
CHAPTER 4

More About Con�guring MATSim

Andreas Horni and Kai Nagel

This chapter describes con�guration options that can be used together with the three basic ele-
ments: con�g �le, population and network. Part II discusses various options to extend MATSim
beyond these three elements, sometimes using only additional �les, or using additional JAR
�les beyond the MATSim core JAR �le, by writing “scripts in Java” or by adding or replacing
functionality.

MATSim writes con�guration �les in several locations; for example, in the log�le, in the itera-
tion output directory, or with the CreateFullConfig functionality described in Section 2.1.3. As
explained in Section 2.3, these �les come with comments explaining con�guration options. This is
o�en the best source for con�guration options.

4.1 MATSim Data Containers

4.1.1 Network

The con�g �le section network speci�es which network �le will be used in the simulation
(Section 2.1.3 and 2.2.2.2). Further con�guration options, e.g., speci�cation of time-variant net-
works, are presented in Section 6.1.

4.1.2 Population

The con�g �le section plans speci�es which population �le with its day plans will be used
(Section 2.1.3 and 2.2.2.3). Further con�guration options, e.g., speci�cation of arbitrary agent
attributes or subpopulations, are presented in Section 6.2.

Further MATSim containers are described in Chapter 6.

How to cite this book chapter:
Horni, A and Nagel, K. 2016. More About Con�guring MATSim. In: Horni, A, Nagel, K and

Axhausen, K W. (eds.) The Multi-Agent Transport Simulation MATSim, Pp. 35–44. London: Ubiquity
Press. DOI: http://dx.doi.org/10.5334/baw.4. License: CC-BY 4.0

36 The Multi-Agent Transport Simulation MATSim

4.2 Global Modules and Global Aspects

4.2.1 Controler

The controler is an indispensable module for running MATSim; its parameters are set in the
controler con�g �le section. The MATSim run’s output directory, its number of iterations and
the plans and events output interval can be speci�ed here. The expected mobsim can be de�ned
(Section 4.3). The routing algorithm is de�ned here by using

<module name="controler" >
<param name="routingAlgorithmType" value="{Dijkstra
| FastDijkstra | AStarLandmarks | FastAStarLandmarks}" />
...

</module >

Possibilities for extending the Controler functionality are given in Chapter 45.

4.2.2 Events

Events are continuously generated, reporting on all activities in the mobsim, as discussed in more
detail in Section 45.2.5.

Please note that, besides these mobsim events, there is a less prominent type of events,
namely ControlerEvents, which are created by the Controler to report on its current state.
ControlerEvents are also further explained in Section 45.2.5.

4.2.3 Parallel Computing

MATSim uses multi-threading to accelerate computing speeds. Related con�guration parameters
can be found in several con�g modules; they are combined into one section here.

Global Setting The global section contains

<module name="global" >
<param name="numberOfThreads" value="2" />
...

</module >

This number is used in several places; most importantly, innovative strategies, where multiple
routing requests are distributed to multiple threads.
A good starting point is using the number of available cores.

Parallel Event Handling The con�g �le section parallelEventHandling is used to de�ne the
number of threads used for event handling. As described in Waraich et al. (2009), the simulation
can be substantially accelerated when using multiple threads for the events handling, which can be
a bottleneck in MATSim simulation runs.

Parallel QSim The number of threads for the parallel QSim (cf. Dobler (2013)) can be con�g-
ured by

<module name="qsim" >
<param name="numberOfThreads" value="10" />
...

</module >

More About Configuring MATSim 37

General Recommendations Generally, computations using threads are not necessarily faster
with more threads, which is also true for MATSim. Some experimentation is necessary for each
combination of scenario and hardware. Here are some recommendations:

• For the “global” number of threads, a good starting point is the number of available cores.
• It is no longer possible to switch o� parallel event handling completely; setting it to ‘0’ or ‘null’

or ‘1’ eventually achieves the same result. Setting it to values larger than one sometimes leads
to performance gains, but they are rarely signi�cant.

• The most sensitive parameter is that for the QSim. For somewhat older hardware (e.g., Apple
Macbook Pro from 2010), using all three remaining cores—in addition to the parallel event
handling—led to negligible performance gains but le� the machine useless for interactive tasks
such as normal o�ce work. For new hardware (e.g., Apple Macbook Pro from 2014), using six
of the available eight cores for the QSim can make the mobsim more than a factor of two faster
and the machine can still be used for o�ce tasks. Experiences with older servers show that
one must carefully investigate the number of threads for the mobsim, since using more threads
o�en slows it down (Dobler, 2013). No experiences with new servers are currently available.

• HPCC (High-Performance Computing Clusters) are o�en available to researchers, allowing
access to high-quality machines with reduced management overhead. Typically, one pays for
computation time, either directly, or by a loss of priority, with an amount proportional to the
reserved resources, that is, the time the job took to �nish, multiplied by the number of reserved
cores. In this kind of situation, the number of cores used throughout the whole process should
be stable to avoid paying for unused resources. A recommendation in this case is thus to set the
number of threads for the QSim to the best value (see above), say n, parallel events handling
to 1, the “global” number of threads to n+ 1, and submit the job requesting n+ 1 cores. Also
note that fewer threads are almost always better in terms of throughput. In addition, for both
calibration and “what-if ” scenario exploration, one typically needs to run a large number of
simulations with di�erent parameters or input data. As total RAM memory is usually not an
issue on a cluster, it is o�en more e�cient to run a large number of simulations simultaneously
with a low number of threads, rather than a low number of simulations with lots of threads.

4.2.4 Global

In the con�g �le section global, the simulation’s random seed, the “global” number of Java threads
(see Section 4.2.3) and the coordinate system (cf. Section 2.2.1) can be de�ned. Note that no matter
if you explicitly de�ne the random seed or not, MATSim always starts from a �xed random seed,
which is either the one you de�ne, or an internal constant. That is, if you start the same version
of MATSim twice from the same con�g �le, you will get the same sequence of random numbers,
and thus exactly the same simulation. If you want to change this behavior, you need to change the
random seed explicitly.

4.3 Mobility Simulations

An overview of MATSim mobility simulations is given by Dobler and Axhausen (2011).

4.3.1 QSim

The queue-based and time-step based QSim (Gawron, 1998; Simon et al., 1999; Cetin et al., 2003;
Dobler and Axhausen, 2011; Dobler, 2010) is MATSim’s default mobsim. Its parameters are set in
the qsim con�g �le section. Important parameters are: By specifying

38 The Multi-Agent Transport Simulation MATSim

<param name="numberOfThreads" value="..."/>

QSim can be run in parallel, see Section 4.2.3. Importantly, the qsim parameters

<param name="flowCapacityFactor" value="..." />
<param name="storageCapacityFactor" value="..." />

need to be set accordingly when running sample scenarios. For example, for a 10 % sample, these
factors need to be 0.1.

Currently, QSim is implemented as a single-queue model (see Chapter 50). Back-propagating
gaps as discussed in Section 1.3 are available experimentally (see Section 97.5) and con�gurable
with the parameter

<param name="trafficDynamics" value="..." />

As shown in Section 4.6.1, QSim can handle multimodal scenarios.
A somewhat ancient con�guration parameter is the stuck time. It determines a�er how many

seconds of non-movement a vehicle is moved across an intersection despite violating the storage
constraint of the destination link. This parameter was introduced to resolve grid-locks, i.e., geomet-
rical arrangements where no vehicle can move any more. With the QSim model, it is possible to add
vehicles beyond the storage constraint to an overcrowded link. This corresponds to maintaining a
minimal �ow even under very congested conditions. The default value of this parameter is set to
10, i.e., non-moving vehicles are moved forward a�er 10 simulation time steps of non-movement.
This may seem a rather short time, but systematic investigations (unfortunately never published)
have shown that the simulations become, in comparison to tra�c counts data, less realistic when
this parameter is increased.

4.3.2 JDEQSim

JDEQSim (Waraich et al., 2009) was used for project KTI Frequencies (Balmer et al., 2010). It is is a
Java reimplementation of DEQSim (Waraich et al., 2009; Charypar et al., 2007b, 2009) and provides
parallel event handling, but no parallel simulation (Balmer et al., 2010, p.11). Back-propagating
gaps (Section 1.3) are supported, but tra�c lights, public transport and within-day replanning are
not.

To run JDEQSim, the parameter mobsim of controler con�g �le section must be set to JDEQSim

and a jdeqsim con�g �le section must be provided.

4.4 Scoring

The con�g �le section planCalcScore speci�es the parameters used for scoring agents’ plans
(Section 2.1.3); parameters are explained in Chapter 3.

4.5 Replanning Strategies

Replanning strategies are the basic innovation modules available in MATSim. We do not call them
choice modules, although they are involved in people’s choice making. The choice process is per-
formed over the iterations with an implicit choice set and is not based on explicit probability
function drawing. One can di�erentiate between modules that a�ect the set of plans that each
agent holds, and others that only select between these plans. For a detailed discussion of MATSim
in choice modeling context, see Chapter 49.

More About Configuring MATSim 39

All strategy modules are called by con�guring the strategy module in the con�guration �le as
shown in the following example.

<module name="strategy" >
<parameterset type="strategysettings" >

<param name="strategyName" value="ChangeLegMode" />
<param name="weight" value="0.1" />

</parameterset >
<parameterset type="strategysettings" >

<param name="strategyName" value="TimeAllocationMutator"/>
<param name="weight" value="0.2" />

</parameterset >
<parameterset type="strategysettings" >

<param name="strategyName" value="SelectExpBeta" />
<param name="weight" value="0.7" />

</parameterset >
</module >

Each module is given a weight determining the probability, by which the course of action repre-
sented by the module is taken. The strategy modules’ weights are normalized, in case they do not
sum to one. In this example, each agent changes her leg mode with probability 0.1 and her plan
timing with probability 0.2. Otherwise, the agent chooses a plan from her set of plans according to
a logit model.

By specifying the parameter subpopulation, replanning strategies can be applied to distinct sub-
populations: e.g.,

<parameterset type="strategysettings" >
<param name="strategyName" value="ChangeLegMode" />
<param name="weight" value="0.1" />
<param name="subpopulation" value="urbanTravelers"/>

</parameterset >

In older versions of the con�g �le, you will �nd a deprecated con�guration syntax using
numbered strategy modules.

Please note that combining strategy modules that are extensions (see Section 5.1.1), like destina-
tion innovation together with public transport, may not always work as expected. Combine them
with care and contact the mailing list if you are unsure.

4.5.1 Plans Generation and Removal (Choice Set Generation)

4.5.1.1 Time Innovation

Time innovation is applied by de�ning its parameters in the con�g �le section
TimeAllocationMutator and by adding

<param name="strategyName" value="TimeAllocationMutator" />

plus its weight to the strategy modules.
The module shi�s activity end times randomly within a con�gurable range as described by

Balmer et al. (2005b); Raney (2005).

4.5.1.2 Route Innovation

Route innovation is applied by adding

<param name="strategyName" value="ReRoute" />

plus its weight to the strategy modules, and by specifying the routing algorithm in the controler

con�g �le section (Section 4.2.1). MATSim routing is described by Lefebvre and Balmer (2007).

40 The Multi-Agent Transport Simulation MATSim

4.5.1.3 Mode Innovation

Mode innovation is applied by adding1

<param name="strategyName"
value="{ChangeLegMode | ChangeSingleLegMode |
SubtourModeChoice}" />

plus its weight to the strategy modules. In the con�g �le, a section with one of the mode innovation
strategies needs to be added, i.e.,

<module name="{changeLegMode | changeSingleLegMode |
subtourModeChoice}" >

...
</module >

ChangeLegMode randomly picks one of a person’s plans and changes the mode of transport.
By default, the supported modes are: driving a car and using public transport. Only one
mode of transport per plan is supported. When using di�erent modes for sub-tours on a sin-
gle day, the SubtourModeChoice module is required. Optionally, car availability is respected.
ChangeSingleLegMode randomly picks one of a person’s plans and changes one single leg’s (picked
randomly) mode of transport. In contrast to ChangeLegMode, it allows for multiple modes in one
plan. By default, supported modes are: driving a car and using public transport. Also, this module
can (optionally) respect car availability.

Mode innovation is described by Rieser et al. (2009); Meister et al. (2010); Ciari et al. (2008,
2007).

4.5.1.4 Plans Removal

The maximum number of plans per agent is con�gured by the setting

<module name="strategy" >
<param name="maxAgentPlanMemorySize" value="5" />
...

</module >

If an agent ends up having more plans, MATSim will start removing plans, one by one, until the
maximum number of plans is reached. Plans to be removed are selected by the setting con�gured by

<module name="strategy" >
<param name="planSelectorForRemoval" value="..." />
...

</module >

Starting with release 0.8.x, the con�g �le comments give possible options.
This option is not yet well investigated, cf. Section 97.3. Per default, the plan with the lowest score

is removed if the agent’s memory is full.

4.5.2 Plan Selection (Choice)

Selectors and their weight are also added to the strategy modules

<param name="strategyName" value="KeepLastSelected | BestScore |
SelectExpBeta ChangeExpBeta | SelectRandom | SelectPathSizeLogit" />

1 The names may be changed into ChangeTripMode and ChangeSingleTripMode, please keep your eyes open.

More About Configuring MATSim 41

Selectors work as follows:

• KeepLastSelected keeps the plan selected in the previous iteration.
• BestScore selects the plan with the highest score from the previous iteration.
• SelectExpBeta performs MNL (Multinomial Logit Model) selection between plans. It can be

con�gured by the BrainExpBeta parameter from the scoring con�g group2 being the scale
parameter in discrete choice models, as shown in Equation 49.2. We recommend keeping this
parameter at its default value of 1.0.

• ChangeExpBeta changes to a di�erent plan, with probability dependent on e1score , where 1score
is the score di�erence between the two plans. This will also sample from an MNL (see
Sec. 47.3.2.1).

• SelectRandom performs random selection between the plans.
• SelectPathSizeLogit selects an existing plan according to the path size logit described by Fre-

jinger and Bierlaire (2007). It can be con�gured by the PathSizeLogitBeta parameter from the
scoring con�g group.3 This selector has never been investigated systematically.

Note that the BestScore should be used with care; it tends to get stuck with sub-optimal plans.
Plans badly rated due to a random �uctuation in one single iteration, e.g., a rare tra�c jam, will
never be tested again. Thus, we recommend using this only in conjunction with SelectRandom.

4.5.3 Innovation Switch-O�

For theoretical (Section 47.3.2.3) reasons, it makes sense to eventually switch o� the innovative
modules, thus keeping the set of plans for each agent �xed from then on. This behavior can be
con�gured by

<param name="fractionOfIterationsToDisableInnovation" value="..."/>

It makes sense to use this together with MSA averaging of the scores (Section 3.3.4).

4.6 Other Modes than Car

The MATSim so�ware began with the car mode of transport, since it was then the main mode in
many regions. The idea of integrating other modes has always been a theme.

The following sections describe current MATSim multi-modal capabilities. The material covers
not only options that can be enabled with just con�g options, but also gives an overview of multi-
modal extensions, described in Part II of the book.

4.6.1 QSim Side

4.6.1.1 Multiple Vehicular Modes on the Same Network

The approach described so far fails as soon as more than one vehicle type is involved. Therefore,
recently the ability to allow multiple modes on the same network was introduced. It is de�ned by
the qsim con�g option of type

<module name="qsim">
<param name="mainMode" value="car ,truck ,bicycle" />
...

</module >

2 This is in the scoring config group for historical reasons.
3 Also in the scoring config group for historical reasons.

42 The Multi-Agent Transport Simulation MATSim

This examines the plan leg mode; if that leg mode corresponds to one of the listed main modes, it
will generate a vehicle for that leg and make it enter the network.

It is currently not possible to generate di�erent vehicle types from the con�g alone; one ei-
ther needs to provide a vehicles �le (see Section 6.6 and Section 11.1), or write a script-in-Java
to generate the vehicle �eet (again see Section 11.1).

4.6.1.2 So-Called Teleportation

All modes not registered with the QSim as “main modes” will be teleported. That is, the QSim will,
without problems, process legs such as

<leg mode="pedelec" >
<route type="generic" trav_time="00:14:44" distance="2374" />

</leg>

The QSim will generate a departure event (for events, see Section 2.2.3) a�er the end of the previ-
ous activity and an arrival event 14 minutes and 44 seconds later. The leg will be recorded with a
distance of 2 374 meters. If distance is not used for scoring (cf. Chapter 3), it can also be le� out of
the route (the situation in most set-ups).

4.6.1.3 Explicitly Simulated Passenger Modes

With “driver” modes, such as car, bicycle, or also walk, travelers are also drivers, i.e., the entities
making decisions about turns at intersections, as well as arrivals (or not) on links. With “passenger”
modes, such as public transit or taxi, this changes; for example, the traveler boards a bus, the bus
moves around in the network; the only decision the traveler has to make if she or he wants to get
o� or not at the current stop. The bus, in turn, is a normal participant in the corresponding tra�c
system, i.e., buses and taxis operate on the normal road network and can be caught in the same
congestion as cars and trucks. This is exactly how it works in the MATSim QSim; taxis typically
operate on the same network as cars; pt vehicles may operate on the same network if their routes
are de�ned so that they use the same links as regular cars. In these cases, their interactions are
captured by the simulation.

4.6.1.4 Departure Handlers

It is possible to register a separate departure handler for each mode; see Section 45.2.8 for the
syntax. There are also pre-con�gured extensions using this approach:

• The “multimodal” contribution moves all registered modes on separate, congestion-free net-
works. This is better than teleportation, since the vehicles (or pedestrians) have de�ned
positions at each point in time, meaning that they can also re-plan, e.g., re-route (see Chap-
ter 21).

• The public transport extension moves all registered modes with speci�c public transit vehicles
(see Chapter 16).

• The dynamic transport systems contribution will eventually be able to move a taxicab mode
with taxis (see Chapter 23).

4.6.2 Routing Side

The previous Section 4.6.1 has described how the QSim handles various modes when they are
requested by the plans. Correspondingly, it now needs to be considered how non-car plans, or
more speci�cally non-car routes inside non-car legs, are generated.

More About Configuring MATSim 43

4.6.2.1 Network Modes

The following syntax de�nes modes for which the router should generate network routes,
i.e., routes that contain a sequence of links to follow:

<module name="planscalcroute" >
<param name="networkModes" value="car , truck" />
...

</module >

The above con�guration speci�es that plans containing

<leg mode="car"...>

as well as

<leg mode="truck"...>

will be treated by the network router.
As of the writing of this text, the router will route all these modes on the “car” links of the network.

This means that, say, denominating some links as “car only” or “truck only” will not be picked up
by the current router.4

Note that, per the network �le DTD (Document Type Description), “car” is the default mode of
each link as long as long as the link’s mode �eld is not explicitly �lled.

4.6.2.2 Teleportation ...

... with Teleported Mode Free Speed Factor A con�g entry such as

<module name="planscalcroute" >
<parameterset type="teleportedModeParameters" >

<param name="mode" value="pt" />
<param name="teleportedModeFreespeedFactor" value="2.0" />
<param name="teleportedModeSpeed" value="null" />
<param name="beelineDistanceFactor" value="null" />

</parameterset >
...

</module >

means that if the router encounters a leg with mode pt, it generates a “teleportation” route whose
travel distance is the same as, and travel time is twice that of, a freespeed car route.

This models public transit, assuming it travels along roughly the same routes as a car trip, but
takes twice as long (cf. Reinhold, 2006).

... with Teleported Mode Speed Setting, in the above, something like

<param name="teleportedModeFreespeedFactor" value="null" />
<param name="teleportedModeSpeed" value="4.167" />
<param name="beelineDistanceFactor" value="1.3" />

will, instead, generate a teleportation route whose travel distance is 1.3 times the beeline distance,
and whose travel time is that distance divided by 4.167 meters per second.

This is useful when teleported mode travel times should not change in tandem with car freespeed
travel times, perhaps as a policy change result, or when teleported mode travel times are unrelated

4 Check https://matsim.atlassian.net/browse/MATSIM-330 for developments.

44 The Multi-Agent Transport Simulation MATSim

to car travel times. One disadvantage: this approach does not take obstacles like water or mountain
areas, into account for the teleported modes.

4.6.2.3 Other Routing Options

It is possible to register separate routers for speci�c modes. This syntax is discussed in
Section 45.2.7. The pre-con�gured extensions and contributions discussed in Section 4.6.1.4,
“multimodal”, public transport, taxis, come with corresponding routers.

In addition, the so-called “matrix based pt router” (Chapter 20) uses a list of transit stops and a
matrix of stop-to-stop travel times and travel distances; based on this information, it computes a
teleported walk leg to the next stop, another to the destination stop, and a last teleported walk leg
to the �nal destination.

The matrix-based pt router also illustrates that, given the QSim teleportation capability, it is pos-
sible to come up with arbitrary algorithms for arbitrary modes, as long as they generate (expected)
travel times and (expected) travel distances. As said earlier, the teleportation facility of the QSim
will just use these two attributes at face value. Although with such an approach neither congestion
nor en-route replanning are or can be included, it is �exible and allows a fully modular addition of
arbitrary modes without having to interact with the QSim.

4.6.3 Scoring Side

For all modes mentioned in the plans, a corresponding scoring section must exist. See Section 3.2.1
for an example.

4.7 Observational Modules

4.7.1 Travel Time Calculator

The routing module, for example, needs travel time estimations for all network links. To
keep computational e�ort feasible, travel time estimations need to be aggregated to time bins.
Parameters of this aggregation, such as bin size, can be speci�ed in the con�guration �le section
travelTimeCalculator.

4.7.2 Link Stats

The linkStats con�g �le section can specify the output interval of individual links’ simulation
statistics. It is con�gurable if the simulated volumes are written per iteration or averaged over
multiple iterations. As one of their many functions, link stats are used for comparison with count
values, as introduced in Section 6.3.

