
Algorithmica (2023) 85:492–508
https://doi.org/10.1007/s00453-022-01038-3

Fast Exact Dynamic TimeWarping on Run-Length Encoded
Time Series

Vincent Froese1 · Brijnesh Jain2 ·Maciej Rymar1 ·Mathias Weller3

Received: 17 February 2021 / Accepted: 9 September 2022 / Published online: 22 September 2022
© The Author(s) 2022

Abstract
DynamicTimeWarping (DTW) is awell-known similaritymeasure for time series. The
standard dynamic programming approach to compute theDTWdistance of two length-
n time series, however, requires O(n2) time, which is often too slow for real-world
applications. Therefore, many heuristics have been proposed to speed up the DTW
computation. These are often based on lower bounding techniques, approximating the
DTW distance, or considering special input data such as binary or piecewise constant
time series. In this paper, we present a first exact algorithm to compute the DTW
distance of two run-length encoded time series whose running time only depends
on the encoding lengths of the inputs. The worst-case running time is cubic in the
encoding length. In experiments we show that our algorithm is indeed fast for time
series with short encoding lengths.

Keywords Time series similarity · Sparse data · Block matrix · Line intersections

BJ was supported by the Deutsche Forschungsgemeinschaft (project JA 2109/4-2). Research done while
at Distributed Artificial Intelligence Laboratory at TU Berlin.
MR was supported by the Deutsche Forschungsgemeinschaft (Project NI 369/18-1).

B Vincent Froese
vincent.froese@tu-berlin.de

Brijnesh Jain
brijnesh.jain@oth-regensburg.de

Mathias Weller
mathias.weller@u-pem.fr

1 Algorithmics and Computational Complexity Institute of Software Engineering and Theoretical
Computer Science, Technische Universität Berlin, Berlin, Germany

2 Department of Computer Science and Mathematics, OTH Regensburg, Regensburg, Germany

3 CNRS, LIGM, Université Paris Est, Marne-La-Vallée, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-022-01038-3&domain=pdf
http://orcid.org/0000-0002-8499-0130

Algorithmica (2023) 85:492–508 493

1 Introduction

Time series data is ubiquitous appearing in essentially all scientific domains. Com-
paring time series requires a measure to determine the similarity of two time series.
Dynamic TimeWarping (DTW) [24] is an established method which is used in numer-
ous time series mining applications [1, 4, 6, 27].

The quadratic time complexity is often considered to be a major drawback of
DTW on very long time series. In general there is not much hope to find strongly
subquadratic algorithms since it has been shown (assuming the Strong Exponential
Time Hypothesis1) that DTW cannot be computed in O(n2−ε) time for any ε >

0 [2, 7] even on time series over an alphabet of size three [21]. However, there exist
sophisticated pruning and lower-bounding techniques which run fast in practice [26].
Long time series of length n � 10, 000 occur, for example, whenmeasuring electrical
power of household appliances with a sampling rate of a few seconds collected over
several months, twitter activity data sampled in milliseconds, and human activities
inferred from a smart home environment [23]. All these time series have in common
that they contain long (nearly) constant segments.

Recently, several algorithms have been devised to cope with long time series that
contain constant segments (called runs) [12, 15–17, 23, 25]. The basic idea of these
algorithms is to exploit the repetitions of values within a time series to speed up
computation of the DTW distance. We briefly summarize some of these algorithms
(see also Table 1).

– AWarp [23]: This algorithm is exact for binary time series (a formal proof is
missing) and exploits repetitions of zeros. The running time is O(m1m2), wherem1
and m2 are the numbers of non-zero entries in the two input time series.

– Sparse DTW (SDTW) [15]: This algorithm yields exact DTW distances for arbi-
trary time series in O((m1 + m2)n) time, where m1 and m2 are the numbers of
non-zero entries in the two input series (assuming both have length n).

– Binary Sparse DTW (BSDTW) [17]: This algorithm computes exact DTW dis-
tances between two binary time series in O(m1m2) time, where m1 and m2 are
the numbers of non-zero entries in the two input time series. In practice it is often
faster than AWarp.

– Blocked DTW (BDTW) [25] (earlier introduced as Coarse-DTW [12]): This
algorithm operates on run-length encoded time series. The run-length encoding
represents a run of identical values (constant segment) by storing only a single
value together with the length of the run. BDTW yields an upper and a lower
bound on the DTW distance and is exact on binary time series (a formal proof is
missing). The running time is O(k�), where k and � are the numbers of runs in the
two input time series (note that k� ∈ O(m1m2)). BDTW is faster than AWarp in
practice.

Clearly, AWarp, BDTW and BSDTW are limited in that they only yield exact DTW
distances for binary time series. There are several recent (theoretical) results regarding
exact DTW computation. Abboud et al. [2] gave an algorithm which computes exact

1 The SETH asserts that SAT cannot be solved in (2 − ε)n · (n + m)O(1) time for any ε > 0, where n is
the number of variables and m is the number of clauses [18].

123

494 Algorithmica (2023) 85:492–508

Table 1 Overview of some
DTW algorithms and their
characteristics. n: maximum
input length, m1, m2: number of
non-zero entries in inputs, k, �:
number of runs in inputs

Algorithm Running time Domain Exactness

AWarp [23] O(m1m2) arbitrary binary

SDTW [15] O((m1 + m2)n) arbitrary arbitrary

BSDTW [17] O(m1m2) binary binary

BDTW [12, 25] O(k�) arbitrary binary

DTW distances on binary length-n time series in O(n1.87) time. This was recently
improved to linear time byKuszmaul [22]. Gold and Sharir [14] showed a subquadratic
O(n2 log log log n/ log log n)-time algorithm for arbitrary time series and Kuszmaul
[21] developed an O(n · dtw(x, y))-time algorithm assuming that the minimum non-
zero local cost is one.

Notably, specialized algorithms for other string problems on run-length encoded
strings have also been studied recently, for example, for Longest Common Sub-
sequence [5, 28] and Edit Distance [9, 10], which have applications in sequence
alignment in bioinformatics.
Our Contributions.We develop an algorithm that computes exact DTW distances for
arbitrary run-length encoded time series. Let x and y be two time series of length m
and n, where x contains k runs and y contains � runs. Then, our algorithm (Theorem
1) computes the DTW distance in O(κ) time,2 where κ is a number depending on the
individual lengths of the runs in x and y (see Sect. 3 for details). For κ , the following
upper bound holds:

κ ∈
{
O(k2� + k�2) : if k ∈ O(

√
m) and � ∈ O(

√
n)

O(kn + �m) : otherwise
.

That is, the running time is at most cubic in max(k, �) and is asymptotically faster
than O(mn) if k ∈ o(m) and � ∈ o(n). To the best of our knowledge, this is the first
exact algorithm whose running time only depends on the lengths of the run-length
encodings of the inputs.

In addition, we show that if all runs in both time series have the same length, then
our algorithm even runs in O(k�) time (Corollary 2) and is in fact equivalent to BDTW.
That is, we prove that BDTW is exact in this case.

In experiments we compare our algorithm with the previously mentioned alterna-
tives (Table 1) and show that it is indeed the fastest exact algorithm on time series with
short run-length encodings.

2 Preliminaries

We give some preliminary definitions and introduce notation.

2 Throughout this work we neglect running times for arithmetical operations.

123

Algorithmica (2023) 85:492–508 495

Notation. Let [n] := {1, . . . , n} and [a, b] := {a, a + 1, . . . , b}. An m × n table T
consists of m rows and n columns, where T [i, j] denotes the entry in the i-th row
and j-th column.
Time Series. A time series is a finite sequence x = (x1, . . . , xn) of rationals. The
run-length encoding of x is the sequence x̃ = ((x̃1, n1), . . . , (x̃k, nk)) of pairs (x̃i , ni)
where ni is a positive integer denoting the number of consecutive repetitions (run
length) of the value x̃i in x . Note that

∑k
i=1 ni = n. We call n the length of x and we

call k the coding length of x .
Dynamic Time Warping. The dynamic time warping distance is a distance measure
between time series using non-linear alignments defined by warping paths [24].

Definition 1 A warping path of order m × n is a sequence p = (p1, . . . , pL), L ∈ N,
of index pairs p� = (i�, j�) ∈ [m] × [n], 1 ≤ � ≤ L , such that

(i) p1 = (1, 1),
(ii) pL = (m, n), and
(iii) (i�+1 − i�, j�+1 − j�) ∈ {(1, 0), (0, 1), (1, 1)} for each � ∈ [L − 1].

The set of all warping paths of order m × n is denoted by Pm,n . A warping
path p ∈ Pm,n defines an alignment between two time series x = (x1, . . . , xm)

and y = (y1, . . . , yn) in the following way: A pair (i, j) ∈ p aligns element xi
with y j incurring a local cost of (xi − y j)2. The cost of a warping path p is
C(p) = ∑

(i, j)∈p(xi − y j)2. The DTW distance between x and y is defined as

dtw(x, y) := min
p∈Pm,n

√
C(p).

It can be computed via dynamic programming in O(mn) time based on an m × n
table [24].

3 The Algorithm

In the following, let x = (x1, . . . , xm) and y = (y1, . . . , yn) be two time series
with x̃ = ((x̃1,m1), . . . , (x̃k,mk)) and ỹ = ((ỹ1, n1), . . . , (ỹ�, n�)). We define a0 :=
0, ai := ∑i

j=1m j for i ∈ [k] and b0 := 0, bi := ∑i
j=1 n j for i ∈ [�]. Consider

the m × n DTW matrix D, where

D[i, j] = dtw((x1, . . . , xi), (y1, . . . , y j))
2.

Note that D can be structured into k� blocks Bi, j = [ai−1 + 1, ai] × [b j−1 + 1, b j],
i ∈ [k], j ∈ [�], where each step inside Bi, j has local cost ci, j := (x̃i − ỹ j)2. The
right boundary of Bi, j corresponds to column b j of D and the top boundary is formed
by row ai of D (see Fig. 1).

We show that it is sufficient to compute only certain entries on the boundaries of
blocks instead of all mn entries in D. To this end, we analyze the structure of optimal
warping paths. We begin with the following simple observation.

123

496 Algorithmica (2023) 85:492–508

Fig. 1 Example of a DTW matrix for two time series x and y with run-length encodings x̃ =
((0, 2), (1, 4), (2, 10)) and ỹ = ((1, 4), (0, 3), (2, 5), (1, 5)). Colors indicate the local costs (xi − y j)

2

of blocks (white = 0, light gray = 1, dark gray = 4). It is sufficient to compute the bold-framed entries in
order to determine dtw(x, y) since there exists an optimal warping path moving only along boundaries of
blocks (rows a1, a2, a3 and columns b1, b2, b3, b4) and the indicated block diagonals L

Observation 1 There exists an optimal warping path p such that the following holds
for every block B: If p moves through B, then p first moves diagonally through B
until it reaches a boundary of B.

This is true since every step inside a block costs the same. Hence, it is optimal to
maximize the number of diagonal steps (which minimizes the overall number of steps
to reach a boundary of a block). Observation 1 implies that there exists an optimal
warping path which is an alternation of diagonal and horizontal (or vertical) subpaths
where the horizontal (vertical) subpaths are always on top (right) boundaries of blocks.
Note that this implies an easy O(kn + �m)-time algorithm which only computes the
entries on the boundaries via dynamic programming.

Now, we restrict the possible diagonals along which such an alternating opti-
mal warping path might move. To this end, let Li, j , (i, j) ∈ [k] × [�], denote the

123

Algorithmica (2023) 85:492–508 497

diagonal in D going through the upper right corner of block Bi, j (that is, through
the entry (ai , b j)) and let L0,0 be the diagonal (corresponding to (a0, b0)) going
through (1, 1). We denote the set of all these block diagonals by L (see Fig. 1). Now,
our key lemma states that there always exists an optimal warping path which only
moves along block boundaries and block diagonals (we call such a warping path
diagonal-conform).

Lemma 1 There exists an optimal warping path which is diagonal-conform.

Proof By definition, every warping path initially starts in (1, 1) on the diagonal L0,0 ∈
L. Let p be an optimal warping path which alternates between diagonals and block
boundaries as described in Observation 1. Assume that p does not only move along
diagonals in L. Then, by assumption, p leaves some diagonal L ∈ L on a boundary
(wlog horizontally on the top boundary ai) of a block Bi, j and (diagonally) enters the
neighboring block Bi+1, j before the next intersection of a diagonal L ′ ∈ L with ai .
It then proceeds diagonally in between L and L ′ until reaching some block boundary
where it moves horizontally or vertically again. Note that p has to move horizontally
or vertically again at some point since it has to reach a diagonal in L again (this holds
because every warping path eventually ends up on Lk,� ∈ L). Assume that p moves
diagonally only until reaching the top boundary ai ′ of a block Bi ′, j ′ , i ′ > i , j ′ ≥ j ,
where p moves horizontally (analogous arguments apply if p moves vertically on a
right boundary of a block in between L and L ′). See Fig. 2 for an example. Observe
that a warping path can only enter blocks from bottom (that is, from the top boundary
of the block below) or left (that is, from the right boundary of the block to the left)
and exit blocks from top or right boundaries.

Let hi ≥ 1 denote the number of horizontal steps of p on ai and let hi ′ ≥ 1 be
the number of horizontal steps on ai ′ . Let q denote the diagonal subpath of p from ai
to ai ′ . Now, consider the warping path p′ obtained from p by “shifting” q to the right,
that is, p′ takes hi + 1 horizontal steps on ai and only hi ′ − 1 horizontal steps on ai ′ .
Let q ′ be the shifted diagonal subpath and note that q ′ crosses the same blocks as q.
This is true since there cannot be an upper right corner of any block anywhere in the
region between L and L ′ (since they are neighboring diagonals from L).

Let us now consider the number of steps taken by p′ within each block from Bi, j
to Bi ′, j ′ . Clearly, p′ takes one more step inside Bi, j than p. Regarding Bi ′, j ′ , if q
enters Bi ′, j ′ from bottom, then q ′ takes one step less inside Bi ′, j ′ . Otherwise, if q
enters Bi ′, j ′ from the left, then q ′ takes the same number of steps inside Bi ′, j ′ as q. For
every block B in between Bi, j and Bi ′, j ′ which is crossed by q, the following holds:

– If q crosses B from left to top, then q ′ takes one more step.
– If q crosses B from bottom to right, then q ′ takes one step less.
– If q crosses B from bottom to top (or from left to right), then q ′ takes the same
number of steps.

The above holds since q cannot pass through an upper right corner of a block in
between L and L ′. Note that the number of steps taken by p and p′ through any block
differs by at most one.

Now, let B be the set of blocks where p takes more steps than p′ and let B′ be
the set of blocks where p′ takes more steps than p. Let C = ∑

Bi, j∈B ci, j and C ′ =

123

498 Algorithmica (2023) 85:492–508

Fig. 2 Example of a warping path moving diagonally in between two neighboring diagonals L and L ′.
Block boundaries are framed in thick lines. Note that there cannot be an upper right block corner anywhere
in between L and L ′. Hence, when shifting the warping path to the right from L to L ′, the cost changes
monotonically (linearly)∑

Bi, j∈B′ ci, j . Then, the cost difference between p and p′ is C − C ′. By optimality

of p, we have C − C ′ ≤ 0, that is, C ≤ C ′.
If C = C ′, then also p′ is an optimal warping path. Thus, by analogous arguments,

shifting hi ′ times to the right yields an optimal warping path that does not move hori-
zontally on ai ′ anymore. If this warping path now already moves diagonally along L ′
(as it would be the case in Fig. 2 when shifting four times to the right), then this proves
the claim. If this is not case, then analogous arguments apply again for the next occur-
rence of a horizontal (or vertical) subpath in between L and L ′. This finally yields an
optimal warping path moving along L ′ (or L) proving the claim.

If C < C ′, then we can analogously shift q to the left to obtain a warping path p′′.
Clearly, the blocks where p′′ takes one more step than p are exactly the blocks B, and
the blocks where p takes one more step than p′′ are exactly the blocks B′. Hence, the
cost difference between p′′ and p is alsoC−C ′ < 0, which contradicts the optimality
of p. �	

Clearly, an optimal diagonal-conform warping path can be computed from only
those entries in D which are an intersection of a block boundary and a block diagonal
in L (in Fig. 1 these intersections are framed in bold). In the following, we denote the
number of these intersections by κ . Note that

k� ≤ κ ≤ (k + �)|L| ≤ (k + �)(k� + 1),

123

Algorithmica (2023) 85:492–508 499

that is, κ ∈ O(k2� + k�2). We need to compute optimal diagonal-conform warping
paths to these intersections. From the proof of Lemma 1, we can actually infer the
following corollary about optimal diagonal-conformwarping paths to any intersection.

Corollary 1 Let Bi, j be a block and consider an intersection z of its top or right
boundary with a diagonal L ∈ L. There is an optimal diagonal-conform warping path
to z whose diagonal subpaths are only on diagonals from {L}∪{Li ′, j ′ | i ′ ≤ i, j ′ ≤ j}.
Corollary 1 essentially follows from the same shifting argument as in the proof of
Lemma 1. Consider an optimal diagonal-conform warping path to z that contains a
diagonal subpath q on a block diagonal Li ′, j ′ �= L , where i ′ > i or j ′ > j . Note that
we can actually shift the diagonal subpath q (without increasing the cost) until it lies
on L or goes through an upper right corner of some block, that is, the shifted subpath
is on the diagonal of this block. Clearly, this is a block Bi∗, j∗ with i∗ ≤ i and j∗ ≤ j .

We are now ready to prove our main result.

Theorem 1 The DTW distance between time series x and y can be computed from x̃
and ỹ in O(κ) time, where κ is the number of intersections between block boundaries
and block diagonals in the DTW matrix.

Proof The algorithm builds an optimal diagonal-conform warping path “block-by-
block” via dynamic programming (iterating over blocks Bi, j for i = 1, . . . , k and
j = 1, . . . , �) using optimal diagonal-conformwarping paths to intersections of block
boundaries with block diagonals (see algorithm 1 for the pseudocode). Whenever a
block Bi, j is added, the corresponding block diagonal Li, j is inserted (if it does not
already exist) in a sorted doubly-linked list (diagonals) of previously encountered
block diagonals. Then, the costs of optimal diagonal-conform warping paths to all
intersections of previously encountered diagonals with the boundaries of Bi, j are
computed (using appendentry) as well as the costs for the intersections of Li, j with
the boundaries of blocks Bi ′, j ′ , i ′ ≤ i , j ′ ≤ j (trace). Before we prove correctness,
we introduce some preliminary definitions.

In our algorithm, a diagonal Li, j ∈ L (going through the upper right corner of
block Bi, j) is a sorted list of its intersections with block boundaries. The offset of Li, j

is b j − ai . We define a linear order on diagonals as follows: Li, j is “to the left of”
Li ′, j ′ (denoted Li, j < Li ′, j ′) if and only if b j − ai < b j ′ − ai ′ , that is, its offset is
smaller.

For the correctness, we show that after a block Bi, j is handled, all intersections
between block boundaries and block diagonals of blocks Bi ′, j ′ with i ′ ≤ i and j ′ ≤
j are correctly determined and stored on the corresponding diagonals (sorted with
increasing row and column indices) together with the cost of an optimal diagonal-
conform warping path.

To this end, consider block Bi, j and assume that for all previous blocks Bi ′, j ′ with
i ′ < i or j ′ < j the above claim holds (this is trivially true before the first block B1,1
is handled). Moreover, we assume that diagonals is sorted with increasing offset
(which initially holds before line 11, where it only contains the diagonals −∞,
L0,0, and ∞ in that order). Note that, by Corollary 1, we only need to consider new

123

500 Algorithmica (2023) 85:492–508

Algorithm 1: Exact DTW for run-length encoded time series.
Input: Run-length encodings ((x̃1,m1), . . . , (x̃k ,mk)) and ((ỹ1, n1), . . . , (ỹ�, n�)) of time series x

and y.
Output: DTW distance between x and y.

1 foreach (i, j) ∈ [k] × [�] do ci, j := (x̃i − ỹ j)
2 ; // compute local block costs

2 a0 := 0
3 foreach i ∈ [k] do ai := ai−1 + mi ; // compute indices of top boundaries
4 b0 := 0
5 foreach j ∈ [�] do b j := b j−1 + n j ; // compute indices of right boundaries

6 diagonals ← doubly-linked list of diagonals
7 add dummy diagonal −∞ with offset −∞ containing entry (−∞, −∞) with cost ∞
8 add dummy diagonal ∞ with offset ∞ containing entry (∞, ∞) with cost ∞
9 insert an empty diagonal L0,0 with offset 0 between −∞ and ∞

10 add entry (0, 0) with cost 0 to L0,0
11 foreach i ∈ [k] do
12 L ← first diagonal in diagonals // L = −∞ with offset −∞
13 foreach j ∈ [�] do
14 if L ≤ Li, j−1 then L ← diagonals.next(L)

15 while L < Li, j do // diagonals intersecting top boundary of Bi, j
16 appendentry(L, i, j)
17 L ← diagonals.next(L)

18 L ′ ← L
19 while L ′ < Li−1, j do L ′ ← diagonals.next(L ′)
20 L ′ ← diagonals.previous(L ′)
21 while L ′ > Li, j do // diagonals intersecting right boundary of Bi, j
22 appendentry(L ′, i, j)
23 L ′ ← diagonals.previous(L ′)
24 if L > Li, j then // insert new diagonal Li, j
25 insert empty diagonal Li, j with offset b j − ai into diagonals before L
26 trace(Li, j , i, j, last entry on diagonals.previous(Li, j), last entry on L)

27 else appendentry(L, i, j); // diagonal Li, j exists already

28 return cost of last computed entry

intersections, that is, intersections of previous block diagonals with the boundaries
of Bi, j and intersections of Li, j with previously handled block boundaries (if Li, j

does not yet exist). For all other previously computed intersections, there exists an
optimal diagonal-conform warping path which does not use Li, j , hence, we do not
need to update them.

As regards the intersections on the boundaries of Bi, j , observe that a diagonal L
intersects the top boundary ai if Li, j−1 < L ≤ Li, j . If this is the case, then clearly
the intersection is (ai , ai + σ), where σ is the offset of L . Now, by definition, there
are two options for a diagonal-conform warping path to reach this intersection: either
diagonally on L (from the last intersection stored on L) or from the left on the bound-
ary ai . For the latter option, a diagonal-conform warping path has to go over the
intersection of the diagonal that is directly to the left of L (that is, the predecessor of L
in diagonals) with ai . By assumption, this intersection is the last one stored on
the predecessor of L in diagonals. The optimum of these two cases can easily be
determined (see minimum computation in appendentry which is called in line 16 of
algorithm 1). The intersections on the right boundary of Bi, j are handled analogously

123

Algorithmica (2023) 85:492–508 501

Function appendentry(L , i , j)
Input: A diagonal L and block indices i, j such that L intersects a boundary of Bi, j .
Output: Compute intersection of L and the boundary of Bi, j and add this entry to L with the cost of

an optimal diagonal-conform warping path.
zL ← last entry on L
(a, b) ← (ai , b j)
c ← ∞
if L ≤ Li, j then // L intersects top boundary of Bi, j

b ← ai + offset(L) // column of intersection
z′ ← last entry on diagonals.previous(L)

c ← min{z′.cost + ci, j · (b − z′.col), zL .cost + ci, j · (b − zL .col)}
if L ≥ Li, j then // L intersects right boundary of Bi, j

a ← b j − offset(L) // row of intersection

z′ ← last entry on diagonals.next(L)

c ← min{c, z′.cost + ci, j · (a − z′.row), zL .cost + ci, j · (a − zL .row)}
add (a, b) with cost c to the end of L

Function trace(L , i , j , z p, zn)
Input: A diagonal L , block indices i, j such that L intersects the boundary of Bi, j , and entries z p

on the previous and zn on the next diagonal of L .
Output: Cost of an optimal diagonal-conform warping path to the intersection of L with a boundary

of Bi, j . Recursively fills the diagonal L with all intersections of L with previous block
boundaries.

L p ← diagonals.previous(L)

Ln ← diagonals.next(L)

while z p �= ⊥ and z p .row > ai do z p ← L p .previous(z p)
while zn �= ⊥ and zn .col > b j do zn ← Ln .previous(zn)

if z p �= ⊥ and zn �= ⊥ and i, j ≥ 1 then
(a, b) ← (ai , b j)
c ← ∞
if L ≤ Li, j then // L intersects top boundary ai

b ← ai + offset(L)

c ← min(c, z p .cost + ci, j · (b − z p .col))
if L ≥ Li, j then // L intersects right boundary b j

a ← b j − offset(L)

c ← min(c, zn .cost + ci, j · (a − zn .row))

if L ≥ Li−1, j−1 then // L intersects top boundary ai−1 of Bi−1, j
c ← min(c,trace(L, i − 1, j, z p, zn) + ci, j · (a − ai−1))

else // L intersects right boundary b j−1 of Bi, j−1
c ← min(c,trace(L, i, j − 1, z p, zn) + ci, j · (b − b j−1))

add (a, b) with cost c to the end of L
return c

else return ∞

in line 22 (using the successor of L in diagonals). Note that if there already exists
a diagonal with the same offset as Li, j , then its intersection with the boundary of Bi, j
(which is the upper right corner of Bi, j) is added in line 27.

If Li, j does not yet exist, then it is newly inserted into diagonals in line 25
before the first diagonal in diagonals with a larger offset. Hence, diagonals is
correctly sorted. Then, all intersections of Li, j with block boundaries are recursively

123

502 Algorithmica (2023) 85:492–508

added via trace in line 26. This is done as follows: Consider an intersection of Li, j with
a boundary of a block Bi ′, j ′ , i ′ ≤ i , j ′ ≤ j . Again, by definition, an optimal diagonal-
conform warping path only has the options to reach this intersection via Li, j or via
the boundary. For the boundary option, we can again use the previously computed
intersections on the neighboring diagonals of Li, j in diagonals. For the diagonal
option, we need to compute the preceding intersection of Li, j with a previous block
boundary first. This is done recursively. Note that the previous intersection of Li, j is
on the top boundary of Bi ′−1, j ′ if Li, j > Li ′−1, j ′−1, and it is on the right boundary
of Bi ′, j ′−1 if L < Li ′−1, j ′−1 (note that Li, j = Li ′−1, j ′−1 is not possible since Li, j

is a new diagonal). Moreover, this intersection can easily be determined (as described
above) and an optimal diagonal-conform warping path to this intersection can again
be determined using only the neighboring diagonals of Li, j in diagonals. The
recursion terminates when there exists no intersection of Li, j with a previous block
boundary (that is, the border of the DTWmatrix D is reached). In this case, a diagonal-
conformwarping path to the current intersection can only come from the corresponding
boundary. If there is no intersection on this boundary with one of the neighboring
diagonals of Li, j , then this intersection cannot be reached by any diagonal-conform
warping path. Hence, its cost can be set to ∞. This completes the correctness of
algorithm 1.

For the running time, note that each intersection is computed exactly once (either
by appendentry or by trace). Moreover, the computation required to handle a single
intersection takes constant time. Thus, the overall running time is linear in the total
number κ of intersections. �	

As regards the value of κ , note that κ ≤ kn+�m− k� clearly holds since this is the
overall number of entries on all block boundaries. Hence, a (tight) worst-case upper
bound is

κ ∈ O(min(k2� + k�2, kn + �m)).

In practice, κ might be smaller since not every block diagonal will intersect every
boundary (depending on the specific block sizes) and some block diagonals might
even be identical (for example, if square blocks appear). Such beneficial block sizes
can be achieved, for example, when using piecewise aggregate approximation [20, 29]
as preprocessing where the time series are approximated by piecewise constant series
with a fixed run length. For the case that all blocks have equal sizes, the following
improved upper bound on κ holds.

Lemma 2 Let x and y be two time series such that x consists of k runs of length m′
and y consists of � runs of length n′, where n′ ≤ m′. Then, the number κ of intersections
between block diagonals and block boundaries is in O(k� · M/n′), where M is the
least common multiple of m′ and n′.

Proof Let m = km′ be the length of x and n = �n′ be the length of y. Let M be
the least common multiple of m′ and n′ and let α = M/m′ and β = M/n′. Clearly,
for every α < i ≤ k and β < j ≤ �, the block diagonal Li, j is the same diagonal
as Li−α, j−β . Thus, the set L of block diagonals can be written as

123

Algorithmica (2023) 85:492–508 503

L = A ∪ B ∪ {L0,0},
where A = {Li, j | i ∈ [α], j ∈ [�]} and B = {Li, j | i ∈ [k], j ∈ [β]}.

Let us consider the intersections of boundary ai with a diagonal Li ′, j ∈ L. There
are two cases: For i < i ′, there exists an intersection if b j − (i ′ − i)m′ ≥ 1. For i ≥ i ′,
there exists an intersection if b j + (i − i ′)m′ ≤ n. Sincem′ ≥ n′, boundary ai can thus
only have intersections with diagonals Li ′, j where i − � ≤ i ′ ≤ i + �. Hence, there
are at most 2� ·β intersections with diagonals in B and at most α · � intersections with
diagonals in A on ai . Overall, there are at most k�(2β + α) ≤ k� · 3β intersections
on all top boundaries.

Analogously, for boundary b j , there exists an intersection with Li, j ′ ∈ L if ai −
(j ′ − j)n′ ≥ 1 (for j ′ > j) or if ai + (j − j ′)n′ ≤ m (for j ≥ j ′). Thus, there are
at most β · k intersections with diagonals in B and at most α ·m/n′ intersections with
diagonals inA on b j . This yields atmost k�(β+α ·m′/n′) = k�·2β intersections on all
right boundaries. Thus, altogether there are at most O(k� · M/n′) many intersections.

�	
Note that if M ∈ O(n′) holds in Lemma 2 (for example, if m′ = αn′ for a constant
integer α ≥ 1), then this implies κ ∈ O(k�). Hence, we obtain the following.

Corollary 2 Let x and y be two time series such that x consists of k runs of length m′
and y consists of � runs of length n′ ≤ m′. If the least common multiple of m′ and n′
is in O(n′), then the DTW distance between x and y can be computed from x̃ and ỹ
in O(k�) time.

If m′ = n′ (that is, all blocks are squares), then there are κ = k� intersections
which are exactly the upper right block corners. In this special case the following
holds: If an optimal warping path moves through a block Bi, j , then it takes exactly m′
steps through Bi, j without loss of generality. The algorithm Blocked_DTW_UB [25,
Algorithm 1] (and accordingly also Coarse-DTW [12, Algorithm 2] with φmax) uses
the value max(m′, n′) · ci, j (which clearly equals m′ · ci, j) for the cost of crossing
block Bi, j . Hence, these algorithms are equivalent to our algorithm in this case. That
is, we proved the following.

Corollary 3 Blocked DTW [25] and Coarse-DTW [12] are exact if all blocks are
squares.

4 Experiments

We conducted experiments to empirically evaluate our algorithm comparing it to alter-
natives.
Data. We considered all seven datasets from the UCR repository [11] whose time
series have a length of at least n ≥ 1000 (time series within the same dataset have
identical length). Table 2 lists the selected datasets and their characteristics.
Setup. We compared our run-length encoded DTW algorithm (RLEDTW) with the
following alternatives3 (see Table 1 for descriptions):

3 C++ implementations are available at www.akt.tu-berlin.de/menue/software/.

123

www.akt.tu-berlin.de/menue/software/

504 Algorithmica (2023) 85:492–508

Table 2 Characteristics of the
datasets we used in our
experiments. Type refers to the
problem domain, size to the
overall number of time series in
the dataset, and length to the
number of elements of a time
series

dataset type size length

HandOutlines IMAGE 1370 2709

InlineSkate MOTION 650 1882

CinCECGTorso ECG 1420 1639

Haptics MOTION 463 1092

Mallat SIMULATED 2400 1024

StarLightCurves SENSOR 9236 1024

Phoneme SOUND 2110 1024

Fig. 3 Examples of compressed time series from CinCECGTorso (left) and Mallat (right)

– DTW (standard O(n2)-time dynamic program) [24],
– AWarp [23],
– SDTW [15],
– BDTW [12, 25].

To compare the algorithms, we applied the following procedure: From each of the
seven UCR datasets, we randomly sampled a subsetD of 100 time series (of length n).
Then, for a specified encoding length k < n, we transformed the subsetD into a subset
Dk by compressing the time series to consist of k runs. The compression is achieved
by computing a best piecewise constant approximation with k constant segments min-
imizing the squared error (also called adaptive piecewise constant approximation).
This can be done using dynamic programming [8, 13, 19]. The encoding length k
was controlled by the space-saving ratio ρ = 1 − k/n. We used the space-saving
ratios ρ ∈ {0.1, 0.5, 0.75, 0.9, 0.925, 0.95, 0.975, 0.99}. Thus, we generated eight
compressed versions of each subset D in run-length encoded form (see Fig. 3 for
examples of compressed time series). For every compressed dataset, we computed all
pairwise DTW distances using the five different algorithms.
Results. Figure 4 shows the average speedup factors of the algorithms compared to
the DTW baseline as a log-function of the space-saving ratio ρ. The speedup of an

123

Algorithmica (2023) 85:492–508 505

Fig. 4 Average speedup factor as a function of the space-saving ratio

algorithm A for computing a DTW distance between two time series is defined by
σA = tDTW/tA, where tA is the computation time of A and tDTW is the computation
time of the standard dynamic program. That is, for σA > 1 (σA < 1), algorithm A is
faster (slower) than the baseline method.

The results show that the speedup factors of AWarp and SDTW are independent of
the space-saving ratio and less than one. Hence, both algorithms are actually slower
than standard dynamic programming. This is due to the fact that both algorithms have
been designed for time series with runs of zeros. The results indicate that AWarp and
SDTW are of limited use for the general case of time series having only few runs of
zeros. In contrast, the speedup factors of the BDTW heuristic and our exact RLEDTW
grow superexponentially with increasing space-saving ratio. For all but the smallest
space-saving ratios, BDTW is faster than all other algorithms. In the best case, BDTW
is up to more than 1000 times faster than DTW. Our algorithm is the slowest for all
but the highest space-saving ratios. At the lowest space-saving ratios, RLEDTW is
nearly 100 times slower than DTW. This is caused by the overhead of computing the
intersections. In fact, the number κ of intersections always attained the upper bound
of 2kn − k2 for k ≥ 0.1n (that is, ρ ≤ 0.9). Hence, the simple O(kn)-time dynamic
program (mentioned in Sect. 3) might be faster here. For k < 0.075n (ρ > 0.925),
RLEDTW is the fastest exact algorithm and up to 100 times faster than DTW.

While all other algorithms returned exact solutions (AWarp yields exact solutions if
there are no runs of zeros), the speedup of BDTW is at the expense of solution quality.
Figure 5 shows the average absolute error percentage of the lower and upper bound
of BDTW as a log-function of the space-saving ratio. The absolute error percentage
of an approximated DTW distance d(x, y) between two time series x and y is defined
by

123

506 Algorithmica (2023) 85:492–508

Fig. 5 Average error percentage of the BDTW bounds as a function of the space-saving ratio

E = 100 · | dtw(x, y) − d(x, y)|
dtw(x, y)

.

The general trend is that BDTW becomes increasingly inaccurate with increasing
space-saving ratio with error percentages by more than 10% on average. In addition,
the upper bound better approximates the DTW distance than the lower bound for all
but the highest space-saving ratios.

5 Conclusion

We developed an asymptotically fast algorithm to compute exact DTW distances
between run-length encoded time series. The running time is cubic in the maximum
coding lengths of the inputs. This is actually the first exact algorithm whose running
time only depends on the input coding lengths. Experiments indicate that our method
yields improved performance for time series with short coding lengths (which could
be achieved, for example, when using preprocessings such as piecewise aggregate
approximation [8, 13, 20, 29]).

An immediate question is whether there exists an O(max(k, �)3−ε)-time algorithm
for any ε > 0 or whether we can exclude such an algorithm assuming the SETH.
Finally, studying the complexity of DTW with respect to other compressions (as has
been done for other string problems [3]) might lead to interesting results.

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If

123

Algorithmica (2023) 85:492–508 507

material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abanda, A., Mori, U., Lozano, J.A.: A review on distance based time series classification. Data Min.
Knowl. Disc. 33, 1–35 (2018)

2. Abboud, A., Backurs, A., Williams, V.V.: Tight hardness results for LCS and other sequence similarity
measures. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS ’15),
pp 59–78 (2015)

3. Abboud, A., Backurs, A., Bringmann, K., Künnemann, M.: Fine-grained complexity of analyzing
compressed data: Quantifying improvements over decompress-and-solve. In: Proceedings of the 58th
IEEEAnnual Symposium on Foundations of Computer Science (FOCS ’17), IEEE, pp 192–203 (2017)

4. Aghabozorgi, S., Shirkhorshidi, A.S., Wah, T.Y.: Time-series clustering-a decade review. Inf. Syst. 53,
16–38 (2015)

5. Ahsan, S.B., Aziz, S.P., Rahman,M.S.: Longest common subsequence problem for run-length-encoded
strings. J. Comput. 9(8), 1769–1775 (2014)

6. Bagnall, A., Lines, J., Bostrom, A., Large, J., Keogh, E.: The great time series classification bake off:
a review and experimental evaluation of recent algorithmic advances. Data Min. Knowl. Disc. 31(3),
606–660 (2017)

7. Bringmann, K., Künnemann, M.: Quadratic conditional lower bounds for string problems and
dynamic time warping. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Sci-
ence (FOCS ’15), pp 79–97 (2015)

8. Chakrabarti, K., Keogh, E., Mehrotra, S., Pazzani, M.: Locally adaptive dimensionality reduction for
indexing large time series databases. ACM Trans. Database Syst. 27(2), 188–228 (2002)

9. Chen, K., Chao, K.: A fully compressed algorithm for computing the edit distance of run-length
encoded strings. Algorithmica 65(2), 354–370 (2013)

10. Clifford, R., Gawrychowski, P., Kociumaka, T., Martin, D.P., Uznanski, P.: RLE edit distance in near
optimal time. In: Proceedings of the 44th International Symposium on Mathematical Foundations of
Computer Science (MFCS ’19), Schloss Dagstuhl - Leibniz-Zentrum für Informatik, LIPIcs, vol. 138,
pp 66:1–66:13 (2019)

11. Dau, H.A., Keogh, E., Kamgar, K., Yeh, C.C.M., Zhu, Y., Gharghabi, S., Ratanamahatana, C.A.,
Yanping, Hu, B., Begum, N., Bagnall, A., Mueen, A., Batista, G., Hexagon-M.L.: The UCR time
series classification archive. (2018) https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

12. Dupont, M., Marteau, P.F.: Coarse-DTW for sparse time series alignment. In: First ECML PKDD
Workshop on Advanced Analysis and Learning on Temporal Data (AALTD ’15), pp 157–172 (2016)

13. Faloutsos, C., Jagadish,H.,Mendelzon,A.,Milo, T.:A signature technique for similarity-based queries.
In: Proceedings of the Compression and Complexity of Sequences 1997 (SEQUENCES ’97), IEEE,
pp 11–13 (1997)

14. Gold, O., Sharir,M.: Dynamic timewarping and geometric edit distance: breaking the quadratic barrier.
ACM Trans. Algorithm. 14(4), 50:1-50:17 (2018)

15. Hwang, Y., Gelfand, S.B.: Sparse dynamic time warping. In: Proceedings of the 13th International
Conference on Machine Learning and Data Mining in Pattern Recognition (MLDM ’17), pp 163–175
(2017)

16. Hwang, Y., Gelfand, S.B.: Constrained sparse dynamic time warping. In: 2018 17th IEEE International
Conference on Machine Learning and Applications (ICMLA ’18), pp 216–222 (2018)

17. Hwang, Y., Gelfand, S.B.: Binary sparse dynamic time warping. In: Proceedings of the 15th Inter-
national Conference on Machine Learning and Data Mining in Pattern Recognition (MLDM ’19)
(2019)

18. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Com-
put. Syst. Sci. 63(4), 512–530 (2001)

19. Jain, B.J., Froese, V., Schultz, D.: An average-compress algorithm for the sample mean problem under
dynamic time warping. CoRR (2019) arXiv:1909.13541

123

http://creativecommons.org/licenses/by/4.0/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
http://arxiv.org/abs/1909.13541

508 Algorithmica (2023) 85:492–508

20. Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Dimensionality reduction for fast similarity
search in large time series databases. Knowl. Inf. Syst. 3(3), 263–286 (2001)

21. Kuszmaul, W.: Dynamic time warping in strongly subquadratic time: Algorithms for the low-distance
regime and approximate evaluation. In: Proceedings of the 46th International ColloquiumonAutomata,
Languages, and Programming (ICALP ’19), Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
LIPIcs, vol 132, pp 80:1–80:15 (2019)

22. Kuszmaul, W.: Binary dynamic time warping in linear time. CoRR (2021) arXiv:2101.01108
23. Mueen, A., Chavoshi, N., Abu-El-Rub, N., Hamooni, H., Minnich, A.: AWarp: Fast warping distance

for sparse time series. In: 2016 IEEE 16th International Conference on Data Mining (ICDM ’16), pp
350–359 (2016)

24. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition.
IEEE Trans. Acoust. Speech Signal Process. 26(1), 43–49 (1978)

25. Sharabiani, A., Darabi, H., Harford, S., Douzali, E., Karim, F., Johnson, H., Chen, S.: Asymptotic
dynamic time warping calculation with utilizing value repetition. Knowl. Inf. Syst. 57(2), 359–388
(2018)

26. Silva, D.F., Giusti, R., Keogh, E., Batista, G.: Speeding up similarity search under dynamic time
warping by pruning unpromising alignments. Data Min. Knowl. Disc. 32(4), 988–1016 (2018)

27. Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., Keogh, E.: Experimental comparison
of representation methods and distance measures for time series data. Data Min. Knowl. Disc. 26(2),
275–309 (2013)

28. Yamada, K., Nakashima, Y., Inenaga, S., Bannai, H., Takeda, M.: Faster STR-EC-LCS computation.
In: Proceedings of the 46th International Conference on Current Trends in Theory and Practice of
Informatics, (SOFSEM ’20), Springer, LNCS, vol. 12011, pp 125–135 (2020)

29. Yi, B.K., Faloutsos, C.: Fast time sequence indexing for arbitrary Lp norms. In: Proceedings of the
26th VLDB Conference, pp 385–394 (2000)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/2101.01108

	Fast Exact Dynamic Time Warping on Run-Length Encoded Time Series
	Abstract
	1 Introduction
	2 Preliminaries
	3 The Algorithm
	4 Experiments
	5 Conclusion
	References

