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Abstract

In this dissertation, we consider finite-horizon optimal control problems governed by
stochastic partial differential equations (SPDEs).
In the first part, we derive necessary optimality conditions in terms of adjoint

processes as well as the value function. First, we give characterizations of the adjoint
processes as solutions of backward stochastic differential equations (BSDEs). In
particular, the operator-valued second order adjoint process is represented via its
integral kernel, allowing for a characterization as the solution of a function-valued
BSDE. Using these BSDEs, we prove Peng’s maximum principle for controlled SPDEs.
Furthermore, we derive necessary optimality conditions relating the adjoint states to
the viscosity differential of the value function evaluated along the optimal trajectory.
This extends a well-known relationship between Peng’s maximum principle and the
dynamic programming approach to the case of controlled SPDEs.
The second part of this dissertation is devoted to sufficient optimality conditions.

First, we derive a sufficient optimality condition in terms of the value function. This
result exhibits a link between the necessary and the sufficient optimality conditions.
Combining this result with a well-known result that identifies the value function as
the unique B-continuous viscosity solution of the Hamilton-Jacobi-Bellman equation,
we prove a stochastic verification theorem for controlled semilinear SPDEs in the
framework of viscosity solutions.

In the last part of this dissertation, we analyze an optimal control problem governed
by the stochastic Nagumo model with a view towards efficient numerical approxima-
tions. Due to the cubic nonlinearity, our previous results based on global Lipschitz
assumptions are not directly applicable in this situation. Therefore, we first investigate
the well-posedness of the control problem, and derive a local necessary optimality
condition in the spirit of Pontryagin’s maximum principle. Next, we show how the
restriction to additive noise allows for a simplification of the backward SPDE character-
izing the adjoint state to a random backward PDE, which in turn significantly reduces
the computational complexity of the approximation of the adjoint state. Finally, we
develop a gradient descent method for the approximation of optimal controls and
present numerical examples.
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1. Introduction

Background

The two great pillars of mathematical control theory are Pontryagin’s maximum princi-
ple, first developed by Pontryagin et al., see [PBGM62], and the dynamic programming
approach developed simultaneously by Richard Bellman, see [Bel57]. Since the devel-
opment of these theories for controlled ordinary differential equations more than 60
years ago, much research has been geared towards their extension to controlled stochas-
tic ordinary differential equations, controlled partial differential equations (PDEs),
and, more recently, controlled stochastic partial differential equations (SPDEs). In
this dissertation, we contribute to the generalization of these theories to the class of
controlled SPDEs.
A large class of SPDEs widely used in applications is given by stochastic reaction-

diffusion equations. Many systems either intrinsically involve randomness, or lower
order perturbations are neglected in favor of simplicity. In such situations, noise can
be introduced in order to obtain a more realistic mathematical description, formally
leading to the equation

∂txt(λ) = ∆xt(λ) + b(xt(λ)) + ξt(λ), (1.1)

where λ ∈ Λ ⊂ Rn denotes the spatial variable, the Laplace operator ∆ models the
diffusion, b models a local reaction term, and ξ denotes random fluctuations in space
and time. These random fluctuations can be modeled by a Wiener process in the
framework of stochastic evolution equations, i.e., for a bounded domain Λ ⊂ Rn, we
formulate the equation as a stochastic integral equation in the space L2(Λ) given by

dxt = [∆xt +B(xt)]dt+ Σ(xt)dWt, (1.2)

where (Wt)t∈[s,T ] is a cylindrical Wiener process, B corresponds to the reaction term,
and Σ models the noise intensity depending on the state of the system.
The objective of control theory is to influence the evolution of the system by an

external input in order to achieve a desired outcome. Therefore, we introduce a control
function u and a cost functional J into the model. We fix a finite time horizon T > 0,
an initial time s ∈ [0, T ), and an initial point x ∈ L2(Λ), and consider the controlled
SPDE {

dxut = [∆xut +B(xut , ut)]dt+ Σ(xut , ut)dWt, t ∈ [s, T ]

xus = x ∈ L2(Λ).
(1.3)

Here, we explicitly denote the dependence of the state xu on the control u. For precise
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1. Introduction

assumptions on the drift coefficient B and the noise coefficient Σ, see Assumption 2.2
and Assumption 4.1. The usual target for the control problem consists of finding a
control u in some set of admissible controls that minimizes a given cost under the
expectation, i.e.,

J(s, x;u) := E
[∫ T

s
L(xut , ut)dt+H(xuT )

]
, (1.4)

where L and H are real-valued functions called the running costs and the terminal
costs, respectively.
In the finite-dimensional deterministic setting, Pontryagin’s maximum principle

characterizes an optimal control ū by deriving a necessary condition in terms of an
adjoint state p. Moreover, p is characterized as the solution of a backward equation.
His approach adapts the direct method from the calculus of variations to optimal
control problems. The derivation of the optimality condition is based on a spike
variation of an optimal control on a short time interval and a Taylor expansion of the
cost functional up to first order.
There are two major obstacles that had to be overcome in order to generalize

Pontryagin’s result to the stochastic case. The first obstacle is the characterization of
the adjoint state by a backward equation with a random terminal condition while still
maintaining the adaptedness of the solution process with respect to the underlying
filtration. This problem sparked the development of the theory of backward stochastic
differential equations (BSDEs) pioneered by Bismut where the solution is a pair of
adapted processes (p, q), see [Bis73]. The second obstacle arises when the control
enters the noise coefficient. In this case, one has to consider second order Taylor
expansions in order to account for the Itô correction term arising due to the spike
variation and the unbounded variation of stochastic processes. In order to resolve this
issue, Peng introduced a second order adjoint process (P,Q) which he characterized
as the solution of a matrix-valued BSDE, see [Pen90].
The problem of necessary conditions for controlled SPDEs was first discussed

in [Ben83]. In this work, Bensoussan derives a necessary optimality condition by
perturbing an optimal control on the entire time interval, thus avoiding the necessity of
the second order adjoint state. However, in contrast to Peng’s approach, Bensoussan’s
approach relies on the convexity of the control domain. For related maximum principles
in various situations that only include the first order adjoint state, see [DFT07, FHT18,
Gua11, HP90].
The major difficulty in the generalization of Peng’s maximum principle (with

a control-dependent noise coefficient and general control domain) to the infinite-
dimensional case is the characterization of the second order adjoint state. The direct
analogue of the matrix-valued BSDE for the second order adjoint state is a BSDE with
values in the space of bounded linear operators. However, since this space is merely a
Banach space, the classical construction of the stochastic integral, which relies on the
Wiener-Itô isometry, fails. Moreover, more general stochastic integration theories for
Banach spaces based on the UMD property or the M -type condition do not apply to

2



1. Introduction

the space of bounded linear operators either.
In the existing literature, two major approaches have been investigated to circumvent

the issue around stochastic integration in Banach spaces. In the first approach, the
arising stochastic integrals actually take values in a space of Hilbert-Schmidt operators,
which is a Hilbert space and therefore admits a classical stochastic integral. This idea
is pursued by Tang and Li in [TL94], however, they need the second Fréchet derivative
of the terminal costs to be a Hilbert-Schmidt operator, which in particular excludes the
natural choices of quadratic costs or Nemytskii-type costs. In [GT14], Guatteri and
Tessitore also construct mild solutions for a class of operator-valued BSDEs. In their
mild formulation, the stochastic integral takes values in a space of Hilbert-Schmidt
operators between real interpolation spaces associated with the unbounded operator in
the equation. Their theory in particular covers the second order adjoint equation with
quadratic costs. However, the proof of Peng’s maximum principle requires a control of
the term (2.87) arising in the duality relation as ε tends to zero, and this analysis has
not been executed.
The second approach to avoid the issues around stochastic integration in Banach

spaces is to characterize the second order adjoint state based on duality. One of
these methods was introduced by Lü and Zhang in [LZ14, LZ15, LZ18] and further
studied by Frankowska and Zhang in [FZ20]. In these works, the authors define the
notion of transposition solution, which is based on a duality that does not include any
stochastic integrals. Nevertheless, they need to impose Lipschitz conditions on the
coefficients of the cost functional, which again excludes quadratic costs. Fuhrman,
Hu and Tessitore in [FHT12, FHT13], and Du and Meng in [DM13] characterize the
second order adjoint state via a so-called stochastic bilinear form. However, while
Fuhrman, Hu and Tessitore impose a Lipschitz condition on the coefficients of the cost
functional, therefore excluding quadratic costs, Du and Meng assume twice Fréchet
differentiability of the coefficients of the state equation excluding Nemytskii-type
coefficients. For a more detailed exposition of the existing literature concerning the
stochastic maximum principle, see the survey article [Hu19].
In contrast to the direct method, Richard Bellman’s idea was to break down the

optimization over the time horizon [s, T ] into optimization problems over shorter time
intervals and exploit the fact that an optimal control also has to be optimal for each
of the resulting control problems. To formalize this, he introduced the value function
defined as the optimal cost achievable from a starting point (s, x), i.e.,

V (s, x) := inf
u
J(s, x;u), (1.5)

and derived the dynamic programming principle which in the stochastic case reads

V (s, x) = inf
u
E
[∫ t

s
L(xur , ur)dr + V (t, xut )

]
, ∀t ∈ [s, T ]. (1.6)

The value function can be used to derive a sufficient optimality condition, the verifi-
cation theorem, involving the derivatives of V . This in turn enables us to construct
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1. Introduction

optimal controls via a procedure called optimal synthesis. However, obtaining the
value function directly from its definition (1.5) is rarely feasible. Therefore, Bell-
man also derived under smoothness assumptions a differential equation for V , the
Hamilton-Jacobi-Bellman (HJB) equation, which in our setting is given as{

Vs + 〈∆x,DV 〉L2(Λ) + infuH(x, u,DV,D2V ) = 0

V (T, x) = H(x),
(1.7)

where the Hamiltonian H : L2(Λ)× U × L2(Λ)× L(L2(Λ))→ R is given by

H(x, u, p, P ) := L(x, u) + 〈p,B(x, u)〉L2(Λ) +
1

2
tr (Σ(x, u)∗PΣ(x, u)) . (1.8)

The trace term arises due to the noise in the state equation (1.3) and can be viewed
as an infinite-dimensional generalization of the Laplace operator.
In our setting, the HJB equation is a fully nonlinear PDE posed on an infinite

dimensional space and involves an unbounded term. Even in the finite-dimensional
case, the value function in general does not possess the regularity to satisfy the HJB
equation in a classical sense. To overcome this issue, Crandall and Lions introduced a
new notion of solution for these equations, called viscosity solutions, see [CL83]. In
finite dimensions, there are two equivalent ways to define viscosity solutions: either
by introducing a certain class of test functions and replacing the derivatives of the
value function by derivatives of the test function, or by replacing the derivatives of
the value function by elements in the viscosity differential of the value function. In
general, a viscosity solution is merely a continuous function, raising the question how
to generalize the verification theorem, which involves derivatives of the value function.
Such a generalization was established for finite-dimensional stochastic control problems
in [ZYL97, GŚZ05, GŚZ10] by exploiting the equivalence of the two definitions of
viscosity solutions.

The extension of the verification theorem and the optimal synthesis to the case
of controlled SPDEs is a large and active research field. There are various notions
of solutions for second order HJB equations in infinite dimensions. The mild and
strong approaches apply to semilinear equations, i.e., when the noise coefficient Σ is
independent of the control, and use the linear part of the equation as a smoothing
device to obtain solutions that possess higher regularity. This higher regularity can
then be exploited to prove the verification theorem, see e.g. [FR17, FG18].
Another way to construct solutions for HJB equations and prove a verification

theorem was developed by Fuhrman and Tessitore in [FT02, FT04, FT05]. In this
approach, the value function is represented via the solution of a scalar-valued BSDE
that is coupled to a forward SPDE. However, currently the available theory is still
limited to semilinear HJB equations.

If the noise coefficient Σ depends on the control, the associated HJB equation is fully
nonlinear. In this case, the theory of viscosity solutions is well-suited. However, due to
the unbounded term in the HJB equation, there is no straightforward generalization

4



1. Introduction

of the finite-dimensional theory. In order to handle the unbounded term, Crandall
and Lions introduced in [CL90, CL91] the notion of B-continuous viscosity solutions
for first order equations, which was generalized by Święch in [Świ94] to second order
equations. In this framework, the equivalence between the definition via test functions
and the definition via viscosity differentials does not hold anymore. Therefore, the
verification theorem in finite dimensions obtained in [ZYL97, GŚZ05, GŚZ10] does not
generalize straightforwardly to the infinite-dimensional case involving unbounded terms.
In [FGŚ10], Fabbri, Gozzi, and Święch obtained a similar verification theorem for
controlled PDEs, imposing the additional assumption that there is an admissible test
function at the point in the viscosity differential of the value function. An extension to
the infinite-dimensional stochastic setting, still assuming the existence of an admissible
test function, can be found in Fabbri’s PhD dissertation, see [Fab06]. We would like
to emphasize, however, that the proof relies on [YZ99, Chapter 5, Lemma 5.2], which
is incorrect as pointed out in [FGG11]. Finally, let us mention that the problem of
optimal synthesis in the framework of viscosity solutions is still open. The different
approaches to infinite-dimensional HJB equations are presented in the monograph
[FGŚ17].
Given these two approaches to optimal control problems, the question of their

relationship arises. In the deterministic case, Pontryagin already identified the adjoint
state p as the derivative of the value function evaluated along the optimal trajectory.
Bismut extended this relationship to the stochastic case by also identifying the second
part of the adjoint state, the process q, in terms of the second order derivative of
the value function, see [Bis78]. But again, these results rely on the differentiability
of the value function. There are various generalizations of the classical relationship
between the value function and the adjoint states dispensing with the smoothness
assumptions on the value function, both in the deterministic and stochastic setting,
as well as in finite and infinite dimensions. In [CF91], Cannarsa and Frankowska
derive a connection between the adjoint state and the viscosity differential of the value
function in the finite-dimensional deterministic case. This result is generalized to the
infinite-dimensional setting in [CF92]. The finite-dimensional stochastic case is treated
by Zhou, see [Zho91b]. He also proved a result in the infinite-dimensional stochastic
case, but only covered the first order adjoint state, see [Zho91a], which left the full
generalization of the relationship between the value function and the adjoint states for
the case of controlled SPDEs open.

Many models arising in applications are highly nonlinear and therefore often do not
satisfy the usual assumptions imposed on the coefficients of the control problem. As
customary in the theory of PDEs, there is no unified mathematical theory that covers
control problems associated with all nonlinear state equations. However, in recent
years there have been many works devoted to the analysis of control problems for
specific highly nonlinear equations. The existence of optimal controls for the Navier-
Stokes equation was established by Lisei in [Lis02] and for the FitzHugh-Nagumo
system with additive noise by Cordoni and Di Persio in [CDP18]. Necessary first order
conditions for optimality are discussed by Fuhrman and Orrieri in [FO16] within the
mild approach to dissipative SPDEs with additive noise. In [CDP21] the authors derive
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1. Introduction

first order necessary conditions for the FitzHugh-Nagumo system using a rescaling
method which exploits a certain structure of the state equation.
The final step in order to apply the mathematical theory is the development of

efficient numerical algorithms for the approximation of optimal controls. There
is a rich literature on numerical algorithms for controlled PDEs. Let us mention
[BEKT13a, BEKT13b, Ryl17, RLM+16], where the authors analyze deterministic
reaction-diffusion models and develop a gradient descent algorithm based on Pontrya-
gin’s maximum principle. However, the extension of such deterministic algorithms
to the stochastic case poses significant challenges due to the computational com-
plexity of approximating the solution of the backward SPDE. There are few works
that actually compute optimal controls for SPDEs via the BSDE approach, see e.g.
[DP16, DMPV19]. However, recent years have shown a rising interest in the devel-
opment of efficient numerical methods for BSDEs, see the survey article [CKSY22],
and it is to be expected that these methods will help to develop efficient numerical
algorithms to approximate optimal controls in the near future.

Main Results and Outline

Part I: Necessary Optimality Conditions. The first part of this dissertation is
devoted to necessary optimality conditions. In Chapter 2 we extend Peng’s maximum
principle to a certain class of semilinear SPDEs. We study the state equation in the
variational setting and impose Nemytskii-type assumptions on the coefficients of the
control problem (1.3) and (1.4), i.e., the operator B : L2(Λ)× U → L2(Λ) is given by

B(x, u)(λ) := b(x(λ), u), (x, u) ∈ L2(Λ)× U, (1.9)

for some function b : R× U → R. Similarly, the operators Σ, L and H are given by
Nemytskii operators associated with functions σ, l and h.

In this setting, we are going to prove that an optimal control ū and the associated
trajectory x̄ obtained by solving (1.3) corresponding to u = ū, satisfies

G(t, x̄t, v) ≥ G(t, x̄t, ūt) (1.10)

for all v ∈ U , and almost all (t, ω) ∈ [s, T ] × Ω, where the generalized Hamiltonian
G : [s, T ]× L2(Λ)× U → R is given by

G(t, x, u) := H(x, u, pt, Pt) + tr (σ(x, u)∗ [qt − Ptσ(x̄t, ūt)]) . (1.11)

Here, the processes (p, q) and (P,Q) are the first and second order adjoint states,
respectively, which we characterize as solutions of certain BSDEs, see (2.54) and (2.70).
In particular, the second order adjoint process P , which is an operator-valued process,
is in our approach characterized via its integral kernel – again denoted by P – allowing
for the derivation of a function-valued BSDE.
In Chapter 3, we use this representation for P to derive additional necessary

optimality conditions in terms of the adjoint states and the viscosity differentials of
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1. Introduction

the value function. In particular, we prove that for almost every t ∈ [s, T ],

[−〈∆x̄t, pt〉H−1(Λ)×H1
0 (Λ) − G(t, x̄t, ūt),∞)× {pt} × S�Pt(L2(Λ)) ⊂ D1,2,+

t+,x V (t, x̄t),

(1.12)
P–almost surely, where S�Pt(L2(Λ)) is the convex cone of symmetric, positive operators
translated by Pt (see equation (3.11)), and the derivative on the right-hand side is the
parabolic viscosity superdifferential of the value function (see Definition 3.3). This
means in particular

lim sup
τ↓0,z→0

1

τ + ‖z‖2
L2(Λ)

[
V (t+ τ, x̄t + z)− V (t, x̄t)

+ (〈∆x̄t, pt〉H−1(Λ)×H1
0 (Λ) + G(t, x̄t, ūt))τ − 〈pt, z〉L2(Λ) −

1

2
〈z, Ptz〉L2(Λ)

]
≤ 0.

(1.13)

This relationship between the adjoint states and the value function extends the well-
known connection between the dynamic programming approach and Peng’s maximum
principle to the case of controlled SPDEs. This part is based on the article [SW21b]
and the first part of the article [SW22].
Part II: Sufficient Optimality Conditions. The second part of this dissertation

is devoted to sufficient optimality conditions. The main result is the verification
theorem in the framework of B-continuous viscosity solutions. This result does not rely
on the coefficients of the control problem being of Nemytskii-type. Instead we work in
the general setting introduced in (1.3) and (1.4). In order to derive the verification
theorem, we first prove the following sufficient optimality condition in terms of the
value function: Let V be the value function, and let u∗ be an admissible control with
corresponding state x∗. If there exist processes

(Gt, pt, Pt) ∈ D1,2,+
t+,x V (t, x∗t ) (1.14)

such that

E
[∫ T

s
Gt + 〈∆x∗t , pt〉H−1(Λ)×H1

0 (Λ) +H(x∗t , u
∗
t , pt, Pt)dt

]
≤ 0, (1.15)

then u∗ is an optimal control; for the precise statement, see Theorem 4.3. It is
well-known that under additional regularity assumptions on the coefficients of the
control problem, the value function can be characterized as the unique B-continuous
viscosity solution of the HJB equation (1.7). Together with the previous result, this
yields a generalization of the classical verification theorem to the case of controlled
SPDEs with control-dependent noise. This part is based on the second part of the
article [SW22].
Part III: Applications. The last part of this dissertation is devoted to the

analysis of the optimal control of the stochastic Nagumo model with a view towards
efficient numerical implementations. The Nagumo equation is one of the simplest
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1. Introduction

models exhibiting traveling waves and is therefore studied in various contexts. More
specifically, the state is governed by

dxt = [∆xt + γxt(xt − 1)(a− xt)] dt+ Σ(t, xt)dWt, t ∈ [0, T ]. (1.16)

Due to the cubic nonlinearity, our previous results based on global Lipschitz assump-
tions are not directly applicable to the associated control problem. Therefore, we
first investigate the well-posedness of the control problem, i.e., we prove existence of
optimal controls and analyze the regularity of the control-to-state operator. Next,
we derive a necessary optimality condition in the spirit of Pontryagin’s maximum
principle. We also show how the restriction to additive noise allows for a simplification
of the backward SPDE characterizing the adjoint state to a random backward PDE.
This random backward PDE significantly reduces the computational complexity of
the approximation of the adjoint state. Finally, we develop a gradient descent method
for the approximation of optimal controls and present numerical examples. This part
is based on the article [SW21a].
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2. Peng’s Maximum Principle

Part I of this dissertation is devoted to necessary optimality conditions for controlled
SPDEs. In this chapter we generalize Peng’s maximum principle to the case of
controlled semilinear SPDEs with Nemytskii-type coefficients. This chapter is based
on [SW21b].

2.1. Introduction

In this section, we introduce the precise setting for our control problem.
Let Λ ⊂ R, be a bounded interval. We fix a finite terminal time T > 0, an initial

time s ∈ [0, T ), and an initial condition x ∈ L2(Λ), and consider the SPDE{
dxut = [∆xut + b(xut , ut)]dt+ σ(xut , ut)dWt, t ∈ [s, T ]

xus = x ∈ L2(Λ),
(2.1)

where ∆ denotes the Laplace operator, b denotes the drift coefficient, σ denotes the
noise coefficient, and (Wt)t∈[s,T ] is a cylindrical Wiener process. The control problem
consists of minimizing the cost functional

J(s, x;u) := E
[∫ T

s

∫
Λ
l(xut (λ), ut)dλdt+

∫
Λ
h(xuT (λ))dλ

]
(2.2)

for running costs l and terminal costs h, subject to the state equation (2.1), over all
controls u in some set of admissible controls Uad to be specified below.
For real, separable Hilbert spaces X ,Y, let L(X ,Y) denote the space of bounded

linear operators from X to Y, L2(X ,Y) ⊂ L(X ,Y) denote the subspace of Hilbert-
Schmidt operators, and L1(X ,Y) ⊂ L(X ,Y) denote the subspace of nuclear operators.
Let L(X ) := L(X ,X ), L2(X ) := L2(X ,X ), and L1(X ) := L1(X ,X ). Furthermore, let
S(X ) denote the space of bounded, linear, symmetric operators on X . By an abuse of
notation, we are going to use the same notation for a function P ∈ L2(Λ2) and the
associated operator in L2(L2(Λ)) given by

f 7→
∫

Λ
P (·, λ)f(λ)dλ, (2.3)

for f ∈ L2(Λ). Note that ‖P‖L2(Λ2) = ‖P‖L2(L2(Λ)).
We impose the following assumptions on the set of admissible controls Uad.

Assumption 2.1. (A1) Let Ξ be a real, separable Hilbert space and let (Wt)t∈[s,T ] be
a Ξ-valued cylindrical Wiener process on a filtered probability space

10



2. Peng’s Maximum Principle

(Ω,F , (Ft)t∈[s,T ],P), where (Ft)t∈[s,T ] is the filtration generated by (Wt) aug-
mented by all P-null sets.

(A2) Let U be a non-empty subset of a separable Banach space U , and let

Uad :=
{
u : [s, T ]× Ω→ U : u (Ft)t∈[s,T ] − adapted and

sup
t∈[s,T ]

E
[
‖ut‖kU

]
<∞, ∀k ∈ N

}
(2.4)

be the set of admissible controls. In particular, Uad is not assumed to be convex.

Furthermore, we impose the following assumptions on the coefficients of the control
problem.

Assumption 2.2. (B1) Let l : R× U → R be twice continuously differentiable with
respect to the first variable, and let l, lx, lxx be continuous in (x, u). Furthermore,
assume that there exists a generic constant C > 0 such that for all (x, u) ∈ R×U
it holds 

|l(x, u)| ≤ C
(
1 + |x|2 + ‖u‖2U

)
|lx(x, u)| ≤ C (1 + |x|+ ‖u‖U )

|lxx(x, u)| ≤ C.
(2.5)

(B2) Let h : R → R be twice continuously differentiable. Furthermore, assume that
there exists a generic constant C > 0 such that for all x ∈ R it holds

|h(x)| ≤ C
(
1 + |x|2

)
|hx(x)| ≤ C (1 + |x|)
|hxx(x)| ≤ C.

(2.6)

(B3) Let b : R× U → R be twice continuously differentiable with respect to the first
variable, and let b, bx, bxx be continuous in (x, u). Furthermore, assume that
there exists a generic constant C > 0 such that for all (x, u) ∈ R× U it holds

|b(x, u)| ≤ C (1 + |x|+ ‖u‖U )

|bx(x, u)| ≤ C
|bxx(x, u)| ≤ C.

(2.7)

(B4) Let σ : R× U → L2(Ξ,R) be twice continuously differentiable with respect to the
first variable, and let σ, σx, σxx be continuous in (x, u). Furthermore, assume
that there exists a generic constant C > 0 such that for all (x, u) ∈ R × U it
holds 

|σ(x, u)| ≤ C (1 + |x|+ ‖u‖U )

|σx(x, u)| ≤ C
|σxx(x, u)| ≤ C.

(2.8)

11



2. Peng’s Maximum Principle

All these coefficients give rise to Nemytskii operators on L2(Λ). For example, we
have an operator

σ :L2(Λ)× U → L2(Ξ, L2(Λ)),

(x, u) 7→ ((ξ, λ) 7→ σ(x(λ), u)(ξ)) .
(2.9)

Throughout Part I, we are going to use the identification

L2(Λ;L2(Ξ,R)) ∼= L2(Ξ, L2(Λ))

q(λ)(ξ)↔ q(ξ)(λ).
(2.10)

For γ > 0, let Hγ
0 (Λ) := W γ,2

0 (Λ) be the fractional Sobolev space of order γ with
Dirichlet boundary conditions and let H−γ(Λ) denote its dual space. Under these
assumptions, we can solve the state equation in the variational setting, i.e., we work
on the Gelfand triple

H1
0 (Λ) ↪→ L2(Λ) ↪→ H−1(Λ), (2.11)

and realize ∆ : H1
0 (Λ)→ H−1(Λ) as a continuous operator, for details see [LR15].

Remark 2.3. 1. The differential operator ∆ in the state equation (2.1) can be
replaced by the generator A : D(A) ⊂ L2(Λ)→ L2(Λ) of the quadratic form∫

Λ
a(λ)(∂λx)2(λ)dλ, x ∈ H1

0 (Λ), (2.12)

for some a ∈ L∞(Λ) with a(λ) ≥ a0 > 0, that can be formally represented as
the second order differential operator in divergence form

Ax(λ) = ∂λ(a∂λx)(λ), (2.13)

see also Remark 2.13.

2. The restriction to one space-dimension can be relaxed by assuming higher space
regularity of the noise coefficient σ, see Remark 2.10.

2.2. Variational Inequality

Following Pontryagin’s classical idea, we introduce a so-called spike variation. Through-
out this part, let ū be an optimal control of the control problem (2.2) and (2.1), and
let x̄ be the associated optimal state. Fix any v ∈ U , t ∈ (s, T ) and ε > 0, and define

uεr :=

{
v, t ≤ r ≤ t+ ε

ūr, otherwise.
(2.14)
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2. Peng’s Maximum Principle

Let xε denote the state associated with uε. Let yε denote the solution of the SPDE
dyεr = [∆yεr + bx(x̄r, ūr)y

ε
r + b(x̄r, u

ε
r)− b(x̄r, ūr)] dr

+ [σx(x̄r, ūr)y
ε
r + σ(x̄r, u

ε
r)− σ(x̄r, ūr)] dWr

yεs = 0,

(2.15)

and let zε denote the solution of the SPDE
dzεr =

[
∆zεr + bx(x̄r, ūr)z

ε
r + 1

2bxx(x̄r, ūr)y
ε
ry
ε
r + (bx(x̄r, u

ε
r)− bx(x̄r, ūr))y

ε
r

]
dr

+
[
σx(x̄r, ūr)z

ε
r + 1

2σxx(x̄r, ūr)y
ε
ry
ε
r + (σx(x̄r, u

ε
r)− σx(x̄r, ūr))y

ε
r

]
dWr

zεs = 0.

(2.16)
These equations are called first and second order variational equations, respectively.

Lemma 2.4. It holds

sup
r∈[s,T ]

E
[
‖xεr − x̄r − yεr − zεr‖

2
L2(Λ)

]
≤ o

(
ε2
)

(2.17)

as ε ↓ 0.

Before we prove this lemma, we need the following lemma as a preparation.

Lemma 2.5. It holds

sup
r∈[s,T ]

E
[
‖yεr‖

2k
L2(Λ)

]
≤ Cεk (2.18)

sup
r∈[s,T ]

E
[
‖zεr‖

k
L2(Λ)

]
≤ Cεk, (2.19)

for k ∈ N.

Remark 2.6. In Lemma 2.15 below, we prove higher space-regularity for yεT .

Proof. Let us begin with the inequalities for yε. By Itô’s formula for variational
solutions of SPDEs (see [LR15, Theorem 4.2.5]) and elementary estimates, we have

‖yεr‖2L2(Λ)

≤ 2

∫ r

s
(‖bx‖∞ + ‖σx‖2∞ + 1)‖yεθ‖2L2(Λ)dθ

+ 2

∫ r

s
‖b(x̄θ, uεθ)− b(x̄θ, ūθ)‖2L2(Λ) + ‖σ(x̄θ, u

ε
θ)− σ(x̄θ, ūθ)‖2L2(Ξ,L2(Λ))dθ

+ 2

∫ r

s
〈yεθ, σx(x̄θ, ūθ)y

ε
θ + σ(x̄θ, u

ε
θ)− σ(x̄θ, ūθ)dWθ〉L2(Λ).

(2.20)

Taking both sides to the power k ∈ N, and taking the supremum and expectations, we
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2. Peng’s Maximum Principle

arrive at

E

[
sup
r∈[s,T ]

‖yεr‖2kL2(Λ)

]

≤ C
∫ T

s
(‖bx‖∞ + ‖σx‖2∞ + 1)kE

[
sup
ϑ∈[s,θ]

‖yεϑ‖2kL2(Λ)

]
dθ

+ CE

[(∫ T

s
‖b(x̄θ, uεθ)− b(x̄θ, ūθ)‖2L2(Λ)

+ ‖σ(x̄θ, u
ε
θ)− σ(x̄θ, ūθ)‖2L2(Ξ,L2(Λ))dθ

)k]

+ CE

[
sup
r∈[s,T ]

∣∣∣∣∫ r

s
〈yεθ, σx(x̄θ, ūθ)y

ε
θ + σ(x̄θ, u

ε
θ)− σ(x̄θ, ūθ)dWθ〉L2(Λ)

∣∣∣∣k
]
.

(2.21)

Using Burkholder-Davis-Gundy inequality (see e.g. [KS91]), we obtain

E

[
sup
r∈[s,T ]

∣∣∣∣∫ r

s
〈yεθ, σx(x̄θ, ūθ)y

ε
θ + σ(x̄θ, u

ε
θ)− σ(x̄θ, ūθ)dWθ〉L2(Λ)

∣∣∣∣k
]

≤ CE

[〈∫ ·
s
〈yεθ, σx(x̄θ, ūθ)y

ε
θ + σ(x̄θ, u

ε
θ)− σ(x̄θ, ūθ)dWθ〉L2(Λ)

〉 k
2

T

]

≤ CE

 sup
r∈[s,T ]

‖yεr‖kL2(Λ)

(∫ T

s
‖σx(x̄θ, ūθ)y

ε
θ + σ(x̄θ, u

ε
θ)− σ(x̄θ, ūθ)‖2L2(Ξ,L2(Λ))dθ

) k
2


≤ CE

[
α

2
sup
r∈[s,T ]

‖yεr‖2kL2(Λ)

+
1

2α

(∫ T

s
‖σx(x̄θ, ūθ)y

ε
θ + σ(x̄θ, u

ε
θ)− σ(x̄θ, ūθ)‖2L2(Ξ,L2(Λ))dθ

)k ]
,

(2.22)

for every α > 0. Choosing α > 0 sufficiently small, we derive from equation (2.21)

E

[
sup
r∈[s,T ]

‖yεr‖2kL2(Λ)

]

≤ C
∫ T

s
E

[
sup
ϑ∈[s,θ]

‖yεϑ‖2kL2(Λ)

]
dθ

+ CE

[(∫ T

s
‖b(x̄θ, uεθ)− b(x̄θ, ūθ)‖2L2(Λ) + ‖σ(x̄θ, u

ε
θ)− σ(x̄θ, ūθ)‖2L2(Ξ,L2(Λ))dθ

)k]
.

(2.23)
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Using the properties of b, we have

E

[(∫ T

s
‖b(x̄r, uεr)− b(x̄r, ūr)‖2L2(Λ)dr

)k]

≤ CεkE

[
1 + sup

r∈[s,T ]
‖x̄r‖2kL2(Λ) + sup

r∈[s,T ]
‖ūr‖2kU + ‖v‖2kU

]
,

(2.24)

where the right-hand side is finite using a-priori estimates for variational solutions of
SPDEs, see [LR15, Theorem 5.1.3]. Analogously, we obtain the same estimate for the
term involving σ. Grönwall’s inequality yields the claim for yε.

The inequalities for zε follow in a similar fashion. The higher order of convergence
follows from the fact that the second order expansions in the equation for zε satisfy
twice the order of the convergence rates of the respective terms in the equation for
yε.

Now let us prove Lemma 2.4.

Proof. Applying the first order case of Taylor’s theorem for the Gâteaux derivative
from [Zei86, Section 4.6] twice, we obtain

b(x̄r + yεr + zεr , u
ε
r) =b(x̄r, u

ε
r) + bx(x̄r, u

ε
r)(y

ε
r + zεr)

+

∫ 1

0

∫ 1

0
θ1bxx(x̄r + θ1θ2(yεr + zεr), u

ε
r)(y

ε
r + zεr)(y

ε
r + zεr)dθ1dθ2

(2.25)

and the same expansion for σ. Using this Taylor expansion and the estimates from
Lemma 2.5, the proof is exactly the same as in the finite-dimensional case, see
[Pen90].

With this result, we can derive the following inequality from the fact that J(ū) ≤
J(uε). This inequality is the basis for deriving the variational inequality.

Lemma 2.7. It holds

E
[∫ T

s

∫
Λ
lx(x̄r(λ), ūr)(y

ε
r(λ) + zεr(λ)) +

1

2
lxx(x̄r(λ), ūr)y

ε
r(λ)yεr(λ)dλdr

]
+E

[∫
Λ
hx(x̄T (λ))(yεT (λ) + zεT (λ)) +

1

2
hxx(x̄T (λ))yεT (λ)yεT (λ)dλ

]
+E

[∫ T

s

∫
Λ
l(x̄r(λ), uεr)− l(x̄r(λ), ūr)dλdr

]
≥ o(ε)

(2.26)

as ε ↓ 0.
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Proof. Due to Lemma 2.5, we have

l(x̄r + yεr + zεr , ūr)− l(x̄r, ūr)

= lx(x̄r, ūr)(y
ε
r + zεr) +

1

2
lxx(x̄r, ūr)(y

ε
r + zεr)(y

ε
r + zεr) + o(ε).

(2.27)

Using the same expansion for h, the proof again follows along the same lines as in the
finite-dimensional case, see [Pen90].

2.3. Adjoint States

In this section, we are going to define the adjoint states using Riesz’ representation
theorem. We start with the first order adjoint state.

2.3.1. First Order Adjoint State

Consider the SPDE{
dyr = [∆yr + bx(x̄r, ūr)yr + ϕr] dr + [σx(x̄r, ūr)yr + ψr] dWr

ys = 0,
(2.28)

where (ϕ,ψ) ∈ L2([s, T ]×Ω;L2(Λ))×L2([s, T ]×Ω;L2(Ξ, L2(Λ))). Now, we construct
a linear functional on the space L2([s, T ]×Ω;L2(Λ))×L2([s, T ]×Ω;L2(Ξ, L2(Λ))) as
follows

T1(ϕ,ψ) := E
[∫ T

s

∫
Λ
lx(x̄r(λ), ūr)yr(λ)dλdr +

∫
Λ
hx(x̄T (λ))yT (λ)dλ

]
, (2.29)

where y denotes the solution of equation (2.28) associated with (ϕ,ψ). By Riesz’
representation theorem, there is a unique pair of adapted processes

(p, q) ∈ L2([s, T ]× Ω;L2(Λ))× L2([s, T ]× Ω;L2(Ξ, L2(Λ))), (2.30)

such that

T1(ϕ,ψ) = E
[∫ T

s
〈ϕr, pr〉L2(Λ) + 〈ψr, qr〉L2(Ξ,L2(Λ))dr

]
, (2.31)

for all (ϕ,ψ) ∈ L2([s, T ]× Ω;L2(Λ))× L2([s, T ]× Ω;L2(Ξ, L2(Λ))). Equation (2.31)
is called the first order adjoint state property. We exploit this property once for the
process yε given by equation (2.15) and once for the process zε given by equation (2.16).
By choosing (ϕ,ψ) accordingly, we can rewrite the left-hand side of the inequality in
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Lemma 2.7 as

E
[∫ T

s

∫
Λ
lx(x̄r(λ), ūr)(y

ε
r(λ) + zεr(λ)) +

1

2
lxx(x̄r(λ), ūr)y

ε
r(λ)yεr(λ)dλdr

]
+ E

[∫
Λ
hx(x̄T (λ))(yεT (λ) + zεT (λ)) +

1

2
hxx(x̄T (λ))yεT (λ)yεT (λ)dλ

]
+ E

[∫ T

s

∫
Λ
l(x̄r(λ), uεr)− l(x̄r(λ), ūr)dλdr

]
= E

[∫ T

s
〈b(x̄r, uεr)− b(x̄r, ūr), pr〉L2(Λ) + 〈σ(x̄r, u

ε
r)− σ(x̄r, ūr), qr〉L2(Ξ,L2(Λ)) dr

]
+ E

[∫ T

s

1

2
〈bxx(x̄r, ūr)y

ε
ry
ε
r , pr〉L2(Λ) +

1

2
〈σxx(x̄r, ūr)y

ε
ry
ε
r , qr〉L2(Ξ,L2(Λ)) dr

]
+ E

[∫ T

s

∫
Λ

1

2
lxx(x̄r(λ), ūr)y

ε
r(λ)yεr(λ)dλ+

∫
Λ
l(x̄r(λ), uεr)− l(x̄r(λ), ūr)dλdr

]
+ E

[
1

2

∫
Λ
hxx(x̄T (λ))yεT (λ)yεT (λ)dλ

]
+ o(ε).

(2.32)

Note that the term

E

[∫ T

s
〈(bx(x̄r, u

ε
r)− bx(x̄r, ūr))y

ε
r , pr〉L2(Λ)

+ 〈(σx(x̄r, u
ε
r)− σx(x̄r, ūr))y

ε
r , qr〉L2(Ξ,L2(Λ)) dr

]
(2.33)

is of order o(ε) and hence can be omitted.

2.3.2. Mollified Second Order Adjoint State

In order to handle the quadratic terms using the same idea as for the linear terms, we
have to turn the bilinear forms into linear forms on the tensor product L2(Λ)⊗L2(Λ) ∼=
L2(Λ2) (see [RS80, Theorem II.10] for the isomorphism).

Proposition 2.8. The process Y ε
r (λ, µ) := yεr(λ)yεr(µ), λ, µ ∈ Λ, is in the space

L2([s, T ]× Ω;H1
0 (Λ2)) ∩ L2(Ω;C([s, T ];L2(Λ2))) (2.34)
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and satisfies the equation
dY ε

r (λ, µ) = [∆Y ε
r (λ, µ) + (bx(x̄r(λ), ūr) + bx(x̄r(µ), ūr))Y

ε
r (λ, µ)

+〈σx(x̄r(λ), ūr), σx(x̄r(µ), ūr)〉L2(Ξ,R)Y
ε
r (λ, µ) + Φε

r(λ, µ)]dr

+[(σx(x̄r(λ), ūr) + σx(x̄r(µ), ūr))Y
ε
r (λ, µ) + Ψε

r(λ, µ)]dWr

Y ε
s = 0,

(2.35)
where

(Φε,Ψε) ∈ L2([s, T ]× Ω;L2(Λ2))× L2([s, T ]× Ω;L2(Ξ, L2(Λ2))) (2.36)

are given by

Φε
r(λ, µ) =yεr(λ)(b(x̄r(µ), uεr)− b(x̄r(µ), ūr)) + yεr(µ)(b(x̄r(λ), uεr)− b(x̄r(λ), ūr))

+ 〈σx(x̄r(λ), ūr)y
ε
r(λ), σ(x̄r(µ), uεr)− σ(x̄r(µ), ūr)〉L2(Ξ,R)

+ 〈σx(x̄r(µ), ūr)y
ε
r(µ), σ(x̄r(λ), uεr)− σ(x̄r(λ), ūr)〉L2(Ξ,R)

+ 〈σ(x̄r(λ), uεr)− σ(x̄r(λ), ūr), σ(x̄r(µ), uεr)− σ(x̄r(µ), ūr)〉L2(Ξ,R),

(2.37)

and

Ψε
r(λ, µ) = (σ(x̄r(λ), uεr)− σ(x̄r(λ), ūr))y

ε
r(µ) + (σ(x̄r(µ), uεr)− σ(x̄r(µ), ūr))y

ε
r(λ).
(2.38)

Proof. The regularity of Y ε follows from the regularity of yε. Applying Itô’s product
rule for real-valued semimartingales to

〈Y ε
r , f1 ⊗ f2〉L2(Λ2) = 〈yεr , f1〉L2(Λ)〈yεr , f2〉L2(Λ), (2.39)

f1, f2 ∈ H1
0 (Λ), and using a density argument yields

dY ε
r (λ, µ) =yεr(λ)dyεr(µ) + yεr(µ)dyεr(λ) + d〈yε(λ), yε(µ)〉r

=yεr(λ)(∆µy
ε
r(µ) + bx(x̄r(µ), ūr)y

ε
r(µ) + b(x̄r(µ), uεr)− b(x̄r(µ), ūr))dr

+ yεr(µ)(∆λy
ε
r(λ) + bx(x̄r(λ), ūr)y

ε
r(λ) + b(x̄r(λ), uεr)− b(x̄r(λ), ūr))dr

+ 〈σx(x̄r(λ), ūr)y
ε
r(λ) + σ(x̄r(λ), uεr)− σ(x̄r(λ), ūr),

σx(x̄r(µ), ūr)y
ε
r(µ) + σ(x̄r(µ), uεr)− σ(x̄r(µ), ūr)〉L2(Ξ,R)dr

+ yεr(λ)(σx(x̄r(µ), ūr)y
ε
r(µ) + σ(x̄r(µ), uεr)− σ(x̄r(µ), ūr))dWr

+ yεr(µ)(σx(x̄r(λ), ūr)y
ε
r(λ) + σ(x̄r(λ), uεr)− σ(x̄r(λ), ūr))dWr

(2.40)

in L2(Λ2). Note that

yεr(λ)∆µy
ε
r(µ) + yεr(µ)∆λy

ε
r(λ) = ∆Y ε

r (λ, µ), (2.41)
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where the Laplace operator ∆ acting on functions in the two variables (λ, µ) arises via
the tensor product

∆ = I ⊗∆µ + ∆λ ⊗ I, (2.42)

see [RS80, Section VIII.10] for more details on tensor products of operators.
Combining the remaining terms in a similar fashion, we end up with

dY ε
r (λ, µ) =[∆Y ε

r (λ, µ) + (bx(x̄r(λ), ūr) + bx(x̄r(µ), ūr))Y
ε
r (λ, µ)

+ 〈σx(x̄r(λ), ūr), σx(x̄r(µ), ūr)〉L2(Ξ,R)Y
ε
r (λ, µ) + Φε

r(λ, µ)]dr

+ [(σx(x̄r(λ), ūr) + σx(x̄r(µ), ūr))Y
ε
r (λ, µ) + Ψε

r(λ, µ)]dWr,

(2.43)

for Φε and Ψε as stated in the proposition. This concludes the proof.

We can now rewrite the quadratic terms in yε in the variational inequality into
linear terms in Y ε evaluated on the diagonal in Λ2.

Proposition 2.9. It holds

E
[∫ T

s
〈bxx(x̄r, ūr)y

ε
ry
ε
r , pr〉L2(Λ) + 〈σxx(x̄r, ūr)y

ε
ry
ε
r , qr〉L2(Ξ,L2(Λ)) dr

]
+ E

[∫ T

s

∫
Λ
lxx(x̄r, ūr)y

ε
ry
ε
rdλdr

]
= E

[∫ T

s

∫
Λ

(
bxx(x̄r(λ), ūr)pr(λ) + 〈σxx(x̄r(λ), ūr), qr(λ)〉L2(Ξ,R)

)
δ(Y ε

r )(λ)dλdr

]
+ E

[∫ T

s

∫
Λ
lxx(x̄r(λ), ūr)δ(Y

ε
r )(λ)dλdr

]
,

(2.44)

where δ : H1
0 (Λ2)→ L2(Λ) is defined by δ(w)(λ) := w(λ, λ).

Proof. Let (ξk)k∈N be an orthonormal basis of Ξ. We have

〈σxx(x̄r, ūr)y
ε
ry
ε
r , qr〉L2(Ξ,L2(Λ)) =

∞∑
k=1

〈σxx(x̄r, ūr)(ξk)y
ε
ry
ε
r , qr(ξk)〉L2(Λ)

=
∞∑
k=1

∫
Λ
σxx(x̄r(λ), ūr)(ξk)y

ε
r(λ)yεr(λ)qr(ξk)(λ)dλ

=

∫
Λ
δ(Y ε

r )(λ)〈σxx(x̄r(λ), ūr), qr(λ)〉L2(Ξ,R)dλ.

(2.45)

A similar calculation shows the claim for the remaining terms.

The operator δ : H1
0 (Λ2) → L2(Λ), Λ ⊂ R, is continuous due to the Sobolev

19



2. Peng’s Maximum Principle

Imbedding Theorem, see [AF03, Theorem 4.12]. Since

Y ε ∈ L2([s, T ]× Ω;H1
0 (Λ2)), (2.46)

the right-hand side of equation (2.44) is linear and bounded in Y ε. However, the
spatial regularity of the solution evaluated at the terminal time T is not sufficient for

E
[∫

Λ
hxx(x̄T (λ))Y ε

T (λ, λ)dλ

]
(2.47)

to be continuous in Y ε
T . In order to obtain a continuous operator in Y ε

T , we have to
mollify the terminal condition. Using the heat kernel, we have

E
[∫

Λ
hxx(x̄T (λ))yεT (λ)yεT (λ)dλ

]
= lim

η→0
E
[∫

Λ2

1

2
(hxx(x̄T (λ)) + hxx(x̄T (µ))) yεT (λ)yεT (µ)

1√
4πη

exp

(
−|λ− µ|

2

4η

)
dµdλ

]
= lim

η→0
E
[∫

Λ2

1

2
(hxx(x̄T (λ)) + hxx(x̄T (µ)))

1√
4πη

exp

(
−|λ− µ|

2

4η

)
Y ε
T (λ, µ)dλdµ

]
.

(2.48)

We denote

hηxx(λ, µ) :=
1

2
(hxx(x̄T (λ)) + hxx(x̄T (µ)))

1√
4πη

exp

(
−|λ− µ|

2

4η

)
∈ L2(Λ2). (2.49)

With this mollification and Proposition 2.9, we construct another bounded, linear
functional via

T η2 (Φ,Ψ)

:= E
[∫ T

s

∫
Λ

(
bxx(x̄r(λ), ūr)pr(λ) + 〈σxx(x̄r(λ), ūr), qr(λ)〉L2(Ξ,R)

)
δ(Yr)(λ)dλdr

]
+ E

[∫ T

s

∫
Λ
lxx(x̄r(λ), ūr)δ(Yr)(λ)dλdr +

∫
Λ2

hηxx(λ, µ)YT (λ, µ)dλdµ

]
,

(2.50)

where Y denotes the solution of equation (2.35) with (Φε,Ψε) replaced by (Φ,Ψ). By
Riesz’ representation theorem, there exists a pair

(P η, Qη) ∈ L2([s, T ]× Ω;L2(Λ2))× L2([s, T ]× Ω;L2(Ξ, L2(Λ2))) (2.51)

such that

T η2 (Φ,Ψ) = E
[∫ T

s
〈P ηr ,Φr〉L2(Λ2) + 〈Qηr ,Ψr〉L2(Ξ,L2(Λ2))dr

]
, (2.52)
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for all (Φ,Ψ) ∈ L2([s, T ] × Ω;L2(Λ2)) × L2([s, T ] × Ω;L2(Ξ, L2(Λ2))). The pair
(P η, Qη) is called the mollified second order adjoint state, and (2.52) is called the
mollified second order adjoint state property. Choosing Φ = Φε and Ψ = Ψε as
given by equations (2.37) and (2.38), respectively, and using (2.32) we can rewrite the
inequality from Lemma 2.7 as

E
[∫ T

s
〈b(x̄r, uεr)− b(x̄r, ūr), pr〉L2(Λ) + 〈σ(x̄r, u

ε
r)− σ(x̄r, ūr), qr〉L2(Ξ,L2(Λ)) dr

]
+

1

2
E
[∫ T

s
〈P ηr ,Φε

r〉L2(Λ2) + 〈Qηr ,Ψε
r〉L2(Ξ,L2(Λ2))dr

]
+ E

[∫ T

s

∫
Λ
l(x̄r(λ), uεr)− l(x̄r(λ), ūr)dλdr

]
+

1

2
E
[∫

Λ
hxx(x̄T (λ))yεT (λ)yεT (λ)dλ−

∫
Λ2

hηxx(λ, µ)Y ε
T (λ, µ)dλdµ

]
≥ o(ε).

(2.53)

Remark 2.10. The restriction to one space-dimension goes back to the required
continuity of the operator δ defined in (2.9). For two-dimensional Λ ⊂ R2, δ maps
from H1

0 (Λ2) to L2(Λ), which means that we lose two space-dimensions and therefore
lose the continuity of δ. However, continuity can be restored if we have the space
regularity H1+ε

0 (Λ2), ε > 0, see [AF03, Section 7.43]. This can be achieved by assuming
higher space-regularity on the noise coefficient σ.

2.4. Adjoint Equations

In this section, we are going to deduce equations for the adjoint states (p, q) and
(P η, Qη), respectively.

2.4.1. First Order Adjoint Equation

We introduce the following first order adjoint equation{
dpr = −

[
∆pr + bx(x̄r, ūr)pr + 〈σx(x̄r, ūr), qr〉L2(Ξ,R) + lx(x̄r, ūr)

]
dr + qrdWr

pT = hx(x̄T ).

(2.54)
The existence of a unique variational solution (p, q) to this equation, where

p ∈ L2([s, T ]× Ω;H1
0 (Λ)) ∩ L2(Ω;C([s, T ];L2(Λ))) (2.55)

and
q ∈ L2([s, T ]× Ω;L2(Ξ, L2(Λ))), (2.56)

can be found in [Ben83]. In order to verify the adjoint state property (2.31) we
need to apply Itô’s formula to the process 〈pr, yr〉L2(Λ), where y denotes the solution
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of equation (2.28) associated with (ϕ,ψ). To this end we need Itô’s formula for
variational solutions of SPDEs (see [Par21, Lemma 2.15] or [Kry13, Section 3]) with
V := H1

0 (Λ) × H1
0 (Λ), H := L2(Λ) × L2(Λ), and F : H → R, (x, y) 7→ 〈x, y〉L2(Λ).

This yields

d〈pr, yr〉L2(Λ) =〈pr, dyr〉L2(Λ) + 〈yr, dpr〉L2(Λ) + d〈p, y〉r
=〈pr, bx(x̄r, ūr)yr + ϕr〉L2(Λ)dr

− 〈yr, bx(x̄r, ūr)pr + 〈σx(x̄r, ūr), qr〉L2(Ξ,R) + lx(x̄r, ūr)〉L2(Λ)dr

+ 〈qr, σx(x̄r, ūr)yr + ψr〉L2(Ξ,L2(Λ))dr

+ 〈(σx(x̄r, ūr)yr + ψr)
∗ pr, dWr〉L2(Λ) + 〈q∗ryr, dWr〉L2(Λ)

=
[
〈pr, ϕr〉L2(Λ) + 〈qr, ψr〉L2(Ξ,L2(Λ)) − 〈yr, lx(x̄r, ūr)〉L2(Λ)

]
dr

+ 〈(σx(x̄r, ūr)yr + ψr)
∗ pr, dWr〉L2(Λ) + 〈q∗ryr, dWr〉L2(Λ).

(2.57)

Hence, considering the terminal condition, we obtain

E
[
〈hx(x̄T ), yT 〉L2(Λ)

]
= E

[∫ T

s
〈pr, ϕr〉L2(Λ) + 〈qr, ψr〉L2(Ξ,L2(Λ)) − 〈yr, lx(x̄r, ūr)〉L2(Λ)dr

]
,

(2.58)

which is the adjoint state property.
The strategy for the mollified second order adjoint state is the same: First, we

introduce the mollified second order adjoint equation and show that a solution of that
equation exists; then we apply Itô’s formula and show that the solution satisfies the
mollified adjoint state property (2.52), which characterizes it as the mollified second
order adjoint state. Afterwards, in Section 2.5, we pass to the limit to derive an
equation for the second order adjoint state.

2.4.2. Mollified Second Order Adjoint Equation

We introduce the mollified second order adjoint equation

dP ηr (λ, µ) = −[∆P ηr (λ, µ) + (bx(x̄r(λ), ūr) + bx(x̄r(µ), ūr))P
η
r (λ, µ)

+〈σx(x̄r(λ), ūr), σx(x̄r(µ), ūr)〉L2(Ξ,R)P
η
r (λ, µ)

+〈σx(x̄r(λ), ūr) + σx(x̄r(µ), ūr), Q
η
r(λ, µ)〉L2(Ξ,R)

+δ∗(lxx(x̄r(λ), ūr)) + δ∗(bxx(x̄r(λ), ūr)pr(λ))

+δ∗(〈σxx(x̄r(λ), ūr), qr〉L2(Ξ,R))]dr +Qηr(λ, µ)dWr

P ηT (λ, µ) = hηxx(λ, µ),

(2.59)
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where hηxx is given by equation (2.49), and δ∗ : L2(Λ)→ H−1(Λ2) is the adjoint of the
operator introduced in (2.9), i.e.,

〈δ∗(f), w〉H−1(Λ2)×H1
0 (Λ2) :=

∫
Λ
f(λ)δ(w)(λ)dλ =

∫
Λ
f(λ)w(λ, λ)dλ, (2.60)

for f ∈ L2(Λ), w ∈ H1
0 (Λ2).

Proposition 2.11. The mollified second order adjoint equation (2.59) has a unique
variational solution (P η, Qη), where

P η ∈ L2([s, T ]× Ω;H1
0 (Λ2)) ∩ L2(Ω;C([s, T ];L2(Λ))) (2.61)

and
Qη ∈ L2([s, T ]× Ω;L2(Ξ, L2(Λ2))). (2.62)

Proof. We apply the result from [Ben83] on the Gelfand triple

H1
0 (Λ2) ↪→ L2(Λ2) ↪→ H−1(Λ2). (2.63)

2.4.3. Adjoint State Property for the Mollified Second Order
Adjoint State

Now, we are going to show that the solution of the mollified second order adjoint
equation satisfies the mollified adjoint state property (2.52). To this end let Y denote
the solution of the second variational equation (2.35) associated with (Φ,Ψ), and
let (P η, Qη) denote the solution of the mollified second order adjoint equation (2.59).
We again apply Itô’s formula for variational solutions of SPDEs, this time to the
expression

〈P ηr (λ, µ), Yr(λ, µ)〉L2(Λ2). (2.64)

Choosing V := H1
0 (Λ2)×H1

0 (Λ2), H := L2(Λ2)× L2(Λ2), and F : H → R, (x, y) 7→
〈x, y〉L2(Λ2), yields

d〈P ηr (λ, µ), Yr(λ, µ)〉L2(Λ2)

= 〈P ηr (λ, µ), dYr(λ, µ)〉L2(Λ2) + 〈Yr(λ, µ), dP ηr (λ, µ)〉L2(Λ2) + d〈P η(λ, µ), Y (λ, µ)〉r.
(2.65)
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Plugging in the equations for P η and Y , respectively, we arrive at

d〈P ηr (λ, µ), Yr(λ, µ)〉L2(Λ2)

=
〈

∆Yr(λ, µ) + (bx(x̄r(λ), ūr) + bx(x̄r(µ), ūr))Yr(λ, µ)

+ 〈σx(x̄r(λ), ūr), σx(x̄r(µ), ūr)〉L2(Ξ,R)Yr(λ, µ)

+ Φr(λ, µ), P ηr (λ, µ)
〉
H−1(Λ2)×H1

0 (Λ2)
dr

−
〈

∆P ηr (λ, µ) + (bx(x̄r(λ), ūr) + bx(x̄r(µ), ūr))P
η
r (λ, µ)

+ 〈σx(x̄r(λ), ūr), σx(x̄r(µ), ūr)〉L2(Ξ,R)P
η
r (λ, µ)

+ 〈σx(x̄r(λ), ūr) + σx(x̄r(µ), ūr), Q
η
r(λ, µ)〉L2(Ξ,R)

+ δ∗(lxx(x̄r, ūr)) + δ∗(bxx(x̄r, ūr)pr(λ))

+ δ∗(〈σxx(x̄r, ūr), qr(λ)〉L2(Ξ,R)), Yr(λ, µ)
〉
H−1(Λ2)×H1

0 (Λ2)
dr

+ 〈Qηr(λ, µ), (σx(x̄r(λ), ūr) + σx(x̄r(µ), ūr))Yr(λ, µ) + Ψr(λ, µ)〉L2(Ξ,L2(Λ2))dr

+ 〈((σx(x̄r(λ), ūr) + σx(x̄r(µ), ūr))Yr(λ, µ) + Ψr(λ, µ))∗Qηr(λ, µ), dWr〉L2(Λ2)

+ 〈Qηr(λ, µ)∗((σx(x̄r(λ), ūr) + σx(x̄r(µ), ūr))Yr(λ, µ) + Ψr(λ, µ)), dWr〉L2(Λ2).

(2.66)

Integrating the Laplacian by parts yields

d〈P ηr (λ, µ), Yr(λ, µ)〉L2(Λ2)

=
[
〈P ηr (λ, µ),Φr(λ, µ)〉L2(Λ2) + 〈Qηr(λ, µ),Ψr(λ, µ)〉L2(Ξ,L2(Λ2))

− 〈δ∗(lxx(x̄r, ūr)) + δ∗(bxx(x̄r, ūr)pr(λ))

+ δ∗(〈σxx(x̄r, ūr), qr(λ)〉L2(Ξ,R)), Yr(λ, µ)〉H−1(Λ2)×H1
0 (Λ2)

]
dr

+ 〈((σx(x̄r(λ), ūr) + σx(x̄r(µ), ūr))Yr(λ, µ) + Ψr(λ, µ))∗Qηr(λ, µ), dWr〉L2(Λ2)

+ 〈Qηr(λ, µ)∗((σx(x̄r(λ), ūr) + σx(x̄r(µ), ūr))Yr(λ, µ) + Ψr(λ, µ)), dWr〉L2(Λ2).

(2.67)

Therefore, taking expectations and considering the initial and terminal condition for
Y and P η, respectively, we obtain

E
[
〈hηxx, YT 〉L2(Λ2)

]
= E

[ ∫ T

s
〈P ηr ,Φr〉L2(Λ2) + 〈Qηr ,Ψr〉L2(Ξ,L2(Λ2))

− 〈δ∗(lxx(x̄r, ūr)) + δ∗(bxx(x̄r, ūr)pr(λ))

+ δ∗(〈σxx(x̄r, ūr), qr(λ)〉L2(Ξ,R), Yr(λ, µ)〉H−1(Λ2)×H1
0 (Λ2)dr

]
,

(2.68)
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which is the mollified second order adjoint state property (2.52). Hence, the mollified
second order adjoint state is characterized by equation (2.59).

2.5. Passing to the Limit of the Mollified Second Order
Adjoint State

In this section, we derive an equation for the second order adjoint state P = limη→0 P
η.

Recall that we chose hηxx in such a way, that

lim
η→0

hηxx = δ∗(hxx(x̄T (λ))) in H−1(Λ2). (2.69)

Theorem 2.12. The equation

dPr(λ, µ) = −[∆Pr(λ, µ) + (bx(x̄r(λ), ūr) + bx(x̄r(µ), ūr))Pr(λ, µ)

+〈σx(x̄r(λ), ūr), σx(x̄r(µ), ūr)〉L2(Ξ,R)Pr(λ, µ)

+〈σx(x̄r(λ), ūr) + σx(x̄r(µ), ūr), Qr(λ, µ)〉L2(Ξ,R)

+δ∗(lxx(x̄r(λ), ūr)) + δ∗(bxx(x̄r(λ), ūr)pr(λ))

+δ∗(〈σxx(x̄r(λ), ūr), qr〉L2(Ξ,R))]dr +Qr(λ, µ)dWr

PT (λ, µ) = δ∗(hxx(x̄T (λ)))

(2.70)

has a unique adapted solution (P,Q), where

P ∈ L2([s, T ]× Ω;L2(Λ2)) ∩ L2(Ω;C([s, T ];H−1(Λ2))), (2.71)

and
Q ∈ L2([s, T ]× Ω;L2(Ξ;H−1(Λ2))). (2.72)

Here equation (2.70) holds in L2([s, T ]× Ω;H−2(Λ2)).

Proof. First, we prove existence of a solution. Let (P η, Qη) denote the solution of
equation (2.59). We define F : H−1(Λ2) → R, x 7→ ‖x‖2H−1(Λ2). Since P η is an
H−1(Λ2)-valued semimartingale, we can apply the classical version of Itô’s formula for
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Hilbert space-valued semimartingales (see [DPZ14, Section 4.4]), which yields

‖P ηr (λ, µ)‖2H−1(Λ2)

= ‖hηxx‖2H−1(Λ2) + 2

∫ T

r
〈∆P ηθ (λ, µ), P ηθ (λ, µ)〉H−1(Λ2)dθ

+ 2

∫ T

r
〈(bx(x̄θ(λ), ūθ) + bx(x̄θ(µ), ūθ))P

η
θ (λ, µ), P ηθ (λ, µ)〉H−1(Λ2)dθ

+ 2

∫ T

r
〈〈σx(x̄θ(λ), ūθ), σx(x̄θ(µ), ūθ)〉L2(Ξ,R)P

η
θ (λ, µ), P ηθ (λ, µ)〉H−1(Λ2)dθ

+ 2

∫ T

r
〈〈σx(x̄θ(λ), ūθ) + σx(x̄θ(µ), ūθ), Q

η
θ(λ, µ)〉L2(Ξ,R), P

η
θ (λ, µ)〉H−1(Λ2)dθ

+ 2

∫ T

r
〈δ∗(lxx(x̄θ(λ), ūθ)) + δ∗(bxx(x̄θ(λ), ūθ)pθ(λ))

+ δ∗(〈σxx(x̄θ(λ), ūθ), qθ〉L2(Ξ,R)), P
η
θ (λ, µ)〉H−1(Λ2)dθ

−
∫ T

r
‖Qηθ‖

2
L2(Ξ,H−1(Λ2))dθ + 2

∫ T

r
〈P ηθ (λ, µ), Qηθ(λ, µ)dWθ〉H−1(Λ2).

(2.73)

By [LR15, Lemma 4.1.12], we have

〈∆P ηθ (λ, µ), P ηθ (λ, µ)〉H−1(Λ2) = −‖P ηθ (λ, µ)‖2L2(Λ2). (2.74)

Therefore, from equation (2.73) we derive

‖P ηr (λ, µ)‖2H−1(Λ2) + 2

∫ T

r
‖P ηθ (λ, µ)‖2L2(Λ2)dθ +

∫ T

r
‖Qηθ‖

2
L2(Ξ,H−1(Λ2))dθ

≤ ‖hηxx‖2H−1(Λ2) + C(b, σ, T, l)

(
1 +

∫ T

r
‖P ηθ (λ, µ)‖2H−1(Λ2)dθ

)
+ 2

∫ T

r
〈P ηθ (λ, µ), Qηθ(λ, µ)dWθ〉H−1(Λ2).

(2.75)

Taking the supremum and expectations, using Burkholder-Davis-Gundy inequality for
the stochastic integral, and applying Grönwall’s inequality, we obtain

E

[
sup
r∈[s,T ]

‖P ηr (λ, µ)‖2H−1(Λ2) + 2

∫ T

s
‖P ηr (λ, µ)‖2L2(Λ2)dr +

∫ T

s
‖Qηr‖2L2(Ξ,H−1(Λ2))dr

]
≤ C

(
1 + E

[
‖hηxx‖2H−1(Λ2)

])
,

(2.76)

where the right-hand side is uniformly bounded in η. Therefore, we can extract weakly
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2. Peng’s Maximum Principle

convergent subsequences

P η ⇀ P in L2([s, T ]× Ω;L2(Λ2)), (2.77)

Qη ⇀ Q in L2([s, T ]× Ω;L2(Ξ, H−1(Λ2))), (2.78)

which implies∫ T

·
QηrdWr

∗
⇀

∫ T

·
QrdWr in L∞([s, T ];L2(Ω;H−1(Λ2))). (2.79)

Since ∆ : L2(Λ2)→ H−2(Λ2) is weak-weak continuous, we can test the mollified second
order adjoint equation (2.59) with a test function in H2

0 (Λ2) and pass to the limit
η → 0, which concludes the proof of existence. The continuity of P as a process with
values in H−1(Λ2) follows from [LR15, Theorem 4.2.5]. In order to prove uniqueness,
we observe that, by the linearity of the equation, the difference of two solutions satisfies
the corresponding equation with vanishing inhomogeneity and terminal condition.
Hence, by an analogous argument as the one for the a priori bound (2.76), the two
solutions must coincide.

Remark 2.13. In case the state equation (2.1) is governed by the more general
uniformly elliptic differential operator A given in equation (2.13), the Laplacian in
equation (2.70) is replaced by the operator Ā : H1

0 (Λ2)→ H−1(Λ2),

Āx(λ, µ) := (∂λ(a(λ)∂λx) + ∂µ(a(µ)∂µx))(λ, µ). (2.80)

Therefore, we have to consider the functional

F : H−1(Λ2)→ R (2.81)

x 7→ ‖x‖2
D((−Ā)−

1
2 )

= ‖(I − Ā)−
1
2x‖2L2(Λ2). (2.82)

In this case, the term
〈∆P ηθ (λ, µ), P ηθ (λ, µ)〉H−1(Λ2) (2.83)

is replaced by

〈ĀP ηθ (λ, µ), P ηθ (λ, µ)〉
D((−Ā)−

1
2 )

= −‖P ηθ ‖
2
L2(Λ2) + ‖P ηθ ‖

2

D((−Ā)−
1
2 )
. (2.84)

Now, using the same arguments as in the preceding proof, we can generalize the
previous result mutatis mutandis to the case of uniformly elliptic differential operators.

The following property of the second order adjoint state is not used hereafter, but
is of independent interest.
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2. Peng’s Maximum Principle

Proposition 2.14. It holds

E
[∫ T

s

∫
Λ

(
bxx(x̄r(λ), ūr)pr(λ) + 〈σxx(x̄r(λ), ūr), qr(λ)〉L2(Ξ,R)

)
yεr(λ)yεr(λ)dλdr

]
+ E

[∫ T

s

∫
Λ
lxx(x̄r(λ), ūr)y

ε
r(λ)yεr(λ)dλdr +

∫
Λ
hxx(x̄T (λ))yεT (λ)yεT (λ)dλ

]
= E

[∫ T

s
〈Pr,Φε

r〉L2(Λ2) + 〈Qr,Ψε
r〉L2(Ξ,H−1(Λ2))×L2(Ξ,H1

0 (Λ2))dr

]
,

(2.85)

where yε is the solution of equation (2.15) and Φε and Ψε are given by equations (2.37)
and (2.38), respectively.

Proof. Since for η → 0,

E
[∫

Λ2

hηxx(λ, µ)Y ε
T (λ, µ)dλdµ

]
→ E

[∫
Λ
hxx(x̄T (λ))yεT (λ)yεT (λ)dλ

]
, (2.86)

taking the limit η → 0 in equation (2.52) yields the claim.

2.6. Peng’s Maximum Principle

In order to prove the stochastic maximum principle, we have to take the limits η → 0
and ε → 0 in the variational inequality (2.53). If we take the limit η → 0 first, we
eliminate the terms involving the terminal condition. However, the remaining term

E
[∫ T

s
〈Pr,Φε

r〉L2(Λ2) + 〈Qr,Ψε
r〉L2(Ξ,H−1(Λ2))×L2(Ξ,H1

0 (Λ2))dr

]
(2.87)

does not have the asymptotic needed in (2.107). Indeed, the lacking regularity of Q
requires us to control Ψε in L2(Ξ, H1

0 (Λ2)). Since we can’t expect such a control in
general, we have to interchange the limits in η and ε. In order to ensure convergence
in the converse order, we need compactness of yεT /

√
ε, ε > 0, in L2(Λ).

Lemma 2.15. For γ ∈ (0, 1/2) and ε ∈ (0, T − t), it holds

E
[
‖yεT ‖2Hγ

0 (Λ)

]
≤ Cε. (2.88)

Proof. Set ỹεr := yεr/
√
ε, r ∈ [s, T ]. Then ỹε satisfies the equation

dỹεr =
[
∆ỹεr + bx(x̄r, ūr)ỹ

ε
r + 1

ε (b(x̄r, u
ε
r)− b(x̄r, ūr))

]
dr

+
[
σx(x̄r, ūr)ȳ

ε
r + 1

ε (σ(x̄r, u
ε
r)− σ(x̄r, ūr))

]
dWr

ỹεs = 0.

(2.89)

28



2. Peng’s Maximum Principle

Duhamel’s formula for mild solutions yields

ỹεT =

∫ T

s
ST−r (bx(x̄r, ūr)ỹ

ε
r) dr +

1

ε

∫ t+ε

t
ST−r (b(x̄r, v)− b(x̄r, ūr)) dr

+

∫ T

s
ST−r (σx(x̄r, ūr)ỹ

ε
r) dWr +

1

ε

∫ t+ε

t
ST−r (σ(x̄r, v)− σ(x̄r, ūr)) dWr,

(2.90)

where (Sr)r≥0 denotes the heat semigroup. Notice that the variational solution and
the mild solution coincide, see [Hai09, Proposition 5.7]. By analyticity, we have the
bound

‖Srf‖2Hγ
0 (Λ) ≤

C

r2γ
‖f‖2L2(Λ) (2.91)

for any f ∈ L2(Λ), see [Paz83, Chapter 2, Lemma 6.13]. Using this property and the
boundedness of bx, we can estimate

E

[∥∥∥∥∫ T

s
ST−r (bx(x̄r, ūr)ỹ

ε
r) dr

∥∥∥∥2

Hγ
0 (Λ)

]
≤ sup

r∈[s,T ]
E
[
‖ỹεr‖2L2(Λ)

] ∫ T

s

C

(T − r)2γ
dr <∞.

(2.92)
Furthermore, for the second integral in (2.90), we obtain

E

[∥∥∥∥1

ε

∫ t+ε

t
ST−r (b(x̄r, v)− b(x̄r, ūr)) dr

∥∥∥∥2

Hγ
0 (Λ)

]

≤ C

ε
E
[∫ t+ε

t

1

(T − r)2γ
‖b(x̄r, v)− b(x̄r, ūr)‖2L2(Λ) dr

] (2.93)

Since t < T , using the bounds on b we obtain

C

ε
E
[∫ t+ε

t

1

(T − r)2γ
‖b(x̄r, v)− b(x̄r, ūr)‖2L2(Λ) dr

]
≤ C

ε

∫ t+ε

t
E
[
1 + ‖x̄r‖2L2(Λ) + ‖v‖2U + ‖ūr‖2U

]
dr

≤ C

(
1 + sup

r∈[s,T ]
E
[
‖x̄r‖2L2(Λ)

]
+ ‖v‖2U + sup

r∈[s,T ]
E
[
‖ūr‖2U

])
<∞.

(2.94)
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Now we consider the first stochastic integral in (2.90). We have

E

[∥∥∥∥∫ T

s
ST−r (σx(x̄r, ūr)ỹ

ε
r) dWr

∥∥∥∥2

Hγ
0 (Λ)

]

= E
[∫ T

s
‖ST−r(σx(x̄r, ūr)ỹ

ε
r)‖

2
L2(Ξ,Hγ

0 (Λ)) dr

]
≤ E

[∫ T

s
‖ST−r‖2L(L2(Λ),Hγ

0 (Λ))‖σx(x̄r, ūr)‖2L(L2(Λ),L2(Ξ,L2(Λ)))‖ỹ
ε
r‖2L2(Λ)dr

]
,

(2.95)

which can be controlled by the same arguments as for the corresponding term with b,
since σx is bounded as well. Finally, for the second stochastic integral in (2.90), we
have

E

[∥∥∥∥1

ε

∫ t+ε

t
ST−r (σ(x̄r, v)− σ(x̄r, ūr)) dWr

∥∥∥∥2

Hγ
0 (Λ)

]

= E
[

1

ε

∫ t+ε

t
‖ST−r (σ(x̄r, v)− σ(x̄r, ūr))‖2L2(Ξ,Hγ

0 (Λ)) dr

] (2.96)

which is again finite by the same arguments as for the corresponding term with b.

Now we are able to prove the main result of this chapter.

Theorem 2.16 (Peng’s Maximum Principle). Let (x̄, ū) be an optimal pair of the
control problem (2.2) and (2.1). Then there exist adapted processes (p, q), where

p ∈ L2([s, T ]× Ω;H1
0 (Λ)) ∩ L2(Ω;C([s, T ];L2(Λ))) (2.97)

and
q ∈ L2([s, T ]× Ω;L2(Ξ, L2(Λ))), (2.98)

satisfying the first order adjoint equation{
dpr = −

[
∆pr + bx(x̄r, ūr)pr + 〈σx(x̄r, ūr), qr〉L2(Ξ,R) + lx(x̄r, ūr)

]
dr + qrdWr

pT = hx(x̄T ),

(2.99)
and adapted processes (P,Q), where

P ∈ L2([s, T ]× Ω;L2(Λ2)) ∩ L2(Ω;C([s, T ];H−1(Λ))) (2.100)

and
Q ∈ L2([s, T ]× Ω;L2(Ξ, H−1(Λ2))), (2.101)

30



2. Peng’s Maximum Principle

satisfying the second order adjoint equation

dPr(λ, µ) = −[∆Pr(λ, µ) + (bx(x̄r(λ), ūr) + bx(x̄r(µ), ūr))Pr(λ, µ)

+〈σx(x̄r(λ), ūr), σx(x̄r(µ), ūr)〉L2(Ξ,R)Pr(λ, µ)

+〈σx(x̄r(λ), ūr) + σx(x̄r(µ), ūr), Qr(λ, µ)〉L2(Ξ,R)

+δ∗(lxx(x̄r(λ), ūr)) + δ∗(bxx(x̄r(λ), ūr)pr(λ))

+δ∗(〈σxx(x̄r(λ), ūr), qr〉L2(Ξ,R))]dr +Qr(λ, µ)dWr

PT (λ, µ) = δ∗(hxx(x̄T (λ))),

(2.102)

such that
G(t, x̄t, v) ≥ G(t, x̄t, ūt) (2.103)

for all v ∈ U , and almost all (t, ω) ∈ [s, T ]× Ω. Here we denote by G the generalized
Hamiltonian, i.e., G : [s, T ]× L2(Λ)× U → R,

G(t, x, u) :=

∫
Λ
l(x(λ), u)dλ+ 〈pt, b(x, u)〉L2(Λ) +

1

2
tr(σ(x, u)∗Ptσ(x, u))

+ tr(σ(x, u)∗[qt − Ptσ(x̄t, ūt)]). (2.104)

Remark 2.17. Notice that the generalized Hamiltonian G consists of the Hamiltonian
H defined in (1.8) and the correction term

tr(σ(x, u)∗[qt − Ptσ(x̄t, ūt)]). (2.105)

Below, in Example 2.18, we give a simple example in which this correction term does
not vanish.

Proof. Inequality (2.53) states

E
[∫ T

s
〈b(x̄r, uεr)− b(x̄r, ūr), pr〉L2(Λ) + 〈σ(x̄r, u

ε
r)− σ(x̄r, ūr), qr〉L2(Ξ,L2(Λ)) dr

]
+

1

2
E
[∫ T

s
〈P ηr ,Φε

r〉L2(Λ2) + 〈Qηr ,Ψε
r〉L2(Ξ,L2(Λ2))dr

]
+ E

[∫ T

s

∫
Λ
l(x̄r(λ), uεr)− l(x̄r(λ), ūr)dλdr

]
+

1

2
E
[∫

Λ
hxx(x̄T (λ))yεT (λ)yεT (λ)dλ−

∫
Λ2

hηxx(λ, µ)Y ε
T (λ, µ)dλdµ

]
≥ o(ε).

(2.106)
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Localizing by dividing by ε and taking the limit ε→ 0 yields

1

ε
E
[∫ T

s
〈b(x̄r, uεr)− b(x̄r, ūr), pr〉L2(Λ) + 〈σ(x̄r, u

ε
r)− σ(x̄r, ūr), qr〉L2(Ξ,L2(Λ)) dr

]
+

1

2ε
E
[∫ T

s
〈P ηr ,Φε

r〉L2(Λ2) + 〈Qηr ,Ψε
r〉L2(Ξ,L2(Λ2))dr

]
+

1

ε
E
[∫ T

s

∫
Λ
l(x̄r(λ), uεr)− l(x̄r(λ), ūr)dλdr

]
→ 〈b(x̄t, v)− b(x̄t, ūt), pt〉L2(Λ) + 〈σ(x̄t, v)− σ(x̄t, ūt), qt〉L2(Ξ,L2(Λ))

+

∫
Λ
l(x̄t(λ), v)− l(x̄t(λ), ūt)dλ

+
1

2

〈
P ηt (λ, µ),〈σ(x̄t(λ), v)−σ(x̄t(λ), ūt), σ(x̄t(µ), v)−σ(x̄t(µ), ūt)〉L2(Ξ,R)

〉
L2(Λ2)

.

(2.107)

Notice that all but the remaining term in

E
[∫ T

s
〈P ηr ,Φε

r〉L2(Λ2) + 〈Qηr ,Ψε
r〉L2(Ξ,L2(Λ2))dr

]
(2.108)

are of order o(ε). It remains to prove that

lim
ε→0

1

ε
E
[∫

Λ
hxx(x̄T (λ))yεT (λ)yεT (λ)dλ−

∫
Λ2

hηxx(λ, µ)Y ε
T (λ, µ)dλdµ

]
(2.109)

vanishes in the limit η → 0. Using Lemma 2.15 and the compact embedding Hγ
0 (Λ) ⊂⊂

L2(Λ), γ ∈ (0, 1/2) (see e.g. [DD12, Theorem 4.54]), we can extract a subsequence of
yεT /
√
ε converging in L2(Λ) to some ỹT ∈ L2(Λ). Therefore

lim
ε→0

1

ε
E
[∫

Λ
hxx(x̄T (λ))yεT (λ)yεT (λ)dλ−

∫
Λ2

hηxx(λ, µ)Y ε
T (λ, µ)dλdµ

]
= E

[∫
Λ
hxx(x̄T (λ))ỹT (λ)ỹT (λ)dλ−

∫
Λ2

hηxx(λ, µ)ỹT (λ)ỹT (µ)dλdµ

]
,

(2.110)

which vanishes in the limit η → 0. This concludes the proof.

Example 2.18. Let (Wt)t∈[0,T ] be a one-dimensional Brownian motion. Consider the
scalar-valued controlled state equation{

dxut = utdt+ utdWt, t ∈ [0, T ]

xu0 = x ∈ R
(2.111)

and the cost functional
J(u) = E

[
1

2
(xuT )2

]
. (2.112)
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In this case, the adjoint equations read{
dpt = qtdWt, t ∈ [0, T ]

pT = x̄T
(2.113)

and {
dPt = QtdWt, t ∈ [0, T ]

PT = 1.
(2.114)

Therefore, the second order adjoint state is given by (Pt, Qt) = (1, 0).
Using the theory for linear quadratic control problem (see [YZ99, Chapter 6]), we

calculate the optimal feedback control as

ūt = −x̄t. (2.115)

Making the ansatz pt = θ(t)x̄t for some θ ∈ C1([0, T ]) and applying Itô’s rule yields

dpt = (θ̇(t)− θ(t))x̄tdt− θ(t)x̄tdWt. (2.116)

Equation (2.113) yields {
θ̇(t) = θ(t), t ∈ [0, T ]

θ(T ) = 1,
(2.117)

thus θ(t) = exp(t − T ). Therefore, the first order adjoint state is given by pt =
exp(t− T )x̄t and qt = − exp(t− T )x̄t.

Altogether, we have for x 6= 0

qt = − exp(t− T )x̄t 6= −x̄t = ūt = Ptσ(x̄t, ūt). (2.118)
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3. Viscosity Differentials of the Value Function

In this chapter, we derive additional necessary optimality conditions for controlled
semilinear SPDEs with Nemytskii-type coefficients. In particular, we relate the adjoint
states to the viscosity differentials of the value function evaluated along an optimal
trajectory. This chapter is based on [SW22].

3.1. Introduction

In this chapter, we work in the same framework as in Chapter 2. However, Assumption
2.1 has to be slightly modified and Assumption 2.2 has to be expanded.

We need the dynamic programming principle, which relies on the weak formulation
of the control problem. Therefore, we introduce the following framework. For a more
detailed discussion of the weak formulation, see [FGŚ17, Section 2.1.2].

Assumption 3.1. (A1)′ Let (W ν
t )t∈[s,T ] be a cylindrical Wiener process on a prob-

ability space (Ων ,Fν ,Pν) with values in some real, separable Hilbert space Ξ
and W ν

s = 0 Pν-almost surely. Let (Fsν,t)t∈[s,T ] be the filtration generated by
(W ν

t ) augmented by all Pν-null sets. Following [FGŚ17, Definition 2.7], we call
ν = (Ων ,Fν , (Fsν,t)t∈[s,T ],Pν ,W ν) a reference probability space. Furthermore,
assume that ν is standard in the sense of [FGŚ17, Definition 2.8].

(A2)′ Let U be a non-empty subset of a separable Banach space U , and let

Uνs :=
{
u : [s, T ]× Ω→ U

∣∣∣u is (Fsν,t)− progressively measurable and

sup
t∈[s,T ]

E
[
‖ut‖kU

]
<∞, ∀k ∈ N

}
. (3.1)

The set of all admissible controls is given by

Us :=
⋃
ν

Uνs , (3.2)

where the union is taken over all standard reference probability spaces ν.

We keep the Assumption 2.2, and impose additionally the following assumption on
the coefficients of the state equation.

Assumption 3.2. (B3)′ Assume that there exists a generic constant C > 0 such that
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3. Viscosity Differentials of the Value Function

for all x, y ∈ R and u ∈ U it holds{
|bx(x, u)− bx(y, u)| ≤ C|x− y|
|bxx(x, u)− bxx(y, u)| ≤ C|x− y|.

(3.3)

(B4)′ Assume that there exists a generic constant C > 0 such that for all x, y ∈ R and
u ∈ U it holds {

|σx(x, u)− σx(y, u)| ≤ C|x− y|
|σxx(x, u)− σxx(y, u)| ≤ C|x− y|.

(3.4)

Now, we define the value function as

V (s, x) := inf
u∈Us

Jν(s, x;u), (3.5)

where

Jν(s, x;u) = Eν
[∫ T

s

∫
Λ
l(xut (λ), ut)dλdt+

∫
Λ
h(xuT (λ))dλ

]
. (3.6)

Note that this value function coincides with the value function obtained by minimizing
the cost functional J over all admissible controls defined on any fixed reference
probability space (not necessarily standard), see [FGŚ17, Theorem 2.22], and thus
we would obtain the same value function by minimizing over all admissible controls
and all reference probability spaces. In this setting, the value function satisfies the
dynamic programming principle, see [FGŚ17, Theorem 2.24].

Throughout this chapter and the following chapter, we denote by

Et[ · ] := E[ · |Fsν,t] (3.7)

the conditional expectation on a given reference probability space ν.

3.2. Parabolic Derivatives

In this section, we are going to prove a relationship between the parabolic viscosity
super- and subdifferentials of the value function on the one hand and the first and
second order adjoint state on the other hand.

First, let us recall the definition of the parabolic viscosity super- and subdifferential.

Definition 3.3. For v ∈ C([s, T ]× L2(Λ)) the parabolic viscosity superdifferential of
v at (t, x) ∈ [s, T )× L2(Λ) is the set

D1,2,+
t+,x v(t, x) :=

{
(G, p, P ) ∈ R× L2(Λ)× S(L2(Λ))

∣∣∣∣∣lim sup
τ↓0,z→0

1

τ + ‖z‖2
L2(Λ)[

v(t+ τ, x+ z)− v(t, x)−Gτ − 〈p, z〉L2(Λ) −
1

2
〈z, Pz〉L2(Λ)

]
≤ 0

}
. (3.8)
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The parabolic viscosity subdifferential D1,2,−
t+,x v is defined analogously with the lim sup

replaced by lim inf and the ≤ replaced by ≥.

Now, we are ready to state the main result of this section.

Theorem 3.4 (Parabolic Viscosity Differentials). Let (x̄, ū) be an optimal pair of the
control problem (2.2) and (2.1), (p, q) and (P,Q) be the first and second order adjoint
states, respectively, G be the generalized Hamiltonian defined in (2.104), and V be the
value function. Then it holds for almost every t ∈ [s, T ],

[−〈∆x̄t, pt〉H−1(Λ)×H1
0 (Λ) − G(t, x̄t, ūt),∞)× {pt} × S�Pt(L2(Λ)) ⊂ D1,2,+

t+,x V (t, x̄t),

(3.9)
P–almost surely. Furthermore, for almost every t ∈ [s, T ],

D1,2,−
t+,x V (t, x̄t) ⊂ (−∞,−〈∆x̄t, pt〉H−1(Λ)×H1

0 (Λ) − G(t, x̄t, ūt)]× {pt} × S�Pt(L2(Λ)),

(3.10)
P–almost surely. Here we define

S�Pt(L2(Λ)) := {S ∈ S(L2(Λ)) : S − Pt is a positive operator}, (3.11)

and S�Pt(L2(Λ)) mutatis mutandis.

Remark 3.5. Equation (3.9) in particular implies that the parabolic viscosity su-
perdifferential is not empty.

First, we discuss several lemmata that are needed in the proof of Theorem 3.4. We
suggest that the reader skip directly to the proof of Theorem 3.4 in Section 3.2.5 and
refer to the lemmata as needed.

3.2.1. Variational Equation

In contrast to Chapter 2, where we perturbed the optimal control, in this chapter we
perturb the initial condition of the control problem. Nevertheless, the arguments used
here are similar to the ones used before. We begin by introducing the appropriate
variational equation and by deriving a priori bounds as well as regularity results for
the solution.

Lemma 3.6. Let τ ∈ [0, T − t) and z ∈ L2(Λ), and let{
dxτ,zr = [∆xτ,zr + b(xτ,zr , ūr)] dr + σ(xτ,zr , ūr)dWr, r ∈ [t+ τ, T ]

xτ,zt+τ = z + x̄t ∈ L2(Λ).
(3.12)

Define yτ,zr := xτ,zr − x̄r, i.e.,
dyτ,zr = [∆yτ,zr + b(xτ,zr , ūr)− b(x̄r, ūr)] dr

+ [σ(xτ,zr , ūr)− σ(x̄r, ūr)] dWr, r ∈ [t+ τ, T ]

yτ,zt+τ = z + x̄t − x̄t+τ ∈ L2(Λ).

(3.13)
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Then, for any k ∈ N it holds for almost every t ∈ [s, T ],

Et

[(∫ T

t+τ
‖yτ,zr ‖2H1

0 (Λ)dr

)k
+ sup
r∈[t+τ,T ]

‖yτ,zr ‖
2k
L2(Λ)

]
≤ C

(
τk + ‖z‖2kL2(Λ)

)
(3.14)

P–almost surely.

Proof. Using the Lipschitz continuity of b and σ, and standard a priori estimates, we
obtain similarly to the proof of Lemma 2.5

Et

[(∫ T

t+τ
‖yτ,zr ‖2H1

0 (Λ)dr

)k
+ sup
r∈[t+τ,T ]

‖yτ,zr ‖
2k
L2(Λ)

]
≤ CEt

[
‖z + x̄t − x̄t+τ‖2kL2(Λ)

]
≤ C

(
‖z‖2kL2(Λ) + Et

[
‖x̄t+τ − x̄t‖2kL2(Λ)

])
.

(3.15)

The claim follows from the fact that

Et
[
‖x̄t+τ − x̄t‖2kL2(Λ)

]
≤ Cτk, (3.16)

for every k ∈ N.

Next, we derive a Taylor expansion for the variational process yτ,z.

Lemma 3.7. The variational process yτ,z given by (3.13) satisfies the equations{
dyτ,zr =

[
∆yτ,zr + bx(x̄r, ūr)y

τ,z
r + ϕ1

r

]
dr +

[
σx(x̄r, ūr)y

τ,z
r + ψ1

r

]
dWr

yτ,zt+τ = z + x̄t − x̄t+τ ∈ L2(Λ),
(3.17)

where

ϕ1
r :=

∫ 1

0
[bx(x̄r + θyτ,zr , ūr)− bx(x̄r, ūr)] y

τ,z
r dθ

ψ1
r :=

∫ 1

0
[σx(x̄r + θyτ,zr , ūr)− σx(x̄r, ūr)] y

τ,z
r dθ,

(3.18)

and
dyτ,zr =

[
∆yτ,zr + bx(x̄r, ūr)y

τ,z
r + 1

2bxx(x̄r, ūr)y
τ,z
r yτ,zr + ϕ2

r

]
dr

+
[
σx(x̄r, ūr)y

τ,z
r + 1

2σxx(x̄r, ūr)y
τ,z
r yτ,zr + ψ2

r

]
dWr, r ∈ [t+ τ, T ]

yτ,zt+τ = z + x̄t − x̄t+τ ∈ L2(Λ),

(3.19)
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where

ϕ2
r :=

∫ 1

0
(1− θ) [bxx(x̄r + θyτ,zr , ūr)− bxx(x̄r, ūr)] y

τ,z
r yτ,zr dθ

ψ2
r :=

∫ 1

0
(1− θ) [σxx(x̄r + θyτ,zr , ūr)− σxx(x̄r, ūr)] y

τ,z
r yτ,zr dθ.

(3.20)

The remainder terms satisfy for every k ∈ N, for almost every t ∈ [s, T ],

Et
[∫ T

t+τ
‖ϕ1

r‖2kL2(Λ)dr

]
= o

(
τk + ‖z‖2kL2(Λ)

)
,

Et
[∫ T

t+τ
‖ψ1

r‖2kL2(Ξ,L2(Λ))dr

]
= o

(
τk + ‖z‖2kL2(Λ)

)
,

(3.21)

as τ ↓ 0, z → 0, z ∈ L2(Λ), P–almost surely, and for almost every t ∈ [s, T ]

Et
[∫ T

t+τ
‖ϕ2

r‖kL2(Λ)dr

]
= o

(
τk + ‖z‖2kL2(Λ)

)
,

Et
[∫ T

t+τ
‖ψ2

r‖kL2(Ξ,L2(Λ))dr

]
= o

(
τk + ‖z‖2kL2(Λ)

)
,

(3.22)

as τ ↓ 0, z → 0, z ∈ L2(Λ), P–almost surely.

Proof. The equations follow from the original equation for yτ,z and Taylor’s theorem
for the Gâteaux derivative, see [Zei86, Section 4.6].
Now let us prove the first asymptotic in (3.21). By Lipschitz continuity of the

derivative of b, we have

Et

[∫ T

t+τ

∥∥∥∥∫ 1

0
[bx(x̄r + θyτ,zr , ūr)− bx(x̄r, ūr)] y

τ,z
r dθ

∥∥∥∥2k

L2(Λ)

dr

]

≤ Et
[∫ T

t+τ

∫ 1

0
θ2k ‖yτ,zr ‖

4k
L2(Λ) dθdr

]
≤ Et

[∫ T

t+τ
‖yτ,zr ‖

4k
L2(Λ) dr

]
≤ C

(
τ2k + ‖z‖4kL2(Λ)

)
,

(3.23)

where we used Lemma 3.6 in the last step. The remaining estimates follow analogously
using the Lipschitz continuity of the first derivative of σ and the Lipschitz continuity
of the second derivatives of b and σ.

The following higher regularity of the variational process at the terminal time is
needed in order to extract convergent subsequences as τ + ‖z‖2L2(Λ) tends to zero.
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Lemma 3.8. Let yτ,z be the variational process given by equation (3.17). Then, for
any γ ∈ (0, 1/4), we have for almost every t ∈ [s, T ],

Et
[∥∥yτ,zT ∥∥2

Hγ
0 (Λ)

]
≤ C

(
τ + ‖z‖2L2(Λ)

)
(3.24)

P–almost surely.

Proof. The proof is similar to the proof of Lemma 2.15. By Lemma 3.7 and Duhamel’s
formula, we have

yτ,zT =ST−t−τ (z + x̄t − x̄t+τ ) +

∫ T

t+τ
Sr−t−τ

(
bx(x̄r, ūr)y

τ,z
r + ϕ1

r

)
dr

+

∫ T

t+τ
Sr−t−τ

(
σx(x̄r, ūr)y

τ,z
r + ψ1

r

)
dWr,

(3.25)

where (Sr)r≥0 denotes the heat semigroup. Now, let us estimate the Hγ
0 (Λ)-norm. For

the term involving the initial condition, we have

Et
[
‖ST−t−τ (z + x̄t − x̄t+τ )‖2Hγ

0 (Λ)

]
≤ CEt

[
‖z + x̄t − x̄t+τ‖2L2(Λ)

]
≤ C

(
‖z‖2L2(Λ) + Et

[
‖x̄t+τ − x̄t‖2L2(Λ)

])
.
(3.26)

Since
Et
[
‖x̄t+τ − x̄t‖2L2(Λ)

]
≤ Cτ, (3.27)

the term involving the initial condition satisfies the required bound. Now let us
consider the first integral in (3.25). We have

Et

[∥∥∥∥∫ T

t+τ
Sr−t−τ (bx(x̄r, ūr)y

τ,z
r ) dr

∥∥∥∥2

Hγ
0 (Λ)

]

≤ CEt
[∫ T

t+τ

1

(r − t− τ)2γ
‖bx(x̄r, ūr)y

τ,z
r ‖

2
L2(Λ) dr

]
≤ C sup

t+τ≤r≤T
Et
[
‖yτ,zr ‖

2
L2(Λ)

] ∫ T

t+τ

1

(r − t− τ)2γ
dr.

(3.28)

The required bound now follows from Lemma 3.6. For the second part of the first
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integral, we have

Et

[∥∥∥∥∫ T

t+τ
Sr−t−τϕ

1
rdr

∥∥∥∥2

Hγ
0 (Λ)

]

≤ CEt

∫ T

t+τ

∥∥ϕ1
r

∥∥2

L2(Λ)

(r − t− τ)2γ
dr


≤ CEt

[∫ T

t+τ

∥∥ϕ1
r

∥∥4

L2(Λ)
dr

] 1
2
(∫ T

t+τ

1

(r − t− τ)4γ
dr

) 1
2

.

(3.29)

The required bound for this term follows from Lemma 3.7. For the stochastic integral
in (3.25), we have

Et

[∥∥∥∥∫ T

t+τ
Sr−t−τ

(
σx(x̄r, ūr)y

τ,z
r + ψ1

r

)
dWr

∥∥∥∥2

Hγ
0 (Λ)

]

= Et
[∫ T

t+τ

∥∥Sr−t−τ (σx(x̄r, ūr)y
τ,z
r + ψ1

r

)∥∥2

L2(Ξ,Hγ
0 (Λ))

dr

]
≤ Et

[∫ T

t+τ

C

(r − t− τ)2γ

∥∥σx(x̄r, ūr)y
τ,z
r + ψ1

r

∥∥2

L2(Ξ,L2(Λ))
dr

]
.

(3.30)

Using the same argument as above yields the claim.

3.2.2. Duality Relations

Now, we discuss the duality relations for the first and second order adjoint states,
respectively.

Lemma 3.9. Let yτ,z be the variational process given by (3.19) and let p be the first
order adjoint state. Then it holds for almost every t ∈ [s, T ],

Et
[∫ T

t+τ
〈lx(x̄r, ūr), y

τ,z
r 〉L2(Λ)dr + 〈hx(x̄T ), yτ,zT 〉L2(Λ)

]
= Et

[
〈pt+τ , yτ,zt+τ 〉L2(Λ)

]
+ Et

[
1

2

∫ T

t+τ
〈pr, bxx(x̄r, ūr)y

τ,z
r yτ,zr 〉L2(Λ) + 〈qr, σxx(x̄r, ūr)y

τ,z
r yτ,zr 〉L2(Ξ,L2(Λ))dr

]
+ Et

[∫ T

t+τ
〈pr, ϕ2

r〉L2(Λ) + 〈qr, ψ2
r 〉L2(Ξ,L2(Λ))dr

]
,

(3.31)

P–almost surely. Furthermore, it holds for almost every t ∈ [s, T ],

Et
[∫ T

t+τ
〈pr, ϕ2

r〉L2(Λ) + 〈qr, ψ2
r 〉L2(Ξ,L2(Λ))dr

]
= o

(
τ + ‖z‖2L2(Λ)

)
(3.32)

40



3. Viscosity Differentials of the Value Function

as τ ↓ 0, z → 0, z ∈ L2(Λ), P–almost surely.

Proof. Applying Itô’s formula for variational solutions of SPDEs (see [Par21, Lemma
2.15] or [Kry13, Section 3]) to 〈yτ,zr , pr〉L2(Λ) yields

〈yτ,zT , hx(x̄T )〉L2(Λ)

= 〈yτ,zt+τ , pt+τ 〉L2(Λ) +

∫ T

t+τ
prdy

τ,z
r +

∫ T

t+τ
yτ,zr dpr +

∫ T

t+τ
d〈yτ,z, p〉r

=

∫ T

t+τ
〈pr,∆yτ,zr + bx(x̄r, ūr)y

τ,z
r +

1

2
bxx(x̄r, ūr)y

τ,z
r yτ,zr + ϕ2

r〉L2(Λ)dr

+

∫ T

t+τ
〈pr, σx(x̄r, ūr)y

τ,z
r +

1

2
σxx(x̄r, ūr)y

τ,z
r yτ,zr + ψ2

rdWr〉L2(Λ)

−
∫ T

t+τ
〈yτ,zr ,∆pr + bx(x̄r, ūr)pr + 〈σx(x̄r, ūr), qr〉L2(Ξ,R) + lx(x̄r, ūr)〉L2(Λ)dr

+

∫ T

t+τ
〈yτ,zr , qrdWr〉L2(Λ)

+

∫ T

t+τ
〈qr, σx(x̄r, ūr)y

τ,z
r +

1

2
σxx(x̄r, ūr)y

τ,z
r yτ,zr + ψ2

r 〉L2(Ξ,L2(Λ))dr

(3.33)

Applying an integration by parts for the Laplace operator, canceling out matching
terms with opposite sign, and taking the conditional expectation yields the claim
(3.31).

For the remainder term estimate, we observe

Et
[∫ T

t+τ
〈pr, ϕ2

r〉L2(Λ) + 〈qr, ψ2
r 〉L2(Ξ,L2(Λ))dr

]
≤ Et

[∫ T

t+τ
‖pr‖L2(Λ)‖ϕ2

r‖L2(Λ) + ‖qr‖L2(Ξ,L2(Λ))‖ψ2
r‖L2(Ξ,L2(Λ))dr

]

≤ Et
[∫ T

t+τ
‖pr‖2L2(Λ)dr

] 1
2

Et
[∫ T

t+τ
‖ϕ2

r‖2L2(Λ)dr

] 1
2

+ Et
[∫ T

t+τ
‖qr‖2L2(Ξ,L2(Λ))dr

] 1
2

Et
[∫ T

t+τ
‖ψ2

r‖2L2(Ξ,L2(Λ))dr

] 1
2

(3.34)

Since the first factor is finite in each case, the claim follows from the remainder
estimates (3.22).

Lemma 3.10. Let yτ,z be the process given by equation (3.17), and let P η be the
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mollified second order adjoint state. Then it holds for almost every t ∈ [s, T ],

Et
[∫ T

t+τ

∫
Λ

(lxx(x̄r(λ), ūr) + bxx(x̄r(λ), ūr)pr(λ))yτ,zr (λ)yτ,zr (λ)dλdr

]
+ Et

[∫ T

t+τ

∫
Λ
〈σxx(x̄r(λ), ūr), qr〉L2(Ξ,R)y

τ,z
r (λ)yτ,zr (λ)dλdr

]
+ Et

[∫
Λ2

hηxx(λ, µ)yτ,zT (λ)yτ,zT (µ)dλdµ

]
= Et

[∫
Λ2

P ηt+τ (λ, µ)yτ,zt+τ (λ)yτ,zt+τ (µ)dλdµ

]
+ Et

[∫ T

t+τ
〈P ηr ,Φτ,z

r 〉L2(Λ2) + 〈Qηr ,Ψτ,z
r 〉L2(Ξ,L2(Λ2))dr

]
,

(3.35)

P–almost surely, where

(Φτ,z,Ψτ,z) ∈ L2([s, T ]× Ω;L2(Λ2))× L2([s, T ]× Ω;L2(Ξ, L2(Λ2))) (3.36)

are given by

Φτ,z
r (λ, µ) :=yτ,zr (λ)ϕ1

r(µ) + yτ,zr (µ)ϕ1
r(λ)

+ σx(x̄r(λ), ūr)y
τ,z
r (λ)ψ1

r (µ) + σx(x̄r(µ), ūr)y
τ,z
r (µ)ψ1

r (λ)

+ ψ1
r (λ)ψ1

r (µ),

(3.37)

and
Ψτ,z
r (λ, µ) := yτ,zr (λ)ψ1

r (µ) + yτ,zr (µ)ψ1
r (λ). (3.38)

Furthermore, we have for almost every t ∈ [s, T ],

Et
[∫ T

t+τ
〈P ηr ,Φτ,z

r 〉L2(Λ2) + 〈Qηr ,Ψτ,z
r 〉L2(Ξ,L2(Λ2))dr

]
= o

(
τ + ‖z‖2L2(Λ)

)
(3.39)

as τ ↓ 0, z → 0, z ∈ L2(Λ), P–almost surely.

Proof. In order to invoke the second order adjoint state, we use the same idea as in
the proof of the maximum principle in Chapter 2. We rewrite the quadratic terms in
yτ,z in the following way

〈pr, bxx(x̄r, ūr)y
τ,z
r yτ,zr 〉L2(Λ) =

∫
Λ
pr(λ)bxx(x̄r(λ), ūr)y

τ,z
r (λ)yτ,zr (λ)dλ

=

∫
Λ
pr(λ)bxx(x̄r(λ), ūr)δ(Y

τ,z
r )(λ)dλ,

(3.40)

where Y τ,z
r (λ, µ) := yτ,zr (λ)yτ,zr (µ) and δ is the operator introduced in Proposition 2.9.

Next, let us derive the equation for Y τ,z. Similar to the calculation in Chapter 2,
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we have
dY τ,z

r (λ, µ) = [∆Y τ,z
r (λ, µ) + (bx(x̄r(λ), ūr) + bx(x̄r(µ), ūr))Y

τ,z
r (λ, µ)

+〈σx(x̄r(λ), ūr), σx(x̄r(µ), ūr)〉L2(Ξ,R)Y
τ,z
r (λ, µ) + Φτ,z

r (λ, µ)]dr

+[(σx(x̄r(λ), ūr) + σx(x̄r(µ), ūr))Y
τ,z
r (λ, µ) + Ψτ,z

r (λ, µ)]dWr

Y τ,z
t+τ = (z + x̄t − x̄t+τ )⊗ (z + x̄t − x̄t+τ ).

(3.41)
We want to apply Itô’s formula to the product 〈Y τ,z

r , Pr〉L2(Λ2). Since P itself is not
sufficiently regular, we take the mollified second order adjoint process given by equation
(2.59), instead. Applying Itô’s formula to 〈Y τ,z

r , P ηr 〉L2(Λ2) yields the duality relation
(3.35).

For the first term in the remainder estimate, we observe

Et
[∫ T

t+τ
〈P ηr ,Φτ,z

r 〉L2(Λ2)dr

]
≤ Et

[∫ T

t+τ
‖P ηr ‖2L2(Λ2)dr

] 1
2

Et
[∫ T

t+τ
‖Φτ,z

r ‖2L2(Λ2)dr

] 1
2

.

(3.42)
Since the first factor is finite, the claim follows from the a priori estimates in Lemma 3.6
and (3.21).

For the second term in the remainder estimate, we have

Et
[∫ T

t+τ
〈Qηr ,Ψτ,z

r 〉L2(Ξ,L2(Λ2))dr

]

≤ Et
[∫ T

t+τ
‖Qηr‖2L2(Ξ,L2(Λ2))dr

] 1
2

Et
[∫ T

t+τ
‖Ψτ,z

r ‖2L2(Ξ,L2(Λ2))dr

] 1
2

.

(3.43)

Since

‖Ψτ,z
r ‖2L2(Ξ,L2(Λ2)) = ‖yτ,zr ⊗ ψ1

r + ψ1
r ⊗ yτ,zr ‖2L2(Ξ,L2(Λ2))

= ‖yτ,zr ‖2L2(Λ)‖ψ
1
r‖2L2(Ξ,L2(Λ)) + ‖yτ,zr ‖2L2(Λ)‖ψ

1
r‖2L2(Ξ,L2(Λ)),

(3.44)

the claim follows again from Lemma 3.6 and (3.21).

3.2.3. Time-Increments

The next two lemmata address the time increment.

Lemma 3.11. It holds for almost every t ∈ [s, T ],

Et
[
〈pt+τ , x̄t+τ − x̄t〉L2(Λ)

]
= τEt

[
〈pt,∆x̄t + b(x̄t, ūt)〉H1

0 (Λ)×H−1(Λ) + 〈qt, σ(x̄t, ūt)〉L2(Ξ,L2(Λ))

]
+ o(τ),

(3.45)

as τ ↓ 0, P–almost surely.

Proof. Applying Itô’s formula for variational solutions of SPDEs and taking the
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conditional expectation, we obtain

Et
[
〈pt+τ , x̄t+τ − x̄t〉L2(Λ)

]
= Et

[∫ t+τ

t
〈∆pr, x̄t〉H−1(Λ)×H1

0 (Λ) + 〈pr, b(x̄r, ūr)〉L2(Λ) + 〈σ(x̄r, ūr), qr〉L2(Ξ,L2(Λ))dr

]
− Et

[∫ t+τ

t
〈x̄r − x̄t, bx(x̄r, ūr)pr + 〈σx(x̄r, ūr), qr〉+ lx(x̄r, ūx)〉L2(Λ) dr

]
.

(3.46)

Note that the stochastic integrals vanish under the expectation. For the first term, we
have ∣∣∣∣Et [1

τ

∫ t+τ

t
〈∆(pr − pt), x̄t〉H−1(Λ)×H1

0 (Λ)dr

]∣∣∣∣
≤ Et

[
1

τ

∫ t+τ

t
‖pr − pt‖H1

0 (Λ)‖x̄t‖H1
0 (Λ)dr

]
≤ Et

[
1

τ

∫ t+τ

t
‖pr − pt‖2H1

0 (Λ)dr

] 1
2

‖x̄t‖H1
0 (Λ).

(3.47)

By Lebesgue’s differentiation theorem, we have for almost every t ∈ [s, T ],

1

τ

∫ t+τ

t
Et
[
‖pr − pt‖2H1

0 (Λ)

]
dr → 0 (3.48)

P–almost surely. Hence, we obtain for almost every t ∈ [s, T ],

Et
[

1

τ

∫ t+τ

t
〈∆pr, x̄t〉H−1(Λ)×H1

0 (Λ)dr

]
→ 〈∆pt, x̄t〉H−1(Λ)×H1

0 (Λ) (3.49)

P–almost surely along some subsequence. Arguing similarly for the second and third
term of equation (3.46) and noticing that the last line is of order o(τ) concludes the
proof.

Lemma 3.12. It holds for almost every t ∈ [s, T ],

Et
[∫

Λ2

P ηt+τ (λ, µ)(x̄t+τ − x̄t)(λ)(x̄t+τ − x̄t)(µ)dλdµ

]
= τEt

[∫
Λ2

P ηt (λ, µ)〈σ(x̄t(λ), ūt), σ(x̄t(µ), ūt)〉L2(Ξ,R)dλdµ

]
+ o(τ),

(3.50)

τ ↓ 0, P–almost surely.
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Proof. The equation for the tensor product (x̄t+τ − x̄t)⊗ (x̄t+τ − x̄t) is

d((x̄t+τ − x̄t)(λ)(x̄t+τ − x̄t)(µ))

= [(x̄t+τ − x̄t)(λ)∆x̄t+τ (µ) + (x̄t+τ − x̄t)(µ)∆x̄t+τ (λ)] dτ

+ [(x̄t+τ − x̄t)(λ)b(x̄t+τ (µ), ūt+τ ) + (x̄t+τ − x̄t)(µ)b(x̄t+τ (λ), ūt+τ )] dτ

+ 〈σ(x̄t+τ (λ), ūt+τ ), σ(x̄t+τ (µ), ūt+τ )〉L2(Ξ,R)dτ

+ [(x̄t+τ − x̄t)(λ)σ(x̄t+τ (µ), ūt+τ ) + (x̄t+τ − x̄t)(µ)σ(x̄t+τ (λ), ūt+τ )] dWτ .

(3.51)

Again, applying Itô’s formula for variational solutions of SPDEs and taking the
conditional expectation yields

Et
[〈
P ηt+τ , (x̄t+τ − x̄t)⊗ (x̄t+τ − x̄t)

〉]
= Et

[∫ t+τ

t
〈P ηr , d((x̄r − x̄t)⊗ (x̄r − x̄t))〉+

∫ t+τ

t
〈(x̄r − x̄t)⊗ (x̄r − x̄t), dP ηr 〉

]
+ Et [〈P η· , (x̄· − x̄t)⊗ (x̄· − x̄t)〉t+τ ] ,

(3.52)

where

Et
[∫ t+τ

t
〈P ηr , d((x̄r − x̄t)⊗ (x̄r − x̄t))〉

]
= Et

[∫ t+τ

t
〈P ηr , (x̄r − x̄t)(λ)∆x̄r(µ) + (x̄r − x̄t)(µ)∆x̄r(λ)〉dr

]
+ Et

[∫ t+τ

t
〈P ηr , (x̄r − x̄t)(λ)b(x̄r(µ), ūr) + (x̄r − x̄t)(µ)b(x̄r(λ), ūr)〉dr

]
+ Et

[∫ t+τ

t
〈P ηr , 〈σ(x̄r(λ), ūr), σ(x̄r(µ), ūr)〉L2(Ξ,R)〉dr

]
,

(3.53)
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and

Et
[∫ t+τ

t
〈(x̄r − x̄t)⊗ (x̄r − x̄t), dP ηr 〉

]
= Et

[∫ t+τ

t
〈(x̄r − x̄t)(λ)(x̄r − x̄t)(µ),∆P ηr (λ, µ)〉dr

]
+ Et

[∫ t+τ

t
〈(x̄r − x̄t)(λ)(x̄r − x̄t)(µ), (bx(x̄r(λ), ūr) + bx(x̄r(µ), ūr))P

η
r (λ, µ)〉dr

]
+ Et

[∫ t+τ

t
〈(x̄r − x̄t)(λ)(x̄r − x̄t)(µ), 〈σx(x̄r(λ), ūr), σx(x̄r(µ), ūr)〉P ηr (λ, µ)〉dr

]
+ Et

[∫ t+τ

t
〈(x̄r − x̄t)(λ)(x̄r − x̄t)(µ), 〈σx(x̄r(λ), ūr) + σx(x̄r(µ), ūr), Q

η
r(λ, µ)〉〉dr

]
+ Et

[∫ t+τ

t
〈(x̄r − x̄t)(λ)(x̄r − x̄t)(µ), δ∗(lxx(x̄r(λ), ūr) + bxx(x̄r(λ), ūr)pr(λ))〉dr

]
+ Et

[∫ t+τ

t
〈(x̄r − x̄t)(λ)(x̄r − x̄t)(µ), δ∗(〈σxx(x̄r(λ), ūr), qr〉L2(Ξ,R))〉dr

]
,

(3.54)

and

Et [〈P η· , (x̄· − x̄t)⊗ (x̄· − x̄t)〉t+τ ]

= Et
[∫ t+τ

t
〈(x̄r − x̄t)⊗ σ(x̄r, ūr) + σ(x̄r, ūr)⊗ (x̄r − x̄t), Qηr〉L2(Ξ,L2(Λ2))dr

]
.

(3.55)

Except

Et
[∫ t+τ

t
〈P ηr , 〈σ(x̄r(λ), ūr), σ(x̄r(µ), ūr)〉L2(Ξ,R)〉dr

]
, (3.56)

the integrand in each summand contains the term x̄r − x̄t. Therefore, arguing as in
the proof of Lemma 3.11, when dividing by τ and taking the limit τ ↓ 0, this is the
only remaining term.

3.2.4. Mixed Time- and Space-Increments

Lemma 3.13. It holds for almost every t ∈ [s, T ],

Et
[∫

Λ2

P ηt+τ (λ, µ)z(λ)(x̄t+τ − x̄t)(µ)dλdµ

]
= o

(
τ + ‖z‖2L2(Λ)

)
, (3.57)

as τ ↓ 0, z → 0, z ∈ L2(Λ), P–almost surely.

46



3. Viscosity Differentials of the Value Function

Proof. First note

Et
[∫

Λ2

P ηt+τ (λ, µ)z(λ)(x̄t+τ − x̄t)(µ)dλdµ

]
= Et

[∫
Λ2

(P ηt+τ − P
η
t )(λ, µ)z(λ)(x̄t+τ − x̄t)(µ)dλdµ

]
+ Et

[∫
Λ2

P ηt (λ, µ)z(λ)(x̄t+τ − x̄t)(µ)dλdµ

]
.

(3.58)

For the first expectation, we have

Et
[∫

Λ2

(P ηt+τ − P
η
t )(λ, µ)z(λ)(x̄t+τ − x̄t)(µ)dλdµ

]
≤ Et

[
‖P ηt+τ − P

η
t ‖2L2(Λ2)

] 1
2 ‖z‖L2(Λ)Et

[
‖x̄t+τ − x̄t‖2L2(Λ)

] 1
2
.

(3.59)

Since the second and third term are each of order O
(√

τ + ‖z‖2
L2(Λ)

)
, and P η is

continuous with values in L2(Λ2) P-almost surely, the whole expression is of order
o
(
τ + ‖z‖2L2(Λ)

)
.

For the second expectation in equation (3.58), we have

Et
[∫

Λ2

P ηt (λ, µ)z(λ)(x̄t+τ − x̄t)(µ)dλdµ

]
≤ ‖P ηt ‖L2(Λ2)‖z‖L2(Λ) ‖Et [x̄t+τ − x̄t]‖L2(Λ) .

(3.60)

Since

‖Et [x̄t+τ − x̄t]‖2L2(Λ) = 2

∫ t+τ

t
〈Et[x̄r − x̄t],Et[∆x̄r + b(x̄r, ūr)]〉H1

0 (Λ)×H−1(Λ)dr,

(3.61)
by Lebesgue’s differentiation theorem, we have for almost every t ∈ [s, T ],

‖Et [x̄t+τ − x̄t]‖L2(Λ) = o
(√
τ
)

(3.62)

P-almost surely. Therefore, for almost every t ∈ [s, T ],

Et
[∫

Λ2

P ηt (λ, µ)z(λ)(x̄t+τ − x̄t)(µ)dλdµ

]
= o

(
τ + ‖z‖2L2(Λ)

)
, (3.63)

P–almost surely, which concludes the proof.

Lemma 3.14. It holds for almost every t ∈ [s, T ],

Et
[∫

Λ
(pt+τ (λ)− pt(λ))z(λ)dλ

]
= o

(
τ + ‖z‖2L2(Λ)

)
, (3.64)
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as τ ↓ 0, z → 0, z ∈ L2(Λ), P–almost surely.

Proof. As in the proof of Lemma 3.13, we have

‖Et [pt+τ − pt]‖L2(Λ) = o
(√
τ
)
. (3.65)

Therefore,

Et
[∫

Λ
(pt+τ (λ)− pt(λ))z(λ)dλ

]
≤ ‖Et [pt+τ (λ)− pt(λ)]‖L2(Λ) ‖z‖L2(Λ)

= o
(
τ + ‖z‖2L2(Λ)

)
,

(3.66)

which concludes the proof.

3.2.5. Proof of Theorem 3.4

Fix t ∈ [s, T ] such that all the preceding lemmata hold P–almost surely, and let
τ ∈ (0, T − t). Using the dynamic programming principle under the conditional
expectation (see [YZ99, Chapter 4, Lemma 3.2 and Theorem 3.4] and [FGŚ17, Section
2.3.3]), we obtain for almost every t ∈ [s, T ],

V (t+ τ, x̄t + z)− V (t, x̄t)

≤ Et
[
−
∫ t+τ

t

∫
Λ
l(x̄r(λ), ūr)dλdr +

∫ T

t+τ

∫
Λ
l(xτ,zr (λ), ūr)− l(x̄r(λ), ūr)dλdr

]
+ Et

[∫
Λ
h(xτ,zT (λ))− h(x̄T (λ))dλ

]
= Et

[
−
∫ t+τ

t

∫
Λ
l(x̄r(λ), ūr)dλdr +

∫ T

t+τ

∫
Λ
lx(x̄r(λ), ūr)y

τ,z
r (λ)dλdr

]
+ Et

[∫
Λ
hx(x̄T (λ))yτ,zT (λ)dλ+

1

2

∫ T

t+τ

∫
Λ
lxx(x̄r(λ), ūr)y

τ,z
r (λ)yτ,zr (λ)dλdr

]
+ Et

[
1

2

∫
Λ
hxx(x̄T (λ))yτ,zT (λ)yτ,zT (λ)dλ

]
+ o

(
τ + ‖z‖2L2(Λ)

)
,

(3.67)

P-almost surely, where the remainder terms of the Taylor expansion are of order
o
(
τ + ‖z‖2L2(Λ)

)
for the same reason as in (3.21). Using the duality relations from

Lemma 3.9 and Lemma 3.10, and the estimates for the remainder terms of the duality
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relations, we obtain

V (t+ τ, x̄t + z)− V (t, x̄t)

≤ Et
[
−
∫ t+τ

t

∫
Λ
l(x̄r(λ), ūr)dλdr +

∫
Λ
pt+τ (λ)yτ,zt+τ (λ)dλ

]
+ Et

[
1

2

∫
Λ2

P ηt+τ (λ, µ)yτ,zt+τ (λ)yτ,zt+τ (µ)dλdµ

]
+

1

2
Et
[∫

Λ
hxx(x̄T (λ))yτ,zT (λ)yτ,zT (λ)dλ−

∫
Λ2

hηxx(λ, µ)yτ,zT (λ)yτ,zT (µ)dλdµ

]
+ o

(
τ + ‖z‖2L2(Λ)

)
.

(3.68)

Plugging in the initial condition

yτ,zt+τ = z + x̄t − x̄t+τ

= z −
(∫ t+τ

t
∆x̄r + b(x̄r, ūr)dr +

∫ t+τ

t
σ(x̄r, ūr)dWr

)
,

(3.69)

we have

V (t+ τ, x̄t + z)− V (t, x̄t)

≤ Et
[
−
∫ t+τ

t

∫
Λ
l(x̄r(λ), ūr)dλdr +

∫
Λ
pt+τ (λ)z(λ)dλ

]
− Et

[∫
Λ
pt+τ (λ)(x̄t+τ − x̄t)(λ)dλ

]
+

1

2
Et
[∫

Λ2

P ηt+τ (λ, µ)z(λ)z(µ)dλdµ

]
+

1

2
Et
[∫

Λ2

P ηt+τ (λ, µ)(x̄t+τ − x̄t)(λ)(x̄t+τ − x̄t)(µ)dλdµ

]
− Et

[∫
Λ2

P ηt+τ (λ, µ)z(λ)(x̄t+τ − x̄t)(µ)dλdµ

]
+

1

2
Et
[∫

Λ
hxx(x̄T (λ))yτ,zT (λ)yτ,zT (λ)dλ−

∫
Λ2

hηxx(λ, µ)yτ,zT (λ)yτ,zT (µ)dλdµ

]
+ o

(
τ + ‖z‖2L2(Λ)

)
.

(3.70)
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Now we apply Lemma 3.11, Lemma 3.12 and Lemma 3.13, and obtain

V (t+ τ, x̄t + z)− V (t, x̄t)

≤ τEt
[
− 〈pt,∆x̄t + b(x̄t, ūt)〉H1

0 (Λ)×H−1(Λ) − 〈qt, σ(x̄t, ūt)〉L2(Ξ,L2(Λ))

−
∫

Λ
l(x̄t(λ), ūt)dλ+

1

2

∫
Λ2

P ηt (λ, µ)〈σ(x̄t(λ), ūt), σ(x̄t(µ), ūt)〉L2(Ξ,R)dλdµ

]
+ Et

[∫
Λ
pt+τ (λ)z(λ)dλ+

1

2

∫
Λ2

P ηt+τ (λ, µ)z(λ)z(µ)dλdµ

]
+

1

2
Et
[∫

Λ
hxx(x̄T (λ))yτ,zT (λ)yτ,zT (λ)dλ−

∫
Λ2

hηxx(λ, µ)yτ,zT (λ)yτ,zT (µ)dλdµ

]
+ o

(
τ + ‖z‖2L2(Λ)

)
.

(3.71)

Adding a zero and rearranging terms yields

V (t+ τ, x̄t + z)− V (t, x̄t)−
(
−〈∆x̄t, pt〉H−1(Λ)×H1

0 (Λ) − G(t, x̄t, ūt)
)
τ

−
∫

Λ
pt(λ)z(λ)dλ− 1

2

∫
Λ2

Pt(λ, µ)z(λ)z(µ)dλdµ

≤ 1

2
tr (σ(x̄t, ūt)

∗(P ηt − Pt)σ(x̄t, ūt)) τ

+ Et
[∫

Λ
(pt+τ (λ)− pt(λ))z(λ)dλ

]
+ Et

[
1

2

∫
Λ2

(P ηt+τ (λ, µ)− Pt(λ, µ))z(λ)z(µ)dλdµ

]
+

1

2
Et
[∫

Λ
hxx(x̄T (λ))yτ,zT (λ)yτ,zT (λ)dλ−

∫
Λ2

hηxx(λ, µ)yτ,zT (λ)yτ,zT (µ)dλdµ

]
+ o

(
τ + ‖z‖2L2(Λ)

)
.

(3.72)

Using Lemma 3.14 and elementary estimates for the right-hand side, we obtain

V (t+ τ, x̄t + z)− V (t, x̄t)−
(
−〈∆x̄t, pt〉H−1(Λ)×H1

0 (Λ) − G(t, x̄t, ūt)
)
τ

−
∫

Λ
pt(λ)z(λ)dλ− 1

2

∫
Λ2

Pt(λ, µ)z(λ)z(µ)dλdµ

≤ 1

2
‖P ηt − Pt‖L2(Λ2)‖σ(x̄t, ūt)‖2L2(Ξ,L2(Λ))τ +

1

2
‖P ηt+τ − Pt‖L2(Λ2)‖z‖2L2(Λ)

+
1

2
Et
[∫

Λ
hxx(x̄T (λ))yτ,zT (λ)yτ,zT (λ)dλ−

∫
Λ2

hηxx(λ, µ)yτ,zT (λ)yτ,zT (µ)dλdµ

]
+ o

(
τ + ‖z‖2L2(Λ)

)
.

(3.73)
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Now, let (τk, zk)→ 0, τk > 0, be a sequence, which realizes the limit superior of the left-
hand side divided by τk + ‖zk‖2L2(Λ). By Lemma 3.8 and using the compact embedding
Hγ

0 (Λ) ⊂⊂ L2(Λ), γ ∈ (0, 1/2) (see, e.g., [DD12, Theorem 4.54]), we can extract a
subsequence – again denoted by (τk, zk) – such that yτk,zkT /

√
τk + ‖zk‖2L2(Λ)

converges

in L2(Λ) to some limit ỹT . Therefore, dividing the inequality by τk + ‖zk‖2L2(Λ) and
sending (τk, zk) to zero yields

lim sup
τ↓0,z→0

1

τ + ‖z‖2
L2(Λ)

{
V (t+ τ, x̄t + z)− V (t, x̄t)−

(
−〈∆x̄t, pt〉L2(Λ) − G(t, x̄t, ūt)

)
τ

−
∫

Λ
pt(λ)z(λ)dλ+

1

2

∫
Λ2

Pt(λ, µ)z(λ)z(µ)dλdµ

}
≤ 1

2
‖P ηt − Pt‖L2(Λ2)‖σ(x̄t, ūt)‖2L2(Ξ,L2(Λ)) +

1

2
‖P ηt − Pt‖L2(Λ2)

+
1

2
Et
[∫

Λ
hxx(x̄T (λ))ỹT (λ)ỹT (λ)dλ−

∫
Λ2

hηxx(λ, µ)ỹT (λ)ỹT (µ)dλdµ

]
.

(3.74)

Taking the limit η → 0, the right-hand side vanishes, which concludes the proof of the
first claim.
The second claim (3.10) follows along the same lines as in the finite-dimensional

case with similar modifications as above.

3.3. Space-Derivatives

In this section, we consider the case with differentials only in the spatial variable. To
this end, we first recall the definition of viscosity super- and subdifferentials.

Definition 3.15. For v ∈ C([s, T ]× L2(Λ)) the first order viscosity superdifferential
in the space-variable of v at (t, x) ∈ [s, T ]× L2(Λ) is the set

D1,+
x v(t, x) :=

{
p ∈ L2(Λ)

∣∣∣∣∣lim sup
z→0

v(t, x+ z)− v(t, x)− 〈p, z〉L2(Λ)

‖z‖L2(Λ)
≤ 0

}
. (3.75)

The first order viscosity subdifferential D1,−
x v is defined analogously with the lim sup

replaced by lim inf and the ≤ replaced by ≥.

Concerning the first order derivative, we obtain the following result.

Corollary 3.16. It holds for almost every t ∈ [s, T ],

D1,−
x V (t, x̄t) ⊂ {pt} ⊂ D1,+

x V (t, x̄t) (3.76)

P–almost surely.
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This follows from Theorem 3.4 by restricting the lim sup to τ = 0 and estimating

|〈z, Ptz〉L2(Λ)| ≤ ‖Pt‖L2(Λ2)‖z‖2L2(Λ). (3.77)

Next, we consider the second order viscosity differentials in the space-variable.

Definition 3.17. For v ∈ C([s, T ]×L2(Λ)) the second order viscosity superdifferential
in the space-variable of v at (t, x) ∈ [s, T ]× L2(Λ) is the set

D2,+
x v(t, x) :=

{
(p, P ) ∈ L2(Λ)× S(L2(Λ))

∣∣∣∣∣
lim sup
z→0

v(t, x+ z)− v(t, x)− 〈p, z〉L2(Λ) − 1
2〈z, Pz〉L2(Λ)

‖z‖2
L2(Λ)

≤ 0

}
. (3.78)

The second order viscosity subdifferential D2,−
x v is defined analogously with the lim sup

replaced by lim inf and the ≤ replaced by ≥.

Corollary 3.18. It holds for almost every t ∈ [s, T ],

{pt} × S�Pt(L2(Λ)) ⊂ D2,+
x V (t, x̄t), (3.79)

P–almost surely. Furthermore, it holds for almost every t ∈ [s, T ],

D2,−
x V (t, x̄t) ⊂ {pt} × S�Pt(L2(Λ)). (3.80)

P–almost surely. Here S�Pt(L2(Λ)) and S�Pt(L2(Λ)) are defined as in Theorem 3.4.

The proof follows again from Theorem 3.4 by restricting the lim sup to τ = 0.

3.4. Time-Derivatives

In this section, we consider the case with differentials only in the time-variable.

Definition 3.19. For v ∈ C([s, T ]× L2(Λ)) the first order viscosity superdifferential
in the time-variable of v at (t, x) ∈ [s, T )× L2(Λ) is the set

D1,+
t+ v(t, x) :=

{
G ∈ R

∣∣∣∣∣lim sup
τ↓0

v(t+ τ, x)− v(t, x)−Gτ
τ

≤ 0

}
. (3.81)

The first order viscosity subdifferential D1,−
t+ v is defined analogously with the lim sup

replaced by lim inf and the ≤ replaced by ≥.

Corollary 3.20. It holds for almost every t ∈ [s, T ],

[−〈∆x̄t, pt〉H−1(Λ)×H1
0 (Λ) − G(t, x̄t, ūt),∞) ⊂ D1,+

t+ V (t, x̄t) (3.82)

P–almost surely.
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The proof follows from Theorem 3.4 by restricting the lim sup to z = 0.

Remark 3.21. The results Theorem 3.4, Corollary 3.16, Corollary 3.18, and Corol-
lary 3.20 extend the necessary condition in Peng’s maximum principle by adjoint state
inclusions.

3.5. Non-Positivity of the Correction Term

As another corollary of Theorem 3.4, we derive non-positivity of the correction term
arising in non-smooth stochastic control problems.

Corollary 3.22. Let 
G ∈ L2([s, T ]× Ω;R)

p ∈ L2([s, T ]× Ω;H1
0 (Λ))

P ∈ L2([s, T ]× Ω;L2(L2(Λ)))

(3.83)

be adapted processes such that for almost every t ∈ [s, T ],

(Gt, pt, Pt) ∈ D1,2,+
t+,x V (t, x̄t) (3.84)

P-almost surely. Then it holds for almost every t ∈ [s, T ],

Gt + 〈∆x̄t, pt〉H−1(Λ)×H1
0 (Λ) +H(x̄t, ūt, pt, Pt) ≥ 0, (3.85)

P–almost surely, where the Hamiltonian H : L2(Λ)× U × L2(Λ)× L(L2(Λ))→ R is
given by

H(x, u, p, P ) :=

∫
Λ
l(x(λ), u)dλ+ 〈p, b(x, u)〉L2(Λ) +

1

2
tr (σ(x, u)∗Pσ(x, u)) . (3.86)

Remark 3.23. The higher regularity assumptions on p and P in (3.83) are necessary
due to the unbounded term in (3.85). Notice that the adjoint states given by (2.54)
and (2.70), respectively, satisfy this higher regularity. In case p and P are the adjoint
states and

Gt = −〈∆x̄t, pt〉H−1(Λ)×H1
0 (Λ) − G(t, x̄t, ūt), (3.87)

equation (3.85) is equivalent to

G(t, x̄t, ūt) ≤ H(x̄t, ūt, pt, Pt), (3.88)

i.e.,
tr(σ(x, u)∗[qt − Ptσ(x̄t, ūt)]) ≤ 0. (3.89)

The proof in the finite-dimensional case uses the following correspondence between
test functions and points in the parabolic viscosity superdifferential, see [FS06, Chapter
V, Lemma 4.1].
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Proposition 3.24. Let v : (s, T )× L2(Λ)→ R be upper semicontinuous. For (t, x) ∈
(s, T )× L2(Λ), it holds (G, p, P ) ∈ D1,2,+

t+,x v(t, x) if and only if there exists a function
φ ∈ C1,2((s, T ) × L2(Λ)) such that v − φ attains its strict global maximum over the
set [t, T )× L2(Λ) at the point (t, x), and

(φ(t, x), ∂tφ(t, x), Dφ(t, x), D2φ(t, x)) = (v(t, x), G, p, P ). (3.90)

However, due to the unbounded operator in the HJB equation, one has to restrict
the class of admissible test functions and therefore loses the preceding equivalence.
That is why we can’t directly generalize the proof from the finite-dimensional case.
Instead, in order to prove Corollary 3.22, we have to carry out the argument from
the finite-dimensional case by hand. In addition to dealing with technical difficulties
already arising in the proof of the verification theorem within the framework of viscosity
solutions in finite dimensions (see [GŚZ05]), we have to perform a delicate regularity
analysis due to the unbounded term in the state equation (2.1).

Now let us get to the proof of Corollary 3.22.

Proof. Fix t ∈ [s, T ] such that

(Gt, pt, Pt) ∈ D1,2,+
t+,x V (t, x̄t) (3.91)

P–almost surely. Following the idea from the finite-dimensional case (see [FS06,
Chapter V, Lemma 4.1]), we define for β > 0,

g(β) := sup

{(
V (t+ τ, x̄t + z)− V (t, x̄t)−Gtτ − 〈pt, z〉L2(Λ) − 1

2〈z, Ptz〉L2(Λ)

)+(
τ2 + ‖z‖4

L2(Λ)

) 1
2

∣∣∣∣∣
(t+ τ, z) ∈ (s, T )× L2(Λ), 0 < (τ2 + ‖z‖4L2(Λ))

1
2 ≤ β

}
, (3.92)

and set g(0) := 0. Since

lim sup
τ↓0,z→0

τ + ‖z‖2L2(Λ)(
τ2 + ‖z‖4

L2(Λ)

) 1
2

<∞ (3.93)

and (Gt, pt, Pt) ∈ D1,2,+
t+,x V (t, x̄t), g is continuous and non-decreasing on [0,∞). Using

g, we define

a(θ, x) :=
(

(θ − t)2 + ‖x− x̄t‖4L2(Λ)

) 1
2

F (a) :=
2

3a

∫ 2a

a

∫ 2ξ

ξ
g(β)dβdξ, F (0) = 0

(3.94)
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3. Viscosity Differentials of the Value Function

and construct φ : (s, T )× L2(Λ)→ R as

φ(θ, x) := F (a(θ, x)) + V (t, x̄t) +Gt(θ − t)

+ 〈pt, x− x̄t〉L2(Λ) +
1

2
〈x− x̄t, Pt(x− x̄t)〉L2(Λ). (3.95)

In order to obtain higher regularity for the term Dφ(r, x̄r), we replace the process
P by an approximation. Let (el)l≥1 ⊂ H1

0 (Λ) be an orthonormal basis of L2(Λ) and
define Pnx :=

∑n
l=1〈Px, el〉L2(Λ)el. Then we have for every n ∈ N

• Pn ∈ L2([s, T ]×Ω;L(L2(Λ))), and ‖Pnt ‖L2(L2(Λ)) ≤ ‖Pt‖L2(L2(Λ)) dt⊗P–almost
everywhere;

• Pnt (H1
0 (Λ)) ⊂ H1

0 (Λ) dt⊗ P–almost everywhere;

• Pnt → Pt in the uniform operator topology dt⊗ P–almost everywhere.

Note that these conditions also imply Pn → P in L2([s, T ] × Ω;L(L2(Λ))). We
approximate φ by

φn(θ, x) := F (a(θ, x)) + V (t, x∗t ) +Gt(θ − t)

+ 〈pt, x− x∗t 〉L2(Λ) +
1

2
〈x− x∗t , Pnt (x− x∗t )〉L2(Λ). (3.96)

Since V − φ attains its maximum at (t, x̄t) and by the dynamic programming
principle, we have for every τ ≥ 0,

0 ≥ Et [V (t+ τ, x̄t+τ )− φ(t+ τ, x̄t+τ )− (V (t, x̄t)− φ(t, x̄t))]

= Et
[
−
∫ t+τ

t

∫
Λ
l(x̄r(λ), ūr)dλdr − φn(t+ τ, x̄t+τ ) + φn(t, x̄t)

]
+ Et [φn(t+ τ, x̄t+τ )− φ(t+ τ, x̄t+τ )− φn(t, x̄t) + φ(t, x̄t)] .

(3.97)

Now, we want to apply Itô’s formula to φn. However, φn implicitly depends on ω via
x̄t, Gt, pt and Pt. Therefore, we fix an ω ∈ Ω and switch to the probability space
(Ω,Fν ,P( · |Fsν,t)(ω)), where P( · |Fsν,t)(·) denotes the regular conditional probability
given Fsν,t. On this probability space, x̄t, Gt, pt and Pt are almost surely constant, and
are equal to x̄t(ω), Gt(ω), pt(ω) and Pt(ω). See also [GŚZ05] for more details on this.
In the following, we denote by Et[ · ](ω) the expectation with respect to P( · |Fsν,t)(ω).
Thus, we derive

Et [φn(t+ τ, x̄t+τ )− φn(t, x̄t)] (ω)

= Et
[∫ t+τ

t
∂θφ

n(r, x̄r) + 〈Dφn(r, x̄r),∆x̄r + b(x̄r, ūr)〉H1
0 (Λ)×H−1(Λ)

+
1

2
tr
(
σ(x̄r, ūr)

∗D2φn(r, x̄r)σ(x̄r, ūr)
)

dr

]
(ω).

(3.98)
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From Lemma 3.25 it follows

Et
[

1

τk

∫ t+τk

t
∂θφ

n(r, x̄r) + 〈Dφn(r, x̄r),∆x̄r + b(x̄r, ūr)〉H1
0 (Λ)×H−1(Λ)

+
1

2
tr
(
σ(x̄r, ūr)

∗D2φn(r, x̄r)σ(x̄r, ūr)
)

dr

]
(ω)

→ Gt(ω) + 〈pt(ω),∆x̄t(ω) + b(x̄t(ω), ūt(ω))〉

+
1

2
tr(σ(x̄t(ω), ūt(ω))∗Pnt (ω)σ(x̄t(ω), ūt(ω))),

(3.99)

dt⊗ P–almost everywhere.
For the last line in equation (3.97), we note that

φn(θ, x)− φ(θ, x) =
1

2
〈x− x̄t, (Pnt − Pt)(x− x̄t)〉L2(Λ). (3.100)

Therefore, Et[φn(t, x̄t)− φ(t, x̄t)] vanishes, and

|Et [φn(t+ τk, x̄t+τk)− φ(t+ τk, x̄t+τk)]| ≤ 1

2
‖Pnt − Pt‖2L2(Λ2)Et

[
‖x̄t+τk − x̄t‖

2
L2(Λ)

]
.

(3.101)
Dividing by τk, taking the limit k →∞, and exploiting equation (3.16), we obtain

lim
k→∞

1

τk
|Et [φn(t+ τk, x̄t+τk)− φ(t+ τk, x̄t+τk)]| ≤ C‖Pnt − Pt‖2L2(Λ2). (3.102)

Altogether, we derive from equation (3.97) for almost every t ∈ [s, T ],

0 ≥ lim
k→∞

1

τk
Et [V (t+ τk, x̄t+τk)− φ(t+ τk, x̄t+τk)− V (t, x̄t) + φ(t, x̄t)]

≥tr (σ(x̄t, ūt)
∗ [qt − Pnt σ(x̄t, ūt)])− C‖Pnt − Pt‖2L2(Λ2)

(3.103)

P–almost surely. Taking the limit n→∞ concludes the proof.

Lemma 3.25. For almost every t ∈ [s, T ], it holds

Et
[

1

τ

∫ t+τ

t
∂θφ

n(r, x̄r) + 〈Dφn(r, x̄r),∆x̄r + b(x̄r, ūr)〉H1
0 (Λ)×H−1(Λ)

+
1

2
tr
(
σ(x̄r, ūr)

∗D2φn(r, x̄r)σ(x̄r, ūr)
)

dr

]
(ω)

→ Gt(ω) + 〈pt(ω),∆x̄t(ω) + b(x̄t(ω), ūt(ω))〉

+
1

2
tr(σ(x̄t(ω), ūt(ω))∗Pnt (ω)σ(x̄t(ω), ūt(ω))),

(3.104)

as τ → 0, P–almost surely. Here, φn is given by (3.96).
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Proof. We fix t ∈ [s, T ] such that (3.9) holds and the convergence in all the applications
of Lebesgue’s differentiation theorem below holds for t. Note that the set of such t
is a set of full measure. Now, let us first discuss some properties of φn that can be
proven similarly as in the finite-dimensional case, see [FS06, Chapter V, Lemma 4.1].
Recall the definition

φn(θ, x) := F (a(θ, x)) + V (t, x̄t) +Gt(θ − t)

+ 〈pt, x− x̄t〉L2(Λ) +
1

2
〈x− x̄t, Pnt (x− x̄t)〉L2(Λ). (3.105)

where F and a are given by (3.94). The derivatives of F and a are given by{
F ′(a) = 4

3a

∫ 4a
2a g(ξ)dξ − 2

3a

∫ 2a
a g(ξ)dξ − 1

aF (a), F ′(0) = 0

F ′′(a) = 2
3a(8g(4a)− 6g(2a) + g(a))− 2

aF
′(a), F ′′(0) = 0

(3.106)

and
∂θa(θ, x) = θ−t

a(θ,x)

Da(θ, x) =
2‖x−x̄t‖2

L2(Λ)

a(θ,x) (x− x̄t)

D2a(θ, x) =

(
4

a(θ,x) −
4‖x−x̄t‖4

L2(Λ)

a(θ,x)3

)
(x− x̄t)⊗ (x− x̄t) +

2‖x−x̄t‖2
L2(Λ)

a(θ,x) 〈·, ·〉L2(Λ).

(3.107)
The first and second derivative of φn are given by

∂θφ
n(θ, x) = θ−t

a(θ,x)F
′(a(θ, x)) +Gt

Dφn(θ, x) = F ′(a(θ, x))Da(θ, x) + pt + Pnt (x− x̄t)
D2φn(θ, x) = F ′′(a(θ, x))Da(θ, x)⊗Da(θ, x) + F ′(a(θ, x))D2a(θ, x) + Pnt

(3.108)
Thus, φn ∈ C1,2((s, T )× L2(Λ)), and

(φn(t, x̄t), ∂θφ
n(t, x̄t), Dφ

n(t, x̄t), D
2φn(t, x̄t)) = (V (t, x̄t), Gt, pt, P

n
t ). (3.109)

Furthermore, F (a(θ, x)) ∈ C1,2([s, T ]×L2(Λ)) with vanishing time derivative and first
and second order space derivative at (θ, x) = (t, x̄t). Furthermore, note that

|F ′(a(θ, x))| ≤ C
(

1 + ‖x‖2L2(Λ)

)
(3.110)

and
|F ′′(a(θ, x))| ≤ C

(
1 + ‖x‖2L2(Λ)

)
. (3.111)

Now let us start with the proof of (3.104). Let (τk)k∈N be an arbitrary sequence
converging to zero. We fix ω ∈ Ω, and, as described in the discussion before (3.98),
we switch to the probability space (Ω,Fν ,P( · |Fsν,t)(ω)). First, we consider the term
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involving the time derivative of φn. We have

∂θφ
n(r, x̄r) =

r − t
a(r, x̄r)

F ′(a(r, x̄r)) +Gt. (3.112)

By the almost sure continuity of

r 7→ F ′(a(r, x̄r))
r − t
a(r, x̄r)

, (3.113)

and the dominated convergence theorem, we have

lim
k→∞

Et
[∣∣∣∣ 1

τk

∫ t+τk

t
F ′(a(r, x̄r))

r − t
a(r, x̄r)

dr

∣∣∣∣] (ω) = 0. (3.114)

Now, let us consider the first space derivative of φn. We have

Dφn(r, x̄r) = F ′(a(r, x̄r))Da(r, x̄r) + pt + Pnt (x̄r − x̄t), (3.115)

thus we have to show

lim
k→∞

Et
[∣∣∣∣ 1

τk

∫ t+τk

t
〈F ′(a(r, x̄r))Da(r, x̄r),∆x̄r + b(x̄r, ūr)〉H1

0 (Λ)×H−1(Λ)dr

∣∣∣∣] (ω) = 0,

(3.116)
and

lim
k→∞

Et
[∣∣∣∣ 1

τk

∫ t+τk

t
〈pt,∆(x̄r − x̄t) + b(x̄r, ūr)− b(x̄t, ūt)〉H1

0 (Λ)×H−1(Λ)dr

∣∣∣∣] (ω) = 0,

(3.117)
and

lim
k→∞

Et
[∣∣∣∣ 1

τk

∫ t+τk

t
〈Pnt (x̄r − x̄t),∆x̄r + b(x̄r, ūr)〉H1

0 (Λ)×H−1(Λ)dr

∣∣∣∣] (ω) = 0. (3.118)

We only consider the terms involving ∆x̄r; the terms involving b(x̄r, ūr) can be handled
similarly.

Let us start with (3.116). Using (3.110) and the bound

‖Da(r, x̄r)‖H1
0 (Λ) ≤ 2‖x̄r − x̄t‖H1

0 (Λ), (3.119)

we obtain

Et
[∣∣∣∣ 1

τk

∫ t+τk

t
〈F ′(a(r, x̄r))Da(r, x̄r),∆x̄r〉H1

0 (Λ)×H−1(Λ)dr

∣∣∣∣] (ω)

≤ Et
[

1

τk

∫ t+τk

t
C(1 + ‖x̄r‖2L2(Λ))‖x̄r − x̄t‖H1

0 (Λ)‖x̄r‖H1
0 (Λ)dr

]
(ω).

(3.120)
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Using Hölder’s inequality, we obtain

Et
[

1

τk

∫ t+τk

t
‖x̄r‖2L2(Λ)‖x̄r − x̄t‖H1

0 (Λ)‖x̄r‖H1
0 (Λ)dr

]
(ω)

≤
(

1

τk

∫ t+τk

t
Et
[
‖x̄r − x̄t‖2H1

0 (Λ)

]
(ω)dr

) 1
2
(

1

τk

∫ t+τk

t
Et
[
‖x̄r‖4L2(Λ)‖x̄r‖

2
H1

0 (Λ)

]
(ω)dr

) 1
2

.

(3.121)

Since x̄ ∈ L2([s, T ]× Ω;H1
0 (Λ)),

lim
k→∞

1

τk

∫ t+τk

t
E
[
‖x̄r − x̄t‖2H1

0 (Λ)

]
dr = 0. (3.122)

Thus, the first factor of (3.121) converges to zero P-almost surely along some subse-
quence. Since

‖x̄‖4L2(Λ)‖x̄‖
2
H1

0 (Λ) ∈ L
1([s, T ]× Ω), (3.123)

(see [LR15, Lemma 5.1.5]), the second factor is finite in the limit k →∞ along some
subsequence.

Now, let us consider (3.117). We have

Et
[∣∣∣∣ 1

τk

∫ t+τk

t
〈pt,∆(x̄r − x̄t)〉H1

0 (Λ)×H−1(Λ)dr

∣∣∣∣] (ω)

≤ ‖pt‖H1
0 (Λ)

(
1

τk

∫ t+τk

t
Et
[
‖x̄r − x̄t‖2H1

0 (Λ)

]
(ω)dr

) 1
2

.

(3.124)

The first factor is finite for almost every t, and the second factor again converges to
zero along some subsequence.

Finally, for (3.118), we obtain using Hölder’s inequality

Et
[∣∣∣∣ 1

τk

∫ t+τk

t
〈Pnt (x̄r − x̄t),∆x̄r〉H1

0 (Λ)×H−1(Λ)dr

∣∣∣∣] (ω)

≤‖Pnt ‖H1
0 (Λ2)

(
1

τk

∫ t+τk

t
Et
[
‖x̄r − x̄t‖2L2(Λ)

]
(ω)dr

) 1
2
(

1

τk

∫ t+τk

t
Et
[
‖x̄r‖2H1

0 (Λ)

]
(ω)dr

) 1
2

.

(3.125)

The second factor converges to zero and the third factor is finite along some subsequence,
which shows that the right-hand side of equation (3.125) converges to zero.

Now, let us consider the second space derivative of φn. We have

D2φn(r, x̄r) = F ′′(a(r, x̄r))Da(r, x̄r)⊗Da(r, x̄r) + F ′(a(r, x̄r))D
2a(r, x̄r) + Pnt ,

(3.126)
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thus we have to show

lim
k→∞

Et
[∣∣∣∣ 1

τk

∫ t+τk

t
tr
(
σ(x̄r, ūr)

∗F ′′(a(r, x̄r))Da(r, x̄r)⊗Da(r, x̄r)σ(x̄r, ūr)
)
dr

∣∣∣∣](ω) = 0

(3.127)
and

lim
k→∞

Et
[∣∣∣∣ 1

τk

∫ t+τk

t
tr
(
σ(x̄r, ūr)

∗F ′(a(r, x̄r))D
2a(r, x̄r)σ(x̄r, ūr)

)
dr

∣∣∣∣] (ω) = 0

(3.128)
and

lim
k→∞

Et
[∣∣∣∣ 1

τk

∫ t+τk

t
tr ((σ(x̄r, ūr)σ(x̄r, ūr)

∗ − σ(x̄t, ūt)σ(x̄t, ūt)
∗)Pnt ) dr

∣∣∣∣] (ω) = 0.

(3.129)
For the first term, we have

Et
[∣∣∣∣ 1

τk

∫ t+τk

t
tr
(
σ(x̄r, ūr)

∗F ′′(a(r, x̄r))Da(r, x̄r)⊗Da(r, x̄r)σ(x̄r, ūr)
)

dr

∣∣∣∣] (ω)

≤
(

1

τk

∫ t+τk

t
Et
[
‖σ(x̄r, ūr)‖2L2(Ξ,L2(Λ))

]
(ω)dr

) 1
2

(
1

τk

∫ t+τk

t
Et
[
‖F ′′(a(r, x̄r))Da(r, x̄r)⊗Da(r, x̄r)‖2L(L2(Λ))

]
(ω)dr

) 1
2

.

(3.130)

Since σ(x̄, ū) ∈ L2([s, T ] × Ω;L2(Ξ, L2(Λ))), the first factor is finite along some
subsequence, and using continuity of the second derivative of F and the first derivative
of a, we obtain

lim
k→∞

1

τk

∫ t+τk

t
Et
[
‖F ′′(a(r, x̄r))Da(r, x̄r)⊗Da(r, x̄r)‖2L(L2(Λ))

]
(ω)dr = 0. (3.131)

Similar arguments can be employed to prove (3.128). Finally, for (3.129), we have

Et
[∣∣∣∣ 1

τk

∫ t+τk

t
tr ((σ(x̄r, ūr)σ(x̄r, ūr)

∗ − σ(x̄t, ūt)σ(x̄t, ūt)
∗)Pnt ) dr

∣∣∣∣] (ω)

≤‖Pnt ‖L(L2(Λ))
1

τk

∫ t+τk

t
Et
[
‖σ(x̄r, ūr)σ(x̄r, ūr)

∗ − σ(x̄t, ūt)σ(x̄t, ūt)
∗‖L1(L2(Λ))

]
(ω)dr.

(3.132)

The first factor is finite for almost every t, and the second factor converges to zero
along some subsequence since σ(x, u) ∈ L2([s, T ]× Ω;L2(Ξ, L2(Λ))).
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4. Verification Theorem

Part II of this dissertation is devoted to sufficient optimality conditions. Our results
do not rely on the coefficients being of Nemytskii-type. Therefore, we introduce a more
general setting. First, we prove a sufficient condition in terms of the value function.
Afterwards, we combine this result with a well-known result that identifies the value
function as the unique B-continuous viscosity solution of the HJB equation yielding a
stochastic verification theorem for controlled semilinear SPDEs in the framework of
viscosity solutions. This chapter is based on [SW22].

4.1. Introduction

Consider the following control problem: Minimize

J(s, x;u) := E
[∫ T

s
L(xut , ut)dt+H(xuT )

]
(4.1)

over u ∈ Us subject to{
dxut = [∆xut +B(xut , ut)]dt+ Σ(xut , ut)dWt, t ∈ [s, T ]

xus = x ∈ L2(Λ).
(4.2)

Here, Assumption 3.1 is still in place and we impose the following assumptions on the
coefficients of the control problem.

Assumption 4.1.(B1)′′ Let L : L2(Λ)× U → R be continuous and satisfy

|L(x, u)| ≤ C
(

1 + ‖x‖2L2(Λ)

)
(4.3)

for all x ∈ L2(Λ) and all u ∈ U .

(B2)′′ Let H : L2(Λ)→ R be continuous and satisfy

|H(x)| ≤ C
(

1 + ‖x‖2L2(Λ)

)
(4.4)

for all x ∈ L2(Λ).

(B3)′′ Let B : L2(Λ)× U → L2(Λ) satisfy{
‖B(x, u)−B(y, u)‖L2(Λ) ≤ C‖x− y‖L2(Λ)

‖B(x, u)‖L2(Λ) ≤ C
(
1 + ‖x‖L2(Λ)

) (4.5)
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4. Verification Theorem

for all x, y ∈ L2(Λ) and all u ∈ U .

(B4)′′ Let Σ : L2(Λ)× U → L2(Ξ, L2(Λ)) satisfy{
‖Σ(x, u)− Σ(y, u)‖L2(Ξ,L2(Λ)) ≤ C‖x− y‖L2(Λ)

‖Σ(x, u)‖L2(Ξ,L2(Λ)) ≤ C
(
1 + ‖x‖L2(Λ)

)
,

(4.6)

for all x, y ∈ L2(Λ) and all u ∈ U , as well as

‖Σ(x, u)‖L2(Ξ,H1
0 (Λ)) ≤ C

(
1 + ‖x‖H1

0 (Λ)

)
(4.7)

for all x ∈ H1
0 (Λ) and all u ∈ U .

In this setting, the Hamiltonian H : L2(Λ)×U ×L2(Λ)×L(L2(Λ))→ R is given by

H(x, u, p, P ) := L(x, u) + 〈p,B(x, u)〉L2(Λ) +
1

2
tr (Σ(x, u)∗PΣ(x, u)) . (4.8)

Remark 4.2. In this chapter, u∗ denotes an arbitrary admissible control and x∗

denotes the corresponding controlled state.

4.2. Verification Theorem

Theorem 4.3. Assume there exists a constant C > 0 such that for every t ∈ [s, T ),
τ ∈ [0, T − t], and x ∈ H1

0 (Λ),

V (t+ τ, x)− V (t, x) ≤ C
(

1 + ‖x‖2H1
0 (Λ)

)
τ, (4.9)

and let V be semiconcave uniformly in t, i.e., there exists a constant C ≥ 0 such that
for every t ∈ (s, T ] it holds

V (t, ·)− C‖ · ‖2L2(Λ) (4.10)

is concave on L2(Λ). Suppose further that there are adapted processes
G ∈ L2([s, T ]× Ω;R)

p ∈ L2([s, T ]× Ω;H1
0 (Λ))

P ∈ L2([s, T ]× Ω;L2(L2(Λ)))

(4.11)

such that for almost every t ∈ [s, T ],

(Gt, pt, Pt) ∈ D1,2,+
t+,x V (t, x∗t ) (4.12)

P-almost surely, and

E
[∫ T

s
Gt + 〈∆x∗t , pt〉H−1(Λ)×H1

0 (Λ) +H(x∗t , u
∗
t , pt, Pt)dt

]
≤ 0. (4.13)
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Then (x∗, u∗) is an optimal pair.

Remark 4.4. (i) Together with Corollary 3.22, this result implies

Gt + 〈∆x∗t , pt〉H−1(Λ)×H1
0 (Λ) +H(x∗t , u

∗
t , pt, Pt) = 0 (4.14)

dt⊗ P-almost everywhere.

(ii) Conditions under which the growth condition (4.9) and the semiconcavity (4.10)
hold are given in the subsequent Proposition 4.6 and Proposition 4.7.

In the proof of Theorem 4.3, we need the following lemma.

Lemma 4.5. Let V satisfy (4.9) and (4.10). Then, for almost every t ∈ [s, T ), there
is a function ρ1 ∈ L1(Ω) such that for every τ ∈ (0, T − t],

1

τ
Et
[
V (t+ τ, x∗t+τ )− V (t, x∗t )

]
≤ ρ1(ω) (4.15)

P-almost surely. Furthermore, there is a function ρ2 ∈ L1(s, T ) such that for almost
every t ∈ [s, T ] and for every τ ∈ (0, T − t],

1

τ
E
[
V (t+ τ, x∗t+τ )− V (t, x∗t )

]
≤ ρ2(t). (4.16)

Proof. The proof follows along the same lines as in the finite-dimensional case, see
[GŚZ10]. In order to obtain Lipschitz continuity of the state trajectories in H−1(Λ)
we rely on the analyticity of the heat semigroup.

First, we split up the increment into separate space and time increments:

V (t+ τ, x∗t+τ )−V (t, x∗t ) = V (t, x∗t+τ )−V (t, x∗t ) +V (t+ τ, x∗t+τ )−V (t, x∗t+τ ). (4.17)

For the space increment, we observe that by the semiconcavity of V (t, ·), we have for
(Gt, pt, Pt) ∈ D1,2,+

t+,x V (t, x∗t ),

V (t, x∗t+τ )− V (t, x∗t ) ≤ 〈pt, x∗t+τ − x∗t 〉L2(Λ) + C‖x∗t+τ − x∗t ‖2L2(Λ). (4.18)

For the time increment, we apply the growth condition (4.9). Therefore, we obtain
altogether

V (t+ τ, x∗t+τ )− V (t, x∗t )

≤ 〈pt, x∗t+τ − x∗t 〉L2(Λ) + C‖x∗t+τ − x∗t ‖2L2(Λ) + C
(

1 + ‖x∗t+τ‖2H1
0 (Λ)

)
τ.

(4.19)

For the first term, we have

E
[
〈pt, x∗t+τ − x∗t 〉L2(Λ)

]
≤ E

[
‖pt‖2H1

0 (Λ)

] 1
2 E
[∥∥Et [x∗t+τ − x∗t ]∥∥2

H−1(Λ)

] 1
2
. (4.20)
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For the second factor, we first note

Et
[
x∗t+τ − x∗t

]
= (Sτ − I)x∗t + Et

[∫ t+τ

t
St+τ−rB(x∗r , u

∗
r)dr

]
, (4.21)

where (Sr)r≥0 denotes the heat semigroup. Since the heat semigroup is analytic and
0 is in the resolvent set of the Laplace operator with Dirichlet boundary conditions,
using [Paz83, Chapter 2, Theorem 6.13] we obtain for the first term

‖(Sτ − I)x∗t ‖H−1(Λ) = ‖(Sτ − I)∆−
1
2x∗t ‖L2(Λ) ≤ Cτ‖x∗t ‖H1

0 (Λ). (4.22)

For the second term in (4.21), we have by the linear growth assumption (4.5) on B

Et
[∫ t+τ

t
‖St+τ−rB(x∗r , u

∗
r)‖H−1(Λ) dr

]
≤ Cτ sup

r∈[t,t+τ ]
Et
[
‖B(x∗r , u

∗
r)‖L2(Λ)

]
≤ C

(
1 + ‖x∗t ‖L2(Λ)

)
τ.

(4.23)

Thus, we obtain ∥∥Et [x∗t+τ − x∗t ]∥∥L2(Λ)
≤ C

(
1 + ‖x∗t ‖H1

0 (Λ)

)
τ, (4.24)

and therefore together with (4.20),

E
[
〈pt, x∗t+τ − x∗t 〉L2(Λ)

]
≤ C

(
1 + E

[
‖x∗t ‖2H1

0 (Λ) + ‖pt‖2H1
0 (Λ)

])
τ. (4.25)

For the second term in (4.19), we obatin using standard regularity arguments for
solutions of SPDEs

E
[
‖x∗t+τ − x∗t ‖2L2(Λ)

]
≤ Cτ. (4.26)

For the last term in (4.19), we first observe

‖x∗t+τ‖2H1
0 (Λ) = ‖x∗t ‖2H1

0 (Λ) +

∫ t+τ

t
〈∆x∗r +B(x∗r , u

∗
r), x

∗
r〉H1

0 (Λ)dr

+

∫ t+τ

t
‖Σ(x∗r , u

∗
r)‖2L2(Ξ,H1

0 (Λ))dr +

∫ t+τ

t
〈x∗r ,Σ(x∗r , u

∗
r)dWr〉H1

0 (Λ).

(4.27)

Therefore,

E
[
‖x∗t+τ‖2H1

0 (Λ)

]
≤ E

[
‖x∗t ‖2H1

0 (Λ)

]
+

∫ t+τ

t
E
[
‖B(x∗r , u

∗
r)‖2L2(Λ) + ‖Σ(x∗r , u

∗
r)‖2L2(Ξ,H1

0 (Λ))

]
dr.

(4.28)

Using the growth condition on B and Σ and applying Grönwall’s inequality, we obtain
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for the last term in (4.19)

E
[
C
(

1 + ‖x∗t+τ‖2L2(Λ)

)
τ
]
≤ C

(
1 + E

[
‖x∗t ‖

2
H1

0 (Λ)

])
τ. (4.29)

Thus, we have the bound

1

τ
E
[
V (t+ τ, x∗t+τ )− V (t, x∗t )

]
≤ C

(
1 + E

[
‖x∗t ‖2H1

0 (Λ) + ‖pt‖2H1
0 (Λ)

])
, (4.30)

where the right-hand side is in L1(s, T ). This proves (4.16). The proof of (4.15) is
similar.

Now, let us prove Theorem 4.3.

Proof. Using Proposition 3.24, we obtain for given (t, ω) ∈ [s, T ] × Ω a function
φ ∈ C1,2((s, T ) × L2(Λ)) such that V − φ attains its strict global maximum over
[t, T )× L2(Λ) at the point (t, x∗t (ω)), and

(φ(t, x∗t ), ∂tφ(t, x∗t ), Dφ(t, x∗t ), D
2φ(t, x∗t )) = (V (t, x∗t ), Gt, pt, Pt). (4.31)

For φ and φn, we use the same construction as in the proof of Corollary 3.22.
For t > T , we set V (t, x∗t ) := V (T, x∗T ). Then we have

E [V (T, x∗T )]− E [V (s, x∗s)]

= lim
τ↓0

1

τ

(∫ T+τ

T
E [V (t, x∗t )] dt−

∫ s+τ

s
E [V (t, x∗t )] dt

)
= lim

τ↓0

1

τ

(∫ T+τ

s+τ
E [V (t, x∗t )] dt−

∫ T

s
E [V (t, x∗t )] dt

)
= lim

τ↓0

∫ T

s

1

τ
E
[
V (t+ τ, x∗t+τ )− V (t, x∗t )

]
dt.

(4.32)

By Lemma 4.5, we can apply Fatou’s lemma to obtain

E [V (T, x∗T )]−E [V (s, x∗s)] ≤
∫ T

s
lim sup
τ↓0

(
1

τ
E
[
V (t+ τ, x∗t+τ )− V (t, x∗t )

])
dt. (4.33)

Since V − φ attains its maximum at (t, x∗t ), we have

Et
[
V (t+ τ, x∗t+τ )− V (t, x∗t )

]
≤ Et

[
φn(t+ τ, x∗t+τ )− φn(t, x∗t )

]
+ Et

[
φ(t+ τ, x∗t+τ )− φn(t+ τ, x∗t+τ ) + φn(t, x∗t )− φ(t, x∗t )

]
.

(4.34)

For the last line, we first observe

φn(θ, x)− φ(θ, x) =
1

2
〈x− x∗t , (Pnt − Pt)(x− x∗t )〉L2(Λ), (4.35)
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hence φn(t, x∗t )− φ(t, x∗t ) vanishes. Furthermore∣∣Et [φ(t+ τ, x∗t+τ )− φn(t+ τ, x∗t+τ )
]∣∣

≤ 1

2
Et
[
|〈x∗t+τ − x∗t , (Pt − Pnt )(x∗t+τ − x∗t )〉L2(Λ)|

]
≤ 1

2
Et
[
‖x∗t+τ − x∗t ‖4L2(Λ)

] 1
2 ‖Pt − Pnt ‖L(L2(Λ))

≤ Cτ‖Pt − Pnt ‖L(L2(Λ)).

(4.36)

As in the proof of Lemma 3.25, we fix ω ∈ Ω and apply Itô’s formula to φn on the
probability space (Ω,Fν ,P( · |Fsν,t)(ω)). This yields for every t ∈ (s, T ) and every
τ ≥ 0 such that t+ τ ≤ T ,

Et
[
φn(t+ τ, x∗t+τ )− φn(t, x∗t )

]
(ω)

= Et
[∫ t+τ

t
∂θφ

n(r, x∗r) + 〈Dφn(r, x∗r),∆x
∗
r +B(x∗r , u

∗
r)〉dr

]
(ω)

+ Et
[∫ t+τ

t

1

2
tr(Σ(x∗r , u

∗
r)
∗D2φn(r, x∗r)Σ(x∗r , u

∗
r))dr

]
(ω).

(4.37)

Now, we take the expectation in (4.34), divide by τ and take the limit superior
τ → 0. By Lemma 4.5, we can again apply Fatou’s lemma which yields

lim sup
τ↓0

1

τ
E
[
V (t+ τ, x∗t+τ )− V (t, x∗t )

]
≤ E

[
lim sup
τ↓0

1

τ
Et
[
V (t+ τ, x∗t+τ )− V (t, x∗t )

]
(ω)

]

≤ E

[
lim sup
τ↓0

1

τ
Et

[∫ t+τ

t
∂θφ

n(r, x∗r) + 〈Dφn(r, x∗r),∆x
∗
r +B(x∗r , u

∗
r)〉dr

+

∫ t+τ

t

1

2
tr(Σ(x∗r , u

∗
r)
∗D2φn(r, x∗r)Σ(x∗r , u

∗
r))dr

]
(ω) + C‖Pt − Pnt ‖L(L2(Λ))

]
.

(4.38)

By Lemma 3.25, this implies

lim sup
τ↓0

1

τ
E
[
V (t+ τ, x∗t+τ )− V (t, x∗t )

]
≤ E

[
Gt + 〈pt,∆x̄t + b(x̄t, ūt)〉+

1

2
tr(σ(x̄t, ūt)

∗Pnt σ(x̄t, ūt)) + C‖Pt − Pnt ‖L(L2(Λ))

]
.

(4.39)

Together with (4.33), after taking the limit n → ∞ and plugging in the terminal
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condition for V , this yields

E
[∫ T

s
L(x∗t , u

∗
t )dt+H(x∗T )

]
≤ V (s, x), (4.40)

which concludes the proof.

Next, we present conditions under which the value function satisfies the growth
condition (4.9) and the semiconcavity (4.10).

Proposition 4.6. Let H : L2(Λ) → R be Lipschitz continuous with respect to the
H−1(Λ)-norm, and twice Fréchet differentiable with bounded second derivative. Then
there exists a constant C such that for every t ∈ [s, T ), τ ∈ (0, T − t], and x ∈ H1

0 (Λ),

V (t+ τ, x)− V (t, x) ≤ C
(

1 + ‖x‖2H1
0 (Λ)

)
τ. (4.41)

Proof. Again, the proof is similar as in the finite-dimensional case, see [FS06, Section
IV.8], and the Lipschitz continuity of the state trajectories in H−1(Λ) relies on the
analyticity of the heat semigroup.
Let u be an admissible control defined on [t, T ], and let xu denote the associated

state with initial condition xut = x. We introduce a time shifted control ũ defined on
[t+ τ, T ] given by

ũ(r) := u(r − τ), (4.42)

and denote by x̃ the associated state with initial condition x̃t+τ = x. Then, we obtain

J(t+ τ, x; ũ) = E
[∫ T

t+τ
L(x̃r, ũr)dr +H(x̃T )

]
= E

[∫ T−τ

t
L(xur , ur)dr +H(xuT−τ )

]
.

(4.43)

Hence,

J(t+ τ, x; ũ)− J(t, x, u) = E
[
−
∫ T

T−τ
L(xur , ur)dr +H(xuT−τ )−H(xuT )

]
. (4.44)

For the running costs, we have by the quadratic growth assumption (4.3) on L and
standard estimates for solutions of SPDEs

E
[
−
∫ T

T−τ
L(xur , ur)dr

]
≤ C

(
1 + ‖x‖2L2(Λ)

)
τ. (4.45)

For the terminal costs, using the boundedness of Hxx and a Taylor expansion, we
obtain

E
[
H(xuT−τ )−H(xuT )

]
≤ E

[
〈Hx(xuT−τ ), xuT−τ − xuT 〉L2(Λ)

]
+ CE

[
‖xuT−τ − xuT ‖2L2(Λ)

]
.

(4.46)
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For the first summand, we have

E
[
〈Hx(xuT−τ ), xuT−τ − xuT 〉L2(Λ)

]
≤ E

[
‖Hx(xuT−τ )‖2H1

0 (Λ)

] 1
2 E
[∥∥ET−τ [xuT − xuT−τ ]

∥∥2

H−1(Λ)

] 1
2
.

(4.47)

Since H is Lipschitz continuous with respect to the H−1(Λ)-norm, the Fréchet deriva-
tive of H maps to H1

0 (Λ) and is bounded. For the second factor, we obtain analogous
to (4.24)

E
[∥∥ET−τ [xuT − xuT−τ ]

∥∥2

H−1(Λ)

] 1
2 ≤ C

(
1 + ‖x‖2H1

0 (Λ)

)
τ. (4.48)

For the second summand in (4.46) we have

E
[
‖xuT−τ − xuT ‖2L2(Λ)

]
≤ C

(
1 + ‖x‖2L2(Λ)

)
τ (4.49)

by standard regularity results for solutions of SPDEs. Hence, we obtain together with
(4.45)

J(t+ τ, x; ũ)− J(t, x, u) ≤ C
(

1 + ‖x‖2H1
0 (Λ)

)
τ. (4.50)

Now, for given ε > 0, let uε be a control such that

J(t, x;uε) ≤ V (t, x) + ε. (4.51)

Then we have

V (t+ τ, x)− V (t, x) ≤ J(t+ τ, x; ũε)− J(t, x, uε) + ε

≤ C
(

1 + ‖x‖2H1
0 (Λ)

)
τ + ε.

(4.52)

Since this holds for an arbitrary ε, this concludes the proof.

Proposition 4.7. Let L and H be Lipschitz continuous and semiconcave in x uni-
formly in u. Let B and Σ be Fréchet differentiable in x with Lipschitz continuous
derivative uniformly in u. Then the value function V of the control problem (4.1) and
(4.2) is semiconcave uniformly in t ∈ [s, T ], i.e., there exists a C ≥ 0 such that for
every t ∈ (s, T ],

V (t, ·)− C‖ · ‖2L2(Λ) (4.53)

is concave.

Proof. The corresponding result in the finite-dimensional case can be found in [YZ99,
Chapter 4, Proposition 4.5]. The proof in the infinite-dimensional case is exactly the
same upon replacing the finite-dimensional derivatives by Fréchet derivatives.

It is well-known that under additional regularity assumptions the value function
can be characterized as the unique B-continuous viscosity solution of the Hamilton-
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Jacobi-Bellman equation{
Vs + 〈∆x,DV 〉L2(Λ) + infu∈U H(x, u,DV,D2V ) = 0

V (T, x) = H(x),
(4.54)

in the sense of [FGŚ17, Definition 3.35]. Thus, in conjunction with the previous result
we obtain the following verification theorem in terms of a B-continuous viscosity
subsolution of (4.54).

Theorem 4.8 (Verification Theorem). Suppose there exists a constant C > 0 such
that

‖Σ(x, u)− Σ(y, u)‖L2(Ξ,L2(Λ)) ≤ C‖x− y‖H−1(Λ), (4.55)

for every x, y ∈ L2(Λ) and u ∈ U , and let L and H be locally uniformly continuous in
x ∈ L2(Λ), uniformly in u ∈ U . Let V be a B-continuous viscosity subsolution (see
[FGŚ17, Definition 3.35]) of the HJB equation (4.54) satisfying the growth condition
(4.9) and the semiconcavity (4.10), as well as

V(T, x) = H(x) (4.56)

for all x ∈ L2(Λ),
|V(t, x)| ≤ C

(
1 + ‖x‖2L2(Λ)

)
, (4.57)

and
lim
t→T

(V(t, x)−H(ST−tx))+ = 0 (4.58)

uniformly on bounded subsets of L2(Λ), where (Sr)r≥0 denotes the heat semigroup.
Then we have:

(i) V(s, x)≤V (s, x)≤J(s, x;u) for any (s, x) ∈ (0, T ]× L2(Λ) and any admissible
control u.

(ii) Suppose there are adapted processes
G ∈ L2([s, T ]× Ω;R)

p ∈ L2([s, T ]× Ω;H1
0 (Λ))

P ∈ L2([s, T ]× Ω;L2(L2(Λ)))

(4.59)

such that for almost every t ∈ [s, T ],

(Gt, pt, Pt) ∈ D1,2,+
t+,x V(t, x∗t ) (4.60)

P–almost surely, and

E
[∫ T

s
Gt + 〈∆x∗t , pt〉H−1(Λ)×H1

0 (Λ) +H(x∗t , u
∗
t , pt, Pt)dt

]
≤ 0. (4.61)
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Then (x∗, u∗) is an optimal pair.

Proof. Under the additional assumption (4.55), the value function is the unique B-
continuous viscosity solution of the HJB equation, see [FGŚ17, Theorem 3.67] for
details. Thus, (i) follows from the comparison result [FGŚ17, Theorem 3.54].
The proof of (ii) follows by using exactly the same arguments as in the proof of

Theorem 4.3 up until inequality (4.40), which we now have for V instead of the value
function. Applying part (i) concludes the proof.

Remark 4.9. (i) In the case of the Nemytskii operator σ as defined in Assumption
2.2, the assumption (4.55) cannot be satisfied in general. However, one can
approximate the Nemytskii operator σ(x(λ), u)(ξ) for x ∈ L2(Λ), λ ∈ Λ and
ξ ∈ Ξ, with smooth noise coefficients of the following type

Σε(x, u)(ξ)(λ) = σ

(∫
Λ
fε(λ− µ)x(µ)dµ, u

)
(ξ) (4.62)

where (fε)ε>0 ⊂ C∞c (R) is a mollifier, i.e.,
∫

Λ fε(λ− µ)x(µ)dµ converges to x in
L2(Λ) as ε→ 0. Under the assumptions imposed on σ in Assumption 2.2, Σε

satisfies the additional regularity condition (4.55).

(ii) All our results in this chapter generalize to the case of uniformly elliptic operators
in divergence form with Dirichlet boundary conditions formally given by

Ax(λ) = ∂λ(a∂λx)(λ) (4.63)

for some a ∈ L∞(Λ) with a ≥ a0 > 0. Indeed, the variational setting relies on
the monotonicity and the coercivity of the unbounded operator which also holds
for the operator A, see also Remark 2.13 for more details. Furthermore, A is the
generator of an analytic semigroup, hence Lemma 3.8 and Proposition 4.7 still
hold. Finally, the strong B-condition needed for the proof of Theorem 4.3 part
(i) is shown in [FGŚ17, Example 3.16].
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5. The Stochastic Nagumo Model

Part III of this dissertation is devoted to the analysis of the optimal control of the
stochastic Nagumo model with a view towards efficient numerical implementations.
First, we prove existence of optimal controls, analyze the regularity of the control-to-
state operator, and derive a necessary optimality condition. In the case of additive
noise, we characterize the adjoint state as the solution of a random backward PDE
and develop a gradient descent method for the approximation of optimal controls.
Finally, we present numerical examples. This chapter is based on [SW21a].

5.1. Introduction

The Hodgkin-Huxley model proposed in [HH52] is one of the most famous models for
the propagation of action potentials in neurons. However, due to the high complexity
of the model, simulations of large networks of neurons quickly become unfeasible.
Therefore, one often restrains to one of the simplified models proposed by FitzHugh,
see [Fit61], or Nagumo et al., see [NAY62]. For a neurobiological derivation of these
models, see [ET10, Mur02, Mur03].
More specifically, the stochastic Nagumo model, also known as the Schlögl model

due to [Sch72], is given by

dxt = [∆xt + γxt(xt − 1)(a− xt)] dt+ Σ(t, xt)dWt, (5.1)

for some γ > 0 and a ∈ (0, 1). The main feature of this model is the cubic nonlinearity
which, in particular, does not fit into the framework discussed in Part I and Part II
of this dissertation. In order to capture this kind of nonlinearity, we consider the
controlled SPDE{

dxut = [∆xut + b(xut ) + d(t)u(t)] dt+ Σ(t, xut )dWt, t ∈ [0, T ]

xu0 = x ∈ L6(Ω,F0,P;L2(Λ))
(5.2)

with homogeneous Neumann boundary conditions, where Λ ⊂ R is a bounded in-
terval, T > 0 is fixed, (Wt)t∈[0,T ] is a cylindrical Wiener process taking values in
some real, separable Hilbert space Ξ and defined on a given filtered probability space(
Ω,F , (Ft)t∈[0,T ],P

)
, where (Ft)t∈[0,T ] is the filtration generated by (Wt) and aug-

mented by all P-null sets, d ∈ L∞([0, T ] × Λ), Σ : [0, T ] × L2(Λ) → L2(Ξ, L2(Λ))
is Fréchet differentiable for every fixed t ∈ [0, T ] and satisfies for all t ∈ [0, T ] and
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5. The Stochastic Nagumo Model

x, y ∈ L2(Λ), 
‖(Σ(t, x)− Σ(t, y))‖L2(Ξ,L2(Λ)) ≤ C‖x− y‖L2(Λ),

‖Σ(t, x)‖L2(Ξ,L2(Λ)) ≤ C
(
1 + ‖x‖L2(Λ)

)
,

‖Σx(t, x)y‖L2(Ξ,L2(Λ)) ≤ C‖y‖L2(Λ),

(5.3)

for some constant C ∈ R, where ‖ · ‖L2(Ξ,L2(Λ)) denotes the Hilbert-Schmidt norm
on the space of all Hilbert-Schmidt operators on L2(Λ). Furthermore, b : R → R is
continuously differentiable satisfying b(0) = 0,

sup
x∈R

b′(x) <∞, (5.4)

and for all x ∈ R,
|b′(x)| < C(1 + |x|2), (5.5)

for some constant C ∈ R.

Remark 5.1. (i) Notice that the upper bound of the derivative implies a one-sided
Lipschitz condition, i.e., there exists a constant L̃ipb ∈ R such that

(b(x)− b(y))(x− y) ≤ L̃ipb(x− y)2, (5.6)

for all x, y ∈ R.

(ii) The nonlinearity in the Nagumo equation satisfies these conditions since the
leading coefficient of the polynomial is negative and the derivative is a polynomial
of degree 2.

(iii) A possible choice for the diffusion coefficient Σ would be the Nemytskii operator
associated with σ : R→ R,

σ(x) := σ̄min{x(x− 1),M},

for some constants σ̄,M > 0. In the stochastic Nagumo model, this choice
imposes noise in particular on the wave front of the resulting traveling wave. For
a more detailed discussion, see [LPS14, Example 10.2].

Let H1(Λ) denote the Sobolev space of order 1 with Neumann boundary conditions
and consider the Gelfand triple

H1(Λ) ⊂ L6(Λ) ⊂
(
H1(Λ)

)∗
. (5.7)

Under appropriate assumptions on the control u (to be specified later), the existence
of a variational solution of equation (5.2) in the space

E := L2([0, T ]× Ω, dt⊗ P;H1(Λ)) ∩ L6(Ω,P;C([0, T ];L2(Λ))) (5.8)

is assured (see e.g. [LR15, Example 5.1.8]).

74
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Our objective is to study the optimal control problem associated with the state
equation (5.2). Let I1 : L6(Ω;C([0, T ];L2(Λ)))→ R be given by

I1(x) := E
[
cΛ

2

∫ T

0

∫
Λ

(
xt(λ)− xΛ(t, λ)

)2
dλdt+

cT
2

∫
Λ

(
xT (λ)− xT (λ)

)2
dλ

]
(5.9)

and I2 : L2([0, T ]× Λ)→ R be given by

I2(u) :=
ν

2

∫ T

0

∫
Λ
u2(t, λ)dλdt, (5.10)

where cΛ, cT , ν ≥ 0, and xΛ ∈ L2 ([0, T ]× Λ) and xT ∈ L2(Λ) are given running and
terminal reference profiles, respectively. We want to minimize the cost functional

J(u) := I1(xu) + I2(u), (5.11)

subject to the state equation (5.2), where

u ∈ Uad :=
{
u ∈ L6 ([0, T ]× Λ) | ‖u‖L6([0,T ]×Λ) ≤ κ

}
, (5.12)

for given κ ≥ 0.

Remark 5.2. The proof of the Gateaux-differentiability of u 7→ xu (see Proposition
5.8 below), requires a moment bound of the solution in L6(Ω × [0, T ] × Λ) due to
the upper bound (5.5) on the derivative b′ of the nonlinearity. Therefore the minimal
requirement for an admissible control is u ∈ L6([0, T ]× Λ).
In the work by Buchholz et al. [BEKT13a] on the deterministic case, the set of

admissible controls

Ũad := {u ∈ L∞ ([0, T ]× Λ) |ua ≤ u(t, x) ≤ ub for a.a. (t, λ) ∈ [0, T ]× Λ} , (5.13)

for some ua < ub is considered. We could use the same set in our analysis as well.

5.2. Well-Posedness of the Optimal Control Problem

First we want to show that the control problem is well-posed. In order to do so, we
need the following a priori bound for solutions of the state equation (5.2).

Proposition 5.3. There is a constant C = C(b, d,Σ, T, x) such that for every solution
xu ∈ E of the state equation (5.2) associated with u ∈ Uad on the right hand side we
have

E

[
sup
t∈[0,T ]

‖xut ‖
6
L2(Λ) +

(∫ T

0
‖xut ‖

2
H1(Λ) dt

)3
]
≤ C

(
1 +

∫ T

0
‖u(t)‖6L2(Λ) dt

)
. (5.14)
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Proof. By the Itô formula from [LR15, Theorem 4.2.5], we have

‖xut ‖
2
L2(Λ)

= ‖x‖2L2(Λ) + 2

∫ t

0
(H1(Λ))∗ 〈∆xus , xus 〉H1(Λ) ds+ 2

∫ t

0
〈b (xus ) , xus 〉L2(Λ) ds

+ 2

∫ t

0
〈d(s)u(s), xus 〉L2(Λ) ds+

∫ t

0
‖σ(s, xus )‖2L2(Ξ,L2(Λ))ds

+ 2

∫ t

0
〈xus , σ(s, xus )dWs〉L2(Λ) .

(5.15)

Using the one-sided Lipschitz continuity of b (5.6) and the fact that b(0) = 0, we
obtain

〈b (xus ) , xus 〉L2(Λ) ≤ L̃ipb‖xus‖2L2(Λ). (5.16)

The rest of the proof is analogous to the proof of Lemma 2.5.

As a consequence, the finiteness of all of the integrals appearing in the cost functional
J is assured. Furthermore, we have the following result.

Corollary 5.4. Let E be defined as in (5.8). Every solution xu ∈ E of the state
equation (5.2) associated with u ∈ Uad on the right hand side is in L6(Ω× [0, T ]× Λ).

Proof. We apply the Gagliardo-Nirenberg interpolation inequality which can be found
in [Rou13]. This yields for almost all (t, ω) ∈ [0, T ]× Ω,

‖xut ‖
6
L6(Λ) ≤ C ‖x

u
t ‖

2
H1(Λ) ‖x

u
t ‖

4
L2(Λ) . (5.17)

Integrating over [0, T ]× Ω yields

E
[∫ T

0
‖xut ‖

6
L6(Λ) dt

]
≤ E

[∫ T

0
‖xut ‖

2
H1(Λ) ‖x

u
t ‖

4
L2(Λ) dt

]
≤ E

[
sup
t∈[0,T ]

‖xut ‖
4
L2(Λ)

∫ T

0
‖xut ‖

2
H1(Λ) dt

]

≤ E

[
sup
t∈[0,T ]

‖xut ‖
6
L2(Λ)

] 2
3

E

[(∫ T

0
‖xut ‖

2
H1(Λ) dt

)3
] 1

3

<∞,

(5.18)

where we used Hölder’s inequality and Proposition 5.3.

Next, we show that the control-to-state operator of the state equation (5.2) is
globally Lipschitz continuous.

Proposition 5.5. Let E be defined as in (5.8). For the control-to-state operator

L2 ([0, T ]× Λ)→ E

u 7→ xu,
(5.19)
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there exists a constant C = C(b, d,Σ,Λ, T ) ∈ R such that

‖xut − xvt ‖
2
E ≤ C

∫ T

0
‖u− v‖2L2(Λ) ds, (5.20)

i.e., the control-to-state operator is Lipschitz continuous from L2 ([0, T ]× Λ) to E.

Proof. By Itô’s formula (see [LR15, Theorem 4.2.5]), we have almost surely

‖xut − xvt ‖
2
L2(Λ) = 2

∫ t

0
(H1(Λ))∗ 〈∆ (xus − xvs) , xus − xvs〉H1(Λ) ds

+ 2

∫ t

0
〈b (xus )− b (xvs) , x

u
s − xvs〉L2(Λ) ds

+ 2

∫ t

0
〈d(s) (u(s)− v(s)) , xus − xvs〉L2(Λ) ds

+

∫ t

0
‖Σ(s, xus )− Σ(s, xvs)‖2L2(Ξ,L2(Λ))ds

+ 2

∫ t

0
〈xus − xvs ,Σ(s, xus )− Σ(s, xvs)dWs〉.

(5.21)

Using the Lipschitz condition (5.3), the one-sided Lipschitz continuity of b (5.6), and
similar arguments as in the proof of Proposition 5.3 yields the claim.

Now we want to prove the existence of an optimal control:

Theorem 5.6. There is at least one optimal control ū ∈ Uad such that

J(ū) = inf
u∈Uad

J(u). (5.22)

Proof. First, we notice that J is nonnegative and hence bounded from below. Let
(un)n∈N ⊂ Uad be a minimizing sequence, i.e.,

lim
n→∞

J(un) = inf
u∈Uad

J(u), (5.23)

Since (un)n∈N ⊂ Uad, (un)n∈N is in particular bounded in L2 ([0, T ]× Λ). Hence, we
can extract a weakly convergent subsequence – again denoted by un – such that
un ⇀ ū in L2([0, T ]× Λ) for some ū ∈ L2([0, T ]× Λ). The point is now to show that
ū ∈ Uad, and ū minimizes J in Uad.
Since Uad is convex and strongly closed, it follows that Uad is also weakly closed,

hence ū ∈ Uad.
Next, we show that ū minimizes J . Let xn, x̄ ∈ E denote the unique solution of

the state equation (5.2) associated with un and ū on the right hand side, respectively.
We first show that xn converges strongly to x̄. In the deterministic case, the a priori
bound in Proposition 5.3 holds pathwise and we can apply a compact embedding
theorem in order to show strong convergence of the solutions. Since we only have the
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a priori bound under the expectation, we cannot use the same technique. Instead
we apply the so-called compactness method introduced in [FG95]. Let us sketch this
technique here:

From the bound

sup
n∈N

E

[
sup
t∈[0,T ]

‖xnt ‖
2
L2(Λ) +

∫ T

0
‖xns ‖

2
H1(Λ) ds

]
<∞ (5.24)

we can conclude tightness of the measures Pn := P◦(xn)−1 on L2([0, T ]×Λ). Therefore,
(Pn)n∈N is relatively compact and we can extract a converging subsequence Pn → P̄. It
remains to identify the limit P̄. By the Skorohod representation theorem, see [Sko56],
there exists a probability space (Ω̂, F̂ , P̂) and a sequence of random variables (Xn)n∈N
and X̄ defined on Ω̂ with the same law as (xn)n∈N and x̄, respectively, such that
Xn → X̄ strongly in L2([0, T ]× Λ) P̂-almost surely. Therefore, using the martingale
representation theorem, we can identify X̄ as a solution of our state equation associated
with ū on the right hand side, see [DPZ14, Section 8.4] for details.

Now, we split the cost functional into one part that depends on xu and into one
part that depends on u. For the first part, I1, we have

lim
n→∞

I1(xn)

= lim
n→∞

E
[
cΛ

2

∫ T

0

∫
Λ

(
xnt (λ)− xΛ(t, λ)

)2
dλdt+

cT
2

∫
Λ

(
xnT (λ)− xT (λ)

)2
dλ

]
= lim

n→∞
Ê
[
cΛ

2

∫ T

0

∫
Λ

(
Xn
t (λ)− xΛ(t, λ)

)2
dλdt+

cT
2

∫
Λ

(
Xn
T (λ)− xT (λ)

)2
dλ

]
≥ Ê

[
lim inf
n→∞

(
cΛ

2

∫ T

0

∫
Λ

(
Xn
t (λ)− xΛ(t, λ)

)2
dλdt+

cT
2

∫
Λ

(
Xn
T (λ)− xT (λ)

)2
dλ

)]
= Ê

[
cΛ

2

∫ T

0

∫
Λ

(
X̄t(λ)− xΛ(t, λ)

)2
dλdt+

cT
2

∫
Λ

(
X̄T (λ)− xT (λ)

)2
dλ

]
= E

[
cΛ

2

∫ T

0

∫
Λ

(
x̄t(λ)− xΛ(t, λ)

)2
dλdt+

cT
2

∫
Λ

(
x̄T (λ)− xT (λ)

)2
dλ

]
= I1(x̄),

(5.25)

where we used Fatou’s Lemma, and exploited that uniqueness in law holds for the
state equation (5.2) and we have a solution in the space E (see equation (5.8) for the
definition of E).

Furthermore, since I2 is continuous and convex, it is also weakly lower semicontinuous,
i.e.,

un ⇀ ū =⇒ lim inf
n→∞

I2(un) ≥ I2(ū). (5.26)
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Therefore, we have

inf
u∈Uad

J(u) = lim
n→∞

J(un) ≥ lim
n→∞

I1(xn) + lim inf
n→∞

I2(un) ≥ I1(x̄) + I2(ū) = J(ū),

(5.27)
which completes the proof.

Remark 5.7. This proof does not rely on the explicit form of our cost functional. The
crucial point is, that the cost functional is sequentially weakly lower semicontinuous.

5.3. First Order Condition for Critical Points

In this section, we are first going to derive the Gâteaux derivative of the control-to-state
operator and the cost functional, and then prove a necessary condition for a control to
be locally optimal.

Proposition 5.8. Let b : R → R satisfy the assumptions of Section 5.2 and u ∈
L6([0, T ]× Λ) be fixed. Then, for every v ∈ L6([0, T ]× Λ), the Gâteaux derivative of
the control-to-state operator u 7→ xu, L6([0, T ]× Λ)→ E in direction v is given by the
solution of the linear SPDE{

dyvt = [∆yvt + b′(xut )yvt + d(t)v(t)]dt+ Σx(t, xut )yvt dWt, t ∈ [0, T ]

yv0 = 0 ∈ L2(Λ).
(5.28)

Proof. Let yv denote the solution of equation (5.28) associated with v on the right
hand side. Set

zε(t) :=
xu+εv
t − xut

ε
− yvt . (5.29)

We want to show that zε → 0 in L2(Ω × [0, T ];H1(Λ)) ∩ L2(Ω;C([0, T ];L2(Λ))) as
ε→ 0. First notice

zε(t) =

∫ t

0
∆zε(s) +

1

ε

(
b(xu+εv

s )− b(xus )
)
− b′(xus )yvsds

+

∫ t

0

1

ε

(
Σ(s, xu+εv

s )− Σ(s, xus )
)
− Σx(s, xus )yvsdWs.

(5.30)

Note that

1

ε

(
b(xu+εv

s )− b(xus )
)
− b′(xus )yvs

=
1

ε
(b(xus + εyvs )− b(xus ))− b′(xus )yvs︸ ︷︷ ︸

=:R1
ε(s)

+
1

ε

(
b(xu+εv

s )− b(xus + εyvs )
)

︸ ︷︷ ︸
=:R2

ε(s)

. (5.31)
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and similarly

1

ε

(
Σ(s, xu+εv

s )− Σ(s, xus )
)
− Σx(s, xus )yvs

=
1

ε
(Σ(s, xus + εyvs )− Σ(s, xus ))− Σx(s, xus )yvs︸ ︷︷ ︸

=:S1
ε (s)

+
1

ε

(
Σ(s, xu+εv

s )− Σ(s, xus + εyvs )
)

︸ ︷︷ ︸
=:S2

ε (s)

.

(5.32)

Together with equation (5.30), Itô’s formula yields

1

2
‖zε(t)‖2L2(Λ) =

∫ t

0
(H1(Λ))∗ 〈∆zε(s), zε(s)〉H1(Λ) ds+

∫ t

0

〈
R1
ε(s), zε(s)

〉
L2(Λ)

ds

+

∫ t

0

〈
R2
ε(s), zε(s)

〉
L2(Λ)

ds+

∫ t

0

〈
zε(s),S1

ε (s)dWs

〉
L2(Λ)

+

∫ t

0

〈
zε(s),S2

ε (s)dWs

〉
L2(Λ)

+
1

2

∫ t

0
‖S1

ε (s) + S2
ε (s)‖2L2(Ξ,L2(Λ))ds.

(5.33)

First notice that∫ t

0
(H1(Λ))∗〈∆zε(s), zε(s)〉H1(Λ)ds = −

∫ t

0
‖∇zε(s)‖2L2(Λ)ds. (5.34)

Furthermore, we have 〈R1
ε(s), zε(s)〉L2(Λ) ≤ (‖R1

ε(s)‖2L2(Λ)+‖zε(s)‖2L2(Λ))/2, and, since
b is one-sided Lipschitz continuous, we have〈
R2
ε(s), zε(s)

〉
L2(Λ)

=
1

ε2

〈
b(xu+εv

s )− b(xus + εyvs ), xu+εv
s − (xus + εyvs )

〉
L2(Λ)

≤ L̃ipb‖zε(s)‖2L2(Λ).
(5.35)

For the last term in equation (5.33), we have

1

2

∫ T

0
‖S1

ε (s) + S2
ε (s)‖2L2(Ξ,L2(Λ))ds

≤
∫ T

0
‖S1

ε (s)‖2L2(Ξ,L2(Λ))ds+

∫ T

0
‖S2

ε (s)‖2L2(Ξ,L2(Λ))ds,

(5.36)
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where, by the Lipschitz condition (5.3) on Σ,

∥∥S2
ε (s)

∥∥2

L2(Ξ,L2(Λ))
=

∥∥∥∥1

ε

(
Σ(s, xu+εv

s )− Σ(s, xus + εyvs )
)∥∥∥∥2

L2(Ξ,L2(Λ))

≤ C
∥∥∥∥1

ε

(
xu+εv
s − xus

)
− yvs

∥∥∥∥2

L2(Λ)

= C‖zε(s)‖2L2(Λ).

(5.37)

Therefore, taking the supremum with respect to t ∈ [0, T ] in equation (5.33) and
taking expectations, it follows

E

[
sup
t∈[0,T ]

‖zε(t)‖2L2(Λ) +

∫ T

0
‖∇zε(t)‖2L2(Λ)dt

]

≤ C

{
E
[∫ T

0

∥∥R1
ε(t)
∥∥2

L2(Λ)
dt

]
+

∫ T

0
E

[
sup
s∈[0,t]

‖zε(s)‖2L2(Λ)

]
dt

+ E

[
sup
t∈[0,T ]

∫ t

0

〈
zε(t),S1

ε (t)dWt

〉
L2(Λ)

]

+ E

[
sup
t∈[0,T ]

∫ t

0

〈
zε(s),S2

ε (s)dWs

〉
L2(Λ)

]}
.

(5.38)

Using Burkholder-Davis-Gundy inequality, we have

E

[
sup
t∈[0,T ]

∫ t

0

〈
zε(s),S2

ε (s)dWs

〉
L2(Λ)

]
≤ CE

[〈∫ ·
0

〈
zε(s),S2

ε (s)dWs

〉
L2(Λ)

〉 1
2

T

]
.

(5.39)
Now we compute the quadratic variation. To this end, let (ek)k≥1 be an orthonormal
basis of L2(Λ). Then we have〈∫ ·

0

〈
zε(s),S2

ε (s)dWs

〉
L2(Λ)

〉 1
2

T

=

(∫ T

0

∞∑
k=1

∣∣∣〈zε(s),S2
ε (s)ek

〉
L2(Λ)

∣∣∣2 ds

) 1
2

≤ α

2
sup
t∈[0,T ]

‖zε(t)‖2L2(Λ) +
1

2α

∫ T

0

∥∥S2
ε (s)

∥∥2

L2(Ξ,L2(Λ))
ds,

(5.40)

for arbitrary α > 0. With the same estimates as above for ‖S2
ε (s)‖2L2(Ξ,L2(Λ)) and with
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inequality (5.39) this yields

E

[
sup
t∈[0,T ]

∫ t

0

〈
zε(s),S2

ε (s)dWs

〉
L2(Λ)

]

≤ CαE

[
sup
t∈[0,T ]

‖zε(t)‖2L2(Λ)

]
+
C

α
E
[∫ T

0
‖zε(s)‖2L2(Λ)ds

]
.

(5.41)

Furthermore, with similar calculations as above, we obtain

E

[
sup
t∈[0,T ]

∫ t

0

〈
zε(s),S1

ε (s)dWs

〉
L2(Λ)

]

≤ CαE
[∫ T

0
‖zε(s)‖2L2(Λ)ds

]
+
C

α
E
[∫ T

0

∥∥S1
ε (s)

∥∥2

L2(Ξ,L2(Λ))
ds

]
,

(5.42)

for arbitrary α > 0. Choosing α > 0 in (5.41) and (5.42) sufficiently small, we derive
from (5.38)

E

[
sup
t∈[0,T ]

‖zε(t)‖2L2(Λ) +

∫ T

0
‖∇zε(s)‖2L2(Λ)ds

]

≤ C

{∫ T

0
E

[
sup
s∈[0,t]

‖zε(s)‖2L2(Λ)

]
dt+ E

[∫ T

0

∥∥R1
ε(s)

∥∥2

L2(Λ)
ds

]

+ E
[∫ T

0

∥∥S1
ε (s)

∥∥2

L2(Ξ,L2(Λ))
ds

]}
.

(5.43)

By Grönwall’s inequality, this yields

E

[
sup
s∈[0,T ]

‖zε(s)‖2L2(Λ) +

∫ T

0
‖∇zε(s)‖2L2(Λ)ds

]

≤ CE
[∫ T

0
‖R1

ε(s)‖2L2(Λ) +
∥∥S1

ε (s)
∥∥2

L2(Ξ,L2(Λ))
ds

]
.

(5.44)

Since R1
ε → 0 as ε→ 0 for almost all (ω, t, λ) ∈ Ω× [0, T ]× Λ, we obtain using the

dominated convergence theorem

lim
ε→0

E
[∫ T

0
‖R1

ε(t)‖2L2(Λ)dt

]
= 0. (5.45)

Here, we used that R1
ε is dominated in the following way: By assumption (5.5), Taylor’s

formula and elementary estimates, we have

|R1
ε| ≤ C

(
1 + |xu|3 + |yv|3

)
. (5.46)
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The boundedness of the right hand side in L2(Ω× [0, T ]×Λ) follows immediately from
Corollary 5.4 (notice that we obtain the boundedness of yv in L6(Ω× [0, T ]× Λ) by
the same arguments as for xu). Furthermore, we have

lim
ε→0

E
[∫ T

0

∥∥S1
ε (s)

∥∥2

L2(Ξ,L2(Λ))
ds

]
= 0 (5.47)

since by the Lipschitz condition on Σ and the bound on the Fréchet derivative of Σ
(see (5.3)), we have the following bound:∥∥S1

ε (s)
∥∥2

L2(Ξ,L2(Λ))

=

∥∥∥∥1

ε
(Σ(s, xus + εyvs )− Σ(s, xus ))− Σx(s, xus )yvs

∥∥∥∥2

L2(Ξ,L2(Λ))

≤ 2

∥∥∥∥1

ε
(Σ(s, xus + εyvs )− Σ(s, xus ))

∥∥∥∥2

L2(Ξ,L2(Λ))

+ 2 ‖Σx(s, xus )yvs‖
2
L2(Ξ,L2(Λ))

≤ C
(

1 + ‖yvs‖2L2(Λ)

)
.

(5.48)

This completes the proof that zε converges to 0 in L2([0, T ]× Ω;H1(Λ)) and in
L2(Ω;C([0, T ];L2(Λ))). From the definition of v 7→ yv, it follows immediately that
this is linear. Thus, for the Gâteaux differentiability it remains to show that v 7→ yv

is continuous. But this follows with the same arguments as in Proposition 5.5.

As a corollary we obtain the following representation for the Gâteaux derivative of
the cost functional.

Corollary 5.9. For every v ∈ L6([0, T ]× Λ), the cost functional
J : L6 ([0, T ]× Λ) → R is Gâteaux differentiable in the direction v with Gâteaux
derivative

∂J(u)

∂v
= E

[
cΛ

∫ T

0

∫
Λ
yvt (λ)

(
xut (λ)− xΛ(t, λ)

)
dλdt

+ cT

∫
Λ
yvT (λ)

(
xuT (λ)− xT (λ)

)
dλ+ ν

∫ T

0

∫
Λ
u(t, λ)v(t, λ)dλdt

]
, (5.49)

where yv denotes the variational solution of the SPDE (5.28).

Proof. Recall that the cost functional is given by

J(u) := I1(xu) + I2(u), (5.50)
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where

I1(x) := E
[
cΛ

2

∫ T

0

∫
Λ

(
xt(λ)− xΛ(t, λ)

)2
dλdt+

cT
2

∫
Λ

(
xT (λ)− xT (λ)

)2
dλ

]
(5.51)

and

I2(u) :=
ν

2

∫ T

0

∫
Λ
u2(t, λ)dλdt. (5.52)

Hence
∂J(u)

∂v
=
∂I1 (xu)

∂v
+
∂I2(u)

∂v
. (5.53)

Let u ∈ L6 ([0, T ]× Λ) be fixed. For v ∈ L6([0, T ] × Λ), we have for the Gâteaux
derivative of I2

∂I2(u)

∂v
= λ

∫ T

0

∫
Λ
u(t, λ)v(t, λ)dλdt. (5.54)

On the other hand we have for the Gâteaux derivative of I1

∂I1(x)

∂y
= E

[
cΛ

∫ T

0

∫
Λ
y
(
x− uΛ

)
dλdt+ cT

∫
Λ
y
(
x− xT

)
dλ

]
. (5.55)

Hence, by the chain rule, we obtain

∂I1 (xu)

∂v
= E

[
cΛ

∫ T

0

∫
Λ

∂xu

∂v

(
xu − xΛ

)
dλdt+ cT

∫
Λ

∂xu

∂v

(
xu − xT

)
dλ

]
, (5.56)

which, together with equation (5.54) and Proposition 5.8, completes the proof.

Now we can state a necessary condition for J to attain a minimum.

Theorem 5.10. Let J attain a (local) minimum at ū ∈ Uad. Then, for every v ∈ Uad
we have

E

[
cΛ

∫ T

0

∫
Λ
yv−ūt (λ)

(
x̄t(λ)− xΛ(t, λ)

)
dλdt

+ cT

∫
Λ
yv−ūT (λ)

(
x̄T (λ)− xT (λ)

)
dλ+ ν

∫ T

0

∫
Λ
ū(t, λ)(v − ū)(t, λ)dλdt

]
≥ 0.

(5.57)

Proof. Let v ∈ Uad, and observe for ε ∈ [0, 1] that ū + ε(v − ū) ∈ Uad. Since ū is a
local minimizer, there exists a 1 ≥ ε0 > 0 such that for all ε ∈ (0, ε0) we have

J(ū) ≤ J(ū+ ε(v − ū)). (5.58)

which implies
1

ε
(J(ū+ ε(v − ū))− J(ū)) ≥ 0. (5.59)
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Letting ε tend to zero and plugging in the representation from Corollary 5.9 yields
the claim.

5.4. The Gradient of the Cost Functional

In this section, we are going to derive a representation for the gradient of the cost
functional via adjoint calculus. Recall the state equation{

dxut = [∆xut + b (xut ) + d(t)u(t)] dt+ Σ(t, xut )dWt, t ∈ [0, T ]

xu0 = x ∈ L2(Λ).
(5.60)

In Section 5.3, we proved the following representation

∂J(u)

∂v
= E

[
cΛ

∫ T

0

∫
Λ
yvt (λ)

(
xut (λ)− uΛ(t, λ)

)
dλdt

+ cT

∫
Λ
yvT (λ)

(
xuT (λ)− xT (λ)

)
dλ+ ν

∫ T

0

∫
Λ
u(t, λ)v(t, λ)dλdt

]
, (5.61)

where yv is the variational solution of{
dyvt = [∆yvt + b′(xut )yvt + d(t)v(t)]dt+ Σx(t, xut )yvt dWt, t ∈ [0, T ]

yv0 = 0 ∈ L2(Λ).
(5.62)

The adjoint equation that is used in the existing literature is{
−dpt =

[
∆pt + b′(xut )pt + cΛ

(
xut − xΛ(t, ·)

)
+ ∂xΣ(t, xut )∗qt

]
dt− qtdWt

pT = cT
(
xuT − xT

)
∈ L2(Λ),

(5.63)

for some processes p ∈ L2(Ω × [0, T ];H1(Λ)) and q ∈ L2(Ω × [0, T ];L2(Ξ, L2(Λ))).
The derivation of the Stochastic Minimum Principle with this adjoint equation works
in our setting as well. However, the numerical approximation of the solution of this
adjoint equation is extremely costly. Therefore, we restrict our analysis to the case of
additive noise in the state equation.{

dxut = [∆xut + b (xut ) + d(t)u(t)] dt+ σdWt, t ∈ [0, T ]

xu0 = x ∈ L2(Λ),
(5.64)

for some σ ∈ L2(Ξ, L2(Λ)). In this case, the linearized equation becomes{
∂ty

v
t = ∆yvt + b′(xut )yvt + d(t)v(t), t ∈ [0, T ]

yv0 = 0 ∈ L2(Λ),
(5.65)

which is a random partial differential equation (the coefficient b′(xut ) is random). Now,
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we introduce the following random backward PDE for the adjoint state:{
−∂tpt = ∆pt + b′(xu)pt + cΛ

(
xut − xΛ(t, ·)

)
, t ∈ [0, T ]

pT = cT
(
xuT − xT

)
∈ L2(Λ).

(5.66)

One crucial point for our algorithm is the fact that the adjoint equation is a random
backward PDE. The following adjoint state property is the main ingredient in the
derivation of the gradient of the cost functional.

Proposition 5.11. Let p be the solution of the adjoint equation (5.66) and let yv be
the solution of equation (5.65) associated with xu. Then we have almost surely for
every v ∈ L6([0, T ]× Λ),∫ T

0

∫
Λ
d(t)v(t)ptdλdt =

∫ T

0

∫
Λ
cΛ(xut −xΛ(t, ·))yvt dλdt+

∫
Λ
cT (xuT−xT )yvTdλ. (5.67)

Proof. By the deterministic integration by parts formula, it holds pathwise

yvT pT − yv0p0 =

∫ T

0
yvt dpt +

∫ T

0
ptdy

v
t . (5.68)

Plugging in equations (5.65) and (5.66), respectively, this yields

yvT cT (xuT − xT ) =−
∫ T

0
yvt
(
∆pt + b′(xut )pt + cΛ(xut − xΛ(t, ·))

)
dt

+

∫ T

0
pt
(
∆yvt + b′(xut )yvt + d(t)v(t)

)
dt.

(5.69)

Integrating over Λ, and integrating the Laplace operator by parts, we obtain∫
Λ
yvT cT (xuT − xT )dλ =

∫ T

0

∫
Λ
d(t)v(t)pt − cΛ(xut − xΛ(t, ·))yvt dλdt, (5.70)

which is the claimed result.

As a corollary, we obtain the following representation for the gradient of the cost
functional.

Theorem 5.12. The gradient of the cost functional is given by

∇J(u)(t, λ) = E [d(t)pt(λ) + νu(t, λ)] , (5.71)

where p is the solution of the adjoint equation{
−∂tpt = ∆pt + b′(xut )pt + cΛ

(
xut − xΛ(t, ·)

)
, t ∈ [0, T ]

pT = cT
(
xuT − xT

)
∈ L2(Λ).

(5.72)
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Proof. By Corollary 5.9, we have

∂J(u)

∂v
= E

[
cΛ

∫ T

0

∫
Λ
yvt (λ)

(
xut (λ)− xΛ(t, λ)

)
dλdt

+ cT

∫
Λ
yvT (λ)

(
xuT (λ)− xT (λ)

)
dλ+ ν

∫ T

0

∫
Λ
u(t, λ)v(t, λ)dλdt

]
, (5.73)

where yv denotes the variational solution of the random PDE (5.28). Now, by
Proposition 5.11, this yields

∂J(u)

∂v
= E

[∫ T

0

∫
Λ
d(t)v(t)ptdλdt+ ν

∫ T

0

∫
Λ
u(t)v(t)dλdt

]
, (5.74)

which completes the proof.

Furthermore, by plugging this representation into the necessary condition derived
in Theorem 5.10, we obtain the Stochastic Minimum Principle.

Theorem 5.13. Let J attain a (local) minimum at ū ∈ Uad. Then, for every v ∈ Uad
we have

E
[∫ T

0

∫
Λ

(d(t)pt(λ) + νū(t, λ))(v(t, λ)− ū(t, λ))dλdt

]
≥ 0. (5.75)

5.5. Nonlinear Conjugate Gradient Descent

Now that we have identified a representation for the gradient, we can apply a prob-
abilistic nonlinear conjugate gradient descent method in order to approximate the
optimal control. We are going to briefly sketch our algorithm here. For a survey of
nonlinear conjugate gradient descent methods see [HZ06].

Let the initial control u0 ∈ L6 ([0, T ]× Λ) be given and fix an initial step size s0 > 0,
as well as a stopping criterion η > 0. Then, the next control can be found as follows.

1. Solve the state equation{
dxnt = [∆xnt + b (xnt ) + d(t)un(t)] dt+ σdWt, t ∈ [0, T ]

xn0 = x ∈ L2(Λ)
(5.76)

for one realization of the noise.

2. Solve the adjoint equation{
−∂tpnt = ∆pnt + b′(xnt )pnt + cΛ

(
xnt − xΛ(t, ·)

)
, t ∈ [0, T ]

pnT = cT
(
xnT − xT

)
∈ L2(Λ)

with the data given by the sample of the solution of the state equation that was
calculated in Step 1.
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3. Repeat Step 1 and Step 2 to approximate

∇J(un)(t, λ) = E [d(t)pnt (λ) + νun(t, λ)]

via a Monte Carlo method.

4. The direction of descent is given by Dn = −∇J(un) + βnDn−1, where βn =
‖∇J(un)‖
‖∇J(un−1)‖ . (In the first step, β1 = 0.)

5. Compute the new control via un+1 = un + snDn.

6. Accept or deny the new control: Again using a Monte Carlo method, we compare
the costs under the new control with the costs under the old control. If the new
control decreases the costs, we accept the new control and go back to Step 1.
Otherwise, we decrease the step size sn = sn/2 and then go back to Step 5. (In
our simulations, it has proven useful to accept the new control even if the costs
are non-decreasing, once the step size gets too small, e.g. sn < 10−4.)

7. Stop if ‖∇J(un)‖ < η, otherwise reset the step size sn = s0 and go to step 1.

5.6. Numerical Experiments

In this section we want to present the application of the algorithm that was introduced
in Section 5.5 to the stochastic Nagumo model. We are going to investigate two
examples. The first one is to control the speed and the direction of travel of the
wave front developing in the Nagumo model with additive noise; the second one is
an example, where the optimal control of the deterministic system differs from the
optimal control of the stochastic system. Corresponding results for the deterministic
model can be found in the work by Buchholz et al., see [BEKT13a].

5.6.1. Steering of a Wave Front

Let us first recall the stochastic Nagumo model. We consider the state equation{
dxut = [∆xut + b (xut ) + d(t)u(t)] dt+ σdWt, t ∈ [0, T ]

xu0 = x ∈ L2(Λ)
(5.77)

with homogeneous Neumann boundary conditions, where d ≡ 1, and the nonlinearity
is of the form b(x) = γx(x−1)(a−x) for some γ > 0, a ∈ (0, 1), i.e., the state equation
takes the form{

dxut = [∆xut + γxut (xut − 1)(a− xut ) + u(t)] dt+ σdWt, t ∈ [0, T ]

xu0 = x ∈ L2(Λ).
(5.78)

We choose Ξ = L2(Λ). In this case, the noise coefficient σ ∈ L2(L2(Λ)) can be
associated with an intergral kernel k ∈ L2(Λ2). We choose the correlation length of
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(a) Deterministic Case, σ̄ = 0 (b) Stochastic Case, σ̄ = 0.5

Figure 5.1.: Uncontrolled Nagumo Equation

this integral kernel shorter than our chosen space discretization for the simulations.
Therefore, we use independent Brownian motions with intensity σ̄ ∈ R on every node.

In our example, we choose the time-horizon [0, 15], the space interval Λ = [0, 20],
γ = 1, and a = 39/40. As the initial condition we choose the wave profile

x(λ) =

(
1 + exp

(
−
√

2

2
(λ− 5)

))−1

. (5.79)

In the deterministic case on an unbounded domain, these parameters lead to a traveling
wave of the form x(λ+ ct), where c =

√
2(a− 1

2) ≈ 0.672, see [CG92]. Even though
we are on a bounded domain, due to the homogeneous Neumann boundary conditions
and the flatness of the wave profile close to the boundary we expect a similar behavior.
Figure 5.1a displays a simulation in the deterministic case. Figure 5.1b shows one
realization of the solution in the stochastic case with σ̄ = 0.5.

We can see that the traveling wave slowly travels to the right. Our objective is now
to first speed up the wave and then change the direction of travel. To this end, we
consider the cost functional given by

J(u) = E
[
cΛ

2

∫ T

0

∫
Λ

(
xut (λ)− xΛ(t, λ)

)2
dλdt

]
(5.80)

where cΛ = 1, and the reference profile xΛ is given by

xΛ(t, λ) =


(

1 + exp
(
−
√

2
2 (λ− t− 5)

))−1
, t ≤ T

2(
1 + exp

(
−
√

2
2 (λ− (T − t)− 5)

))−1
, t > T

2

, (5.81)

for (t, λ) ∈ [0, T ]× Λ.
With the algorithm from Section 5.5 we can approximate the optimal control. Let
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(a) Solution with Optimal Control (b) Optimal Control

Figure 5.2.: Controlled Stochastic Nagumo Equation, σ̄ = 0.5

us apply the algorithm to the stochastic case with σ̄ = 0.5, the stopping criterion
η = 0.05 and 100 Monte Carlo simulations for the approximation of the gradient. One
realization of the solution with applied optimal control is displayed in Figure 5.2a.
Figure 5.2b shows the corresponding optimal control.

5.6.2. Comparison with the Control of the Deterministic System

Simulations suggest that the optimal control for the deterministic system in the
preceding example does not differ qualitatively from the optimal control for the
stochastic system. This is because the fixed points 0 and 1 are stable. The situation
changes, however, if one of the fixed points becomes unstable from one side, as the
following example shows. Consider the state equation{

dxut =
[
∆xut − (xut )3 + (xut )2 + u(t)

]
dt+ σdWt, t ∈ [0, T ]

xu0 = x ∈ L2(Λ),
(5.82)

where Λ = [0, 20], T = 30 and σ ∈ L2(Ξ, L2(Λ)). These choices lead to only one stable
steady state, x = 1 and one unstable steady state x = 0, as illustrated by the potential
of the nonlinearity in Figure 5.3a. Now, as initial condition, we choose xu0 = 0, and
consider the cost functional

J(u) = E
[

1

2

∫
Λ

(xuT (λ))2 dλ

]
, (5.83)

i.e., we want the final state to be unchanged, in the unstable steady state 0. In the
deterministic case, the optimal control is clearly ū ≡ 0, since we start in the steady
state x = 0 and without any forcing, we stay in this state and accomplish the minimal
possible costs J(ū) = 0. In the stochastic case, however, the noise term pushes the
state out of the unstable steady state. Whenever the noise pushes the state above
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(a) Potential (b) Solution without Control

Figure 5.3.: Uncontrolled Stochastic Nagumo Equation, One Unstable Steady State,
σ̄ = 1

0, the dynamics of the state equation force the state towards the stable steady state
x = 1. As an illustration of this effect, Figure 5.3b shows one realization in the
stochastic case without a control function. When we introduce a control, the control
tries to counteract this effect by keeping the state below 0 for times t < T . This effect
can be seen in the simulations, as well. As the stopping criterion we used η = 0.002.
Figure 5.4 displays the optimal control in the stochastic case with the same noise
coefficient as in Section 5.6.1 and σ̄ = 0.5, and one realization of the corresponding
state, respectively.

5.6.3. Mathematical Analysis in a Simplified Setting

Since we are not able to prove the previous result in that setting rigorously, we consider
a simpler similar example in which the optimal control in the deterministic case and
the optimal control in the stochastic case differ.

Let us consider the SDE{
dxut = [−P ′(xut ) + u(t)] dt+ σ̄dBt, t ∈ [0, T ]

xu0 = 0,
(5.84)

where (Bt)t≥0 is a Brownian motion on R, σ̄ ∈ R, the potential P : R→ R is given by

P(x) =

{
1
2(arctan(x)− x), for x ≥ 0

0, for x < 0,
(5.85)

and hence −P ′ is given by

− P ′(x) =

{
x2

2(1+x2)
, for x ≥ 0

0, for x < 0.
(5.86)
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(a) Solution with Optimal Control (b) Optimal Control

Figure 5.4.: Controlled Stochastic Nagumo Equation, One Unstable Steady State,
σ̄ = 0.5

Notice that this potential qualitatively resembles the potential used in the previous
example in the interval [0, 1]. That is why we observe a similar effect in this example.
We consider the cost functional

J(u) := E
[

1

2
(xuT )2

]
. (5.87)

As in the previous example, the initial condition and the desired final state are both
the unstable steady state x = 0. Hence, in the deterministic case (σ̄ = 0), the optimal
control is given by ū ≡ 0, since the constant function x ≡ 0 solves the deterministic
equation without control and the associated costs are zero.
Now, we are going to show that the optimal control in the stochastic case (σ̄ > 0),

however, is not equal to zero. First, notice that the adjoint equation associated with
our control problem is given by{

−∂tpt = −P ′′(xut )pt, t ∈ [0, T ]

pT = xuT ,
(5.88)

where −P ′′ is given by

− P ′′(x) =

{
x

(1+x2)2 , for x ≥ 0

0, for x < 0.
(5.89)

Hence, the solution of the adjoint equation is given explicitly by

pt = xuT exp

(∫ T

t
−P ′′(xus )ds

)
, (5.90)
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and the gradient of the cost functional is given by

∇J(u)(t) = E[pt] = E
[
xuT exp

(∫ T

t
−P ′′(xus )ds

)]
. (5.91)

Now, we are going to show that the gradient for u ≡ 0 is not equal to zero and hence,
u ≡ 0 is not an optimal control. To this end, consider

∂t(∇J(u))(t) = E[∂tpt] = E
[
P ′′(xut )xuT exp

(∫ T

t
−P ′′(xus )ds

)]
. (5.92)

This yields

lim inf
t→T

{−∂t(∇J(u))(t)}

= lim inf
t→T

E
[
−P ′′(xut )xuT exp

(∫ T

t
−P ′′(xus )ds

)]
≥ E

[
lim inf
t→T

{
−P ′′(xut )xuT exp

(∫ T

t
−P ′′(xus )ds

)}]
= E

[
−P ′′(xuT )xuT

]
= E

 (xuT )2(
1 +

(
xuT
)2)2 1{xuT>0}

 > 0,

(5.93)

where the last part is strictly positive since xT has a strictly positive density with
respect to the Lebesgue measure. Therefore, the gradient is not equal to zero and
thus, u ≡ 0 is not an optimal control.

Remark 5.14. Notice that we did not use that u ≡ 0 in this proof. This shows, that
the optimal control in the stochastic case is unbounded.

Figure 5.5 illustrates our results in case of the SDE (5.84) as the constraint and the
cost functional (5.87).
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Figure 5.5.: Controlled SDE, One Unstable Steady State, σ̄ = 1
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