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Chapter 1

Introduction

The purpose of this diploma thesis is to transfer the concepts and results presented in [8] into
the discrete-time case. In [8] continuous-time differential-algebraic equations of the form

F (t, x, ẋ) = 0, (1.1)

with F : I× Dx × Dẋ → Cm,

where I ⊂ R and Dx, Dẋ ⊂ Cn ,

are examined. Given such an equation one is looking for a differentiable function x : I→ Cn

which solves (1.1) in the sense that F (t, x(t), ẋ(t)) = 0 for all t ∈ I, where ẋ denotes the
derivative of x. The analogous general form of a discrete-time descriptor system is

F (k, xk, xk+1) = 0, (1.2)

with F : K× Dxk × Dxk+1 → Cm,

where K := {k ∈ Z : kb ≤ k ≤ kf}, kb ∈ Z ∪ {−∞}, kf ∈ Z ∪ {∞} and

Dxk , Dxk+1 ⊂ Cn.

Such systems could also be called discrete-time systems of differential-algebraic equations,
since systems of the form (1.2) naturally arise by discretizing systems of the form (1.1)

through a difference quotient, e.g., ẋ(ti) ≈
x(ti+1)−x(ti)

ti+1−ti
. Other more common names are

discrete-time singular systems (e.g., [16]), discrete-time semi-state systems and discrete-time
generalized state-space systems. One is looking for a sequence {yk} which solves (1.2) in the
sense that F (k, yk, yk+1) = 0 for all k ∈ K. Such a sequence is called a solution of (1.2).
Although not all concepts in [8] are reasonable in the discrete-time case (e.g., generalized
solutions) there are still many concepts which can be carried over into the discrete-time
case. To study all these concepts is a major task. For this reason, we only consider some
of the concepts in [8] for linear discrete-time systems, despite the importance of non-linear
discrete-time descriptor systems of the form (1.2).
We distinguish two types of linear discrete-time descriptor systems, namely systems with
constant and systems with variable coefficients. To introduce these two types we first define
the discrete interval

K := {k ∈ Z : kb ≤ k ≤ kf}, kb ∈ Z ∪ {−∞}, kf ∈ Z ∪ {∞}. (1.3)
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With this definition we call

Exk+1 = Axk + fk, k ∈ K, (1.4)

where E,A ∈ C
m,n, fk ∈ C

m,

a linear discrete-time descriptor system with constant coefficients. Such systems represent a
special case of the second type

Ekx
k+1 = Akx

k + fk, k ∈ K, (1.5)

where Ek, Ak ∈ C
m,n, fk ∈ C

m,

which is called a linear discrete-time descriptor system with variable coefficients. Together
with one of the systems (1.4) or (1.5) we also often require a solution to satisfy an initial
condition

xk0 = x̂, where k0 ∈ K. (1.6)

Other notation is listed in the following table.

diag (A1, . . . , Ak) Denotes the block diagonal matrix with A1, . . . , Ak on
the block diagonal.

N {1, 2, 3, . . .}
N0 N ∪ {0} = {0, 1, 2, 3, . . .}
R+ R∩ ]0;∞] = ]0;∞]
Z is a basis of the vector
space V

When talking of a matrix Z being a basis of some vector
space V ⊂ Rl then this means that the columns of Z
form a basis of V.

xk
i For xk ∈ Cn, xk

i means the i-th component of xk.

{Ak}
kf

k=kb
A sequence of Ak ∈ C

m,n for k = kb, . . . , kf where
kb, kf ∈ Z.

{Ak}k≥kb
A sequence of Ak ∈ Cm,n for k ≥ kb ∈ Z.

{Ak}k≤kf
A sequence of Ak ∈ Cm,n for k ≤ kf ∈ Z.

{Ak}k∈K For a subset K ⊂ Z, this expression means the sequence
of the Ak ∈ Cm,n for k ∈ K.

Table 1.1: Notation used in this text

1.1 Applications

In this section we will discuss some applications where linear discrete-time descriptor systems
are used.
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1.1.1 Discretization of linear differential algebraic equations

Consider the general linear continuous-time differential algebraic equation

E(t)ẋ(t) = A(t)x(t) + f(t), t ∈ [t0, tf ]. (1.7)

We define a grid t0 < t1 < . . . < tN = tf and introduce xi := x(ti), f i := f(ti), Ei :=
1

ti+1−ti
E(ti) and Ai := 1

ti+1−ti
E(ti) + A(ti). Approximating

ẋ(ti) ≈
xi+1 − xi

ti+1 − ti
,

in (1.7) yields

E(ti)
xi+1 − xi

ti+1 − ti
= A(ti)x(ti) + f(ti), for all i ∈ {0, . . . , N − 1}.

This system is equivalent to

Eix
i+1 = Aix

i + f i, for all i ∈ {0, . . . , N − 1},

which is a linear discrete-time descriptor system with variable coefficients.

1.1.2 Singular Leontief Systems

Leontief systems [3, 14] have the form

xk = Axk + B
︸︷︷︸

:=Ẽ

(xk+1 − xk) + dk

︸︷︷︸

:=−fk

(1.8)

⇔ Ẽxk+1 = (I − A + B)
︸ ︷︷ ︸

:=Ã

xk + fk

⇔ Ẽxk+1 = Ãxk + fk

where
A, B ∈ R

n,n, xk, dk ∈ R
n, n ∈ N.

Such systems describe the production of an economy with n distinct sectors. A widely used
example is n = 3 with the sectors agriculture, manufacturing, and service, i.e., the primary,
secondary, and tertiary sector of industry. Here xk

i is the (monetary) output of the sector
i in the time period k, whereas dk

i is the (monetary) customer demand for products of the
sector i in the time period k and is prescribed.
The term Axk is there to consider inter-sector relations in the economy, i.e., it takes into
account that any sector may need output from all the other sectors to produce its output.
For example, it seems reasonable that any produced good of the secondary sector requires
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some service (like telecommunications) from the tertiary sector. In this case the entry a3,2

of the matrix A would have to be positive. In this way the (also often considered) equation

xk = Axk + dk

arises, which describes the output of the sectors in dependence of the customer demand.
This is a linear equation and the matrix A is called consumption matrix.
Finally, the term B(xk+1 − xk) may describe investments. When the output level in sector
i increases from period k to k + 1 there may be investments necessary to accomplish this
increase. For example, a growth in the primary sector demands for an increase of the
agricultural machinery. So when the primary sector grows from time period k to k + 1, it
is necessary to produce this machinery a priori in period k. In this case the entry b2,1 of
the matrix B would have to be positive. In this way equation (1.8) arises. This is a linear
discrete-time descriptor system. The matrix B is called the capital coefficients matrix.
The matrix B (and thus Ẽ) may be singular, as stated in [3, 14], since some rows of B may
only contain zero elements. For example, a growth in any of the three sectors of industry
does not really demand for an increase in the production of the primary sector (i.e., of food).
At least the increase is (monetarily) inferior which means that the first row of B is zero.

1.1.3 Backward Leslie Model

A Leslie Model [2] has the form
xk+1 = Txk,

where
T ∈ R

n,n, xk ∈ R
n, n ∈ N.

The model describes the age distribution of a given population in time. The population is
divided into n distinct age classes. Here xk

i is the number of individuals in age class i in time
period k. Considering the individual birth and death rates of the age classes, the matrix T is
constructed. As shown in [2] this matrix may be singular. If one wants to determine an age
distribution in the past, given a present age distribution, one has to solve the Leslie Model
backwards, i.e., one has to solve a system of the form

Txl+1 = xl.

Obviously the same situation occurs every time one wants to determine a state in the past
given a present state if the behavior of the system is given by a difference equation with
singular T .

1.1.4 A self-excogitated example: The Bullwhip Effect

Consider a chain of four warehouses where each warehouse may send and receive goods to
and from the preceding warehouse. The last warehouse accepts its orders from a customer.
The first warehouse issues orders to a manufacturer and may also send goods back to the
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Figure 1.1: Sketch of the supply chain

manufacturer. Let xk
i , i ∈ {1, 2, 3, 4} be the stock in warehouse i in time period k. Further,

let yk
i , i ∈ {0, 1, 2, 3} be the amount of goods moved from warehouse i to warehouse i + 1

(where warehouse 0 is the manufacturer) after the time period k (and thus before time period
k+1). A negative value of yk

i means that goods were actually sent back from warehouse i+1
to warehouse i. Finally, let yk

4 be the demand of the customer which is satisfied after time
period k (and thus before time period k + 1). Assume that this demand is given externally
by a (non-negative) sequence fk ∈ R. From this setup one obviously gets the five equations

xk+1
i = xk

i + yk
i−1 − yk

i for i ∈ {1, 2, 3, 4},

yk
4 = fk.

Since there are nine variables to be described there are four equations missing. Therefore
suppose that the manager of every warehouse i in every time period k tries to have a stock
in his warehouse that is equal to the amount of goods moved from warehouse i to warehouse
i + 1 (=yk

i ) after the time period k (and thus before time period k + 1) plus a safety stock,
which he chooses proportional to yk

i . This assumption then leads to the four additional
equations

xk
i = ayk

i for i ∈ {1, 2, 3, 4},

with a > 1.
Using the state vector xk =

[
yk

0 xk
1 yk

1 xk
2 yk

2 xk
3 yk

3 xk
4 yk

4

]T
and the matrices

E :=

















0
1

0
1

0
1

0
1

0

















A :=

















0 −1 a 0 0 0 0 0 0
1 1 −1 0 0 0 0 0 0
0 0 0 −1 a 0 0 0 0
0 0 1 1 −1 0 0 0 0
0 0 0 0 0 −1 a 0 0
0 0 0 0 1 1 −1 0 0
0 0 0 0 0 0 0 −1 a
0 0 0 0 0 0 1 1 −1
0 0 0 0 0 0 0 0 −1

















,

one can write the system as

Exk+1 = Axk +
[
0 0 0 0 0 0 0 0 fk

]T
.

Since the matrix A is regular (which can be seen by exchanging adjacent rows), the pencil
(E,A) is regular and one can compute the unique solution, given a sequence of fk. In Figure
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1.2 the sequence fk and the corresponding xk
i for i ∈ {1, 2, 3, 4} of such a solution are plotted.

One sees that the further the warehouses are away from the customer the bigger the stock
fluctuations are. This is called the ”Bullwhip Effect” by economists.
Note that this example makes the assumption of complete information. (It has a high index
(I calculated an index of 5) and only infinite eigenvalues. Also it is possible for stocks to
become negative. All this shows that the example is of no practical use.)
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Figure 1.2: Stock development and demand
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Chapter 2

Linear discrete-time descriptor
systems with constant coefficients

It would be ideal to develop a theory for the most general type of discrete-time descriptor
systems (1.2). Nevertheless, such a theory is unlikely to exist. Thus, restrictions have to be
imposed on (1.2) in order to get a nice theory. Obviously, the theory gets nicer the more
restrictions one imposes on the problem.
It seems reasonable to start by imposing very strong restrictions on (1.2) and then loosen
the restrictions as one proceeds. The advantage in doing so is that one may first derive some
basic results, which than can be generalized.
Here we start with the very simple case of linear discrete-time descriptor systems with
constant coefficients (i.e., systems of the type (1.4) ), analogous to [8].

2.1 Solution with the Kronecker canonical form

We begin by recapitulating some basic results of linear algebra, that are needed afterwards.
First let us review the Kronecker canonical form.

Theorem 2.1. [8] Let E,A ∈ Cm,n. Then there exist nonsingular matrices P ∈ Cm,m and
Q ∈ Cn,n such that for all λ ∈ C

P (λE − A) Q = diag
(
Lǫ1, . . . ,Lǫp

,Mη1, . . . ,Mηq
,Jρ1 , . . . ,Jρr

,Nσ1, . . . ,Nσs

)
, (2.1)

where the diagonal blocks have the following forms:

1. Every Lǫi
block is of size ǫi × (ǫi + 1), ǫi ∈ N0 and has the form

Lǫj
= λ






0 1
. . . . . .

0 1




−






1 0
. . . . . .

1 0




 . (2.2)
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2. Every Mηj
block is of size (ηj + 1)× ηj , ηj ∈ N0 and has the form

Mηj
= λ








1

0
. . .
. . . 1

0







−








0

1
. . .
. . . 0

1








. (2.3)

3. Every Jρk
block is of size ρk × ρk, ρk ∈ N and has the form

Jρk
= λ








1
. . .

. . .

1







−








λk 1
. . .

. . .

. . . 1
λk








. (2.4)

4. Every Nσl
block is of size σl × σl, σl ∈ N and has the form

Nσl
= λ








0 1
. . . . . .

. . . 1
0







−








1
. . .

. . .

1








. (2.5)

The Kronecker canonical form is unique up to permutation of the blocks, i.e., the kind, size
and number of the blocks are invariant for the matrix pair (E,A).

Definition 2.2. Let E,A ∈ C
n,n. Then the matrix pair (E,A) is called regular if and only

if det λE − A does not vanish identically.

Theorem 2.3. [8] Let E,A ∈ Cn,n and (E,A) be regular. Then there exist nonsingular
matrices P,Q ∈ Cn,n such that for all λ ∈ C we have

P (λE − A) Q = λ

[
I 0
0 N

]

−

[
J 0
0 I

]

, (2.6)

where J is a matrix in Jordan canonical form and N is a nilpotent matrix also in Jordan
canonical form. Moreover, it is allowed that one or the other block is not present.
Thus, the Kronecker canonical form of a regular matrix pencil only has blocks of type (2.4)
and (2.5).

Definition 2.4. [8] Let E,A ∈ Cn,n, let the matrix pair (E,A) be regular and let the
Kronecker canonical form of (E,A) be given by (2.6). Then the quantity ν defined by
Nν = 0, Nν−1 6= 0, i.e., by the index of nilpotency of N in (2.6), if the nilpotent block in
(2.6) is present and by ν = 0 if it is absent, is called the index of the matrix pair (E,A),
denoted by ν = ind(E,A).
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Definition 2.5. Let E ∈ Cn,n. Further, let ν be the index of the matrix pair (E, I). Then
ν is also called the index of E and denoted by ind(E) = ν.

Consider an arbitrary matrix pencil λE−A with the Kronecker canonical from (2.1). When
we are interested in the solution of the associated discrete-time descriptor system consisting
of (1.4) and (1.6) with kb = k0 ∈ Z we can study the problem in the coordinates of the
Kronecker canonical form, i.e., we can look at the equivalent problem

PEQx̃k+1 = PAQx̃k + Pfk, for k ∈ K,

x̃k0 = Q−1x̂,

with x̃k = Q−1xk. Since the pencil (PEQ,PAQ) is block diagonal one can compute the
solution for each block separately. This is done in the following.

1. Consider a block of type (2.2), i.e., let

λEL− AL = λ






0 1
. . .

. . .

0 1




−






1 0
. . .

. . .

1 0




 ∈ C

ǫ,ǫ+1.

Then the system (1.4) corresponding to this pencil, together with (1.6), i.e.,
{

ELxk+1 = ALxk + fk, k ≥ k0

xk0 = x̂,
(2.7)

is equivalent to {

xk+1
i+1 = xk

i + fk
i , i = 1, . . . , ǫ,

xk0 = x̂.
(2.8)

If we have ǫ = 0 we have no equations but one variable. Thus, in this case every
sequence satisfying the initial condition is a solution. Therefore let us assume in the
following that ǫ > 0. In this case recursion of (2.8) yields

xk
i = xk−1

i−1 + fk−1
i−1

= xk−2
i−2 + fk−2

i−2 + fk−1
i−1

= . . . =





min(i−1,k−k0)∑

j=1

fk−j
i−j



+ x
k−min(i−1,k−k0)
i−min(i−1,k−k0)

=







(
∑i−1

j=1 fk−j
i−j

)

+ xk−i+1
1 , if k − k0 > i− 1,

(
∑k−k0

j=1 fk−j
i−j

)

+ x̂i−k+k0 , if k − k0 ≤ i− 1,

for k = k0, . . . , kf . Thus, once the initial condition x̂, values for xk0+1
1 , xk0+2

1 , . . . and the
right hand sides fk0 , fk0+1, . . . are given one can uniquely determine the solution. For
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a given initial condition and right hand side, there are still kf − k0 degrees of freedom,
i.e., the solution space has dimension kf − k0.
Written with matrices the following result is obtained. Multiplying (2.7) with ET

L from
the left results in

ET
LELxk+1 = ET

LALxk + ET
Lfk , (2.9)

where

ET
LEL =

[
0 0
0 Iǫ

]
1
ǫ

is a projector and

ET
LAL =

[
0 0
Iǫ 0

]
1
ǫ

is nilpotent with nilpotency index ǫ + 1.

Partitioning the vector xk =

[
xk+1

1

xk+1
2

]
1
ǫ

in (2.9) results in

[
0

xk+1
2

]

= ET
LALxk + ET

Lfk

⇔ xk+1 = ET
LALxk + ET

Lfk +








xk+1
1

0
...
0








.

Recursion of this equation leads to

xk =
(
ET

LAL

)k−k0
x̂ +

k−k0−1∑

j=0

(
ET

LAL

)j








ET
Lfk−1−j +








xk−j
1

0
...
0















.

2. Consider a block of type (2.3), i.e., let

λEM− AM = λ








1

0
. . .
. . . 1

0







−








0

1
. . .
. . . 0

1







∈ C

η+1,η.

In the case η = 0 this means that we are looking at sequences in which each iterate
is a vector of length 0. Such sequences are of no interest. Therefore let us assume in
the following that η > 0. In this case the system (1.4) corresponding to this pencil,
together with (1.6), i.e.,

{

EMxk+1 = AMxk + fk, k ≥ k0

xk0 = x̂,
(2.10)
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is equivalent to






xk+1
1 = fk

1 ,

xk+1
i = xk

i−1 + fk
i , i = 2, . . . , η,

0 = xk
η + fk

η+1,

xk0 = x̂.

Recursion of the second equation and the first equation yields

xk
i = xk−1

i−1 + fk−1
i

= xk−2
i−2 + fk−2

i−1 + fk−1
i

= . . . =





min(i−1,k−k0)∑

j=1

fk−j
i+1−j



+ x
k−min(i−1,k−k0)
i−min(i−1,k−k0)

=







(
∑i−1

j=1 fk−j
i+1−j

)

+ xk−i+1
1
︸ ︷︷ ︸

=fk−i
1

, if k − k0 > i− 1,

(
∑k−k0

j=1 fk−j
i+1−j

)

+ xk0

i−k+k0
, if k − k0 ≤ i− 1,

=







∑i

j=1 fk−j
i+1−j , if k − k0 > i− 1,

(
∑k−k0

j=1 fk−j
i+1−j

)

+ x̂k0
i−k+k0

, if k − k0 ≤ i− 1.

Because of the additional equation xk
η = −fk

η+1 the previous equation implies that

−fk
η+1 = xk

η =







∑η

j=1 fk−j
η+1−j , if k − k0 > η − 1,

(
∑k−k0

j=1 fk−j
η+1−j

)

+ x̂k0

η−k+k0
, if k − k0 ≤ η − 1.

This provides the consistency condition for the inhomogeneity

0 =

η
∑

j=0

fk−j
η+1−j for all k > k0 + η − 1,

and the consistency condition for the initial condition

x̂k0

η−k+k0
= −

k−k0∑

j=0

fk−j
η+1−j for all k0 ≤ k ≤ k0 + η − 1.

Replacing i = η − k + k0 in the last equation yields the nicer form

x̂k0
i = −

η−i
∑

j=0

fη−i+k0−j
η+1−j for all 1 ≤ i ≤ η.
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Again one can get the same result in terms of matrices. Multiplying (2.10) with ET
M

from the left leads to

ET
MEM
︸ ︷︷ ︸

=I

xk+1 = ET
MAMxk + ET

Mfk

⇒ xk+1 = ET
MAMxk + ET

Mfk

= (ET
MAM)2xk−1 + (ET

MAM)ET
Mfk−1 + ET

Mfk

= . . . = (ET
MAM)k−k0+1x̂ +

k−k0∑

j=0

(ET
MAM)jET

Mfk−j. (2.11)

One should notice, that

(ET
MAM) =






1 0
. . . . . .

1 0













0

1
. . .
. . . 0

1








=








0

1
. . .
. . . . . .

1 0







∈ C

η,η,

is nilpotent with nilpotency index η. Thus, (2.11) can also be written as

xk+1 = (ET
MAM)k−k0+1x̂ +

min(k−k0,η−1)
∑

j=0

(ET
MAM)jET

Mfk−j.

3. Consider a block of type (2.4), i.e., let

λEJ− AJ = λ








1
. . .

. . .

1







−








λk 1
. . . . . .

. . . 1
λk







∈ C

ρ,ρ.

Then the system (1.4) corresponding to this pencil, together with (1.6) is

{

xk+1 = AJx
k + fk, k ≥ k0

xk0 = x̂.
(2.12)

Simple recursion yields

xk = AJx
k−1 + fk−1

= A2
Jx

k−2 + AJf
k−2 + fk−1

= . . . = Ak−k0

J
x̂ +

k−k0∑

i=1

Ai−1
J

fk−i.

13



4. Consider a block of type (2.5), i.e., let

λEN− AN = λ








0 1
. . . . . .

. . . 1
0







−








1
. . .

. . .

1







∈ C

σ,σ.

Then the system (1.4) corresponding to this pencil, together with (1.6) is

{

ENxk+1 = xk + fk, k ≥ k0

xk0 = x̂.
(2.13)

It follows that

xk = ENxk+1 − fk

= E2
Nxk+2 − ENfk+1 − fk

= . . . = −
σ−1∑

i=0

Ei
Nfk+i,

because the matrix EN is nilpotent with index σ. Thus, in this case we see that the
solution only depends on present and future right hand sides.

2.2 Explicit representation of the solution

In order to determine an explicit solution of (1.4) one can employ the Drazin inverse.

Definition 2.6. Let E ∈ Cn,n have the index ν. A matrix X ∈ Cn,n satisfying

EX = XE, (2.14)

XEX = X, (2.15)

XEν+1 = Eν , (2.16)

is called a Drazin inverse of E and denoted by ED.

From this definition some basic results can be derived.

Lemma 2.7. Consider matrices E,A ∈ Cn,n with EA = AE. Then

EAD = ADE,

EDA = AED, (2.17)

EDAD = ADED

where ED denotes the Drazin inverse of E.

14



Proof. [8], Theorem (2.21), p. 25.

Also, recall the following Theorem.

Theorem 2.8. Let E ∈ Cn,n with ν = ind(E). There is one and only one decomposition

E = C̃ + Ñ (2.18)

with the properties

C̃Ñ = ÑC̃ = 0, Ñν = 0, Ñν−1 6= 0, ind(C̃) ≤ 1. (2.19)

For this decomposition the following statements hold:

C̃DÑ = ÑC̃D = 0, (2.20a)

ED = C̃D, (2.20b)

C̃C̃DC̃ = C̃, (2.20c)

C̃DC̃ = EDE, (2.20d)

C̃ = EEDE, Ñ = E
(
I − EDE

)
. (2.20e)

Proof. [8], Theorem (2.22), p. 25.

With these preliminaries one can start like in [8] to find solutions in the special case that
the matrices E and A commute.

Lemma 2.9. Let E,A ∈ Cn,n with EA = AE and E = C̃ + Ñ be the decomposition (2.18).
Then the following propositions hold.

1. Let {xk}
kf +1

k=k0
be a solution of (1.4). Set

xk
1 := EDExk, xk

2 :=
(
I − EDE

)
xk, (2.21)

fk
1 := EDEfk, fk

2 :=
(
I − EDE

)
fk.

Then, we have

C̃xk+1
1 = Axk

1 + fk
1 , (2.22)

Ñxk+1
2 = Axk

2 + fk
2 , (2.23)

for k = k0, . . . , kf .

2. Let {xk
1}

kf +1

k=k0
and {xk

2}
kf +1

k=k0
be solutions of

C̃xk+1
1 = Axk

1 + EDEfk, (2.24)

Ñxk+1
2 = Axk

2 + (I − EDE)fk,

for k = k0, . . . , kf , respectively. Then {xk}
kf +1

k=k0
given by

xk := EDExk
1 + (I − EDE)xk

2

is a solution of (1.4).
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3. Let {xk
1}

kf +1

k=k0
have the form

xk
1 = EDExk, (2.25)

for some {xk}
kf +1

k=k0
and let {fk

1 }
kf +1

k=k0
have the form

fk
1 = EDEfk, (2.26)

for some {fk}
kf+1

k=k0
. Then {xk

1}
kf +1

k=k0
is a solution of

C̃xk+1
1 = Axk

1 + fk
1 (2.27)

if and only if {xk
1}

kf +1

k=k0
is a solution of

xk+1
1 = EDAxk

1 + EDfk
1 . (2.28)

Proof. 1. From (2.20) and (2.17) it follows that

C̃DC̃A
(2.20d)

= EDEA
(2.17)
= AEDE = AC̃DC̃ (2.29)

and

Ñxk
1 = ÑEDExk(2.20d)

= ÑC̃DC̃xk(2.20a)
= 0, (2.30)

C̃xk
2 =

(

C̃ − C̃C̃DC̃
)

xk(2.20c)
= 0, (2.31)

Ñfk
1 = ÑEDEfk(2.20d)

= ÑC̃DC̃fk(2.20a)
= 0,

C̃fk
2 =

(

C̃ − C̃C̃DC̃
)

fk(2.20c)
= 0. (2.32)

for all k = k0, . . . , kf + 1. Further, from (1.4) we obtain
(

C̃ + Ñ
) (

xk+1
1 + xk+1

2

)
= A

(
xk

1 + xk
2

)
+ fk

1 + fk
2 (2.33)

(2.29)
⇒ (C̃DC̃C̃ + C̃D C̃Ñ

︸︷︷︸

(2.19)
= 0

)
(
xk+1

1 + xk+1
2

)
= AC̃DC̃

(
xk

1 + xk
2

)
+ C̃DC̃

(
fk

1 + fk
2

)

(2.31),(2.32)
⇒ C̃DC̃C̃xk+1

1

(2.21)
= AC̃DC̃xk

1 + fk
1 = AEDExk

1 + fk
1

(2.21)
= Axk

1 + fk
1 ,

for all k = k0, . . . , kf , which shows (2.22), since

C̃DC̃C̃
(2.14)
= C̃C̃DC̃

(2.20c)
= C̃.

Subtracting (2.22) from (2.33) yields

C̃xk+1
2

︸ ︷︷ ︸

(2.31)
= 0

+ Ñxk+1
1

︸ ︷︷ ︸

(2.30)
= 0

+Ñxk+1
2 = Axk

2 + fk
2 ,

for all k = k0, . . . , kf , which shows (2.23).
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2. Applying the Definition of xk+1 leads to

Exk+1 = EEDExk+1
1 + E(I − EDE)xk+1

2

(2.20e)
= C̃xk+1

1 + Ñxk+1
2

(2.24)
= A(xk

1 + xk
2) + EDEfk + (I − EDE)fk

= Axk + fk.

3. Multiplying (2.27) with C̃D (2.20b)
= ED from the left leads to

C̃DC̃xk+1
1 = EDAxk

1 + EDfk
1 . (2.34)

From (2.25) one can also obtain

(I − C̃DC̃)xk+1
1 = 0. (2.35)

Adding (2.34) and (2.35) then immediately shows (2.28). Conversely, multiplying
(2.28) by C̃ from the left gives

C̃xk+1
1 = C̃C̃DAxk

1 + C̃C̃Dfk
1

= AEDExk
1 + EDEfk

1

(2.25),(2.26)
= Axk

1 + fk
1 ,

since

C̃C̃D (2.20e),(2.20b)
= EEDEED (2.17)

= EDEEDE
(2.15)
= EDE.

Lemma 2.10. Let E,A ∈ C
n,n with EA = AE, k0 ∈ Z and v ∈ C

n. Then the following
statements hold.

1. Let v̂ = EDEv. Then

xk := (EDA)k−k0 v̂, k = k0, k0 + 1, . . . (2.36)

solves the homogeneous linear discrete-time descriptor system

Exk+1 = Axk, k = k0, k0 + 1, . . . (2.37)

2. Let v̂ = ADAv. Then

xk := (ADE)k0−kv̂, k = k0, k0 − 1, . . . (2.38)

solves the homogeneous linear discrete-time descriptor system

Exk+1 = Axk, k = k0 − 1, k0 − 2, . . . (2.39)
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3. Let v̂ ∈ range
(
ADA

)
∩ range

(
EDE

)
. Then

xk :=

{

(EDA)k−k0 v̂, k = k0, k0 − 1, . . .

(ADE)k0−kv̂, k = k0 − 1, k0 − 2, . . .
(2.40)

solves the homogeneous linear discrete-time descriptor system

Exk+1 = Axk, k ∈ Z. (2.41)

Proof. 1. We have

Exk+1 = E(EDA)(EDA)k−k0EDEv
(2.17)
= A(EDA)k−k0EDEEDEv

= A(EDA)k−k0EDEv

= Axk for all k = k0, k0 + 1, . . . .

2. In this case we obtain

Axk = A(ADE)k0−kADAv

= A(ADE)(ADE)k0−k−1ADAv
(2.17)
= E(ADE)k0−k−1ADAADAv

= E(ADE)k0−k−1ADAv

= Exk+1 for all k = k0 − 1, k0 − 2, . . . .

3. This follows from 1. and 2., since the definitions of xk0 from 1. and 2. coincide.

Since
(EDA)k−k0EDEv = EDE(EDA)k−k0v,

it is clear, that the solution xk stays in the subspace range
(
EDE

)
for all k ≥ k0. An

analogous conclusion is possible for the case 2. in Lemma 2.10. In case 3. of Lemma 2.10
the solution even stays in range

(
ADA

)
∩ range

(
EDE

)
all the time.

Theorem 2.11. Let E,A ∈ Cn,n with EA = AE and suppose that

kernel (E) ∩ kernel (A) = {0}. (2.42)

Then,
(I − EDE)ADA = (I − EDE). (2.43)

Proof. [8], Theorem (2.28), p. 30.

18



Theorem 2.12. Let E,A ∈ Cn,n with EA = AE satisfy (2.42). Also, let k0 ∈ Z. Then the
following statements hold.

1. Let {xk}k≥k0 be any solution of (2.37). Then {xk}k≥k0 has the form (2.36) for some
v̂ ∈ range

(
EDE

)
.

2. Let {xk}k≤k0 be any solution of (2.39). Then {xk}k≤k0 has the form (2.38) for some
v̂ ∈ range

(
ADA

)
.

3. Let {xk}k∈Z be any solution of (2.41). Then {xk}k∈Z has the form (2.40) for some
v̂ ∈ range

(
ADA

)
∩ range

(
EDE

)
.

Proof. Using the decomposition (2.18) we get the following results.

1. We have

AÑ
(2.20e)

= AE(I − EDE)
(2.17)
= E(I − EDE)A

(2.20e)
= ÑA. (2.44)

Furthermore for any x ∈ C
n one has

AÑx = 0 ⇒ ADAÑx = 0

⇒ (I − EDE)ADAÑx = 0
(2.43)
⇒ (I − EDE)Ñx = 0 (2.45)

(2.20e)
⇒ Ñx = 0.

Let {xk}k∈Z be any solution of (2.37). From Lemma 2.9 part 1. we get {xk
1}k≥k0 ,

{xk
2}k≥k0 with xk = xk

1+xk
2 which solve (2.22) and (2.23), respectively. With ν = ind(E)

one then obtains

0
(2.19)
= Ñνxk+1

2

(2.23)
= Ñν−1Axk

2

(2.44)
= AÑν−1xk

2, k ≥ k0

(2.45)
⇒ Ñν−1xk

2 = 0, k ≥ k0.

Discarding the identity for k = k0 then yields

Ñν−1xk
2 = 0, k ≥ k0 + 1.

Shift
⇒ Ñν−1xk+1

2 = 0, k + 1 ≥ k0 + 1

⇒ Ñν−1xk+1
2 = 0, k ≥ k0

⇒ . . .⇒ Ñxk
2 = 0, k ≥ k0

(2.23)
⇒ Axk

2 = 0, k ≥ k0 (2.46)

⇒ xk
2

(2.21)
= (I − EDE)xk

2

(2.43)
= (I − EDE)AD Axk

2
︸︷︷︸

(2.46)
= 0

= 0, k ≥ k0
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⇒ xk = xk
1, k ≥ k0

Lemma 2.9 3.
⇒ xk

1 solves xk+1
1 = (EDA)xk

1, k ≥ k0

Recursion
⇒ xk

1 = (EDA)k−k0xk0
1 , k ≥ k0

⇒ xk = xk
1 = (EDA)k−k0xk0

1

(2.21)
= (EDA)k−k0EDExk0 . (2.47)

2. Let {xk}k≤k0 be any solution of (2.39). Set

l0 := −k0 and yl := x−l, l ≥ l0.

By replacing k = −l in (2.39) one obtains

Ex−l+1 = Ax−l, − l = −l0 − 1,−l0 − 2, . . .

⇒ Ex−(l−1) = Ax−l, l = l0 + 1, l0 + 2, . . .

⇒ yl, l ≥ l0 is a solution of Eyl−1 = Ayl, l ≥ l0 + 1

⇒ yl, l ≥ l0 is a solution of Ayl+1 = Eyl, l ≥ l0
(2.47)
⇒ yl = (ADE)l−l0ADAyl0 , l ≥ l0.

Undoing the replacements then yields

x−l = (ADE)l−l0ADAx−l0 , l ≥ l0,

xk = (ADE)−k+k0ADAxk0 , − k ≥ −k0,

xk = (ADE)k0−kADAxk0 , k ≤ k0. (2.48)

3. Let {xk}k∈Z be any solution of (2.41). Then from (2.47) we have

xk = (EDA)k−k0EDExk0 , k ≥ k0

k=k0⇒ xk0 = EDExk0 ⇒ xk0 ∈ range
(
EDE

)
.

Also we know from (2.48) that

xk = (ADE)k0−kADAxk0 , k ≤ k0

k=k0⇒ xk0 = ADAxk0 ⇒ xk0 ∈ range
(
ADA

)
.

Thus, the claim of the Theorem follows with v̂ = xk0.

Remark 2.13. One may think that it is not meaningful to look at case 3. of the previous
Theorem, since in most cases one starts at some time point and then calculates into the
future. But as shown by the following Lemma, also those solutions (where one starts at k0 ∈
Z and calculates a solution for k ≥ k0) are almost completely in the subspace range

(
ADA

)
∩

range
(
EDE

)
.
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Lemma 2.14. Let E,A ∈ Cn,n with EA = AE satisfy (2.42). Also, let k0 ∈ Z and let
νE = ind(E), νA = ind(A). Then the following statements hold.

1. Let {xk}k≥k0 be any solution of (2.37). Then for all k ≥ k0 + νA it holds that xk ∈
range

(
ADA

)
∩ range

(
EDE

)
.

2. Let {xk}k≤k0 be any solution of (2.39). Then for all k ≤ k0 − νE it holds that xk ∈
range

(
EDE

)
∩ range

(
ADA

)
.

Proof. 1. Since k ≥ k0 + νA it follows that k = k̂ + k0 + νA with k̂ ≥ 0. From Theorem
2.12 we then know that for some v ∈ C

n we have

ADAxk (2.36)
= ADA (EDA)k−k0

︸ ︷︷ ︸

=(ED)k−k0Ak−k0

EDEv

= ADA(ED)k−k0AνAAk̂EDEv
(2.16)
= ADA(ED)k−k0ADAνA+1Ak̂EDEv

= (ED)k−k0 ADAAD

︸ ︷︷ ︸

(2.15)
= AD

AνA+1Ak̂EDEv

= (ED)k−k0ADAνA+1Ak̂EDEv
(2.16)
= (EDA)k−k0EDEv

= xk.

Also, we naturally get

EDExk (2.36)
= EDE(EDA)k−k0EDEv

= (EDA)k−k0 EDEED

︸ ︷︷ ︸

(2.15)
= ED

Ev (2.49)

= xk,

and thus the assertion follows.

2. As in (2.49) one gets that ADAxk = xk. Let k = −k̂ +k0− νE with k̂ ≥ 0. Then again
for some v ∈ Cn it follows that

EDExk (2.38)
= EDE (ADE)k0−k

︸ ︷︷ ︸

=(AD)k0−kEk0−k

ADAv

= EDE(AD)k0−kEνEE k̂ADAv
(2.16)
= EDE(AD)k0−kEDEνE+1E k̂ADAv

= (AD)k0−k EDEED

︸ ︷︷ ︸

(2.15)
= ED

EνE+1E k̂ADAv
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= (AD)k0−kEDEνE+1E k̂ADAv
(2.16)
= (ADE)k0−kADAv

= xk.

Remark 2.15. From Lemma 2.14 one might presume that it is meaningful to require that
the initial condition satisfies

xk0 ∈ range
(
ADA

)
∩ range

(
EDE

)
, (2.50)

since only in this case it is possible to calculate the solution into the future (i.e., calculate
xk for k ≥ k0) and into the past (i.e., calculate xk for k ≤ k0).
Also, only in case that (2.50) holds, we get something like an invertibility of the operator
that calculates xk+1 from xk. To understand this, imagine that a fixed xk0 is given. From
this we calculate a finite number of steps κ into the future. Thus, we have xk0+κ. From this
state we then calculate κ steps back into the past to obtain x̃k0 . We then have xk0 = x̃k0 if
condition (2.50) holds. Otherwise we cannot be sure that xk0 = x̃k0 holds, as shown in the
following example.

Example 2.16. Consider the homogeneous linear discrete-time descriptor system defined
by





1 0 0
0 1 0
0 0 0





︸ ︷︷ ︸

:=E

xk+1 =





0 0 0
0 1 0
0 0 1





︸ ︷︷ ︸

:=A

xk, k ≥ 0, x0 =





1
1
0



 . (2.51)

Clearly, we have EA = AE, ED = E, AD = A and condition (2.42) holds. Thus, the pencil
(E,A), corresponding to system (2.51), satisfies all assumptions from Lemma 2.14 which
means that the iterate x1 has to be in range

(
ADA

)
. Indeed,

Ax0 =





0
1
0



 ⇒ x1 =





0
1
0



 ∈ range
(
ADA

)
. (2.52)

Now let us calculate back one step from (2.52), i.e., let us consider the reversed system

Ax̃l+1 = Ex̃l, l ≤ 0, x̃−1 =





0
1
0



 .

We see that

Ex̃−1 =





0
1
0



 ⇒ x̃0 =





0
1
0



 ,
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and thus

x̃0 =





0
1
0



 6= x0.

Theorem 2.17. Let E,A ∈ Cn,n with EA = AE satisfy (2.42). Also, let νE = ind(E),
νA = ind(A), {fk}k∈Z with fk ∈ Cn and k0 ∈ Z. Then the following statements hold.

1. The linear discrete-time descriptor system

Exk+1 = Axk + fk, k ≥ k0

has the particular solution {xk}k≥k0 with

xk :=
k−1∑

j=k0

(EDA)k−j−1EDf j

︸ ︷︷ ︸

:=xk
1

−(I − EDE)

νE−1∑

i=0

(ADE)iADfk+i

︸ ︷︷ ︸

:=xk
2

for k ≥ k0. (2.53)

For the construction of the iterate xk only the fk with k ≥ k0 have to be employed.

2. The linear discrete-time descriptor system

Exk+1 = Axk + fk, k ≤ k0 − 1 (2.54)

has the particular solution {xk}k≤k0 with

xk := (I − ADA)

νA−1∑

i=0

(EDA)iEDfk−i−1 −

k0∑

j=k+1

(ADE)j−k−1ADf j−1 for k ≤ k0.

(2.55)
For the construction of the iterate xk only the fk with k ≤ k0− 1 have to be employed.

Proof. 1. Let E = C̃ + Ñ be the decomposition (2.18). Then

EDExk
1

(2.17)
=

k−1∑

j=k0

(EDA)k−j−1 EDEED

︸ ︷︷ ︸

=ED

f j = xk
1,

(I − EDE)xk
2 = −(I − EDE)(I − EDE)

νE−1∑

i=0

(ADE)iADfk+i = xk
2.

One can also conclude, that for all k ≥ k0 it follows that

C̃xk+1
1 = C̃

k∑

j=k0

(EDA)k+1−1−jEDf j
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= C̃

(
k−1∑

j=k0

(EDA)k−jEDf j + EDfk

)

= C̃

(

(EDA)
k−1∑

j=k0

(EDA)k−j−1EDf j + EDfk

)

(2.20e),(2.15)
= AEDExk

1 + EDEfk

= Axk
1 + EDEfk,

and with

(I − EDE)EνE =

{

(I − EDE)EDEνE−1 = 0 , if νE ≥ 1,

(I − EDE) = (I − I) = 0 , if νE = 0,
(2.56)

we obtain

Ñxk+1
2

(2.20e)
= E(I − EDE)xk+1

2

= −(I − EDE)

νE−1∑

i=0

(ADE)i+1fk+i+1

(2.56)
= −(I − EDE)

νE−2∑

i=0

(ADE)i+1fk+i+1

(2.43)
= −(I − EDE)ADA

νE−1∑

i=1

(ADE)ifk+i

= −A(I − EDE)

νE−1∑

i=0

(ADE)iADfk+i + (I − EDE)fk

= Axk
2 + (I − EDE)fk.

With these results and Lemma 2.9 part 2 one immediately gets that

xk = EDExk
1 + (I − EDE)xk

2 = xk
1 + xk

2

is a solution and thus the assertion follows.

2. By replacing l := −k and l0 := −k0 in (2.54) one gets the system

Ex−l+1 = Ax−l + f−l, − l ≤ −l0 − 1

⇒ Ex−(l−1) = Ax−l + f−l, l ≥ l0 + 1.

By further replacing yl := x−l, gl := −f−l−1 for l ≥ l0 one gets

Eyl−1 = Ayl + f−l, l ≥ l0 + 1

⇒ Eyl = Ayl+1 + f−l−1, l + 1 ≥ l0 + 1

⇒ Ayl+1 = Eyl − f−l−1, l ≥ l0

⇒ Ayl+1 = Eyl + gl, l ≥ l0.
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We then get a solution of this last system as

1.
⇒ yl =

l−1∑

j=l0

(ADE)l−j−1ADgj − (I − ADA)

νA−1∑

i=0

(EDA)iEDgl+i

⇒ x−l = −
l−1∑

j=l0

(ADE)l−j−1ADf−j−1 + (I − ADA)

νA−1∑

i=0

(EDA)iEDf−(l+i)−1

⇒ xk = (I − ADA)

νA−1∑

i=0

(EDA)iEDfk−i−1 −
−k−1∑

j=−k0

(ADE)−k−j−1ADf−j−1

= (I − ADA)

νA−1∑

i=0

(EDA)iEDfk−i−1 −

k0∑

j=k+1

(ADE)j−k−1ADf j−1.

Finding a particular solution for the general case (i.e., (1.4) with K = Z) is more complicated.
Similar to Lemma 2.9 we obtain the following result.

Lemma 2.18. Let E,A ∈ Cn,n with EA = AE satisfy (2.42). Further, let E = C̃ + Ñ and
analogously A = D̃ + M̃ be decompositions as in (2.18). Let {xk

1}k∈Z, {x
k
2}k∈Z, {x

k
3}k∈Z be

solutions of

C̃xk+1
1 = M̃xk

1 + (I − ADA)fk, (2.57)

C̃xk+1
2 = D̃xk

2 + ADAEDEfk, (2.58)

Ñxk+1
3 = D̃xk

3 + (I − EDE)fk, (2.59)

respectively. Then {xk}k∈Z with

xk := (I − ADA)xk
1 + ADAEDExk

2 + (I − EDE)xk
3,

is a solution of
Exk+1 = Ak + fk.

Proof. First of all, we see that

(I − ADA) + (I − EDE) + ADAEDE

=I − ADA + I − (I − ADA)EDE
︸ ︷︷ ︸

(2.43)
= (I−ADA)

=I − ADA + I − (I − ADA) = I.

(2.60)

Furthermore, we have

D̃(I − ADA) = AADA(I − ADA) = 0 , (2.61)

M̃(ADAEDE) = A(I − ADA)(ADAEDE) = 0 , (2.62)

M̃(I − EDE) = A(I − ADA)(I − EDE) = A
(
(I − EDE)− (I − EDE)ADA

)
= 0. (2.63)
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With these identities we get

Exk+1 = E (I − ADA)
︸ ︷︷ ︸

(2.43)
= (I−ADA)EDE

xk+1
1 + EADA EDE

︸ ︷︷ ︸

(2.15)
= EDEEDE

xk+1
2 + E (I − EDE)

︸ ︷︷ ︸

=(I−EDE)(I−EDE)

xk+1
3

= (I − ADA)C̃xk+1
1 + ADAEDEC̃xk+1

2 + (I − EDE)Ñxk+1
3

= (I − ADA)M̃xk
1 + (I − ADA)fk +

ADAEDED̃xk
2 + ADAEDEfk +

(I − EDE)D̃xk
3 + (I − EDE)fk

(2.60)
= fk + (I − ADA)M̃xk

1 + ADAEDED̃xk
2 + (I − EDE)D̃xk

3

= fk +

M̃(I − ADA)xk
1 + D̃(I − ADA)xk

1
︸ ︷︷ ︸

(2.61)
= 0

M̃ADAEDExk
2

︸ ︷︷ ︸

(2.62)
= 0

+D̃ADAEDExk
2

M̃(I − EDE)xk
3

︸ ︷︷ ︸

(2.63)
= 0

+D̃(I − EDE)xk
3

= fk + Axk.

Here we have used, that D̃ = AADA and thus D̃ commutes with the matrices E and A.

Using Lemma 2.18 we can construct a particular solution for the general case (i.e., (1.4) with
K = Z).

Lemma 2.19. Let E,A ∈ Cn,n with EA = AE satisfying (2.42). Also, let νE = ind(E),
νA = ind(A), {fk}k∈Z ⊂ Cn and k0 ∈ Z. Then a solution {xk}k∈Z of

Exk+1 = Axk + fk

is given by

xk := (I − ADA)

νA−1∑

i=0

(EDA)iEDfk−i−1

︸ ︷︷ ︸

=:xk
1

+

{

ADA
∑k−1

j=k0
(EDA)k−j−1EDf j for k ≥ k0

−EDE
∑k0

j=k+1(A
DE)j−k−1ADf j−1 for k ≤ k0

︸ ︷︷ ︸

:=xk
2

−(I − EDE)

νE−1∑

i=0

(ADE)iADfk+i

︸ ︷︷ ︸

:=xk
3

, for k ∈ Z.

(2.64)
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Proof. Considering the decompositions E = C̃ + Ñ and A = D̃ + M̃ as in (2.18) we have

M̃xk
1 = A(I − ADA)

νA−1∑

i=0

(EDA)iEDfk−i−1

(2.17)
= (I − ADA)

νA−1∑

i=0

(EDA)i+1fk−i−1

see (2.56)
= (I − ADA)

νA−2∑

i=0

(EDA)i+1fk−i−1

= (I − ADA)

νA−1∑

i=1

(EDA)ifk−i

= (I − ADA)

(
νA−1∑

i=0

(EDA)ifk−i − fk

)

(2.43)
= −(I − ADA)fk + (I − ADA)EDE

νA−1∑

i=0

(EDA)ifk−i

(2.17)
= −(I − ADA)fk + E(I − ADA)

νA−1∑

i=0

(EDA)iEDfk−i

= −(I − ADA)fk + Exk+1
1

= −(I − ADA)fk + (C̃ + Ñ)xk+1
1

= −(I − ADA)fk + C̃xk+1
1 ,

where the last identity holds, since xk
1 has the form xk

1 = (I − ADA)yk
1 for some yk

1 and

Ñxk
1 = E(I − EDE)(I − ADA)yk

1 = E







I − ADA− EDE(I − ADA)
︸ ︷︷ ︸

(2.43)
= (I−ADA)







yk
1 = 0. (2.65)

As in Theorem 2.17, part 1. one obtains

Ñxk+1
3 = Axk

3 + (I − EDE)fk = (D̃ + M̃)xk
3 + (I − EDE)fk.

Again as in (2.65) it follows that
M̃xk

3 = 0,

and thus
Ñxk+1

3 = D̃xk
3 + (I − EDE)fk.
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Finally, for k ≥ k0 one has

C̃xk+1
2 = C̃ADA

k∑

j=k0

(EDA)k−jEDf j

= C̃
︸︷︷︸

=EEDE

EDADA

(
k−1∑

j=k0

(EDA)k−jf j + fk

)

= EDEADA

(
k−1∑

j=k0

(EDA)k−jf j + fk

)

= EDEADA

(

EDA
k−1∑

j=k0

(EDA)k−j−1f j + fk

)

= AADA
k−1∑

j=k0

(EDA)k−j−1EDf j + ADAEDEfk

= AADAADA
k−1∑

j=k0

(EDA)k−j−1EDf j + ADAEDEfk

= D̃ADA
k−1∑

j=k0

(EDA)k−j−1EDf j + ADAEDEfk

= D̃xk
2 + ADAEDEfk,

and for k < k0 analogously,

D̃xk
2 = −D̃EDE

k0∑

j=k+1

(ADE)j−k−1ADf j−1

= −AADAEDEAD

k0∑

j=k+1

(ADE)j−k−1f j−1

= −AADEDE

k0∑

j=k+1

(ADE)j−k−1f j−1

= −AADEDE

(
k0∑

j=k+2

(ADE)j−k−1f j−1 + fk

)

= −AADEDEfk − ADAADEEDE
k0∑

j=k+2

(ADE)j−k−2f j−1

= −AADEDEfk − ADEEDEEDE

k0∑

j=k+2

(ADE)j−k−2f j−1
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= −AADEDEfk + EEDE

(

−EDE

k0∑

j=k+2

(ADE)j−k−2ADf j−1

)

= −AADEDEfk + C̃xk+1
2 .

Lemma 2.18 then implies the assertion.

We finally combine Lemmas 2.10, 2.14, 2.19 and Theorem 2.17.

Theorem 2.20. Let E,A ∈ Cn,n with EA = AE satisfy (2.42). Also, let νE = ind(E),
νA = ind(A), {fk}k∈Z with fk ∈ C

n and k0 ∈ Z. Then the following statements hold.

1. Every solution {xk}k≥k0 of

Exk+1 = Axk + fk, k ≥ k0 (2.66)

satisfies

xk =
(
EDA

)k−k0
EDEv +

k−1∑

j=k0

(
EDA

)k−j−1
EDf j

−
(
I − EDE

)
νE−1∑

i=0

(
ADE

)i
ADfk+i

(2.67)

for k ≥ k0 and for some v ∈ C
n.

2. Every solution {xk}k≤k0 of

Exk+1 = Axk + fk, k ≤ k0 − 1 (2.68)

satisfies

xk =
(
ADE

)k0−k
ADAv + (I − ADA)

νA−1∑

i=0

(EDA)iEDfk−i−1

−

k0∑

j=k+1

(ADE)j−k−1ADf j−1

(2.69)

for k ≤ k0 and for some v ∈ Cn.

3. Every solution {xk}k∈Z of

Exk+1 = Axk + fk, k ∈ Z (2.70)
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satisfies

xk =(I − ADA)

νA−1∑

i=0

(EDA)iEDfk−i−1

+







ADA
(

(EDA)k−k0EDEv +
∑k−1

j=k0
(EDA)k−j−1EDf j

)

for k ≥ k0

EDE
(

(ADE)k0−kADAv −
∑k0

j=k+1(A
DE)j−k−1ADf j−1

)

for k ≤ k0

− (I − EDE)

νE−1∑

i=0

(ADE)iADfk+i

(2.71)

for k ∈ Z and for some v ∈ Cn.

Proof. Since the problem is linear any solution may be written as a particular solution of
the inhomogeneous problem plus a solution of the homogeneous problem.

Corollary 2.21. Let the assumptions of Theorem 2.20 hold. Then the following statements
hold.

1. The initial value problem consisting of (2.66) and (1.6) possesses a solution if and only
if there exists a v ∈ C

n with

x̂ = EDEv −
(
I − EDE

)
νE−1∑

i=0

(
ADE

)i
ADfk0+i. (2.72)

If this is the case, then the solution is unique.

2. The initial value problem consisting of (2.68) and (1.6) possesses a solution if and only
if there exists a v ∈ Cn with

x̂ = ADAv + (I − ADA)

νA−1∑

i=0

(EDA)iEDfk0−i−1. (2.73)

If this is the case, then the solution is unique.

3. The problem consisting of (2.70) and (1.6) possesses a solution if and only if there
exists a v ∈ Cn with

x̂ = (I − ADA)

νA−1∑

i=0

(EDA)iEDfk0−i−1

+ ADAEDEv (2.74)

− (I − EDE)

νE−1∑

i=0

(ADE)iADfk0+i.

If this is the case, then the solution is unique.
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Remark 2.22. Analogously to Remark 2.15 one might presume that it is meaningful to
require that the initial condition satisfies (2.74), even when only calculating into the future.

Following the approach in [8] we now consider the case that (E,A) is regular but E and A
do not commute. In this case we need the following Lemma.

Lemma 2.23. [1] Let E,A ∈ Cn,n with (E,A) regular. Let λ̃ ∈ C be chosen such that
λ̃E − A is nonsingular. Then the matrices

Ẽ =
(

λ̃E − A
)−1

E, Ã =
(

λ̃E − A
)−1

A

commute.

Proof. We have

λ̃Ẽ − Ã = λ̃
(

λ̃E − A
)−1

E −
(

λ̃E − A
)−1

A

=
(

λ̃E − A
)−1 (

λ̃E − A
)

= I

and thus

Ã = λ̃Ẽ − I.

Therefore we finally obtain

ẼÃ = Ẽ
(

λ̃Ẽ − I
)

=
(

λ̃Ẽ − I
)

Ẽ

= ÃẼ.

Remark 2.24. [8] Since the factor
(

λ̃E − A
)−1

represents a simple scaling of the descrip-

tor system, results similar to Theorem 2.20 and Corollary 2.21 hold for the general case
provided that the coefficient matrices form a regular matrix pair. We only need to perform
the replacements

E ←
(

λ̃E − A
)−1

E, A←
(

λ̃E − A
)−1

A, f ←
(

λ̃E − A
)−1

f ,

in Theorem 2.20 and Corollary 2.21.
Also note that condition (2.42) is equivalent to the regularity of a matrix pair (E,A), which
satisfies EA = AE. Thus, the assumptions of Theorem 2.20 and Corollary 2.21 can essen-
tially be reduced to the regularity of the original matrix pair (E,A).
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2.3 Conclusion

In this chapter we have first examined the behavior of a general linear discrete-time descriptor
system with constant coefficients, i.e., of a system of the form (1.4), with the help of the
Kronecker canonical form. Here we have only considered the case where one has an initial
condition at some point k0 ∈ Z and wants to get a solution for all k ≥ k0.
Then we concentrated on regular systems, i.e., on systems of the form (1.4) where the matrix
pair (E,A) is regular. For such systems we wrote down the explicit solution with the help
of the Drazin inverse. In contrast to the continuous-time case one can distinguish between
three different cases for such systems. The first case is where one has an initial condition
given at point k0 ∈ Z and only wants to get a solution for indices k ≥ k0. The second case is
where one has an initial condition given at point k0 ∈ Z and only wants to get a solution for
indices k ≤ k0. These first two cases are closely related, since the first case can be transferred
into the second one by a variable substitution. The third case is really different from the first
two cases. Here also an initial condition is given at some point k0 ∈ Z but one is looking for
a solution for indices k ≥ k0 as well as for indices k ≤ k0. This puts stronger restrictions on
the initial condition, i.e., the set of consistent initial conditions in the third case is smaller
than in the first or second case.
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Chapter 3

Linear discrete-time descriptor
systems with variable coefficients

In this chapter we consider the more general case, where the matrices E and A are allowed
to change with time, i.e., system (1.5) is considered. Thus, we give up one restriction and
expect the theory to become more complicated. This analysis is done analogously as in [8].
Note that there are other approaches to systems of the form (1.5), for example [12].

3.1 Canonical forms

As in the continuous case (see [8]) the unique solvability of (1.5) and the regularity of all
(Ek, Ak) for k ∈ K are completely independent in the discrete case. This can be seen by the
following three examples.

Example 3.1. Let K = N and let the matrix sequences {Ek}k∈K, {Ak}k∈K ⊂ C2,2 be given
by

(E1, A1) =

([
0 0
0 0

]

,

[
1 0
0 1

])

,

(Ei, Ai) =

([
1 0
0 1

]

,

[
0 0
0 0

])

for i ≥ 2.

Then (1.5) is equivalent to

x1 = −f1,

xi+1 = f i for i ≥ 2.

Thus, there is no equation for x2 and it can be chosen arbitrarily.

Example 3.2. From [6] pp.24-25. Let K = Z and let the matrix sequences {Ek}k∈K,
{Ak}k∈K ⊂ C2,2 be given by

(Ek, Ak) =

([
0 0
−1 k

]

,

[
−1 k − 1
0 0

])

for k ∈ K.
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Since

det(λEk − Ak) =

∣
∣
∣
∣

1 1− k
−λ λk

∣
∣
∣
∣
= λk − (−λ)(1− k) = λ,

the matrix pair (Ek, Ak) is regular for all k ∈ K. By defining a sequence {xk}k∈K through

xk := ck

[
k − 1

1

]

,

where the scalar sequence {ck} may be chosen arbitrarily, one gets

Ekx
k+1 =

[
0 0
−1 k

] [
(k + 1)− 1

1

]

ck+1 = 0,

Akx
k =

[
−1 k − 1
0 0

] [
k − 1

1

]

ck = 0.

Thus, the solution is not unique, even if one defines an initial condition like x0 = 0.

Example 3.3. From [8] pp.56-57. Let K = Z and let the matrix sequences {Ek}k∈K,
{Ak}k∈K ⊂ C2,2 be given by

(Ek, Ak) =

([
0 0
1 −k

]

,

[
−1 k
0 0

])

for k ∈ K.

Let fk = [fk
1 , fk

2 ]T be partitioned conformably with Ek and Ak and let xk
1 and xk

2 be defined
according to Table 1.1. Then (1.5) implies

0 = −xk
1 + kxk

2 + fk
1 ,

xk+1
1 − kxk+1

2 = fk
2 ,

which implies that

−xk+1
1 + (k + 1)xk+1

2 = −fk+1
1

⇒ −xk+1
1 + kxk+1

2 = −xk+1
2 − fk+1

1

⇒ fk
2 = xk+1

2 + fk+1
1

⇒ xk+1
2 = fk

2 − fk+1
1

⇒ xk+1
1 = fk

2 + kfk
2 − kfk+1

1 .

Thus, the solution is uniquely determined by the sequence {fk}k∈K although all (Ek, Ak) are
singular.

Considering an arbitrary discrete-time descriptor system with variable coefficients and an
initial condition we see that

Ekx
k+1 = Akx

k + fk, k ∈ Z, x0 = x̂

⇔ PkEkQk+1Q
−1
k+1x

k+1 = PkAkQk Q−1
k xk

︸ ︷︷ ︸

=:x̃k

+Pkf
k, k ∈ Z, Q−1

0 x0 = Q0x̂

⇔ PkEkQk+1x̃
k+1 = PkAkQkx̃

k + Pkf
k, k ∈ Z, x̃0 = Q0x̂,

as long as all Pk and Qk are invertible. This leads to the following definition.
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Definition 3.4. Two sequences of matrix pairs {(Ek, Ak)}k∈K and {(Ẽk, Ãk)}k∈K with
Ek, Ak, Ẽk, Ãk ∈ Cm,n are called globally equivalent (on K) if there exist two pointwise
nonsingular matrix sequences

{Pk}k∈K with Pk ∈ C
m,m,

{Qk}k∈K∪{kf +1} with Qk ∈ C
n,n,

such that
PkEkQk+1 = Ẽk and PkAkQk = Ãk, (3.1)

for all k ∈ K. We denote this by {(Ek, Ak)}k∈K ∼ {(Ẽk, Ãk)}k∈K.

Lemma 3.5. The relation introduced in Definition 3.4 is an equivalence relation.

Proof. Reflexivity : We have {(Ek, Ak)}k∈K ∼ {(Ek, Ak)}k∈K with Pk = Im and Qk = In for
all k ∈ K and Qkf +1 = In.

Symmetry : From {(Ek, Ak)} ∼ {(Ẽk, Ãk)}, it follows that

PkEkQk+1 = Ẽk and PkAkQk = Ãk,

with nonsingular Pk, Qk. Hence,

Ek = P−1
k ẼkQ

−1
k+1 and Ak = P−1

k ÃkQ
−1
k .

Transitivity : From {(Ek, Ak)} ∼ {(Ẽk, Ãk)} and {(Ẽk, Ãk)} ∼ {(Êk, Âk)} it follows that

PkEkQk+1 = Ẽk and PkAkQk = Ãk,

P̃kẼkQ̃k+1 = Êk and P̃kÃkQ̃k = Âk,

for all k ∈ K, where all Qk, Q̃k, Pk, P̃k, are nonsingular. From this one immediately sees
that {(Ek, Ak)} ∼ {(Êk, Âk)} using the matrix sequences P̃kPk and QkQ̃k.

Definition 3.6. Two pairs of matrices (E,A), (Ẽ, Ã) ∈ Cm,n are called locally equivalent
if there exist matrices P ∈ Cm,m and Q,R ∈ Cn,n that are all nonsingular, such that

Ẽ = PEQ and Ã = PAR. (3.2)

Again, we denote this by (E,A) ∼ (Ẽ, Ã).

Lemma 3.7. The relation introduced in Definition 3.6 is an equivalence relation.

Proof. By using Lemma 3.5 in the special case K = {1} we immediately obtain the assump-
tion.

For the proof of Theorem 3.9 we recall the notion of the echelon form used here.
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Lemma 3.8. Let A ∈ Cm,n be a matrix with rank (A) = r. Then there exist invertible
matrices P ∈ Cm,m and Q ∈ Cn,n such that

PAQ =

[
Ir 0
0 0

]

(3.3)

is in echelon form.

For convenience, we say in the following that a matrix is a basis of a vector space if this is
valid for its columns. For matrix pairs of block matrices we also use the convention that
corresponding blocks (i.e., blocks in the same block row and block column) have the same
number of rows and columns.

Theorem 3.9. Let E,A ∈ Cm,n and introduce the following matrices:

Z basis of corange (E) = kernel
(
EH
)
, (3.4)

Y basis of corange (A) = kernel
(
AH
)
. (3.5)

Then, the quantities

rf = rank (E) , (rank of E; corresponds to forward direction) (3.6a)

rb = rank (A) , (rank of A; corresponds to backward direction) (3.6b)

hf = rank
(
ZHA

)
, (rank of ZHA; forward direction) (3.6c)

hb = rank
(
Y HE

)

= rf + hf − rb, (rank of Y HE; backward direction) (3.6d)

c = rb − hf , (common part) (3.6e)

a = min(hf , n− rf ), (algebraic part) (3.6f)

s = hf − a, (strangeness) (3.6g)

d = rf − c− s, (differential part) (3.6h)

u = n− rf − a, (undetermined variables) (3.6i)

v = m− rf − hf , (vanishing equations) (3.6j)

are invariant under (3.2), and (E,A) is locally equivalent to the canonical form

(Ẽ, Ã) =





















Is 0 0 0 0
0 Id 0 0 0
0 0 Ic 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











,











0 0 0 0 0
0 0 0 0 0
0 0 Ic 0 0
0 0 0 Ia 0
Is 0 0 0 0
0 0 0 0 0





















. (3.7)

We have that either s = 0, u = 0 or s = u = 0. The quantities (3.6) are called local
characteristics or local invariants of the matrix pair (E,A).
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Proof. Let (Ei, Ai), i = 1, 2, be locally equivalent, i.e., let P,Q,R be invertible matrices of
appropriate size such that

E2 = PE1Q and A2 = PA1R. (3.8)

Since

rank (E2) = rank (PE1Q) = rank (E1) ,

rank (A2) = rank (PA1R) = rank (A1) ,

it follows that rf and rb are invariant under local equivalence. First note that hf is indepen-
dent of the choice of the basis of Z. To see this let Z and Z̃ be two bases of corange (E).
Then there exists a regular matrix MZ with

Z̃ = ZMZ .

Then, from

rank
(

Z̃HA
)

= rank
(
MZ

HZHA
)

= rank
(
ZHA

)

the statement follows.
Let Z2 be a basis of corange (E2), i.e kernel

(
E2

H
)

= range (Z2). Then Z1 := PHZ2 is a basis
of corange (E1), since Z1 has full column rank and

kernel
(
E1

H
)

= range (Z1) .

To prove this, note that

x ∈ kernel
(
E1

H
)

⇒ 0 = E1
Hx = Q−HE2

HP−Hx

⇒ 0 = E2
HP−Hx

⇒ P−Hx ∈ kernel
(
E2

H
)

= range (Z2)

⇒ there exists a z such that P−Hx = Z2z

⇒ x = PHZ2z = Z1z ∈ range (Z1) .

Conversely, we have

x ∈ range (Z1)

⇒ there exists a z such that x = Z1z = PHZ2z

⇒ P−Hx = Z2z ∈ range (Z2) = kernel
(
E2

H
)

⇒ 0 = E2
HP−Hx = QHE1

HPHP−Hx = QHE1
Hx

⇒ 0 = E1
Hx

⇒ x ∈ kernel
(
E1

H
)
.
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This implies

rank
(
Z2

HA2

)
= rank

(
Z2

HPA1Q
)

= rank
(
Z1

HA1Q
)

= rank
(
Z1

HA1

)
,

which shows that also hf is invariant under local equivalence. By exchanging the roles of A
and E as well as the roles of Z and Y in the previous argument we also see that hb (defined
as rank

(
Y HE

)
) is invariant under local equivalence. Since all other quantities are functions

of those first three invariant quantities all quantities are invariant under local equivalence.
Let Z ′ be a matrix, such that the composed matrix

[
Z ′ Z

]
is invertible. Also let X,Y be

matrices, such that Y
(
(Z ′)HE

)
X =

[
Irf

0
]

is in echelon form (3.3). Note that
(
(Z ′)HE

)

has full row rank, since Z ′ spans the vector space range (E). Thus, the following equivalence
transformations in the sense of Definition 3.6 can be applied to the matrix pair (E,A) (where
all corresponding blocks of both matrices have the same size).

(E,A) ∼

([
(Z ′)HE

0

]

,

[
(Z ′)HA
ZHA

])

∼

([[
Irf

0
]

0

]

,

[
Y (Z ′)HA

ZHA

])

∼

















Is 0 0 0
0 Id+c 0 0
0 0 0 0
0 0 0 0
0 0 0 0









,









∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 Ia 0
Is 0 0 0
0 0 0 0

















. (3.9)

Looking at matrix pair (3.9) one can (because of the equivalence relation (3.2)) permute the
columns of the second matrix without permuting the columns of the first matrix. This shows
that the size of the Ia block can be increased by decreasing the size of the Is block (as long
as the last block column does not vanish) and, conversely, that the size of the Is block can
be increased at the expense of the size of the Ia block (as long as the second block column
does not vanish). To get a canonical form we choose the Ia block to be of maximum size.
Hence, it is clear that either the last block column vanishes, i.e., u = 0, or that there is no
Is, i.e., s = 0 (or even s = u = 0), as stated in the assertion. These cases are considered
separately in the following.
If u = 0, then (3.9) reads as

(E,A) ∼

















Is 0 0
0 Id+c 0
0 0 0
0 0 0
0 0 0









,









∗ ∗ ∗
∗ ∗ ∗
0 0 Ia

Is 0 0
0 0 0

















∼

















Is 0 0
0 Id+c 0
0 0 0
0 0 0
0 0 0









,









0 ∗ 0
0 ∗ 0
0 0 Ia

Is 0 0
0 0 0
















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∼





















Is 0 0 0
0 Id 0 0
0 0 Ic 0
0 0 0 0
0 0 0 0
0 0 0 0











,











0 0 0 0
0 0 0 0
0 0 Ic 0
0 0 0 Ia

Is 0 0 0
0 0 0 0





















.

In this case we have hf = s + a ≥ a = n− rf , which is consistent with (3.6f).
If s = 0, then (3.9) reads as

(E,A) ∼









Id+c 0 0
0 0 0
0 0 0



 ,





∗ ∗ ∗
0 Ia 0
0 0 0









∼









Id+c 0 0
0 0 0
0 0 0



 ,





∗ 0 ∗
0 Ia 0
0 0 0









∼













Id 0 0 0
0 Ic 0 0
0 0 0 0
0 0 0 0







,







0 0 0 0
0 Ic 0 0
0 0 Ia 0
0 0 0 0













.

In this case we have hf = a = n− rf − u ≤ n− rf which is also consistent with (3.6f).
Finally, the identity (3.6d) can be derived from the canonical form (3.7). Therefore, let Z̃

and Ỹ be bases of corange
(

Ẽ
)

and corange
(

Ã
)

, where Ẽ and Ã are the matrices in the

canonical form (3.7), respectively. Then we have

Ỹ =











Is 0 0
0 Id 0
0 0 0
0 0 0
0 0 0
0 0 Iv











.

From this we see, that

rank
(

Ỹ HẼ
)

= rank















Is 0 0 0 0 0
0 Id 0 0 0 0
0 0 0 0 0 Iv















Is 0 0 0 0
0 Id 0 0 0
0 0 Ic 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0





















= s + d
(3.6h)
= s + rf − c− s

= rf − c
(3.6e)
= rf − rb + hf ,

which shows (3.6d).
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Note that the form (3.7) can also be obtained by first reducing (E,A) to Kronecker canoni-
cal form and then applying further local equivalence transformations. Doing so shows that
if s > 0, then there has to be at least one real Kronecker block of the form (2.3), i.e., a
Kronecker block with dimension greater or equal to 2×1. Anyway, s may be zero even when
there is any number of Kronecker blocks of the form (2.3), i.e., the presence of Kronecker
blocks of the form (2.3) is necessary for s > 0 but not sufficient.
Comparing this result to the analogous result from [8] (Theorem 3.7) one notices the addi-
tional ”common” part. This part cannot be eliminated, since with the equivalence relation
(3.2) the matrix A may not be changed by means of the matrix E.

3.2 Forward global canonical form

Like in the constant rank case we first study the case where one starts at some time point
(here this time point is always k = 0) and calculates into the future, i.e., one tries to
get a solution for k ≥ 0. In order to derive a global canonical form, some constant rank
assumptions are introduced. Milder assumptions are necessary in this case, than in the case
where one wants to get a solution for all k ∈ Z. Despite the issue that we only want to get
a solution for k ≥ 0 we may also consider linear descriptor systems with equations for all
k ∈ Z (i.e., systems of the form {(Ek, Ak)}k∈Z), since this simplifies moving to the case where
we want to get a solution for all k ∈ Z. This is no restriction, since every linear descriptor
system of the form {(Ek, Ak)}k∈N0 can be extended to one of the form {(Ek, Ak)}k∈Z by
choosing Ek = E0 and Ak = A0 for all k < 0.
Note that we use here the term canonical form in a way that differs from the terminology of
abstract algebra.

Lemma 3.10. Consider system (1.5) and introduce the matrix sequence {Zk}k∈K where

Zk is a basis of corange (Ek) = kernel
(
EH

k

)
for all k ∈ K. (3.10)

Let

rk
f = rank (Ek) , k ∈ K, (3.11a)

rk
b = rank (Ak) , k ∈ K, (3.11b)

hk
f = rank

(
Zk

HAk

)
, k ∈ K, (3.11c)

be the local characteristics of each matrix pencil (Ek, Ak) with k ∈ K. Then, these charac-
teristic sequences are invariant under global equivalence (3.1).
Assume further that the two local characteristic sequences

rf ≡ rk
f and hf ≡ hk

f (3.12)

are constant for all k ∈ K. Then the sequence of matrix pairs {(Ek, Ak)}k∈K is globally
equivalent to the sequence















E
(1)
k E

(2)
k

0 0
0 0



 ,





A
(1)
k 0
0 Ihf

0 0















k∈K

, (3.13)

40



where all matrices [E
(1)
k E

(2)
k ] have full row rank, i.e., they all are of rank rf .

Proof. The invariance of the local characteristics follows directly from Theorem 3.9. Let

Z ′
k be a basis of range (Ek) for all k ∈ K.

Then [Z ′
k Zk] is invertible for all k ∈ K and Z ′

k
HEk has full row rank rf . Transforming with

the transpose of this sequence from the left yields

{(Ek, Ak)}k∈K ∼

{([

Z ′
k
HEk

0

]

,

[
Z ′

k
HAk

Zk
HAk

])}

k∈K

∼















E
(1)
k E

(2)
k

0 0
0 0



 ,





A
(1)
k A

(2)
k

0 Ihf

0 0















k∈K

∼















E
(1)
k E

(2)
k

0 0
0 0



 ,





A
(1)
k 0
0 Ihf

0 0















k∈K

.

Writing down the equations from (1.5) connected with the form (3.13) one obtains

E
(1)
k xk+1

1 + E
(2)
k xk+1

2 = A
(1)
k xk

1 + fk
1 ,

0 = xk
2 + fk

2 ,

0 = fk
3 .

Assuming that K = N0, this system is equivalent to

E
(1)
k xk+1

1 = A
(1)
k xk

1 + f̃k
1 ,

0 = xk
2 + fk

2 ,

0 = fk
3 .

(where f̃k
1 = fk

1 + E
(2)
k fk+1

2 ) which is connected with the sequence of matrix pairs















E
(1)
k 0
0 0
0 0



 ,





A
(1)
k 0
0 Ihf

0 0














. (3.14)

Since this step is reversible the set of solution sequences is not altered. One also may notice
that the new right hand side f̃k can depend on the right hand side of the former next right
hand side fk+1. Thus, one can view this step as an index reduction.
Analogous to [8] Theorem 3.14, in the following Theorem it is shown, that the so obtained
reduced sequences of matrix pairs are still globally equivalent, if the original sequences have
been.
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Theorem 3.11. Assume that the sequences of matrix pairs

{(Ek, Ak)}k∈Z =















E
(1)
k E

(2)
k

0 0
0 0



 ,





A
(1)
k 0
0 Ihf

0 0















k∈Z

and

{(Ẽk, Ãk)}k∈Z =















Ẽ
(1)
k Ẽ

(2)
k

0 0
0 0



 ,





Ã
(1)
k 0
0 Ihf

0 0















k∈Z

are globally equivalent on Z and in the form (3.13). In particular, suppose that (3.12) holds

and that all
[

E
(1)
k E

(2)
k

]

and all
[

Ẽ
(1)
k Ẽ

(2)
k

]

have full row rank rf . Then the sequences of matrix

pairs {(E
(1)
k , A

(1)
k )} and {(Ẽ

(1)
k , Ã

(1)
k )} are also globally equivalent on Z.

Proof. By assumption, there exist two pointwise nonsingular matrix sequences

{Pk}k∈Z ⊂ C
n,n,

{Qk}k∈Z ⊂ Cm,m,

such that

PkEk = ẼkQk+1, (3.15a)

PkAk = ÃkQk, (3.15b)

for all k ∈ Z. By partitioning the transforming matrices appropriately we get

ÃkQk =





Ã
(1)
k 0
0 Ihf

0 0





[

Q
(1,1)
k Q

(1,2)
k

Q
(2,1)
k Q

(2,2)
k

]

=





Ã
(1)
k Q

(1,1)
k Ã

(1)
k Q

(1,2)
k

Q
(2,1)
k Q

(2,2)
k

0 0



 =

PkAk =






P
(1,1)
k P

(1,2)
k P

(1,3)
k

P
(2,1)
k P

(2,2)
k P

(2,3)
k

P
(3,1)
k P

(3,2)
k P

(3,3)
k










A
(1)
k 0
0 Ihf

0 0



 (3.16)

=






P
(1,1)
k A

(1)
k P

(1,2)
k

P
(2,1)
k A

(1)
k P

(2,2)
k

P
(3,1)
k A

(1)
k P

(3,2)
k




 ,

and

ẼkQk+1 =





Ẽ
(1)
k Ẽ

(2)
k

0 0
0 0





[

Q
(1,1)
k+1 Q

(1,2)
k+1

Q
(2,1)
k+1 Q

(2,2)
k+1

]
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=





Ẽ
(1)
k Q

(1,1)
k+1 + Ẽ

(2)
k Q

(2,1)
k+1 Ẽ

(1)
k Q

(1,2)
k+1 + Ẽ

(2)
k Q

(2,2)
k+1

0 0
0 0



 =

PkEk =






P
(1,1)
k P

(1,2)
k P

(1,3)
k

P
(2,1)
k P

(2,2)
k P

(2,3)
k

P
(3,1)
k P

(3,2)
k P

(3,3)
k










E
(1)
k E

(2)
k

0 0
0 0



 (3.17)

=






P
(1,1)
k E

(1)
k P

(1,1)
k E

(2)
k

P
(2,1)
k E

(1)
k P

(2,1)
k E

(2)
k

P
(3,1)
k E

(1)
k P

(3,1)
k E

(2)
k




 .

From (3.16) we obtain that

P
(3,2)
k = 0 for all k ∈ Z.

Let p ∈ C1,rf be any row of the matrices P
(2,1)
k , P

(3,1)
k . Then from (3.17) we get

p[E
(1)
k E

(2)
k ] = 0.

But since all matrices [E
(1)
k E

(2)
k ] have full row rank as stated in Theorem 3.10, it follows

that also p = 0. Thus, we get that

P
(2,1)
k = 0, P

(3,1)
k = 0 for all k ∈ Z,

which means that the left transforming matrices take the form

Pk =






P
(1,1)
k P

(1,2)
k P

(1,3)
k

0 P
(2,2)
k P

(2,3)
k

0 0 P
(3,3)
k




 .

Hence, the diagonal matrices P
(1,1)
k , P

(2,2)
k , P

(3,3)
k have to be nonsingular. Since we also get

from (3.16) that

Q
(2,1)
k = P

(2,1)
k A

(1)
k = 0,

it follows that all matrices Q
(1,1)
k , Q

(2,2)
k are invertible. With this, from (3.17) and (3.16) we

finally get that

P
(1,1)
k E

(1)
k = Ẽ

(1)
k Q

(1,1)
k+1 + Ẽ

(2)
k Q

(2,1)
k+1
︸ ︷︷ ︸

=0

= Ẽ
(1)
k Q

(1,1)
k+1

and

P
(1,1)
k A

(1)
k = Ã

(1)
k Q

(1,1)
k ,

which proves the claim by employing {P
(1,1)
k }k∈Z and {Q

(1,1)
k }k∈Z as transforming matrix

sequences.
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Corollary 3.12. Under the assumptions of Theorem 3.11 the sequences of matrix pairs















E
(1)
k 0
0 0
0 0



 ,





A
(1)
k 0
0 Ihf

0 0















and 













Ẽ
(1)
k 0
0 0
0 0



 ,





Ã
(1)
k 0
0 Ihf

0 0















are globally equivalent on Z.

Proof. Using the matrices from the proof of Theorem 3.11 one immediately sees that global
equivalence is achieved by employing the sequences of transforming matrices











P
(1,1)
k 0 0
0 I 0
0 0 I










and

{[
Q(1,1) 0

0 I

]}

.

Remark 3.13. The preceding results allow for an inductive procedure closely related to
the corresponding procedure for continuous-time systems [8]. For an original sequence of
matrix pairs {(Ek, Ak)}k∈Z =: {(Ek,0, Ak,0)}k∈Z we define a sequence (of sequences of matrix
pairs) {{(Ek,i, Ak,i)}k∈Z}i∈N0

by the following procedure. First we reduce {(Ek,i, Ak,i)}k∈Z by
Lemma 3.10 to the from (3.13) assuming that the local invariants rf =: rf,i and hf =: hf,i

are constant for all matrix pairs on the whole interval Z. Then we reduce the so obtained
sequence of matrix pairs to the form (3.14) which yields the next sequence of matrix pairs
{(Ek,i+1, Ak,i+1)}k∈Z.

This whole iterative process (although derived from [8]) is very similar to Luenberger’s
shuffle algorithm, which is described in [13] for discrete-time discrete descriptor systems
with constant coefficients.
Observe that we have to have the constant rank assumptions of the form (3.12) for every
step of the procedure. The so obtained sequence of local invariants (which are also global
invariants) {(rf,i, hf,i)}i∈N0 is characteristic for a given equivalence class of sequences of
matrix pairs, due to Corollary 3.12. Several properties of this sequence are summed up in
the following Lemma.

Lemma 3.14. Let the sequences {(rf,i, hf,i)}i∈N0 and {{(Ek,i, Ak,i)}k∈Z}i∈N0
be defined as

in Remark 3.13. In particular, let the constant rank assumptions (3.12) hold. Defining the
quantities

hf,−1 := 0, (3.18a)

ai := hf,i − hf,i−1 ∀i ∈ N0, (3.18b)
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di := rf,i + hf,i ∀i ∈ N0, (3.18c)

si := rf,i − rf,i+1 ∀i ∈ N0, (3.18d)

w0 := m− rf,0 − hf,0, (3.18e)

wi := si−1 − ai ∀i ∈ N0, (3.18f)

vi := m− rf,i − hf,i ∀i ∈ N0, (3.18g)

there exist ξ, µ ∈ N0 so that:

rf,i ≥ rf,i+1 ∀i ∈ N0, (3.19a)

di ≥ di+1 ∀i ∈ N0, (3.19b)

sj = 0 ∀j ≥ µ, (3.19c)

hf,i ≤ hf,i+1 ∀i ∈ N0, (3.19d)

ai ≥ ai+1 ∀i ∈ N0, (3.19e)

di ≥ hf,i ∀i ∈ N0, (3.19f)

aj = 0 ∀j ≥ ξ, (3.19g)

vi = v0 + w1 + . . . + wi ∀i ∈ N0, (3.19h)

si ≤ ai ∀i ∈ N0, (3.19i)

ai+1 ≤ si ∀i ∈ N0, (3.19j)

si ≥ si+1 ∀i ∈ N0, (3.19k)

ai − wi+1 ≤ ai−1 − wi ∀i ∈ N, (3.19l)

ai, di, si, wi, vi ≥ 0 ∀i ∈ N0. (3.19m)

For any µ ∈ N0 with the property (3.19c) we also have

ai+1 = 0, rf,µ = rf,i, dµ = di ∀i ≥ µ. (3.20)

Proof. Let i ∈ N0 be any non-negative integer. Then we know from Lemma 3.10 that

{(Ek,i, Ak,i)}k∈Z ∼















E
(1)
k,i E

(2)
k,i

0 0
0 0



 ,





A
(1)
k,i 0

0 Ihf,i

0 0















k∈Z

Remark 3.13
⇒ {(Ek,i+1, Ak,i+1)}k∈Z ∼















E
(1)
k,i 0

0 0
0 0



 ,





A
(1)
k,i 0
0 Ihf,i

0 0















k∈Z

⇒ rf,i = rank
(

[E
(1)
k,i E

(2)
k,i ]
)

≥ rank
([

E
(1)
k,i 0

])

= rf,i+1 ⇒ (3.19a).

Since [E
(1)
k,i E

(2)
k,i ] has full row rank rf,i, we get

dim
(

range
(

E
(1)
k,i

))

+ dim
(

corange
(

E
(1)
k,i

))

= rf,i
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and independent of this

dim
(

range
(

E
(1)
k,i

))

= rf,i+1.

For k ∈ Z let Zk be a basis of corange
(

E
(1)
k,i

)

. Then we know that

hf,i+1 = hf,i + rank
(

ZH
k A

(1)
k,i

)

≤ hf,i + dim
(

corange
(

E
(1)
k,i

))

. (3.21)

Combining these equations yields

rf,i + hf,i = dim
(

range
(

E
(1)
k,i

))

+ dim
(

corange
(

E
(1)
k,i

))

+ hf,i

︸ ︷︷ ︸

(3.21)

≥ hf,i+1

≥ rf,i+1 + hf,i+1 ⇒ (3.19b).

Since the sequence {rf,i} is non-increasing and bounded by zero, it becomes stationary at
some point µ, which implies (3.19c). From (3.21) one can also see (3.19d). (3.19f) follows
from (3.18c).
Now we show via induction that for all i ∈ N0 we have

{(Ek,i, Ak,i)}k∈Z ∼



















E
(1)
k,i E

(2)
k,i 0

0 0 0
0 0 0
0 0 0







,







A
(1)
k,i 0 0

0 Iai
0

0 0 Ihf,i−1

0 0 0



















k∈Z

, (3.22)

where all [E
(1)
k,i E

(2)
k,i ] have full row rank.

Induction basis: i = 0
Here hf,−1 = 0 and because of Lemma 3.10 we get

{(Ek,0, Ak,0)}k∈Z = {(Ek, Ak)}k∈Z ∼















E
(1)
k,0 E

(2)
k,0

0 0
0 0



 ,





A
(1)
k,0 0

0 Ia0

0 0















k∈Z

,

since a0 = hf,0.
Induction step: i→ i + 1 with the help of (3.22).
Since (3.22) is a special form of (3.13), one can immediately perform the reduction to (3.14)
by

{(Ek,i+1, Ak,i+1)}k∈Z ∼



















E
(1)
k,i 0 0

0 0 0
0 0 0
0 0 0







,







A
(1)
k,i 0 0

0 Iai
0

0 0 Ihf,i−1

0 0 0



















k∈Z

∼















E
(1)
k,i 0

0 0
0 0



 ,





A
(1)
k,i 0

0 Iai+hf,i−1

0 0















k∈Z
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∼




















E
(1)
k,i+1 0

0 0
0 0
0 0







,








A
(1)
k,i+1 0

Â
(2)
k,i+1 0
0 Ihf,i

0 0





















k∈Z

,

where all E
(1)
k,i+1 have full row rank rf,i+1. Adapting the indexing we can proceed with

{(Ek,i+1, Ak,i+1)}k∈Z ∼























E
(1)
k,i+1 E

(2)
k,i+1 0

0 0 0
0 0 0
0 0 0
0 0 0









,









A
(1)
k,i+1 A

(2)
k,i+1 0

0 Iai+1
0

0 0 0
0 0 Ihf,i

0 0 0























k∈Z

∼



















E
(1)
k,i+1 E

(2)
k,i+1 0

0 0 0
0 0 0
0 0 0







,







A
(1)
k,i+1 0 0

0 Iai+1
0

0 0 Ihf,i

0 0 0



















k∈Z

,

which completes the induction. From the form (3.22) we obtain rf,i − rf,i+1 ≤ ai for all

i ∈ N0. From the induction step we can further see that ai+1 = rank
(

Â
(2)
k,i+1

)

≤ rf,i − rf,i+1

for all i ∈ N0, since Â
(2)
k,i+1 only has rf,i − rf,i+1 rows. This shows (3.19e).

Let µ be as in (3.19c). Then (3.22) implies that

{(Ek,µ, Ak,µ)}k∈Z ∼



















E
(1)
k,µ E

(2)
k,µ 0

0 0 0
0 0 0
0 0 0







,







A
(1)
k,µ 0 0

0 Iaµ
0

0 0 Ihf,µ−1

0 0 0



















k∈Z

.

Further reduction steps show that for all j ≥ 1 we have

{(Ek,µ+j, Ak,µ+j)}k∈Z ∼















E
(1)
k,µ 0

0 0
0 0



 ,





A
(1)
k,µ 0

0 Ihf,µ

0 0















k∈Z

, (3.23)

since rf,µ+j = rf,µ which means that all E
(1)
k,µ have full row rank. Thus, applying a reduction

step to (3.23) does not change anything. This shows that hf,µ+j = hf,µ which is equivalent
to aµ+j = 0. From this (3.20) follows.
Note that there exists a positive integer ξ for which the sequence hf,i gets stationary, i.e.,
hf,i = hf ∈ N0 for all i ≥ ξ, which follows from the boundedness of the sequence (hf,i ≤ m)
and because of (3.19d). This implies (3.19g).
(3.19h) follows since on the one hand we have

vi − v0 = m− rf,i − hf,i − (m− rf,0 − hf,0)

= (rf,0 + hf,0)− (rf,i + hf,i),

47



and on the other hand we have

w1 + . . . + wi

(3.18f)
= s0 + . . . + si−1 − a1 − . . .− ai

(3.18d)
= rf,0 − rf,i − (a1 + . . . + ai)

(3.18b)
= rf,0 − rf,i − (hf,i − hf,0).

(3.19i) can again be seen from the form (3.22). For this, note that we have

si

(3.18d)
= rf,i − rf,i+1

= rank
([

E
(1)
k,i E

(2)
k,i

])

− rank
(

E
(1)
k,i

)

≤ ai,

where the last inequality holds, since the E
(2)
k,i matrices only have ai columns as one can see

from the block structure of (3.22). (3.19l) can be obtained in the following way. Let i ∈ N

be arbitrarily. Then we have that

wi + ai

(3.18f)
= si−1

(3.19i)

≤ ai−1 ≤ ai−1 + wi+1

⇒ai − wi+1 ≤ ai−1 − wi,

where we have used that all wi are non-negative, which is shown below.
To prove the non-negativity of all constants defined in (3.18) without using (3.19l), first
observe that ai ≥ 0, since the sequence {hf,i}i≥−1 is non-decreasing. All di are non-negative,
since all rf,i and all hf,i are non-negative. All si are non-negative because the sequence {rf,i}
is non-increasing.
We then see that vi = m − di and thus {vi} is a non-decreasing sequence. Since v0 =
m− rf,0− hf,0 = m− rank (Ek)− rank

(
ZH

k Ak

)
≥ 0 (where Zk is a basis of corange (Ek)) all

vi have to be non-negative.
Also note, that for all i ≥ 1 we have

vi − vi−1 = m− rf,i − hf,i − (m− rf,i−1 − hf,i−1)

= rf,i−1 − rf,i − (hf,i − hf,i−1) (3.24)

= si−1 − ai = wi,

which shows the non-negativity of all wi, since {vi} is non-decreasing.
To finally show (3.19j) and (3.19k) note that for all i ∈ N0 we have

si+1

(3.19i)

≤ ai+1

(3.19m)

≤ ai+1 + wi+1
(3.18f)
= si.

The previous Lemma 3.14 leads to the following Definition.
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Definition 3.15. Let {(Ek, Ak)}k∈Z be a sequence of matrix pairs. Let the sequence
{(rf,i, hf,i)}i∈N0 (as described in Remark 3.13) be well defined. In particular, let (3.12) hold
for every entry {(Ek,i, Ak,i)}k∈Z of the sequence (of sequences of matrix pairs) in Remark
3.13. Then, with the definitions (3.18) we call

µ = min{i ∈ N0 | si = 0} (3.25)

the strangeness index of the sequence of matrix pairs {(Ek, Ak)}k∈Z and of the associated
descriptor system (1.5). In the case that µ = 0 we call {(Ek, Ak)}k∈Z and (1.5) strangeness-
free.

In the proof of Lemma 3.14 we were able to see that (under some constant rank assumptions)
every sequence of matrix pairs {(Ek,i, Ak,i)}k∈Z is equivalent to a sequence of the form (3.22).
With i = µ we have sµ = 0 and thus, from (3.23) we see that

{(Ek,µ+1, Ak,µ+1)}k∈Z ∼















E
(1)
k,µ 0

0 0
0 0



 ,





A
(1)
k,µ 0

0 Ihf,µ

0 0















k∈Z

,

with all E
(1)
k,µ having full row rank rf,µ. Finally, one can further reduce all the matrices E

(1)
k,µ

to echelon form (3.3) [ Irf,µ
0 ] by global equivalence achieving (with adapted indexing)

{(Ek,µ+1, Ak,µ+1)}k∈Z ∼















Irf,µ
0 0

0 0 0
0 0 0



 ,





A
(1)
k,µ 0 A

(2)
k,µ

0 Ihf,µ
0

0 0 0















k∈Z

, (3.26)

which can be regarded as a canonical from. One notices that in general not only µ but
µ + 1 reduction steps are necessary to get to the canonical form, although after µ reduction
steps a strangeness-free sequence has already been reached. This situation can be avoided
by introducing a further constant rank assumption in every step of the reduction process,
which was described in Remark 3.13 (see [6]).
Further reductions of (3.26) are possible under additional assumptions.

Theorem 3.16. Let {(Ek, Ak)}k∈Z ⊂ Cm,n be a strangeness-free sequence of matrix pairs in
the form (3.26), i.e., let

{(Ek, Ak)}k∈Z =















Irf
0 0

0 0 0
0 0 0



 ,





A
(1)
k 0 A

(2)
k

0 Ihf
0

0 0 0















k∈Z

. (3.27)

Then the following statements hold.

1. Let k0, kf ∈ Z with k0 ≤ kf . Set K := [k0, kf ] ∩ Z and for k ∈ K let all A
(1)
k be

invertible. Then we have

{(Ek, Ak)}k∈Z ∼















Irf
0 0

0 0 0
0 0 0



 ,





Ã
(1)
k 0 Ã

(2)
k

0 Ihf
0

0 0 0















k∈Z

,

where Ã
(1)
k = Irf

for k ∈ K.
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2. Let all A
(1)
k have the same constant rank, i.e., let rank

(

A
(1)
k

)

= p for all k ∈ Z. Then

we have

{(Ek, Ak)}k∈Z ∼



















Ip 0 0 0
0 Irf−p 0 0
0 0 0 0
0 0 0 0







,







Ã
(1)
k Ã

(2)
k 0 Ã

(3)
k

0 0 0 Ã
(4)
k

0 0 Ihf
0

0 0 0 0



















k∈Z

,

where all [ Ã
(1)
k , Ã

(2)
k ] have full row rank p for all k ∈ Z.

3. For all k ∈ Z let rank
(

A
(2)
k

)

= rf . Then we have

{(Ek, Ak)}k∈Z ∼















Irf
0 0

0 0 0
0 0 0



 ,





0 0 A
(2)
k

0 Ihf
0

0 0 0















k∈Z

.

Proof. In all cases the global equivalence transformations are only applied to the first block
row and the first and third block column. Thus, it is sufficient to look at the sequence of
matrix pairs {([

Irf
0
]
,
[

A
(1)
k A

(2)
k

])}

k∈Z

. (3.28)

1. Since the identity matrix Irf
in (3.28) has to be kept, the allowed global equivalence

transformations are limited. Effectively, the transformations on A
(1)
k that are allowed

are given by
A

(1)
k ∼ PkA

(1)
k P−1

k−1. (3.29)

In the following we show by induction that a finite sequence of invertible matrices can
be transformed to identity matrices by the equivalence relation (3.29), i.e., we show
that for ki ≤ kf there exist invertible matrices Pk ∈ Cn,n, for k0 − 1 ≤ k ≤ ki with

PkA
(1)
k P−1

k−1 = Irf
for all k0 ≤ k ≤ ki. (3.30)

Induction basis: ki = k0

Choose Pk0 the inverse of A
(1)
k0

and Pk0−1 = Irf
.

Induction step: ki → ki + 1 ≤ kf

Because of (3.30) there exist invertible matrices Pk0−1, . . . , Pki
with

Pk0A
(1)
k0

P−1
k0−1 = Irf

,

...

Pki
A

(1)
ki

P−1
ki−1 = Irf

.

50



By setting Pki+1 = Pki
(A

(1)
ki+1)

−1 we obtain the equation

Pki+1A
(1)
ki+1P

−1
ki

= Irf
.

Thus, by induction the assertion follows.

2. First reduce all A
(1)
k to echelon form (3.3) PkA

(1)
k Qk. Then we have

PkA
(1)
k =

[

Â
(1)
k

0

]

with Â
(1)
k having full row rank p, since all Qk were invertible. From this we get with

global equivalence

([
Irf

0
]
,
[

A
(1)
k A

(2)
k

])

∼
([

Pk 0
]
,
[

PkA
(1)
k PkA

(2)
k

])

∼
([

PkPk
−1 0

]
,
[

PkA
(1)
k Pk−1

−1 PkA
(2)
k

])

=

([
Ip 0 0
0 Irf−p 0

]

,

[

Ã
(1)
k Ã

(2)
k Ã

(3)
k

0 0 Ã
(4)
k

])

,

with Â
(1)
k P−1

k−1 = [ Ã
(1)
k , Ã

(2)
k ] having full row rank p for all k ∈ Z.

3. Without loss of generality we may assume that for all k ∈ Z we have A
(2)
k = [ Ã

(2)
k , Ã

(3)
k ]

with Ã
(2)
k being invertible (otherwise permute columns, which is a global equivalence

transformation). Hence it follows that

(Ek, Ak) =









Irf
0 0 0

0 0 0 0
0 0 0 0



 ,





A
(1)
k 0 Ã

(2)
k Ã

(3)
k

0 Ihf
0 0

0 0 0 0









∼











Irf
0 0 0

0 0 0 0
0 0 0 0



 ,





A
(1)
k 0 Ã

(2)
k Ã

(3)
k

0 Ihf
0 0

0 0 0 0











Irf
0 0 0

0 Ihf
0 0

−(Ã
(2)
k )−1Ã

(1)
k 0 Irf

0
0 0 0 In−rf−a−rf













=









Irf
0 0

0 0 0
0 0 0



 ,





0 0 A
(2)
k

0 Ihf
0

0 0 0









and thus the assertion is proved.

Note that in the proof of part 1 of Theorem 3.16, Pki+1 may be changed, while all other
elements of the matrix sequence {Pk} are not altered. Thus, part 1 of Theorem 3.16 can be
extended to the case where either k0 = −∞ or kf =∞.
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Example 3.17. Consider the constant sequence of matrix pairs consisting of a regular
matrix pencil in Kronecker canonical form

{(Ek, Ak)}k∈Z :=















0 1 0
0 0 1
0 0 0



 ,





1 0 0
0 1 0
0 0 1















k∈Z

. (3.31)

This pencil only has one Kronecker block of size 3 corresponding to the infinite eigenvalue
with nilpotency index 3. Using Definition 2.4 pencil (3.31) has Kronecker index 3. To
determine the strangeness index we follow the procedure leading to Definition 3.15. Using

the sign
red
∼ to denote reducing a sequence of matrix pairs from (3.13) to (3.14) we have that














0 1 0
0 0 1
0 0 0



 ,





1 0 0
0 1 0
0 0 1















k∈Z

red
∼















0 1 0
0 0 0
0 0 0



 ,





1 0 0
0 1 0
0 0 1















k∈Z

red
∼















0 0 0
0 0 0
0 0 0



 ,





1 0 0
0 1 0
0 0 1















k∈Z

.

The sequence of characteristic values (along with some of those defined in (3.18)) is thereby
given as

(rf,0, hf,0, a0, s0) = (2, 1, 1, 1),

(rf,1, hf,1, a1, s1) = (1, 2, 1, 1),

(rf,2, hf,2, a2, s2) = (0, 3, 1, 0),

(rf,3, hf,3, a3, s3) = (0, 3, 0, 0),

(rf,4, hf,4, a4, s4) = (0, 3, 0, 0),

...

which shows that the strangeness index of this sequence of matrix pairs is 2. Thus, this
strangeness index shows the same behavior as the one defined in [8] for constant coefficient
matrix pairs.
One also can guess that increasing the order of the nilpotent block will increase the strange-
ness index accordingly.

Example 3.18. To determine the strangeness index of Example 3.2 we observe that
{([

0 0
−1 k

]

,

[
−1 k − 1
0 0

])}

k∈Z

∼

{([
−1 k
0 0

]

,

[
0 0
−1 k − 1

])}

k∈Z

∼

{([
1 0
0 0

]

,

[
0 0
1 0

])}

k∈Z

∼

{([
0 1
0 0

]

,

[
0 0
0 1

])}

k∈Z

red
∼

{([
0 0
0 0

]

,

[
0 0
0 1

])}

k∈Z

.
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The sequence of characteristic values is thereby given as

(rf,0, hf,0, a0, s0) = (1, 1, 1, 1),

(rf,1, hf,1, a1, s1) = (0, 1, 0, 0),

(rf,2, hf,2, a2, s2) = (0, 1, 0, 0),

...

showing that the strangeness index of this sequence of matrix pairs is 1.

Example 3.19. To determine the strangeness index of Example 3.3 we observe that

{([
0 0
1 −k

]

,

[
−1 k
0 0

])}

k∈Z

∼

{([
1 −k
0 0

]

,

[
0 0
−1 k

])}

k∈Z

∼

{([
1 0
0 0

]

,

[
0 0
−1 1

])}

k∈Z

∼

{([
1 0
0 0

]

,

[
0 0
0 1

])}

k∈Z

red
∼

{([
1 0
0 0

]

,

[
0 0
0 1

])}

k∈Z

.

The sequence of characteristic values is thereby given as

(rf,0, hf,0, a0, s0) = (1, 1, 1, 0),

(rf,1, hf,1, a1, s1) = (1, 1, 0, 0),

(rf,2, hf,2, a2, s2) = (1, 1, 0, 0),

...

showing that the strangeness index of this sequence of matrix pairs is 0 although the matrix
pairs in this example are all singular while the solution is uniquely determined by the right
hand side.

Analogously to [8] one can derive a canonical form for sequences of matrix pairs with well
defined strangeness index without the use of shifts. For convenience, we denote unspecified
blocks in a matrix by ∗.

Theorem 3.20. Let the strangeness index µ of the sequence of matrix pairs {(Ek, Ak)}k∈Z

as in (3.25) be well defined. Then, with the definitions from (3.18), {(Ek, Ak)}k∈Z is globally
equivalent to a sequence of the form















Irf,µ
0 Wk

0 0 Fk

0 0 Gk



 ,





∗ ∗ 0
0 0 0
0 0 Ihf,µ















k∈Z

, (3.32)
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with

Fk =









0 F
(µ)
k ∗
. . . . . .

. . . F
(1)
k

0









, Gk =









0 G
(µ)
k ∗

. . . . . .
. . . G

(1)
k

0









, (3.33)

where all F
(i)
k and G

(i)
k have sizes wi×ai−1 and ai×ai−1, respectively, and all Wk = [ ∗ · · · ∗ ]

are partitioned accordingly. In particular, all F
(i)
k and G

(i)
k together have full row rank, i.e.,

rank

([

F
(i)
k

G
(i)
k

])

= ai + wi = si−1

(3.19i)

≤ ai−1 ∀k ∈ Z. (3.34)

Proof. With an inductive argument we show that

{(Ek, Ak)}k∈Z ∼

{(Ẽk,i, Ãk,i)}k∈Z :=













































E
(1,1)
k,i E

(1,2)
k,i ∗ · · · ∗

0 0 Fk,i ∗
...

...
. . . . . .

...
...

. . . Fk,1

0 0 · · · · · · 0
0 0 Gk,i ∗
...

...
. . . . . .

...
...

. . . Gk,1

0 0 · · · · · · 0




















,




















A
(1)
k,i 0 0 · · · 0

0 0 · · · · · · 0
...

...
...

...
...

...
0 0 · · · · · · 0
0 Iai

0 · · · 0
... 0

. . . . . .
...

...
...

. . . . . . 0
0 0 · · · 0 Ia0













































,

(3.35)

where:

1. All [E
(1,1)
k,i , E

(1,2)
k,i ] are of full row rank rf,i and rank

(

E
(1,1)
k,i

)

= rf,i+1.

2. With Zk,i being bases of corange
(

E
(1,1)
k,i

)

, we have that rank
(

ZH
k,iA

(1)
k,i

)

= ai+1 for all

k ∈ Z.

3. rank

([
Fk,j

Gk,j

])

is full for all j ∈ {1, . . . , i} and for all k ∈ Z.

Induction basis: i = 0
From Lemma 3.10 we know that

{(Ek, Ak)} ∼















E
(1,1)
k,0 E

(1,2)
k,0

0 0
0 0



 ,





A
(1)
k,0 0

0 Ihf,0

0 0















∼















E
(1,1)
k,0 E

(1,2)
k,0

0 0
0 0



 ,





A
(1)
k,0 0

0 0
0 Ia0














,
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with [E
(1,1
k,0 , E

(1,2)
k,0 ] = rf,0 from which the first part of 1. immediately follows. If we perform

the step from (3.13) to (3.14), then we find that

rf,1 = rank
(

E
(1,1)
k,0

)

holds and thus 1. is shown. To see 2. let Zk,0 be bases of corange
(

E
(1,1)
k,0

)

for all k ∈ Z.

Then 



Zk,0 0 0
0 Iw0 0
0 0 Ia0



 is a basis of corange









E
(1,1)
k,0 0

0 0
0 0







 ,

whereas the latter matrix is the one in (3.14). Thus,

hf,1 = rank









ZH
k,0 0 0
0 Iw0 0
0 0 Ia0









A
(1)
k,0 0

0 0
0 Ia0







 = rank
(

ZH
k,0A

(1)
k,0

)

+ a0.

This gives

rank
(

ZH
k,0A

(1)
k,0

)

= hf,1 − a0 = hf,1 − hf,0 = a1.

Induction step: i→ i + 1 with the help of (3.35)

Applying Lemma 3.10 to the sequence of matrix pairs {(E
(1,1)
k,i , A

(1)
k,i )}k∈Z (in (3.35)) one

obtains that

{(E
(1,1)
k,i , A

(1)
k,i )}k∈Z ∼











E
(1,1)
k,i+1 E

(1,2)
k,i+1

0 0
0 0



 ,





A
(1)
k,i+1 0
0 0
0 Iai+1










, (3.36)

where [ E
(1,1)
k,i+1 , E

(1,2)
k,i+1 ] is of full row rank rf,i+1 due to part 1. and 2. of the inductive

assumption. Applying the transformation corresponding to (3.36) to the original sequence
of matrix pairs (3.35) yields that (Ek, Ak) is globally equivalent to






















































E
(1,1)
k,i+1 E

(1,2)
k,i+1 E

(1,3)
k,i+1 ∗ · · · ∗

0 0 E
(2,3)
k,i+1 ∗ ∗

0 0 E
(3,3)
k,i+1 ∗ ∗

0 0 0 Fk,i ∗
...

...
...

. . . . . .
...

...
...

. . . Fk,1

0 0 0 · · · · · · 0
0 0 0 Gk,i ∗
...

...
...

. . . . . .
...

...
...

. . . Gk,1

0 0 0 · · · · · · 0

























,
























A
(1)
k,i+1 0 0 0 · · · 0

0 0 0 0 · · · 0
0 Iai+1

0 0 · · · 0
0 0 0 · · · · · · 0
...

...
...

...
...

...
...

...
0 0 0 · · · · · · 0
0 0 Iai

0 · · · 0
... 0 0

. . . . . .
...

...
...

...
. . . . . . 0

0 0 0 · · · 0 Ia0





















































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∼





















































E
(1,1)
k,i+1 E

(1,2)
k,i+1 E

(1,3)
k,i+1 ∗ · · · ∗

0 0 Fk,i+1 ∗ ∗
0 0 0 Fk,i ∗
...

...
...

. . . . . .
...

...
...

. . . Fk,1

0 0 0 · · · · · · 0
0 0 Gk,i+1 ∗ ∗
0 0 0 Gk,i ∗
...

...
...

. . .
. . .

...
...

...
. . . Gk,1

0 0 0 · · · · · · 0
























,
























A
(1)
k,i+1 0 0 0 · · · 0
0 0 0 0 · · · 0
0 0 0 · · · · · · 0
...

...
...

...
...

...
...

...
0 0 0 · · · · · · 0
0 Iai+1

0 0 · · · 0
0 0 Iai

0 · · · 0
... 0 0

. . .
. . .

...
...

...
...

. . . . . . 0
0 0 0 · · · 0 Ia0





















































,

(3.37)

by defining Fk,i+1 := E
(2,3)
k,i+1 and Gk,i+1 := E

(3,3)
k,i+1. Due to the nature of global equivalence it

follows that

rf,i = rank
([

E
(1,1)
k,i E

(1,2)
k,i

])

= rank











E
(1,1)
k,i+1 E

(1,2)
k,i+1 E

(1,3)
k,i+1

0 0 E
(2,3)
k,i+1

0 0 E
(3,3)
k,i+1









 .

With regard to the fact that all [E
(1,1)
k,i+1 , E

(1,2)
k,i+1 ] also have full rank rf,i+1 one observes that

rank

([

E
(2,3)
k,i+1

E
(3,3)
k,i+1

])

= rank

([
Fk,i+1

Gk,i+1

])

= rf,i − rf,i+1
(3.18d)

= si,

which means that part 3 of the inductive assumption is shown. Further, we notice that
Gk,i+1 is in the same block row as Iai+1

and in the same block column as Iai
which means

that all Gk,i+1 are of size ai+1 × ai. Since

[

E
(2,3)
k,i+1

E
(3,3)
k,i+1

]

has (rf,i − rf,i+1) rows, it follows that all

Fk,i+1 are of size (rf,i − rf,i+1 − ai+1)× ai

(3.18f)
= wi+1 × hf,i.

Performing i + 1 reductions from (3.13) to (3.14) for the sequence (3.37) gives

rf,i+1 = rank
([

E
(1,1)
k,i+1 E

(1,2)
k,i+1

])

.

Analogously performing i + 2 reductions from (3.13) to (3.14) on the sequence of matrix
pairs (3.37) one finds that

rf,i+2 = rank
([

E
(1,1)
k,i+1

])

.
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This shows part 1. To prove part 2. let Zk,i+1 be bases of corange
(

E
(1,1)
k,i+1

)

. Performing again

i + 2 reductions from (3.13) to (3.14) on the sequence (3.37) and denoting the so obtained
sequence by {(Êk, Âk)}k∈Z, we have that

Ẑk :=
















Zk,i+1 0 · · · · · · · · · · · · 0

0 Iwi+1

. . .
...

...
. . . . . . . . .

...
...

. . . Iw0

. . .
...

...
. . . Iai+1

. . .
...

...
. . .

. . . 0
0 · · · · · · · · · · · · 0 Ia0
















are bases of corange
(

Êk

)

. Since all Âk then only contain the A
(1)
k,i+1 and Iaj

block entries,

it is clear that

hf,i+2 = rank
(

ẐH
k Âk

)

= rank
(

Zk,i+1A
(1)
k,i+1

)

+ a0 + . . . + ai+1 (3.38)

⇒rank
(

Zk,i+1A
(1)
k,i+1

)

= hf,i+2 − ai+1 − . . .− a0 (3.39)

(3.18b)
⇒ rank

(

Zk,i+1A
(1)
k,i+1

)

= ai+2. (3.40)

This proves (3.35). Selecting i = µ in (3.35) yields

{(Ek, Ak)} ∼













































E
(1,1)
k,µ E

(1,2)
k,µ ∗ · · · ∗

0 0 Fk,µ ∗
...

...
. . . . . .

...
...

. . . Fk,1

0 0 · · · · · · 0
0 0 Gk,µ ∗
...

...
. . . . . .

...
...

. . . Gk,1

0 0 · · · · · · 0




















,




















A
(1)
k,µ 0 0 · · · 0

0 0 · · · · · · 0
...

...
...

...
...

...
0 0 · · · · · · 0
0 Iaµ

0 · · · 0
... 0

. . . . . .
...

...
...

. . .
. . . 0

0 0 · · · 0 Ia0













































(3.18b)
=















E
(1,1)
k,µ W̃k

0 Fk

0 Gk



 ,





∗ 0
0 0
0 Ihf,µ














.

By induction we obtain that all
[

E
(1,1)
k,µ E

(1,2)
k,µ

]

have full row rank rf,µ and that all E
(1,1)
k,µ

have rank rf,µ+1. Further, from (3.20) we know that rf,µ = rf,µ+1. Thus, all E
(1,1)
k,µ have to

have full row rank rf,µ and one may reduce each of these matrices to echelon form (3.3) to
obtain the form (3.32).
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Further reduction of the Fk and Gk blocks in (3.32) are possible.

Corollary 3.21. Let the strangeness index µ of the sequence of matrix pairs {(Ek, Ak)}k∈Z

as in (3.25) be well defined. Then, with the definitions from (3.18), {(Ek, Ak)}k∈Z is globally
equivalent to a sequence of the form















Irf,µ
0 Wk

0 0 Ck

0 0 Dk



 ,





∗ ∗ 0
0 0 0
0 0 Ihf,µ















k∈Z

, (3.41)

with

Ck =










0 0 Iwµ
0

Iwµ−1 0
. . .

Iw1 0
0 0










, (3.42)

Dk =



















0 0 0 D
(µ)

k 0 ∗ · · · 0 ∗

0 0 0 E
(µ)

k 0 ∗ · · · 0 ∗

0 0 0 D
(µ−1)

k · · · 0 ∗

0 0 0 E
(µ−1)

k · · · 0 ∗
. . .

...
...

0 D
(1)

k

0 E
(1)

k

0 0
0 0



















, (3.43)

where all D
(i)
k and E

(i)
k have sizes wi+1×(ai−1−wi) and (ai−wi+1)×(ai−1−wi), respectively,

and all Wk = [ ∗ · · · ∗ ] are partitioned accordingly. In particular, all D
(i)
k and E

(i)
k together

have full row rank, i.e.,

rank

([

D
(i)
k

E
(i)
k

])

= wi+1 + (ai − wi+1) = ai ∀k ∈ Z. (3.44)

The diagonal blocks in Dk all are square matrices.

Proof. The only differences between the forms (3.32) and (3.41) are in the (2, 3) and (3, 3)
blocks. We can transform these blocks without affecting the other structure (the Wk block
is affected, but this does not matter, since its structure is not used). Thus, it is sufficient
to only consider the sequence of matrix pairs which is built of the blocks mentioned before.
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From Theorem 3.20 we know that

{([
Fk

Gk

]

,

[
0

Ihf,µ

])}

=









































0 F
(µ)
k ∗
. . . . . .

. . . F
(1)
k

0

0 G
(µ)
k ∗

. . .
. . .
. . . G

(1)
k

0


















,


















0 · · · · · · 0
...

...
...

...
0 · · · · · · 0

Iaµ

. . .
. . .

Ia0









































,

where all F
(i)
k have full row rank wi, due to (3.34). Fixing any i ∈ {1, . . . , µ} we see that

all F
(i)
k can be reduced to echelon form by transforming with invertible matrices in block

row µ + 1− i and in block column µ + 2− i. This indeed affects the matrices G
(i)
k and the

identity matrices Iai−1
(by a multiplication with an invertible matrix from the right) but

the G
(i)
k matrices still have full row rank, together with the new F

(i)
k matrices (which now

are in echelon form), i.e., (3.34) still holds. Also the identity matrices Iai−1
can be restored

by transforming with invertible matrices from the left. This alters the G
(i)
k once more but,

again, condition (3.34) is not affected. From this we see that
{([

Fk

Gk

]

,

[
0

Ihf,µ

])}

∼





















































0 Iwµ
0 ∗ ∗ · · · · · · ∗

Iwµ−1
0

...
. . . ∗ ∗

Iw1
0
0

0 G
(µ,1)
k G

(µ,2)
k ∗ ∗ · · · · · · ∗

G
(µ−1,1)
k G

(µ−1,2)
k

...
. . . ∗ ∗

G
(1,1)
k G

(1,2)
k

0
























,

[
0

Ihf,µ

]






























∼





















































0 Iwµ
0 0 ∗ 0 ∗

Iwµ−1
0

...
...

. . . 0 ∗
Iw1

0
0

0 0 G
(µ,2)
k 0 ∗ 0 ∗

0 G
(µ−1,2)
k

...
...

. . . 0 ∗

0 G
(1,2)
k

0
























,

[
0

Ihf,µ

]





























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∼





















































0 Iwµ
0 0 0 · · · 0 0

Iwµ−1
0

...
...

. . . 0 0
Iw1

0
0

0 0 G
(µ,2)
k 0 ∗ 0 ∗

0 G
(µ−1,2)
k

...
...

. . . 0 ∗

0 G
(1,2)
k

0
























,

[
0

Ihf,µ
+ Bk

]






























,

where all the matrices Bk are upper triangular and nilpotent. Thus, these Bk matrices can
again be eliminated by adding multiples of a row k to a row l, where always k > l (i.e.,
by transforming from the left). By splitting the block rows in the lower part (i.e., the part
corresponding to the Gk block) and using

G(i,2) =

[

D
(i)
k

E
(i)
k

]

,

we finally obtain the assertion, where (3.44) follows from (3.34), since (3.34) now reads

rank









Iwi
0

0 D
(i)
k

0 E
(i)
k







 = si−1.

The converse of Theorem 3.20 clearly is easier to understand than Theorem 3.20 itself.

Lemma 3.22. Let µ ∈ N0 and let {âi}i∈N0 be a non-increasing sequence with âµ+1 = 0
and âµ 6= 0. Further let {ŵi}i∈N0 be a non-negative sequence with ŵi + âi ≤ âi−1. Set

ĥf = â0 + . . . + âµ and let r̂f ∈ N0 be an integer. Assume that Ek, Ak ∈ Cm,n are matrices
such that the sequence {(Ek, Ak)}k∈Z is globally equivalent to















Ir̂f
0 Wk

0 0 Fk

0 0 Gk



 ,





∗ ∗ 0
0 0 0
0 0 Iĥf















k∈Z

, (3.45)

with

Fk =









0 F
(µ)
k ∗
. . .

. . .

. . . F
(1)
k

0









, Gk =









0 G
(µ)
k ∗

. . .
. . .
. . . G

(1)
k

0









, (3.46)
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where all F
(i)
k and G

(i)
k have sizes ŵi× âi−1 and âi× âi−1, respectively, and all Wk = [ ∗ · · · ∗ ]

are partitioned accordingly. Also assume that all F
(i)
k and G

(i)
k together have full row rank,

i.e.,

rank

([

F
(i)
k

G
(i)
k

])

= âi + ŵi ∀k ∈ Z. (3.47)

Then {(Ek, Ak)}k∈Z has a well defined strangeness index µ as defined in (3.25). The sequence
of characteristic values is thereby given as

rf,i = r̂f +

µ
∑

j=i+1

ŵj +

µ
∑

j=i+1

âj, (3.48)

hf,i =
i∑

j=0

âj. (3.49)

Proof. Performing i reductions from (3.13) to (3.14) on the sequence of pencils (3.46) shows
that for the resulting sequence we have

{(Ek,i, Ak,i)}k∈Z ∼

















































Ir̂f
0 ∗ ∗ · · · ∗ 0

0 0 0 F
(µ)
k ∗ 0

...
...

...
. . . . . . 0

...
...

...
. . . F

(i+1)
k 0

0 0 0 · · · · · · 0 0

0 0 0 G
(µ)
k ∗ 0

...
...

...
. . . . . . 0

...
...

...
. . . G

(i+1)
k 0

0 0 0 · · · · · · 0 0
0 0 0 · · · · · · 0 0






















,























∗ ∗ 0 · · · · · · · · · 0

0 0
...

...
...

...
...

...
...

...
...

...
0 0 0 · · · · · · · · · 0
0 0 Iâµ

...
...

. . .
...

...
. . .

0 0 Iâi

0 0 Iĥf,i−1



















































,

where ĥf,i−1 := â0 + . . . + âi−1. Thus, one can see, that the rank of all Ek,i is constant in k
and given by (3.48). Once Zk are bases of corange (Ek,i) one also notices, that the rank of

ZH
k Ak,i is also constantly equal to âi + ĥf,i−1, which shows (3.49).

We derive another Lemma from Theorem 3.20 which will be needed in the next section.

Lemma 3.23. With the assumptions and notation of Theorem 3.20 we have

rank (FiGi+1 . . . Gl) =

µ
∑

j=l−i+1

wj and (3.50)

rank (GiGi+1 . . . Gl) =

µ
∑

j=l−i+1

aj (3.51)
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for all l ≥ i. Also, we know that all non-zero rows of FiGi+1 . . . Gl and all non-zeros rows of
GiGi+1 . . . Gl are linear independent.

Proof. Since all matrices Fk and Gk are strictly block-upper-triangular with µ+1 block-rows
and block-columns it is clear that all matrices Fk and Gk are nilpotent with nilpotency index
µ + 1. Also we have that

Fk1Gk2 . . . Gkµ+1 = 0 and

Gk1Gk2 . . . Gkµ+1 = 0

for any integer sequences k1, . . . , kµ+1. For l = i the claim is that all Fi have rank
∑µ

j=1 wj

and that all Gi have rank
∑µ

j=1 aj, which follows directly from condition (3.34). Thus, it is
sufficient to show the statement of the Lemma for i < l < µ + i.
For i < l < µ + i we have

Gi+1 . . . Gl =














0 · · · 0 H
(µ)
i+1,l ∗

...
. . .

. . .
...

. . . H
(l−i)
i+1,l

... 0

...
...

0 · · · · · · 0














,

where we have used the definition H
(j)
p,q := G

(j)
p . . . G

(j−q+p)
q . Since l − i < µ, the ma-

trix Gi+1 . . . Gl may have two block-rows and two block-columns that are non zero. Pre-
multiplying with Fi or Gi yields

FiGi+1 . . . Gl =














0 · · · 0 F
(µ)
i H

(µ−1)
i+1,l ∗

...
. . . . . .

...
. . . F

(l−i+1)
i H

(l−i)
i+1,l

... 0

...
...

0 · · · · · · 0














and

GiGi+1 . . . Gl =














0 · · · 0 H
(µ)
i,l ∗

...
. . . . . .

...
. . . H

(l−i+1)
i,l

... 0

...
...

0 · · · · · · 0














.
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In the following we show that rank
(

H
(j)
i,l

)

= aj and rank
(

F
(j)
i H

(j−1)
i+1,l

)

= wj and also that

H
(j)
i,l and F

(j)
i H

(j−1)
i+1,l are both of full row rank. This then immediately proves the claim.

We first observe, that H
(j)
i,l is a product of a aj × aj−1 matrix and a aj−1 × aj−2 matrix

and so on. Since {ai}i∈N0 is a non-increasing sequence, due to (3.19e), this means that H
(j)
i,l

is a product of full row rank matrices (G
(t)
s ), where the column dimension increases with

every further post-multiplication. Thus, H
(j)
i,l has to have full row rank aj. With the very

same argument we see that F
(j)
i H

(j−1)
i+1,l is of full row rank wj , since from (3.34) we know that

wj ≤ aj−1.

In [6] index concepts for discrete-time descriptor systems are examined. There an approach
similar to the following is taken.

Theorem 3.24. Let {(Ek, Ak)}k∈Z be a sequence of matrix pairs and introduce the following
matrices:

Zk basis of corange (Ek) = kernel
(
Ek

H
)
,

Z ′
k basis of range (Ek) ,

Tk basis of kernel (Ek) ,

T ′
k basis of cokernel (Ek) = range

(
Ek

H
)
,

Vk basis of corange
(
ZH

k AkTk−1

)
,

V ′
k basis of range

(
ZH

k AkTk−1

)
,

for all k ∈ Z. With this, define the following quantities:

rf,k := rank (Ek) ,

ãk := rank
(
ZH

k AkTk−1

)
,

s̃k := rank
(
V H

k ZH
k AkT

′
k−1

)
,

for all k ∈ Z. Under the assumption that

rf ≡ rf,k, ã ≡ ãk, s̃ ≡ s̃k, k ∈ Z, (3.52)

the sequence {(Ek, Ak)}k∈Z is globally equivalent to























Is̃ 0 0 0
0 Id̃ 0 0
0 0 0 0
0 0 0 0
0 0 0 0









,









0 A
(1,2)
k 0 A

(1,4)
k

0 A
(2,2)
k 0 A

(2,4)
k

0 0 Iã 0
Is̃ 0 0 0
0 0 0 0























, (3.53)

where the abbreviation d̃ := rf − s̃ has been used.
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Proof. We have

{(Ek, Ak)}k∈Z ∼

{([
Z ′

k
HEkT

′
k Z ′

k
HEkTk

Zk
HEkT

′
k Zk

HEkTk

]

,

[
Z ′

k
HAkT

′
k−1 Z ′

k
HAkTk−1

Zk
HAkT

′
k−1 Zk

HAkTk−1

])}

k∈Z

=

{([

Z ′
k
HEkT

′
k 0

0 0

]

,

[
Z ′

k
HAkT

′
k−1 Z ′

k
HAkTk−1

Zk
HAkT

′
k−1 Zk

HAkTk−1

])}

k∈Z

∼















Irf
0

0 0
0 0



 ,





Ã
(1,1)
k Ã

(1,2)
k

V ′
k

HZk
HAkT

′
k−1 V ′

k
HZk

HAkTk−1

Vk
HZk

HAkT
′
k−1 Vk

HZk
HAkTk−1















k∈Z

=















Irf
0

0 0
0 0



 ,





Ã
(1,1)
k Ã

(1,2)
k

V ′
k

HZk
HAkT

′
k−1 V ′

k
HZk

HAkTk−1

Vk
HZk

HAkT
′
k−1 0















k∈Z

∼















Irf
0 0

0 0 0
0 0 0



 ,





Ã
(1,1)
k Ã

(1,2)
k Ã

(1,3)
k

V ′
k

HZk
HAkT

′
k−1 Iã 0

Vk
HZk

HAkT
′
k−1 0 0















k∈Z

∼















Irf
0 0

0 0 0
0 0 0



 ,





Ã
(1,1)
k 0 Ã

(1,3)
k

0 Iã 0
Vk

HZk
HAkT

′
k−1 0 0















k∈Z

∼























Is̃ 0 0 0
0 Id̃ 0 0
0 0 0 0
0 0 0 0
0 0 0 0









,









Ã
(1,1)
k Ã

(1,2)
k 0 Ã

(1,4)
k

Ã
(2,1)
k Ã

(2,2)
k 0 Ã

(2,4)
k

0 0 Iã 0
Is̃ 0 0 0
0 0 0 0























k∈Z

∼























Is̃ 0 0 0
0 Id̃ 0 0
0 0 0 0
0 0 0 0
0 0 0 0









,









0 Ã
(1,2)
k 0 Ã

(1,4)
k

0 Ã
(2,2)
k 0 Ã

(2,4)
k

0 0 Iã 0
Is̃ 0 0 0
0 0 0 0























k∈Z

.

By further reducing (3.53) to the form






















0 0 0 0
0 Id̃ 0 0
0 0 0 0
0 0 0 0
0 0 0 0









,









0 A
(1,2)
k 0 A

(1,4)
k

0 A
(2,2)
k 0 A

(2,4)
k

0 0 Iã 0
Is̃ 0 0 0
0 0 0 0























, (3.54)

[6] then defines a sequence of characteristic values which we denote by

{(r
(i)
f , ã(i), s̃(i))}i∈N0 (3.55)
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and a sequence of sequences of matrix pairs similar to Remark 3.13. In the following we
compare the approach from [6] (as in Theorem 3.24) to our approach.

Lemma 3.25. With the assumptions and symbols from the preceding Theorem 3.24 and hf,k

defined as in (3.11c) we have that

hf,k = ãk + s̃k = ã + s̃ =: hf .

In particular, under the assumptions of Theorem 3.24, assumption (3.12) is satisfied (and
thus all assumptions of Lemma 3.10).

Proof. Using the notation of Theorem 3.24, we see that Vk is a basis of kernel
(
TH

k−1A
H
k Zk

)
,

from which it is clear that TH
k−1A

H
k ZkVk = 0. Transposing the very last identity yields

V H
k ZH

k AkTk−1 = 0. (3.56)

Also we know that
V ′

k
H

ZH
k AkTk−1 has full row rank ãk, (3.57)

since V ′
k is a basis of range

(
ZH

k AkTk−1

)
. Hence, we finally obtain

hf,k = rank
(
ZH

k Ak

)

= rank

([

V ′
k

HZH
k AkTk−1 V ′

k
HZH

k AkT
′
k−1

V H
k ZH

k AkTk−1 V H
k ZH

k AkT
′
k−1

])

(3.56)
= rank

([

V ′
k

HZH
k AkTk−1 V ′

k
HZH

k AkT
′
k−1

0 V H
k ZH

k AkT
′
k−1

])

(3.57)
= rank

([

V ′
k

HZH
k AkTk−1 0
0 V H

k ZH
k AkT

′
k−1

])

= rank
(

V ′
k

H
ZH

k AkTk−1

)

+ rank
(
V H

k ZH
k AkT

′
k−1

)

= ãk + s̃k.

The result then follows, since rf,k, ãk, and s̃k are constant for all k ∈ Z.

Remark 3.26. Note that (3.53) can be transformed to a sequence of matrix pairs of the
form (3.13) by simple block column permutations. From this we see that reducing (3.13)
to (3.14) is quite the same as reducing (3.53) to (3.54). Hence, Lemma 3.25 suggests that
our approach is more general than the one in [6], since it only requires hf,k = ãk + s̃k to be
constant in every step of the reduction procedure.

Remark 3.27. Suppose that a sequence of matrix pairs {(Ek, Ak)}k∈Z satisfies the assump-
tions of Theorem 3.24. Further suppose, that the associated reduced sequence (3.54) also
satisfies the constant rank assumptions of Theorem (3.24). Then we know that the first two
elements of the sequence {(rf,i)}i∈N0 (as defined in Remark 3.13) are given by rf,0 = d̃ + s̃
and rf,1 = d̃. Thus, from (3.18d) it follows that s0 = rf,0 − rf,1 = s̃ = s̃(0), where s̃(0) is as
in (3.55). We conjecture that it is possible to show that for the sequence of characteristic
values (3.55) we have s̃(i) = si for all i ∈ N0, where si is as defined in (3.18d).
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3.2.1 Local and global invariants

Analogously to [8] in this subsection the connections between the global invariants of a given
sequence of matrix pairs and the local invariants of corresponding inflated descriptor systems
are investigated. The inflated descriptor system of a sequence of matrix pairs {(Ek, Ak)}k∈Z

of stage l ∈ N is given by

M
(l)
k (z(l))k = N

(l)
k (z(l))k + (g(l))k, (3.58)

where

M
(l)
k =








Ek

−Ak+1 Ek+1

. . . . . .

−Ak+l Ek+l








,

N
(l)
k =








Ak 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0








,

(z(l))k =






xk

...
xk+l




 ,

(g(l))k =






fk

...
fk+l




 .

This corresponds to combining l steps of the original descriptor system in one step. For
every l ∈ N and every k ∈ Z, we can determine the local characteristic values (3.6) of the

matrix pair (M
(l)
k , N

(l)
k ). The next Theorem shows that those local characteristic values are

invariant under global equivalence transformations of the original sequence of matrix pairs.

Theorem 3.28. Let {(Ek, Ak)}k∈Z and {(Ẽk, Ãk)}k∈Z be two globally equivalent sequences
of matrix pairs, i.e., suppose there exist pointwise invertible matrix sequences {Pk}k∈Z and
{Qk}k∈Z with

Ek = PkẼkQk+1,

Ak = PkÃkQk.

Then for any k ∈ Z and for any l ∈ N the matrix pairs (M
(l)
k , N

(l)
k ) and (M̃

(l)
k , Ñ

(l)
k ) (corre-

sponding to (3.58)) are locally equivalent as in Definition (3.6).
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Proof. Let k ∈ Z and l ∈ N be fixed. Define the matrices

Π :=






Pk

. . .

Pk+l




 ,

Θ :=






Qk+1

. . .

Qk+l+1




 ,

Ψ :=






Qk

. . .

Qk+l




 .

Then we have

ΠM̃
(l)
k Θ =








PkẼk

−Pk+1Ãk+1 Pk+1Ẽk+1

. . . . . .

−Pk+lÃk+l Pk+lẼk+l








Θ

=








PkẼkQk+1

−Pk+1Ãk+1Qk+1 Pk+1Ẽk+1Qk+2

. . . . . .

−Pk+lÃk+lQk+l Pk+lẼk+lQk+l+1








=








Ek

−Ak+1 Ek+1

. . .
. . .

−Ak+l Ek+l








= M
(l)
k .

For the other matrix we also get

ΠÑ
(l)
k Ψ =








PkÃkQk 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0








= N
(l)
k

from which the local equivalence follows.

To make a statement about the relation between the global characteristics of the original
sequence of matrix pairs and the local characteristics of its inflated descriptor systems as in
[8] we need the following Lemma.
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Lemma 3.29. With the assumptions and notation of Theorem 3.20 we have

rank



















Gk . . . Gk+l

FkGk+1 . . . Gk+l

...
Fk+l−1Gk+l

Fk+l



















=

µ
∑

j=l+1

aj +

l+1∑

i=1

µ
∑

j=i

wj, (3.59)

for all k ∈ Z and all l ∈ N0.

Proof. We use induction to prove the claim.
Induction basis: l = 0
Here (3.59) reads

rank

([
Gk

Fk

])

=

µ
∑

j=1

aj +

µ
∑

j=1

wj ,

which follows directly from Theorem 3.20.
Induction step: l→ l + 1 with the help of (3.59).

Since all non-zero rows of

[
Gk+l+1

Fk+l+1

]

are linear independent we know, that

rank



















Gk . . . Gk+l+1

FkGk+1 . . . Gk+l+1

...
Fk+lGk+l+1

Fk+l+1



















= rank
































Gk . . . Gk+l

FkGk+1 . . . Gk+l

...
Fk+l−1Gk+l

Fk+l










0

0 I












[
Gk+l+1

Fk+l+1

]












= rank



















Gk . . . Gk+l

FkGk+1 . . . Gk+l

...
Fk+l−1Gk+l

Fk+l










Gk+l+1










+ rank (Fk+l+1) . (3.60)

To determine the rank of









Gk . . . Gk+l

FkGk+1 . . . Gk+l

...
Fk+l−1Gk+l

Fk+l










︸ ︷︷ ︸

=:H1

Gk+l+1
︸ ︷︷ ︸

=:H2

we first notice the special structure of the block entries of the matrices H1 and H2, which
was presented in the proof of Lemma 3.23. Lemma 3.23 also shows, that all non-zero rows
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of H1 are linear independent, since due to the inductive assumption we have

rank (H1) =rank (Gk . . . Gk+l) +

rank (FkGk+1 . . . Gk+l) + . . . +

rank (Fk+l−1Gk+l) +

rank (Fk+l) .

By multiplying H1 with H2 from the right more rows that only contain zeros are generated.
However, the non-zero rows of H1H2 are still linear independent. To see this, note that

range (GkGk+1 . . . Gk+lGk+l+1) ⊂ range (GkGk+1 . . . Gk+l) ,

range (FiGi+1 . . . Gk+lGk+l+1) ⊂ range (FiGi+1 . . . Gk+l) , for all i = k, . . . , l,

and remember the special structure presented in the proof of Lemma 3.23. This proves that

rank (H1H2) =rank (Gk . . . Gk+lGk+l+1) +

rank (FkGk+1 . . . Gk+lGk+l+1) + . . . +

rank (Fk+l−1Gk+lGk+l+1) +

rank (Fk+lGk+l+1)

=

µ
∑

j=l+2

aj +

µ
∑

j=l+2

wj + . . . +

µ
∑

j=3

wj +

µ
∑

j=2

wj . (3.61)

Thus, we have

rank



















Gk . . . Gk+l+1

FkGk+1 . . . Gk+l+1

...
Fk+lGk+l+1

Fk+l+1



















(3.60)
= rank (H1H2) + rank (Fk+l+1)

(3.61)
=

µ
∑

j=l+2

aj +

µ
∑

j=l+2

wj + . . . +

µ
∑

j=3

wj +

µ
∑

j=2

wj +

µ
∑

j=1

wj ,

which proves the claim.

Lemma 3.29 now will be used to show the following Theorem.

Theorem 3.30. With Ek, Ak ∈ Cm,n let the strangeness index µ of {(Ek, Ak)}k∈Z as in
(3.25) be well defined with global characteristic values (rf,i, hf,i), i ∈ N0. Fix any k̂ ∈ Z and

for any l ∈ N0, let (M
(l)

k̂
, N

(l)

k̂
) be the inflated descriptor system corresponding to (3.58) with

local characteristic values (r̃f,l, h̃f,l) as in (3.6). Then,

r̃f,l = (l + 1)m−
l∑

i=0

ai −
l∑

i=0

vi

(3.18)
=

l∑

i=0

rf,i +
l−1∑

i=0

hf,i, (3.62)

h̃f,l =
l∑

i=0

ai

(3.18b)
= hf,l, (3.63)

with vi defined in (3.18g).

69



Proof. By Theorem 3.28, we may assume that the sequence {(Ek, Ak)}k∈Z is already in
canonical form (3.32). With this and by using k = k̂, from (3.58) we get that

(M (l), N (l)) := (M
(l)

k̂
, N

(l)

k̂
)

=















Ek

−Ak+1 Ek+1

. . . . . .

−Ak+l Ek+l








,








Ak 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0















=





























































Irf,µ
0 Wk

0 0 Fk

0 0 Gk

∗ ∗ 0 Irf,µ
0 Wk+1

0 0 0 0 0 Fk+1

0 0 −Ihf,µ
0 0 Gk+1

. . . . . .
. . . . . .

. . .
. . .

∗ ∗ 0 Irf,µ
0 Wk+l

0 0 0 0 0 Fk+l

0 0 −Ihf,µ
0 0 Gk+l































, N (l)































∼





























































Irf,µ
0 0

0 0 Fk

0 0 Gk

0 0 0 Irf,µ
0 0

0 0 0 0 0 Fk+1

0 0 −Ihf,µ
0 0 Gk+1

. . .
. . .

. . . . . .
. . . . . .

0 0 0 Irf,µ
0 0

0 0 0 0 0 Fk+l

0 0 −Ihf,µ
0 0 Gk+l































, N (l)































,

where we have to start eliminating the ∗ and Wk blocks from the bottom of the matrix.
Again starting from the bottom, we eliminate the Fk+l−1, . . . , Fk and Gk+l−1, . . . , Gk blocks
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with help of the −Ihf,µ
blocks, which are below these blocks. By doing so we obtain that

(M (l), N (l)) is locally equivalent to













































































Irf,µ
0 0

0 0 Fk

0 0 Gk

0 0 0 Irf,µ
0 0

0 0 0 0 0 Fk+1

0 0 −Ihf,µ
0 0 Gk+1

0 0 0
. . .

0 0 0
. . .

0 0 −Ihf,µ

. . .

. . . Irf,µ
0 0

. . . 0 0 Fk+l−1

. . . 0 0 Gk+l−1

0 0 0 Irf,µ
0 0

0 0 0 0 0 Fk+l

0 0 −Ihf,µ
0 0 Gk+l







































, N (l)







































∼













































































Irf,µ
0 0

0 0 Fk

0 0 Gk

0 0 0 Irf,µ
0 0

0 0 0 0 0 Fk+1

0 0 −Ihf,µ
0 0 Gk+1

0 0 0
. . .

0 0 0
. . .

0 0 −Ihf,µ

. . .

. . . Irf,µ
0 0 0

. . . 0 0 0 Fk+l−1Gk+l

. . . 0 0 0 Gk+l−1Gk+l

0 0 0 Irf,µ
0 0

0 0 0 0 0 Fk+l

0 0 −Ihf,µ
0 0 0







































, N (l)






































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∼ . . . ∼

















































































Irf,µ
0 0 0

0 0 0 FkR
(1,l)
k

0 0 0 GkR
(1,l)
k

0 0 0 Irf,µ
0 0 0

0 0 0 0 0 0 Fk+1R
(2,l)
k

0 0 −Ihf,µ
0 0 0 0

0 0 0
. . .

0 0 0
. . .

...

0 0 −Ihf,µ

. . .

. . . Irf,µ
0 0 0

. . . 0 0 0 Fk+l−1R
(l,l)
k

. . . 0 0 0 0
0 0 0 Irf,µ

0 0

0 0 0 0 0 Fk+l

0 0 −Ihf,µ
0 0 0









































, N (l)









































,

(3.64)

by using the definition R
(i,j)
k :=

∏j

l=i Gk+l. By Lemma 3.29 we can determine the rank of
M (l) as the sum of the ranks of the block columns. Thus, we have

r̃f,l =(l + 1)rf,µ + lhf,µ + rank















R
(0,l)
k

FkR
(1,l)
k

...

Fk+lR
(l+1,l)
k















Lemma 3.29
= (l + 1)rf,µ + lhf,µ +

µ
∑

j=l+1

aj +

µ
∑

j=l+1

wj + . . . +

µ
∑

j=1

wj. (3.65)

With (3.65) we show (3.62) by induction. For l = 0 the inductive argument follows directly

from (3.18g), since (Ek̂, Ak̂) = (M
(0)

k̂
, N

(0)

k̂
) and a0 = hf,0 because of (3.18b). Assume that

(3.62) holds for any l < µ. Then we obtain

r̃f,l+1
(3.65)
= (l + 2)rf,µ + (l + 1)hf,µ +

µ
∑

j=l+2

aj +

µ
∑

j=l+2

wj + . . . +

µ
∑

j=1

wj

= (l + 1)rf,µ + lhf,µ +

µ
∑

j=l+1

aj +

µ
∑

j=l+2

wj +

µ
∑

j=l+1

wj + . . . +

µ
∑

j=1

wj

+rf,µ + hf,µ − al+1
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(3.65)
= r̃f,l + rf,µ + hf,µ − al+1 +

µ
∑

j=l+2

wj

= r̃f,l + rf,µ + hf,µ − al+1 +

µ
∑

j=1

wj −
l+1∑

j=1

wj

(3.19h)
= r̃f,l + rf,µ + hf,µ − al+1 + (vµ − v0)− (vl+1 − v0)

= r̃f,l − al+1 − vl+1 + rf,µ + hf,µ + vµ
︸ ︷︷ ︸

(3.18g)
= m

,

which, with help of the inductive assumption, yields (3.62).
Let Z be a basis of corange

(
M (l)

)
. We want to determine rank

(
ZHN (l)

)
in order to prove

the statement about h̃f,l. Since only the first (three) block rows of N (l) contain non-zero
entries, we only need to consider the first (three) block columns of ZH , i.e., the first (three)

block rows of Z. Let us denote the first (three) block rows by the matrix





Z1

Z2

Z3



. Then due

to the structure of (3.64) we have Z1 = 0. Further, we have that

rank (Z2) =vµ −

µ
∑

j=l+1

wj ,

rank (Z3) =hf,µ −

µ
∑

j=l+1

aj ,

because of Lemma 3.23. Therefore, we know that

h̃f,l = rank
(
ZHN (l)

)
= rank




[
0 ZH

2 ZH
3

]





∗ ∗ 0
0 0 0
0 0 Ihf,µ









= rank
(
ZH

3

)
= hf,µ −

µ
∑

j=l+1

aj

(3.18b)
= hf,µ − (hf,µ − hf,µ−1)− . . .− (hf,l+1 − hf,l)

= hf,l =
l∑

j=0

aj.

This proves the claim.

Obviously, the formulas (3.62) and (3.63) correspond to the formulas in [8] when one adds
up the algebraic part and the strangeness to one quantity. Also, as in [8], we get the converse
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of the result, i.e., the knowledge of the sequence {(r̃f,l, h̃f,l)} allows for the determination of
the sequence {(rf,i, hf,i)} of the global characteristic values of the sequence of matrix pairs
{(Ek, Ak)}k∈K.

Corollary 3.31. Let the strangeness index µ of {(Ek, Ak)}k∈Z as in (3.25) be well defined

and let (r̃f,l, h̃f,l), l = 0, . . . , µ be the local characteristic values of (M
(l)

k̂
, N

(l)

k̂
) for some k̂ ∈ Z

(as in Theorem 3.30). Then the sequence {(rf,i, hf,i)}i∈N0 of the global characteristic values
of the sequence of matrix pairs {(Ek, Ak)}k∈Z can be obtained from

hf,l = h̃f,l, (3.66a)

rf,l = r̃f,l − r̃f,l−1 − h̃f,l−1, (3.66b)

where we have used h̃f,−1 = 0 and r̃f,−1 = 0.

Proof. Using the formulas from Theorem 3.30 we immediately get (3.66a). Also, from The-
orem 3.30 we see that

r̃f,l − r̃f,l−1 =
l∑

i=0

rf,i +
l−1∑

i=0

hf,i −
l−1∑

i=0

rf,i −
l−2∑

i=0

hf,i = rf,l + hf,l−1,

which proves (3.66b).

3.2.2 Existence and uniqueness of solutions

Concerning existence and uniqueness of sequences of matrix pairs with well defined strange-
ness index we get similar results as in [8].

Theorem 3.32. Let the strangeness index µ of the sequence {(Ek, Ak)}k∈Z as in (3.25) be
well defined. Then the discrete descriptor system (1.5) is equivalent (in the sense that there
is a one-to-one correspondence between the solution/sequence spaces) to a discrete descriptor
system of the form

xk+1
1 = A

(1)
k xk

1 + A
(3)
k xk

3 + fk
1 , rf,µ (3.67a)

0 = xk
2 + fk

2 , hf,µ (3.67b)

0 = fk
3 , vµ (3.67c)

where with uµ := n − rf,µ − hf,µ we have xk
3 ∈ Cuµ and each of the inhomogeneities fk

1 , fk
2 ,

fk
3 is determined by the original right hand sides fk, . . . , fk+µ+1 as in (1.5) for all k ∈ Z.

For the associated forward problem

Ekx
k+1 = Akx

k + fk, for all k ∈ N0, (3.68)

we also have the following results:
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1. (3.68) is solvable if and only if the vµ consistency conditions conditions

fk
3 = 0

are fulfilled for all k ∈ N0.

2. An initial condition x0 = x̂ together with (3.68) is consistent if and only if in addition
the hf,µ conditions

x0
2 = x̂2 = −f0

2

are satisfied.

3. The corresponding initial value problem is uniquely solvable if and only if in addition

uµ = 0

holds.

Proof. Under the assumptions of the Theorem the original sequence {(Ek, Ak)}k∈Z can be
transformed to the form (3.26) by µ + 1 reduction steps and proper global equivalence
transformations. Both of these operations generate a one-to-one correspondence of solutions.

3.3 Backward global canonical form

Looking back at Theorem 2.20 we recall that one can look at three different cases of descriptor
systems. The first case is where one starts at a point in time k0, and calculates into the
future, i.e., one calculates a solution {xk}k≥k0. This case has been considered in the previous
section.
The second case is where one starts at a point in time k0, and calculates into the past, i.e.,
one calculates a solution {xk}k≤k0. This case is closely related to the first case. To see this
suppose that a descriptor system of the form

Ekx
k+1 = Akx

k + fk, k ∈ Z, (3.69)

xk0 = x̂,

is given and we are looking for a solution for all k ≤ k0. Then, by defining yk := x−k+1 and
gk := f−k, (3.69) is equivalent to

E−k x−k+1 = A−k x−k + f−k, k ∈ Z

⇔ E−k yk = A−k yk+1 − gk, k ∈ Z

⇔ A−k yk+1 = E−k yk + gk, k ∈ Z.

By calculating the solution of the very last system into the future with the initial condition
y−k0+1 = x̂, i.e., by calculating {yk}k≥−k0+1, we see through resubstitution, that we got a so-
lution {yk}k≥−k0+1 = {x−k+1}k≥−k0+1 = {xk+1}−k≥−k0+1 = {xk+1}k≤k0−1 = {xk}k−1≤k0−1 =
{xk}k≤k0, i.e., a solution corresponding to the second case of Theorem 2.20. Thus, we do not
have to consider the second case separately. We make the following definition.
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Definition 3.33. Let {(Ek, Ak)}k∈Z be a sequence of matrix pairs. Then

{(A−k, E−k)}k∈Z (3.70)

is called the reversed sequence of matrix pairs. Analogously, the descriptor system corre-
sponding to (3.70) is called the reversed descriptor system. Also, the strangeness index of
(3.70) is call reversed strangeness index and is denoted by µb (for backwards). In contrast to
this, the strangeness index of the original sequence is also called ordinary strangeness index
or forward strangeness index and denoted by µf .

Clearly the reversed system is very similar to the original system and obviously the following
Lemma may be derived.

Lemma 3.34. Let {(Ek, Ak)}k∈Z and {(Ẽk, Ãk)}k∈Z be two globally equivalent sequences of
matrix pairs. Then the reversed sequences are also globally equivalent.

Proof. By assumption we know that there exist invertible matrices Pk, Qk such that

Ek = PkẼkQk+1,

Ak = PkÃkQk,

for all k ∈ Z. Substituting k by −k then yields

E−k = P−k Ẽ−k Q−k+1,

A−k = P−k Ã−k Q−k,

for all k ∈ Z. Setting Rk := P−k and Sk := Q−k+1, this condition then is finally equivalent
to

A−k = Rk Ã−k Sk+1,

E−k = Rk Ẽ−k Sk,

for all k ∈ Z, which proves the claim with the transformation matrix sequences {Rk} and
{Sk}.
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Chapter 4

Two-way global canonical form for
linear descriptor systems

In the previous chapter we generalized the first and second case of Theorem 2.20 to linear
discrete-time descriptor systems with variable coefficients. This leaves the third case of
Theorem 2.20, i.e., the case where one wants to get a solution on the whole Z. This case is
really different from the first two cases and it will therefore be studied in this chapter. To see
that the third case of Theorem 2.20 really is different from the first two cases consider the
form (3.26). The problem is that in this (strangeness-free) form (3.26) the A

(1)
k are allowed

to be arbitrary. Consider a descriptor system which only consists of the (1,1) block in (3.26).
For such a system one can easily compute the unique value of xk0+1 once the value of xk0

is given. In contrast, if the value for xk0 is given there may be many choices of appropriate
xk0−1 values (e.g., xk0 = 0xk0−1, xk0−1 = xk0−2, xk0−2 = xk0−3, ...) or even no possible
choice of an appropriate xk0−1 value (e.g., xk0 = xk0−1, xk0−1 = 0xk0−2, given that xk0 6= 0),

depending on the sequence of the A
(1)
k matrices. Also, the solvability may vary from iterate

to iterate. This shows that additional rank assumptions are necessary to generalize the third
case of Theorem 2.20 to linear discrete-time descriptor systems with variable coefficients.
One approach that suggests itself is to not only demand the system itself to have well defined
strangeness index but to also demand the reversed system to have well defined strangeness
index.

Lemma 4.1. For k ∈ Z let Ek, Ak ∈ Cm,n be such matrices, that the strangeness index µf

and the reversed strangeness index µb of {(Ek, Ak)}k∈Z are both well defined. Perform one
step of index reduction from (3.13) to (3.14) on the reversed sequence {(A−k, E−k)}k∈Z and
denote the so obtained sequence by {(Ã−k, Ẽ−k)}k∈Z. Then, not only the reversed strange-
ness index µ̃b (i.e., the strangeness index of {(Ã−k, Ẽ−k)}k∈Z) but also the strangeness index
µ̃f of {(Ẽk, Ãk)}k∈Z is well defined. We have µ̃f ≤ µf and µ̃b ≤ µb.

Proof. Since the strangeness index of {(Ek, Ak)}k∈Z is well defined and all Ak have the
same constant rank (since the strangeness index of {(A−k, E−k)}k∈Z is also well defined) we
know from Corollary 3.21 and from Theorem 3.16 part 2. that with p ∈ {1, . . . , rf,0}, the
definitions from (3.18) and with bi := ai − wi+1 for i ∈ N0 the sequence {(Ek, Ak)}k∈Z is
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globally equivalent to a sequence of matrix pairs of the form

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k∈Z

,
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where all
h

A
(1)
k

A
(2)
k

A
(3)
k

i

have full row rank. Then, with Irf,0−p all ∗ blocks in the same row
can be eliminated. This may yield ∗ blocks in the first row of the left matrices (next to
h

A
(1)
k

A
(2)
k

A
(3)
k

i

), but these ∗ blocks can again be eliminated by the identity matrices below.
Thus, the system is also equivalent to
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Performing one reduction step on the reversed of system (4.1) and reversing the reduced
system back shows that {(Ẽk, Ãk)}k∈Z is globally equivalent to
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

k∈Z

.
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Reordering of rows shows that {(Ẽk, Ãk)}k∈Z is globally equivalent to


























































































Ip 0 0 ∗ · · · · · · · · · · · · · · · · · · · · · ∗
0 Irf,0−p 0 0 · · · · · · · · · · · · · · · · · · · · · 0

0 · · · 0 0 0 Iwµf
0

...
... Iwµf−1 0

...
...

. . .
...

... Iw1 0
0 · · · 0 0

0 · · · 0 0wµf
0 0 D

(µf−1)

k · · · 0 ∗
...

...
. . .

...
...

...
... 0 D

(1)

k
...

... 0w1 0
...

... 0wµf +1 0 0 D
(µf )

k 0 ∗ · · · 0 ∗
...

... 0 0bµf
0 E

(µf )

k 0 ∗ · · · 0 ∗
...

... 0 0bµf−1 0 E
(µf−1)

k · · · 0 ∗
...

...
. . . 0 E

(1)

k

0 · · · 0 0 0b0











































,












































A
(1)
k 0 A

(3)
k 0 · · · · · · · · · · · · · · · · · · · · · 0

0 0 0
...

...

0 · · · 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
0 · · · 0 0 · · · · · · · · · · · · · · · · · · · · · 0
0 · · · 0 0wµf

...
... 0wµf−1

...
...

. . .
...

... 0w1

...
... Iwµf +1

...
... Ibµf

...
... Ibµf−1

...
...

. . .

0 · · · 0 Ib0





























































































k∈Z

.
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Reordering of columns shows that {(Ẽk, Ãk)}k∈Z is globally equivalent to












































































Ip 0 ∗ · · · ∗ 0 ∗ · · · · · · · · · · · · ∗
0 Irf,0−p 0 0 · · · · · · · · · · · · · · · · · · · · · · · ·

Iwµf

. . .

Iw1

0 · · · · · · · · · · · · 0

D
(µf −1)

k

. . .

D
(1)

k

0

0wµf +1
0 D

(µf )

k ∗ · · · ∗

0 0bµf
E

(µf )

k ∗
. . .

...

0bµf −1
E

(µf−1)

k ∗

. . . E
(1)

k

0b0




































,





































A
(1)
k 0 · · · · · · 0 A

(3)
k

Iwµf +1

Ibµf

Ibµf −1

Ibµf −2

. . .

Ib0















































































k∈Z

∼















Ir̂f
0 ∗

0 0 D̃k

0 0 Ẽk



 ,





Ã
(1)
k A

(3)
k 0

0 0 0
0 0 I

ĥf















k∈Z

,

by setting ĥf = bµf
+ . . . + b0, r̂f = rf,0 + wµf

+ . . . + w1 and

D̃k =









0 D
(µf )

k 0
. . . . . .

. . . D
(1)

k

0









,
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Ẽk =









0bµf
E

(µf )

k 0
. . . . . .

. . . E
(1)

k

0b0









,

since wµf +1 = 0 (which can be seen from (3.24), (3.18g), (3.18c) and (3.20)).
By setting âi := bi and ŵi := wi+1 for i ∈ N0 we finally see, that the sequence {âi}i∈N0 is
non-increasing due to (3.19l). Also it is clear that

ŵi + âi = wi+1 + bi = wi+1 + ai − wi+1 = ai

(3.34)

≤ ai−1 − wi = bi = âi−1.

It may happen that some âµf
= . . . = âµ̃f +1 = 0 in which case the strangeness index µ̃f of

{(Ẽk, Ãk)}k∈Z has been decreased. Anyway, with (3.44), all assumptions of Lemma 3.22 are
fulfilled, which shows that the strangeness index µ̃f really is well defined.
That the reversed strangeness index µ̃b is still well defined follows from the fact that we
have performed the reduction step on the reversed system. To understand this, recall that
Definition 3.15 demands the constant rank assumptions (3.12) to hold for every step of the
reduction procedure. Actually performing one reduction step uses only the constant rank
assumptions (3.12) of the first step and the so obtained system will still satisfy the constant
rank assumptions (3.12) in every further reduction step.

The index reduction performed in the previous Lemma 3.22 will be used frequently in the
following, which is why we introduce the following Definition.

Definition 4.2. Let {(Ek, Ak)}k∈Z be a sequence of matrix pairs. Then performing one
step of index reduction from form (3.13) to (3.14) on the reversed sequence {(A−k, E−k)}k∈Z

and re-reversing the so obtained sequence is called one step of reversed index reduction. In
contrast to this, the index reduction from form (3.13) to (3.14) on the original sequence
{(Ek, Ak)}k∈Z is also called ordinary index reduction or forward index reduction.

Lemma 4.1 shows that under the assumption that both the strangeness index and the reversed
strangeness index are well-defined one can perform ordinary and reversed index reduction
steps at will. One may conjecture, that the order in which one performs the index reduction
steps is of no meaning, as long as one performs the same number of reduction steps, but this
is false as the following example shows.

Example 4.3. Consider the constant sequence of matrix pairs
{([

1
0

]

,

[
0
1

])}

k∈Z

. (4.2)

First performing one ordinary step of index reduction on (4.2) yields the sequence
{([

0
0

]

,

[
0
1

])}

k∈Z

. (4.3)
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Performing one step of reversed index reduction on this sequence does not alter the sequence
any more. First performing one reversed step of index reduction on (4.2), however, yields
the sequence

{([
0
1

]

,

[
0
0

])}

k∈Z

, (4.4)

which again is not altered anymore by one further step of ordinary index reduction. Com-
paring (4.3) with (4.4) clearly shows that these two sequences are not globally equivalent,
since (corresponding to Lemma 3.10) those matrix pairs do not have the same characteristic
values.

Remark 4.4. Example 4.3 also shows that a step of reversed index reduction may really
change the ordinary index. Therefore note that (4.2) has an ordinary strangeness index of
1. Nonetheless, performing one step of reversed index reduction on (4.2) yields (4.4), which
surely has an ordinary strangeness index of 0.

Let us derive the canonical form under the assumption that both the strangeness index and
the reversed strangeness index are well defined.

Theorem 4.5. For k ∈ Z let Ek, Ak ∈ C
m,n be matrices, such that the strangeness index and

the reversed strangeness index of {(Ek, Ak)}k∈Z are both well defined. Define the matrices

Zk as a basis of corange (Ek) for k ∈ Z,

Yk as a basis of corange (Ak) for k ∈ Z.

Then, there exist hf , hb, q ∈ N0 such that for all k ∈ Z we have

hf =rank
(
ZH

k Ak

)
, (forward direction)

hb =rank
(
Y H

k Ek

)
, (backward direction)

q =hf + hb − rank

([
Y H

k Ek

ZH
k+1Ak+1

])

. (4.5)

These quantities in (4.5) are invariant under global equivalence and we have

{(Ek, Ak)}k∈Z ∼



























E
(1)
k 0 0 E

(2)
k

0 Ihb−q 0 0
0 0 Iq 0
0 0 0 0
0 0 0 0
0 0 0 0











,











A
(1)
k A

(2)
k 0 0

0 0 0 0
0 0 0 0
0 0 Iq 0
0 0 0 Ihf−q

0 0 0 0



























, (4.6)

where for all k ∈ Z the matrices
[

E
(1)
k E

(2)
k

]

and
[

A
(1)
k A

(2)
k

]

have full row rank.
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Proof. That rank
(
ZH

k Ak

)
and rank

(
Y H

k Ek

)
are invariant under global equivalence follows

from Lemma 3.9. That they are constant for all k ∈ Z follows from the fact that the
strangeness index and the reversed strangeness index are both well defined.
To show that q is independent of the choice of the bases, let Yk and Ỹk be bases of corange (Ak)
and let Zk and Z̃k be bases of corange (Ek) for all k ∈ Z. Then for all k ∈ Z there exists
invertible matrices MYk

and MZk
such that Yk = ỸkMYk

and Zk = Z̃kMZk
. This shows that

rank

([
Y H

k Ek

ZH
k+1Ak+1

])

= rank

([
M−H

Yk
0

0 M−H
Zk+1

] [
Y H

k Ek

ZH
k+1Ak+1

])

= rank

([
Ỹ H

k Ek

Z̃H
k+1Ak+1

])

,

and thus, that q is independent of the choice of the bases. To show the invariance under
global equivalence, let {(Ẽk, Ãk)}k∈Z be globally equivalent to {(Ek, Ak)}k∈Z, i.e., let Qk and
Pk be invertible matrices, such that for all k ∈ Z we have

Ek = PkẼkQk+1,

Ak = PkÃkQk.

Since

0 = Y H
k Ak = Y H

k PkÃkQk =
(
PH

k Yk

)H
ÃkQk,

0 = ZH
k Ek = ZH

k PkẼkQk+1 =
(
PH

k Zk

)H
ẼkQk+1,

it is clear that Ŷk := PH
k Yk is a basis of corange

(

Ãk

)

and that Ẑk := PH
k Zk is a basis of

corange
(

Ẽk

)

. With this we see that

rank

([
Ŷ H

k Ẽk

ẐH
k+1Ãk+1

])

=rank

([
Y H

k PkẼk

ZH
k+1Pk+1Ãk+1

])

=rank

([
Y H

k PkẼkQk+1

ZH
k+1Pk+1Ãk+1Qk+1

])

=rank

([
Y H

k Ek

ZH
k+1Ak+1

])

,

which means that q does only depend on the equivalence class.
Since the strangeness index of {(Ek, Ak)}k∈Z is well defined, it is clear that the sequence can
be transformed to the form (3.13). Since the reversed strangeness index is also well defined,

we also know that all Ak have constant rank. Thus, in (3.13) all A
(1)
k matrices also have to

have constant rank. Thus, by transforming the first block row of (3.13) from the left we have
that {(Ek, Ak)}k∈Z is equivalent to



















E
(1,1)
k E

(1,2)
k

E
(2,1)
k E

(2,2)
k

0 0
0 0







,







A
(1,1)
k 0
0 0
0 Ihf

0 0



















k∈Z

, (4.7)
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with all A
(1,1)
k having full (constant) row rank. Performing one (ordinary) reduction step

from (3.13) to (3.14) on (4.7) yields the sequence



















E
(1,1)
k 0

E
(2,1)
k 0
0 0
0 0







,







A
(1,1)
k 0
0 0
0 Ihf

0 0



















k∈Z

. (4.8)

Then it follows from Lemma 4.1 that (4.8) still has well-defined reversed strangeness index.

Let Ỹk be bases of corange













A
(1,1)
k 0
0 0
0 Ihf

0 0













. Then clearly Ỹk =







0 0
I 0
0 0
0 I







, since all A
(1,1)
k have

full row rank. Thus, since the reversed strangeness index of (4.8) is well defined, we know
that for every k ∈ Z the matrix

Ỹ H
k







E
(1,1)
k 0

E
(2,1)
k 0
0 0
0 0







=

[

E
(2,1)
k 0
0 0

]

has to have constant rank, which means that all E
(2,1)
k have to have constant rank. Let us

say all E
(2,1)
k matrices have constant rank ĝ. By reducing all E

(2,1)
k in (4.7) to echelon form

and adapting the indexing we then see that {(Ek, Ak)}k∈Z is globally equivalent to

























E
(1,1)
k E

(1,2)
k E

(1,3)
k

0 Iĝ E
(2,3)
k

0 0 E
(3,3)
k

0 0 0
0 0 0










,









A
(1,1)
k A

(1,2)
k 0

0 0 0
0 0 0
0 0 Ihf

0 0 0
























k∈Z

∼

























E
(1,1)
k 0 Ẽ

(1,3)
k

0 Iĝ E
(2,3)
k

0 0 E
(3,3)
k

0 0 0
0 0 0










,









A
(1,1)
k A

(1,2)
k 0

0 0 0
0 0 0
0 0 Ihf

0 0 0
























k∈Z

∼























E
(1,1)
k 0 Ẽ

(1,3)
k

0 Iĝ 0

0 0 E
(3,3)
k

0 0 0
0 0 0









,









A
(1,1)
k A

(1,2)
k ∗

0 0 0
0 0 0
0 0 Ihf

0 0 0























k∈Z
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∼























E
(1,1)
k 0 Ẽ

(1,3)
k

0 Iĝ 0

0 0 E
(3,3)
k

0 0 0
0 0 0









,









A
(1,1)
k A

(1,2)
k 0

0 0 0
0 0 0
0 0 Ihf

0 0 0























k∈Z

,

where all
[

A
(1,1)
k A

(1,2)
k

]

have full row rank. Also, all





E
(1,1)
k 0 Ẽ

(1,3)
k

0 Iĝ 0

0 0 E
(3,3)
k



 have full row rank,

since those matrices are equivalent to the matrices

[

E
(1,1)
k E

(1,2)
k

E
(2,1)
k E

(2,2)
k

]

as in (4.7), which have

full row rank. So all E
(3,3)
k also have full row rank. Reducing all E

(3,3)
k to echelon form then

finally shows that {(Ek, Ak)}k∈Z is globally equivalent to


























E
(1,1)
k 0 E

(1,3)
k E

(1,4)
k

0 Iĝ 0 0
0 0 Iq̂ 0
0 0 0 0
0 0 0 0
0 0 0 0











,











A
(1,1)
k A

(1,2)
k 0 0

0 0 0 0
0 0 0 0
0 0 Iq̂ 0
0 0 0 Ihf−q̂

0 0 0 0



























k∈Z

∼



























E
(1,1)
k 0 0 E

(1,4)
k

0 Ihb−q̂ 0 0
0 0 Iq̂ 0
0 0 0 0
0 0 0 0
0 0 0 0











,











A
(1,1)
k A

(1,2)
k 0 0

0 0 0 0
0 0 0 0
0 0 Iq̂ 0
0 0 0 Ihf−q̂

0 0 0 0



























k∈Z

,

where hb := ĝ+ q̂ has been used. Finally, we have q = q̂, since (as shown above) the quantity
defined in (4.5) is invariant under global equivalence and q can directly be calculated from
the last sequence of matrix pairs.

From the form (4.6) one may conjecture that it is also possible to show Theorem 4.5 by
defining

q = hf + hb − rank

([
Y H

k Ek

ZH
k Ak

])

, (4.9)

instead of (4.5). This is not the case. If one would do so, q would not be invariant under
global equivalence any more as shown by the following example.

Example 4.6. Define the (constant) sequence of matrix pairs

{(Ek, Ak)}k∈Z :=

{([
0 1 0
0 0 0

]

,

[
0 0 0
0 1 0

])}

k∈Z

,
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which has hf = 1, hb = 1 and with both (4.9) or (4.5) q = 1. Transforming this sequence
from the right by the sequence {Qk}k∈Z defined through

Q2k =





1 0 0
0 1 0
0 0 1



 and Q2k+1 =





0 1 0
1 0 0
0 0 1



 for all k ∈ Z,

will yield a sequence {(Ẽk, Ãk)}k∈Z = {(EkQk+1, AkQk)}k∈Z which satisfies

(Ẽ2k, Ã2k) =

([
1 0 0
0 0 0

]

,

[
0 0 0
0 1 0

])

and

(Ẽ2k+1, Ã2k+1) =

([
0 1 0
0 0 0

]

,

[
0 0 0
1 0 0

])

for all k ∈ Z.

This sequence would have q = 0 if one would apply definition (4.9).

The same result as in Theorem 4.5 can be obtained under a weaker assumption.

Corollary 4.7. Let {(Ek, Ak)}k∈Z be a sequence and define the matrices

Zk as a basis of corange (Ek) for k ∈ Z,

Yk as a basis of corange (Ak) for k ∈ Z.

Assume that the quantities

rf = rf,k ≡ rank (Ek) , (4.10a)

hf = hf,k ≡ rank
(
ZH

k Ak

)
, (4.10b)

hb = hb,k ≡ rank
(
Y H

k Ek

)
, (4.10c)

q = qk ≡hf,k + hb,k − rank

([
Y H

k Ek

ZH
k+1Ak+1

])

, (4.10d)

(which are invariant under global equivalence as shown in Theorem 4.5) are constant for all

k ∈ Z. Then we also have the relation (4.6), where for all k ∈ Z the matrices
[

E
(1)
k E

(2)
k

]

and
[

A
(1)
k A

(2)
k

]

have full row rank.

Proof. First we note that under the given assumptions the sequence {(Ek, Ak)}k∈Z is globally
equivalent to a sequence of the form



















E
(1,1)
k E

(1,2)
k

E
(2,1)
k E

(2,2)
k

0 0
0 0







,







A
(1,1)
k 0
0 0
0 Ihf

0 0



















k∈Z

,
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with all

[

E
(1,1)
k E

(1,2)
k

E
(2,1)
k E

(2,2)
k

]

and all A
(1,1)
k having full row rank. Since q is invariant under global

equivalence, it is clear that

rank

([

E
(2,1)
k E

(2,2)
k

0 Ihf

])

= rank

([

E
(2,1)
k 0
0 Ihf

])

has to be constant for all k ∈ Z. Thus, also all E
(2,1)
k have to have constant rank. The

remainder of the proof can then be carried out analogously to the proof of Theorem 4.5.

Applying one step of ordinary and one step of reversed index reduction to the form (4.6)
yields the form



























E
(1,1)
k 0 0 0
0 Ihb−q 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0











,











A
(1,1)
k 0 0 0
0 0 0 0
0 0 0 0
0 0 Iq 0
0 0 0 Ihf−q

0 0 0 0



























k∈Z

. (4.11)

It is clear that first applying one step of reversed and then one step of ordinary index
reduction will yield another form (i.e., the Is block then stays in the left matrices and is
therefore missing in the right matrices), as in Example 4.3.

Remark 4.8. The preceding results allow for an inductive procedure similar to Remark
3.13. For an original sequence of matrix pairs {(Ek, Ak)}k∈Z =: {(Ek,0, Ak,0)}k∈Z we define a
sequence (of matrix pair sequences) {{(Ek,i, Ak,i)}k∈Z}i∈Z

by the following procedure. First
we reduce {(Ek,i, Ak,i)}k∈Z by Corollary 4.7 to the from (4.6) assuming that the local invari-
ants rf =: rf,i, hf =: hf,i, hb =: hb,i and q =: qi are constant for all matrix pairs on the whole
interval Z. Then we reduce the so obtained sequence of matrix pairs by one step of ordinary
and one step of reversed index reduction to the form (4.11), which yields the next sequence of
matrix pairs {(Ek,i+1, Ak,i+1)}k∈Z. The so obtained sequence of values {(rf,i, hf,i, hb,i, qi)}i∈N0

is characteristic for a given equivalence class of sequences of matrix pairs, due to Corollary
3.12, Corollary 4.7 and Lemma 3.34.

Remark 4.9. Under the assumption that the strangeness index and the reversed strange-
ness index of the sequence {(Ek, Ak)}k∈Z are both well defined, all constant rank assumptions
which are required in Remark 4.8 are satisfied, because of Lemma 4.1 and Theorem 4.5.

To define a strangeness index under the assumptions of Remark 4.8 we need a Lemma similar
to Lemma 3.14.

Lemma 4.10. Let the sequences {(rf,i, hf,i, hb,i, qi)}i∈N0 and {{(Ek,i, Ak,i)}k∈Z}i∈N0
be defined

as in Remark 4.8. In particular, let the constant rank assumptions (4.10) hold for every step
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of the reduction process in Remark 4.8. Defining the quantities

rb,i := rf,i − hb,i + hf,i ∀i ∈ N0, (4.12a)

sE,i := rf,i − rf,i+1 ∀i ∈ N0, (4.12b)

sA,i := rb,i − rb,i+1 ∀i ∈ N0, (4.12c)

si := sE,i + sA,i ∀i ∈ N0, (4.12d)

there exists a µ ∈ N0 so that

rb,i = rank (Ak,i) ∀i ∈ N0, k ∈ Z, (4.13a)

rf,i+1 ≤ rf,i ∀i ∈ N0, (4.13b)

rb,i+1 ≤ rb,i ∀i ∈ N0, (4.13c)

sE,i = sA,i = si = 0 ∀i ≥ µ. (4.13d)

Proof. (4.13a) follows directly from (3.6d). Let i ∈ N0 be any non-negative integer. Then
we know from Corollary 4.7 that

{(Ek,i, Ak,i)}k∈Z ∼



























E
(1)
k,i 0 0 E

(2)
k,i

0 Ihb,i−qi
0 0

0 0 Iqi
0

0 0 0 0
0 0 0 0
0 0 0 0











,











A
(1)
k,i A

(2)
k,i 0 0

0 0 0 0
0 0 0 0
0 0 Iqi

0
0 0 0 Ihf,i−qi

0 0 0 0



























k∈Z

⇒ {(Ek,i+1, Ak,i+1)}k∈Z ∼



























E
(1)
k,i 0 0 0

0 Ihb,i−qi
0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0











,











A
(1)
k,i 0 0 0

0 0 0 0
0 0 0 0
0 0 Iqi

0
0 0 0 Ihf,i−qi

0 0 0 0



























k∈Z

.

This clearly shows that rank (Ek,i+1) ≤ rank (Ek,i) and rank (Ak,i+1) ≤ rank (Ak,i), which
implies (4.13b) and (4.13c). Since we know that both of the sequences {rf,i}i∈N0 and {rb,i}i∈N0

are non-increasing and bounded by zero, they have to become stationary a some point µ,
which shows (4.13d).

The previous Lemma 4.10 leads to the following Definition.

Definition 4.11. Let {(Ek, Ak)}k∈Z be a sequence of matrix pairs. Let the sequence
{(rf,i, hf,i, hb,i, qi)}i∈N0 (as described in Remark 4.8) be well defined. In particular, let (4.10)
hold for every entry {(Ek,i, Ak,i)}k∈Z of the sequence (of sequences of matrix pairs) in Remark
4.8. Then, with the definitions (4.12) we call

µ = min{i ∈ N0 | si = 0} (4.14)
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the two-way strangeness index of the sequence of matrix pairs {(Ek, Ak)}k∈Z and of the
associated descriptor system (1.5). In the case that µ = 0 we call {(Ek, Ak)}k∈Z and (1.5)
two-way strangeness-free.

Since one step of the iterative procedure described in Remark 4.8 involves one step of ordinary
and one step of reversed index reduction it may happen that the two-way strangeness index
is smaller than the ordinary strangeness index, as shown in the following Example.

Example 4.12. Consider the sequence of (constant) matrix pairs

{(Ek, Ak)}k∈Z =















1 0
0 1
0 0



 ,





0 0
1 0
0 1















k∈Z

.

With Definition 3.15 we get the sequences

(rf,0, hf,0, a0, s0) = (2, 1, 1, 1),

(rf,1, hf,1, a1, s1) = (1, 2, 1, 1),

(rf,2, hf,2, a2, s2) = (0, 3, 1, 0),

(rf,3, hf,3, a3, s3) = (0, 3, 0, 0),

(rf,4, hf,4, a4, s4) = (0, 3, 0, 0),

...

and thus an ordinary strangeness index of 2. With Definition 4.11, however, we face the
reduction process















1 0
0 1
0 0



 ,





0 0
1 0
0 1















k∈Z

∼















0 1
1 0
0 0



 ,





1 0
0 0
0 1















k∈Z

reduction
∼















0 0
1 0
0 0



 ,





0 0
0 0
0 1















k∈Z

and thus the sequences

(rf,0, hf,0, hb,0, q0, rb,0, sE,0, sA,0, s0) = (2, 1, 1, 0, 2, 1, 1, 2),

(rf,1, hf,1, hb,1, q1, rb,1, sE,1, sA,1, s1) = (1, 1, 1, 0, 1, 0, 0, 0),

(rf,2, hf,2, hb,2, q2, rb,2, sE,2, sA,2, s2) = (1, 1, 1, 0, 1, 0, 0, 0),

...

which shows that the two-way strangeness index is 1.

On the other hand, the ordinary strangeness index and the two-way strangeness index can
also coincide as shown in the following example.
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Example 4.13. Consider the sequence of (constant) matrix pairs

{(Ek, Ak)}k∈Z =















0 1 0
0 0 1
0 0 0



 ,





1 0 0
0 1 0
0 0 1















k∈Z

. (4.15)

With Definition 3.15 we get the sequences

(rf,0, hf,0, a0, s0) = (2, 1, 1, 1),

(rf,1, hf,1, a1, s1) = (1, 2, 1, 1),

(rf,2, hf,2, a2, s2) = (0, 3, 1, 0),

(rf,3, hf,3, a3, s3) = (0, 3, 0, 0),

(rf,4, hf,4, a4, s4) = (0, 3, 0, 0),

...

and thus an ordinary strangeness index of 2 as shown in Example 3.17. With Definition 4.11
however we face the same reduction process. This is due to the fact that the second matrix
in the matrix pair (4.15) has full row rank, and thus every step of reversed index reduction
has no effect. Thus we get the sequences

(rf,0, hf,0, hb,0, q0, rb,0, sE,0, sA,0, s0) = (2, 1, 0, 0, 3, 1, 0, 1),

(rf,1, hf,1, hb,1, q1, rb,1, sE,1, sA,1, s1) = (1, 2, 0, 0, 3, 1, 0, 1),

(rf,2, hf,2, hb,2, q2, rb,2, sE,2, sA,2, s2) = (0, 3, 0, 0, 3, 0, 0, 0),

(rf,3, hf,3, hb,3, q3, rb,3, sE,3, sA,3, s3) = (0, 3, 0, 0, 3, 0, 0, 0),

...

which shows that the two-way strangeness index is also 2.

In Example 4.13 we have seen that the ordinary strangeness index can be equal to the two-
way strangeness index. However, in Example 4.12 we have seen that the ordinary strangeness
index can be bigger as the two-way strangeness index. Also, we observe that one step of
two-way index reduction involves one step of ordinary index reduction. Thus, it should be
possible to show the following Conjecture.

Conjecture 4.14. 1. Every sequence of matrix pairs with well defined two-way strange-
ness index has well defined ordinary strangeness index.

2. Let the strangeness index µf , the reversed strangeness index µb and the two-way strange-
ness index µ all be well defined. Then we have 2µ ≥ max(µf , µb) ≥ µ.

92



4.1 Existence and uniqueness of solutions

With the notation of Remark 4.8 we know that for the two-way strangeness index µ we have

{(Ek,µ, Ak,µ)} ∼



























E
(1)
k,µ 0 0 E

(2)
k,µ

0 Ihb,µ−qµ
0 0

0 0 Iqµ
0

0 0 0 0
0 0 0 0
0 0 0 0











,











A
(1)
k,µ A

(2)
k,µ 0 0

0 0 0 0
0 0 0 0
0 0 Iqµ

0
0 0 0 Ihf,µ−qµ

0 0 0 0



























k∈Z

⇒ {(Ek,µ+1, Ak,µ+1)} ∼



























E
(1)
k,µ 0 0 0

0 Ihb,µ−qµ
0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0











,











A
(1)
k,µ 0 0 0

0 0 0 0
0 0 0 0
0 0 Iqµ

0
0 0 0 Ihf,µ−qµ

0 0 0 0



























k∈Z

.

But we also know from the definitions (4.12) that rank (Ek,µ) = rank (Ek,µ+1) from which

we see that qµ = 0 and that E
(1)
k,µ is a matrix with full row rank for all k ∈ Z. From

rank (Ak,µ) = rank (Ak,µ+1), we analogously see that all A
(1)
k,µ already have full row rank.

Thus, every sequence with well defined two-way strangeness index can be transformed by µ+1
reduction steps and appropriate global equivalence transformations to a two-way strangeness-
free sequence of the form

{(Ek,µ+1, Ak,µ+1)} ∼



















E
(1)
k,µ 0 0

0 Ihb,µ
0

0 0 0
0 0 0







,







A
(1)
k,µ 0 0

0 0 0
0 0 Ihf,µ

0 0 0



















k∈Z

, (4.16)

where all A
(1)
k,µ and all E

(1)
k,µ have full row rank. By transformations of the (1,1)-block in (4.16)

one can also achieve that

E
(1)
k,µ =

[
I 0

]
for all k ∈ N0

and (4.17)

A
(1)
k,µ =

[
I 0

]
for all k ≤ −1.

From (4.16) with (4.17) one can derive a statement similar to Theorem 3.32 for the case
where one wants to get a solution for all k ∈ Z.

Theorem 4.15. Let the two-way strangeness index µ of the sequence {(Ek, Ak)}k∈Z as in
(4.14) be well defined. Then the discrete descriptor system (1.5) is equivalent (in the sense
that there is a one-to-one correspondence between the solution/sequence spaces) to a discrete
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descriptor system of the form

xk+1
1 = A

(1)
k xk

1 + A
(2)
k xk

4 + fk
1 , k ≥ 0, rf,µ − hb,µ (4.18a)

xk−1
1 = E

(1)
k−1x

k
1 + E

(2)
k−1x

k
4 − fk−1

1 , k ≤ 0, rb,µ − hf,µ (4.18b)

xk+1
2 = fk

2 , hb,µ (4.18c)

0 = xk
3 + fk

3 , hf,µ (4.18d)

0 = fk
4 , m− rf,µ − hf,µ (4.18e)

where with uµ := n − rf,µ − hf,µ we have xk
4 ∈ Cuµ and each of the inhomogeneities fk

1 , fk
2 ,

fk
3 , fk

4 is determined by the original right hand sides fk−µ−1, . . . , fk, . . . , fk+µ+1 as in (1.5)
for all k ∈ Z. For the problem

Ekx
k+1 = Akx

k + fk, k ∈ Z, (4.19)

we also have the following results:

1. (4.19) is solvable if and only if the vµ := m−rf,µ−hf,µ consistency conditions conditions

fk
4 = 0

are fulfilled for all k ∈ Z.

2. An initial condition x0 = x̂ together with (4.19) is consistent if and only if in addition
the hf,µ + hb,µ conditions

x0
2 = x̂2 = f−1

2 ,

x0
3 = x̂3 = −f0

3 ,

are satisfied.

3. The corresponding initial value problem is uniquely solvable if and only if in addition

uµ = 0

holds.

Proof. The proof can be carried out as the proof of Theorem 3.32 by using (4.16) and
(4.17).
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Chapter 5

Algorithms for linear discrete-time
descriptor systems

In the following some algorithms are proposed, which may be used to solve linear discrete-
time descriptor systems (as described in the Chapters 2, 3 and 4). Some of the algorithms
are only suited for the constant coefficient case, while others may also be used in the variable
coefficient case.

5.1 A method with the Drazin inverse

Theorem 2.20 can be used to compute the solution of a regular linear discrete-time descriptor
system (E,A) ∈ Cn,n × Cn,n with constant coefficients. There are two problems that arise
in this case.

1. Typically E and A will not commute. If they do not commute, one first has to deter-
mine an

invertible matrix P such that PEPA = PAPE, (5.1)

i.e., that PE and PA commute. One of the following approaches can be chosen to
determine such a matrix P :

(a) Lemma 2.23 can be used to compute such a matrix. The problem with this
approach is to determine a proper λ̃ (as in Lemma 2.23), such that λ̃E − A is
good conditioned. It is a good idea to choose a λ̃ which is nowhere close to any
eigenvalue of λE − A, so that λ̃E − A is well conditioned.

(b) One may also employ the Kronecker product to determine such a matrix. For this
note that (5.1) is equivalent to solving the Sylvester equation

EPA = APE, (5.2)

for an invertible P. (5.2) can be rewritten as a system of linear equations, Gy = 0,
using the Kronecker product (see [11]). By calculating a singular value decompo-
sition of G we can then determine a basis of kernel (G). Each of the basis vectors
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can then be reshaped to a matrix P , which solves (5.2). However, we still have to
check if that matrix is invertible. Note that a SVD of G can be obtained by com-
puting an SVD of E and A separately (see [11]), which makes the computation
considerably faster.

(c) The GUPTRI-Algorithm (see [4]) together with the solution of a generalized
Sylvester equation (to decouple the eigenvalue infinity from the finite eigenval-
ues; compare [19]) could be employed to calculate a matrix P with (5.1). To see
this in the real case, let U and V be orthogonal matrices such that

E = V

[
Ef Eu

0 E∞

]

UT , A = V

[
Af Au

0 A∞

]

UT ,

is in GUPTRI form, i.e., Ef is regular and triangular, Af is quasi-triangular,
E∞ is strict upper triangular and A∞ is regular and triangular. Following the
approach in [19] we can solve the generalized Sylvester equation

EfY − ZE∞ = −Eu,

AfY − ZA∞ = −Au.

This equation can be solved uniquely and we obtain matrices Y and Z such that
with

W := V

[
I Z
0 I

]

, T :=

[
I −Y
0 I

]

UT ,

we get

λE − A = W

[
λEf − Af 0

0 λE∞ − A∞

]

T .

Thus, we can rewrite equation (5.2) as

W−1ET−1 TPW
︸ ︷︷ ︸

:=P̃

W−1AT−1 = W−1AT−1TPWW−1ET−1,

which is equivalent to
[
Ef 0
0 E∞

]

P̃

[
Af 0
0 A∞

]

=

[
Af 0
0 A∞

]

P̃

[
Ef 0
0 E∞

]

. (5.3)

For example, choosing

P̃ =

[
E−1

f 0

0 A−1
∞

]

,

solves equation (5.3), which means that T−1P̃W−1 solves (5.2). Anyway, the
solution is not unique as one can see by assuming that Af = 0 and E∞ = 0 (this
means that we only have the infinite and the zero eigenvalue) in which case every

P̃ = diag (P1, P2)

solves (5.3). Thus, the question arises whether there is a solution which is better
conditioned than T−1P̃W−1.
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2. To compute the solution with Theorem 2.20 one needs to compute the products ADx
and EDx for arbitrary x and also the index of E and A is needed.
Some effort has been made to numerically compute the Drazin inverse [5, 18, 20, 21].
One could also compute the Schur form of E or A, respectively and then solve a
Sylvester equation (to decouple the zero eigenvalues from the other non-zero eigen-
values, similar to the approach in [19]) to calculate the Drazin inverse. To see this,
let

E = U

[
Sn Su

0 Sz

]

UH ,

be the Schur decomposition of a matrix E in such a way that Sz only has zero eigen-
values and Sn only has non-zero eigenvalues. Following the approach in [19] we can
solve the Sylvester equation

ZSz − SnZ = −Su.

This equation can be solved uniquely, since Sz and Sn have no common eigenvalues
and we obtain a matrix Z such that with

W := U

[
I −Z
0 I

]

,

we get

E = W

[
Sn 0
0 Sz

]

W−1.

Computing the Jordan form of the blocks Sn = VnJnV −1
n and Sz = VzJzV

−1
z shows

that

E = W

[
Vn 0
0 Vz

]

︸ ︷︷ ︸

:=V

[
Jn 0
0 Jz

]

︸ ︷︷ ︸

:=J

V −1W−1,

which proves that J is the Jordan canonical form of E. Thus, we know that

ED = WV JDV −1W−1 = WV

[
J−1

n 0
0 0

]

V −1W−1

= WV

[
V −1

n S−1
n Vn 0

0 0

]

V −1W−1 = W

[
S−1

n 0
0 0

]

W−1,

which means that we can compute the Drazin inverse of E without computing the
Jordan canonical form.
Anyway, one should remember, that (like with the ordinary inverse) computing EDx
without explicitly computing ED has better numerical properties.
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Looking at Theorem 2.20 we see that for one element of the solution sequence there are many
calculations of the form EDx necessary, which makes the whole procedure very expensive.
Also this method (in general) involves the transformation with (regular but) non-unitary
matrices and it can only be used for regular matrix pencils.
All this shows that this method will be of no practical use.

5.2 A method employing the GUPTRI-Algorithm

The GUPTRI-Algorithm [4] can also be used directly to compute the solution of a regu-
lar linear discrete-time descriptor system (E,A) ∈ Cn,n × Cn,n with constant coefficients.
Once we have computed the GUPTRI form we can determine the solution by backward
substitution. Let us therefore assume that

(E,A) =

([
Ef Eu

0 E∞

]

,

[
Af Au

0 A∞

])

, (5.4)

already is in GUPTRI form. Also assume for simplicity that (E,A) has no complex eigen-
values, i.e., Ef is regular and triangular, Af is triangular, E∞ is strict upper triangular and
A∞ is regular and triangular. Let us further denote the entries of E and A by [ei,j ]i,j=1,...,n

and [ai,j ]i,j=1,...,n, respectively, and let r be the dimension of the Ef and Af blocks. Then
we know that ei,j = ai,j = 0 for all i > j. Additionally, we know that ei,i = 0 for all
i = r + 1, . . . , n and that ai,i 6= 0 for all i = r + 1, . . . , n. The equations of the descriptor
system (1.4) belonging to (5.4) can thus be written as

n∑

j=i

ei,jx
k+1
j =

n∑

j=i

ai,jx
k
j + fk

i , for i = 1, . . . , r, (5.5)

n∑

j=i+1

ei,jx
k+1
j =

n∑

j=i

ai,jx
k
j + fk

i , for i = r + 1, . . . , n. (5.6)

To solve the equations (5.6) we start with the last equation (i.e., for i = n). This equation
can be written as 0 = an,nx

k
n +fk

n , which allows for the determination of all xk
n, once all right

hand sides are available. More precisely, we have xk
n = − fk

n

an,n
. We further observe that the

last but one of the equations (5.6) can be written as

en−1,nx
k+1
n = an−1,n−1x

k
n−1 + an−1,nxk

n + fk
n−1

⇔ xk
n−1 =

1

an−1,n−1

(
en−1,nxk+1

n − an−1,nxk
n − fk

n−1

)

=
1

an−1,n−1

(

an−1,n

fk
n

an,n

− en−1,n

fk+1
n

an,n

− fk
n−1

)

.

Proceeding in this way we see that we can obtain all xk
i for i = r + 1, . . . , n, once all right

hand sides are available. Note, that by doing so we need the right hand side fk+n−r−1 to
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compute xk
r+1. Thus, there may be more right hand sides necessary than demanded by the

index, because the λE∞ − A∞ block does not reveal the index.
Given an initial condition for the regular part (5.5) we can also compute the forward solution,
since Ef is regular. A backward solution may also be computed, if we divide the λEf − Af

block further into a part belonging to the non-zero eigenvalues and a part belonging to the
zero eigenvalues, which is automatically done by the GUPTRI algorithm. The backward
solution can then be found by performing the very same kind of process described above (for
the equations (5.6)) for the zero eigenvalues of λEf − Af .
Finally, note that the GUPTRI form can also be computed for singular pencils. One could
examine if this GUPTRI form also allows for an easy determination of the solution of such
descriptor systems.
This method will be considerably faster than the one introduced in section 5.1 since we
only have to compute the GUPTRI form and perform backward substitution. Nevertheless,
this method has the drawback that there may have to be n − r − 1 future right hand sides
available, where n− r − 1 is the number of infinite eigenvalues.

5.3 A reduction method

In this section an algorithm is presented, which can also be applied to discrete-time de-
scriptor systems with variable coefficients, as long as the system has a well defined forward
strangeness index and/or a well defined backward strangeness index. The matlab code of
the algorithm can be found in Appendix A and is called solve_dds. We will use the line
numbers on the left side of the algorithm to refer to specific parts of the code and we will use
true-type fonts to reference to parameters, variables and other interna of the code solve_dds
(e.g., Efun means the first parameter of the matlab function in Appendix A).
The code starts in lines 91-101 by first setting up a few variables and then determining if a
forward computation is necessary (result saved in do_forward) and if a backward computa-
tion is necessary (result saved in do_backward).
If the forward computation is necessary, solve_dds first computes the quantities r_f(i+1)
= rf,i and h_f(i+1) = hf,i as in Remark 3.13 and mu_f = max(µf , 1), where µf is the forward
strangeness index (in lines 103-128). If the backward computation is necessary solve_dds

also computes the quantities r_b and h_b as in Remark 3.13 for the reversed descriptor
system and mu_b = max(µb, 1), where µb is the reversed strangeness index (in lines 130-155).
mu_f and mu_b are then later updated by the real strangeness indices in lines 225 and 269.
In lines 158-184 all constraints on the initial condition are determined and the initial condi-
tion xhat is altered so that new initial condition is the consistent initial condition which is
closest to the old initial condition. As shown in Corollary 2.21, there are more constraints
on the initial condition if one is looking for a two-way solution. This is represented by lines
160-169 of the code. Later, in lines 186-272 the actual forward and backward solutions are
determined. Finally, in lines 274-281 some terminal computations are done.
The actual core of the algorithm is the function advance_inflated_system, which is needed
for the index determination as well as the computation of the solution. In the following we
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will shortly illustrate the functioning of advance_inflated_system in the forward case.
Note that in every call to advance_inflated_system the matlab cell arrays Ek, Ak and fk

are inserted into the function and are also returned by the function. These cell arrays are
assumed to have µ :=mu (parameter to the function advance_inflated_system) entries on
entry and they have µ + 1 entries on exit. These cell arrays are interpreted as the entries of
the matrix

D(1) :=








−A1 E1 −f1

. . . . . .
...

−Aµ−1 Eµ−1 −fµ−1

−Aµ Eµ −fµ








,

where Ai := Ak{i}, Ei := Ek{i} and f i := fk{i}. Note that this matrix can be generated
with the help of the function dumparray (in line 415). Clearly, any vector

x̃µ =










x1

...
xµ

xµ+1

1










(5.7)

with D(1)x̃µ = 0 gives a sequence {xi}µ+1
i=1 , which solves the equations Eix

i+1 = Aix
i + f i for

i ∈ {1, . . . , µ}. In lines 294-297 matrix D(1) is first extended to the matrix

D(2) :=








−A1 E1 −f1

. . . . . .
...

−Aµ Eµ −fµ

−Aµ+1 Eµ+1 −fµ+1








,

where Aµ+1 := feval(Afun,kact+mu), Eµ+1 := feval(Efun,kact+mu) and fµ+1 := feval

( ffun,kact+mu), since we only consider the forward case here. Then advance_inflated

_system performs a singular value decomposition of Eµ+1 to discover corange (Eµ+1) (in line
301). This yields a matrix Uµ+1 with

Uµ+1Eµ+1 =

[

E
(1)
µ+1

0

]

,

where E
(1)
µ+1 has full row rank rf,0. Setting D(3) := diag (Imµ, Uµ+1) D(2) shows that

D(2)x̃µ+1 = 0 ⇔ D(3)x̃µ+1 = 0,
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where x̃µ+1 is as in (5.7). D(3) has the form

D(3) =










−A1 E1 −f1

. . . . . .
...

−Aµ Eµ −fµ

−A
(1)
µ+1 E

(1)
µ+1 −fµ+1

1

−A
(2)
µ+1 0 −fµ+1

2










.

In line 319 we then perform a singular value decomposition of A
(2)
µ+1 = U

(2)
µ+1S

(2)
µ+1V

(2)
µ+1

T
.

Setting D(4) := diag
(

Imµ+rf,0
, U

(2)
µ+1

)T

D(3)diag
(

Inµ, V
(2)
µ+1, In+1

)

shows that the solution sets

of D(3)x̃µ+1 = 0 and D(4)x̃µ+1 = 0 differ, but there is a one-to-one correspondence between

the sets through a linear mapping, which can be represented by V
(2)
µ+1. To keep track of this

linear mapping this transformation is stored in line 335, so that we can compute the original
solution later. D(4) has the form

D(4) =













−A1 E1 −f1

. . .
. . .

...

−Aµ E
(3)
µ E

(4)
µ −fµ

−A
(3)
µ+1 −A

(4)
µ+1 E

(1)
µ+1 −fµ+1

1

−S̃
(2)
µ+1 0 0 −f̃µ+1

2

0 0 0 −f̃µ+1
3













,

where S̃
(2)
µ+1 has full row and full column rank hf,0 and EµV

(2)
µ+1 =

[

E
(3)
µ E

(4)
µ

]

. Thus, we can

eliminate the entries above −S̃
(2)
µ+1 which yields the matrix

D(5) =













−A1 E1 −f1

. . . . . .
...

−Aµ 0 E
(4)
µ −f̃µ

0 −A
(4)
µ+1 E

(1)
µ+1 −f̃µ+1

1

−S̃
(2)
µ+1 0 0 −f̃µ+1

2

0 0 0 −f̃µ+1
3













.

This is done in lines 337-345. One can see that we have computed the form (3.13) for the
single matrix pair (Eµ+1, Aµ+1). This process, which leads from D(2) to D(5), is then repeated

for the next matrix pair (
[

0 E
(4)
µ

]

, Aµ). This is done over and over again until the final

upper left matrix pair is reached. This final matrix pair is then handled in the lines 347 -
396. Call this final matrix D(6).
We see that due to the structure of the main program all matrix pairs in D(1) already have
been reduced at least once. The process leading from D(1) to D(6) reduces all matrix pairs
once again. Thus, the upper left matrix pair in D(6) has been reduced µ + 1 times. As
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we know from (3.26) µ + 1 reductions suffice to obtain a strangeness-free from, once µ is
the forward strangeness index. Thus, the upper left matrix pair in D(6) can be used to
compute one iterate of the solution, which is done in lines 237 - 252. In these lines the
consistency conditions on the inhomogeneity are ignored and the undetermined components
of the solution are set to zero.

5.3.1 Numerical results

To present numerical results, we consider a linear differential-algebraic equation from [8],
namely

[
0 0
1 −t

]

ẋ(t) =

[
−1 t
0 0

]

x(t) +

[
t sin(t)

t + cos(t)

]

, for t ∈ [−7; 7]. (5.8)

As shown in [8] on page 57,

x(t) =

[
t2 + t cos(t)− t2 cos(t)

t + cos(t)− sin(t)− t cos(t)

]

(5.9)

is the only solution of (5.8). This means that there is also only one consistent initial condition.
Note that (5.8) is a special case of (1.7). Thus, we know that by discretizing (5.8) with the
explicit Euler method and the equidistant grid

. . . < −2h < −h < 0 < h < 2h < . . . , (5.10)

for some step size h ∈ R+ yields the discrete-time descriptor system
[

0 0
1/h −k

]

xk+1 =

[
−1 kh
1/h −k

]

xk +

[
kh sin(kh)

kh + cos(kh)

]

, k ∈ Z. (5.11)

Solving this discrete-time descriptor system with the algorithm from Appendix A for a given
h on the discrete interval Z ∩ [−7

h
; 7

h
] yields an approximation to the actual solution (5.9).

Figures 5.1 and 5.2 show the exact solution (5.9) and the approximation for several step sizes
h. One can clearly see how the approximation gets better as the step sizes gets smaller.
In any case only one solution was found and although an inconsistent initial condition was
given to the algorithm from Appendix A (parameter xhat) the algorithm found the only
consistent initial condition.
In table 5.1 the runtime and the approximation errors of the algorithm form Appendix A
are shown for different step sizes h. The runtime in seconds relates to a 64bit processor
from Intel with 2.13GHz. The ∅ solution difference value is the average error between the
iterates of the solution computed from (5.11) with the help of the algorithm from Appendix
A and the exact solution of (5.8), i.e., (5.9). The max. solution difference value is the
maximum error between the iterates of the solution computed from (5.11) with the help of
the algorithm from Appendix A and the exact solution of (5.8), i.e., (5.9).
One clearly sees how the errors are proportional to the step size h. Also the runtimes seem
to be inverse proportional to the step size h. Thus, the explicit Euler method is convergent
of order one, when applied to the differential-algebraic equation (5.8).
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Figure 5.1: Discretization with h = 1 and h = 0.5
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Figure 5.2: Discretization with h = 0.1 and h = 0.01

h runtime in
seconds

∅ solution difference max. solution difference

1 0.01305 6.7431 31.945
0.5 0.02230 2.9053 13.926
0.1 0.09910 0.51967 2.3753
0.05 0.1944 0.2565 1.1601
0.01 0.9677 0.050795 0.22757
0.001 10.96 0.0050684 0.022657
0.0001 362.75 0.00050673 0.002265

Table 5.1: Runtime and approximation errors for different step sizes h
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Chapter 6

Summary

In this diploma thesis some concepts from the book [8] are transferred to the discrete-
time case. In chapter 2 we discuss linear discrete-time descriptor systems with constant
coefficients. This is done in terms of the Kronecker canonical form and afterwards in explicit
form in analogy to [8]. In chapter 2 we already note that one may distinguish three cases
of (linear) discrete time descriptor systems. The first case is the forward case, i.e., the case
where one has an initial condition given at point k0 ∈ Z and only wants to get a solution for
indices k ≥ k0. The second case is the backward case, i.e., the case where one has an initial
condition given at point k0 ∈ Z and only wants to get a solution for indices k ≤ k0. These
first two cases are closely related, since the first case can be transferred into the second one
by a variable substitution. The third case is the two-way case, i.e., the case where an initial
condition is given at some point k0 ∈ Z but one is looking for a solution for indices k ≥ k0 as
well as for indices k ≤ k0. This case puts stronger restrictions on the initial condition, i.e.,
the set of consistent initial conditions in the third case is smaller than in the first or second
case.
In chapter 3 we then move on to descriptor systems with variable coefficients. We first
identify the local characteristics of such systems. Then, with the help of some constant rank
assumptions, we derive a canonical form, which allows for statements about the existence
and uniqueness of solutions for variable coefficient descriptor systems in the forward case. To
achieve this canonical form one has to employ global equivalence transformations and shifts
of equations. The shift is the discrete-time analogon to the differentiation in the continuous-
time case. A strangeness index is defined, which counts the number of shifts necessary to
obtain the canonical form. In section 3.2.1 the inflated descriptor system is introduced and it
is shown (analogous to [8]) that, under some constant rank assumptions, one can determine
the characteristics of the original systems once one knows the local invariants of the inflated
systems. Section 3.3 discusses how to carry over the results from the forward case to the
backward case.
Chapter 4 is devoted to the combination of the forward and backward base. Here even
stronger constant rank assumptions are introduced, which make it possible to obtain a two-
way canonical form. With this two-way canonical form one can make statements about
the existence and uniqueness of solutions in the two-way case. A new strangeness index is
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defined for systems, which satisfy this stronger constant rank assumptions.
Finally, in chapter 5 two algorithms for descriptor systems with constant coefficients and
one algorithm for descriptor systems with variable coefficients are introduced. The first
algorithms will never be used. The second one may be fast enough but it does not respect
the actual index of the descriptor system. The third algorithm seems to be the appropriate
one.

6.1 Outlook

We have only considered the general linear discrete-time descriptor system, but other special
cases might also be interesting, for example the periodic time-variant case, which is consid-
ered in [17]. Another interesting topic would be polynomial descriptor systems, i.e., systems
of the form

A
(l)
k xk+l + . . . + A

(1)
k xk+1 + A

(0)
k xk = 0 for k ∈ Z,

although the theory might get very complicated for such systems. For such systems one
could also investigate the associated control problem, which has already been done for non-
polynomial descriptor systems (e.g., [10, 15, 22]).
The constant rank assumptions (3.12) make it possible to obtain the canonical form (3.26).
One can relax these assumptions, similar to Hypothesis 3.48 in [8]. Then, it should be possible
to create an algorithm that computes the solution of a linear discrete-time descriptor system
under these relaxed assumptions.
It would be interesting to investigate the discretization of linear continuous-time descriptor
systems (i.e., differential-algebraic equations) and connections between properties of the
original continuous-time descriptor system and the discretized descriptor system. Another
thing one could do is the derivation of a canonical form similar to the one in Theorem 3.20
for the two-way reduction process. Having obtained such a canonical form one could try to
prove Conjecture 4.14.
Other topics, which are commonly examined for linear systems of the form xk+1 = Akx

k +fk,
also make sense for discrete-time descriptor systems. Such topics include Stability and
Stochastic Systems (see [7, 9]).
Finally, of course, non-linear descriptor systems also have to be considered.

Acknowledgements
I want to thank Volker Mehrmann for numerous revisions of the manuscript and continuous
support during its creation and Peter Kunkel for the discussion in which he noticed that
the form (3.26) only allows for statements about the existence and uniqueness of forward
solutions.
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Appendix A

Matlab Code

Note that although the following matlab code works, there are major improvements neces-
sary. For example, it is not always necessary to compute the singular value decompositions of
the whole matrix in the function advance inflated system. Also, there may occur an division
by zero error in line 243 and line 199 for underdetermined systems, which can be avoided.
The file can be downloaded from http://www.math.tu-berlin.de/~bruell/matlab/.

1 % solve_dds Compute a solution of a discrete -time descriptor system.

2 % solve_dds(Efun ,Afun ,ffun ,kb,k0 ,kf,xhat ,tol) tries to compute the

3 % iterates x_kb , ... , x_kf of a solution of one of the discrete -time

4 % descriptor systems

5 %

6 % (1) E_k x_{k+1} = A_k x_{k} + f_k for kb <= k <= infty

7 % (2) E_k x_{k+1} = A_k x_{k} + f_k for -infty <= k <= kf

8 % (3) E_k x_{k+1} = A_k x_{k} + f_k for -infty <= k <= infty

9 %

10 % along with xhat = x_{k0},

11 % where the matrices E_k and A_k and the vector f_k are obtained by

12 % evaluation the function Efun , Afun and ffun , respectively , i.e.

13 % E_k = feval( Efun , k ), A_k = feval( Afun , k ),

14 % f_k = feval( ffun , k ).

15 % If no such solution exists , the right hand side f_k is changed so

16 % that a solution exists. If there are multiple solutions , one

17 % solution is selected . If the initial value ’xhat ’ is inconsistent ,

18 % the consistent initial value is chosen which is closest to

19 % ’xhat ’ (in the 2-norm).

20 % If the constant rank assumptions form [1] are not satisfied an

21 % error message is issued and the algorithm is aborted , although

22 % there might still exist a solution .

23 % If kb == k0 and k0 < kf equation (1) is considered.

24 % If kb < k0 and k0 == kf equation (2) is considered.

25 % If kb < k0 and k0 < kf equation (3) is considered.

26 % If kb == k0 and k0 == kf no equation is considered and no real

27 % computations are performed.

28 %

29 % Input parameters:

30 %
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31 % Efun : A function handle or name of a function that takes

32 % one input parameter k and returns the matrix E_k.

33 %

34 % Afun : A function handle or name of a function that takes

35 % one input parameter k and returns the matrix A_k.

36 %

37 % ffun : A function handle or name of a function that takes

38 % one input parameter k and returns the vector f_k.

39 %

40 % kb : The index of the first iterate to compute .

41 % k0 : The index , where to apply the initial condition.

42 % k0 has to satisfy kb <= k0 <= kf.

43 % kf : The index of the last iterate to compute .

44 %

45 % xhat : The desired value of the solution at iterate x_k0.

46 %

47 % tol : Tolerance , below which a singular value is considered

48 % zero.

49 %

50 % Output parameters

51 %

52 % x : The solution iterates x_kb , ... , x_kf side by side

53 % in a matrix. Thus , x(:,k-kb+1) represents the x_k

54 % iterate of the solution . x(:,1) represents the x_kb

55 % iterate and x(kf-kb+1) represents the x_kf iterate .

56 %

57 % isunique : This is set to 1 if there is only one unique

58 % solution and to 0 otherwise.

59 %

60 % r_f : The sequence of the r_f as in [1]. Note that r_f(i)

61 % corresponds to r_{f,i-1} in the forward -only

62 % reduction process as described in [1].

63 %

64 % h_f : The sequence of the h_f as in [1]. Note that h_f(i)

65 % corresponds to h_{f,i-1} in the forward -only

66 % reduction process as described in [1].

67 %

68 % mu_f : The forward strangeness index of the system as

69 % defined in [1].

70 %

71 % r_b : The sequence of the r_b as in [1]. Note that r_b(i)

72 % corresponds to r_{b,i-1} in the backward -only

73 % reduction process as described in [1].

74 %

75 % h_b : The sequence of the h_b as in [1]. Note that h_b(i)

76 % corresponds to h_{b,i-1} in the backward -only

77 % reduction process as described in [1].

78 %

79 % mu_b : The backward strangeness index of the system as

80 % defined in [1].

81 %

82 % Reference:
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83 % [1] Bruell , T.

84 % Linear discrete -time descriptor systems ;

85 % Diploma -Thesis (2007);

86 % http :// www.math.tu-berlin.de/~ bruell

87 %

88 function [x,isunique ,r_f ,h_f ,mu_f ,r_b ,h_b ,mu_b ]=...

89 solve_dds(Efun ,Afun ,ffun ,kb,k0,kf,xhat ,tol)

90
91 r_f =[]; h_f =[];

92 mu_f = 0;

93 r_b =[]; h_b =[];

94 mu_b = 0;

95
96 dimmat = feval( Efun , k0 );

97 [m,n] = size(dimmat );

98 clear dimmat;

99
100 do_forward = ( k0 < kf );

101 do_backward = ( k0 > kb );

102
103 if( do_forward )

104 Ek_f = {};

105 Ak_f = {};

106 Qk_f = {};

107 fk_f = {};

108
109 kact = k0;

110
111 % determine the forward index

112 haveindex = 0;

113 while( ~haveindex )

114 [Ek_f ,Ak_f ,Qk_f ,fk_f ,r_f ,h_f]= advance_inflated_system ...

115 (Efun ,Afun ,ffun ,m,n,Ek_f ,Ak_f ,Qk_f ,fk_f ,kact ,mu_f ,r_f ,h_f ,tol ,0);

116
117 if( ( mu_f >= 1 && r_f(mu_f +1) == r_f(mu_f) ) )

118 haveindex = 1;

119 else

120 mu_f = mu_f + 1;

121 end

122 end

123
124 r_mu_f = r_f(mu_f +1);

125 h_mu_f = h_f(mu_f +1);

126 else

127 r_mu_f = -1; h_mu_f = -1;

128 end

129
130 if( do_backward )

131 Ek_b = {};

132 Ak_b = {};

133 Qk_b = {};

134 fk_b = {};
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135
136 kact = k0 -1;

137
138 % determine the backward index

139 haveindex = 0;

140 while( ~haveindex )

141 [Ek_b ,Ak_b ,Qk_b ,fk_b ,r_b ,h_b]= advance_inflated_system ...

142 (Afun ,Efun ,ffun ,m,n,Ek_b ,Ak_b ,Qk_b ,fk_b ,kact ,mu_b ,r_b ,h_b ,tol ,1);

143
144 if( ( mu_b >= 1 && r_b(mu_b +1) == r_b(mu_b) ) )

145 haveindex = 1;

146 else

147 mu_b = mu_b + 1;

148 end

149 end

150
151 r_mu_b = r_b(mu_b +1);

152 h_mu_b = h_b(mu_b +1);

153 else

154 r_mu_b = -1; h_mu_b = -1;

155 end

156
157 % find all constraints that the initial condition has to fulfill

158 constraintA = zeros(0,n);

159 constraintf = zeros (0,1);

160 if( do_forward )

161 constraintA = [constraintA;-Ak_f {1}( r_mu_f +1: r_mu_f+h_mu_f ,:)...

162 *Qk_f {1}’];

163 constraintf = [constraintf; fk_f {1}( r_mu_f +1: r_mu_f+h_mu_f )];

164 end

165 if( do_backward )

166 constraintA = [constraintA; Ak_b {1}( r_mu_b +1: r_mu_b+h_mu_b ,:)...

167 *Qk_b {1}’];

168 constraintf = [constraintf; fk_b {1}( r_mu_b +1: r_mu_b+h_mu_b )];

169 end

170
171 % find the consistent initial condition that is closest to the given

172 % one

173 [U,S,V] = svd(constraintA );

174 cnum = rank(S); % compute the number of constraints

175 cnum

176
177 ytilde = zeros(n,1);

178 xtilde = V’ * xhat;

179 ftilde = U’ * constraintf ;

180
181 ytilde (1: cnum) = S(1:cnum ,1: cnum) \ ftilde (1: cnum);

182 ytilde(cnum +1:n) = xtilde(cnum +1:n);

183
184 xhat = V * ytilde;

185
186 if( do_forward )
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187 kact = k0;

188
189 xtt_old = (Qk_f {1})’ * xhat;

190
191 % start forward solver

192 for i=1:(kf-k0)

193 xtt = zeros(n,1);

194
195 xtt (1: h_mu_f) = -Ak_f {2}( r_mu_f +1: r_mu_f+h_mu_f ,1: h_mu_f )\...

196 fk_f {2}( r_mu_f +1 : (r_mu_f+h_mu_f) );

197
198 xtt(h_mu_f +1: h_mu_f+r_mu_f) = ...

199 Ek_f {1}(1: r_mu_f ,h_mu_f +1: h_mu_f+r_mu_f )\(...

200 Ak_f {1}(1: r_mu_f ,:) * xtt_old ...

201 + fk_f {1}(1: r_mu_f) ...

202 - Ek_f {1}(1: r_mu_f ,:) * xtt );

203
204 % choose a solution

205 xtt(h_mu_f+r_mu_f +1:n) = zeros(n-r_mu_f -h_mu_f ,1);

206
207 x(1:n, k0-kb+i+1) = (Qk_f {2}) * xtt;

208 xtt_old = xtt;

209
210 % proceed one step

211 kact = kact +1;

212 for i=1: prod(size(Ek_f))-1

213 Ek_f{i}=Ek_f{i+1};

214 Ak_f{i}=Ak_f{i+1};

215 fk_f{i}=fk_f{i+1};

216 Qk_f{i}=Qk_f{i+1};

217 end

218 [Ek_f ,Ak_f ,Qk_f ,fk_f ,r_f ,h_f]= advance_inflated_system ...

219 (Efun ,Afun ,ffun ,m,n,Ek_f ,Ak_f ,Qk_f ,fk_f ,kact ,mu_f ,r_f ,h_f ,tol ,0);

220 end

221
222 % compute the _real_ forward strangeness index (i.e. as in [1])

223 for i=length(r_f)-1:-1:1

224 if( r_f(i) == r_f(i+1) )

225 mu_f = i-1;

226 end

227 end

228 end

229
230 if( do_backward )

231 kact = k0 -1;

232
233 xtt_old = (Qk_b {1})’ * xhat;

234
235 % start backward solver

236 for i=0:(k0-kb -1)

237 xtt = zeros(n,1);

238
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239 xtt (1: h_mu_b) = Ak_b {2}( r_mu_b +1: r_mu_b+h_mu_b ,1: h_mu_b )\...

240 fk_b {2}( r_mu_b +1 : (r_mu_b+h_mu_b) );

241
242 xtt(h_mu_b +1: h_mu_b+r_mu_b) = ...

243 Ek_b {1}(1: r_mu_b ,h_mu_b +1: h_mu_b+r_mu_b )\( ...

244 Ak_b {1}(1: r_mu_b ,:) * xtt_old ...

245 - fk_b {1}(1: r_mu_b) ...

246 - Ek_b {1}(1: r_mu_b ,:) * xtt );

247
248 % choose a solution

249 xtt(h_mu_b+r_mu_b +1:n) = zeros(n-r_mu_b -h_mu_b ,1);

250
251 x(1:n, k0-kb -i) = (Qk_b {2}) * xtt;

252 xtt_old = xtt;

253
254 % proceed one step

255 kact = kact -1;

256 for i=1: prod(size(Ek_b))-1

257 Ek_b{i}=Ek_b{i+1};

258 Ak_b{i}=Ak_b{i+1};

259 fk_b{i}=fk_b{i+1};

260 Qk_b{i}=Qk_b{i+1};

261 end

262 [Ek_b ,Ak_b ,Qk_b ,fk_b ,r_b ,h_b]= advance_inflated_system ...

263 (Afun ,Efun ,ffun ,m,n,Ek_b ,Ak_b ,Qk_b ,fk_b ,kact ,mu_b ,r_b ,h_b ,tol ,1);

264 end

265
266 % compute the _real_ backward strangeness index (i.e. as in [1])

267 for i=length(r_b)-1:-1:1

268 if( r_b(i) == r_b(i+1) )

269 mu_b = i-1;

270 end

271 end

272 end

273
274 if( ( ~do_forward || r_mu_f + h_mu_f == n ) && ...

275 ( ~do_backward || r_mu_b + h_mu_b == n ) )

276 isunique = 1;

277 else

278 isunique = 0;

279 end

280
281 x(:,k0-kb+1) = xhat;

282
283
284
285 function [Ek,Ak,Qk ,fk,r,h]= advance_inflated_system ...

286 (Efun ,Afun ,ffun ,m,n,Ek ,Ak,Qk,fk,kact ,mu,r,h,tol ,backward )

287
288 if( backward )

289 signed_mu = -mu;

290 else
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291 signed_mu = mu;

292 end

293
294 Ek{mu+1} = feval( Efun , kact+signed_mu );

295 Ak{mu+1} = feval( Afun , kact+signed_mu );

296 Qk{mu+1} = eye(n);

297 fk{mu+1} = feval( ffun , kact+signed_mu );

298
299 for j=mu:-1:1

300 % calculate a svd of E

301 [U,S,V] = svd(Ek{1+j}); % Ek == U * S * V’

302
303 % determine the rank (only for sure)

304 loc_r = sum( getdiag (S) > tol );

305 if( loc_r ~= r(mu-j+1) )

306 error([’r not invariant!  (k=’,num2str(kact),’,loc_r=’ ,...

307 num2str(loc_r),’,r(’,num2str (mu-j+1),’)=’ ,...

308 num2str(r(mu-j+1)),’)’]);

309 end

310
311 % apply transformation

312 S( (loc_r +1):m, : ) = zeros(m-loc_r ,n);

313 Ek{1+j} = S * V’; % = U’* Ekact

314 Ak{1+j} = U’* Ak{1+j};

315 fk{1+j} = U’* fk{1+j};

316
317 % calculate a svd of A

318 A2 = Ak{1+j}( loc_r+1:m, : );

319 [U,S,V] = svd(A2); % Ak == U * S * V’

320
321 % determine the rank (only for sure)

322 loc_h = sum( getdiag (S) > tol );

323 if( loc_h ~= h(mu-j+1) )

324 error([’h not invariant!  (k=’,num2str(kact),’,loc_h=’ ,...

325 num2str(loc_h),’,h(’,num2str (mu-j+1),’)=’ ,...

326 num2str(h(mu-j+1)),’)’]);

327 end

328
329 % apply transformation

330 S( loc_h +1:m-loc_r , : ) = zeros(m-loc_r -loc_h ,n);

331 Ek{j} = Ek{j}*V;

332 Ak{1+j}( loc_r+1:m, : ) = S;

333 Ak{1+j}( 1:loc_r , : ) = Ak{1+j}( 1:loc_r , : ) * V;

334 fk{1+j}( loc_r+1:m, : ) = U’* fk{1+j}( loc_r +1:m, : );

335 Qk{1+j} = Qk{1+j}*V;

336
337 % do block elimination (in A)

338 fk{1+j}(1: loc_r) = fk{1+j}(1: loc_r) - Ak{1+j}(1:loc_r ,1: loc_h )*...

339 (S(1:loc_h ,1: loc_h)\fk{1+j}(( loc_r +1):( loc_r+loc_h )));

340 Ak{1+j}(1: loc_r ,1: loc_h) = zeros(loc_r ,loc_h);

341
342 % do block elimination (in E)
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343 fk{j}(1: loc_r) = fk{j}(1: loc_r) + Ek{j}(1: loc_r ,1: loc_h )*...

344 (S(1:loc_h ,1: loc_h)\fk{1+j}(( loc_r +1):( loc_r+loc_h )));

345 Ek{j}(1: loc_r ,1: loc_h) = zeros(loc_r ,loc_h);

346
347 end

348
349 [U,S,V] = svd(Ek{1}); % Ek == U * S * V’

350
351 % determine the rank

352 loc_r = sum( getdiag (S) > tol );

353 if( length(r) >= mu+1 )

354 if( loc_r ~= r(mu+1) )

355 error([’r not invariant!  (k=’,num2str(kact),’,loc_r=’ ,...

356 num2str(loc_r),’,r(’,num2str (mu+1),’)=’ ,...

357 num2str(r(mu+1)),’)’]);

358 end

359 else

360 r(mu+1) = loc_r;

361 end

362
363 % apply transformation

364 S( r(mu+1)+1:m, : ) = zeros(m-r(mu+1),n);

365 Ek{1} = S * V’; % = U’* Ekact

366 Ak{1} = U’* Ak{1};

367 fk{1} = U’* fk{1};

368
369 A2 = Ak{1}( r(mu +1)+1:m, : );

370 [U,S,V] = svd(A2); % Ak == U * S * V’

371
372 % determine the rank

373 loc_h = sum( getdiag (S) > tol );

374 if( length(h) >= mu+1 )

375 if( loc_h ~= h(mu+1) )

376 error([’h not invariant!  (k=’,num2str(kact),’,loc_h=’ ,...

377 num2str(loc_h),’,h(’,num2str (mu+1),’)=’ ,...

378 num2str(h(mu+1)),’)’]);

379 end

380 else

381 h(mu+1) = loc_h;

382 end

383
384 % apply transformation

385 S( h(mu+1)+1:m-r(mu+1), : ) = zeros(m-r(mu+1)-h(mu+1),n);

386 Ek{1} = Ek{1};

387 Ak{1}( r(mu +1)+1:m, : ) = S;

388 Ak{1}( 1:r(mu+1), : ) = Ak{1}( 1:r(mu+1), : ) * V;

389 fk{1}( r(mu +1)+1:m, : ) = U’* fk{1}( r(mu +1)+1:m, : );

390 Qk{1} = Qk{1} * V;

391
392 % eliminate in A

393 fk{1}(1:r(mu+1)) = fk {1}(1:r(mu+1)) - Ak{1}(1:r(mu+1),1:h(mu +1))*...

394 (S(1:h(mu+1),1:h(mu+1))\fk{1}((r(mu +1)+1):( r(mu+1)+h(mu+1))));
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395 Ak{1}(1:r(mu+1),1:h(mu+1)) = zeros(r(mu+1),h(mu+1));

396
397
398
399 % Returns the diagonal elements of a matrix in a vector.

400 function x=getdiag (A)

401
402 if( size(A,1) > 1 && size(A,2) > 1 )

403 x = diag(A);

404 else

405 if( prod(size(A)) > 0 )

406 x = A(1,1);

407 else

408 x = [];

409 end

410 end

411
412
413 % Dumps the inflated descriptor system represented by the arrays

414 % Ek, Ak and fk.

415 function dumparray(Ek,Ak,fk,m,n)

416 outsys = zeros(0,n);

417 outf = [];

418 for i=1: prod(size(Ek))

419 outsys = [ outsys , zeros((i-1)*m,n); ...

420 zeros(m,(i-1)*n) , -Ak{i}, Ek{i} ];

421 outf = [outf;-fk{i}];

422 end

423 [outsys , outf]
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[9] V. Kučera, Analysis and Design of Discrete Linear Control Systems, Prentice Hall,
Upper Saddle River, NJ, USA, 1991.

[10] F. L. Lewis, Fundamental, reachability and observability matrices for discrete descrip-
tor systems, IEEE Transactions on automatic control, Vol. 30 (1985), pp. 502–505.

[11] C. F. V. Loan, The ubiquitous Kronecker product, Journal of computational and
applied mathematics, (2000), pp. 85–100.

[12] D. G. Luenberger, Dynamic equations in descriptor form, IEEE Transactions on
Automatic Control, Vol. 22 (1977), pp. 312–321.

115



[13] , Time-invariant descriptor systems, Automatica, Vol. 14 (1978), pp. 473 – 480.

[14] D. G. Luenberger and A. Arbel, Singular dynamic Leontief systems, Econome-
trica, Vol. 45 (1977), pp. 991–995.

[15] V. Mehrmann, The Autonomous Linear Quadratic Control Problem, Springer-Verlag,
Berlin, 1991.

[16] B. Mertzios and F. Lewis, Fundamental matrix of discrete singular systems, Cir-
cuits, Systems, and Signal Processing, Vol. 8 (1989), pp. 341–355.

[17] J. Sreedhar and P. V. Dooren, Periodic descriptor systems: Solvability and con-
ditionability, IEEE Transactions on Automatic Control, Vol. 44 (1999), pp. 310–313.

[18] P. S. Stanimirovic and M. D. Petkovic, Computing generalized inverse of poly-
nomial matrices by interpolation, Applied Mathematics and Computation, 172 (2006),
pp. 508–523.

[19] T. Stykel, Numerical solution and perturbation theory for generalized Lyapunov equa-
tions, Linear Algebra and its Applications, (2002), pp. 155–185.

[20] Y. Wei and H. Wu, The representation and approximation for Drazin inverse, Journal
of computational and applied mathematics, (2000), pp. 417–432.

[21] J. H. Wilkinson, Note on the practical significance of the Drazin inverse, tech. report,
School of Humanities and Sciences, Stanford University, April 1979.

[22] L. Zhang, J. Lam, and Q. Zhang, Lyapunov and Riccati equations of discrete-time
descriptor systems, IEEE Transactions on automatic control, Vol. 44 (1999), pp. 2134–
2139.

116


