎛⎝ d∑
i=1

aixi ·
d∑

j=1
wjxj

⎞⎠
=

d∑
i,j=1

xiwj E(aiaj) = r2⟨x, w⟩,

where we used E(aiaj) = 0 if i ̸= j and E(a2
i ) = r2. With E⟨a, x⟩2 = r2 and

E⟨a, w⟩2 = r2∥w∥2
2 we arrive at

Var(g) = E g2 =
E
(
⟨a, w⟩ − c⟨a, x⟩

)2
c′2 =

E
(
⟨a, w⟩2 − 2c⟨a, w⟩⟨a, x⟩ + c2⟨a, x⟩2)

c′2

= r2∥w∥2
2 − 2r2c2 + r2c2

c′2 = r2.

With our choice of c it holds ⟨x, w − cx⟩ = 0, so the second part of Lemma
3.20 yields that ⟨a, x⟩ and g are independent. And since Gaussian variables
are symmetric, g and y · g are identically distributed. Using (3.11), which
describes the joint density of a function of independent random variables, we
end up with

E fx(w) = E
[
1 − y⟨a, w⟩

]
+ = E

[
1 − c|⟨a, x⟩| − c′g

]
+

= 1
2π

∫
R2

[
1 − cr|t1| − c′t2

]
+ exp

(
−t2

1 − t2
2

2

)
d t1 d t2.

Using Lemma 5.27 we can now deduce the following result, cf. [67, Theorem
II.2]:
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Theorem 5.28 ([67]). For w ∈ K let c = ⟨x, w⟩ and c′ =
√

∥w∥2
2 − c2. Assume

that c′ > 0 holds. If c ≤ 0, it then follows

π E
(
fx(w) − fx(x)

)
≥ π

2 + c′r

√
π√
2

−
√

2π

r

and if c > 0, it holds

π E
(
fx(w) − fx(x)

)
≥

√
π√
2

∫ 1
cr

0
(1 − crt)e−t2/2 d t + c′

c
exp

( −1
2c2r2

)
−

√
2π

r
.

Remark 5.29. From the Cauchy-Schwartz inequality it follows ∥w∥2
2−c2 ≥ 0, hence

c′ is well defined.

Proof. Using the first part of Lemma 5.27 we get

−π E fx(x) = −
√

π√
2

∫
R

[
1 − r|t|

]
+e−t2/2 d t = −

√
2π

∫ 1/r

0
(1 − rt)e−t2/2 d t

≥ −
√

2π

∫ 1/r

0
e−t2/2 d t ≥ −

√
2π

∫ 1/r

0
1 d t (5.49)

= −
√

2π

r
.

It remains to give a lower bound for the expected value

π E fx(w) = 1
2

∫
R2

[
1 − cr|t1| − c′rt2

]
+ exp

(
−t2

1 − t2
2

2

)
d t1 d t2

=
∫
R

∫ ∞

0

[
1 − crt1 − c′rt2

]
+ exp

(
−t2

1 − t2
2

2

)
d t1 d t2

for w ∈ Rd\{0}. We distinguish the two cases c = ⟨x, w⟩ ≤ 0 and c > 0.
1. Case: c ≤ 0. It holds −crt1 ≥ 0 for 0 ≤ t1, so we get

π E fx(w) =
∫
R

∫ ∞

0

[
1 − crt1 − c′rt2

]
+ exp

(
−t2

1 − t2
2

2

)
d t1 d t2

≥
∫
R

∫ ∞

0

[
1 − c′rt2

]
+ exp

(
−t2

1 − t2
2

2

)
d t1 d t2 (5.50)

=
√

π√
2

∫
R

[
1 − c′rt2

]
+e−t2

2/2 d t2 ≥
√

π√
2

∫ 0

−∞
(1 − c′rt2)e−t2

2/2 d t2

= π

2 + c′r

√
π√
2

.

As claimed, putting both estimates (5.49) and (5.50) together, we get

π E
(
fx(w) − fx(x)

)
≥ π

2 + c′r

√
π√
2

−
√

2π

r
.
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2. Case: c > 0. In that case it holds 1−crt1−c′rt2 ≥ 0 for (t1, t2) ∈ [0, 1
cr ]×(−∞, 0],

hence

π E fx(w) =
∫
R

∫ ∞

0

[
1 − crt1 − c′rt2

]
+ exp

(
−t2

1 − t2
2

2

)
d t1 d t2

≥
∫ 1

cr

0

∫ 0

−∞

(
1 − crt1 − c′rt2

)
exp

(
−t2

1 − t2
2

2

)
d t2 d t1

=
√

π√
2

∫ 1
cr

0
(1 − crt1)e−t2

1/2 d t1 + c′r

∫ 1
cr

0
e−t2

1/2 d t1

≥
√

π√
2

∫ 1
cr

0
(1 − crt)e−t2/2 d t + c′

c
exp

( −1
2c2r2

)
which, combined with (5.49), yields the claim.

5.2.3 Proof of Theorem 5.18

First we intend to apply Theorem 5.20 to bound the right hand side of (5.34). By
choosing

u = rR
√

2 log(2d)√
m

and m ≥ 4ε−2
(
16

√
2π + 19rR

√
2 log(2d)

)2

we obtain the estimate

sup
w∈K

|fx(w) − E fx(w)| ≤ 8
√

8π + 18rR
√

2 log(2d)√
m

+ u ≤ ε

2

with probability at least

1 − 8
(

2 exp
(

−r2R2 log(2d)
16

)
+ exp

(− log(2d)
16

))
. (5.51)

Using (5.34) this already implies

E
(
fx(x̂) − fx(x)

)
≤ ε (5.52)

with at least the same probability (5.51). Next we want to apply Theorem 5.28 with
w = x̂, but for this we first have to show c′ =

√
∥x̂∥2

2 − ⟨x, x̂⟩ ̸= 0. In order to get
a contradiction, let us assume c′ = 0, which only holds if x̂ = λx for some λ ∈ R.
If λ > 0, we get x̂/∥x̂∥2 = x and the claim of the theorem follows trivially. And if
λ ≤ 0, we use fx(x) ≥ fx(x̂) to get

fx(x) =
m∑

i=1

[
1 − |⟨ai, x⟩|

]
+ ≥

m∑
i=1

[
1 + |λ⟨ai, x⟩|

]
+ = fx(x̂),

which implies ⟨ai, x⟩ = 0 for i = 1, . . . , m. Since this only happens with probability
zero, it almost surely holds c′ > 0 and we can apply Theorem 5.28.

Here we distinguish three cases c = ⟨x, x̂⟩ ≤ 0, 0 < c < 1/r and c > 1/r. First
we will show that the first two cases lead to a contradiction and afterwards we will
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use the third case to prove our claim.

1. Case: c ≤ 0. With our choices of ε and r such that 0 < ε < 0.18, r >√
2π(0.57 − επ)−1, we combine Theorem 5.28 and the upper bound (5.52) to end up

with the contradiction
π

2 −
√

2π

r
≤ π

2 + c′r

√
π√
2

−
√

2π

r
≤ π E

(
fx(x̂) − fx(x)

)
≤ πε.

2. Case: 0 < c < 1/r. Again we want to use the upper bound (5.52) to end up with
a contradiction. First, Theorem 5.28 yields the estimate

π E
(
fx(x̂) − fx(x)

)
≥

√
π√
2

∫ 1
cr

0
(1 − crt)e−t2/2 d t + c′

c
exp

( −1
2c2r2

)
−

√
2π

r

≥
√

π√
2

∫ 1
cr

0
(1 − crt)e−t2/2 d t −

√
2π

r
.

To estimate this integral we consider the function

g : (0, ∞) → R, z ↦→
∫ 1/z

0
(1 − zt)e−t2/2 d t.

Since

g′(z) = −
∫ 1/z

0
te−t2/2 d t < 0,

the function g is monotonicly decreasing, yielding g(cr) > g(1). Again, with our
choices of ε and r we end up with the contradiction

πε ≥ π E
(
fx(x̂) − fx(x)

)
≥

√
π√
2

∫ 1
cr

0
(1 − crt)e−t2/2 d t −

√
2π

r

=
√

π√
2

g(cr) −
√

2π

r
≥

√
π√
2

g(1) −
√

2π

r
=

√
π√
2

∫ 1

0
(1 − t)e−t2/2 d t −

√
2π

r

≥ 0.57 −
√

2π

r
.

3. Case: c > 1/r. In this case Theorem 5.28 gives the estimate

π E
(
fx(x̂) − fx(x)

)
≥

√
π√
2

∫ 1
cr

0
(1 − crt)e−t2/2 d t + c′

c
exp

( −1
2c2r2

)
−

√
2π

r

≥ c′

c
exp

( −1
2c2r2

)
−

√
2π

r
≥ c′

c
e−1/2 −

√
2π

r
, (5.53)

where we used cr > 1, hence exp(−1/(2c2r2)) ≥ e−1/2 for the last inequality. Fur-
ther, plugging in the definitions of c′ and c we get

c′

c
=

√
∥x̂∥2

2 − ⟨x, x̂⟩2

⟨x, x̂⟩
=

√(∥x̂∥2 − ⟨x, x̂⟩
)(

∥x̂∥2 + ⟨x, x̂⟩
)

⟨x, x̂⟩2

=

√
(
1 − ⟨x, x̂

∥x̂∥2
⟩
)

·
(
1 + ⟨x, x̂

∥x̂∥2
⟩
)

⟨x, x̂
∥x̂∥2

⟩2 .
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Using the assumption ∥x∥2 = 1, we simplify this expression further by

c′

c
=

√
(

1
2∥x∥2

2 + 1
2

 x̂
∥x̂∥2

2
− ⟨x, x̂

∥x̂∥2
⟩
)

·
(

1
2∥x∥2

2 + 1
2

 x̂
∥x̂∥2

2
+ ⟨x, x̂

∥x̂∥2
⟩
)

⟨x, x̂
∥x̂∥2

⟩2

= 1
2

√
x − x̂

∥x̂∥

2

2
·
x + x̂

∥x̂∥

2

2
⟨x, x̂

∥x̂∥2
⟩2 ≥ 1

2

x − x̂
∥x̂∥2


2

⟨x, x̂
∥x̂∥2

⟩
, (5.54)

where we used ⟨x, x̂⟩ ≥ 0 for the last inequality. Combining (5.52), (5.53) and (5.54),
we finally arrive at

1
π

⎛⎝1
2

x − x̂
∥x̂∥2


2

⟨x, x̂
∥x̂∥2

⟩
e−1/2 −

√
2π

r

⎞⎠ ≤ E
(
fx(x̂) − fx(x)

)
≤ ε,

which finishes the proof. �

5.3 Recovery with ℓ1,2-Support Vector Machines

By construction, the ℓ1-SVM tends to pick a sparse classifier. In the presence of
highly correlated variables ai, this may lead to the following issue. The ℓ1-SVM
tends to pick only few support vectors, i.e., only few of the ai’s and removes the
rest. But this selection is quite unstable and, in particular, heavily depends on the
actual measurement vectors.

Hence, in order to get a stable selection, one prefers to select or remove highly
correlated variables together. In the theory of elastic nets a combination of ℓ1- and
ℓ2-constraints has been proposed [11, 54, 117], which already has been successfully
used in gene selection and microarray analysis [71, 115, 117]. Support vector ma-
chines which combine both the ℓ1- and the ℓ2-penalty are called doubly regularized
SVMs [112].

However, our motivation for introducing an additional ℓ2-penalty is rather dif-
ferent, since we assume the sample points ãi ∼ N (0, id) to be independent. But a
detailed inspection of our analysis so far shows that it would be convenient if the
convex body K = {w ∈ Rd | ∥w∥1 ≤ R} would not include vectors having a large
ℓ2-norm. For instance, in (5.40), we used R2 = supw∈K ∥w∥2

2 to prove Lemma 5.22,
although the set of vectors in K with large ℓ2-norm is very small.

Therefore, we suggest to modify the ℓ1-SVM (5.30) by introducing an additional
ℓ2-constraint

min
w∈Rd

m∑
i=1

[
1 − yi⟨ai, w⟩

]
+ subject to ∥w∥2 ≤ 1, ∥w∥1 ≤ R, (5.55)

which we will denote as ℓ1,2-SVM. It turns out that for our data model this approach
in some sense will outperform the ℓ1-SVM, which we will also discuss in the numerical
examples. Another motivation for the additional ℓ2-constraint is that the true signal
x ∈ Rd is contained in the set

K̃ := {w ∈ Rd | ∥w∥2 ≤ 1, ∥w∥1 ≤ R}, (5.56)
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which also plays a crucial role in the analysis of [96], where the algorithm (5.2) was
proposed. Before going on with the analysis let us fix the standing assumptions of
this section.

Standing Assumptions II

i) The true classifier x ∈ Rd, which we want to approximate, is compressible
in the way that ∥x∥2 = 1 and ∥x∥1 ≤ R for some R > 0.

ii) For a scaling parameter r > 0 we take the measurement vectors ai = r·ãi ∈
Rd for some i.i.d. ãi ∼ N (0, id).

iii) The measurements are given by yi = sign(⟨ai, x⟩).

iv) We denote fx(w) =
∑m

i=1[1 − yi⟨ai, w⟩]+ and K̃ = {w ∈ Rd | ∥w∥2 ≤
1, ∥w∥1 ≤ R}.

v) x̂ denotes a minimizer of the ℓ1,2-SVM, i.e., x̂ = arg minw∈K̃ fx(w).

Let x̂ denote a minimizer of the ℓ1,2-SVM (5.55). As seen before in (5.34) we
observe

E
(
fx(x̂) − fx(x)

)
≤ 2 sup

w∈K̃

|fx(w) − fx(x)|, (5.57)

and since K̃ ⊂ K, the estimate of the right hand side from Theorem 5.20 remains
true if we replace K by K̃, i.e., it holds

sup
w∈K̃

|fx(w) − fx(x)| ≤ 16
√

2π + 18rR
√

2 log(2d)√
m

(5.58)

with high probability. In order to formulate an analogue of Theorem 5.18 it remains
to estimate the expected value E(fx(w) − fx(x)) for some w ∈ Rd. We obtain the
following theorem:

Lemma 5.30 ([67]). Let the Standing Assumptions II be fulfilled. For any w ∈ K̃,
it then holds

E
(
fx(w) − fx(x)

)
≥ r∥x − w∥2

2√
2π

(
1 − exp

(−1
2r2

))
.

Proof. For w ∈ K̃ we set c = ⟨x, w⟩ and c′ =
√

∥w∥2
2 − c2. Using Lemma 5.27 we
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then obtain
E
(
fx(w) − fx(x)

)
= 1

2π

∫
R2

([
1 − cr|t1| − c′rt2

]
+ −

[
1 − r|t1|

]
+

)
exp

(
−t2

1 − t2
2

2

)
d t1 d t2

≥ 1
π

∫ 1/r

0

∫
R

((
1 − crt1 − c′rt2

)
−
(
1 − rt1

))
exp

(
−t2

1 − t2
2

2

)
d t2 d t1

= r(1 − c)
√

2√
π

∫ 1/r

0
te−t2/2 d t = r(1 − c)

√
2√
π

(
1 − exp

(−1
2r2

))
.

The claim now follows from ∥w∥2 ≤ 1 and

1 − c ≥ 1
2
(
∥x∥2

2 + ∥w∥2
2 − 2⟨x, w⟩

)
= ∥x − w∥2

2
2 .

Combining (5.57) and (5.58) with the previous Lemma 5.30, we obtain the fol-
lowing main result of this section, cf. [67, Theorem IV.1].
Theorem 5.31 ([67]). Let d ≥ 2, 0 < ε < 1/2, r >

√
2π(1 − 2ε)−1 and

m ≥ Cε−2r2R2 log(d)
for a constant C > 0 and let the Standing Assumptions II be fulfilled. Then it holds

∥x − x̂∥2
2 ≤ C ′ε

r
(
1 − exp

(
−1
2r2

))
with probability at least 1−γ exp(−C ′′R2 log(d)) for some positive constants γ, C ′, C ′′.
Remark 5.32. i) As in Theorem 5.18 we use the constants γ, C, C ′, C ′′ only for

simplicity. More explicit, taking

m ≥
4
(
16

√
2π + (18 + t)rR

√
2 log(2d)

)2

ε2

for some t > 0, we get

∥x − x̂∥2
2 ≤ ε

√
π/2

r −
(
1 − exp

(
−1
2r2

))
with probability at least

1 − 8
(

2 exp
(

−t2r2R2 log(2d)
16

)
+ exp

(
−t2R2 log(2d)

16

))
.

ii) The main advantage of Theorem 5.31 compared to Theorem 5.18 is the de-
pendency on r. In Theorem 5.18 we needed r to grow to infinity for the error
∥x − x̂/∥x̂∥2∥2 to go down to zero. In Theorem 5.31 we instead can choose r
to be fixed. Indeed, if we for example take ε < 0.2, we can choose r = 10 and
m ≥ C̃ε−2R2 log(d) and obtain

∥x − x̂∥2
2 ≤ C̃ ′ε

with high probability. In that sense, the ℓ1,2-SVM outperforms the ℓ1-SVM
which we will also demonstrate in the numerical examples.
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5.4 Recovery from Noisy Measurements

In practice, we usually do not have access to exact measurements, since they are
disturbed by different kinds of noise such as rounding errors, limitations of the
measurement devices, human failures, etc.

In the setting of 1-bit compressed sensing, each sample point ai gets classified by
its corresponding label yi = sign(⟨ai, x⟩), so the measurements only take the values
±1. Hence, a reasonable model for noisy measurements is given by

ŷi = zi · sign
(
⟨ai, x⟩

)
= zi · yi (5.59)

for some random variables zi, which takes the value zi = −1 if the sample point ai

gets wrongly classified and it holds zi = +1 in the case of correct classification. The
only parameters left over are the probabilities of the events zi = +1 and zi = −1,
which even may or may not depend on the true signal x and the particular instances
of ai, yi.

Before analyzing the performance of the ℓ1-SVM with noisy measurements, to
avoid confusion let us summarize the assumptions.

Standing Assumptions III

i) The true classifier x ∈ Rd, which we want to approximate, is compressible
in the way that ∥x∥2 = 1 and ∥x∥1 ≤ R for some R > 0.

ii) For a scaling parameter r > 0 we take the measurement vectors ai = r·ãi ∈
Rd for some i.i.d. ãi ∼ N (0, id).

iii) The measurements are given by ŷi = ziyi = sign(⟨ai, x⟩) for some random
variable zi ∈ {±1}.

iv) We denote f̂x(w) =
∑m

i=1[1 − ŷi⟨ai, w⟩]+ and K = {w ∈ Rd | ∥w∥1 ≤ R}.

v) x̂ denotes a minimizer of the ℓ1-SVM, i.e., x̂ = arg minw∈K f̂x(w).

We follow the idea of the noiseless case, so we obtain the estimate

E
(
f̂x(x̂) − f̂x(x)

)
≤ 2 sup

w∈K
|f̂x(w) − E f̂x(w)|. (5.60)

It remains to bound the right hand side from above and to find a lower estimate of
the left hand side by terms of the difference between x and x̂.

For the noiseless case in section 5.2.1, we have multiplied each yi with an inde-
pendent Bernoulli variables ξi in order to obtain an estimate of the right hand side
of (5.34). Hence, replacing yi by ŷi = ziyi does not affect the analysis and the result
of Theorem 5.20, since ξiyi and ξiziyi are identically distributed.



5.5. NUMERICAL EXPERIMENTS 83

Corollary 5.33. For any u > 0, it holds

sup
w∈K

|f̂x(w) − E f̂x(w)| ≤ 16
√

2π + 18rR
√

2 log(2d)√
m

+ u

with probability at least

1 − 8
(

2 exp
(

−mu2

32

)
+ exp

(
−mu2

32r2R2

))
.

In order to get a similar recovery result as Theorem 5.28 for the noiseless case,
it remains to bound the left hand side of (5.60). Here we have to explicitly use the
underlying measurement rule, i.e., we have to take the probabilities P(zi = +1) and
P(zi = −1) into account.

Let a, y, z be independent copies of the ai’s, yi’s and zi’s. By conditioning the
expected value of f̂x(w) on a we obtain

E f̂x(w) = E
[
1 − zy⟨a, w⟩

]
+ = Ea

(
Ez
[
1 − zy⟨a, w⟩

]
+ | a

)
= E

([
1 − y⟨a, w⟩

]
+ · P(z = 1 | a)

)
+ E

([
1 + y⟨a, w⟩

]
+ · P(z = −1 | a)

)
(5.61)

and, analogously,

E f̂x(x) = E
([

1 − y⟨a, x⟩
]
+ · P(z = 1 | a)

)
+ E

([
1 + y⟨a, x⟩

]
+ · P(z = −1 | a)

)
= E

([
1 − |⟨a, x⟩|

]
+ · P(z = 1 | a)

)
+ E

([
1 + |⟨a, x⟩|

]
+ · P(z = −1 | a)

)
.

(5.62)

Combining (5.61) and (5.62), we obtain the following corollary:

Corollary 5.34. Let the Standing Assumptions III be fulfilled. For any w ∈ Rd, it
then holds

E
(
f̂x(w) − f̂x(x)

)
= E

(
(fx(w) − fx(x)) · P(z = 1 | a)

)
(5.63)

+ E
(([

1 + y⟨a, w⟩
]
+ −

[
1 + |⟨a, x⟩|

]
+

)
· P(z = −1 | a)

)
.

In order to obtain an appropriate recovery result, it remains to fix the model
of the noise and to estimate the expected values in (5.63) of the previous corollary,
which we will leave out for further research.

5.5 Numerical Experiments

We performed several numerical tests to demonstrate different aspects of the recovery
from binary measurements using the ℓ1-SVM and the ℓ1,2-SVM. We considered the
ℓ1-SVM as given by (5.30), the ℓ1,2-SVM as given by (5.55) and the 1-bit compressed
sensing algorithm (5.2) from [96].

The ℓ1-SVM can be recast as a linear program, similar to the basis pursuit which
we have discussed in Lemma 3.4. Hence, for the implementation of the ℓ1-SVM, we
used the Matlab command linprog. For the implementation of the ℓ1,2-SVM, as
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well as for the 1-bit compressed sensing algorithm, we used cvx, which is a Matlab
based toolbox for convex optimization. Further, the Gaussian measurement vectors
were generated using the Matlab command randn, throughout all experiments we
set R = ∥x∥1. Furthermore, we did each calculation n = 100 times and plotted the
average.

5.5.1 Dependency on the Scaling Parameter r

The ℓ1-SVM and the ℓ1,2-SVM depend on the scaling parameter r of the Gaussian
measurement vectors. However, their dependency is quite different, as we have
already slightly discussed in Remark 5.32. If the scaling parameter r tends to 0, we
have yi⟨ai, w⟩ ≤ 1 with high probability, hence [1 − yi⟨ai, w⟩]+ = 1 − yi⟨ai, w⟩ and
the ℓ1-SVM becomes equivalent to the optimization problem

max
w∈Rd

m∑
i=1

yi⟨ai, w⟩ subject to ∥w∥1 ≤ R,

and will give us 1-sparse solutions, as we have discussed in 5.17. In contrary, if r
tends to 0, the ℓ1,2-SVM becomes equivalent to the optimization problem

max
w∈Rd

m∑
i=1

yi⟨ai, w⟩ subject to ∥w∥1 ≤ R, ∥w∥2 ≤ 1,

which is exactly the 1-bit compressed sensing algorithm (5.2). If, on the other hand, r
tends to infinity, the hinge loss [1−yi⟨ai, w⟩]+ becomes very large if sign(⟨ai, w⟩) ̸= yi,
so in that case w is enforced to be consistent with the measurements. Moreover, for
large values of r we expect a similar behaviour of the ℓ1-SVM and the ℓ1,2-SVM.

Figure 5.2 demonstrates the influence of r on the approximation error of the
ℓ1-SVM and the ℓ1,2-SVM. Note that the 1-bit compressed sensing algorithm (5.2)
is linear in the measurement vectors ai, hence the solution is independent of scaling
and is therefore left out.

The left image of Figure 5.2 shows the dependency of the ℓ1-SVM on the scaling
parameter r. Here we can observe another aspect, namely that the error of recon-
struction does not converge to zero if the value of r = 0.5 or r = 1 is fixed, which
is in a good agreement with the error estimate (5.36) of Theorem 5.18. But if we
choose r =

√
m/20 or r =

√
m/30, i.e., if r grows with m, the error decreases with

the number of measurements.
In the right image of Figure 5.2 we compare the dependency on r of the ℓ1-SVM

and of the ℓ1,2-SVM. As already suggested above, for small values of r the ℓ1,2-SVM
outperforms the ℓ1-SVM. But if r is sufficiently large, their error of reconstruction
coincides. Beside this comparison, we also observe that the error of the ℓ1,2-SVM
remains almost constant if the scaling parameter r grows. This shows in a way the
robustness of the ℓ1,2-SVM on r and demonstrates that we can choose r to be fixed
for the ℓ1,2-SVM, where the particular choice of r might not be that important.

5.5.2 Comparison of the ℓ1-SVM, the ℓ1,2-SVM and the 1-Bit Com-
pressed Sensing Algorithm

In Figure 5.3 we compare the approximation errors of the ℓ1-SVM, the ℓ1,2-SVM and
the 1-bit compressed sensing algorithm for different values of m, where the sparsity
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Figure 5.2: Dependency of the ℓ1-SVM on r (left) and comparison of the dependency
on r of the ℓ1-SVM and the ℓ1,2-SVM (right). For the left image, for each value
of m from 0 to 600, we generated a vector x̃ ∈ Rd with exactly s = 5 nonzero
entries ±1, taken each with probability 1/2 and their positions uniformly distributed.
Afterwards, we set x = x̃/∥x̃∥2 and run the ℓ1-SVM with different values of r ∈
{0.5, 1,

√
m/20,

√
m/30} to get, for each value of r, the recovered vector x̂. For each

pair (r, m) we then plotted the value of ∥x − x̂/∥x̂∥2∥2. For the right image, we
let r ranging from 0 to 1.3. For each value of r, we generated a signal x̃ ∈ Rd,
d = 500, with exactly s = 3 nonzero entries ±1 as described above. Afterwards, we
again set x = x̃/∥x̃∥2 and ran the ℓ1-SVM and the ℓ1,2-SVM for different values of
m ∈ {100, 200}. For each pair of (r, m) we then plotted the distance between x and
x̂/∥x̂∥2.

level s and the dimension d are fixed. We again observe that the error of recon-
struction does not converge to zero, if we set r = 1 for the ℓ1-SVM. Furthermore,
we observe that the error decay of the ℓ1-SVM with r =

√
m/20, of the ℓ1,2-SVM

with r = 1 and of the 1-bit compressed sensing algorithm are similar, with slight
advantages for the SVMs.

5.5.3 Dependency on the Number of Measurements m

Figure 5.4 studies the dependency of the approximation error and the classification
success of unseen data on the number of measurements m and the dependency d. We
observe that the number of measurements m indeed only has to grow logarithmically
in the dimension d if we want to guarantee a good approximation result with high
probability. Furthermore, the phase transition between the two regions with good
and bad performance of the ℓ1-SVM and the ℓ1,2-SVM is not quite sharp, as it is,
for instance, for the basis pursuit in the usual compressed sensing setting, cf. Figure
3.2. Furthermore, as already observed in Figure 5.3, we observe a slightly better
performance of the ℓ1,2-SVM compared to the ℓ1-SVM.
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Figure 5.3: Comparison of the ℓ1-SVM, the ℓ1,2-SVM and the 1-bit compressed
sensing algorithm (5.2). For d = 500 fixed and each value of m ranging from 0
to 800, we generated a signal x̃ ∈ Rd with entries {1, −1, 0.5, −0.5, 0.3}, whose
locations where chosen uniformly at random. Afterwards we set x = x̃/∥x̃∥2 and
we then calculated the reconstructions x̂ with the ℓ1-SVM for different values of
r ∈ {1,

√
m/20}, the ℓ1,2-SVM with r = 1 and the 1-bit compressed sensing algotihm.

Then we plotted the distance between x and x̂/∥x̂∥2.
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Figure 5.4: Dependency of the ℓ1-SVM (top) and of the ℓ1,2-SVM (bottom) on the
number of measurements m and the dimension d. We fixed the sparsity s = 3, the
scaling parameter r =

√
m/5 for the ℓ1-SVM and r = 1 for the ℓ1,2-SVM. Then,

we let the values of m range from 0 to 120 and the values for d range from 0 to
1000. For each fixed pair of (m, d), we then draw a signal x ∈ Rd with exactly s = 5
nonzero entries ±1, each with probability 1/2 and uniformly distributed locations.
Afterwards, we calculated the approximation x̂ of x using the ℓ1-SVM and the ℓ1,2-
SVM. For the left images, we plotted their distance ∥x − x̂/∥x̂∥2∥2 for the ℓ1-SVM
and ∥x − x̂∥2 for the ℓ1,2-SVM. For the right image, we drew ntest = 1000 Gaussian
data points ãi using the Matlab command randn. Then we counted the amount
of data points, which got correctly classified by the recovered x̂, i.e., we calculated
the amount of data points ãi satisfying sign(⟨x, ãi⟩) = sign(⟨x̂, ãi⟩).
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Chapter 6

Ridge Functions

We follow the study of ridge functions, which are multivariate functions of the form

f : Rd → R, x ↦→ g(⟨a, x⟩)

for a univariate function g : R → R, called the ridge profile, and a constant vector
a ∈ Rd, called the ridge vector. Here we used the standard notation of the study of
ridge functions, which means that we changed the roles of a and x compared to the
setting of 1-bit compressed sensing of the previous chapter.

A ridge function f is constant along the hyperplanes perpendicular to a. More
precisely, if w ∈ Rd is orthogonal to a, for any x ∈ Rd we obtain

f(x + w) = g(⟨a, x + w⟩) = g(⟨a, x⟩) = f(x).

In the study of ridge functions we assume g and a to be unknown, and we want to
recover both, g and a, in order to get an approximation of f . In the framework of
this thesis we interpret g as nonlinearity, so the approximation of ridge functions
can be seen as a generalization of the 1-bit compressed sensing problem, where we
have the particular choice g = sign.

Many algorithms in the recovery of ridge functions are based on the simple
observation that

∇ f(x) = g′(⟨a, x⟩) · a, (6.1)

for x ∈ Rd and where ∇ f denotes the gradient of f . The idea is then to find an
approximation ã of the gradient of f in some fixed point x0 with non-vanishing
derivative g′(⟨a, x0⟩). Then, since ∇ f(x) and a are collinear, we can use ã to find
an approximation â of a. Once having this approximation, the problem is reduced
to find an approximation ĝ of the univariate function g : R → R. Here we can apply
standard numerical algorithms as the spline interpolation, so in the following we will
concentrate on effective algorithms for the recovery of a, whereas the recovery of g
and f will always be only given implicitly.

Instead of the approach (6.1) using the gradient of f let us also make the following
similar observation: For ϕ ∈ Rd, the directional derivative of f into the direction ϕ
is given by

∂f

∂ϕ
(x) = ⟨∇ f(x), ϕ⟩ = g′(⟨a, x⟩) · ⟨ϕ, a⟩. (6.2)

89
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If we know in advance that the signal a is sparse, we can choose directions ϕ1, . . . , ϕm ∈
Rd at random. In this case (6.2) directly leads us to use techniques from compressed
sensing for the recovery of a.

In this chapter we mainly present the results of [68] which was joint work with
Jan Vyb̀ıral.

6.1 Ridge Functions on Cubes

The authors of [42] studied the uniform approximation of ridge functions f : Bd
2 → R

defined on the unit ball Bd
2 ⊂ Rd. Although the possibility of extending this analysis

to ridge functions defined on other domains was already mentioned there, no further
steps in this direction were done.

In this section we study the uniform approximation of ridge functions defined on
the unit cube [−1, 1]d ⊂ Rd in detail, i.e., ridge functions of the form

f : [−1, 1]d → R, x ↦→ f(x) = g(⟨a, x⟩). (6.3)

Note that a and g are not uniquely determined by (6.3). Namely, if we choose some
λ ̸= 0 and set ã = λa and g̃(x) = g(x/λ), we obtain another representation of f of
the form (6.3):

f(x) = g(⟨a, x⟩) = g

(⟨λa, x⟩
λ

)
= g̃(⟨ã, x⟩). (6.4)

Thus, without loss of generality, we can pose a scaling condition on a. In [42] the
authors posed the condition ∥a∥2 = 1, which fitted together with both the scalar
product structure used in the definition of f , as well as the geometry of the domain
of f , namely the open Euclidean unit ball.

In our case, it is easy to observe that it will be more convenient to work with
the ℓ1-norm instead. Indeed, assume that the ridge profile g(t) = t is known by an
oracle in advance, i.e., for x ∈ [−1, 1]d we have f(x) = ⟨a, x⟩ for an unknown ridge
vector a ∈ Rd. Further, let us assume that we already have some approximation
â ∈ Rd of a with ∥â − a∥1 ≤ ε for some ε > 0. Then, using Hölder’s inequality, we
get

∥f̂ − f∥∞ := sup
x∈[−1,1]d

|f̂(x) − f(x)| = sup
x∈[−1,1]d

|⟨â − a, x⟩| ≤ ∥â − a∥1∥x∥∞ ≤ ε.

In what follows, we therefore assume

∥a∥1 = 1, (6.5)

so that |⟨a, x⟩| ≤ 1 holds for all x ∈ [−1, 1]d and g : [−1, 1] → R is a univariate
function defined on the interval [−1, 1].

The main idea (6.1) for the approximation of the ridge vector a uses the derivative
of g, so g has to be differentiable. Furthermore, we assume that g and g′ are Lipschitz
continuous with Lipschitz constants c0, c1 > 0, i.e., that it holds

|g(t0) − g(t1)| ≤ c0|t0 − t1|, (6.6)
|g′(t0) − g′(t1)| ≤ c1|t0 − t1| (6.7)
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for every t0, t1 ∈ [−1, 1]. Last, we assume g′(0) ̸= 0, since it is known that the
approximation of ridge functions may be intractable if this condition is left out [80].
If g′(0) ̸= 0, by switching from a to −a, we can also assume without loss of generality

g′(0) > 0. (6.8)

Let us summarize the assumptions we made so far:

Standing Assumptions IV

i) f : [−1, 1]d → R is a ridge function with ridge profile g : [−1, 1] → R and
ridge vector a ∈ Rd, i.e., for x ∈ [−1, 1]d, it holds f(x) = g(⟨a, x⟩).

ii) The ridge vector is normalized: ∥a∥1 = 1.

iii) The ridge profile g is differentiable with g′(0) > 0.

iv) g and g′ are Lipschitz continuous with Lipschitz constants c0, c1, respec-
tively.

6.1.1 Approximation Scheme without Sparsity

Motivated by the formula (6.1), for a small constant h > 0 and j = 1, . . . , d, we set

ãj := f(hej) − f(0)
h

, (6.9)

where e1, . . . , ed ∈ Rd denote the canonical basis vectors in Rd. Note that

lim
h→0

f(hej) − f(0)
h

= g′(0)aj ,

so if we choose h > 0 small enough, we expect ãj to be a good approximation of
g′(0)aj .
Lemma 6.1 ([68]). Let f : [−1, 1]d → R be a ridge function satisfying the Standing
Assumptions IV. For h > 0 define ã by (6.9). Then it holds

∥ã − g′(0)a∥1 ≤ c1h. (6.10)

Proof. For j = 1, . . . , d the mean value theorem gives the existence of some ξh,j ∈ R
with |ξh,j | ≤ |haj | and

ãj = f(hej) − f(0)
h

= g(⟨a, hej⟩) − g(0)
h

= g(haj) − g(0)
h

= g′(ξh,j)aj .

Hence, using the Lipschitz continuity of g′, it follows

∥ã − g′(0)a∥1 =
d∑

j=1
|ãj − g′(0)aj | =

d∑
j=1

|g′(ξh,j)aj − g′(0)aj | ≤
d∑

j=1
c1|ξh,j ||aj |

≤ c1h
d∑

j=1
|aj |2 ≤ c1h,
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where we used ∥a∥2
2 ≤ ∥a∥2

1 = 1 for the last inequality.

Defining ã by (6.9), the previous lemma states that we already found a good
approximation of g′(0)a. And since we are interested in finding an approximation
of the ℓ1-normalized ridge vector a, we set

â = ã

∥ã∥1
. (6.11)

Here we use the assumption g′(0) > 0. If otherwise g′(0) < 0, we would have to
choose â = −ã/∥ã∥1 instead. To estimate the difference between a and â we use the
following variant of [42, Lemma 3.4], cf. [68, Lemma 3.1].

Lemma 6.2 ([68]). Let x ∈ Rd with ∥x∥1 = 1. For any x̃ ∈ Rd\{0} and any λ ∈ R,
it holds sign(λ) x̃

∥x̃∥1
− x


1

≤ 2∥x̃ − λx∥1
∥x̃∥1

.

Proof. Using the triangle inequality we obtainsign(λ) x̃

∥x̃∥1
− x


1

≤
sign(λ)x̃ − sign(λ)λx

∥x̃∥1


1

+
sign(λ)λx − x∥x̃∥1

∥x̃∥1


1

= ∥x̃ − λx∥1
∥x̃∥1

+
⏐⏐|λ| − ∥x̃∥1

⏐⏐
∥x̃∥1

≤ 2∥x̃ − λx∥1
∥x̃∥1

,

which proves the claim.

Remark 6.3. Since the proof only relies on the triangle inequality, it remains true
for any normed space.

Combining Lemma 6.1 with Lemma 6.2 with the particular choices λ = g′(0)
and x̃ = ã, we deduce the following bound for the difference between a and â:

Corollary 6.4 ([68]). Using the notation of Lemma (6.1) and defining â ∈ Rd by
(6.11), it holds

∥â − a∥1 ≤ 2c1h

∥ã∥1
.

Although we now found a good approximation â to a, it is not clear how to define
the uniform approximation f̂ to f . In [42] the authors successfully used the naive
approach to sample f along â, i.e., they set

ĝ(t) := f(t · â) and f̂(x) := ĝ(⟨â, x⟩).

Using this approach, when trying to show that f̂ is uniformly close to f , we have
to ensure that ⟨a, â⟩ is close to 1, which fails in our case. In order to get a new
approach, using ∥a∥1 = 1, we observe

⟨a, sign(a)⟩ = ∥a∥1 = 1,
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where we define the sign of a vector entrywise, i.e., for any x ∈ Rd we set

sign(x)j := sign(xj). (6.12)

Note that the sign-function is discontinuous, hence, sign(a) and sign(â) may be far
from each other, even if a and â are close. Nevertheless, comparing their scalar
product with a, we get

|⟨a, sign(a) − sign(â)⟩| = |⟨a, sign(a)⟩ − ⟨â, sign(â)⟩ + ⟨â − a, sign(â)⟩| (6.13)
= |⟨â − a, sign(â)⟩| ≤ ∥â − a∥1 · ∥ sign(â)∥∞ = ∥â − a∥1.

Thus, instead of sampling f along â, we sample f along sign(â). For any t ∈ [−1, 1]
and x ∈ [−1, 1]d we set

ĝ(t) := f(t · sign(â)) and f̂(x) := ĝ(⟨â, x⟩). (6.14)

Let us summarize this approximation scheme as follows, cf. [68, Algorithm A]:

Algorithm A

Input: Ridge function f : [−1, 1]d → R satisfying the Standing Assumptions IV
and h > 0 small.

• For j = 1, . . . , d set ãj := f(hej)−f(0)
h .

• Set â := ã/∥ã∥1.

• Set ĝ(t) := f(t · sign(â)) and f̂(x) := ĝ(⟨â, x⟩) for t ∈ [−1, 1] and x ∈
[−1, 1]d.

Output: Approximation f̂ .

The next theorem shows that the approximation scheme described in Algorithm
A indeed gives a suitable approximation of the ridge function f , cf. [68, Theorem
3.3].

Theorem 6.5 ([68]). Using the notation of Algorithm A, it holds

∥f − f̂∥∞ ≤ 2c0∥a − â∥1 ≤ 4c0c1h

g′(0) − c1h
, (6.15)

where the last inequality only holds if the denominator g′(0) − c1h is positive.

Proof. Using Lemma 6.1 we first get

∥ã∥1 = ∥ã − g′(0)a + g′(0)a∥1 ≥ ∥g′(0)a∥1 − ∥ã − g′(0)a∥1 ≥ g′(0) − c1h

and applying Corollary 6.4 yields

∥a − â∥1 ≤ 2c1h

∥ã∥1
≤ 2c1h

g′(0) − c1h
,
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which shows the second inequality in (6.15). To prove the first inequality, we use
the Lipschitz continuity of g, ⟨a, sign(a)⟩ = ∥a∥1 = 1 and (6.13), to get

|g(t) − ĝ(t)| = |g(t) − f(t · sign(â))| = |g(t) − g(⟨a, t sign(â)⟩)| ≤ c0|t − ⟨a, t sign(â)⟩|
= c0|t| · |⟨a, sign(a) − sign(â)⟩| ≤ c0|t| · ∥a − â∥1

for every t ∈ [−1, 1]. Combining this estimate with the definition of f̂ , for every
x ∈ [−1, 1]d we end up with

|f(x) − f̂(x)| = |g(⟨a, x⟩) − ĝ(⟨â, x⟩)|
≤ |g(⟨a, x⟩) − g(⟨â, x⟩)| + |g(⟨â, x⟩) − ĝ(⟨â, x⟩)| (6.16)
≤ c0|⟨a − â, x⟩| + c0|⟨â, x⟩| · ∥a − â∥1 ≤ 2c0∥a − â∥1.

Remark 6.6. i) To find the approximation â of a, Algorithm A needs d + 1
pointwise evaluations of the function f , namely at the sampling points hej ,
j = 1, . . . , d and at 0. Afterwards, any one-dimensional sampling method can
be used to get the approximation f̂ . Since this is a well studied problem, we
do not go into detail here and instead refer to [32] and references therein.

ii) The estimate (6.15) heavily depends on the value of g′(0). Especially, the
approximation becomes difficult if g′(0) is very small and the estimate (6.15)
becomes void if g′(0) = 0. This is a very well known aspect in the theory of
approximation of ridge function and was studied in great detail in [80] and
briefly discussed in [42].

iii) If the ℓ2-norm ∥a∥2 of a is small (note that ∥a∥1 = 1 implies ∥a∥2 ≤ 1), the
following observation may be of interest: We can improve the estimate (6.10)
easily by

∥ã − g′(0)a∥1 ≤ c1h∥a∥2,

which results in the enhanced estimate

∥f − f̂∥∞ ≤ 2c0∥a − â∥1 ≤ 4c0c1h∥a∥2
2

g′(0) − c1h∥a∥2
2
. (6.17)

6.1.2 Approximation Scheme with Sparsity

In this subsection we assume that the ridge vector a ∈ Rd satisfies an additional
sparsity constraint, i.e., that most of its coefficients are zero or at least very small.
We will use techniques from compressed sensing to use this additional structure for
reducing the needed pointwise evaluations of f .

For m ∈ N, let Φ ∈ Rm,d be a normalized Bernoulli matrix with rows ϕ1, . . . , ϕm ∈
Rd according to Remark 3.19, i.e., with i.i.d. entries ϕij = ±1/

√
m. Taking the di-

rectional derivative of f at 0 into the directions ϕi, i = 1, . . . , m, we get

∂f

∂ϕi
(0) = ⟨∇ f(0), ϕi⟩ = g′(0)⟨a, ϕi⟩.
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As in the previous approximation scheme described in Algorithm A we estimate this
derivative by finite differences, that is, for a parameter h > 0 small and i = 1, . . . , m
we set

ỹi := f(hϕi) − f(0)
h

. (6.18)

The mean value theorem gives the existence of some ξh,i ∈ R with |ξh,i| ≤ |h · ⟨a, ϕi⟩|
and

ỹi = g′(ξh,i)⟨a, ϕi⟩, (6.19)

which leads to the estimate

∥ỹ − g′(0)Φa∥1 =
m∑

i=1
|ỹi − g′(0)⟨a, ϕi⟩| =

m∑
i=1

|g′(ξh,i) − g′(0)| · |⟨a, ϕi⟩|

≤ c1

m∑
i=1

|ξh,i| · |⟨a, ϕi⟩| ≤ c1h
m∑

i=1
|⟨a, ϕi⟩|2 ≤ c1h

m∑
i=1

∥a∥2
1∥ϕi∥2

∞

= c1h
m∑

i=1

1
m

= c1h. (6.20)

Next we can apply the ℓ1-minimizer (P1) to recover g′(0)a from ỹ. Afterwards we
can proceed as in Algorithm A. Let us summarize this procedure as follows, cf. [68,
Algorithm B]

Algorithm B

Input: Ridge function f : [−1, 1]d → R satisfying the Standing Assumptions IV,
m ∈ N with d ≥ log(6)2m and h > 0 small.

• Draw a normalized Bernoulli matrix Φ ∈ Rm,d with rows ϕ1, . . . , ϕm.

• For i = 1, . . . , m set ỹi := f(hϕi)−f(0)
h .

• Set ã := ∆1(ỹ) with ∆1 from (P1).

• Set â := ã/∥ã∥1.

• Set ĝ(t) := f(t · sign(â)) and f̂(x) := ĝ(⟨â, x⟩) for t ∈ [−1, 1] and x ∈
[−1, 1]d.

Output: Approximation f̂ .

The following theorem shows that the approximation scheme described in Al-
gorithm B indeed recovers the ridge function f if the ridge profile a is sufficiently
sparse or compressible in the sense that its best s-term approximation is small, cf.
[68, Theorem 3.5].
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Theorem 6.7 ([68]). Using the notation of Algorithm B, there exist constants
C, C ′, C ′′, C ′′′ > 0 such that for every integer s ∈ N with 2s ≤ C ′′m/ log(d/m),
it holds

∥f − f̂∥∞ ≤ 2c0∥a − â∥1 ≤ 2c0 err(a, â) (6.21)

with probability at least 1 − e−
√

md − e−C′′′m, provided that g′(0)(1 − σ1
s(a)) − 2C ′h

is positive and where we set

err(a, â) := C · g′(0) · σ1
s(a) + C ′h

g′(0)(1 − σ1
s(a)) − 2C ′h

.

Remark 6.8. i) If the ridge vector a is s-sparse, we get

σ1
s(a) = inf

z∈Σd
s

∥a − z∥1 = 0

so the estimate (6.21) is simplified to

∥f − f̂∥∞ ≤ C · C ′ · 2c0h

g′(0) − 2C ′h
.

Hence, in that case Theorem 6.7 yields the same order of approximation as
Theorem 6.5, which estimates the performance of Algorithm A.

ii) If the ridge profile a is s-sparse, the condition 2s ≤ C ′′m/ log(d/m) implies

m ≥ 2s log(d/m)/C ′′.

Hence, using Algorithm B we only need m = O(s log d) pointwise evaluations
of f to reconstruct a, which is an improvement compared to m = d+1 samples
needed in Algorithm A.

Proof. The first inequality in (6.21) is again provided by (6.16), so it only remains
to prove the second inequality. Setting

η := ỹ − g′(0)Φa ∈ Rm, (6.22)

from (6.20) we get ∥η∥1 ≤ c1h and, similarly, using (6.18) we obtain

∥η∥∞ = max
i∈[m]

|ỹi − g′(0)⟨a, ϕi⟩| = max
i∈[m]

|g′(ξh,i) − g′(0)| · |⟨a, ϕi⟩|

≤ max
i∈[m]

c0h · |⟨a, ϕi⟩|2 ≤ c0h

m
. (6.23)

It follows ∥η∥2 ≤ c0h/
√

m, which allows us to estimate the J-norm (3.27) of η by

∥η∥J = max
{

√
m∥η∥∞ ,

√
m

log(d/m)∥η∥2

}
≤ max

{
c0h√

m
,

c1h√
log(d/m)

}

≤ max
{

c1h ,
c1h√

2 log(log 6)

}
= c1h,
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where we used d ≥ log(6)2m for the last inequality. Hence, by applying Theorem
3.37 to η̃ = η/(c1h) ∈ Rm, we get the existence of some vector u ∈ Rd with

Φu = η and ∥u∥1 ≤ C̃c1h

for a constant C̃ > 0. Next, let us choose some 0 < δ < 1/3 to apply Theorem 3.12
to g′(0)a + u. We arrive at

∥∆1(ỹ) − g′(0)a∥1 =
∆1

(
g′(0)Φa + η

)
− g′(0)a


1

=
∆1

(
Φ
(
g′(0)a + u

))
− g′(0)a


1

≤
∆1

(
Φ
(
g′(0)a + u

))
−
(
g′(0)a + u

)
1

+ ∥u∥1

≤ Cσ1
s

(
g′(0)a + u

)
+ ∥u∥1 ≤ C

(
g′(0)σ1

s(a) + ∥u∥1
)

+ ∥u∥1

≤ (1 + C)
(
g′(0)σ1

s(a) + ∥u∥1
)

≤ (1 + C)
(
g′(0)σ1

s(a) + C̃c1h
)
.

Finally, applying the ℓ1-minimizer given by (P1), we set ã = ∆1(ỹ) and â = ã/∥ã∥1.
Using the assumption g′(0) > 0, Lemma 6.2 now provides

∥a − â∥1 =
sign(g′(0)) ã

∥ã∥1
− a


1

≤ 2∥ã − g′(0)a∥1
∥ã∥1

≤
2(1 + C)

(
g′(0)σ1

s(a) + C̃c1h
)

∥ã∥1
.

Now we can proceed as in the proof of Theorem 6.5. By estimating the ℓ1-norm of
ã from below by

∥ã∥1 ≥ ∥g′(0)a∥1 − ∥∆1(ỹ) − g′(0)a∥1 ≥ g′(0) − (1 + C)
(
g′(0)σ1

s(a) + C̃c1h
)
,

we end up with

∥a − â∥1 ≤
2(1 + C)

(
g′(0)σ1

s(a) + C̃c1h
)

g′(0) − (1 + C)
(
g′(0)σ1

s(a) + C̃c1h
)

yielding the second inequality in (6.21).

Compared to Algorithm A, Algorithm B uses the prior knowledge that the ridge
vector a is sparse to reduce the amount of pointwise evaluations of f .

For the reconstruction of the ridge vector a in Algorithm B we used the basis
pursuit, although we have noisy measurements ỹ with bounded noise e = ỹ−g′(0)Φa.
But if we also have prior knowledge on the norm of e, for instance, by knowing the
Lipschitz constant c0 of g, instead of the ℓ1-minimizer ∆1 given by (P1), we could
also use the ℓ1,ε-minimizer ∆1,ε given by (P1,ε).

Algorithm B’

Input: Ridge function f : [−1, 1]d → R satisfying the Standing Assumptions IV,
m ∈ N with d ≥ log(6)2m, h > 0 small and ε ≥ c0h/

√
m, where c0 denotes the

Lipschitz constant of g.
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• Draw a normalized Bernoulli matrix Φ ∈ Rm,d with rows ϕ1, . . . , ϕm.

• For i = 1, . . . , m set ỹi := f(hϕi)−f(0)
h .

• Set ã := ∆1,ε(ỹ) with ∆1,ε from (P1,ε).

• Set â := ã/∥ã∥1.

• Set ĝ(t) := f(t · sign(â)) and f̂(x) := ĝ(⟨â, x⟩) for t ∈ [−1, 1] and x ∈
[−1, 1]d.

Output: Approximation f̂ .

Theorem 6.9. Using the notation of Algorithm B’, there exist some constants
C, C ′, C ′′, C ′′′ > 0 such that for every integer s with 2s ≤ C ′′m/ log(d/m), it holds

∥f − f̂∥∞ ≤ 2c0∥a − â∥1 ≤ 2c0 err(a, â) (6.24)

with probability at least 1 − e−
√

md − e−C′′′m, provided that g′(0)(1 − σ1
s(a)) − C ′√sε

is positive and where we set

err(a, â) := C · g′(0) · σ1
s(a) + C ′√sε

g′(0)(1 − σ1
s(a)) − C ′√sε

.

Remark 6.10. If we choose ε = c0h/
√

m, we obtain

√
sε = c0h

√
s√
m

≤ c0h.

Hence, in that case (6.24) yields the same approximation rate as (6.21), where we
used the basis pursuit instead of the ℓ1,ε-minimizer.

Proof. From (6.22) we obtain

ỹ = g′(0)Φa + η

for some η ∈ Rm with ∥η∥2 ≤ c0h/
√

m ≤ ε. Applying Theorem 3.35 we deduce

∥∆1,ε(ỹ) − g′(0)a∥1 = ∥ã − g′(0)a∥1 ≤ Cg′(0)σ1
s(a) + c′√sε.

Now we proceed as in the proof of Theorem 6.7.

6.2 Approximation of Ridge Functions from Noisy Mea-
surements

In this section we study the approximation of ridge functions defined on the open
unit ball Bd

2 = {x ∈ Rd | ∥x∥2 < 1} from a limited number of point samples, which
are affected by random Gaussian noise. The idea to use the Dantzig selector ∆DS

given by (3.29) for the recovery of the ridge vector a from noisy measurements was
already proposed in [42], but no further study was done there.
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To be more precise, in this section we consider ridge functions

f : Bd
2 → R, x ↦→ f(x) = g(⟨a, x⟩) (6.25)

for some compressible ridge vector a ∈ Rd satisfying

∥a∥2 = 1, ∥a∥1 ≤ R (6.26)

for some R > 0 and some differentiable ridge profile g : [−1, 1] → R with g′(0) > 0
such that g and g′ are Lipschitz continuous with constants c0, c1 as in (6.6), (6.7).
Let us summarize the assumptions for this section as follows:

Standing Assumptions V

i) f : Bd
2 → R is a ridge function with ridge profile g : [−1, 1] → R and ridge

vector a ∈ Rd, i.e., for x ∈ Bd
2 , it holds f(x) = g(⟨a, x⟩).

ii) The ridge vector is compressible in the sense that ∥a∥2 = 1 and ∥a∥1 ≤ R
for some R > 0.

iii) The ridge profile g is differentiable with g′(0) > 0.

iv) g and g′ are Lipschitz continuous with Lipschitz constants c0, c1, respec-
tively.

Since we assume the ridge vector a to be compressible, we shall again follow
Algorithm B for the reconstruction of a. Hence, for d ≥ log(6)2m, let Φ ∈ Rm,d be a
normalized Bernoulli matrix according to Remark 3.19 with rows ϕ1, . . . , ϕm ∈ Rd.
To make the presentation technically simpler, we assume the value f(0) to be given
precisely, which can be achieved by resampling f(0) several times and taking the
mean. For a small constant h > 0 and i = 1, . . . , m, we then set

ỹi = f(hϕi) + z̃i − f(0)
h

= f(hϕi) − f(0)
h

+ z̃i

h
, (6.27)

where we assume the pointwise evaluations f(hϕi) to be perturbed by random noise
z̃i. Here we assume z̃ = (z̃1, . . . , z̃m) to have i.i.d. entries z̃i ∼ N (0, σ2) for some
small σ > 0 and we set

zi := z̃i

h
∼ N

(
0,

σ2

h2

)
. (6.28)

To recover a from ỹ we use the Dantzig selector (3.29) instead of ℓ1-minimization.
After we found an approximation â of a, we can use the approach of [42] for the
construction of ĝ and f̂ . Let us summarize this procedure as the following algorithm,
cf. [68, Algorithm C]:
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Algorithm C

Input: Ridge function f : Bd
2 → R satisfying the Standing Assumptions V, m ∈ N

with m ≤ log(6)2d and h, σ > 0.

• Draw a normalized Bernoulli matrix Φ ∈ Rm,d with rows ϕ1, . . . , ϕm.

• For i = 1, . . . , m set ỹi := f(hϕi)−f(0)
h + zi for some i.i.d. zi ∼ N

(
0, σ2

h2

)
.

• Set ã := ∆DS(ỹ) with ∆DS from (3.29) and λd =
√

2 log(d).

• Set â := ã/∥ã∥2.

• Set ĝ(t) := f(tâ) and f̂(x) := ĝ(⟨â, x⟩) for t ∈ [−1, 1] and x ∈ Bd
2 .

Output: Approximation f̂ .

The next theorem estimates the performance of Algorithm C, cf. [68, Theorem
4.1].

Theorem 6.11 ([68]). Using the notation of Algorithm C, there exists a constant
C > 0 such that for every integer s with 3s ≤ Cm/ log(d/m), with high probability
it holds

∥f − f̂∥∞ ≤ 2c0∥a − â∥2 ≤ 4c0 · err(a, â)
g′(0) − err(a, â) , (6.29)

where we set

err(a, â) := C ′c1

⎛⎝ min
1≤t≤s

(
log(d)

(
t
σ2

h2 + R̃2

t

))1/2

+ hR2

√
log(d/m)

m

⎞⎠ , (6.30)

R̃ := R(1 + C ′′hR) (6.31)

for constants C ′, C ′′ > 0.

Remark 6.12. i) The input parameter h > 0 of Algorithm C has to be cho-
sen carefully. If we choose h > 0 very small, the variance of the Gaussian
noise (6.28) increases, leading to a higher noise level and a larger error bound
in (6.29). On the other hand, if we choose h > 0 very large, we get a worse
approximation of the directional derivative of f which leads to a worse approx-
imation of a. Concluding, these simple arguments lead to the intuition that
there might be an optimal trade-off value for h which we will also discuss in
the numerical examples. Unfortunately, the optimal value for h might depend
on the a-priori unknown function g and can, therefore, hardly be identified.
We refer also to [55] for a brief discussion of this phenomenon.

ii) In this section we study ridge functions defined on the unit ball to use the
estimates on the Dantzig selector available in the literature. To adapt this
approach to ridge functions defined on the unit cube, it would be necessary to
introduce an ℓ1-version of Theorem 3.39 first.
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Proof. As in the noiseless case, from the mean value theorem we get

yi := f(hϕi) − f(0)
h

= g′(ξh,i)⟨a, ϕi⟩ (6.32)

for some ξh,i between 0 and h⟨a, ϕi⟩, i = 1, . . . , m. We set

η = y − g′(0)Φa ∈ Rm (6.33)

and in order to apply Theorem 3.37 we estimate the entries of η by

|ηi| = |yi − g′(0)⟨a, ϕi⟩| = |g′(ξh,i) − g′(0)| · |⟨a, ϕi⟩| ≤ c1h⟨a, ϕi⟩2

≤ c1h∥a∥2
1 · ∥ϕi∥2

∞ ≤ c1hR2

m
,

yielding the estimates

∥η∥2 =
(

m∑
i=1

η2
i

)1/2

≤
(

m∑
i=1

c2
1h2R4

m2

)1/2

= c1hR2
√

m
,

∥η∥∞ = max
i=1,...,m

|ηi| ≤ c1hR2

m
.

Applying Theorem 3.37 to η/(c1hR2), with high probability there exists some u ∈ Rd

with Φ(u) = η and

∥u∥1 ≤ C3c1hR2, ∥u∥2 ≤ C4c1hR2

√
log(d/m)

m

for some constants C1, C3, C4 > 0 from Theorem 3.37. Further, we get

∥g′(0)a + u∥1,∞ ≤ ∥g′(0)a∥1 + ∥u∥1 ≤ g′(0)R + C3c1hR2

≤ c1R(1 + C3hR) =: c1R̃.

Now we can apply Theorem 3.39 to ã = ∆DS(ỹ) to get with high probability

∥ã − g′(0)a∥2 = ∥∆DS(ỹ) − g′(0)a∥2 = ∥∆DS(g′(0)Φa + η + z) − g′(0)a∥2

≤ ∥∆DS(Φ(g′(0)a + u) + z) − g′(0)a − u∥2 + ∥u∥2

≤ min
1≤t≤s

(
2C2 log(d)

(
t
σ2

h2 + c2
1R̃2

t

))1/2

+ C4c1hR2

√
log(d/m)

m

≤ Cc1

⎛⎝ min
1≤t≤s

(
log(d)

(
t
σ2

h2 + R̃2

t

))1/2

+ hR2

√
log(d/m)

m

⎞⎠
=: err(a, â)

for some constants C ′′, C2. We set â := ã/∥ã∥2 and Lemma 6.2 gives

∥â − a∥2 =
sign(g′(0)) ã

∥ã∥2
− a


2

≤ 2∥ã − g′(0)a∥2
∥ã∥2

≤ 2 err(a, â)
∥ã∥2

≤ 2 err(a, â)
g′(0)∥a∥2 − ∥ã − g′(0)a∥2

= 2 err(a, â)
g′(0) − err(a, â) ,
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which proves the second inequality in (6.29). Finally, for t ∈ [−1, 1] and x ∈ Bd
2 we

define

ĝ(t) := f(tâ) and f̂(x) := ĝ(⟨â, x⟩).

It remains to show that f̂ indeed is a good approximation of f . For any t ∈ [−1, 1]
we first observe

|ĝ(t) − g(t)| = |g(t⟨a, â⟩) − g(t)| ≤ c0|t(⟨a, â⟩ − 1)| ≤ c0|⟨a, â − a⟩|
≤ c0∥a − â∥2,

so that we can bound the pointwise difference of f and f̂ for any x ∈ Bd
2 by

|f(x) − f̂(x)| = |g(⟨a, x⟩) − ĝ(⟨â, x⟩)| ≤ |g(⟨a, x⟩) − g(⟨â, x⟩)| + |g(⟨â, x⟩) − ĝ(⟨â, x⟩)|
≤ c0|⟨a, x⟩ − ⟨â, x⟩| + c0∥a − â∥2 ≤ 2c0∥â − a∥2,

which finishes the proof.

6.3 Approximation of Translated Radial Functions

The Algorithms A-C presented in this chapter, as well as the methods proposed in
[42], were developed for the quite restrictive setting of ridge functions. However,
the aim of this section is to demonstrate that we can use the same tools for the
approximation of functions of a different, but similar type.

We consider translated radial functions defined on the unit ball, i.e., functions
of the form

f : Bd
2 → R, x ↦→ g(∥a − x∥2

2) (6.34)

for a fixed normalized center point a ∈ Rd with

∥a∥2 = 1 (6.35)

and an unknown function g : [0, 4] → R. In contrary to ridge functions, which are
constant along the hyperplanes perpendicular to the ridge vector, translated radial
functions are constant on the spheres centered in a.

As in the setting of ridge functions, we again assume g to be differentiable and
g and g′ to be Lipschitz continuous, i.e., that there exist constants c0, c1 > 0 such
that

|g(t1) − g(t2)| ≤ c0|t1 − t2|, (6.36)
|g′(t1) − g′(t2)| ≤ c1|t1 − t2| (6.37)

holds for all t1, t2 ∈ [0, 4].
In order to develop an approximation scheme for translated radial functions, we

want to adapt the approach for ridge functions, which we described in Algorithm A.
The main observation for the approximation of a ridge function was given by (6.1),
which told us that the gradient of a ridge function is collinear with the ridge vector
a. In contrary, for a translated radial function f we observe

∇ f(x) = 2g′(∥a − x∥2
2)(x − a). (6.38)
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Hence, the gradient of f at 0 is given by −2g′(1)a. Therefore we replace the condition
g′(0) ̸= 0 (6.8), which we used for the approximation of ridge functions, by the
condition g′(1) ̸= 0.

Note that here we do not have a scaling freedom as in the case of ridge functions
(cf. (6.4)), so we cannot fix the sign of g′(1) without loss of generality. Nevertheless,
for brevity we assume that

g′(1) > 0, (6.39)

which we will also motivate later on. Before, let us fix the assumptions we made so
far:

Standing Assumptions VI

i) f : Bd
2 → R is a translated radial function with center point a ∈ Rd, i.e.,

for some g : [0, 4] → R and any x ∈ Bd
2 , it holds f(x) = g(∥a − x∥2

2).

ii) The center point is normalized: ∥a∥2 = 1.

iii) g is differentiable with g′(1) > 0.

iv) g and g′ are Lipschitz continuous with Lipschitz constants c0, c1, respec-
tively.

6.3.1 Approximation Scheme without Sparsity

In order to develop an approximation scheme for translated radial functions, we want
to adapt the approach for ridge functions, which we have described in Algorithm A.

The main motivation for the approximation of a ridge function f was given
by (6.1), which told us that the gradient of f is collinear with the ridge vector a.
This simple observation gave the idea to approximate the gradient of f by finite
differences (6.9)

ãi = f(0) − f(hei)
h

for some h > 0 and where e1, . . . , ed denote the canonical basis vectors of Rd. For
the approximation of translated radial functions we should not directly translate
this approach. However, using other sample points than 0 and hei, we can at least
transfer the idea. So let us first discuss how we should choose the sample points.

For h > 0 small and fixed x1, . . . , xd ∈ Rd, which we will determine later on,
similar to (6.9) for the case of ridge functions we set

ãj = f(hej + xj) − f(xj)
h

, j = 1, . . . , d. (6.40)
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With help of the mean value theorem we obtain

ãj = f(hej + xj) − f(xj)
h

= g(∥a − hej − xj∥2
2) − g(∥a − xj∥2

2)
h

= g′(ξh,j)∥a − hej − xj∥2
2 − ∥a − xj∥2

2
h

= g′(ξh,j)−2h⟨a, ej⟩ + h2 + 2h⟨xj , ej⟩
h

for some ξh,j between ∥a − hej − xj∥2
2 and ∥a − xj∥2

2. By choosing xj = −(h/2)ej

we get

ãj =
f(h

2 ej) − f(−h
2 ej)

h
= −2g′(ξh,j)aj (6.41)

for some ξh,j between ∥a − (h/2)ej∥2
2 and ∥a + (h/2)ej∥2

2. Since h > 0 is very small,
with this choice of xj we obtain that ξh,j is close to ∥a∥2 = 1, since

|ξh,j − 1| ≤ max
{⏐⏐⏐∥a − (h/2)ej∥2

2 − 1
⏐⏐⏐ ,
⏐⏐⏐∥a + (h/2)ej∥2

2 − 1
⏐⏐⏐}

= max
{⏐⏐⏐−haj + h2/4

⏐⏐⏐ ,
⏐⏐⏐haj + h2/4

⏐⏐⏐} ≤ h + h2/4. (6.42)

Using the Lipschitz continuity of g′ we conclude that ãj = −2g′(ξh,j)aj is close to
−2g′(1)aj = −2g′(∥a∥2

2)aj , since it holds

∥ã + 2g′(1)a∥2
2 =

d∑
j=1

(
−2g′(ξh,j)aj + 2g′(1)aj

)2 = 4
d∑

j=1
|g′(ξh,j) − g′(1)|2a2

j

≤ 4c2
1(h + h2/4)2. (6.43)

Due to this construction and the assumption g′(1) ̸= 0, the normalized vector â :=
−ã/∥ã∥2 approximates a, possibly up to the sign of g′(1). For brevity, we assume
g′(1) > 0 (6.39), although this assumption cannot be made without loss of generality,
as we have already mentioned above. However, if the sign of g′(1) is unknown, we
can sample f along any vector â′ ∈ Rd orthogonal to â to identify the sign of g′(1)
and afterwards assign it to â.

Once we have found the approximation â to a, the problem is again reduced
to finding an approximation of the univariate function g and finally of f . Let us
summarize this approximation scheme as Algorithm D, cf. [68, Algorithm D]:

Algorithm D

Input: Translated radial function f satisfying the Standing Assumptions VI and
h > 0.

• Set ãj = f(hej/2)−f(−hej/2)
h , j = 1 . . . , d.

• Set â := −ã/∥ã∥2.

• Set ĝ(t) := f(â(1 −
√

t)) and f̂(x) := ĝ(∥â − x∥2
2) for t ∈ [0, 4] and x ∈ Bd

2 .

Output: Approximation f̂ .
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The performance of Algorithm D is estimated by the following theorem, cf. [68,
Theorem 5.1]:
Theorem 6.13 ([68]). Using the notation of Algorithm D, it holds

∥f − f̂∥∞ ≤ c0
(
2∥â − a∥2 + ∥â − a∥2

2

)
(6.44)

and, if g′(1) − c1(h + h2/4) is positive, it further holds

∥â − a∥2 ≤ 2c1(h + h2/4)
g′(1) − c1(h + h2/4) . (6.45)

Proof. We start estimating the difference between a and â. By (6.42) and the
Lipschitz continuity of g′, for j = 1, . . . , d we get

g′(1) − |g′(ξh,j)| ≤ |g′(1) − g′(ξh,j)| ≤ c1|1 − ξh,j | ≤ c1(h + h2/4),

hence

|g′(ξh,j)| ≥ g′(1) − c1(h + h2/4). (6.46)

If the right hand side of this inequality is positive, using (6.41) we get

∥ã∥2
2 =

d∑
j=1

|ãj |2 = 4
d∑

j=1
|g′(ξh,j)aj |2 ≥ 4

d∑
j=1

(
g′(1) − c1(h + h2/4)

)2
|aj |2

= 4
(
g′(1) − c1(h + h2/4)

)2
.

Now we can apply Lemma 6.2 to bound the difference between a and â by

∥a − â∥2 ≤ 4c1(h + h2/4)
∥ã∥2

≤ 2c1(h + h2/4)
g′(1) − c1(h + h2/4) , (6.47)

provided that the denominator is positive. Given the approximation â of a, for any
t ∈ [0, 4] and x ∈ Bd

2 we define

ĝ(t) := f
(
â(1 −

√
t)
)

and f̂(x) := ĝ(∥â − x∥2
2).

Using the Lipschitz continuity of g we indeed obtain that ĝ is a suitable uniform
approximation of g, since for any t ∈ [0, 4] we get

|g(t) − ĝ(t)| =
⏐⏐⏐⏐g(t) − g

(a − â
(
1 −

√
t
)2

2

)⏐⏐⏐⏐ ≤ c0

⏐⏐⏐⏐t −
a − â +

√
tâ
2

2

⏐⏐⏐⏐
= c0

⏐⏐⏐2√
t⟨a − â, â⟩ + ∥a − â∥2

2

⏐⏐⏐ = c0
⏐⏐⏐(2√

t − 1)⟨a − â, â⟩ + ⟨a − â, a⟩
⏐⏐⏐

= 2c0
⏐⏐⏐(1 −

√
t
)

(1 − ⟨a, â⟩)
⏐⏐⏐ = c0

⏐⏐⏐1 −
√

t
⏐⏐⏐ · ∥a − â∥2

2 ≤ c0∥a − â∥2
2,

where we used the fact that ∥a∥2 = ∥â∥2 = 1 several times. With this estimate for
the difference between g and ĝ we finally get for any x ∈ Bd

2

|f(x) − f̂(x)| =
⏐⏐⏐g (∥a − x∥2

2

)
− ĝ

(
∥â − x∥2

2

)⏐⏐⏐
≤
⏐⏐⏐g (∥a − x∥2

2

)
− g

(
∥â − x∥2

2

)⏐⏐⏐+ ⏐⏐⏐g (∥â − x∥2
2

)
− ĝ

(
∥â − x∥2

2

)⏐⏐⏐
≤ c0

⏐⏐⏐∥a − x∥2
2 − ∥â − x∥2

2

⏐⏐⏐+ c0∥a − â∥2
2 = 2c0|⟨a − â, x⟩| + c0∥a − â∥2

2

≤ c0
(
2∥a − â∥2 + ∥a − â∥2

2

)
. (6.48)
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Remark 6.14. In Algorithm D, and therefore also in Theorem 6.13, we assume g′ to
be Lipschitz continuous on its whole domain [0, 4]. However, if we only assume the
Lipschitz continuity on the open interval between 1 − (h + h2/4) and 1 + (h + h2/4),
the estimate (6.47) still remains true and we can still recover the centerpoint a ∈ Rd.

In particular, this even applies to the case when g and g′ are unbounded near
the origin, i.e., if f has a singularity in a. In that case, a uniform approximation of
f is out of reach, but we are still able to recover the position of the singularity.

6.3.2 Approximation Scheme with Sparsity

As in the approximation scheme for ridge functions we can use techniques from
compressed sensing to reduce the amount of measurements if a ∈ Rd is compressible.
To be more precise, if a ∈ Rd satisfies the compressibility conditions

∥a∥2 = 1, ∥a∥1 ≤ R (6.49)

for some R > 0. For a normalized Bernoulli matrix Φ ∈ Rm,d with rows ϕ1, . . . , ϕm ∈
Rm, we set

ỹi := f(hϕi/2) − f(−hϕi/2)
h

, i = 1, . . . , m. (6.50)

Note that f is only defined on the unit ball Bd
2 . Since ∥ϕi∥2 =

√
d/m, we must

always have at least h < 2
√

m/d to ensure that f(hϕi/2) is well defined. To allow
for comparison with the previous, non compressible case, we set

h̃ = h/2 ·
√

d/m, (6.51)

which leads to

ỹi =
f
(
h̃ ϕi

∥ϕi∥2

)
− f

(
−h̃ ϕi

∥ϕi∥2

)
h

. (6.52)

By defining the deterministic noise η ∈ Rm by

η = ỹ + 2g′(1)Φa (6.53)

and using the mean value theorem, we get

|ηi| =
⏐⏐⏐⏐1h
(
g(∥a − hϕi/2∥2

2) − g(∥a + hϕi/2∥2
2)
)

+ 2g′(1)⟨ϕi, a⟩
⏐⏐⏐⏐

=
⏐⏐⏐⏐1hg′(ξh,i)

(
∥a − hϕi/2∥2

2 − ∥a + hϕi/2∥2
2

)
+ 2g′(1)⟨ϕi, a⟩

⏐⏐⏐⏐
=
⏐⏐2⟨ϕi, a⟩

(
g′(ξh,i) − g′(1)

)⏐⏐ ≤ 2c1∥a∥1 · ∥ϕi∥∞|ξh,i − 1|

≤ 2c1R√
m

· |ξh,i − 1|

for some unknown ξh,i between ∥a − hϕi/2∥2
2 and ∥a + hϕi/2∥2

2. Similar to (6.42)
we further estimate

|ξh,i − 1| ≤ max
{⏐⏐⏐∥a − hϕi/2∥2

2 − 1
⏐⏐⏐ , ⏐⏐⏐∥a + hϕi/2∥2

2 − 1
⏐⏐⏐} = h2

4 ∥ϕi∥2
2 + h|⟨a, ϕi⟩|

≤ h2d

4m
+ hR√

m
= h̃2 + 2Rh̃√

d
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and we obtain

∥η∥2 ≤ 2c1R

(
h̃2 + 2Rh̃√

d

)
. (6.54)

To recover a from (6.52) we use the ℓ1,ε-minimizer (P1,ε). For ε ≥ ∥η∥2 we set

ã := ∆1,ε(ỹ) and â := −ã/∥ã∥2.

Using Theorem 3.35 we obtain with high probability

∥ã + 2g′(1)a∥2 ≤ Cg′(1)σ1
s(a)√

s
+ c′h =: err(a, â)

for some constants C, c′, provided that m ≥ C ′′m/ log(d/m). Applying Lemma 6.2
gives the estimate

∥â − a∥2 ≤ 2 err(a, â)
∥ã∥2

,

where we can bound ∥ã∥2 from above by

∥ã∥2 ≥ 2g′(1)∥a∥2 − ∥ã − 2g′(1)a∥2 ≥ 2g′(1) − err(a, â).

Provided that 2g′(1) − err(a, â) is positive, we end up with

∥â − a∥2 ≤ 2 err(a, â)
2g′(1) − err(a, â) . (6.55)

Afterwards we can proceed as in Algorithm D, which we summarize as follows:

Algorithm E

Input: Translated radial function f satisfying the Standing Assumptions VI such
that the additional compressibility condition (6.49) holds, h > 0, m ∈ N and
ε ≥ 2c1R

(
h̃2 + 2Rh̃√

d

)
.

• Draw a normalized Bernoulli matrix Φ ∈ Rm,d with rows ϕ1, . . . , ϕm.

• For i = 1, . . . , m set ỹi := f(hϕi/2)−f(−hϕi/2)
h .

• Set ã := ∆1,ε(ỹ) with ∆1,ε from (P1,ε).

• Set â := −ã/∥ã∥2.

• Set ĝ(t) := f(â(1 −
√

t)) and f̂(x) := ĝ(∥â − x∥2
2) for t ∈ [0, 4] and x ∈ Bd

2 .

Output: Approximation f̂ .

The following theorem summarizes the performance of Algorithm E:
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Theorem 6.15. Using the notation of Algorithm E, for some constants c′, C, C ′′

and any integer s ≥ C ′′m/ log(d/m) with high probability, it holds

∥f − f̂∥∞ ≤ c0(2∥a − â∥2 + ∥a − â∥2
2),

where

∥a − â∥2 ≤ 2 err(a, â)
2g′(1) − err(a, â) and err(a, â) := Cg′(1)σ1

s(a)√
s

+ c′h,

provided that 2g′(1) − err(a, â) is positive.

Proof. The statement follows as a combination of (6.55) with (6.48).

Remark 6.16. Once we have the approximation scheme described in Algorithm E
using techniques from compressed sensing, we can easily extend it to an approxi-
mation scheme with noisy measurements with i.i.d. Gaussian noise by replacing the
ℓ1,ε-minimizer by the Dantzig selector.

6.4 Numerical Experiments

In this section we test the numerical performance of the Algorithms A-E presented
in this chapter. All the approximation schemes A-E start looking for a good re-
covery â of the ridge vector a and, afterwards, the problem is reduced to finding
an approximation ĝ of the univariate ridge profile g to finally obtaining a uniform
approximation f̂ of f . Furthermore, the difference between f̂ and f is bounded by
the corresponding difference between â and a, so, consequently, in the numerical
examples we also only focus on the recovery of â.

The basis pursuit (P1) can be recast as a linear program, cf. Lemma 3.4, so
for the implementation we have used the Matlab command linprog. For the
implementation of the ℓ1,ε-minimizer (P1,ε) we have used the Matlab based toolbox
cvx, and for an implementation of the Dantzig selector (3.29) we have used the
so-called ℓ1-MAGIC implementation, which is available at the web page https:
//statweb.stanford.edu/˜candes/l1magic/.

For the numerical test we have done each calculation n = 100 times and then we
have taken the average.

6.4.1 Ridge Functions on Cubes

In this section we test the numerical performance of the Algorithms A, B and B’.

Algorithm A

Figure 6.1 shows the dependency of Algorithm A on the step size h for different
ridge profiles. First, let us observe that the error of reconstruction converges to zero
if h tends to zero, which is in a good agreement with Theorem 6.5, describing the
performance of Algorithm A. But also reasonable step sizes of h, e.g., h = 0.2, imply
relatively small errors.

Furthermore, we observe that the approximation rapidly improves with growing
dimension, which is explained by the concentration of measure phenomenon.

https://statweb.stanford.edu/~candes/l1magic/
https://statweb.stanford.edu/~candes/l1magic/
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Finally, we observe that the order of the error depends on the ridge profile g.
This can be explained by the derivatives of the particular ridge profiles. The second
derivative of the first profile g(t) = tanh(t) vanishes at 0, so the first order differences
(6.9) approximate the first order derivative quite accurately. The second derivative
of the other two ridge profiles g(t) = tanh(t−1) and g(t) = (1+exp(−t))−1 does not
vanish at 0, which leads to worse, but still surprisingly small approximation errors.
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Figure 6.1: Dependency of Algorithm A on the step size h with respect to different
ridge profiles g(t) ∈ {tan(t), tan(t − 1), (1 + exp(−t))−1}. For different values of
d ∈ {10, 100, 1000, 10000} and values of h ranging from 0 to 0.5, we generated a
signal ã ∈ Rd using the Matlab command randn. Afterwards, we set a = ã/∥ã∥1
and we run Algorithm A to obtain the approximation â of a. Then we calculated
their difference ∥a − â∥1.

Algorithms B and B’

1) Dependency on the Step Size h.
Figure 6.2 shows the dependency of the Algorithms B and B’ on the step size

h for two different ridge profiles g(t) = tanh(t − 1) and g(t) = (1 + exp(−t))−1.
Here the sparsity level s = 5 is fixed and we considered the three different pairs
(d, m) ∈ {(100, 40), (1000, 60), (10000, 80)}. Note that the amount of measurements
m is quite small compared to the underlying dimension d. This means, with the
additional assumption of sparsity we have reduced the number of measurements
quite heavily, compared to Algorithm A, which needs m = d. Nevertheless, we still
obtain reasonable approximation errors for small values of h. For the second profile
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g(t) = (1 + exp(−t))−1 the Algorithm B outperforms the Algorithm B’, but this can
be explained by the non-optimal choice of ε = h/

√
m.
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Figure 6.2: Dependency of Algorithm B (top) and Algorithm B’ (bottom) on the
step size h with respect to different ridge profiles g(t) ∈ {tanh(t), (1 + exp(−t))−1}.
For a fixed sparsity level s = 5, pairs (d, m) ∈ {(100, 40), (1000, 60), (10000, 80)} and
step sizes h varying from 0 to 0.5, we chose an s-sparse vector ã ∈ Rd at random
using the Matlab command sprandn. Afterwards, we set a = ã/∥ã∥1 and ran
Algorithm B and Algorithm B’ with the additional parameter ε = h/

√
m to obtain

the approximations â. Then we plotted the error of reconstruction ∥a − â∥1.

2) Dependency on the Amount of Measurements m.
Figure 6.3 shows the dependency of the Algorithms B and B’ on the amount of

measurements m and the underlying dimension d, where the sparsity s = 10, the
step size h = 0.1 and the ridge profile g(t) ∈ {tanh(t−1), (1+exp(−t))−1} are fixed.

We observe that the number of measurements only has to grow logarithmically
in the dimension d, if we want to guarantee good approximation results with high
probability. Further, we observe a phase transition between configurations where
the approximation works and where the approximations are quite bad. This is
in accordance with the theory of compressed sensing, where we also have already
observed and discussed the phase transition phenomenon in Figure 3.2.
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Figure 6.3: Dependency of Algorithm B (top) and of Algorithm B’ (bottom) on m
and d with respect to different ridge profiles g(t) ∈ {tanh(t − 1), (1 + exp(−t))−1}.
For different values of m ranging from 0 to 80 and values of d ranging from 0 to 1000
we drew an s-sparse vector a ∈ Rd at random and ran the Algorithms B and B’ to
obtain the reconstruction â. Afterwards, we calculated and plotted the difference
∥a − â∥1.

6.4.2 Approximation of Ridge Functions from Noisy Measurements

1) Dependency on the Step Size h.
Figure 6.4 shows the dependency of Algorithm C on the step size h, where

we fixed the ridge profile g(t) ∈ {tanh(t − 1), (1 + exp(−t))−1}, the noise level
σ ∈ {0.01, 0.05, 0.001} and the dimension d = 500, the sparsity s = 5 and the
number of measurements m = 80.

When taking the first order differences, the noise level σ gets amplified by the fac-
tor 1/h. Hence, if we choose h very small, the noise increases and the approximation
completely fails. On the other hand, if we choose h very large, the approximation of
the first derivative by first order differences deteriorates as well, as we have already
discussed in Remark 6.12. Therefore, there might be an optimal value for h, which
we can also guess from the upper left image of Figure 6.12.

The bottom image of Figure 6.12 shows a modification of Algorithm C, where
we just used the basis pursuit for the reconstruction, instead of the Dantzig selector.
This image can be understood as a demonstration of the success of the Dantzig
selector, since the approximation completely fails even if the noise level σ = 0.001
is quite small.
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step size h
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Figure 6.4: Dependency of Algorithm C on the step size h for different ridge profiles
g(t) ∈ {tanh(t − 1), (1 + exp(−t))−1} (top) and the performance of the basis pursuit
in the presence of Gaussian noise (bottom) for the ridge profile g(t) = tanh(t − 1).
Beside the ridge profile, we fixed the sparisty level s = 5, the dimension d = 500 and
the number of measurements m = 80. For the noise levels σ ∈ {0.001, 0.005, 0.01}
and values of h ranging from 0 to 1.4 we drew an s-sparse signal ã ∈ Rd at random
using the Matlab command sprandn and afterwards set a = ã/∥ã∥2. Then we ran
Algorithm C with the Dantzig selector and the choice λd =

√
2 log(d) (top) and the

basis pursuit (bottom) to obtain the approximation â of a.

2) Dependency on the Amount of Measurements m.
In Figure 6.5 we tested the dependency of Algorithm C on the number of mea-

surements m and the dimension d, where we fixed the noise level σ = 0.005, the
ridge profile g(t) = tanh(t − 1), the sparsity s = 10 and the step size h = 1. We
observed a similar phase transition as for Algorithm B.
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Figure 6.5: Dependency of Algorithm C on the dimension d and the number of
measurements m. We fixed the noise level σ = 0.005, the step size h = 1, the
sparsity s = 10 and the ridge profile g(t) = tanh(t − 1). Then, for different values
of m ranging from 0 to 100 and values for d ranging from 0 to 500 we generated an
s-sparse signal ã ∈ Rd using the Matlab command sprandn. Afterwards, we set
a = ã/∥ã∥2 and used Algorithm C to obtain the approximation â of a. Then we
calulated their difference ∥a − â∥2.

6.4.3 Approximation of Translated Radial Functions

Figure 6.6 illustrates the performance of Algorithm D (top) and Algorithm E (bot-
tom left) in dependency on the step size h, and the performance of the approxi-
mation of translated radial functions from noisy measurements using the Dantzig
selector (bottom right), as discussed in Remark 6.16. In particular, here we have
to highlight that we used the profile g(t) = −1/t. In this case the radial function
f(x) = g(∥a − x∥2

2) has a singularity in a, hence, a uniform approximation of f is
out of reach. However, as we have already discussed in Remark 6.14, in this case we
are still able to recover a, that is, the position of the singularity.
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Figure 6.6: Dependency of Algorithm D on the step size h for different profiles
g(t) ∈ {(1 + exp(−t))−1, −1/t} (top), the dependency of Algorithm E on the step
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proximation of radial functions from noisy measurements (bottom right). Note that
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Chapter 7

Conclusion and Outlook

In this thesis we have studied different aspects of compressed sensing. The first main
result of this thesis is given in Chapter 4. Here we have proven the last missing part
of Carl’s inequality namely for Gelfand numbers on quasi-Banach spaces. This in
particular can be used to fill a gap in Donoho’s argument estimating the compressive
n-width.

In the further parts of this thesis we demonstrated that the ideas of compressed
sensing for the recovery of sparse signals in high dimensions from linear measure-
ments can also be used if the measurement process is disturbed by a certain nonlin-
earity.

In Chapter 5 we have analyzed the performance of the ℓ1-support vector machine
for the problem of 1-bit compressed sensing, that is, for the recovery of effectively
sparse signals from binary measurements. In order to obtain good recovery results,
we have shown that the number of measurements m has to grow logarithmically
in the dimension d and almost linear in the sparsity s, which is actually the same
rate we would need for the recovery from linear measurements using basic recovery
algorithms from the field of compressed sensing.

However, we have not discussed the optimality on the other parameters r and ε,
which we left out for further research. Furthermore, we have only shortly discussed
the recovery from noisy measurements. Here, we have given an idea to show an
appropriate recovery result, once the model of the noise is fixed.

As a third open problem let us mention the particular choice of the measurement
vectors. We have always chosen the measurement vectors to be i.i.d. Gaussian, but
recovery results for other distributions are of interest. Furthermore, it would also be
beneficial to have recovery results if the measurement vectors are not independent
of each other.

Another open question for further research we would like to highlight is the
choice of the particular loss function and also the set of constraints. To improve the
performance of the ℓ1-SVM, we have suggested the ℓ1,2-SVM by adding an additional
penalty term. However, it might be possible to further improve the performance, by
suggesting other constraints, but also by considering other loss functions than the
hinge loss.

In Chapter 6 we have answered some open questions in the theory of ridge
functions. First, we have discussed the approximation of ridge functions defined
on the unit cube [−1, 1]d instead of the Euclidean unit ball Bd

2 . Afterwards, we
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have discussed the approximation of ridge functions from noisy measurements by
using the Dantzig selector. The last contribution of this chapter is given by the
approximation scheme for translated radial functions, where we demonstrated that
one can transfer the approximation idea of ridge functions to other, but similar
function classes.

Let us highlight some open questions which we left out for further research.
First, one can think of the approximation of ridge functions defined on a general
convex domain. By using the so-called Minkowski functional, we hope to transfer
the approximation scheme for the recovery of ridge functions defined on the unit
cube to the more general case.

Second, we have only considered the approximation of ridge functions with uni-
variate ridge profile g. Hence, an interesting open question is the recovery of ridge
functions f defined on the unit cube, which are of the form f(x) = g(Ax) for some
ridge profile g : Rk → R and an unknown (low-rank) matrix A ∈ Rk,d.

Furthermore, also a combination of the 1-bit compressed sensing problem and
the approximation of ridge functions may be of interest, i.e., the recovery of the
sparse signal x from measurements of the form y = sign(g(⟨a, x⟩)). Here the ridge
profile g can be understood as a generalization of the classification model, which
means, the sample points are not separated by a hyperplane anymore, but by the
level set {g = 0}.

Last, one can also discuss the approximation of more general functions of a
similar type. Here we have already discussed translated radial functions, whose
function values depend on the distance to a certain point. This can be further
generalized by considering functions, whose values are given by the distance to a
certain manifold, for instance, to a k-dimensional plane.
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tization for compressed sensing. IEEE 44th Annual Conference on Information
Sciences and Systems (CISS) (2010).

[49] K. Guo, G. Kutyniok, D. Labate. Sparse multidimensional representations using
anisotropic dilation and shear operators. Wavelets and Splines: Athens (2005),
pp. 189–201, Nashboro Press, Brentwood.

[50] K. Guo, D. Labate. Optimally sparse multidimensional representation using
shearlets. SIAM J. Math. Anal, 39 (2007), no. 1, pp. 298–318.

[51] A. Gupta, R. Nowak, B. Recht. Sample complexity for 1-bit compressed sens-
ing and sparse classification. IEEE International Symposium on Information
Theory (ISIT) (2010).
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[69] T. Kühn. A lower estimate for entropy numbers. J. Approx. Theory 110 (2001),
no. 1, pp. 120–124.

[70] G. Kutyniok, D. Labate. Shearlets: Multiscale analysis for multivariate data.
Springer (2012).

[71] J. Li, Y. Yingmin, D. Junping, Y. Fashan. A new support vector machine for
microarray classification and adaptive gene selection. In 2009 IEEE American
Control Conference (2009), pp. 5410-5415.

[72] V. Y. Lin, A. Pinkus. Fundamentality of ridge functions. J. Approx. Theory 75
(1993), no. 3, pp. 295–311.

[73] A. Litvak, A. Pajor, M. Rudelson, N. Tomczak-Jaegermann. Smallest singular
value of random matrices and geometry of random polytopes. Adv. Math. 195
(2005), no. 2, pp. 491–523.

[74] M. Ledoux. The Concentration Of Measure Phenomenon. Math. Surveys
Monogr. 89 (2001), Amer. Math. Soc.

[75] M. Ledoux, M. Talagrand. Probability in Banach Spaces: Isoperimetry and
Processes. Springer, Berlin (1991).

[76] B. P. Logan, L. A. Shepp. Optimal reconstruction of a function from its pro-
jections. Duke Math. J. 42 (1975), no. 4, pp. 645–659.

https://arxiv.org/pdf/1609.09450v1.pdf
https://arxiv.org/pdf/1509.08083v1.pdf


122 BIBLIOGRAPHY

[77] J. Ma. Stable reconstructions for the analysis formulation of ℓp-minimization
using redundant systems. Submitted (2016), available at arXiv:1509.05512.

[78] O. L. Mangasarian. Arbitrary-norm separating plane. Oper. Res. Lett. 24
(1999), no. 1–2, pp. 15–23.
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[87] H. Ohlsson, Y. C. Eldar. On conditions for uniqueness in sparse phase retrieval.
In IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP) (2014), pp. 1841–
1845.

[88] Y. Pati, R. Rezaiifar, P. Krishaprasad. Orthogonal Matching Pursuit: recursive
function approximation with application to wavelet decomposition. In Asilomar
Conf. on Signals, Systems and Comput. (1993).

[89] M. E. Pfetsch, A. Tillmann. The Computational Complexity of the Restricted
Isometry Property, the Nullspace Property, and Related Concepts in Com-
pressed Sensing. IEEE Trans. Inform. Theory 60 (2014), no. 2, pp. 1248–1259.

[90] A. Pietsch. Operator ideals. North-Holland Publishing Co., Amsterdam-New
York (1980).

[91] A. Pietsch. Eigenvalues and s-Numbers. Cambridge University Press, Cam-
bridge (1987).

[92] A. Pinkus. N -widths in approximation theory. Springer, Berlin (1985).

https://arxiv.org/pdf/1509.05512v3.pdf


BIBLIOGRAPHY 123

[93] A. Pinkus. Approximation theory of the MLP model in neural networks. Acta
Numer. 8 (1999), pp. 143–195.

[94] A. Pinkus. Approximating by ridge functions. Surface fitting and multiresolu-
tion methods (1996), pp. 279–292, Vanderbilt Univ. Press, Nashville.

[95] A. Pinkus. N -widths and optimal recovery. Proc. Symp. Appl. Math. 36. (1986),
pp. 51–66.

[96] Y. Plan, R. Vershynin. Robust 1-Bit Compressed Sensing and Sparse Logistic
Regression: A Convex Programming Approach. IEEE Trans. Inform. Theory
59 (2013), no. 1, pp 482–494.

[97] Y. Plan, R. Vershynin. The generalized Lasso with non-linear observations.
IEEE Trans. Inform. Theory 62 (2016), no. 3, pp. 1528–1537.

[98] Y. Plan, R. Vershynin, E. Yudovina. High-dimensional estimation with geomet-
ric constraints. Information and Inference (2016), pp. 1–40.

[99] S. Rolewicz. On a certain class of linear metric spaces. Bull. Acad. Polon. Sci.
Cl. III. 5 (1957), pp. 471–473.

[100] M. Rossi, A. M. Haimovich, Y. C. Eldar. Spatial compressive sensing for
MIMO radar. IEEE Trans. Signal Process. 62 (2014), no. 2, pp. 419–430.

[101] K. Schnass, J. Vyb́ıral. Compressed learning of high-dimensional sparse func-
tions. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP)
(2011), pp. 3924–3927.
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