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Computational fluid dynamics (CFD) provides well-established tools for the prediction of the velocity
profiles in turbulent pipe flows. As far as industrial pipe and district heating systems are concerned,
combinations of elbows are the most common pipe assemblies. Among the different pipe combinations,
double elbows out-of-plane are of special interest, since they introduce strong disturbances into the flow
profile and have a strong influence on many common types of flow meters. In front of a double elbow
there is often another flow-disturbing installation. As a result the upstream conditions are unknown and
an investigation of the resulting systematic bias on the measurement of the flow rate and the associated
contribution to its measurement uncertainty is necessary. We demonstrate here that this can be achieved
by a variation of the inlet profile in terms of swirls and asymmetry components. In particular, an ul-
trasonic and an electromagnetic flow meter are modeled in order to quantify the systematic errors
stemming from uncertain inflow conditions. For this purpose, a generalized non-intrusive polynomial
chaos method has been used in conjunction with a commercial CFD code. As the most influential
parameters on the measured volume flow, the distance between the double elbow and the flow meter as
well as the orientation of the flow meter are considered as random variables in the polynomial chaos
approach. This approach allowed us to obtain accurate prediction of the systematic error for the ultra-
sonic and electromagnetic meter as functions of the distance to the double elbow. The resulting bias in
the flow rate has been found to be in the range of 1.5-4.5% (0.1-0.5%) with a systematic uncertainty
contribution of 2-2.4% (0.6-0.7%) for the ultrasonic (electromagnetic) flow meter if the distance to the
double elbow is smaller than 40 pipe diameters. Moreover, it is demonstrated that placing the flow
meters in a Venturi constriction leads to substantial decrease of the bias and the contribution to the

measurement uncertainty stemming from the uncertain inflow condition.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

could reach more than 20%, see [14]. In cooperation with TU Berlin,
PTB Berlin, ILA GmbH and Optolution Messtechnik GmbH the

Elbow alignments are necessary in almost all pipe assemblies in
industrial fields, especially district heating systems. They in-
troduce disturbance to the flow profiles that require a straight pipe
length of several diameters to be eliminated. Very often those
parts are not sufficiently long to redevelop an ideal profile. Thus,
flow rate measurements in ideal flow conditions are not available.
It is well known that many flow meters react sensitively to dis-
turbed flow profiles, as they are usually calibrated in ideal condi-
tions at test rigs. To determine these errors an in situ calibration
technique with Laser Doppler Velocimetry (LDV), was developed
by Miiller et al. [31]. The induced errors for large heat meters
tested in district heating pipelines are typically higher than 3% and
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project “EnEff: Warme: on-site calibration of flow meters in dis-
trict heating” [11] was initiated. The idea is to develop a method
which permits on-site calibration of installed flow meters in non-
ideal installation conditions. A combination of LDV measurements
and numerical simulations is desired to predict the flow rate even
under problematic inflow conditions.

With a detailed description of the disturbed flow profiles, er-
rors of flow meters can be predicted. Several research activities
have taken place to measure flow profiles behind various dis-
turbing pipe installations. Flow profiles following different stan-
dard flow disturbers have been studied with particle image velo-
cimetry (PIV) by Eichler [8] and with LDV by Wendt et al. [42]. Yeh
and Mattingly performed studies with LDV of the flow profiles
downstream of single and double elbows as well as a generic
header, tube bundles and t-junctions and showed the effect on the
error shifts of turbine and orifice meters [27,28,50-52]. The
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generic header and the double elbows out-of-plane have been
detected to produce the highest errors that only slowly subside
after several tenths or even more than 100 diameters of straight
pipe. Also Wendt et al. and Mickan et al. [30,43] determined error
shifts behind single and double elbows out-of-plane for turbine
gas meters. Ultrasonic flow meters have been studied experi-
mentally in [5,22,39] and Electromagnetic flow meters in
[4,15,19,35]. Depending on the disturbing geometry, the number
and arrangement of the ultrasonic paths several percentages of
error were determined. Modeled ultrasonic and electromagnetic
flow meters were studied by Halttunen [10], where the LDV data
of [22] after single and double elbows out-of-plane were used. The
double elbows out-of-plane showed the highest errors up to al-
most 10% for the ultrasonic and about 2.5% for the electromagnetic
flow meter.

Due to the cost involved in experimental measurements, they
are typically carried out for a few special cases. Numerical simu-
lations are an alternative tool to get an inside into the behavior of
the three dimensional flow field. Consequently, ultrasonic flow
meters can be modeled by computational fluid dynamics (CFD).
For this purpose Eddy viscosity Reynolds-averaged Navier-Stokes
(RANS) method are shown to be sufficient, see [17,18]. Tawackolian
[39] found out that for ultrasonic meters with several wetted
transducers in huge cavities scale resolving transient simulations
are necessary.

As the aim of error studies is mostly to correct the flow meter
reading, there have been several investigations to improve the
measurement values especially for ultrasonic flow meters (USFM).
Ruppel [32] developed an error correction procedure based on
pressure probes in the flange of the meter to measure the wall
shear stress; Yeh et al. [50] proposed a procedure with several
ultrasonic paths and flow pattern recognition. Carlander [6] drew a
conclusion about self-diagnostics due to the turbulence of the
measurement value. There are also two patents [2,10] which claim
to have a correction procedure for USFM depending on the dis-
tance of the last upstream disturbing installation.

However, all these studies assumed an ideal flow profile before
the disturbing geometry. Industrial applications are characterized
by high Reynolds numbers. The distance between elbows is typi-
cally not sufficiently long to redevelop such an ideal profile. Even if
this were so, the flow meter could be installed in front of the el-
bow. Thus a realistic uncertainty study for flow meter correction
must include several elbow combinations. For example, Kn“ourek
[23] simulated several t-junctions and elbows connected behind
each other. Usually not every possible elbow configuration can be
considered.

To approach the problem in a more general way, in this paper a
double elbow out-of-plane is studied with uncertain inflow con-
ditions with CFD, at a Reynolds number of 3-10°. An uncertainty
quantification is carried out by combining two double elbows at
random distance and orientation to each other. The statistical
quantities for the velocity profiles were calculated by employing
the method of polynomial chaos, see Section 2. With this ap-
proach, the sensitivity of flow measurements behind a double el-
bow to uncertain inflow conditions can be quantified and a more
general study of flow meters will be presented. Ultrasonic and
electromagnetic flow meters are chosen as examples, as they are
widely used and their measurement principles are non-intrusive.
Moreover, it is shown that a constriction right before the flow
meter is to straighten the velocity profile and improves the meter
performance considerably. Different shapes of such converging
nozzles could be designed to optimize flow conditioning or
minimize pressure loss. In this work, two representative designs
are studied and proposed: a Venturi nozzle and a rectangular
constriction.

The paper is organized as follows: Section 2 briefly describes
the concept of uncertainty quantification with polynomial chaos.
This approach is applied to a double elbow out-of-plane to study
its sensitivity to uncertain inflow conditions. Expected profiles
with standard deviations were calculated and compared with
measurement results in Section 3. In Sections 4 and 5, these pro-
files were used to study the error for ultrasonic and electro-
magnetic flow meters, respectively uncertainties for random an-
gular and axial alignment were calculated. The results were also
compared to measurements. Furthermore, expected errors and
standard deviations for disturbed inflow profiles to a Venturi
nozzle and a rectangular constriction are presented in Section 6.
Section 7 provides a summary of the main results and conclusions.

2. Concept of uncertainty quantification

A common approach in uncertainty quantification is to use a
Monte-Carlo type method. Uses of Monte Carlo methods require
large amounts of solutions of the deterministic problem. This be-
comes an issue when the system is nonlinear and the solution is
computationally expensive to obtain such as for problems arising
in CFD.

Here, an alternative approach is shortly introduced which is
referred to as “polynomial chaos” or sometimes also as “Wiener” or
“Wiener-Hermite chaos” in the literature [44]. The idea of the
method is to expand random variables with finite second moment
in a series of orthogonal polynomials. The method is applicable to
a wide range of problems, where the influence of uncertainties
within process conditions or variations of material parameters
needs to be quantified. In general, the polynomial chaos methods
are classified into two approaches: the so-called intrusive methods
as well as the non-intrusive ones, see, e.g., [48]. Especially the non-
intrusive, sampling based version of polynomial chaos plays an
important role when dealing with uncertainties in the context of
nonlinear and computationally expensive systems, see
[20,25,26,49]. The advantage of the non-intrusive approach is that
an existing solver for the underlying deterministic problem can be
used as a “black box” without modification. For a more elaborated
introduction we refer to [24].

For the introduction of this concept of uncertainty quantifica-
tion, a physical system

Lx, &8, &) =0,

like the incompressible Navier-Stokes equations (4), is considered.
Here g denotes some quantity of interest, for example, the velocity
field u in Section 3.2 or the volume flow rate in Section 4. Due to
uncertain initial or boundary conditions, material parameters, etc.,
some randomness is introduced in the system. This is modeled by
a vector of random parameters ¢ = (&), with joined probability
density function p =], p;. The idea of the gPC method is to
expand random variables with a finite second moment in a series
of orthogonal polynomials, i.e.,

g =Y 8,

i=0 ey
where (%), is a family of orthonormal polynomials with respect
to the weighted inner product

(#.), = [, HO¥©WENS

with weight function w. The family of the orthogonal polynomials
and the probability density function of &, i = 1, ..., m, is connected
by the Askey scheme, see [8] and Table 1. In this paper, we only
deal with uniformly distributed random variables and therefore
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Table 1

Correspondence of the family of orthogonal polynomials to the type of probability
density function of the random variable. Note that most of the random variables
must be scaled in a suitable way such that the corresponding probability density
function is equal to the weight function of the polynomial family.

Distribution Orthogonal polynomials
Gauss Hermite

Gamma Laguerre

Beta Jacobi

Uniform Legendre

Legendre polynomials are the appropriate ansatz polynomials.
Exploiting the orthogonality of the ansatz functions, the modes
ﬁi of the series expansion are given by

go=(gw ), %), i=1 ., 2

Again by the orthogonality of the ansatz, for the expectation E(g)
the variance V(g) holds

Eg) =8, V@ =Eg)-Eg’=Y8"
i=1
In practical computations, the degree d of the polynomials has to
be restricted, which leads to an approximation
p
~ &y (E), 1= M
g gog, {6, P+ T 5
of the series (1). The length p + 1 of the series increases very fast
with the polynomial degree d and the dimension of the random
space m. This is known as the “curse of dimensionality”, see [24],
and becomes an issue at least when dealing with problems in a
high-dimensional random space. This can be lifted with more
sophisticated approaches such as sparse grids, see [13,36]. The
convergence property of the truncated series (3) depends mainly
on the behavior of the solution of the operator £ with respect to &.
In this paper, the modes (2) are approximated by a tensor Gauss
Legendre cubature with nodes (51)‘}1:1 and weights (Aj)jlzl, ie.,

q . o
8 ~ Y g, ErEh.
j=1

This means that the deterministic problem £ have to be evaluated
g times, namely at the cubature nodes (51)‘}:1.

3. CFD-model of a double elbow

Double elbows out-of-plane and their effects on flow meters
have been studied experimentally in [5,22,28,30,32] and numeri-
cally in [3,17,18,23,39,53]. The conclusion was drawn that such a
geometrical setup generates strong disturbance that causes

| Inflow profiles

substantial errors in flow rate measurements. All these investiga-
tions assumed ideal flow profiles at the entrance to the double
elbow. In an industrial environment this is rarely the case. More-
over, upstream of a double elbow there is typically another in-
stallation that creates disturbances. The key question here is, how
do the flow conditions upstream a double elbow affect its down-
stream outcome. To quantify the resulting measurement un-
certainty, another double elbow with the same geometry was
considered as a disturbance generator upstream of the actual
double elbow, see Fig. 1. Additionally, the upstream elbow was
reflected at the xz-plane, to create an inlet profile with the op-
posite swirl direction. In order to evaluate the systematic un-
certainty contribution, a polynomial chaos study was carried out
wherein the distance between the double elbows is considered as
a random variable. For a particular application, other parameters
such as geometrical parameters of the elbows, valves or diameter
jumps might be of greater importance. They can treated analo-
gously as random variables. The aim of the presented study is to
give an example of a typical application and not to cover the whole
range of (elbow) configurations.

3.1. Model and numerical setup

The stationary incompressible Navier-Stokes equations mod-
eling conservation of mass and momentum are given by

Vu=0, uVu=- le + VAU
p

4
Here, u = (u, uy, u,) is the velocity field with the secondary
components u,,u, and the axial component u,, p the pressure, p
the density of the fluid, and v its kinematic viscosity. Standard no-
slip boundary conditions on the walls and a zero-gradient
boundary condition at the outlet are prescribed. At the inlet, a fully
developed profile with associated turbulence data is used as a
natural inflow boundary condition (for details see below). The
turbulent flow of water in a pipe with an inner diameter
D=53.6 mm is considered. The straight pipe downstream of the
double elbow has a length of 50 D. The geometry of the setup is
shown in Fig. 1. The volumetric velocity is fixed to be
U, = 4.19 ms™!, which corresponds to a Reynolds number of about
Re = 3-10°. In order to perform the numerical simulations in this
setup, the commercial CFD solver ANSYS CFX was used. The Rey-
nolds-averaged Navier-Stokes (RANS) equations were solved with
the closure model « — w from Wilcox [45], which shows the best
results among eddy viscosity models in a pipe flow [39,40]. A
hexahedral mesh consisting of 3.2 million elements with a non-
dimensional wall distance y* ~ 1 was used. The mesh was created
using the O-grid technique with the tool ANSYS ICEMCFD.

measurement
positions

K

Fig. 1. The setup of the numerical experiments with two double elbows in a row, with variable distance in between.
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3.2. Simulation results

The development of the velocity profile downstream of a
double elbow out-of-plane was simulated starting with fully de-
veloped inflow conditions obtained from a separate simulation of a
straight pipe. The profile has a varying asymmetric shape with a
swirl whose strength decreases further downstream. About 5D
downstream of the elbows, a typical sickle-shaped profile can be
found. The isosurface representing the maximum velocity rotates
in the flow due to the swirl with increasing distance, while the
sickle shape slowly disperses.

In the first step, a comparison with experimental measure-
ments is needed to assure that the numerical simulations are
suitable. A contour plot of the normalized axial velocity profile
u,/u,, at a distance of 5D downstream of a double elbow from
experimental data measured with particle image velocimetry (PIV)
from Optolution Messtechnik GmbH' is shown in Fig. 2a, com-
pared with a CFD simulation, Fig. 2b. In both, a typical sickle shape
can be obtained. Even if the sickle shape is more pronounced in
the simulation, it captures the main qualitative effects seen in the

. . . T
experiment. The arrows show the direction (ux, uy) and the

. 1 2 2 . .
magnitude @1/%{ + uy, of the swirl. In the experiment and the

simulation a single swirl in counterclockwise direction with si-
milar magnitude is obtained. The swirl center lies southeast of the
center of the cross section. Note that the measured values near the
wall are superposed by reflections. The measured profile was ob-
tained at a different Reynolds number 2.10° and with a slightly
different diameter (54.4 mm). The flow profile before the double
elbow was fully developed.

The velocity and turbulence profiles from the simulation with a
fully developed inlet profile at 20 different planes with different
axial positions were used to define the inlet conditions for 20
additional simulations. Another 20 simulations were performed
with the reflected profiles as inlet conditions, in order to change
the swirl direction.

The normalized axial velocity profile 5D downstream of the last
elbow with disturbed inlet conditions is shown in Fig. 2c and d.
The profiles still exhibit the typical sickle shape. Depending on the
inlet conditions their azimuthal orientation varies. If another
double elbow with the same swirl direction is considered as inflow
condition, the swirl is enhanced, which causes the sickle shape to
turn faster. With inflow conditions 12D downstream of the double
elbow, the sickle has already turned further (in counterclockwise
direction) about 60°, compared with the fully developed inlet case,
see Fig. 2c. For the inflow profile 12D downstream of the double
elbow with the opposite swirl direction, the swirl is weakened and
the axial velocity profile has turned about 60° less than the profile
with fully developed inlet conditions; also the shape of the sickle
is less sharp, since the strength of the swirl influences the re-
development of the profile, see Fig. 2d. From the gray scale of the
arrows the weakened/enhanced magnitude of the swirl can be
obtained.

To quantify the uncertainties caused by the variations of the
inflow profiles, the distance of the double elbows from each other
was defined as a uniform distributed random variable
£ €[5, 48] D. In this study, 20 sample positions were used. This
allows an approximation with polynomials up to the degree 19.
The detailed sample positions follow from the roots of the poly-
nomials. Two polynomial chaos studies were performed: in the
first study (T;) the two elbows have the same orientation, whereas
in the second study (T,) the orientation of the second elbow is

! Experimental data obtained by Ulrich Miiller, Optolution Messtechnik GmbH,
internal campaign 2014.

mirrored. With the orientation as a discrete random variable, the
two calculations can be combined [34] and the expectation and
variance can be calculated by

Hn=§am+ﬂmx V()

1 1 2
= 5 (VM) + V(T) + Z(ET) - ET) ®)

Fig. 3a and b show the expected axial velocity profile. The corre-

sponding standard deviation Std = Z,LOI./V(Z) in % is shown in
VO

Fig. 3c and d. Fig. 3a and b are computed, at the cross section in a
distance of 5D, and Fig. 3b and d in a distance of 17D downstream
of the last elbow. While for the closer cross section the expected
profile still exhibits a sickle shape, the profile at a distance of 17D
downstream is almost rotationally symmetric. Note that the
symmetry is caused by averaging over the different inlet positions.
For each inlet position, the resulting profile is still sickle shaped.
The standard deviation at a distance of 5D downstream shows a
relative localized maximum value of 10%, with lower values where
the sickle is expected. Further downstream the standard deviation
is spread increasingly over the cross section with values up to 9%
and shows a minimum around the center area.

In conclusion, especially for fully developed inflow conditions
the simulated profile well agreed with the measured one. With
respect to error prediction of flow rate measurements not only the
last disturbing installation should be taken into account. For sev-
eral disturbing installations connected in series, which can be
found in many pipe assemblies, an accurate prediction of the flow
profile and, thus, an accurate error estimation for a flow meter is
more challenging. In the following sections, ultrasonic and elec-
tromagnetic flow meters are studied.

4. Uncertainty of an ultrasonic flow meter

The disturbed flow profiles from the previous section are now
considered as inflow profile of a modeled flow measurement de-
vice. An ultrasonic flow meter (USFM) is studied first, as it is ex-
pected to be sensitive to disturbances [5,9,22,39]. The measure-
ment principle of an ultrasonic single-path flow meter is therefore
modeled. Thus, the velocity field is transformed into a cylindrical
coordinate system (r, ¢,z), with the velocity vector
u= (U, u, u).

4.1. Measurement principle

There are several types of ultrasonic flow meters on the market.
The two main measurement principles are the Doppler and the
travel-time techniques. Here, the dual sensor travel-time techni-
que will be discussed. Two sensors (A and B) are situated inside or
outside the pipe wall, see Fig. 4. Each sends and receives ultrasonic
impulses that propagate through the fluid. The time between
sending and receiving from one to the other sensor is measured. It
can be written as

L

C- L_lpeZ' (6)

tpp= =——>
C+aye,
where C denotes the speed of sound in the fluid, &, the mean

velocity along the ultrasonic path, and e, the z-component of the

unit vector e = (sin(a), 0, COS(a))T tangential to the path. The
measurement value i, can be determined by

_ L(l 1)
iy=—|—-—|
2e,\tag g
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Fig. 2. Comparison of the axial velocity profile normalized with the volumetric velocity u,,; 5D downstream a double elbow with different inlet conditions. With fully developed
inflow, by particle image velocimetry (PIV) measurements' (a) and a CFD simulation (b). With disturbed inflow conditions from 12D downstream of a double elbow with the
same swirl direction (c) and with opposite swirl direction (d). The arrows show the secondary flow components, the normalized magnitude is visualized by their gray scale.

There are different approaches to model an ultrasonic beam tra-
veling between the transducers. Here, the ultrasonic beam is as-
sumed to be a straight-line. This means a simplification, because the
acoustic path is curved, due to the flow and temperature profile. Yeh
and Mattingly [53] have shown that this effect is sufficiently small for
Mach numbers <0.1. With a ray tracing approach, looss et al. [21]
showed that the flow rate is overestimated up to 2% by this model
simplification even for fully developed profiles, when turbulent and
thermal effects are concerned as well. Furthermore, the ultrasonic
beam has a spatial expansion. The sound beam can therefore be
modeled as an elliptic volume, see [18]. For small pipe diameters this
should be considered, but it is neglected in this work. If the USFM is
an in-line meter, the transducers are situated in cavities inside the
pipe or extend into the pipe, which causes additional effects, see [39].
Also different path assemblies can be considered which might im-
prove the measurement results, for example see [17]. Here, for de-
monstration of the method, a non-intrusive single beam with
straight line wave propagation is considered.

Since the mean velocity of a path is not the same as the mean
velocity over the cross section, @, has to be multiplied by a calibration

factor k = u,,/ii,. Since the real flow profile in a pipe system is un-
known, the ratio k is usually calculated for a fully developed flow
profile. If the flow profile is disturbed particularly, not rotationally
symmetric, the calculated value for k is wrong, which depicts the first
source of error. The second one is caused by non-axial/cross velocity
components, since the ultrasonic impulse is not only driven by the
axial velocity component u,, as the angle a (practically) cannot be
zero. With a cylindrical coordinate system, only the radial component
u, disrupts the measurement value, since uy is orthogonal to the
vector e. The mean velocity can then be calculated as

L
g = ki, = Liez [, ue. ”
For an ideal flow profile with no secondary flow components the
correct value of the mean axial velocity i1, can be determined. For the
presented results, the axial angle « is fixed at z/4. The analytical
velocity distribution of Gersten and Herwig [12] differs slightly from
the CFD simulated profiles. Therefore, the calibration factor k=0.949
is calculated by the velocity profile obtained by an additional CFD
simulation of a more than 100D long straight pipe. The obtained
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(b) E(T), z/D =17

6

() Std(T), z/D =5 (d) Std(T), z/D = 17

Fig. 3. Statistical quantities due to random distance and orientation between two double elbows. The expected normalized axial velocity profile (a) 5D and (b) 17D
downstream of the second double elbow and the related standard deviation in % (c) and (d).

downstream
sensor
p A
uz &
| EEE——
D X
‘& v
upstream
sensor
Fig. 4. Principle of an ultrasonic flow meter construction.
profile is a more suitable reference for comparisons with CFD simu- 100 (@ = Qrea)
i €= m ~ Yreal)
lated disturbed flow profiles. Qeal 8)
4.2. Results where Q,, is the flow rate from the meter and Q. is the exact flow

rate. The following cases were studied:

The relative error of the simulated flow meter in percent is
given by (i)  Two identical double elbows in a row at a random distance
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from each other.

(ii) Two identical double elbows in a row at a random distance
from each other; first double elbow is reflected on the xz-
plane.

(iii) Combination of Cases (i) and (ii) with joint statistics,
calculated using (5).

(iv) One double elbow with ideal inflow conditions and random
angular alignment of the flow meter ¢, as defined in Fig. 4.
To calculate the standard deviations with polynomial chaos
20 angular positions ¢ € [0, 2z] were used.

The Cases (i) and (ii) reflect a situation where the installation

elements in front of the flow meter are known in detail except for

the distance between them. In some cases, the combination of the
installation elements may not be known so that a statistics over
possible constellations is needed - this situation is considered here
in Case (iii). In Case (iv), it is assumed that several installations
may affect the flow before it enters the double elbow in front of
the flow meter and that therefore the angle of the orientation of
the asymmetric flow profile entering the meter is unknown. This is
modeled here by assuming a random angle of the flow meter.
While this selection of cases will not capture every possible si-
tuation, it will allow to us obtain a comprehensive overview of the
magnitude and variation of systematic biases caused by well-
specified or (partially) unknown installation in the flow track be-
fore the meter. Since the results, depend strongly on the distance
of the flow meter to the double elbow, we usually show their
dependence on this parameter. In order to enable an easier com-
parison between the different Cases (i)—(iv) and also to allow an
easy assessment of the effect of elements that compensate the
systematic effects on the flow measurement (see Section 6 below),
results for the bias and the systematic uncertainty contribution
were also averaged over a specified range of distances and are

provided in Table 2.

For an angular position of ¢ = 0, the expected error for the
Cases (i)-(iii) over the distance to the last elbow starts at a value
between —3 and —6% at a distance of 5D and decreases, oscil-
lating towards about 1% at a distance of 47D to the last elbow. The
standard deviation decreases from about 3% towards 1.5% and also
oscillates slightly, compare Fig. 5a—c. For Case (iv) the outlet of the
double elbow has a length of 100D. The expected systematic error
decreases asymptotically from —4% towards zero. The standard
deviation is about 2.5% near to the elbow and decreases slowly to
about 2% at a distance of 50D. From there on, it decreases more
rapidly to a small value of 0.4% at a distance of 94D. The minimum
and the maximum deviation decrease from —6% and +3% to
+0.5% respectively, see Fig. 5d. It can be seen that Case (iv) ap-
proximates the statistics of the other cases quite well. The ex-
pected error for Case (iv) with random position and random an-
gular alignment of the USFM was calculated to be —1.42% with a
standard deviation of 0.7%, see Table 2.

Table 2

Calculated uncertainties downstream a double elbow with a random distance of 5-
100D and random angular position ¢ € [0, 2z] of the simulated flow meter. Results
are given for the cases without constriction, with a Venturi nozzle and a rectan-
gular constriction. For explanation see Sections 4 and 5.1.

USFM EMFM Unit
Flow rate No constr. Venturi Rect. No constr. Venturi Rect.
Q exact 34.08 34.08 34.08 34.08 3408 3408 m’/h
Expectation 33.63 34.05 33.70 33.98 3405 3404 m’|h
value
Expected -134 -011 -114 -031 -010 -010 %
error
Standard 0.70 0.34 112 017 0.02 001 %
deviation

The proposed uncertainty study is tested by comparing the
outcome with earlier results of Halttunen [16]. The data were re-
digitalized in order to show it in the same plot. The data were
generated by applying the same modeling approach of a single
beam USFM as used in this work, see Section 4.1. But instead of
results from CFD simulations, velocity profiles downstream of a
double elbow out-of-plane from laser-Doppler-velocimetry (LDV)
measurements of the US National Institute of Standards and
Technology (NIST) [27] were used. The Reynolds number of the
measurements was 10, and thus three times lower than in this
work (3 - 10°). Nevertheless the results were plotted together with
the approach from Case (iv) in Fig. 5d. The triangles are the errors
for an angular alignment of ¢y=0° and ¢p=90°. The same trend of
the experimental and the simulated results can be obtained. Most
points are within the standard deviation (red error bars) and are
gathered around the expected error (cyan line) and therefore in
line with the results of our study. A single point close to the elbow
exit is outside the standard deviation but still inside the minimum
deviation (blue error bars). Only three values from [27] obtained at
a distance larger than 90D downstream differ from the un-
certainties obtained in this investigation.

The propagation of the error depending on the distance and the
angular alignment of the USFM is shown in Fig. 6a. Nearly periodic
structures can be seen in both directions, where the amplitudes
decrease with axial distance to the elbows. The change over the
angular alignment ¢ in 32D is shown in Fig. 6b. The interpolation
by the Legendre polynomials (red) captures the values of extrema
that would be underestimated by the sampling points (blue). The
expected error at this cross section is depicted in black dots and
the expected error plus and minus the standard deviation is
shown in green lines.

It can be concluded that the simulated CFD profiles are suitable
for predicting errors of USFM downstream a double elbow out-of-
plane. The calculated standard deviations are a good approxima-
tion of the systematic contributions to the uncertainties of an
USFM that stem from installation effects such as the uncertain
inflow profile and the position of the flow meter behind the elbow.

5. Uncertainty of an electromagnetic flow meter

The influence of installation effects and the resulting sys-
tematic uncertainties in the performance of an electromagnetic
flow meter (EMFM) is studied in this section. The approach is
analogous to the one applied to the ultrasonic flow meters in the
preceding section. Error shifts of an EMFM were previously stu-
died in [1,4,15,16,19]. An EMFM seems to be much less sensitive to
disturbed flow profiles than the USFM considered in the last sec-
tion. EMFMs are also considerable more expensive than USFMs,
which make them only applicable where they promise a sub-
stantial extra benefit in measurement accuracy. Yet they are not
free of errors for disturbed inflow profiles, which is due to their
measurement principle, which will be explained in the following
section.

5.1. Measurement principle

Electromagnetic flow meters rely on the generation of a mea-
surable potential difference in the (conducting) fluid by its motion
through a transverse magnetic field [35]. For a pipe with a circular
cross section two electrodes A and B are usually placed on the pipe
walls perpendicular to the magnetic field, see Fig. 7. Under the
assumption that the axial velocity u, vanishes at the wall and the
walls are not conducting, the flow rate Q,, can be determined by
the potential difference between the points A and B, see [35],
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Fig. 5. The expected error of an USFM and its standard deviation over the distance to the last elbow. For (a), (b) and (c): with a fixed angle of ¢=90° and the distance of the
first double elbow as random variable with the same swirl direction (a), with the opposite swirl direction (b), both combined (c). The double elbow with fully developed
inflow conditions with a random angular position of ¢ (d). The error bars in red denote the standard deviation, in blue the max and min deviation at each position. Note that
the horizontal axis in (d) is twice as long as in the others. The black triangles represent digitalized experimental data from Halttunen [16], with an angle of 0° and 90°. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Qn = ffg u,(x, yYW(x, ) dx dy, ©)

where €2 denotes the cross section of the pipe. The weighting
function W, which is also known as the Shercliff function, is given
by

R* + R(x* - y)
44 2R - yh) + (X 4y (10)

W, y) =
®y) =

and depicted in Fig. 7. Note that the Shercliff function has singu-
larities at the position of the electrodes. Here the positions of the
electrodes are located at ( — R, 0) and (R, 0), see Fig. 7. To apply the
weight function for our purposes, it is cut off at a value of 2.5.

In [37], weight functions for other configurations, for example
for rectangular flow meters, can be found. To get the desired
quantity of the flow rate, the measured value Q,, has to be multi-
plied by a calibration factor k=1.05, which was calculated for a fully
developed flow profile, similar to the approach explained in Section
4, If the shape of the velocity profile is not fully developed, parti-
cularly non-symmetric, the measurement value will be biased.

5.2. Results

The investigation of the EMFM covers the Cases (i)—(iv), which
are the same as in Section 4.2. The only difference is, that the
USFM is now replaced by an EMFM. For an angular position of
¢ =0, the expected error for Cases (i)-(iii) over the distance to the
last elbow starts at about —0.4 to —0.7% at a distance of 5D and
decreases in an oscillating manner towards zero at a distance of
47D to the last elbow. The standard deviation also oscillates
slightly, but hardly decreases, and varies in the range 0.3-0.7%,
compare Figs. 8a, b and c. For Case (iv) the outlet of the double
elbow is 100D. The expected error decreases asymptotically from
—0.5% towards zero. The standard deviation is about 0.6% at 5D
and hardly decreases until 50D; at position 94D the standard de-
viation is about 0.1%. The minimum and maximum deviations
decrease from —1% and +0.8% to + 0.1% respectively, see Fig. 8d.
As for the USFM, it can be seen that Case (iv) approximates the
statistics of the other cases quite well. The expected error for Case
(iv) with random position and random angular alignment of the
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Fig. 7. Contour lines of the Shercliff function of an EMFM in a cross section of a
circular pipe.

EMFM was calculated to be —0.31% with a standard deviation of
0.17%, see Table 2. Therefore the expected error and the standard
deviation of an EMFM are smaller by a factor of 4 than for a single
path USFM. To check the simulation results they are compared
with experimental data obtained at FORCE Technology.? Two set-
ups were considered. In the first setup, the volume flow rate is
measured by an EMFM at three distances (0, 10, and 27D) behind a
double elbow out-of-plane. For the second setup, a clockwise swirl
generator is additionally put in front of the double elbow. The
measurements were performed at a temperature of 24 °C and a
pressure of 1.5 bar. The volume flow rate was about 34.1 m3/h,
which corresponds to a Reynolds number of about 3.10°. The
measurements were repeated five times with about 23,000 pulses
each in about 240s. The geometry of the elbows used in the

2 Experimental data obtained by Johan Bunde Kondrup, FORCE Technology,
Denmark.

experiments differs from the one used for the above simulations.
The distance between the elbows is smaller, as they are directly
mounted together. For a better comparability, an additional si-
mulation was carried out with the geometry used in the experi-
ments. Fig. 9 shows the mean values of the resulting relative error
of the volume flow rate with respect to a reference flow rate which
has been determined by measurements under ideal conditions.
The results for the first setup are depicted in green, for the second
setup in black. The error bars depict the standard deviation of the
five measurements which in all cases is about 2%. The experi-
mental data are plotted within the calculated uncertainties from
Case (iv). The cyan line depicts the expected error, the red error
bars the standard deviation, and the blue error bars the maximum/
minimum errors for variation of the angular alignment at the
particular position..

It can be concluded that a priori distortion of the velocity profile
influences the outcome of the profiles downstream of a double el-
bow, since the experiments with a swirl generator before the
double elbow differ from those without swirl. The error of the ex-
periments does not decrease significantly for a distance of up to 27D
downstream of the elbows. The presented uncertainty study proved
to be a good approximation, since the estimated errors from the
experiment all lie within the predicted standard deviation.

6. Influence of constrictions on the disturbance

As shown in the previous sections, the exactness of a flow
meter is dependent on the flow profile. In an industrial environ-
ment an ideal flow profile is rarely accessible. Nevertheless, exact
measurements of the flow rate with as small as possible sys-
tematic uncertainty contributions are desired under any circum-
stances. Thus improvements in the accuracy of the flow meter are
needed under disturbed flow conditions.

One possibility to improve the measurement performance is to
install flow conditioners right after the disturbing geometry. This
causes a destruction of the previous disturbance, but it still re-
quires a length of more than 20D of a straight pipe until the ideal
flow profile is developed [47]. That makes flow conditioners ap-
plicable for test rigs, but hardly in an industrial environment.

A lot of effort has been made to correct the error shift of the
meter. Therefore the disturbed profile must be well known. Even if
the geometry of the disturbing installation is known, it is hard to
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predict the actual flow profile, because the inflow condition, which
is in general unknown, also affects the resulting profile, as shown
in Section 3. To determine the profile a second measurement
technique can be installed for example to measure the wall shear
stress as proposed by Wildemann [46] and applied by Ruppel
[32,33] with pressure probes in the flange of a USFM. Also Yeh
et al. [50] suggested a procedure to correct the measured flow rate
of a USFM. For this several ultrasonic paths were necessary to
achieve flow pattern recognition. Carlander and Delsing [6] drew a
conclusion for self-diagnostics due to the turbulence of the mea-
surement value of a USFM. There are also two patents [2,10] which
claim to have a correction procedure for the USFM, depending on
the distance of the last upstream disturbing installation. Further
upstream disturbances are not included.

However, a simpler possibility is to disturb the flow directly in
front of the measurement position in such a way that the shape of
the axial velocity profile is stable and predictable for any inflow
condition. For the USFM and the EMFM, the pipe diameter can be
reduced with a nozzle right in front of the measurement device.
This increases the flow velocity and straightens the flow profile
which signifies a reduction in the asymmetry. However, the swirl

will be enhanced, and another disadvantage is the head loss. In the
following, the effect of a Venturi nozzle and a rectangular con-
striction with disturbed inflow conditions from a double elbow
out-of-plane with varying distance are studied with the poly-
nomial chaos method applied to CFD simulations. The two mea-
surement principles of electromagnetic and ultrasonic flow meters
were modeled as in Sections 4.1 and 5.1.

6.1. Venturi nozzle

Venturi nozzles can be used as flow meters due to the effect of
pressure drop and its relation to the velocity. In addition, Venturi
nozzles are also employed for flow homogenization. In this work
we use the design of the new high temperature water flow stan-
dard at the Physikalisch-Technische Bundesanstalt (PTB) in Berlin,
which is a Venturi nozzle with a diameter ratio of 0.5. It is used for
laser optical LDV measurements, see [38,41]. Here, its geometry is
considered in order to study the uncertainty of magnetic and ul-
trasonic flow meters inside the narrow part of the nozzle. A hex-
ahedral mesh was generated consisting of 3.7 million elements
and with dimensionless wall distance of y* ~ 1. The first step is to
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determine the flow profile in the Venturi nozzle for fully devel-
oped inflow conditions. In Fig. 11 the simulated profile is plotted in
comparison with LDV measurements from PTB and a theoretical
model based on a hyperbolic tangent approach, see [29,38]. Good
agreement of the simulated data with both measurements and the
theoretical profile can be obtained. Compared to the fully devel-
oped profile from Gersten [12], depicted in red dots, the profile in
the Venturi nozzle is much flatter in the free stream region, while
it is much steeper near the wall. The reference calibration factor k
for the ultrasonic and the magnetic flow meter can now be cal-
culated for the new flow profile. For the USFM, kyspy = 0.988 and
for the EMFM kgyry = 1.009 ensued. As previously, the influence of
disturbed inflow conditions on the velocity profile inside the
Venturi is studied by application of the polynomial chaos ap-
proach. With a random upstream distance of the double elbow
out-of-plane, the mean axial velocity profile inside the Venturi
nozzle does not change significantly compared with a fully de-
veloped inflow profile. The standard deviation in the center area of
the pipe is smaller than 0.3%. Near the wall, areas with deviations
up to 1.6% appear, compare to Fig. 12a. The blue curve in Fig. 12b

sections

measurement
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=tanh
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Fig. 11. Comparison of axis-symmetric flow profiles for a fully developed profile
from Gersten [12] (red dots) and the profile inside the Venturi nozzle: simulation
(green crosses), theoretical hyperbolic tangent profile (blue line) and LDV mea-
surement data (black circles). (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this paper.)

depicts the standard deviation for a single path from the center of
the pipe to the pipe wall. Therefore, the angle was considered as a
second random variable. The standard deviation is almost zero in
the center point and increases moderately up to 0.3% until a radial
position of r/R ~ 0.9. Closer to the wall the standard deviation
increases rapidly up to 0.9% until it drops down to zero in the
sublayer. The black curve is for fully developed inflow conditions
with random path angle. Here, the standard deviation is almost
zero until r/R = 0.9 and decreases until 0.3% near the wall. Con-
sequently, even for an ideal inflow profile, an asymmetry appears
inside the measurement section, which can be explained by the
flow separation at the end of the narrow part. Nonetheless these
deviations are quite small. The expected error and the standard
deviation due to the random angular position of a flow meter over
its distance to the double elbow are shown in Fig. 13. The max-
imum expected error of the flow rate measured by the USFM,
shown in Fig. 133, is —0.2% and decreases almost linearly to zero.
The standard deviation (red error bars) decreases from about 1% to
about 0.1%. The maximum and the minimum deviation (blue error
bars) decrease from about 1.5% and —2% to less than + 0.2% re-
spectively. The expected error for random angle and distance is

0 0.045 0.090 (m) ©
0.0225 0.067 z

Fig. 10. The Venturi nozzle (top) and the rectangular restriction (bottom).
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Fig. 13. The expected error of flow meters inside the Venturi constriction (cyan), their standard deviation (red) and the maximum/minimum deviation (blue) due to its
random angular position ¢. The error in the rectangular constriction is with a fixed angular position ¢ (green). (a) for an USFM and (b) for an EMFM. (For interpretation of the
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—0.11% with a standard deviation of 0.34%, compare to Table 2.
Fig. 13b shows the results of the EMFM inside the Venturi nozzle.
Here, the expected error as well as the standard deviation and the
maximum/minimum deviations remain below 0.2% for all posi-
tions of the EMFM. The expected error for random angle and
distance is —0.1% with a standard deviation of 0.02%, compare to
Table 2.

The standard deviation in the Venturi nozzle is mostly driven
by the secondary flow components. In the case without a con-
striction, mostly the asymmetry of the axial velocity profile is re-
sponsible for the errors. To illustrate this, the flow rates were
calculated with Eq. (7), except that the secondary flow compo-
nents u, and uy were set to zero. A comparison of the standard
deviation is shown in Fig. 14. Without a constriction, the standard
deviation with (red) and without (green) the non-axial flow
components lies within the same range for distanced larger than
50D. For smaller distances it is about half a percent lower

beforehand, except near a meter position of 5D behind the double
elbow, where the difference is even higher. For a measurement
inside the Venturi nozzle, the influence of the non-axial flow
components increases the standard deviation by a factor of 5, see
the blue and cyan line.

6.2. Rectangular constriction

The rectangular constriction reduces the diameter of the
straight pipe from D=53.6 mm in the yz-plane to D,, = 18 mm and
in the xz-plane to D,, = 46.5 mm. The measurement section is
modeled in the middle of the narrow part, see Fig. 10. The mesh
consists of about 1.2 million hexahedrons, where the closest node
to the wall has a dimensionless distance of y* ~ 1. As for the
Venturi nozzle in the previous section, the inlet conditions were
chosen to be the random distance of the double elbow out-of-
plane. However, due to the non-symmetrical shape of the
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rectangular constriction the angular position ¢ of the flow meters
is fixed. The ultrasonic beam is situated in the yz-plane, while the
electromagnetic transducers are mounted in the xz-plane (the
narrow side of the cross section). Similar to the approach in Sec-
tion 6.1, reference calibration factors for the rectangular constric-
tion have been obtained by an additional CFD simulation. The re-
sulting factors are kygpy = 0.988 for the USFM and kgypy = 0.718
for the EMFM, respectively. The results for the USFM show an
oscillating error with decreasing amplitude towards zero, mostly
in the negative area. Its error stays in most positions inside the
standard deviation of the Venturi nozzle, but exceeds for z/D=5
and 25 for even the greatest errors of the Venturi, see Fig. 13a
(green line). The overall expected error for random distance is
—1.14%, its standard deviation is 1.12%, see Table 2. It seems,
therefore, more sensitive to disturbed flow than the Venturi noz-
zle, even if it is hard to compare, because the angle of the meter
was not varied. The error of an EMFM is also quite stable in the
narrow part of the rectangular geometry. The error oscillates
around zero and remains lower than 0.2% for all distances, see
Fig. 13b (green line). The overall expected error for random dis-
tance to the disturbance is —0.1%, with a standard deviation of
0.01%, see Table 2. The uncertainty lies in the same scope as the
Venturi nozzle.

It can be concluded that a diameter reduction in the form of a
rectangular and a Venturi nozzle has great potential to reduce the
error of a flow rate measurement downstream of disturbing in-
stallations. The diameter constriction particularly reduces the ex-
pected error in great amount. For EMFM the effect of disturbed
flow conditions almost disappears.

7. Conclusion

Installations in the vicinity of flow meters are known to lead to
systematic distortions of the measurement of flow rates. The main
result of this paper is that computational fluid dynamics in com-
bination with a recently developed technique for uncertainty
quantification — the polynomial chaos method - is suitable to de-
termine the bias b and the systematic uncertainty contribution u
(b) for measurements with ultrasonic and electromagnetic flow

meters. The “Guide to the expression of uncertainty in measure-
ment” (GUM) [7] recommends strongly that measurement results
are given as a combination of an output estimate y, and the as-
sociated uncertainty u(y). The GUM demands further that known
systematic biases b are corrected by replacing y by y' =y + b and
that uncertainty associated with the bias b is added to the mea-
surement uncertainty: u'(y’) = \/fu(y)z + u(by?). Often b and u(b)
cannot be obtained directly from the measurement. Here, we
shown that flow simulation can be employed to determine the
quantities b and u(b) and therefore enable a more reliable state-
ment of the measurement result and its uncertainty. Our approach
allows to us assess how the position of the flow meter and the
installation of pipes upstream of it affect the magnitudes of b and
u(b). In a second step, we also demonstrated how systematic ef-
fects can be partially compensated by additional elements such as
Venturi nozzles and rectangular restrictions.

As far as industrial pipe and district heating systems are con-
cerned, combinations of elbows are the most common pipe as-
semblies. Among the different pipe combinations, double elbows
out-of-plane are of special interest, since they introduce strong
disturbances into the flow profile and have a strong influence on
many common types of flow meters. In front of a double elbow
there is often another flow-disturbing installation. As a result the
upstream conditions are unknown and an investigation of the
resulting systematic bias on the measurement of the flow rate and
the associated contribution to its measurement uncertainty is
necessary. We demonstrate here that this can be achieved by a
variation of the inlet profile in terms of swirls and asymmetry
components.

It was shown that the axial flow profile, and also the strength of
the swirl downstream of a double elbow out-of-plane, do not only
depend on the geometry of the elbows, but are also strongly in-
fluenced by their inflow conditions. In particular, the azimuthal
position of the profile varies with disturbed inflow conditions.
Thus the angular position of an ultrasonic and an electromagnetic
flow meter was modeled as a random variable in an uncertainty
study of the meter performance. The expected flow rate is un-
derestimated (b < 0), in most cases. The errors are higher the
closer the meter is installed to the elbows. The standard deviation
due to the random angular position is almost constant until about
40D downstream the elbows and decreases from there to almost
zero at 100D distance. As the most influential parameters on the
measured volume flow, the distance between the double elbow
and the flow meter as well as the orientation of the flow meter
were considered as random variables in the polynomial chaos
approach. The resulting bias in the flow rate has been found to be
in the range of 1.5-4.5% (0.1-0.5%) with a systematic uncertainty
contribution of 2-2.4% (0.6-0.7%) of the respective flow rates for
the ultrasonic (electromagnetic) flow meter if the distance to the
double elbow is smaller than 40 pipe diameters. We emphasis that
the systematic contribution to the uncertainty budget due to non-
ideal inflow conditions is much higher than the contribution from
the random errors imposed by the meter. For ultrasonic and
electromagnetic flow meters random errors are typically lower
than 0.1% for high Reynolds numbers [4,6].

If a constriction is placed directly in front of the meter the
biases and uncertainties are substantially reduced. Therefore the
flow meters were modeled in the narrow part of a Venturi nozzle
and a rectangular constriction. The calibration factors were
therefore adapted. For the ultrasonic flow meter the expected er-
ror can be reduced by more than one order of magnitude for the
Venturi nozzle and 1.14% for the rectangular constriction, respec-
tively. The Venturi nozzle decreases the standard deviation by a
factor of two, in the rectangular constriction the standard devia-
tion even increases. For an electromagnetic flow meter the ex-
pected errors inside the Venturi nozzle and the rectangular
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constriction become quite small and can thus be neglected, as
other effects in a real measurement like the instrument-related
uncertainty contribution would be of higher magnitude.
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