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Zusammenfassung

In dieser Dissertation untersuchen wir die Berechnungskomplexitit von fiinf NP-
vollstandigen Graphproblemen. Es wird weithin angenommen, dass NP-vollstdn-
dige Probleme im Allgemeinen nicht effizient gelost werden konnen, das heil3t, dass
sie keine Polynomialzeitalgorithmen erlauben. Diese Annahme basiert auf vielen
bisher nicht erfolgreichen Versuchen das Gegenteil zu beweisen. Aus diesem Grund
versuchen wir Eigenschaften der Eingabe herauszuarbeiten, die das betrachtete
Problem handhabbar oder unhandhabbar machen. Solche Eigenschaften messen
wir mittels Parametern, das heilt, Abbildungen, die jeder moéglichen Eingabe eine
natiirliche Zahl zuordnen. Fiir einen gegebenen Parameter x versuchen wir dann
Fixed-Parameter Algorithmen zu entwerfen, also Algorithmen, die auf Eingabe g
eine obere Laufzeitschranke von ¢(x) - |g|® erlauben, wobei ¢ eine berechenbare
Funktion ist, |g| die Lange der Eingabe, und c eine Konstante. Natiirlich ist ¢ dabei
eine moglichst kleine einstellige Zahl und ¢ eine moglichst schwach wachsende
Funktion, die allerdings exponentiell sein muss.

In den Graphproblemen, die wir in dieser Dissertation studieren, reprasentiert
unsere Eingabe eine Situation in der wir einen Losungsgraph finden sollen. Zusétz-
lich sollen die Losungsgraphen bestimmte problemspezifische Eigenschaften ha-
ben. Wir betrachten drei Varianten dieser Eigenschaften:

Zundchst suchen wir einen Graphen, der sparse sein soll. Das heil3t, dass er we-
nige Kanten enthalten soll.

Dann suchen wir einen Graphen, der dense sein soll. Das heif3t, dass er viele Kan-
ten enthalten soll.

Zuletzt suchen wir einen Graphen, der robust sein soll. Das heif3t, dass er eine
gute Losung bleiben soll, selbst wenn er einige kleine Modifikationen durchmacht.

Be sparse! In diesem Teil der Arbeit analysieren wir zwei dhnliche Probleme. In
beiden ist die Eingabe ein Hypergraph #, bestehend aus einer Knotenmenge V
und einer Familie & von Teilmengen von V, genannt Hyperkanten. Die Aufgabe ist



einen Support fiir 7€ zu finden, einen Graphen G, sodass fiir jede Hyperkante W € &
der induzierte Teilgraph G[W] verbunden ist.

Motiviert durch Anwendungen im Netzwerkdesign betrachten wir SUBSET IN-
TERCONNECTION DESIGN, worin wir eine natiirliche Zahl f als zusétzliche Einga-
be bekommen, und der Support héchstens |V| + f — 1 Kanten enthalten soll. Wir
zeigen, dass SUBSET INTERCONNECTION DESIGN einen Fixed-Parameter Algorith-
mus in Hinsicht auf die Zahl der Hyperkanten im Eingabegraph erlaubt, und einen
Fixed-Parameter Algorithmus in Hinsicht auf f+d, wobei d die GroRe einer groten
Hyperkante ist.

Motiviert durch eine Anwendung in der Hypergraphvisualisierung studieren wir
r-OUTERPLANAR SUPPORT, worin der Support fiir #€ r-outerplanar sein soll, das
bedeutet, er soll eine kantenkreuzungsfreie Einbettung in die Ebene erlauben mit
hochstens r Schichten. Wir zeigen, dass r-OUTERPLANAR SUPPORT einen Fixed-
Parameter Algorithmus in Hinsicht auf m + r zulésst, wobei m die Anzahl der Hy-
perkanten im Eingabehypergraphen ¢ ist.

Be dense! In diesem Teil der Arbeit studieren wir zwei Probleme, die durch Com-
munity Detection in sozialen Netzwerken motiviert sind. Dabei ist die Eingabe ein
Graph G und eine natiirliche Zahl k. Wir suchen einen Teilgraphen G’ von G, der
(genau) k Knoten enthélt und dabei eine von zwei mathematisch prazisen Defini-
tionen davon, dense zu sein, aufweist.

In p-CLIQUE, 0 < p < 1, soll der gesuchte Teilgraph G’ mindestens p(£) Kanten
enthalten. Wir studieren die Berechnungskomplexitdt von pu-CLIQUE in Hinsicht
auf drei Parameter des Eingabegraphen G: dem maximalen Knotengrad A, dem
h-Index h, und der Degeneracy d. Es gilt A = h = d fiir jeden Graphen und sowohl
h als auch d nehmen kleine Werte in Graphen an, die aus sozialen Netzwerken ab-
geleitet sind. Fiir A und £ erhalten wir Fixed-Parameter Algorithmen fiir y- CLIQUE
und wir zeigen, dass fiir d + k wahrscheinlich kein Fixed-Parameter Algorithmus
existiert. Unsere positiven algorithmischen Resultate erhalten wir indem wir ein
allgemeines Framework zum Optimieren von Zielfunktionen tiber Teilgraphen mit
k Knoten entwickeln.

In HIGHLY CONNECTED SUBGRAPH soll in dem gesuchten Teilgraphen G’ (mit
k Knoten) jeder Knoten Knotengrad mindestens |k/2] + 1 haben. Wir analysieren
einen Teil der sogenannten Parameter Ecology fiir HIGHLY CONNECTED SUBGRAPH.
Das heil3t, wir navigieren im Raum der moglichen Parameter auf der Suche nach
einem verniinftigen Trade-off zwischen kleinen Parameterwerten in der Praxis und
effizienten oberen Laufzeitschranken. Die Highlights hier sind, dass es keine Algo-
rithmen mit 2°"” - poly(n)-Laufzeit fiir HIGHLY CONNECTED SUBGRAPH gibt, es sei
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denn die Exponential Time Hypothesis stimmt nicht; ein Algorithmus mit O(4” - n?)-
Laufzeit, wobei y die Anzahl der Kanten ist, die aus dem Losungsgraphen G’ heraus-
gehen; und ein Algorithmus mit 200V#1989 4 o2 5 -Laufzeit, wobei a die Anzahl der
Kanten ist, die nicht in G’ enthalten sind.

Be robust! In diesem Teil der Arbeit untersuchen wir das Problem VECTOR CON-
NECTIVITY, in dem wir einen Graphen G, ein Knotenlabeling A: V(G) — {1,...,d},
sowie eine natiirliche Zahl k gegeben haben. Wir sollen eine Knotenteilmenge S
V(G) der GroR3e hochstens k finden, sodass jeder Knoten v € V(G) \ S mindestens
A(v) knotendisjunkte Pfade von v nach S in G hat. Solch eine Menge S ist bei-
spielsweise niitzlich, wenn wir Server in einem Netzwerk platzieren sollen, sodass
Robustness-of-Service-Bedingungen erfiillt sind. Wir zeigen, dass VECTOR CON-
NECTIVITY einen randomisierten Fixed-Parameter Algorithmus in Hinsicht auf k
zuldsst, keine polynomielle Kernelisierung in Hinsicht auf k + d zuldsst, aber wenn
dagegen d als eine Konstante betrachtet wird, eine Kernelisierung mit O(k) {ibrig-
bleibenden Knoten erlaubt.
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Abstract

In this thesis we study the computational complexity of five NP-complete graph
problems. It is widely accepted that, in general, NP-complete problems cannot be
solved efficiently, that is, in polynomial time, due to many unsuccessful attempts to
prove the contrary. Hence, we aim to identify properties of the inputs other than
their length, that make the problem tractable or intractable. We measure these
properties via parameters, mappings that assign to each input a nonnegative inte-
ger. For a given parameter k, we then attempt to design fixed-parameter algorithms,
algorithms that on input g have running time bounded from above by ¢(x(g)) - |ql°,
where ¢ is a computable function, |g| is the length of g, and c is a constant. Of
course, it is prefereable that c is a small single digit number and that ¢ grows as
slow as possible, although it has to be exponential.

In each of the graph problems treated in this thesis, our input represents the set-
ting in which we shall find a solution graph. In addition, the solution graphs shall
have a certain property specific to our five graph problems. This property comes in
three flavors.

First, we look for a graph that shall be sparse! That is, it shall contain few edges.

Second, we look for a graph that shall be dense! That is, it shall contain many edges.

Third, we look for a graph that shall be robust! That is, it shall remain a good
solution, even when it suffers several small modifications.

Be sparse! 1In this part of the thesis, we analyze two similar problems. The input
for both of them is a hypergraph 5, which consists of a vertex set V and a family & of
subsets of V, called hyperedges. The task is to find a support for 7€, a graph G such
that for each hyperedge W € & we have that G[W] is connected. Motivated by ap-
plications in network design, we study SUBSET INTERCONNECTION DESIGN, where
we additionally get an integer f, and the support shall contain at most |V|+ f -1
edges. We show that SUBSET INTERCONNECTION DESIGN admits a fixed-parameter
algorithm with respect to the number of hyperedges in the input hypergraph, and



a fixed-parameter algorithm with respect to f + d, where d is the size of a largest
hyperedge.

Motivated by an application in hypergraph visualization, we study r-OUTERPLA-
NAR SUPPORT where the support for #¢ shall be r-outerplanar, that is, admit a edge-
crossing free embedding in the plane with at most r layers. We show that r-OUTER-
PLANAR SUPPORT admits a fixed-parameter algorithm with respect to m + r, where
m is the number of hyperedges in the input hypergraph FC.

Be dense! In this part of the thesis, we study two problems motivated by commu-
nity detection in social networks. Herein, the input is a graph G and an integer k.
We look for a subgraph G’ of G containing (exactly) k vertices which adheres to one
of two mathematically precise definitions of being dense.

In u-CLIQUE, 0 < u < 1, the sought k-vertex subgraph G’ should contain at least
,u(];) edges. We study the complexity of u-CLIQUE with respect to three parameters
of the input graph G: the maximum vertex degree A, h-index &, and degeneracy d.
We have A = h = d in every graph and & as well as d assume small values in graphs
derived from social networks. For A and for £, respectively, we obtain fixed-param-
eter algorithms for pu-CLIQUE and we show that for d + k a fixed-parameter algo-
rithm is unlikely to exist. We prove the positive algorithmic results via developing a
general framework for optimizing objective functions over k-vertex subgraphs.

In HIGHLY CONNECTED SUBGRAPH we look for a k-vertex subgraph G’ in which
each vertex shall have degree atleast [ k/2]+1. We analyze a part of the so-called pa-
rameter ecology for HIGHLY CONNECTED SUBGRAPH, that is, we navigate the space
of possible parameters in a quest to find a reasonable trade-off between small pa-
rameter values in practice and efficient running time guarantees. The highlights
are that no 2°" . n°-time algorithms are possible for n-vertex input graphs unless
the Exponential Time Hypothesis fails; that there is a O(4” - n?)-time algorithm for
the number y of edges outgoing from the solution G'; and we derive a 20(V@108® 4
a’nm-time algorithm for the number a of edges not in the solution.

Be robust! In this part of the thesis, we study the VECTOR CONNECTIVITY prob-
lem, where we are given a graph G, a vertex labeling A: V(G) — {1,...,d}, and an
integer k. We are to find a vertex subset S < V(G) of size at most k such that each
vertex v € V(G)\ S has A(v) vertex-disjoint paths from v to Sin G. Such a set S is use-
ful when placing servers in a network to satisfy robustness-of-service demands. We
prove that VECTOR CONNECTIVITY admits a randomized fixed-parameter algorithm
with respect to k, that it does not allow a polynomial kernelization with respect to
k+d but that, if d is treated as a constant, then it allows a vertex-linear kernelization
with respect to k.



Preface

In this thesis, I summarize some of my findings during my research from April
2011 to December 2015. During this time, I have been a member of the research
group of Prof. Rolf Niedermeier at the Technische Universitét Berlin. I gratefully ac-
knowledge financial support by Deutsche Forschungsgemeinschaft, project DAPA
(NI369/12), from April 2011 up to the date of writing.

My research was almost exclusively in design and analysis of algorithms for NP-
complete graph problems. Within this frame of reference, however, I have been
interested in diverse topics and this is reflected in the present thesis. Most of my
research has been in close collaboration with my coauthors; in the articles covered
in this thesis, my coauthors were, in alphabetical order, René van Bevern, Jiechua
Chen, Falk Hiiffner, Iyad A. Kanj, Christian Komusiewicz, Stefan Kratsch, Rolf Nie-
dermeier, Ondfej Suchy, and Mathias Weller.

The research on hypergraph supports (Chapters 3 and 4) was initiated during a
retreat of the research group in Zinnowitz in March 2012. Falk Hiiffner proposed
to study minimum-edge hypergraph supports (Chapter 3). I immediately stepped
into the trap of removing “superfluous” vertices contained in the same hyperedges
(twins). We later discovered that the same happened to several researchers be-
fore. Back in Berlin, Jiehua Chen, and Christian Komusiewicz proved me wrong
by a counterexample.

The kernelization with respect to the number of hyperedges was developed mainly
by Christian Komusiewicz. The fixed-parameter tractability result with respect to
the maximum hyperedge size and feedback edge number of the support were devel-
oped jointly by all coauthors and me. I was responsible for the detailed correctness
proofs for the crucial Rules 3.7 and 3.8. Mathias Weller and I also tried to develop
a more top-down approach, characterizing hypergraphs which require large feed-
back edge number in supports, but were not successful. This I would like to revisit
in the future. The example of an instance with large feedback edge number is by
Ondfej Suchy.
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I presented our work on the 24th International Symposium on Algorithms and
Computation (ISAAC '13) [Che+13] and prepared the journal version for SIAM Jour-
nal on Discrete Mathematics [Che+15].

The research on planar hypergraph supports (Chapter 4) was initiated together
with René van Bevern, Christian Komusiewicz, and Rolf Niedermeier when Iyad
A. Kanj came to our group for a stay from October 2014 to March 2015. Jointly,
we developed a uniform fixed-parameter algorithm with respect to the number
of hyperedges in the input graph by introducing the new concept of well-formed
separator sequences, a sequence of separators which cut the graph by layers, each
separator in the same way [Bev+15a]. I contributed several key ideas to the proof
and wrote some of the main parts of the decomposition-based approach for find-
ing long well-formed separator sequences. I later discovered that, for our purpose,
so-called sphere-cut branch decompositions [Dor+10] can be used instead of the
more constrained well-formed separator sequences. I wrote an alternative proof
using these decompositions. A non-uniform tractability result (given in a general-
ized form in Section 2.1) was pointed out by a reviewer. I prepared the submission
which appeared in 24th International Symposium on Graph Drawing and Network
Visualization (GD ’16) [Bev+16].

The p-CLIQUE problem (Chapter 6) was the first problem that I worked on for
this thesis. I was nudged towards it by my colleague and then office mate Christian
Komusiewicz. He asked me about the complexity of ;- CLIQUE on bounded-degree
graphs. After toiling on this question for some time, I found a somewhat convoluted
NP-completeness proof [Sor13], only to discover afterwards that there was a very
elegant one in the literature [FS97]. I also observed the W[1]-hardness with respect
to the degeneracy and solution size combined.

Together, we developed a fixed-parameter algorithm for u-CLIQUE with respect
to the maximum degree A. This algorithm has a subroutine which enumerates
k-vertex connected subgraphs in bounded-degree graphs. We published our work
in the Proceedings of the 7th International Symposium on Parameterized and Ex-
act Computation (IPEC '12) [KS12], and I gave the presentation. After the sympo-
sium, I improved the enumeration routine so that the exponential part of the run-
ning time was asymptotically optimal. Afterwards, Mikko Koivisto (University of
Helsinki) pointed out to us that the corresponding upper bound on the number of
k-vertex connected subgraphs were already present in the literature [Bol06]. This
meant that proving the running time came down to the simpler matter of showing
that no subgraph is enumerated too often. Nevertheless, we think that the algorith-
mization of this bound is a useful black-box relevant to the community. Following



Christian’s hints, I also worked out the details of balancing out the enumeration
versus dynamic programming. Finally, I generalized the whole procedure to the
subclass of FIXED-CARDINALITY OPTIMIZATION given in Chapter 6. A long version
of our article appeared in Discrete Applied Mathematics [KS15a].

Christian and I also guided Kolja Stahl’s bachelor thesis [Stal3] which consisted
of an implementation of an algorithm based on the theoretical results in Chap-
ter 6 and engineering the resulting implementation for efficiency. Subsequently,
the three of us further developed the algorithm and I presented the results at the
14th International Symposium on Experimental Algorithms (SEA '15) [KSS15].

Christian Komusiewicz also relayed the HIGHLY CONNECTED SUBGRAPH problem
to me (Chapter 7) as a simplified version of a problem which arised in his work with
his coauthors on a related clustering algorithm [Hiif+14]. I proved that HIGHLY
CONNECTED SUBGRAPH is unlikely to admit subexponential-time algorithms with
respect to the number of vertices in the input graph. As a way to tackle practical
instances, I proposed to analyze the edge isolation parameter, the number of edges
outgoing from the solution. From the diagram of parameter relations also natu-
rally arose the edge deletion parameter. I developed the framework of reduction
rules that the fixed-parameter tractability results for both edge isolation and dele-
tion parameters are based on. I also proved fixed-parameter tractability for both
parameters; the single exponential running time for the edge isolation parameter is
due to Falk Hiiffner. It seemed natural to try and get a subexponential-time algo-
rithm with respect to the edge deletion parameter. After some calculations I could
get it to work, indeed. We published our results in the Proceedings of the 41st In-
ternational Conference on Current Trends in Theory and Practice of Computer Sci-
ence (SOFSEM '15) [HKS15] and I gave the presentation. For this thesis, I wanted to
see how far we can push the simple algorithmic approach that I had for the edge
deletion parameter, resulting in the improved running time given in Chapter 7. 1
also added simple fixed-parameter tractability results for the maximum degree and
h-index parameters to show the similarities between p-clique and highly connected
subgraph problems with regard to maximum degree, h-index, and degeneracy.

Regarding VECTOR CONNECTIVITY (Chapter 8), Stefan Kratsch approached me in
July 2014. He had designed two reduction rules for VECTOR CONNECTIVITY (Rules 8.1
and 8.2) and asked whether we can use them to find a problem kernel if the max-
imum demand is upper bounded by a constant. After some discussion, we con-
cluded that this should be the case. I worked out the details for the missing Rule 8.3.
Two referees for the resulting paper pointed out the result by Fomin et al. [Fom+13],



leading to an existence result for the problem kernel. Another referee pointed out
a simplification in the design of Rule 8.3 which Stefan and I incorporated when
Stefan visited Berlin in September 2014. I was not satisfied with the way that we
treated three distinct cases in the proof and subsequently unified them, resulting
in the current version of Lemma 8.13. We published our results in the Proceed-
ings of the 10th International Symposium on Parameterized and Exact Computation
(IPEC’15) [KS15b], and I gave the presentation. We received the Excellent Student
Paper Award, and were invited to a special issue of the Algorithmicajournal [KS16].

During the time that I worked on this thesis, I was also involved in several projects
which I do not cover here, including Golomb ruler construction [Sor+14], vehi-
cle routing with tour-length constraints [Sor+11; Sor+12], with capacity constraints
[Bev+14b; BKS15], and with bounded-overlap constraints [Flu+15], board game de-
sign [DKS14], balanced graph partitioning [Bev+14al, Google Scholar H-index ma-
nipulation [Bev+15b], feature selection [Fro+16], the Information System on Graph
Classes and their Inclusions!, and I contributed to a survey about the complexity
of arc routing problems [Bev+14c] with a chapter on variants of the CHINESE POST-
MAN problem.

lwww.graphclasses.org
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Chapter 1

Introduction

In this work, we design and analyze algorithms for computationally hard graph
problems. In most of the problems we study, we are given a graph, consisting of
a set of vertices and a set of pairs of vertices, called edges. We search for another
graph that fulfills certain constraints.

This work consists of three parts, and in each of them, we treat one type of graph
problem. The constraints on the output graph in the three types of problems are,
respectively:

Be sparse! Be dense! Be robust!

What does it mean for a graph to be sparse, dense, or robust? Roughly speaking, a
graph is sparse if it contains few edges in comparison to the maximum number of
edges that it could have. In contrast, a graph is dense if it has a large number of
the edges it could have. A graph is robust with respect to a certain property if it
keeps this property after several small modifications. There are numerous mathe-
matical definitions for sparsity [NM12], density [BP13; PYB13; SB13], and robust-
ness [BEN09]. Of course, it depends on the particular context in which we use our
graph problem which of these definitions are meaningful.

Defining sparsity, density, and robustness is not the point of this work. Rather,
we take several such notions from the literature and applications, and analyze our
graph problems with respect to these. The notions that we study are often not very
complicated; however, the problems arising from them are computationally hard.

How are sparsity, density, and robustness useful? As mentioned, this depends on
the particular application. Thus, let us give a brief overview over the types of prob-
lems that we study.

In Part I (Be sparse!) we study the design of interconnection graphs, a prob-
lem arising in communication systems, for example. Herein, we are given a set



Chapter 1. Introduction

of servers, and a family of subsets of these servers, each of which represents servers
that want to communicate with each other without involving the remaining servers.
Our goal is to design an interconnection network, that is, a graph that contains all
servers as vertices and that interconnects each of the given subsets of the servers.
The overall efficiency of the resulting communication network corresponds to the
sparsity of the graph, which we hence want to maximize. This and related problems
have been studied in various different contexts by different communities [JP87;
DMS88; CDS04; Cho+07; AAR10; Buc+11].

In Part II (Be dense!) we study the problem of finding cohesive subgroups in a
given network, for example, we want to find communities in social networks. If
we model individuals as vertices and the friendship relations as edges, then this
problem corresponds to finding a dense subgraph of a given graph. Including one
of Karp’s 21 original NP-hard problems [Kar72] as a special case, this is one of the
most studied problems in algorithmics.

In Part III (Be robust!) we study the problem of selecting nodes in a network as
servers, so that each of a given set of clients, also nodes in the network, enjoys
interruption-free service, even if a specified number of nodes in the network fail.
In other words, we aim to find a robust subnetwork containing clients and servers
and in which no client can be separated from the servers by deleting the specified
number of nodes. The study of this problem started only recently [Bor+14; CMR15].

Finally, we mention that sparsity can also be a restriction on the input that is
relevant to applications of the graph problems studied here and that sparsity in the
input graph is often algorithmically useful.

Elements of Parameterized Algorithmics

Most of the problems that we study are computationally hard, that is, NP-hard in
general. However, it is often the case that the problem instances constructed in
the NP-hardness proof have certain properties, which instances from real-world
applications often do not have. For instance, in the canonical NP-hardness proof
for finding communities in a given social network (the problem from Part II), the
social network that we construct is dense. Social networks are sparse in practice,
however [ELS13]. Hence, NP-hardness is merely a starting point for classifying the
computational complexity. To obtain results of relevance to the actual application,
we need refined analyses.

What is parameterized algorithmics? In this work, we study the parameterized
complexity of graph problems. Herein, our aim is to determine the influence of



certain properties of the input on the computational complexity or the influence of
restrictions on the output on the computational complexity. These properties and
restrictions are made tangible by parameters, mappings that assign to each input
an integer, the parameter value. For example, we can measure the sparsity of an
input graph by the maximum (vertex) degree, the maximum over all vertices v of
the number of edges incident with v. Clearly, if this parameter has a small value,
then the input is sparse. The question that we pursue is then: does our problem
become tractable if we assume that the input has a small parameter value?

The maximum degree is an example of a parameterization of the input. In this
work, we will equally frequently use parameters of the output. For example, in the
interconnection graph design problem in Part I, we use the so-called feedback edge
number of the output graph, another measure of sparsity.

What are the elements of parameterized algorithmics? Parameterized complexity
and, with it, parameterized algorithmics have been pioneered by Downey and Fel-
lows [DF99]. Since then, numerous case studies, treating the parameterized com-
plexity of a given problem, were performed, leading to more and more refined tech-
niques for deriving algorithms and running-time lower bounds. We mention here
just two simple but popular algorithmic techniques:

Search tree algorithmsencode (partial) solutions as vertices in arooted tree whose
depth and maximum degree is bounded from above by a small function of the pa-
rameter value. This implies that the overall tree has size bounded from above by a
function of the parameter value and that, if the parameter has a small value, then
also the tree has a reasonably small size. The algorithm then traverses the tree in
order to find a solution.

Data reduction is to remove irrelevant parts of the input or to replace parts of the
input by smaller ones which change the solution in some known way. The goal of
data reduction is to shrink the input instance efficiently prior to applying an algo-
rithm that finds a solution, for example, prior to applying a search tree algorithm.
Parameters give a way to prove guarantees on the effectiveness of data reduction;
they make it possible to bound from above the size of the instance resulting from
data reduction.

In this work, we add to the body of case studies for parameterized complexity by
studying the three graph problems mentioned before. The techniques which we
explore can be summarized as follows.

In Part I we use data reduction as our main tool. Owing to the vague constraints
on the solution that the interconnection graph problem imposes, an important
technique is to take an (unknown) optimal solution, and to rewrite it until it has
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a certain structure while remaining optimal. Based on this structure, we can then
design data reduction rules.

In Part II we provide both upper and lower running time bounds for data-driven
parameterizations. More specifically, we use parameters which have been verified
to assume small values in practice and also consider the trade-off between small pa-
rameter values and useful running-time upper bounds for the corresponding fixed-
parameter algorithms. We emphasize simple search tree algorithms, which can be
implemented easily and allow for many heuristic tweaks.

In Part IIT we use separator-based techniques to design data reduction rules. Sep-
arators in a graph are vertex sets whose removal disconnects the graph. One of the
reduction rules replaces a part of the graph with a smaller one, changing the solu-
tion in some known way. One of the main challenges here is to define what it means
to change the solution in a known way.

Before going into more details, we describe our notation and give basic defini-
tions in Section 1.1. A list of the problems referenced in this thesis is given in Ap-
pendix A.
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1.1. Preliminaries

In this section we describe our notation used throughout this work and we give
some basic definitions that we need. We assume that the reader is familiar with
some basics of set theory, discrete mathematics, calculus, computational complex-
ity, and analysis of algorithms.

Some general notation that we use throughout is as follows.

Lower-case letters denote elements of fundamental sets, for example integers ¢, n,
m or vertices u, v, w of a graph.

Upper-case letters denote sets of elements, for example, a set V of vertices.

Calligraphic letters denote families of sets or entities related to families of sets, for
example, a partition % of the vertices of a graph, a hypergraph #¢, or a ma-
troid L .

Blackboard bold letters denote universal sets, for example, the set G of finite graphs
or the set N of nonnegative integers.

Fraktur letters denote geometric objects, for example, a sphere G or a plane 9.

Lower-case greek letters denote functions and relations, for example, an integer la-
beling 1 of the vertices of a graph.

By Aw B we denote the union of two disjoint sets A and B. For a family of sets 7,
we write U% in place of Uses S. For equivalence relations p over some set S we
use [v], to denote the equivalence class of v € S in p. For a set S and a positive
integer i € N, by (}) we denote the family of i-element subsets of S.

1.1.1. Graphs and hypergraphs

We now describe our notation for graphs and hypergraphs. Our graph notation
is mostly canon and leans on the one used in the book by Diestel [Diel0]. For
hypergraphs, it is important to notice the difference between induced subhyper-
graphs and shrunken subhypergraphs, both of which are natural generalizations of
induced subgraphs.

Graphs. A (undirected) graph G is a tuple (V, E) consisting of a vertex set V, also
denoted V(G), and an edge set E, also denoted E(G). The edge set E(G) consists of
two-element subsets of V. The vertices u, v are also called the ends of an edge {u, v}.
Unless stated otherwise, all graphs are undirected, and do not contain any self-
loops or parallel edges. The order of a graph is number of its vertices. Where it
is not ambiguous, we denote n:=|V(G)| and m := |E(G)|.
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We say that an edge and a vertex are incident if the edge contains the vertex. Two
vertices are called adjacent or neighbors if they are incident with the same edge.
The open neighborhood Ng(v), or simply neighborhood, of a vertex v contains all
its neighbors in G. We omit the subscript G from Ng(v) if it is not ambiguous. The
degree of a vertex v is the cardinality | N (v)| of its neighborhood. We sometimes ex-
tend the notion of neighborhood to sets of vertices, that is, for a vertex subset S< V
we denote by N(S) := U,es N(v) \ S the neighborhood of S. The closed neighbor-
hood Ng[v] of a vertex v is Ng(v) U {v}.

A subgraph of a graph G is a graph G’ such that V(G') € V(G) and E(G") < E(G).
We say that G’ is a proper subgraph if V(G') C V(G) or E(G") C E(G). For W € V(G),
the subgraph of G induced by W is a graph

(W {el(ec W) A e E(G)})

which we also denote by G[W]. Removing a vertex subset S < V(G) from G means
to take G[V(G) \ S]. We also write G — S:= G[V(G) \ S] as a shorthand. Removing an
edge subset F < E(G) from G means to take the graph G- F := (V(G), E(G) \ F).

A walk between two vertices u, v in graph G is an alternating sequence of vertices
and edges that starts with u# and ends with v such that consecutive elements in the
sequence are incident with one another. Two vertices are connected if they have a
walk between them. The distance of two connected vertices u, v is the length of a
shortest path between u and v. A set of vertices is connected if the vertices in the set
are pairwise connected. A graph G is connected if V(G) is connected. A connected
component C in a graph G is a connected subgraph of G which is not a proper sub-
graph of any other connected subgraph of G. In other words, C = G[D] for a vertex
subset D < V(G) and either D = V(G) or no vertex v of G can be added to D such
that the subgraph induced by D U {v} is connected. For notational convenience,
we sometimes identify connected components with their vertex sets. A separator
in a graph G is a vertex subset S such that G — S has more connected components
than G. A cut in G is an edge subset F < E(G) such that G — F has more connected
components than G. A bridge is an edge e such that {e} is also a cut.

The complement G of a graph G is the graph (V(G), (V(ZG)) \E(G)).

Special vertex subsets. Important special types of vertex subsets are as follows.
* An independent set in a graph is a vertex subset of pairwise nonadjacent ver-
tices.
e A vertex cover in a graph G is a vertex subset S such that V(G) \ S is an inde-
pendent set. Equivalently, each edge in G has at least one end in S.
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* A dominating set in a graph G is a vertex subset S such that each vertex in G
is contained in S or adjacent to some vertexin S.

Special graphs. Important special types of graphs are as follows.

e A cycleis a connected graph in which each vertex has degree exactly two. The
length of a cycle is its number of edges.

* A path is a connected graph in which exactly two vertices have degree one
and the remaining vertices have degree two. We also call the vertices with
degree one the ends, starting points or endpoints of the path. The length of a
path is the number of its edges. We also say that a path is befween its ends or
that it runs from one end to the other.

e A forest is a graph that does not contain a cycle as a subgraph.

e A treeis a connected forest. In a tree, the vertices with degree one are called
leaves and the remaining vertices inner vertices.

* A staris a tree with precisely one inner vertex.

* A clique or a complete graph is a graph in which all vertices are pairwise adja-
cent. We usually use K, to denote an n-vertex clique.

* A bipartite graph G admits a bipartition (U, W) of its vertex set such that U
and W are independent sets. Vertex sets U and W are also called the partite
sets of G.

A Hamiltonian cycle in a graph G is subgraph of G that is a cycle and contains all
vertices of G. A Hamiltonian path is defined analogously.

Boundaried graphs and gluing. For a nonnegative integer b € N, a b-boundaried
graph is a tuple (G, B, ) where G is a graph, where B < V(G) such that |B| = b, and
where f is a bijection : B — {0,..., b}. Vertex subset B is also called the boundary
and S the boundary labeling. For ease of notation we also refer to (G, B, ) as the
b-boundaried graph G with boundary B and boundary labeling 8. For brevity, we
also denote by B-boundaried graph G that b-boundaried graph G whose boundary
is the domain of f and whose boundary labeling is £.

For a nonnegative integer b, we define the gluing operation o, as a mapping
that maps two b-boundaried graphs to an ordinary graph as follows: Given two
b-boundaried graphs G;, G, with corresponding boundaries B;, B, and boundary
labelings f3;, B,, to obtain the graph G, o, G, take the disjoint union of G; and G,
and identify each v € By with ,Bgl(ﬁl (v)) € B,. We omit the index b in oy, if it is clear
from the context.
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Directed graphs. A directed graph D is a tuple (V, A) consisting of a vertex set V,
also denoted V' (D), and an arc set A, also denoted A(D). The arc set consists of or-
dered pairs of vertices in V. Many definitions for undirected graphs have straight-
forward analogs in directed graphs; the following are special, however. The indegree
of a vertex v € V is the cardinality of {(u, v) | (i, v) € A} and its outdegree is the car-
dinality of {(v, u) | (v, u) € A}. A vertex in a directed graph is a source if its outdegree
is at least 1 and its indegree is 0. Conversely, a vertex is a sink if its indegree is at
least 1 and its outdegree is 0.

Hypergraphs. A hypergraph 5€ is a tuple (V,&) consisting of a vertex set V, also
denoted V(#€) and a hyperedge set &, also denoted & (#€). The hyperedge set & is
a family of subsets of V, that is, F < V for every hyperedge F € §. Where it is not
ambiguous, we denote n := |V| and m := |€]. When specifying running times, we use
|#€| to denote |V (SE)| + X pee s |F|. The size |F| of a hyperedge F is the number of
vertices in it. Unless stated otherwise, we assume that hypergraphs do not contain
hyperedges of size at most one or multiple copies of the same hyperedge. (These
do not play any role for the problems under consideration, and removing them can
be done easily and efficiently.)

Avertex v € V and a hyperedge F € & are incident with one another if v € F. Fora
vertex v € V(¥€), we denote & 4 (v) := {F € #C | v € F}. If it is not ambiguous, we omit
the subscript 7€ from & 4. A vertex u covers a vertex v if &(v) < &(u). Two vertices
u,v eV are twins if &(v) = &(u). Clearly, the relation 7 on V defined by Vu,v €
V:(u,v) et < &(u) =8E(v) is an equivalence relation. The equivalence classes [u];,
u eV, are called twin classes.

The subhypergraph induced by V' < V is the hypergraph #€[V'] := (V',&") where
&' ={F c V' | F € &}. Removing a vertex subset S € V(#) from a hypergraph #€ =
(V,&) results in the hypergraph # — S:= (V' \ S,&’) where &' is obtained from {F\ S |
F € &} by removing empty, singleton, and duplicate sets. For brevity, we also write
€ — v instead of # — {v}. The subhypergraph shrunken to V' < V is the hypergraph
Sy =40 —(V\V").

A hyperwalk between two vertices u and v is an alternating sequence of vertices
and hyperedges starting in © and ending in v such that consecutive elements are in-
cident with one another. A hypergraph is connected if there is a hyperwalk between
each pair of vertices.

The incidence graph of a hypergraph # is a bipartite graph G with V(G) = V(#)w
&(¥0), and E(G) = {{v, F} | (v € V(HO)) A (F € E(FO)) A (v € F)}. The dual hypergraph of
a hypergraph € is the hypergraph (€ (¥0),{€ (v) | v € V(FO)}).
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1.1.2. Classical complexity

We now recall some basic notions from classical complexity theory and algorith-
mics and introduce some related notation.

Decision problems. Most of the computational problems treated in this work are
formulated as decision problems, that is, for a fixed language, we are given a string
and we are to decide whether this string is contained in that language.

More formally, let X be an alphabet, that is, any finite set. By Z* we denote the set
of all finite strings, sequences of elements of the alphabet X. For a string p € Z* we
denote by |p| its length, that is, the number of elements in the string p. A language
is a subset of Z*. A decision problem for a language P < £* asks whether p € P for
a given string p € £*. For convenience, we denote a decision problem also by the
corresponding language.

Usually, for p to be in P, it must fulfill certain implicit, easily-checkable well-
formedness conditions, for example, that p encodes a tuple of a graph and an inte-
ger. If p fulfills the well-formedness conditions implicit in the considered decision
problem P, then we say that p is an instance of P. If additionally p € P, then we say
that p is a yes-instance or, if it is clear that p is an instance of P, then we simply say
that p is yes for the problem P. Conversely, an instance p of P for which p ¢ Pisa
no-instance or simply no.

P, NP, and reductions. We assume that the reader is familiar with the concept
of (deterministic) Turing machines. Definitions can be found in the literature, see
Papadimitriou [Pap94] and Arora and Barak [AB09], for example. The time needed
by a Turing machine for a computation is the number of elementary computation
steps it performs. A Turing machine decides a decision problem P < X* if on every
input p € X* it halts after a finite number of steps and, furthermore, its memory tape
is empty after halting if and only if p € P. The class P contains all decision problems
that can be decided by a deterministic Turing machine within time that is bounded
from above by a polynomial in the input length. The class NP contains all decision
problems P with the following property. There is a Turing machine M and for each
p € P there is a polynomial ¢ and a string q(p) € *, such that |g(p)| < ¢(Ip]) and M
decides {(p, g(p)) | p € P} in polynomial time.

It is generally believed that not all problems in NP can be decided in polynomial
time by a Turing machine, that is, P # NP. As a proxy for studying this conjecture,
Cook [Coo71] and Karp [Kar72] introduced the concept of NP-hardness. To define
it, we need a notion of reduction. A polynomial-time many-one reduction from a
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decision problem P to a decision problem Q is a mapping p: ~* — X* such that for
each p € X* we have that p € P if and only if p(p) € Q and such that there is a Turing
machine that computes p in polynomial time. A decision problem P is NP-hard if
for every problem Q in NP there is a a polynomial-time many-one reduction from Q
to P. Most of the problems studied here are NP-hard.

Algorithm analysis. The computational model that we use to analyze algorithms
is based on a Random Access Machine. We give an informal description, for details
see Papadimitriou [Pap94], for example. A Random Access Machine is a computer
which has access to an array with unbounded number of entries, each of which is
an arbitrarily large integer initialized to 0, and two special registers, the accumula-
tor and the program counter. Both these special registers contain arbitrarily large
integers and are initialized with 0. The Random Access Machine carries out a pro-
gram, a sequence of instructions. In each step, the instruction with the index stored
in the program counter is executed, and the program counter is incremented (ex-
cept for some special instructions). Herein, an instruction in the program is one of
the following:

e reading a bit of the (binary) input string,

e writing a bit to the output string,

* loading a given integer or an integer stored in the array into the accumulator,

 writing the content of the accumulator into some specified cell of the array,

e checking whether the accumulator contains a given integer or is less than a
given integer,

¢ adding or subtracting a given integer to or from the accumulator,

e given an integer n, removing the last n bits from the integer stored in the
accumulator,

¢ setting the program counter to a given integer, and

e stopping the computation.

To analyze the running time of a Random Access Machine we assume that each of
the above instructions takes constant time. Note the absence of a multiplication
instruction. Allowing constant-time multiplication would mean that the resulting
computer can solve NP-hard problems in polynomial time [Sch79]. In contrast,
a Random Access Machine as described above (without constant-time multiplica-
tion) can be simulated by a Turing machine such that the time needed by the Turing
machine is upper bounded by a polynomial of the time needed by the Random Ac-
cess Machine [Sch79].

10



1.1. Preliminaries

We assume that, on top of the above instructions, more elaborate control struc-
tures, like benign if /else and for- and while-loops, are implemented as well as con-
venience features like support for variables etc., all with a time step overhead of at
most a constant factor.

Our running times are given in the “big Oh” or Landau notation, see Cormen et al.
[Cor+09], for example. For an integer n, we also use the term poly(n) for quantity x,
which means that there exists a constant ¢ such that x € O(n°).

1.1.3. Parameterized complexity

One of the most central conecepts in this thesis is parameterized complexity which
was pioneered by Downey and Fellows [DF99]. More recent textbooks include Flum
and Grohe [FGO06], Niedermeier [Nie06], Downey and Fellows [DF13], and Cygan et
al. [Cyg+15].

Basics

Let X be an alphabet. A parameter is a mapping ~* — N. For a string g, x(g) is
the parameter value. A parameterized problem is a tuple (Q, k) of alanguage Q over
some alphabet X and a parameter x. We say that an algorithm is a fixed-parameter
algorithm with respect to a parameter « if the algorithm has running time ¢ (x (g)) -
poly(lgl) where g is the input and ¢ is some computable function. We also call
a running-time function ¢ as above a fixed-parameter running-time function with
respect to k. We usually use the term fixed-parameter algorithm in the context of
a decision problem P and then we assume that the algorithm decides P. However,
sometimes we also use a fixed-parameter algorithm to compute a given function.

We note that sometimes a parameter « is stated explicitly in the instances of a
problem. In such cases, we omit the reference to « and replace it by the value as
stated in the corresponding problem definition. For example, if we have a problem
of finding a solution of size k, then we write “k” for the solution size parameter, that
is, the mapping that takes an instance and extracts the value of k. Moreover, when
specifying running times with respect to a parameter x, we often replace x(q) by
the referenced value if the instance g is clear from the context.

For k € N, the kth slice of a parameterized problem (Q,x) is {g € Q | k(q) = k}. A
parameterized problem (Q,x) is non-uniformly fixed-parameter tractable if for ev-
ery k € N there is a fixed-parameter algorithm with respect to x that decides the
kth slice of (Q,x). Problem (Q,«) is uniformly fixed-parameter tractable if there is

11
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a fixed-parameter algorithm that decides Q with an arbitrary, possibly not com-
putable, fixed-parameter running time function. Problem (Q,«) is strongly uni-
formly fixed-parameter tractableif there is a fixed-parameter algorithm with respect
to x that decides Q. Unless stated otherwise, when writing fixed-parameter tracta-
ble we mean strongly uniformly fixed-parameter tractable.

The class FPT contains all (strongly uniformly) fixed-parameter tractable param-
eterized problems. The class XP contains all parameterized problems which can
be solved in polynomial time for constant parameter values. That is, each param-
eterized problem (Q,x) in XP admits an algorithm that decides Q within running
time ¢(x(q)) - |q|** for each input g € Z*, where ¢ is a computable function.
We also call such an algorithm an XP-algorithm and such a running time an XP-
running time.

Reductions and hardness. To differentiate between FPT and XP, Downey and
Fellows [DF99] describe the following hardness theory. A parameterized reduction
from (Q, ) to (B A) is a mapping p: Q — P such that

e forevery g € X* we have g € Q ifand onlyif p(q) € P,

e thereis a function ¢ such that for every g € X* we have A(p(q)) < ¢(x(q)), and

¢ there is a fixed-parameter algorithm with respect to « that computes p.
We also say that (Q, x) is parameterized reducible to (B, 1).

Downey and Fellows [DF99] introduced a hierarchy of classes W([t], 0 < ¢ € N, of

parameterized problems as follows

FPTcWI[1]cW[2]c...c XP.

For this work, the precise definitions of all these classes are not important. For our
purposes, it suffices to consider only W[1] and W|2], we define them below. A pa-
rameterized problem (Q, k) is called W|t]-hard if every problem in W/[t] is parame-
terized reducible to (Q, x). Each of the inclusions in the hierarchy above is thought
to be proper. In particular, it is widely believed that no W[1]-hard problem admits
a fixed-parameter algorithm.

The classes W[1] and W[2] in the above hierarchy can be defined as follows. The
class W[1] contains all parameterized problems which are parameterized reducible
to the following problem parameterized by k [Fel+09].

12
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MULTICOLORED CLIQUE

Input: A nonnegative integer k and an undirected graph G along with
a partition of its vertex set into k independent sets.

Question: Does G have a k-vertex clique as a subgraph?

The class W[2] contains all parameterized problems which are parameterized re-
ducible to the following problem parameterized by k.

DOMINATING SET
Input: Anundirected graph G and an integer k.
Question: Is there a dominating set of size k in G?

Clearly, MULTICOLORED CLIQUE is W[1]-hard and DOMINATING SET is W[2]-hard.
Moreover, W[1]- or W[2]-hardness for a given parameterized problem can be shown
by a parameterized reduction from MULTICOLORED CLIQUE or DOMINATING SET,
respectively.

Data reduction

A core tool in the development of fixed-parameter algorithms is polynomial-time
preprocessing by data reduction [GN07; Bod09; Kral4]. The goal is to remove need-
less information from the input so to reduce its size or to obtain some desirable
properties of the input. Such small or well-formed instances can then be exploited
by algorithms that produce a solution: small size of the input implies a small search
space of the solution algorithm, and similarly, well-formed instances may be easier
to solve.

Data reduction is usually presented as a series of reduction rules. These are poly-
nomial-time algorithms that take as input an instance of some decision problem
and produce another instance of the same problem as output. A reduction rule is
correct if for each input instance I, the corresponding output instance of the rule is
ayes-instance if and only if I is a yes-instance. We call an instance I of a parameter-
ized problem reduced with respect to a reduction rule if the reduction rule does not
apply to I. That is, carrying out that reduction rule yields an unchanged instance.

The notion of problem kernels captures the idea of reduction rules with effec-
tiveness guarantee. A kernelization or problem kernel for a parameterized problem
(Q,x) is a parameterized reduction p from (Q, x) to itself such that p is computable
in polynomial time and there is a function ¢ such that for every g € Z* we have
lo(g)] < p(x(q)). We also call ¢ the size of p. If ¢ is polynomial, then we also call p a
polynomial kernelization or polynomial problem kernel.

13
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Lower bounds on problem kernel sizes. Small, that is, polynomial problem ker-
nels are particularly desirable. However, some parameterized problems are unlikely
to admit problem kernels of polynomial size. To show such results, Bodlaender
et al. [Bod+09] introduced the composition technique which was later refined by
Bodlaender, Jansen, and Kratsch [BJK14] in so-called cross-compositions. Both are
generalizations of the notion of reductions that takes as input multiple instances.
To define cross-compositions, we need the following notion. A polynomial equiva-
lence relation is an equivalence relation p that has the following two properties.
e There is an algorithm that, given two strings p, q € £*, decides whether p and
g belong to the same equivalence class of p in time polynomial in |p| + |g]|.
¢ For every finite set S < X*, the equivalence relation p partitions the elements
of S into a number of equivalence classes that is bounded from above by a
polynomial in the length of the longest string in S.
Let Q be a language and p a polynomial equivalence relation on Q. An or-cross-
composition from Q into a parameterized problem (P «) is a polynomial-time algo-
rithm that, given ¢ instances q;,..., g, € Z* of Q belonging to the same equivalence
class of p, computes an instance p € £* such that

K(p) < poly(logHm%XIqu)
i

and p € P if and only if for some i € {1,...,t} we have g; € Q. If there is such an
or-cross-composition, we also say that Q or-cross-composes into (B, x). The equiv-
alence relation p herein can be chosen at will and is used to simplify the task of
developing cross-compositions. Bodlaender, Jansen, and Kratsch [BJK14] proved
the following, using a result of Fortnow and Santhanam [FS11].

Theorem 1.1. Let Q < X* be an NP-hard language and (P x) be a parameterized
problem. If Q or-cross-composes into (B, «) and (P, x) admits a polynomial problem
kernel, then NP < coNP/poly.

Yap [Yap83] showed that NP < coNP/poly implies that the polynomial hierarchy
collapses to the third level. As this is widely assumed not to be the case, Theorem 1.1
and a cross-composition give good evidence that the problem at hand does not
admit a polynomial problem kernel. The consequence NP < coNP/poly also fol-
lows when replacing or-cross-compositions by so-called and-compositions [Drul5;
Del14]. However, we only need or-cross-compositions in this work.

We mention that the hardness result implied by Theorem 1.1 transfers within NP-
complete problems via so-called polynomial-parameter transformations [BTY11],

14
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reductions that preserve the parameter polynomially. More formally, a polynomial-
parameter transformation from a parameterized problem (Q, x) to another param-
eterized problem (P A1), both over an alphabet Z, is a polynomial-time many-one
reduction p from Q to P such that there is a polynomial ¢ such that for every g € Z*
we have A1(p(gq)) < ¢(x(q)). Using this definition, if Q is NP-hard and P is in NP and
if (B A) admits a polynomial problem kernel, then also (Q, x) does: Simply pipeline
the polynomial-parameter transformation from (Q, x) to (B A1), the polynomial ker-
nel for (P, A1), and the polynomial-time many-one reduction from P to Q.

A more general notion of data reduction. Turing kernelization is another way to
formalize effective data reduction [Lok09; Sch+12; Bin+12]. For a data reduction-
based algorithm to be efficient, it is arguably enough to produce a small number
of small instances rather than just one instance as in the definition of polynomial
problem kernels.

The small instances that are produced by the data reduction procedure are for-
malized as oracle questions, which the oracle answers in O(1) time for the sake of
analyzing the data reduction algorithm. In practice, the oracle is replaced by a de-
cision algorithm. Formally, let Q be a language and s € N be a nonnegative integer.
An s-bounded oracle for Q is an operation which determines in O(1) time whether
g € Q for any string g € X* such that |g| < s. Let ¢: N — N be a function. A Turing
kernelization or a Turing kernel for a parameterized problem (Q, x) is a polynomial-
time algorithm that on every input g € X* has access to a ¢(x(g))-bounded oracle
for Q and decides whether g € Q. The function ¢ is also called the size of the Turing
kernelization.

Weller [Well3] observed that certain special cases of Turing kernelizations can be
excluded using cross-compositions under the assumption that NP ¢ coNP/poly.
For the general case, however, we are not aware of a technique that would imply a
similar collapse in classical complexity. Relatedly, in pursuit of a general hardness
theory for (Turing) kernelization Hermelin et al. [Her+15] introduced a hierarchy
of classes of parameterized problems which presumably do not admit polynomial-
size (Turing) kernelizations.

Refined running time lower bounds

In this section we describe how we can exploit the Exponential Time Hypothesis
for giving lower bounds on running times. The lower bounds which we achieve
are refinements of the gaps polynomial time versus exponential time and fixed-
parameter running time versus XP running time.
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Chapter 1. Introduction

Much research was dedicated to improving the running time of algorithms for
NP-hard problems [Woe03; FK10]. Incremental improvements of exponential run-
ning times have been achieved for many problems, though, for several of them in-
definitely continuing improvements in the base of the exponential running time
would be a major breakthrough. An example of such a problem is the following.

k-CNF-SATISFIABILITY

Input: A boolean formula ¢ in conjunctive normal form with at most
k literals in each clause.

Question: Is there a truth assignment of the variables that makes ¢
true?

Impagliazzo and Paturi [IP01] introduced the following hypothesis that captures
the difficulty when trying to improve the trivial 2" - poly(n)-time algorithm for n-
variable formulas.

Hypothesis 1.1 (Exponential Time Hypothesis). There is areal d, 0 < d < 1, such
that every Turing machine that decides 3-CNF-SATISFIABILITY on n-variable for-
mulas requires at least 29" time.

Note that, if the Exponential Time Hypothesis holds, then P # NP. Furthermore,
if the Exponential Time Hypothesis holds, then n-variable 3-CNF-SATISFIABILITY
does not admit a 2°™-time algorithm. This has been strengthened by Impagliazzo,
Paturi, and Zane [IPZ01] to the fact that, unless the Exponential Time Hypothesis
fails, there is no 2°” -time algorithm for 3-CNF-SATISFIABILITY with m clauses via
the so-called Sparsification Lemma.

Subsequently, researchers discovered many implications of the Exponential Time
Hypothesis for other problems, where progress on improving the running time up-
per bounds seemed difficult, too. See Lokshtanov, Marx, and Saurabh [LMS11] and
Cygan et al. [Cyg+15, Chapter 14] for expositions.

A simple way to exclude 2°®@) . poly(]q|)-time algorithms for a parameterized
problem (Q,x) on input ¢ is via a polynomial-time many-one reduction from n-
variable 3-CNF-SATISFIABILITY to Q such that the parameter value x(g) is upper
bounded by a linear function in n (or, analogously, by m) for each instance g cre-
ated by the reduction. For example, using the canonical reduction from 3-CNEF-
SATISFIABILITY we can infer that the well-known CLIQUE problem does not admit a
2°0M . poly(n)-time algorithm unless the Exponential Time Hypothesis fails, where
n is the number of vertices in the input graph.
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1.1. Preliminaries

CLIQUE

Input: Anundirected graph G and a nonnegative integer k.

Question: Does G have a k-vertex complete subgraph (a clique) as a
subgraph?

Chen et al. [Che+05] showed that also an algorithm with running time n°® for
CLIQUE would contradict the Exponential Time Hypothesis. Finally, we mention
that FPT # W/[1] implies that the Exponential Time Hypothesis holds [ADF95].

1.1.4. Calculus

We recall Stirling’s approximation of the factorial ¢! = ¢-(£—1)-...-1 of anon-negative
integer t € N: The upper and lower bounds

1< V2t ie ! and (1.1)
> Vogtttie 1.2)

can be derived from an exposition by Robbins [Rob55].
The below result on a special binomial coefficient follows from Stirling’s approxi-
mation. We use it in Sections 3.5, 6.2.2, and 6.2.3.

Proposition 1.1. For every two nonnegative integers ¢, k € N we have

L e
k| e\ 2ne-1k\¢-1 ’

Proof. By applying the definition of binomial coefficients to (Ekk) and then Inequal-
ities (1.1) and (1.2), we obtain the following

k| (k).

k| ((¢-1k)k!
y \/ﬁ(ﬁk)””%e”k
- ((¢-1)k)'k!

wk)lm% okl

V2I((0 = 1) k) C-Dk+3 o= (-Dk+1 [k+ 5 p=k+1

1 k- (k)* (1.3)
T\ 2n(l-1k? (¢ -1)k)-Dkfk” '
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Chapter 1. Introduction

We rearrange the last fraction in the right-hand side of Equation (1.3) and obtain
the following

(1.4)

(Ck)‘k _( tk )““.((Z—l)k)k
(6 -Dk) DRk — \ (¢ -Dk k '

Thus, by Equation (1.3) and Equation (1.4), we have

tk > L(L)[k(g_l)k 0
k] = ¢\ 2zme—nk\r-1 :
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Chapter 2

Introduction to
hypergraph supports

In this part we investigate the computational complexity of two problems pertain-
ing to finding hypergraph supports. A support for a hypergraph # is a graph G
on the same vertex set such that each hyperedge in /€ induces a connected sub-
graph in G. Figure 2.1 shows two examples; the right hypergraph highlights that
the hyperedges may overlap in such a way, that they enforce cycles in any support.
Finding supports has surprisingly varied applications. We highlight four of them
below, showcasing the ways in which supports are useful. It is striking that in all
these applications, we aim to find a sparse support in one way or another, that is,
a support with a small number of edges. Generally, the corresponding computa-
tional problems are NP-complete; finding a dense support, on the other hand, is
trivial because a clique is always a support.

Network design. In publish-subscribe communication networks, agents can sub-
scribe to topics and inform each other about news items within their sub-
scribed topics. Suppose that we are to design a peer-to-peer communica-
tion network for the agents under the premise that each topic should be self-
sufficient, that is, the agents of one topic should be able to inform each other
without depending on agents not subscribed to that topic. Then we search for
a support for the hypergraph on the subscribers, with a hyperedge containing
the set of subscribers for each topic. This support should additionally have
properties that are beneficial for efficient communication networks. In effi-
cient communication networks, the overall load of communication should
be minimized. This quantity can be captured by the number of edges in the
support [Cho+07; Hos+12; OR11].
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Chapter 2. Introduction to hypergraph supports

Figure 2.1.: Two hypergraphs and supports for them. Both supports have the fewest

possible number of edges. The hypergraphs are drawn in the so-called
subset standard [Mak90]: Herein, we draw vertices as white circles and
hyperedges by grouping their incident vertices together inside a closed
curve which we fill semi-transparently. We draw edges of the supports
as direct lines between their end points.

Hypergraph visualization. When drawing a hypergraph, we would like to have a

support that can be embedded in the plane without crossings. We can use
such a planar support to derive a special plane embedding of the hypergraph,
called subdivision drawing. In such a drawing, each vertex corresponds to a
subregion of the plane and for each hyperedge F, the union of the regions that
correspond to the vertices in F is a connected region [JP87]. Figure 2.2 shows
a subdivision drawing derived from the support of the hypergraph on the
right in Figure 2.1. Since computing a planar support is NP-complete [JP87],
research focused particularly on several simplifying restrictions of planar sup-
ports, aiming for nicer drawings and for tractability of computing supports
[KKS08; Buc+11; Bra+12; Bra+11; KMNI14]. In this application, it is not the
primary objective to find a sparse support. However, every planar graph is
also a sparse graph.

Combinatorial auctions. In a combinatorial auction, bidders can bid on bundles
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of indivisible items. We then want to distribute the items to the bidders (the
winners) in such a way that the revenue is maximized. The bundles define
a hypergraph that has the items as vertices and hyperedges corresponding
to the bundles. For determining the winners, it is useful to have a support
of bounded treewidth for this hypergraph. In that case, the winners can be
determined efficiently, which is NP-complete in general [CDS04]. Similarly
to above, it is not the main goal to obtain a sparse support, but graphs of
bounded treewidth are also sparse.



[

Figure 2.2.: A subdivision drawing of the hypergraph on the right in Figure 2.1: Each
vertex is represented by a minimal region that is enclosed by black lines.
Each hyperedge is represented by a color, that is, if a vertex is contained
in a hyperedge, then the region of the vertex contains a color corre-
sponding to the hyperedge. Note that, for each hyperedge, the vertex
regions with the color of that hyperedge form a connected region. The
placement of the vertex regions directly corresponds to the placement
of the vertices in the (planar) support shown in Figure 2.1.

Network inference. A hypergraph on a set of individuals is defined by memes: A
hyperedge corresponds to a subset of individuals who propagate a meme.
Sometimes we know this hypergraph from observations about posts in social
media, but cannot effectively determine the underlying structure of the social
network. In this case, a support for the meme-hypergraph could be helpful
as a first approximation of structure of the social network [AAR10]. A sup-
port with the minimum number of edges represents a maximum-parsimony
explanation for the spreading of memes.

Apart from the above, supports find applications in vacuum system design [DM88;
DK95], processor design [Fan+08], database systems [Bee+83; TY84; Gol88], and
supports also appear as a tool in the analysis of colorability of hypergraphs where
they are called spanning subgraphs [KKV04] or host graphs [BTV11]. Similarly to
the application in combinatorial auctions, supports of special structure can also
serve to identify tractable special cases of hypergraph problems. For example, Guo
and Niedermeier [GNO06] found that the SET COVER problem is solvable in polyno-
mial time if the dual of the input hypergraph has a tree support and Jansen [Jan17]
found that HITTING SET is fixed-parameter tractable with respect to a parameter
that measures the tree-likeness of a special support of the input hypergraph.
Indicative of the importance of hypergraph supports is that several communities
discovered and rediscovered results on them independently from one another. For
example, there are three NP-hardness proofs for finding minimum-edge supports
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[Cho+07; DM88; Fan+08] and two polynomial-time algorithms for finding tree sup-
ports (one by combining results of Beeri et al. [Bee+83] and Tarjan and Yannakakis
[TY84], and one by Conitzer, Derryberry, and Sandholm [CDS04]).

Appetizer. In this work we study two problems arising from the first and the sec-
ond one of the above applications, respectively. Regarding the first one, network
design, we investigate the following problem in Chapter 3.

SUBSET INTERCONNECTION DESIGN
Input: A connected hypergraph # and a nonnegative integer f.
Question: Does € admit a support with at most |V (#)| -1+ f edges?

The formulation of SUBSET INTERCONNECTION DESIGN is motivated by the fact that
sparsity is one of the properties desired for good resulting communication net-
works [Cho+07]. Furthermore, the parameter f, also called feedback edge number,
measures the distance from the polynomial-time special case of constructing a tree
support [CDS04; Bee+83; TY84]. We prove that SUBSET INTERCONNECTION DESIGN
is fixed-parameter tractable with respect to the number of hyperedges and also with
respect to the largest hyperedge size and the feedback edge number f combined.
The results are obtained via several data reduction rules.

In Chapter 4 we analyze the following problem which is motivated by applications
in hypergraph visualization.

r-OUTERPLANAR SUPPORT
Input: A connected hypergraph # and a nonnegative integer r.
Question: Does € admit an r-outerplanar support?

Similarly to previous research for planar hypergraph supports [Buc+11; Bra+11], we
restrict our attention to r-outerplanar supports for tractability and aesthetic rea-
sons. A graph is r-outerplanar if it admits an embedding in the plane without
edge crossings such that the graph becomes empty after at most r steps of delet-
ing all vertices incident with the outer face. See Section 4.2 for details. We prove
that r-OUTERPLANAR SUPPORT is fixed-parameter tractable with respect to r and
the number of hyperedges combined. The result is obtained via a single data re-
duction rule.

In both r-OUTERPLANAR SUPPORT and SUBSET INTERCONNECTION DESIGN we
use the parameterization by the number m of hyperedges as a most natural candi-
date. A series of papers proved that SUBSET INTERCONNECTION DESIGN is solvable
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in polynomial time for m = 2, 3,4 [Du86; Tan89; XF95] and a paper studied drawings
of hypergraphs with m < 8 [VV04], warranting further investigation. Indeed, there
is a simple argument showing that both 7-OUTERPLANAR SUPPORT and SUBSET IN-
TERCONNECTION DESIGN are non-uniformly fixed-parameter tractable with respect
to m (see Section 2.1). However, we argue in Section 2.1 below that (strongly) uni-
form results are desirable. We deliver them in Chapters 3 and 4, respectively, where
we also provide more details regarding related work for r-OUTERPLANAR SUPPORT
and SUBSET INTERCONNECTION DESIGN.

Related problems. We now mention several problems related to finding supports
of special structure that were studied in the literature. They impose different re-
quirements on the type of support or tighten or relax the constraint that each hy-
peredge should induce a connected graph.

As mentioned above, supports of small treewidth are useful when determining
winners in combinatorial auctions. More precisely, the winner determination prob-
lem can be formulated as WEIGHTED SET PACKING and this problem is in XP with
respect to the treewidth of a given support [CDS04]. However, deciding whether
there is a support of treewidth three is NP-complete [GG13]. As far as we know, the
complexity in the case of treewidth two is currently unknown. Gottlob and Greco
[GG13] also improved Conitzer, Derryberry, and Sandholm’s [CDS04] XP-result, by
showing that WEIGHTED SET PACKING is in XP with respect to the so-called hyper-
tree width of the dual hypergraph and that this parameter is upper bounded by the
treewidth of a support.

In network design, further desirable properties that supports may possess apart
from sparsity have been considered. These properties are related to designing ef-
ficient and fault-tolerant communication networks. To keep the communication
load on each node in the network low, it is desirable that the corresponding sup-
ports have small maximum vertex degree [Cho+07]. For small latencies, also the
diameter of the subgraphs induced by the hyperedges should be small [Cho+07].
Fault-tolerance in a communication network translates to k-connectedness of the
subgraphs induced by hyperedges for some prespecified parameter k [CV]J13]. Find-
ing a k-connected support possessing the minimum number of edges is NP-com-
plete [CVJ13]. Onus and Richa [OR11] addressed the problem of minimizing the
maximum degree of the support, provided a polynomial-time logarithmic-factor
approximation algorithm, and proved that an asymptotic improvement in the ap-
proximation factor is not possible unless P = NP. Obviously, minimizing the di-
ameters of the hyperedge-induced subgraphs only makes sense when we simul-
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Chapter 2. Introduction to hypergraph supports

taneously aim for other properties in the support like sparsity or small maximum
degree, for example. To the best of our knowledge, such combined optimization
criteria have not been studied from a computational complexity point of view yet.

Dinitz and Wilfong [DW12] studied the so-called CONSTRAINED CONNECTIVITY
problem in which we are given a set of vertices V and a safe set S,,, < V for each
pair of vertices u, v € V. The goal is to find a graph G with vertex set V such that
for each pair u, v € V the subgraph G[S,,,] induced by the safe set contains a path
between u and v. That is, in contrast to the support problem, we only require one
pair of vertices to be connected in each “hyperedge” S, ,. As optimization criteria
Dinitz and Wilfong considered minimizing the number of edges and minimizing
the maximum degree, respectively. The corresponding optimization problems have
applications in network routing. Dinitz and Wilfong [DW12] provided NP-hardness
and approximability results.

Bixby and Wagner [BW88] considered the problem of searching for a tree support
such that each hyperedge induces a path. They showed that this is equivalent to
deciding whether a given binary matroid is graphic, that is, whether its indepen-
dent sets correspond to forest subgraphs of a graph. Bixby and Wagner proposed
an algorithm for this problem with linear running time multiplied by an inverse
Ackermann-function factor.

Finally, finding a path support is equivalent to checking whether a given binary
matrix has the consecutive ones property, that is, whether there is a reordering of
the columns such that the ones appear consecutive in each row. This problem can
be solved in linear time in the size of the matrix via a famous algorithm by Booth
and Lueker [BL76]. See also Dom [Dom09] for a survey on algorithms for the con-
secutive ones property.

In summary, hypergraph supports are surprisingly ubiquitous with varied fields
of application, making for a worthwhile field of study.

2.1. Parameterization by the number of hyperedges

For both r-OUTERPLANAR SUPPORT and SUBSET INTERCONNECTION DESIGN we ex-
amine the parameterization by m, the number of hyperedges, as a very natural re-
striction of the input structure. We now briefly reflect on a counter-intuitive prop-
erty of the parameterization m and we prove that a class of problems encompassing
both r-OUTERPLANAR SUPPORT and SUBSET INTERCONNECTION DESIGN is nonuni-
formly fixed-parameter tractable with respect to m. This motivates the search for
uniform fixed-parameter tractability results.
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Twins. At first glance, it seems trivial to prove that both problems are fixed-param-
eter tractable with respect to m: Let us call two vertices u, v € V of a hypergraph /€ =
(V,6) twins, if they are in the same hyperedges. That is, (1) = &(v). Twins do not
seem to add any new information, and if there are no twins then clearly the number
|V (#0)| of vertices is upper bounded by a function of m. This would imply that
we can find a support in fixed-parameter time by removing all twins and trying all
possible graphs. However, we prove in Section 4.3 for r-OUTERPLANAR SUPPORT
and in Section 3.3 for SUBSET INTERCONNECTION DESIGN that twins can actually
make or break the instance, that is, removing just one twin from a yes-instance can
result in a no-instance.

Adding twins in both problems is not detrimental, however. For example, if we
have an r-outerplanar support for #¢, then we can make a new twin adjacent to
one of its already present twins with a bit of care, so that the resulting graph remains
r-outerplanar?: We just have to make sure that the new twin does not end-up in a
new (r + 1)th layer by placing it in a face as close to the outer face as possible. Sim-
ilarly, adding a twin as a degree-one neighbor to its present twin in a support with
feedback edge number f results again in a support with feedback edge number f.

Nonuniform fixed-parameter tractability. Reversing the idea above, from each
hypergraph with an r-outerplanar support by deleting twins we can obtain a min-
imal hypergraph #¢' which also has an r-outerplanar support but from which no
further twins can be deleted while maintaining the property of having an r-outer-
planar support. Using Dickson’s lemma (see below for details) it is not hard to show
that there is a function ¢ such that, for each fixed number m of hyperedges, there
are only ¢(m) such minimal hypergraphs. (A priori, we do not know of a way to
compute ¢, however. A way to compute ¢ arises from the uniform fixed-parameter
tractability result that we give in Chapter 4.) By hard-wiring the minimal hyper-
graphs, we obtain for each value of m an algorithm that decides whether a given
hypergraph has an r-outerplanar support. This idea works in the same way for sup-
ports of fixed feedback edge number f and, more generally, for supports satisfying
an arbitrary graph property PP that is closed under adding degree-one vertices, that is,
to an arbitrary vertex in a graph in °, we may add a degree-one neighbor and again
obtain a graph in P.3

2Recall that a graph is r-outerplanar if it admits an embedding in the plane without edge crossings
such that the graph becomes empty after at most r steps of deleting all vertices incident with the
outer face. See Section 4.2 for details.

3Even more generally, we can allow graph properties P such that, for every graph G € P and every vertex
u € V(G), there is a graph G’ € P with V(G') = V(G) U {v} and E(G') 2 E(G) U {{u, v}}. This observa-
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Chapter 2. Introduction to hypergraph supports

We now formalize the above approach. For a graph property P, say that a hy-
pergraph #€ is P-supportable if 7€ admits a support contained in P. We prove the
following.

Theorem 2.1. Let PP be a graph property that is closed under adding degree-one
vertices. It is nonuniformly fixed-parameter tractable with respect to the number
of hyperedges to decide whether a given hypergraph is P-supportable. That is, for
each m € N, there is a fixed-parameter algorithm with respect to m that decides
whether a given hypergraph with m hyperedges is P-supportable.

The proof is given via two lemmas. First, we observe that being P-supportable is a
hypergraph property that is closed under adding twins. A hypergraph property S is
closed under adding twins if taking any hypergraph # € S and adding a twin to it
yields another hypergraph in S. Adding a twin means to take a vertex « in 7€ and to
add a new vertex v that is contained in precisely the same hyperedges as u.

Denote by Sp the hypergraph property of being P-supportable, that is, Sp is the
set containing all P-supportable hypergraphs. If P is closed under adding degree-
one vertices, then we can simply add a new twin as a degree-one neighbor to one of
its siblings in a support. Hence, we have following.

Lemma 2.1. If the graph property P is closed under adding degree-one vertices,
then the hypergraph property Sp is closed under adding twins.

Next we show that every hypergraph property that is closed under adding twins
is non-uniformly fixed-parameter decidable with respect to m.

Lemma 2.2. Let S be a hypergraph property that is closed under adding twins. For
every m € N there is a fixed-parameter algorithm with respect to m that decides S
on hypergraphs with m hyperedges.

Proof. We first define a quasi-order < on the family of hypergraphs with m hyper-
edges. (A quasi-order is reflexive and transitive.) To define <, we say that 7€ <4 if
€ can be obtained from % by iteratively removing a vertex that has a twin. If we al-
low zero removals so that < is reflexive, it is clear that < is a quasi-order. Moreover,
if 70 €S and 7€ <4, then 4 € S since S is closed under adding twins.

Next we show that, for every m € N, the family [, of P-supportable hypergraphs
that are minimal under < is finite. Consider the representation of an m-hyperedge
hypergraph 7€ as a 2™-tuple ty € N?", each entry of which represents the size of

tion may be useful when treating graph properties PP which are not closed under adding degree-one
vertices like cographs, for example.

28
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a distinct twin class. The set of such tuples is quasi-ordered by a natural extension
of <, namely (ay,...,a¢) < (by,...,be) if a; < b; foreach i € {1,..., /}. We now lead the
assumption that [, is infinite to a contradiction by using Dickson’s Lemma [Dic13,
Lemma A].

IfF,, is infinite, then there is an infinite subset ), of hypergraphs which have the
same (nonempty) twin classes. For hypergraphs 7,9 with the same twin classes,
Ly < tg implies 7€ <. Thus, F, gives an infinite set T of tuples that are pairwise
incomparable under <. Dickson’s Lemma states that for every set S < N’ there exists
a finite subset S’ < S such that for each s € S there is an s’ € §' with s’ < s. This is
a contradiction to T containing infinitely many incomparable tuples. Hence, F,, is
finite.

Finally, to obtain an algorithm for every fixed m as in the lemma, we embed the
family [, of hypergraphs in S that are minimal with respect to < as a constant into
the algorithm. The algorithm simply checks whether its input hypergraph #¢ ful-
fills ¥ < #€ for some ¥ € F,,, which clearly can be done in polynomial time for
each% €F,,. O

Theorem 2.1 directly follows from Lemmas 2.1 and 2.2. We observed before that,
for PP € {r-outerplanar, feedback edge number = f}, to every P-supportable hyper-
graph we can add any new twin and again obtain a P-supportable hypergraph.
Hence, we have by Theorem 2.1 a fixed-parameter algorithm for every fixed value
of parameter m, the number of hyperedges, for both r-OUTERPLANAR SUPPORT and
f-SUBSET INTERCONNECTION DESIGN, where we look for a support with feedback
edge number f, .

Corollary 2.1. For each m € N there are fixed-parameter algorithms with respect
to m that decide r-OUTERPLANAR SUPPORT and f-SUBSET INTERCONNECTION DE-
SIGN, respectively, on hypergraphs with m hyperedges.

The need for uniform results. We emphasize that the proof of Theorem 2.1 does
not provide insight into why it is that a non-P-supportable hypergraph suddenly
becomes P-supportable when adding a twin. That is, we currently do not know
how to compute the set [F,,, of minimal yes-instances, making the nonuniform fixed-
parameter tractability result inapplicable at the moment. Moreover, it is in gen-
eral impossible to replace any nonuniform fixed-parameter tractability result with
a strongly uniform one [DF99, Theorem 19.21]. Hence, to eventually obtain imple-
mentable algorithms that are able to deal with any input, it is important to find a
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uniform result instead. To this end, we prove uniform fixed-parameter tractabil-
ity with respect to m for both r-OUTERPLANAR SUPPORT and SUBSET INTERCON-
NECTION DESIGN in Chapter 4 and Chapter 3 respectively. We leave it as a ques-
tion for future research whether these results can be unified to yield uniform fixed-
parameter tractability with respect to m for a general class of hypergraph properties
that encompass having r-outerplanar supports and supports with small feedback
edge sets.
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Chapter 3

Minimum-edge
hypergraph supports

This chapter is based on “Polynomial-Time Data Reduction for the Subset Interconnection Design
Problem” by Jiehua Chen, Christian Komusiewicz, Rolf Niedermeier, Manuel Sorge, Ondfej Suchy,
and Mathias Weller (SIAM Journal on Discrete Mathematics [Che+15]).
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Chapter 3. Minimum-edge hypergraph supports

3.1. Introduction

In several applications, practitioners construct an overlay graph that connects the
vertices of each hyperedge of a given hypergraph. In this chapter we study an NP-
complete problem where we want to construct an overlay graph containing few
edges. The formal definition of the corresponding decision problem is as follows.

SUBSET INTERCONNECTION DESIGN
Input: A connected hypergraph 7€ and a nonnegative integer f.
Question: Does # admit a support with at most |V (#€)| — 1 + f edges?

Recall that a support for hypergraph 7€ is a graph G on the same vertex set such that
each hyperedge in 7€ induces a connected subgraph of G. In essence, SUBSET IN-
TERCONNECTION DESIGN is the decision problem for finding a support of minimum
number of edges. We formulated it with the parameter f, that is, an upper bound
on the number of edges in the desired support diminished by |V (/)| — 1, because
each support for a connected hypergraph contains at least |V ()| — 1 edges. Hence,
to minimize the number of edges, we indeed minimize f. We call this quantity the
feedback edge number of the support; in the literature, it is also known as cyclomatic
number, circuit rank, and nullity. Throughout this chapter, we say that a support
is optimal if it contains the minimum number of edges or, equivalently, if it has the
minimum feedback edge number. Figure 3.1 shows two examples of hypergraphs
and optimal supports. Although we present our results SUBSET INTERCONNECTION
DESIGN as a decision problem it is easy to adapt the positive algorithmic results to
its optimization version.

SUBSET INTERCONNECTION DESIGN is a fundamental problem concerning hyper-
graph and graph structures that has many applications. As mentioned in Chapter 2,
SUBSET INTERCONNECTION DESIGN was studied in the context of designing vacuum
systems [DM88; DK95], publish-subscribe information systems [Cho+07; Hos+12;
OR11], reconfigurable interconnection networks [Fan+08], and, in a weighted vari-
ant, in the context of inferring a most-likely social network [AAR10]. To the best of
our knowledge, SUBSET INTERCONNECTION DESIGN was first defined by Du [Du86]
and the first NP-completeness proof was presented by Du and Miller [DM88].

Applications. We briefly describe applications that motivate the study of SUBSET
INTERCONNECTION DESIGN. In vacuum systems, we are to connect a set of working
places (vertices of a hypergraph) using valves (edges of the support for the hyper-
graph), so that a low-pressure environment can be made available at each working
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Figure 3.1.: Left: A hypergraph with six vertices (white circles) and three hyperedges
(lines enclosing vertices). Its support (edges indicated by direct lines
between their endpoints) has feedback edge number 0. Right: A hyper-
graph with six vertices and four hyperedges. Its optimal support has
feedback edge number 1.

place. Hyperedges correspond to different requirements on the pressure level, pro-
vided by different vacuum pumps. An optimal support corresponds to a minimum-
size set of valves that have to be provided. Apart from minimizing the costs of the
construction, an optimal support also maximizes the efficiency of the resulting vac-
uum system because of pressure leaks [DK95].

In publish-subscribe information systems, we are given a set of agents, each sub-
scribed to a certain set of topics. The task is to design an overlay network through
which the agents can inform each other about news in their topic. Furthermore, the
agents of each topic should be able to inform each other without having to rely on
agents not subscribed to that topic. Thus, we are looking for a support for the hy-
pergraph that has the agents as vertices and a hyperedge for the set of subscribers
of each topic. Chockler et al. [Cho+07] note that it is desirable that the correspond-
ing overlay network should be efficient, which means that the support should have
low average and maximum (vertex) degree. Clearly, the optimal support has the
smallest-possible average degree.

SUBSET INTERCONNECTION DESIGN is a generalization of TREE SUPPORT where
we are given a hypergraph # and we are asked whether #€ admits a support that
is a tree. We also call a hypergraph hypertree if it has a tree support [Bra+98]. Hy-
pertrees have received much attention for two reasons. First, they are related to
chordal graphs, a well studied graph class [BLS99]: A graph is chordal if and only if
the dual hypergraph of its clique hypergraph is a hypertree. (The clique hypergraph
of a graph G has the same vertex set as G and a hyperedge for the vertex set of each
maximal clique in G.) Hypertrees were studied extensively because of this connec-
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tion to chordal graphs as well as to other related graph classes, see Brandstédt, Le,
and Spinrad [BLS99] for a survey.

The second motivation for studying hypertrees stems from database systems.
Here, hypergraphs occur naturally by taking the attributes managed in the database
tables as vertices and defining a hyperedge for each relation scheme, a set of at-
tributes whose relation is managed in a table. Beeri et al. [Bee+83] argued that it
is desirable for the hypergraph # as above to be a dual hypertree, that is, the dual
hypergraph of a hypertree (see also Fagin [Fag83] for a gentle introduction).* For
example, if #C is a dual hypertree, then the underlying database has a rather sim-
ple consistency check, that is, whether no subset of tables in the database contain
contradictory values.

Finally, supports of small feedback edge number may serve as a way to identify
tractable special cases of generally hard problems. For example, Guo and Nieder-
meier [GN06] showed that the NP-complete SET COVER problem is polynomial-
time solvable, if the dual of the input hypergraph has a tree support. Moreover,
Jansen [Jan17] showed that HITTING SET is fixed-parameter tractable with respect
to the feedback edge number of a given support G that fulfills the additional condi-
tion that each hyperedge in the input hypergraph induces a path in G. (If more gen-
eral induced subgraphs are allowed, HITTING SET remains W[1]-hard, however.)

In this chapter, we study the influence of three parameters on the computational
complexity of SUBSET INTERCONNECTION DESIGN. The parameters are the size
d := maxreg ) |F| of the largest hyperedge, the number m := |€ (#€)| of hyperedges
in the input hypergraph #¢, and an upper bound f on the feedback edge num-
ber |[E(G)|—|V(G)| +1 of the support G. Parameters m and d measure sparseness of
the input, whereas f measures sparseness of the output.

The feedback edge number f of the support is clearly motivated by the appli-
cations above. It also makes sense to assume that the number m of hyperedges
is small, for example, in the vacuum systems and database systems applications.
Moreover, a series of papers showed that SUBSET INTERCONNECTION DESIGN can be
solved in polynomial time if 2 < m < 4 [Du86; Tan89; XF95]. This begs the question
whether there is an XP-time or FPT-time algorithm for SUBSET INTERCONNECTION
DESIGN parameterized by m. Finally, the parameter d, the maximum hyperedge

4Beeri et al. [Bee+83] called dual hypertrees acyclic. We refrain from using this notation because dual
hypertrees can contain cycles. The notion of acyclicity of Beeri et al. [Bee+83] is equivalent to being
a dual hypertree due to a characterization of Slater [Sla78]. See also Brandstddt, Le, and Spinrad
[BLS99, Theorem 1.3.1].
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size, is a technical restriction which we need to obtain tractability for small f and
which we could not circumvent so far.

Our contribution. We perform a parameterized complexity analysis with respect
to the parameters m, d, and f, and we show that small parameters yield efficient
algorithms. Our core working machinery is to develop numerous polynomial-time
data reduction rules.

We start with the parameter m, the number of hyperedges. As mentioned in Sec-
tion 2.1, at first glance, SUBSET INTERCONNECTION DESIGN should be fixed-param-
eter tractable with respect to m because it seems superfluous to have two vertices
which are in the same hyperedges; we call such vertices fwins. We should be able
to remove one of the two twin vertices, say v. Then we should be able to find an
optimal support of the resulting hypergraph and attach v as a degree-one neigh-
bor of its twin to obtain an optimal support of the original hypergraph. However,
as we show in Section 3.3, removing just one twin in a hypergraph can increase the
feedback edge number f of the optimal support by at least one. In fact, removing
twins (or removing vertices in a more general relation) has been proposed as a re-
duction rule for SUBSET INTERCONNECTION DESIGN [Fan+08; Hos+12]; we provide
a counterexample to the correctness of this rule.® Based on this, we provide both
refined and completely new data reduction rules, and prove their correctness and
effectiveness.

We go on to show that SUBSET INTERCONNECTION DESIGN can be solved in lin-
ear time if the input hypergraph contains only a constant number m of hyper-
edges (Section 3.4). This implies that SUBSET INTERCONNECTION DESIGN is fixed-
parameter tractable with respect to m. To achieve this, we prove that every hyper-
graph with m edges admits a support with at most ¢(m) vertices in each twin class
which do not have degree one for some function ¢. (A fwin class is a maximal set
of pairwise twins.) In each of the at most 2" twin classes, we can safely remove the
remaining vertices, yielding a problem kernel.

For hyperedges of size d < 4 we show that SUBSET INTERCONNECTION DESIGN
has a problem kernel with a linear number of vertices with respect to f, the feed-
back edge number of the support (Section 3.6.1). The proofis based on several data
reduction rules, which allow us to make successively more assumptions about an
optimal support. Ultimately, we can assume that no vertex in this support is in a
dangling tree of size at least two, a tree which can be separated from the rest of the
graph via removing a single vertex. Furthermore, apart from at most O(f d) vertices,

5Hosoda et al. [Hos+15] subsequently corrected their result.
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each vertex has degree at least three. This then implies that there are few vertices
overall, since the number of vertices of degree at least three that are not in dangling
trees is bounded from above linearly in f.

For arbitrary d we make use of our data reduction rules and show in Section 3.6.2
that SUBSET INTERCONNECTION DESIGN can be solved in d'®¢/ -poly(|#€|) time. (Re-
call that || denotes |V (#)| + ¥ peg e | FI.)

Known results and related work. As mentioned before, SUBSET INTERCONNEC-
TION DESIGN has been studied independently in different communities under dif-
ferent names. Several NP-completeness proofs have appeared [Cho+07; DM88;
Fan+08]. Fan et al. [Fan+08] and Hosoda et al. [Hos+12] showed that NP-complet-
eness holds even when each hyperedge in the input hypergraph has size d = 3,
while for d < 2 the input hypergraph is itself an optimal support. If the hyper-
graph is closed under intersections, that is, every intersection of two hyperedges
is also a hyperedge in the hypergraph, then SUBSET INTERCONNECTION DESIGN be-
comes polynomial-time solvable; this follows from techniques used by Buchin et al.
[Buc+11, Lemma 1]. Polynomial-time approximability was also studied: Angluin,
Aspnes, and Reyzin [AAR10], Chockler et al. [Cho+07], and Hosoda et al. [Hos+12]
provided various logarithmic-factor approximation algorithms. Angluin, Aspnes,
and Reyzin [AAR10] and Hosoda et al. [Hos+12] gave inapproximability results, im-
plying that logarithmic-factor approximation algorithms are likely to be optimal.
The currently fastest exact algorithm for SUBSET INTERCONNECTION DESIGN has a
running time of O(n?*/4* + n?) where k = |V (#€)| — 1 + f is the upper bound on the
number of edges the support [Hos+12].

From Theorem 2.1 it follows that SUBSET INTERCONNECTION DESIGN is nonuni-
formly fixed-parameter tractable with an unknown running time function, of which
we in particular do not know whether it is computable. In contrast, we show in this
chapter that this result can be made uniform, that is, there is one fixed-parameter
algorithm for every m and we give a concrete running time.

TREE SUPPORT, the problem whether a given hypergraph has a tree support, can
be decided in linear time. This follows from a characterization of Slater [Sla78]
which is equivalent to the dual hypergraph being acyclic (independently discov-
ered by two other authors, see Brandstidt, Le, and Spinrad [BLS99, Theorem 1.3.1
and Theorem 8.1.1]). Tarjan and Yannakakis [TY84] showed that acyclicity can be
decided in linear time. This result was seemingly unknown to Conitzer, Derryberry,
and Sandholm [CDS04], who later gave a polynomial time algorithm for construct-
ing a tree support.
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A variant of TREE SUPPORT where the edges incur costs was studied in the con-
text of communication network design [KS03] and hypergraph drawing [KMN14];
here, we are to find a tree support of minimum cost. This variant can be solved
in O(n?(m +log(n))) time [KMN14] (recall that n = |V (#0)| and m = |& (#0)]).

3.2. Specific preliminaries

A feedback edge set of a graph G is a set of edges whose removal makes G a forest.
The feedback edge number f of G is the size of any minimum feedback edge set. If G
is connected, then the feedback edge number is |[E(G)| — |V (G)| + 1.

Let /€ = (V,€) be a hypergraph. Recall that &(v) denotes the set of hyperedges
that contain v and that a vertex u € V covers another vertex v € V if §(v) < & (w).
The covering graph of hypergraph 7€ = (V,€) is the directed graph G¢ = (V, {(u, v) |
&) € &(w)}). In other words, G¢ contains an arc (u, v) if and only if u covers v.
Note that G¢ is transitive. Some of our reduction rules construct the covering graph
of 7€ as a subroutine. The following lemma bounds the running time for this step.

Lemma 3.1. Given a hypergraph #€ = (V,&) we can construct the covering graph G¢
in O(n-|¥€)) time.

Proof. Initialize G¢ as the directed graph (V,V x V). Then, for each F € §, remove
the arcs in (V' \ F) x F from G¢ in O(n - |F|) time. Clearly, if (#,v) is an arc of the
resulting directed graph G, then there is no hyperedge containing v but not u or,
equivalently, & (1) 2 & (v). If G¢ does not contain the arc (u, v), then there is a hyper-
edge F € § such that v € F but u ¢ F, by the construction of G¢. Thus, G¢ contains
exactly the arcs (u, v) such that u covers v. O

3.3. Beware of removing twins

In this section, we show that a previously proposed data reduction rule for SUBSET
INTERCONNECTION DESIGN is incorrect. We also provide properties of SUBSET IN-
TERCONNECTION DESIGN’s optimal supports and simple data reduction rules that
we use later.

A very natural approach to identifying edges of an optimal support is to look for
vertices u and v such that u covers v, that is, § (v) < & (u). The following shows that,
in every support, degree-one vertices are adjacent to vertices that cover them.
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Observation 3.1. If the hypergraph 7€ = (V,£) has a support G such thatsome v € V
has only one neighbor u in G, then u covers v.

Proof. Let F € & be a hyperedge with v € F. Since G[F] is connected, v has degree
at least one in G[F]. Since u is the only neighbor of v in G it follows that ue F. O

It is thus tempting to design a data reduction rule that adds an edge between such
vertices: creating a degree-one vertex should be optimal since every vertex needs
at least one incident edge. Indeed, such a reduction rule was proposed for vertex
pairs u, v that are twins, that is, they are in the same hyperedges [Fan+08], or where
one covers the other [Hos+12]. The variant of these reduction rules that applies less
often reads as follows.

Rule 3.1. If the hypergraph #€ = (V,€) contains twins u and v, that is, &(u) = &(v),
then remove u from €.

Unfortunately, Rule 3.1 is not correct, as the following counterexample shows.

Lemma 3.2. Let f = 3. There is a hypergraph that admits a support with feedback
edge number f and that contains precisely two twins u and v such that removing
either u or v yields a hypergraph that does not admit a support with feedback edge
number f.

Proof. Consider the hypergraph 7€ = (V,§), with vertex set
V ={u,v,a,...,az,by,...,bs}
and hyperedge set & which is the union of the following sets of hyperedges:

& ={la;,bi}liell,..., f}},

& = {{u,v,a;,b;i}iell,..., f1},

& = Hu,v,a;,b;,a;} 11, jefl,..., fL,i # j}, and
&4 = {lu,v,a;,b;, b} 11, je{l,..., fLi#j}

Note that the graph G = (V, E) with E := &, U{{a;, u}, {b;, v} | i € {1,..., f}} is a support
for 7€ containing 3 f edges, that is, G has feedback edge number

3f-@f+2)+1 = f-1.
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3.3. Beware of removing twins

Figure 3.2.: An example that shows parts of the hypergraph # in the proof
of Lemma 3.2; herein the upper bound on the feedback edge number
f =3. Left: some hyperedges from #¢'. Right: the 2 f edges that can be
assumed to be in an optimal support for 7€'.

Let /' = (V',&") be the hypergraph that results from 7€ by applying Rule 3.1 to u
and v, that is, removing u from #€. Figure 3.2 shows parts of the hypergraph #¢'
for f =3. Then, V' = V'\ {u} and &' consists of the following hyperedges:

& = {la;,bitliefl,..., f}},

@é = {v,a;,bi}liefl,..., f}},

&3 = {lvai, bj,a}i,jefl,..., f},i #j}, and
8, = tw,anbi bt i, j€{l,..., f1,i # ji.

We show that every support for #¢' has at least 3 f edges and, thus, it has feedback
edge number at least f.

First, every support for #' contains the f edges corresponding to the size-two
hyperedges of &,. Furthermore, due to the hyperedges in &, for each i € {1,..., f},
every support contains {v, a;} or {v, b;}. By the symmetry between a; and b; in the
hypergraph #¢', assume without loss of generality that an optimal support contains
the edge {v,b;} for all i € {1,..., f} (the set of these edges plus &; is shown in Fig-
ure 3.2). Now, let G’ = (V/, E) be such a support for #'. Let A, = {a; | {v,a;} ¢ E'}
be the set of a;s that are not adjacent to v in G’ and let A, denote the set of the
remaining a;s. If A; = @, then G’ contains at least 3f edges. We show that, if
A; # @, then the graph G’ also has at least 3f edges. Assume that G’ is optimal
and that every optimal support has at least k > 0 vertices in A,. For every hyper-
edge F={v,a;,b;,a;} with aj € Ay and i € {1,..., f}\{j}, G’ has an edge between aj;
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and {v, a;, b;}, since G'[F] is connected. Note that if G’ contains the edge {b;,a;l,
then we can replace this edge by {v,a;}: Since j # i, there is only one hyperedge,
namely F, that contains both b; and a;. Clearly, G'[F] can also be made connected
by adding {v, a;} instead. This implies an optimal support with k —1 vertices in A,
contradicting our choice of k. Hence, G’ contains no edges {b;, a;} with i # j. Con-
sequently, in order to make each hyperedge {v, a;, b;, a;} € é’g with a; € A, con-
nected, there is an edge between a; and a;.

Hence, G’ has k- (f — k) edges between A; and A,, (]ZC) edges between vertices in A;
and f—k further edges between v and A,. Altogether the total number of edges in G’
is thus at least

2f+k-(f—k)+(]2€)+f—k

=3f 3f+@23f.

This implies that #¢' does not have a support with feedback edge number f whereas
F€ does. O

N k-(2f2—k—3) _

As one can see from the proof, the main reason for the incorrectness of Rule 3.1
is the incorrect assumption that there is an optimal support which adds an edge
between twins. However, with some additional conditions, rules similar to Rule 3.1
are correct (Rules 3.2 to 3.4, 3.6, and 3.8 below). First, if a vertex u is adjacent to
some vertex v covering u in an optimal support, then there is an optimal support
that shifts all other edges incident with u to v.

Lemma 3.3. Let u, v be two vertices in a hypergraph # with v covering u. If 7€
has an optimal support G containing the edge {u, v}, then # also has an optimal
support with u being adjacent only to v.

Proof. Assume that u has degree at least two in G, that is, u has some neighbor w #
v. Then, obtain a modified graph G’ by replacing the edge {u, w} by the edge {v, w}.
The modified graph G’ has the same number of edges as G. Furthermore, the two
endpoints of the removed edge {u, w} are still connected in each hyperedge that
contains them: Since v covers u, such a hyperedge also contains v, which is a com-
mon neighbor of u and w in G'. Hence, G' is also an optimal support. O

The above lemma immediately leads to the following data reduction rule.

Rule 3.2. If hypergraph € = (V, &) contains vertices u, v such that v covers u and if
there is an optimal support G containing the edge {u, v}, then remove u from €.
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3.3. Beware of removing twins

Figure 3.3.: A hypergraph to which Rule 3.3 applies with g = 3: Each vertex v; cov-
ers u, and each hyperedge incident with u has size at most g +3 =6.

Of course, it is not clear how to efficiently determine whether such an optimal
support exists. We later exhibit hypergraph structures that enforce the precondition
of Rule 3.2 and then use it as a subroutine.

Lemma 3.4. Rule 3.2 is correct.

Proof. If there is a support of feedback edge number at most f for 7, then the
precondition of the Rule 3.2 and Lemma 3.3 imply that there is a support G of feed-
back edge number at most f in which u has degree one and is adjacent to v. Then,
G —{u} is a support of feedback edge number at most f — 1 for #¢ with u removed.
Conversely, if there is a support G’ of feedback edge number at most f — 1 for #
with u removed, then adding the edge {u, v} gives a support of feedback edge num-
ber at most f for #€ since all hyperedges F containing u also contain v and the
corresponding subhyperedges F \ {u} induce connected subgraphs of G'. O

Note that the correctness of Rule 3.2 together with Lemma 3.2 implies that there
are instances in which a twin class is an independent set in every optimal support.

In the counterexample to Rule 3.1, there are only two twins and they are con-
tained in hyperedges of size five, that is, the size-five hyperedges containing these
two vertices have three other “unrelated” vertices. In the following, we show that
the counterexample is tight in the sense that, if each hyperedge containing u also
contains at most two vertices that do not cover u, then Rule 3.1 is correct.

Rule 3.3. Let g € N. If there are g + 1 vertices u and vy,..., v, in the hypergraph
J€ = (V,&) such that for each i € {1,..., g}, vertex v; covers u and, if for each hyper-
edge F € & (u) it holds that |F| < g + 3, then remove u from €.

See Figure 3.3 for a hypergraph to which Rule 3.3 applies with g = 3. Another
example is the hypergraph #€ defined in Lemma 3.2 without the hyperedges in £3 U
&4: Then, g =1 and all hyperedges are of size at most four.

Lemma 3.5. Rule 3.3 is correct and can be applied exhaustively in O(n - |7€|) time.
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Proof. Let 7€ = (V,&8) be a hypergraph, let Q be the vertex set {vy,...,v4} €V, and
let u be a vertex in V such that Rule 3.3 applies. Further, let N denote the set of
neighbors of # in an optimal support G. If NnQ # @, then the correctness of Rule 3.3
follows from the correctness of Rule 3.2. Hence, we assume that NN Q = @. We
distinguish two cases.

Case 1: N contains a neighbor w of some v € Q in G. Let G’ be the result of re-
moving the edge {u, w} from G and adding {u, v}. If there is some hyperedge F such
that G'[F] is disconnected, then u, w € F. Since v covers u, also v € F. Then, there
is a path between u and w via v in G'[F], implying that G'[F] is connected.

Case 2: N contains no neighbor of any v € Q. Then, for each Fe &(u), [FNN| <1
since, otherwise, |F| < g + 3 implies that F = {u} u QU (F n N) and then G[F] does
not contain a path between u and any vertex in Q. Thus, G’ := G — {u} is a support
for the hypergraph #¢' that results from #¢ by removing u. Note that G’ has at least
one edge less than G. Since all hyperedges of #€ that contain u are supersets of Q,
adding u with the edge {v;, u} to G’ results in a support for #¢, which is optimal
since |E(G)|+1 < |E(G)|.

Hence, Rule 3.3 is correct. It remains to prove the running time bound. For a
vertex u, let Q be the set of vertices covering u. It is not hard to see that if Rule 3.3
applies to any subset of Q, then it also applies to Q. Reversing all arcs in the covering
graph G¢ of 7€ allows us to compute |Q| in constant time per vertex. Thus, assuming
that the size of a hyperedge can be computed in constant time, Rule 3.3 can be
applied exhaustively to /€ = (V,&) in O(n - ||+ n-Y v 1E@)]) = O(n - |F#€]) time.
To compute the size of a hyperedge in constant time, we initialize once an array
mapping hyperedges to their sizes in O(|#(|) time. Whenever we remove a vertex,
we update this array. The running time for all update steps amounts to O(|#€]). O

As a corollary of Lemma 3.5, we also obtain correctness of the following rule since
itis a special case of Rule 3.3. This rule will be useful in Section 3.6.1 where we prove
a linear-vertex kernel with respect to the feedback edge number of the support for
SUBSET INTERCONNECTION DESIGN with hyperedges of size at most 4.

Rule 3.4. If there are two vertices u and v such that v covers v and |F| < 4 for each
hyperedge F € & (u), then remove u from €.

Note that the condition |F| < 4 in Rule 3.4 is also tight in the sense that, if « is in-

cident with hyperedges of size at least five, then Rule 3.4 is not correct as shown by
the hypergraph constructed in Lemma 3.2.
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3.4. Data reduction rules for instances with few
hyperedges

In this section, we show that SUBSET INTERCONNECTION DESIGN is fixed-parameter
tractable with respect to the number m of hyperedges. A previous fixed-parameter
tractability result for this parameter [Hos+12, Theorem 8] relied on Rule 3.1 and is
therefore incorrect.® The intuition behind Rule 3.1 is that it is optimal to connect
a twin class by a spanning tree and to subsequently represent this twin class by a
single vertex. This approach results in an instance with at most 2 vertices which
would imply fixed-parameter tractability. As the counterexample in Lemma 3.2
shows, a twin class can be disconnected in the subgraph induced by every optimal
support. Thus, in order to restore the fixed-parameter tractability result, we need
a slightly more involved rule whose correctness proof makes use of the following
upper bound on the number of edges needed in the support.

m
Lemma 3.6. Every instance of SUBSET INTERCONNECTION DESIGN with f = (%, ) is
a yes-instance.

Proof. We show how to construct a support G with less than (Z;n ) + n edges. Note

that such a support G has feedback edge number at most (Z;n ). The main idea is
to first partition the vertex set into two subsets V' and V \ V'. We then construct
a support G’ for the hypergraph #’ resulting from #¢ by removing the vertices in
V\ V', Finally, we obtain a support for # by adding each time one edge connecting
each vertexin V' \ V' to the graph G'.

Recall that a twin class is a maximal set of vertices that mutually cover each other.
Let V' consist of exactly one vertex from each twin class of #. Clearly, |V'| < 2™
where m is the number of hyperedges. Let #' be the hypergraph resulting from
removing all vertices that are not in V' from 7. Obviously, a complete graph G’
for V' is a support for hypergraph #¢'. This support has (2: ) edges.

We now extend G’ to a support G for #€ as follows. Add each vertex v e V\V’
to G'. Furthermore, add an edge incident to v and its twin in V' (recall that at least
one vertex of each twin class is in V’). Let G be the resulting graph. Since there is at
least one twin class, |V \ V'| < n—1 and hence G contains at most (2;) +n—1 edges.

6The theorem of Hosoda et al. [Hos+12] states that an optimal support can be computed in polynomial
time if m < ¢p(n) where ¢ is some specific function. This is equivalent to fixed-parameter tractability:
if m < ¢(n), then one can apply the polynomial-time algorithm, otherwise m > ¢(n) implies that the
instance size depends only on m. Using our modified twin reduction rule (Rule 3.6 below), the result
of Hosoda et al. [Hos+12] has since been restored [Hos+15].

43



Chapter 3. Minimum-edge hypergraph supports

Graph G is a support for 7 since for each hyperedge F € &, the subgraph G[F] is
connected: G[V'n F] is a complete graph and each vertex in F\ V' is adjacent to its
twin in Fn V'. Thus, G[F] is connected. O

The upper bound provided by Lemma 3.6 grows exponentially in the number of
hyperedges. It would be interesting to replace this exponential dependence by a
polynomial function. However, this is not possible without further reduction rules;
there are instances that require a support with feedback edge number at least 22,
see Section 3.5.

Lemma 3.6 directly yields the correctness of the following data reduction rule.

Rule3.5. If f > (%)), then answer yes.

Our aim is now to shrink the size each of the 2" twin classes so that it is bounded
from above by a function of m. For this, the following rule removes vertices from
large twin classes.

Rule 3.6. Let (/¢, f) be an instance that is reduced with respect to Rule 3.5. If there
isatwin class T in € with |T| > 4™ +7-2™ + 1, then remove an arbitrary vertex ve T
from €.

In the following, by degree-¢ vertices we refer to vertices of degree exactly ¢. To
prove the correctness of Rule 3.6, we show that there is a support G that has the
following property concerning its low-degree vertices.

Lemma 3.7. Let /€ = (V,&) be a connected hypergraph and |V| = 3. Then, there is
a support G = (V, E) such that for each twin class T of 7, graph G has

(i) at most one vertex ¢ € T that has degree-one neighbors in G, and

(ii) at most one degree-two vertex t' € T in G.

Proof. Let G be a support for #. We show how to transform G into a support G*
which fulfills both properties of the lemma. First, suppose that there is a nonempty
sety = {T,..., T,} of twin classes of 7€ such that at least two vertices of each T; have
degree-one neighbors in G. Now, modify G as follows. Pick an arbitrary vertex t;
from each T; such that ¢; has a degree-one neighbor and label ¢; as the one vertex
in twin class T; that will have degree-one neighbors in the modified support G*.
Then, as long as 7 is nonempty, pick an arbitrary T; and an arbitrary vertex t’' €
T; \ {t;}. Let X be the set of degree-one neighbors of ¢ in G. Note that t; ¢ X as,
otherwise, f; and its neighbor would form a connected component of size two in G.
This contradicts the fact that G is a support because by definition /€ is connected
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and contains at least three vertices. We remove all edges between X and ¢’ and make
all vertices in X adjacent to #;. Let G’ be the resulting graph. Observe that G’ has
the same number of edges as G. Moreover, G' is also a support: The vertices of X
were not part of any shortest path between two vertices in V'\ X. Hence, G[V'\ X] is
a support for the hypergraph obtained from # by removing each vertex in X. In
particular, for each F € & containing t;, vertex f; is connected to all other vertices
in G[F\X]. Therefore, adding each vertexin X as a degree-one neighbor to #; (which
results in the graph G') produces a support for #.

The above shows the correctness of the first modification step. After this step we
update the set 7 by performing the modification step, again for some arbitrary twin
class of 7€ that contains at least two vertices with degree-one neighbors in G'. We
repeat this process until 7 is empty. In order to show that we can obtain a sup-
port G* in which 7 is empty, we need to show that we only have to perform a finite
number of modification steps. To this end, note that in each step the degree of the
labeled vertex t; € T; increases and only the degree of ¢’ decreases. Since t' is a twin
of t;, the degree of all other labeled vertices stays the same. Hence the number of
modification steps is finite. Summarizing, there is a support that fulfills Property (i)
of the lemma.

We now show that such a support can be further modified such that it also fulfills
Property (ii). Let G be a support that fulfills Property (i) and let 7 = {T,..., T,;} de-
note the twin classes for which there are at least two degree-two vertices in G. For
each T; do the following. Since the first property is satisfied, 7; contains at least one
degree-two vertex u such that its two neighbors a and b have degree at least two,
respectively. Then, remove the two edges incident with u, make a and b adjacent,
and make u adjacent to either the one vertex in T; that has degree-one neighbors,
or, if such a vertex does not exist, another degree-two vertex in T;. See Figure 3.4
for an illustration of this modification step. Note that the neighbors of #; and u do
not have to be contained in 7;. Nevertheless, for each hyperedge F the connected
component of a and b is connected to the one of ¢; (if it exists) in G[F], which we
now exploit to show the correctness of the modification step.

Let G’ be the modified graph and let v denote the new neighbor of #in G'. Clearly,
G’ has the same number of edges as G. To show that G’ is also a support, we con-
sider each F € & that contains u and at least one of a and b and show that G'[F] is
connected. We distinguish two cases.

Case 1: Exactly one of a and b is in F. Then, u has degree one in G[F], and thus
G[F] — {u} is connected. In particular, the twin v of u has a path to all vertices
in G[F] — {u}. Hence, “reinserting” u and making it adjacent to v results in a con-
nected graph isomorphic to G'[F].
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WY

Figure 3.4.: A possible situation before (left) and after the second modification step
(right) in the proof of Lemma 3.7. The gray region represents a twin
class.

Case 2: Both a and b are in F. Since G[F] is connected, the graph G” that is ob-
tained from G[F] by removing u and making a and b adjacent is also connected.
Again, this means that the twin v of u (in T;) has in G” a path to all other vertices.
As above, “reinserting” u and making it adjacent to v yields a connected graph iso-
morphic to G'[F].

Note that since neither a nor b are degree-one vertices and by the choice of v, the
above modification does not result in a support in which a twin class has more than
one vertex that is a neighbor of degree-one vertices. Consequently, the modification
can be applied to all T;’s without losing the first property. Hence, there is a support
fulfilling both properties. O

With the above lemma at hand, we can show the correctness of Rule 3.6. The out-
line of the proofis as follows. Using Lemma 3.7, we show that only O(2™) vertices of
every twin class T have degree at least three but at least one low-degree neighbor.
Consequently, for sufficiently large | T'| we can assume that one vertex of T has de-
gree one in G: Otherwise, there are many degree-(= 3) vertices in G that have only
degree-(= 3) neighbors in G. This, however, pushes the feedback edge number of G
above the guarantee given by Rule 3.5.

Lemma 3.8. Rule 3.6 is correct.

Proof. Let (4, f) denote the original instance and (#, f) an instance resulting from
one application of Rule 3.6. We show that both instances are equivalent. It is easy to
see that if (#, f) is a yes-instance, then (¥, f) is also a yes-instance: Let G’ be the
support for #¢'. Pick one vertex u € T \ {v}, make v adjacent to u, and call the result-
ing graph G. Note that G has feedback edge number f. Then, G has one more edge
than G'. Moreover, G is also a support since for each F € & containing v, the sub-
graph G'[F\{v}] is connected. This implies that G[F] is also connected (since F\ {v}
contains u).
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For the other direction of the equivalence, suppose that G is a support for 7.
Since 7€ is reduced with respect to Rule 3.5, graph G has feedback edge number
f< (2;” ). Let twin class T and vertex v be as described in Rule 3.6. To show that
(A, f) is also a yes-instance, we show, using | T| > 4™ +7-2" + 1, that hypergraph #
has also a support with feedback edge number f in which vertex v has degree one.

First, we prove that there are at most 4™ + 7 - 2™ vertices whose degree in G is
at least three. Obviously, this upper-bounds the number of vertices with degree at
least three in the twin class T as well. We consider two subsets of this vertex set:
by X we denote the vertices of degree at least three that have only neighbors of
degree at least three in G, and by Y we denote the other vertices of degree at least
three. Note that Lemma 3.7 implies that Y has at most (1 +2) - 2 = 3. 2™ vertices:
First, the number of twin classes is at most 2. Second, in G each twin class has at
most one vertex that has degree-one neighbors. Finally, in G each twin class has at
most one degree-two vertex. Hence, there are at most 2-2" neighbors of degree-two
vertices.

It remains to upper-bound the size of X. We do this by deriving a lower bound
on the number of edges in G and then show that, for large X, this lower bound
exceeds |V| -1+ f, contradicting the fact that (/(, f) is a yes-instance. To this end,
let Z =V \ (XU Y) denote the set of vertices that have degree one or two in G. We
partition the edges of G into two subsets: the set Ex,y which contains edges with
both endpoints on vertices of degree at least three, and the set Ey,; which contains
all remaining edges. Since we assume that G is connected, |Ey,z| = |Z| - 1. The
number of edges in Eyy is at least 3| X|/2 since all vertices in X have degree at least

three and only neighborsin XU Y. If | X| = 2- ((2;") +3- 2’"), then

|Exuy| 2 SX] —|X|+|XI = X[ +]Y]+ 2
Xuyl = 2 - 2 = 2 )

where the last inequality holds because | Y| < 3-2™. Hence, the number of edges
in Gis

m

2
|Exuy|+1Eyuzl =2 |X|+IYI+( 5

2m
+|Z|-1=n+ 9 -1.

This contradicts the assumption that (¢, f) is a yes-instance, since f < (2;" ) after
application of Rule 3.5. Hence, we have | X| <2- ((2;") +3.2M)=4M 4 5.2m,

Now we can upper-bound the number of vertices in the twin class T that have
degree at least two. In addition to the vertices of X, class T can contain at most
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one vertex that is a neighbor of degree-one vertices, at most 2 - 2™ vertices that are
neighbors of degree-two vertices, and at most one degree-two vertex. Therefore,
if T contains more than 4™ +7-2" + 1 vertices, then at least one of them is a degree-
one vertex in G. Without loss of generality, we can assume that this is v. O

It now only remains to combine the above results to obtain a problem kernel
for SUBSET INTERCONNECTION DESIGN parameterized by the number m of hyper-
edges. Moreover, this kernel can be computed in linear time, thus yielding linear-
time fixed-parameter tractability.

Theorem 3.1. An instance of SUBSET INTERCONNECTION DESIGN be reduced to an
equivalent one of size at most O(8™ - m) in O(|#€|) time.

Proof. The kernelization algorithm first applies Rule 3.5 and then exhaustively ap-
plies Rule 3.6. After this, the size of each twin class in 7€ is at most O(4™). Hence, the
instance has size O(8™ - m): The input hypergraph 7€ has at most 2" twin classes,
each containing O(4™) vertices. Therefore, the total number 7 of vertices is O(8™).
The overall instance size follows.

The running time of the kernelization algorithm can be upper bounded as fol-
lows. Clearly, Rule 3.5 runs in O(|#€]) time. In order to apply Rule 3.6, we first com-
pute a partition of V into the twin classes. This can be done as follows. We start
with one set containing V and then consider an arbitrary hyperedge F € &. The ver-
tices that are in F are in a different twin class than the vertices that are not in F.
Hence, using F we partition V into two subsets. We repeat the partitioning for all
hyperedges, each time using the current hyperedge to update the partition. The
partitioning can be done in O(|F|) time [HPV99, Lemma 1]. This process thus takes
O(|#€)) time. Its output is a partition of V into all different twin classes. For each
twin class, we check whether Rule 3.6 can be applied. Instead of applying the rule
right away, we label the vertices of the twin classes that will be removed and de-
crease k by the overall number of labeled vertices. After all twin classes have been
processed, we remove all labeled vertices from each F € &, again in linear time.
Thus, the overall running time is O(|7|). O

By applying a brute-force search on the problem kernel, we obtain the following.

Corollary 3.1. SUBSET INTERCONNECTION DESIGN be solved in 2°0"8™) + O(|#))
time.
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Proof. Applying Theorem 3.1 we get from our input instance obtain in O(|#(|) time
an equivalent instance with at most ¢8™ vertices for some constant ¢. Hence, by
Lemma 3.6, we can assume that the number k of edges in any support is less than

2m
) +c8M"<4"+c8m<(c+1)8™.

Now we try all subsets of k edges out of the at most (”82'") < ¢?82™ possible edges on
at most ¢8™ vertices. For each of them we test whether it is a support in O(mk) =
O(m8™) time. Since there are at most

c*g*m < c*g*m < (c2g2m)(c+DB™ _ 50(m8™)
k (c+1)8™ ( )

such sets, we get the 2°"8™) bound for the running time of this part of the algo-
rithm. O

3.5. A family of hypergraphs requiring supports with
large feedback edge number

In this section we show that the bound given by Lemma 3.6 and used in Section 3.4
is optimal by giving an almost matching lower bound with respect to m on the
size of a feedback vertex set. To this end, we construct a hypergraph # with m =
2g+1hyperedges Fi,..., F,,, where q = 2, such that each vertex is in exactly g hyper-
edges and each intersection of any g hyperedges consists of exactly one vertex: For
each vector in {0,1}™ with exactly g one-entries we introduce one vertex. Hence,
there are overall n = (m) vertices vy, ..., v,. Each entry in the vector of a vertex cor-
responds to one hyperedge, that is, a hyperedge F;, i € {1,...,m}, consists of those
vertices whose vector has a one-entry in the ith position and g — 1 one-entries in
the other m — 1 = 2¢ positions. For each i, there are ( ;_‘71) such vectors. Hence, each
hyperedge contains exactly (;_‘71) vertices. This completes the construction. Note
that in each support for the resulting hypergraph #¢ the subgraph induced by any
hyperedge must contain at least ( ;_‘71) -1 edges.

Suppose that graph G is a support for #. If each edge in G is contained in exactly
one induced subgraph G[F;] for some hyperedge F;, then G would need

o2
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edges. Each edge {u, v} in G can be contained in at most g — 1 subgraphs G[F;],
1 =i < m (corresponding to the positions where both u and v have one-entries in
their vector representations). Therefore, each support contains at least

o = 2q+1_(( 2q )_1)
q-1 q-1

edges. Now we compare this to the number of vertices. We have

2g+1 ([ 2 2g+1
q-1 q-1 q

_ 1 (q-(2q+1)l_ (q—l)-(2q+1)!)_2q+1

qg-1\qg'(g+1! q'-(g+1)! qg-1
_ 1 ( 2g+1)! )_2q+1
qg-1\q!-(g+1)! q-1
1 [2g+1) 2g+1
‘F( q )_F
2q+1 2q| 2q+1
- m(q)_ g-1’

Using Proposition 1.1 and g = 2, we obtain

2g+1 2241

kopt—n = -
(g-Dg+D q
224
> ——— -5,
(g+1vq

Thus, kop = 249 + n = 220" + n. Succinctly, we have shown the following.

Proposition 3.1. For each odd integer m = 5 there is a hypergraph # with m hy-
peredges such that each support for #€ contains at least 2" + n edges, where 7 is
the number of vertices in 7.

3.6. Data reduction rules for sparse supports

In this section, we present a set of reduction rules that identify and remove parts
of the instance which either produce tree-like induced subgraphs or long induced
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paths in the support. We analyze the power of these data reduction rules by show-
ing that, for maximum hyperedge size d < 4, they yield a problem kernel for the
parameter feedback edge number f and that, for general d, they can be used to
obtain fixed-parameter tractability for the combined parameter (d, f). The reason
for obtaining a weaker result for d > 4 is that Rule 3.1 is indeed correct if d < 4 (see
Rule 3.4) but not in general. Applying this rule removes a certain class of vertices
from the input graph that seem to be hard to identify for d > 4.

Although f appears in our data reduction rules, they are applicable regardless of
the value of f. Hence, the data reduction rules can be applied also to the optimiza-
tion version of SUBSET INTERCONNECTION DESIGN.

3.6.1. A problem kernel for the parameter feedback edge number
fford<4

We now describe how we can remove all but O(f) vertices from a SUBSET INTER-
CONNECTION DESIGN instance with d < 4 in O(n - m®) time by using Rule 3.4 (Sec-
tion 3.3) and an additional reduction rule (Rule 3.7 below). Informally, the param-
eter f upper-bounds the number of vertices that are in cycles and have degree at
least three. Using Rule 3.4 we can remove vertices that have degree one in supports.
Hence, to reduce the overall number of vertices to O(f), we also have to remove ver-
tices that are in long induced paths in the support. This is the purpose of Rule 3.7.
This rule is also needed in Section 3.6.2 which deals with the case d = 5. Therefore,
we formulate the rule in a more general way than needed for the special case d < 4.

Rule 3.7. Let (#€ = (V,6), f) be an instance of SUBSET INTERCONNECTION DESIGN.
If #€ contains a vertex set P := {py, ..., p2q} with the set &p := Upep &(p) of incident
hyperedges such that
(i) no p; € P covers any p; € P with j # i,
(i) foreach Fe&pwehave FNP={p;,...,p;}forsome0=<i<j=<2d,
(iii) for each F € §p with F N {py, p2q} = @, and for every vertex v € F\ P, there is a
vertex p € P that covers v, and
(iv) there is no hyperedge F € &p such that FN P = {p;} forany 0 < i < 2d,
then do the following.
For every F € &p with F N {py, p2q} = @, remove all vertices in F\ P from #. Fur-
thermore, remove the vertices py, ..., p24—» from #€ and decrease f by d — 1.

Intuitively, Conditions (i) and (ii) plus the fact that the hyperedges have size at
most d enforce that there is a support G that makes G[P] a long induced path with
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Figure 3.5.: Two hypergraphs to which Rule 3.7 applies along with optimal supports.

endpoints py and p,4. Below, we use P; := {ps,..., p24-1} to denote the set of in-
ner vertices of this path structure. Condition (iii) ensures that in the support in
which G[P] is a path all vertices that are in hyperedges with only vertices of P; can
be made degree-one neighbors of some vertex of P;.

Figure 3.5 shows two examples of hypergraphs with maximum hyperedge size
d =3 and d = 6, respectively, to which Rule 3.7 applies.

In order to prove the correctness and running time of the rule, we first make some
observations on the structure of the subhypergraph that consists of the hyperedge
set &p. The first observation is about the structure of the hyperedges along the pre-
sumed path containing P.

Observation 3.2. Let /€ be a hypergraph and P < V satisfying the conditions of
Rule 3.7. For every p; € P there is a hyperedge F; such that p;_; ¢ F; and {p;, pi+1} ©
F;" and also a hyperedge F; such that {p;_1, p;} € F; and p;, ¢ F; . Moreover, there
is a hyperedge F;, such that Fj n P = {po} and a hyperedge F,, such that F,, n P =
{p2al.

Proof. Consider some i € {1,...,2d — 1}. By Condition (i) of Rule 3.7, there is some
hyperedge containing p; but not p;_;. Now, by Condition (iv), this hyperedge con-
tains at least one further vertex from P, and by Condition (ii) it thus contains p;,;.
Hence, there is a hyperedge Fl* containing p; and p;; that does not contain p;_;.
The existence of F; follows from a symmetric argument. Finally, Condition (i) im-
plies the existence of F; and F,,. O

For the second observation we consider the hyperedges that only intersect with
the set of inner vertices P;. To this end, let §; = {F € &p | Fn P < P;} be the hyper-
edges of &p that contain neither py nor py; and let W := Upeg, F be the union of
all vertices that are incident with some hyperedge in ;. Due to Observation 3.2,
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&y is not empty and Wn P = P\ {py, p24}. Each vertex v in W\ P is covered by
some vertex of P\ {py, po4}: By the definition of W, there is a hyperedge F € &,
with F N {py, p2a} = @ that is incident with v. By Condition (iii), v is covered by
some p; € P. Since F N {py, p2a} = @, we have p; # po and p; # p.q. Altogether,
W thus has the following property.

Observation 3.3. For each v € W either v € P; or there is a p; € P; such that p; cov-
ers v.

Informally, the above two observations imply that the subhypergraph #[W] has a
support in which P; is an induced path and all other vertices of W have degree one.
The final observation is used to show that this support for #€[W] is also optimal. Itis
based on the fact that any support for a connected input hypergraph is a connected
graph.

Observation 3.4. Let 7€ = (V,8) be a hypergraph and let G be a support for #.
If the subhypergraph #€[V'] induced by a vertex subset V' < V is connected, then
[EGIVDIz V' -1.

Using these observations, we can now show the correctness of the rule.
Lemma 3.9. Rule 3.7 is correct.

Proof. Let €, P and &p be as described in Rule 3.7 and, as above, denote P; :=
{p1,...,poaarh, 61 ={F€8p | FNP < Pr}, and W := Upeg, F. Consider an arbitrary
optimal support G' and let G be the graph obtained from G’ by removing all edges
in G'[W] and then adding the edges {p;, p;+1} fori € {1,...,2d — 2}, and, for every v €
W\ P adding one edge {v, p;} where p; covers v. We prove that G is an optimal
support.

First, we show that G is a support, that is, G[F] is connected for all F € &. For this,
let F € & and Fy = Fn W. Observe that if | | < 2, then G[F] is connected. Hence,
assume |Fy/| = 2 and let u, v € Fy, such that {u, v} € E(G'). We show that u and v are
connected in G[Fy]. This directly implies that G[F] is connected, since any path
in G'[F] using {u, v} can then use the path between u and v in G[Fy ] instead. By
Observation 3.3, we have Fiy NP 2 {p;, p;} forsome 1 < i < j <2d -1, and Condi-
tion (ii) yields Fy NP 2 {p;, pi+1,..., pj}. Without loss of generality, we may assume
that either u = p; or {u, p;} € E(G). Similarly, we may assume that either v = p; or
{v, p;} € E(G). Hence, it suffices to show that G[{p;,..., p;}] is connected. This is di-
rectly implied by the construction of G. Thus, there is a path between uz and v and
G is a support.
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We now prove the optimality of G. For this, we first show that the induced subhy-
pergraph J€[W] = (W,&)) is connected, which implies a lower bound on the num-
ber of edges in G'[W]. Let u,v € W. We construct a hyperwalk between u and v
using only hyperedges of €;. By Observation 3.3, it suffices to show that there is
a hyperwalk between any p;, p;+1, 1 < i <2d —2. Assume without loss of general-
ity that i < d. By Observation 3.2 there is some hyperedge F € & with p;, pi+1 € F
and p;_, ¢ Fforeach i€ ({l,...,2d —1}. Condition (ii) states that FN P = {p;,..., p;}
and, since |F| < d, wehave j <i+d—1<2d. Hence, F € &; and ¥([W] is connected.

The facts that hypergraph #[W] is connected and Observation 3.4 imply that
G'[W] contains at least |W| — 1 edges. The graph G[W] also contains |W|— 1 edges.
Since W contains all vertices p; for 1 < i < 2d — 1, by the construction of graph G,
graphs G’ and G share all edges not contained in GI[W]. Hence, G is optimal.

We have thus shown that there is an optimal support G where each vertex v €
W\ P is adjacent to a vertex in P that covers v. Combining this with Rule 3.2 we
conclude that removing any vertexin W\ P from the hypergraph results in an equiv-
alent instance. Hence, in the following we assume that W < P, and hence W =
{p1,..., P24-1}. It remains to show that the remaining modifications for ps,..., p2qg—2
are correct.

Let (4, f) be the original instance and let (¥, f) be the instance resulting from
an application of Rule 3.7 to (¥, f). Note that f' = f —d + 1 since we assume that
W = {p1,..., p2a-1} and that, after the application of Rule 3.7, only the vertices p;
with 2 <7 <2d -2 are removed. Let P* denote the set of the removed vertices. We
prove that the instances are equivalent.

First, let G be a support with feedback edge number f for #¢, as constructed in the
first part of the proof. We show that we can obtain a support for #¢’ with feedback
edge number at most f from G. Consider a hyperedge F € & such that G[F\ P*] is
disconnected. Clearly, FNP* # @ and F\ P* # @. Because of Condition (ii) and
|F| < d, the set F\ P* then contains exactly one of p; and py4-;. Without loss
of generality, let p; € F. Remove each edge {v, p;} in G[F] with i € {2,...,d} and
add {v, p1}. Let G* be the graph obtained by iterating the replacements as long as
possible. We obtain a support for #¢' by taking G* [V \ P*]: We have that G*[F\ P*] is
connected because any path in G[F] between two vertices in F\ P* that used {v, p;}
can now use {v, p;} instead. Finally, since 2d — 2 edges are incident with P* in G*,
and the same number of vertices are removed from G*, it follows that G*[V \ P*]
has feedback edge number at most f’ edges. Hence, if (#, f) is a yes-instance, then
also (A, f') is a yes-instance.

For the converse, let G’ be an optimal support for 7' with at most k' edges. We
claim that adding the edges {p;, p;+1} fori € {1,...,2d — 2} yields a support G for 7.
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Clearly, it suffices to consider hyperedges F that intersect P*. Condition (ii) im-
plies that G[F n P*] is connected. Hence, if F < P*, then G[F] is connected. Other-
wise, G'[F\ P*] is connected since G’ is a support. By Condition (ii), either p; € F
or p24-1 € F. Since Fn P* is connected to p; or to p»4-1 in G, this implies that G[F]
is connected. Note that G contains at most k edges since it contains exactly 2d — 2
edges more than G'. Hence, if (¥, k') is a yes-instance, then also (#, k) is a yes-
instance and the rule is correct. O

We now show the running time of Rule 3.7.

Lemma 3.10. It is possible to apply Rule 3.7 or to decide that it does not apply to
the hypergraph in O(m*d®) time.

Proof. First, recall Observation 3.2. In order to find an application of Rule 3.7 we
will consecutively find hyperedges that correspond to the definitions of F; and F;".
The algorithm is as follows.

We start by building the covering graph of 7. Then, we construct an auxiliary
hypergraph 7€* = (V*,6*) as follows: Start with the hypergraph # and while there is
avertex in the covering graph that has an incoming arc, remove this vertex from #€.
Note that V* does not contain any pair of vertices u and v such that u covers v. The
running time for constructing #¢* is dominated by the O(n - |#€]) = O(m? - d?) time
needed for constructing the covering graph.

Intuitively, we successively discover the vertices in p;, ..., p24-1 from Rule 3.7 that
are contained in the F; and F;", giving rise to successively new hyperedges F;, F;".
By considering only V*, the F; and F;" form a very regular structure, and when p;
is fixed, then there is little choice for p;.;. Hence, we can basically guess p; and
greedily determine the successive p;, i > 1, until either sufficiently many are found,
or there are no choices left. Subsequently, we make this approach more formal.

We guess, trying all possibilities, which of the sets F in £ is the set F;' n V*. Let
us assume that our guess was correct. We then check for vertices v having the fol-
lowing property:

Property (a): there is a hyperedge F’ € §* such that Fn F' = {v}.

Discard the guess of F if there are more than two or less than two vertices with Prop-
erty (a). Otherwise, for both choices to denote one of these vertices by p;, proceed
as follows.

Set i := 1 and repeat the following as long as F \ {py,..., p;} # @. Check whether
there are vertices v in F\ {py,..., p;} with
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Property (b): there is a hyperedge F’ € & * such that F’ contains v and p;,
and FFnF<{p,...,pi, V}.

If there is exactly one vertex v in F\ {py,..., p;} with Property (b), then denote this
vertex p;;+; and set i := i + 1. Otherwise discard the guess of p;.

Now, set i = |F| and repeat the following as long as i < 2d — 1. Check for each
vertex vin V* \ {p,..., p;} whether it has

Property (c): there is a hyperedge F' € £* such that F' contains v, F'n
{p1,..., pi} = {p;} and for every u € F'\ {v, p;}, and every hyperedge F" €
&* containing u and p; we have that F” contains v.

If there is exactly one vertex with Property (c), then denote this vertex v as p;,; and
set i := i+ 1. Otherwise discard the guess of p;.

Finally, let L={F' € 8" | F' € {p1,..., paa-1} A (p1 € F)}\{p1,..., p24-1} and simi-
larly R={F €& | F'Z{p1,..., p2a-1} AN (P2a-1 € F)}\{p1,..., p2a-1}- Let po be an ar-
bitrary vertexin L and p,, an arbitrary vertexin R. We now check whether py, ..., p2q
satisfies the conditions of Rule 3.7 in the original input hypergraph /€. We claim
that if there is an application of Rule 3.7, then the above algorithm finds it.

Denote the vertices in P in the application of the rule by py,..., p,,. Let F" and F;
be as in Observation 3.2 and denote F'; = F; nV* and F'; = F; nV*, respec-
tively. If pg,...,p;d satisfies the assumptions of Rule 3.7 and &(u) = £(p}), then
also pg,..., pi_y, U, Pi,y,-.., Py, Satisfies the assumptions of Rule 3.7 and, hence, we
can assume py, ..., p,, € V*.

Consider the branch in which F = F'{. The sets F'; and F'; witness the Prop-
erty (a) for p; and p|y,, respectively, and no other vertex can satisfy Property (a) by
Conditions (ii) and (iv). Hence, we may assume p; = p’l. Foreachie{l,...,|F|—1},
the set F';,, witnesses the Property (b) for p} , and no other vertex in F has Prop-
erty (b).

Next, for i € {|F|,...,2d — 2}, p;. . has Property (c), and for any other vertex tak-
ing u = p!,, (which must be contained in any F') and F” = F';,, shows that it does
not have Property (c). Finally, it remains to note that every hyperedge which con-
tains p| = p1 and py also contains the whole set L and, in particular, p, (similarly, R
contains p,4). Hence, also po, py,..., Py,_;» P2a satisfy the assumptions of Rule 3.7,
and the algorithm finds an application.

As to the running time, there are | *| < m possible choices of F, any of the Proper-
ties (a)-(c) can be tested for all vertices in O(m?-d?) time by first selecting F’ and F”
and then v and u inside them. As successfully testing a condition implies finding
one more vertex of p(), e p; 40 We test the conditions at most 2d + 1 times in each
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branch. The sets L and R can be found in O(m - d) time. Finally, the assumptions of
Rule 3.7 for a given sequence py, ..., p2q can be tested in O(m-d?) time. Hence the
total running time is O(m - (2d + 1) - m? - d? + m- d?)) = O(m*d®). O

We now derive an upper bound on the number of vertices in instances that are
reduced with respect to Rule 3.4 and Rule 3.7. As Rule 3.4 reduces all vertices that
have degree one in any support, the upper bound on the overall number of vertices
will be obtained by upper-bounding the number of vertices with degree at least two
in the support. As mentioned above, we will use Rule 3.7 in Section 3.6.2, where we
also need to upper-bound the number of vertices with degree at least two. Hence we
use the concept of 2-cores, which was introduced in the context of social network
analysis.

Definition 3.1 (Seidman [Sei83]). The 2-core of a graph G is the induced subgraph
of G that has the maximum number of vertices such that each vertex has degree at
least two.

The 2-core of a graph is unique [Sei83]. The application of Rule 3.7 alone does not
necessarily yield a bounded number of vertices in the 2-core in a support. Instead,
the application of Rule 3.4 for d < 4 (and of a different rule for d = 5) “prepares
the hypergraph” such that application of Rule 3.7 yields a size upper bound on the
2-core of an optimal support G. We define the notion of being prepared as follows.

Definition 3.2. We say that a hypergraph 7€ = (V,8) is cleared if there is an optimal
support G for 7€ such that each vertex of degree at least two is in the 2-core of G and,
furthermore, for each P := {py,..., p2g} with P < V and &' := Uper & (p) that satisfy
Conditions (i) to (iii) of Rule 3.7, it holds that 5 and P also satisfy Condition (iv).

The intuition behind the definition is as follows. The first part of the definition
guarantees that the support for a cleared hypergraph consists of the 2-core plus
possibly some degree-one vertices attached to this 2-core. The second part of the
definition guarantees that any hypergraph with long paths in the 2-core of its sup-
port can be reduced further by applying Rule 3.7.

For d < 4 itis sufficient to apply Rule 3.4 in order to clear a hypergraph.

Lemma3.11. Let¥€ = (V,&) be a hypergraph with d < 4 that is reduced with respect
to Rule 3.4. Then, € is cleared.

Proof. The reducedness of 7€ directly implies that there is a support without any
degree-one vertices, hence, the first property of being cleared is satisfied. For the
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second property, consider P and & as in Rule 3.7 and assume that there is a hyper-
edge F € € such that Fn P = {p;} for some 1 < i < 2d. Then, by Condition (iii) we
have € (p;) 2 & (u) for each u € F\ P and, hence, Rule 3.4 applies, a contradiction. O

We now upper bound the size of reduced instances. We also use this bound
in Section 3.6.2 and, hence, prove it in a slightly more general form than needed
ford <4.

Lemma 3.12. Let (¥, f) be a yes-instance of SUBSET INTERCONNECTION DESIGN
such that #€ is connected, cleared, and reduced with respect to Rule 3.7. Then,
there is a support G = (V, E) for (#C, f) such that the 2-core of G has at most

max{(9d -1)(f-1),3d—-1) f}
vertices and, hence, at most 9d - f edges.

Proof. Among all optimal supports G for (4, f) such that each vertex of degree at
least two is in the 2-core of G, choose G such that it contains the maximum number
of degree-one vertices. Now consider the 2-core G’ of G. Note that G and G’ have
the same feedback edge number f. We show an upper bound on the number of
vertices in G’ which then gives a bound on the number of edges in G'.

Let V3 denote the vertices with degree at least three in G’ and V, the degree-two
vertices in G'. We first bound the number of components in G'[V,]. If Vo3 = @, then,
clearly, we have at most one component. Otherwise, consider the graph G* with
loops and parallel edges obtained from G’ by replacing each maximal path with
inner vertices in V, by a single edge. The number of edges in G* is an upper bound
on the number of components in G'[V;]. The number of edges in G* is

Vasl =1+ f = ) degs(v)/2 = 3|Vasl/2.

veV=3

The above relation implies that | V>3] < 2 f — 2. Thus, the number of edges in G* and
the number of components in G'[V5] is at most max{1,3 f —3}.

We now show that each connected component of G'[V,] contains fewer than 3d
vertices. Consider a connected component C of G'[V,] with ¢+ 1 = 3d vertices.
Since C is a path, its vertices admit an ordering py, p1,..., p with {p;,p;} € E &
j=i+lforall0o<i<j<c.LetP:={pg,pi,..., p2a} andlet&" := Upep & (p). We show
that Rule 3.7 applies to #¢, contradicting its reducedness.

First, assume that Condition (ii) of Rule 3.7 does not hold for some F € &'. That
is, there are 0 < i < j < ¢ < 2d such that p;,p, € Fand p; ¢ F. Since c+1 = |P| +d,
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a shortest p;-p¢-path in G — {p;} contains at least d + 1 > | F| vertices. Thus, G[F] is
not connected, contradicting G being a support for (#¢, k). Hence, Condition (ii) of
Rule 3.7 is satisfied.

Now, Condition (i) of Rule 3.7 can be seen as follows. Assume that there is a
pair p;, pj, i < j, of vertices in C such that p; covers p;. By the above, all hyper-
edges that contain p; and p; also contain {p;,1, ..., pj-1}. Hence, p;;, also covers p;.
Since p; and p;., are adjacent in G, this implies that a new support can be obtained
by making all neighbors (except p;.1) of p; adjacent to p;.; instead. The new graph
is also a support, and has one additional degree-one vertex. This contradicts our
choice of G. Hence, Condition (i) of Rule 3.7 holds.

Let F € & with Fn{py, p2a} = ¢ and note that G[F] is connected. Since FC is
cleared, and since there is some p; € Fn P, we know that G[F] consists entirely
of vertices in P plus some degree-one vertices. Each degree-one vertex v is covered
by its neighbor p € P in G. Thus Condition (iii) of Rule 3.7 holds.

Finally, Condition (iv) of Rule 3.7 follows since € is cleared. Thus, Rule 3.7 ap-
plies, a contradiction.

By the above, each connected component in G’ — V.3 has less than 3d vertices.
Hence, | V5| < (3d — 1) max{3 f — 3, 1}. Altogether, this implies

Vol +1Va3] < Bd—1)max{3f—-3,1}+2f -2 = max{(9d - 1)(f - 1),(3d - 1) f}.
By definition of f this means that the 2-core of G has at most 94 - f edges. O

For d < 4, after applying Rule 3.4 the size bound on the 2-core immediately gives
a bound on the overall instance size.

Theorem 3.2. An instance of SUBSET INTERCONNECTION DESIGN with maximum
hyperedge size d < 4 can be reduced to an equivalent one with at most max{35(f —
1),11} vertices in O(n- m®) time.

Proof. The kernelization algorithm exhaustively applies Rule 3.4 and Rule 3.7. Re-
ducedness with respect to Rule 3.4 ensures that there are no degree-one vertices in
any optimal support and, by Lemma 3.11, that the hypergraph is cleared. Conse-
quently, being reduced with respect to Rule 3.7 implies that any support contains
atmost max{(9d —1)(f — 1), (3d — 1) f} vertices of degree at least two. Altogether this
implies the bound on the number of vertices.

For the running time, we apply Rule 3.4 exhaustively, then apply Rule 3.7 exhaus-
tively, and repeat until neither applies anymore. Since each application of one of
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the rules removes at least one vertex, we iterate at most n times. Applying the run-
ning time bounds given by Lemmas 3.5 and 3.10 we obtain the overall running time
bound. O

3.6.2. A fixed-parameter algorithm for f and d

Our polynomial-time data reduction in Section 3.6.1 does not generalize to arbi-
trary d. The reason is that the condition |F| < 4 is necessary for the correctness
of Rule 3.4 or, equivalently, that Rule 3.1 is incorrect if d > 5. Using an additional
reduction rule (Rule 3.8 below), we can obtain the same bound on the number of
vertices in the 2-core of a support. However, many degree-one vertices may still re-
main and it seems unclear how to remove them for d = 5. Nevertheless, using the
fact that the 2-core of a support has bounded size we obtain a branching algorithm
with running time O(d'®/ - d-n-m+n-m?®-d?). The algorithm first applies Rule 3.7
and Rule 3.8 to simplify the structure of the support that we are looking for. Then,
we apply a branching rule that branches into O(d?) cases and finds at least one of
the edges in the 2-core of a support. If the branching rule does not apply, then an
optimal support can be found in polynomial time.

First, to obtain the bound on the 2-core, we replace Rule 3.4 with Rule 3.8 to clear
the input hypergraph and to make Lemma 3.12 applicable.

Rule 3.8. Let 7€ = (V,&) be a hypergraph, F € §, and F = {u, u,,..., us} such that u
covers each u;. Then, remove the vertices u;,..., u, from 7.

Lemma 3.13. Rule 3.8 is correct and one application takes O(n - m - d) time.

Proof. We first show the correctness of the rule. We show that there is an opti-
mal support G such that G[F] is a star with center vertex u. Let G' be any optimal
support for 7€ and assume that there are two adjacent vertices in F none of which
is u. Note that we may choose two such adjacent vertices u;, u; such that {u, u;} €
Ng (u;); this is possible because otherwise G'[F] is not connected. Remove the
edge {u;,u;} from G’ and add {u, u;} to obtain G. We prove that the graph G is
a support. Consider any hyperedge F’' € & and any path P’ between two vertices
in G'[F']. If P’ contains the edge {u;, u;}, then we may replace it by {u;, u}, {u, u;}
to obtain the walk P in G. Since u covers both u; and u; the path P is contained
in G[F']. Thus, G[F'] is connected for each F’ € & meaning that G is an optimal sup-
port. By repeating the replacement of edges described above, we may arrange that
G|F] is a star.

60



3.6. Data reduction rules for sparse supports

Note that the action of Rule 3.8 can be expressed as a series of applications of
Rule 3.2. Clearly, Rule 3.2 applies to u;, so one can safely remove u,;. Afterwards,
Rule 3.2 still applies to u,, so one can remove u,. This can be repeated until all u;’s
are removed from JC.

The running time of Rule 3.8 can be seen as follows. First, we construct the cov-
ering graph G¢ for # in O(n- m-d) time using Lemma 3.1. Then, for each hy-
peredge F € & we check whether there is a vertex u such that there are arcs (u, v)
in G¢ for every v € F\ {u}. If so, then we remove each vertex in F\ {u}. This costs
O(m-d?) time. It is easy to check that this procedure finds an application of Rule 3.8
if there is one. O

For d = 5, we can now use Rule 3.8 to clear hypergraphs.

Lemma3.14. Let 7€ = (V,&) be a hypergraph that is reduced with respect to Rule 3.8.
Then, 7€ is cleared.

Proof. We first prove the first statement of being cleared, namely, that there is an
optimal support G for 7€ such that each vertex not in the 2-core of G has degree
one. We use the notion of “pending trees”. Let G be a graph. If G[V'] is the 2-core
of G, then a pending tree of G is a connected component of G[V \ V'] plus its unique
neighborin V.

Pick an optimal support G and consider its pending trees and their vertex sets
Cy,...,C,. For each pending tree C; there is a unique vertex x both in C; and in the
2-core of G. Denote x =: root(C;). If the 2-core of G is empty, then there is only
one pending tree C; and we choose root(C;) to be an arbitrary vertex of degree one
instead. Next, consider optimal supports that contain the maximum number of
degree-one vertices. Among these optimal supports, choose G such that

4
val(G) := ) ) dist(root(Cy), )
i=1 veC;
degg (1)=1

is minimized, where dist(u, v) is the length of a shortest path between z and v in G.

Assume now that there is a pending tree with vertex set C < V such that G[C]
contains at least one vertex with degree at least two in G[C]. Choose u € C with
degree at least two such that a shortest path between u and root(C) has maximum
length. Consider the neighbors of u in G. Let v be the neighbor of u on the short-
est path from u to root(C). All neighbors of u different from v must be of degree
one due to the choice of u according to the maximum length path to root(C). Let
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us call them uy,...,u,. By Observation 3.1, &(u) 2 §(u;) for all i € {1,...,¢}. Con-
sider some u;. Since #€ is reduced with respect to Rule 3.8, there is no subset U of
the degree-one neighbors of u and no hyperedge F € & such that F = U U {u, u;}.
Hence, each hyperedge incident with u; also contains some vertex other than u
and its degree-one neighbors. We conclude that each hyperedge F € § that con-
tains u; also contains v since, otherwise, G[F] is not connected. Thus, the graph G’
obtained from G by removing the edge {u;, u} and adding the edge {u;, v} is an op-
timal support. However, the distance of u; to root(C) is smaller in G’ than in G.
Hence, either u; is the only degree-one neighbor of u in G, contradicting the choice
of G according to the maximum number of degree-one vertices, or G’ exhibits a
smaller val(G') contradicting the choice of G according to the minimum val(G).
Hence, there are no pending trees C that contain degree-two vertices and the first
statement of the cleared-definition now follows.

It remains to prove the implications of the conditions of Rule 3.7. Let 7, P :=
{Po,..., p2at With P € V, and &' := U,p&(p) satisfy the Conditions (i) to (iii) of
Rule 3.7. If there is a hyperedge F € § such that Fn P = {p;} for some 0 < i < 24,
then we have & (u) < &(p;) for every u € F\ {p;} by Condition (iii), and Rule 3.8 ap-
plies to p;, uy,..., uy, where {p;, uy,..., u,} = F. Hence, if /€ is reduced with respect
to Rule 3.8, then Condition (iv) is satisfied. O

Now, Lemma 3.12 is applicable to hypergraphs that are reduced with respect to
Rule 3.8, that is, we can reduce any input instance in polynomial time to one such
that there is a support with at most 94 - f edges in the 2-core. Based on this fact, we
devise a search tree algorithm for the parameter (d, f). In the algorithm we main-
tain a partial support for the input hypergraph and in each search tree node, we try
to add one new edge to the partial support. Eventually, either the partial support
cannot be extended to a full support or it can be done in a greedy fashion.

In order to obtain a search tree whose size depends only on d and f, we ensure
that the search tree has depth at most 94 - f and that the algorithm branches into
at most (’;) cases in each step. As mentioned, the basic idea is to determine the 2-
core of the support by adding one edge to it in each branching step. Thus, applying
the upper bound 94 - f on the number of edges in the 2-core from Lemma 3.12, we
perform at most 9d - f branches. After we have determined a candidate for the 2-
core, we can check whether it is correct because, if it is, then the remaining vertices
can be attached to the 2-core as degree-one vertices in a greedy fashion. We now
make this approach formal.
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In the following, G denotes the partial support that we have built by branching so
far. Initially it is an edgeless graph. Furthermore, we assume that the input hyper-
graph ¥ is reduced with respect to Rule 3.8.

Branching rule 3.1. Let F be a hyperedge of 7€ such that, with F, € F denoting the
vertices of F whose degree in G is zero, G[F] is disconnected and cannot be made
connected by, for each u € F,, adding an edge between u and some vertex v e F\ F,
that covers u. Then, branch into all possibilities to add an edge to G[F].

We now show that Branching rule 3.1 is correct. For this, say that a graph G is a
partial 2-core support for the hypergraph #¢ if all the edges of G are contained in
the 2-core of some optimal support of €. Note that the edgeless graph is a partial
2-core support for every hypergraph and, hence, the edgeless graph is a suitable
start for the search tree algorithm.

Lemma 3.15. Let G = (V, E) be a graph and € a hypergraph such that Branching
rule 3.1 is applicable. Then, G is a partial 2-core support for # if and only if some
graph obtained by the application of Branching rule 3.1 is a partial 2-core support
for €.

Proof. («<): Clearly, removing an edge out of a partial 2-core support yields again a
partial 2-core support.

(=): Let G be an optimal support such that its 2-core G contains all edges of G. We
show that G[F] contains an edge which is not in G[F] but in some graph obtained
by applying Branching rule 3.1.

Recall that we assume 7€ to be reduced with respect to Rule 3.8. Hence, € is
cleared and we can assume that all edges of G[F] that are not in the 2-core G are
incident with degree-one vertices in G. Assume towards a contradiction that all
edges in G[F] are not in the 2-core G. Thus, they are incident with degree-one ver-
tices in G. Hence, all vertices in Fy have degree one in G. Since G'[F] is connected,
each vertex u € Fy is connected to some v € F\ Fy. By Observation 3.1, v covers u
and, thus, the condition of Branching rule 3.1 is not satisfied, a contradiction. Thus,
there is one edge in G[F]which is not in G but in the 2-core G. Clearly, in one of the
branches, an edge of G is selected and added to G. O

Next, we show that, if Branching rule 3.1 does not apply, meaning that its pre-

conditions are not fulfilled for any choice of hyperedge F, then we can solve the
instance by greedily assigning the remaining vertices.
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Lemma 3.16. Let /€ be a hypergraph and let G be a graph such that there is a sup-
port for 7€ that is a supergraph of G and Branching rule 3.1 does not apply to 7€
and G. Then, an optimal support for #€ can be computed in O(n-d - m) time.

Proof. Let #€ = (V,8), let V; be the set of degree-zero vertices in G, and let G’ be
obtained from G by adding exactly one edge {u, v} to G for each u € V;, where v € V'\
Vp is an arbitrary vertex covering u. Note that G’ can be computed in O(n-d-m) time,
by first computing the covering graph of 7€ using Lemma 3.1 and then iterating over
each vertex and adding the appropriate edges. We now show that G’ is an optimal
support.

We first show that for each hyperedge F € &, the graph G'[F] is connected. Let Fy =
FnV, forahyperedge F € €. Since Branching rule 3.1 does not apply to the instance,
G[F] can be made connected by adding an edge for each u € F, between u and some
vertex w € F\ F, that covers u. Thus, because each u € F, gets at most one incident
edge in this way, G[F \ Fy] is connected. Since, for each u € F, its neighbor v in G’
covers u and we know that v € F\ Fy, also G'[F] is connected.

It remains to show that G’ is optimal. Note that G’ has exactly |V| more edges
than G. Let G* be any support that is a supergraph of G. Now merge in G* all
vertices in V' \ V; into one vertex. The resulting graph contains at least | V| edges,
since G* is connected. Hence, G* has |V;| edges which are incident with vertices
from V;. Thus, at least | Vp| edges have to be added to G’ to obtain a support. O

Combining all of the above, we arrive at the main result of this section.

Theorem 3.3. SUBSET INTERCONNECTION DESIGN can be solved in O(d4f -d-n-
m+n-m3-d?) time.

Proof. Let 7€ = (V,8) be the input hypergraph. The branching algorithm works
as follows. It starts by exhaustively applying Rule 3.8, then exhaustively applying
Rule 3.7 and repeating until neither applies anymore. Since each application re-
moves at least one vertex the applications of Rule 3.8 take O(n - (d - n- m)) time by
Lemma 3.13. The applications of Rule 3.7 take O(n/d - (m*-d®)) = O(n-m3- d?) time
by Lemma 3.10 and the fact that each application removes at least 2d — 2 > d ver-
tices. Note that the running time contribution of Rule 3.7 dominates the one of
Rule 3.8. Lemma 3.14 and Lemma 3.12 imply that there is a support whose 2-core
has at most 9d - f edges if the input is a yes-instance. Thus, we apply Branch-
ing rule 3.1 as often as possible or until the number of edges in G exceeds 9d - f.
Each application creates at most (’21) branches, and since each branch adds one
edge to G, there are at most 9d - f branches. The correctness of this branching
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follows by Lemma 3.15. Finally, if Branching rule 3.1 does not apply, then we can
compute an optimal support satisfying the constraints of the search tree node in
O(n-d- m) time (by Lemma 3.16).

To check whether Branching rule 3.1 applies, we maintain the covering graph
throughout the search tree. At each node, we iterate over each edge F, add the edges
between vertices in F and arbitrary covering vertices to G, and check whether the
result is connected. This needs O(m - (d + d?)) time at each node. Initializing the

covering graph can be done in O(d - n- m) time (Lemma 3.1). The size of the search

9df

treeis at most (¢) = d'®%/ and hence the overall running time is

On-m*-d*>+d-n-m+d"® - (m-d*>+n-m))

=0d® .d-n-m+n-m®-d*. O

3.7. Concluding remarks

The main contributions of this chapter are as follows. First, we show that twins can
be crucial to obtain a support with a fixed feedback edge number, but the number
of crucial twins in each twin class is upper bounded by some function of m, the
number of hyperedges. Subsequently this leads to a linear-time algorithm for con-
stant values of m. Second, we provide data reduction rules and a branching rule,
showing that SUBSET INTERCONNECTION DESIGN is fixed-parameter tractable with
respect to the maximum hyperedge size d and the feedback edge number of the
support.

The linear-time algorithm for a constant number m of hyperedges that follows
from our data reduction rules seems foremost of theoretical interest. In practice,
it seems unlikely that the corresponding data reduction rules apply often because
they require a twin class of size exponential in m. An interesting future research
direction is thus to improve the size bounds on the twin classes. However, we con-
jecture that an upper bound polynomial in m on the size of the whole remaining
instance, that is, a polynomial-size problem kernel for parameter m, cannot be
achieved.

Of more practical value seem to be the remaining Rules 3.2 to 3.4, 3.7, and 3.8
which repair the incorrect Rule 3.1, the “twin reduction rule” from the literature
[Fan+08; Hos+12]. Indeed, studying the cases when Rule 3.1 applies, but none of the
repaired rules do, would be useful and could lead to further relevant data reduction
rules.
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Above we showed that finding tree-like supports in hypergraphs with small hy-
peredges is fixed-parameter tractable. Here, algorithm engineering is needed to
improve the running times and to merge our reduction rules with existing solution
strategies [Fan+08]. On the theoretical side, we did not resolve yet whether SUBSET
INTERCONNECTION DESIGN is fixed-parameter tractable with respect to the feed-
back edge number f of the support alone. A possible line of attack would be to
first find out whether, in our results, we can replace the parameter d (maximum
hyperedge size) by the smaller parameter “size of the largest intersection between
two input hyperedges”. Obtaining fixed-parameter tractability far beyond the feed-
back edge number seems unlikely, however, because preliminary considerations
indicate that SUBSET INTERCONNECTION DESIGN is W[1]-hard with respect to the
feedback vertex number of the support, that is, with respect to the smallest number
of vertices that can be removed so that the support is cycle-free.

Regarding data reduction rules for small feedback edge number of the support,
we note that, while there clearly is structural insight behind the reduction rules,
they were developed in a rather ad-hoc fashion. There is indeed a characterization
via forbidden “chordless hypercycles” in the dual hypergraph for the special case
of tree supports. This characterization was given by Goodman and Shmueli [GS83]
(see also Brandstddt, Le, and Spinrad [BLS99, Theorem 8.1.1]). It would be interest-
ing to try and combine this characterization with the insights from Section 3.6 to
develop obstructions for supports of small feedback edge number.

In terms of solution algorithms it would be interesting to significantly improve
on the straightforward exponential upper bound 2°"*) when solving SUBSET IN-
TERCONNECTION DESIGN parameterized by the number 7 of vertices.

Regarding the application in communication networks, it is interesting to con-
sider data reduction for variants of SUBSET INTERCONNECTION DESIGN that ask to
minimize the maximum vertex degree additionally to the average degree (see Onus
and Richa [OR11]). We note that our reduction rules may create pathologically large
maximum degrees, for example, because of Rule 3.8. We therefore believe that a dif-
ferent style of data reduction is needed for obtaining supports of small maximum
vertex degree. Finally, it is also of practical interest to deal with edge weights for the
constructed network [KS03; KMN14]; our methods only cover the unweighted case.
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Chapter 4

Planar hypergraph supports

This chapter is based on “Twins in Subdivision Drawings of Hypergraphs” by René van Bevern, Iyad A.
Kanj, Christian Komusiewicz, Rolf Niedermeier, and Manuel Sorge (24th International Symposium
on Graph Drawing and Network Visualization (GD ’'16) [Bev+16]).
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Figure 4.1.: Two drawings of the same hypergraph. On the left, we see a drawing in
the subset standard in which the vertices (white circles) are enclosed by
curves that correspond to hyperedges. On the right, we see a subdivision
drawing in which we assign vertices to regions (enclosed by black lines)
and we color these regions with colors that one-to-one correspond to
the hyperedges; for each hyperedge, the regions of the vertices in that
hyperedge are connected. Note that the drawing on the left is not a sub-
division drawing, since it contains regions which are not assigned to any
vertex.

4.1. Introduction

In this chapter we study r-OUTERPLANAR SUPPORT, a problem with applications
in hypergraph drawing. Hypergraph drawings are useful as visual aid in designing
electronic circuits or in examining relational database schemes. In electronic cir-
cuit design, hypergraphs are formed by taking components of circuits as vertices
and grouping components in a hyperedge if they should be electrically in com-
mon [EGB06]. In relational databases, a hypergraph on the set of attributes man-
aged by the database naturally arises from sets of attributes whose relation is man-
aged in each table [Bee+83; Mdk90].

There are several methods for embedding hypergraphs in the plane. The combi-
natorial problem that we study stems from obtaining subdivision drawings [JP87;
KKSO08]. Herein, given a hypergraph #¢, we divide the plane into closed regions
that one-to-one correspond to the vertices of # in such a way that for each hy-
peredge e the union of the regions corresponding to the vertices in e forms a con-
nected region. Subdivision drawings have also been called vertex-based Venn dia-
grams [JP87]. If a hypergraph admits a subdivision drawing, then we call it vertex-
planar. Figure 4.1 shows an example for such a drawing.

Vertex planarity is a natural extension of planarity for ordinary graphs. A graph
is planar if and only if it is vertex-planar when viewed as a hypergraph. For hy-
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pergraphs, vertex planarity is a rather general concept of planar embeddings, as,
for example, each vertex planar hypergraph is also Zykov planar (meaning that the
incidence graph is planar) and has a well-formed Euler diagram (see Flower, Fish,
and Howse [FFHO08]). For specifics on the relation of different kinds of planar em-
beddings for hypergraphs, see Kaufmann, Kreveld, and Speckmann [KKS08] and
Brandes et al. [Bra+11].

Vertex planarity was introduced by Johnson and Pollak [JP87]. They also noted
that it is equivalent for a hypergraph to be vertex-planar and to have a support that
is planar. (Recall that a support for a hypergraph 7 is a graph G on the same vertex
set as JC such that each hyperedge induces a connected subgraph of G.) We refer to
Kaufmann, Kreveld, and Speckmann [KKS08] for a method to obtain a subdivision
drawing from a planar support. Unfortunately, it is NP-complete to decide whether
a given hypergraph has a planar support; Johnson and Pollak [JP87] showed this
using a reduction from the NP-complete HAMILTON PATH problem [G]79] on cubic
planar graphs.

Given Johnson and Pollak’s NP-completeness result, it is natural to ask whether
it is algorithmically easier to answer whether a given hypergraph has a more re-
stricted planar embedding by restricting the type of support we are looking for.
Unfortunately, it is still NP-complete to decide whether a given hypergraph has a
3-outerplanar and even NP-complete to decide whether a given hypergraph has a
2-outerplanar support. These results were obtained by Buchin et al. [Buc+11] using
a reduction from the NP-complete 3-CNF-SATISFIABILITY problem [GJ79]. To the
best of our knowledge, determining the classical complexity of finding outerplanar
supports is currently an open problem.

Going further, it is also natural to restrict the structure of the hypergraph. To this
end we parameterize by the number m of hyperedges as an obvious candidate. We
study the following problem.

r-OUTERPLANAR SUPPORT
Input: A connected hypergraph 7€ and a nonnegative integer r.
Question: Does # admit an r-outerplanar support?

Contribution. We prove the following theorem.

Theorem 4.1. r-OUTERPLANAR SUPPORT has a linear-time computable problem

. O((m+log(r)r? . .
kernel with at most 22” """ vertices, where m is the number of hyperedges
and r is the outerplanarity number of the support.
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Hence, r-OUTERPLANAR SUPPORT is fixed-parameter tractable with respect to m+r.
Apart from being natural restrictions on the input and output, it is also conceivable
that the parameters m and r are small in practical instances: For large number m
of hyperedges it is plausible that we obtain only hardly legible drawings unless the
hyperedges adhere to some special structure. Thus, it makes sense to deal with the
case of small m separately. Small outerplanarity number r leads to few layers in the
drawing which may lead to aesthetically pleasing drawings.

Two vertices in a hypergraph are called fwins, if they are contained precisely in the
same hyperedges. Previous works on r-OUTERPLANAR SUPPORT assumed that the
input hypergraph is twinless, that is, for every subset of hyperedges, there is at most
one vertex contained precisely in these hyperedges. This assumption was used by
Mikinen [Mdk90, p. 179], Buchin et al. [Buc+11, p. 535], and Kaufmann, Kreveld,
and Speckmann [KKS08, p. 399]. Clearly, in the case of twinless hypergraphs, The-
orem 4.1 is trivial, because then the input hypergraph contains at most 2" vertices.
The intuition behind assuming twinlessness is that twins do not seem useful at first
glance; whatever role one vertex can play to obtain a support, its twin can also ful-
fill. In Section 4.3, however, we show that this intuition is wrong. More specifically,
we give a hypergraph with two twins that has a (2-outer-)planar support but, re-
moving one twin, it ceases to have a planar support. Thus, twins may indeed be
helpful to find a solution. If the input hypergraph is not twinless, however, it seems
much more demanding to prove a result like Theorem 4.1.

The proof of Theorem 4.1 is divided into two parts, the outline of the proof is
as follows. Our aim is to prove that in each twin class larger than some function
w(m+r), we can safely forget at least one vertex. To do this we show first that, if
there is an r-outerplanar support, then it has at most @ (m + r) crucial vertices in
each twin class, and the remaining vertices can be attached as degree-one neigh-
bors to their twins. Being crucial will receive a mathematically precise meaning
in Section 4.5. Hence, our goal is to show for a tentative support that, if it has a
large number of vertices, then we can modify it such that it remains a support and
such that it has at least one vertex that is not crucial. To show this, we give a long
sequence of nested separators in the support. Here, nested means that each sepa-
rator separates the graph into a left side and a right side, and the left sides form a
sequence of vertex sets that is increasing with respect to the subset ordering. Fur-
thermore, the sequence of separators has the additional property that, for any pair
of separators S;, S,, we can glue the left side of S; and the right side of S,, obtaining
another r-outerplanar graph.

In the second part of the proof, we show that, in a long sequence of nested sep-
arators as above, there are two separators with the following property. We can glue
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their left and right sides and reattach the vertices which we discarded in the process
of gluing as degree-one vertices in such a way that the resulting graph is an r-out-
erplanar support. The reattached degree-one vertices then are not crucial, and by
obtaining them we have reached our goal. Namely, there is at least one vertex which
can be removed from the hypergraph.

Known results and related work. As mentioned before, Johnson and Pollak [JP87]
showed that finding a planar support is NP-complete. Buchin et al. [Buc+11] even
proved that r-OUTERPLANAR SUPPORT is NP-complete for r = 2,3. By adapting the
NP-hardness proof for finding a 3-outerplanar support [Buc+11] we can derive that
r-OUTERPLANAR SUPPORT is also NP-complete for every r > 3. This is possible due
to a property of the reduction that Buchin et al. use. Namely, given a formula ¢
in 3CNE they construct a hypergraph € that has a planar support if and only if
¢ is satisfiable. Due to the way in which /€ is constructed, if there is any planar
support, then it is 3-outerplanar. Thus, to obtain NP-hardness for outerplanarity
number r > 3, we simply add to the construction of the hypergraph a disjoint copy
arbitrary graph (viewed as a hypergraph) that is r-outerplanar but not r — 1-outer-
planar.

Towards determining the complexity of finding an outerplanar hypergraph sup-
port, Brandes et al. [Bra+11] gave a polynomial-time algorithm for cactus supports
(graphs in which each edge is contained in at most one cycle). They also showed
that finding an outerplanar support (or planar support) can be done in polynomial
time, if in the input hypergraph each intersection or difference of two hyperedges
is either a singleton or again a hyperedge in the hypergraph.

A tree support can be found in linear time [Bee+83; TY84]. Buchin et al. [Buc+11]
gave a polynomial-time algorithm that can deal with the additional constraint that
each vertex in the tree support has to have degree at most a given number. Klemz,
Mchedlidze, and No6llenburg [KMN14] studied so-called area-proportional Euler di-
agrams, for which the corresponding computational problem reduces to finding
a minimum-weight tree support. Such supports can also be found in polynomial
time [KS03; KMN14].

In a wider scope, motivated by drawing metro maps and metro map-like dia-
grams, Brandes et al. [Bra+12] studied the problem of finding path-based planar
hypergraph supports, that is, planar supports that fulfill the additional constraint
that each hyperedge contains a Hamiltonian path. They observed that Johnson
and Pollak’s [JP87] NP-completeness result holds also for finding path-based pla-
nar supports and, among other results, showed that path-based tree supports can
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be found in polynomial time. Finding path-based tree supports is also known as the
GRAPH REALIZATION problem, for which several polynomial-time algorithms were
already known. See Bixby and Wagner [BW88] and their references.

Since Zykov planarity (planarity of the incidence graph, see Section 1.1.1) is test-
able in linear time [HT74], it is of interest to minimize crossings in the correspond-
ing embeddings of hypergraphs that are not Zykov planar. Chimani and Gutwenger
[CGO7] gave a definition for what it means for two hyperedges to cross, and devel-
oped an ILP-formulation and heuristics for the (NP-complete) problem of mini-
mizing the number of crossings.

Outline of this chapter. Section 4.2 contains notation, definitions, and a result on
sphere-cut branch decompositions from the literature that we need. In Section 4.3
we give an example that shows that twins can be crucial for a hypergraph to have
a planar support. In Section 4.4 we give a long sequence of separators in an r-out-
erplanar graph, pairwise gluable, such that we again get an r-outerplanar graph.
In Section 4.5 we apply this sequence of separators to r-OUTERPLANAR SUPPORT
and prove that r-OUTERPLANAR SUPPORT is (strongly uniformly) fixed-parameter
tractable with respect to m (Theorem 4.1).

4.2. Specific preliminaries

We deal with embeddings of graphs into the plane and sphere. For this we need
some notions from topology. Branch-decompositions and sphere-cut branch de-
compositions are central tools that we also recapitulate.

Topology. A topological spaceis a tuple X = (X,F) of a set X, called universe, and
a collection & of subsets of X, called topology, that satisfy the following properties:

e The empty set ¢ and X arein %.

¢ The union of the elements of any subcollection of & isin F.

* The intersection of the elements of any finite subcollection of ¥ is in F.
Each set in 7 is called open. A closed set is the complement of an open set. (The
empty set and X are both open and closed.)

We consider here the topological space R = (R, %) where F is the standard
topology of R, that is, F is the closure under union and finite intersection of the
open balls {X € R |1% - Jl<difordeR, ye R?, where |-|| is the Euclidean norm.

A topological subspace ¥ < G of a topological space G is a topological space
whose universe is a subset of the universe of &. We always assume topological sub-
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spaces to carry the subspace topology, that is, the open sets of T are the intersections
of the open sets of G with the universe of ¥. We also say that T is the topological
subspace induced by the universe of T.
Important topological subspaces of R¢ are, with a slight abuse of notation,

* the planeR?,

o the sphere, whose universe is {(x, y,z) € R? | x* + y*> + z2 = 1},

« the closed disk, whose universe is {(x, y) € R? | x*> + y* < 1},

* the open disk, whose universe is {(x, y) € R? | x* + y? < 1}, and

* the circle, whose universe is {(x, y) € R? | x? + y? = 1}.
A homeomorphism ¢ between two topological spaces is a bijection ¢ between the
two corresponding universes such that both ¢ and ¢! are continuous. We often
refer to a subspace X in a topological space Q) (for example, a circle in a plane), by
which we mean a topological subspace of ) which is homeomorphic to X.

An arc is a topological space that is homeomorphic to the closed interval [0,1]
1. The images of 0 and 1 under a corresponding homeomorphism are the end-
points of the arc, which links them and runs between them. Being linked by an arc
forms an equivalence relation on the universe of a topological space. The topologi-
cal subspaces induced by the equivalence classes of this relation are called regions.
We say that a closed set C in a topological space & separates G into the regions of
the subspace of G induced by S\ C where S is the universe of G.

For more on topology, see Munkres [Mun00], for example.

Embeddings of graphs into the plane and sphere. An embedding of a graph G =
(V,E) into the plane R? (into the sphere &) is a tuple (2, &) and a bijection ¢p: V —
0 such that

s YR (V< O),

* &isasetofarcsin JR? (in &) with endpoints in 2,

e the interior of any arc in & (that is, the arc without its endpoints) contains no

point in ¥ and no point of any other arc in &, and

e u,v eV are adjacent in G if and only if ¢p(u) is linked to ¢p(v) by an arc in &.
The regions in M2\ (U&) (in &\ (U&)) are called faces.

A planar graphis a graph which has an embedding in the plane or, equivalently, in
the sphere. A plane graph G = (V, E) is a planar graph given with a fixed embedding
in the plane. An G-plane graph G is a planar graph given with a fixed embedding
in the sphere. For notational convenience, we refer to the sets V and *U as well as
E and € interchangeably. Moreover, we sometimes identify G with the set of points
BulUs.
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A noose in an G-plane graph G is a circle in & whose intersection with G is con-
tained in V(G). Note that every noose separates G into two open disks.

Layer decompositions, outerplanar graphs. The face of unbounded size in the
embedding of a plane graph G is called outer face. The layer decomposition of G with
respect to the embedding is a partition of V into layers L; w---w L, and is defined
inductively as follows. Layer L, is the set of vertices that lie on the outer face of G,
and, for each 7 € {2,..., 1}, layer L; is the set of vertices that lie on the outer face
of G—( ;;11 L;). The graph G is called r-outerplanar if it has an embedding with a
layer decomposition consisting of at most r layers. We denote by the outerplanarity
number of G the minimum r such that G is r-outerplanar. If r = 1, then G is simply
said to be outerplanar. A face path is an alternating sequence of faces and vertices
such that two consecutive elements are incident with one another. The first and
last element of a face path are called its ends. Note that the ends of a face path may
be two vertices, two faces, or a face and a vertex. The length of a face path is the
number of faces in the sequence. Note that a vertex v in layer L; has a face path of
length i from v to the outer face. Moreover, a graph is r-outerplanar if and only if
each vertex has a face path of length at most r to the outer face.

Branch decompositions. A branch decomposition of a graph G is a tuple (T, 1)
where T is a ternary tree, that is, each internal vertex has degree three, and A is a
bijection between the leaves of T and E(G). Every edge e € E(T) defines a biparti-
tion of E(G) into A,, B, corresponding to the leaves in the connected components
of T — e. Define the middle set M(e) of an edge e € E(T) to be the set of vertices in G
which are incident with both an edge in A, and B,. That is,

M(e) = {veV(G)|Jdac A,.dbe B,: ve an b}.

The width ofan edgee € E(T) is | M (e)| and the width of a branch decomposition (T, 1)
is the largest width of an edge in T. The branchwidth of a graph G is the smallest
width of a branch decomposition of G.

A sphere-cut branch decomposition of an G -plane graph G is a branch decomposi-
tion (T, A) of G fulfilling the following additional condition. For every edge e € E(T),
there is a noose 91, whose intersection with G is precisely M(e) and, furthermore,
the open disks ©;,%, into which the noose 91, separates G, can be indexed in such
awaythat®1nG = A\ M(e) and ©,NG = B, \ M(e). We use the following theorem.
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Theorem 4.2 ([ST94; Dor+10; MP15]). Let G be a connected, bridgeless, G-plane
graph of branchwidth at most b. There exists a sphere-cut branch decomposition
for G of width at most b.

Dorn et al. [Dor+10] first noted that Seymour and Thomas [ST94] implicitly proved
a variant of Theorem 4.2 in which G is required to have no degree-one vertices
rather than no bridges. Marx and Pilipczuk [MP15] observed a flaw in Dorn et al.’s
derivation, showing that bridgelessness is required (and sufficient). The sphere-cut
branch decomposition in Theorem 4.2 can be computed in O(|V(G) 13) time (see Gu
and Tamaki [GT08]), but we do not need to explicitly construct it below.

4.3. Beware of removing twins

As mentioned in Section 4.1, previous works about 7-OUTERPLANAR SUPPORT as-
sumed that the input hypergraph is twinless. More precisely, this assumption was
used by Mikinen [M&dk90, p. 179], Buchin et al. [Buc+11, p. 346], and Kaufmann,
Kreveld, and Speckmann [KKS08, p. 399]. In Figure 4.2, however, we provide a con-
crete example that shows that twins can be necessary to obtain a (2-outer-)planar
support. We now describe the construction of the corresponding hypergraph # =
(V,8).
The vertex-set of the hypergraph # shown in Figure 4.2 is

. !
V= {a; br c, d! Va) Up, Vg, Up, Uc, Uq, L, T }

We choose the hyperedges in such a way that ¢ and ¢’ are twins and # has a pla-
nar support but #€ — t does not. First, we add to the set of hyperedges & of 7€ the
size-two hyperedges represented by solid lines between the corresponding vertices
in Figure 4.2. The corresponding “solid” hyperedges incident with (and only with)
a, b, c,d form a Ky and have the purpose of essentially fixing the embedding of each
support G: Since Kj is a 3-connected graph, it has only one planar embedding up
to the choice of the outer face [Tut63, p. 747]. The remaining solid hyperedges
(incident with v,, vy, v4 and u,, u., u;) have the purpose of anchoring the u- and
v-vertices within two different faces of the embedding of the K;: These hyperedges
form two connected components that are adjacent to a, b, d and b, ¢, d, respectively.
Hence, these connected components reside in those (unique) faces of the K that
are incident with a, b, d and b, ¢, d, respectively.

With the following additional hyperedges, our goal is to enforce that ¢ and ¢’ are
used as conduits to connect the v-vertices to ¢ via both and a and b, and to connect
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Figure 4.2.: The hypergraph /€ and its support, showing that twins can be essen-
tial for obtaining a (2-outer)planar support. The set of hyperedges
consists of size-two hyperedges that are drawn as solid lines between
the corresponding vertices and, additionally, {a, v,, t,t', ¢}, {a, vy, t, ', c},
{b,vg, t,t',c}, {bvpt,t,c}, (buptt,a}, {buett, al, {cuptt, al,
and {c, u.,t,t',a}. Note that the vertices ¢ and ¢’ are twins. Hyper-
graph € has a (2-outer)planar support whose edges are indicated by
the solid and dotted lines. However, /€ — t does not have a planar sup-
port.

the u-vertices to a via both b and c. As we explain below, this is achieved by the
following hyperedges:

{ar Vu; t; t,) C}) {a! Ub) t) t,r C}r {br Uar tr t,r C}r {b! Vb) t; t/) C})
{by Up, t, t/)a}r {b) Uc, L, t/)a}» {Cr Up, t, t/ya}r {Cr U, T, t/va}~

Clearly, ¢ and ¢’ are twins.

As can easily be verified, adding f and ¢’ and the dotted edges in Figure 4.2 to the
graph induced by the solid edges gives a planar support for 7.

We now show that ¢ and ' have to reside in different faces for each planar sup-
port G for #€. First, observe that, in G, either v, is not adjacent to b or v}, is not
adjacent to a. Moreover, neither of v, and v, is adjacent to c¢. Thus, to connect
the subgraphs induced by the hyperedges that contain v, or v;, either vertex ¢ or
its twin ' must be adjacent to one of the two vertices in G. For the same reason, t
or ¢’ must be adjacent to uy or u.. Since there is no face in that is simultaneously
incident with one of v, or v, and one of u;, or u,, vertices t and ¢’ thus have to be
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in different faces. This implies that it is impossible to obtain a planar support if one
of t and ¢’ is missing. Therefore, removing one vertex of a twin class can transform
a yes-instance of r-OUTERPLANAR SUPPORT into a no-instance.

Generalization to arbitrarily large twin classes. To show that the above example
is not a pathology of having only one pair of twins, we extend it so that an arbitrarily
large set of twins is required for the existence of a planar support. By introducing
several copies of the hypergraph constructed above, we enforce that each vertex of
a twin class is contained in a distinct face of any planar embedding of the support.

Fix an integer ¢ € N. To construct the hypergraph ¥, copy the vertex set V from
above ¢ times, and let

— !
‘/i = {air bi’ Ciy dir vi,a! Ui,h’ Ui,dr ui,h) ui,m ui,d’ ti! ti}

denote the vertex set of the ith copy. Within each copy, add the size-two solid hy-
peredges as above. Then, add a distinguished vertex v*, and add the size-two hy-
peredges {a;, v*}, {b;, v*}, and {c;, v*} to #C for each i € {1,..., £}. Vertex v* serves as
a conduit to connect subgraphs induced by hyperedges that contain vertices from
all the copies, which we are about to introduce.

Let X={x|i€e{l,...,¢}} for each

(X) x) € {(Ar ai)y (B) bl)) (C) C[), (th! Vi,u); (Vb! Vi,b)) (Ub) ui,b)) (UC! ui,C)}r

andlet T :={t;, tlf |ie{l,...,¢}}. The final hyperedges in #C are

AUCUV,UTU{v"}, AuCuUV,uTU{V"},
BuCuV,uTu{v*}, BUuCuV,uTuU{v*},
BUAUU,uTU{v"}, BUAuUU.,uUTU{v"},
CUAUU,UTU{V"}, and CUAUU,UTU{v"}.

Note that T forms a twin class in the resulting hypergraph 7. Hypergraph # has a
planar support because v* can be used to connect for each 7#¢[V;] the partial sup-
ports that are obtained by copying the support for the simple example above.

We claim that, for each ¢ € T, hypergraph 7€ — ¢ does not have a planar support.
To see this, assume that there is a support G and consider the planar embedding
of G- T. Note that, in this embedding, no vertex v, ;, v;,; € V, UV}, is in the same
face as any vertex uy,;, u.,; € U, U U,, because these vertices are in two connected
components incident with d;, a;, and b;, or d;, b;, and c;, respectively, as in the sim-
ple example before. In addition, no vertex in V, U V}, U U, U U, from the ith copy is
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incident with the same face as a vertex in V, U V;,u U, U U, from the jth copy, where
i # j. This is because all the vertices in Au B U C have to be incident with the same
face, due to the connections of v* to each copy of a, b, and c¢. Thus, each pair of
copies of {a, b, v,4, vy, v4} OF {a, b, up, uc, ug} defines one of 2¢ distinct faces. As be-
fore, each of these faces has to contain a vertex from T, thus, if | T| < 2¢, then there
is no planar support.

4.4. A sequence of gluable edge bipartitions

In this section, given an r-outerplanar graph, we provide a sequence of separators,
each of size at most 2r, that has the following properties.

¢ Each of the separators separates the graph into a well-defined left and right
side (we say below that this is the left and right side of the separator).

* The separators are nested, meaning that each left side of a separator contains
all left sides of separators with smaller index in the sequence.

e For every two separators S;, S; with j > i, gluing the left side of S; with the
rightside of S; yields an r-outerplanar graph. Gluing means to pairwise iden-
tify the vertices of S; and S, in particular, |S;| =S;].

We lower-bound the length of the sequence in terms of the number 7 of vertices
in G and the outerplanarity number r.

In Section 4.5 we then use such a sequence to show that, if a hypergraph is large,
then it contains vertices which are not crucial for having an r-outerplanar support.
Essentially, we take an r-outerplanar support for the hypergraph, construct the se-
quence of separators, and use two separators S, S, in the sequence to show that
we can glue the left side of S; and the right side of S,, that is, remove all vertices not
contained in the left and right sides and reattach them as (non-crucial) degree-one
vertices. Furthermore, we can do this in such a way that we again get an r-outer-
planar support.

To formally define the sequence of separators, we use the following notation. Al-
though the intuition about separators is instructive, it is more convenient to define
our sequence of separators in terms of edge bipartitions.

For an edge bipartition A, B < E(G) of a graph G, let M (A, B) be the set of vertices
in G which are adjacent with both an edge in A and in B, that is,

M(A,B) == {veV(G)|dac A3be B: veanb}.

We call M (A, B) the middle set of A, B, similarly to the middle sets in branch de-
compositions. For an edge set A < E(G), denote by G(A) := (Uca €, A) the subgraph
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induced by A. Recall also from Section 1.1 the definitions of graph gluing, bound-
ary, and boundary labeling.
We prove the following theorem.

Theorem 4.3. For every connected, bridgeless, r-outerplanar graph G with n ver-
tices there is a sequence ((A;, B, §;));_, where each pair A;, B; € E(G) is an edge
bipartition of G and §;: M(A;,B;) — {1,...,|M(A;, B;)|} such that s = log(n)/(r +
1)32r°+87 and, for everyi,j,1<i<j<s,

(i) IM(A;, B =IM(A;,Bj)|<2r,

(11) Ai g_ Aj, B,‘ 2 Bj, and
(iii) G(A;)oG(Bj) is r-outerplanar, where G(A;) is understood to be Bi-bound-

aried and G(B;) is understood to be f;-boundaried.

The proof relies crucially on sphere-cut branch decompositions [Dor+10; MP15]. A
sphere-cut branch decomposition is a ternary tree T whose leaves one-to-one cor-
respond to the edges of the graph G embedded in the sphere (without edge cross-
ings) that fulfills the following property. For each edge e in T, there is a circle in the
sphere that meets G in precisely the middle set of the edge bipartition (A, B) of G
induced by the connected components of T — e, and moreover, that circle cuts the
sphere into two disks such that one of the disks contains only edges from A and the
other only from B. Such a circle is also called noose. For the precise definitions, see
Section 4.2.

Outline of the proof of Theorem 4.3. We first transform the planar embedding
of G into an embedding in the sphere and apply Theorem 4.2 from which we ob-
tain a sphere-cut branch decomposition for G of width at most 2r. The edge bi-
partitions in Theorem 4.3 are defined based on the edges in a longest path in the
decomposition tree corresponding to the sphere-cut branch decomposition. The
longest path in the decomposition tree has length at least 2log(n), and the edges
on this path will define a sequence of edge bipartitions, a supersequence of the
one in Theorem 4.3. We define a signature for each bipartition, a string containing
(32r%+8r) -log(r+1)+1 bits, which determines the pairs of edge bipartitions that can
be glued so that we obtain an r-outerplanar graph. The sequence in Theorem 4.3 is
then obtained from those bipartitions which have the same signature. The sphere-
cut property of the branch decomposition gives one noose in the sphere for each
edge bipartition in the sequence, such that it separates the parts in the edge bipar-
tition from one another. The nooses of the sphere-cut branch decomposition will
be crucial in the proof of Statement (iii) in Theorem 4.3, that is, the r-outerplanarity
of the glued graphs.
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We now give some more details concerning the r-outerplanarity of the glued
graphs. After sanitizing the nooses, we can assume that they separate the sphere
into left disks and right disks in such a way that each left disk contains all left disks
with smaller index. Hence, for each pair of nooses, we can cut out a left disk and a
right disk, and glue them along their corresponding nooses such that we again get
a sphere. Alongside the sphere, we get a graph embedded in it that corresponds to
the left and right sides of the separators induced by the nooses. It then remains to
make the gluing so that the graph remains r-outerplanar, that s, it results in a graph
embedded without edge crossings such that each vertex has a face path oflength at
most 7 to the outer face. For this we define a signature for each edge bipartition
and we keep only the largest subsequence of edge bipartitions that have the same
signature.

Expanding on the definition of signatures, we use it to ensure that the layer of
each vertex in G(A;) o G(B;) only decreases in comparison to G. For this, we note in
the signature for each face touched by the noose that corresponds to (A;, B;) how
far it is away from the outer face (or, rather, the face in the sphere corresponding to
the outer face in the plane), and we note for each pair of faces touched by the noose
how far they are away from each other. Then, if two edge bipartitions have the same
signature, each vertex in the glued graph will be at most as far away from the faces
touched by the noose and, hence, at most as far away from the outer face.

As we will see below, each edge bipartition signature can be encoded in (3272 +
8r)-log(r+1)+1 bits. Thus, out of the 2log(n) edge bipartitions that we obtain from
the longest path in the decomposition tree, there are at least log(n)/(r + 1)32ri+sr
edge bipartitions with the same signature.

The remainder of this section is dedicated to the formal proof of Theorem 4.3.

Proof of Theorem 4.3. In the following, fix an arbitrary r-outerplanar embedding
of G.

An initial sequence 9 of edge bipartitions. Consider the canonical embedding of
G into a sphere G that we obtain by taking a circle that encloses but does not inter-
sect G and identifying all points in the unbounded region of the plane which is sep-
arated off by this circle. Since G is r-outerplanar it follows that it has branchwidth at
most 2r [Biel5]. By Theorem 4.2, there is a sphere-cut branch decomposition (T, 1)
for G of width at most 2r. We define the sequence in Theorem 4.3 based on (7, 1).

Consider a longest path P in T. Denote by e; the edge of G which is the preim-
age of the first vertex of P under the mapping A. Since each edge in T induces a
bipartition of the edges in G, so does each edge on P. Define the sequence 7 =
((C,-,D,-))l?zl, where (C;, D;) is the bipartition of E(G) induced by the ith edge on P
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4.4. A sequence of gluable edge bipartitions

Figure 4.3.: A graph embedded in the sphere and two crossing nooses (dotted, left)
and two noncrossing nooses (dotted, right). We projected the sphere
into the plane by replacing a point in the sphere with a circle (dashed)
and drawing all remaining points inside this circle. Both pairs of nooses
represent the same edge bipartitions. Note that the two nooses on the
right share exactly one point on the sphere.

such that e; € C;. We have C; C C;4; and D; D D, because T is a ternary tree and 1
is a bijection. We later need a lower bound on the length of 7. For this, observe that
P contains at least 2log(n) edges, because G contains at least n edges (there are no
vertices of degree one) and T is a ternary tree. Hence, sequence 7 also has at least
2log(n) entries. The sequence in Theorem 4.3 is defined based on a subsequence
of 7.

Obtaining a sequence of noncrossing nooses. To define the desired subsequence
of 7, we choose one noose 1; for each (C;, D;) € 7 such that the resulting sequence
of nooses has the following property. Denote by €;,®; the open disks in which 91;
separates G such that C; € €; and D; € ®;. Then, it shall hold that for any two
i,j, i< j,wehave €; C €; and ©; D D;. We say that the nooses 91; and 1; are
noncrossing and crossing otherwise. See Figure 4.3 for examples.

To see that we can choose the nooses in this way, first choose them arbitrarily
and then consider two crossing nooses 91;,91;, i < j, thatis, €;NnD; # @. We de-
fine a noose N; which we obtain from 9; by replacing each maximal subsegment
contained in D ; by the corresponding subsegment of 91; which is contained in ¢;.
There is no edge of G contained in ¢; N®D; because such an edge then would also
bein C;nD; < C;nD;, a contradiction to the fact that C, ,D;isa blpartltlon of E(G).
Hence, noose ‘ﬂ separates G into two open disks @,,@ such that C; = ¢; N E(G)
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and D; = €; N E(G). Thus, N; fulfills the conditions for the nooses in sphere-cut
branch decompositions and we may choose Nt; for (C;, D;) instead of 91;.

Clearly, 9t; and 91; are noncrossing. Moreover, any noose N, k > i, that crosses
‘ﬁ also crosses 1; because Q c ¢;. Thus, by replacing 91; with ‘ﬁ,, the number
of pairs of crossing nooses with indices at least i is strictly decreased. This means
that after a finite number of such replacements we reach a sequence of pairwise
noncrossing nooses.

Signatures that allow gluing. Based on the sequence 7 of edge bipartitions of G
and the nooses we have fixed above for each edge bipartition, we now define a tu-
ple, the signature, for each edge bipartition that can be encoded using (3212 +8r) -
log(r + 1) + 1 bits and that has the property that, if two edge bipartitions have the
same signature, then the corresponding graphs can be glued in a way that results in
an r-outerplanar graph, as stated in Theorem 4.3.

We need some notation and definitions. Denote by § the face in the sphere em-
bedding of G that corresponds to the outer face of G in the planar embedding. Pick
a point y € § in such a way that y is not equal to any vertex and not contained in
any edge or noose ;. For every noose 91; we define a bijection f;: M(C;,D;) —
{1,...,IM(C;, D;)|} corresponding to the order in which the vertices in M(C;, D;) ap-
pear in a traversal of 91; that starts in an arbitrary point. We furthermore define
a map v; from each face touched by 91; to its occurrences in the traversal of 91;
above. More precisely, if face ® occurs in the traversal of 9; between vertex 7 (j)
and ﬁl.‘l(j +1) (wherein we set |[M(C;, D;)|+1 equal to 1), then j € y;(®). Finally, say
that a face path P is contained in a closed disk € if each vertex in P is contained in €.

The signature of (C;, D;) is a tuple (b, L1, L,) defined as follows.

e b=1if ye €; and b =0 otherwise.

e [, is the set containing the tuple (k,¢, X, ¢), foreach ke {1,...,|M(C;, D;)}, for
each ¢ € {B,y}, and for each X € {¢, D}, where ¢ is the length of a shortest face
path from 5;1 (k) to § that is contained in X; U91;.

e [, is the set containing (k;, k»,¢,w, X, £), for each ki, k, € {1,...,|M(C;, D))},
for each pair &, € {B,7}, and for each X € {€,D}, where ¢ is the length of a
shortest face path from &' (k;) to y; ! (k) that is contained in X; U;.

If the paths above do not exist, or the lengths are larger than r, then put co instead
of the length ¢.

Definition of the desired edge bipartition sequence. Take

S =C;, Dy, Bi))i,
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4.4. A sequence of gluable edge bipartitions

where, in a slight abuse of notation, ((C;, D;));_, is the longest subsequence of 9 in
which all edge bipartitions (C;, D;) have the same signature. Two edge bipartitions
(defined via nooses) which have the same signature are shown in Figure 4.3 and in
Figure 4.4. We claim that / fulfills the conditions of Theorem 4.3.

Length of the sequence. To see that the length s of & is large enough, recall that se-
quence 7 contains at least 2log(n) entries. The longest subsequence of 7 with pair-
wise equal signatures has length at least 2log(n) divided by the number of different
signatures (b, L, L,). It is not hard to see that there are at most two possibilities for
b, at most (r + 1)2"22 = (r + 1) possibilities for L;, and at most (r + 1)?"27%22 =
(r+1)%r possibilities for L,, giving an overall upper bound on the number of dif-
ferent signatures of

2-(r+ Y-+ ) = 2. (r+ )R

Thus & has length at least log(n)/(r + 1)32ri+sr

Outerplanarity number of the glued graphs. For each (C;, D;), (C;,D;) € g, i<],
we have C; C C; and D; 2 D;. Thus to prove Theorem 4.3 it remains to show that
Gij = G(C;)oG(Dj) is r-outerplanar. To see this, we first describe how to obtain
an r-outerplanar embedding for a supergraph G’ of G;; from G’s embedding in the
sphere. Graph G’ is defined below and is isomorphic to G;; except that it may con-
tain multiple copies of an edge in G;;.

Recall that the nooses 91; and 91; are noncrossing. Hence the closed disks &; U91;
and ©; U, can intersect only in their nooses 91; and 91;. We now consider dis-
locating these disks from the sphere, and identifying their boundaries 91; and 91,
creating another sphere. Figure 4.4 shows an example.

Recall that the vertices in M(C;, D;) and M(Cj, D;) are enumerated by §; and §;,
respectively, according to traversals of the corresponding nooses. Hence, there is
an open disk ¢, with®;Nn¢; =@ anda homeomorphism ¢: ¢; UI; — ¢;u 9; that
has the following properties.

(i) For the two traversals of the nooses that define §; and §;, respectively, we have
that the initial points of the traversals are mapped onto each other by ¢ and, if
z comes after x in the traversal of 91;, then ¢(z) comes after ¢p(x) in the traver-
sal of 91;.

(i) Foreach ke {l,...,|M(C;,D;)|} we have ¢(B; (k) = ﬁjﬁl(k).

Denote by G' the G-plane graph induced by the point set $(GN ;) U (GND;). We
claim that from G’ we can derive an r-outerplanar embedding of G;;.
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Figure 4.4.: Left: A graph embedded in a subdisk of the sphere which has been pro-
jected onto the plane. We show two nooses (dotted) that induce edge
bipartitions. The signatures of the two edge bipartitions are the same
if we assume that both left sides (the C;) of the bipartitions contain the
outermost edges in the drawing and if we furthermore assume that the
corresponding mappings f; are the clockwise orderings of the vertices
on the noose starting with the topmost vertex.

Right: The graph resulting from gluing along the two nooses.

We first prove that G;; is an edge-induced subgraph of G’ without loss of gen-
erality: We may assume that G and G;; have the same vertex set without loss of
generality by Property (ii) of homeomorphism ¢. Since each edge e € C; is con-
tained in ¢;, it is also present in ¢(¢;) and thus in G'. Moreover, each edge in e€ D;
is trivially contained in © ;, hence, also in G'. Thus, we may assume that G;; is an
edge-induced subgraph of G’ whence from any r-outerplanar embedding of G’ we
obtain an r-outerplanar embedding of G;;.

Graph G’ has a sphere embedding due to the way it was constructed. We now
prove that from this embedding we can obtain an r-outerplanar one. This then fin-
ishes the proof of Theorem 4.3. Note that there is a face in the sphere embedding
of G’ that contains y or ¢(y) due to the flag b in the signatures. In a slight abuse
of notation, we denote this face by §. By removing a point contained in the face §
from the sphere, we obtain a topological space homeomorphic to the plane. Fix a
corresponding homeomorphism § and note that, applying d to G', we obtain a pla-
nar embedding of G’ with the outer face §(§). In the following we assume that G’ is
embedded in this way and, for the sake of simplicity, denote § () by §.
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To conclude the proof it remains to show that the embedding of G’ is an r-outer-
planar one. Recall that a graph is r-outerplanar if and only it has an embedding in
the plane such that each vertex v has an incident face with a face path of length at
most r to the outer face §. Call such a path good with respect to v.

It remains to show that each vertex in G’ has a good face path. It suffices to prove
this for vertices in €; whose good paths in G are not contained in ¢; and vertices
in ©; whose good paths in G are not contained in ©; as the remaining ones are
also present in G'. Consider a vertex in €; whose good face path P is not contained
in ¢;. We claim that we can replace every maximal face subpath of P which is con-
tained in ©; UM; by a face path contained in D ; UM; in such a way that the resulting
sequence P’ is a face path in G'. Moreover, P’ is at most as long as P.

Consider a maximal face subpath S of P which is contained in ©; U9%;. Each end
of Sis either a vertexin M(C;, D;), or a face. If an end of S is a face, then it can either
be the outer face § or a face & # § which is intersected by 91;. (Note that not both
ends of S can be § as P is a shortest path to §.)

If one end of S is §, then associate with S a tuple (k,¢,D, ¢) where ¢ = g if the
other end of S is a vertex and ¢ = y otherwise, and where ¢ is the length of S. The
first entry, k, is an integer equal to ¢ l.‘l (v) if the end of S is a vertex v, and otherwise,
if the end is a face & # §, then k is defined as follows. Draw an arc 2l contained
in & between the two vertices that P visits before and after ¢ such that 2 and 01;
have the smallest-possible intersection. Note that 2 and 91; intersect in precisely
one point y since S is maximal. Define k € N such that in the traversal of J1; that
defines f; vertex ﬂl.‘l (k) comes before y and ﬁl.‘l (k + 1) comes after y (where we set
k+1=1if k=|M(C;, D).

There is a tuple (k,¢,D,¢") with ¢ < ¢ saved in L; of the signature of (C;, D;),
since S has length at most r. Thus, (k,¢,9,¢") is also saved in L, of the signature of
(Cj, Dj) since the signatures of (C;, D;) and (C;, D;) are the same. Hence, there is a
face path §' in ©; with the ends § and 6]‘.1 (k).

We claim that Ej‘.l (k) and &' (k) describe the same entities in G'. Indeed, if ¢ = 5,
thatis, the end of Sis a vertex, then ¢; ' (k) = §; ' (k) which is equal to ﬁ]’.l (k) = f]’.l (k)
by Property (ii) of homeomorphism ¢.

If £ = y, then consider the face & = ¢;' (k) and the face $) = E]‘.l (k), both in G. By
definition, & intersects 91; in the segment G; of the traversal defining § between
B;' (k) and B;' (k +1). Similarly, §) intersects 91; in the segment &; between ,B]TI (k)
and ﬁ]’.l (k+1). In G, face & is represented by ¢(& N (€; UN;)) and face § is repre-
sented by H N (D; UN;) = HN(D;UN,;). Moreover, segments S; and & are identi-
fied by homeomorphism ¢ because of its Property (i). Hence, ¢(® n (¢; u91;)) and
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HN@D;UN;) are merged into one face in G'. Thus, indeed E;l(k) and ¢&;' (k) de-
scribe the same entities in G'. This implies that we can replace S by §" in P and the
predecessors and successors of the ends of S’ in P are incident with one another.

The proof that we can replace S by a corresponding path S in P in the case that S
does not have § as an end is analogous to the above and omitted. Hence, replacing
all maximal face subpaths of P that are not contained in ¢;, we obtain a good path
in G'. Finally, the case that the good path of a vertex in ©; is not contained in ¢; is
symmetric to the above and also omitted.

Summarizing, since each vertex in G has a good path, so has each vertex in G/,
meaning that G’ is r-outerplanar. Since G;; is an edge-induced subgraph of G', also
G;j is r-outerplanar. This concludes the proof of Theorem 4.3. O

4.5. A problem kernel for r-Outerplanar Support

Assume that the hypergraph has an r-outerplanar support. Clearly, we have the de-
sired problem kernel if the number 7 of vertices is upper bounded in terms of the
number m of hyperedges and the outerplanarity number r. Otherwise, if m,r < n,
then, by Theorem 4.3, there exists a sequence of edge bipartitions that is long in
comparison with m. In this case, intuitively speaking, for at least two edge bipar-
titions, their “status” must be the same with respect to their induced separators
and the hyperedges of 7€ crossing them. These two edge bipartitions can be glued
resulting in a new graph. This new graph is not a support for 7 since it has less
vertices. The missing vertices, however, can be reattached to this graph, obtaining
an r-outerplanar support for 7. We formalize this approach next.

Definition 4.1 (Representative support). Let 7€ be a hypergraph. A graph G is a
representative support for J€ if V(G) < V(¥(), graph G is a support for subhyper-
graph /€|y ) shrunken to V(G), and every vertex in V (#€) \ V(G) is covered in # by
some vertex in V(G).

Using Theorem 4.3, we show that the size of a smallest representative r-outerpla-
nar support is upper bounded by a function of the number m of hyperedges of 7
plus the outerplanarity number r of a support. To this end, we first formally define
the notion of two separators having the same status with respect to the hyperedges
that cross the separators.

Definition 4.2 (Edge-bipartition signature). Let # = (V,&) be a hypergraph and
let G be a representative planar support for €. Let (A, B, ) be a tuple where (A, B) is
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an edge bipartition of G, and : M(A,B) — {1,...,IM(A, B)|}. Denote ¢ := |M(A, B)|.
The signature of (A, B, B) is a triple (7, ¢, K), where
e 9 :={[u],; | ueJA}is the set of twin classes in | A,
e p:{1,....0 = {lul; lueV}: j— [ﬁ’l(j)], maps each index of a vertex in
M(A, B) to the twin class of that vertex, and
e K :={yr | F € &}, where yp is the relation on {1,..., ¢} defined by (i, j) € yr
whenever $71(i), 571 (j) € F and 7! (i) is connected to 7 (j) in G(B)[FnUB],
that is, in the subgraph of G(B) induced by F nUJB.

We have the following upper bound.

Lemma4.1. Inasequence ((A;, B;, #;));_, as in Theorem 4.3 the number of distinct

edge-bipartition signatures is upper bounded by 2™ @r*+r+D)_

Proof. Denote the signature of (A;, B;, 8;) by (J;,¢;,K;). There are at most 2™ —
1 twin classes in J;. Furthermore, for every i,j, i < j, we have A; C Aj, which
implies J; € J;. Thus, either J; = J;,; or J;,; comprises at least one additional
twin class. Since the number of twin classes can increase at most 2" — 2 times, the
number of different 7; is less than 2™. Next, there are at most 2 choices for a twin
class for each B~ (i) € M(A;, B;), leading to at most 2" different possibilities where
¢ = |M(A;, B;)|. For the last part of the signature, K;, for each vy, there are 2(2-012
possibilities, leading to 2™¢*~9/2 possibilities for K;. Since the size ¢ of the middle
sets in Theorem 4.3 is at most 2r we have the following upper bound on the number
of possible signatures:

2m . 22mr 'Zm-(ZrZ—r) — 2m-(2r2+r+1). O

Denote y(m, 1) = QB2 BT gyt
Lemma 4.2. If a hypergraph /€ = (V,&) has an r-outerplanar support, then it has a
representative r-outerplanar support with at most v (m, r) vertices.

Proof. Let G = (W, E) be arepresentative r-outerplanar support for 7 with the min-
imum number of vertices and fix a corresponding planar embedding. Assume to-
wards a contradiction that |W| > w(m,r). We show that there is a representative
support for 7€ with less than ¢ (m, r) vertices.

We aim to apply Theorem 4.3 to G. For this we need that G is connected and does
not contain any bridges. Indeed, if G is not connected, then add edges between
its connected components in a tree-like fashion. This does not affect the outerpla-
narity number of G (although it adds bridges). If G has a bridge {u, v}, then at least
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one of its ends, say v, has degree at least two because |W| > w(m,r). One neigh-
bor w # u of v is incident with the same face as u, because {u, v} is a bridge. After
adding the edge {u, w}, edge {u, v} ceases to be a bridge. We can embed {u, w} in
such a way that the face § incident with u, v, and w is split into one face incident
with only {u, v, w} and one face § incident with all the vertices that are incident
with §. Thus, each face path that used § can now use §' instead. This implies that
each vertex retains a face path of length at most r to the outer face, meaning that G
remains r-outerplanar. Thus, we may assume that G is connected, bridgeless, and
r-outerplanar.

Graph G contains more than v (m, r) vertices. Thus, there exists a sequence & =
((A;, B;, B));_, that satisfies the conditions of Theorem 4.3 and is of length at least

- log(W(m, 7)) _ 6r ,2m~(2r2+r+1) S(r+ 1)32r2+8r

_ — Gr.om@rr D
T+ 1)32r2+8r (r+ 1)32r2+8r :

Since there are less than 27?"*+7+1 different signatures in & (Lemma 4.1), there are
61 elements of # that have the same signature. Note that each middle set M(A;, B;)
induces a plane graph in G and, since |M(A;, B;)| < 2r, thus induces at most

max{l,3|M(A;, B;)| — 6} < max{l,6r — 6}

edges. Thus, there are two edge bipartitions (A;, B;, 8;) and (A}, B}, §;), i < j, in &
with the same signature such that the middle sets M(A;, B;), M(A;, B;) differ in at
least one vertex.

Let G;; == G(A;) o G(B;), wherein G(4;) is ;-boundaried and G(B;) is f;-bound-
aried. Let W’ := V(G;;), where we assume that W' n M(A;, B;) < M(A;, B;) for the
sake of a simpler notation. Note that W\ W’ # @ since the middle sets of the two
edge bipartitions differ in at least one vertex and since A; C A;.

We prove that G;; is a representative support for /€. That is, we show that each
vertex V' \ W' is covered by some vertex in W' in #¢ and that G;; is a support for
JClyr. Since G;; is r-outerplanar by Theorem 4.3 Statement (iii), this contradicts the
choice of G according to the minimum number of vertices, thus proving the lemma.

To prove that each vertex V' \ W’ is covered by some vertex in W', we show that
{lul; | ue V}=1{lul, | ue W'. Since G = (W, E) is a representative support, {[u]; |
u €V} ={[ul; | ue W}. Furthermore, by the definition of signature, we have {[ul; |
ueJA;} ={lul; | ue JA;}. Thus, for each vertex u e W\ W', thereis avertex ve W'
with [u]; = [v];, meaning that, indeed, {[u], |ue V} ={[ul, |ue W'}.

To show that G;; is a representative support it remains to show that it is a support
for #|yy, that is, each hyperedge F’ of #€|, induces a connected graph G; j[F/].
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Let F be a hyperedge of # such that Fn W' = F'. Observe that such a hyperedge F
exists and that G[F n W] is connected since G is a representative support of #€. De-
note by Sy the middle set M (A, B) of (A, By) in G for k € {i, j} and by S the middle
set M(AI,B]) =§;= S] of (A,,Bj) in Gl]

To show that Gij[F'] is connected, consider first the case that Fn (S; U S;) = @.
Since each vertex in V' \ W' is covered by a vertex in W’ we have that each vertex
in F is contained in either G(A;) or G(B;) along with all edges of G[F]. All these
edges are also present in G;; whence G;;[F'] is connected.

Now consider the case that Fn (S; US;) # @. Since S; and S; are separators in G,
each vertex in F\ (S; US;) is connected in G[F] to some vertex in S; or S; via a path
with internal vertices in F\ (S; US;). We consider the connectivity relation of their
corresponding vertices in S. To this end, for a graph H and T < V(H) use y(T, H)
for the equivalence relation on T of connectivity in H. That is, for u, v € T we have
(u,v) € y(T, H) if u and v are connected in H. Using this terminology, since both S;
and S; equal S in G}, to show that G;;[F '] is connected, it is enough to prove that
the transitive closure ¢ of y(F' NS, G;j{A;)) U y(F'n S, G;;{B;)) contains only one
equivalence class.

Denote by G the graph obtained from G by identifying each v € S; with ,6]‘.1 Bi(w) e
S;, hence, identifying S; and §;, resulting in the set S. Relation a := y(F N S, G) has
only one equivalence class and, moreover, it is the transitive closure of

Y(FNS;,G(AD) U y(FNS,G(B;\B))) U y(FNS;,G(B))),

wherein we identify each v € S; with ,B]T1 (Bi(v)) € Sj as above and, thus, S; =S; = S.
We have

Y(F'nS,Gij{A)) = Y(FNS;, G(A))
and

Y(F'nS,G;ij(Bj)) = Y(FNS;,G(B))).
Thus for @ = ¢ it suffices to prove that

y(FnS,G(B;\B;)) Y(F'nS;,Gij(Bj)).

Indeed, the left-hand side y(Fn S, G(Bi \ B;)) is contained in y(F N S;, G(B;)). Let
(7,¢,6) be the signature of (4;, B;, §;) and (A}, B}, §;) and (F,yr) € 6. Note that

YFNS;, GB)) = yr = Y(FNS;,G(B;)))
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where we abuse notation and set u = f; (u) foru€ S; and v = §;(v) for v € S;. Hence,
y(FnS, G(Bi \Bj}) < Y(FﬂSj,G(Bj)) = Y(F’ﬂSj,G(Bj)) = Y(F,ﬂSj,Gij<Bi>).
Thus, indeed, § = a, that is, F’ is connected. O O

We now use the upper bound on the number of vertices in representative supports
to obtain a problem kernel for r-OUTERPLANAR SUPPORT. First, we show that rep-
resentative supports can be extended to obtain a support.

Lemma 4.3. Let G = (W, E) be a representative r-outerplanar support for a hy-
pergraph ¥ = (V,&). Then #€ has an r-outerplanar support in which all vertices
of V'\ W have degree one.

Proof. Let G’ be the graph obtained from G by making each vertex v of V\ W a
degree-one neighbor of a vertex in W that covers v (such a vertex exists by the def-
inition of representative support). Clearly, the resulting graph is plane. It is also
r-outerplanar, which can be seen by adapting an r-outerplanar embedding of G
for G': If the neighbor v of a new degree-one vertex u is in L;, then place u in the
outer face. If ve L;, i > 1, then place u in a face which is incident with v and a vertex
in L;_; (such a face exists since otherwise v is not in layer L;).

It remains to show that G’ is a support for #€. Consider a hyperedge F € €. Since G
is arepresentative support for 7€, we have that Fn W is nonempty and that G[JFNn W]
is connected. In G', each vertex u € F\ W is adjacent to some vertex v € W that
covers u. This implies that v € F. Thus, G'[F] is connected as G'[FNnW] is connected
and all vertices in F\ W are neighbors of a vertexin FnW. O

We now use Lemma 4.3 to show that, if there is a twin class that contains more
vertices than a small representative support, then we can safely remove one vertex
from this twin class.

Lemma4.4. Let £ € N, let 7€ be a hypergraph, and let v € V' (¥€) be a vertex such that
[[v];] = . If 7€ has a representative r-outerplanar support with less than ¢ vertices,
then 7€ — v has an r-outerplanar support.

Proof. Let G = (W, E) be a representative r-outerplanar support for ¥ such that
|[W| < ¢. Then at least one vertex of [v]; is not in W and we can assume that this
vertex is v without loss of generality. Thus, 7€ has an r-outerplanar support G’ in
which v has degree one by Lemma 4.3. The graph G’ — v is a support for /¢ — v: For
each hyperedge e in € — v, we have that G'[F \ {v}] is connected because v is not a
cut-vertex in G'[F] (since it has degree one). O
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Now we combine the observations above with the fact that there are small r-outer-

planar supports to prove that the following reduction rule is correct for r-OUTER-
26,,2m~(2r2+r+1),(r+1)32r2+8r

PLANAR SUPPORT. As before, let w(m,r) =
Rule 4.1. Let 7€ be a hypergraph with m edges. If there is a twin class with more
than y(m, r) vertices, then remove one vertex out of this class.

By proving the correctness, we arrive at our desired result.

Theorem 4.4. r-OUTERPLANAR SUPPORT has a linear-time computable problem
kernel with at most 2" - y/(m, r) vertices. Hence, r-OUTERPLANAR SUPPORT is fixed-
parameter tractable with respect to m +r.

Proof. It suffices to prove that Rule 4.1 is correct and that it can be applied exhaus-
tively in linear time.

For the correctness, consider an instance 7€ = (V,&) of r-OUTERPLANAR SUPPORT
to which Rule 4.1 is applicable and let v € V be a vertex to be removed, that is, v
is contained in a twin class of size more than ¥ (m, r). By Lemma 4.2, if 7€ has an
r-outerplanar support, then it has a representative r-outerplanar support with at
most y(m, r) vertices. By Lemma 4.4, this implies that 7€ — v has an r-outerplanar
support. Moreover, if /€ — v has an r-outerplanar support, then this r-outerplanar
support is a representative r-outerplanar support for #€. By Lemma 4.3, this im-
plies that 7€ has an r-outerplanar support. Therefore, #¢ and #€ — v are equivalent
instances, and v can be safely removed from €.

Rule 4.1 can be applied exhaustively in linear time because the twin classes can
be computed in linear time [HPV99]. After this, each twin class contains at most
w(m,r) vertices; the claimed overall size bound follows since the number of twin
classes is at most 2. O

Note that Theorem 4.1 directly follows from Theorem 4.4.

4.6. Concluding remarks

The main contribution of this chapter is to show that twins may be crucial for in-
stances of r-OUTERPLANAR SUPPORT but the number of crucial twins is bounded
in terms of the number m of hyperedges and the outerplanarity number r of a
support. As a result, we can safely remove non-crucial twins, leading to a prob-
lem kernel for r-OUTERPLANAR SUPPORT and, in turn, to (strongly uniform) fixed-
parameter tractability with respect to m + r. It is fair to say, however, that this result
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is still not instructive for obtaining r-outerplanar supports efficiently. In this regard,
there are two directions for future research.

First, above we only showed how to reduce the size of the input instance. We
also need an efficient algorithm to construct an r-outerplanar support for such
an instance. As a first step, it would be interesting to improve on the n°"-time
brute-force algorithm that simply enumerates all n-vertex planar graphs and tests
whether one of them is an r-outerplanar support.’

Second, itis interesting to gear the parameters under consideration more towards
practice. In Section 4.5 above we attached signatures to each edge bipartition in a
sequence of edge bipartitions of a support and we could reduce our input only if
there were sufficiently many edge bipartitions with the same signature. This signa-
ture contained among other information the twin class of each vertex of the sep-
arator induced by the edge bipartition. Clearly, if all of these at least 2" different
types of signatures are present, this will lead to an illegible drawing of the hyper-
graph (and still, in absence of better upper bounds, we cannot reduce our input).
It seems thus worthwhile to contemplate parameters that capture legibility of the
hypergraph drawing by restricting further the number of possible signatures.

A blatant open question is whether finding a planar support is (strongly uni-
formly) fixed-parameter tractable with respect to the number of hyperedges only.
In this case we do not directly have the sequence of small separators which we con-
structed in Section 4.4 for r-outerplanar graphs. Our belief is, however, that there
is a planar support whose treewidth is upper bounded by a function of the num-
ber of hyperedges, but we did not find a way to prove this so far. From bounded
treewidth we could infer fixed-parameter tractability with respect to m by slightly
adapting the proof in this chapter. To obtain an upper bound on the treewidth,
in the spirit of irrelevant vertices [RS12], a direction to try is to take a subgraph
of the support with large treewidth and to prove that an edge in this subgraph is
not necessary to connect all hyperedges, and to iterate this argument until no sub-
graph of large treewidth exists anymore. This would imply that the whole graph has
bounded treewidth (see Chuzhoy [Chul5], for example).

Finally, unrelated to the above, an interesting research direction is to try and gen-
eralize the polynomial-time algorithm of Brandes et al. [Bra+11] for constructing
planar (or outerplanar) supports for hypergraphs whose family of hyperedges is
basically closed under taking intersections and differences. Fixed-parameter algo-

7Recall that each planar graph has an ordering of the vertices such that each vertex has at most five
neighbors later in the ordering. To achieve 9 enumeration time we simply guess such an ordering
and then for each vertex its at most five later neighbors.
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rithms for parameters that measure the distance to this polynomial-time case could
be of practical interest [GHNO04].
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Chapter 5

Introduction to
dense-subgraph problems

Dense graphs are an important model for tightly interacting groups in social, bio-
logical, or financial domains. Dense graphs may represent communities in social
networks [WF94], segments of the stock market in financial networks [BBP03], or
functional units of a cell in biological networks [BHO03], for instance.

An illustrative example is the market graph, a graph that has capital stocks as ver-
tices and an edge between two stocks if the correlation coefficient of the daily price
changes, a measure of the similarity of the price behavior, is above a certain thresh-
old. This graph was first analyzed by Boginski, Butenko, and Pardalos [BBP03] and
later also by Komusiewicz et al. [Kom+09], Hiiffner et al. [Hiif+09], and Zeng et al.
[Zen+07]. Anecdotal evidence suggests that a large dense subgraph in the market
graph forms a market segment, that is, the stocks in the subgraph correspond to
companies that occupy similar economic niches. For example, Komusiewicz et al.
[Kom+09] found a large clique, a graph with pairwise adjacent vertices, in the mar-
ket graph consisting of energy stocks and Zeng et al. [Zen+07, Fig. 1] found a large
clique of municipal finance stocks. Intuitively, while any two stock prices can cor-
relate just by chance or due to general market movements, it is unlikely that sev-
eral prices of different stocks correlate pairwise unless there is a systemic reason.
Clearly, the partition of the market into segments is a very important information
in stock portfolio management. For example, in order to limit risk, we would like to
avoid extreme exposure of our capital to any particular segment.

Below, to abstract from communities, market segments, and biological functional
units, we subsume these concepts as clusters. There are numerous ways in which
we can define mathematically what a cluster is [Kos05; BP13; PYB13]. Naturally,
different models are suited more or less to any particular application. The most
simple model is of course the clique as in the example above. However, demanding
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that all vertices are pairwise connected is too strict in most applications due to both
conceptual and practical reasons. Regarding concepts, for example, pairwise con-
nectedness does not model communities in social networks for obvious reasons.
In practice, furthermore, edges can be missing due to errors in the data. This is
in particular the case in biological applications [Yu+06]. A good model of clusters
should also be robust to such complications. Hence, it is common to study clique
relaxations as cluster or dense-subgraph models [Kos05; BP13; PYB13].

We investigate here the computational complexity of finding a largest-possible
cluster in a given network with respect to two clique relaxations which we define
below. Such clusters give a point of reference for further analysis of the clusters in
the network. Furthermore, algorithms for determining large clusters can be used
as a subroutine for graph clustering (see Xu and Wunsch [XW05], for example),
where, as in the market graph example above, we seek to partition a given graph
into dense subgraphs such that between each pair of these subgraphs there are only
few connections. For example, we can recursively take a maximume-size cluster into
a clustering, or find clusters which improve the edge coverage of a given cluster-
ing [Hiif+14]. Furthermore, in a preprocessing step for enumerating all maximum-
size clusters, we can first compute a maximal set of maximume-size clusters and
then define data-reduction rules based on this set [Ebl+12]. Finally, finding dense
subgraphs serves as a proxy to study the complexity of graph clustering because we
can think of finding one cluster as a subproblem of determining a clustering.

The two clique relaxations that we study have the segragating property that the
constraints that they impose take into account the size of the clusters that we are
looking for. In a sense, the constraints scale with the size, leading to similar restric-
tions on large clusters as on small clusters. Concretely, we study p-cliques, where
we relax the density constraint of cliques, and highly connected graphs, where we
relax the edge-connectivity constraint of cliques. Formally, they are defined as fol-
lows.
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Figure 5.1.: From left to right: A 3/4-clique that is not highly connected (it is not
even connected), a highly connected 3/4-clique, and a highly connected
graph which is not a 3/4-clique. The leftmost graph contains the fewest
number of vertices among disconnected 3/4-cliques.

Definition 5.1.
¢ The density of an n-vertex graph with m edges is m/ (;) A graphis a u-clique
if its density is at least u.
e The edge connectivity of a graph is the size of a minimum cut. An n-vertex
graph is highly connected if its edge connectivity is larger than n/2. Equiva-
lently, each vertex has degree at least |n/2] + 1.8

Figure 5.1 shows examples of u-cliques and highly connected graphs. Clearly, the
two conditions are quite different, because the lower bound on the density is a
global constraint, whereas the size-dependent lower bound on the vertex degrees
places a tangible constraint on each vertex.

The p-clique concept was introduced by Abello, Resende, and Sudarsky [ARS02]
under the name y-quasi-cliques.® Tt is clearly fundamental and this in itself makes
studying the computational complexity of finding p-cliques worthwhile. From a
practical point of view, a criticism is that u-cliques are not necessarily connected
(see Figure 5.1). This is clearly not a property that we would expect from a cluster,
for example, from a community in a social network. However, the rather relaxed
global constraint allows to capture a broader range of cluster structures. Intuitively,
u-cliques are useful if we perform an exploratory analysis of our network and we do
not want to limit ourselves to more strict models of clusters which could prevent us
from finding the true nature of the clusters that we are looking for. In this case, we

8The equivalence follows through a proof by Chartrand [Cha66, Theorem 1].
9Abello, Resende, and Sudarsky [ARS02] additionally required p-cliques to be connected but this con-
straint was dropped in later works on u-cliques [Pat+13; PMB14; PYB13].
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can use u-cliques as a “catch-all” model of clusters and, after a preliminary analysis
of the clusters that we find in this way, subsequently limit our search to more precise
restrictions of the desirable clusters that we observed.

Hartuv and Shamir [HS00] introduced the concept of highly connected graphs
as an improvement over defining a cluster as a graph that has edge connectivity of
at least some fixed constant. The idea is that clusters may show edge connectivity
proportional to their size in some scenarios. Hence, requiring some fixed edge con-
nectivity might be too strict for small clusters and too lax for large clusters. Highly
connected graphs have been applied in diverse biological contexts [PWJ04; KSV05;
Par+11; Hiif+14; HSP13]. For instance, Hartuv et al. [Har+00] used highly connected
graphs successfully in an application where a partition of a DNA similarity graph
into clusters is desired. This suggests that highly connected graphs may be good
models for clusters in similarity graphs. This is also concordant with intuition, be-
cause similarity relations should be approximately transitive and, in general, we do
not expect to find clusters of homogeneous size.

Comparing both concepts, every highly connected graph is a 1/2-clique [HS00,
Theorem 4 a)] but, clearly, not every 1/2-clique is highly connected. For larger p
neither implies the other. This is demonstrated in Figure 5.1 for p = 3/4.

In comparison to other commonly studied clique relaxations [Kos05; BP13; PYB13],
p-cliques and highly connected graphs have two segragating features. First, they
both incorporate constraints whose effects are sensitive to the size of the cluster.
In other words, both small clusters and large clusters adhere to the same intuitive
meaning of density. This stands in contrast to s-plexes, for example, where we re-
quire that each vertex is not connected to at most s — 1 other vertices in the clus-
ter for some constant s [SF78]. Clearly, this constraint is much stronger for larger
clusters and hence, many larger clusters may be discounted when using s-plexes
whereas they are included when using p-cliques or highly connected graphs.

Second, the property of being a pu-clique and the property of being highly con-
nected are not hereditary. Thatis, removing a vertex from a p-clique does not neces-
sarily yield another p-clique and analogously for highly connected graphs. Heredity
is usually a useful property for the corresponding maximization problems where we
want to maximize the size of the cluster, that is, the number k of vertices in the clus-
ter. This is because, then, we can successively increase k and know that, once we
cannot find a solution for k, there is also no solution of size greater than k. For both
of our cluster concepts, however, we cannot rely on heredity. On the positive side,
being a u-clique is quasi-hereditary, meaning that there is a vertex in every p-clique
that we can remove in order to obtain another p-clique. In contrast, being highly
connected is not even quasi-hereditary: from a triangle, a highly connected graph,
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no vertex can be deleted in order to obtain another highly connected graph. This
example generalizes to arbitrary size graphs via a complete bipartite graph, whose
partite sets are of equal size, with a universal vertex attached to the graph, that s, a
vertex incident with all remaining vertices.

In this part we are interested in efficient exact algorithms for finding u-cliques
and highly connected graphs. Inspired by an argument by Aloise et al. [Alo+10], we
want to emphasize that efficient exact algorithms for problems related to cluster de-
tection are desirable for the following reasons. Although they are usually only suit-
able for small to medium-size instances, they serve as a benchmark for heuristics.
Furthermore, exact algorithms can be used to evaluate the cluster model that they
are built upon. This is not possible with heuristics or approximation algorithms, be-
cause peculiarities in their results can be due to the algorithms themselves rather
than the cluster model. Finally, exact algorithms often inform the design of heuris-
tics via the structural insights that are usually required to get small running-time
upper bounds.

Appetizer. We now give the precise problem formulations and outline our results.
Both problems are formalized as decision problems. We mention, however, that the
corresponding algorithms can be adapted for the maximization problems by trying
all possible values of k.

In Chapter 6 we study the following problem.

u-CLIQUE

Input: Anundirected graph G = (V, E), and a nonnegative integer k.

Question: Is there a vertex set S € V of size at least k such that G[S] is
a p-clique?

We analyze p- CLIQUE with respect to several distinct parameters, obtaining fixed-
parameter tractability and hardness results. Our focus is mainly on the three pa-
rameters maximum (vertex) degree A, h-index h, and degeneracy d. Informally,
bounded maximum degree means that all vertices have few neighbors, bounded
h-index means that most vertices have few neighbors, and bounded degeneracy
means that in every subgraph there is always a vertex with few neighbors. For ev-
ery graph we have A = h = d, and in many applications & < 100 and d < 20 [ELS13;
ES12]. For ¢ € {A, h} we obtain fixed-parameter algorithms with a running time of
the order ¢°” n where n is the number of vertices in the input graph. With respect
to d, however, u-CLIQUE is W[1]-hard. We obtain the fixed-parameter algorithms
for A and h, respectively, via developing a general framework for fixed-cardinality
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optimization, where we want to optimize a given objective function over all vertex
subsets of fixed-cardinality k of a graph.
In Chapter 7 we study the following problem.

HIGHLY CONNECTED SUBGRAPH

Input: Anundirected graph G = (V, E) and a nonnegative integer k.

Question: Is there a vertex set S € V of size exactly k such that G[S] is
highly connected?

Similarly to u- CLIQUE we also analyze HIGHLY CONNECTED SUBGRAPH with respect
to several different parameters. The focus is a little different, however. Apart from
maximum degree, h-index, and degeneracy, we consider the parameter edge dele-
tion, the number of edges not in the solution, and the parameter edge isolation, the
number of edges emanating from the solution. For edge deletion we obtain a subex-
ponential fixed-parameter algorithm and for edge isolation a single-exponential
fixed-parameter algorithm. The algorithm for the edge deletion parameter is fore-
most of theoretical interest, whereas the algorithm for the edge isolation parameter
seems to offer a good trade-off between parameter size in practice and a good run-
ning time guarantee.

Both the above studies are related to the parameter ecology for the corresponding
problems [FJR13; NielO; KN12; Har14]. Herein, we navigate the space of possible
parameters of the input (mostly parameters of input graph). By proving upper and
lower running-time bounds we close in on parameters which simultaneously lend
themselves to tractability results and are small in practice. From an algorithmic
perspective, finding highly connected subgraphs is more accessible than finding
p-cliques, because the strong and local connectivity and degree constraints make
it easier to develop data-reduction rules.

Related cluster concepts and related work. We now briefly point out relations
of highly connected graphs and p-cliques to some other concepts of clusters and
some related work. Pattillo, Youssef, and Butenko [PYB13] described several further
cluster definitions and their relations.

The first concept is that of an s-club; a graph has diameter s if every shortest
path between two vertices contains at most s edges. Graphs with diameter s are
called s-club. Each highly connected graph is also a 2-club [HS00, Theorem 1]. In
contrast, p-cliques do not have constant diameter. The s-club concept has been
widely studied as another natural relaxation of cliques, see Pattillo, Youssef, and
Butenko [PYB13], Shahinpour and Butenko [SB13], and Komusiewicz [Kom16] for
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surveys. Of special relevance is the work by Hartung et al. [Har+15] wo analyzed the
problem of finding a 2-club of size k in a given graph with respect to various pa-
rameters of the input graph. Notably, in contrast to u-cliques and highly connected
graphs, finding a 2-club of size k is W[1]-hard with respect to the h-index of the in-
put graph. A criticism of the s-club concept is that a star is an s-club for every s = 2,
but arguably does not represent a community in the common sense.

A graph G is an s-plex if each vertex has degree at least |V(G)| —1 —s. A simple
calculation shows that every s-plex G with |V (G)| = 25 + 3 is highly connected and
that, vice versa, every highly connected graph G is an s-plex for every s satisfying
s<(|V(G)|-3)/2. Clearly, an s-plex G is also a u-clique for some p (uninformatively)
lower bounded by |V (G)| and s. No converse holds, though. Similarly to the above,
s-plexes with a constant s may be too lax for small clusters and too strict for large
ones and thus are better suited for applications where the expected clusters have
similar size. For a survey on results for s-plexes, see [PYB13].

Finally, Brunato, Hoos, and Battiti [BHB08] combined the global density con-
straint of p-cliques and the local degree lower bound of s-plexes into a hybrid clus-
ter concept which has the advantages of both and performed some preliminary em-
pirical analysis.
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Chapter 6

Subgraphs of
fixed minimum density

This chapter is based on “An Algorithmic Framework for Fixed-Cardinality Optimization in Sparse
Graphs Applied to Dense Subgraph Problems” by Christian Komusiewicz and Manuel Sorge (Discrete
Applied Mathematics [KS15a]).
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6.1. Introduction

The density of an n-vertex graph G with m edges is m/(;) A graph is a u-clique
if its density is at least . A u-clique is a general notion of a cluster with appli-
cations in computational biology [JP09], social network analysis, and VLSI layout
design [Hol+06], for example. It is one example of a clique relaxation, a notion of
cluster which is less restrictive than a clique [Kos05; BP13; PYB13]. In this chapter,
we study exact algorithms for the following NP-complete problem.

u-CLIQUE

Input: Anundirected graph G = (V, E), and a nonnegative integer k.

Question: Is there a vertex set S < V of size at least k such that G[S] is
a u-clique?

Clearly, u-CLIQUE is NP-complete and W([1]-hard with respect to k because con-
tains as a special case of the CLIQUE problem. p-CLIQUE can be seen as a decision
variant of the DENSEST k-SUBGRAPH problem [FPK01; KS09; Bha+10] in which we
want to find a k-vertex set S which maximizes the density p in G[S]. Some of our
positive algorithmic results apply also to DENSEST k-SUBGRAPH and, more gener-
ally, to a subclass of graph optimization problems with cardinality constraints. A
generic problem formulation can be given as follows.

FIXED-CARDINALITY OPTIMIZATION

Input: An undirected graph G = (V, E), an objective function ¢: 2V —
Q*, and a nonnegative integer k.

Task: Find the maximum of ¢(S) over all sets S < V such that |S| = k.

Herein, we assume that ¢ is given as an algorithm that receives G and kand Sc V
as input and computes ¢(S) in T(k, G) time. Note that, in general, the cardinality
constraint could also apply to the number of edges of the solution and that fixed-
cardinality optimization is not restricted to graph inputs.

In this work, we determine how two types of parameters influence the complex-
ity of p-CLIQUE, DENSEST k-SUBGRAPH, and FIXED-CARDINALITY OPTIMIZATION.
The first type comprises the classic parameter solution size k and its dual param-
eter |V| — k. Parameters of the second type measure the sparseness of the input
graph G: maximum (vertex) degree A, h-index h, and degeneracy d. Informally,
small maximum degree means that all vertices have few neighbors, small /-index
means that most vertices have few neighbors, and small degeneracy means that in
every subgraph there is always a vertex with few neighbors. Formally, the k-index
and degeneracy are defined as follows.
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Definition 6.1.
* The degeneracy of a graph G is the smallest integer d such that each subgraph
of G contains at least one vertex of degree at most d.
e The h-index of a graph G is the largest integer & such that G contains atleast i
vertices of degree at least h.

By definition, A = h-index = d. The study of these three parameters is motivated
by two facts: First, many real-world networks such as biological and social networks
are relatively sparse since they contain many vertices of low degree and only few
vertices of high degree (the network hubs). Second, the otherwise notoriously hard
CLIQUE problem is much easier on sparse graphs. For example, all maximal cliques
can be enumerated in O(3%/% - d - |V|) time on graphs with degeneracy d [ELS13].

The degeneracy is a well-studied graph parameter, also known under the names
k-core number [Sei83], width [Fre82], and linkage [KT96], and it is one less than
the coloring number [EH66]. The degeneracy is small in many applications; for
example, and very relevant to this work, it is below 20 for many graphs arising in
social network analysis [ELS13].

The h-index parameter was introduced by Eppstein and Spiro [ES12] in the con-
text of triangle counting in dynamic graphs. Eppstein and Spiro computed the
h-index of 136 real-world graphs commonly used as benchmarks for cluster de-
tection. Barring one exception, the h-index was below 100 with a median of 12.

Hence, efficient algorithms for small degeneracy and h-index are desirable. The
maximum degree parameter we mainly use for its simplicity and as an intermediate
step to obtain efficient algorithms if the h-index is small.

Our contribution. We first provide in Section 6.2.1 a fixed-parameter algorithm
for the restriction of FIXED-CARDINALITY OPTIMIZATION to sets S that induce con-
nected graphs G[S], parameterized by the solution size k and the maximum de-
gree A combined. It is based on an uncomplicated enumeration of all the possi-
ble connected subgraphs. The enumeration algorithm runs in O((e(A — 1))~ (A +
k) - n) time and the exponential term herein is asymptotically optimal. The proof
is based on an upper bound on the number of k-vertex connected subgraphs in
graphs of bounded degree by Bollobds [Bol06]. Even though the number of fixed-
order connected subgraphs of a graph is a fundamental issue in graph theory, at
the time of developing the result we were not aware of an algorithmic treatment
as above. Parallel to our work, a similar result was provided by Elbassioni [Elb15]
(see the related work below). Connected subgraph enumeration was used by Ka-
trenic and Schiermeyer [KS11], Bonnet et al. [Bon+15] and Hermelin et al. [Her+13,

107



Chapter 6. Subgraphs of fixed minimum density

Lemma 5], for example. They used the worse, easy-to-prove upper bound of A .
poly(n), however, it was not their goal to optimize the running time.

In Section 6.2.3 we then go on to treat also possibly disconnected graphs G[S] in
FIXED-CARDINALITY OPTIMIZATION. Motivated by the fact that the objective func-
tion in DENSEST k-SUBGRAPH, viewed as a special case of FIXED-CARDINALITY OP-
TIMIZATION, allows to treat connected components individually, we introduce the
following property of objective functions that captures this special case.

Definition 6.2. Let G = (V, E) be a graph, let ¢p: 2V — @ be an objective function,
let S,T < V be arbitrary disjoint vertex sets, and let y: Q@ x Q — @ such that y is
non-decreasing in both arguments individually.
e We call ¢p component sub-y if the functions ¢ and y have the property that
d(S) < x(Pp(W),p(S\W)) where W is an arbitrary connected component of G[S].
e We call ¢ super-y if p(SU T) = x(p(S), p(T)).
e If both the above properties hold for ¢ and y, then we call ¢ component
X -linear.

We give examples and non-examples of component-linear objective functions in
Section 6.2.4. We obtain a randomized O(y*~!- (A + k) - n- T(k, G))-time algorithm
for optimizing component y-linear objective functions ¢ where y <4.2-(A—-1) and
¢, x are computable in T'(k, G) time. The algorithm works by color-coding the so-
lution [AYZ95], then enumerating colorful connected solutions, and then using dy-
namic programming to find the optimal colorful, possibly disconnected, solution.
The enumeration and dynamic programming steps have disproportionate running
times, but by increasing the number of colors used in the coloring step [DBK07;
HWZ08], we can balance the running times.

In Section 6.3 we apply the above to DENSEST k-SUBGRAPH and - CLIQUE. For an
overview of our results, refer to Table 6.1. We obtain algorithms with running times
A°® 5 and h°" n for pu-CLIQUE and an algorithm with running time (£ + d)°“'n +
O(m) where ¢ = n — k is the dual parameter of the solution size k.

Finally, in Section 6.4 we show that we cannot extend our tractability results to the
degeneracy parameter of the input graph. Specifically, we prove that p- CLIQUE is
W/[1]-hard with respect to the solution size k and degeneracy d combined. Being a
special case of DENSEST k-SUBGRAPH and FIXED-CARDINALITY OPTIMIZATION, this
also applies to the more general problem. From the reduction used in this result,
it also follows that there are no fixed-parameter algorithms with respect to A or h
with subexponential running time for p- CLIQUE, for any 0 < u < 1, unless the Expo-
nential Time Hypothesis fails. A simple adaption of the reduction also shows that
1-CLIQUE does not admit polynomial-size problem kernels with respect to A or h.
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Table 6.1.: Summary of our results and previous results for u-CLIQUE and DENSEST
k-SUBGRAPH. Note that hardness transfers from p-CLIQUE to DENSEST
k-SUBGRAPH and tractability transfers in the reverse direction. For fixed-
parameter tractability (FPT) results, we write a rough estimate of the exponen-
tial running time factor. Herein, k denotes the solution size, ¢ := n—k, A is the
maximum degree, h is the h-index, and d is the degeneracy of the input graph.

Param. pu-CLIQUE DENSEST k-SUBGRAPH

A FPT: A°® (Theorem 6.5), NP-complete for A = 3 [FS97]
no poly. kernel (Theorem 6.10)

h FPT: h°" (Theorem 6.6), NP-complete for i = 3 [FS97]

no poly. kernel (Theorem 6.10)
in XP (Lemma 6.5 Statement (iii)) NP-complete for d = 2 [FS97]

k,d W/1]-hard (Theorem 6.8) W/1]-hard (Theorem 6.8)
in XP (trivial) in XP (trivial)
¢ W/(1]-hard [KS15a] W]1]-hard [Cai08]
in XP (trivial) in XP (trivial)
l,d EPT: (¢ + d)°¥ (Theorem 6.7) FPT: (¢ + d)°¥ (Theorem 6.7)

Known results and related work. For an overview of FIXED-CARDINALITY OPTI-
MIZATION problems, refer to [Bru+06]; the parameterized complexity of some spe-
cial cases is studied by Cai [Cai08]. The Random Separation method [CCCO06] yields
fixed-parameter algorithms for a wide range of special cases of FIXED-CARDINALI-
TY OPTIMIZATION and the combined parameter (A, k) where A is the maximum de-
gree of G. For the special case of DENSEST k-SUBGRAPH, the randomized algorithm
takes 024Dk (A + k) - n) time to achieve a constant error probability. Derandom-
ization of the algorithm adds a factor of (Ak + k)18 Jog i to the running time.

Regarding connected subgraphs in graphs of bounded maximum degree, Kangas
et al. [Kan+14] provided upper bounds on the number of such subgraphs in terms
of the number of vertices. Bollobds [Bol06] proved an upper bound on the num-
ber of connected k-vertex subgraphs containing a specific vertex in terms of k and
the maximum degree A (see Theorem 6.1 below). This theorem is an integral part in
the analysis of our subgraph enumeration algorithm. Combining Bollobas’ theorem
with a recent polynomial-delay algorithm for enumerating k-vertex connected sub-
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graphs by Elbassioni [Elb15], we achieve a running time of O((e(A — 1))* 1 k*A? - n),
which is worse than the running we obtain here by a factor of k*A.!° Elbassioni’s
algorithm was developed in parallel to our result.

Specific results concerning p- CLIQUE and DENSEST k-SUBGRAPH are as follows.
For u =1 p-CLIQUE is equivalent to CLIQUE, the problem of finding a complete
subgraph of order k, which is W[1]-hard with respect to the parameter k and fixed-
parameter tractable with respect to the dual parameter n — k [DF95; DF13]. The
(- CLIQUE problem remains NP-hard for every rational number y, 0 < pp < 1 [Pat+13].
However, contrary to the CLIQUE problem, u-CLIQUE is W[1]-hard with respect to
the dual parameter n — k [KS15a].

DENSEST k-SUBGRAPH is NP-complete and W{1]-hard with respect to k, as it is
a generalization of CLIQUE. Moreover, DENSEST k-SUBGRAPH is W([1]-hard with re-
spect to the parameter n — k [Cai08]. It is, however, fixed-parameter tractable with
respect to the maximum degree A and solution size k combined [CCC06]. Holzapfel
et al. [Hol+06] showed that DENSEST k-SUBGRAPH remains NP-hard, even when
looking only for subgraphs with average degree at least 2+ Q(1/k'~) for 0 < e < 2.
Finding k-vertex subgraphs of average degree at least 2 + O(1/k), however, can be
done in polynomial time [Hol+06]. DENSEST k-SUBGRAPH is NP-complete even in
graphs with maximum degree three and degeneracy two [FS97]. The “densest sub-
graph” in the corresponding reduction, however, has very low, non-constant den-
sity.

Motivated by the above algorithmic hardness results, approximation algorithms
for DENSEST k-SUBGRAPH have also received a lot of attention, see Khuller and Saha
[KS09], Feige, Peleg, and Kortsarz [FPKO01], and Khot [Kho04], for example.

A trivial exponential-time algorithm solves DENSEST k-SUBGRAPH in 2" - poly(n)
time by checking all vertex-subsets. Chang et al. [Cha+14] showed that the run-
ning time can be improved to 1.7315" - poly(n) and Bourgeois et al. [Bou+13] pre-
sented improved exponential-time algorithms for some special cases of DENSEST
k-SUBGRAPH.

A related problem is DENSEST SUBGRAPH, which is to find a subgraph that has
maximum average degree (without constraint on the order). DENSEST SUBGRAPH is
polynomial-time solvable using network flow techniques [GGT89].

10EIbassioni [EIb15] claims a much better running time of O((eA) k2 /(A - 1) + m + n) which is based
on a claimed upper bound on the number of k-vertex connected subgraphs of eNkr(a-1k) by
Uehara [Ueh99]. This bound is erroneous as it does not increase when taking the disjoint union of
two graphs.
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6.2. A fixed-parameter algorithm for
cardinality-constrained optimization

In this section we present and analyze our algorithm for FIXED-CARDINALITY OPTI-
MIZATION with respect to the parameters maximum degree A in the input graph and
size k of the sought solution. As outlined in the introduction (Section 6.1), it is di-
vided into two steps: enumeration of connected subgraphs (Section 6.2.1) and a dy-
namic programming procedure (Section 6.2.3). Applied to DENSEST k-SUBGRAPH,
we achieve an asymptotic running-time improvement in the exponential part of
the running time in comparison to the Random Separation method [CCCO06]. In
Section 6.2.2 we show the tightness of the running time in the enumeration proce-
dure. This example and further ones are given Section 6.2.4. In Section 6.3 we apply
our algorithm to p-CLIQUE.

6.2.1. Enumerating connected graphs

First, we focus on the case that we only have to consider solutions S such that G[S] is
connected. We can find these by a simple but efficient enumeration of all possible
solutions. Bounding the running time of the enumeration procedure builds on a
result of Bollobds [Bol06, Equation (7)].

Theorem 6.1 (Bollobés [Bol06]). Let G be a graph with maximum degree A and
let v be a vertex in G. There are at most (e(A — 1))*~! subtrees!! of order k in G that
contain v.

As Bollobds [Bol06] notes, since each connected graph has a spanning tree, it fol-
lows that also the number of connected induced subgraphs of order k in G that
contain v is at most (e(A —1))*-1. Building on Theorem 6.1, we obtain an enumera-
tion algorithm as follows.

Theorem 6.2. Let G = (V, E) be a graph with maximum degree A that is represented
as an adjacency list data structure and let v be a vertex in G. There are O((e(A —
1))¥°1) connected k-vertex subgraphs of G that contain v and their vertex sets can
be enumerated in O((e(A — 1))*1- (A + k)) time.

We call a vertex subset V' € V admissible if it induces a connected subgraph
of G that contains v and is of order at most k. We describe a tree T, called search

1By a subtree we refer to a subgraph which is a tree.
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tree below, where each of its nodes represents an admissible set and each admis-
sible set is represented by some node in I'. We then show that the order of I' is at
most O((e(A - 1))*!) and that computing T in a depth-first fashion can be imple-
mented to run in O((e(A — 1))*~1 - (A + k)) time. Throughout this section vertex v is
fixed. We also fix an arbitrary ordering of the vertices in G which assigns a unique
index to every vertex.

Definition of search tree I'. Let us describe the search tree I' = I'(G, v, k). Each of
its nodes .V is associated with a tuple 7(N) = (B W) where W < P < V. We show
below that P is admissible. Intuitively, the subtree of I" rooted at a node .¥ asso-
ciated with (P, W) represents those admissible supersets of P that do not contain
a vertex of N(W)\ P. For this, we will choose a vertex u € P\ W and generate a
child of & for each subset of the neighbors of u that extend P to another suitable
admissible set. To avoid adding further neighbors of u to P deeper in the search
tree '—which would correspond to traversing some parts of the search space mul-
tiple times—we use the set W. This set contains all “already processed” vertices that
should not contribute any further neighbors to the admissible set P. Hence, when
adding neighbors of # we have to avoid any neighbor of a vertexin W.

Continuing the definition of I, the root of I' is associated with ({v}, ®) and the
remaining nodes are defined inductively as follows. Let ¥ be any node in I" with its
associated tuple (B, W) such that |W| < |P| < k and N(P)\ N(W) # @, and let u be
the vertex with lowest index in P\ W. For every subset M < N(u) \ (N(W) U P) that
fulfills |M| < k—|P|, we add a new child to X associated with (Pu M, Wu{u}). (Note
that M = @ is one of the choices for M.) There are no further nodes in I and this
concludes its definition. Below we say that the order of I is its number of nodes.

Representation of admissible sets in search tree I We now prove that each ad-
missible set is represented in I'. Then we show a technical lemma that proves that
admissible sets of size precisely k are contained in the leaf nodes of I" and that gives
us a way to account in a tight way for the work done for inner nodes when con-
structing the search tree.

Lemma 6.1. (i) In each tuple (P, W) associated with some node of I the set P is
admissible. Furthermore, (ii) for each admissible set P, there is a set W such that
(B, W) is associated with some node of T'.

Proof. To prove (i) it suffices to observe that the set P associated with the root is
admissible and that, if P is admissible for some node ., then the set P for each of
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its children is. The first part is obvious. For the second part, let N be associated
with (P, W) and let one of its children be associated with (P’, W'). Since G[P] is
connected and since P'\ P € N(u), where u is the vertex with lowest index in P,
also G[P'] is connected. Moreover, |P’\ P| < k —|P| by definition of T and, hence, P’
contains at most k vertices. Thus, we have proved (i).

It remains to prove (ii). Assume for the sake of contradiction that for some admis-
sible set P there is no node in I' associated with the set (P, W) for any set W. Con-
sider a node N’ with associated tuple (P, W’) in I’ with the longest path to the root
such that P' < P and N(W')n (P \ P’) = @; clearly, such a node exists. Consider the
vertex u' € P\ W' with lowest indexand C = N(#/)n(P\P’). Note that CAN(W') = @
as N(W')n(P\P") = ¢. Then, the child of X' with associated tuple (P’ uC, W' u{u'})
also fulfills our condition on its tuple but has a longer path to the root. This contra-
dicts our choice of X', O

In order to upper bound the running time of constructing I', we divide the nodes
of I' into different types. The first type are interesting leaves which are leaves N of T’
with 7(N) = (B, W) such that |P| = k. The second type are boring leaves which are the
remaining leaves. Note that for boring leaves we have |P| < k and P = W. The third
type are the parents of the interesting leaves and the fourth type are all remaining
inner nodes which we call deep inner nodes.

Lemma 6.2. The search tree I is of order at most (3 + 2/(2271 —2))(e(A — 1))F1.
Moreover, the number of interesting leaves and number of parents of interesting
leaves is at most (e(A — 1))*~! each, there are at most AT 1 (e(A 1)k-1 deep inner

nodes, and there are at most (1 + 1/(2271 —2))(e(A — 1))" 1 b0r1ng leaves.

Proof. By definition, each node . with associated tuple 7(.X) = (B, W) and vertex u
with lowest index in P\W has one child for every subset of R(X) := N(u)\(PUN(W))
of size at most k —|P|. Hence, node .A has at most me URCNILIPI=K} ('R(‘iN”) children.
In particular, the root of I' has at most 22 children and each deep inner node has
at most 2271 children (as some neighbor of u has to be in P already). Assume for
the moment that a search tree I'* = T'*(G*, v*, k) exists that achieves the maximum
possible number of children in each node. Clearly, search tree I'* contains at least
as many nodes as I' because search tree I' can be embedded into I'* in the natural
way. Search tree I'* also contains at least as many deep inner nodes. Furthermore,
every boring leaf . of search tree I' can be mapped to a unique boring leaf of I'*:
take the natural embedding of I into I'*, the node .A'* to which .¥ correspondsinI'*
and then recursively follow the (unique) child of A'*, T(N*) = (P*, W*) such that no
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vertex is added to P*. Hence, search tree I'* contains at least as many boring leaves
as I'. Similarly, search tree I'* also contains at least as many interesting leaves.

It thus suffices to upper bound the numbers of nodes of I'* instead of the corre-
sponding numbers of nodes of I'. Let us fixa concrete G* and v* inI'* =T (G*, v*, k)
(in particular, let us show that I'* as defined above exists). Take as G* any tree thatis
rooted at some vertex v*, such that each vertex in G* has degree exactly A and that
has depth at least k — 1. As there are no two distinct paths from v* to any other ver-
tex, in each node N of I'* with associated tuple 7(/) = (B, W) and vertex u with low-
estindexin P\ W we indeed have |[N () \(PUN(W))| = |[N(u)\P| = |N(uw)|-1=A-1,
except for the root, where we have |[N(u) \ (Pu N(W))| = [N(u)| = A. Hence, T'*
achieves the maximum possible number of children in each node.

We first upper bound the number of interesting leaves in I'*. Since |P| = k in
an interesting leaf & with associated tuple (B, W), graph G*[P] induces an order-k
subtree of G* that contains v*. This mapping from the leaves to the set of order-k
subtrees of G* that contain v is injective: Assume the contrary, that is, there are
two interesting leaves .¥;,. N, of I'* that are mapped to the same tree. Consider
the node ./ in I'* with the longest path to the root such that ./ lies on both paths
from the root to N, and N,. Consider the tuple 7(N) = (P, W) associated with .,
the successors /|, A, of ¥ on the corresponding paths, and their associated tu-
ples T(N]) = (P;,W1), T(N,) = (P,, W>). There is a vertex w in exactly one of Py, P,
that is not in P, say w € P; \ P,. Thus, in the tree induced by leaf .¥, the vertex w
is present whereas in the tree induced by .¥; the vertex w is missing. This is a con-
tradiction to our assumption. Hence, there is an injective mapping from the inter-
esting leaves of I'* to the set of order-k subtrees of G* that contain v* and, invok-
ing Theorem 6.1, their number is at most (e(A — 1))k-1, Clearly, the set of parents of
interesting leaves also has at most this cardinality.

We next aim to upper bound the number of deep inner nodes of I'*. First note that
any inner node of I'* has at most one boring leaf as child. Hence, if we remove the
leaves from I'*, we obtain a tree I in which each inner node has at least 2271 —1 chil-
dren. Furthermore, as in each non-root node N of I with associated tuple (P, W)
we have |[N(u)\(PUN(W))| = |N(u)|—1, each node .¥ is the ancestor of a parent of a
interesting leaf in I'*. Thus the leaves in I” are a subset of the parents of interesting
leaves in I'*, that is, there are at most (e(A—1))*"! leavesinI". Using that each inner
node in I’ has at least 22! — 1 children, the number of inner nodes in I" is at most
1/(2271 =2)(e(A —1))*~! which is also the number of deep inner nodes in I'*.

Finally, as noted above, each inner node of I'* has at most one boring leaf as child.
Hence, the number of boring leaves is at most (1 +1/(2%71 —2))(e(A — 1))*1. O
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A corollary of Lemma 6.2 is that the number of subgraphs of G that contain v and
are of order at most k is at most 3(e(A —1))F1,

Enumeration algorithm and proof of Theorem 6.2. Using Lemma 6.2 in a straight-
forward algorithm to construct the search tree I' now yields a proof for Theorem 6.2.

Proof of Theorem 6.2. We construct I" in a depth-first fashion, computing the as-
sociated tuples of each node as follows. Clearly, the associated tuple of the root
is given. For every node, we will compute the associated tuples of all children.
Hence, when processing a node of I', we may assume that its tuple is given. We
represent P and W in a tuple (P, W) as well as all neighbors N(W) of vertices in W
as a set data structure that allows for addition and look-up of single elements in
O(1) time [BT93].

Let us describe the procedure for a certain node N associated with tuple 7(X) =
(P W). We first report P as admissible set, which is correct by Lemma 6.1(i) and
can be done in O(k) time. Then we create a list containing the elements of N(u) \
(P U N(W)) in arbitrary order, where u is the vertex with lowest index in P\ W;
vertex u is retrievable in O(k) time. It is possible to create the list in O(A) time
because of the set data structures used for P and N(W). Once we created the list
of N(u) \ (Pu N(W)), we iterate over all its sublists L corresponding to some set M
with | M| < k—|P| and, for each of them, make a recursive call for the child with asso-
ciated tuple (PUM, Wu{u}). The recursive call includes computing the tuple, which
is possible in O(k) time, and updating the set data structure for the vertices in N(W),
possible in O(A) time. As creating the sublists is possible in time linear in the num-
ber of sublists, processing each node ./ thus takes O((A+k))-(C(¥)+1) time where
C(N) is the number of children of A inT.

We now derive the overall running time for constructing I'. Clearly, each leaf of T
contributes O(A + k) processing time, amounting to O((e(A — 1))* (A + k)) overall
by Lemma 6.2. The overall processing time contributed by the parents of the leaves
is O(A + k) times the number of leaves, hence yielding the same asymptotic upper
bound. Next, each remaining node in T has at most 2* children and hence con-
tributes O(2% (A+k)) processing time. Using the upper bound on their number from
Lemma 6.2, their overall contribution is OQ22(A + k)) - (1/(221 =2) - (e(A - 1))* ! =
O((e(A—1))*1-(A+ k). O

While the above enumeration scheme seems quite simple, its running time is
asymptotically almost optimal. We show in Section 6.2.2 that, if G is a (A — 1)-ary
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tree, then there are many admissible sets, closely matching the upper bound fol-
lowing from Lemma 6.2.

Consequence for FIXED-CARDINALITY OPTIMIZATION. Using Theorem 6.2 we ob-
tain the following by simply starting the enumeration process from each vertexin G.

Theorem 6.3. Let (G, ¢, k) be an instance of FIXED-CARDINALITY OPTIMIZATION
such that

* G has maximum degree A,

* (S) = 0if G[S] is not connected, and

e ((S) can be evaluated in T'(k, G) time.
Then, (G, ¢, k) can be solved in O((e(A - M1 (A+k)-n-T(k,G)) time.

There are many natural FIXED-CARDINALITY OPTIMIZATION problems that fulfill
the conditions of Theorem 6.3. For example, if we take ¢¢(S) to be the diameter
of G[S], we arrive at an optimization version of the s-CLUB problem [BBT05; BP13;
Sch+12] which asks to find a k-vertex subgraph that has diameter at most s. Note
that this problem is nontrivial only if k > A. As a consequence, the above theorem
provides a refined running time in comparison to the previously reported overall
running time of O((k — 2)%. k! kn+ nm) for s-CLUB parameterized by k [Sch+12].

Using a straightforward application of the Random Separation method [CCC06],
we obtain 024+Y*. T(k,G) - (n + m)) running time for the special case of FIXED-
CARDINALITY OPTIMIZATION above. Hence, in comparison to Random Separation,
Theorem 6.3 gives an improved exponential part of the running time and we do not
need to rely on randomization. Moreover, often 7'(k,G) < f(k,A) for some func-
tion f. In this case our algorithm runs in linear time for fixed values of A and k
whereas the derandomization of the Random Separation approach adds a factor
of log n[CCCO06].

6.2.2. Alower bound on the number of connected subgraphs

We now show that the exponential term (e(A — 1)*! in Theorem 6.2 is asymptoti-
cally optimal. For the corresponding lower bound, we use the fact that the number
of /-ary ordered trees with k inner vertices is exactly ([kk)/ (£ -1k +1) (see Hilton
and Pedersen [HP91], for example). In ordered trees the order of the children of a
vertex matters. For example, adding two children to the “left” leaf of a vertex with
two leaf children yields a different binary ordered tree than adding two children to
the “right” leaf. More formally, an ¢-ary ordered tree is uniquely described by a vec-
tor in N for each vertex u, such that the number of vertices induced by the subtree
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of the 7th child of u is exactly the ith entry in u’s vector and each vertex has either ¢
or zero children.

Lemma 6.3. For every pair of integers k and A there is a graph G with maximum de-
gree A and a vertex v such that there are at least (1/((A-2)k+1))- ((A_kl)k) connected
subgraphs of order at most k that contain v.

Proof. Take G to be a tree with root v where every vertex has either zero or A —
1 children and the path of each leaf to v is of length at least k. Give the children of
every vertex in G an arbitrary order and consider an arbitrary ordered rooted tree T
with k vertices such that every vertex has at most A — 1 children. Observe that T
induces a subtree of G by identifying the roots and then embedding the remaining
vertices in the natural way. In fact, in this way we obtain a bijection between the
k-vertex subtrees of G and the corresponding ordered k-vertex trees. Furthermore,
by taking an arbitrary ordered k-vertex tree such that each vertex has at most A —
1 children and adding leaves to each vertex which has less than A — 1 children we
obtain a (A—-1)-ary ordered tree with k inner vertices. Vice versa, removing all leaves
from a (A — 1)-ary ordered tree with k inner vertices we obtain a corresponding k-
vertex tree. Hence, the number of k-vertex subtrees of G is lower-bounded by the
number ((A_kl)k) [((A=2)k+1) of (A —1)-ary ordered trees with k inner vertices. [

Consider the number of admissible sets in the search tree I" from Section 6.2.1.
Applying Proposition 1.1 to the binomial coefficient in Lemma 6.3, we obtain that
in the worst case the number of admissible sets can be at least

A-1)DF (A—2)
‘(a—2 AK32

for some constant ¢ > 0 independent of k and A. Let us consider the ratio p “upper
bound divided by lower bound” for fixed k. The kth root of the ratio g is

o ( e(A-1) ) o ( e e )
TINA-1 = “\A-2 =k
(32) @-2 (32) (1+35)
Because limpy_o (1 + 1/(A —2))272 = ¢, the ratio approaches some constant, mean-
ing that the upper bound is asymptotically tight.

=0

6.2.3. Combining solutions from different connected graphs

In the case of general objective functions ¢, the optimal solution for ¢ could be
a vertex set S such that G[S] is not connected. This is in particular the case for
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DENSEST k-SUBGRAPH: If the input graph consists for example of two cliques on
k/2 vertices that are connected by a long path of degree-two vertices, then, for
sufficiently large k, the optimal solution consists exactly of the two cliques and it
is thus disconnected. However, the objective function of DENSEST k-SUBGRAPH
has, as many objective functions for FIXED-CARDINALITY OPTIMIZATION, the use-
ful property that connected components can be considered independently when
evaluating the function. This can be formalized using component linearity; for con-
venience, we repeat below the definition from the introductory section.

Definition 6.3. Let G = (V, E) be a graph, let ¢: 2V — Q be an objective function,
let S,T < V be arbitrary disjoint vertex sets, and let y: Q@ x Q — @ such that y is
non-decreasing in both arguments individually.
e We call ¢p component sub-y if the functions ¢ and y have the property that
&(S) < x(p(W),p(S\W)) where W is an arbitrary connected component of G[S].
e We call ¢ super-y if p(SU T) = x(p(S), d(T)).
e If both the above properties hold for ¢ and y, then we call ¢ component
X -linear.

The idea behind component y-linearity is as follows. The value of ¢(S) can be
evaluated by first evaluating subsets S;, S, < S of S. If ¢ is component y-linear, then
the only possibility for the value of ¢(S) to be much larger than a “combination”
of ¢(S;) and ¢(S,) is if there are edges between S; and S,. Hence, connected com-
ponents of G[S] can be first evaluated separately and then be combined.

Itis easy to check that, taking ¢(S) as the number of edges in G[S] and y(a, b) = a+
b we obtain an objective function corresponding to DENSEST k-SUBGRAPH which
is component +-linear. In the following, we extend our enumeration algorithm to
FIXED-CARDINALITY OPTIMIZATION with component y-linear objective functions.
In Section 6.2.4 we then demonstrate the usefulness of component y-linearity via
several examples. Our algorithm for FIXED-CARDINALITY OPTIMIZATION, based on
the color coding technique [AYZ95], is randomized with false negatives. It can be
derandomized with an additional running time factor of 2°®) . log n [AYZ95].

Algorithm description. Let S be a vertex set of size k such that ¢(S) is maximum.
The basic idea of color coding is to color the vertices of the input graph uniformly at
random with a set C of k colors and to hope that S is colorful, that is, for each color
in C there is exactly one vertex in S that has received this color. With some nonzero
probability, the coloring will satisfy this property. Assuming the graph is colored this
way, first use the enumeration algorithm to find all connected components of G[S].
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Then combine these connected graphs by applying dynamic programming. The
fact that the solution is colorful enables us to define which connected components
can be combined and which cannot. The color-coding/enumeration/dynamic pro-
gramming routine is repeated sufficiently often to achieve constant error probabil-
ity. The details are as follows.

Apply the coloring to the vertex set. After the coloring, first compute for every
subset C’ of C the connected subgraph G[S'] that maximizes ¢(S’) among all con-
nected subgraphs whose vertices have color set C'. This can be easily achieved by
adapting the enumeration algorithm of Theorem 6.2 to only report colorful con-
nected graphs and then evaluating ¢ for each enumerated colorful graph G[S']. We
fill a table 9 storing the currently best value for each color subset as follows. We
initialize 9 by setting % (C') := —oo for all C' < C. If during the enumeration we find
some S' with color set C' and % (C’) < ¢(S), then we set 9 (C') — ¢(S). After the
enumeration of all connected subgraphs the entry % (C') contains exactly the maxi-
mum objective value among all connected subgraphs with color set C'. Afterwards,
we find the maximum objective value of any graph with color set C using another
table 7. Here, the entry in 7 (C') for some color set C' < C contains the maximum
of ¢(S) for all vertex sets S with color set C'. We can fill 7 (C’) by the following recur-
rence:

Lemma 6.4. The tables 7 and % have the property that

F(C") = max{P (C’),épag (T (C"),T(C\NC"N}

Proof. We first prove that the left-hand side is at most as large as the right-hand
side and then the other direction.

“<”: Let S < V be a “witness” for 7 (C"), that is, G[S] is colorful with color set C’
and ¢(S) = J(C"). If G[S] is connected, then T (C') = % (C), as required. If G[S] is
disconnected, then for an arbitrary connected component W of S we have 7 (C') <
x(@d(W),p(S\ W)) because ¢ is component sub-y. Since y is non-decreasing we
have

X(@GW),p(S\W)) < x(@D(C),T(C'\C") = x(T(C"),T(C'\C")

where C” is the set of colors in G[W]. Thus 7 (C") < x(T(C"),T (C"\ C")).

“=": We have 7 (C") = 9(C’) by definition. Let S and T, SN T = @, be witnesses
for 7(C") and J(C"\ C"), respectively, for a set C" = C'. Since ¢ is super-y, we
have ¢(SU T) = x(¢(S),¢(T)) and hence also T (C") = y (T (C"),T (C"\ C")). O
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Thus, after filling & according to the above recurrence, the maximum objective
value of any colorful solution with k vertices is stored in 7 (C).

By repeating the above algorithm O(e*) times one can achieve a constant error
probability that in one of the repetitions, called trials, the solution has indeed ob-
tained a colorful coloring. If T'(k,G) is an upper bound on the time needed to
evaluate ¢ and y, then this leads to an overall running time of O((e*(A — 1))k L.
(A+k)-n)- T(k,G) for the algorithm: For each trial the table & can be evaluated
in O(3%) - T(k,G) time,'? and thus the dominating part of the running time is the
subgraph enumeration procedure.

Speed-up using more colors. In the following, we describe how this running time
can be further improved by employing a known speed-up trick for color coding
(see Deshpande, Barzilay, and Karger [DBK07] and Hiiffner, Wernicke, and Zich-
ner [HWZ08]). The idea is to increase the number of colors, that is, to use ck colors
when coloring the vertices, for an integer ¢ > 1. This modification has two effects.
On the one hand, it increases the probability that the solution is colorful which re-
duces the number of necessary trials. On the other hand, it increases the running
time needed for the dynamic programming, since the table now has ©(2°%) entries.
Hence, there is a running time trade-off between the two parts of the algorithm. In
our application, we can observe that the dominating part of the running time for
each trial is the subgraph enumeration which does not depend on the number of
colors but only on k. Hence, it makes sense to increase the number of colors as
long as the dynamic programming part is still faster than the subgraph enumera-
tion part. As a result, we can achieve a sizable speed-up, the concrete analysis is as
follows.

First, the probability P,, ¢ > 1, that an optimal solution S < V is colorful when
coloring V uniformly at random with ck colors is

(Ckk)k! 1 c c ¢k k el 1
p.=>_ /| — —D"V2mkrtz
T (ck)k = e? \ 2n(c—1)k(c—1) (c-1*Vark z(eck)"
1 c (( c )C c—l)k ! c (( c )C—ll)k
T2V e-1\lc=1) ec T e2Ve-1lec-1 e

where the inequality holds due to Stirling’s approximation and Proposition 1.1. We
make [1/P,] coloring trials. The probability to have at least one trial in £ such that

12We include the function T in this time bound since the values produced by ¢ and y could be very large
in the general case.
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the optimal solution S is colorful is 1— (1 - P,)’. The probability of success is thus at
least 1-1/ebecause 1—(1-P,)"'Pc = 1—1/e. Then the enumeration of the connected
subgraphs takes O(1/P, - (e(A—1))*"'-(A+ k) - n- T(k,G)) time overall, whereas the
dynamic programming part contributes O(1/P, - 3¢y . T'(k,G) time. Hence, if we
choose ¢ in such a way that 3¢k e O((e(A - 1))* 1), then the overall running time is
dominated by the enumeration procedures. We claim that this is the case if we let ¢
be smallest possible such that ¢ = (1 -1/k) -log;(e(A — 1)) and such that ck is an
integer. First we note that it is possible to choose c in this way, that is, (1 -1/k) -
log,;(e(A—1)) = 1. Indeed, this is true if and only if log; e +1log; (A —1) = k/(k - 1).
Note that A, k = 3 without loss of generality,'® and thus log, e + log;(A —1) = 3/2
and 3/2 = k/(k—1). Hence we may choose c in this way. We see 3°F € O((e(A-1))*"!)
as follows. Because increasing ¢ by 1/k increases the integer part of ck, we have ¢ <
(1-1/k)1log;(e(A —1)) +1/k and thus 3¢ < 3k-Dlogs(e(A-1)+1 = 3(p(A —1))*~L, Since
the probability P, is monotonously ascending for increasing c, the overall running
time is in the order of

e(A=1) A+ k) -n- Tk, G)

Piogy(ea-1)
1 A—1)) —1)\logsle(d-1)-1 k-1
- ([ferean ) N R
log;(e(A—1))

e(A-1) k-1

—1))logs
=((logem1]%) ’ ez(A—l)) (A+K)-n-T(k,G).

It seems complicated to bring the base in the exponential term, let us call the base y,
into a more readable form. We give some numerical evaluations in Table 6.2.

Note that, choosing c¢ as above, the base in the exponential factor of P, tends
to one for increasing A. Thus the overall running time of the algorithm tends to
O((e(A=1))*-(A+k)-n)-T(k,G) as A increases. For example, for all A = 5 we obtain
the upper bound of O(((e +0.9)(A —1))*- (A + k) - n) - T(k, G). Concrete values for y
are given in Table 6.2. Concluding, we obtain the following theorem.

131f A < 2, then the number of k-vertex subgraphs is linear in the number of vertices and if k < 2, then
the number of k-vertex subgraphs is O(An). In both cases enumeration is possible in linear time in
the number of subgraphs, and, together with color coding and dynamic programming, it is not hard
to obtain a running time of 0@k.A-n)-T(k,G) for optimizing the objective function.
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A 3 4 5 6 10
y/I(A-1) 42 3.8 3.6 3.5 3.4
Y 84 113 144 175 29.8

Table 6.2.: Approximate values of the base y in the exponential running time factor
in the improved color coding/dynamic programming routine.

Theorem 6.4. Let (G, ¢, k) be an instance of FIXED-CARDINALITY OPTIMIZATION
such that

¢ G has maximum degree A > 2,

* ¢ is component y-linear, and

e ¢ as well as y can be evaluated in T'(k, G) time.
Then, (G, ¢, k) can be solved in O(y*!- (A + k) - n) - T(k,G) time, reporting a yes-
instance as a no-instance with probability at most 1/e. Herein,

Y = (logﬂ(ﬁ/3))10g3(,6/3)eﬁ

and = e(A—1). In particular, y <4.2- (A-1).

6.2.4. Concrete examples for component linear functions

We conclude this section with concrete examples for component-linearity (Defini-
tion 6.3) and the resulting algorithm for FIXED-CARDINALITY OPTIMIZATION (The-
orem 6.4).

Random Separation. The algorithm underlying Theorem 6.4 applied to DENSEST
k-SUBGRAPH has a worst-case running time of O((4.2-(A—1))*"1-(A+k)-k?-n). Using
Random Separation, DENSEST k-SUBGRAPH can be solved in 29 . (A + k) - n time
with one-sided error and constant error probability [CCCO06]; our algorithm thus
improves on this running time.

A non-example: Independent sets. An objective function that is not component
x-linear for any function y as in Definition 6.3 is ¢(S) defined as “maximum size
of an independent set in G[S]”. To see this, take any function y that fulfills the two
properties demanded by Definition 6.3. Then, y(¢(S), (7)) < max{¢p(S),(T)}: For
any i and j, the complete bipartite graph with partite sets A and B of size i and j,
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respectively, fulfills ¢(A U B) = max{|Al,|B|} = max{¢(A),p(B)}. Since ¢ is super-y
we thus have y (7, j) < max{i, j}. However, for vertex sets S and a connected compo-
nent W in G[S] we have

P(S) = W) +Pp(S\ W) < x(p(W),dp(S\ W)) < max{p(W),p(S\ W)}

because ¢ is component sub-y. This is absurd because for nonempty W and S\ W
we clearly have ¢p(W) + ¢(S\ W) > max{p(W),p(S\ W)}.

Multiple objectives. We now demonstrate the merit of stating Definition 6.3 in
the present general way. Suppose we are given a graph G = (V, E) and are asked
to decide whether among the densest k-vertex subgraphs of G, there is one with a
connected component of size at least /. We may define a corresponding objective
function

¢(S) = |E(GISD| -2Mogkl 4 max{|W|| W is a connected component of G[S]},

that is, the last [logk] bits of ¢(S) are reserved for the size of a largest connected
component of G[S]. Then we can define a function y(a, b) that sums the first bits
and takes the maximum of the last [log k] bits. This function is monotonously as-
cending in both arguments and it is easy to check that ¢ is component sub-y. To
see that it is super-y it suffices to observe that the number of edges in G[Su T is at
least as large as the sum of the edges in G[S] and G[T] for disjoint S, T and similarly
for the size of the largest component. Hence ¢ is component y-linear and we may
apply Theorem 6.4 to decide the above property of G.

Fixed-cardinality graph partitioning. Our framework is applicable to a subclass
of FIXED-CARDINALITY OPTIMIZATION, the so-called fixed-cardinality graph parti-
tioning problems [SZ14; Bon+15]. In these problems a graph G = (V, E) and an inte-
ger p is given and the task is to decide whether there is a k-vertex subset S < V such
that ¢(S) := alE(S)| + bld(S)| is at least p. Here, a, b, and k are fixed constants, E(S)
is the set of edges in G[S], and 6 (S) is the set of edges with exactly one endpointin S.
It is not hard to show that, whenever a = 2b, then ¢ is component +-linear:
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We extend the definition of 6 to 6(S, T), which denotes the set of edges with one
endpoint in S and one in T for disjoint vertex sets S, T'. Clearly, for any two disjoint
vertex sets S, T', we have

¢ SUT) = alE(SUT)|+blo(SuUT)|
a(ES|+IEMI+16(S, DN+ bUSS)+16(T)-216(S, T

H(S) + (1) + (a—2b)-16(S, T)I.

Hence, if T is a connected component of SU T, then ¢p(SU T) = ¢(S) + ¢(T) and
thus ¢ is component sub-+. Further, if a —2b = 0, that is, a = 2b, then ¢ is super-+,
showing that ¢ is component +-linear.

Thus, Theorem 6.4 is also applicable to any fixed-cardinality graph partitioning
problem with a = 2b. Combining Theorem 6.4 with an A* - poly(n)-time algorithm
of Bonnet et al. [Bon+15] for the case a < 2b yields an algorithm for general fixed-
cardinality graph partitioning problems with running time y*~! - poly(n), where y
is as defined in Theorem 6.4. For all A = 4 the resulting algorithm improves on the
running time upper bound 4¥*°® . A*.poly(n) given by Shachnai and Zehavi [SZ14].

6.3. Application to finding u-cliques

We now describe how to use the algorithms presented for FIXED-CARDINALITY OP-
TIMIZATION in order to obtain fixed-parameter algorithms for - CLIQUE. More pre-
cisely, this will lead to fixed-parameter algorithms for the parameters maximum
degree A of G and the h-index of G, and for the combined parameter that com-
prises n— k and degeneracy d of G. Before presenting these algorithms, we observe
relationships between the vertices in p-cliques and the sparsity parameters under
consideration.

6.3.1. Upper-bounding the solution size

The relation between the order of a u-clique and its maximum degree, h-index, and
degeneracy is as follows.

Lemma 6.5. A u-clique with
(i) maximum degree A contains at most A/ + 1 vertices.
(i) h-index h contains atmost (h-(h—1)+2-(n—h)-h)/(u-(n—1)) < 2-h/u vertices.
(iii) degeneracy d contains less than (4-d + p)/2 - p vertices.
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Proof. Let G be a n-vertex p-clique.
Statement (i): If G has maximum degree A it has at most n-A/2 edges. Since its
densityis at least p it has atleast u- (;’) edges. Combining the two statements we get

n-(n—1) - n-A

2 2

andthusn<A/u+1.

Statement (ii): If G has h-index & it has at most h vertices of degree more than h.
Hence, at least n — h vertices have degree at most . Let H denote the set of at
most h vertices that have degree more than h, and let Ey; denote the set of edges
with both endpoints in H. Clearly, |[Ey| < (Z) Since all vertices in V' \ H have degree
at most h, there can be at most (n— h) - h edges incident with these vertices. Hence,
the total number of edges in G is at most (g’) + (n—h) - h. Combining this with the
lower bound - (}) for the edge number of G we get

n-(n—1) h-(h-1)
- =

5 +(n—h)-h

and thus

h-(h-1)+2-(n-h)-h _2-h
< <= —.
p-(n—=1) U

Statement (iii): If G has degeneracy d, it has at most d - (n — %) edges. Thus,

n-(n—1) d+1
,U-T <d-|ln-——|,

which implies

2-d V4d? —4d? 2 4-d
n < THt HEp < +,U'

2-u 2-u

O

The upper bound (h-(h—1)+2-(n—h)-h)/(u- (n—1)) on the number of vertices
in p-cliques is tight as a graph consisting of a h-vertex clique and of n — h further
vertices that are an independent set but adjacent to all vertices of the clique has
density exactly u if n is equal to the upper bound. It is not hard to see that also
the upper bound for the number of vertices with respect to the maximum degree is
tight. The bound with respect to the degeneracy can be improved slightly.
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6.3.2. Parameter maximum degree

The fixed-parameter algorithms for the maximum-degree parameter can be ob-
tained by a straightforward application of the generic algorithms described in Sec-
tion 6.2 with the size bounds given by Lemma 6.5.

In most application settings for u-CLIQUE, one would add the further constraint
that the solution has to induce a connected subgraph. By Lemma 6.5, we have k <
A/p+ 1. Furthermore, for each vertex set S < V of size at most k, we can compute
the number of edges in G[S] in O(k-A) time: for each vertex v of S find all neighbors
of v in S by traversing its adjacency list once. Hence, T(k, G), the time needed to
compute the objective function is O(k - A) in this case. Plugging both bounds into
the time bound given by Theorem 6.3, we obtain the following.

Proposition 6.1. For any fixed u, 0 < u < 1, we can determine in O((e(A — 1))2/#-
A3/y? - n) time whether G contains a connected k-vertex u-clique. Herein, A is the
maximum degree of G.

For the general case, in which the solution S may be disconnected, we may use
the running time given in Theorem 6.4 instead, since the objective function “num-
ber of edges in a graph” is component-linear.

Theorem 6.5. For any fixed p, 0 < p < 1, u-CLIQUE can be solved in time O((4.2 -
(A—1)A'H. A3/ u? - n), reporting a yes-instance as a no-instance with probability at
most 1/e. Herein, A is the maximum degree in the input graph.

6.3.3. Parameter h-index

We now describe how to extend our fixed-parameter results to also hold for the pa-
rameter h-index of the input graph. In many practical applications the k-index is
much smaller than the maximum degree. For example, social and biological net-
works have few so-called hubs, that is, vertices of very high degree, and many low-
degree vertices. In this case, the h-index is a smaller parameter than the maximum
degree A.

Algorithm description. The main idea of the algorithm is as follows. Let H be the
set of the h vertices with degree at least &, and assume that S is a vertex set of size k
such that G[S] is a p-clique. First, by trying all 2" subsets of H, guess the set Hs
of vertices that are in SN H. Fix one such set Hg. It remains to determine which
vertices of V'\ H belong to S. The number of edges in S depends on the number of
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edges between S\ Hg and Hs and on the number of edges between vertices of H.
Hence, our goal in the following is simply to find a subgraph of V'\ H that maximizes
this number.

Accordingly, we compute for every vertex v € V\ H the number degy (v) of neigh-
bors of v in Hs. Define the value ¢(S'), S < V\ H, of a subgraph G[S'] of the
graph G[V'\ H] to be

(S := |EGISDI+ Y degy; (V).
ves'
The task is now to find a vertex set S’ € V' \ H of size k — | Hs| that maximizes ¢(S').
The overall maximum number of edges for any subgraph with k vertices that con-
tains Hg is then this value plus the number of edges in G[H;]. The overall optimum
solution is simply the maximum among all possible choices of H.

Running time. The running time of this algorithm can be upper bounded as fol-
lows. We try 2" different possibilities for Hs. For each possibility, we first com-
pute deg; (v) for each vertex in V'\ H which can be performed in O(h-n) time since
all vertices in V' \ H have degree at most s. Then, we solve FIXED-CARDINALITY
OPTIMIZATION with ¢ as defined above. Clearly, ¢ is component +-linear. Fur-
thermore, by Lemma 6.5 we have k < 2h/u and thus also k — |Hg| < 2h/u. Since
the maximum degree in G[V'\ H] is h, solving each instance of FIXED- CARDINALITY
OPTIMIZATION can thus be performed in O((4.2- (h—1))?"*. h?/u? - n) time.
Altogether, we obtain the following.

Theorem 6.6. p-CLIQUE can be solved in 02" - (4.2 (h— 1))*"# - h?/u? - n) time,
reporting a yes-instance as no-instance with probability at most 1/e where & is the
h-index of the input graph.

6.3.4. Parameters degeneracy and vertex deletion

Our final application of the generic algorithm will lead to a fixed-parameter tracta-
bility result for DENSEST k-SUBGRAPH parameterized by the combined parameter
degeneracy d and ¢ := n — k. As we will show in the next section, it is not possible to
achieve fixed-parameter tractability for either d or ¢ alone. Hence, it is interesting
to study their combination. Recall that in u-CLIQUE we fix some constant minimum
density p of the sought graph. This is necessary to upper bound the maximum value
of k and, ultimately, obtain feasible running time bounds. For the combined pa-
rameter (d, ¢) this constraint can be dropped leading to an algorithm for DENSEST
k-SUBGRAPH. The algorithm is mainly based on the following observation.
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Lemma 6.6. Let G = (V, E) be a graph and let S < V such that |S| = k and G[S] has
maximum density among all k-vertex subgraphs. Then, there is no vertexin V'\ S
that has degree at least ¢ + d, where ¢ = n— k.

Proof. Assume that there is a vertex v of degree at least /+d in V' \ S. Since v
has at most ¢ — 1 neighbors in V'\ S, it has at least d + 1 neighbors in S. How-
ever, because G has degeneracy d, there is a vertex u of degree at most d in G[S].
Thus, G[(S\{u}) u{v}] is a graph with at least one edge more than G[S]. This contra-
dicts the fact that G[S] is densest possible. O

Algorithm description. We can regard DENSEST k-SUBGRAPH as the problem of
deleting a set of exactly ¢ vertices while removing the least possible number of
edges. In other words, we aim to solve a minimization variant of FIXED-CARDI-
NALITY OPTIMIZATION where ¢ is defined as

P(S) = (Z deg(v)) —|E(GISD.
veS

We can translate this easily into a maximization variant by changing the sign of the

function and adding a normalizing term of n to the contribution of each vertex.

Formally, we aim to solve FIXED-CARDINALITY OPTIMIZATION with

PO = (Z n- deg(v)) +|E(GISDI.
veS

Note that this objective function is component +-linear: The first part of the sum
is independent of the edges in the subgraph and the second part is simply a sum of
the edges. Hence, if a set S consists of two connected components, then the value
of ¢p(8S) is the sum of the objective values of the two, that is, ¢ is component sub-+.
Further, if S and T are disjoint, then ¢(Su T) is the sum of the two objective values
plus the number of edges going between S and T in G meaning that ¢ is super-+.
Consequently, we can apply Theorem 6.4 to the corresponding problem.

By Lemma 6.6 we can focus on the subgraph G’ of G that contains only the ver-
tices of degree at most ¢ + d. Computing G and computing the value of n —deg(v)
for each vertex of G’ can be performed in O(m) time. Further, the solution size is
constrained to be exactly . Finally, evaluating ¢(S) for a vertex set in S can be per-
formed in O((¢ + d) - |S|) time. Altogether, this results in the following.

Theorem 6.7. DENSEST k-SUBGRAPH can be solved in O((4.2- (¢ +d —1))! - 0% -n+
m) time, reporting a yes-instance as no-instance with probability at most 1/e, where
¢ :=n-k and d is the degeneracy of the input graph.
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6.4. W[1]-hardness for parameters degeneracy and
solution size

In this section, we present a parameterized reduction that shows the limits of the
approach presented above. That is, we show that we cannot replace the i-index by
the smaller parameter degeneracy in Theorem 6.6, retaining fixed-parameter trac-
tability. In combination with W[1]-hardness of pu-CLIQUE with respect to the dual
parameter ¢ := n — k, it also follows that it is not possible to drop the degeneracy or
¢ from the parameterization in Theorem 6.7.

To present the corresponding reduction we need to construct a gadget graph of a
given density and some further properties as follows.

Lemma 6.7. Given four positive integers a, b, ¢, and d, where a < b and d < c(c -
1)/2, we can construct in poly(a, b, ¢, d) time a graph G such that
e Gis2(a—1)-connected, has maximum degree at most 2a, and
¢ adding c vertices and d edges to G results in a graph that has density ex-
actly a/b and has average degree more than a.

The proof is similar to a proof by Guo et al. [Guo+11, Lemma 2]. We make a small
tweak to obtain bounded maximum degree.

Proof of Lemma 6.7. Without loss of generality, assume that b—a > 1 and that a > 1.
Otherwise we can show the claim using 2a instead of a and 2b instead of b. We
set the number of vertices of G to n := (2b—1)c and the number of edges to m :=
ac(2bc—1) —d. First, since

2m < 2ac(bc—-1) < 2(b-2)c(2bc—-1)
2bc—4c)2bc-1)

< (n—-3c¢c)(n+c¢)

A

< nn-1),
there is indeed a simple graph with the claimed number of edges. Moreover, since

m acbc-1)-d d
—_— = = dad— ,
n 2bc-1)c 2bc-1)c

it holds that a = m/n > a— 1. Thus, we can first add (a — 1)n edges to G in polyno-
mial time such that G is 2(a—1)-connected and has maximum degree at most 2(a—
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1) [Har62]. Then, we add the remaining at most n edges to G such that they allow

for a partition into two matchings, increasing the maximum degree by at most two.

The density of the graph G’ that results from adding ¢ vertices and d edges to G is
2m+d) 3 2(ac@bc—-1)—-d+d) 2ac(bc-1) a

(n+co)(n+c—-1)  @bc—c+c)@bc—c—1+¢)  (2bc)2bc-1) b’
The average degree of G’ follows directly. O
Next, we give the promised reduction.

Theorem 6.8. For any fixed y, 0 < u < 1, p-CLIQUE is W[1]-hard parameterized
by (d, k), where d denotes the degeneracy of the input graph.

Proof. We reduce from CLIQUE parameterized by the size s of the sought clique.

CLIQUE
Input: Anundirected graph G and a nonnegative integer s.
Question: Does G have a s-vertex clique as a subgraph?

Construction. Let (G = (V,E), s) be an instance of CLIQUE. From (G, s) we con-
struct an equivalent instance of p-CLIQUE, 0 < u < 1, as follows. First, replace every
edge {u, v} € E by a length-two path, that is, remove {u, v} from the graph, insert a
new vertex sy, ,;, and make it adjacent to u and v. In the following, let S := {s. | e € E}
denote the set of added vertices, and let G; denote the graph constructed in this
way. Next, we make a useful observation and then continue the description of the
construction.
The graph G; has the following property.

An induced subgraph G, [K] of G, on s + (;) vertices has at most 2- (5)
edges. In case of equality, K n V induces a clique on s vertices in G.

This can be shown as follows. Let K; := K n V denote the vertices of K that are also
vertices of G, and let K, := K\ K; denote the other vertices of K. By construction,
every vertex v € K, has in G;[K] degree at most two. Furthermore, every vertex of Kj
hasin G, [K] only neighbors that are in K, and vice versa. Consequently, the number
of edges in G1[K] is at most 2-|K;|. Assume that G;[K] has more than 2 - (;) edges.
Then, |K;| > (;) and thus |K;| < s. In the following, let x := s—|K;| = |Ky| — (;) denote
the number of “excess” vertices from K. Clearly, there are at most (s;x) vertices
in K, that have two neighbors in K;. Hence, the total number of edges in G;[K] is
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atmost 2- (") + (x+ () - (°}")) = () + x+ (5) A simple calculation shows that for
all x with 0 < x < s—2 this number is decreasing with increasing x. In case x = s -2,
the number of edges in G is clearly at most (3) + s — 1. In summary, this shows that
no subgraph of G, on s+ (g) vertices can have more than 2- (;) edges. It also follows
that 2- G) edges can only be achieved in case |K;| = s, and since the number of edges
is at most 2 - | K| this implies |K;| = s. Finally, this means that each pair of vertices
in K; has a common neighbor in K;. By construction, K; thus is a clique in G.

To conclude our construction, we add a gadget graph as described in Lemma 6.7:
Let 4 = a/b and without loss of generality, let a = 3. Then, we add the gadget
graph H such that H is 2(a — 1)-connected, 2(a — 1) = 4, and adding s + (;) vertices
and 2(;) edges makes H have density exactly . Furthermore, H can be constructed
in time polynomial in a, b, s+ (;), and 2(;). Let G* be the disjoint union of G, and H.

Set the instance of y-CLIQUE to (G*, s+ (5) + |V (H))).

Degeneracy. Since G; has degeneracy at most two, and the gadget graph H can be
constructed in poly(s) time (observe that we can assume a and b to be constants),
the degeneracy of the constructed graph is upper bounded by some polynomial
ins.

Correctness. First observe the following. If G has a clique C on s vertices, then H
together with CuS forms a p-clique in G*, where S¢ = {sy,,,3 | 4, v € C}. This follows
by the definition of H. For the reverse direction, we prove that we can assume that
every u-clique M in G* on at least s+ (;) + |V (H)| vertices contains every vertex
of H. If this is true, then, it follows that [M n V(Gy)| = s + (;), and, hence, Mn V(G)
induces a clique on s vertices in G because of the property of G; we have shown
above. Assume that M does not contain some i vertices of H. Then, consider the
vertices in SN M. Each of these vertices has degree at most two and the removal
of them makes M n V(G;) an independent set. Thus, we may remove the vertices
in SN M from M, and then, if |SN M| < i, remove some further vertices in M NV (G;)
from M, and add all the missing vertices of H to M. The removal implies losing at
most 2i edges, but in adding the missing vertices of H we gain at least 27 edges,
since, by construction, H is 4-connected. Thus, the correctness of the construction
follows. O

From the above reduction, we also obtain a lower bound on the running time of
algorithms for - CLIQUE. This bound is based on the Exponential Time Hypothesis
(see Section 1.1.3).
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Theorem 6.9. For any fixed y, 0 < p < 1, u-CLIQUE cannot be solved in time 2°® -
poly(n) unless the Exponential Time Hypothesis fails. Herein, A is the maximum
degree of the input graph.

Proof. Unless the Exponential Time Hypothesis fails, CLIQUE does not have algo-
rithms with running time 2°" (see Section 1.1.3). We observe that the reduction
used in Theorem 6.8 produces instances with maximum degree at most cn, where n
is the number of vertices in the CLIQUE instance and c is a constant. Thus, if there
is an algorithm with the claimed running time for p- CLIQUE, there is also a subex-
ponential algorithm for CLIQUE and the Exponential Time Hypothesis fails.

To observe the upper bound on the maximum degree, consider the graph G, in
the proof of Theorem 6.8. Recall that G is the graph in the CLIQUE instance. Every
vertex in G; that stems from G has degree at most n = |V| and all remaining vertices
have degree two. Now consider the gadget graph H that we added to G; to obtain G*
and its parameter a. Since p is a constant, also a is a constant without loss of gen-
erality. Thus, since every vertex in the gadget graph H has degree at most 24, the
maximum degree in H is bounded by a constant. Thus, the maximum degree in G*
is bounded by cn for a large-enough constant c. O

Clearly, Theorem 6.9 also excludes algorithms with running time 2°? where h
is the h-index of the input graph. We remark that the number of vertices in the
produced instance can only be upper bounded by a quadratic polynomial in the
number of vertices of the clique instance. Hence, while that would be an interesting
result, the exclusion of subexponential algorithms for p- CLIQUE with respect to the
number of vertices and 0 < u < 1 does not follow from Theorem 6.8.

With a slight adaption of the reduction behind Theorem 6.8, we can also exclude
polynomial-size problem kernels with respect to the parameters maximum degree
and h-index.

Theorem 6.10. Unless NP < coNP/poly, for any fixed y, 0 < u < 1, there are no
polynomial-size problem kernels for p- CLIQUE with respect to either maximum de-
gree or h-index.

Proof. It suffices to prove the statement for the larger maximum degree parame-
ter. For this, we observe that the reduction used in the proof of Theorem 6.8 im-
plies a simple or-cross-composition from CLIQUE into u-CLIQUE parameterized by
maximum degree. (Recall the definition of or-cross-compositions and their conse-
quences from Section 1.1.3.)
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Let several instances of CLIQUE be given and without loss of generality, assume
that each instance asks for a k’-vertex clique."* Merge the instances into one in-
stance of CLIQUE by taking the disjoint union of the graphs. Itis clear that this graph
contains a clique of given number of vertices if and only if one of its connected
components does. Then apply the reduction used in Theorem 6.8 to the resulting
graph. To obtain that this procedure is a cross-composition, it remains to show that
the maximum degree in the created instance is upper bounded by a polynomial
in the maximum size of the input instances. This follows since the reduction used
for Theorem 6.8 does not merge any connected components and the introduced
gadget graph has size polynomial in k". Thus, there is an or-cross-composition from
CLIQUE into u-CLIQUE parameterized by the maximum degree. O

6.5. Concluding remarks

We note that Stahl [Stal3] implemented an algorithm for finding a maximum-size
p-clique based on Theorem 6.5 as his Bachelor’s project and we subsequently fur-
ther developed this implementation (see Komusiewicz, Sorge, and Stahl [KSS15]).
While the resulting algorithm was competitive with a branch-and-bound algorithm
by Pajouh, Miao, and Balasundaram [PMB14], the running times were still often
prohibitively large. We believe that this is owed to the weak structure of p-cliques,
allowing only for rather weak data reduction rules and solution size upper bounds.
This leads to only weak (heuristic) pruning of the search tree.

There are many possibilities for future research on the computational problems
considered in chapter. Obviously, it would be interesting to improve the presented
algorithms. For the case of FIXED-CARDINALITY OPTIMIZATION, a running time
of A°® .poly(n) is unlikely: CLIQUE is a special case of this problem and such a
running time would imply an n°®-time algorithm for CLIQUE which contradicts
the Exponential Time Hypothesis (see Section 1.1.3). Hence, one could focus on
improving the constants in the base of the exponential function here.

For u-CLIQUE, it would be interesting to obtain a running time of 2°4’¥ . poly(n)
or to show that such a running time is unlikely with respect to some complexity-
theoretic assumptions. Since k € O(A/u) by Lemma 6.5, this corresponds to single-
exponential running time with respect to the solution size. It would also be inter-
esting to obtain polynomial-size Turing kernels (see Section 1.1.3) for u-CLIQUE

141f an instance asks for a smaller clique, simply add a new vertex and connect it to all other vertices of
this instance.
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and any of the considered parameters. Also, is there a better polynomial-time al-
gorithm for u-CLIQUE on planar graphs than the trivial brute-force XP-algorithm
with respect to the degeneracy parameter? Finally, a further restriction that can be
made in the area of community detection is to upper bound the size of the neigh-
borhood of the p-cliques [11005; 1109; Kom+09]. This represents the intuitive def-
inition of communities as internally dense, but externally sparse graphs. Efficient
algorithms exploiting such bounds would be interesting and also practically rele-
vant.
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Chapter 7

Highly connected subgraphs

This chapter is based on “Finding Highly Connected Subgraphs” by Falk Hiiffner, Christian
Komusiewicz, and Manuel Sorge (Proceedings of the 41st International Conference on Current
Trends in Theory and Practice of Computer Science (SOFSEM "15) [HKS15]).
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7.1. Introduction

The edge connectivity of a connected graph is the size of its smallest cut, that is, a
set of edges whose removal separates the graph into at least two connected com-
ponents. An n-vertex graph is highly connected if its edge connectivity is larger
than n/2. An equivalent characterization is that a graph is highly connected if each
vertex has degree at least |n/2] + 1 (this follows from Chartrand [Cha66, Theorem
1]). Highly connected graphs have been used, for example, by Hartuv et al. [Har+99]
to partition a DNA similarity network into clusters, and by Przulj, Wigle, and Jurisica
[PWJ04] to find protein complexes, functional units of proteins, in a cell. Intuitively,
highly connected graphs are well-suited to model clusters in similarity networks
because similarity is approximately transitive and because we expect that the con-
nectivity of the clusters rises with their size.
We study exact algorithms for the following NP-complete problem:

HIGHLY CONNECTED SUBGRAPH

Input: Anundirected graph G = (V, E) and a nonnegative integer k.

Question: Is there a vertex set S € V of size exactly k such that G[S] is
highly connected?

Note that the set S should have size exactly k as opposed to size at least k. This is
owed to highly connected graphs not being hereditary. That is, it is not necessarily
the case that each subgraph of a highly connected graph is also highly connected.
Thus, a graph may harbor a k-vertex highly-connected graph, no k+ 1-vertex highly
connected graph but still a k + 2-vertex highly connected graph. With this in mind,
demanding S to contain precisely k vertices yields a problem definition that is eas-
ier to handle.

In addition to the natural application in analyzing complex networks [Har+00;
PWJ04], a weighted variant of HIGHLY CONNECTED SUBGRAPH, in which we have
edge and vertex weights and want to find a large-weight highly connected graph,
also occurs as a subproblem in an algorithm for partitioning graphs into highly
connected components [Hiif+14]. The algorithm is based on an integer linear pro-
gram with the column generation paradigm, in which successively new variables
are introduced that improve the objective function. The weighted variant of HIGHLY
CONNECTED SUBGRAPH is equivalent to finding such a new variable.

Since HIGHLY CONNECTED SUBGRAPH is NP-complete (Theorem 7.1 below), to
better understand its complexity we explore the “parameter ecology” [FJR13; Niel0;
KN12; Har14] of this problem. That is, we determine the parameterized complexity
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status with respect to several distinct parameters, deriving fixed-parameter algo-
rithms or giving lower bounds. From a practical point of view, we aim to find pa-
rameters that offer a favorable tradeoff between good performance guarantees and
small parameter values.

The parameters we examine here are as follows.

e The number n of vertices in G.

e The solution size k.

e The number ¢ := n — k of vertices to delete to obtain the solution. That is, the
dual parameter to the solution size.

* The degeneracy of G, the smallest integer d such that each subgraph of G con-
tains at least one vertex of degree at most d.

e The h-index of G, the largest integer h such that G contains at least h vertices
of degree at least h.

e An upper bound y on the number of edges between the highly connected
graph G[S] and the remaining vertices. We also call y the edge isolation pa-
rameter.

e An upper bound a on the number of edges not contained in the highly con-
nected graph G[S]. We also call a the edge deletion parameter.

There are several relations between these parameters, shown in Figure 7.1. We
expect that the parameters n, n— k, A, and a are not very small in practice. Hence,
to obtain promising algorithms we would need performance guarantees that grow
very weakly with respect to to these parameters. However, even for the “large”
parameters n and n — k, we obtain hardness results, that is, W[2]-hardness with
respect to n — k and that there is no subexponential-time algorithm with respect
to n unless the Exponential Time Hypothesis fails (see Section 1.1.3 for background
on the Exponential Time Hypothesis). In contrast, for parameter a we obtain a
subexponential-time fixed-parameter algorithm which might be feasible to use even
for larger values of @ with further algorithm engineering.

The parameters y, k, h, and d seem to harbor more practical potential: Edge
isolation parameters have been used to reasonable success in the past [II005; I109;
Kom+09]. It is also plausible that the solution size k is rather small in comparison
to the input graph size. The h-index h and degeneracy d are generally small in
biological and social networks, for example [ES12; ELS13] (see also Section 6.1).

Our contribution. We now list our results in more detail, going from the hardest
parameters to the easiest, corresponding roughly to going from small expected pa-
rameter values to large ones. Table 7.1 gives an overview on the results. For the
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Number of vertices n]—\

N\

31 N

Com - [Edge deletion a] [Degeneracy d]

~
~
~
~
~

v N
Dual parameter n — k] Edge isolation y

Figure 7.1.: Hasse diagram of the parameters and their boundedness relation in yes-
instances of HIGHLY CONNECTED SUBGRAPH. A solid arc means that the
target is upper bounded by the source in all yes-instances. A dashed
arc means that the target is upper bounded by the source in all yes-
instances resulting from the polynomial-time preprocessing routines
given in Sections 7.4.1 to 7.4.3.

parameter ¢ := n — k (the number of vertices to delete to obtain a highly connected
subgraph), we obtain a hardness result: HIGHLY CONNECTED SUBGRAPH admits a
trivial n°)-time algorithm, but is W[2]-hard with respect to ¢ (Theorem 7.1). For
the number k of vertices in the solution, fixed-parameter tractability is also unlikely
since we obtain W[1]-hardness even if we additionally consider the degeneracy of G
as a parameter (Theorem 7.2). Considering the number of vertices n, we can clearly
solve the problem in 2" - n°Y time. We show that unless the Exponential Time Hy-
pothesis fails, this cannot be improved to 2°" . n%1 time (Theorem 7.3). If the
parameter is the number y of edges between G[S] and the remaining vertices, then
the problem can be solved in O (4" n?) time (Theorem 7.5). Finally, if we consider the
number « of edges to delete to obtain a highly connected subgraph (plus singleton
vertices), we obtain an 200V@1°8%  O(a? nm)-time algorithm (Theorem 7.8). Thus,
contrary to the parameter n, a subexponential running time can be achieved.

Known results and related work. The algorithm by Hartuv and Shamir [HS00]
partitions a graph heuristically into highly connected components; another algo-
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Param. Result Reference

n-k n"*poly(n) trivial
W/{2]-hard Theorem 7.1

k,d 24. 4400 (mote k<2d +2) Proposition 7.1
W/(1]-hard Theorem 7.2
O((e(A—1)%* - (AKk)?-n) Proposition 7.2

h 0O((6- (h—1)*"- (hk)?- n) Theorem 7.4
(randomized)

n 2" . poly(n) trivial
No 2°" -time algorithm Theorem 7.3

Y 04" n?) Theorem 7.5
3y3-vertex Turing kernel Theorem 7.6
No poly. kernel trivial

a 20Waloga) 4 (a2 nm) Theorem 7.8
4a-vertex kernel Theorem 7.7

Table 7.1.: Summary of our complexity results for HIGHLY CONNECTED SUBGRAPH.
The running time lower bound for 7 is based on the Exponential Time
Hypothesis, and the lower bound on the problem kernel size for y is
based on the assumption that NP & coNP/poly.

rithm tries to explicitly minimize the number of edges outside of these compo-
nents [Hiif+14]. Highly connected graphs can be seen as clique relaxation [Kos05;
BP13; PYB13; Kom16], that is, a graph class that has properties similar to cliques,
without being as restrictive. The definition of highly connected graphs is simi-
lar to 0.5-quasi-complete graphs [MIH99], that is, graphs where every vertex has
degree at least (n —1)/2. These graphs are also referred to as (degree-based) 0.5-
quasi-cliques [LW08]. The difference to highly connected graphs seems minor, how-
ever, 0.5-quasi-complete graphs may have separators of size one whereas highly-
connected graphs may not. Recently, also the problem of finding subgraphs with
high vertex connectivity has been examined from a classical complexity point of
view [Ver+14].
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To the best of our knowledge, Ito, Iwama, and Osumi [IIO05] were the first to
consider a formal notion of isolation in the context of dense subgraph identifica-
tion. Our notion of isolation differs from the previous ones, as we count the total
size of the cut (S,V'\ S), whereas previous definitions count the size of (S,V \ S)
divided by the size of S [II005; 1109] or the minimum of the number of outgoing
edges per vertex [Kom+09]. Clearly, our isolation parameter is larger than both of
the other two. It easily follows from our Theorem 7.3 that HIGHLY CONNECTED SUB-
GRAPH is NP-complete if we require at least one vertex in the solution which has
zero outgoing edges. The parameterization by average number of outgoing edges
per vertex is left as an open question. Blisnetz and Karpov [BK] recently studied the
partitioning into highly connected components and finding highly connected sub-
graphs. Providing a tighter analysis of our previously published algorithm [HKS15],
they independently observed that HIGHLY CONNECTED SUBGRAPH can be solved
in 20(Valoga) . holy(57) where a is the number of edges not in the highly connected
subgraph. We note that, here, we additionally provide a general analysis of the ap-
proach used in the algorithm, which leads us to believe that it cannot yield substan-
tially better running times.

Outline of this chapter. Before giving our results, we describe a special notation
for cuts in Section 7.2 that we use throughout this chapter. In Section 7.3 we give
our hardness results and in Section 7.4 we describe our algorithms. We conclude in
Section 7.5.

7.2. Specific preliminaries

In this chapter, it will be useful to speak of a cut, a set of edges whose removal
disconnects a graph, in terms of a vertex bipartition. Hence, we use the follow-
ing definition which is slightly different from the one in Section 1.1.1. A cutin a
graph G = (V, E) is a vertex bipartition (A, B), thatis, AnB =@ and AuB =V. The
cut edges are the edges with one end in A and the other in B. The size of a cut is the
number of its cut edges.
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7.3. Hardness results

We now give our hardness results with respect to the vertex deletion parameter ¢
(Section 7.3.1), the solution size and degeneracy combined (Section 7.3.2), and the
number of vertices (Section 7.3.3).

7.3.1. Parameter vertex deletion number

For finding large cliques in a graph, one successful approach is to use fixed-param-
eter algorithms for the parameter “number of vertices in the graph that are not in
the clique” [11005; Kom+09]. We show that such fixed-parameter algorithms are
unlikely for HIGHLY CONNECTED SUBGRAPH.

Theorem 7.1. HIGHLY CONNECTED SUBGRAPH is NP-complete and W[2]-hard with
respectto £ :=n—k.

Proof. We present a reduction from HITTING SET which is NP-complete [G]79] and
W/{2]-hard with respect to k [DF99]:

HITTING SET

Input: Ahypergraph 7€ and a nonnegative integer k.

Question: Is there a set H < V(#€) of size at most k such that SN H # @
for each hyperedge S in #€?

Given an instance (#€, k) of HITTING SET, we construct an instance (G = (V, E), k')
of HIGHLY CONNECTED SUBGRAPH as follows. Denote U = V(#), n = |U|, and
&(F0) ={F,,...,F,}, and assume without loss of generality that U = {1,...,n} and k <
n—1). Initially, set V := UU Vi where Vi := {f; | 1 < i < m}, that is, create one ver-
tex for each element and each set of the HITTING SET instance. Next, make each
vertex f; adjacent to all vertices u € U\ F;, that is, to the vertices corresponding
to elements not in F;. This will encode the HITTING SET instance. Now, add three
cliques Vx, Vy, and V, to G, where Vx has size k+1, Vy has size n, and V has size m.
These three cliques will enforce that at least k vertices are deleted, and that some
of the deleted vertices are contained in U. The purpose of the edges between U
and Vg is to make sure that for each f; at least one deleted vertex from U is not a
neighbor of f; (and thus it is contained in F;). To achieve these properties, add the
following edges.

First, add all edges between the vertices in U, Vy, and V,, thatis, make UuVy UV,
a clique. Furthermore, add all possible edges between Vx and Vr and make each

141



Chapter 7. Highly connected subgraphs

vertex in Vx adjacent to exactly n — k + 1 vertices of Vy. When adding these edges,
ensure that every vertex in Vy has at least one neighbor in Vx. Furthermore, add all
edges between Vr and V; and make each vertex f; € Vs adjacent to |F;| — 1 vertices
in Vy.

To complete the construction, set k' := |V|— k. Note that this implies ¢ = k (re-
call that ¢ is the number of vertices that are not in the sought highly connected
subgraph). Before we show the correctness of the reduction, observe the following
about the degrees of the vertices in G:

e Each vertexin Uu Vy UV, has degree at least m+2n—1.
e Each vertex in Vx has degree exactly m+ n+1in G.
e Each vertex in V has degree exactly m+ n+ k in G.

It remains to show that

(7€, k) is a yes-instance of HITTING SET < (G, k') is a yes-instance of HIGHLY
CONNECTED SUBGRAPH.

(=): Let H < U be a size-k hitting set. We show that G — H is highly connected.
Note that |V| -k =2(m+ n) + 1 and thus G — H is highly connected if all its vertices
have degree atleast m+n+ 1. Since k < n, all vertices in U U Vy U V; have degree at
least m+ n+ 1. Furthermore, each vertex in Vx has degree atleast m+n+1in G- H
since there are no edges between U and V. Finally, every vertex f; € Vs has degree
atleast m+n+1: Since H is a hitting set, there is one vertex in H that is not adjacent
to fi. Thus, the degree of f; isatleast m+n+k—(k—1)=m+n+1.

(<): Let H be a vertex set of size k such that G— H is highly connected. First, note
that |Vx| = k+ 1 which implies that there is at least one vertex v € Vx that is not
deleted. Since G — H is highly connected this implies that v has more than [(|V|-
|H|)/2] = m+n+1neighborsin G- H. Since |H| = k, we have N(v)NnH = @, implying
that Vx n H = ¢. This means that all vertices in H are nonadjacent to all vertices
in Vx, and thus H € U U V. We show that Hn U is a hitting set for #¢. Assume that
this is not the case; then there is one vertex in f; € Vi such that all deleted vertices
are adjacent to f; since f; is adjacent to all vertices in (U U V) \ F;. This vertex has
degree m + nin G — H. This contradicts the fact that G — H is highly connected.

Since the above reduction is a parameterized polynomial-time reduction, this
shows that HIGHLY CONNECTED SUBGRAPH is NP-complete and W[2]-hard with re-
spectto /. O

142



7.3. Hardness results

Algorithm 1: Improved XP-algorithm for degeneracy.

Input: A graph G of degeneracy d and a nonnegative integer k.
Output: A k-vertex highly connected graph GI[S] if there is any.

1 while V(G) # ¢ do
v — avertex of minimum degree in G
foreach S; < N(v) do
foreach S, < V(G) \ N[v] such that|S,| < d and|S>| = k—|S;| do
H—G[{r}u S, US;]
L if H is highly connected then return H

(=23 B U M

7| G—G-v

7.3.2. Parameters solution size and degeneracy

A graph has degeneracy d if every subgraph contains at least one vertex that has
degree at most d. In many graphs from real-world applications, the degeneracy of
a graph is very small compared to the input graph size [ELS13]. For yes-instances
of HIGHLY CONNECTED SUBGRAPH, the degeneracy d of the input graph has to sat-
isfy d = | k/2] + 1 (recall that k is the number of vertices in the desired highly con-
nected graph). Therefore, HIGHLY CONNECTED SUBGRAPH is polynomial-time solv-
able if the input graph has constant degeneracy: trying all subgraphs with k <2d -1
vertices decides the problem in 7?4 - n°® time. This can be improved to the follow-
ing running time.

Proposition 7.1. HIGHLY CONNECTED SUBGRAPH can be solved in 2¢ - n?+%) time
where d is the degeneracy of G.

Proof. The algorithm is given in Algorithm 1. It iteratively picks a vertex v of mini-
mum degree (that is, of degree at most d), checks all possibilities for a highly con-
nected graphs G[S] containing v and then removes v from the graph.

To see that the algorithm is correct, it suffices to show that in Line 4 all possibili-
ties for the vertices S, := S\ N[v] of the desired highly connected graph G[S], S2 S;,
are checked: This holds true because S\ N[v] contains at most k/2 < d vertices,
as otherwise v could not have degree at least [k/2] +1 in G[S]. The running time
is 24 . p4+OW, O

Unfortunately, if we regard the degeneracy as a parameter instead of a constant,
we obtain hardness, even if additionally the solution size k is a parameter.
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Theorem 7.2. HIGHLY CONNECTED SUBGRAPH parameterized by the combined pa-
rameter (d, k), where d is the degeneracy of G, is W[1]-hard.

Proof. We reduce from the classic CLIQUE problem, which is W[1]-hard with re-
spect to the solution size k [DF99].

CLIQUE

Input: Anundirected graph G and a nonnegative integer k.

Question: Does G have a k-vertex complete subgraph (a clique) as a
subgraph?

Given an instance (G, k) of CLIQUE, produce an instance (G, k') of HIGHLY CON-
NECTED SUBGRAPH as follows. First, subdivide each edge e = {u, w} in G, that is, re-
move e, insert a new edge vertex v° and make v°® adjacent to both u and w. Call the
set of edge vertices V. Next, add a clique with vertex set X = {xi,..., x,} where ¢ =
(5) +3k. Then, choose (}) + 2k — 1 arbitrary vertices in X, denote this set by X; and
make each v° adjacent to each vertex in Xj. Furthermore, let X, := X\ X; and make
each v € V adjacent to the k+1 vertices in X, and to (]2“) +1 further arbitrary vertices
of Xi, finishing the construction of G'. Note that each v € V is adjacent to (’;) +k+2
vertices in X. The construction of the instance is completed by setting the size of
the desired highly connected subgraph to k' :=2- () + 4k.

Note that the graph G’ is (’2‘) + 3k-degenerate, which can be seen by the following

order of vertex removals: First, remove the vertices from V; these have degree (’;) +
2k +1 in the graph. Then, remove the vertices from V, these have degree (}) + k +2
in G' - V. Finally, the remaining set X has size (§) + 3k, thus each vertexin G- (VzU
V) has degree (’;) +3k — 1. The overall degeneracy of G’ follows.

We now show the equivalence of the constructed instances, that is,

(G, k) is a yes-instance of CLIQUE < (G, k') is a yes-instance of HIGHLY
CONNECTED SUBGRAPH.

(=): Let K< V be a clique of order k in G. Then, the set K’ := Ku{v¢|e<c K}uX
induces a highly connected subgraph of order k' in G, which can be seen as follows.
First, K’ has size k + (§) + (§) + 3k = k'. Second, each vertex in G'[K'] has degree at
least k'/2+1 = (§)+2k+1: The vertices in X have atleast | X|-1 = (§)+3k-1> k'/2+1
neighbors in G'[K'] since X is a clique. The vertices in K have exactly (’;) +k+2
neighbors in X plus k — 1 neighbors in K’ \ (K u X) since they are adjacent to the
k — 1 vertices corresponding to the edges incident with them in G[K]. Finally, each
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remaining vertex corresponds to an edge in G[K] and thus it has two neighbors in K.
Since it has (}) + 2k — 1 neighbors in X it has exactly k'/2 + 1 neighbors in G'[K'].

(«<): Let K’ be a vertex set of size k' such that G'[K’] is highly connected and
let y; = |VnK'| and y, = |VznK'|. Note that by the size of X, K’ contains at least (IZC) +
k vertices from V' \ X = VU Vg, thatis, y; + y» = (’zc) + k. Furthermore, note that if
it contains a vertex v from Vg, then it contains all neighbors of v¢ in G/, since v°
has degree exactly k'/2 + 1 in G'. Note that by the above K* = K' n (Vz U V) directly
corresponds to a subgraph of G: each vertex in Vg corresponds to an edge in G and
both endpoints of this edge are in K'. Furthermore, since each vertex in K’ n 'V has
at least k — 1 neighbors in K’ \ X, the corresponding graph has degree at least k — 1.
Finally, since K* corresponds to a graph, we have y, < (%}). Since y; +y» = (}) + k this
implies y; = k. In the remainder of the proof we show y; = k which directly implies
that K'n V is a clique in G since then K* corresponds to a graph with k vertices and
minimum degree k — 1.

Assume towards a contradiction y; = k+ 1. We prove that we may also assume
that X < K. If this is not the case, then any vertex from X \ K’ belongs to X,: we
have that K' 0 V;; # @, because otherwise each v € V would have at most (}) + 3k
neighbors in K, and all vertices of X; are in K’ because all neighbors of K’ n Vg are
in K'. Hence, there is a vertex x € X, \ K’. By construction, this vertex is a neighbor
of all vertices in K’ n X and of all vertices in K' n V. We can thus pick an arbitrary
vertex v¢ € K’ n Vg, remove v° from K’ and add x to K'. In the graph that is induced
by the modified K’, the degree of every vertex except x has increased or remains
the same: the removed vertex v¢ has only neighbors in X and in V and x is in G’
adjacent to all vertices in X and to all vertices in V. Furthermore, x has also degree
at least k'/2 + 1 since it is adjacent to the (]ZC) + 2k — 1 vertices in X; and to the at
least y; = k+ 1 vertices in VN K'.

Note that this replacement can be performed without decreasing the minimum
degree in G'[K’] below k'/2 + 1 until X < K'. Hence, if y; = k+ 1, then we can also
assume that X € K’. But then y, < (’;) This implies that there is at least one ver-
tex v € K'nV that has less than k—1 neighbors in K'n Vg. Since v has only (’;) +k+2
neighbors in X, it has less than k'/2 + 1 neighbors in G'[K’]. This contradicts the
assumption that G'[K"] is highly connected.

Hence, if G'[K"] is highly connected, then y; = k. By the discussion above, K* cor-
responds to a subgraph of G with k vertices and (’ZC) edges, that is, a clique of or-
der k. O
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7.3.3. Parameter number of vertices

A trivial algorithm for HIGHLY CONNECTED SUBGRAPH is to enumerate all vertex
subsets of size k and to check for each subset whether it induces a highly connected
graph. This algorithm has running time O(2" - m). We now show by a reduction
from CLIQUE that a running time improvement to 2°"” - poly(n) is unlikely. The
idea of the reduction is to make the solution size k large, and to add to the CLIQUE
instance some new graph that is so large that, in the resulting instance of HIGHLY
CONNECTED SUBGRAPH, every highly connected graph of size k must contain this
new graph. The remaining vertices must form a clique in order to have sufficiently
high degree. The following combinatorial lemmas are used in our construction.

Lemma 7.1. For any ¢ € N, the edges of the complete graph K, can be partitioned
into2/ -1 perfect matchings. Moreover, there is such a partition that includes two
perfect matchings that together contain a spanning tree of K¢, and such a partition
can be computed in polynomial time in 2.

Proof. The proof is by induction on ¢. Clearly, the single edge of K;1 can be par-
titioned into a perfect matching in polynomial time. Now assume that ¢ > 1 and
that the statement holds for all ¢’ < ¢. Partition the edges of K, into three sets
in the following manner. Two sets A, B of the partition are induced by two vertex-
disjoint subgraphs K, Kz of K,, each isomorphic to K,,-1. The third set C con-
tains the edges with exactly one vertex from both of the subgraphs. By induction,
we can compute edge-partitions into perfect matchings of K,, Kp; call the parti-
tions 2 4,%p. Now join 24,72 into a partition 24,3 of AU B by iteratively taking
the union of an arbitrary part from %24 and an arbitrary part from %5 and delet-
ing the parts from 24 and % respectively. Note that the obtained partition 2 4,5
of AU B contains 2°~! — 1 parts. Next, compute a partition %¢ of C as follows. De-
note

V(Ka) =: {vog,..., Vye-1_;}, and
V(Kp) =: {ug,..., Uyr-1_4}.

Then,

E; = {{vi,uis;}1i€40,...,27 = 1}}, and
Pe = {Ej|j€0,....2 =1},

where indices are taken modulo 2¢~!. Clearly, ¢ can be computed in polynomial
time. Note that % is a partition of C into perfect matchings, and |?¢| = 2¢-1 Fi-
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nally, take the union % 4,5 U%¢. Note that this is a partition of E(K,,) into perfect
matchings and |24 5 U%P¢| =2¢ 1.

For the running time, let 2¢“~) be an upper bound on the time needed to com-
pute the edge partitions %4 and %5, and let 2¢ =D pe an upper bound on the time
needed to compute Pc Uy 5 from %, and Py where ¢, ¢’ = 2 are universal con-
stants. Then an overall time upper bound for the above procedure is

20~([—1)+1+20’~(l—1) — 20~[—c+1+20’~1—c’ < 2max{c,c’}~€+2—min{c,c’} < Zmax{c,c’}l,

which is polynomial in 2°.

Let us now slightly modify the step of computing E; in order to obtain two match-
ings that span K,,. Fix an arbitrary matching M € % 5. Rename the vertices in P4
and Pg in such a way that

M = {{VO) Ul}y {VZ) V3}7- . -»{V22f*1_2y U22[71_1};
{uy, up}, {us, U4},---,{u221—1_1, Up}t.

Then MUE, induces a connected graph containing all vertices of K,¢. The renaming
of the vertices can be performed in linear time, thus the running time increases only
by a constant factor. O

Lemma 7.2. For any integer ¢ € N, ¢ = 3, there are two edge-disjoint Hamiltonian
cycles in K,,, computable in polynomial time.

Proof. Using a result of Bondy and Chvétal [BC76], we describe a polynomial-time
algorithm that computes the two cycles. First, fix an arbitrary permutation of the
vertex set which directly defines a Hamiltonian cycle. Remove this cycle from the
graph. The resulting degree of each vertex is 2¢ —1 —2. We now use the following re-
sult of Bondy and Chvatal [BC76]: If the closure of a graph is a complete graph, then
this graph has a Hamiltonian cycle which can be computed in polynomial time.
Herein, the closure of a graph of order n is defined as the graph obtained as follows.
Add to G all edges {u, v} for which we have deg(u) + deg(v) = n, do the same for the
resulting graph, and iterate as long as at least one edge is added. Since the sum of
two vertex degrees in our graph is at least 2(2¢ — 3) = 2/, the closure of the resulting
graph is K,, again. Thus, in polynomial time we can compute another Hamiltonian
cycle in the remaining graph which is edge-disjoint from the first cycle. O

With the above two lemmas at hand, we can show that we can build a graph
whose construction will actually be the main part of our reduction. The follow-
ing lemma shows that we can efficiently construct the graph which we need to add
to the CLIQUE instance.
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Lemma 7.3. Let a, b € N be two nonnegative integers such that a is even, b—3 = 8,
b-3is a power of two, and a—2 = 2b. There is a graph G = (XU W, E) on the disjoint
vertex sets X and W, such that
(i) G[X]is connected,

(i) | X|=a-2,|W|=a-b+1,

(iii) Ng(X)\X =W,

(iv) eachvertexin X has degree a, and each vertex in W has degree a — b.
Moreover, G can be constructed in time polynomial in a.

Proof. Begin with G = (X U W, E) where X U W is an independent set and where X
and W have the prescribed sizes. Next, let X;, X, < X be arbitrary such that | X;| =
| X5l =a—b+1and | X; N X;| is of minimum size. Thatis, | X; N Xo| = a—2b+4, and
X3\ X, =X, \ X | = b—3 (note that a — 2 = 2b, hence, | X; N X,| = 6). We add a set
of matchings to G that saturate W in order to bring up the degree of the vertices
in W to a— b. We first add a perfect matching to G[W] (note that a— b+ 1 is even,
because a is even and b -3 is a power of two). Then we add a— b — 1 matchings that
saturate W to G[W U X]; these matchings are divided evenly into matchings satu-
rating X; and matchings saturating X,. More formally, denote W =: {wy, ..., w,_p},
and X =: {xo,...,Xx,_3} such that X; = {x,...,X,_p}, and Xo = {x,_3,...,X,_3}. Let
i€f{0,...,a—b—-2}. We define
M, = {{{wj,x(j+,-) mod (a-b} | j €10,...,a—Db}}, if i is even, and
C | Hwj, Xpose(jeien mod (a-bp} | j €10,...,a= b}, otherwise.

Thatis, if i is even, then M; is a perfect matching in G[Wu X;] and, otherwise M; is a
perfect matching in G[W U X;]. Note that there is an even number of matchings M;.
Furthermore, M;, M, i # i’, are disjoint: this s clear if both i and i’ are even, or both
are odd. If i is odd and i’ is even, then w; is matched to some vy with k = j mod 2
in M; whereas M; matches w; to some v with k # j mod 2, because both b -3
and i + 1 are even, and a — b is odd. Hence, we may add all M;, i € {0,...,a—b—2},
to G. Now each vertex in W has degree a — b, as required, and it remains to mend
the degrees of vertices in X. Note that each vertex in X; N X, has degree a—b—1,
and each vertex in X \ (Xj N X,) has degree (a—b—1)/2. We divide X; N X; into two
equal-sized parts A, B; note that this is possible, because | X; N X,| = a—2b+4 is
even and a—2b+4 = 6 since a —2 = 2b. We make each vertex in A adjacent to each
vertex in X \ X5, and each vertex in B adjacent to each vertex in X, \ X;. Now each
vertex in Xj N X, has degree a—b—1+ b—3 = a—4. Using Lemma 7.2 we add four
perfect matchings to G[X; N X,] (recall that | X; N X,| = 6).
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It remains to lift the degree of the vertices in X \ (X; n X3) which currently have
degree (a—b+1)/2+(a—2b+4)/2 = a—3b/2+5/2. Note that 2(b—3) is a power of two.
Now we use Lemma 7.1 to add 3b/2 —5/2 < 2(b—3) — 1 perfect matchings to G[X \
(X7 N X5)], including two perfect matchings that make G[X \ (X; N X,)] connected.
Note that, indeed, 3b/2 -5/2 < 2(b—-3) — 1, because b — 3 = 8. Hence, the degree of
each vertexin X \ (X; N X,) is now a. Note also that G[X] is connected. O

We say that the graph G described in the above Lemma 7.3 is an (a, b) -equalizer
and the vertices in W are its ports.

Lemma 7.4. There is a many-one reduction from CLIQUE to HIGHLY CONNECTED
SUBGRAPH that runs in polynomial time. Furthermore, the number of vertices in
the HIGHLY CONNECTED SUBGRAPH instance is linear in the number of vertices in
the CLIQUE instance.

Proof. Let (G, p) represent an instance of CLIQUE and denote |V (G)| = n. Without
loss of generality, assume that p —3 = 8 and p — 3 is a power of two. Otherwise,
repeatedly add a universal vertex and increase p by one until p—3=8and p—-3isa
power of two. Note that this at most doubles p. Furthermore, assume that n—1 = p;
otherwise, solve the instance in polynomial time.

We construct the instance (G, k) of HIGHLY CONNECTED SUBGRAPH where k =
4n—1. Note that the minimum degree in a highly connected graph with k ver-
tices is 2n. Graph G’ is constructed as follows. First, copy G into G'. Then add
a vertex-disjoint (27, p)-equalizer. By Lemma 7.3, a (2n, p)-equalizer exists and is
computable in polynomial time, because, by choice of (G, p), 2nis even, p—3 =8 is
a power of two, and 2n — 2 = 2p. Denote the ports of the equalizer by W and its re-
maining vertices by X. Add an edge between each port and each vertex in V(G);
this finishes the construction. The graph G’ has less than 5n vertices since the
(2n, p)-equalizer has less than 4n vertices. It remains to show the equivalence of
the instances, that is,

(G, p) is ayes-instance < (G', k =4n—1) is a yes-instance.

(=): Let G[S] be a clique of order p in G. Then, G'[Su X U W] is highly connected:
Each vertex in S is adjacent to p — 1 vertices in S and to 2n — p + 1 vertices in W.
Hence, each vertex in S has 27 neighbors in SU X U W, as required. Each port has
2n— p neighbors in X U W and p neighbors in S. Finally, each vertex in X has 2n
neighborsin XU W.

(<): Let G'[S] be a highly connected graph of order k in G'. There are at most n
vertices in V(G) N S, thus there is at least one vertex in SN X. Since G'[X] is con-
nected and each vertex in X has degree exactly 2n (the minimum degree in G'[S]),
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we have X ¢ S. Furthermore, since {v | XN N(v) # ¢} \ X = W, also W < S, leaving
4n—1-|X|-|W| = pverticesin SNV (G). Since Ng' (V(G)\V(G) = W and |W| =2n—
p+1, each vertexin SNV (G) has atleast p—1 neighborsin SNV (G). Thus G[SNV (G)]
is a clique. O

Lemma 7.4 directly connects the running time of algorithms for HIGHLY CON-
NECTED SUBGRAPH with respect to the number n of vertices with the Exponential
Time Hypothesis (see Section 1.1.3). That is, any 2°"” - n°_time algorithm would,
via Lemma 7.4, imply also such an algorithm for CLIQUE, which would contradict
the Exponential Time Hypothesis. Hence, we have the following.

Theorem 7.3. HIGHLY CONNECTED SUBGRAPH does not admit a 2° - n®W_time
algorithm unless the Exponential Time Hypothesis fails.

7.4. Algorithms

We now give our fixed-parameter algorithms and data reduction rules pertaining to
the maximum degree, h-index (Section 7.4.1), number of edges outgoing from the
solution (Section 7.4.2), and number of edges not in the solution (Section 7.4.3).

7.4.1. Parameters maximum degree and hk-index

It is easy to see that HIGHLY CONNECTED SUBGRAPH is fixed-parameter tractable
with respect to the maximum degree A in the input graph: Since highly connected
graphs have diameter two [HS00, Theorem 1], the solution must be contained in the
closed two-neighborhood N> [v] of some vertex v, that is, in the set of vertices which
have distance at most two to v. Furthermore, the solution size k fulfills k < 2A by
the definition of highly connectedness. Thus, simply enumerating all closed two-
neighborhoods, enumerating all size k < 2A subsets of them, and testing whether
one of these subsets induces a highly connected graph gives a A** - poly(n)-time
algorithm.

We obtain a slightly faster algorithm if we formulate HIGHLY CONNECTED SUB-
GRAPH as a FIXED-CARDINALITY OPTIMIZATION problem and employ Theorem 6.3
which harbors an algorithm for maximizing objective functions over k-vertex con-
nected subgraphs. To do this, we define the objective function ¢(S) to be the min-
imum degree in G[S], which can be evaluated in O(Ak)-time for any S < V(G) of
size k. Hence, Theorem 6.3 implies the following, where we use the fact that k < 2A.
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Proposition 7.2. HIGHLY CONNECTED SUBGRAPH can be solved in O((e(A — 1))?* -
AK? - n)-time, where A is the maximum degree in G.

In a similar fashion, we can apply Theorem 6.4 to HIGHLY CONNECTED SUBGRAPH
parameterized by the h-index of the input graph G. Recall that the h-index of G is
the largest integer & such that there are at least & vertices of degree h.

Theorem 7.4. HIGHLY CONNECTED SUBGRAPH admits a randomized algorithm that
runs in O((6- (h—1))?" - (hk)? - n) time and reports a yes-instance as a no-instance
with probability at most 1/e. Herein, £ is the h-index of the input graph.

Proof. Let G denote the input graph. Clearly, the h-index of G can be computed
in polynomial time. Moreover, along with the h-index we can compute a parti-
tion of V(G) into H and W such that |H| < h and each vertex in G[W] has degree
at most h. We guess the intersection Sy of the vertex set S of the desired highly
connected graph with the set H by trying all possibilities. Then we aim to find the
intersection Sy, of S with W via Theorem 6.4. (Note that G[Sy/] might not be con-
nected.) To do this, we label each vertex v in G[W] by its number ¢, of neighbors
in Sy. We define the objective function ¢(T) := min,cr degg () + £,. Clearly, if
there is a highly connected graph G[S] with SN H = Sy, then we may assume that
SN W = Sy where Sy maximizes ¢(Sy). It is not hard to check that ¢ is compo-
nent +-linear (see Definition 6.3). Thus, it follows from Theorem 6.4 that there is a
0((4.2-(h—1)* 1. (hk)?- n)-time algorithm to find Sy, € W with Sy | = k' = k—|Sy|
that maximizes ¢(Sw). Finally, we check whether G[Sy U Sy is highly connected
and output Sy U Sy, if that holds true.

Clearly, if there is a highly connected graph in G, then the above algorithm finds
one. The running time is 02" (4.2 - (h — 1))?" - (hk)? - n) since k' < 2A < 2h. Since
V/2-4.2 < 6, this implies the claimed running time bound. O

7.4.2. Parameter edge isolation number

In this section, we present a single-exponential fixed-parameter algorithm and data
reduction rules for the number y of edges between the desired highly connected
subgraph G[S] and the remaining graph. In this case, S is called “y-isolated”. More
formally, let G = (V, E) be a graph. We call aset S < V y-isolated in G if (S,V\S) isa
cut of size at most y. We omit the clause “in G” if the graph is clear from the context.
This definition of isolation leads to the following problem formulation.
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ISOLATED HIGHLY CONNECTED SUBGRAPH
Input: Anundirected graph G = (V, E) and nonnegative integers k and y.

Question: Isthere a k-vertex y-isolated highly connected subgraph con-
tained in G?

The notion of isolation is not only motivated from an algorithmic point of view but
also from the application. Ideally, communities in a network have fewer connec-
tions to the rest of the network [PYB13]. Thus, putting an additional constraint on
the number of outgoing edges may yield better communities than merely demand-
ing high edge connectivity.

In the following, it will be useful to consider an augmented version of ISOLATED
HiGHLY CONNECTED SUBGRAPH: we place integer labels on the vertices which im-
ply that these vertices are harder to isolate. We thus additionally equip each in-
stance of ISOLATED HIGHLY CONNECTED SUBGRAPH with a labeling f: V — N and
we call V' € V y-isolated under f if there are at most y—)_ v+ f(v) edges between V'
and V' \ V' in G. Without loss of generality, assume k = 2 in the following.

The algorithm first performs three data reduction rules. The first simple rule re-
moves connected components that are too small.

Rule 7.1. Remove all connected components with less than k vertices from G.

The next rule finds connected components that are either trivial solutions or cannot
contain any solution since proper subgraphs violate the isolation condition.

Rule 7.2. If there is a connected component C = (V', E’) of G that has minimum cut
size at least y + 1, then accept if C is highly connected, |V'| = k, and V' is y-isolated
under f. Otherwise (if C’s minimum cut has size at least y + 1 but C is not highly
connected, |V'| # k, or V' is not y-isolated under f), remove C from G.

Correctness proof for Rule 7.2. The rule is clearly correct if it accepts. If the rule re-
moves C, then C has a minimum cut of size at least y + 1. Thus, for every induced
subgraph C[S] of C that does not contain all of its vertices, set S is not y-isolated.
Hence, no subgraph of C is a solution and we can safely remove C. O

Rule 7.3. If G has a connected component C with a minimum cut (A, B) of size at
most k/2, then do the following. For each v € Aredefine f(v) := f(v)+|N(v)nB| and
for each v € B redefine f(v) := f(v) +|N(v) n Al. Then, delete all edges between A
and B.
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Correctness proof for Rule 7.3. Any k-vertex subgraph of C with nonempty intersec-
tion with both sides of (4, B) is not highly connected as it has a minimum cut of size
atmost k/2. Hence, any highly connected induced subgraph C[S] of C is either con-
tained in C[A] or in C[B]. If S is y-isolated under f in G, then it is also y-isolated
under the modified f in the modified graph (and vice-versa) by the way we have
redefined f. O

Exhaustive application of these rules yields the following relation between the
values y and k/2.

Lemma 7.5. If Rules 7.1 to 7.3 are not applicable, then y > k/2.

Proof. Assume the contrary. Each connected component has a minimum cut cut-
ting at least one edge because Rule 7.1 is not applicable and k = 2. Further, each
connected component has a cut of size at most y because Rule 7.2 is not applicable.
By assumption, y < k/2 and hence, each connected component has a cut of size at
most k/2 which contradicts the inapplicability of Rule 7.3. O

As shown by the following lemma, the reduction rules can be applied efficiently.
Lemma 7.6. Rules 7.1 to 7.3 can be exhaustively applied in O((kn +y)nm) time.

Proof. We first apply Rule 7.3 exhaustively. To this end, we determine for each con-
nected component of G whether it contains a minimum cut of size at most k/2 by
fixing an arbitrary vertex v and for each vertex v running k/2+1 rounds of the Ford-
Fulkerson algorithm to find a flow from v to u, where every edge has unit capacity.
If at some round the flow does not increase, then we find a corresponding cut by
considering the strongly connected components in the residual graph and we ap-
ply Rule 7.3. We repeat the procedure if it was applicable.

Finding the connected components in the residual graph, and a round of the
Ford-Fulkerson algorithm can both be implemented to run in O(n + m) time (recall
that we use unit capacities). Hence, if Cy, ..., C, are the connected components of G,
then one iteration of Rule 7.3 takes Zle O(kIC;|(IC;] + |E(GIC;DD) = O(knm) time.
The overall number of iterations of applying Rule 7.3 is at most 7 since the num-
ber of connected components increases by one in each iteration, thus the overall
running time for exhaustively applying Rule 7.3 is O(kn?m).

Then we apply Rule 7.2 by computing for each connected component C whether
its minimum cuts have size at least y. If this is true, then we check whether C is
highly connected and compute the sum of the f-values of each vertex to decide
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whether the vertex set of C is y-isolated. By the same arguments as above, the com-
putation of the minimum cut size can be performed in O(ynm) time overall. The
summation of the f-values can be performed in O(n + m) time overall and for all
connected components we can decide in O(n + m) time whether they are highly
connected. Hence, Rule 7.2 can be exhaustively applied in O(ynm) time.

Finally, we check whether Rule 7.1 is applicable which can be easily performed
in O(n + m) time. Altogether, we arrive at the claimed running time bound. O

Using the above, we can now present the promised fixed-parameter algorithm.

Theorem 7.5. There is an O(4" n*+(kn+y)nm)-time algorithm for ISOLATED HIGHLY
CONNECTED SUBGRAPH.

Proof. We first reduce the instance with respect to Rules 7.1 to 7.3. By Lemma 7.6
this can be done in O((kn +y)nm) time. Next, we guess one vertex v that is in the
solution S (by branching into n cases according to the n vertices). We start with
§':={v}and try to extend S’ to a solution. More precisely, we choose a vertex v’ from
the neighborhood of §' (that is, from U,cs¢ N(1)\S'), and branch into two cases: add
v' to §', or exclude v/, that is, delete v' and increase f(u) by one for all u € N(v'). In
the first case, we increase |S'| by one. In the second case, we increase Y. s f (1)
by at least one. Branching is performed until |S'| = k, or )¢ f(u) exceeds v,
or the neighborhood of S’ is empty. When |S'| reaches k, we check whether S’ is
highly connected and y-isolated under f. If this is the case, we have found a so-
lution. Otherwise, when }_,.¢ f(u) exceeds y or no branching is possible because
the neighborhood of §’ is empty, then we abort the branch; in this case, clearly no
superset of S’ can be a solution. The height of the search tree is upper bounded by
k+v, and each branch can be executed in O(n) time, yielding a running time bound
of O(n- 257 . ).

We now distinguish two cases: k <y and k > y. In the first case 287 < 47, as
required. If k >y, then there is at least one vertex in S that has no neighbors outside
of S. Thus, instead of S’ = {v}, we can start with S’ := {v} U N(v). Since v has more
than k/2 neighbors in S, we have |S'| > k/2 + 1, and thus there are less than k/2
branches of adding a vertex. By Lemma 7.5, 2K/2*7 < 47, O

Data reduction analysis

We now present a way of analyzing the presented data reduction rules by giving a
Turing kernelization for ISOLATED HIGHLY CONNECTED SUBGRAPH parameterized
by y. Informally, a Turing kernelization is a reduction of the input instance of a
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parameterized problem to many instances of the same problem which are small
measured in the parameter. Then the solution to the original input instance can be
computed by solving the small problem instances separately. For a formal defini-
tion see Section 1.1.3.

To motivate the Turing kernelization result we first observe that ISOLATED HIGHLY
CONNECTED SUBGRAPH does not admit a polynomial problem kernel. We can see
this via a trivial or-cross-composition: The disjoint union of a set of graphs has an
isolated highly connected subgraph if and only if at least one of the graphs has one.
Hence, ISOLATED HIGHLY CONNECTED SUBGRAPH has an or-cross-composition, im-
plying the following (see Section 1.1.3).

Proposition 7.3. ISOLATED HIGHLY CONNECTED SUBGRAPH does not admit a poly-
nomial-size problem kernel with respect to y unless NP < coNP/poly.

We now describe the Turing kernelization algorithm in detail. It consists of

1. applying Rules 7.2 and 7.3 exhaustively (wherefore we need the mapping f (v)
indicating that v is harder to isolate as above),

2. removing vertices of high degree,
3. carving out small subgraphs that contain a solution, if any, and
4. removing the labeling f(v).

The final step is only used for the analysis (as we have to produce instances of ISO-
LATED HIGHLY CONNECTED SUBGRAPH again); in practice, since the labeling f(v) is
not hard to deal with, one would only carry out the first three steps.

Step 1. Given an instance of ISOLATED HIGHLY CONNECTED SUBGRAPH, we first
reduce to the augmented version of ISOLATED HIGHLY CONNECTED SUBGRAPH in
which we introduce the vertex labeling f. Then we apply Rules 7.2 and 7.3 exhaus-
tively.

Step 2. Apply the following reduction rule which removes high-degree vertices.

Rule 7.4. Let (G, k,y) be an instance of ISOLATED HIGHLY CONNECTED SUBGRAPH
that is reduced with respect to Rules 7.2 and 7.3. If G contains a vertex v of degree at
least 3y — f(v), then remove v from G, and for each u € N(v) increase f(u) by one.
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Correctness proof for Rule 7.4. Since G is reduced with respect to Rules 7.2 and 7.3,
we have y > k/2 (due to Lemma 7.5). Thus, v has less than 2y neighbors in any
solution G[S]. This implies that v has more than y — f(u) neighbors in V'\ S. Conse-
quently, if v € S, then S is not y-isolated under f. Hence, v is not contained in any
solution. O

Clearly, Rule 7.4 can be carried out in linear time.

Step 3. Given an instance (G, k,y) of ISOLATED HIGHLY CONNECTED SUBGRAPH
with mapping f, we now construct at most n instances of ISOLATED HIGHLY CON-
NECTED SUBGRAPH (with different mappings) that have O(y®) vertices each. The
original instance is a yes-instance if and only if one of these instances is a yes-
instance. The idea is to exploit the fact that highly connected graphs have diam-
eter two [HS00, Theorem 1]. Thus, to find highly connected graphs, it is sufficient
to explore the two-neighborhood of each vertex. More precisely, the instances are
constructed as follows.

For each vertex v € V, construct the instance (G,, k,y) with mapping f,. Graph
G, := G[N[v]] where N,[v] is the set of all vertices that have distance at most two
from v (including v). To retain the information about isolation for subgraphs of
G[N,[v]], for each vertex u € N>[v], we define g(u) = |N(u) \ N[v]|. Using this, for
each vertex u € N,[v] we define mapping f, (1) = fln, (v (1) + g(u) where f|p, ) (1)
is f restricted to N, [v]. It is not hard to prove the following.

Lemma 7.7. Let S < V(G). Vertex set S induces a k-vertex highly connected graph
in G and S is y-isolated in G under f if and only if there is a vertex v € V(G) such
that S induces a k-vertex highly connected graph in G, and S is y-isolated in G,
under f,.

Step 4. Finally, we remove the mapping f, from each instance (G,, k,y) by adding
degree-one neighbors, obtaining an instance (G,, k,y). Herein, to obtain graph G,
from G, for every u of G, add f, (1) new vertices and make them adjacent to u. In
this way, we obtain at most n instances (G,, k,y) of ISOLATED HIGHLY CONNECTED
SUBGRAPH. Since k > 1 without loss of generality, and because degree-one vertices
can never be in a k-vertex highly connected graph, we have the following.

Lemma 7.8. Let v € V(G) and S < V(G,). Vertex set S induces a k-vertex highly
connected graph in G, and S is y-isolated in G/, under f if and only if S induces a
k-vertex highly connected graph in G, and S is y-isolated in G,,.
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Using the correctness of Rules 7.2 to 7.4 together with Lemmas 7.7 and 7.8, we
obtain the following.

Corollary 7.1. Let g be an instance of ISOLATED HIGHLY CONNECTED SUBGRAPH.
Instance g is yes if and only if one of the instances is yes that result from applying
Steps1to4toq.

Thus, to obtain a Turing kernelization, it remains to show that we can query our
size-bounded oracle for each of resulting instances (G,, k,y), that is, that each G,
has bounded size.

Lemma 7.9. Let (G,, k,y) be an instance resulting from applying Steps 1 to 4 to an
instance of ISOLATED HIGHLY CONNECTED SUBGRAPH. Then G, has less than (3y)3
vertices and less than 3y* edges.

Proof. Let f be the mapping and G be the graph after Step 2. Since G is reduced
with respect to Rule 7.4. The maximum degree in G is at most 3y — 1 — f(u) which
implies |[N,[v]| < 14+3y -1+ 3y - 1)2. This is also the number of vertices in the
graph G/, of the instance (G, k,y) constructed in Step 3. For each vertex in N»[v]
we then add further degree-one neighbors in Step 4, but the difference between
the degree of u in G/, and G, is exactly f(u). Thus, each vertex in G, has degree at
most 3y—1. Consequently, graph G, has at most (1+3y-1+3y—1)?)-(3y—-1) < (3y)®
vertices. Moreover, as each vertex in G, has degree at most 3y —1, graph G, has also
less than (3y)* edges. O

Combining Corollary 7.1 and Lemma 7.9 leads to the following.

Theorem 7.6. ISOLATED HIGHLY CONNECTED SUBGRAPH admits a Turing kernel-
ization of size O(y*) which has less than (3y)® vertices. The running time is O((kn +
Y)nm).

Proof. It only remains to prove the running time bound. Step 1 takes O((kn+y)nm)
time which follows from Lemma 7.6. Clearly, Rule 7.4 can be carried out in O(n +
m) time, which is the only computation needed for Step 2. For each vertex v, the
subgraph G, from Step 3 can be computed in linear time via a modified breadth-
first search routine to determine N,[v], and then one pass over all edges of G to
insert the required edges into G/,. As every vertex v € G, has f(v) neighbors in the
input graph, also adding the degree-one neighbors to G, in Step 4 can be carried
out in linear time. Thus, Steps 2 to 4 need O(n(n + m)) time which is dominated by
Step 1. O
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7.4.3. Parameter edge deletion number

We now show that there is a subexponential-time fixed-parameter algorithm for
HIGHLY CONNECTED SUBGRAPH with respect to «, the number of edges we are
allowed to delete in order to obtain a highly connected graph of order k. Subse-
quently, we give a slight modification of the algorithm and a more precise analysis
which in combination yield an improved running time. The algorithm is a search
tree algorithm which branches on whether or not a given vertex is part of the highly
connected graph. Repeated application of two reduction rules (similar to Rules 7.2
and 7.3 above) ensures that the branches are effective in reducing the remaining
search space. To give a precise presentation of the branching step and the reduc-
tion rules, we define the problem with an additional seed S, a set of vertices which
have to be in the highly connected graph.

SEEDED HIGHLY CONNECTED EDGE DELETION

Input: Anundirected graph G = (V, E), avertex set S < V, and nonneg-
ative integers k and a.

Question: Is there a set E' < E of at most a edges such that G — E’ con-
sists only of degree-zero vertices and a (k + |S|)-vertex highly con-
nected subgraph containing S?

For S = @ we obtain the plain edge deletion problem. The reduction rules are as
follows.

Rule 7.5. Ifthere is a connected component C = (V', E’) of G that has minimum cut
size at least a + 1, then accept if C is highly connected, S < V', |V'\ §| = k, and the
remaining connected components of G contain at most a edges. Otherwise reject.

Correctness proof for Rule 7.5. The rule is clearly correct if it accepts. If it rejects,
then the instance is a no-instance: If there is a highly connected graph in G[V'\
V'], then the a + 1 or more edges of C are not in this graph. Thus, any solution
is contained in C. Hence, if the number of edges in the remaining components is
more than a or if S\ V' # @, then the instance is a no-instance. Otherwise, either C
is not highly connected or |V'\ S| # k. In both cases a highly connected graph of
order |S| + k that is contained in C has less than |V’| vertices and thus it needs to
be cut from the rest of C. This needs at least a + 1 edges. Consequently, there is no
solution and the instance is a no-instance. O

Rule 7.6. If there is a connected component of G that has a minimum cut of size at
most (k+[S|)/2, then delete all cut edges and reduce « by their number.
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Correctness proof for Rule 7.6. Every subgraph G’ of G with non-empty intersection
with both “sides” of the minimum cut has a cut of size (k +|S|)/2. Thus, if G’ has
order (k+1S]), then it is not highly connected. Hence, for each deleted edge at least
one of its endpoints is not in any solution. O

Similarly to the edge isolation parameter, after using the reduction rules k, |S],
and «a are related as follows.

Lemma 7.10. If Rules 7.5 and 7.6 are not applicable, then a > (k +|S|)/2.

Proof. Assume Rules 7.5 and 7.6 are not applicable but a < (k +1S)/2. Without loss
of generality we may assume that there are no connected components consisting of
singleton vertices. Otherwise, simply remove them. Hence, each connected com-
ponent has a minimum cut cutting at least one edge. Further, there is a connected
component with minimum cut of size at most a because Rule 7.5 is not applica-
ble. By assumption a < (k+[S|)/2 and, hence, there is a connected component with
a minimum cut of size at most (k + |S|)/2 which contradicts the inapplicability of
Rule 7.6. O

The running time of the rules can be upper bounded in a similar way as it was
done in Section 7.4.2.

Lemma 7.11. Rules 7.5 and 7.6 are exhaustively applicable in O(a?nm) time.

Proof. We first decide for each connected component of G whether it contains a
minimum cut of size at most a + 1 by fixing an arbitrary vertex v and for each ver-
tex u running a + 2 rounds of the Ford-Fulkerson algorithm to find a flow from v
to u with unit edge capacities. If at some round the flow does not increase, then we
find a corresponding cut by considering the strongly connected components in the
residual graph and apply the rules. We iterate the procedure if Rule 7.6 was appli-
cable.

Both rules, finding the connected components in the residual graph, and a round
of Ford-Fulkerson can each be implemented to run in O(n+ m) time due to the unit
edge capacities. Hence, if Cy,..., C, are the connected components of G, then one
iteration takes

¢
Y 0(@|Ci|(ICi| +|E(GIC;)]) = O(anm)
i=1
time. Since if Rule 7.5 applies then we are finished, and if Rule 7.6 applies then

both the number of connected components increases and a decreases, the whole
procedure takes O(min{n, a}anm) time. O
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Exhaustively applying the reduction rules lets us upper bound the number of the
remaining vertices linearly in a@. This will be useful in the search tree algorithm
below.

Rule 7.7. If Rules 7.5 and 7.6 have been applied to the instance, and the resulting
graph G contains at least 2a +4a/ k vertices or at least (22“ ) + a edges, then reject.

Correctness of Rule 7.7. Assume that (G = (V, E), k, @) is a yes-instance of SEEDED
HIGHLY CONNECTED EDGE DELETION to which Rules 7.5 and 7.6 have been ap-
plied exhaustively and let E' < E be of minimum size such that G — E’ consists
of degree-zero vertices and a highly connected subgraph G[S'] such that S < §
and |S'| = |S| + k. We upper bound the number of vertices and edges in G. We
first upper bound |V \ §'|. Because the instance is reduced with respect to Rule 7.6,
the graph G has minimum vertex degree k/2. Hence, the number of edges inci-
dent with at least one vertex in V \ §' is at least |V \ §'| - k/4. This number is at
most a and thus |V \ §'|- k/4 < a which implies |V \ §'| < 4a/k. Thus G contains at
most k+|S|+4a/ k vertices. By Lemma 7.10, @ > (k+|S|)/2. This implies |S'| < 2a and
thus also that the number of edges within a solution G[S'] is less than (22“) Hence,
every instance with at least 2a + 4a/k vertices or (22“) + a edges is a no-instance,
meaning that Rule 7.7 is correct. O

As a side-result, the above Rule 7.7 directly yields a problem kernel for SEEDED
HiGHLY CONNECTED EDGE DELETION.

Theorem 7.7. SEEDED HIGHLY CONNECTED EDGE DELETION admits a problem ker-
nel with at most 2a +4a/ k vertices and (°') + a edges computable in O(a?nm) time.

The final ingredient in our subexponential-time search tree algorithm is the fol-
lowing simple branching rule. It simply takes a vertex and branches on whether or
not it should be added to the seed S for the desired highly connected graph.

Branchingrule 7.1. If a+k = 0, then choose an arbitrary vertex v € V'\S and branch
into the cases of adding v to S or removing v from G. That is, create the instances
I =(G,Su{v}, k-1,a)and I, = (G-, S, k, a—deg;(v)). Acceptif I, or I, is accepted.

It is clear that Branching rule 7.1 is correct. We now describe the complete algo-
rithm and bound its running time. Intuitively, in the beginning, the reduction rules
ensure that the minimum degree remains large and, hence, Branching rule 7.1 re-
mains effective. Later on, when k becomes small compared to «, it is more benefi-
cial to simply try each k-vertex subset of the current graph. This is efficient, because
the reduction rules ensure that that the vertex set is bounded in terms of a.
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Algorithm 2: Subexponential fixed-parameter algorithm for the number a of
deleted edges.
Input: A graph G, S € V(G) and two nonnegative integers a and k, forming an
instance of SEEDED HIGHLY CONNECTED EDGE DELETION.
Output: A (|S|+ k)-vertex highly connected subgraph of G such that there are at
most a edges of G not in this subgraph, if there is any such subgraph.

1 Apply Rules 7.5 and 7.6 exhaustively

2 Apply Rule 7.7 if possible

3 if k <2y/a then

4 foreach V' < V(G)\ S such that|V'| = k do
5 L if GISU V'] is highly connected then

6 L Accept if G contains at most a edges that are not contained in SU V'

7 else
L Apply Branching rule 7.1 and recurse on the two created instances

©

Theorem 7.8. Thereis an 02*%""* +a2nm)-time algorithm for HIGHLY CONNECTED
EDGE DELETION.

Proof. Algorithm description. The procedure is shown in Algorithm 2. Algorithm 2
first applies the kernelization from Theorem 7.7. Then, it searches for a solution by
brute force if k < 2y/a. Otherwise, it applies Branching rule 7.1. From the correct-
ness of the data reduction and branching rules it is clear that this algorithm finds a
solution if there is one.

Running time. Note that in each recursive call of Algorithm 2, except the first
one, the input instance has O(a) vertices according to Theorem 7.7. Thus applying
Rules 7.5 and 7.6 in a call of Algorithm 2 amounts to O(a®) time by Lemma 7.11,
except in the first call, where we spend O(a?nm) time. Clearly, these running times
dominate the one for Rule 7.7.

Next, in each recursive call we may have to check whether Su V' is highly con-
nected for all k-vertex subsets V'. This is done only after Rules 7.5 and 7.6 have
been exhaustively applied and only if k < 2y/a. Thus, the graph G is of order at
most 2a +4a/k < 4a (note that k = 2 without loss of generality). Hence, testing the
subgraphs amounts to O((4@)?V®*2) time. In total, the time spent per search tree
node is O((4a)maX5:2va+2h)
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Now let us upper bound the number of leaves C of the search tree. Note that
the total number of search tree nodes is within a constant factor of C. For an in-
stance I = (G, S, k,a) of SEEDED HIGHLY CONNECTED EDGE DELETION, define the
value p(I) := k + a in the root of the search tree, after applying Rules 7.5 and 7.6.
Then, u(I) <3a by Lemma 7.10.

Let C(u(1)) denote a nondecreasing upper bound on the number of leaves that
a search tree with a root with value p(I) can have. Whenever we apply Branching
rule 7.1, pis reduced by a certain amount. More precisely, C(u(I)) satisfies C(u(1)) <
C(u(I) + C(u(lp)) (herein, I and I, are the instances resulting from an application
of Branching rule 7.1 to instance I) and we define C(0) = 1. Further, since Rule 7.6
is not applicable, deg;(v) = (IS|+ k)/2 = k/2 = \/a in the application of Branching
rule 7.1. This implies C(u(I)) < C(u(I) —1) + C(u(I) — v/a). Hence C(u(I)) is upper
bounded by the number of paths in R? from the origin to some point (x, y) that take
only steps (1,0) or (0, /a), where x+ y = u(I). Scaling the y-axis by a factor of 1//«,
computing C(u(I)) reduces to the problem of counting such paths from the origin
to some (x,)’) taking only steps (1,0) or (0,1) such that x + v/ay' = u(I). We now
upper bound the number of these paths.

The number of (0, 1) steps is at most 3y/a. If the path contains i (0, 1)-steps, then
the total number of steps in the path is i +3a — v/@i. Hence, there are (3%, V)

V(PR Vah o bound

this number we use the fact that (“;b) < 22Vab [Fom+14, Lemma 9]. Hence

paths with exactly i steps (0,1). This implies C(u(l)) < Y.

3Va
Cu) < Y 22ViGa-vai,

i=0
Consider the derivative f (i) of 2/i - 3a — v/ai) with respect to i. We have

JaGva-2i)
JaiGya—i)

Inspecting f(i) shows that v/i-(3a —v/ai) is maximized over 0 < i < 3y/a if i =
3y/a/2. This gives C(u(I)) < 3/a -2V Ve, Finally,

fl) =

3\/5-23\/a\/5. (4a)max{5,2\/6+2} c 0(24a3/4)

’

giving the overall running time bound of 0% + a’nm). O
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Although the presented algorithm is a subexponential-time algorithm with rel-
atively small constants in the exponential functions, it is unclear whether it can
be useful in practice. This is because the parameter «a is likely to be large in real-
world instances. In theory, the algorithm seems, however, preferable to the simple
2" . poly(n)-time branching algorithm which simply branches on a vertex into the
cases to take it into the solution or remove it from the graph. The reason is that
the instances that we encounter in practice are likely to be sparse, for example, for
social networks. That is, the overall number of edges is upper bounded by c - n for
some small constant c. This implies that a < c¢- n for these instances, meaning that
the exponential term 24¢”"* is smaller than 2" even for moderate values of a and n.

In practice, rather than using brute force in Algorithm 2, it would be prudent to
use another more sophisticated solution strategy. It is then important to set the
break-point in Line 3 in such a way that the running time of the solution strategy
(or brute force) and the running time used up by Branching rule 7.1 are balanced.
There is also a theoretical way to analyze this tradeoff, which we point out now.

Instead of switching from the branching routine to the brute-force routine on
the problem kernel when k < 2\/a, there is a more favorable break-point which
better balances branching and brute force. This subsequently leads to the improved
exponential term. Generally, we can compute a break-point to achieve a running
time 209 + O(a?nm), for every function ¢ that satisfies certain conditions shown
below. Herein, ¢’ denotes the derivative of ¢» with respect to a.

Theorem 7.9. There is an 2°“/?) +0(a? nm)-time algorithm for HIGHLY CONNECTED
EDGE DELETION for every positive, nondecreasing, unbounded, and two-times dif-
ferentiable function ¢ = ¢(a) that is computable within the same time bound and
fulfills ¢ € o(a/loga) and ¢’ € Q(1//aloga).

Putting ¢(a) = v/a/loga we obtain the following.

Corollary 7.2. There is an 2°V@1°89  O(a?nm)-time algorithm for HIGHLY CON-
NECTED EDGE DELETION.

In the remainder of this section, we prove Theorem 7.9.

Proof of Theorem 7.9. Algorithm description. We use Algorithm 2 with the following
modifications: The algorithm takes as an additional input an integer ¢, the break-
point mentioned above, which we specify below. In Line 3, the condition in the if
clause is k < ¢ instead of k < 2y/a. The remaining pseudo code is identical. Using
the correctness of the reduction and branching rules, the algorithm is correct.
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Running time. Let ¢ € R be arbitrary such that ¢ > 1. We derive a sufficient
condition on the relationship of ¢ and ¢ such that the running time of the algo-
rithm is O(2°8() @ . (3q)™&5.¢+2 4 o2 ). Herein and in the following, log denotes
the logarithm to base 2. We first bound the number of search tree leaves in terms
of u(I) =log(c) - (k+ a).

Let L(u(I)) be anondecreasing upper bound on the number of leaves that a search
tree with a root with value p(I) can have. Thatis, L(u(1)) satisfies L(u(1)) < L(u(1;))+
L(u(IL)) (herein, I; and I, are the instances resulting from an application of Branch-
ing rule 7.1 to instance I) and we define L(0) = 1. Further, since Rule 7.6 is not ap-
plicable, deg(v) = (IS|+ k)/2 = k/2 = ¢/2 and this implies L(p(1)) < L(u(I) —logc) +
L(u(I) —log(c) - ¢/2).

Let us derive values of ¢ for which we have L(u(I)) < 2# that is

zy(l)—logc + 2#(1)—log(0)-é/2 < oM

Dividing by 2+ gives
2—logc + 2—log(c)-£‘/2

1 1
¢t
1 c—1
oz

IA
—

IA
—

IA

Cé/2 >

¢/2 = log, 1
Hence, choosing ¢ = [2log,(c/(c—1))] gives L(u(])) < 27 and applying a > k/2
from Lemma 7.10 we have L(u(l)) < 2!°¢(93¢  The overall number of nodes in the
search tree is of the same order.

To upper bound the running time, it remains to find the running time of process-
ing each search tree node. Note that in each search tree node, except the root, the
input is a kernelized instance and hence contains at most 2a +4a/ k vertices. As, for
our purposes, it suffices to find an upper bound of O(a™™>¢*2}) time for expanding
a search tree node (except for the root), we may assume without loss of generality
that k =5 and hence 2a +4a/k < 3a. Thus applying Rules 7.5 and 7.6 amounts to
O(a®) time except in the root, where it is O(a’nm) time. If k < ¢, then we have ad-
ditional running time of O(Ba)¢ - a?) to test each k-vertex subgraph. Overall, the
algorithm thus runs in O(2'98¢3¢ . (3)Ma5¢+2) 4 o2 m) time.
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It remains to find a suitable ¢ > 1 and, in turn, a suitable integer ¢. For this, we
set ¢ = c(a) = 2/9@_ This is a valid choice for ¢ since c(«) is greater than 1 for
all nontrivial instances. Using the above analysis of the running time we obtain a
bound of O(23%/%.(3a)™m&>¢+2 + g2 nm+ A) where Ais the time needed to compute ¢
and

Id
R c 210321/¢ 1 21/¢
Cc = ZlOgcc_l = logzll‘b 2¢logm
1
=2¢-|=—log(2"?-1)| = 2+2¢-1
9| losl ) ¢-log 5—.

Note that, if cloga € O(a/¢) and A is reasonably small, then the time bound for the
algorithm is O(2°%/%) + a>nm). We claim that ¢ is such that our choice of ¢ and &
indeed imply that ¢loga € O(a/¢), that is

lim log(a) - d> f(a, d>) f(a d))

a—oo aﬁoo
(P $?loga loga

(7.1)

where f(a,¢) =log ﬁ. Let us apply LHépital’s rule to prove Inequality (7.1). For
this, we need that lim,_., f(a,¢) = oo, which is fulfilled since ¢ is nondecreasing
and unbounded, and we need that lim,_., m = oo, which is also fulfilled, be-
cause ¢* € o(a/loga). Assuming both conditions hold, we may apply IHopital’s
rule to obtain a limit equivalent to the one in Inequality (7.1) (if it exists) as follows.
Below In denotes the natural logarithm and recall that for a function g we denote
by g’ its derivative with respect to a.

Uep 2299/ n2
lim ———— [ ¢) lim @ -V (21/¢ ? ¢?
a=o( o Y “*OOL.(;_+)_2_¢'. a
(qbzloga) ¢? \loga  In2log’a ¢3  loga
log(a)-21/%-¢' In2
J
. log(a) -2"*-¢'In2 R T W
= lim —28 4 = lim % ¢ 7.2)
a= o1 _1).[1- L _ 2« a—co  2U¢—1]
In2loga )

Note that, in the above, we have used the fact that ¢ is differentiable for a > 0.
We want to apply LHépital’s rule again to eliminate the factor 2!/ — 1. For this,
we have lim, .., 2!/? — 1 = 0 since we assumed ¢ to be positive, nondecreasing, and
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unbounded. In addition, log(a)-2"?-¢'In2 € O(¢'log a) and since we assumed ¢? €
o(a/loga) we have

1 2¢'
1 %a EQ((p’ aloga). (7.3)
In2loga ¢
Hence, also
lim log(a)-2"?-¢/In2
(ZLOO 1 _2¢'a -

lnzloga ¢

and we can apply L'Hépital’s rule to Equation (7.2). We obtain the following where
we let h(a,¢) =1-1/(In2loga) —2¢’ @/ p and where we use the fact that ¢’ is differ-
entiable for a > 0.

(log(a)-2"¢-¢'In2)"  log(a)-2"?-¢'In2- h(a, )’

li _
aljlc}o (21/¢_1)/.h(a’¢) (21/¢_1)/,h(a’¢)2
ln2((¢”loga+ 1nz) 21 1 log(a) - ¢ - %)
= lim
00 _ollg gt
@ 20 (g,
ol . -1 20/+¢"a-¢H2a)
_log(a) 210 /' In2 (alogz(a)lnz 7 )

)
ZT‘W . h(a,(p)Z

1n2((<p”loga+ — 2) ZW’) . log(a) - ¢ -In2

= lim

a—oo —21/220 In2 . h(a,([)) h(a,([))
. log(a)¢p? _ ( 1 N 2@ +¢"a - ((l)')za))
h(a,¢)? \alog?(a)ln2 ¢?

Using Equation (7.3) summand two vanishes and it remains to show the following.

2 K 2

i L (£00pe 0"

a—oo h(a, ) ¢ aln2
- ( ¢
h(a,$)? \alog(a)ln2

+2log(a)- (' +¢"a— (¢’)2a)) < 0o
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Using ¢? € o(a/log @), the above simplifies further.

2 pI (h Iy (K2
lim ¢¢"loga . 2log(a)- (¢'+ " a— (P @) <o
a—oo h(a, )P’ h(a, ¢)?

(7.4)

We need to upper bound ¢’ and ¢". First, since ¢? € o(a/loga) we have

V/1oga NG 1

, a ' 2v/a  2,/loga @In2 ( loga )
(P €0 =0 =0 —a
loga loga Valog*? a

1
- ) (7.5)
0(\/aloga)

Similarly ¢" € 0(g(¢p, @)), where

2yalog’’?a 1 2log’2a | 3vay/loga
a " aln2 (loga - E) ’ ( 2v/a T a2
g§p,a) = =

loga 4alog’ a

2 1 3
In@)loga (1 - ln(Z)»loga) ’ (1 + ln(z)-loga) 1
= €O

4a+/aloga ay/aloga

Let us now prove Equation (7.4) by considering both summands individually. Em-
ploying Equation (7.5) and then Equation (7.3), we see that the first summand is

) . (7.6)

P*¢"loga @ co ( 1 )
h(a,p)¢’ ay/aloga-h(a,¢)-¢')  \alog@)-(@)?

which turns to a constant as a grows, because we assumed that ¢’ € Q(1/+/aloga).
The second summand of Equation (7.4) is upper bounded as follows.

. 1 a __«a
2log(@) - (@' +¢"a~@)*a) _ loga (\/aloga * a\/aloga) aloga
h(a, p)? alog(a) - (¢"?

Using again ¢’ € Q(1/4/aloga) also this summand turns to some constant for grow-
ing a.
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Chapter 7. Highly connected subgraphs

Hence, we have proved that for all ¢ = ¢p(@) > 0 (@ > 0) that are nondecreasing and
unbounded, that fulfill ¢* € o(a/loga), that are two-times differentiable for a >
0, and that fulfill ¢' € Q(1/+/aloga) we may choose ¢ such that ¢loga € O(a/¢).
Hence yielding a running time of 0(2°“/?) + a?2nm + A) for our algorithm where A
is the time needed to compute ¢. Finally, if ¢ is efficiently computable, there also is
an efficiently computable function in O(a/(¢loga)) computing ¢ from a. O

7.5. Concluding remarks

In this chapter, we aimed to better understand the parameterized complexity of
HiGHLY CONNECTED SUBGRAPH. With respect to the parameters maximum de-
gree A, h-index h, and degeneracy d the results are similar to the p- CLIQUE prob-
lem: We obtain tractability for A and &, but intractability with respect to d even
when combined with the solution size k. The tractability result for the h-index is
promising for practice, but the running time must be improved. We conjecture,
however, that single exponential, that is, ¢” - poly(n) running time for some con-
stant ¢ cannot be achieved. The intractability result for d + k is disappointing, as
these parameters are likely to be small in real-world instances. Perhaps it is possi-
ble to add another small parameter to the parameter combination and still obtain a
useful algorithm, or to give fixed-parameter approximation algorithms. (Although
we believe that this is unlikely due to the fact that highly connected subgraphs are
not hereditary.)

Regarding subexponential-time algorithms, we showed that there is no such algo-
rithm with respect to the number 7 of vertices but that there is one with 20(v@log®) 4
O(a’nm) running time, where « is the number of edges not in the solution. From
the fact that the best theoretical upper bound of a with respect to n that we can
give is of the order a < (;’), it seems that the trivial 2" - poly(n)-time algorithm might
be superior to the subexponential one with respect to . However, in practice we
expect that a is upper bounded by cn for some small constant ¢, making the one
with respect to a preferable in many cases. It is interesting to note that the anal-
ysis of the subexponential-time algorithm applies more generally to any problem
parameterized by two parameters «, v that fulfills the following conditions. It has a
polynomial problem kernel with respect to x, an n°"-time algorithm, and a search-
tree algorithm such that the depth of search tree is upper bounded linearly in x and
the branching vector is (1,Q(v)). Then we obtain a subexponential algorithm with
respect to x. It would be interesting to search for other applications of this result.
We also note that the analysis of our algorithm could still be improved.
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7.5. Concluding remarks

The practically most relevant of our results is perhaps the single-exponential al-
gorithm with respect to the number y of edges between the desired highly con-
nected graph and the remaining vertices. Indeed, preliminary experiments on sub-
networks of the yeast protein interaction network identified by Bruckner, Hiiffner,
and Komusiewicz [BHK15] show promise: in more than 80 % of the instances the
largest (isolated) highly connected subgraph can be determined within an hour.
Moreover, the corresponding algorithm shows improvement over a straightforward
enumeration-based algorithm that loosely corresponds to an enhanced version of
Proposition 7.2. Finally, the isolation parameter may also be a useful tool for prac-
titioners searching for separated communities.
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Chapter 8

Vector connectivity sets

This chapter is based on “On Kernelization and Approximation for the Vector Connectivity Problem”
by Stefan Kratsch and Manuel Sorge (Algorithmica [KS16]).
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Chapter 8. Vector connectivity sets

8.1. Introduction

In this chapter, we study VECTOR CONNECTIVITY, a problem related to a variant of
the DOMINATING SET problem: In VECTOR DOMINATION we are given a graph G and
a demand A(v) for each vertex v € V(G), and we are asked to find a minimum-size
vertex subset S < V(G) such that for each vertex v € V(G) \ S, there are A(v) vertex-
disjoint paths from v to S, each of which has length one [HPV]. Herein and in the
following, a set of vertex-disjoint paths from v to S means a set of paths, each of
which goes from v to a vertex in S, such that each pair of the paths is vertex-disjoint
except for sharing v as an endpoint. In VECTOR CONNECTIVITY, we do not require
the length of the paths to be one. Formally, the problem is defined as follows.

VECTOR CONNECTIVITY

Input: An undirected graph G, nonnegative integers k and d, and a de-
mand function A: V — {0,...,d}.

Question: Is there aset S < V(G) of at most k vertices such that for each
vertex v € V(G) \ S there are A(v) vertex-disjoint paths from v to S?

We also say that the value A(v) is the demand of vertex v. We say that S< V is a
vector connectivity set for (G, A) if for each vertex in V(G) \ S there are A(v) vertex-
disjoint paths form v to S.

VECTOR CONNECTIVITY is NP-complete [CMR15] and was introduced by Boros
et al. [Bor+14] to study connectivity and domination constraints. There are three
natural applications in which this problem arises.

The first application is related to installing servers in computer networks to serve
users. The placement of the servers shall be so that the service is robust against fail-
ure in the network. More precisely, each user has a requirement on the robustness,
its demand, meaning that she requires a certain number of physically independent
ways to connect to the service. Modeling the possible server housing and user po-
sitions as vertices, and their physical connections as edges, we arrive at a graph
model of this problem. Herein, a minimum-size vector connectivity set represents
the locations of servers to install to serve all users with their corresponding robust-
ness conditions. Instead of robustness constraints, the demands of the users could
also model requirements on a minimum throughput value.

Similarly, one can think of the graph as a street network in which we want to place
warehouses. From the warehouses we can then supply goods to clients [CMR15].
As before, the demands model constraints on the robustness of the supply, which
could play a role in critical infrastructure in regions struck by natural disasters, for
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example. In this way, VECTOR CONNECTIVITY can also be seen as a variant of the
FACILITY LOCATION problem [HD02] in which the costs of serving demand are neg-
ligible, but instead redundancy is required.

Cicalese, Milani¢, and Rizzi [CMR15] also noted an application related to infor-
mation propagation in social networks. (Information propagation was also one of
the motivations for Boros et al. [Bor+14] to initiate the study of VECTOR CONNECTI-
VITY.) Imagine an advertiser trying to reach individuals by a viral marketing cam-
paign. However, the target individuals are skeptical, tracing the information that
they get from their peers back to their sources. Each individual has a certain integer
threshold t, and she only believes the information to be true, if she can trace it back
to via ¢ independent paths to distinct sources. Hence, modeling the social network
as a graph, the advertiser can use a vector connectivity set to convince the target
individuals that her product is valuable.

Our contribution. We analyze the parameterized complexity of VECTOR CONNEC-
TIVITY with respect to the solution size k, mainly from a data reduction point of
view. We provide a randomized fixed-parameter algorithm for VECTOR CONNECTI-
VITY parameterized by the solution size k (Section 8.4). We prove that, unless NP <
coNP/poly, VECTOR CONNECTIVITY does not admit a polynomial problem kernel
with respect to k and, in fact, even with respect to k + d, where d is the maximum
demand (Section 8.7). However, the variant VECTOR d-CONNECTIVITY where the
maximum demand d is a fixed constant does admit a vertex-linear problem kernel
with respect to k.

Our analysis of the problem starts with a data reduction rule stating that we can
safely “forget” the demand of r := A(v) at a vertex v if v has vertex-disjoint paths
to r vertices each of demand at least r (Section 8.3). Basically, the reason is that
these vertex-disjoint paths prove that, if we can serve the demand of all remain-
ing vertices, then we can also serve the demand of v. After exhaustive application
of the corresponding data reduction rule, all remaining vertices of demand r have
separators of size at most r — 1, separating them from other vertices of demand at
least r. By analyzing these separators we then show that any yes-instance of VECTOR
d-CONNECTIVITY has at most d?k vertices with nonzero demand; the correspond-
ing upper bound for VECTOR CONNECTIVITY is k° + k.

In Section 8.4 we prove that VECTOR d- CONNECTIVITY admits a vertex-linear prob-
lem kernel with respect to k. Our method is to identify regions in the input graph
which are separated from the rest of the graph by small (constant-size) separators
and to replace these regions by a constant-size gadget. The regions are all anchored

175



Chapter 8. Vector connectivity sets

in one of the vertices with nonzero demand and we show that all the remaining ver-
tices can be removed using the so-called torso operation. After this, combining the
above upper bound d?k on the number of vertices with nonzero demand with an
upper bound ¢(d) on the number of regions for each nonzero demand vertex, there
remain only ¢(d)d?k vertices. The function ¢(d) is exponential in d and we know
that it must be superpolynomial in d since it would otherwise contradict our lower
bound on the kernel size (Section 8.7) which rules out size polynomial in k+d.

The replacement of the regions is done by giving an explicit description of the
properties of each region and finding a constant-size replacement with the same
properties. Hence, we can indeed construct the kernelization algorithm, albeit the
replacements are found using brute force.

A somewhat simpler, non-constructive existence proof of a linear-vertex prob-
lem kernelization for VECTOR d-CONNECTIVITY can be pieced together from recent
work on meta kernelization on sparse graph classes [Fom+13]. We explain some de-
tails in Section 8.5 and highlight differences to our approach. The existence proof
also relies on replacing regions of the input graph by constant-size gadgets. How-
ever, it does not imply a way to construct these gadgets, which, in comparison, our
explicit description of their properties does. We also give a direct proof for the num-
ber of such regions rather than relying on a known argument for upper bounding
the number of connected subgraphs of bounded size and bounded neighborhood
size (via the two-families theorem of Bollobds, see Jukna [Juk01]). This avoids an
exponential dependency of the kernel size on the size of the gadgets.

Known results and related work. The study of the VECTOR CONNECTIVITY prob-
lem was initiated by Boros et al. [Bor+14] who gave polynomial-time algorithms
for trees, cographs, and split graphs. Moreover, they obtained an (Inn + 2)-factor
approximation algorithm for the general case. Cicalese, Milanic¢, and Rizzi [CMR15]
continued the study of VECTOR CONNECTIVITY and among other results proved that
the optimization version, in which we seek to minimize the size of the vector con-
nectivity set, is APX-hard (and NP-hard) on general graphs, even when all demands
are upper bounded by four.

With regard to approximation, we mention that it is possible to augment the
reduction rules presented in Section 8.3 and use them as a crucial ingredient in
polynomial-time approximation algorithms for the optimization variants of VEC-
TOR d-CONNECTIVITY and VECTOR CONNECTIVITY in which we want to minimize
the vector connectivity sets. In this way, one obtains a factor d approximation algo-
rithm for VECTOR d-CONNECTIVITY and a factor opt approximation algorithm for
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VECTOR CONNECTIVITY, where opt denotes the minimum size of a vector connec-
tivity set [KS16].

In a talk during a Dagstuhl seminar'® Martin Milani¢ asked whether VECTOR CON-
NECTIVITY is fixed-parameter tractable with respect to the solution size k. This was
answered affirmatively by Daniel Lokshtanov'® based on an extension of the Ran-
domized Contractions technique [Chi+16]. Our fixed-parameter tractability result
is different from his approach. We instead rely on a matroid intersection algorithm
of Marx [Mar09].

Outline of this chapter. Before giving the kernelization and fixed-parameter trac-
tability results, in Section 8.2 we give some basic facts on vertex-disjoint paths and
related notions of separators which we tacitly use later on. In Section 8.3 we then
describe how to reduce the number of vertices with nonzero demand. We use the
corresponding reduction rules in our fixed-parameter tractability result for VECTOR
CONNECTIVITY with respect to k in Section 8.4 and in the vertex-linear kerneliza-
tion in Section 8.6. An outline of the kernelization argument and an alternative
non-constructive proof sketch for the kernelization is given in Section 8.5. We rule
out polynomial problem kernels for VECTOR CONNECTIVITY under the premise that
NP & coNP/poly in Section 8.7. We conclude in Section 8.8.

8.2. Specific preliminaries

We now introduce some notation and definitions and note some observations that
we use later on. They are related to vertex-disjoint paths, special kinds of separators
that we use, submodular functions, and so-called closest sets.

We sometimes need to check whether there are a given number of vertex-disjoint
paths between two vertices.

Proposition 8.1. Given a graph G with n vertices and m edges, s, € V(G), and ¢ €
N, in O(¢(n + m)) time we can check whether there are ¢ internally vertex-disjoint
paths between s and ¢ in the graph G.

Proof sketch. We check for the existence of paths above by by using a folklore re-
duction to finding a flow of value ¢ in a flow network [Ski08]: Create a flow network
by introducing two vertices vj, and vo, for each vertex v € V(G), and also an arc

15pagstuhl Seminar 14071 on “Graph Modification Problems”, February 9-14, 2014.
18ynpublished result.
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(Vin, Vout) of capacity one. Then, for each edge {u, v}, add two arcs (uou¢, Vin), (Vout» Uin)
with capacity infinity. One can check that there is a flow of value ¢ between s, and
tin if and only if the desired ¢ vertex-disjoint paths between s and ¢ exist. We can
check in O(¢(n + m))-time whether there is a flow of value ¢ between sy, and %,
by running ¢ flow-augmentation rounds of the Ford-Fulkerson algorithm. Thus,
within the same time, we can test whether there are ¢ vertex disjoint paths be-
tween s and ¢ in G. O

Due to the nature of the VECTOR CONNECTIVITY problem we also frequently want
to know whether there are ¢ € N vertex-disjoint paths from a vertex v to some vertex
set S. This can be reduced to finding ¢ internally vertex-disjoint paths as follows.
First, introduce ¢ — 1 copies of v with the same neighborhood. Then introduce a
new vertex s adjacent to all copies of v and introduce a new vertex ¢ adjacent to
all vertices in S. In the resulting graph there are ¢ internally vertex-disjoint paths
between s and ¢ if and only if there are ¢ vertex-disjoint paths between v and S.
Thus, by Proposition 8.1 we can check this in O(¢(n + m)) time.

Corollary 8.1. Given a graph G with n vertices and m edges, v € V(G), S< V(G)\{v},
and ¢ € N, in O(¢(n + m)) time we can check whether there are ¢ vertex-disjoint
paths from v to Sin G.

The natural counterpart to a set of vertex-disjoint paths from v to S, in the spirit
of Menger’s theorem, is a v, S-separator, that is, a vertex subset C < V(G) \ {v} such
that in G—C no vertex of S is reachable from v. Note that a v, S-separator C does not
necessarily have the property that G — C has more connected components than G,
contrary to our definition of ordinary separators. The maximum number of vertex-
disjoint paths from v to S equals the minimum size of a v, S-separator. Minimal
separators can be thought of as the neighborhood of one of the connected com-
ponents in the rest of the graph. In this regard, several proofs use the function
f: 2V — N: U — |N(U)|, which is well-known to be submodular, that is, for all
X,Y < Vit holds that

FXO+fY)=f(XnY)+ f(XUY).

So-called closest sets will be used frequently; these occur naturally in separator
problems but appear to have no generalized name. We define a vertex set C to be
closest to v if C is the unique v, C-separator of size at most |C|, where v, C-separator
is in the above sense. As an example, if C is a minimum s, #-separator that, among
such separators, has the smallest connected component for sin G—C, then C is also
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closest. The following proposition captures some properties of closest sets, mostly
specialized to v, S-separators (see also Kratsch and Wahlstrom [KW12]).

Proposition 8.2. Let G=(V,E),letve V,andlet S< V' \ {v}. The following holds.

(i) If Cis a closest v,S-separator and X the connected component of v in G- C,
then for every set X' € X with v € X’ C X we have [N(X")| > |N(X)I.

(i) The minimum v, S-separator C minimizing the size of the connected com-
ponent of v in G — C is unique. The set C is also the unique minimum v, S-
separator closest to v.

(iii) If C; and C, are minimum v, S-separators and C; is closest to v, then the con-
nected component of v in G — C; is fully contained in the connected compo-
nentof vin G- Cs.

(iv) If C< V\{v}is closest to v, then so is every subset C’ of C.

Proof. Let G = (V,E), let v € V, and let S < V' \ {v}. We give simple proofs for all
claims; some of them use the submodularity of f: 2V - N: U~ |NWU)|.

First, we prove Statement (i). Note that N(X) = C as, otherwise, | N(X)| < |C| and
N(X) is a v, C-separator, contradicting the closeness of C. Let X' € X with ve X' C
X. Clearly X'nC < XnC = @, making N(X') a v, C-separator. Since X' C X and X
is connected, it follows that N(X’) n X # @ and, thus, that N(X’) # N(X). Since C is
closest to v, we have |[N(X")| > |C| = |N(X)| because, otherwise, N(X') would be a
v, C-separator of size at most |C| but different from C = N(X). Thus, Statement (i)
holds.

Next, we prove Statement (ii). Assume that both C; and C, are minimum v, S-
separators that furthermore minimize the size of the connected component of v
in G — C;; let X; denote those components. Note that N(X;) = C; since C; is a mini-
mum v, S-separator. We have

FXD+f(X2) = fF(X1nX2) + f(XUXa).

Clearly, (X; U X5) NS = @, implying that N(X; U X;) is a v, S-separator. It follows that
|N(X1) U N(Xz)l = f(Xl U Xz) = f(Xg), which 1mplles that f(Xl) = f(X] N Xg) Itis
easy to see that N(X; n Xy) is also a v, S-separator of size at most f(X;) = |C;| and,
if C; # C,, then X # X, and X; N X, C X;; a contradiction to X; being a minimum-
size connected component. Thus, we have C; = C,, proving the first part of State-
ment (ii).

For the second part, assume first that C; is a v, C;-separator of size at most |C|
and let X3 be the connected component of v in G — Cs. Since every path from v
to S contains a vertex of C;, each such path must also contain a vertex of C3 (to
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separate v from C;). Thus Cj is also a v, S-separator, but then Cj is also minimum
(as |Cs] = |Cy]). Note that, since Cs is a v, C; -separator we have X3NC; = @. It follows
that X5 € X;. If X5 C X, then C; would violate the choice of C; as minimum v, S-
separator with minimum component size for v. But then we have X3 = X; and
C; = Cs3, which proves closeness of C) to v.

Finally, assume that C, is another minimum v, S-separator closest to v; we want
to show C; = C,. If X; and X, are the corresponding connected components, then
C; = N(X;). By submodularity of f and the same arguments as above we find that
INXIiNnXy)| < |Gl IE Xy g X4, then v € X;n X, € X; which, by Statement (i), implies
IN(X; N Xy)| > IN(X;)| = |Cy]; a contradiction. Else, if X; € X,, then C; = N(X;) is
a v, C4-separator of size |C;| = |C,l; this implies C; = C, by closeness of C,. Thus,
Statement (ii) holds.

Now we prove Statement (iii). Let C; and C, be minimum v, S-separators and let
C; be closest to v. Let X; be the connected component of v in G — C;. Note that
N(X;) = C;, since C; is minimum. Assume, for the sake of contradiction, that X; g
X,, implying that X; N X, C Xj. By Statement (i) we have f(X; N Xp) = [N(X; N X,)| >
|C1| =1Cs| = f(X,). Because

FXD+ (X)) =z fXinXe) + f(X1UXo),

we have [N(X; U X3)| < f(X1) = |Ci| = |C,]. However, N(X; U X) is also a v, S-
separator; this contradicts C; and C, being minimum v, S-separators. Thus, also
Statement (iii) holds.

Finally, we prove Statement (iv). Let C be closest to v and let C' < C. If C' is not
closest to v, then there is a v, C'-separator C” of size at most |C'| and with C"” # C'.
Consider C = C" U (C\ C') and note that |C| < |C"|+|C\ C'| < |C'|+|C\C'| = |C|.
Observe that C is a v, C-separator since C" < C separates v from C’, and C\ C' is
contained in C. Thus, |C| < |C|] would contradict C being closest to v because it
implies that C # C in addition to C being a v, C-separator of size at most |C|. Thus,
IC| = |C| and by closeness of C to v, we have C = C. The latter can hold only if
C" 2 C'because C = C"uU(C\C"), but then C” = C' because |C"| < |C'|, contradicting
C" # C'. Thus C' is indeed closest to v. O

8.3. Reducing the number of vertices with nonzero
demand

In this section we introduce a data reduction rule for VECTOR CONNECTIVITY that
reduces the total demand. We prove that the reduction rule does not affect the so-
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lution space, which makes it applicable not only for kernelization but also for ap-
proximation and heuristics. For use in an approximation algorithm, see Kratsch
and Sorge [KS16]. In Section 8.6, we will use the reduction rule in our polynomial
kernelization for VECTOR d-CONNECTIVITY parameterized by k, and in Section 8.4
we apply the reduction rule in a fixed-parameter algorithm for VECTOR CONNECTI-
VITY parameterized by k.

Intuitively, if a vertex v has many vertex-disjoint paths to other vertices with at
least the same demand, then, satisfying these other vertices will automatically sat-
isfy v. To make this formal, let G be a graph, A: V(G) — {0, ..., d} ademand function,
and v € V(G). Denote by X(v) the set of vertices with demand at least A(v), that is,
X()={ueV(G) | (u#v) A (Au) = A(v)}.

Rule 8.1. Let (G, A, k) be an instance of VECTOR CONNECTIVITY. If there is a ver-
tex v € V(G) with at least A(v) vertex-disjoint paths from v to X(v), then set the
demand A(v) of v to zero.

We prove that the rule does not affect the space of feasible solutions for every
instance. Intuitively, the fact that there are many vertex disjoint paths from v to
other vertices of at least the same demand, and the assumption that there is a vector
connectivity set for all the remaining vertices, imply that there cannot be a small
separator that separates v from the vector connectivity set.

Lemma8.1. Let (G, A, k) be an instance of VECTOR CONNECTIVITY and let (G, A/, k)
be the instance obtained via a single application of Rule 8.1. For every S < V(G) it
holds that S is a solution for (G, A, k) if and only if S is a solution for (G, A, k).

Proof. Let v denote the vertex whose demand was set to zero by Rule 8.1. Clearly,
A(u) = A'(u) for all vertices u € V(G) \ {v}, and A (v) =0, that is, A(u) = A'(u) for all
vertices u € V(G). Hence, it suffices to show that, if S fulfills all demands accord-
ing to A', then S fulfills also all demands according to A. This in turn comes down
to proving that S fulfills the demand of r at v assuming that it fulfills all demands
according to A'. If v € S, then the demand of v is trivially fulfilled so henceforth
assume that v ¢ S.

Set r:= A(v). Let wy,..., w, € X(v) denote vertices different from v with demand
each at least r such that there exist r vertex-disjoint paths from v to {wy,..., w,},
that is, a single path to each w;. Such vertices exist because Rule 8.1 was applicable
to v.

Assume for contradiction that S does not satisfy the demand of r at v (recall that
v ¢ S, by assumption), that is, that there are no r vertex-disjoint paths from v to S
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that overlap only in v. It follows directly that there is a v, S-separator C of size at
most r — 1. (Recall that C may contain vertices of S but not the vertex v.) Let R
denote the connected component of v in G — C. Then the following holds for each
vertex w; € {wy,..., w,}:

e If w; € S, then w; ¢ R: Otherwise, we would have SN R 2 {w;} # @ contradict-
ing the fact that v can reach no vertex of S in G- C.

e If w; ¢ S, then w; ¢ R: Since S fulfills demands according to A’ there must be
at least r vertex-disjoint paths from w; to S that overlap only in w;. However,
since w; € R the set C is also a w;, S-separator; a contradiction since C has
size less than r.

Thus, no vertex wy,..., w, is contained in R. This, however, implies that C sepa-
rates v from {wy, ..., w,}, contradicting the fact that there are r vertex-disjoint paths
from v to {w;,..., w,} that overlap only in v. It follows that no such v, S-separator C
can exist, and, hence, that there are at least r = A(v) vertex-disjoint paths from v
to S, as claimed. Thus, S fulfills the demand of r at v and hence, fulfills all demands
according to 1. (Recall that the converse holds trivially since A(u) = A'(u) for all
vertices u € V(G).) O

We have established that applications of Rule 8.1 do not affect the solution space
of an instance while reducing the number of vertices with nonzero demand.

Lemma 8.2. Rule 8.1 can be exhaustively applied in O(dn(n + m)) time, where d
is the largest demand of any vertex, n is the number of vertices in the input graph,
and m is its number of edges.

Proof. We check once for every vertex v with nonzero demand, whether Rule 8.1
applies to v and, if so, do apply it. Since the set of vertices with nonzero demand
only shrinks in this process, Rule 8.1 cannot become applicable to a vertex for which
we have already determined that it is not applicable. Using Corollary 8.1 we can
check applicability in O(d(n + m)) time, yielding the claimed running time bound.

O

To analyze the impact of Rule 8.1 we will now upper bound the number of vertices
with nonzero demand in an exhaustively reduced instance in terms of the optimum
solution size opt and the maximum demand d. To this end, we need the following
technical lemma about the structure of reduced instances as well as some nota-
tion. If (G, A, k) is reduced with respect to Rule 8.1, then for each vertex v with de-
mand r = A(v) = 1 there is a separator C of size at most r—1 that separates v from all
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other vertices with demand at least r. We fix for each vertex v with demand at least
one a vertex set C, denoted C(v), by picking the unique closest minimum v, D,-
separator where D, = {u € V' \ {v} | A(w) = A(v)}. Furthermore, for such vertices v,
let R(v) denote the connected component of v in G- C(v).

Intuitively, every solution S must intersect every set R(v) since |C(v)| < A(v). The
following lemma shows implicitly that Rule 8.1 limits the amount of overlap of the
sets R(v).

Lemma 8.3. Let (G, A, k) be reduced under Rule 8.1. Let u,v € V(G) be distinct
vertices with A (1) = A(v) = 1. If R(u) N R(v) # @, then ue C(v) or ve C(u).

Proof. Assume for contradiction that we have u, v with A(u) = A(v) = 1 and with
R(w)NR(v) # @ and u ¢ C(v) and v ¢ C(u). We will show that this implies that atleast
one of C(u) and C(v) is not a closest minimum separator, giving a contradiction.
By definition of the separators C(u) and C(v) as separating u and v, respectively,
from all other vertices of at least the same demand, we have u ¢ R(v) and v ¢ R(u);
furthermore u ¢ C(u) and v ¢ C(v), by definition.

Let C = C(u) U C(v) and note that u, v ¢ C. Let I, ] denote the connected compo-
nents of u, v in G— C. Note that I < R(u) since C 2 C(u) and, thus, v ¢ I. Similarly
we have u ¢ J and thus I and J are two different connected components in G — C.
As the next step, we show that

[C@)|+I1C) =z INDI+INU)I. (8.1)

To this end, let us first note that N(I) U N(J) € C = C(u) U C(v) by definition of I and
J as connected components of G — C. Thus, every vertex p that appears in exactly
one of N(I) and N(J) contributes value one to the right-hand side of Inequality (8.1)
and at least value one to the left-hand side since it must be contained in C(x) UC(v).
Now, for vertices p € N(I) n N(J) we see that they contribute value two to the right-
hand side of Inequality (8.1). Note that each such vertex is contained in a path
from u to v whose other interior vertices are disjoint from C = C(u) U C(v). Thus, p
must be contained in both C(x) and C(v) since otherwise the corresponding set
would fail to separate u from v (or vice versa), which is required since A(u) = A(v).
Therefore, if any vertex contributes a value of two to the right-hand side, then it also
contributes two to the left-hand side. This establishes Inequality (8.1).

Now, from Inequality (8.1) we immediately get that at least one of |[N(I)| < |C(u)|
or |IN(J)| = |C(v)| must hold. Due to symmetry we may assume |N([)| < |C(u)| with-
out loss of generality. Recall that u € I. Furthermore, we can see that I C R(u) by
using the fact that R(u) N R(v) # @: Let g € R(u) N R(v) < R(u). If g € I, then u can
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reach g in G — C but, in particular, also in G — C(v). By definition of R(v) and us-
ing q € R(v), we know that v can reach g in G — C(v), implying that there is a path
from u to v in G—C(v) (since there is a walk through g), violating the fact that C(v) in
particular separates v from u. Thus g ¢ I and since I < R(u) follows from C 2 C(u),
we get that I C R(u). Since |[N(I)| < |C(u)| we find that N(I) is of at most the same
size as C(u) but with a smaller connected component I for u, contradicting the fact
that C(u) is the unique minimum closest set that separates u from all other vertices
of demand at least A(u). This completes the proof of the lemma. O

Now, we can give the promised upper bound on the number of vertices with
nonzero demand.

Lemma 8.4. Let (G, A, k) be an instance of VECTOR CONNECTIVITY that is reduced
with respect to Rule 8.1 and let opt denote the minimum size of a vector connectiv-
ity set S < V for this instance. Then there are at most d?opt vertices with nonzero
demand in G.

Proof. For analysis, let S € V denote an arbitrary vector connectivity set of size opt,
that is, such that every v with A(v) = 1 has v € S or there are A(v) vertex-disjoint
paths from v to S that overlap only in v. We will prove that for all r € {1,...,d} there
are at most 2r — 1 vertices of demand r in G (according to A). Fix some r € {1,...,d}
and let D, denote the set of vertices with demand exactly r. For each v € D, the vec-
tor connectivity set S must contain at least one vertex of R(v) since C(v) = N(R(v))
has size at most r — 1. (Otherwise, C(v) would be a v, S-separator of size less than
r.) Fix some vertex p € S and let vy, ..., v, denote all vertices of demand r that have
p € R(v;). We will prove that ¢ < (2r —1) and |D,| < opt(2r —1).

At most r — 1 vertices are contained in C(v;) for every i € {1,...,¢}. Thus, on the
one hand, the total size }_|C(v;)| of these sets is at most (r —1)¢. On the other hand,
for every pair v;,v; with 1 < i < j < ¢ we know that v; € C(v;) or v; € C(v;) by
Lemma 8.3, since R(v;) N R(v;) 2 {p} # @. Thus, every pair contributes at least a
value of one to the total size of the sets C(v;). (To see that different pairs have dis-
joint contributions note that, for example, v; € C(v;) uniquely defines pair v;, v;.)
We get the following inequality:

g ¢
(r=1¢ =) |C(w)| = (2)
i=1
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Thus, %f (¢-1) < (r—1)¢, implying that ¢ < 2r—1. Since there are exactly opt choices
for p € S and every set R(v) for v € D, must be intersected by S, we get an upper
bound

opt-¢ < opt(2r—1)

for the size of D,. If we sum this over all choices of r € {1,...,d} we get an upper
bound

d d
Y opt2r—1) = opt) 2r—1 = opt-d*
r=1 =

r=1
for the number of vertices with nonzero demand. This completes the proof. O

Lemma 8.4 directly implies a data reduction rule for VECTOR d-CONNECTIVITY
and VECTOR CONNECTIVITY: If there are more than d?k vertices with nonzero de-
mand, then opt must exceed k and we can safely reject the instance.

Rule 8.2. Let (G, A, k) be reduced with respect to Rule 8.1, with A: V(G) — {0,...,d}.
If there are more than d?k vertices of nonzero demand, then return no.

We can also derive that, in yes-instances that are reduced with respect to Rule 8.2,
there are at most k® + k vertices with nonzero demand: There can be at most k
vertices of demand greater than k since those must be in the vector connectivity
set. Additionally, if the size opt of the minimum vector connectivity set fulfills opt <
k, then there are at most d?opt < k® vertices of demand at most d = k, for a total
of kK3 + k.

Rule 8.2 will be used in our kernelization in Section 8.6. The upper bound k° + k
on the number of demand vertices for VECTOR CONNECTIVITY will be used in the
fixed-parameter algorithm with respect to k in Section 8.4.

8.4. A fixed-parameter algorithm for small vector
connectivity sets

In this section we present a randomized fixed-parameter algorithm for VECTOR
CONNECTIVITY parameterized by k. Recall that the data reduction rules in Sec-
tion 8.3 allow us to reduce the number of vertices with nonzero demand to at most
k® + k (or to safely reject). Based on this we give a randomized algorithm build-
ing on a randomized fixed-parameter algorithm of Marx [Mar09] for intersection
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of linear matroids. Intuitively, each matroid will correspond to one vertex v with
nonzero demand and represent the candidates for vector connectivity sets “from
v’s point of view”. A vector connectivity set is then found as a vertex set S for which
all vertices with nonzero demand agree that it is a candidate, thatis, S is in the inter-
section of all corresponding matroids. The randomization in the algorithm comes
mainly from the need to construct a representation for the required matroids. Be-
fore describing the algorithm more precisely, we need the following notation and
algorithmic results related to matroids.

Matroids. A matroid is a tuple (U,.¥) where U is a set, called the ground set, and
¢ is a family of subsets of U, called the independent sets which satisfy the following
three conditions.

e $e.9.
e IfIe.9,thenforevery J<Ialso Je.$.
o If[,J€.9,and |I| > |J| then thereis u € I\ J such that Ju{u} € .9.

A representation of a matroid (U,.¥) is a matrix M over some field F such that U
one-to-one corresponds to the columns in M and aset I < U is independent, that is,
I € .9, if and only if the columns corresponding to I in M are linearly independent.
A matroid is said to be linear if it has a representation.

The following definitions of basis, dual, and contraction are provided only for
completeness. In the proof, we only use the property of contractions given in Prop-
osition 8.3 and the fact that contractions are computable in polynomial time. A
basis of a matroid is a maximal independent set. Note that every matroid can be
defined by its set of bases. The dual of a matroid ./, denoted by . *, is the matroid
which has the following set of bases

{BS U|U\Bisabasis of /}.
Let X € U. Deleting X from a matroid ./ = (U,.¥) results in the matroid
MNX = (U\X{ICU\X|I€.F}).
The contraction of a matroid 4 by X is the matroid A4 /X = (M *\ X)*, that is, the

dual of the deletion of X from the dual of /. As mentioned, we only use the follow-
ing property of contractions which follows from Oxley [Ox111, Proposition 3.1.7].

186



8.4. A fixed-parameter algorithm for small vector connectivity sets

Proposition 8.3. Let # = (U,.¥) be a matroid and X < U. If / has an independent
set that contains X, then

MIX = (U\X{ICU\X|IUuXe.I}).

Marx [Mar09] showed that, given the representation of a matroid, the representa-
tion of the contraction or deletion by a subset of the ground set can be computed in
polynomial time. For more on matroids, see Oxley [Oxl11]. Marx [Mar09] gave the
following algorithm for computing independent sets in the intersection of several
matroids. Our fixed-parameter tractability proof is built on this algorithm.

Theorem 8.1 (Marx [Mar09]). Let . ;,...,#, belinear matroids given via their rep-
resentations over the same field and let k, p € N be nonnegative integers, and let r
be the longest length in bits of one of the matroid representations. There is a com-
putable function ¢ and a randomized algorithm with running time ¢ (k, £) poly(r, p)
with the following property. If there is a cardinality-k set thatisindependent in each
matroid A ,..., 4, then the algorithm returns such a set with probability at least
1-1/2”, and it returns no otherwise.

We are here concerned only with the following special type of matroids. Let G be
a graph and S < V(G) be a vertex subset. A vertex subset T < V(G) is linked to S if
there are | T| pairwise vertex-disjoint paths from S to T in G. Perfect [Per68] showed
that, for a fixed set S <€ V(G), the sets T linked to S in G form a matroid, that is,

Y =V(G),{T<V(G)|Tislinked to S in G})

is a matroid. Such a matroid % is called gammoid; we say that it is the gammoid
induced by G and S, and we call the vertices in S the sources of 4. From Per-
fect’s result it also follows that every gammoid is linear. Marx [Mar09, Theorem
5.4] proved, moreover, that there is a randomized polynomial-time algorithm that,
given a graph G and a vertex subset S < V(G), finds a representation for the gam-
moid induced by G and S in the following sense.

Theorem 8.2 (Perfect [Per68] and Marx [Mar(09]). Let G be a graph with n vertices
and m edges, S < V(G) a vertex subset, ¢ the gammoid induced by G and S, and
p € N a nonnegative integer. There is a randomized algorithm with running time
poly(p, n, m) that constructs a representation of a matroid ./ such that
* each independent set in ./ is independent in %, and
¢ all independent sets in % are independent in .# with probability at least 1 —
1/2P.

That s, the algorithm computes a representation of the gammoid % with high prob-
ability.
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Intuition. Before making the fixed-parameter algorithm for VECTOR CONNECTI-
vITY fully formal, we describe the basic idea with slightly more precision. For each
vertex v with nonzero demand, the feasible vector connectivity sets from v’s point
of view are supersets of the sets “linked” to v in the input graph G, that is, sets from
which there are A(v) vertex-disjoint paths to v. By introducing A(v) — 1 copies of v
as sources in a gammoid, the vertices that v connects to in a vector connectivity set
are indeed linked to the sources, hence, are independent sets in the gammoid. To
extend these sets to possible vector connectivity sets of size k we introduce k—A(v)
universal dummy vertices as sources into the gammoid. This results in a gammoid
for v in which all possible vector connectivity sets from v’s point of view are inde-
pendent sets. We repeat this process for all vertices with nonzero demand. Using
the fact that, after exhaustively applying Rule 8.2, there are at most k® vertices with
nonzero demand, we obtain at most k* gammoids. We find representations for the
gammoids using the algorithm in Theorem 8.2 and then find the vector connectiv-
ity set in the intersection of all these gammoids using Marx’ algorithm from Theo-
rem 8.1.

Theorem 8.3. Let p, n € N. There is arandomized algorithm with running time ¢ (k)-
poly(p, n) that, given an instance of VECTOR CONNECTIVITY with n vertices,
* returns a vector connectivity set of size k with probability at least 1 —1/27 if
the instance is yes,
e returns no otherwise.

Proof. We assume that the input instance (G, A, k) is already reduced to at most
k% + k vertices with nonzero demand (otherwise, apply Rules 8.1 and 8.2). Denote
the set of demand vertices by D := {v € V(G) | A(v) = 1}. Clearly, if the instance is
yes, then there exists a solution of size exactly k (barring the case that |V(G)| < k,
which would be trivial).

Algorithm description. As a first step, we guess the intersection of a solution S* of
size k with the set D; there are at most (k* + k)* choices for So = DN S*. Note that
all vertices of demand exceeding k must be contained in S, for S* to be a solution
(we ignore S if this is not true).

For each v € D\ Sy, we construct a matroid ./, over V' = V' \ D such that any
set §; < V' of size at most k — |Sy| is independent in ., if and only if v has A(v)
vertex-disjoint paths to Sy U S;. Concretely, the matroid .4, with ground set V' is
constructed as follows.

e Build a graph G, by first adding to G additional ¢ — 1 copies of v, named
Uy,..., Vs, Where ¢ = A(v). We use v; := v for convenience. Second, add r =
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k — ¢ universal vertices wy,..., w,, that is, each vertex wy,..., w, has neigh-
borhood VU {vs,...,v.}.

e Let /U, denote the gammoid induced by the graph G, and the source set
T ={vy,..., v, wy,..., w,}. Recall that the independent sets of a gammoid are
exactly those subsets I of the ground set that have |I| vertex-disjoint paths
from the sources to I. Compute a representation for this gammoid using The-
orem 8.2. We will consider the error probability parameter below.

e Obtain .| from .4 by deleting (TuD)\S,. That s, 4| has ground set V'uSy
and has as independent sets precisely those independent sets of .4/ that are
disjoint from (T U D)\ Sy.

e Create ./, from ., by contracting Sy, that is, /4, = /4, /S,. Note that the
ground set of ./, is V'. Moreover, by Proposition 8.3, if Sy is independent in
AL}, then any I is independent in ., if and only if Sp U I is independent in

Use Theorem 8.1 to search for a set I* of size k —|Sy| that is independent in each
matroid 4, for v e D\ Sy. (Analyzing the underlying algorithm of Theorem 8.2, it is
not hard to check that we can assume that all matroids .4, are represented over the
same field.) If a set I* is found, then test whether Sy U I* is a vector connectivity set
for (G, A, k) by appropriate polynomial-time flow computations. If this is the case,
then return the solution Sy u I'*. Otherwise, if Sy U I* is not a solution or if no set I*
was found, then try the next set Sy, or answer no if no set S is left to check.

It remains to prove that the algorithm is correct and to analyze its success proba-
bility Sand running time.

Correctness. Clearly, if (G, A, k) is a no-instance, then the algorithm will always
answer no as all possible solutions Sy U I* are tested for feasibility.

Assume now that (G, A, k) is yes, let S* be a solution of size k, and consider the
iteration of the algorithm in which S; = Dn S§*. Assume that both algorithms un-
derlying Theorems 8.1 and 8.2 do return the representation of the gammoid and the
independent set if there is any. We treat the success probability below.

We prove that $*\ Sy is independent in each .#,. Note that S*\ Sy < V’. Pick
an arbitrary v € D\ S,. We have that there are ¢ = A(v) paths from v to $* in G
that are vertex-disjoint. Thus, by giving each path a private copy of v, we get ¢
(fully) vertex-disjoint paths in G,, one path from each vertex in {vy,...,v.} to S*.
We get additional r = k — ¢ paths from {wy,..., w,} to the remaining vertices of S*
since S* € V' U Sy < N(w;). Thus, the set S* is independent in each gammoid .
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Therefore, in each ./}, also S* is independent because S* N ((T U D)\ Sy) = @. By
Proposition 8.3, this implies that in ., (obtained from .4/ by contraction of Sy)
the set S*\ Sy is independent and has size k —|Sy|. Thus, the algorithm underlying
Theorem 8.1 will find some set I of size k —|Sy| that is independent in all matroids
A, forve D\ S,.

We claim that U Sy is a vector connectivity set for (G,A, k). Let v € D\ Sy. We
know that I is independent in ., and, thus, S:= U S, is independent in .|, by
Proposition 8.3. Clearly, S is also independent in .. Thus, in G, there are |S| = k
paths from T to S. This entails ¢ = A(v) vertex-disjoint paths from {v,...,v;} to S
that each contain no further vertex of T since |T| = k. By construction of G,, we
directly get A(v) paths from v to S in G that are vertex-disjoint except for overlap
in v. Thus, S satisfies the demand of each v € D\ S,. Since S 2 S, we see that S
satisfies all demands. Thus, the algorithm returns a feasible solution, as required.

Success probability. We now set the success probability parameters p;, p, of the
algorithms underlying Theorems 8.1 and 8.2 so to achieve an overall success prob-
ability of at least 1 —1/2P. It is only crucial that in the iteration of the algorithm in
which Sy = §* n D all the at most k* + k gammoid representations are computed
successfully and that then the matroid intersection algorithm successfully finds a
suitable independent set. Setting p; := p, := g and k' := k® + k + 1, the probability
that all these algorithms succeed is (1 —1/29)%". We would like this probability to be
at least 1 — 1/2P; let us find a ¢ that satisfies this. Taking the 29th power and root
and the (27 — 1)th power and root, respectively, we get

1 24 ZkT; 1 2P-1 ﬁ
-2 = (b2 )
24 2p
Using the fact that for all x > 0 we have
s <e<b=2)
1-—| <=<[1-—]|,
x+1 e X
we see that Inequality (8.2) is implied by
=K =1
el = e2P-1,
Taking the natural logarithm and rearranging terms, we get 29 = (2” — 1)k’. Hence,

it suffices to set g = p +logk’. (Note that g is polynomial in p and k.)

190



8.5. Kernelization outline and non-constructive argument

Running time. The algorithm from Theorem 8.1 for finding a set of size k' that is
independent in ¢ matroids is a fixed-parameter algorithm with respect to k' + ¢. We
have k' < k and ¢ < |D| < k® + k in all iterations of our algorithm and there are at
most (k° + k)* iterations. Combining this with the fact that the error parameter g
is polynomial in p and k, and with the polynomial running time for computing the
matroid representation (Theorem 8.2), we obtain overall fixed-parameter running
time with respect to k. O

Concerning a more precise running time bound for the algorithm in Theorem 8.3,
the best upper bound we can give is in 2%*" . Q(pn?). Hence, it does not seem
worthwhile to implement the algorithm without further improvements. However,
Theorem 8.3 does give a good indication that there is no strong lower bound on the
running time of practical algorithms for VECTOR CONNECTIVITY with small k.

8.5. Kernelization outline and non-constructive
argument
We now sketch an argument that shows that there is a vertex-linear kernelization for
VECTOR d-CONNECTIVITY. Recall that, herein, we treat the maximum demand d as
a problem-specific constant. This section also serves as an outline for our kernel-
ization argument in Section 8.6.
Given an instance of VECTOR d-CONNECTIVITY, we proceed in three steps.
1. Identify a family % of vertex sets such that

a) theunion U%¥ ofall sets in % contains the optimal solution without loss
of generality,

b) for each X € X, the size of N(X) is upper bounded by a constant,
c) allsets X € X can be enumerated in polynomial time, and
d) if we assume that each X € % has constant size, then |% | is bounded

from above by a linear function in k (and exponential in d).

2. For each X € ¥ such that | X| is larger than some constant, replace G[X] by an
equivalent but smaller, constant-size gadget.

3. Remove all vertices not contained in Uxco (X U N(X)) from G.
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The family & in Step 1 is based on Cicalese, Milani¢, and Rizzi’s characterization
of vector connectivity sets in terms of hitting sets of a special hypergraph [CMR15].
For Step 2 we use a generalized notion of a so-called protrusion replacement al-
gorithm by Fomin et al. [Fom+13]. Finally, for Step 3, we use the so-called torso
operation which removes the superfluous vertices, but keeps the connections that
they provide intact. Note that these three steps indeed imply a vertex-linear kernel-
ization for VECTOR d-CONNECTIVITY: After Step 3 only vertices in Uxco (X U N(X))
remain, each X € % has constant size after Step 2 has been carried out and each
N(X), X € %, has constant size by Condition (1b) on % . Finally, the number of sets
in % is upper bounded linearly in the solution size k (Condition (1d) on %), yield-
ing the overall vertex-linear upper bound. We now explain the three steps in more
detail.

Step 1: The family °C. If the neighborhood of X < V(G) of the input graph G is
smaller than the largest demand of a vertex v € X, then every solution must select at
least one vertex in X to satisfy v (by Menger’s Theorem). We now introduce notation
for a set family & that contains all such sets but additionally restrict it to (inclusion-
wise) minimal sets X where the demand of some vertexin X exceeds |N(X)|. We use
the minimality condition later in Section 8.6. We then state the result of Cicalese,
Milanic¢, and Rizzi [CMR15] using our notation.

Definition 8.1 (% (G, 1)). Let G= (V,E) and let A: V — N. The family % (G, 1) con-
tains all minimal sets X < V such that

(i) G[X]is connected and

(ii) thereis avertex v € X with A(v) > |[N(X)]|.

Using this notation, we adapt Proposition 1 by Cicalese, Milani¢, and Rizzi [CMR15]
to obtain the following.

Proposition 8.4 (Cicalese, Milani¢, and Rizzi [CMR15]). Let G be a graph and let
A: V(G) — N be a demand function. Let & := % (G, A). Then every set SC V(G) is a
vector connectivity set for (G, A) if and only if it is a hitting set for %, that is, it has a
nonempty intersection with each X € .

Proof. Cicalese, Milani¢, and Rizzi [CMR15] proved Proposition 8.4 without the
minimality restriction, allowing for a larger family, say %’ * 2 %. Clearly, hitting sets
for ' * are also hitting sets for 2. Conversely, since 2 * \ % contains only supersets
of sets in &, hitting sets for % are also hitting sets for 20 *. O
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Note that for the general case of VECTOR CONNECTIVITY with unrestricted de-
mands the size of ¥ (G, 1) can be exponential in |V (G)|; for VECTOR d-CONNECTIVI-
TY there is a straightforward upper bound of || = O(IV(G)|%) since IN(X)| < d — 1.
However, even for VECTOR d-CONNECTIVITY, the sets X € & are not necessarily
small and, thus, it is not prudent to take a hitting set approach for the kerneliza-
tion.

From Proposition 8.4 it directly follows that family % fulfills Condition (1a), that
is, U% contains the optimal solution without loss of generality. Furthermore, since
IN(X)| < d, Condition (1b) is fulfilled and we can enumerate all X € % in polyno-
mial time (Condition (1c)), by enumerating all possibilities for N(X) and checking
the demands in the connected components of G — N(X). To upper bound |%| in
the case that each X € % has constant size (Condition (1d)), we use Rule 8.2 and the
fact that yes-instances reduced with respect to Rule 8.2 contain at most d” k vertices
with nonzero demand. Using the connectivity of X and the fact that each X € %
contains at least one vertex with nonzero demand, we can enumerate the sets X
using a search tree procedure: We start with X = {v} for a vertex v with nonzero de-
mand, pick a vertex u € Ng(X) and branch into two cases: to add u to X or to fix u
outside of X. In the first case, X grows (recall that it has size upper bounded by a
constant, say ¢) and in the second case, the vertices separating X from the rest of
the graph grows (recall that, by Definition 8.1, there are at most d of these vertices).
Thus, there are overall at most 2*?d%k sets X € %. This bound can be improved
slightly by using the two-families theorem of Bollobds, see Jukna [Juk01].

In comparison, in Section 8.6 we consider a set family % that is different from &
(but contains supersets of all those sets) and works as well in the kernelization ar-
gument. We obtain an explicit upper bound d*k - 2%°+d on the number of sets in Yy,
that is, the upper bound does not depend on the constant size-bound ¢ on the sets
in the family.

Step 2: Replacing G[X]. We now need a way to successively replace G[X], where
X €% and | X| is larger than some constant, by an equivalent smaller, constant-size
gadget. Such a procedure is one of the main ingredients in so-called meta kerneliza-
tion algorithms, where the aim is to prove polynomial problem kernels for all prob-
lems in general sparse graph classes that can be expressed in a certain way [Bod+16;
Fom+10; Kim+15].

For the meta kernelization approach to work, however, we need an algorithm to
analyze G[X] in order to find out by what kind of gadget we should replace it. A
basic assumption that underlies many results in meta kernelization is that the rele-
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vant G[X] have bounded treewidth. In general, if G[X] has bounded treewidth and
|Ng(X)| is upper bounded by a constant, then X is called a protrusion. However,
on the face of it, for VECTOR d-CONNECTIVITY there is no reason to assume small
treewidth and we also do not restrict the input graphs.!” Vertex-linear kernels for
problems on general graphs are much more rare than the wealth of such kernels on
sparse input graphs.

Arguably, the most crucial properties of a protrusion are the small boundary and
the fact that we can efficiently compute subproblems on the protrusion; in princi-
ple, we do not need bounded treewidth. Intuitively, we essentially want to know the
best solution value for each choice of interaction of a global solution for the whole
graph with the boundary of the protrusion. Thus, Fomin et al. [Fom+13] defined a
relaxed variant of protrusions by insisting only on a small boundary and efficient al-
gorithms for solving subproblems rather than demanding bounded treewidth. The
efficient algorithm that they demand comes down to an XP-algorithm with respect
to the solution size, which clearly exists for VECTOR d-CONNECTIVITY. Hence, there
is an efficient algorithm for analyzing the graph G[X].

To determine the constant-size gadget by which to replace G[X], Fomin et al. fur-
ther demand that the treated problem, VECTOR d-CONNECTIVITY in our case, has
finite integer index and is monotone. Being monotone basically means that a par-
tial solution for G[X] can be extended to a solution for the whole graph, and finite
integer index means that there is only a finite number of classes of graphs G[X] such
that the graphs in each class interact in the same way with the rest of the graph.
Monotonicity can directly be checked for VECTOR d-CONNECTIVITY and finite inte-
ger index can be proved by using techniques of Bodlaender et al. [Bod+16]. Thus,
combining this with the techniques of Fomin et al. [Fom+13], we can analyze the
graph G[X] and find an equivalent, constant-size replacement efficiently.

The resulting algorithm, however, contains as hard-wired constants the possible
replacements for G[X]. These are guaranteed to exist and to be finitely many by the
finite integer index property; however, we are not aware of a method in the litera-
ture to compute the possible replacements.!'® In contrast, in Section 8.6 we provide a
constructive description of what constitutes gadget graphs equivalent to G[X]. This

17There might be a way to obtain bounded treewidth for G[X] using the irrelevant vertices tech-
nique [RS12], which we did not explore, however.

18The proof for finite integer index by Bodlaender et al. [Bod+16] constructs for every instance of G[X]
a short string by which we can identify the equivalence class of G[X] with respect to the possible
interactions with the rest of the graph. However, in absence of bounded treewidth we are not aware
of a method to either compute this string efficiently, or to construct an automaton that recognizes
the equivalence classes from which we can read off minimal replacements for an instance in a given
equivalence class.
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enables us to give a single algorithm that works for all values of d based on maxi-
mum flow computations, rather than requiring for each value of d an algorithm
with hard-wired representative gadgets.

Step 3: Removing vertices not in Jx (X U N(X)). In contrast to the two previ-
ous steps, this is rather simple: By Proposition 8.4 we can assume that all solu-
tion vertices are contained in % . Moreover, each vertex with nonzero demand is
contained in J% . That is, the only purpose of the remaining vertices outside of
U is to provide paths that connect vertices in U% . Hence, we can remove each
connected component C in G—U% from G and make its neighborhood N(C) a
clique in G. This is known as the torso operation, see Marx, O’Sullivan, and Razgon
[MOR13], for example. We give a formal correctness proof in Section 8.6.

In summary, the above shows that there is a vertex-linear kernelization algorithm
for VECTOR d-CONNECTIVITY. However, the proof is not constructive, and the up-
per bound on the kernel size depends exponentially on the (unknown) size of the
replacement gadgets for G[X]. In Section 8.6 we provide a proof based on the same
outline that circumvents both these drawbacks.

8.6. Vertex-linear kernelization for constant demand

In this section we give a vertex-linear kernelization for VECTOR d-CONNECTIVITY
parameterized by k. Recall that, herein, we treat the upper bound d on the de-
mand of each vertex as a problem-specific constant. We will leverage Rules 8.1
and 8.2 throughout this section. Hence, we will, sometimes tacitly, assume that
all instances of VECTOR d-CONNECTIVITY are reduced with respect to these rules.

The kernelization follows a similar outline as the one in Section 8.5, but differs
in two key points. First, we do not use the family % (G, 1) from Definition 8.1 di-
rectly; in fact, we not even materialize any set in % but use them only for analysis.
We instead use a family % = % (G, 1) which contains larger sets. The advantage is
that the cardinality of % is smaller, leading to a upper bound on |%| that does not
depend exponentially on the maximum size of the sets in % as was the case for the
family % .

Second, rather than relying on the finite integer index property of VECTOR d-CON-
NECTIVITY in order to replace the G[Y], Y € %, by constant-size gadgets, we charac-
terize their interaction with the rest of the graph directly, which yields an algorithm
that can analyze the G[Y] and find a constant-size replacement gadget. The charac-
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terization can also be seen as a direct way to prove finite integer index for VECTOR
d-CONNECTIVITY; of course, we get the stronger result that includes polynomial-
time checkable equivalence classes.

This section comprises three parts. In Section 8.6.1, we describe the family % and
give an upper bound on its cardinality. Then, in Section 8.6.2 we give a characteri-
zation of the G[Y] and a reduction rule that replaces them by constant-size gadgets.
Finally, in Section 8.6.3, we complete the kernelization algorithm and prove that it
yields a vertex-linear problem kernel for VECTOR d-CONNECTIVITY with respect to
the solution size k.

8.6.1. The family %

As the first step towards the kernelization, we prove that instances (G, A, k) of VEC-
TOR d-CONNECTIVITY that are reduced with respect to Rule 8.1 have the property
that every set X € % (G, 1) contains at most d° vertices with nonzero demand. For
ease of presentation we define D(G, 1) := {v € V(G) | A(v) = 1}, and use the short-
hand D = D(G, 1) whenever G and A are clear from context.

Lemma 8.5. Forall X €% we have |[XNnD|<(d-1)d?<d>.

Proof. Recall from Section 8.3 the definition of C(v) as the unique closest mini-
mum v, D' (v)-separator, where D' (v) = {u € V \ {v} | A(u) = A(v)}, and the definition
of R(v) as the connected component of v in G — C(v). Fix some r € {1,...,d}, define
D, ={ve D|A(v) = r}, and consider the relation of R(v) with X for v € D, n X. Note
that D, \ {v} € D'(v).

If R(v) € X, then this would contradict minimality of X: By reducedness with
respect to Rule 8.1, we have |C(v)| < A(v) or else the rule would apply to v. But
then R(v) with N(R(v)) = C(v) fulfills the conditions for being in %, except possibly
for minimality. This would prevent X O R(v) from being included in % . Else, if
R(v) = X, then no further vertex of D, isin X, since C(v) is also a v, D, \{v}-separator
as D, \ {v} € D'(v). In this case we get, | XN D,|=1.

In the remaining case, there is no v € D, n X with R(v) € X. It follows that for
all ve D, n X we have R(v) n X # @ but R(v) Q X. This implies R(v) N N(X) # @
since both G[X] and G[R(v)] are connected. We will use this fact to upper bound
the number of vertices with demand r in X. Let w € N(X) and let W € D, n X
contain those vertices v of demand r whose set R(v) contains w; each R(v) must
contain at least one vertex in N(X). Thus, for any two vertices u, v € W we find that
their sets R(u) and R(v) have a nonempty intersection, since they share at least w.
We can now repeat the same analysis as used in the proof of Lemma 8.4 to get that
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|[W| < 2r—1. Over all choices of w we get an upper bound of (d —1)(2r — 1) vertices
of demand r in X.

We showed that for each choice of r € {1,...,d} we have at most (d —1)(2r — 1)
vertices of demand r in X. Summingoverall r € {1,..., d} this yields an upper bound
of (d —1)d? < d® for | X n D, as claimed. O

To arrive at our kernelization we will later establish a reduction rule that shrinks
connected subgraphs with small boundary and bounded number of demand ver-
tices to constant size. This is akin to black box protrusion-based reduction rules,
especially to Fomin et al.’s approach [Fom+13], but we give an explicit algorithm
that comes down to elementary two-way flow computations. To get an explicit (lin-
ear) upper bound for the number of subproblems, we introduce a new family %
with larger but (as we will see) fewer sets, and apply the reduction process to graphs
GlY] with Y € % instead.

Definition 8.2 (¥ (G, A,d)). Let G=(V,E),letd e N, andlet A: V — {0,...,d}. The
family % (G, A, d) contains all sets Y < V with the following properties.
(i) G[Y]is connected.
(i) |YND| < d®, thatis, Y contains at most d° vertices v with nonzero demand A(v).
(iii) IN(Y)|<d, thatis, Y has at most d neighbors.
(iv) There is a vertex v € Y n D, that is, A(v) = 1, such that N(Y) is the unique
closest minimum v, D \ Y -separator.

For an instance (G, A, d) of VECTOR d-CONNECTIVITY, we relate o’ = 2% (G, 1) and
Y =% (G, A,d) by proving that every set X € % is contained in at least one Y € ¥.
Intuitively, this proves that all “interesting” parts of the instance are contained in
subgraphs G[Y].

Lemma 8.6. Let G=(V,E) agraph,deN,and A: V —{0,...,d}. Let X := %X (G, 1)
and % :=% (G, A,d). Then for all X € there exists Y € W with X Y.

Proof. Let X € % and pick v € X with A(v) > [N(X)|. Let D; = D\ X, that is, those
vertices with nonzero demand that are not in X. Now, let Z < V' \ {v} the minimum
v, Dy -separator that is closest to v, and let Y be the connected component of v in
G-Z;thus Z=N(Y). Weclaimthat Xc Yand Y € %.

First, assume for contradiction that X ¢ Y. We use the submodularity of f: 2V —
N: U — |N(U)|, which implies

FX+fY) = f(XNY)+f(XUY). 8.3)
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Note that DN (XuY)= D1 NnX)u(D;NnY) =9 and that v € XU Y. It follows
that N(X U Y) is also a v, D,-separator and, using that Z is minimum, we get that
f(XUY)=|NXXUY)| =|Z| = IN(Y)| = f(Y). Plugging this into Inequality (8.3)
we obtain f(X) = f(XNnY). Notethat ve XnY and D;1n(XnY) = @, implying
that N(XNnY) is also a v, D,-separator of size at most |[N(X)| = f(X). From X Q Y
we get XNY C X. Butthen X NY is a proper subset of X containing v and having
IN(XNY)| < |NX)| < A(v). It follows that the connected component of vin G[XNY]
also has neighborhood size (in G) less than A(v). This contradicts the fact that X is
a minimal set fulfilling the properties of Definition 8.1, which is required for X € °C.
We conclude that, indeed, X < Y.

Second, let us check that Y fulfills the requirements for Y € % =% (G, 1, d) (as in
Definition 8.2). Note that Z separates v from all vertices with nonzero demand that
are notin X, since D; = D\ X. Thus, every vertex with nonzero demand in Y is also
contained in X, thatis, DNY < Dn X, which upper bounds their number by d° using
Lemma 8.5. It also follows that D\ X = D\Y, since X € Y implies DnX<cDnY.
Furthermore, G[Y] is connected and N(Y) is a minimum v, D \ Y -separator that is
closest to v; note that D; = D\ X = D\'Y. Finally, since N(X) is also a v, D, -separator
and N(Y) is minimum, we conclude that |N(Y)| < [N(X)| < A(v) < d. Thus, indeed,
Y € % as claimed. O

We prove that the number of sets Y € % is linear in k for every fixed d. Thus, by
later shrinking the size of sets in % to some constant we get O(k) vertices in total
oversets Y e .

Lemma 8.7. Let (G, A, k) an instance of VECTOR d-CONNECTIVITY with A: V(G) —
0,...,d} and let ¥ := % (G, A, d). Then || < d?k-24°+4.

Proof. We prove the lemma by giving a branching process that enumerates all sets
Y € % within the leaves of its branching tree and by showing that the tree has at
most d2k-24"+ Jeaves in which sets Y are found. Given G = (V,E), 1: V — {0, ..., d},
and k € N, the branching process works as follows. (Recall D = {ve V| A(v) = 1}.)

1. As a first step, branch on choosing one vertex v € D. Recall that an instance
reduced with respect to Rule 8.2 has |D| < d?k. Hence, this branching step
incurs a factor of | D| < d?k to the number of leaves and creates one node for
each choice.

2. Maintain disjoint sets Dy, D; € D, starting with D, := {v} and D, := @, and the
minimum v, D;-separator Z that is closest to v; initially Z = ¢. Throughout,
use Y to refer to the connected component of vin G— Z.
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3. All further branchings work as follows: Pick an arbitrary vertex p € D\ (Dy U
D,) that is reachable from v in G — Z. Branch on either adding this vertex to
D, or to Dy, creating a child node for each choice. In the branch where p is
added to D; update the minimum v, D;-separator Z closest to v and update
the connected component Y of vin G- Z.

4. Terminate a branch if one of the following three termination conditions oc-
curs.

a) The size of D, exceeds d°.
b) The size of Z exceeds d.
¢) No vertex of D\ (DyU D,) is reachable from vin G- Z.

We now analyze this process. First, we show that every set of ¥ occurs as the set Y
in some leaf node of the process, that is, a node to which a termination condition
applies. Second, we show that the number of such leaf nodes is upper bounded by
D _2d3+d < dzk_2d3+d_

Each set of % occurs in some leaf. We show that every set Y* € % is found as
the set Y of at least one leaf of the branching tree. To this end, fix an arbitrary set
Y* €% andlet Z* := Ng(Y™*). Furthermore, let Dj := Y*nD. Let v€ Y* n D such
that Z* = N(Y™) is the unique minimum, closest v, D \ Y*-separator. In the first
branching step the process can clearly pick v for its choice of vertex in D; in this
case it continues with Dy = {v}, D1 = @, Z = ¢, and Y is the connected component
of v in G. Consider nodes in the branching process with current sets Y, Dy, Dy, and
Z = N(Y) fulfilling the requirements that

e YO Y*and
. DOQDS anleﬁD(’;ZQS.

Among such nodes pick one that is either a leaf or such that neither child node ful-
fills the requirements. Clearly, the node with Dy = {v}, D; = @, Z = ¢, and Y equal
to the component of v in G fulfills the requirements, so we can indeed always find
such a node by starting at this one and following child nodes fulfilling the require-
ments until reaching a leaf or until both child nodes do not fulfill the requirements.
We now consider these two cases individually.

Case 1: Leaf node fulfilling the requirements. 1f the chosen node is a leaf then one
of the three termination conditions must hold. Clearly, we cannot have |Dy| > d°
since that would imply |Dg| > a3, violating the definition of % and the sets therein.
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Similarly, we cannot have | Z| > d: In this regard, note that D, n Dj = ¢ implies that
D, D\Dy=D\(DnY*)=D\Y". It follows directly that Z*, which separates v
from D\ Y*, also separates v from D;. But then the size of Z* is an upper bound
for the minimum separator size for v, D;-separators and | Z| > d would imply | Z*| =
|Z| > d, again violating the definition of %.

Thus, in case of a leaf node the only remaining option is that no further vertex of
D\ (Dyu D;) isreachable from vin G- Z = G— N(Y). Recall that Z is the minimum
closest v, D; -separator. By termination Z also separates v from D\(DyUD;), making
it a closest v, D\ Dy-separator. Since Dy € Dy, it follows that D\ Y* = D\ Dj <
D\ Dy. Thus, the size of the minimum v, D\ Y*-separator Z* is upper bounded by
|Z| since Z is also a v, D\ Y *-separator. Recall that we have Y 2 Y*, which implies
that Z* = N(Y*) also separates v from Z = N(Y). Now, because Z is closest to v,
it is the unique v, Z-separator of size at most | Z|, which implies Z = Z* since we
justderived that | Z*| < |Z|. Thus, Y = Y* since both are identified as the connected
component of vin G- Z = G- Z*. We conclude that Y* is equal to Y in the chosen
node if it is a leaf.

Case 2: Internal node fulfilling the requirements. Now, let us consider the case
that the chosen node is not a leaf of the branching tree. We want to check that
at least one possible branch must lead us to a child node that also fulfills our re-
strictions; this would contradict our choice of node that is either a leaf or such that
neither child node fulfills the requirements, implying that we necessarily pick a leaf
node. Thus, for each Y* € % there is a leaf of the branching tree with Y = Y*. For
clarity, in the following discussion we will use Y, D, etc. for the current node and
Y', Dy, etc. for the considered child node in the branching tree.

Since we are not in a leaf in this case, the process chooses an arbitrary vertex
p € D\ (DyU Dy) that is reachable from v in G — Z to branch on. If p € D, then the
child node corresponding to adding p to Dy has Dy = Dy U {p} < Dj and D] = D;.
Thus, Z' = Z and, hence, Y' = Y 2 Y*. Thus, the child node fulfills all requirements;
a contradiction.

Otherwise, if p ¢ D;;, then p € D\Dj = D\Y*. Thus, the child node corresponding
to adding p to D, has D, = Dy < Dy and D = D, U {p}, implying that D} n D =
Dy N D; = @. For the desired contradiction it remains to prove that Y’ 2 Y since
we assumed that neither child fulfills the requirements.

Assume that Y* ¢ Y'. Thus, Y*NY' C Y*. We again use the submodularity of the
function f: 2" — N: U~ |N(U)| and get

fY+fY) = fY'nY)+ f(Y UY)). (8.4)
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Since ve Y*NY'C Y* and N(Y*) is closest to v it follows that f(Y*NnY') = |N(Y*n
Y| > |N(Y*)| = f(Y*), by Proposition 8.2. Plugging this into Inequality (8.4) yields
f(Y*uY’) < f(Y"); let us check that this violates the fact that Z' = N(Y’) is a mini-
mum v, D}-separator: We have ve Y* UY' and

Din(Y'uY) = (DinYHuD;nY) =D nY)NnD = DinD; = @.
—_— ——
<D =g

Thus, indeed, we find that N(Y*uY") is a v, D} -separator and we know from f(Y* U
Y') < f(Y") thatitis smaller than the assumed minimum v, D/ -separator Z' = N(Y");
a contradiction.

Hence, by our choice of node that fulfills the requirements and is a leaf or neither
child fulfills the requirements, we must obtain a leaf with set Y equal to Y*.

Number of leaves containing some Y* € % . We have seen that every set Y* € % is
equal to the set Y of some leaf node fulfilling certain requirements. Furthermore,
leaves with | Dy| > d° or | Z| > d were shown not to correspond to any Y € . We will
now analyze the number of leaf nodes with |[Dg| < d®and |Z| <d.

Crucially, we show that each branching increases |Dy| +|Z]|. For adding p to D,
this is obvious, for adding p to D; we prove it next. Concretely, we prove that adding
p to D, increases the minimum size of v, D;-separators by at least one. (This is
essentially folklore but we provide a proof for completeness.) Use D} = D; U {p}
and let Z and Z’ denote minimum v, D;- and v, D}-separators closest to v; use Y
and Y’ for the components of v in G— Z and G — Z’, respectively. We use again the
submodular function f: 2V —N: U — |Ng(U)| and obtain

fN+fY) = fYuYH+f(YnY". (8.5)

Both Z and Z' separate v from D;. Thus, Din(YuY') =@ and N(YuY’) isalso a
v, Dy -separator since it creates the component Y U Y’ for vin G— N(Y U Y’). Since
Z is a minimum v, D;-separator, we must have f(YUY") = IN(YuY")| = |Z| =
f(Y). Plugging this into Inequality (8.5) yields f(Y nY") = f(Y"). If f(Y) =1|Z'| <
|Z| = f(Y), that is, if adding p to D; does not increase the minimum size of v, D;-
separa‘tors,19 then f(YNY’') <|Z] and N(Y nY’) is also a v, D,-separator of size at
most |Z|. However, as p ¢ Y, since Z' separates v from D| = D;U{p}, theset YnY"is
a strict subset of Y; this is a contradiction to Z being closest to v. As a consequence,

9These values coincide with f(Y) and f(Y’) since we chose Z = N(Y) and Z' = N(Y’) as minimum
v,D1-and v, D’1 -separators.
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the size of closest, minimum v, D, -separators increases whenever we branch into
adding a so far reachable vertex to D;.

Thus, every child node has |Dg| +|Z'| = |[Do| + | Z| + 1 and, clearly, neither value
decreases when branching. Thus, the process can only reach leaf nodes with |Dy| <
d® and | Z| < d viainternal nodes where | Dy|+|Z| < d®+d. It follows that the number
of such leaf nodes is upper bounded by | D| - 2@°+d < 2. 24°+d (Once |Dy| = d° or
|Z| = d at most one child node can lead to such a leaf, since the other child violates
the restriction on |Dy| or | Z|; these branches are not counted.) Thus, |%¥| < d?k-
2”’3”, as claimed. O

8.6.2. Reducing the size of sets in %Y

In this section, we explain and prove how to reduce the size of sets Y € % through
modifications on the graph G. At a high level, this will be achieved by replacing
subgraphs G[Y] by “equivalent” subgraphs of bounded size. When this is done,
we know that the total number of vertices in sets Y € % is O(k). Since this part is
somewhat technical and long, let us try to illustrate it first.

Illustration of the approach

Consider a set Y € % and its (small) neighborhood Z := Ng(Y). Think of deciding
whether (G, A, k) is yes as a game between two players, Alice and Bob. Alice sees
only G[Y U Z] and wants to satisfy the demands of all vertices in Y, and Bob sees
only G — Y and wants to satisfy the demands of the vertices in V' \ Y. To achieve a
small solution the players must cooperate and exchange information about paths
between vertices in Z, or between Z and vertices of a partial solution; paths that
they can provide or that they require.

Since our goal is to simplify G[Y], all notation is given using Alice’s perspective.
Crucially, we know that there are only constantly many vertices with nonzero de-
mand in Y, which can be seen to imply that the intersection of optimal solutions
with Y is upper bounded (Lemma 8.8 below). Thus, Alice can try all partial solu-
tions Sy < Y of bounded size and determine what facilities each Sy provides for
Bob, and what requirements she has on Bob to satisfy her demand vertices using Sy
and further paths through G-Y.

Let us be slightly more concrete about facilities and requirements, before making
them fully formal. If we fix some partial solution Sy < Y, then Alice can offer (as
facilities) to Bob to connect some subsets of Z to Sy by disjoint paths in G[Y U Z],
and to, additionally, provide paths connecting certain sets of vertices in Z. There
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can be a large number of such options for each Sy. Similarly, to fulfill demands
in Y, Alice may need (as requirements) that Bob can provide paths from certain
subsets of Z to a solution and, additionally, paths connecting sets of vertices in Z.
(Note that there is some asymmetry here since Bob’s part is too large to fully analyze,
but this will be no problem.) Fortunately, while there may be many choices for Sy,
and many facilities and requirements relative to a single Sy, it will turn out that the
overall number of things to keep track of is bounded (in d); this will be called the
signature of G[Y u Z]. Ultimately, we will be able to replace G[Y U Z] by a bounded-
size graph with the same signature.

Formal proof

We now make our approach formal. For convenience, let us introduce the follow-
ing notation. Below we deal with sets of paths that do not necessarily share the
endpoint v but that are still pairwise vertex-disjoint except for possibly sharing v
as an endpoint. Call such a set of paths v-independent. For a graph G, a vertex v,
an integer i, and two vertex subsets A, B < V(G) we define a (v, i, A, B) -constrained
path packing as a set of i + | A| v-independent paths from Au {v} to B in G. Herein
we explicitly allow v ¢ V(G) if i = 0. If i = 0, then we simplify the notation and
speak of (A, B)-constrained path packings instead. Note that, regardless of whether
v € V(G), the paths saturate each vertex in A. Furthermore, we tacitly assume that,
if AnB # @, then the paths corresponding to An B in the packing are of length zero,
that is, they each comprise a single vertex.

Let us now begin with the definition of signatures. In the following, let G and 1
represent the graph and demand function of an instance of VECTOR d-CONNECTI-
VITY. To reduce the amount of notation we also fixaset Y < V(G) such that |YNnD| <
d3 and [N(Y)| < d. (In the kernelization procedure, the role of Y will be assumed by
some set in %.) We denote the neighborhood N(Y) by Z.

We will first take care of the requirements that Alice has. The facilities will be
treated later. As mentioned above, a requirement comprises several sets of paths
outside of G[Y] one set of which needs to be provided by Bob (and his part of the
solution) in order to satisfy the demand of a vertex v € DnY. To this end, we define
a satisfying connector. In the following Y w Z denotes the disjoint union of the sets
Y and Z.

Definition 8.3 (Satisfying connector). Let H be a graph onvertexset YwZ,letve,
let v have positive demand d,,, and let Sy < Y be a partial solution. A tuple (A, B, C)
with A, B,C < Z, pairwise disjoint, is a satisfying connector for v with respect to Sy
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in H if either v € Sy or thereisa (v,d,, A, BUSy)-constrained path packingin H—-C.
The set of all satisfying connectors for v with respect to the partial solution Sy is
denoted by sat(H, Z,d,, Sy, v).

Now we can formally define the requirement of Alice. Intuitively, Bob should pro-
vide paths that “hit” each set of satisfying connectors induced by a vertex with pos-
itive demand.

Definition 8.4 (Requirement). Let H be a graph on vertexset Y w Z, let 1: Y —
{0,...,d} be a demand function on Y, and let Sy < Y be a partial solution. The
requirement req(H, Z, A, Sy) is the collection

{sat(H, Z,A(v),Sy,v) |lve D(H,A)nY}.

After the definition of signatures we will prove that the demand of each vertex
in D(A) n'Y can be met if and only if the requirement of Alice is met by a suitable
path packing provided by Bob.

Note that, in order to be able to replace G[Y] by a different graph, we need to
know which requirements it imposes for every relevant choice of the partial solu-
tion Sy. Since we are aiming for a polynomial-time kernelization, we also need to
be able to compute them in polynomial time. For this, we first upper bound the size
of Sy.

Lemma 8.8. For each vector connectivity set S of (G, 1), there is a vector connec-
tivity set S’ such that |S'| < [S| and such that |[Y N S'| <= d® +d.

Proof. Assume that|Y NS| = d3+d. Remove all vertices in (YU Z)NS from S and add
all vertices in DN Y as well as all vertices in Z. Denote the resulting vertex set by S'.
Recall that |DNY| < d® by definition of Y. Hence, |YNS'| < |DNY|+|Ng(Y)| < ad+d
and, thus, |S'| < |S|. Clearly, S’ satisfies all demands of vertices in Y and Z since
(DNY)uZcS'. Forvertices v € D\ (Y U Z), note that at most | Z| paths used for
reaching S from v can traverse Z, and all of those can be shortened toendin Z < §';
all other paths avoid Z and thereby Y U Z, implying that they still end in vertices of
S\(Yuz)=8\(Yu2. O

We are almost ready to compute the requirements; crucially, we need to check
whether there are suitable (v, d, A, B)-constrained path packings in polynomial time.

Lemma 8.9. Let G be a graph, v € V(G), d €N, and A,B < V(G). It is possible to
check in polynomial time whether there is a (v,d, A, B)-constrained path packing
in G.
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Proof sketch. We reduce the check to computing a maximum flow in a modified
graph as follows. First, remove each vertex in An B from the graph—we can assume
that they represent paths of length zero in the desired path packing. Then, add
d—1 copies of v to G, each adjacent to all neighbors of v. Then, attach a new vertex s
to each vertex in A and the copies of v, and attach a new vertex ¢ to each vertex in
B. It is not hard to check that there are d + | A\ B| internally vertex-disjoint paths
from s to ¢ in the modified graph if and only if there is a (v,d, A, B)-constrained
path packing in the original graph.

Checking whether there are enough internally vertex-disjoint s-¢ paths can be
done in polynomial time using Proposition 8.1. O

Lemma8.10. LetY €%, Z = N(Y),and H = G[Y u Z]. The collection
{req(H, Z,Aly,Sy) | Sy € Y A[Sy| < d* +d}
is computable in polynomial time. Herein, A|y denotes A restricted to Y.

Proof. By enumerating all Sy € Y of size at most d® + d in n°“”) time, that s, poly-
nomial time, the task reduces to computing req(H, Z, Aly, Sy) for a given Sy. To
do this, we compute the set of satisfying connectors for each vertex v in DNnY.
This in turn we do by simply iterating over all tuples (A, B, C) with A, B,C < Z, pair-
wise disjoint, and we check whether it is contained in sat(H, Z, A(v), Sy, v). Note
that | Z| < d. Hence, there are at most 2°@ € O(1) different tuples to check. Thus,
it remains to check whether in H — C there is a (v, A(v), A, BU Sy)-constrained path
packing. This can be done using Lemma 8.9. O

So far we have only talked about the requirements that Alice has on Bob. Now
let us come to the facilities that Alice provides. As mentioned, a facility models the
sets of paths inside of G[Y] that Alice, using her part of the solution, provides to
Bob so to satisfy the demand of each vertex in D\ Y. Let us first focus on vertices
inD\(YuZ2).

Definition 8.5 (Provided connector). Let H be a graph on vertex set Y w Z, and
let Sy € Y be a partial solution. A tuple (A, B, C) with A, B,C < Z, pairwise disjoint,
is a provided connector of Sy in H if there is a (A, B U Sy)-constrained path packing
in H-C.

We prove below that all demands of vertices in D\ (Y U Z) can be met if and only
if Alice provides suitable path packings to Bob. We take special care of vertices in
Dn Z, as they may need multiple paths into G[Y].
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Definition 8.6 (Provided special connector). Let H be a graph on vertexset Y v Z
and let Sy € Y. Atuple (z,i,A,B,C) with z € Z, A,B,C < Z\ {z}, pairwise disjoint,
and i €{0,...,d} is a provided special connector of Sy in H if thereisa (z,i, A, BUSy)-
constrained path packing in H - C.

We are now ready to give a formal definition of the facilities provided by Alice.

Definition 8.7 (Facility). Let H be a graph on vertexset Y w Z, andlet Sy € Y bea
partial solution. The facility fac(H, Z, Sy) of Sy in H is the set of all provided con-
nectors and provided special connectors of Sy.

Similarly to requirements, we need an efficient algorithm for computing the fa-
cilities; this basically follows from Lemma 8.9.

Lemma8.11. Let Y €%, Z = N(Y), and H = G[Y U Z]. The collection
{fac(H,Z,Sy) | Sy €Y A Syl < d® + d}
is computable in polynomial time.

Proof. We first enumerate all Sy € Y with |Sy| < d®+d in n°@ time and, for each
such Sy, we compute all provided connectors and provided special connectors.
This is done by iterating over all possible tuples (A, B,C) and (z, i, A, B, C) (there are
at most d?-2°@ € O(1) of them) and checking whether they indeed are provided
(special) connectors. This is done using Lemma 8.9. O

Now we can precisely define the signature of G[Y U Z] that we mentioned earlier.

Definition 8.8 (Signature). Let H be a graph on vertexset Y v Z, let A be a demand
function on Y, and let Sy < Y be a partial solution. The signature of H is the set

Slg(HrZr/l) = {(lSY|yreq(HyZ»/1! SY),faC(H,Z,SY))},
where Sy ranges over all Sy € Y such that |Sy| < d® +d.

We show below that we can safely replace Gz[Y U Z] with an arbitrary graph
G'[Y'uZ] that has the same signature. Let us now prove that there is a graph G'[Y'u
Z] of constant size with the same signature.

Lemma 8.12. There is a polynomial-time algorithm that receives Y e ¥, Z = N(Y),
G[Y u Z], and Aly as input and computes a graph G’ on vertex set Y’ U Z such
that G'[Z] = G[Z] and a demand function A': Y' — {0,...,d} such that sig(G[Y u
Z1,Z,Aly) =sig(G', Z,A") and |D(G’,1)| < d3. Moreover, the resulting G’ and A’ are
encoded using at most ¢(d) bits and G’ has at most ¢(d) vertices, for some com-
putable function ¢ depending only on d.
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Proof. The algorithm is as follows. First, compute sig(G[Y U Z], Z, A|ly) in polyno-
mial time using Lemmas 8.10 and 8.11. Then, generate all graphs G’ with G'[Z] =
G[Z] in the order of increasing number of vertices (break the remaining ties ar-
bitrarily). For each graph G/, iterate over all possible 1': V(G')\ Z — {0,...,d} and
check whether sig(GlY U Z], Z, Aly) = sig(G', Z,A") as well as |[D(G', ")| < d®. Clearly,
this procedure terminates and finds the required tuple (G, 1’) because the tuple
(G[Y U Z], Aly) witnesses its existence.

Without loss of generality, we may assume Z = {1,...,|Z|}. Now note that both re-
quirements and facilities contain only set systems over Z, tuples of elements of Z,
numbers in {1,...,0(d%)}, and the number of these entities is upper bounded by a
function of d. Hence, sig(G[Y U Z], Z, Aly) can be encoded using at most ¢ (| Z]) <
w(d) bits, where vy is some monotone ascending, computable function. Thus, since
sig(GIY U Z], Z, Aly) is the only input to the procedure that finds G’ and 1/, the pro-
cedure terminates after at most ¢'(y(d)) steps for some computable function ¢,
meaning that (G, ') is of size at most ¢’ (@ (d)). O

Now we can make the notion of replacing G[Y] more precise; it involves the glu-
ing operation o of two boundaried graphs. Recall the corresponding definitions
from Section 1.1. To simplify notation, we assume here that, whenever we glue two
boundaried graphs, that their boundaries are equal to some vertex subset Z de-
fined in the context, and that their boundary labelings are equal. Hence, gluing in
this context means to take disjoint union, to introduce two copies of each vertex
in Z, and then to identify each pair of copies of vertices in Z.

We arrive at the reduction rule aiming at reducing the size of Y.

Rule 8.3. Let (G, A, k) be an instance of VECTOR d-CONNECTIVITY that is reduced
with respect to Rules 8.1 and 8.2. Let Y € %, where % is as in Definition 8.2, and
let Z = Ng(Y). Furthermore, let (G',A') be as in Lemma 8.12. If |Y| > |V(G)\ Z|,
then replace G by G'o(G — Y) and replace A by Alygny UA'.

Before proving that Rule 8.3 is correct, we need a technical lemma that shows how
paths from a demand vertex to a vertex-connectivity set are split over a separator.
For this, we need the following notation. A separation of a graph Gis a tuple (T, U) of
two vertex subsets T, U < V(G) such that TUU = V(G) and there is no edge between
T\U and U\ T in G. The order of a separation (T,U) is | T N U].

Lemma 8.13. Let G be a graph, (T,U) a separationof G, Z=TnU, Sc V(G), ve
V(G)\S, and d € N. There are d v-independent paths from v to S in G if and only if
thereis aninteger i € {0,...,d} and a partition of Z\{v} into four vertex sets A, B, C, D
such that
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(i) ifveT\U,theni=d,andifve U\ T, theni=0,
(i) thereisa (v,i,A, BU(S\U))-constrained path packingin G[T \ C], and
(iii) thereisa (v,d—1i,B, AU (SnU))-constrained path packing in G[U \ D].

Proof. (=): Assume first that there are d v-independent paths from v to Sin G and
let % be a corresponding path packing (with overlap only in start vertex v). We may
safely assume that paths in % have no vertices of S as internal vertices; else they
could be shortened. We will select A,B,C,D < Z\{v} and i € {0,...,d} such that
the path packings exist as stated in the lemma. For the purpose of getting a clear
partitioning of the edges contained in Z, we show that one of the packings exists in
G[T\C]—-E(G[Z]) and one of them in the remainder of the graph. Let us shorthand
H for G[T'\ C] - E(G[Z]).

Consider all paths in % as being directed from v towards S, and consider the set
9y of maximal, directed subpaths in H of paths in 2 such that each path in 2y
contains at least one arc. Denote by H the directed subgraph of H induced by 2.
Thatis, H contains precisely the vertices and arcs also contained in the paths in 2.
We can now pick the sets A,B,C,D < Z \ {v}. The source vertices in H not equal
to v form the set A. Note that all source vertices except possibly v are contained
in Z as each vertex on a path in ? but not in Z U {v} must have a predecessor.
Similarly, sink vertices in H are contained in Z U S; we put those sink vertices that
are contained in Z \ {v} into B. Note that, as each path in 2y has length at least one,
there are no vertices of in- and outdegree zero and hence An B = @. Vertices in Z
that are used by paths in %y, but that are neither sources nor sinks, are put into D.
Vertices of Z\ {v} that are not on any path in %y are put into C. Clearly, A, B,C,D
is a partition of Z \ {v}. Finally, we definei =difve T\U,i=0if ve U\ T, and if
ve Z, then i is defined as the outdegree of v in H. The condition on d and i in the
lemma is clearly fulfilled. We claim that % is the desired path packing in G[T'\ C].

Showing that Py is a (v,i, A, BU (S\ U))-constrained path packing in G[T \ C].
Clearly, H is a subgraph of G[T \ C] and hence % is contained in G[T \ C]. Ob-
serve that, since the paths in %y are vertex-disjoint (except for v) and each path
has length at least one, sources and sinks in H correspond to endpoints of these
paths. Combining this with our observation from above that sources and sinks in
H are in AU {v} and BU S, respectively, we infer that each path in % starts in ei-
ther v or A, and ends in Bu (S\ U). By definition of A, each vertex w € A has a
path in % starting in w and, furthermore, by the definition of i, there are i paths
in &y that start in v. Hence, 2?; witnesses that there are |A| + i paths from AU {v}
to BU(S\U) in H; moreover, these paths do not touch C by definition. As the paths
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in % are v-independent, so are the paths in % . Hence, g isa (v,i, A,BU(S\ U))-
constrained path packing in G[T'\ C].

Showing the existence of a (v,d —i,B, AU (Sn U))-constrained path packing in
G[U \ D]. Take the path packing % and define a path packing 2’ that contains all
maximal subpaths of & in U\ D. Note that %2’ may contain paths of length zero. We
consider also %' as a set of directed paths, each arc inheriting its direction from 2.
Clearly, 2’ is contained in G[U \ D]. We claim that %' is also (v,d — i, B, AU (SN U))-
constrained.

Consider the directed subgraph G’ of G[U] induced by %'. Let us find the end-
points of the paths in %'. Clearly, if v € U\ D, then v is such an endpoint. For
the remaining endpoints, first, consider a path of length zero, represented by a ver-
tex w # v. Since each path in % has length at least one and since w # v, w has a pre-
decessor u on a path in % . Since w represents a path of length zero, u € (T\U) U D.
By definition of D (since H does not contain any edges in Z), each successor of a
vertex in D on a path of % is contained in T\ U. Hence, in fact u € T'\ U. The only
vertices in U that have neighbors in T'\ U are contained in 7' n U = Z. This implies
that w € Z and hence w € Z\ C. Since %' has empty intersection with D, we more-
over have w ¢ D. Hence, only two possibilities remain: w € A and w € B. Assume
that w € A. Since the vertices in A are sources of H, this implies that there is a path
starting in w # v in 92, a contradiction. It follows that w € B. Since B represents
sinks in H, we moreover have w € S as, otherwise, there would be a path in % end-
ing in a vertex not contained in S. Thus, as also w € U, each path of length zero in
9%’ ends in SN U (and starts in B).

Next, consider paths of length at least one in %’. Since they are pairwise vertex-
disjoint (except for v), their endpoints correspond to the sources and sinks in G'. Let
w be a sink in G’ that is not contained in S. Since w is not in S, it has a successor x
on a path in 2. As above, by the definition of D, each predecessor of a vertex in D
ona pathin 2 is contained in T\ U. Hence, in fact x € T\ U. The only vertices in U
that have neighbors in 7'\ U are contained in TN U = Z. Hence, we have w € Z.
Observe that w # v as, otherwise, % contains a cycle. The paths in & are vertex-
disjoint, thus, w does not have any incoming arcs in H, meaning that it is a source
in H. This implies w € A by definition of A. Thus we obtain that %" is a packing of
paths, each of which ends in Au (SN U).

It remains to prove that %’ contains |B| + d — i paths that start in {v} U B; their
v-independence is implied by the fact that these paths are subpaths of paths in 2.
We claim that there are d — i paths in %’ starting in v. First, if v ¢ U then i = d by
definition; hence, the claim is trivially true. If v e U\ T, then i = 0 and, clearly, each

209



Chapter 8. Vector connectivity sets

path in 2 that starts in v induces one such path in 2’. Thus, the claim holds also in
this case. Finally, if v € Z, then i is the outdegree of v in H. Recall that H does not
contain any edge in Z. Hence, also in the final case there are d — i paths in %' that
startin v.

To find the remaining | B| paths, consider a vertex w € B. Note that w # v because
v ¢ B. By definition, w is a sink in H and, since it is a part of a path in & reaching S,
it either is contained in S or has a successor on % which is not contained in 7'\ C.
In the first case, w represents a length-zero path starting in B in %'. In the second
case, w is a source in G’ by the vertex-disjointness of the paths in %. Since the
choice of w is arbitrary, and since the paths in % are vertex-disjoint, each vertex
in B\ S is a source in G’ and hence has a path in %’ starting in this vertex. Thus,
overall, there are |B| + d — i paths from {v} U B to AU (SN U) in G[U \ D] which are
v-independent, as required. This completes the “if” part of the lemma.

(«<): Assume that there is a partition A, B,C,D of Z\ {v} and i € N as described
in the lemma and fix a (v,i, A, BU (S\ U))-constrained path packing %7 in G[T \ C]
and a (v,d—1i, B, Au(SnU))-constrained path packing % in G[U\ D]. Consider the
paths in 27 as directed from {v} U A to BU (S\ U) and the paths in &, as directed
from {v} U B to AU (SN U). Let us show that there is a packing of d v-independent
paths from v to Sin G.

Observe that %1 and %y may overlap only in AU BU ({v} n Z), as the graphs they
are contained in overlap precisely in this vertex set. Consider the directed graph in-
duced by the union of %1 and %y;. Denote by K the (weakly) connected component
of this graph that contains v. By definition of %1 and %y, vertex v is a source vertex.
Let us first show that v has outdegree d in K. Otherwise, v must have a successor w
in either A or B in both 27 and %;. However, as the paths in 2?7 start in A and the
paths in 2y start in B in both cases we get a contradiction. Thus, v is a source with
precisely d outgoing arcs in K.

We claim that v is the only source in K. To see this, we first derive in- and out-
degrees of all vertices other than v in K. Clearly, each vertex in K — (Au BuU {v}) is
either in S—and has indegree one and outdegree zero in this case—or has in- and
outdegree exactly one. We claim that each vertex in Au B has indegree at most one
in K. This is clear for vertices in A, as only 2 sends paths to A. Both packings 2
and %;; may send paths to a vertex w € B in the case that w € S. Then, however,
w is in a path of length zero in ?;;,?° implying that indeed each vertex in AU B has
indegree at most one in K. Now for the sake of contradiction assume that there are

20Recall that in a (v, i, A, B)-constrained path packing, we assume each path with endpoints in An B to
be of length zero.
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two sources in K and consider a path in the underlying undirected graph of K be-
tween these two sources. On this path, there is a vertex with indegree at least two; a
contradiction. Thus, v is the only source in K.

It now suffices to show that each vertex in Au B either has in- and outdegree one
in K or is a sink contained in S. As we have derived the same for the vertices in
V(K)\ (Au B U {v}) above, and since the sum of all indegrees equals the sum of all
outdegrees in K, this then implies that there are d vertex-disjoint paths from v to S.
Let thus prove that, indeed, each vertex in AU B has either in- and outdegree one in
K oris a sink contained in S.

We have shown above that each vertex in AU B has indegree at most one in K.
Since K has v as its only source, each of the vertices in AU B has also indegree at
least one in K. Since only 27 has paths starting in A and only 2, has paths starting
in B, the outdegree of the vertices in AU B is at most one in K. Now consider a sink
w € V(K)N(AUB). Recall that 2’ contains a path starting in each vertex of A. Since
AN(BU(S\U)) = @, each of these paths has length at least one. Hence, w € B. Since
also 2y has a path starting in w, it must be of length zero and thus w € S because
the paths in ?y end in BU (SN U) and An B = @. Thus we have shown that each
vertex in K is either the source v with outdegree d, has in- and outdegree exactly
one, or is a sink contained in S and has indegree exactly one. This means that there
are d v-independent paths from v to Sin G. O

We are ready to show that Rule 8.3 respects yes and no-instances.
Lemma 8.14. Rule 8.3 is correct.

Proof. We claim that an even stronger statement holds. Namely, let G;,G,, G be
three graphs, each containing Z as a vertex subset such that G,[Z] = G,[Z] = GlZ].
Furthermore, let A: V(G)\Z — {0,...,d}, A2: V(G)\Z —{0,...,d}, and 1: V(G) —
{0,...,d} be three demand functions, such that |D(G;, 1,)| < d°, |D(G», A»)| < d® and
such that sig(G, Z, A1) = sig(Gz, Z, A2). Then G, o G has a vector connectivity set of
size k with respectto 1, U Aifand only if G, o G has a vector connectivity set of size k
with respect to 1, U A

To see that our claim implies the lemma, set G; := G[Y U Z], G, := G/, G=G-Y
and define the demand functions A,, A, and A accordingly. Then our claim implies
that G, oG = G[Y U Z]o(G - Y) = G has a vector connectivity set of size k if and
only if G,0 G = G'o(G — Y) has such a set. That is, the claim implies that Rule 8.3 is
correct.

Let us prove the claim. Note that, by swapping the names of G; and G, as well
as A; and A,, it suffices to prove one direction. Assume hence that G,0G has a
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vector connectivity set S of size k with respect to A, U A. Since |ID(Gy, Ay)| < d®
and |NGIOG(V(G1) \ Z)| = |Z| < d we may apply Lemma 8.8 with Y = V(G;) \ Z and
hence, we may assume that S; := (V(G;) N S) \ Z contains at most d° + d elements.
Thus, we have

(|Sl|y req(Glyzral)Sl))faC(Gl;Zy Sl)) € Sig(Gly Z)AI)-

Since sig(Gy, Z, A1) = sig(Gy, Z, A,), there is a set S, € V(Gy) \ Z with |S;] = [Sz],
req(Gi, Z, A1, S1) = req(Go, Z, A», S,) and fac(Gy, Z, S1) = fac(G,, Z, S,). We claim that

=(8\ S1) U S, is a vector connectivity set for G, o G with respect to 1, U A clearly,
we have |S| =|5].

Let us check that this is true indeed. We consider vertices in D(G», 1), D(G[Z], A,
and vertices in D(G - Z, /i) individually. Let us start with D(Gy, A,). For each ver-
tex v, € D(Go, A»), thereis atleast one vertex v; € D(Gy,A;) withsat(Gy, Z, A1, S1, v1) =
sat(G,, Z, A5 (12), Sy, 15). Let us show that the demand of v, is satisfied in G, 0 G by S'.

Consider first the case that v; € S;. Then (A, B, C) is a satisfying connector for v;
in G for arbitrary three sets A, B, C < Z, mutually disjoint. In particular (@, @, Z) is
a satisfying connector for v; and since the set of satisfying connectors for v; equals
the one for v,, (@, @, Z) is a satisfying connector for v,. By the definition of satisfying
connector either v, € S,, or there is a (v, 1, (v2), @, S»)-constrained path packing in
G, — Z, meaning that there are 1, (v,) v,-independent paths from v, to S, in G, — Z.
Hence, the demand of v, is satisfied if v; € S;.

Now assume that v; ¢ S; and observe that (V(Gy), V(G)) is a separation of GoG,.
Since there are A, (v;) v;-independent paths from v; to S in Go G, by Lemma 8.13
and since vy € V(G;)\ V(G), thereis a partition of Z into four sets A, B, C, D such that
there is a (v1, 11 (v1), A, BU (S\ V(G)))-constrained path packing %; in G; — C and a
(B, AU(SNV (G)))-constrained path packmg@’ in G—D. Because S\V(G) = S;, pack-
ing 9 is also (v1,A;(v1), A, BU Sp)-constrained. Thus 2; witnesses that (A, B,C) €
sat(Gy, Z, A1 (11), S1, v1), meaning that also (A, B,C) € sat(Gy, Z,12(v2), Sz, v2). Ap-
plying the definition of satisfying connector again, we have a (v,, 1,(v2), A,BU S,)-
constrained path packing %, in G, — C. Note that %, is also (v2,A»(v2), A,BU (S \
V(G))-constrained. Applying again Lemma 8.13, the two path packings %, and %
thus witness that there are A(v,) v,-independent paths from v to S in GoG,.

Next, consider v € D(G — Z, 1); there are A(v) v-independent paths from v to S
in GoG,. Applying Lemma 8.13 with the separation (V (G,), V(()), we obtain a par-
tition of Z into A, B,C, D (since v € V(G) \ V(Gy)), a (A, BuU S;)-constrained path
packing %, in G; —C and a (v, fL(v), B, AU (SN V((G))-constrained path 9 packing in
G-D. By the definition of provided connector, we have (A, B, C) € fac(Gy, Z,S;) =

212



8.6. Vertex-linear kernelization for constant demand

fac(Gy, Z, S,). Thus, again by the definition of provided connector, there is a (A, BU
Sz)-constrained path packing in G, — C. Applying again Lemma 8.13, the packmgs
9, and 9 witness that there are /1(1)) v- 1ndependent paths from v to §' in GoG,.

Finally, consider v € D(G[Z]), A); there are again Aw) v- independent paths from
vto Sin Go G;. Now we apply Lemma 8.13 with the separation (V(G,), V(G5)). This
time, we obtain a partition of Z \ {v} into A, B,C, D, and an integer i together with
a(v,i,A, BuUS;)-constrained path packing ?; in G; — C and a (v, Aw) - i,B,AU(SN
V(G)))-constrained path packing % in G- D. By the definition of provided special
connector, the packing %, witnesses that (v, i, A, B, C) € fac(Gy, Z, S1) = fac(G,, Z, S,).
Hence, again by this definition, there is also a (v, 7, A, BUS,)-constrained path pack-
ing %, in G, — C. Applying Lemma 8.13 again, the packings %, and % witness that
there are A(v) v-independent paths from v to §' in Go G,.

Overall we showed that each vertex v with nonzero demand (A U 1,)(v) has as
many v-independent paths from v to S’ in Go G, meaning that ' is a vector con-
nectivity set. Since |S’| = |S|, this shows that Rule 8.3 is correct. O

8.6.3. Putting things together

We can now state our kernelization procedure for instances (G, A, k) of VECTOR
d-CONNECTIVITY. The only missing piece is to argue why and how we may reduce
vertices in G that are not contained in any set of % (G, A, d).

Theorem 8.4. VECTOR d-CONNECTIVITY has a vertex-linear polynomial kerneliza-
tion with respect to k.

Proof. Given an instance (G, A, k) of VECTOR d-CONNECTIVITY the kernelization
proceeds as follows. Throughout, we refer to the current instance by (G, A, k) and
recall theuse of D={ve V(G) | A(v) = 1}.

1. Apply Rule 8.1 exhaustively and then apply Rule 8.2 (this may return answer
no if we have more than d?k demand vertices).

2. Apply Rule 8.3 once if possible.
3. Return to Step 1 if Rule 8.3 was applied.

4. Let W := DUUycq N[Y]. Perform the torso operation on W in G to obtain G'.
That is, carry out the following steps:

a) Startwith G' = G[W].
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b) For every pair u, v € W, if there is a u, v-path in G with internal vertices
from V\ W, then add the edge {u, v} to G'.

5. Return (G, 1/, k) as the kernelized instance, where A’ = Al is A restricted
to W.

Correctness. We already know that Rules 8.1 to 8.3 are correct; it remains to discuss
the effect of the torso operation: Proposition 8.4 implies that minimal solutions S
for (G, A, k) are completely contained in the union of sets X € %, since only such
vertices can contribute to S being a hitting set for 2. It follows, by Lemma 8.6, that
every minimal solution S is also contained in W. Thus, if before the torso operation
every vertex v € D has A(v) paths to S, then the same is true after the operation
since there are shortcut edges for all paths with internal vertices from V \ W. The
converse is more interesting.

Assume that (G, A, k) is no and fix an arbitrary set S€ W = V(G') € V(G) of size at
most k; we will show that S is not a solution for (G, 1, k). By assumption, S is not a
solution for (G, A, k). Thus, by Proposition 8.4, S is not a hitting set for ¥ =% (G, ).
Accordingly, fix a set X € % with SN X = @. By definition of %, let v € X with A(v) >
IN(X)|. By Lemma 8.6, thereisa Y € % (G, A,d) with X € Y. Thus, N[X] € N[Y] <
W. If there were A(v) paths from v to S in G/, then at least one of them avoids
N(X), since |[N(X)| < A(v); let P' denote a path from v to S in G’ that avoids N(X).
Undoing the torso operation, we get a walk P in G, with additional interval vertices
from V(G)\ W. Since (V(G)\ W) N N(X) = @, this walk also avoids N(X) and implies
that X contains at least one vertex of S; a contradiction to SN X = @. Thus, no
S € V(G) of size at most k is a solution for (G, 1/, k), implying that (G', ', k) is no,
as required.

Problem kernel size. The output graph G’ has vertex set W = D U Uyea N[Y]
where D and % correspond to a fully reduced instance (G, A, k). By Rule 8.2 we
have |D| < d?k. By Lemma 8.7 the set % contains at most 2d+d g2 sets, each of
size upper bounded by f(d) for some computable function depending only on d.
By Definition 8.2 the neighborhood N(Y) of each set Y has size at most d. It follows
that G’ has O(k) vertices, as claimed. Clearly, the total encoding size for an instance
is O(k?) since d is a constant.

Running time. By Lemma 8.2, Rule 8.1 can be applied exhaustively in polynomial
time. Clearly, Rule 8.2 can be applied in polynomial time as it only checks the num-
ber of vertices with nonzero demand. Finding one application of Rule 8.3 can be
done by iterating over Y € % and applying Lemma 8.12 to each Y until we find a
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replacement subgraph that is strictly smaller; in total this takes polynomial time.
Furthermore, repeating these steps whenever Rule 8.3 has been applied gives only
a polynomial factor because each time the instance shrinks by at least one vertex.
Finally, it is easy to implement the torso operation in polynomial time. O

8.7. Kernelization lower bound

In this section, we prove that VECTOR CONNECTIVITY admits no polynomial kernel-
ization with respect to k unless NP < coNP/poly. We give a reduction from HITTING
SET parameterized by the number of hyperedges, which also makes a polynomial
Turing kernelization unlikely (see Hermelin et al. [Her+15]). Observe that demands
greater than k + 1 can be safely replaced by demand k + 1, hence, d < k+ 1 without
loss of generality. Thus, the lower bound applies also to the parameter d + k.

Theorem 8.5. VECTOR CONNECTIVITY does not admit a polynomial problem kernel
with respect to k unless NP < coNP/poly (that is, unless the polynomial hierarchy
collapses).

Proof. We give a polynomial parameter transformation from HITTING SET param-
eterized by the number m of hyperedges to VECTOR CONNECTIVITY parameterized
by k.

HITTING SET

Input: Ahypergraph 7€ and a nonnegative integer k.

Question: Is there a set H < V() of size at most k such that SN H # @
for each hyperedge S in #€7?

It is known that HITTING SET does not admit a polynomial problem kernel with re-
spect to m unless NP < coNP/poly, see Dom, Lokshtanov, and Saurabh [DLS14].
Together with the fact that polynomial kernelizations for NP-complete problems
are preserved by polynomial-parameter transformations (see Section 1.1.3), we ob-
tain the desired lower bound. Let (#€ = (U,&), k) be an instance of HITTING SET
with parameter m = |€|. Without loss of generality, assume that k < m. Let n:=|U].
We construct a graph G on 2(k + 1)m + n vertices that has a vector connectivity set
of size at most k' = (k + 1)m + k = O(m?) if and only if (¥, k) is yes for HITTING SET.

Construction. Start with an empty graph G. We introduce one vertex x,, to G for
each element u € U, and we introduce 2(k + 1) vertices yi r, ..., Vk+1,5 ¥y o -
to G for each set F € . The edges in G are defined as follows:

!
o Vi F
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1. Foreachie{l,...,k+1} and F €€, add the edge {y; r, y; .}-
2. Foreach Fe6,eachue F,and each i€ {1,...,k+ 1}, add the edge {x,, y; ¢}
3. Add the edge between every pair of verticesin {y; p | (FE&)A(I €{1,..., k+1})}.

Set the demand A of each y; r vertex to 2 and of each y; i vertex to (k+1)m +1; all
x-vertices have demand zero. Set the budget k' to (k + 1)m + k. This completes the
construction of the VECTOR CONNECTIVITY instance (G, A, k'), which can be easily
performed in polynomial time.

Correctness. Assume first that (G, A, k') is yes and let S be a vector connectivity set
of size at most k'. Note that S must contain all vertices y; .. since they have demand
of 2 but only one neighbor (namely y; ). This accounts for (k + 1)m vertices in S;
there are at most k further vertices in S. Let T contain exactly those elements u € U
such that x, € S; thus |T| < k. We claim that T is a hitting set for &, that is, T has
nonempty intersection with each setin &.

Let F € &; we show that TN F # @. Since at most k vertices in S are not y'-vertices,
we can choose i € {1,..., k+ 1} such that S does not contain y; . Consider the set C
consisting of all y-vertices other than y; r as well as the vertex y; .. Note that the set
of neighbors of y;  contains precisely all x,, with u € F, allremaining y-vertices, and
Y; p- Furthermore, x-vertices only have y-vertices as neighbors. Thus, in G- C we
find a connected component D containing y; r and all x,, with u € F but no further
vertices. Since y; i ¢ S, there are (k+1)m+1 disjoint paths from y; ¢ to S. Thus, since
C is has size precisely (k + 1) m, at least one vertex in the connected component D
is in the solution. Since S does not contain y; r (by choice of i), we have x, € S for
some u € F. Thus, ue T and TN F # ¢ indeed.

Now, assume that (#€, k) is yes for HITTING SET and let T a hitting set of size at
most k for &. We create a vector connectivity set S by selecting all x,, with u € T as
well as all y'-vertices; thus |S| < k' = (k+ 1)m + k. Clearly, this satisfies the demand
of each y'-vertex. Consider an arbitrary vertex y; r and recall that its demand is
Ayir) = (k+1)m+1. We know that S contains at least one vertex x, with u € F that
is adjacent to y; . Thus, we can find the required (k + 1)m + 1 disjoint paths from
YVirtoS:

* We have one path (y; r, y; ;) and one path (y; r, X,).

e Forall (j, F") # (i, F) we get one path (y,-,p,yjyp,y},F), summing up to (k+1)m—
1 paths.
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It follows that (G, A, k') is yes for VECTOR CONNECTIVITY.

Summarizing, we have given a polynomial parameter transformation to VECTOR
CONNECTIVITY parameterized by k from HITTING SET parameterized by m, which
is known not to admit a polynomial kernelization unless NP < coNP/poly [DLS14]
(see also Hermelin et al. [Her+15]). Since both problems are NP-complete, a poly-
nomial problem kernel for VECTOR CONNECTIVITY with respect to k would imply a
polynomial problem kernel for HITTING SET(see Section 1.1.3). O

From the above reduction we also get the following corollary related to param-
eterizations above lower bound for VECTOR CONNECTIVITY: Since we have strong
indication that VECTOR CONNECTIVITY is fixed-parameter tractable with respect to
the solution size k (Theorem 8.3), it is interesting to consider smaller parameters
than k. For example, the parameterization over lower bound, the difference be-
tween k and a lower bound ¢ on the solution size. It is not hard to check that one
such lower bound on the size of each vector connectivity set is the least integer ¢
such that all vertices except at most ¢ have demand at most ¢. However, k — ¢ is
upper bounded by the solution size in the HITTING SET instance in the reduction
in Theorem 8.5 above. Since HITTING SET is W([2]-hard with respect to the solu-
tion size, to obtain fixed-parameter tractability for parameterizations over lower
bounds, we have to consider smaller lower bounds or incomparable ones.

8.8. Concluding remarks

To summarize our findings, we gave a randomized fixed-parameter tractability re-
sult for VECTOR CONNECTIVITY with respect to the solution size k, but also proved
that VECTOR CONNECTIVITY does not admit a polynomial kernelization with respect
to k unless NP < coNP/poly. Since demands greater than k + 1 can be safely re-
placed by demand k + 1 (because they cannot be fulfilled without putting the ver-
tex into the solution) the lower bound extends also to parameter k + d, wherein d
is the maximum demand. In contrast, for VECTOR d-CONNECTIVITY, where d is a
problem-specific constant, we gave an explicit vertex-linear kernelization with at
most ¢(d) - k = O(k) vertices; the function ¢(d) is computable, but superpolyno-
mial in d. The function ¢(d) cannot be polynomial in k + d unless NP < coNP/poly
due to the lower bound for k + d.

An important ingredient of our results is Rule 8.2 that reduces the number of ver-
tices with nonzero demand to at most d?k (or, similarly, to at most or i3 + k). This
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rule gave rise to the alternative fixed-parameter algorithm, the vertex-linear kernel-
ization for VECTOR d-CONNECTIVITY with respect to k, and can also be augmented
to be used in a factor opt approximation algorithm for the minimization version of
VECTOR CONNECTIVITY [KS16].

An interesting technical question that we left open is to upper bound the size of
the replacement graphs used in Rule 8.3, which replaces large regions in the in-
put graph by constant-size gadgets. We know that their size is upper bounded by a
function in d, however, at present we do not have an explicit bound on their size.

Given that Rule 8.2, upper bounding the number of vertices with nonzero de-
mand, is so immensely useful in theory, it would be interesting to see how it fares
in practice. We think that it is reasonable that the demand of a vertex is a small
integer. Hence, it could well be that, after the reduction, the demand vertices are
sequestered, drastically reducing the search space for a solution.

In this regard, an obvious question is to find an efficient, practical algorithm that
produces a solution. Our fixed-parameter algorithm (Section 8.4) gives good indi-
cation that no strong running-time lower bound for such algorithms exist. How-
ever, its best running-time upper bound is 20k poly(n) and it would be desirable
to achieve single-exponential, that is, 2°® poly(n) running time. It would also be
interesting to study tractability for smaller parameters than k, for example, the dif-
ference between a lower bound on the solution size and k.

Finally, it would be interesting to generalize VECTOR CONNECTIVITY to model fur-
ther realistic applications. For example, it could be worthwhile to consider directed
input graphs and to upper or lower bound the length of the paths to the solution.
A lower bound on the length of the paths could be useful when placing danger-
ous or undesirable but necessary facilities, like nuclear reactors, airports, or waste
collection plants. An upper bound on the length of the paths could model latency
restrictions in placing servers or the cost of serving customers when placing ware-
houses. Introducing such an upper bound, however, we obtain a generalization of
DOMINATING SET and, hence, W|[2]-hardness with respect to the solution size k. Di-
rected graphs could be useful to model more realistic logistics problems. A simple
reduction from HITTING SET shows, however, that directed VECTOR CONNECTIVITY
is W[2]-hard with respect to the solution size k. In light of these simple hardness re-
sults, it would make sense to restrict the input to practically relevant instances, for
example, by requiring the input graph to be planar or by considering additionally
structural parameters of the input graph.
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Chapter 9

Outlook

We studied the parameterized complexity of three types of NP-hard graph prob-
lems and developed algorithms for each of them as well as lower bounds on their
running times. We gave directions for future research specific to each problem in
the concluding remarks of the corresponding chapter. In this final chapter, we high-
light some future research directions that are not specific to the individual prob-
lems.

In Part I we constructed algorithms that, given a hypergraph with m hyperedges,
find in fixed-parameter running time with respect to m an r-outerplanar support
or a support with feedback edge number at most a given integer f. The results
in this part are foremost of theoretical interest. Thus, more research is needed to
reach algorithms that are promising for practice. Herein, a repository of different
hypergraph parameters and their relations would be helpful in identifying the most
promising parameters to work on.

On the theoretical side, it would be interesting to identify more graph proper-
ties for which we can find supports with that property in fixed-parameter running
time with respect to m, the number of hyperedges. Recall that Theorem 2.1 shows
that for every graph property I1 that is closed under adding degree-one vertices and
for every m there is a fixed-parameter algorithm with respect to m to determine
whether there is a support in II for a given hypergraph. The existence of such al-
gorithms and the fact that it can be made constructive in two cases suggest that a
constructive meta-theorem to the likes of Theorem 2.1 might be possible. We con-
jecture that, using the same strategy as in Chapter 4 for finding r-outerplanar sup-
ports, indeed we can design fixed-parameter algorithms with respect to m to deter-
mine whether there is a IT support for all graph properties IT of bounded treewidth
that are closed under adding degree-one vertices.
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In Part IT we gave algorithms and running time lower bounds for finding dense
k-vertex subgraphs for two definitions of being dense: p-cliques, containing at least
,u(];) edges, and highly connected graphs, having minimum degree at least [k/2] +
1. In contrast to Parts I and III, implementations were carried out [KSS15] or are
underway. In future work, it would make sense to study the combination of highly
connected graphs and pu-cliques into one [BHB08] and extend our algorithms to
this combination. Conceptually, it seems plausible that the combination of a strong
local constraint and a more lax global constraint on top is a relevant concept of a
cluster. Algorithmically, this would have the advantage that we can use the strong
local constraints of highly connected graphs to design data reduction rules.

In a wider scope, the graph model for communities can be enhanced: Interac-
tions in social networks are often transient, for example, in networks that arise from
email conversations. Thus, modeling interactions as edges in an ordinary graph, we
lose important information about the interaction. Allowing multiple edges between
two vertices and equipping each edge with a time stamp leads to so-called tempo-
ral graphs [HS12; Holl5; Micl6]. It is an interesting task to model the interactions
over time that occur in a community in a temporal graph in a mathematically tan-
gible way [Hol15]. Furthermore, it is important to carry over the theory of sparsity
for ordinary graphs to their temporal equivalents and, with it, the wealth of posi-
tive algorithmic results. A starting point, which the author is currently involved in
exploring, is the combination of temporal equivalents of cliques [VLM16], the de-
generacy parameter, and the Bron-Kerbosch clique enumeration algorithm which
is efficient on graphs of small degeneracy [ELS13].

In Part III we gave a randomized fixed-parameter algorithm and data reduction
rules for placing servers in a network such that they can provide a service that is
robust against failures of nodes in the network. Combining robustness constraints
with density, it may make sense to require the servers to be highly connected in or-
der to be able to effectively synchronize their databases, for example. Combining
robustness constraints with sparsity, it is interesting to consider robust and sparse
hypergraph supports: In one application, the supports model an interconnection
network of clients that want to communicate and it is clearly desirable for such a
network to be robust to network failures [CVJ13]. Chen, Vitenberg, and Jacobsen
[CV]13] modeled robustness as k-connectedness of each subgraph of the support
that is induced by a hyperedge. It would be interesting to study parameterized al-
gorithms for finding this kind of supports.

In this thesis we pursued solution graphs which shall be sparse, be dense, or be
robust. We are looking forward to more results on algorithms that find solutions
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that shall be large, be small, be uniform, be homogeneous, be regular, be recurrent,
be recoverable, . . ..

221






Bibliography

[AAR10]

[AB09]

[ADF95]

[Alo+10]

[ARSO02]

[AYZ95]

[BBPO3]

Dana Angluin, James Aspnes, and Lev Reyzin. “Inferring Social Net-
works from Outbreaks.” In: Proceedings of the 21st International Con-
ference Algorithmic Learning Theory (ALT '10). Vol. 6331. Lecture Notes
in Computer Science. Springer, 2010, pp. 104-118 (cit. on pp. 2, 23, 32,
36).

Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern
Approach. Cambridge University Press, 2009 (cit. on p. 9).

Karl R. Abrahamson, Rodney G. Downey, and Michael R. Fellows.
“Fixed-Parameter Tractability and Completeness IV: On Completeness
for W[P] and PSPACE Analogues.” In: Annnals of Pure and Applied Logic
73.3 (1995), pp. 235-276 (cit. on p. 17).

Daniel Aloise, Sonia Cafieri, Gilles Caporossi, Pierre Hansen, Sylvain
Perron, and Leo Liberti. “Column generation algorithms for exact mod-
ularity maximization in networks.” In: Physical Review E 82 (4 2010),
pp- 1-9 (cit. on p. 101).

James Abello, Mauricio G. C. Resende, and Sandra Sudarsky. “Mas-
sive Quasi-Clique Detection.” In: Proceedings of the 5th Latin American
Symposium on Theoretical Informatics (LATIN '02). Vol. 2286. Lecture
Notes in Computer Science. Springer, 2002, pp. 598-612 (cit. on p. 99).

Noga Alon, Raphael Yuster, and Uri Zwick. “Color-coding.” In: Journal
of the ACM 42.4 (1995), pp. 844-856 (cit. on pp. 108, 118).

Vladimir Boginski, Sergiy Butenko, and Panos M Pardalos. “On struc-
tural properties of the market graph.” In: Innovations in Financial and
Economic Networks. New Dimensions in Networks. Edward Elgar Pub-
lishing, 2003, pp. 29-45 (cit. on p. 97).

223



Bibliography

[BBTO5]

[BC76]

[Bee+83]

[BENO9]

[Bev+14al]

[Bev+14b]

[Bev+14c]

[Bev+15a]

[Bev+15b]

224

Balabhaskar Balasundaram, Sergiy Butenko, and Svyatoslav
Trukhanov. “Novel Approaches for Analyzing Biological Networks.” In:
Journal of Combinatorial Optimization 10.1 (2005), pp. 23-39 (cit. on
p.116).

J.A. Bondy and V. Chvatal. “A method in graph theory.” In: Discrete
Mathematics 15.2 (1976), pp. 111-135 (cit. on p. 147).

Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis. “On
the Desirability of Acyclic Database Schemes.” In: Journal of the ACM
30.3 (1983), pp. 479-513 (cit. on pp. 23, 24, 34, 68, 71).

Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust
Optimization. Princeton University Press, 2009 (cit. on p. 1).

René van Bevern, Andreas Emil Feldmann, Manuel Sorge, and Ondfej
Suchy. “On the Parameterized Complexity of Computing Balanced Par-
titions in Graphs.” In: Theory of Computing Systems 57 (2014), pp. 1-35
(cit. on p. xvi).

René van Bevern, Sepp Hartung, André Nichterlein, and Manuel Sorge.
“Constant-factor approximations for Capacitated Arc Routing without
triangle inequality.” In: Operations Research Letters 4.4 (2014), pp. 290—
292 (cit. on p. xvi).

René van Bevern, Rolf Niedermeier, Manuel Sorge, and Mathias Weller.
“Complexity of Arc Routing Problems.” In: Arc Routing: Problems,
Methods, and Applications. Ed. by Angel Corberan and Gilbert Laporte.
SIAM, 2014 (cit. on p. xvi).

René van Bevern, Iyad A. Kanj, Christian Komusiewicz, Rolf Nieder-
meier, and Manuel Sorge. “Well-Formed Separator Sequences, with an
Application to Hypergraph Drawing.” In: CoRR abs/1507.02350 (2015)
(cit. on p. xiv).

René van Bevern, Christian Komusiewicz, Rolf Niedermeier, Manuel
Sorge, and Toby Walsh. “H-Index Manipulation by Merging Articles:
Models, Theory, and Experiments.” In: Proceedings of the 24th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI '15). AAAI Press,
2015, pp. 808-814 (cit. on p. xvi).



Bibliography

[Bev+16]

[BHO3]

[Bha+10]

[BHBO8]

[BHK15]

[Biel5]

[Bin+12]

[BJK14]

(BK]

René van Bevern, Iyad A. Kanj, Christian Komusiewicz, Rolf Nieder-
meier, and Manuel Sorge. “Twins in Subdivision Drawings of Hyper-
graphs.” In: 24th International Symposium on Graph Drawing and Net-
work Visualization (GD ’'16). Vol. 9801. Lecture Notes in Computer Sci-
ence. Springer, 2016, pp. 67-80 (cit. on pp. xiv, 67).

Gary D Bader and Christopher WV Hogue. “An automated method for
finding molecular complexes in large protein interaction networks.” In:
BMC Bioinformatics 4.1 (2003), pp. 1-27 (cit. on p. 97).

Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Uriel Feige, and Ar-
avindan Vijayaraghavan. “Detecting high log-densities: an O(n'/4) ap-
proximation for densest k-subgraph.” In: Proceedings of the 42nd ACM
Symposium on Theory of Computing (STOC '10). ACM, 2010, pp. 201-
210 (cit. on p. 106).

Mauro Brunato, Holger H. Hoos, and Roberto Battiti. “On Effectively
Finding Maximal Quasi-cliques in Graphs.” In: Proceedings of the 2nd
International Conference on Learning and Intelligent Optimization
(LION °07). Vol. 5313. Lecture Notes in Computer Science. Springer,
2008, pp. 41-55 (cit. on pp. 103, 220).

Sharon Bruckner, Falk Hiiffner, and Christian Komusiewicz. “A graph
modification approach for finding core-periphery structures in protein
interaction networks.” In: Algorithms for Molecular Biology 10 (1 2015),
pp. 1-13 (cit. on p. 169).

Therese Biedl. “On triangulating k-outerplanar graphs.” In: Discrete
Applied Mathematics 181 (2015), pp. 275-279 (cit. on p. 80).

Daniel Binkele-Raible, Henning Fernau, Fedor V. Fomin, Daniel Lok-
shtanov, Saket Saurabh, and Yngve Villanger. “Kernel(s) for problems
with no kernel: On out-trees with many leaves.” In: ACM Transactions
on Algorithms 8.4 (2012), 38:1-38:19 (cit. on p. 15).

Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. “Kerneliza-
tion Lower Bounds by Cross-Composition.” In: SIAM Journal on Dis-
crete Mathematics 28.1 (2014), pp. 277-305 (cit. on p. 14).

Ivan Blisnetz and Nikolai Karpov. Parametrisovanie algoritmui vuide-
lenia plotnuikh component v graphakh. In Russian, http://mit.spbau.
ru/files/Karpov.pdf (cit. on p. 140).

225


http://mit.spbau.ru/files/Karpov.pdf
http://mit.spbau.ru/files/Karpov.pdf

Bibliography

[BKS15]

[BL76]

[BLS99]

[Bod+09]

[Bod+16]

[Bod09]

[Bol06]

[Bon+15]

[Bor+14]

226

René van Bevern, Christian Komusiewicz, and Manuel Sorge. “Approx-
imation Algorithms for Mixed, Windy, and Capacitated Arc Routing
Problems.” In: Proceedings of the 15th Workshop on Algorithmic Ap-
proaches for Transportation Modeling, Optimization, and Systems (AT-
MOS ’'15). Vol. 48. OASIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer In-
formatik, 2015, pp. 130-143 (cit. on p. xvi).

Kellogg S. Booth and George S. Lueker. “Testing for the consecutive
ones property, interval graphs, and graph planarity using PQ-tree al-
gorithms.” In: Journal of Computer and System Sciences 13.3 (1976),
pp- 335-379 (cit. on p. 26).

Andreas Brandstddt, Van Bang Le, and Jeremy P. Spinrad. Graph
Classes: A Survey. Vol. 3. SIAM Monographs on Discrete Mathemat-
ics and Applications. Society for Industrial and Applied Mathematics,
1999 (cit. on pp. 33, 34, 36, 66).

Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and
Danny Hermelin. “On problems without polynomial kernels.” In: Jour-
nal of Computer and System Sciences 75.8 (2009), pp. 423-434 (cit. on
p- 14).

Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Pen-
ninkx, Saket Saurabh, and Dimitrios M. Thilikos. “(Meta) Kerneliza-
tion.” In: Journal of the ACM 63.5 (2016), 44:1-44:69 (cit. on pp. 193,
194).

Hans L. Bodlaender. “Kernelization: New Upper and Lower Bound
Techniques.” In: Proceedings of the 4th International Workshop on Pa-
rameterized and Exact Computation (IWPEC '09). Vol. 5917. Lecture
Notes in Computer Science. Springer, 2009, pp. 17-37 (cit. on p. 13).

Béla Bollobds. The Art of Mathematics. 1st Edition. Cambridge Univer-
sity Press, 2006, pp. 129-132 (cit. on pp. xiv, 107, 109, 111).

Edouard Bonnet, Bruno Escoffier, Vangelis Th. Paschos, and Emeric
Tourniaire. “Multi-parameter Analysis for Local Graph Partitioning
Problems: Using Greediness for Parameterization.” In: Algorithmica
71.3 (2015), pp. 566-580 (cit. on pp. 107, 123, 124).

Endre Boros, Pinar Heggernes, Pim van 't Hof, and Martin Milanic.
“Vector connectivity in graphs.” In: Networks 63.4 (2014), pp. 277-285
(cit. on pp. 2, 174-176).



Bibliography

[Bou+13]

[BP13]

[Bra+11]

[Bra+12]

[Bra+98]

[Bru+06]

[BT93]

[BTV11]

[BTY11]

Nicolas Bourgeois, Aristotelis Giannakos, Giorgio Lucarelli, Ioannis
Milis, and Vangelis Th. Paschos. “Exact and Approximation Algorithms
for Densest k-Subgraph.” In: Proceedings of the 7th International Work-
shop on Algorithms and Computation (WALCOM ’13). Vol. 7748. Lec-
ture Notes in Computer Science. Springer, 2013, pp. 114-125 (cit. on
p. 110).

Balabhaskar Balasundaram and Foad Mahdavi Pajouh. “Graph Theo-
retic Clique Relaxations and Applications.” In: Handbook of Combina-
torial Optimization. Springer, 2013, pp. 1559-1598 (cit. on pp. 1, 97, 98,
100, 106, 116, 139).

Ulrik Brandes, Sabine Cornelsen, Barbara Pampel, and Arnaud Sal-
laberry. “Blocks of Hypergraphs—Applied to Hypergraphs and Outer-
planarity.” In: Proceedings of the 21st International Workshop on Com-
binatorial Algorithms (IWOCA ’10). Vol. 6460. Lecture Notes in Com-
puter Science. Springer, 2011, pp. 201-211 (cit. on pp. 22, 24, 69, 71,
92).

Ulrik Brandes, Sabine Cornelsen, Barbara Pampel, and Arnaud Sal-
laberry. “Path-based supports for hypergraphs.” In: Journal of Discrete
Algorithms 14 (2012), pp. 248-261 (cit. on pp. 22, 71).

Andreas Brandstéddt, Feodor E Dragan, Victor Chepoi, and Vitaly I.
Voloshin. “Dually Chordal Graphs.” In: SIAM Journal on Discrete Math-
ematics 11.3 (1998), pp. 437-455 (cit. on p. 33).

Maurizio Bruglieri, Matthias Ehrgott, Horst W. Hamacher, and
Francesco Maffioli. “An annotated bibliography of combinatorial opti-
mization problems with fixed cardinality constraints.” In: Discrete Ap-
plied Mathematics 154.9 (2006), pp. 1344-1357 (cit. on p. 109).

Preston Briggs and Linda Torczon. “An Efficient Representation for
Sparse Sets.” In: ACM Letters on Programming Languages and Systems
2.1-4 (1993), pp. 59-69 (cit. on p. 115).

C. Bujtas, Z. Tuza, and V. Voloshin. “Color-bounded hypergraphs, V:
Host graphs and subdivisions.” In: Discussiones Mathematicae Graph
Theory 31.2 (2011), pp. 223-238 (cit. on p. 23).

Hans L. Bodlaender, Stéphan Thomassé, and Anders Yeo. “Kernel
bounds for disjoint cycles and disjoint paths.” In: Theoretical Computer
Science 412.35 (2011), pp. 4570-4578 (cit. on p. 14).

227



Bibliography

[Buc+11]

[(BW88]

[Cai08]

[CCCOo6]

[CDS04]

[CGO7]

[Cha+14]

[Cha66]

[Che+05]

228

Kevin Buchin, Marc J. van Kreveld, Henk Meijer, Bettina Speckmann,
and Kevin Verbeek. “On Planar Supports for Hypergraphs.” In: Journal
of Graph Algorithms and Applications 15.4 (2011), pp. 533-549 (cit. on
pp. 2, 22, 24, 36, 69-71, 75).

Robert E Bixby and Donald K Wagner. “An almost linear-time algo-
rithm for graph realization.” In: Mathematics of Operations Research
13.1 (1988), pp. 99-123 (cit. on pp. 26, 72).

Leizhen Cai. “Parameterized Complexity of Cardinality Constrained
Optimization Problems.” In: The Computer Journal 51.1 (2008),
pp. 102-121 (cit. on pp. 109, 110).

Leizhen Cai, Siu Man Chan, and Siu On Chan. “Random Separation: A
New Method for Solving Fixed-Cardinality Optimization Problems.” In:
Proceedings of the 2nd International Workshop on Parameterized and
Exact Computation (IWPEC '06). Vol. 4169. Lecture Notes in Computer
Science. Springer, 2006, pp. 239-250 (cit. on pp. 109-111, 116, 122).

Vincent Conitzer, Jonathan Derryberry, and Tuomas Sandholm. “Com-

binatorial Auctions with Structured Item Graphs.” In: Proceedings of
the 19th National Conference on Artificial Intelligence (AAAI '04). AAAL

Press / The MIT Press, 2004, pp. 212-218 (cit. on pp. 2, 22, 24, 25, 36).

Markus Chimani and Carsten Gutwenger. “Algorithms for the Hyper-
graph and the Minor Crossing Number Problems.” In: Proceedings of
the 18th International Symposium on Algorithms and Computation
(ISAAC '07). Vol. 4835. Lecture Notes in Computer Science. Springer,
2007, pp. 184-195 (cit. on p. 72).

Maw-Shang Chang, Li-Hsuan Chen, Ling-Ju Hung, Peter Rossmanith,
and Guan-Han Wu. “Exact algorithms for problems related to the dens-
est k-set problem.” In: Information Processing Letters 114.9 (2014),
pp- 510-513 (cit. on p. 110).

Gary Chartrand. “A Graph-Theoretic Approach to a Communica-
tions Problem.” In: SIAM Journal on Applied Mathematics 14.4 (1966),
pp. 778-781 (cit. on pp. 99, 136).

Jianer Chen, Benny Chor, Mike Fellows, Xiuzhen Huang, David W.
Juedes, Iyad A. Kanj, and Ge Xia. “Tight lower bounds for certain pa-
rameterized NP-hard problems.” In: Information and Computation
201.2 (2005), pp. 216-231 (cit. on p. 17).



Bibliography

[Che+13]

[Che+15]

[Chi+16]

[Cho+07]

[Chul5]

[CMR15]

[Coo71]

[Cor+09]

[CV]13]

Jiehua Chen, Christian Komusiewicz, Rolf Niedermeier, Manuel Sorge,
Ondrej Suchy, and Mathias Weller. “Effective and Efficient Data Reduc-
tion for the Subset Interconnection Design Problem.” In: Proceedings
of the 24th International Symposium on Algorithms and Computation
(ISAAC ’13). Vol. 8283. Lecture Notes in Computer Science. Springer,
2013, pp. 361-371 (cit. on p. xiv).

Jiehua Chen, Christian Komusiewicz, Rolf Niedermeier, Manuel Sorge,
Ondfej Suchy, and Mathias Weller. “Polynomial-Time Data Reduction
for the Subset Interconnection Design Problem.” In: SIAM Journal on
Discrete Mathematics 29.1 (2015), pp. 1-25 (cit. on pp. xiv, 31).

Rajesh Chitnis, Marek Cygan, MohammadTaghi Hajiaghayi, Marcin
Pilipczuk, and Michat Pilipczuk. “Designing FPT Algorithms for Cut
Problems Using Randomized Contractions.” In: SIAM Journal on Com-
puting 45 (4 2016), pp. 1171-1229 (cit. on p. 177).

Gregory Chockler, Roie Melamed, Yoav Tock, and Roman Vitenberg.
“Constructing scalable overlays for pub-sub with many topics.” In: Pro-
ceedings of the Twenty-Sixth Annual ACM Symposium on Principles of
Distributed Computing (PODC '07). ACM, 2007, pp. 109-118 (cit. on
pp. 2,21, 24, 25, 32, 33, 36).

Julia Chuzhoy. “Excluded Grid Theorem: Improved and Simplified.” In:
Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory
of Computing (STOC’15). ACM, 2015, pp. 645-654 (cit. on p. 92).

Ferdinando Cicalese, Martin Milani¢, and Romeo Rizzi. “On the com-
plexity of the vector connectivity problem.” In: Theoretical Computer
Science 591 (2015), pp. 60-71 (cit. on pp. 2, 174-176, 192).

Stephen A. Cook. “The Complexity of Theorem-Proving Procedures.”
In: Proceedings of the 3rd Annual ACM Symposium on Theory of Com-
puting (STOC '71). ACM Press, 1971, pp. 151-158 (cit. on p. 9).

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein. Introduction to Algorithms. 3rd Edition. MIT Press, 2009 (cit.
onp.11).

Chen Chen, Roman Vitenberg, and Hans-Arno Jacobsen. “Brief an-
nouncement: Constructing fault-tolerant overlay networks for topic-
based publish/subscribe.” In: Proceedings of the 32nd ACM Sympo-
sium on Principles of Distributed Computing (PODC ’13). ACM. 2013,
pp. 184-186 (cit. on pp. 25, 220).

229



Bibliography

[Cyg+15]

[DBKO7]

[Del14]

[DF13]

[DF95]

[DF99]

[Dic13]

[Diel0]

[DK95]

[DKS14]

[DLS14]

230

Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov,
Déniel Marx, Marcin Pilipczuk, Michat Pilipczuk, and Saket Saurabh.
Parameterized Algorithms. Springer, 2015 (cit. on pp. 11, 16).

Pawan Deshpande, Regina Barzilay, and David R. Karger. “Randomized
Decoding for Selection-and-Ordering Problems.” In: Proceedings of the
Human Language Technology Conference of the North American Chap-
ter of the Association of Computational Linguistics (HLT-NAACL '07).
2007, pp. 444-451 (cit. on pp. 108, 120).

Holger Dell. “AND-compression of NP-complete Problems: Stream-
lined Proof and Minor Observations.” In: Proceedings of the 9th In-
ternational Symposium on Parameterized and Exact Computation
(IPEC ’14). Vol. 8894. Lecture Notes in Computer Science. Springer,
2014, pp. 184-195 (cit. on p. 14).

Rodney G. Downey and Michael R. Fellows. Fundamentals of Parame-
terized Complexity. Springer, 2013 (cit. on pp. 11, 110).

Rodney G. Downey and Michael R. Fellows. “Fixed-Parameter Tracta-
bility and Completeness II: On Completeness for W[1].” In: Theoretical
Computer Science 141.1&2 (1995), pp. 109-131 (cit. on p. 110).

Rodney G. Downey and Michael R. Fellows. Parameterized Complexity.
Springer, 1999 (cit. on pp. 3, 11, 12, 29, 141, 144).

Leonard Eugene Dickson. “Finiteness of the odd perfect and primitive
abundant numbers with n distinct prime factors.” In: American Journal
of Mathematics 35.4 (1913), pp. 413-422 (cit. on p. 29).

Reinhard Diestel. Graph Theory. 4th Edition. Vol. 173. Graduate Texts
in Mathematics. Springer, 2010 (cit. on p. 5).

Ding-Zhu Du and Dean E Kelley. “On Complexity of Subset Inter-
connection Designs.” In: Journal of Global Optimization 6.2 (1995),
pp- 193-205 (cit. on pp. 23, 32, 33).

Yann Disser, Stefan Kratsch, and Manuel Sorge. “The Minimum Feasi-
ble Tileset problem.” In: Proceedings of the 12th Workshop on Approxi-
mation and Online Algorithms (WAOA '14). Vol. 8952. Lecture Notes in
Computer Science. Springer, 2014, pp. 144-155 (cit. on p. xvi).

Michael Dom, Daniel Lokshtanov, and Saket Saurabh. “Kernelization
Lower Bounds Through Colors and IDs.” In: ACM Trans. Algorithms
11.2 (2014), 13:1-13:20. DOI: 10.1145/2650261 (cit. on pp. 215, 217).


http://dx.doi.org/10.1145/2650261

Bibliography

[DM88]

[Dom09]

[Dor+10]

[Drul5]

[Du86]

[DW12]

[Ebl+12]

[EGBO06]

[EH66]

[Elb15]

Ding-Zhu Du and Zevi Miller. “Matroids and subset interconnection
design.” In: SIAM Journal on Discrete Mathematics 1.4 (1988), pp. 416—
424 (cit. on pp. 2, 23, 24, 32, 36).

Michael Dom. “Algorithmic Aspects of the Consecutive-Ones Prop-
erty.” In: Bulletin of the EATCS 98 (2009), pp. 27-59 (cit. on p. 26).

Frederic Dorn, Eelko Penninkx, Hans L. Bodlaender, and Fedor V.
Fomin. “Efficient Exact Algorithms on Planar Graphs: Exploiting
Sphere Cut Decompositions.” In: Algorithmica 58.3 (2010), pp. 790-810
(cit. on pp. xiv, 75, 79).

Andrew Drucker. “New Limits to Classical and Quantum Instance
Compression.” In: SIAM Journal on Computing 44.5 (2015), pp. 1443—
1479 (cit. on p. 14).

Ding-Zhu Du. “An optimization problem on graphs.” In: Discrete Ap-
plied Mathematics 14.1 (1986), pp. 101-104 (cit. on pp. 25, 32, 34).

Michael Dinitz and Gordon Wilfong. “iBGP and Constrained Con-
nectivity.” In: Proceedings of the 15th International Workshop Approx-
imation Algorithms for Combinatorial Optimization Problems (AP-
PROX ’12). Vol. 7408. Lecture Notes in Computer Science. Springer,
2012, pp. 122-133 (cit. on p. 26).

John D. Eblen, Charles A. Phillips, Gary L. Rogers, and Michael A.
Langston. “The maximum clique enumeration problem: algorithms,
applications, and implementations.” In: BMC Bioinformatics 13.10
(2012), pp. 1-11 (cit. on p. 98).

Thomas Eschbach, Wolfgang Giinther, and Bernd Becker. “Orthogonal
Hypergraph Drawing for Improved Visibility.” In: Journal of Graph Al-
gorithms and Applications 10.2 (2006), pp. 141-157 (cit. on p. 68).

P. Erdés and A. Hajnal. “On chromatic number of graphs and set-
systems.” In: Acta Mathematica Academiae Scientiarum Hungarica
17.1-2 (1966), pp. 61-99 (cit. on p. 107).

Khaled M. Elbassioni. “A Polynomial Delay Algorithm for Generating
Connected Induced Subgraphs of a Given Cardinality.” In: Journal of
Graph Algorithms and Applications 19.1 (2015), pp. 273-280 (cit. on
pp. 107, 110).

231



Bibliography

[ELS13]

[ES12]

[Fag83]

[Fan+08]

[Fel+09]

[FFHO8]

[FGO6]

[FJR13]

[FK10]

232

David Eppstein, Maarten Loffler, and Darren Strash. “Listing All Max-
imal Cliques in Large Sparse Real-World Graphs in Near-Optimal
Time.” In: ACM Journal of Experimental Algorithmics 18.3 (2013), 3.1:1-
3.1:21 (cit. on pp. 2, 101, 107, 137, 143, 220).

David Eppstein and Emma S. Spiro. “The h-Index of a Graph and its
Application to Dynamic Subgraph Statistics.” In: Journal of Graph Al-
gorithms and Applications 16.2 (2012), pp. 543-567 (cit. on pp. 101, 107,
137).

Ronald Fagin. “Acyclic Database Schemes (of Various Degrees): A Pain-
less Introduction.” In: Proceedings of the 8th Colloquium on Trees in
Algebra and Programming (CAAP '83). Vol. 159. Lecture Notes in Com-
puter Science. Springer, 1983, pp. 65-89 (cit. on p. 34).

Hongbing Fan, Christian Hundt, Yu-Liang Wu, and Jason Ernst. “Algo-
rithms and Implementation for Interconnection Graph Problem.” In:
Proceedings of the 2nd Second International Conference Combinatorial
Optimization and Applications (COCOA '08). Vol. 5165. Lecture Notes
in Computer Science. Springer, 2008, pp. 201-210 (cit. on pp. 23, 24, 32,
35, 36, 38, 65, 66).

Michael R. Fellows, Danny Hermelin, Frances A. Rosamond, and
Stéphane Vialette. “On the parameterized complexity of multiple-
interval graph problems.” In: Theoretical Computer Science 410.1
(2009), pp. 53-61 (cit. on p. 12).

J. Flower, A. Fish, and J. Howse. “Euler diagram generation.” In: Jour-
nal of Visual Languages & Computing 19.6 (2008), pp. 675-694 (cit. on
p. 69).

Jorg Flum and Martin Grohe. Parameterized Complexity Theory.
Springer, 2006 (cit. on p. 11).

Michael R. Fellows, Bart M. P. Jansen, and Frances A. Rosamond. “To-
wards fully multivariate algorithmics: Parameter ecology and the de-
construction of computational complexity.” In: European Journal of
Combinatorics 34.3 (2013), pp. 541-566 (cit. on pp. 102, 136).

Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Texts
in Theoretical Computer Science. An EATCS Series. Springer, 2010 (cit.
onp. 16).



Bibliography

[Flu+15]

[Fom+10]

[Fom+13]

[Fom+14]

[FPKO1]

[Fre82]

[Fro+16]

[FS11]

[FS97]

Till Fluschnik, Stefan Kratsch, Rolf Niedermeier, and Manuel Sorge.
“The Parameterized Complexity of the Minimum Shared Edges Prob-
lem.” In: Proceedings of the 35th IARCS Annual Conference on Foun-
dation of Software Technology and Theoretical Computer Science
(FSTTCS ’15). Vol. 45. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2015, pp. 448-462 (cit. on p. xvi).

Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M.
Thilikos. “Bidimensionality and Kernels.” In: Proceedings of the 21st An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA '10). SIAM,
2010, pp. 503-510 (cit. on p. 193).

Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M.
Thilikos. “Linear kernels for (connected) dominating set on graphs
with excluded topological subgraphs.” In: Proceedings of the 30th In-
ternational Symposium on Theoretical Aspects of Computer Science
(STACS ’13). Vol. 20. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2013, pp. 92-103 (cit. on pp. xv, 176, 192, 194, 197).

Fedor V. Fomin, Stefan Kratsch, Marcin Pilipczuk, Michat Pilipczuk,
and Yngve Villanger. “Tight bounds for parameterized complexity of
Cluster Editing with a small number of clusters.” In: Journal of Com-
puter and System Sciences 80.7 (2014), pp. 1430-1447 (cit. on p. 162).

Uriel Feige, David Peleg, and Guy Kortsarz. “The Dense k-Subgraph
Problem.” In: Algorithmica 29.3 (2001), pp. 410-421 (cit. on pp. 106,
110).

Eugene C. Freuder. “A Sufficient Condition for Backtrack-Free Search.”
In: Journal of the ACM 29.1 (1982), pp. 24-32 (cit. on p. 107).

Vincent Froese, René van Bevern, Rolf Niedermeier, and Manuel Sorge.
“Exploiting Hidden Structure in Selecting Dimensions that Distinguish
Vectors.” In: Journal of Computer and System Sciences 82.3 (2016),
pp- 521-535 (cit. on p. xvi).

Lance Fortnow and Rahul Santhanam. “Infeasibility of instance com-
pression and succinct PCPs for NP.” In: Journal of Computer and Sys-
tem Sciences 77.1 (2011), pp. 91-106 (cit. on p. 14).

Uriel Feige and Michael Seltser. On the densest k-subgraph problem.
Tech. rep. The Weizmann Institute, Department of Applied Math and
Computer Science, 1997 (cit. on pp. xiv, 109, 110).

233



Bibliography

[GG13]

[GGT89]

[GHNO04]

[GJ79]

[GNO06]

[GNO07]

[Gol88]

[GS83]

[GT08]

[Guo+11]

[Har+00]

234

Georg Gottlob and Gianluigi Greco. “Decomposing combinatorial auc-
tions and set packing problems.” In: Journal of the ACM 60.4 (2013),
24:1-24:39 (cit. on p. 25).

Giorgio Gallo, Michael D. Grigoriadis, and Robert Endre Tarjan. “A
Fast Parametric Maximum Flow Algorithm and Applications.” In: SIAM
Journal on Computing 18.1 (1989), pp. 30-55 (cit. on p. 110).

Jiong Guo, Falk Hiiffner, and Rolf Niedermeier. “A Structural View on
Parameterizing Problems: Distance from Triviality.” In: Proceedings of
the 1st International Workshop on Parameterized and Exact Compu-
tation (IWPEC '04). Vol. 3162. Lecture Notes in Computer Science.
Springer, 2004, pp. 162-173 (cit. on p. 93).

M. R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman, 1979 (cit. on
pp. 69, 141).

Jiong Guo and Rolf Niedermeier. “Exact algorithms and applications
for Tree-like Weighted Set Cover.” In: Journal of Discrete Algorithms 4.4
(2006), pp. 608-622 (cit. on pp. 23, 34).

Jiong Guo and Rolf Niedermeier. “Invitation to data reduction and
problem kernelization.” In: ACM SIGACT News 38.1 (2007), pp. 31-45
(cit. on p. 13).

Martin Charles Golumbic. “Algorithmic aspects of intersection graphs
and representation hypergraphs.” In: Graphs and Combinatorics 4.1
(1988), pp. 307-321 (cit. on p. 23).

Nathan Goodman and Oded Shmueli. “Syntactic Characterization of
Tree Database Schemas.” In: Journal of the ACM 30.4 (1983), pp. 767—
786 (cit. on p. 66).

Qian-Ping Gu and Hisao Tamaki. “Optimal branch-decomposition of
planar graphs in O(n3) Time.” In: ACM Transactions on Algorithms 4.3
(2008) (cit. on p. 75).

Jiong Guo, Iyad A. Kanj, Christian Komusiewicz, and Johannes
Uhlmann. “Editing Graphs into Disjoint Unions of Dense Clusters.” In:
Algorithmica 61.4 (2011), pp. 949-970 (cit. on p. 129).

Erez Hartuv, Armin O Schmitt, Jérg Lange, Sebastian Meier-Ewert,
Hans Lehrach, and Ron Shamir. “An algorithm for clustering cDNA fin-
gerprints.” In: Genomics 66.3 (2000), pp. 249-256 (cit. on pp. 100, 136).



Bibliography

[Har+15]

[Har+99]

[Har14]

[Har62]

[(HDO02]

[Her+13]

[Her+15]

[HKS15]

[Hol+06]

[Hol15]

Sepp Hartung, Christian Komusiewicz, André Nichterlein, and Ondfej
Suchy. “On structural parameterizations for the 2-club problem.” In:
Discrete Applied Mathematics 185 (2015), pp. 79-92 (cit. on p. 103).

Erez Hartuv, Armin O. Schmitt, Jorg Lange, Sebastian Meier-Ewert,
Hans Lehrach, and Ron Shamir. An algorithm for clustering cDNAs for
gene expression analysis. 1999 (cit. on p. 136).

Sepp Hartung. “Exploring Parameter Spaces in Coping with Computa-
tional Intractability.” PhD Thesis. TU Berlin, Jan. 2014 (cit. on pp. 102,
136).

Frank Harary. “The Maximum Connectivity of a Graph.” In: Proceed-
ings of the National Academy of Science of the United States of America
48.7 (1962), pp. 1142-1146 (cit. on p. 130).

Horst W Hamacher and Zvi Drezner. Facility Location: Applications
and Theory. Springer, 2002 (cit. on p. 175).

Danny Hermelin, Chien-Chung Huang, Stefan Kratsch, and Magnus
Wabhlstrom. “Parameterized Two-Player Nash Equilibrium.” In: Algo-
rithmica 65.4 (2013), pp. 802-816 (cit. on p. 107).

Danny Hermelin, Stefan Kratsch, Karolina Soltys, Magnus Wahlstrom,
and Xi Wu. “A Completeness Theory for Polynomial (Turing) Kernel-
ization.” In: Algorithmica 71.3 (2015), pp. 702-730 (cit. on pp. 15, 215,
217).

Falk Hiiffner, Christian Komusiewicz, and Manuel Sorge. “Finding
Highly Connected Subgraphs.” In: Proceedings of the 41st International
Conference on Current Trends in Theory and Practice of Computer Sci-
ence (SOFSEM ’15). Vol. 8939. Lecture Notes in Computer Science.
Springer, 2015, pp. 254-265 (cit. on pp. xv, 135, 140).

Klaus Holzapfel, Sven Kosub, Moritz G. Maa@, and Hanjo Tdubig. “The
complexity of detecting fixed-density clusters.” In: Discrete Applied
Mathematics 154.11 (2006), pp. 1547-1562 (cit. on pp. 106, 110).

Petter Holme. “Modern temporal network theory: A colloquium.” In:
CoRR abs/1508.01303 (2015) (cit. on p. 220).

235



Bibliography

[Hos+12]

[Hos+15]

[HPI1]

[HPV]

[HPV99]

[HS00]

[HS12]

[HSP13]

[HT74]

[Hif+09]

236

Jun Hosoda, Juraj Hromkovi¢, Taisuke Izumi, Hirotaka Ono, Monika
Steinovd, and Koichi Wada. “On the approximability and hardness of
minimum topic connected overlay and its special instances.” In: Theo-
retical Computer Science 429 (2012), pp. 144-154 (cit. on pp. 21, 32, 35,
36, 38, 43, 65).

Jun Hosoda, Juraj Hromkovi¢, Taisuke Izumi, Hirotaka Ono, Monika
Steinovd, and Koichi Wada. “Corrigendum to "On the approximabil-
ity and hardness of minimum topic connected overlay and its special
instances" [Theoret. Comput. Sci. 429 (2012) 144-154].” In: Theoretical
Computer Science 562 (2015), pp. 660-661 (cit. on pp. 35, 43).

Peter Hilton and Jean Pedersen. “Catalan Numbers, Their Generaliza-
tion, and Their Uses.” In: The Mathematical Intelligencer 13.2 (1991),
pp. 64-75 (cit. on p. 116).

Jochen Harant, Anja Pruchnewski, and Margit Voigt. “On Dominating
Sets and Independent Sets of Graphs.” In: Combinatorics, Probability
and Computing 8 (06), pp. 547-553 (cit. on p. 174).

Michel Habib, Christophe Paul, and Laurent Viennot. “Partition Re-
finement Techniques: An Interesting Algorithmic Tool Kit.” In: Interna-
tional Journal of Foundations of Computer Science 10.2 (1999), pp. 147-
170 (cit. on pp. 48, 91).

Erez Hartuv and Ron Shamir. “A clustering algorithm based on graph
connectivity.” In: Information Processing Letters 76.4—6 (2000), pp. 175—
181 (cit. on pp. 100, 102, 138, 150, 156).

Petter Holme and Jari Saraméki. “Temporal networks.” In: Physics Re-
ports 519.3 (2012), pp. 97-125 (cit. on p. 220).

Wayne Hayes, Kai Sun, and Nata3a Przulj. “Graphlet-based measures
are suitable for biological network comparison.” In: Bioinformatics
29.4 (2013), pp. 483-491 (cit. on p. 100).

John E. Hopcroft and Robert Endre Tarjan. “Efficient Planarity Testing.”
In: Journal of the ACM 21.4 (1974), pp. 549-568 (cit. on p. 72).

Falk Hiiffner, Christian Komusiewicz, Hannes Moser, and Rolf Nieder-
meier. “Isolation concepts for clique enumeration: Comparison and
computational experiments.” In: Theoretical Computer Science 410.52
(2009), pp. 5384-5397 (cit. on p. 97).



Bibliography

[Hiif+14]

[(HWZ08]

(1109]

[IIO05]

(IPO1]

[IPZ01]

[Jan17]

[JP09]

JP87]

Juko1]

Falk Hiuiffner, Christian Komusiewicz, Adrian Liebtrau, and Rolf Nie-
dermeier. “Partitioning biological networks into highly connected
clusters with maximum edge coverage.” In: IEEE/ACM Transactions on
Computational Biology and Bioinformatics 11.3 (2014), pp. 455-467
(cit. on pp. xv, 98, 100, 136, 139).

Falk Hiiffner, Sebastian Wernicke, and Thomas Zichner. “Algorithm
Engineering for Color-Coding with Applications to Signaling Pathway
Detection.” In: Algorithmica 52.2 (2008), pp. 114-132 (cit. on pp. 108,
120).

Hiro Ito and Kazuo Iwama. “Enumeration of isolated cliques and
pseudo-cliques.” In: ACM Transactions on Algorithms 5.4 (2009), Arti-
cle 40 (cit. on pp. 134, 137, 140).

Hiro Ito, Kazuo Iwama, and Tsuyoshi Osumi. “Linear-Time Enumer-
ation of Isolated Cliques.” In: Proceedings of the 13th European Sym-
posium on Algorithms (ESA '05). Vol. 3669. Lecture Notes in Computer
Science. Springer, 2005, pp. 119-130 (cit. on pp. 134, 137, 140, 141).

Russell Impagliazzo and Ramamohan Paturi. “On the Complexity of k-
SAT.” In: Journal of Computer and System Sciences 62.2 (2001), pp. 367—
375 (cit. on p. 16).

Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. “Which
Problems Have Strongly Exponential Complexity?” In: Journal of Com-
puter and System Sciences 63.4 (2001), pp. 512-530 (cit. on p. 16).

Bart M. P. Jansen. “On Structural Parameterizations of Hitting Set: Hit-
ting Paths in Graphs Using 2-SAT.” In: Journal of Graph Algorithms and
Applications 21.2 (2017), pp. 219-243 (cit. on pp. 23, 34).

Daxin Jiang and Jian Pei. “Mining frequent cross-graph quasi-cliques.”
In: ACM Transactions on Knowledge Discovery from Data 2.4 (2009),
16:1-16:41 (cit. on p. 106).

D. S. Johnson and H. O. Pollak. “Hypergraph planarity and the com-
plexity of drawing Venn diagrams.” In: Journal of Graph Theory 11.3
(1987), pp. 309-325 (cit. on pp. 2, 22, 68, 69, 71).

Stasys Jukna. Extremal Combinatorics - With Applications in Computer
Science. Texts in Theoretical Computer Science. Springer, 2001 (cit. on
pp. 176, 193).

237



Bibliography

[Kan+14]

[Kar72]

[Kho04]

[Kim+15]

[KKS08]

[KKV04]

[KMN14]

[KN12]

238

Kustaa Kangas, Petteri Kaski, Mikko Koivisto, and Janne H. Korhonen.
“On the Number of Connected Sets in Bounded Degree Graphs.” In:
Proceedings of the 40th International Workshop on Graph-Theoretic
Concepts in Computer Science (WG ’'14). Vol. 8747. Lecture Notes in
Computer Science. Springer, 2014, pp. 336-347 (cit. on p. 109).

Richard M. Karp. “Reducibility Among Combinatorial Problems.” In:
Proceedings of a symposium on the Complexity of Computer Computa-
tions, held March 20-22, 1972, at the IBM Thomas ]. Watson Research
Center, Yorktown Heights, New York. The IBM Research Symposia Se-
ries. Plenum Press, 1972, pp. 85-103 (cit. on pp. 2, 9).

Subhash Khot. “Ruling Out PTAS for Graph Min-Bisection, Densest
Subgraph and Bipartite Clique.” In: Proceedings of the 45th Annual
IEEE Symposium on Foundations of Computer Science (FOCS '04). IEEE
Computer Society, 2004, pp. 136-145 (cit. on p. 110).

Eun Jung Kim, Alexander Langer, Christophe Paul, Felix Reidl, Pe-
ter Rossmanith, Ignasi Sau, and Somnath Sikdar. “Linear Kernels and
Single-Exponential Algorithms Via Protrusion Decompositions.” In:
ACM Transactions on Algorithms 12.2 (2015), 21:1-21:41 (cit. on p. 193).

Michael Kaufmann, Marc J. van Kreveld, and Bettina Speckmann.
“Subdivision Drawings of Hypergraphs.” In: Proceedings of the 16th In-
ternational Symposium on Graph Drawing (GD '08). Vol. 5417. Lecture
Notes in Computer Science. Springer, 2008, pp. 396—407 (cit. on pp. 22,
68-70, 75).

Daniel Krdl, Jan Kratochvil, and Heinz-Jiirgen Voss. “Mixed hyper-
cacti.” In: Discrete Mathematics 286.1-2 (2004), pp. 99-113 (cit. on
p. 23).

Boris Klemz, Tamara Mchedlidze, and Martin Nollenburg. “Mini-
mum Tree Supports for Hypergraphs and Low-Concurrency Euler Di-
agrams.” In: Proceedings of the 14th Scandinavian Symposium on Al-
gorithm Theory (SWAT ’14). Vol. 8503. Lecture Notes in Computer Sci-
ence. Springer, 2014, pp. 265-276 (cit. on pp. 22, 37, 66, 71).

Christian Komusiewicz and Rolf Niedermeier. “New Races in Parame-
terized Algorithmics.” In: Proceedings of the 37th International Sympo-
sium on Mathematical Foundations of Computer Science (MFCS '12).
Vol. 7464. Lecture Notes in Computer Science. Springer, 2012, pp. 19—
30 (cit. on pp. 102, 136).



Bibliography

[Kom+09]

[Kom16]

[Kos05]

[Kral4]

[KS03]

[KS09]

[KS11]

[KS12]

[KS15a]

[KS15b]

Christian Komusiewicz, Falk Hiiffner, Hannes Moser, and Rolf Nie-
dermeier. “Isolation concepts for efficiently enumerating dense sub-
graphs.” In: Theoretical Computer Science 410.38-40 (2009), pp. 3640-
3654 (cit. on pp. 97, 134, 137, 140, 141).

Christian Komusiewicz. “Multivariate Algorithmics for Finding Cohe-
sive Subnetworks.” In: Algorithms9.1 (2016), p. 21 (cit. on pp. 102, 139).

Sven Kosub. “Local Density.” In: Network Analysis. Vol. 3418. Lecture
Notes in Computer Science. Springer, 2005, pp. 112-142 (cit. on pp. 97,
98, 100, 106, 139).

Stefan Kratsch. “Recent developments in kernelization: A survey.” In:
Bulletin of the EATCS 113 (2014) (cit. on p. 13).

Ephraim Korach and Michal Stern. “The clustering matroid and the
optimal clustering tree.” In: Mathematical Programming 98.1-3 (2003),
pp- 385-414 (cit. on pp. 37, 66, 71).

Samir Khuller and Barna Saha. “On Finding Dense Subgraphs.” In: Pro-
ceedings of 36th International Colloquium on Automata, Languages
and Programming (ICALP '09). Vol. 5555. Lecture Notes in Computer
Science. Springer, 2009, pp. 597-608 (cit. on pp. 106, 110).

Jan Katrenic and Ingo Schiermeyer. “Improved approximation bounds
for the minimum rainbow subgraph problem.” In: Information Process-
ing Letters 111.3 (2011), pp. 110-114 (cit. on p. 107).

Christian Komusiewicz and Manuel Sorge. “Finding Dense Subgraphs
of Sparse Graphs.” In: Proceedings of the 7th International Symposium
on Parameterized and Exact Computation (IPEC’12). Vol. 7535. Lecture
Notes in Computer Science. Springer, 2012, pp. 242-251 (cit. on p. xiv).

Christian Komusiewicz and Manuel Sorge. “An Algorithmic Frame-
work for Fixed-Cardinality Optimization in Sparse Graphs Applied
to Dense Subgraph Problems.” In: Discrete Applied Mathematics 193
(2015), pp. 145-161 (cit. on pp. xv, 105, 109, 110).

Stefan Kratsch and Manuel Sorge. “On Kernelization and Approxima-
tion for the Vector Connectivity Problem.” In: Proceedings of the 10th
International Symposium on Parameterized and Exact Computation
(IPEC’15). Vol. 43. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer In-
formatik, 2015, pp. 377-388 (cit. on p. xvi).

239



Bibliography

[KS16]

[KSS15]

[KSVO05]

[KT96]

[KW12]

[LMS11]

[Lok09]

[LW08]

[M&k90]

[Mar09]

240

Stefan Kratsch and Manuel Sorge. “On Kernelization and Approxima-
tion for the Vector Connectivity Problem.” In: Algorithmica (2016). On-
line First, pp. 1-43 (cit. on pp. xvi, 173, 177, 181, 218).

Christian Komusiewicz, Manuel Sorge, and Kolja Stahl. “Finding Con-
nected Subgraphs of Fixed Minimum Density: Implementation and
Experiments.” In: Proceedings of the 14th International Symposium on
Experimental Algorithms (SEA '15). Vol. 9125. Lecture Notes in Com-
puter Science. Springer, 2015, pp. 82-93 (cit. on pp. xv, 133, 220).

Antje Krause, Jens Stoye, and Martin Vingron. “Large scale hierarchi-
cal clustering of protein sequences.” In: BMC Bioinformatics 6.1 (2005),
pp- 1-12 (cit. on p. 100).

Lefteris M. Kirousis and Dimitrios M. Thilikos. “The Linkage of a
Graph.” In: SIAM Journal on Computing 25.3 (1996), pp. 626-647 (cit.
on p. 107).

Stefan Kratsch and Magnus Wahlstrom. “Representative Sets and Ir-
relevant Vertices: New Tools for Kernelization.” In: Proceedings of the
53rd Annual IEEE Symposium on Foundations of Computer Science
(FOCS '12). IEEE Computer Society, 2012, pp. 450-459 (cit. on p. 179).

Daniel Lokshtanov, Ddniel Marx, and Saket Saurabh. “Lower bounds
based on the Exponential Time Hypothesis.” In: Bulletin of the EATCS
105 (2011), pp. 41-72 (cit. on p. 16).

Daniel Lokshtanov. “New Methods in Parameterized Algorithms and
Complexity.” PhD Thesis. University of Bergen, Apr. 2009 (cit. on p. 15).

Guimei Liu and Limsoon Wong. “Effective Pruning Techniques for
Mining Quasi-Cliques.” In: Proceedings of the 2008 European Confer-
ence on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECML/PKDD ’'08). Vol. 5212. Lecture Notes in
Computer Science. Springer, 2008, pp. 33-49 (cit. on p. 139).

Erkki Mékinen. “How to draw a hypergraph.” In: International Journal
of Computer Mathematics 34 (1990), pp. 178-185 (cit. on pp. 22, 68, 70,
75).

Déniel Marx. “A parameterized view on matroid optimization prob-
lems.” In: Theoretical Computer Science 410.44 (2009), pp. 4471-4479
(cit. on pp. 177, 185, 187).



Bibliography

[Mic16]

[MIH99]

[MOR13]

[MP15]

[Mun00]

[Nie06]

[Niel0]

[NM12]

[OR11]

[Ox111]

[Pap94]

Othon Michail. “An Introduction to Temporal Graphs: An Algorithmic
Perspective.” In: Internet Mathematics 12.4 (2016), pp. 239-280 (cit. on
p- 220).

Hideo Matsuda, Tatsuya Ishihara, and Akihiro Hashimoto. “Classify-
ing Molecular Sequences Using a Linkage Graph With Their Pairwise
Similarities.” In: Theoretical Computer Science 210.2 (1999), pp. 305-
325 (cit. on p. 139).

Déniel Marx, Barry O’Sullivan, and Igor Razgon. “Finding small sepa-
rators in linear time via treewidth reduction.” In: ACM Transactions on
Algorithms 9.4 (2013), 30:1-30:35 (cit. on p. 195).

Déniel Marx and Michat Pilipczuk. “Optimal Parameterized Algo-
rithms for Planar Facility Location Problems Using Voronoi Dia-
grams.” In: Proceedings of the 23rd European Symposium on Algorithms
(ESA’15). Springer, 2015, pp. 865-877 (cit. on pp. 75, 79).

James Munkres. Topology. 2nd Edition. Prentice Hall, 2000 (cit. on
p.- 73).

Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford
University Press, 2006 (cit. on p. 11).

Rolf Niedermeier. “Reflections on Multivariate Algorithmics and Prob-
lem Parameterization.” In: Proceedings of the 27th International Sym-
posium on Theoretical Aspects of Computer Science (STACS '10). Vol. 5.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010,
pp. 17-32 (cit. on pp. 102, 136).

Jaroslav Nesetril and P Ossona de Mendez. Sparsity—Graphs, Struc-
tures, and Algorithms. Vol. 28. Algorithms and Combinatorics.
Springer, 2012 (cit. on p. 1).

Melih Onus and Andréa W. Richa. “Minimum Maximum-Degree
Publish-Subscribe Overlay Network Design.” In: IEEE/ACM Transac-
tions on Networking 19.5 (2011), pp. 1331-1343 (cit. on pp. 21, 25, 32,
66).

James Oxley. Matroid Theory. Oxford University Press, 2011 (cit. on
pp. 186, 187).

Christos H. Papadimitriou. Computational Complexity. Addison Wes-
ley, 1994 (cit. on pp. 9, 10).

241



Bibliography

[Par+11]

[Pat+13]

[Per68]

[PMB14]

[PW]04]

[PYB13]

[Rob55]

[RS12]

[SB13]

[Sch+12]

242

Brian J. Parker, Ida Moltke, Adam Roth, Stefan Washietl, Jiayu Wen,
Manolis Kellis, Ronald Breaker, and Jakob Skou Pedersen. “New fam-
ilies of human regulatory RNA structures identified by comparative
analysis of vertebrate genomes.” In: Genome Research 21.11 (2011),
pp- 1929-1943 (cit. on p. 100).

Jeffrey Pattillo, Alexander Veremyeyv, Sergiy Butenko, and Vladimir Bo-
ginski. “On the maximum quasi-clique problem.” In: Discrete Applied
Mathematics 161.1-2 (2013), pp. 244-257 (cit. on pp. 99, 110).

Hazel Perfect. “Applications of Menger’s graph theorem.” In: Journal of
Mathematical Analysis and Applications 22.1 (1968), pp. 96-111 (cit. on
p. 187).

Foad Mahdavi Pajouh, Zhuqgi Miao, and Balabhaskar Balasundaram. “A
branch-and-bound approach for maximum quasi-cliques.” In: Annals
of Operations Research 216.1 (2014), pp. 145-161 (cit. on pp. 99, 133).

N. Przulj, D.A. Wigle, and I. Jurisica. “Functional topology in a network
of protein interactions.” In: Bioinformatics 20.3 (2004), pp. 340-348 (cit.
on pp. 100, 136).

Jeffrey Pattillo, Nataly Youssef, and Sergiy Butenko. “On clique relax-
ation models in network analysis.” In: European Journal of Operational
Research 226.1 (2013), pp. 9-18 (cit. on pp. 1, 97-100, 102, 103, 106, 139,
152).

Herbert Robbins. “A remark on Stirling’s formula.” In: American Math-
ematical Monthly (1955), pp. 26-29 (cit. on p. 17).

Neil Robertson and Paul D. Seymour. “Graph Minors. XXII. Irrelevant
vertices in linkage problems.” In: Journal of Combinatorial Theory, Se-
ries B102.2 (2012), pp. 530-563 (cit. on pp. 92, 194).

Shahram Shahinpour and Sergiy Butenko. “Distance-Based Clique Re-
laxations in Networks: s-Clique and s-Club.” In: Proceedings of the Sec-
ond International Conference on Network Analysis. Vol. 59. Springer
Proceedings in Mathematics & Statistics. Springer, 2013, pp. 149-174
(cit. on pp. 1, 102).

Alexander Schéfer, Christian Komusiewicz, Hannes Moser, and
Rolf Niedermeier. “Parameterized computational complexity of find-
ing small-diameter subgraphs.” In: Optimization Letters 6.5 (2012),
pp- 883-891 (cit. on pp. 15, 116).



Bibliography

[Sch79]

[Sei83]

[SF78]

[Ski08]

[Sla78]

[Sor+11]

[Sor+12]

[Sor+14]

[Sor13]

[ST94]

[Stal3]

Arnold Schonhage. “On the Power of Random Access Machines.” In:
Proceedings of the 6th International Colloquium on Automata, Lan-
guages and Programming (ICALP ’79). Vol. 71. Lecture Notes in Com-
puter Science. Springer, 1979, pp. 520-529 (cit. on p. 10).

Stephen B. Seidman. “Network structure and minimum degree.” In: So-
cial Networks 5 (3 1983), pp. 269-287 (cit. on pp. 57, 107).

Stephen B. Seidman and Brian L. Foster. “A Graph-theoretic General-
ization of the Clique Concept.” In: The Journal of Mathematical Sociol-
0gy 6.1 (1978), pp. 139-154 (cit. on p. 100).

Steven Skiena. The Algorithm Design Manual. 2nd Edition. Springer,
2008 (cit. on p. 177).

Peter ] Slater. “A characterization of SOFT hypergraphs.” In: Canadian
Mathematical Bulletin 21.3 (1978), pp. 335-337 (cit. on pp. 34, 36).

Manuel Sorge, René van Bevern, Rolf Niedermeier, and Mathias Weller.
“From Few Components to an Eulerian Graph by Adding Arcs.” In: Pro-
ceedings of the 37th International Workshop on Graph-Theoretic Con-
cepts in Computer Science (WG '11). Vol. 6986. Lecture Notes in Com-
puter Science. Springer, 2011, pp. 307-318 (cit. on p. xvi).

Manuel Sorge, René van Bevern, Rolf Niedermeier, and Mathias Weller.
“A new view on Rural Postman based on Eulerian Extension and
Matching.” In: Journal of Discrete Algorithms 16 (2012), pp. 12-33 (cit.
on p. xvi).

Manuel Sorge, Hannes Moser, Rolf Niedermeier, and Mathias Weller.
“Exploiting a Hypergraph Model for Finding Golomb Rulers.” In: Acta
Informatica 51 (2014), pp. 449-471 (cit. on p. xvi).

Manuel Sorge. “A More Complicated Hardness Proof for Finding Dens-
est Subgraphs in Bounded Degree Graphs.” In: CoRR abs/1306.6598
(2013) (cit. on p. xiv).

Paul D. Seymour and Robin Thomas. “Call Routing and the Rat-
catcher.” In: Combinatorica 14.2 (1994), pp. 217-241 (cit. on p. 75).

Kolja Stahl. “Algorithm Engineering fiir das Auffinden dichter Teil-
graphen in diinnen Graphen.” Bachelor Thesis. TU Berlin, June 2013
(cit. on pp. xv, 133).

243



Bibliography

[SZ14]

[Tan89]

[Tut63]

[TY84]

[Ueh99]

[Ver+14]

[VLM16]

[VV04]

[Well3]

[WF94]

244

Hadas Shachnai and Meirav Zehavi. “Parameterized Algorithms for
Graph Partitioning Problems.” In: Proceedings of the 40th International
Workshop on Graph-Theoretic Concepts in Computer Science (WG '14).
Vol. 8747. Lecture Notes in Computer Science. Springer, 2014, pp. 384—
395 (cit. on pp. 123, 124).

T.-Z. Tang. “A Criterion for a Minimum Feasible Graph.” In: Mathemat-
ica Applicata. B (2 1989). In Chinese., pp. 21-24 (cit. on pp. 25, 34).

William T Tutte. “How to draw a graph.” In: Proceedings of the London
Mathematical Society 13.3 (1963), pp. 743-768 (cit. on p. 75).

R. Tarjan and M. Yannakakis. “Simple Linear-Time Algorithms to Test
Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively
Reduce Acyclic Hypergraphs.” In: SIAM Journal on Computing 13.3
(1984), pp. 566-579 (cit. on pp. 23, 24, 36, 71).

Ryuhei Uehara. The number of connected components in graphs and its
applications. http:/ /www.jaist.ac.jp/ ~uehara/ps/component.ps.gz.
1999 (cit. on p. 110).

Alexander Veremyev, Oleg A. Prokopyev, Vladimir Boginski, and Ed-
uardo L. Pasiliao. “Finding maximum subgraphs with relatively large
vertex connectivity.” In: European Journal of Operational Research
239.2 (2014), pp. 349-362 (cit. on p. 139).

Jordan Viard, Matthieu Latapy, and Clémence Magnien. “Computing
maximal cliques in link streams.” In: Theoretical Computer Science 609
(2016), pp. 245-252 (cit. on p. 220).

Anne Verroust and Marie-Luce Viaud. “Ensuring the Drawability of Ex-
tended Euler Diagrams for up to 8 Sets.” In: Proceedings of the Third
International Conference on Diagrammatic Representation and Infer-
ence (Diagrams '04). Vol. 2980. Lecture Notes in Computer Science.
Springer, 2004, pp. 128-141 (cit. on p. 25).

Mathias Weller. “Aspects of Preprocessing Applied to Combinatorial
Graph Problems.” PhD Thesis. TU Berlin, Aug. 2013 (cit. on p. 15).

Stanley Wasserman and Katherine Faust. Social Network Analysis.
Structural Analysis in the Social Sciences. Cambridge University Press,
1994 (cit. on p. 97).


http://www.jaist.ac.jp/~uehara/ps/component.ps.gz

Bibliography

[Woe03]

[XF95]

[XWO05]

[Yap83]

[Yu+06]

[Zen+07]

Gerhard ] Woeginger. “Exact algorithms for NP-hard problems: A sur-
vey.” In: Combinatorial Optimization-Eureka, You Shrink! Springer,
2003, pp. 185-207 (cit. on p. 16).

Yinfeng Xu and Xiaobing Fu. “On the minimum feasible graph for four
sets.” In: Applied Mathematics - A Journal of Chinese Universities. B 10
(4 1995), pp. 457-462 (cit. on pp. 25, 34).

Rui Xu and Donald Wunsch. “Survey of clustering algorithms.” In: I[EEE
Transactions on Neural Networks 16.3 (2005), pp. 645-678 (cit. on p. 98).

Chee-Keng Yap. “Some Consequences of Non-Uniform Conditions on
Uniform Classes.” In: Theoretical Computer Science 26 (1983), pp. 287-
300 (cit. on p. 14).

Haiyuan Yu, Alberto Paccanaro, Valery Trifonov, and Mark Gerstein.
“Predicting interactions in protein networks by completing defective
cliques.” In: Bioinformatics 22.7 (2006), pp. 823-829 (cit. on p. 98).

Zhiping Zeng, Jianyong Wang, Lizhu Zhou, and George Karypis. “Out-
of-core coherent closed quasi-clique mining from large dense graph
databases.” In: ACM Transactions on Database Systems 32.2 (2007),
pp. 1-40 (cit. on p. 97).

245






Appendix A

Problem compendium

CLIQUE

Input: Anundirected graph G and a nonnegative integer k.

Question: Does G have a k-vertex complete subgraph (a clique) as a
subgraph?

DENSEST k-SUBGRAPH

Input: Anundirected graph G = (V, E), and a nonnegative integer k.

Task: Find a vertex set S € V of size exactly k such that G[S] has maxi-
mum density [E(G[SDI/(3).

DOMINATING SET
Input: Anundirected graph G and an integer k.
Question: Is there a dominating set of size k in G?

FIXED-CARDINALITY OPTIMIZATION

Input: An undirected graph G = (V, E), an objective function ¢: 2" —
Q*, and a nonnegative integer k.

Task: Find the maximum of ¢(S) over all sets S < V such that |S| = k.

k-CNF-SATISFIABILITY

Input: A boolean formula ¢ in conjunctive normal form with at most
k literals in each clause.

Question: Is there a truth assignment of the variables that makes ¢
true?
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HIGHLY CONNECTED SUBGRAPH

Input: Anundirected graph G = (V, E) and a nonnegative integer k.

Question: 1Is there a vertex set S < V of size exactly k such that G[S] is
highly connected?

HITTING SET

Input: Ahypergraph # and a nonnegative integer k.

Question: Is there a set H < V() of size at most k such that SN H # @
for each hyperedge S in 7?2

ISOLATED HIGHLY CONNECTED SUBGRAPH

Input: Anundirected graph G = (V, E) and nonnegative integers k and y.

Question: Isthere a k-vertex y-isolated highly connected subgraph con-
tained in G?

u-CLIQUE

Input: Anundirected graph G = (V, E), and a nonnegative integer k.

Question: Is there a vertex set S € V of size at least k such that G[S] is
a p-clique?

MULTICOLORED CLIQUE

Input: A nonnegative integer k and an undirected graph G along with
a partition of its vertex set into k independent sets.

Question: Does G have a k-vertex clique as a subgraph?

r-OUTERPLANAR SUPPORT
Input: A connected hypergraph /€ and a nonnegative integer r.
Question: Does # admit an r-outerplanar support?

SET MULTICOVER

Input: A universe U with covering demands d : U — N, a family & of
subsets of the universe with multiplicity values m : % — N, and a
nonnegative integer p € N.

Question: Is there a multiset of at most p subsets from ¥ that con-
tains each F € & at most m(F) times, and covers each u € U with
atleast d(u) subsets?



SUBSET INTERCONNECTION DESIGN
Input: A connected hypergraph /€ and a nonnegative integer f.
Question: Does ¥ admit a support with at most |V (#0)| -1+ f edges?

VECTOR CONNECTIVITY

Input: Anundirected graph G, nonnegative integers k and d, and a de-
mand function A: V — {0,...,d}.

Question: Isthere aset S < V(G) of at most k vertices such that for each
vertex v € V(G) \ S there are A(v) vertex-disjoint paths from v to §?

VECTOR d-CONNECTIVITY

Input: An undirected graph G, a nonnegative integer k, and a demand
function A: V —{0,...,d}.

Question: Is there aset S < V(G) of at most k vertices such that for each
vertex v € V'\ S there are A(v) vertex-disjoint paths from v to S?
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