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Zusammenfassung

Die interne Kühlung von Turbinenschaufeln und Triebwerke senkrecht
startender und landender Flugzeuge sind nur zwei von vielen Anwen-
dungsbeispielen, bei denen Prallstrahlen genutzt werden. Um globale
Ressourcen zu schützen, wird eine Steigerung der Kühleffizienz benötigt.
Deshalb wurden und werden enorme Forschungsaktivitäten bezüglich
Prallstrahlen durchgeführt. Trotz bedeutenden Fortschritten während
der letzten Jahrzehnte gibt es noch immer eine Wissenslücke mit
Hinsicht auf deren turbulente Strömung. Diese Lücke muss geschlossen
werden, um effizientere Kühlkonfigurationen entwickeln zu können. Eine
weitere Fragestellung betrifft die Emission von tonalem Lärm. Dieser
schädigt nicht nur das menschliche Hörsystem, sondern führt auch zu
Materialermüdung und –versagen, insbesondere im Überschallfall. Es ist
unstrittig, dass ein Rückkopplungsmechanismus für die Generierung dieser
zerstörerischen Schallwellen verantwortlich ist. Dennoch ist die Rolle der
Stöße in Prallplattennähe sowie der Wirbel unklar und umstritten.

In dieser Dissertation werden Prallstrahlen mittels direkter numerischer
Simulationen untersucht. Mit diesem Ansatz kann das Wissen bezüglich
der Dynamik des Prallstrahls erweitert werden. Dazu werden Beobach-
tungen der transienten Strömung sowie statistische Auswertungen und In-
formationen über die modale Struktur des Prallstrahls präsentiert. Diese
Einblicke werden mit den Themen Wärmeübergang und Schallemission in
Verbindung gebracht. Die Mechanismen der Schallentstehung in super-
sonischen Prallstrahlen mit niedrigem Druckverhältnis (NPR = 2.15) und
weitem Strahlabstand (h/D = 5) werden aufgezeigt.
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Abstract

The internal cooling of turbine blades and vertical take off and landing
aircraft engines are just two of many examples where impinging jets are
used. In order to save global resources, an increase of cooling efficiency
is wanted. Therefore, enormous research activities have been and are
presently being carried out with respect to impinging jets. Despite
substantial advances within the last decades, a knowledge gap still exists
concerning its turbulent flow. This gap needs to be closed in order to
develop more efficient cooling configurations. An additional problem is
the emission of vastly loud tonal noise. This noise does not only damage
the human hearing system, but also leads to material fatigue and failure,
especially in the supersonic case. A feedback-loop mechanism is generally
accepted to generate those destructive sound waves. Nonetheless, the role
of standoff shocks and vortices in that respect is unclear and controversial.

Within this dissertation, impinging jets are investigated by means of
direct numerical simulations. Using this approach, the knowledge of the
dynamics is extended by providing observations of the transient flow,
statistical results as well as information about impinging jet modes. These
insights are related to the topics heat transfer and sound emission. The
sound source mechanism within supersonic impinging jets of low nozzle
pressure ratio (NPR = 2.15) and high nozzle-to-plate distance (h/D = 5)
are revealed.
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Nomenclature

Within this thesis, the variables are denoted with its common symbols. It is
inevitable that some symbols are used repeatedly with different meanings,
depending on the context. The respective meaning is clearly brought out
within the text. Variables that are used only within a single short section
and are not essential for the aims of the thesis are not listed.

All units are given in the legends of diagrams. If no unit is written, it
means that the quantity is dimensionless. Within the captions, → and ↓
indicate the reading directions left to right and top to down.

∗ .. unit depends on components

Capital letters
Cf − skin friction factor
D,D∗ m diameter, displaced ∼
DM ∗ dynamic mode
E J kg−1 (specific) total energy
Euu,vv,ww J kg−1 kinetic energy
F ∗ right-hand side of Navier-Stokes equations
Ls m shock cell spacing
LT m jet-to-jet spacing
Lx,y,z m domain size
Ma − Mach number
N − number of samples
NPR − nozzle pressure ratio
Nu,Nu0 − Nusselt number, stagnation point ∼

XIX



Nomenclature

Pr ,Pr t − Prandtl number, turbulent ∼
Q s−2 2nd invariant of velocity gradient tensor
R − Bravais-Pearson correlation coefficient
Rs J kg−1 K−1 specific gas constant
Re − Reynolds number
S ∗ companion matrix
SPL dB sound pressure level
Sr − Strouhal number
St − Stanton number
T, Tt K temperature, total ∼
T+ − dimensionless temperature
Tτ K friction temperature
U ∗ flow field vector U = (p, u, v, w, s)

>

V ∗ snapshot matrix
X,Y, Z m s−2 plane characteristic waves

Small letters
c m s−1 speed of sound
c − coefficient vector
cp, cv J kg−1 K−1 specific heat capacity at constant pressure /

volume
e J kg−1 (specific) internal energy
e − Euler’s number (e ≈ 2.71828)
ekin J kg−1 (specific) kinetic energy
f, fs Hz frequency, screech ∼
f − spatial function for inlet definition
h m nozzle-to-plate distance
h − dimensionless mesh width
i − number of cores
k W m−1 K−1 thermal conductivity
kx,y,z m−1 wave number

XX



Nomenclature

l m nozzle-shock spacing
lη m Kolmogorov length scale
m,n − exponents for Nusselt number correlation
ṁ kg s−1 mass flow
n − total number of grid points
p, pt Pa pressure, total ∼
q, r arbitrary variable out of U
qi W m−2 heat flux vector
qw W m−2 heat flux component normal to the wall at the

wall
r m radial coordinate
r − recovery factor
r ∗ residual vector
rη − ratio of mesh width to Kolmogorov length
s J kg−1 K−

1

(specific) entropy
sij s−1 rate-of-strain tensor
t, tp s time, perfusion ∼
u, v, w m s−1 velocity in x, y, z-direction
u+ − dimensionless velocity
uθ,r m s−1 velocity in θ, r direction
uτ m s−1 friction velocity
v ∗ snapshot
x ∗ eigenvectors of companion matrix S
x, y, z m Cartesian coordinates
xc, yc, zc m positional parameter in x, y, z-direction
x∗c , y

∗
c , z
∗
c − dimensionless position x, y, z-direction

y+ − dimensionless wall distance

Greek capital letters
∆T K temperature difference (∆T = Tt,in − Tw)
∆x,∆y,∆z m mesh width
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ΦRe − heat transfer effectivity

Greek small letters
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δ∗ m radial displacement
ε m2 s−3 dissipation rate
η kg m−1 s−1 dynamic viscosity
θ − circumferential coordinate
κ − ratio of specific heats
λ, λ∗ ∗ eigenvalues of companion matrix S
ν m2 s−1 kinematic viscosity
π − pi (π ≈ 3.14159)
ρ kg m−3 density
σsc − shock filtering strength
σ1 − first root of the zero order Bessel function

(σ1 ≈ 2.4048)
σs − sponge function
τij Pa viscous stress tensor
τs − strength parameter of sponge
τw Pa wall shear stress
χ ◦ radiation angle

Subscripts
?∞ at fully expanded or ambient condition
?δ at the boundary layer edge
?in at the inlet
?i,j,k Cartesian spatial directions
?r radial direction
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Superscripts
?′ Reynolds fluctuation
?′ first derivative of the variable
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?̃ Favre average
?± acoustic wave
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Abbreviations
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CCA Chilton Colburn analogy
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DMD dynamic mode decomposition
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GRA reneralized Reynolds analogy
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Thesis overview

This dissertation covers the two most important issues of impinging jets:
heat transfer and emanated sound. Within the introduction (chapter 1),
the state of research is given and the open questions are addressed.
Afterwards, the used numerical model (chapter 2) as well as analysis
methods (chapter 3) are explained. The heart of this thesis is divided
into three chapters. Chapter 4 establishes a basis for the investigation
of the two key topics taking a closer look at dynamic aspects of the
impinging jet flow. After that, a chapter concerning the impinging tone
follows (chapter 5). In chapter 6, heat transfer and related statistical
quantities are investigated. In chapter 7, the dissertation is concluded and
an outlook is given. Additional diagrams that are not discussed are given
in the appendix for validation purposes.
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1 Introduction

Jets impinging on a flat plate have a considerable number of applications
in engineering. Heating and cooling configurations rank among the most
important uses. Impinging jets are characterised by the occurrence of
intense temperature gradients at heated or cooled impinging plates and
thus enable a strong local heat transfer. For this reason impinging jets are
applied to thermally high stressed components such as turbine blades.

Equally important is the use as rocket engine or vertical and/or short
take off and landing aircraft aero engine. The obstructed jets are typically
operated under pressure ratios high enough to allow a supersonic flow. The
operation is characterised by the emission of destructive loud tonal noise
that can cause deafness and material fatigue.

In the following sections, the state of research is given and the open
questions concerning heat transfer efficiency improvement and noise source
mechanisms are revealed.

1.1 Flow characteristics

Impinging jets have been studied for decades. Therefore, the basic flow
characteristics are well-known and described in several reviews, such as
Hrycak (1981), Jambunathan et al. (1992) ,Viskanta (1993), Weigand &
Spring (2011). Following these reviews, the impinging jet contains three
zones: the free jet, the deflection zone and the wall jet, as described in the
following. A schematic illustration of a supersonic impinging jet is given
in figure 1.1.

1



1 Introduction

free jet 

wall jet 
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shock diamonds 

standoff shocks 

orifice plate 

impinging plate 

primary vortex ring 

Figure 1.1: Schematic illustration of the flow of a supersonic impinging jet

The free jet contains a shear layer between the high velocity gas jet and
the surrounding stagnant gas that leads to the development of Kelvin-
Helmholtz instabilities. Primary ring vortices develop and grow as they are
transported downstream. This mixing entrains fluid from the surrounding
area. Consequently, the jet broadens and the diameter of the unaffected
fluid (potential core) decreases. According to Livingood & Hrycak (1973),
the potential core for turbulent flow is 6 to 7 nozzle diameters. In this
thesis, all computed impinging jets have a nozzle-to-plate distance of five
diameters. Therefore, the length of the potential core is decreased and
ends in the region of the stagnation flow.

In the deflection zone, the axial velocity rapidly decreases and the static
pressure rises. Consequently, the radial velocity strongly increases. The
wall-normal extension of this zone is approximatively between 1.2 and 2
nozzle diameters. The flow in this region is also referred to as stagnation
flow.

The radial velocity reaches a maximum at around one diameter from the
jet axis within the wall jet. Compared to a simple wall-parallel flow, the
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1.1 Flow characteristics

turbulence generated within the shear layer between the wall and the wall
jet leads to higher heat transfer. A second shear layer exists, analogue
to the free jet region, between the high velocity wall gas jet and the
surrounding stagnant gas. Both shear layers lead to a widening of the
wall jet with increasing radial distance.

Two more effects occur in the case of supersonic under-expanded
impinging jets: shocks within the free jet and standoff shocks in and above
the deflection zone. Depending on flow conditions, a recirculation region
within the deflection zone may occur as well.

The shocks within the free jet are caused by an imperfect expansion.
This happens when the pressure at the nozzle exit pin of supersonic jets
is not equal to the ambient pressure p∞. If pin > p∞, the jet is called
under-expanded and when pin < p∞ it is called over-expanded. The most
common way to study this phenomenon is to use a high pressure reservoir
and a low pressure reservoir e.g. the environment (Norman et al. (1982)).
For subsonic jets pin is always equal to p∞. We assume no total pressure
loss within the nozzle, so that the total pressure at the nozzle exit pt,in (=
inlet of the domain) is equal to the reservoir pressure. The ratio pt,in/p∞
is called nozzle pressure ratio NPR. If it is higher than ((κ+ 1) /2)

κ/(κ−1),
an under-expanded jet forms for convergent nozzles (Iwamoto (1990)). For
air (κ = 1.4) the critical NPR is 1.893. In this dissertation, only subsonic
and under-expanded supersonic impinging jets are looked at. As shown
in figure 1.1, slightly under-expanded jets feature characteristic shock
diamonds. Following Adamson & Nicholls (1959), this phenomenon occurs
as follows: Gas leaves the nozzle and expands going through an expansion
fan to the ambient pressure at the jet boundary. As the expansion waves
reach the jet boundary, they are reflected as compression waves and are
sent back into the flow. These waves coalesce to form intercepting shocks.
The repetition of this effect forms the characteristic shock cells or shock
diamonds that are illustrated in figure 1.1. For fully expanded Mach
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numbers

Ma∞ =

√√√√((pt,in
p∞

)κ−1
κ

− 1

)
2

κ− 1
(1.1)

higher than approximately two, a normal shock, also referred to as Mach
disk, may appear at the end of the first shock cell. Ma∞ is a reasonable
parameter, since all chocked jet have a Mach number of one at the orifice.
The Mach disk creates a region of mixed sub- and supersonic flow (Schulze
(2013)). Mach disks can appear in impinging jets at lower pressure, but
only when the nozzle-to-plate distance is less than about 11/2 diameters
(Henderson (2002)). The fully expanded Mach number of the supersonic
simulations presented in this thesis is Ma∞ = 1.106. The nozzle-to-
plate distance h is 5 diameters. Therefore, Mach disks are not considered
further. According to Tam & Tanna (1982), the shock cell spacing Ls can
be approximated as:

Ls ≈ π
√
Ma2
∞ − 1

D∞
σ1

. (1.2)

σ1 = 2.4048 and is the first root of the zero order Bessel function. D∞ is
the fully expanded jet diameter. Regarding equation (1.2), it follows that
shock cells become larger with increasing fully expanded Mach number
respectively NPR. D∞ can be derived by the condition of conservation of
mass flux and using isentropic flow relations:

D∞ = D

(
1 + 1

2 (κ− 1)Ma2
∞

1 + 1
2 (κ− 1)Ma2

d

) κ+1
4(κ−1)

√
Mad
Ma∞

. (1.3)

With a design Mach number Mad of one and Ma∞ = 1.106, the fully
expanded jet diameter is approximatively equal to the nozzle diameter D:

D∞ = 1.0044D ≈ D . (1.4)

Therefore, in this thesis no difference between D and D∞ is made. The
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1.1 Flow characteristics

approximation error of 0.44% is negligible compared to the influence of the
inlet velocity profile, as described later in section 2.3.1.

Iwamoto (1990) investigated the shock wave location experimentally.
The distance between the nozzle and the shock waves l were measured
on shadowgraph pictures for NPR = 3. Figure 1.2 shows the dependence
of l on the nozzle-to-plate distance h. Hence, the distance between the
shock and the impinging plate is (h− l). For nozzle-to-plate distances
h/D . 1.5, a single shock stands in front of the impinging plate. The
distance between the shock wave and the impinging plate (h− l) is almost
independent of h/D. When h/D & 2, the mentioned shock wave remains
at the position of the free jet shock and a second shock appears whose
distance to the impinging plate likewise remains constant, until the third
shock can occur with further increasing h/D. As a consequence of the
chosen parameters (NPR = 3.0, h/D ≤ 4), a maximum of three shock
cells fit between the nozzle and the impinging plate. Regarding a free jet,
shock cells close to the nozzle are relatively clear and stationary. Shock
cells farther downstream are effected much stronger by the ever-growing
vortices and loose in strength. All configurations investigated by Iwamoto
(1990) are relatively stationary concerning the shock cells of the free jet
region and consequently the standoff shock. The occurrence and behaviour
of the standoff shock in configurations with lower NPR and greater h/D
remain unclear.

As mentioned above, a stagnation bubble may occur in the impingement
region. According to Sinibaldi et al. (2013) it is still unclear under which
conditions this recirculation region forms, but it may be connected to the
Mach disk. A summary of research on this topic is given in Henderson
(2002). The stagnation bubble does not occur in the simulations presented
in this thesis and is not further considered.
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Figure 1.2: Position of the shock waves at the jet boundary at NPR = 3.0:
nozzle-shock spacing l as function of the nozzle-to-plate distance h. Data from
Iwamoto (1990).

1.2 Heat transfer

Subsonic impinging jets are used for the heating and cooling of surfaces.
One important example is the cooling of turbine blades. Higher turbine
entry temperatures increase the total efficiency of the thermodynamic
cycle (Uhlmann (2003)). Also new engine and combustion concepts such
as pulsed detonation, which is studied within the Collaborative Research
Centre 1029, cause higher thermal loads of the blades. These loads need
to be counteracted with a more efficient cooling mechanism, which can
evacuate a higher heat quantity at unchanged demand of cooling mass
flow. A promising approach is the use of pulsating impinging jets.

Despite enormous research efforts within the last decades, still little
is known about turbulence of both, unforced and forced impinging jets.
These information are essential for a possible increase of heat transfer
efficiency.
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1.2 Heat transfer

1.2.1 Stationary impinging jets

Following Weigand & Spring (2011), the heat transfer caused by
impingement of a jet onto a flat plate is affected by many different factors,
such as the exit velocity, the velocity profile, the geometry of the nozzle
or the orifice, the turbulence level, the entrainment condition, the nozzle-
to-plate distance and the thermal boundary condition at the wall. The
highest heat transfer is typically reached in the stagnation point. With
increasing axial distance, the heat transfer decreases monotonously, except
for low h/D. Here, a secondary maximum can occur. In praxis, multiple
impinging jets (arrays) are used in order to cool surfaces. Arrays are not
further considered in this thesis, but one important parameter, namely
h/D, can only be chosen meaningfully, when multiple jets are involved.
The question to an optimal arrangement of nozzles for a given cooling
mass flow per area involves the diameter D, the nozzle-to-plate distance
h/D and the distance between the jets LT /D. Considering all three
parameters (D,h, LT ), no reasonable optimum can be derived. The steady
decrease of all three parameters leads in theory to an ever increasing heat
transfer coefficient. Consequently, the optimisation makes only sense if
one parameter is fixed. The common choice for the given parameter is h
(Martin (1977)). Under this condition, optimal nozzle-to-plate distances
are reported to be in the range of six to eight diameters Weigand & Spring
(2011). According to Martin (1977), the optimal nozzle-to-plate distance
is h/D ≈ 5. In this thesis, h/D = 5 is used for all simulations.

Heat transfer at the impinging plate is quantified by the Nusselt number:

Nu =
D

∆T
· ∂T
∂y

∣∣∣∣
w

= qw
DPr

∆Tcpη
. (1.5)

D is the inlet diameter, ∆T is the difference between the total inlet
temperature Tt,in and the wall temperature Tw. Pr , cp, η and qw are the
Prandtl number, the ratio of specific heats, the dynamic viscosity and
the heat flux in the wall-normal direction at the wall. Most research was
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carried out in order to find approximations for the Nusselt number in the
shape of a power law:

Nu ∼ RemPrn . (1.6)

The Prandtl and Reynolds numbers

Pr =
ηcp
k

, (1.7)

Re =
v∞D

ν
. (1.8)

relate viscous to thermal diffusion rate respectively inertial to viscous
forces. k, v∞ and ν are the thermal conductivity, the fully expanded inlet
velocity and the kinematic viscosity. Typical values for the exponents
within equation (1.6) are 0.5 ≤ m ≤ 0.9 and n = 1/3 (Weigand & Spring
(2011)). It is obvious that Nu increases with increasing Reynolds number.
This kind of correlation can be extended with geometrical parameters,
such as the nozzle-to-plate distance and the distance between the jets, in
case of arrays.

1.2.2 Pulsating impinging jets

Pulsating impinging jets are not the central topic of this thesis. However
the results presented in this work help to understand the physics of the
stationary impinging jet. Some of its characteristics, e.g. the modal
structure, as shown later, are crucial for the research concerning pulsating
impinging jets.

Two different strategies exist with the aim to increase heat transfer
efficiency of the impinging jet. In the first one, shear layer instabilities
are excited by the use of loudspeakers. The introduced disturbances are
relatively low: the amplitude reaches (0.1 − 2%) of the inlet velocity. A
summary of this method is given in Janetzke (2010).

The second method deals with a much stronger excitation. The entire
jet is influenced by a pulsating inlet, e.g. due to a valve. Janetzke
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1.2 Heat transfer

Sr 
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P 

Figure 1.3: Increase of heat transfer effectivity ΦRe of pulsating impinging jets
related to a stationary one, depending on the Strouhal number Sr and amplitude
AMP . Modified from Janetzke (2010).

(2010) experimentally investigated such configurations. He found that
the pulsation with a Strouhal number of approximately 0.85 and maximal
amplitude (on/off) increases the heat transfer compared to a non-pulsating
jet of 40%. The mass flow has been kept constant. Figure 1.3 shows the
increase of heat transfer effectivity

ΦRe =

(
Nup
Nu

)1/m

(1.9)

depending on the amplitude AMP and the Strouhal number Sr . The
subscript p addresses the pulsated case. Nu (without subscript) referres
to the non-pulsed reference. m is the exponent of the correlation (see
equation (1.6)), based on the stationary reference case. The exponent
found by Janetzke (2010) is m = 0.524. In the range 0.5 . Sr .

0.9, exactly one primary vortex ring per actuator cycle was generated.
The increased vortex diameter causes higher wall shear stresses, which
were found due to the use of oil painting pictures. The reason for
the generation of larger primary vortex rings at this specific frequency
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remained unclear. However according to Janetzke (2010), the shear
layer instabilities are meaningless for this strategy. Investigation of other
authors are summarised in Janetzke (2010) as well. It is pointed out that
the question for a fluid dynamical explanation of the effects on heat transfer
due to pulsation is still open.

1.2.3 Numerical simulation of impinging jets

Experiments are able to reveal optimal geometrical arrangements as well
as Strouhal numbers which can increase the heat transfer efficiency due to
trying out. However, complete physical explanations can only be found if
numerical simulations are carried out as well. Simulations can provide all
quantities of the turbulent flow spatially and temporally well resolved. In
the following, the state of the art is reviewed briefly, using the article of
Wilke & Sesterhenn (2016c).

Most existing publications of a numerical nature use either turbulence
models for the closure of the Reynolds-averaged Navier-Stokes (RANS)
equations, e.g. Zuckerman & Lior (2005), or large eddy simulation (LES),
e.g. Cziesla et al. (2001).

Due to the lack of computing power in the past, direct numerical
simulations (DNS) carried out early are either at low (laminar) Reynolds
number (Re < 3000) or under-resolved “false DNS” (Satake & Kunugi
(1998), Hattori & Nagano (2004)). For example, Hattori & Nagano (2004)
performed a 2.5-dimensional “DNS” on 3 million grid points (Re = 9120) on
a large domain of 26×2×1.6 diameters. As a comparison, the simulations
described in this thesis are performed with more than one billion grid
points for Re = 8000.

The only true DNS of a fully turbulent impinging jet beside the
simulations presented in this dissertation, and the corresponding own
articles, was carried out from Dairay et al. (2014, 2015). They conducted
a DNS of a round impinging jet with a nozzle to plate distance of two and
focused on the secondary maximum of the heat transfer distribution and
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1.2 Heat transfer

Publication Re grid size

Satake & Kunugi (1998) 10000 192× 220× 192
(
8.11 · 106

)
Chung & Luo (2002)∗ 1000 256× 256

(
0.07 · 106

)
Tsubokura et al. (2003) 2000 100× 150× 96

(
1.44 · 106

)
Hattori & Nagano
(2004)∗∗

9120 320× 96× 96
(
2.95 · 106

)
Tsujimoto et al. (2009) 1500 256× 200× 256

(
13.11 · 106

)
Dairay et al. (2015) 10000 1541× 401× 1541

(
952.25 · 106

)
own simulations 3300 512× 512× 512

(
134.22 · 106

)
own simulations 8000 1024× 1024× 1024

(
1073.74 · 106

)
Table 1.1: Overview of direct numerical simulations of impinging jets.
Simulations marked with ∗ and ∗∗ are two-dimensional respectively 2.5-
dimensional.

on the connection to elongated structures. The influence of the small-
scale component of the flow on the heat transfer is subtle and leads
to radially elongated cold spots in the instantaneous Nusselt number
distribution. In addition, LES are carried out and compared to the DNS
data. The results show that conventional subgrid-scale models based on
eddy viscosity (dynamic Smagorinsky, WALE models) deliver unrealistic
heat transfer predictions in the impingement region. The use of a discrete
viscous operator significantly improves the heat transfer prediction in this
region. However, none of the LES models was able to clearly predict
the secondary peak in the Nusselt number distribution, as measured and
computed with DNS. The simulations presented in this thesis differ, since
the nozzle-to-plate-distance is larger (h/D = 5 vs. h/D = 2) and we
analyse a compressible flow at Mach numbers between 0.4 and 1.1, instead
of an incompressible impinging jet. In table 1.1, all direct numerical
simulations available in the literature are listed.

One more important issue found by Kharoua & Khezzar (2011) is the
fact that the use of symmetry conditions prevents flapping modes and leads
to artificial recirculation areas in the vicinity of these boundary conditions
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and consequently to an unrealistic heat transfer prediction. An in-line
array by the use of LES on 9.5 million grid points with Re = 20000 was
simulated.

1.3 Sound emission

Impinging jets feature a flow region that is equal to the flow of a free jet
if the plate distance is large enough. Hence, the sound sources present
in free jets also exist within impinging jets. These sources and their
relation to jet modes are briefly explained in the following (sections 1.3.1
and 1.3.2). Afterwards (section 1.3.3), we concentrate on the main topic:
the additional sound source within impinging jets, referred to as impinging
tones. This sound source differs in its origin according to sub- and
supersonic flow. In the under-expanded supersonic case, this source has a
similar mechanism like screech tones, which occur in under-expanded free
jets. In section 1.3.4, we shortly review what is known about modes of the
impinging jet.

1.3.1 Free jet noise

Following Tam (1995) and Schulze (2013), a brief summary concerning
free jet noise is given. For subsonic jets, the only sound source is turbulent
mixing noise.

Turbulent mixing noise is of low frequency f and occurs at Strouhal
numbers

Sr =
fD∞
v∞

(1.10)

in the range of 0.1 . Sr . 0.25. It is caused by large and small turbulent
structures in the mixing layer of the jet. Large structures are believed
to cause the dominant part of the noise whereas smaller structures are
believed to generate background noise. The dominant part of turbulent
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1.3 Sound emission

mixing noise is radiated in the downstream direction. The intensity as well
as the directional and spectral characteristics depend on the Mach number
and the ratio of jet to ambient temperature.

In under-expanded jets, two additional sound sources appear: broad-
band shock-associated noise and screech noise.

Broadband shock-associated noise is caused by the interaction of
downstream propagating large scale structures with the quasi-periodic
shock cell structure of the under-expanded jet. This source causes a peak
on the right of the spectrum, at higher frequencies than the screech tone.
Figure 1.4 shows a typical far-field noise spectrum of a supersonic jet. The
sound pressure level SPL is defined as:

SPL = 20 log10

(
p′RMS
pref

)
, (1.11)

where p′RMS is the root mean square of the pressure fluctuation and pref is
a reference pressure. In this thesis, pref has the common value of 2 · 10−5

Pa. Broadband shock noise is the dominant sound source mechanism in
the upstream direction. The corresponding peak frequency changes with
the direction of radiation.

Screech tones are discrete tones that are generated due to a feedback
mechanism. Powell (1953) was the first to observe this mechanism (Schulze
(2013)). As described in section 1.1, vortical structures develop in the shear
layer of the jet due to Kelvin-Helmholtz instabilities (1). These structures
grow while they are convected downstream. When large scale structures
reach the fourth or fifth shock cell, both interact with each other and emit
strong acoustic waves (2) that propagate upstream (3). These waves reach
the nozzle lip or upper plate, if present, and excite the shear layer of the
jet (4). As a consequence, new instability waves are generated (1), which
close of the feedback mechanism. The loop is shown in figure 1.5.
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Figure 1.4: Typical far-field noise spectum of a supersonic jet. Microphone at
χ = 30◦ to the nozzle inlet direction. See Tam (1995), original data from Seiner
& Yu (1984).

Figure 1.5: Screech feedback loop of a rectangular jet (aspect ratio = 9),
Ma∞ = 1.5. From Raman (1997).

The interaction between shock cells and vortices (2) was described
by Suzuki and Lele Suzuki & Lele (2003), based on a two-dimensional
(2D) direct numerical simulation. Peña Fernández & Sesterhenn (2015)
performed a three-dimensional direct numerical simulation of a round
starting jet. They found that the shock-wave present in the core of the
trailing jet is bent by shear layer vortices that reach the shock-wave. As
a result, the shock transforms into a strong acoustic wave that is radiated
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1.3 Sound emission

apart the jet.
Screech noise is associated with corresponding modes referred to as

screech modes. These modes are described in section 1.3.2. Following Tam
(1995), screech is usually accompanied by its harmonics. The fundamental
mode radiates primarily in the upstream direction, whereas the principal
direction of the first harmonic is χ = 90◦.

Since the screech frequency depends on the shock cell spacing and
therefore on the fully expanded Mach number, the frequency can be
approximated analysing the travel times of a large coherent structure
and the acoustic wave. In Schulze (2013), a summary concerning these
estimation is given. It is noted that assumptions concerning the convection
velocity of the structure are not consistent in the literature and thus the
screech frequency is difficult to predict.

1.3.2 Free jet modes

Screech noise is closely related to jet modes. Based on the work of Powell
et al. (1992) and Panda (1998), five acoustic modes exist and are labelled
alphabetically: A1, A2, B, C, D and E. The occurrence of these modes
depends on the nozzle pressure ratio, and consequently the fully expanded
jet Mach number. Important is that the shape of the mode determines the
emanated sound. A1 andA2 are axisymmetric (varicose, toroidal), B and D
are flapping. Powell et al. (1992) denote them “primarily flapping” as they
can occasionally appear as helical. A flapping mode can be considered as a
superposition of two helical modes with the same amplitude and opposite
sense. In case one of them is missing or weak, what is possible since B
and D are not very robust, the resulting mode remains helical. Mode C
is helical. Mode E is unknown, but in the case of an elliptic nozzle it is
known to split up in different modes denoted E1, E2 and E3. The fact
that it splits up in the elliptical case could indicate that we deal with
several modes indeed. Figure 1.6 shows the dominant screech frequency
as function of Ma∞. Little is known about Reynolds number effects. The
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Figure 1.6: Supersonic jet modes: dominant screech frequency fs as function
of Ma∞. Adapted from Schulze (2013); experimental data from Panda et al.
(1997). The two triangles with the peak oriented to the top indicate DNS of
four own group. Filled: Re = 8000,Ma∞ = 1.106 Wilke & Sesterhenn (2015b),
not filled: Re = 5000,Ma∞ = 1.55 Schulze (2013). D∞, v∞,Ma∞ denote the
fully expanded values of diameter, jet velocity and Mach number.

primary cause for that is a lack of data and the fact that most experiments
have been performed at high Reynolds numbers, which arrise naturally
if experiments are done with reasonable size. However, DNS from our
own group Schulze (2013) at Ma∞ = 1.55 and Re = 5000 as well as the
simulation described in section 5.3 indicate that the correspondence of
Ma∞ to modal structure might be distorted. This is also supported by
a simulation of Sesterhenn et al. (2013), who report a change in modal
structure when particles are added to the jet. This might be due to the
change of density of the jet, which then would also lead to the conclusion
that heating changes the modes.

One more issue deserves attention: A closer look at figure 1.6 shows that
for some Mach numbers, multiple modes exist. For example at Ma∞ ≈ 1.2,
we observe A1, A2, and B as possible candidates, each of which having a
different frequency. The mechanism of the mode selection is still unclear.
A possible way to study this phenomenon would be the attempt to select
different modes with the choice of different initial conditions where the
boundary conditions are equal. The coexisting states are underlined, but
mode selection is not topic of this thesis.
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1.3 Sound emission

1.3.3 Impinging jet noise

Noise emanated by impinging jets can be caused by the three sources
that are present in free jets (turbulent mixing noise, broadband shock-
associated noise and screech tones, as described in section 1.3.1) plus an
additional sound source: the impinging tone. This source emits tonal noise
that appears similarly to screech in the sound spectrum. Therefore, both
sources have to be distinguished carefully. The source of screech noise
is located between the rear edge of the third and fifth shock cell. As a
consequence, the nozzle-to-plate distance needs to measure at least five
diameters (h/D ≥ 5) in order to allow the generation of screech tones
(Sinibaldi et al. (2013)). This statement assumes a NPR above a certain
value. As we will see in section 5.3.1, at low supersonic Mach number, a
decreased nozzle-to-plate distances of approximately four diameters should
be sufficient for the generation of screach. A large proportion of the
research was concentrated on very close plates and high pressure ratios
(NPR > 3, Sinibaldi et al. (2013)). This set-up avoids the mixing up of
the two mechanisms. The configurations chosen in this thesis theoretically
allow the appearance of screech as well as impinging tones. However, both
mechanisms can be distinguished, as it is explained in section 5.3.1.

Following Wilke & Sesterhenn (2016b), a summary of the state of
research is given. Impinging jets may emanate incredibly loud tonal noise
if the Mach number is sufficiently high (Ma & 0.7) and the plate is less
than about 7.5 diameters away from the nozzle (Ho & Nosseir (1981)). In
addition to these discrete tones, the presence of the impinging plate also
increases the overall sound pressure level (OASPL). Marsh (1961) noticed
that for subsonic impinging jets the OASPL increases with decreasing
nozzle-to-plate distance (h/D).

The loud tonal components in the sound spectrum (impinging tones)
were early found to be caused by a feedback loop involving a shear layer
instability travelling downstream and an acoustic wave travelling upstream
in a subsonic part of the flow (Rockwell & Naudascher (1979)). This
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is in analogy with the screech tone generation mechanism described in
section 1.3.1. This idea was supported by Ho & Nosseir (1981) as well as
Henderson & Powell (1993), Henderson (2002). Nevertheless, it remained
unclear how exactly the feedback loop is closed in the supersonic case. Ho
& Nosseir (1981) identified primary vortices impinging on the plate as the
possible missing link in the feedback chain. On the contrary, Henderson
& Powell (1993) identified standoff shock oscillations as the responsible
mechanism within the loop. For subsonic cases, no shock is present.
Consequently, direct interaction of primary vortices with the impinging
plate is reported as the only possible sound source mechanism. The sound
source of subsonic impinging jets is not considered further within this
dissertation.

One more issue deserves some special emphasis: the zone of silence.
Powell (1988), Henderson & Powell (1993), Henderson (2002) reported a
zone, in which the configuration does not allow the production of impinging
tones. Crutial for this phenomenon are NPR and h/D. The analysed
nozzle pressure ratios are in the ranges 3.38 ≤ NPR ≤ 4.50. In contrast,
for ideally expanded jets, Krothapalli et al. (1999) found continuously
tones for h/D up to 10. Henderson (2002) argued that both configurations
(ideally and under-expanded) differ strongly in the shock-wave structure.
Consequently, the zone of silence and the production of impinging tones
must be affected by the shock-wave structure. He also proposed that tones
generated at 5 ≤ h/D ≤ 10 may be related to screech noise.

Sinibaldi et al. (2015) conducted acoustic and particle image velocimetry
(PIV) measurements of supersonic under-expanded impinging jets. NPR
between two and four were analysed for nozzle-to-plate distances of two,
three and four diameters. The zone of silence shifts to higher values of
NPR with increasing h/D. For h/D = 3, the zone of silence ranges from
3.1 . NPR . 3.5. For h/D = 4, the zone of silence starts at NPR ≈ 3.2

and goes at least until NPR . 4. Sinibaldi et al. (2015) suggest that the
interaction of the shear layer vortices with the plate is the only source
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Figure 1.7: Discrete tone frequency distribution over NPR. Left: h/D = 3,
right: h/D = 4. Filled markers: dominant tones, empty markers: secondary
tones, dashed line: zone of silence. Data from Sinibaldi et al. (2015).

of impinging tones in the pre-silence region, since the standoff shock is
not present. In the post-silence region, the standoff shock oscillations
are believed to be the only possible source of impinging tones. This is
antithetical to the observations of Mitchell et al. (2012) and Buchmann
et al. (2012), who captured images of the receptivity at the nozzle (step
(4) in the feedback loop, see figure 1.5) by means of schlieren images
from a high-speed camera. The investigated case is located in the pre-
silence region (NPR = 3.2, h/D = 4) and clearly shows the presence of
a standoff shock. Also Hirata et al. (1971) were able to observe standoff
shock oscillations for large h/D.

1.3.4 Impinging jet modes

In sections 1.3.1 and 1.3.2, we saw that free jet screech is strongly related to
the modal structure of the jet. Despite this topic is still being investigated,
the gained knowledge during the past decades is substantial. On the
contrary, comparably little is known about impinging jet modes. Following
Wilke & Sesterhenn (2016b), a summary of the state of research is given.

Tam & Ahuja (1990) state that only axisymmetrical modes are possible
for subsonic impinging jets, whereas also helical modes can occur in the
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supersonic case. This conclusion is based on an analytical model and
studies found in the literature: Neuwerth (1974, 1981) observed torodial,
helical and flapping (superposition of two helical) modes for supersonic
impinging jets. A helical coherent structure for a free jet was observed
as well at Ma = 0.8. While adding an impinging plate (without changing
any other parameter), the mode changed to axisymmetrical. Nosseir & Ho
(1982) also observed an axisymmetrical mode for an impinging jet with
Ma = 0.7.

Krothapalli et al. (1999) conducted experiments involving ideally
expanded free and impinging jets at Ma∞ = 1.5. The mode of the free
jet was found to be helical. Approaching the plate, this mode remains
dominant until h/D = 8. In the range 4 . h/D . 6, the axisymmetyric
mode begins to dominate. A further decrease of the nozzle-to-plate
distance leads to a re-emergence of the helical mode.

Tsubokura et al. (2003) conducted a direct numerical simulation with
Re = 2000. The flow at this Reynolds number is not fully turbulent, since
therefore Re & 3000 is required (Hrycak (1981)). The simulation with
h/D = 10 showed a mode that is axisymmetrical close to the orifice plate,
but asymmetric close to the impinging plate.

A recent numerical investigation was performed by Uzun et al. (2013).
They conducted a large eddy simulation (LES) with a plate distance of
five diameters and a fully expanded Mach number of 1.5. The coher-
ent axisymmetrical structures found using a dynamic mode decomposition
(DMD) correspond to the dominant tone at Sr ≈ 0.33.
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1.4 Objective of this thesis

Numerous research activities concerning impinging jets were carried out
during the last decades. Despite enormous advanced in the understanding
of the physics of impinging jets, many open questions remain. Within
this thesis, direct numerical simulations of subsonic and under-expanded
supersonic impinging jets are presented in order to extend the knowledge
concerning the following issues:

Statistics of the turbulent flow and heat transfer. The heat
transfer efficiency can be increased by the use of pulsating impinging jets.
It is however unclear why one large primary vortex ring can be generated
in the frequency range 0.5 . Sr . 0.9. Even the flow field of the unforced
impinging jet is still not completely understood. Compared to free jets,
pipe and channel flows, little is known about turbulence of impinging jets.

The objective of this thesis is to identify and to bring the modes of the
impinging jets into accordance with the known average and instantaneous
flow phenomena. A complete statistical analysis, including among others
the turbulent heat flux, the Reynolds stress tensor and correlations of
statistical variables is provided for two uses: First, to complement the
analysis of the flow and second, to provide a data base for the improvement
of LES and RANS models.

Impinging tone. The generation of impinging tones is generally
accepted to be caused due to a feedback mechanism. If vortices impinging
on the wall or standoff shock oscillations generate the feedback wave in the
supersonic case is controversial and presently not clarified. Little is known
about the relation between modes and impinging tones. In addition, the
occurrence of a standoff shock within the zone of silence and its position
is debatable.

The aim of this thesis is to identify the sound source mechanism of
the impinging jet in the supersonic pre-silence region. This includes an

21



1 Introduction

analysis of the two most important aspects of the flow: the jet instability
and the standoff shock. The mechanism is brought into accordance with
the modes of the impinging jet and the feedback loop analogous to the free
jet shown in figure 1.5. The sound spectra are analysed and the impinging
tones are distinguished from free jet screech.
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2.1 Governing equations

2.1.1 Direct numerical simulation

Flows subject to friction are described by the Navier-Stokes equations
(section 2.1.2). Unfortunately, no analytical solution for this system of
differential equations exists. In order to find a numerical approximation
of the flow, different strategies exist: direct numerical simulation
(DNS), large eddy simulation (LES) and Reynolds-averaged Navier-Stokes
simulation (RANS).

Turbulent flows are characterised by three-dimensional stochastic
distributed fluctuations of fluid particles in space and time that are
superposed on a mean flow (Frederich (2010)). Those fluctuations in form
of vortices occur in different time and length scales. The latter range
from the order of magnitude of the size of the domain to the smallest
energy dissipating scales. Since the turbulent kinetic energy is transferred
downwards to smaller and smaller scales, the smallest ones have to be
resolved by the numerical grid. If this is not the case, the energy cannot
be dissipated and, depending on the peculiarity of the under-resolution,
the results can become imprecise and the computation can “explode”. The
resolution of small scales is discussed in section 4.1. If all scales are
resolved by the numerical grid, the simulation is called DNS. This is the
most accurate method within computational fluid dynamics (CFD). The
problem of DNS is that enormous computing capacities are necessary for
relatively low Reynolds numbers (O

(
103
)
), which are often too low for
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practical applications. Therefore, direct numerical simulation is nowadays
still restricted to academic problems.

In order to decrease the computational costs, RANS or URANS
(unsteady RANS) is used. This method is standard for industrial
applications. The Reynolds-averaged Navier-Stokes equations are solved
instead of the Navier-Stokes equations. The problem that rises is that
unknown terms, e.g. the Reynolds stresses and the turbulent heat flux
occur and need to be modelled. This leads to the failure of this method for
heat transfer prediction. Additionally, RANS simulations use the integral
formulation of the equations of motion by default. As a consequence,
fine pressure fluctuations fall within the order of magnitude of numerical
inaccuracy. This prevents the investigation of generated sound or noise
using RANS.

Large eddy simulation lies in between DNS and RANS concerning
computational costs as well as accuracy. Large scales are resolved and
small scales, which cannot be resolved on the numerical grid, are modelled
using a subgrid-scale model. The question that arises now is: Are the small
scales important for a) acoustics and b) heat transfer of impinging jets?
With regard to acoustics, LES is unable to predict the high-frequency noise
components (Schulze (2013)). If those are not of interest, LES may be an
appropriate choice. As already noted in section 1.2.3, Dairay et al. (2014)
observed that none of the tested LES models was able to clearly predict
the secondary peak in the Nusselt number distribution, as measured and
computed with DNS. This investigation is the only one in the literature,
where LES was directly compared to well-resolved DNS of a fully turbulent
impinging jet.

Summing up, only direct numerical simulations make it possible to
simultaneously study the source mechanism(s) of impinging tones and to
perform a precise analysis on its statistics, including heat transfer, of the
turbulent flow. Therefore, DNS was the method of choice to realise this
thesis.
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2.1.2 Navier–Stokes equations

The Navier-Stokes equations consist of the non-linear equations for the
conservation of mass (2.1a), momentum (2.1b) and energy (2.1c). For a
three-dimensional Cartesian coordinate system they read:

∂ρ

∂t
+
∂ρuj
∂xj

= 0 (2.1a)

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xi
+
∂τij
∂xj

(2.1b)

∂ρe

∂t
+
∂ρeuj
∂xj

= − ∂qj
∂xj
− p∂uj

∂xj
+ Φ . (2.1c)

Time, density, pressure, internal energy and velocity in the direction xi are
denoted as t, ρ, p, e and ui. The viscous stress tensor τij can be expressed
using the Kronecker delta δij :

τij = 2η

(
sij −

1

3
skkδij

)
+ µdskkδij , (2.2)

where sij is the rate-of-strain tensor:

sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.3)

The bulk viscosity is neglected µd = 0 and the dynamic viscosity is
modelled using the Sutherland’s law:

η(T ) = ηref
Tref + S

T + S

(
T

Tref

)3/2

. (2.4)

The Sutherland’s temperature S for air is 110.4 K. ηref is the viscosity
at a reference temperature Tref (Schlichting & Gersten (2006)). Equa-
tion (2.1c) is the conservation of the internal energy, which can be derived
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from the conservation of the (specific) total energy:

E = e+
uiui

2
, (2.5)

see e.g. Poinsot & Veynante (2005), where ekin = 1/2 (uiui) is the (specific)
kinetic energy. Two more expressions occur within equation (2.1c): the
heat flux by conduction

qj = −k ∂T
∂xj

(2.6)

and the dissipation function

Φ = τijsij . (2.7)

The thermal conductivity k can be expressed using the definition of the
Prandtl number, see equation (1.7). Additionally, the ideal gas law

p

ρ
= RsT (2.8)

is needed in order to close the set of equations. Rs = cp− cv is the specific
gas constant, which has a value of 287 J/(kg K) for air. The ratio of the
specific heat capacities at constant pressure cp respectively volume cv used
in this dissertation is κ = cp/cv = 1.4. The specific heat capacities are
constant (perfect gas).

2.1.3 Characteristik formulation

The governing Navier-Stokes equations given in equation (2.1) can also be
expressed in terms of pressure, velocity and entropy. Following Sesterhenn
(2001), they can then be rewritten in a characteristic formulation:

∂p

∂t
= −ρc

2

(
X+ +X− + Y + + Y − + Z+ + Z−

)
+

p

cv

(
∂s

∂t
+Xs + Y s + Zs

)
(2.9a)
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∂u

∂t
= −

[
1

2

(
X+ −X−

)
+ Y u + Zu

]
+

1

ρ

∂τ1j
∂xj

(2.9b)

∂v

∂t
= −

[
Xv +

1

2

(
Y + − Y −

)
+ Zv

]
+

1

ρ

∂τ2j
∂xj

(2.9c)

∂w

∂t
= −

[
Xw + Y w +

1

2

(
Z+ − Z−

)]
+

1

ρ

∂τ3j
∂xj

(2.9d)

∂s

∂t
= − (Xs + Y s + Zs) +

1

ρT

(
− ∂qi
∂xi

+ Φ

)
(2.9e)

with the following abbreviations:

X± := (u± c)
(

1

ρc

∂p

∂x
± ∂u

∂x

)

Y ± := (v ± c)
(

1

ρc

∂p

∂y
± ∂v

∂y

)

Z± := (w ± c)
(

1

ρc

∂p

∂z
± ∂w

∂z

)
Xv := u

∂v

∂x
, Xw := u

∂w

∂x
, Xs := u

∂s

∂x

Y u := v
∂u

∂y
, Y w := v

∂w

∂y
, Y s := v

∂s

∂y

Zu := w
∂u

∂z
, Zv := w

∂v

∂z
, Zs := w

∂s

∂z
(2.10)

and the speed of sound
c =

√
κRsT . (2.11)

This formulation has the following advantages (Sesterhenn (2001)): a)
High order accuracy can be easily obtained, also at the boundaries. b) The
implementation of boundary conditions is relatively easy, since they are
consistent with the interior scheme. c) The decomposition of the domain
into blocks is handled in the same manner and therefore, the formulation
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is well-suited for massive parallelisation on high performance computers.

2.2 Discretisation

2.2.1 Space discretisation

The spatial discretisation is realised using implicit (compact) finite
difference schemes. These schemes can be written for an equally spaced
grid in the interval from 0 to 1 with the dimensionless mesh width h as:

d∑
r=−c

βj+q q
′
j+p =

1

h

b∑
p=−a

αj+p qj+p . (2.12)

q′j is the first derivative of the variable qj at the location xj . a, b, c

and d are the number of used adjacent points (left respectively right).
The coefficients α and β are chosen according to the desired order, the
consistency condition and the desired properties of the discretisation. The
advantage of these schemes is that they offer a high accuracy while using a
small stencil (number of neighbouring points). The implicit system can be
efficiently solved by means of a LU decomposition, followed by one forward
and one backward elimination (Schulze (2013)).

In our case, the inviscid (hyperbolic) parts of the Navier-Stokes
equations are decomposed into plane characteristic waves (X?, Y ?, Z?), as
shown in section 2.1.3. These convective parts are discretised with the fifth
order upwind scheme CLUD of Adams & Shariff (1996). The direction of
the waves is taken into account. The upwind scheme introduces dissipation
for high wavenumbers. This stabilises the simulation in case some areas of
the domain are (temporary) slightly under-resolved. For strongly under-
resolved simulations, an additional filter has to be applied after a certain
number of time steps, which was not done within this work.

The remaining diffusive terms (heat flux and friction terms) are of
parabolic nature and are discretised by a central scheme of sixth order, as
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described by Lele (1992). Central schemes have no numerical dissipation.
Both, the 5th order upwind and the 6th order central scheme are
characterised by a low dispersion error. The coefficients used can be found
in the mentioned articles.

2.2.2 Parallelisation

An appropriate resolution of an impinging jet with a Reynolds number
of 8000 requires more than one billion grid points. Considering roughly
a quarter million time steps necessary to obtain statistical quantities, the
resulting computational load reaches multiple million core hours. It is
obvious that a massive parallelisation is necessary in order to obtain the
results already after some month instead of after hundreds of years using
only one core.

The computational task is partitioned between a huge number of
processes. In this project, up to 214 = 16384 cores have been used.
Each process solves the Navier-Stokes equations for a fractional part of the
domain (block). This approach is called domain decomposition, see Eidson
& Erlebacher (1995). In order to calculate derivatives using compact finite
differences, the data of the entire direction is required. Consequently, the
decomposed domain has to be rearranged so that each process receives
grid lines that span the entire domain in the particular direction. The
total number of grid points per process remains constant and is typically
between 323 and 643. Figure 2.1 exemplary shows the transformation from
the original decomposition to the decomposition used for the calculation
of derivatives in x-direction. The inter-process communication is managed
via MPI libraries.

All computations were run on the machines of the High Performance
Computing Center in Stuttgart (HLRS). The latest system called Hazelhen
is a CRAY XC40 machine and currently the 9th biggest supercomputer on
the world1. This system replaced the former CRAY XE6 machine named
1According to the June 2016 list of http://www.top500.org
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Figure 2.1: Domain decomposition of a three-dimensional domain. Left:
original decomposition, right: transformed decomposition for the calculation
of derivatives in x-direction.

Hermit.
Figure 2.2 shows nearly perfect linear scaling up to 16384 cores on

Hazelhen. The speed up is the ratio of wall times, comparing the run on i
cores to the run with the lowest number of cores. If the total number of grid
points n is kept constant, the measurement is referred to as strong scaling.
The number of grid point per core n/i varies. The scaling was made for
the case of an impinging jet. In order not to distort the measurement,
input and output was turned off. Each node of the system contains 24
cores and is equipped with 128 GB of memory. The required memory by
the simulation determines the minimal number of nodes and consequently
the minimally required cores. For this reason, a measurement with less
then 29 = 512 cores is not possible. Weak scaling provides an alternative
assessment method. Here, the number of grid points per core is kept
constant and the total number of cores varies. This enables to span a
larger measurement range.

Using auto-vectorisation, the efficiency with 16384 cores is 102% (strong)
respectively 83% (weak). Grids with 5123 points are typically parallelised
on 163 = 4096 cores and grids with 10243 points are run on i =

32 × 16 × 16 = 8192 or i = 32 × 32 × 16 = 16384. Detailed run times
can be found in table 2.1.
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Figure 2.2: Strong (a) and weak (b) scaling of the code on CRAY XC40
(Hazelhen). n and i denote the total number of grid points and used cores
respectively.

2.2.3 Time discretisation

The choice of the time integration scheme is crucial for the accuracy and
efficiency of the code. In this study, a 4th order five stage explicit Runge-
Kutta scheme RK4(3)5[2R+], as described by Kennedy et al. (2000), is
used. The spatially discretised compressible Navier-Stokes equations can
be written as an initial value problem:

dU

dt
= F (t, U (t)) , U (t = 0) = U0 , (2.13)

where U = (p, u, v, w, s)
> and F contains the inviscid, viscous and body

force terms. The current time step is denoted by n. The time interval
between n and n + 1 is ∆t = t(n+1) − t(n). The flow field at t(n+1) is
obtained by:

yi = U (n) + ∆t
i−1∑
j=1

aijF
(
t(n) + cj∆t, yj

)
, 1 ≤ i ≤ m (2.14a)
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i (n/i)1/3 wall time
per time
step [s]

speedup ideal
speedup

efficiency

512 128 166 1.00 1 1.00
1024 102 85.6 1.94 2 0.97
2048 81 39.2 4.23 4 1.06
4096 64 17.9 9.28 8 1.16
8192 51 9.1 18.3 16 1.14
16384 40 5.1 32.6 32 1.02
32768 32 3.7 44.9 64 0.70

i n wall time
per time
step [s]

speedup ideal
speedup

efficiency

32 8.4× 106 16.7 1.00 1 1.00
64 1.7× 107 16.6 2.02 2 1.01
128 3.4× 107 17.0 3.93 4 0.98
256 6.7× 107 17.1 7.84 8 0.98
512 1.3× 108 17.1 15.7 16 0.98
1024 2.7× 108 17.0 31.4 32 0.98
2048 5.4× 108 17.2 62.1 64 0.97
4096 1.1× 109 17.9 120 128 0.94
8192 2.1× 109 18.5 231 264 0.90
16384 4.3× 109 20.1 425 512 0.83

Table 2.1: Scaling of the code on CRAY XC40 (Hazelhen). Upper part: strong
scaling, simulations run with n = 10243. Lower part: weak scaling, simulations
run with n/i = 643. n and i denote the total number of grid points respectively
the number of used cores.

U (n+1) = U (n) + ∆t

m∑
j=1

bjF
(
t(n) + cj∆t, yj

)
, (2.14b)

where m is the number of stages and yi are intermediate values. The
corresponding Butcher coefficients aij , bj and cj can be found in Kennedy
et al. (2000).
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2.2.4 Shock treatment

In under-expanded supersonic impinging jets, shocks appear in the free
jet as well as in front of the impinging plate (standoff shocks). In Schulze
(2013), an approximation concerning the shock width (δs ∼ Re−1) is given,
based on the theory of Taylor (1910) and is compared to the Kolmogorov
length scale (lη ∼ Re−3/4). It is shown that for Re . 105 the shock width is
larger than the Kolmogorov length scale and for Re & 105 it is the opposite
case. However, this consideration can give only a rough estimation. For
Re = 8000, lη and δs lie roughly in the same order of magnitude, whereby
δs > lη holds. For the DNS we use a grid that resolves the Kolmogorov
scale (∆x ≈ lη). If the shock width is in the same order of magnitude as
lη, the shock is resolved only with a few grid points. Depending on the
strength of the shock, these points may not be sufficient to handle the huge
gradients and Gibbs oscillations in the vicinity of the shock can appear.

Figure 2.3 shows a snapshot of the supersonic impinging jet with
Re = 8000 (middle: density gradient) and the pressure at the jet axis
(left). Within the shock diamonds of the free jet, the pressure is smooth
and the gradients can be resolved by the numerical grid.

More challenging are the standoff shocks. In this snapshot, two standoff
shocks are present at y/D = 0.85 and y/D = 0.58 where the pressure
increases by 0.53 respectively 0.35 bar. The shocks are resolved with
six respectively five grid points. This is not enough to handle the huge
gradients within the standoff shock. Hence, a filter needs to be applied for
standoff shocks.

In this thesis, an adaptive shock-capturing filter developed by Bogey
et al. (2009) is used. The filter is written in a conservative form to
accurately describe the propagation of shocks. The flow field U at grid
point i is second-order filtered by

Usci = Ui −
(
σsci+ 1

2
Dsc
i+ 1

2
− σsci− 1

2
Dsc
i− 1

2

)
, (2.15)
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Figure 2.3: Application of the shock-capturing filter to the impinging jet.
Left: pressure at the jet axis. The two arrows and dashed lines indicate
the standoff shocks. Middle: instantaneous flow field (density gradient, white
|∇ρ|D/ρ∞ = 0, black: |∇ρ|D/ρ∞ = 1, blue: |∇ρ|D/ρ∞ = 7). Right: filter
strength σsc.

where Dsc
i+ 1

2

and Dsc
i− 1

2

are the damping functions and σsc ∈ [0, 1] is the
filtering strength that is automatically adapted by the flow conditions.
Therefore, a shock sensor based on the high-pass filtered dilatation is
compared to a threshold value. For in depth description of the filter,
see Bogey et al. (2009).

To get back to the impinging jet, the shock-capturing filter is applied for
the impinging jet in a way that it is allowed to be active only in the region
where standoff shocks are expected. Especially the impinging plate has to
be excluded, since large velocity gradients appear at the wall. These can
be erroneously detected as shock by the filter. Figure 2.3 (right) shows
that the two standoff shocks are successfully detected by the procedure.
The filter strength is zero in the entire domain, except at the locations,
where standoff shocks occur.
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2.3 Computational domain

2.3.1 Boundary conditions

The implementation of boundary conditions for the Navier-Stokes equa-
tions in characteristic formulation (section 2.1.3) is straightforward. The
direction from which information comes from is known in the entire do-
main, including the boundaries (Sesterhenn (2001)). The waves entering
the domain are set in order to achieve the desired conditions. For the
simulation of impinging jets, we basically need three conditions: a wall,
an inlet and a non-reflecting boundary, which is a kind of outlet that al-
lows return flow, but does not reflect acoustic waves. The isothermal wall
and the inlet can be described with one set of equations, but one has to
distinguish between the sub- and the supersonic case.

Wall with subsonic inlets. In Wilke & Sesterhenn (2015a), a set of
equations was derived so as to consistently describe a boundary consisting
of an isothermal wall and one or multiple subsonic inlets. For clarity,
the equations are again expressed for a Cartesian grid and refer to the
upper boundary. The unknown waves Y u and Y w in equations (2.9b)
and (2.9d) can be derived directly by imposing the boundary-parallel
velocity derivatives ∂u

∂t and ∂w
∂t in the boundary plane. In the subsonic

case, the waves Y − and Y s enter the domain and therefore have to be set.
Using the temporal derivative of the total temperature Tt

∂Tt
∂t

=
κ− 1

κ

T

p

∂p

∂t
+
T

cp

∂s

∂t
+

1

cp

(
u
∂u

∂t
+ v

∂v

∂t
+ w

∂w

∂t

)
, (2.16)

(2.9a) ,(2.9c), (2.9e) and (2.16) form a set of four equations for six
unknowns: ∂p

∂t ,
∂s
∂t ,

∂Tt
∂t ,

∂v
∂t , Y

− and Y s (∂u∂t and ∂w
∂t are already fixed).

Specifying ∂v
∂t and

∂Tt
∂t delivers the desired equations that allow a very easy
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switch between wall and inlet:

Y u = −∂u
∂t
− 1

2

(
X+ −X−

)
− Zu +

1

ρ

∂τ1j
∂xj

(2.17a)

Y w = −∂w
∂t
−Xw − 1

2

(
Z+ − Z−

)
+

1

ρ

∂τ3j
∂xj

(2.17b)

Y − = Y + + 2

(
∂v

∂t
+Xv + Zv − 1

ρ

∂τ2j
∂xj

)
(2.17c)

Y s = − (Xs + Zs) +
κ

ρT

(
− ∂qi
∂xi

+ Φ

)
− cp
T

∂Tt
∂t

+
u

T

∂u

∂t
+
v

T

∂v

∂t

+
w

T

∂w

∂t
− c

2T

(
X+ +X− + Y + + Y − + Z+ + Z−

)
. (2.17d)

At the wall, the temporal derivatives of all three velocity components
and the total temperature are simply zero. Applying a zero-velocity
initial condition, the velocity remains zero and the (total) temperature
remains constant at the wall for the entire computation. The wall is fully
acoustically reflective. At the inlet, those derivatives are set in such a way
that the intentional temporal progressions occur. In the present cases, the
velocity derivative is set such that a given total pressure sets up.

Wall with supersonic inlets. In the supersonic case, also the wave Y +

is now entering the domain. Therefore, an additional condition has to be
given. Imposing ∂p

∂t offers the opportunity to control the adaptation of the
jet to under-, perfectly or over-expanded. The waves Y u and Y w are equal
to the subsonic case. Y +, Y − and Y s read:

Y + = −1

ρ

∂p

∂t
− ∂v

∂t
− 1

2

(
X+ +X− + Z+ + Z−

)
+
κ− 1

ρ
σ − (Xv + Zv) +

1

ρ

∂τ2j
∂xj

(2.18a)

Y − = −1

ρ

∂p

∂t
+
∂v

∂t
− 1

2

(
X+ +X− + Z+ + Z−

)
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+
κ− 1

ρ

(
− ∂qi
∂xi

+ Φ

)
+ (Xv + Zv)− 1

ρ

∂τ2j
∂xj

(2.18b)

Y s = −cp
T

∂Tt
∂t

+
cp
p

κ− 1

κ

p

t
+
u

T

∂u

∂t
+
v

T

∂v

∂t
+
w

T

∂w

∂t

− (Xs + Zs) +
1

ρT

(
− ∂qi
∂xi

+ Φ

)
. (2.18c)

Non-reflecting plane. In order to accurately capture noise generated
by the impinging jet, the subsonic in-/outflow boundaries must not reflect
any outgoing acoustic waves. This is achieved by simply setting the ingoing
waves to zero. Those non-reflecting boundaries have to be located far away
from the intense turbulent flow, so that aerodynamic fluctuations can be
neglected. For the left plane normal to the x-axis the conditions are:

Xv = Xw = X+ = Xs = 0 . (2.19)

Distinction between wall and inlet. Isothermal walls and subsonic
inlets are described with one set of equations (2.17). The distinction is
made by the choice of ∂u

∂t ,
∂v
∂t ,

∂w
∂t and ∂Tt

∂t . This method can be used to
set fully turbulent or laminar inflow conditions. In this thesis, the second
option is used. Consequently, the boundary-parallel velocity components
for the wall as well as for the inlet remain zero with ∂u

∂t = ∂w
∂t = 0, since

the initial velocity is zero in the entire domain. The boundary-normal
velocity component and therewith the position of the nozzle exit is set by
multiplying the corresponding velocity derivative with a spatial function
fx (r, θ). Walls are obtained for fx = 0 and inlets for fx = 1. This
treatment makes it very easy to define one or multiple inlet areas (nozzle
exits) by adjusting fx. The location of a single nozzle is defined using a
hyperbolic tangent profile with a thin laminar annular shear layer described
by a thickness function b, see Wilke & Sesterhenn (2015a):

f (n)
x (r, θ) =

1

2
− 1

2
tanh

[(
r

D
− D

2
+ tanh−1(1− g)

)
b(n) (θ)

]
. (2.20)
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The parameter g moves the shear layer adjacent to the wall of the artificial
nozzle. A similar profile has been used by Freund (2001) for free jets with
Ma = 0.9 and Re = 3600. He applied random perturbations of b in order
to accelerate the transition of the jet. In agreement with his investigation,
the impinging jet with Re = 3300 remained laminar and symmetric for
thousands of time steps, unless a perturbation is added:

b(n) (θ) = e−τ b(n−1) (θ) +
(
1− e−τ

)
·

·

[
b0 +

1

N

N∑
n=1

c
(n)
1 cos

(
2π
v∞
D
c
(n)
2 t+ c

(n)
3

)
cos
(
θ + c

(n)
4

)]
.

(2.21)

The time correlation of the thickness function at time step n to the previous
time step n − 1 is achieved by the introduction of a decay function eτ .
c1, c2, c3 and c4 are random variables. This approach is a combination of
those by Freund (2001) and Davidson (2007). The used parameters are:
bo = 26.47, g = 10−2, N = 100 and τ = 10−2. The defined ranges of the
random variables are: 0 ≤ c1 ≤ 20, 0 ≤ c2 ≤ 20, 0 ≤ c3 ≤ 2π, 0 ≤ c4 ≤ 2π.
The resulting random distribution of the thickness function b has the
following properties: max [∆b] /bo = max

[
b(n) − b(n−1)

]
/bo = 8.87 10−4,

std [∆b/bo] = 1.30 10−4 and 26.31 ≤ b ≤ 26.63.

The profile fx has a radial displacement

δ∗ =
D −D∗

2
(2.22)

of δ∗ = 0.1 · D, based on the average flow field. The effects due to the
boundary layer displacement are not taken into account while computing
dimensionless numbers, such as Re and Sr . For those numbers, the
diameter D and not the displaced diameter D∗

D∗ =

√
4

π

ṁ

ρv

∣∣∣∣∣
in

(2.23)
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is used. ṁ, ρ and v are the mass flow, density and velocity in the
axial direction at the inlet. Changing the reference length to D∗ effects
the non-dimensional frequencies. This issue has to be considered when
comparing e.g. sound spectra and Nusselt numbers to experimental data
or to simulations carried out with a geometrically modelled nozzle. Also
the nozzle-to-plate distance h/D is affected.

One more issue has to be considered in the supersonic case: The spatial
function fx necessarily leads to the occurrence of subsonic flow within the
boundary layer of the artificial nozzle. Consequently, a procedure has to
be included in the code that chooses the correct equations (either sub-
or supersonic) for each point at the boundary. The wall is necessarily
subsonic, and therefore ∂p

∂t must not be given there.

The impinging jet is computed on a cuboid. The orifice plate is realised
by an isothermal wall including the artificial nozzle (inlet). For the
impinging plate, the same boundary condition is used, but fx is zero at the
entire boundary. The walls are fully acoustically reflective. The remaining
four boundary conditions are non-reflecting. The computational domain
is shown in figure 2.4.

2.3.2 Sponge

As described in the previous section, the ingoing waves of the non-reflecting
boundary condition are simply set to zero. A problem arises when this
boundary is located within a recirculating flow, as in the case of the
impinging jet. Fluid entering the domain requires the placement of the
respective waves. Since the recirculating flow is laminar and of very
low velocity (max (u) /v∞ . 4%), the non-reflecting boundary can be
used when a sponge region is applied additionally. A sponge smoothly
forces the values of pressure, velocity and entropy to reference values
Uref = (p, u, v, w, s)

>
ref . In order to do so, an additional source term
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Lx 

Ly 

Lz 
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D 

Orifice plate 

Impinging 
plate 

Figure 2.4: Computational domain: 3D countour plot of a supersonic impinging
jet with Ma = 1.11 and Re = 8000 at QD2/v2∞ = 1.7, coloured with pressure
(0.6 ≤ p/p∞ ≤ 1.5, blue to red).

is included in the right-hand side of the Navier-Stokes equations:

dU

dt
= F (U)− τsσs (U − Uref ) . (2.24)

The function
σs(r) =

1

2
+

1

2
erf
(

2r

Lx
Le + f1 − Le

)
(2.25)

with
Le =

Lx
2Lsp

(f1 − f2) (2.26)

defines the area where the sponge is active. In the case of the impinging
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Figure 2.5: Left: sponge function σs, right: illustration of σs within the
computational domain (view from the top).

jet, σs depends on the radius

r =

√
(x− xc)2

+ (z − zc)2 (2.27)

and is shown in figure 2.5. The positional parameter xc defines the centre
of the inlet whereas Lx is the length of the domain in x-direction. The
same holds for y and z. The parameters Lsp = 0.5, f1 = erf−1 (0.99),
f2 = erf−1

(
−1 + 10−10

)
are chosen so that σs reaches a value of 10−10 at

a radial position of r/D = 5.5 and 0.99 at r/D = 6. This function has to
be smooth, since otherwise acoustic reflections can occur. Equation (2.25)
as well as τs and uref are chosen similary to Schulze (2013). τs defines the
strength of the source term. In this work, a value of 500 is used. Please
note that in this context pref is different from the reference pressure used
for the computation of the sound pressure level. The reference values Uref
were obtained by a preliminary LES on a greater domain (average values).
However, the pressure as well as the circumferential velocity can be set to
p∞ respectively zero. The flow solution within the sponge region has no
physical meaning and should be cut for the analysis of the flow.

Besides the treatment of the recirculation, a sponge offers a second
advantage. The forcing of the flow variables towards reference values
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destroys vortices before they can leave the domain. This avoids artificial
noise that is generated when a vortex or vortex pair is cut by the boundary
condition. In case of the impinging jet, large and medium-scale vortices
are crumbled even before they come close to the boundary (until r/D . 4).

2.3.3 Grid stretching

A grid stretching is applied for all three directions. The purpose is to
achieve a higher resolution in the areas of the domain where the dissipation
rate ε is high, see equation (4.1). The first simulation was carried out with
Re = 3300 and Ma = 0.78 (#5 according to table 2.3). In order to refine
the shear layer of the free jet region (x- and z-direction), the grid stretching
function of Schulze (2013) that was successfully applied for free jets, was
used:

B =
1

2τx
ln

[
1 + (eτx − 1)x∗c

1 + (e−τx − 1)x∗c

]

x = x∗c

(
sinh [τx (ξ −B)]

sinh (τxB)
+ 1

)
. (2.28)

The equidistant grid ξ ∈ [0, 1] is transformed into the stretched grid
x ∈ [0, 1]. In order to set the size of the domain, x has then to be multiplied
with the length of the domain Lx. The parameters x∗c and τx control the
centre of the refinement respectively its strength. All simulations carried
out within this work use x∗c = 0.5. For simulation #5, τx = 3 was chosen.
The analysis of this simulation shows that additionally to the free jet shear
layer, also the area with increased turbulence in the wall jet r/D . 3

needs to be refined. Consequently, a new grid stretching was developed
and applied for all other simulations. This stretching involves multiple
steps and can be implemented in the code as follows:

1: x← e(ξ−x∗c)τx − 1
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Figure 2.6: Grid spacings due to different grid stretchings for 512 points.
Left: x- and z-direction, : equation (2.29) τx = 10, ιx = 3, x∗c = 0.5,

: equation (2.29) τx = 8, ιx = 3.5, x∗c = 0.5, : equation (2.28)
τx = 3, x∗c = 0.5.
Right: y-direction equation (2.30), : τy = 2.75, yc = 0.72, :
τy = 2.34, yc = 0.83.

2: x← x

max (x)

3: x← 1 + (ιx − 1)x

4: x←
1∫

ξ=0

x(ξ) dξ

5: x← x

max (x)
, (2.29)

where τx and ιx control the strength and the extent of the refinement.
τx has to be even if greater one. Values of (τx, ιx) = (8, 3.5) or (10, 3)

were used and can be recommended. A confrontation of the stretchings
according to equation (2.28) and equation (2.29) is shown in figure 2.6.

For the wall-normal direction y, the grid needs to be refined at the
impinging plate (y = 0) in order to allow an appropriate resolution of the
boundary layer. The upper plate does not need to be resolved as fine as the
impinging plate, since the velocity due to recirculation as a consequence
of entrainment is low and the flow is laminar. However, it is reasonable to
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use a function that refines both walls when the centre y∗c is moved closer
to the upper plate. The equidistant grid η ∈ [0, 1] is transformed into
y ∈ [0, 1] by:

B =
1

2τy
ln

[
1 + (eτy − 1) y∗c

1 + (e−τy − 1) y∗c

]

y =
tanh [τy (η −B)] + tanh (τyB)

tanh [τy (1−B)] + tanh (τyB)
. (2.30)

Using τy = 0.72 it turned out that the upper wall does not need to be
refined at all. Consequently, τy has been changed to 0.83, which gives the
optimal distribution of this function for a given grid spacing adjacent to
the impinging plate. The small refinement close to the orifice plate does
not significantly increase the computational load (< 2%). All described
refinements lead to a smooth and small change of the mesh spacing, which
is lower than 1%, based on 512 grid points per direction and the given
values of the parameters.

2.3.4 Parameters

Within this thesis, three sub- and three supersonic simulations are
analysed. The simulations are numbered with #1 to #6. Influences
of three parameters are described within this thesis: a) Mach number:
#(4,5,6), b) Reynolds number: #(2,3) and #(5,6) and c) a heated
environment #(1,2). Only simulations grouped in braces #(..,..) differ
within a single parameter and can be compared. An additional simulation
(#7) with a pulsed inlet was carried out. Common parameters are given
in table 2.2 and specific parameters are shown in table 2.2.
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Rs κ Pr p∞ Tt,in Lx×Ly(= h)×Lz
[J/(kg K)] [−] [−] [Pa] [K] [−]

287 1.4 0.71 105 293.15 12D × 5D × 12D

Table 2.2: Common geometrical and physical parameters for all simulations.
Rs, κ, Pr , p∞, Tt,in and Lx, Ly, Lz denote specific gas constant, ratio of specific
hats, Prandtl number, ambient pressure, total temperature at the inlet and the
size of the domain.

N◦ pt,in/p∞ Ma T∞ = Tw Re
[−] [−] [K] [−]

#1 2.15 1.106 373.15 3300
#2 2.15 1.106 293.15 3300
#3 2.15 1.106 293.15 8000
#4 1.12 0.408 373.15 3300
#5 1.50 0.784 373.15 3300
#6 1.50 0.784 373.15 8000
#7 0− 1.50 0− 0.784 373.15 0− 6600

N◦ grid points max. y+
w ∆x, ∆z ∆y

[−] [D] [D]

#1 512× 512× 512 0.67 0.0199−0.0588 0.0017−0.0159
#2 512× 512× 512 0.77 0.0199−0.0588 0.0017−0.0159
#3 1024× 1024× 1024 1.02 0.0099−0.0296 0.0012−0.0072
#4 512× 512× 512 0.62 0.0184−0.0636 0.0017−0.0159
#5 512× 512× 512 0.63 0.0165−0.0388 0.0017−0.0159
#6 1024× 1024× 1024 0.58 0.0099−0.0296 0.0008−0.0078
#7 1024× 1024× 1024 0.35 0.0093−0.0307 0.0008−0.0078

Table 2.3: Specific geometrical and physical parameters of the simulation. pt,in,
p∞, Ma, T∞, Tw, Re, y+w and ∆x,y,z denote total pressure at the inlet, ambient
pressure, Mach number, ambient and wall temperature, Reynolds number, the
dimensionless wall distance at the wall and the grid width in x-, y- and z-direction

45
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3.1 Averaged equations

3.1.1 Averaged governing equations

For engineering problems, a much faster and less expensive approach
than DNS is needed. The knowledge of the statistically averaged flow
field is sufficient for many applications. Thus, the common approach to
find a solution for a flow problem involves an averaging of the governing
equations (2.1). It is common practice to work with two different averages
simultaneously (Friedrich (1999)). The quantities pressure and density are
usually decomposed into:

ρ = ρ+ ρ′ , p = p+ p′ . (3.1)

The fluctuation is denoted with one apostrophe (?′) and the average with
an overbar ( ?). This kind is called Reynolds-average. Temperature,
internal energy and velocity by contrast are typically decomposed into
a Favre-average ( ?̃) and the corresponding fluctuation (?′′):

T = T̃ + T ′′ , e = ẽ+ e′′ , ui = ũi + u′′i . (3.2)

It is also possible to use both kinds of averages for a single variable, e.g.
for the temperature and and velocity components. The mass-weighted
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(Favre-) averages are defined as:

α̃ =
ρα

ρ
. (3.3)

The average of a variable α can be obtained either by ensemble averaging
over an infinite number of snapshots N :

αe = lim
N→∞

1

N

N∑
n=1

α(n) , (3.4)

or by time-averaging over a time interval ∆t:

αt =
1

∆t

∆t∫
0

α dt . (3.5)

An additional averaging in space is possible, if symmetry planes or axes
exist. The statistically averaged Navier-Stokes equations are obtained by
simply Reynolds-averaging each equation entirely, e.g. the momentum
conservation becomes:

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xi
+
∂τij
∂xj

. (3.6)

Following Friedrich (1999), we assume that the averaging procedure com-
mutes with differentiation, is linear and preserves constants. Furthermore,
the following computation rules

α′ = 0 , α′′ gen. 6= 0 , ρα′′ = 0 (3.7a)

αβ = αβ + α′β′ (3.7b)

ραβ = ρ α̃ β̃ + ρα′′β′′ (3.7c)

α′′ = α− α̃ (3.7d)
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can be derived as shown in appendix A.1.1. α and β are arbitrary variables
and ρ is the density. The application of these rules to equation (2.1) leads
to the averaged governing equations:

∂ ρ

∂t
+
∂ ρ ũj
∂xj

= 0 (3.8a)

∂ ρ ũi
∂t

+
∂ ρ ũi ũj
∂xj

= −
∂ ρu′′i u

′′
j

∂xj
− ∂ p

∂xi
+
∂ τij
∂xj

(3.8b)

∂ ρ ẽ

∂t
+
∂ ρ ẽ ũj
∂xj

= −∂ qj
∂xj
−
∂ ρe′′u′′j
∂xj

− p
∂ uj
∂xj

− p′
∂u′j
∂xj

+ τij sij + τ ′ijs
′
ij , (3.8c)

with

τij = 2 η

(
sij −

1

3
skkδij

)
+ 2

(
η′s′ij −

1

3
η′s′kkδij

)
(3.9a)

qj = − k ∂ T
∂xj
− k′

∂T ′

∂xj
. (3.9b)

The terms are transformed so that only averages of single variables and
not of products occur. Consequently, new terms arise that need to be
modelled (closure problem):

ρu′′i u
′′
j , η′s′ij , k

′ ∂T
′

∂xj

ρe′′u′′j , p
′
∂u′j
∂xj

, τ ′ijs
′
ij . (3.10)

The turbulent dissipation rate is defined as:

ε =
τ ′ijs

′
ij

ρ
. (3.11)
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The most famous term is the Reynolds stress tensor ρu′′i u
′′
j . Various

turbulence models were developed in order to approximate it. In wide
use are models containing the Boussinesq hypothesis:

− ρu′′i u
′′
j = µt

(
∂ ũi
∂xj

+
∂ ũj
∂xi
− 2

3

∂ ũk
∂xk

δij

)
− 2

3
ρKδij , (3.12)

where
K =

1

2
ũ′′i u

′′
i (3.13)

is the turbulent kinetic energy and µt is the turbulent or eddy viscosity. K
and µt need to be approximated e.g. by two transport equations for K and
ε. A different approach is to calculate each entry of the Reynolds stresses
tensor by means of an own transport equation, see section 3.1.2. This
approach is referred to as Reynolds stress model (RSM) or Reynolds stress
transport (RST) model. At this point we leave the topic of turbulence
modelling, since it is not the focus of this thesis. The introduction to
turbulence modelling was given in order to get an insight for what the
obtained statistical results can be used. The analysis within this work will
be focused on the Reynolds stresses as well as on the turbulent heat flux
ρe′′u′′j .

3.1.2 Reynolds stress transport

The transport equation for ρu′′i u
′′
j can be derived in several steps.

Differentiating equation (3.7c) (α = ui, β = uj) as well as applying the
chain rule (see equation (A.7)) leads to:

∂

∂t

(
ρu′′i u

′′
j

)
= uj

∂

∂t
(ρui) + ui

∂

∂t
(ρuj)− uiuj

∂

∂t
(ρ)

+ ũj
∂

∂t
( ρ ũi) + ũi

∂

∂t
( ρ ũj)− ũi ũj

∂

∂t
( ρ) . (3.14)
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Now, the non-averaged (2.1a, 2.1b) as well as averaged (3.8a, 3.8b)
governing equations can be inserted. After splitting all averaged products
and rearranging, the transport equation for the Reynolds stress tensor
reads:

∂

∂t

(
ρu′′i u

′′
j

)
+

∂

∂xk

(
ũk ρu′′i u

′′
j

)
︸ ︷︷ ︸

−Cij

= − ρu′′i u′′k
∂ ũj
∂xk

− ρu′′j u
′′
k

∂ ũi
∂xk︸ ︷︷ ︸

PRij

+
∂

∂xk

[
ρu′′i u

′′
j u
′′
k + p′

(
u′iδjk + u′jδik

)]
︸ ︷︷ ︸

TDij

+
∂

∂xk

(
u′iτ
′
jk + u′jτ

′
ik

)
︸ ︷︷ ︸

V Dij

+ p′
(
∂u′i
∂xj

+
∂u′j
∂xi

)
︸ ︷︷ ︸

PSij

+u′′i

(
∂ τjk
∂xk

− ∂ p

∂xj

)
+ u′′j

(
∂ τik
∂xk

− ∂ p

∂xi

)
︸ ︷︷ ︸

Mij

− τ ′ik
∂u′j
∂xk
− τ ′jk

∂u′i
∂xk︸ ︷︷ ︸

DSij

. (3.15)

The terms are named as follows:

Cij .. convection
PRij .. production
TDij .. turbulent diffusion
V Dij .. viscous diffusion
Mij .. mass-flux variation
PSij .. pressure strain
DSij .. turbulent dissipation .
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3 Methods for flow analysis

3.1.3 Turbulent heat flux transport

The transport equation for the turbulent heat flux can be derived
analogously. The equation in Cartesian coordinates reads:

∂

∂t

(
ρe′′u′′i

)
+

∂

∂xj

(
ũj ρe′′u′′i

)
︸ ︷︷ ︸

−Ci

= − ∂

∂xj

(
ρe′′u′′i u

′′
j

)
︸ ︷︷ ︸

TDi

− ρu′′i u′′j
∂ ẽ

∂xj
− ρe′′u′′j

∂ ũi
∂xj
− pu′′i

∂ ũj
∂xj

+ u′′i τjk
∂ ũj
∂xk︸ ︷︷ ︸

PRi

−u′′i
∂qj
∂xj

+ e′′
∂τij
∂xj

+ u′′i τjk
∂u′′j
∂xk︸ ︷︷ ︸

DSi

− e′′ ∂p
∂xi︸ ︷︷ ︸

PGi

− pu′′i
∂u′′j
∂xj︸ ︷︷ ︸

FDi

. (3.16)

This equation can be derived in various forms. Here, the instantaneous
pressure and stress tensor have not been split, but kept inside the correl-
ations. This avoids the appearance of too many terms, as proposed by
Friedrich (1999). However, he presented a slightly different form, which
can be transformed into equation (3.16) by applying the chain rule with
respect to the convection term Ci. Gerolymos & Vallet (2014) on the con-
trary split also p and τij . Consequently, the aggregation of the terms is
not unique as well. In equation (3.16), the aggregation was made so that
it appears in a similar fashion to the terms in the Reynolds stress tensor:

Ci .. convection
TDi .. turbulent diffusion
PRi .. production
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3.1 Averaged equations

DSi .. turbulent dissipation
PGi .. term containing pressure gradient
FDi .. term containing fluctuating dilatation .

3.1.4 Averaging of the impinging jet

In this thesis, ensemble averaging with typically N ≈ 105 is used.
The ensemble-averaged flow field is then additionally averaged in the
circumferential direction θ, since the averaged impinging jet is rotationally
symmetric. The coordinate system (θ, y, r) is used for the analysis. All
equations that were derived within this section can be adapted. Vectorial
quantities, e.g. the velocity are transformed as follows:

uθ = −u sin(θ) + w cos(θ)

ur = u cos(θ) + w sin(θ) . (3.17)

Components in the y-direction are unaffected. In Moser & Moin (1984),
Reynolds stress transport equations are given for cylindrical coordinates
using only Reynolds averages. In this work, Reynolds and Favre averages
are used simultaneously. The derived transport equations are given in
appendix A.1.3. All terms involving a derivative in the circumferential
direction are omitted, since they are zero due to the circumferential
average:

∂ α̃

∂θ
= 0 ,

∂ α

∂θ
= 0 . (3.18)

On the contrary, averaged components in the circumferential direction are
not neglected, since they could be different from zero, depending on the
mode, e.g.:

ũθ gen. 6= 0 . (3.19)

The biggest simulations within this thesis are resolved with more than
one billion grid points. Storing one time step with the necessary five
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3 Methods for flow analysis

variables (pressure, velocity (x,y,z) and entropy) requires 41 GB of storage.
It is not possible nowadays to store thousands of time steps so as to do
statistical analysis as post-processing. Therefore, mean values, variances
and budget terms are computed on-the-fly. The average of variable α at
time step n can be computed recursively from the average at the previous
time step and the current value of α:

α(n) =
n− 1

n
α(n−1) +

1

n
α(n) . (3.20)

Averages of terms containing fluctuations, e.g. the Reynolds stresses can
be computed analogously:

ρu′′i u
′′
j

(n)
=
n− 1

n
ρu′′i u

′′
j

(n−1)
+

1

n
ρ(n)

(
u

(n)
i − ũi

(n)
)

︸ ︷︷ ︸
u
′′(n)
i

(
u

(n)
j − ũj

(n)
)

︸ ︷︷ ︸
u
′′(n)
j

.

(3.21)

The fluctuations occurring in equation (3.21) require the knowledge of
averages (e.g. ũi). All involved averages need to be converged to a certain
point in order to allow reasonable values of the fluctuations. In order
to ensure the correct calculation of all statistical terms, the procedure is
divided into the following steps: At first (step zero), the simulation runs
until the influence of the start is faded away and the flow reaches a settled
or periodic state. In this thesis, the simulations with Re = 3300 are started
from the initial condition:

U0 = [p, u, v, w, s]
>
0 = [p∞, 0, 0, 0, s (p∞, Tw)]

>
. (3.22)

The initial condition for simulations with Re = 8000 is an interpolated
instantaneous flow field of the corresponding case with Re = 3300.
Skipping the starting of the impinging jet reduces the computational cost.
However, some time steps need to be computed so that the effect of the
interpolation and the change in the Reynolds number are decayed. In the
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3.1 Averaged equations

following, the numbers are given exemplary for simulation #3 (supersonic
impinging jet on > 1 billion grid points). The first 35000 time steps after
the interpolation are not considered for the computation of statistics. If
we approximate the time necessary for a fluid particle to pass from the
inlet to the outlet of the domain (perfusion time) with

tp ≈
h+ Lx

2

v∞
, (3.23)

the 35000 time steps correspond to 1.35 perfusion times. After the
initialisation is done, averages including only instantaneous variables (step
one, simple averages, equation (3.20)) are computed. Therefore, 82500
time steps (3.2 perfusion times) are used. This is enough for the averages to
decrease its residuum by two orders of magnitude. In order to reach three
orders of magnitude approximatively a half million time steps (only for this
step of the averaging procedure) would be necessary. This would exceed
the computational resources that can be provided. In the second step,
averages of terms containing fluctuations (equation (3.21)) are computed.
Also here, approximately 3 perfusion times (2.9 tp corresponding to 75000
time steps) are required in order to decrease two orders of magnitude in
the residuum. Since the cost of the averaging is relatively low, the previous
simple averages can be continued. The circumferential averaging and
updating was carried out directly after each restart of the simulation (each
24 hours of wall time). In the last step, terms that are simply products
of averages are computed, for instance the convection Cij . Figure 3.1
exemplary shows the convergence of the main variables p, u, v, w, s (first
row) and the Reynolds stress transport terms TDij , V Dij , PSij , DSij of
simulation #3. Additional plots are given in appendix A.1.4: figures A.1
and A.2.

Computing averages on-the-fly reduces the required storage to a fraction.
Nevertheless, this approach has one big disadvantage: all variables needed
for the analysis have to be correctly implemented before the simulation is
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Figure 3.1: Convergence of the averaging for simulation #3. εr (first column)
and εm (second column) are the RMS and the maximum value of the residuum
within the domain, normalised with the respective value of the first time step
of the averaging. First row: simple averages (p, u, v, w, s), second row: averages
of terms including fluctuations (Reynolds stress transport terms TDij , V Dij ,
PSij , DSij). The vertical gray line indicates the start of averaging step two.

carried out. Once it has run, all other statistical information is lost. The
correctness of the budget equations can be checked since

Cij + PRij + TDij + V Dij +Mij + PSij +DSij = 0 , (3.24)

respectively

Ci + TDi + PRi +DSi + PGi + FDi = 0 (3.25)

holds due to the fact that the time derivative of an average value
is zero for a statistically periodical flow such as the impinging jet.
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3.2 Dynamic mode decomposition

For the Reynolds stress transport, equation (3.24) could be confirmed.
Unfortunately, the same was not possible for the turbulent heat flux
transport, equation (3.25). The imbalance term is denoted IB and arises
mainly in the deflection zone of the impinging jet. For this reason, the
budget terms of the turbulent heat flux are not presented within this
thesis. However, equation (3.16) is in agreement with Friedrich (1999).
The corresponding equations in cylindrical coordinates (appendix A.1.3.2)
were checked several times. To the knowledge of the author, no publication
exists where these equations are given and could be used for validation.
Since the transformation from Cartesian to cylindrical coordinates was
successfully done and due to the truth of equation (3.24), it is expected that
the equations of the turbulent heat flux transport in cylindrical coordinates
(3.16) are correct and that the error lies within the implementation of the
equations within the code.

Additional to the on-the-fly data acquisition, sets of slices and three-
dimensional fields of lower resolution (2563 points) are stored, since they
require much less storage. These sets are used in order to perform dynamic
mode decompositions and scatter plots of correlations between variables.

3.2 Dynamic mode decomposition

In order to investigate the modes of the impinging jet, a dynamic mode
decomposition (DMD) is used. The DMD allows the extraction of
dynamically relevant flow features from time-resolved data. The coherent
structures can be related to physical effects such as the impinging tone as
well as the secondary maximum within the Nusselt number distribution.
In the following, a brief summary of this method, developed by Schmid &
Sesterhenn (2008) is given, based on Schmid (2010) and Schmid (2011).

The matrix
V N1 = {v1, v2, v3, . . . , vN} (3.26)
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3 Methods for flow analysis

contains N temporally equidistant instantaneous flow fields vi. Each is
reshaped and put into one column. The sub- and superscript of V state
the first and last snapshot used for the matrix. For instance, V N1 contains
all fields (1 to N). The sequence of flow fields can be either generated
experimentally or numerically. For the analysis of DNS data the set can
consist of e.g. each 500th time step.

It is assumed that a linear mapping A connects subsequent flow fields
within the entire sampling interval:

vi+1 = Avi . (3.27)

The flow field can then be expressed as a Krylov sequence:

V N1 =
{
v1, Av1, A

2v1, . . . , A
N−1v1

}
. (3.28)

The goal is to extract dynamic characteristics such as eigenvalues and
eigenvectors of the process described by A. Furthermore, it is assumed
that beyond a critical number of snapshots, the vectors given by
equation (3.27) become linearly dependent. Thus, vN can be expressed
as a linear combination of the previous and linearly independent vectors
{v1, v2, . . . , vN−1}:

vN = a1v1 + a2v2 + . . .+ aN−1vN−1 + r

= V N−1
1 a+ r , (3.29)

where a is a vector of unknown coefficients and r is the residual vector.
According to equation (3.27), the reduced data sequence V N2 can be
expressed as:

V N2 = AV N−1
1 . (3.30)

Replacing its last entry with a linear combination of the previous ones

58



3.2 Dynamic mode decomposition

(equation (3.29)), one can express this sequence as:

V N2 = {v2, v3, . . . , vN} =
{
v2, v3, . . . , V

N−1
1 a

}
+ re>N−1 , (3.31)

where eN−1 is the (N − 1)
th unit vector. Rewriting equation (3.31) in

matrix form and considering equation (3.30) leads to:

V N2 = AV N−1
1 = V N−1

1 S + re>N−1 . (3.32)

The companion matrix S

S =



0 a1

1 0 a2

. . . . . .
...

1 0 aN−2

1 aN−1


(3.33)

has the size (N − 1) × (N − 1). The last column contains the unknown
coefficients {a1, a2, . . . , aN−1}, which generate the linear representations
of the last sample vN in terms of the previous samples {v1, v2, . . . , vN−1}.
The eigenvalues of S approximate some of the eigenvalues of A, see Schmid
(2011) for details. In order to compute the unknown coefficients within
the last column of S, the residual vector r (equation (3.29)) needs to be
minimised. The last sequence vN of a data set is expressed as a linear
combination of the previous elements of the sequence. Consequently, the
solution of the minimisation

min
S

∥∥V N2 − V N−1
1 S

∥∥ (3.34)

minimises the residual vector r. This can be realised with a QR-
Decomposition:

S = R−1QHV N2 , (3.35)

59



3 Methods for flow analysis

where QH is the complex conjugate transpose (adjoint) of Q and

V N−1
1 = QR . (3.36)

The complex eigenvalues of the S describe the dynamics of the flow
captured by the sequence. The eigenvalues λ∗i and its corresponding
eigenvectors xi are obtained by solving the eigenvalue problem:

Sxi = λ∗i xi . (3.37)

The eigenvalues are then logarithmically mapped onto the complex plane:

λi =
ln(λ∗i )

∆t
. (3.38)

The real part of λi represents exponential growth < (λi) > 0 respectively
decay < (λi) < 0 and the imaginary part contains the temporal frequency:

fi =
= (λi)

2π
. (3.39)

The dynamic modes DM i are the projection of the eigenvectors of S onto
the reduced snapshot matrix:

DM i = V N−1
1 xi . (3.40)

The flow field can be approximatively reconstructed using the dominant
dynamic modes DM j :

v (t) ≈
∑
(j)

DM jcje
λjt . (3.41)

The coefficient vector c = {c1, c2, . . . , cN−1} is given by:

c = DM−1V N1 . (3.42)
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4 Description of the flow

4.1 Resolution

4.1.1 Kolmogorov microscales

Before we start to analyse the flow field of the impinging jet, it has
to be ensured that the chosen resolution is sufficient. The Kolmogorov
microscales give an estimation of the smallest scales that appear within a
turbulent flow. These are computed with the kinematic viscosity ν and
dissipation rate ε:

lη ∼
(
ν3

ε

)1/4

, τη ∼
(ν
ε

)1/2

, uη ∼ (νε)
1/4

. (4.1)

The length- lη, time- τη and velocity scales uη are valid for isotropic
turbulence that occurs at “sufficiently high” Reynolds numbers. However,
it is unclear what sufficiently high means in terms of a number (Pope
(2000)). The Kolmogorov microscales can indicate only the order of
magnitude of the scales that need to be resolved by the numerical grid.
In Moser & Moin (1984), the resolution of DNS for different cases such
as channel flow, boundary layer and isotropic turbulence are given. The
statistical results agree well with experimental data even though the grid
spacing is considerably (e.g. five times) larger than lη. Pirozzoli et al.
(2008) showed that structures within a supersonic boundary layer typically
have a core radius of 5− 6lη.
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4 Description of the flow

Figure 4.1: Ratio of mesh width to Kolmogorov length scale rη in the range
from 0 (white) to 2 (black). First row →: simulation #1, #2, #3. Second row
→: simulation #4, #5, #6.

Figure 4.1 shows the ratio of mesh width to the Kolmogorov length scale

rη =
(∆x∆y∆z)

1/3

lη
(4.2)

for the simulations carried out within this thesis. The highest values
appear at the stagnation point (rη ≤ 4.0 for the supersonic- and rη ≤ 2.1

for the subsonic cases). Additionally, two areas exhibit relatively high
values: the shear layer of the free jet (rη ≤ 1.9 for Ma > 1 and rη ≤ 1.5

for Ma < 1) and the wall jet around r/D = 2 (rη ≤ 1.4). A similar
resolution with respect to the Kolmogorov scale was used by Dairay et al.
(2015) for an incompressible impinging jet.
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4.1 Resolution

4.1.2 Energy spectra

A more precise statement whether the resolution is sufficient or not can be
obtained when considering the energy spectra. If the energy-dissipating
scales are not resolved, energy piles up within the smallest scales of the
numerical grid. According to Moser & Moin (1984), the smallest length
scales that must be accurately resolved are typically greater than the
Kolmogorov length scale. E.g. most of the dissipation in a curved channel
flow occurs at scales grater then 15lη, based on average dissipation.

One-dimensional energy spectra are computed using 375 snapshots of
a plane through the jet axis. Due to the rotational symmetry of the
impinging jet, this plane is sufficient to detect a possible under-resolution.
The original data on the stretched grid is interpolated on an equidistant
one with a grid spacing that is equal to the smallest spacing of the original
grid. A fast Fourier transform (FFT) is carried out for each line. The FFT
are then averaged for each spatial direction separately.

Figure 4.2 shows the energy spectra plotted versus the dimensionless
wavenumber in the x- (kxh) respectively y-direction (kyh). No accumu-
lation of energy within the high wavenumbers exists. This confirms the
appropriate resolution of the simulations. The slope −5/3 of the iner-
tial subrange is shown as well. For those low Reynolds numbers of 3300
and 8000 only a tangent exists. Noticeable is the spectrum of the wall-
normal velocity v in the wall-normal direction y. Here, the typical hump
for low Reynolds numbers is missing. This is a consequence of the imposed
laminar inlet velocity profile. With this profile, large coherent structures
can develop without interruption, which was done on purpose in order to
identify the modes of the impinging jet. The entire energy is introduced at
low wavenumbers. Vortices in the scale of approximately 2 ·10−2−2 ·10−1

are missing, which are responsible for the characteristic hump.
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Figure 4.2: One-dimensional energy spectra E plotted versus the dimensionless
wavenumber kh in the x- (first row) respectively y-direction (second row).
Simulations: : #1, : #2, : #3, : #4, : #5, :
#6, straight line: slope −5/3.

4.1.3 Boundary layer

The Kolmogorov microscales and the energy spectra consider the entire
domain. A closer look has to be taken at the resolution of the boundary
layer, especially attached to the impinging plate. Steep velocity and
temperature gradients appear at the wall and must be resolved by the
numerical grid. Following Eggels et al. (1994), an appropriate resolution is
achieved when the first grid point near the wall is located at a dimensionless
wall distance

y+ =
uτy

ν
(4.3)

of y+ ≈ 1 and three grid points are within the viscous sublayer. uτ and

64



4.1 Resolution

Figure 4.3: Dimensionless wall distance y+ of
the nearest grid point to the impinging plate.
Simulations: : #1, : #2, : #3,

: #4, : #5, : #6.
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τw are the friction velocity and the wall shear stress:

uτ =

√
τw
ρ
, τw = η

√(
∂u

∂y

)2

+

(
∂w

∂y

)2
∣∣∣∣∣∣
w

. (4.4)

The viscous sublayer extends from the wall to y+ ≈ 5 and is characterised
by a laminar flow dominated by viscous forces. Figure 4.3 shows the
distribution of y+ of the nearest grid point to the impinging plate. The y+-
value is smaller than 0.67 for the entire impinging plate for all simulations
that are analysed in terms of heat transfer (#1, #4 − #6). The other two
supersonic simulations were carried out to investigate impinging tones.
The resolution of the boundary layer was slightly coarsened in order to
increase the time steps and save computing time, since no heat transfer is
analysed (∆T = 0). The highest y+-value at the wall occurs for simulation
#3 with y+ = 1.01. Consequently, simulations #1, #2, #4 and #5 have
six points (not including the wall) within the viscous sublayer, #3 and
#6 have four respectively seven. Thus, an appropriate resolution of the
boundary layer is achieved.
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4 Description of the flow

4.2 Vortex dynamics

4.2.1 Primary and secondary vortex rings

The vortical structure within the impinging jet is crucial for both, heat
transfer as well as noise generation. The development of vortices described
in the following applies in general to both Reynolds numbers (3300 and
8000) for sub- and supersonic flow. Some specifics occur for supersonic
impinging jets due to the presence of the standoff shock. Those are
explained in section 4.4.

Figure 4.4 shows a set of snapshots taken from the subsonic simulations
#5 (top left and second row) and #6 (top right). All images contain a
plane through the jet axis, which is coloured with the temperature (black:
cold, white: hot). Additional contours of Q are indicated. Q is the second
invariant of the velocity gradient tensor Aij :

Q =
1

4

(
P 2 + ΩijΩij − sijsij

)
, (4.5)

where sij , Ωij and P are the rate-of-strain tensor (equation (2.3)), the rate-
of-rotation tensor and the first invariant of the velocity gradient tensor Aij :

Aij =
∂ui
∂xj

= sijΩij

Ωij =
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
, P = −sjj . (4.6)

For further explanations, see e.g. da Silva & Pereira (2008). Returning
to figure 4.4, additional to the plane through the jet axis, the impinging
plate is shown and coloured with the Nusselt number (black: high heat
transfer, white: no heat transfer). We first concentrate on the top left
image: Primary vortices (P) are created within the free jet shear layer
as a consequence of the Kelvin-Helmholtz instability. Those vortices are
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4.2 Vortex dynamics

transported downstream with the jet until they are deflected by the high
pressure within the region around the stagnation point. The vortices
impinge directly next to this region onto the impinging plate. Due to wall
friction, a counter-rotating secondary vortex (S) develops. The presence
of this one locally enhances heat transfer at the impinging plate indicated
by the arrow. The annular shape of the affected area implies that also
the primary and secondary vortices are vortex rings. This is proven in
section 4.3.1. In the second row of figure 4.4, the temporal evolution (left
to right) of the situation is shown. The first picture of this sequence is a
crop of the top left. Travelling downstream the primary vortex ring, which
was initially behind the secondary, approaches the secondary vortex ring
and moves on top of it. This effect is caused by their mutual interacting
velocity fields and leads to a change of the direction of motion of the pair
from wall-parallel to wall-normal. As a consequence of this separation, the
annular area of high heat transfer vanishes and the cycle restarts.

The same mechanism also appears at higher Reynolds number (8000).
Contrary to the case of Re = 3300, the vortex rings do not develop
perfectly periodically. The top right image of figure 4.4 shows two different
snapshots of the simulation with Re = 8000. In the large image, the
previous primary vortex ring was not generated “correctly” and therefore
no local enhancement of heat transfer can be observed. A different
situation is shown in the framed image detail, belonging to a different
snapshot. Here, the above described effect occurs identical to the case
with Re = 3300.

4.2.2 Leapfrogging and vortex split-off

During the movement of the primary vortices in the streamwise direction,
two different phenomenons are observed: leapfrogging and vortex split-
offs. Both involve small-scale vortices and therefore appear especially at
the higher Reynolds number for sub- and supersonic cases.
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4 Description of the flow

Figure 4.4: Instantaneous flow fields containing a cut through the jet axis (T ,
black: cold, white: hot and Q contours) and the impinging plate (Nu, black: high
heat transfer, white: no heat transfer). Top left: simulation #5 (Re = 3300,
Ma = 0.78), right: #6 (Re = 8000, Ma = 0.78) at two different time steps. P:
primary vortex ring, S: secondary vortex ring. Second row: three consecutive
snapshots of #5.

The leapfrogging mechanism is shown in figure 4.5. Three consecutive
snapshots (left to right) of Q (normalised) within the jet shear layer are
snapped. Two similar vortex rings (1a,1b) and (2a,2b) are travelling
downstream one after another (left). Due to their mutual interaction
(middle) the frontal vortex decelerates and increases its diameter whereas
the rear one accelerates and shrinks in diameter (Riley (1998)). Thereafter
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Figure 4.5: Leapfrogging in the shear layer of the free jet region (#6),
consecutive snapshots →. Shown is QD/v2∞ in the range −85 (white) to 85
(black).

(right), the rear vortex ring (2a,2b) passes through the front ring (1a,1b).
Depending on the positions of the vortices , the process can either be
complete before the vortices interact with either the impinging plate or
the shock (in the supersonic case) or even during the interaction.

In figure 4.4 of the previous section, it can be seen that the primary
and secondary vortex rings are very axisymmetrical in the case of the low
Reynolds number. With increasing Reynolds number, small-scale vortices
overlay and influence these structures. Although, the main flow structure
remains axisymmetrical (see section 4.3), temporary asymmetries occur.
These asymmetries are also triggered by the acoustic field, especially in
the supersonic case. An example of such an asymmetry is the split-off of
a vortex as shown in figure 4.6. While the vortex ring on the left side
of the axis (1a) is unchanged, the ring splits on the right side into two
parts (1b,1c). Thereby, the newly emerged one (1c) takes the position of
the original structure (1b), which moves out of the jet and therefore slows
down. These asymmetries explain why enhanced heat transfer due to
secondary vortex rings decreases in time-average at the higher Reynolds
number. Furthermore, the effect plays a role within the sound source
mechanism of the impinging tone (section 5.1).

69



4 Description of the flow

1a
1b

4.5

y/
D

1.
0

3.
5

7.5x/D

1a
1b
1c

1a

1b
1c

Figure 4.6: Vortex split-off in the shear layer of the free jet region (#6),
consecutive snapshots →. Shown is QD/v2∞ in the range −85 (white) to 85
(black).

4.3 Modes

4.3.1 Subsonic impinging jets

Since we have seen that the vortices of the impinging jet are closely
related to the heat transfer at the impinging plate, we want to study
these structures. In order to do that, a dynamic mode decomposition, as
explained in section 3.2, was carried out. We saw already that the flow
at lower Reynolds number tends to be more regular and less asymmetric
(figure 4.4). For this reason, simulation #5 (Re = 3300,Ma = 0.78) is
analysed first.

The instantaneous flow fields vi used to build the snapshot matrix V N1
can contain either the entire domain or a subdomain. A two or three-
dimensional field is reshaped to a vector. Furthermore, different flow
variables can be included within this vector. It is advisable to scale
different variables, so that they lie within the same order of magnitude.
For all carried out DMD, the outer area (r > 4) was cut in order to save
computing time and memory. First, a DMD including all grid points of a
plane through the jet axis with the variables p, T,Q and ∂T

∂dy was carried
out. As explained in section 3.2, it is assumed that the vectors become
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Figure 4.7: Simulation #5 a) Convergence of the residual vector r. Black:
rRMS, gray: rmax normalised with the values of N = 2. b) Eigenvalue spectrum
computed using a DMD. Red marked points correspond to dominant modes.

linearly dependent after a critical number of time steps, e.g. after one
period of the main flow characteristics. In Schmid (2010), a cavity flow
was shown exemplary where the norm of the residual vector r lost three
orders of magnitude when the number of used snapshots N was increased
from 2 to 17. The convergence of the present DMD of simulation #5 is
shown in figure 4.7a. Despite the fact that the flow looks rather periodical,
no similar decline of the residual can be observed. For this reason, 120
snapshots are used which are at an interval of 510 time steps each. The
analysed time frame is large enough to reach reasonable convergence with
respect to the mean values, as shown in figure 3.1. The highest frequency
that can be resolved with this step width is Sr = 2.81 assuming two points
per period.

Figure 4.7b shows the eigenvalue spectrum of the flow. The eigenvalues
are normalised so that one can realise the Strouhal numbers directly from
the abscissa. The ordinate indicates growth respectively decay. The modes
and eigenvalues usually appear as complex conjugate pairs. Within this
thesis, the terms mode and eigenvalue refer to the corresponding pairs. The
mode at (0,0) represents the mean flow field since it has no frequency and
is not damped. In order to define the dominant modes, each mode of the
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Figure 4.8: Temperature field of the dominant dynamic modes (#5) left:
Sr = 0.46 (±30 K), right: Sr = 0.92 (±20 K).

remaining is multiplied with the corresponding coefficient and DM jcje
λjt
∗

is compared to the fluctuating flow field v′(t∗) at t∗ = t(n = N/2). The
2-norm of the difference is the basis for the sorting of the modes. The
dominant modes have the Strouhal numbers ±0.46 and ±0.92 and a low
damping.

Figure 4.8 and 4.9 show the temperature field and Q of the two dominant
modes. The left images correspond to Sr = 0.46 and the right ones to Sr =

0.92. For all illustrations, the modes are multiplied with its coefficients to
allow a physical interpretation. The structures are symmetrical and are
located within the shear layer of the free jet as well as within the wall
jet until r/D ≈ 2. These are the zones where the primary and secondary
vortices pass. The reconstruction of the flow field using those two modes
as well as the mean flow field is shown in figure 4.10 (right) and compared
with the original field (left). A remarkable conformity between both fields
can be seen. The DMD proves that vortices develop periodically in the
shear layer and are a superposition of a larger and a smaller structure. The
larger structure corresponds to the frequency Sr = 0.46 and the smaller
one oscillates with the double frequency Sr = 0.92.
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Figure 4.9: Q (±3.1v2∞D) of the dominant dynamic modes (#5) left: Sr = 0.46,
right: Sr = 0.92.

Figure 4.10: Confrontation of original flow field (left) and reconstruction using
the mean field and the two dominant modes (right), #5.

Three-dimensional mode. The two dominant modes computed using
a plane through the jet axis (z/D = 6) are strongly symmetrical.
Therefore, the three-dimensional structure can be either axisymmetrical
or flapping within the x/D = 6-plane. In order to clarify this issue, a
three-dimensional DMD was carried out as well.

Since this requires huge amounts of main memory, each fourth grid point
was used to build the snapshot matrix. A comparison of two resolutions
used for the two-dimensional DMD is presented in appendix A.2.1.2,
figures A.8 to A.11. Neither convergence, nor the dominant modes depend
on the resolution.
Q-contour plots of the three-dimensional modes are shown in figure 4.11.

73



4 Description of the flow

Figure 4.11: Q contours (±3.1v2∞D) of the tree-dimensional dominant dynamic
modes (#5) left: Sr = 0.46, right: Sr = 0.92 coloured with the pressure
(±0.08p∞).

Additional contour plots of the pressure can be found in the appendix,
figure A.12. They prove that the dominant modes within the subsonic
impinging jet (#5) are axisymmetrical. The primary and secondary
vortices are toroidal.

Influence of the Mach number. The role of vortex rings with respect
to local heat transfer enhancement as well as the modes were described
for a simulation within the high subsonic regime (Ma = 0.78). For some
applications the nozzle pressure ratio and therefore the Mach number are
restricted so that the compressibility effects are much lower. For this
reason the influence of the Mach number is controlled. The analysis
of simulation #4 (Ma = 0.41) shows that the evolution of the vortex
rings is almost unaffected by the Mach number. However two differences
can be observed. The dimensionless frequency of the dominant modes
of subsonic impinging jets shifts to higher values with decreasing Mach
number. In concrete terms, the Strouhal number increases from 0.46 and
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0.92 at Ma = 0.78 to 0.54 and 1.08 at Ma = 0.41. At higher Mach number,
the amplitude of the modes and therefore the strength of the vortices is
homogeneous comparing the free jet and the wall jet region. At the lower
Mach number however, the strength of the vortices increases from the free-
to the wall jet. The reduced intensity of the primary vortices within the
free jet leads to a decrease of the constriction between consecutive primary
vortex rings. Illustrations can be found in appendix A.2.1.1.

Influence of the Reynolds number. Increasing the Reynolds number
means increasing the turbulence. This makes the identification of coherent
structures more difficult, since the small vortices are not only superposed
on the larger ones, they influence each other. Additional effects such as
leapfrogging and vortex split-off occur (section 4.2.2) and decrease the
regularity of the flow. For this reason, no convergence of the residual
vector r exists, as it can be seen in figure 4.12a. Additionally, the real
parts of the dominant modes become strongly negative, the modes are
now damped. Nevertheless, the increase of the Reynolds number has no
affect on the Strouhal numbers of the dominant modes. They remain at
Sr = 0.46 and 0.92, but 200 instead of 120 snapshots were needed to find
them.

The comparison of the temperature of the modes between #5 (figure 4.8)
and #6 (figure 4.13) shows that the structure of the first dominant mode
(left, Sr = 0.46) is nearly unchanged. The second mode however (right,
Sr = 0.46), looses its symmetry within the free jet for y/D . 1.5. This is
a difficulty in the detection of the mode due to the increased turbulence
and does not mean a change of the mode itself, e.g. to helical or flapping.
For Q see figure A.13.

The reconstruction of the flow field using the mentioned modes still
indicates the vortex rings, even though the quality decreased. The three-
dimensional DMD proves that the mode is toroidal. The corresponding
structures are shown in appendix A.2.1.3, figures A.14 and A.15.
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Figure 4.12: Simulation #6 a) Convergence of the residual vector r. Black:
rRMS, gray: rmax normalised with the values of N = 2. b) Eigenvalue spectrum
computed using a DMD. Red marked points correspond to dominant modes.

Figure 4.13: Temperature field of the dominant dynamic modes (#6) left:
Sr = 0.46 (±30 K), right: Sr = 0.92 (±20 K).

Figure 4.14: Confrontation of original flow field (left) and reconstruction using
the mean field and the two dominant modes (right), #6.
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Figure 4.15: Eigenvalue spectrum
of simulation #3 computed using a
DMD. Red marked points correspond
to dominant modes.
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4.3.2 Supersonic impinging jets

In section 1.3, it was shown that free jet screech is strongly related to the
modal structure of the jet. Such a linkage may exist but is presently not
established for impinging jets, since the modes itself are mainly unknown.
Furthermore, no consensus regarding the sound source mechanism was
found. In order to clarify this issue for the low supersonic regime, a DMD
based on simulation #3 (Re = 8000,Ma = 1.11) was carried out.

Figure 4.15 shows the eigenvalue spectrum. Similar to the subsonic
case with Re = 8000, the dominant mode of the supersonic impinging
(Re = 8000) is slightly damped, indicating a disturbed periodical flow. Its
Strouhal number is 0.324. In contrary to the subsonic case, no mode with
the double frequency (harmonic) is detected by the DMD.

The flow of a supersonic impinging jet is not only dominated by primary
and secondary vortices. The DMD reveals a much more complex flow field
that can be seen in figure 4.16. A full period of the cycle including five
snapshots is shown. The sixth snapshot, which is not shown, would be
again at the same phase point as the first one. For each point in time
(each row) three images are depicted. In the left and middle column, the
original flow field is shown (Q respectively p). The right column shows the
pressure obtained from the reconstruction of the flow field using only the
time mean and the dominant dynamic mode.

In the first point in the phase (first row) a highly turbulent area with
plenty of small vortices close to the stagnation point (y/D . 1) exists.
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These vortices are leftover from the former period and will be explained
later. The flow in this area is mainly subsonic. Large vortical structures
are present in the upper part of the domain (y/D & 2) and belong to the
new period that we investigate now. The first vortex ring in the streamwise
direction (y/D ≈ 2) is significantly stronger than the following ones. In
this specific period a vortex split-off takes place (section 4.2.2), but this is
not of relevance for the DMD-cycle. The particular strength of this first
vortex ring becomes clear regarding the original pressure field (middle),
and especially the reconstructed pressure field (right). Therefore, we will
call it head vortex. Slightly in front is the sonic line. Advancing in time
(second and third row), the subsequent vortices accelerate, as described
in section 4.2.2. Consequently the supersonic area splits into two parts,
as indicated by the sonic line. In the fourth row, the supersonic area
approaches the deflection zone, encounters areas of high pressure (lumps)
and forms standoff shocks. Now, shock-vortex- and shock-vortex-shock-
interactions occur. These two phenomenons are described in detail in
sections 5.1.1 and 5.1.2. They cause enormous pressure waves that lead to
the destruction of the large structures (vortex rings), as it can be seen in
the last row of figure 4.16. The breakdown of the large vortices continues
in the beginning of the new period, as shown in the first row. The end of
the cycle also includes the disappearance of the supersonic area.

In contrary to the subsonic impinging jet, the dominant mode does
not correspond with each primary and secondary vortex ring. In fact,
it describes a bunch of vortices including a head vortex and multiple
subsequent vortices of lower strength that merge into an area of low
pressure. The three-dimensional mode shown in figure 4.17 proves that
the dominant mode with Sr = 0.32 is toroidal.
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Figure 4.16: Periodical flow of a supersonic impinging (#3). First column:
normalised values of Q of the original flow field. Second and third column: p
of the original flow field and of the reconstruction using the mean field and the
dominant dynamic mode with a Strouhal number of Sr = 0.32. The snapshots
(rows) are in consecutive order.

Figure 4.17: Pressure contours
(±0.02p∞) of the tree-dimensional
dominant dynamic mode Sr = 0.32
(#3) coloured with the temperature
(±30 K).

Influence of the Reynolds number. The above described mode of
a supersonic impinging jet with a Reynolds number of 8000 (#3) occurs
equally at Re = 3300 (#2). Only a minor difference can be observed:
In the case of Re = 8000, the pressure waves emerging due to shock-
vortex- and the shock-vortex-shock-interactions lead most commonly to
the breakdown of the primary ring vortices. At the lower Reynolds
number, these vortices can withstand the attack of the pressure waves.
Consequently, the development of secondary vortex rings is much stronger
distinct at Re = 3300. However, this detail is not relevant for the
generation of impinging tones yet it affects heat transfer at the impinging
plate. Due to the fact that these two simulations are carried out with
∆T = 0, heat transfer is not investigated.
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Influence of the ambient temperature. Simulations #2 and #3 have
a total inlet temperature that is equal to the wall and ambient temperature:
Tt,in = Tw = T∞ = 293.15 K (∆T = 0 K). In simulation #1, the wall and
ambient temperatures differ: Tw = T∞ = 373.15 K, whereas the total inlet
temperature was not changed (∆T = 80 K). The configuration of a cold jet
surrounded by hot fluid is typical for cooling configurations. Simulation
#1 has a Reynolds number of 3300 and therefore can be compared to #2.

The change of the ambient temperature leads to the introduction of a
specific characteristic: the flow changes between two modes, which have
the same dimensionless frequency: Sr ≈ 0.35. Multiple modes for one set
of parameters also occur in free jets, as described in section 1.3.2. The two
different modes of simulation #1 are denoted A and B, but are different
from the labels A and B of free jet screech.

In mode A axisymmetrical vortex rings develop with the characteristic
frequency. Those vortex rings are so far from each other that they do
not interact and no leapfrogging is observed. Each vortex ring behaves
exactly as the head vortex described above (#3, Re = 8000). Due to the
strongly symmetric flow, the deflection zone is not disturbed as strong as in
simulation #3. This area is analysed in section 4.4. Consequently, no high
pressure lumps appear. There is only one coherent area of high pressure in
the vicinity of the stagnation point. Therefore only one standoff shock is
created for each period for this mode. The shock appears at y/D ≈ 0.25,
moves counter-streamwise and interacts with the (only) vortex ring at
y/D ≈ 0.75.

Mode B on the contrary is equal to the mode observed in simulations
#2 and #3. Here, the vortex rings develop more frequently and allow
leapfrogging. Despite the different appearance of those two modes, the
head vortex formates with the same frequency. An interesting aspect would
be to investigate the switch between those two modes. Unfortunately
this requires too much computing time. Within the time frame necessary
in order to reach statistical convergence and obtain sound spectra, the
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Figure 4.18: Two different modes exist for a cold impinging jet at Re = 3300
(T0 = 293.15 K) in a hot environment (T∞ = TW = 373.15 K) with the same
frequency Sr ≈ 0.35. Shown is QD/v2∞ in the range −8.5 (white) to 8.5 (black).

Figure 4.19: Dominant dynamic
modes of the impinging jet as func-
tion of Ma∞. Filled squares: dom-
inant modes with ∆T = 80 K, not
filled squares: secondary modes with
∆T = 80 K, triangle: dominant mode
with ∆T = 0 K.
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Mode switched from A to B and back to A. This is not enough to find an
orderliness, even less a frequency of the switch.

A summary of the dynamic modes of all simulations carried out within
this thesis is shown in figure 4.19.
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4.3.3 Schlieren imaging

Schlieren imaging is a technique that visualises density gradients. The
underlying physical effects are refraction and diffraction of light. Light
rays encounter these mechanisms when they pass through materials with
changing density, e.g. when they pass a compressible impinging jet. Due to
turbulence the velocity and hence the density of the flow is inhomogeneous.

Figure 4.20 shows a sketch of a Toepler Z-type schlieren arrangement
that was used for the present investigation. Two concave mirrors on both
sides of the jet are used to create parallel rays out of the light emitted
by a lamp. A screen with a slit is placed directly in front of the lamp in
order to shield the rays that are not orientated in the desired direction. On
the other side of the jet, the second mirror bundles the parallel rays and
sends them to a camera. Closely in front of the camera is the focal point
where a razor blade is installed. Light rays that encounter strong density
gradients are refracted and cannot pass through the focal point, since they
are stopped by the razor blade. Consequently, the corresponding area
within the image is darker. The orientation of the razor blade determines
the component of the density gradient that is imaged. The implementation
of the set-up is shown in figure 4.21. As recording device, a Vision
research Phantom v2512 was used. In this picture, the orifice and the
impinging plate are not installed for lucidity. The entire set-up is shown
in appendix A.2.1.4, figure A.16. As pressure reservoir a barrel placed in
vertical position with the volume of 41.2 dm3 is used. At the lower end, the
supply for compressed air is installed. This means the reservoir is feed by a
compressor. This layout ensures a constant pressure for the measurement.
The pressure is controlled through a valve between the compressor and the
barrel and monitored using a PGP PUM50.2.1.08G.A73.0 sensor. At the
upper end of the reservoir, a conical nozzle reducing the diameter from G
1 1/2” to 10 mm within 60 mm is attached. The total length of the nozzle
is 238mm.

The visualisation of an impinging jet corresponding to simulations #2
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Figure 4.20: Sketch of a Toepler Z-type schlieren arrangement, see Settles
(2001).

Figure 4.21: Experimental set-up for schlieren visualisation excluding the razor
blade bracket.

and #3 was carried out at high Reynolds number: Re ≈ 485000. The
image is depicted in figure 4.22 and shows a helical mode. The simulations
however contain a toroidal mode. The difference can either be caused by
the huge discrepancy in Reynolds numbers or due to the fact that two
different modes may exist for this set of parameters. The latter exists for
free jets at similar fully developed Mach numbers of approximately 1.2.
Here, we investigate an impinging jet at Ma∞ = 1.11. The answer of this
question presently remains open. Since DNS with Re = 485000 is not
possible, an experiment with a jet at much lower pressure expanding into
a low pressure “vacuum” chamber can reach clarification.
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Figure 4.22: Schlieren image for a
supersonic impinging jet with NPR =
2.15 and h/D = 5.

4.4 Deflection zone and standoff shock

The DMD of supersonic impinging jets with h/D = 5 (section 4.3.2)
showed that the standoff shocks are not continuously present, see e.g. the
first two rows of figure 4.16. At a later point in time, the shocks develop
and can be clearly seen in the fourth row at y/D ≈ 0.6 and 0.9.

The shock generation periodically occurs due to the approach of the
supersonic area to locations of high pressure (& 1.3p∞) within the
deflection zone. Those locations can be either a single coherent zone in
the vicinity of the stagnation point or a lump which was split-off from
the coherent zone due to strong pressure waves. The nature of the high
pressure areas differ between the carried out simulations and determine
the movement and number of standoff shocks.

For instance, the supersonic simulation with a heated environment (#1,
∆T = 80 K) features a mode (mode A) that is strictly periodical and
axisymmetrical. The area of high pressure within the deflection zone is
not disturbed as strongly as in the simulations with ∆T = 0K (#2,3).
This observation can be quantified by the pressure at the impinging plate,
which is shown in figure 4.23. Comparing simulation #1 and #2, we see
that the pressure recovery at the impinging plate ( p− p∞) / (pt,in − p∞)
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Figure 4.23: Pressure recovery at the impinging plate. Left: influence of the
Mach number Ma: #4 (0.4), #5 (0.8), #1 (1.1); middle: influence of the
Reynolds number Re: #2,5 (3300), #3,6 (8000); right: influence of a heated
environment: #2 (not heated; ∆T = 0 K), #1 (heated; ∆T = 80 K). :
#1, : #2, : #3, : #4, : #5, : #6.

reaches values of 0.89 respectively 0.74, showing a more stable deflection
zone in #1. The pressure recovery decreases with increasing Mach and
Reynolds number and increases when the environment is heated.

A simple gedankenexperiment can link the movement of the high
pressure within the deflection zone to the pressure recovery at the
impinging plate. We approximate the high pressure around the stagnation
point as a half-unit circle with the flat side to the bottom and add
a normally distributed random movement of the centre in the radial
direction. In case of a very small movement the shape of the function is
still approximately a half-unit circle and the maximum value is still close
to one. This case represents simulation #1. If we increase the variance
of the random displacement, representing #2, the shape changes and the
maximum value decreases. As a result, the two curves have to cross each
other at some point. The crossing can be observed between simulations #4
and #5 as well as (#2, #3) (#5, #6) and (#1, #2). No crossing between
(#1, #4) respectively (#1, #5) implies that the lower pressure recovery
of the supersonic impinging jet, compared to the subsonic ones, is mainly
caused by losses due to increased turbulence as a result of interactions
between vortices and shocks, as described in sections 4.3.2 and 5.1.
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Figure 4.24: Scaled RMS-values of the radial velocity fluctuation v′RMS/v∞
from 0 (blue) to 0.3 (red). First row, →: simulation #1, #2, #3. Second row,
→: simulation #4, #5, #6.

The RMS-values of the axial velocity fluctuation, which are shown in
figure 4.24, confirm the given explanation. Simulation #4 with a pressure
recovery of approximately one, has almost no radial velocity fluctuations
in the vicinity of the stagnation point. The fluctuations increase with
increasing Mach and Reynolds number and decrease when the environment
is heated.

Using the adaptive shock-capturing filter (section 2.2.4), the position
of the standoff shock can be detected. Figure 4.25 shows the RMS of
the filtering strength σsc computed using 375 snapshots. In the two
simulations with ∆T = 0 (#2,3), shocks appear and move mainly in
the range 0.25 . y/D . 1, even though they can depart up to two
diameters from the impinging plate. Due to the highly turbulent flow
field, the stagnation point usually produces multiple high pressure lumps
and therefore multiple standoff shocks that are often oblique. This can be
realised regarding the filtering strength at around one diameter in front
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Simulation #1 Simulation #2 Simulation #3

Figure 4.25: Standoff shock position detected using the adaptive shock-
capturing filter. Shown is the RMS of the filtering strength σsc. The gray
dashed frame indicates the area of the domain where the filter is enabled.

of the lower wall. Here, the shocks occur less often and therefore oblique
positions can be spotted. On the contrary, the strong periodicity of mode
A of #1 leads to an oscillation of the shock in the range 0.25 . y/D . 0.75.
Although some oblique traces of the shock can be observed, the pattern is
mainly parallel to the wall.

The movement of strong gradients related to the shock leads to strong
fluctuations of pressure and axial velocity. The clearly defined shock
position of mode A within simulation #1 reflects in the RMS-values of p′

and u′r. The corresponding illustrations can be found in appendix A.2.2:
figures A.17 and A.18. Plots concerning simulation #6 of figures 4.24
and A.18 were already published in Haucke et al. (2015).

The observed standoff shock locations for NPR = 2.15 and h/D = 5 are
profoundly different from the ones at higher nozzle pressure ratio and lower
nozzle-to-plate distance, as investigated by Iwamoto (1990), figure 1.2.
In the latter, the impinging plate is placed within the shock cell system
leading to a defined position of the shock that varies only through small
oscillations.
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4.5 Wall jet

This section is taken from Wilke & Sesterhenn (2016c). Minor changes
have been applied. According to radial velocity, we divide the wall jet
into four zones. The accelerating zone (0 ≤ r/D . 0.8), the zone of
maximal radial velocity (r/D ≈ 0.8), the decelerating zone (r/D & 0.8)
and a zone where the influence of the impingement is not dominant any
more (r/D & 2.5). According to the parameters, the position of the
maximum radial velocity changes slightly. For the flow description, the
radial positions r/D = 0.3, 0.8, 1.4 and 3.5 are chosen.

The first row of figure 4.26 shows the radial velocity ur at the wall
distance of y/D = 0.05. Starting from the stagnation point it strongly
increases due to the stagnation point pressure and reaches a maximum
value that is lower than the inlet velocity v∞. In the first column, the
influence of the Mach number is shown. The radial velocity slightly
decreases with increasing Ma. The influence of the Reynolds number
(second column) is stronger distinct. ur decreases with increasing Re.
The position of the maximum moves to greater r/D. In this plot and for
all further comparisons, simulation #2 and #3 have to be compared to
each other. Simulations #5 and #6 are another pair. The pairs (#2,3)
and (#5,6) differ by the Mach number as well as the ambient and wall
temperature (see table 2.3). Another noticeable characteristic is that the
maximal radial velocity decreases and the position of the maximum moves
closer to the stagnation point when the environment and the walls are
heated (third column of figure 4.26).

In the considered height y/D = 0.05, all simulations have a negative
axial velocity (approximately 10 to 14 % of the inflow velocity) close to
the stagnation point (second row of figure 4.26). This means that the flow
approaches the wall. Moving in the radial direction, this component turns
slightly positive (up to 2 percent of inlet velocity). This is a consequence of
the thickening of the wall jet: the flow spreads in the positive y direction.
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Figure 4.26: Mean profiles of radial velocity ur (top) and axial velocity v
(bottom) at y/D = 0.05. Left: influence of the Mach number Ma: #4 (0.41),
#5 (0.78), #1 (1.11); middle: influence of the Reynolds number Re: #2,5 (3300),
#3,6 (8000); right: influence of a heated environment: #2 (not heated: ∆T = 0
K), #1 (heated: ∆T = 80 K). : #1, : #2, : #3, : #4,

: #5, : #6.

The radial position where the direction turns (zero crossing) decreases with
increasing Ma (first column), decreasing Re (second column) and a heated
environment (third column). After reaching a maximum value, depending
on the configuration, the axial velocity decreases and features weak local
maxima. The simulation with the lowest Mach number (#4) differs from
those with higher Ma in the fact that the maximum axial velocity is not
in the stagnation point, but at r/D ≈ 0.32.

Figure 4.27 shows the mean temperature profiles of the impinging jets.
The temperature curve is influenced by three effects: a) the mixing of the
wall jet with the hot environment (cases #1,4,5,6). This causes the main
trend of increasing temperature with increasing r/D. b) Heat transfer at
the isothermal wall, which is discussed in chapter 6, and c) compressibility
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Figure 4.27: Mean profiles of temperature T at y/D = 0.05. Left: influence
of the Mach number Ma: #4 (0.41), #5 (0.78), #1 (1.11); middle: influence of
the Reynolds number Re: #2,5 (3300), #3,6 (8000); right: influence of a heated
environment: #2 (not heated: ∆T = 0 K), #1 (heated: ∆T = 80 K). :
#1, : #2, : #3, : #4, : #5, : #6, : reference
temperatures: wall and total inlet temperature, see table 2.3.

effects. The first column shows the influence of the Mach number. At
low Ma (#4; Ma = 0.41), the average temperature reaches the value of
the total inlet temperature Tt,in in the stagnation point. At higher Mach
number (sub- and supersonic jets), the stagnation point temperature is
higher than Tt,in. This indicates that the stagnation point is less unsteady
when the Mach number is low. An unsteady stagnation point means
mixing with the surrounding fluid and in case of a present temperature
difference, an increasing temperature in the stagnation point.

The effect of compressibility can be seen in areas with a high (radial)
velocity. A high velocity leads to a decreasing temperature, e.g. at
r/D ≈ 0.8, the supersonic case (#1) features a global minimum at the
point where the axial velocity is maximal (first column). The same effect
is present for the high subsonic jet (#5). The position of the decreased
temperature variates, with respect to Ma, Re, and the hot environment,
in accordance with the position of the high axial velocity.
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4 Description of the flow

4.6 Boundary layer

In section 4.1.3, the appropriate resolution of the viscous sublayer, as part
of the boundary layer, was shown. In this section, the influences of the
parameters Ma,Re and ∆T on the entire boundary layer are analysed.
Therefore, two more dimensionless quantities are needed, since it is
common practice to plot the dimensionless velocity u+ and ∼ temperature
T+ as function of the ∼ wall distance y+ (equation (4.3)):

u+ =

√
u2 + w2

uτ

T+ =
Tw − T
Tτ

, (4.7)

where Tτ is the friction temperature:

Tτ =
qw

ρcpuτ
. (4.8)

Those profiles are especially known for boundary layers where the fluid
flows in one direction of a Cartesian coordinate system. In the case of
the impinging jet, the wall-parallel velocity

√
u2 + w2 =

√
u2
θ + u2

r is used
instead of u.

The rest of this section is taken fromWilke & Sesterhenn (2016c). Minor
changes have been applied. Figure 4.28 shows the velocity boundary layer.
y+ and u+ are the dimensionless wall distance and velocity. The u+-
profile of the wall jet is for all computations and r/D lower than the
solution of the channel flow. The maximum is caused by the fact that the
wall jet has a finite thickness. The fluid above the wall jet is almost at
rest, neglecting a slight recirculation. The profile is strongest influenced
by the Reynolds number, followed by the heated environment (∆T ). The
Mach number has a small influence, except for r/D = 1.4. Increasing
Ma leads to a movement of the u+-maximum to higher values of y+.
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4.6 Boundary layer

Also here, r/D = 1.4 forms an exception. For radial distances other
than r/D = 0.8, the dimensionless velocity increases with increasing Mach
number. The entire profile is raised with the Reynolds number. A heated
environment has the impact that u+ decreases in the entire domain. The
vertical position (y+) of the u+-maximum increases for r/D = 0.3 and 0.8

and then decreases for larger radial distances. If we compare the profiles
regarding the radial distance, the maximal values of y+ and u+ increase
until r/D = 1.4 and then decrease slightly. Additionally, the drop after
the maximum gets sharper until r/D = 1.4.

Contrary to the velocity, the thermal boundary layer profile, which is
shown in figure 4.29, can be below or exceed the channel flow profile
(T+ = Pr y+). In the case of the heated environment, the curves are
close to T+ = Pr y+, depending on the radial position either until y+ ≈ 5

or until y+ ≈ 10. The influence of the Mach number is much stronger than
in the velocity profile. The plots in the first row at r/D = 0.3 are in the
mixing layer. That’s why T+ increases again at high values of y+. Here, we
concentrate on the range before (y+ . 70). Increasing Mach numbers lead
to increasing values of the dimensionless temperature until the maximum
is reached, except for the radial distance r/D = 1.4. No trend regarding
the position of the maximum can be determined. An increasing Reynolds
number leads to increasing values of T+ and the radial position where the
maximum is observed. However, when the environment is not heated, the
Reynolds number has almost no effect until the maximum is reached and
until r/D ≤ 0.8. The heated environment leads to much higher values of
T+ in the entire domain.
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Figure 4.28: Velocity boundary layer for different radial positions (↓: r/D =
0.3, 0.8, 1.4 and 3.5). Left: influence of the Mach number Ma: #4 (0.41), #5
(0.78), #1 (1.11); middle: influence of the Reynolds number Re: #2,5 (3300),
#3,6 (8000); right: influence of a heated environment: #2 (not heated: ∆T = 0
K), #1 (heated: ∆T = 80 K). : #1, : #2, : #3, : #4,

: #5, : #6, : u+ = y+.
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Figure 4.29: Temperature boundary layer for different radial positions (↓:
r/D = 0.3, 0.8, 1.4 and 3.5). Left: influence of the Mach number Ma: #4
(0.41), #5 (0.78), #1 (1.11); middle: influence of the Reynolds number Re:
#2,5 (3300), #3,6 (8000); right: influence of a heated environment: #2 (not
heated: ∆T = 0 K), #1 (heated: ∆T = 80 K). : #1, : #2, :
#3, : #4, : #5, : #6, : T+ = Pr y+.
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5 The impinging tone

Sections 5.1, 5.2 and 5.4 are taken from Wilke & Sesterhenn (2016b) and
Wilke & Sesterhenn (2017). Minor changes have been applied.

5.1 Sound source mechanism for low

supersonic flow

In section 4.3.2, we have studied the cycle of the dominant dynamic mode
of the supersonic impinging jet. Standoff shocks periodically appear and
interact with vortices leading to the creation of very strong pressure waves.
In fact, two different types of interaction occur, which are analysed in detail
within sections 5.1.1 and 5.1.2.

5.1.1 Type 1: Shock-vortex-interaction

This kind of sound-emitting interaction requires two components: One
shock and one vortex or an aggregation of vortices. The computational
results show that multiple shocks can occur near by the stagnation point.
Usually two or three shocks are simultaneously present. The system of
shocks is highly unsteady within a periodical cycle.

Shock-vortex-interactions occur also in free jets, as described by Peña
Fernández & Sesterhenn (2015). However, the strength of the shock due to
the impinging plate is much stronger than the one in the shock cell system
due to the under-expansion of the jet. This results in much higher sound
pressure levels in the case of a present impinging plate, on which this thesis
is focused. Therefore, the term shock refers here always to standoff-shock.
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5 The impinging tone

This sound source mechanism can involve either the main vortical
structure of the impinging jet, which are the vortex rings or a vortex
within a turbulent aggregation of vortices. The first case is typical for low
Reynolds numbers, like Re = 3300 and was found by Wilke & Sesterhenn
(2016a). With increasing Reynolds number, the phenomenon shifts to the
second case. In the following, the mechanism is explained using figure 5.1,
which shows snapshots of simulation #3 with Re = 8000. All snapshots
are a section of a slice through the jet axis. In the first column, normalised
values of Q and of the divergence of the velocity field div (u) are shown. At
the starting point (first row) three shocks are present. For this mechanism
only the upper one (y/D ≈ 0.85) plays a role. For simplicity, only that
one is shown in the sketch. Additionally, a slightly asymmetric vortex ring
(1a,1b) is present. The centre of the ring in the left shear layer (1a) is at
the same height of the shock, whereas the centre of the ring in the right
side (1b) is closer to the wall. A bunch of turbulent vortices (3) is above
the shock. The vortex (2a) is a fragment that is left from the next vortex
ring that lost its symmetric structure due to leapfrogging. This process is
explained in section 4.3.2. At this point in time, the shock keeps its position
due to an equilibrium between the stagnation pressure pushing the shock
up and the flow pushing the shock down to the wall. The vortices however
are transported by the jet with high velocity and approach the impinging
plate. The vortex ring (1a,1b) is transported in the wall-normal direction
around the shock without interaction. Vortex (3), on the contrary, crashes
into the right end of the shock. As a consequence, the shock looses its
equilibrium, turns left and accelerates strongly. This can be seen in the
second row of figure 5.1. Now, the vortex bunch (3) already cut the right
end of the shock. The shock transformed into a pressure wave and is now
(third row of figure 5.1) in between the two vortices (1a) and (3), moving
in the north-west direction. At this point there are two possibilities for the
pressure wave. The first option is shown in the forth row of figure 5.1: no
vortex is in the way and the pressure wave can expand without disturbance.
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5.1 Sound source mechanism for low supersonic flow

Here, the wave can pass between vortices (1a) and (2a). In this case, the
wave leaves the jet and does not trigger a feedback loop. More often is the
case that there is no gap for the wave to escape and the wave interacts
with another vortex that changes the direction of the wave. In this case,
the wave goes through the whole jet and triggers another instability at the
nozzle lip.

Important for this mechanism is a flow field that is at least slightly
asymmetric. Within simulation #1 (Re = 3300), we observe a flow field
that switches between a mainly symmetric and a clear asymmetric state.
Also the mainly symmetric state is slightly distorted, so that one side of
the vortex ring touches the shock slightly before the other side and leads
to the described sound wave. Those two different states are explained in
section 4.3.2.

5.1.2 Type 2: Shock-vortex-shock-interaction

The second kind of interaction that produces strong acoustic waves involves
two shocks, a vortex ring and a sonic line. Figure 5.2 shows snapshots
of simulation #3 (Re = 8000). All snapshots are a section of a slice
through the jet axis. In the first column, normalised values of Q and of
the divergence of the velocity field div (u) are shown. This mechanism
requires a periodical appearance and disappearance of the supersonic zone
close to the stagnation point. Details about the entire cycle are given in
section 4.3.2. We start from a point in time where the supersonic zone
close to the stagnation point was destroyed and a new one is transported
downstream by the jet. This zone is circumscribed by the sonic line
(Ma = 1). As long as no obstacles are in the way, the sonic line travels
together with vortex rings, but slightly ahead of them. Travelling further
downstream the supersonic zone encounters zones of high pressure, which
are fragments of the high pressure at the stagnation point. As mentioned,
typically there are multiple of such zones. In our example, we have three
of them. Each time the sonic line faces a zone of high pressure, it stops its
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5.1 Sound source mechanism for low supersonic flow

-85 85 0 

Q D2/v∞2 div(u) D/v∞ 

-1.2 1.2 0 

Figure 5.1: Shock-vortex-interaction (#3, Re = 8000). First column:
normalised values of Q and of the divergence of the velocity field div (u). Second
column: sketch. The snapshots (rows) are in consecutive order.

downstream movement for a while until the jet pushes the sonic line over
the shock. The vortex rings travel in the shear layer, which is outside of
the high pressure zone formed only in the core of the jet. Thus, they are
not affected by those high pressure zones. As a consequence, the vortex
rings approach the sonic line and interact. This means they influence the
shape of the sonic line due to its rotating velocity components. In the first
row of figure 5.2, the sonic line is confined by the shear layer of the jet in
the radial direction. Streamwise it consists of three parts: on the left side,
the sonic line coincides with the upper shock, whereas on the right side,
it coincides with the lower shock. The crossover coincides with the inner
border of the left side of the vortex ring. The sound wave is produced when
this arrangement collapses: the vortex is not able anymore to separate the
sub- and supersonic areas. This can be seen in the following two time steps
(second and third row of figure 5.2). The sonic line looses its connection to
the vortex ring and the upper shock and jumps to the lower shock so that
the upper shock gets embedded in the supersonic zone. Thereby, a subsonic
area is initially embedded and then collapses. A strong spheric pressure
wave expands from that point. This one goes through the whole jet and
reaches the nozzle. The phenomenon therefore triggers new instabilities of
the shear layer and is part of a feedback mechanism.
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5.1 Sound source mechanism for low supersonic flow

-85 85 0 

Q D2/v∞2 div(u) D/v∞ 

-1.2 1.2 0 

Figure 5.2: Shock-vortex-shock-interaction (#3, Re = 8000). First column:
normalised values of Q and of the divergence of the velocity field div (u). Second
column: sketch. The snapshots (rows) are in consecutive order.

5.1.3 Closure of the feedback loop

As stated in the introduction, it is generally accepted that a feeedback
mechanism similar to the screech feedback loop is responsible for the
impinging tones. No agreement could be found on how the loop works
in detail: if the primary vortices impinging on the wall or the oscillations
of the standoff shock close the feedback loop. Following the description
of Raman (1998) of the free jet screech feedback loop, we apply the same
steps for the impinging tone feedback loop:

1. Jet instability

2. Feedback wave produced by shock-vortex-interaction

3. Upstream propagation of feedback-wave

4. Receptivity at nozzle lip

Vortex rings (primary vortices) develop axisymmetric in the shear layer
of the free jet region due to a Kelvin-Helmholtz instability (1) and perform
leapfrogging as well as vortex split-offs, as described in section section 4.2.2.
Vortices interact with the standoff shocks, as described in sections 5.1.1
and 5.1.2, in form of shock-vortex- or shock-vortex-shock-interactions and
produce strong pressure waves (2). Except for the special case where the
wave can leave the jet undisturbed, those waves usually interact again
with structures of the jet and propagate as feedback-waves upstream (3).
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5 The impinging tone

Figure 5.3: Feedback loop of a supersonic impinging jet at Re = 8000 (#3),
inspired by the nomenclature of Raman (1998), figure 1.

Reaching the nozzle lip, they trigger new instabilities at the shear layer (4).
The feedback loop is illustrated in figure 5.3. The DMD showed that it is
not only one wave that triggers another wave through a direct feedback.
In fact, a much more complex cycle (section 4.3.2) involving a periodical
formation of head vortices and a destruction of the supersonic zone close
to the stagnation point is responsible for the impinging tones.

5.2 Emanated sound

In order to obtain the sound spectra, the pressure was recorded in the near-
field on three different cylinders around the jet axis at distances of two,
three and four diameters. For the presented results, the position r/D = 4

and y/D = 5 was chosen. The upper wall has the advantage that the
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Figure 5.4: Sound pressure level (SPL) of different configurations of the
impinging jet. Reference pressure: pref = 2 · 10−5 Pa. : #3 (Re = 8000,
∆T = 0 K), : #2 (Re = 3300, ∆T = 0 K), : #1 (Re = 3300,
∆T = 80 K)

velocity is zero and no flow disturbs the acoustic measurements. The choice
of the radius does not influence the investigated tones (frequencies), since
the different distances only move the sound pressure level up and down.
For each of the 256 circumferential positions, the spectra was computed
using a fast Fourier transform (FFT). The spectra were then averaged.

Figure 5.4 shows the spectra for all three supersonic simulations. In
(a), it can be seen that the frequency of the impinging tone is nearly
independent of the Reynolds number in the range 3300 ≤ Re ≤ 8000.
Both simulations show a peek at Sr = 0.32 respectively Sr = 0.33. The
frequencies of the impinging tones are summarised in table 5.1. The high-
frequent noise increases with increasing Reynolds number. Taking a look
at the frequencies of the tonal noise, we note that they correspond with
the dynamic modes shown in section 4.3.2.

In figure 5.4b two impinging jets at Re = 3300 with different wall and
ambient temperatures are compared. The values of the cold respectively
hot case are Tw = T∞ = 293.15 K and Tw = T∞ = 373.15 K. The total
inlet temperature of the jet was kept constant at Tt,in = 293.15 K. Heating
the walls and therewith the ambient fluid leads to a shift of the impinging
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5 The impinging tone

Figure 5.5: Sound pressure level
(SPL) of impinging jet #1 (Re =
3300, ∆T = 80 K) for different time
spans. : mode A, : mode
B, entire time span. Reference
pressure: pref = 2 · 10−5 Pa.
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tone to higher lower frequencies. However, the profile is very similar to
the cold case. This is despite the existence of an additional mode in the
hot case, as described in section 4.3.2.

In order to compare the noise emitted by those modes, the spectra
were generated additionally for the specific time span of each mode.
The time spans are identical with the ones used for the dynamic mode
decompositions. Figure 5.5 shows these spectra. It can be seen that the
impinging tone is present in both cases. Furthermore, the frequency is
nearly identical Sr ≈ 0.35. The small discrepancy can be explained due
to the short time spans and the following coarse resolution of the Strouhal
number for deeper frequencies. The data points are marked around the
impinging tone. Comparing the first harmonics, we see a much smaller
discrepancy due to the higher resolution of the Strouhal number on a
logarithmic axis. In conclusion, the impinging tone can be either produced
by only one shock-vortex-interaction per cycle (mode A) or by multiple
interactions per cycle: shock-vortex-interactions and shock-vortex-shock-
interactions (mode B). The frequency of the cycle is equal for both cases
and is characterised by the formation of a head vortex, which is either one
vortex ring or multiple vortices merged due to the leapfrogging mechanism.

106



5.3 Comparison to a free jet

N◦ T∞ = Tw [K] Re tSPL [s] SrSPL SrDMD

#1 373.15 3300 0.250 0.353
#1 A 373.15 3300 0.046 0.352∗ 0.345
#1 B 373.15 3300 0.060 0.345∗ 0.340
#2 293.15 3300 0.250 0.330 0.319
#3 293.15 8000 0.120 0.320 0.324

Table 5.1: Dimensionless frequencies of the impinging tones as observed in the
spectra SrSPL and in the dynamic mode decomposition SrDMD
∗ computed using the half frequency of the first harmonic of the tone. This is
done, because the time span used for the spectrum tSPL is relatively short and
therefore the resolution of the impinging tone frequency is coarse.

5.3 Comparison to a free jet

Henderson (2002) proposed that tones generated by impinging jets with
5 ≤ h/D ≤ 10 may be related to screech noise. In section 5.1, we could
precisely identify the sound sources within the impinging jet. The strongest
pressure waves are emitted from interactions between vortices and standoff
shocks. Therefore, impinging tones could be clearly delimited from screech.
Nevertheless, in this section a brief comparison to free jet screech is given.
The supersonic impinging jet #1 with Re = 3300 and ∆T = 80 K is
compared to a free jet with equal parameters.

5.3.1 Impinging tone and screech

First, we want to compare the emanated sound. As mentioned in the
literature review (section 1.3), the source of screech noise is located
between the rear edge of the third and the fifth shock cell. The exact
position depends on the mode and therefore on the nozzle pressure ratio.
For the investigated NPR of 2.15, the free jet modes A and B are relevant.
According to Umeda & Ishii (2001), the corresponding cells are the third
respectively third or fourth. The supersonic impinging jets investigated in
this thesis have a nozzle-to-plate distance of five diameters and a nozzle
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Figure 5.6: Pressure (left) and axial velocity (right) profiles along the axis of
the free ( ) and the impinging jet ( ).

pressure ratio of 2.15. Consequently, more than five shock cells develop
and screech can occur. The screech frequency depends on the shock cell
spacing. Figure 5.6 shows pressure and axial velocity along the axis of
the free and the impinging jet. It can be seen that the first four shock
cells have the identical position in both cases. Therefore, we can conclude
that if screech occurred within the impinging jet, it would have exactly
the same frequency as free jet screech.

The fifth shock cell of the impinging jet is slightly displaced downstream
and the sixth cell coincides again. Furthermore, we observe that the
amplitude of the oscillation as well as the value around which the axial
velocity fluctuates is decreased. For distances from the nozzle larger than
three diameters, the shock cells of the impinging jet are stronger and
stronger influenced and disappear.

Figure 5.7 confronts the noise spectrum of the impinging jet with the
one of the free jet. The former features a discrete tone with a Strouhal
number of Sr = 0.353 accompanied by the first harmonic, whereas the
tone of the latter is at Sr = 0.375 and misses its harmonic. The frequency
of the impinging tone differs from the screech frequency. Furthermore,
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5.3 Comparison to a free jet

Figure 5.7: Sound pressure level
(SPL) of the impinging ( , χ =
90◦) and the free jet at different ob-
servation angles : χ = 90◦,

χ = 150◦. Reference pressure:
2 · 10−5 Pa.
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the sound pressure level of the impinging jet is more than 20 dB higher
compared to the free jet. Screech may appear additionally to impinging
tones, but impinging tones are different from screech. The two main sound
source mechanisms within the impinging jet, namely the (standoff) shock-
vortex and the (standoff) shock-vortex-(standoff) shock interaction, exceed
any possible screech and are of much higher relevance with respect to the
emission of noise.

5.3.2 Impinging jet and free jet modes

In figure 5.8, the corresponding three-dimensional modes to the tonal noise
components are shown. Contours of pressure are depicted. In the case of
the impinging jet (left, p = ±0.05p∞), the mode is toroidal, as described
in section 4.3.2. On the contrary, the observed screech mode of the free
jet (p = ±0.002p∞) with a frequency of Sr = 0.375 is a superposition of
two helical modes with Sr = 0.353 and Sr = 0.399.

This observation indicates that the correspondence of the fully-expanded
Mach number to modal structure might be distorted caused by a heated
environment. From figure 1.6, which is based on the measurements of
Panda et al. (1997), one would expect a toroidal mode appearing at
Ma∞ = 1.11. The detected mode however fits into the range of mode
B, which can be helical as well.
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5 The impinging tone

Figure 5.8: Pressure contours of the tree-dimensional dynamic modes
corresponding to the impinging tone (left, #1, Sr = 0.353, p = ±0.05p∞) and
to screech (right, free jet, Sr = 0.375, p = ±0.002p∞).

5.4 Zone of silence

As stated in the introduction, a hypothesis explaining the sound source
mechanism according to Sinibaldi et al. (2015) can be summarised
as follows: In the pre-silence region no standoff shock is present.
Vortices interact directly with the impinging plate (direct shear layer-plate
interaction). In the post-silence region the standoff shock disturbs the
vortex-wall-interaction. The tones are only related to strong oscillations
of the standoff shock. In the zone of silence, a smooth change between
those two behaviours is observed.

The presently described simulations with h/D = 5 and NPR = 2.15 are
located in the pre-silence zone. However, we clearly observe standoff shocks
in the numerical data. As described in the previous sections, the impinging
tones are not caused by direct vortex-plate interactions, but rather due
to shock-vortex- or shock-vortex-shock-interactions. The observation of
standoff shocks in the pre-silence zone is supported by the experiments of
Buchmann et al. (2012). In their figure 2, schlieren images are shown for
such a case (h/D = 4, NPR = 3.2) with present standoff shocks.
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5.4 Zone of silence

A hypothesis that explains the observations can be formulated as follows:
Standoff shocks are present in both, the pre- and the post-silence zone.
However, those shocks differ. In the pre-silence zone there is enough space
for the jet shock cell system to damp before the flow reaches the impinging
plate. Therefore, shocks can appear, disappear and move between the wall
and the shock cell system. Those moving shocks are difficult to detect in
statistical values like root-mean-squares of velocity fluctuations. However,
they can be observed using DNS or schlieren. In the post-silence zone, the
impinging plate is directly located in the strong shock cells of the free jet
and form a quasi-stationary system. Hence, they can be detected more
easily in statistical data.
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6 Heat transfer

Sections 6.1 and 6.2 are taken from Wilke & Sesterhenn (2016c). The
sections have been rearranged and slightly modified.

6.1 Modes and heat transfer

6.1.1 Nusselt number

In section 4.2.1, it is shown that the movement of a pair of vortices in the
vicinity of the impinging plate temporally enhances the local heat transfer.
Furthermore, in section 4.3.1 we saw that those toroidal vortices occur
periodically with a dimensionless frequency of Sr = 0.46 accompanied by
the first harmonic. In the following, we want to analyse the effect on the
time-averaged heat transfer.

In figure 6.1, the Nusselt number distribution of the simulations with
T∞ = Tw > Tt,in are compared. The influence of the Mach number
(left) is strongest in the vicinity of the stagnation point. The simulation
with the lowest compressibility (Ma = 0.41) has the global maximum
at approximately r/D = 0.3 and not at the axis. Nu increases with
increasing Ma at the stagnation point. This is an indication of stronger
fluctuations and consequently an increased contribution of the turbulent
heat flux which is quantified in section 6.1.2. This observation is consistent
with the remarks concerning the movement of high pressure within the
deflection zone, as described in section section 4.4.

Figure 6.1 further shows that Nu decreases with increasing radial
distance. Superimposed to this main trend, a shoulder exists at 1 .
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r/D . 2 where the slope is reduced. Depending on the parameters of
the impinging jet, the slope can also be positive in this area and form
a secondary maximum. This zone of higher time-averaged heat transfer
coincides with the one where temporally enhanced heat transfer occurs, as
described in section 4.2.1.

Buchlin (2011) investigated impinging jets with much higher Reynolds
numbers up to 60000 where the total inlet temperature is equal to the
ambient temperature Tt,in = T∞ 6= Tw. This configuration differs to the
one used within this section: Tt,in > T∞ = Tw. However, both results
have in common that a secondary maximum or shoulder of the Nusselt
number exists. Within this dissertation the distinctness of the Nu shoulder
decreases when Re increases from 3300 to 8000. Buchlin found that the
opposite is the case when the Reynolds number increases from 24000 to
60000.

Nusselt number correlations of the shape Nu ∼ Rem are in wide use.
According to Lee & Lee (1999), the exponents for plate distances of 4
respectively 6 diameters are: m = 0.53 and m = 0.58. For the presently
investigated simulations with h/D = 5 the exponent 0.555 was chosen.
The influence of the Reynolds number is illustrated in figure 6.1 (middle
and right). As expected, the heat transfer increases with Re. The scaling
fits away from the stagnation point r/D & 1. According to the simple
correlation, the heat transfer in the area around the stagnation point
is weaker for the higher Reynolds number of 8000 than in the case of
Re = 3300.

The exponent of Nu-Re-correlations is consistently reported by different
authors to be roughly 0.5 to 0.6. On the contrary, the prefactor strongly
depends on the cooling configuration, measurement position, method of
averaging and especially the shape of the nozzle (Janetzke (2010)). For
this reason Nusselt numbers predicted using such correlations differ by a
factor of up to 2.4 and can only give a rough estimate of impingement heat
transfer. Figure 6.2 shows correlations of different authors estimating the
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Figure 6.1: Nusselt number Nu for different impinging jet configurations. Left:
influence of the Mach number #4 (0.4), #5 (0.8), #1 (1.1), middle: influence of
the Reynolds number #5 (3300), #6 (8000), right: scaled Nu profiles. :
#1, : #4, : #5, : #6.

Figure 6.2: Stagnation point nusselt number
depending on Reynolds number. Adapted
from Janetzke (2010), experimental data from
different autors: : single jet, : array.
Own simulations: square: #4 (Ma = 0.41),
point: #5, #6 (Ma = 0.78), triangle: #1
(Ma = 1.11).
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stagnation point Nusselt number Nu0. The simulations carried out within
this dissertation are added. It can be observed that all four simulations
lay within the corridor described by experimental data. Further can be
seen that the common neglect of the Mach number leads to a variation in
Nu0 of 26% comparing simulations #4 (Ma = 0.41) and #1 (Ma = 1.11).

6.1.2 Turbulent heat flux

Looking at the turbulent heat flux, we can quantify the contribution of the
pair of vortex rings to the time averaged heat transfer. The first row of
figure 6.3 shows the turbulent heat flux in the wall-normal direction ρv′′e′′.
Close to the wall, ρv′′e′′ is positive in the area of the Nu shoulder (left
plot, r/D = 1.4). This means that the heat is transported in the positive
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y-direction (away from the impinging plate). After reaching a maximum
at y+ ≈ 15 to 20, the heat flux decreases and turns negative. This is due
to the fact that vortices present at the upper border of the wall jet entrain
hot fluid. The radial distribution at y+ = 15 (middle plot) proves that the
zone where the turbulent heat flux is strongly positive coincides with the
Nu shoulder. On the right and left of this zone, ρv′′e′′ is negative for the
lower Reynolds number. Further can be determined that, in this zone, the
influence of ρv′′e′′ is weaker at the higher Reynolds number. This agrees
with the fact that the Nu profile is smoother and that the vortex rings are
not generated in each cycle.

The second row of figure 6.3 shows the turbulent heat transfer in the
radial direction ρu′′r e

′′. It is of the same order of magnitude as the one in
the wall-normal direction. Close to the wall, ρv′′e′′ is positive at r/D = 1.4

for the case of Re = 3300. For the higher Reynolds number, this area of
downstream turbulent heat flux is almost not present. ρv′′e′′ is negative
at larger wall distances for both cases due to the direction of rotation of
the vortices in the shear layers.

Furthermore, the turbulent wall-normal turbulent heat flux can quantify
the influence of the fluctuations within the deflection zone. Looking at the
top right plot of figure A.19, we see that ρv′′e′′ positively contributes to
the cooling of the impinging plate at the axis for simulations with a high
Mach number (#5, #1). At low Mach number (#4), no such effect is
present. Due to the fact that results are available for multiple parameters
(Re,Ma,∆T ) and locations (y+ or y/D, r/D), not all of them can be
discussed within this dissertation. The graphs that give an insight into
the physical effects that are of interest in this dissertation are explained.
Further diagrams, which are not discussed, can be found in the appendix.
However, these additional plots are valuable for validation purposes.
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Figure 6.3: Influence of the Reynolds number (#5: 3300, #6: 8000) on the
turbulent heat flux in the wall-normal direction ρv′′e′′ (first row) and radial
direction ρu′′r e′′ (second row). Left: r/D = 1.4, middle: y+ = 15, right:
y+ = 40. : #5, : #6, : locations r/D = 1.4, y+ = 15 and
y+ = 40.

6.1.3 Pulsating impinging jets

Within the previous sections, we could clearly ascribe an additional heat
transfer to a pair of vortex rings that travels within the wall jet parallel
to the impinging plate, until a certain axial distance. In Janetzke (2010),
an experimental study was carried out in which a pulsation was applied
at the inlet of a line array with three nozzles. Three zones according to
the Strouhal number were observed. At low values of Sr , multiple ring
vortices were generated within one cycle of the actuator. In the range
0.27 . Sr . 0.5, exactly two ring vortices and for higher frequencies
until Sr = 0.95, a single one was produced. Within that study, the
heat transfer caused by the pulsating impinging jet was compared to a

117



6 Heat transfer

stationary reference case. The increase of the heat transfer effectivity
(equation (1.9)) is shown in figure 1.3. An increase up to 40% was found
for a Strouhal number of approximately 0.85 using the maximal amplitude
(on/off). Unfortunately, the test rig did not allow to investigate lower
frequencies (Sr . 0.75) with high amplitudes. Looking at figure 1.3, the
contours indicate that the optimal Strouhal number lays below 0.8. The
experiments were carried out at very low Mach number Ma < 0.1.

In this thesis, it is shown that the natural frequency of the vortex rings
is Sr = 0.46 respectively Sr = 0.54 for Ma = 0.78 and Ma = 0.41.
Following this trend, it is likely that a further decrease of the Mach number
further increases the Strouhal number of the dominant mode. This means
that a significant increase in heat transfer efficiency can be reached when
pulsating with the naturally occurring frequency. This is also in agreement
with the observation that two or more rings develop when the excitation
frequency is too low. For instance, pulsating with half of the natural
frequency produces two vortex rings.

In order to show that strong vortex rings can be generated when
pulsating with that specific frequency, another simulation (#7) was set-up.
First results are shown in Wilke & Sesterhenn (2017). The parameters
are chosen, so that the average dynamic viscosity and mass flow are
equal to simulation #4. An on/off-pulsation using a piecewise defined
function consisting of constant and sinus parts was applied in order to
approximate the opening and closing of a valve. Hence, the Reynolds
number periodically fluctuates between zero and 6600. In order to avoid
supersonic flow, the maximal nozzle pressure ratio for the pulsed impinging
jet was chosen equal to simulation #5 and #6.

In the first row of figure 6.4, the vortical structure, represented by
Q, of the non-pulsed (left) and the pulsed (right) impinging jet are
confronted. A strong increase of the strength of the vortices proves that
the eigenfrequency is a reasonable choice for the pulsation frequency. The
second row of this figure reveals that a comparison to the unforced case
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Figure 6.4: Confrontation of an unforced (#4, left) and forced (#7, right)
impinging jet. First row: QD/v2∞ in the range of -30 (black) to 30 (white).
Second row: average temperature from 293 K (black) to 373 K (white).

is not strait forward. The enhanced vortices entrain much more hot
surrounding fluid. Therefore, the temperature difference used to compute
the Nusselt number needs to be redefined. Within this thesis we pass
on a detailed analysis of this simulation and continue with the unforced
impinging jet.

6.2 Reynolds analogies and correlations

6.2.1 Mean field

For the development of turbulence models, relations between quantities
affiliated to heat transfer and to momentum transfer are of great interest.
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Reynolds discovered that the similarity of the momentum and energy
equation for incompressible laminar boundary layers can be used to
approximate the heat transfer with the use of the fluid friction, see Kakag
& Yenner (1995):

St =
Nu

RePr
≈ Cf

2
=

τw
ρv2
∞
. (6.1)

Equation (6.1) is the well known Reynolds analogy. The assumption made
is a Prandtl number equal to one. Cf and τw are the skin friction factor and
the wall shear stress. This equation was modified by Chilton & Colburn
(1934), based on experimental data:

StPr2/3 =
Nu

RePr1/3
≈ Cf

2
(6.2)

and considers Prandtl numbers different from one. Equation 6.2 is referred
to as the Chilton Colburn analogy. The first row of figure 6.5 shows
the skin friction coefficients of the conducted simulations. The left plot
indicates that Cf is almost independent of the Mach number in the range
0.41 ≤ Ma ≤ 1.11. As expected, an increasing Reynolds number leads to
a decreasing skin friction factor. However, the shape of the profile is not
affected. In the middle plot, two pairs of simulations are shown: subsonic
impinging jets (black solid line and black dashed line) and supersonic cases
(grey solid line and grey dashed line). The difference between the pairs
can be explained using the right plot. Comparing a jet with equal total
inlet temperature Tt,in, ambient T∞ and wall temperature Tw to another
one with T∞ = Tw > Tt,in, it can be seen that the skin friction factor
increases due to the heated environment. The total inlet temperature has
been kept constant.

The Reynolds (RA) and the Chilton Colburn analogies (CCA) are shown
in figure 6.6. As they are developed for wall-bounded flows, the analogies
are not suitable for the stagnation point region. In this region, the
relative error is between approximately -80% and -40%. At the position
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Figure 6.5: Skin friction factor Cf for different impinging jet configurations.
Left: influence of the Mach number #4 (0.41), #5 (0.78), #1 (1.11), middle:
influence of the Reynolds number #2,5 (3300), #3,6 (8000), right: influence of
the ambient and wall temperature #2 (∆T = 0 K), #1 (∆T = 80 K). :
#1, : #2, : #3, : #4, : #5, : #6.
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Figure 6.6: Heat transfer at the impinging plate (Nusselt number). Left:
simulation #5, right: #6, : DNS data, : Reynolds analogy (RA),

: Chilton Colburn analogy (CCA).

where Cf reaches its maximum, both analogies over-predict heat transfer:
≈ +30% (RA) respectively ≈ +65% (CCA). Farther away from the axis,
at r/D & 2, the analogies fit much better. The best agreement is found in
the case of the higher Reynolds number using the CCA. Here, the error is
between -9% and -4%.

Other relations involving mean temperature and mean velocity were
developed by Crocco (1932) and Busemann (1931), Walz (1962) and Zhang
et al. (2014). In the latter source, the derivation is explained in detail. All
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relations have the common form:

T

T δ
=

Tw

T δ
+
Tr − Tw

T δ

ur
urδ

+
T δ − Tr
T δ

(
ur
urδ

)2

, (6.3)

with

Tr = T δ + r
ur

2
δ

2cp
. (6.4)

The recovery factor r changes according to the authors. For r = 1, the
Crocco-Busemann relation (CBR) is derived. In the Walz’s equation or
modified Crocco-Busemann relation r = 0.88. The generalized Reynolds
analogy (GRA) proposed by Zhang et al. (2014) uses the general recovery
factor according to equation 6.5:

r =
(
Tw − T δ

) 2cp

ur
2
δ

− 2Pr
urδ

qw
τw

. (6.5)

Those three relations were tested for the impinging jet. The difference
between the Crocco-Busemann and Walz’s equation was found to be
negligible for the present simulations. For the reason of lucidity, the
approximation according to Walz is not shown. Figure 6.7 shows the
DNS data compared to the approximations of Crocco-Busemann and the
GRA. The mean temperature and mean wall-parallel (radial) velocity are
normalised by the values at the edge of the boundary layer (subscript
δ = δ99) as in Zhang et al. (2014). For both Reynolds numbers, the GRA
fits better than the CBR for radial positions close to the stagnation point
(r/D = 0.3 and r/D = 0.8). Farther away (r/D = 1.4 and r/D = 3.5), the
opposite can be observed. This is a consequence of different curvatures of
the DNS profiles and the fact that the scaled mean temperature is always
predicted higher according to the GRA. Further can be ascertained that
for Re = 8000 and r/D = 0.8, the GRA gives a precise prediction of
the temperature field. At this radial position, the radial velocity has its
maximum. Given that no de- and acceleration is present, the conditions
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Figure 6.7: Relation between mean temperature and mean velocity in the
wall jet. Left: simulation #5, right: #6. colors: : r/D = 0.3, :
r/D = 0.8, : r/D = 1.4, : r/D = 3.5. pattern: : DNS data,

: Crocco-Busemann relation (CBR) : generalized Reynolds analogy
(GRA).

are most similar to canonical compressible wall-bounded turbulent flows
(CCWTFs), for which the relation was developed. In CCWTFs, the flow
can be approximated as quasi-one-dimensional. Examples for such flows
are pipes and channels.

6.2.2 Fluctuations

Additional to the relation between the mean temperature and velocity,
Zhang et al. (2014) derived a general analogy for fluctuations:

T ′ − 1

Pr t

∂ T

∂ u
u′ + φ′ − (ρv)

′
φ′

(ρv)
′
u′
u′ = 0 , (6.6)

where φ′ is a residual temperature that need to be modelled. The proposed
model chosen by Zhang et al. (2014) for “convenience” is:

φ′ =
(ρv)

′
φ′

(ρv)
′
u′
u′ , (6.7)
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so that eq. 6.6 is reduced to:

T ′ =
1

Pr t

∂ T

∂ u
u′ . (6.8)

Zhang et al. (2014) describe further that equation 6.8 is not valid, but the
RMS of T ′ and u′ can be approximated in a similar way:

√
T ′2 ≈

∣∣∣∣ 1

Pr t

∂ T

∂ u

∣∣∣∣√u′2 or
√
T ′2 ≈ ± (ρv)

′
T ′

(ρv)
′
u′

√
u′2 . (6.9)

The plus sign applies to the flow region where wall-normal gradients of
mean temperature and velocity have the same sign. The minus sign
applies to the opposite situation. This approximation fails in case of
the impinging jet. In the boundary layer, the term (ρv)

′
u′ changes its

sign. The approximation delivers huge values of
√
T ′2 in the vicinity

of the zero crossing. A further approximation is suggested by Zhang
et al. (2014) that reduces the connection between temperature and velocity
fluctuations to Rv′u′ ≈ Rv′T ′ . Where R is the Bravais-Pearson correlation
coefficient. Also this approximation is invalid for the analysed impinging
jets. Figure 6.8 exemplary shows scatter plots of simulation #6 (Re =

8000,Ma ≈ 0.78) in the boundary layer at 13 ≤ y+ ≤ 17. In order to
improve the rendering, the data was classified into 250 segments for each
variable covering 95% of the velocity and 99% of all other fluctuations.
The database consists of 550 equally spaced snapshots (symmetry planes)
out of 175000 that have been computed after the flow reached its quasi-
stationary state. The corresponding correlation coefficients are given in
table 6.1 for the same y+ value and additional for 38 ≤ y+ ≤ 42. It can
be seen that neither the radial velocity nor the temperature is correlated
to the axial velocity. Despite both coefficients are close to zero, it cannot
be said that they are approximatively equal.
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Figure 6.8: Scatter plots of radial velocity (first row) and temperature (second
row) fluctuation against axial velocity fluctuation at 13 ≤ y+ ≤ 17 for different
radial positions (→: r/D = 0.3, 0.8, 1.4 and 3.5), simulation #6.

6.2.3 Additional correlations

The derivation of Reynolds analogies is closely related to the development
of models for compressible turbulence. For instance, a similar equation
to equation 6.9 was derived by Rubesin (1990). He assumed that
thermodynamic fluctuations behave in a polytropic manner:

p′

p
= n

ρ′

ρ
=

n

n− 1

ρT ′′

ρ T̃
. (6.10)

After assuming that T ′/ T ≈ T ′′/ T̃ and linearisation according to Lechner
et al. (2001) the relation

(n− 1)
ρ′

ρ
≈ ρT ′

ρ T
(6.11)

is derived. As suggested, with n = 0 it follows that the correlation
coefficient Rρ,T is minus one, Rρ,p ≈ 0 and that pressure fluctuations are
unimportant compared to density fluctuations. The correlation coefficient
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Figure 6.9: RMS values of pressure and density fluctuations for subsonic
impinging jets at different radial positions (→: r/D = 0.3, 0.8, 1.4 and 3.5).

: p′RMS/ p (#5), : p′RMS/ p (#6), : ρ′RMS/ ρ (#5), :
ρ′RMS/ ρ (#6)

are given in table 6.1, the scatterplots are shown in figure 6.10. Rρ,T is
strongly negative for all observation points. Far away from the stagnation
point (r/D = 3.5), the coefficient reaches a value of −0.94 and justifies the
approximations. The correlation between density and pressure is not zero,
as proposed. On the contrary, the coefficient is strongly positive (≈ 0.7)
close to the axis, but decreases with increasing r/D. Far away from the
stagnation point, the approximation Rρ,p ≈ 0 is valid. Similarly, pressure
fluctuations are not unimportant compared to density fluctuations in the
entire region where the flow is influenced by the impingement. Farther
downstream ρRMS/ ρ is approximately three times as large as pRMS/ p for
y+ & 5, as it can be seen in figure 6.9.

Lechner et al. (2001) assumed a linear relation between thermodynamic
fluctuations. Following the entropy definition s = cvln (p/ρκ), the
linearised gas law and the neglect of pressure fluctuations with respect
to density fluctuations, the approximation reads:

s′

cv
≈ −κρ

′

ρ
≈ κT

′

T
. (6.12)

Figure 6.10 shows scatter plots of (s′, ρ′), (s′, T ′) and (s′, p′). Approxim-
ation 6.12 is included in the plots (black solid line) and can be confirmed
for all radial positions.
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Figure 6.10: Scatter plots at 13 ≤ y+ ≤ 17 for different radial positions (→:
r/D = 0.3, 0.8, 1.4 and 3.5, simulation #6. Approximation 6.12 is included in
row 3 and 4 (black solid line).
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r/D
R y+ 0.3± 0.05 0.8± 0.05 1.4± 0.05 3.5± 0.05

Rv′u′r 15± 2 -0.04 0.01 0.04 0.08
Rv′T ′ 15± 2 -0.08 0.05 0.18 0.24
RT ′ρ′ 15± 2 -0.75 -0.80 -0.86 -0.94
Rρ′p′ 15± 2 0.70 0.58 0.41 0.14

Rv′u′r 40± 2 -0.11 -0.11 0.19 0.18
Rv′T ′ 40± 2 -0.02 0.11 -0.11 -0.24
RT ′ρ′ 40± 2 -0.79 -0.76 -0.75 -0.94
Rρ′p′ 40± 2 0.69 0.40 0.48 0.04

Table 6.1: Correlation coefficients for simulation #6.

6.3 Reynolds stresses

Modern high performance computers allow three-dimensional direct
numerical simulations of impinging jets with relevant Reynolds numbers
since recently. However, the computations are limited to academic cases
for the foreseeable future. For the improvement of turbulence models,
which are widely used for industrial applications, our DNS provide a
database for validation. An important term that rises among others in
the Reynolds-averaged Navier-Stokes equations (RANS) is the Reynolds
stress tensor ρu′′i u

′′
j , at which we look in this section. Since the mean

circumferential velocity component is zero, the terms ρu′′θv
′′ and ρu′′θu

′′
r

are not of relevance and therefore not shown. Figure 6.11 shows the four
main entries of the tensor. We analyse the flow close to the wall and at
the radial distance where the shoulder of the Nusselt number is present.
The profiles are taken normal to the wall at r/D = 1.4 (left column)
and parallel to the wall at y+ = 15 (middle column) and y+ = 40 (right
column).

At r/D = 1.4, the θθ-component (first row, left) increases until
y+ ≈ 10 and then stays almost constant within the boundary layer.

128



6.3 Reynolds stresses

0 0.005 0.01

y
+

0

10

20

30

40

50

ρu′′2
θ /(ρu2)∞

0 1 2 3 4

ρ
u
′′
2

θ
/
(ρ
u
2
) ∞

0

0.005

0.01

0.015

0.02

0.025

0.03

r/D
0 1 2 3 4

ρ
u
′′
2

θ
/
(ρ
u
2
) ∞

0

0.005

0.01

0.015

0.02

0.025

r/D

0 0.01 0.02 0.03 0.04

y
+

0

10

20

30

40

50

ρv′′2/(ρu2)∞

0 1 2 3 4

ρ
v
′′
2
/
(ρ
u
2
) ∞

0

0.002

0.004

0.006

0.008

0.01

0.012

r/D
0 1 2 3 4

ρ
v
′′
2
/
(ρ
u
2
) ∞

0

0.01

0.02

0.03

0.04

0.05

r/D

0 0.02 0.04 0.06

y
+

0

10

20

30

40

50

ρu′′2
r /(ρu2)∞

0 1 2 3 4

ρ
u
′′
2

r
/
(ρ
u
2
) ∞

0

0.01

0.02

0.03

0.04

0.05

0.06

r/D
0 1 2 3 4

ρ
u
′′
2

r
/
(ρ
u
2
) ∞

0

0.01

0.02

0.03

0.04

0.05

0.06

r/D

-0.01 0 0.01 0.02 0.03

y
+

0

10

20

30

40

50

ρv′′u′′

r/(ρu
2)∞

0 1 2 3 4

ρ
v
′′
u
′′ r
/
(ρ
u
2
) ∞

×10
-3

-2

0

2

4

6

8

10

r/D
0 1 2 3 4

ρ
v
′′
u
′′ r
/
(ρ
u
2
) ∞

0

0.01

0.02

0.03

r/D

Figure 6.11: Influence of the Reynolds number (#5: 3300, #6: 8000) on the
main Reynolds stress tensor components, ↓: ρu′′2θ , ρv′′2, ρu′′2r and ρv′′u′′r . Left:
r/D = 1.4, middle: y+ = 15, right: y+ = 40. : #5, : #6, :
locations r/D = 1.4, y+ = 15 and y+ = 40.
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6 Heat transfer

The maximum stress occurs around a half-diameter from the jet axis.
At low Reynolds number (3300) a second maximum is present around
r/D = 2 − 2.5. Another difference between the two simulations is that
the stress component is higher in the case of the higher Reynolds number
(8000). Additional to this area another area of high stress is present farther
away from the wall and the jet axis and will be discussed later.

The yy-component is stronger in the case of the low Reynolds number.
The strength of this entry of the tensor increases with the distance to the
wall, until it decreases again when approaching the upper end of the wall
jet. Since the wall jet’s centre and upper end are at higher y+-values in the
case of the higher Reynolds number, the maximum of ρv′′2 occurs also at
a higher dimensionless wall distance. The highest stress occurs at a radial
distance of around 1.5− 1.8 diameters.

The distribution of the rr-component features two maxima in the wall-
normal direction, whereby this characteristic is distinct stronger in the
case of the lower Reynolds number. The gap between the two maxima
increases with the distance from the jet axis. This shape is directly caused
by primary and secondary vortices that move parallel to the wall and
increase their diameter. In figure 6.12, the area of the highest ρu′′2r -value
is indicated by two dash-dotted lines. Those lines coincide with the path
of the primary vortex rings that have their origin in the shear layer of the
free jet and the counter-rotating secondary vortices that emerge due to
wall friction. The maximal fluctuations occur at r/D ≈ 1 where the two
vortices have the highest radial velocity.

The yr-component has a similar wall-normal distribution as the yy-
component. However, the radial location of the highest value is closer to
the jet axis at r/D ≈ 1 − 1.3. The simulation with the lower Reynolds
number features higher values of ρv′′u′′r and a stronger distinct maximum.

Figure 6.12 summarises the locations of high stresses. The impingement
of primary ring vortices causes strong stress in the θθ-direction. The
movement of the pair consisting of a primary and a secondary vortex causes
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6.4 Reynolds stress budgets

Figure 6.12: Instantaneous flow field of simulation #3: QD2/v2∞ in the range
−85 (white) to 85 (black). Left: location of primary (P) and secondary (S)
vortices. Right: locations of high Reynolds stress tensor components : θθ,

: yy, : rr, : yr

strong stress in the rr-direction. The components yr, yy and again θθ are
strongly influenced by the movement of the primary vortex and become
important in this order with increasing radial distance.

6.4 Reynolds stress budgets

Performing DNS, we are able to compute the terms in the balance
equations for the Reynolds stress tensor components according to
section 3.1 and appendix A.1.3.1. The budgets are presented for one
radial position r/D = 1.4 and at one constant dimensionless wall distance
y+ = 15.

The budget of ρu′′2θ in figure 6.13 shows significant differences between
the two different Reynolds numbers. At r/D = 1.4, the two dominant
terms in the boundary layer, but not at the wall are turbulent diffusion and
pressure strain in simulation #5 (Re = 3300). Both are of equal strength
and opposite sign. At the higher Reynolds number, the turbulent diffusion
is of less importance. As counterpart to the pressure strain, also production
and turbulent dissipation contribute to the loss of stress. At the wall, stress
is produced by viscous diffusion and lost by turbulent dissipation in both
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Figure 6.13: Budget of the θθ-component ρu′′2θ . Left column: #5 (Re = 3300),
right colomn: #6 (Re = 8000), first row: r/D = 1.4, second row: y+ = 15.

: IB, : C, : PR, : TD, : V D, : M , :
PS, : DS, : locations r/D = 1.4, y+ = 15.

cases. At y+ = 15, stress is mainly produced by pressure strain and lost
by convection (both cases). At Re = 3300, turbulent diffusion contributes
positively at r/D ≈ 0.6 and negatively at other radial distances. In
contrary, the turbulent diffusion is negative for Re = 8000 for all radial
distances.

The budget of ρv′′2 in figure 6.14 is dominated by turbulent diffusion
and pressure strain in both cases and all locations. Except for y+ &

35 at Re = 3300, TD contributes positively and PS negatively. At
this higher dimensionless wall distances, also convection and production
become more important and contribute with loss respectively gain. In the
radial direction, the two opponents feature maxima at r/D ≈ 0.25 and
r/D ≈ 0.8.

The rr-component of the Reynolds stress tensor has, compared to the

132



6.4 Reynolds stress budgets

-0.2 -0.1 0 0.1 0.2

y
+

0

10

20

30

40

50

60

Loss Gain

-0.05 0 0.05

y
+

0

10

20

30

40

50

60

Loss Gain

0 0.5 1 1.5 2

L
o
s
s

G
a
in

-0.2

-0.1

0

0.1

0.2

r/D
0 0.5 1 1.5 2

L
o
s
s

G
a
in

-0.3

-0.2

-0.1

0

0.1

0.2

r/D

Figure 6.14: Budget of ρv′′2. Legend: see figure 6.13.

other components, much more significant terms in its budget. Figure 6.15
shows that the dominant terms at the wall are viscous diffusion (gain)
and turbulent dissipation (loss). Farther away from the wall (y+ = 15)
pressure strain gains most stress. Its maximum is around r/D ≈ 0.8. At
this location, the stress is likewise decreased by turbulent diffusion.

The budget of ρv′′u′′r in figure 6.16 contains two main terms: pressure
strain and turbulent diffusion. The first one gains stress at and nearby
the wall and then turns negative at higher dimensionless wall distances.
In the boundary layer, the turbulent diffusion behaves opposite. At higher
values of y+, around 35, also production becomes more important in the
case of Re = 3300. The radial distance of r/D = 1.4 is located in a
local extremum of the two main terms. Another, stronger extremum with
opposite signs occurs at r/D ≈ 0.8.

The Reynolds stress budgets of simulations #1-4 are not discussed, but
they are given in appendix A.3.3 for the sake of completeness.

133



6 Heat transfer

-0.2 -0.1 0 0.1 0.2

y
+

0

10

20

30

40

50

60

Loss Gain

-0.2 -0.1 0 0.1 0.2

y
+

0

10

20

30

40

50

60

Loss Gain

0 0.5 1 1.5 2

L
o
s
s

G
a
in

-0.2

-0.1

0

0.1

0.2

r/D
0 0.5 1 1.5 2

L
o
s
s

G
a
in

-0.2

-0.1

0

0.1

0.2

r/D

Figure 6.15: Budget of ρu′′2r . Legend: see figure 6.13.
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Figure 6.16: Budget of ρv′′u′′r . Legend: see figure 6.13.
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7 Conclusion and Outlook

Within this dissertation, different direct numerical simulations of
impinging jets have been carried out. They differ in Mach and Reyn-
olds number as well as the temperature difference between the ambient
fluid and the total inlet temperature. All simulations have a nozzle-to-
plate distance of five diameters in common. Concerning the modes of the
impinging jet, it was found that:

• The impinging jet features a toroidal dominant mode that is not
affected by the Reynolds number in the range 3300 ≤ Re ≤ 8000.
The dimensionless frequency of that mode decreases with increasing
Mach number.

• In the subsonic case, this mode represents the primary and secondary
ring vortices that develop in the shear layer of the free respectively
wall jet.

• In the supersonic case, this mode represents either again the vortex
rings (Re = 3300) or the formation of a head vortex due to
leapfrogging (Re = 8000). The choice of the ambient temperature
has an influence of the mode. In case of a hot environment, the
impinging jet switches between two modes of the same frequency.
Both are toroidal, but one is more strictly axisymmetrical then the
other one. Standoff shocks periodically appear and disappear within
this cycle. They move between the impinging plate and the shock
cell system.
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The supersonic configurations fall within the pre-silence zone, since the
nozzle pressure ratio is relatively low (NPR = 2.15). With regard to
impinging tones, the following conclusions can be drawn:

• The existence of a feedback loop can be confirmed. Furthermore, it
could be shown that the interaction between vortices and standoff
shocks produce the sound waves via two different mechanisms.

• Type 1: shock-vortex-interaction. A vortex crashes asymmetrical
into a standoff shock and yanks it out of its stable position.
The shock accelerates and transforms into a sound wave that is
radiated. This mechanism can analogously be found in free jets and
is responsible for screech. The difference however is that not the
shock diamonds, but the standoff shock is involved.

• Type 2: shock-vortex-shock-interaction. The interaction between a
vortex and two standoff shocks leads to the creation of a subsonic
embedding within a supersonic flow. The collapse of this embedding
creates a strong spherical pressure wave.

For future work, it is worthwhile to have a closer look on the shock-
vortex-shock-interaction. Within this thesis, the origin of the tone could
be clarified. However, the question why the collapse of the subsonic
embedding leads to the production of such a powerful pressure wave
remains open.

The here considered simulations allow the movement of a standoff shock
between the impinging plate and the shock cell system. The increase of
the NPR at constant h/D leads to an increase of the shock cell spacing
of the free jet. At some point the standoff shock will not “have space” to
move. Based on the investigations found in the literature and the own
results of this thesis, it is possible that the change of the nature of the
standoff shock can be a reason for the existence of the zone of silence. In
future work, this hypothesis should be checked with DNS of higher NPR
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respectively lower h/D. Additional effects due to an oblique position or
curvature of the impinging plate are worth to be investigated as well.

The investigation of heat transfer and related quantities lead to the
following conclusions:

• The passing of a pair consisting of a primary and a secondary
vortex ring parallel to the wall causes a temporal local heat transfer
enhancement. This can be observed in the Nusselt number profile
and quantified by the wall-normal turbulent heat flux. The latter
transports hot fluid away from the wall at a radial distance from
the stagnation point of 1 . r/D . 2. This phenomenon is stronger
distinct at lower Reynolds numbers.

• The calculation of the dominant mode, which coincides with the
above described vortex rings, together with the experimental results
of Janetzke (2010) suggest that the enhancement of that mode is
the key to an increase in heat transfer efficiency. This is in contrary
to Janetzke own statement saying that shear layer instabilities are
meaningless for the choice of the pulsation. In this thesis, it could
be shown that the excitation with the eigenfrequency leads to the
development of one vortex ring per cycle that is much stronger than
in the unforced case.

• Reynolds analogies were tested for the subsonic compressible cases.
The Nusselt number approximations according to the Reynolds and
the Chilton Colburn analogies deliver useful values if the distance
to the jet axis is larger than one diameter. In the stagnation point
region, both relations deliver big errors and cannot be recommended.

• The generalized Reynolds analogy (GRA) was applied and compared
to the Crocco-Busemann relation. Both approximations relate the
mean temperature field to the mean velocity field with inaccurate
results. Only the GRA can predict the temperature field with
good precision, in the area where the radial acceleration is zero
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(r/D = 0.8). Since the wall jet exhibits in most of the domain
different flow conditions that do not meet the assumed quasi-one-
dimensional flow (canonical compressible wall-bounded turbulent
flows), the relation cannot be applied reliably to the impinging jet.

• The relation between the fluctuating temperature and velocity
according to the GRA is not applicable at all. The reason for this lies
in the change of sign of the term (ρv)

′
u′, which creates singularities

in the predicted temperature fluctuations.

• The linear relation between thermodynamic fluctuations of entropy,
density and temperature as suggested by Lechner et al. (2001) can
be confirmed for the entire wall jet.

• The main components of the Reynolds stress tensor could be
conciliated with the primary and secondary vortex rings of the wall
jet. The budget terms are given in order to allow the improvement
of RANS and LES models.

In further investigations, the effect of the pulsation on the time-averaged
heat transfer should be analysed. Within this thesis, it was found out that
the increased vortex rings due to pulsation entrain much more surrounding
fluid and lead to a decrease of the temperature difference used for the
definition of the Nusselt number. Either a redefinition of Nu needs to
be applied or the configuration should be adapted so that the ambient
temperature is equal to the total inlet temperature and only the plate
is heated. The pulsation with a too low frequency, compared to the
eigenfrequency, leads to the development of multiple vortex rings per cycle
(Janetzke (2010)). In addition, the opening and closing of a valve is far
away from a harmonic excitation. It is an important aspect to investigate
the influence of the excitation function on the development of the vortex
rings. The investigation of the influence of cross flow and curvature are
as well important for technical applications. Given so many vital aspects
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that still need to be researched, it is hoped that this study will stimulate
further investigations in this field.
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A Appendix

A.1 Methods for flow analysis

A.1.1 Calculation rules for averages

α′ = 0 (A.1a)

α′ = α− α = α− α = 0 (A.1b)

α′′ gen. 6= 0 (A.2a)

α′′ = α− α̃ = α− α̃ = α− ρα

ρ
gen. 6= 0 (A.2b)

ρα′′ = 0 (A.3a)

141



A Appendix

α′′ = α− ã

ρα′′ = ρ (α− α̃)

= ρα− ρ α̃

= ρα− ρ
ρα

ρ︸︷︷︸
= const.

= ρα− ρ
ρα

ρ
= 0 (A.3b)

αβ = αβ + α′β′ (A.4a)

αβ = (α+ α′)
(
β + β′

)
= αβ + αβ′ + α′ β + α′β′

= αβ + α�
�7

0

β′ +���
0

α′ β + α′β′ = αβ + α′β′ (A.4b)

ραβ = ρ α̃ β̃ + ρα′′β′′ (A.5a)

ραβ = ρ ( α̃+ α′′)
(
β̃ + β′′

)
= ρ α̃ β̃ + ρα′′β′′ + α̃�

��>
0

ρβ′′ + β̃��
�*0

ρα′′

(A.5b)

α′′ = α− α̃ (A.6a)
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α′′ = α− α̃

α′′ = α− α̃ = α− α̃ (A.6b)

∂

∂t
(ραβ) = β

∂

∂t
(ρα) + α

∂

∂t
(ρβ)− αβ ∂

∂t
(ρ) (A.7a)

∂

∂t
(ραβ) = β

∂

∂t
(ρα) + ρα

∂

∂t
(β)

α
∂

∂t
(ρβ) = ρα

∂

∂t
(β) + αβ

∂

∂t
(ρ) (A.7b)
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A.1.2 Cylindrical coordinates

A.1.2.1 Partial derivatives

∂α

∂θ
= −r sin (θ)

∂α

∂x
+ r cos (θ)

∂α

∂z

∂α

∂r
= cos (θ)

∂α

∂x
+ sin (θ)

∂α

∂z
(A.8)

A.1.2.2 Gradient

gradα =

{
1

r

∂α

∂θ
,
∂α

∂y
,
∂α

∂r

}
(A.9)

(
gradα

)
θθ

=
1

r

∂αθ
∂θ

+
αr
r(

gradα
)
yθ

=
1

r

∂αy
∂θ(

gradα
)
rθ

=
1

r

∂αr
∂θ
− αθ

r
(A.10)

The other six components comply with the respective ones of the Cartesian
coordinates.

A.1.2.3 Divergence

In this section, the divergence of tensors of order one and two are taken
from Schade & Neemann (2006). The divergence of tensors of third order
are derived, following the description of Schade & Neemann (2006).

div a =
∂ar
∂r

+
1

r

∂aθ
∂θ

+
1

r
ar +

∂ay
∂y

(A.11)
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(
div a

)
r

=
∂arr
∂r

+
1

r

∂arθ
∂θ

+
∂ary
∂y

+
arr − aθθ

r(
div a

)
θ

=
∂aθr
∂r

+
1

r

∂aθθ
∂θ

+
∂aθy
∂y

+
arθ + aθr

r(
div a

)
y

=
∂ayr
∂r

+
1

r

∂ayθ
∂θ

+
∂ayy
∂y

+
ayr
r

(A.12)

(
div a

)
rr

=
∂arrr
∂r

+
1

r

∂arrθ
∂θ

+
∂arry
∂y

+
arrr − aθrθ − arθθ

r(
div a

)
rθ

=
∂arθr
∂r

+
1

r

∂arθθ
∂θ

+
∂arθy
∂y

+
arrθ + arθr − aθθθ

r(
div a

)
ry

=
∂aryr
∂r

+
1

r

∂aryθ
∂θ

+
∂aryy
∂y

+
aryr − aθyθ

r(
div a

)
θr

=
∂aθrr
∂r

+
1

r

∂aθrθ
∂θ

+
∂aθry
∂y

+
arrθ + aθrr − aθθθ

r(
div a

)
θθ

=
∂aθθr
∂r

+
1

r

∂aθθθ
∂θ

+
∂aθθy
∂y

+
arθθ + aθrθ + aθθr

r(
div a

)
θy

=
∂aθyr
∂r

+
1

r

∂aθyθ
∂θ

+
∂aθyy
∂y

+
aθyr + aryθ

r(
div a

)
yr

=
∂ayrr
∂r

+
1

r

∂ayrθ
∂θ

+
∂ayry
∂y

+
ayrr − ayθθ

r(
div a

)
yθ

=
∂ayθr
∂r

+
1

r

∂ayθθ
∂θ

+
∂ayθy
∂y

+
ayrθ + ayθr

r(
div a

)
yy

=
∂ayyr
∂r

+
1

r

∂ayyθ
∂θ

+
∂ayyy
∂y

+
ayyr
r

(A.13)
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A.1.3 Transport equations in cylindrical coordinates

All terms involving a derivative in circumferential direction are omitted,
since they are zero due to the circumferential average.

A.1.3.1 Reynolds stresses

Convection

Cθθ = −
[

1

r

∂

∂θ

(
ũθ ρ ũ′′θu

′′
θ

)
+

∂

∂y

(
ṽ ρ ũ′′θu

′′
θ

)
+

∂

∂r

(
ũr ρ ũ′′θu

′′
θ

)
+
ρ

r

(
2 ũ′′ru

′′
θ ũθ + ũ′′θu

′′
θ ũr

)]

Cθy = −
[

1

r

∂

∂θ

(
ũθ ρ ũ′′θv

′′
)

+
∂

∂y

(
ṽ ρ ũ′′θv

′′
)

+
∂

∂r

(
ũr ρ ũ′′θv

′′
)

+
ρ

r

(
ũ′′θv

′′ ũr + ũ′′rv
′′ ũθ

)]

Cθr = −
[

1

r

∂

∂θ

(
ũθ ρ ũ′′θu

′′
r

)
+

∂

∂y

(
ṽ ρ ũ′′θu

′′
r

)
+

∂

∂r

(
ũr ρ ũ′′θu

′′
r

)
+
ρ

r

(
ũ′′ru

′′
r ũθ + ũ′′θu

′′
r ũr − ũ′′θu

′′
θ ũθ

)]

Cyy = −
[

1

r

∂

∂θ

(
ũθ ρ ṽ′′v′′

)
+

∂

∂y

(
ṽ ρ ṽ′′v′′

)
+

∂

∂r

(
ũr ρ ṽ′′v′′

)
+
ρ

r
ṽ′′v′′ ũr

]

Cyr = −
[

1

r

∂

∂θ

(
ũθ ρ ṽ′′u′′r

)
+

∂

∂y

(
ṽ ρ ṽ′′u′′r

)
+

∂

∂r

(
ũr ρ ṽ′′u′′r

)
+
ρ

r

(
ṽ′′u′′r ũr − ṽ′′u′′θ ũθ

)]

Crr = −
[

1

r

∂

∂θ

(
ũθ ρ ũ′′ru

′′
r

)
+

∂

∂y

(
ṽ ρ ũ′′ru

′′
r

)
+

∂

∂r

(
ũr ρ ũ′′ru

′′
r

)
+
ρ

r

(
ũ′′ru

′′
r ũr − 2 ũ′′θu

′′
r ũθ

)]
(A.14)
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Production

PRθθ = −2 ρ

[
ũ′′θu

′′
θ

(
1

r

∂ ũθ
∂θ

+
ũr
r

)
+ ũ′′θv

′′ ∂ ũθ
∂y

+ ũ′′θu
′′
r

∂ ũθ
∂r

]

PRθy = − ρ
[
ũ′′θu

′′
θ

1

r

∂ ṽ

∂θ
+ ũ′′θv

′′ ∂ ṽ

∂y
+ ũ′′θu

′′
r

∂ ṽ

∂r
+ ṽ′′uθ′′

(
1

r

∂ ũθ
∂θ

+
ũr
r

)

+ ṽ′′v′′
∂ ũθ
∂y

+ ṽ′′u′′r
∂ ũθ
∂r

]

PRθr = − ρ
[
ũ′′θu

′′
θ

(
1

r

∂ ũr
∂θ
− ũθ

r

)
+ ũ′′θv

′′ ∂ ũr
∂y

+ ũ′′θu
′′
r

∂ ũr
∂r

+ ũ′′ru
′′
θ

(
1

r

∂ ũθ
∂θ

+
ũr
r

)
+ ũ′′rv

′′ ∂ ũθ
∂y

+ ũ′′ru
′′
r

∂ ũθ
∂r

]

PRyy = −2 ρ

[
ṽ′′u′′θ

1

r

∂ ṽ

∂θ
+ ṽ′′v′′

∂ ṽ

∂y
+ ṽ′′u′′r

∂ ṽ

∂r

]

PRyr = − ρ
[
ṽ′′u′′θ

(
1

r

∂ ũr
∂θ
− ũθ

r

)
+ ṽ′′v′′

∂ ũr
∂y

+ ṽ′′u′′r
∂ ũr
∂r

+ ũ′′ru
′′
θ

1

r

∂ ṽ

∂θ

+ ũ′′rv
′′ ∂ ṽ

∂y
+ ũ′′ru

′′
θ

∂ ṽ

∂r

]

PRrr = −2 ρ

[
ũ′′ru

′′
θ

(
1

r

∂ ũr
∂θ
− ũθ

r

)
+ ũ′′rv

′′ ∂ ũr
∂y

+ ũ′′ru
′′
r

∂ ũr
∂r

]
(A.15)

Turbulent Diffusion

TDθθ =
∂ ρu′′θu

′′
θu
′′
r

∂r
+

1

r

∂ ρu′′θu
′′
θu
′′
θ

∂θ
+
∂ ρu′′θu

′′
θv
′′

∂y
+ 3

ρu′′ru
′′
θu
′′
θ

r

+ 2

(
1

r

∂ p′u′θ
∂θ

+
p′u′r
r

)

TDθy =
∂ ρu′′θv

′′u′′r
∂r

+
1

r

∂ ρu′′θv
′′u′′θ

∂θ
+
∂ ρu′′θv

′′v′′

∂y
+

2 ρu′′θv
′′u′′r

r
+

1

r

∂ p′v′

∂θ

147



A Appendix

+
∂ p′u′θ
∂y

TDθr =
∂ ρu′′θu

′′
ru
′′
r

∂r
+

1

r

∂ ρu′′θu
′′
ru
′′
θ

∂θ
+
∂ ρu′′θu

′′
rv
′′

∂y
+

2 ρu′′θu
′′
ru
′′
r − ρu′′θu

′′
θu
′′
θ

r

+
1

r

∂ p′u′r
∂θ

−
p′u′θ
r

+
∂ p′u′θ
∂r

TDyy =
∂ ρv′′v′′u′′r

∂r
+

1

r

∂ ρv′′v′′u′′θ
∂θ

+
∂ ρv′′v′′v′′

∂y
+
ρv′′v′′u′′r

r
+ 2

∂ p′v′

∂y

TDyr =
∂ ρv′′u′′ru

′′
r

∂r
+

1

r

∂ ρv′′u′′ru
′′
θ

∂θ
+
∂ ρv′′u′′rv

′′

∂y
+
ρv′′u′′ru

′′
r − ρv′′u′′θu

′′
θ

r

+
∂ p′v′

∂r
+
∂ p′u′r
∂y

TDrr =
∂ ρu′′ru

′′
ru
′′
r

∂r
+

1

r

∂ ρu′′ru
′′
ru
′′
θ

∂θ
+
∂ ρu′′ru

′′
rv
′′

∂y
+
ρu′′ru

′′
ru
′′
r − 2 ρu′′ru

′′
θu
′′
θ

r

+ 2
∂ p′u′r
∂r

(A.16)

Viscous Diffusion

V Dθθ = 2

(
∂ u′θτ

′
θr

∂r
+

1

r

∂ u′θτ
′
θθ

∂θ
+
∂ u′θτ

′
θy

∂y
+
u′rτ
′
θθ + 2u′θτ

′
rθ

r

)

V Dθy =
∂ u′θτ

′
yr

∂r
+

1

r

∂ u′θτ
′
yθ

∂θ
+
∂ u′θτ

′
yy

∂y
+
u′θτ
′
yr + u′rτ

′
yθ

r
+
∂ v′τ ′θr
∂r

+
1

r

∂ v′τ ′θθ
∂θ

+
∂ v′τ ′θy
∂y

+
2 v′τ ′rθ
r

V Dθr =
∂ u′θτ

′
rr

∂r
+

1

r

∂ u′θτ
′
rθ

∂θ
+
∂ u′θτ

′
ry

∂y
+

3u′rτ
′
rθ + u′θτ

′
rr − 2u′θτ

′
θθ

r

+
∂ u′rτ

′
θr

∂r
+

1

r

∂ u′rτ
′
θθ

∂θ
+
∂ u′rτ

′
θy

∂y
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V Dyy = 2

(
∂ v′τ ′yr
∂r

+
1

r

∂ v′τ ′yθ
∂θ

+
∂ v′τ ′yy
∂y

+
v′τ ′yr
r

)

V Dyr =
∂ v′τ ′rr
∂r

+
1

r

∂ v′τ ′rθ
∂θ

+
∂ v′τ ′ry
∂y

+
v′τ ′rr − v′τ ′θθ

r
+
∂ u′rτ

′
yr

∂r

+
1

r

∂ u′rτ
′
yθ

∂θ
+
∂ u′rτ

′
yy

∂y
+
u′rτ
′
yr − u′θτ

′
yθ

r

V Drr = 2

(
∂ u′rτ

′
rr

∂r
+

1

r

∂ u′rτ
′
rθ

∂θ
+
∂ u′rτ

′
ry

∂y
+
u′rτ
′
rr − u′θτ

′
rθ − u′rτ

′
θθ

r

)
(A.17)

Mass-Flux Variation

Mθθ = 2u′′θ

(
∂ τθr
∂r

+
1

r

∂ τθθ
∂θ

+
∂ τθy
∂y

+
τrθ + τθr

r
− 1

r

∂ p

∂θ

)

Mθy = u′′θ

(
∂ τyr
∂r

+
1

r

∂ τyθ
∂θ

+
∂ τyy
∂y

+
τyr
r
− ∂ p

∂y

)

+ v′′
(
∂ τθr
∂r

+
1

r

∂ τθθ
∂θ

+
∂ τθy
∂y

+
τrθ + τθr

r
− 1

r

∂ p

∂θ

)

Mθr = u′′θ

(
∂ τrr
∂r

+
1

r

∂ τrθ
∂θ

+
∂ τry
∂y

+
τrr − τθθ

r
− ∂ p

∂r

)

+ u′′r

(
∂ τθr
∂r

+
1

r

∂ τθθ
∂θ

+
∂ τθy
∂y

+
τrθ + τθr

r
− 1

r

∂ p

∂θ

)

Myy = 2 v′′
(
∂ τyr
∂r

+
1

r

∂ τyθ
∂θ

+
∂ τyy
∂y

+
τyr
r
− ∂ p

∂y

)

Myr = v′′
(
∂ τrr
∂r

+
1

r

∂ τrθ
∂θ

+
∂ τry
∂y

+
τrr − τθθ

r
− ∂ p

∂r

)

+ u′′r

(
∂ τyr
∂r

+
1

r

∂ τyθ
∂θ

+
∂ τyy
∂y

+
τyr
r
− ∂ p

∂y

)

Mrr = 2u′′r

(
∂ τrr
∂r

+
1

r

∂ τrθ
∂θ

+
∂ τry
∂y

+
τrr − τθθ

r
− ∂ p

∂r

)
(A.18)
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Pressure Strain

PSθθ =
2

r
p′
(
∂u′θ
∂θ

+ u′r

)

PSθr = p′
(
∂u′θ
∂r

+
1

r

∂u′r
∂θ
−
u′θ
r

)

PSθy = p′
(
∂u′θ
∂y

+
1

r

∂v′

∂θ

)

PSrr = 2 p′
∂u′r
∂r

PSry = p′
(
∂u′r
∂y

+
∂v′

∂r

)

PSyy = 2 p′
∂v′

∂y
(A.19)

Turbulent Dissipation

DSθθ = −2

[
τ ′θθ

(
1

r

∂u′θ
∂θ

+
u′r
r

)
+ τ ′θy

∂u′θ
∂y

+ τ ′θr
∂u′θ
∂r

]

DSθr = −

[
τ ′θθ

(
1

r

∂u′r
∂θ
−
u′θ
r

)
+ τ ′θy

∂u′r
∂y

+ τ ′θr
∂u′r
∂r

+ τ ′rθ

(
1

r

∂u′θ
∂θ

+
u′r
r

)
+ τ ′ry

∂u′θ
∂y

+ τ ′rr
∂u′θ
∂r

]

DSθy = −
[
τ ′θθ

1

r

∂v′

∂θ
+ τ ′θy

∂v′

∂y
+ τ ′θr

∂v′

∂r

+ τ ′yθ

(
1

r

∂u′θ
∂θ

+
u′r
r

)
+ τ ′yy

∂u′θ
∂y

+ τ ′yr
∂u′θ
∂r

]

DSyy = −2

[
τ ′yθ

1

r

∂v′

∂θ
+ τ ′yy

∂v′

∂y
+ τ ′yr

∂v′

∂r

]
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DSyr = −

[
τ ′yθ

(
1

r

∂u′r
∂θ
−
u′θ
r

)
+ τ ′yy

∂u′r
∂y

+ τ ′yr
∂u′r
∂r

+ τ ′rθ
1

r

∂v′

∂θ
+ τ ′ry

∂v′

∂y
+ τ ′rr

∂v′

∂r

]

DSrr = −2

[
τ ′rθ

(
1

r

∂u′r
∂θ
−
u′θ
r

)
+ τ ′ry

∂u′r
∂y

+ τ ′rr
∂u′r
∂r

]
(A.20)

A.1.3.2 Turbulent heat flux

Since the aggregation of the terms is not unique, the components are given
separately in some cases (C,PR,DS).

Convection
Ci = −C∗i − Ji (A.21)

C∗θ =
ũθ
r

(
∂ ρe′′u′′θ
∂θ

+ ρe′′u′′r

)
+ ṽ

∂ ρe′′u′′θ
∂y

+ ũr
∂ ρe′′u′′θ
∂r

C∗y =
ũθ
r

∂ ρe′′v′′

∂θ
+ ṽ

∂ ρe′′v′′

∂y
+ ũr

∂ ρe′′v′′

∂r

C∗r =
ũθ
r

(
∂ ρe′′u′′r
∂θ

− ρe′′u′′θ

)
+ ṽ

∂ ρe′′u′′r
∂y

+ ũr
∂ ρe′′u′′r
∂r

(A.22)

Jθ = ρe′′u′′θ

(
∂ ũr
∂r

+
1

r

∂ ũθ
∂θ

+
∂ ṽ

∂y
+
ũr
r

)

Jy = ρe′′v′′
(
∂ ũr
∂r

+
1

r

∂ ũθ
∂θ

+
∂ ṽ

∂y
+
ũr
r

)

Jr = ρe′′u′′r

(
∂ ũr
∂r

+
1

r

∂ ũθ
∂θ

+
∂ ṽ

∂y
+
ũr
r

)
(A.23)
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Turbulent diffusion

TDθ = −

[
∂ ρe′′u′′θu

′′
r

∂r
+

1

r

∂ ρe′′u′′θu
′′
θ

∂θ
+
∂ ρe′′u′′θv

′′

∂y
+ 2

ρe′′u′′ru
′′
θ

r

]

TDy = −

[
∂ ρe′′v′′u′′r

∂r
+

1

r

∂ ρe′′v′′u′′θ
∂θ

+
∂ ρe′′v′′v′′

∂y
+
ρe′′v′′u′′r

r

]

TDr = −

[
∂ ρe′′u′′ru

′′
r

∂r
+

1

r

∂ ρe′′u′′ru
′′
θ

∂θ
+
∂ ρe′′u′′rv

′′

∂y
+
ρe′′u′′ru

′′
r − ρe′′u′′θu

′′
θ

r

]
(A.24)

Production
PRi = −PRe,i − PRu,i − Ei +Gi (A.25)

PRe,θ =
ρu′′θu

′′
θ

r

∂ ẽ

∂θ
+ ρu′′θv

′′ ∂ ẽ

∂y
+ ρu′′θu

′′
r

∂ ẽ

∂r

PRe,y =
ρv′′u′′θ
r

∂ ẽ

∂θ
+ ρv′′v′′

∂ ẽ

∂y
+ ρv′′u′′r

∂ ẽ

∂r

PRe,r =
ρu′′ru

′′
θ

r

∂ ẽ

∂θ
+ ρu′′rv

′′ ∂ ẽ

∂y
+ ρu′′ru

′′
r

∂ ẽ

∂r
(A.26)

PRu,θ =
ρe′′u′′θ
r

(
∂ ũθ
∂θ

+ ũr

)
+ ρe′′v′′

∂ ũθ
∂y

+ ρe′′u′′r
∂ ũθ
∂r

PRu,y =
ρe′′u′′θ
r

∂ ṽ

∂θ
+ ρe′′v′′

∂ ṽ

∂y
+ ρe′′u′′r

∂ ṽ

∂r

PRu,r =
ρe′′u′′θ
r

(
∂ ũr
∂θ
− ũθ

)
+ ρe′′v′′

∂ ũr
∂y

+ ρe′′u′′r
∂ ũr
∂r

(A.27)
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Eθ = pu′′θ

(
1

r

∂ ũθ
∂θ

+
∂ ũr
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ũr
r

)

Er = pu′′r

(
1

r

∂ ũθ
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Gr = u′′rG0 (A.29)

Turbulent dissipation

DSi = −Ai +Di +Hi (A.30)
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Term containing pressure gradient

PGθ = −1

r
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∂θ

PGy = − e′′ ∂p
∂y

PGr = − e′′ ∂p
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(A.34)
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Term containing fluctuating dilatation
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A.1.4 Convergence
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Figure A.1: Convergence of the averaging for simulation #3. εr and εm are the
RMS and the maximum value of the residuum within the domain, normalised
with the respective value of the first time step of the averaging. Left: εr of
Reynolds stress tensor and turbulent heat flux, middle: corresponding εm, right:
εr (black) and εm (red) of τ ′ijs′ij .
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Figure A.2: Convergence of the circumferential velocity uθ for simulation #5.
Black line: maximum within the domain, red line: RMS. The vertical gray line
indicates the start of averaging step two.
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A.2 Description of the flow

A.2.1 Modes

A.2.1.1 Simulation #4

Figure A.3: Eigenvalue spectrum
of simulation #4 computed using a
DMD. Red marked points correspond
to dominant modes.
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Figure A.4: Temperature field of the dominant dynamic modes (#4) left:
Sr = 0.54 (±30 K), right: Sr = 1.08 (±20 K).
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Figure A.5: Q (±3.1v2∞D) of the dominant dynamic modes (#4) left: Sr =
0.54, right: Sr = 1.08.

Figure A.6: Confrontation of original flow field (left) and reconstruction using
the mean field and the two dominant modes (right), #4.
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A.2.1.2 Simulation #5

Two DMD of simulation #5 are confronted within figures A.8 to A.11. The
first one uses each grid point of the plane z/D = 6 which is resolved with
512 × 512 points and the second one uses each fourth grid point. Since
the area r/D > 4 are cut, the resulting resolution is 392×512 respectively
103× 128.
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Figure A.7: Convergence of the residual vector r (#5). Black: rRMS, gray:
rmax normalised with the values of N = 2. Left: 392 × 512 grid points, right:
103× 128.
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Figure A.8: Eigenvalue spectrum of simulation #5 computed using a DMD.
Left: 392× 512 grid points, right: 128× 103. Red marked points correspond to
dominant modes.
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Figure A.9: Temperature field (±30 K) of the dominant dynamic mode
Sr = 0.46 of simulation #5. Left: 392× 512 grid points, right: 103× 128.

Figure A.10: Temperature field (±20 K) of the dominant dynamic mode
Sr = 0.92 of simulation #5. Left: 392× 512 grid points, right: 103× 128.

Figure A.11: Reconstruction using the mean field and the two dominant modes.
Left: 392× 512 grid points, right: 103× 128, #5.
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Figure A.12: Pressure contours of the tree-dimensional dominant dynamic
modes of simulation #5 performed on 103×128×103 grid points. Left: Sr = 0.46
(±0.01p∞), right: Sr = 0.92 (±0.005p∞) coloured with temperature (±50 K
respectively ±30 K).
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A.2.1.3 Simulation #6

Figure A.13: Q (±3.1v2∞D) of the dominant dynamic modes (#6) left: Sr =
0.46, right: Sr = 0.92.

Figure A.14: Q contours (±3.1v2∞D) of the tree-dimensional dominant dynamic
modes (#6) left: Sr = 0.46, right: Sr = 0.92 coloured with pressure (±0.08p∞).
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Figure A.15: Pressure contours of the tree-dimensional dominant dynamic
modes (#6) left: Sr = 0.46 (±0.01p∞), right: Sr = 0.92 (±0.005p∞) coloured
with temperature (±50 K respectively ±30 K).
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A.2.1.4 Schlieren set-up

Figure A.16: Experimental set-up for schlieren visualisation within an anechoic
room.
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A.2.2 Deflection zone and standoff shock

Figure A.17: v′RMS/v∞ from 0 (blue) to 0.3 (red). First row, →: simulation
#1, #2, #3. Second row, →: simulation #4, #5, #6.

Figure A.18: p′RMS/ (pt,in − p∞) from 0 (blue) to 0.3 (red). First row, →:
simulation #1, #2, #3. Second row, →: simulation #4, #5, #6.
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A.3 Heat transfer

A.3.1 Turbulent heat flux
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Figure A.19: Influence of the Mach number (#4: 0.41, #5: 0.78, #1: 1.11)
on the turbulent heat flux in the wall-normal direction ρv′′e′′ (first row) and
radial direction ρu′′r e′′ (second row). Left: r/D = 1.4, middle: y+ = 15, right:
y+ = 40. : #1, : #4, : #5, : locations r/D = 1.4,
y+ = 15 and y+ = 40.
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A.3.2 Fluctuations
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Figure A.20: Scatter plots of radial velocity (first row) and temperature (second
row) fluctuation against axial velocity fluctuation at 13 ≤ y+ ≤ 17 for different
radial positions (→: r/D = 0.3, 0.8, 1.4 and 3.5), simulation #5.
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Figure A.21: Scatter plots at 13 ≤ y+ ≤ 17 for different radial positions (→:
r/D = 0.3, 0.8, 1.4 and 3.5, simulation #5. Approximation 6.12 is included in
row 3 and 4 (black solid line).

168



A.3 Heat transfer

A.3.3 Reynolds stress budgets
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Figure A.22: RST budget of simulation #1. Legend: see figure A.23
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Figure A.23: RST budget of simulation #2. ↓: ρu′′2θ , ρv′′2, ρu′′2r , ρv′′u′′r .
Left: r/D = 1.4, right: y+ = 15. : IB, : C, : PR, : TD,

: V D, : M , : PS, : DS, : locations r/D = 1.4,
y+ = 15.

170



A.3 Heat transfer

-0.05 0 0.05

y
+

0

10

20

30

40

50

60

Loss Gain

0 0.5 1 1.5 2

L
o
s
s

G
a
in

-0.3

-0.2

-0.1

0

0.1

0.2

r/D

-0.05 0 0.05

y
+

0

10

20

30

40

50

60

Loss Gain

0 0.5 1 1.5 2

L
o
s
s

G
a
in

-0.6

-0.4

-0.2

0

0.2

0.4

r/D

-0.1 -0.05 0 0.05 0.1

y
+

0

10

20

30

40

50

60

Loss Gain

0 0.5 1 1.5 2

L
o
s
s

G
a
in

-0.3

-0.2

-0.1

0

0.1

0.2

r/D

-0.2 0 0.2

y
+

0

10

20

30

40

50

60

Loss Gain

0 0.5 1 1.5 2

L
o
s
s

G
a
in

-0.6

-0.4

-0.2

0

0.2

0.4

r/D

Figure A.24: RST budget of simulation #3. Legend: see figure A.23
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Figure A.25: RST budget of simulation #4. Legend: see figure A.23
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