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abstract. This dissertation is devoted to the mathematical study of solid
state dewetting and deals with various mathematical topics such as phase field
modeling, the derivation of corresponding sharp interface limits, existence of
solutions, numerical simulations and linear stability analysis of the dewetting
front.
We start with the formulation of a two-dimensional anisotropic phase field
model for solid state dewetting on a solid substrate. The evolution is described
by a Cahn-Hilliard type equation with a bi-quadratic degenerate mobility and a
polynomial homogeneous free energy. We propose an anisotropic free boundary
condition at the film/substrate contact line which correspond to the natural
boundary condition from the variational derivation. We show via matched
asymptotic analysis that the resulting sharp interface model is consistent with
the pure surface diffusion model. In addition, we show that the corresponding
natural boundary conditions at the substrate imply a contact angle condition
which is known as Young-Herring condition.
We provide an existence result for the present degenerate partial differential
equation on a simplified domain with homogeneous Neumann boundary condi-
tions. Under the assumption that the strength of the anisotropy is sufficiently
small, we establish certain convexity properties and higher order bounds of the
strongly non-linear anisotropic operator. This enables to prove existence of weak
solutions. Furthermore, we show that solutions are bounded by one without
having a maximum principle.
Completing the part which is concerned with the phase field representation, we
consider the numerical simulation of the present model, where we apply a diffuse
boundary approximation to handle the boundary conditions at the substrate.
The reformulated equation can be solved by a standard finite element method. A
matched asymptotic analysis shows that solutions of the re-formulated equations
formally converge to those of the original equations. We provide numerical
simulations which confirm this analysis. In addition, we address the previously
discussed question of how the mobility influences the evolution and simulate
dewetting scenarios for different mobilities and anisotropies.
In the last main chapter we consider a generalized class of thin film equations,
including the case which corresponds to the small slope approximation of
the sharp interface model for isotropic solid state dewetting. We present an
improved method for the linear stability analysis of unsteady, non-uniform base
states in thin film equations which exploits that the initial fronts evolve on a
slower time-scale than the typical perturbations. The result is a unique value
for the dominant wavelength which is different from the one obtained by the
frequently applied linear stability analysis with "frozen modes". Furthermore
we show that for the present class of stability problems the dispersion relation
is linear in the long wave limit, which is in contrast to many other instability
problems in thin film flows.
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1
D E W E T T I N G O F T H I N S O L I D F I L M S

1.1 experiments and applications

Doing research is like exploring a city using the subway.
You only really understand what it looks like on the surface after getting off

at various stations.

— Maciek Korzec

This dissertation is devoted to the study of solid state dewetting and "getting off at
various stations"incorporates a variety of different mathematical topics including mod-

eling, asymptotic analysis, numerics and existence theory. The goal is
to gain a comprehensive mathematical insights into the phenomenon
by examining it from various theoretical perspectives - by "getting off
at various stations".
When a thin solid film is heated to sufficiently high temperatures, What is solid state

dewetting?but well below the material’s melting temperature, it may lead to an
interesting phenomenon. The thin film may dewet or agglomerate to
form islands, similar as in the liquid state, while it still remains solid.
This process is called solid state dewetting and is due to the fact that
thin films generally occur under conditions for which atomic motion
is restricted and non-equilibrium structures are obtained. As a conse-
quence, most films are unstable, or metastable, and will spontaneously
dewet via surface diffusion when heated to temperatures at which the
mobility of the atoms is sufficiently high.

A fundamental understanding of the mechanisms governing solid Applications

state dewetting is desirable since it is one of the important processes
used for nanostructuring and functionalizing surfaces for a variety of
technological applications, such as for example in thin-film solar cells

Figure 1: Schematic illustration of a retracting dewetting front showing how
the rim thickens, and the valley in front of of the rim deepens.
Eventually the valley touches the substrate, as shown in the third
picture, leading to the formation of an isolated island and a new
dewetting front which continues to retract. This process is called
pinch-off.

15



16 dewetting of thin solid films

Figure 2: Typical low-energy electron microscopy (LEEM) pictures for SOI
dewetting at T = 815◦C. The silicon film appears black whereas
the silicon oxide is bright. These picture sequence illustrates the
void opening, the finger’s growth and the island’s formation. Low-
energy electron microscopy (LEEM) pictures for SOI dewetting at
T = 815 ◦ C. Supplementary data (http://iopscience.iop.org/1367-
2630/13/4/043017/media) taken from reference [13] with permis-
sion .

and other optoelectronic devices. On the one hand, dewetting of films
creates a restriction for the fabrication of advanced devices [51] and
also negatively influences the reliability of other micro-devices and
systems, especially when high-temperature operations are required
[99]. On the other hand, there are an increasing number of examples
in which dewetting has been used positively, for example to produce
self-organized nanocrystals occurring in several nanoscale processes
[61] or to make particle arrays in sensors [79]. It is therefore of partic-
ular relevance to understand how to suppress dewetting when it is
undesirable and how to control it when specific dewetted structures
are desired.

The dewetting scenario typically begins at preexisting holes, at filmOverview of the
phenomenology edges or requires the formation of new holes. Starting at the three-

phase contact line between the thin solid film, the solid substrate
and the surrounding vapor phase the subsequent retraction of the
film leads to the accumulation of mass in the dewetting front which
results in an elevated rim with a height greater than the surrounding
film thickness, as qualitatively shown in Fig. 1. The rim height at the
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Figure 3: Left: AFM picture of an unstable < 100 > front. The AFM profile
(vertical and horizontal units are µm) shows that the finger instabil-
ity is associated with a local height instability. Right: LEEM images
(bright field) of UHV-annealed SOI artificial fronts with differing
edge orientation with respect to the < 110 > direction. The Si
material is dark and the SiO2 substrate is bright. The dewetting
fronts form < 100 > oriented Si fingers regardedless of the initial
orientation. Both pictures have been taken from reference [65] with
permission.

evolving front increases over time and as a consequence, the curvature
at the dewetting front and the driving force for mass transport are
reduced.

The following evolution is characterized by different observations,
such as hole coincidence, fingering instabilities and rim pinch-off,
which may also occur simultaneously. In the event that holes are
sparse and don’t interfere with one another, the fingering instabilities Fingering

instabilitiesmay occur with a regular and periodic distance between them, as
shown in Fig 2 and Fig. 3 to the left. In particular, if considering a
single crystalline film, the fingering instabilities may depend on the
crystal orientation. An ultra-thin crystalline silicon-on-insulator (SOI)
film, for example, only provides instabilities in the < 100 > oriented
front, while the < 110 > front is stable, as documented in Fig. 3.

The late stages of dewetting are characterized by rim pinch-off and Pinch- off and
equilibrium shapesagglomeration into an assembly of islands which leads to a system

of more stable configurations. The equilibrium shape of these islands
corresponds to the minimum of the surface energy for a fixed volume
and satisfies particular boundary conditions which also depend on
the surface energy of the substrate. For islands with isotropic surface
energy, the equilibrium shape is a simple regular droplet and the par-
ticular isotropic boundary conditions prescribe a fixed contact angle. If
the surface energy is not isotropic, then its equilibrium shape is deter-
mined by the Wulff construction [115], or Winterbottom construction
[112] if including a substrate, respectively. In the Wulff construction
the equilibrium shape of a crystal is determined graphically in two
main steps. To begin, the surface energy is represented in a polar plot
as a function of orientation, the so-called gamma plot. The next step is
to draw lines from the origin to every point on the gamma plot and
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Figure 4: a) A polar plot of the surface energy (solid line) and the corre-
sponding equilibrium shape (dotted line) determined by the Wulff
construction, i.e. the equilibrium shape of the corresponding inter-
face energy is described by the envelope of lines drawn normal
to the orientation vectors at each point of the gamma plot, in this
case a simple square shape. b) Cross-sectional TEM image of a
crystalline silicon equilibrium dot sitting on a SiO2 layer that is
located on top of a Si(111) wafer. The experimental picture is shown
with permission of Maurizio Roczen (Experimental Physics, HU
Berlin)

planes perpendicular to these lines at the points where they intersect
the gamma plot. The equilibrium shape of the crystal is then described
by the inner envelope of these planes. In the case of a two-dimensional
crystal, this leads to a surface energy plot such as for example shown
in Fig. 4 a). This gamma plot has four cusps at which the surface
energy is minimized which correspond to facets on the equilibrium
shape of the crystal. The equilibrium shape can be determined by
finding the envelope of lines drawn normal to the orientation vectors
at each point of the gamma plot. In the case shown in Fig. 4 a), the
equilibrium shape is a simple square shape, displayed as a dotted line.

Whilst the dynamical evolution has many similarities with theThe underlying
physics dewetting of thin liquid films, which has been investigated in numer-

ous theoretical and experimental studies [3, 58, 95, 96] and recently
reviewed in [20], solid dewetting has not received as much attention.
The physical mechanisms underlying the mass transport of dewet-
ting of solid films is also quite distinct and is based on capillarity
driven surface diffusion [54, 104, 114]. In addition, further properties
such as anisotropy of its surface energy can dominate the dynamics
[27, 105, 121], having important implication for the stability of the
moving three-phase contact-line - where vapor, solid film and solid
substrate meet.

There are mainly two kinds of continuum models for solid state
dewetting - sharp interface and diffuse interface/phase field models.
Both have been applied in the past in order to simulate and analyze
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solid state dewetting and there are further model reductions with sig-
nificantly simplify the analysis. The following section provides a brief
overview of the different kinds of models and motivates the particular
suitability for different mathematical approaches. This provides the
basis for the subsequent outline of the mathematical topics.

1.2 models for solid state dewetting

As the dynamical dewetting process usually involves a succession The phase field
model: a powerful
candidate for
simulation

of topological transitions of the thin dewetting film, the phase field
framework provides an adequate modeling approach for a continuum
description. The basic idea is to substitute the equation for the interface
with a partial differential equation for the evolution of an auxiliary
field, the phase field, that plays the role of an order parameter. This
auxiliary field takes two distinct values in each of the phases, for
example "+1" in the solid phase and "−1" in the vapor phase, with a
smooth transition layer between both phases in the zone around the
interface. The new interface is then diffuse with a finite width and the
discrete location of the interface may be defined as the zero level set
of the phase field function.

The great advantage of this representation is that it allows the Advantages and
disadvantagescreation and vanishing of interfaces to occur naturally as part of the

solution and it also enables to easily deal with present complex geome-
tries. Thus, the phase field method represents a powerful candidate
for simulation and has already been successfully applied to a number
of similar problems [52, 94, 106]. In comparison, the numerical simu-
lation of sharp interface models has to separately handle topological
changes and the computation of fourth-order derivatives along the
surface presents a challenge for the frequently used interface tracking
methods [24, 26, 114]. For a discussion of the different methods con-
cerning the numerical simulation of thin crystalline films we refer to
the review article by Li et al. [67]. On the other hand the derivation
of a phase field model contains particular degrees of freedom, e.g.
regarding the choices for the bulk free energy and the mobility, which
implies that there exists no unique phase field representation for a
particular physical process. Therefore the use of phase field models as
a numerical tool requires careful consideration in view of the correct
physical relationship [40, 64].

The proper correspondence is given by the sharp interface limit, i.e. From phase field to
sharp interfacethe limit equation if the thickness of the diffuse interface in the phase

field framework tends to zero. This limit equation has to coincide
with the corresponding sharp interface model which has a direct
physical interpretation and unique representation. Establishing this
correspondence between phase field and sharp interface models has
therefore been investigated intensively during the last decades, see for
example the review by [87].
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A basic property of the thin solid films which we consider here isFrom sharp interface
to thin film model that the characteristic height scale of the initial film is much smaller

than the length scale. Under the additional assumption that the present
slopes are small, we are able to reduce the sharp interface model to
a particular case of the so-called thin film equation. This significant
model reduction does not only simplify the numerical simulation, it
also enables to systematically study some of the characteristic dewet-
ting properties such as the dewetting rate or fingering instabilities of
the dewetting front.

1.3 content, results and structure of this study

This dissertation begins with a derivation of the different models forPart I: Models for
solid state dewetting surface diffusion dewetting. We first introduce a two-dimensional

phase field model which includes weakly anisotropic surface energies
and a free boundary condition at the film-substrate contact line. The
evolution is generally described by a Cahn-Hilliard type equation and
this first model derivation leaves particular degrees of freedom for
further modeling. We then present the sharp interface model which
corresponds to evolution by pure surface diffusion. The contact angle
boundary condition at the moving contact line is derived via the
variational method and is a result of surface energy minimization. The
modeling section is completed by a small slope approximation for the
previously derived sharp interface model which leads to a particular
case of the so-called thin film equations. The further division of this
dissertation then refers to the particular models. The phase field model
is the main topic of Part II, in which also the corresponding sharp
interface model will be discussed. Part III refers to a generalized class
of thin film equations including the case which corresponds to the
small slope approximation of the sharp interface model for isotropic
solid state dewetting.

Part II begins with the formulation of a complete phase field modelPart II: The phase
field model for solid state dewetting and includes the particular choices for the de-

grees of freedom which we have left open in the first model approach.
In contrast to the frequently used quadratic degenerate mobility, we
chose a bi-quadratic one in combination with a polynomial homoge-
neous free energy. The question naturally arises as to whether the
resulting model recovers motion by pure surface diffusion. Establish-
ing the correct correspondence is the subject of Chapter 3, where theSharp interface

limits sharp interface limits of the phase field model are derived via matched
asymptotic analysis. Since the standard matched asymptotic deriva-
tions lead to inner and outer expansions, which can not be matched
by terms of polynomial orders of the small parameter, the present
asymptotic analysis requires the incorporation of multiple interfacial
layers and techniques of exponential matching.
The second part of Chapter 3 is concerned with the inclusion of the
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boundary conditions at the solid substrate. We introduce a matching
method which exploits an additional inner layer about the solid sub- A matching method

for the solid
boundary

strate and a particular geometry in order to derive the corresponding
sharp interface limits of the boundary conditions at the substrate. In
particular, the method allows to match the inner and outer layers
without matching "into the substrate", which is not well-defined. As
a result we obtain that the sharp interface limits of the boundary
conditions at the substrate recover the Young-Herring equation for the
contact angle, and Young’s equation in the isotropic case. The match-
ing is completed by a balance of fluxes condition at the contact line.
The results, which are presented in this chapter, have been submitted
to Nonlinearity in a joint paper by Dziwnik, Münch and Wagner and
publication is expected soon.

Chapter 4 provides an existence result for the present phase field Existence of
solutionsmodel, which can be classified as an anisotropic version of the Cahn-

Hilliard equation with degenerate mobility. The Cahn-Hilliard equa-
tion, even with degenerate mobility, has been studied intensively in
the past [2, 4, 32, 71, 91], but little mathematical analysis has been done
for the case where the surface energy is anisotropic. The combination
of both - a degenerate mobility and an anisotropic free energy - repre-
sents a mathematical challenge in order to prove the existence of weak
solutions. Focusing on this mathematical difficulty, the correspond-
ing chapter considers homogeneous Neumann boundary conditions
and a rectangular domain. Under the assumption that the strength
of the anisotropy is sufficiently small, we establish certain convex-
ity properties and higher order bounds of the strongly non-linear
anisotropic operator. This enables to prove existence of weak solu-
tions in L∞(0, T; H1(Ω)) ∩ C([0, T]; L2(Ω)). In addition, we show that
solutions are bounded by one without having a maximum principle.

Completing Part II, we discuss the numerical simulation of the Numerical
simulationphase field model in Chapter 5. The numerical algorithm presented

in this dissertation has a long history of development and deals with
a variety of numerical challenges, such as the strong nonlinearity,
anisotropy, high derivatives and anisotropic boundary conditions.
There are additional less than obvious numerical difficulties, which
just became apparent during the process of developing the numerical
code. This gave us the opportunity to steadily built our knowledge
about applying particular methods and implementing the present non-
linear structures. The result is a semi-implicit time-stepping method,
applying the finite element method and providing a diffuse bound-
ary approximation which significantly simplifies the implementation
of the anisotropic boundary conditions at the substrate. We use the
method of matched asymptotic expansions in order to show that solu-
tions of the problem including the diffuse boundary approximation
converge to those of the original problem. Finally, we present numeri-
cal simulations for various initial states which demonstrate the diffuse
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boundary approximation and reveal some interesting characteristics of
solid state dewetting. Motivated by the previous chapters, we address
the question of how the mobility influences the evolution. We compare
the result with bi-quadratic degenerate mobility to the simulation with
quadratic mobility and demonstrate a significant difference. Further-
more we consider various pinch-off scenarios and anisotropies.

Part III refers to a whole class of thin film equations which includesPart III: The thin
film model, linear
stability analysis

the case corresponding to the small slope approximation of the sharp
interface model for surface diffusion dewetting. We present an im-
proved method for the stability analysis of unsteady, non-uniform
base states in thin film equations which exploits that the initial fronts
evolve on a slower time-scale than the typical perturbations. The result
is a unique value for the dominant wavelength which is different from
the one obtained by the frequently applied linear stability analysis
with "frozen modes". Furthermore, we show that for the present class
of stability problems the dispersion relation is linear in the long wave
limit, which is in contrast to many other instability problems in thin
film flows. The results, which are presented in this chapter, are pub-
lished in a joint paper by Dziwnik, Korzec, Münch and Wagner (see
[28]).

The dissertation finishes with a summary of the main results and
suggestions for future research.



2
M O D E L I N G

2.1 derivation of an anisotropic phase field model

A phase field model can generally be derived by physical arguments General derivation

originating from an explicit expression for the free energy of the sys-
tem. In this section we derive a phase field model from an anisotropic
free energy which leaves the particular choices for the homogeneous
free energy and mobility as degrees of freedom for further modeling,
as these will be motivated at the beginning of Chapter 3.

Figure 5: Sketch of the modeling domain.

Considering a one-dimensional film/vapor interface, we define the Model domain and
phase field functionmodel domain Ω to be a two-dimensional rectangular box around

this interface with boundary ∂Ω = Γ0 ∪ Γ1 ∪ Γw (see Fig. 5). Then
we introduce the phase field function u = u(x) such that the zero-
level set χ0 := {x : u(x) = 0} denotes the film/vapor interface, while
{x : u(x) > 0} denotes the film and {x : u(x) < 0} the vapor phase.
In this context the total energy of the system Wε may be written as

Wε = Wε
FV + Wε

w =
∫

Ω
fFV dΩ +

∫
Γw

fw dΓ, (1)

where ε is a small parameter that describes the interface width, Wε
FV

represents the energy of both the film and vapor phases, Wε
w represents

the wall energy, i.e. the energy at the substrate, and fFV and fw are the
corresponding energy densities. Following the approach initiated by
Kobayashi [59] and similar as in [103, 113], we consider an anisotropic Free energy

free energy functional of the form

fFV(u,∇u) =
λm

ε

(
F(u) +

ε2

2
γ(θ)2|∇u|2

)
, (2)

where F(u) is the homogeneous free energy (whose particular choice
will be motivated at the beginning of Chapter 3), γ : R2 → R+ is the

23
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anisotropic interface energy between film and vapor and λm represents
the mixing energy density. In general the free energy has to fulfill
fFV → ∞, if |u| → ∞, which ensures that the energy minimizing
solution has bounded order parameter, and a second stability criterion
is that the highest order gradient term has positive coefficient, which
ensures that the energy minimizing solution has bounded fluctuations.
Furthermore the constant λm is needed since the ratio λm/ε produces
the interfacial tension in the classical way as ε → 0 [49], [117]. For
the scope of our work λm is necessary in order to obtain the correct
boundary conditions at the triple junction. At this point it is also
worth mentioning that the scaling in view of ε of this frequently used
free energy differs in the literature, but the different models may
be identified with each other after appropriate rescaling. The only
thing which is to keep in mind, is that the different energies which
contribute to the model derivation are scaled in the same way.

We assume that γ is a smooth 2π-periodic function and −π < θ ≤ πAnisotropy

is the angle between −∇u and the positive direction of the x-axis. In
order to write γ(θ) in terms of∇u we introduce the following common
generalization of the arctangent function

θ = atan2(uy, ux) =



arctan uy
ux

for ux > 0

arctan uy
ux

+ π for ux < 0 and uy ≥ 0

arctan uy
ux
− π for ux < 0 and uy < 0

+ π
2 for ux = 0 and uy > 0

− π
2 for ux = 0 and uy < 0

0 for ux = 0 and uy = 0,

(3)

so that
γ(θ) = γ

(
atan2(uy, ux)

)
.

We prefer this representation of θ to the frequently applied simple
arctan representation, i.e. θ = arctan

(
uy
ux

)
, since it provides the correct

projection in view of the four quadrants of the Euclidean coordinate
system and the spectrum −π < θ ≤ π. Concerning the anisotropic
function γ we assume that γ(π

2 ) = γ(−π
2 ) and γ(π) = γ(−π) which

implies continuity of γ everywhere except for ux = uy = 0. Note that
in this special case all the expressions where γ occur become zero
anyway due to multiplication by ux and uy. Moreover we will require
the interface energy to be only weakly anisotropic, i.e.

γ(θ) + γ′′(θ) > 0, (4)

for all θ ∈ [−π, π], to avoid ill-posedness of the resulting evolution
equations. To be more precise, if γ2|∇u|2 is not convex then the term
∇u may be backwards diffusive for some initial data [30, 113] and in
the two-dimensional case, which we consider here, this corresponds
to the case if and only if γ(θ) + γ′′(θ) ≤ 0, which is referred to as
strongly anisotropic.
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Finally we consider the energy a the solid substrate which is repre- Energy at the
substratesented by the wall energy density

fw(u) =
γVS + γFS

2
− u(3− u2)

4
(γVS − γFS), (5)

as suggested in [50, 118]. As discussed in [42], it is convenient to choose
fw such that away from the contact line, fw gives the vapor/substrate
interfacial energy in the vapor phase, i.e. fw = γVS, when u = −1,
and the film/surface interfacial energy in the film phase, i.e. fw = γFS,
when u = 1. Moreover fw has to satisfy f ′w(±1) = 0, which provides
that the energy minimizing solution of the free energy part, i.e.

∫
Ω fFV ,

is undisturbed by fw. Physically more meaningful expressions for the
wall energy can be found in [93].

Calculating the variational derivative of the energy function Wε Variational
derivativewith respect to u, we then have

ε

λm

d
dt

Wε(u + tv)
∣∣
t=0 =

∫
Ω

(
F′(u)v + ε2

(
γ

∂γ

∂∇u
|∇u|2 + γ2∇u

)
∇v
)

+
∫

Γw

ε

λm
f ′w(u)v ds

=
∫

Ω

(
F′(u)v− ε2∇ ·

(
γγ′

∂θ

∂∇u
|∇u|2 + γ2∇u

)
v
)

+
∫

Γw

(
ε2nΩ ·

[
γ

∂γ

∂∇u
|∇u|2 + γ(θ)2∇u

]
+

ε

λm
f ′w(u)

)
vds

+
∫

∂Ω\Γw

(
ε2nΩ ·

[
γ

∂γ

∂∇u
|∇u|2 + γ(θ)2∇u

])
vds,

(6)
where nΩ is the unit outward pointing normal vector onto Ω. Exploit-
ing the particular representation of θ, i.e. (3), we find that

∂θ

∂ux
= −

uy

|∇u|2 and
∂θ

∂uy
=

ux

|∇u|2 , (7)

and imposing natural boundary conditions, i.e. Natural boundary
conditions

ε nΩ ·
[

γ(θ)γ′(θ)

(
−uy

ux

)
+ γ(θ)2∇u

]
+

f ′w
λm

= 0 (8)

on Γw, and

nΩ ·
[

γ(θ)γ′(θ)

(
−uy

ux

)
+ γ(θ)2∇u

]
= 0 (9)

on ∂Ω \ Γw, the variational derivative becomes

ε

λm

δWε

δu
= F′(u)− ε2∇ ·

(
γγ′
(
−uy

ux

)
+ γ2∇u

)
. (10)

We assume that the order parameter u is conserved and define the Mass flux and Fick’s
second lawmass flux of u to be

j = −m(u)∇µ, (11)
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where the chemical potential µ is the variational derivative (10)

µ(u) := F′(u)− ε2∇ ·
(

γγ′
(
−uy

ux

)
+ γ2∇u

)
(12)

and m(u) is the diffusional mobility.
Fick’s second law then yields the anisotropic phase field model,The anisotropic

phase field model which can be classified as anisotropic Cahn-Hilliard type equation

∂tu = −∇ · j,
j = −m(u)∇µ,

µ = F′(u)− ε2∇ ·
(

γγ′
(
−uy

ux

)
+ γ2∇u

)
,

(13a)

subject to the following boundary conditions

ε nΩ ·
[

γ(θ)γ′(θ)

(
−uy

ux

)
+ γ(θ)2∇u

]
+

f ′w
λm

= 0,

nΩ · (m(u)∇µ) = 0,
(13b)

on Γw and

nΩ · ∇u = 0, nΩ · (m(u)∇µ) = 0, (13c)

on ∂Ω \ Γw. The former condition in each case is the natural boundary
condition, according the variational derivative of the total energy, and
the latter one corresponds to conservation of mass.

The anisotropic phase field model (13)-(13c) establishes the base of
Part II, where a complete model formulation, regarding the particular
choices for the homogeneous free energy F(u) and mobility m(u) is
specified and motivated in Chapter 3.

2.2 the anisotropic sharp interface model

The anisotropic evolution of a one-dimensional film/vapor interface
can alternatively be modeled as a type of surface-tracking problem
which is driven by interfacial energy minimization. If we assume thatGibbs-Thomson

relation surface diffusion is the only driving force, the increase in chemical
potential per atom that is transferred from a point of zero curvature
to a point of curvature κ is given by the well known anisotropic
Gibbs-Thomson relation

µ = Ω
(

γ +
∂2γ

∂θ2

)
κ, (14)

where Ω is the atomic volume and γ is the anisotropic surface energy
per unit area. The orientation of the surface is specified by the angle
θ between the surface normal and the vertical axis. The average drift
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velocity of surface atoms is derived from (14) by using the Nernst-
Einstein equation, and reads Nernst-Einstein

equation

V = −Ds

kT
∂µ

∂s
, (15)

where Ds is the surface diffusion coefficient, kT is the thermal energy
per atom, and s is the arc length along the surface. This drift velocity
generates a surface current of atoms which is the product of V by the
number of diffusing surface atoms per unit area ν

J = −Dsν

kT
∂µ

∂s
. (16)

If the surface divergence of −J is taken, one obtains the increase in
the number of atoms per unit area per unit time. This implies that (16)
may be converted to the speed of movement vn of the surface element
along its normal

vn = C
∂2

∂s2

[(
γ +

∂2γ

∂θ2

)
κ

]
(17)

where C = DsνΩ2/kT. Note that the evolution of the fim profile X :=
(x(s, t), y(s, t)) may then be written in the Lagrangian representation

∂X
∂t

= vn n, (18)

where n is the interface outer unit normal vector. Equation (17) governs
the motions of the particles on a one-dimensional surface and the
corresponding boundary conditions at the substrate are derived in the
next section.

2.2.1 Derivation of the anisotropic boundary condition by the variational
method

In addition to the anisotropic surface diffusion type of surface-tracking Young-Herring
contact angle
condition

problem, we consider the feature of a moving contact line. More specifi-
cally, the contact line is a triple junction - where the film, substrate, and
vapor phases meet- that migrates as the surface evolves. The bound-
ary conditions at the triple junctions are the contact-point condition,
zero mass flux condition and an anisotropic contact angle boundary
condition, referred to as Young-Herring condition. Herring [46] origi-
nally derived this condition for the interception point of up to three
interfaces by the method of virtual displacement. We now present
a variational derivation of the anisotropic contact angle condition at Literature referring

to the methodthe moving boundary. This method has previously been adapted by
Mullins [82] and Min et al. [78] in view of the anisotropic surface diffu-
sion dewetting problem and the main steps of the following derivation
can also be reviewed in Appendix D in [78].

Consider a two-dimensional solid film on a straight substrate and
in equilibrium with vapor. This implies that the total free energy of Minimizing the total

free energy
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Figure 6: Sketch of a two- dimensional solid film on a substrate.

the system is at a minimum and its variation is zero

δ
∫ xr

xl

[
γ(θ)

√
1 + h2

x + γFS − γVS + λh
]

dx = 0, (19)

where δ represents the variation, h = h(x, t) is the film height with
spacial derivative hx = ∂h/∂x, γ = γ(hx) is the anisotropic interface
energy between film and vapor depending on the angle hx, γFS and
γVS are the film/substrate and vapor/substrate surface energies per
unit area, respectively, and xl and xr are the moving contact points.
The first term in the integral represents the surface energy of the
film/vapor interface and the second and third terms represent the
surface energy at the solid substrate. Conservation of mass is imposed
by a Lagrange multiplier λ. Calculating the variational derivative [19],Variational

derivative we obtain

0 =
∫ xr

xl

λδhdx +
∫ xr

xl

[
(1 + h2

x)
1/2 dγ

dhx
+

γhx

(1 + h2
x)

1/2

]
δhxdx

+ [γ(1 + h2
x)

1/2 + γFS − γVS]x=xr δxr

− [γ(1 + h2
x)

1/2 + γFS − γVS]x=xl δxl .

(20)

Since δhx = d(δh)/dx, integration by parts of the second integral gives∫ xr

xl

[
(1 + h2

x)
1/2 dγ

dhx
+

γhx

(1 + h2
x)

1/2

]
δhxdx

=

[(
(1 + h2

x)
1/2 dγ

dhx
+

γhx

(1 + h2
x)

1/2

)
δh
]x=xr

x=xl

−
∫ xr

xl

[
(1 + h2

x)
1/2hxx

d2γ

dh2
x
+

2hxhxx

(1 + h2
x)

1/2
dγ

dhx
+

γhxx

(1 + h2
x)

3/2

]
δhdx.

(21)
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Exploiting this in (20) and invoking δh|x=xl = −hx|x=xl δxl and δh|x=xr =

−hx|x=xr δxr, we find

0 =
∫ xr

xl

[
λ− (1 + h2

x)
1/2hxx

d2γ

dh2
x
− 2hxhxx

(1 + h2
x)

1/2
dγ

dhx
− γhxx

(1 + h2
x)

3/2

]
δh

+

[
γ

(1 + h2
x)

1/2 + γFS − γVS − hx(1 + h2
x)

1/2 dγ

dhx

]
x=xr

δxr

−
[

γ

(1 + h2
x)

1/2 + γFS − γVS − hx(1 + h2
x)

1/2 dγ

dhx

]
x=xl

δxl .

(22)
Realizing that δh is arbitrary, the above equation yields three equilib- Three equilibrium

conditionsrium conditions. The first one reads

λ =
γhxx

(1 + h2
x)

3/2 + (1 + h2
x)

1/2hxx
d2γ

dh2
x
+

2hxhxx

(1 + h2
x)

1/2
dγ

dhx
. (23)

Introducing the surface normal angle θ, which is the angle between
the film surface normal and the vertical axis, (Fig. 6) yields

tan θ = hx, (24)

and consequently

∂γ

∂θ
= (1 + h2

x)
dγ

dhx
, (25)

∂2γ

∂θ2 = 2hx(1 + h2
x)

dγ

dhx
+ (1 + h2

x)
2 d2γ

dh2
x

. (26)

condition (23) may be rewritten as

λ = −
(

γ +
d2γ

dθ2

)
κ, (27)

where we also exploited that

κ = − hxx

(1 + h2
x)

3/2 . (28)

With the Lagrange multiplier λ = −µ/Ω equation (27) is recognized
as the anisotropic Gibbs-Thomson relation as presented in (14). The
other two equilibrium conditions yield the boundary conditions at
x = xl and x = xr, respectively. Since this condition turns out to be
equal for xl and xr we can write it in a generalized form for a contact
point x0, which corresponds to xl or xr respectively. The equilibrium
condition

γ

(1 + h2
x)

1/2 + γFS − γVS − hx(1 + h2
x)

1/2 dγ

dhx
= 0 (29)

then becomes

γ(θc) cos θc − γ′(θc) sin θc + γFS − γVS = 0, (30)
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where γ′ = dγ/dθ and θc denotes the equilibrium contact angle, which
is equal to θ at x = x0. This surface energy minimizing contact angle
boundary condition is referred to as Young-Herring condition [78] andYoung-Herring

condition if the surface energy is isotropic, i.e. γ ≡ const. equation (30) reduces
to the well known Young’s condition.

The full anisotropic sharp interface model which describes theThe anisotropic
sharp interface model anisotropic evolution due to surface diffusion then reads

vn = C
∂2

∂s2

[(
γ +

∂2γ

∂θ2

)
κ

]
, (31a)

with the contact point condition

h(x0, t) = 0, (31b)

contact angle condition[
γ(θc) cos θc − γ′(θ0) sin θc

]
x=x0

+ γFS − γVS = 0, (31c)

and zero mass flux condition

∂

∂s

[(
γ +

∂2γ

∂θ2

)
κ

] ∣∣∣∣
x=x0

= 0, (31d)

where x0 ∈ {xl , xr}. Note that the determination of xl and xr is part
of the problem, which implies that all of the boundary conditions are
necessary and the problem is well-posed.

2.2.2 Nondimensional Problem

In order to nondimensionalize the equations (31a)- (31d), let H0 beIntroducing suitable
scalings the characteristic length scale corresponding to the unperturbed film

height and let γ0 be the scale for the film/vapor interface. Rescaling
according to

t =
H4

0
Cγ0

t̃, x = H0 x̃, h = H0 h̃, s = H0s̃,

κ = H0κ̃, γ = γ0γ̃, vn =
Cγ0

H3
0

ṽn

(32)

then leads to the dimensionless form

vn =
∂2

∂s2

[(
γ +

∂2γ

∂θ2

)
κ

]
, (33a)

with the contact point condition

h(x0, t) = 0, (33b)
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contact angle condition[
γ(θc) cos θc − γ′(θ0) sin θc

]
x=x0

+
γFS − γVS

γ0
= 0, (33c)

and zero mass flux condition

∂

∂s

[(
γ +

∂2γ

∂θ2

)
κ

] ∣∣∣∣
x=x0

= 0, (33d)

where x0 ∈ {xl , xr} and xl , xr denote the positions of the left and
right contact points, respectively, in the rescaled system. Note that
vn, s, γ, κ, h, and t are dimensionless variables, and we still used the
same notations for brevity.

The present sharp interface model will be relevant in Chapter 3 as
it is the desired limit model of the previously introduced anisotropic
phase field model. Moreover we will consider the corresponding small
slope approximation in Part III which is introduced in the next section.

2.3 the small slope approximation

A basic property of the thin solid films which we consider here is that A significant model
reductionthe characteristic height scale of the initial film is much smaller than

the length scale. Under the additional assumption that the present
slopes are small, we are able to reduce the sharp interface model to
a particular case of the so-called thin film equations. This significant
model reduction does not only simplify the numerical simulation, but
also enables to systematically study some of the characteristic dewet-
ting properties such as the dewetting rate or fingering instabilities of
the dewetting front.

In order to stay consistent with the previous model derivations we Lubrication
approximation for
thin liquid films

consider a model for solid state dewetting in one space dimension.
In addition we will confine ourselves to the isotropic case during the
derivation. Note that the class of thin film equations which will be
considered in Part III is more general and the most common derivation
of this whole class of models is via a lubrication approximation of the
Navier-Stokes equations for thin film viscous flows. However, since
lubrication theory refers to thin liquid films, which are not the focus of
this work, we skip the corresponding general derivation and present
the approach which corresponds to solid films instead.

We begin by demonstrating the transformation (33a)-(33d) into Transformation to
Cartesian
coordinates

Cartesian coordinates which enables to apply the small slope approxi-
mation. Observing that the transformation in curvilinear coordinates
is based on the parametrization of the one-dimensional surface

~Γ(x) :=
(

x
h(x)

)
(34)
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and the basis vectors

~s :=
1√

1 + h2
x

(
1
hx

)
, ~n :=

1√
1 + h2

x

(
−hx

1

)
(35)

we have the transformation rule(
dx
dh

)
=

1√
1 + h2

x

(
1 −hx

hx 1

)(
ds
dn

)
. (36)

This reveals that the surface derivative of an arbitrary function Ψ(x)
depending on x reads

∂Ψ
∂s

=
1√

1 + h2
x

∂Ψ
∂x

. (37)

Considering (33a) and using the definition (28), we then obtain

vn = − 1√
1 + h2

x

[
∂

∂x
1√

1 + h2
x

∂

∂x

((
γ +

∂2γ

∂θ2

)
hxx

(1 + h2
x)

3/2

)]
, (38)

which is still valid for arbitrary slopes. A simple geometrical projection
of the velocity dh/dt gives the relation

vn =
1√

1 + h2
x

dh
dt

. (39)

We are now in the position to apply the small slope approximation, i.e.Small slope
approximation we assume that |hx| � 1. Note that, according to (3), this assumption

also implies θ ≈ π/2 and consequently it also makes sense to assume
that surface energy is isotropic, i.e. γ ≡ 1.

Applying the small slope approximation, the isotropic sharp inter-
face model for surface diffusion dewetting reads

dh
dt

= −C ∂xxxxh, (40a)

with the contact point condition

h(x0, t) = 0, (40b)

contact angle condition

hx
∣∣

x=x0
= θc, (40c)

and zero mass flux condition

∂xxxh
∣∣

x=x0
= 0, (40d)

where x0 corresponds to xl or xr, respectively and θc < 1. Note that
again the determination of xl and xr is part of the problem, which
implies that all of the boundary conditions are necessary and the
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Figure 7: A sketch of a retracting rim with a sinusoidal perturbation in the
spanwise (y-) direction.

problem is well-posed.

Note that the thin film model which will be investigated in Part Notes on the
two-dimensional caseIII refers to two space dimensions and the corresponding small slope

approximation reads

dh
dt

= −∆2h (41a)

with boundary conditions

h = 0 , x = s(y, t) (41b)

∇h · ns = θ , x = s(y, t) (41c)

hn (∇∆h · ns) = 0 , x = s(y, t) (41d)

where x = s(y, t) is the position of the two-dimensional contact line.
Moreover, assuming that the initial film height is small compared to
the film length and scaling the height of the unperturbed film to h ≡ 1,
suggests to replace the boundary conditions on the right hand side by
the far field condition

lim
x→∞

h ≡ 1, (42)

as shown in Figure 7. The model domain will consequently be replaced
by Ω = {(x, y); s(y, t) < x < L, −∞ < y < ∞}.
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3
S H A R P I N T E R FA C E L I M I T S O F T H E A N I S O T R O P I C
P H A S E F I E L D M O D E L

3.1 the difficulty of modeling anisotropic surface dif-
fusion correctly

Considering the anisotropic phase field model which we derived in Completing the
model derivationChapter 2.1, the question naturally arises for which particular choices

of mobility and bulk free energy motion by pure surface diffusion is
recovered in the sharp interface limit. For an introduction to phase
field modeling of microstructure evolution and a general motivation
of modeling choices we refer to the review by Moelans et al. [87].
Since establishing the correspondence between phase field and sharp
interface models has been investigated intensively during the last
decades, we start this chapter with an overview of related models and
their sharp interface derivations.
One of the first systematic derivations of sharp interface models using First sharp interface

derivationsmatched asymptotic expansions has been carried out by Pego [92]. His
analysis concerned the Cahn-Hilliard equation

∂tu = −∇ · j, j = −m(u)∇µ, µ = F′(u)− ε2∆u, (43)

with the homogeneous free energy F(u) = 1
2 (1− u2)2 and constant

mobility m(u) = 1 together with the no-flux boundary condition
j · n = 0. For this model Pego has shown that the sharp interface limit
ε→ 0 reduces to the so-called Mullins-Sekerka problem [83] on a long
time scale t = O(ε−1), which corresponds to interface motion by pure
bulk diffusion.

The particular choice for F(u) = 1
2 (1− u2)2 and m(u) = 1 is actually Motivating F and m

an approximation of the Cahn-Hilliard equation as derived in [89]
with the concentration dependent degenerate mobility m(u) = 1− u2

and the logarithmic free energy

F(u) =
T
2
((1 + u) ln(1 + u) + (1− u) ln(1− u)) +

1
2
(1− u2)2 (44)

in the limit T → 1, where T is the temperature. A concentration depen-
dent degenerate mobility appears reasonable according to the original
derivation of the Cahn-Hilliard equation [17], and the logarithmic
terms in the homogeneous free energy (44) arise from entropic con-
tributions. The sharp interface asymptotic analysis for this case has
been considered by Cahn et al. [15]. For the deep quench limit, T = 0,
and for T = O(εα) with α > 0, Cahn et al. show that the equation
(43) reduces to the so-called Mullins’ model [81] in the sharp interface

37
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limit ε → 0, which is a model for surface diffusion. Note that in the
isotropic case this corresponds to the normal velocity of the interface
being proportional to the surface Laplacian of the mean curvature.
However, the complicated logarithmic representation (44) seems rather
inconvenient in view of analysis and numerical simulation.

Phase field models combining other approximations of the bulkInconsistencies in
sharp interface

derivations
free energy and the mobility have frequently been investigated as
candidates for sharp interface models driven by surface diffusion
in the limit ε → 0, and popular examples are the polynomial free
energy F(u) = 1

2 (1 − u2)2 combined with the degenerate mobil-
ity m(u) = 1 − u2 or with the bi-quadratic degenerate mobility
m(u) = (1 − u2)2, referring to the studies [52, 101]. However, as
has been pointed out by Guggenberger et al. [40] and more recently
by Dai et al. [22, 23] the standard matched asymptotic derivations
that recover Mullins’ model with pure surface diffusion lead to incon-
sistencies that appear in the asymptotic derivations except when the
interface is flat. Indeed, in Lee et al. [64] it was shown that for the com-
bination F(u) = 1

2 (1− u2)2 and m(u) = 1− u2 a careful asymptotic
analysis involving multiple inner layers and exponential asymptotic
expansions is necessary in order to resolve this problem. The result is
a sharp interface model where bulk diffusion contributes to the interfa-
cial mass flux at the same order in ε as surface diffusion. This implies
that the phase field model describes a different driving mechanism
for the interface evolution than intended, i.e. than in Mullins’ model.

Such is the case for the isotropic phase field model proposed byThe isotropic phase
field model proposed

by Jiang et al.
Jiang et al. [52] with a phase field variable u = u(x, t) that is defined
on the domain Ω and where u(x, t) > 0 characterizes the film phase,
u(x, t) < 0 the vapor phase and u(x, t) = 0 the location of the interface.
For this phase field variable the total free energy

Wε =
∫

Ω
fFV dΩ +

∫
Γw

fw dΓ, (45)

combines a bulk contribution from the Ginzburg-Landau free energy
density

fFV = λm

(
F(u) +

ε2

2
|∇u|

)
, (46)

with a surface energy density contribution from the wall Γw ⊂ ∂Ω,

fw =
γVS + γFS

2
− u(3− u2)

4
(γVS − γFS). (47)

The width of the diffuse interface layer is denoted by ε, λm denotes
the mixing energy density and γVS and γFS the vapor/substrate and
film/substrate interface energy densities, respectively. A derivation
via the first variational derivative of the total free energy functional
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with respect to u, following the derivation proposed in Chapter 2.1,
yields the corresponding chemical potential µ = (1/λm)δWε/δu, so
that by making use of the fact that u is a conserved order parameter,
the Cahn-Hilliard equation (43) is obtained together with a no-flux
boundary condition on ∂Ω. Note that this model so far is very similar
to our first model derivation in Chapter 2.1, except that it does not
include anisotropic surface energies. In Jiang et al. [52] the mobility
and homogeneous free energy are then chosen to be m(u) = 1− u2 and
F(u) = 1

2 (1− u2)2, respectively, which was suggested to correspond
to the sharp-interface model for pure surface diffusion. However, as
already mentioned before and shown in [64] the asymptotic limit does
not yield this result.

Realizing that the degeneracy of the mobility at the pure phases Choosing an
appropriate mobilitysuppresses the mass flux in the normal direction and therefore the

diffusion from or into the bulk and that a higher order of degeneracy
increases this effect, we suggest the mobility of form m(u) = (1− u2)2

together with the same homogeneous free energy as in the reference
[52], i.e. F(u) = 1

2 (1− u2)2. Note that in [64] it is also pointed out that
this combination is a suitable candidate in order to recover motion by
pure surface diffusion in the sharp interface limit.

In addition, the phase field model considered here includes an Including
anisotropiesanisotropic surface energy γ(θ), where θ is the interface orientation

angle. We note that anisotropic surface energy may lead to an ill-posed
problem when there are missing orientations in the corresponding
Wulff shape. To be more precise, if γ2|∇u|2 is not convex then the
term ∇u may be backwards diffusive for some initial data [30, 113].
In particular, in the two-dimensional case which we consider here,
∇u is backwards diffusive if and only if γ(θ) + γ′′(θ) < 0. This
case is referred to as strongly anisotropic and has been investigated
by Cahn and Taylor [18], Eggleston et al. [30], suggesting various
convexification schemes and has been numerically treated for example
by Wise et al. [113] to solve the regularized, anisotropic Cahn-Hilliard
equation.

For weak anisotropy different Cahn-Hilliard models were studied
by McFadden et al. [77] and Rätz et al. [94], where in both cases
the method of matched asymptotic expansions is used to recover the
appropriate anisotropic form of the Gibbs-Thomson equation in the
sharp interface limit.

Furthermore we incorporate the sharp interface limit towards ad- Boundary conditions
at the solid boundaryequate anisotropic boundary conditions at the triple junction where

film, vapor and substrate meet. Other studies that deal with the bound-
ary conditions at triple junctions have considered the isotropic Cahn-
Hilliard equation [88], or a system of isotropic Cahn-Hilliard equations
[37], where the ideas of [11] are adapted in order to show that in the
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asymptotic limit the boundary condition leads to Young’s law at triple
junctions [116], i.e.

γVS − γFS = γFV cos θc, (48)

where γVS, γFS and γFV are the interface energy densities describing
the interfaces between vapor/substrate, film/substrate, and film/va-
por, respectively, and θc is the equilibrium contact angle. Of particular
interest in our study is the technique as well as the geometry presented
in [90], in order to study the asymptotic behavior at the three phase
contact line of our problem.

As mentioned above, anisotropies in phase field models and inPreviously done
studies on

anisotropies in phase
field models

particular their sharp interface limit [36, 77, 94] as well as boundary
conditions at triple junctions [11, 37, 88, 90] have been discussed in the
literature. Nevertheless, to the best of our knowledge, there is no work
investigating an anisotropic phase field model together with boundary
conditions at solid boundaries. Furthermore, for the particular choice
of free energy F and mobility m in this work, the sharp interface limit
via matched asymptotic analysis was not studied so far, which is also
a topic of particular interest, since the frequently applied models show
an apparent inconsistency in view of motion by pure surface diffusion
as pointed out in [40] and [64].

The chapter is organized as follows. In section 3.3 we derive theOverview of this
chapter sharp interface limit in the weakly anisotropic case and inside the

model domain which confirms the approach of surface diffusion for
the present choice of mobility m and free energy F. In section 3.4 we
deal with the corresponding boundary condition at the solid boundary
and apply an appropriate asymptotic method in order to derive the
anisotropic contact angle boundary condition.

3.2 model formulation

Recalling the model as introduced in Chapter 2.1, we will in the
following consider

∂tu = ∇ · j,
j = m(u)∇µ,

µ = F′(u)− ε2∇ ·
(

γγ′
(
−uy

ux

)
+ γ2∇u

)
,

(49a)

subject to the conditions

ε nΩ ·
[

γ(θ)γ′(θ)

(
−uy

ux

)
+ γ(θ)2∇u

]
+

f ′w
λm

= 0,

nΩ · (m(u)∇µ) = 0,
(49b)

on Γw, where fw is given by (47) and

nΩ · ∇u = 0, nΩ · (m(u)∇µ) = 0, (49c)
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on ∂Ω \ Γw. Note that in the original derivation in Chapter 2.1 we had,
due to the definition of the flux, minus signs in front of the first two
equations in (49). However, since the formulation without the minus
signs is equivalent from a mathematical point of view, we choose this
representation for the sake of simplification.

Motivated by the previous section we consider the homogeneous
free energy

F(u) =
1
2
(1− u2)2 (50)

and the bi-quadratic diffusional mobility m(u)

m(u) =
(
1− u2)2

. (51)

Moreover, in order to guarantee well-posedness of the problem, we
limit ourselves to anisotropic surface energies which are weak anisotropic,
i.e. which fulfill

0 ≤ γ(θ) + γ′′(θ). (52)

3.3 sharp interface limit from matched asymptotic ex-
pansions

In this section we will use the method of matched asymptotic expan- Rescaling the time
variablesions in order to study the long time behavior of (49) in the limit ε→ 0

and capture the contribution from surface diffusion. Observing that
the evolution of the order parameter occurs at an O(1/ε2) time scale
(see [64]), we suggest to rescale time via τ = ε2t, so that (49) reads

ε2∂τu = ∇ · j,
j = m(u)∇µ,

µ = F′(u)− ε2∇ ·
(

γγ′
(
−uy

ux

)
+ γ2∇u

)
,

(53)

with mobility m(u) defined by (51) and free energy F(u) defined by
(50) and boundary conditions (49b) and (49c).

3.3.1 Sharp interface dynamics away from the solid boundary

We first study the asymptotic behavior of the solution in the outer Existing works and
how they differ from
our approach

region and the inner interface region away from the solid substrate i.e.
y� ε. The method of matched asymptotic expansions for anisotropic
sharp interface limits has already been applied in [77] and [36] in
order to recover the appropriate anisotropic sharp interface form
of an anisotropic Allen-Cahn-type equation. In [36] it is in addition
pointed out how the analysis has to be modified when considering
the Cahn-Hilliard system or the related minimum problem. The Cahn-
Hilliard case was also studied in [94] where a connection between
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sharp interface models for isotropic and anisotropic surface evolution
and their diffuse interface counterparts is given. In contrast to our
work, [94] as well as [36] also consider different driving forces such
as deposition flux and elastic stress in the diffuse interface model,
which induce that the evolution in the sharp interface limit is not only
driven by surface diffusion. In this section we will present a matched
asymptotic analysis for the anisotropic Cahn-Hilliard equation (53)
with the aim to recover pure surface diffusion in the sharp interface
limit. As shown in [64] this is already in the isotropic case a non-trivial
topic and we will exploit this knowledge as well as the particular
asymptotic method presented in [64] in order to verify the sharp
interface limit in our case.

3.3.2 Outer problem

The equations (53) are already stated in outer variables. For the outer
expansions, we will use

u = u0 + εu1 + ε2u2...,

µ = µ0 + εµ1 + ε2µ2...,

j = j0 + εj1 + ε2j2....

(54)

which suggests the following expansions for M(u) and F(u)

m(u) = m(u0) + εm′(u0)u1 + ε2
(

1
2

m′′(u0)u2
1 + m′(u0)u2

)
...

F′(u) = F′(u0) + εF′′(u0)u1 + ε2
(

1
2

F′′′(u0)u2
1 + F′′(u0)u2

)
...

As we consider the sharp interface dynamics away from the solid
boundary we only impose the boundary condition

nΩ · ∇u = 0, nΩ · (m(u)∇µ) = 0, (55)

on ∂Ω \ Γw.

3.3.3 Inner problem

Considering the inner expansion about the interface, it is convenientIntroducing
curvilinear
coordinates

to pass to curvilinear coordinates, and work in local coordinates in
the asymptotic expansion.

Transformation to inner variables

Similar as in [64, 92], we define the inner layer in a coordinate system
relative to the interface

x = R(s, τ) + ερ n(s, τ), (56)
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Figure 8: Sketch of the solid-vapor interface showing the orientation of the
curvilinear coordinate system.

and let U(s, ρ, τ) = u(x, t), M(s, ρ, τ) = µ(x, t) and J(s, ρ, τ) = j(x, t).
Here, R := (R1, R2)T is the position of the interface defined by

u(R, t) = 0, (57)

s is the arclength and n = (n1, n2)T is the unit normal to the solid-
vapor interface oriented such that it points out of the solid. The
orientation of the unit tangent t = (t1, t2)T and of the corresponding
arclength parametrization of R are chosen so that (t, n) forms a right-
handed system, i.e. t = (n2,−n1)

T, thus the solid always lies to the
right of the curve and we have the relation

t = ∂sR. (58)

The sign of the curvature κ is defined so that the normal and tangent
unit vectors satisfy the Frenet-Serret formulae in the form Frenet-Serret

formulae
∂st = −κn, ∂sn = κt (59)

This choice implies that κ > 0, if the curve is convex with respect to
the solid. Calculating the partial derivatives of x(s, ρ) we obtain the
basis of the coordinate transform

es :=
∂x
∂s

= (1 + ερκ)t, eρ :=
∂x
∂ρ

= εn (60)

where we exploited (58) and (59). Thus the corresponding metric
tensor reads

(gαβ) = g :=

(
1 0

0 (1 + ερκ)2

)
, (61)

where the elements of the tensor are given by gαβ = eα · eβ. The
determinant is

g := det g = (1 + ερκ)2 (62)

and the corresponding contravariant components of the metric tensor
are given by

(gαβ) = g−1 :=

(
1 0

0 (1 + ερκ)−2

)
. (63)
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Using the summation convention from now on, we can write vectors in
the reciprocal basis. Exploiting the index contraction rule eα = gαβeβ,
we obtain

es := ε−1n, eρ :=
1

1 + ερκ
t (64)

which reveals that the gradient operator in these curvilinear coordi-Differential operators
in curvilinear

coordinates
nates reads

∇ = eα∂α = nε−1∂ρ +
1

1 + ερκ
t∂s, (65)

From tensor analysis we know that the divergence operator of a vector
field A is defined to be

∇A =
1
√

g
∂α (
√

gAα)

=
1
√

g
∂α

(√
ggαβ Aβ

)
=

1
1 + ερκ

[
ε−1∂ρ

(
(1 + ερκ)Aρ

)
+ ∂s

(
1

1 + ερκ
As

)]
.

(66)

The Laplacian in inner coordinates becomes

∆u = ∇ · (∇u)

=
1
ε2

1
1 + ερκ

∂ρ

(
(1 + ερκ)∂ρu

)
+

1
1 + ερκ

(
1

1 + ερκ
∂su
) (67)

and expanding in orders of ε reveals

∆u =(ε−2∂ρρ + ε−1κ∂ρ + ∂ss − ρκ2∂ρ + ε2(ρ2κ3∂ρ − ρκ∂s − ∂sρκ∂s))u

+ O(ε2)u.
(68)

Inner expansions

For the inner expansions, we will useInner expansions for
the main variables

U = U0 + εU1 + ε2U2...,

M = M0 + εM1 + ε2M2...,

J = ε−1J−1 + J0 + εJ1 + ε2J2....

(69)

where the reason why the asymptotic expansion for J starts at order
ε−1 will become clear in the following. Moreover we will apply

F′(U) = F′(U0) + εF′′(U0)U1... (70)

and introduce expansions for θ and γ respectively, as these are relevant
for the first three orders of the inner problem

θ = θ0 + εθ1 + ε2θ2...,

γ = γ(θ0) + εγ′(θ0)θ1 + ε2
(

1
2

γ′′(θ0)θ
2
1 + γ′(θ0)θ2

)
....

(71)
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Taylor expanding γ in ε around ε = 0 then reveals the identification

γ0 = γ(θ0) and γ1 = γ′(θ0)θ1. (72)

For further analysis it will prove useful to calculate γ0, γ1 or θ0, θ1

explicitly in view of inner coordinates.

To this end we first consider the case when ux = 0. Inner expansions
for θIn inner coordinates ux = 0 is equivalent to

ε−1n1Uρ + (1 + ερκ)−1t1Us = 0,

for all ε > 0, which may be rewritten to

n1Uρ + ε(ρκn1Uρ + t1Us) = 0.

As this is a polynomial in ε it is zero for all ε if an only if

n1Uρ = 0 ∧ ρκn1Uρ + t1Us = 0.

Since we consider the inner problem at the interface, which describes
phase transition we can assume that Uρ 6= 0 and the condition may be
rewritten as

n1 = 0 ∧ Us = 0, (73)

where we also exploited that t1 = n2 6= 0 since (n1, n2) = 0 cannot
occur in inner coordinates, i.e. near the interface. Consequently we ob-
tain that from ux = 0 it follows that n1 = −t2 = 0 in inner coordinates,
thus uy reads

uy = ε−1n2Uρ + (1 + ερκ)−1t2Us = ε−1n2Uρ.

Exploiting the definition of θ, i.e. (3) we then obtain that for ux = 0
we have

θ = θ0(uy) =

{
+ π

2 for n2Uρ > 0

− π
2 for n2Uρ < 0

(74)

where we also used that n2Uρ 6= 0. Finally, since γ(θ) = γ(−θ) we
obtain that γ = γ0 = γ(θ0) is constant and in particular independent
of ρ.

We now consider ux 6= 0.
According to (73) this implies either n1 6= 0 or Us 6= 0. We first consider
n1 6= 0. In inner coordinates and exploiting (t1, t2) = (n2,−n1), as
well as n2

1 + n2
2 = 1, we have

uy

ux
=

ε−1n2Uρ + (1 + ερκ)−1t2Us

ε−1n1Uρ + (1 + ερκ)−1t1Us
=

ε−1n2Uρ + ρκn2Uρ + t2Us

ε−1n1Uρ + ρκn1Uρ + t1Us

=
n2Uρ + ε

(
ρκn2Uρ + t2Us

)
n1Uρ + ε

(
ρκn1Uρ + t1Us

) ∼ n2

n1
− ε

Us

n2
1Uρ

.
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A Taylor-expansion of θ at ε = 0 then leads to

θ = arctan 2 (n2, n1)− ε
Us

Uρ
+ O(ε2), (75)

which reveals the identification

θ0 = arctan 2 (n2, n1) and θ1 = −Us

Uρ
. (76)

On the other hand, for n1 = −t2 = 0 and Us 6= 0, we have

uy

ux
= ε−1 Uρ

Us
+ ρκ

Uρ

Us
,

such that in the limit ε→ 0 we obtain

θ = θ0 = sign
(

Uρ

Us

)
π

2
. (77)

Finally we conclude that

θ0 =

{
arctan 2(n2, n1) for n1 6= 0

± π
2 for n1 = 0

(78)

and

θ1 =

 −
Us

Uρ
for n1 6= 0

0 for n1 = 0.
(79)

Hence the leading order of θ and consequently also of γ is indepen-
dent of ρ.

Consider now the time derivative in inner coordinates. Since R isTime derivative in
inner coordinates time dependent the time derivative becomes

∂τu = ∂τU −∇U · ∂τR

= ∂τU − vnε−1∂ρU − vt

1 + ερκ
∂sU,

(80)

where vn := ∂τR · n and tn := ∂τR · t are the normal and tangential
velocities respectively. Applying these inner expansions in (53) we find
that the first two equations combined become

ε2∂τU − εvn∂ρU − ε2vt

1 + ερκ
∂sU = ∇ · (m(U)∇M), (81)

where
∇·(m(U)∇)

=ε−2∂ρm(U0)∂ρ + ε−1
[

∂ρ

(
κρm(U0) + m′(U0)U1

)
∂ρ − κρ∂ρm(U0)∂ρ

]
+

[
κ2ρ2∂ρm(U0)∂ρ − κρ∂ρ

(
κρm(U0) + m′(U0)U1

)
∂ρ

+ ∂ρ

(
κρm′(U0)U1 +

1
2

m′′(U0)U2
1 + m′(U0)U2

)
∂ρ + ∂sm(U0)∂s

]
+ O(ε).

(82)
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Taking only the first equation in (53) we have

ε2∂τU − εvn∂ρU − ε2vt

1 + ερκ
∂sU

=
1

1 + ερκ

[
ε−1∂ρ

(
(1 + ερκ)n · J

)
+ ∂s

(
1

1 + ερκ
s · J

)]
,

(83)

where we will only need to know the normal component Jn = n · J,
which can be expanded as

Jn =
m(U)

ε
∂ρ M

= ε−1m(U0)∂ρ M0 + m′(U0)U1∂ρ M0 + m(U0)∂ρ M1

+ ε

[
m(U0)∂ρ M2 + m′(U0)U1∂ρ M1 + m′(U0)U2∂ρ M0 +

1
2

m′′(U0)U2
1 ∂ρ M0

]
+ ε2

[
m(U0)∂ρ M3 + m′(U0)U1∂ρ M2 +

(
m′(U0)U2 +

1
2

m′′(U0)U2
1

)
∂ρ M1

+

(
m′(U0)U3 + m′′(U0)U1U2 +

1
6

m′′′(U0)U3
1

)
∂ρ M0

]
+ O(ε3).

(84)

3.3.4 Solutions with |u| ≤ 1

For the scope of this work, we will only consider solutions of the Resolution to an
apparent
contradiction

phase field model with |u| ≤ 1. Such solutions have been shown to
arise for the standard (isotropic) Cahn-Hilliard equation with degen-
erate mobilities from appropriate regularizations [32], and we will
assume that similar procedures can be invoked in the anisotropic
case. However, if we proceed with our long-time asymptotics in the
usual way by assuming non-trivial outer solutions on both sides of
the interface (where trivial means that u = 1 or u = −1 everywhere to
all orders, i.e., the outer solution consists of the pure phases), then the
O(ε) correction to u0 = ±1 leads to u that does not satisfy |u| ≤ 1 on
the convex side of the interface. This observation has been discussed
at some length for the isotropic case in [23, 64].

In [64], a resolution to this apparent contradiction has been sug-
gested, which we also apply here. Here we only summarize the salient
features of the argument. The apparent contradiction can be resolved
by observing that where the solution approaches |u| = 1 in the in-
ner region on the convex side of the interface, it slows down due to
the degeneracy in the mobility. In outer coordinates, we assume that
this approach happens along a curve, χ, at a distance � 1 from the
interface. The solution touches ±1 along this curve in either finite
time or approaches it in infinite time. In both cases, the problem ef-
fectively reduces to a problem with a free boundary χ. Derivation of
the appropriate boundary conditions at χ would require an additional
asymptotic analysis and, in the case where u = ±1 in finite time, an
additional regularization. In principle, this regularization could permit
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a non-zero flux through χ. However, fluxes from the outer solution
including any fluxes through χ do not contribute to the interface
motion to leading order (which is given by surface diffusion). Further
conditions are required at the free boundary χ, and these we postulate
in (86), following the example of [64].

Thus, let ρ = −ω(s, τ) be the position of χ in inner (i.e. ρ-) coordi-
nates. Introduce shifted inner coordinates, centered at χ, via

z = ρ + ω(s, τ). (85)

The corresponding inner expansions may then be written as

U = 1 + εU1 + ε2U2...,

M = M0 + εM1 + ε2M2...,

J = ε−1J−1 + J0 + εJ1 + ε2J2...

and we postulate that the boundary conditions

U(0) = 1, ∂zU(0) = 0 (86)

hold to the first two orders in ε. Note that since the position of the two
inner layers depends also on ε, the positions ω and R actually need to
be expanded in terms of ε as well. But since we are only interested in
the leading order behavior of the interface we use ω and R and their
leading order contributions interchangeably. We now solve and match
the outer and inner problems order by order.

3.3.5 Matching

Leading order

For the leading order outer problem we obtainOuter problem

0 = ∇ · j0, j0 = m(u0)∇µ0, µ0 = F′(u0), (87)

and the corresponding boundary conditions are nΩ · ∇u = 0 and
nΩ · j0 = 0. Since we suppose that the "−" phase is outside the solid
film, we conclude that

u0 = −1, µ0 = 0. (88)

The leading order inner expansion readsInner problem

∂ρ(m(U0)∂ρ M0) = 0, (89a)

F′(U0)− ∂ρ

(
γ2

0∂ρU0
)
= M0. (89b)

Integrating once in ρ, we obtain

m(U0)∂ρ M0 = a1(s, τ). (90)
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From the matching conditions we require

lim
ρ→∞

U0(ρ) = −1, (91)

which implies a1 ≡ 0 and therefore first M0 = const. and then with
the same argument and in view of (89b) also M0 = 0. Moreover, from
(77) we know that θ0 is constant in ρ, which leads to

2(U3
0 −U0)− γ2

0∂ρρU0 = 0 (92)

and, by applying the phase condition U0(0) = 0 (obtained from (57)),
consequently

U0 = − tanh
(

1
γ0

ρ

)
. (93)

Using M0 = 0 we also conclude that

Jn,−1 = 0. (94)

Finally it is easily seen, that from the inner expansions about χ we get

U0 = 1, M0 = 0, Jn,−1 = 0. (95)

For the O(ε) correction we will need to know the particular represen- Particular inner
expansion for θ1tation of the inner expansion for θ1 in view of U0. To this end we first

consider the case n1 6= 0. From (79) we already know that

θ1 = −Us

Uρ
∼ − ∂sU0

∂ρU0
. (96)

Exploiting the leading order representation of U, i.e.

U0 = − tanh
(

1
γ0

ρ

)
,

we calculate
∂sU0 = (1 + U2

0)
ρ ∂sγ0

γ2
0

,

∂ρU0 = −(1 + U2
0)

1
γ0

,
(97)

and since γ0 = γ(arctan 2(n2, n1)) we obtain from the Frenet-Serret
formulae (59)

∂sγ0 = γ′0
n1∂sn2 − n2∂sn1

n2
1 + n2

2
= −γ′0κ. (98)

Applying (97) and (98) in (96) then gives

θ1 ∼ −
γ′0
γ0

ρκ. (99)

Note that in the case n1 = 0 the leading order of γ is constant and in
particular independent of s and ρ. Consequently the representation
(99) can be applied to this case as well as it is zero and this is consistent
with (79).
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O(ε) correction

The first two parts of the outer O(ε) correction problem for (53) areOuter problem

trivial, since µ0 = 0 and m(u0) = 0 and consequently

j1 = 0. (100)

The last equation becomes

µ1 = F′′(u0)u1 = 4u1, (101)

which we need to match to M1 in the following. As M0 = 0 we obtain
for the first equation of the inner correction problemInner problem

∂ρ(m(U0)∂ρ M1) = 0, (102)

such that m(U0)∂ρ M1 is constant in ρ. Comparison with (84) then
reveals that (102) corresponds to the normal flux term Jn,0, which has
to match with j0 and consequently is zero. Thus M1 does not depend
on ρ.

Applying curvilinear coordinates the equation for M1 reads

M1 = F′′(U0)U1 −
(

t∂s
(
− γ0γ′0t∂ρU0 + γ2

0n∂ρU0
)
+ n∂ρ

(
γ0γ′0n∂sU0 + γ2

0t∂sU0
)

+ n∂ρ

(
−
(
γ1γ′0 + γ0γ′1

)
t∂ρU0 − γ0γ′0t∂ρU1 + 2γ0γ1n∂ρU0 + γ2

0n∂ρU1
))

.

(103)
Exploiting that γ0, n and t do not depend on ρ, applying the two-
dimensional Frenet-Serret formulae (59), i.e.

∂st = −κn, ∂sn = κt,

and using the ρ-independence of θ0 (see (77)) in order to calculate
∂sγ0, equation (103) becomes

M1 = F′′(U0)U1 − κ
(
γ′′0 + γ0

)
γ0∂ρU0 + κγ′20 ∂ρU0 + 2κγ′20 ρ∂ρρU0 − γ2

0∂ρρU1.
(104)

Note that we also exploited the particular representation (99) of θ1.
From (104) we then obtain the ordinary differential equation

γ2
0∂ρρU1 − 2(3U2

0 − 1)U1 = −κc1γ0∂ρU0 + κc2 γ0∂ρU0

+ 2κc2 γ0ρ∂ρρU0 −M1,
(105)

where we substituted c1 := γ′′0 +γ0 and c2 := γ′20 /γ0. Then the general
solution of (105) is given by

U1 = C1 sech2
(

ρ

γ0

)
+ C2 sech2

(
ρ

γ0

)(
3ρ

8γ0
+

1
4

sinh
(

2ρ

γ0

)
+

1
32

sinh
(

4ρ

γ0

))
+

1
8
(2c1κ −M1) +

1
48

(2c1κ − 3M1)

(
2 cosh

(
2ρ

γ2

)
− 5 sech2

(
ρ

γ0

))
− 1

2
c2κ

(
ρ

γ0

)2
sech2

(
ρ

γ0

)
,

(106)
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and including the interface condition U1(0) = 0 and boundedness as
ρ→ ∞ to match with the outer solution, the two constants are given
by

C1 = − 1
16

(M1 + 2c1κ), C2 =
1
3
(3M1 − 2c1κ). (107)

Finally for the inner layer about χ, according to U0 ≡ 1, we obtain
F′′(U0) = 4 and ∂ρU0 = 0. Recalling (104), we then obtain the ordinary
differential equation

M1 = 4U1 − γ2
0∂zzU1, (108)

with initial conditions

U1(0) = U′1(0) = 0. (109)

The general solution of (108) is given by

U1 = A exp(2z) + B exp(−2z) +
M1

4
(110)

and substituting the initial conditions (109) we arrive at

U1 =
M1

4

(
1− cosh

(
2z
γ0

))
. (111)

Exponential matching

We will now match the two interior layers. We first observe that on Motivation for
exponential
matching

the one hand, from the definition of ω(s, τ) in the paragraph before
equation (85), we have that U(s, ω, τ) = 1 and U′(s, ω, τ) = 0. On the
other hand, for ε→ 0, we also have that U → U0 = − tanh (ρ/γ0) < 1
which suggests to assume ω(s, τ) → ∞ for ε → 0. Matching of the
inner expansions therefore involves exponential terms with large neg-
ative arguments ρ, which we deal with in the spirit of Langer [63]. The
corresponding method entails to explicitly match the exponentially
growing and decaying terms in the expansion. Note that this method
was also considered in Lee et al. [64] and has been generalized to par-
tial differential equations of higher (fourth and sixth) order in [62]. The
solution centered at the interface is expanded at ρ→ −∞ and the re-
sult written and re-expanded in terms of z = ρ + ω(s, τ). The solution
for the layer around the free boundary ξ is directly expanded in terms
of z→ ∞ and then the terms are matched between the two expansions.
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Expanding U0 and U1 for ρ→ −∞ and substituting ρ = z−ω gives

U0 = 1− 2e−
2

γ0
ωe

2
γ0

z︸ ︷︷ ︸
A

+O(e4z),

U1 =
1

24
(2c1κ − 3M1)e

2
γ0

ωe−
2

γ0
z︸ ︷︷ ︸

B

+
1
2
(c1κ −M1)︸ ︷︷ ︸

C

+

[(
7M1

4
− 11c1κ

6

)
+

(
3M1

2
− c1κ

)
z−ω

γ0
− 2c2κ

(
z−ω

γ0

)2
]

e−
2

γ0
ωe

2
γ0

z

︸ ︷︷ ︸
D

+ O(e4z).
(112)

The inner expansion about the free boundary can be rewritten as

U = 1 +
εM1

4︸ ︷︷ ︸
E

− εM1

8
e

2
γ0

z︸ ︷︷ ︸
F

− εM1

8
e−

2
γ0

z︸ ︷︷ ︸
G

+O(ε2). (113)

Comparing the terms in (112) and (113) of the same order of ε, we first
observe that the constant terms at O(1) are already matched. Matching
εC and E yields

M1

4
=

1
2
(c1κ −M1), (114)

where c1 = γ′′0 + γ0 > 0, thus

M1 =
2
3
(γ′′0 + γ0)κ. (115)

Applying (115) in B reveals B = 0. Matching term A and F we arrive
at

2e−
2

γ0
ω
=

ε

12
(γ′′0 + γ0)κ, (116)

which we solve for ω giving

ω =
γ0

2
log
(

24
ε(γ′′0 + γ0)

)
. (117)

This asymptotic analysis shows that without the contact line χ, i.e. if
we were to consider only one inner layer about the interface and would
match to the outer solution of the "+" phase via U′ = 0 for ρ→ −∞,
we would expect an outer solution (of the "+" phase) which tends to a
value of 1 plus a positive O(ε) term, i.e. u = 1+ cε(γ′′0 + γ0)κ +O(ε2),
where c > 0 . This can be seen by matching (101) to (115). This solution
intersects u = 1 at a distance ω = O(log(1/ε)) from the interface,
which is large but tends to zero in the outer variable. The assumption
|u| ≤ 1 thus implies that (86) has to be satisfied in the inner variable
but since ω depends, though only logarithmically, on ε, this involves
exponentially re-expanding the inner solution.

Note that at this stage, it is obvious that the matching is not yet
complete to O(ε), as the terms in (112) and (113), or to be more precise



3.3 sharp interface limits 53

εD and G, are non-zero and lack counterparts in the other expansion.
This can be resolved by considering the next higher order solutions U2

and Ū2, which is similarly technical and does not influence the further
asymptotic analysis of this work.

O(ε2) correction

Since m′(u0) = 0 we obtain for the outer correction problem Outer problem

n · j2 = 0, (118)

and again the first two parts of (53) are automatically satisfied. The
last part requires

µ2 =
1
2

F′′′(u0)u2
1 + F′′(u0)u2, (119)

where F′′′(u0) = −12 and F′′(u0) = 4.
Considering the inner correction problem and recalling that M0, M1 Inner problem

are independent of ρ we obtain for the first part of (53)

∂ρ(µ(U0)∂ρ M2) = 0, (120)

thus m(U0)∂ρ M2 is constant in ρ and since we can identify this expres-
sion via (84) as Jn,1 which has to match with n · j1 we find that

Jn,1 = m(U0)∂ρ M2 = 0. (121)

Therefore, M2 is independent of ρ.

O(ε3) correction

Consider only the inner correction problem at this point. Since we Inner problem

have m′(U0) = m′′(U0) = 0 we obtain from (84) that

Jn,2 = m(U0)∂ρ M3. (122)

For ρ → −∞ the left hand side has to match with Jn,2 and the right
hand side with m(1)M3, but since Jn,2 = 0 we immediately obtain that
M3 is constant in ρ and

lim
ρ→−∞

Jn,2 = lim
ρ→−∞

m(U0)∂ρ M3 = 0 (123)

Moreover, Jn,2 also matches with n · j2 = 0 for ρ→ ∞. Considering the
last part of the correction problem for (53) and exploiting that M0, M1

and M2 are independent of ρ we find

−vn∂ρU0 = ∂ρm(U0)∂ρ M3 + ∂sm(U0)∂s M1

= ∂ρm(U0)∂ρ M3 +
2
3

m(U0)∂ss(c1κ).
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An integration over (−∞, ∞) then yields

vn =

(
2
3

)2

∂ss(c1κ). (124)

Finally, we obtain the sharp interface problem which correctly de-Identifying the sharp
interface model scribes the anisotropic evolution due to surface diffusion

µ1 =
2
3
(γ0 + γ′′0 )κ,

vn =

(
2
3

)2

∂ss((γ0 + γ′′0 )κ),
(125)

on χ0.

3.4 sharp interface dynamics on solid boundaries

We now focus our studies on the behavior of equation (53) in a localLiterature on
boundary conditions

at triple junctions
domain around the contact point (x0, 0) with boundary condition (49b).
The more general topic of boundary conditions at triple junctions has
already been studied by [11, 36] for the Allen-Cahn equation and in
[88] for an Allen-Cahn/Cahn-Hilliard system where in both cases the
surface energies are assumed to be isotropic which leads to Young’s
law in the sharp interface limit. Another work by Owen et al. [90]
considers the boundary conditions for an Allen-Cahn gradient flow
on a solid substrate where the corresponding geometry turns out to
be suitable for our problem.

Motivated by [90] we study the behavior of u in a box around the
contact point (x0, 0). Introducing a boundary layer and an interior layer
which imply corresponding matching conditions, we will show that
the leading order system of (53) with boundary condition (49b) leads to
a contact angle boundary condition, which is referred to as the Young-
Herring condition in the literature [8, 78]. The subsequent analysis is
given for the left contact point but carries over correspondingly to the
right contact point.

Figure 9: A sketch of the local domain.
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3.4.1 Boundary layer near Γw

We first introduce the inner variable near Γw via Cartesian
coordinates,
stretched in one
direction

η =
y
ε

, (126)

see Fig. 9, and correspondingly Ub, Mb, γb and θb. We expand Ub(x, η)

and Mb into
Ub = Ub

0 + εUb
1 + ε2Ub

2 ...,

Mb = Mb
0 + εMb

1 + ε2Mb
2....

(127)

Moreover we find for γb the expansion

γb = γ(θb
0) +εγ′(θb

0)θ
b
1 + ...

=: γb
0 + εγb

1 + ....
(128)

where θb
0 is the leading order of the inner expansion for Inner expansions for

θb

θb = atan2
(

∂ηUb, ε∂xUb
)

.

Realizing that for ε sufficiently small we may assume that∣∣∣∣∣ ∂ηUb

ε∂xUb

∣∣∣∣∣ > 1

the inverse tangent function can be represented by

arctan

(
∂ηUb

ε∂xUb

)
= sgn

(
∂xUb

∂ηUb

)
π

2
− arctan

(
ε∂xUb

∂ηUb

)
and applying a Taylor-expansion to this representation reveals

arctan

(
∂ηUb

ε∂xUb

)
= sgn

(
∂xUb

∂ηUb

)
π

2
− ε

∂xUb

∂ηUb + ...

such that

θb
0 =


sgn

(
∂ηUb

0

) π

2
for ∂xUb

0 ≥ 0,

− sgn
(

∂ηUb
0

) π

2
for ∂xUb

0 < 0,

0 for ∂xUb
0 = 0 and ∂ηUb

0 = 0.

(129)

Since, without loss of generality, we may assume that in the inner
region the case ∂xUb

0 = 0 and ∂ηUb
0 = 0 does not occur and since

γ(π
2 ) = γ(−π

2 ), we conclude that γb
0 is constant, i.e.

γb
0 = γ(θb

0) = γ(±π

2
).
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The leading order problem of (53) then reads

0 = ∂η

(
m(Ub

0)∂η Mb
0

)
, (130a)

Mb
0 = F′(Ub

0)− ∂η

(
(γb

0)
2∂ηUb

0

)
, (130b)

with boundary conditions

(γb
0)

2∂ηUb
0 =

f ′w(Ub
0)

λm
, m(Ub

0)∂η Mb
0 = 0, (130c)

at η = 0. Considering (130a) we first observe that

a1(τ, x) = m(Ub
0)∂η Mb

0,

where a1(τ, x) is a constant of integration and including the no-flux
boundary condition at η = 0 it follows that a1(τ, x) must be zero.
This also implies that either m(Ub

0) = 0 or ∂η Mb
0 = 0. Considering

m(Ub
0) 6= 0, which corresponds to the region about the interface, we

obtain that Mb
0 is constant in η. Matching to M0 = 0 away from the

substrate, i.e. for η → ∞, we conclude that Mb
0 must be zero as well.

On the other hand, the region where Ub
0 = ±1 corresponds to the pure

phases where we may assume that the chemical potential is constant
and similar arguments as before lead to Mb

0 = 0. Consequently we
obtain for (130b)

0 = F′(Ub
0)− ∂η

(
(γb

0)
2∂ηUb

0

)
. (131)

Multiplying by ∂ηUb
0 and integrating over η then yields∫

F′(Ub
0)∂ηUb

0 dη =
∫

∂η

(
(γb

0)
2∂ηUb

0

)
∂ηUb

0 dη (132)

which, since γb
0 is constant, leads to

F(Ub
0) =

1
2
(γb

0)
2
(

∂ηUb
0

)2
+ a2(τ, x). (133)

As Ub
0 has to match to u0 ≡ −1 for x → −∞, a2 must be zero as well,

and consequently we have

F(Ub
0) =

1
2
(γb

0)
2
(

∂ηUb
0

)2
. (134)

3.4.2 Contact line region

Next we introduce an interior layer centered at the contact point (x0, 0).
We choose inner coordinates which are stretched in both directions,
i.e.Cartesian

coordinates,
stretched in both

directions

ξ =
x− x0

ε
, η =

y
ε

, (135)
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and also the corresponding dependent variables and their expansions

Uc = Uc
0 + εUc

1 + ε2Uc
2...,

Mc = Mc
0 + εMc

1 + ε2Mc
2....

(136)

Similar as before we have for γc the expansion

γc = γ(θc
0) +εγ′(θc

0)θ
c
1 + ...

=: γc
0 + εγc

1 + ...
(137)

where now
θc

0 = atan2
(
∂ηUc

0, ∂ξUc
0
)

. (138)

The leading order problem of (53) then reads (with ∇′ ≡ (∂ξ , ∂η))

0 = ∇′
(
m(Uc

0)∇′Mc
0
)

, (139a)

Mc
0 = F′(Uc

0)−∇′ ·
(

γc
0γc

0
′
(
−∂ηUc

0
∂ξUc

0

)
+ (γc

0)
2∇′Uc

0

)
. (139b)

and we have the leading order boundary conditions

γc
0γc

0
′∂ξUc

0 + (γc
0)

2∂ηUc
0 =

f ′w(Uc
0)

λm
, m(Uc

0)∂η Mc
0 = 0, (139c)

at η = 0. Note that since no O(1) contribution has occurred in all the
previous sections and computation in the expansion for the chemical
potential, neither in the outer solution nor in either of the types of inner
solutions, it is reasonable to assume that Mc

0 ≡ 0. This assumption was
also made in [88]. Consider now a box R of size R1 in the ξ-direction
and R2 in the η direction (see Fig. 9). Multiplying (139b) by ∂ξUc

0 and
integrating over R then leads to∫∫

R
∂ξUc

0F′(Uc
0) =

∫∫
R

∂ξUc
0

[
∂ξ

(
−γc

0γc
0
′∂ηUc

0 + (γc
0)

2∂ξUc
0
)

+ ∂η

(
γc

0γc
0
′∂ξUc

0 + (γc
0)

2∂ηUc
0
) ]

,
(140)

which can be rewritten as

(LHS) :=
∫∫

R
∂ξ

[
F(Uc

0) +
1
2
(γc

0)
2 (∂ηUc

0
)2 − 1

2
(γc

0)
2 (∂ξUc

0
)2

+ γc
0γc

0
′∂ξUc

0∂ηUc
0

]
=
∫∫

R
∂η

[
∂ξUc

0

(
γc

0γc
0
′∂ξUc

0 + (γc
0)

2∂ηUc
0

) ]
=: (RHS)

(141)
where we exploited that

1
2

∂ξ(γ
c
0)

2 = γc
0γc

0
′ ∂ξ∂ηUc

0∂ξUc
0 − ∂ξξUc

0∂ηUc
0(

∂ξUc
0

)2
+
(
∂ηUc

0

)2 .

We first consider the left hand side (LHS) of (141), integrate in ξ and
apply that ∂ξUc

0 → 0 as |ξ| → ∞ for finite energy solutions, giving

lim
R1,R2→∞

(LHS) = lim
R1→∞

∫ ∞

0

[
F(Uc

0) +
1
2
(γc

0)
2 (∂ηUc

0
)2
] R1

2

− R1
2

dη. (142)
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In order to match Uc
0 with Ub

0 for large ξ we have the matching
conditions

lim
ξ→+∞

Uc
0 = lim

x→x+c
Ub

0(x, η) =: Ub+
0 (xc, η),

lim
ξ→−∞

Uc
0 = lim

x→x−c
Ub

0(x, η) =: Ub−
0 (xc, η),

(143)

where Ub+
0 denotes the solution which corresponds to the side of the

"+" phase and Ub−
0 the solution which corresponds to the side of the

"−" phase. Moreover, recalling (134) and (129) we obtain

∂ηUb+
0 =

1
|γb

0|

√
2F(Ub+

0 ), and ∂ηUb−
0 = − 1

|γb
0|

√
2F(Ub−

0 ).

(144)
We then obtain for (142)

lim
R1,R2→∞

(LHS) =
∫ ∞

0
2F(Ub+

0 (xc, η)) dη −
∫ ∞

0
2F(Ub−

0 (xc, η)) dη

=
√

2|γb
0|
(∫ 1

0

√
F(t) dt +

∫ −1

0

√
F(t) dt

)
= |γb

0|
(

2
3
− 2

3

)
= 0

(145)
where we also applied the specific form of F(u) = 1

2 (1− u2)2.

Considering the right hand side (RHS) of (141) we first obtain after
integrating in η and including the boundary condition (139c)

(RHS) =
[ ∫ R1/2

−R1/2
∂ξUc

0

(
γc

0γc
0
′∂ξUc

0 + (γc
0)

2∂ηUc
0

)
dξ

]R2

0

=
∫ R1/2

−R1/2
∂ξUc

0

(
γc

0γc
0
′∂ξUc

0 + (γc
0)

2∂ηUc
0

)
dξ

∣∣∣∣
R2︸ ︷︷ ︸

I

−
∫ R1/2

−R1/2
∂ξUc

0
f ′w(Uc

0)

λm
dξ︸ ︷︷ ︸

II

where (II) in the limit R1, R2 → ∞ is

lim
R1,R2→∞

(II) =
1

λm

∫ 1

−1
f ′w(t) dt =

1
λm

(γFS − γVS). (146)

Analysing (I) we continue by transforming into a local coordinateCurvilinear
coordinates at R2 system that is aligned with the tangent and normal direction to the

film/vapor interface at (x0, 0) (see Fig. 10), that is

ρ = −ξ sin θc + η cos θc

ς = ξ cos θc + η sin θc
(147)

and consequently

∂ξ = − sin θc∂ρ + cos θc∂ς

∂η = cos θc∂ρ + sin θc∂ς.
(148)
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Figure 10: A sketch of the coordinate transformation.

Here θc ∈ (0, π) denotes the contact angle on the right hand side
of the thin solid film which has negative sign due to the geometric
orientation (see Fig. 10). The transformed integral then reads

(I) =
∫ − R1

2 sin θc+R2 cos θc

R1
2 sin θc+R2 cos θc

S dρ (149)

where

S =γc
0γc

0
′
(
− sin θc

(
∂ρUc

0
)2

+ 2 cos θc∂ρUc
0∂ςUc

0 −
cos2 θc

sin θc
∂ς (Uc

0)
2
)

+ (γc
0)

2
(

cos θc∂ρ (Uc
0)

2 +

(
sin θc −

cos2 θc

sin θc

)
∂ρUc

0∂ςUc
0 − cos θc∂ς (Uc

0)
2
)

.

(150)
Realizing that for ς → ∞ the leading order Uc

0 hat to mach with the
leading order (93) from the previous section, which is constant in ς,
reveals limς→∞ ∂ςUc

0 = 0. Taking the limit R1 → ∞, R2 → ∞ in the
following way:

lim
R1,R2→∞

(I) = lim
a→∞

lim
R1→∞
R2→∞

|R1 sin θc + R2 cos θc| < a

∫ − R1
2 sin θc+R2 cos θc

R1
2 sin θc+R2 cos θc

S dρ, (151)

which ensures that we don’t match "into the substrate", leads to

lim
R1,R2→∞

(I) = −
(
−γc

0γc
0
′ sin θc + (γc

0)
2 cos θc

) ∫ ∞

−∞

(
∂ρUc

0
)2 dρ (152)

where we applied that

lim
ς→∞

γc
0 = γ(atan2 (cos θc,− sin θc)) = γ0,

lim
ς→∞

γc′
0 = γ′(atan2 (cos θc,− sin θc)) = γ′0,

(153)

and consequently limς→∞ γc
0 and limς→∞ γc′

0 are constant in ς and ρ.
Moreover, note that θc

0 and θc are related by

θc
0 =

θc +
π
2 for θc ≤ π

2

θc − 3π
2 for θc >

π
2 .

(154)
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Recalling that S corresponds to the integrand of (I) in (RHS) evaluated
at η = R2, we obtain that for large R2 due to matching to (134)

∂ρUc
0 = − 1

γ0

√
2F(Uc

0), (155)

which reveals that∫ ∞

−∞

(
∂ρUc

0
)2 dρ = −

√
2

γ2
0

∫ ∞

−∞

√
F(Uc

0)∂ρUc
0 dρ

= −
√

2
γ0

∫ −1

1

√
F(t) dt =

1
γ0

4
3

.

(156)

By merging the results for (LHS) and (RHS) in (141) we obtainYoung-Herring
condition in the
anisotropic case

0 =
4
3
(
−γ0

′(θc) sin θc + γ0(θc) cos θc
)
− 1

λm
(γVS − γFS) (157)

with θc ∈ (0, π), which is, after applying the correct mixing energy
λm, the Young-Herring contact angle boundary condition as derived
in Chapter 2.2.1. Note that since we may derive the contact angle con-
dition on the right hand analogously, the same condition also holds at
the right contact point.

If the surface energy is isotropic, i.e. γ = 1, then (157) reduces toYoung’s equation in
the isotropic case the Young’s equation (48), if we notice that the film/vapor interface

energy σFV in this case is given by the integral of the square of the
gradient of the inner solution across the interface layer, that is, by λm

times the integral in (156), see for example [80]; thus σFV = 4λm/3.
Moreover, in the case of weak anisotropy, γ + γ′′ > 0, equation (157)
has a unique solution θc, since then, the right hand side is a strictly
monotonically decreasing function of θc ∈ (0, π) as can be seen by
taking the derivative with respect to θc.

3.4.3 Balance of flux condition

For the sake of completeness we also need a balance of flux condition
which matches the flux of the boundary layer near Γw to the flux in
the outer region. To this end let Jb be the flux in the boundary layer
near Γw and let Jc be the flux in the contact line region. Similar as
before, consider now a box R of size R1 in the ξ-direction and R2 in
the η direction (see Fig. 9). The size will later be taken to infinity while
still ensuring that it remains within the inner region, that is, εR1 � 1,
εR2 � 1. By the divergence theorem and the no-flux condition at the
wall we have that∫ R2

0

[
Jc · eξ

]R1/2

−R1/2
dη +

∫ R1/2

−R1/2
Jc · eη

∣∣∣∣
R2

dξ = 0. (158)
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On the one hand, the terms in the expansion of Jc · eξ |∞ have to match
with Jb · ex away from the contact point (xc, 0), i.e.

Jb · ex = m(Ub)∂x Mb. (159)

Since we may assume that for large R1 we have Ub
0 ≡ ±1, which

implies m(Ub
0) = 0 as well as m′(Ub

0) = 0, and recalling that Mb
0 = 0

we obtain that the expansions for Jb are zero up to at least O(ε3). On
the other hand, the terms in Jc · eη |∞ have to match with those in
J · ey|0. According to (65) we know that J · ey in curvilinear coordinates
reads

J · ey = m(U)

[
n2ε−1∂ρ M(U)− n1

1 + ερκ
∂s M(U)

]
, (160)

and since M0 ≡ 0 and M1, M2 are independent of ρ, the dominant
terms of (160) are of O(ε2)

J · ey = ε2m(U0)
(
n2∂ρ M3 − n1∂s M1

)
+ O(ε3), (161)

In total, therefore, the leading order condition that follows from (158)
is

0 =
∫ ∞

−∞
m(U0)

(
n2∂ρ M3 − n1∂s M1

) ∣∣∣∣
R2

dρ

= C∂s
[
(γ0 + γ′′0 )κ

] ∫ ∞

−∞
m(U0)dρ ,

where C is a constant and we have used (123), (115) and also assumed
to pass over in a similar way as in (149) in order to stay inside the box
all the time. By virtue of (93), the integral is finite, thus

∂s
[
(γ0 + γ′′0 )κ

]
= 0 (162)

at the contact line. Notice that via (115), this condition is equivalent
to requiring the leading order tangential flux (from surface diffusion)
along the interface Γ to be zero at the contact line.

3.5 discussion and outlook

In the present chapter we have completed the two-dimensional phase- Recap of the main
resultfield model as generally derived in Chapter 2.1 with the intend to

model the dewetting of a solid film from a solid substrate. The main
goal was to establish the connection between the phase-field model
and the corresponding sharp-interface model in the limit as ε → 0,
for a mobility where surface diffusion is recovered as the dominant
driving mechanism. This requires an asymptotic analysis that incor-
porates multiple boundary and interfacial layers that occur in the
sharp-interface limit as well as techniques of exponential matching,
both in the isotropic and the anisotropic case.
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We established that by using exponential asymptotic matching theExponential
matching away from

the solid boundary
bi-quadratic mobility combined with the polynomial homogeneous
free energy density yields the correct limiting model as ε→ 0. We note
that this is in contrast to the frequently applied quadratic mobility,
which leads to sharp-interface models, where a contribution from a
non-linear, porous medium like bulk diffusion enters the driving force
at the same order of magnitude as surface diffusion, as it also has
previously been shown in [64].

In addition, since the solid dewetting problem considered hereAdjusted matching
at the solid boundary includes boundary conditions at a solid substrate, another appropriate

matching procedure has to be provided in order to derive the sharp
interface limits at this solid boundary. We introduced another inner
layer about the boundary Γw and presented an asymptotic analysis
which refers to a particular geometry allowing to match the inner and
outer layers without matching "into the substrate", which is not well-
defined. The result is that the sharp interface limits of the boundary
conditions at the substrate recover the Young-Herring equation for the
contact angle, and Young’s equation in the isotropic case.

We also note that from liquid dewetting studies it is known that the,Outlook

typically degenerate, mobility of the governing fourth order parabolic
thin film equation does not only control the dewetting rates but also
decides the morphology and scale of the contact line instability that
arises eventually [3]. In principle, similar scenarios have to be explored
here. Moreover, in combination with the anisotropic nature of the solid
film, such as for example Si, the evolution of the contact line instability
becomes particularly interesting and, according to experimental results
[27], depends on the crystalline orientation relative to the contact line.
For comparisons to realistic experimental results of dewetting solid
films, such as crystalline Si films used for nanopatterning surfaces, the
extension of the present phase field model to three space dimensions
is desirable.



4
E X I S T E N C E O F S O L U T I O N S T O T H E
A N I S O T R O P I C P H A S E F I E L D M O D E L

4.1 existence results for related phase field models

Probably one of the most well-known examples for phase separation The Cahn-Hilliard
equation with
degenerate mobility

is the classical Cahn- Hilliard equation in the form

∂u
∂t

= −div j, (163a)

j = −m(u)∇µ, (163b)

µ = F′(u)− γ∆u, (163c)

which originally was introduced by Cahn and Hilliard to study phase
separation of binary fluids [16, 17]. Considering appropriate choices
for m(u) and F(u) equation (163) can be identified as the isotropic
case of the phase field equation (49), as studied in the previous chapter.
At least, in order to model motion by surface diffusion, we need to
assume that the diffusional mobility m(u) is a non-negative function
which vanishes at the pure phases, i.e. m(u) = 0 for u = ±1, as moti-
vated in Section 3.1. On the one hand, this constitutes a mathematical
difficulty since the a priori estimates, such as are commonly used in
existence results, loose their information at points where the mobil-
ity degenerates. On the other hand, a degenerate mobility may be
beneficial in order to show that solutions which initially take values
in the interval [−1, 1] will do so for all positive time. Note that this
is is not generally true for fourth order parabolic equations without
degeneracy since there is no comparison principle available.

Considering present existence results for Cahn-Hilliard with degen- Existence results for
the degenerate
Cahn-Hilliard
equation

erate mobility (163), the techniques introduced in the papers by Elliott
and Garcke [32] and by Bernis and Friedman [4] have proven to be
extremely useful. In both papers the general procedure is to replace
(163) by a family of regularized problems with smooth solutions uδ,
establish particular a priori bounds and show that the approximate
solutions uδ converge to solutions of the original problem as δ→ 0. In
[32], for example, the degenerate mobility m(u) is approximated by a The existence proof

by Elliott and Garckestrictly positive mobility mδ(u) which satisfies mδ → m, as δ→ 0. The
resulting parabolic problem is non-degenerate and provides global
and smooth solutions uδ. With the help of appropriate a priori es-
timates it is then shown that the integral of uδ in the region where
|u| > 1 converges to zero as mδ approaches m, which yields |u| ≤ 1
in the limit. In fact, it can be shown that solutions to (163) with suf-
ficiently strong degenerated mobility preserve the strict inequalities
|u| < 1 for all times t ≥ 0.

63



64 existence of solutions

In particular, Elliott and Garcke [32] exploit the dissipation of two
particular functionals by solutions to (163) which provides the required
regularity estimates. The first is the free energy functional

E(u) :=
∫

Ω
F(u) +

γ

2
|∇u|2 dx. (164)

and the second the functional defined by

U (u) :=
∫

Ω
Φ(u), where Φ′′(u) =

1√
m(u)

, (165)

also referred to as entropy functional. In particular, the functional U
has become a key tool in order to provide the bound |u| ≤ 1.

We note that there is an alternative approach to existence, proposedVariational
alternative by Lisini,
Matthes and Savaré

by Lisini, Matthes and Savaré [71], which exploits the variational struc-
ture of (163). A major advantage of this new approach is that essential
properties of the solution, such as the bound |u| ≤ 1, are automatically
provided by the construction from so-called minimizing movements in
the energy landscape, where the terminology minimizing movement is
due to De Giorgi [38]. Observing that (163) is in the shape of a gradient
flow for E with respect to a Wasserstein-like transport metric, weak
solutions may be obtained as curves of maximal slope. Unfortunately,
the main assumption in [71] is that the mobility is a concave function
of u which is not satisfied by the present bi-quadratic choice (51).

The Cahn-Hilliard equation, even with degenerate mobility, hasThe anisotropic
Cahn-Hilliard

equation
been studied intensively in the past [2, 4, 32, 71, 91], but little mathe-
matical analysis has been done for the case where the surface energy
is anisotropic, i.e.

∂u
∂t

= −div j, (166a)

j = −m(u)∇µ, (166b)

µ = F′(u)− ε2 div (A(∇u)∇u) , (166c)

where

A(n) =

[
γ(θn)2 −γ′(θn)γ(θn)

γ′(θn)γ(θn) γ(θn)2

]
(167)

and θn denotes the angle between the x-axis and the vector n. The
function γ(θ) is given by

γ(θ) = 1 + G cos(nθ), (168)

where G is a positive constant and n an integer corresponding to the
number of orientations in the symmetry. An existence result for aAn anisotropic phase

field model
considered by

Burman and Rappaz

different model which also includes (167) is provided by Burman and
Rappaz [12]. They consider an anisotropic phase field model for the
isothermal solidification of a binary alloy due to Warren-Boettinger
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which in the special case of only one concentration can be identified
as an anisotropic version of the well-known Allen-Cahn equation

∂u
∂t

= F′(u)− ε2 div (A(∇u)∇u) . (169)

Burman and Rappaz [12] show that the behavior of the anisotropic
second-order operator is strongly depending on the size of G. In
particular, for small values of G the anisotropic free energy functional

E(u) :=
∫

Ω
F(u) + ε2 γ(θ∇u)

2

2
|∇u|2 dx (170)

is convex with respect to ∇u which implies monotonicity and hemi-
continuity of the Eulerian operator. Exploiting the literature, see for
instance [100], the existence proof is then essentially based on the
theory for monotone operators. Note that the physical interpretation
of small values of G is that no corners or sharp edges develop on the
surface.

Motivated by [12], we will also exploit the properties of the anisotropy Overview of this
chapteroperator (167), but since our equation is of fourth order, we addition-

ally need some higher order bounds on div(A(∇u)∇u). All necessary
properties are collected in Section 4.3.1. In 4.3.3 we prove the existence
of approximate solutions to the regularized Cahn-Hilliard equation,
i.e. with a regularized mobility which is bounded away from zero.
This result is used in Section 4.3.4 to establish the existence of approx-
imate solutions to the degenerate problem, where we derive energy
estimates for the approximate solutions, which enable us to pass to
the limit in the approximate equation.

Before presenting the existence result, we give a brief overview
of selected concepts from the theory of partial differential equations
which will be particularly important for the following theory.

4.2 preliminaries : concepts from the theory of partial

differential equations

There is much standard literature which may be proposed as introduc- Recommended
literaturetion to the theory of partial differential equations at this point. In view

of the basic concepts, such as weak derivatives, partial integration,
standard Sobolev spaces or completeness which are assumed as basic
knowledge for the following theory, we refer to the books by Evans
[34], Robinson [97] and Zeidler [119]. Furthermore, since we will apply
some concepts from the calculus of variations as well as the theory
of monotone and weakly continuous mappings, we recommend the
books by Dacorogna [21] and Roubícek [98]. The aim of this section
is to introduce selected definitions, theorems and inequalities which
will be very important or frequently used in the subsequent existence
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proof. Corresponding proves or the complete theory can be found in
the literature mentioned above.

In the following, let H be a real Banach space with norm ‖ · ‖H and
let | · | be the standard (Euclidean) norm on RN . If H is a Hilbert space,
we denote the corresponding scalar product by (·, ·)H and will use the
short form (·, ·) if equations get to long otherwise.

4.2.1 Dual spaces and compact embeddings

The Dual space of H is the set of all linear functionals acting on H and
it is denoted by H′. A functional f ∈ H′ maps from H to R. Its norm
is defined as

‖ f ‖H′ := sup
x∈H,x 6=0

| f (x)|
‖x‖H

.

Note that the notation 〈 f , x〉 or 〈 f , x〉H′,H, the so-called dual pairing,
is frequently applied instead of f (x).

Considering the particular example of the Lebesgue spaces Lp(Ω),Dual spaces of
Lebesgue spaces where Ω is an bounded open and connected subset of RN , with

p ∈ (1, ∞), the corresponding dual spaces are (Lp(Ω))′ ' Lq(Ω)

(where ' denotes an isometry, so that the spaces can be identified
with each other). The indices are conjugate, i.e. 1/p + 1/q = 1. In the
particular case p = q = 2 the dual and the underlying Hilbert space
L2(Ω) are the same. The Riesz representation theorem generalizes this
result.

Lemma 4.2.1 (Riesz representation theorem) Let H be a Hilbert space
with dual H′. Then H′ can be identified with H in the following sense: For
any u′ ∈ H′ there exists a unique element u ∈ H such that

u′(v) = (u, v)H ∀v ∈ H

and
‖u′‖H′ = ‖u‖H.

A sequence (xn)n ⊂ H in a Hilbert space H converges weakly toWeak convergence

x ∈ H if it converges in the scalar product with any test function
y ∈ H that is bounded in H, i.e.

(xn, y)H → (x, y)H

and the notation
xn ⇀ x

is used.
It will be necessary to relate certain spaces to each other in orderEmbeddings

to establish weak convergence out of boundedness. This is stated in a



4.2 preliminaries from partial differential equations 67

lemma which works for three Banach spaces X, Y and Z, where X is
compactly embedded in Y and Y is continuously embedded in Z. Therefore,
in order to formulate the actual statement we need to clarify what the
particular embeddings mean.

A Banach space X is continuously embedded in a Banach space Y and
we write

X ↪→ Y,

if X ⊂ Y and there exists a constant C ∈ R such that the following
continuity condition is fulfilled

‖u‖Y ≤ C‖u‖X, ∀u ∈ X.

Compact embeddings are now special continuous embeddings. A
Banach space X is compactly embedded in a Banach space Y and we
write

X ↪→↪→ Y,

if the following two conditions are satisfied

i) X is continuously embedded in Y, i.e. X ↪→ Y

ii) for every bounded sequence (un)n ⊂ X there exists an element
u ∈ Y and a converging subsequence (vl)l ⊂ (uk)k such that

vl → u in Y.

The next theorem provides a compact embedding concerning Sobolev
spaces which will prove particularly useful in the following.

Lemma 4.2.2 (Rellich-Kondrachov embedding theorem) Suppose 1 ≤
p < n. Then

W1,p(Ω) ↪→↪→ Lq(Ω)

for each 1 ≤ q < p∗, where p∗ = pn
n−p .

4.2.2 Spaces involving time

Solutions of time-dependent partial differential equations can be
viewed as trajectories in infinite dimensional phase spaces

u : [0, T]→ X, u = u(t),

where X is a Banach space, typically Lp or Hk, where Hk denotes the
Sobolev space Wk,2. This approach motivates to define Banach space Lp spaces involving

timevalued function spaces
Lp(0, T; X)

that are Banach spaces themselves. These contain the functions whose
X-norm is p-integrable

‖u‖Lp(0,T;X) :=
(∫ T

0
‖u‖p

X dt
) 1

p

< ∞.
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For X = Lp(Ω), where Ω ⊂ RN is bounded subset of RN , the spaces
simplify to

Lp(0, T; Lp(Ω)) = Lp([0, T]×Ω).

Another common notation is C([0, T], X), which can be used when the
functions change continuously in time. In particular, this applies to
the next result.

Lemma 4.2.3 Let X and Y be Banach spaces with X ↪→↪→ Y ↪→ X′ and
let

u ∈ L2(0, T; X), ∂t ∈ L2(0, T; X′),

then
u ∈ C([0, T], Y).

The next lemma shows that bounded sequences have convergent
subsequences in certain cases, similarly as the theorem by Bolzano-
Weierstrass which is stated for finite-dimensional spaces.

Lemma 4.2.4 (Reflexive weak compactness) Let (un)n be a bounded se-
quence in the reflexive Banach space X. Then there exists a subsequence
that converges weakly in X.

Reflexive means that X is isometrically isomorph to X′′, the dual ofSome notes on
reflexivity the dual space. Hilbert spaces are always reflexive. Also the Lebesgue

spaces Lp, p ∈ (1, ∞) are reflexive, with dual space Lp, where q is
conjugate to p, i.e. 1/p + 1/q = 1. Although L1 has the dual L∞, these
spaces are not reflexive.

This result shows that once boundedness of a sequence in a Hilbert
space or in one of the Lp spaces is proved, the extraction of a weakly
convergent subsequence is possible.

4.2.3 Some inequalities

There are certain inequalities which are frequently used in existence
theory. The most important ones are repeated here and we refer to the
books by Evans [34] and Zeidler [119] reproducing the proofs of the
inequalities.

Lemma 4.2.5 (Poincaré’s inequality) Let Ω be a bounded open connected
subset ofRN with a Lipschitz boundary. Then there exists a constant C, only
depending on Ω and p, such that for u ∈W1,p(Ω) and 1 ≤ p ≤ ∞ we have

‖u− uΩ‖Lp(Ω) ≤ C‖∇u‖Lp(Ω),

where
uΩ :=

1
|Ω|

∫
Ω

u(x) dx.
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In order to establish useful estimates a lot of technical calculations
have to be carried out, where the following inequalities will come into
use.

Let 1 < p, q < ∞ satisfying 1
p +

1
q = 1 and let a, b ≥ 0. Then Young’s Young’s inequality

inequality states that

ab ≤ ap

p
+

bq

q
.

It can be used to prove Hölder’s inequality Hölder’s inequality∫
Ω
|uv|dx ≤ ‖u‖Lp(Ω)‖v‖Lq(Ω),

which holds for all u ∈ Lp(Ω) and v ∈ Lq(Ω), and actually for
p, q ∈ [1, ∞].

Combining Young’s inequality with Hölder’s inequality and intro- Young’s inequality
with epsilonducing an artificial epsilon, another useful inequality becomes

‖uv‖L1(Ω) ≤ ε‖u‖p
Lp(Ω)

+ C(ε)‖v‖q
Lq(Ω)

,

the so-called Young’s inequality with epsilon, with the positive constant

C(ε) =
(

1
εp

) q
p 1

q .

Now many useful tools from functional analysis are at hand, how-
ever, some more basic theory is necessary. The subsection is finished
with an existence result for ODEs.

Lemma 4.2.6 (Peano) Let D be a open subset of R×KN , N ≥ 1, where
K is either R or C, and assume that f : D → KN is continuous. Then the
initial value problem

u′(t) = f (t, y), u(0) = u0

has a local solution, i.e. there exists an interval I, 0 ∈ I, and at least one
solution u : I → KN satisfying

u′(t) = f (t, u(t)), u(0) = u0,

for all t ∈ I.

4.2.4 Preliminaries from the calculus of variations

In order to deal with the strong non-linearity in the fourth order
operator, we will use some concepts from the calculus of variations.
The main result that we will apply (Theorem 3.23 in [21]) deals with
the weak lower semicontinuity of a functional weak lower

semicontinuity

J(u) :=
∫

Ω
f (x, u(x),∇u(x)) dx,
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meaning that
lim inf

ν→∞
J(uν) ≥ J(u),

for every sequence uν ⇀ u in W1,p.

Regarding the conditions of the theorem, we recall that a function
f : RN → R∪+∞ is said to be convex, ifConvex and

Carathéodory
functions f (tx + (1− t)y) ≤ t f (x) + (1− t) f (y),

for every x, y,∈ RN and every t ∈ [0, 1].

Moreover we will need to verify that f : Ω×Rm ×RM → R, f =

f (x, u, ξ) is a Carathéodory function, which entails that

(i) (u, ξ)→ f (x, u, ξ) is continuous for almost every x ∈ Ω

(ii) x → f (x, u, ξ) is measurable for every (u, ξ) ∈ Rm ×RM,

due to Definition 3.5 and Remark 3.6 in [21].

The result (Theorem 3.23 in [21]) states, roughly speaking, that
the functional I is weakly lower semicontinuous if and only if ξ →
f (x, u, ξ) is convex, and the explicit version reads:

Lemma 4.2.7 Let f : Ω ×Rm ×RM → R ∪ {+∞} be a Carathéodory
function satisfyingCoercivity condition

f (x, u, ξ) ≥ 〈a(x); ξ〉+ b(x) + c|u|p (171)

for almost every x ∈ Ω, for every (u, ξ) ∈ Rm × RM for some a ∈
Lq′(Ω;RM), 1/q + 1/q′ = 1, b ∈ L1(Ω), c ∈ R and where 〈·; ·〉 denotes
the scalar product in RM. Let

I(u, ξ) :=
∫

Ω
f (x, u(x), ξ(x)) dx.

Assume that ξ → f (x, u, ξ) is convex and that

uν → u in Lp(Ω;Rm) and ξν ⇀ ξ in Lq(Ω;RM).

Then
lim inf

ν→∞
J(uν, ξν) ≥ J(u, ξ).

Finally we note that the Gateaux derivative of a functional F : X → Y,Gateaux derivative

where X and Y are Banach spaces, at u ∈ X in the direction Ψ ∈ X is
defined by

dF̂(u, Ψ) := lim
t→0

F̂(u + tΨ)− F̂(u)
t

=
d
dt

F̂(u + tΨ)|t=0

if the limit exists. In the special case that Y = R, the Gateaux derivative
coincides with the definition of the variational derivative.
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4.2.5 Monotone or weakly continuous mappings

A powerful approach to non-linear partial differential equations relies
on the theory of monotone and weakly continuous mappings. Note
that in the following we will write 〈·, ·〉 instead of 〈·, ·〉H′,H for brevity.

An operator A : H → H′ is monotone if Monotone operators

〈A (u)−A (v), u− v〉 ≥ 0,

for all u, v ∈ H.

Observing that the definitions of the particular modes of continuity Different continuity
modesdiffer in the literature, we decided to apply the definitions provided

in the book by Roubícek [98], i.e. we say that an operator A : H → H′

is hemicontinuous if the function

t 7→ 〈A (u + tv), w〉 (172)

is continuous for all u, v, w ∈ H. In other words A is directionally
weakly continuous. In the special case that (172) is only continuous
for v = w, we say that A is radially continuous.

In view of Lemma 2.16 in [98] and corresponding definition of
"demicontinuity" given in [98], we conclude the following lemma.

Lemma 4.2.8 Radially continuous monotone mappings are also hemicon-
tinuous.

Monotone mappings with radial continuity properties are a special
class of pseudomonotone mappings, and in particular provide the op-
portunity to easily identify limits by applying the following common
trick (see for example Lemma 2.13 in [98]).

Lemma 4.2.9 (Minty’s Trick) Let A : H → H′ be radially continuous
and let

〈 f −A (v), u− v〉 ≥, 0

for any v ∈ H. Then
f = A (u).

4.3 existence of solutions to the anisotropic degener-
ate cahn-hilliard equation

The main difficulty in the following existence proof, compared to the Properties of the
anisotropy operatorresult in reference [32], resides in the strongly non-linear fourth-order

operator. Motivated by [12], we will exploit that the impact of the
anisotropy depends on the size of G and that for small values of G the
energy functional (170) stays convex with respect to ∇u. This implies
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monotonicity and hemicontinuity of u 7→ 〈div(A(∇u)∇u),∇·〉, which
will be very useful in situations where we have to identify limits of
approximate problems. Furthermore, since the differential equation
(166) is of fourth order we will additionally need some higher order
bounds on div(A(∇u)∇u). These are in particular necessary in order
to recover the energy estimates (or a priori estimates) as posed in [32]
for the anisotropic case.
In the next section we collect all the crucial properties of the anisotropic
operator. Note that the former may also be found in [12].

4.3.1 Extending the preliminary results of Burman and Rappaz

notation Throughout this and the following sections of this chap-
ter we assume that Ω is an open, bounded domain in R2, with a
Lipschitz boundary ∂Ω. The L2(Ω)-scalar product will be denoted
by (·, ·) and QT = Ω× (0, T) will denote the space-time domain for
some T > 0. For brevity we write H1 instead of H1(Ω) in the indices
of corresponding norms or scalar products. We omit the differential
"dx" at the end of an integral in order to save space.

The results of this section refer to the particular representation (168)
of the anisotropic surface energy and the corresponding matrix rep-
resentation (167) of the anisotropy in the partial differential equation.
We recall that G represents the strength of the anisotropy and n corre-
sponds to symmetry type.

Lemma 4.3.1 IfProperties of the
anisotropic operator

G <
1

n2 − 1
, (173)

then
(i) the functional

Ê(v) :=
∫

Ω

γ(θv)2

2
|v|2

is strictly convex in v, ∀v ∈ [L2(Ω)]2.

(ii) the Gateaux derivative of the potential

Ẽ(u) =
∫

Ω

γ(θ∇u)
2

2
|∇u|2

exists for each u ∈ H1(Ω) and is given by

Ẽ′(u)v =
∫

Ω
A(∇u)∇u · ∇v

(iii) the anisotropic operator satisfies the following upper and lower bounds

(1− G)2|u|2H1 ≤
∫

Ω
A(∇u)|∇u|2 dx ≤ (1 + G)2|u|2H1 .
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Proof. See Section 4 in [12].

Properties (i) and (ii) turn out to be useful in order to prove the
following lemma.

Lemma 4.3.2 The mapping

u ∈ V 7→ 〈A(∇u)∇u,∇· 〉(H1)′,H1 ∈ (H1(Ω))′

is monotone and hemicontinuous.

Proof. From Lemma 4.8 in [100], we know that u ∈ H1(Ω) 7→
〈A(∇u)∇u,∇· 〉 ∈ (H1(Ω))′ is monotone and radially continuous
in the sense of the definition given in Section 4.2.5. Using Lemma 4.2.8
then gives hemicontinuity as well.

Since equation (166) is of fourth order, we additionally need some Higher order bounds
for the anisotropic
part

higher order bounds on div(A(∇u)∇u). This requires the assumption
that G is sufficiently small such that at least (173) holds true. We will
not give a particular bound for G as the determination of a greatest
possible value for G is very technical and not necessary for the scope
of our work. We only need to know that this bound exists. The second
assumption is that u2

xy − uxxuyy has zero mean value on Ω, i.e.∫
Ω

u2
xy − uxxuyy = 0. (174)

This assumption may look artificial at first sight, but realizing that
phase field functions u which are constant on ∂Ω naturally fulfill (174)
according to partial integration, we conclude that assumption (174)
is no considerable restriction. In particular the eigenfunctions of the
Laplace operator on a rectangular domain with Neumann boundary
conditions obviously satisfy (174), which matches the model assump-
tions proposed in Chapter 2.1, i.e. to we consider a rectangular domain
Ω.

The following lemma states the particular bounds on div(A(∇u)∇u),
which will be of essential importance in the existence proof.

Lemma 4.3.3 Let u ∈ H2(Ω) and div(A(∇u)∇u) ∈ L2(Ω). Assume
that u2

xy − uxxuyy has zero mean value, i.e. (174) is satisfied. Then there
exists 0 < G0 ≤ 1/(n2 − 1) such that for all G ≤ G0 there exists a
constant C(n, G) > 0, only depending on n and G, such that

0 ≤
∫

Ω
(div(A(∇u)∇u))2 ≤ C(n, G)

∫
Ω

div(A(∇u)∇u)∆u.
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Proof. Exploiting the particular representation of θ, i.e.Calculating the
partial derivatives of

θ θ(∇u) = atan2
(
uy, ux

)
we have

θx =
uyxux − uyuxx

|∇u|2 , θy =
uyyux − uyuxy

|∇u|2 .

On the one hand, we obtain

∇θ ·
(
−uy

ux

)
=

1
|∇u|2

(
−2uyxuxuy + u2

yuxx + uyyu2
x

)
,

where "·" denotes the standard Euclidean scalar product of two vectors.
Note that we assumed that uxy = uyx, which is admissible, since Ω is
bounded and hence u may be represented through the linear combi-
nation of infinitely differentiable functions, such as the eigenfunctions
of the Laplace operator.
On the other hand we have

|∇θ|2|∇u|2 =
1
|∇u|2

((
uyxux − uyuxx

)2
+
(
uyyux − uyuxy

)2
)

=
1
|∇u|2

(
−2uxyuxuy∆u + u2

xy|∇u|2 + u2
yu2

xx + u2
xu2

yy

)
=

1
|∇u|2

(
−2uyxuxuy + u2

yuxx + uyyu2
x

)
∆u + u2

xy − uxxuyy,

which together reveals the relation

|∇θ|2|∇u|2 =

(
∇θ ·

(
−uy

ux

))
∆u + u2

xy − uxxuyy.

Moreover, denoting the angle between ∇θ and ∇u by α, we have

(∇θ · ∇u) = cos(α) |∇θ||∇u|,(
∇θ ·

(
−uy

ux

))
= cos(

π

2
− α) |∇θ||∇u| = sin(α) |∇θ||∇u|,

(175)

which gives

(|∇θ||∇u|)2 = sin(α)∆u |∇θ||∇u|+ u2
xy − uxxuyy

and consequently

(|∇θ||∇u|)1,2 =
1
2

sin(α)∆u±
√

1
4

sin2(α)(∆u)2 + u2
xy − uxxuyy.

Observing that |∇θ||∇u| is positive and real and x ∈ R2 → |x| is a
surjective mapping we may conclude that only

|∇θ||∇u| = 1
2

sin(α)∆u +

√
1
4

sin2(α)(∆u)2 + u2
xy − uxxuyy (176)
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is a reasonable solution.
Consider now div (A(∇u)∇u) and apply the representation (175)

div (A(∇u)∇u) = div(γ2∇u) + div
(

γγ′
(
−uy

ux

))
= γ2∆u + 2γγ′ (∇θ · ∇u) + ((γ′)2 + γγ′′)

(
∇θ ·

(
−uy

ux

))

= γ2∆u +

2γγ′ cos(α) + ((γ′)2 + γγ′′) sin(α)︸ ︷︷ ︸
=:c1(α,θ,G)

 |∇θ||∇u|

where c1(α, θ, G) is uniformly bounded and satisfies

γ2 + c1(α, θ, G) sin α = γ2 + 2γγ′ cos(α) sin(α) + ((γ′)2 + γγ′′) sin2(α)

= (γ cos(α) + γ′ sin(α))2︸ ︷︷ ︸
≥0

+(γ(γ + γ′′︸ ︷︷ ︸
>0

)) sin2(α)︸ ︷︷ ︸
≥0

.

(177)
Consequently we have

γ2 +
c1

2
(α, θ, G) sin α ≥ γ2

2
> 0, (178)

which we keep in mind for the following estimates.

Exploiting (176) and applying short forms, i.e. c1 for c1(α, θ, G) and Representation for
div (A(∇u)∇u)c2 for c2(α, θ, G), we then have

div (A(∇u)∇u) =
(

γ2 +
c1

2
sin(α)

)
∆u

+ c1

√
1
4

sin2(α)(∆u)2 + u2
xy − uxxuyy.

(179)

Multiplying (179) with ∆u ∈ H1(Ω) and integrating over Ω we have∫
Ω

div (A(∇u)∇u)∆u =
∫

Ω

(
γ2 +

c1

2
sin(α)

)
(∆u)2

+
∫

Ω
c1∆u

√
1
4

sin2(α)(∆u)2 + u2
xy − uxxuyy

≥
∫

Ω

(
γ2 +

c1

2
sin(α)

)
(∆u)2

−
∫

Ω
|c1∆u|

√
1
4

sin2(α)(∆u)2 + u2
xy − uxxuyy.

(180)
Concerning the last integral we may deduce by applying Young’s

inequality with εY > 0∫
Ω
|c1∆u|

√
1
4

sin2(α)(∆u)2 + u2
xy − uxxuyy ≤ εY

∫
Ω
|c1∆u|2

+
1

4εY

∫
Ω

1
4

sin2(α)(∆u)2 + u2
xy − uxxuyy

≤
(

εYC1 +
1

8εY

) ∫
Ω
|∆u|2,

(181)
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where C1 := maxα,θ,G c2
1 and we exploited that u2

xy − uxxuyy has zero
mean value.
Introducing the functionChoosing ε in

Young’s inequality

Y(εY) := εYC1 +
1

8εY
,

and calculating the derivative with respect to εY

Y′(εY) := C1 −
1

8ε2
Y

,

reveals that Y has a minimum at 1/4
√

C1 and

Y
(

1
4
√

C1

)
=

3
4

√
C1 =: εG > 0,

so that we can choose at least εY = εG in (181). Then, considering C1

and exploiting the particular representation of γ, i.e. (168), we have√
C1 = max

α,θ,G

(
2γγ′ cos(α) + ((γ′)2 + γγ′′) sin(α)

)
≤ |2γγ′|+ (γ′)2 + |γγ′′|
≤ Gn((2 + n) + Gn),

which basically reveals that C1 tends to zero for sufficiently small
G. On the other hand, (178) implies boundedness from below of
γ2 + c1

2 sin(α) by a positive constant. Now, going back to (180), we are
in the position to deduce that for G sufficiently small we may choose
εG such that

0 < εG ≤
(

γ2 +
c1

2
sin(α)

)
for all α, θ and consequently∫

Ω
div (A(∇u)∇u)∆u ≥

∫
Ω

(
γ2 +

c1

2
sin(α)

)
(∆u)2 − εG

∫
Ω
(∆u)2 ≥ 0.

(182)
We now consider the right hand side of the inequality in Lemma

4.3.3. Multiplying (179) with div(A(∇u)∇u) and integrating over Ω
we obtain

0 ≤
∫

Ω
(div (A(∇u)∇u))2

=
∫

Ω

(
γ2 +

c1

2
sin(α)

)
div(A(∇u)∇u)∆u

+
∫

Ω
div(A(∇u)∇u)c1

√
1
4

sin2(α)(∆u)2 + u2
xy − uxxuyy

≤
∫

Ω

(
γ2 +

c1

2
sin(α)

)
div(A(∇u)∇u)∆u

+ εY

∫
Ω
|div(A(∇u)∇u)c1|2 +

1
4εY

∫
Ω

1
4

sin2(α)(∆u)2,

(183)
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where we again exploited that u2
xy − uxxuyy has zero mean value.

Choosing εY = 1/(C1 + 1) and observing that from (182) we know
that there exists a constant C > 0 such that∫

Ω
|∆u|2 ≤ C

∫
Ω

div(A(∇u)∇u)∆u,

we obtain from (183)

0 ≤
∫

Ω
(div (A(∇u)∇u))2

≤
∫

Ω
C div(A(∇u)∇u)∆u +

C1

C1 + 1

∫
Ω
|div(A(∇u)∇u)|2.

Note that C > 0 is now a different constant which we still denote the
same to simplify matters. Finally we conclude that

1
C1 + 1

∫
Ω
(div (A(∇u)∇u))2 ≤

∫
Ω

C div(A(∇u)∇u)∆u,

which completes the proof.
We are now in a position to attempt an existence result.

4.3.2 Existence theorem

In this section we formulate the existence result which will be proved Problem
assumptionsin the following. The result refers to the anisotropic Cahn-Hilliard

equation (166) on a rectangular open subset Ω ⊂ R2 with boundary
conditions

nΩ · ∇u = 0, (184a)

m(u)nΩ · ∇µ = 0, (184b)

on ∂Ω, where nΩ is the unit outward pointing normal vector onto Ω.
Note that A(n) is the anisotropy matrix defined by (167). We recall that
we consider the polynomial homogeneous free energy (50) and the bi-
quadratic degenerated mobility (51). The energy of the system is hence
given by (170) and in order to derive appropriate energy estimates
similar as in the proof by Elliott and Garcke [32] we introduce the
function

Φ : (−1, 1)→ R+
0 ,

defined by

Φ′′(u) =
1√

m(u)
, Φ′(0) = 0, and Φ(0) = 0.

The following theorem states the existence of a weak solution to the
anisotropic Cahn-Hilliard equation with doubly degenerated mobility
on an arbitrary interval [0, T], for some T ∈ R+.
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Theorem 4.3.4 Suppose that (174) holds true and that G is sufficiently
small, according to Lemma 4.3.3. Let u0 ∈ H1(Ω) with |u0| ≤ 1 a.e. and∫

Ω
(F(u0) + Φ(u0)) ≤ C, C ∈ R+.

Then there exists a pair of functions (u, µ) such that
u ∈ L∞(0, T; H1(Ω)) ∩ C([0, T]; L2(Ω)),
ut ∈ L2(0, T; (H1(Ω))′),
u(0) = u0,
µ ∈ L2(0, T; H1(Ω))

which satisfies (166) in the following weak sense:∫ T

0
〈ξ(t), ut(t)〉H1,(H1)′ = −

∫
ΩT

m(u)∇µ · ∇ξ (185)

for all ξ ∈ L2(0, T; H1(Ω)) and∫
Ω

µφ =
∫

Ω
F′(u)φ +

∫
Ω

ε2 A(∇u)∇u · ∇φ (186)

for all φ ∈ H1(Ω) which fulfill nΩ∇φ = 0 on ∂Ω× (0, T) and almost all
t ∈ [0, T].

In order to prove Theorem 4.3.4, we first show in Section 4.3.3 theOutline of the proof

existence of a solution to (166) with a mobility which is bounded away
from zero. This result is used in Section 4.3.4 to establish the existence
of approximate solutions to the degenerate problem. We derive energy
estimates for the approximate solutions which enable us to pass to
the limit in the approximate equation to get the existence of a weak
solution as stated.

4.3.3 The regularized problem

In this section we study the anisotropic Cahn-Hilliard equation (166)Regularizing the
mobility with the regularized mobility mδ(u) defined by

mδ(u) :=


m(−1 + δ) for u ≤ −1 + δ,

m(u) for u < 1− δ,

m(1− δ) for u ≥ 1− δ,

where δ� 1 and we define Φδ(u) such that

Φ′′δ (u) =
1√

mδ(u)
, Φ′δ(0) = 0, and Φδ(0) = 0, (187)

and point out that Φδ(u) = Φ(u) when |u| ≤ 1− δ. In a similar way
we define Ψδ(u) such that

Ψ′′δ (u) =
1

mδ(u)
, Ψ′δ(0) = 0, and Ψδ(0) = 0, (188)
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which will prove usefull in order to derive appropriate bounds for the
anisotropy operator.

We consider the anisotropic Cahn-Hilliard equation in the form

ut = ∇ ·mδ(u)∇µ, (189)

µ = F′(u)− ε2 div (A(∇u)∇u) (190)

with Neumann and no-flux boundary conditions

nΩ∇u = 0, and mδ(u)nΩ∇µ = 0,

on ∂Ω × (0, T) and observe that mδ ∈ C(R,R+) and there exist
m1, M1 > 0 such that

m1 ≤ |mδ(u)| ≤ M1

for all u ∈ R.

The following Theorem states the existence of weak solutions to
the regularized problem. Note that for this result we do not need the
additional assumptions yet, i.e. (174) and the more restrictive bound
on G.

Theorem 4.3.5 Suppose u0 ∈ H1(Ω) and that the anisotropy operator is
weakly anisotropic, i.e. (173) is satisfied. Then there exists a pair of functions
(u, µ) such that

u ∈ L∞(0, T; H1(Ω)) ∩ C([0, T]; L2(Ω)),
ut ∈ L2(0, T; (H1(Ω))′),
u(0) = u0,
µ ∈ L2(0, T; H1(Ω))

which satisfies (189) and (190) in the following weak sense:∫ T

0
〈ξ(t), ut(t)〉H1,(H1)′ = −

∫
ΩT

mδ(u)∇µ · ∇ξ (191)

for all ξ ∈ L2(0, T; H1(Ω)) and∫
Ω

µφ =
∫

Ω
F′(u)φ +

∫
Ω

ε2 A(∇u)∇u · ∇φ (192)

for all φ ∈ H1(Ω) and almost all t ∈ [0, T].

The following proof and its structure is inspired by Elliott and Gar-
cke [32]. However, the particular steps are more challenging due to
the anisotropic operator.

Proof. In the first step of the proof we apply a Galerkin approxima- Galerkin
approximation
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tion. Let {φi}i∈N be the eigenfunctions of the Laplace operator with
Neumann boundary conditions which is an orthogonal Basis of H1(Ω).
We suppose that the φi are normalized in the L2(Ω) scalar product,
i.e. (φi, φj)L2(Ω) = δij and that without loss of generality the first eigen-
function φ1 corresponds to the eigenvalue λ1 = 0, i.e. ∆φ1 = 0.
Consider the following Galerkin ansatz for u and µ

uN(t, x) =
N

∑
i=1

cN
i (t)φi(x), µN(t, x) =

N

∑
i=1

dN
i (t)φi(x) (193)∫

Ω
∂tuNφj = −

∫
Ω

mδ(uN)∇µN · ∇φj for j = 1, .., N, (194)∫
Ω

µNφj =
∫

Ω
ε2 A(∇uN)∇uN · ∇φj +

∫
Ω

F′(uN)φj for j = 1, .., N,

(195)

uN(0) =
N

∑
i=1

(u0, φi)L2(Ω)φi, (196)

which leads to an initial value problem for a system of ordinary
differential equations for (c1, .., cN)

∂tcN
j = −

N

∑
k=1

dN
k

∫
Ω

mδ

(
N

∑
i=1

cN
i (t)φi(x)

)
∇φk · ∇φj (197)

dN
j =

∫
Ω

ε2 A

(
N

∑
i=1

cN
i (t)∇φi(x)

)
N

∑
k=1

cN
k (t)∇φk(x) · ∇φj

+
∫

Ω
F′
(

N

∑
i=1

cN
i (t)φi(x)

)
φj

(198)

cN
j (0) = (u0, φj)L2(Ω) (199)

which has to hold for j = 1, ..., N. In what follows we will eluci-ODE system with
continuous right

hand side
date that dN

j continuously depends on c1, ..., cN for every j = 1, ..., N
which implies that the right hand side of (197) continuously depends
on c1, ..., cN and the initial value problem (197)-(199) admits a local
solution (see Lemma 4.2.6). Recalling that the mapping

u ∈ H1(Ω) 7→ 〈A(∇u)∇u,∇· 〉 ∈ (H1(Ω))′

is hemicontinuous implies that

t ∈ R 7→ 〈A(∇ (u + tv))∇ (u + tv) ,∇w〉

is continuous for all u, v, w ∈ H1(Ω). We then conclude that

ck 7→
〈

A
((

uN
6=k + ck∇φk

)) (
uN
6=kcN

i (t)∇φi(x) + ck∇φk

)
,∇φj

〉
,

where

uN
6=k =

N

∑
i=1,i 6=k

cN
i (t)∇φi(x),
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is continuous for every ck, which reveals continuity of the right hand
side of (197).

In the next step we provide some inequalities which allow us to Energy estimates

derive the necessary a priori estimates. Consider the time derivative
of the energy E

d
dt
E(t) = d

dt

∫
Ω

(
F(uN) + ε2 γ(θ∇uN )2

2
|∇uN |2

)
=
∫

Ω
F′(uN)∂tuN + ε2

(
γγ′θt |∇u|2 + γ2∇uN∇uN

t

)
=
∫

Ω
F′(uN)uN

t + ε2
(

γγ′
(−∂yuN

∂xuN

)
+ γ2∇uN

)
· ∇uN

t

=
∫

Ω
µN∂tuN = −

∫
Ω

mδ(uN)|∇µN |2,

where we exploited the particular representation of θ, i.e. (3).
Integrating over [0, t] then reveals∫

Ω
ε2 γ(θ∇uN(t))

2

2
|∇uN(t)|2 +

∫
Ω

F(uN(t)) +
∫

Ωt

mδ(uN)|∇µN |2

=
∫

Ω
ε2 γ(θ∇uN(0))

2

2
|∇uN(0)|2 +

∫
Ω

F(uN(0)) ≤ C.

(200)
From (194) with j = 1 we deduce that ∂t

∫
Ω uN = 0 and since γ is

bounded uniformly we obtain from Poincaré ’s inequality

ess sup0<t<T ‖u
N(t)‖H1(Ω) ≤ C, (201)

which implies that cN
1 , ..., cN

N are bounded uniformly and therefore a
global solution to (197)-(199) exists.

We now derive the necessary a priori estimates which imply con- A priori estimates

vergence of subsequences. Denote by ΠN the projection of L2(Ω) onto
span{φ1, ..., φN}. This reveals∣∣∣∣∫ΩT

∂tuNφ

∣∣∣∣ = ∣∣∣∣∫ΩT

∂tuN∇ΠNφ

∣∣∣∣
=

∣∣∣∣∫ΩT

mδ(uN)∇µN∇ΠNφ

∣∣∣∣
=

(∫
ΩT

∣∣∣mδ(uN)∇µN
∣∣∣2) 1

2
(∫

ΩT

|∇ΠNφ|2
) 1

2

≤ B1

(∫
ΩT

mδ(uN)
∣∣∣∇µN

∣∣∣2) 1
2

‖∇φ‖L2(ΩT)

≤ C‖∇φ‖L2(ΩT)

for all φ ∈ L2(0, T; H1(Ω)). Note that we exploited (200) for the last
inequality.
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We are now in the position to deduce that there exist subsequences
(which we still denote by uN) such that

uN ∗
⇀ u weak− ∗ in L∞(0, T; H1(Ω)),

uN → u strongly in C([0, T]; L2(Ω)),

∂tuN ⇀ ∂tu weakly in L2(0, T; (H1(Ω))′), and

uN → u strongly in L2(0, T; Lp(Ω)) and a.e. in ΩT,

where p < 2n
n−2 . It remains to show the convergence of µN . To this end

we first show that

A(∇uN)∇uN ⇀ A(∇u)∇u in
[
L2(Ω)

]2
. (202)

Since

(A(θξ)ξ)
T · (A(θξ)ξ)

=

(
γ2(θξ)ξ1 − γ′(θξ)γ(θξ)ξ2

γ′(θξ)γ(θξ)ξ1 + γ2(θξ)ξ2

)t

·
(

γ2(θξ)ξ1 − γ′(θξ)γ(θξ)ξ2

γ′(θξ)γ(θξ)ξ1 + γ2(θξ)ξ2

)
= γ2(θξ)(γ

2(θξ) + (γ′(θξ))
2)(ξ2

1 + ξ2
2)

≤ C(n, G)|ξ|2 (203)

we obtain as a direct consequence∫
Ω
|A(∇uN)∇uN |2 ≤ C(n, G)

∫
Ω
|∇uN |2. (204)

Due to (201), the right hand side in the last inequality is uniformly
bounded and hence A(∇uN)∇uN is uniformly bounded in L2(Ω).
Knowing this we deduce that there exists χ ∈

[
L2(Ω)

]2 such that

A(∇uN)∇uN ⇀ χ in
[
L2(Ω)

]2
. (205)

The next step in order to show (202) is to identify χ as A(∇u)∇u. OurMinty’s Trick

ansatz is to use Minty’s Trick (see Lemma 4.2.9), i.e. we have to show

〈χ− A(∇v)∇v,∇u−∇v〉 ≥ 0 for all v ∈ H1(Ω). (206)
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By adding and subtracting elements we obtain

〈χ− A(∇v)∇v,∇u−∇v〉

=
〈

χ− A(∇uN)∇uN + A(∇uN)∇uN − A(∇v)∇v,∇u−∇v
〉

=
〈

χ− A(∇uN)∇uN ,∇u−∇v
〉

+
〈

A(∇uN)∇uN − A(∇v)∇v,∇u−∇v
〉

=
〈

χ− A(∇uN)∇uN ,∇u−∇v
〉

+
〈

A(∇uN)∇uN − A(∇v)∇v,∇u−∇uN +∇uN −∇v
〉

=
〈

χ− A(∇uN)∇uN ,∇u−∇v
〉

+
〈

A(∇uN)∇uN − A(∇v)∇v,∇u−∇uN
〉

+
〈

A(∇uN)∇uN − A(∇v)∇v,∇uN −∇v
〉

≥
〈

χ− A(∇uN)∇uN ,∇u−∇v
〉

+
〈

A(∇uN)∇uN − A(∇v)∇v,∇u−∇uN
〉

, (207)

where the last inequality holds because of the monotonicity property.
Taking the limit we observe that the right hand side goes to zero and
hence

(χ− A(∇v)∇v,∇u−∇v) ≥ 0. (208)

From this we deduce that

χ = A(∇u)∇u. (209)

Then, exploiting (204) together with the uniform boundedness of
F′(uN(t)) for t ∈ [0, T), we first obtain that

∫
Ω µN(t) ≤ C and conse-

quently, including (200), Poincaré ’s inequality leads to

‖µN‖L2(0,T;H1(Ω)) ≤ C.

Note that in order to apply (200) in Poincaré ’s inequality it is necessary
to assume that mδ > 0. Since we already verified the weak convergence
A(∇uN)∇uN ⇀ A(∇u)∇u in

[
L2(Ω)

]2 we obtain

µN ⇀ µ in L2(0, T; H1(Ω)).

With the convergence properties proved so far we can pass to the
limit in (194) and (195) in a standard fashion [70] and obtain that
(u, µ) satisfies (191) and (192). Finally the strong convergence of uN in
C([0, T]; L2(Ω)) and uN(0)→ u0 in L2(Ω) proves Theorem 4.3.5.
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4.3.4 The degenerate problem

This section finally provides the proof of Theorem 4.3.4, exploiting the
existence of approximate solutions which we have established in the
previous section.

Proof. From Theorem 4.3.5 we know that there exists a weak solutionDefining
approximate

solutions
to the equation

ut = ∇ ·mδ(u)∇µ in ΩT,

µ = F′(u)− ε2 div (A(∇u)∇u) in ΩT,

∇u · nΩ = 0 and ∇µ · nΩ = 0 on ∂Ω× (0, T)

and we denote this solution by (uδ, µδ).

Lemma 4.3.6 The weak solution satisfies

∇ (div (A(∇uδ)∇uδ)) ∈ L2(ΩT).

Proof. We first show div (A(∇uδ)∇uδ) ∈ L2(ΩT). From the defini-
tion of the weak solution we have∫

Ω
(F′(uδ)− µ)ψ + ε2 A(∇uδ)∇uδ · ∇ψ = 0, (210)

for every ψ ∈ H1(Ω). We then have∣∣∣∣∫Ω
ε2 A(∇uδ)∇uδ · ∇ψ

∣∣∣∣ ≤ ∫Ω
|(µ− F′(uδ))ψ|

≤ C ‖ψ‖L2(Ω),

which implies that

ψ 7→ ε2 A(∇uδ)∇uδ · ∇ψ, ψ ∈ C∞
c (Ω) (211)

is a linear and continuous functional on C∞
c (Ω) with respect to the L2-Exploiting the Riesz

representation
theorem

norm. Since C∞
c (Ω) is dense in L2(Ω), this functional can be extended

uniquely to a linear and continuous functional on L2(Ω). From the
Riesz representation theorem we then obtain existence of a unique
function v ∈ L2(Ω), such that v corresponds to the weak divergence
of A(∇uδ)∇uδ and consequently

div (A(∇uδ)∇uδ) ∈ L2(Ω). (212)

We may now apply the identity µδ = F′(uδ) − ε2 div (A(∇uδ)∇uδ)

and since ∇F′(uδ) = F′′(uδ)∇uδ ∈
[
L2(ΩT)

]2 and ∇µδ ∈
[
L2(ΩT)

]2

we obtain that also ∇ (div (A(∇uδ)∇uδ)) ∈
[
L2(ΩT)

]2.
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Therefore we can apply the weak form∫ T

0
〈ζ, ∂tuδ〉H1,(H1)′ = −

∫
ΩT

mδ(uδ)∇
(

F′(uδ)− ε2 div (A(∇uδ)∇uδ)

)
· ∇ζ,

(213)
for all ζ ∈ L2(0, T; H1(Ω)).

In the next step, we prove the essential energy estimates.

Lemma 4.3.7 There exists a δ0 such that for all 0 < δ ≤ δ0 the following Energy estimates

estimates hold with a constant C independent of δ:

(a) ess sup0<t<T

∫
Ωt

mδ(uδ)|∇µδ|2

+
∫

Ω
F(uδ) +

ε2

2
γ(θ∇uδ(t))

2|∇uδ(t)|2 ≤ C

(b) ess sup0<t<T

∫
Ω

Φδ(uδ(t)) ≤ C

(c) ess sup0<t<T

∫
ΩT

|div (A(∇uδ)∇uδ) |2 ≤ C

(d) ess sup0<t<T

∫
Ω
(|uδ| − 1)2

+ ≤ Cδ2

(e)
∫

ΩT

|Jδ|2 ≤ C, where Jδ := mδ(uδ)∇µδ.

Proof. Consider the functional (a) Indicating lower
semicontinuity

I(u, ξ, ν) :=
∫

Ω
ε2 γ(θξ)

2

2
|ξ|2 +

∫
Ω

F(u) +
∫

Ωt

mδ(u)|ν|2. (214)

From (200) we know that for the Galerkin approximations (uN
δ , µN

δ ) of
(uδ, µδ) we have that

I(uN
δ ,∇uN

δ ,∇µN
δ ) ≤ C,

for all N ∈N. Moreover we know that

uN
δ ⇀ uδ in H1(Ω)

µN
δ ⇀ µδ in H1(Ω)

for all t ∈ [0, T] and since H1(Ω) is compactly embedded in L2(Ω)

(Rellich Kondrachov Theorem) the weak convergence uN
δ → uδ in

H1(Ω) implies
uN

δ → uδ in L2(Ω).

If we now show that I is weakly lower semicontinuous, i.e.

I(uδ,∇uδ,∇µδ) ≤ lim inf
N→∞

I(uN
δ ,∇uN

δ ,∇µN
δ ),

we could deduce that I(uδ,∇uδ,∇µδ) ≤ C, which implies (a). In
what follows we will show that the conditions for Lemma 4.2.7 in the
preliminary section are satisfied which provides lower semicontinuity
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of I(u, ξ, ν). Note that we will consider the variable ξ in Lemma 4.2.7
as playing the role of (ξ, ν) and R4 = R2 ×R2.
We now introduce the function

f (x, u, ξ, ν) := F(u) +
ε2

2
γ(θξ)

2|ξ|2 +
∫ t

0
mδ(u)|ν|2,

which is a Carathéodory function in the sense of the definition given
in Section 4.2.4. Moreover we find constants α1 > 0 and α2 ∈ R such
that f satisfies the coercivity condition

f (x, u, ξ, ν) ≥ α1(|ξ|2 + |ν|2) + α2|u|,

and from Lemma 4.3.1 we also have that ξ → f (x, u, ξ, ν) is convex.
Since clearly also ν→ f (x, u, ξ, ν) is convex we are in the position to
apply Lemma 4.2.7 and deduce that I(u, ξ, ν) is weakly lower semi-
continuous, which proves (a).

To prove (b), we consider the function Φδ(uδ) defined by (187). Since(b) Exploiting the
auxiliary function

Φδ

Φ′′δ (uδ) is bounded uniformly in t, we have Φ′δ(uδ) ∈ L2(0, T; H1(Ω))

and therefore Φ′δ(uδ) is an admissible test function. On the one hand,
we have that∫ t

0

〈
Φ′δ(uδ), ∂tuδ

〉
H1,(H1)′ =

∫
Ω

Φδ(uδ(t))−
∫

Ω
Φδ(u0)

is true for almost all t ∈ [0, T]. On the other hand, we have∫ t

0

〈
Φ′δ(uδ), ∂tuδ

〉
H1,(H1)′ =

∫
Ωt

−mδ(uδ)∇µδ · ∇Φ′δ(uδ)

=
∫

Ωt

−mδ(uδ)∇µδΦ′′δ (uδ) · ∇uδ

=
∫

Ωt

−
√

mδ(uδ)∇µδ · ∇uδ

≤
(∫

Ωt

mδ(uδ(t))|∇µδ|2
)1/2 (∫

Ωt

|∇uδ|2
)1/2

,

(215)
where the right hand side is bounded due to (a). It follows that there
exists a constant C which is independent of δ such that∫

Ω
Φδ(uδ(t)) ≤ C +

∫
Ω

Φδ(u0),

which proves (b).

Consider now Ψδ defined by (188). Similar as in (215) we obtain(c) Exploiting the
auxiliary function

Ψδ

∫
Ω

Ψδ(uδ(t))−
∫

Ω
Ψδ(u0) =

∫
Ωt

−mδ(uδ)∇µδΨ′′δ (uδ) · ∇uδ

=
∫

Ωt

−ε2 div(A(∇uδ)∇uδ)∆uδ − F′′(uδ)|∇uδ|2,
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which again implies that there exists a constant C which is indepen-
dent of δ such that∫

Ω
Ψδ(uδ(t)) +

∫
Ωt

ε2 div(A(∇uδ)∇uδ)∆uδ + F′′(uδ)|∇uδ|2

≤ C +
∫

Ω
Ψδ(u0).

Realizing that Ψδ and F′′ are both convex functions which are bounded
from below and taking Lemma 4.3.3 into account, we conclude that
there exists another constant, which is independent of δ such that∫

Ω
|div(A(∇u)∇u)|2 ≤ C +

∫
Ω

Ψδ(u0),

which proves (c).

We will now use the bound for
∫

Ω Φδ(uδ) to derive a bound for (d) Popular trick
exploiting Φ

∫
Ω(|uδ| − 1)2

+. If z > 1 and δ < 1, then we have

Φδ(z) = Φ(1− δ)︸ ︷︷ ︸
≥0

+Φ′(1− δ)︸ ︷︷ ︸
≥0

(z− (1− δ))︸ ︷︷ ︸
≥0

+
1
2

Φ′′(1− δ)(z− (1− δ))2

≥ 1
2

Φ′′(1− δ)(z− 1)2 =
1
2

1√
m(1− δ)

(z− 1)2

=
1
2

1
1− (1− δ)2 (z− 1)2 ≥ C−1δ−2(z− 1)2.

It follows that (z− 1)2 ≤ Cδ2Φδ(z). Similarly we obtain (−z− 1)2 ≤
Cδ2Φδ(z) for z < −1. This implies∫

Ω
(|uδ| − 1)2

+ ≤ Cδ2
∫

Ω
Φδ(uδ) ≤ Cδ2,

which proves (d).

Assertion (e) follows easily from (a), and this finishes the proof of
Lemma 4.3.7.

According to the bounds of Lemma 4.3.7 together with standard
compactness properties, we obtain that there exists a function u such
that

∂tuδ ⇀ ∂tu in L2(0, T; (H1(Ω))′)

Jδ ⇀ J in
[
L2(ΩT)

]2
.

Moreover by the boundedness of div(A(∇uδ)∇uδ) in L2(ΩT) we have Minty’s Trick

that
A(∇uδ)∇uδ ⇀ χ in

[
H1(Ω)

]2
,
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for some function χ ∈
[
H1(Ω)

]2. Similar as in (206), we can identify
χ as A(∇uδ)∇uδ by applying Minty’s Trick. Adding and subtracting
elements analogously as in (207), but with u and uδ instead of u and
uN , we obtain that for all v ∈ H1(Ω)

〈χ− A(∇v)∇v,∇u−∇v〉 ≥ 〈χ− A(∇uδ)∇uδ,∇u−∇v〉
+ 〈A(∇uδ)∇uδ − A(∇v)∇v,∇u−∇uδ〉 ,

and passing to the limit δ→ 0 reveals

〈χ− A(∇v)∇v,∇u−∇v〉 ≥ 0 for all v ∈ H1(Ω). (216)

We are now in the position to apply Minty’s Trick (Lemma 4.2.9) and
deduce that

χ = A(∇u)∇u. (217)

Since H1(Ω) is compactly embedded in L2(Ω) the weak convergenceRellich Kondrachov
Theorem A(∇uδ)∇uδ ⇀ A(∇u)∇u in

[
H1(Ω)

]2 implies

A(∇uδ)∇uδ → A(∇u)∇u in
[
L2(Ω)

]2
. (218)

Passing to the limit in ∫
Ω
(|uδ| − 1)2

+ ≤ Cδ2

yields |u| ≤ 1 a.e. in ΩT.
It remains to show that u fulfills the limit equation. The weak conver-Convergence of the

limit equation gence of ∂tuδ and Jδ gives in the limit∫ T

0
〈ξ, ∂tu〉H1,(H1)′ =

∫
ΩT

J · ∇ξ,

for all ξ ∈ L2(0, T; H1(Ω)). Now we have to identify J. Therefore, we
want to pass to the limit in the equation∫

ΩT

Jδ ·  =
∫

ΩT

mδ(uδ)∇(−ε2 div(A(∇uδ)∇uδ) + F′(uδ)), (219)

where  ∈ L2(0, T; H1(Ω,Rn)) ∩ L∞(ΩT,Rn) with  · nΩ = 0 on ∂Ω×
(0, T). The left hand side converges to

∫
ΩT

J ·n. Since∇div(A(∇uδ)∇uδ)

may not have a limit in L2(ΩT), we integrate the first term on the
right-hand side of (219) by parts to get∫

ΩT

mδ(uδ)∇(−ε2 div(A(∇uδ)∇uδ))

=
∫

ΩT

ε2 div(A(∇uδ)∇uδ)mδ(uδ)∇

+
∫

ΩT

ε2 div(A(∇uδ)∇uδ)m′δ(uδ)∇uδ · 

=: I + II.

(220)
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Using the fact that for all z ∈ R

|mδ(z)−m(z)| ≤ sup
1−δ≤|y|≤1

|m(y)| → 0 as δ→ 0,

it follows that mδ → m uniformly.
Hence we have

mδ(uδ)→ m(u) a.e. in ΩT.

Exploiting that div(A(∇uδ)∇uδ) is uniformly bounded in L2(ΩT), we
may deduce that there exists ρ ∈ L2(ΩT) such that

div(A(∇uδ)∇uδ) ⇀ ρ in L2(ΩT). (221)

From the definition of the weak divergence and the already established
convergence (218), we then have that for any test function Ψ ∈ C∞

c (ΩT)∫
ΩT

div(A(∇uδ)∇uδ)Ψ = −
∫

ΩT

A(∇uδ)∇uδ · ∇Ψ

→ −
∫

ΩT

A(∇u)∇u · ∇Ψ

=
∫

ΩT

div(A(∇u)∇u)Ψ.

(222)

Since the weak divergence is unique we immediately obtain

div(A(∇u)∇u) = ρ. (223)

Recalling that Mδ is uniformly bounded, we conclude∫
ΩT

ε2 div(A(∇uδ)∇uδ)mδ(uδ)∇→
∫

ΩT

ε2 div(A(∇u)∇u)mδ(u)∇,

as δ→ 0, which equals the convergence of I in (220) . Now we pass to
the limit in II. As for m, we have m′δ → m′ uniformly, which gives

m′δ(uδ)→ m′(uδ) a.e. in ΩT.

By using

A(∇uδ)∇uδ → A(∇uδ)∇uδ in L2(ΩT) and a.e. in ΩT,

and the fact that m′δ is uniformly bounded a generalized version of
the Lebesgue convergence theorem yields

m′δ(uδ)∇uδ → m′(u)∇u in L2(Ω).

Hence∫
ΩT

ε2 div(A(∇uδ)∇uδ)m′δ(uδ)∇uδ · 

→
∫

ΩT

ε2 div(A(∇u)∇u)m′δ(u)∇uδ · ,

as δ→ 0, where we used the fact that  ∈ L∞(ΩT).
This shows that u solves the Cahn-Hilliard equation in the sense of
Theorem 4.3.4.
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4.4 discussion and outlook

We have proved the existence of weak solutions to the anisotropicSummary of results

Cahn-Hilliard equation (166) with degenerate mobility under the
assumption that the strength of the anisotropy is sufficiently small (see
Lemma 4.3.3). The main difficulties arise in establishing the estimates
of Lemma 4.3.7, in particular in view of the degenerate mobility and
the non-linear anisotropy function. The limitation to sufficiently weak
anisotropy enables to apply Lemma 4.3.3 given in the preliminary
results of Section 4.3.1 at this point, which turns out to be of essential
importance for the present existence proof. In addition to existence,
we show that solutions |u| are bounded by one without having a
maximum principle.

There are still many open questions. The most important is whetherOpen questions

the assumptions of Lemma 4.3.3 may be relaxed in order to obtain
existence of solution in a more general case. In particular, the existence
of solutions on different, not necessarily rectangular, domains would
be desirable, which appears to be intuitively possible.

Furthermore , it would be interesting to know if there exists aUniqueness

unique solution. We note that already in the isotropic case, studied
by Elliott and Garcke [32], this remains an open question. Since so far
no uniqueness result for fourth order degenerate parabolic equations
has been established, a corresponding existence result for the present
problem is less obvious.

Besides studying the question of uniqueness we are also interestedBehavior of solutions

in the qualitative behavior of solutions, for example as |u| → 1. Just as
in the isotropic case we expect that for the present degenerate mobility
the sets {u = −1} and {u = 1} develop an interior which implies a
free boundary problem for ∂ {u = −1} and ∂ {u = −1}, respectively.
In addition, it would be interesting to study the asymptotic behavior
of solutions in the case as t→ ∞.



5
N U M E R I C A L S I M U L AT I O N O F T H E S O L I D S TAT E
D E W E T T I N G P R O B L E M

5.1 the process of developing the numerical algorithm

The different mathematical models for solid state dewetting are in Obvious numerical
challengesgeneral complicated and can only be solved analytically in very special

cases. Numerical simulations are therefore of particular importance.
However, the corresponding numerical algorithms have to deal with
a variety of numerical challenges such as the strong nonlinearity,
anisotropy, coupling of geometry and evolutionary differential equa-
tions and numerical discretization. In addition, the rigorous math-
ematical understanding of anisotropic interface motion is far from
being complete, which makes it even more challenging to provide and
improve a numerical algorithm.

Over the last decades, many different numerical methods have been Different numerical
approachesdeveloped for both the sharp interface and phase field model. On the

one hand, the simulation of the sharp interface via interface tracking
methods [24, 26, 114] appears to be the most efficient but has a severe
drawback when it comes to topological changes. On the other hand the
phase field framework can naturally handle this challenge and finite
difference as well as finite element methods have been successfully
applied to simulate anisotropic interface motion. In [94], for exam-
ple, an anisotropic viscous Cahn-Hilliard model is implemented by
adaptive finite elements in three space dimensions. In particular cases,
the results are compared with the simulation of sharp interface mod-
els. An example for a successful finite difference implementation is
given by [113], where the method is applied for a regularized, strongly
anisotropic Cahn-Hilliard equation in two and three space dimensions.
However, both examples do not incorporate boundary conditions at a
substrate. For more examples and other aspects of thin film simulation
we refer to the recent reviews [33, 73] and in particular [67], where of
some the finite element based numerical methods for simulating the
motion of interfaces are reviewed.

The numerical algorithm presented in this chapter has a long history Developing the
numerical codeof development and besides the above mentioned obvious numeri-

cal challenges, additional less than obvious difficulties just became
apparent during the process of developing the numerical code. This
gave us the opportunity to steadily built our knowledge about ap-
plying particular methods and implementing the present non-linear
structures. The result is a semi-implicit time-stepping method, ap-
plying the finite element method and providing a diffuse boundary

91
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approximation, which significantly simplifies the implementation of
the anisotropic boundary conditions at the substrate. However, since
the process of developing the numerical code has provided us with
valuable insights into the different numerical methods applied to the
solid state dewetting problem, we would like to briefly document the
history of developing the numerical algorithm.

Our first numerical approach was inspired by Jiang et al. [52], whoThe numerical
approach by Jiang et

al.
consider an isotropic solid state dewetting problem, similar to the
isotropic version of (49) - (49c), but with mobility m(u) = 1− u2. The
idea, presented in [52], of combining finite differences with spectral
methods seemed particularly suitable for the present kind of problem
at first sight, since it fits well with the present boundary conditions.
On the one hand, the choice of a pseudospectral representation in
the space direction where the problem contains periodic boundary
conditions is advantageous since it considerably speeds up the calcu-
lation of partial derivatives compared to the finite difference method
(see [107]). On the other hand, the space direction where the problem
contains rather complicated non-linear boundary conditions can be
implemented directly by the finite difference method. Furthermore,
Jiang et al. [52] apply a stabilizing method in order to improve the
time-step constraint. The method, called convexity- splitting, addsConsidering

convexity-splitting stabilizing terms to the scheme such that the time-discretization reads un+1−un

τ = Aε2∆2(un − un+1) + S∆(un+1 − un) +∇ · (m(un)∇µn)

µn = (un)3 − un − ε2∆un,
(224)

where un and µn are the approximations of u and µ at the time
t = nτ. The constants A and S are stabilizing coefficients and the
idea of adding stabilizing terms to the Cahn-Hilliard equation with
a non constant mobility was motivated in [120], where the isotropic
Cahn-Hilliard equation with periodic boundary conditions in each
direction is considered. However, there is an apparent error in the
accuracy, especially near equilibrium and when time steps are too big,
which is also documented in [52]. This effect becomes even stronger
if choosing the higher degenerated mobility m(u) = (1− u2)2, as we
have observed in our first attempt, and consequently refused on the
application of a convexity-splitting.

Our first (serious) numerical approach was based on a combinationFirst numerical
approach of finite differences and the cosine pseudospectral method, similar as

in [52], but without a stabilization method. In addition, we included
an anisotropic surface energy and anisotropic boundary conditions
at the substrate. Evaluating the corresponding simulations, we made
different negative observations, such as the incorrect calculation of
anisotropies via the spectral method if the mesh grid is too fine or
loss in mass due to finite differences in particular in combination with
the free boundary. The former observation may be explained by the
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so-called aliasing effect, which typically occurs in the application of
pseudospectral methods if picking "bad interpolants", i.e. with highly
pitched sines and cosines in the expansions. The second observation
is probably due to a simple consistency error. Furthermore, without a
stabilization method, the numerical code turned out to require very
small time-steps.

In view of the anisotropic boundary conditions (49b) at Γw, we The diffuse domain
methodrealized that the correct numerical implementation is a non-trivial

issue due to the third order derivatives and nonlineratities. Inspired
by Lowengrub et al. [67, 68], we found an alternative approach which
allows a much easier handling. The original idea of the so-called dif-
fuse domain method, which was first introduced by [60], refers to
the approximation of a partial differential equation by introducing a
phase field function. This phase field function is an approximation of
the characteristic function of the domain such that the sharp interface
of the original problem is replaced by a narrow diffuse interface layer.
In this context the diffuse domain method describes the construction
of a phase field out of a sharp interface model. In our case the applica-
tion is slightly different since we already originate from a phase field
model. Here we will apply the diffuse domain approach to the "sharp"
boundary Γw and replace it with a diffuse layer. This leads to homoge-
neous boundary condition at the extended domain boundary which
is much easier to implement numerically and also more interesting
from a mathematical point of view. It also seems natural to consider
also a diffuse domain boundary in a model which already considers a
diffuse interface inside the domain.

The chapter is organized as follows. We first derive the represen- Overview of this
chaptertation of the problem on the extended domain considering a diffuse

boundary approximation at Γw. We use the method of matched asymp-
totic expansions to show that solutions of the re-formulated equations
converge to those of the original equations. Next, we generate the
discrete problem and give a solution algorithm according to the finite
element space. A demonstration of the numerical code is presented for
various dewetting scenarios. Since the initial motivation for choosing
the phase field representation was to simulate pinch off scenarios,
we will demonstrate how the simulation naturally handles this case.
Moreover as the question of how the mobility influences the evolution
has been addressed in the introduction of Chapter 3, we compare the
results to the simulation with mobility m(u) = 1− u2. Note that the
the numerical results shown in this Chapter represent a first evaluation
of the current numerical code, since it was completed shortly before
the submission of this work. Consequently, there are many other inter-
esting questions which should be studied numerically, motivated in
the last section of this chapter.
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5.2 the diffuse boundary approximation

We now reformulate the problem on an extended domain Ω1 withReformulation on an
extended domain diffuse boundary Γw. The idea of replacing the original domain with a

sharp boundary by a domain with a diffuse boundary was introduced
in [60] and has already been applied in several works [67, 68]. However,
the situation in our case is slightly different, since we already originate
from a phase field model which considers diffuse interfaces. This
implies that the application of the method requires a reformulation
of the total free energy. We start by introducing a boundary layer at
Γw with thickness εy � 1 and use a surface delta function for the wall
energy density (47) such that we can formally rewrite the total free
energy (1) on Ω1 in one integral

Wε =
∫

Ω1

fFV + δΓw fw dΩ1, (225)

where δΓw satisfies ∫
Ω1

hδΓw dΩ1 ≈
∫

Γw

h dΓ, (226)

for any smooth function h. Calculating the first variation of the free
energy functional thus leads to the chemical potential

µ = F′(u) + δΓw ε
f ′w
λm
− ε2∇ ·

(
γγ′
(
−uy

ux

)
+ γ2∇u

)
, (227)

which entails that the natural boundary conditions for the approximate
problem are simple homogeneous Neumann boundary conditions

∂u
∂y

= 0 (228a)

∂µ

∂y
= 0, (228b)

at y = 0. Note that these are easy to handle from a numerical point of
view. It remains to show that the present model recovers the original
equation (49) subject to the boundary conditions (49b) and (49c).

5.2.1 Asymptotic analysis

We now provide a justification of the diffuse boundary approximationMatched asymptotic
expansions at the
diffuse boundary

by using the method of matched asymptotic expansions where the
outer region is inside the domain and away from Γw and the inner
region is near Γw, respectively. Note that the functions are expanded
in powers of the diffuse interface thickness εy, while ε, the parameter
for the interface thickness, is held constant. Moreover, for the Dirac
delta function we chose the common representation

δΓw(y) = δεy(y) = ε−1
y ψ

(
y
εy

)
, (229)
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where ψ ∈ C∞(R), ψ(y) ≥ 0 for all y ∈ R, satisfies∫ ∞

0
ψ(y) dy = 1 (230)

and
lim
εy→0

∫
R\[0,εy]

δεy(y) dy = 0. (231)

Outer problem

Observing that δΓ vanishes in the outer region for εy sufficiently small
we immediately obtain

µ = F′(u)− ε2∇ ·
(

γγ′
(
−∂yu
∂xu

)
+ γ2∇u

)
, (232)

such that the original equation (49) is recovered.

However since the outer expansions for u(x, y) will be needed for
matching in the following, we define them as

u(x, y) = u0(x, y) + εyu1(x, y) +... (233)

and continue with the inner problem.

Inner problem

We first introduce the inner variable near Γw via Stretched coordinates
near Γw

η =
y
εy

, (234)

and expand the inner solution U(x, η) = u(x, y) in orders of εy

U(x, η) = U0(x, η) + εyU1(x, η) +.... (235)

Moreover we will need the inner expansions for θ and γ

θ = θ0 + εyθ1 + ...

γ = γ(θ0) + εyγ′(θ0) + ....
(236)

From (227) we then obtain to order O(ε−2
y ) Order O(ε−2)

∂η

(
γ(θ0)∂ηU0

)
= 0, (237)

implying that γ(θ0)∂ηU0 is constant in η, i.e. γ(θ0)∂ηU0 = c(x) . Since
the leading order boundary condition at η = 0 is

∂ηU0 = 0, (238)

we find c(x) = 0 and γ(θ0) is not constantly zero in the inner layer,
we immediately obtain c(x) = 0.
Proceeding to order O(ε−1

y ), we have Order O(ε−1)
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0 = ε
f ′w(U0)

λm
ψ(η)− ε2 (∂η

(
γ(θ0)γ

′(θ0)∂xU0 + γ(θ0)
2∂ηU1

))
.

(239)
with boundary conditions

∂ηU1 = 0,

∂η

(
γ(θ0)γ

′(θ0)∂xU0 + γ(θ0)
2∂ηU1

)
= 0,

(240)

at η = 0. Integrating (239) in η over [0, ∞) then gives

0 =
∫ ∞

0
ε

f ′w(U0)

λm
ψ(η)− ε2 (∂η

(
γ(θ0)γ

′(θ0)∂xU0 + γ(θ0)
2∂ηU1

))
= ε

f ′w(U0)

λm
− lim

η→∞

(
ε2 (γ(θ0)γ

′(θ0)∂xU0 + γ(θ0)
2∂ηU1

) )
.

(241)
Taking the matching conditionsMatching

lim
η→∞

∂ηU1 = lim
y→0

∂yu0

lim
η→∞

∂xU0 = lim
y→0

∂xu0
(242)

into account we end up with

f ′w(u)
λm

− ε
(
γ(θ0)γ

′(θ0)∂xu0 + γ(θ0)
2∂ηu0

)
= 0, (243)

which recovers the boundary condition (49b). Note, when comparing
to the signs in (49b), that nΩ is the outward pointing normal vector
onto Ω, such that nΩ = (0,−1)T.

5.3 numerical algorithm

As elucidated in the introductory Section 5.1, we tried different numer-Finite element
method ical methods, involving the finite difference and spectral method, in

order to implement the present problem. In the end the finite element
method (FEM) has proven to be the most suitable for our purpose
and a significant advantage over the previously applied methods is
that the discrete problem can be generated in a relatively simple and
systematic way by exploiting the representation in the finite element
space.

In this section we will generate the discrete problem and give a
solution algorithm according to the finite element space, whereas we
will not give particular algorithms for the corresponding subproblems,
such as the generation of the shape functions or the initial mesh, as
these are somehow basic knowledge of the finite element method.
For a detailed introduction and possible solution for the different
subproblems we refer to Chapter 4 in [39].
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5.3.1 Generation of the discrete problem

We now present a finite element algorithm for the anisotropic phase Model assumptions

field model (49), providing the present diffuse boundary approxi-
mation, i.e. we consider the modified chemical potential (227) and
homogeneous Neumann boundary conditions (228) for u and µ on
∂Ω. We assume an anisotropic surface energy of the form

γ(θ) = 1 + Gs cos(nθ), (244)

where Gs represents the strength of the anisotropy and n > 1 is the
order of the rotational symmetry. Since the scope of our study is
restricted to weak anisotropy, i.e. γ′′ + γ > 0, we consider

0 ≤ Gs <
1

n2 − 1
. (245)

Furthermore, we apply the following representation for the surface Choosing a surface
delta functiondelta function

δΓw =

√
2

εy
√

π
exp

(
− y2

2ε2
y

)
, (246)

where δΓw has approximately width εy/2 on [0, ∞), achieves its maxi-
mum at y = 0 and satisfies the condition∫ ∞

0

√
2

εy
√

π
exp

(
− y2

2ε2
y

)
dy = 1. (247)

To simplify matters we let εy = ε. Note that the asymptotic analysis of
the previous section assumed that εy � ε and the derivation of the
asymptotic limits in the case in which εy = ε appears to be more diffi-
cult. However this differentiation does not make a difference for the
numerical algorithm, since both ε are held fixed during the simulation.

We start from the weak formulation. Note that the standard weak Weak formulation

formulation, see equation (213) in Section 4.3.4, is based on the space
H2(Ω) thus any standard conforming finite element method must use
elements in C1(Ω), which are complicated to construct. Consequently,
it is preferable to transform the fourth-order problem into a system of
two second-order problems. Exploiting the matrix representation (167)
for a better overview, the weak formulation reads:

Find a pair (u, µ) ∈
[
H1(Ω)

]2 such that∫
Ω

∂tuv +
∫

Ω
m(u)∇µ · ∇v = 0 , (248a)∫

Ω
µw−

∫
Ω

ε2 (A(∇u)∇u) · ∇w =
∫

Ω
N(u)w, (248b)

for all v, w ∈ H1(Ω), where

N(u) := 2
(
u3 − u

)
+ G(y)(u2 − 1), (249)
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and G(y)(u2 − 1) represents the diffuse boundary approximation, i.e.

δΓw ε
f ′w
λm

= δΓw

ε

λm

3
4
(u2 − 1)(γVS − γFS), (250)

where, according to the sharp interface limits which we derived in
Chapter 3, we apply λm ≡ 3/4 in order to recover the Young-Herring
contact angle boundary condition. G(y) then becomes

G(y) =
√

2√
π

exp
(
− y2

2ε2

)
(γVS − γFS). (251)

The boundary conditions are homogeneous Neumann boundary con-
ditions for u and µ on ∂Ω. Note that we already exploited these
boundary conditions in the derivation of (248).

We first apply a Galerkin approximation in space, i.e. we assumeGalerkin
approximation in

space
that Vh ⊂ H1(Ω) is a finite dimensional subspace of H1(Ω) with basis
{φi}i∈N such that every uh, µh ∈ Vh may be represented as linear
combination of this basis

uh(t, x) =
dimVh

∑
j=1

αj(t)φj(x)

µh(x) =
dimVh

∑
j=1

β jφj(x).

(252)

The Galerkin approximation of (248) then reads:

Find a pair (uh, µh) ∈ [Vh]
2 such that

dimVh

∑
j=1

(
∂tαj

(
φj, φi

)
L2(Ω)

+ β j

∫
Ω

m(uh)∇φj · ∇φi

)
= 0 ,

dimVh

∑
j=1

(
β j
(
φj, φi

)
L2(Ω)

− ε2αj

∫
Ω

(
A(∇uh)∇φj

)
· ∇φi

)
=
∫

Ω
N(uh)φi,

for all φi, i ∈ {1, .., dimVh}.

Then we discretize the time viaFinite differences in
time

∂tuh ≈
un+1

h − un
h

τ
,

where τ is the time-step size and un
h denotes the approximation of uh

at the time t = ndt. Introducing the bilinear forms

b∗(u, v) :=
∫

Ω
m(u∗)∇u · ∇v,

and
a∗(u, v) :=

∫
Ω
(A(∇u∗)∇u) · ∇v,
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for u, v ∈ H1(Ω), where u∗ = un
h , the discrete problem becomes

dimVh

∑
j=1

(
αn+1

j

(
φj, φi

)
L2(Ω)

+ τβ jb∗(φj, φi)
)
=

dimVh

∑
j=1

αn
j
(
φj, φi

)
L2(Ω)

,

dimVh

∑
j=1

(
βn+1

j

(
φj, φi

)
L2(Ω)

− ε2αn+1
j a∗(φj, φi)

)
=
∫

Ω
N(un

h)φi,

for all φi, i ∈ {1, .., dimVh}. The solution algorithm may then be rewrit- Solution algorithm

ten in the following block matrix form[
M τ B∗

−ε2 A∗ M

](
αn+1

β

)
=

(
αn

N(un
h)

)
,

where

M = (mj,i), mj,i :=
(
φj, φi

)
L2(Ω)

,

is the so-called mass matrix,

B∗ = (b∗j,i), b∗j,i :=
(
b∗(φj, φi)

)
,

A∗ = (a∗j,i), a∗j,i :=
(
a∗(φj, φi)

)
,

and

αn = (αn
1 , .., αn

dimVh
)T, β = (β1, .., βdimVh)

T.

.

In each time-step we then solve the linear system(
αn+1

β

)
=

[
M τ B∗

−ε2 A∗ M

]−1(
αn

N(un
h)

)
. (256)

Note that since the matrices A∗ and B∗ depend on the current solution
at each time-step, these have to be generated before applying the
algorithm.

5.3.2 Notes on the implementation in MATLAB

As a discrete basis we implement standard piecewise linear finite
elements. We choose the grid width according to the size of ε. In
particular, in order to achieve a good resolution we choose dx = dy ≈
ε/5. Moreover we observed good stability properties for the time-step
size τ ≈ Cε2.
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Figure 11: Surface plots from top view of the isotropic equilibrium state for ε = 0.015 and
θc = 3π/4, where dx = dy = 0.0025 and τ = 10−4 a) left: The general shape
appears to not be influenced by the diffuse boundary approximation. b) right:
zoom (of a)) into the region about the substrate. It is clearly visible that the
solution satisfies homogeneous Neumann boundary conditions at y = 0, where
θc is approximated within a diffuse region of thickness ε/2.

5.4 results and discussion

5.4.1 The diffuse boundary approximation

We first address the question of how the diffuse boundary approxima-Diffuse boundary
test tion influences the solution. Our first simulation considers an isotropic

equilibrium shape where ε = 0.015 and θc = 3π/4. Accordingly we
choose dx = dy = 0.0025 and τ = 10−4 The result is displayed in Fig.
11 as surface plot from top view. The picture on the left hand side
shows that shape of the equilibrium state appears to not be disturbed
by the diffuse boundary approximation. The picture on the right hand
side shows a zoom into the region about the substrate. It is clearly
visible that the approximate solution satisfies homogeneous Neumann
boundary conditions at the numerical boundary at y = 0 and θc is
approximated within a diffuse region of thickness ε/2.

Since it is not immediately clear how and at which point the con-
tact angle in this diffuse domain framework should be evaluated, we
decided to compare different approximations to the exact equilibrium
state instead. The exact equilibrium state in this case is a truncated
circle, and the comparison is shown in Fig. 12. The parameters are ex-
actly the same as in Fig. 11 except for ε. We tested ε = 0.015, ε = 0.03
and ε = 0.45 and documented the influence on the corresponding
approximate solutions. In the domain away from the substrate the
approximate solutions appear to be located slightly more towards
the inside of the exact solution for bigger values of ε. However this
difference is small compared to the size of ε, as shown in Fig. 12 a).
The approximation of the equilibrium contact angle is shown in Fig. 12

b). We suggest the convergence towards the exact equilibrium contact
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Figure 12: Contour plots of the isotropic equilibrium state for ε = 0.015, ε = 0.03 and
ε = 0.45 in comparison to the analytic equilibrium state. As in the previous
simulation we chose θc = 3π/4, dx = dy = 0.0025 and τ = 10−4 a) left: The
solutions for bigger values of ε appear to be located slightly more towards the
inside of the exact solution in the domain away from the substrate. However
this difference is small compared to the size of ε. b) right: zoom (of a)) into the
region about the substrate. The Figure suggests the convergence towards the
exact equilibrium contact angle θc as ε→ 0.

angle θc as ε→ 0.

Note that in the following we will cut-off the diffuse boundary layer
at y = 0 and shift the whole system down about ε/2 in order to better
compare to existing results in the literature.

5.4.2 Different mobilities

We next address the question of how the mobility influences the
evolution. As motivated in the introductory section of Chapter 3, the
frequently applied mobility m(u) = 1− u2 does not lead to motion by
pure surface diffusion in the sharp interface limit of the present model.
Instead, the sharp interface limits which we derived in Chapter 3

show that the mobility (51), i.e. m(u) = (1− u2)2 turns out to recover
this physical process correctly. In the following we will document
the difference of these two particular mobilities in corresponding
simulations.

We start with a comparison motivated by a simulation given in Comparison to the
result by Jiang et. al[52]. Considering the isotropic case of (49)- (49c), Jiang et. al simulate

the evolution of a retracting solid film with mobility m(u) = 1− u2,
as shown in Fig. 4 in [52]. In order to compare to this result, we
chose a similar setting, i.e. we confine ourselves to the isotropic case,
define an initial state which is a rectangle, located in [0.5, 0.5]× [0, 2]
of a [0.7, 0.7]× [0, 0.7] computational domain, chose ε = 0.01 and the
Young contact angle θc = 3π/4. The mesh size is dx = dy = 0.002 and
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Figure 13: Numerical result showing the evolution of two thin films with different mobility where
ε = 0.01 at a) t = 0, b) t = 1, c) t = 10, d) t = 50, e) t = 100, f) t = 150. In c) it is
clearly visible how the film corresponding to the mobility m(u) = (1− u2)2 (pink solid
line) forms a little valley in the middle whereas the film corresponding to the mobility
m(u) = 1− u2 (blue dashed line) moves upwards at x = 0. In e) and f) the corresponding
equilibrium shape, which is a truncated circle, is displayed (green dotted line), which
shows, that the film corresponding to the mobility m(u) = 1− u2 achieves its equilibrium
much faster.

the time step is fixed as τ = 5 · 10−5. The equilibrium shape of the
thin film island is again a predictable truncated circle.

The simulation, see Fig. 13, shows how the film which corresponds
to the mobility m(u) = 1− u2 evolves clearly faster than the film corre-
sponding to m(u) = (1− u2)2. In particular the film with m(u) = (1−
u2)2 achieves its equilibrium at approximately t = 100, see Fig. 13 e),
whereas the film corresponding to m(u) = 1− u2 needs significantly
longer. Furthermore the evolution corresponding to m(u) = 1− u2

is in good qualitative agreement with the simulation given in Fig. 4

in the reference [52], which suggests the correctness of the numerical
algorithm.

Observing that the evolution corresponding to the model withPinch-off and
mobility m(u) = (1− u2)2 is not only slower in general but also differs quali-
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Figure 14: Numerical comparison between the evolution with mobility m(u) = (1− u2)2

and m(u) = 1− u2 where ε = 0.02, dx = dy = 0.002 and τ = 0.001 at a) t = 0, b)
t = 1, c) t = 5, d) t = 10 and e) t = 20. The mobility m(u) = 1− u2 leads to the
formation of one single crystal whereas the mobility m(u) = (1− u2)2 results in
film pinch-off.
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tatively in view of the valley which forms in the middle of the film,
see Fig. 13 c), the question naturally arises as to whether there is a
critical film length at which the faster film contracts to a single droplet
whereas the slower film pinches off. The answer is yes, as shown in
Figure 14. Here we simulated a fourfold anisotropic surface energy
with strength G = 0.05. The other parameters are θc = 3π/4, ε = 0.02,
dx = dy = 0.002 and τ = 0.001. As expected the film corresponding
to m(u) = 1− u2 forms a single equilibrium crystal, whereas the film
corresponding to m(u) = (1− u2)2 pinches off. The Figure shows in
addition the exact equilibrium shape, which may be determined by
the Winterbottom construction [112]. A closer look at Fig. 14 e) reveals
that the analytical equilibrium shape is a little bit "smoother" than
the numerical solution. This observation was also made in [110] and
the explanation therein is, that in the anisotropic surface energy case,
more grid points are required to capture the faceting morphology. In
the reference the problem is solved by choosing more "marker" points
and this may also be the solution in our case.

5.4.3 Different anisotropies

In our last simulation we consider two different anisotropies regardingPinch-off with
different anisotropies their pinch-off behavior. Fig. 15 shows two films, with fourfold (n =

4) and sixfold (n = 6) symmetry, respectively. Note that the film
corresponding to n = 4 is the same as shown in Fig. 14 and the
parameters are ε = 0.02, dx = dy = 0.002 and τ = 0.001. The sixfold
symmetry leads to the formation of one single crystal, whereas the
fourfold symmetry results in film pinch-off. This can be explained by
the fact that the sixfold anisotropy, in the present orientation, prefers
flat surfaces in x-direction, which prevents the formation of a valley
in the middle of the flat film. However, the fourfold symmetry prefers
to develop corners in the y- direction, which supports that the film
touches the substrate and pinches off.

5.5 outlook

As already mentioned in the introductory Section 5.1, the numerical
results shown in this Chapter present a first evaluation of the current
numerical code since it was completed shortly before the submission
of this work. The present simulations serve as motivation and im-
ply many other interesting questions, which we would like to study
numerically in the near future.

To begin with , there is the question if a scenario as shown in Fig. 14Further mobility
tests may be repeated in the isotropic case. We already tried different film

lengths in this situation, but the critical film length in the isotropic
case appears to be significantly larger than in the fourfold anisotropy
case. However, we expect that this critical film length exists.
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Figure 15: Numerical comparison between the evolution of two films with fourfold (n = 4)
and sixfold (n = 6) symmetry, where ε = 0.02, dx = dy = 0.002 and τ = 0.001.
The displayed times are a) t = 0, b) t = 1, c) t = 5, d) t = 10 and e) t = 30.
The sixfold symmetry leads to the formation of one single crystal, whereas the
fourfold symmetry results in film pinch-off.
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The next interesting aspect is the question of how the anisotropy in-
fluences film pinch-off. To this end, various film lengths and anisotropies
should be simulated. Furthermore, the influence of the contact angle
could be investigated.

In view of the anisotropic case, the convergence towards the exact
solution in view of ε and the grid size should be studied. Then it wouldSharp interface

comparison be interesting to compare to simulations of the corresponding sharp
interface model, in particular in view of the mobility, and moreover to
evaluate the characteristic variables such as dewetting rate or pinch-
off time and compare to the known values from the sharp interface
representation, at least in the isotropic case.

Finally an extension of the model and corresponding numericalExtension to 3D

results in 3D are conceivable, which also offers the possibility to
analytically study further characteristic phenomena, such as fingering
instabilities or pinch-off in 3D.
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6
L I N E A R S TA B I L I T Y A N A LY S I S

6.1 an introduction to linear stability analysis

Linear stability analysis is one of the most important tools to predict The basic idea and
classical applicationspattern formation in many phenomena in nature and technological

processes. Historically, this theory has been developed to explain
some of the most fundamental instabilities in hydrodynamics and
other fields, such as Rayleigh-Bénard convection or vortices in Taylor-
Couette flow, to name only two examples. The basic idea is to assume
that the emergence of a pattern is initiated by infinitesimally small
perturbations of a typically uniform base state, which then evolve
according to a linearized system of model equations. If the shape of the
base state is constant in time, the coefficients of the linearized problem
are time-independent and the general solution can be constructed,
in principle, from the knowledge of the spectrum of the operator
that describes the linearized model. If the spectrum extends into
the right half of the complex plane, some components of a generic
perturbation (arising in practice as noise, for example) will grow,
typically exponentially, thus driving the system into a new state.
Moreover, the part of the spectrum with the largest real part will
eventually dominate the evolving features and e.g. determine the
wavelength of periodic patterns. This approach is commonly called
normal modes analysis and has shown to be an accurate method for a
vast range of stability problems.

However, this concept has to be reconsidered for problems where Transient growth

the corresponding eigenvalue problem has non-orthogonal eigenfunc-
tions i.e. the linearized operator is non-normal. In this case, even if
all of the corresponding eigenvalues, or growth rates, are negative,
perturbations may still be amplified arbitrarily large. This is known as
transient growth and has been established as a mechanism that can
give sufficiently large amplitude corrugations to destabilize the system
by exciting non-linear effects [14, 41, 45]. In fact, it was shown in [108]
that transient growth can be investigated within the framework of
pseudo-spectra of the corresponding linear system. Since then, these
ideas have been put to fruitful use in many (in)stability problems,
e.g. in fingering problems for thin films [6, 47] or in Rayleigh-Bénard-
Marangoni convection [25].

Furthermore, for many stability problems the corresponding base Non constant base
statesstates are not constant and the normal modes analysis fails for that

reason. To still get information on the dominant wavelength of the
instability, amplifications of the initial condition can be computed

109
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numerically by solving the linearized system directly, i.e. as an initial
value problem, in some cases combined with an optimal control ap-
proach to find the perturbation that leads to the largest amplification
and therefore dominates the features of the instability [25, 29, 111].
This essentially takes up the idea of transient growth for non-normal
operators, see also [102]. Although, in principle, it is possible to nu-
merically proceed in this way, it is desirable to recover the type of
insight into the mathematical structure of the instability that is usually
provided by spectral analysis for time-independent base states.

In the literature, a frequently used approach for time-dependent"Frozen mode"
stability analysis stability problems is the quasi-stationary or so-called "frozen-mode"

approximation where the time-dependence appearing in the coeffi-
cients of the linearized system is treated as a parameter. For each
value of this parameter, the eigenvalues are inspected with respect
to their position in the complex plane. This has been described in a
series of articles in [1, 66] for a receding free film problem or [72] for
evaporating the solutal Marangoni instability. Difficulties arise if the
system changes significantly during the evolution of the perturbation,
for example, if the frozen mode analysis has unstable modes at the
beginning which become stable later on. More generally, the problem
with this approach is that it completely ignores the influence of the
changing base state on the history of the perturbation.

An alternative to this quasi-stationary approach is provided if theMethods exploiting
multiple scales base state changes slowly compared to the time scale of the linearized

system. Then a multiple scale method can be used to incorporate the
change into an approximation of the evolution of the perturbation. In
this direction a recent paper by Hennessy et al. [44] develops an exten-
sion of the multiple-scale method for a parabolic convection-diffusion
equation with slowly and non-periodically changing coefficients and
a slowly moving boundary that has been derived from a model for
Bénard-Marangoni convection in a liquid layer of a volatile solvent
and a non-volatile polymer. There, the connection between the eigen-
values of the momentary system and the amplification of an initial
perturbation was derived via a multiple-scale method making use of
the time-scale separation between the fast diffusive time scale which is
relevant for the perturbation and the slow change of the concentration
and thickness of the layer in the base state. The derivation included
higher corrections in order to assess the validity of the asymptotic ex-
pansion. Alternatively, an asymptotic approximation via a WKB ansatz
has been given in [43] and for the case of Rayleigh-Bénard convection
with time dependent heating a similar approach was investigated in
[69].

The aim of this chapter is to introduce a linear stability analysis forLinear stability for
thin film problems a family of thin film problems which includes the multiscale aspects

that arise from the time dependence of the base states. This method
represents an improvement compared to the standard procedure and
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Figure 16: A sketch of a liquid film spreading down an inclined plane with
a sinusoidal perturbation in the spanwise (y-) direction.

as such it is advantageous to recall the main steps of the classical stabil-
ity analysis. This motivates the following section which demonstrates
the standard method on the base of an example.

6.1.1 The classical linear stability analysis- An example

We consider the instability of the profile for a liquid film spreading Fingering
instabilities of a
driven liquid film

down an inclined plane. As experimentally studied by Huppert [48],
the flow front develops a series of small amplitude waves of character-
istic constant wavelength across the slope. The amplitude of the waves
increases in time as the maxima travel faster than the minima, while
the wavelength of the instability remains unaltered. These fingering
instabilities have already been studied in several papers, for instance
in [109] or [6], and offer a good example in order to demonstrate the
procedure of the classical linear stability analysis.
We assume that the fluid flows down the plane in the x direction, the Model formulation

profile is parameterized by a height h(x, y, t) in the z direction, and
the fingers occur as an instability in the y direction (see Figure 16). In
the presence of both gravity and surface tension, the height profile,
h(x, y), is obtained from the solution of the height-averaged continuity
equation

∂th + ∂x(h3) +∇ ·
(
h3∇∆h− D(α)h3∇h

)
= 0, (257)

where α is the inclination angle, D(α) = cot(α)× (3Ca)1/3 and Ca is
the capillary number. The far field conditions after nondimensional-
ization read

h→ 1, as x → −∞ and h→ b, as x → ∞. (258)
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Figure 17: Base state profiles for b = 0.1, b = 0.05 and b = 0.02. The first
graph shows the case D = 0 and the second D = 2.5. Note that
the height of the bump becomes smaller for larger values of D or
b.

Following the model proposed by Troian et al. [109] we assume that
there exists a thin film of height b ahead of the contact line, which
relieves the singularities due to the no slip boundary conditions. A
justification of this assumption can be found in [6].

The base state

The base state before the instability [109] is a so-called traveling waveStep 1: Solve the
equation for the base

state
solution hb(x−Vt), which is constant in the y-direction, moves with
constant velocity V in x-direction and satisfies

−Vhb + h3
b + h3

b∂xxxhb − D(α)h3
b∂xhb = d, (259)

where d is a constant of integration. Evaluating (259) over (−∞, x] and
including the matching conditions (258) uniquely fixes V and d to be

V =
1− b3

1− b
, and d = −b

1− b2

1− b
. (260)

Given b and D, the equation for the base state (259) can be solved
and provides the shape of the traveling wave. The resulting systemNumerical

evaluation is discretized in space using standard centered finite differences on
an equidistant grid (with a typical grid spacing ∆x = 0.1) with a
(fully implicit) Euler scheme. Figure 17 shows the profiles for different
values of b and D. The evaluation shows that the height of the bump
strongly depends on b and D. In the following we will see that the
length scale of the instability is given by the characteristic width of
this bump.

Linear stability analysis

We now present the traditional approach to hydrodynamic stabilit,yStep 2: Consider a
moving reference

frame
which is via a linearization of the equation about the base state fol-
lowed by an eigenvalue analysis of the linearized problem. The first
step is to reformulate the problem in a reference frame moving with
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the speed of the traveling wave, i.e. we transform to x̃ = x− Vt, so
that after dropping the tilde, equation (257) reads

∂th−V∂xh + ∂x(h3) +∇ ·
(
h3∇∆h− D(α)h3∇h

)
= 0. (261)

Then we introduce linear perturbations to the base state, i.e. we con- Step 3: Introduce
linear perturbations..sider the ansatz

h(x, y, t) = hb(x) + εh1(x, y, t), (262)

with 0 < ε � 1 and a perturbation h1(x, y, t), with normalized ini-
tial height. Applying (262) in (261) and considering only the O(ε)

contribution reveals the linear stability problem

0 =∂th1 −V∂xh1 + ∂x(3h2
bh1) +∇ ·

(
h3

b (∇∆h1 − D(α)∇h1)
)

+ ∂x
(
3h2

bh1 (∂xxxhb − D(α)∂xhb)
)

.
(263)

Transformation of the y-direction into Fourier space ..and transform into
Fourier space

h1(x, y, t) =
∫ ∞

−∞
ĥ1(x, t; q) exp(iqy) dq, (264)

enables to consider equation (263) for each wavenumber q

0 =∂tĥ1 −V∂x ĥ1 + ∂x(3h2
b ĥ1) + ∂x

(
h3

b (∂xxx − D(α)∂x) ĥ1

)
− q2

(
∂x

(
h3

b∂x ĥ1

)
+ h3

b (∂xx − D(α)) ĥ1

)
+ q4h3

b ĥ1

+ ∂x

(
3h2

b ĥ1 (∂xxxhb − D(α)∂xhb)
)

.

(265)

Furthermore we need to provide an initial perturbation for each
wavenumber q, which we define as

ĥ1(x, t0; q) =: ĥ1,t0(x, q). (266)

The next step is to separate the variables, i.e. for each fixed wavenum- Step 4: Separate the
variables and solve
the eigenvalue
problem

ber q we apply the ansatz

ĥ1(x, t; q) = Ψ(x; q)T(t). (267)

Without loss of generality we may assume that ĥ1 6= 0. Applying (267)
in (265) and dividing by Ψ(x)T(t) then reveals

∂tT
T

=
V∂xΨ− ∂x(3h2

bΨ)− ∂x
(
h3

b (∂xxx − D(α)∂x)Ψ
)

Ψ

+
q2 (∂x

(
h3

b∂xΨ
)
− h3

b (∂xx − D(α))Ψ
)
− q4h3

bΨ
Ψ

−
∂x
(
3h2

bΨ (∂xxxhb − D(α)∂xhb)
)

Ψ
.

(268)

Observing that the left hand side is independent of x and the right
hand side is independent of t, we conclude that there exists λ ∈ C
such that

∂tT = −λT (P1), and LqΨ = λΨ (P2), (269)
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where Lq is the linear operator

LqΨ =V∂xΨ− ∂x(3h2
bΨ)− ∂x

(
h3

b (∂xxx − D(α)∂x)Ψ
)

+ q2 (∂x
(
h3

b∂xΨ
)
− h3

b (∂xx − D(α))Ψ
)
− q4h3

bΨ

− ∂x
(
3h2

bΨ (∂xxxhb − D(α)∂xhb)
)

.

(270)

Realizing that (P1) has the solution

T(t) = T0 exp (λt) , (271)

where λ is an eigenvalue of the linear operator Lq, and (P2) is solved
by a superposition of the eigenfunctions Ψλ of Lq, the solution (267)
becomes

ĥ1(x, t; q) = ∑
λ

aλ(q) exp(λt)Ψλ(x; q), (272)

where the coefficients aλ(q) correspond to the coefficients of the initial
perturbation for each wavenumber q

ĥ1,t0(x, q) = ∑
λ

aλ(q)Ψλ(x; q). (273)

Note that we assumed that the initial perturbation ĥ1,t0 may be repre-
sented by a superposition of eigenfunctions of the linear operator Lq,
which is reasonable since we are interested in perturbations which are
amplified the most and these are clearly found among the eigenfunc-
tions of the linear operator Lq. Furthermore, we would like to note
that, depending on the properties of the operator Lq, the sum over λ

may be infinite or even not discrete, i.e. an integral.
Rearranging the entire solution (264), we obtain

h1(x, y, t) =
∫ ∞

−∞
∑
λ

aλ(q) exp(λt + iqy)Ψλ(x; q) dq. (274)

Considering the evolution of this solution it becomes clear that theStep 5: Evaluate the
dispersion relation eigenfunctions corresponding to the eigenvalue with maximal real part

will be amplified at most and in fact exponentially in time. Moreover
for each wavenumber q there exists an eigenvalue λM(q) of Lq which
has maximal real part and the function λM : R+ → R is called
dispersion relation. This function is the characteristic variable which
is typically evaluated in a linear stability analysis.
The eigenvalues λM(q) as a function of q are then determined by

solving the full linear PDE (265) for each q. Choosing a generic initial
condition and considering

d
dt

ln
[
‖ĥ1(·, t; q)‖∞

]
= λM(q), (275)

after a sufficient long time provides the exponential growth or decay
rate. The numerical scheme is a standard implicit finite-difference
scheme, see e.g. [5], where the only difficulty is that considering small
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Figure 18: Dispersion relation for b = 0.1, b = 0.05 and b = 0.02. The first
graph shows the case D = 0 and the second D = 2.5.

values of b requires to use a non-uniform mesh with refinement at the
apparent contact line in order to completely resolve the unperturbed
profile hb. Figure 18 shows λM(q) for different values of b and for
D = 0 and D = 2.5. In both cases, the dominant wavelengths turn out
to be less stable for smaller values of D or b which is in qualitative
agreement with the results given in [109] and [6].

6.1.2 Long wave analysis

In addition to the evaluation of the dispersion relation λM(q) from
the linearized PDE (265), the analysis of the stability problem can be
continued in view of a long wave asymptotic analysis. Realizing that
the wavelength lλ is inversely proportional to the wavenumber q, i.e.
lλ ∝ 1/q, this suggests asymptotic expansions in view of the small
parameter q

ĥ1 = ĥ1,0 + q2ĥ1,1 + O(q4)

λM(q) = λM(0) + q2λM(q2) + O(q4).
(276)

Note that we have chosen quadratic expansions in q because only
quadratic orders of q appear in (265). Moreover, the numerical evalua-
tion, see Fig. 18, suggests quadratic behavior of λM in q near q = 0.
The leading order problem of (265) then becomes Translational mode

to leading order
λM(0)ĥ1,0 =−V∂x ĥ1,0 + ∂x(3h2

b ĥ1,0) + ∂x

(
h3

b (∂xxx − D(α)∂x) ĥ1,0

)
+ ∂x

(
3h2

b ĥ1,0 (∂xxxhb − D(α)∂xhb)
)

.
(277)

From the far field conditions (258) we conclude that λM(0) = 0 and
recalling (259) reveals

ĥ1,0 = ∂xhb. (278)

Note that (278) implies that ĥ1,0 is as well as hb constant in the y-
direction and the corresponding particular instability is called transla-
tional mode.
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Proceeding to O(q2) we find

λM(q2)∂xhb =−V∂x ĥ1,1 + ∂x(3h2
b ĥ1,1) + ∂x

(
h3

b (∂xxx − D(α)∂x) ĥ1,1

)
− q2 (∂x

(
h3

b∂xxhb
)
+ h3

b (∂xx − D(α)) ∂xhb
)

+ ∂x

(
3h2

b ĥ1,1 (∂xxxhb − D(α)∂xhb)
)

.
(279)

Integrating in x over (−∞, ∞) and exploiting the far field conditions
then leads to

λM(q2)(b− 1) =
∫ ∞

−∞
h3

b (∂xxxhb − D(α)∂xhb)

=
∫ ∞

−∞
d + Vhb − h3

b

=
∫ ∞

−∞
−b− b2 + (1 + b + b2)hb − h3

b

=
∫ ∞

−∞
−(h0 − 1)(h0 − b)(h0 + 1 + b),

(280)

where again we exploited (259) and furthermore the identities

d = −b− b2, and V = 1 + b + b2.

At this point we conclude from the long wave analysis thatCharacterization of
λM for long
wavelengths

λM(β) =
β2

1− b

∫ ∞

−∞
(h0 − 1)(h0 − b)(h0 + 1 + b) + O(q4), (281)

where the main message is, that if the base state hb satisfies hb ≤ 1,
then λM(β) ≤ 0 at long wavelengths which implies linear stability
of the dewetting front. Otherwise, in order to observe a positive
dispersion relation λM(β), the base state hb must be greater than one
on a sufficiently large subset of R, such that the positive part of the
integral (281) cancels out the negative part. Consequently the size of
the bump of hb significantly influences the type and strength of the
instability, at least for long wavelengths.

6.1.3 Why the classical stability analysis fails in the case of non-constant
base states

The previous section has demonstrated how the size and shape ofWhat if the base
state evolves in time? the base state may significantly influence the instability, at least for

long wavelengths, as concluded from (281). Now imagine that the
base state evolves in time and perhaps even provides a growing bump.
This would imply that also the dispersion relation would evolve in
time and each "frozen" base state would have a different dominant
wavenumber. Even if the evolution of the base state occurs on a much
slower time-scale than the characteristic instability, the history of the
instability should not be neglected.
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6.2 a new approach for the stability analysis in thin

film equations

We are now in the position to proceed to the main part of this chapter, The thin film
equationswhich is the stability analysis of unsteady, non-uniform base states.

In particular we will present a linear stability analysis for the family
of thin film problems characterized by degenerate or non-degenerate
parabolic equations

ht +∇ · (hn∇∆h) = 0, (282)

with 0 ≤ n < 3, where we will present detailed analytical and numeri-
cal results for the cases n = 0 and n = 2, or 3/2 < n < 3 respectively,
wherever possible. In general, this class of problems arises from mass Characterization of

the evolutionconserving free boundary problems for the thin film height h. When
an extended film is deposited onto a partially wettable substrate and
then retracts after an initial rupture event has created a hole, the grow-
ing rim of the hole develops undulations along its spanwise direction
[9, 10, 31, 96]. The value of n here depends on the condition imposed
at the liquid-solid substrate.

It is well known that modeling the contact line is a very difficult The critical case
n = 3topic. For n = 3, for example, stress singularities near the contact

line have to be taken into account due to the no-slip boundary con-
dition. This case already occurred in the introductory example, see
Section 6.1.1, and was resolved via a method proposed by [109], thus
via including a thin film ahead of the contact line, referred to as
precursor, which is much smaller than the typical height of the film.
This technique also applies to other values of n, where the precursor
film commonly represents the characteristic microscopic physics in a
particular experiment [6, 58, 86].

For large slip, which arises at the liquid/solid boundary as a mani- n < 3, moving
boundariesfestation of the non-Newtonian flow properties in shearing polymer

films, the value is n = 2 [86]. For this value of n, and in fact for all
non-negative n < 3, imposing a fixed contact angle and a no-flux
condition at h = 0 leads to a problem formulation that is consistent
with a moving contact line [35, 57]. For n = 2, undulations evolve into
a characteristic finger–like pattern [84].

Rims of retracting solid films are susceptible to a similar instability The case n = 0, solid
state dewettingwhich occurs in various practical applications. It can, for instance,

be observed when thin silicon films are annealed and lead to the
formation of fingering instabilities in the 〈100〉 oriented front [65].
The fingers break down and form nanoislands at regular intervals,
a process that is used in the fabrication of advanced nanodevices
[51, 61]. Formation of protrusions and pinch-off are also observed in
experiments with gold films [53]. For interfaces of solids subject to
surface diffusion [18, 55, 76, 81, 114], the material flux arises from
gradients of the curvature-dependent chemical potential, leading to a
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fourth order, non-linear equation for the evolution of the solid surface.
Despite the different transport mechanism – surface diffusion [81] –
the mathematical model governing the evolution of the height h again
leads to a differential equation of form (282) but with n = 0. At the
contact line, a fixed contact angle and no flux are commonly imposed
as boundary conditions.

Since the thickness of the flat film into which the rim moves is as-The "frozen mode"
stability analysis for

this class of
equations

sumed to be constant, while the rim itself grows, the time dependence
cannot be removed by a single choice of self-similar coordinates. Thus,
the linearization leads to a problem with time-dependent coefficients
which have been approached by different authors. In [55], the linear
stability of a rim in a solid film retracting under surface diffusion is
addressed by a "frozen mode" analysis where the time dependence of
the coefficients in the linearized problems is treated as a parameter.

Another approach was pursued in [84] for liquid dewetting, whereWKB stability
analysis the initial value problem resulting from the linearization was solved

numerically to track the amplification of a perturbation. On the other
hand, for long times, the leading order outer problem for the rim
admits a traveling wave solution [35, 58], since the inflation of the rim
is slow once it has become large compared to the unperturbed film.
If this growth is neglected, the traveling wave solution can be treated
as stationary in a suitably chosen co-moving frame of reference and a
normal-mode ansatz is possible again. Using scaling arguments to take
into account the evolving base state, the amplification of a perturbation
was inferred from the resulting spectrum [58, 85]. A related approach
was followed for a model of anisotropic solid dewetting in [27].

In this study we will develop a systematic WKB analysis to de-
termine the evolution of a perturbation which appears at a moving
contact line. The presented method applies to the class of thin film
equations (282), where 0 ≤ n < 3, commonly known to model thin
films with large slip lengths or solid films where surface diffusion is
dominant. For these problems our approximation remains valid on
the long time scale of the changing system, and is used to derive in
particular the wave number of the most amplified perturbation. This
wave number is different from the most growing one in a frozen-mode
approach and is rapidly attained once the base state has entered an
approximately self-similar scaling. Moreover the asymptotic solution
for the dispersion relation in the long wave limit reveals that the de-
pendence of the growth rate on the wave number is linear, whereas in
many other capillary instability problems it is quadratic, such as in
the introductory example given in Section 6.1.1.

This main part of the present chapter is organized as follows. AfterOverview of this
chapter formulating the free boundary problem for (282) in Section 6.3, we

introduce the long-time asymptotics for the base state in Section 6.4.
Detailed analytical and numerical results, referring to this and the
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following subsections, are presented for the cases n = 0 and n = 2, or
3/2 < n < 3 respectively, wherever possible. In Section 6.5, a WKB
approximation for the associated linearized problem is developed
and used to determine the most amplified mode and its wavenumber.
Finally, we summarize our results in Section 5.

6.3 model formulation

We consider an evolution problem for the film profile z = h(x, y, t),
given for t > 0 by the PDE (282) on the time-dependent domain
Ω = {(x, y); s(y, t) < x < ∞, −∞ < y < ∞} and by appropriate
conditions at the free boundary and in the far field, namely

h = 0 , x = s(y, t) (283a)

∇h · ns = θ , x = s(y, t) (283b)

hn (∇∆h · ns) = 0 , x = s(y, t) (283c)

lim
x→∞

h = 1. (283d)

The first three equations represent, respectively, the presence of a
contact-line with fixed slope θ and no flux at x = s(y, t), and the last
condition prescribes that we have a flat film at x → ∞, with a thickness
that has been scaled to one. Here,

ns = (1,−∂ys)/
(
1 + (∂ys)2)1/2

is the normalized normal vector along x = s(y, t) in the (x, y)- plane
pointing into Ω, as sketched in Figure 19. The initial conditions

h(x, y, 0) = hi(x, y), s(y, 0) = si(y), (284)

are assumed to be chosen consistent with (283). We note that the Distinction between
the different cases
concerning n

interval 0 ≤ n < 3 subdivides into essentially three separate cases, n =

0, 0 < n ≤ 3/2, and 3/2 < n < 3. The first one is instructive, because
the PDE is linear and therefore the analytic results can be carried out
much further. Whereas it has a simple asymptotic structure, the rim
profile pinches off after a finite time. While for n > 3/2 this does not
happen, the film profile decomposes into different asymptotic scaling
regimes that need to be matched. The intermediate case combines
both features and is not pursued here further since it does not add to
the discussion of the stability analysis.

6.4 base state

We consider a time-dependent base state hb = hb(x, t) which is con- Step 1: Solve the
equation for the base
state

stant in the y-direction and has a straight contact line sb = sb(t). We
transform to a coordinate system moving with the contact line via
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Figure 19: A sketch of a retracting rim with a sinusoidal perturbation in the
spanwise (y-) direction.

hb(x, t) = h̃b(x̃, t), x̃ = x− sb(t), so that after dropping the tilde, we
have

∂thb − ṡb ∂xhb + ∂x
(
hn

b ∂xxxhb
)
= 0 , for x ≥ 0, (285a)

hb = 0 , ∂xhb = θ , hn
b ∂xxxhb = 0 , at x = 0, (285b)

lim
x→∞

hb = 1 . (285c)

Notice that due to mass conservation, hb satisfies∫ ∞

0
hb(x, t)− hb(x, 0) dx = sb(t). (286)

In fact, an equivalent formulation of (285) that we use as the basis
for the numerical discretization is achieved by replacing the third
condition in (285b) by (286). The domain is truncated at x = L∞,
where L∞ is chosen large enough so that the growing rim structure is
accommodated up to the desired time, typically much larger than 100.
The resulting system is discretized in space using standard centeredNotes on the

numerical evaluation finite differences on an equidistant grid (with a typical grid spacing
∆x = 0.1), and a trapezoidal rule for (286), and in time with a (fully
implicit) Euler scheme. The latter is combined with step doubling and
extrapolation for higher accuracy and time step control. For the initial
conditions, we used a smoothed Heaviside profile

sb(0) = 0, hb(x, 0) =

1− θ(x− 1)2/2 for 0 ≤ x ≤ 1,

1 for x ≥ 1.
(287)

Long time solution

Consistent with the analysis in [35, 57, 76, 86], the numerical solutionsSlow time-scale τ for
the evolving

basestate
show that for long times, t→ ∞, the position of the contact line sb and
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the maximum height of the rim evolve according to a power law, see
figs. 20(b) and 21(b). We briefly summarize and adapt the previous
results to the case studied here and compare with the numerical
results.

To capture the long time behavior analytically, we introduce a second
time-scale τ = δt, where δ � 1, and consider the limit δ → 0 with τ

fixed. The observed power law behavior suggests rescaling sb by δ−σ,
where the exponent σ > 0 needs to be determined. Mass conservation
(286) and the assumption that height and width of the rim rescale
identically then motivates the choices

sb(t) = δ−σSb(τ) , x = δ−σ/2X, hb = δ−σ/2Hb. (288)

Inserting these scalings into (285a) reveals that only the second and
third terms can be balanced (the scaling of the term with the time
derivative always being much smaller than the other two), and this
balance implies σ = 2/(5− n). Thus, the rescaled equations read Rescaled system for

the base state
δ1/(5−n)∂τ Hb − Ṡb ∂X Hb + ∂X (Hn

b ∂XXX Hb) = 0 , for X ≥ 0, (289a)

Hb = 0, ∂X Hb = θ, Hn
b ∂XXX Hb = 0 , at X = 0, (289b)

lim
X→∞

Hb = δ1/(5−n) , (289c)

where we remark that the dot over Sb now denotes derivatives with
respect to τ. Next, we expand

Hb(X, τ; δ) = Hb,0(X, τ)+O(δ1/(5−n)), Sb(τ; δ) = Sb,0(τ)+O(δ1/(5−n)).
(290)

The leading order problem is given by (289a) and (289b) after dropping
the δ1/(5−n) term that appears in the ODE. Integrating and using the
leading order boundary conditions

Hb,0 = 0, ∂X Hb = θ, Hn
b,0∂XXX Hb,0 = 0, at X = 0, (291)

then yields
Hn−1

b,0 ∂XXX Hb,0 = Ṡb,0 . (292)

Notice that θ and Ṡb,0 can be removed from (291) and (292) by rescaling

X = θn/(3−n) ξ

Ṡ1/(3−n)
b,0

, Hb,0 = θ3/(3−n) φb

Ṡ1/(3−n)
b,0

. (293)

Case n = 0

In this case, we simply can use the leading order version of the Base state for n = 0

condition (289c) in the far field,

lim
X→∞

Hb,0 = 0, (294)
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The boundary value problem (291), (292) and (294) is linear and has
the solution

Hb,0(X, τ) =
2√
3

θ

Ṡ1/3
b,0

exp

(
−

Ṡ1/3
b,0 X
2

)
sin

(√
3

2
Ṡ1/3

b,0 X

)
, (295)

Moreover, to leading order, we obtain from (286)∫ ∞

0
Hb,0 dx = Sb,0. (296)

Inserting the solution for Hb,0 yields a differential equation for Sb,0,

S3
b,0 Ṡ2

b,0 = Mθ3, (297)

where

M ≡
(∫ ∞

0
φb dξ

)3

, (298)

and assuming that Sb,0(0) = 0 gives the solution

Sb,0 = (5/2)2/5 θ3/5τ2/5. (299)

Written in the original variables, we have for large t

sb ∼ (5/2)2/5 θ3/5t2/5 = 1.44 θ3/5t2/5. (300a)

Furthermore, for the maximum of the base state maxx hb and the value
of x = xm(t) where it is achieved, we obtain

max
x

hb(x, t) ∼ (2/5)−1/5 e−ß/
√

27 `4/5 t1/5 = 0.656 `4/5 t1/5 (300b)

xm(t) ∼
π√
27

24/5 51/5 θ−1/5 t1/5 = 1.45 θ−1/5 t1/5. (300c)

The numerical profiles for Hb are shown in fig. 20(a). The filmNumerical
evaluation quickly forms a capillary rim that grows for large times in an ap-

proximately self-similar fashion, except in the far-field which is con-
stant, with approximately the same scaling factor for the height and
the width so it maintains a fixed contact angle. Notice that at some
stage, the first local minimum to the right of the rim touches zero.
For the simulations shown here, with θ = 1, this happens around
t = tr ≡ 2.25× 105, with maxh = 7.96. Physically, this means that
the diffusing film ruptures and sheds material that collects into an
equilibrium shape while the dewetting by surface diffusion resumes
with a new contact line. Nevertheless, the mathematical formulation
does allow for solutions that are negative and in order to understand
the long time asymptotic structure, it is convenient to investigate these
solutions beyond tr. Since the rupture occurs for large t, we can expect
the asymptotic solutions to yield reasonable approximations even for
a range of t < tr. Indeed, all three asymptotic approximations (300a),
(300b), (300c) agree well with the numerical results for sufficiently
large t, as can be seen in fig. 20(b).
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Figure 20: (a,left) Profiles of the base state for θ = 1 at different times,
obtained by solving (285) numerically (using (286) instead of the
third boundary condition in (285b)), for θ = 1 and n = 0. The
initial data (287) is shown by a thin solid line, later times by thicker
solid lines, for t = tr/2, t = tr, 2tr, 4tr, where tr ≡ 2.25× 105 is
the time at which the first minimum of the profile to the right of
the rim hits zero. All profiles are shown in a co-moving frame
of reference with the contact line fixed at the origin. (b,right)
Evolution of the contact line, sb, the maximum value maxx h and
the position xm where the maximum is achieved. The thin straight
lines are the asymptotic results (300). The thin dotted vertical line
indicates the rupture time t = tr. Figure published in [28].

Case n > 3/2

Note that in this case, the rim decomposes into different scalings Base states for
3/2 < n < 3where the rim takes on the role of the outer solution and needs to be

matched to further layers on the right. The details of this matching
depend on n and are quite intricate in general [57]. For n = 2, there
is just one inner layer and the matching approach for this particular
value of n has been presented in [35, 86]. However the procedure can
be generalized to 3/2 < n < 3, which is carried out in the following.

Let wb(t) be the width of the moving rim in (285) and let wb(t) = Matching conditions
for 3/2 < n < 3δ−1/(5−n)Wb(τ) be the corresponding rescaled variable, according to

the assumption that width and height of the rim scale identically. We
define the boundary layer by

x = δ−1/(5−n)Wb(τ) + δ−µχ , (301)

with χ being the inner variable, where the scaling exponent µ remains
to be determined. Apply (288) for sb while in the inner region hb is
not rescaled and consequently the far-field condition remains

lim
x→∞

hb = 1 . (302)
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Applying (301) in (285a) we obtain

δ∂τhb − δ(3−n)/(5−n)+µṠb∂χhb − δ(4−n)/(5−n)+µẆb∂χhb

+δ4µ∂χ (hn
b ∂χχχhb) = 0 (303)

suggesting the dominant balance µ = (3− n)/(3(5− n)). Expanding
Sb as in (290) and hb, Wb analogously, i.e.

hb(χ, τ; δ) = hb,0(χ, τ) + O(δ1/(5−n)),

Wb(τ; δ) = Wb,0(τ) + O(δ1/(5−n)),
(304)

yields the leading order problem

− Ṡb,0∂χhb,0 + ∂χ

(
hn

b,0∂χχχhb,0
)

. (305)

Integrating once and rescaling χ = ξ/Ṡ1/3
b,0 yields

(hb,0 − 1) + hn
b,0∂ξξξ hb,0 = 0 (306)

with solution

hb,0(ξ) ∼
(

n3

3(3− n)(2n− 3)
(−ξ)3

)1/n

, for ξ → −∞ , (307)

(in accordance with King and Bowen [57]). Hence in outer coordinates
we obtain the matching conditionMatching condition

in outer coordinates

Hb,0(X, τ) ∼
(

n3

3(3− n)(2n− 3)

)1/n

Ṡ1/n
b,0 (Wb,0(τ)− X)3/n (308)

for X → Wb,0(τ) > 0. Note that Wb,0 also denotes the leading or-
der expression for the matching point in between the outer rim and
undisturbed film to the right hand side.

Here, conservation of mass, according to (286), turns to leading
order into ∫ Wb,0(τ)

0
Hb,0 dx = Sb,0 , (309)

Inserting the scalings (293), we obtain

φn−1
b,0 ∂ξξξφb,0 = 1 , (310a)

for 0 ≤ ξ < db, and

φb,0 = 0, ∂ξφb,0 = 1, φn
b,0∂ξξξφb,0 = 0 , at ξ = 0, (310b)

φb,0 ∼
(

n3

3(3− n)(2n− 3)

)1/n

(db − ξ)3/n , for ξ → db, (310c)

where db arises from rescaling Wb,0(τ),

Wb,0(τ) = θn/(3−n) db

Ṡ1/(3−n)
b,0

. (311)
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Moreover we obtain from (309) the differential equation

S(3−n)
b,0 Ṡ2

b,0 = Mθ(3+n), (312)

where M is given by

M =

(∫ db

0
φb,0 dξ

)3−n

. (313)

The differential equation (312) for Ṡb,0 with Sb,0(0) = 0 has the solution

Sb,0 =

(
5− n

2

)2/(5−n)

M1/(5−n)θ(3+n)/(5−n)τ2/(5−n). (314)

In general, (310) has to be solved numerically. For n = 2, the order can Numerical
evaluationbe reduced by one integration and this gives db = 1/2 in the process

[35, 86]; numerically, one finds M = 2.72× 10−2, see [86], and from
this,

sb ∼ 0.394 θ5/3 t2/3 (315a)

for large t, where we have converted back to the original variables.
Moreover, for the maximum of the base state maxx hb and the value of
x = xm(t) where it is achieved, we obtain

max
x

hb(x, t) ∼ (2/3)−1/3M−1/3 max
ξ

φb θ4/3 t1/3

= 0.331 θ4/3 t1/3 (315b)

xm(t) ∼ (2/3)−1/3M−1/3ξm θ1/3 t1/3

= 0.765 θ1/3 t1/3, (315c)

where maxξ φb = 0.870× 10−1 and ξm = 0.201 were obtained from
the numerical solution for (310) computed in [86]. The agreement
between asymptotical and numerical results is excellent. Notice that
the first dip following the maximum in the profiles remains shallow
even as the rims grow, thus showing no indication of a rupture. This
is consistent with predictions that rupture does not occur for n > 3/2,
see [35, 57].

6.5 linear stability

6.5.1 Formulation

We first shift the full problem (282) into the reference frame moving Step 2: Consider a
moving reference
frame

with the contact line of the base state sb(t) by using the same change
of variables as for the base state equation, that is, h(x, y, t) = h̃(x̃, ỹ, t),
x̃ = x− sb(t), and y = ỹ. After dropping the tildes, the PDE becomes

∂th− ṡb ∂xh +∇ · (hn∇∆h) = 0,
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Figure 21: (a,left) Profiles of the base state for θ = 1 at different times,
obtained by solving (285) numerically (using (286) instead of the
third boundary condition in (285b)), for θ = 1 and n = 2. The
initial data (287) is shown by a thin solid line, later times by thicker
solid lines, for t = tre f /2, t = tre f , 2tre f , 4tre f , where tre f ≡ 2.25×
105. All profiles are shown in a co-moving frame of reference
with the contact line fixed at the origin. (b,right) Evolution of the
contact line, sb, the maximum value maxx h and the position xm
where the maximum is achieved. The thin straight lines are the
asymptotic results (315), respectively. Figure published in [28].

while the boundary and far-field conditions remain unchanged. We
introduce perturbations of the base state hb and sb of the formStep 3: Introduce

linear perturbations..
h(x, y, t) = hb(x, t) + ε h1(x, y, t), s(y, t) = ε s1(y, t), (316)

with 0 < ε� 1 and Fourier transform,.. and transform into
Fourier space

h1(x, y, t) =
∫ ∞

−∞
ĥ1(x, t; q) exp(iqy) dq,

s1(y, t) =
∫ ∞

−∞
ŝ1(t; q) exp(iqy) dq.

(317)

In this way we obtain, to O(ε),

∂tĥ1 − L̂ ĥ1 = 0 , for x ≥ 0, (318a)

ĥ1 = −θŝ1 , ∂x ĥ1 = −ŝ1∂xxhb , at x = 0, (318b)

hn
b

(
∂xxx ĥ1 − q2∂x ĥ1

)
+nhn−1

b ∂xxxhb ĥ1 − ṡbĥ1 = 0 , at x = 0, (318c)

lim
x→∞

ĥ1 = 0 , (318d)

where

L̂ ĥ1 ≡ ṡb∂x ĥ1 − ∂x

[
hn

b (∂xxx ĥ1 − q2∂x ĥ1) + n(∂xxxhb)hn−1
b ĥ1

]
+ q2hn

b (∂xx ĥ1 − q2ĥ1) .
(318e)
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For each value of q, we need to provide an initial perturbation of the
Fourier mode with wavenumber q via

ĥ1(x, t0; q) = ĥ1,t0(x; q), ŝ1(t0; q) = −ĥ1,t0(0; q)/θ, (318f)

where, for simplicity, we have chosen the perturbation of the contact
line to be consistent with the first boundary condition in (318b).

For n = 0, the problem (318) was solved with an extension of the Notes on the
numerical evaluationnumerical scheme used for the base state problem (285), that is, finite

differences in space and an extrapolated implicit Euler scheme in time.
The initial perturbation ĥ1,t0 was set equal to the derivative ∂xhb(x, 0)
of the initial condition for the base state (287). A different approach
was used for n = 2, as explained in the part of subsection 6.5.3 focusing
on this case. In both cases, the codes were constructed to track the
evolution of ĥ1 for several wave numbers q simultaneously.

6.5.2 Asymptotic Analysis

Notice that the above problem remains coupled to the base state via Solving a
time-dependent
eigenvalue problem

the second term in (318a) and coefficients in the right hand sides of
the second and third boundary conditions in (318b), and that the base
state is time dependent. The problem can therefore not be approached
by normal modes/separation of variables. For time independent base
states, separation of variables leads to an eigenvalue problem, and
the long time evolution of the perturbation is usually dictated by the
top eigenvalue, which is of often discrete in typical capillary instabili-
ties. We can, however, exploit the fact that for longer times, the base
state evolves on a slower time-scale than the typical perturbations and
approaches an asymptotically self-similar form. The evolution of the
perturbations can then be recovered from the eigenvalue information
by using a multiple scales method or WKB approach [44, 69]. We there-
fore introduce again the slow time scale τ via t = τ/δ, together with
the scalings in (288) and corresponding scalings for the perturbation
variables and for the wavenumber, that is,

ĥ1 = δ−1/(5−n)Φ , ŝ1 = δ−1/(5−n)Ŝ1 , q = δ1/(5−n)Q , (319)

such that the stability problem transforms into Rescaled stability
problem

δ1/(5−n)∂τΦ−L(τ)Φ = 0 for X ≥ 0, (320a)

θ∂XΦ−Φ∂XX Hb = 0, at X = 0, (320b)

Hn
b
(
∂XXXΦ−Q2∂XΦ

)
+nHn−1

b ∂XXX Hb Φ− ṠbΦ = 0, at X = 0, (320c)

lim
X→∞

Φ = 0. (320d)
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Here

L(τ)Φ ≡ Ṡb∂XΦ− ∂X

[
Hn

b
(
∂XXXΦ−Q2∂XΦ

)
+ n(∂XXX Hb)Hn−1

b Φ
]

+ Q2Hn
b
(
∂XXΦ−Q2Φ

)
, (321)

and we combined the two boundary conditions in (318b) into one in
(320b) .

To exploit the fact that the coefficients in this linear stability problemStep 4: Apply a
WKB ansatz.. only change slowly in time, we make a so-called WKB ansatz by

introducing

Φ(X, τ) = Ψ(X, τ) exp
(

σ(τ)

δ1/(5−n)

)
. (322)

This method has its origin in mathematical physics and is a special
case of multiple scale analysis. It represents an efficient method to find
approximate solutions to linear differential equations which provide
spatially varying coefficients, such as in the present case.
Substituting the above ansatz 322 into the differential equation and
canceling out the exponential terms gives

δ1/(5−n)∂τΨ + Ψ∂τσ = L(τ)Ψ for X ≥ 0, (323a)

θ∂XΨ−Ψ∂XX Hb = 0, at X = 0, (323b)

Hn
b
(
∂XXXΨ−Q2∂XΨ

)
+nHn−1

b ∂XXX Hb Ψ− ṠbΨ = 0, at X = 0, (323c)

lim
X→∞

Ψ = 0 . (323d)

Applying the asymptotic expansions

Ψ(X, τ; δ) = Ψ0(X, τ) + O(δ1/(5−n)),

σ(τ; δ) = σ0(τ) + O(δ1/(5−n)),
(324)

together with the expansions (290) for the base state on which the
coefficients of this system depend.

Exploiting (292), the leading order problem is

λ(τ)Ψ0 = L0(τ)Ψ0 for X ≥ 0, (325a)

θ∂XΨ0 −Ψ0∂XX Hb,0 = 0, at X = 0, (325b)

Hn
b,0
(
∂XXXΨ0 −Q2∂XΨ0

)
−(1− n)Ṡb,0Ψ0 = 0, at X = 0, (325c)

where

λ(τ) ≡ ∂τσ0, (326)

L0(τ)Ψ0 ≡ (1− n)Ṡb,0∂XΨ0 − ∂X

[
Hn

b,0
(
∂XXXΨ0 −Q2∂XΨ0

) ]
+ Q2Hn

b,0
(
∂XXΨ0 −Q2Ψ0

)
. (327)
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For n = 0, the leading order of (323d) provides a condition in the
far-field, while for n = 2, the limit δ → 0 is singular and matching
conditions arise at X = Wb,0(τ) instead. The latter will be discussed in
detail further below. Our main attention is directed towards determin-
ing the perturbations with largest amplification and therefore towards
the eigenvalue with largest real part, or top eigenvalue.

Rescaling the variables as in (293), and (311) for n > 0, and introduc- ..rescale into the
slow time-scale of the
base state..

ing appropriate scales for the single-mode perturbation, wavenumber
and eigenvalue

Ψ0 = θ3/(3−n) φ1

Ṡ1/(3−n)
b,0

, Q = Ṡ1/(3−n)
b,0

Q̃
θn/(3−n)

,

λ = Ṡ(4−n)/(3−n)
b,0

λ̃

θn/(3−n)
,

(328)

leads to the parameter-free eigenvalue problem ..and solve the
time-independent
eigenvalue problemλ̃φ1 = L̃φ1 for ξ ≥ 0, (329a)

∂ξφ1 − φ1∂ξξφb = 0, at ξ = 0, (329b)

φn
b
(
∂ξξξφ1 − Q̃2∂ξφ1

)
− (1− n)φ1 = 0, at ξ = 0, (329c)

where

L̃φ1 ≡(1− n)∂ξφ1 − ∂ξ

[
φn

b
(
∂ξξξφ1 − Q̃2∂ξφ1

) ]
+ Q̃2φn

b
(
∂ξξφ1 − Q̃2φ1

)
,

(329d)

plus the remaining far-field or matching condition.

Case n = 0

For n = 0, the remaining condition is Stability problem for
n = 0

lim
ξ→∞

φ(ξ) = 0. (330)

Moreover, recalling (295), we have

φb(ξ) =
2√
3

exp
(
− ξ

2

)
sin

(√
3

2
ξ

)
(331)

and thus we can set
∂ξξφb|ξ=0 = −1 (332)

in (329b). Notice that this is the only spot in (329) where the solution
of the base state is needed in contrast to the situation for n > 0.
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Case n > 3/2

For n = 2 we have a second contact line near the undisturbed film andStability problem for
3/2 < n < 3 hence need to determine a matching condition for the inner region

ahead of the hump. Similar as for the base state (see Section 6.4) the
matching procedure can be generalized and consequently this entire
section refers to the cases where 3/2 < n < 3.

Consider (318) and pass over to the inner layer analogously as inMatching conditions
for 3/2 < n < 3 (306), i.e. rescale x according to (301) and sb according to (288) while

hb remains unscaled. Rescale ĥ1 according to

ĥ1 = ṡ1/3
b · w1 · ĥin = δ−n/(3(5−n))Ṡ1/3

b ·W1 · ĥin , (333)

where w1 denotes the perturbation of the second contact line and W1

the corresponding value in outer scalings. Note that this particular
scaling results from matching both, base state plus perturbation. More-
over apply the scales (319) for q which altogether leads to the rescaled
stability problem

0 = − Ṡb∂χĥin + ∂χ

[
hn

b

(
∂χχχĥin

)
+ n (∂χχχhb) hn−1

b ĥin

]
− δ1/(5−n)Ẇb∂χĥin + δ4n/(3(5−n))Q4hn

b ĥin

− δ2n/(3(5−n))
[

Q2hn
b

(
∂χχĥin

)
+ ∂χ

(
Q2hn

b ∂χĥin

)]
+ δ(3+n)/(3(5−n))

(
Ṡ1/3

b ·W1

)−1
∂τ

(
Ṡ1/3

b ·W1 · ĥin

)
.

(334)

Applying the asymptotic expansions (290) and (304) as well as

ĥin(χ, τ; δ) = ĥin,0(χ, τ) + O(δ1/(5−n)) ,

W1(τ; δ) = W1,0(τ) + O(δ1/(5−n)) ,
(335)

for ĥin and W1, we obtain the leading order equation

0 = −Ṡb,0∂χĥin,0 + ∂χ

[
hn

b,0

(
∂χχχĥin,0

)
+ n (∂χχχhb,0) hn−1

b,0 ĥin,0

]
,

(336)
which can be integrated once over [χ,+∞)

0 = −Ṡb,0ĥin,0 + hn
b,0

(
∂χχχĥin,0

)
+ n (∂χχχhb,0) hn−1

b,0 ĥin,0 . (337)

Rescaling χ = ξ/Ṡ1/3
b,0 (analogously as in (306)) reveals the ordinary

differential equation

0 = −ĥin,0 + hn
b,0

(
∂ξξξ ĥin,0

)
+ n

(
∂ξξξ hb,0

)
hn−1

b,0 ĥin,0 (338)

with solution

ĥin,0(ξ) ∼ 3 ·
(

n3−n

3(3− n)(2n− 3)

)1/n

· (−ξ)(3−n)/n , for ξ → −∞ .

(339)
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Matching into the outer problem thus requires µ2 = n/(3(5− n)) and Matching conditions
in outer coordinateswe obtain the outer matching condition

Ψ0(X, τ) ∼ 3 ·
(

−n3−n

3(n− 3)(2n− 3)

)1/n

Ṡ1/n
b,0 ·W1,0 · (Wb,0(τ)−X)(3−n)/n

(340)
for X → Wb,0(τ), where W1,0(τ) represents the δ-leading order per-
turbation of the second contact line. This matches with the inner
expansion. Applying the scales (293) and (328) then reveals

φ1 ∼ 3
(

n3−n

3(3− n)(2n− 3)

)1/n

d1(db − ξ)(3−n)/n for ξ → db, (341)

where db = Ṡ1/(3−n)
b,0 /(θn/(3−n))Wb,0 and d1 = Ṡ1/(3−n)

b,0 /(θn/(3−n))W1,0,
which closes the eigenvalue problem (329).

Eigenvalue analysis

Case n = 0

The general solution φ1 of the homogeneous linear differential equa- Eigenvalue problem
for n = 0tion (329a) has the form

φ1(ξ) =
4

∑
j=1

cj exp (k jξ), (342)

where the k j are the roots of the fourth order polynomial

k4
j − 2Q̃2k2

j − k j + Q̃4 + λ̃ = 0. (343)

We first restrict our situation to the case where the roots have nega- Roots of the
characteristic
polynomial

tive real part, such that the corresponding contributions to (342) satisfy
the boundary conditions (330) at ξ → ∞. We now show that there are
exactly two of these roots.

Consider
f (z) = z4 − 2Q̃2z2 − z + Q̃4 + λ̃ , (344)

where z ∈ C and Q̃ ≥ 0. We want to show that, if λ̃ is in the right half
of the complex plane, then f (z) = 0 has exactly two solutions with
negative real part. Let λ̃ = λ̃r + iλ̃i ∈ C, with λ̃i ∈ R and λ̃r > 0.

In the following we will exploit the argument principle in order to The argument
principleprove that f (z) has two zeros in the left half plane, i.e. with negative

real part. The argument principle states that, provided that there are
no zeros on the boundary, the number of zeros of a polynomial inside
a closed curve equals the change in argument over the curve divided
by 2π. The closed curve which we would like to consider here is the
left half circle of Radius R in the second and third quadrant (that is,
start at zero, go along the positive imaginary axis until R, follow the
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circle of radius R in positive direction until the negative imaginary
axis and then return back to the origin).

First we check that there are no zeros on the boundary. For this
purpose we consider z = ix, x ∈ R, on the imaginary axis, f (z) = 0
implies that

x = λi , and
(
x2 + Q̃2)2

+ λ̃r = 0 (345)

both must be fulfilled, which is impossible since the left hand side of
the second equations is always positive, i.e. there are no zeros on the
imaginary axis.

We are now in the position to apply the argument principle which
requires to compute the change in argument of f (z) in the three
segments of our closed curve. For values z = ix on the imaginary axis
we have

f (ix) =
(
x2 + Q̃2)2

+ λ̃r + i(λ̃i − x) (346)

which always has positive real part so that we can use the formula

arg ( f (ix)) =

2 arctan

 λ̃i − x√((
x2 + Q̃2

)2
+ λ̃r

)2
+ (λ̃i − x)2 +

(
x2 + Q̃2

)2
+ λ̃r


(347)

to calculate the change in argument as x takes values between 0 and
R. For x = 0 we consequently have arg( f (0)) = 0 and as R → ∞ we
find arg( f (iR)) = 0, which implies that the argument of f (z) does not
change on this part of the path.

On the circular arc, z = Reiθ , with π/2 ≤ θ ≤ 3/2π, we have

f (z) = R4e4iθ − 2Q̃2R2e2iθ − Reiθ + Q̃4 + λ

= R4e4iθ
(

1− 2Q̃2

R2e2iθ −
1

R3e3iθ +
Q̃4 + λ

R4e4iθ

) (348)

so as R→ ∞ we have f (z) = R4e4iθ and as θ goes from π/2 to 3/2π

the argument of f (z) goes from 2π to 6π which gives a change in
argument of 4π. Finally the negative imaginary axis can be treated
analogously as the positive one, resulting in a change in argument
of zero. In summary, as R → ∞, the total change in argument is 4π,
which implies that there are two zeros in the left half plane.

We denote these roots by k1 and k2 and observe that these solutions
arise for all Q̃ ≥ 0 in particular when the real part of λ̃ is positive, i.e.
<(λ̃) > 0, which is the region of the complex plane associated with
unstable modes.

Restricting our attention to these solutions, we haveLinear system for the
coefficients ci

φ1(ξ) = c1 exp (k1ξ) + c2 exp (k2ξ). (349)
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Figure 22: (a), left: Top eigenvalue in the case n = 0 for a range of wavenum-
bers. Results for the exact numerical results for (329) with (330)
and (332) are shown by a solid line, and for the long wave analysis
(351) by a dashed lines with symbols. (b), right: Top eigenvalue
in the case n = 2, resulting from solving (329), (341). Linestyles
carry over from (a). Figure published in [28].

Substituting (349) into (329b) and (329c) gives a homogeneous linear
system of equations for the coefficients c1, c2, with the coefficient
matrix

A =

(
k1 + 1 k2 + 1

k3
1 − Q̃2k1 − 1 k3

2 − Q̃2k2 − 1

)
, (350)

which depends on λ̃ via k1 and k2. The eigenvalues λ̃ are found
by solving det A = 0. Numerically, this can be done by finding the Numerical procedure

intersection of the level sets <(det A) = 0 and =(det A) = 0 in the
(<(λ̃), =(λ̃))-plane. It turns out that for the intersection with largest
real part <(λ̃), the imaginary part =(λ̃) is zero (within the numerical
tolerance). Plotting this λ̃ as a function of Q̃ results in the dispersion
relation shown in fig. 22(a). We also verified that for this λ̃(Q̃) and
for all Q̃ > 0, exactly two roots of (343) have non-positive real part,
even when, for Q̃ > 1.10, the value of λ̃(Q̃) is negative. Thus, λ̃ is an
isolated eigenvalue.

For λ̃ with sufficiently small real part, more than two roots of the λ̃ with negative real
part, the essential
spectrum

characteristic polynomial can have negative real part. Then imposing
(329b) and (329c) leads to an undetermined system for the coefficients
of the decaying exponentials, i.e. which always has nontrivial solu-
tions. Therefore, these λ̃ form the essential spectrum of the operator.
Due to our previous remark, the essential spectrum is restricted, for
all values of Q̃, to a subset of the complex plane with <(λ̃) < 0. For
Q̃ = 0, the origin λ̃ = 0 is equal to the previously discussed isolated
eigenvalue and also lies on the boundary of the essential spectrum,
which is also the limit for Q̃→ 0 of the isolated eigenvalue discussed
above. Similar situations are observed in the analysis of the stability
of waves in conservation laws [7, 74, 75, 122].
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Case n > 3/2

For n = 2, the eigenvalue problem consisting of (329) and (341) wasEigenvalue problem
for 3/2 < n < 3 discussed and solved in [58], so we only briefly summarize the results.

The essence of these results carries over to the case of general n > 3/2.
It turns out that for this problem we have two discrete eigenvalues
that bifurcate out of the λ̃ = 0 eigenvalue at Q̃ = 0. The dispersion
relation for the top eigenvalue, which is the important one for the
question of instability, is shown in Fig. 22(b).

Long wave analysis

Notice that in Fig. 22 the dispersion relation appears to be approxi-Linear behavior

mately linear for Q̃ < 0.3 and both cases of n, despite the fact that only
even powers of Q̃ appear in (329). In fact, for long wavelengths, the
eigenvalues can be approximated in terms of small-Q perturbations of
the translational mode,

φ1 = ∂ηφb + φ1,1|Q̃|+ O(Q̃2), λ̃ = λ̃1|Q̃|+ O(Q̃2). (351)

In addition to the typically expected even powers of Q̃ the expansion
also contains odd powers of Q̃ which is due to the fact that the
eigenvalue λ̃ = 0 at Q̃ = 0 is degenerate, i.e. belongs to a Jordan
block. This is very similar to the situation found for dewetting of a
liquid in a slip-dominated case [58]. Proceeding as in that reference,
we consider the leading order eigenvalue problem (329) for 0 ≤ n < 3
and introduce the expansionsGeneralized long

wave analysis for
0 ≤ n < 3 φ1(ξ, Q̃) = φ1,0(ξ, τ) + Q̃ φ1,1(ξ, τ) + Q̃2 φ1,2(ξ, τ) + O(Q̃3),

λ̃(Q̃) = λ̃0 + Q̃ λ̃1(τ) + Q̃2 λ̃2(τ) + O(Q̃3).
(352)

Identifying the parts of L̃0 which are independent of and quadratic in
Q̃ with L̃0,0 and L̃0,2 respectively, i.e.

L̃0,0 ≡ (1− n) ∂ξ −
(
∂ξφn

b
)

∂ξξξ − φn
b ∂ξξξξ

L̃0,2 ≡ (∂ξφn
b )∂ξ + 2 φn

b ∂ξξ

(353)

we obtain from the leading order problem that λ̃0 = 0 and φ1,0 = ∂ηφb.
Proceeding to O(Q̃) and O(Q̃2) then reveals the problems

L̃0,0φ1,1 = λ̃1∂ξφb, (354a)

L̃0,0φ1,2 + L̃0,2∂ξφb = λ̃1φ1,1 + λ̃2∂ξφb . (354b)

The O(Q̃) problem (354a) implies that φ1,1 must be the λ1 multiple of
the generalized eigenfunction of L0,0 for the eigenvalue λ0 = 0 plus
an multiple of Ψ0,0 = ∂X Hb,0, and we obtain

φ1,1 = − λ̃1

3− n
(
ξ ∂ξφb − φb

)
, (355)
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and substituting this result into (354b) and integrating with respect to
ξ yields ∫ db

0
L̃0,2∂ξφb dξ = − λ̃2

1
3− n

∫ db

0
ξ ∂ξφb − φb dξ (356)

for 0 < n < 3 (note that contributions of L̃0,0φ1,2 and λ̃2∂ηφb vanish
due to the boundary conditions for φb and O(Q̃2) boundary conditions
for φ1,2) and∫ ∞

0
L̃0,0φ1,2 dξ +

∫ ∞

0
L̃0,2∂ξφb dξ = − λ̃2

1
3

∫ ∞

0
ξ ∂ξφb − φb dξ (357)

for n = 0. In each case the integrals on both sides can be solved and
we obtain

λ̃1 = ±
√

3− n
2

. (358)

The long wave analysis confirms that as Q̃ → 0, the top eigenvalue Notes on the validity

decreases to zero and thus converges to a point on the boundary of
the essential spectrum. Since the expansions for isolated eigenvalues
(see for example Hennessy and Münch [44]) may lose validity if two
eigenvalues approach each other, we expect that a similar loss of
validity could occur here. This means a separate analysis is needed
for the case where Q̃ is allowed to become small as δ → 0, i.e. for
exploring the possibility of distinguished limits arising between these
two parameters. However, we expect the growth of perturbations with
wave numbers larger than these asymptotically small ones to be more
relevant for the question of stability, and will therefore focus on them.
We will verify the accuracy of asymptotic estimates derived from the
WKB analysis by comparison with numerical results for the initial
value problem (318) and point out regions of small wave numbers
where we observe a reduction in accuracy.

Case n = 0

For n = 0 the linear contribution of the long wave expansion for the
top eigenvalue, i.e.

λ̃ = λ̃1|Q̃|+ O(Q̃2); (359)

is characterized by the factor

λ̃1 ∼ 1.22 (360)

according to (358). Good agreement with the numerically found eigen- Comparison with
numerical
computation

values up to Q̃ = 0.3 is seen in fig. 22(a) for the positive value for
λ̃1. The long wave analysis also allows for an expansion where the
O(Q̃) term has the reverse sign, but it turns out that this leads to λ̃ in
regions of the complex plane where the characteristic equation (343)
has more than two roots with negative real part, i.e. which are in the
essential spectrum.
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Case n = 2

The long wave analysis for the top eigenvalue yields

φ1 = ∂ηφb + φ1,1|Q̃|+ O(Q̃2), λ̃ = λ̃1|Q̃|+ O(Q̃2); (361)

with λ̃1 = 2−1/2, according to (358). For the second discrete (“bottom”)
eigenvalue, the signs of the O(Q̃) corrections need to be reversed. As
can be seen from Fig. 22(b), the asymptotic result accurately capturesComparison with

numerical
computation

the top eigenvalue obtained from the numerical computation for small
Q̃, in fact up to Q̃ < 1.

6.5.3 Comparison of asymptotic and numerical solutions

For these comparisons, we confine ourselves to the values n = 0 and
n = 2 in this section .

Case n = 0

If we solve (318) for a fixed wavenumber q and a “randomly chosen”Numerical procedure

initial perturbation (318f), we expect that for long times t = τ/δ,
the solution is approximated by (319), (322), with the leading order
behaviour of Ψ and σ given in the subsequent derivations. We can
check this by obtaining the solution to (318) numerically and verifying
that

d
dt

ln
[
||ĥ1(·, t; q)||

]
= δ4/5λ(τ; Q) + O(1), (362)

where λ is the eigenvalue obtained via (328) and (329), and || − || a
convenient norm with respect to x. We will use the maximum norm.
With (328), we can in fact write this as

d
dt

ln
[
||ĥ1(·, t; q)||

]
= δ4/5Ṡ4/3

b,0 λ̃(Q̃) + O(δ),

or, applying Ṡb,0 ∼ (2/5)3/5θ3/5(δt)−3/5 ,

d
dt

ln
[
||ĥ1(·, t; q)||

]
∼ t−4/5

(
2
5

)4/5

θ4/5λ̃(Q̃) + O(t−1), (363)

with q fixed. We can eliminate the explicit time dependence by using
that maxx hb = δ−1/5 maxX Hb,0 and

max
X

Hb,0 =

(
2
5

)−1/5

exp
(
−π/

√
27
)

θ4/5τ1/5 + O(δ1/5),

thus

t1/5 ∼ 1.831
(

2
5

)1/5

θ−4/5 max
x

hb,

where we have evaluated the exponential expression. We choose θ = 1
and compare the graphs ((1.831 maxx hb) q, ρ) and (Q̃, λ̃(Q̃)), where

ρ(q, t) ≡ (1.831 max
x

hb)
4 d

dt
ln
[
||ĥ1(·, t; q)||

]
. (364)
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Figure 23: (a), left: Comparison of the amplification rates of the solution to
the linear stability problem (318) coupled to (285) with the disper-
sion relation λ̃(Q̃), for n = 0. The dashed line is the top eigenvalue
λ̃(Q̃) for (329) and (351) and is the same dispersion relation as in
fig. 22(a). The solid lines are the graphs ((1.831 maxx hb) q, ρ(q, t))
for amplification rates ρ determined according to (364) for the
numerical solutions of (318) coupled to (285), for fixed q = 1/16,
1/32, 1/64, 1/128, 1/256. The arrow points in the direction of de-
creasing q. Further details are given in the text. (b), right: Compar-
ison for n = 2. Dashed line is the dispersion relation as shown in
fig. 22(b), solid lines are the amplification rates for q = 23.7× 10−3,
14.1× 10−3, 3.02× 10−3, obtained from numerical solutions of the
linearized initial value problem for a regularized problem for-
mulation as explained in the main text. The arrow points in the
direction of decreasing q. Figure published in [28].

We expect agreement up to an error

ρ(q, t)− λ̃(Q̃) = O((max
x

hb)
−1), (365)

where
Q̃ = (1.831 max

x
hb) q. (366)

The results are shown in Fig. 23. The solid lines with the values for
ρ in (364) were obtained from numerical solutions of (318) coupled to
(285), while the dashed line with the graph for λ̃ is simply the disper-
sion relation from fig. 22(a). It is visible that the graphs of ρ for differ- Convergence for

decreasing qent q converge to λ̃ as smaller q are chosen, except for a region close to
the origin. To understand the convergence, consider two different val-
ues for q = q1 and q = q2. These values map to (1.831 maxx hb(x, t)) q1

and (1.831 maxx hb(x, t)) q2, which coincide if we consider different
times t1 and t2 so that maxx hb(x, t1)/ maxx hb(x, t2) = q2/q1, that is,
if the ridge is proportionally larger for the smaller wave number. This
also means, according to (365), that the distance between ρ(q1, t1) and
ρ(q2, t2) and the corresponding λ̃(Q̃) is proportionally smaller, for
example, by a fact of two if q1 and q2 differ by a factor of two. This is
approximately the case in the figure, except for very small Q̃. More-
over, for a fixed q, the value of maxx hb(x, t) increases as we move to
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the right in fig. 23, so all curves for ρ are expected to converge to λ̃ to
the right, which is indeed the case. The different behavior for small Q̃
is also expected in view of the discussion of the validity of the WKB
analysis for small wavenumbers.

Case n = 2

For n = 2 similar derivations shows that the WKB result implies thatEquation for the
numerical evaluation

ρ(q, t) ≡
(

maxx hb

θ2 maxξ φb

)2 d
dt

ln
[
||ĥ1(·, t; q)||

]
(367)

where Q̃ =
(
maxx hb/(θ maxξ φb)

)
q, must approach λ̃(Q̃) for fixed q

as
O((max hb)

−1). We determine ρ(q, t) from numerical solutions of aPrecursor model for
the evaluation regularized thin film equation which includes an intermolecular po-

tential to model the contact line region. This approach avoids a strict
contact line at x = s where h = 0 by stabilizing a thin precursor of
thickness ν� 1 and the degeneracy of the partial differential equation
(282) leads to singularities in the solution. The sharp interface model
with a fixed contact angle condition is recovered in the limit where the
precursor thickness becomes small compared to the overall thickness
of the film. Details of the model as well as the derivations and the
numerical results have been given in [58, 86], so we only use and
summarize them here.

The values of ρ obtained from the solutions of the regularized
problem are shown by solid lines in Fig. 23(b), each one for a different
choice of q. The dashed line is the dispersion relation for (329), (341)
also shown in Fig. 22(b). In the same fashion as for n = 0, the graphs
for ρ converge to a single curve which is slightly larger than the
dispersion relation. The deviation is on the order of the precursor
thickness, which was chosen to be ν = 0.04. Also as for n = 0, the
convergence is markedly slower for small values of Q̃.

6.5.4 Maximal amplification and dominant wavelength

We now would like to consider a superposition of modes with differentSuperposition of
modes wavenumbers, i.e.

h1(x, y, t) =
∫ ∞

−∞
ĥ1(x, t; q) exp(iqy) dq, (368)

in order to determine the dominant wavenumber at a particular time
t. Assuming that the rim is perturbed at a time t0 by an initial pertur-
bation

h1,t0(x, y) =
∫ ∞

−∞
ĥ1,t0(x, q) exp(iqy) dq, (369)
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where the initial amplitude of each contribution has a common fixed
value for all wavenumbers, and applying (319) and (322) then results
to leading order in

h1(x, y, t) ∼
∫ ∞

−∞
Ψ0(X, τ; Q) exp

(∫ t

t0

λ(τ; Q) dτ

)
exp(iQy) dQ.

(370)
The dominant wavenumber Qd at a given time t is now the one for
which the inner integral is maximal. Rewriting the integral according
to (293) and taking derivatives with respect to Q yields∫ t

t0

Ṡb,0 λ̃′
(
Q̃(τ, Qd)

)
dτ = 0 . (371)

Expressing the variables in Q̃(τ, Qd) in the following way (for both Rescaling the
variablescases n = 0 and n > 3/2)

Q̃(τ, Qd) =
ρn,θQd

c(τ)
, ρn,θ = θn/(3−n) , c(τ) = Ṡ1/(3−n)

b,0 (372)

and observing that Q̃ is monotonically increasing in τ, since c(τ) ∼
τ−1/(5−n), we may substitute Q̃ as integration variable and obtain

0 =
∫ Q̃(t,Qd)

Q̃(t0,Qd)
− c(τ)5−n

ρn,θQdcτ(τ)
λ̃′(Q̃) dQ̃ ∼

∫ Q̃(t,Qd)

Q̃(t0,Qd)
Q̃λ′(Q̃) dQ̃ . (373)

Since Q̃(t0, Qd) = Q̃(t, Qd)c(t)/c(t0) → 0 for t → ∞, we can replace
the lower integration limit by 0 and integrate (373) by parts to obtain
for the asymptotic value of Q̃ = Q̃∞ ≡ limt→∞ Q̃(t, Qd) the relation "Equal area rule"∫ Q̃∞

0
λ̃(Q̃)− λ̃(Q̃∞) dQ̃ = 0. (374)

The function λ̃(Q̃) is the time-independent dispersion relation, which
we computed in Section (6.5.2) for the cases n = 0 and n = 2 so we
can determine the asymptotic wave number Q̃∞ = Q̃∞(n) from this
result. The equation (374) has a simple interpretation in that is says
that Q̃∞ is characterized as the value for which the area underneath
the dispersion relation between zero and Q̃∞ is equal to the area of the
rectangle with corners (0, 0) and (Q̃∞, σ̃(Q̃∞)). The numerical values
we find are Q̃∞(0) = 0.94 and Q̃∞(2) = 5.3, both rounded to two
digits of accuracy.

The dominant wavenumber in the scalings of the growing rim then Dominant
wavenumberis Qd = Q̃(t, Qd) c(τ)/ρn,θ . We compare this to an intrinsic length

scale of the growing rim, for example, a suitably chosen measure of
the width, w(t). If the corresponding width for the outer solution is
denoted by ξ0(n), then w(t) ≡ ξ0(n) ρn,θ/c(τ), and we obtain for the
dominant wavelength ld(t) = 2π/Qd(t) the expression

ld(t)
w(t)

=
2π

ξ0(n)Q̃∞
. (375)
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Figure 24: Amplification of perturbations for n = 0 for different wave num-
bers q as shown in the legends. For q = 12, the amplification
reaches a peak relatively early and the period of decay leads to
an amplification less than 1000 at the time where the base state
ruptures t = tr (vertical dotted line, see also fig. 20). Conversely,
for q = 1/20, the perturbation is still growing and also has an
amplification less than 1000 at t = tr. The perturbation with the
maximum amplification at t = tr has wave number q = 1/16 (see
inset, which is a zoom of the boxed region) and an amplification
of about 2000. For q < 1/16, a perturbation dominates at a specific
time t > tr, and conversely, a perturbation with q > 1/16 achieves
dominance at at time t < tr but is then overtaken in particular by
the perturbation with with q = 1/16. Figure published in [28].

For n > 0, the outer solution for the base state has two contact linesMaximal
amplification and

film rupture
and it is natural to chose their distance for ξ0(n) = db, so that in
particular for n = 2, we have ξ0(2) = 1/2 and therefore ld/w = 2.4.
For n = 0, we choose the distance between the contact line at ξ = 0
and the first zero crossing of (331), which gives ξ0(0) = 3.63, and then
ld/w = 1.8. It is also instructive to compare the wavelength with the
height of the rim maxx hb, which is less ambiguous, and this yields
ld/ maxx hb = 14 for n = 2 and ld/ maxx hb = 12 for n = 0.

For n = 2, the implications for experiments of this results on theThe case n = 0

dominant wave number was discussed in [85], so we focus here on
the case n = 0. The first question of interest is of course the maximum
amplification achieved at the time when the base state ruptures. While
it is difficult to set a specific threshold, it is clear that this amplification
has to be significant for a visibly instability to occur while the rim
is moving into the unperturbed film. The value of q that will lead
to the maximum amplification is the one that, upon rescaling as in
(366), is equal to Q̃d determined above. Since the value of maxx hb at
the time of rupture was determined in a previous section following
(300b), we can find the estimate qd = 1/15.5. We use this value and
adjacent values of q for our numerical solution for (318) and track the
amplification

A(t; q) =
||ĥ1(·, t; q)||
||ĥ1,t0(·; q)||

. (376)
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Figure 25: (a) Dispersion relation λ̃ (thick solid line), compared to the ampli-
fication (except for prefactors) at large times (r → ∞), Ω∞ (dashed
line) and to the amplification at intermediate times, Ω(Q̃, r) with
r = 1.5, 3, 5, 9 (thin solid lines). The arrow indicates increasing
values of r. (b) Wave number with maximum amplification for
different values of r. Figure published in [28].

The result is shown in fig. 24. Among the wavenumbers used in fig. 24,
the maximum amplification at t = tr is obtained for q = 1/16, close to
the estimate of 1/15.5 given above for qd.

For q = 1/16, the numerical result gives an amplification of about Initial perturbation
and amplification
rate

2000 at time t = tr when the base state ruptures and sheds material.
The results in fig. 24 were achieved with a specific choice of the initial
perturbation ĥ1,t0 , which was set to be equal to the derivative of the
initial profile for the base state (287). We tried other choices, which did
not alter the dominant wave number at rupture time, but did have an
effect on the amplification rate. The reason for this is that while for the
first choice of initial data, the perturbation grew monotonically, there
was an initial period of decay for the other choices. This indicates
that the initial perturbation contained a higher fraction of modes
that were stable and decayed, until finally the growth of the unstable
mode dominated the evolution. The minimum was usually achieved
early, at t = 10 . . . 20. To take this effect into account, we replaced the
denominator in the definition of the amplification (376), and then the
final amplification at t = tr was again close to the value of 2000 stated
above.

It is remarkable that a suitable choice of scaling (328) leads to a Fixed dominant
wavelength for
particular scalings

fixed value Q̃∞ for the dominant wavenumber. This suggests that it
could be advantageous to formulate the WKB ansatz (322) with σ0

and τ that depend on Q̃ rather than on Q. This can be achieved by
letting σ0(τ, Q) = σ̃0(τ, Q̃), where we have explicitly included the
dependence on the wavenumber; similarly for Ψ. The chain rule then
implies that in the leading order problem, ∂τσ0 has to be replaced by
∂τ σ̃0− (S̈b,0/Ṡb,0(3− n)) Q̃ ∂Q̃σ̃0, so that σ̃ is determined from the PDE

∂τ σ̃0 −
1

3− n
S̈b,0

Ṡb,0
Q̃ ∂Q̃σ̃0 = Ṡ

4−n
3−n
b,0 λ̃(Q̃), (377)
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where λ̃ is given, as before, by (329). The first order PDE (377) requires
initial conditions, and we assume that at some moment τ0, perturba-
tions are present with amplification factor one for all wavenumbers
Q̃, i.e., σ̃0(τ0, Q̃) = 0 for all Q̃. A more general situation could be
considered, but this does not lead to an essentially different result.
The solution is then given by

σ̃0 = (5− n)
(

2α

5− n

) 4−n
5−n

τ
1

5−n Ω(Q̃, r), (378a)

Ω(Q̃, r) ≡ 1
Q̃

[
Λ(Q̃)−Λ(Q̃/r)

]
, (378b)

Λ(Q̃) ≡
∫ Q̃

0
λ̃(z)dz, (378c)

where α is a shorthand for the prefactors in (314) and r ≡ (τ/τ0)1/(5−n).
For τ → ∞, we have r → ∞ and thus the logarithm of the amplifica-

tion, σ̃, is proportional to

Ω∞ =
1
Q̃

∫ Q̃

0
λ̃(z)dz; (379)

this is shown in fig. 25(a) by a dashed line and contrasted with the
dispersion relation λ̃(Q̃). The maximum of the former curve is shifted
compared to the dispersion relation, and in fact, it is equal to Q̃∞

determined earlier. Notice that λ̃ is the eigenvalue that would haveComparison to the
"frozen mode"

wavenumber
been obtained from a frozen mode analysis of the growing rim, and
the comparison clearly shows that as time goes by (and r increases),
the wavenumber (in self-similar scales) shifts to larger values (shorter
wavelengths). For intermediate values of r, Ω can be determined from
(378b). For r → 1, we recover λ̃(Q̃); for r → ∞, the curve quickly
converges to Ω∞. Graphs for Ω are shown for different finite values
of r in fig. 25(a).

Correspondingly, the most amplified wave number Qmax of Ω in-
creases from Qm, i.e. the maximum for λ̃, to Q∞, determined by (374),
as r increases from one to infinity. In fact, convergence is nearly com-
plete already for r ≥ 3, see fig. 25(b). Because the maximum of the
ridge scales like S1/2

b,0 and (314), the value r can be interpreted as the
ratio of the height of the rim at the current time divided by the height
at the time when the perturbation is introduced. This implies that
after a change in the height of the rim of a factor of three or more is
observed as the instability develops, the most amplified wavenumber
must be very close to the asymptotic value Q̃∞, much closer than to
the value Q̃m predicted by the frozen mode analysis.

6.6 discussion and outlook

In this chapter, we investigated the instability of unsteady and non-The WKB stability
analysis..



6.6 discussion and outlook 143

uniform base states for a free boundary problem of the thin-film
equation (282), specifically the retracting rim solutions that are suscep-
tible to the "finger" instability. We develop a WKB method to address
the multiscale aspects of the linear stability analysis that arise from the
time dependence of the base states. The results are used to estimate
the amplification of the perturbations and the wavenumber for which
this amplification is maximal.

This wavenumber converges to a fixed value Q̃∞ scaled with the ..vs. "frozen mode"
analysissize of the growing rim, which is larger than the maximum wavenum-

ber of the "frozen mode" dispersion relation. It is interesting to note
that nevertheless this value is determined by the dispersion relation
through a simple expression (374). It would be interesting to see if
this "shift" in the observed wavenumber can be detected in a physical
experiment.
We note that the frozen-mode dispersion relation for the class of prob-
lems considered in this study has a linear behavior near Q̃ = 0, which
is in contrast to the quadratic behavior found for the well-studied
examples of fingering instabilities for gravity- or Marangoni-driven
thin films, [56, 109].

For n = 0, the evolution of the rim is halted by the rupture of the Particular values
of nfilm, but nevertheless, by the time the rupture occurs, the wavenumber

has converged close to its asymptotic value. For n = 2, the solution
evolves into a spatially multilayered structure, which is readily accom-
modated within the WKB approach. The second value corresponds to
the range 3/2 < n < 3. A generalization of the approach as well as
some of the salient results should carry over to the intermediate case
0 < n ≤ 3/2 and also to appropriate formulations of n ≤ 3, where in
addition the contact line singularity needs to be addressed.

It would be fruitful to extend our method to a number of further Outlook, extension of
the methodproblems with time-dependent base states such as the retracting soap

films or surfactant driven films. Moreover, for these and the prob-
lems studied in this work, it would also be interesting to investigate
the influence of rim curvature in order to, for example, analyze the
instabilities which appear in rims of dewetting circular holes.

We are currently considering aspects of the non-linear stability
via numerical simulations of (282), in particular the onset of finger
pinch-off once they have grown sufficiently.
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S U M M A RY O F R E S U LT S A N D P O S S I B I L I T I E S F O R
F U T U R E R E S E A R C H

In this dissertation various important mathematical topics concerning
solid state dewetting of thin films have been addressed. From the
set-up of an anisotropic phase field model for surface diffusion dewet-
ting on a solid substrate, to the derivation of corresponding sharp
interface limits, existence of solutions, the numerical simulation and
an improved method for the linear stability analysis of a generalized
class of thin film equations, many results have been presented. The
thesis is summarized on these last pages and at the end possibilities
for future research are outlined.

The main body of this work begins in Chapter 3 with the formulation A phase field model
for solid state
dewetting

of an anisotropic phase field model for solid state dewetting on a solid
substrate. The main equations of the resulting model read

∂tu = ∇ · j,
j = m(u)∇µ,

µ = F′(u)− ε2∇ ·
(

γγ′
(
−uy

ux

)
+ γ2∇u

)
,

(380)

where we consider the homogeneous free energy

F(u) =
1
2
(1− u2)2 (381)

and the bi-quadratic diffusional mobility

m(u) =
(
1− u2)2

. (382)

We established, by using an asymptotic analysis which incorporates Sharp interface
limitsmultiple boundary and interfacial layers as well as techniques of expo-

nential matching, that the present choice of the bi-quadratic mobility
(382), combined with the polynomial homogeneous free energy den-
sity (381), yields a sharp interface model where surface diffusion is
recovered as the dominant driving mechanism, as ε → 0. We note
that this is in contrast to the frequently applied quadratic mobility,
which leads to sharp interface models, where a contribution from a
non-linear, porous medium like bulk diffusion enters the driving force
at the same order of magnitude as surface diffusion, as it has been
shown in [64].

The second part of Chapter 3 is concerned with the inclusion of the
boundary conditions at the solid substrate

ε nΩ ·
[

γ(θ)γ′(θ)

(
−uy

ux

)
+ γ(θ)2∇u

]
+

f ′w
λm

= 0,

nΩ · (m(u)∇µ) = 0,
(383)
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on Γw, whereas the boundary conditions on ∂Ω \ Γw are simply given
by

nΩ · ∇u = 0, nΩ · (m(u)∇µ) = 0. (384)

We introduced a matching procedure which exploits another innerA matching method
for the solid

boundary
layer about the solid substrate and a particular geometry in order
to derive the corresponding sharp interface limits of the boundary
conditions at the substrate. In particular, the method allows to match
the inner and outer layers without matching "into the substrate",
which is not well-defined. The result is that the sharp interface limits
of the boundary conditions at the substrate recover the Young-Herring
equation for the contact angle, and Young’s equation in the isotropic
case.

Chapter 4 presents an existence result for (380), which can be clas-Existence of
solutions sified as an anisotropic version of the Cahn-Hilliard equation with

degenerate mobility. The main difficulty lies in establishing the a priori
estimates of Lemma 4.3.7, in particular in view of the degenerate mo-
bility and the non-linear anisotropy function. However, the assumption
that the strength of the anisotropy is sufficiently small and considering
(380) on a rectangular domain with homogeneous Neumann boundary
conditions, enables to apply Lemma 4.3.3 given in the preliminary
results of Section 4.3.1. Under these additional assumptions we proved
existence of weak solutions in L∞(0, T; H1(Ω)) ∩ C([0, T]; L2(Ω)). Fur-
thermore, we provided that solutions |u| are bounded by one without
having a maximum principle.

Completing the part which is concerned with the phase field rep-Numerical
simulation resentation, we considered the numerical simulation of (380) with

boundary conditions (383)-(384) in Chapter 5. In order to simplify the
implementation of the anisotropic boundary conditions we apply a
diffuse boundary approximation which suggests to replace µ in (380)
by

µ = F′(u) + δΓw ε
f ′w
λ
− ε2∇ ·

(
γγ′
(
−uy

ux

)
+ γ2∇u

)
, (385)

and consider the boundary conditions

nΩ · ∇u = 0, nΩ · (m(u)∇µ) = 0, (386)

on the whole boundary ∂Ω. We used the method of matched asymp-
totic expansions in order to show that solutions of the problem in-
cluding the diffuse boundary approximation converge to those of the
original problem. We provide a numerical solution algorithm, apply-
ing the finite element method and applying the diffuse boundary
approximation. Finally, we present numerical simulations for various
initial states which demonstrate the diffuse boundary approximation
and reveal some interesting characteristics of solid state dewetting.
Motivated by the previous chapters, we address the question of how
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the mobility influences the evolution. We compare the results with
mobility (382) to the simulations with mobility m(u) = 1− u2 and
demonstrate a significant difference. Considering a fourfold symmetry,
for example, leads to film pinch-off in the one case and complete
film retraction in the other case. Furthermore, we consider different
pinch-off scenarios and anisotropies.

The last chapter presents an improved method for the linear stability An improved linear
stability analysisanalysis of unsteady, non-uniform base states in thin film equations of

the following form
ht +∇ · (hn∇∆h) = 0, (387)

where h(x, y, t) represents the thin film height and 0 ≤ n < 3. Note
that the case n = 0 corresponds to the small slope approximation of the
sharp interface model for surface diffusion dewetting as introduced
in Chapter 1.2. Considering (387) on the time-dependent domain
Ω = {(x, y); s(y, t) < x < ∞, −∞ < y < ∞} and with appropriate
conditions at the free boundary and in the far field, namely

h = 0 , x = s(y, t)

∇h · ns = θ , x = s(y, t)

hn (∇∆h · ns) = 0 , x = s(y, t)

lim
x→∞

h = 1,

(388)

we developed a WKB method to address the multiscale aspects of
the linear stability analysis that arise from the time dependence of
the base states. The results are used to estimate the amplification of
the perturbations and the wavenumber for which this amplification
is maximal. This wavenumber converges to a fixed value Q̃∞, scaled
with the size of the growing rim, which is larger than the maximum
wavenumber of the "frozen mode" dispersion relation. It is interesting
to note that nevertheless this value is determined by the rescaled dis- "Equal area rule"

persion relation λ̃(Q̃), where Q̃ is the rescaled wavenumber, through
a simple "equal area rule"∫ Q̃∞

0
λ̃(Q̃)− λ̃(Q̃∞) dQ̃ = 0. (389)

In addition, we showed that the dispersion relation for the class of
problems considered in this study has a linear behavior near Q̃ = 0,
which is in contrast to the quadratic behavior found for the well-
studied examples of fingering instabilities for gravity- or Marangoni-
driven thin films, [56, 109].

At the end of this thesis, there remain many further interesting ques-
tion, which constitute possibilities for future research. To begin with, Extension of the

phase field model to
3D

the anisotropic phase field model, as considered in Part II, should be
extended to 3D which enables to study the behavior of the three phase
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contact line in this case. We note that from liquid dewetting studies
it is known that the, typically degenerate, mobility of the governing
fourth order parabolic thin film equation does not only control the
dewetting rates but also decides the morphology and scale of the
contact line instability that arises eventually [3]. In principle, similar
scenarios have to be explored here. Moreover, in combination with the
anisotropic nature of the solid film, such as for example Si, the evo-
lution of the contact line instability becomes particularly interesting
and, according to experimental results [27], depends on the crystalline
orientation relative to the contact line. A comparison to realistic ex-
perimental results of dewetting solid films would be interesting. To
this end it would also be desirable to see the corresponding numerical
simulations in 3D.

In view of the existence result presented in Chapter 4, the mostGeneralization of the
existence result important question is whether the assumptions of Lemma 4.3.3 may

be relaxed in order to obtain existence of solution in a more general
case. In particular, the existence of solutions on different, not neces-
sarily rectangular, domains would be desirable, which appears to be
intuitively possible. Furthermore , it would be interesting to know ifUniqueness

there exists a unique solution and study the qualitative behavior, for
example as |u| → 1. Just as in the isotropic case we expect that for the
present degenerate mobility the sets {u = −1} and {u = 1} develop
an interior which implies a free boundary problem for ∂ {u = −1}
and ∂ {u = −1}, respectively. In addition, it would be interesting to
study the asymptotic behavior of solutions in the case as t→ ∞.

Finally, regarding the improved method for the linear stability anal-Extension of the
method for the linear

stability analysis
ysis presented in Chapter 6, it would be fruitful to extend this method
to a number of further problems with time-dependent base states
such as the retracting soap films or surfactant driven films. Moreover,
for these and the problems studied in this work, it would also be
interesting to investigate the influence of rim curvature in order to, for
example, analyze the instabilities which appear in rims of dewetting
circular holes.
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