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Improved Approximations for Minimum CardinalityQuadrangulations of Finite Element MeshesyMatthias M�uller{Hannemann� Karsten Weihe��July 11, 1997AbstractConformal mesh re�nement has gained much attention as a necessary preprocessing step forthe �nite element method in the computer-aided design of machines, vehicles, and manyother technical devices. For many applications, such as torsion problems and crash sim-ulations, it is important to have mesh re�nements into quadrilaterals. In this paper, weconsider the problem of constructing a minimum-cardinality conformal mesh re�nement intoquadrilaterals. However, this problem is NP{hard, which motivates the search for goodapproximations. The previously best known performance guarantee has been achieved by alinear-time algorithm with a factor of 4. We give improved approximation algorithms. Inparticular, for meshes without so-called folding edges, we now present a 1:867{approximationalgorithm. This algorithm requires O(nm logn) time, where n is the number of polygonsandm the number of edges in the mesh. The asymptotic complexity of the latter algorithm isdominated by solving a T -join, or equivalently, a minimum{cost perfect b{matching problemin a certain variant of the dual graph of the mesh. If a mesh without foldings corresponds toa planar graph, the running time can be further reduced to O(n3=2 logn) by an applicationof the planar separator theorem.1 IntroductionIn recent years, the conformal re�nement of �nite element meshes has gained much attention asa necessary preprocessing step for the �nite element method in the computer-aided design of ma-chines, vehicles, and many other technical devices. Much work has been done on decompositionsinto triangles; see [Ho88] for a survey. However, for many applications, such as torsion problemsand crash simulations, it is important to have mesh re�nements into quadrilaterals [ZT89]. Seealso [Tou95] for a systematic survey on quadrangulations.A polygon is a closed and connected region in the plane or, more generally, of a smoothsurface in the three{dimensional space, bounded by a �nite, closed sequence of straight linesegments (edges). The endpoints of the line segments or curves are the vertices. A polygon isconvex if the internal angle at each vertex is at most �. A mesh is a set of openly disjoint,convex polygons (Fig. 1). A mesh may contain folding edges, that is, edges incident to morethan two polygons (Fig. 5). We call a mesh homogeneous if it does not contain folding edges.yA preliminary, extended abstract appears in Proceedings of the 5th Annual European Symposium on Algo-rithms, ESA'97, with only a 2-approximation instead of the 1.867-approximation for meshes without foldings.�Technische Universit�at Berlin, Department of Mathematics, Sekr. MA 6{1, Str.d. 17.Juni 136, 10623 Berlin,Germany, mhannema@math.tu{berlin.de, http://www.math.tu{berlin.de/~mhannema.This author was supported by the special program \E�cient Algorithms for Discrete Problems and TheirApplications" of the Deutsche Forschungsgemeinschaft (DFG) under grant Mo 446/2-2.��Universit�at Konstanz, Fakult�at f�ur Mathematik und Informatik, Fach D188, 78457 Konstanz, Germany,karsten.weihe@uni{konstanz.de, http://www.informatik.uni{konstanz.de/~weihe.1



Figure 1: A coarse mesh modeling a chassisof a car. This mesh has been constructed bya German car company. Figure 2: The conformal re�nement pro-duced by the algorithm in [MMW95,MMW96].In a conformal re�nement of a mesh, each polygon is decomposed into strictly convex quadri-laterals, and if two quadrilaterals share more than a corner, they share exactly one edge as awhole (Fig. 2).Workpieces are modeled interactively as meshes; see Fig. 1 for an example of an instancetaken from practice. However, such meshes are usually very coarse and not conformal. To besuitable for the �nite element method, the mesh has to be re�ned into a conformal mesh ina preprocessing step. Previous work puts emphasis on the shape of the quadrilaterals (anglesshould neither be too small nor too large; the aspect ratio, i.e. the ratio between the largestand the smallest side of a quadrilateral, should be small). This is important for the numericalaccuracy in the later iterations of the cyclic design process, when the model has become matureand exact results are required for �ne{tuning.In this paper now, we focus on the early stages of this process, where the model is designedonly roughly, and the numerical accuracy must only su�ce to indicate the general tendency.Hence, the development time is crucial, which in turn is determined by the run time of the �niteelement method. This raises the following problem: Given a mesh, �nd a conformal re�nementwith a minimum number of quadrilaterals.Until recently, work on this problem (cf. [MMW95, MMW96] and [TA93]) has considered thenumber of quadrilaterals only heuristically or not at all. Usually, a template model is used, whichrestricts the possibilities of decomposing a single polygon to a few classes of templates. Thesetemplates are designed to achieve good angles and aspect ratios heuristically. For example,the most important template for quadrangular polygons is a (p � q){grid, where p and q arevariable. However, this template uses p � q quadrilaterals, which is quadratic in size comparedwith minimal quadrangulations of size O(p+ q) (easy to see). Therefore, algorithms often re�neworkpieces into too many quadrilaterals, which makes the �nite element method very costly oreven infeasible.Unfortunately, it is hard to �nd conformal decompositions into a minimum number of quadri-laterals:Theorem 1.1 [MW96] The minimum cardinality conformal mesh re�nement problem is NP{hard even for homogeneous meshes.For single polygons, however, this problem is e�ciently solvable. More precisely, two variantsof the problem can be solved in linear time, namely the case which allows to insert additionalvertices to arbitrary positions and the case which allows additional vertices only into the interiorof the polygon, but not on its boundary, i.e. it forbids to subdivide edges.In the mesh re�nement problem, the polygons cannot be re�ned independently since wehave to ensure that the mesh is conformal. Hence, we carefully distinguish between conformalre�nements, where vertices can be inserted at arbitrary positions, and conformal decompositions(see Fig. 3 for an example). By a conformal decomposition of a single polygon we will alwaysmean the variant which does not allow to subdivide edges but to place vertices into the interiorof the polygon (see Fig. 4). The following theorem holds:2
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��Figure 3: A triangular{shaped convex polygon with four vertices (left); an optimal re�nement,which places two extra vertices on the boundary (middle); and an optimal decomposition, whereno additional vertices on the boundary are allowed (right).Theorem 1.2 [MW96] There is a linear{time algorithm which constructs a minimal conformaldecomposition of a polygon into strictly convex quadrilaterals.In Section 3 we extend the work of [MW96] and give a characterization of the structure ofminimal conformal re�nements. Insight into this structure enables us to design also a linear{timealgorithm for minimal conformal re�nements of single polygons. This is not only interesting fromthe structural point of view, it also allows us to compute lower bounds for the mesh re�nementproblem in an e�cient way.There is also a well-known (see, for example [Joe95]), but important characterization of thosepolygons which can be decomposed into strictly convex quadrilaterals:Lemma 1.3 A simple, not necessarily convex polygon P admits a conformal decomposition ifand only if the number of vertices of P is even.Lemma 1.3 and Theorem 1.2 give rise to the following two-stage approach: First, subdividea couple of edges such that each polygon achieves an even number of vertices; second, re�neeach polygon separately according to the algorithm mentioned in Theorem 1.2. Clearly, the�rst stage determines the approximation factor. In [MW96], each edge of the mesh is subdi-vided exactly once, which trivially makes all polygons even. It is also proved in [MW96] thatthis simple strategy already yields a 4{approximation. The analysis of this simple strategy istight: for a conformal mesh of quadrilaterals, this algorithm obviously takes four times as manyquadrilaterals as the optimum. To improve upon this performance guarantee, we apply a moresophisticated strategy.A few related problems have found some attention. Note, for example, that it is importantthat polygons are by de�nition convex polygons, as Lubiw [Lub85] has shown that both problems,minimum re�nement and minimum decomposition, are NP{hard for single, but non-convexpolygons with holes. To the best of our knowledge, the complexity status of the re�nementproblem for non-convex polygons without holes is still open. Everett et al. [ELOSU92] givelower and upper bounds on the number of quadrilaterals in a conformal re�nement of simple, notnecessarily convex polygons (with and without holes), but not on decompositions. Refs. [Sac82,ST81] investigate perfect decompositions of (star-shaped) rectilinear polygons into non{strictlyconvex quadrilaterals, and [Lub85] considers perfect decompositions of non-convex polygons buteven allows overlapping internal edges. See [Tou95] for a systematic survey.In Sect. 5, we will present the main results of this paper:� There is a linear{time approximation algorithm which exceeds ratio 2 by an additive termof at most �(M). This parameter �(M) (to be de�ned below in Def. 2.1) depends onthe mesh structure, but for all practical instances that we know of, �(M) is signi�cantlysmaller than the minimal number of quadrilaterals in a conformal re�nement. Hence,for such instances, this yields a 3{approximation. (For general instances, this algorithmalways guarantees a 4{approximation.) 3



� As an immediate consequence, this yields a linear-time 3{approximation for homogeneousmeshes. (This is not true for the algorithm in [MW96].)� For homogeneous meshes, we can even do better, namely, we get a 1:867{approximationalgorithm which runs in O(nm log n) time, where n (m) is the number of polygons (edges)in the mesh. If a homogeneous mesh corresponds to a planar graph, the running time canbe further reduced to O(n3=2 log n) by an application of the planar separator theorem.The asymptotic complexity of the algorithm for homogeneous meshes is dominated by solvinga T{join problem, or equivalently, a minimum{cost perfect b{matching problem (see the mono-graph by Derigs [Der88] or the survey by Gerards [Ger95] for matching problems) in a certainvariant on the dual graph of the mesh. In our application, the algorithm from [Gab83] requiresO(nm logn) time. Usually, (homogeneous) meshes are sparse, i.e. they have only m = O(n)edges.All our results also carry directly over to the following, slightly more general variant onthe minimum mesh re�nement problem. Suppose that the given mesh is too coarse to expectreasonable results from the �nite element method, but a �nite element error estimation giveslower bounds on the mesh density which should be achieved. More precisely, suppose that theselower bounds on the mesh density are expressed as lower bounds on the number of vertices whichhave to be placed on the original edges in a feasible re�nement. (There are CAD packages whichpursue this strategy.) The general problem is to �nd a conformal re�nement which respectsthese lower bounds, but minimizes the number of quadrilaterals.The rest of the paper is organized as follows. In Section 2, we start with some prelimi-naries and introduce further terminology. Then, in Section 3 we review a characterization ofminimal decompositions of polygons. Based on that, as mentioned above, we also give a newcharacterization of the structure of minimal re�nements of polygons.In Section 4 we present two combinatorial results (cf. Lemma 4.1 and Lemma 4.3). Roughlyspeaking, these results mean that the minimum number of quadrilaterals needed for a decom-position of a polygon does not increase exorbitantly, if each edge is subdivided at most once.The proofs of Lemmas 4.1 and 4.3 are quite involved and somewhat technical. In Section 5, wepresent the new approximation algorithms and prove their performance guarantees. Finally, weconclude with further remarks.2 Preliminaries and Further De�nitionsLet P = fP1; P2; : : : ; Png be the set of polygons forming the mesh. These polygons are convex,but not necessarily strictly convex. Two polygons are neighbored if they have an interval ofthe boundary in common which has strictly positive length. These neighborhood relationshipsinduce an undirected graph G = (V;E), which is embedded on the surface approximated bythe mesh and whose faces are the polygons. More precisely, V consists of the corners of thepolygons. If a corner of a polygon also belongs to the interior of a side of another polygon, itsubdivides this side. Hence, we may identify common intervals of neighbored sides of polygonswith each other, and E consists of these intervals after identi�cation.Note that the graph G of a mesh need not be planar; for example, a mesh approximatingthe surface of a torus has genus one. The set of all folding edges that are incident to exactly thesame homogeneous components is called a folding.For an edge ei 2 E, let Ei be the set of all those polygons which are incident to ei. A combina-torial description of a mesh consists of the graph G and the hypergraph H = (P; fE1; : : : ; Emg)with vertex set P and edge set fE1; : : : ; Emg. We will often identify a mesh with its combina-torial description. 4



Figure 4: A convex polygon with 7 cornersand 16 vertices and a conformal decomposi-tion with 7 additional, internal vertices. (Thedecomposition is not minimal.) Figure 5: A small mesh with three homo-geneous components and one folding, whichconsists of �ve folding edges. The corre-sponding hypergraph has 13 edges of degreeone (boundary edges), 4 hyperedges of de-gree 2, and 5 hyperedges of degree 3.A non-folding path in H is a path between two polygons P1; P2 2 P which contains onlyhyperedges of cardinality two, i.e. only such hyperedges which belong to exactly two polygons.Being connected by a non-folding path is an equivalence relation on the set of polygons. Itsequivalence classes are exactly the homogeneous components of a mesh. For a mesh G = (V;E)let G1; : : : ; Gc(P) denote the homogeneous components, and c(P) the number of components.The degree of an edge in E is the number of incident polygons. The boundary of a mesh is theset of all hyperedges with degree one (the boundary edges).Since all folding edges within a folding are incident to exactly the same homogeneous com-ponents, the degree of a folding is well de�ned. Let D(M) denote the total sum of the degreesof all foldings that consist of an odd number of folding edges each. This allows us to de�ne theparameter �(M) which appears in the performance guarantee we can achieve for meshes, ingeneral:De�nition 2.1 �(M) := D(M) + jPj � c(P).Empirically, the mesh parameter �(M) is fairly small. In a whole bunch of real-world ex-amples, which stem from the German car industry, the average number of odd foldings perhomogeneous component is less than three, and always smaller than the minimum number ofquadrilaterals needed for that component. (This means that we guarantee a 3{approximationfor such instances from practice.) In fact, it seems hard to imagine a non-pathological instance,where �(M) is larger than the minimum number of quadrilaterals in an optimal mesh re�ne-ment.A vertex of a convex polygon is a corner if its internal angle is strictly less than �. Aninterval of a polygon P is a path of edges on its boundary. A segment S is an interval betweentwo successive corners of P .A conformal decomposition of P is usually identi�ed with the planar, embedded graph GP =(V;E) whose outer face is P and whose internal faces are the quadrilaterals. Let q(G) denotethe number of internal, quadrangular faces. Let G� = (V �; E�) be the variant on the dual graphwhich arises by removing the vertex corresponding to the outer face of GP . We call a conformaldecomposition of a convex polygon P perfect if it has no vertices other than P .We will denote a polygon by the counterclockwise sequence of the lengths of its segments. Forexample, (1; 1; 1; 1) denotes the strictly convex quadrilateral, (1; 1; 2) = (1; 2; 1) = (2; 1; 1) thequadrilateral degenerated to a triangle (see Fig. 3), and (4; 1; 2; 3; 2; 2; 2) = (1; 2; 3; 2; 2; 2; 4) =� � � the polygon in Fig. 4. This is justi�ed by the following observation (cf. Lemma 3.4 in5



[MW96]): If two polygons P1 and P2 have the same such sequence (up to cyclic shifts), then everygraph of a conformal decomposition for P1 is also the graph of some conformal decompositionfor P2 and vice versa. For brevity, we say that a polygon is even (odd) if it has an even (odd)number of edges.For a convex polygon P with an even number of vertices, min(P ) denotes the minimumnumber of quadrilaterals required by any conformal decomposition of P . For an arbitraryconvex polygon P with edge set EP , a mapping XP : EP ! N0 is called feasible ifPe2EP XP (e)has the same parity as EP . In particular, if jEP j is even, XP � 0 is possible, too. For simplicity,we will usually write X instead of XP , as the dependence from the polygon P should be clearfrom the context.The polygon PX is constructed from P by subdividing each edge e 2 EP exactly X(e)times. Hence, X feasible means that PX admits a conformal decomposition. Moreover, Min(P )denotes the minimum number of quadrilaterals in any conformal decomposition of any polygonPX , Min(P ) := minfq(G) jG conformal decomposition of PX ; X : EP ! N0 feasibleg : In otherwords, Min(P ) is the minimum number of quadrilaterals in any conformal re�nement of thepolygon P . For a (feasible) mapping X, we denote jXj =Pe2EP X(e).3 The Structure of Minimal Decompositions and Re�nementsof PolygonsThis section �rst briey reviews a characterization of the structure of minimal decompositionsof polygons, given in [MW96]. Based on these results we can also characterize the structure ofminimal re�nements. Finally, the knowledge of this structure enables us to design a linear{timealgorithm for minimal re�nements.We need some additional terminology. For a conformal decomposition G = GP = (V;E) ofpolygon P , recall the de�nition of G� from Section 2. Each degree{one vertex v� of G� pointsto a trivial segment of P . We will sometimes identify such a vertex with this trivial segment.Let i(G) denote the number of internal vertices, that is, the members of V that do not lieon P . With the help of Euler's formula it is easy to see, that q(G) and i(G) are related viaq(G) = i(G) + jEP j=2 � 1; (1)where jEP j is the number of edges of P .The graphK1;3 is the complete bipartite graph on 1+3 vertices. We use the term subdivisionof K1;3 when each edge of the K1;3 is replaced by a path of arbitrary length.An interval on a polygon P is a path on its boundary. An interval is trivial if it consists ofexactly one edge of P . A segment S is an interval between two successive corners of P . Let e1and e2 be two di�erent edges of P . Then I[e1; e2] denotes the interval counterclockwise from e1to e2, including neither e1 nor e2. The length L(I) of an interval I is the number of its edges.Moreover, K(I) denotes the maximum size of a choice of strictly convex internal vertices of Isuch that no two of them are neighbored on P . We often denote (L� 2K)(I) := L(I)� 2 �K(I).Note that (L� 2K)(I) is always nonnegative.Lemmas 3.1 and 3.3 �rst characterize minimal decompositions of perfect polygons, whereasLemma 3.6 treats the general case. Recall that we call a polygon perfect if it has a decompositionwithout additional vertices. This implies that the polygon is even.Lemma 3.1 [MW96] Let P be an even polygon with exactly two trivial segments e1 and e2,and let I1 := I[e1; e2] and I2 := I[e2; e1]. Without loss of generality we have L(I1) � L(I2).Then P is perfectly decomposable if and only if (L� 2K)(I1) � L(I2). The dual graph G� of aperfect decomposition is a path with leaves e1 and e2.6



In Lemma 3.3, we assume the following scenario.Scenario 3.2 Let P be an even polygon with at least three trivial segments. Let e1, e2, and e3be three trivial segments such that the counterclockwise order around P is e1 � e2 � e3 � e1.Let I1 := I[e1; e2]; I2 := I[e2; e3]; I3 := I[e3; e1], and w.l.o.g. L(I1) � L(I2) and L(I1) � L(I3).Assume that L(I1) is minimum subject to all these conditions.Lemma 3.3 [MW96] In Scenario 3.2, P is perfectly decomposable if and only if (L�2K)(I1) �L(I2) + L(I3) + 1. In this case, there is a perfect decomposition such that either G� is a pathfrom e1 to e2, or G� is a subdivision of K1;3 with leaves e1, e2, and e3.Remark 3.4 If all conditions of Scenario 3.2 are ful�lled, with the only exception that L(I1) isnot minimum, but (L� 2K)(I1) � L(I2)+L(I3)+1 holds, then P is perfectly decomposable andhas a decomposition of the structure in Lemma 3.3. For that purpose, it is not necessary thatL(I1) is minimum.It is useful to extend the notion of perfectness also to odd polygons: If jEP j is odd, thepolygon P is said to be perfect if one additional vertex on the boundary su�ces to allow for aperfect decomposition of the resulting polygon P 0.Lemma 3.5 There is a linear{time algorithm that tests whether a given polygon P is perfect.Moreover, if the polygon is odd, we can determine in the same time complexity all those edgesfor which a single subdivision allows a perfect decomposition.Proof: Lemma 3.1 immediately translates into a linear{time algorithm for polygons with exactlytwo trivial segments. (If the polygon is odd, one additional point is placed on the shorter intervalbetween the two trivial segments.)So consider the case that P has more than two trivial segments, and �rst the case that Pis even. Because of Lemma 3.3, we have to �nd trivial segments e1, e2 and e3 as described inScenario 3.2. In [MW96] it is shown how this can be done in linear time. Moreover, the proofof Lemma 3.3 also shows how to construct the perfect decomposition if P is even and if theprecondition (L� 2K)(I1) � L(I2) + L(I3) + 1 is ful�lled.This establishes the lemma if P is even. Hence, assume now that P is odd, and that we havedetermined e1, e2 and e3 according to Scenario 3.2. As the polygon P = (1; 1; 1) is obviouslynot perfect, we may assume that jEP j > 4.First we check whether subdividing one of e1, e2 or e3 allows for a perfect decomposition.Certainly this can be done in linear time. To check the other edges, we apply a case distinction.Case I: L(I1) = L(I2) or L(I1) = L(I3).Assume without loss of generality that L(I1) = L(I2). If we place one additional point onI1 to get the interval I 01 in P 0, then L(I 01) � L(I2) and L(I 01) � L(I3). In addition, we certainlyhave (L� 2K)(I 01) � L(I 01) = L(I1) + 1 � L(I2) + L(I3) + 1:Hence, by Lemma 3.3 and the following remark, P 0 is perfect. A similar argument holds if oneadditional point is placed either on I2 or on I3. In any case, the resulting polygon is perfect(even if L(I2) > L(I1) or L(I3) > L(I1) afterwards).Case II: L(I1) > L(I2) and L(I1) > L(I3).In this case, we test whether (L�2K)(I1) � L(I2)+L(I3)+2 holds. In the a�rmative case,we may place one additional point on any edge of I2 or I3 and the resulting polygon is perfect.7



(d)(c) (e)

(a) (b)

Figure 6: The �rst class of cut components inLemma 3.6(2). The solid lines belong to P ,and the dashed lines are internal edges. Onlythe structure of the graph matters; the con-crete lengths and angles are only exemplary. Figure 7: The �ve smallest cut components ofthe second class. The de�nition of the whole(in�nite) class might be obvious.Otherwise, the resulting polygon is certainly not perfect if one edge of I2 or I3 is subdivided.(Note that the triple e1, e2, and e3 according to Scenario 3.2 would be the same and stillL(I1) � L(I2); L(I3).) In particular, we have that L(I1) > L(I2) +L(I3) + 2. This implies thatthere is no trivial segment e4 � I1, as otherwise the choice e1, e4 and e2 would lead to a strictlyshorter largest interval and therefore to a contradiction to the choice of our triple of segments.Hence, any placement of an additional point on I1 to get I 01 would not change the choice of ourtriple e1, e2 and e3, and L(I 01) is still minimal for P 0. As K(I 01) � K(I1) + 1, we have(L� 2K)(I 01) � (L� 2K)(I1)� 1 > L(I2) + L(I3) + 1:This implies that P 0 is not perfect either if we subdivide an edge of I1.It remains to consider the possibilities to subdivide an edge of I1 if (L� 2K)(I1) � L(I2) +L(I3) + 2 holds. In a single pass along I1 we have to check for each edge of I1 individuallywhether we have (L� 2K)(I 01) � L(I2) +L(I3) + 1 if I 01 is obtained from I1 by subdividing thisedge. (Note that we can evaluate K(I 01) in constant time after a linear time preprocessing forK(I1).) In the a�rmative case, we know that this subdivision makes the polygon perfect. Inthe negative case, the same arguments as in the previous paragraph show that this edge cannotbe subdivided to yield a perfect decomposition. This completes the case distinction. 2Let G = (V;E) be an undirected planar, embedded graph. An area component of G isa subgraph G0 induced by a connected component of G�. More precisely, G0 consists of allvertices and edges incident to the polygons that correspond to this component of G�. An areadecomposition of G is a collection of area components such that the inducing components of G�partition all vertices in V �. Intuitively, this means that the internal faces of G are partitionedand covered by closed, but openly disjoint, connected areas.Lemma 3.6 [MW96] For even P 62 f(2; 1; 1); (4; 2; 2); (4; 3; 3); (3; 3; 3; 3)g, there is a confor-mal decomposition G with minimum q(G) such that there is an area decomposition of G withthe following properties:1. The area decomposition consists of at most four area components.2. All area components except one are isomorphic to one of the components depicted in Figs. 6and 7. These area components are henceforth called the cut components.3. The remaining area component is outerplanar. This area component is henceforth calledthe core component.4. No two cut components share an edge.5. All cut components except at most one are of type (c), (d), or (e) in Fig. 6.8
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����Figure 8: How to remove cut components of type (a) and (b) in Fig. 6 or Fig. 7 by insertion ofadditional vertices on the boundary.6. If a cut component of type (a) or (b) in Fig. 6 or a cut component in Fig. 7 occurs, thecore component admits a path decomposition.7. If a cut component of the type in Fig. 7 occurs, the area decomposition contains at mosttwo cut components; if a cut component of type (a) or (b) in Fig. 6 occurs, this is the onlycut component.The structure of minimal re�nements is quite similar to that of minimal decompositions:Lemma 3.7 For P 62 f(1; 1; 1); (2; 1; 1); (4; 2; 2); (4; 3; 3); (3; 3; 3; 3)g, there is a conformal re-�nement G with minimum q(G) such that there is an area decomposition of G with the followingproperties:1. The area decomposition consists of at most four area components.2. All area components except one are isomorphic to one of type (c), (d), or (e) as depictedin Fig. 6. These area components are henceforth called the cut components.3. The remaining area component is outerplanar. This area component is henceforth calledthe core component.4. No two cut components share an edge.5. If more than one additional vertex is placed on the boundary of P , then the core componentadmits a path decomposition.6. If the core component admits a path decomposition with leaves e1 and e2, then the additionalvertices which are placed on the core component either all belong to the interval I1 :=I[e1; e2] or they belong all to I2 := I[e2; e1].Remark 3.8 Note that four area components are sometimes necessary, consider for exampleP = (8; 2; 8; 2; 8; 2), which uses three components of type (c) in both its optimal decompositionand re�nement.Proof of Lemma 3.7: Let Y : EP ! N0 be optimal, that is, Min(P ) = min(PY ), andlet jY j be maximal among all minimal re�nements. It is easily checked that PY = P , forPY 2 f(4; 2; 2); (4; 3; 3); (3; 3; 3; 3)g. Moreover, P = (1; 1; 1) or P = (2; 1; 1) have optimaldecompositions with PY = (2; 2; 2), and are explicitly mentioned as exceptions. Hence, in thefollowing, we can assume that none of the exceptions in Lemma 3.6 occurs. In particular, thereis an optimal decomposition G of PY which has an area decomposition of the form claimed inLemma 3.6. This immediately establishes the properties (1), (3) and (4).Property (2): If G has an area component of type (a), (b) or as depicted in Fig. 7, thiseither contradicts optimality or the choice of Y , as the following modi�cations will show (seealso Fig. 8). 9



Obviously, G has no area component of type (a), as otherwise we may place the two internalvertices on the boundary of P and get a strictly better solution. Next consider an area componentof type (b). By Lemmas B.8 and B.9 in [MW96], the internal vertex of such a component canbe assumed to have degree three. But with the help of two additional vertices on the boundary,we can always avoid the internal vertex, and thereby get an optimal solution with jY 0j = jY j+2,unless PY = (2; 2; 1; 1). But note that for the optimal solution to PY = (2; 2; 1; 1), there isan area decomposition with a single cut component of type (c). Similarly, a cut component asdepicted in Fig. 7 can be converted into a cut component of type (d) and a path using 2k � 2additional vertices for some k > 1. Altogether, these arguments yield property (2).Property (5): Suppose that jY j > 1 and the core component, denoted by G0, with outerface P 0 does not allow for a path decomposition. Hence, G0� must be a subdivision of K1;3.We may assume that the trivial segments e1; e2 and e3 are the leaves in counterclockwise orderaround P 0, and I1 := I[e1; e2]; I2 := I[e2; e3]; I3 := I[e3; e1] on P 0, ful�lling Scenario 3.2. Hence,we have L(I1) � L(I2) and L(I1) � L(I3). Lemma 3.3 implies (L�2K)(I1) � L(I2)+L(I3)+1.Moreover, we even have L(I1) < L(I2) + L(I3) + 1, as otherwise a path solution with leaves e1and e2 exists. Clearly, G0� being a subdivision of K1;3 and our assumption that there is no pathsolution for P 0 implies that L(I1); L(I2); L(I3) � 2.Note that an additional vertex can never be a corner of PY . Moreover, it would be strictlysuboptimal if an additional vertex creates the segment of length 2 (i.e. the horizontal segment inFig. 6) for a cut component of type (c), or the segment of length 3 (i.e. the horizontal segmentin Fig. 6) for a cut component of type (e). (Here we use again, that by Lemmas B.8 and B.9in [MW96], the internal vertex of such components can be assumed to have degree three.) Weclaim that we may assume that at least two additional vertices belong to P 0, call them v1 andv2. To see this claim, observe that we can avoid to place an additional vertex adjacent to acorner which is cut away be a component of type (c) or (d). This can be done by an exchangewith a vertex from P 0 of the same segment, unless all other vertices of this segment are alreadyadditional vertices. Both possibilities yield the claim.So consider now the polygon P 00 which we had obtained if neither v1 nor v2 had been inserted.Let I 01; I 02 and I 03 be the intervals of P 00 corresponding to I1; I2 and I3, respectively. If we showthat P 00 is still perfect, this contradicts optimality of the re�nement PY , and property (5) follows.We consider three di�erent cases separately.Case I: v1 and v2 belong to I1.We have L(I 01) = L(I1) � 2, L(I 02) = L(I2) and L(I 03) = L(I3). If L(I 01) � L(I 02) andL(I 01) � L(I 03), then(L� 2K)(I 01) � L(I 01) < L(I1) < L(I2) + L(I3) + 1 = L(I 02) + L(I 03) + 1implies that P 00 is perfect by Lemma 3.3.Otherwise, we may assume that L(I 02) > L(I 01) and L(I 02) � L(I 03). But then(L� 2K)(I 02) � L(I 02) = L(I2) � L(I1) = L(I 01) + 2 � L(I 01) + L(I 03) + 2:As L(I 01) + L(I 02) + L(I 03) is odd, the inequality can be strengthened to (L� 2K)(I 02) � L(I 01) +L(I 03) + 1. Hence, P 00 is perfect.Case II: v1 but not v2 belongs to I1.Now we may assume that L(I 01) = L(I1) � 1, L(I 02) = L(I2) � 1 and L(I 03) = L(I3). Thenwe have L(I 01) � L(I 02). If we also have L(I 01) � L(I 03), then P 00 is perfect because of L(I 01) <L(I 02) + L(I 03) + 1. 10



Otherwise, we have L(I 01) = L(I 03) � 1. But then L(I 03) � L(I 02) + L(I 01) + 2. As L(I 01) +L(I 02) +L(I 03) is odd, we even obtain L(I 03) � L(I 02) +L(I 01) + 1. This implies that P 00 is perfect.Case III: Neither v1 nor v2 belong to I1.In this case, we have L(I 01) = L(I1) and L(I 02) + L(I 03) = L(I2) + L(I3)� 2.Thus we have L(I 01) = L(I1) < L(I2) + L(I3) + 1 = L(I 02) + L(I 03) + 3. The same parityargument as above yields L(I 01) � L(I 02) +L(I 03) + 1, and so P 00 is perfect. This �nishes the casedistinction.Property (6): The statement is trivially ful�lled if jY j < 2. Assume without loss ofgenerality that L(I1) � L(I2). By Lemma 3.1, we have (L� 2K)(I1) � L(I2).Let jY1j be the number of additional points on I1. We are done if jY1j = 0. Again, we applya case distinction:Case I: jY1j � L(I1)� L(I2).Let k := L(I1) � L(I2). Delete k of the additional vertices from I1 to get I 01. ThenL(I 01) = L(I2), which means that there is a path solution with a strictly smaller number ofquadrilaterals. This contradicts optimality of PY .Case II: 2 � jY1j � L(I1)� L(I2) > jY1j.De�ne k := L(I1)� jY1j � L(I2) > 0. In this case, delete all jY1j additional vertices from I1to get I 01. As k � jY1j, we may reinsert k of these vertices into I2 to get I 02. By the choice ofk, we now have L(I 01) = L(I 02). Hence, the modi�ed core polygon has a path solution with notmore quadrilaterals than the original one, but has no additional vertex placed on the intervalI 01.Case III: 2 � jY1j < L(I1)� L(I2).In this case, we also delete all jY1j additional vertices from I1 to get I 01, and reinsert all ofthem into I2 to get I 02. Hence, we have L(I 01) = L(I1) � jY1j and L(I 02) = L(I2) + jY1j. Theinequality de�ning Case III yields that L(I 01) � L(I 02). Furthermore, we haveL(I 01)� 2 �K(I 01) = L(I1)� jY1j � 2 �K(I 01)� L(I2) + 2 �K(I1)� jY1j � 2 �K(I 01)� L(I 02) + 2 �K(I1)� 2 � jY1j � 2 �K(I 01)� L(I 02):The last inequality follows from the fact that K(I1) � K(I 01) + jY1j: By Lemma 3.1, themodi�ed core polygon admits a path solution. This establishes property (6). 2The characterization of the structure of minimal re�nements enables us to give an algorithmfor this problem with linear running time. Hence, this algorithm has asymptotically optimalrunning time.Theorem 3.9 There is a linear{time algorithm that constructs a conformal re�nement G thatminimizes q(G).Proof: The algorithm is a slight variation of that for minimal decompositions given in [MW96].211



4 Subdivisions of PolygonsIn this section, we present two combinatorial results which relate the optimal conformal re�ne-ments of a polygon P to optimal re�nements of those polygons, which arise if some of the edgesof P are subdivided by one additional vertex. This result will be useful for conformal re�ne-ments of meshes in Sect. 5. In fact, Lemma 4.1 and Lemma 4.3 are the most di�cult parts ofthe proofs of Theorems 5.3 and 5.5, respectively.Lemma 4.1 For a polygon P and X : EP ! f0; 1g we have min(PX ) � 2 �Min(P ) + jXj � 1,and we even have min(PX) � 2 �Min(P ) + jXj � 2 except for the following cases:1. P = (1; 1; 1; 1) and PX = (1; 1; 1; 1);2. P = (1; 1; 1; 1) and PX = (2; 2; 1; 1);3. P = (2; 1; 1; 1) and PX = (3; 1; 1; 1);4. P = (2; 1; 2; 1) and PX = (4; 1; 2; 1);5. P = (2; 1; 1; 1; 1) and PX = (4; 1; 1; 1; 1);6. P = (2; 1; 1) and PX = (2; 1; 1).Obviously, Min(P ) is a lower bound for min(PX). However, the gap between this triviallower bound and the number of quadrilaterals in an optimal decomposition for PX can be quitelarge. Therefore, we introduce penalty functions, which give improved lower bounds.For a polygon P , the map WP : fXg ! R+0 , de�ned on the set of feasible mappings X :EP ! f0; 1g, is a penalty function for the subdivision of the polygon P ifMin(P ) +WP (X) � min(PX0) (2)for all X 0 � X, where X 0 : EP ! N0 is a feasible mapping. (X 0 � X means component-wisegreater or equal, i.e. X 0(e) � X(e) for all e 2 EP .) In particular, Min(P ) +WP (X) is a lowerbound for the number of quadrilaterals in an optimal decomposition for PX .Note that in some cases min(PX0) < min(PX), for X 0 > X. Examples are PX = (2; 1; 1)and PX0 = (2; 2; 2), or PX = (3; 1; 1; 1) and PX0 = (3; 1; 3; 1). Therefore, the weaker requirementMin(P ) +WP (X) � min(PX) instead of Inequality (2) would not su�ce to yield a valid lowerbound for our approximation algorithms.The next lemma gives a penalty function for perfect polygons.Lemma 4.2 Let P be a perfect polygon. Then fWP (X) := jXj2 , if jEP j is even, and fWP (X) :=jXj�12 , if jEP j is odd, is a penalty function for P .Proof: Let P be a perfect polygon where jEP j is even. For some given X, consider a feasiblesubdivisionX 0 withX 0 � X, and denote by GX0 some optimal decomposition of PX0 with i(GX0)internal vertices. Then we have (by Equation (1))min(PX0) = jEP j+ jX 0j2 � 1 + i(GX0) � jEP j+ jXj2 � 1 = Min(P ) +fWP (X);because Min(P ) = jEP j2 � 1. The case where EP is odd, is proved analogously. 2For polygons of certain types (see Fig. 9) we introduce special penalty functions fWP whichare encoded by means of an associated auxiliary graph GPaux = (V Paux; EPaux) with edge weights.In particular, these graphs contain a unique dual edge for each edge of P . To evaluate fWP (X)for a given X, we have to select edges according to the following rules:12



1. an even number of edges has to be chosen for each vertex of GPaux, except those indicatedby an arrow in Fig. 9, for which we have to select an odd number of edges.2. a dual edge has to be chosen if and only if X(e) = 1 for the corresponding edge of P .3. the sum of the edge weights should be minimal subject to the �rst two conditions.The function value of fWP (X) is exactly the sum of the chosen edge weights. Obviously, wecan evaluate fWP (X) in linear time. It is tedious but easy to verify that for all types of polygonsgiven in Fig. 9 the functions are indeed penalty functions.In the next lemma we use the following penalty functions: For all types of polygons given inFig. 9, we use the penalty function de�ned in that �gure. If a polygon is perfect but not amongthose listed in Fig. 9, we take the weight function as de�ned in Lemma 4.2. For all other typesof polygons, we simply take fWP � 0. With respect to these penalty functions, we can show thefollowing:Lemma 4.3 For a polygon P and the penalty function fWP : fXg ! R+0 (as de�ned in theprevious paragraph) the following holds:min(PX) � 53 � (Min(P ) +fWP (X)) + jXj � 2 if jXj > 0; (3)min(PX) � 53 �Min(P )� 23 if jXj = 0; (4)except for the following cases:1. P = (1; 1; 1) and PX = (2; 1; 1).2. P = (2; 1; 1) and PX = (2; 1; 1).The proofs of Lemma 4.1 and 4.3 are divided into several steps. We �rst use the characteri-zations from Lemma 3.1 and prove in Lemmas 4.5, 4.6, 4.7 and 4.8 the correctness of Lemma 4.1and Lemma 4.3 for the case that a minimal re�nement of the polygon admits a perfect decom-position such that G� is a path or a subdivision of K1;3, respectively. Finally, we treat thenon-perfect case in Lemma 4.9. We even show slightly stronger inequalities than those requiredfor Lemma 4.3, if the minimal re�nement has no perfect path decomposition.Assumption 4.4 Let Y : EP ! N0 be optimal, that is, Min(P ) = min(PY ).As a warm-up for the stronger inequalities to come, we �rst prove the following lemma:Lemma 4.5 If PY admits a perfect decomposition such that G� is a path then Lemma 4.1 holds.Proof: Lemma 4.1 is easy to see for the exceptional cases. Hence, we have to showmin(PX) � 2 �min(PY ) + jXj � 2: (5)for all other situations.Let G0 be such a decomposition of PY , and let e1 and e2 be the leaves of the correspondingvariant G� on the dual graph where the vertex corresponding to the outer face is removed.Clearly, e1 and e2 are trivial segments of P , too, but not necessarily of PX .13
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k = 1 k = 2 k > 2Figure 10: Illustration of optimal conformal decompositions of (2k; 1; 1).For P , let I1 := I[e1; e2] and I2 = I[e2; e1]. Let I 01 and I 02 denote the corresponding intervalsof PY and I 001 and I 002 the corresponding intervals of PX . Let jY j :=Pe2EP Y (e). As G0 is perfect,we have q(G0) = L(I 01) + L(I 02)2 = L(I1) + L(I2) + jY j2 : (6)The decomposition we construct for PX is denoted by G00. To prove Ineq. (5), it su�ces to showq(G00) � L(I1) + L(I2) + jY j+ jXj � 2 : (7)W.l.o.g., we have L(I 001 ) � L(I 002 ). Let� := min�K(I 001 );�12[L(I 001 )� L(I 002 )]�� :Fig. 11 shows the di�erent cases for G00 provided � = 0 (explanations below).For � > 0, we modify the procedure as follows. Let K be an arbitrary set of internal cornersof I 001 such that jKj = � and no two vertices in K are neighbored on PX . Then we construct P 0Xfrom PX by shrinking each edge that is incident to a vertex in K; in other words, each vertex inK is identi�ed with its two neighbors. Each such \supervertex" is treated as a non{corner, sothat it is incident to an internal edge in any conformal decomposition of P 0X .Let G000 = (V 000; E000) be the conformal decomposition of P 0X according to Fig. 11. Then thedecomposition G00 for PX is constructed from G000 as follows: Let v 2 K and let v1 and v2 be theneighbors of v on I 001 . Then we choose an arbitrary internal edge fv; wg 2 E000 and replace it byfv1; wg and fv2; wg. This yields � additional quadrilaterals.Let X1 := X \ I1, X2 := X \ I2 and �X := X \ fe1; e2g. Then we have X = X1 [X2 [ �Xand 0 � j �X j � 2. Now we are going to consider the individual cases in Fig. 11.Case I: (L� 2K)(I 001 )� L(I 002 ) � 0.The following equation is easy to see for j �X j = 0; 1; 2:q(G00) = L(I 001 ) + L(I 002 ) + j �Xj2 + j �Xj : (8)Therefore, we have to showL(I 001 ) + L(I 002 ) + j �Xj2 + j �Xj � L(I 01) + L(I 02) + jXj � 2 : (9)15
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Figure 11: G00 in the di�erent cases in the proof of Lemma 4.1 for � = 0. In each case, I 001 isthe horizontal line below. The grey triangles in Case III indicate decompositions according toFig. 10, respectively.However, since L(I 001 )+L(I 002 )+ j �X j = L(I1)+L(I2)+ jXj and L(I 01)+L(I 02) = L(I1)+L(I2)+ jY j,this is ful�lled whenever j �X j+ 4 � L(I1) + L(I2) + jX1j+ jX2j+ 2jY j : (10)We next consider all cases for which Ineq. (10) is not immediate. (In particular, this meansL(I1) + L(I2) < 6.)The case L(I1)+L(I2) = 2 (i.e., P = (1; 1; 1; 1)) is easily checked \by hand." (Note that thisincludes the �rst and second exceptions of Lemma 4.1). Next consider the case L(I1)+L(I2) = 3,that is, P 2 f(2; 1; 1; 1); (1; 1; 1; 1; 1)g. Then we have jY j = 1, so Ineq. (10) reduces to j �X j+2 �L(I1) + L(I2) + jX1j + jX2j. This is ful�lled if j �X j < 2. However, jXj is odd. Hence, j �X j = 2implies jX1j+ jX2j > 0, and Ineq. (10) is ful�lled again.Now assume L(I1) + L(I2) = 4. Then Ineq. (10) is true unless jX1j = jX2j = jY j = 0,because j �X j � 2, and j �X j has the same parity as jX1j+ jX2j. If L(I1) = 3 and L(I2) = 1 or viceversa, the dual path G� does not end with e1 and e2. However, the case L(I1) = L(I2) = 2 andjX1j = jX2j = jY j = 0 is easily checked by hand again.Finally assume L(I1) + L(I2) = 5. Then jY j is odd, and Ineq. (10) is ful�lled.Case II: 1 � (L� 2K)(I 001 )� L(I 002 ) � 2.Let � := (L� 2K)(I 001 )� L(I 002 ). Now we easily obtain for j �X j = 0; 1; 2:q(G00) = L(I 001 ) + L(I 002 ) + j �Xj2 +� ; (11)Therefore, Ineq. (7) is ful�lled whenever� + 2 � �L(I1)2 + L(I2)2 + jY j2 �+ jY j2 + jXj2 : (12)Recall that q(G0) = [L(I1)+L(I2)+ jY j]=2. As � � 2 in Case II, Ineq. (12) is ful�lled wheneverq(G0) � 4 : (13)If one of jXj or jY j is strictly positive, we have (jXj + jY j)=2 � 1, because jXj = 1 impliesjY j > 0 and vice versa. Hence, Ineq. (13) can be strengthened to q(G0) � 3 except for the trivialcase jXj = jY j = 0. 16



Obviously, q(G0) = 1 is impossible in Case II. The remaining case q(G0) = 2 is easily checkedby hand. (Note that this includes the exceptions 3. - 5. of Lemma 4.1.)Case III: (L� 2K)(I 001 )� L(I 002 ) � 3 and P 6= (2; 1; 1; 1; 1).In the third row of Fig. 11, the number of quadrilaterals in the white area is L(I 002 ) forj �Xj � 1 and L(I 002 ) + 2 for j �X j = 2. On the other hand, the grey area is decomposed accordingto Fig. 10. Like in Fig. 10, let 2k denote the number of horizontal edges below the grey area.Then we have 2k = L(I 001 ) � L(I 002 ), if j �X j is even, and 2k = L(I 001 ) � L(I 002 ) + 1, if j �X j is odd.So the number of quadrilaterals in the grey area is L(I 001 ) � L(I 002 ) + 1 and L(I 001 ) � L(I 002 ) + 2,respectively. Recall that � = 0 is assumed in Fig. 11. If � > 0, restoring the shrunken edgesyields K(I 001 ) additional quadrilaterals, but now we have 2k = L(I 001 ) � L(I 002 ) � 2K(I 001 ) and2k = L(I 001 )� L(I 002 )� 2K(I 001 ) + 1, respectively. In any case, we obtain for j �Xj = 0; 1; 2:q(G00) = L(I 001 )�K(I 001 ) + j �X j+ 1 : (14)Hence, Ineq. (7) is ful�lled whenever3 � L(I2) + jY j+ jX2j+K(I 001 ) : (15)So assume L(I2)+jY j+jX2j+K(I 001 ) � 2 in the remainder. Note thatK(I 001 ) � K(I1). Hence,we have K(I1) � 1, because otherwise we had L(I2) = 0, and the dual path G� would not pointto e1 and e2. From the proof of Lemma 3.1, it is easy to see that (L � 2K)(I1) � L(I2) + jY j.Therefore, K(I1) = 0 implies L(I1) � 2, which is impossible in Case III.So consider the case K(I1) = 1. Then we also have L(I2) + jY j = 1, that is, L(I2) = 1and jY j = 0. Therefore, L(I1) is odd. Since L(I1) = 1 is impossible in Case III, this meansL(I1) = 3. However, this means P = (2; 1; 1; 1; 1), and again G� would not point to e1 and e2.2For Lemma 4.6, we need some more terminology. Note that constructing PY from P may beseen as replacing each edge e 2 EP by a segment S(e) of length Y (e) + 1. We extend X from Pto PY as follows: For e 2 EP , we choose an arbitrary e0 2 S(e) and de�ne X(e0) := X(e). Forall other e0 2 S(e), we set X(e0) = 0.Lemma 4.6 Lemma 4.1 is true if PY is perfect.Proof: Because of Lemmas 3.1, 3.3, and 4.5, it su�ces to consider the case that PY admits aperfect decomposition G such that G� is a subdivision of K1;3. Let v� be the branching vertexof G�, let e�1, e�2, and let e�3 be the edges of G� incident to v�. Note that removing one of theedges e�1, e�2, and e�3 decomposes G� into two paths. The basic idea of the proof is to applyLemma 4.5 to both paths.For j = 1; 2; 3, let ej be the primal edge of G corresponding to ej. The primal operationcorresponding to the removal of e�j is cutting G along ej and inserting ej in both connectedcomponents. Moreover, let Xj be the subset of edges in X that are incident to quadrilaterals inthe jth branch. Next we apply a case distinction.Case I : at least one jXj j is even.Let G0 and G00 denote the subgraphs of G resulting from cutting the jth branch as describedabove. In particular, let G0 correspond to this branch and G00 to the rest. Let P 0 and P 00 denotethe outer faces of G0 and G00, respectively. It is easy to see that min(PY ) = min(P 0)+min(P 00) =Min(P 0) + Min(P 00). By Lemma 4.5, we further have min(P 0Xj ) � 2 �Min(P 0) + jXj j � 1 and17



min(P 00XnXj ) � 2 � Min(P 00) + jX n Xj j � 1. In summary, we obtain min(PX) � min(P 0X) +min(P 00X) � 2 �Min(P 0) + 2 �Min(P 00) + jXj � 2 = 2 �Min(P ) + jXj � 2:Case II : all jXj j are odd.Now we choose j 2 f1; 2; 3g arbitrarily and construct G0, G00, P 0Y , and P 00 by cutting thejth branch as described above. Let X 0 := Xj [ fvj ;fWjg and X 00 := X n Xj [ fvj ;fWjg. FromLemma 4.5, we conclude min(P 00X00) � 2�Min(P 00)+jX 00j�2, because the trivial segment fvj ;fWjgof P 00 belongs to X 00 and hence none of the exceptions in Lemma 4.1 applies to P 00 and X 00 (noteven the second one, since obviously P 00 6= (1; 1; 1; 1)). Analogously, the second exception inLemma 4.1 is the only one that may apply to P 0 and X 0. Hence, if the second exception doesnot apply either, we further conclude min(P 0X0) � 2 �Min(P 0) + jX 0j � 2 from Lemma 4.5, whichgives min(PX) � 2 �Min(P ) + jX 0j+ jX 00j � 4 = 2 �Min(P ) + jXj � 2:Now assume that the second exception of Lemma 4.1 does apply. Then we can only concludemin(PX) � 2 � Min(P ) + jXj � 1 at this point of the argumentation. Let w�1 be the (unique)quadrilateral in the jth branch, and for some optimal decomposition of P 00, let w�2; : : : ; w�i bethe quadrilaterals incident to the vertex between the two copies of ej in P 00. Let P 000 be thepolygon comprising w�1; : : : ; w�i . It is easy to see that the current decomposition of P 000 can bereplaced by another decomposition such that at least one quadrilateral is saved by that. Thisproves the claim for Case II, too. 2The following lemma holds only for polygons with more than 9 edges. However, an easyalthough quite extensive case analysis for all types of polygons with up to 9 edges shows thecorrectness of Lemma 4.3 for such polygons. The corresponding details are omitted.Lemma 4.7 If PY admits a perfect decomposition such that G� is a path, then the followingholds for all feasible X and for all polygons P with jEP j � 10:min(PX) � 53 � (Min(P ) +fWP (X)) + jXj � 2 if jXj > 0; (16)min(PX) � 53 �Min(P )� 1 if jXj = 0: (17)Proof: The general idea of this proof follows that of Lemma 4.5. Let G0 be a decompositionof PY such that G� is a path, and let e1 and e2 be the leaves of the corresponding variant G�on the dual graph where the vertex corresponding to the outer face is removed. Clearly, e1 ande2 are trivial segments of P , too, but not necessarily of PX .Note that the case X = Y is trivial, hence we assume in the following X 6= Y .For P , let I1 := I[e1; e2] and I2 = I[e2; e1]. Let I 01 and I 02 denote the corresponding intervalsof PY and I 001 and I 002 the corresponding intervals of PX . Let jY j :=Pe2EP Y (e). As G0 is perfect,we have q(G0) = L(I 01) + L(I 02)2 = L(I1) + L(I2) + jY j2 : (18)The decomposition we construct for PX is denoted by G00. Denote by i(G00) the number ofinternal vertices in G00. Then we haveq(G00) = L(I1) + L(I2) + jXj2 + i(G00) : (19)To prove Ineqs. (16) and (17), it su�ces to show18



i(G00) � L(I1) + L(I2)� 63 + 56 jY j+ jXj2 + 53fWP (X) if jXj > 0; (20)i(G00) � L(I1) + L(I2)� 33 + 56 jY j if jXj = 0: (21)Note that jEP j � 10 implies L(I1) + L(I2) � 8.Without loss of generality, we have L(I 001 ) � L(I 002 ). Let� := min�K(I 001 );�12[L(I 001 )� L(I 002 )]�� :See again Fig. 11 for the di�erent cases for G00 provided � = 0.Let X1 := X \ I1, X2 := X \ I2 and �X := X \ fe1; e2g. Then we have X = X1 [X2 [ �Xand 0 � j �X j � 2. Now we are going to consider the individual cases in Fig. 11.Case I: (L� 2K)(I 001 )� L(I 002 ) � 0.If j �Xj = 0, we have i(G00) = 0, and Ineqs. (20) and (21) are immediate. If j �Xj = 1, theni(G00) � 1. As either jXj � 2 or jXj = 1 and jY j � 1, the Ineq. (20) is ful�lled again. Nowassume j �X j = 2. This implies i(G00) � 2. If jY j = 0, then P is perfect, which means fWP (X) � 1and jXj � 2. If jY j = 1, then jXj � 3. Otherwise, jY j � 2 and jXj � 2. In all these cases,Ineq. (20) is ful�lled.Case II: 1 � (L� 2K)(I 001 )� L(I 002 ) � 2.Let � := (L� 2K)(I 001 )� L(I 002 ).Subcase IIa: j �Xj = 0 or j �X j = 2.As L(I 001 ) + L(I 002 ) is even in this case, we have that � = 0 by parity arguments, and i(G00) = 2(cf. Figure 11). If jY j = 0, then jXj � 2 and fWP (X) � 1, which implies Ineq. (20). Assumenow that jY j = 1. If jXj � 3, the Ineq. (20) is immediate. So let jXj = 1. As EP is odd, wehave L(I1) + L(I2) � 9. This su�ces to yield Ineq. (20).Assume next that jY j = 2. If jXj = 0, then Ineq. (21) is ful�lled, because L(I1) +L(I2) � 6.Otherwise we have jXj � 2, and Ineq. (20) is certainly ful�lled.Finally, Ineqs. (20) and (21) are immediate, if jY j � 3.Subcase IIb: j �X j = 1.Now we have � = 1 and i(G00) = 1 (cf. Figure 11). If jY j = 0, then jXj � 2. Otherwise jY j � 1and jXj � 1. In both cases, Ineq. (20) is immediate.Case III: (L� 2K)(I 001 )� L(I 002 ) � 3.In the third row of Fig. 11, the number of quadrilaterals in the white area is L(I 002 ) for j �Xj � 1and L(I 002 )+2 for j �Xj = 2. On the other hand, the grey area is decomposed according to Fig. 10.Recall that � = 0 is assumed in Fig. 11. Let 2k denote the number of horizontal edges belowthe grey area, after restoring the shrunken edges, if � > 0. Then we have2k = (L� 2K)(I 001 )� L(I 002 ); if j �X j is even, and (22)2k = (L� 2K)(I 001 )� L(I 002 ) + 1; if j �X j is odd. (23)19



Assume �rst that L(I1) < L(I2). Combining L(I 001 ) = L(I1) + jX1j and L(I 002 ) = L(I2) + jX2jwith Eq. (22) and (23), respectively, yields 2k � jX1j�1, if j �Xj is even, and 2k � jX1j otherwise.Assume now that L(I1) � L(I2). By Lemma 3.7 (6), we can further assume that all additionalvertices in Y (if any) are placed on I2. This implies L(I1) � 2K(I1) � L(I2) + jY j. Therefore,we get 2k � jY j+ jX1j � jX2j+ 2K(I1)� 2K(I 001 ) � jY j+ jX1j;if j �X j even, and 2k � jY j+ jX1j+1, otherwise. (The last two inequalities are weaker than thosefor the case L(I1) < L(I2), hence, we use them in the following.)Subcase IIIa: j �Xj = 0.In this case, we have i(G00) � k + 1 since k � 2 (otherwise we were in Case I or II). Hence, toprove Ineqs. (20) and (21) it su�ces to showk + 1 � L(I1) + L(I2)� 63 + 56 jY j+ jXj2 + 53fWP (X)(the last two terms vanish if jXj = 0). As k � jY j+jXj2 , we only need to show1 � L(I1) + L(I2)� 63 + 13 jY j+ 53fWP (X): (24)If jY j = 0, then P is perfect and fWP (X) � 1. If jY j = 1, then EP is odd, and henceL(I1) + L(I2) � 9. Otherwise, jY j � 2. As L(I1) + L(I2) � 8, these facts imply Ineq. (24) inany case.Subcase IIIb: j �X j = 1.Now we have i(G00) � k + 1, and k � jY j+jX1j+12 . Therefore, it su�ces to show32 � L(I1) + L(I2)� 63 + 13 jY j+ 53fWP (X) + �X2 : (25)Exactly the same case distinction as in Subcase IIIa shows the validity of Ineq. (25).Subcase IIIc: j �X j = 2.In this subcase, we have i(G00) � k + 2. Hence, it su�ces to show2 � L(I1) + L(I2)� 63 + 13 jY j+ 53fWP (X) + �X2 : (26)As �X2 = 1, the latter inequality reduces to Ineq. (24), and so holds for the same reasons asthose given in Subcase IIIa. 2For a decomposition G of the polygon P , we have introduced in Sec. 3 the notion of an areadecomposition of G into cut and core components. If the decomposition of P is not completed,we take a di�erent view on the cut components. We say that a cut-operation is applied to thepolygon P , if one of the subgraphs illustrated in Fig. 6 and 7 is used to reduce the given polygonP to a polygon P 0. In particular, operation (c) is called a 1{cut, whereas operations (d) and (e)are 2{cuts. Finally, the cuts described in Fig. 7 are called (2k; 1; 1){cuts.20



Lemma 4.8 If PY is perfect, but does not admit a perfect decomposition such that G� is a path,then the following holds for all feasible X:min(PX) � 32 min(PY ) + jXj � 2 : (27)Proof: Because of Lemma 3.3, PY has a perfect decomposition G such that G� is a subdivisionof K1;3. Lemma 3.7 (item 5) implies that jY j � 1. We only need to consider that jEP j � 15,as otherwise PY would also admit a perfect decomposition such that G� is a path or P =(4; 1; 4; 1; 3; 1) or P = (3; 1; 3; 1; 3; 1). The latter two cases are easily checked by hand.Denote by G0 the graph of an optimal decomposition for PX . As q(G0) = jEP j+jXj2 �1+ i(G0)and q(G) = jEP j+jY j2 � 1, it su�ces to showi(G0) � jEP j � 104 + jXj2 + 34 jY j: (28)If jXj = 0, then also jY j = 0, as otherwise jY j � 2. This implies PX � PY , and i(G0) = 0.Therefore, Ineq. (28) holds in this case.So assume that jXj > 0. The idea of the remaining part of this proof is constructive andworks as follows: We start from PY and its perfect decomposition G and insert step by step aneven number of additional points from X. Denote the polygon in step i by Pi. We continueuntil we end up with Pf = PX , for some f . (If jY j = 1, we possibly remove the correspondingvertex of PY in the very �rst step and select only one vertex from X.) In each step, we rebuilda decomposition for the intermediate polygon Pi and call it Gi. The �nal decomposition Gf forPX might be suboptimal, but will satisfy i(Gf ) � jEP j�104 + jXj2 + 34 jY j, which clearly su�ces.Let e1, e2, and e3 be the three trivial segments which correspond to the leaves of the sub-division of K1;3 such that the counterclockwise order around PY is e1 � e2 � e3 � e1. LetI1 := I[e1; e2]; I2 := I[e2; e3]; I3 := I[e3; e1].Note that we may assume that each vertex of PY which is not incident to one of the leavese1, e2, and e3 has a degree of three or four in G.Let us �rst consider the case, that one of the leaves, say e1, is subdivided byX, i.e.X(e1) = 1.If jY j = 1, then we take as P1 the polygon P plus one additional point on e1. Obviously, P1 isan even polygon. We build a decomposition for P1 as follows. A cut operation of type (c) inFig. 6 is applied to the segment of length two which arises from the trivial segment e1 by theinsertion of the additional point. This reduces P1 to the polygon P 01. Using the decompositionof PY into a subdivision of K1;3, it is now easy to see that P 01 is perfect and allows for a perfectdecomposition with leaves among e2; e3 and one of the newly inserted internal edges. This perfectdecomposition may either be a subdivision of K1;3 or a path, but it maintains the property, thateach vertex which is not incident to one of the corresponding leaves has a degree of at leastthree.If jY j = 0, then there must be another edge which is subdivided by X. If another leaf, saye2, is subdivided, then we take as P1 the polygon P plus one additional point on e1 and one one2. In this case, we apply two cut operations of type (c) in Fig. 6, one for each segment of lengthtwo created by the insertion of the additional points at e1 and e2. Similarly as in the previouscase, this reduces P1 to the polygon P 01, and P 01 is perfect. It allows for a perfect decompositionwith leaves among e3 and the newly created internal edges.If no other leaf is subdivided, we just choose one additional point of X placed on I1; I2 orI3. This again gives us a polygon P1. One cut operation of type (c) in Fig. 6 su�ces in thiscase, and the reduced polygon P 01 is perfect.It might be the case that there are still one, say e3, or two leaves, say e2 and e3, which aresubdivided by X. Then the analogous cases of step one are repeated in the second step.21



Now we may assume that all points of X corresponding to leaves in G have been inserted.If jY j = 1 but no leaf has been subdivided by X, then we are still in step one. Then we mayselect any additional point from X to create P1. It is easy to see that P1 is still perfect and hasa decomposition with leaves among e1; e2 and e3.Otherwise, we select, if existing, a pair of additional points from X, one from Ii and one fromIj, for i 6= j. This gives a new polygon Pk+1. It obviously has a decomposition Gk+1 with justone more quadrilateral than Gk, and its core component has the same leaves as before. Hence,we can continue in this way until all additional points from X which have not been introducedso far belong to the same interval, say to I1.The number of remaining points must be even, say 2c. In the �nal step, we introduce these2c points all at once. But now we can apply a (2c; 1; 1){cut operation as depicted in Fig. 7, toreduce the interval I1 [X1 by the same length as it was enlarged by the insertion of additionalpoints. Thus, we get a decomposition for Gf which uses c+1 more internal vertices than Gf�1.In summary, we have built a decomposition for PX which uses exactly these c + 1 internalvertices plus as many internal vertices as cut operations of type (c). If a cut operation of type(c) and a (2c; 1; 1)-cut are applied to the same segment of PX , this is clearly suboptimal. Hence,we can save one internal vertex in these cases. This means that there is always a decompositionfor PX with no more than c + 2 internal vertices, if c > 0, and no more than three internalvertices, otherwise. As jEP j � 15 and 2c � jX1j, this clearly su�ces to prove Ineq. (28). 2Lemma 4.9 If PY is not perfect, then the following holds for all feasible X:min(PX) � 32 min(PY ) + jXj � 2 ; (29)unless P 2 f(1; 1; 1); (2; 1; 1); (2; 2; 1); (4; 2; 1; 1)g:Proof: The cases PY 2 f(4; 2; 2); (4; 3; 3); (3; 3; 3; 3)g can be checked by hand. For all othercases, we can apply Lemma 3.7.Denote by G the graph of an optimal decomposition of PY , and by G0 the graph of an optimaldecomposition for PX . As q(G0) = jEP j+jXj2 � 1+ i(G0) and q(G) = jEP j+jY j2 � 1+ i(G) it su�cesto show i(G0) � jEP j � 104 + jXj2 + 34 jY j+ 32 i(G): (30)The general idea of the proof is very similar to that of Lemma 4.8. The main di�erence isthat now jY j > 1 is possible. If jY j > 1, we �rst construct a decomposition for P with a newY 0 for which jY 0j � 1 holds, and min(PY 0) = min(PY ). Then, we proceed as in the proof ofLemma 4.8, i.e. we insert in several steps points from X and rebuild a decomposition each time.So assume �rst that jY j � 2. Denote by P 0 the outer face of the core component of G.By Lemma 3.7, items (5) and (6), the core component of the decomposition is a path in G�with leaves e1 and e2, say, and all vertices in Y \ P 0 belong to the same interval of P 0, say toI1 := I[e1; e2]. Note that Y n P 0 can only be non-empty if there is a cut component of type(d). But then an original vertex from I1 and such an additional one can exchange their roles (asbeing original and additional, respectively) unless I1 contains only additional vertices. In thelatter case all additional vertices belong to the same segment of P .Let K be the set of corners of I2 := I[e2; e1] which has degree 2 in the path decomposition.We construct P 00 from P by shrinking each edge that is incident to a vertex in K. This shrinkingoperation may be necessary for one reason: in some cases, we later want to apply a 2k{cutoperation with a base segment on I2. Without shrinking we possibly reduce by that operation22



the available set of corners on I2 which are not neighbored. Hence, in such cases it might beimpossible to reconstruct a decomposition with the same number of quadrilaterals.Furthermore, we build a decomposition for P 00 as follows. Let k = b jY j2 c. Select a cutoperation which has been applied in the decomposition for PY . It must be of type (c), (d) or(e) in Fig. 6. With respect to P 00, this cut operation is replaced (at the corresponding corner)by a 2k{cut if it was of type (c), and by a (2k+2; 1; 1){cut otherwise. If a second cut operationhas been applied to PY , it is also applied to P 00. If jY j is odd, we place one additional pointarbitrarily on some edge of I1. This de�nes Y 0. If jY j is even, we choose Y 0 � 0. In any case,we have jY 0j � 1.Clearly, the remaining part of P 00Y 0 has a path decomposition, and reversing the shrinkingprocess from P 00Y 0 back to PY 0 yields a decomposition for PY 0 with no more quadrilaterals thanin the decomposition for PY (we have only exchanged 2k vertices on the boundary of PY by kmore internal vertices in PY 0).Hence, it su�ces to show Ineq. (30) for the case that jY j � 1. If the core component of Gonly has a decomposition as a subdivision of K1;3, then Ineq. (30) has already been proven inLemma 4.8.However, the case that the core component of G has a path decomposition can be handledin just the same way as in Lemma 4.8. The only slight di�erence is that we �rst apply the sameshrinking operation to P as above in the case for jY j > 1 (and for the reasons given there), andreverse this operation in the very end. All further details are easy to see. 25 Approximation of Minimal Conformal Mesh Re�nementsIn this section, we describe the improved approximation algorithms. In the following, we willneed a certain variantGd = (V d; Ed) on the dual graph of the graphG = (V;E) of a homogeneousmesh M.De�nition 5.1 For a homogeneous mesh M and its corresponding graph G = (V;E), the graphGd = (V d; Ed) (multiple edges allowed) has a vertex for each polygon of M. If the homogeneousmesh M has a non-empty boundary, exactly one more vertex is added to V d. Two dual verticesthat correspond to polygons of M are connected by an edge of Ed if and only if they share anedge in E. For each boundary edge (if existing) the additional vertex is connected with the dualvertex whose corresponding polygon is incident to the boundary.We will need the next fact, Lemma 5.2, for all algorithmic results to follow. Let G = (V;E) bean undirected graph, and let each vertex be either labeled odd or labeled even. This odd/evenlabeling is called feasible if the number of vertices labeled odd is even. A subgraph G0 of agraph G is called feasible if the following holds: The degree of a vertex is odd in G0 if andonly if its label is \odd." In the literature, such a subgraph is often called a T{join (see, forexample [Ger95]).Lemma 5.2 There is a linear{time algorithm that produces a feasible acyclic subgraph F of aconnected graph G with respect to a feasible odd/even labeling.Proof: Let T be a spanning tree of G and let F be the forest comprising all edges e of T thatdivide T � e into two subtrees, each with an odd number of vertices labeled odd. It is easy tosee that F is feasible. 2Theorem 5.3 There is a linear{time algorithm that constructs a conformal re�nement of amesh G such that the number of quadrilaterals exceeds twice the optimum by at most �(M).23



Proof: First we describe the algorithm and prove that it constructs a conformal re�nement.Recall from Lemma 1.3 that we have to ensure that every polygon becomes even. For each foldingthat consists of an odd number of folding edges, we select one of these edges and subdivide itonce. We will see that this su�ces to re�ne all homogeneous components separately. So letGi = (Vi; Ei) be a homogeneous component. First consider the edges in Ei that have degree onebut are not folding edges of the original mesh. In other words, consider the the boundary edgesof G which belong to Gi. If the number of these edges is odd, we select exactly one of theseedges and subdivide it once, too. After this procedure, the number of edges of degree one in Eiis even. (Note that all other edges have degree 2, because Gi is homogeneous.)Let Gdi = (V di ; Edi ) denote the variant on the dual graph of Gi as in De�nition 5.1. Then thevertex of Gdi added for the boundary edges has even degree in Gdi . Therefore, the number of oddvertices of Gdi that correspond to polygons (and hence the number of odd polygons themselves)in Gi is even. Consequently, we may apply the algorithm of Lemma 5.2 to construct a feasibleacyclic subgraph Fi of Gdi , where a vertex is labeled odd/even according to the parity of itsdegree. Next each edge of Ei that corresponds to an edge in Fi is subdivided exactly once.Obviously, every polygon is now even, and we apply the algorithm from [MW96] to decomposeeach polygon separately.It remains to show that this construction leads to a re�nement that exceeds twice the opti-mum by at most �(M).For a polygon P of the homogeneous component Gi, i = 1; : : : ; k, let XP : EP ! f0; 1g bede�ned such that XP (e) = 1 means that e corresponds to a dual edge of Fi. Analogously, letYP : EP ! f0; 1g attain 1 exactly on the edges of P that are selected in the algorithm to makeall foldings even. Moreover, let ZP : EP ! f0; 1g attain 1 on an edge if and only if this edge isselected to make the number of boundary edges of Gi even. Let P 0 := P(XP+YP+ZP ): Of course,we have XP (e) + YP (e) + ZP (e) � 1 for each edge e. Therefore, Lemma 4.1 givesmin(P 0) � 2 �Min(P ) + jXP j+ jYP j+ jZP j � 1 : (31)Let Pi denote the set of polygons in Gi. Since the feasible subgraph Fi of Gdi constructed by thealgorithm is acyclic, we have PP2Pi jXP j � 2 � (jPij � 1), and since PP2Pi jZP j � 1, Ineq. (31)sums up to XP2Pimin(P 0) � XP2Pih2 �Min(P ) + jYP j i+ jPij � 1 : (32)Note that Pki=1PP2Pi jYP j = D(M). Hence, Ineq. (32) sums up toXP2Pmin(P 0) � 2 � XP2P Min(P ) +D(M) + jPj � k = 2 �XP2PMin(P ) + �(M) : 2As an immediate consequence, we obtain for the special cases of meshes without foldings ofodd degree, i.e. where D(M) vanishes, the following corollary:Corollary 5.4 There is a linear-time algorithm that yields a 3{approximation for the mini-mum conformal re�nement problem for the special cases where D(M) = 0. This includes, inparticular, the homogeneous meshes.For meshes without foldings, we can even �nd signi�cantly better approximations using anice application of matching techniques: 24
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��Figure 12: A class of instances where the feasible subgraph with the minimum number of edges(top, left) only yields a 2{approximation (top, right). The optimal solution (bottom, right)corresponds to a larger feasible subgraph (bottom, left).Theorem 5.5 For homogeneous meshes, there is an O(nm log n) algorithm that constructs aconformal re�nement with a performance guarantee of 1:867.Like in the proof of Theorem 5.3, we construct a feasible acyclic subgraph F , but now weuse penalty functions to �nd subgraphs which allow for a better analysis. The idea is to chooseedge weights in such a way that we get an improved lower bound if some of the expensive edgesare chosen in a feasible subgraph of minimum weight. Note that, in general, it is not true that afeasible subgraph with a smaller number of edges gives a better result. Fig. 12 shows an examplewhere the feasible subgraph with the minimum number of edges only yields a 2{approximation.We determine F in an auxiliary graph Gdaux = (V daux; Edaux). The graph Gdaux is constructedfrom Gd as follows. Each polygon vd 2 V d of one of the types in Fig. 9 is replaced by acouple of vertices and edges, which respectively form subgraphs as shown in Fig. 9. Each edgee 2 Edaux is assigned a weight w(ed), derived from the penalty functions introduced in Sec. 4.If an edge ed 2 Edaux corresponds to an edge e which belongs to two polygons P1 and P2, thenthe penalty functions for both polygons contribute to the weight w(ed): we just take the sumof the corresponding weights. The contribution to the weights w(ed) of the edges in Fig. 9 areintroduced there, too. If a polygon P is perfect, then all edges ed, for which e belongs to P ,have a contribution of 1=2 to the weight of w(ed). For all polygons P which are perfect, jEP j isodd and which are not contained in Fig. 9, the Gdaux is slightly modi�ed. For each such polygonwith corresponding dual vertex vd, we add a new vertex vda and an edge eda = (vd; vda) withweight w(eda) = �12 . Observe that this realizes the penalty functions for perfect polygons asde�ned in Sec. 4. (Recall that we can test for perfectness of a polygon in linear time.) All otheredges ed 2 Edaux have weight w(ed) = 0.We say that a subgraph Faux of Gdaux is feasible if the degree of every vertex outside these fourkinds of subgraphs has the same parity in Gdaux and Faux, and all vertices inside these subgraphshave even degree in Faux except for the vertex indicated by an arrow in Fig. 9, which must haveodd degree in Faux. The vertices vda introduced for perfect polygons with jEP j odd must haveodd degree, whereas vd must have even degree.So far, this leads only to a performance guarantee with a factor of 2:Lemma 5.6 Let Faux be a feasible subgraph of Gdaux such that the sum of all weights w(�) of edgesin Faux is minimum. Let F be a feasible acyclic subgraph of Gd such that F is constructed fromFaux by shrinking all subgraphs in Fig. 9 and removing all cycles from the shrunken Faux. Thensubdividing once all edges of G that correspond to dual edges in F yields a 2{approximation.25



Proof: First observe that there are no negative cycles in Gdaux with respect to the edge weightsw(�). This is easy to see from Fig. 9.Denote by w(Faux) the total weight of an optimal Faux. We claim that PP2P Min(P ) +w(Faux) is a lower on the number of quadrilaterals in any feasible mesh re�nement.To see this, take an optimal conformal re�nement. For e 2 E, let Y (e) denote how often e issubdivided in this re�nement. Let Y 0(e) 2 f0; 1g be the remainder of Y (e)=2. Then subdividingeach edge e 2 E exactly Y 0(e) times makes all polygons even.Hence, Y 0 corresponds to a feasible subgraph F 0aux in Gdaux. As w(Faux) is minimum, we havew(Faux) � w(F 0aux). The edge weights are derived from penalty functions. Thus, we have foreach polygon Min(P ) +fWP (Y 0) � min(PY ), because Y 0 � Y . Summing up over all polygons,establishes the lower bound low :=PP2P Min(P ) + w(Faux).For a polygon P 2 P, let XP : EP ! f0; 1g denote which edges are subdivided in there�nement induced by F . Now it su�ces to showXP2Pmin(PXP ) � 2 �XP2P(Min(P ) +fWP (XP )) :We distinguish between two cases: If jXP j = 0, then we have min(PX) � 2 � Min(P ), byLemma 4.3. Otherwise, we have min(PX) � 2 � (Min(P ) +fWP (XP )) + jXP j � 2:Hence, we getXP2Pmin(PXP ) � 2 �XP2P(Min(P ) +fWP (XP )) + XP2P; jXP j>0(jXP j � 2):As F is a forest on jfP 2 P; jXP j > 0gj vertices, the sum PP2P; jXP j>0 jXP j cannot exceedtwice that number.This implies the 2-approximation. 2With a slight modi�cation of the procedure which led to the 2-approximation, we can furtherimprove our approximation guarantee. The key observation is that we could not fully exploitwhat we have showed in Lemma 4.3 because of polygons of type P = (1; 1; 1). If the mesh hasno such triangles then Lemma 4.3 would imply a 53 -approximation. The idea, therefore, is totreat triangles in a special way, namely, we glue single triangles which are neighbored to largercomponents. More precisely, two triangles belong to the same triangle component if there is apath in Gd which contains only vertices which correspond to triangles or to the special boundaryvertex. Roughly speaking, such triangle components are treated as if they were single polygons.The notion of a feasible mapping X, de�ned on the edge set of a polygon, is extended in theobvious way to the boundary edges of a triangle component.For our algorithm, the modi�cation is very simple: In the auxiliary graph Gdaux, which hasbeen built up as before, we repeatedly identify vertices by contraction of edges in Gdaux. Anedge is contracted if and only if both its endpoints are among the vertices which correspondto triangles, the special vertex corresponding to the boundary and those which have previouslybeen identi�ed in the process of repeated contractions.In the modi�ed auxiliary graph ~Gdaux we seek for a feasible subgraph Faux of minimumweight as before. Given Faux, we also shrink all subgraphs in Fig. 9 and remove all cyclesfrom the shrunken Faux. Then subdividing once all edges of G that correspond to dual edgesin F makes the boundary of all triangle components and all other polygons even. For eachtriangle component, we afterwards use the linear-time algorithm of Lemma 5.2 to extend thefeasible subgraph to the whole mesh. If an edge between two triangles is not subdivided by thatprocedure so far, then we subdivide such an edge twice, as long as none of these two trianglespossesses a di�erent edge which has been subdivided twice in that process.26



Lemma 5.7 The modi�ed procedure yields a performance guarantee of 1:867.Proof: As in the proof of Lemma 5.6, we obtain a lower bound oflow := XP2PMin(P ) + w(Faux) :Consider a triangle component TC. Denote by q(TCX) the number of quadrilaterals usedfor the triangle component. Recall that X is �rst extended to all triangles of that component bythe algorithm of Lemma 5.2, and second, for edges between triangles with X(e) = 0, we changeX and set X(e) = 2, if both triangles still have a di�erent edge with X(e0) = 0. Furthermore,let Min(TC) denote the number of quadrilaterals used for the triangle component in an optimalre�nement. Certainly, we always have q(TCX) � 53Min(TC).We claim that we even haveq(TCX) � 53Min(TC) + jXTC j � 2; if jXTC j > 0;except for the cases of odd triangle components which are single triangles. Clearly, we haveMin(TC) = 3 jTCj, and q(TCX) � 5 jTCj. Hence, the claim is trivially ful�lled, if jXTC j � 2.Thus, assume jXTC j = 1 and that the triangle component consists of more than just one singletriangle. Then, either there is a triangle in that component which is re�ned to a polygon of type(2; 2; 2) or there must be an edge for which X(e) has been changed to 2. The latter means thatthis triangle component contains a triangle which has been re�ned to a polygon of type (3; 2; 1).In both cases, we need strictly less than 5jTCj quadrilaterals for such a component.For a single triangle T , however, we have that min(TXT ) � 53Min(T ) + jXT j � 1 holds. LetjT j be the number of triangle components which are single triangles.For all other polygons, we distinguish between two cases: If jXP j = 0, then we havemin(PX) � 53Min(P ), by Lemma 4.3. Otherwise, we have min(PX) � 53(Min(P ) +fWP (XP )) +jXP j � 2:Hence, we getXP2Pmin(PXP ) � 53 XP2P(Min(P ) +fWP (XP )) + XP2P; jXP j>0(jXP j � 2) + jT j:As F is a forest on as many as jfP 2 P; jXP j > 0gj vertices, the sum PP2P; jXP j>0 jXP jcannot exceed twice that number.So far, this yields a performance guarantee of 53 + jT jlow . Thus, it su�ces to show jT jlow � 15 inorder to get the claimed performance guarantee of 2815 < 1:867.Therefore, we are going to express low in terms of jT j. Consider an optimal mesh re�nementwith the feasible subgraph Fopt and let YP be the corresponding subdivision for each polygon.Denote by T1 the number of single triangle components for which jYP j = 1, and by T2 the numberof triangles with jYP j � 3. This means that the optimal re�nement needs at least 5T1 + 3T2quadrilaterals to re�ne all odd triangle components.Moreover, the optimal subdivision induces in total 4T1 + 6T2 edges on the boundary ofall single triangle components in an optimal re�nement. As all odd triangle components areby de�nition isolated, all these edges also belong to polygons which are not triangles. Hence,there must be at least 4T1 + 6T2 edges in the re�nement which belong to the boundary of suchpolygons.Denote by P1 the polygons with degree zero in Fopt (i.e. the polygons with PY = P ), and byP2 all other polygons or odd triangle components which are not single triangles. Suppose that k27



of the 4T1 + 6T2 edges belong to polygons in P1, and denote this edge set by E1. In particular,this implies k � 2T1.A polygon Pi 2 P1 with ki edges from E1 and `i other edges needs at least ki+`i2 � 1quadrilaterals in any re�nement. (Here, we use that for each polygon P , the lower boundjEP j2 � 1 � Min(P ) holds.) As each polygon in P1 has at least 4 edges, this implies thatki+`i2 � 1 � ki4 . In total, we need at least k4 quadrilaterals for the polygons in P1.Furthermore, there are 4T1 + 6T2 � k edges which belong to polygons in P2. If a polygonis in P2, then it must have at least 6 edges. Hence, similarly as in the other case, we obtain4T1+6T2�k3 as a lower bound on the number of quadrilaterals used for polygons in P2.Summing up, we �nally getlow � 5T1 + 3T2 + k4 + 4T1 + 6T2 � k3 � 5(T1 + T2) = 5jT j;which �nishes the proof. 2Proof of Theorem 5.5: Because of Lemma 5.7, it remains to show how to construct an optimalfeasible graph Faux. We solve this problem by a reduction to a capacitated minimum{cost perfectb{matching problem [Der88]. In order to introduce this reduction, we �rst state the problem wewant to reduce in more general terms. So let G = (V;E) be an undirected graph, let w(�) be aweighting of E, and for v 2 V let equal(v) be a logical ag. We call a subgraph F of G feasibleif the following holds: The degree of each v 2 V in F has the same parity as the degree in G ifand only if equal(v) is true. The problem is to �nd a feasible subgraph that minimizes the sumof the edge weights w(�).The reduction is as follows (and was �rst proposed by Edmonds and Johnson [EJ73]). Forv 2 V , let b(v) equal the degree of v if equal(v) is true, otherwise let b(v) equal the degree plusone. Let �G = (V; �E) denote G with all loops fv; vg; v 2 V; added to E. The weight of sucha loop is w(fv; vg) := 0. Moreover, we set `(e) := 0 for all e 2 �E, u(e) := 1 for e 2 E, andu(fv; vg) := bb(v)=2c for fv; vg 2 �E nE.There is a straightforward one{to{one correspondence between feasible subgraphs of G andperfect b{matchings in �G with lower bounds `(�) and upper bounds u(�). Moreover, the cost ofa b{matching with respect to w(�) equals the sum of edge weights of the corresponding feasiblesubgraph.Note that the graph of the b{matching instance is essentially as dense as G, i.e. it has O(m)edges. Apart from pathological constructions, we even have m = O(n). In particular, this isalways the case, if the number of corners of each polygon is bounded by some constant. Hence,in such cases, the b{matching instance runs on O(n) edges. However, the underlying graph isnot planar, in general.This establishes the reduction, and by an application of Gabow's [Gab83] algorithm the timebound claimed in the theorem follows. 2If the graph G of the homogeneous mesh M is planar, the running time of the minimumT{join algorithm can be slightly improved by an application of the famous planar separatortheorem of Lipton and Tarjan.Theorem 5.8 (planar separator) [LT79] Let G be a planar graph on n vertices. Then thevertices of G can be partitioned into three sets A;B;C, such that no edge joins a vertex in Awith a vertex in B, neither A nor B contains more than 23n vertices, and C contains no morethan 2p2n vertices. Furthermore, the sets A;B;C can be found in O(n) time.Following [MNS86], we use the notion of a good separator.28



De�nition 5.9 A graph G on n vertices has a good separator if there exist two constants c1 < 1and c2 satisfying: The vertices of G can be partitioned into three sets A;B;C such that no edgejoins a vertex in A with a vertex in B, neither A nor B contains more than c1n vertices, andC contains no more than c2pn vertices.Lemma 5.10 If the graph G of the homogeneous mesh M is planar, then an optimal feasiblesubgraph can be computed in time O(n3=2 logn).Proof: Barahona[Bar90] and Matsumoto et al. [MNS86] have shown how to solve the minimumT{join problem in O(n3=2 log n) for planar graphs using the planar separator theorem.We cannot directly use their result, as the graph Gdaux on which we have to solve the T-joinproblem is not planar, in general. However, with a slight modi�cation of the technique used byMatsumoto et al. [MNS86] we can show in the following that Gdaux has a good separator.Let Gd be the variant of the dual graph as in De�nition 5.1 and vb 2 V d be the vertexcorresponding to the boundary of the mesh. Gd need not be planar, if the boundary of the meshis not connected. However, after deletion of vb, the graph Gd n fvbg is certainly planar, if G isplanar. Hence, we can apply the planar separator theorem to Gd n fvbg. This means that wecan partition the graph Gd n fvbg into sets A;B;C, such that no edge joins a vertex in A witha vertex in B, neither A nor B contains more than 23n vertices and C contains no more than2(2n)1=2 vertices. If we put vb into the set C, we clearly also have a partition for Gd with therequired properties.The partition A;B;C naturally induces a partition of the vertices of Gdaux into A0; B0 andC 0: If a vertex vd 2 A (vd 2 B, vd 2 C) is replaced by a subgraph in Gdaux, then all vertices ofthe subgraph belong to A0 (B0; C 0, respectively).We have to show that A0; B0; C 0 yields a good separator. Let k be the number of verticesof the largest subgraph introduced for a polygon vd. It is important that k is some constantnumber, namely k = 12 in Fig. 9. Denote by n0 the number of vertices in Gdaux. Hence, wehave n0 � kn. As jAj � 23n, at least n3 vertices of n0 cannot belong to jA0j. This meansjA0j � n0 � n3 � (1 � 13k )n0 = c1n0, with c1 := 1 � 13k < 1. By symmetry, we can alsobound the number of vertices in B0 by jB0j � c1n0. Certainly, C 0 contains no more thanjC 0j � kjCj � 2k(2n)1=2 � 2k(2n0)1=2 vertices. Hence, we can choose c2 := 2kp2. Thus, there isa good separator for Gdaux which can be found in linear time.Very similarly, we can also show that in the whole separation tree the subgraphs partitionedby their separators all have good separators.Now exactly the same analysis as in [Bar90] yields the claimed result. 26 Concluding RemarksWe conjecture that our performance guarantee of 1.867 for homogeneous meshes is not tight.Indeed, it remains an open question whether examples exist where our approximation is reallyworse than a 53 -approximation.We would like to emphasize that all lower bounds cannot only be used for the proof of thecorresponding performance guarantee, they are also e�ciently computable | in the same timecomplexity as the approximation itself.Our subdivision lemmas, Lemmas 4.1 and 4.3, can { in principle { be somewhat strengthened,at the cost of an increasing number of exceptional cases. This would also involve an even by farmore extensive case distinction than the one we had to go through for the results presented inthat chapter. 29
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