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Zusammenfassung

In dieser Dissertationsschrift wird die numerische Integration von allgemeinen quasi-
linearen differentiell-algebraischen Gleichungen (DAEs) hinsichtlich der numerischen
Simulation von Mehrkörpersystemen untersucht. Basierend auf den Resultaten wur-
den zwei neue Algorithmen zur numerischen Integration allgemeiner Bewegungsglei-
chungen, wie sie in der industriellen Simulation vorherrschen, entwickelt und im-
plementiert. Im Vordergrund dieser Arbeit stehen insbesondere drei Schwerpunkte,
die nachfolgend erläutert werden.
Der erste Schwerpunkt liegt in der Untersuchung quasi-linearer DAEs in ihrer all-
gemeinsten Form. Diese können sowohl über- als auch unterbestimmt sein und ihre
führende Matrix und rechte Seite hängen dabei sowohl vom Zustand als auch von
einer vorgegebenen Steuerfunktion ab. Als Grundlage der Untersuchung wird eine
iterativ arbeitende Prozedur entwickelt, die eine Analyse der DAE ausschließlich
basierend auf relevanten Gleichungen sowie deren Ableitungen erlaubt. Hierdurch
ist der Aufwand gegenüber anderen Analysekonzepten deutlich reduziert. Diese
Prozedur ermöglicht die Bestimmung grundlegender Eigenschaften quasi-linearer
DAEs, insbesondere des maximalen Zwanglevels, was bei regulären DAEs dem
Differentiationsindex gleich kommt. Basierend auf dieser Prozedur wird eine Re-
gularisierungsmethode für allgemeine quasi-lineare DAEs entwickelt, die auf eine
äquivalente DAE führt, welche aufgrund ihrer vorteilhaften Eigenschaften als Basis
einer robusten numerischen Integration sehr geeignet ist. Basierend auf impliziten
Runge-Kutta-Methoden wird ein Diskretisierungsverfahren entwickelt, welches in
effizienter und einfacher Weise die Regularisierung der DAE und das Lösen der
entstehenden linearen Systeme miteinander verbindet.
Die Untersuchung allgemeiner Bewegungsgleichungen für allgemeine mechanische
Mehrkörpersysteme bildet den zweiten Schwerpunkt. Die Ergebnisse vorhergegan-
gener Untersuchungen hinsichtlich allgemeiner quasi-linearer DAEs werden auf die
Bewegungsgleichungen unter größtmöglicher Ausnutzung von Strukturen der Be-
wegungsgleichungen angewandt. Mit Hilfe der Prozedur werden die grundlegen-
den Eigenschaften der Bewegungsgleichungen bestimmt und die Existenz und Ein-
deutigkeit von Lösungen untersucht. Zudem wird eine Regularisierung erarbeitet,
die in einfacher und effizienter Weise durchführbar ist und als Grundlage einer ef-
fizienten und robusten numerischen Integration dient.
Ausgehend von den Resultaten der Untersuchung der Bewegungsgleichungen wer-
den als dritter Schwerpunkt zwei neue Integrationsalgorithmen entwickelt, welche
die Integration allgemeiner, in industriellen Anwendungen vorherrschender Bewe-
gungsgleichungen ermöglichen. Dabei wird, aufbauend auf einer Kombination aus
entwickelter Regularisierungstechnik und Diskretisierung, unter Ausnutzung der
vorherrschenden Struktur eine sowohl robuste als auch effiziente Integration er-
möglicht. Versteckte Zwangsbedingungen wurden dabei ebenso berücksichtigt wie
eventuelle Lösungsinvarianten. Abschließend wird die Effizienz und Robustheit
dieser numerischen Algorithmen anhand mehrerer Anwendungsbeispiele demonst-
riert und mit herkömmlichen numerischen Algorithmen verglichen.
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Abstract

In this thesis we discuss the numerical integration of general quasi-linear differential-
algebraic equations (DAEs) in view of the numerical simulation of multibody sys-
tems. Based on the obtained results we develop and implement two new numerical
algorithms for the numerical integration of general equations of motion as they ap-
pear in industrial applications. This thesis is focused on three topics as elucidated
in the following.
The first topic involves the consideration of quasi-linear DAEs in their most general
form which may be underdetermined or overdetermined. Their leading matrix and
the right-hand side depend on the state as well as on a given control function. As
a base for the analytical considerations we develop an iterative procedure which
enables us to investigate the quasi-linear DAE. This procedure is only based on
relevant equations and their derivatives. This fact reduces the effort significantly
in comparison with the use of other analysis concepts. This procedure allows the
determination of characteristic properties of a quasi-linear DAE, in particular, the
maximal constraint level which corresponds to the differentiation index in case of
regular DAEs. Furthermore, based on this procedure, a regularization technique
for general quasi-linear DAEs is developed. This regularization technique yields an
equivalent DAE which is suited for a robust numerical integration because of its
favorable properties. Based on implicit Runge-Kutta methods we develop a dis-
cretization technique which connects in an efficient and simple way the developed
regularization technique with the solution of the occuring linear algebraic systems.
The investigation of general equations of motion for general mechanical multibody
systems is the second topic of this thesis. The obtained results with respect to
general quasi-linear DAEs will be applied to the equations of motion by maximal
exploitation of their structure. By use of the procedure the characteristic properties
of the equations of motion will be determined and the existence and the uniqueness
of a solution will be discussed. Furthermore, a simple and efficient regularization
technique adapted to the equations of motion will be developed. This serves as a
base for an efficient and robust numerical integration of the equations of motion.
The third topic in this thesis is the development and the implementation of two new
integration algorithms for the numerical integration of equations of motion in their
general form as discussed previously. These algorithms are based on the combina-
tion of the regularization and discretization technique discussed above and exploit
the structure of the equations of motion. Therefore, they allow an efficient and
robust numerical integration. Hidden constraints as well as possible solution invari-
ants are respected. Concluding, the efficiency and robustness of both algorithms
applied to several examples are demonstrated in comparison with other commonly
used numerical algorithms.
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Chapter 1

Introduction

Mechanical systems have played an important role for the development of human
civilization. Simple mechanical systems like the lever, the wheel, or the cable winch
were the first attainments which facilitated the construction of large buildings and
monuments. Further developments to more complex mechanical systems, like doors,
windows, simple bridges, transportation vehicles, or ships were the consequence.
However, all these mechanical systems were built without detailed knowledge about
their dynamical behavior just by trial and error.
But the interest in the understanding and description of dynamical processes was
growing, such that in the 17th century arose a new field of natural science, the
analytical mechanics. Analytical mechanics considers nonrelativistic mechanics of
mass points and rigid bodies. The most famous celebrities related to analytical
mechanics are Galilei1, Huygens2, and foremost, Newton3.
The so-called Newtonian mechanics is mainly based on the three Newton axioms
which were published in 1687 in [128]. The central equation of the Newton me-
chanics is the second Newton axiom F = mẍ which describes the relation between
a force F acting on a mass point with mass m and its acceleration ẍ. This was
the first time in the history of natural science that a mathematical foundation for
the description and mathematical computation of mechanical observations and ex-
periments were avaliable. However, from the current point of view, the Newtonian
mechanics has two disadvantages. First, for the description of constrained motions,
the constraint forces must be computed very laboriously. Therefore, the establish-
ing of the equations is very difficult. Secondly, the transformation from cartesian
coordinates to other coordinates is rather complicated.
In 1788, Lagrange4 published a new concept of analytical mechanics in [110] which
avoids these disadvantages of the Newtonian mechanics. Today it is known as
Lagrangian mechanics and it is more abstract than Newtonian mechanics. The
principle items of the Lagrangian mechanics are the Lagrange equations of type
one and type two. These equations form the basis for further developments in the
mechanics. Because of their simplicity and their simple extension to holonomic as
well as nonholonomic constraints in general, they are one of the most suitable for-
malisms to determine the equations of motion, i.e., the equations which describe
the motion of mechanical systems.
The derivation of the Lagrange equations is based (besides the second Newton ax-

1Galileo Galilei (born 1564 in Arcetri, Italy - died 1642 in Arcetri, Italy)
2Christiaan Huygens (born 1629 in The Hague, Netherlands - died 1695 in The Hague, Nether-

lands)
3Sir Isaac Newton (born 1643 in Woolsthorpe, Lincolnshire, England - died 1727 in London,

England)
4Joseph-Louis Lagrange (born 1736 in Turin, Sardinia-Piedmont (now Italy) - died 1813 in

Paris, France)
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2 CHAPTER 1. INTRODUCTION

iom) on the d’Alembert’s5 principle of virtual displacements, e.g., see [17, 148, 174,
180], that results in the fact that constraint forces do not introduce any work in
the mechanical system, a fact that cannot be derived from Newtonian mechanics.
By application of d’Alembert’s principle the constraint forces disappear from the
equations.
The Lagrangian mechanics can also be derived from the Hamilton6 principle of least
action, e.g., see [17, 148, 174, 180]. Hamilton developed this variational principle
in 1823. It is based on the fact that the motion of a mechanical system acts in an
extreme way. In particular, the Hamilton principle is equivalent to the Lagrange
equations of type two.
However, the derivation of the model equations describing the motion of mechani-
cal systems is not the largest problem in the investigation of mechanical systems.
Rather, the solution of these model equations was and often still is a difficult prob-
lem. Furthermore unfortunately, an analytical solution is only in rarest cases pos-
sible.
Independent of the progress of mathematical modeling of mechanical systems and
the difficulties in the solution of the model equations, the progress in the develop-
ment and in the construction of more and more complex mechanical systems was
unrestricted. Already in 1769 James Watt7 constructed the first industrially ap-
plicable steam engine, which is seen as the first important invention of the 18th
century. In 1771 Richard Trevithick constructed the first locomotive, in 1886 Karl
Benz8 constructed the first automobile, and 1903 was the beginning of modern aero-
nautics with the first motorized flight by Orville9 und Wilbur10 Wright.
But the problem in the computation of the dynamical behavior of complex mechan-
ical systems were unchanged or impossible because of the amount and complexity
of computation. In 1941 Konrad Zuse11 constructed the first electro-mechanical
computer which in its modern form offered the possibility to master the amount
and the complexity of the accruing computations in a numerical way.
In the 60s of the 20th century the demand for more complex and more detailed
models increased. In particular, in the aircraft and space industry such models
were of growing interest. This demand was favored by the development of more
powerful computers which made it possible to handle such large models as they are
necessary in these technologies. The multibody system approach provides the ba-
sic methodology [86, 147, 154] for modeling such mechanical systems. During this
period a new research field of mechanics arose, the multibody dynamics. Favored
by the computer technology, the first numerical formalisms for the description of
multibody systems were developed and presented in [91].
In the 80s the first software packages were developed which include the modeling
as well as the numerical simulation and animations, see [154, 160].
In the last decades the need for automatic multibody system simulators in in-
dustry increased. Therefore, much work has been spent in the numerical treat-
ment of differential-algebraic equations describing the motion of multibody sys-
tems. Considerable advances in the theory and development of computational
methods have brought a variety of codes that have been designed for the au-
tomatic modeling, analysis, and numerical integration of such systems, see, e.g.,
[3, 33, 85, 98, 122, 131, 144, 150, 154, 164].

5Jean d’Alembert (born 1717 in Paris, France - died 1783 Paris, France)
6Sir William Rowan Hamilton (born 1805 in Dublin, Ireland - died 1865 in Dunsink near Dublin,

Ireland)
7James Watt (born 1736 in Greenock, Schottland - died 1819 in Heathfield, England)
8Karl Friedrich Benz (born 1844 in Karlsruhe, Germany - died 1929 in Ladenburg, Germany)
9Orville Wright (born 1871 in Dayton, Ohio, USA - died 1948 in Dayton, Ohio, USA)

10Wilbur Wright (born 1867 in Millville, Indiana, USA - died 1912 in Dayton, Ohio, USA)
11Konrad Zuse (born 1910 in Berlin-Wilmersdorf, Germany - died 1995 in Hünfeld, Germany)
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Today, mechanical multibody systems are used in many applications like vehicle
dynamics, aeronautics, biomechanics, and robotics, e.g., see the journal ’Multibody
System Dynamics’ published from Springer Science+Business Media B.V. and also,
in particular, [11, 86, 147, 154, 166]. While the kinematical and dynamical model-
ing of mechanical systems is well developed and automated, see [1, 41, 147, 156],
the numerical integration of the arising model equations is still a large field under
consideration.
Since in any constrained mechanical system joints connecting bodies restrict their
relative motion and impose constraints on the generalized coordinates, the model
equations, e.g., derived from Lagrangian mechanics, form a system of differential-
algebraic equations, which combine differential and algebraic equations. While the
numerical behavior of ordinary differential equations is well understood, the ana-
lytical and numerical behavior of differential-algebraic equations as well as their
theoretical background are more complicated and quite different from ordinary dif-
ferential equations, see [32, 66, 69, 133].
Obviously, the class of ordinary differential equations is a special case of differential-
algebraic equations and their numerical treatment is well understood. Furthermore,
it was observed that certain classes of differential-algebraic equations create slight
difficulties, while the treatment of other classes of differential-algebraic equations
is more difficult. Therefore, it became necessary to classify differential-algebraic
equations with respect to their difficulties arising in their analytical and numerical
treatment. This classification was done by introduction of several index concepts
[25, 66, 69, 73, 79, 82, 100, 102, 132, 138, 145], which offer a measure of difficulty in
the treatment of differential-algebraic equations. It was observed that differential-
algebraic equations of lower index behave similar as ordinary differential equations.
Consequently, a large variety of numerical methods and software is developed to
integrate lower index problems, e.g., [45, 79, 90, 135]. But the situation is quite dif-
ferent for higher index problems. Here, some problems like order reduction, drift,
hidden constraints, consistency of initial values, and instabilities complicate the
treatment of such systems. Unfortunately, the differential-algebraic equations aris-
ing from mechanical systems are such higher index problems.
A simple discretization of higher index problems typically did not lead to success
and it was necessary to transform the higher index problems to lower index prob-
lems with more convenient properties regarding the numerical treatment. This
process is called regularization of differential-algebraic equations. Consequently,
regarding higher index differential-algebraic equations it becomes necessary to con-
sider discretization methods in connection with some regularization methods. In
the last three decades large effort has been spent in order to investigate differential-
algebraic equations arising from mechanical systems and to avoid the numerical
difficulties mentioned above. Also software has been developed which exploits the
special structure of the systems arising in mechanical systems in several ways, e.g.,
[22, 118, 163, 164].
The aim of this thesis is to consider differential-algebraic equations in quasi-linear
form of an arbitrary high index concerning numerical integration combined with a
regularization strategy. In particular, these considerations are important and very
helpful for the numerical integration of differential-algebraic equations arising in
mechanical systems. These facts enable the development of a numerical code which
integrates the differential-algebraic equations arising in mechanical systems in an
efficient and stable way. Based on the investigations and the developed regulariza-
tion of quasi-linear differential-algebraic equations two new codes will be developed.
Furthermore, the efficiency of these codes will be demonstrated via several mechan-
ical examples.

This thesis is organized as follows. Chapter 2 contains some preliminary results.
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In Section 2.1 we will investigate smooth matrix operations that play an important
role in the investigation of differential-algebraic equations and, in particular, in the
treatment of the model equations arising in mechanical systems. Mainly, we will ex-
tend known results regarding a singular-value-like decomposition for matrix valued
functions depending on several variables. Furthermore, the investigation of general
multibody systems demands the analysis and numerical solution of systems of non-
linear equations. Here, the classification and regularization of redundant systems of
nonlinear equations are important for further investigations, see Section 2.3. In Sec-
tion 2.2 we will develop a convenient notation for the frequently used tensor-vector
multiplication. Furthermore, frequently used definitions and tools from functional
analysis and linear algebra are introduced in Sections A.1 and A.2, respectively.
Chapter 3 is concerned with differential-algebraic equations. In this chapter we will
review and develop the most relevant topics for the analytical and numerical treat-
ment of differential-algebraic equations with respect to the numerical integration of
the equations of motion of multibody systems. In Section 3.1 we will review some
preliminaries. Furthermore, in Section 3.2 we will review several index concepts
of differential-algebraic equations, in particular, the so-called differentiation index
(d-index) and the strangeness index (s-index). Since we will not restrict our investi-
gations to regular differential-algebraic equations where, in particular, the number
of equations equals the number of unknowns, it is necessary that we will base our
investigations on the s-index which generalizes the d-index to such systems which
are allowed to be over- or underdetermined. In our considerations the overdeter-
mined case is of great importance. Furthermore, in Section 3.3 we will consider
different types of linearizations of differential-algebraic equations.
A main topic of this thesis is the regularization of differential-algebraic equations, in
particular, such of quasi-linear form with state depending leading matrix. We will
give an overview of certain commonly used regularization techniques in Section 3.4.
In particular, we will discuss the still widely used regularization by differentiation
of the constraints and the recently developed strangeness concept. Subsequently,
in Section 3.5 we will investigate quasi-linear differential-algebraic equations. In
that section we will develop a procedure which can be used as general tool for
the treatment of quasi-linear differential-algebraic equations. By use of this pro-
cedure it is possible to analyze quasi-linear differential-algebraic equations and to
define the solution manifold, hidden constraints, the minimal reduced derivative
array, and the maximal constraint level. Furthermore, this procedure provides an
approach for a regularization technique of quasi-linear differential-algebraic equa-
tions of an arbitrary index which is similar to the strangeness concept but less
technical in its execution. Furthermore, the regularization of general quasi-linear
differential-algebraic equations based on this concept is discussed in detail. This
regularization technique may be used for the numerical integration, e.g., by use of
Runge12- Kutta13 methods.
We will discuss the numerical integration of quasi-linear differential-algebraic equa-
tions in Section 3.5.4, i.e., we will develop a discretization scheme by use of Runge-
Kutta methods applied to quasi-linear differential-algebraic equations, subsequently,
we will discuss the efficient solution of the arising nonlinear systems by use of a sim-
plified Newton iteration method. In particular, we will discuss the relation between
decomposition techniques for the linear systems arising in the simplified Newton
iteration process and the developed regularization technique. Based on these con-
siderations, we will present a decomposition technique which corresponds to the
discretization of the regularized quasi-linear DAE and therefore, is suitable for the
use of the numerical integration of quasi-linear differential-algebraic equations of

12Carle David Tolmé Runge (born 1856 in Bremen, Germany - died 1927 in Göttingen, Germany)
13Martin Wilhelm Kutta (born 1867 in Pitschen, Upper Silesia (now Byczyna, Poland) - died

1944 in Fürstenfeldbruck, Germany)
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arbitrary high index. Chapter 3 will conclude with an overview over numerical in-
tegration methods that are suited for several types of differential-algebraic systems,
see Section 3.6.
In Chapter 4 we discuss equations of motion of multibody systems arising in indus-
trial applications. In a large part of the literature equations of motion in standard
form are discussed including the dynamical equations of motion according to some
holonomic constraints. But in industrial applications more complex equations arise
which include friction effects, contact force laws, dynamical force elements, non-
holonomic constraints, and in some cases redundant constraints. Therefore, we will
focus our investigations on the most general case including all these features. In
Section 4.1.1 we will briefly discuss the modeling procedure according to Hamilton’s
principle of least action with respect to unconstrained motions. This principle leads
to the Euler14 equations, which form the equations of motion of a free multibody
system as a set of ordinary differential equations. Afterwards, in Section 4.1.2, we
will consider certain types of constraints, in particular, holonomic and nonholonomic
constraints, which restrict the free motion. The consideration of constraints leads
to the Euler-Lagrange equations as a set of differential-algebraic equations. The
modeling procedure will be illustrated by several examples. Another important as-
pect in the numerical integration of dynamical systems are solution invariants, e.g.,
conservation of the total energy or conservation of the impulse, which are satisfied
by every solution of the equations of motion. Unfortunately the numerical solution
in general does not satisfy the solution invariants and, therefore, has to be consid-
ered very carefully as discussed in Section 4.1.4.
The deal of detail in the model equations representing the dynamical behavior of
mechanical systems may be quite different depending on the necessity for different
aspects of the motion and on the wish for information about the motion of mechan-
ical systems. Furthermore, the equations of motion of mechanical systems provide
a high measure of structure which should be exploited during the (numerical) in-
tegration process. Therefore, the model equations should be classified into several
classes depending on the degree of information. In Section 4.1.5 a classification of
the equations of motion is given. It ranges from the very simple form of the state
space equations up to the general form of the equations of motion containing holo-
nomic as well as nonholonomic constraints which may be redundant. Furthermore,
contact points and hydraulic force elements are of great interest in the investiga-
tion of industrial applications. Subsequent to the investigation of the modeling of
mechanical systems, we will investigate the properties of the equations of motion of
the most general form with respect to an efficient and robust numerical integration
in Section 4.2. In particular, in that section we will introduce several assumptions
which guarantee a good behavior of the equations of motion in view of holonomic
and nonholonomic constraints which may be possibly redundant. Furthermore, the
procedure which is introduced in Section 3.5 for general quasi-linear differential-
algebraic equations will be executed for the equations of motion in view of their
regularity properties. Moreover, in Section 4.2 we will discuss the existence and
the uniqueness of the solution of the equations of motion. In Section 4.3 briefly we
will discuss the linearization of the equations of motion. One important property of
the equations of motion is their higher index which complicates a direct numerical
integration. A very popular and widely used (but not recommended) technique for
the reduction of the index is just to replace the constraints by its derivatives. This
leads to a lowered index but to a less restricted solution which yields an unfortu-
nate behavior of the numerical solutions, i.e., the numerical solution drifts away
from the set of solutions. This drift-off phenomenon will be discussed in detail in
Section 4.4. With respect to the results of Sections 4.2 and 4.4 in Section 4.5 we

14Leonhard Euler (born 1707 in Basel, Switzerland - died 1783 in Petersburg, Russia)
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postulate two paradigms which assume important properties of the model equations
obtained from the modeling process and certain important properties of the used
algorithms for the (numerical) integration of the equations of motion. Regarding
the numerical integration of the equations of motion it is important to use a suitable
formulation of the equations of motion which is obtained by several regularization
techniques as basis for a suitable discretization method. In Section 4.6 such reg-
ularization techniques will be discussed. In particular, we direct our attention to
the so-called Baumgarte stabilization and the so-called Gear-Gupta-Leimkuhler for-
mulation of the equations of motion. Both will be generalized to the general form
of the equations of motion, considered here. Furthermore, we will present a new
regularization technique for the equations of motion which bases on a technique
which determines all algebraic constraints that restrict the solution and defines
the so-called solution manifold combined with the selection of the differential part,
which describes the dynamical behavior inside the solution manifold. In this way
the so-called projected-strangeness-free formulation of the equations of motion will
be determined. This corresponds to an equivalent formulation of the equations of
motion which has locally the same set of solutions and is very convenient for the
numerical discretization using numerical methods suitable for the numerical integra-
tion of stiff ordinary differential equations. Chapter 4 concludes with an overview
over numerical integration methods which are suited for the numerical simulation
of mechanical systems.
Based on the obtained results we will present two new numerical integration meth-
ods GEOMS and GMKSSOL for the dynamical simulation of mechanical systems in
Chapter 5. The algorithms GEOMS and GMKSSOL are based on the discretization of
the projected-strangeness-free formulation of the equations of motion by use of the
implicit Runge-Kutta method of type Radau15 IIa of order 5. These algorithms
are constructed for the efficient and robust numerical integration of the equations
of motion of the most general form which often is investigated in industrial ap-
plications, including dynamical force elements, contact points, holonomic as well
as nonholonomic constraints which may be redundant. Furthermore, the algorithm
GEOMS offers the possibility to respect additionally provided information of invariant
solutions such that these can be satisfied in an accurate way also in the numerical
solution. In Sections 5.1 and 5.2 we will describe the features of the codes GEOMS

and GMKSSOL, respectively, and in Section 5.3 we will present several numerical ex-
periments which demonstrate the applicability and the performance of the code.
Finally, in Chapter 6 we will summarize and discuss the obtained results. Further-
more, we will point out several open problems that should be investigated in the
future.

15Rodolphe Radau (born 1835 - died 1911, french astronomer and mathematician)



Chapter 2

Preliminaries

In this chapter we will discuss topics of importance for the consideration of nonlinear
differential-algebraic equations, see Chapter 3, and of nonlinear model equations of
mechanical systems, see Chapter 4. With respect to both topics, very important
aspects are smooth matrix operations, e.g., smooth matrix decompositions, and
the investigation of the properties of systems of nonlinear equations, see Section
2.1 and Section 2.3, respectively. Furthermore, in Section 2.2 we will introduce a
simple notation for particular topics of the tensor calculus as they are useful for
further considerations. Fundamentals associated with nonlinear functional analysis
and fundamentals associated with linear algebra are reviewed in the appendix, see
Section A.1 and Section A.2, respectively.
In the first instance we will introduce the following notation.

Notation 2.0.1 Let f be a differentiable function f : X → Rm, X ⊂ Rn, see
Definition A.1.9, and let x be a differentiable function x : I → Rn, I ⊂ R open.
The (total) derivative of x(t) with respect to t is denoted by ẋ(t) = dx(t)/dt.
Furthermore, higher (total) derivatives with respect to t are denoted by ẍ(t) =
d2x(t)/dt2, ẋ̇̇ (t) = d3x(t)/dt3, and x(i)(t) = dix(t)/dti for i ∈ N0. Note the
convention x(0)(t) = x(t). The (partial) derivative of f(x) with respect to x is
denoted by f,x(x) = ∂

∂xf(x). The same notation is used for differentiable matrix
functions. �

Notation 2.0.2 a) The continuous differentiability of functions and the set of con-
tinuously differentiable functions is defined in Definition A.1.10. Let f : X × Y →
Rm, X ⊂ Rnx , and Y ⊂ Rny , then f ∈ Cl1,l2(X × Y, Rm) if f(·, y) ∈ Cl1(X, Rm) for
all y ∈ Y and f(x, ·) ∈ Cl2(Y, Rm) for all x ∈ X.
b) If the smoothness of a function f : X × Y → R

m with respect to certain compo-
nents is unknown or unimportant, e.g., with respect to the second component, then
we will use the notation f ∈ Cl1,·(X × Y, Rm), and vice versa. �

Notation 2.0.3 Let A = [aij ] ∈ Rl,m and b = [bi] ∈ Rn. Furthermore, let I =
[i1, i2, ..., ip], J = [j1, j2, ..., jq], and K = [k1, k2, ..., kr] be three index vectors with
is ∈ {1, ..., l} for s = 1, ..., p ≤ l, js ∈ {1, ..., m} for s = 1, ..., q ≤ m, and ks ∈
{1, ..., n} for s = 1, ..., r ≤ n. Then we use the notation AIJ and bK for

AIJ =




ai1j1 ai1j2 · · · ai1jq

ai2j1 ai2j2 · · · ai2jq

...
...

. . .
...

aipj1 aipj2 · · · aipjq


 and bK =




bk1

bk2

...
bkr


 ,

respectively. �

7
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2.1 Smooth matrix operations

During the analysis and numerical solution of differential-algebraic equations and,
in particular, of model equations of mechanical systems we will need some matrix
operations with respect to smooth matrix functions. These matrix operations must
fulfill some smoothness requirements. Smooth matrix operations like matrix de-
compositions are considered for example in [46, 73, 99, 146]. In this section we will
recall some notation and important facts and we will generalize and extend some
known results to matrix functions depending on more than one variable.
In the following considerations we will restrict ourselves to the space R

n, although
the following statements may also be valid in more general setting.

Lemma 2.1.1 Let A ∈ Cl(X, Rn,n) where X ⊂ Rnx is an open subset. Furthermore,
let A(x) be nonsingular for all x ∈ X. Then A−1 ∈ Cl(X, Rn,n).

Proof: Since the determinant of A(x) is nonzero for all x ∈ X, the proof follows
directly from the smoothness of the determinant of A(x) and its minors and there-
fore of the adjugate matrix of A(x), see Lemma A.2.8. �

Proposition 2.1.2 Let A ∈ C(X, Rn,n) and let X ⊂ Rnx be an open subset. Suppose
that A(x0) is nonsingular for x0 ∈ X. Then, there exists an ε > 0 sufficiently small
with A(x) nonsingular for all x ∈ X with ||x − x0|| < ε.

Proof: The proof follows from Lemma 2.1.1 using Lemma A.1.7. �

Lemma 2.1.3 Suppose that G ∈ C(X, Rm,n), X ⊂ R
nx , rank(G(x)) = r for all

x ∈ X and let x0 ∈ X. Furthermore, let S ∈ Rr,m be given such that

rank(SG(x0)) = r.

Then there exists an ε > 0 such that

SG ∈ C(X, Rr,n)

and SG(x) has full (column) rank r for all x ∈ X with ||x − x0|| < ε.

Proof: Define A(x) = SG(x)GT (x)ST , then the proof follows from Proposition
2.1.2. �

Theorem 2.1.4 Let A ∈ Cl(I, Rm,n) where I = [t0, tf ] ⊂ R. Furthermore, assume
that rank(A(t)) = r for all t ∈ I. Then, there exist smooth matrix functions U ∈
Cl(I, Rm,m) and V ∈ Cl(I, Rn,n) such that

UT (t)A(t)V (t) =

[
Σ(t) 0

0 0

]
(2.1)

where Σ ∈ Cl(I, Rr,r) is nonsingular for all t ∈ I.

Proof: Since rank(A(t)) = r is constant for all t ∈ I, for each τ0 ∈ I there
exist index sets I ∈ Nr and J ∈ Nr such that the minor [A]IJ(τ0) (of r-th order)
is nonzero, whereas all minors of higher order than r vanish. Furthermore, because
of the smoothness of the minor [A]IJ(τ0), it does not vanish in a neighborhood
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S(τ0, ε0) ⊂ I where S(τ0, ε0) = {τ ∈ I : ||τ − τ0|| < ε0}, ε0 > 0, see Lemma
2.1.1. Therefore, there exist permutation matrices P0 =

[
P01 P02

]
∈ R

m,m with

P01 ∈ Rm,r, P02 ∈ Rm,m−r and Q0 =
[

Q01 Q02

]
∈ Rn,n with Q01 ∈ Rn,r,

Q02 ∈ R
n,n−r defined by the index sets I and J such that

[
PT

01

PT
02

]
A(τ)

[
Q01 Q02

]
=

[
AIJ(τ) AIJ̄ (τ)
AĪJ (τ) AĪJ̄ (τ)

]
,

with AIJ(τ) nonsingular for all τ ∈ S(τ0, ε0). With

UT (τ) =

[
PT

01

−AĪJ(τ)A−1
IJ (τ)PT

01 + PT
02

]
(2.2)

and

V (τ) =
[

Q01 −Q01A
−1
IJ (τ)AIJ̄(τ) + Q02

]
, (2.3)

we have a locally smooth decomposition

UT (τ)A(τ)V (τ) =

[
Σ(τ) 0

0 0

]
,

with nonsingular U ∈ Cl(S(τ0, ε0), Rm,m), V ∈ Cl(S(τ0, ε0), Rn,n) and Σ(τ) =
AIJ(τ) with Σ ∈ Cl(S(τ0, ε0), Rr,r). The smoothness of U and V follows by (2.2),
(2.3), and Lemma 2.1.1.

t

PSfrag replacements
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II III
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V (t)

G(t)
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Figure 2.1: Smooth overlapping

Now, if we have two distinct points τI and τII with S(τI , εI) ∩ S(τII , εII) 6= ∅ we
can define smooth decompositions of A for each interval S(τI , εI) = II = (a, d) and
S(τII , εII) = III = (b, e) separately, where a < b < d < e, see Figure 2.1. Let us
denote them by subscripts I and II such that we have

UT
I (τ)A(τ)VI(τ) =

[
ΣI(τ) 0

0 0

]

for all τ ∈ S(τI , εI) and

UT
II (τ)A(τ)VII(τ) =

[
ΣII(τ) 0

0 0

]

for all τ ∈ S(τII , εII). Furthermore, let c ∈ (b, d) be given. We define the nonsingular
matrix functions

G(τ) =

[
G11(τ) G12(τ)
G21(τ) G22(τ)

]
and H(τ) =

[
H11(τ) H12(τ)
H21(τ) H22(τ)

]
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on τ ∈ [b, d] such that VI(τ) = VII(τ)G(τ) and UI(τ) = UII(τ)H(τ), we get G12(τ) =
0 and H12(τ) = 0, since range(VI2) = range(VII2) and range(UI2) = range(UII2),
respectively. Furthermore, defining a smooth function λ ∈ C l(III , [b, d]) such that

λ(t)

{
= t, for t ∈ [b, c],
∈ [b, d], for t ∈ [c, e],

with the smooth matrix functions V ∈ Cl(II ∪ III , R
n,n) and U ∈ Cl(II ∪ III , R

m,m)
defined by

V (t) =





VI(t), for t ∈ [a, b],
VI(t) = VII(t)G(t), for t ∈ [b, c],
VII(t)G(λ(t)), for t ∈ [c, e],

and

U(t) =





UI(t), for t ∈ [a, b],
UI(t) = UII(t)H(t), for t ∈ [b, c],
UII(t)H(λ(t)), for t ∈ [c, e]

we get the desired smooth decomposition (2.1) of A(t) for all t ∈ II ∪ III with
Σ ∈ Cl(II ∪ III , R

r,r) given by

Σ(t) =





ΣI(t), for t ∈ [a, b],
ΣI(t) = HT

11(t)ΣII(t)G11(t), for t ∈ [b, c],
HT

11(λ(t))ΣII(t)G11(λ(t)), for t ∈ [c, e].

Because of the existence of a finite covering of I by such S(τi, εi) = Ii, i = 1, ..., s,
see Lemma A.1.14, the statement follows. �

Theorem 2.1.5 Let A ∈ Cl(Y, Rm,n) where Y is a convex subset defined by

Y = ([ya
1 , yb

1] × · · · × [ya
ny

, yb
ny

]) ⊂ R
ny . (2.4)

Furthermore, suppose that rank(A(y)) = r for all y ∈ Y. Then there exist U ∈
Cl(Y, Rm,m) and V ∈ Cl(Y, Rn,n) such that

UT (y)A(y)V (y) =

[
Σ(y) 0

0 0

]
(2.5)

where Σ ∈ Cl(Y, Rr,r) is nonsingular for all y ∈ Y.

Proof: We will only present a sketch of the proof. We discretize Ii = [ya
i , yb

i ]
by ID

i = {ya
i = y0

i , y1
i , ..., yni

i = yb
i } for all i = 1, ..., ny such that for every subset

Y ∩
ny⊗
i=1

(yki

i − εki
, yki+1

i + εki
) for all possible ki ∈ {0, ..., ni − 1}, i = 1, ..., ny, with

appropriately given εki
, we have a locally smooth decomposition (2.5) because of

the smoothness and the constant rank of A.
Recursively, for s = 1, ..., ny, in an analogous way as in the proof of Lemma 2.1.4
determine the smooth decomposition for all subsets intersecting in direction ys

resulting in local smooth decompositions (2.5) on the subsets

Y ∩
(

s⊗

i=1

Ii ⊗
ny⊗

i=s+1

[yki

i − εki
, yki+1

i + εki
]

)
.

When the recursion terminates, we have found a global decomposition (2.5) on

Y ∩
ny⊗
i=1

Ii = Y. �
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Theorem 2.1.6 Let A ∈ Cl(X, Rm,n) and let X ⊂ Rnx be Cl-diffeomorphic to a
subset Y as defined in (2.4). Furthermore, suppose that rank(A(x)) = r for all
x ∈ X. Then there exist a nonsingular matrix function U ∈ C l(X, Rm,m) and a
nonsingular matrix function V ∈ Cl(X, Rn,n) such that

UT (x)A(x)V (x) =

[
Σ(x) 0

0 0

]

for all x ∈ X, where Σ ∈ Cl(X, Rr,r) is nonsingular for all x ∈ X.

Proof: Since X is Cl-diffeomorphic to a set Y as defined in (2.4), there exists a C l-

diffeomorphism g ∈ Cl(Y, X). Furthermore, we have A(x) = A(g(y)) = Ã(y) with

Ã ∈ Cl(Y, Rm,n). From Theorem 2.1.5 the existence of a smooth decomposition

ŨT (y)Ã(y)Ṽ (y) =

[
Σ̃(y) 0

0 0

]
,

follows with y ∈ Y. Consequently, with U(x) = Ũ(g−1(x)) = Ũ(y), V (x) =

Ṽ (g−1(x)) = Ṽ (y), and Σ(x) = Σ̃(g−1(x)) = Σ̃(y), we get a globally smooth
decomposition of A(x) on X. �

In [73] the smoothness of orthogonal projections onto the kernel and onto the range
of a matrix function A ∈ Cl(I, Rn,n) is considered.
In the following, we will generalize these results to matrix functions A ∈ C l(X, Rm,n)
depending on more than one independent variable in parameterizable subsets X of
Rnx .

Lemma 2.1.7 Let A ∈ Cl(X, Rm,n) and let X ⊂ Rnx be Cl-diffeomorphic to a subset
Y as defined in (2.4). Furthermore, suppose that rank(A(x)) = r for all x ∈ X.
Then the orthogonal projections onto the kernel, cokernel, range, and corange of A,
respectively, are uniquely defined and as smooth as A, i.e.,

Prange(A) ∈ Cl(Y, Rm,m), Pcorange(A) ∈ Cl(Y, Rm,m),
Pker(A) ∈ Cl(Y, Rn,n), Pcoker(A) ∈ Cl(Y, Rn,n).

(2.6)

Proof: From Theorem 2.1.6, we have the smooth decomposition of A on X with

U(x) =
[

U1(x) U2(x)
]
, with U1(x) ∈ R

m,r, U2(x) ∈ R
m,m−r,

V (x) =
[

V1(x) V2(x)
]
, with V1(x) ∈ R

n,r, V2(x) ∈ R
n,n−r

for all x ∈ X. Using Lemma A.2.11 we get the uniquely defined orthogonal projec-
tions onto the kernel, cokernel, range, and corange of A, respectively, from (1.2) as
follows.

Prange(A)(x) = U1(x)(U1(x)T U1(x))−1U1(x)T , (2.7a)

Pcorange(A)(x) = U2(x)(U2(x)T U2(x))−1U2(x)T , (2.7b)

Pker(A)(x) = V2(x)(V2(x)T V2(x))−1V2(x)T , (2.7c)

Pcoker(A)(x) = V1(x)(V1(x)T V1(x))−1V1(x)T . (2.7d)

The smoothness of the projections (2.7), i.e., (2.6), follows from Lemma 2.1.1. �

Lemma 2.1.8 Let A ∈ Cl(X, Rm,n) and let X ⊂ Rnx be Cl-diffeomorphic to a
subset Y as defined in (2.4). Furthermore, let rank(A(x)) = r for all x ∈ X. Then
A+A ∈ Cl(X, Rn,n) and AA+ ∈ Cl(X, Rm,m).
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Proof: The proof follows directly from Lemma A.2.16 using Lemma 2.1.7. �

Next, we generalize the moving frame algorithm of [146] to general matrix functions
A ∈ Cl(X, Rm,n) independent of an underlying function, i.e., it is not necessary that
there exists a function a ∈ Cl(X, Rm), X ⊂ Rnx , l ≥ 1 such that A(x) = ∂a(x)/∂x
and n = nx.

Algorithm 2.1.9 (Smooth kernel of a smooth matrix function)
Let A ∈ Cl(X, Rm,n) and let X ⊂ Rnx be Cl-diffeomorphic to a subset Y as defined
in (2.4). Furthermore, suppose that rank(A(x)) = r for all x ∈ X. Let x0 ∈ X be
given. Moreover, assume that we have chosen some method for computing a matrix
K̃(x) with orthonormal columns that span the kernel of A(x) at any point x ∈ X.

Of course, K̃ is not expected to be continuous in x. Then in order to compute a
smooth kernel function K at x proceed as follows.

1) compute K̃0 = K̃T (x)K̃(x0) (2.8a)

2) compute the singular value decomposition K̃0 = CΣBT (2.8b)

3) compute K(x) = K̃(x)CBT (2.8c)

The kernel function K is called orthogonal moving frame and the following Lemma
2.1.10 shows that K ∈ Cl(X, Rn,n−r) with range(K(x)) = ker(A(x)) for all x ∈ X.

Lemma 2.1.10 Let A ∈ Cl(X, Rm,n) and let X ⊂ Rnx be Cl-diffeomorphic to a
subset Y as defined in (2.4). Furthermore, suppose that rank(A(x)) = r for all
x ∈ X. Then the matrix function K defined in Algorithm 2.1.9 by (2.8c) is as
smooth as A, i.e., K ∈ Cl(X, Rn,n−r), with range(K(x)) = ker(A(x)) for all x ∈ X.

Proof: From (2.8b) we get the polar decomposition, see Lemma A.2.13, of K̃0 in
the form

K̃0 = QH, (2.9)

with Q = CBT given in (2.8b) and H = BΣBT . It follows that K̃T
0 K̃0 =

HT QT QH = HT H = H2, and from (2.8a) we get

H = (K̃T
0 K̃0)1/2 = (K̃T (x0)K̃(x)K̃T (x)K̃(x0))1/2 (2.10)

is nonsingular. Because of the nonsingularity, we get from (2.9) that Q = K̃0H
−1,

i.e., with (2.8a) and (2.10) we have

Q = K̃T (x)K̃(x0)(K̃T (x0)K̃(x)K̃T (x)K̃(x0))−1/2. (2.11)

The orthogonal projection Pcoker(A)(x) onto the cokernel of A(x) is unique and

from Lemma 2.1.7 it follows that Pcoker(A) ∈ Cl(X, Rn,n). In addition, we have from

Lemma A.2.14 that Pcoker(A)(x) = K̃(x)K̃T (x). Therefore, from (2.11) we get

K(x) = K̃(x)Q = Pcoker(A)(x)K̃(x0)(K̃T (x0)Pcoker(A)(x)K̃(x0))−1/2.

Since K̃T (x0) is independent of x and Pcoker(A) ∈ Cl(X, Rn,n), the assertion follows.
�

Lemma 2.1.11 Let A ∈ Cl(X, Rm,n) and let X ⊂ Rnx be Cl-diffeomorphic to a
subset Y as defined in (2.4). Furthermore, suppose that rank(A(x)) = r for all
x ∈ X. Then there exists B ∈ Cl(X, Rm,m−n) such that the matrix

[
A(x) B(x)

]

is nonsingular for all x ∈ X.
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Proof: From Lemma 2.1.10 the existence of a matrix function K ∈ C l(X, Rn,m−n)
with range(K(x)) = ker(AT (x)) for all x ∈ X follows. Using B(x) = K(x), the
assertion follows. �

Lemma 2.1.12 Let B ∈ Cl1,l2(X1 × X2, R
m,n) with l1, l2 ∈ N0, m ≥ n and let

rank(B(x, y)) = n for all (x, y) ∈ X1 × X2. Then there exists V ∈ Cl1,l2(X1 ×
X2, R

n,m) such that

V (x, y)B(x, y) is nonsingular for every (x, y) ∈ X1 × X2. (2.12)

Proof: Setting V (x, y) = BT (x, y) with V ∈ Cl1,l2(X1 ×X2, R
n,m), we obtain that

V (x, y)B(x, y) = BT (x, y)B(x, y) is nonsingular for every (x, y), since B(x, y) has
full rank for every (x, y) ∈ X1 × X2. �

2.2 Tensor calculus

In the following chapters very often we have to investigate matrix valued functions
and its derivatives. In particular, the differentiation of a matrix valued function
A(x) of size m × n with respect to x ∈ Rnx leads to a tensor of level three. Fur-
thermore, we have to treat the total derivative of A(x(t)) with respect to t. This
leads to a tensor-vector product. Therefore, in the following, we will introduce a
notation for the efficient dealing with such products and we will investigate some
of its properties.

Definition 2.2.1 (Tensor-vector product of higher level) Let T ∈ Rm,n1,...,nl

be a tensor of level l + 1, i.e.,

T = [Tij1j2...jl
], i = 1, ..., m, j1 = 1, ..., n1, ..., jl = 1, ..., nl,

and let xk ∈ Rnl−s+k , k = 1, ..., s ≤ l be vectors. Then we use the notation

v = T [[x1, x2, ..., xs]] = [

nl∑

jl=1

· · ·
nl−s+1∑

jl−s+1=1

Tij1...jl−sjl−s+1...jl
x1

jl−s+1
· ... · xs

jl
]

for the tensor-vector product, where v = [vij1...jl−s
] ∈ Rm,n1,...,nl−s is a tensor of

level l − s + 1.

Note, that the tensor-vector product is performed in such a way that the sum is
taken over the s last indices of the tensor T , as illustrated in the following example.

Example 2.2.2 Let T ∈ Rm,nj ,nk,nl be a tensor of level 4, i.e.,

T = [Tijkl], i = 1, ..., m, j = 1, ..., nj , k = 1, ..., nk, l = 1, ..., nl,

and let x ∈ Rnk and y ∈ Rnl be two vectors. Then we have

v = T [[x, y]] = [

nl∑

l=1

nk∑

k=1

Tijklxkyl]

where v = [vij ] ∈ Rm,nj is a tensor of level 2. �
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Notation 2.2.3 a) In addition to the complete tensor-vector product, we introduce
a partial tensor-vector product in which we will use dots as place holders. For
example, we have for the tensor T ∈ Rm,n1,...,n4 of level 5 and two vectors xk ∈ Rnk ,
k = 2, 3 the relation

v = T [[·, x2, x3, ·]] = [

n3∑

j3=1

n2∑

j2=1

Tij1j2j3j4x
2
j2x

3
j3 ],

where v = [vij1j4 ] ∈ Rm,n1,n4 is a tensor of level 3.
b) If T ∈ R

m,n is a matrix, i.e., a tensor of level 2, and x ∈ R
n is a vector, then the

matrix-vector product can be written as

Tx = T [[x]].

c) Furthermore, if T ∈ C1(Y, Rm,n1,...,nl ), z ∈ Rnl+1 , and xk ∈ Rnk , k = 1, ..., l are
vectors, independent of y ∈ Y ⊂ R

nl+1 , then we use the notation

(T (y)[[x1, x2, ..., xl]]),yz = T,y(y)[[x1, x2, ..., xl, z]],

(T (y)[[x1, x2, ..., xl]]),y = T,y(y)[[x1, x2, ..., xl, ·]].

�

Notation 2.2.4 If T ∈ R
m,n1,...,nl is a tensor of level l+1 and depends on y ∈ R

nl+1

then T,y ∈ Rm,n1,...,nl,nl+1 is a tensor of level l + 2. In particular, for l = 0 and
z ∈ Rn1 we have the relation T,y ∈ Rm,n1 and the product with z can be written as

T,yz = T,y[[z]].

In addition, for an arbitrary l ∈ N, assuming that zi does not depend on yj for all
i, j = 1, ..., k, then we have the relation

((...((T,y1z1),y2z2)...),ykzk) = T,y1y2...yk [[z1, z2, ..., zk]]

= [

nk∑

rk=1

· · ·
n1∑

r1=1

∂kTij1...jl

∂y1
r1
· · · ∂yk

rk

z1
r1
· · · zk

rk
].

�

Lemma 2.2.5 Let T ∈ C2(Rm1 × Rm2 , Rm,n1,...,nl ), then

Ť (z1, z2, y1, y2) = T,z1z2(z1, z2)[[y1, y2]] = T,z2z1(z1, z2)[[y2, y1]]

and

Ť ∈ C0(Rm1 × R
m2 × R

m1 × R
m2 , Rm,n1,...,nl )

with zi, yi ∈ Rmi for i = 1, 2.

Proof: The proof follows directly from Notation 2.2.4 and the Schwarz1 Theorem,
e.g., see [56, 89]. �

1Herrmann Amandus Schwarz (born 1843 in Hermsdorf, Silesia (now Poland) - died 1921 in
Berlin, Germany)
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2.3 Systems of nonlinear equations and manifolds

In this section we will consider the analytical properties of nonlinear systems of
equations

f(x) = 0, (2.13)

where f ∈ Cl(Rn, Rm) is a nonlinear system of functions mapping a vector x ∈ Rn

to a vector y = f(x) ∈ R
m, defined by a system of m nonlinear equations

y = f(x) =




f1(x1, ..., xn)
...

fm(x1, ..., xn)


 .

For the investigation of nonlinear differential-algebraic equations, see Chapter 3,
and for nonlinear model equations of mechanical systems, see Chapter 4, solvability
results for systems of nonlinear equations (2.13) are of great importance. The
following two theorems, see [16], give conditions for the (local) solvability of such
systems of equations.

Theorem 2.3.1 (Implicit Function Theorem) Let f ∈ C1(S((x0, y0), ε0), Rr)
and let S((x0, y0), ε0) be an open neighborhood of the point (x0, y0) in X × Y with
X ⊂ R

r and Y ⊂ R
m. If f(x0, y0) = 0 and if the matrix f,x(x0, y0) is nonsingu-

lar, then there exist a neighborhood S(x0, ε
x
0) of the point x0 in X, a neighborhood

S(y0, ε
y
0) of the point y0 in Y, and a unique function ϕ : S(y0, ε

y
0) → S(x0, ε

x
0)

such that ϕ(y0) = x0 and f(ϕ(y), y) = 0 for all y ∈ S(y0, ε
y
0). Furthermore, ϕ is

continuously differentiable in S(y0, ε
y
0), and its derivative is given by

ϕ′(y) = −
(

∂

∂x
f(ϕ(y), y)

)−1
∂

∂y
f(ϕ(y), y) (2.14)

= −f−1
,x (ϕ(y), y)f,y(ϕ(y), y).

Proof: See [16, 47]. �

Theorem 2.3.2 (General Implicit Function Theorem)
Let f ∈ C1(S((x0, y0), ε0), Rs) and let S((x0, y0), ε0) be an open neighborhood of the
point (x0, y0) in X × Y with X ⊂ R

r and Y ⊂ R
m. If f(x0, y0) = 0, if the matrix

f,x(x0, y0) has rank r, and if the matrix
[

f,x(x0, y0) f,y(x0, y0)
]

has rank r on
S((x0, y0), ε0), then there exist a neighborhood S(x0, ε

x
0) of the point x0 in X, a

neighborhood S(y0, ε
y
0) of the point y0 in Y, and a unique function ϕ : S(y0, ε

y
0) →

S(x0, ε
x
0) such that ϕ(y0) = x0 and f(ϕ(y), y) = 0 for all y ∈ S(y0, ε

y
0). Furthermore,

ϕ is continuously differentiable in S(y0, ε
y
0).

Proof: See [16]. �

The regularity of certain systems of nonlinear equations is a very important fact
in the investigation of differential-algebraic equations and the model equations of
mechanical systems. Therefore, in the following we will develop some basic tools
regarding regularity and redundancy of functions defined by a system of equations.
Since a nonlinear function f : x 7→ y is defined by the system of equations y = f(x)
we use the same notation for both.

Definition 2.3.3 (Regular point) Let f ∈ C1(X, Rm), let X be open in Rn, and
let n ≥ m. A point x0 ∈ X is called regular with respect to the function f if the total
derivative d

dxf(x0) of f with respect to x evaluated at the point x0 has full rank m.
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In the following we will define the terms variety and manifold , see [16].

Definition 2.3.4 (Variety) Let f ∈ C1(X, Rm) and let X be an open subset of R
n.

Then the subset V of Rn, consisting of those points x ∈ X for which f(x) = 0 is
satisfied is called a variety defined by f .
If each point of a variety V has a neighborhood in Rn on which the matrix f,x(x)
has constant rank r < n and if that rank r is the same for all points in V, then the
variety defined by f is called a differentiable variety in Rn.

Definition 2.3.5 (Singular point) Let f ∈ C1(X, Rm) define a variety S ⊂ X

and let X be an open subset of R
n. Then a point x ∈ S is called a singular point if

there does not exist a neighborhood S(x, ε) = {y ∈ S : ||x− y|| < ε} in S with ε > 0
on which the matrix f,x(y) has constant rank r for all points y ∈ S(x, ε). Otherwise,
the point x is called a nonsingular point.

Definition 2.3.6 (Manifold) We say that M ⊂ Rn is a manifold of dimension r
if every point x ∈ M has an open neighborhood in M which is homeomorphic to an
open subset of Rr.

Definition 2.3.7 (Neighborhood of a subset) Let X ∈ Rn. Then Xε = {x ∈
Rn : there exists an y ∈ X with ||x−y|| < ε} defines a neighborhood of the subset
X.

Lemma 2.3.8 Let f ∈ C1(X, Rm) and let X be an open subset of Rn. Let M be
a variety defined by f and let rank(f,x(x)) = r = const for all x ∈ M. Then the
variety M defined by f is a manifold.

Proof: Since rank(f,x(x)) = r is constant for all x ∈ M, for every x0 ∈ M

there exist index sets I ∈ N
r and J ∈ N

r such that the minor [f,x]IJ (x0) (of r-th
order) is nonzero, whereas all minors of higher order than r vanish. Furthermore,
because of the smoothness of the minor [f,x]IJ , it does not vanish in a neighborhood
S(x0, ε0) ⊂ M with S(x0, ε0) = {x ∈ M : ||x− x0|| < ε0}, ε0 > 0, see Lemma 2.1.1.
From the General Implicit Function Theorem 2.3.2 we get the existence of a function
ϕ(xJ̄) such that f(ϕ(xJ̄), xJ̄) = 0 for all xJ̄ ∈ Rn−r. Therefore, for every point
x0 and its corresponding neighborhood S(x0, ε0) we have an homeomorphism ξ :
Rn−r → Rn with

ξ(xJ̄) =

[
ϕ(xJ̄)

xJ̄

]
.

The assertion follows from Definition 2.3.6. �

Remark 2.3.9 Manifolds do not contain any singular points. �

Definition 2.3.10 (Redundancy of a function and a system of equations)
Let f ∈ C1(X, Rm) where X is open in R

n. The function f is called nonredundant
over X if n ≥ m and every point x ∈ X is regular with respect to f . Otherwise the
function is called redundant.
Equivalently, a system of equations f(x) = 0 is called redundant or nonredundant
if the function f is redundant or nonredundant, respectively.

For nonredundant functions f ∈ C1(X, Rm) over X the rank condition rank(f,x(x)) =
m is satisfied for all x ∈ X. Furthermore, one has to distinguish between certain
types of redundancy of a system of equations.
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Definition 2.3.11 (Uniformly redundant function, rank of a function) Let
f ∈ C1(X, Rm) be a redundant function and let X be open in R

n. The function f is
called uniformly redundant over X if the rank of the total derivative of f(x) with
respect to x is constant for all points x0 ∈ X, i.e.,

rank(
d

dx
f(x0)) ≡ r = const

with r < m for all x0 ∈ X. Equivalently, a system of equations f(x) = 0 is called
uniformly redundant if the function f is uniformly redundant. The quantity r is
called the (uniform) rank of the function f or of the system of equations f(x) = 0
over X.

Definition 2.3.12 (Noncontradictory system of equations) A system of equa-
tions f(x) = 0 with f : X → Rm is called noncontradictory if there exists at least
one x0 ∈ X satisfying f(x0) = 0.

Notation 2.3.13 In the following, we will use the term rank both for a matrix (or
a matrix function) as well as for a system of equations. The rank of the system of
equations f(x) = 0 corresponds to the maximal number of nonredundant equations.
In particular, this corresponds to the rank of the total derivative in the set of
solutions, i.e.,

rank(f) = rank(
d

dx
f(x)).

�

Lemma 2.3.14 Let f ∈ Cl(X, Rm) with l ≥ 1 be a uniformly redundant function
with rank r, where X is open in Rn and X0 = {x ∈ Rn : f(x) = 0} ⊂ X. Further-
more, let f(x) = 0 be a noncontradictory system of equations. Then, there exists a
matrix function S ∈ Cl−1(X, Rr,m) such that the function Sf is nonredundant and
the respective system of equations

S(x)f(x) = 0 (2.15)

is noncontradictory for all x ∈ X0 with the same local solution set as f(x) = 0, i.e.,
there exists an ε > 0 such that for every solution y of (2.15) with f(y) 6= 0 we have
||y − x|| > ε for all x satisfying (2.15).

Proof: We have f,x ∈ Cl−1(X, Rm,n). By Theorem 2.1.6 we get the existence of
a matrix function S ∈ Cl−1(X, Rr,m) such that Sf,x ∈ Cl−1(X, Rr,n) has full rank r
for all x ∈ X0. Furthermore, with f(x) = 0 for all x ∈ X0 we have that the partial
derivative of the function S(x)f(x) has the form

∂

∂x
(S(x)f(x)) = S,x(x)[[·, f(x)]] + S(x)f,x(x) = S(x)f,x(x), (2.16)

see also [138]. Then the system of equations S(x)f(x) = 0 is nonredundant by
Definition 2.3.10. Since f(x) = 0 is noncontradictory it follows that S(x)f(x) = 0
is noncontradictory.
Since f,x(x) has constant rank r for all x ∈ X, we get from Lemma 2.3.8 that the
set Mf = {x ∈ X : f(x) = 0} is a manifold of dimension n − r, i.e., it does
not have singular points. By the construction of S(x) the matrix ∂

∂x (S(x)f(x)) has
constant maximal rank r for all x ∈ Mf . Therefore, it follows from Lemma 2.3.8
that Sf with x ∈ Mf describes a manifold MSf = {x ∈ X : S(x)f(x) = 0} of
dimension n− r. Because of Mf ⊂ MSf and dim(Mf ) = dim(MSf ) = n− r we get
the assertion. �

Unfortunately, in (2.15) the solution set of 0 = S(x)f(x) is not identical to the
solution set of 0 = f(x) in general. This is illustrated by the following example.
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Example 2.3.15 Let us consider the set of equations 0 = f(x) with

f(x) =

[
x
x

]

and X = R. Obviously, f(x) is redundant and noncontradictory (and even linear).
The solution set is Mf = {0} and rank(f,x(x)) = 1 for all x ∈ R. The matrix

S(x) =
[

cos(π
4 + x) sin(π

4 + x)
]
∈ R

1,2

has full rank, i.e., rank(S(x)) = 1 for all x ∈ R, and we obtain

0 = S(x)f(x) = (cos(
π

4
+ x) + sin(

π

4
+ x))x,

with the solution set MSf = {0, π/2 + kπ with k ∈ Z}. �

Remark 2.3.16 Let l ∈ N. If f ∈ Cl(X, Rm) with X ∈ Rn and y ∈ Cl(I, Rn) where
y(t) ∈ X0 = {x ∈ Rn : f(x) = 0} for all t ∈ I, then we have

di

dti
f(y(t)) = 0

and with a matrix function S ∈ Cl−1(X, Rr,m) as in Lemma 2.3.14 we have

di

dti
(S(y(t))f(y(t))) = S(y(t))

di

dti
f(y(t))

for all i ∈ {0, ..., l − 1} and if defined also for i = l. �

Lemma 2.3.17 Let f ∈ C1(X × U, Rm) be a set of nonlinear functions which
are uniformly redundant with respect to x. Furthermore, let the set of equations
f(x, u) = 0 be noncontradictory and let rf = rank(f,x(x, u)) for all (x, u) ∈ M =
{(x, u) : f(x, u) = 0}. Then for every matrix function S ∈ C0(X × U, Rm,m) such
that

S(x, u)f,x(x, u) =

[
S1(x, u)
S2(x, u)

]
f,x(x, u) =

[
S1(x, u)f,x(x, u)

0

]

for all (x, u) ∈ M and with S1 ∈ C0(X×U, Rrf ,m) and for all functions x ∈ C1(I, Rn)
and u ∈ C1(I, Rnu) with (x(t), u(t)) ∈ M for all t ∈ I = [t0, tf ] it follows that
S2(x, u) d

dtf(x(t), u(t)) = 0 for all t ∈ I = [t0, tf ].

Proof: Since 0 = f(x, u) is noncontradictory, it follows that

[
f,x f,u

] [ ẋ
u̇

]
= 0

for all functions x(t) and u(t) with (x(t), u(t)) ∈ M for all t ∈ I = [t0, tf ]. It follows

[
S1(x, u)
S2(x, u)

] [
f,x f,u

] [ ẋ
u̇

]
= 0

and
[

S1(x, u)f,x S1(x, u)f,u

0 S2(x, u)f,u

] [
ẋ
u̇

]
= 0

for all functions x(t) and u(t) with (x(t), u(t)) ∈ M for all t ∈ I = [t0, tf ]. Thus, it
follows that

S2(x, u)f,uu̇ = 0
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for all functions x(t) and u(t) with (x(t), u(t)) ∈ M for all t ∈ I = [t0, tf ]. In
particular, it follows that

S2(x, u)
d

dt
f(x(t), u(t)) = S2(x, u)(f,xẋ + f,uu̇) = 0.

�

The numerical solution of systems of nonlinear equations has been investigated ex-
tensively in the literature, e.g., see [42, 94, 130].
The numerical solution of systems of nonlinear equations is necessary for the simu-
lation of multibody systems, but not the main topic of the present work. Therefore,
here only the most relevant results have been presented.

Algorithm 2.3.18 (Newton method) Let f : X → Rn be a continuously dif-
ferentiable map with X ⊂ Rn open and convex and let x0 ∈ X be given. Suppose
that f,x(x) is nonsingular for each x ∈ X. Then proceed as follows.

0) set k = 0 (2.17a)

1) solve N(xk)∆xk = −f(xk) for ∆xk with N(xk) = f,x(xk) (2.17b)

2) set xk+1 = xk + ∆xk (2.17c)

3) increase k by 1 and continue with 1) (2.17d)

The matrix function N defined in (2.17b) is called Newton iteration matrix.

Lemma 2.3.19 Let f : X → Rn be a continuously differentiable map with X ⊂ Rn

open and convex. Suppose that f,x(x) is nonsingular for each x ∈ X. Assume that
the affine covariant Lipschitz2 condition

||f−1
,x (x)(f,x(y) − f,x(x))(y − x)|| ≤ ω||y − x||2

is satisfied for all x, y ∈ X. Let f(x) = 0 have a solution x∗. For the initial guess
x0 assume that S̄(x∗, ||x0 − x∗||) ⊂ X and that

ω||x0 − x∗|| < 2.

Then the sequence {xk} determined by use of the Newton method in Algorithm 2.3.18
remains in the open ball S(x∗, ||x0 − x∗||) and converges to x∗ at an estimated rate

||xk+1 − x∗|| ≤ ω

2
||xk − x∗||2.

Moreover, the solution x∗ is unique in the open ball S(x∗, 2/ω).

Proof: See [42]. �

Algorithm 2.3.20 (Simplified Newton method) Let f : X → Rn be a con-
tinuously differentiable map with X ⊂ Rn open and convex and let x0 ∈ X be given.
Suppose that f,x(x0) is nonsingular for the initial guess x0 ∈ X. Then proceed as
follows.

0) set k = 0 and N0 = f,x(x0)

1) solve N0∆xk = −f(xk) for ∆xk

2) set xk+1 = xk + ∆xk

3) increase k by 1 and continue with 1)

2Rudolf Otto Sigismund Lipschitz (1832 Königsberg, Germany (now Kaliningrad, Russia) -
1903 Bonn, Germany)
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Lemma 2.3.21 Let f : X → Rn be a continuously differentiable map with X ⊂ Rn

open and convex. Suppose that f,x(x0) is nonsingular for the initial guess x0 ∈ X.
Assume that the affine covariant Lipschitz condition

||f−1
,x (x0)(f,x(x) − f,x(x0))|| ≤ ω0||x − x0||

is satisfied for all x ∈ X. Let

h0 = ω0||∆x0|| ≤ 1

2

and define

t∗ = 1 −
√

1 − 2h0, ρ =
t∗

ω0
.

Moreover, assume that S̄(x0, ρ) ⊂ X. Then the sequence {xk} determined by use of
the simplified Newton method in Algorithm 2.3.20 remains in S̄(x0, ρ) and converges
to some x∗ with f(x∗) = 0. The convergence rate can be estimated by

||xk+1 − xk||
||xk − xk−1|| ≤

1

2
(tk + tk−1), k = 1, 2, ...

and

||xk − x∗|| ≤ t∗ − tk
ω0

, k = 0, ...

with t0 = 0 and

tk+1 = h0 +
1

2
t2k, k = 0, 1, ... .

Proof: See [42]. �



Chapter 3

Differential-Algebraic

Equations

In recent years, differential equations in combination with algebraic constraints,
called differential-algebraic equations (DAEs) have gained more and more attention
in the modeling of dynamical processes. In particular, the modeling of complex
mechanical systems leads to differential equations in connection with algebraic con-
straints. While the theory for the numerical integration of purely differential equa-
tions is well developed and a large collection of appropriate solvers are available,
the situation regarding DAEs is more difficult and more complex. In recent years
large efforts have been made to investigate the analytical as well as the numeri-
cal behavior of DAEs. This has lead to a better understanding of DAEs, e.g., see
[7, 25, 43, 73, 79, 82, 105, 172, 173]. While the analytical and numerical behavior
of certain classes of DAEs is well developed, the analytical as well as the numerical
treatment of general nonlinear DAEs or even of quasi-linear DAEs is not yet clear
and many questions of this topic are still untreated or unsolved.
In this chapter we will review and develop important facts on DAEs in view of
the numerical treatment of multibody systems. In particular, we will review the
index concept as well as some regularization techniques. As basis for the treatment
of multibody systems we will discuss in detail quasi-linear DAEs with respect to
their analytical and numerical properties as well as with respect to their numerical
treatment with Runge-Kutta methods.
In Section 3.1 we will review some important facts and definitions which are helpful
for further investigations. Subsequently, in Section 3.2 we will discuss the index
concept for general nonlinear DAEs which allows a classification of DAEs with re-
spect to the degree of difficulties arising in their analytical and numerical treatment.
In particular, the recently developed strangeness concept will be considered in de-
tail. In Section 3.3 we will discuss the linearization of DAEs along an arbitrary
trajectory and its relation to certain properties of DAEs, in particular, with re-
spect to the index. Subsequently, in Section 3.4 we will present some important
regularization techniques for DAEs of higher index. In Section 3.5 we will investi-
gate quasi-linear DAEs in detail. As first instance, we will consider strangeness-free
quasi-linear DAEs in Section 3.5.1. In particular, in Section 3.5.2 we will present a
procedure which provides a general tool for the investigation of general quasi-linear
DAEs of an arbitrary index, in particular, this procedure offers the possibility for
the determination of the index as well as the definition of the hidden constraints,
the maximal constraint level, and the solution manifold. Furthermore, this proce-
dure can be used as basis for a regularization method suited for general quasi-linear
DAEs as discussed in Section 3.5.3. Concluding that section, in Section 3.5.4 we

21
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will discuss the numerical integration of quasi-linear DAEs via Runge-Kutta meth-
ods based on the regularization developed in Section 3.5.3. In particular, we will
investigate the discretization, the numerical solution of the arising nonlinear stage
equations, and in particular, the efficient numerical solution of the linear systems
arising in the integration process. Concluding this chapter we will give an overview
of available and commonly used numerical methods for the numerical integration
of DAEs in Section 3.6.

3.1 Preliminaries

In this section we will review some fundamental facts of importance for further
investigations for differential equations. Consider an initial value problem for the
ordinary differential equations (ODEs)

ẋ(t) = f(x(t), t) (3.1a)

on the domain I = [t0, tf ] with the initial values

x(t0) = x0 ∈ R
n. (3.1b)

Here, the vector function x depending on t of size n denotes the unknown variables
and f is a vector function of the same size n depending on x and t. The existence
and uniqueness of the solutions follows from the Theorem of Picard1 and Lindelöf2.

Theorem 3.1.1 (Picard and Lindelöf) Let f(x, t) be continuous on the com-
pact rectangle

R = {(x, t) : |t − t0| < a, ||x − x0|| < b}, (a, b > 0),

and let f(x, t) be Lipschitz continuous with respect to x with the Lipschitz constant
L, i.e.,

||f(x, t) − f(y, t)|| ≤ L||x − y|| for all (x, t), (y, t) ∈ R.

Then there exists a unique solution x(t) of the initial value problem (3.1) on

I = [t0 − α, t0 + α],

where

α = min

(
a,

b

M

)
with M = max

(x,t)∈R
||f(x, t)||.

Proof: The proof is given in [88]. �

For the numerical simulation of multibody systems, i.e., the numerical integration
of the model equations of mechanical systems, see Chapters 4 and 5, DAEs are
of great importance. Therefore, let us discuss the initial value problem for the
nonlinear DAE

0 = F (x(t), ẋ(t), u(t)), (3.2a)

with F : Rn × Rn × U → Rm on the domain I = [t0, tf ] with initial values

x(t0) = x0 ∈ R
n. (3.2b)

1Charles Emile Picard (born 1856 in Paris, France - died 1941 in Paris, France)
2Ernst Leonard Lindelöf (born 1870 in Helsingfors, Russian Empire (now Helsinki, Finland) -

died 1946 in Helsinki, Finland)
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Note that the right-hand side of (3.2a) depends on an additional variable u(t) ∈
U ⊂ R

nu , which represent control variables which are given as function of t. In
particular, if the investigated system is a nonautonomous system, then there exists
an explicit dependence on t and t will be modeled as a component of the control u,
for example u1(t) = t.
Special forms of DAEs which play an important role in our investigations are linear
DAEs with variable coefficients

E(t)ẋ(t) = A(t)x(t) + k(t), (3.3)

where E, A ∈ C(I, Rm,n), k ∈ C(I, Rm), quasi-linear DAEs of the form

E(x(t), u(t))ẋ(t) = k(x(t), u(t)), (3.4)

where E ∈ C(X × U, Rm,n), k ∈ C(X × U, Rm), X ⊂ R
n and DAEs in partitioned

form

0 = F1(x(t), ẋ(t), y(t), u(t)), (3.5a)

0 = F2(x(t), y(t), u(t)), (3.5b)

with F1 ∈ C(X × X(1) × Y × U, Rm1), F2 ∈ C(X × Y × U, Rm2), X, X(1) ⊂ Rnx ,
Y ⊂ R

ny , and U ⊂ R
nu all in the domain I = [t0, tf ] and with initial values (3.2b).

Quasi-linear DAEs will be considered in more detail in Section 3.5.

Definition 3.1.2 (Solution of DAEs) Consider a system of differential-algebraic
equations of form (3.2a). A function x : I → R

n is called a solution of DAE (3.2a)
if x is sufficiently continuously differentiable and satisfies (3.2a) pointwise. In ad-
dition it is called a solution of the initial value problem (3.2) if x is a solution of
(3.2a) and satisfies (3.2b).

Definition 3.1.3 (Consistency of DAEs, consistency of (initial) values)
The DAE (3.2a) is called consistent if there exists a solution of the DAE (3.2a).
Values y ∈ X ⊂ R

n are called consistent to the DAE (3.2a) if there exists at least
one solution x of the DAE (3.2a) and a t ∈ I with x(t) = y. The initial values
(3.2b) are called consistent to the DAE (3.2a) if there exists at least one solution
x of the initial value problem (3.2).

Notation 3.1.4 With respect to the unknown variables x ∈ X ⊂ Rn we will use
the notation

xi =




x
ẋ
...

x(i)


 ∈ X

i ⊂ R
(i+1)n,

with X0 = X and Xi = Xi−1×X(i), i ∈ N. The set X(i) denotes the set of admissible

x(i)(t) = di

dti x(t). With respect to the control variables u ∈ U ⊂ Rnu we will use
the same notation, i.e.,

ui =




u
u̇
...

u(i)


 ∈ U

i ⊂ R
(i+1)nu ,

with U
−1 = U

0 = U and U
i = U

i−1 × U
(i), i ∈ N. The set U

(i) denotes the set of

admissible u(i)(t) = di

dti u(t). Furthermore, we will use the convention u−1 = u0 = u.
�
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3.2 The index of differential-algebraic equations

The analytical and numerical treatment of DAEs is quite different and more com-
plicated than the one of ODEs, see [133] and in addition [25, 73, 82, 105]. The
investigation of DAEs requires a suitable classification of DAEs according to cer-
tain degrees of difficulty. This requirement leads to the (independent) development
of several index concepts for the classification of different types of DAEs.
Today, the index concept plays a key role in the numerical analysis of DAEs. The
index of a DAE provides a measure of difficulty in the analytical as well as in the
numerical solution. In this section we give a short overview over different index
concepts. For more detailed investigations of the different index concepts and its
relation to each other we refer to the literature cited below.
First attempts for a better understanding of DAEs were done by investigating linear
DAEs (3.3) with constant coefficients E, A ∈ R

n,n. The investigation of such linear
DAEs is related to the investigation of matrix pairs, see [61]. If a transformation of
the linear DAE, i.e., scaling with a nonsingular matrix P ∈ Rn,n and transforming
x(t) = Qy(t) with a nonsingular matrix Q ∈ Rn,n, leads to a linear DAE of the
form

[
I 0
0 N

]
ẏ(t) =

[
J 0
0 I

]
y(t) + Pk(t), (3.6)

where N is a nilpotent Jordan3 block matrix with Nνn = 0 and Nνn−1 6= 0, the
linear DAE (3.3) with constant coefficients is said to be a DAE of index of nilpo-
tency νn. In the style of matrix pairs the index of nilpotency is also known as the
Kronecker4 index and the DAE (3.6) is said to be in Kronecker canonical form. For
more details see [25, 61, 82, 105].
A generalization of the index of nilpotency concerning for linear DAEs (3.3) with
variable coefficients E, A ∈ C(I, Rn,n) is done in [69] and leads to the so-called global
index νg. The idea is similar to the index of nilpotency except that the transforma-
tion matrices P and Q are assumed to be continuous and continuously differentiable,
respectively, i.e., P ∈ C(I, Rn,n), Q ∈ C1(I, Rn,n), and the matrix J is allowed to
depend on t, i.e., J ∈ C(I, Rn1,n1). Then, if the index of nilpotency is constant over
I the global index νg corresponds to the index of nilpotency, i.e., νg = νn.
Furthermore, in [69] a further generalization to general nonlinear DAEs of the
form (3.2a) is given in the way that a system is said to have uniform index νu

if the index of nilpotency of the linear(ized) DAE (3.3) with constant coefficients
E = F,ẋ(x, ẋ, u) and A = F,x(x, ẋ, u) is independent of the points of evaluation.
Then νu = νn.
Rabier and Rheinboldt investigated differential-algebraic equations from a geomet-
rical point of view. They consider a DAE as an ODE on manifolds which are given
by the constraints which restrict the solution. Based on this geometrical point of
view in [138, 145] the geometrical index was introduced.
Griepentrog and März developed in [73] the tractability index (t-index) for linear
DAEs (3.3). An other important class of DAEs are those with properly stated lead-
ing term introduced in [120]. DAEs with properly stated leading term are given in
the form

E(t)
d

dt
(D(t)x(t)) = k(x, t)

3Marie Ennemond Camille Jordan (born 1838 in La Croix-Rousse, Lyon, France - died 1922 in
Paris, France)

4Leopold Kronecker (1823 Legnica, Poland - 1891 Berlin, Germany)
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with E ∈ C(I, Rn,l), D ∈ C(I, Rl,n), ker(E(t)) ⊕ range(D(t)) = Rl for all t ∈ I, and
there exists a projector R ∈ C1(I, Rl,l) such that

range(R(t)) = range(D(t)), ker(R(t)) = ker(E(t))

for all t ∈ I. While the tractability index for linear DAEs with properly stated
leading term is defined in [120] the generalizations to nonlinear DAEs with properly
stated leading term are proposed in [121]. The aim of the tractability index is
the construction of matrix chains for the decoupling of the DAE into characteristic
components. This decoupling is not developed in view of numerical methods, rather,
it is suited for the analytical investigation of the DAE as well as its discretizations.
Furthermore, it is useful for the determination of consistent initial values, see [54,
84], as well as for the determination of the smoothness requirements to the solution
and system matrices and vectors. In particular, the matrices of the constructed
matrix chains allow the analysis of smoothness requirements for the solution.
As a general approach to index and structural analysis of general DAEs F (x, ẋ) = 0,
Campbell introduced the derivative array, which summarizes the original equation
and all its derivatives up to a certain order l in one large system, see [29, 32, 103].
The derivative array with respect to (3.2a) is defined as follows.

Definition 3.2.1 (Derivative array) Let X, X(1) ⊂ Rn and U ⊂ Rnu be given
and let F : (x(t), ẋ(t), u(t)) 7→ F (x(t), ẋ(t), u(t)) be a function in Cs(X × X

(1) ×
U, Rm). Then, the associated derivative array of order l with respect to (3.2a), with
l ≤ s, has the form

0 = Fl(x, ẋ, ..., x(l+1), ul) =




F (x, ẋ, u)
d
dtF (x, ẋ, u)

...
dl

dtl F (x, ẋ, u)


 , (3.7)

where ul(t) =
[

uT (t) · · · (u(l)(t))T
]T ∈ U

l.

A reduced derivative array of level l is denoted by F̌l(x, ẋ, ..., x(l+1), ul) and does
contain the function F (x, ẋ, u) and some of its derivatives, i.e.,

0 = F̌l(x, ẋ, ..., x(l+1), ul) =




F (x, ẋ, u)
d
dtFI1

(x, ẋ, u)
...

dl

dtl FIl
(x, ẋ, u)


 (3.8)

with certain index vectors Ij, j = 1, ..., l, see Notation 2.0.3 for the terms FI1
, ..., FIl

.

Remark 3.2.2 Consider the derivative array 0 = Fl of level l, see (3.7). If we
compute the derivative array of level 1 of 0 = Fl, i.e.,

0 =

[
Fl(x, ẋ, ..., x(l+1), ul)
d
dtFl(x, ẋ, ..., x(l+1), ul)

]
=




F (x, ẋ, u)
...

dl

dtl F (x, ẋ, u)
d1

dt1 F (x, ẋ, u)
...

dl+1

dtl+1 F (x, ẋ, u)




,

then its last block equations (consisting of the last m equations 0 = dl+1

dtl+1 F (x, ẋ, u))
correspond to the last block equations (consisting of the last m equations) of the
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derivative array

0 = Fl+1 =




F (x, ẋ, u)
...

dl

dtl F (x, ẋ, u)
dl+1

dtl+1 F (x, ẋ, u)




of level l + 1 of the original DAE (3.2a). �

From Definition 3.2.1 for general nonlinear DAEs we get the derivative array for
a linear DAE (3.3) in the following form, see also [100]. Let E(t), A(t), and
k(t) in (3.3) be sufficiently smooth. Formal differentiation of (3.3) leads to lin-
ear differential-algebraic equations of the form

El(t)ẋl(t) = Al(t)xl(t) + Kl(t) (3.9)

for any l, where

(El(t))ij =

(
i

j

)
E(i−j)(t) −

(
i

j + 1

)
A(i−j−1)(t), (3.10a)

(Al(t))ij =

{
A(i)(t) for i = 0, ..., l, j = 0,

0 else,
(3.10b)

(Kl(t))i = k(i)(t), (3.10c)

i, j = 0, ..., l. We use the convention that
(

i
j

)
= 0 for i < 0, j < 0 or j > i. The

matrix pairs (El, Al) for l ∈ N0 are called inflated pairs.
Based on the derivative array (3.7) the differentiation index (d-index) is defined as
follows, see [31, 66, 67].

Definition 3.2.3 (Differentiation index) Suppose that (3.2a) is a solvable sys-
tem of differential-algebraic equations on an open set Ω. Let Fl(x, ẋ, z, ul) be the
derivative array defined by (3.7). Let ẋ be considered locally as an algebraic variable
y. If νd is the smallest integer l such that y is uniquely determined by x, ul, and

0 = Fl(x, y, z, ul)

for all consistent values then we call νd the differentiation index (d-index) of the
system of differential-algebraic equations (3.2a).

Unfortunately, the d-index in this form is not suitable for the investigation of general
DAEs. The two following examples demonstrate this fact.

Example 3.2.4 Let us consider the algebraic equation

x2(t) = 0 (3.11)

for t ∈ I = [t0, tf ] as a very special case of a DAE. Following Definition 3.2.3 this
DAE has d-index two, although, one would expect that the d-index is one because it
is an algebraic equation. Let us explain this fact. The first derivative with respect to
t of the DAE yields 2x(t)ẋ(t) = 0 which is not uniquely solvable for ẋ(t), since only
x(t) = 0 is consistent. Further differentiation yields 2ẋ2(t) + 2x(t)ẍ(t) = 0, which
is uniquely solvable for ẋ(t). Because of x(t) = 0 we get ẋ(t) = 0 which yields the
correct solution for the consistent initial value x(t0) = 0. Therefore, the derivative
array of level at least two is necessary to determine ẋ(t) uniquely in x(t) and t for
all consistent values. It follows that the DAE (3.11) has d-index νd = 2. The reason
for this effect is the existence of a multiple root of the algebraic equation.
Analogously, it is possible to show that the equation xn(t) = 0 has d-index νd = n.
�
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Example 3.2.5 Consider the DAE




1 0 0
0 0 x1

0 0 0






ẋ1

ẋ2

ẋ3


 =




x1x2

x2 − 1
x3 − 1


 (3.12)

with X = R3 and t ∈ I. From the last equation we have x3(t) = 1 and it follows
that ẋ3(t) = 0. Inserting this into the second equation we get x2(t) = 1. Inserting
this into the first equation we get ẋ1(t) = x1(t) and the solution of (3.12) is given
by

x1(t) = c1e
t, x2(t) = 1, x3(t) = 1.

The set of consistent values according to Definition 3.2.3 is given by {(x1, x2, x3) ∈
R

3 : x2 = 1, x3 = 1}. Therefore, at least two differentiations, i.e., the derivative
array of level at least two, are necessary such that ẋ(t) can be determined uniquely
from x(t) and t for all consistent values. It follows that the DAE (3.12) has d-index
νd = 2. On the other hand, there is only one differentiation necessary, if the initial

value is x(t0) =
[

0 1 1
]T

with corresponding solution x(t) =
[

0 1 1
]T

. �

In [132] Pantelides developed an algorithm to determine a set of conditions that
consistent initial values of DAEs (3.2a) have to satisfy. Later, this algorithm was
applied to determine the so-called structural index. It is known that the structural
index may be less than the d-index and it has been claimed that the structural
index cannot exceed the d-index, see [25]. But, in [142] it is shown that in contrast
to previous results in the literature the structural index of a DAE with constant
coefficients of d-index 1 may be arbitrarily high.
Recently, a new concept for analytical and numerical treatment of DAEs has been
developed by Kunkel and Mehrmann, see [102, 103, 104, 105]. This concept is known
as strangeness concept and we review this concept applied to linear and nonlinear
DAEs of arbitrarily high index.
Consider a general linear DAE with variable coefficients (3.3) together with an
initial condition (3.2b) on the domain t ∈ I = [t0, tf ]. In [102, 103], it is explained
how to determine an equivalent formulation of the DAE (3.3) with m = n which
contains the same solution set as the DAE (3.3) but has a more suitable structure.
In [104, 106] this approach is generalized to arbitrary m and n.
Let E(t), A(t), and k(t) in (3.3) be sufficiently smooth and let the derivative array
be defined as in (3.9). Based on the inflated pair (3.10), the idea is to classify
linear DAEs with the help of the following hypothesis for linear DAEs with variable
coefficients, see [102, 104, 106].

Hypothesis 3.2.6 Consider a general linear DAE (3.3) with variable coefficients.
Then there exist integers ν, a, d, and v such that the inflated pairs (Eν , Aν) and
(Eν+1, Aν+1) associated with (E, A) have the following properties.
1) For all t ∈ I we have corank(Eν+1(t)) − corank(Eν(t)) = v.
2) For all t ∈ I we have rank(Eν(t)) = (ν+1)m−a−v such that there exists a smooth
matrix function Z23 of size (ν + 1)m × a + v and full rank with ZT

23(t)Eν(t) = 0.

3) For all t ∈ I we have rank(Aν(t)Iν) = a, with Iν =
[

In 0n · · · 0n

]T ∈
R(ν+1)n,n, such that without loss of generality Z23 may be partitioned as Z23 =[

Z2 Z3

]
where Z2 of size (ν+1)m×a and maximal rank such that Â2 = ZT

2 AνIν

has full rank a and ZT
3 AνIν = 0. This implies the existence of a smooth matrix

function T2 of size n × d, d = m − a − v and maximal rank satisfying Â2T2 = 0.
4) For all t ∈ I we have rank(E(t)T2(t)) = d, such that there exists a smooth matrix
function Z1 of size m × d with rank(Ê1(t)) = d for all t ∈ I, where Ê1 = ZT

1 E.
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The existence of the smooth matrix-valued functions Z23, T2, and Z1 is ensured by
Theorem 2.1.6.
Because the model equations of general multibody systems below are nonlinear we
have to review the results according to the strangeness concept regarding general
nonlinear DAEs (3.2a), see [103, 104, 106].
The set of solutions of the derivative array Fν of order ν (3.7) corresponding to
general nonlinear DAEs (3.2a) is defined as

Lν = {(z0, ..., zν+1, u
ν) ∈ R

n × ... × R
n × U

ν : Fν(z0, ..., zν+1, u
ν) = 0}. (3.13)

The following hypothesis was stated in [104] for u(t) = t. Note, that we will use the
convention that corank(F−1,x) = 0.

Hypothesis 3.2.7 Consider a general nonlinear DAE (3.2a). There exist integers
ν, r, a, d, and v such that Lν is not empty, and the following properties are satis-
fied.
1) The set Lν ⊂ R

(ν+2)n+(ν+1)nu forms a manifold of dimension (ν + 2)n + (ν +
1)nu − r.
2) We have rank(Fν,xẋ...x(ν+1)) = r on Lν .
3) We have corank(Fν,xẋ...x(ν+1)) − corank(Fν−1,xẋ...x(ν)) = v on Lν.
4) We have rank(Fν,ẋ...x(ν+1)) = r − a on Lν, such that there exist smooth matrix
functions Z2 and T2 defined on Lν of size (ν + 1)m × a and n × n − a, respec-
tively, having full rank and satisfying ZT

2 Fν,ẋ...x(ν+1) = 0, rank(ZT
2 Fν,x) = a, and

ZT
2 Fν,xT2 = 0 on Lν .

5) We have rank(F,ẋT2) = d = m−a−v on Lν , such that there exists a smooth ma-
trix function Z1 defined on Lν of size m×d having full rank and satisfying ZT

1 F,ẋT2

having full rank on Lν.

Remark 3.2.8 It is important to note that the term ”smooth” in connection to the
matrix functions Z1, Z2, and T2 means smoothness of this matrix functions along
a solution with respect to t, i.e., smooth totally depending on t along a solution,
even if the matrix functions formally are defined on Lν . �

For linear systems (3.3) the Hypothesis 3.2.7 reduces to the Hypothesis 3.2.6. The
assumptions on the DAE (3.2a) made in the Hypothesis are not as restrictive as
they are made for the considerations with respect to the solvability in [31]. Both
hypotheses allow the consideration of redundancies and underdeterminedness. Fur-
thermore, the constant rank assumptions are not required in a neighborhood of the
solution in the entire space but only in a submanifold. In addition less smoothness
of the function F is required. For more details we refer to [104, 105].
Based on the Hypothesis 3.2.7 (and 3.2.6) the strangeness index (s-index) is defined
as follows.

Definition 3.2.9 (Strangeness index, strangeness-free) If the right-hand side
F (x, ẋ, u) of a general nonlinear DAE (3.2a) satisfies Hypothesis 3.2.7, then the
strangeness index (s-index), denoted by νs, is defined to be the smallest integer ν
for which F (x, ẋ, u) satisfies Hypothesis 3.2.7.
If the DAE F (x, ẋ, u) = 0 has vanishing s-index, i.e., νs = 0, then the DAE is called
strangeness-free.

Remark 3.2.10 a) Assume that the coefficients E(t), A(t) of (3.3) satisfy Hypoth-
esis 3.2.6. Then the least ν for which the linear DAE (3.3) satisfies Hypothesis 3.2.6
is the s-index, i.e., νs = ν, of the linear DAE (3.3). A DAE (3.2a) with m = n and
v = 0 is called regular.
b) The quantities r, d, a, v, and, in particular, νs are called characteristic quantities
of the DAE, see [102].
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c) If any Li = ∅ then the DAE (3.2a) does not satisfy Hypothesis 3.2.7 because from
Li = ∅ it follows that Lj = ∅ for all j > i and this is not a manifold, see Definition
2.3.6. In particular, this means that DAEs with contradictory algebraic constraints
are excluded by the Hypothesis 3.2.7. �

Remark 3.2.11 The s-index generalizes the d-index to overdetermined and under-
determined systems. Furthermore, the relation between the d-index and the s-index
for linear DAEs with variable coefficients of the form (3.3) is discussed in [101]. If
the d-index as well as the s-index are well defined, than it is shown that locally the
relation

νs =

{
0 for νd = 0,

νd − 1 for νd > 0

between the s-index and the d-index is satisfied. �

Example 3.2.12 Let us consider the DAE (3.12) which is already investigated in
Example 3.2.5 in view of its d-index. Let us investigate the DAE (3.12) in view of
the Hypothesis 3.2.7. Let us start with ν = 0. For ν = 0 we get that the set of
solutions L0 = {(x, ẋ) ∈ R

3 × R
3 : ẋ1 = x1x2, x1ẋ3 = x2 + 1, x3 = 1} forms a

manifold of dimension 3 = (ν + 2)n + (ν + 1)nu − r with m = n = 3, nu = 0, and
r = 3. Furthermore, we have that the derivative array F0 of level 0 equals the DAE,
i.e., we have

0 = F0 =




ẋ1 − x1x2

x1ẋ3 − x2 + 1
x3 − 1




and we get the partial derivative as

F0,xẋ =




−x2 −x1 0 1 0 0
ẋ3 −1 0 0 0 x1

0 0 1 0 0 0




with rank(F0,xẋ) = 3 = r. Furthermore, we get corank(F0,xẋ)−corank(F−1,x) = 0−
0 = 0 = v. In point 4) of Hypothesis 3.2.7 we have the condition rank(F0,ẋ) = r−a,
but we have that

rank(F0,ẋ) = rank(F,ẋ) = rank(




1 0 0
0 0 x1

0 0 0


) =

{
2 for x1 6= 0
1 for x1 = 0

and therefore rank(F0,ẋ) 6= const and the Hypothesis 3.2.7 is not satisfied for ν = 0.
Increasing ν by one yields the derivative array

F1 =




ẋ1 − x1x2

x1ẋ3 − x2 + 1
x3 − 1

ẍ1 − ẋ1x2 − x1ẋ2

ẋ1ẋ3 + x1ẍ3 − ẋ2

ẋ3




of level 1 with its derivative

F1,xẋẍ =




−x2 −x1 0 1 0 0 0 0 0
ẋ3 −1 0 0 0 x1 0 0 0
0 0 1 0 0 0 0 0 0

−ẋ2 −ẋ1 0 −x2 −x1 0 1 0 0
ẍ3 0 0 ẋ3 −1 ẋ1 0 0 x1

0 0 0 0 0 1 0 0 0




.
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We get that the set of solutions L1 forms a manifold of dimension 3 = (ν + 2)n +
(ν + 1)nu − r with r = 6. Furthermore, we have rank(F1,xẋẍ) = 6 = r and we get
corank(F1,xẋẍ) − corank(F0,xẋ) = 0 − 0 = 0 = v. From point 4) of Hypothesis 3.2.7
we get that rank(F0,ẋẍ) = 4 = r − a = 6 − a and it follows a = 2 and the existence
of the matrix functions ZT

2 of size 2 × 6 and T2 of size 3 × 1 having full rank and
satisfying ZT

2 F1,ẋẍ = 0, rank(ZT
2 F1,x) = a = 2, and ZT

2 F1,xT2 = 0, e.g., with

ZT
2 =

[
0 0 1 0 0 0
0 1 0 0 0 −x1

]
and T2 =




1
0
0


 . (3.14a)

Note that from 0 = F1 it follows that ẋ3 = 0 and, therefore, we have x2 = 1. In the
last point of Hypothesis 3.2.7 the condition rank(F,xT2) = d = m − a − v = 1 has
to be satisfied. We get

rank(F,xT2) = rank(




−x2

0
0


 = rank(




−1
0
0


 = 1

and consequently the existence of the matrix function ZT
1 of size 1 × 3 having full

rank and satisfying rank(ZT
1 F,xT2) = d = 1, e.g., with

Z1 =
[

1 0 0
]
. (3.14b)

Therefore, the DAE (3.12) has s-index νs = 1. �

While the previous index concepts are more or less based on the structure of the
DAE, in [79, 82] the so-called perturbation index (p-index) is introduced, which is a
measure of the sensitivity of the solution with respect to perturbations of the DAE.

Definition 3.2.13 (Perturbation index) The differential-algebraic equation
(3.2a) with u(t) = t has perturbation index (p-index) νp along a solution x(t) on
t ∈ I, if νp is the smallest integer such that, for all solutions y(t) of the perturbed
differential-algebraic equation

F (y, ẏ, t) = δ(t)

with the defect δ(t) there exists on I an estimate

||y(t) − x(t)|| ≤ C
(
||y(t0) − x(t0)|| + max

t0≤ξ≤t
||δ(t)|| + ... + max

t0≤ξ≤t
||δ(νp−1)(t)||

)
,

whenever the expression on the right-hand side is sufficiently small.

Example 3.2.14 Consider a set of differential-algebraic equations of the form

ẋ1 = k1(x1, x2), (3.15a)

0 = k2(x1, x2) (3.15b)

with x1 ∈ X1 ⊂ Rn1 , x2 ∈ X2 ⊂ Rn2 , X1 × X2 = X, and t ∈ I. This special case
is called semi-explicit DAE. If k2,x2

(x1, x2) has a bounded inverse for all (x1, x2) ∈
{(x1, x2) ∈ X1 ×X2 : 0 = k2(x1, x2)}, then the DAE has d-index 1, s-index 0, and
p-index 1. �

The class of semi-explicit DAEs of form (3.15) has been extensively investigated
and is well understood, see for instance [25, 73, 79]. In the fully implicit case the
situation is much more different. As a rule of thumb, the higher the index of a DAE
is, the more complicated is its numerical analysis, and the more careful one has to
be in the numerical solution of the problem. The difficulty in the numerical solution
of high index problems is discussed in [25, 66, 69, 73, 79, 82, 103, 104, 105, 133, 134].
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Lemma 3.2.15 If the nonlinear DAE (3.2a) with m = n is strangeness-free, i.e.,
has vanishing s-index, and rank(F,xẋ(x, ẋ, u)) = n for all (x, ẋ, u) ∈ L0, then the
matrix pair (F,ẋ(x, ẋ, u), F,x(x, ẋ, u)) is regular, i.e., there exists τ ∈ R such that
F,ẋ(x, ẋ, u) + τF,x(x, ẋ, u) is a nonsingular matrix for all (x, ẋ, u) ∈ L0, see (3.13).

Proof: Since the DAE is assumed to be strangeness-free, it satisfies Hypothesis
3.2.7 with ν = νs = 0. Therefore, the associated derivative array is the original
DAE, i.e., F0(x, ẋ, u) = F (x, ẋ, u). From rank(F,xẋ(x, ẋ, u)) = n it follows that v =
0, and for a = n−rank(F,ẋ) and d = n−a we have the existence of a matrix function
Z2 of size n × a satisfying ZT

2 F,ẋ = 0 and rank(ZT
2 F,x) = a, and the existence of a

matrix function T2 of size n × d satisfying ZT
2 F,xT2 = 0. Furthermore, there exists

a matrix function Z1 of size n × d satisfying rank(ZT
1 F,ẋT2) = rank(F,ẋT2) = d.

Therefore, we have that ZT
1 F,ẋT2 of size d × d and that ZT

2 F,xT1 of size a × a are
nonsingular, with T1 ∈ Rn,a such that

[
T1 T2

]
is nonsingular. For 0 6= τ ∈ R

we get

[
ZT

1
1
τ ZT

2

] [
F,ẋ + τF,x

] [
T1 T2

]

=

[
ZT

1 F,ẋT1 + τZT
1 F,xT1 ZT

1 F,ẋT2 + τZT
1 F,xT2

ZT
2 F,xT1 0

]
. (3.16)

Due to the nonsingularity of ZT
1 F,ẋT2 and ZT

2 F,xT1, we get from Proposition 2.1.2
the result for 0 6= τ ∈ R sufficiently small, i.e., the nonsingularity of the matrix on
the right-hand side in (3.16). Furthermore, from (3.16) it follows that the matrices[

Z1
1
τ Z2

]
and, in particular,

[
F,ẋ + τF,x

]
are nonsingular for sufficiently small

τ 6= 0. Then, we get the regularity of the matrix pair (F,ẋ(x, ẋ, u), F,x(x, ẋ, u)). �

Remark 3.2.16 If the s-index of the DAE is higher than zero the statement of
Lemma 3.2.15 does not hold. In [100] the linear DAE (3.3) with

E(t) =

[
0 0
1 −t

]
, A(t) =

[
−1 t
0 0

]

is given. This DAE is of s-index one with a unique solution, but the matrix pair
(F,ẋ(x, ẋ, u), F,x(x, ẋ, u)) = (E(t),−A(t)) is singular for all t. �

Remark 3.2.17 In general, additionally to the constraints explicitly occurring in
the DAE, the solution of higher index DAEs is restricted by constraints which are
hidden in the DAE, i.e., they are not explicitly stated. These constraints impose
additional consistency conditions on the initial values and provoke severe difficulties
in the direct numerical integration of DAEs of higher index, see [25, 66, 69, 73, 79,
82, 133, 134, 166]. The consideration of such hidden constraints is done in detail
for quasi-linear DAEs in Section 3.5. �

3.3 Linearization of differential-algebraic equations

Let us discuss the linearization of DAEs (3.2a) in a function space along a reference
trajectory x̄(t) which does not necessarily have to be a solution of the original DAE
(3.2a). The linearization in function space is called quasi-linearization, see [30, 52].
For x(t) = x̄(t) + x̂(t) we get from (3.2a) that

0 = F (x̄(t) + x̂(t), ˙̄x(t) + ˙̂x(t), u).
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From the Taylor5 expansion we get

0 = F (x̄(t), ˙̄x(t), u) + F,x(x̄(t), ˙̄x(t), u)x̂ + F,ẋ(x̄(t), ˙̄x(t), u) ˙̂x(t) + Φ.

Here, Φ sums up all expressions which contain higher order terms, i.e., which contain
terms with x̂i ˙̂xj with i + j ≤ 2. Neglecting the higher order terms Φ, we get a
linearization of (3.2a) in the form (3.3) with

E(t)=F,ẋ(x̄(t), ˙̄x(t), u), A(t)=−F,x(x̄(t), ˙̄x(t), u), k(t)=−F (x̄(t), ˙̄x(t), u), (3.17)

and x in (3.3) corresponds to x̂.

Remark 3.3.1 Note that in the case of x̄(t) being a solution of (3.2a) the inho-
mogeneity k(t) equals zero, and in the case that x̄(t) and u(t) are constant with
respect to t we get a linear DAE with constant matrices E and A. �

linearizationlinearization

differentiation

differentiation

PSfrag replacements

0 = F (x, ẋ, u) 0 = Fl(x, ẋ, ..., x(l+1), ul)

E(t)ẋ(t) = A(t)x(t) + k(t) E(t)ż(t) = A(t)z(t) + K(t)

nonlinear DAE (3.2a)

linear DAE (3.3) with (3.17)

derivative array (3.7)

lin. derivative array (3.9), (3.17)

Figure 3.1: Linearization and differentiation of nonlinear DAEs

The linearization of DAEs along solutions of (3.2a) is discussed in [30]. There,
it is shown that the linearization of the derivative array (3.7) along a constant
solution yields the same as the derivative array based on the linearization along a
constant solution of the nonlinear DAE (3.2a). However, a more general result can
be obtained independent of the kind of chosen reference trajectory, see Figure 3.1
and the following Lemma 3.3.2.

Lemma 3.3.2 Let the derivative array (3.7) of the DAE (3.2a) and the lineariza-
tion of this derivative array along an arbitrary reference trajectory x̄ and its deriva-
tives x̄(i) with respect to t be well defined. Then the derivative array (3.9) of the
linearized DAE (3.3) with (3.17) is well defined and identical to the linearized deriva-
tive array of the original DAE (3.2a) along the reference trajectory x̄ and its deriva-
tives x̄(i) with respect to t.

Proof: Consider the DAE (3.2a) and its derivative array (3.7) of level 1, i.e.,
with l = 1,

0 = F1(x, ẋ, ẍ, u1) =

[
F (x, ẋ, u)

F,x(x, ẋ, u)ẋ + F,ẋ(x, ẋ, u)ẍ + F,u(x, ẋ, u)u̇

]
.

For x = x̄ + x̂, the linearization along the reference trajectory x̄(t) yields

0 =

[
F̄,x F̄,ẋ 0

(F̄,x ˙̄x + F̄,ẋ ¨̄x + F̄,uu̇),x (F̄,x ˙̄x + F̄,ẋ ¨̄x + F̄,uu̇),ẋ F̄,ẋ

]


x̂
˙̂x
¨̂x


 (3.18)

+

[
F̄

F̄,x ˙̄x + F̄,ẋ ¨̄x + F̄,uu̇

]
.

5Brook Taylor (born 1685 in Edmonton, Middlesex, England - died 1731 in Somerset House,
London, England)
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Note that the partial derivatives of the function F in (3.18) are evaluated along
the reference trajectory x̄ and its derivative ˙̄x. This is denoted by a bar on top,
i.e., F̄,x = F,x(x̄, ˙̄x, u), F̄,ẋ = F,ẋ(x̄, ˙̄x, u), and F̄,u = F,u(x̄, ˙̄x, u). For the first two
entries of the last block row we get with Notation 2.2.3 and Lemma 2.2.5 that

(F̄,x ˙̄x + F̄,ẋ ¨̄x + F̄,uu̇),x = (F̄,x ˙̄x),x + (F̄,ẋ ¨̄x),x + (F̄,uu̇),x

= F̄,xx[[ ˙̄x, ·]] + F̄,ẋx[[¨̄x, ·]] + F̄,ux[[u̇, ·]]
= F̄,xx[[·, ˙̄x]] + F̄,xẋ[[·, ¨̄x]] + F̄,xu[[·, u̇]]

=
d

dt
F̄,x

and

(F̄,x ˙̄x + F̄,ẋ ¨̄x + F̄,uu̇),ẋ = (F̄,x ˙̄x),ẋ + (F̄,ẋ ¨̄x),ẋ + (F̄,uu̇),ẋ

= F̄,xẋ[[ ˙̄x, ·]] + F̄,x + F̄,ẋẋ[[¨̄x, ·]] + F̄,uẋ[[u̇, ·]]
= F̄,ẋx[[·, ˙̄x]] + F̄,x + F̄,ẋẋ[[·, ¨̄x]] + F̄,ẋu[[·, u̇]]

=
d

dt
F̄,ẋ + F̄,x.

Therefore, the linearization (3.18) of the derivative array is in the form

0 =

[
F̄,x F̄,ẋ 0
d
dt F̄,x

d
dt F̄,ẋ + F̄,x F̄,ẋ

]


x̂
˙̂x
¨̂x


+

[
F̄

F̄,x ˙̄x + F̄,ẋ ¨̄x + F̄,uu̇

]
,

which is equivalent to

[
F̄,ẋ 0

d
dt F̄,ẋ + F̄,x F̄,ẋ

] [
˙̂x
¨̂x

]
=

[
−F̄,x 0
− d

dt F̄,x 0

] [
x̂
˙̂x

]
(3.19)

−
[

F̄
F̄,x ˙̄x + F̄,ẋ ¨̄x + F̄,uu̇

]
.

With (3.17) this corresponds to

[
E(t) 0

Ė(t) − A(t) E(t)

] [
˙̂x
¨̂x

]
=

[
A(t) 0

Ȧ(t) 0

] [
x̂
˙̂x

]
+

[
k(t)

k̇(t)

]
,

which is exactly the derivative array of level 1 for the linearized DAE (3.3) with
(3.17).
The proof for arbitrary l > 1 follows inductively according to Remark 3.2.2. �

Remark 3.3.3 a) Note that until this point the linearization along an arbitrary
trajectory has been considered. In principle, it is not necessary to require that the
reference trajectory is a solution. However, one has to be very careful with respect
to the choice of the reference trajectory. It is important that all characteristic
quantities (see Remark 3.2.10b) of the DAE along the reference trajectory are the
same as along the set of solutions Lνs

. In particular, the d-index is not invariant
under linearization along a trajectory. A counterexample is given in [30] and another
one is given in the following Example 3.3.4.
b) The linearization along a solution, in particular, along an equilibrium state (which
is constant), offers the possibility for the investigation of local stability properties
of DAEs, see [73, 119, 175]. �
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Example 3.3.4 Consider the DAE in Example 3.2.5. The linearization along the

solution x̄ =
[

0 1 1
]T

yields




1 0 0
0 0 0
0 0 0






˙̂x1
˙̂x2

˙̂x3


 =




1 0 0
0 1 0
0 0 1






x̂1

x̂2

x̂3


 ,

which is of d-index one and not two. �

3.4 Regularization of differential-algebraic equa-

tions of higher index

It is known that, in general, the direct discretization of higher index DAEs may lead
to wrong results, e.g., suffering from drift-off phenomena, instabilities, or order re-
duction, see [25, 73, 79, 82, 105, 133, 134]. Therefore, in the numerical integration
of DAEs not only the discretization schemes have to be analyzed but also a variety
of equivalent transformations of the DAE often called stabilization or regulariza-
tion techniques. In the following, we will discuss some stabilization techniques for
nonlinear DAEs of the form (3.2a).
One of the first ideas to stabilize DAEs was given by Baumgarte in [18] for DAEs
arising in multibody dynamics (see Section 4.6.1.2) and for the stabilization of
ODEs with invariants in [19]. Furthermore, Gear considered the stabilization of
ODEs with invariants [65]. Further ideas are for instance lowering the index by
differentiation of the constraints [25, 66, 82, 164], singularly perturbed problems
[97, 114, 117], and the recently developed strangeness concept [102, 103, 104, 105].

3.4.1 Regularization by differentiation

A first idea for the regularization of a DAE of higher index is to lower the in-
dex by replacing the constraints (if explicitly available) by their derivative(s) with
respect to t. In fact, it is possible to lower the index in this way but differenti-
ation neglects some constants which are deleted by the differentiation in the con-
straints. Neglecting these constants leads to the so-called drift-off phenomenon, see
[25, 59, 82, 164, 167, 170]. This phenomenon means that due to round-off errors
or inconsistent initial values with respect to the original DAE the solution drifts
away from the set of solutions during the numerical integration. The obtained ap-
proximation to the solution is consistent with the regularized DAE but it is not
consistent with the originally given DAE.
The drift-off phenomenon is discussed in more detail with respect to the model
equations arising in multibody dynamics in Section 4.4.
A way out of this dilemma is given in [66]. There, the idea is to differentiate the
constraints as many times as it is necessary to determine an ODE in the unknowns
x and its derivative ẋ from the reduced derivative array (3.8). As mentioned above,
explicit information about the solution restrictions is lost but the constraints re-
main as invariants in the obtained ODE. In order to enforce the numerical solution
to satisfy all constraints, the idea is to consider the obtained ODE and all con-
straints simultaneously. But this leads to an overdetermined system, although it
is consistent for solutions of the original DAE. To avoid this overdeterminacy, the
introduction of additional variables is proposed in [65]. It is shown that the solution
associated with these additional variables is zero.
Furthermore, it is not necessary to differentiate the constraints as many times as
one needs to get an ODE. Rather, it is possible to lower the index by a certain
number of differentiations. This does not lead to an ODE, but to a DAE of lower
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index than the original DAE.
One should note that this procedure may not always be practical or suitable, but
in some problems the structure of the equations is such that the manipulations are
simple. For instance, the structure of the model equations of mechanical systems
makes it possible to carry out these manipulations in a simple way which leads to
the so-called Gear-Gupta-Leimkuhler formulation, see Section 4.6.2.1.

3.4.2 The strangeness-concept

According to Hypothesis 3.2.6 we define the linear DAE




Ê1(t)
0
0


 ẋ(t) =




Â1(t)

Â2(t)
0


x(t) +




k̂1(t)

k̂2(t)

k̂3(t)


 , (3.20)

where

Ê1 = ZT
1 E, Â1 = ZT

1 A, k̂1 = ZT
1 k,

Â2 = ZT
2 Aνs , k̂2 = ZT

2 Kνs ,

k̂3 = ZT
3 Kνs .

By construction it follows that this DAE is strangeness-free. Furthermore, it follows
from Hypothesis 3.2.6 that all solutions of the linear DAE (3.3) are also solutions
of (3.20), and in [102] it has been shown that in addition all solutions of (3.20) are
also solutions of (3.3). Therefore, both formulations are equivalent in the sense that
they have the same solution set and (3.20) represents a regularization of the linear
DAE (3.3). This yields the following definition.

Definition 3.4.1 (Linear equivalent strangeness-free formulation) If the
linear DAE (3.3) satisfies the Hypothesis 3.2.6 with s-index νs, then the associated
linear DAE (3.20) is called equivalent strangeness-free formulation of the linear
DAE (3.3).

With respect to general nonlinear DAEs (3.2a) we can define an analogous formu-
lation as follows.

Definition 3.4.2 (Equivalent strangeness-free formulation) If the nonlinear
DAE (3.2a) satisfies the Hypothesis 3.2.7 with s-index νs, then the associated DAE

0 = ZT
1 F (x(t), ẋ(t), u(t)), (3.21a)

0 = ZT
2 Fνs

(x(t), ẋ(t), ..., x(νs+1)(t), uνs(t)) (3.21b)

is called equivalent strangeness-free formulation of the nonlinear DAE (3.2a).

Even though the derivative array Fνs
of level νs does depend in addition to the un-

known variables x, its derivative ẋ, and the control variables u also on ẍ, ..., x(νs+1)

and u̇, ..., u(νs), the equivalent strangeness-free formulation only depends on the un-
known variables x, its derivative ẋ, and the control variables u. This is obtained by
the particular choice of the matrix function Z2 as stated in Hypothesis 3.2.7.

Remark 3.4.3 In [104] two theorems are presented which prove that the solution
set of the DAE (3.2a) and the solution set of (3.21) locally are identical. Here, the
term ”locally” means locally with respect to all variables x, ẋ, and u in the set of
solutions Lνs

.
However, together with Remark 3.2.8 it cannot be guaranteed in general that the two
solution sets are equal. Indeed caused from the particular global choice of the matrix
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functions Z1 and Z2 smoothly depending on x, ẋ, ..., x(νs+1), and uνs independent
of a solution the solution set of the equivalent strangeness-free formulation (3.21)
can be larger than the solution set of the original DAE (3.2a). �

Example 3.4.4 Let us consider the DAE (3.12), i.e.,




1 0 0
0 0 x1

0 0 0






ẋ1

ẋ2

ẋ3


 =




x1x2

x2 − 1
x3 − 1


 , (3.22)

with X = R3 and t ∈ I which is already investigated in Example 3.2.5 in view
of its d-index and in Example 3.2.12 in view of its s-index and where we have
found that the DAE (3.22) has d-index νd = 2 and s-index νs = 1. Furthermore,
in Example 3.2.12 we did already determine the matrix functions ZT

1 and ZT
2 in

(3.14). Therefore, we obtain the equivalent strangeness-free formulation (3.21) of
the DAE (3.22) by

0 =

[
ZT

1 F
ZT

2 F1

]
=




ẋ1 − x1x2

x3 − 1
(x1ẋ3 − x2 + 1) − x1(ẋ3)


 =




ẋ1 − x1x2

x3 − 1
−x2 + 1




consisting of d = 1 differential equations and a = 2 algebraic equations. �

3.5 Quasi-linear differential-algebraic equations

In this section we will investigate in detail quasi-linear DAEs of the form

E(x(t), u(t))ẋ(t) = k(x(t), u(t)), (3.23)

where E ∈ C(X × U, Rm,n) is called leading matrix of the quasi-linear DAE and
k ∈ C(X × U, Rm) is called right-hand side of the quasi-linear DAE, X ⊂ Rn and
U ⊂ Rnu . Furthermore, we call x ∈ C1(I, Rn) the unknown variables and the
functions u ∈ C(I, Rnu) are given control variables.
Furthermore, we will investigate semi-implicit DAEs of the form

E1(x(t), u(t))ẋ(t) = k1(x(t), u(t)), (3.24a)

0 = k2(x(t), u(t)) (3.24b)

as special case of a quasi-linear DAE (3.23), where E1 ∈ C(X × U, Rm1,n), k1 ∈
C(X × U, Rm1), k2 ∈ C(X × U, Rm2), and x ∈ C1(I, Rn). If the leading matrix in
(3.24a) satisfies E1(x, u) =

[
I 0

]
then the DAE (3.24) corresponds to a semi-

explicit DAE (3.15).
In view of the treatment of the model equations of mechanical systems, see Chapter
4, the class of DAEs in Hessenberg6 form plays an important role. A quasi-linear
DAE (3.23) is in Hessenberg form of order r ≥ 2 if it can be written as

ẋ1 = k1(x1(t), x2(t), ..., xr−1(t), xr(t), u(t)), (3.25a)

ẋi = ki(xi−1(t), ..., xr−1(t), u(t)), i = 2, ..., r − 1, (3.25b)

0 = kr(xr−1(t), u(t)) (3.25c)

with (∂kr/∂xr−1) · (∂kr−1/∂xr−2) · ... · (∂k2/∂x1) · (∂k1/∂xr) nonsingular for all
consistent x and ki ∈ C(X×U, Rmi) for i = 1, ..., r, xi ∈ C1(I, Rmi) for i = 1, ..., r−1,
and xr ∈ C(I, Rmr). It is known that DAEs in Hessenberg form of order r have d-
index νd = r and s-index νs = r − 1, see [25, 82, 105].

6Gerhard Hessenberg (born 1874 in Frankfurt, Germany - died 1925 in Berlin, Germany)
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3.5.1 Strangeness-free quasi-linear differential-algebraic equa-

tions

In this section we will discuss some important results concerning strangeness-free
quasi-linear DAEs.

Lemma 3.5.1 Suppose that (3.24) is a solvable system of semi-implicit differen-
tial-algebraic equations. Let the partial derivative k2,x(x, u) be defined. Then, the
system (3.24) is strangeness-free if

m1 = rank(E1(x, u)) = const, rC = rank(k2,x(x, u)) = const, (3.26)

and

rank(

[
E1(x, u)
k2,x(x, u)

]
) = m1 + rC (3.27)

for all (x, u) ∈ M, where

M = {(x, u) ∈ X × U : k2(x, u) = 0}. (3.28)

Proof: In the following we will show that the semi-implicit DAE (3.24) with the
stated assumptions satisfies the Hypothesis 3.2.7 for ν = 0. Then from Definition
3.2.9 it follows that the semi-implicit DAE (3.24) is strangeness-free.
Therefore, we have to consider

F0 = F =

[
E1ẋ − k1

−k2

]
.

From the constant rank condition (3.26) we get that L0 defined in (3.13) is a man-
ifold of dimension 2n + nu − r with r = m1 + rC , see point 1) of the Hypothesis
3.2.7. The point 2) of the Hypothesis 3.2.7 is satisfied since

rank(F0,xẋ) = rank(

[
E1,x[[ẋ, ·]] − k1,x E1

k2,x 0

]
) = m1 + rC = r.

From 3) of Hypothesis 3.2.7 we get that v = m2−rC , since corank(F0,xẋ) = m2−rC

and corank(F−1,x) = 0 by convention. Furthermore, from point 4) of Hypothesis
3.2.7 we get a = rC since rank(F0,ẋ) = m1 = r − a and we get the existence of the
matrix function

ZT
2 =

[
0 Z̃T

2

]

of size rC × m with rank(Z̃T
2 k2,x) = rC = a. Furthermore, we get the existence of

a matrix function T2 of size n× n− rC such that range(T2) = ker(k2,x). In the last
point 5) of Hypothesis 3.2.7 the condition

rank(F,ẋT2) = d = m − a − v

which corresponds to

rank(

[
E1

0

]
T2) = d = m1

has to be satisfied for all (x, ẋ, u) ∈ L0. This and therefore, the assertion follows
from (3.27). �
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Remark 3.5.2 The condition (3.27) is equivalent to range(ET
1 )∩range(kT

2,x) = {0}
for all (x, u) ∈ M = {(x, u) ∈ X × U : k2(x, u) = 0}. �

Lemma 3.5.3 Suppose that the quasi-linear DAE (3.23) with rank(E(x, u)) =
rE = const for all consistent values (x, u) is a solvable DAE. Then, the system
(3.23) is strangeness-free if there exists a nonsingular matrix function

S(x, u) =

[
S1(x, u)
S2(x, u)

]
∈ C(X × U, Rm,m) (3.29)

with S1(x, u) is of size rE × m with

rE = rank(S1(x, u)E(x, u)), (3.30a)

rC = rank((S2(x, u)k(x, u)),x), (3.30b)

0 = S2(x, u)E(x, u), (3.30c)

and

rank(

[
S1(x, u)E(x, u)

(S2(x, u)k(x, u)),x

]
) = rE + rC (3.31)

for all (x, u) ∈ M, where

M = {(x, u) ∈ X × U : S2(x, u)k(x, u) = 0}. (3.32)

Proof: From the existence of the matrix function S(x, u) it follows that the scaled
DAE S(x, u)E(x, u)ẋ = S(x, u)k(x, u) corresponds to a semi-implicit DAE (3.24)
satisfying the conditions of Lemma 3.5.1. Therefore, the assertion follows from
Lemma 3.5.1. �

Remark 3.5.4 Quasi-linear DAEs (3.23) satisfying Lemma 3.5.3 have d-index 1 if
rE + rC = m = n and rE < m and they have d-index 0 if rE = m = n. In the latter
case, the quasi-linear DAE (3.23) corresponds to an ODE in implicit form. �

Remark 3.5.5 A necessary but not sufficient condition for the semi-implicit DAE
(3.24) to be strangeness-free is that the matrices E1(x, u) and k2,x(x, u) have con-
stant rank for all (x, u) ∈ M. Note that it is not necessary for the matrices to have
constant rank outside of M. Consider the following example. �

Example 3.5.6 An example for a semi-implicit DAE is

[
x2 −x1

]
ẋ = k1(x),

0 =
[

x2
1 + x2

2 − 1
]
.

Since
[

E1(x, u)
k2,x(x, u)

]
=

[
x2 −x1

2x1 2x2

]
(3.33)

satisfies condition (3.27) for all x ∈ M = {x = (x1, x2) : 0 = x2
1 + x2

2 − 1}, this
DAE is actually strangeness-free although the matrix (3.33) is singular for x = 0,
since x = 0 /∈ M. In particular, this system is actually of d-index one since the
matrix (3.33) is nonsingular for all x ∈ M. �
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We have seen in Examples 3.2.14 and 3.5.6 that the solution x of a DAE (3.2a) is
restricted to a subset M by certain constraints contained in the DAE. This manifold
is called the solution manifold. For a strangeness-free semi-implicit DAE (3.24) the
solution manifold M is defined by the constraints k2(x, u) = 0, see (3.28).
In general, the solution manifold for a nonlinear DAE (3.2a) is defined by all con-
straints, i.e., constraints occurring explicitly in the DAE and additional constraints
which are contained but hidden in the DAE, i.e., they are not stated as equations,
as it is in Examples 3.2.14 and 3.5.6, see Definition 3.5.32 below for details. In
particular, DAEs of higher index may contain constraints which are not explicitly
given in the DAE as shown in the following example.

Example 3.5.7 Consider a semi-explicit DAE of the form

ẋ1 = k1(x1, x2, u), (3.34a)

0 = k2(x1, u) (3.34b)

with x1 ∈ C1(I, Rn1), x2 ∈ C(I, Rn2), k1 ∈ C(X1×X2×U, Rn1), k2 ∈ C1(X1×U, Rn2),
X1 ⊂ Rn1 , and X2 ⊂ Rn2 . The solution has to satisfy the constraints (3.34b) which
are explicitly stated in the DAE and in addition the solution has to satisfy the
constraints

0 = k2,x1
(x1, u)k1(x1, x2, u) + k2,u(x1, u)u̇ =

d

dt
k2(x1, u), (3.34c)

which arise from the first derivative of (3.34b) with respect to t and are not explicitly
stated in the DAE, but implicitly. Therefore, the solution has to lie in the manifold

M = {(x1, x2, u
1) ∈ X1 × X2 × U

1 : 0 = k2(x1, u),

0 = k2,x1
(x1, u)k1(x1, x2, u) + k2,u(x1, u)u̇}

defined by both kinds of constraints.
In the case that k2,x1

(x1, u)k1,x2
(x1, x2, u) has a bounded inverse for all (x1, x2, u

1) ∈
M, the DAE has d-index νd = 2, p-index νp = 2, s-index νs = 1, and t-index νt = 2.
Furthermore, if n1 = n2 then the solution is completely determined by the algebraic
constraints (3.34b) and (3.34c) such that actually the DAE (3.34) corresponds to
an algebraic system. �

3.5.2 Analysis of quasi-linear differential-algebraic equations

In the following, we will investigate quasi-linear DAEs with respect to their ana-
lytical properties, like constraints and their solution manifold. We will develop a
tool for the analysis of quasi-linear DAEs in form of an iterative procedure. In
preparation we need the following two lemmata.

Lemma 3.5.8 Suppose that (3.23) is a solvable system of quasi-linear differential-
algebraic equations and let X ⊂ R

n be such that x(t) ∈ X for all t ∈ I and for all
solutions x. Then, the solution x of (3.23) is invariant under nonsingular transfor-
mations, i.e., (3.23) has in X × U the same solution set as

Z(x, u)E(x, u)ẋ = Z(x, u)k(x, u), (3.35)

where Z(x, u) is nonsingular for all (x, u) ∈ X × U.

Proof: Every solution of (3.23) is also a solution of (3.35). On the other hand, x(t)
is a solution of (3.35) if Z(x, u)(E(x, u)ẋ−k(x, u)) = 0. Because of the nonsingular-
ity of Z(x, u) for all (x, u) ∈ X×U this is satisfied if and only if E(x, u)ẋ−k(x, u) = 0
and we get the assertion. �
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Remark 3.5.9 Note, that if the transformation matrix Z(x, u) is singular, then
the solution set of (3.35) may be larger than the solution set of (3.23). �

Lemma 3.5.10 Suppose that (3.24) is a solvable system of semi-implicit differential-
algebraic equations and let X ⊂ Rn be such that x(t) ∈ X for all t ∈ I and for all
solutions x. Furthermore, let the initial values x(t0) = x0 be consistent. Then,
the solution of (3.24) is invariant under differentiation of the constraints, i.e., a
solution of the initial value problem (3.24) with the initial values x(t0) = x0 is also
a solution of

[
E1(x, u)
k2,x(x, u)

]
ẋ =

[
k1(x, u)

−k2,u(x, u)u̇

]
(3.36)

with the initial values x(t0) = x0, and vice versa.

Proof: If x is a solution of (3.24) with initial values x(t0) = x0 it is also a
solution of (3.36) with initial values x(t0) = x0. On the other hand, setting κ(t) =
k2(x(t), u(t)) we get the constraints in the form κ(t) = 0 and its first derivative
with respect to t as

κ̇(t) = 0. (3.37)

The solution of (3.37) is given by κ(t) = κ0 with κ0 = k2(x0, u(t0)). From the
consistency of the initial values we get κ0 = 0 and, therefore, every x(t) which
satisfies the first derivative (3.37) with respect to t of the constraints (3.24b) with
x(t0) = x0 also satisfies the condition κ(t) = 0 which corresponds to the constraints
of (3.24) such that we get the assertion. �

In the following we will present a procedure for the analysis of quasi-linear DAEs
of the form (3.23), with x ∈ X. For the control variables u ∈ U we will use the
Notation 3.1.4.

Procedure 3.5.11 Consider the quasi-linear DAE (3.23). Assume that the leading
matrix E(x, u) is continuous with respect to the first component, i.e., E ∈ C0,·(X×
U, Rm,n).

Initialization: Set i = 0, E0(x, u) = E(x, u), k0(x, u) = k(x, u), and M−1 = X.

Iteration step:

0) Start the iteration step with

Ei(x, ui−1)ẋ = ki(x, ui). (3.38)

Note that in the case of i = 0, the DAE (3.38) is identical with the DAE
(3.23) and note the convention that u−1 = u0 = u.

I) Suppose, there exists a matrix function Z i(x, ui−1) which is nonsingular for all
(x, ui−1) ∈ Mi−1 and continuous with respect to its first component, i.e.,



3.5. QUASI-LINEAR DIFFERENTIAL-ALGEBRAIC EQUATIONS 41

Zi ∈ C0,·(Mi−1, R
m,m), such that the following criteria are satisfied.

1) Zi(x, ui−1)Ei(x, ui−1) =

[
Ẽi

1(x, ui−1)
0

]
(3.39a)

2) Zi(x, ui−1)ki(x, ui) =

[
k̃i
1(x, ui)

k̃i
2(x, ui)

]
(3.39b)

3) Ẽi
1 is of size mi

1 × n with mi
1 = max

(x,ui)∈Mi

(rank(Ei(x, ui−1))) (3.39c)

4) k̃i
j are of sizes mi

j , j = 1, 2, with mi
1 + mi

2 = m (3.39d)

5) rank(Ẽi
1(x, ui−1)) = rank(Ei(x, ui−1)) for all (x, ui) ∈ Mi (3.39e)

6) M̃i = {(x, ui) ∈ X × U
i : 0 = k̃i

2(x, ui)} (3.39f)

7) Mi = (Mi−1 × U
(i)) ∩ M̃i ⊂ X × U

i (3.39g)

II) Multiply both sides of the quasi-linear DAE (3.38) with Z i from the left to
obtain the intermediate DAE

[
Ẽi

1(x, ui−1)
0

]
ẋ =

[
k̃i
1(x, ui)

k̃i
2(x, ui)

]
. (3.40)

In this semi-implicit form the DAE is partitioned into the differential part
Ẽi

1(x, ui−1)ẋ = k̃i
1(x, ui) and the constraints

0 = k̃i
2(x, ui). (3.41)

Let us call these constraints of level i. Together with the constraints up to
level i − 1 they restrict the solution x into the constraint set of level i Mi.

III) If

mi
2 = 0 or k̃i

2(x, ui) = 0 (3.42)

for all (x, ui) ∈ Mi−1 × U(i), then the procedure terminates with ν = i.

IV ) If the right-hand side k̃i
2(x, ui) is contradictory or not continuously differen-

tiable on Mi, then the procedure terminates without result.

V ) Replace the constraints (3.41) by its derivative with respect to t and transfer
the DAE (3.40) to the form

[
Ẽi(x, ui−1)

k̃i
2,x(x, ui)

]
ẋ =

[
k̃i
1(x, ui)

−k̃i
2,ui(x, ui)u̇i

]
. (3.43)

VI) The DAE (3.43) is a quasi-linear DAE in the form (3.38) for i + 1 instead of i.
Set

Ei+1(x, ui) =

[
Ẽi

1(x, ui−1)

k̃i
2,x(x, ui)

]

and

ki+1(x, ui+1) =

[
k̃i
1(x, ui)

−k̃i
2,ui(x, ui)u̇i

]
,

increase i by one, and proceed with step I).
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�

Remark 3.5.12 a) If the rank of the leading matrix in (3.38) is constant, i.e.,
rank(Ei(x, ui−1)) = ri for all (x, ui−1) ∈ Mi−1 and Mi−1 ⊂ X × Ui−1 is C1-
diffeomorphic to a set Y defined in (2.4) then the existence of the transformation
matrix Zi follows from Theorem 2.1.6 and it can be computed with Algorithm 2.1.9.
b) If the rank of the leading matrix in (3.38) is not constant, it is often possible to
obtain such a transformation matrix by the following process.

1. Set Mi = Mi−1 × U
(i).

2. Compute mi
1 = max

(x,ui)∈Mi

(rank(Ei(x, ui−1))) and mi
2 = m − mi

1.

3. If possible, compute a nonsingular matrix function Z i ∈ C0,·(Mi−1, R
m,m),

such that the following criteria are satisfied.

i) Zi(x, ui−1)Ei(x, ui−1) =

[
Ẽi

1(x, ui−1)
0

]

ii) Zi(x, ui−1)ki(x, ui) =

[
k̃i
1(x, ui)

k̃i
2(x, ui)

]

iii) Ẽi
1 is of size mi

1 × n, k̃i
j are of sizes mi

j , j = 1, 2

iv) rank(Ẽi
1(x, ui−1)) = rank(Ei(x, ui−1)) for all (x, ui) ∈ Mi

4. Set M̃i = {(x, ui) ∈ X × Ui : 0 = k̃i
2(x, ui)}.

5. Set Mi = (Mi−1 × U
(i)) ∩ M̃i ⊂ X × U

i.

6. If max
(x,ui)∈Mi

(rank(Ei(x, ui−1))) < mi
1 then proceed with Step 2. Otherwise, the

process terminates with Zi computed in Step 3.

c) If in any iteration step i of Procedure 3.5.11 the constraints (3.41) contain
some trivially satisfied equations, i.e., constraints which are trivially satisfied for
all (x, ui) ∈ Mi−1 × U

(i), it is not necessary to consider these trivially satisfied
equations in the further iteration process of the procedure, rather, they are kept
unchanged in the constraints (3.41) from one iteration step i to the next iteration
step i + 1. �

Remark 3.5.13 a) In the case that the matrix E(x, u) is nonsingular for all (x, u) ∈
X×U, the quasi-linear DAE (3.23) corresponds to an implicit ODE and Procedure
3.5.11 terminates with ν = 0.
b) The termination criterion k̃i

2(x, ui) = 0 in (3.42) means that the remaining
constraints do not restrict the state x and therefore, also every subsequent derivative
of 0 = k̃i

2(x, ui) with respect to t does not restrict the state x.
c) It follows from Procedure 3.5.11 that some components of the right-hand side
of the quasi-linear DAE (3.23) have to be ν-times continuously differentiable with
respect to its first argument.
d) Note that we consider quasi-linear DAEs (3.4) with m not necessarily equal to
n. Therefore, the constraints (3.41) may be redundant. �

Remark 3.5.14 The Procedure 3.5.11 can be seen as a generalization of the Silver-
man structure algorithm introduced in [162] which is designed for the inversion of
linear control problems with constant coefficients as well as a generalization of the
modification of the Silverman structure algorithm for a certain class of nonlinear
control problems introduced in [168]. �
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Example 3.5.15 Consider again the semi-explicit DAE (3.34), i.e.,

ẋ1 = k1(x1, x2, u),

0 = k2(x1, u)

with x1 ∈ C1(I, Rn1), x2 ∈ C(I, Rn2), k1 ∈ C(X1×X2×U, Rn1), k2 ∈ C1(X1×U, Rn2),
X1 ⊂ Rn1 , and X2 ⊂ Rn2 . Following Procedure 3.5.11 we have

E0 =

[
I 0
0 0

]
, k0 =

[
k1(x1, x2, u)

k2(x1, u)

]
.

With the transformation matrix Z0 = I we get Ẽ0
1 =

[
I 0

]
, k̃0

1 = k1, and

k̃0
2 = k2. The constraints of level 0 are given by 0 = k̃0

2 = k2 and therefore, we get

M0 = M̃0 = {(x, u) ∈ X ×U : 0 = k2}. Differentiation of the constraints of level 0
with respect to t yields 0 = k2,x1

(x1, u)ẋ1 +k2,u(x1, u)u̇ and we get the transformed
DAE E1(x, u)ẋ = k1(x, u1) with

E1(x, u) =

[
I 0

k2,x1
(x1, u) 0

]
, k1(x, u1) =

[
k1(x1, x2, u)
−k2,u(x1, u)u̇

]
.

The transformation with the nonsingular transformation matrix

Z1(x, u) =

[
I 0

−k2,x(x1, u) I

]

leads to

Ẽ1
1(x, u) =

[
I 0

]
,

k̃1
1(x, u1) =

[
k1(x1, x2, u)

]
,

k̃1
2(x, u1) =

[
−k2,x(x1, u)k1(x1, x2, u) − k2,u(x1, u)u̇

]
.

Now we have determined the constraints of level 1 by

0 = k̃1
2(x, u1) = −k2,x1

(x1, u)k1(x1, x2, u) − k2,u(x1, u)u̇. (3.44)

Furthermore, we get

M̃1 = {(x, u1) ∈ X × U
1 : 0 = −k2,x1

k1 − k2,uu̇}
and the constraint set of level 1 by

M1 = {(x, u1) ∈ X × U
1 : 0 = k2, 0 = −k2,x1

k1 − k2,uu̇}.
Since the constraints of level 1 (3.44) are not satisfied for all (x, u1) ∈ M0 × U

(1),
we have to continue the procedure. Differentiation of the constraints (3.44) with
respect to t yields

0 = −(k2,x1
(x1, u)k1(x1, x2, u)),x1

ẋ1 − k2,x1
(x1, u)k1,x2

(x1, x2, u)ẋ2

−(k2,x1
(x1, u)k1(x1, x2, u)),uu̇ − (k2,u(x1, u)u̇),x1

ẋ1

−(k2,u(x1, u)u̇),uu̇ − k2,u(x1, u)ü

and we get the transformed DAE E2(x, u1)ẋ = k2(x, u2) with

E2(x, u1) =

[
I 0

(k2,x1
k1),x1

+ (k2,uu̇),x1
k2,x1

k1,x2

]
,

k2(x, u2) =

[
k1

−(k2,x1
k1),uu̇ − (k2,uu̇),uu̇ − k2,uü

]
.

If k2,x1
k1,x2

is nonsingular for all (x1, x2, u
1) ∈ M1, then m2

2 = 0 and the procedure
terminates with ν = 2. �
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Remark 3.5.16 Note that the procedure does not require that the rank of the
leading matrix Ẽν

1 (x, uν−1) in (3.40) of the termination step i = ν has to be constant,
i.e., it is not necessary that

rank(Ẽν
1 (x, uν−1)) = const, for all (x, uν−1) ∈ Mν−1, (3.45a)

or that the rank of the constraints of level i has to be constant, i.e.,

rank(k̃i
2,x(x, ui)) = const, for all (x, ui) ∈ Mi, (3.45b)

for i = 0, ..., ν − 1, as shown in the following Example 3.5.17.
Of course, quasi-linear DAEs (3.23) that do not satisfy (3.45) are not in general
suitable for numerical integration. But the numerical integration only gets into
trouble if the solution (x, u) passes such singularities, in which the rank of the
leading matrix in (3.40) of the termination step i = ν or the rank of the constraints
of level i in (3.40) is not constant. As long as the solution, which is determined
by the initial values, does not pass such singularities the numerical integration
process will not get into trouble. Therefore, we will not exclude such DAEs from
our investigations. Rather, during the numerical integration process, if the solution
passes such singularities, the numerical algorithm should detect such singularities
and react in an appropriate way, see Example 5.3.4 in Section 5.3. �

Example 3.5.17 Consider the differential-algebraic equation

(x(t) − 1)ẋ(t) = (x(t) − 1)x(t). (3.46)

For this DAE the Procedure 3.5.11 terminates in the first step, i.e., ν = i = 0, since
there do not exist any constraints. Obviously, with ν = 0 we get for Ẽν

1 (x, u) =
(x − 1) that

rank(Ẽν
1 (x, uν−1)) =

{
0, if x = 1,
1, else.

Therefore, this DAE has a singularity at x = 1. The solution set is given by
{x ∈ C1(I, R) : x(t) = 1 or x(t) = cet with c ∈ R}. If the initial value x(t0) is
already larger than one, i.e., x(t0) > 1, the solution does not pass x = 1 inside the
integration interval I = [t0, tf ] with tf > t0. On the other hand, if the initial value
is smaller than one, i.e., x(t0) < 1, and the integration interval is small enough, the
singularity again will not be met. If the state space X does include the singularity,
but the particular solution determined by the initial values and the integration
interval does not pass through this singularity then it would be bad to exclude this
DAE in advance from the investigations.
Note, that the DAE (3.46) does not satisfy the Hypothesis 3.2.7 because the set of
solutions Li is not a manifold for any i. �

Proposition 3.5.18 Assume that Procedure 3.5.11 applied to the quasi-linear DAE
(3.23) terminates in iteration step i = ν in (3.42). Then, mi

2 ≤ mi−1
2 for all

i = 1, ..., ν.

Proof: The proof follows immediately from Procedure 3.5.11. �

Proposition 3.5.19 Assume that Procedure 3.5.11 applied to the quasi-linear DAE
(3.23) terminates in iteration step i = ν in (3.42) and assume that the constraint

sets Mi are manifolds, i.e., rank(k̃i
2,x(x, ui)) = const for all (x, ui) ∈ Mi, then we

have

dim(Mi) < dim(Mi−1 × U
(i))

for all i = 0, ..., ν − 1.
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Proof: The proof follows immediately from the construction of the constraint sets
Mi in Procedure 3.5.11 and the fact that mi

2 > 0 for all i ∈ N0 with i < ν. �

Note that this proposition cannot be stated for general constraint sets Mi (without
being a manifold) because the term ”dimension” is not defined for general constraint
sets possibly containing singular points.
With this proposition it can be guaranteed that Procedure 3.5.11 terminates within
a finite number of iteration steps.

Lemma 3.5.20 Assume that Procedure 3.5.11 applied to the quasi-linear DAE
(3.23) terminates in iteration step i = ν in (3.42). Then the differential part in
(3.40) and the constraints in (3.40), i.e., the hidden constraints (3.59), are deter-
mined by

Ẽi
1(x, ui−1)ẋ − k̃i

1(x, ui) =
i∑

j=0

Di
j

dj

dtj
(Eẋ − k), (3.47a)

−k̃i
2(x, ui) =

i∑

j=0

Ai
j

dj

dtj
(Eẋ − k), (3.47b)

with D0
0 = Z0

1 , A0
0 = Z0

2 , and the recursion

Di
0 = Zi

11D
i−1
0 + Zi

12Ȧ
i−1
0 , (3.48a)

Di
j = Zi

11D
i−1
j + Zi

12Ȧ
i−1
j + Zi

12A
i−1
j−1, j = 1, ..., i − 1, (3.48b)

Di
i = Zi

12A
i−1
i−1, (3.48c)

Ai
0 = Zi

21D
i−1
0 + Zi

22Ȧ
i−1
0 , (3.49a)

Ai
j = Zi

21D
i−1
j + Zi

22Ȧ
i−1
j + Zi

22A
i−1
j−1, j = 1, ..., i − 1, (3.49b)

Ai
i = Zi

22A
i−1
i−1, (3.49c)

where Z0
k , k ∈ {1, 2} are defined such that

Z0 =

[
Z0

1

Z0
2

]
is nonsingular (3.50a)

and satisfies (3.39) for i = 0 and Z i
kl, k, l ∈ {1, 2} are defined such that

Zi =

[
Zi

11 Zi
12

Zi
21 Zi

22

]
is nonsingular (3.50b)

and satisfy (3.39) for i = 1, ..., ν.

Proof: The proof will be done inductively. Let us start with i = 0. From
Procedure 3.5.11 we get

Ẽ0
1 ẋ − k̃0

1 = Z0
1 (Eẋ − k) =

0∑

j=0

D0
j

dj

dtj
(Eẋ − k)

which corresponds to (3.47a) for i = 0. Furthermore, for the algebraic constraints
we have

−k̃0
2 = Z0

2 (Eẋ − k) =

0∑

j=0

A0
j

dj

dtj
(Eẋ − k)
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which corresponds to (3.47b) for i = 0. Let us assume that the relations (3.47a)
and (3.47b) are satisfied for certain i ≥ 0 and let us proceed one step of Procedure
3.5.11. Starting in substep II) we have

Ẽi
1ẋ − k̃i

1 =

i∑

j=0

Di
j

dj

dtj
(Eẋ − k),

−k̃i
2 =

i∑

j=0

Ai
j

dj

dtj
(Eẋ − k).

Differentiation of the algebraic constraints with respect to t yields

Ẽi
1ẋ − k̃i

1 =

i∑

j=0

Di
j

dj

dtj
(Eẋ − k), (3.51a)

−k̃i
2,xẋ − k̃i

2,ui u̇
i =

i∑

j=0

Ȧi
j

dj

dtj
(Eẋ − k) +

i∑

j=0

Ai
j

dj+1

dtj+1
(Eẋ − k) (3.51b)

= Ȧi
0(Eẋ − k) +

i−1∑

j=0

(Ȧi
j+1 + Ai

j)
dj+1

dtj+1
(Eẋ − k)

+Ai
i

di+1

dti+1
(Eẋ − k).

Selecting the differential and the algebraic part by use of the transformation matrix

Zi+1 =

[
Zi+1

11 Zi+1
12

Zi+1
21 Zi+1

22

]

with

[
Zi+1

11 Zi+1
12

Zi+1
21 Zi+1

22

] [
Ẽi

1

−k̃i
2,x

]
=

[
Ẽi+1

1

0

]

yields

0 =

[
Ẽi+1

1 ẋ − k̃i+1
1

−k̃i+1
2

]
=

[
Zi+1

11 Zi+1
12

Zi+1
21 Zi+1

22

][
Ẽi

1ẋ − k̃1
1

−k̃i
2,xẋ − k̃i

2,ui u̇
i

]
.

With (3.51) we get

Ẽi+1
1 ẋ − k̃i+1

1

= Zi+1
11

i∑

j=0

Di
j

dj

dtj
(Eẋ − k)

+Zi+1
12

(
Ȧi

0(Eẋ − k) +
i−1∑

j=0

(Ȧi
j+1 + Ai

j)
dj+1

dtj+1
(Eẋ − k) + Ai

i

di+1

dti+1
(Eẋ − k)

)

= (Zi+1
11 Di

0 + Zi+1
12 Ȧi

0)(Eẋ − k)

+

i∑

j=1

(Zi+1
11 Di

j + Zi+1
12 Ȧi

j + Zi+1
12 Ai

j−1)
dj

dtj
(Eẋ − k) + Zi+1

12 Ai
i

di+1

dti+1
(Eẋ − k)
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and

−k̃i+1
2

= Zi+1
21

i∑

j=0

Di
j

dj

dtj
(Eẋ − k)

+Zi+1
22

(
Ȧi

0(Eẋ − k) +
i−1∑

j=0

(Ȧi
j+1 + Ai

j)
dj+1

dtj+1
(Eẋ − k) + Ai

i

di+1

dti+1
(Eẋ − k)

)

= (Zi+1
21 Di

0 + Zi+1
22 Ȧi

0)(Eẋ − k)

+
i∑

j=1

(Zi+1
21 Di

j + Zi+1
22 Ȧi

j + Zi+1
22 Ai

j−1)
dj

dtj
(Eẋ − k) + Zi+1

22 Ai
i

di+1

dti+1
(Eẋ − k).

Hence, for the differential part we get the recursion

Ẽi
1ẋ − k̃i

1 = (Zi
11D

i−1
0 + Zi

12Ȧ
i−1
0 )(Eẋ − k)

+

i−1∑

j=1

(Zi
11D

i−1
j + Zi

12Ȧ
i−1
j + Zi

12A
i−1
j−1)

dj

dtj
(Eẋ − k)

+Zi
12A

i−1
i−1

di

dti
(Eẋ − k)

which corresponds to (3.47a) and for the algebraic part we get the recursion

−k̃i
2 = (Zi

21D
i−1
0 + Zi

22Ȧ
i−1
0 )(Eẋ − k)

+

i−1∑

j=1

(Zi
21D

i−1
j + Zi

22Ȧ
i−1
j + Zi

22A
i−1
j−1)

dj

dtj
(Eẋ − k)

+Zi
22A

i−1
i−1

di

dti
(Eẋ − k)

which corresponds to (3.47b). �

Remark 3.5.21 Note that the matrix functions Ai
j and Di

j formally depend on the

variables x up to its ith derivative x(i) with respect to t and on the control variables
and its derivatives, i.e., on ui. In particular, we have Ai

j = Ai
j(x, ẋ, ..., x(i), ui) and

Di
j = Di

j(x, ẋ, ..., x(i), ui). �

Lemma 3.5.22 Assume that Procedure 3.5.11 applied to the quasi-linear DAE
(3.23) terminates in iteration step i = ν in (3.42). Then for all i = 0, ..., ν − 1
we have

i∑

j=0

Ai
j

(
dj

dtj
(Eẋ − k)

)

,x(l)

= 0 for l = 1, ..., ν, (3.52a)

i∑

j=0

Di
j

(
dj

dtj
(Eẋ − k)

)

,x(l)

=

{
Ẽi

1 for l = 1,
0 for l = 2, ..., ν,

(3.52b)

where Di
j and Ai

j are defined in (3.48) and (3.49), respectively.

Proof: The proof proceeds by induction. For i = 0 we get that (3.52a) simplifies
to

A0
0(Eẋ − k),x(l) = 0 for l = 1, ..., ν,
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with A0
0 = Z0

2 and (3.52b) simplifies to

D0
0(Eẋ − k),x(l) =

{
Ẽi

1 for l = 1,
0 for l = 2, ..., ν,

with D0
0 = Z0

1 . Since E(x, u) and k(x, u) do not depend on derivatives with respect
to t of x these identities are satisfied. Furthermore, since also the hidden constraints
do not depend on derivatives with respect to t of x by construction, we get

0 =
(
−k̃i

2(x, ui)
)

,x(l)

for (xν , uν−1) ∈ Lν−1. From (3.47b) it follows that

0 =

i∑

j=0

Ai
j,x(l) [[

dj

dtj
(Eẋ − k), ·]] +

i∑

j=0

Ai
j

(
dj

dtj
(Eẋ − k)

)

,x(l)

.

Therefore, from the induction hypothesis for (3.52a) it follows that

0 =
i∑

j=0

Ai
j,x(l) [[

dj

dtj
(Eẋ − k), ·]]

for all l = 1, ..., ν. Furthermore, since Ẽi
1 and k̃i

1 do not depend on derivatives with
respect to t of x, by construction, see (3.40), we have

(Ẽi
1ẋ − k̃i

1),x(l) =

{
Ẽi

1 for l = 1,
0 for l = 2, ..., ν.

(3.53)

With (3.47a) it follows on Lν−1 that

(
Ẽi

1ẋ − k̃i
1

)

,x(l)
=




i∑

j=0

Di
j

dj

dtj
(Eẋ − k)




,x(l)

=
i∑

j=0

Di
j,x(l) [[

dj

dtj
(Eẋ − k), ·]] +

i∑

j=0

Di
j

(
dj

dtj
(Eẋ − k)

)

,x(l)

.

From (3.53) and the induction hypothesis for (3.52b) it follows that

0 =

i∑

j=0

Di
j,x(l) [[

dj

dtj
(Eẋ − k), ·]]

for all l = 1, ..., ν − 1.
Let us assume that (3.52) is satisfied for i and consider now the next induction step,
i.e., we show (3.52) for i + 1. We have

i+1∑

j=0

Ai+1
j

(
dj

dtj
(Eẋ − k)

)

,x(l)

= Ai+1
0 (Eẋ − k),x(l) +

i∑

j=1

Ai+1
j

(
dj

dtj
(Eẋ − k)

)

,x(l)

+Ai+1
i+1

(
di+1

dti+1
(Eẋ − k)

)

,x(l)

.
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From the recursion (3.49) with respect to Ai
j we get

i+1∑

j=0

Ai+1
j

(
dj

dtj
(Eẋ − k)

)

,x(l)

= (Zi+1
21 Di

0 + Zi+1
22 Ȧi

0)(Eẋ − k),x(l)

+

i∑

j=1

(Zi+1
21 Di

j + Zi+1
22 Ȧi

j + Zi+1
22 Ai

j−1)

(
dj

dtj
(Eẋ − k)

)

,x(l)

+(Zi+1
22 Ai

i)

(
di+1

dti+1
(Eẋ − k)

)

,x(l)

and it follows that

i+1∑

j=0

Ai+1
j

(
dj

dtj
(Eẋ − k)

)

,x(l)

= Zi+1
21 Di

0(Eẋ − k),x(l) + Zi+1
22 Ȧi

0(Eẋ − k),x(l)

+Zi+1
21

i∑

j=1

Di
j

(
dj

dtj
(Eẋ − k)

)

,x(l)

+ Zi+1
22

i∑

j=1

Ȧi
j

(
dj

dtj
(Eẋ − k)

)

,x(l)

+Zi+1
22

i∑

j=1

Ai
j−1

(
dj

dtj
(Eẋ − k)

)

,x(l)

+ Zi+1
22 Ai

i

(
di+1

dti+1
(Eẋ − k)

)

,x(l)

= Zi+1
21

i∑

j=0

Di
j

(
dj

dtj
(Eẋ − k)

)

,x(l)

(3.54)

+Zi+1
22

i∑

j=0

(
Ȧi

j

(
dj

dtj
(Eẋ − k)

)

,x(l)

+ Ai
j

(
dj+1

dtj+1
(Eẋ − k)

)

,x(l)

)
.

For k̃i
2(x, ui) we have

−
(

˙̃
k

i

2(x, ui)

)

,x(l)

=
(
−k̃i

2,x(x, ui)ẋ − k̃i
2,ui(x, ui)u̇i

)

,x(l)

=

{
−k̃i

2,x(x, ui) for l = 1,
0 for l = 2, ..., ν − 1.

Furthermore, we have

− ˙̃
k

i

2(x, ui),x(l) =

(
d

dt
(−k̃i

2(x, ui))

)

,x(l)

=


 d

dt
(

i∑

j=0

Ai
j

dj

dtj
(Eẋ − k))




,x(l)

=

i∑

j=0

Ȧi
j,x(l) [[

dj

dtj
(Eẋ − k), ·]] +

i∑

j=0

Ȧi
j

(
dj

dtj
(Eẋ − k)

)

,x(l)

+

i∑

j=0

Ai
j,x(l) [[

dj+1

dtj+1
(Eẋ − k), ·]] +

i∑

j=0

Ai
j

(
dj+1

dtj+1
(Eẋ − k)

)

,x(l)

.
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With (xν , uν−1) ∈ Lν−1 we get

i∑

j=0

Ȧi
j

(
dj

dtj
(Eẋ − k)

)

,x(l)

+

i∑

j=0

Ai
j

(
dj+1

dtj+1
(Eẋ − k)

)

,x(l)

= − ˙̃
k

i

2(x, ui),x(l)

=
(
−k̃i

2,x(x, ui)ẋ − k̃i
2,ui(x, ui)u̇i

)

,x(l)

=

{
−k̃i

2,x(x, ui) for l = 1,
0 for l = 2, ..., ν

and thus from (3.52b), (3.54), and (3.50b) it follows that

i+1∑

j=0

Ai+1
j

(
dj

dtj
(Eẋ − k)

)

,x(l)

=

{
Zi+1

21 Ẽi
1(x, ui) + Zi+1

22 (−k̃i
2,x(x, ui)) for l = 1,

0 for l = 2, ..., ν

= 0

for i = 1, ..., ν − 1. Analogously, it follows that

i+1∑

j=0

Di+1
j

(
dj

dtj
(Eẋ − k)

)

,x(l)

=

{
Ẽi+1

1 (x, ui) for l = 1,
0 for l = 2, ..., ν

for i = 0, ..., ν − 1. �

Definition 3.5.23 (underlying (ordinary) differential equation) Assume
that Procedure 3.5.11 applied to the quasi-linear DAE (3.23) terminates in iteration

step i = ν in (3.42) and assume that rank(Ẽν
1 (x, uν−1)) = mν

1 = const for all
(x, uν−1) ∈ Mν−1. Then, the obtained DAE

Ẽν
1 (x, uν−1)ẋ = k̃ν

1 (x, uν) (3.55)

in (3.40) in step i = ν is called underlying differential equation (UDE) of the quasi-
linear DAE (3.23).

If in addition the matrix Ẽν
1 (x, uν−1) is nonsingular for all (x, uν−1) ∈ Mν−1 then

the obtained DAE

ẋ = (Ẽν
1 (x, uν−1))−1k̃ν

1 (x, uν)

in (3.40) in step i = ν is called underlying ordinary differential equation (uODE)
of the quasi-linear DAE (3.23).

Lemma 3.5.24 Assume that Procedure 3.5.11 applied to the quasi-linear DAE
(3.23) terminates in iteration step i = ν in (3.42). Then the set of solutions of
the intermediately obtained DAEs Ei(x, u)ẋ = ki(x, u) for i = 0, ..., ν − 1 with ini-
tial values x(t0) = x0 equals the set of solutions of the original quasi-linear DAE
(3.23) with initial values x(t0) = x0, if the initial values x(t0) = x0 are consistent
to the original DAE (3.23), i.e., if they lie in the solution manifold M.



3.5. QUASI-LINEAR DIFFERENTIAL-ALGEBRAIC EQUATIONS 51

Proof: From Lemma 3.5.8 and from Lemma 3.5.10 it follows that the set of
solution is unchanged in every step of the Procedure 3.5.11 if the initial values
x(t0) = x0 are consistent to the original DAE (3.23), i.e., if they lie in the solution
manifold M. �

Proposition 3.5.25 Assume that Procedure 3.5.11 applied to the quasi-linear DAE
(3.23) terminates in iteration step i = ν in (3.42). Then the set of solutions of the
underlying differential equation (3.55) with initial values x(t0) = x0 equals the set
of solutions of the original quasi-linear DAE (3.23) with initial values x(t0) = x0, if
the initial values x(t0) = x0 are consistent to the original DAE (3.23), i.e., if they
lie in the solution manifold M.

Proof: According to the Definition 3.5.23 the proof follows from Lemma 3.5.8
and Lemma 3.5.10 considering Procedure 3.5.11. �

Corollary 3.5.26 Assume that Procedure 3.5.11 applied to the quasi-linear DAE
(3.23) with m = n terminates in iteration step i = ν with mν

2 = 0 in (3.42)

and rank(Ẽν
1 (x, uν−1)) = const for all (x, uν−1) ∈ Mν−1. Then, the DAE (3.40)

corresponds to

Ẽν
1 (x, uν−1)ẋ = k̃ν

1 (x, uν) (3.56)

with nonsingular leading matrix Ẽν
1 (x, uν−1) for all (x, uν−1) ∈ Mν−1. Furthermore,

(3.56) corresponds to the underlying ODE in implicit form.

Proof: The proof follows immediately from Procedure 3.5.11 in view of Definition
3.5.23. �

Definition 3.5.27 (Maximal constraint level) Assume that Procedure 3.5.11
applied to the quasi-linear DAE (3.23) terminates in iteration step i = ν in (3.42).
Then the maximal constraint level, denoted by νc, is defined as νc = ν − 1.

Note that νc ≥ −1. In particular, νc = −1 means that there do not exist any
constraints such that the quasi-linear DAE (3.23) corresponds to a set of differential
equations. In the case of m = n the quasi-linear DAE (3.23) corresponds to an ODE
in implicit form.

Example 3.5.28 Consider again the semi-explicit DAE (3.34). If k2,x1
k1,x2

is non-
singular for all (x1, x2, u

1) ∈ M1, then m2
2 = 0 and the Procedure 3.5.11 terminates

with ν = 2 as shown in Example 3.5.15. Therefore, from Definition 3.5.27 we get
that the DAE (3.34) has maximal constraint level νc = 1. �

Lemma 3.5.29 Assume that Procedure 3.5.11 applied to the quasi-linear DAE
(3.23) with m = n terminates with mν

2 = 0 in iteration step i = ν = νc + 1

in (3.42) with maximal constraint level νc and rank(Ẽν
1 (x, uν−1)) = const for all

(x, uν−1) ∈ Mν−1, then the d-index of the DAE (3.23) is well defined by νd = νc +1.

Proof: From Definition 3.2.3 we get the assertion with respect to the d-index
in view of the Procedure 3.5.11 and Corollary 3.5.26 with the relation (3.47a) of
Lemma 3.5.20. �
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Lemma 3.5.30 Assume that Procedure 3.5.11 applied to the quasi-linear DAE
(3.23) terminates in iteration step i = ν = νc + 1 in (3.42) with maximal constraint

level νc, mν
2 = 0, and rank(Ẽν

1 (x, uν−1)) = const for all (x, uν−1) ∈ Mν−1. Further-

more, let k̃i
2(x, ui), i = 0, ..., νc with rank(k̃i

2(x, ui)) = const for all (x, uν−1) ∈ Mν−1

be vector valued functions of size mi
2, respectively, as defined in Procedure 3.5.11.

Then, m ≤ n and

rank(




E(x, u)

k̃0
2,x(x, u0)

...

k̃νc

2,x(x, uνc)


) = m. (3.57)

Proof: The proof follows immediately from Procedure 3.5.11. �

Lemma 3.5.31 Assume that Procedure 3.5.11 applied to the quasi-linear DAE
(3.23) terminates in iteration step i = ν = νc + 1 in (3.42) with maximal con-

straint level νc, m = n + mν
2 , and rank(Ẽν

1 (x, uν−1)) = const for all (x, uν−1) ∈
Mν−1. Furthermore, let k̃i

2(x, ui), i = 0, ..., νc with rank(k̃i
2(x, ui)) = const for all

(x, uν−1) ∈ Mν−1 be vector valued functions of size mi
2, respectively, as defined in

Procedure 3.5.11. Then,

rank(




E(x, u)

k̃0
2,x(x, u0)

...

k̃νc

2,x(x, uνc)


) = n, (3.58)

i.e., the matrix in (3.58) has full (column) rank.

Proof: The proof follows immediately from Procedure 3.5.11. �

With Procedure 3.5.11 we are able to define important quantities of the quasi-linear
DAE (3.23), like the solution manifold, the hidden constraints, and the minimal
reduced derivative array, which are of great interest for the development of numerical
methods.

Definition 3.5.32 (Hidden constraints of quasi-linear DAEs) Assume that
Procedure 3.5.11 applied to the quasi-linear DAE (3.23) terminates in iteration step
i = ν = νc + 1 in (3.42) with maximal constraint level νc. The algebraic constraints
(3.41)

0 = k̃j
2(x, uj), j = 1, ..., νc (3.59)

are called hidden constraints of level j of the quasi-linear DAE (3.23).

Remark 3.5.33 The maximal constraint level corresponds to the highest level of
existing (hidden) constraints of the quasi-linear DAE (3.23) which equals the highest
level of the derivative array which is necessary for the determination of all (hidden)
constraints.
In general, the maximal constraint level νc does not coincide with the s-index νs, as
shown in the following Examples 3.5.34 and 3.5.35. Rather the s-index is an upper
bound for the maximal constraint level.
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In particular, if the quasi-linear DAE (3.23) has s-index νs and the matrix function
ZT

2 of size a × (νs + 1)m in Hypothesis 3.2.7 has the form

ZT
2 =

[
ZT

20 · · · ZT
2νs−1 ZT

2νs

]
, (3.60)

where ZT
2i has the size a × m for all i = 0, ..., νs and ZT

2νs
6= 0, then all derivatives

included in the derivative array of level νs, i.e., the derivatives of the DAE up to
order νs, are necessary for the determination of the algebraic part containing the
(hidden) constraints k̃i

2 in (3.41) which are extracted from the derivative array Fνs

by use of the matrix function ZT
2 and contains all (hidden) constraints. Therefore,

we have the maximal constraint level νc = νs. Otherwise, if the matrix function
ZT

2 of size a × (νs + 1)m in Hypothesis 3.2.7 has the form (3.60) with ZT
2νs

= 0,
then the derivative of the DAE of order νs is not used for the determination of the
algebraic part and we have the maximal constraint level νc < νs. �

Example 3.5.34 Consider the DAE

ẋ = 0, (3.61a)

0 = x (3.61b)

which is already in semi-implicit form (3.40) with Ẽ0
1 =

[
1
]

and the constraint

0 = k̃0
2 = x

which defines the manifolds M̃0 = M0 = {x ∈ R : x = 0}. Following Procedure
3.5.11 by differentiation of the constraint with respect to t we get the DAE E1ẋ = k1

with

E1 =

[
1
1

]
and k1 =

[
0
0

]
. (3.62)

Transformation with the transformation matrix

Z1 =

[
1 0
−1 1

]

leads to the Ẽ1
1 =

[
1
]

and the constraint

0 = k̃0
2 = 0

which is trivially satisfied. Therefore, Procedure 3.5.11 terminates with ν = 1 and
we get the maximal constraint level νc = ν − 1 = 0. Obviously, this corresponds to
the highest level of the (hidden) constraints because there does not exist any hidden

constraint but only the constraint 0 = k̃0
2 .

On the other hand, the DAE (3.61) is not strangeness-free but satisfies the Hypoth-
esis 3.2.7 with ν = 1, i.e., it has s-index νs = 1, while the DAE E1ẋ = k1 with
(3.62) obtained after one iteration step of Procedure 3.5.11 has s-index 0. �

Example 3.5.35 Consider the DAE



1 0 0
0 1 0
0 0 0


 ẋ =




0 1 0
1 0 0
1 0 0


x. (3.63a)

The DAE is already in semi-implicit form (3.40) with i = 0 and

Ẽ0
1 =

[
1 0 0
0 1 0

]
, k̃0

1 =

[
0 1 0
1 0 0

]
x, k̃0

2 =
[

1 0 0
]
x.
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Therefore, we have the constraint 0 = k̃0
2 = x1 of level 0 and the manifolds M̃0 =

M0 = {x ∈ R
3 : x1 = 0}. By differentiation of the constraint we get the DAE

(3.38) with i = 1 and

E1 =




1 0 0
0 1 0
−1 0 0


 , k1 =




0 1 0
1 0 0
0 0 0


x. (3.64)

Transformation with the transformation matrix

Z1 =




1 0 0
0 1 0
1 0 1




leads to the DAE (3.40) in semi-implicit form with i = 1 and

Ẽ1
1 =

[
1 0 0
0 1 0

]
, k̃1

1 =

[
0 1 0
1 0 0

]
x, k̃1

2 =
[

0 1 0
]
x.

Therefore, we have the constraint 0 = k̃1
2 = x2 of level 1 and the manifolds M̃1 =

{x ∈ R3 : x2 = 0} and M1 = {x ∈ R3 : x1 = 0, x2 = 0}. Since the constraint of
level 1 is not trivially satisfied for all x ∈ M0, we have to continue the procedure.
By differentiation of the constraint of level 1 we get the DAE (3.38) with i = 2 and

E2 =




1 0 0
0 1 0
0 −1 0


 , k2 =




0 1 0
1 0 0
0 0 0


x. (3.65)

Transformation with

Z2 =




1 0 0
0 1 0
0 1 1




leads to the DAE (3.40) in semi-implicit form with i = 2 and

Ẽ2
1 =

[
1 0 0
0 1 0

]
, k̃2

1 =

[
0 1 0
1 0 0

]
x, k̃2

2 =
[

1 0 0
]
x.

Therefore, we have the constraint 0 = k̃2
2 = x1 but this is trivially satisfied for all

x ∈ M1. Therefore, Procedure 3.5.11 terminates with ν = 2 and we get the maximal
constraint level νc = ν − 1 = 1. Obviously, again this corresponds to the highest
level of the (hidden) constraints.
On the other hand, the DAE (3.63) has s-index νs = 2, while the DAE E1ẋ = k1

with (3.64) obtained after the first iteration step of Procedure 3.5.11 as well as the
DAE E2ẋ = k2 with (3.65) obtained after the second iteration step of Procedure
3.5.11 have also s-index νs = 2. In particular, in this example the s-index does not
decrease from one iteration step to the next, in contrast to Examples 3.5.15 and
3.5.34. �

Remark 3.5.36 a) Hidden constraints impose consistency conditions on the initial
values and provoke severe difficulties for the direct numerical integration of DAEs
of higher index. For more details the reader is referred to [7, 25, 66, 69, 82, 133].
b) If the investigated quasi-linear DAE (3.23) does contain redundant constraints,

in particular, the hidden constraints 0 = k̃i
2(x, ui) for i = (0, )1, ..., νc are also re-

dundant with respect to the state x. Therefore, they impose in addition to the
restrictions on the state x also conditions on the control variables u and its deriva-
tives with respect to t. �
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Remark 3.5.37 Assume that Procedure 3.5.11 applied to the quasi-linear DAE
(3.23) terminates in iteration step i = ν = νc + 1 in (3.42) with maximal constraint

level νc. Furthermore, let the (hidden) constraints 0 = k̃i
2(x, ui), i = 1, ..., νc be

defined in (3.41). Then, if the initial values x(t0) = x0 are consistent, they satisfy
all (hidden) constraints, i.e.,

0 = k̃i
2(x0, u

i(t0))

for all i = 0, ..., νc. �

Definition 3.5.38 (Solution manifold of quasi-linear DAEs) Assume that
Procedure 3.5.11 applied to the quasi-linear DAE (3.23) terminates in iteration step

i = ν = νc + 1 in (3.42) with maximal constraint level νc and rank(k̃i
2,x(x, ui)) =

const for all (x, uνc) ∈ Mνc
and i = 0, ..., νc in Procedure 3.5.11. The solution

manifold of the quasi-linear DAE (3.23) is determined from all (hidden) constraints
(3.59) of level i = 0, ..., νc and is defined by

M = Mνc
= {(x, uνc) ∈ X × U

νc : 0 = k̃0
2(x, u0), ..., 0 = k̃νc

2 (x, uνc)}.

The derivative array Fνc
of order νc defined in Definition 3.2.1 contains all necessary

information about the solution manifold, constraints, and hidden constraints. But
in general it contains more information than necessary. Unfortunately, the deter-
mination of the whole derivative array of order νc is often very technical and time
consuming, in particular, if we consider a complex DAE of higher index. Procedure
3.5.11 offers the possibility to filter out the following minimal reduced derivative
array which contains only the necessary information of the DAE.

Definition 3.5.39 (Minimal reduced derivative array) Assume that Procedu-
re 3.5.11 applied to the quasi-linear DAE (3.23) terminates in iteration step i =
ν = νc + 1 in (3.42) with maximal constraint level νc. Then the minimal reduced
derivative array of level l ≤ νc of the quasi-linear DAE (3.23) is defined by

0 = F̃l(x, ẋ, ul) =




E(x, u)ẋ − k(x, u)

k̃0
2(x, u)

k̃1
2(x, u1)

...

k̃l
2(x, ul)




, (3.66)

where F̃l ∈ C(X1 × Ul, R
m+

lP
i=0

mi
2

), ui = [uT , u̇T , ..., u(i)T ]T and where k̃i
2(x, ui),

i = 0, ..., l, are recursively defined as in Procedure 3.5.11.
In the case l = νc the minimal reduced derivative array F̃νc

(x, ẋ, uνc) is called com-
plete minimal reduced derivative array of the quasi-linear DAE (3.23).

Remark 3.5.40 a) The complete minimal reduced derivative array F̃νc
contains

the original DAE together with all its hidden constraints. Note that in contrast to
the derivative array (3.7) or a reduced derivative array (3.8) the minimal reduced
derivative array (3.66) only depends on the control function u and its derivatives
up to order νc and the unknown variables x and its first derivative ẋ with respect to
t, but not on higher derivatives x(i), i > 1 of the unknown variables x with respect
to t.
b) If the investigated quasi-linear DAE (3.23) is in semi-implicit form (3.24) then
it is not necessary to write down the explicitly given constraints twice in the upper
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block equations in (3.66). Thus, the minimal reduced derivative array associated to
a semi-explicit DAE (3.24) may have the form

0 = F̃l(x, ẋ, ul) =




E1(x, u)ẋ − k1(x, u)

k̃0
2(x, u)

k̃1
2(x, u1)

...

k̃l
2(x, ul)




. (3.67)

c) In particular, the minimal reduced derivative array (3.66) of level l corresponds
to a semi-implicit DAE (3.24) of form

0 = Ẽ(x, ul)ẋ − k̃(x, ul) (3.68a)

which has the particular form

[
ẼD(x, ul)

0

]
ẋ =

[
k̃D(x, ul)

k̃C(x, ul)

]
(3.68b)

with

ẼD(x, ul) = E(x, u), k̃D(x, ul) = k(x, u), (3.68c)

k̃C(x, ul) =




k̃0
2(x, u)

k̃1
2(x, u1)

...

k̃l
2(x, ul)




(3.68d)

and has the same set of solutions as the associated quasi-linear DAE (3.23). This
fact is obtained from the Lemmata 3.5.8 and 3.5.10. If the quasi-linear DAE is in
semi-implicit form (3.24) we may use ẼD(x, ul) = E1(x, u) and k̃D(x, ul) = k1(x, u)
instead of the whole DAE in the first block equations. �

Example 3.5.41 Let us get back to Example 3.2.5. The considered DAE is




1 0 0
0 0 x1

0 0 0






ẋ1

ẋ2

ẋ3


 =




x1x2

x2 − 1
x3 − 1


 , (3.69)

with X = R3 and t ∈ I. Note that rank(E(x, u)) is not constant for x ∈ R3, since

rank(E(x, u)) =

{
2, for x1 6= 0,
1, for x1 = 0.

Nevertheless, there exists a nonsingular matrix Z0(x, u) such that the criteria (3.39)
in step I) of Procedure 3.5.11 are satisfied. In our example we get Z0 = I and

Ẽ0
1(x, u) =

[
1 0 0
0 0 x1

]
, k̃0

1(x, u) =

[
x1x2

x2 − 1

]
,

k̃0
2(x, u) =

[
x3 − 1

]
,

with the constraint 0 = k̃0
2(x, u) = x3 − 1 which defines the constraint set of level 0

M0 = M̃0 = {(x, u) ∈ R
3 × U : x3 = 1}
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and

max
(x,u)∈M0

(rank(Ẽ0
1(x, u))) = m0

1 = 2.

Furthermore, we have that the constraint 0 = k̃0
2(x, u) is not satisfied automatically,

i.e., k̃0
2(x, u) does not vanish on R

3 × U and rank(k̃0
2,x(x, u)) ≡ m0

2 = 1 for all

(x, u) ∈ M0. From the derivative of k̃0
2(x, u) with respect to t we get the DAE

E1ẋ = k1, see (3.38), with

E1(x, u) =




1 0 0
0 0 x1

0 0 1


 and k1(x, u1) =




x1x2

x2 − 1
0


 ,

where E1 has constant rank but not full rank for all x. With

Z1 =




1 0 0
0 0 1
0 1 −x1




we get the intermediate DAE (3.40) with i = 1 and

Ẽ1
1(x, u) =

[
1 0 0
0 0 1

]
, k̃1

1(x, u1) =

[
x1x2

0

]
,

k̃1
2(x, u1) =

[
x2 − 1

]
,

with the constraint 0 = k̃1
2(x, u) = x2 − 1 which defines the subset

M̃1 = {(x, u1) ∈ R
3 × U

1 : x2 = 1}

and we get the constraint set of level 1

M1 = (M0 × U
(1)) ∩ M̃1 = {(x, u1) ∈ R

3 × U
1 : x2 = 1, x3 = 1}. (3.70)

Furthermore, we have that the constraint 0 = k̃1
2(x, u1) is not satisfied automatically

on M0 and rank(k̃1
2,x(x, u1)) ≡ m1

2 = 1 for all (x, u1) ∈ M1. From the derivative

with respect to t of k̃1
2(x, u1) we get the DAE E2ẋ = k2, see (3.38), with

E2(x, u1) =




1 0 0
0 0 1
0 1 0




which has constant rank and full rank for all (x, u1) ∈ M1 and the constraints

0 = k̃2
2(x, u2) are of size m2

2 = 0. Therefore, the Procedure 3.5.11 terminates with
ν = 2, see (3.42). The maximal constraint level then is νc = ν − 1 = 1, the solution
manifold is given by M = M1 in (3.70), and the complete minimal reduced derivative
array is given by

0 = F̃1 =




1 0 0
0 0 x1

0 0 0
0 0 0
0 0 0







ẋ1

ẋ2

ẋ3


−




x1x2

x2 − 1
x3 − 1
x3 − 1
x2 − 1




.

Note that we used the complete minimal reduced derivative array in form (3.67)
even if the original DAE (3.69) is in semi-implicit form. Therefore, the original
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constraints of level 0 appear twice. In particular, note that rank(Ẽν
1 (x, uν−1)) =

const for all (x, uν−1) ∈ Mν−1 with ν = νc + 1 = 2.
In Example 3.2.5 we have already found that the d-index of (3.69) is νd = 2 and
in Example 3.2.12 we have already found that the s-index of (3.69) is νs = 1 which
coincides with the maximal constraint level νc = 1 for this example. �

Example 3.5.42 Consider again the semi-explicit DAE (3.34), i.e.,

ẋ1 = k1(x1, x2, u), (3.71a)

0 = k2(x1, u). (3.71b)

If k2,x1
k1,x2

is nonsingular for all (x1, x2, u
1) ∈ M1, then m2

2 = 0 and the Procedure
3.5.11 terminates with ν = 2 as shown in Example 3.5.15. From Example 3.5.28 we
have already the maximal constraint level νc = 1. Furthermore, since the Procedure
3.5.11 terminates with m2

2 = 0 and we have m = n and rank(Ẽ2(x, u1)) = const for
all (x, u1) ∈ M1, we get from Lemma 3.5.29 that the d-index of the DAE (3.71) is
well defined and determined by νd = νc +1 = 2. Furthermore, the solution manifold
is given by

M = {(x1, x2, u
1) ∈ X1 × X2 × U

1 : 0 = k2(x1, u), (3.72)

0 = −k2,x1
(x1, u)k1(x1, x2, u) − k2,u(x1, u)u̇}

and the complete minimal reduced derivative array is defined by

F̃1(x, ẋ, u1) =




ẋ1 − k1(x1, x2, u)
k2(x1, u)
k2(x1, u)

−k2,x1
(x1, u)k1(x1, x2, u) − k2,u(x1, u)u̇


 . (3.73)

�

3.5.3 Regularization of quasi-linear differential-algebraic equa-

tions

As we have seen before, Procedure 3.5.11 provides a tool for the investigation of
general quasi-linear DAEs (3.23) with respect to their analytical properties in an it-
erative way, based on transformations and differentiation of the necessary algebraic
equations. On the other hand Hypothesis 3.2.7 provides a general tool for the in-
vestigation of general nonlinear DAEs (3.2a) based on transformations of the whole
derivative array (3.7). In the following we will discuss a regularization technique for
quasi-linear DAEs (3.23) based on Procedure 3.5.11. In preparation let us define
the functions rl : Ml 7→ R, al : Ml 7→ R, and dl : Ml 7→ R by

rl = rank(




E(x, u)

k̃0
2,x(x, u)

k̃1
2,x(x, u1)

...

k̃l
2,x(x, ul)




), (3.74a)

al = rank(




k̃0
2,x(x, u)

k̃1
2,x(x, u1)

...

k̃l
2,x(x, ul)




), (3.74b)

dl = rl − al (3.74c)

for l ≤ νc.
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Definition 3.5.43 (Kinematic selector) Assume that Procedure 3.5.11 applied
to the quasi-linear DAE (3.23) terminates in iteration step i = ν = νc + 1 in (3.42)
with maximal constraint level νc. Let aνc be defined by (3.74b) with l = νc and
let aνc = const for all (x, uνc) ∈ M. Then a matrix function SC(x, uνc) of size
aνc ×∑νc

i=0 mi
2 that satisfies

rank(SC(x, uνc)




k̃0
2,x(x, u)

k̃1
2,x(x, u1)

...

k̃νc

2,x(x, uνc)




) = aνc (3.75)

for all (x, uνc) ∈ M (see Definition 3.5.38), is called kinematic selector of the quasi-
linear DAE (3.23).

Definition 3.5.44 (Dynamic selector) Assume that Procedure 3.5.11 applied to
the quasi-linear DAE (3.23) terminates in iteration step i = ν = νc + 1 in (3.42)
with maximal constraint level νc. Let rνc and dνc be defined by (3.74) with l = νc

and let rνc = const and dνc = const for all (x, uνc) ∈ M. Then a matrix function
SD(x, uνc) of size dνc × m that satisfies

rank(




SD(x, uνc)E(x, u)

k̃0
2,x(x, u)

k̃1
2,x(x, u1)

...

k̃νc

2,x(x, uνc)




) = rνc (3.76)

for all (x, uνc) ∈ M (see Definition 3.5.38), is called dynamic selector of the quasi-
linear DAE (3.23).

Remark 3.5.45 In the investigation of semi-implicit DAEs (3.24) the definition of
the dynamic selectors may be based on E1(x, u) instead of E(x, u), see (3.76). �

Remark 3.5.46 a) The dynamic selector and the kinematic selector of a quasi-
linear DAE are not uniquely defined.
b) Because of this nonuniqueness, it is possible to choose the selectors piecewise
constant, see Lemma 2.1.3. This fact is of great advantage and importance for the
numerical integration because it offers the possibility to reduce the amount of work
for the regularization of the DAE. �

Lemma 3.5.47 Assume that Procedure 3.5.11 applied to the quasi-linear DAE
(3.23) terminates in iteration step i = ν = νc + 1 in (3.42) with maximal con-
straint level νc. Let rνc and dνc be defined by (3.74) with l = νc and let rνc = const
and dνc = const for all (x, uνc) ∈ M. Then, the DAE

0 =




SD(x, uνc)(E(x, u)ẋ− k(x, u))

k̃0
2(x, u)

k̃1
2(x, u1)

...

k̃νc

2 (x, uνc)




, (3.77)

with a dynamic selector SD(x, uνc) as defined in Definition 3.5.44 has at most max-
imal constraint level 0 and is strangeness-free.
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Proof: With û = uνc , the DAE (3.77) corresponds to a semi-implicit DAE (3.24)
with E1(x, û) = SD(x, uνc)E(x, u), k1(x, û) = SD(x, uνc)k(x, u), and k2(x, û) =[
−(k̃0

2(x, u))T · · · −(k̃νc

2 (x, uνc))T
]T

satisfying the assumptions of Lemma 3.5.1

arising from the construction of the dynamic selector SD. Therefore, the assertion
follows from Lemma 3.5.1. �

Proposition 3.5.48 Assume that Procedure 3.5.11 applied to the quasi-linear DAE
(3.23) terminates in iteration step i = ν = νc + 1 in (3.42) with maximal constraint
level νc. Let rνc , aνc , and dνc be defined by (3.74) with l = νc and let rνc = const,
aνc = const, and dνc = const for all (x, uνc) ∈ M. Then, the DAE

0 =




SD(x, uνc)(E(x, u)ẋ− k(x, u))

SC(x, uνc)




k̃0
2(x, u)

k̃1
2(x, u1)

...

k̃νc

2 (x, uνc)







, (3.78)

with a dynamic selector SD(x, uνc) as defined in Definition 3.5.44 and a kinematic
selector SC(x, uνc) as defined in Definition 3.5.43 has at most maximal constraint
level 0 and is strangeness-free.

Proof: The proof follows analogous to the proof of Lemma 3.5.47. �

Remark 3.5.49 Since the s-index is an upper bound of the maximal constraint
level, see Remark 3.5.33, it follows that the maximal constraint level of the DAEs
(3.77) and (3.78) is at most 0. In the case that no constraints exist in the DAE
(3.23), the maximal constraint level of (3.23) as well as of (3.77) and (3.78) is −1.
�

Definition 3.5.50 (Projected-strangeness-free form of a quasi-linear DAE)
Assume that Procedure 3.5.11 applied to the quasi-linear DAE (3.23) terminates in
iteration step i = ν = νc + 1 in (3.42) with maximal constraint level νc. Let rνc ,
aνc , and dνc be defined by (3.74) with l = νc and let rνc = const, aνc = const, and
dνc = const for all (x, uνc) ∈ M. Then, a projected-strangeness-free formulation of
the quasi-linear DAE (3.23) is defined by (3.77) with a dynamic selector SD(x, uνc)
as defined in Definition 3.5.44. Furthermore, a projected-strangeness-free formu-
lation with selected constraints of the quasi-linear DAE (3.23) is defined by (3.78)
with a dynamic selector SD(x, uνc) as defined in Definition 3.5.44 and a kinematic
selector SC(x, uνc) as defined in Definition 3.5.43.

Remark 3.5.51 In the case of the investigation of semi-implicit DAEs (3.24) the
definition of the projected-strangeness-free form (3.77) may be based on the differ-
ential part 0 = E1(x, u)ẋ − k1(x, u) of the semi-implicit DAE instead of the whole
DAE 0 = E(x, u)ẋ− k(x, u), see (3.77). Note that in this case the definition of the
dynamic selector, see Definition 3.5.44, also has to be based on E1(x, u) instead of
E(x, u).
Furthermore, the same remark also applies to the projected-strangeness-free form
with selected constraints (3.78) �
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Theorem 3.5.52 Assume that Procedure 3.5.11 applied to the quasi-linear DAE
(3.23) terminates in iteration step i = ν = νc + 1 in (3.42) with maximal constraint
level νc. Let rνc and dνc be defined by (3.74) with l = νc and let rνc = const and
dνc = const for all (x, uνc) ∈ M. Then, every solution of the projected-strangeness-
free formulation (3.77) associated to the quasi-linear DAE (3.23) with initial values
(x(t0), uνc(t0)) = (x0, u

νc

0 ) ∈ M solves also the original quasi-linear DAE (3.23)
with initial values (x(t0), uνc(t0)) = (x0, u

νc

0 ) ∈ M.

Proof: Consider the quasi-linear DAE (3.23) with respect to Procedure 3.5.11.
Let us define in advance

Ki =




k̃0
2,x
...

k̃i−1
2,x


 , k̃i

12 =




k̃0
2,uu̇
...

k̃i−1
2,ui−1 u̇

i−1


 , k̃0···i

2 =




k̃0
2
...

k̃i
2




for i = 0, ..., νc such that 0 = Kiẋ+ k̃i
12 = d

dt k̃
0···i
2 corresponds to the derivative with

respect to t of the (hidden) constraints k̃j
2 for j = 0, ..., i−1. With mi

12 =
∑i

j=0 mj
2,

the matrix functions Ki are of size mi−1
12 × n and have rank ri

12 = rank(Ki). Fur-

thermore, the vector functions k̃i
12 are of size mi−1

12 and the vector functions k̃0···i
2 are

of size mi
12. Note that for i = 0 the matrix functions K i and the vector functions

k̃i
12 do not occur, or in particular, they are of size 0 × n and 0, respectively, and

r0
12 = 0.

Procedure 3.5.11 implies the existence of a nonsingular transformation matrix

Z0 =

[
S0

Z0
2

]

which transforms the DAE Eẋ = k by scaling with Z0 to the intermediate DAE
(3.40) of partitioned form

S0Eẋ = S0k, (3.79a)

K0ẋ = −k̃0
12, (3.79b)

0 = k̃0
2 (3.79c)

with S0E of size m0
11 × n and rank(S0E) = m0

11 and

rank(

[
S0E
K0

]
) = m0

1 = m0
11 + r0

12.

In view of Procedure 3.5.11 we have the intermediate DAE (3.40) with i = 0 and

E0
1 =

[
S0E
K0

]
and k0

1 =

[
S0k

−k̃0
12

]
.

Note that we have formally introduced K0ẋ = −k̃0
12 even if this corresponds to

a vanishing number of equations. Since the nonuniqueness of the transformation
matrix functions Zi in step I) of Procedure 3.5.11 lies in the block-column-wise
scaling with nonsingular matrix functions, without loss of generality we can choose
the nonsingular transformation matrix Z i+1 as

Zi+1 =




Si+1 0 0
0 Imi−1

12
0

0 0 Imi
2

Zi+1
41 Zi+1

42 Zi+1
43


 (3.80)
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satisfying

Zi+1
41 Si · · ·S0E + Zi+1

42 Ki + Zi+1
43 k̃i

2,x = 0 (3.81)

and

rank(




Si+1Si · · ·S0E
Ki

k̃i
2,x


) = mi+1

11 + rank(

[
Ki

k̃i
2,x

]
), (3.82)

where the matrix on the left-hand side of (3.82) is of size mi+1
11 + mi

12 × n with
mi+1

11 = rank(
[

Si+1Si · · ·S0E
]
), i.e., Si+1Si · · ·S0E has full (column) rank. By

use of nonsingular transformation matrix functions Z i of the form (3.80) in every
subsequent step of Procedure 3.5.11, the intermediate DAE (3.40) has the structure

Si · · ·S0Eẋ = Si · · ·S0k, (3.83a)

Kiẋ = −k̃i
12, (3.83b)

0 = k̃i
2. (3.83c)

Let us keep in mind the following associated DAE

Si · · ·S0Eẋ = Si · · ·S0k, (3.84a)

0 = k̃0···i−1
2 , (3.84b)

0 = k̃i
2 (3.84c)

which consists of all hidden constraints of level 0, ..., i and a selection of the original
DAE. Let us consider the iteration step from i, i.e., (3.83), to i + 1 ≤ νc + 1. From
the derivative of the constraints (3.83c), using (3.83) we get the DAE E i+1ẋ = ki+1,
see (3.43), by

Si · · ·S0Eẋ = Si · · ·S0k, (3.85a)

Kiẋ = −k̃i
12, (3.85b)

k̃i
2,xẋ = −k̃i

2,ui u̇
i (3.85c)

By scaling with Zi+1 of the form (3.80), we get from (3.85) the intermediate DAE
(3.40) for i + 1 again in partitioned form

Si+1Si · · ·S0Eẋ = Si+1Si · · ·S0k, (3.86a)

Kiẋ = −k̃i
12, (3.86b)

k̃i
2,xẋ = −k̃i

2,ui u̇
i, (3.86c)

0 = k̃i+1
2 (3.86d)

with

k̃i+1
2 = Zi+1

41 Si · · ·S0k − Zi+1
42 k̃i

12 − Zi+1
43 k̃i

2,ui u̇
i (3.87)

and its associated DAE

Si+1 · · ·S0Eẋ = Si+1 · · ·S0k, (3.88a)

0 = k̃0···i−1
2 , (3.88b)

0 = k̃i
2, (3.88c)

0 = k̃i+1
2 . (3.88d)
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The relation between the DAE (3.86) and (3.88) is that the equations (3.86b) and
(3.86c) are the first derivative with respect to t of (3.88b) and (3.88c), respectively.
In particular, (3.88) forms the DAE explicitly consisting of all hidden constraints
of level 0, ..., i + 1 and a selection of the original quasi-linear DAE (3.23).
In the following we will show that a solution of the associated DAE (3.88) solves
also the associated DAE (3.84). Then, recursively it follows that a solution of the
projected-strangeness-free formulation (3.77) of the quasi-linear DAE (3.23) also
solves the DAE (3.79) and therefore, also solves the original quasi-linear DAE (3.23).
Furthermore, the matrix SνcSνc−1 · · ·S0 satisfies the conditions of Definition 3.5.44.
Therefore, the dynamic selector SD can by chosen as SD = SνcSνc−1 · · ·S0, except
for scaling with a nonsingular matrix.
From the derivative of (3.88b) with respect to t we get K iẋ = −k̃i

12 and, therefore,
it follows that

Zi+1
42 Kiẋ = −Zi+1

42 k̃i
12. (3.89)

Furthermore, from the derivative of (3.88c) with respect to t we get k̃i
2,xẋ = −k̃i

2,ui u̇
i

and it follows that

Zi+1
43 k̃i

2,xẋ = −Zi+1
43 k̃i

2,ui u̇
i. (3.90)

Therefore, from equation (3.88a) and the sum of (3.89) and (3.90) we get

Si+1Si · · ·S0Eẋ = Si+1Si · · ·S0k, (3.91a)

(−Zi+1
42 Ki − Zi+1

43 k̃i
2,x)ẋ = Zi+1

42 k̃i
12 + Zi+1

43 k̃i
2,ui u̇

i. (3.91b)

On the other hand, the equation (3.88d) with (3.87) and the trivial equation
Si+1Si · · ·S0k = Si+1Si · · ·S0k yield

Si+1Si · · ·S0k = Si+1Si · · ·S0k, (3.92a)

Zi+1
41 Si · · ·S0k = Zi+1

42 k̃i
12 + Zi+1

43 k̃i
2,ui u̇

i. (3.92b)

From (3.91) and (3.92) it follows because of the same right-hand side that

Si+1Si · · ·S0Eẋ = Si+1Si · · ·S0k,

(−Zi+1
42 Ki − Zi+1

43 k̃i
2,x)ẋ = Zi+1

41 Si · · ·S0k

which is equivalent to

[
Si+1Si · · ·S0E

−Zi+1
42 Ki − Zi+1

43 k̃i
2,x

]
ẋ =

[
Si+1

Zi+1
41

]
Si · · ·S0k.

Because of the nonsingularity of the matrix on the right-hand side, see (3.80), this
is equivalent to

[
Si+1

Zi+1
41

]−1 [
Si+1 · · ·S0E

−Zi+1
42 Ki − Zi+1

43 k̃i
2,x

]
ẋ = Si · · ·S0k. (3.93)

Furthermore, we have from (3.81) that

[
Si+1

Zi+1
41

]
Si · · ·S0E =

[
Si+1Si · · ·S0E

Zi+1
41 Si · · ·S0E

]
=

[
Si+1Si · · ·S0E

−Zi+1
42 Ki − Zi+1

43 k̃i
2,x

]
.

Therefore, we obtain

[
Si+1

Zi+1
41

]−1 [
Si+1Si · · ·S0E

−Zi+1
42 Ki − Zi+1

43 k̃i
2,x

]
= Si · · ·S0E
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and it follows from (3.93) that

Si · · ·S0Eẋ = Si · · ·S0k.

Together with (3.88b) and (3.88c) it follows that every solution of (3.88) also solves
(3.84) and we get the assertion by the recursion mentioned above. �

Remark 3.5.53 The projected-strangeness-free formulation (3.77) without select-
ing nonredundant constraints corresponds to a regularization of the quasi-linear
DAE (3.23) because both formulations have the same set of solutions (see Theo-
rem 3.5.52), because the reduced maximal constraint level is reduced (see Remark
3.5.49), and because the formulation (3.77) is strangeness-free (see Lemma 3.5.47).
But (3.77) is in general not suitable for the numerical integration because of the
(possible) redundancies in the constraints.
On the other hand, if the quasi-linear DAE (3.23) contains redundant algebraic
constraints, the projected-strangeness-free formulation (3.78) with selected nonre-
dundant constraints possibly has more solutions than the original quasi-linear DAE
(3.23) since a selection of a set of nonredundant constraints by use of a kine-
matic selector could lead to an enlargement of the set of solutions, see Example
2.3.15. But nevertheless, by such a selection the set of solutions is increased in
a way such that the (possibly) new obtained solutions are separated from the so-
lution manifold of the original quasi-linear DAE (3.23), see Lemma 2.3.14. Fur-
thermore, in the numerical treatment the numerical evaluation of the selectors is
done along the specific solution x(t) which is determined by the given initial values
x(t0) = x0. Therefore, the dynamic selector as well as the kinematic selector are
evaluated as function only depending on t and not explicitely on x, i.e, we have
SD(t) = SD(x(t), uνc(t)) and SC(t) = SC(x(t), uνc(t)) as matrix functions depend-
ing on t. Hence, the projected-strangeness-free formulation (3.78) with selected
nonredundant constraints can serve as basis for the numerical integration because
of the separation of the additional solutions from the solutions of (3.23).
Note that in case of nonredundant constraints the formulations (3.77) and (3.78)
are identical except for a nonlinear scaling of the constraints. �

Remark 3.5.54 Note that if we use Procedure 3.5.11 for the determination of the
projected-strangeness-free formulation (3.77), it is only necessary to determine the
derivatives of the algebraic constraints. The derivatives of the differential parts need
not be determined because they have no influence on the projected-strangeness-
free formulation (3.77). In contrast, if we use Hypothesis 3.2.7, it is necessary
to determine the derivatives of the whole DAE. Therefore, the use of Hypothesis
3.2.7 for the determination of the equivalent strangeness-free formulation (3.21)
of a quasi-linear DAE (3.23) is more involved than the use of Procedure 3.5.11.
Even if the leading matrix E of the quasi-linear DAE (3.23) has constant rank with
respect to x, then the determination of the transformation matrices Z i in (3.39) is
more simple than for leading matrices E having nonconstant rank. Therefore, the
execution of the Procedure 3.5.11 becomes still less involved than the use of the
Hypothesis 3.2.7. On the other hand, the Procedure 3.5.11 is restricted to quasi-
linear DAEs only, while the Hypothesis 3.2.7 is suited for general nonlinear DAEs.
�

Remark 3.5.55 The projected-strangeness-free formulation (3.77) corresponds to
a regularization of the quasi-linear DAE (3.23), since the projected-strangeness-
free formulation is strangeness-free and leads to the same solution for prescribed
consistent initial values. Therefore, the projected-strangeness-free formulation is
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useful for the numerical integration by use of numerical algorithms suited for stiff
ODEs like implicit Runge-Kutta methods or methods based on backward differential
formulas (BDF methods).
The Procedure 3.5.11 also offers the possibility to regularize the DAE only up to a
certain level, i.e., because of the inductive nature of Procedure 3.5.11 it is possible
to stop it prematurely in (3.42), say with ν = ν̃c + 1 < νc + 1. Assume that
reνc , aeνc , and deνc are defined by (3.74) with l = ν̃c and assume that reνc = const,
aeνc = const, and deνc = const for all (x, ueνc) ∈ M. In this case the formulation
(3.77) with ν̃c instead of νc and with a dynamic selector SD(x, ueνc) of size deνc−1×m
with deνc−1 = reνc−1 − aeνc−1, aeνc−1 defined in (3.74b) and reνc−1 defined by (3.74c)
satisfying

rank(




SD(x, uνs)E(x, u)

k̃0
2,x(x, u)

k̃1
2,x(x, u1)

...

k̃eνc−1
2,x (x, ueνc−1)




) = reνc−1

for all (x, ueνc) ∈ Meνc
has maximal constraint level νc − ν̃c > 0 and contains, there-

fore, hidden constraints up to the maximal level νc − ν̃c. But nevertheless, this
corresponds to a regularization because of the lowering of the index and the de-
termination of the hidden constraints up to level ν̃c. We call this an incomplete
regularization. From the proof of Theorem 3.5.52 it follows that SD = Seνc−1 · · ·S0

and that every solution of an incomplete regularization (3.77) with ν̃c instead of νc

also solves the original quasi-linear DAE (3.23).
Furthermore, according to Remark 3.5.53 the formulation (3.78) with ν̃c instead
of νc and with a kinematic selector SC(x, ueνc) defined in Definition 3.5.43 with ν̃c

instead of νc can serve as basis for the numerical integration. Furthermore, note
that an incomplete regularization is only possible for ν̃c > 0 since a regularization
bases on additional information obtained from the derivative of constraints with
respect to t. �

In the following Example 3.5.56 we will demonstrate the regularization to the
projected-strangeness-free formulation as well as the incomplete regularization of
a semi-explicit DAE in Hessenberg form (3.25) of order 3.

Example 3.5.56 Let us consider the semi-explicit DAE

ẋ1 = k1(x1, x2, u), (3.94a)

ẋ2 = k2(x1, x2, x3, u), (3.94b)

0 = k3(x1, u) (3.94c)

with x1 ∈ C1(I, X1), x2 ∈ C1(I, X2), x3 ∈ C(I, X3), u ∈ C(I, U), k1 ∈ C1(X1 × X2 ×
U, Rn1), k2 ∈ C(X1×X2×X3×U, Rn2), k3 ∈ C2(X1×U, Rn3), X1 ⊂ R

n1 , X2 ⊂ R
n2 ,

X3 ⊂ Rn3 , and assume that k3,x1
k1,x2

k2,x3
is nonsingular. Note that the DAE

(3.94) in this form does not correspond to the form (3.25) but by permuting the
meaning of x1 with x2 and k1 with k2 the DAE (3.94) can be written in form (3.25).
Therefore, the DAE (3.94) is in Hessenberg form of order 3.
Following Procedure 3.5.11 we have

E0 =




Im1
0 0

0 Im2
0

0 0 0


 , k0 =




k1

k2

k3


 .
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With transformation matrix Z0 = I we get the intermediate DAE (3.40) with i = 0
and

Ẽ0
1 =

[
Im1

0 0
0 Im2

0

]
, k̃0

1 =

[
k1

k2

]
,

k̃0
2 =

[
k3

]
.

The constraints of level 0 are given by 0 = k̃0
2 = k3 and therefore, we get M0 =

M̃0 = {(x, u) ∈ X × U : 0 = k3}. Differentiation of the constraints of level
0 with respect to t yields 0 = k3,x1

ẋ1 + k3,uu̇ and we get the transformed DAE
E1(x, u)ẋ = k1(x, u1) with

E1 =




Im1
0 0

0 Im2
0

k3,x1
0 0


 , k1 =




k1

k2

−k3,uu̇


 .

The transformation with the transformation matrix

Z1(x, u) =




Im1
0 0

0 Im2
0

−k3,x1
0 Im3




leads to the intermediate DAE (3.40) with i = 1 and

Ẽ1
1 =

[
Im1

0 0
0 Im2

0

]
, k̃1

1 =

[
k1

k2

]
,

k̃1
2 =

[
−k3,x1

k1 − k3,uu̇
]
.

Now we have determined the constraints of level 1 by 0 = k̃1
2 = k3,x1

k1 + k3,uu̇.

Furthermore, we get M̃1 = {(x, u1) ∈ X × U1 : 0 = k3,x1
k1 + k3,uu̇} and the

constraint set of level 1 by M1 = {(x, u1) ∈ X×U
1 : 0 = k3, 0 = k3,x1

k1 + k3,uu̇}.
Since the constraints of level 1 are not satisfied for all (x, u1) ∈ M0 ×U(1), we have
to continue the procedure. Differentiation of the constraints of level 1 with respect
to t yields

0 = (k3,x1
k1 + k3,uu̇),x1

ẋ1 + k3,x1
k1,x2

ẋ2 + (k3,x1
k1 + k3,uu̇),u1 u̇1

and we get the transformed DAE E2(x, u1)ẋ = k2(x, u2) with

E2 =




Im1
0 0

0 Im2
0

(k3,x1
k1 + k3,uu̇),x1

k3,x1
k1,x2

0


 , k2 =




k1

k2

−(k3,x1
k1 + k3,uu̇),u1 u̇1


 .

The transformation with the transformation matrix

Z2(x, u1) =




Im1
0 0

0 Im2
0

−(k3,x1
k1 + k3,uu̇),x1

−k3,x1
k1,x2

Im3




leads to the intermediate DAE (3.40) with i = 2 and

Ẽ2
1 =

[
Im1

0 0
0 Im2

0

]
,

k̃2
1 =

[
k1

k2

]
,

k̃2
2 =

[
−(k3,x1

k1 + k3,uu̇),x1
k1 − k3,x1

k1,x2
k2 − (k3,x1

k1 + k3,uu̇),u1 u̇1
]
.
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Now we have determined the constraints of level 2 by 0 = k̃2
2 = (k3,x1

k1),x1
k1 +

k3,x1
k1,x2

k2 + (k3,x1
k1 +k3,uu̇),u1 u̇1. Furthermore, we get M̃2 = {(x, u2) ∈ X×U2 :

0 = (k3,x1
k1),x1

k1 + k3,x1
k1,x2

k2 + (k3,x1
k1 + k3,uu̇),u1 u̇1} and the constraint set

of level 2 by M2 = {(x, u2) ∈ X × U
2 : 0 = k3, 0 = k3,x1

k1 + k3,uu̇, 0 =
(k3,x1

k1),x1
k1 + k3,x1

k1,x2
k2 + (k3,x1

k1 + k3,uu̇),u1 u̇1}. Since the constraints of level

2 are still not satisfied for all (x, u2) ∈ M1×U(2), we have to continue the procedure.
Differentiation of the constraints of level 2 with respect to t yields

0 = ((k3,x1
k1),x1

k1 + k3,x1
k1,x2

k2 + (k3,x1
k1 + k3,uu̇),u1 u̇1),x1

ẋ1

+((k3,x1
k1),x1

k1 + k3,x1
k1,x2

k2 + (k3,x1
k1 + k3,uu̇),u1 u̇1),x2

ẋ2

+k3,x1
k1,x2

k2,x3
ẋ3

+((k3,x1
k1),x1

k1 + k3,x1
k1,x2

k2 + (k3,x1
k1 + k3,uu̇),u1 u̇1),u2 u̇2

and we get the transformed DAE E3(x, u2)ẋ = k3(x, u3) with

E3 =




Im1
0 0

0 Im2
0

E3
31 E3

32 k3,x1
k1,x2

k2,x3


 ,

k3 =




k1

k2

−((k3,x1
k1),x1

k1 + k3,x1
k1,x2

k2 + (k3,x1
k1 + k3,uu̇),u1 u̇1),u2 u̇2




with

E3
31 = ((k3,x1

k1),x1
k1 + k3,x1

k1,x2
k2 + (k3,x1

k1 + k3,uu̇),u1 u̇1),x1
,

E3
32 = ((k3,x1

k1),x1
k1 + k3,x1

k1,x2
k2 + (k3,x1

k1 + k3,uu̇),u1 u̇1),x2
.

Because of the assumed nonsingularity of k3,x1
k1,x2

k2,x3
we have m3

2 = 0 and the
Procedure 3.5.11 terminates with ν = 3. Therefore, the DAE (3.94) has maximal
constraint level νc = ν − 1 = 2 and because of the nonsingularity of the matrix
function E3 for all (x, u2) ∈ M = M2 the DAE (3.94) has in addition d-index
νd = ν = 3. The s-index of the DAE (3.94) is νs = 2 which can be verified by
Hypothesis 3.2.7. The solution manifold is given by

M={(x, u2) ∈ X × U
2 : 0 = k3,

0 = k3,x1
k1+k3,uu̇,

0 = (k3,x1
k1),x1

k1+k3,x1
k1,x2

k2+(k3,x1
k1+k3,uu̇),u1 u̇1}.

The complete minimal reduced derivative array is defined by

F̃2(x, ẋ, u2) =




ẋ1 − k1

ẋ2 − k2

k3

k3

k3,x1
k1 + k3,uu̇

(k3,x1
k1),x1

k1 + k3,x1
k1,x2

k2 + (k3,x1
k1 + k3,uu̇),u1 u̇1




.

Because of the assumed nonsingularity of k3,x1
k1,x2

k2,x3
, we get from Definition

3.5.43 the kinematic selector as identity, i.e., SC = I3m3
. Furthermore, according

to Definition 3.5.44 we can choose the dynamic selector as

SD =

[
SD11 0 0

0 SD22 0

]
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such that
[

SD11

k3,x1

]
and

[
SD22

k3,x1
k1,x2

]

are nonsingular, and we get for the DAE (3.94) the associated projected-strangeness-
free formulation

0 =




SD11(ẋ1 − k1)
SD22(ẋ2 − k2)

k3

k3,x1
k1 + k3,uu̇

(k3,x1
k1),x1

k1 + k3,x1
k1,x2

k2 + (k3,x1
k1 + k3,uu̇),u1 u̇1




.

In the following let us discuss an incomplete regularization of level 1. This means
that we stop the Procedure 3.5.11 already with i − 1 = ν̃c = 1. Then, we get the
(incomplete) reduced derivative array

F̃1(x, ẋ, u1) =




ẋ1 − k1

ẋ2 − k2

k3

k3

k3,x1
k1 + k3,uu̇




.

From (3.74c) we get

reνc−1 = rank(

[
E

k̃0
2,x

]
) = rank(




Im1
0 0

0 Im2
0

0 0 0
k3,x1

0 0


) = m1 + m2

and aeνc−1 is given from (3.74b) with ν̃c = 1 instead of νc by aeνc−1 = m3. Be-
cause of the full rank of the constraints which follows from the nonsingularity
of k3,x1

k1,x2
k2,x3

we can again choose the kinematic selector as the identity, i.e.,
SC(x, u1) = I2m3

. According to Remark 3.5.55, then the dynamic selector

SD =
[

SD1 SD2 SD3

]

of size deνc−1×m with deνc−1 = reνc−1 −aeνc−1 = m1 +m2 −m3 has to be determined
such that

rank(

[
SD1 SD2 SD3

k3,x1
0 0

]
) = reνc−1 = m1 + m2.

In particular, this can be reached by

SD1 =

[
SD11

0

]
, SD2 =

[
0

Im2

]
, SD3 =

[
0
0

]
,

with SD11 of size m1 − m3 × m1 chosen such that again the matrix
[

SD11

k3,x1

]

is nonsingular. With respect to the DAE (3.94) this leads to

0 =




SD11(ẋ1 − k1)
ẋ2 − k2

k3

k3,x1
k1 + k3,uu̇


 (3.95)
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with maximal constraint level νc = 1 and which has s-index νs = 1 which can be
checked by use of the Hypothesis 3.2.7. Let us call the DAE (3.95) the associated
projected-s-index-1 formulation of the quasi-linear DAE (3.94). �

Example 3.5.57 Consider the differential-algebraic equation (3.34), see Example
3.5.7. Assume that k2,x1

k1,x2
is nonsingular. In Example 3.5.42 we did execute

the Procedure 3.5.11, where we did determine its maximal constraint level νc = 1.
Furthermore, the solution manifold M is given in (3.72) and the complete minimal

reduced derivative array F̃1 is given in (3.73).
Following Definition 3.5.43 we can choose the kinematic selector as

SC(x, u1) =

[
I 0
0 I

]

and following Definition 3.5.44 we have the dynamic selector

SD =
[

SD1 SD2

]

of size n1 − n2 × n1 + n2 with SD2 = 0 and such that

rank(




SD1 0
k2,x1

0
(k2,x1

k1),x1
k2,x1

k1,x2


) = n1 + n2.

Hence, the projected-strangeness-free form of the DAE (3.34) is given by




SD1 0
0 0
0 0


 ẋ =




SD1k1

k2

k2,x1
k1 + k2,uu̇


 (3.96)

with SD1 chosen such that the matrix

[
SD1

k2,x1

]

is nonsingular. In the case of n1 = n2 the dynamic selector SD is of size 0×n1 +n2

and then the projected-strangeness-free form (3.96) corresponds to a set of two
algebraic equations in accordance with Example 3.5.7. �

Example 3.5.58 Consider the DAE

[
(2x1 + x2) x1

0 0

] [
ẋ1

ẋ2

]
=

[
x1

x2
1 + x1x2

]
(3.97)

with X = R2 and t ∈ I. Following Procedure 3.5.11 we get the constraint 0 =
k̃0
2(x) = x2

1 + x1x2 which does not define a manifold because rank(k̃0
2,x(x)) is not

constant for all x satisfying this constraint, see Lemma 2.3.8. Nevertheless, we get
the constraint set of level 0 as M0 = {x ∈ R2 : x2

1 + x1x2 = 0}. For the quantities
r0, a0, and d0 we get from (3.74)

r0 =

{
0 for x1 = x2 = 0,
1 else,

a0 =

{
0 for x1 = x2 = 0,
1 else,

d0 = 0,

where r0 and a0 are not constant in M0. By differentiating the constraint we get

[
(2x1 + x2) x1

(2x1 + x2) x1

] [
ẋ1

ẋ2

]
=

[
x1

0

]
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and elimination yields

[
(2x1 + x2) x1

0 0

] [
ẋ1

ẋ2

]
=

[
x1

−x1

]
.

Obviously, the hidden constraint 0 = k̃1
2(x) = x1 occurs, i.e., m1

2 = 1 6= 0 and
the hidden constraint is not satisfied automatically for all x ∈ M0. Therefore, the
procedure does not terminate and we get the constraint set of level 1

M1 = {x ∈ R
2 : x2

1 + x1x2 = 0, x1 = 0} = {x ∈ R
2 : x1 = 0}.

For the quantities r1, a1, and d1 we get from (3.74)

r1 = 1, a1 = 1, d1 = 0,

which are constant in M1. From further differentiation of the constraint we get

[
(2x1 + x2) x1

1 0

] [
ẋ1

ẋ2

]
=

[
x1

0

]

which is equivalent to

[
x2 0
1 0

] [
ẋ1

ẋ2

]
=

[
0
0

]

for all x ∈ M1. Elimination yields

[
1 0
0 0

] [
ẋ1

ẋ2

]
=

[
0
0

]
. (3.98)

The last equation corresponds to a constraint 0 = k̃2
2 = 0, which is satisfied for all

x ∈ M1 because of x1 = 0. Thus, the procedure terminates in iteration step ν = 2
in (3.42) and we get the maximal constraint level νc = 1.
From Definition 3.5.50 we get the projected-strangeness-free form (3.77) of the DAE
(3.97) by

0 =

[
x2

1 + x1x2

x1

]
.

Obviously, the solution is not uniquely determined. We get x1 = 0 and x2 arbitrary
as set of solutions for the DAE (3.97). Note that because of the singularity of the
constraints of level 0 this example does not satisfy Hypothesis 3.2.7. �

Example 3.5.59 Returning to Example 3.5.41




1 0 0
0 0 x1

0 0 0






ẋ1

ẋ2

ẋ3


 =




x1x2

x2 − 1
x3 − 1


 ,

with X = R3 and t ∈ I. With a kinematic selector SC = I2 and a dynamic selector
SD =

[
1 0 0

]
we get the projected strangeness-free form of the DAE as




1 0 0
0 0 0
0 0 0






ẋ1

ẋ2

ẋ3


 =




x1x2

x3 − 1
x2 − 1


 .

�
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Example 3.5.60 The stirred tank: In [157] a stirred liquid-liquid dispersion,
i.e., a tank filled with two immiscible fluids is considered which are stirred so that
one of the phases disperses into the other one by building droplets. The modeling
of the flow field is done by Navier7-Stokes8 equations for incompressible fluids and
the dispersed phase is modeled by the general population balanced equation. For
the detailed considerations we refer to [157]. After some (simplifying) assumptions
and semi-discretization with respect to the space variables a linear DAE of the form




I 0 0
0 0 0
0 0 0






u̇(t)
ṁ(t)
ṗ(t)


 =




G(t) 0 C
0 R(t) 0

C̃ 0 0






u(t)
m(t)
p(t)


+




f1(t)
f2(t)
f3(t)


 (3.99)

is obtained, where R ∈ C1(I, Rnm,nm) is nonsingular for all t ∈ I, C̃, CT ∈ Rnp,nu ,
G ∈ C(I, Rnu,nu), f1 ∈ C(I, Rnu), f2 ∈ C(I, Rnm), and f3 ∈ C1(I, Rnp). Following
Procedure 3.5.11 we get the intermediate DAE (3.40) with i = 0 and

Ẽ0
1 =

[
I 0 0

]
, k̃0

1 =
[

G(t) 0 C
]



u(t)
m(t)
p(t)


+

[
f1(t)

]
, (3.100a)

k̃0
2 =

[
0 R(t) 0

C̃ 0 0

]


u(t)
m(t)
p(t)


+

[
f2(t)
f3(t)

]
. (3.100b)

The derivative of the constraints 0 = k̃0
2 with respect to t together with the differ-

ential part of the original DAE formally leads to




I 0 0
0 −R(t) 0

−C̃ 0 0






u̇(t)
ṁ(t)
ṗ(t)


 =




G(t) 0 C

0 Ṙ(t) 0
0 0 0






u(t)
m(t)
p(t)


+




f1(t)

ḟ2(t)

ḟ3(t)


 .

Multiplication by

Z1 =




I 0 0
0 I 0

C̃ 0 I




from the left yields the intermediate DAE (3.40) with i = 1 and

Ẽ1
1 =

[
I 0 0
0 −R(t) 0

]
, (3.101a)

k̃1
1 =

[
G(t) 0 C

0 Ṙ(t) 0

]


u(t)
m(t)
p(t)


+

[
f1(t)

ḟ2(t)

]
, (3.101b)

k̃1
2 =

[
C̃G(t) 0 C̃C

]



u(t)
m(t)
p(t)


+

[
C̃f1(t) + ḟ3(t)

]
. (3.101c)

7Claude Louis Marie Henri Navier (born 1785 in Dijon, France - died 1836 in Paris, France)
8George Gabriel Stokes (born 1819 in Skreen, County Sligo, Ireland - died 1903 in Cambridge,

England)
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One further differentiation of the constraints 0 = k̃1
2 with respect to t yields, together

with the differential part,




I 0 0
0 −R(t) 0

−C̃G(t) 0 −C̃C






u̇(t)
ṁ(t)
ṗ(t)


 (3.102)

=




G(t) 0 C

0 Ṙ(t) 0
d
dt (C̃G(t)) 0 d

dt (C̃C)






u(t)
m(t)
p(t)


+




f1(t)

ḟ2(t)
d
dt (C̃f1(t) + ḟ3(t))


 .

Recall that R(t) is assumed to be nonsingular for all t ∈ I. If C̃C is nonsingular
as well, then the leading matrix on the left-hand side of (3.102) is nonsingular and
(3.102) corresponds to the underlying ODE in implicit form associated with the
original DAE (3.99). Therefore, we have m2

2 = 0 and Procedure 3.5.11 terminates
with ν = 2, the maximal constraint level is νc = 1 and the d-index is νd = 2.
The (hidden) constraints are given by 0 = ki

2, i = 0, 1 in (3.100b) and (3.101c).
Furthermore, the solution manifold is given by

M = {(u, m, p, t) ∈ R
nu × R

nm × R
np × I :

0 =

[
0 R(t) 0

C̃ 0 0

]


u(t)
m(t)
p(t)


+

[
f2(t)
f3(t)

]
,

0 =
[

C̃G(t) 0 C̃C
]



u(t)
m(t)
p(t)


+

[
C̃f1(t) + ḟ3(t)

]
}

and the associated projected-strangeness-free formulation is determined by




SD 0 0
0 0 0
0 0 0
0 0 0







u̇(t)
ṁ(t)
ṗ(t)


=




SDG(t) 0 SDC
0 R(t) 0

C̃ 0 0

C̃G(t) 0 C̃C







u(t)
m(t)
p(t)


+




SDf1(t)
f2(t)
f3(t)

C̃f1(t)+ḟ3(t)


 ,

with SD chosen such that




SD 0 0
0 R(t) 0

C̃ 0 0

C̃G(t) 0 C̃C




is nonsingular. Since R(t) and C̃C are assumed to be nonsingular, this condition
reduces to the condition that

[
SD

C̃

]

is nonsingular. This is achieved for example by SD = (C̃−)T with range(C̃−) =

ker(C̃). �

In the following sections we will discuss the discretization of differential-algebraic
equations of this quasi-linear form via Runge-Kutta methods.



3.5. QUASI-LINEAR DIFFERENTIAL-ALGEBRAIC EQUATIONS 73

3.5.4 Runge-Kutta method applied to quasi-linear differential-

algebraic equations

In this section we will present an approach for the numerical integration of an initial
value problem of general quasi-linear DAEs of the form

Ê(x, û)ẋ = k̂(x, û), (3.103)

by use of an implicit Runge-Kutta method. We are interested in a numerical in-
tegration on the domain I = [t0, tf ] with given initial values x(t0) = x0 where

Ê ∈ C(X × Û, Rm̂,n) and k̂ ∈ C(X × Û, Rm̂) with m̂, n ∈ N0, X ⊂ Rn, Û ⊂ Rnû .
Furthermore, we will focus on the class of semi-implicit DAEs

[
ÊD(x, û)

0

]
ẋ =

[
k̂D(x, û)

k̂C(x, û)

]
, (3.104)

which arise frequently in industrial applications like the simulation of electrical
circuits and, in particular, in multibody dynamics, with ÊD ∈ C(X × Û, Rm̂D,n),

k̂D ∈ C(X × Û, Rm̂D ), and k̂C ∈ C(X × Û, Rm̂C ) with m̂D, m̂C , n ∈ N0, X ⊂ Rn,

Û ⊂ Rnû , and m̂D + m̂C = m̂.
The presented discretization technique is formally not restricted to quasi-linear
DAEs (3.23) of certain index or to quasi-linear DAEs with m = n, rather, formally
it works for m = n as well as for m 6= n and for quasi-linear DAEs of arbitrary
index. Therefore, we have to consider a general control variable û ∈ Û which not
necessarily corresponds to u. Rather, depending on the used formulation as basis
for the numerical integration, it may correspond to ui, i = 0, ..., νc in case of the
use of an incomplete regularization, see Remark 3.5.55, or in particular, it may
corresponds to uνc in case of the use of the projected-strangeness-free formulation
(3.77) of the quasi-linear DAE.
The following investigations mainly focus on two different types of semi-implicit
DAEs and their associated linear systems which we will denote by use of a hat or a
tilde on top of the functions. First, the systems denoted by a hat are associated to
the regularized DAE (mostly we focus on the projected-strangeness-free formulation
with selected constraints (3.78)). In the case of nonredundant constraints these
systems have the same dimension as the original quasi-linear DAE (3.23). Secondly,
the systems denoted by a tilde are associated to the minimal reduced derivative
array (3.68). In general these systems contain more equations than the original
quasi-linear DAE (3.23).

Remark 3.5.61 In [136], the numerical solution of nonlinear DAEs in partitioned
form (3.5) is considered. The conditioning of the iteration matrix is considered and
scaling strategies are proposed. In particular, in [115] it is shown that the condition
number of the iteration matrix for a DAE of form (3.5) with d-index νd is of order
O(1/hνd).
The investigation of strangeness-free DAEs, i.e., of s-index 0 or at most d-index 1,
is relevant for our investigation with respect to the numerical integration of regular-
ized model equations of multibody systems, see Chapter 4. For the strangeness-free
DAEs in semi-explicit form a scaling of the algebraic constraints with 1/h is recom-
mended in [136]. In this case and if the DAE is regular then the iteration matrix
tends for h → 0 to a nonsingular matrix instead of a singular matrix in the case
without scaling.
While the round-off errors for d-index one systems can be reduced by scaling, the
situation for higher index problems is different. In [136], it is shown that the alge-
braic variables associated with a semi-explicit d-index two problem are influenced
by a round-off error up to order O(1/h2) without scaling and up to order O(1/h)
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with the proposed scaling. In the case of semi-explicit d-index three systems occur-
ring in multibody dynamics the situation is even more delicate. Without scaling,
the round-off error is of order O(1/h3) and with scaling of O(1/h2), which is not
satisfactory. �

As mentioned in previous sections, e.g., in Sections 3.2 and 3.4, the direct discretiza-
tion of higher index DAEs is not advisable such that we will base the numerical
integration on the discretization of the projected-strangeness-free form (3.77) of the
quasi-linear DAE (3.23) as regularization developed in Section 3.5.3, see Definition
3.5.50. In principle, the projected-strangeness-free form (3.77) has the form (3.103)
with

Ê(x, û) = S∗(x, û)Ẽ(x, û) and k̂(x, û) = S∗(x, û)k̃(x, û), (3.105)

where Ẽ ∈ C(X × Û, R em,n) and k̃ ∈ C(X × Û, R em) are given from Ẽ(x, û)ẋ =

k̃(x, û) corresponding to the (complete) minimal reduced derivative array (3.68)
and S∗(x, û) corresponds to the selectors, i.e.,

S∗(x, û) =

[
SD(x, û) 0

0 SC(x, û)

]

defined in Definitions 3.5.43 and 3.5.44. Furthermore, in Remark 3.5.46b it is men-
tioned that the selectors can be chosen piecewise constant such that we will consider
the special case that S∗ of size m̂ × m̃ is independent of x and u.
In the numerical integration of quasi-linear DAEs (3.23), and in particular, of
the model equations of multibody systems (see Chapter 4), by use of the regu-
larization approach which is introduced in Sections 3.5.3 and 4.6.2.3, the regular-
ized DAEs have the form (3.104) with ÊD(x, û) = SD(x, û)ẼD(x, u), k̂D(x, û) =

SD(x, û)k̃D(x, û), and k̂C(x, û) = SC(x, û)k̃C(x, û), where ẼD ∈ C(X × Û, R emD,n),

k̃D ∈ C(X × Û, R emD ), and k̃C ∈ C(X × Û, R emC ), are given from Ẽ(x, û)ẋ = k̃(x, û)

corresponding to the minimal reduced derivative array (3.68) and S̃D ∈ C(X ×
Û, Rm̂D, emD ), S̃C ∈ C(X × Û, Rm̂C , emC ), with m̂D, m̂C , m̃D, m̃C , n ∈ N0, X ⊂ Rn,

Û ⊂ Rnû .
We will focus, in particular, on the class of selected semi-implicit DAEs of the form

[
SD(x, û)ẼD(x, u)

0

]
ẋ =

[
SD(x, û)k̃D(x, û)

SC(x, û)k̃C(x, û)

]
, (3.106)

which arise in the regularization process introduced in Section 3.5.3 of the projected-
strangeness-free form with selected constraints (3.78) of quasi-linear DAEs (3.77).

3.5.4.1 Discretization

The discretization of quasi-linear DAEs of the form (3.103) via an s-stage Runge-
Kutta method can be defined by a Butcher-tableau given in Table 3.1, where A =
[aij ]i,j=1,...,s ∈ Rs,s denotes the Runge-Kutta matrix, b = [bi]i=1,...,s ∈ Rs denotes
the weight vector, and c = [ci]i=1,...,s ∈ R

s denotes the node vector, with

ci =

s∑

j=1

aij . (3.107)

We assume in the following considerations that the Runge-Kutta matrix is invertible
and we are interested in a particular Runge-Kutta step from t0 to t1 = t0 + h. We
assume, that the initial values at t0 are consistently given by x0, i.e., (x0, û(t0)) ∈ M,
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c1 a11 · · · a1s

...
...

. . .
...

cs as1 · · · ass

b1 · · · bs

Table 3.1: Butcher tableau for implicit Runge-Kutta methods

see Definition 3.5.38. The discretization of the quasi-linear DAE (3.103) yields the
nonlinear algebraic system

Ê(Xi, û(t0 + cih))X ′
i = k̂(Xi, û(t0 + cih)), i = 1, ..., s,

Xi = x0 + h
s∑

j=1

aijX
′
j , i = 1, ..., s.

(3.108)

This system determines the Runge-Kutta stages Xi ∈ Rn and X ′
i ∈ Rn, i = 1, ..., s,

which approximate the solution x(t0+cih) and its derivative ẋ(t0+cih), respectively,
see [79]. The approximation x1 of the solution x(t1) at t1 is to be determined by

x1 = x0 + h
s∑

j=1

bjX
′
j . (3.109)

By introducing the shifted Runge-Kutta stages Yi = Xi − x0 and Y ′
i = X ′

i, which is
preferable in numerical implementations because of the smaller absolute values, we
get

Ê(x0 + Yi, û(t0 + cih))Y ′
i = k̂(x0 + Yi, û(t0 + cih)), i = 1, ..., s,

Yi = h
s∑

j=1

aijY
′
j , i = 1, ..., s,

x1 = x0 + h
s∑

j=1

bjY
′
j .

Using the Kronecker product, see Definition A.2.19, and introducing

Ê(Y, Û) = diag(Ê1, ..., Ês), (3.110)

k̂(Y, Û) = [k̂T
1 , ..., k̂T

s ]T , (3.111)

where

Êi = Ê(x0 + Yi, û(t0 + cih)), i = 1, ..., s,

k̂i = k̂(x0 + Yi, û(t0 + cih)), i = 1, ..., s,

Y = [Y T
1 , ..., Y T

s ]T ,

Y′ = [Y ′
1

T
, ..., Y ′

s
T

]T ,

Û = [ûT (t0 + c1h), ..., ûT (t0 + csh)]T ,

it follows that

Ê(Y, Û)Y′ = k̂(Y, Û), (3.112a)

Y = h(A ⊗ In)Y′, (3.112b)

x1 = x0 + h(bT ⊗ In)Y′. (3.112c)
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Using the properties of the Kronecker product, see Lemma A.2.20, we obtain from
the second equation that

Y′ =
1

h
(A ⊗ In)−1Y =

1

h
(A−1 ⊗ In)Y

and hence we get for (3.112) that

0 = Ê(Y, Û)(A−1 ⊗ In)Y − hk̂(Y, Û), (3.113a)

x1 = x0 + (bT A−1 ⊗ In)Y. (3.113b)

The most expensive part in the determination of the next iterate x1 is the solution
of the nonlinear stage equation (3.113a). Note that û(t) and therefore also Û are
given. Let us denote the right-hand side of (3.113a) by

Ĝ(Y, Û) = Ê(Y, Û)(A−1 ⊗ In)Y − hk̂(Y, Û). (3.114)

Therefore, the nonlinear stage equation corresponds to

0 = Ĝ(Y, Û).

As mentioned above, formally the discretization technique is not restricted to quasi-
linear DAEs (3.23) of certain index or to quasi-linear DAEs with m = n, rather,
formally it works for m = n as well as for m 6= n and for quasi-linear DAEs of
arbitrary index, but as discussed in previous sections, higher index DAEs contain
hidden constraints which impose additional consistency conditions on the initial
values and provoke severe difficulties for the direct numerical integration of DAEs
of higher index, see [25, 66, 69, 73, 79, 82, 133, 134, 166]. Therefore, in general,
higher index DAEs are not suitable for the direct discretization.

3.5.4.2 Numerical solution of the nonlinear stage equation arising from
the discretization

In this section we will discuss the numerical solution of the nonlinear stage equation
(3.113a) for general quasi-linear DAEs (3.103), semi-implicit DAEs (3.104), and
selected semi-implicit DAEs (3.106). The Newton method, see Algorithm 2.3.18
and [42, 93, 141], applied to the nonlinear stage equation (3.113a) with (3.114) can
be summarized as

Y0 given starting value,

solve N(Yk, Û)∆Yk = −Ĝ(Yk, Û) for ∆Yk,
set Yk+1 = Yk + ∆Yk,

}
k = 0, 1, ...,

where the Newton iteration matrix N is defined as

N(Y, Û) =
∂

∂Y
Ĝ(Y, Û).

The Newton method will be carried out until a certain termination criterion is
satisfied, e.g., see Section 5.1.3.5. From (3.113a), the Jacobi9 matrix of Ĝ(Y, Û)
with respect to Y is given by

∂

∂Y
Ĝ(Y, Û) = (Ê(Y, Û)(A−1 ⊗ In)Y),Y − hk̂,Y(Y, Û).

9Carl Gustav Jacob Jacobi (born 1804 in Potsdam, Prussia (now Germany) - died 1851 in
Berlin, Germany)
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By using a fixed approximation of the Jacobi matrix for several or all steps of
the Newton iteration process, we get the simplified Newton method, see Algorithm
2.3.20. Let us use the Jacobi matrix N = N(Y, Û) ≡ ∂

∂Y
Ĝ(Y∗, Û∗) evaluated at

Y∗ and Û∗ which we assume to be a regular point (X∗, Û∗) with respect to all
(hidden) constraints of (3.103), where X∗ corresponds to a particular state and Û∗

to a particular control, such that

Y∗ =




Y ∗

...
Y ∗


 ∈ R

sn, Y ∗ = X∗ − x0, and Û∗ =




Û∗

...

Û∗


 ∈ R

snû , (3.115)

is such an approximation. The regularity of the point (X∗, Û∗) with respect to all
(hidden) constraints of (3.103) is defined in Definition 2.3.3. It follows that

N = (Ê(Y∗, Û∗)(A−1 ⊗ In)Y∗),Y − hk̂,Y(Y∗, Û∗)

= (A−1 ⊗ (Ê∗
,x[[Y ∗]] + Ê∗)) − h(Is ⊗ k̂∗

,x), (3.116)

with Ê∗ = Ê(X∗, U∗), Ê∗
,x = Ê,x(X∗, U∗), k̂∗ = k̂(X∗, U∗), and k̂∗

,x = k̂,x(X∗, U∗).

If the leading matrix Ê(x, u) is independent of x such that Ê(x, u) ≡ Ê(u), i.e.,
Ê,x(u) = 0, or in the case of X∗ = x0, i.e., Y ∗ = X∗ − x0 = 0, we obtain the
particular approximation

N0 = (A−1 ⊗ Ê∗) − h(Is ⊗ k̂∗
,x).

From (3.113a) and by use of (3.116) we get a simplified Newton method in the form

Y0 given starting value,

solve
(
(A−1⊗(Ê∗

,x[[Y ∗]]+Ê∗))−h(Is⊗k̂∗
,x)
)
∆Yk =−Ĝ(Yk, Û) for ∆Yk,

set Yk+1 =Yk+∆Yk,

}
k=0, 1, ... .

(3.117)

Here, the equation (3.117) corresponds to an sm̂ × sn dimensional linear system
which has to be solved in every Newton iteration step. Let us follow an approach
proposed by Butcher and introduced in [27] to decouple the linear system in several
smaller subsystems to reduce the amount of computation. The approach uses a
similarity transformation of the inverse A−1 ∈ R

s,s of the Runge-Kutta matrix
such that

T−1A−1T = Σ or equivalently A−1 = TΣT−1, (3.118)

where T ∈ Rs,s is an invertible appropriate transformation matrix with

T =




τ1

...
τs


 ∈ R

s,s and T−1 =




τ̄1

...
τ̄s


 ∈ R

s,s,

τi, τ̄i ∈ R1,s. The matrix Σ ∈ Rs,s should be of a convenient structure such that
the amount of computation in solving the linear system (3.117) will be reduced. It
would be optimal if Σ were a diagonal matrix, but in the real case the best we can
expect is a real Schur10 form which is upper block triangular with diagonal blocks
of size 1 × 1 or 2 × 2, see [62].
The linear equation (3.117) in the Newton iteration then becomes

(
(TΣT−1 ⊗ (Ê∗

,x[[Y ∗]] + Ê∗)) − h(TT−1 ⊗ k̂∗
,x)
)
∆Yk = −Ĝ(Yk, Û)

10Issai Schur (born 1875 in Mogilyov, Mogilyov province, Russian Empire (now Belarus) - died
1941 in Tel Aviv, Palestine (now Israel))
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which is equivalent to

(
(Σ ⊗ (Ê∗

,x[[Y ∗]] + Ê∗)) − h(Is ⊗ k̂∗
,x)
)
(T−1 ⊗ In)∆Yk (3.119)

= −(T−1 ⊗ In)Ĝ(Yk, Û).

By defining the transformed Runge-Kutta stages Z

Z = (T−1 ⊗ In)Y or equivalently Y = (T ⊗ In)Z

and

∆Z = (T−1 ⊗ In)∆Y or equivalently ∆Y = (T ⊗ In)∆Z

with

Z =




Z1

...
Zs


 , ∆Z =




∆Z1

...
∆Zs


 ,

we obtain from (3.119) and (3.114) that

(
(Σ ⊗ (Ê∗

,x[[Y ∗]] + Ê∗)) − h(Is ⊗ k̂∗
,x)
)
∆Zk (3.120a)

= −(T−1 ⊗ In)Ĝ((T ⊗ In)Zk, Û)

with

Ĝ((T ⊗ In)Zk, Û) = Ê((T ⊗ In)Zk, Û)(A−1T ⊗ In)Zk − hk̂((T ⊗ In)Zk, Û).(3.120b)

From (3.110) and (3.111) it follows that

Ĝ((T ⊗ In)Zk, Û) (3.121)

=




Ê(x0+(τ1 ⊗ In)Zk, û(t0+c1h))
. . .

Ê(x0+(τs ⊗ In)Zk, û(t0+csh))


 (A−1T ⊗ In)Zk

−h




k̂(x0+(τ1 ⊗ In)Zk, û(t0+c1h))
...

k̂(x0+(τs ⊗ In)Zk, û(t0+csh))


 .

Let us assume that the inverse Runge-Kutta matrix A−1 and therefore, the matrix
Σ in (3.118) are diagonalizable over C, which corresponds to

Σ = diag(γ1, ..., γnR
, Γ1, ..., ΓnI

) with Γi =

[
αi −βi

βi αi

]
, i = 1, ..., nI , (3.122)

where γi ∈ R for i = 1, ..., nR, αi, βi ∈ R for i = 1, ..., nI , and nR + 2nI = s. Then,
the linear system (3.120a) is decoupled into nR subsystems

(
γi(Ê

∗
,x[[Y ∗]] + Ê∗) − hk̂∗

,x

)
∆Zk

i = −(τ̄i ⊗ In)Ĝ((T ⊗ In)Zk, Û), (3.123)

for i = 1, ..., nR of dimension m̂ × n and into nI subsystems
[

αi(Ê
∗
,x[[Y ∗]] + Ê∗) − hk̂∗

,x −βi(Ê
∗
,x[[Y ∗]] + Ê∗)

βi(Ê
∗
,x[[Y ∗]] + Ê∗) αi(Ê

∗
,x[[Y ∗]] + Ê∗) − hk̂∗

,x

] [
∆Zk

nR+2i−1

∆Zk
nR+2i

]
(3.124)

= −(

[
τ̄nR+2i−1

τ̄nR+2i

]
⊗ In)Ĝ((T ⊗ In)Zk, Û)
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for i = 1, ..., nI of dimension 2m̂× 2n. From the nonsingularity of the Runge-Kutta
matrix A we have γi 6= 0 for i = 1, ..., nR and α2

i + β2
i 6= 0 for i = 1, ..., nI . Then

the linear system (3.117) of dimension sm̂× sn is decoupled into nR linear systems
(3.123) of dimension m̂ × n and nI linear systems (3.124) of dimension 2m̂ × 2n.
Furthermore, apart from the coefficients αi, βi, and γi the leading matrix consists of
the same submatrices (Ê∗

,x[[Y ∗]]+Ê∗) and k̂∗
,x for all systems (3.123) for i = 1, ..., nR

and for all systems (3.124) for i = 1, ..., nI . This fact is very convenient with respect
to the amount of computation needed for the solution of these linear systems and
with respect to the amount of storage, since only these submatrices have to be
stored.

Remark 3.5.62 It is important to note that all manipulations of the nonlinear
stage equation may be done in advance, i.e., before the implementation of the
algorithm. In particular, the entries of the matrices A, A−1, T , T−1, Σ, and A−1T
are independent of the considered DAE. They only depend on the used Runge-Kutta
method such that they can be determined and stored or implemented independent
of the integrated DAE. �

In the case of the discretization of the semi-implicit DAE of the form (3.104) we
get the decoupled subsystems (3.123) and (3.124) in the following special form such
that we have nR subsystems

[
γiD̂ + hB̂

Ĉ

]
ξi =

[
b̂Di

b̂Ci

]
(3.125a)

for i = 1, ..., nR of dimension m̂ × n with ξi = ∆Zk
i and

D̂ = (Ê∗
D,x[[Y ∗]] + Ê∗

D), B̂ = −k̂∗
D,x, Ĉ = −k̂∗

C,x, (3.125b)

and

b̂Di = −(τ̄i ⊗ In)ĜD((T ⊗ In)Zk, Û), (3.125c)

b̂Ci = − 1

h
(τ̄i ⊗ In)ĜC((T ⊗ In)Zk, Û), (3.125d)

where

ĜD((T ⊗ In)Zk, Û) =
(
ÊD((T ⊗ In)Zk, Û)(A−1T ⊗ In)Zk − hk̂D((T ⊗ In)Zk, Û)

)
,

ĜC((T ⊗ In)Zk, Û) =
(
− hk̂C((T ⊗ In)Zk, Û)

)
,

ÊD((T ⊗ In)Z, Û) = diag(ÊD1, ..., ÊDs), ÊDi = ÊD(x0 + (τi ⊗ In)Z, û(t0 + cih)),

k̂D((T ⊗ In)Z, Û) = [k̂T
D1, ..., k̂

T
Ds]T , k̂Di = k̂D(x0 + (τi ⊗ In)Z, û(t0 + cih)),

k̂C((T ⊗ In)Z, Û) = [k̂T
C1, ..., k̂

T
Cs]T , k̂Ci = k̂C(x0 + (τi ⊗ In)Z, û(t0 + cih)).

Note that the second part of this linear system is scaled by 1/h, as suggested in
Remark 3.5.61 and [136]. From this scaling it follows that the leading matrix in
(3.125) tends to

[
γiD̂

Ĉ

]

if h → 0 and keeps its full rank, in the case of regular systems it remains nonsingular.
Without scaling, the lower part would also tend to 0 and the condition number would
increase for small step sizes.
Furthermore, from (3.124) we have the nI subsystems




αiD̂ + hB̂ −βiD̂

Ĉ 0

βiD̂ αiD̂ + hB̂

0 Ĉ



[

ξ1i

ξ2i

]
=




b̂1Di

b̂1Ci

b̂2Di

b̂2Ci


 (3.126a)
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for i = 1, ..., nI of dimension 2m̂ × 2n with ξ1i = ∆Zk
nR+2i−1, ξ2i = ∆Zk

nR+2i, D̂,

B̂, and Ĉ as in (3.125b) and

b̂1Di = −(τ̄nR+2i−1 ⊗ In)ĜD((T ⊗ In)Zk, Û), (3.126b)

b̂1Ci = − 1

h
(τ̄nR+2i−1 ⊗ In)ĜC((T ⊗ In)Zk, Û), (3.126c)

b̂2Di = −(τ̄nR+2i ⊗ In)ĜD((T ⊗ In)Zk, Û), (3.126d)

b̂2Ci = − 1

h
(τ̄nR+2i ⊗ In)ĜC((T ⊗ In)Zk, Û). (3.126e)

As mentioned above we will consider the numerical integration of quasi-linear DAEs
in combination with the regularization technique developed in Section 3.5.3. This
regularization technique yields a selected quasi-linear DAE (3.103) with (3.105) or
in particular, a selected semi-implicit DAE (3.106) which we will investigate in the
following. Regarding (3.105), with a constant selector S∗ for the whole interval
[t0, t0 + h] from (3.121) we get

Ĝ((T ⊗ In)Zk, Û) = (Is ⊗ S∗)G̃((T ⊗ In)Zk, Û) (3.127a)

with

G̃((T ⊗ In)Zk, Û) (3.127b)

= Ẽ((T ⊗ In)Zk, Û)(A−1T ⊗ In)Zk − hk̃((T ⊗ In)Zk, Û),

and

Ẽ((T ⊗ In)Z, Û) = diag(Ẽ1, ..., Ẽs),

k̃((T ⊗ In)Z, Û) = [k̃T
1 , ..., k̃T

s ]T ,

Ẽi = Ẽ(x0 + (τi ⊗ In)Z, û(t0 + cih)),

k̃i = k̃(x0 + (τi ⊗ In)Z, û(t0 + cih)).

Hence, the subsystem (3.123) has the selected form

S∗(γi(Ẽ
∗
,x[[Y ∗]] + Ẽ∗) − hk̃∗

,x

)
∆Zk

i = −S∗(τ̄i ⊗ In)G̃((T ⊗ In)Zk, Û), (3.128)

with Ẽ∗ = Ẽ(X∗, U∗), Ẽ∗
,x = Ẽ,x(X∗, U∗), k̃∗ = k̃(X∗, U∗), and k̃∗

,x = k̃,x(X∗, U∗).
Furthermore, it follows from (3.127a) that the subsystem (3.124) has the selected
form

[
S∗ 0
0 S∗

][
αi(Ẽ

∗
,x[[Y ∗]]+Ẽ∗)−hk̃∗

,x −βi(Ẽ
∗
,x[[Y ∗]]+Ẽ∗)

βi(Ẽ
∗
,x[[Y ∗]]+Ẽ∗) αi(Ẽ

∗
,x[[Y ∗]]+Ẽ∗)−hk̃∗

,x

][
∆Zk

nR+2i−1

∆Zk
nR+2i

]

= −
[

S∗ 0
0 S∗

]
(

[
τ̄nR+2i−1

τ̄nR+2i

]
⊗ In)G̃((T ⊗ Im)Zk, Û) (3.129)

with G̃((T ⊗ Im)Z, Û) as in (3.127b).
Regarding the selected semi-implicit DAE (3.106) also let us assume that SD(x, u)
and SC(x, u) are piecewise constant and, in particular, constant on the whole inter-
val [t0, t0+h], i.e., SD(x, u) = S∗

D and SC(x, u) = S∗
C , see Remark 3.5.46. Therefore,

from (3.128) for i = 1, ..., nR we get the linear systems (3.125) in the form

[
γiS

∗
DD̃ + hS∗

DB̃

S∗
CC̃

]
ξi =

[
S∗

D b̃Di

S∗
C b̃Ci

]
(3.130a)
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with ξi = ∆Zk
i and

D̃ = (Ẽ∗
D,x[[Y ∗]] + Ẽ∗

D), B̃ = −k̃∗
D,x, C̃ = −k̃∗

C,x, (3.130b)

and

b̃Di = −(τ̄i ⊗ In)G̃D((T ⊗ In)Zk, Û), (3.130c)

b̃Ci = − 1

h
(τ̄i ⊗ In)G̃C((T ⊗ In)Zk, Û), (3.130d)

with

G̃D((T ⊗ In)Zk, Û) =
(
ẼD((T ⊗ In)Zk, Û)(A−1T ⊗ In)Zk − hk̃D((T ⊗ In)Zk, Û)

)
,

G̃C((T ⊗ In)Zk, Û) =
(
− hk̃C((T ⊗ In)Zk, Û)

)
,

ẼD((T ⊗ In)Z, Û) = diag(ẼD1, ..., ẼDs), ẼDi = ẼD(x0 + (τi ⊗ In)Z, û(t0 + cih)),

k̃D((T ⊗ In)Z, Û) = [k̃T
D1, ..., k̃

T
Ds]T , k̃Di = k̃D(x0 + (τi ⊗ In)Z, û(t0 + cih)),

k̃C((T ⊗ In)Z, Û) = [k̃T
C1, ..., k̃

T
Cs]T , k̃Ci = k̃C(x0 + (τi ⊗ In)Z, û(t0 + cih)).

Note that again the second part of this linear system is scaled by 1/h, as suggested
in Remark 3.5.61 and [136]. Furthermore, from (3.129) we get the linear system




αiS
∗
DD̃ + hS∗

DB̃ −βiS
∗
DD̃

S∗
CC̃ 0

βiS
∗
DD̃ αiS

∗
DD̃ + hS∗

DB̃

0 S∗
CC̃




[
ξ1i

ξ2i

]
=




S∗
D b̃1Di

S∗
C b̃1Ci

S∗
D b̃2Di

S∗
C b̃2Ci


 (3.131a)

for i = 1, ..., nI with ξ1i = ∆Zk
nR+2i−1, ξ2i = ∆Zk

nR+2i, D̃, B̃, and C̃ as in (3.130b)
and

b̃1Di = −(τ̄nR+2i−1 ⊗ In)G̃D((T ⊗ In)Zk, Û), (3.131b)

b̃1Ci = − 1

h
(τ̄nR+2i−1 ⊗ In)G̃C((T ⊗ In)Zk, Û), (3.131c)

b̃2Di = −(τ̄nR+2i ⊗ In)G̃D((T ⊗ In)Zk, Û), (3.131d)

b̃2Ci = − 1

h
(τ̄nR+2i ⊗ In)G̃C((T ⊗ In)Zk, Û). (3.131e)

Remark 3.5.63 a) By use of Runge-Kutta methods for the discretization of quasi-
linear DAEs (3.103), the solution of the sm̂× sn dimensional linear system (3.117)
reduces to the solution of a set of linear systems consisting of nR systems of the
form (3.123) of size m̂ × n and nI systems of the form (3.124) of size 2m̂ × 2n.
The discretization of semi-implicit DAEs of the form (3.104) reduces to the solution
of a set of nR linear systems of the form (3.125) of size m̂×n and nI linear systems
of the form (3.126a) of size 2m̂ × 2n which exploit the partitioned structure.
Furthermore, in the special case (3.106), where SD(x, û) = S∗

D and SC(x, û) = S∗
C

are constant on the interval [t0, t0 + h], this discretization of (3.106) reduces to the
solution of a set of nR linear systems of the form (3.130a) of size m̂ × n and nI

linear systems of the form (3.131a) of size 2m̂×2n which offer the special partitioned
structure.
We will discuss the efficient numerical solution of the latter systems in detail in
Section 3.5.4.3.
b) Note, that the matrices in the linear systems (3.130a) and (3.131a) contain the
same submatrices D̂, B̂, and Ĉ independent of i. Merely, the coefficients αi, βi,
and γi and the right-hand sides depend on i. This property can be exploited in the
numerical solution of these systems as shown in Section 3.5.4.3. �
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Remark 3.5.64 If we use BDF methods [25, 37, 64, 81, 125, 173] as discretization
method for the numerical solution of the initial value problem of the quasi-linear
DAE (3.103) we obtain the linear systems to be solved in every integration step of
the same type as (3.123). Analogously, the discretization of the semi-implicit DAE
(3.104) leads to a linear system of type (3.125) and the discretization of the selected
semi-implicit DAE (3.106) leads to a linear system of type (3.130a), where in every
case coefficients γi and the right-hand side are adapted to the used discretization
method. �

Remark 3.5.65 Recently, a third class of discretization techniques, the so-called
general linear methods are widely studied, see [28, 159, 179]. The class of general
linear methods forms a generalization of Runge-Kutta methods and of BDF methods
and contains both as special discretization techniques. Also if we use general linear
methods as discretization method for the numerical solution of the initial value
problem of the quasi-linear DAE (3.103) or of the semi-implicit DAE (3.104) or
of the selected semi-implicit DAE (3.106) we obtain the linear systems of type
(3.123), (3.124) or (3.125), (3.126a) or (3.130a), (3.131a), respectively, to solve in
every integration step, where in every case the coefficients α1, β1, and γi and the
right-hand side are adapted to the used discretization method. �

3.5.4.3 Numerical solution of special linear systems arising from dis-
cretization methods

In the previous sections we have investigated the discretization of the quasi-linear
DAE (3.103) via Runge-Kutta methods. We have seen that the numerical integra-
tion of the quasi-linear DAE (3.103) needs the efficient solution of the linear systems
(3.123) and (3.124). In the numerical treatment of semi-implicit DAEs (3.104) and,
in particular, in the numerical treatment of selected semi-implicit DAEs (3.106), the
existing structure can be exploited. This will be discussed in detail in the following.
Recall, that in the case of semi-implicit DAEs (3.104) we have to solve linear sys-
tems of two different types that contains the same submatrices Ĉ ∈ R

m̂C ,n and
D̂, B̂ ∈ Rm̂D,n. First, we have to solve linear systems of the form

[
Ĉ

γD̂ + hB̂

]
ξ =

[
b̂C

b̂D

]
(3.132)

of size m̂ × n, for i = 1, ..., nR and γ = γi, b̂C = b̂Ci ∈ Rm̂C , b̂D = b̂Di ∈ Rm̂D with
m̂C + m̂D = m̂. This linear system corresponds to (3.125) where we did permute
the block rows and omitted the index i for the sake of simplicity. Let us call this
type of system selected linear system of type 1 or selected system of type 1 in short.
Furthermore, let us call the first block equation Ĉξ = b̂C of (3.132) the algebraic
part of (3.132) because of its correspondence to the algebraic constraints of the
considered DAE (3.104) which restrict the solution to be in the solution manifold

M. Furthermore, the second block equation (γD̂ + hB̂)ξ = b̂D of (3.132) will be
called the differential part of (3.132) because of its correspondence to the differential
equations of the considered DAE (3.104), which describe the dynamics of the system
along the solution manifold M. Secondly, we have to solve linear systems of the form




Ĉ 0

αD̂ + hB̂ −βD̂

0 Ĉ

βD̂ αD̂ + hB̂



[

ξ1

ξ2

]
=




b̂1C

b̂1D

b̂2C

b̂2D


 (3.133)

of size 2m̂ × 2n for i = 1, ..., nI and α = αi, β = βi, b̂1C = b̂1Ci ∈ Rm̂C , b̂2C =
b̂2Ci ∈ R

m̂C , b̂1D = b̂1Di ∈ R
m̂D , and b̂2D = b̂2Di ∈ R

m̂D . This coincides with
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(3.126a) when permuting the block rows and omitting the index i. Analogously, let
us call this system selected linear system of type 2 or selected system of type 2 in
short and let us call the first and third block equations Ĉξ1 = b̂1C and Ĉξ2 = b̂2C

of (3.133) the algebraic part of (3.133). The second and fourth block equations

(αD̂+hB̂)ξ1−βD̂ξ2 = b̂1D and βD̂ξ1 +(αD̂+hB̂)ξ2 = b̂2D of (3.133) will be called
the differential part of (3.133).
Recall, that the linear systems (3.132) and (3.133) arise from the discretization of
the projected-strangeness-free form with selected constraints (3.78).
In the following we will consider general matrix decompositions of a matrix T ∈ Rq,l

of the form

T = QT̄P

with nonsingular matrices Q ∈ Rq,q and P ∈ Rl,l. We will call them decomposition
in short. Typical examples are the LU decomposition, the QR decomposition, or
the SV decomposition, see [72, 171]. Note that we will not distinguish between
the particular transformation matrices regarding the decomposition of the selected
linear systems (3.132) and (3.133) even if both systems are of different size. We will

denote the transformation matrices by Q̂, Q̃, and P̂ , and P̃ . From the context it
becomes clear which size and properties they have to have.
Let us start our discussion regarding the selected linear system of type 1 (3.132).
A decomposition of the matrix in (3.132) leads to the linear system

R̂ζ̂ = b̂, (3.134a)

ξ = P̂ ζ̂ (3.134b)

with

R̂ =
[

Q̂1 Q̂2

] [ Ĉ

γD̂ + hB̂

]
P̂ , (3.134c)

b̂ =
[

Q̂1 Q̂2

] [ b̂C

b̂D

]
, (3.134d)

where Q̂ =
[

Q̂1 Q̂2

]
∈ Rm̂,m̂ and P̂ ∈ Rn,n are nonsingular with Q̂1 ∈ Rm̂,m̂C ,

Q̂2 ∈ Rm̂,m̂D . If the decomposition is a LU decomposition or QR decomposition,
respectively, then, in particular, R̂ ∈ Rm̂,n is an upper triangular matrix or in case
of the SV decomposition even a diagonal matrix. We will not restrict the terms
”triangular” or ”diagonal” to square matrices, but rather we will use these terms
also for rectangular matrices. The linear system (3.132) can be solved for ξ by back-

ward substitution of (3.134a) and transformation of ζ̂ to ξ with P̂ as in (3.134b). If
the linear system (3.132) arises from the discretization of an arbitrary semi-implicit
DAE (3.104), the matrix R̂ does not necessarily have full rank.
As already mentioned, we will investigate the numerical treatment of quasi-linear
DAEs or semi-implicit DAEs as combination of the regularization technique devel-
oped in Section 3.5.3 and the discretization technique developed in Section 3.5.4.1.
In contrast to the case of discretization of general semi-implicit DAEs (3.104), the
matrix in (3.132), and therefore also the matrix R̂ in (3.134), have full rank for
all sufficiently small h and, in particular, for h → 0, when they arise from the dis-
cretization of the projected-strangeness-free form with selected constraints (3.78)
of a quasi-linear DAE (3.103). In the case of nonredundant constraints the matrix
(3.132) has full rank min(m, n).
In the case that the regularized DAE has the form (3.78) which corresponds to the
selected semi-implicit DAEs (3.106), the discretization discussed in Section 3.5.4.1
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leads to the selected linear system of type 1 of the form (3.132) with

D̂ = S∗
DD̃, B̂ = S∗

DB̃, b̂D = S∗
D b̃D, and Ĉ = S∗

CC̃, b̂C = S∗
C b̃C , (3.135)

compare with (3.130a). We have C̃ ∈ R emC ,n, D̃, B̃ ∈ R emD,n and S∗
C ∈ RrC , emC ,

S∗
D ∈ R

rD, emD . In particular, from the regularization (3.78) it follows that m̂C = rC

and m̂D = rD with

rC = rank(C̃) and rD = rank(

[
C̃

D̃

]
) − rC (3.136)

and rC + rD ≤ n. With respect to the relations (3.135), the matrix R̂ and the

right-hand side b̂ in the decomposition (3.134) are given by

R̂ =
[

Q̂1S
∗
C Q̂2S

∗
D

]
[

C̃

γD̃ + hB̃

]
P̂ ,

b̂ =
[

Q̂1S
∗
C Q̂2S

∗
D

]
[

b̃C

b̃D

]
.

This decomposition can also be interpreted as a decomposition of special type of
the linear system of the form

[
C̃

γD̃ + hB̃

]
ξ =

[
b̃C

b̃D

]
(3.137)

of the size m̃ × n for i = 1, ..., nR and γ = γi, b̃C = b̃Ci ∈ R emC , b̃D = b̃Di ∈ R emD ,
C̃ ∈ R emC ,n, D̃, B̃ ∈ R emD,n, and m̃ = m̃C + m̃D. The linear system (3.137) is called
unselected linear system of type 1, or unselected system of type 1 in short.
An analogous observation can be made for the decomposition of the linear system
(3.133) which can be interpreted also as a decomposition of special type of the linear
system of the form




C̃ 0

αD̃ + hB̃ −βD̃

0 C̃

βD̃ αD̃ + hB̃




[
ξ1

ξ2

]
=




b̃1C

b̃1D

b̃2C

b̃2D


 (3.138)

of the size 2m̃ × 2n for i = 1, ..., nI and α = αi, β = βi, b̃1C = b̃1Ci ∈ R
emC ,

b̃2C = b̃2Ci ∈ R emC , b̃1D = b̃1Di ∈ R emD , b̃2D = b̃2Di ∈ R emD , C̃ ∈ R emC ,n, and
D̃, B̃ ∈ R emD,n. Analogously, the linear system (3.138) is called unselected linear
system of type 2, or unselected system of type 2 in short.
In the numerical treatment of quasi-linear DAEs (3.103) by use of Runge-Kutta
methods described in the Sections 3.5.4.1 and 3.5.4.2 in combination with the reg-
ularization to the projected-strangeness-free form with selected constraints (3.78)
described in Section 3.5, the linear systems (3.137) and (3.138) arise from the dis-
cretization of the complete minimal reduced derivative array (3.66).
On the other hand, an arbitrary decomposition applied directly to the unselected lin-
ear system of type 1 (3.137) without respecting the regularization to the projected-
strangeness-free form would lead to

[
R̃
0

]
ζ̃ =

[
b̃
r̃

]
, (3.139a)

ξ = P̃ ζ̃ (3.139b)
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with nonsingular Q̃ ∈ R em, em and P̃ ∈ Rn,n such that

[
R̃
0

]
=

[
Q̃11 Q̃12

Q̃21 Q̃22

][
C̃

γD̃ + hB̃

]
P̃ , (3.139c)

[
b̃
r̃

]
=

[
Q̃11 Q̃12

Q̃21 Q̃22

][
b̃C

b̃D

]
, (3.139d)

Q̃ =

[
Q̃11 Q̃12

Q̃21 Q̃22

]
(3.139e)

with Q̃11 ∈ R
m̂C+m̂D, emC , Q̃12 ∈ R

m̂C+m̂D, emD , R̃ ∈ R
m̂C+m̂D,n, and b̃ ∈ R

m̂C+m̂D .
In particular, R̃ has full rank, i.e., rank(R̃) = m̂C + m̂D and is an upper triangular
matrix in the case of LU decomposition or QR decomposition or in the case of an
SV decomposition even a diagonal matrix. The unselected linear system of type 1
(3.137) could then be solved for ξ by backward substitution of the upper block row

of (3.139a) and transformation of ζ̃ to ξ with P̃ as in (3.139b).
Similarly, an arbitrary decomposition applied directly to the unselected linear sys-
tem of type 2 (3.138) without respecting the regularization to the projected-stran-
geness-free form would lead to

[
R̃
0

]
ζ̃ =

[
b̃
r̃

]
, (3.140a)

[
ξ1

ξ2

]
=

[
P̃1

P̃2

]
ζ̃ (3.140b)

with nonsingular Q̃ ∈ R2 em,2 em and P̃ ∈ R2n,2n,

[
R̃
0

]
=

[
Q̃11 Q̃12 Q̃13 Q̃14

Q̃21 Q̃22 Q̃23 Q̃24

]



αD̃ + hB̃ −βD̃

C̃ 0

βD̃ αD̃ + hB̃

0 C̃




[
P̃1

P̃2

]
, (3.140c)

[
b̃
r̃

]
=

[
Q̃11 Q̃12 Q̃13 Q̃14

Q̃21 Q̃22 Q̃23 Q̃24

]



b̃1C

b̃1D

b̃2C

b̃2D


 , (3.140d)

Q̃ =

[
Q̃11 Q̃12 Q̃13 Q̃14

Q̃21 Q̃22 Q̃23 Q̃24

]
, (3.140e)

P̃ =

[
P̃1

P̃2

]
(3.140f)

with Q̃11 ∈ R2m̂C+2m̂D, emC , Q̃12 ∈ R2m̂C+2m̂D, emD , Q̃13 ∈ R2m̂C+2m̂D, emC , Q̃14 ∈
R2m̂C+2m̂D, emD , P̃i ∈ Rn,2n, i = 1, 2, R̃ ∈ R2m̂C+2m̂D,2n, and b̃ ∈ R2m̂C+2m̂D . In
particular, R̃ has full rank, i.e., rank(R̃) = 2m̂C + 2m̂D and is an upper triangular
matrix in the case of LU decomposition or QR decomposition or in the case of an
SV decomposition even a diagonal matrix. The unselected linear system of type 2
(3.138) could then be solved for ξ1 and ξ2 by backward substitution of the upper

block row of (3.140a) and transformation ζ̃ to ξ1 and ξ2 with P̃ as in (3.140b).

Remark 3.5.66 From the solvability of the considered quasi-linear DAE (3.23) the
solvability of the minimal reduced derivative array (3.66) follows. Unfortunately, the
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discretization of the derivative array causes discretization errors, which leads to an
overdetermined system which is in general not solvable, because the discretization of
the (hidden) constraints are in general slightly contradictory to the discretization of
the differential equations of the quasi-linear DAE (3.23). Here, ”slightly” means that
in general a solution of the discretized (hidden) constraints causes small residuals
in the discretized differential equations. Therefore, the quantities r̃ in (3.139) and
(3.140) corresponds to such residuals caused from discretization errors and we have
||r̃|| << 1 for small step sizes h and consistent reference points (X∗, U∗).
Furthermore, the residual r̃ can be used for the validation of the consistency of the
differential-algebraic equations. �

In the following it turns out that an arbitrary decomposition of the unselected
systems (3.137) and (3.138) could lead to unexpected effects or even to wrong results
as discussed in the following and shown in Example 3.5.77. Therefore, we will now
investigate the relation of the decomposition of the selected linear systems (3.132),
(3.133) and the decomposition of the unselected linear systems (3.137), (3.138).

Definition 3.5.67 (Discrete kinematic selector) Let the discretized complete
minimal reduced derivative array be given by (3.137) and (3.138). Then a matrix

S̃C ∈ RrC , emC with rC = rank(C̃) satisfying

rank(S̃CC̃) = rC (3.141)

is called discrete kinematic selector of the discretized complete minimal reduced
derivative array.

Definition 3.5.68 (Discrete dynamic selector) Let the discretized complete
minimal reduced derivative array be given by (3.137) and (3.138). Then a matrix

S̃D ∈ RrD, emD with

rD = rank(

[
C̃

D̃

]
) − rank(C̃) (3.142)

satisfying

rank(

[
C̃

SDD̃

]
) = rank(

[
C̃

D̃

]
) (3.143)

is called discrete dynamic selector of the discretized complete minimal reduced
derivative array.

Lemma 3.5.69 Assume that Procedure 3.5.11 applied to the quasi-linear DAE
(3.23) terminates in iteration step i = ν = νc + 1 in (3.42) with maximal con-
straint level νc. Let aνc be defined by (3.74b) with l = νc and let aνc = const for
all (x, uνc) ∈ M. Furthermore, let the discretized complete minimal reduced deriva-
tive array be given by (3.137) and (3.138). Then every constant kinematic selector

SC = SC(X∗, uνc∗) (see Definition 3.5.43) forms a discrete kinematic selector S̃C

(see Definition 3.5.67). Conversely, every discrete kinematic selector S̃C forms a
constant kinematic selector SC = SC(X∗, uνc∗) in a neighborhood S((X∗, uνc∗), ε)
for sufficiently small ε > 0.

Proof: From the discretization of the complete minimal reduced derivative array
(3.66), see also (3.68) and (3.130b), we get

C̃ =




−k̃0
2,x(X∗, U∗)

...

−k̃νc

2,x(X∗, uνc∗)


 ∈ R

emC ,n (3.144)
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with m̃C =
∑νc

i=0 mi
2. With (3.74b) we get aνc = rC with rC = rank(C̃). Therefore,

a kinematic selector SC defined in Definition 3.5.43 and a discrete kinematic selector
S̃C defined in Definition 3.5.67 have the same size rC ×m̃C . Furthermore, it follows
that the conditions (3.75) and (3.141) are equivalent and we get the assertion. �

Lemma 3.5.70 Assume that Procedure 3.5.11 applied to the quasi-linear DAE
(3.23) terminates in iteration step i = ν = νc + 1 in (3.42) with maximal con-
straint level νc. Let aνc and dνc be defined by (3.74) with l = νc and let aνc = const
and dνc = const for all (x, uνc) ∈ M. Furthermore, let the discretized complete
minimal reduced derivative array be given by (3.137) and (3.138) and let Y ∗ =
X∗ − x0 = O(h). Then every constant dynamic selector SD = SD(X∗, uνc∗) (see

Definition 3.5.44) forms a discrete dynamic selector S̃D (see Definition 3.5.68).

Conversely, every discrete dynamic selector S̃D forms a constant dynamic selector
SD = SD(X∗, uνc∗) in a neighborhood S((X∗, uνc∗), ε) for sufficiently small ε > 0
and sufficiently small h.

Proof: From the discretization of the minimal reduced derivative array (3.66),
see also (3.68) and (3.130b), we get

D̃ = E,x(X∗, U∗)[[Y ∗]] + E(X∗, U∗). (3.145)

Furthermore, D̃ depends smoothly on Y ∗ and for h → 0 we have Y ∗ → 0. Therefore,
from (3.144) and (3.145) we get for sufficiently small h that

rank(D̃) = rank(E(X∗, U∗)) (3.146a)

and with (3.144)

rank(

[
D̃

C̃

]
) = rank(




E(X∗, U∗)

k̃0
2,x(X∗, U∗)

...

k̃νc

2,x(X∗, uνc∗)


). (3.146b)

From Definition 3.5.44 it follows with (3.144), (3.142), (3.145), and aνc = rC (see
proof of Lemma 3.5.69) that dνc = rD. Then, from Definition 3.5.44 and from
Definition 3.5.68 we get for sufficiently small h that a dynamic selector SD and a
discrete dynamic selector S̃D, respectively, have the same size rD × m̃D. Further-
more, we get from (3.146) for sufficiently small h that the conditions (3.76) and
(3.143) are equivalent and we get the assertion. �

Definition 3.5.71 (Index reducing decomposition matrix) If there exist a

discrete kinematic selector S̃C ∈ RrC , emC and a discrete dynamic selector S̃D ∈
RrD, emD with rC and rD defined by (3.136) such that for a nonsingular matrix Q̃ ∈
R

em, em with

Q̃ =

[
Q̃11 Q̃12

Q̃21 Q̃22

]
∈ R

em, em (3.147)

and Q̃11 ∈ RrC+rD, emC , Q̃12 ∈ RrC+rD, emD , and m̃ = m̃C + m̃D it holds that with

Q̃11 = Q̂1S̃C and Q̃12 = Q̂2S̃D
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the matrix

Q̂ =
[

Q̂1 Q̂2

]

is nonsingular and for a nonsingular matrix Q̃ ∈ R
2 em,2 em with

Q̃ =

[
Q̃11 Q̃12 Q̃13 Q̃14

Q̃21 Q̃22 Q̃23 Q̃24

]
∈ R

2 em,2 em (3.148)

and Q̃11, Q̃13 ∈ R
2rC+2rD, emC , Q̃12, Q̃14 ∈ R

2rC+2rD, emD , and m̃ = m̃C +m̃D it holds
that with

Q̃11 = Q̂1SC , Q̃12 = Q̂2SD, Q̃13 = Q̂3SC , Q̃14 = Q̂4SD

the matrix

Q̂ =
[

Q̂1 Q̂2 Q̂3 Q̂4

]

is nonsingular, then the matrix (3.147) is called an index reducing decomposition
matrix of type 1 of the unselected linear system of type 1 (3.137) and the matrix
(3.148) is called an index reducing decomposition matrix of type 2 of the unselected
linear system of type 2 (3.138).

Definition 3.5.72 (Index reducing decomposition) A decomposition (3.139)
and (3.140) of the discretized complete minimal reduced derivative array of the
form (3.137) or (3.138), respectively, is called index reducing decomposition if the

matrices Q̃ in (3.139) and (3.140) are index reducing decomposition matrices, see
Definition 3.5.71.

Lemma 3.5.73 Let the linear system (3.137) be given and let rC and rD be defined
by (3.136). Furthermore, let

Q̃ =




Q̃1
11 0

Q̃2
11Q̃

1
11 Q̃2

12

Q̃21 Q̃22


 ∈ R

em, em (3.149)

be a nonsingular matrix with Q̃1
11 ∈ RrC , emC , Q̃2

11 ∈ RrD,rC , and Q̃2
12 ∈ RrD, emD

satisfying



Q̃1
11 0

Q̃2
11Q̃

1
11 Q̃2

12

Q̃21 Q̃22



[

C̃

γD̃ + hB̃

]
=

[
R̃
0

]
, (3.150)

where R̃ ∈ RrC+rD,n has full rank rank(R̃) = rC + rD. Then, for sufficiently small

h, the matrix Q̃ is an index reducing decomposition matrix, see Definition 3.5.71.

Proof: The submatrix Q̃1
11 forms a discrete kinematic selector, since (3.150)

implies (3.141). Furthermore, for sufficiently small h the submatrix Q̃2
12 forms a

discrete dynamic selector, since (3.150) implies (3.143). Therefore, by defining

S̃C = Q̃1
11 and S̃D = Q̃2

12 (3.151)

we have

Q̃11 =

[
Q̃1

11

Q̃2
11Q̃

1
11

]
=

[
IrC

Q̃2
11

]
S̃C = Q̂1S̃C
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and

Q̃12 =

[
0

Q̃2
12

]
=

[
0

IrD

]
S̃D = Q̂2S̃D.

With

Q̂ =
[

Q̂1 Q̂2

]
=

[
IrC

0

Q̃2
11 IrC

]

we get that Q̂ is nonsingular. From Definition 3.5.71 the assertion follows. �

Remark 3.5.74 In particular, it follows from Lemma 3.5.73 that by use of a de-
composition (3.139) with a nonsingular matrix Q̃ of the form (3.149) the discrete

selectors S̃C and S̃D can be obtained directly from Q̃ by (3.151). �

Theorem 3.5.75 Assume that Procedure 3.5.11 applied to the quasi-linear DAE
(3.23) terminates in iteration step i = ν = νc + 1 in (3.42) with maximal constraint
level νc. Let aνc and dνc be defined by (3.74) with l = νc and let aνc = const and
dνc = const for all (x, uνc) ∈ M. Let the related complete minimal reduced derivative

array F̃νc
(3.66) be given with E(x(t), u(t)) ∈ C(I, Rm,n) and k̃i

2,x(x(t), ui(t)) ∈
C(I, Rmi

2) for i = 0, ..., νc. Furthermore, let the discrete dynamic selector S̃D and

the discrete kinematic selector S̃C be obtained in (3.151) from an index reducing
decomposition of the discretized complete minimal reduced derivative array (given
by the unselected linear systems (3.137) and (3.138)) at the point (X∗, U∗). Then,

for sufficiently small step size h, the constant dynamic selector SD(x, uνc) = S̃D

and the constant kinematic selector SC(x, uνc) = S̃C define a regularization of the
quasi-linear DAE (3.23) in form of the projected-strangeness-free form with selected
constraints (3.78) in a neighborhood of the point (X∗, U∗).

Proof: The discretization of the complete minimal reduced derivative array (3.66)
leads to the unselected linear systems (3.137) and (3.138). The index reducing
decomposition (see Definition 3.5.72) of the linear system (3.137) has the form

(3.139) with
[

Q̃11 Q̃12

]
=
[

Q̂1SC Q̂2SD

]
and

[
Q̂1 Q̂2

]
is nonsingular,

see Definition 3.5.71. Therefore, we obtain with SD(x, uνc) = S̃D and SC(x, uνc) =

S̃C the dynamic selector and the kinematic selector, respectively, which satisfy
Definitions 3.5.43 and 3.5.44 in a neighborhood S((X∗, U∗), ε) = {(x, uνs) : ||(x −
X∗, uνs − U∗)|| < ε} of the regular point (X∗, U∗) in accordance with Lemmata
3.5.69 and 3.5.70.
Hence, the selectors SD(x, uνs) = S̃D and SC(x, uνs) = S̃C define a regularization
of the quasi-linear DAE (3.23) to the projected strangeness-free DAE (3.78) for
t ∈ (t∗ − h, t∗ + h) with (x(t), uνs(t)) ∈ S((X∗, U∗), ε). �

Remark 3.5.76 It follows from Theorem 3.5.75 that in view of the nonuniqueness
of the kinematic and dynamic selectors, see Definitions 3.5.43 and 3.5.44, the index
reducing decomposition of the unselected linear systems (3.137) and (3.138) arising
from the discretization of the complete minimal reduced derivative array (3.66) al-
ready contains a certain choice of the kinematic and dynamic selectors such that the
decomposition of the selected linear systems (3.132) and (3.133) arising from the
discretization of the regularized quasi-linear DAE and the index reducing decom-
position of the unselected linear systems (3.137) and (3.138) are equivalent in the
sense that both solutions are identical. In particular, this means that the sequence
of regularization and discretization can be exchanged, see Figure 3.2. �
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E(x,u)x=k(x,u)
.

quasi−linear 
differential−algebraic equation

DiscretizationRegularization

RegularizationDiscretization

projected−strangeness−

array of the 

discretized projected−
strangeness−free

differential−algebraic equations

differential−algebraic equations

differential−algebraic equationsalgebraic equations
free differential− derivative array of the

minimal reduced derivative

discretized minimal reduced

Figure 3.2: Discretization and regularization of quasi-linear DAEs

Example 3.5.77 Consider again the differential-algebraic equation introduced in
(3.34), see Example 3.5.7. Assume that n1 = n2 = 1. The Procedure 3.5.11 is
already executed in Example 3.5.15 and we did determine in Example 3.5.42 the
maximal constraint level νc = 1 and the complete minimal reduced derivative array
(3.73) in form of the semi-implicit DAE

ẼD(x, u1)ẋ = k̃D(x, u1),

0 = k̃C(x, u1)

with

ẼD(x, u1) =

[
1 0
0 0

]
, k̃D(x, u1) =

[
k1

k2

]
,

k̃C(x, u1) =

[
k2

−k2,x1
k1 − k2,uu̇

]
.

The discretization of this overdetermined DAE leads to a linear system (3.137) of
the form




−k2,x1
0

(k2,x1
k1 + k2,uu̇),x1

k2,x1
k1,x2

γ − hk1,x1
−hk1,x2

−hk2,x1
0



[

ξ1

ξ2

]
=




b̃C1

b̃C2

b̃D1

b̃D2


 (3.152)

compare with (3.125), which has to be solved in every Newton iteration step inside
every integration step. From (3.136) we get rC = 2 and rD = 0 because of k2,x1

6= 0
and k2,x1

k1,x2
6= 0, see Example 3.5.7. Obviously, this linear system is overdeter-

mined and in general not solvable because of discretization errors. Therefore, it is
to be solved up to a remaining residual which mainly depends on the discretization
and the step size. Let us use the LU decomposition for simplicity.
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If we choose the matrix Q̃ in the decomposition (3.139) as

Q̃ =




0 1 0 0
0 0 1 0
1 q32 q33 0
0 hq32 hq33 1




with

q32 = hk2,x1
/(h(k2,x1

k1 + k2,uu̇),x1
+ k2,x1

(γ − hk1,x1
)),

q33 = k2,x1
k2,x1

/(h(k2,x1
k1 + k2,uu̇),x1

+ k2,x1
(γ − hk1,x1

))

and multiply the equation (3.152) from the left with Q̃, then we get




(k2,x1
k1 + k2,uu̇),x1

+k2,x1
k1,x2

γ − hk1,x1
−hk1,x2

0 0
0 0



[

ξ1

ξ2

]
=




b̃C2

b̃D1

b̃C1 + q32b̃C2 + q33b̃D1

hq32b̃C2 + hq33b̃D1 + b̃D2


. (3.153)

Obviously, the upper two by two submatrix of the leading matrix in (3.153) is
nonsingular for small h because of γ 6= 0 and k2,x1

k1,x2
6= 0, and the equation

can be solved for ξ1 and ξ2. But, this numerical solution only depends on the
second and the third equation of (3.152) which correspond to the discretization of
the differential equation of (3.34) and of the first time derivative of the constraint
equation of (3.34). In particular, this means that we actually use an index reduced
formulation of the DAE which is obtained just by replacing the constraint (3.34b)
by its first time derivative (3.34c) which is not advisable because of the drift-off
phenomenon, see Section 3.4.1. Therefore, this choice of the transformation matrix
Q̃ is not a good choice and on the other hand the transformation matrix Q̃ is not
an index reducing decomposition matrix, see Definition 3.5.71.
A better choice of the transformation matrix Q̃ is for example

Q̃ =




1 0 0 0
0 1 0 0

q̃31 q̃32 1 0
q̃41 q̃42 0 1




with

q̃31 =
γk2,x1

− hk1,x1
k2,x1

+ h(k2,x1
k1 + k2,uu̇),x1

k2,x1
k2,x1

, q̃32 =
h

k2,x1

,

q̃41 = −h, q̃42 = 0.

Note that this choice of Q̃ corresponds to an index reducing decomposition matrix
with SC = I2 ∈ R

2,2 and SD ∈ R
0,2. see Definition 3.5.71. By multiplication of

the equation (3.152) from the left with Q̃ only the discretized algebraic constraints
remain in considerations, which is good since the original DAE (3.34) actually corre-
sponds to two algebraic equations, see Example 3.5.7 with n1 = n2 = 1. Therefore,
the discretization of the projected-strangeness-free form (3.96) is equivalent to the
index reducing decomposition of the discretization of the complete minimal reduced
derivative array (3.73). �

We have seen that the numerical integration of the quasi-linear DAE (3.23) needs the
efficient solution (via index reducing decompositions) of an overdetermined linear
system of the form

[
C

γD + hB

]
ξ =

[
bC

bD

]
, (3.154)
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with C ∈ RmC ,n, D, B ∈ RmD,n, bC ∈ RmC , bD ∈ RmD , ξ ∈ Rn, and mC +mD = m.
This linear system corresponds to (3.123). Furthermore, we have to solve the second
linear system of the form




C 0
αD + hB −βD + hB

0 C
βD + hB αD + hB



[

ξ1

ξ2

]
=




b1C

b1D

b2C

b2D


 , (3.155)

where the matrices B, C, D are the same as in the system (3.154) and bjC ∈ RmC ,
bjD ∈ R

mD , ξj ∈ R
n, j = 1, 2.

In the following we will discuss the efficient solution of both linear systems exploiting
the given structure. The decomposition of all unselected linear systems, i.e., the
unselected linear systems of type 1 for γ = γi for i = 1, ..., nR and the unselected
linear systems of type 2 for α = αi, β = βi for i = 1, ..., nI , will be done in
the following way. First, we will pick out arbitrarily one of the unselected linear
systems of type 1 and perform a decomposition as described below. Then we will
use the information of the transformation matrices Q

∗

and P
∗

for the decomposition
of the remaining unselected linear systems of type 1 and for the decomposition of
the unselected linear systems of type 2 with the aim to perform an index reducing
decomposition.
From the properties of an index reducing decomposition we have the condition that
the algebraic part of the linear system (3.137) has to be satisfied exactly. Therefore,
we decompose only the algebraic part in the first step. Let the matrices

Q
∗

C =

[
Q
∗1

C

Q
∗2

C

]
∈ R

mC ,mC and P
∗

=
[

P
∗

1 P̌2

]
∈ R

n,n

be nonsingular with Q
∗1

C ∈ RrC ,mC , Q
∗2

C ∈ RmC−rC ,mC , P
∗

1 ∈ Rn,rC , and P̌2 ∈
R

n,n−rC such that

R
∗

C = Q
∗1

CCP
∗

1 ∈ R
rC ,rC is nonsingular and Q

∗2

CC = 0 ∈ R
mC−rC ,n. (3.156)

Then, by scaling the constraint part with Q
∗

C and transforming with ξ = P
∗

ζ we get
from (3.154) the equivalent equation




R
∗

C V
∗

C P̌2

0 0

(γD + hB)P
∗

1 (γD + hB)P̌2


P

∗−1
ξ =




Q
∗1

CbC

Q
∗2

CbC

bD


 (3.157)

with

V
∗

C = Q
∗1

CC ∈ R
rC ,n. (3.158)

The first rC components of the vector ζ = P
∗−1

ξ can be determined from the al-
gebraic part because of the nonsingularity of the matrix R

∗

C . Hence, the first rC

columns of the differential part can be eliminated by use of block Gauß11 elimina-
tion. Let L

∗

D, L
∗

B ∈ RmD ,rC be such that,

L
∗

DR
∗

C + DP
∗

1 = 0 and L
∗

BR
∗

C + BP
∗

1 = 0. (3.159)

Then by scaling with the nonsingular matrix



I 0 0
0 I 0

γL
∗

D + hL
∗

B 0 I




11Carl Friedrich Gauß (born 1777 in Braunschweig, Germany - died 1855 in Göttingen, Germany)
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we get




R
∗

C V
∗

C P̌2

0 0

0 (γV
∗

D + hV
∗

B)P̌2


P

∗−1
ξ =




Q
∗1

CbC

Q
∗2

CbC

(γL
∗

D + hL
∗

B)Q
∗1

CbC + bD


 , (3.160a)

where

V
∗

D = D + L
∗

DV
∗

C and V
∗

B = B + L
∗

DV
∗

C . (3.160b)

Finally, let us decompose the remaining differential part. Let

Q
∗

D =

[
Q
∗1

D

Q
∗2

D

]
∈ R

mD,mD

be nonsingular with Q
∗1

D ∈ R
rD,mD and Q

∗2

D ∈ R
mD−rD,mD and let P̌2 =

[
P
∗

2 P
∗

3

]

with P
∗

2 ∈ Rn,rD and P
∗

3 ∈ Rn,n−rC−rD of full rank such that P
∗

=
[

P
∗

1 P
∗

2 P
∗

3

]

is nonsingular,

R
∗

R = Q
∗1

D(γV
∗

D + hV
∗

B)P
∗

2 ∈ R
rD,rD is nonsingular,

and

Q
∗2

D(γV
∗

D + hV
∗

B)
[

P
∗

2 P
∗

3

]
= 0 ∈ R

mD−rD,n−rC .

Then by scaling the differential part with Q
∗

D and transforming ξ = P
∗

ζ we obtain




R
∗

C V
∗

CP
∗

2 V
∗

CP
∗

3

0 0 0

0 R
∗

R V
∗

R

0 0 0


P

∗−1
ξ =




Q
∗1

CbC

Q
∗2

CbC

Q
∗1

D((γL
∗

D + hL
∗

B)Q
∗1

CbC + bD)

Q
∗2

D((γL
∗

D + hL
∗

B)Q
∗1

CbC + bD)


 (3.161)

with

V
∗

R = Q
∗1

D(γV
∗

D + hV
∗

B)P
∗

3 ∈ R
rD,n−rC−rD . (3.162)

Summarizing these three steps, together with a row permutation, we get the trans-
formation of the linear system (3.154) in the form

Q
∗

R

[
C

γD + hB

]
P
∗

P
∗−1

ξ = Q
∗

R

[
bC

bD

]
(3.163a)

with

Q
∗

R =




Q
∗1

C 0

Q
∗1

D(γL
∗

D + hL
∗

B)Q
∗1

C Q
∗1

D

Q
∗2

C 0

Q
∗2

D(γL
∗

D + hL
∗

B)Q
∗1

C Q
∗2

D


 , (3.163b)

P
∗

=
[

P
∗

1 P
∗

2 P
∗

3

]
. (3.163c)

This yields an equivalent system to the system (3.154) of the form




R
∗

C V
∗

CP
∗

2 V
∗

CP
∗

3

0 R
∗

R V
∗

R

0 0 0
0 0 0


 ζ =




Q
∗1

CbC

Q
∗1

D((γL
∗

D + hL
∗

B)Q
∗1

CbC + bD)

Q
∗2

CbC

Q
∗2

D((γL
∗

D + hL
∗

B)Q
∗1

CbC + bD)


 , (3.164a)

ξ = P
∗

ζ. (3.164b)
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A solution ξ of (3.154) can be obtained by solving the linear equation (3.164a) for
ζ by use of the first two block rows of (3.164a) with subsequent transformation of
ζ to ξ by the equation (3.164b). If the last block column of the leading matrix of
(3.164a) vanishes, then the solution of (3.154) is unique.

Remark 3.5.78 The matrix Q
∗

R given in (3.163b) is an index reducing decomposi-
tion matrix, see Definition 3.5.71 and Lemma 3.5.73. Therefore, the decomposition
of (3.154) given by (3.163) is a suitable decomposition of the discretized minimal
reduced derivative array (3.66) regarding the regularization of the quasi-linear DAE
(3.23) to the projected-strangeness-free formulation with selected constraints (3.78).

Furthermore, we get the discrete kinematic selector as S̃C = Q
∗1

C and the discrete

dynamic selector S̃D = Q
∗1

D in accordance with Remark 3.5.74. Both can be used
as locally constant kinematic and dynamic selectors, respectively, for the regular-
ization of the quasi-linear DAE (3.23) to the projected-strangeness-free formulation
with selected constraints (3.78). �

For the remaining unselected linear systems of type 1 we can determine the trans-
formation of the linear system (3.154) in the form

QR

[
C

γD + hB

]
PRP−1

R ξ = QR

[
bC

bD

]
(3.165a)

with

QR =




Q
∗1

C 0

Q1
DQ

∗1

D(γL
∗

D + hL
∗

B)Q
∗1

C Q1
DQ

∗1

D

Q
∗2

C 0

Q2
D(γL

∗

D + hL
∗

B)Q
∗1

C Q2
D


 , (3.165b)

PR =
[

P
∗

1 P
∗

2 P
∗

3

]
, (3.165c)

and the matrix
[

Q1
DQ

∗1

D

Q2
D

]
(3.166)

is chosen nonsingular with Q1
DQ

∗1

D ∈ RrD,mD , Q2
D ∈ RmD−rD,mD , and Q1

D ∈ RrD,rD

nonsingular such that

[
Q1

DQ
∗1

D

Q2
D

]
[

γV
∗

D + hV
∗

B

] [
P
∗

2 P
∗

3

]
=

[
RR VR

0 0

]

with RR ∈ RrD,rD nonsingular. This yields an equivalent system to the system
(3.154) of the form




R
∗

C V
∗

CP
∗

2 V
∗

CP
∗

3

0 RR VR

0 0 0
0 0 0


 ζ =




Q
∗1

CbC

Q1
DQ

∗1

D((γL
∗

D + hL
∗

B)Q
∗1

CbC + bD)

Q
∗2

CbC

Q2
D((γL

∗

D + hL
∗

B)Q
∗1

CbC + bD)


 , (3.167a)

ξ = PRζ. (3.167b)

Remark 3.5.79 Since the transformation matrices Q
∗

C , L
∗

D, L
∗

B , P
∗

as well as the
resulting matrix products R

∗

C , V
∗

CP
∗

2, and V
∗

CP
∗

3 are known from the particular
linear system of type 1 (3.154) and since the last two block columns in the linear
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system (3.167a) will be ignored for the solution of the linear system of type 1 (3.154),
the amount of computation for the decomposition of the remaining linear systems of
type 1 (3.154) reduces to the determination of a nonsingular transformation matrix
Q1

D such that

Q1
D

(
Q
∗1

D(γV
∗

D + hV
∗

B)P
∗

2

)
= RR ∈ R

rD,rD

is nonsingular and preferably an upper triangular matrix. �

Let us now consider the linear system (3.155). Inspired by the decomposition of the
linear system (3.154) we define a transformation of the system (3.155) as

Q
∗

I




C 0
αD + hB −βD + hB

0 C
βD + hB αD + hB


PIP

−1
I

[
ξ1

ξ2

]
= Q

∗

I




b11

b12

b21

b22


 , (3.168a)

with

QI =




Q
∗1

C 0 0 0

0 0 Q
∗1

C 0(
Q1

D11Q
∗1

DLα

+Q1
D12Q

∗1

DLβ

)
Q
∗1

C Q1
D11Q

∗1

D

(
Q1

D11Q
∗1

DL−β

+Q1
D12Q

∗1

DLα

)
Q
∗1

C Q1
D12Q

∗1

D

(
Q1

D21Q
∗1

DLα

+Q1
D22Q

∗1

DLβ

)
Q
∗1

C Q1
D21Q

∗1

D

(
Q1

D21Q
∗1

DL−β

+Q1
D22Q

∗1

DLα

)
Q
∗1

C Q1
D22Q

∗1

D

Q
∗2

C 0 0 0

0 0 Q
∗2

C 0(
Q2

D11Lα

+Q2
D12Lβ

)
Q
∗1

C Q2
D11

(
Q2

D11L−β

+Q2
D12Lα

)
Q
∗1

C Q2
D12(

Q2
D21Lα

+Q2
D22Lβ

)
Q
∗1

C Q2
D21

(
Q2

D21L−β

+Q2
D22Lα

)
Q
∗1

C Q2
D22




,

(3.168b)

PI =

[
P
∗

1 0 P
∗

2 0 P
∗

3 0

0 P
∗

1 0 P
∗

2 0 P
∗

3

]
(3.168c)

and

Lα = (αL
∗

D+hL
∗

B), Lβ = (βL
∗

D+hL
∗

B), L−β = (−βL
∗

D+hL
∗

B).

Let the matrix



Q1
D11Q

∗1

D Q1
D12Q

∗1

D

Q1
D21Q

∗1

D Q1
D22Q

∗1

D

Q2
D11 Q2

D12

Q2
D21 Q2

D22


 ,

be chosen with Q1
DijQ

∗1

D ∈ R
rD,mD , Q2

Dij ∈ R
mD−rD,mD , i, j = 1, 2 and




Q1
D11Q

∗1

D Q1
D12Q

∗1

D

Q1
D21Q

∗1

D Q1
D22Q

∗1

D

Q2
D11 Q2

D12

Q2
D21 Q2

D22




[
αV

∗

D + hV
∗

B −βV
∗

D + hV
∗

B

βV
∗

D + hV
∗

B αV
∗

D + hV
∗

B

] [
P
∗

2 0 P
∗

3 0

0 P
∗

2 0 P
∗

3

]

=




RI1 VI12 VI13 VI14

0 RI2 VI23 VI24

0 0 0 0
0 0 0 0


 , (3.169a)
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where

[
RI1 VI12

0 RI2

]
∈ R

2rD,2rD (3.169b)

is upper triangular and nonsingular. Then, system (3.155) is equivalent to




R
∗

C 0 V
∗

CP
∗

2 0 V
∗

CP
∗

3 0

0 R
∗

C 0 V
∗

CP
∗

2 0 V
∗

CP
∗

3

0 0 RI1 VI12 VI13 VI14

0 0 0 RI2 VI23 VI24

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




ζ (3.170a)

=




Q
∗1

Cb1C

Q
∗1

Cb2C




(Q1
D11Q

∗1

D(αL
∗

D + hL
∗

B) + Q1
D12Q

∗1

D(βL
∗

D + hL
∗

B))Q
∗1

Cb1C

+(Q1
D11Q

∗1

D(−βL
∗

D + hL
∗

B) + Q1
D12Q

∗1

D(αL
∗

D + hL
∗

B))Q
∗1

Cb2C

+Q1
D11Q

∗1

Db1D + Q1
D12Q

∗1

Db2D







(Q1
D21Q

∗1

D(αL
∗

D + hL
∗

B) + Q1
D22Q

∗1

D(βL
∗

D + hL
∗

B))Q1
Cb1C

+(Q1
D21Q

∗1

D(−βL
∗

D + hL
∗

B) + Q1
D22Q

∗1

D(αL
∗

D + hL
∗

B))Q1
Cb2C

+Q1
D21Q

∗1

Db1D + Q1
D22Q

∗1

Db2D




Q
∗2

Cb1C

Q
∗2

Cb2C
(

(Q2
D11(αL

∗

D + hL
∗

B) + Q2
D12(βL

∗

D + hL
∗

B))Q
∗1

Cb1C + Q2
D11b1D

+(Q2
D11(−βL

∗

D + hL
∗

B) + Q2
D12(αL

∗

D + hL
∗

B))Q
∗1

Cb2C + Q2
D12b2D

)

(
(Q2

D21(αL
∗

D + hL
∗

B) + Q2
D22(βL

∗

D + hL
∗

B))Q
∗1

Cb1C + Q2
D21b1D

+(Q2
D21(−βL

∗

D + hL
∗

B) + Q2
D22(αL

∗

D + hL
∗

B))Q
∗1

Cb2C + Q2
D22b2D

)




,

[
ξ1

ξ2

]
= PIζ. (3.170b)

Solutions ξ1 and ξ2 can be obtained by solving the linear equation (3.170a) for ζ via
the first four block rows of (3.170a) with subsequent transformation of ζ to ξ1 and
ξ2 by the equation (3.170b). If the last two block columns of the leading matrix of
(3.170a) vanish, then the solutions ξ1 and ξ2 are unique.

Remark 3.5.80 Since the transformation matrices Q
∗

C , L
∗

D, L
∗

B , P
∗

as well as the
resulting matrix products R

∗

C , V
∗

CP
∗

2, and V
∗

CP
∗

3 are known from the particular
linear system of type 1 (3.154) and since the last four block columns in the linear
system (3.170a) will be ignored for the solution of the linear system of type 2 (3.155),
the amount of computation for the decomposition of the linear systems of type 2
(3.155) reduces to the determination of the nonsingular transformation matrix

[
Q1

D11 Q1
D12

Q1
D21 Q1

D22

]
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which must satisfy that

[
Q1

D11 Q1
D12

Q1
D21 Q1

D22

][
Q
∗1

D(αV
∗

D + hV
∗

B)P
∗

2 Q
∗1

D(−βV
∗

D + hV
∗2

B)P
∗

2

Q
∗1

D(βV
∗

D + hV
∗

B)P
∗

2 Q
∗1

D(αV
∗

D + hV
∗2

B)P
∗

2

]

=

[
RI1 VI12

0 RI2

]
∈ R

2rD,2rD

is nonsingular and preferably an upper triangular matrix. �

Remark 3.5.81 The matrix QI given in (3.168b) is an index reducing decompo-
sition matrix, see Definition 3.5.71. Therefore, the decomposition of (3.155) given
by (3.168) is a suitable decomposition of the discretized minimal reduced derivative
array (3.66) for the regularization of the quasi-linear DAE (3.23) to the projected-
strangeness-free formulation (3.77). �

Remark 3.5.82 It is important to note that the transformation matrices Q
∗

C , L
∗

D,
L
∗

B , and P
∗

as well as the resulting matrix products R
∗

C , V
∗

CP
∗

2, and V
∗

CP
∗

3 are
already known from the treatment of the particular linear system (3.125). Never-
theless, the matrices Q

∗

C , L
∗

D, L
∗

B , P
∗

, R
∗

C , V
∗

CP
∗

2, and V
∗

CP
∗

3 depend only on the
submatrices C, D, and B, but not on the coefficients α, β, or the step size h.
Therefore, it is not necessary to recompute these matrices for the remaining linear
systems (3.125) and (3.126a).
In particular, this means that the matrices Q

∗

C , L
∗

D, L
∗

B , P
∗

, R
∗

C , V
∗

CP
∗

2, and V
∗

CP
∗

3

have to be determined only once for the whole simplified Newton process and they
are usable for all linear systems obtained by the discretization of the minimal re-
duced derivative array. Therefore, let us denote the transformations done starting
with (3.154) up to (3.160a) as predecomposition process.
In this way the amount of computation can be reduced. Instead of the decompo-
sition of nR linear systems of type 1 (3.154) of size m̃ × n and nI linear systems
of type 2 (3.155) of size 2m̃ × 2n we have to decompose only one linear system of
type 1 (3.154) of size m̃×n and nR − 1 linear systems of size rD × rD and nI linear
systems of size 2rD × 2rD, see Remarks 3.5.79 and 3.5.80, respectively. �

3.5.4.4 Stability of Runge-Kutta methods

Stability is a very important fact in the numerical treatment of (stiff) ordinary dif-
ferential equations as well as of differential-algebraic equations. In the following we
will review and discuss several commonly used stability concepts. For more details
see for example [63, 74, 82, 173].
With respect to the numerical treatment, the notion of stability refers to the behav-
ior of the numerical solution of differential equations whose solution shows a stable
behavior. In particular, if the solution of an initial value problem has the property

||y(t + h)|| ≤ ||y(t)|| for all h > 0, (3.171)

this should be reflected also in the numerical solution. For the investigation of the
stability of numerical methods for ODEs Dahlquist12 introduced in [38] the equation

ẋ = λx with λ ∈ C and Re(λ) < 0 (3.172)

as test equation. The solution of this equation is given by

x(t) = ceλt

12Germund Dahlquist (born 1925 in Uppsala, Sweden - died in Stockholm, Sweden 2005)
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with a constant c determined by the initial value. This function x(t) has the property
(3.171) because of the negative real part of λ.
Beside the property (3.171) with respect to (3.172) one is also interested in the
property that

lim
hRe(λ)→−∞

y(t + h) = 0 (3.173)

which should also be reflected in the numerical solution.
The application of a Runge-Kutta method given by the Butcher tableau in Table 3.1
to Dahlquist’s equation (3.172) for a particular integration step from t0 to t1 = t0+h
yields

Xi = x0 + λh
s∑

j=1

aijXj , i = 1, ..., s,

x1 = x0 + λh
s∑

j=1

bjXj

which is equivalent to

x1 = R(z)x0

with z = λh and

R(z) = 1 − zbT (Is − zA)−111, (3.174)

where 11 =
[

1 · · · 1
]T ∈ Rs.

Definition 3.5.83 (Stability function of a Runge-Kutta method) The func-
tion R(z) defined in (3.174) is called stability function of a Runge-Kutta method
defined by Table 3.1.

Definition 3.5.84 (A-stability and A(α)-stability) A Runge-Kutta method is
called A-stable, if

|R(z)| ≤ 1 for all z ∈ C with Re(z) ≤ 0

and it is called A(α)-stable, if

|R(z)| ≤ 1 for all z ∈ C with Re(z) ≤ 0 and | arg(z) − π| ≤ α

with α ∈ (0, π/2).

A-stability corresponds to the fact that independent of the step size h the decreasing
behavior (3.171) is also reflected in the numerical solution.
Let us again consider equation (3.172). If the parameter λ is increasing in its
absolute value then this differential equation becomes more and more stiff and
corresponds to the singularly perturbed system

1

λ
ẋ = x.

Hence, if λ → ∞ we have in the limit the equation

0 = x

which corresponds to an (differential-)algebraic equation. With z = λh → ∞ this
shows that for the numerical treatment of differential-algebraic equations by use of
Runge-Kutta methods the limit of the stability function R(z) at infinity plays a
very decisive role. For invertible Runge-Kutta matrices A we have

R(∞) = 1 − bT A−111 (3.175)

with 11 =
[

1 · · · 1
]T ∈ Rs.
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Definition 3.5.85 (strong A-stability) A Runge-Kutta method is called strongly
A-stable, if it is A-stable and if

lim
Re(z)→−∞

|R(z)| < 1.

Definition 3.5.86 (L-stability) A Runge-Kutta method is called L-stable, if it is
A-stable and if

lim
Re(z)→−∞

R(z) = 0.

If a Runge-Kutta method is L-stable then the properties (3.171) as well as (3.173)
are reflected in the numerical solution.
With respect to stability properties of numerical methods there exists a large num-
ber of further stability concepts like AN-, B-, BN-, D-, I-stability. For more details,
we refer the reader to the literature, e.g., [38, 40, 58, 63, 82, 173, 178].
Another important aspect in the numerical treatment of DAEs is the consistency
of the numerically computed solution. Although, in particular, in the case of
strangeness-free semi-implicit DAEs (3.24) all constraints are given in an explicit
way and therefore, the consistency of the stages Xi by use of an implicit Runge-
Kutta method is guaranteed, the consistency of the numerical solution x1 at the
point t1 cannot be guaranteed, since x1 is given by (3.109). Therefore, Runge-
Kutta methods which automatically determine consistent numerical solutions are
to be preferred, since in this case no additional effort has to be performed to force
the numerical solution onto the solution manifold.
Note that the original quasi-linear DAE (3.23) does in general not contain all con-
straints in an explicit way, but the projected-strangeness-free formulation (3.77) is
strangeness-free and of semi-implicit form (3.24) and therefore, it contains all con-
straints including the hidden constraints as equations in the algebraic part. There-
fore, by use of this regularized formulation, the stages Xi of an integration step (say
from t0 to t1 = t0 +h) are automatically consistent, i.e., they satisfy all constraints.

Proposition 3.5.87 If an implicit Runge-Kutta method with nonsingular A satis-
fies one of the conditions

asj = bj , j = 1, ..., s, (3.176a)

ai1 = b1, i = 1, ..., s (3.176b)

then R(∞) = 0.

Proof: See [82]. �

Each of the conditions (3.176) make A-stable methods L-stable. Methods satisfying
the condition (3.176a) are called stiffly accurate [137]. In particular, those meth-
ods are important for the numerical treatment of differential-algebraic equations,
because from (3.176a) it follows that the numerical solution x1 coincides with the
last stage Xs, i.e., x1 = Xs. Therefore, it can be guaranteed that the numerical
solution is consistent for strangeness-free semi-implicit DAEs.

3.5.4.5 Convergence of Runge-Kutta methods applied to quasi-linear
differential-algebraic equations

Due to the discretization of the DAE we introduce errors in the numerical solution
which are defined as follows.
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Definition 3.5.88 (Local discretization error) The difference

δxh(t) = x1 − x(t + h)

between the exact solution x(t + h) of the differential-algebraic equations (3.2a) and
the corresponding numerical solution x1 obtained after one integration step from t
to t + h with exact initial values x0 = x(t) is called local discretization error.

In [79] the convergence of Runge-Kutta methods applied to semi-explicit DAEs in
the form (3.15) or quasi-linear DAE (3.103) with constant leading matrix Ê(x, û) ≡
Ê are investigated. The considered quasi-linear DAE (3.103) or the semi-implicit
DAE (3.104) are in general not in this form and the given results cannot be applied
directly to the DAEs of interest. Therefore, we first consider transformations of
quasi-linear DAEs to semi-explicit DAEs which conserve the numerical solution,
and subsequently, we apply the results stated in [79].
In [134] results on the order of implicit Runge-Kutta methods applied to differential-
algebraic equations are presented. In particular, it is shown that the obtained order
of implicit Runge-Kutta methods applied to differential-algebraic equations differs
from the obtained order of numerical integration methods by application to ordinary
differential equations. Let us denote the obtained order by application to ODEs as
the classical order. Therefore, Runge-Kutta methods have to be investigated with
respect to several types of DAEs. This is done in [79] for semi-explicit DAEs of
d-index one, two, and three. Let us recall the results obtained for Runge-Kutta
methods applied to semi-explicit DAEs of the form

ẋ1 = k1(x1, x2), (3.177a)

0 = k2(x1) (3.177b)

of d-index 2. The following theorem is stated in [79].

Lemma 3.5.89 Suppose that a Runge-Kutta method defined by the Butcher tableau,
see Table 3.1, satisfies the conditions

B(p) :
s∑

i=1

bic
k−1
i = 1

k for k = 1, ..., p,

C(q) :
s∑

j=1

aijc
k−1
j =

ck
i

k for k = 1, ..., q and all i = 1, ..., s

with p ≥ q + 1 and q ≥ 1. Then by the discretization of the semi-explicit DAE
(3.177) of d-index 2 the local error δx1h(t) of the x1-component is of magnitude

δx1h(t) = O(hq+1), P (t)δx1h(t) = O(hq+2),

with

P (t) = I − (k1,x2
(k2,x1

k1,x2
)−1k2,x1

)(x1(t), x2(t)). (3.178)

Proof: See [79]. �

Theorem 3.5.90 Consider a system of DAEs of the form (3.177). Suppose that

||(k2,x1
k1,x2

)−1|| ≤ L (3.179)

holds in a neighborhood of the solution x(t) of (3.177) and that the initial values are
consistent. If the Runge-Kutta matrix A, see Table 3.1, is invertible, |R(∞)| < 1
(see (3.175)), and if the local error δxh(t) satisfies

δx1h(t) = O(hr), P δx1h(t) = O(hr+1)
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with P given by (3.178) then with respect to the x1-component of (3.177) the Runge-
Kutta method is convergent of order r, i.e.,

x1n − x1(tn) = O(hr) for tn = nh ≤ const.

Proof: See [79]. �

Let us formally introduce a transformation of the quasi-linear DAE (3.103) to a semi-
explicit DAE of the form (3.177) of d-index 2. Based on the obtained semi-explicit
DAE we will investigate the convergence of the Runge-Kutta methods applied to
the quasi-linear DAE (3.103).

Lemma 3.5.91 Suppose that the initial value problem (3.2) is a solvable DAE of
d-index νd. Then

ẋ = y,

0 = F (x, y, t),

together with the initial values x(t0) = x0 and y(t0) = y0 = ẋ(t0) is a semi-explicit
DAE of d-index νd + 1 with the same solution for x(t) as in (3.2).

Proof: See [25]. �

Remark 3.5.92 As a rule of thumb, it is mentioned in [25] that the semi-explicit
case of a given d-index νd is much like the general case of d-index νd − 1, i.e., a
nonlinear DAE of d-index one behaves like a semi-explicit DAE of d-index two. �

Lemma 3.5.93 The initial value problem of the quasi-linear DAE (3.103) with
initial values x(t0) for t ∈ I = [t0, tf ] is equivalent to the initial value problem of
the autonomous quasi-linear DAE

[
Ê(y1, û(y2)) 0

0 1

] [
ẏ1

ẏ2

]
=

[
k̂(y1, û(y2))

1

]
(3.180)

with initial values

y1(t0) = x(t0), y2(t0) = t0

for t ∈ I = [t0, tf ] in the sense that the solution y1(t) of (3.180) is identical to the
solution x(t) of (3.103).

Proof: With y1(t) = x(t), y2(t) = t the assertion follows immediately. �

Lemma 3.5.94 Suppose that the initial value problem (3.103) is a solvable DAE
of d-index νd = 1 and that the matrix Ê(x, û) has constant rank rÊ = rank(Ê(x, û))

for all possible (x, û). Let y =
[

yT
1 yT

2

]T
=
[ [

xT
1 xT

2

]
t
]T ∈ Rn+1 and a

decomposition of the matrix Ê(y1, û(y2)) be given by

Ê(y1, û(y2)) = S−1(y1, y2)

[
Ir

Ê
0

0 0

] [
T11(y1, y2) T12(y1, y2)
T21(y1, y2) T22(y1, y2)

]
,(3.181)

S(y1, y2) =

[
S1(y1, y2)
S2(y1, y2)

]
,

x =

[
x1

x2

]
∈ R

n, x1 ∈ R
r

Ê , x2 ∈ R
n−r

Ê .
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Then the DAE

ẏ = f̂(y, z), (3.182a)

0 = ĝ(y) (3.182b)

with

f̂(y, z) =




T−1
11 (y1, y2)

(
S1(y1, y2)k̂(y1, û(y2)) − T12(y1, y2)z

)

z
1


 , (3.182c)

ĝ(y) = S2(y1, y2)k̂(y1, û(y2)) (3.182d)

together with the initial values y(t0) =
[

xT
1 (t0) xT

2 (t0) t0
]T

and z(t0) = ẋ2(t0)
is a semi-explicit DAE (3.15) of d-index νd = 2 with the same solution for x as in
(3.103).

Proof: From Lemma 3.5.93 we get that the solution y1(t) of (3.180) is identical
to the solution x(t) of (3.103).
Furthermore, we get with (3.181) from (3.180) that




T11(y1, y2) T12(y1, y2) 0
0 0 0
0 0 1






ẏ11

ẏ12

ẏ2


 =




S1(y1, y2)k̂(y1, û(y2))

S2(y1, y2)k̂(y1, û(y2))
1


 .

By introducing z = ẏ12 it follows that




T11(y1, y2) 0 0 0
0 In−r

Ê
0 0

0 0 1 0
0 0 0 0







ẏ11

ẏ12

ẏ2

ż


 =




S1(y1, y2)k̂(y1, û(y2)) − T12(y1, y2)z
z
1

S2(y1, y2)k̂(y1, û(y2))


 .

Since the matrix T (y1, y2) is nonsingular, apart from permutation of columns we
may assume that T11(y1, y2) is nonsingular. Hence, we get the assertion by multi-
plication of the first block row with T−1

11 (y1, y2). �

Remark 3.5.95 The DAE (3.182) is called augmented semi-explicit DAE. In terms
of x and y2 = t it has the form

ẋ1 = T−1
11 (x, y2)

(
S1(x, y2)k̂(x, û(y2)) − T12(x, y2)z

)
, (3.183a)

ẋ2 = z, (3.183b)

ẏ2 = 1, (3.183c)

0 = S2(x, y2)k̂(x, û(y2)). (3.183d)

�

Lemma 3.5.96 Suppose that the quasi-linear DAE (3.103) is a solvable DAE. Then
the direct discretization of the quasi-linear DAE (3.103) and of the augmented semi-
explicit DAE (3.182) using Runge-Kutta methods defined by the Butcher tableau in
Table 3.1, yields the same numerical solution xi as approximation of x(ti).
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Proof: The direct discretization of (3.182), i.e., of (3.183), leads to

X ′
1i = T−1

11 (Xi, Y2i)(S1(Xi, Y2i)k̂(Xi, û(Y2i)) − T12(Xi, Y2i)Zi), (3.184a)

X ′
2i = Zi, (3.184b)

Y ′
2i = 1, (3.184c)

0 = S2(Xi, Y2i)k̂(Xi, û(Y2i)), (3.184d)

Xi = x0 + h

s∑

j=1

aijX
′
j , (3.184e)

Y2i = y20 + h

s∑

j=1

aijY
′
2j , (3.184f)

Zi = z0 + h
s∑

j=1

aijZ
′
j , (3.184g)

for i = 1, ..., s. We did already substitute Y1i = Xi =
[

XT
1i XT

2i

]T
and Y ′

1i =

X ′
i =

[
(X ′

1i)
T (X ′

2i)
T
]T

. From y20 = t0, (3.184c) and (3.184f) with (3.107)
we get Y2i = t0 + cih. Furthermore, replacing Zi by X ′

2i in (3.184a) we get from
(3.184a), (3.184d), and (3.184e)

T11(Xi, t0+cih)X ′
1i + T12(Xi, t0+cih)X ′

2i = S1(Xi, t0+cih)k̂(Xi, û(t0+cih)),

0 = S2(Xi, t0+cih)k̂(Xi, û(t0+cih)),

Xi = x0 + h

s∑

j=1

aijX
′
j

independent of Y2i and Zi, which is equivalent to

[
S1(Xi, t0 + cih)
S2(Xi, t0 + cih)

]−1 [
IrE

0
0 0

] [
T11(Xi, t0 + cih) T12(Xi, t0 + cih)
T21(Xi, t0 + cih) T22(Xi, t0 + cih)

]
X ′

i

= k̂(Xi, û(t0 + cih)),

Xi = x0 + h

s∑

j=1

aijX
′
j .

With (3.181) these equations correspond exactly to the direct discretization (3.108)
of the quasi-linear DAE (3.23), independent of Y2i, Y ′

2i, Zi and Z ′
i. �

Corollary 3.5.97 The numerical approximation xk of x(tk) by use of Runge-Kutta
methods is invariant under the transformation of the DAE (3.103) to its augmented
semi-explicit DAE (3.182), i.e., the numerical integration yields the same solution
for the x-component.

Proof: The proof follows immediately from Lemma 3.5.96. �

Theorem 3.5.98 Suppose that the initial value problem (3.103) is a solvable DAE
and the matrix Ê(x, û) has constant rank rÊ = rank(Ê(x, û)) for all possible (x, û).
Furthermore, suppose that there exists a nonsingular matrix

S(x, û) =

[
S1(x, û)
S2(x, û)

]
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with S1(x, û) is of size rÊ × m̂ such that

||
[

S1(x, û)Ê(x, û)

(S2(x, û)k̂(x, û)),x

]−1

|| ≤ L (3.185)

holds in a neighborhood of the solution (x(t), û(t)) of (3.103) and that the initial
values are consistent. If the Runge-Kutta matrix A is invertible, |R(∞)| < 1 (see
(3.175)) and if the local error δxh(t) satisfies

δxh(t) = O(hr), P δxh(t) = O(hr+1)

with P (x) given by (3.178), then the Runge-Kutta method (3.108) is convergent of
order r, i.e.,

xn − x(tn) = O(hr) for tn = nh ≤ const.

Proof: With Lemma 3.5.3 it follows from (3.185) that the quasi-linear DAE
(3.103) has d-index νd = 1 or νd = 0. Therefore, from Lemma 3.5.94 with (3.181)
we have S1Ê =

[
T11 T12

]
and we get from (3.185) that

||
[

T11 T12

(S2k̂),x1
(S2k̂),x2

]−1

|| ≤ L.

With T11 nonsingular we get

||T−1
11 || ≤ L1 and ||((S2k̂),x2

− (S2k̂),x1
T−1

11 T12)−1|| ≤ L2.

The second inequality is equivalent to

||(
[

(S2k̂),x1
(S2k̂),x2

(S2k̂),û
˙̂u
]



−T−1
11 T12

I
0


)−1|| ≤ L2

which corresponds exactly to the condition (3.179) in Theorem 3.5.90 respecting
the DAE (3.103) in its augmented form (3.182).
Hence, the proof follows from Theorem 3.5.90 applied to the augmented semi-
explicit DAE (3.182), since the numerical solution of the semi-implicit DAE (3.104)
and its augmented semi-explicit DAE (3.182) produces the same result, see Lemma
3.5.96. �

From the convergence results in [79] applied to semi-explicit DAEs of d-index 2, we
get the convergence results listed in Table 3.2 for Runge-Kutta methods applied to
the quasi-linear DAE (3.103) of d-index νd = 1. Compare with Table 2.2 in [79].

3.5.4.6 Important classes of Runge-Kutta methods

Certain classes of implicit Runge-Kutta methods are well investigated and very pop-
ular in the numerical integration of DAEs. In particular, these are Gauß methods,
Radau methods, and Lobatto13 methods.
Gauß methods are collocation methods based on the Gauß-quadrature formulas,
see [82, 172]. The s-stage Gauß method is of classical order 2s but the numerical
integration of strangeness-free quasi-linear DAEs in general leads to a convergence
rate of only s+1 for odd s and a convergence rate of s for even s, see Table 3.2. Fur-
thermore, the Gauß methods are A-stable and B-stable but they are not L-stable.
From the choice of the nodes, i.e., of the parameters ci, it follows that no stage

13Rehuel Lobatto (born 1797 in Amsterdam, Netherlands - died 1866 in Delft, Netherlands)



3.5. QUASI-LINEAR DIFFERENTIAL-ALGEBRAIC EQUATIONS 105

Xi coincides with the approximation x1 at the end of the current integration step.
Rather, the approximation x1 is determined as linear combination of the stages
Xi, see (3.109). While the consistency of the stages of the Gauß method applied
to strangeness-free semi-implicit DAEs of the form (3.104) can be guaranteed, the
consistency of the approximation x1 is in general not insured. This facts makes the
Gauß methods impracticable for the numerical integration of differential-algebraic
equations.
The s-stage Radau methods are of classical order 2s−1 which is slightly lower than
the classical order of the Gauß method. But the order of convergence rate of Radau
IIa methods for strangeness-free quasi-linear differential-algebraic equations is still
2s − 1 which is, in general, larger than the convergence rate of the Gauß methods
for strangeness-free semi-implicit DAEs. Furthermore, the Radau methods have a
large number of advantages in contrast to the Gauß methods. The stability prop-
erties of Radau methods are excellent, i.e., Radau methods are A-, B- as well as
L-stable. In particular, the L-stability is of great importance for the numerical
treatment of differential-algebraic equations, see Section 3.5.4.4. Furthermore, for
the node vector c of the Radau Ia methods we have that c1 = 0. This means that
the first stage X1 coincides with the initial point of the current integration step,
i.e., x0 = X1. On the other hand, with respect to Radau IIa methods we have that
cs = 1 and furthermore, asi = bi for i = 1, ..., s, i.e., Radau IIa methods are stiffly
accurate, see Section 3.5.4.4. In particular, we have that the last stage Xs coincides
with the final point of the current integration step, i.e., x1 = Xs. From this fact
the consistency of the approximation xi obtained from a Radau Ia and IIa method
applied to strangeness-free semi-implicit DAEs of the form (3.104) follows from the
consistency of the stages which is insured because of the explicit occurrence of all
constraints. The simplest representative of the Radau IIa methods is the implicit
Euler method.
The s-stage Lobatto IIIa, IIIb, and IIIc methods are of classical order 2s − 2, and
the numerical integration of strangeness-free quasi-linear differential-algebraic equa-
tions lead to the same rate of convergence, see Table 3.2. Lobatto IIIa, IIIb, and
IIIc methods are A-stable but not L-stable, while Lobatto IIIa and IIIc methods
are in addition stiffly accurate. For the numerical treatment of mechanical systems
Lobatto methods are investigated in [151, 152].

Method stages rate of convergence stability

Gauß s
{

odd
even

{
s+1

s A-, B-stable

Radau Ia s s A-, B-, L-stable
Radau IIa s 2s − 1 A-, B-, L-stable
Lobatto IIIa s 2s − 2∗ A-stable
Lobatto IIIc s 2s − 2 A-stable

*) Result for Lobatto IIIa is proven for s = 2, 3 and conjectured
for larger s (see [79])

Table 3.2: Properties of implicit Runge-Kutta methods applied to strangeness-free
semi-implicit DAEs

These facts make Radau methods and, in particular, the Radau IIa methods excel-
lent candidates for the numerical integration of initial value problems for strangeness-
free quasi-linear differential-algebraic equations of form (3.104).
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3.6 Numerical methods and software: an overview

The numerical treatment of initial value problems for ordinary differential equa-
tions of the form (3.1) is well developed, see [34, 35, 63, 74, 75, 81, 161, 173]. Thus,
there exists a large collection of efficient algorithms which are suitable for the nu-
merical integration of ordinary differential equations. As discussed in Sections 3.4
and 4.6, the numerical treatment of differential-algebraic equations, in particular,
of the model equations of multibody systems, is more difficult and should combine a
discretization scheme with suitable regularization techniques, because of the order
reduction phenomenon, drift-off effects, or instabilities caused by the higher index
of DAEs.
Therefore, not all numerical methods that are suitable for ordinary differential equa-
tions are also suitable for the numerical treatment of differential-algebraic equations.
In [25, 77, 82] suitable methods for the numerical treatment of differential-algebraic
equations are investigated. In particular, the drift-off phenomenon and therefore,
the consistency of the approximate solution plays an important role in the accuracy
and stability of numerical algorithms.
With respect to the numerical treatment of differential-algebraic equations implicit
or half implicit numerical methods are of great interest. Therein, three classes of
methods play a major role. These are multistep methods, one step methods, and
extrapolation methods.
For multistep methods, discretization and implementation is not very difficult. Also,
the solution of the nonlinear systems arising in every integration step is relatively
cheap. On the other hand, the development of a step size control is complicated
and this control is not very flexible in its choice of the step sizes, see [70, 71]. Fur-
thermore, the convergence behavior of multistep methods with variable step size for
nonlinear DAEs is not completely understood, not even for quasi-linear DAEs of
the form (3.103) with state depending leading matrix. Very popular representatives
of multistep methods are the BDF methods. But, they have the disadvantage that
they are A-stable only for k ≤ 2, A(α)-stable only for k ≤ 6, and may not be stable
for k > 6, see [81, 173].
For implicit Runge-Kutta methods, as representative for one step methods, the dis-
cretization of differential-algebraic equations and its implementation is very tech-
nical and the solution of the nonlinear systems arising in every integration step is
expensive. On the other hand, the development of a suitable and efficient step size
control is easy and the control is very flexible in the choice of the step sizes, see
[39, 63, 78, 82, 169], with respect to the accuracy of the numerical solution and to
the convergence of the Newton iteration method for solving the nonlinear systems.
Furthermore, the convergence behavior of implicit Runge-Kutta methods at least
for quasi-linear DAEs of the form (3.103) with state depending leading matrix is
well understood, see Section 3.5.4.5.
The available software is mostly suited for special classes of DAEs and does of-
ten not contain a regularization technique. Therefore, general DAEs, in particular,
higher index DAEs, first have to be regularized and the regularized form has to be
provided to the numerical algorithms. In the following we give an an overview over
available and commonly used numerical algorithms for the numerical integration of
DAEs.
The software package DASSL14 [25, 135] is based on backward differentiation formulas
with step size and order control. It is designed to integrate nonlinear differential-
algebraic equations of the form (3.2a) of d-index one. This code is widely used
and works efficiently for nonstiff systems. Furthermore, the numerical algorithm
DASPK15 [26, 177] is designed for large scale DAEs. It also bases on backward dif-

14DASSL - http://www.engineering.ucsb.edu/∼cse/software.html
15DASPK - http://www.engineering.ucsb.edu/∼cse/software.html
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ferentiation formulas with step size and order control but in contrast to DASSL the
numerical solution of the arising linear systems is done via iterative methods. The
latest version of DASPK includes in addition a sensitivity analysis and root finding.
It is known that BDF methods are suitable for the numerical integration of DAEs
(3.2a) with d-index at most one, see [25]. Unfortunately, the direct discretization
of higher index problems by use of BDF methods may lead to wrong results or may
not produce a solution at all.
GELDA16 [107] is a software package for the numerical integration of linear DAEs
(3.3) with variable coefficients. While most of the standard integration methods
are suitable only for regular strangeness-free DAEs, i.e., for DAEs of d-index not
higher than one, GELDA is suitable for the numerical integration of linear DAEs
of arbitrary index. The implementation of GELDA is based on the combination of
regularization, see Section 3.4.2, which transforms the linear DAE (3.3) into a lin-
ear equivalent strangeness-free DAE (3.20) with the same solution set, followed by
discretization of the regularized strangeness-free DAE by use of the Runge-Kutta
scheme RADAU5 [79, 82] as well as the BDF method DASSL [25, 135]. The user has
to provide the necessary number of derivatives of the whole system matrices.
A nonlinear version of GELDA is available and called GENDA17 [109]. GENDA is suit-
able for general nonlinear DAEs (3.2a) of arbitrarily high index. The code GENDA

combines the regularization technique reviewed in Section 3.4.2 with the discretiza-
tion of an equivalent strangeness-free formulation (3.21) of the DAE by use of BDF
methods. The user has to provide the necessary number of derivatives of the whole
DAE (3.2a), in particular, the whole derivative array Fνs

of level νs, and in addition
the characteristic quantities. For more details we refer to [103, 109].
Both numerical algorithms GELDA and GENDA are included in a recently developed
MATLAB18 toolbox, see [108].
The subroutine LSODI19 [90] is designed to solve initial value problems in quasi-
linear form (3.103) with u(t) = t by use of backward differentiation formulas for the
discretization.
RADAU520 [79, 82] is designed for the direct numerical integration of quasi-linear
DAEs of the form

Eẋ = k(x, u) (3.186)

where E a constant, possibly singular matrix. It is based on the implicit Runge-
Kutta method of Radau IIa type of order 5. In addition to RADAU5 the numerical
algorithm RADAUP21 is avaliable. It bases on the implicit Radau IIa method of
order 5, 9, or 13. In [79] and [82] it has been proved that convergence of the
Radau IIa method can be guaranteed for semi-explicit DAEs of d-index 1 and d-
index 2. In addition, convergence for this method applied to semi-explicit DAEs
in Hessenberg form (3.94) of d-index 3 is investigated in [79]. Furthermore, it is
shown in [79] how to transform the DAE (3.186) into semi-explicit form (3.15) and,
moreover, that Runge-Kutta methods are invariant under this transformation, see
also Section 3.5.4.5. Because of this invariance, the convergence results proposed in
[79, 82] are valid for semi-explicit DAEs (3.15) as well as quasi-linear DAEs (3.186)
with constant leading matrix. Therefore, RADAU5 allows the numerical integration
of quasi-linear DAEs (3.186) up to a differentiation index 3.
However, the application of RADAU5 to quasi-linear DAEs of the form (3.103) is not
possible because of the state depending leading matrix E(x) which is in general not

16GELDA - http://www.math.tu-berlin.de/numerik/mt/NumMat/Software/GELDA/
17GENDA - http://www.math.tu-berlin.de/numerik/mt/NumMat/Software/GENDA/
18MATLAB - http://www.mathworks.com/
19LSODI - http://www.netlib.org/alliant/ode/prog/lsodi.f
20RADAU5 - http://www.unige.ch/∼hairer/software.html
21RADAUP - http://www.unige.ch/∼hairer/software.html
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constant. A way out is the introduction of new variables and the transformation to
a semi-explicit DAE of the form

ẋ = y,

0 = E(x, u)y − k(x, u).

Unfortunately, this increases the d-index by one, see [25], but Runge-Kutta methods
are still applicable if the d-index of the original quasi-linear DAE does not exceed
2, see [79].
LIMEX22 [44, 45] and SEULEX23 [82] are extrapolation integrators for the solution
of quasi-linear DAEs of the form (3.186) with u(t) = t and d-index lower or equal
one. These discretization methods base on the linearly implicit Euler discretization
combined with extrapolation. The codes offer the possibility to compute consistent
initial values and dense output. Both codes use the same numerical method, but a
different implementation.
Another approach to integrate the system of differential-algebraic equations is the
so-called dynamic iteration or waveform relaxation. In [123, 124] the convergence of
the dynamic iteration for the analytical solution of the subsystems in every iteration
step is investigated. In addition, in [20] the convergence of the dynamic iteration
concerning the numerical solution of the subsystems in form of ODEs by use of
Runge-Kutta methods in every iteration step is investigated. Furthermore, in [8, 49]
the dynamic iteration applied to coupled strangeness-free DAEs is discussed.

22LIMEX - http://www.zib.de/Numerik/numsoft/CodeLib/ivpode.en.html
23SEULEX - http://www.unige.ch/∼hairer/software.html



Chapter 4

Multibody Systems

The dynamical behavior of multibody systems (MBS) is of great importance in many
fields of mechanical engineering, like robotics, road and rail vehicle construction, air
and space craft design, see [52, 86, 154, 155, 156]. Furthermore, today the need and
the demand for mechanical systems with high speed motions is increasing, e.g., the
desire for high speed cars, high speed trains, high speed aircraft, high speed ferries,
or high speed elevators. Because of this high speed motion of mechanical systems
effects arising from huge inertial or centrifugal forces cannot be neglected.
From the dynamical point of view a multibody system is regarded as a number of
mass points and rigid or elastic bodies, subject to possibly existing interconnections
and constraints of various kinds, e.g., joints, springs, dampers, and actuators. In
particular, rigid bodies are regarded as a collection of particles which are kept at
invariant distances of each other.
As a basis for the investigations of the dynamical behavior of multibody systems,
the equations of motion (EoM) provide the tool for modeling the relevant dynami-
cal properties. The equations of motion as well as the necessary derivatives of the
constraints with respect to t can be generated in a systematic way by multibody
formalisms based on the principles of classical mechanics [53, 112, 149, 154]. The
equations of motion usually form a nonlinear system of differential-algebraic equa-
tions (DAEs) with a very special structure that can and should be exploited in the
numerical solution [52, 82].
The efficient and robust numerical integration of these equations is a challenging
problem in the development of simulation packages, because dynamical simulation
is a frequently used and one of the most time consuming analysis methods for MBS
models. In this chapter we will discuss properties and tools which are important for
the efficient numerical integration of the equations of motion. We will not restrict
ourselves to classical constrained mechanical systems but consider the more com-
plex model equations that are currently used in state-of-the-art multibody system
simulation packages.
We will mainly consider multibody systems from the dynamical point of view. In
Section 4.1 we will discuss the modeling procedure of MBS. In a large part of lit-
erature, equations of motion in standard form including the dynamical equations
of motion subject to some holonomic constraints are discussed in detail. But, in
industrial applications more complex equations arise which include friction effects,
contact force laws, dynamical force elements, nonholonomic constraints, and in some
cases the existing constraints are redundant. Therefore, we will focus our investi-
gation on the most general case that includes all of these features. Furthermore,
we will discuss solution invariants of several mechanical systems, and we will give
a classification of several forms of equations of motion in form of modeling levels.
In Section 4.2 we will consider equations of motion with possibly redundant con-
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straints with respect to their dynamical properties and, in particular, with respect
to the existence and partial uniqueness of solutions.
It is well known that the direct numerical integration of the equations of motion
leads to several numerical difficulties due to the higher index of the equations of
motion. Therefore, we will discuss the numerical properties of several formulations
of the equations of motion in Section 4.4. In particular, we will discuss the drift-off
phenomenon.
Based on the obtained results, in Section 4.5 we will postulate two paradigms, one
for the modeling of multibody systems and one for numerical integration methods
for the model equations of dynamical systems.
As mentioned in the previous paragraphs, numerical integration of equations of
motion is a nontrivial problem such that a numerical method should combine a
discretization method with a suitable regularization technique. Therefore, we will
review some important regularization techniques in Section 4.6 and extend them to
the general form of the equations of motion investigated in this thesis. Furthermore,
we will introduce a new regularization technique for the equations of motion, fol-
lowing a novel approach that has originally been developed for the time integration
of general nonlinear differential-algebraic equations of arbitrarily high index.
Concluding, we will give a short overview of numerical integration methods de-
signed for certain types of equations of motion in Section 4.7 and we will discuss
their applicability.

4.1 Modeling of multibody systems

In this section we will briefly discuss the modeling of multibody systems. For more
details the reader is referred to the large variety of literature on this topic, e.g.,
[1, 12, 17, 48, 57, 83, 147, 148, 174, 180].

4.1.1 Free motion of multibody systems

For a multibody system, let a set of generalized coordinates or position variables p,
depending on t, be given such that the position (and the orientation) of all bodies
is uniquely specified. The classical approach (see, e.g., [57]) for the modeling and
simulation of multibody systems is using minimal coordinates p. In this approach
a minimal number of coordinates is used to describe the motion of the multibody
system. Possible kinematic constraints, for example those resulting from joints,
which restrict the motion are eliminated. Other frequently used aproaches base on
the relative coordinates, on the absolute coordinates, or both, i.e., mixed coordinates.
While the absolute coordinates describe the position and orientation of the several
bodies with respect to a fixed inertial coordinate system, the relative coordinates
describe the position and orientation of a body relatively to an other body, for in-
stance the distances and angles between different bodies.
Note that the choice of the coordinates p is not restricted to absolute coordinates,
but the choice of relative coordinates is possible and often advantageous, in partic-
ular, in the investigation of more complex multibody systems. In the case of a free
motion, it is necessary that the coordinates are nonredundant, i.e., each of them is
freely selectable, independent of other coordinates.
Let the coordinate vector p consist of arbitrary coordinates which describe the posi-
tions of all bodies involved in the multibody system. Let the derivative with respect
to t of the position variables ṗ = dp/dt denote the generalized velocity of the MBS.
Furthermore, let us assume that these positions are unrestricted in their choice. Let
T (p, ṗ) denote the kinetic energy which is assumed to be given as a function of the
arguments p and ṗ. From the definition, see [17, 180], it follows that the kinetic
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energy T (p, ṗ) of a multibody system is in general nonnegative. In particular, if only
masses with a positive value are allowed then the kinetic energy is strictly positive
for ṗ 6= 0. Therefore, T (p, ṗ) is a positive semi-definite (positive definite in case of
nonvanishing masses) quadratic form in ṗ.
The acting force on a moving mass point of a multibody system in R3 can be
described by a vector function

ϕ(q) : R
3 → R

3

which describes a field of forces. Here, q ∈ R
3 denotes the position of the mass

point. A special field of forces is the so-called conservative field of forces, which
has the property that the work done by the forces of the field only depends on the
initial and the final configuration of the multibody system but is independent of
the path between both configurations. It satisfies the condition

∂ϕi

∂qj
− ∂ϕj

∂qi
= 0

for i, j = 1, 2, 3. Following an idea of Lagrange, the force ϕ(q) can be expressed as
the gradient of a scalar function U(q) : R3 → R, i.e.,

ϕ(q) = −∂U(q)

∂q
.

Following Green1 and Gauß the scalar function U is called potential or potential
energy , see [148]. Gravity is a conspicuous example for a conservative field of forces.
The work to move a body from the height h0 to h1 is −mg(h1−h0) done by gravity,
where m is the mass of the body and g is the gravitational acceleration. This work
does not depend on the path by which the body is moved from one height to the
other.
If the multibody system is influenced by a conservative field, we have to take the
potential energy into account. Let the potential energy of the whole multibody
system be denoted by U(p). Mechanical systems which are only influenced by
forces of conservative fields of forces are called conservative mechanical systems.
The functions T (p, ṗ) and U(p) are functions in p and ṗ and are known from the
configuration of the multibody system.
The motion of an arbitrary conservative mechanical system described by the position
variables p and the generalized velocities ṗ satisfies the Hamilton principle of the
least action, e.g., see [17, 148, 174, 180], which reads as

tf∫

t0

T (p(t), ṗ(t)) − U(p(t)) dt = extremal. (4.1)

This integral is called action integral , with the Lagrangian or Lagrange function

L(p(t), ṗ(t)) = T (p(t), ṗ(t)) − U(p(t)). (4.2)

By use of techniques from variational calculus, see [96], from (4.1) we get a necessary
condition for the extremity in the form

d

dt

(
∂L

∂ṗ

)
− ∂L

∂p
= 0. (4.3)

These equations are called the Euler equations see [36, 55, 148].
In this thesis, we will not restrict our investigations to multibody systems influenced

1Georg Green (born 1793 in Nottingham, England - died 1841 in Sneinton, England)
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by a conservative field of forces. Rather, we take into account work which is done by
other forces that we call external forces . Let us denote the work done by the external
forces for an arbitrary displacement ∂p by Q(p, t)∂p. In the case of free motion, the
external forces contain applied forces Qa(p, t) only, i.e., Q(p, t) = Qa(p, t). Then
the equations of motion which determine the motion of the multibody system may
be written as

d

dt

(
∂L

∂ṗ

)
− ∂L

∂p
= Q(p, t). (4.4)

From (4.4), one then obtains the equations of motion in state space form

M(p)p̈ = f̃(p, ṗ, t) + Q(p, t) (= f(p, ṗ, t)). (4.5)

The matrix M(p) = T,ṗṗ is called the mass matrix. Since the kinetic energy T (p, ṗ) is
a positive semi-definite quadratic form in ṗ, the mass matrix is positive semi-definite.
If only masses with a positive value are allowed the mass matrix is actually strictly
positive definite. and does not depend on ṗ. The right-hand side f(p, ṗ, t) of (4.5)

contains gravitational forces and gyroscopic forces (both contained in f̃(p, ṗ, t)) as
well as the external forces Q(p, t).
The state space form of the equations of motion (4.5) is an ordinary differential
equation (ODE) in implicit form of second order that can be reduced to a first
order ODE in implicit form. Then, it can be treated in the usual way according to
the theory and numerical methods for ODEs. From the numerical analysis point
of view, the numerical integration of the equations of motion in state space form is
well developed and there exists a large collection of efficient and robust solvers for
nonstiff as well as for stiff ODEs, e.g., see [28, 34, 63, 74, 75, 81, 82, 161].

Example 4.1.1 The mathematical pendulum: A mathematical pendulum of
length L > 0 represents a point mass which moves without friction along a vertical
circle of radius L under gravity, see Figure 4.1 and [13]. Let us use the angle ϕ(t) to
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Figure 4.1: Topology of the mathematical pendulum

describe the configuration depending on t. The kinetic energy is given by T (ϕ, ϕ̇) =
1
2mL2ϕ̇2. Furthermore, the potential energy is given by U(ϕ) = −mgL cos(ϕ). By
use of the Lagrange function (4.2) L(ϕ, ϕ̇) = 1

2mL2ϕ̇2 +mgL cos(ϕ), from the Euler
equations (4.3) we get

Lϕ̈ = −g sin(ϕ)
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as the equations of motion in state space form. �

The determination of the state space form plays a key role in the classical approach.
In [52] it is described how to determine and to compute the state space form for
linear or linearized equations of motion. Furthermore, the determination and com-
putation of the state space form of the general equations of motion is considered
in [60] and [147]. Here, it becomes clear, that for general nonlinear mechanical
systems, especially those with closed loops, the state space form can only be estab-
lished locally, and that the complete process of reduction to state space form is
quite laborious and therefore, very time consuming. For instance the example of a
wheel set [11] features so-called closed kinematical loops. This example cannot be
modeled as a system of ordinary differential equations in minimal coordinates.

4.1.2 Constraint motion of multibody systems

As discussed in the previous section, in the case of a free motion it is necessary
that the coordinates are nonredundant. Unfortunately, a choice of nonredundant
coordinates p is in general very difficult, very technical, or not possible, in particular,
if multibody systems with kinematical closed loops are considered. Therefore, in
modern approaches (see e.g. [52, 53, 149, 154, 155, 156, 164]), multibody systems
are modeled by use of nonminimal coordinates in connection with constraints.
In this section we will discuss the modeling of constrained multibody systems in
this way. We have to distinguish between two important types of constraints. Let
us illustrate these with a simple example.

Example 4.1.2 The rolling ball: Let us consider the motion of a ball with given
radius r, see Figure 4.2. The position coordinates are subject to constraints arising
from the fact that the ball has to move while being in contact with a given two-
dimensional plane in the three dimensional space, e.g., see [17, 129, 180]. The
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Figure 4.2: Rolling ball on surface

configuration is described by three position coordinates, say p1(t), p2(t), and p3(t),
and three orientation coordinates, say p4(t), p5(t), and p6(t). The ball can take
any position, as long as it is in contact with the plane. Therefore, the position is
restricted by a constraint of the form

0 = g(p, t). (4.6)

In addition to this constraint it is obvious that its first total derivative with respect
to t has to be satisfied, too, i.e.,

0 = g,p(p, t)ṗ + g,t(p, t). (4.7)
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If the plane is smooth in the sense that sliding is possible, any displacement δp
from the configuration p to the configuration p + δp with g(p + δp, t + δt) = 0 is
possible in an arbitrary way, i.e., for example just changing the orientation without
changing the position is allowed. But if the plane is perfectly rough this is no longer
possible. In this case just perfect rolling is possibly. Therefore, the displacements
are mutually connected and have to satisfy a condition of the form

0 = h̆(p, ṗ, t) (4.8)

in addition to the constraint (4.7). While the constraint (4.6) restricts the posi-
tions and the constraints (4.7) restrict the displacements according to the possible
positions, the constraints (4.8) additionally restrict the possible displacements, i.e.,
velocities, of the considered system without being based on any restrictions of the
positions. This suggests that we have to distinguish carefully these two types of
restrictions for the multibody system. �

Let us define the two types of restrictions mentioned in Example 4.1.2, the so-
called holonomic constraints and the so-called nonholonomic constraints, e.g., see
[17, 129, 147].

Definition 4.1.3 (Holonomic and nonholonomic constraints) Constraints
which only depend on the position variables p of the multibody system, i.e., which
are of the form

0 = g(p, t), (4.9)

are called holonomic constraints (on position level).
Constraints which depend on the derivative ṗ with respect to t of the position vari-
ables p, i.e., which are of the form

0 = h̆(p, ṗ, t), (4.10)

and for which no functions g(p, t) with d
dtg(p, t) = h̆(p, ṗ, t) exist, are called non-

holonomic constraints (on velocity level).

Remark 4.1.4 a) The constraints arising from (4.9) by differentiation with respect
to t, i.e.,

0 = g,p(p, t)ṗ + g,t(p, t) (4.11)

are called holonomic constraints on velocity level and the constraints arising from
(4.9) by one more differentiation with respect to t, i.e.,

0 = g,pp(p, t)[[ṗ, ṗ]] + 2g,pt(p, t)ṗ + g,p(p, t)p̈ + g,tt(p, t)

are called holonomic constraints on acceleration level. Furthermore, the constraints
arising from (4.10) by differentiation with respect to t, i.e.,

0 = h̆,p(p, ṗ, t)ṗ + h̆,ṗ(p, ṗ, t)p̈ + h̆,t(p, ṗ, t)

are called nonholonomic constraints on acceleration level.
b) If the holonomic constraints (4.9) explicitly depend on t, then we have a so-called
kinematical excitation. In case of the explicit dependency of the nonholonomic
constraints (4.10) on t we have a so-called motional excitation. �

Remark 4.1.5 a) Holonomic constraints restrict the position as well as the mo-
tion of a multibody system with the same number of constraints. Nonholonomic
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constraints restrict the velocity only, independent of associated restrictions to the
position.
b) Note that if constraints do depend on the velocities they are not automatically
nonholonomic.
c) In [24, 83, 147], it is discussed that nonholonomic constraints are linear in the
velocity, i.e., they have the form

0 = H(p, t)ṗ + h(p, t). (4.12)

d) Examples of multibody systems with nonholonomic constraints are the sliding of
blades, knives, or skates (without scratching sidewards), or the rolling of balls (see
Example 4.1.2) or cylinders. �

Definition 4.1.6 (Holonomic and nonholonomic multibody system) If the
motion of a multibody system is restricted by nonholonomic constraints, the multi-
body system is called nonholonomic or nonholonomic system. Otherwise it is called
holonomic or holonomic system. If there do not exist any holonomic constraints but
only nonholonomic constraints, the system is called purely nonholonomic or purely
nonholonomic system.

Since we have different types of constraints which restrict the coordinates p and its
derivative ṗ with respect to t in different ways, we have to distinguish between two
types of degrees of freedom. In [147] the positional and motional degrees of freedom
are introduced.

Definition 4.1.7 (Positional and motional degrees of freedom) The positi-
onal degrees of freedom are defined as the degrees of freedom of choice of the position
coordinates p and are denoted by nfp

.
The motional degrees of freedom are defined as the degrees of freedom of the choice
of the motion denoted by ṗ and are denoted by nfv

.

Remark 4.1.8 If the positional and the motional degrees of freedom are identical,
we will not distinguish them and call them degrees of freedom and we will denote
them by nf . �

Remark 4.1.9 In [129] the notation geometrical degrees of freedom and kinematical
degrees of freedom is used instead of positional and motional degrees of freedom,
respectively. The meaning is the same. �

Remark 4.1.10 The number of positional degrees of freedom is influenced by the
number of nonredundant holonomic constraints which restrict the positions of the
multibody system and therefore, the number of holonomic constraints reduces the
positional degrees of freedom. Furthermore, the number of motional degrees of
freedom is influenced by the number of nonredundant nonholonomic constraints
in addition to the number of nonredundant holonomic constraints. Therefore, the
number of motional degrees of freedom is less than or equal to the number of
positional degrees of freedom

nfv
≤ nfp

,

e.g., see Example 4.1.2. �

There exists a lot of literature, where holonomic as well as nonholonomic constraints
are defined and discussed, e.g., [17, 24, 36, 52, 129, 147] but the number of references
which additionally consider the modeling of nonholonomic systems, e.g., [126, 180],
and furthermore which investigate the dynamical behavior of nonholonomic systems
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Figure 4.3: Holonomic and nonholonomic constraints and the respective constraint
forces for the example of one mass point in three dimensional space with two holo-
nomic constraints and one nonholonomic constraint

is quite small, e.g., [140]. In this work we will discuss the modeling of nonholonomic
systems, see below, as well as their numerical integration, see Chapter 5.
For the investigation of the modeling process let us assume that the considered
multibody system is restricted by constraints of the form

0 = K(p, t)ṗ + k(p, t), (4.13)

regardless if they are of holonomic or of nonholonomic nature. In the case of a
holonomic system (4.13) corresponds to (4.11). In the case of a purely nonholonomic
system (4.13) corresponds to (4.12). Otherwise (4.13) corresponds to a system of
equations consisting of equations of the form (4.11) and (4.12). We then have

K(p, t) =

[
H(p, t)
g,p(p, t)

]
, k(p, t) =

[
h(p, t)
g,t(p, t)

]
.

In general, the investigated constrained multibody system is equivalent with re-
spect to its resulting motion to a free multibody system with additional forces, say
Qc(p, t), depending on the position p and on t, which force the motion to satisfy
the constraints and do not perform any work on the system. Since the work of the
system performed by Qc(p, t) is defined as

W =

∫
Qc(p, t) dp(t),

the force Qc(p, t) does not perform any work on the system if and only if Qc(p, t)
is perpendicular to all possible directions of motion, i.e., to ṗ(t), according to the
constraints (4.13) for all t ∈ I, see Figure 4.3. Thus, we get

QT
c (p, t)ṗ(t)

!
= 0. (4.14)

Investigations of Lagrange [110] show that the force Qc can be expressed as

Qc = −KT (p, t)ζ, (4.15)

with unknown functions ζ ∈ C(I, Rnζ ), which are called Lagrange multipliers. Adding
the constraint forces Qc(p, t) to the external forces in the equations of motion (4.5)
to force the motion to satisfy the restrictions (4.13), we get equation (4.4) in the
form

d

dt

(
∂L

∂ṗ

)
− ∂L

∂p
= Qa(p, t) + Qc(p, t), (4.16)
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with Qa(p, t)+Qc(p, t) = Q(p, t). The equations (4.16) are known as Euler-Lagrange
equations , see [36, 180]. From the Euler-Lagrange equations, it follows that

M(p)p̈ = f̃(p, ṗ, t) + Qa(p, t) + Qc(p, t).

The applied force Qa(p, t) is a known function and the constraint forces Qc(p, t) are
defined by (4.15) with still unknown Lagrange multipliers ζ. But the consideration
of the constraints delivers the information to determine the Lagrange multipliers,
such that the equations

M(p)p̈ = f(p, ṗ, t) − KT (p, t)ζ, (4.17a)

0 = K(p, t)ṗ + k(p, t), (4.17b)

with f(p, ṗ, t) = f̃(p, ṗ, t) + Qa(p, t) are sufficient to determine all unknowns p(t)
and ζ(t). Recall that the constraints (4.17a) contain holonomic constraints (4.9)
as well as nonholonomic constraints (4.12). Explicit distinction of the holonomic
and nonholonomic constraints in their original form yields the equations of mo-
tion of a constraint multibody system including holonomic constraints as well as
nonholonomic constraints in the form

M(p)p̈ = f(p, ṗ, t) − GT (p, t)λ − HT (p, t)µ, (4.18a)

0 = H(p, t)ṗ + h(p, t), (4.18b)

0 = g(p, t), (4.18c)

with the nonholonomic constraint matrix H(p, t) and the holonomic constraint ma-
trix G(p, t) defined by

G(p, t) = g,p(p, t).

The columns of the matrices GT and HT describe the inaccessible directions of the
motion, see Figure 4.3.
The equations of motion in the form (4.18) are known as descriptor form for non-
holonomic systems. Note that, in general, the descriptor form for holonomic systems
of the form

M(p)p̈ = f(p, ṗ, t) − GT (p, t)λ, (4.19a)

0 = g(p, t), (4.19b)

is used as basis for investigations in the literature. The form (4.18) represents an
extension of the generally used descriptor form (4.19). Nevertheless, in the present
work we will focus on general nonholonomic systems such that mainly the descriptor
form (4.18) for nonholonomic systems will be used.

Remark 4.1.11 In principle, it is possible (at least locally) to solve the constraints
of the descriptor form (4.19) and to determine the (local) state space form (4.5).
But the complete process of reduction to state space form is quite laborious, time
consuming, and subject to the solution of nonlinear systems.
Even in the case when a determination of a set of minimal coordinates is possible,
the convenient structure of the equations of motion in descriptor form, like sparsity,
banded system matrices, or the constant mass matrix, is usually lost, such that the
evaluation effort for the system matrices or the right-hand side of the equations of
motion as well as the time consumption for algebraic transformations is increasing
in an inconvenient way. On the other hand the descriptor form (4.18) bypasses
topological analysis. Often the technical interpretation of the full set of nonmini-
mal coordinates p with respect to the features and the dynamical behavior of the
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mechanical system is simpler than for minimal coordinates.
In [164] the advantages and the disadvantages of several choices of the position
variables, e.g., in minimal or nonminimal and in absolute or relative coordinates,
is discussed in more detail. Already in [64], the authors dissuade from the usage
of the state space form as basis of numerical computations because of the loss of
sparsity and structure in comparison to the descriptor form. Furthermore, both
the choice of the coordinates and the formulation in descriptor or state space form
strongly influence the computational complexity of the equations of motion. For
more details we refer to [52, 60, 147, 167]. �

4.1.3 Examples for mechanical systems

Example 4.1.12 The mathematical pendulum: Again, let us consider the
mathematical pendulum, see Figure 4.1. In contrast to Example 4.1.1, now we

choose absolute coordinates p =
[

x y
]T

denoting the position of the mass m
in the two dimensional space R2 for the description of the configuration of the
pendulum. The equations of motion of first order have the form

[
ṗ1

ṗ2

]
=

[
v1

v2

]
, (4.20a)

[
m 0
0 m

] [
v̇1

v̇2

]
=

[
0

−mg

]
−
[

2p1

2p2

] [
λ1

]
, (4.20b)

0 =
[

p2
1 + p2

2 − L2
]
. (4.20c)

The constraints on velocity level and on acceleration level are given by

0 =
[

2p1v1 + 2p2v2

]
, (4.20d)

0 =
[

2v2
1 + 2v2

2 − 2p2g − 4
m (p2

1 + p2
2)λ1

]
, (4.20e)

respectively, and

G(p, t) =
[

2p1 2p2

]
(4.21)

defines the holonomic constraint matrix. �

Example 4.1.13 The lolly: In this example let us introduce an extension of
the mathematical pendulum. The multibody system consists of one point mass
in the three dimensional space rotating about the origin with a fixed distance L
and sliding on a surface given by 0 = g2, see Figure 4.4. The gravitational force
is directed downwards along the z-axis and presses the point mass on the surface.
The equations of motion of first order have the form




ṗ1

ṗ2

ṗ3


 =




v1

v2

v3


 , (4.22a)




m 0 0
0 m 0
0 0 m






v̇1

v̇2

v̇3


 =




0
0

−mg


−




2p1 4(p2
1 + p2

2 − 1)p1

2p2 4(p2
1 + p2

2 − 1)p2

0 1



[

λ1

λ2

]
, (4.22b)

0 =

[
p2
1 + p2

2 − 1

e−β(p2
1+p2

2−1)2 − 1 − p3

]
. (4.22c)

Note that we have introduced the parameter β in the equations of motion which
influences the shape of the surface. With increasing parameter β, the summit
becomes sharper. �
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Example 4.1.14 The nonlinear truck model: In [167] a planar nonlinear
model of a truck is introduced as benchmark example. In Figure 4.5 (thanks to
Bernd Simeon for providing this figure) the topology as well as the coordinates,
bodies, joints, and force elements are depicted. The model consists of eleven coor-
dinates pi, i = 1, ..., 11 describing the motion of seven rigid bodies and one Lagrange
multiplier λ1, see Table 4.1.

Body Coordinate
1 rear wheel p1 vertical motion
2 front wheel p2 vertical motion
3 truck chassis p3 vertical motion

p4 rotation about y-axis
4 engine p5 vertical motion

p6 rotation about y-axis
5 driver cabin p7 vertical motion

p8 rotation about y-axis
6 driver seat p9 vertical motion
7 loading area p10 vertical motion

p11 rotation about y-axis

λ1 Lagrange multiplier with respect to the joint
between loading area and truck chassis

Table 4.1: Nonlinear truck model

We omit to specify the equations of motion in detail and refer to [167] instead.
Note that the equations of motion of the truck model are badly scaled, since the
solution of the Lagrange multiplier λ1 is of magnitude 104 but the solution of the
other independent variables p and v are of magnitude 10−2. �
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Example 4.1.15 Slider crank: In this example we will model a slider crank as
depicted in Figure 4.6.
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We will discuss two different types of equations of motion. First, the equations of
motion with nonredundant constraints

[
ṗ1

ṗ2

]
=

[
v1

v2

]
, (4.23a)

M(p)

[
v̇1

v̇2

]
=

[
−(m1 + m2)gl1 cos(p1) − m2l1l2v

2
2 sin(p1 + p2)

m2gl2 cos(p2) − m2l1l2v
2
1 sin(p1 + p2)

]

−
[

l1 cos(p1)
−l2 cos(p2)

] [
λ1

]
, (4.23b)

0 =
[

l1 sin(p1) − l2 sin(p2)
]
, (4.23c)
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where

M(p) =

[
(m1 + m2)l21 −m2l1l2 cos(p1 + p2)

−m2l1l2 cos(p1 + p2) m2l
2
2

]
, (4.23d)

and secondly, the equations of motion with redundant constraints
[

ṗ1

ṗ2

]
=

[
v1

v2

]
, (4.24a)

M(p)

[
v̇1

v̇2

]
=

[
−(m1 + m2)gl1 cos(p1) − m2l1l2v

2
2 sin(p1 + p2)

m2gl2 cos(p2) − m2l1l2v
2
1 sin(p1 + p2)

]
(4.24b)

−GT (p, t)




λ1

λ2

λ3


 ,

0 =




l1 sin(p1) − l2 sin(p2)
r1x + r2x − r3x

r1y + r2y − r3y


 , (4.24c)

where

r1x = l1 cos(p1), r1y = l1 sin(p1),
r2x = l1 cos(p1) + l2 cos(p2), r2y = l1 sin(p1) + l2 sin(p2),
r3x = 2l1 cos(p1) + l2 cos(p2), r3y = 2l1 sin(p1) + l2 sin(p2),

and with mass matrix (4.23d) and constraint matrix

G(p, t) =




l1 cos(p1) −l2 cos(p2)
−(−2l1 sin(p1) + 2l1 sin(p1)) −(−l2 sin(p2) + l2 sin(p2))
−(2l1 cos(p1) − 2l1 cos(p1)) −(−l2 sin(p2) + l2 sin(p2))


 . (4.24d)

The generation of the equations of motion (4.24) with redundant constraints may
be obtained via use of tools for the automatic generation of the model equations,
see [112]. �

Example 4.1.16 Double four joint mechanism: Let us consider the mecha-
nism depicted in Figure 4.7. It consists of four rigid bodies which are linked together
by use of rotational joints. The lengths of the bodies are denoted by Li, i = 1, ..., 4
with L1 = L2 = L3, the masses by mi, i = 1, ..., 4, and the gravitational acceler-
ation by g. The position variables are given by the absolute orientation pi = ϕi,
i = 1, ..., 4. The masses of bodies 1, 2, 3 are placed at the end of the rods and the
mass of the fourth body is placed in its center. The position of the mass m4 is given
by (x4, y4) with respect to the reference frame.
Let us follow the approach of Lagrange and Euler to model this mechanical system.
The kinetic energy is given by

T (ϕ, ϕ̇) =
1

2
J1ϕ̇

2
1 +

1

2
J2ϕ̇

2
2 +

1

2
J3ϕ̇

2
3 +

1

2
m4(ẋ2

4 + ẏ2
4)

=
1

2
(J1 + m4L

2
1)ϕ̇2

1 +
1

2
J2ϕ̇

2
2 +

1

2
J3ϕ̇

2
3 +

1

8
L2

4m4ϕ̇
2
4

+
1

2
m4L1L4 cos(ϕ1 − ϕ4)ϕ̇1ϕ̇4

and the potential energy is given by

U(ϕ) = g(m1L1 sin(ϕ1) + m2L2 sin(ϕ2) + m3L3 sin(ϕ3)

+m4(L1 sin(ϕ1) +
L4

2
sin(ϕ4))).
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Figure 4.7: Topology of the double four joint mechanism

Furthermore, the motion of the mechanism is restricted such that the closed loop
joints, see Figure 4.7b, fit together. The constraints are given by

0 = g1(ϕ) = L1 cos(ϕ1) +
L4

2
cos(ϕ4) − L2 cos(ϕ2) − L4

2
,

0 = g2(ϕ) = L1 sin(ϕ1) +
L4

2
sin(ϕ4) − L2 sin(ϕ2),

0 = g3(ϕ) = L1 cos(ϕ1) + L4 cos(ϕ4) − L3 cos(ϕ3) − L4,

0 = g4(ϕ) = L1 sin(ϕ1) + L4 sin(ϕ4) − L3 sin(ϕ3).

With the Lagrange function (4.2) and the constraint forces Qc = −GT λ with

G =




−L1 sin(ϕ1) L2 sin(ϕ2) 0 −L4

2 sin(ϕ4)
L1 cos(ϕ1) −L2 cos(ϕ2) 0 L4

2 cos(ϕ4)
−L1 sin(ϕ1) 0 L3 sin(ϕ3) −L4 sin(ϕ4)
L1 cos(ϕ1) 0 −L3 cos(ϕ3) L4 cos(ϕ4)


 (4.25)

from the Euler-Lagrange equation (4.16) in form

d

dt

(
∂L

∂ϕ̇

)
− ∂L

∂ϕ
= −GT λ

we obtain with

0 =
d

dt

(
∂L

∂ṗ

)
− ∂L

∂p

=




(J1 + m4L
2
1) 0 0 + 1

2m4L1L4 cos(ϕ1 − ϕ4)
0 J2ϕ̈2 0 0
0 0 J3ϕ̈3 0

1
2m4L1L4 cos(ϕ1 − ϕ4) 0 0 1

4L2
4m4







ϕ̈1

ϕ̈2

ϕ̈3

ϕ̈4




+




1
2m4L1L4 sin(ϕ1 − ϕ4)ϕ̇2

4

0
0

− 1
2m4L1L4 sin(ϕ1 − ϕ4)ϕ̇2

1


+




g(m1 + m4)L1 cos(ϕ1)
gm2L2 cos(ϕ2)
gm3L3 cos(ϕ3)
gm4

L4

2 cos(ϕ4)



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the equations of motion together with the constraints in the form



(J1 + m4L
2
1) 0 0 + 1

2m4L1L4 cos(ϕ1 − ϕ4)
0 J2ϕ̈2 0 0
0 0 J3ϕ̈3 0

1
2m4L1L4 cos(ϕ1 − ϕ4) 0 0 1

4L2
4m4







ϕ̈1

ϕ̈2

ϕ̈3

ϕ̈4




=




−g(m1 + m4)L1 cos(ϕ1) − 1
2m4L1L4 sin(ϕ1 − ϕ4)ϕ̇2

4

−gm2L2 cos(ϕ2)
−gm3L3 cos(ϕ3)

−gm4
L4

2 cos(ϕ4) + 1
2m4L1L4 sin(ϕ1 − ϕ4)ϕ̇2

1


 (4.26a)

−




−L1 sin(ϕ1) L1 cos(ϕ1) −L1 sin(ϕ1) L1 cos(ϕ1)
L2 sin(ϕ2) −L2 cos(ϕ2) 0 0

0 0 L3 sin(ϕ3) −L3 cos(ϕ3)

−L4

2 sin(ϕ4) L4

2 cos(ϕ4) −L4 sin(ϕ4) L4 cos(ϕ4)







λ1

λ2

λ3

λ4


 ,

0 =




L1 cos(ϕ1) + L4

2 cos(ϕ4) − L2 cos(ϕ2)
L1 sin(ϕ1) + L4

2 sin(ϕ4) − L2 sin(ϕ2) − L4

2
L1 cos(ϕ1) + L4 cos(ϕ4) − L3 cos(ϕ3)
L1 sin(ϕ1) + L4 sin(ϕ4) − L3 sin(ϕ3) − L4


 . (4.26b)

At first glance one might assume that this mechanism is a forced mechanism. But
it is clear, that this mechanism reacts like a pendulum with one degree of freedom.
Therefore, the constraints must be redundant. A check of the rank of the constraint
matrix G (4.25) yields

rank(G) =

{
3 if p satisfies (4.26b),
4 else.

Since the rank of the constraint matrix G is three along every solution, this four
joint mechanism has one degree of freedom. �

Example 4.1.17 The skateboard: In this example we will consider a skate-
boarder who is rolling on a flat horizontal surface. The simplified topology is illus-
trated in Figure 4.8.
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Let us model the board such that the whole mass of the board is split into the masses
m1 and m2 located in the center of both axes whose positions are defined by (x1, y1)
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and (x2, y2), respectively. Furthermore, the orientation of the board is defined by
the angle ϕ which gives the direction of the motion and by the angle θ which defines
the bank of the board. It is assumed that the wheels of the skateboard do not lose
the contact to the surface, i.e., to the x-y-plane. The skateboard is constructed such
that both axes are pivoted such that the axes are changing their relative direction
denoted by the angle α with respect to the center axis of the board if the board
banks. This yields a self stabilizing effect which is strongly influenced by the relation
between α and θ, which is assumed to be

α = aθ

with the banking coefficient a.
Let us assume that the skateboarder is very unexperienced such that he is modeled
just as the mass m3 with position (x3, y3, z3) which is located at a distance of l3
perpendicular to the board as shown in the right of Figure 4.8.

If the position variables p =
[

x1 y1 x2 y2 ϕ x3 y3 z3 θ
]T

could move
freely in three dimensional space, the equations of motions would be given by

Mp̈ = f(p)

with

M =




m1

m1

m2

m2

J1

m3

m3

m3

J2




, f(p, ṗ) =




−d1ẋ1

−d1ẏ1

−d2ẋ2

−d2ẏ2

−dϕϕ̇
−d3ẋ3

−d3ẏ3

−m3g − d3ż3

−cθ − dθ θ̇




,

where the stiffness of the spring, the damping, and the gravitational acceleration
are given by c, d1, d2, d3, dϕ, dθ, and g, respectively. Furthermore, J1 and J2 denote
the inertia of the board with respect to the rotations ϕ and θ, respectively. But
obviously the positions are restricted in its choice by holonomic constraints 0 = g(p)
with

g1 = x2 + L1 cos(ϕ) − x1,

g2 = y2 + L1 sin(ϕ) − y1,

g3 = (x1 + x2)/2 + L3 cos(ϕ − π/2) sin(θ) − x3,

g4 = (y1 + y2)/2 + L3 sin(ϕ − π/2) sin(θ) − y3,

g5 = L3 cos(θ) − z3.

From the holonomic constraints we get the holonomic constraint matrix

G(p)=




−1 0 1 0 −L1 sin(ϕ) 0 0 0 0
0 −1 0 1 L1 cos(ϕ) 0 0 0 0

1/2 0 1/2 0 −L3 sin(ϕ⊥) sin(θ) −1 0 0 L3 cos(ϕ⊥) cos(θ)
0 1/2 0 1/2 L3 cos(ϕ⊥) sin(θ) 0 −1 0 L3 sin(ϕ⊥) cos(θ)
0 0 0 0 0 0 0 −1 −L3 sin(θ)




with ϕ⊥ = ϕ − π/2.
Furthermore, let us assume that the skateboard is not allowed to slide on the surface.
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In particular, this means that the the motion of the wheels is perpendicular to its
axes. This leads to the nonholonomic constraints 0 = h̆(p, ṗ) with

h̆1 =
[

x1 − x2 y1 − y2

] [ cos(π/2 − α) sin(π/2 − α)
− sin(π/2 − α) cos(π/2 − α)

] [
ẋ1

ẏ1

]
,

h̆2 =
[

x1 − x2 y1 − y2

] [ cos(π/2 + α) sin(π/2 + α)
− sin(π/2 + α) cos(π/2 + α)

] [
ẋ2

ẏ2

]
.

They have the form h̆(p, ṗ) = H(p)ṗ with the nonholonomic constraint matrix H(p)
with

HT (p) =




∆x cos(π/2 − α) − ∆y sin(π/2 − α) 0
∆x sin(π/2 − α) + ∆y cos(π/2 − α) 0

0 ∆x cos(π/2 + α) − ∆y sin(π/2 + α)
0 ∆x sin(π/2 + α) + ∆y cos(π/2 + α)
0 0
0 0
0 0
0 0
0 0




with ∆x = (x1 − x2) and ∆y = (y1 − y2). Hence, the equations of motion for the
skateboard have the form

ṗ = v, (4.27a)

Mv̇ = f(p, v) − GT (p)λ − HT (p)µ, (4.27b)

0 = g(p), (4.27c)

0 = H(p)v (4.27d)

with the holonomic constraint force GT λ and the nonholonomic constraint force
HT µ and their associated Lagrange multipliers λ and µ, respectively. �

4.1.4 Solution invariants

Many motions of mechanical systems have known solution invariants, i.e., relations
which are satisfied along any motion of the mechanical system, like the invariance of
the total energy, momentum, or impulse. Let us denote the me equations describing
such solution invariants by

0 = e(p, v, s, u). (4.28)

In particular, conservative multibody systems are energy conserving. In this case
the total energy is constant along every motion of the system. Let us consider
this fact. The equations of motion for constraint conservative systems are given by
the Euler-Lagrange equations (4.16) without applied forces, i.e., Qa(p, t) = 0. The
constraint forces are given by (4.15) and we get

d

dt

(
∂L

∂ṗ

)
− ∂L

∂p
= −KT (p, t)ζ (4.29)

which describes the solution behavior. From the Lagrange function (4.2) we get
(4.29) in the form

d

dt
T,ṗ − T,p + U,p = −KT ζ,
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which is satisfied by every solution of (4.29). Therefore, every solution satisfies

ṗT d

dt
T,ṗ − ṗT T,p + ṗT U,p = −ṗT KT ζ.

From (4.14) it follows that ṗT KT ζ = 0, and we get

ṗT d

dt
T,ṗ − ṗT T,p + ṗT U,p = 0

which is equivalent to

d

dt
(ṗT T,ṗ) − Ṫ + U̇ = 0. (4.30)

Furthermore, we have that the kinetic energy is a quadratic form in ṗ (see page
111), i.e.,

T (p, ṗ) = ṗT Θ(p)ṗ.

We obtain that

ṗT T,ṗ = ṗT ∂

∂ṗ
(ṗT Θ(p)ṗ) = ṗT (2Θ(p)ṗ) = 2T

and from (4.30) we get the conservation of the total energy in the form

Ṫ + U̇ = 0.

In the numerical integration of the equations of motion it is often desirable to con-
serve these solution invariants in an explicit way, because in general the numerical
solution does not satisfy the solution invariants of the equations of motion. In [65]
a method for maintaining solution invariants in the numerical solution of ODEs is
considered. The idea is to introduce a regularization term into the ODE such that
the solution manifold defined by the solution invariants becomes attracting. Fur-
thermore, the preservation of solution invariants of so-called Hamiltonian systems
is considered in [80, 151] in detail.
Let us discuss the conservation of the total energy in the example of the mathemat-
ical pendulum.

Example 4.1.18 The mathematical pendulum: The equations of motion of
the mathematical pendulum in descriptor form, see Figure 4.1, are developed in
Example 4.1.12.
Since the pendulum is only influenced by the gravitational field of forces, i.e., by
a conservative field of forces, and since it is not affected by other applied forces, it
represents a mechanical system which conserves the total energy. This total energy
is given by

E(p, v) =
1

2
m(v2

1 + v2
2) + mgp2 (4.31)

and is conserved such that

0 = E(p(t), v(t)) − E(p0, v0) = e(p, v) (4.32)

for t ∈ I and every solution of the equations of motion (4.20).
In Figure 4.9 the total energy in the numerical solution is illustrated. The numerical
solution is computed with RADAU5 [79, 82] for different formulations, see Section 4.4,
ODASSL [59, 60], MEXAX [118], and HEDOP5 [6]. Obviously, the numerical solutions
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Figure 4.9: Conservation of the total energy by numerical solutions

are far from being constant.
Let us consider the holonomic constraints (4.20c) and their derivatives, which re-
strict the motion of the pendulum in a nonredundant way, in comparison to the
conservation of the total energy (4.32). We have

0 = p2
1 + p2

2 − L2, (4.33a)

0 = 2p1v1 + 2p2v2, (4.33b)

0 = 2v2
1 + 2v2

2 − 2p2g − 4

m
(p2

1 + p2
2)λ1, (4.33c)

0 =
1

2
m(v2

1 + v2
2) + mgp2 − E0. (4.33d)

The constraints (4.33) are nonredundant for all p, v, and λ satisfying (4.33). In
particular, in addition to the holonomic constraints and their derivatives the energy
conservation restricts the solution as well. The dimension of the solution manifold
with the energy conservation is therefore smaller than without the energy conserva-
tion. As shown in Figure 4.9, the restriction according to the energy conservation
is in general not satisfied by the numerical solution of the equations of motion.
Therefore, it is necessary to insert these restrictions arising from energy conserva-
tion in the equations of motion. This yields a stabilization of the solution such that
all constraints, i.e., the holonomic constraints and their derivatives as well as the
energy conservation are satisfied even in the numerical method.
For further numerical results see Example 5.3.1 in Section 5.3. �

4.1.5 Classification of equations of motion

In [164] a classification of several forms of the equations of motion using modeling
levels is given. In this section we will shortly recall the modeling levels 0, 1, and
2, and we will give an extension of this classification by two additional modeling
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levels.

Modeling level 0 - Standard formulation: Based on the standard formulation,
given by the Lagrange equations of type one in descriptor form for holonomic sys-
tems (4.19) and by use of the velocity variables v(t) of dimension np the equations
of motion of modeling level 0 are given by

ṗ = v, (4.34a)

M(p)v̇ = f(p, v, t) − GT (p)λ, (4.34b)

0 = g(p). (4.34c)

In connection with initial values

p(t0) = p0, v(t0) = v0, λ(t0) = λ0 (4.34d)

we have the initial value problem for the equations of motion of modeling level 0 on
the domain I = [t0, tf ]. The np equations (4.34a) are called kinematical equations
of motion. They accomplish the order reduction of the equations of motion (4.5) or
(4.19) from order two to order one.
Furthermore, the equations of motion are affected by the nλ holonomic constraints
(4.34c). From the constraints g(p) = 0 one obtains the constraint matrix G(p) =
∂g
∂p (p) which column-wise contains the inaccessible directions of motion, see Figure
4.3.
The nv equations (4.34b) are called dynamical equations of motion. They follow
from the equilibrium of forces and momenta and include the mass matrix M(p),
the vector f(p, v, t) of the applied and gyroscopic forces, the constraint matrix
G(p) of the holonomic constraints, the associated constraint forces GT (p)λ, and the
Lagrange multipliers λ. The mass matrix M(p) is positive semi-definite, since the
kinetic energy is a positive semi-definite quadratic form, and it includes the inertia
properties of the multibody system.
If the mass matrix M(p) is nonsingular for all possible p, the equations of motion of
modeling level 0 (4.34) are in Hessenberg form (3.25) of order 3. See also Example
3.5.56.
The solution of the equations of motion (4.34) satisfies in addition to the holonomic
constraints (4.34c) its first and its second derivatives with respect to t, i.e.,

0 = G(p)v = gI(p, v), (4.35)

0 = G,p(p)[[v]]v + G(p)M−1(p)(f(p, v, t) − GT (p)λ) = gII(p, v, λ), (4.36)

such that every solution of (4.34) lies in the solution manifold

M = {(p, v, λ, t) ∈ R
2np+nλ × I : 0 = g, 0 = gI , 0 = gII}. (4.37)

The equations of motion (4.20) modeling the mathematical pendulum, see Example
4.1.12, belong to modeling level 0.
Often used forms for the equations of motion of modeling level 0 are the s-index-1
formulation of modeling level 0

ṗ = v, (4.38a)

M(p)v̇ = f(p, v, t) − GT (p)λ, (4.38b)

0 = gI(p, v), (4.38c)

using the first derivative (4.35) with respect to t instead of the holonomic constraints
(4.34c) and the s-index-0 formulation of modeling level 0

ṗ = v, (4.39a)

M(p)v̇ = f(p, v, t) − GT (p)λ, (4.39b)

0 = gII(p, v, λ), (4.39c)
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using the second derivative (4.36) with respect to t instead of the holonomic con-
straints (4.34c).
If the mass matrix M(p, u) is nonsingular for all possible p and u, also the equations
of motion of modeling level 1 (4.40) are in Hessenberg form (3.25) of order 3. See
also Example 3.5.56.

Modeling level 1 - Dynamical force elements, friction, and spatial motion:
If the investigated multibody system is influenced by friction effects, the friction is
modeled as part of the applied forces Qa such that f additionally depends on the
Lagrange multipliers λ. Furthermore, if the multibody system contains some con-
trols or dynamical force elements, like multibody systems with additional control
devices, hydraulic or electromagnetic components, dynamical force variables r of
size nr are introduced, which specify the state of such dynamical force elements as
in equation (4.40c), see [52].
In the case of spatial multibody systems, which are discussed in [52], an additional
feature has to be taken into account. If the equations of motion of second order,
like (4.5), (4.18), or (4.19), are reduced to first order, one has to take the relation
between the generalized velocity ṗ and the velocities v into account, see [86]. In
order to transform this second order system to an equivalent first order system we
introduce a velocity vector v and get the equations (4.40a) with a transformation
matrix Z(p) of size np × nv with np ≤ nv, that determines the (angular) velocities.
The transformation matrix Z(p) is not the identity Inp

if there are rotations in
three dimensional space and it can be determined by Poisson’s2 kinematical equa-
tions [1, 52]. In the two dimensional case we have Z(p) = Inp

, i.e., ṗ = v. Note
that the transformation matrix Z(p) mainly depends on the choice of the veloc-
ity vector. The use of Eulerian angles, Cardano3 angles, Tait4-Bryan angles, see
[1, 86, 147, 180], are common choices of the velocity vector. They yield np = nv

and a square transformation matrix Z(p). Unfortunately, in these cases the trans-
formation matrix Z(p) holds singularities, i.e., there exist some configurations given
by p such that the transformation matrix becomes singular. If it cannot be insured
in advance that the mechanical system does not pass through such configurations
a remedy is the use of quaternions , often also called Euler parameters , which lead
to a rectangular transformation matrix Z(p) with np < nv. For more details on
quaternions see [140, 147].
Summing up, the equations of motion of modeling level 1 have the form

ṗ = Z(p)v, (4.40a)

M(p, u)v̇ = f(p, v, r, λ, u) − ZT (p)GT (p, u)λ, (4.40b)

ṙ = b(p, v, r, λ, u), (4.40c)

0 = g(p, u). (4.40d)

Together with initial values

p(t0) = p0, v(t0) = v0, r(t0) = r0, λ(t0) = λ0 (4.40e)

we have the initial value problem for the equations of motion of modeling level 1 on
the domain I = [t0, tf ]. Note that here all functions and system matrices depend on
an additional variable u of size nu, which represents control variables that are given
as a function of t. In particular, if the investigated system is a nonautonomous

2Siméon Denis Poisson (born 1781 in Pithivier, France - died 1840 in Paris, France)
3Girolamo Cardano (born 1501 in Pavia, Duchy of Milan (now Italy) - died 1576 in Rome (now

Italy))
4Peter Guthrie Tait (born 1831 in Dalkeith, Midlothian, Scotland - died 1901 in Edinburgh,

Scotland)



130 CHAPTER 4. MULTIBODY SYSTEMS

system, then there exists an explicit dependency on t. If this is the case, t will be
modeled as a component of the control u, for example u1(t) = t.
Note in addition, that in contrast to [164] for reasons of symmetry, the dynamical
equations of motion are premultiplied by the transformation matrix Z(p), implicitly
contained in M and f .

Modeling level 2 - Contact, force laws and constraints: The equations

PSfrag replacements

body i

body j

pi

pj
sk

Figure 4.10: Contact point between two bodies

of motion up to modeling level 1 do not yet allow the consideration of additional
constraints, e.g., arising from contact problems. Therefore, the equations of motion
(4.40) have to be extended by contact variables s of size ns which have to be uniquely
determined by the contact conditions 0 = c(p, s, u) of dimension ns that describe
the relationship between these contact variables s, the position variables p, and the
control variables u, see Figure 4.10. Note that because of the assumed uniqueness
of s, the partial derivative c,s(p, s, u) is assumed to be nonsingular for all possibly
solutions, see the Implicit Function Theorem 2.3.1. Therefore, we have the contact
variables as function of the positions and the control variables, i.e., s = s(p, u).
Sometimes, force laws and constraints may be formulated more conveniently using
auxiliary variables w of size nw that are implicitly defined by the possibly nonlinear
equation (4.41d). Note again that because of the assumed uniqueness of w by
(4.41d), the partial derivative d,w is assumed to be nonsingular for all possible
solutions, see the Implicit Function Theorem 2.3.1.
The equations of motion of modeling level 2 have the form

ṗ = Z(p)v, (4.41a)

M(p, u)v̇ = f(p, v, r, w, s, λ, u) − ZT (p)GT (p, s, u)λ, (4.41b)

ṙ = b(p, v, r, w, s, λ, u), (4.41c)

0 = d(p, v, r, w, s, λ, u), (4.41d)

0 = c(p, s, u), (4.41e)

0 = g(p, s, u). (4.41f)

Together with initial values

p(t0) = p0, v(t0) = v0, r(t0) = r0, w(t0) = w0, s(t0) = s0, λ(t0) = λ0 (4.41g)

we have the initial value problem for the equations of motion of modeling level 2
on the domain I = [t0, tf ]. This formulation of modeling level 2 is proposed in [4].
Note that in contrast to [164] no additional acceleration variables a = v̇ are intro-
duced here. The introduction of additional acceleration variables a would yield the
equations of motion in the form of a semi-explicit DAE (3.24).
In contrast to the equations of motion of modeling level 0 or 1 the equations of
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motion of modeling level 2 (4.41) are no longer in Hessenberg form (3.25) because
of the occurrence of the auxiliary variables w and the contact variables s.
In the previous considerations concerning constraints we have found that the con-
straint forces, given by Qc in (4.15), do not perform any work on the mechanical
system. This is satisfied if the constraint forces are perpendicular to the manifold
given by the holonomic constraints (4.41f) with respect to the contact equations
(4.41e). Because of the dependency of the contact variables on the positions and
the control variables, we have holonomic constraints in the form 0 = g(p, s(p, u), u).
Therefore, we get a constraint matrix which contains columnwise the inaccessible
directions that are perpendicular to the manifold given by the holonomic constraints
(4.41f) with respect to the contact equations (4.41e).

Lemma 4.1.19 Let c,s(p, s, u) be nonsingular and have a bounded inverse c−1
,s (p, s, u)

for all (p, s, u) ∈ R
np×R

ns×R
nu satisfying (4.41e) and (4.41f). Then the constraint

matrix G in (4.41b) is given by

G(p, u) =

[
∂g

∂p
− ∂g

∂s

(
∂c

∂s

)−1
∂c

∂p

]
(p, u). (4.42)

Proof: From (4.41e) it follows from the Implicit Function Theorem 2.3.1 that
there exists a function ξ(p, u) such that 0 = c(p, ξ(p, u), u). Therefore, we have
s = s(p, u) = ξ(p, u), and for the total derivative of g(p, s(p, u), u) with respect to
p, it follows that

G(p, u) =
dg

dp
(p, s(p, u), u)

=

[
∂g

∂p
+

∂g

∂s

∂s

∂p

]
(p, s(p, u), u)

=

[
∂g

∂p
− ∂g

∂s

(
∂c

∂s

)−1
∂c

∂p

]
(p, u).

The Jacobian ∂s
∂p has been obtained from (4.41e) by implicit differentiation with

respect to p, see the Implicit Function Theorem 2.3.1. �

Modeling level 3 - Nonholonomic constraints: As discussed in Section 4.1.2
there exist some mechanical systems where the motion is not only restricted by
holonomic constraints but in addition by nonholonomic constraints, see Example
4.1.2 or Remark 4.1.5d. Therefore, we will introduce the equations of motion of
modeling level 3 containing nonholonomic constraints in addition to the features of
the equations of motion of modeling level 2 (4.41). Because of Remark 4.1.5c we
introduce nonholonomic constraints in quasi-linear form as in (4.12). We get the
equations of motion of modeling level 3 in the form

ṗ = Z(p)v, (4.43a)

M(p, u)v̇ = f(p, v, r, w, s, λ, µ, u) (4.43b)

−ZT (p)GT (p, s, u)λ − ZT (p)HT (p, s, u)µ,

ṙ = b(p, v, r, w, s, λ, µ, u), (4.43c)

0 = d(p, v, r, w, s, λ, µ, u), (4.43d)

0 = c(p, s, u), (4.43e)

0 = H(p, s, u)Z(p)v + h(p, s, u), (4.43f)

0 = g(p, s, u). (4.43g)
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Together with initial values

p(t0) = p0, v(t0) = v0, r(t0) = r0, w(t0) = w0,
s(t0) = s0, λ(t0) = λ0, µ(t0) = µ0

(4.43h)

we have the initial value problem for the equations of motion of modeling level
3 on the domain I = [t0, tf ]. Here, the explicit constraints are called holonomic
constraints on position level (4.43g) with respect to the contact point equation
(4.43e) and the nonholonomic constraints on velocity level (4.43f). If the linear
dependency of v is not important, then we denote the nonholonomic constraints on
velocity level by

h̆(p, v, s, u) = H(p, s, u)Z(p)v + h(p, s, u). (4.44)

Modeling level 4 - Redundant constraints: Sometimes the multibody system
under investigation contains a topological structure which is statically overdeter-
mined. For instance, the Example 4.1.16 offers no unique solution with respect
to the Lagrange multipliers, i.e., the joint forces are not uniquely determined. In
such cases the constraints are redundant, see Definition 2.3.10. Furthermore, by
the modeling of mechanical systems using certain connections via certain types of
joints or by use of certain modeling tools redundant constraints may be generated,
see [86, 112, 147, 181].
Therefore, the holonomic and nonholonomic constraints of the equations of motion
of modeling level 3 are allowed to be redundant. This yields the equations of mo-
tion of modeling level 4 which have the same structure as (4.43) but the holonomic
and nonholonomic constraints (4.43g) and (4.43f), respectively, are allowed to form
redundant sets of equations. The equations of motion (4.24) modeling the slider
crank, see Example 4.1.15, or the equations of motion (4.26) modeling the double
four joint mechanism with redundant constraints, see Example 4.1.16, belong to
modeling level 4 because of their redundant constraints.

With n = np + nv + nr + nw + ns + nλ + nµ and the state variables x defined by

x =
[

pT vT rT wT sT λT µT
]T

of size n, the equations of motions of
modeling level 4 (4.43) correspond to a quasi-linear DAE (3.23) with

E(x, u) =




Inp

M(p, u)
Inr

0
0

0
0




of size n × n and

k(x, u) =




Z(p)v
f(p, v, r, w, s, λ, µ, u) − ZT (p)GT (p, s, u)λ − ZT (p)HT (p, s, u)µ

b(p, v, r, w, s, λ, µ, u)
d(p, v, r, w, s, λ, µ, u)

c(p, s, u)
H(p, s, u)Z(p)v + h(p, s, u)

g(p, s, u)




of size n. In the present work we will concentrate on the equations of motion of
modeling level 3 and 4.
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Remark 4.1.20 In the case of nonredundant or uniformly redundant constraints
let us define

rG = rank(G(p, s, u)) and rH = rank(H(p, s, u)) (4.45)

for all (p, s, u) ∈ M (see Lemma 4.2.14 below). In the case of nonredundant con-
straints we have rG = nλ and rH = nµ. In particular, we have rG ≤ np and
rG + rH ≤ nv independent on the redundancies of the constraints. In the special
case that rG = np the motion of the mechanical system is completely determined
by the constraints. Such mechanical systems are called forced mechanical systems.
�

Remark 4.1.21 Because of high speed motions of mechanical systems, effects aris-
ing from deformation of structural elements sometimes cannot be neglected. Then,
the consideration of (partially) elastic structural components of mechanical systems
is necessary. In [165] mechanical systems with elastic bodies are investigated and it
is pointed out that after the space discretization of the elastic effects the equations
of motion for elastic multibody systems have the same structure as those of rigid
multibody systems. For this reason they can be treated in an analogous way as
discussed below. One should be aware though that the dimension of the systems
then is typically very large. �

4.2 Analysis of the equations of motion

In this section we will analyze the equations of motion of modeling level 4 (4.43) with
possibly redundant constraints (4.43g) and (4.43f). In particular, we will determine
the solution manifold, consistency conditions, the minimal reduced derivative array,
and we will consider the existence and uniqueness of a solution of the equations of
motion.
Before we start to investigate the regularity of the equations of motion let us antic-
ipate some assumptions. In the investigations below it will become clear why these
assumptions are justified and necessary. In the following let us use the abbreviations

Gλ = ZT GT − f,λ + f,wd−1
,w d,λ, (4.46)

Hµ = ZT HT − f,µ + f,wd−1
,w d,µ. (4.47)

Assumption 4.2.1 Consider the equations of motion of modeling level 4 (4.43).
Then the matrices

a) d,w, (4.48a)

b) c,s, (4.48b)

are assumed to be nonsingular and are assumed to have a bounded inverse for all
(p, v, r, w, s, λ, µ, u2) ∈ M (see Lemma 4.2.14 below) and furthermore, we assume
that

c) rank(




M Gλ Hµ

GZ 0 0
HZ 0 0


) = nv + rG + rH (4.48c)

for all (p, v, r, w, s, λ, µ, u2) ∈ M with rG and rH defined in (4.45). Furthermore, it
is assumed that

d ∈ C1(M, Rnw), c ∈ C1(M, Rns), h̆ ∈ C2(M, Rnµ), g ∈ C3(M, Rnλ).
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With respect to u2 see Notation 3.1.4.

Remark 4.2.2 Note that in the case of nonredundant constraints, i.e., in the case
of the equations of motion of modeling level 3 (4.43), the Assumption (4.48c) cor-
responds to the assumption that

c)




M Gλ Hµ

GZ 0 0
HZ 0 0


 is nonsingular (4.49)

and has a bounded inverse for all (p, v, r, w, s, λ, µ, u2) ∈ M (see Lemma 4.2.14
below). In particular, in the case of the equations of motion of modeling level 0
(4.34) this corresponds to the nonsingularity of the matrix

[
M GT

G 0

]
,

which is assumed in many references, e.g., [6, 23, 118, 164]. �

Remark 4.2.3 a) In the case of ns = 0 or nw = 0 it follows that ∂c/∂s ∈ R0,0

and ∂d/∂w ∈ R
0,0, respectively. Since the empty matrix represents the identity

mapping from R0 into R0 we interpret it as nonsingular.
b) Assumption (4.49) guarantees that the constraints are not redundant. �

In the following we will restrict our considerations to nonsingular mass matrices M .
If in addition to Assumption 4.2.1 we assume the nonsingularity of the mass matrix
M for all (p, u) ∈ M (see Lemma 4.2.14 below) we obtain from the contact equations
(4.43e), and the auxiliary equations (4.43d), via the Implicit Function Theorem
2.3.1, see (2.14), that

ṡ = −c−1
,s c,pṗ − c−1

,s c,uu̇

= −c−1
,s c,pZv − c−1

,s c,uu̇

and

ẇ = −d−1
,w (d,pṗ + d,v v̇ + d,r ṙ + d,sṡ + d,λλ̇ + d,µµ̇ + d,uu̇)

= −d−1
,w

(
d,pZv + d,vM−1(f − ZT GT λ − ZT HT µ) + d,rb

−d,sc
−1
,s (c,pZv + c,uu̇) + d,λλ̇ + d,µµ̇ + d,uu̇

)
.

Using the equations of motion of modeling level 4 (4.43), the first and second deriva-
tives with respect to t of the holonomic constraints (4.43g) are given by

0 = gI(p, v, s, u1) (4.50a)

= Gṗ + (g,u − g,sc
−1
,s c,u)u̇ (4.50b)

= GZv + (g,u − g,sc
−1
,s c,u)u̇ (4.50c)

and

0 = gII(p, v, r, w, s, λ, µ, u2) (4.51a)

= gI
,pṗ + gI

,v v̇ + gI
,sṡ + gI

,u1 u̇
1 (4.51b)

= (gI
,p − gI

,sc
−1
,s c,p)Zv + GZv̇ + gI

,u1 u̇
1 − gI

,sc
−1
,s c,uu̇ (4.51c)

= (gI
,p − gI

,sc
−1
,s c,p)Zv + GZM−1(f − ZT GT λ − ZT HT µ) (4.51d)

+gI
,u1 u̇

1 − gI
,sc

−1
,s c,uu̇.
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The first and second derivatives with respect to t of the holonomic constraints on
position level are called holonomic constraints on velocity level (4.50a) with respect
to the contact point equation (4.43e) and holonomic constraints on acceleration
level (4.51a), respectively. Differentiating the holonomic constraints (4.43g) three
times yields

0 = gIII(p, v, r, w, s, λ, µ, λ̇, µ̇, u3) (4.52a)

=
d3

dt3
g(p, s, u) (4.52b)

= gII
,pṗ + gII

,v v̇ + gII
,r ṙ + gII

,wẇ + gII
,sṡ + gII

,λλ̇ + gII
,µµ̇ + gII

,u2 u̇
2 (4.52c)

=
(
gII

,pZv + gII
,vM−1(f − ZT GT λ − ZT HT µ) + gII

,rb (4.52d)

−gII
,wd−1

,w (d,pZv + d,vM−1(f − ZT GT λ − ZT HT µ) + d,rb

+d,sc
−1
,s (c,pZv − c,uu̇) + d,uu̇)

−gII
,sc

−1
,s (c,pZv + c,uu̇) + gII

,u2 u̇
2
)

−GZM−1(ZT GT − f,λ + f,wd−1
,w d,λ)λ̇

−GZM−1(ZT HT − f,µ + f,wd−1
,w d,µ)µ̇

= g̃III(p, v, r, w, s, λ, µ, u3) − GZM−1Gλλ̇ − GZM−1Hµµ̇, (4.52e)

with Gλ and Hµ given in (4.46). The first derivative with respect to t of the
nonholonomic constraints (4.43f) is given by

0 = hI(p, v, r, w, s, λ, µ, u1) (4.53a)

=
d

dt
(H(p, s, u)Z(p)v + h(p, s, u)) (4.53b)

= h̆,pṗ + HZv̇ + h̆,sṡ + h̆,uu̇ (4.53c)

= (h̆,p − h̆,sc
−1
,s c,p)Zv + HZv̇ + (h̆,u − h̆,sc

−1
,s c,u)u̇ (4.53d)

= (h̆,p − h̆,sc
−1
,s c,p)Zv + HZM−1(f − ZT GT λ − ZT HT µ) (4.53e)

+(h̆,u − h̆,sc
−1
,s c,u)u̇,

which are called nonholonomic constraints on acceleration level (4.53a) with respect
to the contact point equation (4.43e). Furthermore, differentiating the nonholo-
nomic constraints (4.43f) twice yields

0 = hII(p, v, r, w, s, λ, µ, u, λ̇, µ̇, u2) (4.54a)

=
d2

dt2
(H(p, s, u)Z(p)v + h(p, s, u)) (4.54b)

= hI
,pṗ + hI

,v v̇ + hI
,rṙ + hI

,wẇ + hI
,sṡ + hI

,λλ̇ + hI
,µµ̇ + hI

,u1 u̇
1 (4.54c)

=
(
hI

,pZv + hI
,vM−1(f − ZT GT λ − ZT HT µ) + hI

,rb (4.54d)

−hI
,wd−1

,w (d,pZv + d,vM−1(f − ZT GT λ − ZT HT µ) + d,rb

+d,sc
−1
,s (c,pZv − c,uu̇) + d,uu̇)

−hI
,sc

−1
,s (c,pZv + c,uu̇) + hI

,u1 u̇
1
)

−HZM−1(ZT GT − f,λ + f,wd−1
,w d,λ)λ̇

−HZM−1(ZT HT − f,µ + f,wd−1
,w d,µ)µ̇

= h̃II(p, v, r, w, s, λ, µ, u2) − HZM−1Gλλ̇ − HZM−1Hµµ̇, (4.54e)

with Gλ and Hµ given in (4.46). The holonomic constraints on velocity level and
on acceleration level in form (4.50c) and (4.51d), respectively, as well as the non-
holonomic constraints on acceleration level in form (4.53e) will turn out to bee the
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hidden constraints of the equations of motion as we will see in Procedure 4.2.21,
below.
With a nonsingular mass matrix M we impose a more restrictive assumption as
follows.

Assumption 4.2.4 Consider the equations of motion of modeling level 4 (4.43).
Then the matrices

a) d,w, (4.55a)

b) c,s, (4.55b)

c) M (4.55c)

are assumed to be nonsingular and are assumed to have a bounded inverse for all
(p, v, r, w, s, λ, µ, u2) ∈ M (see Lemma 4.2.14 below) and furthermore, we assume
that

d) rank(

[
GZM−1Gλ GZM−1Hµ

HZM−1Gλ HZM−1Hµ

]
) = rG + rH (4.55d)

for all (p, v, r, w, s, λ, µ, u2) ∈ M. Furthermore, it is assumed that

d ∈ C1(M, Rnw), c ∈ C1(M, Rns), h̆ ∈ C2(M, Rnµ), g ∈ C3(M, Rnλ).

The difference between Assumption 4.2.1 and Assumption 4.2.4 lies only in the fact
that the mass matrix M is assumed to be nonsingular in the latter case.

Remark 4.2.5 a) The condition (4.55d) implies that the constraints are either
nonredundant or uniformly redundant on M.
b) Note that in the case of nonredundant constraints, i.e., in the case of the equa-
tions of motion of modeling level 3 (4.43), Assumption (4.55d) corresponds to the
assumption that the matrix

d)

[
GZM−1Gλ GZM−1Hµ

HZM−1Gλ HZM−1Hµ

]
is nonsingular (4.56)

and has a bounded inverse for all (p, v, r, w, s, λ, µ, u2) ∈ M (see Lemma 4.2.14
below).
In particular, in the case of the equations of motion of modeling level 0 (4.34) this
corresponds to the nonsingularity of the matrix GM−1GT . If M is positive definite,
then the nonsingularity of GM−1GT is equivalent to the full rank of the constraint
matrix, i.e., that G(p) has full row rank, see (4.34). This corresponds to the so-
called Grübler condition [59].
c) Note that in (4.56) we have

[
GZM−1Gλ GZM−1Hµ

HZM−1Gλ HZM−1Hµ

]
=

[
gII

,λ − gII
,wd−1

,w d,λ gII
,µ − gII

,wd−1
,w d,µ

hI
,λ − hI

,wd−1
,w d,λ hI

,µ − hI
,wd−1

,w d,µ

]
.

�

Remark 4.2.6 a) The Assumptions (4.55c), (4.55d) correspond to Assumption
(4.48c) in the case of a nonsingular mass matrix.
b) Note that if w does not occur, then Assumption (4.55d) reduces to

rank(

[
hI

,µ hI
,λ

gII
,µ gII

,λ

]
) = rG + rH

for all (p, v, r, w, s, λ, µ, u2) ∈ M. �
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Definition 4.2.7 (Quasi-regular equations of motion) Equations of motion
of modeling level 4 (4.43) satisfying Assumption 4.2.1 with noncontradictory con-
straints (4.43f) and (4.43g) are called quasi-regular equations of motion.

Definition 4.2.8 (Regular equations of motion) Equations of motion of mod-
eling level 4 (4.43) satisfying Assumptions (4.48a),(4.48b) and (4.49) are called
regular equations of motion.

Remark 4.2.9 Analogously to the definitions above, if the mass matrix is non-
singular for all possible p and u then the equations of motion of modeling level 4
(4.43) are quasi-regular if they satisfy Assumption 4.2.4, and they are regular if
they satisfy Assumptions (4.55a)-(4.55c) and (4.56) �

Here and in the following, we will often suppress the dependency on p, v, r, w, s,
λ, µ, and u in the notation unless we want to focus on some of those dependencies.

Lemma 4.2.10 Let the equations of motion of modeling level 3 (4.43) satisfy As-
sumptions (4.55a)-(4.55c) and (4.56). Then the matrices

G, H,

[
G
H

]
,

[
GZ
HZ

]
,
[

Gλ Hµ

]

have full rank for all (p, v, r, w, s, λ, µ, u2) ∈ M.

Proof: The matrix in (4.56) can be written as

[
G
H

]
ZM−1

[
Gλ Hµ

]
=

[
GZ
HZ

]
M−1

[
Gλ Hµ

]
.

From the nonsingularity of the matrix in (4.56) for all (p, v, r, w, s, λ, µ, u2) ∈ M, it
follows that the matrices

[
G
H

]
,

[
GZ
HZ

]
,
[

Gλ Hµ

]

have full rank. Furthermore, we have that
[

GT HT
]T

is of size nλ+nµ×nv with
nλ+nµ ≤ nv. Therefore, it follows in addition that G and H have full (row) rank. �

Lemma 4.2.11 Let the equations of motion of modeling level 4 (4.43) be quasi-
regular, i.e., they satisfy Assumptions 4.2.4 with noncontradictory constraints (4.43f)
and (4.43g). Then

rank(G) = rG, rank(H) = rH , rank(

[
G
H

]
) = rG + rH ,

rank(

[
GZ
HZ

]
) = rG + rH , rank(

[
Gλ Hµ

]
) = rG + rH

for all (p, v, r, w, s, λ, µ, u2) ∈ M.

Proof: The proof is analogous to the proof of Lemma 4.2.10. �
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Lemma 4.2.12 Let the equations of motion of modeling level 4 (4.43) satisfy As-
sumptions (4.55a)-(4.55c) with noncontradictory constraints (4.43f) and (4.43g).
Then the state (p(t), v(t), r(t), w(t), s(t), λ(t), µ(t)) ∈ M is a regular point if and
only if the matrices

G,

[
HZM−1Gλ HZM−1Hµ

GZM−1Gλ GZM−1Hµ

]
,

[
GZ
HZ

]
(4.57)

have full rank for all (p, v, r, w, s, λ, µ, u2) ∈ M.

Proof: The solution manifold is given by (4.65). The partial derivative of its
constraints with respect to w, λ, µ, v, s, and p, after some block row changes is
given by




d,w d,λ d,µ d,v d,s d,p

GZM−1f,w GZM−1(f,λ−ZT GT ) GZM−1(f,µ−ZT HT ) gII
v gII

,s gII
,p

HZM−1f,w HZM−1(f,λ−ZT GT ) HZM−1(f,µ−ZT HT ) hI
,v hI

,s hI
,p

0 0 0 HZ h̆,s h̆,p

0 0 0 GZ gI
,s gI

,p

0 0 0 0 c,s c,p

0 0 0 0 g,s g,p




.(4.58)

Note that the partial derivatives with respect to r are not relevant, because r is not
restricted by M. Block Gauß elimination leads to




d,w d,λ d,µ d,v d,s d,p

0 −GZM−1Gλ −GZM−1Hµ gII
v − BGd,v gII

,s − BGds gII
,p − BGd,p

0 −HZM−1Gλ −HZM−1Hµ hI
,v − BHd,v hI

,s − BHd,s hI
,p − BHd,p

0 0 0 HZ h̆,s h̆,p

0 0 0 GZ gI
,s gI

,p

0 0 0 0 c,s c,p

0 0 0 0 0 G




with BG = GZM−1f,wd−1
,w and BH = HZM−1f,wd−1

,w . From Assumptions (4.55a)
and (4.55b) we have the nonsingularity of d,w and c,s and we get the full rank
of the matrix (4.58) if and only if the matrices in (4.57) have full rank for all
(p, v, r, w, s, λ, µ, u2) ∈ M. By Definition 2.3.3 the assertion follows. �

Remark 4.2.13 For the equations of motion of modeling level 3 (4.43), i.e., in par-
ticular, with nonredundant constraints, we obtain a justification for Assumptions
(4.55a)-(4.55c) and (4.56) from Lemmata 4.2.10 and 4.2.12. Furthermore, for the
equations of motion of modeling level 4 (4.43), i.e., in particular, with possibly re-
dundant constraints, constant rank of the matrices in Assumption 4.2.4 are of great
importance for the numerical treatment. This gives a justification for Assumption
4.2.4 from Lemmata 4.2.11 and 4.2.12. �
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If the equations of motion of modeling level 4 (4.43) satisfy Assumption 4.2.4, then
we have that

∂

∂
[

sT pT
]T
[

c
g

]
=

[
c,s c,p

g,s g,p

]
(4.59)

has rank ns + rG, which follows by block Gauß elimination and Lemma 4.1.19. Fur-
thermore, the auxiliary variables w are uniquely determined by equation (4.43d) via
the Implicit Function Theorem 2.3.1. Therefore, the state variables x (in particular,
the position variables p, the auxiliary variables w, and the contact variables s) are
restricted to the (np+nv +nr+(nλ−rG)+nµ+nu)-dimensional position manifold

Mp = {(p, v, r, w, s, λ, µ, u) ∈ R
n × U : 0 = d(p, v, r, w, s, λ, µ, u),

0 = c(p, s, u),
0 = g(p, s, u)}

⊂ Rn × U.

(4.60)

Furthermore, with respect to the constraints on velocity level, we have that

∂

∂v

[
gI

HZv + h

]
=

[
GZ
HZ

]
(4.61)

has rank rG + rH . Therefore, the state variables x (in particular, the velocity
variables v) are restricted onto the (np+nv+nr+nw+ns+(nλ−rG)+(nµ−rH)+2nu)-
dimensional velocity manifold

Mv = {(p, v, r, w, s, λ, µ, u1) ∈ Rn × U1 :
0 = H(p, s, u)Z(p)v + h(p, s, u),
0 = gI(p, v, s, u1)}

⊂ Rn × U1.

(4.62)

Furthermore, it follows from Assumption 4.55d that

∂

∂[λT µT ]T

[
gII

hI

]
= −

[
GZM−1Gλ GZM−1Hµ

HZM−1Gλ HZM−1Hµ

]
(4.63)

has rank rG + rH . Therefore, the holonomic and nonholonomic constraints on
acceleration level form an additional (np+nv+nr+nw+ns+(nλ−rG)+(nµ−rH)+3nu)-
dimensional manifold. Let us call it the acceleration manifold

Ma = {(p, v, r, w, s, λ, µ, u2) ∈ Rn × U2

: 0 = hI(p, v, r, w, s, λ, µ, u1),
0 = gII(p, v, r, w, s, λ, µ, u2)}

⊂ Rn × U2.

(4.64)

In summary, the solution (p, v, r, w, s, λ, µ, u2) has to satisfy all constraints, i.e., all
constraints given in (4.60), (4.62), and (4.64). Therefore, we have

(p(t), v(t), r(t), w(t), s(t), λ(t), µ(t), u2(t))
!∈ (Mp × U

(1) × U
(2)) ∩ (Mv × U

(2)) ∩ Ma

for all t ∈ I. This allows to introduce the solution manifold.

Lemma 4.2.14 (Solution Manifold of the equations of motion) The soluti-
on manifold of the equations of motion of modeling level 4 (4.43) satisfying Assump-
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tion 4.2.4 is given by

M = {(p, v, r, w, s, λ, µ, u2) ∈ R
n × U

2 : 0 = d(p, v, r, w, s, λ, µ, u), (4.65)

0 = c(p, s, u),

0 = H(p, s, u)Z(p)v + h(p, s, u),

0 = g(p, s, u),

0 = hI(p, v, r, w, s, λ, µ, u1),

0 = gI(p, v, s, u1),

0 = gII(p, v, r, w, s, λ, µ, u2)}.

Proof: The proof follows from the considerations above or by applying Procedure
3.5.11 for the equations of motion, see (4.71), (4.74), and (4.77). �

Remark 4.2.15 Note that in particular, only p, v, w, s, λ, and µ are restricted by
constraints. The dynamical force variables r are unrestricted. �

Lemma 4.2.16 (Positional and motional degrees of freedom) Let the equa-
tions of motion of modeling level 4 (4.43) satisfy Assumption 4.2.4 with noncon-
tradictory constraints (4.43f) and (4.43g). Then the number of positional degrees
of freedom is nfp

= np − rG and the number of motional degrees of freedom is
nfv

= nv − rG − rH .

Proof: The freedom of choice in the position variables is nfp
= np − rG because

of the rank of the matrix (4.59). On the other hand the freedom of choice in the
velocity variables is nfv

= nv − rG − rH because of the rank of the matrix (4.61).
Then the assertion follows with Definition 4.1.7. �

Remark 4.2.17 In the case that rH = 0, we have nf = nfp
= nfv

degrees of
freedom of the multibody system. �

Suppose that the constraints, i.e., both holonomic and nonholonomic constraints,
are uniformly redundant and that g(p, s(p, u), u) ∈ C2(Mp, R

nλ) and H(p, s(p, u), u) ∈
C1(Mp, R

nµ,np). Then, from Lemma 2.1.4 we obtain the existence of nonsingular
transformation matrices

[
Sλ(p, u)
S̄λ(p, u)

]
∈ C1(Mp, R

nλ,nλ) and

[
Sµ(p, u)
S̄µ(p, u)

]
∈ C1(Mp, R

nµ,nµ) (4.66a)

with Sλ(p, u) ∈ C1(Mp, R
rG,nλ) and Sµ(p, u) ∈ C1(Mp, R

rH ,nµ) such that the matri-
ces

[
Sλ(p, u)
S̄λ(p, u)

]
G(p, s(p, u), u) =

[
G̃(p, s(p, u), u)

0

]
(4.66b)

and
[

Sµ(p, u)
S̄µ(p, u)

]
H(p, s(p, u), u) =

[
H̃(p, s(p, u), u)

0

]
. (4.66c)

Here, G̃(p, s(p, u), u) ∈ C1(Mp, R
rG,np) and H̃(p, s(p, u), u) ∈ C1(Mp, R

rH ,nv ) have
full (row) rank, i.e., the matrix function Sλ(p, u)g(p, s(p, u), u) and the matrix func-
tion Sµ(p, u)(H(p, s(p, u), u)Z(p)v + h(p, s(p, u), u)) are nonredundant with respect
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to p and v, respectively. These selectors Sλ and Sµ are (nonuniquely) defined by
the conditions

rank(Sλ(p, u)G(p, s(p, u), u)) = rG, Sλ(p, u) ∈ C1(Mp, R
rG,nλ), (4.67)

rank(Sµ(p, u)H(p, s(p, u), u)) = rH , Sµ(p, u) ∈ C1(Mp, R
rH ,nµ), (4.68)

with rG, rH defined in (4.45) and s(p, u) defined by (4.43e). Furthermore, the
following lemmata show that these selectors applied to the hidden constraints on
velocity level (4.50c) and applied to the hidden constraints on acceleration level
(4.51d) and (4.53e) yield nonredundant constraints.

Lemma 4.2.18 (Nonredundant selected constraints on velocity level) Let
the holonomic constraints on velocity level be given by (4.50c) with g ∈ C1(Mp, R

nλ)
using (4.43e). Let them be possibly redundant but noncontradictory. Then a selec-
tor Sλ(p, u) satisfying (4.67) applied to the holonomic constraints on velocity level
0 = gI(p, v, s, u1) yields the nonredundant selected holonomic constraints on velocity
level

0 = Sλ(p, u)gI(p, v, s, u1)

for the velocity variables v.

Proof: The selected constraints on velocity level, together with (4.50c), are given
by

Sλ(p, u)gI(p, v, s(p, u), u1) = Sλ(p, u)
(
GZv + (g,u − g,sc

−1
,s c,u)u̇

)
.

The total derivative with respect to v yields

d

dv
(Sλ(p, u)gI(p, v, s(p, u), u1)) = Sλ(p, u)G(p, s(p, u), u)Z(p).

Because of condition (4.67) and the full rank of the matrix Z(p) ∈ Rnp,nv , i.e.,
rank(Z(p)) = np, it follows that

rank
( d

dv
Sλ(p, u)gI(p, v, s(p, u), u1)

)
= rG

and the assertion follows from Definition 2.3.10. �

Lemma 4.2.19 (Nonredundant selected constraints on acceleration level)
Let the holonomic constraints on acceleration level be given by (4.51d) with g ∈
C2(Mp, R

nλ) using (4.43e). Furthermore, let the nonholonomic constraints on ac-

celeration level be given by (4.53e) with h̆ ∈ C1(Mp, R
nµ) with (4.43e). Then

selectors Sλ(p, u) and Sµ(p, u) satisfying (4.67) and (4.68), respectively, applied
to the constraints on acceleration level 0 = gII(p, v, r, w, s(p, u), λ, µ, u2) and 0 =
hI(p, v, r, w, s(p, u), λ, µ, u1) yield the nonredundant selected constraints on acceler-
ation level

0 =

[
Sλ(p, u)gII(p, v, r, w, s, λ, µ, u2)
Sµ(p, u)hI(p, v, r, w, s, λ, µ, u1)

]

for the Lagrange multipliers λ and µ.
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Proof: The selected holonomic constraints on acceleration level together with
(4.51d) are

Sλ(p, u)gII(p, v, r, w, s, λ, µ, u2)

= Sλ(p, u)
(
(gI

,p − gI
,sc

−1
,s c,p)Zv + GZM−1(f − ZT GT λ − ZT HT µ)

+gI
,u1 u̇

1 − gI
,sc

−1
,s c,uu̇

)
.

Furthermore, the selected nonholonomic constraints on acceleration level together
with (4.53e) are

Sµ(p, u)hI(p, v, r, w, s, λ, µ, u1)

= Sµ(p, u)
(
(h̆,p − h̆,sc

−1
,s c,p)Zv + HZM−1(f − ZT GT λ − ZT HT µ)

+(h̆,u − h̆,sc
−1
,s c,u)u̇

)
.

The total derivative of the acceleration constraints with respect to λ and µ yields

d

d
[

λT µT
]T
[

SλgII

SµhI

]
=

[
−SλGZM−1Gλ −SλGZM−1Hµ

−SµHZM−1Gλ −SµHZM−1Hµ

]
.

Because of condition (4.67), the regularity condition (4.55d) is given by

rank(




M Gλ Hµ

SλGZ 0 0
SµHZ 0 0


) = nv + rG + rH .

By use of block Gauß elimination it follows that

rank(




M Gλ Hµ

0 −SλGZM−1Gλ −SλGZM−1Hµ

0 −SµHZM−1Gλ −SµHZM−1Hµ


) = nv + rG + rH

and we get

rank(

[
−SλGZM−1Gλ −SλGZM−1Hµ

−SµHZM−1Gλ −SµHZM−1Hµ

]
) = rG + rH . (4.69)

Note that the matrix in (4.69) is of size rG + rH ×nλ + nµ with rG + rH ≤ nλ + nµ.
Then the assertion follows from Definition 2.3.10. �

Remark 4.2.20 Note that if there are redundant constraints, then the selected
constraints on acceleration level are not sufficient to determine the Lagrange mul-
tiplier uniquely. Therefore, the solution of the equations of motion with redundant
constraints is not unique. In Lemma 4.2.30 and in the Theorems 4.2.32 and 4.2.33
below we discuss the existence and the uniqueness of a solution of the equations of
motion of modeling level 4 (4.43). �

In preparation for further investigations associated with the equations of motion
let us apply Procedure 3.5.11 to the equations of motion of modeling level 4 (4.43)
with nonsingular mass matrix M , i.e., satisfying Assumption 4.2.4.

Procedure 4.2.21 Let the equations of motion of modeling level 4 (4.43) satisfy
Assumption 4.2.4. Furthermore, let the holonomic constraints (4.43g) be nonre-
dundant or uniformly redundant, noncontradictory, and three times continuously
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differentiable and let the nonholonomic constraints (4.43f) be nonredundant or uni-
formly redundant, noncontradictory, and twice continuously differentiable.
According to Procedure 3.5.11 it follows that

E0(x, u)ẋ = k0(x, u) (4.70)

with

E0(x, u) = E(x, u) =




Inp
0 0 0 0 0 0

0 M 0 0 0 0 0
0 0 Inr

0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




,

k0(x, u) = k(x, u) =




Zv
f − ZT GT λ − ZT HT µ

b
d
c

HZv + h
g




,

where x =
[

pT vT rT wT sT λT µT
]T

. Because of the assumed nonsin-
gularity of the mass matrix M(p, u), we have E(x, u) already in partitioned form.
Therefore, we have Z0 = I and we get

k̃0
1 =




Zv
f − ZT GT λ − ZT HT µ

b


 ,

k̃0
2 =




d
c

HZv + h
g


 . (4.71)

In particular, we obtain the algebraic part (4.71) which is nonredundant or uni-
formly redundant, noncontradictory, and continuously differentiable. Furthermore,
we obtain the manifold

M0 = M̃0 = {x ∈ R
n × U : 0 = d, 0 = c, 0 = h, 0 = g}. (4.72)

By differentiation of k̃0
2 with respect to t, we get the transformed DAE according

to (3.43) in the form

E1(x, u)ẋ = k1(x, u1), (4.73)
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with

E1(x, u) =




Inp
0 0 0 0 0 0

0 M 0 0 0 0 0
0 0 Inr

0 0 0 0
d,p d,v d,r d,w d,s d,λ d,µ

c,p 0 0 0 c,s 0 0

h̆,p HZ 0 0 h̆,s 0 0
g,p 0 0 0 g,s 0 0




,

k1(x, u1) =




Zv
f − ZT GT λ − ZT HT µ

b
−d,uu̇
−c,uu̇

−h̆,uu̇
−g,uu̇




,

and h̆ = HZv + h, see (4.44). By Assumption 4.2.4, we have the nonsingularity of
M , d,w, and c,s. Therefore, we get a transformation matrix

Z1(x, u) =




Inp
0 0 0 0 0 0

0 Inv
0 0 0 0 0

0 0 Inr
0 0 0 0

−d,p −d,vM−1 −d,r I 0 0 0
−c,p 0 0 0 I 0 0

h̆,p − h̆,sc
−1
,s c,p HZM−1 0 0 h̆,sc

−1
,s −I 0

G 0 0 0 g,sc
−1
,s 0 −I




.

Premultiplication with this transformation matrix yields the DAE in partitioned
form

Ẽ1(x, u)ẋ = k̃1(x, u1),

with

Ẽ1(x, u) =




Inp
0 0 0 0 0 0

0 M 0 0 0 0 0
0 0 Inr

0 0 0 0
0 0 0 d,w d,s d,λ d,µ

0 0 0 0 c,s 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




,

k̃1(x, u1) =




Zv
f − ZT GT λ − ZT HT µ

b
−d,pZv − d,vM−1(f − ZT GT λ − ZT HT µ) − d,rb − d,uu̇

−c,pZv − c,uu̇
hI

gI




.

With respect to the terms hI and gI compare with (4.50c) and (4.53e). In particular,
for the algebraic part we obtain

k̃1
2(x, u1) =

[
hI

gI

]
(4.74)
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which is nonredundant or uniformly redundant, noncontradictory, and continuously
differentiable. Furthermore, we get the manifold of level 1

M̃1 = {x ∈ R
n × U

1 : 0 = hI , 0 = gI}. (4.75)

and

M1 = (M0 × U
(1)) ∩ M̃1

= {x ∈ R
n × U

1 : 0 = d, 0 = c, 0 = h, 0 = g, 0 = hI , 0 = gI}.

Further differentiation of the algebraic part k̃1
2(x, u1) according to (3.43) gives

E2(x, u1)ẋ = k2(x, u2), (4.76)

with

E2(x, u1) =




Inp
0 0 0 0 0 0

0 M 0 0 0 0 0
0 0 Inr

0 0 0 0
0 0 0 d,w d,s d,λ d,µ

0 0 0 0 c,s 0 0
hI

,p hI
,v hI

,r hI
,w hI

,s hI
,λ hI

,µ

gI
,p gI

,v 0 0 gI
,s 0 0




,

k2(x, u2) =




Zv
f − ZT GT λ − ZT HT µ

b
−d,pZv − d,vM−1(f − ZT GT λ − ZT HT µ) − d,rb − d,uu̇

−c,pZv − c,uu̇
−hI

,uu̇
−gI

,uu̇




.

Premultiplication with the transformation matrix

Z2(x, u1) =




Inp
0 0 0 0 0 0

0 Inv
0 0 0 0 0

0 0 Inr
0 0 0 0

0 0 0 Inw
0 0 0

0 0 0 0 Ins
0 0

SµhI
,p SµhI

,vM−1 SµhI
,r SµhI

,wd−1
,w Z2

65 −Sµ 0
S̄µhI

,p S̄µhI
,vM−1 S̄µhI

,r S̄µhI
,wd−1

,w Z2
75 −S̄µ 0

gI
,p gI

,vM−1 0 0 gI
,sc

−1
,s 0 −I




,

with

Z2
65 = −Sµ(−hI

,s + hI
,wd−1

,w d,s)c−1
,s

Z2
75 = −S̄µ(−hI

,s + hI
,wd−1

,w d,s)c−1
,s

and with Sµ satisfying (4.68) and S̄µ chosen such that the matrix
[

ST
µ S̄T

µ

]T
is

nonsingular and such that S̄µH = 0, see (4.66c), yields

Ẽ2(x, u1)ẋ = k̃2(x, u2),
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with

Ẽ2(x, u1) =




Inp
0 0 0 0 0 0

0 M 0 0 0 0 0
0 0 Inr

0 0 0 0
0 0 0 d,w d,s d,λ d,µ

0 0 0 0 c,s 0 0
0 0 0 0 0 SµHZM−1Gλ SµHZM−1Hµ

0 0 0 0 0 S̄µHZM−1Gλ S̄µHZM−1Hµ

0 0 0 0 0 0 0




=




Inp
0 0 0 0 0 0

0 M 0 0 0 0 0
0 0 Inv

0 0 0 0
0 0 0 d,w d,s d,λ d,µ

0 0 0 0 c,s 0 0
0 0 0 0 0 SµHZM−1Gλ SµHZM−1Hµ

0 0 0 0 0 0 0
0 0 0 0 0 0 0




,

k̃2(x, u2) =




Zv
f − ZT GT λ − ZT HT µ

b
−d,pZv − d,vM−1(f − ZT GT λ − ZT HT µ) − d,rb − d,uu̇

−c,pZv − c,uu̇

Sµh̃II

S̄µh̃II

gII




,

where gII is given by (4.51d) and h̃II is given by (4.54e). From the fact that the

nonholonomic constraints are noncontradictory it follows that S̄µh̃II = 0 for all
(x, u2) ∈ M1 × U(2). Therefore, the second last block column is trivially satisfied

and no longer of interest, see Remark 3.5.12c. In principle, the condition S̄µh̃II = 0
corresponds to a consistency condition for the control variable u and its derivative
u̇.
On the other hand, the algebraic equation 0 = gII is not trivially satisfied for all
(x, u2) ∈ M1 × U(2) such that we have to continue with the procedure. Following

Remark 3.5.12c and keeping the trivially satisfied equation 0 = S̄µh̃II unconsidered
for the remainder of the procedure, we obtain the algebraic part

0 = k̃2
2(x, u2) =

[
gII

]
, (4.77)

which is nonredundant or uniformly redundant, noncontradictory, and continuously
differentiable. Furthermore, we get the manifold

M̃2 = {x ∈ R
n × U

2 : 0 = gII} (4.78)

and

M2 = (M1 × U
(2)) ∩ M̃2

= {x ∈ R
n × U

2 : 0 = d, 0 = c, 0 = h, 0 = g, 0 = hI , 0 = gI , 0 = gII}.

Further differentiation of the algebraic part k̃2
2(x, u2) according to (3.43) gives

E3(x, u2)ẋ = k3(x, u3) (4.79)
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with

E3(x, u2) =




Inp
0 0 0 0 0 0

0 M 0 0 0 0 0
0 0 Inr

0 0 0 0
0 0 0 d,w d,s d,λ d,µ

0 0 0 0 c,s 0 0
0 0 0 0 0 SµHZM−1Gλ SµHZM−1Hµ

0 0 0 0 0 0 0
gII

,p gII
,v gII

,r gII
,w gII

,s gII
,λ gII

,µ




,

k3(x, u3) =




Zv
f − ZT GT λ − ZT HT µ

b
−d,pZv − d,vM−1(f − ZT GT λ − ZT HT µ) − d,rb − d,uu̇

−c,pZv − c,uu̇

Sµh̃II

S̄µh̃II

−gII
,uu̇




.

Premultiplication with the transformation matrix

Z3(x, u2) =




Inp
0 0 0 0 0 0 0

0 Inv
0 0 0 0 0 0

0 0 Inr
0 0 0 0 0

0 0 0 Inw
0 0 0 0

0 0 0 0 Ins
0 0 0

0 0 0 0 0 IrH
0 0

SλgII
,p SλgII

,vM−1 SλgII
,r SλgII

,wd−1
,w Z3

75 0 0 −Sλ

0 0 0 0 0 0 Inµ−rH
0

S̄λgII
,p S̄λgII

,vM−1 S̄λgII
,r S̄λgII

,wd−1
,w Z3

95 0 0 −S̄λ




with

Z3
75 = Sλ(gII

,s − gII
,wd−1

,w d,s)c−1
,s

Z3
95 = S̄λ(gII

,s − gII
,wd−1

,w d,s)c−1
,s

and with Sλ satisfying (4.67) and S̄λ chosen such that the matrix
[

ST
λ S̄T

λ

]T
is

nonsingular and such that S̄λG = 0, see (4.66b), yields

Ẽ3(x, u2)ẋ = k̃3(x, u3),
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where

Ẽ3(x, u2) =




Inp
0 0 0 0 0 0

0 M 0 0 0 0 0
0 0 Inr

0 0 0 0
0 0 0 d,w d,s d,λ d,µ

0 0 0 0 c,s 0 0
0 0 0 0 0 SµHZM−1Gλ SµHZM−1Hµ

0 0 0 0 0 SλGZM−1Gλ SλGZM−1Hµ

0 0 0 0 0 0 0
0 0 0 0 0 S̄λGZM−1Gλ S̄λGZM−1Hµ




=




Inp
0 0 0 0 0 0

0 M 0 0 0 0 0
0 0 Inr

0 0 0 0
0 0 0 d,w d,s d,λ d,µ

0 0 0 0 c,s 0 0
0 0 0 0 0 SµHZM−1Gλ SµHZM−1Hµ

0 0 0 0 0 SλGZM−1Gλ SλGZM−1Hµ

0 0 0 0 0 0 0
0 0 0 0 0 0 0




,

k̃3(x, u3) =




Zv
f − ZT GT λ − ZT HT µ

b
−d,pZv − d,vM−1(f − ZT GT λ − ZT HT µ) − d,rb − d,uu̇

−c,pZv − c,uu̇

Sµh̃II

Sλg̃III

S̄µh̃II

S̄λg̃III




.

where g̃III is given by (4.52e). From the fact that the holonomic constraints are
noncontradictory it follows that S̄λg̃III = 0 for all (x, u3) ∈ M2 ×U(3). Therefore, in
addition to the second last column also the last block column is trivially satisfied
and we obtain the algebraic part

0 = k̃3
2(x, u3) =

[
S̄µh̃II

S̄λg̃III

]
,

which is satisfied for all (x, u3) = (p, v, r, w, s, λ, µ, u3) ∈ M2 × U(3) and the Proce-
dure 3.5.11 terminates with ν = 3. �

Lemma 4.2.22 (Maximal constraint level of equations of motion) Let the
equations of motion of modeling level 4 (4.43) satisfy Assumption 4.2.4. Then the
equations of motion of modeling level 4 (4.43) form a system of differential-algebraic
equations with maximal constraint level νc = 2.

Proof: The proof follows from Procedure 4.2.21 in view of Procedure 3.5.11 and
Definition 3.5.27. �

Remark 4.2.23 a) If the equations of motion of modeling level 3 satisfy Assump-
tions (4.48a),(4.48b) and (4.49) and if there appear holonomic constraints (4.43g),
then the equations of motion (4.43) form a system of DAEs of s-index νs = 2 and
d-index νd = 3. This follows from Procedure 4.2.21 with the assumption that the
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constraints are nonredundant. In the case of purely nonholonomic systems the equa-
tions of motion of modeling level 3 (4.43) satisfying Assumptions (4.48a),(4.48b) and
(4.49) form a system of DAEs of s-index νs = 1 and d-index νd = 2.
b) In the case of equations of motion of modeling level 4 (4.43) satisfying Assumption
4.2.4, with redundant but noncontradictory constraints (4.43f) and (4.43g) having
constant rank the d-index is not defined but the s-index is still νs = 2 if holo-
nomic constraints (4.43g) appear and the s-index is νs = 1 for purely nonholonomic
systems. �

Remark 4.2.24 Note that the manifolds M̃i, i=0,1,2, see (4.72), (4.75), and (4.78),
do not correspond to the manifolds Mp, Mv, and Ma, see (4.60), (4.62), and (4.64).
But the intersection of all manifolds corresponds to the solution manifold (4.65),
i.e.,

M = (M0 × U
(1) × U

(2)) ∩ (M1 × U
(2)) ∩ M2

= (Mp × U
(1) × U

(2)) ∩ (Mv × U
(2)) ∩ Ma.

�

Note that after every iteration step in Procedure 4.2.21, the maximal constraint
level is reduced by one. In particular, we have the original equations of motion
(4.43) or (4.70) with νc = 2. After the first iteration step we get (4.73) with
νc = 1 and after a further iteration step we get (4.76) with νc = 0. In particular,
(4.76) is already strangeness free. Furthermore, after the third iteration step of
Procedure 4.2.21 we get (4.79) with νc = −1, i.e., (4.79) is also strangeness-free. In
particular, in the case of nonredundant constraints, i.e., in the case of the equations
of motion of modeling level 3 (4.43), because of the nonsingularity of the leading
matrix E3(x, u2) in (4.79) the DAE (4.79) corresponds to an ODE in implicit form,
the underlying ODE, see Definition 3.5.23.

Lemma 4.2.25 (Complete minimal reduced derivative array of the EoM)
The complete minimal reduced derivative array of the equations of motion of mod-
eling level 4 (4.43) satisfying Assumption 4.2.4 is given by

0 = F̃2(p, v, r, w, s, λ, µ, ṗ, v̇, ṙ, u2) =




−ṗ + Zv
−Mv̇ + f − ZT GT λ − ZT HT µ

−ṙ + b
d
c

HZv + h
g
hI

gI

gII




, (4.80)

where the hidden constraints are defined in (4.50), (4.51), and (4.53).

Proof: We get the assertion by Definition 3.5.39 with (4.71), (4.74), and (4.77).
�

Because of the semi-implicit structure of the equations of motion of modeling level
4 (4.43) it is not necessary that the constraints of level 0 appear twice in the com-
plete minimal reduced derivative array, as precisely defined in Definition 3.5.39, see
Remark 3.5.40b.
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Remark 4.2.26 Let the equations of motion of modeling level 4 (4.43) satisfy
Assumption 4.2.4 and let the hidden constraints be defined in (4.50), (4.51), and
(4.53). Then, if the initial values p0, v0, r0, w0, s0, λ0, and µ0 are consistent, the
constraints

0 = d(p0, v0, r0, w0, s0, λ0, µ0, u0),

0 = c(p0, s0, u0),

0 = H(p0, s0, u0)Z(p0)v0 + h(p0, s0, u0),

0 = g(p0, s0, u0),

0 = hI(p0, v0, r0, w0, s0, λ0, µ0, u
1
0),

0 = gI(p0, v0, s0, u
1
0),

0 = gII(p0, v0, r0, w0, s0, λ0, µ0, u
2
0)

have to be satisfied with u0 = u(t0), u1
0 = u1(t0), and u2

0 = u2(t0). �

Besides the original equations of motion, several formulations resulting from differ-
entiation of the constraints are frequently used for analytical and numerical investi-
gations. These formulations do not correspond to the formulations (4.73) or (4.76)
obtained in Procedure 4.2.21. In the following we will introduce these formulations
for the equations of motion of modeling level 4 (4.43).

Strangeness-index-1 formulation: If we use the holonomic constraints on ve-
locity level (4.50a) instead of the holonomic constraints on position level (4.43g) in
the equations of motion of modeling level 4 (4.43), then we get the equations of
motion in the form

ṗ = Zv, (4.81a)

Mv̇ = f − ZT GT λ − ZT HT µ, (4.81b)

ṙ = b, (4.81c)

0 = d, (4.81d)

0 = c, (4.81e)

0 = HZv + h, (4.81f)

0 = gI . (4.81g)

Let us abbreviate the DAE (4.81) as EoM1 in order to highlight that it has maximal
constraint level one.

Remark 4.2.27 a) The associated EoM1 (4.81) is a semi-implicit DAE of s-index
one. Therefore, it is not strangeness-free. In the case of regular equations of motion
the d-index of the associated EoM1 (4.81) is two.
b) Note that the solution of the initial value problem for the associated EoM1

(4.81) with the initial values (4.43h) which are consistent to the original equations
of motion, see Lemma 4.2.26, is identical to the solution of the initial value problem
for the equations of motion of modeling level 4 (4.43), see Lemma 3.5.10.
c) In general, the solution set is larger than the solution set of the original equations
of motion, because of the loss of information of the holonomic constraints of position
level. In particular, the set of solutions is given by {(p, v, r, w, s, λ, µ, u2) ∈ Rn×U2 :
0 = d, 0 = c, 0 = HZv + h, 0 = gI , 0 = hI , 0 = gII}. �

Strangeness-index-0 formulation: If one substitutes the holonomic constraints
on position level (4.43g) in the equations of motion of modeling level 4 (4.43) by
the holonomic constraints on acceleration level (4.51a) on the one hand and the
nonholonomic constraints on velocity level (4.43f) by the nonholonomic constraints
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on acceleration level (4.53a) on the other hand then we get the equations of motion
in the form

ṗ = Zv, (4.82a)

Mv̇ = f − ZT GT λ − ZT HT µ, (4.82b)

ṙ = b, (4.82c)

0 = d, (4.82d)

0 = c, (4.82e)

0 = hI , (4.82f)

0 = gII . (4.82g)

Let us abbreviate the DAE (4.82) as EoM0 in order to highlight that it has maximal
constraint level zero.

Remark 4.2.28 a) The associated EoM0 (4.82) corresponds to a semi-implicit
DAE of s-index zero. Therefore, it is strangeness-free. In the case of regular equa-
tions of motion the d-index of the associated EoM0 (4.82) is one.
b) Note that the solution of the initial value problem for the associated EoM0 (4.82)
with the initial values (4.43h) which are consistent to the original equations of mo-
tion, see Lemma 4.2.26, is identical to the solution of the initial value problem for
the equations of motion of modeling level 4 (4.43), see Lemma 3.5.10.
c) In comparison to the s-index-1 formulation (4.81) the solution set again is in-
creased because of the loss of information of the holonomic constraints of position
level as well as the constraints on velocity level. In particular, the set of solutions
is given by {(p, v, r, w, s, λ, µ, u2) ∈ Rn × U2 : 0 = d, 0 = c, 0 = hI , 0 = gII}. �

Underlying differential equation: Replacing the auxiliary equations (4.43d)
by their derivative with respect to t

0 = dI =
d

dt
d, (4.83)

as well as the contact equations (4.43e) by their derivative with respect to t,

0 = cI =
d

dt
c, (4.84)

the holonomic constraints (4.43g) by (4.52e) and, finally, the nonholonomic con-
straints (4.43f) by (4.54e) in the equations of motion of modeling level 4 (4.43), we
get the underlying differential equation as defined in Definition 3.5.23, in the form

ṗ = Zv, (4.85a)

Mv̇ = f− ZT GT λ− ZT HT µ, (4.85b)

ṙ = b, (4.85c)

d,pṗ+ d,v v̇+ d,r ṙ+ d,wẇ+ d,sṡ+ d,λλ̇+ d,µµ̇ = −d,uu̇, (4.85d)

c,pṗ+ c,sṡ = −c,uu̇, (4.85e)

HZM−1Gλλ̇+ HZM−1Hµµ̇ = h̃II , (4.85f)

GZM−1Gλλ̇+ GZM−1Hµµ̇ = g̃III . (4.85g)

Remark 4.2.29 a) In the case of regular equations of motion the DAE (4.85)
corresponds to the uODE, see Definition 3.5.23, and therefore, it is strangeness-
free.
b) Note that the solution of the initial value problem for the associated underlying
differential equations (4.85) with the initial values (4.43h), which are consistent to
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the original equations of motion, see Lemma 4.2.26, is identical to the solution of
the initial value problem for the equations of motion of modeling level 4 (4.43), see
Lemma 3.5.10.
c) Because of the structure of the underlying differential equation, the solution is
not restricted to a manifold such that the solution set is the entire Rn. �

In [113] Lötstedt discussed the influence of redundant constraints on the existence
and the uniqueness of solutions for the equations of motion of modeling level 0
(4.34). It was shown that redundant constraints only influence the uniqueness
of the solution of the Lagrange multipliers. The constraint forces as well as the
solution p and v are unique. Let us generalize the obtained results to the equations
of motion of modeling level 4 (4.43). Furthermore, we will derive the existence and
(partial) uniqueness of the solution for the equations of motion of modeling level 4
in Theorem 4.2.32, below.

Lemma 4.2.30 (Partial uniqueness for redundant constraints) Let the equa-
tions of motion of modeling level 4 (4.43) satisfy Assumption 4.2.4 with noncon-
tradictory constraints (4.43f) and (4.43g) having constant rank on M. Further-
more, let the functions f(p, v, r, w, s, λ, µ, u) and d(p, v, r, w, s, λ, µ, u) be linear in
w, λ, and µ. Suppose that for given (p, v, r, s, u) satisfying (4.43e) the function
(w, λ, µ) 7→ b(p, v, r, w, s, λ, µ, u) is constant in (w, λ, µ) ∈ {Rnw ×Rnλ ×Rnµ : 0 =
d(p, v, r, w, s, λ, µ, u), 0 = gII(p, v, r, w, s, λ, µ, u2), 0 = hI(p, v, r, w, s, λ, µ, u1)}.
Then, for given (p, v, r, u2) the forces originating from the Lagrange multipliers λ
and µ, i.e., Gλλ+Hµµ, the generalized velocity ṗ, the acceleration v̇, as well as the
contact variables s and ṙ are uniquely defined.

Proof: We have that ṗ and s are uniquely determined by (4.43a) and (4.43e),
respectively, independent of the Lagrange multipliers λ and µ and independent of
the auxiliary variables w.
Furthermore, the functions f and d are linear in w, λ, and µ such that they have
the form

f(p, v, r, w, s, λ, µ, u) (4.86)

= f̃(p, v, r, s, u) + f̃w(p, v, r, s, u)w + f̃λ(p, v, r, s, u)λ + f̃µ(p, v, r, s, u)µ,

d(p, v, r, w, s, λ, µ, u) (4.87)

= d̃(p, v, r, s, u) + d̃w(p, v, r, s, u)w + d̃λ(p, v, r, s, u)λ + d̃µ(p, v, r, s, u)µ.

From (4.87), (4.43d), and from Assumption (4.55a), we obtain

w = −d̃−1
w (d̃ + d̃λλ + d̃µµ). (4.88)

From (4.43b) we get, with (4.86) and (4.88), that

Mv̇ = f̃ − f̃wd̃−1
w d̃ − Gλλ − Hµµ.

Together with the constraints on acceleration level (4.51c) and (4.53d), we get




M Gλ Hµ

GZ 0 0
HZ 0 0






v̇
λ
µ


 =




f̃ − f̃wd̃−1
w d̃

g̃II

h̃I


 (4.89)

with

g̃II = −(gI
,p − gI

,sc
−1
,s c,p)Zv − gI

,u1 u̇
1 + gI

,sc
−1
,s c,uu̇,

h̃I = −(h̆,p − h̆,sc
−1
,s c,p)Zv − (h̆,u − h̆,sc

−1
,s c,u)u̇.
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Note that the matrix and the right-hand side in (4.89) only depend on (p, v, r, s, u2).
Furthermore, the matrix in (4.89) is of size nv + nλ + nµ × nv + nλ + nµ and
has rank nv + rG + rH , see Assumption (4.48c). There exist orthogonal matri-
ces QG =

[
QG1 QG2

]
∈ Rnλ,nλ and QH =

[
QH1 QH2

]
∈ Rnµ,nµ such

that Gλ

[
QG1 QG2

]
=
[

G̃λ 0
]

and Hµ

[
QH1 QH2

]
=
[

H̃µ 0
]

with

rank(G̃λ) = rG and rank(H̃µ) = rH , respectively. With λ = QG1λ̃1 + QG2λ̃2 and
µ = QH1µ̃1 + QH2µ̃2, (4.89) is equivalent to




M G̃λ H̃µ

GZ 0 0
HZ 0 0






v̇

λ̃1

µ̃1


 =




f̃ − f̃wd̃−1
w d̃

g̃II

h̃I


 , (4.90)

where the matrix in (4.90) has full (column) rank. According to the General Implicit

Function Theorem 2.3.2 we get the uniqueness of λ̃1 and µ̃1 and, in particular, we
get the uniqueness of v̇ as solution of (4.90), while λ̃2 and µ̃2 can be freely chosen.
Furthermore, with respect to the forces resulting from the Lagrange multipliers it
follows that

Gλλ + Hµµ = GλQG1λ̃1 + HµQH1µ̃1,

which is uniquely determined because of the uniqueness of λ̃1 and µ̃1. The unique-
ness of ṙ follows directly from the assumption that the associated right-hand side b
is a constant function for all

(w, λ, µ) ∈ {Rnw × R
nλ × R

nµ : 0 = d(p, v, r, w, s, λ, µ, u),

0 = gII(p, v, r, w, s, λ, µ, u2),

0 = hI(p, v, r, w, s, λ, µ, u1)},

i.e., it is invariant under the nonuniqueness of the Lagrange multipliers λ and µ and
of the auxiliary variable w. �

Remark 4.2.31 a) If d does not depend on λ or µ, then the auxiliary variables w
are also uniquely determined.
b) If f and d do not depend on λ or µ, the matrix Gλ corresponds to ZT GT and
the matrix Hµ corresponds to ZT HT and we get the uniqueness of the constraint
forces given by ZT GT λ + ZT HT µ. �

In the following theorems we will discuss the existence and uniqueness of the solution
of the equations of motion of modeling level 3 (4.43) as well as of modeling level 4
(4.43).

Theorem 4.2.32 (Existence and partial uniqueness of the solution) Let
the equations of motion of modeling level 4 (4.43) satisfy the Assumption 4.2.4
with noncontradictory constraints (4.43f) and (4.43g) having constant rank on M

and let the initial values (4.43h) be consistent. Furthermore, let the functions
f(p, v, r, w, s, λ, µ, u) and d(p, v, r, w, s, λ, µ, u) be of the form (4.86) and (4.87),

respectively, i.e., linear in w, λ, and µ, and let the functions f̃ , f̃w, d̃, d̃−1
w , b, Z,

M−1, and Gλλ + Hµµ be bounded and continuous on M and furthermore, Lipschitz
continuous on M with respect to (p, v, r). Suppose that for given (p, v, r, s, u) satis-
fying (4.43e) the function (w, λ, µ) 7→ b(p, v, r, w, s, λ, µ, u) is constant in (w, λ, µ) ∈
{Rnw × Rnλ × Rnµ : 0 = d(p, v, r, w, s, λ, µ, u), 0 = gII(p, v, r, w, s, λ, µ, u2), 0 =
hI(p, v, r, w, s, λ, µ, u1)}.
Then there exists a unique solution (p(t), v(t), r(t), s(t)) of the initial value problem
of modeling level 4 (4.43).
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Proof: From Lemma 3.5.10 we obtain that the solutions of the initial value
problem for the equations of motion of modeling level 4 (4.43) and of the initial value
problem for the EoM0 of modeling level 4 (4.82) are identical for the same initial
values. Therefore, the proof reduces to show that the solution (p(t), v(t), r(t), s(t))
of (4.82) exists and is unique.
Because of the Assumption (4.55b), from the Implicit Function Theorem 2.3.1 we
get the unique solvability of (4.82e) with respect to s = s(p, u) as functions of p
and u. Furthermore, we get w from (4.88) and from Lemma 4.2.30 we get the
uniqueness of the forces arising from the Lagrange multipliers, i.e., the uniqueness
of Gλλ + Hµµ. Therefore, with Assumption (4.55c) the equations (4.82a)-(4.82c)
correspond to the ODE




ṗ
v̇
ṙ


 =




Zv

M−1(f̃ − f̃wd̃−1
w d̃ − Gλλ − Hµµ)

b


 . (4.91)

From Lemma 4.2.30 we have that the right-hand side of (4.91) is uniquely deter-
mined by p, v, r, and u with s satisfying (4.82e), even if the Lagrange multipliers λ,
µ or the auxiliary variables w are not unique with (w, λ, µ) ∈ {Rnw × Rnλ × Rnµ :
0 = d(p, v, r, w, s, λ, µ, u), 0 = gII(p, v, r, w, s, λ, µ, u2), 0 = hI(p, v, r, w, s, λ, µ, u1)}.

Because of the assumed boundedness, continuity, and Lipschitz continuity of f̃ , f̃w,
d̃, d̃−1

w , b, Z, M−1, and Gλλ + Hµµ, the conditions of the Theorem of Picard and
Lindelöf, see Theorem 3.1.1, are satisfied and the existence of a unique solution for
p, v, and r then follows. Furthermore, from Assumption (4.55b), and from the Im-
plicit Function Theorem 2.3.1 we get the unique solution for the contact variables
s from (4.82e). �

Theorem 4.2.33 (Existence and uniqueness of the solution of EoM) Let
the equations of motion of modeling level 3 (4.43) be regular, i.e., satisfy Assump-
tions (4.55a)-(4.55c) and (4.56). Let the initial values (4.43h) be consistent. Fur-

thermore, let the functions f̃ and b̃ be defined by

f̃(p, v, r, u2) = f(p, v, r, w̃, s̃, λ̃, µ̃, u) − ZT (p)GT (p, s̃, u)λ̃ − ZT (p)HT (p, s̃, u)µ̃,

b̃(p, v, r, u2) = b(p, v, r, w̃, s̃, λ̃, µ̃, u),

where w̃ = w(p, v, r, u2), s̃ = s(p, u), λ̃ = λ(p, v, r, u2), µ̃ = µ(p, v, r, u2) are deter-

mined from (4.82d)-(4.82g). Assume further that f̃ and b̃ as well as M−1 and Z
are continuous and bounded on M and Lipschitz continuous with respect to (p, v, r)
on M.
Then there exists a unique solution (p(t), v(t), r(t), w(t), s(t), λ(t), µ(t)) of the initial
value problem of modeling level 3 (4.43).

Proof: From Lemma 3.5.10 we get that the solutions of the initial value problem
for the equations of motion of modeling level 3 (4.43) and of the initial value problem
for the EoM0 of modeling level 3 (4.82) for the same initial values are identical.
Therefore, the proof reduces to show that the solution of (4.82) exists and is unique.
Because of the Assumptions (4.55a), (4.55b), and (4.56) from the Implicit Function
Theorem 2.3.1 we get the unique solvability of (4.82d)-(4.82g) with respect to w, s,
λ, and µ as functions of p, v, r, and u2. Therefore, with Assumption (4.55c) the
equations (4.82a)-(4.82c) correspond to the ODE




ṗ
v̇
ṙ


 =




Z(p)v

M−1(p, u)f̃(p, v, r, u2)

b̃(p, v, r, u2)


 .
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Because of the assumed boundedness, continuity, and Lipschitz continuity of f̃ , b̃,
Z, and M−1 the conditions of the Theorem of Picard and Lindelöf, see Theorem
3.1.1, are satisfied and the existence of a unique solution for p, v, and r then follows.
�

4.3 Linear equations of motion and linearization

In this section we will consider linear equations of motion and linearized equations
of motion of modeling level 4 (4.43) in function space along a reference trajec-
tory p̄(t), v̄(t), r̄(t), w̄(t), s̄(t), λ̄(t), and µ̄(t), see also Section 3.3. The refer-
ence trajectory does not have to be a solution of the equations of motion, see
Remarks 3.3.1 and 3.3.3. The linearization of the equations of motion of mod-
eling level 2 (4.41) is discussed in detail in [9]. With the reference trajectory

x̄ =
[

p̄T v̄T r̄T w̄T s̄T λ̄T µ̄T
]T

we get

p = p̄ + p̂, v = v̄ + v̂, r = r̄ + r̂, w = w̄ + ŵ,

s = s̄ + ŝ, λ = λ̄ + λ̂, µ = µ̄ + µ̂.
(4.92)

Following the considerations of Section 3.3 we get the linearization of the equations
of motion of modeling level 4 (4.43) in the form of (3.3) with (3.17) as

E(t)ẋ = A(t)x + k(t), (4.93)

where

E(t) =




Inp
0 0 0 0 0 0

0 M̄ 0 0 0 0 0
0 0 Inr

0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




, k(t) =




− ˙̄p + Z̄v̄
−M̄ ˙̄v + f̄ − Z̄T ḠT λ̄ − Z̄T H̄T µ̄

− ˙̄r + b̄
d̄
c̄

H̄Z̄v̄ + h̄
ḡ




,

A(t) =




(Z̄v̄),p Z̄ 0 0 0 0 0
Āpp f̄,v f̄,r f̄,w Āps Āpλ Āpµ

b̄,p b̄,v b̄,r b̄,w b̄,s b̄,λ b̄,µ

d̄,p d̄,v d̄,r d̄,w d̄,s d̄,λ d̄,µ

c̄,p 0 0 0 c̄,s 0 0
Āµp H̄Z̄ 0 0 Āµs 0 0
ḡ,p 0 0 0 ḡ,s 0 0




, x(t) =




p̂
v̂
r̂
ŵ
ŝ

λ̂
µ̂




,

with

Āpp = −(M̄ ˙̄v),p + f̄,p − (Z̄T ḠT λ̄),p − (Z̄T H̄T µ̄),p, Āpµ = f̄,µ − Z̄T H̄T ,
Āps = f̄,s − Z̄T (ḠT λ̄),s − (Z̄T H̄T µ̄),s, Āµp = (H̄Z̄v̄ + h̄),p,
Āpλ = f̄,λ − Z̄T ḠT , Āµs = (H̄Z̄v̄ + h̄),s.

The entries of the matrix functions are evaluated at the reference functions p̄(t),
v̄(t), r̄(t), w̄(t), s̄(t), λ̄(t), and µ̄(t), respectively. This is denoted by the bar on top
of the matrix functions. Recall that the control u is assumed to be given, it remains
as a nonlinear function in the matrix functions E, A and the vector function k,
which therefore, only depend on t.
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Example 4.3.1 The mathematical pendulum: In Example 4.1.12 we derived
the equations of motion (4.20) describing the dynamical behavior of the mathemat-
ical pendulum. The linearization is given by




1 0 0 0 0
0 1 0 0 0
0 0 m 0 0
0 0 0 m 0
0 0 0 0 0







˙̂p1

˙̂p2
˙̂v1

˙̂v2

˙̂
λ1




=




0 0 1 0 0
0 0 0 1 0

−2λ̄1 0 0 0 −2p̄1

0 −2λ̄1 0 0 −2p̄2

2p̄1 2p̄2 0 0 0







p̂1

p̂2

v̂1

v̂2

λ̂1




+




− ˙̄p1 + v̄1

− ˙̄p2 + v̄2

−m ˙̄v1 − 2p̄1λ̄
−m ˙̄v2 − mg − 2p̄2λ̄

p̄2
1 + p̄2

2 − L2




.

Note that by choosing a reference trajectory with
[

p̄1 p̄2

]T
going through zero,

we get a jump of the rank of the constraint matrix G from 1 to 0, which does not
occur for any solution satisfying the constraint (4.20c).

Furthermore, if
[

p̄1 p̄2

]T
= 0, then the last column of the matrix A(t) becomes

zero. Therefore, the Lagrange multiplier is not uniquely defined. See Remark 3.3.3.
The d-index as well as the s-index are not defined if p̄(t) goes through zero. �

4.4 Solution submanifold drift and drift stability

In Section 3.2 and, in particular, in Section 3.5 it was discussed that DAEs of
higher index contain hidden constraints. As mentioned above, these are algebraic
constraints which do not appear explicitly in the original form of the system. Re-
garding quasi-linear DAEs, in Procedure 3.5.11 it is shown that by differentiating
the differential-algebraic equations l times with respect to t, with l = 1, ..., νc, and
by applying algebraic transformations one can determine the hidden constraints of
level l. In the case of equations of motion of modeling level 4 we have found in
Lemma 4.2.22 that they have maximal constraint level νc = 2.
Let us consider the equations of motion of modeling level 4 (4.43) satisfying As-
sumption 4.2.4 with noncontradictory constraints (4.43f) and (4.43g).

Definition 4.4.1 (Drift function) For the equations of motion of modeling level
4 (4.43), the holonomic drift function γ(t) and the nonholonomic drift function
η(t) are defined as the residual depending on t of the holonomic constraints on
position level (4.43g) and of the nonholonomic constraints on velocity level (4.43f),
respectively, i.e.,

γ(t) = g(p(t), s(t), u(t))

and

η(t) = H(p(t), s(t), u(t))Z(p(t))v(t) + h(p(t), s(t), u(t))

along a solution x(t) =
[

pT (t) vT (t) rT (t) wT (t) sT (t) λT (t) µT (t)
]T

and with given u(t).
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In particular, from Definition 4.4.1 it follows that

γ(t) = g(p(t), s(t), u(t)), (4.94a)

γ̇(t) = gI(p(t), v(t), s(t), u1(t)), (4.94b)

γ̈(t) = gII(p(t), v(t), r(t), w(t), s(t), λ(t), µ(t), u2(t)), (4.94c)

γ̇̇̇(t) = gIII(p(t), v(t), r(t), w(t), s(t), λ(t), µ(t), λ̇(t), µ̇(t), u3(t)), (4.94d)

η(t) = h̆(p(t), v(t), s(t), u(t)), (4.94e)

η̇(t) = hI(p(t), v(t), r(t), w(t), s(t), λ(t), µ(t), u1(t)), (4.94f)

η̈(t) = hII(p(t), v(t), r(t), w(t), s(t), λ(t), µ(t), λ̇(t), µ̇(t), u2(t)), (4.94g)

and with respect to the initial values we get

γ(t0) = g(p0, s0, u0), (4.95a)

γ̇(t0) = gI(p0, v0, s0, u
1
0), (4.95b)

γ̈(t0) = gII(p0, v0, r0, w0, s0, λ0, µ0, u
2
0), (4.95c)

η(t0) = h̆(p0, v0, s0, u0), (4.95d)

η̇(t0) = hI(p0, v0, r0, w0, s0, λ0, µ0, u
1
0). (4.95e)

Let us define the drift differential equations as follows.

Definition 4.4.2 (Drift differential equation) The holonomic drift differential
equation corresponding to the equations of motion of modeling level 4 (4.43) is
defined by

c3 γ̇̇̇(t) + c2γ̈(t) + c1γ̇(t) + c0γ(t) = ε(t),

where ci ∈ C for i = 0, ..., 3 and the nonholonomic drift differential equation corre-
sponding to the equations of motion of modeling level 4 (4.43) is defined by

d2η̈(t) + d1η̇(t) + d0η(t) = δ(t),

where di ∈ C for i = 0, ..., 2 with (4.94).

In the following, we consider different formulations of the equations of motion and
analyze when the holonomic and nonholonomic constraints on position, velocity,
and acceleration level of the original equations of motion, which describe the solu-
tion manifold (4.65), are satisfied, see also [170].

Let us start the considerations with the underlying differential equation (4.85). We
get the drift differential equations which correspond to (4.52e) and (4.54e) in the
form γ̇̇̇ (t) = 0 and η̈(t) = 0, respectively. Since in the numerical integration the
solutions are influenced by round-off errors or stopping errors denoted by ε(t) and
δ(t) when applying an iterative method to solve the nonlinear equations, perturba-
tions influence the equations of the underlying differential equations. Assume that
the errors ε(t) and δ(t) do not vanish and there exist Taylor expansions

ε(t) = ε0 + ε1∆t +

∞∑

i=2

1

i!
εi∆ti and δ(t) = δ0 + δ1∆t +

∞∑

i=2

1

i!
δi∆ti

with ∆t = (t − t0). This leads to perturbations of (4.52e) and (4.54e) in the form

γ̇̇̇(t) = ε0 + ε1∆t +
∞∑

i=2

1

i!
εi∆ti and η̈(t) = δ0 + δ1∆t +

∞∑

i=2

1

i!
δi∆ti. (4.96)
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Then we get the solution of the perturbed drift differential equations (4.96) as

γ(t) = γ(t0) + γ̇(t0)∆t +
1

2
γ̈(t0)∆t2 +

1

6
ε0∆t3 +

1

24
ε1∆t4 + ...,

η(t) = η(t0) + η̇(t0)∆t +
1

2
δ0∆t2 +

1

6
δ1∆t3 + ...

with (4.95) and ∆t = t− t0. Since γ(t) and η(t) represent the residuals of the right-

hand sides g(p(t), s(t), u(t)) and h̆(p(t), v(t), s(t), u(t)) of the holonomic constraints
on position level and of the nonholonomic constraints on velocity level, respectively,
the best what we can expect is that the residual of the holonomic constraints on
position level is of order O(t3) (if not worse) and of the nonholonomic constraints
on velocity level is of order O(t2) (if not worse) for t → ∞. This behavior of the
numerical solution is known as drift-off phenomenon (see also Section 3.4.1) and
describes the behavior of the numerical solution which drifts away from the solu-
tion manifold defined be the holonomic and nonholonomic constraints on position,
velocity, and acceleration level.

Remark 4.4.3 a) The underlying differential equations (4.85) have a solution for
every set of initial values p0, v0, r0, w0, s0, λ0, and µ0. Besides numerical aspects of
the solution of ODEs, no problems arise from initial values or computed solutions
at intermediate steps.
b) If the initial values are consistent with the equations of motion (4.43), see Lemma
4.2.26, then the analytical solution satisfies all constraints and, consequently, it lies
on the solution manifold.
c) If the initial values are not consistent with the equations of motion (4.43), then
even the analytical solution does not satisfy the constraints and therefore, it does
not lie on the solution manifold. In particular, the analytical solution is deviating
from the position manifold Mp, such that the residual of the constraints on position
level has quadratic behavior in t. Likewise, the analytical solution is deviating from
the velocity manifold Mv with a residual of constraints on velocity level behaving
linearly in t. The residual of the acceleration constraints is constant. �

If one uses the s-index-0 formulation EoM0 (4.82) of the equations of motion as a
basis for the numerical integration, we get the perturbed drift differential equations

γ̈(t) = ε0 + ε1∆t +

∞∑

i=2

1

i!
εi∆ti and η̇(t) = δ0 + δ1∆t +

∞∑

i=2

1

i!
δi∆ti. (4.97)

Therefore, we get the solutions as

γ(t) = γ(t0) + γ̇(t0)∆t +
1

2
ε0∆t2 +

1

6
ε1∆t3 + ...,

η(t) = η(t0) + δ0∆t +
1

2
δ0∆t2 + ...

with (4.95) and ∆t = t − t0. Therefore, the best what we can expect is that the
residual of the holonomic constraints on position level is of order O(t2) (if not worse)
and of the nonholonomic constraints on velocity level is of order O(t1) (if not worse)
for t → ∞.

Remark 4.4.4 a) If the initial values w0, s0, λ0, and µ0 are not consistent, then
the strangeness-free form of the equations of motion EoM0 (4.82) has no solution.
b) Furthermore, if the initial values are consistent with the equations of motion
(4.43), see Lemma 4.2.26, then the holonomic constraints on acceleration level
(4.51a) and the nonholonomic constraints on acceleration level (4.53a) are enforced
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by using these constraints explicitly in EoM0. Therefore, if the initial values are
consistent, then the analytical solution according to EoM0 satisfies all constraints
and, therefore, lies on the solution manifold.
c) If the initial values w0, s0, λ0 and µ0 are consistent and p0 and v0 are not consis-
tent with the equations of motion (4.43), then the analytical solution deviates from
the position manifold Mp in a linear way with respect to the residuals and lies with
a constant residual near the velocity manifold Mv. The analytical solution itself lies
on the acceleration manifold Ma.
d) Since the strangeness-free formulation of the equations of motion has no solution
if the initial values w0, s0, λ0, or µ0 are not consistent, one would expect numerical
problems. Actually, if these initial values are inconsistent then no solution exists
but it is easy to compute consistent initial values by solving the constraints (4.43d),
(4.43e) (4.51a), and (4.53a) for w0, s0, λ0, and µ0. All necessary constraints are
explicitly available in EoM0 (4.82). Furthermore, in all subsequent integration steps
the intermediate numerical solutions xi at ti satisfy all constraints. Therefore, the
intermediate solutions wi, si, λi, and µi are consistent in each intermediate step.
The consistency of pi and vi is not important for numerical aspects. Therefore,
neglecting numerical aspects of the solution of ODEs, no numerical problems arise
from initial values or computed solutions at intermediate steps. �

In analogy to the considerations above with respect to the s-index-1 formulation
EoM1 (4.81) as a basis for the numerical integration we get the perturbed drift
differential equations

γ̇(t) = ε0 + ε1∆t +

∞∑

i=2

1

i!
εi∆ti and η(t) = δ0 + δ1∆t +

∞∑

i=2

1

i!
δi∆ti. (4.98)

Therefore, we get the solutions as

γ(t) = γ(t0) + ε0∆t +
1

2
ε1∆t2 + ...,

η(t) = δ0 + δ1∆t + ...

with (4.95) and ∆t = t− t0. Since γ(t) and η(t) represent the residuals of the right-

hand sides g(p(t), s(t), u(t)) and h̆(p(t), v(t), s(t), u(t)) of the holonomic constraints
on position level and of the nonholonomic constraints on velocity level, respectively,
the best what we can expect is that the residual of the holonomic constraints on
position level is of order O(t1) (if not worse) and of the nonholonomic constraints
on velocity level is of order O(t0) (if not worse) for t → ∞.

Remark 4.4.5 a) If the initial values v0, w0, s0, λ0 or µ0 are inconsistent then the
EoM1 has no solution.
b) If the initial values p0 are consistent with the equations of motion (4.43), see
Lemma 4.2.26, then according to the analytical solution the holonomic constraints
on velocity level (4.50a) and also their first derivative with respect to t, i.e., the
holonomic constraints on acceleration level (4.51a), as well as the nonholonomic
constraints on velocity level (4.43f) and also their first derivative with respect to
t, i.e., the nonholonomic constraints on acceleration level (4.53a), are enforced by
using the velocity constraints explicitly in (4.81). With consistent initial values, the
analytical solution satisfies all constraints even in the form (4.81) and, Therefore,
it lies on the solution manifold M.
c) Since (4.81) is no longer strangeness-free, it contains hidden constraints on level
one. These are 0 = hI and 0 = gII .
d) If the initial values v0, w0, s0, λ0, and µ0 are consistent and p0 is not consistent
with the equations of motion (4.43), then it follows that the holonomic constraints
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on position level are not satisfied and have a constant residual g(p(t), s(t), u(t)) =
γ(t0) 6≡ 0 for all t ∈ I with respect to an analytical solution. The constraints on
velocity level (4.43f) and (4.50a) and also their first derivative with respect to t, i.e.,
in particular, the holonomic constraints on acceleration level (4.51a) are enforced
by using the constraints on velocity level explicitly in (4.81). Therefore, by using
inconsistent initial values p0 the analytical solution lies near the position manifold
Mp with a constant residual, but the solution lies on the velocity manifold Mv and
on the acceleration manifold Ma.
e) Since the s-index-1 formulation (4.81) of the equations of motion has no solution
if the initial values v0, w0, s0, λ0, and µ0 are not consistent, one would expect nu-
merical problems. Actually, if these initial values are inconsistent then no solution
exists. But it is possible to compute initial values w0, s0, and v0 by solving the con-
straints (4.81d)-(4.81f). Furthermore, if one provides consistent initial values, after
every numerical integration step the consistency of the solution components vi, wi,
and si is guaranteed by the explicit appearance of the constraints on velocity level
(4.81d)-(4.81f). But, in general, the solution components λi and µi are not con-
sistent because of rounding errors. Therefore, in addition to the numerical aspects
of the solution of ODEs, in general it is not possible to guarantee a convergence
behavior for Lagrange multipliers. The consistency of pi is not important for the
numerical solvability by use of the EoM1. �

Consider the original equations of motion of modeling level 4 (4.43). Since the
holonomic constraints on position level (4.43g) and the nonholonomic constraints
on velocity level (4.43f) are satisfied because of their explicit appearance in the
original equations of motion, also their first and second derivative with respect to
t, i.e., the constraints on velocity level (4.50a) and the constraints on acceleration
level (4.51a) and (4.53a) are satisfied by an analytical solution.
However, with respect to a numerical integration we get the perturbed drift differ-
ential equations

γ(t) = ε0 + ε1∆t +
∞∑

i=2

1

i!
εi∆ti and η(t) = δ0 + δ1∆t +

∞∑

i=2

1

i!
δi∆ti. (4.99)

Therefore, we get their solutions as

γ(t) = ε0 + ε1∆t + ...,

η(t) = δ0 + δ1∆t + ...

with (4.95) and ∆t = t− t0. Since γ(t) and η(t) represent the residuals of the right-

hand sides g(p(t), s(t), u(t)) and h̆(p(t), v(t), s(t), u(t)) of the holonomic constraints
on position level and of the nonholonomic constraints on velocity level, respectively,
the best what we can expect is that the residual of the holonomic constraints on
position level is of order O(t0) (if not worse) and of the nonholonomic constraints
on velocity level is of order O(t0) (if not worse) for t → ∞.

Remark 4.4.6 a) If all initial values are consistent, then the analytical solution
lies on the solution manifold M.
b) If the initial values are inconsistent, then the original equations of motion (4.43)
with s-index two (and d-index three, when exist) have no solution.
c) Since the original equations of motion (4.43) have no solution if the initial values
are not consistent, numerical problems have to be expected. Actually, if these initial
values are inconsistent, then no solution can be found but it is possible to compute
consistent initial values p0, w0, and s0 by solving the constraints (4.43d), (4.43e),
and (4.43g). Therefore, if one provides consistent initial values after each numerical
integration step, the consistency of solution components pi, wi, and si is enforced
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by the explicit appearance of the constraints (4.43d), (4.43e), and (4.43g). On the
other hand, the solution components vi, λi, and µi in general are not consistent,
because of rounding errors. Therefore, in addition to the numerical aspects of the
solution of ODEs, it is in general not possible to guarantee a convergence behavior
for the velocity components and the Lagrange multipliers. �

In [5] the influence of perturbations on different formulations is discussed. It is
demonstrated that the numerical integration of the original equations of motion of
s-index two leads to (large) errors in the solution independent of the prescribed
tolerance. But otherwise, the numerical integration of the EoM1 of s-index 1 leads
to appropriate errors in the solution depending on the prescribed tolerance. This
effect arises from the fact that the solution of higher index DAEs does not only
depend continuously on perturbations but, rather in addition on derivatives of the
perturbations, too.
Table 4.2 summarizes all these results. Note, that the d-index only exists if the
equations of motion of modeling level 4 (4.43) with noncontradictory constraints
(4.43f) and (4.43g) satisfy the Assumptions (4.48a), (4.48b), and (4.49). From
Table 4.2 it becomes clear that none of the formulations above is ideally suited
as a base for numerical integrations. Either the analytical solution deviates from
the solution manifold in a cubic way but without possible numerical oscillations
when using the underlying differential equations. By using the original equations of
motion the solution does not deviate from the solution manifold but the numerical
integration may yield numerical oscillations with respect to λ, µ, and v. A trade-off
between oscillations and deviation is the use of EoM0 or EoM1.
This shows that it is necessary to look for a formulation which does not contain any
possible oscillating behavior, i.e, one has to look for a strangeness-free formulation.
On the other hand, this formulation must contain all possible information about the
solution manifold. Different ways out of this dilemma are regularization techniques
are discussed in the following Section 4.6.
The index of a differential-algebraic system and the way how all information about
the solution manifold is given have an essential influence on the quality and the
success of numerical integration. Here, a small index, if possible d-index 0 or d-
index 1, i.e., s-index 0, is preferred, see [69]. Furthermore, there should be no
hidden constraints, i.e., all information of the solution manifold should be given in
an explicit way in the system which has to be integrated.

Example 4.4.7 The drift-off phenomenon is demonstrated in [82] for the example
of the mathematical pendulum, see also Figure 5.6 in Example 5.3.1. Furthermore,
the drift-off phenomenon is considered in [167] for the nonlinear truck model, see
Example 4.1.14. �

4.5 Two paradigms

As we have seen in Section 4.4, it is essential for the quality of a numerical solution
that the constraints which restrict the solution are provided in an explicit way, i.e.,
the information about the constraints should appear as equations in the equations
of motion. We have seen that in the case of hidden constraints contained in the used
form of the equations of motion, the numerical solution is influenced by instabilities
and in the case of replacing constraints by their derivatives, yielding the s-index-1
formulation of the equations of motion (4.81) and the s-index-0 formulation of the
equations of motion (4.82), the numerical solution is influenced by the drift-off ef-
fect.
Furthermore, in Section 4.1.4 we have seen that in the case of existing solution in-
variants which are satisfied by an analytical solution, the numerical solution usually
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not satisfy these solution invariants, since the numerical algorithm cannot force the
numerical solution into invariant manifolds without explicit information describing
these invariant manifolds, see Figure 4.9. Therefore, it is essential for the accuracy
and the stability of the numerical solution that the corresponding numerical algo-
rithm is provided in an explicit way with all information which is available. We get
the following Modeling Paradigm.

Paradigm 4.5.1 (Modeling Paradigm) The model equations of a dynamical sys-
tem should explicitly contain all available information about the dynamical system.

Remark 4.5.2 In the modeling paradigm ”explicitly contain” means that the in-
formation appears as equations among the model equations.
In particular, for the equations of motion of modeling level 4 (4.43) it follows from
the nature of the equations, that the first and the second derivative of the holonomic
constraints with respect to t and the first derivative of the nonholonomic constraints
should be explicitly provided in the model equations.
Furthermore, information of possibly existing invariant manifolds are of importance
and should explicitly appear in the model equations. �

On the other hand, it is clear that explicitly providing all information about a
dynamical system that is available, does not make sense if the used numerical al-
gorithm is not able to handle this information. Therefore, a numerical algorithm
should be able to respect all possibly available information of a dynamical system
which leads to the following Algorithm Paradigm.

Paradigm 4.5.3 (Algorithm Paradigm) A numerical algorithm for the numer-
ical solution of model equations of dynamical systems should be able to respect all
possible information about the dynamical system that is available.

Remark 4.5.4 Previously there did not exist numerical codes which do respect
all information, in particular, the information about invariant manifolds. Some
numerical integration methods exist which reflect invariant manifolds in the used
discretization scheme, see [80], but nevertheless, round-off errors and truncation
errors lead to a drift away from the invariant manifolds. �

4.6 Regularization of the equations of motion

In general, the numerical integration of the equations of motion (4.43) is substan-
tially more difficult and prone to intensive numerical computation than that of
ODEs, see [25, 73, 82, 133]. As mentioned above, the index of a DAE provides a
measure of the difficulty of solving the treatment of the DAE. A lower index is to
be preferred for the numerical simulation. However, simple differentiation of the
constraints does lower the index, but it does increase the drift-off effect as shown
in Section 4.4.
Several approaches have been introduced in order to stabilize the integration pro-
cess. For an overview see [25, 51, 82, 164]. In principle, the regularization techniques
can be classified into three different categories.
The first class are the stabilization methods, e.g., Baumgarte stabilization [19], the
use of singularly perturbed problems [82, 97], or lowering the index by differentia-
tion of the constraints [66]. The second class covers the state space methods, e.g.,
[127, 139]. The third class is concerned with projection methods, e.g., the Gear-
Gupta-Leimkuhler formulation [68], overdetermined or ssf-formulation [60].
In the following we will review some important and widely used regularization tech-
niques and if possible we will extend these techniques to the equations of motion of
modeling level 3 and 4 (4.43). Furthermore, in Section 4.6.2.3 we will develop a new
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regularization technique for the equations of motion of modeling level 3 and 4 (4.43)
based on the general approach for nonlinear DAEs, see Section 3.4.2, which exploits
the structure of the equations of motion such that this regularization technique
is simple to realize and offers the possibility of combination with a numerical dis-
cretization method to create a robust and stable integrator for mechanical systems,
see Chapter 5.

4.6.1 Stabilization methods

4.6.1.1 Regularization by differentiation the constraints

The regularization of DAEs via index reduction by use of differentiated constraints
instead of the original constraints is already discussed in Section 3.4.1.
The application of this regularization technique to the equations of motion of mod-
eling level 4 leads to the formulations (4.81), (4.82), and (4.85). In particular, we
have seen that lowering the index by differentiation creates a more suitable for-
mulation for the numerical integration but increases the drift-off phenomenon as
discussed in the previous Section 4.4.
Nevertheless, this technique is widely used in numerical integration methods. An
acceptable compromise using one of the formulations (4.43), (4.81), (4.82), or (4.85)
as basis for the numerical integration is the s-index-1 formulation (4.81), which is
the basis of several numerical integration methods for the equations of motion, e.g.,
MEXAX [118], HEDOP5 [6], HEM5 [22, 21], see Section 4.7.

4.6.1.2 Baumgarte stabilization

In [18] , Baumgarte proposed a stabilization technique for the equations of motion
of multibody systems of modeling level 0 (4.34), see also [82, 147, 164]. He in-
troduced stabilization terms into the associated s-index-0 formulation of modeling
level 0 (4.39), which steers a perturbed nonconsistent solution back to the solution
manifold M. The dimension of the obtained system is preserved. The s-index of
the Baumgarte-stabilized equations of motion is reduced to s-index 0 (the d-index
is reduced from 3 to 1) but the solution manifold associated with the stabilized
equations of motion has a larger dimension than the original solution manifold M

and contains the solution manifold M.
In particular, the holonomic constraints (4.34c) are replaced by a linear combina-
tion of the holonomic constraints on position level (4.34c), on velocity level (4.35),
and on acceleration level (4.36), i.e., the constraints are replaced by

0 = gII(p, v, λ) + 2αgI(p, v) + β2g(p).

By using γ(t) = g(p(t)) according to Definition 4.4.2, we get the holonomic drift
differential equation

0 = γ̈(t) + 2αγ̇(t) + β2γ(t). (4.100)

The coefficients α and β are chosen such that the roots λ1,2 of the corresponding
polynomial

0 = λ2 + 2αλ + β2

have negative real part. In this case, the solution γ(t) ≡ 0 is a stable solution of
(4.100), i.e., solutions with initial residuals γ(t0) = g(p0) and γ̇(t0) = gI(p0, v0)
which are possibly nonzero tend to zero. Using this stabilization technique, the
solution manifold (4.37) is attracting.
The main difficulty with the Baumgarte stabilization is the choice of the parameters
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α and β. This question is discussed in [14, 76], while in [14] it is shown that there
exists no universal choice of the parameters for all problems. Rather, the optimal
choice of the parameters α and β depends on the problem, the discretization method,
and the discretization step size.
An extension of the Baumgarte stabilization to equations of motion of modeling
level 4 (4.43) is possible and has the form

ṗ = Z(p)v, (4.101a)

M(p, u)v̇ = f(p, v, r, w, s, λ, µ, u) (4.101b)

−ZT (p)GT (p, s, u)λ − ZT (p)HT (p, s, u)µ,

ṙ = b(p, v, r, w, s, λ, µ, u), (4.101c)

0 = d(p, v, r, w, s, λ, µ, u), (4.101d)

0 = c(p, s, u), (4.101e)

0 = hI(p, v, r, w, s, λ, µ, u1) + δh̆(p, v, s, u), (4.101f)

0 = gII(p, v, r, w, s, λ, µ, u2) + αgI(p, v, s, u1) + βg(p, s, u), (4.101g)

with α and β chosen as in the classical Baumgarte stabilization and δ > 0. In the
case of δ > 0 the corresponding nonholonomic drift differential equation

0 = η̇(t) + δη(t),

arising from (4.101f), has η(t) ≡ 0 as a stable solution and the solution manifold
becomes attracting.

4.6.2 Projection methods

4.6.2.1 Gear-Gupta-Leimkuhler formulation

In [68], Gear, Gupta, and Leimkuhler presented a possibility to modify the equations
of motion of modeling level 0 in a simple way such that the s-index is lowered from
two to one (d-index is lowered from three to two), while the solution manifold is
preserved, i.e., no drift-off effects occur. The idea is to add the constraints on
velocity level (4.35) to the equations of motion of modeling level 0 (4.34) whose
purpose is to ensure that the constraints on velocity level are satisfied. This leads to
an overdetermined DAE. This system can be made determined by introducing new
Lagrange multipliers ϑ yielding the so-called Gear-Gupta-Leimkuhler formulation
of the equations of motion of modeling level 0 given by

ṗ = v − GT (p)ϑ, (4.102a)

M(p)v̇ = f(p, v, t) − GT (p)λ, (4.102b)

0 = g(p), (4.102c)

0 = G(p)v. (4.102d)

The dimension of the system is increased by nλ.
In [68] the relation between the equations of motion of modeling level 0 (4.34) and
the Gear-Gupta-Leimkuhler formulation (4.102) is discussed. It is shown, that if
(p, v, λ) is a solution of (4.34) then (p, v, λ, ϑ) with ϑ = 0 is a solution of (4.102).
Conversely, if (p, v, λ, ϑ) is a solution of (4.102) then it follows that ϑ = 0 and
(p, v, λ) is a solution of (4.34).
An extension of this approach to equations of motion of modeling level 3 (4.43) is
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possible and has the form

ṗ = Z(p)v − GT (p, s, u)ϑ, (4.103a)

M(p, u)v̇ = f(p, v, r, w, s, λ, µ, u) (4.103b)

−ZT (p)GT (p, s, u)λ − ZT (p)HT (p, s, u)µ,

ṙ = b(p, v, r, w, s, λ, µ, u), (4.103c)

0 = d(p, v, r, w, s, λ, µ, u), (4.103d)

0 = c(p, s, u), (4.103e)

0 = H(p, s, u)Z(p)v + h(p, s, u), (4.103f)

0 = g(p, s, u), (4.103g)

0 = gI(p, v, s, u1). (4.103h)

Let us call this formulation the Gear-Gupta-Leimkuhler formulation of modeling
level 3. In the following we will perform the Procedure 3.5.11 concerning the Gear-
Gupta-Leimkuhler formulation of modeling level 3.

Procedure 4.6.1 Let the equations of motion of modeling level 3 (4.43) satisfy As-
sumptions (4.55a)-(4.55c) and (4.56). Following Procedure 3.5.11 we get, according
to the Gear-Gupta-Leimkuhler formulation of modeling level 3 (4.103) the DAE

E0ẋ = k0

with x =
[

pT vT rT wT sT λT µT ϑT
]T

and

E0 =




Inp
0 0 0 0 0 0 0

0 M 0 0 0 0 0 0
0 0 Inr

0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




, k0 =




Zv − GT ϑ
f − ZT GT λ − ZT HT µ

b
d
c

HZv + h
g
gI




.

This is equivalent to

Ẽ0ẋ = k̃0

with Ẽ0 = E0 and k̃0 = k0. Differentiation of the constraints leads to

E1ẋ = k1

with

E1 =




Inp
0 0 0 0 0 0 0

0 M 0 0 0 0 0 0
0 0 Inr

0 0 0 0 0
d,p d,v d,r d,w d,s d,λ d,µ 0
c,p 0 0 0 c,s 0 0 0

h̆,p HZ 0 0 h̆,s 0 0 0
g,p 0 0 0 g,s 0 0 0
gI

,p gI
,v 0 0 gI

,s 0 0 0




, k1 =




Zv − GT ϑ
f − ZT GT λ − ZT HT µ

b
−d,uu̇
−c,uu̇

−h̆,uu̇
−g,uu̇
−gI

,u1 u̇
1




.

Elimination leads to

Ẽ1ẋ = k̃1
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with

Ẽ1 =




Inp
0 0 0 0 0 0 0

0 M 0 0 0 0 0 0
0 0 Inr

0 0 0 0 0
0 0 0 d,w d,s d,λ d,µ 0
0 0 0 0 c,s 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




and

k̃1 =




Zv − GT ϑ
f − ZT GT λ − ZT HT µ

b
−d,uu̇ − d,p(Zv − GT ϑ) − d,vM−1(f − ZT GT λ − ZT HT µ) − d,rb

−c,uu̇ − c,p(Zv − GT ϑ)

−hI + (h̆,p − h̆,sc
−1
,s c,p)GT ϑ

−gI + GGT ϑ
−gII + (gI

,p − gI
,sc

−1
,s c,p)GT ϑ




.

Further differentiation of the algebraic equations leads to

E2ẋ = k2

with

E2 =




Inp
0 0 0 0 0 0 0

0 M 0 0 0 0 0 0
0 0 Inr

0 0 0 0 0
0 0 0 d,w d,s d,λ d,µ 0
0 0 0 0 c,s 0 0 0

× × × −HZM−1f,w × E2
66 E2

67 (h̆,p − h̆,sc
−1
,s c,p)GT

× × × 0 × 0 0 GGT

× × × −GZM−1f,w × E2
86 E2

87 (gI
,p − gI

,sc
−1
,s c,p)GT




,

E2
66 = −HZM−1(f,λ − ZT GT ), E2

67 = −HZM−1(f,µ − ZT HT ),
E2

86 = −GZM−1(f,λ − ZT GT ), E2
87 = −GZM−1(f,µ − ZT HT ).

Elimination and row permutation leads to

Ẽ2ẋ = k̃2

with

Ẽ2 =




Inp
0 0 0 0 0 0 0

0 M 0 0 0 0 0 0
0 0 Inr

0 0 0 0 0
0 0 0 d,w d,s d,λ d,µ 0
0 0 0 0 c,s 0 0 0

0 0 0 0 0 Ẽ2
66 Ẽ2

67 (h̆,p − h̆,sc
−1
,s c,p)GT

0 0 0 0 0 Ẽ2
76 Ẽ2

77 (gI
,p − gI

,sc
−1
,s c,p)GT

0 0 0 0 0 0 0 GGT




and
[

Ẽ2
66 Ẽ2

67

Ẽ2
76 Ẽ2

77

]
=

[
HZM−1Gλ HZM−1Hµ

GZM−1Gλ GZM−1Hµ

]
.
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From Assumption (4.55a)-(4.55c) and (4.56) and Lemma 4.2.10 we get the nonsin-
gularity of E2 for all (p, v, r, w, s, λ, µ, u2) ∈ M. Hence, the algebraic constraints
vanish, i.e., m2

2 = 0. In accordance to (3.42) the Procedure 3.5.11 terminates with
ν = 2. �

Lemma 4.6.2 Let the equations of motion of modeling level 3 (4.43) satisfy As-
sumptions (4.55a)-(4.55c) and (4.56). Then the Gear-Gupta-Leimkuhler formula-
tion (4.103) of modeling level 3 has maximal constraint level νc = 1 and d-index
νd = 2, any solution (p, v, r, w, s, λ, µ, ϑ) of (4.103) has ϑ = 0 for all t ∈ I, and
(p, v, r, w, s, λ, µ) is a solution of the original equations of motion (4.43) of model-
ing level 3. Conversely, if (p, v, r, w, s, λ, µ) is a solution of the original equations
of motion (4.43) of modeling level 3, then (p, v, r, w, s, λ, µ, 0) is a solution of the
Gear-Gupta-Leimkuhler formulation (4.103) of modeling level 3.

Proof: From Procedure 4.6.1 we get that the Gear-Gupta-Leimkuhler formulation
(4.103) has maximal constraint level νc = 1. Furthermore, from Lemma 3.5.29 it
follows that the Gear-Gupta-Leimkuhler formulation (4.103) has d-index νd = 2.
In [68] the equivalence of the standard form of the equations of motion (4.34) of
modeling level 0 and its associated Gear-Gupta-Leimkuhler formulation (4.102) is
given. The proof for the equivalence of the equations of motion of modeling level
3 (4.43) and its Gear-Gupta-Leimkuhler formulation of modeling level 3 (4.103) is
similar.
Obviously, every solution of (4.43) does satisfy the Gear-Gupta-Leimkuhler formu-
lation (4.103) with ϑ = 0. On the other hand, suppose that (p, v, r, w, s, λ, µ, ϑ) is a
solution of (4.103). Differentiating (4.103g) leads to (4.50b). Substituting (4.103a)
yields

0 = G(Zv − GT ϑ) + (g,u − g,sc
−1
,s c,u)u̇. (4.104)

Subtracting (4.103h) in the form (4.50c) from (4.104) yields

0 = GGT ϑ.

From Lemma 4.2.10 we have the full rank of G and therefore, the nonsingularity of
GGT and we get ϑ = 0. Hence, the solution of (4.103) also satisfies (4.43). �

Remark 4.6.3 From Lemma 4.6.2 we get that the Gear-Gupta-Leimkuhler formu-
lation (4.103) of modeling level 3 is equivalent to the original equations of motion
(4.43) of modeling level 3 in the sense that both solution sets are identical apart
from the additional Lagrange multipliers ϑ. �

The advantage of the Gear-Gupta-Leimkuhler formulation (4.103) is the reduced
maximal constraint level νc = 1, the reduced d-index and s-index, that its solution
manifold is equivalent to the solution manifold M, and that in addition to the
constraints on position level the constraints on velocity level appear explicitly. The
disadvantages are the higher index, i.e., the s-index is still larger than 0, and that
the Gear-Gupta-Leimkuhler formulation is not strangeness-free. Slight instabilities
may occur and the constraints on acceleration level remain hidden.
An extension of the Gear-Gupta-Leimkuhler formulation (4.102) of the equations
of motion of modeling level 0 is proposed by Führer and Leimkuhler in [60] which
is still of s-index one, i.e., not strangeness-free, but involves all constraints (4.34c),
(4.35), as well as (4.36) in an explicit way. Therefore, no drift-off effects for the
state variables of the multibody system but slight instabilities for the additionally
introduced variables occur. For more details see [60, 164].
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4.6.2.2 Overdetermined formulation

While the regularization techniques that are discussed in the previous sections
mostly lead to an equivalent regularized form of the equations of motion of the
same number of unknowns and equations, in [52, 60] an approach based on the
equations of motion of modeling level 0 (4.34) is proposed which adds all hidden
constraints to the equations of motion. This approach leads to an overdetermined
system consisting of (4.34), (4.35), and (4.36). Applying this approach to the equa-
tions of motion of modeling level 3 or 4 (4.43) we get the overdetermined DAE
consisting of (4.43), (4.50), (4.51), and (4.53)

ṗ = Z(p)v, (4.105a)

M(p, u)v̇ = f(p, v, r, w, s, λ, µ, u) (4.105b)

−ZT (p)GT (p, s, u)λ − ZT (p)HT (p, s, u)µ,

ṙ = b(p, v, r, w, s, λ, µ, u), (4.105c)

0 = d(p, v, r, w, s, λ, µ, u), (4.105d)

0 = c(p, s, u), (4.105e)

0 = H(p, s, u)Z(p)v + h(p, s, u), (4.105f)

0 = g(p, s, u), (4.105g)

0 = hI(p, v, r, w, s, λ, µ, u1), (4.105h)

0 = gI(p, v, s, u1), (4.105i)

0 = gII(p, v, r, w, s, λ, µ, u2). (4.105j)

By application the Procedure 3.5.11 to the overdetermined formulation (4.105) we
get the maximal constraint level νc = 0. Furthermore, from Hypothesis 3.2.7 it
follows that the DAE (4.105) has s-index νs = 1. In particular, this means that
the overdetermined formulation (4.105) is not strangeness free but all necessary
information is contained in the system in an explicit way and, therefore, there exist
no hidden constraints. However, the d-index is not defined for (4.105), because of
its overdeterminedness.
After discretization of the DAE (4.105), an overdetermined set of l(np + nv + nr +
nw + ns + 3nλ + 2nµ) nonlinear equations in l(np + nv + nr + nw + ns + nλ + nµ)
unknowns has to be solved several times at each integration step. The number l ∈ N

is specified by the integration method, e.g., l = 1 for BDF methods or l denotes
the number of stages for Runge-Kutta-Methods. Because of truncation errors, the
discretized equations become contradictory and can only be solved in a generalized
sense. The solution of the resulting overdetermined algebraic system (discretized
DAE) as described in [60] can be interpreted as a numerical projection onto the
constraint manifold. This approach is implemented in the code ODASSL (thanks to
Claus Führer for providing this algorithm for usage). For more details see [52, 60].

4.6.2.3 Projected-strangeness-free formulation

For equations of motion of modeling level 0 (4.34), a regularization based on the
strangeness concept, see Section 3.4.2, is investigated in [170]. Furthermore, in
[10] the regularization of linear equations of motion of modeling level 2 (4.41) is
discussed. In this section we will extend and generalize the results obtained in
[10, 170] to the equations of motion of modeling level 4 (4.43) with noncontradic-
tory constraints (4.43f) and (4.43g), i.e., they satisfy Assumptions 4.2.4, via index
reduction according to the results of Section 3.5.3.
As shown in Section 4.4 and postulated in the two paradigms in Section 4.5, it is
important to preserve and to determine all information about the solution manifold.
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Therefore, in the regularized form, in addition to the explicitly given constraints
(4.43d)-(4.43g), all hidden constraints, i.e., the holonomic constraints on velocity
level (4.50a), the holonomic constraints on acceleration level (4.51a), and the non-
holonomic constraints on acceleration level (4.53a) should appear in an explicit way
in the regularized equations of motion.
In Section 4.2 we determined the maximal constraint level of the equations of mo-
tion as νc = 2, see Lemma 4.2.22, and the complete minimal reduced derivative in
the form (4.80), see Lemma 4.2.25. Because of the semi-implicit structure of the
equations of motion, we may use the complete minimal reduced derivative array in
the form (3.67) instead of (3.66). From (3.74) we get for νc = 2 the quantities

rνc = np + nv + nr + nw + ns + rG + rH ,

aνc = nw + ns + rG + rH + rG + rH + rG,

dνc = (np − rG) + (nv − rG − rH) + nr = nfp
+ nfv

+ nr.

Therefore, from Definition 3.5.44 with respect to (3.67) we get that a dynamic
selector SD has to have the size nfp

+ nfv
+ nr × np + nv + nr and with SD =[

SD1 SD2 SD3

]
it has to satisfy the condition that

rank(




SD1 SD2M SD3 0 0 0 0
d,p d,v d,r d,w d,s d,λ d,µ

c,p 0 0 0 c,s 0 0

h̆,p HZ 0 0 h̆,s 0 0
g,p 0 0 0 g,s 0 0
hI

,p hI
,v hI

,r hI
,w hI

,s hI
,λ hI

,µ

gI
,p GZ 0 0 gI

,s 0 0
gII

,p gII
,v gII

,r gII
,w gII

,s gII
,λ gII

,µ




) (4.106)

= np+nv +nr+nw+ns+rG+rH (= n−(nλ−rG)−(nµ−rH))

for all (x, u) ∈ M. Using block Gauß elimination, we get that the rank condition of
the matrix in (4.106) is equivalent to

rank(




SD1 SD2M SD3

h̆,p−h̆,sc
−1
,s c,p HZ 0

G 0 0
gI

,p−g1
,sc

−1
,s c,p GZ 0


) = np+nv +nr (4.107)

and

rank(




d,w 0 d,λ d,µ

0 c,s 0 0
0 0 hI

,λ−hI
,wd−1

,w d,λ hI
,µ−hI

,wd−1
,w d,µ

0 0 gII
,λ−gII

,wd−1
,w d,λ gII

,µ−gII
,wd−1

,w d,µ


) = nw+ns+rG+rH . (4.108)

While the matrix in (4.108) is a square matrix of size nw + ns + nλ + nµ × nw +
ns + nλ + nµ and the satisfaction of its rank condition (4.108) follows directly from
Assumption 4.2.4, the matrix in (4.107) is rectangular of size (nfp

+ nfv
+ nr) +

nµ + nλ + nλ × np + nv + nr with nfp
= np − rG and nfv

= nv − rG − rH and the
rank condition (4.107), i.e., the matrix in (4.107) has to have full (column) rank, is
satisfied for certain choices of the dynamic selector SD. If we choose the dynamic
selector in the form

SD =
[

SD1 SD2 SD3

]
=




Sp 0 0
0 Sv 0
0 0 Sr


 (4.109)
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and if we choose Sr = Inr
, then we get from (4.107) the (rank) conditions for

choosing the remaining dynamic selectors Sp and Sv such that

rank(

[
Sp

G

]
) = np and rank(




SvM
HZ
GZ


) = nv. (4.110)

In the case of nonredundant constraints, the condition (4.106) for the determination
of the dynamic selector SD of size nfp

+nfv
+nr ×np +nv +nr, with nfp

= np −nλ

and nfv
= nv − nλ − nµ, corresponds to the condition that the matrix in (4.106)

has to be nonsingular for all (x, p) ∈ M. Analogous to the considerations above,
this condition is equivalent to the condition that the matrices in (4.107) and (4.108)
are nonsingular for all x ∈ M. The nonsingularity of the matrix in (4.108) follows
from Assumption (4.55a)-(4.55c) and (4.56). Furthermore, if we choose the dynamic
selector in the form (4.109) and if we choose Sr = Inr

, then we get the conditions
for choosing the remaining dynamic selectors Sp and Sv such that the matrices

[
Sp

G

]
and




SvM
HZ
GZ




have to be nonsingular.

Lemma 4.6.4 Let the equations of motion of modeling level 4 (4.43) be quasi-
regular, i.e., they satisfy Assumptions 4.2.4. Furthermore, let the constraints (4.43g)
and the contact equations (4.43e) be continuously differentiable with respect to p
and s and continuous in u, i.e., g ∈ C1,1,0(Mp, R

nλ), c ∈ C1,1,0(Mp, R
ns). Then,

there exists a matrix function Kp ∈ C0(Mp, R
np,nfp ) depending on (p, u) with nfp

=
np − rG such that Kp has full (column) rank and

G(p, s(p, u), u)Kp(p, u) = 0 for every (p, s, u) ∈ Mp.

Proof: From Assumptions 4.2.4 together with the Implicit Function Theorem
2.3.1, it follows that the contact variables s are uniquely determined by the posi-
tion variables p and the control variables u such that we have s ∈ C1,0(Mp, R

ns)
as function of (p, u). Hence, we get G ∈ C1,0(Mp, R

nλ,np) depending on (p, u), i.e.,
G = G(p, s(p, u), u), with rank(G) = rG, see Lemma 4.2.11, and the assertion fol-
lows from Lemma 2.1.6. �

Lemma 4.6.5 Let the equations of motion of modeling level 4 (4.43) be quasi-
regular, i.e., they satisfy Assumptions 4.2.4. Furthermore, let the contact equations
(4.43e) be continuously differentiable with respect to p and s and continuous in u,
i.e., c ∈ C1,1,0(Mp, R

ns). For the holonomic constraints (4.43g) and the nonholo-
nomic constraints (4.43f), let the matrix functions G(p, s, u)Z(p) and H(p, s, u)Z(p)
be continuous in p, s, and u, i.e., GZ ∈ C0(Mp, R

nλ,nv ) and HZ ∈ C0(Mp, R
nµ,nv ),

respectively. Then, there exists a matrix function Kv ∈ C0(Mp, R
nv,nfv ) depending

on (p, u) with nfv
= nv − rG − rH such that Kv has full (column) rank and

[
G(p, s, u)Z(p)
H(p, s, u)Z(p)

]
Kv(p, u) = 0 for every (p, s, u) ∈ Mp.

Proof: From Assumptions 4.2.4 together with the Implicit Function Theorem 2.3.1
and the smoothness assumption on c(p, s, u), it follows that the contact variables
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s are uniquely determined by the position variables p and the control variables u
such that we have s ∈ C1,0(Mp, R

ns) depending on (p, u). Hence, we get
[

GZ
HZ

]
∈ C0(Mp, R

nλ+nµ,nv ),

depending on (p, u), i.e., G = G(p, s(p, u), u) and H = H(p, s(p, u), u), with a rank
rG + rH , see Lemma 4.2.10, and the assertion follows directly from Lemma 2.1.6.
�

Lemma 4.6.6 Let K ∈ C0(X×U, Rm,n) have full (column) rank for every (p, u) ∈
X × U. Then there exists a map S ∈ C0(X × U, Rn,m) such that

S(p, u)K(p, u) is nonsingular for every (p, u) ∈ X × U.

Proof: The proof follows directly from Lemma 2.1.12. �

In preparation for the regularization of the quasi-regular equations of motion of
modeling level 4 (4.43) we also need the following two lemmata.

Lemma 4.6.7 Let the equations of motion of modeling level 4 (4.43) be quasi-
regular, i.e., they satisfy Assumptions 4.2.4. For every (p, u) ∈ Mp, let the columns
of a matrix function Kp ∈ C0(Mp, R

np,nfp ) depending on (p, u), with nfp
= np−rG,

span ker(G(p, s(p, u), u)) with G ∈ C0(Mp, R
nλ,np) and rank(G(p, s, u)) = rG for all

(p, s, u) ∈ Mp. Furthermore, let a matrix function Sp ∈ C0(Mp, R
nfp ,np) depending

on (p, u) be given such that Sp(p, u)Kp(p, u) is nonsingular for all (p, u) ∈ Mp.
Then

rank(

[
Sp(p, u)

G(p, s(p, u), u)

]
) = np, (4.111)

i.e., the matrix in (4.111) has full (column) rank, for all (p, u) ∈ Mp.

Proof: Let the matrix function K̄p ∈ C0(Mp, R
np,rG) depending on (p, u) be given

such that the columns of K̄p(p, u) span coker(G(p, s(p, u), u)). Hence, we have that
rank(G(p, s(p, u), u)K̄p(p, u)) = rG.
Because of the nonsingularity of the matrix

[
Kp K̄p

]
we have

rank(

[
Sp

G

]
) = rank(

[
SpKp SpK̄p

GKp GK̄p

]
) = rank(

[
SpKp SpK̄p

0 GK̄p

]
).

With the assumed nonsingularity of the matrix function SpKp ∈ C0(Mp, R
nfp ,nfp )

and rank(G(p, s(p, u), u)K̄p(p, u)) = rG it follows that

rank(

[
Sp

G

]
) = rank(

[
SpKp SpK̄p

0 GK̄p

]
) = nfp

+ rG = np

and we have the assertion. �

Lemma 4.6.8 Let the equations of motion of modeling level 4 (4.43) be quasi-
regular, i.e., they satisfy Assumptions 4.2.4. For every (p, u) ∈ Mp, let the columns
of a matrix function Kv ∈ C0(Mp, R

nv,nfv ), with nfv
= nv − rG − rH , depending on

(p, u) span

ker(

[
G(p, s(p, u), u)Z(p)
H(p, s(p, u), u)Z(p)

]
)
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with GZ ∈ C0(Mp, R
nλ,nv ) and HZ ∈ C0(Mp, R

nµ,nv ). Furthermore, let a matrix
function Sv ∈ C0(Mp, R

nfv ,nv ) depending on (p, u) be given such that the matrix
function Sv(p, u)M(p, u)Kv(p, u) is nonsingular for all (p, u) ∈ Mp. Then

rank(




Sv(p, u)M(p, u)
H(p, s(p, u), u)Z(p)
G(p, s(p, u), u)Z(p)


) = nv, (4.112)

i.e., the matrix in (4.112) has full (column) rank for all (p, u) ∈ Mp.

Proof: From Lemma 4.2.11 we have that

rank(

[
G(p, s(p, u), u)Z(p)
H(p, s(p, u), u)Z(p)

]
) = rG + rH

for all (p, u) ∈ Mp. Let K̄v ∈ C0(Mp, R
nv,rG+rH ) depending on (p, u) be given such

that the columns of K̄v(p, u) span

coker(

[
G(p, s(p, u), u)Z(p)
H(p, s(p, u), u)Z(p)

]
),

i.e.,

rank(

[
G(p, s(p, u), u)Z(p)
H(p, s(p, u), u)Z(p)

]
K̄v(p, u)) = rG + rH . (4.113)

Because of the nonsingularity of the matrix
[

Kv K̄v

]
we have

rank(




SvM
HZ
GZ


) = rank(




SvMKv SvMK̄v

GZKv GZK̄v

HZKv HZK̄v


) = rank(




SvMKv SvMK̄v

0 GZK̄v

0 HZK̄v


).

With the assumed nonsingularity of SvMKv ∈ C0(Mp, R
nfv ,nfv ) and (4.113) it

follows that

rank(




SvM
HZ
GZ


) = rank(




SvMKv SvMK̄v

0 GZK̄v

0 HZK̄v


) = nfv

+ rG + rH = nv

and the assertion follows. �

Theorem 4.6.9 Let the equations of motion of modeling level 4 (4.43) be quasi-
regular, i.e., they satisfy Assumptions 4.2.4. Then there exists a selector Sp ∈
C0(M, Rnfp ,np) with nfp

= np − rG and there exists a selector Sv ∈ C0(M, Rnfv ,nv )
with nfv

= nv − rG − rH such that the differential-algebraic system

Sp(p, u)ṗ = Sp(p, u)Z(p)v, (4.114a)

Sv(p, u)M(p, u)v̇ = Sv(p, u)f(p, v, r, w, s, λ, µ, u) (4.114b)

−Sv(p, u)ZT (p)GT (p, s, u)λ − Sv(p, u)ZT (p)HT (p, s, u)µ,

ṙ = b(p, v, r, w, s, λ, µ, u), (4.114c)

0 = d(p, v, r, w, s, λ, µ, u), (4.114d)

0 = c(p, s, u), (4.114e)

0 = H(p, s, u)Z(p)v + h(p, s, u), (4.114f)

0 = g(p, s, u), (4.114g)

0 = hI(p, v, r, w, s, λ, µ, u1), (4.114h)

0 = gI(p, v, s, u1), (4.114i)

0 = gII(p, v, r, w, s, λ, µ, u2) (4.114j)
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has the same solution set as the equations of motion of modeling level 4 (4.43).
Furthermore, it has maximal constraint level νc = 0 and it is strangeness-free.

Proof: If the constraints (4.43f) and (4.43g) are contradictory then the solution
set of the differential-algebraic system (4.114) as well as the solution set of the
original differential-algebraic system (4.43) are empty and therefore identical.
In the following, we will consider the case with noncontradictory constraints (4.43f)
and (4.43g) and we will omit the dependencies on p, v, r, w, s, λ, µ, and u. The
existence of the selectors Sp ∈ C0(M, Rnfp ,np) and Sv ∈ C0(M, Rnfv ,nv ) is proved in
Lemmata 4.6.4-4.6.8. Furthermore, from the construction of Sp and Sv it follows
that the system (4.114) has maximal constraint level νc = 0.
According to Lemma 3.5.1 we get for the semi-implicit DAE (4.114) that m1 =
nfp

+ nfv
+ nr and rC = nw + ns + 3rG + 2rH . Furthermore, the conditions in

Lemma 3.5.1 are satisfied. In particular, the condition (4.106) for the determination
of the dynamic selector corresponds to the condition (3.27). Therefore, it follows
from Lemma 3.5.1 that the DAE (4.114) is strangeness-free.
It remains to show that the solution set of (4.114) is identical to the solution set of
(4.43). It is obvious that a solution of (4.43) is also a solution of (4.114). The other
direction will be proven in the following.
With the trivial equation SpZv = SpZv and (4.114i) in the form of (4.50c) we get

[
Sp

G

]
Zv =

[
SpZv

−(g,u − g,sc
−1
,s c,u)u̇

]
. (4.115)

On the other hand, it follows from (4.114a) and from the derivative of (4.114g) with
respect to t in the form (4.50b), that

[
Sp

G

]
ṗ =

[
SpZv

−(g,u − g,sc
−1
,s c,u)u̇

]
. (4.116)

Because of the full rank of the matrix
[

ST
p GT

]T
, see Lemma 4.6.7, it follows

from the General Implicit Function Theorem 2.3.2 that Zv as well as ṗ are uniquely
determined by (4.115) and (4.116), respectively. Therefore, from (4.115) and (4.116)
we get the kinematical equations of motion (4.43a)

ṗ = Zv.

Furthermore, with the trivial equation Sv(f−ZT GT λ−ZT HT µ) = Sv(f−ZT GT λ−
ZT HT µ) and (4.114h) in the form of (4.53e) and (4.114j) in the form of (4.51d) we
get




SvM
GZ
HZ


M−1(f − ZT GT λ − ZT HT µ) (4.117)

=




Sv(f − ZT GT λ − ZT HT µ)
−(gI

,p − gI
,sc

−1
,s c,p)Zv − gI

,u1 u̇
1 + gI

,sc
−1
,s c,uu̇

−(h̆,p − h̆,sc
−1
,s c,p)Zv − (h̆,u − h̆,sc

−1
,s c,u)u̇


 . (4.118)

On the other hand, it follows from (4.114b), from the derivative of (4.114i) with
respect to t in the form (4.51c), and from the derivative of (4.114f) with respect to
t in the form (4.53d) that




SvM
GZ
HZ


 v̇ =




Sv(f − ZT GT λ − ZT HT µ)
−(gI

,p − gI
,sc

−1
,s c,p)Zv − gI

,u1 u̇
1 + gI

,sc
−1
,s c,uu̇

−(h̆,p − h̆,sc
−1
,s c,p)Zv − (h̆,u − h̆,sc

−1
,s c,u)u̇


 .
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Because of the full rank of the matrix



SvM
GZ
HZ


 ,

see Lemma 4.6.8, it follows from the General Implicit Function Theorem 2.3.2 that
M−1(f − ZT GT λ − ZT HT µ) as well as v̇ are uniquely determined by (4.117) and
(4.119), respectively. Therefore, from (4.117) and (4.119) we get the dynamical
equations of motion (4.43b)

Mv̇ = f − ZT GT λ − ZT HT µ.

In addition, the equations equations (4.43c)-(4.43g) are explicitly contained in both
formulations and therefore, satisfied. Hence, a solution of (4.114) is also a solution
of (4.43). �

Remark 4.6.10 In the case of regular equations of motion , i.e., with nonredundant
constraints, it follows from Lemma 3.5.29 that the DAE (4.114) has d-index νd =
νc + 1 = 1. �

Analogous to the projected-strangeness-free DAE developed in Section 3.5.3 we will
call the DAE (4.114) the projected-strangeness-free formulation of the equations
of motion of modeling level 4. Because of the same solution set and the reduced
maximal constraint level and the reduced index, the projected-strangeness-free for-
mulation (4.114) corresponds to a regularization of the equations of motion.
The projected strangeness-free formulation (4.114) is a quasi-linear DAE of np +
nv + nr + nw + ns + nλ + nµ + 2(nλ − rG) + (nµ − rH) equations and np + nv + nr +
nw +ns +nλ +nµ unknown variables which corresponds to an overdetermined DAE
if nλ > rG or nµ > rH , i.e., in the case of redundant constraints. Furthermore, in
general, a selection of a set of nonredundant constraints is not recommended, since
a selection of the constraints possibly does change the solution set of the projected-
strangeness-free formulation (4.114) which leads to possibly wrong results in the
analytical or numerical solution, see Example 2.3.15.
In the following we will discuss the special case of the equations of motion of mod-
eling level 2 with Z = Inp

and a positive definite mass matrix M which offers the
possibility for simplifications of the regularization to the projected-strangeness-free
formulation.

Lemma 4.6.11 Let the equations of motion of modeling level 2 (4.41) satisfy As-
sumptions 4.2.4. Furthermore, let M ∈ C0(Mp, R

nv,nv ) be positive definite and
Z(p) = Inp

for all (p, u) ∈ M.
Then there exists a selector Sp ∈ C0(M, Rnfp ,np) with nfp

= np − rG such that the
differential-algebraic system

Sp(p, u)ṗ = Sp(p, u)v, (4.119a)

Sp(p, u)M(p, u)v̇ = Sp(p, u)f(p, v, r, w, s, λ, u) (4.119b)

−Sp(p, u)GT (p, s, u)λ,

ṙ = b(p, v, r, w, s, λ, u), (4.119c)

0 = d(p, v, r, w, s, λ, u), (4.119d)

0 = c(p, s, u), (4.119e)

0 = g(p, s, u), (4.119f)

0 = gI(p, v, s, u1), (4.119g)

0 = gII(p, v, r, w, s, λ, u2) (4.119h)
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has the same solution set as the equations of motion of modeling level 2 (4.41) and
is strangeness-free.

Proof: From Z(p) = Inp
it follows that nv = np. Choosing the selector Sp in such

a way that range(ST
p ) = ker(G), i.e., GST

p = 0. Then the selector Sp satisfies both
conditions (4.110), i.e.,

rank(

[
Sp

G

]
) = np and rank(

[
SpM

G

]
) = nv = np

because of the positive definiteness of the mass matrix M , see Lemma A.2.18. The
remaining part of the proof follows from the proof of Theorem 4.6.9. �

With these preparations we have presented all the tools to perform the solution
manifold preserving index reduction of the quasi-regular nonlinear equations of mo-
tion of modeling level 4 (4.43) as follows.

Algorithm 4.6.12 (Solution manifold preserving strangeness deletion)
The equations of motion of modeling level 4 (4.43) are assumed to be quasi-regular,
i.e., they satisfy Assumptions 4.2.4, with noncontradictory constraints (4.43f) and
(4.43g) having constant rank. Furthermore, let M ∈ C0(Mp, R

nv,nv ) and Z ∈
C0(Mp, R

np,nv ).
Then the regularization by index reduction is done by choosing a selector Sp ∈
C0(Mp, R

nfp ,np) and a selector Sv ∈ C0(Mp, R
nfv ,nv ) depending on (p, u) with nfp

=
np − rG and nfv

= nv − rG − rH , in the following way.

1. Determination of selector Sp

(a) Determine Kp ∈ C0(Mp, R
np,nfp ) depending on (p, u) such that the

columns of Kp(p, u) span ker(G(p, s(p, u), u)) for all (p, u) ∈ Mp, see
Lemma 4.6.4.

(b) Determine the selector Sp ∈ C0(Mp, R
nfp ,np) depending on (p, u) such

that Sp(p, u)Kp(p, u) is nonsingular for all (p, u) ∈ Mp, see Lemma 4.6.7.

2. Determination of selector Sv

(a) Determine Kv ∈ C0(Mp, R
nv,nfv ) depending on (p, u) such that the

columns of Kv(p, u) span

ker(

[
G(p, s(p, u), u)Z(p)
H(p, s(p, u), u)Z(p)

]
)

for all (p, u) ∈ Mp, see Lemma 4.6.5.

(b) Determine the selector Sv ∈ C0(Mp, R
nfv ,nv ) depending on (p, u) such

that Sv(p, u)M(p, u)Kv(p, u) is nonsingular for all (p, u) ∈ Mp, see Lemma
4.6.8.

3. Projected strangeness-free form of the equations of motion
By appending the constraints on velocity level (4.50a) and the constraints on
acceleration level (4.51a) and(4.53a), the projected strangeness-free form of
the equations of motion is given by (4.114).

With this algorithm we are able to determine an equivalent strangeness-free form
(4.114) of the equations of motion which contains all information about the solution
manifold (4.2.14). The strangeness-free form created in this way is analytically
equivalent to the original equations of motion in the sense that both have the same
solution set. Furthermore, this form is suitable for numerical integration using stiff
ODE solvers like implicit Runge-Kutta-Methods or BDF methods.
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Remark 4.6.13 Note that the selectors Sp and Sv satisfying the nonsingularity
conditions (4.111) and (4.112) are not uniquely determined. Rather it is possible
to choose the selectors in a piecewise constant fashion. This fact is of great advan-
tage and importance for the numerical integration because it offers the possibility
to reduce the amount of work for the computation of the selectors. But on the
other hand the choice of the selectors influences the conditioning of the projected-
strangeness-free formulation. In particular, this means, that the condition number
of the iteration matrix N (see Section 3.5.4.2), e.g., for solving the nonlinear stage
equations (3.113a), depends directly on the choice of the selectors. �

Let us perform Algorithm 4.6.12 for the example of the mathematical pendulum.

Example 4.6.14 The mathematical pendulum: Following Algorithm 4.6.12
we have to consider G which is given in (4.21) as

G =
[

2p1 2p2

]
.

The matrix function Kp can be determined as

Kp =

[
−p2

p1

]

and, therefore, the selector Sp can be chosen as

Sp =
[
−p2 p1

]

such that

SpKp =
[
−p2 p1

] [ −p2

p1

]
=
[

p2
2 + p2

1

]
=
[

L2
]
,

see the constraints (4.20c). Since the mass matrix is given such that M = mI, the
equations of motion satisfy the conditions of Lemma 4.6.11 and we can use Sv = Sp

and we get the projected strangeness-free formulation

−p2ṗ1 + p1ṗ2 = −p2v1 + p1v2, (4.120a)

−mp2v̇1 + mp1v̇2 = −mgp1, (4.120b)

0 = p2
1 + p2

2 − L2, (4.120c)

0 = 2p1v1 + 2p2v2, (4.120d)

0 = 2v2
1 + 2v2

2 − 2p2g − 4

m
(p2

1 + p2
2)λ1. (4.120e)

As mentioned in Remark 4.6.13, the selectors Sp and Sv are not uniquely determined
by the conditions (4.111) and (4.112) or the Algorithm 4.6.12. In particular, the
selectors can be chosen to be piecewise constant.
Let us consider this fact for the pendulum with the initial state p1 = 0 und p2 = −L,
i.e., the pendulum is hanging downwards. In this position the selectors can be
determined as

Sp(p, u) = Sv(p, u) =
[

L 0
]
. (4.121)

Keeping these selectors constant, the leading matrix of the left-hand side of the
underlying ordinary differential equations, (obtained by substituting the algebraic
equations in (4.120) by their derivatives with respect to t) is




L 0 0 0 0
0 0 mL 0 0

2p1 2p2 0 0 0
× × 2p1 2p2 0
× × × × 4

m (p2
1 + p2

2)




. (4.122)
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Obviously, this matrix is nonsingular as long as p2 does not become zero. In par-
ticular, this means that as long as that the pendulum does not reach one of the
horizontal positions, i.e., p1 = ±L and p2 = 0, the selectors may be chosen constant
as in (4.121). Otherwise, if the pendulum reaches or crosses the horizontal position,
the matrix (4.122) becomes singular and the first and third as well as the second
and fourth equations are redundant such that the solution is not uniquely defined.
Furthermore, the condition number of matrix (4.122) goes to infinity as p2 goes to
zero.
For these reason, in the neighborhood of the horizontal position of the pendulum
new selectors have to be determined. See also the Example 5.3.1 for numerical
results. �

4.6.2.4 Projected-s-index-1 formulation

In addition to the projected-strangeness-free formulation of quasi-linear DAEs we
discussed in Remark 3.5.55 an incomplete regularization which leads to a DAE with
reduced maximal constraint level and reduced index that has the same solution
set but which is not necessarily strangeness-free. In the following we will discuss
an incomplete regularization of level 1 for the equations of motion analogously to
Example 3.5.56.

Theorem 4.6.15 Let the equations of motion of modeling level 4 (4.43) be quasi-
regular, i.e., they satisfy Assumptions 4.2.4. Furthermore, let the constraints (4.43d)-
(4.43g), (4.50a) be continuously differentiable. Then there exists a selector Sp ∈
C0(M, Rnfp ,np) with nfp

= np − rG such that the differential-algebraic system

Sp(p, u)ṗ = Sp(p, u)Z(p)v, (4.123a)

M(p, u)v̇ = f(p, v, r, w, s, λ, µ, u) (4.123b)

−ZT (p)GT (p, s, u)λ − ZT (p)HT (p, s, u)µ,

ṙ = b(p, v, r, w, s, λ, µ, u), (4.123c)

0 = d(p, v, r, w, s, λ, µ, u), (4.123d)

0 = c(p, s, u), (4.123e)

0 = H(p, s, u)Z(p)v + h(p, s, u), (4.123f)

0 = g(p, s, u), (4.123g)

0 = gI(p, v, s, u1) (4.123h)

has the same solution set as the equations of motion of modeling level 4 (4.43) and
has maximal constraint level νc = 1.

Proof: If the constraints (4.43f) and (4.43g) are contradictory then the solution
set of the differential-algebraic system (4.123) as well as the solution set of the
original differential-algebraic system (4.43) are empty and therefore identical.
In the following, we will consider the case with noncontradictory constraints (4.43f)
and (4.43g) and we will omit the dependencies on p, v, r, w, s, λ, µ, and u. The
existence of the selector Sp ∈ C0(M, Rnfp ,np) is proved in Lemmata 4.6.4-4.6.7.
Following Procedure 3.5.11 we get according to (4.123)

E0ẋ = k0
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with x =
[

pT vT rT wT sT λT µT
]T

and

E0 =




Sp 0 0 0 0 0 0
0 M 0 0 0 0 0
0 0 Inr

0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




, k0 =




SpZv
f − ZT GT λ − ZT HT µ

b
d
c

HZv + h
g
gI




.

This is equivalent to the intermediate DAE (3.40) for i = 0

Ẽ0ẋ = k̃0

with Ẽ0 = E0 and k̃0 = k0. We get the constraint set of level 0

M0 = {(x, u1) ∈ X × U
1 : 0 = d, 0 = c, 0 = HZv + h, 0 = g, 0 = gI}.

Differentiation of the constraints leads to

E1ẋ = k1

with

E1 =




Sp 0 0 0 0 0 0
0 M 0 0 0 0 0
0 0 Inr

0 0 0 0
d,p d,v d,r d,w d,s d,λ d,µ

c,p 0 0 0 c,s 0 0

h̆,p HZ 0 0 h̆,s 0 0
g,p 0 0 0 g,s 0 0
gI

,p gI
,v 0 0 gI

,s 0 0




, k1 =




SpZv
f − ZT HT µ − ZT GT λ

b
−d,uu̇
−c,uu̇

−h̆,uu̇
−g,uu̇
−gI

,u1 u̇
1




.

Elimination leads to

Ẽ1ẋ = k̃1

with

Ẽ1 =




Γ 0 0 0 0 0 0
0 M 0 0 0 0 0
0 0 Inr

0 0 0 0
0 0 0 d,w d,s d,λ d,µ

0 0 0 0 c,s 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




,

k̃1 =




γ
f − ZT GT λ − ZT HT µ

b
−d,uu̇ − d,vM−1(f − ZT GT λ − ZT HT µ) − d,rb − dpΓ−1γ

−c,uu̇ − cpΓ−1γ
−hI

−gII

S̄λ(−g,uu̇ + g,sc
−1
,s c,uu̇)






180 CHAPTER 4. MULTIBODY SYSTEMS

where G̃ = SλG has full rank, with

Γ(p, s, u) =

[
Sp

G̃

]
and γ(p, s, u) =

[
SpZv

Sλ(−g,uu̇ + g,sc
−1
,s c,uu̇)

]
.

Note that Γ is nonsingular. From the fact that the holonomic constraints are non-
contradictory, it follows that S̄λ(−g,uu̇+ g,sc

−1
,s c,uu̇) = 0 for all (x, u1) ∈ M0 ×U(1).

According to Remark 3.5.12c, therefore, it is not necessary to take the last block
equations into account for further investigations. Further differentiation of the al-
gebraic equations (without the last block equations) leads to

E2ẋ = k2

with

E2 =




Γ 0 0 0 0 0 0
0 M 0 0 0 0 0
0 0 Inr

0 0 0 0
0 0 0 d,w d,s d,λ d,µ

0 0 0 0 c,s 0 0
× × × −HZM−1f,w × E2

66 E2
67

× × × −GZM−1f,w × E2
76 E2

77

0 0 0 0 0 0 0




,

where

E2
66 = −HZM−1(f,λ − ZT GT ), E2

67 = −HZM−1(f,µ − ZT HT ),
E2

76 = −GZM−1(f,λ − ZT GT ), E2
77 = −GZM−1(f,µ − ZT HT ),

and with

k2 =




γ
f − ZT GT λ − ZT HT µ

b
−d,uu̇ − d,vM−1(f − ZT GT λ − ZT HT µ) − d,rb − dpΓ−1γ

−c,uu̇ − cpΓ−1γ
hI

,u1 u̇
1

gII
,u2 u̇

2

S̄λ(−g,uu̇ + g,sc
−1
,s c,uu̇)




Elimination leads to

Ẽ2ẋ = k̃2

with

Ẽ2 =




Γ 0 0 0 0 0 0
0 M 0 0 0 0 0
0 0 Inr

0 0 0 0
0 0 0 d,w d,s d,λ d,µ

0 0 0 0 c,s 0 0
0 0 0 0 0 SµHZM−1Gλ SµHZM−1Hµ

0 0 0 0 0 SλGZM−1Gλ SλGZM−1Hµ

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



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and

k̃2 =




γ
f − ZT GT λ − ZT HT µ

b
−d,uu̇ − d,vM−1(f − ZT GT λ − ZT HT µ) − d,rb − dpΓ−1γ

−c,uu̇ − cpΓ−1γ

Sµh̃II

Sλg̃III

S̄µh̃II

S̄λg̃III

S̄λ(−g,uu̇ + g,sc
−1
,s c,uu̇)




by use of the the matrices Sλ(p, u) and S̄λ(p, u) and Sµ(p, u) and S̄µ(p, u) defined in
(4.66). From the fact that the holonomic constraints are noncontradictory it follows

that S̄λg̃III = 0 and S̄µh̃II = 0 for all (x, u1) ∈ M1 × U(2). Therefore, the last three
block equations which represent the algebraic constraints are trivially satisfied for
all (x, u1) ∈ M1 × U

(2) and the procedure terminates with ν = 2 and we get the
maximal constraint level νc = ν − 1 = 1.
It remains to show that the solution set of (4.123) is identical to the solution set of
(4.43). It is obvious that a solution of (4.43) is also a solution of (4.123). The other
direction will be discussed in the following.
With the trivial equation SpZv = SpZv and (4.123h) in the form of (4.50c) we get

[
Sp

G

]
Zv =

[
SpZv

−(g,u − g,sc
−1
,s c,u)u̇

]
. (4.124)

On the other hand, it follows from (4.123a) and from the derivative with respect to
t of (4.123g) in the form (4.50b) that

[
Sp

G

]
ṗ =

[
SpZv

−(g,u − g,sc
−1
,s c,u)u̇

]
. (4.125)

Because of the full rank of the matrix
[

ST
p GT

]T
, see Lemma 4.6.7, it follows

from the General Implicit Function Theorem 2.3.2 that Zv as well as ṗ are uniquely
defined by (4.124) and (4.125), respectively. Therefore, from (4.115) and (4.116) we
get the kinematical equations of motion (4.43a)

ṗ = Zv.

In addition, the equations (4.43c)-(4.43g) are explicitly contained in both formu-
lations and therefore, satisfied. Hence, a solution of (4.123) is also a solution of
(4.43). �

Remark 4.6.16 By use of Hypothesis 3.2.7 it can be shown that the set of diffe-
rential-algebraic equations (4.123) has s-index νs = 1. �

Example 4.6.17 The mathematical pendulum: In Example 4.6.14 we have
developed the projected-strangeness-free form of the equations of motion for the
mathematical pendulum. In this example we will state the projected-s-index-1
formulation which has the form

−p2ṗ1 + p1ṗ2 = −p2v1 + p1v2,

mv̇1 = −2p1λ1,

mv̇2 = −mg − 2p2λ1,

0 = p2
1 + p2

2 − L2,

0 = 2p1v1 + 2p2v2.
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For numerical results based on this projected-s-index-1 formulation see Example
5.3.1. �

4.7 Numerical methods and software: an overview

As discussed in the previous sections, the numerical integration of the equation of
motion of s-index two (or d-index three) is nontrivial. Problems which can appear
are for instance convergence order reduction for the used discretization methods,
convergence problems of the iterative method for solving the nonlinear system be-
cause of ill conditioned iteration matrices, and hidden constraints up to level two.
Furthermore, the step size control has to be adapted and the numerical solution
may not depend continuously on perturbations of the input data.
Therefore, numerical methods have to combine suitable regularization methods, dis-
cussed in Section 4.6, with appropriate discretization methods. Different forms of
the equations of motion as basis for numerical integrators of multibody systems are
investigated in [15, 23, 60]. In particular, these are the

• original equations of motion (4.43) with s-index 2, d-index 3 (see [136]),

• s-index-1 formulation (4.81) with s-index 1, d-index 2 (see [136]),

• s-index-0 formulation (4.82) with s-index 0, d-index 1 (see [136]),

• state space form (4.5) with s-index 0, d-index 0 (see [52]),

• semi state space form with s-index 0, d-index 0 (see [52]),

• underlying ODE (4.79) with s-index 0, d-index 0 (see [52]),

• Baumgarte stabilization (4.101) with s-index 0, d-index 1 (see [18, 19]),

• Gear-Gupta-Leimkuhler formulation (4.103) with s-index 1, d-index 2 (see
[68]).

The numerical integration of the equations of motion arising in mechanical systems
is considered in several articles like [5, 9, 23, 52, 86, 116, 118, 127, 152, 154, 164]. An
overview of suitable numerical methods is provided in [144, 164]. Some numerical
algorithms are collected in libraries like MBSPACK5 [164] and MBSSIM6 [3].
Currently widely used solvers for general DAEs are DASSL7 [25, 135] and RADAU58

[79, 82], see Section 3.6. Both codes do not actually exploit the special structure of
multibody systems and therefore, they do not follow the Algorithm Paradigm 4.5.3.
The presence of hidden constraints, i.e., the constraints on velocity and acceleration
level is not considered.
Therefore, there is a need for numerical integration methods which exploit the
properties and the structure of the equations of motion to avoid arising problem-
atic effects. In this context, a large number of numerical methods has been de-
veloped for the numerical integration of DAEs arising in multibody dynamics. A
detailed overview over the numerical solution of ordinary differential equations and
differential-algebraic equations for technical simulations is given in [144, 164].
An important feature of numerical integrators is the type of the interface which al-
lows a classification into algorithms based on structural evaluations and algorithms
based on residual evaluations, see [164]. In particular, while the exploitation of the

5MBSPACK - http://www-m2.ma.tum.de/∼simeon/Software/mbspack.tar.gz
6MBSSIM - http://www1.iwr.uni-heidelberg.de/∼Michael.Winckler//Projects/MBSSIM/
7DASSL - http://www.engineering.ucsb.edu/∼cse/software.html
8RADAU5 - http://www.unige.ch/∼hairer/software.html
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dominating structure of the equations of motion is highly developed for algorithms
based on structural evaluations, the flexibility with respect to modifications or ex-
tensions of the equations of motion is strongly restricted. On the other hand the
algorithms based on residual evaluations present a high degree of flexibility but the
exploitation of the special structure of the equations of motion is restricted in favor
of the adaptability.
In [52, 60] an approach based on the equations of motion of modeling level 0 (4.34)
is proposed which adds all hidden constraints to the the equations of motion. This
approach leads to an overdetermined system consisting of (4.34), (4.35), and (4.36)
consisting of 2np + 3nλ equations in 2np + nλ variables, see Section 4.6.2.2. This
approach is implemented in the code ODASSL9 and is based on residual evaluations.
It solves the system of overdetermined differential-algebraic equations of the form
(4.105) in such a way, that the holonomic constraints on position level (4.34c) and
on velocity level (4.35) are taken to define solution invariants to the s-index-0 of
modeling level 1 formulation containing (4.34a), (4.34b), and (4.36). The subrou-
tine ODASSL uses the backward differentiation formulas of orders one through five.
For more details see [52, 60].
The subroutine library MBSPACK [164] provides a collection of numerical integration
methods based on (half) explicit Runge-Kutta methods for the equations of motion
of modeling level 1 (4.40) with u(t) = t. The numerical methods are based on the
s-index-1 formulation of the equations of motion of modeling level 1 (4.40), i.e.,

ṗ = Z(p)v, (4.126a)

M(p, t)v̇ = f(p, v, r, λ, t) − ZT (p)GT (p, t)λ, (4.126b)

ṙ = b(p, v, r, λ, t), (4.126c)

0 = G(p, t)Z(p)v + g,t(p, t), (4.126d)

with G(p, t) = g,p(p, t). The integration process is stabilized by additional projec-
tions onto the manifold of position and velocity constraints. All codes are designed
for nonstiff problems and rely on structured evaluations, i.e., the system matrices
are provided separately, such that the special structure of equations of motion is
well exploited, but otherwise the structure of the equations of motion is strongly
restricted. A modification or extension to equations of motion of modeling level 2
or 3 is difficult. Also possible solution invariants are not considered. Regarding the
Algorithm Paradigm 4.5.3 only the constraints and their derivative with respect to
t are respected.
The subroutine library MBSPACK contains the subroutines HEDOP5 based on the half-
explicit 5th order Runge-Kutta method of Arnold [6], MDOP5 based on the explicit
5th order Runge-Kutta method of Dormand and Prince [82], MHERK3 and MHERK5

based on the half-explicit 3rd and 5th order Runge-Kutta method of Brasey and
Hairer [23], and PMDOP5 based on the explicit 5th order Runge-Kutta method of
Dormand and Prince [82].
A similar numerical integration method is the subroutine HEM5 [21, 22]. The nu-
merical method bases on the the s-index-1 formulation of the equations of motion
of modeling level 1 (4.126) and the discretization method is a half-explicit Runge-
Kutta method of order 5(3).
In [139] the subroutine EULAG is presented. The method is based on the reduction
of the equations of motion to a second order ODE on the solution manifold which is
discretized by use of the explicit Runge-Kutta scheme DOPRI5 [81]. The algorithm
guarantees that the constraints are satisfied.
The numerical integrator MEXAX10 [118] is suitable for the equations of motion of

9ODASSL - available from the author, see [59]
10MEXAX - http://www.zib.de/Numerik/numsoft/CodeLib/ivpode.en.html
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modeling level 1 (4.40) and exploits its structure to a high degree. The code is based
on coordinate projection and uses relatively expensive but very accurate extrapola-
tion methods for the integration. The code MEXAX bases on structured evaluations,
i.e., it needs detailed information about the system matrices and vectors in a sepa-
rated form. Note that MEXAX originally was called MEXX.
Besides the mentioned numerical algorithms (mostly written in Fortran77, provided
as source code and public-domain) which perform only the numerical integration
of the equations of motion, there are some (mostly commercial) software packages
which combine the modeling as well as the numerical simulation and animations.
Among others the multibody system tools ADAMS11 [150, 154], DYMOLA12 [33, 131],
NEWEUL13 [98, 153, 154, 156], and SIMPACK14 [149, 154] are software packages for
the dynamic analysis of mechanical systems with the multibody system method.
They comprise the computation of the symbolic equations of motion or the evalu-
ation of the residuals of the model equations and the simulation of the dynamical
behavior.
Concluding, MODELICA15 [122], should be mentioned. MODELICA is an object-
oriented modeling language designed for the modeling of complex physical systems.

11ADAMS - http://www.mscsoftware.com/products/products detail.cfm?PI=413
12DYMOLA - http://www.dynasim.com/dymola.htm
13NEWEUL - http://www.mechb.uni-stuttgart.de/research/neweul/neweul de.php
14SIMPACK - http://www.simpack.de/websitep.html
15MODELICA - http://www.modelica.org/



Chapter 5

Two New Solvers for

Equations of Motion

In Section 4.7 an overview over numerical methods and numerical solvers which are
adapted to the special structure of the equations of motion is given. All algorithms
presented in Section 4.7 are suitable for regular equations of motion only, i.e., equa-
tions of motion of modeling level at most 3. In particular, this means that none of
these algorithms is suitable for equations with redundant constraints or is capable
of handling additional information on solution invariants as discussed in Section
4.1.4.
Therefore, in this chapter we will present two new methods GEOMS and GMKSSOL.
While the latter code is designed for the numerical integration of the special form
(5.14) of the equations of motion of modeling level 4 with possibly redundant con-
straints, the first code is designed for the numerical integration of general equations
of motion of modeling level 4 (4.43) with possibly redundant constraints and takes
into account possibly existing information concerning solution invariants. The pre-
sented codes GEOMS and GMKSSOL combine the stabilization technique developed
in Section 4.6.2.3 with an implicit Runge-Kutta scheme, see Section 3.5.4, as dis-
cretization of the projected-strangeness-free formulation (4.114) of the equations of
motion. Both codes are based on residual evaluations, i.e., the system matrices need
not be given in explicit form. It is sufficient, that the right-hand side of (4.43) and
the mass matrix M are specified.
The algorithms implemented in GEOMS and GMKSSOL are based on the 3-stage im-
plicit Runge-Kutta Method Radau IIa of order 5. The Runge-Kutta matrix, the
weight vector, and the node vector are given in Table 5.1.

4−
√

6
10

88−7
√

6
360

296−169
√

6
1800

−2+3
√

6
225

4+
√

6
10

296+169
√

6
1800

88+7
√

6
360

−2−3
√

6
225

1 16−
√

6
36

16+
√

6
36

1
9

16−
√

6
36

16+
√

6
36

1
9

Table 5.1: Butcher tableau for 3-stage implicit Runge-Kutta method Radau IIa of
order 5

As discussed in Section 3.5.4.3 and illustrated in Figure 3.2, the discretization of
the projected-strangeness-free form (4.114) of the equations of motion and solution
of the selected linear systems (3.123) and (3.124) in every Newton iteration step are
equivalent to the discretization of the complete minimal reduced derivative array

185



186 CHAPTER 5. TWO NEW SOLVERS FOR EQUATIONS OF MOTION

(4.80) in combination with the solution of the unselected linear system of type 1
(3.154) and of the unselected linear system of type 2 (3.155) by use of index reduc-
ing decompositions, see Definition 3.5.72. Apart from the additional specialization
of GMKSSOL to a certain type of equations of motion, the codes GEOMS and GMKSSOL

are based on these two technically different approaches for the combination of reg-
ularization and discretization of the equations of motion. While in GMKSSOL the
equations of motions are regularized to the projected-strangeness-free form with
subsequent discretization (left branch of Figure 3.2), the code GEOMS discretizes the
reduced derivative array with subsequent regularization by solving the unselected
linear systems (3.154) and (3.155) via index reducing decompositions (right branch
of Figure 3.2).
In Section 5.1 we will introduce the code GEOMS and we will discuss its features and
its applicability in detail. Then we will present the multibody system code GMKSSOL
in Section 5.2. Concluding this chapter, we will present numerical results for several
examples of mechanical systems in Section 5.3.
Here and in the following we will use the typewriter style for objects which are part
of the source codes of the implemented numerical algorithms. In particular, this
involves names of subroutines like GEOMS, GMKSSOL, GEERREST, and variables like T,
X, NWTMAT, CALSEL.

5.1 GEOMS

In this section we will present the code GEOMS and we will discuss its features in
detail. For the usage and implementation of GEOMS see the manual in Appendix
B.1.
As discussed in Sections 3.5 and 4.2, the initial values are restricted in their choice.
In particular, they are restricted by the (hidden) constraints. On the other hand
consistent initial values, in particular, consistent initial Lagrange multipliers, are
not automatically given by the modeling process and their determination by solving
a system of nonlinear algebraic equations is difficult for complex multibody systems
with a large number of constraints. Therefore, the algorithm GEOMS provides the
possibility to determine consistent initial values discussed in Section 5.1.2.
In Section 3.5.4 the discretization of general quasi-linear DAEs by use of an arbitrary
Runge-Kutta method has been discussed. As already mentioned, the code GEOMS

bases on the index reducing decomposition (see Definition 3.5.71) of the discretiza-
tion of the minimal reduced derivative array (4.80). In Section 5.1.3 we will discuss
in detail the approach which is used in the algorithm GEOMS for the discretization
of the equations of motion of modeling level 4 (4.43) by use of the Runge-Kutta
method of type Radau IIa of order 5. Subsequently, in Section 5.1.4 we will discuss
the efficient solution of the linear systems arising in the Newton iteration inside
the algorithm GEOMS. We will describe how the structure of the equations of motion
may be exploited.
Further important topics for the efficiency and the robustness of an algorithm
are an efficient error estimation and an appropriate step size control mechanism.
For GEOMS, this will be discussed in Section 5.1.5. Furthermore, since the algo-
rithm GEOMS is based on the combination of discretization and regularization to
the projected-strangeness-free formulation of the equations of motion which is in-
fluenced by the choice of the selectors, see Section 3.5.3, an efficient choice of these
selectors is also important and will be discussed in Section 5.1.6.
As mentioned above, the algorithm GEOMS is designed to handle equations of motion
of modeling level 4 (4.43) with possible redundant constraints as well as solution
invariants which may be provided as additional equations. The consideration of
redundant constraints and of solution invariants is a very sensitive topic and will
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be discussed in Sections 5.1.7 and 5.1.8.

5.1.1 Outline and features of GEOMS

Before we will discuss the features of GEOMS in detail, let us present an outline of
the algorithm.

Algorithm 5.1.1 (GEOMS)

1. Initializing of variables, constants, and problem dimensions. Set T= t0, X= x0

and H= h.

2. Checking the consistency and correction of the initial values X= x0, see Section
5.1.2.

3. Basic integration step.

(a) Simplified Newton iteration, see Algorithm 5.1.4.

(b) Error estimation and computation of a new step size HNEW, see Section
5.1.5.

(c) Check acceptance of the integration step.

i. If the integration step is not accepted, use the new step size H = HNEW

and repeat the integration step going to 3a (in particular, goto 6 in
Algorithm 5.1.4).

ii. If the integration step is accepted, continue.

(d) If T+H= tf , i.e., the end of the time domain I is reached return to the
calling program. If not, i.e., T+H< tf , ...

i. ... and the step size is unchanged and the convergence rate of the
Newton method was high, set T := T + H and goto 3a (in particular,
goto 6 in Algorithm 5.1.4).

ii. ... and the step size has been changed or the convergence rate of the
Newton method was not high, set H := HNEW, T := T+ H and goto 3a
(in particular, goto 1 in Algorithm 5.1.4).

As mentioned above, the algorithm GEOMS is based on residual computations. The
information of the equations of motion has to be provided in the following form.
The vector of the unknown variables has to be in the form

XT =
[

wT λT µT rT vT sT pT
]

and the right-hand side has to be specified in a user-supplied subroutine which
name is given from the user. The residuals of different parts have to be given in the
following order if they occur.

RDA =




d(p, v, r, w, s, λ, µ, u)
gII(p, v, r, w, s, λ, µ, u2)
hI(p, v, r, w, s, λ, µ, u1)

gI(p, v, s, u1)
H(p, s, u)Z(p)v + h(p, s, u)

e(p, v, s, u)
c(p, s, u)
g(p, s, u)

b(p, v, r, w, s, λ, µ, u)
f(p, v, r, w, s, λ, µ, u) − ZT (p)GT (p, s, u)λ − ZT (p)HT (p, s, u)µ

Z(p)v




(5.1)
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In particular, the right-hand side has to be ordered such that the upper part con-
tains the algebraic constraints ordered with respect to their dependencies, i.e., first
the constraints which restrict the additional variables w as well as the Lagrange
multipliers λ and µ, secondly, the constraints on velocity level and the information
concerning solution invariants which restrict the velocities v and third, the con-
straints on position level, which restrict the position p and the contact variables
s. The specified order of the algebraic part leads to a Jacobian of the form (4.58)
without respecting solution invariants and the unrestricted variables r. In partic-
ular, the obtained Jacobian has already block upper triangular structure and this
will be exploited in GEOMS.
The second part of the right-hand side contains the differential equations also or-
dered in the same way as the algebraic part. We have first the equations that
describe the behavior of the dynamical force elements followed by the dynamical
equations of motion and, finally, the kinematical equations of motion.

Option Name Feature Section
respecting invariant solutions 5.1.8
respecting hidden constraints
respecting nonholonomic constraints
respecting redundant constraints 5.1.7

IOPT( 2) LUN optional output for integration information
IOPT( 3) NIT maximal number of Newton iterations 5.1.3.4
IOPT( 4) STARTN starting values for the internal stages in the

Newton iteration
5.1.3.2

IOPT( 5) FORM incomplete regularization 5.1.1
IOPT( 6) NMAX maximal number of integration steps
IOPT( 8) PRED step size control 5.1.5
IOPT( 9) NWTMAT approximation of the Newton matrix at x0

or one of the extrapolated stages pos-
sible

5.1.3.3

IOPT(10) NWTUPD update of the Newton matrix 5.1.3.5
IOPT(11) DECOMPC LU, QR, or SV decomposition for the alge-

braic part
5.1.4

IOPT(12) DECOMPD LU or QR decomposition for the differential
part

5.1.4

IOPT(13) SELCOMP selector control 5.1.6
IOPT(14) AUTONOM exploitation of autonomous equations of mo-

tion
IOPT(15) MASSTRCT exploitation of the structure of the mass ma-

trix
IOPT(16) COMPLMDA avoiding the computation of Lagrange mul-

tipliers
IOPT(17) IVCNSST check and correction of the initial values

with respect to its consistency
5.1.2

Table 5.2: Options and features of GEOMS

In some cases the constraints of acceleration level, i.e., 0 = gII and 0 = hI , are
not available. In this case the user has the possibility to use the incomplete reg-
ularization of level 1 of the equations of motion as basis for the discretization, as
described in Remark 3.5.55 and Example 3.5.56. The incomplete regularization of
level 1 concerning the equations of motion of modeling level 4 (4.43) is discussed in
Theorem 4.6.15 and given by (4.123). This fact has to be communicated by the user
to the code GEOMS with help of the option IOPT(5)=FORM. If IOPT(5)=0 then the
projected-strangeness-free form (4.114) of the equations of motion will be expected
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Subroutines contained in the code GEOMS

GEBSUBST backward substitution of the algebraic part
GECORE core routine
GEDECCLU decomposition of the algebraic part FX1, FX2 and FX3 with LU

decomposition
GEDECCQR decomposition of the algebraic part FX1, FX2 and FX3 with QR

decomposition
GEDECCSV decomposition of the algebraic part FX1, FX2 and FX3 with SV

decomposition
GEDECDLU LU decomposition of the differential part, i.e., of E1 and E2

GEELIMFXQ elimination in the differential part, i.e., of FX4, FX5 and FX6,
according to QR decomposition of the algebraic part

GEELIMFXS elimination in the differential part, i.e., of FX4, FX5 and FX6,
according to SV decomposition of the algebraic part

GEELIMMIQ elimination in the mass matrix and the identity of the kinematical
equations of motion according to QR decomposition of the
algebraic part

GEELIMMIS elimination in the mass matrix and the identity of the kinematical
equations of motion according to SV decomposition of the
algebraic part

GEERREST error estimation, see Section 5.10
GEFXNUM numerical approximation of the Jacobian of the right-hand side

of the equations of motion
GEGREPEQ picking of nonpivot columns of the differential part and storing

in E1 and E2 according to QR decomposition
GEGREPES picking of nonpivot columns of the differential part and storing

in E1 and E2 according to LU and SV decomposition
GEINIVAL determination of consistent initial values, see Section 5.1.2
GEOMS main routine
GESOLDLU solving the differential part by use of LU decomposition
GESOLDQR solving the differential part by use of QR decomposition
GETRFRHSC transformation of the right-hand side according to the algebraic

part

User-supplied subroutines
EOM provides the reduced derivative array RDA (5.1)
IVCOND provides additional initial conditions needed for the consistent

initialization, see Section 5.1.2
JAC provides the Jacobi matrix of the reduced derivative array
MAS provides the mass matrix
SOLOUT output of the numerical solution and additional information dur-

ing integration

Table 5.3: Subroutines of GEOMS

as basis for the discretization. Thus, the user has to specify all information of the
hidden constraints up to level 2, i.e., up to acceleration level. If IOPT(5)=1, then
the discretization will be based on the incomplete regularization of level 1 (4.123),
such that the constraints on acceleration level 0 = gII and 0 = hI do not have to
be specified. In this case the used formulation of the equations of motion has max-
imal constraint level νc = 1 and is of s-index νs = 1, i.e., it is not strangeness-free.
Because of the fact that the used formulation is not strangeness-free, the success
of the numerical integration highly sensitively depends on the problem and on the
consistency of the initial values, in particular, on the consistency of the Lagrange
multipliers λ and µ.
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An overview over the features of GEOMS is given in Table 5.2. Furthermore, in Table
5.3 the subroutines belonging to GEOMS and their task is listed.

5.1.2 Determination of consistent initial values

In Sections 4.2 we have discussed the regularity of the equations of motion of multi-
body systems. The initial values are of great importance for the existence and the
uniqueness of the solution. For the existence of a solution the consistency of the
initial values is necessary, see Definition 3.1.3 and Remark 4.2.26. But in complex
multibody systems, in particular, with a large number of kinematical closed loops
the consistency of the initial values is not natural. While the additional variables
w and the contact variables s are completely determined by the solution manifold
M (4.65) the position variables p and the velocity variables v are restricted to the
solution manifold M, see (4.65), but some of the position and velocity variables
are freely choosable. Furthermore, the variables r describing the dynamical force
elements are completely freely choosable. In case of nonredundant constraints the
Lagrange multipliers λ and µ are uniquely defined by the holonomic constraints on
acceleration level in combination with the nonholonomic constraints on acceleration
level, which are not explicitly given in the equations of motion. This uniqueness
arises from the nonsingularity of the matrix in (4.49) respectively (4.56) and the
Implicit Function Theorem 2.3.1.
The code GEOMS overcomes these problems by offering the possibility to determine
consistent initial values.
In addition to the algebraic equations determining the solution manifold (4.65),
the user has to define in a subroutine IVCOND additional conditions to determine
consistent initial values. Such conditions offer the possibility to determine some of
the freely choosable variables or to give further relations to other variables which
allows a unique determination of consistent initial values.

Example 5.1.2 The mathematical pendulum: In Example 4.1.12 we have
introduced the mathematical pendulum. The position variables p are restricted
to the circle with radius L, i.e., the constraint on position level is given by 0 =
p2
1 + p2

2 − L2. If one of the position variables is given, the other one is uniquely
determined up to the sign.
By defining some additional conditions via the subroutine IVCOND the user can force
the pendulum into a deviation of π/4 by setting p1 = L/

√
2 or by 0 = p1 + p2, for

instance. Furthermore, a certain angular velocity ω can be prescribed by setting
0 =

√
v2
1 + v2

2/L − ω. �

The determination of consistent initial values is done in the subroutine GEINIVAL

and is based on the collection of all algebraic constraints (4.43d)-(4.43g) and (4.50),
(4.51), and (4.53) in connection to the conditions defined in the subroutine IVCOND.
The user has to decide if the given initial values are assumed to be consistent or not.
By setting IOPT(17)=IVCNSST=1, the initial values are assumed to be consistent
and no check of consistency or correction of the initial values is done during the
run of GEOMS. Otherwise, by setting IOPT(17)=0, the initial values are considered
to be possibly inconsistent. Thus, consistency will be checked and the initial values
will be corrected during the run of GEOMS, if necessary. If the user does not provide
sufficiently many additional conditions, only the consistency is checked. If the
initial values are consistent, then the integration will be continued, otherwise the
run of GEOMS will be stopped. If the user provides more additional conditions than
necessary, then the correction (if necessary) is done regarding the overdetermined
nonlinear system. If all conditions together are noncontradictory, then consistent
initial values will be determined. Otherwise, the Newton iteration used in this
process will diverge and the run of GEOMS will be stopped.
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The solution of the nonlinear system of equations is obtained via a simplified Newton
method with the possibility of a certain number of updates of the iteration matrix,
as described in Section 5.1.3.5. The stopping criterion is the same as that for
the simplified Newton method during the integration process described in Section
5.1.3.5.

Remark 5.1.3 Note the fact that the conditions provided to IVCOND by the user
dominate the given initial guess, i.e., if the given initial guess is consistent but does
not satisfy the (possibly wrong) conditions provided to IVCOND, the initial guess will
be corrected in such a way that both, the constraints (4.43d)-(4.43g) and (4.50),
(4.51), and (4.53) and the initial conditions provided to IVCOND are satisfied.
In case of an initial guess which is consistent to the constraints, the option IOPT(17)

can be set to one to avoid such a correction. Otherwise, the conditions provided to
IVCOND should be adapted. �

If there is only interest in the computation of consistent initial values, the user has
to set T=TEND and IOPT(17)=0. Then the code GEOMS determines consistent initial
values, will call the user-supplied subroutine SOLOUT, and finally will return to the
calling subroutine.

5.1.3 Numerical solution of the nonlinear stage equations

arising from discretization methods

The presented code GEOMS is designed for the numerical integration of equations of
motion of modeling level 4 (4.43) with possibly redundant constraints and possi-
bly known solution invariants (4.28), as discussed in Section 4.1.4. The algorithm
combines the regularization technique developed in Section 4.6.2.3 with the dis-
cretization of the obtained projected-strangeness-free form of the equations of mo-
tion (4.114) by use of the implicit Runge-Kutta method of type Radau IIa of order
5. The projected-strangeness-free formulation of the equations of motion belongs to
the class of quasi-linear DAEs discussed in Section 3.5. The discretization of quasi-
linear DAEs by use of implicit Runge-Kutta methods has been discussed in Section
3.5.4 and requires the solution of the nonlinear stage equation (3.113a). Following
Section 3.5.4.2, the nonlinear stage equation is solved by the simplified Newton
method. Regarding the simplified Newton method the following four questions are
important:

1. how to get suitable starting values which are close enough to the solution to
guarantee the convergence and to decrease the effort for the whole Newton
process;

2. how to choose the Newton iteration matrix N;

3. how to implement the simplified Newton method efficiently such that as much
as possible of the given structure of the problem is exploited;

4. how to stop Newton iteration process such that the computed numerical so-
lution is close enough to the analytical solution with respect to the given
tolerances.

In the following we will discuss theses four questions in detail.

5.1.3.1 Discretization scheme

As mentioned above, the numerical integration of the equations of motion of mod-
eling level 4 (4.43) is based on the discretization of the projected-strangeness-free
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form (4.114) which corresponds to a semi-implicit DAE of the form (3.106) with

ẼD(x, ũ) =




Inp
0 0 0 0 0 0

0 M(p, u) 0 0 0 0 0
0 0 Inr

0 0 0 0


 ,

k̃D(x, ũ) =




Z(p)v
f(p, v, r, w, s, λ, µ, u)−ZT (p)GT (p, s, u)λ−ZT (p)HT (p, s, u)µ

b(p, v, r, w, s, λ, µ, u)


 ,

k̃C(x, ũ) =




d(p, v, r, w, s, λ, µ, u)
c(p, s, u)

H(p, s, u)Z(p)v + h(p, s, u)
g(p, s, u)

hI(p, v, r, w, s, λ, µ, u)
gI(p, v, s, u)

gII(p, v, r, w, s, λ, µ, u)
e(p, v, s, u)




,

SD(x, ũ) =




Sp(p, u) 0 0
0 Sv(p, u) 0
0 0 Inr


 ,

SC(x, ũ) =




Inw
0 0 0 0 0 0 0

0 Ins
0 0 0 0 0 0

0 0 Sµ(p, u) 0 0 0 0 0
0 0 0 Sλ(p, u) 0 0 0 0
0 0 0 0 Sµ(p, u) 0 0 0
0 0 0 0 0 Sλ(p, u) 0 0
0 0 0 0 0 0 Sλ(p, u) 0
0 0 0 0 0 0 0 Ine




.

Note that in addition to the constraints we take into account possible information
of solution invariants (4.28).
The discretization of this DAE follows the investigations in Section 3.5.4.1 by ex-
ploiting the structure of the Jacobi matrix of the right-hand side which has conve-
nient structure similar to (4.58) after row permutations.
The discretization leads to the nonlinear stage equation (3.113a) which has to be
solved by use of the simplified Newton method described in Section 3.5.4.2. This
leads to the linear systems (3.128) and (3.129) which are to be solved in an efficient
way by exploiting the structure as will be described in Section 5.1.4 below.

5.1.3.2 Determination of starting values

Lemmata 2.3.19 and 2.3.21 show the importance of a good choice of starting val-
ues for the Newton process. In the code GEOMS two different possibilities for the
determination of starting values for the integration step from t1 to t2 = t1 + h2

are implemented. The user has to define in advance which of both shall be chosen
during the integration process.
By setting IOPT(4)=STARTN=1 the starting values for the internal stages are chosen
by X0

i = x1, i = 1, ..., 3, i.e., the shifted internal stages are set to zero Y 0
i = 0 ∈ Rn,

Y0 = 0 ∈ R3n.
On the other hand setting IOPT(4)=0 (which is the default) the starting values for
the Newton iteration are obtained by evaluating the interpolation polynomial q of
degree s over the already passed integration interval from t0 to t1 = t0 + h1 with

q(0) = 0, q(ci) = Yi, i = 1, ..., 3
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at 1 + cih2/h1 such that we obtain the starting values for the Newton iteration as

Y 0
i = q(1 + cih2/h1) + x0 − x1, i = 1, ..., 3,

where x0 and x1 denote the numerical solutions at the points t0 and t1, respectively.
In particular, this means that the new starting values in the integration step from
t1 to t2 = t1 + h2 are obtained by extrapolation to the points t1 + cih2, i = 1, ..., 3
based on the internal stages of the earlier integration step from t0 to t1 = t0+h1. Of
course, this is not possible in the first step. Here we set Y 0

i = 0 ∈ Rn, Y0 = 0 ∈ R3n.
For more details see [82].

5.1.3.3 Determination of the Newton iteration matrix

In Section 3.5.4.2 the numerical solution of the nonlinear stage equation (3.113a)
via the Newton method is discussed. In particular, it is mentioned that a constant
Newton iteration matrix N during the whole or several parts of the Newton itera-
tion process inside the current integration step from ti to ti+1 = ti + hi leads to the
simplified Newton method. Obviously, the choice of a constant Newton iteration
matrix reduces the amount of computation because of the saved evaluation of Jaco-
bians and saved decompositions of the Newton iteration matrix in every except the
first iteration step. But the choice of the Newton iteration matrix influences the
convergence of the iteration process. For this reason, the code GEOMS offers the pos-
sibility to choose between several reference points (X∗, U∗), see (3.115). The kind
of choice has to be determined by the user by setting the option IOPT(9)=NWTMAT.
The range of possible choices is related to the stages during the integration step. As
discussed in the previous Section 5.1.3.2, there are two possibilities for the choice of
initial values for the iteration process for the determination of the internal stages.
In case of IOPT(4)=0 the initial values are obtained by extrapolation of the so
far computed solution in the points ti + hicj , j = 1, 2, 3. This offers the possibil-
ity to approximate the Newton iteration matrix at four different reference points
(X∗, U∗) = (X0

j , u(ti + hicj)), where c0 = 0 and cj , j = 1, 2, 3 correspond to the
node vector of the Runge-Kutta method, see Table 3.1 or, in particular, Table 5.1.
Furthermore, X0

j = Y 0
j + xi corresponds to the extrapolated initial values for the

internal stages at the times ti + hicj , j = 0, ..., 3, and, in particular, X0 = x0

corresponds to the initial state of the current integration interval. Note that this
possibility is only given if the initial values for the Newton iteration process are ex-
trapolated. In the case of initial values chosen such that Xj = x0 for all j = 1, 2, 3
this possibility is not given and the Newton iteration matrix will be approximated
at the initial point with the initial state of the current integration step.
Several numerical experiments have shown that the convergence of the iteration
process can be improved by use of extrapolated initial values, i.e., IOPT(4)=0 in
connection with an approximation of the Newton iteration matrix at the second in-
ternal stage, i.e., (X∗, U∗) = (X0

2 , u(ti+hic2)) with IOPT(9)=2. But, if the Newton
iteration detects convergence problems, and the integration step has to be repeated
with a smaller step size, the Newton iteration matrix has to be recomputed such
that the overall time consume may increase if the number of times a convergence
problem is detected is large. This number is reflected in the counter NCRJCT which
corresponds to the number of step rejections caused by convergence test failures.
Furthermore, the code GEOMS offers the possibility of a certain number of updates of
the Newton iteration matrix during the iteration process inside of one integration
step, see Section 5.1.3.5.

5.1.3.4 Simplified Newton method

The simplified Newton method is implemented in the following way.
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Algorithm 5.1.4 (Simplified Newton method in GEOMS) Consider the numer-
ical solution of the nonlinear stage equation (3.113a) in the integration step from
tk to tk+1 = tk + hk.

1. Determination of starting values Y0
k, see Section 5.1.3.2.

2. Computation of Z0
k = (T−1 ⊗ In)Y0

k.

3. Initialization of i = 0.

4. Determination of the Newton iteration matrix, see Section 5.1.3.3.

(a) Computation of the mass matrix and storage in FMAS and M0.

(b) Initialization of IKIN corresponding to the leading matrix in the kine-
matical equations of motion.

(c) Computation of the (negative and partially scaled) Jacobian of the right-
hand side, storage in FX1, ..., FX6.

5. Predecomposition of the Jacobian and determination of the pivoting vector
PIV, see Section 5.1.4.

(a) Decomposition of the constraint part FX1, FX2 and FX3 and determina-
tion of the pivoting vector.

(b) Elimination in the differential part, i.e., FX4, FX5, FX6, FMAS, IKIN.

6. Decomposition of the differential part, see Section 5.1.4.

(a) Determination of E1 und E2.

(b) Decomposition of the differential part, i.e., of E1 and E2.

7. Internal loop of the simplified Newton iteration, see Section 5.1.3.4.

(a) Computation of Xi
k = Yi

k + (11 ⊗ xk).

(b) Computation of the right-hand side.

(c) Transformation of the right-hand side with respect to the decompositions
of FX1, ..., FX6, FMAS, IKIN, E1, and E2.

(d) Backward substitution of the differential part.

(e) Backward substitution of the constraint part.

(f) Transformation of the solution with the transformation matrix P .

(g) Update of the Newton iterate Zi+1
k = Zi

k + ∆Zi
k.

(h) Computation of Yi+1
k = (T ⊗ In)Zi+1

k .

(i) Check of the convergence of the Newton method.

i. If the maximal number of iterations is reached, i.e., i > NIT =
IOPT(3), then stop the Newton iteration, half the step size H := H/2
and repeat the integration step going to 1 .

ii. If a solution is not yet found and an update of the Newton matrix
is necessary and allowed, goto 4.

iii. If a solution is not yet found and an update of the Newton matrix
is not necessary, increase i by one and goto 7a.

Note that during the whole Newton iteration process the shifted stages Yi
k as well

as the transformed stages Zi
k are stored in order to avoid additional effort for the

transformation Zi = (T−1 ⊗ In)Yi during the evaluation of the functions.
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5.1.3.5 Convergence and termination criterion of the simplified Newton
process

The convergence rate of the simplified Newton method is investigated in detail in
[42]. For the special case of applying the simplified Newton method to the linear
systems arising in the discretization of semi-explicit DAEs or of equations of motion
we have convergence results from [79, 117].
One important question in the use of an iterative method for solving linear systems
inside an integration process is when to stop the iteration such that the obtained
accuracy of the computed solution of the nonlinear system is within the prescribed
tolerance without performing too many Newton iteration steps.
The convergence estimation and the stopping criterion implemented in GEOMS is
adopted from the code RADAU5 and described in [82]. The estimation of the conver-
gence bases on the weighted root square norm || · ||sc which is defined for ζ ∈ R

n

by

||ζ||sc =

√√√√ 1

n

n∑

i=1

(
ζi

sci

)2

(5.2)

with sci = ATOL(i) + max(|x0i|, |x1i|)RTOL(i), see [82]. For the sake of completeness
we will review the results from [82].
If we are in the Newton iteration step k and have determined the new iterate Yk+1,
the iteration will be stopped if

||Yk+1 − Y∗||sc ≤ κTOL (5.3)

with an appropriate choice of the parameter κ, where Y∗ is the exact solution of
the nonlinear stage equation (3.113a) and TOL the prescribed tolerance for the in-
tegration process. The question now is how to estimate ||Yk+1 − Y∗||sc.
Since the convergence of the simplified Newton method is linear, we have the esti-
mate

||∆Yk+1||sc ≤ Θ||∆Yk||sc,

where the ∆Yk are determined in (3.117) inside the simplified Newton iteration for
the solution of the nonlinear stage equation (3.113a). By applying the triangular
inequality we get from

Yk+1 − Y∗ = (Yk+1 − Yk+2) + (Yk+2 − Yk+3) + ...

the estimate

||Yk+1 − Y∗||sc ≤ Θ

1 − Θ
||∆Yk||sc. (5.4)

We estimate the convergence rate Θ by Θk defined by

Θk = ||Yk||sc/||Yk−1||sc for k ≥ 1.

Therefore, in view of (5.3) and (5.4) we can decide to stop the Newton iteration
and to accept Yk+1 as approximation to the exact solution Y∗ if

ηk||∆Yk||sc ≤ κTOL with ηk =
Θk

1 − Θk
. (5.5)

In the first Newton iteration step we set

η0 = (max(ηold, Uround))0.8
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where ηold is last ηk from the preceding integration step and Uround denotes the
rounding unit. The norm used for the convergence estimate should be the same as
for the the local error estimate of the integration process, see Section 5.1.5.
In the case of a very slow convergence or, in particular, in the case of divergence,
the number of Newton iteration steps has to be restricted by a maximal number
kmax = NIT. Thus, the Newton iteration will be stopped if
a) for some k we have that

Θkmax−k
k

1 − Θk
||∆Yk||sc > κTOL,

in this case the criterion (5.5) will probably not be satisfied within the maximal
number kmax of allowed Newton iteration steps, or
b) there is a k with Θk ≥ 1, i.e., the iteration diverges.
If case a) applies, i.e., the Newton iteration is not fast enough to converge within
kmax Newton iteration steps, the user has to decide whether the whole integration
step has to be rejected because of convergence failures and to be repeated with a
reduced step size, or if the Newton iteration should be continued with an updated
Newton iteration matrix. In GEOMS this decision is made by defining the maximal
number of updates in the option IOPT(10)=NWTUPD. However, several numerical re-
sults suggest that the number of allowed updates should not exceed 1, because of
the fact that the amount of computation for one integration step with one allowed
update of the Newton iteration matrix is about as high as the amount of computa-
tion for two integration steps with half the step size but no allowed update of the
Newton iteration matrix.
It should be noted that the possibility of an update of the Newton iteration matrix
within the Newton iteration process is not available in the code RADAU5.

5.1.4 Numerical solution of the linear systems arising from

discretization methods

As we have seen in Section 3.5.4.3 the sequence of regularization and discretization
in the numerical treatment of quasi-linear DAEs can be reversed, i.e., we can either
first regularize the differential-algebraic equations via the projected-strangeness-
free DAE (3.77) and then discretize the projected-strangeness-free DAE, or first
discretize the complete minimal reduced derivative array (3.66) and uses index re-
ducing decompositions for the solution of the linear system of type 1 (3.154) and of
the linear system of type 2 (3.155) in the Newton iteration. Both approaches are
equivalent, see Theorem 3.5.75 and Figure 3.2. In GEOMS we will follow the second
approach.
for this, we have to solve two different linear problems. First, the linear problem
(3.154) with n = np + nv + nr + nw + ns + nλ + nµ unknowns ξ and m = mC + mD

equations has to be solved. In particular, this means that we have to satisfy the
algebraic part Cξ = bC consisting of mC = nw + ns + 3nλ + 2nµ + me equations
within a prescribed tolerance, where me is the number of solution invariants, and
with respect to the differential part mD = np +nv +nr equations (γD +hB)ξ = bD

have to solved in a generalized way with respect to the restrictions of the algebraic
part. Secondly, the linear problem (3.155) has to be solved which has the double
number of equations and unknown variables.
The numerical solution of these linear problems is discussed in general in Section
3.5.4.3 without a detailed specification of the transformation matrices Q

∗

R, QR, QI ,
and P

∗

.
The code GEOMS offers the possibility to decompose the differential part and the
algebraic part via different decomposition methods. The user has to specify with
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the option IOPT(11)=DECOMPC if the algebraic part should be decomposed by use
of the LU decomposition with full pivoting (IOPT(11)=1), by a QR decomposition
with pivoting (IOPT(11)=2), or by a SV decomposition (IOPT(11)=3). It is known
that the LU decomposition is the cheapest choice with respect to the amount of
computation. But, with respect to numerical stability it is not the best choice,
despite full pivoting. On the other hand, the SV decomposition offers excellent
stability properties but is more expensive. Nevertheless, the default decomposi-
tion is the SV decomposition unless the user specifies another decomposition. Let
us note that heuristically seen, the LU decomposition with (partial) pivoting is
a good compromise concerned efficiency and stability such that it is sufficient for
many computations. Furthermore, with the option IOPT(12)=DECOMPD, the user
can specify how to decompose the differential part. By setting IOPT(12)=0 the
LU decomposition with partial pivoting is used and by setting IOPT(12)=1 the QR
decomposition is used. Concerning the decomposition of the differential part also
note the following detailed considerations. For strangeness-free differential-algebraic
systems in semi-implicit form the scaling of the algebraic constraints with 1/h is
recommended in [136], see Remark 3.5.61. Since the numerical integration of the
equations of motion in GEOMS is based on the projected strangeness-free formulation
of the equations of motion, the constraints are scaled by 1/h. Note that the matrix
in (3.154) and (3.155) has the following structure

C =




F11 F12 F13 F14

0 0 F23 F24

0 0 0 F34


 , (5.6)

with

F11 =




d,w d,λ d,µ

gII
,w gII

,λ gII
,µ

hI
,w hI

,λ hI
,µ


 , F12 =




d,r

gII
,r

hI
,r


 , F13 =




d,v

gII
,v

hI
,v


 , F14 =




d,s d,p

gII
,s gII

,p

hI
,s hI

,p


 ,

F23 =




gI
,v

HZ
e,v


 , F24 =




gI
,s gI

,p

h̆,s h̆,p

e,s e,p


 ,

F34 =

[
c,s c,p

g,s g,p

]
,

where the matrix entries are evaluated at the particular state (X∗, Û∗) given by
(X∗, Û∗) = (p∗, v∗, r∗, w∗, s∗, λ∗, µ∗, u2∗), see (3.115). Because of this block struc-
ture, it is more efficient only to store the nonzero blocks such that the storage is
done with

FX1 =
[
−F11 −F12 −F13 −F14

]
, FX2 =

[
−F23 −F24

]
, FX3 =

[
−F34

]
.

In the case of regular equations of motion, we have the full (row) rank of F11, F23,
and F34 from Assumptions (4.55a)-(4.55c) and (4.56). In the case of quasi-regular
equations of motion we have at least the constant rank of F11, F23, and F34 from
Assumption 4.2.4.
Because of the upper block triangular structure, the transformation matrix Q

∗

C can
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be chosen as

Q
∗

C =




Q
∗1

C1 0 0

0 Q
∗1

C2 0

0 0 Q
∗1

C3

Q
∗2

C1 0 0

0 Q
∗2

C2 0

0 0 Q
∗2

C3




where the block dimensions of Q
∗

C corresponds to the block structure of C. The
particular structure of C and Q

∗

C reduces the amount of computation with respect to
the decomposition of the constraint part. Furthermore, the matrix P

∗

is determined
in the form

P
∗

=




P
∗

11 0 0 P
∗

12 0 0 0
0 0 0 0 Inr

0 0

0 P
∗

21 0 0 0 P
∗

22 0

0 0 P
∗

31 0 0 0 P
∗

32


 .

The matrices Q
∗

C and P
∗

are chosen such that the relations
[

Q
∗1

C1

Q
∗2

C1

]
F11

[
P
∗

11 P
∗

12

]
=

[
R
∗

C1 S
∗

C1

0 0

]
,

[
Q
∗1

C2

Q
∗2

C2

]
F23

[
P
∗

21 P
∗

22

]
=

[
R
∗

C2 S
∗

C2

0 0

]
,

[
Q
∗1

C3

Q
∗2

C3

]
F34

[
P
∗

31 P
∗

32

]
=

[
R
∗

C3 S
∗

C3

0 0

]
,

are satisfied with nonsingular upper triangular matrices R
∗

Ci, i = 1, 2, 3 of appro-
priate size. We get (3.157) with

R
∗

C =




R
∗

C1 Q
∗1

C1F13P
∗

21 Q
∗1

C1F14P
∗

31

0 R
∗

C2 Q
∗1

C2F24P
∗

31

0 0 R
∗

C3


 ,

V
∗

C P̌2 =




S
∗

C1 Q
∗1

C1F12 Q
∗1

C1F13P
∗

22 Q
∗1

C1F14P
∗

32

0 0 S
∗

C2 Q
∗1

C2F24P
∗

32

0 0 0 S
∗

C3


 .

Note that the permutations are not actually performed in GEOMS and the zeros in the
left lower parts of R

∗

C and V
∗

C P̌2 are respected. Furthermore, the transformation
matrices are stored in the new zero entries in the arrays FX1, FX2, and FX3, i.e.,
in the lower left part of the matrices R

∗

Ci for i = 1, 2, 3. If the LU decomposition
or QR decomposition are used in the algebraic part, the transformation matrix P

∗

corresponds to the pivoting and is stored in a pivoting vector PIV. In the case of
the SV decomposition P

∗

corresponds to the orthogonal matrix that is applied from
the right.
Subsequently, after detecting the full rank part of the constraints, the elimination
of the corresponding columns in the differential part will be performed. This will
analogously be done for the Jacobian of the right-hand side, i.e., for

B =




F41 F42 F43 F44

F51 F52 F53 F54

0 0 F63 F64


 , (5.7)
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with

F41 =
[

b,w b,λ b,µ

]
,

F42 =
[

b,r

]
,

F43 =
[

b,v

]
,

F44 =
[

b,s b,p

]
,

F51 =
[

f,w f,λ − ZT GT f,µ − ZT HT
]
,

F52 =
[

f,r

]
,

F53 =
[

f,v

]
,

F54 =
[

(f − ZT GT λ − ZT HT µ),s (f − ZT GT λ − ZT HT µ),p

]
,

F63 =
[

Z
]
,

F64 =
[

0 (Zv),p

]
,

and with respect to the corresponding part of the leading matrix, i.e., for

D =




0 Inr
0 0

0 0 M 0
0 0 0 [0 Inp

]


 , (5.8)

where the matrix entries in B and D are evaluated at the particular state (X∗, Û∗) =
(p∗, v∗, r∗, w∗, s∗, λ∗, µ∗, u2∗), see (3.115). The matrices are stored as

FX4 =
[
−F41 −F42 −F43 −F44

]
, FMAS =

[
M 0

]
,

FX5 =
[
−F51 −F52 −F53 −F54

]
, IKIN =

[
0 Inp

]
,

FX6 =
[
−F63 −F64

]
.

The allocation of the zero entries in FMAS and IKIN is necessary for subsequent
matrix transformations. Furthermore, we determine two transformation matrices
L
∗

D and L
∗

B according to (3.159) of the form

L
∗

D =




0 0 0

0 L
∗

D52 L
∗

D53

0 0 L
∗

D63




and

L
∗

B =




L
∗

B41 L
∗

B42 L
∗

B43

L
∗

B51 L
∗

B52 L
∗

B53

0 L
∗

B62 L
∗

B63


 .

These matrices will be stored in the new zero entries in the arrays FX4, FX5, FX6,
FMAS, and IKIN which originate from the elimination process, see (3.160a).
As mentioned in Remark 3.5.82, note that the transformations done up to this point
correspond to the predecomposition process and, therefore, no information on the
step size h or the Runge-Kutta coefficients is necessary for these eliminations. These
eliminations are done at a very early stage of an integration step. The transforma-
tion matrices Q

∗

C , P
∗

, L
∗

B , and L
∗

D as well as the obtained matrices R
∗

C , V
∗

C P̌2, V
∗

B ,
and V

∗

D allow an efficient solution of the linear problems (3.154) and (3.155).
After finishing the predecomposition process, we have a decomposition of the al-
gebraic part and we have those parts of the solution inside the differential part
eliminated which are already determined by the algebraic part.
It remains the investigation of the differential part, which now depends on the step
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size h and the Runge-Kutta coefficients γ, α, and β. For the investigation of the
differential part, we have to decompose the linear system of the form

[
0 (γV

∗

D + hV
∗

B)P̌2

] [ ζ1

ζ2

]
= (γL

∗

D + hL
∗

B)Q1
CbC + bD, (5.9)

see (3.160a) with ζ2 having a dimension corresponding to (γV
∗

D + hV
∗

B)P̌2 and V
∗

D

and V
∗

B are defined in (3.160b). We are only interested in the second part ζ2 because
the first part ζ1 then can be determined from the algebraic part. In particular, we
have to determine and to decompose the matrix

E1 = (γV
∗

D + hV
∗

B)P̌2 = γ(L
∗

DQ
∗1

CC + D)P̌2 + h(L
∗

BQ
∗1

CC + B)P̌2.

Fortunately, because of the predecomposition process, we have already computed

L
∗

DQ
∗1

CC + D and L
∗

BQ
∗1

CC + B and have stored them in the arrays FMAS, IKIN and
FX4, FX5, FX6, respectively. Furthermore, also the matrix P̌2 is known from the
predecomposition process such that the determination of E1 mainly needs storage
effort.
Furthermore, we have to solve the second linear system of type 2 (3.155) that
consists also of the blocks C, B, and D given in (5.6), (5.7), and (5.8), respectively.

As discussed in Section 3.5.4.3, the transformation matrices Q
∗1

C , P
∗

, L
∗

D, and L
∗

B

may be reused for the linear system of type 2 (3.155) such that a large part of
the necessary computations already has been done. Thus, in the decomposition
process of the linear system (3.155) it remains to decompose the differential part of
the linear system (3.155). For this, it remains to determine and to decompose the
matrix

E2 =

[
(αV

∗

D + hV
∗

B)P̌2 (−βV
∗

D + hV
∗

B)P̌2

(βV
∗

D + hV
∗

B)P̌2 (αV
∗

D + hV
∗

B)P̌2

]
,

compare with (3.169). From the predecomposition process we already have com-
puted V

∗

D and V
∗

B and we have stored them in the arrays FMAS, IKIN, and FX4,
FX5, FX6, respectively, such that their determination mainly needs storage effort.
Hence, the decomposition of the remaining differential part contained in E1 and E2

may be carried out in a straight-forward way using the LU decomposition or QR
decomposition (in general, the use of the SV decomposition is possible but it is not
implemented).

After the transformation of the right-hand side
[

bT
C bT

D

]T
according to (3.167a)

and
[

bT
1C bT

1D bT
2C bT

2D

]T
according to (3.170a) we get the solution of the lin-

ear systems (3.154) and (3.155) via backward substitution.
Note that we offer two alternatives for the decomposition of the differential part of
the linear systems (3.154) and (3.155). First, the solution may obtained by use of
the LU decomposition of E1 and E2 with IOPT(12)=DECOMPD=0 and on the other
hand the solution may obtained by use of the QR decomposition of E1 and E2 with
IOPT(12)=DECOMPD=1.

Remark 5.1.5 The described approach has the advantage that the predecompo-
sition process can be done independently of the step size h or the parameters γ, α,
or β, for both linear systems (3.154) and (3.155). Only the decomposition of the
differential part has to be done separately using h, γ, α, and β. In particular, if the
Newton iteration process has convergence problems and the algorithm interrupts
the Newton process for another try with a reduced step size, then the information
of the predecomposition process may be recycled which saves computational work.
In the case of the use of the LU decomposition for the differential part, it is pos-
sible to consider the linear system (3.155) as a system of half the dimensions in C

according to [82]. �
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Remark 5.1.6 For the linear algebra computations like QR decompositions and
SV decompositions we use BLAS1 (Basic Linear Algebra Subprograms) [111] and
LAPACK2 (Linear Algebra PACKage) [2] subroutines. �

Remark 5.1.7 In the case of the numerical integration of regular equations of
motion, see Definition 4.2.8, the linear systems (3.154) and (3.155) are uniquely
solvable. �

5.1.5 Error estimation and step size control

The step size control of the integration process is a very sensitive topic in the im-
plementation of numerical algorithms for the integration of ODEs as well as for
DAEs. An overview over several step size control strategies is given in [169], see
also [25, 39, 63, 82]. The code GEOMS works with two different step size control
strategies as used in the code RADAU5 adapted to the structure of the equations of
motion.
The base for a control mechanism of the step size is a local error estimation. Ac-
cording to [82] we use in GEOMS

(γÊ(X∗, Û∗) − hk̂,x(X∗, Û∗))err = hk̂(x0, û(t0)) + Ê(x0, û(t0))
3∑

i=1

eiYi (5.10a)

with

(e1, e2, e3) = (−13 − 7
√

6,−13 + 7
√

6,−1)/(3γ) (5.10b)

for the determination of the local error err. Following the investigations in Section
3.5.4.3 for the numerical integration of the projected-strangeness-free formulation
(4.114) of the equations of motion (4.43) we get the unselected linear system in the
form (3.154) with (5.6), (5.7), (5.8), and with ξ = err and

bC = 0,

bD = h




b
f − ZT GT λ − ZT HT µ

Zp




+γ




0 Inr
0 0

0 0 M 0
0 0 0

[
0 Inp

]




3∑

i=1

eiYi,

where the entries are evaluated at the particular state (X∗, Û∗) given by (X∗, Û∗) =
(p∗, v∗, r∗, w∗, s∗, λ∗, µ∗, u2∗), see (3.115) and which has to be solved in an index re-
ducing sense as discussed in Sections 3.5.4.3 and 5.1.4. The right-hand side bC of
the algebraic part can be assumed to be zero, since it describes the algebraic re-
strictions and all of them are satisfied by all stages Xi because of the properties of
Radau IIa methods applied to semi-implicit DAEs (3.24), see Section 5.1.3.1.
Since the solution of the linear system (5.10) is based on the same approach as
discussed in Section 5.1.4, from the simplified Newton iteration we have already all
information of the decomposition of the leading matrix in (5.10) which corresponds
to the leading matrix in (3.123), see Section 5.1.4. Only the transformation of the
right-hand side and the backward substitution has to be performed. The error es-
timation is implemented in the subroutine GEERREST.

1BLAS - http://www.netlib.org/blas/
2LAPACK - http://www.netlib.org/lapack/
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For the choice of a new step size for the next integration step or a repeated integra-
tion step there are two possibilities implemented in GEOMS which have to be selected
by use of the option IOPT(8)=PRED. First, with IOPT(8)=2 the classical step size
controller developed in [63] uses the step size strategy

hnew = fac hk ||errk+1||−1/4
sc (5.11)

with errk+1 determined by (5.10) in the current integration step from tk to tk+1 =
tk + hk, and the weighted root square norm || · ||sc defined in (5.2) with sci =
ATOL(i) + max(|x0i|, |x1i|)RTOL(i), see [82]. The safety factor fac is proposed to
depend on NEWT, the number of Newton iterations of the current step and on the
maximal allowed number of Newton iterations NIT. We use fac = SAFE(2NIT +
1)/(2NIT + NEWT), where SAFE is a safety factor with default value SAFE= 0.9, see
[82]. Secondly, if IOPT(8)=1, then the step size selection is based on a predictive
step size controller, developed by Gustafsson in [78]. There, it has been proposed
to determine the new step size by

hnew = fac hk

(
1

||errk+1||sc

)1/4
hk

hk−1

( ||errk||sc

||errk+1||sc

)1/4

, (5.12)

see [82]. Obviously, this predictive step size control (5.12) is not possible in the
first step. Therefore, the classical step size controller (5.11) will be used in the
first integration step. The predictive controller (5.12) needs slightly more work and
storage than the classical controller but is more flexible in the adaptation of the
step size. By use of the controller (5.12) a faster reduction of the step size without
step rejections is possible than by use of the classical controller (5.11). This leads to
a possible reduction of the overall amount of computation. It is our experience that
the predictive step size controller (5.12) seems to produce safer results for simple
problems, on the other hand, the choice of the classical controller (5.11) produces
often slightly faster runs, see also [82].
In GEOMS the predictive step size controller (5.12) will be used by default if the user
does not specify anything else.

5.1.6 Selector control

In general, it is not necessary to newly compute selectors in every integration step.
Rather, it is possible to keep the selectors constant for a certain number of integra-
tion steps.
In case of the QR decomposition for the differential part, the whole selector in ma-
trix form has to be stored. Then in every integration step the differential part has
to be premultiplied with the stored selectors and after that the decomposition has
to be performed. At least, this procedure is inefficient for systems with a small
number of constraints. If the LU decomposition is used, there is the possibility
derived from the pivoting to store the selectors in a pivoting vector only. Let us
illustrate this strategy for the decomposition of the differential part of the linear
system (3.154), i.e., we have to solve the linear system (5.9) with E1 ∈ RmD,n−rC ,
mD ≥ n − rC . We have the LU decomposition with pivoting in the form

LE1PE1E1
[

P
∗

2 P
∗

3

]
=

[
R
∗

R V
∗

R

0 0

]
,

where P
∗

=
[

P
∗

1 P
∗

2 P
∗

3

]
∈ Rn,n is nonsingular and P

∗

1 ∈ Rn,rC is known from
(3.156), LE1 ∈ RmD,mD is a lower triangular matrix with ones on the diagonal,
R
∗

R ∈ RrD,rD is a upper triangular matrix, and

PE1 =

[
P 1
E1

P 2
E1

]
∈ R

mD,mD
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with P 1
E1 ∈ RrD,mD and P 2

E1 ∈ RmD−rD,mD is the pivoting matrix which performs the
selection of the differential part according to the regularization. Here, the matrix
LE1PE1 takes the place of QD in (3.161). In particular, we have

PE1E1 =

[
Ẽ1

Ẽ2

]
,

where Ẽ1 ∈ RrD,n−rC has full rank, i.e., rank(Ẽ1) = rD. Assuming that all input
functions are continuous in t then E1 as a function of t is continuous, too, as long
as the pivoting matrix P is constant, see Sections 3.5.4.3 and 5.1.4. Therefore, we
have that P 1

E1E1(t + ∆t) has full rank for all ∆t ∈ (−ε, ε) with sufficiently small ε,
see Lemma 2.1.3, such that it is possible to replace the linear system (5.9) by the
selected linear system

P 1
E1

[
0 V

∗

DP̌2

]
ζ = P 1

E1((γL
∗

D + hL
∗

B)Q
∗1

CbC + bD), (5.13)

as long as P 1
E1E1(t + ∆t) has full rank and the pivoting matrix P1 of the constraints

remains unchanged. In particular, this means that a selector recomputation in
GEOMS will only be done if the column pivoting P1 with respect to the algebraic
constraints does change from one integration step to the next or if convergence
problems are observed inside the Newton iteration process. This fact is demon-
strated in Example 5.3.1 below in Tables 5.8 and 5.9.
If the LU decomposition is used for the decomposition of the differential part, with
the option INFO(13)=SELCOMP, then it is possible to decide whether the determina-
tion of the selectors is done in each integration step (INFO(13)=1) or by following
the strategy described above (INFO(13)=1), where the latter case is default if the
user does not specify anything else.

5.1.7 Consideration for redundant constraints

The code GEOMS offers the possibility to integrate the equations of motion of mod-
eling level 4 (4.43) with possibly redundant constraints. As discussed in Section 4.2
the solution is not unique in the case of redundant constraints, but under certain
conditions the nonuniqueness is only restricted to the Lagrange multipliers λ, µ,
and w, see Theorem 4.2.32.
Very important for the integration of equations of motion with redundant con-
straints is the detection of the degree of redundancy, i.e., the determination of
the rank of the Jacobians of the constraints. Therefore, the code GEOMS offers the
possibility to decompose the constraints via the LU decomposition, the QR de-
composition or the SV decomposition using the option IOPT(11)=DECOMPC. The
reliable numerical determination of the rank of a matrix is a delicate task and the
SV decomposition is a commonly used tool to do this. Therefore, the numerical
integration of equations of motion with redundant constraints is only allowed via
the SV decomposition for the constraints.
The rank of the constraints will be determined in every integration step. If it is
detected in the first step that the constraints are redundant, a reliable numerical
integration requires the use of the SV decomposition at least for the decomposition
of the constraints. If the LU decomposition or QR decomposition have been chosen
for the decomposition of the constraints, the integration will be stopped with the
indication that the SV decomposition should be used and the integration should be
restarted.
Furthermore, if a change of the rank from one step to another is detected, then the
integration has reached a singular point and the integration will be stopped with an
error message. See for example the numerical results of the slider crank, Example
5.3.4, in particular, Figures 5.24 and 5.25.
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5.1.8 Consideration for invariants

In Section 4.1.4 we have discussed the existence of solution invariants and the preser-
vation of these invariants in the numerical solution. Furthermore, in Section 4.5 we
have emphasized the necessity of the explicit occurrence of such solution invariants
in the model equations, i.e., the solution invariants should be explicitly contained
as equations in the equations of motion.
For this reason, GEOMS provides the possibility to introduce such equations (4.28)
which define the solution invariants in the right-hand side (5.1) of the equations of
motion.

5.2 GMKSSOL

In this section we will present the code GMKSSOL in detail. For the usage and
implementation of GMKSSOL see the manual in Appendix B.2.
The code GMKSSOL has been developed as part of an industrial project and therefore,
it is designed for a special type of equations of motion, namely

ṗ = v, (5.14a)

v̇ = fd(p, v, r, λ, t), (5.14b)

ṙ = b(p, v, r, λ, t), (5.14c)

0 = g(p, t) (5.14d)

with fd(p, v, r, λ, t) = M−1(p, t)(f(p, v, r, λ, t)−GT (p, t)λ) and G(p, t) = ∂g(p, t)/∂p.
The software package GMKSSOL has been proposed in [50] and is based on residual
evaluations. The residual of the right-hand side of the equations of motion is pro-
vided from a multibody system formalism such that the mass matrix M and the
constraint matrix G are not provided separately. GMKSSOL integrates the equations
of motion (5.14) with nonredundant or uniformly redundant constraints (5.14d) such
that it is not necessary that the constraint matrix has full rank, but the constraint
matrix must have constant rank for the whole integration interval I = [t0, tf ].
The discretization method implemented in GMKSSOL is based on the projected-
strangeness-free form (4.114) adapted to (5.14) and uses a modified version of the
subroutine RADAU5 for the numerical integration of the regularized equations of
motion.

5.2.1 Features of GMKSSOL

As mentioned above, the code GMKSSOL has been created in an industrial project.
Therefore, it is a very specific solver which has been adapted to the precise require-
ments of the industrial partner. In particular, the degree of flexibility is reduced
in favor of the efficiency. The features and options of the code GMKSSOL are listed
in Table 5.4. Furthermore, the subroutines which are part of the code are listed in
Table 5.5. It should be mentioned that the subroutines DEC, DECC, SOL, and SOLC

are part of the code RADAU5 [79, 82].

As mentioned above, the algorithm GMKSSOL is based on residual computations. The
information of the equations of motion has to be provided in the following form.
The vector of the unknown variables has to be provided in the form

XT =
[

pT vT rT λT
]

and the right-hand side has to be specified in the user-supplied subroutine EQUOFMOT
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Option Feature Section
respecting hidden constraints 5.2.3
respecting redundant constraints 5.2.3
check of the consistency of the initial values 5.2.2
correction of the initial Lagrange multipliers with re-

spect to its consistency
5.2.2

special treatment of forced mechanical systems 5.2.4
IOPT( 2) optional output for integration information
IOPT( 3) maximal number of integration steps
IOPT( 9) choice of selector 5.2.3
IOPT(14) selector control 5.2.3

Table 5.4: Options and features of GMKSSOL

Subroutines contained in the code GMKSSOL

GMKSCOIN determination of consistent initial values, see Section 5.2.2
GMKSSOL main routine
GMRHSIRK providing the right-hand side of the projected-strangeness-free

form of the equations of motion, see Section 5.2.3
GMSELECT determination of the selectors, see Section 5.2.3
GMSOLIRK core routine
GODESOLIM numerical integration of stiff ODEs, see Section 5.2.4
DEC decomposition of the leading matrix respecting the decoupled

linear subsystem (3.123)
DECC decomposition of the leading matrix respecting the decoupled

linear subsystem (3.124)
SOL backward substitution respecting the decoupled linear subsystem

(3.123)
SOLC backward substitution respecting the decoupled linear subsystem

(3.124)

user-supplied subroutines
EQUOFMOT provides the reduced derivative array RDA (5.15)
SOLOUT output of the numerical solution and additional information dur-

ing integration

Table 5.5: Subroutines of GMKSSOL

in the following order.

RDA =




v
fd(p, v, r, λ, t)
b(p, v, r, λ, t)

g(p, t)
gI(p, v, t)

gII(p, v, r, λ, t)




(5.15)

Depending on the internal option IOPT(31), it is either necessary to provide the
whole right-hand side of the equations of motion or it is sufficient to provide only
the holonomic constraints, see Section 5.2.3.
For the output of the numerical solution the user has to define the points where an
output is expected in the array TOUT in an increasing sequence. If the code GMKSSOL
passes an output point, say TOUT(i), then the code will interpolate the numerical
solution at TOUT(i) and will store the numerical solution in the i-th column of



206 CHAPTER 5. TWO NEW SOLVERS FOR EQUATIONS OF MOTION

the array XOUT. Furthermore, after passing such output points the user-supplied
subroutine SOLOUT which has to be provided from the user will be called.
Furthermore, the code will give some information about the success or the failure
of the numerical integration. The user has to decide if this information shall be
written to an output or not. By setting the option IOPT(2) to zero, the output of
this information will be dropped. Otherwise, this information will be written to the
output device defined by IOPT(2), for more detail see the manual in Appendix B.2.

5.2.2 Determination of consistent initial values

In Section 4.2 we have discussed the regularity of the equations of motion of multi-
body systems. For the existence of a solution the consistency of the initial values,
see Definition 3.1.3, is necessary. But in complex multibody systems, in particular,
with a large number of kinematical closed loops, the consistency of the initial values
is not natural. In particular, the position variables p and the velocity variables v
are restricted to the solution manifold M, see (4.65), but some components in the
position and velocity variables are freely choosable. Furthermore, the variables r
describing dynamical force elements are completely freely choosable and at least in
the case of nonredundant constraints the Lagrange multipliers λ are fixed by the
constraints on acceleration level which are not explicitly given in the equations of
motion.
Before the integration will be started, the code GMKSSOL checks the consistency of
the initial values. It is necessary that the user provides consistent initial values
at least for the position variables p(t0) and for the velocity variables v(t0). If the
initial positions or the initial velocities are not consistent the code will stop with
the error message IERR=-1006. The initial values for the dynamical force elements
r(t0) are not restricted in their choice and the user has to provide them. Further-
more, the code GMKSSOL offers the possibility to determine consistent initial values
for the Lagrange multipliers λ(t0). If inconsistencies in the initial Lagrange multi-
pliers are detected, the subroutine GMKSCOIN determines consistent initial Lagrange
multipliers.

5.2.3 Regularization of the equations of motion and selector

control

According to Theorem 4.6.9 and Lemma 4.6.11 the projected-strangeness-free form
of the equations of motion (5.14) with selected constraints is given by

Sp(p, t)ṗ = Sp(p, t)v, (5.16a)

Sp(p, t)v̇ = Sp(p, t)fd(p, v, r, λ, t), (5.16b)

ṙ = b(p, v, r, λ, t), (5.16c)

0 = Sλ(p, t)g(p, t), (5.16d)

0 = Sλ(p, t)gI(p, v, t), (5.16e)

0 = Sλ(p, t)gII(p, v, r, λ, t), (5.16f)

with Sp of dimension np − rG × np such that the matrix

[
Sp(p, t)
G(p, t)

]

has full (column) rank np for all (p, t) ∈ M. Note that the selector Sp equals the
selector Sv, in accordance to the Lemma 4.6.11. According to Algorithm 4.6.12 the
subroutine GMSELECT determines the selector Sp(p, t) at the current state (p, t) by
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use of the SV decomposition [72]. The SV decomposition of the constraint matrix
function G(p, t) yields

[
UT

1

UT
2

]
G
[

V1 V2

]
=

[
Σ 0
0 0

]
. (5.17)

The columns of the matrix V2 span ker(G) and satisfy the criterion for Kp in
Algorithm 4.6.12 Therefore, we have Kp = V2. Furthermore, the identity I =
V T

2 V2 (= V T
2 Kp) holds and the selector Sp can be chosen as

Sp = V T
2 . (5.18)

Moreover, from the singular value decomposition (5.17) we get the selector

Sλ = UT
1 (5.19)

such that

SλG = UT
1 G =

[
Σ 0

] [ V T
1

V T
2

]
= ΣV T

1 ∈ R
rG,np

has full rank. If the subroutine GMSELECT detects a change in the rank of the
constraint matrix G the integration will be stopped with the error code IERR=-
1303.
Certain motions of mechanical systems do not require a state or time depending
selector, see Example 4.6.14. Therefore, by setting the option IOPT( 9)=1 the user
has the possibility to tell the code that the selectors have to be determined at the
initial point only and to keep them constant for the rest of the integration procedure.
If this is possible, the amount of computation of the integration is reduced.
However, the code GMKSSOL is not able to decide how long the selectors can be kept
constant or when a recomputation is necessary. Therefore, the user has to tell the
code after how many successful steps the selectors have to be recomputed. This
number has to be set in the option IOPT(14). If IOPT(14)=0 the selectors are
recomputed after every successful integration step. Several numerical experiments
suggest that IOPT(14)=10 is a good choice, see [50].
Obviously, the determination of the selectors needs additional effort. For keeping
this additional cost low, the internal option IOPT(31) tells the user-supplied routine
if the whole reduced derivative array has to be provided (IOPT(31)=0) or if only
the computation of the residual of the constraints is necessary (IOPT(31)=1) which
is sufficient for the determination of the selectors.
During the integration process, the subroutine GMRHSIRK provides the right-hand
side of the regularized equations of motion (5.16) obtained by scaling of the right-
hand side of (5.14a) and (5.14b) with the selector Sp and by scaling of the holonomic
constraints (5.14d) and its derivatives gI and GII with the selector Sλ. The right-
hand side of (5.14) is provided from the user-supplied subroutine EQUOFMOT as part
of the array RDA (5.15).

5.2.4 Discretization and numerical integration

Depending on the number and redundancies of the constraints, the numerical in-
tegration will be done in three different ways which also depend on the degrees of
freedom of the mechanical system, see Definition 4.1.7 and Lemma 4.2.16. If the
mechanical system is unconstrained, i.e., if we have for the degrees of freedom that
nf = nfp

= nfv
= np, then the equations of motion correspond to an ODE such that

the integration will be done by use of the subroutine GODESOLIM which is suited for
stiff ODEs and is an adaption of the code RADAU5 [79, 82]. For more details on the
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code GODESOLIM see [50]. If the mechanical system is a forced mechanical system,
i.e., we have for the degrees of freedom nf = nfp

= nfv
= 0, then the equations of

motion correspond to a system of algebraic equations such that at every time the
state is completely determined by the holonomic constraints on position level, on
velocity level, and on acceleration level. Therefore, only a nonlinear system consist-
ing of these constraints has to be solved at every output point TOUT(i). This will be
done by the subroutine GMKSCOIN. In the other case, i.e., if we have for the degrees
of freedom 0 < nf = nfp

= nfv
< np, the numerical integration of the equations of

motion is based on the discretization of the projected-strangeness-free form of the
equations of motion and will be done in the subroutine GMSOLIRK. The subroutine
GMSOLIRK is an adaption of the code RADAU5 [79, 82].
The discretization and the solution of the arising nonlinear and linear algebraic sys-
tems in every integration step bases on the investigations of Section 3.5.4 respecting
that the leading matrix of the considered DAE is constant for the integration step
and has the form

Ê =




Sp 0 0 0
0 Sp 0 0
0 0 0 0
0 0 0 0
0 0 0 0




.

The right-hand side of the projected-strangeness-free form of the equations of mo-
tion is determined from the subroutine GMRHSIRK and provided for the numerical
integration process in GMSOLIRK.
If the maximal number of successful integration steps for which the selectors are kept
constant (defined by IOPT(14)) is reached then the subroutine GMSOLIRK interrupts
the integration process and returns to the subroutine GMKSSOL for the recomputa-
tion of the selectors by use of GMSELECT. After the recomputation, the integration
will be continued with the call of GMSOLIRK.

5.3 Numerical experiments

In the following we will demonstrate the applicability and the performance of the
new solvers GEOMS and GMKSSOL in comparison to other well known and widely used
solvers. The integration with GMKSSOL will be based on the projected-strangeness-
free formulation (4.114) of the equations of motion. The corresponding numerical
results are abbreviated by GMKSSOL(psfEoM). Furthermore, the integration with
GEOMS will be performed on three different formulations. First, the numerical re-
sults obtained with GEOMS using the projected-strangeness-free form (4.114) of the
equations of motion will be abbreviated by GEOMS(psfEoM). Secondly, the numer-
ical results obtained with GEOMS using the projected-s-index-1 form (4.123) of the
equations of motion will be abbreviated by GEOMS(pEoM1). Furthermore, if the
solution of the considered example satisfies some solution invariants, e.g., the con-
servation of the total energy, we will use in addition to the two formulations above
the projected-strangeness-free form of the equations of motion with explicite forc-
ing of the solution invariants as described in Section 5.1.8. The obtained numerical
results are denoted by GEOMS(psfEoM+I).
In Section 4.7 it is pointed out that the numerical algorithms suited for the inte-
gration of the equations of motion should be partitioned into two classes, the class
of those algorithms based on residual evaluations and the class of algorithms based
on structural evaluations. Therefore, the numerical results of GEOMS and GMKSSOL

(which are based on residual evaluations) will be compared to the numerical solu-
tions of both classes separately. First we compare the numerical results of GMKSSOL
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numerical used formulation abbreviation of the
algorithm numerical results

algorithms based on residual evaluations
DASSL s-index-0 form (4.82) DASSL(EoM0)
GEOMS projected-strangeness-free form (4.114) GEOMS(psfEoM)
GEOMS projected-strangeness-free form (4.114) with

solution invariants
GEOMS(psfEoM+I)

GEOMS projected-s-index-1 form (4.123) GEOMS(pEoM1)
GMKSSOL projected-strangeness-free form (4.114) GMKSSOL(psfEoM)
RADAU5 original equations of motion (4.43) RADAU5(EoM)
RADAU5 s-index-1 form (4.81) RADAU5(EoM1)
RADAU5 s-index-0 form (4.82) RADAU5(EoM0)
RADAU5 Gear-Gupta-Leimkuhler form (4.103) RADAU5(GGL)
ODASSL overdetermined form (4.105) ODASSL(oEoM)

algorithms based on structural evaluations
MEXAX s-index-1 form (4.81) MEXAX
HEDOP5 s-index-1 form (4.81) HEDOP5
MHERK3 s-index-1 form (4.81) MHERK3
MHERK5 s-index-1 form (4.81) MHERK5

Table 5.6: Used numerical algorithms and used formulations of the equations of
motion

and GEOMS with the numerical results obtained from numerical algorithms based
on residual evaluations, i.e., RADAU5 (version from April 14, 2000) [79, 82], ODASSL
(version from January 03, 1990) [59, 60], and by use of DASSL (version from June 24,
1991) [25, 135]. As representatives for the algorithms based on structural evalua-
tions we will compare the numerical results obtained with GEOMS and GMKSSOL with
the results obtained by use of MEXAX (version from July 18, 1996) [118], HEDOP5

(version from April 09, 1996) [6], MHERK3 (version from February 01, 1994), and
MHERK5 (version from February 01, 1994). In Table 5.6 it is listed which numerical
algorithm in combination with which formulation of the equations of motion are
used and who they numerical results are abbreviated in the following. The numer-
ical integrations are done on an AMD Athlon XP 1800+, 1533 MHz.
Let us note that we will abstain from the use of physical units like meters or seconds.

Example 5.3.1 The mathematical pendulum: In Example 4.1.12 we intro-
duced the equations of motion of the mathematical pendulum and in Example
4.6.14 we have regularized the equations of motion which are used for the numerical
integration via GEOMS and GMKSSOL.

mass m = 1.0
length L = 1.0
gravitational acceleration g = 13.75

Table 5.7: Mathematical pendulum: Parameters

For the numerical simulations of the movement we used the parameter listed in Table
5.7. Let us note that we did modify the gravitational acceleration to approximately
g = 13.75 such that the exact solution has a period of 2 which allows the comparison
of the accuracy every period.
Let us first consider the conservation of the total energy. In Section 4.1.4 invari-
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Figure 5.1: Mathematical Pendulum: Conservation of the total energy by the nu-
merical solutions for prescribed RTOL=ATOL=10−7 on the time domain I = [0, 1000]

ants of the motion of mechanical systems are considered. In particular, in Example
4.1.18 it is demonstrated that the conservation of the total energy is in general
not satisfied by the numerical solution of the equations of motion, see Figure 4.9.
Let us repeat the computations with the codes GEOMS and GMKSSOL. Figure 5.1
depicts again the total energy of the numerical solutions of the equations of mo-
tion computed with the algorithms based on residual evaluations. Obviously, only
the numerical solution GEOMS(psfEoM+I) obtained with GEOMS conserves the total
energy exactly. This is expected because the energy conservation is contained as
an equation in the used formulation and is therefore explicitely forced during the
numerical integration. Apart from the numerical results GEOMS(psfEoM+I) only
the numerical results GEOMS(pEoM1), GEOMS(psfEoM), and GMKSSOL(psfEoM)
satisfy the conservation of total energy very accurately.

In the Figures 5.2 and 5.3 the efficiency, i.e., the relation between the obtained ac-
curacy and the consumed computation time of the different algorithms is depicted.
Obviously, the integration with use of GEOMS based on the projected-strangeness-free
formulation of the equations of motion plus solution invariants GEOMS(psfEoM+I)
offers the best performance for this example. This fact substantiates the demand of
the Paradigms 4.5.1 and 4.5.3. Furthermore, the numerical results RADAU5(EoM1),
GEOMS(psfEoM), GMKSSOL(psfEoM), and RADAU5(GGL) are obtained in an effi-
cient way. The accuracy of the numerical results obtained via ODASSL and DASSL

is restricted to RTOL = ATOL = 10−3 and 10−1, respectively. While the integration
with ODASSL fails up to a prescribed tolerance of RTOL = ATOL = 10−10 an integra-
tion with DASSL over the time domain I = [0, 1000] was possible but the obtained
accuracy is not acceptable. Note that the approximation of the Lagrange multipli-
ers by GEOMS(psfEOM+I) is much better than of the other results.
A comparison of the numerical results obtained with GEOMS and GMKSSOL and the
results obtained with algorithms based on structural evaluations is depicted in the
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Figure 5.2: Mathematical Pendulum: Efficiency of the solvers based on residual
evaluations. Simulations are done on the time domain I = [0, 1000].
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Figure 5.3: Mathematical Pendulum: Efficiency of the solvers based on residual
evaluations. Simulations are done on the time domain I = [0, 1000].
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Figure 5.4: Mathematical Pendulum: Efficiency of the solvers based on structural
evaluations. Simulations are done on the time domain I = [0, 1000].
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Figure 5.5: Mathematical Pendulum: Efficiency of the solvers based on structural
evaluations. Simulations are done on the time domain I = [0, 1000].
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Figures 5.4 and 5.5. Obviously the performance of the algorithms MEXAX and HEDOP5

is great and explained by the high level of exploitation of the structure of the equa-
tions of motion. Unfortunately, an integration with HEDOP5 was only possible for a
prescribed tolerance RTOL=ATOL≤ 10−9. A successful integration by use of MHERK3
was not possible at all and the integration with MHERK5 was only possible for a
prescribed tolerance RTOL=ATOL≤ 10−6.
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Figure 5.6: Mathematical Pendulum: Residual of the constraints depending on
t ∈ [0, 1000] for prescribed RTOL=ATOL=10−7

A very important fact for the numerical integration and the stability of the numerical
algorithms regarding the integration of DAEs is the satisfaction of the constraints,
including the hidden constraints. In Figure 5.6 the residual of the constraints of
position level, of velocity level, and of acceleration level depending on the simula-
tion time is depicted. Obviously, the residual of the constraints on position as well
as on velocity level grows very rapidly when using the s-index-0 formulation of the
equations of motion, see the numerical results DASSL(EoM0) and RADAU5(EoM0)
in Figure 5.6. The results RADAU5(EoM0) show a quadratic growth of the residual
of the position constraints while the residual of the velocity constraints grows only
linearly. Furthermore, the numerical results obtained by use of the s-index-1 formu-
lation, i.e., the numerical results RADAU5(EoM1), show a linear growing behavior
in the residuals of the constraints on position level. This illustrates the results of
Section 4.4, see Table 4.2. In Figure 5.7 the maximal obtained residual of the con-
straints depending on the prescribed tolerances by use of the numerical algorithms
based on residual evaluations is illustrated. As one can see, the satisfaction of ev-
ery kind of constraint is only insured by use of GEOMS. Furthermore, in comparison
the residuals of the constraints obtained by the integration by use of the numerical
algorithms based on structural evaluations are depicted in Figure 5.8. While the
constraints on velocity level are satisfied very accurately for the numerical solutions
MEXAX and HEDOP5, the residual of the constraints on position level are accept-
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Figure 5.7: Mathematical Pendulum: Residual of the constraints depending on the
prescribed tolerance. Simulations are done on the time domain I = [0, 1000] with
solvers based on residual evaluations.
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Figure 5.8: Mathematical Pendulum: Residual of the constraints depending on the
prescribed tolerance. Simulations are done on the time domain I = [0, 1000] with
solvers based on structural evaluations.

able but the satisfaction of the constraints on acceleration level is not given caused
from the slight instabilities because of the used s-index-1 formulation which are not
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strangeness-free. In comparison, every kind of constraints is satisfied according to
the prescribed tolerances by use of GEOMS, since all constraints appear explicitly in
the used formulation.

Example 01_SimpPend

Integration with GEOMS(psfEoM)

TSTART = 0.00 TEND = 5.00 H0 = 0.100E-01

TOLMIN = 1.0D- 7 TOLMAX = 1.0D- 9

Initial velocity 2.80 rad

[SimpPend] GEOMS(psfEoM) starts with IDID= 0 H= 0.100E-01 TOL = 0.100E-06

[SimpPend] GEOMS(psfEoM) finished with IDID= 0 H= 0.254E-01 at T= 0.500E+01

NACCPT = 187 | NEOM= 2167 | NPDEC = 187

NERJCT = 16 | NJAC= 187 | NEDEC = 204

NCRJCT = 1 | NMAS= 1 | NBSUB = 660

CPUTIME= 0.060s | | NSEL = 2

[SimpPend] GEOMS(psfEoM) starts with IDID= 0 H= 0.100E-01 TOL = 0.100E-07

[SimpPend] GEOMS(psfEoM) finished with IDID= 0 H= 0.176E-01 at T= 0.500E+01

NACCPT = 270 | NEOM= 2961 | NPDEC = 270

NERJCT = 13 | NJAC= 270 | NEDEC = 284

NCRJCT = 1 | NMAS= 1 | NBSUB = 897

CPUTIME= 0.060s | | NSEL = 2

[SimpPend] GEOMS(psfEoM) starts with IDID= 0 H= 0.100E-01 TOL = 0.100E-08

[SimpPend] GEOMS(psfEoM) finished with IDID= 0 H= 0.118E-01 at T= 0.500E+01

NACCPT = 391 | NEOM= 4141 | NPDEC = 391

NERJCT = 9 | NJAC= 391 | NEDEC = 401

NCRJCT = 1 | NMAS= 1 | NBSUB = 1250

CPUTIME= 0.080s | | NSEL = 2

Table 5.8: Mathematical Pendulum: Statistical results for the numerical simulation
with GEOMS using the psfEoM with initial velocity v10 = 2.8

In Section 5.1.6 the strategy for the determination of appropriate selectors has been
discussed. Furthermore, the projected-strangeness-free formulation of the equations
of motion of the pendulum have been developed in Example 4.6.14 and the choice
of the selectors Sp and Sv has been considered. There, it is mentioned that in
principle the selectors may be kept constant as long as the deviation of the pendulum
does not reach 90 degrees with respect to the initial state. But with respect to
the conditioning of the linear systems which have to be solved inside the Newton
iteration process, the selectors should be recomputed early enough and not just
before reaching a deviation of 90 degrees. This fact is treated in GEOMS by the
recomputation of the selector if the column pivoting with respect to the algebraic
constraints changes or convergence problems of the Newton iteration process occur.
This is demonstrated in two simulation scenarios which are depicted in Tables 5.8
and 5.9.
Both scenarios simulate the motion of the pendulum starting with the downward

hanging initial position p0 =
[

0 −1
]T

and an initial velocity v0 =
[

v10 0
]T

over the time domain I = [0, 5]. In Table 5.8 the simulation starts with an initial
velocity of v10 = 2.8. This initial velocity leads to the highest deviation of p =[
±0.699 −0.715

]
which does not reach the deviation of 45 degrees. Because

of the constraint matrix G =
[

2p1 2p2

]
we have |2p1| < |2p2| for all t ∈ I

and a change of the pivoting is not necessary such that a (re-)computation of the
selector is only necessary at the beginning of the integration process and after every
detected convergence failure. Therefore, the number NSEL of (re-)computations of
the selector equals the number NCRJCT of rejections because of convergence failures
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Example 01_SimpPend

Integration with GEOMS(psfEoM)

TSTART = 0.00 TEND = 5.00 H0 = 0.100E-01

TOLMIN = 1.0D- 7 TOLMAX = 1.0D- 9

Initial velocity 2.90 rad

[SimpPend] GEOMS(psfEoM) starts with IDID= 0 H= 0.100E-01 TOL = 0.100E-06

[SimpPend] GEOMS(psfEoM) finished with IDID= 0 H= 0.236E-01 at T= 0.500E+01

NACCPT = 207 | NEOM= 2730 | NPDEC = 207

NERJCT = 7 | NJAC= 207 | NEDEC = 227

NCRJCT = 13 | NMAS= 1 | NBSUB = 841

CPUTIME= 0.060s | | NSEL = 26

[SimpPend] GEOMS(psfEoM) starts with IDID= 0 H= 0.100E-01 TOL = 0.100E-07

[SimpPend] GEOMS(psfEoM) finished with IDID= 0 H= 0.121E-02 at T= 0.500E+01

NACCPT = 303 | NEOM= 3729 | NPDEC = 303

NERJCT = 12 | NJAC= 303 | NEDEC = 321

NCRJCT = 6 | NMAS= 1 | NBSUB = 1142

CPUTIME= 0.080s | | NSEL = 19

[SimpPend] GEOMS(psfEoM) starts with IDID= 0 H= 0.100E-01 TOL = 0.100E-08

[SimpPend] GEOMS(psfEoM) finished with IDID= 0 H= 0.109E-01 at T= 0.500E+01

NACCPT = 441 | NEOM= 5208 | NPDEC = 441

NERJCT = 12 | NJAC= 441 | NEDEC = 459

NCRJCT = 6 | NMAS= 1 | NBSUB = 1589

CPUTIME= 0.090s | | NSEL = 19

Table 5.9: Mathematical Pendulum: Statistical results for the numerical simulation
with GEOMS using the psfEoM with initial velocity v10 = 2.9
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Figure 5.9: Mathematical Pendulum: Solution for p2 for initial velocity v10 = 2.8
and v10 = 2.9 on the time domain I = [0, 5].
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plus one initial computation. The situation changes completely if the pendulum
passes the deviation of 45 degrees with respect to the initial state. This happens
if the initial velocity is increased to v10 = 2.9. The numerical results are depicted
in Table 5.9. Obviously, the (re-)computations of the selector NSEL happened 13
times more often than convergence problems NCRJCT are detected. In Figure 5.9 the
motion of the pendulum is depicted. One can see that the altitude of the pendulum
passes 12 times the altitude of a deviation of 45 degrees. Therefore, the number
NSEL of (re-)computations of the selectors is 13, i.e., 12 times plus one initial time,
more often than the number NCRJCT of convergence problems.
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Figure 5.10: Mathematical Pendulum: Efficiency of the solver GEOMS by use of
different decompositions. Simulations are done on the time domain I = [0, 200].

In Section 5.1.4 we have discussed the numerical solution of the linear systems
(3.154) and (3.155) in every Newton iteration step. Several decompositions have
been presented. By use of the option IOPT(11)=DECOMPC the user has to choose if the
algebraic part shall be decomposed by the LU decomposition (DECOMPC=1) with full
pivoting, by the QR decomposition (DECOMPC=2) with column pivoting, or by the
SV decomposition (DECOMPC=3), and by use of the option IOPT(12)=DECOMPD the
user has to choose if the differential part shall be decomposed by the LU decomposi-
tion (DECOMPD=0) with partial pivoting or by the QR decomposition (DECOMPD=1).
It is clear that the amount of computation depends strongly on the choice of the
decomposition and also the obtained accuracy depends on the decomposition. The
efficiency of the several choices of decompositions is illustrated in Figure 5.10. Fur-
thermore, the precision and the amount of computation depend on the number
of (re-)computations of the selector which can be influenced by setting the option
IOPT(13)=SELCOMP. Obviously, the use of the LU decomposition for the algebraic as
well as for the differential part and adapted selector control strategy the integration
is most efficient for this example. �

Example 5.3.2 The lolly: In Example 4.1.13 we introduced the equations of
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motion of the horizontal pendulum on a surface.

mass m = 1.0
gravitational acceleration g = 9.81
surface parameter β =variable

Table 5.10: Lolly: Parameters

For the numerical integrations we use the parameters as shown in Table 5.10.
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Figure 5.11: Lolly: Efficiency of the solvers based on residual evaluations. Simula-
tions are done with varying β ∈ [0, 140] and prescribed tolerance RTOL=ATOL=10−8

on the time domain I = [0, 100].

Note the influence of the parameter β in the second constraint equation (4.22c)
which forces the end of the pendulum to remain on the surface. We made several
numerical simulations with different parameters β = 1, ..., 140. Increasing the pa-
rameter β leads to stability problems for several formulations of the equations of
motion. The s-index-0 formulation (4.82) which does not contain the explicit infor-
mation about the surface is unsuitable for the numerical integration if the parameter
β increases. This is demonstrated in Figures 5.11 and 5.12. There, we simulated
the motion of the lolly for a time domain of I = [0, 10] for several parameters β.
In Figure 5.11 the obtained accuracy of the numerical solution is depicted over the
consumed computation time. Obviously, the efficiency of the numerical integra-
tion DASSL(EoM0) and RADAU5(EoM0) depends very strongly on the parameter
β. While the integration for RADAU5(EoM0) are successful for all prescribed β but
becomes inefficient with increasing β, the numerical integration DASSL(EoM0) fails
already for small β. This indicates that the use of the s-index-0 formulation (4.82)
of the equations of motion is not suitable as basis for the numerical integration.
Furthermore, the numerical integration RADAU5(EoM) was not successful for any
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Figure 5.12: Lolly: Efficiency of the solvers based on residual evaluations. Simula-
tions are done with varying β ∈ [0, 140] and prescribed tolerance RTOL=ATOL=10−8

on the time domain I = [0, 100].

choice of the parameter β. Therefore, the corresponding results do not occur in
Figures 5.11 and 5.12.

In Figures 5.13-5.15 the efficiency of the solvers based on residual evaluations for
the numerical simulation with the parameter β = 4, 6, and 10 on the time do-
main I = [0, 10] is depicted. The numerical integrations are done with a prescribed
tolerance RTOL=ATOL=10i, i = −4, ...,−12. Obviously, for a parameter β = 4
the efficiency for obtaining the results DASSL(EoM0), GEOMS(psfEoM+I), GE-
OMS(psfEoM), and RADAU5(EoM1) is great, but the efficiency obtaining the results
ODASSL(oEoM), RADAU5(GGL), GMKSSOL(psfEoM), and GEOMS(pEoM1) is not
inferior, see Figure 5.13. The numerical results RADAU5(EoM0) and RADAU5(EoM)
in principle are not acceptable since the best obtained accuracy is 10−4 and 10−2,
respectively.
For an increased parameter β = 6, see Figure 5.14, the situation of the effi-
ciency by use of DASSL completely changes such that only GEOMS(psfEoM+I),
GEOMS(psfEoM), and RADAU5(EoM1) offer an excellent performance in its com-
putation, see Figure 5.14. The performance of the solvers obtaining the numerical
results in principle is unchanged except that of DASSL(EoM0). Even if the integra-
tion is successful for all prescribed tolerances the obtained efficiency is unfavorable.
Again increasing the parameter β to β = 10 yields a disastrous efficiency behavior
of DASSL(EoM0), see Figure 5.15. Furthermore, while the efficiency for obtaining
the other results is approximately unchanged the performance of the obtaining of
RADAU5(EoM1) is slightly impaired.

In Figure 5.16 the efficiency of the solvers based on residual evaluations and based
on structural evaluations for the numerical simulation with the parameter β =
6 on the time domain I = [0, 10] is depicted. Obviously, again the efficiency
of HEDOP5 is excellent closely followed from the efficiency obtaining the results
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Figure 5.13: Lolly: Efficiency of the solvers based on residual evaluations. Simula-
tions are done with β = 4 on the time domain I = [0, 10].
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Figure 5.14: Lolly: Efficiency of the solvers based on residual evaluations. Simula-
tions are done with β = 6 on the time domain I = [0, 10].
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Figure 5.15: Lolly: Efficiency of the solvers based on residual evaluations. Simula-
tions are done with β = 10 on the time domain I = [0, 10].
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Figure 5.16: Lolly: Efficiency of the solvers based on structural evaluations. Simu-
lations are done with β = 6 on the time domain I = [0, 10].
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MEXAX, GEOMS(psfEoM), and GEOMS(psfEoM+I). The efficiency of MHERK5,
GMKSSOL(psfEoM), and GEOMS(pEoM1) is also very good. Only the performance
of the solver MHERK3 trailed. Furthermore, a significant influence of the parameter
β on the efficiency is not recognized such that the efficiency remains approximately
unchanged with respect to a further increased β.
Concluding this example, it should be noted that the success of the numerical inte-
grations extremely depend on the consistency of the initial values. This results in the
fact that by slightly inconsistent initial values, in particular, for the Lagrange multi-
pliers, the integrations are only mastered for prescribed tolerances RTOL=ATOL=10i,
i = −3, ...,−10. Only GEOMS using the projected-strangeness-free formulation with
or without additional information on solution invariants mastered the numerical
simulations for all prescribed tolerances RTOL=ATOL=10i, i = −3, ...,−15. �

Example 5.3.3 The truck model: In Example 4.1.14 we introduced the model
of the two dimensional truck example. For a detailed description of the modeling
and the equations of motion we refer to [167].
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Figure 5.17: Truck: Numerical solutions. Simulation is done with RTOL=ATOL=10−7

on the time domain I = [0, 20].

In Figure 5.17 the numerical solutions of the position variables obtained with a
prescribed tolerance RTOL = ATOL=10−7 are illustrated.
The accuracy of the numerical solutions is compared with the numerical solution
RADAU5(GGL) obtained with a prescribed tolerance RTOL=ATOL=10−15. The pre-
cision of all results obtained by a prescribed tolerance are of similar accuracy but
the consumed computation time differs, as seen in the Figure 5.18. Obviously,
the numerical results DASSL(EoM0) and ODASSL(oEoM) have been obtained in
an very efficient way, but a successful integration of the equations of motion was
only possibly for prescribed tolerances RTOL=ATOL≥ 10−11 by use of DASSL and
RTOL=ATOL≥ 10−9 by use of ODASSL such that by respecting the accuracy of all
solution components, i.e., including the Lagrange multipliers, the best obtained
absolute accuracy was about 10−4. On the other hand, by the use of the codes
RADAU5, GEOMS, and GMKSSOL not any problem in the numerical integrations for any
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Figure 5.18: Truck: Efficiency of the solvers based on residual evaluations. Simula-
tions are done on the time domain I = [0, 20].

prescribed tolerances RTOL=ATOL≥ 10−15 occurred. �

Example 5.3.4 Slider crank: In Example 4.1.15 we have introduced the model
of a slider crank. The topology of the model is depicted in Figure 4.6 and the
equations of motion are given by (4.23).

masses m1 = 1.0 m2 = 1.8
lengths l1 = 1.0 l2 = 3.0
gravitational acceleration g = 9.81

Table 5.11: Slider Crank: Parameters (Set 1)

The integration is done on the time domain t ∈ [0, 100]. The initial state is the
horizontal strunged-out position to the right such that the initial values are given
by

p1(0) = 0, p2(0) = 0, v1(0) = 0, v2(0) = 0, λ(0) = −17.658.

The joint between both arms is falling down initiated by the gravitational acceler-
ation.

The obtained accuracy of the numerical results is again compared with respect to
the accuracy of the numerical solution RADAU5(GGL) obtained with a prescribed
tolerance RTOL=ATOL=10−15. Figures 5.19 and 5.20 illustrates the efficiency of the
numerical solvers based on residual evaluations for the integration of the equations
of motion on the time domain I = [0, 100].
Aside from the excellent efficiency of RADAU5 based on the s-index-0 formulation
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Figure 5.19: Slider Crank: Efficiency of the solvers based on residual evaluations.
Simulations are done on the time domain I = [0, 100].
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Figure 5.20: Slider Crank: Efficiency of the solvers based on residual evaluations.
Simulations are done on the time domain I = [0, 100].
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(4.82) obtaining the results RADAU5(EoM0) for this example (note that the stran-
geness-index-0 formulation is in general not suitable for the numerical integra-
tion because of the occurring drift) the efficiency in obtaining the numerical re-
sults RADAU5(EoM1), GEOMS(psfEoM), GMKSSOL(psfEoM), and DASSL(EoM0)
show a good performance, while the obtained accuracy of the numerical results
RADAU5(GGL), ODASSL(oEoM) is slightly reduced, i.e., the absolute error is slightly
increased, which has impact on the efficiency. The efficiency in the obtaining of
the numerical results RADAU5(EoM) and GEOMS(EoM1) are not very good, even
though GEOMS(EoM1) show the best accuracy for the position variables and the
velocity variables.
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Figure 5.21: Slider Crank: Residual of constraints versus given tolerance (codes
based on residual evaluations). Simulations are done on the time domain I =
[0, 100].

As mentioned previously, the consistency of the numerical solution is a very sensitive
property. In Figure 5.21 it is shown how accurately the constraints are satisfied in
dependence on the prescribed tolerance. Obviously, this accuracy depends on the
fact whether the constraints explicitly occur as equations in the used formulation
or not. Therefore, the numerical results RADAU5(EoM0) and DASSL(EoM0) do
not satisfy the position constraints and show a relatively large residuum. This is
explained by the used s-index-0 formulation (4.82) of the equations of motion and
the drift-off phenomenon, see Section 4.4. Obviously, the constraints on velocity
level are more accurately satisfied but still not in a sufficient way, i.e., the residuals
of the constraints on velocity level are smaller than the residuals of the constraints
on position level but not small enough, and the constraints on acceleration level
are very accurately satisfied. An opposite observation can be made by the use
of the original form of the equations of motion (4.43). Here, the constraints on
position level are accurately satisfied in contrast to the constraints on acceleration
level. The analogous observations can be made for the other numerical solutions, in
particular, the solutions GEOMS(pEoM1) satisfy the constraints on position and on
velocity level very accurately while all constraints are satisfied from the solutions
GEOMS(psfEoM).
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Figure 5.22: Slider Crank: Efficiency of the numerical simulation of the slider crank
over the time domain I = [0, 10000] for codes based on residual evaluations.
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Figure 5.23: Slider Crank: Efficiency of the numerical simulation of the slider crank
over the time domain I = [0, 10000] for codes based on structural evaluations.
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It should be noted that the numerical integration on the domain I = [0, 10000]
has only been mastered with RADAU5 by use of the s-index-1 formulation and by
use of the Gear-Gupta-Leimkuhler formulation (4.103), with GEOMS by use of the
projected-strangeness-free formulation (4.114), and with GMKSSOL for all tolerances
RTOL = ATOL = 10i with i = −3, ...,−15. The integration with GEOMS by use of
the projected-s-index-1 formulation (4.123) was successful for tolerances RTOL =
ATOL = 10i with i = −5, ...,−10, the integration with ODASSL was successful for
tolerances RTOL = ATOL = 10i with i = −3, ...,−6, and the integration with DASSL

by use of the s-index-0 formulation (4.82) was only successful for the tolerance
RTOL = ATOL = 10−5. The results for the simulation over the domain I = [0, 10000]
with respect to the efficiency are depicted in Figures 5.22 and 5.23.
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Figure 5.24: Slider crank: Numerical solutions for p1 of the numerical simulation
of the slider crank passing a singular state at t = 1.01. Simulation is done with
RTOL=ATOL=10−6 on the time domain I = [0, 2].

masses m1 = 1.0 m2 = 1.8
lengths l1 = 1.0 l2 = 1.0
gravitational acceleration g = 9.81

Table 5.12: Slider Crank: Parameters (Set 2)

In the following, let us consider the case that both arms of the slider crank have
the same length, say l1 = l2 = 1, see Table 5.12. In this case the motion of the
slider crank passes the state p1 = p2 = −π/2, where both arms of the slider crank
are hanging down over each other and the end of the second rod is placed in the
origin. In this situation the rank of the constraint matrix G jumps from 1 to 0
such that we have reached a singularity. Then the constraints are redundant and
there is a singular point in the solution path such that the solution is not uniquely
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Figure 5.25: Slider crank: Numerical solutions for v1 of the numerical simulation
of the slider crank passing a singular state at t = 1.01. Simulation is done with
RTOL=ATOL=10−6 on the time domain I = [0, 2].

determined. It is obvious that two motions are possible. First, the end of the slider
crank remains in the point of origin and both rods are rotating around it, or sec-
ondly, the end of the slider crank moves to the left or to the right and the angle
between the arms increases.
The obtained numerical solutions for the position p1 and for the velocity v1 for a
prescribed tolerance RTOL=ATOL=10−6 over the time domain I = [0, 2] with several
codes are given in Figures 5.24 and 5.25, respectively. From Figure 5.24 and Fig-
ure 5.25 it is obvious that the numerical solutions RADAU5(EoM0), RADAU5(EoM),
as well as RADAU5(GGL) pass the singular state. Furthermore although the step
size control of DASSL reduces the step size rapidly in the neighborhood of the
singularity, the numerical solutions DASSL(EoM0) passes this point of the sin-
gularity with a following increasing step size and without any warning or error
message. The same holds for the numerical solutions ODASSL(oEoM). Only in
case of using the s-index-1 formulation (4.81) for RADAU5, i.e., RADAU5(EoM1),
and by use of GEOMS and GMKSSOL, i.e., GEOMS(psfEoM), GEOMS(pEoM1), GE-
OMS(psfEoM+I), and GMKSSOL(psfEoM), the singular state is detected and the
integration is stopped.
As mentioned in the Example 4.1.15 using automatic tools for the generation of the
equations of motion it may happen that the constraints are modeled in a redundant
way. Therefore, let us consider the equations of motion in form (4.24), i.e., with
redundant constraints. The numerical integration is again done on the domain
I = [0, 100] with the initial values

p1(0) = 0, p2(0) = 0, v1(0) = 0, v2(0) = 0,

λ1(0) = −17.658, λ2(0) = 0, λ3(0) = 0.

The accuracy of the obtained solutions are compared with the numerical solution
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Figure 5.26: Slider Crank: Efficiency of the solvers based on residual evaluations.
Simulations are done on the time domain I = [0, 100].

RADAU5(GGL) with a prescribed tolerance RTOL=ATOL=10−15 by use of nonredun-
dant constraints as discussed before. Because of the redundancies in the constraints,
the Lagrange multipliers are not unique such that the obtained accuracy is only mea-
sured for the position variables p and the velocity variables v.
The efficiency of the integration is illustrated in Figure 5.26. Note that a numer-
ical integration by use of RADAU5, DASSL, or ODASSL is not possible because of the
redundancies in the constraints. As seen in Figure 5.26 the numerical solutions via
GEOMS needs more computation time as via GMKSSOL for the same obtained accu-
racy. For stability reasons it is only allowed in GEOMS to solve equations of motion
with redundant constraints by use of the SV decomposition for the constraints, see
Section 5.1.7. Therefore, the results GEOMS(psfEoM) are obtained by use of the SV
decomposition for the algebraic part and by use of the LU decomposition for the
remaining differential part, see Section 3.5.4.3. On the other hand, since the inte-
gration method in GMKSSOL is an adaption of the code RADAU5, the linear integration
system is solved by use of the LU decomposition for both parts. Therefore, the time
consumption by use of GMKSSOL is smaller than via GEOMS, but the determination
of the redundancies in the constraints is safer via GEOMS. �

Example 5.3.5 The skateboard: In Example 4.1.17 we introduced the model
of a skateboarder. The equations of motion are given in (4.27). Obviously, because
of the nonholonomic constraints, the equations of motion are of modeling level 3
(4.43).
Since the codes GMKSSOL and the codes based on structural evaluations are not de-
signed for the numerical integration of equations of motion including nonholonomic
constraints, the numerical integration is only done by the codes RADAU5, DASSL,
ODASSL, and GEOMS.
First, let us simulate the motion of the skater with the parameter as depicted in
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masses m1 = 1 m2 = 1 m3 = 80
inertias J1 = 0.001 J2 = 0.001
lengths L1 = 0.5 L3 = 1.5
stiffness c = 0
dampings d1 = d2 = d3 = dϕ = dθ = 0.01
gravitational acceleration g = 9.81
banking coefficient a = 11.0

Table 5.13: Skateboarder: Parameters (Set 1)

Table 5.13 and the initial values

x1 = 0.25, ẋ1 = 0.5, λ1 = 0,
y1 = 0, ẏ1 = 0, λ2 = 0.44e − 04,
x2 = −0.25, ẋ2 = 0.5, λ3 = −0.9634e − 03,
y2 = 0, ẏ2 = 0, λ4 = 0.6667e − 06,
ϕ = 0, ϕ̇ = 0, λ5 = 784.8,

x3 = 0, ẋ3 = 0.5, µ1 = 0.01109,
y3 = 0, ẏ3 = −0.0015, µ2 = −0.01109,
z3 = 1.5, ż3 = 0,

θ = 0, θ̇ = 0.001.
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Figure 5.27: Skateboard: Numerical solutions of the solvers based on residual eval-
uations. Simulations are done with the tolerance RTOL=ATOL=10−7 on the time
domain I = [0, 100].

The numerical solutions are shown in Figure 5.27. It seems that all solutions are
of similar quality except the solutions based on the s-index-0 formulation, i.e.,
DASSL(EoM0) and RADAU5(EoM0), in the component p8. But in Figure 5.28 the
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Figure 5.28: Skateboard: Numerical error of the solvers based on residual eval-
uations. Simulations are done with the tolerance RTOL=ATOL=10−7 on the time
domain I = [0, 100].
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Figure 5.29: Skateboard: Efficiency of the solvers based on residual evaluations.
Simulations are done on the time domain I = [0, 100].
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Figure 5.30: Skateboard: Efficiency of the solvers based on residual evaluations.
Simulations are done on the time domain I = [0, 100].

obtained accuracy by a prescribed tolerance of RTOL=ATOL=10−7 is illustrated and it
is obvious that numerical solutions DASSL(EoM0) and RADAU5(EoM0) are not very
accurate. The accuracy of the numerical solutions is compared with the numerical
solution RADAU5(GGL) obtained with a prescribed tolerance RTOL=ATOL=10−15.
In Figures 5.29 and 5.30 the efficiency of the solvers is illustrated. Obviously, the
numerical solutions GEOMS(pEoM1) and RADAU5(EoM1) are obtained in a very
efficient way for all prescribed tolerances RTOL=ATOL=10i with i = −3, ...,−12. For
large prescribed tolerances, i.e., RTOL = ATOL = 10i with i = −3, ...,−7 the nu-
merical results GEOMS(psfEoM) are not obtained very efficiently, but for smaller
tolerances, the efficiency of GEOMS is growing and, in particular, it is more efficient
than RADAU5 with use of the Gear-Gupta-Leimkuhler formulation. The efficiency
of DASSL as well as of ODASSL is slightly reduced and the best obtained accuracy,
approximately 10−6 and 10−7, respectively, is not as good as the one of the other
numerical solutions, except RADAU5(EoM0). The efficiency obtaining the results
RADAU5(EoM0) is out of interest.

masses m1 = 1 m2 = 1 m3 = 80
inertias J1 = 0.001 J2 = 0.001
lengths L1 = 0.5 L3 = 1.5
stiffness c = 1
dampings d1 = d2 = d3 = dϕ = dθ = 0.005
gravitational acceleration g = 9.81
banking coefficient a = 11.0

Table 5.14: Skateboarder: Parameters (Set 2)
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In the following we will change the parameter of the model of the skateboard as
shown in Table 5.14 by use of initial values

x1 = 0.25, ẋ1 = 5, λ1 = 0,
y1 = 0, ẏ1 = 0, λ2 = 0.044,
x2 = −0.25, ẋ2 = 5, λ3 = −0.04817,
y2 = 0, ẏ2 = 0, λ4 = 0.0003333,
ϕ = 0, ϕ̇ = 0, λ5 = 783.6,

x3 = 0, ẋ3 = 5, µ1 = 11.09,
y3 = 0, ẏ3 = −0.15, µ2 = −11.09,
z3 = 1.5, ż3 = 0,

θ = 0, θ̇ = 0.1.

In particular, mainly we did introduce a stiffness c and reduced the damping d1,
d2, d3, dϕ, dθ of the system. To compensate these changes, we increased the initial
velocity of the skateboard.
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Figure 5.31: Skateboard: Numerical solutions of the solvers based on residual eval-
uations. Simulations are done with the tolerance RTOL=ATOL=10−7 on the time
domain I = [0, 10].

In Figure 5.31 we have illustrated the solution of the numerical integration by use
of several numerical algorithms with a prescribed tolerance RTOL=ATOL=10−7. In
comparison to the first scenario the oscillating motion is increased, i.e., the frequence
as well as the amplitude, as we can see, in particular, in the solution component
p5 and p9. Analogously to the first test scenario, the numerical solutions seem to
be of comparable accuracy, except the numerical solutions RADAU5(EoM0) with a
visible deviation. The absolute error of the position components is illustrated in
Figure 5.32. Apart from the numerical results RADAU5(EoM0) and DASSL(EoM0),
all numerical results satisfy the prescribed tolerance.
In Figures 5.33 and 5.34, the efficiency of the several used numerical integra-
tions is shown. Again the efficiency behavior for obtaining the numerical results
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Figure 5.32: Skateboard: Numerical error of the solvers based on residual eval-
uations. Simulations are done with the tolerance RTOL=ATOL=10−7 on the time
domain I = [0, 10].
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Figure 5.33: Skateboard: Efficiency of the solvers based on residual evaluations.
Simulations are done on the time domain I = [0, 10].
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Figure 5.34: Skateboard: Efficiency of the solvers based on residual evaluations.
Simulations are done on the time domain I = [0, 10].

RADAU5(EoM0) is not acceptable and even the numerical results RADAU5(EoM),
too. Furthermore, the comparison of the efficiency of the several numerical integra-
tion methods has to be partitioned into two accuracy ranges. First, for an obtained
accuracy in [102, 10−4] the results RADAU5(EoM1) and GEOMS(pEoM1) are ob-
tained in a very efficient way closely followed by RADAU5(GGL), DASSL(EoM0),
and ODASSL(oEoM). Secondly, for an obtained accuracy in [10−4, 10−8] the results
ODASSL(oEoM) are obtained in a very efficient way followed by GEOMS(pEoM1),
GEOMS(psfEoM), and RADAU5(GGL) while only the results GEOMS(psfEoM) does
reach a accuracy in the range of approximately [10−6, 10−8]. �

Example 5.3.6 An academical example: Let us conclude this section with an
academical example. The equations of motion are defined by




ṗ1

ṗ2

ṗ3


 =




v1

v2

v3


 ,




v̇1

v̇2

v̇3


 =




−2p2

2v1 + p2 + w1

r1 + r2p3


−




−t + s2/p3 + s1 0
0 2p2

−s2s1/p3 − s1 2p3



[
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λ2

]
,

[
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]
=

[
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−2 − 2s1

]
,

0 =
[

w1 + 2p3

]
,

0 =

[
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p1 − s2 − p3

]
,

0 =

[
s1s2 − tp1

p2
2 + p2

3 − 1

]
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This example is designed in such a way that the exact solution is known analytically
and such that it includes most of the features of the equations of motion used in
industrial applications. The exact solution of our interest is given by

p1(t) = cos(t)(1 + t), p2(t) = sin(t), p3(t) = cos(t),
v1(t) = − sin(t)(t + 1) + cos(t), v2(t) = cos(t), v3(t) = − sin(t),
r1(t) = −2 cos(t), r2(t) = −4t − t2,
w1(t) = −2 cos(t),
s1(t) = 1 + t, s2(t) = cos(t)t,
λ1(t) = cos(t), λ2(t) = −t.

The constraint matrix is defined in Lemma 4.1.19 and, therefore, it is given by

G =

[
−t + s2/p3 + s1 0 −s2s1/p3 − s1

0 2p2 2p3

]
.

With respect to the solution it follows that

G =

[
1 + t 0 −t2 − 2t − 1

0 2 sin(t) 2 cos(t)

]
.

Consequently, the constraint matrix has full rank for all t 6= −1.
Let us integrate these equations of motion on the domain I = [0, 1.5]. Note that,
in particular, because of the additional variables w, the solver GMKSSOL and the
solvers based on structural evaluations are not able to integrate these equations of
motion. In Figure 5.35 the numerical solutions obtained by use of several solvers are
depicted. Obviously, the integration by use of ODASSL breaks down when reaching
t = 0.623. By use of smaller tolerances, i.e., RTOL=ATOL=10i with i < −7 this break
down happens earlier in the simulation. The other numerical solutions stay in the
neighborhood of the exact solution for the whole domain I as shown in Figure 5.36.
The efficiency of the numerical integration is illustrated in Figures 5.37 and 5.38.
Obviously, a successful integration of this problem by use of ODASSL is impossible for
any prescribed tolerances. Furthermore, the numerical integration by use of DASSL
based on the s-index-0 formulation (4.82) is only successful for prescribed tolerances
RTOL=ATOL=10i, i = −1, ...,−8, while the numerical integration by use of RADAU5
and GEOMS is successful for almost any prescribed tolerances, i.e., RTOL=ATOL=10i,
i = −1, ...,−15.
While the numerical results GEOMS(pEoM1), RADAU5(EoM1), and RADAU5(GGL)
are of similar quality, the accuracy of the numerical solutions GEOMS(psfEoM)
is much better. Figure 5.38 gives detailed information of the obtained efficiency
regarding different types of unknowns. Here, it becomes obvious that the numerical
approximation of the Lagrange multipliers of the results GEOMS(psfEoM) is much
better than by use of any other solver while the numerical approximation of the
position and the velocity variables are similar compared to the other numerical
results.
The situation changes if we extend the domain to I = [0, 2]. The numerical solutions
are given in Figure 5.39. In Figure 5.40 the obtained accuracy is illustrated by a pre-
scribed tolerance of RTOL=ATOL=10−7. Obviously, in addition to the numerical solu-
tions ODASSL(oEoM) also the numerical solutions DASSL(EoM0), RADAU5(EoM1),
and GEOMS(pEoM1) do not reach the end of I. They end by reaching t = π/2.
At this moment, the position variable p3 as well as the contact variable s2 and the
Lagrange multiplier λ1 are zero.
In Figures 5.41 and 5.42 again the efficiency of the obtained numerical solutions
is illustrated. Obviously, the numerical integration by use of DASSL, ODASSL, or
RADAU5 based on the s-index-1 formulation (4.81) does not lead to success for any
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Figure 5.35: Academical example: Numerical solutions of the solvers based on
residual evaluations. Simulations are done with the tolerance RTOL=ATOL=10−7 on
the time domain I = [0, 1.5].

prescribed tolerances i.e., RTOL=ATOL=10i, i = −1, ...,−15. The numerical integra-
tion by use of GEOMS based on the projected-s-index-1 formulation leads to success at
least for RTOL=ATOL=10−6. While the numerical integration by use of RADAU5 based
on the Gear-Gupta-Leimkuhler formulation (4.103) is successful for the prescribed
tolerances RTOL=ATOL=10i, i = −1, ...,−9,−11,−12,−14,−15, the numerical in-
tegration by use of GEOMS based on the projected-strangeness-free formulation was
successful for RTOL=ATOL=10i, i = −1, ...,−12 and the most efficient. �

In summary, the examples show that the numerical algorithm RADAU5 in combina-
tion with the Gear-Gupta-Leimkuhler formulation (4.103) and in combination with
the s-index-1 formulation (4.81) is well suited for the numerical integration of the
equations of motion. Very seldomly an integration of the examples was not suc-
cessful. Furthermore, the performance is mostly very good. The numerical results
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Figure 5.36: Academical example: Accuracy of the solvers based on residual eval-
uations. Simulations are done with the tolerance RTOL=ATOL=10−7 on the time
domain I = [0, 1.5].

obtained by use of the s-index-0 formulation (4.82) as well as the original form of
the equations of motion (4.43) substantiates the fact that these formulations are in
general not suitable for numerical integrations.
Furthermore, the numerical results suggest that the numerical algorithm ODASSL is
an adequate method for large tolerances, i.e., say RTOL=ATOL∈ [10−3, 10−7]. The
success of the numerical integration by use of ODASSL depends highly sensitively
on the consistency of the initial values. In particular, an inconsistent choice of the
Lagrange multipliers very often prevents the success of the numerical integration.
A similar observation holds for the use of DASSL while the code ODASSL behaves a
bit more robust and a bit more accurate.
The efficiency of the numerical algorithms HEDOP5 and MEXAX which base on struc-
tural evaluations is undisputed at the expense of the flexibility in its applicability.
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Figure 5.37: Academical example: Efficiency of the solvers with unstructured in-
terface. Simulations are done on the time domain I = [0, 1.5].
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Figure 5.38: Academical example: Efficiency of the solvers with unstructured in-
terface without respecting the Lagrange multipliers. Simulations are done on the
time domain I = [0, 1.5].
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Figure 5.39: Academical example: Numerical solutions of the solvers based on
residual evaluations. Simulations are done with the tolerance RTOL=ATOL=10−7 on
the time domain I = [0, 2].

Note that the numerical algorithms based on structural evaluations used for the nu-
merical experiments above are not applicable for nonholonomic systems. Further-
more, if the numerical integration by use of MHERK5 was successful, the efficiency of
the numerical algorithm MHERK5 is comparable to the efficiency obtained with the
numerical algorithms based on residual evaluations. However, the efficiency and the
robustness of the numerical algorithm MHERK3 was underwhelming.
According to the efficiency and the maximal reachable precision the new multibody
system solvers GEOMS and GMKSSOL work very good in cases of long time integra-
tion (see Example 5.3.1 of the mathematical pendulum and the Example 5.3.4 of
the slider crank) and stiff mechanical systems (see Example 5.3.2 of the lolly for
large parameter β and the Example 5.3.4 of the slider crank with l1 ≈ l2). Fur-
thermore, the new multibody system solvers GEOMS and GMKSSOL are suitable for
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Figure 5.40: Academical example: Accuracy of the solvers based on residual eval-
uations. Simulations are done with the tolerance RTOL=ATOL=10−7 on the time
domain I = [0, 2].

overdetermined systems, i.e., with redundant constraints (see Example 5.3.4 of the
slider crank). GEOMS by use of the projected-strangeness-free formulation is a good
choice for robust solution. Note that the integration of all numerical examples was
successful for almost all prescribed tolerances RTOL=ATOL=10i, i = −3, ...,−16.
Furthermore, the numerical approximation of the Lagrange multipliers is very ac-
curate and, in particular, more accurate than by use of any of the other solvers that
are based on residual evaluations.
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Figure 5.41: Academical example: Efficiency of the solvers with unstructured in-
terface. Simulations are done on the time domain I = [0, 2].
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Figure 5.42: Academical example: Efficiency of the solvers with unstructured in-
terface without respecting the Lagrange multipliers. Simulations are done on the
time domain I = [0, 2].



Chapter 6

Summary

In this thesis we have focused on three topics. First, we have investigated quasi-
linear differential-algebraic equations of arbitrary high index in view of their reg-
ularization and their numerical integration. Second, we have investigated the reg-
ularization and numerical integration of general nonlinear equations of motion as
they arise in industrial applications. As a third topic we have developed and im-
plemented two new numerical algorithms which perform the numerical integration
of these equations of motion in an efficient and stable way.

In preparation of the treatment of quasi-linear differential-algebraic equations and
of the equations of motion and, in particular, as a basis for the development of
the new numerical algorithms, we have investigated smooth factorizations of ma-
trix functions in Section 2.1. This is a very sensitive and important topic in the
regularization of general nonlinear differential-algebraic equations. Therefore, in
Theorem 2.1.6 we have presented the generalization of smooth decompositions of
matrix functions which depend on several variables.
Furthermore, we have investigated systems of nonlinear equations in Section 2.3.
We have taken into account redundant systems of nonlinear equations with re-
spect to the numerical treatment of nonlinear differential-algebraic equations and,
in particular, with respect to the numerical treatment of the equations of motion
of mechanical systems.

We did not restrict our considerations of quasi-linear differential-algebraic equa-
tions to regular systems of differential-algebraic equations. Rather, we have inves-
tigated general over- and underdetermined quasi-linear differential-algebraic equa-
tions which are allowed to contain redundancies. In particular, we have presented in
Procedure 3.5.11 a general tool for the analysis of quasi-linear differential-algebraic
equations of arbitrarily high index. This procedure offers the possibility to deter-
mine all hidden constraints, the solution manifold, the (complete) minimal reduced
derivative array, and the underlying differential equations in an efficient way. Based
on the procedure we have defined a very important quantity of general quasi-linear
differential-algebraic equations, the so-called maximal constraint level. This corre-
sponds to the highest level of existing hidden constraints of the DAE and is identical
with the minimal number of differentiations of the DAE which are restricting the
solution.
In contrast to the strangeness-concept the developed procedure is restricted to quasi-
linear differential-algebraic equations, but its application is less technical than the
one of the strangeness-concept for quasi-linear DAEs because of its iterative na-
ture and, in particular, because the procedure does only involve the derivatives
of the necessary parts of the DAE, while the strangeness-concept is based on the
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whole derivative array. Furthermore, the procedure also involves the treatment
of quasi-linear differential-algebraic equations which do not satisfy constant-rank
assumptions on the system matrices and the (hidden) constraints. In the case of
constant rank of the system matrices the procedure is still less technical than in the
case of nonconstant ranks in the system matrices.
The relation of the strangeness-concept and the procedure developed in Section 3.5
is investigated and it is shown if both concepts are applicable to the investigated
DAE that the s-index is an upper bound of the maximal constraint level by different
technical effort. Furthermore, based on the procedure we have presented a regu-
larization technique in Section 3.5.3 for general quasi-linear differential-algebraic
equations. This yields an equivalent semi-implicit DAE of minimum size with the
same solution set, the so-called projected-strangeness-free formulation, see Theorem
3.5.52.
In Section 3.5.4 we have investigated the numerical treatment of quasi-linear diffe-
rential-algebraic equations. We have developed a discretization technique based on
a Runge-Kutta scheme in combination with the regularization technique developed
in Section 3.5.3. We have shown that the sequence of regularization and discretiza-
tion can be permuted under certain conditions which are defined in Theorem 3.5.75.
The investigation of differential-algebraic equations is concluded with an overview
over available and commonly used numerical algorithms designed for differential-
algebraic equations.

The investigation of multibody systems ranges from modeling aspects in view of
nonholonomic mechanical systems with possibly redundant constraints and regu-
larity discussions up to the development of a simple regularization strategy based
on the procedure developed in Section 3.5.2.
In this thesis we have investigated the modeling of mechanical systems in view of
industrial applications on a very general level. In particular, we have extended the
classification of the equations of motion given in [164] by two additional modeling
levels including nonholonomic constraints and including possible redundancies in
the constraints. We have investigated the equations of motion in their most gen-
eral form including all relevant features appearing in industrial applications like
hydraulic components, contact point condition, holonomic as well as nonholonomic
constraints, redundancies in the constraints, and solution invariants.
We have stated assumptions on the equations of motion which insure that they
are regular in some sense. Furthermore, we have investigated the existence and the
uniqueness of solutions in view of these assumptions, in Theorems 4.2.32 and 4.2.33.
In particular, the satisfaction of all (hidden) constraints is a very important topic in
view of the numerical treatment of the equations of motion under investigation. In
particular, we have compared several commonly used formulations of the equations
of motion in view of the drift-off phenomenon. It is shown that, in principle, the
explicit appearance of the hidden constraints is responsible for the fact that they
are satisfied by the numerical solution.
Based on the results obtained so far we have stated in Section 4.5 two paradigms.
The first one is the modeling paradigm concerning the modeling of mechanical sys-
tems which postulates that the modeling of dynamical systems has to be done in
such a way that the model equations have to contain all important and necessary in-
formation as equations such that the numerical algorithms are able to handle them.
The second paradigm, the algorithm paradigm, postulates that the numerical algo-
rithms should be able to deal with all possible information which is important for
the modeling of dynamical systems. Both paradigms together facilitate a robust
and efficient numerical treatment of dynamical systems.
We have discussed commonly used regularization techniques for the equations of
motion and we have discussed their extensions to the general form of the equations
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of motion considered in this thesis. Furthermore, based on the investigations for
quasi-linear differential-algebraic equations we have presented a simple regulariza-
tion technique for general nonlinear equations of motion in Theorem 4.6.9. This
leads to an equivalent formulation of DAEs which is strangeness-free and contains
the same solution set as the original equations of motion. In particular, we carved
out all hidden constraints and selected those differential equations from the differ-
ential part of the equations of motion which describe the dynamics in the solution
manifold given by the hidden constraints. Furthermore, we have discussed in The-
orem 4.6.15 an incomplete regularization of the equations of motion.

Based on the results obtained from the investigation of quasi-linear differential-
algebraic equations and of the equations of motion, we have developed two numeri-
cal algorithms GEOMS and GMKSSOL for the numerical integration of general equations
of motion. Based on the observation that the sequence of discretization and reg-
ularization can be permuted under certain conditions, the algorithms follow two
different strategies. While GEOMS is based on the regularization of the discretized
equations of motion, the algorithm GMKSSOL is based on the discretization of the
regularized equations of motion.
In particular, the algorithm GEOMS is developed to perform the numerical integra-
tion of the most general form of the equations of motion, including nonholonomic
constraints and possible redundancies in the constraints, as they may appear in
industrial applications. Besides the numerical integration it offers some additional
features like respecting invariant solutions, respecting hidden constraints, use of dif-
ferent decomposition strategies, use of an incomplete regularization, and also check
and correction of the initial values with respect to their consistency. It should be
mentioned that the algorithm GEOMS follows the demands stated in the algorithm
paradigm such that GEOMS is able to respect all possible information like hidden
constraints and solution invariants.
On the other hand, although the algorithm GMKSSOL is specialized to a certain type
of equations of motion it still provides a certain measure of generality. This algo-
rithm offers the possibility to check and to correct the initial values of the Lagrange
multipliers with respect to its consistency. Furthermore, GMKSSOL respects hidden
constraints and is able to deal with redundancies in the constraints.
Subsequently, we have demonstrated the performance and the applicability in com-
parison to commonly used numerical algorithms suitable for the numerical simu-
lation of multibody systems at several mechanical examples of different degrees of
complexity. The experience with the numerical examples in Section 5.3 and several
other numerical tests suggest that the codes RADAU5 by use of the s-index-1 formu-
lation (4.81) and the code GEOMS by use the projected-strangeness-free formulation
(4.114) are very efficient methods for the numerical integration of the equations of
motion. This is justified by the fact that both codes have successfully finished almost
all test scenarios with all prescribed tolerances TOL=10i, i = −3, ...,−15. Further-
more, the numerical results suggest that the numerical algorithm GEOMS represents
a general tool for the efficient and robust simulation of general multibody-systems
as they appear in industrial applications.

In view of the treatment of differential-algebraic equations, an open problem is
the precise specification of the relation of the maximal constraint level and the
strangeness index. We conjecture that both quantities have the relations that in
view of the Procedure 3.5.11

νs =

{
νc for range((Ẽνc)T ) ∩ range((k̃νc

2,x)T ) = {0},
νc + 1 for range((Ẽνc)T ) ∩ range((k̃νc

2,x)T ) 6= {0}
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and that in view of the Hypothesis 3.2.7

νc =

{
νs for ZT

2νs
6= 0,

νs − 1 for ZT
2νs

= 0,

where ZT
2νs

of size a × m is the last block column of the matrix function

ZT
2 =

[
ZT

20 ZT
21 · · · ZT

2νs

]
.

Furthermore, the developed procedure offers the extension of considerations to
DAEs with singularities as they appear in DAEs for which the procedure termi-
nates successfully but with rank(Ẽν

1 ) 6= const or rank(k̃i
2) 6= const for i = 0, ..., ν.

Subsequently, the obtained results in this thesis can be used as basis for further
investigations in view of the control of dynamical systems, in particular, of mechan-
ical systems. For example this includes path control or optimal control of dynamical
systems. Moreover, the code GEOMS can in principle be used for path control prob-
lems and can be generalized for the numerical treatment of general quasi-linear
DAEs.



Appendix A

Basics

In this Chapter, we will review and discuss fundamentals associated with nonlinear
functional analysis in Section A.1 and fundamentals associated with linear algebra
in Section A.2. Subsequently, the manual for the use of the numerical algorithms
GEOMS and GMKSSOL is stated in Sections B.1 and B.2, respectively.

A.1 Basic nonlinear functional analysis

The following notation is adapted from [47, 143, 183].

Definition A.1.1 (Function) A set RXY of ordered pairs (x, y) with x ∈ X ⊂ Rn

and y ∈ Y ⊂ Rm is called function if for every x ∈ X there exists one and only
one y such that the pair (x, y) ∈ RXY. Let us write f : X → Y and y = f(x) if
(x, y) ∈ RXY.

Definition A.1.2 (Surjective, injective, and bijective function) A function
f : X → Y, X ⊂ Rn, Y ⊂ Rm is called surjective or a surjection if f(X) = Y, i.e.,
if for every y ∈ Y there is (at least) one x ∈ X with y = f(x). The function f is
called injective or injection if the relation f(x1) = f(x2) implies x1 = x2 for every
x1, x2 ∈ X. Furthermore, the function f is called bijective or bijection if it is both
injective and surjective.

Definition A.1.3 (Inverse function) Let f : X → Y with X ⊂ Rn and Y ⊂ Rm

be a bijective function then a function g : Y → X with g(f(x)) = x is called the
inverse function of f and is denoted by g = f−1.

An inverse function of f is not defined if the function f is not bijective. If f is
bijective the equation y = f(x) is equivalent to f−1(y) = x. Furthermore, f−1 is
bijective and we have (f−1)−1 = f .

Definition A.1.4 (Continuous function) A function f : X → Rm, X ⊂ Rn

is called continuous at a point x0 ∈ X if, for every neighborhood V2 of f(x0) in
R

m, there is a neighborhood V1 of x0 in X such that f(V1) ⊂ V2. The function f
is called continuous (in X) if it is continuous at every point of X. Functions which
are continuous are denoted by f ∈ C(X, Rm) or f ∈ C0(X, Rm).

Definition A.1.5 (Norm) A function || · || : X → R, X ∈ Rn is called a norm if
the conditions

1) x 6= 0 ⇒ ||x|| > 0,

2) ||αx|| = |α| ||x||,
3) ||x + y|| ≤ ||x|| + ||y||
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are satisfied for all x, y ∈ X and α ∈ R.

In the following we will base our investigations on the norm of matrices and vectors.
We will restrict us to the so called Hölder1 norms which are defined for 0 ≤ p ≤ ∞
by

||x||p =
( n∑

i=1

|xi|p
) 1

p

for the vector x = [xi]i=1,...,n ∈ Rn. Of these the 1, 2, and ∞ norms are the most
important, where ||x||∞ = max1≤i≤n |xi|. Furthermore, with respect to matrices
we will use the associated norms defined for 0 ≤ p ≤ ∞ by

||A||p = max
x∈X

||Ax||p
||x||p

.

for the matrix A ∈ Rm,n and X ⊂ Rn. In our following investigations it is not
necessary to distinguish between different p. Therefore, we will omit the suffix such
that we will use || · || instead of || · ||p.

Definition A.1.6 (Sphere, neighborhood) Let x ∈ X ⊂ Rn be given, then the
set S(x, ε) = {y ∈ X : ||x − y|| < ε} is called open sphere or open neighborhood
of x with ε > 0. Furthermore, the set S̄(x, ε) = {y ∈ X : ||x − y|| ≤ ε} is called
closed sphere or closed neighborhood of x with ε ≥ 0.

Lemma A.1.7 If f : X → R, X ⊂ Rn is continuous in x0 ∈ X and f(x0) > a (<
a). Then there exists an ε > 0 such that f(x) > a (< a) for all x ∈ {x ∈ X :
||x − x0|| < ε}.

Proof: See [87]. �

Definition A.1.8 (Lipschitz continuous) A function f : X → Rm, X ⊂ Rn

which satisfies the condition

||f(x) − f(y)|| ≤ L||x − y|| (1.1)

for all x ∈ X and y ∈ X, where L is a constant independent of x and y, is called
Lipschitz continuous or Lipschitz function. The condition (1.1) is called Lipschitz
condition and the constant L is called the Lipschitz constant.

Definition A.1.9 (Differentiable function) A function f : X → Rm with X ⊂
Rn is called differentiable at the point x0 ∈ X if there exists a linear function
u : h 7→ A(x0)h with A(x0) ∈ R

m,n such that

lim
h→0

||f(x0 + h) − f(x0) − u(h)||
||h|| = 0.

If f is differentiable at every point x0 ∈ X the function f is called differentiable
on X or differentiable in short. Furthermore, A(x0) is called the derivative of f at
the point x0 and if f is differentiable at X the function A : X → Rm,n is called
derivative of f . The derivative of the function f (with respect to x) is denoted by
f,x.

1Otto Ludwig Hölder (1859 in Stuttgart, Germany - 1937 in Leipzig, Germany)
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Definition A.1.10 (Continuously differentiable) A differentiable function f :
X → R

m, X ⊂ R
n is called a continuously differentiable function if the derivative f,x

of f (see Definition A.1.9) is continuous in X. The set of continuously differentiable
functions from X into Rm is denoted by C1(X, Rm).
A function f : X → Rm, X ⊂ Rn is called l-times continuously differentiable or also
Cl-function if the derivative f,x of f is an (l − 1)-times continuously differentiable
function from X into Rm. The set of l-times continuously differentiable functions is
denoted by Cl(X, Rm). Furthermore, the set C∞(X, Rm) = ∩∞

l=1Cl(X, Rm) is called
the set of infinitely continuously differentiable functions.

In view of the asymptotic behavior of functions, we will use the so called Landau2

symbolic as defined as follows.

Definition A.1.11 (Landau symbol) Let f : X → R and g : X → R. Then the
relation

lim sup
x→a

∣∣∣∣
f(x)

g(x)

∣∣∣∣ < ∞

is denoted by the Landau symbol O in the form

f(x) = O(g(x)).

Definition A.1.12 (Homeomorphism) A function f : X → Rm with X ⊂ Rn

is called a homeomorphism if f is a bijection and both f and its inverse function
f−1 are continuous.

Definition A.1.13 (Diffeomorphism, diffeomorphic) Let 0 ≤ l ≤ ∞. A func-
tion f : X → Rm with X ⊂ Rn is called a Cl-diffeomorphism if f is bijective and
both f and its inverse function f−1 are Cl-functions. Two subsets X and Y are
said to be Cl-diffeomorphic if there exists a Cl-diffeomorphism f : X → Y between
them.

Lemma A.1.14 (Heine3-Borel4-Lebesgue5Covering Theorem) Let X be a com-
pact subset of Rn and let B be a collection of open subsets of Rn such that every
point of X belongs to at least one of the subsets of B. Then X is covered by a finite
number of open sets of B.

Proof: See [182]. �

A.2 Basic linear algebra

In this section we will briefly introduce some frequently used aspects and notation
from linear algebra, numerical linear algebra, and tensor algebra. For more details
the reader is referred to [72, 92, 95, 158, 171, 176].
We start with the introduction of important properties concerning (sub)spaces and
matrices.

Definition A.2.1 (Orthogonal complement of subspaces) The orthogonal
complement of a subspace S ∈ Rn is defined by S⊥ = {y ∈ Rn : yT x = 0 for all x ∈
S}.

2Edmund Landau (1877 Berlin, Germany - 1938 Berlin, Germany)
3Heinrich Eduard Heine (1821 in Berlin, Germany - 1881 in Halle, Germany)
4Félix Edouard Justin Émile Borel (1871 in Saint Affrique, France - 1956 in Paris, France)
5Henri Léon Lebesgue (1875 in Beauvais, France - 1941 in Paris, France)
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Definition A.2.2 (Minor and adjugate) Let A=[Aij ] ∈ Rm,n. Let I =[i1, ..., ir]
and J = [j1, ..., jr], min(m, n) ≥ r ∈ N0 be index vectors with ik 6= il and jk 6= jl for
k 6= l, il ∈ {1, ..., m} and jl ∈ {1, ..., n} for l = 1, ..., r, then the r-th order minor
[A]IJ ∈ R defined by I and J is

[A]IJ = det(AIJ)

with AIJ introduced in Notation 2.0.3. If m = n then adj(A)ij = (−1)i+j [A]IJ with
I = [1, ..., i − 1, i + 1, ..., n] and J = [1, ..., j − 1, j + 1, ..., n] is called adjugate.

Note that any minor [A]IJ as well as any adjugate adj(A)ij depend smoothly on
the entries aij of A.

Definition A.2.3 (Kernel, cokernel, range and corange) Let A ∈ R
m,n. The

kernel, cokernel, range, and corange of A are defined by

kernel of A : ker(A) = {x ∈ R
n : Ax = 0},

cokernel of A : coker(A) = (ker(A))⊥,

range of A : range(A) = {y ∈ R
m : there exists an x ∈ R

n such that y = Ax},
corange of A : corange(A) = (range(A))⊥.

Lemma A.2.4 Let A ∈ Rm,n, then

coker(A) = range(AT ) and corange(A) = ker(AT ).

Proof: See [72] �

Definition A.2.5 (Rank and corank) Let A ∈ R
m,n. The rank of matrix A is

the integer

rank(A) = dim(range(A)),

where dim(S) denotes the dimension of a subspace S. The corank is the dimension
of the corange of A, i.e.,

corank(A) = m − rank(A).

Definition A.2.6 (Orthogonal matrix) A matrix A ∈ R
n,n satisfying AT A =

In is called an orthogonal matrix.

Definition A.2.7 (Nonsingular matrix and inverse matrix) Let the matrix
A ∈ R

n,n. If a uniquely determined matrix X ∈ R
n,n exists with AX = XA = In,

where the matrix In ∈ Rn,n denotes the identity matrix, then the matrix A is called
nonsingular or invertible and the matrix X is called inverse matrix of A or the
inverse of A in short. The inverse of A is denoted by A−1 = X.

Lemma A.2.8 Let the matrix A ∈ R
n,n be nonsingular, then

A−1 =
1

det(A)




adj(A)11 adj(A)21 · · · adj(A)n1

adj(A)12 adj(A)22 · · · adj(A)n2

...
...

. . .
...

adj(A)1n adj(A)2n · · · adj(A)nn


 .

Proof: See [92]. �
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Definition A.2.9 (Orthogonal projection) Let S ⊂ Rn be a subspace. A ma-
trix PS ∈ R

n,n is called orthogonal projection onto S if range(PS) = S, P 2
S

= PS,
and PT

S
= PS.

Remark A.2.10 From Definition A.2.9 it follows that I − PS is the orthogonal
projection onto S⊥. Furthermore, the orthogonal projection onto a subspace S is
unique. See [72]. �

Lemma A.2.11 Let S ⊂ Rm be a subspace and let the columns of the matrix
A ∈ Rm,n with full (column) rank span this subspace, i.e., range(A) = S. Then the
orthogonal projection PS ∈ R

m,m onto S is given by

PS = A(AT A)−1AT . (1.2)

Proof: See [95]. �

Important tools for the investigation of matrices are matrix decompositions, in
particular, the LU decomposition and the QR decomposition. For more details we
refer to [72, 92, 171]. Furthermore, a very important tool for investigations of rank
decisions, redundancies of systems of nonlinear equations and others is the singular
value decomposition (SV decomposition).

Lemma A.2.12 (Singular value decomposition) Let A ∈ R
m,n. Then there

exist orthogonal matrices U ∈ Rm,m and V ∈ Rn,n such that

UT AV = Σ =

[
Σ1 0
0 0

]
,

where Σ1 = diag(σ1, ..., σr) ∈ R
r,r and σ1 ≥ ... ≥ σr > 0.

Proof: See [72]. �

Note that, in general, the orthogonal matrices U and V in the SV decomposition
are not uniquely determined.
Another useful decomposition that follows immediately from the SV decomposition
is the polar decomposition.

Lemma A.2.13 (Polar decomposition) Let A ∈ Rm,n be given.
a)If m ≤ n, then A = PY , where P ∈ Rm,m is symmetric positive semi-definite,
P 2 = AAT , and Y ∈ Rm,n has orthonormal rows.
b)If m ≥ n, then A = XQ, where Q ∈ R

n,n is symmetric positive semi-definite
Q2 = AT A, and X ∈ Rm,n has orthonormal columns.
c)If m = n, then A = PU = UQ, where P, Q ∈ Rn,n are symmetric positive
semi-definite P 2 = AAT , Q2 = AT A, and U ∈ Rn,n is orthogonal.

Proof: See [92]. �

In all cases, the symmetric positive semidefinite factors P and Q are uniquely de-
termined by A.
The SV decomposition provides a tool which allows the computation of the orthog-
onal projections onto the range, corange, kernel, and cokernel of a matrix A.

Lemma A.2.14 Let A ∈ Rm,n with rank(A) = r. Suppose that A = UΣV T ∈ Rm,n

is a SV decomposition of A. If we have the partitioning U =
[

U1 U2

]
∈ Rm,m

with U1 ∈ Rm,r, U2 ∈ Rm,m−r and V =
[

V1 V2

]
∈ Rn,n with V1 ∈ Rn,r,

V2 ∈ Rn,n−r then

Prange(A) = U1U
T
1 , Pcorange(A) = U2U

T
2 ,

Pker(A) = V2V
T
2 , Pcoker(A) = V1V

T
1 .

(1.3)
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Proof: See [72]. �

Note that the orthogonal projections are uniquely determined by U and V although
the matrices U and V are in general not unique.
A generalization of the inverse of a matrix is given by the Moore6-Penrose pseudo-
inverse, see [72].

Definition A.2.15 (Moore-Penrose pseudo-inverse) Let A ∈ R
m,n. The

Moore-Penrose pseudo-inverse of A is defined to be the unique matrix A+ ∈ Rn,m

that satisfies the four Moore-Penrose conditions

(i) AA+A = A, (iii) (AA+)T = AA+,
(ii) A+AA+ = A+, (iv) (A+A)T = A+A.

If rank(A) = n, then A+ = (AT A)−1AT , while if rank(A) = n = m, then A+ =
A−1.

Lemma A.2.16 Let A ∈ Rm,n. Then

Prange(A) = AA+, Pcorange(A) = I − AA+,
Pker(A) = I − A+A, Pcoker(A) = A+A.

(1.4)

Proof: See [72, 176]. �

Lemma A.2.17 Let E ∈ Rm,n, A ∈ Ra,n, m ≥ n, a ≤ n. Let A have full (row)

rank, i.e., rank(A) = a. Furthermore, let the matrix

[
E
A

]
have full (column)

rank. Then, there exists a matrix T ∈ Rn,d, with d = n − a such that AT =
0 and rank(ET ) = d. Furthermore, there exists a matrix S ∈ R

m,d such that
rank(ST ET ) = d.

Proof: Because of the full (row) rank of A from the SV decomposition of A we
get

A
[

V1 V2

]
=
[

ΣA 0
]
,

with ΣA ∈ Ra,a nonsingular, V1 ∈ Rn,a, and V2 ∈ Rn,d. Because of the full (column)

rank of

[
E
A

]
and because of AV2 = 0 we get the full (column) rank of EV2 ∈ Rm,d,

i.e., rank(EV2) = d, and from the SV decomposition of EV2 we get
[

UT
1

UT
2

]
EV2 =

[
ΣE

0

]
,

with ΣE ∈ Rd,d nonsingular, U1 ∈ Rm,d, and, U2 ∈ Rm,m−d. Choosing T = V2 and
S = U1 yields the assertion. �

Lemma A.2.18 Let the matrices A ∈ Rm1,n, B ∈ Rm2,n be given such that the

matrix
[

AT BT
]T

is nonsingular and BAT = 0. Then for every positive or
negative definite matrix M ∈ Rn,n the matrix

[
AM
B

]

is nonsingular.

6Eliakim Hastings Moore (1862 in Marietta, USA - 1932 in Chicago, USA)
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Proof: We have
[

AM
B

] [
AT BT

]
=

[
AMAT AMBT

BAT BBT

]
=

[
AMAT AMBT

0 BBT

]
. (1.5)

From the definiteness of M we get that AMAT is also definite, i.e., in particular,
AMAT is nonsingular. Furthermore, BBT is positive definite and therefore also
nonsingular such that the matrix (1.5) is nonsingular. Then from the nonsingularity
of
[

AT BT
]

we get the assertion. �

Concluding this section, we will introduce the so called Kronecker product which
will be turned out as a very practical notation, in particular, in the investigation of
the numerical treatment of DAEs.

Definition A.2.19 (Kronecker product) Let A = [aij ] ∈ Rm,n and B = [bkl] ∈
Rp,q. The Kronecker product of A and B is defined by

A ⊗ B =




a11B · · · a1nB
...

. . .
...

am1B · · · amnB


 ∈ R

mp,nq.

Lemma A.2.20 Let A ∈ Rm,n, B ∈ Rl,p C ∈ Rn,q, and D ∈ Rp,s. Then

(A ⊗ B)(C ⊗ D) = (AC ⊗ BD).

If, in addition, m = n and A is nonsingular, then

(A ⊗ I)−1 = (A−1 ⊗ I).

Proof: The proof follows immediately from Definition A.2.19. �
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Appendix B

Manuals

B.1 Manual of GEOMS

SUBROUTINE GEOMS(

# NP,NV,NR,NW,NS,NL,NM,NI,M,N,NIVCOND,

# X,T,TEND,H,RTOL,ATOL,ITOL,IOPT,ROPT,

# IVCOND,EOM,MAS,JAC,IJAC,

# SOLOUT,IOUT,

# LIWORK,IWORK,LRWORK,RWORK,

# RPAR,IPAR,IERR,

# IDID)

C -----------------------------------------------------------------------------

C

C NAME : (G)eneral (E)quations (O)f (M)otion (S)olver

C

C PURPOSE : This subroutine performs the numerical simulation

C of a multibody system whose state is described by

C

C p - position variables of dimension NP,

C v - velocity variables of dimension NV,

C r - dynamical force element variables of dimension NR,

C w - auxiliary variables of dimension NW,

C s - contact point variables of dimension NS,

C l - holonomic Lagrange multipliers of dimension NL,

C m - nonholonomic Lagrange multipliers of dimension NM

C

C by numerical integration of the equations of motion

C of the form

C

C p’= Z(p)*v, (1) (f_kin)

C M(p,t)*v’= f(p,v,r,w,s,l,m,t)-ZT(p)*GT(p,s,t)*l

C -ZT(p)*HT(p,s,t)*m, (2) (f_dyn)

C r’= b(p,v,r,w,s,l,m,t), (3)

C 0 = d(p,v,r,w,s,l,m,t), (4)

C 0 = c(p,s,t), (5)

C 0 = H(p,s,t)Z(p)v+h(p,s,t) (6)

C 0 = g(p,s,t), (7)

C 0 = e(p,v,s,t) (8)

C

C on the domain [t_0,t_f]=[T,TEND].

C

C The prime denotes the time derivative, e.g., p’=dp/dt, and the

C ’T’ following a matrix or vector denotes the transpose of this

C matrix or vector, e.g.,GT is the transpose of G and ZT is the

C transpose of Z. Furthermore, the equations correspond to

C

C (1) Kinematical equations of motion of dimension NP,

C (2) Dynamical equations of motion of dimension NV,

C (3) Dynamical force element equations of dimension NR,

255
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C (4) Additional equations for variables w of dimension NW,

C (5) Contact equations of dimension NS,

C (6) Nonholonomic constraints of dimension NM,

C Notation: h~(p,v,s,t)=H(p,s,t)Z(p)v+h(p,s,t)

C (7) Holonomic constraints of dimension NL,

C (8) Solution invariants of dimension NI.

C

C The System (1)-(8) has to satisfy the following.

C a) G = dg/dp - dg/ds*(dc/ds)^{-1}*dc/dp.

C b) [ GZM^{-1}Gl GZM^{-1}Hm]

C rank([ ])=rank(G)+rank(H)=constant

C [ HZM^{-1}Gl HZM^{-1}Hm]

C with Gl=ZT*GT-df/dl+df/dw*(dd/dw)^{-1}*dd/dl

C and Hm=ZT*HT-df/dm+df/dw*(dd/dw)^{-1}*dd/dm

C for all t in [T,TEND].

C Alternatively,

C [ M Gl Gm ]

C rank([ GZ 0 0 ])=NV+rank(G)+rank(H)

C [ HZ 0 0 ]

C has to be satisfied for all t in [T,TEND].

C c) dc/ds has to be nonsingular for all times t in [T,TEND].

C d) dd/dw has to be nonsingular for all times t in [T,TEND].

C e) de/dv has to have full rank for all times t in [T,TEND].

C

C The integration method used is the implicit Runge-Kutta method

C (Radau IIa) of order 5 with step size control, continuous

C output, and consistent initialization.

C

C METHOD : The equations of motion are integrated by the implicit

C Runge-Kutta method of type RADAU IIa of order 5 and using the

C projected-strangeness-free formulation or the

C projected-strangeness-index-1 formulation of the equations of

C motion.

C

C VERSION : July 31, 2005

C

C REVISIONS : -

C

C AUTHORS : Address: A. Steinbrecher

C Institut fuer Mathematik

C Technische Universitaet Berlin

C Strasse des 17. Juni

C 10623 Berlin, Germany

C e-mail: steinbrecher@math.tu-berlin.de

C

C REFERENCES: This code is part of the PhD thesis:

C A.Steinbrecher. Numerical Solution of Quasi-Linear Differential-

C Algebraic Equations and Industrial Simulation of Multibody

C Systems. PhD thesis, TU Berlin, Institut fuer Mathematik, 2005

C

C KEYWORDS : numerical simulation of mechanical systems, equations of motion,

C differential-algebraic equations, projected-strangeness-free

C formulation, projected-strangeness-index-1 formulation

C

C NOTE : The (basic) linear algebra routines are provided by the

C libraries BLAS and LAPACK

C

C -----------------------------------------------------------------------------

C

C CALL

C ---------------------------

C

C SUBROUTINE GEOMS(

C # NP,NV,NR,NW,NS,NL,NM,NI,M,N,NIVCOND,

C # X,T,TEND,H,RTOL,ATOL,ITOL,IOPT,ROPT,

C # IVCOND,EOM,MAS,JAC,IJAC,

C # SOLOUT,IOUT,
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C # LIWORK,IWORK,LRWORK,RWORK,

C # RPAR,IPAR,IERR,

C # IDID)

C IMPLICIT NONE

C INTEGER NP,NV,NR,NW,NS,NL,NM,NI,M,N,NIVCOND,

C # ITOL,IJAC,IOUT,LIWORK,LRWORK,IERR,IDID,

C # IOPT(40),IWORK(LIWORK),IPAR(*)

C DOUBLE PRECISION T,TEND,H,

C # X(N),RTOL(*),ATOL(*),ROPT(40),RWORK(LRWORK),

C RPAR(*)

C EXTERNAL IVCOND,EOM,MAS,JAC,SOLOUT

C

C INPUT- AND OUTPUT-ARGUMENTS

C ---------------------------

C

C NP Input : integer

C Number of position variables p.

C

C NV Input : integer

C Number of velocity variables v.

C

C NR Input : integer

C Number of dynamical force element variables r.

C

C NW Input : integer

C Number of auxiliary variables w.

C

C NS Input : integer

C Number of contact point variables s.

C

C NL Input : integer

C Number of Lagrange multipliers l=lambda for holonomic

C constraints.

C

C NM Input : integer

C Number of Lagrange multipliers m=mu for nonholonomic

C constraints.

C

C NI Input : integer

C Number of invariants, e.g., energy conservation.

C

C M Input : integer

C Total number of provided equations (M.GE.N), i.e., dimension of

C RDA, see subroutine EOM. In the case of the use of the

C * projected-strangeness-free formulation we have

C M=NP+NV+NR+NW+NS+3*NL+2*NM+NI,

C * projected-strangeness-index-1 formulation we have

C M=NP+NV+NR+NW+NS+2*NL+NM+NI.

C

C N Input : integer

C Number of unknowns (M.GE.N), i.e., dimension of X. We have

C N=NP+NV+NR+NW+NS+NL+NM.

C

C NIVCOND Input : integer

C Number of initial value conditions, which have to be satisfied

C in addition to the constraints obtained from the provided equa-

C tions of motion. See subroutine IVCOND.

C

C X Input : double precision array X(N)

C Initial values for X. The array X contains the (initial) state

C of the mechanical system in the following order

C

C X(1:NW) =w

C X(NW+1:NW+NL) =l (=lambda)

C X(NW+NL+1:NW+NL+NM) =m (=mu)

C --------------------------------------------------------

C X(NL+NM+NW+1:NL+NM+NW+NR) =r
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C --------------------------------------------------------

C X(NL+NM+NW+NR+1:NL+NM+NW+NR+NV) =v

C --------------------------------------------------------

C X(NL+NM+NW+NR+NV+1:NL+NM+NW+NR+NV+NS) =s

C X(NL+NM+NW+NR+NV+NS+1:NL+NM+NW+NR+NV+NS+NP) =p

C

C Output :

C Numerical approximation of the solution at the last successfully

C reached time T.

C

C T Input : double precision

C Initial time.

C Output :

C Last successfully reached time. If the whole integration was

C successful then T=TEND.

C

C TEND Input : double precision

C Final time.

C

C H Input : double precision

C Initial step size.

C Output :

C Last used step size.

C

C RTOL Input : double precision RTOL (or array RTOL(N))

C ATOL Input : double precision ATOL (or array ATOL(N))

C Relative and absolute error tolerances. They can be both

C scalars or else both vectors of length N.

C In the case of a scalar the prescribed relative and absolute

C tolerances are valid for every component of the vector of

C unknowns X. The code keeps, roughly, the local error of X(I)

C below RTOL*ABS(X(I))+ATOL.

C In the case of a vector of dimension N the prescribed relative

C tolerances RTOL(I) and absolute tolerances ATOL(I) are valid

C for the I-th component X(I) of the vector of unknowns X.

C The code keeps, roughly, the local error of X(I) below

C RTOL(I)*ABS(Y(I))+ATOL(I).

C

C ITOL Input : integer

C Switch for RTOL and ATOL:

C ITOL=0 Both RTOL and ATOL are scalars.

C ITOL=1 Both RTOL and ATOL are vectors.

C

C IOPT Input : integer array IOPT(40)

C Serve as parameters for the code. For standard use of the code

C IOPT(2),..,IOPT(17) must be set to zero before calling.

C See below for a more sophisticated use.

C

C IOPT( 2)=LUN output device

C 0 - no output (default)

C 6 - output to the screen

C >10 - other output devices (to define)

C In the case that the output of several messages is de-

C sired, the user has to define an output device and to

C associate this device with IOPT(2), e.g.,

C IOPT(2)=13

C OPEN(UNIT=13,FILE=’geoms.log’)

C Finally, the output device has to be closed, e.g.,

C CLOSE(13)

C In the case of an unsuccessful run of GEOMS it is re-

C commended to set IOPT(2) > 0 such that GEOMS is able

C to provide more detailed informations to the user.

C Furthermore, it is recommended to set

C IOPT(2)=0, 6, or >10.

C

C IOPT( 3)=NIT maximum number of Newton iterations for the solu-

C tion of the implicit system in each step.
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C The default value (for IOPT(3)=0) is 10.

C

C IOPT( 4)=STARTN defines the choice of starting values for the

C Newton method solving the nonlinear stage equations

C 0 - The extrapolated collocation solution is taken as

C starting value for Newton method. (default)

C 1 - Zero starting values are used as starting value

C forNewton method.

C IOPT(4)=1 is recommended if the Newton method has con-

C verging difficulties (this is the case when IWORK(11)

C is very large in comparison to IWORK(1), see output

C parameters).

C

C IOPT( 5)=FORM Used formulation as basis of the numerical

C integration

C 0 - projected-strangeness-free formulation, i.e., the

C user has to provide the equations (1)-(7) toge-

C ther with the first and second time derivative

C of the holonomic constraints, i.e.,

C gI(p,v,t) = d/dt g(p,t),

C gII(p,v,r,w,s,l,m,t)= d^2/dt^2 g(p,t),

C and the first time derivative of the nonholonomic

C constraints, i.e.,

C hI(p,v,r,w,s,l,m,t)= d/dt(H(p,s,t)Z(p)v+h(p,s,t)).

C If there exist some solution invariants (8) the

C user should also provide them and set NI equal

C to the number of the solution invariants. All

C provided equations have to be defined in the sub-

C routine EOM and the subroutine MAS in the correct

C order, see the subroutines EOM and MAS for more

C details.

C 1 - projected-strangeness-index-1 formulation , i.e.,

C the user has to provide the equations (1)-(7)

C together with the first time derivative of the

C holonomic constraints, i.e.,

C gI(p,v,t) = d/dt g(p,t).

C If there exist some solution invariants (8) the

C user should also provide them and set NI equal

C to the number of the solution invariants. All

C provided equations have to be defined in the sub-

C routine EOM and the subroutine MAS in the correct

C order, see the subroutines EOM and MAS for more

C detail.

C

C IOPT( 6)=NMAX Maximal number of allowed steps.

C The default value (for IOPT(6)=0) is 100000.

C If the code stops with the error message IDID=-1117,

C IOPT(6) has to be increase or

C the integration can be continued by use of the obtained

C X and T as initial values for the continued integration.

C

C IOPT( 8)=PRED Step size strategy

C 1 - predictive controller (Gustafsson)

C 2 - classical step size control

C The default value (for IOPT(8)=0) is 1.

C The choice IOPT(8)=1 seems to produce safer results;

C for simple problems, the choice IOPT(8)=2 produces

C often slightly faster runs.

C

C IOPT( 9)=NWTMAT Approximation of the Newton iteration matrix

C 0 - approximation at the initial point x_i of the

C current integration interval [t_{i},t_{i+1}]

C i.e., at (t_{i},x_{i}) (default)

C 1 - approximation at the first extrapolated stage of

C the current integration interval [t_{i},t_{i+1}]

C i.e., at (t_{i}+c_{1}*h,X_{i1})

C 2 - approximation at the second extrapolated stage of
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C the current integration interval [t_{i},t_{i+1}]

C i.e., at (t_{i}+c_{2}*h,X_{i2})

C 3 - approximation at the third extrapolated stage of

C the current integration interval [t_{i},t_{i+1}]

C i.e., at (t_{i}+c_{3}*h,X_{i3})

C Several numerical experiments turned out that the

C choice IOPT(9)=2 is the fastest while the

C choice IOPT(9)=0 is theoretically the safest.

C IOPT(9).NE.0 is only possible if IOPT(4)=STARTN=0,

C i.e., the extrapolated collocation solution is taken

C as starting value for Newton method.

C

C IOPT(10)=NWTUPD Update of the Newton iteration matrix

C 0 - for the whole Newton iteration process in one

C integration step the same Newton iteration matrix

C is used, i.e., no update is allowed. (default)

C >0 - during the Newton iteration process in the current

C integration step IOPT(10) updates of the Newton

C iteration matrix are allowed.

C If convergence problems during the Newton iteration

C process occur, often the Newton matrix is not suitable.

C Therefore, in the case of IOPT(10)=0 the

C current integration step is rejected, the counter NCRJCT

C will be increased by one and the current integration

C step will be repeated with reduced step size.

C The option IOPT(10)>0 allows the update of the Newton

C iteration matrix IOPT(10) times. The Newton iteration

C matrix will be updated by use of the current iterates

C and the Newton iteration will be continued.

C Several numerical experiments have shown that IOPT(10)

C should not exceed 1.

C

C IOPT(11)=DECOMPC Decomposition of the algebraic part

C 1 - LU decomposition with full pivoting

C 2 - QR decomposition with pivoting

C 3 - SV decomposition

C The default value (for IOPT(11)=0) is 3.

C By use of IOPT(11)=1 the integration becomes fastest

C but the stability of the decomposition can not be

C guaranteed. In situations with isolated singularities

C it may happen that the integrator does not detect

C the singularity if the tolerances RTOL or ATOL are

C too large.

C By use of IOPT(11)=2 or 3 the stability of the

C decomposition is guaranteed but the integration

C becomes slower.

C In case of redundant constraints only IOPT(11)=3 is

C possible.

C

C IOPT(12)=DECOMPD Decomposition of differential part

C 0 - LU decomposition with partial pivoting (default)

C 1 - QR decomposition

C By use of IOPT(12)=0 the integration becomes fastest.

C

C IOPT(13)=SELCOMP Recomputation strategy for the selectors

C 0 - situation adapted

C the recomputation of the selector will be done

C only if the row pivoting of the constraints is

C changing or convergence problems occur during

C the Newton iteration process (default)

C 1 - in every integration step

C In case of IOPT(13)=0 the amount of computations

C is reduced and the integration becomes faster.

C This speed-up is only possible if DECOMPD=0.

C

C IOPT(14)=AUTONOM Autonomy of the equations of motion

C 0 - the equations of motion are not autonomous
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C (default)

C 1 - the equations of motion are autonomous

C If the equations of motion are autonomous the amount

C of computations can be reduced and the integration

C becomes faster.

C

C IOPT(15)=MASSTRKT Structure of the mass matrix

C 1 - full and time or/and state dependent

C 2 - diagonal and time or/and state dependent

C 3 - full and constant

C 4 - diagonal and constant

C The default value (for IOPT(15)=0) is 1.

C

C IOPT(17)=IVCNSST are the initial values consistent

C 0 - No, the initial values are assumed to be not

C consistent. A check of consistency will be

C done and if necessary a correction will be

C computed. (default)

C 1 - Yes, the initial values are assumed to be

C consistent. No check of consistency will be

C done.

C

C ROPT Input : double precision array ROPT(40)

C Serve as parameters for the code. For standard use of the code

C ROPT(1),..,ROPT(40) must be set to zero before calling.

C See below for a more sophisticated use.

C

C ROPT( 1)=UROUND The rounding unit

C The default value (for ROPT(1)=0.0) is 1.D-16.

C

C ROPT( 2)=SAFE Safety factor in step size prediction

C The default value (for ROPT(2)=0.0) is 0.9.

C

C ROPT( 3)=THET Recomputation of the Jacobian

C Decides whether the Jacobian should be recomputed.

C Increase ROPT(3), to 0.1 say, when Jacobian evaluations

C are costly. for small systems ROPT(3) should be smaller

C (say 0.001D0). Negative ROPT(3) forces the code to

C compute the Jacobian after every accepted step.

C The default value (for ROPT(3)=0.0) is 0.001D0.

C

C ROPT( 4)=FNEWT Stopping criterion for Newton’s method

C Smaller values of ROPT(4) make the code slower, but

C safer.

C The default value (for ROPT(4)=0.0) is

C MIN(0.03D0,RTOL(1)**0.5D0)

C

C

C ROPT( 5)=QUOT1 Change of the step size

C See ROPT(6).

C The default value (for ROPT(5)=0.0) is 1.0D0

C

C ROPT( 6)=QUOT2 Change of the step size

C If QUOT1 < HNEW/HOLD < QUOT2, then the step size is not

C changed. This saves, together with a large ROPT(3),

C decompositions and the amount of computations for

C large systems. For small systems one may have

C ROPT(5)=1.00D0, ROPT(6)=1.2D0, for large full systems

C ROPT(5)=0.99D0, ROPT(6)=2.0D0 might be good choices.

C The default value (for ROPT(6)=0.0) is 1.2D0

C

C ROPT( 7)=HMAX Maximal step size

C The default value (for ROPT(7)=0.0) is TEND-T

C

C ROPT( 8)=FACL PARAMETER FOR STEP SIZE SELECTION

C See ROPT(9).

C The default value (for ROPT(9)=0.0) is 8.0D0
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C

C ROPT( 9)=FACR Step size selection

C The new step size is chosen subject to the restriction

C FACR <= HNEW/HOLD <= FACL

C The default value (for ROPT(8)=0.0) is 0.2D0

C

C IVCOND User supplied subroutine which provides initial conditions in

C addition to the constraints contained in the equations

C of motion (including hidden constraints)

C

C SUBROUTINE IVCOND(N,T,X,NCOND,COND,IPAR,RPAR,IERR)

C IMPLICIT NONE

C INTEGER N,NCOND,IPAR(*),IERR

C DOUBLE PRECISION T,X(N),COND(NCOND),RPAR(*)

C

C N Input : integer

C Number of unknowns, i.e., dimension of X

C X has to remain unchanged.

C

C T Input : double precision

C Initial time t_0.

C T has to remain unchanged.

C

C X Input : double precision array X(N)

C Unknown variables, see above.

C X has to remain unchanged.

C

C NCOND Input : integer

C Number of additional initial conditions provided in the

C subroutine IVCOND.

C NCOND has to remain unchanged.

C

C COND Output : double precision array COND(NCOND)

C Residual of initial conditions, e.g. the condition

C COND(1)=X(4)-.5 forces the initial state of X(4) to

C be 0.5, i.e. X(4)=0.5D0.

C Note the fact, that the conditions given in IVCOND

C override the given initial values, i.e., if the given

C initial values are consistent but do not satisfy the

C (possibly wrong) conditions given in IVCOND the

C initial values will be corrected such that both,

C the constraints and the initial conditions are

C satisfied.

C In case of initial values which are consistent to

C the constraints the option IOPT(17) could be set to 1

C to avoid such a correction.

C

C IPAR Input/Output: integer array IPAR(*)

C Integer parameters which are only used by the user.

C They are unused and unchanged by GEOMS.

C

C RPAR Input/Output: double precision array RPAR(*)

C Double precision parameters which are only used by the

C user. RPAR is unused and unchanged by GEOMS.

C

C IERR Output : integer

C Indicator of success. IERR is only used by

C user supplied subroutines. After every call of a user

C supplied subroutine the status of IERR is checked. If

C IERR is negative the run of GEOMS will be interrupted

C and GEOMS returns to the calling program. IERR is

C unchanged by GEOMS.

C

C EOM Name (EXTERNAL) of the user supplied subroutine which provides

C the right-hand side (RHS) of EoM (1)-(8) together with the first

C and second time derivative of the holonomic constraints, i.e.,

C gI(p,v,t) = d/dt g(p,t),



B.1. MANUAL OF GEOMS 263

C gII(p,v,r,w,s,l,m,t) = d^2/dt^2 g(p,t),

C and the first time derivative of the nonholonomic constraints,

C i.e.,

C hI(p,v,r,w,s,l,m,t) = d/dt (H(p,s,t)Z(p)v+h(p,s,t)).

C The order and the number of the provided right-hand sides

C depends on the used formulation, see IOPT(5) and above for more

C detail.

C

C SUBROUTINE EOM(M,N,T,X,RDA,IOPT,ROPT,IPAR,RPAR,IERR)

C IMPLICIT NONE

C INTEGER M,N,IOPT(*),IPAR(*),IERR

C DOUBLE PRECISION T,X(N),RDA(M),ROPT(*),RPAR(*)

C

C M Input : integer

C Total umber of provided equations (M.GE.N),

C i.e., dimension of RDA, see below.

C In the case of use of

C * projected-strangeness-free formulation we have

C M=NP+NV+NR+NW+NS+3*NL+2*NM+NI,

C * projected-strangeness-index-1 formulation we have

C M=NP+NV+NR+NW+NS+2*NL+NM+NI.

C M has to remain unchanged.

C

C N Input : integer

C Number of unknowns (M.GE.N), i.e., dimension of X.

C We have N=NP+NV+NR+NW+NS+NL+NM.

C N has to remain unchanged.

C

C T Input : double precision

C Evaluation of the right-hand side of the provided

C equations at time T.

C T has to remain unchanged.

C

C X Input : double precision array X(N)

C Vector of unknowns, see above.

C X has to remain unchanged.

C

C RDA Output : double precision array RDA(M)

C Right-hand side of the provided reduced derivative

C array. The order and the number of the provided

C right-hand sides depends on the used formulation, see

C IOPT(5).

C If IOPT( 5)=0 the numerical integration is based on the

C projected-strangeness-free formulation, i.e., the

C user has to provide the equations (1)-(7) together

C with the first and second time derivative of the

C holonomic constraints, i.e.,

C gI(p,v,t) =d/dt g(p,t),

C gII(p,v,r,w,s,l,m,t)=d^2/dt^2 g(p,t),

C and the first time derivative of the nonholonomic

C constraints, i.e.,

C hI(p,v,r,w,s,l,m,t) =d/dt(H(p,s,t)Z(p)v+h(p,s,t)).

C If there exist some solution invariants (8) the user

C should also provide them and set NI equal to the

C number of the solution invariants. The order is given

C by

C

C RDA(1:NW) =d

C RDA(NW+1:NW+NL) =gII

C RDA(NW+NL+1:NW+NL+NM) =hI

C ----------------------------------------------------

C RDA(NW+NL+NM+1:NW+NL+NM+NL) =gI

C RDA(NW+NL+NM+NL+1:NW+NL+NM+NL+NM) =h

C RDA(NW+NL+NM+NL+NM+1:NW+NL+NM+NL+NM+NI) =e

C ----------------------------------------------------

C RDA(NW+NL+NM+NL+NM+NI+1:NW+NL+NM+NL+NM+NI+NS) =c

C RDA(NW+NL+NM+NL+NM+NI+NS+1:...
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C NW+NL+NM+NL+NM+NI+NS+NL) =g

C ----------------------------------------------------

C RDA(NW+NL+NM+NL+NM+NI+NS+NL+1:...

C NW+NL+NM+NL+NM+NI+NS+NL+NR) =b

C ----------------------------------------------------

C RDA(NW+NL+NM+NL+NM+NI+NS+NL+NR+1:...

C NW+NL+NM+NL+NM+NI+NS+NL+NR+NV) =f_dyn

C ----------------------------------------------------

C RDA(NW+NL+NM+NL+NM+NI+NS+NL+NR+NV+1:...

C NW+NL+NM+NL+NM+NI+NS+NL+NR+NV+NP) =f_kin

C

C If IOPT( 5)=1 the numerical integration is based on the

C projected-strangeness-index-1 formulation , i.e., the

C user has to provide the equations (1)-(7) together

C with the first time derivative of the holonomic

C constraints, i.e.,

C gI(p,v,t) = d/dt g(p,t).

C If there exist some solution invariants (8) the user

C should also provide them and set NI equal to the

C number of the solution invariants. The order is given

C by

C

C RDA(1:NW) =d

C ----------------------------------------------------

C RDA(NW+1:NW+NL) =gI

C RDA(NW+NL+1:NW+NL+NM) =h

C RDA(NW+NL+NM+1:NW+NL+NM+NI) =e

C ----------------------------------------------------

C RDA(NW+NL+NM+NI+1:NW+NL+NM+NI+NS) =c

C RDA(NW+NL+NM+NI+NS+1:NW+NL+NM+NI+NS+NL) =g

C ----------------------------------------------------

C RDA(NW+NL+NM+NI+NS+NL+1:NW+NL+NM+NI+NS+NL+NR) =b

C ----------------------------------------------------

C RDA(NW+NL+NM+NI+NS+NL+NR+1:...

C NW+NL+NM+NI+NS+NL+NR+NV) =f_dyn

C ----------------------------------------------------

C RDA(NW+NL+NM+NI+NS+NL+NR+NV+1:...

C NW+NL+NM+NI+NS+NL+NR+NV+NP) =f_kin

C

C

C IOPT Input : integer array IOPT(40)

C Serve as parameters for the code.

C IOPT has to remain unchanged.

C

C ROPT Input : double precision array ROPT(40)

C Serve as parameters for the code.

C ROPT has to remain unchanged.

C

C IPAR Input/Output: integer array IPAR(*)

C Integer parameters which are only used by the user.

C They are unused and unchanged by GEOMS.

C

C RPAR Input/Output: double precision array RPAR(*)

C Double precision parameters which are only used by the

C user. They are unused and unchanged by GEOMS.

C

C IERR Output : integer

C Indicator of success. IERR is only used by

C user supplied subroutines. After every call of a user

C supplied subroutine the status of IERR is checked. If

C IERR is negative the run of GEOMS will be interrupted

C and GEOMS returns to the calling program. IERR is

C unchanged by GEOMS.

C

C MAS Name (EXTERNAL) of the user supplied subroutine which provides

C the mass matrix M(p,t) in equation (2) of the EoM

C
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C SUBROUTINE MAS(T,NX,X,M,N,MA,IOPT,ROPT,IPAR,RPAR,IERR)

C IMPLICIT NONE

C INTEGER NX,M,N,IOPT(*),IPAR(*),IERR

C DOUBLE PRECISION T,X(NX),MA(M,N),ROPT(*),RPAR(*)

C

C T Input : double precision

C Evaluation of the mass matrix MA at time T.

C T has to remain unchanged.

C

C NX Input : integer

C Number of unknowns, i.e., dimension of X. We have

C NX=NP+NV+NR+NW+NS+NL+NM.

C NX has to remain unchanged.

C

C M Input : integer

C Number of rows of the mass matrix MA. We have M=NV.

C M has to remain unchanged.

C

C N Input : integer

C Number of rows of the mass matrix MA. We have N=NV.

C N has to remain unchanged.

C

C X Input : double precision array X(NX)

C Vector of unknowns, see above.

C X has to remain unchanged.

C

C MA Output : double precision array MA(M,N)

C Mass matrix of the equations of motion. The mass matrix

C has to be provided as a full M x N array,

C also in the case of diagonal structure. Because of the

C used regularization technique a sparse storage is not

C possible and does not save time or memory.

C

C IOPT Input : integer array IOPT(40)

C Serve as parameters for the code.

C IOPT has to remain unchanged.

C

C ROPT Input : double precision array ROPT(40)

C Serve as parameters for the code.

C IOPT has to remain unchanged.

C

C IPAR Input/Output: integer array IPAR(*)

C Integer parameters which are only used by the user.

C They are unused and unchanged by GEOMS.

C

C RPAR Input/Output: double precision array RPAR(*)

C Double precision parameters which are only used by the

C user. They are unused and unchanged by GEOMS.

C

C IERR Output : integer

C Indicator of success. IERR is only used by

C user supplied subroutines. After every call of a user

C supplied subroutine the status of IERR is checked. If

C IERR is negative the run of GEOMS will be interrupted

C and GEOMS returns to the calling program. IERR is

C unchanged by GEOMS.

C

C JAC Name (EXTERNAL) of the user supplied subroutine which computes

C the NEGATIVE partial derivatives of the right-hand side of the

C equations of motion. (This routine is only called if IJAC=1.

C Supply a dummy subroutine in the case IJAC=0).

C

C SUBROUTINE JAC(M1,M2,M3,M4,M5,M6,N1,N2,N3,N4,M,N,

C # T,X,FX1,FX2,FX3,FX4,FX5,FX6,

C # IOPT,ROPT,RPAR,IPAR,IERR)

C IMPLICIT NONE

C INTEGER M1,M2,M3,M4,M5,M6,N1,N2,N3,N4,M,N,
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C # IOPT(*),IPAR(*),IERR

C DOUBLE PRECISION T,X(N),FX1,FX2,FX3,FX4,FX5,FX6,ROPT(*),RPAR(*)

C

C M1 Input : integer

C Number of constraints depending on all unknown

C variables and restricting the Lagrange multipliers l

C and m and the auxiliary variables w, i.e., 0=d,

C 0=gII, 0=hI. IF IOPT(5)=0 we have M1=NW+NL+NM and if

C IOPT(5)=1 we have M1=NW (note that M1=0 is possible).

C Compare with the block row structure of RDA in the

C subroutine EOM.

C M1 has to remain unchanged.

C

C M2 Input : integer

C Number of constraints only depending on the unknown

C variables p, v, and s and restricting the velocity

C variables v, i.e., 0=gI, 0=h, 0=e. We have M2=NL+NM+NI.

C Compare with the block row structure of RDA in the

C subroutine EOM.

C M2 has to remain unchanged.

C

C M3 Input : integer

C Number of constraints only depending on the unknown

C variables p and s and restricting the position p and

C the contact variables s, i.e., 0=c, 0=g. We have

C M3=NS+NL.

C Compare with the block row structure of RDA in the

C subroutine EOM.

C M3 has to remain unchanged.

C

C M4 Input : integer

C Number of dynamical force element equations (3), i.e.,

C we have M4=NR.

C Compare with the block row structure of RDA in the

C subroutine EOM.

C M4 has to remain unchanged.

C

C M5 Input : integer

C Number of dynamical equations of motion (2), i.e.,

C we have M5=NV.

C Compare with the block row structure of RDA in the

C subroutine EOM.

C M5 has to remain unchanged.

C

C M6 Input : integer

C Number of kinematical equations of motion (1), i.e.,

C we have M6=NP.

C Compare with the block row structure of RDA in the

C subroutine EOM.

C M6 has to remain unchanged.

C

C N1 Input : integer

C Number of auxiliary variables plus the number of

C Lagrange multipliers, i.e., we have N1=NW+NL+NM.

C Compare with the block row structure of X above.

C N1 has to remain unchanged.

C

C N2 Input : integer

C Number of dynamical force element variables, i.e.,

C we have N2=NR.

C Compare with the block row structure of X above.

C N2 has to remain unchanged.

C

C N3 Input : integer

C Number of velocity variables, i.e., we have N3=NV.

C Compare with the block row structure of X above.

C N3 has to remain unchanged.
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C

C N4 Input : integer

C Number of contact point variables plus the number of

C position variables, i.e., we have N1=NS+NP.

C Compare with the block row structure of X above.

C N4 has to remain unchanged.

C

C M Input : integer

C Total number of provided equations,

C i.e., dimension of RDA, see subroutine EOM and the

C number of rows of the partial derivatives. We have

C M=M1+M2+M3+M4+M5+M6.

C M has to remain unchanged.

C

C N Input : integer

C Number of unknowns, i.e., dimension of X.

C We have N=NP+NV+NR+NW+NS+NL+NM=N1+N2+N3+N4.

C N has to remain unchanged.

C

C T Input : double precision

C Evaluation of the partial derivatives at time T.

C T has to remain unchanged.

C

C X Input : double precision array X(NX)

C Vector of unknowns, see above.

C X has to remain unchanged.

C

C FX1 Output : double precision array FX1(M1,N)

C NEGATIVE partial derivatives of d, gII, hI with

C respect to [w l m | r | v | s p ]. We have

C [ d d /d[w l m | r | v | s p ] ]

C FX1=[ d gII/d[w l m | r | v | s p ] ] in R^(M1,N)

C [ d hI /d[w l m | r | v | s p ] ]

C Compare with the block row structure of RDA in the

C subroutine EOM and with the block row structure of X

C above.

C

C FX2 Output : double precision array FX2(M2,N3+N4)

C NEGATIVE partial derivatives of gI, h~, e with

C respect to [v s p]. We have

C [ d gI/d[v s p] ]

C FX2=[ d h~/d[v s p] ] in R^(M2,N3+N4)

C [ d e /d[v s p] ]

C Compare with the block row structure of RDA in the

C subroutine EOM and with the block row structure of X

C above.

C

C FX3 Output : double precision array FX3(M3,N4)

C NEGATIVE partial derivatives of c and g with

C respect to [s p]. We have

C [ d c/d[s p] ]

C FX3=[ ] in R^(M3,N4)

C [ d g/d[s p] ]

C Compare with the block row structure of RDA in the

C subroutine EOM and with the block row structure of X

C above.

C

C FX4 Output : double precision array FX4(M4,N)

C NEGATIVE partial derivatives of the right-hand side of

C the dynamical force element equations, i.e., of b with

C respect to [w l m | r | v | s p ]. We have

C FX4=d b/d[w l m | r | v | s p ] in R^(M4,N)

C Compare with the block row structure of RDA in the

C subroutine EOM and with the block row structure of X

C above.

C

C FX5 Output : double precision array FX5(M5,N)
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C NEGATIVE partial derivatives of the right-hand side of

C the dynamical equations of motion, i.e., of f_dyn with

C respect to [w l m | r | v | s p ]. We have

C FX5=d f_dyn/d[w l m | r | v | s p ] in R^(M5,N)

C Compare with the block row structure of RDA in the

C subroutine EOM and with the block row structure of X

C above.C

C

C FX6 Output : double precision array FX6(M6,N3+N4)

C NEGATIVE partial derivatives of the right-hand side of

C the kinematical equations of motion, i.e., of f_kin

C with respect to [v | s p ]. We have

C FX6=d f_kin/d[ v | s p ] in R^(M6,N3+N4)

C Compare with the block row structure of RDA in the

C subroutine EOM and with the block row structure of X

C above.

C

C IOPT Input : integer array IOPT(40)

C Serve as parameters for the code.

C IOPT has to remain unchanged.

C

C ROPT Input : double precision array ROPT(40)

C Serve as parameters for the code.

C IOPT has to remain unchanged.

C

C IPAR Input/Output: integer array IPAR(*)

C Integer parameters which are only used by the user.

C They are unused and unchanged by GEOMS.

C

C RPAR Input/Output: double precision array RPAR(*)

C Double precision parameters which are only used by the

C user. They are unused and unchanged by GEOMS.

C

C IERR Output : integer

C Indicator of success. IERR is only used by

C user supplied subroutines. After every call of a user

C supplied subroutine the status of IERR is checked. If

C IERR is negative the run of GEOMS will be interrupted

C and GEOMS returns to the calling program. IERR is

C unchanged by GEOMS.

C

C IJAC Input : integer

C Switch for the computation of the partial derivatives of the

C right-hand side of the equations of motion

C IJAC=0 Partial derivatives are computed internally by finite

c differences, subroutine JAC is never called.

C IJAC=1 Partial derivatives are supplied by subroutine JAC.

C

C SOLOUT Name (EXTERNAL) of subroutine providing the numerical solution

C during integration.

C If IOUT=1, it is called after every successful step. Supply a

C dummy subroutine if IOUT=0.

C SOLOUT furnishes the solution X at the nr-th grid-point T

C (Thereby the initial value is the first grid-point).

C

C SUBROUTINE SOLOUT(NACCPT,TOLD,T,X,N,NN2,NN3,NN4,CONTX,H,C1M1,

C # C2M1,RPAR,IPAR,IERR)

C IMPLICIT NONE

C INTEGER NACCPT,N,NN2,NN3,NN4,IPAR(*),IERR

C DOUBLE PRECISION TOLD,T,H,X(N),CONTX(NN4),RPAR(*),C1M1,C2M1

C DOUBLE PRECISION GEDENSOUT

C EXTERNAL GEDENSOUT

C

C NACCPT Input : integer

C Number of accepted steps so far.

C NACCPT has to remain unchanged.

C
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C TOLD Input : double precision

C The preceeding grid-point.

C TOLD has to remain unchanged.

C

C T Input : double precision

C Current simulation time T.

C T has to remain unchanged.

C

C X Input : double precision array X(NX)

C Vector of unknowns, see above.

C X has to remain unchanged.

C

C N Input : integer

C Number of unknowns, i.e., dimension of X.

C We have N=NP+NV+NR+NW+NS+NL+NM=N1+N2+N3+N4.

C N has to remain unchanged.

C

C NN2,NN3,NN4,CONTX,H,C1M1,C2M1 Input: integer/double precision

C Internal communication for the use by the subroutine

C GEDENSOUT for dense output.

C NN2,NN3,NN4,CONTX,H,C1M1,C2M1 have to remain unchanged.

C

C IPAR Input/Output: integer array IPAR(*)

C Integer parameters which are only used by the user.

C They are unused and unchanged by GEOMS.

C

C RPAR Input/Output: double precision array RPAR(*)

C Double precision parameters which are only used by the

C user. They are unused and unchanged by GEOMS.

C

C IERR Output : integer

C Indicator of success. IERR is only used by

C user supplied subroutines. After every call of a user

C supplied subroutine the status of IERR is checked. If

C IERR is negative the run of GEOMS will be interrupted

C and GEOMS returns to the calling program. IERR is

C unchanged by GEOMS.

C

C ----- Continuous output -----

C During calls to "SOLOUT", a continuous solution

C for the interval [TOLD,T] is available through

C the function

C GEDENSOUT(I,TOUT,N,NN2,NN3,NN4,T,H,CONTX,C1M1,C2M1)

C which provides an approximation to the I-th

C component of the solution at the point TOUT, e.g.,

C DO I=1,N

C XOUT(I)=GEDENSOUT(I,TOUT,N,NN2,NN3,NN4,T,H,CONTX,

C # C1M1,C2M1)

C END DO

C The value TOUT should lie in the interval [TOLD,T].

C Do not change the entries of N, NN2, NN3, NN4, T, H,

C CONTX, C1M1, C2M1.

C The function GEDENSOUT is adopted from the code RADAU5,

C see the book:

C E. Hairer and G. Wanner, Solving Ordinary Differential

C Equations II. Stiff and Differential-Algebraic Problems

C Springer Series in Computational Mathematics 14,

C Springer-Verlag 1991, Second edition 1996.

C The former name was CONTR5.

C

C IOUT Input : integer

C Switch for the calling of subroutine SOLOUT.

C IOUT=0 Subroutine is never called.

C IOUT=1 Subroutine is available for output.

C

C LIWORK Input : integer

C Declares the length of the array IWORK. LIWORK has to be at least
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C 20.

C

C IWORK Output: integer array IWORK(LIWORK)

C Statistical information

C IWORK( 1) NACCPT - Number of accepted integration steps

C IWORK( 2) NEOM - Number of evaluations of the right-hand side

C of the equations of motion

C IWORK( 3) NMAS - Number of evaluations of the mass matrix

C IWORK( 4) NJAC - Number of evaluations of the Jacobian of the

C right-hand side of the equations of motion

C IWORK( 5) NSEL - Number of determinations of suitable selectors

C IWORK( 6) NPDEC - Number of predecompositions, i.e., of FX, M,

C and IKIN

C IWORK( 7) NEDEC - Number of E-decompositions, i.e., of E1 and E2

C IWORK( 8) NBSUB - Number of backward substitutions

C IWORK( 9) NSTEP - Number of steps

C IWORK(10) NERJCT - Number of rejections caused by error test

C failures

C IWORK(11) NCRJCT - Number of rejections caused by convergence

C problems of the Newton process

C

C LRWORK Input : integer

C Declares the length of the array RWORK.

C A safe choice for all possible setting in IOPT is

C LRWORK at least 5*N

C Depending on IOPT it is sufficient ...

C If IOPT(17)=IVCNSST=0 then LRWORK has to be at least 5*N

C If IOPT(11)=DECOMPC=3 then LRWORK has to be at least

C 5*MAX(M1,M2,M3,N1,N3,N4), see comments to subroutine JAC.

C If IOPT(11)=DECOMPC=2 then LRWORK has to be at least N

C If IOPT(12)=DECOMPD=1 then LRWORK has to be at least 2*N

C For good performance, LRWORK should generally be larger.

C

C RWORK Intern : integer array IWORK(LIWORK)

C

C IPAR Input/Output : integer array IPAR(*)

C Integer parameters which are only used by the user. They are

C unused and unchanged by GEOMS.

C

C RPAR Input/Output: double precision array RPAR(*)

C Double precision parameters which are only used by the user.

C RPAR is unused and unchanged by GEOMS.

C

C IERR Input/Output : integer

C Indicator of success. IERR is only used by user

C supplied subroutines. After every call of a user supplied

C subroutine the status of IERR is checked. If IERR is negative

C the run of GEOMS will be interrupted and GEOMS returns to the

C calling program. IERR is unchanged by GEOMS.

C

C IDID Output : integer

C Reports success upon return. The first two digits

C indicate the subroutine which causes trouble.

C

C IDID=-10.. An error occurred in the subroutine GEOMS

C -1001 Option array IOPT or ROPT or tolerances RTOL or ATOL

C contains wrong data

C Check the output in UNIT=IOPT(2) for more information

C If the option IOPT(2) equals 0 turn on the output.

C -1002 Initial IDID lower than 0

C

C IDID=-11.. An error occurred in the subroutine GECOR

C -1101 Stop initialized by SOLOUT

C -1102 Stop initialized by EOM

C -1103 Stop initialized by MAS

C -1104 Stop initialized by JAC

C -1105 Initial conditions not consistent



B.1. MANUAL OF GEOMS 271

C -1106 Final time TEND before initial time T

C -1111 QR-Decomposition of FX1 not possible

C -1112 QR-Decomposition of FX2 not possible

C -1113 QR-Decomposition of FX3 not possible

C -1114 QR-Decomposition of E1 or E2 not possible

C -1115 Newton method repeatedly does not converge NSING.GE.5

C -1116 Newton method repeatedly does not converge NSING.GE.5

C -1117 More than NMAX steps are needed

C -1118 Step size too small

C -1128 An error occurred during use of DORMQR

C -1129 An error occurred during use of DORMQR

C

C IDID=-12.. An error occurred in the subroutine GEFXNUM

C -1201 Stop initialized by EOM

C

C IDID=-14.. An error occurred in the subroutine GEDECCQR

C -1401 Constraints redundant or dd/dw singular

C (FX1 rank deficient).

C Try the integration again with IOPT(11)=3 (SVD).

C -1402 Constraints or the invariant equations are redundant

C (FX2 rank deficient). Try the integration again with

C IOPT(11)=3 (SVD).

C -1403 Constraints redundant or dc/ds singular

C (FX3 rank deficient).

C Try the integration again with IOPT(11)=3 (SVD).

C

C IDID=-18.. An error occurred in the subroutine GETRFRHSC

C -1801 Multiplication with Q1 not possible

C -1802 Multiplication with Q2 not possible

C -1803 Multiplication with Q3 not possible

C -1804 Multiplication with Q4 not possible

C

C IDID=-20.. An error occurred in the subroutine GEERREST

C -2004 Multiplication with Q4 not possible

C

C IDID=-21.. An error occurred in the subroutine GEINIVAL.

C -2101 Stop initialized by EOM.

C -2102 Stop initialized by IVCOND.

C -2103 An error occurred during SVD.

C -2104 Divergence during determination of consistent initial

C values. The given conditions in IVCOND together with

C all constraints of the EoM form an overdetermined system.

C Perhaps it is contradictory.

C => Check consistency of all constraints of the EoM in

C relation to the conditions given in IVCOND!

C => If you are sure that the initial values are consistent

C (at least variables P and V) you can set IOPT(17)=1.

C -2105 No Convergence in the given limit of iterations.

C (See the source code of GEINIVAL and increase NIT or/and

C NNWTUPD.

C -2106 Given conditions in IVCOND together with constraints in

C EoM are not sufficient to uniquely determine consistent

C initial values. Perhaps there are not enough conditions

C or they are redundant.

C => Provide more (nonredundant) conditions in IVCOND!

C => Check NIVCOND!

C => Check redundancy of all constraints of the EoM in

C relation to the conditions given in IVCOND!

C => If you are sure that the initial values are consistent

C (at least variables P and V) you can set IOPT(17)=1.

C

C IDID=-24.. An error occurred in the subroutine GEDECCSV

C -2401 Constraints are not uniformly redundant, i.e., rank of FX1

C was changing

C -2402 Constraints are not uniformly redundant, i.e., rank

C deficiency of FX1 not identical to rank deficiency of FX2

C -2403 Constraints are not uniformly redundant, i.e., rank
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C deficiency of FX1 not identical to rank deficiency of FX3

C -2404 An error occurred during SVD of FX1 or FX2 or FX3

C

C IDID=-26.. An error occurred in the subroutine GEDECCLU

C -2601 Constraints redundant or dd/dw singular

C (FX1 rank deficient).

C Try the integration again with IOPT(11)=3 (SVD).

C -2602 Constraints or the invariant equations are redundant

C (FX2 rank deficient). Try the integration again with

C IOPT(11)=3 (SVD).

C -2603 Constraints redundant or dc/ds singular

C (FX3 rank deficient).

C Try the integration again with IOPT(11)=3 (SVD).

C

C -----------------------------------------------------------------------------

B.2 Manual of GMKSSOL

SUBROUTINE GMKSSOL(T,NOUT,TOUT,

# NP,NR,NL,X,XP,XOUT,

# LIWORK,IWORK,LRWORK,RWORK,

# IOPT,ROPT,IPAR,RPAR,IERR)

C -----------------------------------------------------------------------------

C

C NAME : (G)eneralisierter (M)ehr(K)oerper(S)ystem (SOL)ver

C Multibody system solver

C

C PURPOSE : This subroutine performs the numerical simulation

C of a multibody system whose state is described by

C

C p - position variables of dimension NP,

C v - velocity variables of dimension NP,

C r - dynamical force element variables of dimension NR,

C l - holonomic Lagrange multipliers of dimension NL,

C

C by numerical integration of the equations of motion

C in the form

C

C p’=v (1) (f_kin)

C v’=f(p,v,r,t)-G^T*lambda =: fdyn(p,v,r,lambda,t) (2) (f_dyn)

C r’=b(p,v,r,t) (3)

C 0 =g(p,t) (4)

C

C on the domain [t_0,t_f].

C

C The prime denotes the time derivative, e.g., p’=dp/dt, and

C the ’T’ denotes the transpose of a matrix or vector, e.g.,

C GT=transpose of G. Furthermore, the equations correspond to

C

C (1) Kinematical equations of motion of dimension NP,

C (2) Dynamical equations of motion of dimension NV,

C (3) Dynamical force element equations of dimension NR,

C (4) Holonomic constraints of dimension NL,

C

C The System (1)-(4) has to satisfy the following.

C a) G = dg/dp.

C b) rank(GM^{-1}GT)=rank(G)=const for all t in [T,TEND].

C Alternatively

C [ M GT ]

C rank([ ])=NP+rank(G)=constant

C [ G 0 ]

C has to be satisfied for all t in [t_0,t_f]=[T,TEND].

C

C The integration method used is an implicit Runge-Kutta method

C (Radau IIa) of order 5 with step size control, continuous

C output, and consistent initialization for lambda.
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C

C METHOD : The equations of motion are integrated by the implicit

C Runge-Kutta-Method of type RADAU IIa of order 5 and using the

C projected-strangeness-free formulation of the equations of

C motion.

C

C VERSION : May 31, 2005

C

C REVISIONS : -

C

C AUTHORS : Address: F. Ebert

C Institut fuer Mathematik

C Technische Universitaet Berlin

C Strasse des 17. Juni

C 10623 Berlin, Germany

C e-mail: ebert@math.tu-berlin.de

C

C Address: A. Steinbrecher

C Institut fuer Mathematik

C Technische Universitaet Berlin

C Strasse des 17. Juni

C 10623 Berlin, Germany

C e-mail: steinbrecher@math.tu-berlin.de

C

C REFERENCES: This code is part of the PhD thesis:

C A.Steinbrecher. Numerical Solution of Quasi-Linear Differential-

C Algebraic Equations and Industrial Simulation of Multibody

C Systems. PhD thesis, TU Berlin, Institut fuer Mathematik, 2005

C

C F.Ebert,F.and A.Steinbrecher. Dokumentation verschiedener Loeser

C zur numerischen Integration gewoehnlicher Differentialgleichun-

C gen und differentiell-algebraischer Gleichungen in der Mehrkoer-

C perdynamik. Technical report: Bosch Rexroth AG, BR / VES

C (Simulationstechnik), Number IR-005-04-VE 12/2004. 2004.

C

C KEYWORDS : numerical simulation of mechanical systems, equations of motion,

C differential-algebraic equations, projected-strangeness-free

C formulation

C

C NOTE : The (basic) linear algebra routines are provided by the

C libraries BLAS and LAPACK

C

C -----------------------------------------------------------------------------

C

C CALL

C ---------------------------

C

C SUBROUTINE GMKSSOL(T,NOUT,TOUT,

C # NP,NR,NL,X,XP,XOUT,

C # LIWORK,IWORK,LRWORK,RWORK,

C # IOPT,ROPT,IPAR,RPAR,IERR)

C IMPLICIT NONE

C INTEGER NOUT,NP,NR,NL,LIWORK,LRWORK,IERR,

C # IWORK(LIWORK),IOPT(40),IPAR(*)

C DOUBLE PRECISION T,TOUT(NOUT),X(NP+NP+NR+NL),XP(NP+NP+NR+NL),

C # XOUT(NP+NP+NR+NL,NOUT),RWORK(LRWORK),ROPT(40),

C # RPAR(*)

C EXTERNAL EQUOFMOT,CONSMATR,SOLOUT

C

C INPUT- AND OUTPUT-ARGUMENTS

C ---------------------------

C

C INPUT- AND OUTPUT-ARGUMENTS

C

C T Input : double precision

C Initial time t

C Output :
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C Last successfully reached time. If whole integration was

C successful T=TOUT(NOUT).

C

C NOUT Input : integer

C Number of time steps where the solution shall be stored in XOUT.

C

C TOUT Input : double precision : array TOUT(NOUT)

C Defines the times at which the solution should by stored in XOUT.

C The times must be sorted chronologically such that

C t_0 <= TOUT(I) < TOUT(J) if I<J

C

C NP Input : integer

C Number of position variables p.

C

C NR Input : integer

C Number of position variables r.

C

C NL Input : integer

C Number of position variables lambda.

C

C X Input : double precision : array X(NP+NP+NR+NL)

C Contains all variables of the MBS in the following order.

C X( 1:NP )=p

C X(NP+1:NP+NP )=v

C X(NP+NP+1:NP+NP+NR )=r

C X(NP+NP+NR+1:NP+NP+NR+NL)=lambda

C

C XP Input : double precision : array XP(NP+NP+NR+NL)

C Contains the time derivative of all variables of the MBS.

C XP( 1:NP )=p’ (=v)

C XP(NP+1:NP+NP )=v’

C XP(NP+NP+1:NP+NP+NR )=r’

C XP(NP+NP+NR+1:NP+NP+NR+NL)=lambda’

C It is not necessary to initialize XP.

C

C XOUT Output : double precision : array XOUT(NP+NP+NR+NL,NOUT)

C Contains the numerical solution of all variables of the MBS at

C intermediate times TOUT(I), I=1,...,NOUT

C XOUT( 1:NP )=p(TOUT(I))

C XOUT(NP+1:NP+NP )=v(TOUT(I))

C XOUT(NP+NP+1:NP+NP+NR )=r(TOUT(I))

C XOUT(NP+NP+NR+1:NP+NP+NR+NL)=lambda(TOUT(I))

C

C LIWORK Input : integer

C Length of integer work array

C LIWORK .GE. 21+3*N with N=NP+NP+NR+NL

C

C IWORK Input : integer : array IWORK(LIWORK)

C Integer work array.

C

C LRWORK Input : integer

C Length of double precision work array

C LRWORK .GE. 40+12*N+5*N*N with N=NP+NP+NR+NL

C

C RWORK Input : integer : array RWORK(LRWORK)

C Double precision work array.

C

C IOPT Input : integer : array IOPT(40)

C Serve as parameters for the code. For standard use of the code

C IOPT(2),..,IOPT(14) must be set to zero before calling.

C See below for a more sophisticated use.

C

C IOPT( 2)=LUN output device

C 0 - no output (default)

C 6 - output to the screen

C 10- output to gmkslog.log

C In the case that the output of detailed information
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C is desired, the user has to define an output device

C and to associate this device with IOPT(2), i.e.,

C IOPT(2)=13

C OPEN(UNIT=13,FILE=’gmkssol.log’)

C Finally, the output device has to be closed, i.e.,

C CLOSE(13)

C In the case of an unsuccessful run of GMKSSOL it is

C recommended to set IOPT(2) > 0 such that the GMKSSOL is

C able to provide more detailed information to the user.

C Furthermore, it is recommended to set

C IOPT(2)=0, 6, or >10.

C

C IOPT( 3)=MAXSTP maximal number of allowed steps

C <0 no restriction (be careful)

C =0 => 1000 (default)

C >0 maximal number of steps is given by IOPT(3)

C

C IOPT( 9) Selectors are constant

C =0 -NO

C =1 -YES - therefore, only to be computed at initial time

C

C IOPT(14) compute new selectors

C =0 -every successful step

C >0 -after IOPT(14) successful steps

C

C ROPT Input : integer : array ROPT(40)

C ROPT( 1)=RTOL Relative tolerance

C The default value (for ROPT(1)=0.0) is 1.D-6.

C

C ROPT( 2)=ATOL Absolute tolerance

C The default value (for ROPT(2)=0.0) is 1.D-6.

C

C ROPT( 3)=INIPREC Precision of the initial values and accuracy

C for forced systems.

C The default value (for ROPT(3)=0.0) is 1.D-8.

C

C ROPT( 4)=UROUND The rounding unit

C The default value (for ROPT(4)=0.0) is 1.D-16.

C

C IPAR Input : integer : array IPAR(*)

C Integer parameter which are only used by the user. They are

C unused and unchanged in GMKSSOL.

C

C RPAR Input : double precision : array RPAR(*)

C Double precision parameter which are only used by the user. They

C are unused and unchanged in GMKSSOL.

C

C IERR Output : integer

C Reports success upon return. The first two digits

C indicate the subroutine which causes trouble.

C

C IERR=-10.. An error occurred in the subroutine GMKSSOL

C -1001 NP lower than or equal zero

C -1002 NL lower than or equal zero

C -1003 NR lower than zero

C -1004 RG not valid

C -1006 initial values are not consistent

C -1007 more than NMAX =IOPT(3) steps are needed

C -1008 insufficient storage for RWORK (adapt LRWORK)

C -1009 insufficient storage for IWORK (adapt LIWORK)

C -1010 Stop initiated by EQUOFMOT

C -1011 Stop initiated by SOLOUT

C -1012 Tolerances RTOL=ROPT(1) too small

C -1013 Tolerances ATOL=ROPT(2) too small

C

C IERR-13.. An error occurred in the subroutine GMSELECT

C -1301 constraint matrix is not analytically computable
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C -1302 SVD of constraint matrix failed

C -1303 rank of G is changing

C -1304 Z not the Identity not yet implemented

C -1305 error while computing Equ. of Mot.

C -1306 selector determination via QR not

C implemented

C

C IERR=-15.. An error occurred in the subroutine GMRHSIRK

C -1505 error while computing Equ. of Mot.

C

C IERR=-16.. An error occurred in the subroutine GMSOLIRK

C -1601 exit caused by SOLOUT

C -1602 more than NMAX steps are needed

C -1603 step size H too small

C -1604 matrix is repeatedly singular

C

C IERR=-17.. An error occurred in the subroutine GMKSCOIN

C -1710 dynamic and kinematic components cannot be set to 0

C -1720 Newton method did not converge

C IERR<-1730 error in DGLSY -(IERR+1730)

C

C -----------------------------------------------------------------------------

C

C PROBLEM DESCRIPTION

C ---------------------------

C

C The user has to supply two subroutines which describe the problem to

C solve.

C

C EQUOFMOT User supplied subroutine which provides the

C right-hand-side (RHS) of EoM (1)-(4)

C

C SUBROUTINE EQUOFMOT(T,NP,P,V,A,NR,R,NL,L,NF,RDA,

C # IOPT,ROPT,IPAR,RPAR,IERR)

C INTEGER NP,NR,NL,NF,IERR,IOPT(*),IPAR(*)

C DOUBLE PRECISION T,P(NP),V(NP),A(NP),L(NL),R(NR),

C # RDA(NP+NP+NR+3*NL),ROPT(*),RPAR(*)

C

C T Input : double precision

C Evaluate the RHS at time t.

C T has to remain unchanged.

C

C NP Input : integer

C Number of position variables p.

C NP has to remain unchanged.

C

C P Input : double precision : array P(NP)

C Position variables p.

C P has to remain unchanged.

C

C V Input : double precision : array V(NP)

C Velocity variables v.

C V has to remain unchanged.

C

C A Input : double precision : array A(NP)

C Acceleration variables a(=v’) (unused).

C A has to remain unchanged.

C

C NR Input : integer

C Number of position variables r.

C If r does not exist then NR=1.

C NR has to remain unchanged.

C

C R Input : double precision : array R(NR)

C Hydraulic variables r.

C R has to remain unchanged.

C
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C NL Input : integer

C Number of position variables lambda.

C NL has to remain unchanged.

C

C L Input : double precision : array L(NL)

C Lagrange-Multipliers lambda.

C L has to remain unchanged.

C

C NF Input : integer

C Degree of freedom.

C NF has to remain unchanged.

C

C RDA Output : double precision : array RDA(NP+NP+NR+3*NL)

C Right-hand-side of reduced derivative array

C RDA( 1:NP )=v

C RDA(NP+1:NP+NP )=f_dyn

C RDA(NP+NP+1:NP+NP+NR )=b

C RDA(NP+NP+NR+1:NP+NP+NR+NL )=g

C RDA(NP+NP+NR+NL+1:NP+NP+NR+NL+NL )=d/dt g

C RDA(NP+NP+NR+NL+NL+1:NP+NP+NR+NL+NL+NL)=d^2/dt^2

C

C IOPT Input : integer : array IOPT(40)

C Integer options (see above)

C IOPT(31)=1 then only evaluation of constraints g(p,t)

C is needed

C else evaluation of the whole RDA is expected

C IOPT has to remain unchanged.

C

C ROPT Input : double precision : array ROPT(40)

C Double precision options (see above)

C ROPT has to remain unchanged.

C

C IPAR Input/Output: integer : array IPAR(*)

C Integer parameters which are only used by the user.

C They are unused and unchanged in GMKSSOL.

C

C RPAR Input/Output: double precision : array RPAR(*)

C Double precision parameters which are only used by the

C user. They are unused and unchanged in GMKSSOL.

C

C IERR Output : integer

C Error message. The user can stop the integration by

C setting IERR negative. (IERR will be changed after

C returning from EQUOFMOT))

C

C CONSMATR User supplied subroutine which provides the

C constraint matrix G (see (5)).

C Not yet implemented please use dummy routine

C SUBROUTINE CONSMATR()

C END

C

C -----------------------------------------------------------------------------
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[148] D. Rüdiger and A. Kneschke. Technische Mechanik - Kinematik, Kinetik,
volume 3. Teubner Verlag Leipzig, 1964.

[149] W. Rulka. Effiziente Simulation der Dynamik mechatronischer Systeme
für industrielle Anwendungen. Technical Report IB 532–01–06, DLR Ger-
man Aerospace Center, Institute of Aeroelasticity, Vehicle System Dynamics
Group, 2001.

[150] R.R. Ryan. Adams-multibody system analysis software. In Schiehlen W.O.
(ed.): Multibody system handbook, pages 361–402. Springer-Verlag, Berlin,
Germany, 1990.

[151] M. Schaub. Numerische Integration steifer mechanischer Systeme mit im-
pliziten Runge-Kutta-Verfahren. Fortschritt-Berichte VDI Reihe 20, Nr. 384.
VDI–Verlag, Düsseldorf, 2004.

[152] M. Schaub and B. Simeon. Blended Lobatto methods in multibody dynamics.
Zeitschrift für Angewandte Mathematik und Mechanik, 83:720–728, 2003.

[153] W.O. Schiehlen. Computer generation of equations of motion. In E.J. Haug,
editor, Computer Aided Design and Optimization of Mechanical System Dy-
namics, pages 183–215. Springer-Verlag, 1984.

[154] W.O. Schiehlen. Multibody System Handbook. Springer-Verlag, Berlin, Ger-
many, 1990.

[155] W.O. Schiehlen. Advanced Multibody System Dynamics. Kluwer Academic
Publishers, Dordrecht, The Netherlands, 1993.

[156] W.O. Schiehlen. Multibody system dynamics: Roots and perspectives. Multi-
body System Dynamics, 1:149–188, 1997.

[157] S. Schlauch. Modeling of stirred liquid-liquid dispersions. Technical Report
41-2004, Institut für Mathematik, Technische Universität Berlin, Berlin, Ger-
many, 2004.

[158] W. Schultz-Piszachich. Tensoralgebra und -analysis, volume 11 of Mathematik
für Ingenieure, Naturwissenschaftler, Ökonomen und Landwirte. Teubner Ver-
lag Leipzig, 4th edition, 1988.

[159] S. Schulz. General linear methods for nonlinear DAEs in circuit simulation.
Technical Report 20-2004, Institut für Mathematik, Humboldt-Universität zu
Berlin, 2004.

[160] R. Schwertassek and R.E. Roberson. A perspective on computer-oriented
multibody dynamical. In G. Bianchi and W.O. Schiehlen, editors, Dynamics
of Multibody Systems, pages 263–273. Springer-Verlag, Berlin, 1986.

[161] L.F. Shampine and M.K. Gordon. Computer Solution of Ordinary Differential
Equations, The Initial Value Problem. Freeman and Company, San Francisco,
1975.

[162] L.M. Silverman. Inversion of multivariable linear systems. IEEE Transactions
on Automatic Control, AC-14:270–276, 1969.



BIBLIOGRAPHY 295

[163] B. Simeon. Numerische Integration mechanischer Mehrkörpersysteme: Pro-
jizierende Deskriptorformen, Algorithmen und Rechenprogramme. Fortschritt-
Berichte VDI Reihe 20, Nr. 130. VDI Verlag, Düsseldorf, Germany, 1994.

[164] B. Simeon. MBSPACK — Numerical integration software for constrained
mechanical motion. Surveys on Mathematics for Industry, 5(3):169–202, 1995.

[165] B. Simeon. Numerische Simulation gekoppelter Systeme von par-
tiellen und differential-algebraischen Gleichungen in der Mehrkörperdynamik.
Fortschritt-Berichte VDI Reihe 20, Nr. 325. VDI–Verlag, Düsseldorf, 2000.

[166] B. Simeon, C. Führer, and P. Rentrop. Diffrential-algebraic equations in
vehicle system dynamics. Surveys on Mathematics for Industry, 1:1–37, 1991.

[167] B. Simeon, F. Grupp, C. Führer, and P. Rentrop. A nonlinear truck model
and its treatment as a multibody system. Journal of Computional and Applied
Mathematics, 50:523–532, 1994.

[168] S.N. Singh. A modified algorithm for invertibility in nonlinear systems. IEEE
Transactions on Automatic Control, 26(2):595–598, 1981.
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A(α)-stability, 98
A-stability, 98

strong ∼, 99
academical example and numerical re-

sults, 235
acceleration manifold, 139
action integral, 111
ADAMS, 184
adjugate, 250
Alembert,J.d’, 2
algebraic part, 82

recursion for ∼s of a quasi-linear DAE,
45

algorithm
∼s based on residual evaluations, 182
∼s based on structural evaluations,

182
Newton method, 19
simplified Newton method, 19
smooth kernel of a smooth matrix

function, 12
solution manifold preserving stran-

geness deletion ∼ for equations
of motion, 176

algorithm paradigm, 163
analytical mechanics, 1
applied forces, 112
augmented semi-explicit DAE, 102
auxiliary variables, 130

backward differential formulas, 65, 82,
106, 107, 183

ball, rolling ∼, 113
Baumgarte stabilization, 164
BDF method, see backward differential

formulas
Benz,K.F., 2
bijective function, 247
BLAS, 201
Borel,F.E.J.E., 249

Cardano angles, 129
Cardano,G., 129
characteristic quantities, 28
classical step size controller, 202

code, see software
cokernel, 250

orthogonal projection onto ∼, 252
complete minimal reduced derivative ar-

ray
∼ for DAEs, 55
∼ for EoM, 149

complete tensor-vector product, 13
conditions

contact ∼, 130
dynamic selector ∼
∼ for DAEs, 59
∼ for EoM, 170, 171

kinematic selector ∼
∼ for DAEs, 59
∼ for EoM, 141

Moore-Penrose ∼, 252
conservation of energy, 126, 209
conservative

∼ field of forces, 111
∼ multibody system, 111

consistency
∼ of (initial) values of DAEs, 23
∼ of DAEs, 23
∼ of initial values of EoM, 150

consistent initial values
∼ of EoM, 150
∼ of quasi-linear DAEs, 55
determination of ∼
∼ in GEOMS, 190
∼ in GMKSSOL, 206

constraint forces, 116
uniqueness of ∼ in the case of re-

dundant constraints, 152
constraint level

maximal ∼ for DAEs, 51
maximal ∼ for EoM, 148

constraint matrix
holonomic ∼, 117
nonholonomic ∼, 117

constraint set of level i, 41
constraints

∼ of level i, 41
∼ of multibody systems, 113
hidden ∼ of a quasi-linear DAE, 52
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hidden ∼ of EoM, 136
holonomic ∼, 114
∼ on acceleration level, 114, 135
∼ on position level, 132
∼ on velocity level, 114, 135

nonholonomic ∼, 114
∼ on acceleration level, 114, 135
∼ on velocity level, 132

recursion for hidden ∼ of a quasi-
linear DAE, 45

contact conditions, 130
contact variables, 130
continuous

∼ function, 247
∼ly differentiable, 249
Lipschitz ∼, 248

contradictory, non∼ system of equations,
17

control variables, 23, 129
corange, 250

orthogonal projection onto ∼, 252
corank of a matrix, 250
covering theorem

Heine-Borel-Lebesgue ∼, 249

d’Alembert’s principle of virtual displace-
ment, 2

d’Alembert,J., 2
d-index, see differentiation index
DAE, see differential-algebraic equations
Dahlquist,G., 97
DASPK, 106
DASSL, 106, 182
decomposition

index reducing ∼, 88
LU ∼, 251
polar ∼, 251
QR ∼, 251
singular value ∼, 251
smooth matrix ∼, 8, 10, 11
SV ∼, 251

decomposition matrix, index reducing ∼,
87

degrees of freedom, 115, 140
geometrical ∼, 115
kinematical ∼, 115
motional ∼, 115, 140
positional ∼, 115, 140

derivative, 248
derivative array

∼ for DAEs, 25
complete minimal reduced ∼
∼ for DAEs, 55
∼ for EoM, 149

minimal reduced ∼
∼ for DAEs, 55
∼ for EoM, 149

reduced ∼ for DAEs, 25
descriptor form

∼ for holonomic systems, 117
∼ for nonholonomic systems, 117

diffeomorphic, diffeomorphism, 249
differentiable

∼ function, 248
∼ variety, 16
l-times continuously ∼, 249
continuously ∼, 249

differential equation
ordinary ∼, 22
underlying ∼, 151
∼ for DAEs, 50, 51
∼ for EoM, 151

underlying ordinary ∼
∼ for DAEs, 50, 51
∼ for EoM, 151

differential part, 82
recursion for ∼s of a quasi-linear DAE,

45
differential-algebraic equations, 21

∼ in Hessenberg form, 36
∼ of order 3, 65, 107

augmented semi-explicit ∼, 102
characteristic quantities for ∼, 28
Hypothesis for linear ∼, 27
Hypothesis for nonlinear ∼, 28
index of ∼, see index
linear ∼ with variable coefficients,

23
linearization of ∼, 31
maximal constraint level for ∼, 51
numerical methods for ∼, see dis-

cretization techniques or soft-
ware

quasi-linear ∼, 23, 36
analysis of ∼, 39
consistent initial values of ∼, 55
maximal constraint level for ∼, 51
recursion for differential parts of

a ∼, 45
recursion for hidden constraints of

a ∼, 45
recursion for the algebraic parts

of a ∼, 45
regularization of ∼, see regular-

ization
Runge-Kutta methods for ∼, see

Runge-Kutta methods
strangeness-free ∼, 37
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regularization of ∼, see regulariza-
tion

Runge-Kutta methods for ∼, see Runge-
Kutta methods

selected semi-implicit ∼, 74
semi-explicit ∼, 100
∼ of d-index 1, 30
∼ of d-index 2, 39, 43, 51, 58, 69,

90
∼ of d-index 3, 65, 107

semi-implicit ∼, 36, 40, 73
strangeness-free ∼, 37, 39, 105

differentiation index (d-index)
∼ for DAEs, 26
∼ for EoM, 148

discretization technique
BDF methods, see BDF methods
extrapolation methods, see extrap-

olation methods
general linear methods, see general

linear methods
GLM, see general linear methods
Runge-Kutta methods, see Runge-

Kutta methods
double four joint mechanism, 121
drift, 156
drift differential equation, 157
drift function, 156
drift stability, 156
drift-off phenomenon, 34, 156, 158, 161
DYMOLA, 184
dynamic iteration, 108
dynamic selector

∼ for DAEs, 59
∼ for EoM, 170, 171
discrete ∼, 86

dynamical equations of motion, 128
dynamical force variables, 129

elastic multibody systems, 133
energy

conservation of ∼, 126, 209
kinetic ∼, 110
potential ∼, 111

EoM, see equations of motion
equations of motion

∼ of modeling level 0, 128
s-index-0 formulation of ∼, 128
s-index-1 formulation of ∼, 128

∼ of modeling level 1, 129
∼ of modeling level 2, 130
∼ of modeling level 3, 131
∼ of modeling level 4, 132

s-index-0 formulation of ∼, 150

s-index-1 formulation of ∼, 150
d-index of ∼, 148
dynamical ∼, 128
kinematical ∼, 128
linearization of ∼, 155
maximal constraint level for ∼, 148
quasi-regular ∼, 137

existence and uniqueness of the
solution, 153

projected-s-index-1 formulation of
∼, 178

projected-strangeness-free formu-
lation of ∼, 175

solution manifold preserving stran-
geness deletion algorithm, 176

regular ∼, 137
d-index of ∼, 175
existence and uniqueness of the

solution, 154
projected-s-index-1 formulation of
∼, 178

projected-strangeness-free formu-
lation of ∼, 175

solution manifold preserving stran-
geness deletion algorithm, 176

underlying ordinary differential equa-
tion for ∼, 151

equivalent strangeness-free formulation
∼ for DAEs, 35
∼ for linear DAEs, 35

EULAG, 183
Euler

∼ equations, 111
∼ parameters, 129
∼-Lagrange equations, 110, 117
∼ian angles, 129

Euler,L., 5
example

academical ∼, 235
double four joint mechanism, 121
lolly, 118, 217
mathematical pendulum, 112, 118,

126, 156, 177, 181, 190, 209
rolling ball, 113
skateboard, 123, 229
slider crank, 120, 223
stirred tank, 71
truck, 119, 222

excitation
kinematical ∼, 114
motional ∼, 114

existence and uniqueness
∼ of solution of EoM, 154
∼ of solution of redundant EoM, 153
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external forces, 112
extrapolation method, 108

field of forces, conservative ∼, 111
forced multibody system, 133
four joint mechanism, double ∼, 121
function, 247

bijective ∼, 247
continuous ∼, 247
continuously differentiable ∼, 249
derivative of a ∼, 248
differentiable ∼, 248
injective ∼, 247
inverse ∼, 247
surjective ∼, 247

Galilei,G., 1
Gauß method, 104
Gauß,C.F., 92
Gear-Gupta-Leimkuhler formulation, 165

∼ of modeling level 0, 165
∼ of modeling level 3, 166

GELDA, 107
GENDA, 107
general implicit function theorem, 15
general linear methods, 82
generalized velocity, 110
geometrical degrees of freedom, 115
geometrical index, 24
GEOMS, 185, 186

determination of consistent initial val-
ues, 190

features, 187
manual, 255
outline, 187
subroutines of ∼, 189

GGL, see Gear-Gupta-Leimkuhler
GLM, see general linear methods
global index, 24
GMKSSOL, 185, 204

determination of consistent initial val-
ues, 206

features, 204
manual, 272
subroutines of ∼, 205

Green,G., 111
Grübler condition, 136

Hamilton principle of least action, 2, 111
Hamilton,W.R., 2
HEDOP5, 164, 183
Heine,H.E., 249
Heine-Borel-Lebesgue covering theorem,

249

HEM5, 164, 183
Hessenberg form

DAE in ∼, 36
DAE in ∼ of order 3, 65, 107

Hessenberg,G., 36
hidden constraints

∼ of EoM, 136
∼ of a quasi-linear DAE, 52
recursion for ∼ of a quasi-linear DAE,

45
holonomic

∼ constraint matrix, 117
∼ constraints, 114
∼ on acceleration level, 114, 135
∼ on position level, 132
∼ on velocity level, 114, 135

∼ multibody system, 115
homeomorphism, 249
Huygens,C., 1
hypothesis

∼ for linear DAEs, 27
∼ for nonlinear DAEs, 28

Hölder norm, 248
Hölder,O.L., 248

implicit function theorem, 15
general ∼, 15

incomplete regularization, 65
index

∼ of DAEs, 24
∼ of nilpotency, 24
∼ reducing decomposition, 88
∼ reducing decomposition matrix,

87
differentiation ∼ (d-index), 26
geometrical ∼, 24
global ∼, 24
Kronecker ∼, 24
perturbation ∼ (p-index), 30
strangeness ∼ (s-index), 28
structural ∼, 27
tractability ∼ (t-index), 24
uniform ∼, 24

inflated pairs, 26
initial value problem

∼ for multibody systems of model-
ing level 0, 128

∼ for multibody systems of model-
ing level 1, 129

∼ for multibody systems of model-
ing level 2, 130

∼ for multibody systems of model-
ing level 3, 131
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∼ for multibody systems of model-
ing level 4, 132

initial values
∼ for EoM, 128–130, 132
∼ of DAEs, 23
consistency of ∼ of EoM, 150
consistent ∼ of quasi-linear DAEs,

55
determination of consistent ∼
∼ in GEOMS, 190
∼ in GMKSSOL, 206

injective function, 247
invariants, solution ∼, 125
inverse

∼ function, 247
∼ matrix, 250
Moore-Penrose pseudo-∼, 252

Jacobi,C.G.J., 76
joint mechanism, double four ∼, 121
Jordan,M.E.C., 24

kernel, 250
orthogonal projection onto ∼, 252

kinematic selector
∼ for DAEs, 59
∼ for EoM, 141
discrete ∼, 86

kinematical degrees of freedom, 115
kinematical equations

∼ of motion, 128
Poisson’s ∼, 129

kinematical excitation, 114
kinetic energy, 110
Kronecker

∼ canonical form of a linear DAE,
24

∼ index, 24
∼ product, 253

Kronecker,L., 24
Kutta, M.W., 4

L-stability, 99
Lagrange

∼ function, 111
∼ multipliers, 116
Euler-∼ equations, 110

Lagrange,J.-L., 1
Lagrangian, 111

∼ mechanics, 1
Landau,E., 249
LAPACK, 201
Lebesgue,H.L., 249
level

∼ of constraint sets, 41
∼ of constraints, 41, 114, 135, 136
maximal constraint ∼ for DAEs, 51
maximal constraint ∼ for EoM, 148
modeling ∼ of equations of motion,

127–132
library

BLAS, 201
LAPACK, 201
MBSPACK, 182, 183
MBSSIM, 182

LIMEX, 108
Lindelöf,E.L., 22
linear DAEs, 22

∼ with variable coefficients, 23
Kronecker canonical form of ∼, 24

linearization
∼ of DAEs, 31
∼ of EoM, 155

Lipschitz continuous, 248
Lipschitz,R.O.S., 19
Lobatto method, 104
Lobatto,R., 104
local discretization error, 100
lolly, 118

numerical results, 217
LSODI, 107
LU decomposition, 251

manifold, 16
acceleration ∼, 139
position ∼, 139
solution ∼, 39
∼ of EoM, 139, 156
∼ of a quasi-linear DAE, 55

velocity ∼, 139
mathematical pendulum, 112, 118, 126,

156, 190
numerical results, 209
projected-s-index-1 formulation for

the ∼, 181
projected-strangeness-free formulation

for the ∼, 177
matrix

inverse ∼, 250
Newton iteration ∼, 19
∼ for Runge-Kutta methods, 76

orthogonal ∼, 250
Runge-Kutta ∼, 74

matrix decomposition, see decomposition
maximal constraint level

∼ for DAEs, 51
∼ for EoM, 148

MBSPACK, 182, 183
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MBSSIM, 182
MDOP5, 183
mechanical system, see multibody sys-

tem
mechanics

Lagrangian ∼, 1
Newtonian ∼, 1

MEXAX, 164, 183, 184
MEXX, see MEXAX
MHERK3, 183
MHERK5, 183
minimal reduced derivative array, 55

complete ∼
∼ for DAEs, 55
∼ for EoM, 149

minor, 250
MODELICA, 184
modeling level

equations of motion of ∼ 0, 128
equations of motion of ∼ 1, 129
equations of motion of ∼ 2, 130
equations of motion of ∼ 3, 131
equations of motion of ∼ 4, 132

modeling paradigm, 163
Moore-Penrose conditions, 252
Moore-Penrose pseudo-inverse, 252
motional degrees of freedom, 115, 140
motional excitation, 114
moving frame, orthogonal ∼, 12
multibody dynamics, 2
multibody system, 109

∼ approach, 2
conservative ∼, 111
elastic ∼, 133
forced ∼, 133
holonomic ∼, 115
nonholonomic ∼, 115

Navier,C.L.M.H., 71
neighborhood, 248

∼ of a subset, 16
NEWEUL, 184
Newton iteration matrix, 19

∼ for Runge-Kutta methods, 76
Newton method, 19

simplified ∼, 19
Newton,S.I., 1
Newtonian mechanics, 1
nilpotency, index of ∼, 24
node vector, 74
non singular point, 16
noncontradictory system of equations, 17
nonholonomic

∼ constraint matrix, 117

∼ constraints, 114
∼ on acceleration level, 114, 135
∼ on velocity level, 132

∼ multibody system, 115
nonlinear DAEs, see DAE
nonredundancy, 16
nonredundant

∼ function, 16
system of ∼ equations, 16

norm, 247
Hölder ∼, 248
weighted root square ∼, 195

numerical software, see software

ODASSL, 183
ODE, see ordinary differential equation
ordinary differential equation, 22

underlying ∼
∼ for DAEs, 50, 51
∼ for EoM, 151

orthogonal complement of a subspace, 249
orthogonal matrix, 250
orthogonal moving frame, 12
orthogonal projection, 251

∼ onto kernel, cokernel, range, cor-
ange, 252

overdetermined formulation, 169

p-index, see perturbation index
paradigm

algorithm ∼, 163
modeling ∼, 163

pendulum, see mathematical pendulum
perturbation index (p-index), 30
Picard,C.E., 22
PMDOP5, 183
point

nonsingular ∼, 16
regular ∼, 15
singular ∼, 16

Poisson’s kinematical equations, 129
Poisson,S.D., 129
polar decomposition, 251
position manifold, 139
position variables, 110
positional degrees of freedom, 115, 140
potential, 111
potential energy, 111
predecomposition process, 97, 199, 200
predictive step size controller, 202
principle

d’Alembert’s ∼ of virtual displace-
ment, 2
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Hamilton ∼ of the least action, 2,
111

product
Kronecker ∼, 253
tensor-vector ∼, 13

projected-s-index-1 formulation
∼ of EoM, 178
∼ of a DAE in Hessenberg form, 69

projected-strangeness-free formulation
∼ of EoM, 169, 175
∼ of a DAE in Hessenberg form, 68
∼ of quasi-linear DAEs, 59–61

projection, 251
orthogonal ∼, 251
orthogonal ∼ onto kernel, cokernel,

range, corange, 252
smooth ∼ onto the kernel of matrix

functions, 11
smooth ∼ onto the range of matrix

functions, 11
projection methods for EoM, 165

Gear-Gupta-Leimkuhler formulation,
165

overdetermined formulation, 169
projected-s-index-1 formulation, 178
projected-strangeness-free formulation,

169
properly stated leading term, 24
pseudo-inverse, Moore-Penrose ∼, 252

QR decomposition, 251
quasi-linear DAE, see DAE
quasi-linearization, see linearization
quasi-regular equations of motion, see equa-

tions of motion
quaternions, 129

Radau method, 104, 105, 107, 126, 182
Radau,R., 6
RADAU5, 107, 126, 182
RADAUP, 107
range, 250

orthogonal projection onto ∼, 252
rank

∼ of a function, 17
∼ of a matrix, 250
∼ of a system of equations, 17

recursion
∼ for differential parts of a quasi-

linear DAE, 45
∼ for hidden constraints of a quasi-

linear DAE, 45
reduced derivative array

∼ for DAEs, 25

complete minimal ∼
∼ for DAEs, 55
∼ for EoM, 149

minimal ∼
∼ for DAEs, 55
∼ for EoM, 149

redundancy, 16
uniform ∼, 17

redundant
∼ function, 16

uniformly ∼, 17
system of ∼ equations, 16, 17
uniqueness of constraint forces in the

case of ∼ constraints, 152
regular equations of motion, see equa-

tions of motion
regular point, 15
regularization

∼ by differentiation, 164
∼ of DAEs, 34
∼ of differential-algebraic equations,

3
∼ of quasi-linear DAEs, 58
incomplete ∼, 65
projection methods, 163, 165

equivalent strangeness-free formu-
lation for DAEs, 35

Gear-Gupta-Leimkuhler formula-
tion, 165

linear equivalent strangeness-free
formulation for DAEs, 35

overdetermined formulation, 169
projected-s-index-1 formulation, 69,

178
projected-strangeness-free formu-

lation, 59–61, 68, 169, 175
stabilization methods, 163, 164

Baumgarte stabilization, 164
regularization by differentiation, 164

state space methods, 163
strangeness concept, 35

rolling ball, 113
Runge,C.D.T., 4
Runge-Kutta matrix, 74
Runge-Kutta methods, 65, 74, 106, 107,

183
∼ for quasi-linear DAEs, 73
convergence of ∼, 99
important classes of ∼, 104
Newton iteration matrix for ∼, 76
numerical software for general DAEs,

126, 182
stability of ∼, 97
stage equation by use of ∼, 76
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Runge-Kutta stages, 75
shifted ∼, 75
transformed ∼, 78

s-index, see strangeness index
s-index-0 formulation

∼ of modeling level 0, 128
∼ of modeling level 4, 150

s-index-1 formulation
∼ of modeling level 0, 128
∼ of modeling level 4, 150

Schur,I., 77
Schwarz,H.A., 14
selected linear system

∼ of type 1, 82
∼ of type 2, 83

selected semi-implicit DAEs, 74
selected system

∼ of type 1, 82
∼ of type 2, 83

selector
dynamic ∼
∼ for DAEs, 59
∼ for EoM, 170, 171

kinematic ∼
∼ for DAEs, 59
∼ for EoM, 141

semi-explicit DAE, see DAE
semi-implicit DAE, see DAE
SEULEX, 108
shifted Runge-Kutta stages, 75
SIMPACK, 184
simplified Newton method, 19
singular point, 16
singular value decomposition, 251
skateboard, 123

numerical results, 229
slider crank, 120

numerical results, 223
smooth matrix decomposition, 8, 10, 11
smooth projection

∼ onto the kernel of matrix func-
tions, 11

∼ onto the range of matrix func-
tions, 11

software
for DAEs, 106

DASPK, 106
DASSL, 106, 182
GELDA, 107
GENDA, 107
LIMEX, 108
LSODI, 107
RADAU5, 107, 126, 182

RADAUP, 107
Runge-Kutta methods, 126, 182
SEULEX, 108

for EoM, 182
EULAG, 183
GEOMS, 186
GMKSSOL, 204
HEDOP5, 164, 183
HEM5, 164, 183
MBSPACK, 182, 183
MBSSIM, 182
MDOP5, 183
MEXAX, 164, 183, 184
MEXX, see MEXAX
MHERK3, 183
MHERK5, 183
ODASSL, 183
PMDOP5, 183

for MBS
ADAMS, 184
DYMOLA, 184
MODELICA, 184
NEWEUL, 184
SIMPACK, 184

solution
∼ of DAEs, 23
existence and uniqueness of ∼ of EoM,

153, 154
solution invariants, 125

conservation of energy, see conser-
vation of energy

solution manifold, 39
∼ of EoM, 139, 156
∼ of quasi-linear DAEs, 55

sphere, 248
stability

A(α)-∼, 98
A-∼, 98
drift ∼, 156
L-∼, 99
strong A-∼, 99

stabilization methods, see regularization
stage equation by use of Runge-Kutta

method, 76
stages

Runge-Kutta ∼, 75
shifted Runge-Kutta ∼, 75
transformed Runge-Kutta ∼, 78

state space form, 112
state variables, 132
step size controller

classical ∼, 202
predictive ∼, 202

stirred tank, 71



INDEX 305

Stokes,G.G., 71
strangeness concept, see regularization,

27
∼ for linear DAEs, 27
∼ for nonlinear DAEs, 28

strangeness deletion
solution manifold preserving ∼ algo-

rithm for equations of motion,
176

strangeness index (s-index), 28
strangeness-free, 28

equivalent ∼ formulation for DAEs,
35

equivalent ∼ formulation for linear
DAEs, 35

projected-∼ formulation
∼ for EoM, 175
∼ for quasi-linear DAEs, 59–61

strong A-stability, 99
structural index, 27
surjective function, 247
SV decomposition, 251
system

conservative multibody ∼, 111
elastic multibody ∼, 133
forced multibody ∼, 133
holonomic multibody ∼, 115
nonholonomic multibody ∼, 115

t-index, see tractability index
Tait,P.G., 129
Tait-Bryan angles, 129
Taylor,B., 32
tractability index (t-index), 24
transformed Runge-Kutta stages, 78
truck, 119

numerical results, 222

UDE, see underlying differential equa-
tion

underlying
∼ differential equation
∼ for DAEs, 50, 51
∼ for EoM, 151

∼ ordinary differential equation
∼ for DAEs, 50, 51
∼ for EoM, 151

uniform index, 24
uniform redundancy, 17
uniformly redundant

∼ function, 17
∼ system of equations, 17

unselected linear system
∼ of type 1, 84

∼ of type 2, 84
unselected system

∼ of type 1, 84
∼ of type 2, 84

uODE, see underlying ordinary differen-
tial equation

values
consistent ∼ of DAEs, 23

variables
auxiliary ∼, 130
contact ∼, 130
control ∼, 23, 129
dynamical force ∼, 129
position ∼, 110
state ∼, 132
velocity ∼, 128

variety, 16
vector

node ∼, 74
weight ∼, 74

velocity manifold, 139
velocity variables, 128
velocity, generalized ∼, 110

Watt,J., 2
waveform relaxation, 108
weight vector, 74
weighted root square norm, 195
Wright,O., 2
Wright,W., 2

Zuse,K., 2


