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Abstract

We consider control problems with a general cost functional where the state equations
are the stationary, incompressible Navier-Stokes equations with shear-dependent viscosity.
The equations are quasi-linear. The control function is given as the inhomogeneity of the
momentum equation. In this paper we study a general class of viscosity functions which
correspond to shear-thinning or shear-thickening behavior. The basic results concerning ex-
istence, uniqueness, boundedness, and regularity of the solutions of the state equations are
reviewed. The main topic of the paper is the proof of Gateaux differentiability, which extends
known results. It is shown that the derivative is the unique solution to a linearized equation.
Moreover necessary first order optimality conditions are stated, and the existence of a solution
of a class of control problems is shown.
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1 Introduction

In this work we consider control problems of tracking type with distributed control for two-
dimensional stationary, incompressible flow of non-Newtonian fluids with shear-dependent viscos-
ity.

The considered class of fluids are described by a quasi-linear generalization of the Navier-Stokes
system. The Laplace operator (i.e. the divergence of the velocity gradient) in the momentum
equation is replaced by the divergence of a non-linear function of the symmetrized velocity gradient.
In this paper we study a certain class of non-linearities that include both shear-thinning and shear-
thickening fluids, that means fluids whose viscosity decreases or increases when the shear-rate —
described by the symmetrized velocity gradient — grows.

Examples for such kind of fluids among others are blood and chemical suspensions. Several
applications for control problems may be considered. Here the study of distributed control is only
one example, also boundary and shape control problems may be of interest.

For the studied class of fluids a certain monotonicity of the non-linearity is assumed. Under
this assumption existence, uniqueness, boundedness, and regularity results can be found in the
literature. We want to emphasize the work of J.-L. Lions, Kaplicky, Malek, Necas, Rokyta,
Ruzicka, Stard, Frehse, and Steinhauer, see [12, Chapter 2, section 5|, [13], [10], [11], [6]. They
mainly study the case of homogeneous Dirichlet boundary conditions, to which we also restrict our
work here. Results on the state equations for inhomogeneous boundary conditions can be found
in [2]. Numerical simulations were presented by Hron, Mélek, and Turek in [9]. Control problems
for non-Newtonian fluid flows have only been studied very rarely in the past. We mention the
work of Casas and Fernandez [3], [4], [5]. In [4] they showed Géteaux differentiability for quasi-
linear equations with the same class of nonlinearity as in non-Newtonian fluids, but without the
convective term and the divergence condition. Our differentiability proof basically relies on this
work, but applies to a wider range of nonlinearities (with exponent p > % rather than p > 2).
This is due to the regularity results given in [11]. Moreover we treat the system case and the
nonlinear convective term. In [14] a control problem for a scalar equation with a nonlinearity
similar to the one in non-Newtonian fluids is analyzed, too. A recent paper by Abraham, Behr,
and Heinkenschloss [1] studies numerical shape optimization for a non-Newtonian fluid.

The structure of the paper is as follows. We state the necessary assumptions on the state equation
in section 2. In section 3 we give some examples for shear-dependent fluids and show how they fit
in the abstract framework. In section 4 we state some preliminary lemmas. Then we summarize
the basic existence and regularity results for the state equation, that are mainly based on [11].
We show Lipschitz continuity and thus uniqueness of the solution operator of the state equation
in section 6. Afterwards we present the linearized equation, and show under which assumptions
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it has a unique solution. In section 8 we present the central part of this work, namely the proof of
Gateaux differentiability. Here we extend the results in [4]. Finally we show the requirements for
the existence of a solution in section 9 and formulate the necessary optimality conditions of first
order in section 10.

2 State equation and assumptions on the non-linearity

In this section we present the formulation of the state equations and characterize the considered
class of non-linearities.

The state equation under consideration is the following form of the quasilinear, stationary, and
incompressible Navier-Stokes equation in a bounded domain 2 € R? with C? boundary:

u-Vu—div(T(Du))+Vr = f inQ
(2.1) divu = 0 inQ
v = 0 on Q.

Here w is the velocity vector and 7 the pressure. The velocity gradient

(2.2) Vu ::( ) € R2¥2
0ri ) ;j=12

is a (2 x 2)-matrix (or tensor of second order). Note that we define it such that the first index
corresponds to the differentiation index. By

(2.3) (u-§) = (Zujfﬁji) €R?’, uweR?* &= (&) € R?
i

i=1,2

we denote the scalar product between a vector and a tensor of second order. Here and from now
on we omit the limits of the sum which are taken over {1,2}. The non-linear convective term in

(2.1) is defined as
Ou;
u-Vu::( ull> € R?
zj: ]ij i=1,2

We define the (double) scalar product between tensors, and their norms by

(&:m)

1

D m €R, nli=(n:m)z, &neRVE
ij
(C : T’) = (Zgwklnkl> c R2><2, g c ]:K2><2><2><2,77 c R2X27

kl 1,j=1,2
and note that
(24) C:m):& = (£:Q):m, 777£€R2><27<€R2><2><2><2.
By S we denote the subspace of symmetric tensors in R?*2. The non-linear tensor-valued function
T = (Tiy)ij=12:S—S

appearing in (2.1) is a function of the symmetrized velocity gradient defined by

Du = (Vu+ (Vu)') .

N | =

Because of || = [p| the symmetrized velocity gradient satisfies

(2.5) |Dul < |Vul.
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We assume that T has a potential F'| i.e.

. 0
Tij(n) = 0 F(|n|*) = 2F (In|*)mij, 1,5 =1,2, n€S,d;j:= o
ij
with
(2.6) FeC*Rg,Ry), F(0) = 0, T(0)=9;F(nl*)],_,=0.
Moreover we assume that there exist C7, Cy such that
(2.7) T'(n):€:& = Y 0Taéusy = D 0y0uF(Inl*)éus
1jkl ijkl
> Ci(1+ )= [¢
(2.8) 05T (n)| = [0i;0uF ()| < Co(l+|nf? )" i 0,k 1=1,2

for all £, € S and some p € (1,00).

3 Examples for applications

In this section we present a class of non-linear tensor functions 7' that are used in applications
and satisfy the assumptions made above. We consider

(3.1) Tm) = w (M0+|77|) = 0+ peon, 1= Du,

with vg > 0, 140, fteo > 0. The case p € (1,2) correspond to shear-thinning fluids, whereas for p > 2
the fluid is called shear-thickening. If g = poo = 0 the fluid is said to obey a Power-Law. In this
case and for p = 2 system (2.1) reduces to the well-known incompressible Navier-Stokes equations.
We show that (3.1) satisfies the assumptions (2.6)—(2.8) with

P
2

2 _ OO 2
F(lnl*) = ) 2 (o + nP2)* + = PP+ C.

Clearly (2.6) is satisfied if C' € R is chosen such that F'(0) = 0. We obtain

0ijTr(n) = VO[( 2) (po + |n| ) = ikt + (1o + |7l ) zkégl} + Hoolikdji
for ¢,7,k,1 = 1,2. Here (d;;)i; denotes the Kronecker or identity tensor. We note that |n;;n| <
In? < po + 0|2, 10ij6r| < 1. For p € (%,2) this implies
0T < volp—1) (w0 +1n?) T + o < oo — 1)+ pc.

Thus (2.8) is satisfied for e = 0, po > 1. The same is true for g =0, o € (0, 1) since

- p2 p=2
05T < volp— Vg (T4pg'n?) * < c(+n?) ?

If p € (2,2), oo > 0 then (2.8) is still valid, taking p = 2. For p € [2,00) and po, ftee > 0 we get

105 T ()| < vo(p — 1) (1o + [n]?) ey oo+ )T <er (ot )T

Thus (2.8) holds since

0, Ta(n)| < {Cl(H'”') L, <l

crey? (14¢; 1|77| )7 <0162 T (1+|77\2)p772, e > 1.
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To check (2.7) we note that

S mimmiéebi; = > ik ¥ =0 : &> < PIEP < (uo + Inf?) 1€

ikl ij Kl
2
D Swbplus; = Y&k = I¢]
ikl ij
and hence

T’(n):£:€=1/o[(p—2) (o + n?)” o2+ (o + n?) = \§|}+uoo|§\2~

For p € (%, 2), i.e. p—2 <0, and all us > 0 we may estimate

T'(n):&:& > uo{(p—2)(uo+|nl) = (o + ?) + (o + 1) = }Iél2

— wop—1) (po+n*) T 2.

This proves (2.7) since

p—2 > 1 1
(o + Inl*) 2 { = (14 %)= P e s - Ho < %
= mo® (L+ug In\) > pue® (L+0) 7, po>1.

For p € [2,00) we may estimate

Tm) 66 > w| (ot )T + e 62 > vo (o + nP) T IeP.

This proves (2.7) since (as above)

p=2 1 >1
(MO + |,'7|2) 2 Z { ( + |T]‘ ) s Ho = 1,
po? (14 [P ) . Ho € (0,1).

Summarizing we obtain that (2.7) and (2.8) are satisfied by T" defined in (3.1) for all p > 1, s > 0,
and po > 0.

4 Preliminary results

In this section we state some basic results that we will use throughout the paper. From now on
we use the notation p’ := ﬁ, ie. % i =1, and WkP(Q) for Sobolev spaces of functions whose
weak derivatives up to order k are in LP(Q) for k € N,p € [1,00]. We denote by || - ||, the LP(Q)
norm, and use

[ellip = llullp + [Vul,

as norm on W1P(Q). We will use the following notation:
(u,v) = / w-vdr, wueLP(Q)?veLP(0)?
Q
€ = [ondn ce @y er @

For simplicity we omit the space dimension d = 2 in the function space notation, i.e. W*P(Q)
means WHP(Q)2 or WkP(Q)2%2 respectively. The meaning should be clear from the context.
We recall the following embedding result.

Lemma 4.1 For k € NU{0},Q C R? the embedding W*+1P(Q) — Wh(Q) is
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2p

e continuous for p € (§,2) and q = 2—p7

. compactforpe( 2) and q < - 5 p,
e compact forp>2 and 1 < g < oco.
Moreover we will need the following two classical inequalities:

Lemma 4.2 (Poincaré’s inequality) Let u € W,9(Q) for q € [1,00]. Then there exists P, =
P,(Q) <1 such that

P
luly < Pl < 77

Proof: See for example [7, Chapter I, Theorem 1.1]. O

Vullg-

Lemma 4.3 (Korn’s inequality) Let u € Wy9(Q) for ¢ € (1,00). Then there exists K,>0
such that

Kqllullrg < [1Dullg.
Proof: See [13, Chapter 5, Theorem 1.10]. O

As a consequence of (2.6-2.8) we get:

Lemma 4.4 For all £, € S and some C; > 0 the function T satisfies:

(4.1) T():n > 03(1+|77|2)p2;2|17|2 p € [2,00),
(4.2) T(n)| < 02(1+|17|) |77| p e (1,00),
(43) wo -1 -9 = { SR pe )

1 p—2
where Cs(n,&) = 01/0 (L+1E+tm—9P) = at.

Proof: See [13, Chapter 5, Lemma 1.19]. Note that for p € [2, 00) condition (1.8)s in this reference
implies (1.8); which gives (4.1). For (4.2) and the second estimate in (4.3) see also [11, (1.7),
(1.8)]. O

Setting n = Du we obtain the following consequences:

Lemma 4.5 For u € WYP(Q) the tensor function T' satisfies

(4.4) T(Du) € LP(Q) forpe(1,00),

(4.5) T'(Du) € L*(Q), |T'(Du)ll < C2 forpe(1,2],
(4.6) T'(Du) € L72(Q), forpe (2,00).

Proof: To show (4.4) we use (4.2) and obtain for p < 2 that
I T(Du)| < C5(1+ |Duyl ) |Du| < |DulPt.

Now Du € LP(Q) gives T(Du) € L7 (Q) = L” Q).

For p > 2 we note that for f € L%,g € L* the product fg is in L¥' if 1 S, = i. Since
2 is bounded Du € LP(Q) implies (1 + |Du| ) € L5(Q) and (1 + |Dul? )TZ € L72(Q). Now
T(Du) € L¥ () since 22 + 1 = P;l =2

For (4.5) assumption (2. 8) implies in the case p < 2 that

\82]Tkl(Du)| < 02(1 + |D’LL| ) < Cy

for almost all x € Q and 4,5,k,1 = 1,2. Thus T/(Du) € L*®(Q). For p > 2 the fact that
(1+ |Dul?) € L5 (Q) gives T'(Du) € L72 (). O
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5 Existence, uniqueness, and regularity of weak solutions

In this section we present a weak formulation of problem (2.1). In order to eliminate the pressure
7 we work in the divergence-free spaces

V, = {ueWyP(Q),divu=0inQ}, pell,o0].
Endowed with the W!P(Q) norm, V), is a Banach, and for p = 2 a Hilbert space.
The proper definition of weak solutions depends on the parameter p.
Weak solutions for p € 3, c0)
For f € V;f and p > § we call u € V,, a weak solution to (2.1) if
(5.1) (u-Vu,v) + (T(Du), Dv) = (f,v)vsy, foralovelV,.
This lower bound on p is required for the existence of the convective term.

Lemma 5.1 The integral in the convective term (u - Vu,v) erists for u,v € WHP(Q) if p > %

Proof: Holder’s inequality implies

(u-Vu,0) < ulls[Vullpllvlls < Nullslleflpllvlls
for 2 =1- %, ie. s= 1%' The embedding result in Lemma 4.1 gives ||ul|s < c[lu||1,, for s < ;Tpp.
Combining both gives p > % O

The second term on the left-hand side of (5.1) exists for arbitrary p € (1,00) because of T'(Du) €
LP () due to Lemma 4.4.
We will need the following anti-symmetry property of the convective term.

Lemma 5.2 Letu € V, and v,w € W'P(Q). Then (u-Vv,w) = —(u-Vw,v) and (u-Vw,w) = 0.
Proof: The proof in [7, Lemma IV.2.2] can be generalized for p > % O

We have the following existence and regularity result.

Theorem 5.1 (i) For allp € [3,00) and f € V,© there exists a solution u € V,, to (5.1).

(ii) Forp € (2,2) and f € LY (Q) there exists a solution u € V,, N W24(Q) N CY*(Q) to (5.1)
for some ¢ > 2, a > 0.

(i4i) For p € [2,00) and f € L*(Q),s > 2, there ezists a solution u € V,, N W24(Q) N CH2(Q) to
(5.1) for some ¢ > 2, > 0.

Proof: For (i) see [6, Theorem 1.1]. The assumptions on 7' made there are weaker then the ones
made here. For (ii) see [11, Theorem 5.30], and for (iii) [11, Theorem 6.1] in the case p > 2, [11,
Theorem 3.19] in the case p = 2. O

Uniqueness of the solution is obtained if the inhomogeneity is sufficiently small.

Theorem 5.2 Let p € [2,00) and f € Vo with | f|
unique solution u € V,, to (5.1).

Proof: See [11, Theorem 6.7]. O

vy sufficiently small. Then there exists a

Due to this result we may define the solution operator
(5.2) G:V;OF — V,, fru,

for a bounded subset F and p € (%, 00).
In the next two theorems we show boundedness of the solution.
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Theorem 5.3 Let p € (2,2) and f € L (Q). Then every solution u € V, of problem (5.1)
satisfies

lullie < CUIFlv;)
[ullico < Colllfllp)

with continuous nonnegative functions C,Cy and lir% C(s) = liH(l) Co(s) =0.
s— s—

Proof: See the proof of Theorem 6.7, and equation (6.12) in [11]. The continuity that we will use
below can be deduced from [11, Sections 3 and 4]. O

Theorem 5.4 Let p € [2,00) and f € V;. Then every solution u € V,, of problem (5.1) satisfies

hiliy < elfIE"

where ¢ > 0 is independent of f.
Proof: Setting v =u € V, in (5.1) and using Lemma 5.2 we obtain
(I'(Du), Du) = (f, U>Vp*,vp < |Ifl

On the other hand (4.1), the fact that p — 2 > 0, and Korn’s inequality give

Vy ull1,p-

p—

(T(Du), Du) > 03/(1+|Du|2)T|Du|2dx
Q

Y

C3/ |Du\p72|Du|2dx = C’3HDuH£ > CQHU”];’p.
Q

We finish this section with brief remarks on weak solutions for p < %

Weak solutions for p € (1,32)

In this case the convective term (u - Vu,v) is not well-defined for u,v € V,. A remedy is to write
it as
(u-Vu,v) = —(u® u, Dv)

using the tensor u ® u := (u;u;);; € S. Taking test functions in the space
Co% () :={v e C§°(Q) : divv = 0 in Q}
allows us to define u € V,, as a weak solution of (2.1) if it satisfies
(5.3) (T(Du), Dv) = (u®u,Dv) = (f,v)vsy, forallveCG,(Q).

This approach is used in [6], and existence of a weak solution is shown for p > 1 (in two space
dimensions), see [6, Theorem 1.1].
The existence of a strong solution v € V, N Wfocq(Q) N C’llo’g (Q) for some g > 2, > 0 is shown for

p>%and fe L' () in [11, Theorem 4.26]. The test function space C*(£2), equation (5.3) and
an additional energy equation is used for the definition of weak solutions.



DISTRIBUTED CONTROL FOR NON-NEWTONIAN FLUIDS 8

6 Lipschitz continuity of the solution

In this section we show Lipschitz continuity of weak solutions with respect to the inhomogeneity.
We consider p € (%, 00) throughout this section.

Theorem 6.1 Letp € (%,2) and let u, @ denote solutions to (5.1) for f, f € L”,(Q), respectively,
with || fllv sufficiently small. Then there exists L = L(f) >0 such that

e < LIf = Flly-

|lu—a
Proof: Equation (5.1) gives
(u-Vu—1u-Vu,v)+ (T(Du) —T(Da),Dv) = (f-— ]E7U>V;,Vp
for all v € V},. At first we note that for z := v — @ we have
(6.4) v-Vu—u-Vu = z-Vut+u-Vz+2-Vz.
We set v =z € V, N WH>°(Q) and obtain with Lemma 5.2 that
(6.5) (z-Vu,z)+ (T(Du) — T(Du),Dz) = (f—7f,2)
where
(z-Vu,2) < alVullllz]i
due to Lemma 5.1 and p € (%, 2). For a.e. x € Q) the mean value theorem gives

1
T(Du(z)) — T(Da(z)) = ( / T’(Dﬂ(a?)thDz(:r))dt) . Dz(z) = Blz)

0

since T' € C*(S). From (2.7) we get

p—2

2

B(z): Dz(z) > O /0 (1+\T’(Dﬁ(x)+tDz(x))|2) : Dz(z) : Dz(a) dt.

Moreover (2.8) gives with p — 2 < 0 that
T’ (Du(z) + tDz(z))]? < 4C3 (1+ |Du(z) + tDz(z))|2)p_2 < 403
for all x € Q and ¢ € [0,1]. This implies

p—2 P—

1 2
B(z) : Dz(z) > Ol/ (1+4C32) 7 dt|Dz(x)|* = C1 (1 +4C3) 7 |Dz(x)|?
0
for all z € Q2 and thus

(T(Du) — T(Dw), D2) = (8,Dz) > Cy(1+4C3)"7 | D22

p=2
> C1(1+4C3) 7 K3|zl72 = eall2llf,
using Korn’s inequality. From (6.5) we now obtain
(c2 —allVullp)llzli2 < ellf = Fllpllzllz.
Thus we have shown Lipschitz continuity if
C2
\Y < .
IVull, < 2

By Theorem 5.3 this estimate is fulfilled if || f|

v is sufficiently small. O
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Theorem 6.2 Let p € [2,00) and let u,u denote solutions to (5.1) for f,f € Vi, respectively,
with || f||v; sufficiently small. Then there exists L = L(f) >0 such that

lu—1il, < L||f—f|

Ve
Proof: We proceed as above up to (6.5) and estimate

(z-Vu,2) < [Vulplzll; < E3Vul,|z]i

for % + % = 1, where E; is the embedding constant W*(€2) < L?(£2). On the other hand (4.3)
and Korn’s inequality imply

(T(Du) — T(Da), Dz)

%

1 p—2
01// (14 |Dua+tDz*) * dt|Dz|*dx
QJo

v

Cil|ID=]5 > C1E3|]17 .

From (6.5) we obtain

A

(C1K3 — B3| Vullp) 12152 < 1 = fllvgllzlle-

Thus we have shown local Lipschitz continuity if
IVul, < CiK3Ey™.
By Theorem 5.4 this estimate is fulfilled if || f||v.+ is sufficiently small. O

As a direct consequence the dependency of the solution on the inhomogeneity for p > 2 is still
continuous (but not Lipschitz) with respect to the W?~¢(Q) norm for € > 0.

Corollary 6.1 Let p € (2,00) and fi — f in V3 with || f|lv: sufficiently small. Let uy,u denote
the solutions to (5.1) with inhomogeneities fy, f, respectively. Then u, — w in V,_. for e > 0.

Proof: By Theorem 5.4 we know that {ux} is bounded in V. Thus a subsequence converges
weakly in V, and strongly in LP(Q) to some @ € V,. Since Vo — LP(Q2) Theorem 6.2 implies
% = u. Now it suffices to show that Vu, — Vu in V,,_.. Holder’s inequality gives

IVu ~ Vulp—e < Vg — Vaul§ Vg — Vuul| 2~

for some 6 € (0,1). Since the first term on the right tends to zero for k — oo and the second one
is bounded, the result follows. O

7 The Linearized Equation

To show the differentiability of the solution operator G defined in (5.2) we study the linearized
equation in weak form,

(7.1) (2 Vu,v) + (u- Vz,v) + (T'(Du) : Dz, Dv) = (g,v)v;,v, for all v €V,

with u € W2 (Q) and g € V' given. We will show that this equation has a unique solution.
In the following lemma we show that (7.1) is well-defined.

Lemma 7.1 Forp € (3,00) and fized u € W'(Q) the bilinear form
(7.2) ay(w,v) = (w-Vu,v)+ (u-Vw,v) + (T"(Du) : Dw, Dv)

is continuous on W) x W' (Q) for all s € [1, 0c].
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Proof: The result follows immediately from Holder’s inequality and u € W1°°(Q) which implies
T'(Du) € L*(Q) due to the continuity of T". O
We now show coercivity of the bilinear form a,,.

Lemma 7.2 For p € (2,2) and u € V, N Wh>(Q) with ||Vulle sufficiently small the bilinear
form a,, defined in (7.2) is coercive on Vs.

Proof: For u € V,,,z € V5 Lemma 5.2 gives
ay(z,2) = (2-Vu,z)+ (T'(Du): Dz, Dz).
Holder’s and Poincaré’s inequalities imply

(2 Vu,2) < [Vullll2l} < PElIVulloll2]? »-

Assumption (2.7) implies with (2.5), Poincaré’s and Korn’s inequality:
(T'(Du) : Dz,Dz) > cl/ (1+|Duf?) = |Dz da
Q
p—2
> KC (1L+Vuls) = =7
Thus we obtain

p—2

aul(z2) = (K3C11+(Vul)5 = B Vull ) 12]3 o

Now a,, is coercive if the term in the brackets is positive. Since (1 + ||Vu||§o)pT_2 is a positive,

decreasing function (for p € (2,2)) with respect to |[Vulls this is true for || Vus sufficiently
]

small.

Lemma 7.3 Forp € [2,00) and u € V, with |Vu||2 sufficiently small the bilinear form a,, defined
in (7.2) is coercive on V.
Proof: Here we estimate

(z-Vu,2) < |[Vullollzli < E§lIVullll2]i

where Ej is the embedding constant W, *(€2) < L*(€). Since p € [2, 00) assumption (2.7) implies
(T'(Dw:D=D2) = G [ Do = LD = K3C:lf
Q

Thus

au(z,2) = (K30 — Ef|[Vul2) |27 »
and a, is coercive for ||Vulls < K3C1E; 2. O
If u is a solution to (5.1) with sufficiently small inhomogeneity we now deduce uniqueness of the

solution of the linearized equation.

Theorem 7.1 Let p € (3,2) and f € LY () orp € [2,00) and f € L*(Q),s > 2, with | f| vy
sufficiently small in both cases. Let u denote the solution of (5.1). Then for every g € V5* equation
(7.1) has a unique solution z € Vy satisfying

Izl < cliglvy
with a constant ¢ = ¢(f) > 0.

Proof: Theorem 5.1 implies v € W>(Q) N'V,. We already have shown the continuity and
coercivity of the bilinear form a, if | Vul|o (for p € (2,2)) or [|[Vull2 (for p € [2,00)), respectively,
is sufficiently small. By Theorems 5.3 and 5.4 these assumptions are given in both cases for || f| v
sufficiently small. Thus the Lax-Milgram Theorem implies existence, uniqueness, and the estimate
of the solution to the linearized equation. O
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8 Differentiability

In this section we show Gateaux differentiability of the solution operator G. We follow the proof of
Casas and Fernandez [4, Theorem 3.1]. As an extension to this work the regularity result stated in
Theorem 5.1 enables us to treat also the case p € (%, 2). Moreover we treat a system of quasi-linear
equations and a different nonlinearity, namely the convective term. We assume

epe(3,2)and f,h e LP' () or
e pE[2,00) and f,h € L*(Q),s > 2,

both with || f[|v: sufficiently small. Note that taking V5" instead of L?(9) would be sufficient in
the latter case.

For t > 0 we denote by u = G(f),u; := G(f +th) € V, the unique solutions to (5.1), compare the
definition of the operator G in (5.2). Subtracting (5.1) for u;, u, respectively, gives

(8.1) (T'(Du¢) — T(Du), Dv) + (ug - Vug —u - Vu,v) = t(h,v) for allv € V,.

Since u, u; € C1(Q) the mean value theorem implies for all x € Q,¢ > 0

(52) T(Duy(@) ~ T(Du(e) = Mi(x) - Dl — u)()
(33) @) = ([ Temear).
Bi(7)(x) = Du(z)+ 7D(us(z) — u(x)), € [0, 1].

For z; := %(ut —u),t > 0, moreover (6.4) implies

(8.4) up-Vur —u-Vu = t(z-Vu+u-Vz —tze - V).
Thus we obtain

(8.5) (My : Dz, Dzy) + (2e - Vu+u-Vazy —tzy - Vzi, ze) = (hy2p).

We split up the proof of differentiability into several parts. First we show boundedness of the
sequence {z h>o-

Lemma 8.1 For p > 3 the sequence {z;}1>0 is bounded in Vs.

Proof: By Theorems 6.1 and 6.2 we obtain
1
lztlie = Sllue —uliz < LAl forall £ >0

with p=p' for p € (%, 2) and p = s for p € [2,00). The continuous embedding L*(Q) — V,* gives
the estimate for p > 2. (]

The differentiability of the nonlinear convective term is obtained very easily.

Lemma 8.2 Ifp € (2,00) and z, — z in Va, then

1

Z(ut-Vut —u-Vu,v) — (z-Vu,v)+(u-Vz,v), t—0 forallveV,.
Proof: By (8.4) we have

1

;(ut -Vug —u-Vu,v) = (z-Vu+u-Vz —tz-Vz,v) foralovelV,.

Theorem 5.1 gives u € W1>°(Q) and thus

zz-Vu—2z-Vu and u-Vz —u-Vz,
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both weakly in V5 and strongly in L(Q2) for all ¢ € (1,00), due to the compact embedding, see
Lemma 4.1.
With the same argument the boundedness of {z;} in V5 implies boundedness of {Vz:} in L"(Q)
for all 7 € (1,00). Thus the product {z - Vz} is bounded in L(2) for  + 1 = %. i.e for any
q > 2. Thus

tzy - Vzz — 0 strongly in LY(Q),q > 2.
Now ¢ > 2 implies ¢’ < 2 and Lemma 4.1 gives V,, < L9 (Q). O

As next step we show the differentiability of the nonlinear term 7'(Du), tested with smooth
functions in Cg5, 1= {¢ € C5°(2) : divgp = 0 in Q}.

Lemma 8.3 Ifp € (2,00) and z, — z in Va for any sequence t, — 0, then
1
;(T(Dutk) —T(Du),D¢) — (T'(Du):Dz,D¢) fort,— 0,4 € C5,.

Proof: Using (8.2), (2.4), and the definition of z; we have

%(T(Dutk) —T(Du)): D¢ = %(Mt,C :D(uy —w)): D = (Dp: My,) : Dz

in Q. Forp € (%, 2] the fact that us, — u in V3 implies

D¢ : B, () — Dé:Du in L*(Q) for all 7 € [0, 1]
and thus for a subsequence

D¢: By (t) — D¢:Du ae. inQforall Tel0,1].
By continuity of T” we have

D¢ :T' (B, (1)) — D¢:T'(Du) ae. inQ forall 7 € [0,1]
and with the definition of My, in (8.3)
D¢: M, — D¢:T'(Du) a.e. in (.

For all z € ? and all k every element of the tensor My, (x) is bounded by

(Mg, (2))ijim < </01 (1 + |ﬁ,gk(7)(cv)|2)pT d7'> < Co, 14,5,l,m=1,2,
due to (2.8). Thus there exists ¢ € R such that for all k£ and all x € Q
(Do) : My (@)im = Y (Dd(@))ij (M, (2))ijim < ¢[Dg(a)], Lm=1,2.
ij
Since T"(Du) € L () by (4.5) the dominated convergence theorem implies
D¢: M, — D¢:T'(Du) in L*(Q).

Since Dz, — Dz in L?(f2) this completes the proof.
For p > 2 the fact that u;, — win V,,_. for ¢ > 0 by Corollary 6.1 implies 5, (7) — Du in LP~¢(Q)

and (1+ |3, (7)]?) — (1 + |Dul?) in L*2(Q) for all 7 € [0,1]. Thus

p—2 p—2
2

1+18,, (M) T — (1+|DuP) in L¥=2(Q)  forall 7 €[0,1]
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and therefore

1 p—=2 =2 p—e
/ (1418, (1)) = dr — (1+|Dul?) ® inL»2(Q)
0
and
1
1 2 p=2 2 2 p=2 . 2(p—e) 2
(/ (14 B (DP) d7> D) T i L Q) < 129
0
since (p:;) = 28=5 > 2 for ¢ sufficiently small. Thus
P P

2

D¢ : (/01 (1+ |ﬁtk(7)|2)'%z dT> — D¢ : (14 |Dul?)

p—2
4

in L*(Q).

Because of Dz, — Dz in L?(Q) we obtain

p—

1 p—2 % 2
/ D¢ (/ (1418 (T)?) = dT) : Dz, de — / Dé: (1+ |Dul?) * : Dzdx.
Q 0 Q

Together with the boundedness we have

p—

(8.6) (/O (1—|—|ﬁtk(7)|2)p;2d7)2:thk — (1+|Du|2)T2:Dz in L*(Q).

We define the superposition (or Nemytskij) operator

H = LY[0,1], LP(Q)%*?) — L*(Q)?*2,

N|=

Hn)(e) = (/01(1+|77(T)(x)|2)p22d7> D¢:(/OlT’m(T)(x))dT),xea.

Because of

2

[H(p)| < CalDgl (/01 (14 p(m)2) = dT>

H satisfies the Carathéodory condition and is thus continuous (see e.g. [8, Theorem 4]). Now
Bt (1) — Du in LP(2) for t — 0 and all 7 € [0, 1] implies

H(G) = (/01<1+|ﬁtk<7>|2>”2‘2d7) Dab:(/OlT'(ﬁtk(T))dT)

- (/01(1+|Du|2)p22d7-)_ Do : ( 01

= (1+|Duf*)""" D¢ :T'(Du) = H(Du)  in L*(Q)2*2,

N

[N

T’(Du)dr)

Together with (8.6) and using (2.4) this gives

/Q(/l T/(ﬂtk,(T))dT> : Dz, : Dgpdx  — /QT’(DU) . Dz : Dé du.

0

O

Combining the last two lemmas and using the density of C§<,(£2) in V2 we obtain the following
result.
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Corollary 8.1 Ifp e (%, 00) and z, — z in Vo for any sequence ty, — 0, then the limit point z
is the unique solution to the linearized equation (7.1) with g = h.

Finally we show strong convergence of z; — z.

Lemma 8.4 Let p € (%, 00) and z, — z in Vo for any sequence t, — 0, where z is the solution
to (7.1) with g = h. Then z, — z strongly in Va.

Proof: Tt remains to show that Dz, — Dz in L?(Q2). We note that R?*2 can be identified with
R* and using an index transformation {1,2}% — {1,2,3,4}. Similarly R?*2*2x2 can be identified
with R**4 if the index transformation is applied to the first two indices and the last two indices
separately. Thus we may interpret M (z) := T"(Du(x)) and M(z) defined in (8.3) as matrices in
R**4. Moreover we may write the double scalar product as a quadratic form,

T/(Du(x)) €& = fTM(Q;‘)f, reNEE R2%2 o R47
and similarly for M;, . Since
"M(z)¢ >0 for all € € R*\ {0}

due to (2.7) and
EM(@)E = MA@, M(2) = 3(M(x) + M(@)7),€ € BLz €0

there exists a Cholesky factor L(x) € R*** of M*(x), i.e. a lower triangular matrix with positive

diagonal elements such that
L(z)LT (z) = M*()

and thus
ETM(2)¢ = €T L(x) LT (2)¢ = |L(z)T¢)? for all z € Q, & € RL

Here | - | denotes the euclidian vector norm. Similar arguments hold for My(z), i.e. for all ¢t > 0
there exists L;(x) € R*** satisfying

Li(x)Li (z) = M*(z), € My(w)€ = €' Ly(2)L{ (2)€ = |Le(2) €[>
By (8.3) and (8.1) we have

1
HL thk||2 - (Mtk :thk7DZtk) = t( (Dutk) T(Du)7thk)
1
(8.7) = (h,z,) — ;(utk Vg, —u-Vu,z,)

and thus by (8.4) and Lemma 8.1
”L thk ”2 = (hv Ztk) - (Ztk- Vutu- Ve, —tz, - vztkﬂztk) < a= Cl(f)'

Thus {L Dz, }+>0 is bounded in L*(2). By (2.8) any matrix norm of M;(z), denoted by |- |, can
be estimated by

1 p—=
|Mi(x)] < 02/0 (14 18:(r)(@)]?) ® dr z€Qt>0.

This gives

C3, p S 27

Ly (z)| = | My, (z P < =
| Lt (2)] = | (@) <{ c3 (1+ (|Du(x)| + Duy, (x)))?) * = H(z), p>2,
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for all z € Q. Now Du, Du;, € LP(Q2) and 121]% = % > 2 gives H € L%(Q) — L3(Q).

Theorem 6.2 implies that {Duy, x>k« can be bounded in L?(2) uniformly in ¢. Thus for all p
there exists H € L?(2) such that
|Li ()] < H(z) forallzeQk>k*

Moreover u;, — u in V; for all p > 3 implies 3y, (7)(z) — Du(z) for a subsequence, a.e. = € Q,
and all 7 € [0,1]. The continuity of 7" then leads to My, (x) — M (x) and thus

L, (x) — L(z) forae. ze€.
The dominated convergence theorem then implies
(8.8) L, — L in L*(Q),
and the weak convergence of z;, — z in V, gives

L{ Dz, —L"Dz in L*Q).

Now (8.7), the weak convergence of z;, to the solution z of the linearized equation, and the
convergence of the convective term (see Lemma 8.2) give

ILTDz||2 < hm inf || LT Dz, |5 < hm sup || LE Dz, |I3

= hm sup/ Dz My, Dz, dx = hm sup (Mg, : Dz, ,Dzt,.)

1
= lim sup [(h, zt,) — = (ug,, - Vug, —u-Vu, z,)
t—0 t

= (h,z)—(u-Vz—2z-Vu,z) = (T"(Du) : Dz, Dz)

/DzMDzdx = ||LTDz||3.
Q

Weak convergence together with norm convergence implies strong convergence
L{ Dz, — LT"Dz in L*(Q).
Thus there exists a new subsequence (also denoted by ¢ ) satisfying
(8.9) Ly, (2)Dzy, () — L(x)Dz(xz) for ae. z€Q,
and there exists G € L*(Q) with
|Lg€ ()Dz, (z)| < G(x) for a.e. x € Q and all k > k*.

For all z € Q,t > 0,7 € [0, 1] we have
=2
(1+|Bt(7)(x)\2)%2 > (1+ (|Du(x)| + |Dug(x))?) >, pe(3,2)
- 1, p € [2,00).
For p € (2,2) Theorem 5.3 implies the estimate
[Du(z)| + [Due(x)] < fullioo + luellioe < Colllfllp) + Colllf + thly).

for all x € Q2,¢t > 0. Since the function Cj is continuous we may estimate

Co(llf +thlly) < ca(fh)
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uniformly for ¢ < t* and some t* > 0. Therefore we obtain

1 b2 3
[ 0@ Tar 2w = { P00 PEEd dcarsr

Now (2.7) gives

—2

1 1
M(x) = / T (Be(T)(2)))dr > Cl/ (1 + |ﬁt(7)(m)|2) 2 dr > Cies =: ¢
0 0
for all x € Q,t < t*. Thus we may estimate

| Dz, (:E)|2 = Dz, (x): Dz, (z) < cglMtk () : Dz, (x) : Dz, ()

= cngza (x) My, () Dz, ()
= ¢ L, (@) Dz (2)?
< cgtG(x)? for a.e. z € O,k > k™.
Since (8.8) implies L[kT — L7T ae. in Q now (8.9) implies
Dz, (z) = L, " (x) L} (z) D2y, (z) — L™ (z) L7 (v)D2(z) = Dz(z) a.e. in Q.

The dominated convergence theorem now completes the proof. O

Gateaux differentiability is now a direct consequence.

Theorem 8.1 For p € (3,00) and [ fllv sufficiently small the operator G is Gateauz differen-
tiable from V, to Va. The derivative z = DG(f)h at f in direction h is obtained as the unique
solution of (7.1) with g = h.

Proof: The boundedness of {z;};s0 in V2 showed in Lemma 8.1 implies the existence of a weak
convergent subsequence. Due to Corollary 8.1 its limit point z is the unique solution to the
linearized equation (7.1) with g = h. Moreover z; — z strongly in V5 by Lemma 8.4. Lemma 8.1
moreover gives the estimate

I2llo = lim llzll> < Z() 1l

with p = p’ for p € (2,2) and p = s for p € [2,00). This implies the continuity of DG(f). O

9 Existence of an optimal solution
In this section we present an existence result for a solution to the optimal control problem

(9.1) f?fifng(u’f) st (5.1)

where the set of admissible controls F,q C LP' () has to be chosen appropriately. We assume that
e J is continuous with respect to the state u in the V,, norm,
e for p € (2,2) the functional J is continuous with respect to the control f in the LP'(€2) norm,

e for p € [2,00) the functional J is weakly lower semi-continuous with respect to the control
fin L3(Q),

e J is bounded from below.
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A typical example for the cost J is a tracking type functional

Huf) = g [ o) - wa)P da+ 5 [ 1) do.

Here a > 0 is a regularization parameter and | - | denotes the euclidian vector norm.
To show existence of a solution to (9.1) we distinguish between the two cases p € (2,2) and
p € [2,00).

e Forp e (%, 2) we choose F,q as a bounded subset of a space that is compactly embedded in
L?'(€). By Theorem 4.1 the embedding W4(Q) < L () is compact for

, P 2q . 2p’ P
= —— < ——, ie ¢> = .
P ¢ YT ey T 32

Thus ¢ = 1 is sufficient.

e For p € [2,00) Theorems 5.2 and 6.2 imply that if f — f in L?(£2), then the corresponding
solutions satisfy ux — w in V,. Thus we may here choose a bounded subspace of L*(£2), s > 2,
as the set Fq-

We now prove the following existence result for a solution to (9.1).
Theorem 9.1 Let either
PE(3:2) and Faa = {feWHQ):Iflla < M}
or pE2,00) and Foqa = {feLl®Q):||flls <M}, s>2
for some M > 0 sufficiently small. Then problem (9.1) has a solution in Fuq.

Proof: The proof follows the standard way. We use the notation

(9.2) J(f) = JG(f), ), feLF (),

where G is the solution operator defined in (5.2). Since we assumed that J is bounded from below
we may choose a minimizing sequence (fx)x in Fouq, i.e.

Jim J(fi) = inf (D).

For p < 2 the boundedness of Foq and the compact embedding W () — LP () a subsequence,
denoted again by (fx)r, converges strongly in L? (Q2) to some f € L¥ (Q), i.e.

lim fr = f € LP ().

11— 00

The continuity of G and J implies continuity of J and thus

(0.3) min J(f)= inf J(f) = lim () = J(F).

For p > 2 the boundedness of Foq in L*(2),s > 2 implies f — f in V5 and (9.3) follows using
the weakly lower semi-continuity of J with respect to f. O
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10 First order optimality conditions

Based on the differentiability of the solution operator proved above we now present the first order
optimality conditions for problem (9.1). We introduce the Lagrangian and present the optimality
system including the adjoint equation. Let p € (%, o0) throughout the section.
We now assume that the cost functional J is differentiable with respect to v and f. Moreover J
shall satisfy

D,J(u,f) € VI

D¢J(u,f) € LP(Q)
for a solution f € F,q of (9.1) and @ = G(f) € V.
The Lagrangian associated with (9.1) is given as:

L : V,xL"(Q)xV,—R

where p ;= p/ if p < 2 and p := s if p > 2. We compute the derivatives with respect to
u, A € Vp,, f € LP(Q) in the directions v € V,,, g € LP(Q2) and obtain

(10.1) (DuL(u, f,A),0)vysv, = (Dud(u, f),v)vy v, + (u-Vo+o-Vu,A)
+(T'(Du) : Dv), D))
(DfL(u, f,A),9) = (DyJ(u, f),9) + (9,2
(DAL(u, f,A),v)vsv, = (u-Vu,v)+(T(Du), Dv) — (f,v).

For a saddle-point (@, f,)\) of L these derivatives have to vanish in all directions. The third
equation gives the state equation (5.1), the second one the relation between the Lagrange multiplier
A and the optimal control f,

(A\,g) = —(DsJ(u,f),g) forallge LP().
Equation (10.1) can be re-written as follows. Lemma 5.2 implies
(@-Vu,\) = —(a-V\v).
Moreover using the definitions of the scalar products we get
(v-vVa)-A = ((Va)"-A)-v
(T'(Du) : Dv) : DA = (T'(Du): D)) : Dv,
i.e. T'(Du) is self-adjoint. Thus we obtain the adjoint equation

(Va)" - A —u- VA v) 4+ (T'(Da) : DA, Dv) = —(DyJ (4, f),v)vs v,
for all v € V,,.
Since by Theorem 5.1 the linearized equation is uniquely solvable, the same is true for the adjoint
equation.
Corollary 10.1 The adjoint equation has a unique solution A\ € Vs.
We thus obtain the following optimality system:
Theorem 10.1 Let f € Foq be a solution to (9.1). Then there exists a unique pair (i, \) € V, x Va
such that
(@ - Vu,v) + (T(Du),Dv) = (f, v)vsy, foralvelV,
(Va)' - X —a- V) + (T'(Da) : DA, Dv) —(DuJ (@, f),v)vs v,
for allv eV,
—(DyJ (1, f),9)
for all g € LP(Q).

(A 9)
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