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Structural anomalies in brain networks induce
dynamical pacemaker effects

Cite as: Chaos 30, 113137 (2020); doi: 10.1063/5.0006207

Submitted: 29 February 2020 · Accepted: 22 October 2020 ·

Published Online: 19 November 2020 View Online Export Citation CrossMark

I. Koulierakis,1,2,a) D. A. Verganelakis,3,b) I. Omelchenko,4,c) A. Zakharova,4,d) E. Schöll,4,5,6,e) and

A. Provata1,f)

AFFILIATIONS

1Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos,” 15341 Athens, Greece
2School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece
3Nuclear Medicine Unit, Oncology Clinic “Marianna V. Vardinoyiannis—ELPIDA,” Childrens’ Hospital “A. Sofia,” 11527 Athens,

Greece
4Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
5Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
6Potsdam Institute for Climate Impact Research, Telegrafenberg A 31, 14473 Potsdam, Germany

a)Electronic mail: koulyia@gmail.com
b)Electronic mail: dimitris.verganelakis@gmail.com
c)Electronic mail: omelchenko@itp.tu-berlin.de
d)Electronic mail: anna.zakharova@tu-berlin.de
e)Electronic mail: schoell@physik.tu-berlin.de
f)Author to whom correspondence should be addressed: a.provata@inn.demokritos.gr

ABSTRACT

Dynamical effects on healthy brains and brains affected by tumor are investigated via numerical simulations. The brains are modeled as
multilayer networks consisting of neuronal oscillators whose connectivities are extracted from Magnetic Resonance Imaging (MRI) data. The
numerical results demonstrate that the healthy brain presents chimera-like states where regions with high white matter concentrations in
the direction connecting the two hemispheres act as the coherent domain, while the rest of the brain presents incoherent oscillations. To
the contrary, in brains with destructed structures, traveling waves are produced initiated at the region where the tumor is located. These
areas act as the pacemaker of the waves sweeping across the brain. The numerical simulations are performed using two neuronal models:
(a) the FitzHugh–Nagumo model and (b) the leaky integrate-and-fire model. Both models give consistent results regarding the chimera-
like oscillations in healthy brains and the pacemaker effect in the tumorous brains. These results are considered a starting point for further
investigation in the detection of tumors with small sizes before becoming discernible on MRI recordings as well as in tumor development and
evolution.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0006207

The detection of human brain anomalous structures (lesions)
relies mainly on data from Magnetic Resonance Imaging (MRI)
or Computed Tomography (CT) scans.1 These techniques are able
to discern abnormalities of sizes as low as a few millimeters. For
all medical purposes, it is important to develop effective tools
for the early diagnosis and detection of tumors of smaller sizes,
and in recent years, many studies have been devoted to explor-
ing early warning indicators of abnormal tissue development.2,3

In this study, we propose an alternative detection method based

on numerical integration of dynamical systems on a network
extracted from the structure of the white matter as displayed by
MRI data. The abnormal tissue development generates traveling
waves whose origin is located on the lesion that acts as the “pace-
maker.” This is an interesting finding and needs to be further
explored with a dual goal: (a) the determination of the anoma-
lous tissue location at the center of the pacemaker region and (b)
the possibility to be useful in relation to lesion/tumor detection at
early stages, before being visible by the human eye in MRI images.
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I. INTRODUCTION

Synchronization phenomena are omnipotent in systems con-
sisting of many coupled oscillatory units and are of great importance
in the exchange of information in networks of neurons that perform
nonlinear, spiking oscillations.4–6 In fact, neurons operate as poten-
tial integrators with a cutoff after which they exchange information
in the form of electrical or chemical signals.7,8 In collective neu-
ron dynamics, interesting synchronization phenomena arise, such
as local phase or amplitude synchronization, incoherent and chaotic
oscillations, and chimera states. Many of these phenomena are asso-
ciated with healthy brain functionality (intermittent oscillations and
chimera states), while others appear as a result of brain malfunc-
tions such as epilepsy, schizophrenia, and neurodegenerative brain
disorders.9–12 In the present study, numerical simulations are used
to investigate and compare synchronization phenomena in healthy
brains and brains affected by tumors. Our approach consists of using
structural MRI data to construct the underlying network substrate
where the neuronal oscillators operate and interact. “Chimera-like”
states and traveling waves are some of the most prominent syn-
chronization properties that are reported in this study in relation
to healthy and tumorous brains, respectively.

Chimera states are stable states in systems of coupled nonlinear
oscillators, which are characterized by coexistence of synchronous
and asynchronous domains. Depending on the system parameters,
multichimera states may also be developed that include many alter-
nating coherent and incoherent domains. Single chimeras were first
observed by Kuramoto and Battogtokh in 2002,13,14 while the term
“chimera” was introduced two years later by Abrams and Strogatz.15

The coexistence of synchronous and asynchronous domains is not a
trivial effect in view of the fact that it is often observed in systems of
identical oscillators, identically linked and is, therefore, considered
a spontaneous spatial symmetry breaking phenomenon. Chimera
states coexist with the fully synchronous state, and, for finite system
sizes, the chimera may transit into the synchronous state.

Besides earlier studies that focused on coupled phase oscilla-
tors, the well known Kuramoto model,13 later works have reported
chimera states in coupled oscillators with different dynamics, such as
the Hodgkin–Huxley (HH) model, the FitzHugh–Nagumo (FHN),
the Hindmarsh–Rose, the Van der Pol, the Stuart–Landau, and
the Leaky Integrate-and-Fire (LIF) oscillator networks.16–28 Recent
advances in the field of chimera states and, more generally, on
network synchronization are summarized in Refs. 29–34.

Experimentally, chimera states have been realized in diverse
systems consisting of oscillatory units, such as in optical systems,35

catalytic systems,36–38 coupled metronomes,39,40 electronic circuits,41

and biomedicine.10,42–44 Future applications are extensively dis-
cussed in the field of metamaterials45,46 and in biomedical
applications.9,21,47–50 In nature, chimera states have been associated
with the uni-hemispheric sleep in dolphins and birds as well as the
synchronous–asynchronous firing in fireflies.51–53

In relation to biomedical applications, synchronization phe-
nomena are important in brain dynamics in the exchange of electri-
cal and chemical signals between brain neurons.54 That is why in the
original studies of synchronization, Kuramoto used the phase oscil-
lator, a prototype model of neuronal firing.13 In realistic brain simu-
lations, where different types of neurons are involved with different

connectivities, the classical chimera states cannot be seen. However,
even in these cases of inhomogeneous neuronal populations, spe-
cific synchronization patterns that include coherent and incoherent
domains can be observed, and these are called “chimera-like states”44

to keep the connection with the classical chimeras where all oscil-
lators are identical and identically linked. In the present study, an
intermediate path is used: coupled identical oscillators (FHN or LIF
units) are employed with nonidentical connectivities, extracted from
the intensity of the MRI images of the healthy and tumorous brains.

The work is organized as follows. The MRI data of the con-
trol subjects and patients, used later on to construct the connectivity
matrices, is presented in Sec. II. Section III introduces the mathe-
matical framework of the coupled FHN and LIF neuronal network
models, while in Sec. III C, the realization of the connectivity
schemes is presented. In Sec. IV, by means of numerical simula-
tions, the emergence of chimera-like states is discussed in healthy
brain (Secs. IV A and IV C) and in tumorous brain (Secs. IV B and
IV D) using two different models: FHN (Secs. IV A and IV B) and
LIF (Secs. IV C and IV D) oscillator networks. The spectral proper-
ties of specific oscillators located in the healthy and tumorous areas
are discussed and compared in Sec. V. Finally, Sec. VI recapitulates
our general conclusions.

II. THE DATA

Brain MRI scanning is a noninvasive imaging diagnostic
method that combines 2D images to create a 3D picture of the brain
and has been the basic tool for physicians in detecting abnormalities
in brain structures.55–60

It is a method used since the 1970s and has a wide range of con-
trast mechanisms allowing to detect structural and functional brain
attributes. One of the most popular mechanisms is based on the
relaxation properties of the magnetic moments of water molecules
when they get exposed to an external magnetic field and oscil-
lating radio waves. Diffusion-weighted magnetic resonance imag-
ing (DWI)58 generates maps of the diffusion processes (Brownian
motion) of water molecules in biological tissues driven by thermal
agitation using three gradient directions, (x,y,z), where the signal
intensity of each voxel represents the optimal of the local water dif-
fusion rate. Biological tissues are structurally rich environments that
consist of macromolecules, membranes, and fibers, where the actual
diffusion process of water molecules is affected by the architecture
of those components, depicting macroscopically their architecture.

The data of the present study have been obtained via the
Diffusion Tensor Imaging (DTI) technique,59,61,62 which is a direct
extension of DWI. It is a technique that maps the white matter
structure in the brain using six or more gradient directions allow-
ing to calculate the diffusion tensor. The signal intensity of each
voxel encapsulates both the local diffusion rate and the major local
diffusion direction demonstrating the three-dimensional shape of
the structure. Fibers’ directions are denoted by the tensor’s main
eigenvector. Color-coded main eigenvectors produce maps of bun-
dles of axonal neurons with respect to position and direction. In
white matter, water molecules diffuse more freely along the bun-
dles of neuronal axons in the white matter of the brain capturing
their 3D orientation, structural integrity, and concentration. This

Chaos 30, 113137 (2020); doi: 10.1063/5.0006207 30, 113137-2

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

preferentially oriented diffusion is called anisotropic diffusion. Dif-
fusion anisotropy measures, such as fractional anisotropy (FA), can
be derived from the diffusion tensor. FA takes values between 0
and 1 and reflects fiber density and axonal diameters in white mat-
ter. It is used here to represent the local axon density, allowing
to transfer electrical signals (in the form of potential variations)
between different parts of the brain.

For our study, 3D MRI data from four subjects were con-
sidered: two healthy subjects, denoted as H(1) and H(2), and two
patients with brain tumor, denoted as P(1) and P(2). For each sub-
ject, the data consist of a set of RGB (red–green–blue) images that,
using the water diffusion in the 3D space, depict the density of
the neuron axons locally in the brain. Among other data treat-
ments during the post-processing, the scalp and skin of the subjects
were computationally removed. The number of RGB slices ns ranges
between 40 ≤ ns ≤ 44 for each subject; the slices are taken equidis-
tantly along the z-axis of the brain (superior-to-inferior direction).
Each slice consists of 256 × 256 cells. All 2D slices are stacked algo-
rithmically to reconstruct the 3D brain structure, which ultimately
consists of 256 × 256 × ns voxels. The color scale (minimum = 0,
maximum = 1, in arbitrary units) denotes the density of neuron
axons within each voxel.

All images are obtained from a General Electric 1.5 T Signa
HDxt MRI Scanner. The coil that is used to transmit the radiofre-
quency pulses and detect the MRI signal is an eight-element head
coil. The parameters of the Diffusion Tensor Imaging (DTI) single-
shot spin-echo Echo Planar Imaging (EPI) pulse sequence are flip
angle: 90◦, Echo Time (TE): 85 ms, Repetition Time (TR): 10 700 ms,
slice thickness: 3 mm, spacing between slices: 0 mm, Field Of View

(FOV): 26 cm, matrix: 256 × 256, and No. of Excitations (NEX):
1. The voxel resolution was 3 × 3 × 3 mm3. The b value used is
1000 s/mm2 and the diffusion gradients are applied along 30 non-
collinear directions. The scan time for each subject is ≈5 min.
The number of directions is a compromise between resolution and
acquisition time; the time required for a larger number of directions
would necessitate longer scan time, with higher probability for arti-
facts in the data due to erratic motion of the scanned subjects. The
data have been previously published in Refs. 63–66.

Figure 1 depicts representative MRI slices in the middle of the
vertical axis through the brain. The left panel (a) depicts slice 19
(out of 44 slices) of the healthy control subject H(1), and the right
panel (b) depicts slice 19 (out of 43 slices) of patient P(1) with
a brain tumor. The color intensity depicts the local axon density
and direction (red: left-right, green: anterior–posterior, and blue:
superior–inferior).

In the healthy subject, we note the presence of four red “rib-
bons” crossing the brain structure symmetrically. These structures
constitute the corpus callosum regions that are characterized by high
white matter concentration in the transverse plane [see the green
arrow in Fig. 1(a)]. These regions will be referred to as cc ribbons
or cc areas. We call “Set A(H)” the area covered by the cc ribbons

in the healthy control and “Set A(H)” the complement of this area.
The cc areas will become evident as synchronous regions during the
numerical integrations in Sec. IV.

Regarding the patient P(1) data, we call “Set A(P)” the area cov-

ered by the destructed cc ribbons in Fig. 1(b) and “Set A(P)” the
complement of it. The tumorous areas are clearly discerned at the
top middle/right of the slice [see the black arrow in Fig. 1(b)], where

FIG. 1. MRI slices of (a) a healthy brain [slice 19 out of 44, control H(1)] and (b) a tumorous brain [slice 19 out of 43, patient P(1)]. The color grading represents the fractional
anisotropy values, i.e., the local density of neuron axons. The green arrows point to the corpus callosum areas and the black arrow in (b) to the tumorous area.
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the white matter structure is disturbed as a result of the invading
tumorous cells.67 Slice 19 has been chosen here as a displaying set
because on the one hand, it is in the middle of the brain and contains
extended cc areas, and on the other hand, it has been greatly affected
by the tumor in P(1).

In Secs. III–V, we mostly present numerical results from con-
trol subject H(1) and patient P(1), but similar results and conclu-
sions are drawn from the other two subjects. Videos and results of
all subjects are provided in the supplementary material.

III. THE MODELS

To explore the validity of our method and the consistency
of our results across different neuronal models, we use here two
paradigmatic models for the numerical integration of the potentials:
the FitzHugh–Nagumo (Sec. III A) and the Leaky Integrate-and-Fire
(Sec. III B) models. The dynamics of the two models and their imple-
mentation in neuronal networks are first described, and at the end,
in Sec. III C, the construction of the coupling matrix is presented,
making use of the MRI-DTI data of the healthy and destructed brain
topology.

A. The FitzHugh–Nagumo model

The single FHN oscillator model was introduced in the early
1960s and consists of two coupled, nonlinear equations, one describ-
ing the evolution of a fast activator potential variable u(t) and the
other a slower inhibitor variable v(t),68,69

ε
du

dt
= u −

u3

3
− v, (1a)

dv

dt
= u + a. (1b)

In Eq. (1a), ε is a parameter that accounts for the time-scale differ-
ence and is fixed in this study at ε = 0.05. The parameter a defines
the dynamical behavior of Eq. (1). For |a| < 1, the system contains
an unstable fixed point, while for |a| > 1, the fixed point becomes
stable. In the region |a| < 1, the unstable fixed point gives rise to
a limit cycle through a Hopf bifurcation scenario. Throughout this
study, the parameter a is set to a = 0.5 in order to assure the pres-
ence of the limit cycle. For these parameter values, the period of the
uncoupled FHN oscillator is 2.7 time units.

FHN oscillators will be used in this study to model the dynam-
ics in each voxel recorded by the MRI-DTI imaging technique. All
voxels that have non-zero density of neuron axons (non-white color
in Fig. 1) are equipped with an FHN oscillator.

The communication between the oscillators is dictated by the
connectivity matrix σijk:lmn, which connects the oscillator residing in
voxel with 3D coordinates (i, j, k) with the one in voxel (l, m, n) (see
details in Sec. III C).

Omelchenko et al. in Ref. 17 have shown analytically and
numerically that the coupled FHN model produces nontrivial partial
synchronization patterns when activator–inhibitor cross-coupling
terms are involved. An account of different functional interactions
is given in Ref. 70, while a variety of activator–inhibitor coupling
schemes used in a biological framework is reviewed in Ref. 71. Here,

we use a coupling matrix with strong cross-coupling terms as pro-
posed in Refs. 17 and 33. The coupled FHN dynamics is given by the
following scheme:

ε
duijk

dt
= uijk −

u3
ijk

3
− vijk

−
∑

(l,m,n)

σlmn:ijk

[

buu(ulmn − uijk) + buv(vlmn − vijk)
]

, (2a)

dvijk

dt
= uijk + a −

∑

(l,m,n)

σlmn:ijk

[

bvu(ulmn − uijk) + bvv(vlmn − vijl)
]

.

(2b)

All FHN oscillators have the same parameters a and ε and the
sums run over all voxels. The form of the coupling matrix restricts
the interaction between distant voxels and accounts for the bound-
ary conditions, as will be discussed in Sec. III C. A rotational matrix,
B, is a simple way to parameterize the possibility of diagonal cou-
pling (buu, bvv) and activator–inhibitor cross coupling (buv, bvu) by
a single parameter ϕ, which is close to π/2 if cross coupling is
dominant.17 This coupling phase ϕ is similar to the phase-lag param-
eter α of the paradigmatic Kuramoto phase oscillator model, which
is widely used to generically describe coupled oscillator networks.
The coupling phase is necessary for the modeling of nontrivial par-
tial synchronization patterns, as has been shown for the Kuramoto
model72 and for the FHN model.17 This rotational matrix B was later
used in Refs. 18, 19, 53, and 73 and has the form

B =

(

buu buv

bvu bvv

)

=

(

cos ϕ sin ϕ

− sin ϕ cos ϕ

)

. (3)

In the present study, the value of the coupling phase ϕ = π/2 − 0.1
is used. ϕ-values in a narrow band around ϕ = π/2 are known to
lead to coexistence of coherent and incoherent domains in networks
consisting of FHN oscillators.17

B. The leaky integrate-and-fire model

The LIF model, introduced in 1907 by Louis Lapicque,74,75

describes the potential activity of isolated neurons via a single
dynamical variable u. The evolution equation of the variable u com-
prises two stages, an integration stage, Eq. (4a), and an abrupt
resetting stage, Eq. (4b),

du

dt
= µ − u, (4a)

lim
ε→0

u(t + ε) → urest when u ≥ uth. (4b)

The second of the two equations represents the resetting condition:
If the membrane potential reaches a threshold uth < µ, it is reset
to a resting potential urest. Without loss of generality, we use the fol-
lowing parameter set: the parameter µ that represents the maximum
achievable potential is set to µ = 1, the threshold potential is set to
uth = 0.98, and the reset or resting potential is set to urest = 0. For
these parameter values, the period of the uncoupled LIF oscillator is
Ts = 3.91 time units.

During the integration stage, Eq. (4a) behaves linearly and
it can be solved analytically to obtain the neuron potential as
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u(t) = µ − (µ − u0) e−t, with the initial condition u(0) = u0. This
behavior is repeated after each resetting, while the period Ts of
the single (uncoupled) LIF oscillator depends on urest and uth, as
Ts = ln [(µ − urest) / (µ − uth)]. Although the neurons are known
to spend a refractory period after the resetting stage, in this study,
the refractory period will be set to 0.

The coupling in the case of the LIF model follows the same sce-
nario as in the FHN model described in Sec. III A. The coupling is
even simpler since there is only one variable, and thus, a rotational
matrix is not needed. Here, all voxels recorded in the MRI image that
have a non-zero density of neuron axons (non-white color in Fig. 1)
are equipped with a LIF oscillator. The connectivity matrix between
the oscillators is the same in the LIF and FHN models, σijk:lmn (see
Sec. III C). The LIF coupled network dynamics reads

duijk

dt
= µ − uijk −

∑

(l,m,n)

σlmn:ijk

[

ulmn − uijk

]

, (5a)

lim
ε→0

uijk(t + ε) → urest when uijk ≥ uth. (5b)

All oscillators of the network have the same parameters, uth, urest, µ,
while each one of them is reset independently when reaching the

threshold potential, uth, common to all oscillators. In the present
study, we use values urest < uth < µ and, therefore, the oscilla-
tors remain supra-threshold; their potentials take values between
urest and uth. Regarding initial conditions, all oscillators start from
uijk(t = 0) values randomly distributed between 0 ≤ uijk(t = 0)
< uth.

We stress that in the present study, both models, LIF and FHN,
operate in the parameter regions that support regular, periodic, self-
sustained oscillations in the absence of any coupling.

C. Connectivity

Two types of connectivity matrices are used: σ H is the generic
name for matrices extracted from the MRI-DTI data of healthy con-
trols and σ P corresponds to the matrices extracted from the data of
patients.

Generally, the MRI-DTI data (fractional anisotropy values)
give the local density I(i, j, k) of neuron axons present in the voxel
centered around the coordinates (i, j, k). The element of the connec-
tivity matrix (σ H for the healthy subjects and σ P for the patients)
that links voxels (l, m, n) and (i, j, k), is computed as

σijk:lmn =















h

NR

I(i, j, k)I(l, m, n)
∑

all voxel-pairs

I(p1, p2, p3)I(q1, q2, q3)
, where (i − l)2

≤ R2, (j − m)2
≤ R2, and n = k ± 1

0, otherwise.

(6)

The product in the numerator of formula (6) ensures that only
if there is nonzero white matter intensity in both (l, m, n) and (i, j, k)
voxels, the interconnection between the voxels takes place. The sum
over all pairs (p1, p2, p3) and (q1, q2, q3) in the denominator is set
for normalization purposes. The network exchanges are limited to
distances less than a given R in the x–y plane (slice) and each slice
is linked only to the layers above and below it, n = k + 1, k − 1.
In this way, the brain is considered a multilayer network76,77 con-
sisting of ns layers, where each node (i, j, k) interacts with nodes
(i − R, j, k), (i − R + 1, j, k), . . . , (i + R, j, k) and (i, j − R, k), (i,
j − R + 1, k), . . . , (i, j + R, k) in the same slice and with nodes
(i, j, k + 1) and (i, j, k − 1) in the perpendicular direction. The total
number of links of each unit, denoted by NR, is at most (2R + 1)2

+ 1, i.e., (2R + 1)2
− 1 in its layer, plus 2 nodes above and below,

in the axial direction. The factor NR counts the number of inter-
acting neighbors and is set in the denominator for normalization
purposes and ensures proportional contribution of each node in the
sum. Note that the nodes that belong to the borders of the structure
have less than (2R + 1)2

+ 1 neighbors. For these nodes, the σijk:lmn

elements are divided by the number of existing neighbors. Overall,
the coupling terms are multiplied (leveled) by a factor h to modulate
the intensity of the interactions.

We recall from Sec. II that the connectivity matrices used in
this study are 3D with planes of size 256 × 256 and are composed of
40 ≤ ns ≤ 44 such planes. The coupling range R = 25 is used, which

is an intermediate coupling between local interactions R = 1 and all-
to-all coupling. This intermediate R-value accounts both for nearest
neighbor interactions, which are attributed to electrical exchanges
and long distance coupling, which is mediated by neurotransmit-
ters. Intermediate coupling ranges between global (all-to-all) and
nearest-neighbor connectivities are observed in many natural sys-
tems. Previous studies17,18 have shown that there exists a quite
wide intermediate range where the partially synchronized patterns,
chimera states, can be observed. Moreover, these patterns are robust
to the inhomogeneity of the network nodes or slight changes in the
topology. We select an exemplary value for R in our numerical sim-
ulations, but other values of R in the range of 10 ≤ R ≤ 60 give
qualitatively consistent results.

To avoid misunderstanding between structural and functional
connectivity matrices, we stress here that the matrices extracted
using Eq. (6) are structural, weighted connectivity matrices that
are directly recorded by MRI scanners using the MRI-DTI tech-
nique. These matrices are not directly related with the functional
connectivity matrices used in the literature. For the formation of
the functional connectivity matrices, the brain is lumped in 60–90
functional cortical regions and the exchanges between these regions
are established using mostly EEG techniques and more recently
MRI techniques.78–81 Instead, in this work, the spatial arrangement
of the voxels is taken into account as directly represented by the
MRI images. Nevertheless, the use of a dynamic model (FHN or
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LIF) in the network simulations allows us to extract functional
synchronization patterns.

Following the above rules, the full spatial connectivity matri-
ces are constructed for the healthy and patient subjects, and these
matrices are used in Eqs. (2) and (5) for the integration of the
potentials.

IV. RESULTS

In this section, we present the results of numerical integration
of the FHN equations and the LIF equations where each voxel is
considered an oscillatory unit with connectivity matrices obtained
as discussed in Sec. III C. First, the synchronization properties of the
healthy control subject will be presented (Sec. IV A) followed by the
patient results (Sec. IV B). To test the validity of the results, the same
MRI-DTI data of the control subject and the patient will be used
in Secs. IV C and IV D, respectively, but the LIF dynamics will be
used for the numerical integration. Although the dynamical schemes
employed are entirely different, we demonstrate that the main quali-
tative synchronization patterns persist and the pacemaker effect that
differentiates the control subjects from the patients is evident using
both dynamical systems.

As working parameters, the following sets were used: For
the FHN system ε = 0.05, a = 0.5, ϕ = π − 0.1, h = 0.1; for the
LIF model, µ = 1.0, urest = 0.0, uth = 0.98, h = 0.6; and the cou-
pling parameter is R = 25 in all cases. In the simulations, both the
Runge–Kutta fourth order method with an integration step of 10−2

and the Euler method with integration steps of 10−3 and 10−4 were
used.

A. FHN results on a healthy brain structure

FHN oscillators were placed on all voxels containing neuron
axons. As an example, in plane (slice) 19 shown in Fig. 1(a), iden-
tical FHN units were placed on all non-white cells and similarly for
all other planes above and below this. The FHN units were coupled
nonlocally along the x–y plane and locally along the z-axis consti-
tuting a multilayer network composed of ns = 44 layers along the
z-axis, as described in Sec. III C and Eq. (6). The connectivity matrix,
σ H, used here was extracted from the data of the healthy subject H(1)
following the discussions in Secs. II and III C. Numerical integration
of the corresponding equations (2) and (3) was carried out for 2000
time units starting from random initial conditions (potentials).

After a transient period, the network stabilizes in a state where
the cc ribbon areas, set A(H)FHN, constitute the coherent parts, while
the rest of the brain, the complement set A(H)FHN, is incoherent.
Representative color-coded potential results on slice 19 are pre-
sented in Fig. 2. These are typical steady state snapshots showing
different phases of the slice. The green arrows point to the cc areas.
The six representative snapshots are all recorded within an inter-
val of three time units, which is the maximum period observed in
the system. In particular, panel (a) is characterized by low, common
potential values in all cc areas and by mixed state of the complement
set; in panel (b), the potential in the middle of the lowest cc area
starts increasing (becoming yellow) while the complement set keeps
in the incoherent state; in panel (c), the yellow color (high poten-
tial values) invades the lower cc area, while the higher cc area also

increases its potentials and becomes hidden within the incoherent
set; in panel (d), the potentials in the lower cc area start increas-
ing (becoming dark blue) from the center, while the upper cc area
becomes again visible having simultaneously acquired high potential
values (yellow colors); in panel (e), low potentials (dark blue colors)
start invading the lower cc area, while the potentials in the upper cc
area take intermediate values (orange colors); and in panel (f), all cc
areas acquire the lowest (dark blue) potential values. The (f) state is
equivalent to state (a) and is considered the starting point of a new
period. Note that in regard to the cc areas, panels (b) and (d) are in
opposite phases of each other.

From the results in Fig. 2, we note that while in the cc areas
the potentials are identical or follow closely their neighboring val-
ues, the complement sets are always in the incoherent state. This
behavior can be considered a “chimera-like” state. [Note that the cc
areas correspond to brain regions of high density, where the con-
nectivity between the two hemispheres, left ↔ right, dominates; see
Fig. 1(a).] We recall here that the term “chimera state” is reserved
to networks where synchronous and asynchronous regions coex-
ist under the condition that all nodes are identical and identically
linked. In the present case, all oscillators are identical, but the link-
ing is not homogeneous since it is recorded from the MRI-DTI data
of a real healthy brain. For this reason, as explained in Sec. I, the
term “chimera-like state” is used.

The chimeric nature of the coupled system can be further veri-
fied using the mean phase velocity profile. The mean phase velocity
ωijk accounts for the number of cycles cijk that the oscillator at posi-
tion (i, j, k) has performed during a certain time interval 1T and is
defined as

ωijk = 2π
cijk

1T
= 2π fijk, (7)

where fijk is the frequency of the oscillator. Because the definitions of
the frequency and the mean phase velocity differ by just a factor 2π ,
in the following, the two expressions are used interchangeably.

The cc ribbon sets A(H)FHN of slice 19 demonstrate a common
mean phase velocity, and they clearly correspond to the cc ribbon
sets A(H) of the MRI-DTI data [compare Figs. 1(a) and 3(a)] (the
green arrows point always to the cc areas). The mean phase velocity
over the ribbon set is constant and is consistently higher than in the
rest of the structure. Returning to Fig. 2, on the lower cc ribbon area,
we can discern color grading that corresponds to traveling waves in
the corpus callosum. These are more evident in the videos included
in the supplementary material. The traveling waves disappear in the

complement set A(H)FHN, and they are held responsible for higher
mean phase velocities observed in the cc areas.

To elucidate further the nature of oscillations in the healthy
brain, in Fig. 3(b), we present the spacetime plot of the potential
along a line crossing slice 19 at position j = 175; see the gray hor-
izontal line in Fig. 3(a). This line was chosen because on the one

hand, it crosses both A(H)FHN and A(H)FHN sets in the healthy brain
and, on the other hand, it crosses at the same level the tumor-
ous regions in the patient P(1) brain (see Sec. IV B and Fig. 5).
In Fig. 3(b), it is possible to see that the synchronous cc regions

coexist with the asynchronous complement A(H)FHN, forming the
chimera-like state.
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FIG. 2. Color-coded typical potential pro-
files (snapshots) of slice 19 of healthy con-
trol H(1) using FHN dynamics. The profiles
are recorded at (a) 847.0, (b) 847.8, (c)
848.3, (d) 849.0, (e) 849.4, and (f) 849.8
time units within one complete period. The
green arrows point to the cc areas. Sim-
ulations start from random initial poten-
tials. Other parameters are h = 0.1, ϕ =

π − 0.1, ε = 0.05, a = 0.5, and R =

25. A related video is presented in the
supplementary material. Multimedia view:
https://doi.org/10.1063/5.0006207.1.
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FIG. 3. (a) Mean phase velocity profile of slice 19 of healthy subject H(1) using FHN dynamics. (b) Spacetime plot corresponding to the cut for j = 175 indicated in (a) with
the gray line. The green arrow points to the cc area. The average in (a) was taken over 2000 time units. Other parameters as in Fig. 2.

B. FHN results on an anomalous brain structure

Exactly the same numerical simulation process was applied
here, as in Sec. IV A, the only difference being that now, the con-
nectivity matrix, σ P, extracted from the patient P(1) was used.
Particularly, identical FHN oscillators were placed on all voxels, and
these were coupled nonlocally along the x–y plane and locally along
the z-axis. The numerical integration of Eq. (2) using the connec-
tivity matrix σ P was carried out for 2000 time units starting from
random initial potentials. The color-coded potential results on slice
19 are presented in Fig. 4 at six different instances within the max-
imum period of oscillations. At all instances, the cc structure (see
green arrows) is presented damaged, as also shown in the MRI-DTI
data [Fig. 1(b)].

A new observation is the “pacemaker effect” that is more clearly
visible in the video of the supplementary material and also appears
in simulations using the LIF model in Sec. IV D. Particularly, poten-
tial waves are initiated in the tumorous region (see black arrows
in Fig. 4), they propagate through the white matter, and they dis-
appear at the borders of the brain structure before a new potential
wave restarts at the tumorous region. More precisely, in panel 4(a),
the regions around the tumorous areas demonstrate low (dark blue)

potentials similar to the destructed cc areas; in panel (b), the poten-
tials in the tumorous area increase toward orange-yellow values and
so do the cc areas; in panel (c), the tumorous areas acquire maximum
potential values; in (d), the maximum potential values propagate
away from the tumor in the cc-complement set while the cc set has
intermediate (orange colored) values; in (e), the potentials in the
tumorous regions start decreasing toward dark blue values; and in
(f), the dark blue values propagate covering the tumorous region,
while the cc regions also acquire the lowest potential values. Panel
(f) corresponds to panel (a), which was considered the starting stage
of a period. The gradual propagation of the yellow color from the
tumorous areas to the rest of the brain [sequence of panels (b) → (c)
→ (d)] illustrates the pacemaker effect that is centered in the lesion
and can be used potentially to identify the position of the tumor.

The associated mean phase velocity profile in Fig. 5(a) indi-
cates clearly the positions of the destructed ribbon structure (see
the green arrow), where high ω values are observed. In the same
image, the tumorous area is shown, marked by the black arrow,
where also, relatively high mean phase velocities are recorded. Com-

paring Figs. 3(a) and 5(a), it is evident that high ω’s dominate in the
position where the potential waves are initiated in the lesion area.
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FIG. 4. Color-coded typical potential pro-
files of slice 19 of patient P(1) with a destruc-
ted brain structure using FHN dynamics.
The profiles are recorded at (a) 382.9, (b)
383.5, (c) 383.9, (d) 384.4, (e) 384.7, and
(f) 385.4 time units. The green arrows point
to cc areas and black arrows point to the
tumorous area. Simulations start from ran-
dom initial potentials. Other parameters as
in Fig. 2. A related video demonstrating
the pacemaker effect is presented in the
supplementary material. Multimedia view:
https://doi.org/10.1063/5.0006207.2.
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FIG. 5. (a) Mean phase velocity profile of slice 19 of the subject P(1) with a destructed brain structure using FHN dynamics. (b) Spacetime plot corresponding to the cut for
j = 175 indicated in (a) with the gray line that crosses the lesion. The average in (a) was taken over 2000 time units. The green arrow points to cc areas and the black arrow
to the lesion area. Other parameters as in Fig. 2.

Similarly to the healthy case, Fig. 3(b), in Fig. 5(b), the space-
time plot of the potential along a line crossing slice 19 at position
j = 175 is presented [see the gray horizontal line in Fig. 5(a)]. This
line now crosses the tumorous regions. In Fig. 5(b), it is not possible
to discern any synchronous region. The tumor has destructed the
tissue structure and the chimera-like profile observed in the healthy
brain, Fig. 3(b), is no longer manifested. This difference can be used
as an indicator of malignancy and can be critical in cases where the
tumor is small, not visible by eye, but it can destroy chimera-like
patterns and induce brain waves through the pacemaker effect.

Although the results presented in this section and Sec. IV A
depict layer 19 for the healthy and the patient subjects, qualitatively
similar results and conclusions are drawn from all other layers in the
network. In Secs. IV C and IV D, the FHN dynamics is replaced by
the LIF model dynamics, and it is shown that the pacemaker effect
is robust across models (is not model dependent) since it comes as a
result of the brain structure anomalies.

C. LIF results on a healthy brain structure

In this section, the LIF scheme, Eq. (5), is employed to sim-
ulate the dynamics on all nodes of the healthy subject H(1). The

connectivity matrix used is σ H, the same one which was used in
Sec. IV A. All oscillators start from random initial potentials in
the range [0,uth]. Figure 6 depicts six color-coded potential pro-
files of representative slice 19, centrally located on the vertical axis
of the head. These typical profiles represent the various phases that
the cc and complement domains undergo within one period of LIF
oscillations.

Clearly, two different regions can be identified in all six panels:
(a) A set A(H)LIF consisting of the isolated cc segments that present
phase coherence (green arrows in Fig. 6) and (b) the complement

A(H)LIF of this set where the phases are incoherent. The sets A(H)LIF

and A(H)LIF overlap with the corresponding sets A(H) and A(H) of
the MRI-DTI data of the healthy subject H(1). A simple compari-
son between LIF and FHN numerical results indicates that the sets
A(H)LIF and A(H)LIF (see Fig. 6) present the same characteristics

with the corresponding sets A(H)FHN and A(H)FHN resulting from
FHN simulations (see Fig. 2).

The panels in Fig. 6 demonstrate the LIF activity within one
period of oscillations. For clarity, we present here the evolution
within the cc regions that in the LIF model keeps a constant phase
difference. In panel (a), the lower cc region is characterized by high
(yellow) potential values, while the top cc region has intermediate
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FIG. 6. Color-coded potential profile of
slice 19 of healthy control H(1) using
LIF dynamics. The profiles are recorded
at (a) 846.7, (b) 847.2, (c) 847.8, (d)
848.2, (e) 849.0, and (f) 849.4 time units
(for comparison with healthy brain net-
work dynamics in Sec. IV A). Simulations
start from random initial potentials. Other
parameters are h = 0.6, µ = 1.0, urest
= 0.0, and uth = 0.98. Green arrows as in
Fig. 2. A related video is presented in the
supplementary material. Multimedia view:
https://doi.org/10.1063/5.0006207.3.
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(red) values; in panel (b), the potentials increase in the lower cc
region becoming almost white (value uijk ∼ 0.98), with a similar
increase in the top cc area toward orange color; in panel (c), the cen-
ter of the lower cc region is still in the range of higher (uijk ∼ 0.98)
values, while its border voxels have dropped to zero (black and dark
red color) due to the resetting condition, Eq. (5b), and the top cc
region potentials increase toward yellow values; in panel (d), the
dark and red regions (low potentials) have now invaded the lower
cc area, while in the upper one, the potentials increase further; in
panel (e), the potentials in the lower cc area increase toward orange-
yellow values, while in the top cc area, the potentials have reached
their maximum values (uijk ∼ 0.98); and in panel (f), the lower cc
area potentials increase further (yellow colors), while in the upper
cc area, resetting occurs and the potential values drop to dark and
red values. This last panel (f) is similar to panel (a), which is taken
as the starting point of a new period. The related video provided
in the supplementary material shows that (a) the cc areas behave
coherently demonstrating a consistent phase difference between the
upper and lower regions and (b) the activity in the complement is
in the form of irregular potential waves that appear and disappear in
the periphery of the brain.

The mean phase velocity profile of the same plane demonstrates
the coexistence of coherent and incoherent domains [see Fig. 7(a)].

The cc ribbons of high white matter density, set A(H)LIF, appear here
undestructed, and their ω-values present consistently lower values
than the surrounding complement set and depict the same structure
as set A(H) of the MRI-DTI data, Fig. 1(a).

Figure 7(b) depicts the spacetime plot of a linear cut along slice
19, at position j = 175, as designated in Fig. 7(a) with the gray line.
At the position where this cut crosses the cc ribbons, 120 < i < 135,
a coherent domain is noted in the spacetime plot. This finding, using
the LIF dynamics, agrees with similar findings depicted in Fig. 3 and
Sec. IV A, where the FHN dynamics was employed. The fact that
both FHN and LIF dynamics confirm the presence of chimera-like
patterns in the healthy brain is an indication that this effect is model
independent and is caused by the interplay between the complex
connectivity and the nonlinear dynamics added in the network.

D. LIF results on an anomalous brain structure

The numerical integration results on an anomalous brain struc-
ture using the LIF dynamics are in qualitative agreement with the
ones obtained using the FHN dynamics. To illustrate this, in Fig. 8,
we present the representative phases characteristic of the potential
profiles: in panel (a), the tumorous region is in the lowest potential
values (black and red colors), while the destructed cc area marked

FIG. 7. (a) Mean phase velocity profile of slice 19 of healthy subject H(1) using LIF dynamics. (b) Spacetime plot corresponding to the cut for j = 175 indicated in (a) with
the gray line. The average in (a) was taken over 2000 time units. The green arrow as in Fig. 3. Other parameters as in Fig. 6.
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FIG. 8. Color-coded potential profiles of
slice 19 of subject P(1) with a destruc-
ted brain structure using LIF dynam-
ics. The six profiles are recorded at (a)
350.7, (b) 351.4, (c) 351.9, (d) 352.2, (e)
352.9, and (f) 353.6 time units. Simula-
tions start from random initial potentials.
Green and black arrows as in Fig. 4.
Other parameters as in Fig. 6. A related
video demonstrating the pacemaker effect
using the LIF model is presented in the
supplementary material. Multimedia view:
https://doi.org/10.1063/5.0006207.4.
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by the green arrow is characterized by higher (yellow) potentials;
in panel (b), the potentials in the tumorous region increase toward
orange values, while the cc area potentials increase further toward
lighter yellow; in panel (c), we observe a further increase in the
tumorous region toward yellow, while the cc area has reached maxi-
mum (white) potentials; in panel (d), the tumorous region potentials
increase toward lighter yellow, while the cc pointed area potentials
were reset to low values (dark, red); in panel (e), the tumorous region
develops maximum (white) potentials, while the u-values increase in
the cc pointed ribbon toward medium (orange) values; and in panel
(f), the potentials are reset in the tumorous region (dark, red colors)
and the u-values in the cc region increase to high (yellow) values.
Note that panels (a) and (f) correspond to equivalent states and are
selected as the starting points of a new period. Here, the remaining
disjoint pieces of the cc areas present a phase shift in their potential
values. For example, in panel (a), the right cc area is white-colored,
higher than the left one (yellow colored). In panel (b), the right
cc area was reset to low values, while the left one increases further
toward maximum potentials and so on.

The six panels of Fig. 8 are indicative of the pacemaker effect
induced by the tumorous region, which can also be seen in the

following way: In panel (a), a yellow colored region appears in the
left-top periphery of the brain. In panel (b), it gives rise, after reset-
ting, to black and red regions. In panel (c), the black–red region
splits in two, which propagate peripherally toward the tumorous
regions. In panel (d), the black and red regions (low potentials)
propagate further toward the tumor, while behind them, to the left,
the yellow region restarts developing. In panel (e), the red regions
approach further the tumorous area while behind them the yellow
region extends covering the entire left semiplane. In panel (f), the
red areas have covered/invaded the tumorous region returning to
a state similar to (a). The effect is more clear in the correspond-
ing video provided in the supplementary material. After a transient
period of about 200 time units, the waves created in the periphery
of the brain collide in the tumorous region and disappear there. In
this case, the pacemaker acts as an absorber of the potential waves
propagating circularly in the brain periphery. This behavior is simi-
lar to the pacemaker effect that was also observed in the FHN model
with the difference that here, the pacemaker acts as an absorber or a
pacemaker with negative propagation.

The cc ribbon structure, set A(P)LIF of high white matter den-
sity, is also destructed in LIF simulations and is in agreement with

FIG. 9. (a) Mean phase velocity profile of slice 19 of subject P(1) with a destructed brain structure using LIF dynamics. (b) Spacetime plot corresponding to the cut for
j = 175 indicated in (a) with the gray line that crosses the tumorous region. The average in (a) was taken over 2000 time units. Green and black arrows as in Fig. 5. Other
parameters as in Fig. 6.
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the MRI-DTI data [Fig. 1(b)] and the FHN results (Fig. 4). The
region where the potential waves collapse is identified as the blue
region in Fig. 1(b), where the lesion is located.

The corresponding mean phase velocity profile results,
Fig. 9(a), conform with the above discussion. The tumorous area
indicated by the black arrow shows lower mean phase velocity than
the center of the brain where the structure is less affected by the
pathology. Figure 9(b) depicts the spacetime plot of a linear cut
along the slice 19 at position j = 175 [designated in Fig. 9(a) with
the gray line], which crosses the tumorous region. Contrary to the
case of the healthy brain, Fig. 7(b), the spacetime plot here does not
contain a coherent domain due to the destruction of the cc ribbon
areas. Similar behavior was also noted earlier in Fig. 5 and Sec. IV B,
where the FHN dynamics was used.

The qualitative agreement in the pacemaker effect produced in
the patient using both LIF and FHN dynamics comes as a result of
the destruction of the brain structure and is not an artifact of the
dynamics since it appears independently in the two models when
the tumorous region is introduced through the connectivity matrix.
The anomaly in the present structure has a relatively large extension,
as it was the case for this particular patient. It would be interesting to
explore if similar pacemaker effects will be produced when smaller
tumors are considered.

Overall, both FHN and LIF dynamical schemes confirm the
presence of chimera-like patterns in the healthy brain, while inco-
herent dynamics and pacemaker effects are observed in the destruc-
ted, tumorous brains. These phenomena seem to be generic and not
model dependent or artifacts of a particular model.

V. SPECTRAL ANALYSIS OF HEALTHY AND

ANOMALOUS DYNAMICS

In this section, a first attempt is made to test whether the
presence of the tumor affects the Fourier spectra of the neuronal
oscillations locally in the lesion areas. For this reason, we run long
simulations for over 300 periods (∼1000 time units) after disregard-
ing the initial transient time and record every integration step for
higher accuracy. Four sets of simulations were analyzed for each
healthy and patient subjects using FHN and LIF models. In all
cases, detailed recording over time was gathered from representative
voxels.

In Subsections V A and V B, typical voxels will be depicted
in Figs. 10 and 11. For the healthy subject H(1), Fig. 1(a), the pre-
sented voxels (i,j,k) are (48,93,19) the front left; (77,136,19) inside
the cc area; (132,136,19) centrally located in the figure; (138,156,19)
inside the cc area; and (179,133,19) the back left area. For the patient
P(1), Fig. 1(b), the presented voxels are (36,85,19) the front left;
(61,104,19) inside the tumorous area; (80,131,19) inside the tumor-
ous area; (133,150,19) inside the cc area; and (169,91,19) inside the
cc area. Note that different voxels are used in each case because the
cc areas of the patient were delocalized due to the presence of the
tumor.

The time series recordings were Fourier transformed to detect
the dominant frequencies, and the results on subjects H(1) and P(1)
of FHN and LIF simulations are presented in Secs. V A and V B,
respectively. Additional results on the spectra of subjects H(2) and
P(2) are included in the supplementary material.

A. FHN spectra

The Fourier spectra of the FHN dynamics in the neuron axon
network of the healthy subject H(1) are presented in the top panel
of Fig. 10. All nodes (voxels), independently of position, demon-
strate the same frequency characteristics. Even the nodes residing in
the cc areas demonstrate the same characteristics of the basic fre-
quency component as the other nodes in the white matter, while
small deviations are noted in the higher harmonics (not shown).

A distinct difference is noted when there is a tumorous area as
depicted in the lower panel of Fig. 10, which presents the Fourier
spectra of the individual nodes when the connectivity matrix of the
patient P(1) is used. In this case, the time series originating from
different areas develop different collective frequencies, although in
simulations, all elementary oscillators have identical natural fre-
quencies. This difference in the spectra can be attributed to the
inhomogeneity that the tumor induces in the brain and confirms
the observation of the chimera-like states, which was reported in
Secs. IV B and IV D. The different contributions visible on the
basic frequency (Fig. 10, lower panel) are accentuated on the first
harmonic (not shown).

For the simulations in the present subsection, all parameters
used are the same as in Fig. 2. Further studies in this direction,
including the use of different FHN parameters, may enlarge the fre-
quency difference in the tumorous brain and help to identify the
affected regions even when their size is small.

B. LIF spectra

The Fourier spectra when the LIF dynamics are used for the
integration of the potential in the healthy and tumorous case are
depicted in Fig. 11. The top (bottom) panel depicts the Fourier
spectra of the healthy (patient) subject.

FIG. 10. Fourier spectra of various voxels from FHN simulations. Top: Healthy
subject H(1). Bottom: Patient P(1). Various colors correspond to different vox-
els. In the subject with tumor, the black and red lines correspond to voxels from
the tumor area. The voxels denoted by cc are located in the corpus callosum
areas. The spectra are computed over 300 cycles of the FHN dynamics. Other
parameters as in Fig. 2.
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FIG. 11. Fourier spectra of various voxels from LIF simulations. Top: Healthy sub-
ject H(1). Bottom: Patient P(1). Line colors and other notations as in Fig. 10. The
spectra are computed over 300 cycles of the LIF dynamics. All parameters as in
Fig. 4.

In both cases, the spectra do not present a single frequency but
a continuous band of frequencies, both around the basic frequency
as well as its harmonics. For this reason, it is not possible to clearly
identify differences in the Fourier spectra between the voxels belong-
ing to the tumorous regions and other non-tumorous areas. The
results do not improve when longer time series (as long as ∼19 000
time units) are considered.

These results give a first evidence that the FHN model dynam-
ics may be more appropriate than the LIF model for distinguishing
between healthy and tumorous areas in the brain when the Fourier
spectra are used. Nevertheless, by adjusting parameters, such as α

or φ in the FHN model, uth in the LIF model, and h, R in the
connectivity matrix, we may achieve better discrimination levels.

VI. CONCLUSIONS

Simulations inspired by the connectivity of the neuron axon
network were conducted based on MRI-DTI data from healthy and
tumor suffering brains. Two neuronal models were used to simu-
late the dynamics in the individual voxels recorded from the MRI
images, the FitzHugh–Nagumo and the Leaky Integrate-and-Fire
models. In the healthy brain, both models consistently differenti-
ate between the corpus callosum regions, which are regions with
a high density of neuron axons, and the rest of the white matter.
In tumorous brains, the destructed regions are clearly visible in the
mean phase velocity diagrams of both models.

The numerical results demonstrate that the healthy brain
presents chimera-like states where regions with high white matter
concentrations in the direction connecting the two hemispheres act
as the coherent domain, while the rest of the brain exhibits inco-
herent oscillations. To the contrary, in brains with destructed white
matter structure, traveling waves are produced that are initiated

around the region where the tumor is located. This region acts as
the pacemaker of the waves sweeping across the brain.

The present simulations, using specific parameter variables,
give a first evidence of the pacemaker effect and the chimera-like
states. It would be useful to scan further the parameter space of
the FHN and LIF models to determine the parameter regions where
these effects are accentuated. Further studies with more subjects and
different sizes of tumors need to be assessed to verify whether the
pacemaker effect could be useful as an indicator of brain tumorous
states, with particular reference in cases of small, difficult to detect
abnormalities.

In this study, we have tested the FHN and LIF dynamics and
have shown that both models give consistent results. In future stud-
ies, other neuronal models can be implemented to evaluate the
universality of these results across models. In particular, neuronal
population dynamics models can be employed to represent the local
dynamics on a single voxel and test whether this class of models leads
to comparable conclusions.

In a different network approach, connectivity matrices might
be constructed using nonlocal interactions over variable ranges.
The properties of these matrices can be compared between con-
trol subjects and patients, and these could also be examined as
indicators/biomarkers of tumors. The form and statistics of the con-
structed (nonlocal) networks may also give some insights in the
synchronization properties observed in the patients and the control
subjects.

Apart from the cases of tumors, similar numerical studies
might be conducted using neuron axon networks from MRI studies
of brains suffering from Alzheimer, Parkinson, or other disorders
that affect the structure of the brain neurons and their connectivity
networks.

SUPPLEMENTARY MATERIAL

See the supplementary material for eight videos concerning the
four subjects as follows: (a) FHN simulations of the healthy con-
trol brains [subjects H(1) and H(2)], (b) FHN simulations of the
patient (tumor) brains [subjects P(1) and P(2)], (c) LIF simulations
of the healthy control brains [subjects H(1) and H(2)], and (d) LIF
simulations of the patient brains [subjects P(1) and P(2)].

Additional images are also uploaded as (e) Fourier spectra of
subjects H(2) and P(2) with FHN dynamics and (f) Fourier spectra
of subjects H(2) and P(2) with LIF dynamics.

Collections of 15 consecutive profiles are provided for each of
the following cases: (g) FHN simulations of subject H(1), (h) FHN
simulations of subject P(1), (i) LIF simulations of subject H(1), and
(j) LIF simulations of subject P(1).
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