
Approximation Algorithms�

Andreas S. Schulz1 David B. Shmoys2 David P. Williamson3

1 Fachbereich Mathematik, Technische Universität Berlin, Straße des 17. Juni 136,

10623 Berlin, Germany
2 School of Operations Research and Industrial Engineering and Department of Computer Science,

Cornell University, 232 Rhodes Hall, Ithaca, NY 14853
3 IBM T. J. Watson Research Labs, P. O. Box 218, Yorktown Heights, NY 10598

Abstract

Increasing global competition, rapidly changing markets, and greater con-

sumer awareness have altered the way in which corporations do business. To

become more efficient, many industries have sought to model some opera-

tional aspects by gigantic optimization problems. It is not atypical to en-

counter models that capture 106 separate “yes” or “no” decisions to be made.

Although one could, in principle, try all 2106
possible solutions to find the

optimal one, such a method would be impractically slow. Unfortunately, for

most of these models, no algorithms are known that find optimal solutions

with reasonable computation times. Typically, industry must rely on solu-

tions of unguaranteed quality that are constructed in an ad hoc manner. For-

tunately, for some of these models there are good approximation algorithms:

algorithms that produce solutions quickly that are provably close to optimal.

Over the past six years, there has been a sequence of major breakthroughs in

our understanding of the design of approximation algorithms and of limits to

obtaining such performance guarantees: this area has been one of the most

flourishing areas of discrete mathematics and theoretical computer science.

�This paper is a summary of a session presented at the third annual German-American Frontiers

of Science symposium held June 19-22, 1997, at the Kardinal Wendel Haus, Munich, Germany. It is

to appear in the Proceedings of the National Academy of Sciences of the USA.

1



1 Introduction

Many optimization problems are believed to be intractable computational prob-

lems; that is, there is strong mathematical evidence to support the hypothesis that

there do not exist algorithms guaranteed to find optimal solutions quickly. This

prompted the study of approximation algorithms, in which the aim is to find prov-

ably near-optimal solutions quickly. In the past few years, there have been major

advances in the design and analysis of approximation algorithms; we briefly will

outline some of these algorithmic techniques.

Before defining the mathematical formalisms that correspond to the intuitive

phrase “computing good solutions to hard discrete optimization problems quickly,”

we first motivate this with an example. In the economical manufacturing of printed

circuit boards, the following problem arises: holes have to be drilled through the

board at given positions (see Figure 1), and we want to compute the order in which

to drill the holes so as to minimize the total time spent moving the head of the

drill. This problem has been the subject of much research, although under its usual

name, the traveling salesman problem. It is a discrete optimization problem; there

is a finite number of possible solutions (called tours), and we could find the shortest

tour, in principle, by trying them all.

Figure 1: An input to the drilling problem and a corre-

sponding tour.

However, if there are n holes, then there are (n� 1)!=2 different tours. For

example, for n = 50, even under wildly optimistic assumptions about the speed of

super-computers, it would take more than 1039 years to find the optimal solution by

such exhaustive search! The running time of this algorithm grows as an exponential

function of the size of the input, and in contrast, an algorithm is considered efficient

if its running time can be bounded by a polynomial function of the input size (i.e.,

3n or n3, rather than 2n or (n�1)!=2).

Unfortunately, most real-world optimization problems seem too hard to be

solved efficiently. That is, no algorithm is known that is guaranteed to find an

2



optimal solution efficiently, and in fact, even the most sophisticated methods used

today fail to find optimal solutions for most large-scale applications. Even prob-

lems that sound simple, such as the drilling problem given above, are believed to be

hard. Computational complexity theory and its notion of NP-completeness provide

a mathematical foundation for this belief. NP is a rich class of problems, contain-

ing variants of virtually every optimization problem. NP-complete problems are

the hardest problems in NP, in that, an efficient algorithm to solve any NP-complete

problem, such as finding the best drilling pattern, also yields an efficient algorithm

for every problem in NP. It is now widely accepted that NP-complete problems

cannot be solved efficiently, but to prove this, i.e., to prove that P 6= NP, remains

one of the most challenging open problems in mathematics.

However, these optimization problems still need to be solved in practice, and

so we must settle for less. This leads to the concept of an approximation algo-

rithm; an α-approximation algorithm must efficiently compute a solution of value

within a factor of α of optimal. Thus, for any given problem, we wish to determine

the smallest α for which we can find an α-approximation algorithm. There have

been significant recent breakthroughs both in giving improved performance guar-

antees, and in proving limits on the extent to which near-optimal solutions can be

efficiently computed. While we shall highlight only a few ideas in the former cat-

egory and refer the reader to [1] for the latter, progress on both sides has made this

one of the most flourishing areas of discrete mathematics and theoretical computer

science.

2 Some Examples

The central difficulty in designing approximation algorithms is proving that a so-

lution close to the optimal can be computed quickly, when the optimal solution

itself cannot be computed quickly. To illustrate some of the recent techniques used

in addressing this problem, we will focus first on the maximum cut problem. In

this problem we are given n items (typically called nodes) which are numbered 1

through n, and pairs of items (i; j) (called edges) with associated weights wi j > 0.

The goal is to divide the set of nodes into two parts so as to maximize the sum of

the weights of those edges whose nodes are in different parts. These edges are said

to be in the cut. This NP-complete problem arises in various contexts, from finding

the ground state of the Ising spin glass model in statistical physics to minimizing

the number of holes that must be drilled in circuit boards; see Barahona et al. [2]

for further details.

Randomization has proven to be a particularly effective tool in the design and

analysis of approximation algorithms, and throughout discrete mathematics (see,

3



e.g., [3, 4]). A naive use of randomization is to pick a solution uniformly at random;

for example, in the maximum cut problem, we can flip a coin for each node, and

thereby split the nodes into the “heads” set and the “tails” set. For each edge (i; j),

the probability that (i; j) is in the cut of this random solution is exactly 1/2. Thus

the expected weight of the random solution is 1
2 ∑

(i; j) wi j. Since the total weight of

all edges ∑
(i; j) wi j is clearly an upper bound on the value of an optimal solution,

this proves that the expected weight of the random solution is within a factor of 2

of the value of an optimal solution. In fact, by considering the nodes in order and

choosing the outcome of the coin for which the remaining conditional expectation

is larger, we can derandomize this algorithm to yield a 2-approximation algorithm.

In order to produce better quality solutions, we perform some computation that

will allow us to bias our random solution in a favorable way. Suppose we introduce

a variable xi for each node i. We wish xi =�1 when i is in one set of an optimal

solution, and xi = 1 when i is in the other set. Hence, 1
2
wi j(1� xix j) = wi j exactly

if edge (i; j) is in the cut, and is 0 otherwise. Thus if we could efficiently find

values xi 2 f�1;1g that maximize 1
2 ∑

(i; j) wi j(1� xix j), we would be able to solve

the maximum cut problem. We do not know how to do this, but we can efficiently

solve the following vector problem: we can maximize 1
2 ∑

(i; j) wi j(1� vi � v j) for

unit-length vectors vi in n-dimensional space, where vi � v j is the inner product of

vectors vi and v j. This problem can be solved using semidefinite programming.

Notice that this vector problem is a relaxation of the previous one: that is, for each

solution with xi 2 f�1;1g, we can construct a set of unit-length vectors vi such

that 1
2 ∑

(i; j) wi j(1�xix j) =
1
2 ∑

(i; j) wi j(1�vi �v j). Thus the value W � of an optimal

solution to the vector problem is at least the value of an optimal solution to the

maximum cut problem. If we can show that the solution to the vector problem can

be used to construct a cut of weight not much less than W �, then the cut obtained

is provably near-optimal.

We now use the optimal solution to the vector problem to produce a solution to

the maximum cut problem: we select a vector r at random, put node i in one set if

vi � r > 0 and put node i in the other set if not. It is then possible to prove that the

expected weight of the cut produced in this way is at least 0:878W �, proving that

the expected weight is at least .878 of an optimal cut, or within 14% of optimal.

Thus using the vector problem to bias our random choice of a solution helps us

to produce significantly better solutions to the maximum cut problem. This use of

semidefinite programming was introduced by Goemans and Williamson [5], and

has subsequently been adapted to several other settings [6]. This result gave the first

improvement in approximating the maximum cut problem after almost 20 years of

essentially no progress.

Linear programming is the technique most frequently used to obtain strong per-

formance guarantees. We shall illustrate this approach by the following problem of

4



routing in a communication network, which consists of communication links con-

nected at switching points. We are also given k requests, pairs of switching points

(si; ti), i = 1; : : : ;k, which correspond to pairs of users that wish to communicate

over this network. For each pair i, we need to choose one path from si to ti in

the network. The aim is to choose the paths so that the congestion, the maximum

number of paths requiring the same link, is minimized.

We can formulate this problem as follows: let Pi denote the set of paths from

si to ti in the network, and for each path P 2 Pi we use a variable xP, which is set

to 1 to denote that we use path P for the request (si; ti), and is 0 otherwise. We

must choose exactly one path for each request: this can be expressed with these

variables, by requiring that each variable be either 0 or 1 and ∑P2Pi
xP = 1, for each

i = 1; : : : ;k. If the congestion is C, then for each link ` in the network, we select

at most C paths that contain `; thus, the sum of all variables corresponding to these

paths is at most C. Our aim is to minimize C subject to these simple constraints on

the variables. This is called an integer programming formulation of the problem. If

we relax the requirement that each variable be 0 or 1, and merely require that each

variable be a value in the interval [0,1], then this is a linear program (LP). Integer

programming, even of this special form, is an NP-complete problem, but LPs can

be solved efficiently.

The optimal value C� of this LP is a lower bound on the optimal congestion. If

we can show that the optimal LP solution can be rounded to an integer solution of

not much greater congestion, then the rounded solution is provably near-optimal.

Raghavan & Thompson [7] introduced an elegant randomized rounding technique:

interpret the value of xP 2 [0;1] in the optimal LP solution as a probability, and for

each i = 1; : : : ;k, choose a path P 2 Pi with probability xP. For any link `, it is

easy to see that the expected number of paths selected that contain ` is at most C�.

Furthermore, with some additional technical conditions, it is not hard to argue that

the probability is quite small that significantly more paths use `, e.g., more than

(1+ε)C� for any constant ε > 0. In fact, this probability for one link is sufficiently

small that it is also likely that the congestion is at most (1+ε)C�, and hence within

a factor of (1+ ε) of the optimal congestion.

Finally, there also has been a dramatic recent advance for the drilling problem

discussed in the introduction. If the time to move the drill is the Euclidean dis-

tance between the holes, Arora [8] and Mitchell [9] gave a (1+ ε)-approximation

algorithm, for any constant ε > 0.

These examples highlight the importance of strong relaxations in the design

of approximation algorithms, and show the power of randomization in construct-

ing good solutions. Other related important algorithmic techniques also have con-

tributed to surprising advances in this area, and the reader is referred to [10, 11] for

more comprehensive surveys of approximation algorithms.

5



Acknowledgments

David Shmoys has been supported in part by NSF grant CCR-97-00029.

References

[1] Arora, S. & Lund, C. (1997) in [11], pp. 399–446.

[2] Barahona, F., Grötschel, M., Jünger, M., & Reinelt, G. (1988) Oper. Res. 36,

493–513.

[3] Motwani, R. & Raghavan, P. (1995) Randomized Algorithms (Cambridge

University Press, Cambridge).

[4] Alon, N. & Spencer, J. H. (1992) The Probabilistic Method (John Wiley &

Sons, New York).

[5] Goemans, M. X. & Williamson, D. P. (1995) J. ACM 42, 1115–1145.

[6] Goemans, M. X. (1997) Math. Prog. 79, 143–161.

[7] Raghavan, P. & Thompson, C. D. (1987) Combinatorica 7, 365–374.

[8] Arora, S. (1996) Proc. 37th IEEE Symp. on Foundations of Computer Science,

2–13.

[9] Mitchell, J. S. B. SIAM J. Comput., to appear.

[10] Shmoys, D. B. (1995) in Combinatorial Optimization, eds. Cook, W., Lovász,

L., and Seymour, P. D. (AMS, Providence), pp. 355–397.

[11] Hochbaum, D. S., ed. (1997) Approximation Algorithms for NP-hard Prob-

lems (PWS, Boston).

6


