
Temperatures Estimation System of Electrical Machines

on Wireless Sensor Networks

vorgelegt von
M.Sc.

Yi Huang

an der Fakultät IV - Elektrotechnik und Informatik
der Technische Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
-Dr.-Ing.-

genehmigte Dissertation

Promotionsausschuss

Vorsitzender: Prof. Dr.-Ing. Reinhold Orglmeister
Gutachter: Prof. Dr.-Ing. Clemens Gühmann
Gutachter: Prof. Dr.-Ing. Uwe Schäfer
Gutachter: Prof. Dr. Ruijuan Chi

Tag der wissenschaftlichen Aussprache: 6. Juli 2020

Berlin 2021

Acknowledgments

First and foremost, I would like to express my deepest appreciation to my doctoral
thesis supervisor, professor Dr.-Ing. Clemens Gühmann, head of the chair, who has not
only granted me the precious chance to be his doctoral student but also provided me with
invaluable guidance as well as steady and strong support. I owe so much to his unwavering
encouragement, which has spurred my initiatives into full swing to reach effective fruition
and guided me through my doctoral studies.

Additionally, I am very grateful to professor Dr.-Ing. Uwe Schäfer from the Technical
University of Berlin, professor Dr.-Ing. Reinhold Orglmeister from the Technical Univer-
sity of Berlin and professor Dr. Ruijuan Chi from China Agriculture University for their
very supportive guidance. Their advice and their participation in the committee of exam-
iners must be duly acknowledged.

Next, I owe my speedy adaptation to the environment of my laboratory and extensive
comprehension of the outcome of my research to the support of all my colleagues, espe-
cially Dr.-Ing Jürgen Funck, who provided me with so much help during my research.

I must also express my appreciation to my students, Mr. Thilo Geismar, Mr. Yuan Gao,
Ms. Wenjun Zhu, Mr. Zhecheng Jin, just to name a few. They have helped me to bring my
research into a deeper level.

Last but not least, I am most thankful for the support of my family. Hearty thanks
to my parents for their unlimited spiritual support, and for bringing me up. I must also
thanks to my wife Jing Yuan, whose constant encouragement provided a source of moti-
vation throughout my studies. I also acknowledge Chinese Scholarship Council (CSC) for
granting me financial support during my Ph.D. studies.

Abstract

This dissertation proposes a model-based software method to develop a temperatures
estimation system for an asynchronous machine, which is implemented in wireless sensor
networks (WSN). The system can estimate the temperatures of the stator winding, the rotor
cage and the stator core.

Firstly, a physical model of an asynchronous machine is built and validated in Dymola.
The electrical, mechanical and the thermal behaviors performed well in the Dymola sim-
ulation model. Based on the physical model, an efficient and reliable thermal model for
tracking the temperatures of the stator winding, the rotor cage and the stator core is built
using Dymola. All the thermal parameters of the asynchronous machine are identified. One
of the most difficult tasks is to identify the reference stator core losses and reference fric-
tion losses, which can be determined by a no-load test and load test on the test bench. The
conductance values are calculated by the losses and temperatures at the steady state of the
machine. The best-fit capacitances are found by using Genopt, an optimization program.

Two different algorithms are used for the temperatures estimation. A 4th-order Kalman
filter (KF) algorithm and a 9th-order extended Kalman filter (EKF) are first implemented
based on the state-space equations in MATLAB/SIMULINK. The Model-in-the-Loop (MiL)
method is used to verify the algorithms. The physical model in Dymola and the algorithms
are connected together in the simulation using SIMULINK. After the verification of the
algorithm, both are implemented in a wireless sensor network (WSN), which is based on
the IEEE1451 standard using Contiki OS. To estimate the respective temperatures of the
stator winding, the rotor cage and the stator core of an asynchronous machine, KF and EKF
algorithms are implemented into the resource restricted embedded system.

Finally, under different experiment conditions, the temperatures estimation system in
WSN are tested on the test bench. The real-time WSN temperature estimation system is
independent from the control algorithm and functional under any load condition, as long
as the current of the stator is a nonzero system and measured with very high accuracy.

Zusammenfassung

Diese Arbeit befasst sich mit einer modellbasierten Software zur Temperaturschätzung
für die Statorwicklung, den Rotorkäfig und den Statorkern einer Asynchronmaschine. Die
Software kann in einem drahtlosen Sensornetzwerk implementiert werden.

Zunächst wurde ein physikalisches Modell einer Asynchronmaschine in "Dymola" aufge-
baut und deren elektrisches, mechanisches und thermisches Verhalten validiert. Danach
wurde das physikalische Modell mit einem effizienten und zuverlässigen thermischen Mod-
ell mit allen thermischen Parametern erweitert, um die Temperaturen der Statorwicklungen,
dem Rotorkäfig und dem Statorkern zu verfolgen. Die Leitwerte wurden durch die Verluste
und Temperaturen im stationären Zustand der Maschine berechnet. Die Kapazitäten wur-
den mit "GenOpt" gefunden.

Für die Temperaturschätzung wurden ein 4th-Order Kalman Filter (KF) und ein 9th-
Order Extended Kalman Filter (EKF) basierend auf den Zustandsraumgleichungen in Sim-
ulink implementiert. Die beiden Filter-Algorithmen wurden mithilfe der Model-in-the-
Loop (MiL) Methode verifiziert. Danach wurden das physikalische Modell in "Dymola"
und die Filter-Algorithmen simulativ miteinander in Simulink verbunden und anschliessend
in einem Wireless Sensornetzwerk (WSN) implementiert. Das Netzwerk basiert auf dem
IEEE1451-Standard unter Contiki OS. Um die jeweiligen Temperaturen der Statorwicklun-
gen, dem Rotorkäfig und dem Statorkern einer Asynchronmaschine zu schätzen, wurden
viele Ansätze verwendet, um den Algorithmus in das ressourcenbeschränkte eingebettete
System zu integrieren.

Zuletzt wurde das Temperaturschätzsystem im WSN unter verschiedenen Versuchsbe-
dingungen am Prüfstand getestet. Das Schätzsystem in Echtzeit ist unabhängig von dem
Steueralgorithmus und unter allen Lastbedingungen funktionsfähig, solange der Strom vom
Stator nicht gleich Null ist und mit einer sehr hohe Genauigkeit gemessen wurde.

CONTENTS

Acknowledgments i

List of Figures vii

List of Tables x

List of Listings xi

List of Abbreviations and Symbols xiii

1 Introduction 1
1.1 Motivations and Objective . 1

1.2 State of the Art . 3

1.2.1 Overview of the Applications on Wireless Sensor Networks 3

1.2.2 Overview of the Wireless Sensor Networks based on IEEE1451 . . 6

1.2.3 Model-based Software Development 9

1.2.4 Temperatures Estimation Methods for Asynchronous Machines . . 10

1.3 Scope and Structure . 11

2 Object-Oriented Modeling of an Asynchronous Machine with a Simplified
Thermal Model 15
2.1 Asynchronous Machine Model . 15

2.1.1 Asynchronous Machine Model from Standard Library 16

2.1.2 Asynchronous Machine Model from Advanced Library 16

2.1.3 Asynchronous Machine Model with Losses 19

2.2 Thermal Model of an Asynchronous Machine 20

2.2.1 Introduction of the Thermal Model 20

2.2.2 Heat Transfer . 22

2.2.3 Coolant System . 24

2.3 Complete Simulation Model . 25

2.4 Conclusions . 25

ii Contents

3 Parameter Identification of the Model 27
3.1 Parameter Identification . 27

3.1.1 No-load Test . 27
3.1.2 Load Test . 32

3.2 Parameters Identification of the Asynchronous Machine 38
3.3 Parameters Identification of the Thermal Model 39

3.3.1 Thermal Conductances . 39
3.3.2 Thermal Capacitances . 39

3.4 Parameters Identification Related Experiments 42
3.4.1 Validation of the Asynchronous Machine Model 43
3.4.2 Validation of the Complete Model 44

3.5 Conclusions . 46

4 Temperatures Estimation of the Asynchronous Machine 49
4.1 Temperatures Estimation of the Asynchronous Machine using a KF 49

4.1.1 Thermal Model of the Asynchronous Machine using a KF Algorithm 49
4.1.2 The Implementation of KF Algorithm 52

4.2 Temperatures Estimation of the Asynchronous Machine using an EKF . . . 54
4.2.1 The State-Space Model of the Asynchronous Machines 54
4.2.2 The Thermal Model of the Asynchronous Machines using EKF . . 57
4.2.3 The Combined Model of the System 57
4.2.4 The Implementation of EKF Algorithm 59

4.3 MiL-Test and Experimental Results . 62
4.3.1 The MiL-Test of Combined Simulation Models 62
4.3.2 The Test Results for KF Estimator 62
4.3.3 The Test Results for EKF Estimator 66
4.3.4 The Results on the Test Bench Machine 70

4.4 Conclusions . 73

5 The Implementation of KF in the WSN 75
5.1 The proposed System Description . 75

5.1.1 The Target System . 75
5.1.2 Structure and Topology of the System 77

5.2 Implementation of Data Acquisition System in Distributed WTIMs 78
5.2.1 The Hardware . 78
5.2.2 Analog Sensor Data Acquisition 80
5.2.3 Digital Sensor Data Acquisition 87
5.2.4 The Process of the Data Acquisition in WTIM 88

5.3 Implementation of the KF Algorithm in NCAP 90

Contents iii

5.3.1 The Implementation of Processes in NCAP 92

5.3.2 KF Algorithm Implementation in NCAP using Fixed-Point Arith-
metic . 95

5.3.3 Fixed-Point Arithmetic Implementation 98

5.3.4 Memory Usage and Calculation Time 99

5.4 The Communication between NCAP and WTIMs 100

5.5 Conclusions . 100

6 The Implementation of the EKF in the WSN 103
6.1 Implementation and Optimization of EKF Algorithm in Contiki OS 103

6.1.1 Fixed-point Arithmetic . 105

6.1.2 Sampling Block Method . 108

6.1.3 Optimization of Memory Usage 113

6.2 Implementation of EKF Algorithm in the WSN 115

6.2.1 The Processes of NCAP . 115

6.2.2 Adaptation for Distributed WTIMs Topology 115

6.2.3 Integration of the EKF . 118

6.3 Faults Handling and Compensation . 119

6.3.1 Input Data Range Monitoring Compensation 120

6.3.2 Output Range Monitoring and Reset 120

6.3.3 NCAP Restart in the Case of Disconnection 121

6.4 Conclusions . 121

7 The Experiment Results 123
7.1 The Experiments of the KF Algorithm using WSN 123

7.2 The Experiments of the EKF Algorithm using WSN 126

7.3 Conclusions . 128

8 Summary and Outlook 129

References 131

Appendix 139

A Parameters Identification of the Model 141
A.1 Building Interface between Genopt and Dymola 141

A.2 Building Interface between Genopt and Dymola 142

B The Implementation of KF in the WSN 143
B.1 FIR Filter Function . 143

iv Contents

B.2 Structure Instance of the Sensor . 143
B.3 KF Structure . 144
B.4 Fixed-Point Arithmetic . 145

C The Implementation of EKF in the WSN 149
C.1 EKF Structure . 149
C.2 EKF Function Definition . 150
C.3 EKF Matrix Definition . 151
C.4 Compensation of the EKF Estimation . 156

D The Experiment Results 157

LIST OF FIGURES

1.1 The power losses of an asynchronous machine as an example [1] 2

1.2 Structure of network topologies [2] . 4

1.3 Relationships among the IEEE 1451 standard family members [3] 7

1.4 Overview of the structure for data acquisition using MSTL 9

1.5 Model-based algorithm development process 12

2.1 Model of an asynchronous machine in Dymola [4] 16

2.2 Simulation model of AIMC [5] . 20

2.3 Thermal network of an asynchronous machine [6] 22

2.4 Thermal model in Dymola [7] . 23

2.5 Thermal capacitor and conductor in Dymola 23

2.6 Coolant system [7] . 24

2.7 Definition of the temperature of the coolant system 25

2.8 The whole simulation system in Dymola 26

3.1 Regression curve of Psub and U . 30

3.2 PT1000 instrument transformer . 33

3.3 Linear regression of temperature sensors 34

3.4 Location of stator winding temperature sensor 34

3.5 Location of stator core temperature sensor 34

3.6 The installation of the sensor in the rotor cage 35

3.7 The installation of the conditioning board 35

3.8 Measured temperatures before and after filtering 36

3.9 Flowchart of running GenOpt with Dymola [8] 40

3.10 Thermal model in Dymola with objective function 42

3.11 Code in Dymola of writing objective function to result.txt 42

3.12 Measured and simulated characteristic curves of the asynchronous machine 43

3.13 Simulated and measured temperatures of S1 test 45

3.14 Simulated and measured temperatures of S6 test with correction of thermal
conductances . 47

vi List of Figures

4.1 The complete model . 63

4.2 KF estimator in SIMULINK . 63

4.3 CPLC: Comparison of simulated and estimated temperatures under S1 . . . 67

4.4 CPLC: Comparison of simulated and estimated temperatures under S6 . . . 67

4.5 EKF estimator in SIMULINK . 68

4.6 EKF simulated and estimated temperatures under continuous duty S1 . . . 69

4.7 EKF simulated and estimated temperatures under intermittent duty S6 . . . 69

4.8 The test bench . 70

4.9 KF measured and estimated temperatures under S1 71

4.10 KF measured and estimated temperatures under S6 71

4.11 EKF measured and estimated temperatures under S1 72

4.12 EKF measured and estimated temperatures under S6 73

5.1 Preon32 [9] . 76

5.2 Preon32Shuttle [10] . 76

5.3 Components of the WSN Software [11] 77

5.4 Structure of the temperatures estimation system based on WSN [11] 78

5.5 The whole construction of the DAQ system 79

5.6 Conditioning board without housing [11] 80

5.7 Conditioning board with housing [11] . 80

5.8 Hardware of the rotor speed acquisition 80

5.9 Block diagram of the analog sensor data acquisition system 81

5.10 Time differences resulted from multiplexer 82

5.11 The structure of the data queue . 83

5.12 The structure of the data block . 84

5.13 Detailed processing time division [11] . 85

5.14 Measurement chain of the effective current and voltage 86

5.15 Measurement chain of the coolant air temperature 87

5.16 The diagram of the generated pulses [11] 88

5.17 Workflow of the data acquisition system in TIM 89

5.18 Analog sensor continuous process . 90

5.19 Rotation sensor data acquisition process 91

5.20 The integration of the KF into Contiki system stack of NCAP 92

5.21 Stack comparison between protothreads and threads 93

5.22 Contiki process linked list . 94

5.23 The structure of implemented NCAP [11] 95

5.24 The flow chart of the KF algorithm implementation process 97

5.25 The usage of the RAM on the NCAP sensor node (total memory: 64 kB) . . 99

List of Figures vii

5.26 The usage of flash memory on the NCAP sensor node (total memory: 256
kB) . 99

5.27 The sequence on the NCAP side . 101
5.28 The sequence on the WTIM side . 102

6.1 Program flowchart of the EKF process . 105
6.2 Sampling block method . 111
6.3 Sampling data in WTIM and received data in NCAP 111
6.4 Memory pool . 114
6.5 Memory mapping table of matrices in EKF 114
6.6 Flowchart of the processes in NCAP . 116
6.7 Sequence diagram of process MeasurementUpdate 117
6.8 Data format transformation in process MeasurementUpdate 118
6.9 Sizes of temperature and data set buffer 118
6.10 Received interfered data . 120
6.11 Reset system state in case of unacceptable estimation 121
6.12 Temperature compensation for disconnection 121

7.1 The structure of the test bench . 124
7.2 Comparison of measured and estimated temperatures under S1 with KF . . 124
7.3 Comparison of measured and estimated temperatures under S6 with KF . . 125
7.4 Comparison of measured and estimated temperatures under S1 with EKF . 126
7.5 Comparison of measured and estimated temperatures under S6 with EKF . 127

LIST OF TABLES

2.1 Parameters of an asynchronous machine 19
2.2 Similarity of thermal and electrical system 21
2.3 Parameters of coolant system . 25

3.1 Measured and calculated data in no-load test 28
3.2 Parameters of asynchronous machine . 32
3.3 Measured and calculated data in load test 33
3.4 The end temperatures of the three parts . 37
3.5 Power losses of load test . 37
3.6 Intrinsic parameters of asynchronous machine 38
3.7 Thermal conductances . 39
3.8 Thermal conductances . 43
3.9 Thermal capacitances . 43
3.10 Temperature error rate under S1 . 45
3.11 Temperature error rate under S6 . 46

4.1 The maximum error and NRMSE of EPL under S1 65
4.2 The maximum error and NRMSE of EPL under S6 65
4.3 The maximum error and NRMSE of CPL under S1 65
4.4 The maximum error and NRMSE of CPL under S6 66
4.5 The maximum error and NRMSE of CPLC under S1 66
4.6 The maximum error and NRMSE of CPLC under S6 66
4.7 The error and NRMSE of the estimated temperatures under S1 68
4.8 The error and NRMSE of the estimated temperatures under S6 70
4.9 The maximum error and NRMSE of KF under S1 72
4.10 The maximum error and NRMSE of KF under S6 72
4.11 The maximum error and NRMSE of EKF under S1 73
4.12 The maximum error and NRMSE of EKF under S6 73

5.1 Supported inputs of the analog acquisition board 82
5.2 Some process specific protothread macros 94

x List of Tables

5.3 The matrix operations function . 98
5.4 The data range of the variables . 98

6.1 Time-consumption of 9th-order EKF and sensor sampling time 109

7.1 The error and NRMSE of the estimated temperatures under S1 with KF . . 125
7.2 The error and NRMSE of the estimated temperatures under S6 with KF . . 126
7.3 The error and NRMSE of the estimated temperatures under S1 with EKF . . 127
7.4 The error and NRMSE of the estimated temperatures under S6 with EKF . . 127

D.1 Reference parameters of asynchronous machine 157
D.2 Parameters of asynchronous machine . 157

LISTINGS

A.1 initialization.txt . 141
A.2 configureation.txt . 142
A.3 command.txt . 142
A.4 ScheduleTemplate.txt . 142
B.1 Declaration of Q15 FIR filter function . 143
B.2 Coefficient of FIR low-pass filter . 143
B.3 Declaration of the structure instance . 143
B.4 The structure rotation data set . 144
B.5 The structure of Contiki process . 144
B.6 The structure of KF data . 144
B.7 The structure of Kalman filter . 144
B.8 Definition of changing the exponent . 147
B.9 Definition of FloatToFix and FixToFloat Macros 147
B.10 Definition of AddFix and SubFix Macros 147
B.11 Definition of AddFixExp and SubFixExp Macros 147
B.12 Definition of MulFix Marco . 148
B.13 Definition of MulFixExp Marco . 148
B.14 Definition of DivFix Marco . 148
C.1 Declaration of EKF structure in C . 149
C.2 Definition of fuction run_ekf . 150
C.3 Basic definition of conversion macros . 151
C.4 The macros of multiplication . 151
C.5 The definition of a matrix . 151
C.6 Definition of fuction matrix_ekf . 151
C.7 Definition of fuction ekf_reset . 155
C.8 Declaration of the analog data setxdcr_AnaDataSet structure 155
C.9 The definition of ekfDataSet . 156
C.10 The data transmission of the measurement 156
C.11 Compensation of the estimation due to lost blocks 156

LIST OF ABBREVIATIONS AND SYMBOLS

Abbreviations
6LoWPAN IPv6 over Low power Wireless Personal Area Networks
ADC Analog-to-Digital Conversion
AIM Asynchronous Induction Machine
API Application Programming Interface
ARM Advanced RISC Machine
CIC Cascaded integrator-comb
CMSIS Cortex Micro-controller Software Interface Standard
CoAP Constrained Application Protocol
CPL Calculated Power Losses
CPLC Calculated Power Losses with Compensation
CPU Central Processing Unit
DAC Digital-to-Analog Converter
DAQ Data Acquisition
DSP Digital Signal Processing
EKF extended Kalman Filter
EPL Export Power Losses
FFT Fast Fourier Transform
FIFO First-In-First-Out
FIR Finite Impulse response
FPU Float Point Unit
GPIO General-Purpose Input/Output
GUI Graphical User Interface
HiL Hardware-in-Loop
HTTP HyperText Transfer Protocol
IDE Integrated Development Environment
IIR Infinite Impulse Response
IoT Internet of Things
KF Kalman Filter
LED Light-Emitting Diode

xiv Listings

M2M Machine-to-Machine
MDT Chair of Electronic Measurement and Diagnostic Technology
MEMS Micro Electro Mechanical Systems
MiL Model-in-Loop
MMF Magneto-motive Force
MSB Most Significant Bit
MSTL MDT Smart Transducer Library
NCAP Network Capable Application Processor
NI National Instrument
NRMSE Normalized Root-Mean-Square Error
PI Proportional Integral
PID Proportional-Integral-Derivative
PMSM Permanent Magnet Synchronous Machine
PWM Pulse Width Modulation
RAM Random Access Memory
RFID Radio-Frequency Identification
RMS Root-Mean-Square
ROM Read-Only Memory
RPL IPv6 Routing Protocol for Low-Power and Lossy Networks
RPM Revolutions per Minute
S1 Continuous Full-Load Test
S6 Intermittent-Load Test
TCP Transmission Control Protocol
TEDS Transducer Electronic Data Sheet
TIM Transducer Interface Module
UDP User Datagram Protocol
WPAN Wireless Personal Area Networks
WSN Wireless Sensor Networks
WTIM Wireless Transducer Interface Module
Symbols
αref Temperature coefficient
αr Rotor temperature coefficient
αs Stator temperature coefficient
∆T Temperature drop
Q̇ Heat flow
λdr, λqr Rotor flux linkage in d-q axis
λds, λqs Stator flux linkage in d-q axis
ω Mechanical angular frequency

Listings xv

ωr Electrical angular velocity
ωs Stator frequency
ωframe Reference frame frequency
ωref Reference speed
σ Leakage inductance coefficient
σr Rotor leakage inductance coefficient
σs Stator leakage inductance coefficient
τ The sampling time; The torque
A System matrix
B Input matrix
C Output matrix
D Feedthrough matrix
F Process Jacobians matrix
H Measurement Jacobians matrix
K Kalman gain
Q Process covariance matrix
R Measurement covariance matrix
u Control vector
x State vector
z Measurement vector
C Thermal capacitance
f Input signal frequency
fr The frequency of the rotor
fs The frequency of the stator
fNominal Nominal frequency
G Thermal conductance
I Effective value of input current
i(t) Instantaneous input current of asynchronous machine
IL Line current
iαr, iβr α− β rotor currents
iαs, iβs α− β stator currents
iar, ibr, icr Three phase rotor current
ias, ibs, ics Three phase stator current
INominal Nominal RMS current
iqr, idr d-q rotor currents
iqs, ids d-q stator currents
Iref Reference current
J Rotor inertia

xvi Listings

kiron Iron loss constant
Lm Main field inductance
Lr Rotor inductance
Ls Stator inductance
Lrσ Rotor leakage inductance
Lsσ Stator leakage inductance
ns Synchronous speed
nt Measured speed
pn Number of pole pairs
PU , PV , PW Input power per phase
Pθ Thermal power
PcoreRef Reference stator core losses
PfrictionRef Reference friction losses
Pfw Friction losses
Pgrc Generator rotor losses
Pin Input power losses
PLoss Total losses of the machine
Pmech Mechanical output power
Pmrc Motor rotor losses
PNominal Nominal power output
Pout Output power losses
Prc Rotor cage losses
Pref Reference power
Psc Stator core losses
Pstray Stray load losses
Psub Remaining power of input power subtracted by stator loss
Psw Stator winding losses
PfNominal Nominal power factor
rH The ration of hysteresis losses
Rr Rotor resistance per phase
Rs Stator resistance per phase
ROperation Resistance in operation
Rref Resistance under reference temperature
rpm Revolutions per minute
s Slip of asynchronous machine
Tc Coolant air temperature
Te Electromagnetic torque
Tl Load torque

Listings xvii

Terr Temperature error rate
Tmea Measured temperature
Tref Reference temperature
Tsim Simulated temperature
Tsw, Tsc, Trc Temperatures of stator winding, stator core and rotor cage
U Effective value of input voltage
u(t) Instantaneous input voltage of asynchronous machine
UL Line voltage
vαr, vβr α− β rotor voltages
vαs, vβs α− β stator voltages
vas, vbs, vcs Three phase stator voltage
VNominal Nominal RMS voltage
vqr, vdr d-q rotor voltages
vqs, vds d-q stator voltages
Xr Rotor inductive impedance
Xs Stator inductive impedance

CHAPTER 1

INTRODUCTION

Due to the industrial demands for low cost, robust and low maintenance for machines,
asynchronous machines are widely used in industries of pumps, fans, compressors, mills,
cranes, hybrid vehicles and electrical vehicles [12]. A condition monitoring system is
sometimes implemented to monitor the electrical, mechanical and thermal behaviors of
the machine. At the same time, a faults diagnosis system may be applied to detect the
failures and to guarantee the safety of such machines [13]. The maximum lifetime of
an asynchronous machine, its ability to handle over-load and the level of its precision in
a high-performance controller, are variables that largely depends on thermal stress [14].
Exceeding temperatures in different parts may result in insulation deterioration as well as
rotor faults [15]. So temperature monitoring of the stator winding, the rotor cage and the
stator core, can be used for thermal fault detection and predictive monitoring. It can protect
the machine, extend the life span, improve the ability of over-load and contribute to the
high performance of the machine. The construction of the machine can also be optimized
according to the thermal behavior.

WSNs are networks that consist of many sensor nodes. A sensor node may consist of
sensor(s) or actuator(s), a microprocessor, and a wireless transceiver [16]. WSNs have
many applications such as the monitoring of the environment, process automation in the
industry and remote medical care. With the recent advances in micro electro-mechanical
systems (MEMS) technology, wireless communications, and digital electronics, WSNs are
more widely used in the Internet of Things (IoT), such as Machine-to-Machine (M2M)
and smart city related concepts. On the other hand, more should be considered due to the
restrictions of the sensor nodes, such as low cost, low power, weak calculation power and
small memory size.

1.1 Motivations and Objective

The heat of an asynchronous machine is generated from the power losses that include
the losses from the stator winding, the stator core, the rotor cage, the friction and the stray

2 Chapter 1. Introduction

load. The losses from the stator winding and the rotor cage are copper losses while the
stator core losses are iron losses. All the power losses of an asynchronous machine as an
example is shown in figure 1.1:

10%

20%
20%

10%

40%

Figure 1.1: The power losses of an asynchronous machine as an example [1]

As thermal behavior is vital to the lifespan and the performance of an asynchronous ma-
chine, a temperatures monitoring system that provides high accuracy at low cost is required
for the different regions.

Traditionally, the WSN may consist of many different types of sensors such as tem-
perature, pressure, vibration, visual, infrared, (acoustic) noise, which are able to monitor
a variety of conditions. The deployed wireless sensor nodes could be used for data ac-
quisition, data processing and wireless transmission. To monitor the temperatures of an
asynchronous machine, it is possible to install temperature sensors with wires to measure
the temperature of the stator, but it is difficult for the rotor. In accordance with the mea-
surement technology, WSNs can be used for temperature measurement including the rotor
cage. However, the high cost and unreliability of the system make this unsuitable.

Apart from the data acquisition and data transmission of the sensor node, the remaining
memory space and computation power may be sufficient for the implementation of a basic
algorithm. As a result, the model-based method for the implementation of a temperatures
monitoring system in WSNs is proposed. However, there are several challenges in the
development of the temperatures monitoring system and the algorithm implementation in
WSNs:

1.2. State of the Art 3

• Physical models of both an asynchronous machine and thermal networks

• Parameter identification and model validation

• Development of a model-based algorithm for the temperatures estimation

• Algorithm implementation in resource restricted sensor nodes, which is small mem-
ory size, weak computation power and without Float-Point-Unit (FPU), etc.

Consequently, the final objective of the research is to develop and implement a tempera-
tures estimation system in WSNs, which could accurately estimate the temperatures of the
stator winding, the rotor cage and the stator core.

1.2 State of the Art

As the thesis is a combination topic, the latest research status and the achievements of
both WSNs applications and temperatures estimation technology are firstly introduced in
the following sections.

1.2.1 Overview of the Applications on Wireless Sensor Networks

The WSNs [17] consist of sensor nodes that include wireless modules for untethered
communication. These sensor nodes are small, of low-power, and provide sensory and
data processing components. Advances in this field lead not only to less expensive wireless
sensor nodes that can be very flexibly operated but also to enhancements of the traditional
sensors, which conventionally needed to be connected to a central node for processing.
Nodes with smart sensor capabilities are equipped with components for autonomous and
unattended operations. As each sensor node generally operates independently of the net-
work besides data transportation, new fields of application are created. As the wireless
sensory technology develops, the applications for WSN increase. Based on the specific
requirements, WSNs applications can be classified into three groups [18]:

1) Environmental and condition monitoring. This group generally represents the widest
field of WSN application nowadays. While environmental monitoring includes the
monitoring of air, water, noise as well as the sensing of fire, flood, landslide or other
possible disasters, condition monitoring mainly includes the structure of the building,
constructions, bridges in the field of architecture, electronic devices in power system,
the electronic and mechanical sectors in industry or the health care sector in the medical
field [19].

2) Object tracking. This group covers the tracking of mobile object, mainly providing both
location information and the route maps. Other information about the object can also

4 Chapter 1. Introduction

be obtained. The tracking of rare animals by biologist and the tracking of the public
transportation in the city are two of the most common applications. WSN is even used
in robotic football matches to locate the position of every robot.

3) Process automation. This group provides the applications of the remote automation
control via WSN. Smart home and precise agriculture are two such examples. The host
sensor node generates the control strategy for the deployed wireless sensor nodes.

WSN nodes are typically organized in one of three types of network topologies, which
are shown in figure 1.2. In a star topology, each node connects directly to a gateway. In
a cluster tree network, each node connects to a node higher in the tree and then to the
gateway, and data is routed from the lowest node on the tree to the gateway. Finally, to
offer increased reliability, mesh networks feature nodes that can connect to multiple nodes
in the system and pass data through the most reliable path available. This mesh link is often
referred to as a router.

Figure 1.2: Structure of network topologies [2]

In this research, the "Star" topology will be used. There are two main reasons. One is
that it is a small system which only needs several sensor nodes. Another reason is that the
signals acquired and processed by separated wireless sensor nodes can be directly trans-
mitted to another host sensor node. All the applications are based on the signal processing
and wireless communication. However, the focus is on the implementation of monitoring
algorithms in WSNs. As there are many restrictions described before on the sensor node,
the algorithm should be simple and efficient to be implemented.

Many of the applications in electrical machines based on WSNs are condition moni-

1.2. State of the Art 5

toring systems which acquire information simply via sensors [19]. The temperature mon-
itoring of the rotor shaft based on WSNs is reviewed in [20]. In [21], data measurement
systems that measure the temperature, current and voltage of the electric machine are im-
plemented in the wireless sensor nodes. The coordinator device reads different signals
through the ZigBee module and monitor the condition of the machine based on WSNs.
Wireless sensors that measure temperature and flux in an axial flux machine are described
in [22].

In some cases, the measurement and the algorithm are processed in local wireless sen-
sor nodes. Only the results are transmitted to the host sensor node. An embedded system
integrated into a WSN for online dynamic torque and efficiency monitoring in induction
machines is given in [23]. The values of torque and efficiency of the induction machines are
estimated in the local wireless sensor node and then transmitted to the base station through
the WSN. The conditions for several induction machines can be monitored with this sys-
tem. In [24] a flexible filter for a synchronous angular resampling method is proposed and
implemented with a wireless sensor network. The methods for nonuniform reconstruction
as well as synchronous angular resampling, are implemented in the local wireless sensor
node.

For other applications, the data acquisition systems are deployed in the wireless sensor
nodes and the monitoring algorithm is implemented in the computer which has a powerful
CPU and a large flash memory. In [25], new combined methods based on multiple wireless
sensor system for real-time condition monitoring of electric machines are presented. The
current and vibration signals of the machine are simultaneously read from multiple ma-
chines through wireless nodes and the faults are identified using two combined methods.
Stator related faults are diagnosed by analyzing the current signals with fuzzy logic. The
vibration signals are analyzed for bearing faults. However, the whole diagnosis system is
implemented in the computer. Vibration-based detection by using the accelerometer in the
wireless sensor node is used for the health monitoring. All the techniques used here for
the analysis and processing of signals have been implemented by MATLAB software [26].
A fault diagnostics and condition monitoring of the machines using wireless technology is
discussed in [27].

In conclusion, many of the monitoring applications for the electrical machine based on
WSN can be found in the reference. However, none of them has attempted to implement
an algorithm for the estimation of temperatures on WSNs, especially in a resource limited
wireless sensor node. As such, the temperatures monitoring system of an asynchronous
machine on WSN is developed.

6 Chapter 1. Introduction

1.2.2 Overview of the Wireless Sensor Networks based on IEEE1451

A minimum implementation of the IEEE1451 standard is implemented on a WSN using
Contiki OS by the Chair of Electronic Measurement and Diagnostic Technology (MDT).
The platform is the wireless sensor node Preon32 produced by Virtenio GmbH [11]. The
WSN provides standard interfaces between different modules and different sensor nodes
for the wireless communication. Data formats for storage and transmission are also de-
fined. However, only parts of the interfaces and commands are implemented as a minimum
implementation. Some measurement interfaces which are out of scope for IEE1451 are de-
veloped together with the minimum implementation as the MDT Smart Transducer Library
(MSTL).

1.2.2.1 Overview of the IEEE1451 Standard

The Institute of Electrical and Electronics Engineers (IEEE) Instrumentation and Mea-
surement Society’s Technical Committee on Sensor Technology have developed the family
of IEEE 1451 standards [3] that defines communication interfaces and protocols for dis-
tributed sensor applications. To understand the concept of the single IEEE 1451 standard, it
is important to know the terms Network Capable Application Processor (NCAP) and Trans-
ducer Interface Module (TIM). The NCAP is a network node which is the master module,
and is thus the controlling instance of a whole sensor network that communicates with ev-
ery sensor node and performs network communication to any arbitrary network. The TIM
represents a sensor node that operates a set of sensors and actuators and is responsible for
the conditioning and conversion of signals. The communication entirely targets the NCAP.
Both terms are described in details in the next subsection.

The family of IEEE 1451 standards [3] currently consists of seven released parts from
IEEE 1451.0 to IEEE 1451.5 and IEEE 1451.7. The IEEE 1451.6 document is a proposed
standard "A High-speed CANopen-based Transducer Network Interface for Intrinsically
Safe and Non-intrinsically Safe Applications". The IEEE 1451.0 standard defines common
commands and functionalities for sensor networks that can be applied on each NCAP and
on TIMs. The IEEE 1451.1 standard is an older document originally introducing the data
model used for communication between local and remote modules, as well as defining in-
terfaces for communication among NCAPs. This interface has been largely replaced by
the IEEE 1451.0 standard. The other IEEE 1451.X standards describe the commands and
functionalities of each type of communication protocol and media that are applicable as
defined by the regarding IEEE 1451.X standard. The IEEE 1451.2 standard dictates inter-
faces for wired point-to-point communication between NCAP and transducers. A multi-
drop communication protocol is introduced in IEEE 1451.3 for transducers to communi-
cate with the NCAP over a shared pair of wires. The IEEE 1451.4 standard prescribes

1.2. State of the Art 7

a mixed-mode interface for analog transducers that provides analog and digital operating
modes. Wireless communication protocols between NCAP and TIMs are defined in the
standard IEEE 1451.5. The radio-specific interfaces defined by this standard encompass
wireless standards such as IEEE 802.11 (WiFi), Bluetooth, ZigBee and 6LoWPAN (IPv6
over Low power Wireless Personal Area Networks). The draft of the standard IEEE 1451.6
states an interface for connecting NCAP and transducers via the high-speed CANopen
radio-frequency identification (RFID). The relationships among the family members of the
various IEEE 1451 standards is shown in figure 1.3:

Figure 1.3: Relationships among the IEEE 1451 standard family members [3]

A. IEEE1451.0 Standard

The IEEE 1451.0 standard [3] is the basis of the entire family of IEEE 1451 standards.
It defines common commands, functionalities, introduces the Transducer Electronic Data
Sheet (TEDS), TIM and NCAP, all of which are introduced briefly below:

a) TEDS The IEEE 1451.0 defines a large set of TEDSs for many kind of purposes.
The standardized formats cover the storage of information such as the identification
of a sensor node, the number and names of available transducers, calibration and
correction data, etc. Even if a purpose is not covered by the introduced TEDSs it
is considered that manufacturers create their own manufacturer defined TEDSs. In
general, TEDSs are provided by the sensor node manufacturer and are stored in the

8 Chapter 1. Introduction

non-volatile memory of the TIM. It is basically not intended for the WSN operator
to change existing TEDSs within the TIMs.

b) NCAP As mentioned before, the NCAP is a network node that is the controlling
instance of a whole sensor network. It is the intermediary that communicates with
every sensor node on the one hand and performs network communication to any
arbitrary network on the other hand. Depending on the configuration of the WSN the
NCAP application not only handles the communication between the IEEE 1451.0
system and the arbitrary network, it also provides data conversion and processing
functions when for instance raw sensor values need to be converted outside of the
TIM. Except for locally cached TEDSs that have been received from TIMs the NCAP
does not hold or provide own TEDSs.

c) TIM The TIM is a transducer node within the WSN which holds TEDSs describing
its communication module and capabilities, timing information and all data needed
for operating its transducers. Signal conditioning and conversion is part of the TIM
application as well as correction and calibration functionalities if applicable. Trans-
ducers are described as TransducerChannels in the context of TIMs and stand either
for sensors or for actuators.

B. IEEE1451.5 Standard

The IEEE 1451.5 standard [28] defines the wireless communication specifications between
NCAP and TIMs. In the context of this standard TIMs are stated as Wireless Transducer
Interface Modules (WTIM) due to the media of their network communication. The docu-
ment introduces different communication interfaces and TEDSs that describe the physical
layer for each radio type which is supported by the standard. Radio-specific configura-
tions are presented in IEEE 802.11 which are used for WiFi connections. Bluetooth uses
the transmission protocol IEEE 802.15.1. ZigBee and LoWPAN are based on the IEEE
802.15.4 communication protocol for Wireless Personal Area Networks (WPAN).

1.2.2.2 Overview of the MSTL

The implementation of data acquisition system is based on the MSTL which provides
a universal interface to a variety of sensors and actuators and the implementation follows
the IEEE1451 family of standards in many aspects. However, the MSTL is still a work in
progress and in some areas, simplifications are made to save resources on the sensor nodes
and to ease the program design.

The NCAP acts as a base station and interacts with the different TIMs present in the
WSN. The wireless communication protocol between the NCAP and TIM is defined by

1.2. State of the Art 9

the IEEE1451.5 standard. The physical communication and the access control are imple-
mented according to the 802.15.4 wireless communication standard.

A TIM can connect different types of transducers, of which the corresponding TEDS
is stored in a non-volatile memory. The analog-to-digital conversion (ADC) and signal
processing are performed in TIM, which is out of the scope of the IEEE1451 standard.
A request for data acquisition from NCAP will trigger the IEEE 1451.5 layer in TIM,
which again calls on the appropriate functions provided by the IEEE1451.0 layer to pass
the request to the TIM for data acquisition. After the conversion and correction of the data,
acquired data will be passed back to the IEEE 1451.5 layer of TIM, and then wirelessly
transmitted to the NCAP. The figure 1.4 gives an overview of the data acquisition system
using MSTL.

Figure 1.4: Overview of the structure for data acquisition using MSTL

The features of MSTL are listed below:

• available TIMs and transducer channels

• reading information about transducers (TEDs)

• configure properties of transducers

• reading data from transducers (single-shot)

• writing data to transducers

• stream data from transducers

• conversion of signal to SI-units on transducer (linear)

• signal processing on transducer (FIR, CIC-filter)

1.2.3 Model-based Software Development

Model-based software development is used for solving problems which is associated
with designing complex control [29], signal processing [30] and communication systems.
The physical models can be defined with advanced functional characteristics using con-
tinuous time and discrete time building blocks [31]. As is known, the V-model is often

10 Chapter 1. Introduction

used to develop software in automobile industry [32]. Due to the interface between Mod-
elica and MATLAB/SIMULINK, model-in-loop (MiL) simulation method can be used for
the development of the temperatures estimation system. During the early stage, the MiL
simulation can verify the algorithm and locate the specification errors [33]. Compared to
the traditional software development methodology for embedded system, the model-based
method has several advantages:

• It doesn’t need complex constructions and extensive software codes.

• It provides a common design environment, which facilitates general communication,
data analysis, and system verification between various development groups.

• The errors can be detected and located in the early stage of the design.

• Design reuse, for upgrades and for derivative systems with expanded capabilities, is
facilitated.

These models used with simulation tools, can lead to rapid prototyping, software testing,
and verification. Not only are the testing and verification processes enhanced, but also, in
some cases, the hardware-in-the-loop (HiL) simulation can be used with the new design
paradigm to perform testing of dynamic effects on the system more quickly and much
more efficiently than with traditional design methodology.

1.2.4 Temperatures Estimation Methods for Asynchronous Machines

The most common method of temperatures measurement is using mounted temperature
sensor. It is possible to attach a sensor onto the surface of the stator core or on the insides
of the stator winding. Measurement of local temperature, hot-spot and bulk are described
in [34]. However, it is difficult to acquire signals from the rotor while it is in operation.
Wireless sensor networks can be used to acquire rotor temperatures [35] [36]. In [37], a
thermocouple PT1000 mounted in the rotor cage is connected to a microprocessor which
is fixed in the shaft of the rotor. The temperature of the rotor cage can be transmitted
wirelessly to another sensor node. Some methods using infrared sensors are described
in [38] [39]. Fiber optic is used for the on-line monitoring of temperature of the rotor sur-
face in electrical power generators [40]. Some optimized optical fiber sensors are also used
for the measurement of the rotor temperature [41] [42]. The design of a rotor temperature
monitoring system for contact measurement is proposed [43]. The data transmission be-
tween the rotating and stationary part is realized via infrared light. The used temperature
sensors are thermocouples of type K. In short, the cost of the measurements using sensors
directly is largely increased, and the instability of using these measurement system makes
it unsuitable to obtain the temperature directly.

1.3. Scope and Structure 11

An indirect approach is the calculation of the temperature using an estimation of the
resistive parameters. Based on the variation of the stator winding resistance with temper-
ature, a sensor-less internal temperatures monitoring method for induction machine is in-
troduced [44]. The temperature of the stator of a permanent magnet synchronous machine
(PMSM) is calculated from the estimation of the stator resistances using EKF [45]. The
rotor temperature can also be calculated from the resistance which is identified based on the
differential equations in αβ-axis fixed in the stator [46]. In most of the studies [44] [47],
resistances of the stator winding and the rotor cage can not be estimated simultaneously.
The most frequent estimation techniques rely on a calculation of impedance at a steady
state [48] [49] or using an EKF. The estimation of the stator resistance Rs and rotor re-
sistance Rr are presented in [50] and [51]. Other research [52] [53] [54] either uses an
open-loop estimator or switches algorithms under different operating conditions to simul-
taneously estimate the resistances of the stator and the rotor. The temperature dependence
and the thermal dynamics of the stator winding are taken into consideration for the simul-
taneous estimation. However, the resistance of the rotor is estimated to be a constant [55].

Thermal analysis based on lumped-parameter thermal network, finite-element analysis,
and computational fluid dynamics are considered in the paper [56]. Heat-transfer analysis
is suitable for monitoring the thermal behavior of an asynchronous machine, whose de-
tailed heat-transfer network is described in [57]. Finite-element analysis can only be used
to model conduction heat transfer via conduction in solid components while computational
fluid dynamic can be used for the prediction of the flow in complex regions [56]. How-
ever, the analysis is very demanding in terms of model setup and the time required for
computation.

State estimation techniques make it possible to estimate unmeasurable state variables.
A method based on the lumped-parameter thermal network is proposed for the estimation
of the temperatures of the rotor and the stator using EKF [50]. The algorithm is developed
based on the state-space of the asynchronous machine and the simplified thermal model
together, in which it is assumed that there is no rise in temperature for the ambient. The
thermal modeling of the machine is a complex multi-disciplinary problem, which must also
evaluate the main internal losses of the machine [58]. Combining the electrical and me-
chanical models with a simplified thermal model, an approach to estimate the temperatures
of the stator winding, the rotor cage and the stator core is proposed [7].

1.3 Scope and Structure

The final objective of this dissertation is to develop a temperatures estimation system of
an asynchronous machine in a wireless sensor network. It also focuses on the development
of a temperatures estimation algorithm using the model-based method and implementation

12 Chapter 1. Introduction

of an algorithm in WSNs, not including the detailed implementation of the IEEE1451
standard in the WSNs. The process of the model-based algorithm development is shown in
figure 1.5.

Physical

model as a

DymolaBlock

MATLAB

messages

_buffer

kf_data_gen ()

run_kf (){

 matrix_init()

 kf_filter_predict()

 kf_filter_update()

 kf_filter_state()

}

kf_process

start

struct kf_filter {}

struct kf_data {}

Tsw

shell_process

Tsw, Trc, Tsc

Psw, Prc, Psc, Tc

X, P

KF/EKF temperature estimation algorithm

Modeling

Model Validation

Simulation in

Dymola

Physical Physical

model as a

DymolaBlock

Modeling

Model Validation

Simulation in

Dymola MATLAB/

SIMULINK

Modelica

Algorithm

implementation

Algorithm

validation

Test bench

offline test

MATLAB

Algorithm implementation

on WSN

Contiki OS using

 C/C++

Experiment on

 the test bench

Figure 1.5: Model-based algorithm development process

The main scientific contributions of this dissertation are summarized as follows:

• The idea of implementing a temperatures monitoring system in WSNs. Nor-
mally the temperatures monitoring system is implemented in a controller which is
powerful in computation and has a small memory size. As such, it is not as impor-
tant to consider the complexity of the algorithm. However, for the implementation
in WSNs, both computation complexity and memory consumption should be consid-
ered. On the other hand, this system can be used to monitor many electrical machines
deployed across a large area, such as the electrical machines in factory.

• The methods of thermal parameters identification. The thermal behavior of an
asynchronous machine can be simplified as a thermal network, which is similar to
an electric circuit. The values of thermal resistance can be calculated based on the
equations and some of the variables are measured or calculated from the no-load

1.3. Scope and Structure 13

and full-load experiments. Thermal capacitances cannot be calculated directly, so
the GenOpt software is used to optimize the values of thermal capacitances until the
best-fit curves are found.

• KF and EKF algorithms are used in the estimation of temperatures. Several
methods can be used to estimate temperatures. However, both KF and EKF can
accurately estimate the temperatures of the stator winding, the rotor cage and the
stator core using less inputs. The KF needs only the sampling rate of 1 Hz, which
can be used in many resource limited microprocessors. The EKF can even estimate
the speed of the rotor and the load of the machine using only the three-phase currents
and voltages, which can reduce the cost and guarantee the accuracy of the estimation.
Furthermore, they are a set of mathematical equations which provide an efficient
computational (recursive) means to estimate the state of a process. This means that
they are the best options for an online temperatures estimator in a resource limited
sensor node, because only one sampled data is needed for every computational step,
which will largely reduce the consumption of the RAM memory.

• Simulation of the physical model in Dymola and the temperatures estimation
algorithm in Simulink. Dymola provides a model of asynchronous machine with
losses that can be exported to an external thermal model. The whole simulation
model for temperatures monitoring in Dymola is compiled as a block in SIMULINK.
When it is connected with the block of implemented KF or EKF, the system can be
simulated in SIMULINK online.

• The detailed implementation of KF and EKF in a resource restricted sensor
node. The IEEE1451 standard is implemented in WSNs using Contiki OS. Many
processes are created and optimized in order to improve the efficiency of the sensor
node. Many Contiki specified functions and macros are used in the implementation.
The computation time for every step of the algorithm and the consumption of the
memory size are accurately calculated. Fixed-point arithmetic is used as there is no
FPU in the sensor node.

This dissertation is organized as follows: chapter 2 shows the construction of an asyn-
chronous machine model with losses and a simplified thermal model based on Modelica.
The parameters of the asynchronous machine and the thermal model are identified based on
the test bench, and these models are validated in chapter 3. Then in chapter 4, KF and EKF
are explored and implemented using MATLAB to estimate the temperatures of the machine
in MATLAB/SIMULINK. Simulated temperatures from the physical model and estimated
temperatures obtained using the KF or EKF are compared. Next, chapter 5 and chapter 6
elaborate on the implementation of both algorithms in WSNs. Furthermore, the estimation

14 Chapter 1. Introduction

results from WSNs including temperatures of the stator winding, the rotor cage and the
stator core are compared with the measured temperatures in chapter 7. A conclusion and
outlook is delivered at the end of this dissertation in chapter 8.

CHAPTER 2

OBJECT-ORIENTED MODELING OF AN

ASYNCHRONOUS MACHINE WITH A SIMPLIFIED

THERMAL MODEL

The model-based algorithm development method first depends on the physical model
of the system, which can be used for the validation of the proposed temperatures esti-
mation algorithm. The physical model is developed to simulate the characteristics of the
asynchronous machine, including those of the mechanical, the electrical and the thermody-
namic. This chapter will introduce the construction of the simulation model on the basis of
papers [7] and [59].

The modeling language Modelica is a non-proprietary, object-oriented language for
modeling of large, complex, and heterogeneous physical systems. It is suitable for multi-
domain modeling such as mechanical, electrical, electronic, hydraulic, thermal, control,
electric power or process-oriented sub-components [60]. The Modelica library is very con-
venient and reliable, and can be used to summarize and maintain Modelica models that are
developed and tested [61]. Dymola which is short for Dynamic Modeling Laboratory is
one of the most popular commercial modeling and simulation environment that is based
on the Modelica modeling language. The extensive Modelica library, meanwhile, contains
many reusable components [62].

2.1 Asynchronous Machine Model

Two types of asynchronous machine models are provided by the Modelica library. One
is the basic asynchronous machine model from the BasicMachines library in the Modelica
standard library. The model in a library can simulate mechanical and electrical behaviors
without considering the power losses of the machine. The AdvancedMachines library takes
power losses and the variation of losses with respect to load, speed and temperature into
consideration. The power losses generated by the asynchronous machine model serve as
heat sources of the thermal model. Power losses can be imported into the thermal model

16
Chapter 2. Object-Oriented Modeling of an Asynchronous Machine with a

Simplified Thermal Model

by an interface and thermal behaviors can hence be simulated. The combination of the two
models makes it possible to calculate the temperatures of different parts, like the stator and
the rotor of an asynchronous machine under a corresponding load.

2.1.1 Asynchronous Machine Model from Standard Library

The losses in the machine cause its temperature to rise. In [59], the model of a three-
phase asynchronous machine with squirrel cage is used to simulate the losses in the ma-
chine. The main component of the whole asynchronous machine system is shown in fig-
ure 2.1, the module AIMSquirrelCage [63], which includes the squirrel cage, the stator and
the mechanical parts.

Figure 2.1: Model of an asynchronous machine in Dymola [4]

Dymola provides a library that contains plentiful models. The models of asynchronous
machines in the library of Machines are built according to the space phasor theory. The
detailed description of the standard library model can be referred to section 2.2 of [63].

2.1.2 Asynchronous Machine Model from Advanced Library

The Modelica Standard Library provides only basic machine models which takes into
account the copper losses caused by constant winding resistor models, while an extension
machine models with more complex factors is desired [61]. As the definition of IEEE Std-
112 part 5, five types of losses are generated during the running of induction machines.
These include the stator winding losses Psw, the rotor cage or winding losses Prc, the

2.1. Asynchronous Machine Model 17

frictional and the windage losses Pfw, the stator core losses Psc, and the stray load losses
Pstray [64].

PLoss = PInput − POutput (2.1)

PLoss = Psw + Prc + Psc + Pfw + Pstray (2.2)

where PLoss is the total losses of the machine, PInput and POutput are the input and output
power of the machine respectively.

2.1.2.1 Copper Losses

Copper losses of asynchronous machines including the stator and the rotor winding or
the rotor cage result from Joule heating. According to Joule’s First Law, the losses are
calculated by the equation (2.3):

PLoss = I2 ·ROperation (2.3)

where I is the effective current and ROperation is the resistance in operation. As defined
in equation (2.4), it is a temperature dependent value which varies with the temperature
change.

ROperation = Rref · (1 + αref · (TOperation − Tref)) (2.4)

whereRref is the resistance under reference temperature, αref identifies the linear tem-
perature coefficient of the specific material, with respect to the reference temperature Tref .
All the reference values can be referred to Appendix table D.1

2.1.2.2 Core Losses

Core losses Psc are caused by the changes in the magnetic field, which is separated
into hysteresis losses and eddy currents losses. Iron sheets is built onto the iron stack to
avoid undesired eddy currents [59]. The core losses are strongly related to the frequency
of the supply voltage. The frequency of the stator fs is always supply frequency which is
assumed as constant while the frequency of rotor fr is defined in equation (2.5)

fr = s · fs (2.5)

where s is slip. fr is always much smaller than fs. Hence, the losses of the rotor core are
very small as compared to the losses of the stator core, and are usually neglected in running

18
Chapter 2. Object-Oriented Modeling of an Asynchronous Machine with a

Simplified Thermal Model

conditions [65]. According to [59], the core losses in Dymola are defined in equation (2.6)

Psc = Pref ·
(
rH ·

ωref
ω

+ 1− rH
)
·
(

v

vref

)2

(2.6)

where ω is the angular frequency, v is the voltage and rH is the ration of hysteresis losses.
In the current implementation, the hysteresis losses are neglected i.e. rH = 0

2.1.2.3 Friction Losses

Friction losses Pfw [59] are caused by the mechanical rotational losses that include
friction caused by the surface of the rotor, the bearings and the windage losses from the
cooling fans. All friction losses can be simplified as the production of the friction torque
τfw and the rotor speed ω. As linearization around zero speed is defined by ωLinear. The
friction torque τfw defined in [59] can be calculated by the following equations:
For |ω|>ωLinear:

τfw = sign(ω) ·
pref
ωref

·
∣∣∣∣ ω

ωref

∣∣∣∣powerω−1

(2.7)

For −ωLinear ≤ ω ≤ ωLinear:

τfw =
pref
ωref

·
(
ωLinear
ωref

)powerω−1

·
(

ω

ωLinear

)
(2.8)

The dependency of friction losses on speed is modeled with the exponent powerw which
can be referred to [59]. The value can be referred to Appendix table D.1.

2.1.2.4 Stray Load Losses

The stray load losses of the asynchronous machine vary with the load but the values
cannot be determined accurately. Such losses are caused by [66]:

• eddy currents in the rotor conductors

• short circuit in the coils under commutation

• eddy currents in the bolts and other solid parts of the rotor

• flux pulsations produced by changes in the reluctance of the magnetic path at teeth
and slots, and the flux pulsations produced by currents in coils the under commuta-
tion

• distortion of the flux in the rotor produced by the reaction of the rotor

2.1. Asynchronous Machine Model 19

The stray load losses are difficult to be computed or measured, and are originally in-
spired by the standard 60034-2 [67]. The equation is defined as follows [59]:

τstray =
pref
ωref

·
(

i

Iref

)2

·
(

ω

ωref

)powerω−1

(2.9)

A reference power Pref at reference Iref and ωref is used to define the losses. The
exponent powerw has been described in section 2.1.2.3. The voltage drop is modeled as
the torque acting on the shaft [64]. From the above description, it is clear that losses derived
by Dymola are computationally efficient but not strictly accurate. This is because some of
them are only using empirical relationships. After analyzing the results of the reference
[68], a conclusion can be determined that these losses are adequate for the thermal model.
However, in case of high demand of these losses, a correction, compensation or a further
development of the current model should be taken into consideration.

2.1.3 Asynchronous Machine Model with Losses

To implement the physical model of the asynchronous squirrel cage machine with
losses, the following parameters in table 2.1 should be determined:

Table 2.1: Parameters of an asynchronous machine

Name Symbol

Nominal power output PNominal
Nominal power factor PfNominal
Nominal frequency fNominal
Nominal RMS voltage VNominal
Nominal RMS current INominal
Stator and rotor resistance Rs, Rr
Stator and rotor leakage inductance Lsσ, Lrσ
Main field inductance Lm
The number of pole pairs p

Rotor inertia J

Reference friction losses PfrictionRef
Reference stator core losses PcoreRef

Parameters PNominal, PfNominal, fNominal, VNominal, INominal can be read from the
nameplate. Others can be identified by experiments, which will be described in chapter
3. Figure 2.2 shows the whole operation system of an asynchronous machine. The AIM
SquirrelCage-model connected in star is electrically connected to a three phase sinusoidal
voltage source from the MultiPhase library. On the other side the machine is connected to

20
Chapter 2. Object-Oriented Modeling of an Asynchronous Machine with a

Simplified Thermal Model

a load consisting of an inertia and a load torque which is quadratically dependent on speed.
The inertia is the machine inertia, and the load torque is controlled with a PI controller to
achieve the desired mechanical output. Most significantly, the thermal port of the machine
can be enabled, and then connected to the thermal port of the thermal model.

Figure 2.2: Simulation model of AIMC [5]

2.2 Thermal Model of an Asynchronous Machine

The thermal analysis of the electrical machine can be divided into two basic types: an-
alytical lumped-circuit and numerical methods. In its most basic form, the lumped-circuit
is analogous to an electrical network, and the analysis consists of the calculation of con-
duction, convection, and radiation resistances for different parts of the machine construc-
tion [56].

2.2.1 Introduction of the Thermal Model

In the thermal network theory, the object is divided into basic thermal elements, which
consist of usually one node for every part and several thermal resistances for every surface
of the part. These elements are then linked together to form a network of nodes and thermal

2.2. Thermal Model of an Asynchronous Machine 21

resistances. Using the similarity between the electrical and thermal networks, the analysis
of the thermal behavior of the object can be simplified.

The thermal system and the electrical system are analogous because they both have
similar equation and boundary conditions [69]. The 1th Kirchhoff law of the electrical net-
work is similar to the rule of the thermal network, both of which reveals the conservation
of energy. The 2nd Kirchhoff law is derived from the existence of the electrostatic poten-
tial, which can be substituted with the temperature potential in the thermal network. The
analogous systems are shown in table 2.2.

Table 2.2: Similarity of thermal and electrical system

Thermal System Electrical System
Quantity Symbol Unit Quantity Symbol Unit

Heat Flow Q̇ W Current I A

Temperature Difference ∆T K Voltage U V

Temperature T K Potential E V

Thermal Power Pθ W Power P W

Thermal Resistance Rθ
K
W Resistance R Ω

Thermal Conductance G W
K Conductance 1

R
1
Ω

Thermal Capacitance Cθ
J
K Capacitance C As

V

The thermal network is analogous to an electrical network, as temperature to voltage,
power to current, thermal resistance to electrical resistance and thermal capacitance to
electrical capacitance. The heat sources of the machine are the losses of the power, which
include the losses of the stator winding, the rotor cage, the stator core, the rotor core, the
friction losses and the stray load losses [61]. There are only negligible core losses in a
squirrel cage rotor operated at low slip frequency, that can normally be ignored. Friction
and windage losses can be seen as a minor additional load. At constant speed, they can
be added to the stator core losses. The stray load losses vary with the square of current
and thus can be modeled as a small increase proportional to the stator copper losses. Three
other losses generate the simplified thermal network of the machine in figure 2.3 [6]:

The whole thermal model is constructed as shown in figure 2.4, which is described
in [7]. The detailed geometrical data of the machine is not available from the manufacturer,
as such, it is much more proper to apply this simplified thermal model instead of a detailed
one. This is connected to the model of the machine by the red part on the top of the
whole model, which transmits the power losses inside the thermal model. This model could
represent the three relevant temperatures of the asynchronous machine: the temperatures
of the stator winding, the rotor cage and the stator core. These three temperatures can be
described in details as:

22
Chapter 2. Object-Oriented Modeling of an Asynchronous Machine with a

Simplified Thermal Model

Psw
Psc

Prc

Csw Crc Csc

Rsw Rrc

Rsc Coolant air

Trc

Tsc Tc

Tsc Tsc

Tsw

Figure 2.3: Thermal network of an asynchronous machine [6]

• Tsw: the temperature of the stator winding, averaged over the slot and end winding
region

• Trc: the temperature of the stator core, averaged over the whole cross-section of the
stator core

• Tsc: the temperature of the rotor cage, averaged over the slot and end ring region

The three regions are represented by the thermal capacitor that is connected to the thermal
conductor, which are the most significant components in the model. The heat transfer from
Modelica’s library, will be introduced in section 2.2.2. A coolant system in section 2.2.3
is used to model the fan of the machine, which takes into account the thermal capacity and
cools the whole system.

2.2.2 Heat Transfer

The models of the thermal capacitor and the conductor are shown in figure 2.5. The
thermal capacitance is the ability of a material to store heat energy. It is the measure of
temperature change in a material based on its volume. The thermal conductance is the
reciprocal of thermal resistance which is the ability of a material to resist the flow of heat.
The equations (2.10) and (2.11) define the two parameters. Three capacitors and conductors
are connected to represent the heat flow among three parts of the machine, i.e. the stator
winding, the rotor cage and the stator core.

2.2. Thermal Model of an Asynchronous Machine 23

Figure 2.4: Thermal model in Dymola [7]

(a) Thermal capacitor
[70]

(b) Thermal conduc-
tor [71]

Figure 2.5: Thermal capacitor and conductor in Dymola

C =
∆Q

∆T
(2.10)

G =
Q̇

∆T
(2.11)

where:
C is the thermal capacitance,

24
Chapter 2. Object-Oriented Modeling of an Asynchronous Machine with a

Simplified Thermal Model

G is the thermal conductance,
∆Q is the heat difference,
Q̇ is the heat flow,
∆T is the temperature difference.

2.2.3 Coolant System

Besides the thermal model of these three parts, the coolant system is also one part of
the model. It is an air cooling system comprised of a fan mounted to the end of the shaft.
This is one of the most significant aspects of designing a machine as the cooling of the
asynchronous machine can improve the design of the machine, as well as reduce the size
and mass of it. This system only models a simple coolant system, which takes into account
the basic thermal dynamic effects, i.e. the heat transported by the media’s thermal capacity.

The power losses from the asynchronous machine are just like the current source of an
electrical circuit. The thermal capacitors represent the ability of a material to store heat
energy while the thermal resistor represent the heat conduction.

Figure 2.6: Coolant system [7]

The temperature drop is influenced not only by the rise in temperature of the machine
but also by the ambient medium. The library supplies three options, air at 30 ◦C, air at
70 ◦C and water. According to the realistic working environment of the asynchronous
machine, air at 30 ◦C is the most befitting approximation for the ambient medium. The
ambient temperature is the initial temperature of the air. Another parameter that must be
decided in advance is the volume flow, which represents the wind power generated by the
fan. This is determined by the end temperature of the coolant system, which is defined as
the temperature of the air inside the coolant, between the fan and the surface of the machine
(refer to the arrow in figure 2.7). The final temperature of the coolant air at 35. 6 ◦C is
measured in section 3.1.2. From the simulation model, the volumeFlow is extrapolated
from the experiment as a constant 0. 07 m3/s, and the temperature of the coolant air in the
simulation model is simulated.

The parameters are summarized in table 2.3.

2.3. Complete Simulation Model 25

Figure 2.7: Definition of the temperature of the coolant system

Table 2.3: Parameters of coolant system

Description Value

Ambient medium Properties of air at 30 ◦C

Ambient temperature Initial temperature of the air
Volume flow 0. 07 m3/s

2.3 Complete Simulation Model

By enabling useThermalPort in AIMC, the thermal model is connected to the asyn-
chronous machine model. The AIMC module gives the power losses of the asynchronous
machine as outputs and they act as the heat sources of the thermal model. The whole
simulation system in Dymola is shown in figure 2.8:

2.4 Conclusions

This chapter mainly presents the structure of the simulation model. The first part shows
the model of the asynchronous machine in Dymola. This model emit losses from the
machine, which are used as heat sources in the thermal model. Then a thermal model
consisting of thermal conductors, thermal capacitors and coolant system is constructed.

26
Chapter 2. Object-Oriented Modeling of an Asynchronous Machine with a

Simplified Thermal Model

Figure 2.8: The whole simulation system in Dymola

Each individual part is introduced and then elaborated in this chapter. The last part of
this chapter introduces the connection between the model of the machine and the thermal
model.

CHAPTER 3

PARAMETER IDENTIFICATION OF THE MODEL

To simulate the thermal behavior of the asynchronous machine, parameters of the ma-
chine and the thermal model should be identified. This chapter will elaborate on several
methods which can be used to identify the parameters.

3.1 Parameter Identification

The parameters of the model should be first identified based on the test bench, so that the
electrical, mechanical and thermal behavior can perform properly. Two tests are performed,
one is no-load test and the other is load test. The aim of the no-load test is to obtain the
friction losses and the stator core losses, which are also necessary for obtaining other kinds
of power losses in the load test. The load test provides the end temperature and stable
power losses under a full-load condition, which are used for the deduction of the thermal
conductances. At the end of this chapter, the method of receiving intrinsic parameters
in an asynchronous machine model is discussed and the asynchronous machine model is
validated with respect to different characteristic curves.

3.1.1 No-load Test

The temperature rise inside the asynchronous machine is related to the power losses of
different components. The machine model takes the following losses into account:

• Psw: heat losses in the temperature dependent resistances of the stator winding

• Prc: heat losses in the temperature dependent resistances of the cage

• Psc: stator core losses

• Pfw: friction and windage losses

The rotor core losses are nearly zero during normal operation, and the stray load losses
are dissipated for the sake of simplification. The first two losses used for identifying the

28 Chapter 3. Parameter Identification of the Model

thermal model parameter are obtained by the load test, while the friction losses depend on
the speed. Therefore, Pfw is received by the no-load test, which is also a parameter in the
model of the machine. Otherwise, the core losses can also be determined by the no-load
test using the segregated loss method described in the IEEE Std. 112 test document [64].

"This test is performed by running the machine as a motor at rated voltage and fre-
quency with no connected load. When separation of no-load losses is to be accomplished,
run this test and read temperature, voltage, current, and power input at the rated frequency
and at at voltages ranging from 125% of the rated voltage down to the point where further
voltage reduction will increase the current." [64]

Due to the restriction of the laboratory’s condition, the voltage of the machine can-
not be changed. The input frequency can be changed according to a desired speed. One
of the methods that determine the no-load power curve is to vary the frequency across a
small range, run a test at several points and then plot the resulting power versus voltage
curve [64]. At each frequency reading, the value of the instantaneous current and voltage
are measured.

The friction losses of some machines may change until the bearings reach stable status.
"Stabilization is considered to have occurred whenever the power input at no-load does not
vary by more than 3% between two successive readings at the same voltage taken at half-
hour intervals." [64] However, the resistance of stator will change correspondingly because
of the rise in temperature. Therefore this test is proceeded as quickly as possible so as
to maintain the resistor of the stator and the rotor. The machine is assumed to work on a
stable condition when the measured speed of the rotor does not change. All the measured
and calculated data in the no-load test are summarized in table 3.1.

Table 3.1: Measured and calculated data in no-load test

Measured Calculated

Instantaneous current i(t) Effective current I
Instantaneous voltage u(t) Effective voltage U
Torque τ Stator core loss Psc
Angular speed w Friction and windage loss Pfw

Stator winding loss Psw
Rotor cage loss Prc
Input power Pin

3.1. Parameter Identification 29

3.1.1.1 Input Power

The input power is derived by measurements of the input current and voltage. In reality
the three phases are unsymmetrical, such that the current and voltage from each phase must
be measured. The total input power is the sum of the input power from each phase:

Pin = PU + PV + PW (3.1)

where PU , PV , PW is the input power per phase.

The single-phase input power P can be determined by the numerical of instantaneous
current and voltage:

P =
1

n

n∑
k=1

ukik (3.2)

where n is the number of measured samples. As the frequency of i and u is 50 Hz, sampling
rate is 2,000 Hz, n is selected to 120, which the time period is three times same as the cycle
time of i and u.

3.1.1.2 Stator Losses

For a three-phase machine, the ohmic stator losses Psw is shown in equation (3.3).

Psw = 3I2Rs (3.3)

where I is the value of the measured or calculated effective current per line terminal, in
amperes (A). Rs is the per phase dc resistance of the stator, in ohms. By measuring the
instantaneous current, the effective value can be calculated as below:

I =

√√√√ 1

n

n∑
k=1

i2k (3.4)

where n is the number of measured samples. The value is also 120 with the same reason
as described in section 3.1.1.1.

3.1.1.3 Friction Losses

The main task of the no-load test is to determine the friction losses. The friction and
windage losses Pfw are calculated from a linear regression analysis using some lower
points of the power versus voltage squared curve [64]. To determine the friction and
windage losses, the input power Pin is subtracted from the stator I2R losses Psw at each

30 Chapter 3. Parameter Identification of the Model

of the voltage test points. The remaining power Psub can be defined as:

Psub = Pin − Psw (3.5)

The remaining power Psub versus supply voltage U are plotted and the curve is extrap-
olated to zero voltage. The intercept of the curve with the zero voltage axis is the value of
the friction and windage losses. This intercept may be determined more accurately if the
input power minus stator I2R losses is plotted against the voltage squared for values in the
lower voltage range [64]. However, there is no voltage control of the input voltage in the
lab, thus an approximation method is employed to alter the desired speed to get a series
points of (U ,Psub), which can fit a regression curve for deciding Pfw. The x axis is not the
actual voltage value of the machine. It is the voltage of the controller which can change the
frequency of the machine. It requires a constant frequency and variable voltage from an
adjustable transformer. Since frequency converter is used for the test bench, we have to set
various frequency within small differences. In this way, we can get an approximate value.

U[V]
0 0.5 1 1.5 2 2.5 3

P
s
u
b
[W

]

0

100

200

300

400

500

600

700
Regression curve for Pfw

measured points

Figure 3.1: Regression curve of Psub and U

From figure 3.1 the value of Psw can be read as the intercept of y-axis. However as a
consequence of the approximation method, when values of different data measurements are
used to fit the curve, the result is not accurate. To find the best fitting result, a histogram
of results obtained by different combinations of measured data is used to determine the
friction losses as 50 W.

Another way to determine the friction losses is to use iron losses constant as shown in

3.1. Parameter Identification 31

the following equation:

w2 · kiron + Pfw + Psw = Pin (3.6)

where kiron is the iron losses constant and w is the measured speed. In this equation there
are only two unknown constant parameters, which are the iron losses constant kiron and the
friction and windage losses Pfw. Only two equations are needed to solve for the unknown
parameters, whose coefficients are picked from two different columns of the no-load test
table. However, the accuracy of this method is imprecise compared to the first method as
only two equations are used.

3.1.1.4 Stator Core Losses

The stator core loss Psc at each test point voltage is obtained by subtracting the value
of friction and windage losses Pfw which are determined in section 3.1.1.3 from the input
power minus stator winding losses which are determined in section 3.1.1.2.

Psc = Pin − Psw − Pfw (3.7)

3.1.1.5 Rotor Cage Losses

The rotor cage losses Prc can be determined from the slip using equation (3.8) or equa-
tion (3.9). The rotor losses are determined by the equation (3.8).

Pmrc = (Pin − Psw − Psc) · s (3.8)

Pgrc = (Pout + Psw + Psc) · s (3.9)

where Pmrc are the machine rotor losses, Pgrc are the generator rotor losses, s is the
slip which is defined in equation (3.11). The slip speed defined in equation (3.10) is the
difference between the value of the synchronous and measured speed in r/min.

slip speed = ns − nt (3.10)

where
ns is the synchronous speed, in r/min,
nt is the measured speed, in r/min,

Slip expressed as a per unit quantity is

s =
slip speed

synchronous speed
(3.11)

32 Chapter 3. Parameter Identification of the Model

The friction, windage losses and the core losses will be determined by using the measured
data (section 3.1.1.3 and section 3.1.1.4). The power losses in the no-load test is summa-
rized in table 3.2.

Table 3.2: Parameters of asynchronous machine

Name Symbol Value

stator core losses Psc 158. 1W

input power Pin 328. 7W

friction and windage losses Pfw 50W

stator winding losses Psw 120. 6W

3.1.2 Load Test

As mentioned above, this model represents the three relevant temperatures of the asyn-
chronous machine, the temperatures of the stator winding, the rotor cage and the stator
core, which are modeled by conductors and capacitors. The aim of the load test is to deter-
mine the values of thermal conductances and capacitances in the model. As shown in the
paper [7], the equations describing the system in figure 2.3 are:

Csw
dTsw
dt

= Psw −Gsw(Tsw − Tsc) (3.12)

Crc
dTrc
dt

= Prc −Grc(Trc − Tsc) (3.13)

Csc
dTsc
dt

= Psc +Gsw(Tsw − Tsc) +Grc(Trc − Tsc)−Gsc(Tsc − Tc) (3.14)

After stabilization of heat exchanges among the air and the components of the machine,
the derivatives of temperature with respect to time become zero. By measuring the end
temperature of Tsw, Trc, Tsc, and Tc and calculating of the power losses in the machine the
conductances can be derived:

Psw = Gsw(Tsw − Tsc) (3.15)

Prc = Grc(Trc − Tsc) (3.16)

Psw + Psc + Prc = Gsc(Tsc − Tc) (3.17)

The stator core losses have been determined in section 3.1.1.4. The losses of the stator
winding and the rotor cage can be calculated by applying equations (3.3) and (3.8). These

3.1. Parameter Identification 33

are summarized in section 3.1.2.2. All the measured and calculated data in the load test are
summarized in table 3.3.

Table 3.3: Measured and calculated data in load test

Measured Calculated

Instantaneous current i(t) Input power Pin
Instantaneous voltage u(t) Nominal output power Pmech
Torque τ Stator core losses Psc
Angular speed w Stator winding losses Psw
Rotor cage temperature Trc Rotor cage losses Prc
Stator winding temperature Tsw Thermal conductance Gsw
Stator core temperature Tsc Thermal conductance Gsc
Coolant temperature Tc Thermal conductance Grc

3.1.2.1 Temperature Test

To solve the equations (3.15) - (3.17), the end temperature of each part of the machine
should be measured. Furthermore, the whole temperature rise curve will be used to find the
values of the thermal capacitors according to the best fitting curve of temperature. These
three temperatures are recorded by MATLAB and the measurement method is described in
the paper [72].

The temperatures of the stator winding and the stator core are measured by PT 1000

which is shown in figure 3.2(a). This is a platinum resistance temperature thermometer
that can measure temperature between the range of 0 ◦C to 250 ◦C based on the data sheet.
The signal is processed by a conditioning board in figure 3.2(b) and acquired by the data
acquisition board from National Instruments (NI PCI-6023E).

(a) PT1000 (b) Instrument transformer

Figure 3.2: PT1000 instrument transformer

34 Chapter 3. Parameter Identification of the Model

To obtain the equation for the relationship between temperature and voltage, the sensor
must first be calibrated by measuring the corresponding output voltage of the transformer
under different temperatures. The regression results of the sensors are plotted in figure 3.3
and the regression equations are shown in equations (3.18) - (3.19).

Tsc = 44. 7082◦C/V · U + 0. 5531◦C (3.18)

Tsw = 49. 6995◦C/V · U − 2. 996◦C (3.19)

Voltage[V]
0.5 1 1.5 2 2.5

T
e
m

p
e
ra

tu
re

[°
C

]

20

30

40

50

60

70

80

90

100
Linear regression of temperature sensor 0

measured
regression line

(a) Sensor for stator core

Voltage[V]
0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
e
m

p
e
ra

tu
re

[°
C

]

20

30

40

50

60

70

80

90

100
Linear regression of temperature sensor 2

measured
regression line

(b) Sensor for stator winding

Figure 3.3: Linear regression of temperature sensors

One PT1000 sensor for the stator winding temperature Tsw is embedded among the
winding of the machine, which is shown in figure 3.4. The data can be transmitted via a
wire which goes through the hole punched onto the surface of the machine. Another sensor
is also embedded into the half drilled-through hole and fixed with white thermal grease,
making it closer to the internal temperature of the stator core. The location of the sensor
for the temperature of the stator core is shown in figure 3.5.

Figure 3.4: Location of stator winding
temperature sensor

Figure 3.5: Location of stator core
temperature sensor

The measurement of the rotor cage temperature is based on a master thesis [37]. As the

3.1. Parameter Identification 35

rotor is a fast rotation part, the traditional DAQ system that has wires cannot be used. A
wireless sensor network is proposed for the measurement of the temperature of the rotor
cage. A PT1000 sensor is fixed on the ring of the cage, and a wire is passed through the
shaft to the outside of the machine. The internal structure of the rotor cage is shown in
figure 3.6:

Figure 3.6: The installation of the sensor in the rotor cage

The other end of the PT1000 sensor, which is connected to a conditioning board, is in-
tegrated with a wireless sensor node (Preon32). The conditioning board, which is powered
by a chargeable battery and mounted inside of the shaft, rotates along with the rotor. The
installation of the conditioning board is shown in figure 3.7:

Figure 3.7: The installation of the conditioning board

The acquired temperature signal will be periodically transmitted by the wireless sensor

36 Chapter 3. Parameter Identification of the Model

node to the host sensor node which is connected to a computer. The data will be processed
and stored in the computer.

The load test with full load 20 N.m lasts for about three hours so that the heat exchange
remains stable. The resulting temperature curves display much disturbances and noises,
which should be filtered to smooth the curve so as to facilitate a comparison with the
simulated one. A Gaussian window of length 64 is created and the temperature data are
combined with this Gaussian function to filter off the noises. The figures on the left side of
figure 3.8 are the original temperature curves, which are filtered by FIR filter. Meanwhile,
the resulting temperature curves are shown on the right side of figure 3.8. The original
temperature curve of rotor cage is already smooth enough, because the data is filtered by
an anti-aliasing filter before storage. Thus, the Gaussian window does not exert much
effects on the remaining tiny noises of the curve. The end temperatures of the three parts
are summarized in table 3.4

Time[s] ×10
5

0 5 10 15

T
e

m
p

e
ra

tu
re

[°
C

]

30

40

50

60

70

80
Tsc before filtering

Time[s]
0 5000 10000 15000

T
e

m
p

e
ra

tu
re

[°
C

]

30

40

50

60

70

80
Tsc after filtering

Time[s] ×10
4

0 5 10 15

T
e

m
p

e
ra

tu
re

[°
C

]

0

50

100

150
Trc before filtering

Time[s]
0 5000 10000 15000

T
e

m
p

e
ra

tu
re

[°
C

]

0

50

100

150
Trc after filtering

Time[s] ×10
5

0 5 10 15

T
e

m
p

e
ra

tu
re

[°
C

]

20

40

60

80

100
Tsw before filtering

Time[s]
0 5000 10000 15000

T
e

m
p

e
ra

tu
re

[°
C

]

20

40

60

80

100
Tsw after filtering

Figure 3.8: Measured temperatures before and after filtering

3.1. Parameter Identification 37

Table 3.4: The end temperatures of the three parts

Name Temperature

Tsc [◦C] 74. 0872

Tsw [◦C] 96. 9135

Trc [◦C] 120. 0537

3.1.2.2 Power of Steady-state

When the machine is stabilized and all the temperatures have been measured, the values
of the instantaneous input current and voltage are measured using the same measurement
device. The sampling frequency is set to 10000 Hz. The power losses of the load test are
calculated in a similar way to the losses of the no-load test introduced in section 3.1.1. The
losses of the stator core is derived from the no-load test. The losses of the stator winding
and the rotor cage are received according to equations (3.3) and (3.8), and by measuring
the values of the instantaneous input current and voltage.

The nominal output power Pmech is strictly connected to the power losses inside the
motor. In the reference nominal power table the nominal output power is 3 kW. However,
after comparing the values of the instantaneous input current with the simulated current, it
is found that the simulated current is relatively large, which will cause a temperature rise in
each component. Therefore, the real output power is measured by a group of measurements
(HBM T30FM) with a nominal load on the asynchronous machine. The output mechanical
power under nominal condition can be obtained with measured values of speed and torque:

Pout = τ · ω (3.20)

where τ is the measured torque, in N ·m, w is the angular speed, in rad/s. All the power
losses of the load test are shown below in table 3.5:

Table 3.5: Power losses of load test

Name Value

Pin [W] 3127. 2

Psc [W] 158. 1

Psw [W] 263. 3

Prc [W] 125. 8

Pmech [W] 2580

38 Chapter 3. Parameter Identification of the Model

3.2 Parameters Identification of the Asynchronous Machine

The parameters of the asynchronous machine are identified in [72]. However, resis-
tances are taken to be constants because the influence of temperature changes on the resis-
tors has been neglected. For the asynchronous machine model with losses, the temperature-
dependent characteristic of the resistor must be considered. Thus the ambient temperature
is supposed to be 25◦C. The values of the stator and rotor leakage inductance are assumed
to be the same by providing the same leakage coefficients σ. The inductive related param-
eters of the asynchronous machine model in Dymola are main field inductance Lm, stator
inductance Ls and rotor inductance Lr which can be defined as equations (3.21) - (3.23):

1− σ =
L2
m

Ls · Lr
(3.21)

Ls = (1 + σs) · Lm (3.22)

Lr = (1 + σr) · Lm (3.23)

where both σs and σr are equal to σ. The inductive impedances can be computed as
shown in the following equations:

Xs = 2πfLs (3.24)

Xr = 2πfLr (3.25)

All the parameters are summarized in table 3.6.

Table 3.6: Intrinsic parameters of asynchronous machine

Name Symbol Value

stator resistance [Ω] Rs 1. 9693

rotor resistance [Ω] Rr 1. 8081

leakage inductance coefficient σ 0. 0736

main field inductance [mH] Lm 160. 26

stator inductance [mH] Ls 172. 06

rotor inductance [mH] Lr 172. 06

the number of pole pairs p 2

rotor inertia [kg ·m2] J 0. 01654

The main task of this section is to obtain the power losses of the actual machine in the
laboratory, losses of the input power, the stator winding, the rotor cage, the stator core,

3.3. Parameters Identification of the Thermal Model 39

the friction and windage, under conditions of the no-load and load respectively. Another
issue that is addressed in this chapter is the pre-given intrinsic parameters of the models.
These parameters are obtained from a student’s work which is described in the paper [72].
However, these parameters defined in the model do not coincide with the conventional
definitions. As such, the given parameters in [72] should be transformed and calculated
to obtain the proper ones. The thermal model can be designed and connected to a good
performance model of the asynchronous machine.

3.3 Parameters Identification of the Thermal Model

To simulate the system properly, the thermal parameters of thermal capacitances and
conductances must be indentified. These factors affect the end temperature and the rise
trend of the temperature curves. Thermal conductances are easily obtained through cal-
culation while the thermal capacitances are identified by GenOpt [7] using the best-fitting
curve method.

3.3.1 Thermal Conductances

To determine the thermal conductances in the model, a load test lasting for four hours is
conducted and the temperatures of the stator core, the stator winding and the rotor cage are
measured in section 3.1.2. The measurements are obtained using PT 1000 temperature sen-
sor, which connected to an instrument transformer. The equation between the temperature
and the voltage signal given by transformer are deduced through calibration of the sensor
and the DAQ board provided by National Instruments. From equations (3.15) - (3.17) and
the results obtained in section 3.1.2, the thermal conductances can be calculated.

Table 3.7: Thermal conductances

Name Value

Gsc [W/K] 14. 0956

Gsw [W/K] 11. 6381

Grc [W/K] 2. 7395

3.3.2 Thermal Capacitances

The thermal capacitances cannot be computed directly from the equations (3.12) (3.13)
(3.14). As a result, it is possible to utilize optimization methods to determine best-fit ther-
mal capacitances using GenOpt.

40 Chapter 3. Parameter Identification of the Model

3.3.2.1 Interface between Genopt and Dymola

GenOpt is designed for obtaining the values of user-selected parameters that help to
minimize an objective function, leading to the best operation of a given system. The objec-
tive function is calculated using an external simulation program that is iteratively called by
GenOpt, such as Dymola. It can also identify unknown parameters in a data-fitting process,
which helps to perform the task. The optimization flowchart is shown in the figure 3.9. The
purpose of the red block is to obtain the value of the minimized objective function.

Figure 3.9: Flowchart of running GenOpt with Dymola [8]

In order that Genopt works properly, four input files are required:

• Initialization file, specifications of all files’ names and locations

• Configuration file, the error indicator and the start command

• Command file, desired identification parameter name, the varies interval of them
and the optimization algorithm

• Input template file, names of the identification parameters

These input files are all written by ASCII in txt files. The files can be referred to Ap-
pendix A.1 A.2 A.3 A.4. All the file names and their corresponding locations in GenOpt
are defined in "initialization.txt" and "configuration.txt". By opening this initialization file
and starting GenOpt, it automatically calls the other files and the simulation program.

After that, GenOpt will call ScheduleTemplate.txt, which is the input template file. The
names of the identification parameters as specified by the entry "Name" in the optimization

3.3. Parameters Identification of the Thermal Model 41

command file are written in the input template file in the form of %variableName%, which
can be replaced by the numerical value of the corresponding variable in each iteration.
Meanwhile, the resulting file contents are written as the simulation input file.

Then GenOpt places the initial values of the optimized parameters defined in com-
mend.txt into the input template file and calls the program Dymola. After running Dymola,
it writes the value of the objective function into the file result.txt. GenOpt changes the
parameters respectively according to the increase or reduction of the value of the objec-
tive function. The file "commend.txt" also defines the following parameters used in the
optimization process:

• Ini, initial value of parameters

• Min, lower bound of parameters

• Max, upper bound of parameters

• Step, step size of optimization process

GenOpt will stop the optimization process once it finds the minimized objective function.
There are also some constrains which are pre-set in "OptimizationSettings" of the file "com-
mend.tex". If these constrains are satisfied, GenOpt would also stop.

• MaxIte, maximum number of iteration

• MaxEqualResults, the number of times that the cost function value can be equal to
a value that has previously been obtained before GenOpt terminates

Algorithm gives the basic setting of the optimization algorithm. GenOpt supplies different
algorithms to satisfy different problems. All the algorithms are described in details in the
paper [73].

The objective function in this problem are defined as the sum of the root mean square
error of the three temperature curves. The task of GenOpt is to find the most suitable
thermal capacitances to obtain the best-fit curves of temperature with respect to the value of
the minimized objective function. Figure 3.10 shows how to obtain this objective function
value using Dymola. The measured temperature data are stored in TimeTable and are
imported from a "txt" file. The simulated temperature curves are directly obtained from
the thermal model which should be changed to ◦C at first. A Feedback module is used
to obtain the error between the simulated temperature and the measured one. At each
iteration, Dymola will save the sum of RMS error as a value of the objective function. As
in figure 3.11, "multiSum.y" is the defined value of the objective function, which is then
written into the result file.

42 Chapter 3. Parameter Identification of the Model

Figure 3.10: Thermal model in Dymola with objective function

Figure 3.11: Code in Dymola of writing objective function to result.txt

3.3.2.2 Optimization Result

Due to the aging of machine and the approximation of leakage inductances, all the
simulated end temperatures are higher than the measured ones, which are determined by
thermal conductances. Therefore, the optimized values of thermal conductances shown in
table 3.8 enable more accurate values of end temperatures to be obtained.

With the optimization of GenOpt, the values of the thermal capacitance are obtained in
table 3.9:

3.4 Parameters Identification Related Experiments

Both the parameters of the asynchronous machine and the thermal model have been
identified in previous sections. However, whether the parameters of the physical model
can perform well must be validated. The simulation of the algorithm in MATLAB and the

3.4. Parameters Identification Related Experiments 43

Table 3.8: Thermal conductances

Name Value

Gsc [W/K] 16. 1

Gsw [W/K] 14. 3

Grc [W/K] 3. 75

Table 3.9: Thermal capacitances

Name Value

Csc [J/K] 10580

Csw [J/K] 1008

Crc [J/K] 1480

implementation of the algorithm in WSN largely depend on the accuracy of the parameters.

3.4.1 Validation of the Asynchronous Machine Model

The validity of the machine model must first be verified. Reference [59] lists several
methods to validate the presented load models, which all rely on the output mechanical
power. Generally, the torque-speed (or torque-slip) characteristics of a three phase asyn-
chronous machine can also indicate the performance at any rotor operating speed according
to the paper [74]. Therefore, the four different characteristic curves of the measurement and
the simulation results shown in figure 3.12 give the validation of the asynchronous machine
under various load torques.

0 1000 2000 3000 4000
2

4

6

8
mechanical power−current

Pmech/W

cu
rr

en
t/A

simulated
measured

0 1000 2000 3000 4000
1400

1450

1500
speed−mechanical power

Pmech/W

sp
ee

d/
rp

m

simulated
measured

0 1000 2000 3000 4000
0

0.5

1
mechanical power−efficiency

Pmech/W

po
w

er
 e

ff
ic

ie
nc

y

simulated
measured

1400 1450 1500
0

10

20

30
speed−torque

speed/rpm

to
rq

ue
/N

.m

simulated
measured

Figure 3.12: Measured and simulated characteristic curves of the asynchronous machine

The first three characteristic curves in figure 3.12 reflect good coincidence of the simu-

44 Chapter 3. Parameter Identification of the Model

lated curve and measured one. For the fourth curve, two issues need to be analyzed. One
is that value of the simulated input current is a little bit higher than the measured one by
nearly 0.5 A, which may lead to a temperature rise of the thermal model. Another is that
the first sampled data is not correct, because a decrease in current with increasing load is
physically impossible. It may be caused by uncertain measurement error.

One of the reasons that leads to the differences may be the aging of the asynchronous
machine. It’s reasonable that the input current reduces with the corresponding load. The
error might be also explained by the approximation of two leakage inductances in equa-
tions (3.22) and (3.23), which are essentially not same. Another reason is the installation
of PT1000 on the rotor cage, which influences the flux density and generates excessive
losses [75]. As a result, the measured value of the mechanical power is smaller than the
rated value.

3.4.2 Validation of the Complete Model

The thermal model plays an important role in the monitoring of temperatures in ma-
chines. To evaluate the thermal model, two tests should be performed. In fact, the aim of
the S1 (continues full-load) test is to receive the proper thermal conductances. Neverthe-
less, it can be also seen as an indicator of the quantity of the thermal model. The error rate
is calculated as the numerical evaluation of the thermal model. The S6 (six minutes no-load
followed by four minutes full-load) test aims to confirm that the thermal model could also
represent of the temperature of asynchronous machine under other load conditions.

3.4.2.1 Continuous Full-load Test

S1 test is performed for about three to four hours. The heat exchange among the air and
the components of the machine stabilized after about three hours. Due to the temperature
rise, the resistances inside the machine will also increase. This leads to a reduction of
the input current and output mechanical power. However, the model of the machine in
Dymola does not take into account this change in input current. That is why the thermal
conductances should be corrected in order to make the ending temperature lower. As in
figure 3.13, the simulated temperature of each part fits well with the measured one. The
two curves are nearly the same except for some small periods which reflect only about 1K

deviation. The error rates are calculated according to equation (3.26), and summarized in
table 3.11.

Terr =
|Tsim − Tmea|

Tmea
· 100% (3.26)

3.4. Parameters Identification Related Experiments 45

where
Tsim is the simulated temperature,
Tmea is the measured temperature,
Terr is the temperature error rate with respect to time.

0 5000 10000 15000
20

40

60

80

100

time [s]

st
at

ot
 w

in
di

ng
 T

 [
 °C

]

simulated
measured

(a) Simulated and measured temperatures of
the stator winding in S1 test

0 5000 10000 15000
20

40

60

80

100

120

140

time [s]
ro

to
r

ca
ge

 T
 [

°C
]

simulated
measured

(b) Simulated and measured temperatures of
the rotor cage in S1 test

0 5000 10000 15000
20

30

40

50

60

70

80

time [s]

st
at

or
 c

or
e

T
 [

°C
]

simulated
measured

(c) Simulated and measured temperatures of
the stator core in S1 test

Figure 3.13: Simulated and measured temperatures of S1 test

Table 3.10: Temperature error rate under S1

Temperature Max. Terr rate Average Terr rate

Tsw 10. 87% 0.33%
Tsc 11. 36% 0.58%
Trc 5. 31% 0.71%

From table 3.11, it is shown that the maximum error rate is a little bit higher and the
average error rate is relatively smaller. This means that the whole temperature curve fits
well during the entire running process. The remaining error may be due to the unstable
measurement.

46 Chapter 3. Parameter Identification of the Model

3.4.2.2 Intermittent Load Test

To check whether the model is suitable for all working conditions, an intermittent-load
test S6 is performed. The condition of intermittent load test in the thesis is similar to S6
which is defined as 6 minutes with no-load and followed by approximate 4 minutes with
full-load for about three hours. No-load condition means that there is no load from the load
machine, but the friction load still exists. As a result, S6 condition which is used in the
thesis is always similar to the real S6 condition above. Due to the restrict of the test bench,
the load machine has to be manually switched on and off. It is the reason that why the
measured temperature cannot be synchronized quite well with the simulated temperature.

Although the simulation result in the S1 test is satisfactory, the three curves do not fit
well here. As mentioned in section 3.4.1, the input current tends to be lower as the asyn-
chronous machine runs steadily. However, the model does not take this input current into
account. When the asynchronous machine is working under the S6 test, there are always
excessive losses from the rotor cage (about 55 Watt), which contributes to a higher tem-
perature on the rotor cage. The simulated and measured temperatures of the stator winding
and the stator core are much more coincident as in figure 3.14. However, the significant
deviation of the rotor cage temperature results from the same reasons as described in sec-
tion 3.4.1.

Table 3.11: Temperature error rate under S6

Temperature Max. Terr rate Average Terr rate

Tsw 12. 55% 2.33%
Tsc 18. 75% 3.57%
Trc 3. 31% 1.61%

This section compares the temperature curves using identified parameters and analyses
the results with respect to the S1 and S6 tests. In the S1 test the numerical indicators are
given, which are maximum errors and average errors between simulated and measured tem-
perature. The load switching during simulation can be programmed, but the load switching
on the test bench has to be manually turning on and off. As a result, there is time delay
when switching test load on the bench. It is difficult to synchronize the switching moment,
thus there is no numerical analysis between the simulated and measured temperature under
S6 condition.

3.5 Conclusions

This chapter aims to determine the parameters of the asynchronous machine and thermal
model. The thermal conductances are easily obtained with the method introduced in section

3.5. Conclusions 47

0 2000 4000 6000 8000 10000
20

40

60

80

100

time [s]

st
at

or
 w

in
di

ng
 T

 [
°C

]

simulated
measured

(a) Simulated and measured temperatures of
the stator winding in S6 test

0 2000 4000 6000 8000 10000
20

40

60

80

100

time [s]

ro
to

r
ca

ge
 T

 [
°C

]

simulated
measured

(b) Simulated and measured temperatures of
the rotor cage in S6 test

0 2000 4000 6000 8000 10000
20

30

40

50

60

70

time [s]

st
at

or
 c

or
e

T
 [

°C
]

simulated
measured

(c) Simulated and measured temperatures of
the stator core in S6 test

Figure 3.14: Simulated and measured temperatures of S6 test with correction of thermal
conductances

3.1.2. The thermal capacitances of the model is obtained by using GenOpt which is used
to get the best-fit values of the model. S1 and S6 test are performed to verify the thermal
conductances and the capacitances of the model, whose values can be referred to the table
3.8 and 3.9.

CHAPTER 4

TEMPERATURES ESTIMATION OF THE

ASYNCHRONOUS MACHINE

The mechanical, electrical and thermal behavior of the asynchronous machine can be
simulated quite well by using the complete simulation model in chapter 3. The temper-
atures of the stator winding, the rotor cage and the stator core can be simulate by the
simplified thermal model in figure 3.10. As a result, model-based method are used for
the algorithm development. KF and EKF estimation algorithm are developed to estimate
the temperatures of the stator winding, the rotor cage and the stator core. Both of the al-
gorithms are implemented in MATLAB/SIMULINK. The estimation temperatures of the
algorithm can be compared with the simulation temperatures of the model in figure 3.10.
These two algorithms are described in detail in the following sections.

4.1 Temperatures Estimation of the Asynchronous Machine us-
ing a KF

KF algorithm requires a state-space model of the whole system which consists of the
electrical and mechanical models of the asynchronous machine in the reference frame, and
also the simplified thermal model of the machine. A 4th-order KF algorithm is proposed
for temperatures estimation of the machine.

4.1.1 Thermal Model of the Asynchronous Machine using a KF Algorithm

The thermal model of the asynchronous machine is constructed based on the thermal
equivalent network established in [7]. The simplified thermal model is described as the
equations (4.1) (4.2) (4.3).

4.1.1.1 Introduction of Thermal Parameters

The thermal network theory has been illustrated in section 2.2.1. Thermal capacity is
defined in section 2.2.2. The thermal capacity is generally related to the conditions like

50 Chapter 4. Temperatures Estimation of the Asynchronous Machine

types of the material or pressure. Nevertheless, it can be treated as a constant in solving
many technical problems as it is in this thesis.

The thermal resistance is represented as the ability that resists the heat flow between two
different temperatures. It is the reciprocal of conductance G which is described in section
2.2.2.

4.1.1.2 Lumped Parameter Thermal Network

An equivalent R-C circuit which is similar to the electrical network can be developed to
define the heat-transfer equation. The Dymola thermal model of the machine in figure 2.4
is constructed based on the thermal equivalent network established in [7]. The heat of the
machine is generated from the losses of the power, which consists the losses of the stator
winding, losses of the stator core, losses of the rotor cage, losses of the rotor core, friction
losses and stray load losses [61]. There are almost no rotor core losses due to the low
frequency of the rotor field, so the losses of rotor core is taken as zero. Since friction losses
are correlated to frequency respectively speed, they can be treated as small additional term
to the stator core losses. The stray load losses depend on the square of the stator current
and can thus be included in the stator winding term. The simplified thermal model in figure
2.3 can be written as following equations:

dTsw
dt

=
−GswTsw
Csw

+
GswTsc
Csw

+
Psw
Csw

(4.1)

dTrc
dt

=
−GrcTrc
Crc

+
GrcTsc
Crc

+
Prc
Crc

(4.2)

dTsc
dt

=
−GswTsw

Csc
+
GrcTrc
Csc

+
GscTc
Csc

+
(Gsw +Grc +Gsc)Tsc

Csc
+
Psc
Csc

(4.3)

where Tsw, Trc, Tsc and Tc are temperatures above ambient of the stator winding, rotor
cage, the stator core and coolant air respectively. Gsw, Grc and Gsc are thermal con-
ductances. Csw, Crc and Csc are thermal capacitances. Psw, Prc and Psc are the losses
respective to the stator winding, the rotor cage and the stator core.

In the simplified thermal model, Psw, Prc are ohmic losses, and Psc is the frequency-
dependent iron losses, Rs, Rr are the DC resistance in ohms, between any two line termi-
nals, IL is the root mean square value of line current, ω is the mechanical angular frequency,
kiron is the iron loss constant. The losses can be represented as:

Psw(t) = I2
LRs(Tsw(t)) (4.4)

Psc(t) = kironω
2(t) (4.5)

As the currents of the rotor cage are not measured or estimated by a simple method, the

4.1. Temperatures Estimation of the Asynchronous Machine using a KF 51

rotor cage losses can be calculated as described by IEEE Power Engineering Society [76].

Prc(t) = (Pin(t)− Psw(t)− Psc(t)) · s(t) (4.6)

Pin(t) = 3ULIL cos(φ) (4.7)

s(t) =
ws − wr(t)

ws
· 100% (4.8)

where Pin is the input power of the machine, UL is the root mean square value of line
voltage, ωs is the synchronous speed, ωr is the rotor speed, s is the slip of the machine.
The stator frequency is stated as constant which has been described in section 2.1.2.2.

The temperatures of the stator winding and rotor cage will increase largely. Normally
it will be much higher than the reference temperature. As a result, the actual resistance
can be larger than the reference resistance by 40% . The resistances will increase as the
machine is running. So the resistance is modeled as temperature dependent according to
equation (2.4). All in all, the stator winding losses can be calculated much more accurately.
Rs can be replaced by the equation (2.4).

The state-space equations of the system can be acquired by calculating the losses Psw,
Prc, Psc defined in equations (4.4) - (4.5), and importing them into equations (4.1) - (4.3).
By summarizing the previous equations, the system can be rewritten as a 4th-order linear
system in the state space model form:

x′(t) = Ax(t) + Bu(t) (4.9)

z(t) = Cx(t) + Du(t) (4.10)

where:
x = [Tsw, Trc, Tsc, Tc]

T (4.11)

z = cTc (4.12)

u = [Psw, Prc, Psc, 0]T (4.13)

A =

−Gsw
Csw

0 Gsw
Csw

0

0 −Grc
Crc

Grc
Crc

0
Gsw
Csc

Grc
Csc

−(Gsw+Grc+Gsc)
Csc

Gsc
Csc

0 0 0 0

 (4.14)

52 Chapter 4. Temperatures Estimation of the Asynchronous Machine

B =

1

Csw
0 0 0

0 1
Crc

0 0

0 0 1
Csc

0

0 0 0 0

 (4.15)

c = 1 (4.16)

D = 0 (4.17)

In the state equations, x(t) is the state vector, u(t) is the control vector, A is the system
transition matrix which is a constant matrix, B is the input matrix which is also constant
matrix. In the measurement equation, C is the output matrix which is a constant in this
system, D is the feedthrough matrix which is zero here. c is a constant. The coolant air
temperature Tc is considered a constant due to the slow variation with time.

4.1.2 The Implementation of KF Algorithm

The KF is a set of mathematical equations that provides an efficient computational (re-
cursive) means to estimate the state of a process, in a way that minimizes the mean of the
squared error [77]. In general, both the process noise and the measurement noise should be
taken into account in the system model and measurement model.

x(k) = Ax(k − 1) + Bu(k − 1) + w(k − 1) (4.18)

z(k) = Hx(k) + v(k) (4.19)

It is necessary to assume that noise of process w(k) and measurement v(k) are indepen-
dent of each other, random white Gaussian noise with zero mean. Their variance can be
described by covariance matrix Q and R respectively. They can be defined as

E[w(i)wT (j)] = Qδ(i, j) (4.20)

E[v(i)vT (j)] = Rδ(i, j) (4.21)

E[w(i)vT (j)] = 0 (4.22)

δ(i, j) is a Dirac Delta function variation

δ(i, j) =

1 i = j

0 i 6= j
(4.23)

where Q is a 4× 4 positive semi-defined constant matrix and R is a constant.

4.1. Temperatures Estimation of the Asynchronous Machine using a KF 53

4.1.2.1 The Discretization of the KF Model

The 4th-order Kalman filter model is a continuous time system which can not be pro-
cessed by the computer. Euler’s approximation is used to discretize the model, so that the
sampled data can be used in the KF algorithm. According to the definition of derivative,
equation (4.18) can be rewritten when the sampling time τ is small enough as:

x(k)− x(k − 1)

τ
= Ax(k − 1) + Bu(k − 1) (4.24)

By simplifying the equation above, the new equation can be expressed as

x(k) = (E + τA)x(k − 1) + τBu(k − 1) (4.25)

As A and B are the matrix, the discrete model is

x(k) = Adx(k − 1) + Bdu(k − 1) (4.26)

where Ad = E + τA and Bd = τB, E is 4× 4 unit matrix, Cd is equal to C.

Ad =

1− Gswτ

Csw
0 Gswτ

Csw
0

0 1− Grcτ
Crc

Grcτ
Crc

0
Gswτ
Csc

Grcτ
Csc

1− (Gsw+Grc+Gsc)τ
Csc

Gscτ
Csc

0 0 0 1

 (4.27)

Bd =

τ
Csw

0 0 0

0 τ
Crc

0 0

0 0 τ
Csc

0

0 0 0 0

 (4.28)

4.1.2.2 The Initialization of the KF Model

As the discrete KF is a recursive algorithm starting from sampling time t = 0, the
starting values of the state vector is

x̂(0) = E [x(0)] (4.29)

where the symbolˆindicates estimated value of a state vector. var is variance and a 4x4
covariance matrix is a diagonal matrix as below:

P(0) = var [x(0)] (4.30)

54 Chapter 4. Temperatures Estimation of the Asynchronous Machine

4.1.2.3 The Prediction Stage of the KF Model

The KF estimates a process by using a feedback control. The filter estimates the process
state at some time and then obtains feedback in the form of (noisy) measurements [77]. As
such, the equations of the KF can be divided into two groups, prediction equations and
correction equations.

The equations of prediction stage shown in (4.31) and (4.32) are responsible for pro-
jecting forward the current state and error covariance estimates to obtain a prior estimates
for the next time step. x̂−(k) is the predicted value. Equation (4.31) is used for updating
the state vector from previous sampling time k − 1 to current time k. The equation (4.32)
is state of updating error covariance matrix.

x̂−(k) = Ax̂(k − 1) + Bu(k − 1) (4.31)

P̂
−

(k) = AP(k − 1)AT + Q (4.32)

4.1.2.4 The Correction Stage of the KF Model

The equations of correction stage are responsible for the feedback-i.e. for incorporating
a new measurement into a priori estimation to obtain an improved a posteriori estima-
tion [77].

K(k) = P−(k)HT (k)(H(k)P−(k)HT (k) + R)−1 (4.33)

x̂(k) = x̂−(k) + K(k)(z(k)−Hx̂−(k)) (4.34)

P(k + 1) = (I−K(k)H(k))P−(k) (4.35)

where K(k) is Kalman gain, H(k) is a constant measurement matrix:

H = [0, 0, 0, 1] (4.36)

4.2 Temperatures Estimation of the Asynchronous Machine us-
ing an EKF

The state-space of the combined model in section 4.2.3 is a non-linear system, so the
EKF is used for the estimation of temperatures. This section will describe the implemen-
tation of the EKF algorithm in details.

4.2.1 The State-Space Model of the Asynchronous Machines

The asynchronous machine is modeled based on the following hypotheses [13]:

4.2. Temperatures Estimation of the Asynchronous Machine using an EKF 55

• the space harmonics are ignored. Supposing that the three-phase windings are dis-
placed in symmetrical design with a space angle difference of 120 degrees elect.

• the produced magnetomotive force (MMFs) is distributed sinusoidally along the air-
gap.

• ignoring magnetic saturation. Self-inductances and mutual inductances of each wind-
ing are constant.

• the hysteresis of the stator core is ignored.

Park’s Transformation is used to develop the electrical model of the three-phase asyn-
chronous machine. No matter the rotor of asynchronous machine is wound rotor type or
squirrel cage type, assuming it is a balanced symmetrical system, the voltage equations in
a dq-axis frame rotating synchronously in arbitrary reference frame are often written as the
equations (4.37) (4.38) (4.39) (4.40) below [78]:

vqs = Rsiqs + (ωs − ωframe)λds +
dλqs
dt

(4.37)

vds = Rsids − (ωs − ωframe)λqs +
dλds
dt

(4.38)

vqr = Rriqr + (ωs − pnω − ωframe)λdr +
dλqr
dt

(4.39)

vdr = Rridr − (ωs − pnω − ωframe)λqr +
dλdr
dt

(4.40)

where
λqs = Lsiqs + Lmiqr (4.41)

λds = Lsids + Lmidr (4.42)

λqr = Lriqr + Lmiqs (4.43)

λdr = Lridr + Lmids (4.44)

where vqs, vds are dq-axis stator voltages. vqr, vdr are dq-axis rotor voltages. iqs, ids
are dq-axis stator currents. iqr, idr are dq-axis rotor currents. Rs, Rr are stator and rotor
resistance. ωs is the stator frequency, ωframe is the reference frame frequency, ω is the
mechanical angular velocity, ωr is the electrical angular velocity. λqs, λds, λqr and λdr are
stator and rotor flux linkages in dq-axis. Ls, Lr are stator and rotor inductances and Lm is
mutual inductance.

In order to reduce the calculation, the twin-axis reference frame is fixed on the stator,
which is a stationary reference frame. Three-phase voltage and current can be transformed

56 Chapter 4. Temperatures Estimation of the Asynchronous Machine

to αβ-axis by the Clarke transformation, as defined in the equations (4.45) (4.46).

[
iαs(t)

iβs(t)

]
=

2

3

[
1 −1

2 −1
2

0
√

3
2 −

√
3

2

]
ias(t)

ibs(t)

ics(t)

 (4.45)

[
vαs(t)

vβs(t)

]
=

2

3

[
1 −1

2 −1
2

0
√

3
2 −

√
3

2

]
vas(t)

vbs(t)

vcs(t)

 (4.46)

Stator current iαs, iβs, rotor current iαr, iβr, stator voltage vαs, vβs in twin-axis stator
reference frame is selected. As a result, ωframe is zero. ias, ibs and ics are the three phase
stator current. vas, vbs and vcs are the three phase stator voltage. The value of ωs is zero,
and δ = LsLr − L2

m, which can be referred to [79]. The final equations can be rearranged
into following equations:

δ
diαs
dt

= −RsLriαs + L2
mpnωiβs +RrLmiαr + LrLmpnωiβr + Lrvαs (4.47)

δ
diβs
dt

= −RsLriβs − L2
mpnωiαs +RrLmiβr + LrLmpnωiβr + Lrvβs (4.48)

δ
diαr
dt

= RsLmiαs − LsLmpnωiβs −RrLsiαr − LsLrpnωiβr − Lmvαs (4.49)

δ
diβr
dt

= LsLmpnωiαs +RsLmiβs + LsLrpnωiαr −RrLsiβr − Lmvβs (4.50)

The general mechanical model of the system comes from the torque balance equation in
[79] which can be expressed as equation (4.51):

Te = Frω + J
dω

dt
+ Tl (4.51)

where Te is the electromagnetic torque and Tl is the load torque. Fr is the friction constant
and J is total inertia. The total electromagnetic torque of the asynchronous machine Te can
be expressed by the stator and rotor current component in stator twin-axis reference frame:

Te = pnLm(iβsiαr − iαsiβr) (4.52)

where pn is the number of pole pairs. From the equations (4.51) (4.52), the state equation

4.2. Temperatures Estimation of the Asynchronous Machine using an EKF 57

of the rotor speed is shown below:

dω

dt
=
pnLm
J

(iβsiαr − iαsiβr)−
Frω

J
− Tl
J

(4.53)

4.2.2 The Thermal Model of the Asynchronous Machines using EKF

Thermal behavior of the asynchronous machine is a complex multi-disciplinary problem
[80], which largely depends on the structure, materials and the detailed geometric size of
the asynchronous machine. The most common method is the network approach derived
from energy balance equations. The thermal system and the electrical system are modeled
analogously, which has been described in section 2.2.1.

In the simplified thermal model, copper losses are defined in the equations (4.54) (4.55).
Psw, Prc are ohmic losses in stator winding and rotor cage. Rs, Rr are the DC resistance,
between any two line terminals. They can be calculated by equation (2.4).

Psw =
3

2
Rs(i

2
qs + i2ds) (4.54)

Prc =
3

2
Rr(i

2
qr + i2dr) (4.55)

The core losses in the stator are dependent on the numbers of iron sheets and the mag-
netic flux and frequency of the magnetic field, which can be separated into hysteresis losses
and eddy losses. In order to simplify the model, the hysteresis losses are neglected to zero.
Psc can be modeled as a frequency-dependent iron losses in stator core, which is shown in
equation (4.5).

4.2.3 The Combined Model of the System

The model of the asynchronous machine and the thermal model have been introduced in
the previous sections. There should be some ways to combine these two separate models.
In order to combine the model of the asynchronous machine and the thermal model into
a series of integrated state-space equations, the temperature dependent characteristics of
the resistance is used, which is defined in equation (2.4). The resistance shall vary under
different temperatures. As a result, the resistance of the stator and the rotor should be
calculated based on different temperatures.

Both Rs and Rr can be replaced the definition equation (2.4). Temperature coefficient
of the stator winding αs is usually the value of copper, and the temperature coefficient the
rotor cage αr is usually the value aluminum.

In the state-space equations, x(t) is the state vector, u(t) is the control vector, A(x(t))

is the system matrix which is variable with time, B is the input matrix which is constant
matrix. In the measurement equations, C(t) is the output matrix, D is the feedthrough

58 Chapter 4. Temperatures Estimation of the Asynchronous Machine

matrix which is zero here. The load torque Tl is considered constant due to the slow
variation with time.

From the equations (4.47) - (4.50), (4.53), (4.1) - (4.3), the final state-space of the
system can be acquired by substituting Psw, Prc, Psc expressed in (4.5) (4.54) and (4.55)
into (4.1) - (4.3), and substituting Rs, Rr into equation (4.47) - (4.50), (4.1) - (4.3). By
summarizing the previous equations, The system can be rewritten as a 9th-order nonlinear
continuous system in the state-space model form:

x′(t) = A(x(t))x(t) + Bu(t) (4.56)

z(t) = Cx(t) + Du(t) (4.57)

where:
x(t) = [iαs, iβs, iαr, iβr, ω, Tl, Tsw, Trc, Tsc]

T (4.58)

z(t) = [iαs, iβs]
T (4.59)

u(t) = [vαs, vβs, Tc]
T (4.60)

A(x(t)) =

−a(t)Lr
δ

L2
mpnω(t)
δ

b(t)Lm
δ

LrLmpnω(t)
δ 0 0 0 0 0

−L2
mpnω(t)
δ

−a(t)Lr
δ

−LrLmpnω(t)
δ

b(t)Lmpnω(t)
δ 0 0 0 0 0

a(t)Lm
δ

−LsLmpnω(t)
δ

−b(t)Ls
δ

−LsLrpnω(t)
δ 0 0 0 0 0

LsLmpnω(t)
δ

a(t)Lm
δ

LsLrpnω(t)
δ

−b(t)Ls
δ 0 0 0 0 0

−pnLmiβr(t)
J

pnLmiαr(t)
J 0 0 −Fr

J
−1
J 0 0 0

0 0 0 0 0 0 0 0 0

3a(t)i2αs(t)
2Csw

3b(t)i2βs(t)

2Csw
0 0 0 0 Gsw

Csw
0 Gsw

Csw

0 0 3b(t)i2αr(t)
2Crc

3b(t)i2αr(t)
2Crc

0 0 0 −Grc
Crc

Grc
Crc

0 0 0 0 a95 0 Gsw
Csc

Grc
Csc

a99

(4.61)

4.2. Temperatures Estimation of the Asynchronous Machine using an EKF 59

B =

Lr
δ 0 0

0 Lr
δ 0

−Lm
δ 0 0

0 −Lr
δ 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 Gsc
δ

(4.62)

C =

[
1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

]
(4.63)

δ = LsLr − L2
m (4.64)

a(t) = (Rs(1 + αsTsw(t))) (4.65)

b(t) = (Rr(1 + αrTrc(t))) (4.66)

a95 =
kironpnω(t)

4Csc
(4.67)

a99 =
Gsw +Grc +Gsc

Csc
(4.68)

4.2.4 The Implementation of EKF Algorithm

The extended Kalman filter is a nonlinear version of the Kalman filter which linearizes
about an estimation of the current mean and covariance. In general, both the process noise
and the measurement noise should be taken into account in the nonlinear system model and
measurement model.

x(k) = f(x(k − 1), u(k − 1)) + w(k − 1) (4.69)

z(k) = h(x(k)) + v(k) (4.70)

It is necessary to assume that the processw(k) and the measurement noise v(k) are random
white Gaussian noise with zero mean and their variance can be described by covariance
matrix Q and R respectively. The definitions of them can be referred to the section 4.1.2.
Q of EKF is a 9x9 positive semi-defined matrix and R is 2x2 positive semi-defined matrix.
Both of them are constant matrix. The state space of the system is nonlinear.

60 Chapter 4. Temperatures Estimation of the Asynchronous Machine

4.2.4.1 The Discretization of the EKF Model

The discretization process has been described in the equations (4.24) (4.25) (4.26).
The discrete model is below:

x(k) = Adx(k − 1) + Bdu(k − 1) (4.71)

where Ad = E + τA and Bd = τB, E is 9x9 unit matrix, Cd is equal to C.

4.2.4.2 The Linearization of the EKF Model

The linearization of the non-linear model plays crucial role in the the implementation of
EKF. The linearization is based on the assumption, that the state variables are constant in
one step of the computation. The linearized state equation can be rewritten in a new form:

∂f

∂x
=
∂Ad(k)x(k − 1) + Bd(k)u(k − 1)

∂x
(4.72)

And the output equation:
∂h
∂x

=
∂h(x(k − 1))

∂x
(4.73)

The Jacobians matrix F(k) is defined in equation (4.74), where the coefficients:

F(k) =

1− a(k)Lrτ
δ

L2
mpnω(k)τ

δ
b(k)Lmτ

δ
LrLmpnω(k)τ

δ f15 0 f17 f18 0
−L2

mpnω(k)τ
δ 1− a(k)Lrτ

δ
−LrLmpnω(k)τ

δ
b(k)Lmpnω(k)τ

δ f25 0 f27 f28 0
a(k)Lmτ

δ
−LsLmpnω(k)τ

δ 1− b(k)Lsτ
δ

−LsLrpnω(k)τ
δ f35 0 f37 f38 0

LsLmpnω(k)τ
δ

a(k)Lrτ
δ

LsLrpnω(k)τ
δ 1− b(k)Lsτ

δ f45 0 f47 f48 0
−pnLmiβr(k)τ

J
pnLmiαr(k)τ

J
pnLmiβs(k)τ

J
−pnLmiαs(k)τ

J f55 − τ
J 0 0 0

0 0 0 0 0 0 0 0 0

3a(k)i2αs(k)τ
Csw

3b(k)i2βs(k)τ

Csw
0 0 0 0 f77 0 Gswτ

Csw

0 0 3b(k)i2αr(k)τ
Crc

3b(k)i2βr(k)τ

Crc
0 0 0 f88

Grcτ
Crc

0 0 0 0 f95 0 Gswτ
Csc

Grcτ
Csc

f99

(4.74)

4.2. Temperatures Estimation of the Asynchronous Machine using an EKF 61

f15 =
L2
miβs(k) + LrLmiβr(k)τ

δ
, f17 = −RsαsLriαs(k)τ

δ

f18 =
RrαrLmiαr(k)τ

δ
, f25 = −Lm(Lmiαs(k) + Lriαr(k))τ

δ

f27 = −RsαsLriαs(k)τ

δ
, f28 =

RrαrLmiβr(k)τ

δ

f35 = −
LmLsiβs(k) + LsLriβr(k)τ

δ
, f37 =

RsαsLmiαs(k)τ

δ

f38 = −RrαrLsiαr(k)τ

δ
, f45 =

LmLsiαs(k) + LsLriαr(k))τ

δ

f47 =
RsαsLmiβs(k)τ

δ
, f48 = −

RrαrLsiβr(k)τ

δ

f55 = 1− Frτ

J
, f77 = 1 +

3(Rsαs(i
2
αs(k) + i2βs(k))−Gsw)τ

2Csw

f88 = 1 +
3(Rrαr(i

2
αr(k) + i2βr(k))−Grc)τ

2Crc

f95 =
kironpnω(k)τ

2Csc
, f99 = 1− (Gsw +Grc +Gsc)τ

Csc

4.2.4.3 The Initialization of the EKF Model

In general, the initialization of the EKF is the same as the description in section 4.1.2 of
KF. Both the process noise and the measurement noise should be taken into account in the
system model and measurement model. And a 9 × 9 covariance matrix P(0) is a diagonal
matrix as below:

P(0) = var [x(0)] (4.75)

4.2.4.4 The Prediction Stage of the EKF Model

The EKF estimates a process by using a feedback control. The filter estimates the pro-
cess state at some time and then obtains feedback in the form of (noisy) measurements [77].
As such, the equations of the Kalman filter can be divided into two groups: prediction
equations and correction equations. The prediction stage equations of EKF are shown in
equations (4.76) and (4.77). Equation (4.76) is used for updating the state vector from pre-
vious sampling time k-1 to current time k. The equation (4.77) is state of updating error
covariance matrix.

x̂−(k) = f(x̂(k − 1), u(k − 1), 0) (4.76)

P̂
−

(k) = F(k)P(k − 1)FT (k) + Q (4.77)

62 Chapter 4. Temperatures Estimation of the Asynchronous Machine

where F (k) is the system process Jacobians at step k

F(k) =
∂f

∂x

∣∣∣∣
x=x̂(k)

(4.78)

4.2.4.5 The Correction stage of the EKF Model

K(k) = P−(k)HT (k)(H(k)P−(k)HT (k) + R)−1 (4.79)

x̂(k) = x̂−(k) + K(k)(z(k)− h(x̂−(k), 0)) (4.80)

P(k + 1) = (I−K(k)H(k))P−(k) (4.81)

where H(k) is the measurement Jacobians at step k

H(k) =
∂h

∂x

∣∣∣∣
x=x̂(k)

4.3 MiL-Test and Experimental Results

In this section, two MiL-tests are performed based on the Dymola block. One is the
EKF algorithm and the other is the KF algorithm, both of which are implemented in the
SIMULINK. The model and the simulation environment are described in section 4.3.1.

4.3.1 The MiL-Test of Combined Simulation Models

The model of a squirrel cage asynchronous machine with losses, with which couples the
simplified thermal model are built using Dymola. The squirrel cage asynchronous machine
with losses is explained in [61] [59] [81]. The model can simulate the transient electronic
and magnetic behavior as well as six parts of the machine losses. By connecting an internal
thermal port of the machine to the thermal port of the simplified thermal model, all the
losses can be passed to the thermal circuit. With the complete model, the temperatures
of the stator winding, the rotor cage and the stator core can be calculated. The simplified
thermal model is shown in figure 2.4 in section 2.2. Both the simulation model and the
experiment are explained in [7].

Based on the parameters of the asynchronous machine in [59] and the thermal parame-
ters in [7]. The complete model is built and tested, which is shown in figure 4.1:

4.3.2 The Test Results for KF Estimator

With the help of Dymola-Simulink interface, the complete model in Dymola can also
run in SIMULINK environment. How to configure and implement the Dymola model in

4.3. MiL-Test and Experimental Results 63

Figure 4.1: The complete model

SIMULINK is described in detail by Garron Fish [82]. The combined physical model
in figure 4.1 consists of two parts. One is the squirrel cage asynchronous machine with
losses, and the other is the simplified thermal model in figure 2.4. They are compiled as
DymolaBlock and connected with the Kalman filter algorithm which is implemented as an
S-Function with white gaussian noise inside in SIMULINK. In the complete simulation
model, all the state variables can be exported from DymolaBlock as either the inputs of
the algorithm or the compared simulation results. Losses of the stator winding, the rotor
cage and the stator core can be calculated from the rotor speed, three-phase stator currents
and voltages which are exported from DymolaBlock. The estimated temperatures from
KF can be compared with the temperatures simulated by DymolaBlock. The online KF
estimator in MATLAB/SIMULINK is shown in figure 4.2 below:

losses_calculation

In1

In2

In3

Out1

Out2

Out3

ToyFile5

measurement.mat

ToyFile1

estimation.mat

Tc

In1 Out1 S−Function

kf_sfunction

RateyTransition3

Measurement

In1

In2

In3

Out1

Out2

Out3

Goto1

Tsw

DymolaBlock

is1

is2

is3

vs1

vs2

vs3

I_rms

U_rms

w_r

Tc

Tsw

Trc

Tsc

Figure 4.2: KF estimator in SIMULINK

64 Chapter 4. Temperatures Estimation of the Asynchronous Machine

4.3.2.1 Three proposed Methods by KF Estimator

The parameters of the asynchronous machine and the thermal model are based on the
papers [7] [59]. The implemented KF algorithm is independent from the control strategy
and the running conditions of the machine. It can estimate the temperatures of the stator
winding, the rotor cage and the stator core in any operating condition. Full-load test and
intermittent-load test have performed in SIMULINK. Because 1 second sampling time is
enough for estimation. The sampling time τ set by RateTransition is 1 second. The ini-
tial error covariance matrix, process noise covariance matrix and measurement covariance
matrix are obtained by trial and error method:

P(0) = diag
[
20 20 20 20

]
Q = diag

[
0. 001 0. 001 0. 001 0. 1

]
R = 0. 1

From the state-space equations (4.1) - (4.3), losses of the thermal model largely deter-
mine the accuracy of the estimated temperature. In order to prove the assumption, three
different implementation methods are proposed. They are all developed based on the same
software function. The only difference is how to get the losses as the input. The first
method is to export power losses directly from the DymolaBlock to Kalman filter, which
is short as EPL. The second is to calculate the power losses based on the equations (4.4)
- (4.8), where the stator winding resistance Rsw is taken as a constant. It is short as CPL.
The third is to calculate the power losses which is the same as the second method, but the
difference is that for every simulation step, the estimated temperature of the stator wind-
ing Tsw would be sent back to lossescalculation block to compensate the ignored stator
winding resistance rise defined in equation 2.4. It is short as CPLC. For every method, S1
and S6 experiments are performed.

4.3.2.2 The Estimation Results by using EPL Method

The asynchronous machine model is modeled with losses which is described in [59].
The losses of the stator winding Psw, the rotor cage Prc and the stator core Psc are exported
from Dymola and sent to KF algorithm as the input. Both S1 and S6 are performed.
Apart from the deviation for every point, the normalized root-mean-square error (NRMSE)
eNRMS defined in equation (4.82) is used to evaluate the accuracy of the estimator. ymea

4.3. MiL-Test and Experimental Results 65

is the measured value and yest is the estimated value.

eNRMS =

√√√√ 1

N

N∑
i=0

(
ymea(i)− yest(i)

max(ymea)−min(ymea)

)2

(4.82)

Under S1, the maximal error of the stator winding is 0.15 K, of the rotor cage 0.01 K,
and of the stator core 0.03 K. The NRMSE of the stator winding is 0.18%, of the rotor
cage 0.03% and of the stator core 0.04%. The results under S1 and S6 are listed in tables
4.1 and 4.2:

Table 4.1: The maximum error and NRMSE of EPL under S1

Parameters Maximum Error NRMSE

Stator winding 0.15 K 0.18%
Rotor cage 0.01 K 0.03%
Stator core 0.03 K 0.04%

Table 4.2: The maximum error and NRMSE of EPL under S6

Parameters Maximum Error NRMSE

Stator winding 0.26 K 0.44%
Rotor cage 0.08 K 0.12%
Stator core 0.02 K 0.08%

4.3.2.3 The Estimation Results by using CPL Method

In the experiment, resistance of the stator winding is a constant. However in the real
situation, the resistance will increase as the temperature rises. That is the reason why the
estimated temperatures are much lower than the simulated temperatures.

Under S1, the maximal error of the stator winding is 9.5K, of the rotor cage 4.8K, and
of the stator core 5.2 K. The NRMSE of stator winding is 10.2%, of the rotor cage 5.5%
and of the stator core 6.5%. The results are listed in tables 4.3 and 4.4:

Table 4.3: The maximum error and NRMSE of CPL under S1

Parameters Maximum Error NRMSE

Stator winding 9.5 K 10.2%
Rotor cage 4.8 K 5.5%
Stator core 5.2 K 6.5%

66 Chapter 4. Temperatures Estimation of the Asynchronous Machine

Table 4.4: The maximum error and NRMSE of CPL under S6

Parameters Maximum Error NRMSE

Stator winding 10.2 K 9.3%
Rotor cage 6.3 K 5.4%
Stator core 5.7 K 6.1%

4.3.2.4 The Estimation Results by using CPLC Method

The comparison of simulated and estimated temperatures under S1 is shown in figure
4.3. The maximal error of the stator winding is 2.3 K, of the rotor cage 3.5 K, and of the
stator core 2 K. The NRMSE of stator winding is 2.1%, of the rotor cage 2.9% and the
stator core 2.2%. The results are listed in tables 4.5 and 4.6:

Table 4.5: The maximum error and NRMSE of CPLC under S1

Parameters Maximum Error NRMSE

Stator winding 2.3 K 2.1%
Rotor cage 3.5 K 2.9%
Stator core 2.0 K 2.2%

Table 4.6: The maximum error and NRMSE of CPLC under S6

Parameters Maximum Error NRMSE

Stator winding 2.0 K 1.3%
Rotor cage 0.8 K 1.4%
Stator core 1.8 K 1.1%

The comparison of simulated and estimated temperatures under S1 and S6 are shown in
figures 4.3 and 4.4.

4.3.3 The Test Results for EKF Estimator

The simulation model has been introduced in section 4.3.2. In the complete model,
the three-phase stator current as the measurement, three-phase voltage and the coolant
air temperature as the control vector can be exported from DymolaBlock as the input
of the EKF. Meanwhile the estimated temperatures from EKF can be compared with the
temperatures calculated by the simplified thermal model. The online EKF estimator in
MATLAB/SIMULINK is shown in figure 4.5 below:

4.3. MiL-Test and Experimental Results 67

0 1000 2000 3000 4000 5000 6000 7000
0

50

100

Time [sec]

T
he

 t
em

pe
ra

tu
re

 o
f

st

at
or

 w
in

gd
in

g
[°

C
]

0 1000 2000 3000 4000 5000 6000 7000
0

50

100

Time [sec]

T
he

 t
em

pe
ra

tu
re

 o
f

ro
to

r
ca

ge
 [

°C
]

0 1000 2000 3000 4000 5000 6000 7000
0

20

40

60

80

Time [sec]

T
he

 t
em

pe
ra

tu
re

 o
f

st
at

or
 c

or
e

[°
C

]

Simulation
Estimation

Simulation
Estimation

Simulation
Estimation

Figure 4.3: CPLC: Comparison of simulated and estimated temperatures under S1

0 1000 2000 3000 4000 5000 6000 7000
0

20

40

60

80

Time [sec]

T
he

 t
em

pe
ra

tu
re

 o
f

st

at
or

 w
in

gd
in

g
[°

C
]

Simulation

Estimation

0 1000 2000 3000 4000 5000 6000 7000
0

50

100

Time [sec]

T
he

 t
em

pe
ra

tu
re

 o
f

ro
to

r
ca

ge
 [

°C
]

Simulation

Estimation

0 1000 2000 3000 4000 5000 6000 7000
0

20

40

60

Time [sec]

T
he

 t
em

pe
ra

tu
re

 o
f

st
at

or
 c

or
e

[°
C

]

Simulation

Estimation

Figure 4.4: CPLC: Comparison of simulated and estimated temperatures under S6

The parameters of the asynchronous machine and the parameters of the thermal model
are listed in tables D.2, 3.8 and 3.9 respectively. The implemented EKF algorithm is inde-
pendent from the control strategy and the running conditions of the machine. It can estimate
the temperatures of the stator winding, the rotor cage and the stator core in any operating

68 Chapter 4. Temperatures Estimation of the Asynchronous Machine

TowFile2

measurement.mat

TowFile1

estimation.mat

S−Function

ekf_sfunction

RatewTransition3

RatewTransition2 RatewTransition1

Asynchronouswmachinewandwthermalwmodel
DymolaBlock

is1
is2
is3

vs1
vs2
vs3
Tc

Tsw
Trc
Tsc

Figure 4.5: EKF estimator in SIMULINK

condition. Full-load test and intermittent-load test have performed in SIMULINK with a
sampling rate of 2,000 Hz. This sampling rate is the minimum value which can estimate
the temperatures accurately for this system. Trial and error method is used to determine
the covariance matrix. The initial error covariance matrix, process noise covariance matrix
and measurement covariance matrix are obtained by the defined noise in the simulation:

P(0) = diag
[
5 5 5 5 5 5 5 5 5

]
Q = diag

[
3 3 0. 5 0. 5 0. 01 0. 1 10−7 2× 10−7 10−8

]
R =

[
0. 1 0

0 0. 1

]
Two experiments are performed. One is the continuous full-load S1 which means the

machine runs at the rated condition until the temperatures are stable. The figure 4.6 shows
the comparison between the temperatures exported from the physical model in Dymola and
the temperatures estimate by EKF in SIMULINK. The estimated temperatures follow the
simulated reference temperatures quite well. The maximum error and the NRMSE value
for each part under S1 condition are summarized in table 4.7. The maximum temperature
error of the stator winding is 1.6 K, of the rotor cage3.1 K and of the stator core 1.2 K.
The NRMSE of the stator winding is 2.11%, of the rotor cage 2.91% and of the stator core
2.05%.

Table 4.7: The error and NRMSE of the estimated temperatures under S1

Parameters Maximum Error NRMSE

Stator winding 1.6 K 2.11%
Rotor cage 3.1 K 2.91%
Stator core 1.2 K 2.05%

S6 experiment is performed with the sampling time 500 µs. The results of the tem-
peratures match the simulated reference temperatures very well. The figure 4.7 shows the

4.3. MiL-Test and Experimental Results 69

0 2000 4000 6000 8000 10000 12000
0

50

100

Time [sec]

T
h

e
te

m
p

er
at

u
re

 o
f

st
at

o
r

w
in

g
d

in
g

 [
°C

]

Simulation
Estimation

0 2000 4000 6000 8000 10000 12000
0

50

100

Time [sec]

T
h

e
te

m
p

er
at

u
re

 o
f

ro
to

r
ca

g
e

[°
C

]

Simulation
Estimation

0 2000 4000 6000 8000 10000 12000
0

50

Time [sec]

T
h

e
te

m
p

er
at

u
re

 o
f

st
at

o
r

co
re

 [
°C

]

Simulation
Estimation

Figure 4.6: EKF simulated and estimated temperatures under continuous duty S1

comparison between the temperatures simulated and the temperatures estimate by EKF un-
der an intermittent load S6. The maximum error and the NRMSE value for each part under
S6 condition are summarized in table 4.8.

0 2000 4000 6000 8000 10000 12000
0

20

40

60

80

Time [sec]

T
he

 t
em

pe
ra

tu
re

 o
f

st
at

or
 w

in
gd

in
g

[°
C

]

Simulation
Estimation

0 2000 4000 6000 8000 10000 12000
0

20

40

60

80

Time [sec]

T
he

 t
em

pe
ra

tu
re

 o
f

ro
to

r
ca

ge
 [

°C
]

Simulation
Estimation

0 2000 4000 6000 8000 10000 12000
20

40

60

Time [sec]

T
he

 t
em

pe
ra

tu
re

 o
f

st
at

or
 c

or
e

[°
C

]

Simulation
Estimation

Figure 4.7: EKF simulated and estimated temperatures under intermittent duty S6

70 Chapter 4. Temperatures Estimation of the Asynchronous Machine

Table 4.8: The error and NRMSE of the estimated temperatures under S6

Parameters Maximum Error NRMSE

Stator winding 1.6 K 1.88%
Rotor cage 2.1 K 3.01%
Stator core 1.8 K 1.86%

4.3.4 The Results on the Test Bench Machine

In order to be proved that both of the algorithms can be used for the temperatures esti-
mation on the test bench, experiments on the test bench are performed. The temperatures
of the stator winding, the stator core and the coolant air are measured by data acquisition
card NI PCI-6023E. The temperature of rotor cage is measured by wireless sensor node
and transmitted wirelessly to the host sensor node. The test bench is shown in figure 4.8:

Figure 4.8: The test bench

4.3.4.1 The Estimation Results of KF of the Test Bench

All the signals are processed by the KF algorithm offline. The comparisons between the
measured and estimated temperatures are shown in figures 4.9 and 4.10. All the tempera-
tures can be estimated accurately under S1 and S6, except for the rotor cage temperature
under S6. It is due to the excessive losses from the rotor cage, the root cause is also de-
scribed in section 3.4.1. That is why the measured rotor temperature is always higher than
the estimated temperature. The maximum error and NRMSE of KF under S1 and S6 are
listed in tables 4.9 and 4.10. The error and NRMSE of rotor cage under S6 are not calcu-
lated because the time stamp of estimated and measured data is difficult to be synchronized.

4.3. MiL-Test and Experimental Results 71

0 2000 4000 6000 8000 10000
0

50

100

Time [sec]

T
he

 t
em

pe
ra

tu
re

 o
f

st
at

or
 w

in
gd

in
g

[°
C

]

0 2000 4000 6000 8000 10000
0

50

100

Time [sec]

T
he

 t
em

pe
ra

tu
re

 o
f

ro
to

r
ca

ge
 [

°C
]

0 2000 4000 6000 8000 10000
20

40

60

80

Time [sec]

T
he

 t
em

pe
ra

tu
re

 o
f

st
at

or
 c

or
e

[°
C

]

Measurement
Estimation

Measurement
Estimation

Measurement
Estimation

Figure 4.9: KF measured and estimated temperatures under S1

0 2000 4000 6000 8000 10000
0

50

100

Time [sec]

T
he

 t
em

pe
ra

tu
re

 o
f

st

at
or

 w
in

gd
in

g
[°

C
]

Measurement
Estimation

0 2000 4000 6000 8000 10000
0

50

100

Time [sec]

T
he

 t
em

pe
ra

tu
re

 o
f

ro
to

r
ca

ge
 [

°C
]

Measurement
Estimation

0 2000 4000 6000 8000 10000
0

20

40

60

Time [sec]

T
he

 t
em

pe
ra

tu
re

 o
f

st
at

or
 c

or
e

[°
C

]

Measurement
Estimation

Figure 4.10: KF measured and estimated temperatures under S6

4.3.4.2 The Estimation Results of EKF of the Test Bench

The test bench is running under both S1 and S6 condition for about three hours. The
inputs of the EKF including the coolant air temperature, three-phase currents and voltages

72 Chapter 4. Temperatures Estimation of the Asynchronous Machine

Table 4.9: The maximum error and NRMSE of KF under S1

Parameters Maximum Error NRMSE

Stator winding 3.2 K 3.1%
Rotor cage 3.8 K 3.55%
Stator core 2.7 K 2.81%

Table 4.10: The maximum error and NRMSE of KF under S6

Parameters Maximum Error NRMSE

Stator winding 3.2 K 3.32%
Rotor cage N/A N/A
Stator core 2.4 K 2.81%

are acquired by data acquisition card NI PCI-6023E, with the sampling rate of 2,000 Hz.
The acquired data will first be stored and processed by the EKF which is implemented in
MATLAB/SIMULINK. The comparisons of measured and estimated temperatures on the
test bench are shown in figures 4.11 and 4.12. The maximum error and NRMSE of EKF
under S1 and S6 are listed in tables 4.11 and 4.12. The reason why the error and NRMSE
of rotor cage under S6 is difficult to be calculated has been introduced in section 4.3.4.1.

0 2000 4000 6000 8000 10000
0

50

100

Time [sec]

T
he

 t
em

pe
ra

tu
re

 o
f

st
at

or
 w

in
gd

in
g

[°
C

]

Measurement
Estimation

0 2000 4000 6000 8000 10000
0

50

100

Time [sec]

T
he

 t
em

pe
ra

tu
re

 o
f

ro
to

r
ca

ge
 [

°C
]

Measurement
Estimation

0 2000 4000 6000 8000 10000
0

50

Time [sec]

T
he

 t
em

pe
ra

tu
re

 o
f

st
at

or
 c

or
e

[°
C

]

Measurement
Estimation

Figure 4.11: EKF measured and estimated temperatures under S1

4.4. Conclusions 73

0 2000 4000 6000 8000 10000
0

50

Time [sec]

T
he

 t
em

pe
ra

tu
re

 o
f

st
at

or
 w

in
gd

in
g

[°
C

]

Measurement
Estimation

0 2000 4000 6000 8000 10000
0

50

100

Time [sec]

T
he

 t
em

pe
ra

tu
re

 o
f

ro
to

r
ca

ge
 [

°C
]

Measurement
Estimation

0 2000 4000 6000 8000 10000
0

50

Time [sec]

T
he

 t
em

pe
ra

tu
re

 o
f

st
at

or
 c

or
e

[°
C

]

Measurement
Estimation

Figure 4.12: EKF measured and estimated temperatures under S6

Table 4.11: The maximum error and NRMSE of EKF under S1

Parameters Maximum Error NRMSE

Stator winding 3.5 K 3.32%
Rotor cage 3.2 K 3.35%
Stator core 3.1 K 2.78%

Table 4.12: The maximum error and NRMSE of EKF under S6

Parameters Maximum Error NRMSE

Stator winding 3.6 K 2.98%
Rotor cage N/A N/A
Stator core 2.8 K 3.12%

4.4 Conclusions

This chapter proposed a method to estimate the temperatures of the stator winding, the
rotor cage and the stator core of an asynchronous machine using both KF and EKF. By
combining the model of the asynchronous machine in twin-axis stator reference frame and
the simplified thermal model, the state-space equations have been defined and implemented
as a 4th-order KF and 9th-order EKF. The complete temperatures simulation model based on
[7] is modeled by Dymola and runs well. For the three proposed method, EPL can estimate

74 Chapter 4. Temperatures Estimation of the Asynchronous Machine

the temperatures quite accurately, but it is not available in the real machine. Due to the
temperature compensation for resistance calculation, CPLC can estimate the temperatures
more accurately than CPL. As a result, CPLC is used to calculate the power losses for KF.

The following results are acquired by comparing the estimated temperatures with sim-
ulated temperatures. Under continuous full-load S1, the estimated temperatures follow the
simulated reference temperatures very well. The maximal error with EKF is 3.1 K on the
rotor cage. The maximal error with KF is 0.15 K on the stator winding. Under intermittent
duty load S6, the maximal error with EKF is 2.1 K on the rotor cage. The maximal error
with KF is 0.26 K on the rotor cage.

The following results are acquired by comparing the estimated temperatures with mea-
sured temperatures. The estimated temperatures on the stator winding and the stator core
follow the measured temperatures very well. Only the temperatures of the stator winding
and the stator core are compared. Under S1, the maximal error with EKF is 3.5 K. The
maximal error with KF is 3.8 K. Under S6, the maximal error with EFK is 3.6 K. The
maximal error with KF is 3.2 K. The reason why the estimated temperature of rotor cage
is not correct is explained in section 3.4.1. If the rotor cage temperature of this specific test
bench need to be estimated accurately, the excessive power losses from the rotor should be
considered. The advantages of the EKF algorithm are as follows:

• The estimated temperatures can be obtained by acquiring the three phase stator volt-
age, current and the coolant air temperature. The rotor speed and the torque can also
be estimated simultaneously.

• The estimator is independent from the operation conditions. That means no matter
what the rotor speed is, and what the mechanical load is, as long as there are currents
through the stator winding, the temperature can be estimated correctly.

CHAPTER 5

THE IMPLEMENTATION OF KF IN THE WSN

As is described in chapter 4, a number of methods for temperatures monitoring of the
asynchronous machine can be found in the reference. However, none of them has been
implemented on a wireless sensor network so far. Some of the methods do not provide
satisfactory results or can only estimate the temperatures of the stator winding and the ro-
tor cage without the stator core. Other methods require powerful calculation ability which
cannot be run on a resource limited wireless sensor node. Currently, three parts of temper-
atures estimated by the 4th-order KF algorithm in chapter 4 match the measured tempera-
tures quite accurately, which seems to be the most promising for the implementation in a
wireless sensor network.

This chapter is organized as follows: section 1 gives an overview of the proposed sys-
tem. The implementation of distributed WTIMs and NCAP are given in section 2 and
section 3. Section 4 gives the structure of the system and the communication sequence.
Finally, the conclusions are given in section 5.

5.1 The proposed System Description

This section generally introduces the target system including the hardware platform, the
operating system and the software structure to be used. The structure and the topology of
the system is also briefly given.

5.1.1 The Target System

The basis of the platform is the wireless sensor node Preon32 developed by Virtenio
GmbH. It contains a 32 bit ARM Cortex-M3 microcontroller with 256 kB flash memory
for programming code and 64 kB RAM memory for data. A 2.4 GHz wireless transceiver
which is compliant to IEEE 802.15.4 standard can for example be used for ZigBee or
6LoWPAN communication. Two 12-bit analog-to-digital converters (ADC) with maximum
sampling rate of 1 M samples/s are provided [9]. The maximum clock frequency is fclk
= 72 MHz. However, it is usually preferred to operate at a frequency of fclk = 36 MHz

76 Chapter 5. The Implementation of KF in the WSN

Figure 5.1: Preon32 [9] Figure 5.2: Preon32Shuttle [10]

as this can be achieved using the internal RC-oscillator of the processor. Yet, a frequency
of fclk = 72 MHz requires an external crystal oscillator with a significantly higher power
consumption. The clock for time keeping is generated from a low power watch crystal and
has a resolution of 2-14 s = 61.035 µs and a width of 32 bit. The sampling period is derived
from the CPU-clock and can be set with a resolution of 1 µs [24].

The Preon32Shuttle (dimensions of 35 x 35 x 4.5 mm) from Virtenio is an expansion
module for the Preon32 device (dimensions of 27.5 x 19 x 3.3 mm) that provides compo-
nents for improving overall prototyping and development for the platform. The expansion
board has following features: two buttons, four LEDs, voltage regulation with 3.6 to 13.2
V. The serial-to-USB bridge and the USB connector provide a convenient way of program-
ming the Preon32 device via USB and for power supply of the device. The pin headers,
buttons and LEDs are extremely useful during prototyping in order to interact with the
device and to connect external peripherals easily [10]. In the context of the presented ap-
plication all used Preon32 devices are already soldered to a Preon32Shuttle. Preon32 and
Preon32Shuttle are shown in figure 5.1 and figure 5.2.

As is introduced in the previous chapter, all the sensor nodes are programmed in the
C programming language on the Contiki operating system. Contiki is an open source,
highly portable, multi-tasking operating system for memory-efficient networked embed-
ded systems and wireless sensor networks. Contiki is designed for microcontroller with
small amounts of memory. A typical Contiki configuration is 2 kilobytes of RAM and 40
kilobytes of ROM. Contiki supports fully standard IPv6 and IPv4, along with the recent
low-power wireless standards: 6LoWPAN, RPL, CoAP. With Contiki’s ContikiMAC and
sleepy routers, even wireless routers can be battery-operated. Contiki contains two com-
munication stacks: uIP and Rime. uIP is a small RFC compliant TCP/IP stack that makes
it possible for Contiki to communicate over the Internet. Rime is a lightweight communi-
cation stack designed for low-power radios [83].

5.1. The proposed System Description 77

Most operating systems for embedded systems require that a complete binary image of
the entire system is built and downloaded into each device. The binary includes the op-
erating system, system libraries, and the actual applications running on top of the system.
In contrast, Contiki has the ability to load and unload individual applications or services at
run-time. In most cases, an individual application is much smaller than the entire system bi-
nary and therefore requires less energy when transmitted through a network. Additionally,
the transfer time of an application binary is less than that of an entire system image.

The whole software consists of following components: Contiki, ARM CMSIS Library,
Preon32 platform, Preon32 firmware and MSTL. Figure 5.3 shows the components of the
WSN software. MSTL is implemented by MDT of Technische Universität Berlin. It pro-
vides the management of the data acquisition for a variety of sensors and actuators of the
wireless sensor nodes. It is inspired by the IEEE1451 family of standards for smart trans-
ducers.

Figure 5.3: Components of the WSN Software [11]

5.1.2 Structure and Topology of the System

As is discussed in section 1.2.2, the "Star" topology is used for this WSN. Based on the
proposed KF algorithm, four types of signals are acquired as the inputs of the algorithm.
The Root-Mean-Square (RMS) of current and voltage are acquired by the hall sensors and
filtered by the low pass filter. PT1000 is used to acquire the coolant air temperature and
rotary encoder is used for the rotor speed. All in all, three separate wireless sensor nodes
are used for data acquisition, pre-processing and transmission, one wireless sensor node is
used for the data receiving and algorithm implementation. The structure of the proposed
system is shown in figure 5.4:

78 Chapter 5. The Implementation of KF in the WSN

Figure 5.4: Structure of the temperatures estimation system based on WSN [11]

5.2 Implementation of Data Acquisition System in Distributed
WTIMs

All the implementation of data acquisition systems is based on the MSTL which has
been introduced in section 1.2.2.2. The structure of the MSTL can be referred to figure 1.4.

5.2.1 The Hardware

Preon32 provides multiple I/O interfaces are available for connection to external periph-
eral digital I/O pins which could be used for the acquisition of rotor speed. Analog signals
such as the coolant air temperature, the three-phase currents and voltages can be captured
with the integrated ADC. Additional hardware is designed for connecting the sensor with
Preon32 sensor node and conditioning the analog signal.

5.2.1.1 The Hardware for Three-phase Currents and Voltages

The whole construction of the DAQ system is shown in figure 5.5. The circuit board is
inserted into a housing, which is connected to the standard rail of the control cabinet fits.
The design of the board is taken into account of the cable system prevailing in the control
cabinet. This provides that all conductors carry the low voltage into the cable channel
below the board. The completion of the board and the housing, as well as the installation
in the control cabinet was supported by the workshop of the MDT. The preon32 sensor
node is used for data acquisition and wireless transmission. The sensor node and other
components such as inverter and power supply are all installed in the cabinet.

5.2. Implementation of Data Acquisition System in Distributed WTIMs 79

Figure 5.5: The whole construction of the DAQ system

The conditioning boards with six hall sensors were designed for acquiring the three-
phase currents and voltages in the project of MDT. The details of the project can be referred
to the reference [84]. NI PCI-6023E data acquisition boards are used to acquire the output
from the conditioning board, which is in the range of±10V . As the analog input port of the
Preon32 is in the range of ±3. 3V , other conditioning boards for Preon32 were developed
in a master thesis [85], which are shown in figures 5.6 and 5.7.

5.2.1.2 The Conditioning Board for Coolant Air Temperature

The coolant air temperature is one of the inputs which should be measured and trans-
mitted wirelessly by Preon32 sensor node. PT1000 which is the same as in 3.1.2.1 is used
for the temperature measurement. The output voltage of the conditioning board provided
together with the sensor can be calibrated between 0 V and 3. 3 V. Both the PT1000 and
the conditioning board are shown in figures 3.2(a) and 3.2(b).

5.2.1.3 The Conditioning Board for Rotor Speed

In order to acquire the speed of the rotor, a rotary encoder "ROD 426 B-6000" from
HEIDENHAIN GmbH is used. According to the technical data sheet, a conditioning circuit

80 Chapter 5. The Implementation of KF in the WSN

Figure 5.6: Conditioning board without
housing [11]

Figure 5.7: Conditioning board with
housing [11]

board which is shown in figure 5.8(a), is designed by another project. The construction of
the rotor speed acquisition system is shown in figure 5.8(b). A preon32 sensor node is
inserted on the board which is powered by 12 V and connected with the rotary encoder via
serial port.

(a) Conditioning board for rotary encoder
[11]

(b) Construction of the rotor speed acquisi-
tion [11]

Figure 5.8: Hardware of the rotor speed acquisition

5.2.2 Analog Sensor Data Acquisition

Preon32shuttle provides two 12-bit ADC with maximum sampling rate of 1 M sam-
ples/s. As the data acquisition system is out of the scope for IEEE1451, self-defined mea-
surement interfaces are used. Analog sensor data acquisition system is one part of the

5.2. Implementation of Data Acquisition System in Distributed WTIMs 81

MSTL library. The structure is shown in figure 5.9:

G(z)

0
1
.
.
.
15
16
17
18
19

ADC0-0
ADC0-1

.

.

.
ADC0-15

TempSensor
Vref
Pulse
Ramp

ad
c

m
u

x

sa
m

p
le

p

e
ri

o
d

ad
c

TIM

ADC FIR

fI
lt

e
r

co
ef

fi
ci

e
n

ts

in
p

u
t

in
p

u
t

in
p

u
t

o
u

tp
u

t

Figure 5.9: Block diagram of the analog sensor data acquisition system

The whole analog sensor measurement is set by six transducer channels, which is the
same function as the processor register. An analog multiplexer is used to select the input to
the ADC. After that the signal is sampled and converted to digital data. The output noise
of the ADC is filtered. The operations of the analog sensor are listed below:

• adc mux: setting the number of input multiplexer

• mode: setting the data acquisition mode (readData or startStreaming)

• block size: setting the block size in samples

• sample period: setting the sampling period in µs

• filter type: setting the implemented digital filter type

• filter coefficients: setting the coefficients of the FIR filter (Q15-fixed point format)

• reading the output data of the analog-sensor

The table 5.1 below shows the currently supported inputs of the analog acquisition
board.

82 Chapter 5. The Implementation of KF in the WSN

Table 5.1: Supported inputs of the analog acquisition board

Mux. Channel No. Description

0-15 adc input channels 0-15
16 internal temperature sensor of Preon32 (currently not available)
17 internal voltage reference of Preon32 (currently not available)
18 simulated unity impulse signal
19 simulated ramp signal

The WriteData command is called to configure the information of these channels. The
readData and startStreaming can be used to read the data of the channels in one block
and periodically. As the three-phase currents and voltages are acquired by one ADC in
a single sensor node, the switching time of the analog multiplexer should be considered.
An experiment is performed to calculate the switching time which is resulted from the
multiplexer. The time differences when three-phase currents or voltages are sampled from
different channels at the same time is shown in figure 5.10. t1 is the ideal time for the data
acquisition. However due to the switching between the channels, phase u is sampled at
time t1, phase v is sampled at the time t2 and w is at t3. The sampling time is 500 µs and
the switching time ∆t is about 5 µs. From the testing, the maximum difference during the
switching time is 0.45 V for voltage measurement, 0.012 A for current measurement. The
differences can be ignored during the data acquisition.

y

u

v

w

t1

y

u

v

w

t1 t2 t3t t

Figure 5.10: Time differences resulted from multiplexer

5.2. Implementation of Data Acquisition System in Distributed WTIMs 83

5.2.2.1 The Transducer and Buffer Management

All acquired data is converted to digital values by ADC and is stored in the adc_buffer
with maximum array size of 4096 samples. In order to be processed continuously, the
acquired data is statically stored in a block buffer which is allocated using Contiki specific
allocator MEMB [86]. The block buffers are managed by linked list of Contiki [87]. The
original converted data in adc_buffer is transmitted to the blocks allocated by MEMB.
Three blocks are managed in the queue by using series of list management functions. The
mechanism of the data management shown in figure 5.11 is based on the First-In-First-Out
(FIFO) principle. Therefore the data will be processed block by block.

adc_buffer

int16 data[2048]

xdcr_DataBlock block

struct queueMember

List

dataBlockBuffer_push

dataBlockBuffer_pop

queueMember *next

int16 data[2048]

xdcr_DataBlock block

struct queueMember

queueMember *next

int16 data[2048]

xdcr_DataBlock block

struct queueMember

queueMember *next

Figure 5.11: The structure of the data queue

If only one channel is used for acquisition, all the data is stored in the data block array,
which obey the rule FIFO. If several channels are enabled to acquire the data, data are
also stored in the one-dimension array. However it can be taken as a matrix with m rows
and n columns. In the application, signals from maximum 8 channels could be acquired
simultaneously. When filtering the signal, digital signals are fetched from the data block
by the pointer and are filtered channel by channel. The structure of the data block is shown
in figure 5.12:

5.2.2.2 Digital Filter Design

As is described in 5.2.2, analog signals are filtered by analog signal filter which imple-
mented on the conditioning board, and converted to digital signals by ADC. There would
be still much noise in the digital signals even if they are filtered with analog signal filter. So
the digitized signals should be filtered using digital filter again before further processing.

84 Chapter 5. The Implementation of KF in the WSN

1 ... n 1 ... n

1

1

2 3 4 5 n

... ... n

... ... n

... ... n

...

...

2 3 4 5 n

channel 1

channel 2

channel 3

channel 4

...

...

channel m

pointer

repetition count = n

block size = m * n (samples)

1

pointer

... n

channel 1 channel m

Datablock array

Figure 5.12: The structure of the data block

In a digital filter, the signal is represented by a sequence of binary numbers, rather than a
value of voltage or current.

There are several types of digital filter, such as IIR and FIR. Before a digital filter
is designed, a set of filter specifications should be defined. As the current, voltage and
temperature are low-frequency signals, low-pass or bandpass filter could be selected. In
order to define the cut-off frequency, signals are acquired by NI PCI-6023E data acquisition
board. The signals are processed both in time domain and frequency domain by FFT (Fast
Fourier Transform) in MATLAB. Low-pass filter is designed to filter the signals by using
MATLAB.

As there is no FPU in the Preon32, fixed-point arithmetic can be used when implement-
ing the FIR filter. ARM CMSIS contains a DSP (Digital Signal Processor) library which
provides different types of digital filters with different format of fixed-point numbers. The
resolution and the range of the converter depends on the number of bit of the ADC. The
Preon32 is equipped with a 12-bit successive approximation ADC, which converts the ac-
quired analog signal value from 0 to 4095 (i.e. unsigned integer, totally 212 = 4096) and
has an input range of 0 − 3. 3 V. According to the range of the converted value, unsigned
int data type with the range [0, 65535] can cover the converted range. FIR filter function
arm_fir_q15() which is declared in Appendix B.1 is called to filter the signal. The coef-
ficient of the filter can be acquired by filter designer in MATLAB. The coefficient with
fixed-point and the declaration of the filter function is listed below in Appendix B.2:

As data will be acquired, filtered and transmitted from TIM to NCAP continuously, the

5.2. Implementation of Data Acquisition System in Distributed WTIMs 85

calculation time of the filter should be considered. For one block measurement, calculation
time of the filter is not so important, because only one block would be operated. If it is
periodic measurement, data would be processed continuously, so the calculation time of
the filter should be shorter than the acquisition time for one filtered block. The detailed
signal processing time division is shown in figure 5.13:

tSampling tSampling

Δt

t1 t2

tBlock

tAcquir tFilter tSend

t

Figure 5.13: Detailed processing time division [11]

where:

• ∆t: Sampling time

• tSampling: Sampling period

• tBlock: Total time for one block

• tAcquire: Time for acquisition and conversion

• tFilter: Time for digital filtering

• tSend: Time for signal packing and sending

By using the function etimer which is provided by Contiki OS, the time consumption can
be calculated. Taking the following settings as an example, sampling time ∆t is 500 µs
with 8 channels and 16 repetition counts, totally 128 samples/block. The sampling time
tsampling for one block is 8000 µs. The data acquisition and conversion time including the
switching time of the ADC multiplexer is 1200 µs. The computation time of the digital
filter tfilter for one block is 1800 µs. The time for data packing and sending tsend is 3090

86 Chapter 5. The Implementation of KF in the WSN

µs. The sum of tsampling and tacquire is tsampling + tacquire = 9200µs, which means that
it will take 9200 µs to put the acquired data in ADC buffer. The sum of tfilter and tsend
is tfilter + tsend = 4890µs, which is shorter than the total acquisition time. As a result,
analog data acquisition system could process and transmit the data periodically.

5.2.2.3 The Chain of the Analog Data Acquisition System

In order to improve the utilization rate and reduce the load of the wireless transmission,
several pre-processes are performed in the WTIM. Separate conditioning board is designed
for the acquisition of the effective current, voltage and coolant air temperature.

A. The Measurement of Current and Voltage

The complete measurement chain of current and voltage is shown in figure 5.14. Firstly,
three-phase analog currents and voltages are filtered by an anti-aliasing filter which is on the
conditioning board. Then analog signals are acquired and converted to the digital signals
with the sampling rate of 2000 Hz. A low-pass FIR filter is used for filtering the digital
signals and passing the filtered signals for the RMS calculation. The arm_rms_q15 function
provided by DSP is used for the effective value calculation every 40 samples. Because 120
samples/block has almost the same value as that of 40 samples/block, 40 samples/block
is selected. In this way, the frequency is reduced by 40 times to 50 samples/s. Another
decimator is used for further frequency reduction to 10 samples/s. The energy consumption
would be largely reduced due to the lower transmission frequency.

ADC f = 2000 Samples/s FIR

 40 Samples

/block

RMS CalculationDecimator

5
fout = 10 Samples/s

Current/

voltage

 50

Samples/s

Figure 5.14: Measurement chain of the effective current and voltage

B. The Measurement of Coolant Air Temperature

The measurement chain of the coolant air temperature is shown in figure 5.15. The
analog signal is filtered by an Anti-aliasing filter which is on the conditioning board. Then

5.2. Implementation of Data Acquisition System in Distributed WTIMs 87

signals are acquired and converted to the digital signal with the sampling rate of 200 Hz.
A low-pass FIR filter (only one is used) is used for filtering the digital signals and pass
the filtered signals for the Root-Mean-Square calculation. The arm_mean_q15 function
provided by DSP is used for the mean value calculation every 10 samples. In this way, the
frequency is reduced by 10 times to 20 samples/s. Another decimator is used for further
frequency reduction to 5 samples/s.

ADC f = 200 Samples/s FIR

20
Samples/s

 10 Samples

/block

Mean CalculationDecimator

4
fout = 5 Samples/s

Temperature

Figure 5.15: Measurement chain of the coolant air temperature

5.2.3 Digital Sensor Data Acquisition

Compared to an analog sensor, a digital sensor is quite different in which data conver-
sion and data transmission takes place digitally. These digital sensors have many advan-
tages: firstly, the sensor has an electronic chip which can directly convert the analog signal
into a digital signal. The data transmission is not sensitive to characteristic of the cable,
such as the length, the resistance or impedance, which leads that standard cables can be
used. Secondly, the connection between sensor and cable can be connected by inductive
coupling, so that humidity and related corrosion is no longer an issue. Furthermore, the
sensor can be calibrated apart from the system [88].

In our application, an incremental rotary encoder is used to acquire the rotor speed.
Incremental encoders generate pulses in a frequency proportional to the rotational speed.
Only one of the incremental channels is used to measure the rotational speed n. The pe-
riod between pulses of incremental channel A can be measured with Contiki etimer. The
rotary encoder "ROD 426 B-6000" from HEIDENHAIN GmbH is used. For a 6000 rotary
incremental encoder we divide 360 by 6000 to get 0.06. This means that there are 0.06
mechanical degrees of rotation for every incremental encoder pulse. The diagram of the
generated 6000 pulses in one rotation is shown in figure 5.16:

The formula to calculate the rotation speed in RPM from the pulses can be defined

88 Chapter 5. The Implementation of KF in the WSN

t

Δtt

tSampe

NLine counts = 6000

Figure 5.16: The diagram of the generated pulses [11]

in equation (5.1), where ∆t is the time between two neighboring pulses, NLine counts is
the number of encoder lines per revolution, tSampling is the time period in one session in
degree, which is 12 degrees for the encoder.

n =
1

∆t×NLine counts
(5.1)

5.2.4 The Process of the Data Acquisition in WTIM

The general structure of the WTIM is shown in figure 5.17. IEEE1451.5 process is to
manage the radio module and to handle the communication of WSN. IEEE1451.0 process
represents the interlayer between the application and the IEEE1451.5 process. It manages
both the TEDS information and sampled data of the sensor. Both rotation sensor and
analog sensor acquisition system have been implemented. Values in SI unit are sent back to
IEEE1451.0 process periodically as soon as the WTIM receives startTrigger or startStream
commands.

The main functions of the analog_sensor_continuous_process can be summarized in
the figure 5.18. This process will be started when receiving the "Continuous" sampling
mode by process_start function. analog_sensor_acquisition_prepare function is used for
initiating and opening the ADC. The process will wait until the polled event happens in a
function which finishes transferring the pointer of adc_buffer. And then the sampled data
will be queued in the linked list, processed and transmitted block by block in the loop. All
the setup information of the transducer and the acquired data set are stored and updated in
the structure instance. The setup information includes the driver of the transducer channel,
the configuration data and the calibration coefficients. The data set information consists of
type of the sensor, sampling period, timestamps of the first sample, number of repetition
counts and the pointer to the sample. The structure instance which is transmitted and
updated during the data processing is defined in Appendix B.3:

For the implementation of the digital sensor data acquisition, GPIO (General-purpose
input/output) port on the preon32 is connected with the output cable of rotary encoder. The

5.2. Implementation of Data Acquisition System in Distributed WTIMs 89

IEEE1451.5 Process

IEEE1451.0 Process

Sensor

Type

Analog

Sensor

Rotation

Sensor

Rotation sensor process Analog sensor continuous process

Analog sensor filtering process
Rotation

Sensor

Analog

Sensor

TYPE=”R” TYPE=”A”

Speed

Current_RMS

Voltage_RMS

Temperature

notifyMsg /

notifyRsp

Decoding

Figure 5.17: Workflow of the data acquisition system in TIM

conditioning electronic circuit has been designed by previous project. The workflow of the
rotation sensor acquisition process is shown in figure 5.19, which could be summarized
as follows: GPIO ports are first to be set for the acquisition of the digital signal and the
interruption. etimer_set function is used for streaming interval event setting, which will
be waited until the interval event finishes. The information of the pulses is stored in the
rotationDataSet structure, which is defined in Appendix B.4.

The timestamps of pulses for every 12 degrees will be stored in deltaT [1024] and be
calculated to the speed in RPM. Then sendDataSet will be called to send the calculated
mean value of speed to NCAP. After that etimer_reset is used to reset the timer event for
next data streaming operation.

90 Chapter 5. The Implementation of KF in the WSN

Analog Sensor

Acquisition Preparation

NO

Begin Enqueue Data

Update Data Set

Send Data Set

Poll the Event

Wait for an Event

YES End

Send/Wait

YES

NO

Figure 5.18: Analog sensor continuous process

5.3 Implementation of the KF Algorithm in NCAP

This section provides detailed implementation of the KF algorithm on IEEE1451 stan-
dard in NCAP. The minimum implementation of the IEEE1451 standard has been inte-
grated in both in WTIM and NCAP, which consist the generic WSN. Sensors and actuators
which are connected to WTIM can be managed by wireless commands from the NCAP. By
using the Request − Response process, users can send an HTTP request via internet to
the HTTP server on the NCAP and get an HTTP response from the HTTP server [3]. In
our application, the KF algorithm is integrated in the NCAP to estimate the temperatures
of the stator winding, the rotor cage and the stator core of an asynchronous machine. The
Preon32 sensor node is resource restriction such as low-cost, low-power, weak power cal-
culation and small in memory size. In order to be implemented in the NCAP, the algorithm
should be simple and efficient. The integration of the KF layer into Contiki system stack is

5.3. Implementation of the KF Algorithm in NCAP 91

GPIO Initiation

Etimer Set (INTERVAL)

Process Wait Event Until (&et)

Start Record Timestamps

Speed Calculation

Send Process

Start

End

Etimer Reset

Yes

No

Figure 5.19: Rotation sensor data acquisition process

shown in figure 5.20:

6LoWPAN is defined encapsulation and header compression mechanisms that allow
IPv6 packets to be sent to and received from over IEEE802.15.4 links [89]. It is an adap-
tation layer of IPv6 protocol for WSM. The 6LoWPAN protocol has been implemented
together with IEEE802.15.4 Mac layer and IEEE802.15.4 physical layer by Contiki-OS.
And the transport layer is responsible for data transmission from application layer between
client and server sides. In the application, IEEE1451.0 and IEEE1451.5 standard are im-
plemented which are compatible to the stack. KF algorithm is connected with the transport
layer and application layer based on the API of IEEE1451 standard. The efficiency of the
messages is largely improved and the overhead of the IP address is reduced by using the
header compression in the UDP datagram. The Request − Response model is used to
communicate with NCAP and WTIM. Users can manage the WTIM by sending the com-
mands to NCAP via internet, and NCAP will send commands to WTIM for the information.
All the API and commands are defined in the standard [3] [28].

92 Chapter 5. The Implementation of KF in the WSN

6LoWPAN/IPv6

IEEE802.15.4 ContikiMAC

IEEE802.15.4 PHY

TCP/UDP
IEEE1451/

KF Algorithm

HTTP Protocol

Physical Layer

Data Link Layer

Network Layer

Transport Layer

Application Layer

Figure 5.20: The integration of the KF into Contiki system stack of NCAP

5.3.1 The Implementation of Processes in NCAP

This section introduces the operational mechanism of the Contiki OS and the general
structure of the processes based on the event-driven system.

5.3.1.1 Operational Mechanism of Contiki OS

In severely memory constrained environments, such as sensor nodes, a multi-threaded
model of operation often consumes large parts of the memory resources. Each thread must
have its own stack and because it in general is hard to know in advance how much stack
space a thread needs, the stack typically has to be over provisioned. Furthermore, the mem-
ory for each stack must be allocated when the thread is created. The memory contained
in a stack cannot be shared between many concurrent threads, but can only be used by the
thread to which is allocated. Moreover, a threaded concurrency model requires locking
mechanisms to prevent concurrent threads from modifying shared resources. To provide
concurrency without the need for per-thread stacks or locking mechanisms, event-driven
systems have been proposed. In event-driven systems, processes are implemented as event
handlers that run to completion. Because an event handler cannot block, all processes can
use the same stack, effectively sharing the scarce memory resources between all processes.
Also, locking mechanisms are generally not needed because two event handlers never run
concurrently with respect to each other [90].

In the Contiki operating system, processes are implemented as protothreads running on
top of the event-driven Contiki kernel. A protothread is a memory-efficient programming
abstraction that shares features of both multithreading and event-driven programming to

5.3. Implementation of the KF Algorithm in NCAP 93

attain a low memory overhead of each protothread. The kernel invokes the protothread of
a process in response to an internal or external event. The event may be a message from
another process, a timer event, a notification of sensor input, or any other type of event
in the system. Processes may wait for incoming events using the protothread conditional
blocking statements. A protothread is stackless without a history of function invocations.
Instead, all protothreads in a system run on the same stack, which is rewound every time
a protothread blocks. The comparison between the stack memory requirements for three
event handlers with protothreads and the equivalent functions running in three threads is
shown in figure 5.21:

Protothreads Threads

Stack size 1 2 3 1 2 3

Figure 5.21: Stack comparison between protothreads and threads

All Contiki programs are processes. A process is a piece of code that is executed reg-
ularly by the Contiki system. Processes in Contiki are typically started when the system
boots, or when a module that contains a process is loaded into the system. A process is
run when it receives an event. Figure 5.22 shows the structure of process list. The next
field points to the next process structure in the linked list of active processes. The name
field points to the textual name of the process. The thread field, which is a function pointer,
points to the process thread of the processes. The pt field holds the state of the protothread
in the process thread. The state and needspoll fields are internal flags that keep the state
of the process. The needspoll flag is set by the process_poll function when the process is
polled and indicates the priority of the process.

A process thread contains the code of the process. The process thread is a single pro-
tothread that is invoked from the process scheduler. A protothread is declared using the
macro which is listed the Appendix B.5.

94 Chapter 5. The Implementation of KF in the WSN

struct process *next

const char *name

char (* thread)(lc, ev, data)

struct pt pt

unsigned char state

unsigned char needspoll

struct process *next

const char *name

char (* thread)(lc, ev, data)

struct pt pt

unsigned char state

unsigned char needspoll

struct process *next

const char *name

char (* thread)(lc, ev, data)

struct pt pt

unsigned char state

unsigned char needspoll

process_0 process_1 process_2
NULL

process_list

Figure 5.22: Contiki process linked list

The name argument should be replaced by the process name specified in the PROCESS
macro. ev indicates the event generated the process execution and data indicates a pointer
to the optional data passed as the event is generated. The process function must start with
the macro PROCESS_BEGIN() and end with PROCESS_END(). These two macros work
together, as they in fact implement a switch-statement. Between these two macros is the
application user code.

The process code once executed will run until a specific macro is reached indicating a
wait for an event. Some process-specific protothread macros are presented in table 5.2.

Table 5.2: Some process specific protothread macros

Protothread Macros Description

PROCESS_WAIT_EVENT(); Wait for any event.
PROCESS_WAIT_EVENT_UNTIL(); Wait for an event, but with a condition.
PROCESS_YIELD(); Wait for any event.
PROCESS_WAIT_UNTIL(); Wait for a given condition.
PROCESS_PAUSE(); Temporarily yield the process.
PROCESS_EXIT(); Exit the process.

5.3.1.2 The Structure of the Processes

As is described in previous section, Contiki OS is an event-driven system which is
managed by protothreads. In order to operate different WTIMs, manage the message trans-
mission and process the KF algorithm, several functional processes are implemented in the

5.3. Implementation of the KF Algorithm in NCAP 95

NCAP. The structure of the implemented processes are shown in figure 5.23:

IEEE1451.5 Process

IEEE1451.0 Process

KF_algorithm

Process

TIMDiscovery

Process

Serial-

Shell-

Process

Buffer for Data

TEDS

Application

Process

KF_Start

Process

NCAP

USB

Figure 5.23: The structure of implemented NCAP [11]

The shell process has been implemented for connecting the WSN to an arbitrary net-
work. A PC connected with NCAP is implemented as a server of the network. Users can
manage the WSN by using a web based application or an App on the smart phone [24].
TIMDiscovery process is firstly used for discovering WTIMs before every command from
application process. KF_Start process is used for configuring and initiating. IEEE1451.5
process is implemented to manage the radio module and handle the data wireless transmis-
sion. The IEEE1451.0 process represents the interlayer between IEEE1451.5 process and
KF_Start process. The buffer for storing data from different WTIMs is allocated in this
process. The received Irms, Vrms, ωr, Tc will be passed to the KF_algorithm process for
the temperatures estimation and the results could be sent out through serial shell process.

5.3.2 KF Algorithm Implementation in NCAP using Fixed-Point Arithmetic

The KF algorithm for temperatures estimation has been first implemented in MATLAB.
It is proved that the temperatures can be accurately estimated both in simulation and off
line experiment from test bench. In order to implement the KF algorithm on the resource
restriction sensor node, the same algorithm is implemented in C programming language us-
ing floating point arithmetic on Eclipse IDE platform. The flowchart of the KF_algorithm

96 Chapter 5. The Implementation of KF in the WSN

process is shown in figure 5.24 which can be summarized as follows: when the KF process
starts, the system will retrieve and decode the messages from the messages buffer where
different messages from different WTIMs are stored as inputs. The function kf_data_gen
is called to calculate the losses Psw, Prc, Psc from the measured current, voltage and rotor
speed, and generate the inputs with Tc. The inputs are stored in the structure kf_data which
is listed in Appendix B.6.

Input data is passed into the run_kf function where the main KF process is performed.
The DSP library is used for the fixed-point matrix calculation. The state vector x and
error covariance matrix P are set as the globe static array to store the values of previous
calculation step. x and P are sent back to the next recursion. The estimation temperatures
T̂sw, T̂rc, T̂sc could be sent out for storage and display. T̂sw is sent back to calculate
the losses of the stator winding so that the resistance rise due to temperature could be
compensated. The structure kf_filter in Appendix B.7 is an very important structure which
holds all the KF filter related constants, variables and temporary values.

Compared to the implementation in MATLAB and on Eclipse in C language, imple-
mentation on the Preon32 sensor node using Contiki OS has several challenges which are
described in the following subsection.

5.3.2.1 Memory Allocation for Messages

Firstly, the methods to allocate and free memory spaces are different between the stan-
dard C library and the Contiki OS. The standard C library allocates heap memory using
malloc function. However, Contiki platforms specify a small area of their memory spaces
for the heap because of the resource restriction [86]. If malloc function is used for memory
allocation, the heap would easily be overflowed. The memb memory block allocator is
used to allocate a block of static memory for struct kf_data{}, in which contains Psw, Prc,
Psc, Tc as the input of the algorithm, and another struct kf_filter{}, in which holds all the
variables and matrices which would be used during the prediction stage and updated stage
of the KF algorithm.

5.3.2.2 Fixed-Point Arithmetic

The difference between fixed-point numbers and floating-point numbers is that the dec-
imal point is fixed or not. Many low-cost microprocessors, such as the ARM-Cortex M3
in Preon32 sensor node, do not have Floating Point Unit (FPU) and only give hardware
support for integer numbers, and floating point operations have to be realized by the com-
piler which will largely reduce the computation speed [91]. In our application, Cortex-M3
processor is specially designed for WSN as it has outstanding control abilities. However, it
is reasonable that this processor has fair computational ability and no hardware support for

5.3. Implementation of the KF Algorithm in NCAP 97

Data stream

measurement

KF Data Generation

KF Function{

 Matrix initiation

 KF Predict

 KF Update

 KF_State

}

Start

KF Struct

KF Data Struct

Output

Tsw, Trc, Tsc

Psw, Prc, Psc, Tc

ˆ ˆ ˆ

End

Figure 5.24: The flow chart of the KF algorithm implementation process

floating-point operations, because the applications in these aspects of control are usually
light and rarely challenge its computation. The way to implementing floating-point oper-
ations on Cortex-M3 is to execute "software floating point calculus", or short "soft float",
which fully depends on a compiler and software floating point library. Consequently, the
efficiency of the soft float technique in floating-point operations is certainly lower than the
efficiency of integer operations.

In order to implement the KF algorithm with so many floating point calculations in
the sensor node, fixed-point arithmetic is a feasible way for the implementation [92]. The
detailed description and implementation of the fixed-point arithmetic can be referred to
Appendix B.4.

98 Chapter 5. The Implementation of KF in the WSN

5.3.3 Fixed-Point Arithmetic Implementation

Based on the definition of the KF algorithm introduced in section 4.1, the algorithm
has been successfully implemented in MATLAB. Matrix operations in MATLAB or a mi-
croprocessor with DSP library can largely improve the computation speed. The ARM
Cortex-M3 processor provides the CMSIS DSP library, which contains matrix functions
in fixed-point [93]. The matrix operation functions which would be used are listed in ta-
ble 5.3:

Table 5.3: The matrix operations function

Functions Description

arm_mat_init_q31() matrix initialization
arm_mat_add_q31() matrix addition
arm_mat_sub_q31() matrix subtraction
arm_mat_mult_q31() matrix multiplication
arm_mat_trans_q31() matrix transpose

mat_inv_q31() matrix inverse

Every shift left, add/subtract or multiply can produce an overflow and lead to a non-
sensical answer if the exponents are not carefully chosen [91]. Both the range and the
resolution of the data are the key factors for choosing the type of Q-format. The system
can avoid computation overflow by the saturation modes provided by CPUs, or by de-
signing the arithmetic operations. The number of overflow checks is minimized by the
division of variables by scaling factor SF , which scaled all the variables and auxiliaries to
[−1, 1 − 2n]. By checking the computation in MATLAB step by step, the maximum and
minimum values of all the related variables in section 4.1 are listed in table 5.4:

Table 5.4: The data range of the variables

Constant Max Min Variable Max Min

Ad 1 3. 8857× 10−4 X 119.8216 0.0385
Bd 0.4995 5× 10−5 X̂ 119.8212 0.0228
K 0.2702 8. 4325× 10−6 P 0.0270 8. 4325× 10−7

Q 0.01 1× 10−5 P̂ 0.0370 1. 1554× 10−6

R 0.1 0 U 318.2536 0
H 1 0 Z 35.3651 12.9985
τ 1 0

Thus the Q0.31 format is used for the arithmetic with a resolution of 2−31 and a range
of [-1, 0.999999999534]. This means that one bit is used to represent the sign within a

5.3. Implementation of the KF Algorithm in NCAP 99

14.3%

KF algorithm

15.3 kB

Contiki

7.6 kB

Firmware

9.2 kB

Unused

23.4 kB

MSTL

4.7 kB

Device

0.4 kB

Others

3.4 kB

Figure 5.25: The usage of the RAM on
the NCAP sensor node (total memory:

64 kB)

KF algorithm

4.9 kB

Contiki

31.5 kB

Firmware

16.1 kB

Unused

173.8 kB

MSTL

7.9 kB

Device

5.4 kB

Others

16.4 kB

Figure 5.26: The usage of flash memory
on the NCAP sensor node (total

memory: 256 kB)

two’s complement, no bits represent the integer portion and the remaining 31 represent
the fractional part of the number [22]. By analyzing the structure of the KF equations
in section 4.1, all the variables X, X̂, P, P̂ , U, Z and Q,R can be divided by 1000. In this
case, all the values are in the range of [0, 1], and results of the matrix operations will also in
the range [0,1]. The minimum value of number is 8. 4325×10−10, which is larger than the
Q0.31 format resolution 4×10−10. As a result, by scaling every equation with 1000, Q0.31
format can be used for all the constants and variables, and the matrix operation functions
in table 5.3 can be directly used. The estimated values of temperatures can be transferred
by timing the scaling factor SF = 1000.

5.3.4 Memory Usage and Calculation Time

In the implementation of the KF algorithm in NCAP, all the memory blocks are al-
located statically so that fragmentation can be avoided. By using this way, it is easy to
analyze the memory usage of both RAM and Flash. The usage of RAM on the NCAP
sensor node is shown in figure 5.25. The buffers of the KF algorithm take up about 24% of
the total memory space. The basic system, which consists of the Contiki OS, the firmware
provided by Virtenio, and other parts from the standard C library, consumes about 32%.
The MSTL library takes up 7.4%. About 37% of the space is unused.

The usage of the flash memory for programming on the NCAP is shown in figure 5.26.
Only about 5% of the memory is used for the KF algorithm and the MSTL library. The
system takes up most of the used memory. The rest of about 62% of the total memory is
not used.

100 Chapter 5. The Implementation of KF in the WSN

The system gets the data from different buffers to generate the input, which costs 120
µs and the computation time of the KF algorithm for one step is about 600 µs. The total
time of data generation and KF computation is much shorter than the calculation interval 1
s.

5.4 The Communication between NCAP and WTIMs

The sequence on the NCAP side is shown in figure 5.27. The TIMDiscovery command
which is defined in IEEE1451 standard is first used to discover the available WTIMs in the
network. All the WTIMs will be registered with the WTIM_IDs which include the ID of
the sensor node and the ID of the channel after being discovered. The start_KF function is
called, the message is encoded and passed from the IEEE1451.0 layer to the IEEE1451.5
layer and then broadcasted to the WTIMs. Acquired data from different WTIMs is first
stored in a queue in different buffers which is identified by the WTIM_ID. The data from
different buffers will be fetched by data generation function according to the timestamps.
Preprocessed data with the same or nearest timestamps will be passed and processed by the
KF algorithm. Finally the temperatures are estimated and sent to the GUI.

The sequence on the WTIM side is shown in figure 5.28. The request message which
is packed based on the standard is first received by WTIM. Then the message is notified
and decoded by IEEE1451.0 process. The data acquisition system can be triggered by the
startStream command for continuous data acquisition. After the system is triggered, the
signal will be acquired and converted from analog signal to digital signal by ADC. The
low-pass FIR filter is used for filtering and other pre-processes are performed. For the pre-
process of current and voltage, the RMS is calculated and the frequency is decimated to the
estimation rate of the KF algorithm. The rotor speed is calculated to the unit in Revolution
Per Minute (RPM) from the counting of the pulse in fixed time. The coolant air temperature
is also calculated to the physical unit in °C. In this way, more useful information can be
transmitted with less load for the WSN. The pre-processed data is sent back to the NCAP
for the KF algorithm.

5.5 Conclusions

This chapter describes the implementation of the temperatures estimation system of in-
duction machines on a WSN. The 4th-order KF with fixed-point arithmetic is implemented
in NCAP. Three WTIMs are implemented as the data acquisition systems. The fixed-point
and floating-point KF algorithm is implemented. The experiments prove that the KF imple-
mentation is suitable for real-time temperatures estimation on a resource limited wireless
sensor node. The KF temperatures estimation in WSN experiments will be described in

5.5. Conclusions 101

NCAP

IEEE1451.0

NCAP

KF algorithm

NCAP

App

NCAP

IEEE1451.5
WTIM

TIMDiscovery

WTIM_IDs

start_KF

WriteMsg

6LoWPAN

notifyRsp

KF algorithm

estimated

temperatures

DAQ

6LoWPAN

error_code
WriteMsg:return Request

Response

notifyRsp:return

readRsp

readRsp:return

Figure 5.27: The sequence on the NCAP side

chapter 7.

102 Chapter 5. The Implementation of KF in the WSN

WTIM

IEEE1451.5

WTIM

IEEE1451.0
NCAP WTIM

DAQ

Request notifyMsg

startStream

data streaming

Response

6LoWPAN

6LoWPAN

WriteRsp

notifyMsg:return

readMsg

readMsg:return

WriteRsp:return

Figure 5.28: The sequence on the WTIM side

CHAPTER 6

THE IMPLEMENTATION OF THE EKF IN THE WSN

The 9th-order non-linear EKF algorithm can be easily processed on a computer. How-
ever, due to certain resource limitations, such as low power computation and small memory
size, a huge discrepancy exists between the high computing demand of EKF and the limited
computational resource provided by Preon32. The implementation of the EKF in a sensor
node means that the algorithm should be small and efficient enough in terms of complexity
and memory consumption, so as to fit into the hardware platform. To implement EKF algo-
rithm in the resource restricted WSN, optimization of the EKF in Contiki OS is introduced
in section 1. Section 2 describes the detailed implementation of EKF algorithm in WSN. In
order to make the system more stable and more accurate, faults handling and compensation
mechanism are proposed in section 3. The conclusions are given in section 4.

6.1 Implementation and Optimization of EKF Algorithm in Con-
tiki OS

The equations of the EKF for prediction and update have been introduced in section
4.2.1. Throughout this section, the implementation of the EKF in NCAP in C will be
described in details. The numbers and matrices in EKF function are represented in fixed-
point arithmetic, details of which are explained in section 6.1.1. The variables state of the
system are stored in a structure ekf_info, which is introduced and illustrated in Appendix
C.1. It contains all the information about the EKF, including the state vector X, the control
vector U and other filter relevant matrices. Meanwhile, two function pointers of linear filter
function and linear measurement function are also included. In a specific application, the
state dimension is 9 and measurement dimension is 2. All the matrices of EKF are defined
in MatFix32, which is a customary structure for matrices in 32 bit fixed-point arithmetic.

There are two unique matrices, process covariance noise Q and measurement covariance
noise R that are related to the convergence of EKF and which, to a certain degree, influence
the accuracy of the result and convergence rate. According to the experiments, many factors
can influence the convergence of the state variables, such as the type of the FIR filter,

104 Chapter 6. The Implementation of the EKF in the WSN

the sampling rate. After many experiments and adjustments, the values of Q and R are
determined as following:

Q = diag
[

0. 1 0. 1 0. 8 0. 8 0. 01 0. 01 10−6 2× 10−6 10−6
]

R =

[
0. 01 0

0 0. 01

]
The function pointer ffun points to the function, in which matrices A and F are recal-

culated because of the linearisation of the non-linear dynamics around the prediction of
the state X. The linear measurement function, which is marked by the pointer mfun, calcu-
lates the errors between the measured and estimated values. As both of these functions are
modified in different applications, they should be implemented in the application layer as
Callback functions. The function pointers of both are passed as arguments to the operation
layer, where several universal EKF functions are operated.

The life cycle of structure ekf_info is the same as each inputDataSet, which is transmit-
ted from WTIM and received by NCAP. In other words, when a data package is received,
NCAP generates a new structure ekf_info. When EKF finishes processing all the data in
inputDataSet, the memory of ekf_info will be released. Hence, it is necessary to save some
key information, such as the state matrix X and the state covariance matrix P, by using the
global arrays X0 and P0. The initial state matrix of the previous inputDataSet should also
be preserved in the global array X0_1, the purpose of which is presented in section 6.1.2.2.

After introducing some important structure and variables, the program architecture of
the EKF process can be illustrated using a program flowchart that is shown in figure 6.1.
When a new data package containing current and voltage arrives at NCAP, the function
run_ekf (listed in Appendix C.2) will be called after some preparatory work.

step 1 Firstly, the coefficients in matrices B, A and F should be initialized based on the
input sample_period, which, for hardware reason has slight difference between each
data package even in the same sampling frequency in WTIM.

step 2 The structure ekf_info should be initialized and the memory block should be allo-
cated, such as dimensions, matrices B,Q,R and function pointers.

step 3 A set of currents and voltages data in one sampling cycle and the current value of
Tc should be imported into ekf_info.

step 4 Reset some key matrices by copying the values in the global arrays. The imple-
mentation of some methods mentioned later are also integrated into this function,
e.g. estimation of changes in temperatures of unprocessed blocks, resetting the key

6.1. Implementation and Optimization of EKF Algorithm in Contiki OS 105

matrices if the rotor speed n and Tsw are abnormal, the matrices will be reset. The
related function ekf_reset is listed in Appendix C.7.

step 5 Two equations for prediction would be calculated based on the fixed-point matrix
operations library after recalculating matrices A and F by calling on the function
pointer ffun.

step 6 Four equations for updating would be calculated based on the fixed-point matrix op-
erations library, after calculating errors by calling up the linear measurement func-
tion through function pointer mfun.

step 7 Save the matrices of ekf_info into global arrays.

step 8 Repeat steps 3 - 7 until all the data in ekf_info is processed by EKF.

1 Initialize coefficients

in matrices

2 Initialize ekf_info

3 Import a set of data

8 All data processed?

Start
4 Reset ekf_info

5 Prediction

6 Update

7 Save ekf_info state

End

Yes

No

Figure 6.1: Program flowchart of the EKF process

6.1.1 Fixed-point Arithmetic

One of the algorithm optimization methods aimed for better computing performance
is the introduction of fixed-point arithmetic into the EKF process. Most of the numbers
involved in the EKF process, such as all the numbers in matrices are represented in fixed-
point data type instead of floating-point data type.

106 Chapter 6. The Implementation of the EKF in the WSN

Practically, it is impossible to implement the 9th-order EKF using floating-point arith-
metic in the Preon32 hardware platform for an online estimation. In the arithmetic con-
version from floating-point to fixed-point, two main tasks are performed. The first is that
some input values should be scaled beforehand and afterward in the interface layer that
connects EKF to the external data transmitting process in NCAP. On the other hand, a se-
ries of macros and functions have been implemented as a library for conversion from or to
fixed-point number and matrix operations.

Hence, in preliminary work some real-time consumption tests with both floating-point
and fixed-point arithmetic have been performed based on the 4th-order KF, which is a result
of other related research.

6.1.1.1 Fixed-point Number Format and Scaling

The definition of the fixed-point number and the implementation of the fixed-point arith-
metic can be referred to Appendix B.4. Unlike floating-point numbers, the resolution of
a fixed-point variable in the Qm.n format will remain constant over the entire range, and
the range is fixed if Q-format of this variable has been determined by the user. This in-
flexible characteristic of fixed-point numbers comes into conflict with the demand for a
wider number range and a higher resolution, especially when the constants or variables
of a certain application are widely distributed, as is case of this thesis. The coefficients
in matrices A and F require resolution at the level of 10−10 (a coefficient in matrix A:
a95 = 2. 06 × 10−10), while the peak values of the input voltages are larger than 300.
Thus, there is no 32-bits binary word in a single Q-format which can represent both the
maximal and minimal numbers in EKF. One of the solutions is to represent different con-
stants or variables in different Q-format but this compromises the efficiency of the cal-
culation, which is unacceptable in this application. To reduce computational complexity,
another feasible solution is to rescale certain matrices of the EKF or specific coefficients in
matrices before the main EKF process.

In consideration of the matrix multiplication operations, each element in matrices X, U,
Xdot , P, Q, Pdot, E, R and err should be scaled down with a scaling factor of 1000. This
way, all the large numbers, such as voltage and current inputs in matrices U, err, become
smaller 10, or mostly smaller than 1. Meanwhile, some coefficients in matrices A and F
should be scaled up in the initialization function to keep the matrices correct, because these
two matrices are calculated in each iteration using the linear filter function based on scaled
down matrix X . The coefficients of the first order should be multiplied by the scaling
factor once, and the coefficients of the second order should be multiplied by the scaling
factor twice. Take A(7, 1) in matrix A as an example:

A(7, 1) = a71X(0) + b71X(0)X(6)

6.1. Implementation and Optimization of EKF Algorithm in Contiki OS 107

As X(0), X(6) is scaled down with scaling factor of 1000:

X ′(0) = X(0)/1000, X ′(6) = X(6)/1000

To obtain the same correct result of A(7, 1), the coefficients a71, b71 should be scaled up:

a′71 = 1000 · a71, b′71 = 1000 · 1000 · b71

At the same time, the minimal value of the coefficients in matrices A, F is increased to a
level of 10−7. Out of all constants and variables in the EKF process, the Q4.27 format is the
best choice for this application with a range of [−16, 16) and a resolution of 7. 45× 10−9.

6.1.1.2 Number and Matrix Operations

The numerical relationship between a floating-point number A and its equivalent fixed-
point integer B in the Q4.27 format can be easily obtained:

B = 227A (6.1)

The number 227 is actually the fixed-point value of float number 1. The macros converting
to and from fixed-point numbers can be written in the header file fix32.h, which contains
some fixed-point related definitions and macros. The result should be rounded to the nearest
integer when converting to fixed-point numbers, which is listed in the Appendix C.3.

The addition and subtraction that operate on two fixed-point numbers has been de-
scribed in Appendix B.4. The multiplication of two fixed-point numbers must take more
into consideration. If A3 is the product of two floating-point numbers A1, A2, and their
corresponding fixed-point numbers in the Q4.27 format are B1, B2, B3. Then the numeric
relations among them, based on equation (6.1) are as following:

A3 = A1 ·A2

⇒ 2−27B3 = 2−27B1 · 2−27B2

⇒ B3 = 2−27 ·B1B2 (6.2)

The multiplier 2−27 in equation (6.2) can be performed by the arithmetic right-shift
operation, that is the result of B1 · B2 stored as 64-bit integer should be shifted to the
right by 27 positions and be inserted a copy of the sign bit (MSB) to the left. For higher
computational accuracy the top decimal bit should be added to the lowest bit of the result
as rounding operation, which is listed in Appendix C.4.

In this EKF application, fixed-point numbers are in the form of matrix involved in arith-
metical operations. Hence, it is necessary to integrate a bunch of self-built relative light

108 Chapter 6. The Implementation of the EKF in the WSN

matrix operations into the library to guarantee an efficient way of processing matrices. For
this reason, some functions in the DSP library, such as the boundary check, errors output
and others, do not take into account this in-depth customized library.

First of all, the matrix structure MatFix32 in the Q4.27 format should be defined as
and include information of the row number, column number and data as in Appendix
C.5. Based on this structure a bundle of functions, including mat_init, mat_add, mat_sub,
mat_transpose, mat_mult, mat_scal_mult, mat_inv are implemented into the matrix oper-
ation library, which is listed in Appendix C.6. Function mat_inv used in the calculation
of equation (6.3) is more complicated due to issues of accuracy and scaling. To improve
the accuracy of the inverse matrix, the temporary results should be stored as a double data
type. Another problem is that numbers in the inverse matrix E vary across a wide range
and are probably outside the range of the Q4.27 format. Clearly, these numbers should be
scaled down to suit the Q4.27 format. However, it is difficult to select a fixed scaling factor
when taking into account the accuracy, because numbers are scaled down at a compromise
of accuracy of the final inverse matrix. To find each scaling factor, every number in the
temporary inverse matrix of E should be scaled down in the ratio of 1/10 in a loop until all
the numbers are within the required range. The final scaling factor is the production of the
scaling factor in one step. The number of loops is a function argument that is transferred
to the external EKF processing function. In the end, this scaling factor will be involved in
the operation of equation (6.3).

K = Pdot ·H ′ · inv(E)′ · ScalingFactor (6.3)

The main operations of the EKF process are implemented based on the mentioned num-
ber and matrix operation library. The inputs and outputs of the EKF, usually in floating-
point data type, should be converted to and from numbers in the fixed-point arithmetic
before transferring into EKF. The floating-point data type is only applied in EKF process
as a compromise on accuracy.

6.1.2 Sampling Block Method

The algorithm optimization method that is described previously effectively, reduces the
computational complexity in NCAP. The NCAP performs an experimental verification of
fixed-point arithmetic on Preon32, and becomes sluggish and then crashes in the tests after
running for a quite short time. The time consumed by the EKF process in the error-free
running period is recorded in table 6.1 below. It should be explained additionally that the
comparative test of the 9th-order EKF in floating-point arithmetic cannot run on Preon32
successfully. However, it proves the effectiveness of the fixed-point optimization method
from another perspective.

6.1. Implementation and Optimization of EKF Algorithm in Contiki OS 109

Table 6.1: Time-consumption of 9th-order EKF and sensor sampling time

The time of EKF process Sensor sampling time

Fixed-point 4.87 ms 0.5 ms

The result of the test clearly shows that the EKF process in fixed-point arithmetic takes
nearly ten times longer than the sensor sampling data in one cycle. There is a wide gap
between the sampling rate of sensors and processing speed of EKF, so that NCAP cannot
handle the data processing tasks together with WTIM and crashes due to the time conflict
of CPU. Thus, it is obviously not enough to optimize the algorithm in NCAP using only
one method.

Another approach to algorithm optimization, otherwise known as sampling block method
in this thesis, is to reduce the amount of data transmitted to NCAP for processing. In sec-
tion 6.1.2.1, the theoretical basis of this method is derived from the thermal model while
the optimization idea based on it is introduced. The specific implementation in WTIM
and NCAP is explained in section 6.1.2.2 and some effects of this method are discussed in
section 6.1.2.3 as well.

6.1.2.1 Theoretical Basis and Methods

First of all, the organization, storage, and transmission methods of the sampling data in
WTIM are explained briefly. Based on related work, the analog sensor in WTIM is defined
as a structure analog_sensor_instance_t, in which a sensor data set containing information
of sensor channels, repetition count and sample period can be customized by user according
to requirements. The sensor data set in WTIM_Motor uses six channels of Preon32 for
collecting sampled data of three-phase voltages and currents. The sampling frequency fs
is 2000 Hz according to the requirement of EKF algorithm on input waveforms. To cover
one complete period of voltages and currents (f1 =50 Hz) in one data set, a repetition
count Nrep is chosen as Nrep = fs/f1 = 2000Hz/50Hz = 40. These 6 channels, 40
repetition count sampling data make up a data block in the sensor data set which is stored
in a 6× 40 array of 16-byte integer.

The theoretical basis for sampling block method is that, the temperature changes in
the asynchronous machine during a short time ∆t can be simplified as ∆t = kT1, where
k is a small positive integer and T1 = 1/f1 = 0. 02s. The temperature of the stator
winding Tsw can be taken as an example. In thermal equations (4.1) to (4.3), the angular
velocity of rotation ωm and effective values of iqs, ids, iqr, idr are basically constant if the
asynchronous machine operating condition doesn’t change in the period of ∆t. As a result,

110 Chapter 6. The Implementation of the EKF in the WSN

Psw, Psc, Prc are constants in ∆t. The equation (4.1) can be defined as follows:

Tsw(t)− Tsw(t+ ∆t)

∆t
=

1

Csw∆t
· ((Psw(t)− Psw(t+ ∆t))

−Gsw((Tsw(t)− Tsc(t))− (Tsw(t+ ∆t)− Tsc(t+ ∆t))))

⇒ Tsw(t)− Tsw(t+ ∆t)

∆t
=
Gsw
Csw

· (Tsw(t+ ∆t)− Tsc(t+ ∆t))− (Tsw(t)− Tsc(t))
∆t

From the measured temperatures of the test bench, the maximal difference between Tsw
and Tsc can be calculated based on the temperature curves:

Tsw − Tsc ≤ 0. 11(◦C/s) (6.4)

Then the following result can be obtained:

Tsw(t)− Tsw(t+ ∆t) ≤ Gsw
Csw

· |Tsw − Tsc|max ·∆t

⇒ Tsw(t)− Tsw(t+ ∆t) ≤ 1. 12× 10−3∆t(◦C/s) (6.5)

When k in ∆t = kT1 is a small positive integer in the range of k ≤ 25, the ∆t is within
the range:

∆t = kT1 ≤ 0. 5 s (6.6)

Hence, the difference between Tsw(t) and Tsw(t+ ∆t) will be:

Tsw(t)− Tsw(t+ ∆t) ≤ 5. 58× 10−4(◦C/s) (6.7)

The difference can be ignored in the practical application. The temperatures of other parts,
such as Trc and Tsc draw the same conclusion. In summary, under the same operating
conditions, the rates of change in temperature of the asynchronous machine almost remain
the same during a short period. As such, they can be identified as linear in ∆t.

Based on the analysis, the temperature changes in the sequential data blocks of number
k (Nrep = 40, sampling duration of one block Tdur = T1 = 0. 02s, k ≤ 25) can be
treated as the same under the same stable condition. Consequently, only one data block in
a group should be processed by EKF and the temperature changes of the remaining data
blocks can be estimated based on the outputs of first one. The processed data block chosen
from a group of data blocks can be recognised as a sampled data block. Therefore, the
optimization method based on this idea could be named as sampling block method. As
illustrated in figure 6.2, the frequency of wireless data transmission from WTIM to NCAP
is reduced by k times. Meanwhile, NCAP only undertakes the computational task of one
data block in a group of k, and this task takes a relatively long time, based on the time

6.1. Implementation and Optimization of EKF Algorithm in Contiki OS 111

consumption in table 6.1. The rest k − 1 data blocks are not transmitted to NCAP and
the temperature changes of these abandoned blocks are estimated by NCAP based on the
outputs of the last processed block. The specific implementation method in both WTIM
and NCAP will be discussed in subsequent sections.

Block N Block N+1... ... Block N+k-1 Block N+k ...Block N Block N+1... ... Block N+k-1 Block N+k ...
Data Buffer

in WTIM_Motor

Wireless Data
Transmission

Processing Block N Processing Block N+kProcessing Block N Processing Block N+kEKF Process
in NCAP

Estim
-ation

Time

...

Figure 6.2: Sampling block method

...

...

...

...

...

...

... ...

...

...

Block
N

Block
N+1

Block
N+k-1

Block
N+k

Sampling Data
in WTIM

...

...

...

...

...

Block
N

Block
N+k

Received Data
in NCAP

t

n

Figure 6.3: Sampling data in WTIM and received data in NCAP

In addition, for a stable iterative operation of EKF, the input data blocks N to N + k

should form up a continuous sine curve. This is why the repetition count of a single data
block should be set at 40 to include the sampling data of a complete cycle. Figure 6.3
means that the inputs are reconstructed as 50 Hz digital sine waves in NCAP. However, the
actual temperatures should be compensated in the discarded data blocks.

112 Chapter 6. The Implementation of the EKF in the WSN

6.1.2.2 Implementation in WTIM and NCAP

According to figure 6.2, a frequency-reduced data transmission should be implemented
in WTIM. A variable blocksCounter continues to count the data blocks pulled from the
ADC conversion buffer until it reaches a user-defined constant sendFreqDown. Then,
WTIM transmits the current data block to NCAP and resets blocksCounter to 0 after-
wards. Therefore, the frequency of the transmission of the data block is reduced down
to 1/sendFreqDown of original block sending frequency. The constant sendFreqDown
should be obtained from real tests under the condition that NCAP runs smoothly over a
long period of time.

Meanwhile, the main task for NCAP is to estimate the temperature changes of the un-
processed blocks as a compensation in the function ekf_reset. This function is invoked at
the beginning of the EKF process, as shown in figure 6.1. For estimation of this group of
lost blocks, two main pieces of information are the prerequisites:

• The numbers of the group of discarded data blocks: NunproccedBlock

• The temperature changes of the latest processed data block

Under normal circumstances, NunproccedBlock can be easily deduced from sendFreqDown
fsd based on previous analysis NunproccedBlock = fsd − 1. During the real experiments,
NCAP might stop working when being affected by the disturbances in the surrounding en-
vironment. It may result from the implementation of the relatively unstable transport layer
protocol UDP, which is essential to this WSN application. The solution to this problem
is given in section 6.3.3, in which the NCAP should restart under the condition of failure.
Because the numbers of lost data blocks might be uncertain,NunproccedBlock should be cal-
culated in another way rather than be defined as a constant. The EKF data set in the struc-
ture ekfDataSet is generated from a received data set in xdcr_AnaDataSet. Through the
transformation of this data format, NunproccedBlock is derived from the timestamp, which is
a member of the structure xdcr_AnaDataSet and indicates the clock ticks of the first sample
in this data block from the beginning:

NunproccedBlock = round(
tstamp|current block − tstamp|previous block

tsecond · Tdur
)− 1 (6.8)

where tsecond is clock ticks of one second. The data format transformation and further
calculations are discussed in section 6.2.3. As an advantage of this computational path,
the changing NunproccedBlock contributes to a better robustness of the EKF as the adverse
impact on the estimation caused by transmission failure and restart is basically eliminatedt.

Similar to the timestamp, the initial state matrix of previous processed data block should
be saved as a global array X0_1. Then, with the current state matrix X0, which is the final

6.1. Implementation and Optimization of EKF Algorithm in Contiki OS 113

state of last sample in previous block saved also in a global array, temperature changes
of last block can be easily deduced. For the purpose of improving robustness of EKF
against disturbance, these state changes should be monitored within a safe range. This
fault handling method will be presented in detail in section 6.3.2. The full code of this part
is already listed in Appendix C.7.

6.1.2.3 Side Effects

There are indeed some side effects for disadvantages in the sampling block method
when applied in the actual tests. Firstly, the tracking speeds of the rotational speed ω and
rotational torque T slow down by k times. Because both ω and T are not increments in
temperature, the rates of the rotational speed and torque change are zero when in a stable
state:

ω(t) = ω(t+ ∆t) = 0, Te(t) = Te(t+ ∆t) = 0

Therefore, there is no need for EKF to compensate for these two outputs of the discarded
blocks in a stable state. In the stages of starting a machine or switching the machine load
in S6, the lost data blocks affect how fast ω and T reach the steady state. However, they
do not affect the steady accuracy of ω and T and temperatures. As there are no exact
requirements for ω and T especially in regards to the tracking speed in this application,
further optimization of the sampling block method isn’t performed in this thesis.

Secondly, very slight temperatures estimation errors occur at the instant when the load
in S6 switches. This is due to the lost of the data blocks. The temperature changes of the
processed data block in one condition is different from the change of lost blocks in another
condition:

T (t)|full−load(or no−load) 6= T (t+ ∆t)|no−load(or full−load)

However, these deviations are negligible if this switch time is closed to the next processed
block.

6.1.3 Optimization of Memory Usage

The memory space left to EKF is insufficient so that it is necessary to reduce the over-
head of large array and increase memory utilization. In this specific application, the struc-
ture definition during the matrix operations, which consist of a large array, should be min-
imized. Thus, the dedicated memory for temporary matrices can be canceled based on
the concept "Memory Pool" which is shown in figure 6.4. This is also known as fixed-size
blocks allocation, which is the use of pools for memory management that allows the alloca-
tion of dynamic memory. The application can allocate, access, and free blocks represented
by users.

114 Chapter 6. The Implementation of the EKF in the WSN

...

Memory
Block 1

Free Memory

Used MemoryMemory
Block 2

Memory
Block 3

Memory
Block 4

Memory
Block 5

Memory
Block N

Figure 6.4: Memory pool

Block 1
9x9

Block 1
9x9

Memory
Blocks

Block 2
9x9

Block 3
9x9

Block 4
9x9

Block 5
9x9

Block 6
9x9

Block
7

9x2

Block
8

2x9
B9
9x1

B10
9x1

B11
9x1

B12 2x2
B13 2x2

A B F P Q K H X U RR EPdot

Xdot

tem
p4

tem
p6

tem
p3

tem
p1

tem
p2

tem
p5

System
Matrices

temporary
Matrices

Figure 6.5: Memory mapping table of matrices in EKF

In the EKF process, all the memory requirements are known and operations are iterative
at all time. Therefore, the memory allocations are practically statistically. However, the
assigned memory of the system matrices in EKF are not always occupied, especially when
this matrix related operations have not yet started or have already come to an end in the
iteration cycle. Therefore, some ideas in Memory Pool, such as memory block and its
reusability, by different variables can be introduced into the EKF application effectively.
The temporary matrices can be allocated to system matrices of the same size, which is
no conflict in memory usage. The specific memory mapping table of the EKF process is

6.2. Implementation of EKF Algorithm in the WSN 115

graphically represented in figure 6.5.

6.2 Implementation of EKF Algorithm in the WSN

This section introduces the processes of the NCAP. The distributed WTIMs are adapted
for the data acquisition and data processing. The integration of EKF in NCAP is also
described.

6.2.1 The Processes of NCAP

With the except of the EKF process, which has already been discussed in section 6.1,
other layers in this figure are explained in the following sections. The architecture of
the EKF in NCAP is the same as the KF architecture in section 5.3, which is shown in
figure 5.20. Several processes based on the IEEE1451.0 standard are invoked in NCAP:

• timDiscovery

• startStream

• startTrigger

• measurementUpdate

• stopStream

The time synchronization of the two WTIMs is triggered by the startStream process, which
is also similar to the KF in NCAP. The flowchart of the processes in NCAP is shown in
figure 6.6.

6.2.2 Adaptation for Distributed WTIMs Topology

The original process MeasurementUpdate in the Contiki application shell-ncap is re-
sponsible for retrieving the data from the data buffer of NCAP, where NCAP uninterrupt-
edly stores measured data that is transmitted from WTIM. In the MSTL library, the process
MeasurementUpdate works for only one WTIM and that is not enough for this application.
Thus, process MeasurementUpdate should be modified in order to be adapted to the dis-
tributed WTIMs topology. Reception of the sampling data from both WTIM_Motor and
WTIM_Temp should be organized properly to optimize the EKF operatiom by ensuring
sufficient CPU time and memory.

Figure 6.7 illustrates the sequence diagram of the process MeasurementUpdate. As
the air temperature of the coolant Tc changes slowly and has less impact on the estima-
tion results of EKF, the update frequency could be set to a low value ftemp = 2 Hz In

116 Chapter 6. The Implementation of the EKF in the WSN

Connection setup

Start stream:

WTIM_Motor

Measurement update

Start

Stop stream: WTIMs

Display temperatures

End

NoDatabase
Scan for WTIMs,

are all found?

No

Yes

Start stream:

WTIM_Temp

Start trigger: WTIMs

Is run time over?

Yes

Figure 6.6: Flowchart of the processes in NCAP

addition, a default value Tc is initialized in the initialization process of NCAP. The data
buffer, which is the storage spaces for temperatures from WTIM_Temp in data structure
of linked list, should be overlooked. The old message will be overwritten by the new one
when this data buffer becomes full. If the buffer has a new message or more than one
messages, the message on the top would pop out from the linked list and then transferred
to tempDataReceived, which is an octet array that is based on IEEE1451.0. The structure
tempDataReceived comprises three members:

• length of the buffer in type of unsigned int (4 octets)

• maximal data buffer size in type of unsigned int (4 octets)

• data buffer (arbitrary number of octets), which casts a complete analog sensor data
set of a transducer xdcr_AnaDataSet to octet array

Tc should then be updated according to tempDataReceived. That is, the data buffer of tem-
pDataReceived should be cast from the octet array back to xdcr_AnaDataSet, as illustrated
in figure 6.8. The structure xdcr_AnaDataSet is defined as Appendix C.8.

The value of Tc should then be calculated from the sample in xdcr_AnaDataSet and tak-
ing into consideration AccuracyScaleFactor. However, if the temperature buffer is empty,
the current value of Tc won’t be changed and can act as an input to the EKF process if
necessary.

6.2. Implementation of EKF Algorithm in the WSN 117

ncap.measurementUpdate

getOperationData

tempDataReceived

opt

tempDataReceived != NULL

opt

tempDataReceived != NULL

update Tc

getOperationData

opt

motorDataReceived != NULL

opt

motorDataReceived != NULL

motorDataReceived

ekf_data_gen(motorDataSet)

out-of-range
monitoringekfDataSet

compensate for
damaged data block

run_ekf(ekfDataSet)

EKF algorithm
(update global
system state)

error code

free_ekf_data(ekfDataSet)

error code

replace with
global system state

formatOutputDataSet(motorDataSet)

loop

repetition = 40

loop

repetition = 40

ekf_read_data

data in one cycle

error code

DataResponse

MatlabMatlab
shell_ncap:

MeasurementUpdate
shell_ncap:

MeasurementUpdate
Data Buffer

for WTIM_Temp
Data Buffer

for WTIM_Temp
Data Buffer

for WTIM_Motor
Data Buffer

for WTIM_Motor
EKF

Interface Layer
EKF

Interface Layer
EKF

Algorithm
EKF

Algorithm

Host Computer NCAP

altalt

ekfDataSet != NULL

(motorDataSet in safe range)

ekfDataSet == NULL
(motorDataSet out of range)

Figure 6.7: Sequence diagram of process MeasurementUpdate

In the next step, the buffer for the asynchronous machine data should be inspected in
a similar manner to the temperature buffer. If the buffer length of the returned motor-
DataReceived is zero, this means that no new message arrives at NCAP, and the process
MeasurementUpdate will send an empty data response back to the host computer. When
the data buffer of the returned motorDataReceived is not empty, the EKF process should
process should be invoked. The detailed integration of the EKF in MeasurementUpdate
process will be discussed in next section.

To minimize the memory space, the maximal data buffer sizes of tempDataReceived
and motorDataReceived should be set to the exact sizes that the data blocks require. The
xdcr_AnaDataSet for temperature data block should have only one sample in each channel,
while the data block should have 40 samples in each of the 4 channels. The sizes of
other members in xdcr_AnaDataSet are fixed and can be put together as a constant value
XDCR_ANA_DATA_SET_HEADER_SIZE.

118 Chapter 6. The Implementation of the EKF in the WSN

tempDataReceived *tempDataSet

length UInt32

maximum UInt32

buffer int8*

type xdcr_dataSet_type

sample_period UInt32

samples int16*

tempDataBuffer
[TEMP_MAX_DATA_SET_SIZE]

timestamp UInt32

repCount UInt16

OctetOctetOctet...OctetOctetOctet

data set header
data

buffer

d
ata

 set h
e

ad
er

Figure 6.8: Data format transformation in process MeasurementUpdate

tempDataBuffer
[TEMP_MAX_DATA_SET_SIZE]

OctetOctetOctet...OctetOctet

XDCR_ANA_DATA_

SET_HEADER_SIZE 1*1
*sizeof(int16)

motorDataBuffer
[MOTOR_MAX_DATA_SET_SIZE]

...OctetOctetOctet...OctetOctet

XDCR_ANA_DATA_

SET_HEADER_SIZE

40*4
*sizeof(int16)

Figure 6.9: Sizes of temperature and data set buffer

6.2.3 Integration of the EKF

If the EKF process is invoked by the returned motorDataReceived, the communication
between the EKF process and the MeasurementUpdate process should be implemented in
the interface layer. At the beginning the data buffer of motorDataReceived should be casted
to motorDataSet, which is then as an argument transferred to function ekf_data_gen. The
return value of ekf_data_gen is structure ekfDataSet in Appendix C.9.

SamplesPointer points to the data of the first channel and is used to read data from
motorDataBuffer in each iteration of the EKF process. In general, ekf_data_gen should be
integrated with following functions:

6.3. Faults Handling and Compensation 119

• monitoring of the range of input data in motorDataSet: Once one sample is out of
range, the whole data block is treated as damaged and the function ekf_data_gen will
return "NULL" as a warning sign. The compensation method is presented in section
6.3.1.

• allocation of the memory for ekfDataSet

• initialization or calculation of the members in ekfDataSet

According to equation (6.8), unproccedBlockNum can be calculated based on the time
stamps of current and previous motorDataSet. If the returned ekfDataSet isn’t empty, the
EKF algorithm run_ekf should be invoked with ekfDataSet as a function argument. In each
iteration of EKF process a set of samples of 4 channels should be retrieved from motor-
DataBuffer using samplesPointer and be transformed according to certain scale factors for
accuracy and fixed-point arithmetic. Meanwhile, the current value of Tc should be con-
verted into temperature increment. Then two data arrays for system matrices Z and U can
be assigned to data sets of both machine and temperature. SamplesPointer should even-
tually move to the next data of the first channel. The listing of data transmission of the
measurement is shown in Appendix C.10.

After each iteration of EKF process, the system state will be saved into the global arrays
X0, P0. The memory for ekfDataSet will be released after all the data in the block has been
processed by EKF. The structure motorDataSet is also recognized as the output data set.
Thus, the original data of the asynchronous machine in the data set should be replaced with
6 outputs of EKF (global array X0[4− 9]).

6.3 Faults Handling and Compensation

Individual nodes are not reliable, as they may be disturbed by unstable environmental
conditions. The system may be deployed in harsh electromagnetic environment and some-
times the message received by NCAP may be damaged. The raw data of the asynchronous
machine in the real test shown in figure 6.10 reveals that environment may interfere with
the received data in NCAP, hence leading to the uselessness of this data block or even
worse, failure of the node. Thus, WSN itself must remain operational in these cases. Three
methods are implemented in NCAP against the disturbance:

• monitoring of the range of input data in motorDataSet and compensate for damaged
the data blocks.

• monitoring of the range of estimation changes of EKF and reset system state when
outputs are out of range.

• restarting NCAP in case of node failure.

120 Chapter 6. The Implementation of the EKF in the WSN

1.97 1.9705 1.971 1.9715
x 105

-20

-15

-10

-5

0

5

10

15

20

samples

i [
A]

Current1
Current2
Current3

1.97 1.9705 1.971 1.9715
x 105

-300

-200

-100

0

100

200

300

samples
u

[V
]

Voltage1
Voltage2
Voltage3

Figure 6.10: Received interfered data

6.3.1 Input Data Range Monitoring Compensation

The asynchronous machine data in motorDataSet should be monitored within the safe
range:

−10 A ≤ idq ≤ 10 A

−315 V ≤ udq ≤ 315 V

If the returned ekfDataSet is NULL which means the received data is out of the safety
range, the process MeasurementUpdate should make as much compensations as possible.
Regardless of the damaged samples unproccedBlockNum can be derived from the time
stamp as before. Therefore, the estimation of lost data blocks can still be compensated
based on the sampling block method. As a compensation for the damaged block, its tem-
perature changes can be approximately taken to be the same as the previous processed
block, which is listed in Appendix C.11.

In most cases, the out-of-range data block has very little impact on the estimation after
applying this compensation method.

6.3.2 Output Range Monitoring and Reset

By doing experiments, we found that the output changes of EKF should also be moni-
tored with a safe range:

−300 rad/s ≤ ∆ω ≤ 600 rad/s

−0. 2◦C ≤ ∆Tsw,rc,sc ≤ 0. 2◦C

6.4. Conclusions 121

When the changes are out of these ranges, the last processed data block can be regarded
as a damaged data block. Thus the estimations of this block should not be accepted, even
though the estimations are already delivered to the host computer. As a compensation,
the current inaccurate system state should be set back to the initial state before processing
the damaged data block by using X0_1. Figure 6.11 shows the resetting process of the
temperature output.

1790 1792 1794 1796 1798
77.8

78

78.2

78.4

78.6

78.8

79

time [s]

Ts
w es

t [C
]

Figure 6.11: Reset system state in case
of unacceptable estimation

740 745 750 755 760
58.5

58.6

58.7

58.8

58.9

59

59.1

time [s]

Ts
w es

t [C
]

Figure 6.12: Temperature compensation
for disconnection

6.3.3 NCAP Restart in the Case of Disconnection

Due to the interference, disconnection or packages lost between NCAP and WTIMs
would happen. As a result, there is no estimation output from NCAP. It will be restarted
when it reaches timeout. In the loop of invoking process MeasurementUpdate the variable
emptyCounter counts the empty data response. If emptyCounter reaches the preset maxi-
mal number, NCAP could be considered as losing connections with WTIMs. It should then
be restarted.

Because the system state is stored in global arrays and they won’t be released during
the restart. Therefore, after restarting NCAP the lost data blocks in this period can be com-
pensated as well by calculating unproccedBlockNum. Figure 6.12 shows the temperature
compensation for disconnections between NCAP and WTIMs in real experiment.

6.4 Conclusions

In this chapter, an EKF algorithm is first implemented in NCAP using C language. To
be implemented in the resource restricted Contiki OS, the 9th-order EKF with extensive
computation is optimized by the following three methods:

• Fixed-point arithmetic contributes to the improvement of computational efficiency
and the reduction in time of each operations.

122 Chapter 6. The Implementation of the EKF in the WSN

• Sampling block method greatly reduces the amount of data block processing task on
a basis of sectional linearisation of temperature curves.

• The memory usage optimization decreases the number of memory blocks for matri-
ces based on the periodic free memory block in EKF operations.

The optimized EKF algorithm is implemented as a process and integrated into WSN in
Contiki OS. A general discussion on the architecture and control program, as well as an
elaboration on sequence diagram and some modifications of the most important process
MeasurementUpdate are presented.

In the experiments, there are some interference during the wireless data transmission,
which leads to packages lost. As a result, three mentioned faults handling methods against
disturbance and other functions or processes are implemented to improve the robustness
of the system and the accuracy of the estimated temperatures. The EKF temperatures
estimation in WSN experiments will be described in chapter D.

CHAPTER 7

THE EXPERIMENT RESULTS

All the experiments are performed on the test bench. The structure of the whole system
is shown in figure 7.1. The parameters of the asynchronous machine are listed in details
in Appendix table D.2. The DC motor is fixed as the load to provide different load condi-
tion for the system. An integrated sensor (HBM T30FM) for the output torque and rotor
speed are connected to the measurement box which converted the analog signals to digital
signals. The value of the torque and the speed are sent to the computer for controlling.
Three temperature sensors are mounted onto the machine to measure the temperatures of
the stator winding, the stator core and the coolant air. The data acquisition board (NI PCI-
6023E) from National Instrument is used for the temperatures measurement which would
be compared with the estimated temperatures. Meanwhile, three-phase currents and volt-
ages could also be acquired for the parameters identification. This is discussed in details
in the master thesis [85]. The WSN is used to acquire the temperature of the rotor cage,
which is designed in the Diploma-thesis [37]. WTIM1 is used to acquire the temperature
of the rotor cage, WTIM2 for the rotor speed, WTIM3 for the temperature of the coolant
air, and WTIM4 for the acquisition of the effective value of the stator current and voltage.

7.1 The Experiments of the KF Algorithm using WSN

The wireless sensor nodes WTIM2, WTIM3 and WTIM4 are used to acquire the rotor
speed, the coolant air temperature, the three-phase currents and voltages. The KF algorithm
is implemented in the wireless sensor node as NCAP to estimate the temperatures. The
sampling time is 1 s. The sampling period is about 2 hours, after which the temperatures
of the estimated parts remain stable. The ambient temperature is 26°C. The comparisons
between the estimated and measured temperatures under S1 condition are shown below in
figure 7.2. The maximal deviation of the stator winding is 2.3 K, the maximal deviation of
the rotor cage is 3.5 K, and that of the stator core is 2.0 K. The maximum error and the
NRMSE of the estimator are summarized in table 7.1.

During the experiment under the condition of intermittent-load S6, an unusually exces-

124 Chapter 7. The Experiment Results

Rotary

encoder

DC

motor
Torque/Speed

(HBM T30FM)

Inverter

Current

/Voltage

Current

/Voltage

Current

/Voltage

NI

PCI-6023E

Tsw

Trc

Measurement

Box

DC-Power-

Supply

(SM6020)

NI

USB-6009

Tsc Tc

WTIM1

WTIM2

NCAP
RS232

USB

USB

WTIM3

PCI

WTIM4

Asynchronous

machine

sw: stator windings

rc: rotor cage

sc: stator core

c: coolant air

Figure 7.1: The structure of the test bench

0 1000 2000 3000 4000 5000 6000 70000

50

100

Time [sec]St
at

or
 W

in
gd

in
g

[°
C

]

Measurement
Estimation

0 1000 2000 3000 4000 5000 6000 70000

50

100

Time [sec]

R
ot

or
 C

ag
e

[°
C

]

Measurement
Estimation

0 1000 2000 3000 4000 5000 6000 70000

50

Time [sec]St
at

or
 C

or
e

[°
C

]

Measurement
Estimation

Figure 7.2: Comparison of measured and estimated temperatures under S1 with KF

7.1. The Experiments of the KF Algorithm using WSN 125

Table 7.1: The error and NRMSE of the estimated temperatures under S1 with KF

Parameters Maximum Error NRMSE

Stator winding 2.3 K 3.2%
Rotor cage 3.5 K 2.08%
Stator core 2.0 K 2.71%

sive heat is discovered to be generated by the maximum deviations of the stator winding and
rotor cage at the beginning is about 3.5 K. Shortly after being started, the estimated tem-
peratures follow the measured temperatures quite well with an error under 1K. The reason
for that obvious differences at the beginning stems from the installation of PT1000 on the
rotor cage, which influences the flux density and generates excessive losses of about 55
Watt, as compared to a healthy machine [75]. The comparison between measured and esti-
mated temperatures under S6 is shown in figure 7.3. The maximum error and the NRMSE
of the estimator are summarized in table 7.2.

0 1000 2000 3000 4000 5000 6000 7000
0

50

Time [sec]

St
at

or
 W

in
gd

in
g

[°
C

]

Measurement
Estimation

0 1000 2000 3000 4000 5000 6000 7000
0

50

100

Time [sec]

R
ot

or
 C

ag
e

[°
C

]

Measurement
Estimation

0 1000 2000 3000 4000 5000 6000 7000
0

50

Time [sec]

St
at

or
 C

or
e

[°
C

]

Measurement
Estimation

Figure 7.3: Comparison of measured and estimated temperatures under S6 with KF

The temperature differences under both S1 and S6 conditions may result from the aging
of the machine. On the other hand, the inaccuracy identification of both machine and
thermal parameters would also be the reason.

126 Chapter 7. The Experiment Results

Table 7.2: The error and NRMSE of the estimated temperatures under S6 with KF

Parameters Maximum Error NRMSE

Stator winding 3.5 K 2.69%
Rotor cage 3.5 K 2.45%
Stator core 1.5 K 1.36%

7.2 The Experiments of the EKF Algorithm using WSN

Only two WTIMs are needed for the data acquisition of the EKF temperatures estima-
tion system. WTIM3 and WTIM4 are used to acquire coolant air temperature, the three-
phase currents and voltages. As described in section 6.1, the sampling rate for TIM4 is
2000 Hz, and the data will be processed using Park transform. As some blocks are dis-
carded by the dynamic management, the currents and voltages in d-q axis are reconstructed
in NCAP. Two experiments are performed in EKF algorithm. The ambient temperature is
26°C. The comparisons of the estimated and measured temperatures under the S1 condition
are shown in figure 7.4. The maximal deviation of the stator winding is 2.9K, the maximal
deviation of the rotor cage is 3.8 K, and that of the stator core is 3.7 K. The maximum
error and the NRMSE of the EKF estimator are summarized in table 7.3.

0 1000 2000 3000 4000 5000 6000 7000
0

50

100

Time [sec]

St
at

or
 W

in
gd

in
g

[°
C

]

Measurement
Estimation

0 1000 2000 3000 4000 5000 6000 7000
0

50

100

Time [sec]

R
ot

or
 C

ag
e

[°
C

]

Measurement
Estimation

0 1000 2000 3000 4000 5000 6000 7000
0

50

Time [sec]

St
at

or
 C

or
e

[°
C

]

Measurement
Estimation

Figure 7.4: Comparison of measured and estimated temperatures under S1 with EKF

The comparisons of the estimated and measured temperatures under the S6 condition

7.2. The Experiments of the EKF Algorithm using WSN 127

are shown in figure 7.5. The maximal deviation of the stator winding is 2.9K, the maximal
deviation of the rotor cage is 2.3 K, and that of the stator core is 1.8 K. The maximum
error and the NRMSE of the EKF estimator are summarized in table 7.4.

Table 7.3: The error and NRMSE of the estimated temperatures under S1 with EKF

Parameters Maximum Error NRMSE

Stator winding 2.9 K 2.89%
Rotor cage 3.8 K 3.3%
Stator core 3.7 K 4.86%

0 1000 2000 3000 4000 5000
0

50

Time [sec]

St
at

or
 W

in
gd

in
g

[°
C

]

Measurement
Estimation

0 1000 2000 3000 4000 5000
0

50

100

Time [sec]

R
ot

or
 C

ag
e

[°
C

]

Measurement
Estimation

0 1000 2000 3000 4000 5000
20

40

60

Time [sec]

St
at

or
 C

or
e

[°
C

]

Measurement
Estimation

Figure 7.5: Comparison of measured and estimated temperatures under S6 with EKF

Table 7.4: The error and NRMSE of the estimated temperatures under S6 with EKF

Parameters Maximum Error NRMSE

Stator winding 2.9 K 2.87%
Rotor cage 2.3 K 1.44%
Stator core 1.8 K 2.33%

The temperature differences under both S1 and S6 conditions are the same reasons as
the KF algorithm.

128 Chapter 7. The Experiment Results

7.3 Conclusions

In this chapter, the experiments of both KF and EKF temperatures estimation system on
WSN are performed under two different operating conditions S1 and S6 on the test bench.

For the KF temperatures estimation system, under S1 operating condition, the maximal
deviation of the stator winding is 2.3 K, the maximal deviation of the rotor cage is 3.5 K,
and that of the stator core is 2 K. Under S6 operating condition, the maximal deviation of
the stator winding is 3.5 K, the maximal deviation of the rotor cage is 3.5 K, and that of
the stator core is 1.5 K.

For the EKF temperatures estimation system, under S1 operating condition, the max-
imal deviation of the stator winding is 2.9 K, the maximal deviation of the rotor cage is
3.8 K, and that of the stator core is 3.7 K. Under S6 operating condition, the maximal
deviation of the stator winding is 2.9 K, the maximal deviation of the rotor cage is 2.3 K,
and that of the stator core is 1.8 K.

Comparing to the accuracy of both KF and EKF system, both of them are successfully
implemented in the resource restricted WSN, and perform quite well with the NRMSE
values of less than 5%. The KF system needs speed sensor to measure the rotor speed, the
EKF doesn’t need the speed sensor and the speed can be simultaneously estimated together
with the temperatures. As a result, the EKF system has the same performance as KF but
requires lower cost.

CHAPTER 8

SUMMARY AND OUTLOOK

The thesis is focused on the development of temperatures estimation algorithm and
the implementation of the algorithm on a resource restricted WSN. Model-based software
development method is used for the algorithm development and the implementation on a
WSN are also detailed described.

To use the model-based method for the algorithm development, a model of the asyn-
chronous machine with power losses is built in Dymola. The experiments are performed
for the validation of the electrical, mechanical and the thermal behaviors. Based on the
physical model, an efficient and reliable thermal model for tracking the temperatures of
the stator winding, the rotor cage and the stator core is also built in Dymola. All the ther-
mal parameters of the asynchronous machine are identified. The conductance values are
calculated by the losses and temperatures at the steady state of the machine. The best-fit
capacitances are found by using GenOpt which is an optimization tool.

Two different algorithms are developed for the temperatures estimation. 4th-order KF
algorithm and 9th-order EKF are first implemented based on the state-space equations in
the MATLAB/SIMULINK. The MiL method is used to verify the both algorithms. The
physical model in Dymola and the algorithms are connected together in the simulation us-
ing SIMULINK. After the verification of the algorithms, both of them are implemented
in a WSN, which is based on the IEEE1451 standard using Contiki OS. To estimate the
respective temperatures of the stator winding, the rotor cage and the stator core of an asyn-
chronous machine, many approaches are used to integrate the algorithm into the resource
restricted embedded system.

For the 4th-order KF, the rotor speed, coolant air temperature, and the effective current
and voltage are acquired by WTIM separately and are transmitted to NCAP, where the KF
algorithm is implemented. The losses are calculated from the measurement and are pro-
cessed together with the coolant air temperature by KF algorithm. As the resistance varies
with the temperature, the rising resistance is compensated by the estimated stator winding
temperature. For the 9th-order EKF, the coolant air temperature, three-phase voltages and
currents are acquired and pre-proccesed by two WTIMs, and are transmitted to a NCAP

130 Chapter 8. Summary and Outlook

where the EKF algorithm is implemented.
Finally, under different experiment conditions, both KF and EKF temperatures estima-

tion systems on WSN are tested on the test bench. These two real-time WSN temperatures
estimation systems are independent from the control algorithm and functional under any
load condition, as long as the current of the stator is a nonzero system with the accuracy of
higher than 97%.

The following improvements are expected in future research:

• model-based algorithm development method can be extended to develop the temper-
atures monitoring system of the permanent magnet synchronous machine (PMSM);

• more temperatures, such as the temperatures for the bearings, can be estimated based
on the thermal network;

• based on the implementation of 4th-order KF and the 9th-order EKF, these two algo-
rithms can be compiled as a open source library for further usage;

• the communication between the WTIM and the NCAP should be improved more
reliably;

• these two temperatures monitoring systems on WSN can be used in the monitoring
of many machines in large areas.

REFERENCES

[1] T. Litman. Efficient electric motor systems handbook. Fairmont Press, 1995. (Cited
on pages v and 2.)

[2] Network topologies. http://masters.donntu.org/2013/fknt/mironyuk/diss/indexe.htm,
2017. (Cited on pages v and 4.)

[3] IEEE standard for a smart transducer interface for sensors and actuators - common
functions, communication protocols, and transducer electronic data sheet (teds) for-
mats. IEEE Std 1451.0-2007, pages 1–335, Sept 2007. (Cited on pages v, 6, 7, 90
and 91.)

[4] Asynchronous machines. https://simulationresearch.lbl.gov/modelica/releases/msl/
3.2/help/modelica-electrical-machines-basicmachines-asynchronousinduction-
machines.html, 2016. (Cited on pages v and 16.)

[5] Asynchronous machine with losses. https://simulationresearch.lbl.gov/modelica/rel-
eases/msl/3.2/help/modelica-electrical-machines-examples-asynchronousinduction -
machines.html, 2016. (Cited on pages v and 20.)

[6] Yi Huang and Clemens Gühmann. Wireless sensor network for temperature estima-
tions in an asynchronous machine using a kalman filter. IMEKO TC-10, Technical
Diagnostics in Cyber-Physical Era, 2017. (Cited on pages v, 21 and 22.)

[7] Anton Haumer, Christian Kral, Vladimir Vukovic, Alexander David, Christian Het-
tfleisch, and Attila Huzsvar. A parametrization scheme for high performance thermal
models of electric machines using modelica. Ifac Proceedings Volumes, 45(2):1058–
1062, 2012. (Cited on pages v, 11, 15, 21, 23, 24, 32, 39, 49, 50, 62, 64 and 73.)

[8] Genopt. https://simulationresearch.lbl.gov/go/overview.html, 2016. (Cited on pages v
and 40.)

[9] Introduction of preon32. http://www.virtenio.com/en/products/radio-module.html/,
2015. (Cited on pages vi, 75 and 76.)

132 References

[10] Introduction of preon32shuttle. http://www.virtenio.com/en/products/evaluation-
module.html/, 2015. (Cited on pages vi and 76.)

[11] Yi Huang and Clemens Gühmann. Temperature estimation of induction machines
based on the wireless sensor networks. AMA Conferences 2017, Nürnberg, Germany,
pages 139 – 144, 2017. (Cited on pages vi, 6, 77, 78, 80, 85, 88 and 95.)

[12] B. Venkataraman, B. Godsey, W. Premerlani, E. Shulman, Thaku M, and R. Midence.
Fundamentals of a motor thermal model and its applications in motor protection. In
58th Annual Conference for Protective Relay Engineers, 2005., pages 127–144, April
2005. (Cited on page 1.)

[13] J.C. Trigeassou. Electrical Machines Diagnosis. ISTE. Wiley, 2013. (Cited on
pages 1 and 54.)

[14] M. O. Sonnaillon, G. Bisheimer, C. D. Angelo, and G. O. Garcia. Online sensorless
induction motor temperature monitoring. IEEE Transactions on Energy Conversion,
25(2):273–280, June 2010. (Cited on page 1.)

[15] R. Beguenane and M. E. H. Benbouzid. Induction motors thermal monitoring by
means of rotor resistance identification. IEEE Transactions on Energy Conversion,
14(3):566–570, Sep 1999. (Cited on page 1.)

[16] Mehmet Can Vuran Ian F. Akyildiz. Wireless Sensor Networks. WILEY, 2010. (Cited
on page 1.)

[17] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor net-
works: a survey. Computer Networks, 38(4):393 – 422, 2002. (Cited on page 3.)

[18] Milan Erdelj, Nathalie Mitton, Enrico Natalizio, et al. Applications of industrial wire-
less sensor networks. Industrial Wireless Sensor Networks: Applications, Protocols,
and Standards, pages 1–22, 2013. (Cited on page 3.)

[19] Bushra Rashid and Mubashir Husain Rehmani. Applications of wireless sensor net-
works for urban areas. J. Netw. Comput. Appl., 60(C):192–219, January 2016. (Cited
on pages 3 and 5.)

[20] S. Ben Brahim, R. Bouallegue, J. David, T. H. Vuong, and M. David. Design and
implementation of wireless sensor network node for rotating electrical machine. In
2016 IEEE Symposium on Computers and Communication (ISCC), pages 738–742,
June 2016. (Cited on page 5.)

References 133

[21] Pravin N. Matte Niteen V. Deshmukh. Design and implementation of embedded
remote monitoring system for electric drive. International Journal of Engineering
Research & Technology (IJERT), February 2015. (Cited on page 5.)

[22] Andreas Bock, Jürgen Funck, Artur Guidimin, Dian Liu, Richard Burke, and Clemens
Gühmann. Wireless sensor for temperature and flux measurements in an axial flux
machine. In 17th International Conference on Sensors and Measurement Technology,
March 2015. (Cited on pages 5, 99 and 146.)

[23] A. C. Lima-Filho, R. D. Gomes, M. O. Adissi, T. A. B. da Silva, F. A. Belo, and
M. A. Spohn. Embedded system integrated into a wireless sensor network for online
dynamic torque and efficiency monitoring in induction motors. IEEE/ASME Trans-
actions on Mechatronics, 17(3):404–414, June 2012. (Cited on page 5.)

[24] Jürgen Funck and Clemens Gühmann. A flexible filter for synchronous angular re-
sampling with a wireless sensor network. Measurement, 98:393 – 406, 2017. (Cited
on pages 5, 76 and 95.)

[25] İlhan Aydın, Mehmet Karaköse, and Erhan Akın. Combined intelligent methods
based on wireless sensor networks for condition monitoring and fault diagnosis. Jour-
nal of Intelligent Manufacturing, 26(4):717–729, 2015. (Cited on page 5.)

[26] R Udayakumar and V Khanaa. Health monitoring system for induction motors. In-
ternational Journal of Engineering And Computer Science ISSN, pages 2319–7242.
(Cited on page 5.)

[27] Prateek Saxena and Naresh Tandon. Fault diagnostics and health monitoring of ma-
chines using wireless condition monitoring systems. International Journal of Scien-
tific & Engineering Research, 6:178–182, 2015. (Cited on page 5.)

[28] IEEE standard for a smart transducer interface for sensors and actuators wireless com-
munication protocols and transducer electronic data sheet (teds) formats. IEEE Std
1451.5-2007, pages C1–236, Oct 2007. (Cited on pages 8 and 91.)

[29] John Reedy and Stephen Lunzman. Model based design accelerates the development
of mechanical locomotive controls. Technical report, SAE Technical Paper, 2010.
(Cited on page 9.)

[30] M. Ahmadian, Z. J. Nazari, N. Nakhaee, and Z. Kostic. Model based design and
sdr. In 2005 The 2nd IEE/EURASIP Conference on DSPenabledRadio (Ref. No.
2005/11086), pages 8 pp.–, Sept 2005. (Cited on page 9.)

[31] Model based design method. https://en.wikipedia.org/wiki/model-based-design,
2016. (Cited on page 9.)

134 References

[32] Hua Huang. Model-based calibration of automated transmissions, volume 2. Univer-
sitätsverlag der TU Berlin, 2016. (Cited on page 10.)

[33] Clemens Gühmann. Model-based testing of automotive electronic control units. In
3rd International Conference on Materials Testing: Test, volume 2005, 2005. (Cited
on page 10.)

[34] Peter Tavner. Condition monitoring of rotating electrical machines, volume 56. IET,
2008. (Cited on page 10.)

[35] Sonia Ben Brahim, Ridha Bouallegue, Jacques David, Tan Hoa Vuong, and Maria
David. A wireless on-line temperature monitoring system for rotating electrical ma-
chine. Wireless Personal Communications, pages 1–21, 2016. (Cited on page 10.)

[36] S. Ben Brahim, R. Bouallegue, J. David, and T. H. Vuong. Modelling and char-
acterization of rotor temperature monitoring system. In 2016 International Wireless
Communications and Mobile Computing Conference (IWCMC), pages 735–740, Sept
2016. (Cited on page 10.)

[37] Andreas Bock. Inbetriebnahme und Plausibilisierung eines Sensors zur Messung
der Rotortemperatur eines Asynchronmotors. Studienarbeit, Technische Universität
Berlin, 2013. (Cited on pages 10, 34 and 123.)

[38] Rodolfo Ghirlando, Huaying Zhao, Andrea Balbo, Grzegorz Piszczek, Ute Curth,
Chad A Brautigam, and Peter Schuck. Measurement of the temperature of the resting
rotor in analytical ultracentrifugation. Analytical biochemistry, 458:37–39, August
2014. (Cited on page 10.)

[39] K. D. Stephan, J. A. Pearce, Lingyun Wang, and E. Ryza. Prospects for industrial
remote temperature sensing using microwave radiometry. In 2004 IEEE MTT-S Inter-
national Microwave Symposium Digest (IEEE Cat. No.04CH37535), volume 2, pages
651–654 Vol.2, June 2004. (Cited on page 10.)

[40] Stewart K. Brown and Len Mannik. Field testing of a fiber optic rotor temperature
monitor for power generators. Proc. SPIE, 1584:15–22, 1991. (Cited on page 10.)

[41] C. Hudon, C. Guddemi, S. Gingras, R. C. Leite, and L. Mydlarski. Rotor temperature
monitoring using fiber bragg gratings. In 2016 IEEE Electrical Insulation Conference
(EIC), pages 456–459, June 2016. (Cited on page 10.)

[42] L. Wang, X. Yang, and B. Sheng. Distributed optical fiber sensor for virtual moni-
toring of turbine rotor’s temperature. In 2009 International Conference on Measur-
ing Technology and Mechatronics Automation, volume 1, pages 16–19, April 2009.
(Cited on page 10.)

References 135

[43] M. Ganchev, B. Kubicek, and H. Kappeler. Rotor temperature monitoring system. In
Electrical Machines (ICEM), 2010 XIX International Conference on, pages 1–5, Sept
2010. (Cited on page 10.)

[44] M. Sabaghi, H. Feshki Farahani, H. R. Hafezi, P. Kiani, and A. R. Jalilian. Stator
winding resistance estimation for temperature monitoring of induction motor under
unbalance supplying by dc injection method. In Universities Power Engineering Con-
ference, 2007. UPEC 2007. 42nd International, pages 217–222, Sept 2007. (Cited on
page 11.)

[45] S. G. Ahn, B. G. Park, R. Y. Kim, and D. S. Hyun. Fault diagnosis for open-phase
faults of permanent magnet synchronous motor drives using extended kalman filter.
In IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society,
pages 835–840, Nov 2010. (Cited on page 11.)

[46] R. Beguenane and M. El Hachemi Benbouzid. Induction motors thermal monitoring
by means of rotor resistance identification. In 1997 IEEE International Electric Ma-
chines and Drives Conference Record, pages TD2/4.1–TD2/4.3, May 1997. (Cited
on page 11.)

[47] J. L. Zamora and A. Garcia-Cerrada. Online estimation of the stator parameters in an
induction motor using only voltage and current measurements. IEEE Transactions on
Industry Applications, 36(3):805–816, May 2000. (Cited on page 11.)

[48] Z. Gao, T. G. Habetler, and R. G. Harley. An online adaptive stator winding temper-
ature estimator based on a hybrid thermal model for induction machines. In IEEE
International Conference on Electric Machines and Drives, 2005., pages 754–761,
May 2005. (Cited on page 11.)

[49] Z. Gao, T. G. Habetler, R. G. Harley, and R. S. Colby. A novel online rotor temper-
ature estimator for induction machines based on a cascading motor parameter esti-
mation scheme. In Diagnostics for Electric Machines, Power Electronics and Drives,
2005. SDEMPED 2005. 5th IEEE International Symposium on, pages 1–6, Sept 2005.
(Cited on page 11.)

[50] Ozsoy E E, Gokasan Metin, and Bogosyan Seta. Simultaneous rotor and stator re-
sistance estimation of squirrel cage induction machine with a single extended kalman
filter. Turk. J. Elec. Eng. & Comp. Sic., 2010. (Cited on page 11.)

[51] C. Kral, T. G. Habetler, R. G. Harley, F. Pirker, G. Pascoli, H. Oberguggenberger,
and C. J. M. Fenz. Rotor temperature estimation of squirrel-cage induction motors
by means of a combined scheme of parameter estimation and a thermal equivalent

136 References

model. IEEE Transactions on Industry Applications, 40(4):1049–1057, July 2004.
(Cited on page 11.)

[52] S. Bogosyan, M. Barut, and M. Gokasan. Braided extended kalman filters for sen-
sorless estimation in induction motors at high-low/zero speed. IET Control Theory
Applications, 1(4):987–998, July 2007. (Cited on page 11.)

[53] H. Tajima and Y. Hori. Speed sensorless field-orientation control of the induction
machine. IEEE Transactions on Industry Applications, 29(1):175–180, Jan 1993.
(Cited on page 11.)

[54] In-Joong Ha and Sang-Hoon Lee. An online identification method for both stator-and
rotor resistances of induction motors without rotational transducers. IEEE Transac-
tions on Industrial Electronics, 47(4):842–853, Aug 2000. (Cited on page 11.)

[55] C. J. Chiang, Y. K. Wang, and W. T. Cheng. Ekf-based rotor and stator resistance
estimation in speed sensorless control of induction motors. In American Control
Conference (ACC), 2012, pages 1174–1179, June 2012. (Cited on page 11.)

[56] A. Boglietti, A. Cavagnino, D. Staton, M. Shanel, M. Mueller, and C. Mejuto. Evolu-
tion and modern approaches for thermal analysis of electrical machines. IEEE Trans-
actions on Industrial Electronics, 56(3):871–882, March 2009. (Cited on pages 11
and 20.)

[57] Motor-CAD. https://www.motor-design.com/, 2016. Accessed April 4, 2016. (Cited
on page 11.)

[58] Yi Du, T. G. Habetler, and R. Gordon Harley. Methods for thermal protection of
medium voltage induction motors - a review. In 2008 International Conference on
Condition Monitoring and Diagnosis, pages 229–233, April 2008. (Cited on page 11.)

[59] Anton Haumer, Christian Kral, Hansjörg Kapeller, Thomas Bäuml, and Johannes V
Gragger. The AdvancedMachines Library: Loss Models for Electric Machines. In
The 7 International Modelica Conference, Como, Italy, pages 847–854. Linköping
University Electronic Press, October 2009. (Cited on pages 15, 16, 17, 18, 19, 43, 62
and 64.)

[60] Modelica Association. Tutorial: Modelica - a unified object-oriented language for
physical systems modeling. Technical report, 2000. (Cited on page 15.)

[61] Dehuai Zeng. Advances in Computer Science and Engineering. Springer Publishing
Company, Incorporated, 2012. (Cited on pages 15, 16, 21, 50 and 62.)

References 137

[62] Dynasim AB. Dymola Dynamic Modeling Laboratory User’s Manual. (Cited on
page 15.)

[63] Anton Haumer and Christian Kral. Modelica libraries for dc machines, three phase
and polyphase machines. 4th International Modelica Conference, March 7-8, 2005,
pages 549–588. (Cited on page 16.)

[64] Electric Machinery Committee of the IEEE Power Engineering Society. IEEE Std
112-2004, IEEE Standard Test Procedure for Polyphase Induction Motors and Gen-
erators. pages 1–87, February 2016. (Cited on pages 17, 19, 28, 29 and 30.)

[65] Core losses. http://www.electrical4u.com/losses-and-efficiency-of-induction-motor/,
2016. (Cited on page 18.)

[66] Hansjorg Kofler. Stray load losses in induction machines a review of experimental
measuring methods and a critical performance evaluation. Renewable Energy and
Power Quality Journal, 1:318–323, 04 2003. (Cited on page 18.)

[67] Rotating electrical machines - part 2-1: Standard methods for determining losses and
efficiency from tests (excluding machines for traction vehicles), 2007. (Cited on
page 19.)

[68] M. Plainer C. Kral, A. Haumer. Simulation of a thermal model of a surface cooled
squirrel cage induction machine by means of the simpleflow-library. pages 213–218,
March 2005. (Cited on page 19.)

[69] K&K Associates. Thermal Network Modeling Handbook. 1999-2000. (Cited on
page 21.)

[70] Heat capacitor. https://www.maplesoft.com/documentation-center/online-
manuals/ modelica/modelica-thermal-heattransfer-components.html/modelica.
thermal.heattransfer.components.heatcapacitor., 2016. (Cited on page 23.)

[71] Thermal conductor. https://www.maplesoft.com/documentation-center/online-
manuals/modelica/modelica-thermal-heattransfer-components.html/modelica. ther-
mal.heattransfer.components.thermalconductor., 2016. (Cited on page 23.)

[72] Florian Doering. Parameteridentifikation einer Asynchronmaschine am Prüfstand.
Diplomarbeit, Technische Universität Berlin, 2009. (Cited on pages 33, 38 and 39.)

[73] Michael Wetter. GenOpt manual. pages 1–109, August 2016. (Cited on page 41.)

[74] Madhava Rao Ashwin Murali, Arushi Gupta. Towards a Novel Direct Online Speed-
Torque Curve Plotter for Three Phase Induction Motor. pages 1–6, June 2014. (Cited
on page 43.)

138 References

[75] J. F. Bangura and N. A. Demerdash. Effects of broken bars/end-ring connectors and
airgap eccentricities on ohmic and core losses of induction motors in asds using a
coupled finite element-state space method. IEEE Transactions on Energy Conversion,
15(1):40–47, Mar 2000. (Cited on pages 44 and 125.)

[76] IEEE Power Engineering Society. Ieee standard test procedure for polyphase induc-
tion motors and generators. 2004. (Cited on page 51.)

[77] Greg Welch and Gary Bishop. An introduction to the kalman filter. Technical report,
Chapel Hill, NC, USA, 1995. (Cited on pages 52, 54 and 61.)

[78] Paul C. Krause, Oleg Wasynczuk, and Scott D. Sudhoff. Analysis of Electric Machin-
ery and Drive Systems, pages 605–613. Wiley-IEEE Press, 2002. (Cited on page 55.)

[79] J. K. Al-Tayie and P. P. Acarnley. Estimation of speed, stator temperature and rotor
temperature in cage induction motor drive using the extended kalman filter algorithm.
IEE Proceedings - Electric Power Applications, 144(5):301–309, Sep 1997. (Cited
on page 56.)

[80] D. Staton, A. Boglietti, and A. Cavagnino. Solving the more difficult aspects of
electric motor thermal analysis in small and medium size industrial induction mo-
tors. IEEE Transactions on Energy Conversion, 20(3):620–628, Sept 2005. (Cited on
page 57.)

[81] A. Haumer C. Kral. Modelica libraries for dc machines, three phase and polyphase
machines. 4th International Modelica Conference, pages 549–558, March 2005.
(Cited on page 62.)

[82] Garron Fish. Dymola-simulink interface. http://www.claytex.com/blog/dymola-
simulink-interface/, 2011. (Cited on page 63.)

[83] The contiki os. http://www.contiki-os.org/, 2014. (Cited on page 76.)

[84] Jürgen Funck and Sebastian Nowoisky. MDT Strom- und Spannungswandler-Modul.
Aug 2011. (Cited on page 79.)

[85] Torben Hopp. Intelligenter Sensor zur Leistungsmessung im Dreiphasennetz. Mas-
ter’s thesis, Technische Universität Berlin, 2013. (Cited on pages 79 and 123.)

[86] Memory allocation. https://github.com/contiki-os/contiki/wiki/memory-allocation/,
2016. (Cited on pages 83 and 96.)

[87] Contiki 2.6 linked list library. http://contiki.sourceforge.net/, 2015. (Cited on
page 83.)

References 139

[88] Digital sensor. https://en.wikipedia.org/wiki/digital-sensors/, 2016. (Cited on
page 87.)

[89] Zach Shelby and Carsten Bormann. 6LoWPAN: The Wireless Embedded Internet.
Wiley Publishing, 2010. (Cited on page 91.)

[90] Adam Dunkels, Oliver Schmidt, Thiemo Voigt, and Muneeb Ali. Protothreads: Sim-
plifying event-driven programming of memory-constrained embedded systems. In
Proceedings of the 4th International Conference on Embedded Networked Sensor
Systems, SenSys ’06, pages 29–42, New York, NY, USA, 2006. ACM. (Cited on
page 92.)

[91] Advanced RISC Machines Ltd (ARM). Fixed Point Arithmetic on the ARM. Appli-
cation Note 33, September 1996. (Cited on pages 96 and 98.)

[92] Enrico Bocchieri. Fixed-Point Arithmetic, pages 255–275. Springer London, London,
2008. (Cited on page 97.)

[93] CMSIS - Cortex Mircrocontroller Software Interface Standard.
http://www.arm.com/products/processors/cortex-m/cortexmicrocontroller-software-
interface-standard.php/, 2015. (Cited on page 98.)

[94] Stephan Rein. Fixed-point arithmetic in c: A tutorial and an example on wavelet fil-
tering. Technical report, Wavelet Application Group, Technische Universitaet Berlin,
July 1 2008. (Cited on page 146.)

CHAPTER A

PARAMETERS IDENTIFICATION OF THE MODEL

A.1 Building Interface between Genopt and Dymola

Listing A.1: initialization.txt
Simulation {

Files {

Template {

File1 = ScheduleTemplate.txt;

File2 = dsin.txt;

}

Input {

File1 = Schedule.txt;

File2 = dsin.txt;

}

Log {

File1 = dslog.txt;

}

Output {

File1 = result.txt;

}

Configuration {

File1 = DymolaWinXP.cfg;

}

}

ObjectiveFunctionLocation{

Delimiter1 = "f(x) =" ;

Name1 = "f(x)";

}

}

142 Appendix A. Parameters Identification of the Model

A.2 Building Interface between Genopt and Dymola

Listing A.2: configureation.txt
Optimization {

Files {

Command {

File1 = command.txt;

}

}

}

Listing A.3: command.txt

* GenOpt command file

Vary{

Parameter{ Name = CrotorCage; Min = 100; Ini = 1500;

Max = 10000; Step = 1; }

Parameter{ Name = CstatorCore; Min = 100; Ini = 10168;

Max = 20000; Step = 1; }

Parameter{ Name = CstatorWinding; Min = 100; Ini = 1000;

Max = 10000; Step = 1; }

}

OptimizationSettings{

MaxIte = 10000;

MaxEqualResults = 100;

WriteStepNumber = false;

}

Algorithm{

Main = GPSHookeJeeves;

MeshSizeDivider = 2;

InitialMeshSizeExponent = 0;

MeshSizeExponentIncrement = 1;

NumberOfStepReduction = 4;

}

Listing A.4: ScheduleTemplate.txt
double tab1(3,1) # comment line

$%CrotorCage%$

$%CstatorCore%$

$%CstatorWinding%$

CHAPTER B

THE IMPLEMENTATION OF KF IN THE WSN

B.1 FIR Filter Function

Listing B.1: Declaration of Q15 FIR filter function
/**

* @brief Processing function for the Q15 FIR filter.

* @param[in] *S points to an instance of the Q15 FIR.

* @param[in] *pSrc points to the block of input data.

* @param[out] *pDst points to the block of output data.

* @param[in] blockSize number of samples to process.

* @return none.

*/

void arm_fir_q15(

const arm_fir_instance_q15 * S,

q15_t * pSrc,

q15_t * pDst,

uint32_t blockSize);

Listing B.2: Coefficient of FIR low-pass filter

#define FILTER_TAPS 28

static const int16 filterCoeff [FILTER_TAPS] = {28,58,-3,\

-187,-275,57,696,823,-312,-2055,-2187,1135,6978,11629,\

11629,6978,1135,-2187,-2055,-312,823,696,57,-275,-187,\

-3,58,28};

B.2 Structure Instance of the Sensor

Listing B.3: Declaration of the structure instance
typedef struct {

xdcr_driver xdcrChannel; /* driver of transducer channel */

analog_sensor_conf_t conf; /* sensor specific configuration */

xdcrCalib_linCoeff_t* calib; /* calibration coefficients */

xdcr_AnaDataSet* dataSet; /* pointer to data the set */

144 Appendix B. The Implementation of KF in the WSN

UInt32 dataSetSize; /* size of data set in bytes */

UInt32 messageCounter; /* counts the number of messages */

} analog_sensor_instance_t;

Listing B.4: The structure rotation data set
/*structure of rotation data set */

struct rotationDataSet {

xdcr_dataSet_type type; /* type code of data set */

UInt32 sample_period; /* sampling period in delta angle of pulses */

UInt32 anglestamp; /* angle of first encoder pulse */

UInt16 repCount; /* number of acquisition steps in dataset */

UInt32 t0; /* timestamp of first pulse as 32 Bit integer */

int16 deltaT[1024]; /* timestamps as 32 Bit integers */

};

Listing B.5: The structure of Contiki process
PROCESS_THREAD(name, ev, data)

{

PROCESS_BEGIN();

/Application code/

PROCESS_EDN();

}

B.3 KF Structure

Listing B.6: The structure of KF data
struct kf_data {

q31_t dt; //sampling time

int nb_samples; //number of samples per block

q31_t Psw; //stator winding losses

q31_t Prc; //rotor cage losses

q31_t Psc; //stator core losses

q31_t Tc; //coolant air temperature

};

Listing B.7: The structure of Kalman filter
typedef struct kf_filter {

unsigned state_dim;

unsigned measure_dim;

/* state */

arm_matrix_instance_q31 *X;//(4,1)

/* control */

arm_matrix_instance_q31 *U;//(4,1)

/* state covariance matrix */

arm_matrix_instance_q31 *P;//(4,4)

/* process covariance noise */

arm_matrix_instance_q31 *Q;//(4,4)

B.4. Fixed-Point Arithmetic 145

/* measurement covariance noise */

arm_matrix_instance_q31 *R;//(1,1)

/* A matrix */

arm_matrix_instance_q31 *A;//(4,4)

/* B matrix */

arm_matrix_instance_q31 *B;//(4,4)

/* jacobian of the measure wrt X */

arm_matrix_instance_q31 *H;//(1,4)

/* error matrix */

arm_matrix_instance_q31 *E;//(1,1)

/* kalman gain */

arm_matrix_instance_q31 *K;//(4,1)

q31_t err[1];

filter_function ffun;

measure_function mfun;

/* temps */

arm_matrix_instance_q31 *Xdot;//(4,1)

arm_matrix_instance_q31 *Pdot;//(4,4)

arm_matrix_instance_q31 *tmp1;//(4,4)

arm_matrix_instance_q31 *tmp2;//(4,4)

arm_matrix_instance_q31 *tmp3;//(4,4)

arm_matrix_instance_q31 *tmp4;//(1,4)

arm_matrix_instance_q31 *tmp5;//(4,1)

arm_matrix_instance_q31 *tmp6;//(4,1)

arm_matrix_instance_q31 *tmp7;//(1,1)

} kf_filter;

B.4 Fixed-Point Arithmetic

A. Number Representation

A number is represented as a binary word in a microprocessor. A binary word with N = 8

bits is taken as an example b7b6b5b4 · · · b0. If this word represents an unsigned integer, the
numerical value is:

B = 27b7 + 26b6 + 25b5 + 24b4 + · · ·+ 20b0 (B.1)

The Most Significant Bit (MSB) is b7 which is located left. If the 8 bits binary word
is 01100011, the unsigned integer value is 99. If it is interpreted as a fixed-point number
011000.11, the value of this word can be calculated as 24 + 23 + 2−1 + 2−2 = 24. 750, or
generally as:

B =
1

2exp(b)

N−1∑
n=0

2nbn (B.2)

146 Appendix B. The Implementation of KF in the WSN

where exp(b) (exp(b) = 2) denotes the number of positions which follow the point.
The number range for an unsigned fixed-point number B is given as:

[0,
2N − 1

2exp(b)
] (B.3)

The numerical value A of a fixed-point number a is thus given by the following equa-
tion:

A = a · 2−exp(a) (B.4)

a denotes the integer value of the internal binary word (that excludes the MSB bit) and
exp(a) denotes the exponent of a.

The MSB of the binary word is represented for the sign. If the MSB is zero, the number
is positive. If the MSB is set, the number is negative. The two’s complement is used
for signed numbers which represents positive numbers in the same way as in the ordinary
unsigned notation with the exception that the MSB must be zero. A negative number is built
by inverting all bits and adding one to the result, e.g., −2 = inv(0010) + 1 = 1101 + 1 =

1110. The interpreted value A of such a number is given as [94]:

A = 2−exp(a)[−2N−1 +
N−2∑
n=0

2nbn] (B.5)

In order to transfer the existing KF algorithm in floating point to fixed point representa-
tion, proper Q-format(Qm.n) defined in [22] is first to be considered. The Q-format is used
to denote the fixed-point number format which assumes the notation of the two’s comple-
ment. Therefore, an N-binary word always has N-1 bits for the absolute numerical value.
A Q(m,n) format denotes that m bits are used to designate the two’s complement integer
portion of the number, not including the MSB bit, and that n bits are the number of bits to
the right of the radix point. Thus, a Q(m,n) number always requires N = m+ n+ 1 bits.
Its range is given by [−2m, 2m − 2−n] and the resolution is given by 2−n. The value m in
Q(m,n) is optional. If the value m in Q(m,n) is left, it is assumed to be zero.

The fractional arithmetic uses a specific case of the Q-format where the number only has
fractional portions (Q(m,n) with m=0). For example, the Q15 data range is [−1, 0. 999969482].
The advantage of this format is that the product of two numbers between [−1, 1] stays in
the range of [−1, 1], thus there will be no overflow problem.

B. Definition of Arithmetic

The implementation of fixed point arithmetic using C macros in the Contiki is based on
the tutorial [94]. The shift operator, e.g. left shift ” << ” and right shift ” >> ” are
used for the virtual shift in order to change the exponent of the word. It is better to use the

B.4. Fixed-Point Arithmetic 147

logical shift than the arithmetic shift, because the computation speed is much faster than
the arithmetic shift. The left-shift and the right-shift can be used to change the exponent of
numbers, because some operations need the same exponent. An appropriate C macro for
changing the exponent can be as in Listing B.8:

Listing B.8: Definition of changing the exponent
#define ChangeExp(a,expA,expB)

(((expB)>(expA)) ? (a)<<((expB)-(expA)) : (a)>>((expA)-(expB)))

It is required in the arithmetic that floating-point numbers and fixed-point numbers
should be converted to or from each other. Equation (B.6) shows a floating-point num-
ber Bfloat is converted to a fixed-point number B with the exponent exp(b).This method
would reduce the precision because the int cuts the fractional part. Equation (B.7) shows
the converting of a fixed-point number B with exponent exp(b) to a floating point number
Bfloat.

B = int(Bfloat · 2exp(b)) · 2−exp(b) (B.6)

Bfloat = B ∗ 2−exp(b) (B.7)

The appropriate macros are defined as in the Listing reflst:FloatToFix:

Listing B.9: Definition of FloatToFix and FixToFloat Macros
#define FloatToFix(Bfloat,expB) ((int)((Bfloat)*(float)\

(1<<(expB))))

#define FixToFloat(b,expB) ((float) (b) / (float)\

(1<<(expB)))

For addition and subtraction the two operands a and b have to be converted to the expo-
nent of the result number c. It then can be calculated by adding the binary words:

c = a · 2−exp(c) + b · 2−exp(c) (B.8)

If the exponents of a and b do equal, the macro to return a fixed-point number with the
same exponent is given as in the Listing B.10:

Listing B.10: Definition of AddFix and SubFix Macros
#define AddFix(a,b) ((a)+(b))

#define SubFix(a,b) ((a)-(b))

Otherwise, the operands first have to be converted. In case of an overflow, the sum of
two binary numbers require one more integer bit in the result. If the operands are in the
form Qa.b, the result will be in the form Q(a+1).b which is defined as the Listing B.11.

Listing B.11: Definition of AddFixExp and SubFixExp Macros

148 Appendix B. The Implementation of KF in the WSN

#define AddFixExp(a,b,expA,expB,expC)

(ChangeExp(a,expA,expC)+ChangeExp(b,expB,expC))

#define SubFixExp(a,b,expA,expB,expC)

(ChangeExp(a,expA,expC)-ChangeExp(b,expB,expC))

The product C of two binary words a and b can be computed with an integer multipli-
cation as:

A ·B = a · 2−exp(c) · b · 2−exp(c) (B.9)

The exponent of the result is given as the sum of the input exponents. A macro to
compute the product with exponent exp(c) of two operands with exponent exp(c) is given
as in the Listing B.12:

Listing B.12: Definition of MulFix Marco
#define MulFix(a,b,expC) (((a) * (b))>>(expC))

A macro to compute the product with exponent exp(c) of two operands with exponent
exp(a) and exp(b) is defined as in the Listing B.13:

Listing B.13: Definition of MulFixExp Marco
#define MulFixExp(a,b,expA,expB,expC)

(ChangeExp((a) * (b),(expA)+(expB),expC))

The division C = A/B can be performed with an integer division as:

C =
a · 2exp(b)−exp(a)+exp(c)

b
· 2−exp(c) (B.10)

A macro for division of two numbers with exponent expC returns a number with expo-
nent exp(c) which is defined in the Listing B.14:

Listing B.14: Definition of DivFix Marco
#define DivFix(a,b,expC) (((a)<<(expC)/(b))

CHAPTER C

THE IMPLEMENTATION OF EKF IN THE WSN

C.1 EKF Structure

Listing C.1: Declaration of EKF structure in C
typedef struct

{

/* dimensions */

uint8_t state_dim;

uint8_t measure_dim;

/* matrices */

MatFix32 X; // state, 9*1

MatFix32 U; // control, 9*1

MatFix32 P; // state covariance matrix, 9*9

MatFix32 Q; // process covariance noise, 9*9

MatFix32 R; // measurement covariance noise, 2*2

MatFix32 A; // A matrix, 9*9

MatFix32 B; // B matrix, 9*9

MatFix32 F; // jacobian of Xdot wrt X, 9*9

MatFix32 H; // jacobian of the measure wrt X, 2*9

MatFix32 E; // error matrix, 2*2

MatFix32 K; // kalman gain, 9*2

MatFix32 Xdot; // temp A matrix, 9*1

MatFix32 Pdot; // temp P matrix, 9*9

/* function pointers */

filter_function ffun;

measure_function mfun;

} ekf_info;

150 Appendix C. The Implementation of EKF in the WSN

C.2 EKF Function Definition

Listing C.2: Definition of fuction run_ekf
int run_ekf(ekfDataSet *inputDataSet)

{

coeff_cal(inputDataSet->sample_period);

/* initialize matrix B */

MatFix32 B,Q,R;

fix32t b[81]={bb11,0,0,0,0,0,0,0,0,

0,bb22,0,0,0,0,0,0,0,

bb31,0,0,0,0,0,0,0,0,

0,bb42,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,bb88,0,

0,0,0,0,0,0,0,0,bb99};

mat_init(&B,9,9,b);

/* initialize matrix Q */

fix32t q[81]=

{FloatToFix(0.1/ScaleFactor),0,0,0,0,0,0,0,0,

0,FloatToFix(0.1/ScaleFactor),0,0,0,0,0,0,0,

0,0,FloatToFix(0.8/ScaleFactor),0,0,0,0,0,0,

0,0,0,FloatToFix(0.8/ScaleFactor),0,0,0,0,0,

0,0,0,0,FloatToFix(0.01/ScaleFactor),0,0,0,0,

0,0,0,0,0,FloatToFix(0.01/ScaleFactor),0,0,0,

0,0,0,0,0,0,FloatToFix(0.000001/ScaleFactor),0,0,

0,0,0,0,0,0,0,FloatToFix(0.000001/ScaleFactor),0,

0,0,0,0,0,0,0,0,FloatToFix(0.000001/ScaleFactor)};

mat_init(&Q,9,9,q);

/* initialize matrix R */

fix32t r[4]={FloatToFix(0.01/ScaleFactor),0,

0,FloatToFix(0.01/ScaleFactor)};

mat_init(&R,2,2,r);

/* measure */

fix32t y[2]={0,0};

/* command */

fix32t u[9]={0,0,0,0,0,0,0,0,0};

/* initialize ekf_info */

ekf_info *filter;

filter = ekf_new(9,2,&B,&Q,&R,linear_filter,linear_measure);

if (filter == NULL)

return MEMORY;

/* filter run */

for (iter=0; iter<inputDataSet->repCount; iter++)

{

ekf_read_data(inputDataSet,y,u);

C.3. EKF Matrix Definition 151

ekf_reset(filter,X0,X0_1,P0,iter,\

inputDataSet->unprocessedBlockNum,\

inputDataSet->sample_period);

ekf_predict(filter,u);

ekf_update(filter,y);

ekf_get_state(filter,X0,P0);

}

ekf_free(filter);

return NO_ERROR;

}

C.3 EKF Matrix Definition

Listing C.3: Basic definition of conversion macros
typedef int fix32t;

#define FixNum_1 134217728 // 2^27

#define FloatToFix(x) ((fix32t)(((x)>=0)?((x)*FixNum_1+0.5):((x)*FixNum_1-0.5)))

#define FixToFloat(x) ((float)((float)(x)/FixNum_1))

Listing C.4: The macros of multiplication
#define DecimalPlacesNum 27

#define GetTopDecimalBit 0x04000000

fix32t MulFix(fix32t Src1, fix32t Src2)

{

fix64t product = (fix64t)Src1 * Src2;

if (product < 0)

product--; // in order to round -1/2 correctly

fix32t result = product >> DecimalPlacesNum;

result += (product & GetTopDecimalBit) >> (DecimalPlacesNum-1);

return result;

}

Listing C.5: The definition of a matrix
#define FIXMATRIX_MAX_SIZE 9

typedef struct {

uint8_t rows;

uint8_t columns;

fix32t data[FIXMATRIX_MAX_SIZE][FIXMATRIX_MAX_SIZE];

} MatFix32;

Listing C.6: Definition of fuction matrix_ekf
#include <stdio.h>

#include "matrix_ekf.h"

152 Appendix C. The Implementation of EKF in the WSN

fix32t MulFix(fix32t Src1, fix32t Src2)

{

fix64t product = (fix64t)Src1 * Src2;

if (product < 0)

product--; // This adjustment is required in order to round -1/2

correctly

fix32t result = product >> DecimalPlacesNum;

result += (product & GetTopDecimalBit) >> (DecimalPlacesNum-1);

return result;

}

void mat_init(MatFix32 *Matrix, uint8_t nRows, uint8_t nColumns, fix32t *DataArray

)

{

int row, col;

Matrix->rows = nRows;

Matrix->columns = nColumns;

for (row = 0; row < nRows; row++)

{

for (col = 0; col < nColumns; col++)

{

Matrix->data[row][col] = *(DataArray + row * nColumns + col);

}

}

}

void mat_add(MatFix32 *Src1, MatFix32 *Src2, MatFix32 *Dst)

{

int row, col;

Dst->rows = Src1->rows;

Dst->columns = Src1->columns;

for (row = 0; row < Dst->rows; row++)

{

for (col = 0; col < Dst->columns; col++)

{

Dst->data[row][col] = Src1->data[row][col] + Src2->data[row][col];

}

}

}

void mat_sub(MatFix32 *Src1, MatFix32 *Src2, MatFix32 *Dst)

{

int row, col;

Dst->rows = Src1->rows;

Dst->columns = Src1->columns;

for (row = 0; row < Dst->rows; row++)

{

for (col = 0; col < Dst->columns; col++)

{

Dst->data[row][col] = Src1->data[row][col] - Src2->data[row][col];

C.3. EKF Matrix Definition 153

}

}

}

void mat_transpose(MatFix32 *Src, MatFix32 *Dst)

{

int row, col;

Dst->rows = Src->columns;

Dst->columns = Src->rows;

for (row = 0; row<Dst->rows; row++)

{

for (col = 0; col<Dst->columns; col++)

{

Dst->data[row][col] = Src->data[col][row];

}

}

}

void mat_mult(MatFix32 *Src1, MatFix32 *Src2, MatFix32 *Dst)

{

int row, col, k;

Dst->rows = Src1->rows;

Dst->columns = Src2->columns;

for (row = 0; row < Dst->rows; row++)

{

for (col = 0; col < Dst->columns; col++)

{

Dst->data[row][col] =0;

for (k=0; k < Src1->columns; k++)

{

Dst->data[row][col] += MulFix(Src1->data[row][k],

Src2->data[k][col]);

}

}

}

}

void mat_scal_mult(MatFix32 *Src, int Scale, MatFix32 *Dst)

{

int row, col;

Dst->rows = Src->rows;

Dst->columns = Src->columns;

for (row = 0; row < Dst->rows; row++)

{

for (col = 0; col < Dst->columns; col++)

{

Dst->data[row][col] = Src->data[row][col] * Scale;

}

}

}

void mat_inv(MatFix32 *Src, MatFix32 *Dst, int *Scale)

{

154 Appendix C. The Implementation of EKF in the WSN

fix64t det_a,temp1,temp2;

double temp[Src->rows][Src->columns];

Dst->rows = Src->rows;

Dst->columns = Src->columns;

*Scale = 1;

if (Src->rows == 1 && Src->columns == 1)

{

temp[0][0] = (double) FixNum_1 / Src->data[0][0];

while (temp[0][0] >= MaxFloatNum || temp[0][0] < MinFloatNum)

{

temp[0][0] = temp[0][0] / 10.;

*Scale = *Scale * 10;

}

Dst->data[0][0] = FloatToFix(temp[0][0]);

}

else if(Src->rows == 2 && Src->columns == 2)

{

temp1 = MulFix(Src->data[0][0],Src->data[1][1]);

temp2 = MulFix(Src->data[0][1],Src->data[1][0]);

det_a = temp1 - temp2;

temp[0][0] = (double) MulFix(Src->data[1][1],FixNum_1) / det_a;

temp[0][1] = (double) MulFix(Src->data[0][1],FixNum_1) / (-det_a);

temp[1][0] = (double) MulFix(Src->data[1][0],FixNum_1) / (-det_a);

temp[1][1] = (double) MulFix(Src->data[0][0],FixNum_1) / det_a;

while (temp[0][0] >= MaxFloatNum || temp[0][0] < MinFloatNum ||

temp[0][1] >= MaxFloatNum || temp[0][1] < MinFloatNum ||

temp[1][0] >= MaxFloatNum || temp[1][0] < MinFloatNum

|| temp[1][1] >= MaxFloatNum || temp[1][1] < MinFloatNum)

{

temp[0][0] = temp[0][0] / 10.;

temp[0][1] = temp[0][1] / 10.;

temp[1][0] = temp[1][0] / 10.;

temp[1][1] = temp[1][1] / 10.;

*Scale = *Scale * 10;

}

Dst->data[0][0] = FloatToFix(temp[0][0]);

Dst->data[0][1] = FloatToFix(temp[0][1]);

Dst->data[1][0] = FloatToFix(temp[1][0]);

Dst->data[1][1] = FloatToFix(temp[1][1]);

}

else

exit(0);

}

void mat_print(MatFix32 *Src)

{

int row, col;

for (row = 0; row < Src->rows; row++)

{

for (col = 0; col < Src->columns; col++)

{

printf("%d ",Src->data[row][col]);

// printf("%.9f ",FixToFloat(Src->data[row][col]));

C.3. EKF Matrix Definition 155

}

printf("\n");

}

printf("\n");

}

Listing C.7: Definition of fuction ekf_reset
void ekf_reset(ekf_info *filter,fix32t *X0,fix32t *X0_1,\

fix32t *P0,int idx,uint8_t unprocessedBlockNum,double tau)

{

uint8_t i;

/* the motor load status and set the flag */

if ((X0[5]>M_lower) && (X0[5]>X_1[5]))

noLoadSign=0;

else if ((X0[5]<M_upper) && (X0[5]<X0_1[5]))

noLoadSign=1;

/* simulation for abnormal motor core losses */

bb88=FloatToFix(Prc_s*tau*noLoadSign/C2/ScaleFactor);

filter->B.data[7][7] = bb88;

/* predict the unprocessed blocks */

if (idx == 0)

{

/* safe range of rotor speed change:(-300,600) */

/* safe range of Tsw change:(-0.2,0.2) */

if ((X0[4]-X0_1[4]>n_min) && (X0[4]-X0_1[4]<n_max)

&& (X0[6]-X0_1[6]>T_min) && (X0[6]-X0_1[6]<T_max))

{

X0[6] = X0[6] + unprocessedBlockNum*(X0[6]-X0_1[6]);

X0[7] = X0[7] + unprocessedBlockNum*(X0[7]-X0_1[7]);

X0[8] = X0[8] + unprocessedBlockNum*(X0[8]-X0_1[8]);

/* reset X0_1 with X0 */

for (i = 0; i < 9; i++)

X0_1[i] = X0[i];

}

else

for (i = 0; i < 9; i++)

X0[i] = X0_1[i];

}

mat_init(&(filter->X),filter->state_dim,1,X0);

mat_init(&(filter->P),filter->state_dim,filter->state_dim,P0);

}

Listing C.8: Declaration of the analog data setxdcr_AnaDataSet structure
typedef struct {

xdcr_dataSet_type type; /* type code of data set */

UInt32 sample_period; /* sampling period in microsecond */

UInt32 timestamp; /* timestamp of first sample */

UInt16 repCount; /* number of acquisition steps in data set */

int16 samples[1]; /* samples as 16 Bit integers, array of dummy

156 Appendix C. The Implementation of EKF in the WSN

size, transducers can implement bigger size */

} xdcr_AnaDataSet;

Listing C.9: The definition of ekfDataSet
typedef struct

{

UInt16 repCount; /* number of samples in one channel */

double sample_period; /* sampling period in microsecond */

uint8_t unproccedBlockNum; /* number of lost blocks */

int16* samplesPointer; /* points to samples in first channel */

} ekfDataSet;

Listing C.10: The data transmission of the measurement
UInt16 nRep = ekfDataSet->repCount;

int16* op = ekfDataSet->samplesPointer;

/* y[2] = {ids; iqs} */

y[0] = FloatToFix(*op / AccuracyScaleFactor / ScaleFactor);

y[1] = FloatToFix(*(op + nRep) / AccuracyScaleFactor / ScaleFactor);

/* u[9] = {vds; vqs; 0; 0; 0; 0; 0; 1; Tc-T0} */

u[0] = FloatToFix(*(op + 2 * nRep) / AccuracyScaleFactor / ScaleFactor);

u[1] = FloatToFix(*(op + 3 * nRep) / AccuracyScaleFactor / ScaleFactor);

u[7] = FixNum_1;

u[8] = FloatToFix((TC - T0) / ScaleFactor);

ekfDataSet->samplesPointer ++;

C.4 Compensation of the EKF Estimation

Listing C.11: Compensation of the estimation due to lost blocks
for (int i = 6; i < 9; i++)

{

/* compensate the estimation of lost blocks */

X0_increment[i-6] = X0[i] - X0_1[i];

X0[i] = X0[i] + unproccedBlockNum * X0_increment[i-6];

X0_1[i] = X0[i];

/* estimate the temperature changes of damaged block */

X0[i] = X0[i] + X0_increment[i-6];

}

CHAPTER D

THE EXPERIMENT RESULTS

Table D.1: Reference parameters of asynchronous machine

Parameters Symbols Values

Reference power Pref 3 kW
Reference voltage vref 380 V
Reference current vref 6.8 A

Reference temperature Tref 26°C
Reference speed ωref 1415 r/min

Stator temperature coefficient αs 0.0039 /°C
Rotor temperature coefficient αr 0.0040 /°C

Reference exponent powerw 1.5

Table D.2: Parameters of asynchronous machine

Parameters Symbols Values

Nominal output Pm 3 kW
Nominal voltage V 380 V

Nominal frequency f 50 Hz
Nominal torque T 20 N.m

Connection delta
Pole pair pn 2

Stator resistance Rs 1.9693 Ω

Rotor resistance Rr 1.8081 Ω

Main reactance Xm 52.025 Ω

Stator leakage reactance Xs 2.02 Ω

Rotor leakage reactance Xr 2.02 Ω

Rotor’s moment of inertia Jr 0.01654 kg.m2

Iron loss constant kiron 0.00664 W/(rad/s)2

158 Appendix D. The Experiment Results

	Title page
	Acknowledgments
	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	List of Listings
	List of Abbreviations and Symbols
	Introduction
	Motivations and Objective
	State of the Art
	Overview of the Applications on Wireless Sensor Networks
	Overview of the Wireless Sensor Networks based on IEEE1451
	Model-based Software Development
	Temperatures Estimation Methods for Asynchronous Machines

	Scope and Structure

	Object-Oriented Modeling of an Asynchronous Machine with a Simplified Thermal Model
	Asynchronous Machine Model
	Asynchronous Machine Model from Standard Library
	Asynchronous Machine Model from Advanced Library
	Asynchronous Machine Model with Losses

	Thermal Model of an Asynchronous Machine
	Introduction of the Thermal Model
	Heat Transfer
	Coolant System

	Complete Simulation Model
	Conclusions

	Parameter Identification of the Model
	Parameter Identification
	No-load Test
	Load Test

	Parameters Identification of the Asynchronous Machine
	Parameters Identification of the Thermal Model
	Thermal Conductances
	Thermal Capacitances

	Parameters Identification Related Experiments
	Validation of the Asynchronous Machine Model
	Validation of the Complete Model

	Conclusions

	Temperatures Estimation of the Asynchronous Machine
	Temperatures Estimation of the Asynchronous Machine using a KF
	Thermal Model of the Asynchronous Machine using a KF Algorithm
	The Implementation of KF Algorithm

	Temperatures Estimation of the Asynchronous Machine using an EKF
	The State-Space Model of the Asynchronous Machines
	The Thermal Model of the Asynchronous Machines using EKF
	The Combined Model of the System
	The Implementation of EKF Algorithm

	MiL-Test and Experimental Results
	The MiL-Test of Combined Simulation Models
	The Test Results for KF Estimator
	The Test Results for EKF Estimator
	The Results on the Test Bench Machine

	Conclusions

	The Implementation of KF in the WSN
	The proposed System Description
	The Target System
	Structure and Topology of the System

	Implementation of Data Acquisition System in Distributed WTIMs
	The Hardware
	Analog Sensor Data Acquisition
	Digital Sensor Data Acquisition
	The Process of the Data Acquisition in WTIM

	Implementation of the KF Algorithm in NCAP
	The Implementation of Processes in NCAP
	KF Algorithm Implementation in NCAP using Fixed-Point Arithmetic
	Fixed-Point Arithmetic Implementation
	Memory Usage and Calculation Time

	The Communication between NCAP and WTIMs
	Conclusions

	The Implementation of the EKF in the WSN
	Implementation and Optimization of EKF Algorithm in Contiki OS
	Fixed-point Arithmetic
	Sampling Block Method
	Optimization of Memory Usage

	Implementation of EKF Algorithm in the WSN
	The Processes of NCAP
	Adaptation for Distributed WTIMs Topology
	Integration of the EKF

	Faults Handling and Compensation
	Input Data Range Monitoring Compensation
	Output Range Monitoring and Reset
	NCAP Restart in the Case of Disconnection

	Conclusions

	The Experiment Results
	The Experiments of the KF Algorithm using WSN
	The Experiments of the EKF Algorithm using WSN
	Conclusions

	Summary and Outlook
	References
	Appendix
	Parameters Identification of the Model
	Building Interface between Genopt and Dymola
	Building Interface between Genopt and Dymola

	The Implementation of KF in the WSN
	FIR Filter Function
	Structure Instance of the Sensor
	KF Structure
	Fixed-Point Arithmetic

	The Implementation of EKF in the WSN
	EKF Structure
	EKF Function Definition
	EKF Matrix Definition
	Compensation of the EKF Estimation

	The Experiment Results

