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Abstract. Large air quality models and large climate models
simulate the physical and chemical properties of the ocean,
land surface, and/or atmosphere to predict atmospheric com-
position, energy balance and the future of our planet. All of
these models employ some form of operator splitting, also
called the method of fractional steps, in their structure, which
enables each physical or chemical process to be simulated
in a separate operator or module within the overall model.
In this structure, each of the modules calculates property
changes for a fixed period of time; that is, property values are
passed into the module, which calculates how they change
for a period of time and then returns the new property val-
ues, all in round-robin between the various modules of the
model. Some of these modules require the vast majority of
the computer resources consumed by the entire model, so
increasing their computational efficiency can either improve
the model’s computational performance, enable more realis-
tic physical or chemical representations in the module, or a
combination of these two. Recent efforts have attempted to
replace these modules with ones that use machine learning
tools to memorize the input—output relationships of the most
time-consuming modules. One shortcoming of some of the
original modules and their machine-learned replacements is
lack of adherence to conservation principles that are essential
to model performance. In this work, we derive a mathemat-
ical framework for machine-learned replacements that con-
serves properties — say mass, atoms, or energy — to machine
precision. This framework can be used to develop machine-
learned operator replacements in environmental models.

1 Introduction

Complex systems require large models that simulate the wide
range of physical and chemical properties that govern their
performance. In the air quality realm, models include CMAQ
(Foley et al., 2010), CAMx (Yarwood et al., 2007), WRF-
Chem (Grell et al., 2005), and GEOS-Chem (Eastham et al.,
2014). In the climate change arena, models include HadCM3
(Jones et al., 2005), GFDL CM2 (Delworth et al., 2012),
ARPEGE-Climat (Somot et al., 2008), CESM (Kay et al.,
2015), and E3SM (Golaz et al., 2019). These models employ
operator splitting, also called the method of fractional steps
(Janenko, 1971), in their structure so that each module can be
tasked with representing one or a small number of physical
and/or chemical processes. This modular structure enhances
model maintenance and sustainability while enabling diverse
physical and chemical processes to interact. Each module
is tasked with simulating its processes over a fixed period
of time, each module called in turn until they have all re-
turned their results. Usually, the computational performance
of these models is governed by one or two modules that con-
sume the vast majority of the computer resources. In air qual-
ity models, this is usually the photochemistry and/or aerosol
dynamics modules. In climate models, this is usually the ra-
diative energy transport module.

Machine learning has been used to improve the compu-
tational efficiency of modules in atmospheric models for
decades (Potukuchi and Wexler, 1997). As machine learn-
ing algorithms have improved, these efforts have matured
(Hsieh, 2009; Kelp et al., 2018; Rasp et al., 2018; Keller and
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Evans, 2019; Pal et al., 2019). But the effort to replace phys-
ical and chemical operators with machine-learned modules
is challenging because small systematic errors can build. For
instance, a 0.1 % error over a 1h time step could lead to a
72 % error after a month of simulation. This problem is com-
pounded if the replacement module does not conserve quan-
tities that are essential to model accuracy, such as atoms in
a photochemical module, molecules and mass in an aerosol
dynamics module, or energy in a radiative transfer module.
Recent efforts at developing and using machine-learned
replacement modules has focused on memorizing how the
quantities change. Some have also explored enforcing phys-
ical constraints when memorizing these quantities via post-
prediction balancing approaches (Krasnopolsky et al., 2010),
introducing a penalty into the cost function (Beucler et al.,
2019) or incorporating hard constraints on a subset of the
output in neural network architecture (Beucler et al., 2019).
All of these approaches focus on memorizing how quanti-
ties change and incorporate some correction strategy after all
or a portion of the quantities have been predicted. If instead
we focus on how the fluxes between quantities change, we
can guarantee adherence to conservation principles to ma-
chine precision without a postprediction correction. In pho-
tochemical modules, the fluxes are how atoms move between
chemical species as reactions progress. In aerosol dynamics,
the fluxes are the condensation and evaporation or coagula-
tion processes that move material between the gas and parti-
cle phases or between particle sizes. In radiative transfer, the
fluxes are the energy movements between spatial domains.
In this work, we derive a mathematical framework that en-
ables the use of machine learning tools to memorize these
fluxes. We focus this work on atmospheric photochemistry
and provide an example for a simple photochemical reaction
mechanism because the number of species and the complex-
ity of the problem exercises many aspects of the framework.

2 Derivation of the framework for photochemistry

In general, the atmospheric chemistry operator solves

0C

m = F (C, T,RH, actinic flux, stability, etc.), (1)
where C is a vector containing the current concentration of
the chemical species, T is temperature, and RH is the relative
humidity. A full list of symbols can be found in Appendix A.
The right-hand side can be written as

F = AR, @

where A is a matrix describing the stoichiometry, and R is a
vector of reactions. The form of the right-hand side assures
mass balance because it is composed of reactions that de-
stroy one species while creating one or more other ones, all
in balance, described by A. The R terms take forms such
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as kC;Cj, where k is the rate constant for a reaction be-
tween species; JC;, where J is the photolysis reaction rate;
or k(Cij(x1) — C;(x2)), where k is a diffusion or mass trans-
port rate constant between two spatial locations or between
the gas and particle phases.

In the method of fractional steps, all modules integrate
their equations forward for a fixed time step, A¢, that we call
the operator-splitting time step. Combining these two equa-
tions and integrating gives

t+At

ACi = ZA,"]' / Rj(t)dt == ZAI’]SJ’ (33)
j J

t

or in matrix form

AC =AS, (3b)

where S; equals tl+AtR j(®)dt. S; is the flux integral. For

atmospheric photochemistry, it is the flux of atoms between
molecules. For aerosol dynamics, it is the flux of molecules
condensing on or evaporating from particles or the flux of
small particles coagulating on large particles. For radiative
transfer, S; is the energy between spatial coordinates. We are
able to pull the A out of the integral if it is a constant, which
is usually the case or can be approximated as such.
Using machine learning tools to learn the relationship

S =8 (C,T,RH, actinic flux, stability, etc.) 4)

has advantages over memorizing a concentration—
concentration relationship because of the following:

a. The formulation in Eq. (3) conserves mass.

b. The R terms are simpler to memorize because they do
not contain the complexity in A.

c. There are fewer concentrations directly influencing S
than C, so the machine learning algorithm should be
simpler.

The difficulty resides in developing the training and test-
ing sets needed to train and test the machine learning algo-
rithm corresponding to Eq. (4). In principle, we can run a
model many times, generate a data set, and then learn that
data using machine learning techniques. That is, we can run
many models that integrate Eq. (1) to find the relationship
between concentrations at two time steps to develop our ma-
chine learning training set. But such models do not provide
the value of S, and since the chemical system is stiff, the inte-
grators make many complex calls to calculate the right-hand
side of Eq. (1) and integrate it. Another way of saying this is
that the AC is easily available from the models, but the S is
not.

If we have many sets of AC values, in principle we can
invert Eq. (3b) to obtain the corresponding S values. The dif-
ficulty with this approach is that there are more elements of

https://doi.org/10.5194/gmd-13-4435-2020



P. O. Sturm and A. S. Wexler: Enforcing conservation laws in machine learning

S than AC, so a conventional inverse cannot be applied. In-
stead, we employ the generalized inverse of A to obtain S via
the relationship

s =ASAC, (5)

where AC is the generalized inverse of A. In the case that
there are as many fluxes as quantities (A is a square ma-
trix), and the quantities are coupled but linearly dependent
(A is full rank), then A is the true inverse of A and read-
ily calculable. If the system is overdetermined, where A is a
rectangular matrix with more quantities than fluxes but has
full column rank, then a left inverse can calculate AS. An
overdetermined system is typical in an aerosol module cal-
culating condensation and evaporation, where fluxes depend
on two quantities. However, if A is underdetermined, mean-
ing there are more fluxes than known quantities, or A is oth-
erwise rank-deficient from linear dependency, there is an in-
finite number of generalized inverses AS. This means that
given values for AC, Eq. (5) will not give reliable values for
S.

Given sufficient constraints, AS will be unique and pro-
vide the desired values of S that are needed to develop a ma-
chine learning training set. Ben-Israel and Greville (2003)
show that the inverse can be unique if the solutions, S, are
restricted to lie in a subspace that defines the “legal” solu-
tions, and these restrictions are sufficiently constraining. The
constrained generalized inverse of A produces solutions, S,
that lie in the legal subspace defined by good examples of
solutions. S is given by

A§ =P (APs)Y, ()

where Ag is the generalized inverse of A restricted to the
subspace of all possible solutions by the projection Pg, which
in turn is defined by a set of basis vectors that define the
subspace. Before we discuss obtaining the basis vectors, we
first need to discuss how to obtain the projection, Pg.
Assume for the moment that we have the basis vectors Si.
We concatenate them (column-wise) to form the matrix U:

U= (S1182]...I8). @)

The projection onto the subspace defined by these basis vec-
tors Sy and the matrix U is then (Mukhopadhyay, 2014)

Ps =U(UTU) U, ®)

where U™ is the transpose of U.

Atmospheric-chemistry problems are stiff, so the UTU
may be ill-conditioned. One source of this ill-conditioning,
which can also hamper machine learning tools, is that the
concentrations are often orders of magnitude apart. The mod-
ules use actual concentrations to make the mechanism eas-
ier to understand and debug. Normalizing the concentrations
helps with both learning and stiffness and ill-conditioning.
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[ll-conditioned problems can hamper matrix inversion. Since
the S vectors describe the subspace where the solutions must
reside, their magnitude does not matter, just their direction.
So we normalize the S vectors by dividing by the average
of the nonzero values. Mathematically, we form a diagonal
square matrix, Ng, with the averages on the diagonal and cal-
culate the normalized S with

Shorm = Ng'S. ©)

Since Ny is diagonal, the inverse is simply the reciprocal of
each diagonal element. The AC values are recovered from
the Sporm values via

AC = ANgShorm- (10)

Atmospheric-chemistry problems are also high-dimensional.
Typical air quality models may have 100 to 200 chemical
species, and since the vertical-column-mixing timescale is
similar to the slower timescales of the chemistry, some mod-
els solve the vertical transport and chemistry simultaneously.
Since typical air quality models have 10 to 20 vertical cells,
the dimension of the problem is 1000 to 4000. Even though
the inverse (U*U)~! only has to be calculated once, this in-
version may be intractable. Providing that the condition num-
ber of UTU is not too large, Gram—Schmidt orthonormaliza-
tion can be performed on the S; vectors before carrying out
Egs. (7) and (8), in which case they will describe the same
subspace, but now the matrix UTU will be the identity ma-
trix, which is its own inverse.

Now let us return to the question of how to find the basis
vectors that define the “legal” subspace of S. These can be
developed by solving Eq. (1) using Euler’s method, in which
case Eq. (3) becomes

AC; ~ A xRy (1) At ~ A; i Sk, (11)
that is
Si ~ Ry (1) At. (12)

The value of Ar does not matter since it just changes the
length of Si, not its direction and therefore not its value in
describing the subspace. The original module that calculates
Ry can be run many times under many conditions to gener-
ate a set of Sy vectors that span the subspace. Then locality-
preserving projections (LPPs), principal component analysis
(PCA), or another similar algorithm can be used to find a
minimum set of vectors that define the subspace.

3 Solution procedure for a photochemical module

The following overview aims to put into context the pro-
cedure outlined in this paper. The focus of this paper is on
deriving and conducting the mass balancing framework and
inverse problem detailed in steps 1-9. Steps 10-13 are pro-
vided for context: these include machine learning, operator
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replacement, and benchmarking. In principle, any machine
learning algorithm can be used with the framework described
here in steps 1-9.

1. Determine which species are active in the photochem-
ical mechanism, that is, not the steady-state or buildup
species.

2. From the mechanism, extract the A matrix for these
species.

3. Using a representative set of atmospheric concentra-
tions, 7', RH, and actinic flux, use Eq. (10) and the pho-
tochemical module to generate data that match values
of AC and S for many values of C, T, RH, and actinic
flux for the models operator-splitting time step.

4. Normalize the S vectors by dividing each by the average
of its nonzero elements. Use these averages to form the
Ny matrix, which relates S to Shorm via Eq. (9).

5. Use the Syorm vectors and Eq. (7) to form the U matrix
and then the U U matrix. What is the condition number
of the UTU matrix? If the system is large and not ill-
conditioned, use Gram—-Schmidt orthonormalization on
the S vectors before calculating U and UTU, in which
case UTU should be an identity matrix or a subset of
one.

6. Use Eq. (8) to calculate Pg.

7. Use Eq. (6) to calculate the constrained generalized in-
verse Ag’.

8. Use Eq. (5) to calculate values of S from the values of
AC.

9. Compare the values of § obtained from steps 3 and 7 to
make sure they are very similar, using the dot product to
calculate the angle between them. If they are, we have a
good Ag.

10. Use neural networks or another machine learning algo-
rithm to memorize the S(C) relationship obtained using
(a) Eq. (5) and (b) many runs of the mechanism for a
wide range of C, T, RH, and actinic flux values.

11. Replace the mechanism with the neural network to cal-
culate S(C) and Eq. (3b) to march forward.

12. Clock the speed improvement.
13. Calculate standard measures of performance such as

mass balance, bias, and error compared to runs using
the complete mechanism.
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Table 1. Reaction mechanism.

Reaction Reaction number
NO; +hv — NO+0O R1
O+ 02 — 03 R2
03 +NO — NO; + 02 R3
HCHO + hv — 2HO; +CO R4
HCHO + hv — H2 + CO R5
HCHO +HO" — HO; + CO+H;O  R6
HO; +NO — OH' +NO, R7
OH- +NO; — HNO3 RS
HO,H + hv — 2HO- RO
HO,H +HO" — HyO + HO; R10

Table 2. Active species.

03

NO
NO,
HCHO
HO;
HO,H

4 Photochemical mechanism

We tested the methods described above on the follow-
ing very simplified set of photochemical reactions used by
Michael Kleeman at the University of California, Davis,
when teaching the modeling of atmospheric photochemistry.
Although this mechanism is abbreviated, it contains the es-
sential components of all atmospheric photochemical mech-
anisms related to ozone formation: NO, chemistry, volatile
organic compound (VOC) chemistry, and the formation of
peroxy radicals from VOC chemistry that then react with NO
to form NO; and OH, both of which may react to terminate.

The 10 reactions are given in Table 1. The oxygen atom
and hydroxyl radical are assumed to be in a steady state, so
there are six active species, which are listed in Table 2.

The resulting A matrix represents the stoichiometry of the
reactions, where the rows correspond to each species and the
columns to each reaction:

A =

Rl R2 R3 R4 R5 R6 R7T R8 R9 RIO

O3 0 1 -1 0 0 0 0 0 0 0

NO 1 0o -1 0 0 0o -1 0 0 0

NO, -1 0 1 0 0 0 1 -1 0 0

HCHO O 0 o -1 -1 -1 0 0 0 0

HO, 0 0 0 2 0 1 -1 0 0 1
HO,H 0 0 0 0 0 0 0 o -1 -1

13)

As in prior efforts (Kelp et al., 2018; Keller and Evans, 2019),
we employed a box model in Julia to generate 60 indepen-
dent days of output for both AC and S, recording data ev-
ery 6 min. We are interested in the set of S vectors that form
a basis describing the subspace that contains the desired S
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vectors. First, the transformation in Eq. (9) is performed to
normalize the sample S vectors. In this example, we use LPP
(He and Niyogi, 2004), which is similar to PCA but more ro-
bust for this application. Here the LPP yields a basis set of
seven vectors, which form the columns of the U matrix:

U=

—0.6869 0.1334
—0.6869 0.1334

—0.2068
—0.2068

—0.1461 0.0867
—0.1461 0.0867

—0.3715 0.4761
—0.3715 0.4761

—0.1877  —0.1444 0.0260 0.1967 —0.0540 0.5443 —0.7353
0.0406 —0.5849  —0.0080  —0.2426 0.1194 0.1747 0.0027
0.0411 —0.5911  —0.0081  —0.2452 0.1207 0.1765 0.0027

—0.0202  —0.2414  —0.0069  —0.0875 0.0844 —0.3942  —0.0570 |*
0.0149 —0.2555 0.0154 0.0759 —0.1568  —0.2242  —0.0519
0.1063 —0.1359 0.0844 0.4800 —0.7829 0.4002 —0.0066

—0.0670  —0.0762 0.9337 0.0057 0.0069 —0.0136  —0.0012

—0.0354  —0.3227 —0.1856 0.7455 0.5554 0.0107 —0.0013

(14)

High condition numbers mean that the matrix inversion is
problematic at best. The condition number of UtU is ap-
proximately 12. This is several orders of magnitude smaller
than the same problem but without the Ng transformation
of Eq. (9), where the condition number was 1888. This sug-
gests that the Ng transformation has potential to reduce ill-
conditioning arising from stiffness in S. The condition num-
ber of 12 after the Ng transformation ensures that the inver-
sion needed to make the projection Pg in Eq. (8) is numeri-
cally tractable.

The resulting symmetric block diagonal projection Py is
equal to

Ps =

0.500 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.587 0.471 —0.142 0.001 —0.005 | *
0.000 0.000 0.000 0.000 0.000 0.471 0.462 0.163 —0.001 0.006
0.000 0.000 0.000 0.000 0.000 —0.142 0.163 0.951 0.000 —0.002
0.000 0.000 0.000 0.000 0.000 0.001 —0.001 0.000 1.000 0.000
0.000 0.000 0.000 0.000 0.000 —0.005 0.006 —0.002 0.000 1.000

And Egq. (6) gives us

G
Ag =
r 2.70E1 0.0000 0.0000 0.0000 0.0000 0.0000 7
2.70E1 0.0000 0.0000 0.0000 0.0000 0.0000
—4.18E1  0.0000 0.0000 0.0000 0.0000 0.0000
3.63E3 —545E3 —1.82E3  3.63E3 5.45E3 3.63E3
3.67E3 —551E3 —1.84E3  3.67E3 5.51E3 3.67E3
—2.84E3  4.26E3 1.42E3  —3.45E3 —4.26E3 —2.84E3 |*
5.37E2  —=5.37E2  0.0000 0.0000 0.0000 0.0000
0.0000 —1.78E3 —1.78E3  0.0000 0.0000 0.0000
—9.24E5  1.14E6 2.16E5 —9.24E5S —1.14E6 —9.24E5
9.81E4 —1.21E5 —2.29E4 9.81E4 1.21ES 4.58E4 |
(16)

Since U and Ag have seven and six independent columns,
respectively, but 10 rows, and the row rank is equal to the
column rank, there must be linearly dependent rows. One
manifestation of this is that the first two rows of U and A$
are identical or nearly so. The S values computed from Ag
may not be identical to the original S corresponding to the
AC values. However, all S values calculated from Eq. (5)
using the above Ag are “legal”, in other words, within the
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subspace defined by the basis set U. Furthermore, the inverse
Ag by definition satisfies AA? = I so that even if a calcu-
lated S is not identical to the S from the original box model
output, it can be used in Eq. (3b) to return a AC identical to
that of the box model output.

5 Conclusions

Large models of the environment require the solution of large
systems of equations over long periods of time. These mod-
els consume vast quantities of computational resources, so
approximations are necessarily employed so that the mod-
els are computationally tractable. Machine learning tools can
be used to dramatically improve the speed of these models,
enabling a more faithful representation of the physics and
chemistry while also improving runtime performance. But
this field is in its infancy. To help facilitate the use of machine
learning tools in these environmental models, we have devel-
oped a framework that (a) enables machine learning algo-
rithms to learn flux terms, assuring that conservation princi-
ples dictated by the physics and chemistry are adhered to, and
(b) allows parameters easily calculated by geophysical mod-
els to be used to back-calculate these flux terms that can then
be used to train the machine learning algorithm of choice.
Applications of this framework in environmental models in-
clude any process where conservation principles apply, such
as conservation of atoms in chemical reactions; conservation
of molecules during phase change; and conservation of en-
ergy in, say, radiative transfer calculations.
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Appendix A: Glossary of symbols

Ci(1t) concentration at time ¢
Ci(t 4+ At) concentration at time 7 + At
AC; =C;(t+ Ar) —Ci(t)

i=1,n the number of molecular species

At operator-splitting time step

R;(@) contribution to AC; from each reaction

Si) = [T R;(r)de

i=1,m the number of reactions, m > n

A a sparse stoichiometry matrix relating AC; to S;; most element values are 0, 1, or —1
AS generalized inverse of A

Ag constrained generalized inverse of A

Geosci. Model Dev., 13, 4435-4442, 2020
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https://doi.org/10.5281/zenodo.3712457 (Sturm, 2020a) and the in-
put data at https://doi.org/10.5281/zenodo.3733502 (Sturm, 2020b).
The exact version of the script used to produce the results used
in this paper is named GenerateAG.m and is archived on Zen-
odo (https://doi.org/10.5281/zenodo.3733594; Sturm and Wexler,
2020). The input files required for this script as well as the
Julia mechanism are available on Zenodo as S.txt and delC.txt
(https://doi.org/10.5281/zenodo.3733503; Sturm, 2020c). Both the
restricted inverse script and the input data are available under a Cre-
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