
Systems Code Models for Stellarator Fusion Power
Plants and Application to Stellarator Optimisation

vorgelegt von
M. Sc.

Jorrit Lion
ORCID: 0000-0002-6249-2368

an der Fakultät II – Mathematik und Naturwissenschaften
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
— Dr. rer. nat. —

genehmigte Dissertation

Promotionsausschuss:
Vorsitzender: Prof. Dr. Holger Stark
Gutachter: Prof. Dr. Dieter Breitschwerdt
Gutachter: Prof. Dr. Robert C. Wolf
Gutachterin: Assist. Prof. Dr. Josefine H.E. Proll

Tag der wissenschaftlichen Aussprache: 12.04.2023

Berlin 2023

https://orcid.org/0000-0002-6249-2368




Abstract

Stellarators are attractive candidates for commercial fusion power plants: they inher-
ently operate in steady-state and, unlike tokamaks, do not require a plasma current
to obtain magnetic confinement, which can lead to current-driven disruptions.

The concept of stellarators was first proposed over 70 years ago and now gains
renewed interest as a candidate for commercial fusion power plants, mainly caused
by the successful operation of the large stellarator experiment ‘Wendelstein 7-X’ [1].
Advances in stellarator optimisation now make it possible to suggest configurations
that meet nearly all necessary criteria for a fusion reactor from a physics point of view.
In addition, it is possible to find stellarator configurations that are more compact,
and thus more economical, and have less turbulent activity than previously suggested
configurations.

Systems code studies are holistic tools, which are crucial to extrapolate a stellarator
to a consistent fusion reactor design point, which matches with physics, engineering
and economical constraints. By modelling all relevant properties and boundary condi-
tions, using reduced and computationally fast models, it is possible to quantify these
design points and also learn about sensitivities, correlations and relevant trade-offs.
However, so far, systems-code studies have mainly been employed for the tokamak
concept only, as part of the European tokamak DEMO activity.

Because stellarators are not bound to toroidal symmetry, as tokamaks are, they
allow for drastically different configurations, especially with respect to the plasma
shape and the non-planar coil geometry. To model this vast design space, it is re-
quired to develop systems code models, that allow to model a large space of different
stellarator configurations within a single code framework. A systems code for such
general stellarators did not exist before this work.

In this work, a new set of stellarator systems code models is developed and imple-
mented in the European fusion reactor systems code ‘Process’. With these modific-
ations, it is possible to model generic modular stellarators, requiring only the plasma
shape and the central coil filaments of the non-planar coils as inputs. This work bases
on previous contributions [2], which implemented models for one specific stellarator
configuration, namely the Helias 5 stellarator configuration, based on parameters
of a respective engineering study [3]. The dependency to such an engineering study
was resolved in this work, and a set of models was developed and implemented that
are applicable to generic modular stellarators.
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Abstract

The new stellarator version of Process is used then to

1. for the first time find a cost-optimised design point of a Helias 5 stellarator,
using differently aggressive technology assumptions,

2. find a set of design points for a high field, intermediate-step, prototype stellar-
ator, given uncertainties on certain input parameters,

3. evaluate the relative importance of common targets in stellarator optimisation
quantitatively in terms of their economical relevance,

4. and lastly demonstrate the usage of Process as a penalty function for different
stellarator coil-sets and its possible application for stellarator coil optimisation.

The thesis contributes to the area of stellarator systems code studies for fusion
power plants and develops models that take the fact into account that there is a
growing number of new stellarator configurations available, made possible by recent
optimisation advancements.
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Zusammenfassung

Stellaratoren sind attraktive Kandidaten für kommerzielle Fusionsreaktoren: Im Ge-
gensatz zu Tokamaks operieren Stellaratoren intrinsisch kontinuierlich, und sind, um
magnetischen Einschluss zu erreichen, nicht auf einen internen Plasmastrom ange-
wiesen, der zu stromgetriebenen Disruptionen führen kann. Das stellarator Konzept
wurde bereits vor fast 70 Jahre vorgeschlagen und erlebt vor allem durch die erfolgrei-
che Inbetriebnahme des Stellarator-Reaktor-Prototypen ‘Wendelstein 7-X’ [1] erneute
Aufmerksamkeit als Kandidat für einen kommerziellen Fusionsreaktor. Weitere Fort-
schritte in den letzten Jahren in der Optimierung von Stellaratoren ermöglichen es
nun, Stellarator-Konfigurationen vorzuschlagen, die fast alle für einen Reaktor not-
wendigen Kriterien erfüllen. Zudem ist es nun möglich, kompakte Stellaratoren zu
finden und Konfigurationen mit reduzierter Turbulenz, die momentan maßgeblich den
Einschluss in Wendelstein 7-X limitiert.

System-Code-Studien spielen für die Extrapolation zu einem Reaktor und eine
entsprechende Stellarator-Reaktoroptimierung eine wichtige Rolle: Durch das voll-
ständige Modellieren aller relevanten Eigenschaften und Randbedinungen mithilfe
reduzierter Modelle in einem integrierten Computer-Code, wird es ermöglicht, Er-
kenntnisse über Reaktor Design Punkte, Sensitivitäten, Korrelationen, relevante Kom-
promisse und über ökonomische Eigenschaften zu erlangen. System-Codes haben den
Vorteil, dass sie physikalische, technologische und ökonomische Aspekte modellieren
und somit Design Punkte finden können, die mit allen drei Aspekten übereinstimmen.
Solche System-Code-Studien werden momentan vor allem für die Reaktor Extrapolati-
on von Tokamaks verwendet, zum Beispiel als Teil der europäischen DEMO Aktivität,
die das Konzept eines Tokamak-Reaktors verfolgt.

Da Stellaratoren durch ihre niedrigere axiale Symmetrie weitaus verschiedenere
Designlösungen ermöglichen, vor allem im Bezug auf Plasmaform und auf Spulengeo-
metrie, ist es vonnöten, System-Code-Modelle zu entwickeln, die eine große Anzahl
möglichst generischer Stellarator Konfigurationen modellieren können. Solch ein Satz
von Modellen existierte bis zum Zeitpunkt der vorliegenden Arbeit nicht.

In dieser Arbeit wird eine Reihe von System-Code-Modellen entwickelt und in
den europäischen Fusions-Reaktor System-Code ‘Process’ implementiert, der es
anschließend ermöglicht, allgemeine, modulare Stellaratoren zu modellieren, auf Basis
der letzten Flussfläche des Stellarator-Plasmas und auf Basis des entsprechenden
Spulensets, das in der Regel durch nichtplanare zentrale Spulenfilamente beschrieben
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Zusammenfassung

wird. Diese Arbeit knüpft an vorige Arbeiten an [2], die einen reduzierten Satz an
Modellen für eine bestimmte Stellarator Konfiguration, die Helias 5 Konfiguration,
auf Basis einer separaten Studie [3] implementiert hatten. Die Abhängigkeit von solch
einer Studie wurde in dieser Arbeit gelöst, sowie ein Satz von Modellen entwickelt
und implementiert, die auf generische Stellaratoren anwendbar ist.

Anschließend an die Beschreibung der in Process implementierten Modelle wird
Process, nun für generische modulare Stellaratoren geignet, eingesetzt um

1. zum ersten Mal einen Kosten-optimierten Designpunkt eines optimierten Heli-
as 5 stellarators vorzuschlagen mit verschieden aggressiven Technologie-Annahmen,

2. einen Satz an Designpunkten eines Hoch-Feld Prototyp-Stellarators vorzuschla-
gen, als Zwischenschritt zu einem Reaktor, gegeben einiger Unsicherheiten auf
relevante Anfangsparameter,

3. die relative Wichtigkeit von Optimierungs-Zielen in der Stellarator Optimierung
quantitativ zu evaluieren,

4. und zuletzt den Einsatz von Process als Kostenfunktion für verschiedene
Stellarator Spulensätze zu demonstrieren und dessen möglichen Einsatz für
Stellarator Spulen Optimierung zu zeigen.

Die vorliegende Arbeit trägt zu der System-Studien Modellierung von Stellaratoren
als Fusionskraftwerke bei. Die Art der implementierten Modelle und die Resultate in
dieser Arbeit berücksichtigen den Trend einer stark wachsenden Anzahl an verfügba-
ren Stellarator-Konfigurationen, die durch Fortschritte in der Stellarator-Optimierung
ermöglicht werden.
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1
Introduction

1.1. Nuclear Fusion

Nuclear fusion is the process when light nuclei fuse together to new, energetically
favourable, bound states. There is a variety of different nuclei which produce kinetic
energy when they fuse together, the most prominent reactions are

2
1D + 3

1T → 4
2He (3.52MeV) + n (14.06MeV)

2
1D + 2

1D → 3
1T (1.01MeV) + p+ (3.02MeV)

→ 3
2He (0.82MeV) + n0 (2.45MeV

2
1D + 3

2He → 4
2He (3.6MeV) + p+(14.7MeV)

At center of mass energies of ∼ 10 keV, the first reaction, the fusion of deuterium
(D) and tritium (T), features by far the highest cross-section of all possible fusion
reactions [4], while also producing a significant amount of fusion power, about 17.1
MeV per reaction. A D-T fuel has thus an energy density of ∼ 3 ⋅ 108 MJ/kg when
fused, which is a factor of 107 greater than most other currently available fuels, like
natural gas or oil when burned, and still a factor of 4 greater than fission fuels, like
Uranium or Thorium.

The second most promising fusion reaction to generate energy is D+3He, a reaction
that releases 18.3 MeV energy in charged particles. Fusion concepts, which rely on
magnetic fields to confine the fuel, can use the energy of charged particle products
for re-heating. Larger values of the energy of the charged products thus ease the burn
conditions in a magnetic confinement fusion concept. D+3He however has two major
drawbacks: firstly, to achieve a similar value of 𝐸𝑐⟨𝜎𝑣⟩, where 𝐸𝑐 is the energy of
the charged reaction product and ⟨𝜎𝑣⟩ is the Maxwellian averaged fusion reactivity
(assuming that fuel has a Maxwellian velocity distribution function), it requires
temperatures of at least 5 times larger than needed to achieve D+T fusion, which
requires about 10 keV temperature. The second drawback of D+3He is that 3He is
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Chapter 1. Introduction

not present on earth. 3He can be obtained from the moon [5], but this appears hardly
economic and should only serve as a long-term vision of the fusion program on Earth.

D+T is thus the easiest accessible fusion reaction on Earth and comes with two
‘drawbacks’: first, even though one part of the fuel, deuterium, is a naturally occurring
isotope of hydrogen, the most abundant element in the universe, the other part of
the fuel, tritium, is not naturally available due to its comparably short half-lifetime
of 12 years. This issue can be addressed within a fusion reactor by producing tritium
in a separate reaction via ‘tritium-breeding’. Tritium-breeding is a process that relies
on splitting a separate nucleus with the escaping neutron from the fusion reaction in
the process 𝑥 + 𝑛 → 𝑦 + 3

1T, for some reaction products 𝑥 and 𝑦. The best candidate
for this reaction is Lithium, which can be used to breed tritium via neutron splitting,
6
3Li + 𝑛 → 4

2He + 3
1T (exothermic) and 7

3Li + 𝑛 → 4
2He + 𝑛 + 3

1T (endothermic). If
a tritium breeding ratio larger than one should be reached, in addition to lithium,
also a neutron multiplier material needs to be present in the breeding material. Most
commonly, breeder composite materials make use of beryllium, titanium, manganese,
zirconium, iron or lead as such neutron multipliers [6], which feature significant cross
sections 𝑥 + 𝑛 → 𝑦 + 2𝑛, for some reaction products 𝑥 and 𝑦.

The Lithium land reserves are about 30 Mt [7], and about 200 Gt lithium is
available in seawater [8]. 10 Mt lithium, 1/3 of the current on land reserves, could
allow a tritium self sufficient generation of 5 ⋅ 108 TWh of useable fusion energy. This
is enough energy, to ensure the yearly current global end-energy consumption for
5000 years, which currently is about 105 TWh/y. If 10% of the lithium sea-reserves
can be accessed, the lithium reserves would be sufficient to ensure a yearly energy
consumption of 105 TWh/y for 107 years. It is thus clear that evaluating fusion for
commercial use is of high interest for mankind.

The most promising approach to pursue fusion economically, is to bring the fuel
into a state of ignition, where the heating power by fusion reactions matches any
thermal losses of the fuel. This way, the fuel ‘burns’ by itself without any requirement
of auxiliary power input. To achieve ignition conditions in any type of fusion fuel, the
required heating density 𝑝heat by fusion reactions has to balance the thermal losses
𝑝loss,

𝑝heat
!= 𝑝loss. (1.1)

The fusion heating term can be written as

𝑝heat = 𝐸𝑐𝑛𝐷𝑛𝑇⟨𝜎𝑣⟩, (1.2)

which consists of the D-T fuel number density 𝑛𝐷 and 𝑛𝑇 respectively, the energy
of fusion products that re-heat the fuel 𝐸𝑐 and the fusion reactivity ⟨𝜎𝑣⟩, with ⟨...⟩
indicated an ensemble average, usually over a Maxwellian distribution. The loss terms
are typically approximated as a function of an energy confinement time 𝜏𝐸, which gives
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1.1. Nuclear Fusion

the timescale of the energy loss mechanisms of the system. Assuming an exponential
energy density decay of the system with respect to time 𝑡 one can write 𝑝loss as

𝑝loss = −
𝑑𝑤
𝑑𝑡

= −
𝑑 (𝑤𝑜𝑒−𝑡/𝜏𝐸)

𝑑𝑡
=

𝑤
𝜏𝐸

. (1.3)

The condition of loss terms balancing the heating terms,

𝑤
𝜏𝐸

+ 𝑝rad
!=

𝑛2
𝑒

4
⟨𝜎𝑣⟩𝑇, (1.4)

to achieve ignition, then directly leads to the Lawson condition in D-T fuels, which
can be written in terms of temperature 𝑇, ion number density 𝑛 = 𝑛𝐷+𝑛𝑇

2
and energy

confinement time 𝜏𝐸, using 𝑤 = 3𝑛𝑇 as (neglecting the radiation term)

𝑛𝑇𝜏𝐸
!
>

12
𝐸𝐶

𝑇 2

⟨𝜎𝑣⟩𝑇

𝑇=10keV≈ 3.02 ⋅ 1021keVs/m3. (1.5)

To end up at the numeric value, it was assumed that the fuel is only re-heated
by the energy from the charged fusion products, 𝐸𝐶. The ensemble average was
taken over a Maxwellian velocity distribution at 𝑇 = 10 keV. Bremsstrahlung and
other radiation losses were neglected for simplicity. Equation 1.5 gives simplified
requirement for the triple product, a quantity that reflects the ‘fusion difficulty’. The
triple product multiplies the energy confinement time 𝜏𝐸 with the plasma pressure
𝑛𝑇, both quantities are ‘difficult’ or ‘expensive’ to achieve in most (if not all) fusion
concepts.

Figure 1.1 shows the required triple products in order to achieve ignition using
the three previously introduced most relevant fusion fuels, D+T, D+D and D+3He,
using Maxwellian averaged reactivities from [4]. From this diagram it is clear that
achieving a state of fusion ignition is orders of magnitudes more difficult in D+D
and D+3He reactions as it is in D+T fuels. To achieve ignition in D+3He, one would
require three times larger magnetic field strengths and 2.5 times the temperature to
achieve similar ignition conditions as in a D+T fuel – at constant ratio of kinetic to
magnetic pressure 𝛽 ≡ 3𝜇0𝑛𝑇

𝐵2 , and 𝜏𝐸. Note however that in most fusion concepts 𝜏𝐸
itself has a strong dependency on the temperature.

Increasing the 𝑛𝑇𝜏 metric, also called the triple product, has been the focus of
fusion research since the early beginnings and led to developments of several types
of confinement devices. Many of these concepts use the fuel in the plasma state to
achieve the necessary confinement with magnetic fields, strong enough to create the
necessary pressure gradients.
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Chapter 1. Introduction

Figure 1.1.: A comparison of the three most promising fusion reactions: plotted is
the required triple product to achieve ignition in dependence of the temperature 𝑇
for every fuel combination. Grey lines indicate the minimum values for D+T and
D+3He. For a fixed 𝜏 and a fixed ratio of plasma pressure 𝑛𝑇 to magnetic pressure
𝐵2 (called 𝛽, a common metric in magnetic confinement fusion) the minimum value
for D+3He requires 3.2 times the magnetic field strength compared to minimal D+T
burn configuration and significantly higher temperatures. Radiation losses are not
included here.

1.2. Magnetic Confinement: Historic Context

To achieve fusion in a D+T fuel, center of mass energies of ∼ 20−100 keV are required
for the fusion cross-section to reach significant values compared to the Coulomb
scattering cross-section. One approach to achieve this energy, is by bringing the fuel
to a thermal state of high enough temperature, such that a significant fraction the
high energy tail of the Maxwell distribution of the plasma has a relevant fusion cross-
section. At these temperatures, the average thermal energy in the matter exceeds the
chemical binding energy of the fuel, and a plasma forms, a fully ionized, quasi-neutral
state of matter, consisting of charged particles. A plasma can be manipulated and
confined with magnetic fields.

At the beginning of fusion research, several concepts were being studied in terms of
their ability to confine a dense enough, high-temperature plasma, which is sufficiently
stable to generate a constant, significant fusion gain. One of the earliest, promising
contesters at that time were so-called pinch machines, categorized as 𝑧, reversed or 𝜃
pinch devices, dependent on the orientation of the plasma current. These machines
made use of the pinch effect – a self-compression of the plasma due to current-induced
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1.2. Magnetic Confinement: Historic Context

MHD forces. As predicted already in [9] and later in experiments, such as scyllac [10]
and ZETA [11], these concepts suffered of kink instabilities (macroscopic current
driven plasma instabilities) and inferior confinement properties, compared the other
machines. Although recent works showed evidence for some stabilization of certain
instabilities [12], pinch machines remained in the shadow of the much more prominent
tokamak concept.

Tokamaks were first proposed and studied in the USSR in the mid-1950s and first
machines were built from 1957 onwards [13]. Results from the T3-tokamak were
a turning point in tokamak research, which showed significantly increased confine-
ment [14] compared to the long prevalent, unfavorable, Bohm transport scaling, where
the diffusion coefficient 𝐷 scales as 𝐷 ∝ 𝑇

𝐵
. This led to an era of tokamak research

and several new machines, e.g. [15–17]. Another breakthrough was discovered in 1982
at the ASDEX tokamak in Garching, Germany, where a high confinement regime was
found experimentally by increasing the heating power sufficiently [18]. The so-called
H-Mode, which is the terminology to describe this state of high particle and energy
confinement, reduced the prevalent transport magnitude by a factor of about 2. In-
terestingly, the H-Mode only improved the proportionality factor of the confinement
scalings, but not the scaling itself. These promising results led to initiation of the
JET [19] and later the ITER project [20, 21]. No further confinement improvements
could be obtained since then in tokamaks, and the physics basis for plasma turbulence
is now accepted to be ‘Gyro-Bohm like’, in the sense that all experimental confinement
time scalings of recently built machines are reasonably close to ‘Gyro-Bohm scaling’:
𝐷 ∝ 𝑇

𝐵
𝜌, where 𝜌 is the normalized gyro-radius. Although the H-Mode forms the basis

of the ITER design, the operational mode comes with a drawback: edge localized
instabilities, or modes, (in short, ELM’s) were found on multiple machines [22–24],
which impose a so far unsolved challenge on plasma control and material properties,
as significant portions of particles and energies erupt from the plasma in localized,
distinct, repetitive events. Recent research activities propose alternative operations
modes, such as the intermediate mode, the so-called I-Mode [25], to solve this issue
for tokamak reactors in the future. A further drawback of tokamak reactors are
plasma disruptions [26], which represent a large challenge of an economic tokamak
reactor. Handling these disruption in a tokamak reactor requires strong safety margins
for reactor components [27], it requires disruption mitigation techniques, e.g. with
shattered pellet injections [28] and real time disruption prediction methods, e.g. by
using modern machine learning tools [29].

Still, there is a different, and even older concept than the tokamak, which cir-
cumvents most of these issues – the stellarator. Stellarator research started slightly
before the time of the tokamak and it was first studied by Lyman Spitzer in the
1950s [30]. Early, so-called classical stellarators failed to overcome the Bohm scaling
and a simple prediction of instabilities in stellarators by [31] together with the suc-
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Chapter 1. Introduction

cess of the tokamak led to a large abundance of the stellarator concept for nearly
two decades. Problems in tokamaks (disruptions, ELM’s, plasma control, no fur-
ther turbulence reduction), gave incentive to further study stellarators with a few
devices, mainly by LHD in Japan [32], HSX in Wisconsin, USA [33], TJ-II [34] and
the Wendelstein stellarators [35]. It turned out experimentally, that the transport in
stellarators indeed can also be ‘Gyro-Bohm’ like [36, 37], when optimised respectively.
The term optimised stellarator or advanced stellarator was coined in contrast to the
classical stellarator, and neoclassical transport could be significantly reduced by op-
timisation techniques [38]. In addition, in Wendelstein 7-AS, an ELM free H-mode
could be found [39, 40], as well as a new high-density H-mode [41] with low impurity
confinement times.

The promising experimental results of Wendelstein 7-AS led to the proposal of the
Wendelstein 7-X project [42, 43], an optimised stellarator with superconducting coils
and a major plasma radius of 5.6 meters and a minor radius of 0.5 m. Wendelstein 7-X
went into operation in 2015 [1] and one could show that the required accuracy of the
magnetic field could be achieved by the external non-planar field coils to a sufficient
degree [44]. The calculated neoclassical optimisation could be demonstrated and it
was shown that the transport of Wendelstein 7-X, just like tokamaks, is turbulence
dominated [45]. Scaling studies of both, W7-AS and W7-X, showed that optimised
stellarators and tokamaks indeed feature similar, likely turbulence dominated trans-
port [46, 47], and from a physics point of view, can now likely be considered to be
equivalent in terms of their confinement scaling.1

A historic drawback of stellarators that prevented credible reactor-relevant stellar-
ator designs was the lack of sufficient fast particle confinement. This concern was
eliminated, at least for a family of stellarators, in recent computational works [48–
51], where it was shown that quasi-symmetric stellarator fields with very good fast
particle confinement can be constructed, and can even exceed the confinement quality
of tokamaks. These works removed the last ‘big showstopper’ for stellarator-based
power plants compared to tokamaks, and stellarators appear as very attractive reactor
candidates now. The next section will introduce stellarators in more detail.

1.3. Stellarators

In order to confine the constituents of a plasma toroidally, a strong magnetic field
is required. A pure toroidal magnetic field however leads to drift losses of particles
by curvature, magnetic field gradients (in a torus the inner magnetic field is typically
larger than the field in the outer region) and E × B drifts, where the electrical field

1Except for H-Mode like confinement which was not shown in stellarators in the relevant physics
regime. However, as will be argued in the conclusions, H-Mode-like confinement is likely not even
needed in stellarator reactors
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1.3. Stellarators

arises from charge separation, as particles with opposite charges drift in opposite
directions in a toroidal magnetic field. These drifts can be understood in a single
particle picture and is covered in various forms by the literature, e.g. in [52, 53].

To average out the single particle drifts, a poloidal magnetic field component,
orthogonal to the leading toroidal field component is required. The ratio of poloidal
to toroidal magnetic field strength is expressed as the rotational transform 𝜄. In a
toroidal magnetic field, 𝜄 can be generated by three mechanisms. These mechanisms
can be understood by writing the the expression for 𝜄 near the axis as [54, 55]

𝜄 =
1
2𝜋

∫
𝐿

0

⎡
⎢⎢
⎣

𝜇0𝐽
2𝐵0⏟

current

− (cosh 𝜂 − 1) 𝜕𝑙𝑑⏟⏟⏟⏟⏟⏟⏟
shaping

− 𝜏⏟
torsion

⎤
⎥⎥
⎦

d𝑙
cosh 𝜂

− 𝑁. (1.6)

Here, 𝐽 is the toroidal current density on the magnetic axis, 𝜂 is a shaping parameter
of the magnetic field, 𝑑 is the tilting angle of the curvature vector, 𝑙 is the length along
the fieldline, 𝜏 is the torsion and 𝑁 is the helicity, determined by the symmetry of the
magnetic field, 𝐿 is the length of the axis and 𝐵0 is the magnetic field strength on the
axis. In tokamaks, only the first term, 𝜇0𝐽

2𝐵0
is used to generate the required rotational

transform, where 𝐽 is a combination of a pressure gradient driven internal plasma
current, a neoclassically driven current, the bootstrap current, and an artificially
generated plasma current, which is driven by auxiliary current drive. In contrast,
in stellarators, all three terms of the integrand of Equation 1.6 can be used and a
tokamak can thus be seen as a special case of a stellarator.

However, a toroidal configuration with a plasma current comes with a whole string
of drawbacks: a current implies current-driven plasma instabilities and disruptions
and thus requires additional safety measures [27], it requires additional plasma control,
implies ramp up complications, unfavourable density scaling with plasma current [56],
requires current drive and control [57, 58], unfavourable exhaust scaling with the
plasma current [59] and as a consequence, pulsed operation, which is undesirable for
a fusion power plant for economic reasons. All these problems would not be present in
bootstrap-current-free stellarators by design, which generate the required rotational
transform usually by the second and third term of the integrand of Equation 1.6.
These terms can be produced by external field coils, or even permanent magnets [60,
61]. As a consequence, stellarator magnetic fields are ‘3D’, in the sense that they
have a lower degree of toroidal symmetry: while tokamaks typically are 12 to 16 fold
symmetric (based on the number of field coils), stellarators have a lower degree of this
symmetry, which is typically a 4-10 fold discrete symmetry. This number depends on
the fact if a stellarator symmetric configuration is considered which has a flip-mirror
symmetry and on the number of field periods. A stellarator symmetric configuration
with 2 field periods has 4 identical parts, a 5 field period machine has 10 identical
parts. Stellarators also feature ‘non-planar’ magnetic field coils, an example stellarator
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Figure 1.2.: Coils (silver) and plasma boundary (orange) of a tokamak (left) and a
stellarator (right). The tokamak consists of 16 toroidal field coils and two (or more)
poloidal field coils. The stellarator configuration shown here is a Helias 3 type
stellarator and has a lower degree of axisymmetry. The shown stellarator consists
of three discrete rotational symmetric modules and a flip-mirror symmetry in every
third of the machine.

with modulear coil sis shown in Figure 1.2.
This ‘3D’ freedom induces a set of computational complications: for example, ‘3D’

magnetic fields do not necessarily feature nested, closed surfaces of constant magnetic
flux, so called flux surfaces. In contrast, magnetic configurations with continuos tor-
oidal symmetry guarantee flux surfaces at 𝜄 > 0. In addition, stellarator configurations
that do trace magnetic surfaces, are not guaranteed to feature confining properties!
It is thus required to optimize a stellarator to match a set of desirable optimisation
targets.

The most important one of these targets is omnigeneity [62]. Omnigeneity is fulfilled,
when for all particles trapped in the magnetic field it is

𝜕
𝜕𝛼

(∮ 𝑑𝑙 𝑣||) = 0, (1.7)

where 𝑙 is a coordinate along a magnetic field line, 𝛼 a field line label, and 𝑣|| the
parallel velocity of a test particle within this field. Equation (1.7) states that the
second adiabatic invariant is constant on magnetic flux surfaces, which means that
collisionless particles are confined perfectly. Wendelstein 7-X has a ‘quasi-’ omnigenous
field, which is achieved when equation (1.7) is fulfilled ‘sufficiently good’, namely if
𝜕

𝜕𝛼
∮ 𝑑𝑙𝑉|| = 𝜖 ≪ 1 throughout the plasma volume.
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Next to the discussed (quasi-)omnigenous properties of the nested magnetic flux
surfaces, stellarator fields also need to be optimised for fast particle confinement and
favourable MHD stability. Other more practicable, but equally important aspects are
a low Shafranov shift, which is the radial displacement of magnetic field lines with
respect to the plasma 𝛽, or a feasible heat exhaust concept, which can e.g. be achieved
by optimizing for magnetic islands near the edge, which then open up the possiblity
for an ‘island divertor’. This is discussed in more detail in subsection 2.3.1.

Generally, for reactor configurations, a typical list of criteria for stellarator config-
uration to fulfill is

• Good magnetic flux surfaces
• MHD stability
• Low neoclassical energy transport
• Good fast particle confinement
• The ‘right amount’ of turbulent transport
• Favourable Alvènic activity
• Large impurity transport
• Large thermal helium transport
• Low bootstrap and low longitudinal MHD currents
• Low Shafranov shift
• A heat-exhaust concept
• Feasible, distant and ‘insensitive’ coils
• Optimisation-target resiliency with respect to profile perturbations
• Economic aspects

Some of these points can be addressed in a stellarator optimisation framework like
STELLOPT [63] or SIMSOPT [64], where the respective parameters are targeted
in a squared sum weighting function. A set of degrees of freedoms, either plasma
boundary parameters, or coil parameters, or both, are optimised then to match the
imposed set of targets. It should be noted that valid reactor concepts that fulfill the
whole list of requirements are scarce, or even non-present, dependent on how strong
the requirements are being set, but stellarator optimisation is a fast-growing research
field and produced increasingly relevant configurations in the last year alone [48, 50,
65].

An important driver for recent advancements in stellarator optimisation was the
concept of ‘quasi-symmetry’ [66–68], which is a specific symmetry of a stellarator
magnetic field, and a subset of the more general set of omnigenous stellarators.

9
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Quasi-symmetry is obtained if there is a coordinate transformation from so called
‘Boozer-coordinates’, 𝜓, 𝜃𝐵, 𝜙𝐵, which are coordinates in which magnetic field lines
are straight, see e.g. section 6.6 in [69] for the definition, to a new set of coordinates
𝜒 and 𝜂, (𝜓, 𝜃𝐵, 𝜙𝐵) → (𝜓, 𝜒, 𝜂), with 𝜂 = 𝑀 ′𝜃𝐵 − 𝑁 ′𝜙𝐵 and 𝜒 = 𝑀𝜃𝐵 − 𝑁𝜙𝐵, such
that the magnitude of the magnetic field is independent of 𝜂 [70],

𝜕𝐵(𝜓, 𝜒, 𝜂)
𝜕𝜂

= 0. (1.8)

Such a prescription is much easier to optimize for compared to Equation 1.7, as
it targets the properties of the field itself rather than the properties of individual
particles trapped within this field. Optimizing for magnetic fields with the property
Equation 1.8 allowed to find stellarator fields with better neoclassical confinement
than tokamaks. [48]

There is another property of magnetic fields, which is even more attractive than
quasi-symmetric fields from a physics point of view: ‘quasi-isodynamicity’ [71–73].
Quasi-isodynamic fields are omnigenous fields with poloidal trapped-particle preces-
sion [74], which means that the trapped fraction of the particles that bounce between
two points of magnetic field strength 𝐵⋆ precess poloidally, around the short path of
the torus, instead of helically, as in other stellarator geometries. Necessary criteria for
quasi-isodynamicity are poloidally closed 𝐵𝑚𝑖𝑛 and 𝐵𝑚𝑎𝑥 curves in Boozer coordin-
ates and constant bounce distances for all possible trapped orbits [71]. Figure 1.3
visualizes these two criteria for an example, constructed, precise quasi-isodynamic
field in Boozer coordinates.

Precise quasi-isodynamic (QI) magnetic fields have attractive features such as min-
imal parallel net plasma currents (bootstrap and toroidal projections of the diamag-
netic current) at reactor relevant collisionalities [74], improved fast particle confine-
ment at finite plasma pressure [72, 75] and stabilized trapped-particle instabilities [76].
No such generic properties can be said about quasi-symmetric configurations (yet)
and hence the quasi-isodynamic concept is of highest interest for a stellarator reactor.
Although trapped particle turbulence are largely stabilized in QI stellarators due to
the maximum-𝒥 geometry2, the ion temperature gradient turbulence is typically not.
It is state of current research to investigate how well QI stellarators can be optimised
with respect to ion temperature gradient turbulence, and first approaches are being
proposed [77].

In addition, it was discovered that both, quasi-symmetric and quasi-omnigenous
stellarator fields allow to implement methods of ‘direct construction’ [65, 66, 78, 79].
The direct construction approach allows for parametrizations of the design space [80].
This method also allows to model MHD effects [64, 81, 82]. The direct construction

2The maximum-𝒥 property describes a decrease of the second adiabatic invariant in radial direction
for all particle bounce orbits
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𝛿

Figure 1.3.: An example of a precise, constructed, quasi-isodynamic field structure
in Boozer coordinates. Diagonal dashed white lines indicate field line directions.
The bounce distances, here indicated as example with 𝛿 and 𝜖 between two bounce
points is constant along different field lines for all possible bounce orbits. The plot
is inspired by [51].

method, also called near-axis expansion method, has the potential to rapidly develop
new stellarator configurations. The potential to quickly discover vastly different stel-
larators geometries with different coil-sets, puts strong requirements on further tools
that are developed for the stellarator community: computationally efficient, versatile
tools will be needed that can be used on a large class of stellarators and allow for
scalable methods to scan the high dimensional space of stellarator configurations.
This is relevant as the work conducted in this thesis will follow this philosophy. Here,
models and methods are developed and demonstrated to computationally efficiently
scale the result of stellarator optimisation to reactor relevant design points, while
including most and in the best case, all relevant reactor relevant constraints. One
necessary ingredient for this extrapolation is the concept of scale invariance in fusion
plasmas, which is addressed in the next section.
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Chapter 1. Introduction

1.4. Scale Invariance and Transport Scalings in Fusion
Plasmas

In order to extrapolate to reactor relevant designs it is useful to explore the scale
invariance of the governing, underlying equations. As full numerical solutions of the
relevant kinetic equations that govern all plasma effects is still a matter of research, the
scaling approach is a commonly used method to extrapolate experimental machines
to reactor size. This is usually done in terms of scaling laws, which arise from scale
invariant equations which will be discussed in in this section. The section itself is
admittedly slightly technical, but as many results later rely on confinement time
scalings, it is useful to list to which degree these scalings can also be extracted from
the governing equations.

The core plasma physics effects of toroidal devices are expected to be governed
reasonably well by the Vlasov-Maxwell equations with a Focker-Planck collision term.
The set of equations is

𝜕𝑓𝑗

𝜕𝑡
+ v𝑗 ⋅ ∇𝑓𝑗 +

𝑍𝑗𝑒
𝑚𝑗

(E𝑗 + v𝑗 × B) ⋅
𝜕𝑓𝑗

𝜕v𝑗
=

𝜕𝑓
𝜕𝑡

∣
collisions

,

∇ ⋅ E = ∑
𝑗

𝑍𝑗𝑒 ∫ 𝑑3𝑣𝑓𝑗,

∇ × B = 𝜇0 ∑
𝑗

𝑍𝑗𝑒 ∫ 𝑑3𝑣v𝑗𝑓𝑗,

∇ × E = −
𝜕B
𝜕𝑡

,

(1.9)

𝑗 here denotes an index for the particle species. 𝑓 is the distribution function, v the
flow velocity of the species, E and B the electric and magnetic field respectively, 𝑚𝑗

the species mass and 𝑍𝑗 the charge number. 𝜕𝑓
𝜕𝑡

∣
collisions

is a collision term, which can
be written in different models [83, 84]. This set of equation is expected to govern most
of the relevant physics seen in fusion relevant devices, such as turbulent transport,
collisional drift waves, dissipative trapped particle waves, finite 𝛽 drift Alvèn waves,
and so on. Solving this equation is a very hard numerical problem, due to its high
dimensionality (𝑓 is a 6 dimensional scalar field) and its strong non-linearity. Solving
reduced versions of Equation 1.9 is a significant research effort [85–89]. To the authors
knowledge, up to today, for toroidal fusion devices, there are no global self-consistent
solutions for this set of equations available and no absolute heat flux predictions could
be made.

Current stand of research is the numerical solution of reduced equations of Equa-
tion 1.9, mainly by taking the electrostatic version of Equation 1.9 with a 𝛿𝑓 model
using a Maxwellian 𝑓 distribution function and by averaging the gyro-motion of the
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1.4. Scale Invariance and Transport Scalings in Fusion Plasmas

particle in then so called ‘gyrokinetic equations’. Solving these equations globally
in stellarator experiments is ongoing research [85] but reactor relevant (in terms of
reactor relevant normalized gyro-radii) simulations with adiabatic or kinetic electrons
are still not available yet due its computational demand.

Nevertheless, it is possible to extract heuristic information from Equation 1.9 by
exploiting its scale invariances. E.g. one can show [90] that the quasi-neutral version
of Equation 1.9, i.e. ∇ ⋅ 𝐸 = 0, is left unchanged if and only if the free fields are
transformed under the following prescription,

𝑓 → 𝜁5𝑓, v → 𝜁v, x → 𝜁−4x, 𝐵 → 𝜁5𝐵,𝐸 → 𝜁6𝐸, j → 𝜁9j, (1.10)

using a scale factor 𝜁 ∈ ℝ.
This scaling method can help to constrain the functional form of one of the most

relevant quantities for fusion research, the heat-flux density 𝑞, which determines the
quality of confinement. As this procedure is easy to follow and insightful, it is quickly
written out below.

Assuming that the heatflux density 𝑞 is a smooth function of the particle number
density 𝑛, the temperature 𝑇, the magnetic field 𝐵 and a characteristic length scale
𝑎, 𝑞 can be expressed as a power expansion like

𝑞 = ∑
𝛼𝛽𝛾𝛿

𝑐𝛼𝛽𝛾𝛿𝑛𝛼𝑇 𝛽𝐵𝛾𝑎𝛿, (1.11)

where 𝑐𝛼𝛽𝛾𝛿 are real numbers coefficients. The heat flux is defined in terms of the
distribution function 𝑓 as

q = ∫ 𝑑3𝑣v𝑣2𝑓(x, v). (1.12)

Also one knows how 𝑛 and 𝑇 need to transform,

𝑛 = ∫ 𝑑3𝑣𝑓, ⇒ 𝑛 → 𝜁8𝑛, (1.13)

𝑛𝑇 = ∫ 𝑑3 𝑚𝑣2

3
𝑓, ⇒ 𝑇 → 𝜁2𝑇 . (1.14)

Equalling Equation 1.11 and the norm of Equation 1.12 and imposing the transform-
ation from Equation 1.10 gives

∑
𝛼𝛽𝛾𝛿

𝑐𝛼𝛽𝛾𝛿 (𝑛𝜁8)𝛼 (𝑇 𝜁2)𝛽 (𝐵𝜁5)𝛾 (𝑎𝜁−4)𝛿 = ∫ 𝑑3 (𝑣𝜁) |v𝜁| (𝑣𝜁)2 𝑓𝜁5, (1.15)

⇒ 𝜁8𝛼𝜁2𝛽𝜁5𝛾𝜁−4𝛿 = 𝜁11. (1.16)
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From this one knows

𝛿 =
1
4
(8𝛼 + 2𝛽 + 5𝛾 − 11). (1.17)

Removing 𝛿 from Equation 1.12 with Equation 1.17 gives

𝑞 = 𝑎− 11
4 ∑

𝛼𝛽𝛾
𝑐𝛼𝛽𝛾 (𝑛𝑎2)𝛼 (𝑇𝑎

1
2 )

𝛽
(𝐵𝑎

5
4 )

𝛾
,

= 𝑎− 11
4 (𝐵𝑎

5
4 )

3
(𝑛𝑎2) ∑

𝛼′𝛽𝛾′

𝑐𝛼𝛽𝛾 (𝑛𝑎2)𝛼′
(𝑇𝑎

1
2 )

𝛽
(𝐵𝑎

5
4 )

𝛾′

.
(1.18)

The prefactor equals to 𝑛𝑎3𝐵3 and one can write the heatflux 𝑞 as

𝑞 = 𝑛𝑎3𝐵3𝑓 (𝑛𝑎2, 𝑇 𝑎1/2, 𝐵𝑎5/4) , (1.19)

for some function 𝑓 (not to be confused with the distribution function earlier). Equa-
tion 1.19 is a result using only scale invariant arguments from Equation 1.9. Why
is the result Equation 1.19 significant? Because it shows that there are self similar
solutions to the Maxwell-Vlasov equations for plasmas at smaller minor radius. A pro-
totype stellarator at 𝜉-times smaller (or larger) minor radius 𝑎 = 𝜉𝑎reactor compared
to an anticipated reactor would leave Equation 1.9 and thus also the heat flux density
𝑞 invariant if 𝑛 ∼ 𝜉−2𝑛reactor, 𝑇 ∼ 𝜉− 1

2 𝑇reactor, 𝐵 ∼ 𝜉− 5
4 𝐵reactor. This is an important

result, as it shows that the path towards commercial fusion ‘does not scale well’, in
the sense that if one wanted to simulate a large reactor machine by building and
operate a small prototype machine, this prototype requires a larger magnetic field
strength, a higher density and a higher temperature than the reactor design point.
For example, a machine half of the minor radius of a bigger machine requires 4 times
the plasma density, 1.4 times the temperature and 2.3 times the magnetic field to
feature the same heat flux density as the bigger machine.

From Equation 1.19, one can also parametrize the exponential energy confinement
time 𝜏𝐸, namely by using (integration of a continuity equation with constant integ-
rands),

𝑉 𝑤
𝜏𝐸

= 𝑞𝑆. (1.20)

Here, 𝑤 is the plasma energy density, 𝑉 the plasma volume, 𝑆 the plasma surface area.
Then,

𝜏𝐸 =
𝑉
𝑆

3𝑛𝑇
𝑞

∝
𝑇

𝑎2𝐵3 𝑓 (𝑛𝑎2, 𝑇 𝑎1/2, 𝐵𝑎5/4) , (1.21)

⇒ 𝐵𝜏𝐸 = 𝑓 (𝑛𝑎2, 𝑇 𝑎1/2, 𝐵𝑎5/4) . (1.22)
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Note that for the last step, the prefactor 𝑇
𝑎2𝐵2 can be expressed by the second and

third argument of 𝑓 and can thus be absorbed within the (undefined) function.
If one wants to extrapolate beyond paths of constant 𝑛𝑎2, 𝑇𝑎1/2 and 𝐵𝑎5/4, a

parametrization, featuring a free, unknown function 𝑓, as in Equation 1.22 can not be
used for absolute statements when extrapolating to reactor machines. However, one
can look into sub-models of Equation 1.9, e.g. by taking the non-linear, collisionless,
electrostatic, gyro-kinetic limit of the Maxwell-Vlasov equations. Using the same
scale-invariance techniques as shown in this section, all functional dependencies of 𝜏
with respect to 𝑛, 𝑇 , 𝐵, 𝑎 can be resolved3 and one finds [91]

𝜏𝐺𝐵 ∝
𝐵2𝐿3

𝑇 3/2 =
𝐿

𝜌2𝑣𝑡ℎ
. (1.23)

𝐿 here refers to the relevant characteristic length scale of the system, such as the
gradient lengths, 𝜌 is the normalized gyro-radius. This scaling is called the Gyro-
Bohm scaling, as it is also obtained from a random walk diffusion argument when
employing 𝜒 ∼ (𝛥𝑥)2/𝛥𝑡, where the characteristic lengthscale (of microturbulence
e.g.) is given as the gyro radius, 𝛥𝑥 ∼ 𝜌. [92] or Appendix A in [93] gives a heuristic
derivation for this point.

If one allows for geometrical and profile parameters in the scaling (such as ratios
of gradient lengths), one instead ends up at a correction of Equation 1.23 [94],

𝜏 ∼ 𝜏𝐺𝐵𝑓 (𝐴, 𝜄) , (1.24)

which is already hinting at aspect ratio 𝐴 and rotational transform 𝜄 dependencies
of the transport, which will be seen later in this section in the experimental energy
confinement time scalings.

Another interesting case arises when including collisions and MHD effects, which
would correspond more to a reactor scenario. Under these assumptions 𝜏 can be
written as [91]

𝜏 ∼ 𝜏𝐺𝐵𝑓 (
𝑛𝑎
𝑇 2 ,

𝑛𝑇
𝐵2 ) ∼ 𝜏𝐺𝐵𝑓 (𝜈⋆, 𝛽) , (1.25)

where 𝜈⋆ now is the collisionality of the plasma and 𝛽 is the ratio of kinetic to magnetic
pressure.

In even more general models, e.g. by including local effects and geometrical factors,
not just global parameters, more factors enter 𝑓, but the proportionality in 𝜒𝐺𝐵 can
be derived in a wide range of assumed models [94] and it is thus expected also from
a theoretical point of view that energy confinement times show a ‘Gyro-Bohm-like’
scaling.

3One finds that there exist four transformations of the gyrokinetic equations which resolve the four
missing exponents in the power law Equation 1.11.
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Figure 1.4.: Difference between ISS04 exponents compared to Gyro-Bohm exponents
as in Equation 1.23. The exponents (from left to right) correspond to the minor
radius, magnetic field strength, temperature, density, Aspect ratio and rotational
transform.

How ‘Gyro-Bohm-like’ the transport in tokamaks and stellarators is, can be probed
experimentally: many stellarator and tokamak experiments were realized until now
and their experimental data allows to quantify and measure the predicted scaling laws.
Experimental scaling laws are usually expressed in terms of easily measurable machine
control parameters, such as the integrated auxiliary heating 𝑃, the magnetic field
strength 𝐵, plasma density 𝑛 or minor and major radius 𝑎 and 𝑅. The most recent
stellarator and heliotron scaling law that describes a wide range of experimental data
for the energy confinement time was conducted in [95], and also describes a wide
range of tokamaks [46]. 𝜏𝐸 was found to follow the parametric form in the above
mentioned quantities

𝜏 ISS04
𝐸 = 0.444 𝑓ren𝑎2.28𝑅0.64𝑛0.52

𝑒 𝐵0.84
𝑡 𝜄0.41

2/3 𝑃−0.61, (1.26)

and is usually called ‘ISS04’ confinement time scaling.4 Equation 1.26 is not dimen-
sionally correct and implicit units are assumed, namely the plasma minor and major
radius 𝑎 and 𝑅 in Meters, the line averaged electron density 𝑛0.52

𝑒 in 1020 m−3, the
toroidal magnetic field 𝐵𝑡 in Teslas and the plasma heating 𝑃 in MW. 𝜄2/3 is the
rotational transform at the flux surface label 2/3 and is dimensionless.

Equation 1.26 can be rewritten as a function of temperature 𝑇, magnetic field
𝐵, minor radius 𝑎, aspect ratio 𝐴 and particle number density 𝑛. By replacing

4Note that different to the usual representation, 𝑛𝑒 is written in 1020 m−3 here which leads to the
numerical prefactor of 0.444.
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𝑃 = 3𝑛𝑇𝑉 /𝜏𝐸, and by 𝑅 = 𝐴𝑎 in Equation 1.26, where 𝐴 is the aspect ratio, one
arrives at

𝜏 ISS04
𝐸 = 0.152 𝑎2.79𝐴0.08𝑛−0.18𝐵2.15𝑇 −1.56𝜄1.05, (1.27)

using 𝑇 = 𝑇 [keV], which largely resembles Equation 1.23, up to a factor 𝜄1.05. Fig-
ure 1.4 shows the difference of the exponents, with error-bars as given in [95] compared
to Equation 1.23, showing reasonable agreement between the scaling law derived by
scale invariance of linearised gyro-kinetic equations and the experimental results.

It is clear, that despite the success of the Gyro-Bohm scaling in describing the
transport scaling in most of tokamaks and stellarators, it is not depicting the full
physics. Additional scaling parameters are expected to enter the confinement time
via dimensionless ratios, e.g. ratios of gradient lengths scales or species temperature
ratios would be expected [94, 96]. At the same time, an ‘isotope effect’ was measured
in stellarators [97] and tokamaks [98] that deviates from the expected Gyro-Bohm
scaling. Thus, when extrapolating to a reactor, the current scaling laws would need to
be tailored to consist only of ‘reactor-relevant’ experiments, matching the expected
gradient lengths ratios and other dimensionless ratios (such as ion over electron
temperature ratios) of reactor plasmas. Nevertheless, it should be noted that, as
reviewed in this section, the Gyro-Bohm scaling itself is rigorous, and derived from
first principle mechanisms. This is an important remark, as many extrapolation results,
also the ones conducted in this thesis later, in chapter 4, depend on parametrized
energy confinement time scaling laws.

When extrapolating to a reactor, similarly to the extrapolation in physics para-
meters, also engineering scaling aspects would need to be considered, e.g. considering
required neutron fluxes or forces which are expected in fusion power plants. A short
introduction of the technological challenge of a stellarator fusion power plant is given
in the next section.

1.5. Technological Challenges of a Fusion Reactor: A Brief
Overview

A fusion reactor is not only solving a set of involved plasma physics problems, but
also needs to address nuclear and material engineering issues.

A typical schematic power plant concept is shown in Figure 1.5: the toroidally
closed plasma is surrounded by several technological ‘entities’, starting with the first
wall which represents the first plasma facing component.

First wall.
An advantage of D+T fusion is the volumetric heat deposition of neutrons, which

carry about 80% of the fusion reaction products. Neutrons do not interact with the
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Figure 1.5.: A schematic picture of the components of a fusion power plant. By Karin
Hirl, IPP (modified).

confining magnetic field and deposit their energy in the ‘blanket’ volume (to be
introduced later) that surrounds the plasma and not in the first wall. This fact allows
relaxed5 constraints for the heat load requirements of components that experience the
remaining 20% of the fusion power output, which deposits its heat load via Brems-,
Synchrotron- and Line-radiation radiation onto the first wall as surface heat loads.

In addition, charge exchange events at the plasma boundary create fast neutrals,
which potentially erode wall parts. Plus, unconfined, fast charged particles, e.g. fusion
products, potentially damage the wall too. The heat exhaust challenge for the tokamak
DEMO first wall is still under investigations [99].

In conclusion, the first wall not only has to cope with large thermal loads, but
also with plasma-wall interactions and neutral sputtering. Dependent on the chosen
technology, the overall machine has to be designed to match the technological wall
requirements.

Divertor.
Similar constraints to the first wall are shared by the so called ‘divertor’: thermal

charged particles and energy from the main plasma species diffuse according to the
pressure gradient radially outwards, usually controlled and localized, and deposit
their heat on dedicated, heat resistive, highly cooled plates, called the divertor plates.

5compared to a fuel scenario where all the heat would reheat the plasma, like D+He3
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There, the plasma heat load usually forms a strike-line, a narrow band where the heat
load is deposited. The task of the divertor, which is the naming for the overall heat
exhaust concept, including the magnetic field structure, is to divert this localized heat
load.

In tokamaks, the strike-line width has an unfavourable scaling with respect to
plasma performance parameters [59], which adds to the heat exhaust challenge. In
comparison, the heat exhaust challenge seems to relax in low-shear stellarators with
an island divertor, at least under specific circumstances [100]. This is achieved by
comparably broad strike-lines and easy demonstrated access to ‘detachment’, a regime
where most of the heat is radiated homogeneously over the first wall instead of
depositing on the divertor plates. Most reactor concepts usually require large or even
complete detachment, which assumes that close to 85-100% of the energy of the
plasma is radiated away in the edge and in the area behind the last closed magnetic
surface (the scrape-off-layer). A fusion design thus needs to ensure sufficient radiation
in the region between main plasma and divertor and strike-line heat loads below the
technological limit.

Breeding blanket.
In a reactor, behind the first wall and the divertor there is usually the tritium

breeding blanket. The purpose of this technology is not only to transport away most
of the heat that is generated in the plasma via neutrons and withstand most of the
neutron damage that is caused be frequent neutron scattering events in the material,
but also to breed the crucial tritium fuel, which is needed for a closed fuel cycle, as
tritium is not easily obtainable outside of a fusion reactor.

Of all elements in the periodic table, only 6Li and 10B feature a significant (n,T)
cross section6 for slow neutrons, with less than 5 MeV [6]. For fast neutrons, with
more than 5 MeV energy, 7Li and 14N feature similar cross sections to 6Li and 10B.
For neutrons with energies between 10 MeV and 14 MeV, also 11B, 9B and 19F
become relevant. Due to the fact that B features much lower (n,T) cross sections
than 6Li and the fact that B absorbs neutrons, leave the relevant tritium breeding
materials to 6Li only for slow neutrons and 7Li , 14N and 19F for fast neutrons.
As lithium in atomic form is a safety concern in a reactor, most blanket designs
feature lithium composition materials of lithium-7 or lithium-6 in connection to one
– or multiple – other elements to form a material with desirable properties, such as
liquid metals, molten salts or ceramics. In addition to the tritium breeding aspect, a
breeding blanket, with sufficient 6Li enrichment also multiplies the fusion power by its
exothermic reaction. This multiplication factor is usually in the order of 10-30% [101–
103], and thus significant for the reactor power balance.

Evaluating different blanket concepts with different materials is a major research

6(n,T) is a terminology for the reaction 𝑥 + 𝑛 → 𝑦 + 3
1T for some reaction products 𝑥 and 𝑦.
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effort and several designs are being proposed [104–111]. Some of these designs will be
tested at ITER [112]. In general, a tritium breeding blanket is subject to the following
design drivers

• high density of breeding material to achieve a ratio of bred tritium to burned
tritium (tbr) greater than 1,

• low material activation,
• short life-times of activated material,
• low costs and large availability of the breeding material,
• low corrosiveness and low toxicity,
• sufficiently small MHD effects on the plasma (relevant for liquid metal breeders

e.g.),
• structural stability,
• sufficient thermo-hydraulic properties.

The major implication for a reactor design is to leave out enough space between
magnetic coils and plasma, to fit in a blanket with a size that matches these constraints.
Also enough pipe connections to the blanket need to be allowed by the magnetic field
coils. For liquid metal breeders, pressure drop aspects restrict the magnetic field
strength, the port locations and the geometry of the plasma.

Shield.
Behind the breeding blanket area, there is typically a neutron shield. The purpose

of the shield is to reduce neutronic loads at the superconducting, cryogenically cooled
magnetic coils, which are located behind the shielding area. Advanced materials
feature an exponential decay length of 14 MeV neutrons of about 8-20 cm [113],
which requires the breeding blanket, together with additional shielding to have a
radial thickness of about 1-1.4m.

The two constraints that are especially relevant for a neutron shield are mitigation
of neutron fluences (how many time integrated neutrons reach the magnetic field coil
materials) and neutron heating at the superconducting magnetic field coils, which
needs to be prevented, as most superconducting magnets are cooled to 4 Kelvins
where heat transport by neutrons is especially costly to remove.

Magnetic field coils.
Next to the breeding blanket, the most important technology of a stellarator reactor

is likely the magnetic field coils, which need to generate the required magnetic field
strength to achieve the plasma confinement. They are located behind the shielding
area and need to carry a significant amount of electrical current in order to pro-
duce the required field strengths of up to 8 to 10 Teslas on axis (5 Teslas in more

20



1.5. Technological Challenges of a Fusion Reactor: A Brief Overview

conservative designs), which requires usually between 5 to 15 MA per coil. Only super-
conducting materials could fulfil the requirement of steady-state economic operation,
as conductors with finite electrical resistivity would constantly produce large amounts
of heat which would drastically lower the efficiency of the plant. Superconductors
have a critical current density 𝑗𝑐 to which they retain their superconducting proper-
ties. 𝑗𝑐 is usually parametrized as a function of orthogonal (to the current direction)
magnetic field, temperature and conductor strain. For rare earth barium copper oxide
based superconductors (REBCO), which are available on thin tapes, there is another
distinction in the direction of the magnetic field, namely in orthogonal or parallel
direction to the tape orientation, which influences the critical current density.

Magnetic field coils are subject to two further constraints: first, they usually require
to be operated at cryogenic temperatures of values between 2 K (superfluid helium)
to 77K (liquid Nitrogen). This also puts restrictions on the cooling by remaining
neutrons which reach the coils. Any neutronic heat depositing into the cryogenic coils
requires an additional amount of cryogenic power, which hinders the economic aspect
of the power plant. Secondly, all known superconductors degrade under constant
neutron flux. Thus, for most superconductors, neutron fluence limits are measured,
e.g. for NbTi or Nb3Sn[114], which can be taken into account when designing the
blanket and shielding dimensions. Interestingly, recent research suggests that modern
rare earth barium copper oxide superconductors (REBCO) are less sensitive to this
constraint [115].

Support Structure.
As the magnetic field coils are subject to large electromagnetic forces, they need

to be hold in place by respective casing and an inter-coil support structure. This
structure needs to be dimensioned to cope with energies of ∼ 10 to 100 GJ stored in
the magnetic field produced by the toroidal field coils. Also, the coil winding pack,
the inner part of the coil where the cables are laid out, need to have dimensions to
withstand inner winding pack stresses and respective thermodynamical requirements
of the typically cryogenic environments.

External Heating and Fuelling.
External heating such as neutral beam injection, electron- and ion-cyclotron heating

is required to ignite a stellarator plasma or to use it as a plasma state control
mechanism. Such heating methods are also subject to constraints: e.g. the microwave
frequency of electron cyclotron heating schemes is tightly coupled to the plasma
frequency, via dispersion relations, which prevents a wave propagation in the plasma
if the gyro-frequency matches the plasma frequency.

Others.
Lastly, facilities for tritium handling, vacuum pumps, turbines, a bio-shield, remote
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handling ports and facilities, thermal energy storage systems, the cryo-plant and heat
exchangers are required as additional technologies for a fusion power plant.

All in all, the design point of a fusion power plant needs to cope with a large set of
technological features and constraints, in line with the plasma-physics of the fusion
core. Manoeuvring within this constrained physics and technological parameter space
requires holistic tools and methods. One of these methods are so called systems codes.

1.6. Systems Codes

As motivated in the last two sections, designing a reactor is an involved problem of
different systems. There is a myriad of constraints and properties of both, physics and
technological aspects to be considered when designing the whole plant and only an
non-exhaustive list of these constraints was given in the previous section. Most often,
an optimisation in this realm requires compromises and trade-offs between different
aspects.

To navigate in this space, a ‘naive’ approach would be to hold some parameters
fixed or scale parameters along lines of constant quantities, that are determined a
priori. For example, often-times, free parameters are scaled along lines of constant
𝛽, which typically is taken as a measure for economics and it is often assumed that
fusion power plants need to operate at the beta limit, which is imposed by plasma
physics. Another example would be lines of constant fusion- or wall-power, or constant
confinement proportionality factors. In general however, imposing a priori relations
on free parameters is not necessarily the most optimal choice when designing a fusion
plant. Instead, all independent parameters should be free, and be optimised with
respect to an overarching optimisation target such as the overall cost of the machine,
the fusion gain 𝑄 or the net electricity production of the plant.

Systems codes represent a systematic way to optimize for a design, which is required
to navigate in the above mentioned constrained optimisation space. Numerically they
are implementing a function 𝑓 ∶ 𝑈 ⊂ ℝ𝑛 → ℝ that maps an optimisation vector
𝑥 ∈ 𝑈 ⊂ ℝ𝑛, consisting of parameters that are control parameters, to a scalar penalty
value, that reassembles the ‘performance’ or ‘quality’ of the machine. A high level
example for 𝑓 would be the cost of electricity, the fusion gain 𝑄 or the capital costs. Of
course, at the same time, technological limits, like thermal loads, stresses, radiation
loads etc., should be fulfilled, which typically can be written in inequality and equality
constraints, in order to ensure technological requirements and limitations.

To find an optimal point, an optimisation of 𝑓 with respect to the mentioned
inequality and equality constraints is required. Such an optimisation problem is a
‘general non-linear programming problem’ and can be written as a saddle point
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problem of the function ℒ as

ℒ = 𝑓(x) −
𝑁𝑔

∑
𝑖

𝜇𝑖𝑔𝑖(x) −
𝑁ℎ

∑
𝑗

𝜆𝑗ℎ𝑗(x). (1.28)

𝑔𝑖 and ℎ𝑗 stand for functions mapping the optimisation vector x ∈ 𝑈 ⊂ ℝ𝑛 to ℝ and
ensuring fulfilled constraints if 𝑔𝑖(x∗) ≤ 0 and ℎ𝑗(x∗) = 0 respectively ∀𝑖, 𝑗, where
x∗ ∈ 𝑈 is the solution vector. 𝜇𝑖 and 𝜆𝑗 are generalized Lagrange multipliers. 𝑁𝑔
stands for the number of inequality constraints and 𝑁ℎ for the number of equality
constraints. ℒ is minimized if the so called Karush-Kuhn-Tucker conditions (KKT
conditions) are met,

∇𝑓(x∗) +
𝑁𝑔

∑
𝑖

𝜇∗
𝑖∇𝑔𝑖(x∗) +

𝑁ℎ

∑
𝑗

𝜆∗
𝑗∇ℎ𝑗(x∗) = 0,

𝑔𝑖(x∗) ≤ 0,
ℎ𝑗(x∗) = 0,

𝜇∗
𝑖 ≥ 0,

𝑁𝑔

∑
𝑖

𝜇∗
𝑖𝑔𝑖(x∗) = 0,

(1.29)

with solution vectors x∗, 𝜇∗
𝑖 and 𝜆∗

𝑗, ∀𝑖, 𝑗. Sufficient conditions are reached, if in
addition,

s𝑇∇2
𝑥𝑥𝐿(x∗, 𝜆∗

𝑗, 𝜇∗
𝑖)s ≥ 0,

𝑠.𝑡. s ≠ 0, solving [∇𝑔𝑖(x∗),∇ℎ𝑗(x∗)]𝑇 s = 0.
(1.30)

Numerically, non-linear programming problems can be solved by ‘sequential quad-
ratic programming’ (SQP) methods [116], which rely on a Taylor expansion of the
objective function 𝑓 to second order around the current optimization vector. Here, a
two-step problem is solved numerically, consistent of a quadratic sub-problem, which
minimizes the to second order Taylor-expanded function 𝑓 with respect to a search
direction 𝜹𝑘 ≡ x𝑘 − x𝑘−1 at an optimization step 𝑘,

𝑄(𝜹) = 𝑓(x𝑘−1) + 𝜹𝑇 ∇x𝑓(x𝑘−1) +
1
2
𝜹𝑇 ∇xxℒ(x𝑘−1) 𝜹,

subject to 𝜹𝑇 ∇xℎ𝑗(x𝑘−1) + ℎ𝑗(x𝑘−1) = 0,
subject to 𝜹𝑇 ∇x𝑔𝑖(x𝑘−1) + 𝑔𝑖(x𝑘−1) ≥ 0.

(1.31)

The index 𝑘 in 𝜹𝑘 was suppressed for clarity. The Hessian ∇xxℒ(x𝑘−1) can be ap-
proximated using the BFGS scheme [117], which makes SQP methods usually quasi-
Newtonian. The second step of the SQP scheme consists of a line search along 𝜹𝑘
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such that

x𝑘 = x𝑘−1 + 𝛼𝑘𝜹𝑘, (1.32)

where 𝛼 is found to minimize a penalty function 𝛷,

𝛷 (𝛼𝑘) = 𝑓 (x𝑘) + ∣𝜆𝑗
𝑇ℎ𝑗 (x𝑘)∣ + ∣𝝈𝑇 min (0, 𝑔𝑖 (x𝑘))∣ . (1.33)

Consecutive iterations of the solution of the quadratic subproblem Equation 1.31 and
the line-search 1.32 then find local minima (or maxima) of the objective function 𝑓
with fulfilled constraints. It should be noted that it is not guaranteed to obtain global
minima using SQP methods.

1.7. Scope & Structure
It is clear that systems codes and respective studies provide large value to the fusion
community, as these codes provide an up-to date and integrated way to find best
current available reactor design points, which are in line with physics, technology
and economical constraints. By their holistic implementation, systems codes allow to
identify sensitivities of out- and input parameters and inform about possible design
trade-offs, including all relevant constraints.

A reactor systems code, where the models are maintained by the community,
provides value beyond the scope of a single reactor studies, as it offers a way to quickly
find updated design points when technology or physics knowledge change: in such a
case, the respective systems code models can be quickly adapted or newly implemented,
and updated reactor design points can be found. A similar logic applies when the
deliverable changes. For example, with a systems code it is easy to explore both,
designs with the most feasible cost of electricity, and designs with most economical
overall capital costs, by simply changing the cost function in a study.

In the tokamak community, the systems code Process is widely used for 0D
studies of the European tokamak demonstration power plant design (DEMO) [118–
120]. Other higher fidelity codes that in parts use Process design points as input
are Mira [121, 122] or Blueprint [123]. The wide use of Process for tokamak
reactor studies, the prospect of comparing stellarator and tokamak reactors within a
similar framework and Process’ modular structure of 0D models, suggests to use
Process also for stellarator reactor systems studies.

However, Process’ capabilities in modelling stellarators as power plants was
limited before this thesis: previously, Process had only a model of a fixed, five-
periodic helical-axis advanced stellarator (HELIAS) [2, 124–126], which was based
upon a specific engineering study of Helias -5B [3], a linear extrapolation along
the Wendelstein line of stellarators. There was no capability to use Process in
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design regions farther away from the engineering study [3], as e.g. the winding pack
composition was fixed, and the scaling in macroscopic machine parameters was limited.
Further, there was no attempt made to cover the vastly different possible stellarator
geometries and their different coil-sets. In the last three years alone several new,
improved, stellarator configurations were proposed [49, 50, 65, 127–129], with own
specific coil-sets and own physics and engineering properties. There is no dedicated
engineering study available for these configurations to base systems codes models
upon, hence the approach of [2] is unfeasible to cover generic stellarators in Process.
A shift in paradigm is needed to variably model generic stellarators, based on the
output of stellarator optimisation.

In this context, the aim of the work conducted in this thesis can be summarized as

1. an extension of the functionality of the stellarator-specific systems code models
in Process to allow for a wide design space coverage of a fixed stellarator,
not only in macroscopic machine parameters but also in plasma parameters.
The previous stellarator-PROCESS implementation had limited predictability
beyond the findings of the underlying engineering study of [3] (for example, the
scaling of overall size of the machine was not possible before, as the models
were not implemented to constrain the size).

2. a generalization of the possible input of Process from one type of stellarator
only, the Helias -5B, to any modular stellarator based on a pre-calculation
step.

3. an application of the new systems code to stellarator reactors and for the first
time, generation of new cost optimised design points for stellarator fusion power
plants.

4. an identification of most important limitations of stellarators in terms of reactor
viability and respective cost drivers for a chosen set of input parameters.

5. an implementation of computational and numerical tools to quickly evaluate
technological key parameters based on the output of stellarator optimisation.
More specifically, in the scope of this work, a neutron wall load calculation frame-
work and a coil force calculation code was implemented for computationally
fast evaluation of key technological quantities based on the input of stellarator
optimisation.

The structure of the thesis is as follows. In chapter 2, new systems code models
for generic stellarators are proposed and implemented in Process, based on a
stellarator reference MHD equilibrium and the associated central coil filaments. This
was implemented in two separate steps, both of which are subject of chapter 2, namely
a ‘pre-processing’ step and the systems code model modifications themselves. The logic
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here is that the pre-processing step may involve more time-consuming calculations
and serves as an interface between stellarator optimisation and Process, using the
MHD equilibrium and coil filaments to prepare a set of effective parameters for the
systems code models. The systems codes model themselves then use the pre-calculated
values as input parameters for fast models which largely rely on exact scaling relations.
More explanations are given in the introduction of the section itself. Significant parts
of chapter 2 were published in [130]. In this context, an efficient numerical tool was
developed to calculate and optimize for peak neutron wall loads in generic stellarator
reactors, which was published in more detail in [131].

Some of the models presented in chapter 2, rely on the fraction of confined fast
particles in stellarator reactors – foremost the transport model, but also the thermal
helium pressure model and the fast particle wall load estimation. To determine the
fraction of lost fast particle energy, higher fidelity codes need to be employed to find
reference values, which are then used in the more simple, scaling based, systems code
models. A workflow with example results for three different stellarator configurations
is presented in chapter 3, which also gives for the first time estimation of fast particle
induced thermal wall loads in modern optimised stellarator reactor configurations.
These wall loads are likely the relevant constraint for the fast particle confinement
fraction in a fusion reactor. For a systems code, the degree of localization of these
thermal loads for a given configuration is of high interest.

After this section, the newly implemented and general stellarator systems code
models are applied in four use cases in chapter 4: first, a cost optimisation and a more
in-depth analysis of two reactor designs points of the Helias 5 stellarator line is
performed with the new models. Then, the design space of an intermediate, pilot plant
stellarator is explored, given uncertainties on stellarator optimisation targets. Thirdly,
the relative weighting of common targets by stellarator optimisation is examined
with respect to reactor relevance and a relative hierarchy is given. Finally, the new
version of Process for stellarators is used to demonstrate its usage for stellarator
coil optimisation, by quickly generating a performance scalar value. This can be
achieved without relying on, to some degree arbitrary input constraints, which is
usually practiced in stellarator coil-optimisation, such as constraints which enforce
specific, a priori imposed geometrical distances (e.g. minimal distances between the
coils).

The thesis is concluded in chapter 5.
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2
Stellarator Systems Code Models

This section has been published in substantial parts in [130].
Below, we introduce the newly developed stellarator-specific systems code models

that aim to describe a general class of stellarators with a modular coil-set, irrespective
of their shape. The stellarator modifications to Process are comprehensive in the
sense that they allow an equivalent modeling stellarators compared to the tokamak
treatment [132, 133].

For each model we describe both the external procedure of calculating the effective
parameters as well as the systems code internal scaling equations. The effective para-
meters that are calculated in the external step are distinguished into two categories.
The first type are configuration-specific quantities, that are used directly in follow
up calculations and these are denoted by 𝑎𝑖(ℭ). The second type of parameters are
those that are calculated as a reference point for the scaling equations and these are
denoted as hatted values, ̂𝑎𝑖(ℭ), where ℭ represents the configuration stemming from
stellarator optimisation (3D MHD equilibrium and associated coil filaments).

Before the actual models are listed, we address the the pre-processing step and the
new workflow in more detail in the next section.

2.1. New Workflow for Stellarator - Process

Stellarators, by their 3D geometry, impose non-trivial physics and engineering con-
straints on a fusion power plant design. For example, in contrast to tokamaks, the
magnetic field strength on the inboard side of the coils can be different for every coil,
the divertor area depends on the location of the magnetic islands, or the neutron wall
load has large variations not only in poloidal, but also in toroidal direction. Further,
stellarators can have vastly different coil and plasma boundary shapes. Thus, an
accurate representation of systems codes relevant features at low computational cost
is quite challenging for general stellarators. To mitigate this issue, we introduce an
additional, automated, calculation step between the output stemming from stellarator
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Stellarator
Optimisation Pre-Processing

Process

Reactor Design Point

ℭ

Optimizes 𝒙
wrt cost function 𝑓

𝑎𝑖(ℭ)

Feedback

Figure 2.1.: The workflow of the pre-calculation step: A configuration ℭ (coil fila-
ments and flux surfaces) is assumed as input from stellarator optimisation. A set of
Process relevant parameters 𝑎𝑖 is calculated based on a reference point ℭ, which
Process uses to calculate and optimize an iteration vector 𝑥 for a reactor design
point, according to an objective function 𝑓 and according to the applied constraints.
The found design point can be used again as feedback for stellarator optimisation.

optimisation and the inputs that go into the systems code, as schematically shown
in Figure 2.1.

In practice, the work-flow then is as follows. ‘Stellarator optimisation’ provides a
3D MHD equilibrium and a set of corresponding, as fixed considered, coil filaments at
a reference point in major radius and aspect ratio. This reference point (equilibrium
and coils) we denote with the symbol ℭ from here on, which serves as input for the
detailed calculations. The newly introduced intermediate calculation step (essentially
the first part of the systems code models), involves accurate, but comparatively slow
computations at this reference point. The result of these computations are a set of
configuration-dependent effective parameters 𝑎𝑖(ℭ), which serve as input for newly
implemented exact, fitted, or empirical scaling equations in the systems code.

The general idea behind this approach is to separate computationally heavy op-
erations from the systems code. This means that every stellarator-specific systems
code model consists of essentially two parts. The first part entails the detailed mod-
elling of a sub-system outside the systems code. The second part, in turn, involves
an associated (fast) scaling equation within the systems code that makes use of the
results from the detailed calculations. An example here would be the computation of
the maximal coil force density 𝑓𝑚𝑎𝑥(ℭ) as effective parameter from 3D calculations
for a reference coil-set. In this example the scaling of 𝑓𝑚𝑎𝑥 within the systems code
then is a linear scaling law in 𝐵𝑚𝑎𝑥 and the current density 𝑗, both parameters that
the systems code optimizes for.
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2.2. Plasma Physics Systems Code Models

We implement the systems code models in a way that they reflect extrapolations
of the reference point ℭ in the following macroscopic design parameters: The major
overall size of the machine (coil and plasma size), the minor plasma radius 𝑎 at
constant coil radius, and the total magnetic field strength on axis 𝐵𝑡. For the plasma
design, the implemented scaling parameters are the plasma density, temperature,
and the ISS04 ‘renormalization’ factor (a measure for the configuration-dependent
quality of energy confinement [95]). The stellarator-Process version is capable of
optimizing for devices by scaling these parameters as a part of the optimisation
vector now. In addition to the above listed set of iteration parameters, Process
also optimizes in the engineering parameter design space, with the ‘usual’ parameters
such as winding pack size, coil quench times, critical current density safety margins
in the superconductor, copper fractions in the winding pack, net electricity output,
etc., also see [132, 133].

Note that by this prescription the coil number and the coil shapes are considered
fixed by stellarator-Process and only the overall size of the coils is scaled. A broader
device scan in different stellarator configurations or different coil-sets can be done by
sampling different configurations ℭ using stellarator optimisation codes.

Below, we now now list the new stellarator specific systems code models of Process
which were implemented within this thesis if not stated otherwise. For clarity, the
thematic order of the models is listed such that they start at the central plasma
location and ends at the magnetic field coils. section 2.2 covers the plasma physics
aspects and section 2.3 lists the reactor component specific stellarator systems code
as developed and implemented in this thesis. Figure 2.2 gives a visual overview over
the model section.

2.2. Plasma Physics Systems Code Models

For readability, the new stellarator models are split into two sections. This section
lists the models dedicated to the necessary core and edge plasma physics systems
code models, starting with the model for the overall plasma volume and surface.

2.2.1. Plasma Volume and Surface

The plasma volume 𝑉 and the plasma surface area 𝑆 are basic properties in Process.
For example, subsequent calculations of the fusion power, fuelling rates, or material
loads depend on the plasma volume. Similarly, the surface area is an important
quantity to approximate the first wall area and to scale the heat flux densities.

The spatial location of stellarator-symmetric flux surfaces can be parametrized by
a set of Fourier coefficients 𝑅𝑐

𝑚,𝑛 and 𝑍𝑠
𝑚,𝑛, where 𝑚 and 𝑛 are the poloidal and

toroidal mode numbers respectively. The cylindrical coordinates for each flux surface
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Modular Coils, subsection 2.3.5
Winding Pack, subsection 2.3.6
Structure Mass, subsection 2.3.7
Build, subsection 2.3.8

Breeding Blanket, subsection 2.3.4

First Wall, subsection 2.3.2
Wall Loads, subsection 2.3.3
Island Divertor, subsection 2.3.1

Plasma Geometry, subsection 2.2.1
Bootstrap Current (QA), subsection 2.2.7

Density limits, subsection 2.2.5
MHD limits, subsection 2.2.6

Core Transport, subsection 2.2.2
Neoclassics Model, subsection 2.2.3
Fast Particle Confinement, subsection 2.2.4

Figure 2.2.: The model structure of the section depicted visualized using an example
cross section of a stellarator power plant.

can be obtained by

𝑅(𝑠, 𝑢, 𝑣) =
𝑚𝑚𝑎𝑥

∑
𝑚=0

𝑛𝑚𝑎𝑥

∑
𝑛=−𝑛𝑚𝑎𝑥

𝑅𝑐
𝑚,𝑛(𝑠) cos(𝑚𝑢 − 𝑁𝑓𝑛𝑣), (2.1)

𝑍(𝑠, 𝑢, 𝑣) =
𝑚𝑚𝑎𝑥

∑
𝑚=0

𝑛𝑚𝑎𝑥

∑
𝑛=−𝑛𝑚𝑎𝑥

𝑍𝑠
𝑚,𝑛(𝑠) sin(𝑚𝑢 − 𝑁𝑓𝑛𝑣). (2.2)

Here, 𝑢 describes a poloidal coordinate, 𝑣 the polar toroidal coordinate, and 𝑠 is a
flux surface coordinate [134]. Equation 2.1 and 2.2 hold for stellarator symmetric
configurations with a field period symmetry of 𝑁𝑓.

The volume enclosed by the last closed flux surface can be calculated for a reference
size (�̂�, ̂𝑎) according to

̂𝑉 (ℭ) = ∫ √
𝑔𝑑𝑠𝑑𝑢𝑑𝑣

=
1
3

∫
2𝜋

0
∫

2𝜋

0
𝑅 (𝑧𝜕𝑢𝑅 − 𝑅𝜕𝑢𝑧) 𝑑𝑢𝑑𝑣.

(2.3)
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The surface area of a flux surface can be calculated by

̂𝑆(ℭ) = ∫ |∇𝑠|
√

𝑔𝑑𝑢𝑑𝑣,

= ∫
2𝜋

0
∫

2𝜋

0
[𝑅2(𝜕𝑢𝑧)2 + 𝑅2(𝜕𝑢𝑅)2

+ (𝜕𝑣𝑅𝜕𝑧𝑢 − 𝜕𝑣𝑧𝜕𝑢𝑅)2 ]
1
2 𝑑𝑢𝑑𝑣.

(2.4)

√𝑔 is the Jacobian determinant and |.| is the Euclidean norm. The values ̂𝑉 (ℭ) and
̂𝑆(ℭ) are calculated in the pre-processing step for a reference point in major radius

�̂� and minor radius ̂𝑎. Again, hatted values here refer to the values at the reference
design point. Within Process, the plasma volume and surface area is then simply
obtained by the following scaling equations,

𝑉 = ̂𝑉 (ℭ)
𝑅
�̂�

𝑎2

̂𝑎2 , 𝑆 = ̂𝑆(ℭ)
𝑅
�̂�

𝑎
̂𝑎
. (2.5)

2.2.2. 0D-Transport

The temperature and density profile shapes for the electrons are input parameters in
Process and, for stellarators, are specified using the parametric form

𝑇𝑒(𝜌) = 𝑇0(1 − 𝜌2)𝛼𝑇, (2.6)
𝑛𝑒(𝜌) = 𝑛0(1 − 𝜌2)𝛼𝑛. (2.7)

Process implements the ion profiles as (user defined) multiples of the electron
profiles.

It should be noted that the imposed profile shapes are not per se consistent with
the implied heating schemes or transport properties. However, in practice, the profile
shapes can be determined by transport simulations independent of the systems code.
Results from such simulations can then be used as input for Process, e.g. in profile
shapes or heating source.

The 0D-transport model in Process imposes a power balance as an equality
constraint,

𝑝Loss
!= 𝑝heat. (2.8)

The left hand side represents the volume averaged loss power density from confinement
loss 𝑝conf

Loss, from bremsstrahlung 𝑝Br, line radiation 𝑝Line and synchrotron radiation
𝑝Sync. The right hand side includes heating from fusion alphas 𝑝𝛼, a term of charged
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non-alpha particle heating 𝑝¬𝛼 (e.g. in D-D fusion) and a term for auxiliary heating
𝑝𝑎𝑢𝑥. Writing these expressions explicitly, Equation A.3 becomes

𝑝conf
Loss + 𝑝Br + 𝑝Line + 𝑝Sync

!= 𝑓𝛼𝑝𝛼 + 𝑓¬𝛼𝑝¬𝛼 + 𝑝aux. (2.9)

Here, 𝑓𝛼 is the fraction of the alpha particle energy that is deposited in the plasma,
which is an input parameter in Process and depends on the configuration. This
factor will be discussed in more detail in subsection 2.2.4 and in section 3.1. Similarly
𝑓¬𝛼 accounts for the particle confinement fraction of non-alpha particles. Process’
model for radiation losses (𝑝Br, 𝑝line, 𝑝Sync) is described in [135, 136]. For 𝑝conf

Loss, Pro-
cess uses the effective energy confinement time 𝜏𝐸 to determine the effective power
transfer

𝑝conf
Loss ≃ 𝑝scaling

Loss ≡
𝑤
𝜏𝐸

, (2.10)

where 𝑤 is the volume averaged total plasma energy density which is obtained from
the imposed profiles for particle species averaged density 𝑛 and temperature 𝑇,

𝑤 =
3
2

∫
1

0
𝑑𝜌

√
𝑔𝑛(𝜌)𝑇 (𝜌). (2.11)

In stellarators, 𝜌 is usually chosen as the effective radius, which fulfils
√

𝑔 ∼ 𝜌. (2.12)

The energy confinement time 𝜏𝐸 is obtained via empirical scaling laws. The used
scaling law for stellarators in Process is the so-called intermachine ISS04 scaling [95],

𝜏 ISS04
𝐸 = 0.134 𝑓ren𝑎2.28𝑅0.64

0 𝑛0.52
𝑒 𝐵0.84

𝑡 𝜄0.41
2/3 𝑃−0.61, (2.13)

where 𝑎 is the minor radius, 𝑅0 is the major radius, 𝑛 is the line averaged electron
density, 𝐵𝑡 the toroidal magnetic field, 𝜄2/3 ≡ 𝜄2/3(ℭ) is the rotational transform (at
𝑠 = 2/3), 𝑃 is the combined effective plasma heating, and 𝑓ren is a proportionality
factor that measures the magnetic configuration dependent deviation from the ISS04
scaling law. In principle, 𝑓ren is determined by ℭ directly, although a reliable a priori
method of calculating this factor is not available up to date. Instead, Process can
iterate 𝑓ren within user set boundaries and return a needed configuration factor for
the optimised power plant design point. If sufficient data and sufficiently different
configurations with data were available, it would seem possible to try to resolve a
proportionality factor by finding a set of effective parameters that uniquely determine
𝑓ren in such scaling laws, but the preconditions (sufficient available configurations)
are not yet given for such an analysis.
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Equation 2.13 should be considered as the currently best available transport model
until a model from first principles becomes available. Although there are first principle
model for neoclassical transport [137, 138], reduced models for kinetic turbulence
do not exist yet and even full models only recently start to become available [89,
139]. Recent developments in reduced models mainly focus on qualitative transport
predictions to be targeted in stellarator optimisation [77, 140–144], but no quantitative
models for a predictive energy confinement time parametrization is available yet.

2.2.3. 0.5D Neoclassical Transport Model for Stellarators
As Process lets the user choose 𝑇0, 𝑛0, 𝛼𝑛 and 𝛼𝑇 in Equation 2.7 freely, we
introduce a ‘sanity check’ of the confinement time here against a neoclassical model.

The energy balance equation in steady state is

−∇ ⋅ q = 𝑝. (2.14)

Here, q is the flux surface averaged energy flux and 𝑝 stands for the flux surface
energy density sources and sinks. If one assumes constant energy flux on a flux
surface, integrating Equation 2.14 over a volume up to a radius 𝜌𝑥 yields

𝑞(𝑟 = 𝜌𝑥) =
𝑃ℎ𝑒𝑎𝑡(𝜌𝑥) − 𝑃𝑟𝑎𝑑(𝜌𝑥)

𝑆(𝜌𝑥)
, (2.15)

where 𝑆(𝜌𝑥) is the surface area at a radius 𝜌𝑥. 𝑃𝑟𝑎𝑑 is the radiation power and 𝑃ℎ𝑒𝑎𝑡
is the heating power as specified in Equation 2.9, both integrated values in the of
𝑆(𝜌𝑥) enclosed volume. In Process, we choose 𝜌𝑥 = 𝜌𝑐𝑜𝑟𝑒, where 𝜌𝑐𝑜𝑟𝑒 is an input
parameter in Process, which determines the radius of a binary ‘core’ treatment [132].
𝜌𝑐𝑜𝑟𝑒 is usually chosen in the order of ∼ 0.6 (𝜌 = 1 matches with the last closed flux
surface). The new model in Process now calculates a maximal allowable 𝑞𝑚𝑎𝑥 with
the calculated heating and radiation power as

𝑞𝑚𝑎𝑥 = (⟨𝑝ℎ𝑒𝑎𝑡⟩𝑉 − ⟨𝑝𝑟𝑎𝑑⟩𝑉)
𝑉 (𝜌𝑐𝑜𝑟𝑒)
𝑆(𝜌𝑐𝑜𝑟𝑒)

. (2.16)

Here, ⟨𝑝𝛼,𝑟𝑎𝑑⟩𝑉 denotes the power density averaged over 𝑉 (𝜌𝑐𝑜𝑟𝑒).
The volume over surface ratio at 𝜌𝑐𝑜𝑟𝑒 can be obtained approximately by scaling

of Equation 2.5.
Equation 2.16 can be compared against heat fluxes 𝑞𝑛𝑒𝑜 from neoclassical theory,

e.g. [137, 145]. In Process we compare Equation 2.16 against a neoclassical electron
flux [137]

𝑞𝑒,𝑛𝑒𝑜 = ∑
𝑖=1,2

𝑛𝑒𝑇𝑒𝐷𝑖,𝑒 [(
𝜕𝑟𝑛𝑒

𝑛𝑒
+ (

𝐷𝑖+1,𝑒

𝐷𝑖,𝑒
−

3
2
)

𝜕𝑟𝑇𝑒

𝑇𝑒
)] , (2.17)
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with

𝐷𝑖,𝑒 ≡ 𝐷𝑖,𝑒(𝑛, 𝑇 ) =
2

√
𝜋

∫
∞

0
𝐷1/𝜈𝐾

𝑖− 1
2 𝑒−𝐾𝑑𝐾, (2.18)

𝐷1/𝜈 =
4
9𝜋

(2𝜖eff)
3
2

𝐾2𝑇 2

𝑒2𝑅2
0𝐵2

0

1
𝜈(𝑛, 𝑇 )

, (2.19)

where we take the profile shapes as given by Process and further assume the
electrons to be in the 1/𝜈 collisional regime and neglect the effect of the radial
electrical field. The collisionality 𝜈(𝑛, 𝑇 ) can be calculated from classical statistical
theory [137]. 𝜖eff ≡ 𝜖eff(ℭ) is the averaged effective helical ripple and is an input
parameter, which is calculated for every configuration ℭ.

𝑞𝑒,𝑛𝑒𝑜 serves as an order of magnitude check for 𝑞𝑚𝑎𝑥, as a design point with
2 𝑞𝑒,𝑛𝑒𝑜 ∼ 𝑞𝑚𝑎𝑥 indicates that profile gradients at the found design point cause similar
purely neoclassical transport fluxes to 𝑞𝑚𝑎𝑥 and would not allow for an unknown
turbulent heat flux 𝑞𝑡𝑢𝑟𝑏.

Using this model we include a simplified model based on gradient based heat fluxes,
to restrict profile gradients in the 0D transport model of Process for stellarators,
which is not explicitly sensitive to gradient informations.

2.2.4. Fast Particle Confinement
The confinement of fast particle is a crucial quality criterion of a fusion power plant:
in first approximation it linearly effects the magnitude of the fast particle power to the
the fist wall, or to first wall components1. Secondly, the fraction of fast particles plays
a role in the power balance: in an integrated power balance, as it is implemented
in Process, the fraction of heated fast particle power is included via a factor
𝑓𝛼 ≡ 𝑓𝛼(ℭ, 𝑎, 𝐵), which enters Equation 2.9.

As in general the confinement quality of stellarator configurations with respect
to fast particles is highly dependent on the configuration, high fidelity models are
required to obtain a resonable value for 𝑓𝛼. A recent comparison of different stellar-
ators which respect to fast particle (not energy) confinement was conducted in [146].
The suggested routine to obtain this variable for given configuration ℭ is discussed
in section 3.1 and relies on a reference calculation with the code BEAMS3D of the
fast particle heating fraction of the scaled configuration at reasonable minor radius of
𝑎 ∼ 1.5 m and at fusion realistic plasma densities and temperatures. If 𝑓𝛼 is obtained
in this way, it can be used as an input parameters in the same way as the other
effective parameters 𝑎𝑖(ℭ) in this section.

It should be noted that in general, 𝑓𝛼 is not only dependent on the configuration
ℭ, but also on the absolute minor radius of the machine (the fast particle energy is

1One could think about installing local plates at locations of high heat loads, which is meant by
this term
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fixed at 3.5 MeV and thus introduces a scale), the location of the first wall (this is
especially relevant for devices with large drift orbits), the density and temperature
of the background plasma and the magnetic field strength. Our current model in
Process includes 𝑓𝛼 as a fixed parameter and does not include any scaling in the
above mentioned parameters. An improved model could rely on a parametrization of
of the probability distribution function of lost particle fraction 𝔇 such that

1 − ∫
𝜏ref

𝑆

0
𝔇(𝑡)𝑑𝑡 ≈ 𝑓 ref

𝛼 . (2.20)

Then, the scaling in 𝑛 and 𝑇 could be included by

1 − 𝑓𝛼(𝑛, 𝑇 ) ≈ (1 − 𝑓 ref
𝛼 )

∫𝜏𝑆

0
𝔇(𝑡)𝑑𝑡

∫𝜏ref
𝑆

0
𝔇(𝑡)𝑑𝑡

, (2.21)

where 𝜏𝑆 is the Spitzer ion-electron momentum exhange time (slowing down) of
the Process operation point at 𝑛 and 𝑇. 𝜏 ref

𝑆 is the Spitzer time of the reference
calculation. The underlying assumptions are that the change of confined fast particle
energy is similar to the change of lost fast particles. Secondly, this assumes that there
will be rapid thermalization after the Spitzer time, which is a resonable assumption,
as typically after 𝜏𝑆, ion-ion drag becomes the dominant friction drag term which
scales as 1/𝑣2. section 3.1 discusses this in more detail and provides a description of
the (high fidelity) reference simulations.

2.2.5. Density Limit
The density in stellarator reactors is limited by four possible mechanisms:

• Fuelling (particle transport)
• Radiation (Energy transport)
• Operation limits (e.g. by heating schemes)
• MHD effects (via beta limits)

In the following, the models for the first three mechanisms will be presented. The
density limit by MHD effects will be addressed in the next subsection.

Fuelling (Particle Transport)

The maximum achievable density in an experiment is determined by the maximum
fuelling capability, which limited several experimental devices in the past [147–149].

In principle, if effective particle and energy transport coefficients were known and
could be modelled, this limit can be determined if sources and sinks are known as
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well. Such coefficients can be written down for neoclassical transport, but it is unclear
yet if stellarator reactor configurations will be dominated by neoclassical transport
in the core.

However, iff the transport in the core is neoclassically dominated, one can estimate
the required fuelling rate by calculating the species flux 𝛤𝛼, for a species 𝛼 (not to
be confused with alpha particles),

𝛤𝛼 = −𝑛𝛼 (𝐷𝛼
11 (

𝜕𝑟𝑛𝛼

𝑛𝛼
−

𝑞𝛼𝐸𝑟

𝑇𝛼
) + 𝐷𝛼

12
𝜕𝑟𝑇𝛼

𝑇𝛼
) . (2.22)

For 𝑇𝑒 = 𝑇𝑖 = 𝑇, 𝑛𝑒 = 𝑛𝑖 = 𝑛 and 𝐷𝑒
11 ≪ 𝐷𝑖

11, then, the total neoclassical heat flux
is [45]

𝛤𝑛𝑒𝑜 ≃ −𝑛 (𝐷𝑒
11

2𝜕𝑟𝑛
𝑛

+ (𝐷𝑒
12 + 𝐷𝑖

12)
𝜕𝑟𝑇
𝑇

) . (2.23)

𝐷11 and 𝐷12 can be approximated by Equation 2.18 or by providing the calculated
monoenergetic transport coefficients using DKES [150, 151] or KNOSOS [152].

The required fuelling rate within an enclosed volume 𝜌 < 𝜌𝑥, is then required to be
larger than 𝛤𝑛𝑒𝑜 for a given set of a priori profiles. Of course, this estimate is not self
consistent, as it would require solving the density and temperature profiles together
with parametrized transport coefficients and energy and particle sources.

Instead, equation (2.22) is a conservative estimation of the required particle fuelling
for a given density. This value would add on top of the required fuelling by fusion
burn, so that the total required fuelling rate ̇𝑁fuel is (assuming constant fluxes in the
enclosed integration volume)

̇𝑁fuel ≈ 𝑆𝑐𝑜𝑟𝑒 (𝛤𝑛𝑒𝑜 + 𝛤𝑓𝑢𝑠𝑖𝑜𝑛) (2.24)
≈ 𝑆𝑐𝑜𝑟𝑒 (𝛤𝑛𝑒𝑜 + 𝑛𝐷𝑛𝑇⟨𝜎𝑣⟩𝑇) (2.25)

It is also possible to approximate the tritium burn-up fraction using the derived
expressions for 𝛤𝑖, which is given by the ratio of burned tritium rate to fuelling rate,

𝑓burnup ≈
̇𝑁𝐻𝑒
̇𝑁fuel

. (2.26)

This requires an expression for the helium density, which is usually obtained by assum-
ing a fixed ratio between helium particle confinement and plasma energy confinement
time, 𝜏⋆

He/𝜏𝐸. With this value, the helium density is obtained by finding 𝑛𝐻𝑒 such
that

𝜏⋆
He
𝜏𝐸

!=
𝑛𝐻𝑒

�̇�𝐻𝑒𝜏𝐸
. (2.27)

Note that the left hand side is provided as a fixed value. �̇�𝐻𝑒 is given by the fusion
cross section module, and 𝜏𝐸 is typically provided in terms of confinement time
scalings. Equation 2.27 is a consistency equation that Process enforces if activated.
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Density Limit by Radiation (Energy Transport)

At reasonable temperatures there are two mechanisms that contribute to radiation
terms in a reactor, line- and bremstrahlungs radiation. The energy transport can be
written as

𝑃𝑟𝑎𝑑 + 𝑃𝑙𝑜𝑠𝑠 = 𝑃ℎ𝑒𝑎𝑡, (2.28)

where 𝑃𝑟𝑎𝑑 is the power lost by those radiation terms, and 𝑃𝑙𝑜𝑠𝑠 is the power lost by
loss of confinement.

In experiments or reactors where the impurity fraction is coupled to the plasma
electron density, so if 𝑓𝑖𝑚𝑝 = 𝑛𝑖𝑚𝑝/𝑛𝑒 = const is considered fixed, the overall density
is limited by excessive radiation losses.

Several attempts have been made to frame this density limit, starting with the
Sudo limit [153], which phrases the density limit as power law fit as

𝑛𝑠𝑢𝑑𝑜
𝑐 [1020m−3] = 0.25 𝑃 0.5 𝐵0.5 𝑎−1 𝑅−0.5. (2.29)

Interestingly, although the Sudo limit is believed to capture radiational plasma
collapse due to excessive line radiation, equation (2.29) is independent of the the
impurity fractions. Earlier works [154] suggest a more general scaling law in terms of
the actual impurity fractions. This was picked up by more recent works [155], which
shows that a (generalized) Sudo like scaling law can explain the density limits seen
in W-7X. The formula employed there, reads

𝑛𝑐 =
𝑃

4𝜋2𝑅𝑎√
𝜏𝐸

𝑎2
𝑐rad

𝑛imp
. (2.30)

Here, 𝑛𝑖𝑚𝑝 is the impurity fraction and 𝑐𝑟𝑎𝑑 a impurity based radiation constant.
As Process enforces the energy power balance and has models for the impurity

line radiation [135], by incorporating species dependent cooling functions, one would
expect that Process inherently should reassemble Sudo (𝑛 ∝ 𝑃 0.5) like density limit
scalings. To test this hypothesis, one can employ a minimal Process setup, and only
enforce the global power balance: for an arbitrary device, e.g. 𝐵 = 3 T, 𝑅 = 6 m, 𝐴 = 6,
and turning the fusion power off by setting the tritium fraction to very zero, one
can maximize the density with Process. Figure 2.3 shows the density limit that
Process finds by using this setup for variable impurity fractions. It can be seen
that a positive scaling of the maximum density limit with respect to the power can
be reproduced and even the Sudo like 𝑛 ∼ 𝑃 0.5 can be obtained for certain impurity
fraction, as can be seen in figure 2.3. From this check, it is probably safe to say that
Process’ models already have the density limiting effects of edge and core impurity
radiation.
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Figure 2.3.: Density limits of Process’ impurity radiation model for different impur-
ities, using ISS04 energy confinement time scalings. Note that the impurity fractions
are assumed to be present in the whole plasma, not just the edge.

Operational Limit (ECRH)

From the operational point of view, there is another constraint on the density, which
is imposed by operational boundaries of the electron cyclotron resonance heating
(ECRH) scheme [156]. The commonly assumed heating method for stellarator based
reactor devices relies on ECRH. ECRH is the method to heat the electrons only
on their respective resonance frequency. For their polarization there are two heating
modes available, 𝑋− and 𝑂− mode heating, which are determined by the polarization
of the wave vector with respect to the magnetic field vector.

One can show that each of the different modes are subject to a cut off density
above which the propagation of the wave-vector goes to zero, as determined by the
dispersion relation. This cut off density is reached when the frequency of the wave
matches the plasma frequency 𝜔𝑝𝑒. Useful literature e.g. on this topic is [157].

For a reactor scenario, the mode with the highest cut off density is 𝑋1 and 𝑂1
heating, where the number 1 stands for the resonance on which the electrons are heated
on. 𝑂2 heating, e.g. uses a microwave with double the frequency of the electrons. As
𝑋1 heating requires special attention, e.g. it requires ports on the high field side of
the reactor to have non-zero wave propagation, the usual heating scheme for a reactor
is 𝑂1 heating.

𝑂1 heating implies the operational constraint

𝜔2
𝑝𝑒 < 𝜔2

𝑔𝑦𝑟𝑜 < 𝜔2
𝑚𝑎𝑥, (2.31)

where 𝜔𝑔𝑦𝑟𝑜 the frequency of the 𝑂1 wave and 𝜔𝑚𝑎𝑥 the maximum available gyrotron
frequency. 𝜔𝑚𝑎𝑥 depends on the available gyrotron technology. Current available
technology allows for 170 GHz gyrotrons in ITER [158], higher frequency gyrotrons
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are under development [159]. An issue to solve for higher frequency gyrotrons are
smaller cavities which typically limits the output power.

Continuing to write the operational density limit for 𝑂1 heating, one can plug in
the definition of the plasma frequency. Then, in ECRH heated plasmas, the central
electron density 𝑛𝑒 is limited by

𝑛𝑒 < 𝑛𝐸𝐶𝑅𝐻
𝑒,𝑐𝑟𝑖𝑡 =

𝑚𝑒𝜖0

𝑒2 𝜔2
𝑔𝑦𝑟𝑜, subject to: 𝜔𝑔𝑦𝑟𝑜 < 𝜔𝑚𝑎𝑥. (2.32)

Figure 2.4 visualizes the heatable densities with 𝑂1-heating using equation (2.32),
and in comparison an X2-heating scheme: the different shaded areas show which
regions are heatable with different maximal available gyrotron frequencies, at varying
magnetic field strengths. Equation 2.32 was implemented as a constraint in Process
and ensures that the found design point is ECRH heatable in 𝑂1− mode.

Note that there are heating schemes, such as Electron Bernstein Waves [160] or
an X1 heating scheme, which could be used to heat a plasma beyond the expression
given in Equation 2.32, but their relevance as a heating scheme in a stellarator reactor
are still up for discussion and are not taken into account by Process yet.

Other operational limits are given by the requirement for central fuelling, as the
pellet penetration depth depends on the plasma density. A model for this is left out
for future work.

2.2.6. About Modelling the Beta Limit in Stellarator Systems Codes

In tokamaks, there are a variety of destabilizing MHD activities, such as ballooning
modes [161, 162], sawtooth oscillations [163, 164], kink instabilities [165], drift-wave
instablities [166] or resistive [167] and neoclassical tearing modes [168] which are
driven by pressure gradients and internal plasma currents. By now, the tokamak
community managed to find stabilization strategies for most of these regimes, either
by constraining the operational space [169, 170] or by disruption prediction [171–173]
and mitigation [163, 174, 175] techniques.

Although one has to be careful with general statements about stellarators, due to
the sheer variety of unexplored possible configurations, it is probably safe to say that
in current-free stellarators with negative magnetic shear, many of these instabilities
are absent or at least far less present, which also is the result of several analytical
and numerical studies [55, 176–181].

As a consequence, in contrast to a tokamak, the highest achievable beta is likely
set by equilibrium effects and not by MHD stability considerations.

There are attempts to find generic statements for the equilibrium based beta limit,
e.g. based on the Shafranov shift, which can be found in classical stellarators [182].
The Shafranov shift induced a radial displacement of the overall plasma, which scales
linearly in the plasma 𝛽. This shift leads to stochastization of field lines and a smaller
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Figure 2.4.: Central density limits due to different ECRH heating schemes: The blue
region indicates where O1 heating can be applied, the green region where X2 is
feasible. Each shape area indicates a minimum required gyrotron frequency. For
context, dashed lines indicate ignition according to Lawson criterion with different
Volume 𝑉 and volume averaged ion temperature ̄𝑇𝑖 (assuming 𝑛𝑝𝑒𝑎𝑘/�̄�=3 and ISS04
scaling from W7X parameters.)

plasma volume. One calculation for this effect on the W7-X equilbrium was shown
in [55].

However, so far, relatively little analytical, general, expressions are known for the
equilibrium based 𝛽-limits of advanced stellarators. Instead, numerical equilibrium
codes, such as SPEC [183, 184], which relies on a stepped-pressure approach to solve
for the MHD force balance, can be utilized to determine the effect of finite beta on
equilibrium quality. Similar to the study conducted in [127], the beta limit of a fixed
stellarator configuration could be found by a scan of several pressure profiles with
SPEC. A beta limit obtained by such a study is usually given as the volume averaged
𝛽 value.2

A second 𝛽 constraint is obtained from the optimisation: at the stellarator optim-
isation stage, the desirable set of parameters is usually only targeted at one specific
finite 𝛽𝑜𝑝𝑡 value. If 𝛽 ≠ 𝛽𝑜𝑝𝑡, the optimised properties might be lost. The left hand

2Usually the volume averaged 𝛽 is denoted by ⟨𝛽⟩𝑉, but the notation in the following will stick to
simply 𝛽.
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Figure 2.5.: An example for a ‘soft’ beta limit in an optimised quasi-axisymmetric (QA)
stellarator from [50], when deviating from the optimised 𝛽. Left Plot: The boozer
spectrum the the optimisation point of 0% 𝛽. Right Plot: The boozer spectrum of
the same QA configuration at 2% 𝛽 shows the broken QA symmetry as indicated
by the magnitude of the symmetry breaking 𝑚 = 0, 𝑛 = 1 line.

side of figure 2.5 shows the Boozer spectrum of a recently proposed example quasi-
axisymmetric stellarator configuration, which was optimised at 𝛽 = 0% [50]. All
𝑛 ≠ 0 lines there represent the symmetry breaking field contributions, which need to
be suppressed to reduce neoclassical plasma confinement. A free boundary VMEC
calculation at 𝛽 = 2% of the same coil-set, and even neglecting bootstrap current
effects, shows that the configuration loses its quasi-axisymmetry, which is shown in
the right hand side of figure 2.5.

A BEAMS3D calculation of this configuration shows integrated alpha particle losses
of about 3.5% at vacuum, where the optimisation was designed. At 𝛽 = 2%, about
41.4% of the energy is lost instead! Hence it is clear, that such a configuration is not
reactor relevant as it loses nearly half of the fusion born fast particles to the wall.
The set-up of the corresponding BEAMS3D calculation was done analogous to the
calculations explained later in section 3.1, and the reader is referred to this section
for more technical details.

It is thus clear that a stellarator configuration design point would not only need
to operate below a specific beta but also likely requires a minimal 𝛽𝑙𝑜𝑤𝑒𝑟

𝑙𝑖𝑚 . For a
given configuration, these 𝛽 limits are defined by the configuration ℭ, and is given by
the optimisation target and its equilibrium properties. In Process, we assume the
maximal 𝛽𝑢𝑝𝑝𝑒𝑟

𝑙𝑖𝑚 as an input and we simply limit the calculated 𝛽 in Process by

𝛽𝑙𝑜𝑤𝑒𝑟
𝑙𝑖𝑚

!
< ⟨𝛽⟩𝑉

!
< 𝛽𝑢𝑝𝑝𝑒𝑟

𝑙𝑖𝑚 . (2.33)
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2.2.7. Bootstrap Current (QA)

The bootstrap current is usually optimised to vanish in most quasi-isodynamic (QI)-
stellarators. However, for quasi-axisymmetric (QA) and quasi-helical (QH) stellarators,
the bootstrap current can obtain significant values of several Mega-Amperes in reactor
sized machines. It is thus important to model this current also in a systems code
framework, not only to match the iota (which enters the confinement time scalings),
but also to return an estimate for the magnitude of the current for plasma control,
ramp up, or disruption mitigation considerations.

Here, we propose the model only for QA machines, based on a regression fit of pure
regime transport coefficients by [185]. This fit reads for the mono-energetic radial
transport coefficient

𝐷11 = [𝐷3/2
𝑃𝑆 + (

𝐷𝑏𝐷𝑝

𝐷𝑏 + 𝐷𝑝
)

3/2

]
2/3

, (2.34)

where 𝐷𝑃𝑆 stands for the pure Pfirsch-Schlüter transport coefficients, 𝐷𝑏 for the pure
banana regime transport coefficient and 𝐷𝑝 for the pure plateau transport regime.
The reader shall be referred to [45, 137] for more context. The pure regime transport
coefficients can be written in terms of configuration and device parameters, namely in
terms of 𝑏10, which is the (normalized) first axisymmetric boozer Fourier coefficient of
the magnetic field strength, 𝜖𝑡 the inverse aspect ratio (at the respective flux surface),
the rotational transform 𝜄 (which will require a fixpoint iteration later to find a
consistent design point), the major radius 𝑅0, and the (mono-energetic) collisionality
𝜈. They read

𝐷𝑃𝑆 =
8
3

(
𝑏10

𝜖𝑡
)

2

(
𝑣𝑑𝑅0

𝜄𝑣
)

2
𝜈, (2.35)

𝐷𝑝 =
𝜋
4

(
𝑏10

𝜖𝑡
)

2

𝑣2
𝑑
𝑅0

𝜄𝑣
, (2.36)

𝐷𝑏 = 2
√𝑏10

𝜖2
𝑡

(
𝑣𝑑𝑅0

𝜄𝑣
)

2
𝜈. (2.37)

The species velocity 𝑣 can be written as

𝑣 = 𝑐√1 − (
𝐾𝑇
𝑚𝑐2 + 1)

−1
. (2.38)

Here, the relativistic expression is required to regulate the Maxwellian high energy
tail of the electron energy integrand in Equation 2.41.
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With these, the relevant mono-energetic 𝐷31 transport coefficient can be computed,

𝐷31 = 𝜄𝜖𝑡
𝑞𝐵0⟨𝑏2⟩

𝑚
𝜈−1 (𝐷11 − 𝐷𝑃𝑆) . (2.39)

The bootstrap current 𝑗𝐵𝐶 ≡ ⟨𝒋 ⋅ 𝒃⟩ can be obtained by correct ‘coupling’ of the
integrated transport coefficients with the thermodynamical forces [137],

𝑗𝐵𝐶 = −𝑞𝑛 [(𝜕𝑟 ln(𝑛) −
3
2
𝜕𝑟 ln 𝑇) 𝐿31 + 𝜕𝑟 ln 𝑇𝐿32] . (2.40)

The 𝐿3𝑖 integrals can be obtained by integrating the mono-energetic transport coeffi-
cients of a Maxwellian distribution,

𝐿3𝑖 = ∫
∞

0
𝑑𝐾

√
𝐾𝑒−𝐾𝐷31(𝐾)𝐾𝑖−1. (2.41)

Numerically, the integral ∫∞
0

𝑑𝐾𝑒−𝐾𝑓(𝐾) for some function 𝑓 ∶ 𝑈 ⊂ ℝ → ℝ, can be
evaluated using a Gauss-Laguerre quadrature rule.

Equation 2.40 can be benchmarked against established tools. One such a tool is
the linearised drift kinetic equation solving code DKES [151, 186], which can be used
to write a set of mono-energetic transport coefficients dependent on 𝑛, 𝑇 , 𝐸𝑟, which
then again can be used in a transport solver, like NTSS [138] to obtain the bootstrap
current. Figure 2.6 shows the prediction of the bootstrap current for a QA stellarator
from [127], which shows reasonably good agreement between both methods.

2.3. Reactor Component Systems Code Models

Below we now list the stellarator specific reactor component models moving from the
plasma facing components, such as the divertor and the first wall, over the blanket
module to the coil module.

2.3.1. Island Divertor

There are three studied divertor concepts available for stellarator reactors: An ergodic
divertor concept, also called helical divertor, for high shear configurations [187], a re-
silient non-resonant divertor concept [188] and a resonant, island divertor concept [44,
189–192]. For now, we include only a description for an island divertor concept in
Process, closely following the (previously implemented) model as proposed in [2].

In a stellarator with an island divertor concept, the magnetic field is designed such
that the rotational transform  𝜄res at the edge coincides with a low order rational
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Figure 2.6.: A benchmark of the boostrap current of the Henneberg-QA configura-
tion [127] as obtained with DKES and NTSS against Equation 2.40.

number 𝑁𝑝𝑘/𝑛,

 𝜄res =
𝑘𝑁𝑝

𝑚
≡

𝑛
𝑚

, (2.42)

where 𝑚 is the number of poloidal resonances (islands), 𝑘 is the resonance order and
𝑁𝑝 is the field period of the machine. 𝑘 is determined by radial 𝐵-Field harmonics on
or shortly behind the last closed flux surface, and, if the respective resonant harmonics
are not actively suppressed, is typically equal to 1. The underlying concept of the
island divertor is to use the magnetic islands for diverting the heat load coming from
the plasma core and then intersect the islands with discontinuous divertor target
plates. While the full physics description of the stellarator scrape-off-layer (SOL) is
still a challenging and contemporary topic, fundamental geometrical considerations
can be used to estimate the heat load on the divertor target plates. It is the goal of
the proposed model here to provide an estimation of the peak heat load, as this is
the constraining engineering limit, due to material limitations.

The heat load on the divertor target plates 𝑞div is the ratio of the power arriving
at the divertor 𝑃div and the area over which this power is effectively spread, 𝐴eff.
One of the major strategies to reduce the heat load arriving at the divertor is to
introduce low-Z impurities that are effective at radiating substantial power in the
SOL. Consequently, the power arriving at the divertor is the power coming from the
plasma core 𝑃core less the radiation from the impurities: 𝑃div = 𝑃core (1 − 𝑓rad), where
𝑓rad is the radiation fraction, which needs to be given as an external input parameter.
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The wetted area 𝐴eff on the divertor plates usually has the form of a strike-line
with a total length 𝐿tot across all divertors and a width 𝜆int. The heat load is then

𝑞div =
𝑃div

𝐴eff
=

𝑃core (1 − 𝑓rad)
𝐿tot ⋅ 𝜆int

, (2.43)

where 𝑃core is provided by the Process’ plasma core model.
Assuming that the heat load is distributed in equal shares across all divertor plates,

then the total length 𝐿tot is simply the sum over all divertor targets 𝐿𝑖,

𝐿tot = ∑
𝑖

𝐿𝑖 = 2𝑛𝐿strike. (2.44)

Here 𝑛 = 𝑘 𝑁𝑝, as defined previously. The strike-line length 𝐿strike on a single divertor
plate can be estimated from the field line geometry. To this end, one needs to introduce
the pitch-angle 𝛩 = 𝑑𝑟/𝑑𝑙, which describes the radial displacement of a field line
in the SOL along its arc-length and depends on the specific magnetic configuration
ℭ, but it is typically in the range of 10−3 – 10−4 for stellarators. The strike-line is
limited by the field line that just passes the divertor plate at the front and then
after one toroidal turn (𝛥𝑙 ≈ 2𝜋𝑅) hits the target plate on the far side. Using the
definition of the pitch-angle, the radial projection of the strike-line is 𝛥𝑟 = 2𝜋𝑅𝛩.
The length of the strike-line on the divertor plate itself is then determined by the
angle 𝛼lim = 𝛥𝑟/𝐿strike under which the field line hits the target plate. The strike-line
length on the divertor is then simply

𝐿strike = 2𝜋𝑅
𝛩

𝛼lim
𝐹𝑥, (2.45)

where 𝐹𝑥 is an additional broadening of the flux channel caused by diffusive cross-field
transport. A model for this factor is given below in Equation 2.49. A small intersection
angle 𝛼lim helps to increase the strike-line length and reduce the heat load density.
However, 𝛼lim is limited by the engineering accuracy under which target elements can
be arranged, typically around ∼ 2∘.

Generally, stellarators with an island divertor feature much longer connection
lengths than tokamaks [193]. Consequently, the energy and particles have a longer
dwell time in the SOL leading to a substantial cross-field broadening of the transport
channel compared with tokamaks. We assume here that the cross-field transport is
mostly of diffusive nature, allowing us to describe the strike-line width (also referred
to as power decay width) by [194],

𝜆int = √𝜒⟂ ⋅ 𝜏‖. (2.46)

Here, 𝜒⟂ is the perpendicular diffusion coefficient, which is an user-defined input, but
usually taken in the order of ∼ 1 m2/s [195]. 𝜏‖ is the characteristic dwell time of
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the particles in the SOL before reaching the target. As the particles follow the field
lines, the dwell time 𝜏‖ depends on the connection length 𝐿𝑐 of the field line and the
average speed of the particle, namely the ion sound speed 𝑐𝑠 = √2𝑇/𝑚 (𝑚 here being
the ion mass), and thus 𝜏‖ = 𝐿𝑐/𝑐𝑠. The ion temperature (in the SOL) 𝑇 is again
a user-defined input, however since mostly detached scenarios are considered for a
reactor design point for divertor protection, 𝑇 must be on the order of 5 – 10 eV [195].

The connection length 𝐿𝑐 can be geometrically estimated by using again the defini-
tion of the pitch-angle 𝛩. If we define 𝛥 as the radial distance from the LCFS to the
target plate, then the connection length is simply

𝐿𝑐 =
𝛥
𝛩

= 𝑓 ⋅
𝑤𝑖

𝛩
. (2.47)

The typical radial scale length 𝛥 of the system is for the island divertor the radial
extent of the magnetic islands 𝑤𝑖. However, as the island is intersected by the divertor
plates, only a fraction 𝑓 of the island width is effectively used 𝛥 = 𝑓 ⋅ 𝑤𝑖. Usually,
the divertor plates are placed at the half radius of the islands, thus 𝑓 is normally in
the order of 𝑓 ∼ 0.5. The full width of the island can be estimated from analytic
theory [196],

𝑤𝑖 ≈ 4 ⋅ √𝑅 ⋅ 𝛩
𝑚 ⋅  𝜄′

, (2.48)

where  𝜄′ = 𝑑 𝜄/𝑑𝑟 is the magnetic shear at the edge, which is given by the magnetic
configuration. Generally, stellarators with an island divertor need a comparably low
magnetic shear in order to form sufficiently large magnetic islands.

Finally, the previously mentioned flux channel broadening 𝐹𝑥 can be derived fol-
lowing the same diffusive ansatz, but for only one toroidal turn, which then becomes

𝐹𝑥 = 1 +
1
𝛩

√
𝜒⟂

𝑐𝑠2𝜋𝑅
. (2.49)

In conclusion, we have provided equations for all introduced parameters. Con-
sequently, all the here derived relations can be consolidated in order to arrive at a
heuristic scaling for the divertor heat load. By replacing the poloidal mode number
𝑚 in terms of 𝜄, 𝑘 and 𝑁𝑝, using Equation 2.42 one obtains

𝑞div =
𝑃core (1 − 𝑓rad)

8𝜋𝑅𝑘𝑁𝑝

𝛼lim

𝛩
√

𝑐𝑠

𝑓 ⋅ 𝜒⟂

4

�
𝑘𝑁𝑝 𝜄′𝛩

𝜄𝑅
(1 +

1
𝛩

√
𝜒⟂

𝑐𝑠2𝜋𝑅
)

−1

. (2.50)

Here,  𝜄 (ℭ),  𝜄′ (ℭ), 𝑁𝑝 (ℭ), 𝑘 (ℭ) and 𝛩 (ℭ) are specific to the considered magnetic
configuration and can be obtained in the pre-processing step, based on the equilibrium
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Table 2.1.: Model values for W7-X as taken for the comparison between model and
infrared data, shown in Figure 2.7 and figure 2.8.

Parameter Value

𝑘 1
𝑚 5
𝑁𝑝 5
𝛩 10−3

𝜄′ 0.5
𝑓 0.5

𝜒⟂ 1.5 m2/s
𝑅 5.5

𝛼lim 2°
𝑇div 10 eV

and the coils. 𝜒⟂, 𝛼lim, 𝑓 and 𝑇 depend on the specific physics regime or the engineering
design and must be provided by the user, but usually take values as indicated in the
text above.

Comparison against Wendelstein 7-X data
Equation 2.45, 2.46 and 2.50 can be tested against values from the Wendelstein

7-X stellarator, which has, in the standard configuration, a 5/5 island chain at the
edge. Table 2.1 reports the required model parameters for W7-X, informed from [193,
195]. The data required for the comparison is obtained from Wendelstein 7-X data
using its infrared camera setup [100, 197, 198].

For a detailed description on the island divertor structure, the reader shall be
referred to the introduction section of [199], which comes with clear visualizations
of the divertor plate positions in W7-X. For the model comparison to experimental
data, it is important to understand that there are horizontal and vertical targets in
W7-X and usually loads are seen on both targets in most configurations. In terms of
the model Equation 2.50, the W7-X divertor plate set-up can be understood as twice
the amount of divertor plates as assumed in Equation 2.44 and be retrieved from the
model by dividing the strike-line length 𝐿strike in Equation 2.45 by factor of 2.

For the comparison, the W7-X program ‘20180905.030’ (standard configuration)
is taken, the 30ths discharge from the 5th of September 2018, and the experimental
time between 1.0-3.5 Seconds is considered. In addition, also the experimental time
from 1.0-3.5 Seconds of the W7-X program ‘20181002.047’ (low iota) is considered.
The data for both programs was published and discussed in Appendix B.3 in [200].

Figure 2.7 and 2.8 show a comparison ofEquation 2.45, 2.46 and 2.50 against heat
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flux data as measured by infrared cameras of the divertor plates. In these plots, the
gray solid lines show the time average of all available data for all horizontal target
plates for this discharge. Gray dashed lines show the divertor loads on the vertical
plates. Averaging the data with a central moving average with filter width 20cm,
allows to show the data as average line with its standard deviation, here shown as
the colored shaded area.

Despite the simplicity of the assumed model, the predicted divertor strike-line heat
flux not only matches approximately in its magnitude with the local divertor heat-flux
on the divertor target plates of Wendelstein 7-X, but also the strike-line length and
width agrees reasonably well in the considered program. Significant differences however
can be seen in the low iota configuration of W7-X, as can be seen in Figure 2.8. The
experimental strike-line there is comparably broad and the width deviates significantly
from the a priori prediction of the model using the parameters in Table 2.1. The
difference could be explained by an increased connection length 𝐿𝑐 or by increased
cross field transport 𝜒⟂. Appendix B.3 in [200] discusses the configuration differences
and shows larger connection length in program ‘20181002.047’ (low iota) compared
to program ‘20180905.030’ (standard configuration).

Experimentally, a correlation is seen between scrape-off-layer power and wetted area
in W7-X [100], which is not reflected in the current model and shows its limitations.

It should also be noted, since the heat load is usually limited by material constraints,
the divertor model is also useful in reversing the parameters: for example, for a fixed
design point and heat load limit, one can estimate the required radiation fraction
that would be needed to make the design point feasible.
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Figure 2.7.: Comparison of the modelled strike-line length 𝐿strike (the width of the
black box) and flux magnitude 𝑞𝑑𝑖𝑣 (the height of the black box) against Wendelstein
7-X data as obtained from infrared imaging diagnostics (gray and coloured lines).
Shown is a time averaged load for divertor and vertical plates in the W7-X discharge
‘20180905.030’ along the divertor plates, by following the strike-line on the target
plates. Gray lines show the data for every target plate, coloured solid lines show
the average and the standard deviation of the gray lines. A moving average filter is
applied to the coloured curves to smooth the data.
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Figure 2.8.: Comparison of the modelled strike-line width 𝜆int (the width of the black
box) and flux magnitude 𝑞𝑑𝑖𝑣 (the height of the black box) against divertor heat-flux
data as obtained from the infrared diagnostics in the W7-X discharge ‘20180905.030’
(standard configuration) and ‘20181002.047’ (low iota) on the horizontal target
plates. The shadings are defined analogously to Figure 2.7.
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2.3.2. First Wall
In stellarators, the first wall is a hyper-surface that is freely shaped in 3D and usually
approximately mimics the shape of the last closed flux surface. A good first guess for
such a wall is an equidistant one to the last closed flux surface.

To obtain a parametric form of the wall, we parametrize the wall using a set of
Fourier coefficients, as

𝑅(𝑢, 𝑣) =
𝑚𝑚𝑎𝑥

∑
𝑚=0

𝑛𝑚𝑎𝑥

∑
𝑛=−𝑛𝑚𝑎𝑥

𝑅𝑐
𝑚,𝑛 cos(𝑚𝑢 − 𝑁𝑓 𝑛𝑣),

𝑍(𝑢, 𝑣) =
𝑚𝑚𝑎𝑥

∑
𝑚=0

𝑛𝑚𝑎𝑥

∑
𝑛=−𝑛𝑚𝑎𝑥

𝑍𝑠
𝑚,𝑛 sin(𝑚𝑢 − 𝑁𝑓 𝑛𝑣),

𝑣 ≡ 𝜑.

(2.51)

This form is analogue to the usual parametrization of the plasma flux surfaces, see
2.2.1, and uses the same notation. Here, we choose the toroidal coordinate 𝑣 as the
cylindrical azimuthal coordinate 𝜙 and 𝑢 as an equi-arclength poloidal coordinate (to
be defined below).

The wall itself can be obtained by generating equidistant points from the 𝑠 = 1
surface in a fixed distance and Fourier transform to a set of 𝑅𝑐

𝑚,𝑛 and 𝑍𝑠
𝑚,𝑛 as defined

in Equation 2.51.
The equidistant points can be obtained in the following way. Since the last-closed-

flux-surface (LCFS) is given analytically, also the surface normals on every points of
the LCFS can be analytically calculated by

nLCFS =
𝜕r
𝜕𝑢

×
𝜕r
𝜕𝑣

, (2.52)

where r is the positional vector of any point on the LCFS. The components of 𝜕r
𝜕𝑢

and 𝜕r
𝜕𝑣

in Cartesian coordinates are

𝜕r
𝜕𝑢

=
𝜕𝑅
𝜕𝑢

cos(𝑣)e𝑥 +
𝜕𝑅
𝜕𝑢

sin(𝑣)e𝑦 +
𝜕𝑧
𝜕𝑢

e𝑧,

𝜕r
𝜕𝑣

= (
𝜕𝑅
𝜕𝑣

cos(𝑣) − 𝑅 sin(𝑣)) e𝑥

+ (
𝜕𝑅
𝜕𝑣

sin(𝑣) + 𝑅 cos(𝑣)) e𝑦 +
𝜕𝑧
𝜕𝑣

e𝑧.

(2.53)

e𝑥, e𝑦, e𝑧 are the Cartesian unit vectors. Finally, the discretized coordinates of an
equidistant wall are then given by

d𝑖𝑗 = r𝑖𝑗 + 𝑑 ⋅
𝜕r𝑖𝑗

𝜕𝑢
×

𝜕r𝑖𝑗

𝜕𝑣
, (2.54)
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for a pre-defined plasma-wall distance 𝑑.
The Fourier transform from cylindrical space to Fourier space is then given by

𝑅𝑚𝑛 =
2 − 𝛿0𝑚𝛿0𝑛

𝑁𝑢𝑁𝑣
∑
𝑖𝑗

cos (𝑚𝑢𝑖 − 𝑁𝑓𝑛𝑣𝑗) 𝑑(𝑅)
𝑖𝑗 ,

𝑧𝑚𝑛 =
2

𝑁𝑢𝑁𝑣
∑
𝑖𝑗

sin (𝑚𝑢𝑖 − 𝑁𝑓𝑛𝑣𝑗) 𝑑(𝑧)
𝑖𝑗 ,

(2.55)

where 𝛿 is the Kronecker delta. 𝑑(𝑅)
𝑖𝑗 and 𝑑(𝑧)

𝑖𝑗 are the cylindrical 𝑅 and 𝑧 component
of d𝑖𝑗. The Fourier transformation of points generated by the indices 𝑖, 𝑗 in this
method requires assigning a poloidal coordinate 𝑢𝑖 (and also in 𝑣, but this is the
usual cylindrical azimuthal coordinate). 𝑢 can be defined e.g. by assigning an equal
arc-length poloidal coordinate to d𝑖𝑗,

𝑢𝑖𝑗 ≡
∑𝑗

𝑘=0 ||dpoloidal
𝑖𝑘 ||

∑𝑁𝑢
𝑘=0 ||dpoloidal

𝑖𝑘 ||
, 0 ≤ 𝑗 ≤ 𝑁𝑢, (2.56)

dpoloidal
𝑖𝑘 = d𝑖𝑘 − (d𝑖𝑘 ⋅ etoroidal

𝑖𝑘 )etoroidal
𝑖𝑘 , 𝑘 ∈ [0,𝑁𝑢]ℕ , (2.57)

d𝑖𝑘 = r𝑖,𝑘 − r𝑖,𝑘−1, (2.58)
r𝑖,−1 ≡ r𝑖,𝑁𝑢

. (2.59)

Before Fourier transforming using Equation 2.55, the points r𝑖𝑗 need to be re-
interpolated on an equally spaced grid in 𝑢 and 𝑣, which can be done using dedicated
interpolating algorithms, e.g. using a cubic interpolation. The newly obtained Fourier
coefficients for the first wall can be used to obtain a set of surface normals analytically,
analogue to Equation 2.52.

This parametrization in terms of Fourier coefficients is a convenient way to define
a coordinate system on the wall with analytical expressions for the surface element
𝑑𝐴 in terms of the angles 𝑢 and 𝑣,

𝑑𝐴 =
√

𝑔𝑑𝑢𝑑𝑣,

= √𝑅2(𝜕𝑢𝑧)2 + 𝑅2(𝜕𝑢𝑅)2 + (𝜕𝑣𝑅𝜕𝑧𝑢 − 𝜕𝑣𝑧𝜕𝑢𝑅)2𝑑𝑢𝑑𝑣.
(2.60)

Here, √𝑔 is the Jacobian determinant. This allows to calculate surface areas and wall
loads (by providing the required surface element used for wall load calculations). In
the future, other wall, blanket or vacuum vessel related calculations can be conducted
using this parametrization (their parametrizations would be analogue to the method
described here), e.g. force concentration in the vacuum vessel by eddy currents during
a quench, liquid lead blanket flow etc.

Figure 2.9 exemplarily depicts equidistant walls for a quasi-axisymmetric stellarator
configuration at different radial positions using this method.
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Figure 2.9.: The first wall equidistant initialization in 10 (red), 30 (blue) and 50cm
(green) distance from the s=1 surface (black) for a stellarator QA configuration,
from [129].

2.3.3. Reactor-Wall Power Constraints

The thermal wall power on the first wall is a significant constraint in a fusion power
plant and consists of neutron wall loads, fast charged particles, fast neutrals and
photon radiation. Moreover, there are non-thermal plasma-wall interactions, which in
principle impose more constraints on the plasma-first wall interaction, but respective
model for these interactions are beyond the scope of this thesis. A recent review listing
most of the challenges from a material point of view can be found in [201].

In the following, we comment on the new Process models of the neutron and
radiation wall loads as well as the fast particle wall loads. The section is concluded in
a short ‘future outlook’ subsection, where it will be commented on other wall loading
constraints.

Neutron Wall Load

In contrast to tokamaks, stellarators can feature significant variation of the neutron
wall load in toroidal direction. This is reflected by the broken axi-symmetry of stel-
larator equilibria which can be understood as a non-zero 𝑅𝑐

𝑚,𝑛 and 𝑍𝑠
𝑚,𝑛 coefficients,

as defined in Equation 2.1 and 2.2 for 𝑛 > 0. To model the toroidal and poloidal load
inhomogeneity, a peaking factor 𝑓𝑝𝑒𝑎𝑘 can be added to the already existing model.
For a given configuration, this factor for the first wall neutron load can be calculated
by

𝑓𝑝𝑒𝑎𝑘(ℭ) ≡
𝑞𝑚𝑎𝑥

𝑞avg
∣
ref

. (2.61)

Here, 𝑞𝑚𝑎𝑥 is the maximum and 𝑞avg the average neutron load in the blanket at the
reference design point. When one constructs an intermediate, first wall like, hyper-
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Figure 2.10.: An example calculation of the neutron flux for a Helias 5 configuration
on a conceptional intermediate hyper surface between plasma and coils using a
discretized version of Equation 2.62, at 3 GW fusion power. The last closed flux
surface is shown in cyan.

surface between plasma and coils, one can approximately calculate 𝑞 on this surface
via

𝑞(𝜃, 𝜙) =
𝐸𝑛

4𝜋
∫
𝑉𝑆

𝑑x𝑆
̂n(𝜃, 𝜙) ⋅ (x𝑆 − x𝑊(𝜃, 𝜙))

||x𝑆 − x𝑊(𝜃, 𝜙)||3
𝑓𝑆(x𝑆). (2.62)

Here, 𝜃 and 𝜙 are poloidal and toroidal coordinates on the surface, x𝑆 and x𝑊 are
the position vectors of the source and the wall respectively, 𝑉𝑆 stands for the volume
of the source and ̂n is the normal vector of the wall, which can be calculated from the
parametrization in Equation 2.51. 𝐸𝑛 is the energy carried by a neutron in a 𝐷 + 𝑇
reaction (14.1 MeV). 𝑓𝑆 is the neutron fluence at the source point x𝑆, which can be
obtained using the Bosch-Hale fit [4] for a reference density and temperature profile,

𝑓𝑠 ≡ 𝑛𝐷𝑛𝑇⟨𝜎𝑣⟩ = 𝐶1𝑛𝐷𝑛𝑇𝜃(𝑇 )√
𝜉(𝑇 )

𝑚𝑟𝑐2𝑇 3 𝑒−3𝜉(𝑇). (2.63)

𝜃 and 𝜉 are fit functions (in the order unity up to a factor of 10) and 𝐶1 is a fit
parameter, see [4] for their explicit form. An example calculation of the neutron wall
load using Equation 2.62 for a wall in a Helias 5 device is shown in Figure 2.10.

Equation 2.62 simplifies the geometry vessel by neglecting ‘shadowed’ regions in
the vacuum vessel and it further does not account for neutron scattering, but it is a
method to compute the peaking factor 𝑓𝑝𝑒𝑎𝑘 computationally fast. More sophisticated
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Figure 2.11.: optimised walls of a Helias 5 stellarator reactor first wall using Equa-
tion 2.62. The outermost dashed line (red) visualizes a surface of constant 1.4 m
distance to the coils. The innermost dashed line (purple) is the 30 cm equidistant
wall geometry. The yellow (light grey) solid line is the optimised wall which is al-
lowed to violate the required minimum distance to the coils. The green (darker
grey) solid line corresponds to a ‘converged’ wall, where the minimum distance to
the coils is preserved. The resulting neutron wall load of these walls are are shown
in [131] and the peak neutron load of originally 1.9 MW/m2 for the equidistant wall
could be optimised down to 1.2 MW/m2 for the optimised wall that respects the
coil constraints and to 0.9 MW/m2 if one assumes that one can find more distant
coils.

values for 𝑓𝑝𝑒𝑎𝑘 can be obtained [202] by dedicated 3D Monte-Carlo codes such as
MCNP [203], which can include neutron scattering and further are able to resolve in
detail vessel and blanket geometries at the cost of computational time.

A more detailed description, also on the numerical methods to calculate Equa-
tion 2.62, was published in [131] and shall not be repeated here. In short, the key
results from this paper is the presentation of a rapid and accurate calculation method
of the neutron wall load in arbitrary stellarator geometries, which was also used to
calculate the results in Figure 2.10. This even allows for optimisation of the first wall
geometry itself with respect to peak loads. Figure 2.11 shows such an application of
a first wall optimisation in a Helias 5 configuration: By optimizing the first wall
geometry and respecting the distance constraint from the coils (the required radial
distance between wall and coils was assumed to be 1.4 m for this exercise), the peak
neutron wall load could be reduced from 1.9 MW/m2 down to 1.2 MW/m2. If one
assumes that the coils can be re-optimised in a greater distance, a reduction to 0.9
MW/m2 peak neutron wall load can be reached.

Radiation Wall Loads

In addition to neutron wall loads, also photon radiation loads, stemming from
bremsstrahlung, synchrotron- and line-radiation adds on to the wall power. In prin-
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ciple, the bremsstrahlung and synchrotron radiation deposition pattern can be ob-
tained using Equation 2.62 with modifications of the source function. In praxis, the
overall magnitude of brems- and synchrotronradiation as well as line-radiation stem-
ming from the plasma core is comparably small compared to the peak thermal wall
load as induced by edge and scrape-off-layer radiation, which are in the order of
several hundreds MW in a full reactor. A fully detached plasma scenario e.g. requires
that nearly 100% of the heating power is radiated away in SOL and edge region. As
an order of magnitude estimate, a typical reactor design with an average thermal
power density of ⟨𝑝th⟩𝑉 ∼ 1MW/m3 and a minor radius of 1.5 m, features an average
radiation wall loading of about 1.5 MW/m2.

The SOL radiation has a distinct source function, and the peak loads would very
much depend on the exhaust solution. E.g., in an island divertor concept, the peak
loads would depend on the island locations and on the component geometry. A divertor
plate, even in a completely detached scenario, might still experience a significant
amount of radiation power. An estimation of the radiation ‘peaking factor’, in the
sense that the peak load can be estimated by 𝑝peak = 𝑃𝛾

𝐴wall
𝑓peak, where 𝑃𝛾 is the total

power radiated by photons. Is thus difficult to estimate without knowledge of the
exact vessel geometry (including divertor plates) and without modelling the island
geometry (which is not yet done in this work). For now, this peaking factor stays an
input parameter of Process, and is likely in the order of 2 to 10.

Fast Particle Loads

Fast particles loads from fusion alphas not only dependent on the fraction of lost
fast particles, 𝑓𝛼, as discussed in subsection 2.2.4, but also on the localization of
these particles near the wall. Coil magnetic mirror trapped particles e.g. can cause
an increased heat-load, compare Figure 3.12 from a later section, where it will be
shown that hotspot like wall loads can be obtained from values with low energy
over magnetic moment, ℰ/𝜇 values, which confines them in local magnetic mirrors
of ℰ/𝜇 < 𝐵max, where 𝐵max refers to the maximum magnetic field in the respective
local magnetic mirror. Also, the location of the wall has a significant influence on the
magnitude of the loads.

As the localization of fast particle loads is a highly variate and configuration
dependent value, higher fidelity methods need to be used to obtain realistic estimates.
Here, this is approached by conducting reference calculations of the fast particle wall
load using the gyro-center Monte-Carlo code BEAMS3D, which can be used to obtain
a pre-calculated peaking factor 𝑓𝛼

peak(ℭ), such that the peak alpha particle wall load
𝑝𝛼

peak can be estimated as

𝑝𝛼
peak ≈ 𝑓𝛼

peak
𝑓𝛼𝑃𝛼

𝐴Wall
(2.64)
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The peaking factor needs to be obtained for every configuration separately and
with sufficient statistics. For conventional Monte-Carlo techniques, i.e. by initializing
randomly within the plasma volume and then following the particles towards the wall,
a high number of particles (or ‘markers’) is required to achieve sufficient statistics at
the respective wall tiles. This approach is computationally very expensive for sufficient
statistics. We find that about 105 − 106 simulated particle trajectories are required
for results with reasonable statistics, which requires about 104 to 105 CPU hours.
One workflow of how to obtain this peaking factor with example results is explained
in section 3.1.

Future Improvements

Another important aspect to model in the context of wall loading, are sputtering
effects by fast neutrals, which arise through charge exchange near the scrape-off-
layer (SOL). An estimation for DEMO parameters obtained a sputtering yield of
0.5 mm/fpy, dependent on the chosen SOL width and the pedestal profiles [204].
Stellarator geometries are typically characterized by larger edge densities (induced
by typically higher density operation of stellarators) and larger connection lengths,
which refers to the average distance of edge particles circling the torus before finally
hitting plasma facing components. In [205], there is an estimation for the net tungsten
sputtering yield in stellarator based geometries, which is based on higher SOL density
and larger connection lengths compared to a tokamak case. This estimation finds
drastic differences between stellarators and tokamaks in terms of the modelled net
erosion rate: while tokamaks require a scrape-off-layer width of > 20 cm to get to
a net erosion rate of 75 𝜇m/fpy (compare page 97 in [205]), stellarator SOL fulfil
≪ 40 𝜇m/fpy for all distances 5 ≤ 𝛥SOL ≤ 42.5 cm and achieve ∼ 4.6 𝜇m/fpy at
𝛥SOL ∼ 28 cm. The reason for this drastic difference are the shorter charge exchange
mean free path lengths in the SOL and the larger connection paths.

There are more constraints related to the first wall as the first plasma-facing
component, which would need to be modelled in a systems code context, these include

• swelling and blistering as a lifetime limiting factor of the wall, e.g. as investigated
in [206, 207],

• tritium retention properties, e.g. as investigated in, [208–210]

• and wall induced edge particle transport sources and its impact on the plasma
particle balance, e.g. as investigate in [211].

The implementation of respective models for this however is expected to be suffi-
ciently similar for stellarators and tokamaks, with the above mentioned exception of
higher connection lengths, larger SOL densities and lower field line inclination angles
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on the first wall in stellarators. Detailed models for the mentioned constraints and
restrictions are left out for future improvements.

2.3.4. Breeding Blanket

To model the lithium blanket in a fusion reactor, Process contains an Helium-Cooled
Pebble Bed (HCPB) systems code model developed at CCFE (Culham Centre for
Fusion Energy) [133] and an HCPB systems code model developed by KIT (Karlsruhe
Institute of Technology) [212]. For the CCFE HCPB model, the energy deposited in
the armour and first wall, blanket and shield are calculated using parametric fits to an
MCNP neutron and photon transport model for a sector of a tokamak. The blanket
contains Lithium Orthosilicate (Li2SiO4), Titanium Beryllide (TiBe12), Helium and
Eurofer steel. The ‘energy multiplication’ (more strictly speaking this is a power
multiplication) by nuclear reactions in the blanket is given as 1.269.

The KIT HCPB model allows for the energy multiplication factor, shielding require-
ments and tritium breeding ratio to be calculated self-consistently with the blanket
and shielding materials and sub-assembly thicknesses. It also allows constraints to
be set to meet engineering requirements. The blanket is split into sub-assemblies:
The breeding zone, box manifold and back plate. Three breeder materials can be
selected from: Lithium Orthosilicate (Li4SiO4), Lithium Metatitanate (Li2TiO3) and
Lithium Zirconate (Li2ZrO3). Together, the three sub-assemblies make up the total
blanket thickness. Constraints can be set on the tritium breeding ratio, maximum
allowed Toroidal Field (TF) coil fluence, maximum allowed heating of the TF coils
and/or the maximum allowed Helium concentration in the vacuum vessel. Through
these constraint, the code can determine the thicknesses of the sub-assemblies and
the overall blanket thickness.

For now, we assume these models to hold to first approximation also for stellarator
devices. The effect of the neutron inhomogeneity was implemented in the HCPB
models in Process now, using a calculation of 𝑓𝑝𝑒𝑎𝑘 in the pre-processing step.

Future improvements of this model should replace the used tokamak-specific blanket
models by stellarator specific models based on stellarator reference calculations, as
conducted e.g. in [213, 214], which achieved tritium breeding ratios comfortably ex-
ceeding 1 in a DCLL stellarator blanket. Structural assessments and thermo-hydraulics
aspects are conducted e.g. in [215].

Generally, a generic stellarator blanket model is desired, that not only evaluates
the tritium breeding ratio, the volumetric displacement per atom in the shaped
stellarator blanket, but also models thermo-hydraulic effects including estimates for
the magnitude of the pressure-drop in liquid metal breeders and reflecting the 3D
magnetic field structure near the coils (which again is important to estimate the
pressure drop and thus the pumping efficiency of a liquid metal breeding blanket).
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2.3.5. Stellarator Coils
For a given, averaged, toroidal magnetic field strength 𝐵𝑡 along the magnetic axis,
Process should calculate the required coil current in the pre-defined coil filaments.
This is achieved by using a simple linear scaling from a pre-calculated value for the
averaged norm of the toroidal field along the magnetic axis, ⟨𝐵𝑡⟩𝑎𝑥𝑖𝑠, which can be
obtained by integrating along the magnetic axis,

⟨𝐵𝑡⟩𝑎𝑥𝑖𝑠 ≡
1
ℓ

∮
𝑎𝑥𝑖𝑠

𝐵𝑡 𝑑𝑠, (2.65)

where ℓ is the length of the magnetic axis, 𝐵𝑡 the magnetic field on the axis and
𝑠 is a coordinate parametrizing the axis (not to be confused with the flux surface
coordinate). Once determined for a reference point, the scaling of the coil current
with respect to 𝐵𝑡 and 𝑅 is of course linear,

𝐼 = 𝐼0(ℭ)
⟨𝐵𝑡⟩
⟨ ̂𝐵𝑡⟩

𝑅
�̂�

. (2.66)

The needed coil current 𝐼0(ℭ) for the respective 𝐵𝑡 at the reference design point
can be calculated using the Biot-Savart equation, which is done numerically in the
pre-processing step. The (vacuum) axis can be obtained by a field line tracer, e.g. [216],
or as output by the equilibrium code VMEC [217].

Another important parameter for the coil design in a systems code is the maximum
magnetic field on the coil surface 𝐵𝑚𝑎𝑥, which is crucial for the superconductor ma-
terial constraints. 𝐵𝑚𝑎𝑥 depends on the coil cross-section area and for its calculation
at the reference design point with �̂�, �̂�, and the winding pack thickness ̂𝐴𝑊𝑃 we
proceed as follows.

For stellarators in Process, and for the calculation of 𝐵𝑚𝑎𝑥 only, we approximate
the winding pack to be of rectangular shape and to be homogeneously filled with a
current carrying material. With these assumptions, Biot-Savarts volume integral can
be in good approximation reduced to a Riemann sum of analytically solvable integrals
of the magnetic field due to homogeneously filled straight cuboid beams [218, 219].
For reasonable accuracies, each coil is discretised into 𝒪(100) straight beams, each
producing a magnetic field BBeam

𝑖 at position x. The total contribution of a coil to
the magnetic field at a position x can then be approximated by

Bcoil(x) ≃ ∑
𝑖

BBeam
𝑖 (x). (2.67)

The derivation and an explicit formula for BBeam
𝑖 is given in Appendix B. 𝐵𝑚𝑎𝑥 then

becomes

𝐵𝑚𝑎𝑥 = max
x

∑
𝑐𝑜𝑖𝑙𝑠

Bcoil(x). (2.68)
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This descriptions allows, for our purposes, an accurate calculation of the magnetic
field at the surface of the coils and in the current carrying material. The latter will
be important for the force calculations that will be described further below.

𝐵𝑚𝑎𝑥 depends on the winding pack cross-section. To reflect this scaling in the
systems code, we calculate Equation 2.68 for varying winding pack sizes in the pre-
processing step and parametrized 𝐵𝑚𝑎𝑥 in Process via a fit function, which we
choose here in the form of

𝐵𝑚𝑎𝑥 (𝐴𝑤𝑝) =
𝜇0𝐼𝑁

𝑅 − 𝑎𝑐𝑜𝑖𝑙
(𝑎0(ℭ) +

𝑅
√𝐴𝑤𝑝

𝑎1(ℭ)) . (2.69)

The first summand approximates the ideal part (due to an ideal toroid), the second
summand includes the fitted scaling with changing winding pack size. 𝑎𝑐𝑜𝑖𝑙 is the
average minor coil radius, 𝑁 the number of coils, and 𝐴𝑤𝑝 the cross-sectional area of
the winding pack. 𝑎0 and 𝑎1 are fit parameters that are obtained in the pre-processing
step by varying 𝐴𝑤𝑝.

The electromagnetic forces that act on the coils are important output and con-
straint parameters, as the integrity of the structural material is limited by the stress,
which again scales with the force magnitude. This fact is especially limiting for com-
pact devices at higher magnetic field, as those typically imply high operating current
densities resulting in high force-magnitudes. The force density, as other effective para-
meters before, is calculated for a reference coil size and then scaled within Process.
For this purpose, the magnetic field B is calculated inside the winding pack, using
the finite winding pack Biot-Savart approximation introduced in Equation 2.67. The
Lorentz force density at a point x in the winding pack is then simply

f(x) = B(x) × j(x) = 𝑗 (B(x) × t(x)) , (2.70)

if the magnitude of j, the current density, is assumed to be constant and homogenous
across the coil cross section and points along the tangential direction t of the coil.
Figure 2.12 shows an example calculation of the force density distribution in a stel-
larator coil: In every poloidal cross section of the coil we discretize the winding pack
cross-section into 𝑁 × 𝑁 volume elements 𝑑𝑉 for which we calculate a force density
f using Equation 2.70. f can be integrated over 𝐴𝑤𝑝 to obtain a force density ̄𝑓 in
N/m, or over the whole coil volume 𝑉𝑐𝑜𝑖𝑙 to obtain a coil force 𝐹 in Newton (𝑁). The
maximal value of 𝑓 needs to be supported by the structural material in the winding
pack, ̄𝑓 result in coil jacket and coil insulation stresses and 𝐹 is relevant for the outer
coil support structure.

We calculate the effective parameter as the maximum of each of these forces accord-
ing to 𝑓𝑚𝑎𝑥(ℭ) ≡ max𝜃,𝑖 |f| (𝜃 a poloidal coil coordinate, 𝑖 indicates the coil number)
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for every configuration and scale it in Process according to

𝑓𝑚𝑎𝑥 = 𝑓𝑚𝑎𝑥(ℭ)
𝑗
̂𝑗
𝐵𝑚𝑎𝑥

�̂�𝑚𝑎𝑥
, (2.71)

̄𝑓𝑚𝑎𝑥 = ̄𝑓𝑚𝑎𝑥(ℭ)
𝐼
̂𝐼
𝐵𝑚𝑎𝑥

�̂�𝑚𝑎𝑥
, (2.72)

𝐹𝑚𝑎𝑥 = 𝐹𝑚𝑎𝑥(ℭ)
𝐼
̂𝐼
𝐵𝑚𝑎𝑥

�̂�𝑚𝑎𝑥

ℓ𝑐𝑜𝑖𝑙
̂ℓ𝑐𝑜𝑖𝑙

. (2.73)

Here, 𝑗 is the current density, 𝐼 the coil current, ℓ the length of the respective coil
(in Process). Hatted values again denote the values at the reference point where
𝑓𝑚𝑎𝑥(ℭ), ̄𝑓𝑚𝑎𝑥(ℭ) and 𝐹𝑚𝑎𝑥(ℭ) are calculated.

It should be noted that one needs to make an assumption about the orientation of
the winding pack in order to calculate the force density. To this end, we choose the
normal vectors of the winding pack to point into the cylindrical toroidal and radial
(defined as pointing to the center of the coil) direction respectively. In a realistic
winding pack, which is optimised with respect to torsion and stresses, this normal
vector might deviate from this assumption, however, 𝑓𝑚𝑎𝑥 will most likely not be
affected significantly by this choice.

As stellarators can have significant lateral forces, Process also returns lateral and
radial projections of Equation 2.70 which are scaled analogously to Equation 2.72.
Figure 2.13 shows the order of magnitude of lateral projection of ̄𝑓 in a Helias 5
coil-set. Figure 2.14 shows the force magnitude calculation for a Helias 3 coil-set
using the method presented in this chapter.

To estimate the stress on the ground insulation3 of a coil-set, we use a simple
model and only consider normal uniaxial stresses which depend on the poloidal coil
coordinate 𝜃, namely

𝜎insulation(𝜃) =
||F(𝜃)||

𝐴
. (2.74)

We assume that the forces F(𝜃) point orthogonal towards the outer boundary of the
coil and thus create a pressure on the radially outward area of the coil 𝐴, which
depends on the winding pack size. Assuming a fixed outer coil boundary condition,
the maximal stress on this area, induced by the winding pack forces, then is

𝜎𝑚𝑎𝑥 ≃ 𝑓𝑚𝑎𝑥 𝑑𝑊𝑃, (2.75)

where 𝑑𝑊𝑃 is the radial thickness of the winding pack as calculated by Process
from Equation 2.79 (below).

3The ground insulation is the insulation around the winding pack and is located between the
conductors and coil jacket. It typically is the coil component with the highest stresses [221]. An
example references for the ground insulation in the ITER coils is [222]
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Figure 2.12.: Cross section through a quadratic winding pack of dimensions 60 cm in
a high field region of a stellarator coil. The cross section homogeneously carries a
current of 14 MA (which produces 5.6 T on axis in a Helias 5 configuration at
22m major radius). Colour coded is the absolute magnetic field strength. Axes are
set in local coordinates. Black arrows indicate directions and magnitude of local
forces in the winding pack. Color coded is the average force density in MN/m3 in
every module.
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Figure 2.13.: The magnitude of the radial and lateral force density on the non-planar
coils in one half-module of a Helias 5-B coil-set [220] with 5.6 T on axis and 22m
outer radius. 𝜃 is a periodic poloidal coil coordinate. Maximum absolute values for
radial and lateral projections are taken as effective parameters.
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Figure 2.14.: The coil forces in a full Helias 3 coil-module as calculated by the model
in the text: The cuboids demonstrate orientation and discretization of Equation 2.67
to calculate the inner-winding pack magnetic field and the respective forces, here
with the black arrows for the orientation and the color for the magnitude of the force
density. The black arrows are calculated as the net force from the discretization as
shown in Figure 2.12.

This stress is subject to the elastic limit of the material under pressure. If a coil
design as in [220] is assumed, this stress exerts on the ground insulation and its
upper limit will be in the order of ∼ 100 MPa. In our implementation Process will
optimize the design to fulfill the constraint that limits 𝜎𝑚𝑎𝑥 from Equation 2.75 to a
user defined parameter 𝜎allowable

𝑚𝑎𝑥 ,

𝜎𝑚𝑎𝑥
!
< 𝜎allowable

𝑚𝑎𝑥 . (2.76)

It should be noted that we ignore stresses in the coil structural material for now,
as accurate values for the peak stresses would require a detailed design of the coil
support structure. Possibly, some simplifications of the support structure could be
made, like a thin massive inter-coil shell, which could provide an idea about stresses
in the coil support structure with the help of finite element calculations, but this is
beyond the scope of this thesis.

Another stellarator-specific output parameter of the coil module is the maximal
curvature in the coils. This parameter is especially relevant for stellarators as the non-
planar coils can have small bending radii that might not be in line with limitations
imposed by the superconductor material. Again, in Process, the maximal curvature
is implemented by a scaling equation, using a reference value 𝜅max that has been
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Figure 2.15.: The used winding pack architecture of one turn. The whole winding
pack consists of 𝑁 such turns. The shown fractions are not to scale.

obtained in the pre-processing step,

𝜅max ≃
𝑅
�̂�

1
1 − 𝑑𝑊𝑃

2𝑎𝐶𝑜𝑖𝑙

𝜅max(ℭ). (2.77)

Here, 𝑑𝑊𝑃 is the radial thickness of the winding pack. The term (1 − 𝑑𝑊𝑃

2𝑎𝐶𝑜𝑖𝑙
)

−1

estimates the curvature increasing effect of a radially extended winding pack. The
reference value for the maximal curvature 𝜅𝑚𝑎𝑥(ℭ) is calculated in the pre-processing
step according to

𝜅𝑚𝑎𝑥 = max
𝜃,𝑖

‖𝛾′
𝑖(𝜃) × 𝛾″

𝑖 (𝜃)‖
‖𝛾′

𝑖(𝜃)‖
3 , (2.78)

where 𝛾𝑖 ∶ 𝐼 ⊂ ℝ → ℝ3 parametrizes the 𝑖-th coil in the set and 𝜃 is a local coil
coordinate. 𝜅𝑚𝑎𝑥 can be used to model the bending strain in the superconductor,
which has direct implication on the critical current density of the superconductor. A
bending strain model based on Equation 2.78 is not yet implemented in Process
for stellarators, but, once a respective model is available, can easily be added, as the
critical current density models implemented in Process already reflect a dependency
in the strain.

2.3.6. Winding Pack Design

For tokamaks, Process is capable of optimizing the winding pack constituents
(copper and superconductor fractions) with respect to respective optimisation target.
In [124] this degree of freedom was not implemented for stellarators, which we now
enable using the following prescription.

For the stellarator version of Process, we model the winding pack with 𝑁 squared
turns, surrounded by a coil jacket and some user defined ground insulation thickness on
top of this coil jacket. Each of the 𝑁 turns has a composition as shown in Figure 2.15.
The inner part of the conduit contains an approximate squared conductor area. The
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Figure 2.16.: Critical superconductor strand/tape current densities at 4.2 K and 0%
strain as implemented in Process. Temperature and strain dependence are not
shown here, but are included in Process by fitted models against measurements
from [223].

structure and helium fraction as well as the insulation thickness in the conduit cross
section are user defined parameters, whose values are subject to external specifications.
Especially the fraction for the structural material needs to match the inner winding
pack stress constraints, which are non-trivial in 3D coils and require a sophisticated
treatment. The copper- and superconductor fractions, in contrast, are subject to
quench protection and can be calculated by Process, as will be addressed later in
this section. The overall dimension of the turn area is a user defined parameter.

For stellarator coils, Process now optimizes the copper and the superconductor
fractions according to the consistency equation

𝐼
𝐴𝑤𝑝 𝑓scu

!= 𝑓𝑗 𝑗𝑐𝑟𝑖𝑡(𝐵𝑚𝑎𝑥(𝐴𝑤𝑝), 𝑇 , 𝜖). (2.79)

Here, 𝑓𝑗 ≤ 1, is an iteration parameter and is bounded by user defined values. 𝑗𝑐𝑟𝑖𝑡 is a
parametric form for the critical current density of the superconductor, which depends
on 𝑇, the temperature in the superconductor, 𝐵𝑚𝑎𝑥(𝐴𝑤𝑝) as given from Equation 2.69
and 𝜖 the maximal strain in the superconductor. Currently, the implemented super-
conductor material parametrizations in Process cover Nb3Sn, NbTi, Bi-2212 and
a REBCO-material [133]. Some of the critical current density parametrizations as
implemented in Process are shown in Figure 2.16.

The superconductor fraction 𝑓𝑠𝑐𝑢 in the winding pack is a resulting parameter from
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the winding pack material area fractions,

𝑓𝑠𝑐𝑢 = (1 − 𝑓𝑐𝑎𝑠𝑒)⏟⏟⏟⏟⏟
conduit fraction

(1 − 𝑓𝐻𝑒)⏟⏟⏟⏟⏟
conductor fraction

(1 − 𝑓𝐶𝑢 − 𝑓𝑜𝑡ℎ)⏟⏟⏟⏟⏟⏟⏟
SC fraction

, (2.80)

where 𝑓𝑐𝑎𝑠𝑒 is the case and insulation fraction of the whole turn area, 𝑓𝐻𝑒 is the
helium fraction in the conduit area and 𝑓𝐶𝑢 and 𝑓𝑜𝑡ℎ are copper and other material
fractions in the conductor area.

Process finds the appropriate winding pack dimensions then by solving Equa-
tion 2.79 for 𝐴𝑤𝑝, which is a simple root finding problem and is solved by Newton’s
method within Process. In Equation 2.80, 𝑓𝐶𝑢 is an iteration parameter in Process
and is bounded by quench protection arguments, which we will address below.

In the case of a coil quench, the internal TF coil current needs to be dumped into
external resistors. The exponential decay time of the coil current during the quench
is parametrized in Process by 𝜏𝑄. This value is an iteration parameter, subject to
the constraints:

1. Maximum voltage in the TF coils (lower boundary)

2. Temperature rise in the TF coils (upper boundary)

3. Stress on the vacuum vessel by eddy currents (lower boundary)

The first constraint restricts 𝜏𝑄 by the maximal allowable voltage across a coil and
during a quench which is, for large resistances, approximately given by [133]

𝑈 = 2
𝐸𝑠𝑡𝑜𝑇𝐹

𝜏𝑄𝐼
=

𝐿𝐼
𝜏𝑄𝑁𝑇𝐹

. (2.81)

𝐸𝑠𝑡𝑜𝑇𝐹 is the approximative average stored energy per coil, 𝐿 the inductance of the
coil-set, 𝑁𝑇𝐹 the number of coils, and 𝐼 is the average coil current. The inductance
of a stellarator coil-set is calculated in the pre-processing step (e.g. by assuming a
filamentary 3D curve approximation of the coils [224, 225]) for a reference point and
can be scaled in Process according to

𝐿 = 𝐿(ℭ)
𝑎2

𝑐𝑜𝑖𝑙

̂𝑎2
𝑐𝑜𝑖𝑙

�̂�
𝑅

. (2.82)

This scaling is based on an ideal toroid, where 𝑎𝑐𝑜𝑖𝑙 is the minor average coil radius.
The value 𝐿(ℭ) can be calculated from the filamentary coil-set as [224]

𝐿(ℭ) =
𝜇0

4𝜋

𝑁coils

∑
𝑚,𝑛=1

[∮
𝐶𝑚

∮
𝐶𝑛

dx𝑚 ⋅ dx𝑛

𝑓(x𝑚, x𝑛)
+

𝛿𝑚𝑛

2
∮
𝐶𝑚

𝑑|x𝑚|] , (2.83)
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with

𝑓(x, x′) = {
|x − x′| if |x − x′| > 1

2
𝑑

∞ otherwise
. (2.84)

Here, 𝑑 is the conductor radius, which can be fixed to a ‘small’ value, e.g. to 10−2 of
the coil circumference. The indices 𝑚,𝑛 run over all coils. x𝑛 is the position vector
of the central filament of the 𝑛’th coil. The closed line integrals in Equation 2.83
can be numerically integrated by respective discrete integration techniques, e.g. the
trapezoidal rule.

The restriction for the exponential quench time 𝜏𝑄 is then

𝜏𝑄 >
𝐿𝐼

𝑈𝑚𝑎𝑥𝑁coils
, (2.85)

where 𝑈𝑚𝑎𝑥 is the maximal allowable voltage during a quench. 𝐼 is the coil current
and and 𝑁coils is the number of toroidal field coils.

The second constraint for 𝜏𝑄 due to the temperature rise during a quench can be
quantified using an energy conservation argument leading to a restriction of the coil
winding pack cross section averaged current density 𝐽𝑊𝑃,

𝐽𝑊𝑃 < (1 − 𝑓𝑐𝑎𝑠𝑒)

[
2

𝜏𝑑𝑢𝑚𝑝𝜂
(𝑓2

𝐶𝑢𝑓2
𝑐𝑜𝑛𝑑𝑞𝑐𝑢 + 𝑓𝐶𝑢𝑓𝑐𝑜𝑛𝑑(1 − 𝑓𝑐𝑜𝑛𝑑)𝑞𝐻𝑒

+𝑓𝐶𝑢𝑓2
𝑐𝑜𝑛𝑑(1 − 𝑓𝐶𝑢)𝑞𝑠𝑐𝑢)]

1
2

.

(2.86)

A derivation of this equation is provided in Appendix C.
Finally, the third constraint considers the fact that the changing current in the

coils during a quench induces a stress in the vacuum vessel via eddy currents. The
maximum allowable force density in the vacuum vessel during a quench 𝑓VV puts
another lower bound on 𝜏𝑄. We use a scaling equation to calculate the maximum
force density based on a reference value according to

𝑓VV = 𝑓 (𝑟𝑒𝑓)
VV (

𝑑VV 𝜏𝑄 𝑅VV

𝐵𝐼𝑎2 )
ref

𝐵𝐼𝑎2

𝑑VV𝜏𝑄𝑅VV
, (2.87)

where 𝑑VV is the vacuum vessel thickness, 𝑅VV the (approximate) major radius of
the vacuum vessel and 𝐵 the average toroidal magnetic field on axis. The scaling
in Equation 2.87 reflects the electromotive force relation, ℰ = 𝑑𝛷

𝑑𝑡
∝ 𝑎2𝐵

𝜏𝑄
which
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determines the poloidal current that flows within the vessel during a quench, where
𝛷 is the magnetic flux within the vessel, 𝑎 is the minor plasma radius, 𝐵 the average
magnetic field within the plasma and 𝑡 is time. The current then is multiplied linearly
with the magnetic field at the vessel with scales as 𝐼/𝑅𝑉 𝑉, where 𝐼 is the coil current
and 𝑅𝑉 𝑉 is the major radius of the vacuum vessel. In addition, Equation 2.87 is
multiplied with a linear scaling of the force density with respect to the vacuum vessel
thickness, resembling the linear scaling fo the current density with respect to the
vessel thickness.

For now, we choose a sophisticated Ansys simulation from W7-X as a reference
value for the peak force density, as illustrated in Figure 2.17, where 2.54 MN/m3

is the maximum value of the force density. Note that this step is not done in every
pre-processing step, but instead is only provided once for the W7-X vacuum vessel.
Due to lack of available models for generic 3D vacuum vessel, we assume for now
that, in first approximation, this value also reflects the general inhomogeneity for any
type of stellarator vacuum vessel. However, the reference value can be easily adapted
for designs where more detailed simulation results exist. With values from W7-X,
Equation 2.87 becomes

𝑓VV ≃ (3.8 ⋅ 103 s
m2 ) ⋅

𝐵 𝐼 𝑎2

𝑑VV 𝜏𝑄 𝑅VV
(2.88)

In Process, 𝑓VV is then limited by a user defined parameter 𝑓max
VV , such that 𝑓VV

!
<

𝑓max
VV and serves as an inequality constraint. Also note that this constraint could in

principle be overcome by a poloidal electric break, e.g. as suggested in [226].

2.3.7. Structure Mass
As shown in the previous section, large lateral forces can act on the non-planar
stellarator coils. However, the details of the force distribution depend very much on
the coil shapes and winding pack. This puts not only great demands on the support
structure, but also makes it difficult to design an appropriate structure. Consequently,
such designs for large stellarators are scarce. There exist only a few design concepts
for a stellarator reactor, such as a bolted or welded plates [3] or support elements
with ‘stiffeners’ [227].

Instead of implementing a specific design in Process, we choose to model only the
total structure mass, which is not sensitive to the details of support structure. The
total mass is a good proxy, both for the cost and the support structure complexity.
As introduced already in [2], we stick here to an empirical scaling law from existing
devices, as described in [228] to calculate the structure mass in Process based on
magnetic energy 𝑊𝑚𝑎𝑔 in the coil-set,

𝑀struct = 1.37 𝑊 0.76
mag . (2.89)
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Figure 2.17.: Ansys calculation of the force densities in the W7-X vacuum vessel
without ports induced by eddy currents during a coil quench. Peak value is 2.54 ⋅ 106

N/m3. By courtesy of Jiawu Zhu.

This fit is given with 𝑊𝑚𝑎𝑔 in MJ and 𝑀𝑠𝑡𝑟𝑢𝑐𝑡 in metric tons. Although Equation 2.89
is based on good empirical agreement (it is a regression fit after all), it does not show
whether the design point has local regions with unsupportable forces. In reality, the
optimisation of the support structure is a difficult task to ensure the integrity of the
device while avoiding local overloads.

2.3.8. Build consistency and port sizes

Scaling in 𝑅 and the winding pack requires that Process checks the inner coil-coil
distances in toroidal direction to prevent that coils come too close. We incorporate
this constraint via an effective parameter of the minimal distance between two central
coil filaments 𝑑𝑚𝑖𝑛(ℭ), which is calculated in the pre-processing step. This distance
scales linearly with the major radius and is subject to the constraint

𝑑𝑚𝑖𝑛(ℭ)
𝑅
�̂�

> 𝑤𝑊𝑃 + 𝑤𝑐𝑎𝑠𝑒, (2.90)
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where 𝑤𝑊𝑃 denotes the toroidal width of the winding pack as calculated by the
routine described in subsection 2.3.6 and 𝑤𝑐𝑎𝑠𝑒 is the implied coil casing width in
toroidal direction.

Furthermore, the radial distance between the plasma and the coils is also subject to
build constraints. The most critical location is the point, where the coils come closest
to the plasma. One value for this distance at a reference device size is calculated in
the pre-processing step and defines an effective value as 𝑑𝑝𝑐(ℭ). In Process we then
implement the scaling

𝑑𝑝𝑐 =
𝑅
�̂�

(𝑓𝑔𝑒𝑜(ℭ) ̂𝑎 (
̂𝐴

𝐴
− 1) + 𝑑𝑝𝑐(ℭ)) . (2.91)

Here, 𝑓𝑔𝑒𝑜 = 𝜕𝑑𝑝𝑐

𝜕𝑎
accounts for how much the plasma wall distance changes when

decreasing the minor radius in the same configuration. 𝐴 is the (scaled) aspect ratio
and ̂𝐴 the aspect ratio at the reference point.

In Process, 𝑑𝑝𝑐 is then subject to the constraint

𝑑𝑝𝑐 >
𝑑coil

2
+ 𝑑VV + 𝑑shield + 𝑑blanket + 𝑑fw + 𝑑SOL + 𝑔ap, (2.92)

where 𝑑coil is the radial thickness of the coil (winding pack plus coil jacket and
insulation), 𝑑VV is the thickness of the vacuum vessel, 𝑑shield of the thermal shield,
𝑑blanket the thickness of the blanket, 𝑑fw the thickness of the first wall and 𝑑SOL
describes the width of the scrape-off layer. 𝑔𝑎𝑝 accounts for the left available space.

Note that by this prescription, Process only ensures radial build consistency along
one radial line in the stellarator geometry and in general the gap 𝑔ap is a function
of a poloidal and toroidal angle, 𝑔ap = 𝑔ap(𝜙, 𝜃). Equation 2.92 is implemented via a
stellarator specific inequality constraint in Process.

To enable remote maintenance via ports, the largest free vertical port size area is of
interest. The size of this area determines the size of the blanket segments, which need
to be removed through this port. Smaller blanket segments are usually considered to
be a cost driver, as additional piping and more remote-welding during the maintenance
is required to remove the segments.

Here, we calculate the maximum vertical port size area 𝐴𝑚𝑎𝑥
Port (ℭ) in the pre-

processing step for a reference point (at a fixed device size with major radius �̂�). This
is done by calculating a rectangular port opening as

𝐴max
Port(ℭ) = max

𝑖∈{1...𝑁𝑐𝑜𝑖𝑙𝑠}

⎛⎜⎜⎜
⎝

min
𝑗,𝑘∈𝑈

√(𝑥(𝑗)
𝑖 − 𝑥(𝑘)

𝑖+1)
2
+ (𝑦(𝑗)

𝑖 − 𝑦(𝑘)
𝑖+1)

2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
width

𝑓𝑟𝑎𝑐𝑜𝑖𝑙
𝑖⏟

length

⎞⎟⎟⎟
⎠

, (2.93)

if the 𝑖-th coil is discretized in a set of points x(𝑗)
𝑖 , and 𝑥(𝑗)

𝑖 and 𝑦(𝑗)
𝑖 are the Cartesian

𝑥 and 𝑦 coordinates of the 𝑖-th coil respectively. 𝑎𝑐𝑜𝑖𝑙
𝑖 is the average radius of the 𝑖’th
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coil, 𝑓𝑟 is a ‘fudge’-factor to transfer the radius to the radial free port opening, which
we choose as 1.2. 𝑈 ⊂ ℕ includes indices that are running over the upper quarter of
the coil, such that ∀𝑗 ∈ 𝑈 ∶ 𝑧(𝑗) > (𝑧max − 𝑧max−𝑧min

4
), and 𝑧max and 𝑧min being the

maximal and minimal 𝑧 coordinate of the respective coil. Equation 2.93 approximates
the port size area by the projected rectangular vertical free space in the top quarter
of the coil-sets. Figure 2.18 visualizes this method for the W7-X coil-set.

Within Process, each dimension of the vertical port size is then scaled linearly
with the major radius, so that the maximal vertical port size area per module, 𝐴max

Port
is calculated as

𝐴max
Port = 𝐴max

Port(ℭ) ⋅
𝑅2

�̂�2
− 𝑑𝜙, (2.94)

where 𝑑𝜙 is the full toroidal width of the coil cross section as iterated by Process.

w

l

𝑧 > (𝑧max − 𝑧max−𝑧min

4
)

𝑧 ≤ (𝑧max − 𝑧max−𝑧min

4
)

Figure 2.18.: Top view of one module of the central coil filaments of the W7-X coil-set.
The red shaded area is the area that Equation 2.93 identifies as the largest available
vertical portsize area. Here the finite width of the coils is not yet taken into account,
which is subtracted within the systems code using Equation 2.94. Red lines indicate
the ‘upper quarter’ of the coils, between which the minimum toroidal distance is
taken for the port opening calculation.

Note that only the maximal vertical port-size area per module was modelled here,
as this is likely the relevant port opening for heavy component lifting for remote main-
tenance. This logic follows the the current tokamak DEMO maintenance concept [229],
where the blanket components are lifted out of the machine vertically against the
gravitational force. However, the difference here is that in the tokamak maintenance
concept, vertical ports are foreseen between every coil, while it is assumed here that
the components can be moved horizontally to the vertical port opening within a
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module, before they are then taken out of the vessel, similar to a rail system that
was proposed in [3]. However, it is unclear, if such a rail system can indeed carry the
heavy blanket segments, which can weight up to 80 metric tons [229].

Other maintenance concepts than lifting individual segments through vertical ports
are likely demountable coil joints as proposed in [230], which allows to access the
full blanket from above, once the top half of the coils are removed. Such a splitting
method might be possible with rare-earth-barium-copper-oxide based conductors, but
the research on these kind of joints and their application to fusion reactor relevant
coils is still in its infancy. Another proposed method for remote maintenance is the
splitting of the vacuum vessel by welding it apart and removing the segments radially
outwards, e.g. on a rail system. This method however requires welding and re-welding
the vacuum vessel which might be of concern for the neutron deteriorated steel of
the vacuum vessel [231, 232]. The vacuum vessel splitting also raises the question of
reactor hall contamination, which is not reasonably well explored up to now.

In general, possible remote maintenance concepts for stellarators are poorly re-
searched.

2.4. Concluding remarks

We listed the implemented changes in which Process’ prescriptions of a stellarator
power plants now differs from the tokamak prescription. For this, we identified import-
ant reactor relevant stellarator-specific features and implemented them to sufficient
accuracy in Process using an additional pre-calculation step. However, the following
lists of models can be added or improved:

• estimations for winding pack, conductor and support structure stress for stel-
larator devices can only be inferred from values of the now calculated force
densities. However, the exact values for the stresses very much depend on the
design solution for the inter-coil structure. Likely respective finite-element meth-
od calculations would need to be put in place here to obtain accurate values.

• the model for particle balance equation and impurity transport in stellarators
can be improved. Especially, the stellarator version of Process should include
some reduced 1 dimensional transport model.

• the blanket model in Process only adapts the tokamak based models for
differently proposed blanket concepts, with a modification of the neutron load
peaking. In the future, the model should be expanded to stellarator specific
blanket concepts and based on stellarator specific neutronic calculations, mod-
elling the thermo-hydraulics properties of the breeding blanket.
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• the peak radiation on the first wall or the divertor is currently only modelled by a
peaking factor, which is an input parameter. In reality, this factor is determined
by the vacuum vessel geometry and the plasma edge geometry which determines
where the radiation heat flux is largest. The description for this model should
function analogue to the method presented in subsection 2.3.3 with a changed
source function.

• The beta limit in Process can be improved, when respective analytical ex-
pressions for the beta limit become available.

• A model for the conductor strain in generic stellarators should be added. This
however will also depend on the support structure design.

• An updated cost model, that reflects the complexity of stellarators should put
in place.

Most of the proposed modifications require more detailed calculations and stellar-
ator design studies and solutions. Respective systems codes models can then be added
in future work, when the required detailed studies are available.
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Alpha Particles in Stellarator Reactors

The previous chapter listed a set of physics and technology models that were imple-
mented in Process. Most of these models rely on computational efficient calculations
or on (exact or empirical) scaling relations. Sometimes however, higher fidelity meth-
ods are required to calculate crucial reactor properties and constraints. One example
for such a higher fidelity calculation is the simulation of alpha particles in a stellarator
reactor. In the following chapter the procedure is explained to obtain information on
fast alpha-particle wall loads, confinement fractions and values for helium depositions
profiles.

3.1. Alpha Particle Constraints in Stellarator Fusion Reactors

Dealing with fusion born alpha particles is a major constraint in a reactor. Their
confinement quality influences the reactor design point in several aspects: first, the
burn point is determined by the quality of fast particle confinement. Higher fast
particle confinement results in easier burn condition which characterized by the point
where the operational heating point is solely heated by fusion alpha particles. Secondly,
the heating- and the particle-deposition profile of thermal helium ash is crucial for
transport models. Both profiles also strongly influence stable burn conditions. Lastly,
and probably most importantly, unconfined fast particles are deposited on the first
wall, carrying high fractions of their original energies of 3.5 MeV. This might lead to
high heat and particle loads, which might not be tolerable in steady state operation
with current technologies.

Historically, stellarators confined fast particle much worse than tokamaks. Only re-
cently, stellarator configurations demonstrated improved confinement of fast particles [48,
50, 233]. To which degree this confinement quality can be maintained when other
constraints are being considered, such as finite beta effects, MHD stability or coil
geometries, is unclear to this date. Only very recently, first fast particle optimised
stellarators with coils are being proposed [234].
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Hence, the question of fast particle induced wall loads is still a relevant topic in
stellarators compared to tokamaks, where the thermal wall power induced by alpha
particles usually diminishes with respect to the other wall power factors, such as
radiation- or neutron loads [99].

In order to estimate fast particle wall loads it is required to simulate the energy
of the particles at the wall, which requires to model slowing down effects of the
particle during their trajectory to the wall. The energy loss of the particles during
their slowing down time is induced by repetitive coulomb interactions with mainly
electrons, which is referred to as ‘friction drag’. If the energy of the fast ion falls below
a value such that the velocity of the particle is below a critical velocity, Coulomb
interactions with ions take over and the friction drag is much larger, which leads
to rapid thermalization of the fast ions then. The mathematical description of this
process and how it is implemented in the code BEAMS3D is given in the next section.

After this, results for the fast particle induced thermal wall load for example
configurations are obtained, and the required systems code models for the fast particle
confinement fraction and the fast particle wall load values are described.

3.1.1. Equations

In a reactor configuration, the gyro-radius of high energy particles escaping the
plasma is in the order of 1 cm, assuming magnetic fields of about 8 Teslas and 3.5
MeV alpha particles. The gyro-center approximation is valid as long as the gyro
radius is much smaller than the relative radial change of the magnetic field strength,
𝑟𝑔𝑦𝑟𝑜 ≪ (𝜕𝑟 ln 𝐵)−1. For typical reactor scenarios this can safely be assumed, as
𝑟𝑔𝑦𝑟𝑜 ≪ 𝑎 and 𝐵0 ∼ 𝐵𝐿𝐶𝐹𝑆, where 𝑎 is the minor plasma radius, 𝐵0 the average
magnetic field strength on axis and 𝐵𝐿𝐶𝐹𝑆 the average magnetic field strength at the
last-closed- 𝑟 = 𝑎. Gyro-orbit effects will broaden the deposition load on the first wall
in the order of the gyro-radius.1

There are several established codes to simulate gyro-center orbits of fast particles in
helical magnetic fields, e.g. Ants [235], Ascot [236], Simple [237] or BEAMS3D [238].
BEAMS3D was recently extended to include fusion sources [239], and was bench-
marked against analytical models and other energetic particle codes [240], which is
why BEAMS3D is chosen here.

BEAMS3D solves the classical first order guiding center equations for single particles

1One example to model the broadening is by applying a convolution of the wall load with a Gaussian
Kernel that has a gyro-radius as its Kernel-width.
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in magnetic fields. Neglecting electrical fields, those can be written as

𝑑R
𝑑𝑡

=
B

𝑞𝐵2 × (𝜇𝐵 +
𝑚𝑣2

||

𝐵2 (B ⋅ ∇) B) + 𝑣||
B
𝐵

, (3.1)

𝑑𝑣||

𝑑𝑡
= −

𝜇
𝑚

b ⋅ (𝐵) . (3.2)

Here, R is the position of the gyro-center and 𝜇 = 𝑚𝑣2
⟂

2𝐵
is the, to lowest order

conserved, magnetic moment. 𝑚 and 𝑞 are are mass and charge of the respective
particle.

BEAMS3D solves these equations using the LSODE (Livermore Solver for Ordinary
Differential Equations) numerical scheme [241]. Slowing down effects are computed
by simulating friction drag to every marker in every integration step [242, 243],

𝜕⟨𝑣⟩
𝜕𝑡

= −
𝑣
𝜏𝑠

−
𝑣3

𝑐

𝜏𝑠𝑣2 , (3.3)

𝑣𝑐 = (
3
√

𝜋
4

)
1/3

√2𝑇𝑒

𝑚𝑒
. (3.4)

Here, 𝑣𝑐 is the critical velocity at which ion drag dominantly takes over, 𝜏𝑠 is the
Spitzer ion-electron momentum exchange time. For alpha-electron drag, the 𝜏𝑠 can
be written as

𝜏𝑠 =
𝑇 [keV]3/2

𝑛[1020m−3]𝛬
0.2s (3.5)

Pitch angle scattering is simulated similarly in every integration step by using the
formulation from [243]. The implementation of the frictional drag effect in BEAMS3D
was benchmarked against a solution of the drag equations to reasonable accuracy [238].
The pitch angle scattering implementation is yet to be benchmarked to our knowledge,
but also plays a minor role in a fusion plasma due to the comparably low collisionality.

The workflow for the BEAMS3D setup is shown in Figure 3.1. A free boundary
VMEC equilibrium is being passed to BEAMS3D to determine the magnetic field
in the confining region. The magnetic field in the SOL is obtained from the coils
directly, using Biot-Savart and from the MHD internal currents, using the virtual
casing principle [244]. The simulation boundary is constrained by a generated first
wall which can be obtained from the Equisurf code from the LCFS of the VMEC
equilbrium. The profiles are used in the pressure profiles of the VMEC equilibrium. For
BEAMS3D, they are used to determine the initial weights (by the fusion reactivity rate
at the respective location), and to calculate the friction drag terms. The simulation
of the initialized markers (weighted particles) is tracked until all the markers either
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Figure 3.1.: An example workflow to obtain the full requirements of BEAMS3D inputs
to generate the wall loads. Here, we only obtain new coils for the QA configuration
and only a finite beta vacuum VMEC free boundary run for Helias 5 . For the
other two configurations we use vacuum fields as explained in the text. The here
shown coil optimisation workflow is only correct when optimizing for vacuum fields.

thermalize, in the code indicated by falling below a fixed energy threshold of 100 keV
(the edge of the high energetic tail of the thermal plasma ions at fusion relevant
temperatures), or by hitting the simulation boundary of the first wall.

For the initial state of the simulations we choose, for all configurations, parametric
profiles, in the form

𝑛𝑒 = 𝑛0(1 − 𝜌2)0.35, (3.6)
𝑇𝑒 = 𝑇0(1 − 𝜌2)1.2. (3.7)

𝜌 here is the normalized radius 𝜌 ≡ 𝑟
𝑎
, where 𝑎 is the minor radius of the plasma. For

simplicity, the ion profiles are assumed as 𝑛𝑖 = 𝑛𝑒 and 𝑇𝑖 = 𝑇𝑒. A equal fuel mix of
deuterium-tritium of 𝑛𝐷/𝑛𝑇 = 1 is assumed. The helium fraction in the plasma is
neglected. The alpha particle birth rates, as reported in [239], are computed based
on the fit by Bosch-Hale [4],

𝑓𝑠 ≡ 𝑛𝐷𝑛𝑇⟨𝜎𝑣⟩ = 𝐶1𝑛𝐷𝑛𝑇𝜃(𝑇 )√
𝜉(𝑇 )

𝑚𝑟𝑐2𝑇 3 𝑒−3𝜉(𝑇). (3.8)

𝜃 and 𝜉 are fit functions and 𝐶1 is a fit parameter, see [4] for their explicit form.
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Figure 3.2 shows the profile form and the resulting fusion alpha birth power. Dashed
profiles in Figure 3.2 depict Helias 5 profiles. The exponent of the temperature
profile is based on neoclassical transport calculations conducted in [2]. The density
profiles are assumed, similar to [2]. Of course, an optimised stellarator device would
likely feature dominant turbulence transport, as is seen already in W7-X [45], but no
validated 1D transport simulations for stellarators is available up to date, hence we
are sticking to the transport calculations conducted in the cited research. Nonetheless,
the exact profile shape only enters the equilibrium and the birth profile of the alpha
particles, and the point of this section is to obtain qualitative order of magnitude
estimates for the alpha particle wall load in stellarator reactors. Smaller deviations
from the profile form as assumed in Equation 3.7 are thus not expected to significantly
influence the results that are being aimed for in this section.

3.1.2. Configurations

For this study, we choose three configurations with different magnetic field symmet-
ries: a quasi-helical (QH) symmetric configuration, Wistell-A [128] as shown in
Figure 3.4, a quasi-isodynamic (QI) configuration, Helias 5 [245], as shown in Fig-
ure 3.5 and a new configuration with precise quasi-axisymmetry (QA) throughout the
plasma volume as introduced in fixed boundary in [129]. For the new quasi-symmetric
configuration we optimize a coil-set with Focus [246] which is shown in Figure 3.3.
This coil-set largely preserves the optimisation criterion of quasi-axisymmetry, al-
though it introduces symmetry breaking terms in the order of 𝑏𝑚,𝑛/𝑏0,0 ∼ 10−2. For
Wistell-A and Helias 5 we take existing coil-sets as produced in their original
publications.

It shall be noted that Wistell-A and the QA configuration are only optimised at
𝛽 = 0%. To the authors knowledge, there are no self consistent stellarator configur-
ations available up to now, that produce finite beta equilibria with reactor relevant
fast particle confinement, while including consistent coils and bootstrap current. Pro-
ducing such configurations however is a matter of computational effort, as it would
require running a coil optimisation code together with a free boundary MHD code like
VMEC. The tools to produce such a configurations should be present by now [247–
251]. Very recent, first results on this end are shown in [234], where the authors
achieve a lost particle fractions of about 5% from the 𝑠 = 0.25 flux surface.

Even though Wistell-A and the QA configuration are inconsistent in the way
that at relevant beta values of about 2%-3% they would lose their confinement quality,
caused by the occurring diamagnetic effect of the plasma, and by an eventual bootstrap
current, we still take the vacuum field for our BEAMS3D simulation which distorts the
𝜄 values, as this was the respective optimisation target. This is an assumption practised
also in similar studies [146] and is a necessary step to gain valuable insights into
consequences in a reactor design of such configurations, even though fully consistent
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Figure 3.2.: Imposed Density and temperature profiles and the resulting fusion alpha
particle birth power. Electron and ion temperature are assumed to be equal. Dashed
profiles are assumed for Helias 5, which has a significant larger plasma volume
than the other two configurations.

configurations with coils are yet to be proposed. However, an optimisation for magnetic
fields at finite 𝛽, is similar to an optimisation at vacuum from a numerical point of
view.

The device parameters of the three configurations are listed in Table 3.1. For every
configuration we scale the coil current according to an averaged value of 6 T on the
vacuum magnetic axis. The fusion power of the operating point was chosen as about
800 MW for the QA configuration and Wistell-A. The design point for Helias 5

80



3.1. Alpha Particle Constraints in Stellarator Fusion Reactors

Figure 3.3.: Left: the QA configuration with coils, the colour shows the magnetic
field strength on the plasma boundary. Right: Magnetic field strengths in Boozer-
coordinates of this configurations as produced by 24 FOCUS coils.

Figure 3.4.: Left: the Wistell-A configuration with coils, the colour shows the
magnetic field strength on the plasma boundary. Right: Magnetic field strengths in
Boozer-coordinates of this configurations as produced by 48 coils (coils and plasma
from the original publication, [233]).
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Figure 3.5.: Left: the Helias 5 configuration with coils, the colour shows the magnetic
field strength on the plasma boundary. Right: Magnetic field strengths in Boozer-
coordinates of this configurations as produced by 50 coils (coils and plasma from
the original publication, [245]).

is chosen to match a fusion power of about 2800 MW, mainly imposed by the larger
aspect ratio and slightly larger minor radius at the original design point of Helias 5.

3.2. Results

Using BEAMS3D, we initialize 3⋅105 markers in one module (between 𝜙 = 0 and
𝜙 = 2𝜋/nfp, where nfp is the number of field periods) and evolve them, according
to Equation 3.2, to the imposed first wall. Within volume enclosed by the 𝜌 = 1
surface, the weighted markers are slowed down, taking into account friction drag
and pitch angle scattering as mentioned in subsection 3.1.1. BEAMS3D then follows
the particle’s trajectory until its energy falls below a threshold value, below which
BEAMS3D assumes equilibration and the particle is not further followed.

3.2.1. Loss Fractions

This way, it is possible to obtain integrated energy loss fractions 𝑓energy
𝛼−𝑙𝑜𝑠𝑠 = 𝑝wall/𝑝thermalized,

that represent the fraction of the alpha particle energy which is lost to the wall. The
fraction of lost particles in the different configurations with respect to the slowing
down time is shown in Figure 3.6. For comparison, also the HSR-4 configuration
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Table 3.1.: Device parameters of the chosen devices. Note that consistency between
the assumed 𝛽 values of the VMEC equilibrium (determined by the optimization)
and the 𝛽 values by imposed profiles (determined by required fusion power) is not
enforced here, which is discussed in the text.

Helias 5 Wistell-a QA

Minor Radius [m] 1.7 1.5 1.49
Major Radius 22 10.17 9.32

Plasma Volume [m3] 1600 450 410
𝐵0 [T] 6.0 6.0 6.0

𝑛0 2 3 3
𝑇0 15 15 15

𝛽VMEC 4% 0% 0%
𝛽profiles 3% 4% 4%

Alpha Power [MW] 530 161 158
Fusion Power [MW] 2650 805 791

Wall Area [m2] 2300 962 939

Figure 3.6.: Loss-rate of fusion born fast particles as obtained with BEAMS3D in four
different stellarator configurations. The 𝑦-axis represents the probability density
(PDF) of the loss times of the lost particles, multiplied with the lost fraction 𝑓𝛼 =
𝑝wall/𝑝thermalized. The 𝑥-axis is normalized to the (volume-) averaged Spitzer time
𝜏𝑠, as defined in Equation 3.5, to accommodate for profile differences (Helias 4
and Helias 5 were calculated with central peak densities of 2 ⋅ 1020m−3 compared
to 3 ⋅ 1020m−3 for Wistell-A and the QA configuration).
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from [252] was included. It can be seen that the modern configurations, Wistell-A
and the QA configuration largely suppress prompt losses which are still present in
Helias 4 and Helias 5. The two QI configurations lose a significant fraction of fast
particles at 10−3 − 10−2𝜏𝑠. Prompt losses need to be avoided for reactors as these
particles still carry the full 3.5 MeV energy and induce significant local thermal heat
loads on inner vessel reactor components. After the time 𝜏𝑠, the particles start to
thermalize rapidly as their energy approach the critical energy, where ion-electron
drag is overshadowed by ion-ion drag. For the QH and QA configuration, values for
𝑓energy

𝛼−𝑙𝑜𝑠𝑠 are about 8% and 5% respectively. For Helias 5, 28% of the fast particles
energy is lost to the wall. For comparison, Helias 4 loses more than 40% of its fast
particle energy at ⟨𝛽⟩𝑉 = 4%, which corresponds to large fraction of the trapped
particle population. Note that approximately the other half of the born fast particle
population are passing particles which have a low pitch and are always confined in
toroidally closed magnetic fields with 𝜄 > 0.

Values for 𝑓energy
𝛼−𝑙𝑜𝑠𝑠 can be used in a 0D power balance, such as

(1 − 𝑓energy
𝛼−𝑙𝑜𝑠𝑠) 𝑝𝛼 + 𝑝aux⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
heating terms

= 𝑝rad + 𝑝conf⏟⏟⏟⏟⏟
loss terms

, (3.9)

This is a necessary input parameter for reactor design studies which rely on 0D
scalings, such as those conducted in section 4.1.

In reality however, the above mentioned exact values for 𝑓energy
𝛼 will depend on the

birth profiles and thus on the profile choice. Oftentimes, stellarator configurations
have better confinement in the innermost flux surfaces. For Wistell-A e.g. we
observe much better confinement fractions, when increasing the aspect ratio, which
would be equivalent to peaking the profiles at the center. With higher aspect ratio,
and thus lower plasma volume, we obtain integrated energy confinement fractions of
98% and about 2 MW alpha particle power reaching the wall when decreasing the
minor radius to about 70% of its original value.

Also, the wall distance plays a role for the confinement fraction, as gyro-orbits
of toroidally trapped particles are sometimes exceeding the 𝜌 = 1 surface and are
re-entering the plasma if they were not being stopped by a closely situated wall.
This is especially relevant for configurations with low rotational transform, as banana
widths approximately scale proportional with 1/𝜄. Some exemplary gyro-orbits for
the QA configuration are shown in Figure 3.7, showing the described behaviour. The
banana widths of this configuration are exceeding half the plasma radius and escape
and re-enter the last closed flux surface 𝜌 = 1.

3.2.2. Deposition Profiles
Alpha particle power and particle deposition profiles are important for transport
simulations such as [138]. Usually, the fast alpha particle power deposition profile is
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Figure 3.7.: Example trajectories of trapped particles in the QA configuration. Shown
are projections of the particle orbits in a poloidal cross section for different particle
orbits. The cyan orbit is a passing particle, the other two orbits trace out ‘banana’-
like (as in a tokamak) orbits and are trapped particles. The width of the drift orbit
is a significant fraction of the minor plasma radius. Interesting here is that the
shown orbits leave the 𝑠 = 1 surface (the as outermost defined flux surface) and
re-enter. In a normal fixed-boundary VMEC run, these orbits would be considered
lost, which demonstrates the advantage of using BEAMS3D in this setup.

assumed as

𝑝𝑒 = 𝑔(𝑇 ) 𝑛𝐷𝑛𝑇⟨𝜎𝑣⟩𝑇, (3.10)
𝑝𝑖 = (1 − 𝑔(𝑇 ))𝑛𝐷𝑛𝑇⟨𝜎𝑣⟩𝑇, (3.11)

where 𝑛𝐷 is the deuterium-, 𝑛𝑇 the tritium density, ⟨𝜎𝑣⟩𝑇 the Maxwellian averaged
fusion reactivity at temperature 𝑇. The factor 𝑔 estimates the relative heating of
electrons or ions by fast particles and can be parametrized by [253]

𝑔 = 1 −
2
𝑦2

⎛⎜⎜
⎝

1
6

ln (
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(𝑦 + 1)2 ) +
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√

3
)

√
3

+
𝜋

6
√

3
⎞⎟⎟
⎠

,

𝑦 ≃ √ 88
𝑇𝑒[keV]

.

(3.12)
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Similarly, an ‘easy’ choice for the thermal helium particle deposition profile is

𝑠𝛼 = 𝑛𝐷𝑛𝑇⟨𝜎𝑣⟩𝑇,

𝑠𝑇 = 𝑠𝐷 = −
𝑠𝛼

2
.

(3.13)

𝑠𝛼 ≡ 𝑠𝛼(𝑟) would determine where helium ash is being born and strongly influences
burn conditions. 𝑠𝛼, 𝑠𝐷 and 𝑠𝑇 are particle density source functions.

Power and particle deposition profiles according to Equation 3.13 and 3.11 can
be compared with BEAMS3D slowing down runs. To generate the power deposition
profiles, BEAMS3D sums up lost power of the markers during slowing down on a
fixed spatial grid. This way it is possible to generate power depositions, which can be
compared to Equation 3.11. The comparison is shown in Figure 3.8. It can observed
that Equation 3.11 over-estimates the heating in the central region, while BEAMS3D
obtains a larger heating power in the edge region. The ion heat deposition differs
by a factor of 50% at the axis. From Figure 3.8 one might think that BEAMS3D
underestimates the heating in general, but remember that we are plotting the profiles
with respect to the cylindrical 𝜌 coordinate, and the integrated quantities, when
integrating over a cylindrical Jacobian, 𝜌, match exactly to the integrated power
density of the profile-based model Equation 3.13. This means that BEAMS3D is
simulating the expected total transferred power correctly, but simulates a radially
outwards shifted heating profile compared to the simple profile-based model. Also
note that the statistics in the central region is much smaller than in the outboard part,
which is a result of the Monte Carlo based method that BEAMS3D uses, produces
large errors for regions with small volumes.

Similar to the power deposition, also the deposition profile of helium ash can be
simulated. For this, the markers at their thermalization point can be extracted. Then,
a flux surface can be associated, and a Gaussian density probability distribution can
be fitted to the data. This allows to write the probability density distribution as

̂𝑠𝛼 =
1

𝑛ℎ
∑𝑛

𝑖=1 𝑤𝑖𝑘 (𝑥−𝑥𝑖

ℎ
)

∑𝑛
𝑖=1 𝑤𝑖

(3.14)

where ℎ is the used bandwidth, which can e.g. determined by Silverman’s rule [254],
𝑘 is the smoothing kernel which we chose as a truncated Gaussian. To match ̂𝑠𝛼 to
𝑠𝛼 from Equation 3.13 one can define

𝑠𝛼 =
∑𝑛

𝑖=1 𝑤𝑖

𝑉plasma
̂𝑠𝛼, (3.15)

where 𝑤𝑖 are the weights per marker, which correspond to particles per second,
and 𝑉plasma corresponds to the plasma volume. 𝑠𝛼 then corresponds to 𝜌 ⋅ 𝑠𝛼 – the
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Figure 3.8.: Fusion born alpha particle heating profiles as calculated by BEAMS3D
slowing down calculations (colored). Dashed lines indicate the direct model Equa-
tion 3.11 from profiles only, using the Bosch-Hale parametrisation for the fusion
reactivity [4], for 𝑛0 = 3 ⋅ 1020m−3 (dark gray line, corresponds to QA and Wis-
tell-A) and 𝑛0 = 2 ⋅ 1020m−3 (light gray line, corresponds to Helias 5) as defined
in the profile shapes in Equation 3.7. The top plot shows the power to electrons the
bottom plot the power to ions.
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density deposition profile multiplied with the (cylindrical) Jacobian determinant.
The helium ash deposition profile as obtained by the BEAMS3D simulation result
as defined in Equation 3.14, as well as the profile model from Equation 3.13 for
comparison, is plotted in Figure 3.9. As before, the dashed lines refer to the profile
model values. The coloured lines correspond to the BEAMS3D results for the different
configurations. The region around the origin is left out due to poor statistics. The
error band estimates are obtained by randomly selecting 400 sub-samples with 1% of
the weighted thermalized BEAMS3D particle data each and then extracting the 95%
confidence interval. From Figure 3.9, one can see that the simple model drastically
overestimates the central helium deposition, and the more sophisticated simulation
(BEAMS3D) gives a value of 50 % less in the central region. The fact that the Helias 5
line differs even more is explained by the fact that the thermalized fast particle fraction
is much lower (about 30 % of the fast particles do not thermalize). The thermalization
fraction for the other two configurations is negligibly small for this purpose. When
checking the integrated values, ∫1

0
𝑟𝑠𝛼, both values agree. This observation is in

agreement with the expectation that helium particles do not thermalize where they
are being born. Instead they are transported outwards, either by a non-zero radial
drift, by pitch angle scattering, or just by the finite banana or super-banana width of
their orbits (compare Figure 3.7), which gives a higher statistical chance for them to
thermalize at an outer flux surface. This effect is expected to be especially true for
configurations with large banana widths, such as QA configurations.

A model like Equation 3.13, commonly applied in transport models like NTSS [138],
could thus be improved by ‘shifting’ the deposition profile radially outwards, e.g. by
using a transformation 𝜌 → 𝜌′ with 𝜌′ ≡ tan(𝜌)

tan(1)
. An improved model 𝑠′

𝛼 could then be

𝑠′
𝛼(𝜌) ≡

∫1
0

𝑑𝜌 𝑠𝛼(𝜌)

∫1
0

𝑑𝜌 𝑠𝛼 (𝜌′)
𝑠𝛼 (𝜌′) . (3.16)

The fact that thermal helium may not deposit where it is born, would have a
noticeable effect also on fusion reactor design points. If one modifies the helium
fraction 𝑓𝐻𝑒 in a 0D power balance, as defined e.g. in Equation A.7, to 𝑓𝐻𝑒 →
𝑓reduced 𝑓𝐻𝑒 with 𝑓reduced ∈ [0, 1] one can compare the effect of 𝑓reduced = 1 (commonly
taken) to 𝑓reduced = 0.5, as suggested by Figure 3.9. One example of such an effect on
iso-contour lines fo the fusion gain is shown in a POPCON plot in Figure 3.10, using
the 0D power balance equation listed in Equation A.4. This shows that if a reactor
design point could count on reduction of 𝑓reduced to 0.5 in the core, it would significantly
ease the requirements for a large fusion gain from ⟨𝑛⟩𝑉 = 6.5 ⋅ 1020m−3, ⟨𝑇 ⟩𝑉 = 13 keV
to ⟨𝑛⟩𝑉 = 4 ⋅ 1020m−3, ⟨𝑇 ⟩𝑉 = 11 keV.
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3.2. Results

Figure 3.9.: Deposition profiles of fusion born helium ash as calculated from BEAMS3D
slowing down calculations (colored). Error bands correspond to 95% confidence in-
tervals using subsamples of the BEAMS3D Monte Carlo particles. Dashed lines
indicate the ‘naive’ model Equation 3.13, for 𝑛0 = 3 ⋅ 1020m−3 (dark gray line, cor-
responds to QA and Wistell-A) and 𝑛0 = 2⋅1020m−3 (light gray line, corresponds
to Helias 5).

3.2.3. Localized Wall Power Estimates

The simulated weighted particles that do not equilibrate in the plasma deposit their
energy on the imposed wall. As loss rates are only a few percent, the statistics of
markers reaching the wall is significantly decreased. However, one can make use of the
fact that the losses have rotational symmetry in every module, which is why the lost
markers can be rotated to every module, increasing the statistics of the intitialized
3 ⋅ 105 markers by a factor which is equal to the number of field periods. Note, that
the stellarator symmetry (flip symmetry) is not applicable. With this, we bin the
remaining markers to about 7 ⋅ 104 wall tiles and sum up their weights, which consist
of their birth rate and the associated volume. The resulting wall load deposition
patterns are shown in Figure 3.11.

Two features become apparent: First, we find deposition patterns at regions with
high curvature of the vacuum vessel at the outboard side and less pronounced also
at the inboard side. Secondly, deposition patterns between the coils are visible, likely
stemming from lost particles with energies low enough to be trapped in toroidal
magnetic mirrors, produced by coil ripples. Mirror trapped particles fulfil ℰ

𝜇
< 𝐵max,
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Figure 3.10.: Impact of a changed helium deposition profile on constant fusion gain
lines in a POPCON plot showing iso-contourlines of constant fusion gain 𝑄 using
the 0D power balance from Equation A.4. Parameter chosen for the power balance
equation were 𝑓𝛼 = 0.95, 𝜏⋆

𝐻𝑒

𝜏𝐸
= 8, 𝑓imp = 1%, 𝑍𝑖𝑚𝑝 = 16, 𝑓ren = 1.4, 𝜄2/3 = 0.9,

𝑅 = 9 m, 𝐵 = 8 T and 𝑎 = 1.2 m. Dashed lines refer to a reduced thermal helium
core deposition of about 50% compared to the deposition of the solid lines.

where 𝐵max is the largest magnetic field strength in the respective mirror, ℰ is the
kinetic energy of the particle and 𝜇 is the magnetic moment. Plotting ℰ

𝜇
of the un-

weighted markers at the wall, see Figure 3.12, supports this hypothesis: The localized
wall load deposition spots in between the coils are stemming from particles with com-
parably low ℰ

𝜇
. Mitigation techniques of these patterns would include a reduction of

magnetic mirror terms near the wall, e.g. by placing the coils farther away where such
patterns occur or by using ferritic inserts [255]. Another method would be targeting
𝐵𝑚𝑎𝑥/𝐵𝑚𝑖𝑛 in a volume near the wall surface as an optimisation criterion in coil
optimisation codes, as only particles meeting the condition

𝑣||

𝑣⟂
< √𝐵𝑚𝑎𝑥

𝐵𝑚𝑖𝑛
− 1 (3.17)

are trapped in mirrors.
For identifying the maximum wall load in the analysed devices, we introduce a

1/
√

𝑁 error on the wall load of every discretized wall element, where 𝑁 is the number
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3.2. Results

Figure 3.11.: Deposition patterns of fusion born fast particle loads. Top: the QA
configurations as produced by 24 FOCUS coils, Middle: Wistell-A configuration,
Bottom: Helias 5.
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Figure 3.12.: ℰ/𝜇 of the unweighted markers at the wall. The wall coordinates are
chosen according to the definition in Equation 2.51. Low values of ℰ/𝜇 (here clusters
of red) likely correspond to coil mirror trapped particle in an equivalent magnetic
mirror, with peak fields 𝐵⋆ near the wall such that all particles ℰ/𝜇 < 𝐵⋆ are
trapped in this mirror, leading to the localized clusters one can observe in this plot
and in Figure 3.11.

of markers at this element. The area of the discretized wall elements is chosen as ∼10
cm2, which is in the order the gyro-radius. This accounts for the fact that the finite
gyro-orbit should have averaging effect on the wall. In principle, this effect can be
simulated by convoluting the resulting wall load with a respective kernel, a Gaussian
kernel which, however was not done in this study. Binning the discretized wall tiles we
obtain thermal loads for the three configurations as shown in Figure 3.13. It becomes
apparat that the tiles with highest load are ‘hotspot’-like: Most of the wall tiles have
comparably low thermal loads. Only about 0.5 m2 are exceeding the wall load of 1
MW/m2. Peak heat loads for the three configurations are between 1.5 MW/m2 for
the QA configuration and 16 MW/m2 for Helias 5. Wistell-A would feature has
about 6 MW/m2 peak loads at the chosen design point according to the simulation
results. Figure 3.13 also reports on the peaking factor which is obtained by

𝑓peak = 𝑝peak
𝛼 ⋅

𝑆wall

𝑃𝑤𝑎𝑙𝑙
𝛼

(3.18)

where 𝑝peak
𝛼 is the peak heat load at the wall, 𝑆wall is the wall area and 𝑃𝑤𝑎𝑙𝑙

𝛼 the
alpha particle power that reaches the wall. 𝑓peak can be used for systems code models
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as discussed in section 2.3.3.

A remark on the tungsten sputtering yield by fast particles
Fast particles could eventually also lead to sputtering at the first wall. It is in this

context also of interest to investigate to which degree the fast particles loads contribute
to an erosion of the plasma facing components. Estimating the net erosion by fast
particles can be answered by obtaining a yield function (number of sputtered wall
particles per incident ion) from experimental data. The most prominent collection of
yield functions for the event 4

2He on tungsten, the most commonly discussed material
for the first wall [256], is the report [257]. From [257], an average yield of 10−2 and
maximal wall power of 𝑝peak = 1.5 MW/m2 at the highest load location, compare
Figure 3.13. Using an average energy of 1 MeV for the particles at the wall, compare
to Figure 3.14, one can estimate the particle flux:

𝛤 erosion
𝑊 = 𝛤𝐻𝑒→𝑊⟨𝑌 ⟩ =

⟨𝑝peak⟩
𝐸𝛼

⟨𝑌 ⟩ ≃ 1019 1
m2s

⟨𝑌 ⟩ ≃ 1017 1
m2s

(3.19)

Multiplying this flux with the ‘volume’ of a tungsten atom, 𝑉𝑊 (here taken as a
sphere with radius 1 Å), gives the following estimation

𝛥𝑑𝑊

𝛥𝑡
= 𝛤 erosion

𝑊 𝑉𝑊 ≃ 10−2 mm
fpy

. (3.20)

fpy here stands for ‘full power year’. Considering that most often several mm of
tungsten are proposed for the first wall armour [256, 258], the erosion value in Equa-
tion 3.20 suggests a a sufficient tungsten thickness for at least ∼100 full power years.
Other sputtering effects, e.g. by charge exchange near the scrape-off-layer are expec-
ted to be in a similar magnitude [205] as the value obtained here in Equation 3.20.
Of course, the lifetime of the wall is also determined by other factors, most likely by
degradation of the underlying structural material by neutron bombardment.

3.2.4. Summary
In this section, a workflow and an example study was proposed to obtain estimations
for fast particle induced wall loads, for the fraction of confined fast particle energy
within the plasma and for the reduction of the fuel dilution by thermal helium.
These three values are very relevant for stellarator reactor design studies, either as
constraints or as free parameters with significant impact on the feasibility of the
found design point.

To obtain these effective parameters, it was proposed to use the recently imple-
mented fusion birth rate capabilities of BEAMS3D [239] to simulate the evolution of
fusion born fast particles in a stellarator magnetic field. As a demonstration, this was
shown in two recently proposed stellarator magnetic fields, and in addition, in the
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Figure 3.13.: Estimated binned thermal wall loads of fusion born fast particles on
wall tiles. The connecting line should guide the eye. Error bars are estimated by
∼ 1/

√
𝑁, where 𝑁 is the number of markers reaching the respective wall tile. Top:

the QA configuration from [129], but produced by 24 FOCUS coils, Middle: the
Wistell-A configuration, Bottom: Helias 5 at 22m major radius.
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3.2. Results

Figure 3.14.: The energy distribution of alpha particles for the six highest load wall
bins at the investigated QA stellarator configuration. The 𝑦 axis is multiplied with
the local power density 𝑝max to allow for a better relative comparison.

older Helias 5 stellarator. For the quasi-axisymmetric configuration, we optimised a
set of coils with the coil optimisation code FOCUS. For the two other configurations,
pre-existing coils were used. A vacuum MHD equilbrium was then found for the QH
and QA configuration with free boundary VMEC, a finite beta MHD equilibrium was
obtained for Helias 5. A bootstrap current, the electric field and collective effects, e.g.
Alvèn waves interacting with the fast particles, were neglected. An equidistant wall
was created based on the 𝜌 = 1 surface as obtained from VMEC. Using BEAMS3D,
about 3 ⋅ 105 markers were initialized according to the fusion birth profile and their
slowing down was then simulated using the gyro-center equations for single particles.
Friction drag and pitch angle scattering terms were included in the simulation. The
necessary profiles for the scattering terms and the birth profile were obtained from
assumed parametrized a-priori profiles. The electron and ions profiles were taken as
equal. A potential re-iteration with a transport model and BEAMS3D’s power source
functions was not conducted in this study.

As a result we obtained values for the fractions of confined fast particle energy,
𝑓energy

𝛼−𝑙𝑜𝑠𝑠 as relevant for 0D power balance studies, simulation results for the peaking
factors of the fast particle induced wall load, and helium ash deposition profiles as
simulated by a slowing-down run.

Factors that influenced the loss rates and/or the wall power are

1. the distance of the first wall to the plasma. As visualized in Figure 3.7, particles
leaving the 𝜌 = 1 surface were found to re-enter. In an example calculation to
quantify this effect, we found that the amount of lost markers nearly halved
when placing the wall in double distance for the QA configuration.

2. the magnetic mirror terms, e.g. induced by finite coils, near the wall. A large
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factor in accumulating markers at the wall were produced by particles with
comparably low ℰ/𝜇 as seen in Figure 3.12.

3. the banana orbit width. A smaller banana orbit width to minor radius ratio
leads to a lower fraction of particles leaving the confinement regime.

4. the position and shaping of the first wall. An ideal wall should likely be chosen
as a surface with constant second adiabatic invariant 𝒥 for a large fraction of
the lost particles. Also higher inclination of wall tiles in locations with high heat
loads might help to mitigate the loads.

5. Higher ergodization of the scrape off layer region could help too to diffuse the
losses. Field line ergodization is mainly achieved by high rotational transform 𝜄
at the edge and high magnetic shear.

The question when the fast particle confinement is ‘good enough’ to not be op-
timised further in future stellarator optimisation problems is likely by answered by
material limits on the first wall: The heat load limit of a first wall design based on
EUROFER-97 (ferritic-martensitic steel) was found to be in the order between 0.5
and 2 MW/m2 [99]. These values however were found to be dependent on the tungsten
coating thickness and the coolant temperature and flow parameters. An ITER like
CuCrZr wall [259] would probably allow for slightly higher wall loads, due to roughly
ten times higher thermal conductivity [99].

In context of reactor studies and systems code analyses, the demonstrated workflow
here allows to obtain

• values for the fraction of confined energy by fast particles, 𝑓energy
𝛼

• estimated values ‘peaking factors’ of the maximum fast particle induced thermal
wall power to be scaled by systems codes outputs

• estimated values for the thermal helium deposition

Once obtained, these values can be treated as ‘configuration dependent effective
values’ in the sense introduced in chapter 2.

96



4
Applications to Stellarator Optimisation

In this section the newly implemented systems code models are applied in four different
scenarios, starting with an updated, cost optimized, design point of the Helias 5
stellarators using different technology assumptions.

4.1. Helias Reactor Design Points

The Helias reactor studies have a long tradition: the Helias is the reactor extra-
polation of the W7-X line and subject to several research activities in the past [3,
252, 260–264]. It is characterized by relatively high aspect ratios, of 6-12 [261], by the
minimization of the bootstrap current and parallel MHD currents, by minimization
of the Shafranov shift, by low magnetic shear and by an island divertor concept as
the heat and particle exhaust solution. Due to its proof of concept by the prototype,
Wendelstein 7-X, the Helias reactor is likely also the most risk-averse path towards
a stellarator-based fusion power plant, if reactor relevant specifics like fast particle
confinement can be further optimised.

A comparative study of the different proposed Helias devices with different field
periods and thus different aspect ratios was already published in [130]. This shall
not be repeated here. Instead, the goal should be on providing an updated design
point for the Helias line, using new developments such as rare-earth barium copper
oxide superconductors (REBCO) for the electromagnetic coils as well as FLiBe im-
mersion blanket concepts for neutron shielding and tritium breeding. REBCO type
superconductors are interesting for fusion machines, as they can feature much higher
critical current densities than conventional superconductors, and since recently can
be produced in relevant quantities for fusion applications [265, 266]. In addition, these
type of superconductors show larger resilience to fast fusion neutrons fluxes compared
to low temperature conductors [115]. Immersion blankets on the other side are a
preliminary design concept that was first proposed in [230]. The basic idea consists of
a design simplification of the blanket to only keep a single blanket fluid, in the case
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Table 4.1.: Input parameters for two Helias 5-like configurations. The conservative
case refers to Helias 5 parameters, the optimistic case refers to a scenario where
improved parameters can be achieved without changing the configuration and the
coils ‘too much’.

Conservative Advanced

𝑓𝑚𝑎𝑥
ren 1.4 1.8
𝜏⋆

𝐻𝑒

𝜏𝐸
8 4

𝜖eff 0.01 0.001
𝑓𝛼 0.8 0.95

𝑓𝛼,wall-peak 320 100
Blanket & Shield Size 1.2 m 60 cm

Conductor Material Nb3Sn (4.5 K) REBCO (4.5 K)
Quench Protection Modelled Modelled

Available Gyrotron Freq. 240 GHz 400 GHz
Max. First Wall Heat Load 1.5 MW/m2 1.5 MW/m2

Max. Neutron Wall Load 1.5 MW/m2 2 MW/m2

of [230] a molten FLiBe salt, in a toroidal container between plasma and coils. Such a
concept features a higher neutron absorption rate and a features less radially extended
structural material than usually proposed blanket concepts. A more compact blanket
concept is especially attractive, as radial space is particularly precious in a fusion
reactor. The thermohydraulic and corrosion properties of immersion blankets however
are not entirely clear yet and the publication history to molten FLiBe salts compared
to other breeding materials is particularly thin. Both technologies, REBCO based
magnetic field coils and immersion blankets, are still under development, and their
technological feasibility is not entirely clear. The benefit of both technologies however
for the Helias reactor line would be significant, as shown in this section.

It is interesting to use Process to find updated design points for the Helias 5
reactor, using differently aggressive technology and physics assumptions. In order to
compare the design using these technologies with the previous assumptions, two set-
ups with different assumptions are prepared. For this, a ‘conservative’ approach, using
‘established’ technology and concepts1, and secondly, a ‘more advanced’ approach,
with more aggressive, but (hopefully) not too ‘futuristic’ assumptions. The relevant
assumptions for both scenarios are listed in Table 4.1.

The values are chosen on the following basis. The conservative value for 𝑓ren is
obtained from W7-X high performance pellet discharges [267]. The optimistic value of
𝑓ren = 1.8 corresponds to slightly inferior confinement compared to typical tokamak

1In the sense that these technologies are used for the tokamak DEMO design studies.
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H-Mode like confinement [46], which was not yet observed in W7-X, but does not
appear unrealistic for a future machine, considering that H-Mode like confinement
regimes was measured in W7-AS [39, 40] and considering that turbulence Optimisation
techniques for stellarators come into reach [268]. How relevant the measured H-Modes
in W7-AS are for stellarator reactors is yet to be determined though: the so called
high-density H-Mode (HDH-Mode) was shown in a high collisionality regime and thus
its extrapolation to more reactor relevant, lower, collisionalities is unclear.

Values for the ratio of thermal helium particle confinement time to energy con-
finement time in the core, 𝜏⋆

𝐻𝑒

𝜏𝐸
, are assumed here. First results from W7-X operation

measure the particle confinement time 𝜏𝑝 without recycling fluxes, as well as the global
effective particle dwell time 𝜏⋆

𝑝 from [269]. These two values can be used to constrain
the ratio 𝜏⋆

𝐻𝑒

𝜏𝐸
in very weak bounds between 2 and 80 (compare with Figure 9 in [269]

for the numeric values). No direct measurement of the ratio 𝜏⋆
𝐻𝑒

𝜏𝐸
is available yet in

W7-X, due to poor understanding of the particle balance and particularly difficulties
in modelling capabilities of the recycling fluxes, which would require complex atomic
physics models, wall physics and modelling of respective ionization cross sections.

The conservative value for 𝑓𝛼 is obtained for the existing Helias 5 device by own
calculations, see subsection 3.2.1. Advanced scenarios assume that optimisations can
achieve a quasi-isodynamic (QI)-accuracy in stellarator fields to similar accuracy as
has been demonstrated in quasi-axisymmetric (QA) or quasi-helical symmetric (QH)
stellarator fields, which was demonstrated in [48, 50]. Respective values for 𝑓𝛼 for
recently proposed QA and QH configurations are also reported in subsection 3.2.1.
First demonstrations of fast particle suppression in QI configurations were conducted
in two very recent publications [51, 234], showing significant improvements of fast
particle confinement compared to W7-X or Helias 5 levels. Values for 𝑓𝛼,wall-peak are
modelled in subsection 3.2.3. The optimistic value for 𝑓𝛼,wall-peak assumes a reduction
of hotspot like thermal loads at the walls by a factor of 3 (arbitrarily chosen), e.g. by
coil ripple reducing techniques, stochastisation in the scrape-off-layer (a higher edge
𝜄) or by other means of load mitigations. Note, that the alpha wall load power will
not serve as a direct constraint here, as the potential mitigation techniques of heat
loads by reduction of losses by optimisation or by employing respective technology is
not yet sufficiently explored: e.g. it appears possible to reasonably address localized
heat loads by installing divertor like cooling at respective positions if the losses are
localized and the location of the deposition patterns are resilient for different plasma
parameters. To address for this uncertainty, the respective thermal fast particle peak
wall-power is only reported as output parameter after the optimisation.

The conservative value for the static first wall thermal load by radiation is taken
from calculations in [99], which used a EUROFER-97 first wall, relying on water
cooling with flow speeds of 8 m/s and a heat transfer coefficient of 100 kW/m2/K
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(1.5 MW/m2 is chosen here as a mean value for the reported parameters in [99]).
The conservative blanket size takes the required radial size from [213] for an ‘helium-

cooled-pebble-bed’ (HCPB) blanket concept [270]. As mentioned earlier, the advanced
value of only 60 cm required radial space can be assumed when taking a blanket con-
cepts with less structural materials, without the typical box manifolds or back-platings,
which are parts with pure structural and no breeding or neutron multiplicative pur-
poses, that most blanket designs require. An example of such a concept is the FLiBe
immersion blanket, as proposed by the ‘ARC’ project [230].

Available gyrotron frequencies refer to slightly higher frequency gyrotrons than
forseen for ITER (170 GHz). The respective limit was presented in section 2.2.5.
Advanced values of 400 GHz should be realizable too: pulsed gyrotrons with > 1MW
power, 10 ms pulse length and up to 670 GHz were proposed already in 2012 [271].
This pulse length might even be sufficient for reaching ignition, but this hypothesis
would require further investigations. In general, higher gyrotron frequencies in first
order only require higher magnetic fields within the gyrotrons, which appears tech-
nologically possible, given the recent advancements in fabricating high temperature
superconductors at industrial relevant scales [265].

There are numerous other assumptions and specific models included in Process,
e.g. the models to calculate electric power demand by the superconducting coils,
pumping powers of coolants in first wall, shield and blanket, as well as electricity
conversion efficiencies. No further in-depth assumptions or model descriptions of them
can be provided here, but the most prominent underlying models are described in [132,
133] and in respective publications to dedicated models, e.g. [121, 212, 272]. Also
chapter 4.4 in a recent PhD Thesis [273] gives a short revision of the 1990$ cost model
that is also used in the following Process runs.

The respective Process setup in this section is listed in Table 4.2. Here, the
capabilities of Process shall be used to find most cost-effective, ignited reactor
design point, that is consistent with all applied constraints. More specifically, with
the setup used here, a two step optimisation is performed. First, Process converges
to the most cost effective ignited design points, varying magnetic field 𝐵, major radius
𝑅, overall density 𝑛, overall temperature 𝑇, coil width and winding pack material
compositions. Then, a second optimisation of the found design point is performed at a
fixed major radius, but the rest of the other parameters stay free iteration parameters
and a maximization of net electric power is performed. This two step approach ensures
a design point that is feasible not only from a capital costs perspective but also targets
‘economic’ operation by maximizing the fusion performance at fixed device size.

Design point analysis (Physics parameters).
A selection of Process output parameters of this run are listed in Table 4.3. Due

to less restrictive blanket constraints (only 40cm blanket + 20cm shield space are
assumed), the advanced design point can operate at a minor radius of 1.02 m, while

100



4.1. Helias Reactor Design Points

Table 4.2.: Process set-up as used in this section. The optimisation is run in two
steps. First the design is optimised for capital costs, then the found point is used
for a second run, where the major radius is fixed and Process is used to vary
the optimisation vector with respect to maximized net electricity output. Enforced
consistency equations, like thermal helium pressure or the global power balance, are
not listed here.

PROCESS set-up

Optimisation Target
1. Minimize capital costs
2. Maximize net electricity output

Optimisation Vector
1. 𝐵, 𝑅, 𝑛, 𝑇, coil width, winding pack composition
2. 𝐵, 𝑛, 𝑇, coil width, winding pack composition

Constraints
• Require ignited design points, 𝑄 ∼ ∞
• An upper beta limit, 𝛽 < 5%
• Coil quench protection
• Build consistency
• A fixed blanket space (as defined in Table 4.1)
• A maximal coil ground insulation stress of 400 MPa
• An upper divertor heat flux limit of 10 MW/m2 (Assuming 85% radiated power

in SOL due to detachment)
• O1 ECRH ignitability
• Max. 1.5 (2) MW/m2 neutron wall flux
• Max. 1 MW/m2 thermal radiation wall power density

the conservative point with an imposed 1.2 m blanket space is found at 1.39 m minor
radius to achieve the required blanket space for the blanket. Both design points are
significantly smaller than the Helias 5-22 engineering study [3], while still operating
at similar magnetic field strength of 5.8 T on axis. The trade-off is a lower fusion
power, of about 2300 MW for the conservative design and 1000 MW for the advanced
design. Still, both design points are modelled to run ignited, 𝑄 ∼ ∞.

From a physics point of view, both design points are in a similar regime, which can
be seen from the 𝛽 values, the collisionality 𝜈⋆ and the normalized gyro-radius 𝜌⋆ values.
Figure 4.1 puts the normalized gyro-radius and the collisionality into perspective
with other experiments and suggested designs. Both of the here suggested designs,
together with the actual Helias 5-22 design point [3, 245], are located at moderate
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Table 4.3.: ‘Optimal’ design points of a configuration with ‘advanced’ and ‘conservative’
technology assumptions of the Helias 5 line. The designs were first optimised with
respect to capital costs and then, at fixed major radius, maximized with respect to
net electric output.

Description Advanced Conservative

Net Electricity Output [MW] 298 789
Fusion Power [MW] 1070 2370

Major Plasma Radius [m] 12.5 17.1
Minor Plasma Radius [m] 1.02 1.39

Plasma Volume [m3] 254 651
Tor. 𝐵-field [T] 5.86 5.81

ISS04 Renormalization Factor [1] 1.77 1.38
Peak Electron Density [1/m3] 3.35 × 10+20 3.29 × 10+20

Peak Electron Temperature [keV] 15.6 16.0
Relative Helium Density (to 𝑛𝑒) [1] 3.16 × 10−2 6.93 × 10−2

Global Thermal Energy Confinement Time [s] 1.32 1.63
Plasma Beta [1] 5.00 × 10−2 5.00 × 10−2

Required Electron Effective Chi (0D) [m2/s] 6.98 × 10−2 0.103
Heat Flux from 0D scaling [MW/m2] 0.175 0.191

4× neocl. 1/𝜈 electron Flux [MW/m2] 1.20 × 10−2 0.161
Normalized Gyro Radius [1] 3.39 × 10−3 2.53 × 10−3

Electron Collisionality [1] 1.33 × 10−2 1.78 × 10−2

Tritium Burn up Fraction [1] 6.33 × 10−2 0.139
Max. Field on the Coils [T] 12.7 11.6

Stored Magnetic Energy [GJ] 22.6 57.0
Total Coil Current [MA] 382 519

Winding Pack Current Density [MA/m2] 4.87 × 107 2.96 × 107

𝑗𝑜𝑝/𝑗𝑐𝑟𝑖𝑡 [1] 0.800 0.755
Winding Pack Toroidal Thickness [m] 0.362 0.541

Winding Pack Radial Thickness [m] 0.434 0.649
Max. Force Density [MN/m] 42.0 51.7

Approx. Ground Insulation Coil stress [MPa] 116 95.6
Quench Dumping Time [s] 2.33 12.2
Max. Quench Voltage [kV] 11.0 2.75

Total Coil Mass [kg] 1.70 × 106 4.28 × 106

Coil Support Structure Mass [kg] 1.60 × 106 2.94 × 106

Total Cooled Mass [kg] 5.55 × 106 1.25 × 107

Recirculating Power Fraction [1] 0.365 0.260
Peak Radiation Wall Load [MW/m2] 0.877 0.992

Average Neutron Wall Load [MW/m2] 1.26 1.50
Blanket Lifetime [y] 5.27 4.44

Capital Costs [PCU] 3650 5140
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Figure 4.1.: Normalized Gyroradius against collisionality of several proposed and
realized tokamaks and stellarators. The advanced and conservative Helias 5 design
points suggested in this section are denoted with ‘Helias 5-Cons.’ and ‘Helias 5-
Adv.’ Italic font refers to suggested or planned designs, upright fonts to actual
experiments. Note that most of the experiments operate in a range of 𝜈⋆ and 𝜌⋆,
and only their ‘typical’ values are shown here.

collisionalities compared to most tokamaks reactor or pilot plant design-concepts. In
fact, in this representation, the Helias reactor line is situated between Wendelstein
7-X and JET and near ASDEX Upgrade (AUG). That stellarator reactors can operate
in a regime of 𝜌⋆ and 𝜈⋆ that is already experimentally probed, is a consequence of the
decoupling of the plasma density from the Greenwald limit, which allows stellarators
to operate at significantly higher densities and thus lower temperatures compared to
tokamaks. An operation point at lower temperatures is also required from a transport
perspective in stellarators: neoclassical heatfluxes scale with 𝑇 9/2 in stellarators and
are only suppressed by respective optimisation of the effective helical magnetic ripple
𝜖eff.

Here, the advanced design point was assumed to feature an effective helical ripple
of 𝜖eff ∼ 10−3. The conservative assumptions had 𝜖eff ∼ 10−2, in line with the actual
value for the Helias 5 configuration [245]. The resulting (approximate) neoclassical
heat fluxes for these values and their share to the required overall heat flux is shown in
Figure 4.2, using the model from Equation 2.17. The logic of this diagram is as follows:
the confinement time scaling induces a certain heat flux which is the length of the
overall bar in Figure 4.2. Based on the gradients, the neoclassics model then estimates
a neoclassical share of the heatflux. To achieve consistency, the left-over between the
total heatflux and the neoclassically modelled flux is required to be filled by turbulent
fluxes. Of course, the neoclassical model is more an order of magnitude check than a
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rigorous calculation. It is a conservative estimation of the neoclassical 1/𝜈 transport.
The results from Figure 4.2 indicate that a value of 𝜖eff ∼ 10−2 is likely not sufficient
for this design point, as the design point would be dominated by neoclassical transport
and the turbulent flux would need to be suppressed to negligible values. To this date,
it is unclear, how far the turbulent flux can be suppressed, as predictive calculations
for the turbulent flux are barely available and have not been demonstrated to sufficient
levels. A value of 𝜖eff ∼ 10−3 instead leads to a scenario where most of the energy
confinement time heat flux can be caused by a turbulent contribution and thus the
modelled total heat flux by using the energy confinement time is thus more in line
with the expected turbulent heat flux. It should be noted that Equation 2.17 is only
an estimation for the neoclassical fluxes in the 1/𝜈 regime, and an exact calculation of
neoclassical fluxes would provide more quantitative answers. Such a calculation can
be made, as soon as first reactor relevant stellarator configurations, with sufficiently
suppressed neoclassical transport are available. First configurations for next step
quasi-isodynamic configurations are proposed in [51].

The local fast particle wall loads can be estimated too: by using the simulated
wall peaking factor for Helias 5 from section 3.1 and the calculated alpha particle
confinement factor 𝑓𝛼, the peak fast particle flux for the conservative design is ob-
tained. From Figure 3.13, the wall peaking factor, determined by the ratio of peak
heat flux divided by average heat flux, for the fast particle load was simulated to be
𝑓𝛼

peak =
𝑝𝛼

peak

𝑝𝛼
peak

≃ 320. For the advanced design, a mitigation method of the peak loads
by a factor of 3 was assumed, so 𝑓𝛼

peak = 100 instead of 320, and the fast particle con-
finement fraction was assumed to be 95%. A possible list of hypotheses of mitigation
techniques for fast particle load peaking was discussed in subsection 3.2.4. Figure 4.3
shows the resulting fast alpha particle wall power magnitudes: the first wall would
need to cope with ∼12 MW/m2 peak fast particle thermal loads for the conservat-
ive design and with ∼0.8 MW/m2 peak loads using the advanced assumptions. To
stay below a commonly taken peak wall load limit of 1 MW/m2, this means that
a Helias 5 design would require an improvement of the fast particle confinement
fraction from 80% to 95% and in addition a reduction of the fast particle wall loading
peaking factors by a factor of 3 by appropriate measures.

Design point analysis (Engineering parameters).
The tritium burn-up fraction, which describes the fraction of tritium that is fused

to helium ash after injection, of both designs differ significantly: The burn-up fraction
is 6% for the advanced design compared to 14% for the conservative design. This
difference is a consequence of the imposed helium particle confinement time to energy
confinement time, 𝜏⋆

𝐻𝑒

𝜏𝐸
. This shows that a trade-off has to be taken when designing 𝜏⋆

𝐻𝑒

𝜏𝐸
,

as easier burn conditions are reached when 𝜏⋆
𝐻𝑒

𝜏𝐸
is low (less helium ash accumulation
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Figure 4.2.: Comparison of the heat flux as modelled by Process using ISS04 with
the modelled neoclassical flux magnitude using Equation 2.17.

Figure 4.3.: Peak fast particle heat fluxes of the two Helias 5 designs as obtained
by differently imposed fast particle confinement fraction 𝑓𝛼. The peaking factor of
the fast particle heat loads is obtained by gyro-center monte carlo slowing down
simulations of the full Helias 5 configuration and is found to be 320 (compare to
Figure 3.13).

in the core), but then again tritium handling is aggravated. The ratio 𝜏⋆
𝐻𝑒

𝜏𝐸
can be

designed for if and only if the particle transport can be manipulated independently
of the energy transport. Tools here could be anomalous particle pinches [274–276] as
well as neoclassical particle transport [185, 277].

The peak force densities per coil are about 40 and 50 MN/m respectively, which is
about 50% smaller than the tokamak DEMO 2015 design [130, 278]. A qualitatively
smaller value here is expected, as the forces scale with peak magnetic fields, which
again scale with the aspect ratio of the machine. This scaling can be understood in
first order from the peak magnetic field in an ideal toroid, which scales with ∼ 1

𝐴
at

fixed minor radius, where 𝐴 is the aspect ratio.
Even though a stellarator has no current drive and the design points were assumed

to be ignited, they both still feature a significant recirculating power fraction of 36%
and 26% respectively. This is due to the power consumption by the cryoplant, the
non-superconducting bus joints of the coils, which generate heat losses by their finite
electrical resistivity, and, most importantly, the primary pumps of the coolant for the
breeding blanket and the neutron shield. A detailed analysis of electric power balance
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Figure 4.4.: Top: Total modelled capital costs of investments. Bottom: Breakdown of
the plant direct costs (the bottom bar in the top plot).

is beyond of the scope of this thesis.
The blanket lifetime of 4 to 5 full power years (fpy) corresponds to an imposed

material limit of assumed 50 dpa (displacements per atom) in EUROFER-97 steel. For
this, the model within Process assumes that a static neutronic load of 1 MW/m2

corresponds to 10 dpa/fpy in EUROFER-97 steel. The peaking factor calculated in
subsection 2.3.3 would further reduce this lifetime by a factor between 1.2 and 1.6
(dependent on the wall geometry, as it was shown in [131]).

Also the overall plant cost was modelled: despite the fact that the smaller device
has less than half of the total cryogenically cooled mass, the overall capital cost of the
advanced point was only modelled to be be reduced by about 30%. The compositions
of the modelled capital costs for both designs are shown in Figure 4.4. The main
difference in the cost arises from larger costs in structure and site facilities (due
to a larger machine), a larger cost for reactor systems (due differences in fusion
power) and a larger contribution for magnet costs. Other costs are fixed costs, such
as maintenance equipment, instrumentation and control or fuel handling. Next to a
relative comparison, Figure 4.4 also serves as a quantitative estimation of component
costs of a stellarator fusion power plant, as modelled by Process. Assumptions for
the cost model were a cost of money of 15% during construction, a construction time
of 6 years, a contingency factor of 15%, a cost of money factor of 6% during operation
and no discount factor.
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Conclusion.
In conclusion, new, quantitative values for a two Helias 5 designs points were

modelled for optimised costs and high fusion performance. Such an analysis was
enabled by the implementation of the models in chapter 2 in Process and is
done here for the first time. In addition, two differently aggressive sets of physics
and technology assumptions were taken, which lead to different design points. The
‘advanced’ set of assumptions leads to a design point which is about 30% more cost
effective than the conservative set of assumptions, but only features 1 GW fusion
power compared to 2.3 GW fusion power but the conservative design point. The
difference here is a consequence of the imposed deliverable: Process was set-up to
find the smallest ignited device size for both set of assumptions.

Figure 4.5 shows the limiting constraints of both found design points: the con-
servative design is limited by the imposed neutron power wall load limit, while the
advanced design point is limited by quench restrictions due to a higher winding pack
current density. Both designs are at the same time also limited by the coil-plasma
distance, which was also found to be the case for 3 and 4 field period HELIAS-devices
with lower aspect ratios, which was shown and reported in [130] and is not repeated
here. The coil-plasma distance constraint is interconnected to the limiting coil quench
protection constraint, as a higher coil-plasma distance would also allow for larger
winding packs, thus easing coil quench protection.

It appears confusing at first sight that the maximum magnetic field of the REBCO
superconducting design is limited to 12.7 T at the coils. Such field strengths could be
obtained with the ‘conventional’ low temperature Nb3Sn superconducting material
as well, as the conservative design point shows, and it appears even be possible
with NbTi at superfluid helium temperatures of 1.9 K [279]. In fact, an ignited
design at 13.0 m major radius with the implementation of NbTi at 2.2 K (1.9 K
plus 0.3 K safety margin) and with the same blanket assumptions of the ‘advanced’
configuration could be found (not shown) at nearly identical plasma and machine
parameters. Considering that REBCO type superconductors can in principle reach
twice the fields, makes it clear that it requires improvements in other technologies
in order to exploit their advantages. Foremost, the quench restriction needs to be
improved, which could be done e.g. by using a higher degree of copper purity2, compare
Figure C.1 in Appendix C. This would increase the cryogenic electric resistance and
thermal conductivity of copper, which drastically would ease quench protection by
allowing higher quench dumping times. Another method would involve decreasing
the vacuum vessel stress during a quench (this is the limiting factor as can be seen
from Figure 4.5), as a mitigation of this factor would allow for smaller exponential
quench dumping times. At the same time, the quench detection time has to be kept
low, which is exceptionally difficult for high temperature superconductors.

2the effect of neutron damage on the copper purity (RRR) value needs to be considered here
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Figure 4.5.: Constraints of found Process design points of the two configurations
as defined in Table 4.1, at 2370 MWt (thermal MW) and at 1070 MWt fusion
power respectively. A value of 1 means that the respective value is at the imposed
limit/constraint.

In addition to a reduced quench restriction, also the neutron and photon wall load
limits need to be relaxed in order to fully benefit from the high critical current density
of REBCO: when relaxing the quench constraints and the heat flux limits (by simply
turning them off), a REBCO design can be found with Process at 8.5 T magnetic
field strength on axis, 22 T strength at the coils, 11.8 m major radius, 3 GW fusion
power, 3 MW/m2 peak photon loads (using a peaking factor of 3) and 5 MW/m2

neutron loads. The benefits of high temperature superconductors for fusion power
plants are thus tightly coupled to quench constraints, as well as first wall and blanket
technology advancements.

4.2. Sensitivity of Stellarator Pilot Plant Design-Points – An
Uncertainty Propagation

In the previous section, Process was used to find design points for an ignited power
plant using different technology and physics assumptions. However, by changing the
cost function, the code can also be used to evaluate design points of ‘inter-mediate
size’ machines. This is demonstrated in this section, taking uncertainties on certain
input parameters into account.

To bridge the gap between experimental devices and full fusion power plants, it is
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common practice to propose intermediate step devices, which are situated between
an anticipated fusion power plant in terms of plasma physics (𝛽, 𝜌⋆, 𝜈⋆) but also in
terms of engineering parameters, like major radius, magnetic field and heat exhaust
power. Such a device allows to quantify or mitigate not only physics risks but also
allows to gain experience in manufacturing, handling and reactor technology on a
comparably short timescale, as relevant steps, like fabrication and machining methods
can be learned without the requirement of constructing the full scale machine. It is not
obvious however if intermediate machines accelerate the path to commercial fusion
in general though, but they certainly allow for a more risk-averse path.

Prominent examples for intermediate step devices are ITER [280], CFETR [281] or
SPARC [282], although ITER probably would not fall under the criterion ‘short times-
cale’. SPARC e.g. will be useful to test and compare technologies at required heat-
and high 14 MeV neutron fluxes, as well as investigating fusion burn in a magnetic
confinement device. A similar idea for stellarators was presented in [283], suggesting
an intermediate step size stellarator along the Wendelstein 7-X line with NbTi su-
perconductors using a previous version of Process. A stellarator intermediate step
would not only be useful to demonstrate fusion burn in a stellarator magnetic field,
but also to explore 3D complications in blanket manufacturing and handling as well
as coil manufacturing at a relevant scale.

Methodology.
It is useful to repeat a similar exercise as conducted in [283] with two modifica-

tions developed in this work: First, high-temperature superconductors (HTS) can be
used as current carrying material in the coils. This technology features dramatically
higher critical current density at high magnetic field strengths than conventional
low temperature superconductors. As discussed in the previous section, Process
uses a parametric form of the critical current density to model the critical behaviour
of the superconductor. For REBCO superconductor material, the model relies on
measurements from [223], while using the material values for the Ginzburg-Landau
critical surface model for the fit function from [284]. When considering HTS, it is
important to also include a form of stress constraint, limiting the winding pack current
density from above. For this study, we use the model presented in Equation 2.74 with
pre-calculated values of the coil forces.

The study in [283] required ∼ 1 day for 256 Process runs (in serial). The pre-
processing step, as reported in section 2.1, allows executing the same number of runs
in the order of 1 minute on a single CPU, depending on the dimensionality of the
problem (higher dimensional problems can take up to ∼ 5 minutes on a single CPU).
This speed-up allows to include uncertainties in Process runs for parameters that
are not exactly known a priori. Such a parameter is e.g. the energy confinement quality
of a device. For instance, it is not clear to which degree a stellarator can achieve
H-mode-like confinement and under which conditions. Turbulence reduction methods
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used in stellarator optimisation are still under development [143, 144, 285, 286] and
the respective uncertainty is unknown. For this purpose, the turbulence mitigation
uncertainty will be expressed by the ISS04 energy confinement time proportionality
factor 𝑓ren. In addition to energy transport, also the particle confinement time is
crucial and especially the transport of thermal helium, which can be expressed by the
ratio of thermal helium particle confinement time to energy confinement time 𝜏⋆

𝐻𝑒/𝜏𝐸.
Lastly, uncertainties of the heating fraction of the fast particle energy, 𝑓𝛼, will be
included, which ranges between 90 % and close to 100% for optimised stellarators [50,
146]. It is not yet clear to which degree the confinement quality shown in recent
publications can be maintained in multi-objective optimisation problems. Recent
work has shown that the metric can be maintained at finite 𝛽 [49], but to which
degree other metrics such as MHD stability, coil simplicity or iota targets can be
fulfilled remains to be investigated.

If one quantifies the uncertainties of these parameters, one can create respective
stochastic samples, drawn from the assumed initial distribution function. This allows
to answer questions such as: if we were to design a 𝑄 = 10 stellarator device now,
which device, in major radius 𝑅 and magnetic field 𝐵 would result in a 95% confidence
of achieving 𝑄 = 10, given uncertainties in 𝑓ren, 𝜏⋆

𝐻𝑒/𝜏𝐸 and 𝑓𝛼.
To answer this question, Process can serve here as a black-box function, mapping

the machine parameters 𝐵, 𝑅 to 𝑄, given normal-distributed uncertainties 𝜎𝑖 around
mean values 𝜇𝑖 with 𝑖 ∈ {𝑓ren, 𝑓𝛼, 𝜏⋆

𝐻𝑒/𝜏𝐸} and similarly respect imposed constraints,
such as heat flux limits. The idea behind this approach is to find a set of machine
parameters 𝐵,𝑅 such that once the machine is built, a certain minimal 𝑄 is achieved
with a required probability, given the assumed models and uncertainties. It thus asks
the question of how much over-engineering, or safety margin, would be required for a
𝑄 = 10 device.

The respective Process set-up for every fixed 𝐵, 𝑅, 𝑃aux is listed in Table 4.4. Only
𝑛𝑒,0, 𝑇𝑒,0 are varied here and the fusion gain 𝑄 is maximized, subject to constraints
on the beta limit, a neutron wall power limit and a radiation wall power limit of 2
MW/m2 each. Also the build consistency and the max. coil ground insulation stress
is enforced, but although not changed by the optimisation of 𝑛𝑒,0 and 𝑇𝑒,0 alone.

In addition, the input parameters 𝑓ren, 𝑓𝛼, 𝜏⋆
𝐻𝑒/𝜏𝐸 are randomly sampled, indexed

by 𝑖, according to a probability function 𝑃 in

∀𝐵,𝑅, 𝑃aux ∶ 𝑃 (𝑋𝑖) =
𝑒− 1

2
( 𝑋𝑖−𝜇𝑖

𝜎𝑖
)

2

𝜎𝑖
√

2𝜋
,𝑋𝑖 ∈ {𝑓ren, 𝑓𝛼, 𝜏⋆

𝐻𝑒/𝜏𝐸}, (4.1)

where 𝑃 is the probability of the value 𝑋𝑖 that is sampled with 1300 samples for
every 𝐵,𝑅, 𝑃𝑎𝑢𝑥 value. 𝜎𝑖 refers to the standard deviation around the mean value 𝜇𝑖.
The assumed uncertainty are 𝑓ren = 1.4 ± 0.07, 𝑓𝛼 = 0.94 ± 0.02 and 𝜏⋆

𝐻𝑒/𝜏𝐸 = 6 ± 1
(the uncertainty here refers to 𝜎𝑖), and the respective prior probability distribution
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Table 4.4.: The Process set-up in this section. The parameters 𝑛𝑒,0, 𝑇𝑒,0 are varied
while keeping 𝐵, 𝑅, 𝑃aux fixed for several combinations. In total, 1.6 Million Pro-
cess runs are performed with this set-up for varying 𝐵, 𝑅, 𝑃aux and the imposed
uncertainties on the input parameters, listed in Figure 4.6.

PROCESS set-up

Optimisation Target
• Maximize fusion gain 𝑄

Optimisation Vector
• Optimised for 𝑛𝑒,0, 𝑇𝑒,0

Constraints
• An upper beta limit, 𝛽 < 5%
• Build consistency
• Max. coil ground insulation stress of 400 MPa
• Max. 2 MW/m2 neutron wall power
• Max. 2 MW/m2 radiation wall power

functions are taken as normal distributed and are shown in Figure 4.6. The uncertainty
in 𝑓𝛼 is informed by current best configurations (compare values from subsection 3.2.1).
To which degree the assumed uncertainties in 𝑓ren and 𝜏⋆

𝐻𝑒/𝜏𝐸 reflect reality is not
fully settled. There are no a priori models for the uncertainties of 𝑓ren in turbulence
dominated operational regimes of stellarators, as well as for 𝜏⋆

𝐻𝑒/𝜏𝐸, which likely is
also turbulence dominated. The degree of uncertainty on 𝜏⋆

𝐻𝑒/𝜏𝐸 can in principle
be estimated by data from Wendelstein 7-X, but no publication on the regard is
present yet. This is due to the fact that in order to estimate the particle confinement
time, the particle fluxes need to be well known, which is again dependent on the
recycling flux. There is no direct diagnostic measurement of the recycling flux profile,
which makes it hard to estimate the uncertainty on 𝜏⋆

𝐻𝑒/𝜏𝐸 within physically relevant
bounds. For now, the assumed uncertainties in Figure 4.6 should be taken as assumed
input distributions.

Note that, differently to the study in the previous section, there is no blanket
constraint enforced and in addition, no quench constraint is being used (only the
stress constraint in Equation 2.76), which allows Process to find design points
with significantly larger magnetic field strength. However, the peak magnetic fields
relevant for the REBCO superconductor are still being calculated rigorously, so all
design points are in line with imposed critical current density parametrization of
REBCO, as shown in Figure 2.16.
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Figure 4.6.: The assumed probability distribution functions on the uncertainty of the
three chosen stellarator optimisation targets, 𝑓ren, 𝑓𝛼 and 𝜏⋆

𝐻𝑒/𝜏𝐸, which is used to
model the sensitivity on the fusion gain 𝑄 in this section.

Figure 4.7.: Found uncertainties on 𝑄 of a stellarator fusion pilot plant using an aspect
ratio of 12.5 and with fixed device size, magnetic field and auxiliary power. 𝑎 stands
for the minor radius of the machine, 𝐵 for the axis averaged magnetic field strength.
Prior uncertainties were 𝑓ren = 1.4 ± 0.1, 𝜏⋆

𝐻𝑒/𝜏𝐸 = 6 ± 1 and 𝑓𝛼 = 0.94 ± 0.02.
Error values refer to the 1𝜎 interval of a normal distribution. Dashed vertical lines
indicate the 95 % quantile of each distribution: 95% of the distribution is to the
right of these vertical lines. The second peak arising stems from points that would
ignite if not due to 𝛽
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Results.
A selective set of output distributions of the fusion gain 𝑄 with respect to varying

magnetic field and device size is shown in Figure 4.7. Figure 4.7 shows the probability
distribution function of 𝑄 for a machine size, a fixed installed power and for a fixed
magnetic field strength. For every set of machine parameters 𝐵, 𝑅 and 𝑃aux, the
probability distribution function is obtained from 103 Process runs of the fixed
input point with Monte Carlo sampled 𝑓ren, 𝑓𝛼, 𝜏⋆

𝐻𝑒/𝜏𝐸 using a truncated Gaussian
kernel. In Figure 4.7, two peaks are apparent, one peak at lower Q values of 1 − 10
and a separate family of peaks at higher 𝑄 values, located at 𝑄 > 20. Dashed vertical
lines show 95% confidence intervals, and solid vertical lines refer to the 50% quantile,
or the expected value.

The fact that two peaks are visible in Figure 4.7 is arising from the fact that the
right peak, at higher 𝑄 values, is situated past the ‘Cordey-Pass’, which refers to the
point in density and temperature at which the installed auxiliary heating power is
sufficient to reach ignition if it were not for the exhaust and 𝛽 limit preventing this:
the second peak not reaching ignition (𝑄 ∼ ∞) is due to the imposed < 2 MW/m2

peak radiation wall load limit. Figure 4.8 demonstrates this point in a ‘POPCON’ plot,
which shows iso-contour lines of different quantities in an ⟨𝑛⟩-⟨𝑇 ⟩-diagram. Shown
there are the two peaks for the design point with 9 Teslas and 𝑎 = 0.64 Meters at 45
MW auxiliary power. The 1300 Process points are shown by plotting the 20%, 68%
and 95% quantiles in closed black circles. The first peak at low 𝑛, 𝑇 refers to values
with comparably low 𝑓ren, while the second peak is the point where the installed
auxiliary power is sufficient to achieve ignition. Lines of constant auxiliary power
density are plotted by the grey background lines in Figure 4.8. In the middle there is
the ‘Cordey-Pass’, which acts like a ‘hill’ that needs to be overcome on the way to
ignition.

From Figure 4.7 one can see that, in order to achieve 𝑄 ∼ 10 with 95% certainty, a
magnetic field of 𝐵 > 9 T and a minor radius of 𝑎 > 0.72 Meters would be required, or
a magnetic field strength of 𝐵 > 10 T and a minor radius of 𝑎 > 0.64 Meters. The 95%
quantile is close to the 𝑄 = 10 value for both of these parameter sets, as indicated
by the vertical dashed line in the plot, which means that 95% of the distribution is
modelled to be situated at higher fusion gain values. Most of the high-𝑄 part of the
distribution is gathered in the ‘second peak’, which refers to design point that could
ignite, if not for an imposed plasma-𝛽 or the imposed thermal radiation wall load
limit.

These design points here refer to scenarios that likely can be achieved with the
critical current density of modern REBCO superconductor cables if the respective
stresses can be coped with. The calculated field strength at the coils were calculated
as 19 Teslas. The stress on the coil ground insulation was modelled as 300 MPa, which
is potentially very close to the stress limit.

Note, that these results obtained in this section depend on the assumed inputs: not
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Figure 4.8.: POPCON plot of a Process design point with 9 Teslas and 𝑎 = 0.65
Meters. The two red region indicate the found Process design points for the prior
uncertainties as defined in Figure 4.6. The background lines are calculated using a
0D power balance as defined in Appendix A for a fixed set of parameters: a minor
radius of 𝑎 = 0.65 Meters, a on axis magnetic field strength of 𝐵 = 9 Teslas, a helium
particle confinement time over energy confinement time of 𝜌 = 5, a small impurity
fraction and an ISS04 confinement time improvement factor of 𝑓ren = 1.6. Grey
background lines indicated required auxiliary heating power density in MW/m3.
The black circles around red regions enclose respectively 20%, 68% and 95% of the
found design points. One can observe that one peak is below the maximum required
auxiliary power density while the other peak (consistent of points with comparably
high 𝑓ren) is located at the imposed peak thermal radiation load limit of 2 MW/m2.
If not for the wall load limit (and eventually the 𝛽 limit, here indicated in blue),
these design points would be ignited, given the imposed models.
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only on the chosen values of 𝑓ren, 𝑓𝛼, 𝜏⋆
𝐻𝑒/𝜏𝐸, but also on their uncertainties.

Conclusion.
Based on the results of this section, a stellarator pilot plant design which aims for

𝑄 = 10 design goal with 95% confidence and with the given a priori uncertainties
in 𝑓ren, 𝑓𝛼, 𝜏⋆

𝐻𝑒/𝜏𝐸, would have high chances of igniting if the imposed thermal wall
load limit can be mitigated. A stellarator pilot plant design with 𝑓ren = 1.4 ± 0.07,
𝑓𝛼 = 0.94 ± 0.02 and 𝜏⋆

𝐻𝑒/𝜏𝐸 = 6 ± 1 designed at a minor radius of 𝑎 = 0.72 Meters
and magnetic field of 9 Teslas, as well as with an installed auxiliary heating of 45
MW (at an aspect ratio of 12.5) fulfils the 𝑄 = 10 with 95% confidence, but at the
same time could also operate ignited with 95% confidence, if not a wall load limit
would prevent this.

These results suggest that probably there would be no point in pursuing a new
stellarator pilot plant device with a robust target of 𝑄 = 10: given the high ignition
chances of such a device, it likely should be designed to be operate-able in ignition
mode, in terms of wall loading and control mechanisms. This argument relies on the
fact that one wants to achieve the desired 𝑄 = 10 goal within a high confidence level
of 95%.

4.3. Addressing the Weighting Problem in Stellarator
Optimisation

As systems codes employ holistic models to simulate overall properties of consistent
design points, and implement a single penalty cost function, e.g. the overall economics
of the plant, such tools can also be used to investigate importances of targets in
stellarator optimisation. Such an application is demonstrated in this section.

Stellarator optimisation is a necessary step when designing modern advanced stel-
larator configurations. Usually, stellarator optimisation uses a squared sum penalty
function,

𝜒2 = ∑
𝑖

𝑤𝑖(𝑓𝑖 − 𝑓𝑖0)2, (4.2)

where every constraint 𝑓𝑖 is associated with a weight 𝑤𝑖 and a target value 𝑓𝑖0.
Examples for 𝑓𝑖 are good fast particle confinement, low coil curvature, large coil-coil
gaps, large coil-plasma gaps or good MHD properties.3 When the cost function is
written like in Equation 4.2, the relative weighting is usually unclear a priori.

This problem is not present, when there is a well defined cost function available: in
a fusion pilot- or power plant, this cost function likely is the capital costs at certain

3There are more of these constraints and stellarator optimisation is fast growing field. The community
will likely add to this list in the future.
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requirements (constraints), like a minimum required fusion gain 𝑄 or a minimum
required net electricity output. One way of transferring this economic cost function
to the framework of stellarator optimisation is by modelling the capital costs directly
in a stellarator optimisation code, or by using proxy functions. However, achieving
a coherent model for the capital costs is a tedious task, as the development of a
systems code already demonstrates, which requires contributions from many different
fields of expertise to model the requirements of physics, technological and economical
properties. Extracting meaningful proxies while including the relevant constraints is
not only a challenge by itself, but also requires advanced numerical solvers which solve
general non-linear constrained optimisation problems for a very large optimisation
space: for comparison, coil optimisation codes require input vectors of dimension
∼ 100 or larger.

The more approachable ansatz is to use the already existing systems code, whose
purpose it is to directly address such ‘importance’ questions. A systems code frame-
work can provide information about the relative weighting importance ‘problem’ for
a fusion power plant. We will demonstrate such an application, by varying common
stellarator optimisation targets in a fusion pilot plant scenario in Process, and
identify their influence on the performance factor of such a plant, in this case the
capital costs, via a correlation analysis.

Methodology.
To explore this question a Process scenario of an ignited fusion demonstration

power plant is set up, using REBCO type superconductors at liquid helium temper-
atures of 4.5 K.

More precisely, the important aspects of the set-up are listed in Table 4.5. Process
is set-up to iterate the magnetic field 𝐵, the major radius 𝑅, the overall electron
density 𝑛𝑒,0, the overall temperature 𝑇𝑒,0, the winding pack material composition to
find ignited design points with minimal capital costs. For this optimisation a set of
constraints is imposed that is listed in Table 4.5. If the explicit value of the constraint
is not given, it is varied according to the parameters in Table 4.6.

Typical targets in stellarator optimisation are thermal plasma confinement (neo-
classical and turbulent), fast particle confinement, the ratio of particle to energy
transport (although this is not very well explored up to now), the target beta, min-
imal peak coil forces (which is not yet a main focus either, a first approach can be
found in [287]), geometrical distances (coil-coil and coil-plasma) and impurity trans-
port. And in principle, also the peak neutron wall load is a potential optimisation
target [131].

For all these optimisation targets, we Monte Carlo sample the respective Process
parameters within ‘reasonable’ bounds, as listed in Table 4.6, using a uniform
distribution between the minimum and maximum values. The uncertainty should
reflect the order of magnitude of the uncertainties that stellarator optimisation has up
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Table 4.5.: The Process set-up in this section. Ignited power plants are optimized
for with respect to minimal capital costs.

PROCESS set-up

Optimisation Target
• Minimize capital costs

Optimisation Vector
• Optimised for 𝐵, 𝑅, 𝑛𝑒,0, 𝑇𝑒,0 and the winding pack composition

Constraints
• Ignition, 𝑄 ∼ ∞
• An upper beta limit, varied according to Table 4.6
• Enforce quench protection (neglecting quench detection times)
• Build consistency where constraint violation is allowed, according to Table 4.6
• Fix a blanket and shield size of 90cm total
• Max. coil ground insulation stress, varied according to Table 4.6
• Max. (variable) neutron wall power, varied according to Table 4.6
• Max. (variable) radiation wall power, varied according to Table 4.6
• Require a maximal divertor heat load of 10 MW/m2 (85 % SOL radiation fraction)
• Require O1-Mode ignition (at arbitrary gyrotron frequency)

to date. In parts, this uncertainty was chosen rather large: e.g. the ISS04 ‘configuration’
factor 𝑓ren was varied in a range from 1.0 to 1.8. This corresponds to a range between
L-Mode and H-Mode-like confinement [46]. Although H-Mode like confinement was
seen in Wendelstein 7-AS, as discussed in the previous section, so far in Wendelstein
7-X such a regime was not yet observed. In W7-X, highest values for 𝑓ren are obtained
transiently in pellet discharges with 𝑓ren ∼ 1.4 [288].

Using the new Process version for stellarators, with modifications reported in
the previous sections, 3 ⋅ 104 Process runs were conducted, using randomly sampled
input parameters. Density, temperature, magnetic field strength and major radius
were optimised, minimizing the capital costs. This exercise was done for three con-
figurations, a QA configuration (from [129] with newly optimised coils, produced by
FOCUS within this work, as presented already in section 3.1), a QH configuration
(from [129], with preliminary coils produced by ONSET), see Figure 4.9, and a QI
machine (Helias 5, from [245], which was used already in the previous two sections).

Results: Uncertainty Quantification.
The uncertainties of the input parameters can be mapped to the derived output

parameters. Figure 4.10 shows the uncertainty on the found toroidal magnetic field
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Table 4.6.: Chosen parameters for uncertainty propagation. The parameter range
should reflect the magnitude of ‘typical’ uncertainty for every value chosen.

Parameter Min Max

Fast particle confinement fraction 𝑓𝛼 0.81 0.99
ISS04 proportionality factor 𝑓ren 1.0 1.8
Thermal helium fraction 𝜏⋆

𝐻𝑒/𝜏𝐸 3 9
Maximal beta limit, 𝛽𝑚𝑎𝑥 3% 7%

Max. allowable neutron wall power 𝑃𝑤𝑎𝑙𝑙 [MW/m2] 1.5 3
Max. allowable photon wall power 𝑃𝛾 [MW/m2] 1.0 2.0

Max. allowed coil stress 𝜎𝑐𝑜𝑖𝑙 [MPa] 300 500
coil-plasma distance constraint violation (𝑑𝑐−𝑝) -20% 20%

coil-coil distance constraint violation (𝑑𝑐−𝑐) -20% 20%
Oxygen impurity fraction (edge) (𝑓O

imp) 0.0% 0.2%
Tungsten impurities fraction (edge) (𝑓W

imp) 1 ⋅ 10−5 8 ⋅ 10−5

Figure 4.9.: The QH configuration optimised at 𝛽 = 5%, with consistent bootstrap
current by [49] with a (preliminary) coil-set for the QH configuration, as used in
this section. The coil-set was produced by J.-F. Lobsien with the coil optimisation
code ONSET in the scope of this work.
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𝐵𝑡, the major radius 𝑅, the found central electron density 𝑛𝑒,0, the required peak
temperature 𝑇𝑒,0, the fusion power 𝑃fus, the average neutron wall load 𝑃nwl, the
average divertor plate power 𝑃div, and the capital costs 𝐶cap in Process Cost Units
(PCU), which translate to 1990 US$. Process’ costs module should be seen as an
indicative value, rather than a solid price prediction, as specific cost-benchmarks
were not yet published. From Figure 4.10, the expected range of parameters can be
extracted within a confidence interval. Relatively large uncertainties are found in the
device parameters 𝑅 and 𝐵𝑡, following the relatively large uncertainties on 𝑓fren, 𝑑c-p
and 𝑛He

𝑛𝑒
.

The inferred design points vary between 13 − 17 Meters major radius and between
6 − 10 Teslas magnetic field strength. Peak densities vary between 3 − 7 ⋅1020m−3

and central temperatures between 12 − 16 keV. The resulting fusion power ranges
from 500 MW to 2 GW. The divertor power is obtained by applying the model from
subsection 2.3.1 assuming 85 % of the power radiated in the SOL region. With these
assumptions, the divertor heat load was modelled between 1 and 2 MW/m2. The
capital costs, the optimisation target, varies between 5000 − 8000 Process Cost
Units (PCU).

Figure 4.11 shows the correlation of the input parameters to in Figure 4.10 chosen
output parameters. This information should assist the reader to address the question
on which input parameters had which influence on the output parameters in Fig-
ure 4.10, or to which degree parameters need to be improved to achieve a changed
output parameter.

Results: Weighting Hierarchy
The relative importance of every randomly varied input parameter can be addressed

by evaluating their importance with respect to a performance value of the plant, in
this case the capital cost 𝐶Cap. Figure 4.12 shows the dependence of the capital costs
with respect to the input parameters. Shown are 80% and 95% confidence intervals,
as well as the distribution of successful runs (the lower line in green). If the green line
is flat in these plots it means that a solution for all the values was found. If the line
varies along the parameter region, this means that Process finds less valid solutions
in parameter regimes where the green line is comparably low. One example here is
the factor 𝑓ren, where Process does not find valid solutions below 1.4 for the QA
configuration (top row, second left plot in Figure 4.12).

As expected, the most sensitive parameter for the capital cost is identified to be
the confinement factor 𝑓ren in the assumed parameters for a device without imposed
net electricity output. But also, depending on the configuration, the geometrical
distances, the coil-coil distance 𝑑𝑐−𝑐 and the coil-plasma distance 𝑑𝑐−𝑝 have significant
influence on the capital cost. Generally, for the given uncertainties, the capital cost
varies between 4000 and 6000 Process cost units (PCU), which is about ±20%. At
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Figure 4.10.: Probability-densities of Process’ output parameters using uncertainties
as defined in Table 4.6 for an ignited Helias 5 based stellarator reactor, optimised
for minimal capital costs. Thick red lines are iso-contourlines including 20% of the
distribution function, the solid red line includes 68% and the dashed line includes
95%. Note that the plot-grid is symmetric along the diagonal. The diagonal shows
the probability distribution of every chosen output parameter.

𝑓ren ∼ 1.8 this uncertainty lowers and is ±10% for the QI and the QH device, for the
QA device, this factor is even lower and about ±7%.

To show the relative importance in a more condensed, but also more approximate
way, one can take the derivative with respect to the chosen midpoint of the varied input
parameter, which can be calculated by fitting a linear model to the 105 Process
runs, using a least squares fit. The value 𝑋

𝐶Cap

𝜕𝐶Cap

𝜕𝑋
, with 𝑋 being the varied input

parameter (e.g. 𝑋 = 𝑓𝛼), should then be usable as a relative comparison between every

120



4.3. Addressing the Weighting Problem in Stellarator Optimisation
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Figure 4.11.: Correlation matrix of the Monte Carlo sampled input parameters with
respect to the chosen output parameters. The definition of the shown symbols is
explained in Table 4.6. Large negative (red) values indicate negative correlation: an
increase of the value on the left leads to a decrease of the top value. Large positive
values (blue) mean the opposite: an increase in magnitude of the values on the left
lead to an increase of the output parameters.

optimisation target with respect to the capital costs of the plant. This normalized
gradient is listed in Figure 4.13 and demonstrates that large differences exist in
the relative importance of the optimisation target, depending on the design. Every
significant value in Figure 4.13, correlates with the capital costs and the optimisation
should likely be weighted according their relative importance. E.g., stress limits4 are
not important at all for the Helias 5 (QI) device, but somehow important for the
QA device. For the QI device instead, the coil-plasma distance should be targeted
more prominently, while for the QA configuration this distance is sufficiently fulfilled
and the weighting is not important.

Conclusion
In this section, the sensitivity of the capital costs with respect to targetable stel-

larator optimisation parameters was modelled and quantified. For this, a pilot plant
scenario was modelled, where ignition should be reached as cheap as possible. Such a
deliverable is in contrast to a power plant scenario, where a net electricity output of
1 GW was imposed.

Main results on the sensitivity were shown in Figure 4.12. From these results

4With the simplified stress model assumed here, see Equation 2.74.
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Figure 4.12.: Sensitivity of the capital costs of three ignited, different stellarator config-
urations, with respect to several, uniformly distributed input parameters as defined
in Table 4.6. The designs were optimised for capital costs. No net electricity output
was imposed. Little variation (near constant lines) correspond to low sensitivity.
The labels correspond to the fraction of confined fast particles, the ISS04 energy
confinement time proportionality factor, the ratio of thermal helium particle trans-
port to electron energy confinement time, the distance between coil and plasma,
the minimum distance between coils, the oxygen impurity fraction in the plasma,
the tungsten impurity fraction in the plasma, the maximum plasma 𝛽 limit, the
max. allowable neutron wall load and the max. allowable stress level in the coils.
The green curve in the bottom shows the probability distribution function of the
convergence of Process: a large value of the green curve indicates that more valid
solutions are found there.
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Figure 4.13.: Local linear derivatives of capital costs with respect to changes in common
stellarator optimisation targets. From the left, these are fast particle confinement
(𝑓𝛼), thermal plasma energy confinement (𝑓ren), thermal helium particle confinement
(𝜏⋆

𝐻𝑒/𝜏𝐸), impurity confinement of light 𝑓𝑂
𝑖𝑚𝑝 and heavy 𝑓𝑊

𝑖𝑚𝑝 impurities, maximal
𝛽, maximal neutron wall load 𝑃𝑤𝑎𝑙𝑙 and stress constraints 𝜎𝑐𝑜𝑖𝑙𝑠. The range of the
parameters are listed in Table 4.6.

one can see that, for a pilot plant setup, the research and optimisation focus likely
should lie on further increase of confinement, as a relatively good confinement of
𝑓ren ∼ 1.8 is not only the most efficient cost reduction method but also mitigates
other uncertainties for all three designs, as can be seen from Figure 4.12.

This premise changes when imposing a minimal required net electricity for the plant,
and thus studying a ‘power plant scenario’. When repeating the previous study, but
this time imposing 1000 MWe electricity generation and finding the cheapest design
point with Process with this net power output, the new corresponding sensitivity
plot is shown in Figure 4.14 for the Helias 5 device. The change in sensitivities stems
from the changed deliverables. From Figure 4.14 it can be seen that a confinement
above a factor of 1.4 is not beneficial anymore for the economics of a commercial
fusion plant: the capital costs become insensitive to further suppression of turbulence
at 𝑓ren > 1.4. This can be understood as at high confinement factor, a valid design
point at density, temperature, magnetic field strength and machine size is difficult to
find that is in line with heat load limits and 𝛽 constraints.
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Figure 4.14.: Sensitivity of the capital costs of a Helias 5 power plant with respect
to uniformly varied input parameters. The terminology of the symbols is explained
in Table 4.6 and in the text. The runs to obtain the diagram were optimised
for capital costs at an imposed net electricity output of 1000 MWe. This is a
different requirement as the one in Figure 4.12. To allow direct comparison, compare
sensitivities shown here with the lowest row in Figure 4.12, which was optimised for
cheapest possible ignition (no net electricity imposed). Dependencies in 𝑓ren, 𝛽max
and 𝑃NWL are specifically different with changing deliverables of the machine.

4.4. Application to Stellarator Coil Optimisation
The generalization of Process to generic stellarator coil-sets can be used to compare
and ‘judge’ different stellarator coil configurations, which is demonstrated in this
section.

Stellarator coil optimisation is a crucial step when creating a new stellarator config-
uration. A stellarator coil-set can be optimised in two ways, by the ‘two-step’ or the
‘single-step’ approach. In the two step approach, a plasma shape is optimised first,
using a fixed boundary description of the MHD equilibrium. Afterwards, an inner
flux surface is used as target surface for the coil optimisation stage, where the coil
degrees of freedom are optimised to minimize B ⋅ n on the target surface, where B is
the magnetic field vector as created by the coils and n is the normal vector on the
target surface. A respective cost function would be

𝑓𝐵𝑛 = ∫
𝑆

(
B ⋅ n − 𝑇𝐵𝑛

||B||
)

2

, (4.3)

where 𝑇𝐵𝑛 is the magnetic field contribution by the plasma, normal to the plasma
boundary, which vanishes for vacuum optimisations. 𝐵 here is the magnetic field as
produced by the coils and n is the normal vector of the target boundary. Several
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other constraints can be targeted too, like coil length, torsion, curvature, port access,
coil-coil or coil-plasma distances [289–292].

The second method is the single step approach to optimize plasma boundary and
coils at the same time [250, 293]. This approach has already shown very promising
results for vacuum QA and QH configurations [50]. Expanding this method to QI
stellarators or configurations at finite plasma pressure is current object of research
efforts.

One target which is usually left out so far during the coil optimisation stage in
both of mentioned optimisation techniques, are ‘economic’ coil configurations. These
are configurations which require less material to be build, feature smaller forces, or
show a smaller maximal magnetic field strength in the coils but still resemble the
required field to reasonable accuracy. The new coil module in Process, presented
in subsection 2.3.5, allows to model a reactor design point based on different coil-sets
and thus allows for an ‘economic’ comparison of different coil-sets, by calculating the
magnetic field within the conductor area, optimizing for the required winding pack
size and by including super-conductor properties.

To demonstrate such a case, we optimize 200 alternative coil-sets targeting the
Wendelstein 7-X magnetic field using the coil optimisation code FOCUS [246]. Within
the 200 optimisations the coil number is varied, the minor coil radius, and the weight
for the coil length optimisation penalty 𝑓𝐿 (the weight regarding the penalty term
for coils with large conductor lengths). The field error of most of the produced
configurations is likely too large to be considered viable from a confinement point of
view, the best configurations feature an average magnetic field error ||B ⋅ n||𝑆 along
the target surface 𝑆 of 2.4⋅10−3. For comparison, the Wendelstein 7-X coil-set achieves
a value of ∼ 7.4 ⋅ 10−4 for the same metric, as calculated with FOCUS within the
scope of this work. Here, also coil complexity is targeted in the object function, which
usually lowers field accuracy. The reduced coil complexity can be seen in Figure 4.15.

Despite the larger error fields, all the included coil-sets trace out magnetic surfaces
at vacuum: the Poincaré plots for three configurations with different numbers of
coils are shown in Figure 4.16. Good vacuum flux surfaces are observed for all 200
configurations. Generally, good accuracy between target boundary (black) and flux
surface is seen, especially in coil-sets with more coils per period. Figure 4.16 also
shows that resonant islands outside of the targetted boundary are not consistently
reached – only in some of the 200 coil-sets. The reason for this is that the resonance
was not specifically targetted and thus only appears if the field is sufficiently well
matched.

Magnetic islands at the edge are important to allow for island divertors, as discussed
earlier in subsection 2.3.1 and thus, some of the designs included in this study would
not be feasible as coil-sets for a reactor.

Nonetheless, it is not the goal of this section to propose equivalent coil-sets to
W7-X in terms of field accuracy, but rather to demonstrate the capability of the
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Figure 4.15.: Three optimised coil-sets targetting the W7-X vacuum magnetic field.
Blue: The original W7-X coil-set. Yellow: A configuration with 70 coils, Red: A
configuration with 50 coils (similar to W7-X). Only one half-module is shown, the
rest of the coils can be constructed using a flip-mirror symmetry and a discrete
rotational symmetry (stellarator-symmetry).
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Figure 4.16.: Vacuum Poincaré plots of the 𝜙 = 0 plane of three of the 200 coil-sets,
tracing out magnetic flux surfaces. Left: A configuration with 6 coil per period,
Middle: 10 coils per period, Right: 14 coils per period. The black surface denotes
the target boundary at which B ⋅ n was minimized. Colour-coded is a flux surface
coordinate. In the two right plots, one can see the desired island structure at the
edge, which allows for island divertor concepts. The coil-set on the left does not
have the edge island-chain due to comparably large field error.
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Table 4.7.: The Process set-up for the runs in this section.

PROCESS set-up

Optimisation Target
• Minimize Capital costs (strongly correlated with major radius)

Optimisation Vector
• Optimised for 𝐵, 𝑅, 𝑛𝑒,0, 𝑇𝑒,0, 𝑓ren, Winding Pack Composition and quench

timings.
Constraints

• Ignition, 𝑄 ∼ ∞
• An upper beta limit, 𝛽 < 5%
• Enforce quench protection (neglecting quench detection times)
• Toroidal and radial build consistency
• Fix a blanket and shield size of 90cm total (similar to ARC’s anticipated FLiBe

immersion blanket concept [230])
• Max. coil ground insulation stress with variable max. value
• Max. 2 MW/m2 neutron wall power
• Require a maximal divertor heat load of 10 MW/m2 (85 % SOL radiation fraction)
• Require O1-Mode ignition (at arbitrary gyrotron frequency)

new stellarator-PROCESS code to serve as a quick performance indicator for several
coil-sets, hence we also include the coil-sets with less accuracy in the following study.

To determine reactor design points the Process setup as listed in Table 4.7 is
used. Here Nb3Sn at 4.7 K is used as superconductor. Process varies the magnetic
field 𝐵, the overall size of the machine 𝑅, the density 𝑛𝑒,0, the electron temperature
𝑇𝑒,0, the ISS04 confinement factor 𝑓ren, the winding pack composition and the quench
timings in order to minimize capital costs, which strongly correlates with the major
radius. The optimisation is done for ignited design points, while constrained by the
listed constraints in Table 4.7.

Figure 4.17 shows the resulting major radii of the reactor design points for all 200
coil-sets using this Process setup: as expected, the major radii of the design points
strongly correlate with the free distance between coils and plasma at the reference size.
The overall size of the devices is found between 18 and 26 Meters. For comparison, the
original Helias 5 design point was set to 22 Meters major radius [261]. A correlation
between the number of coils and the found major radius is found, reflecting that
less coils require higher coil currents, which again lead to larger cross sections if the
winding pack current density needs to stay constant. As can be seen from the bottom
plot of Figure 4.17, the field accuracy and thus the quality of the coil-set is relatively
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uncorrelated with performance of the device, indicating that more economical coil-sets
can be actively optimised for.

The modification of Process to generic stellarators and thus generic stellarator
coil-sets, allows to use Process in principle as an economic evaluation tool. In this
section, Process was not directly used within an optimisation loop, but it was
instead used as a ‘Post-Optimisation’ evaluation of coil-sets and it was demonstrated
that a penalty value, here the overall size of the resulting reactor machine, can be
found, using the new Process version. In a next step, one could use Process or
the respective sub-module (developed in this work) directly in a coil optimization
loop.
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Figure 4.17.: Top: Major radius as found by Process against minimal plasma coil
distance as obtained at the W7-X reference size. Colour coded is the number of coils
per period. Bottom: Major as found by Process against flux surface averaged field
error. Colour coded is the total (filamentary) coil length. The red circle indicates
the original W7-X coil-set.
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5
Summary & Conclusion

5.1. Summary
This thesis consists of three major parts:

Systems code modifications.
The first part of the thesis reports on the generalization of the fusion reactor systems

code Process to generic stellarators. The previous workflow to run Process has
been modified, so that different stellarators can be modelled, based on the output
of stellarator optimisation, which is here taken as a coil-set, described by its central
current filaments, and the respective (free boundary) MHD equilibrium. For this,
several new models for generic stellarators are suggested and implemented, covering
physics and engineering constraints. The modules are listed and explained in chapter 2.
They were implemented in a two-step approach: first, a ‘pre-processing’ is employed,
which calculates a set of effective parameters, relevant for systems code relevant
modules at a reference point of the device, which is given by the overall device size and
a specific magnetic field strength. Effective parameters are magnetic field properties
like the effective helical ripple or the fraction of lost fast particles, but also coil
currents, coil forces, peak magnetic fields, inductances and key geometrical distances
between coils and plasma boundary are being computed. Most of the computations
for these parameters were implemented in a python code, called ‘pre-sPROCESS’,
and can be run automatically on coil filaments and a plasma boundary now.

Then, in a second step, new systems code models are proposed, described and
implemented in Process, which used the effective parameters as input to their
equations. Such models are e.g. neoclassical 1/𝜈 transport estimations based on the
effective helical ripple, peak wall load calculations, coil-force calculations, clearances,
winding pack modules, etc.

This workflow enables an accurate modelling of key constraining parameters for ar-
bitrary stellarators, such as geometrical distances in generally complicated 3D shaped
stellarator geometries or peak magnetic fields within and outside of the conductor.
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The description also allows calculating bending radii, plasma surfaces and volumes,
wall peak load factors, force concentrations and orientations and quench relevant coil
parameters, such as inductances and magnetic energy. Moreover, it enables calculating
confined fast particle fractions and wall loads, by relying on corresponding BEAMS3D
runs. It includes stellarator relevant density limits and enforces respective equilibrium
MHD limits by imposing constraints on the plasma beta. The island divertor model
was already written very generically in [2] and was adapted to fit in the framework
of the pre-processing step as described in chapter 2.

Together, these changes allow for a conceptional reactor modelling within the
Process framework for generic modular stellarators, based on their coil filaments
and their plasma shape only. It thus opens up relative comparisons between tokamaks
and stellarators within a similar framework and relative comparison between different
stellarator concepts within the same framework. It should be highlighted, that systems
codes runs fill the need for fast holistic systems and operation point Optimisations,
and by no means replaces higher fidelity calculations which are required to test the
respective operation point and can be used to validate the respective systems code
models.

The implementation using the pre-processing step also drastically sped up the com-
putation of stellarator design points in Process: compared to the Helias 5-Process
version from [125], a speed-up by of a factor of 103 could be achieved. This not only
opens up the possibility to perform Monte-Carlo sampling analyses with high statist-
ics at low computational cost, but also enables large scale design space exploration
of different stellarator machines and the possibility to use Process, or subsets of it,
directly in a stellarator optimisation loop in the future.

Reactor relevant constraint modelling.
The second contribution of the thesis is the development of some missing models

and workflows for reactor relevant key parameters. More precisely, models for the
determination of neutronic peak loads to the 3D shaped walls, force magnitudes in
arbitrary shaped 3D coils and localized fast particle wall loads were developed within
the scope of the thesis. There were no tools available so far to determine these three
quantities systematically and for arbitrary stellarators in a reasonable amount of time
and without involving manual interactions. The first two methods were provided in
dedicated software packages, namely in a code called nflux, published in [131], to
calculate arbitrary neutron wall loads and the force calculation is part of the new
python code ‘pre-sPROCESS’, which allows force calculations based on filamentary
coils by assigning a material dependent thickness. ‘pre-sPROCESS’ is also capable of
calculating a new configuration file that consists of the previously mentioned effective
parameters for a Process run, called 𝑎𝑖(ℭ) in the thesis. In addition, an equidistant
wall generation tool was packaged to a code called Equisurf. This tool serves as
an equidistant hyper-surface generator for arbitrary toroidally shaped stellarator flux
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surfaces. Equisurf implements the formulas and routines from subsection 2.3.2 and
was used for all calculations in chapter 3 and the design points in chapter 4.

Another aspect, where no modelling capabilities was implemented or demonstrated
so far, is the thermal load on the first wall in a stellarator as induced by lost fast, D-T
fusion generated, alpha particles. In this thesis, the code BEAMS3D was used to fill
this gap: in order to estimate confined fast particle fractions and fast particle induced
thermal loads on a simplified first wall, a workflow was demonstrated and example
results were obtained in chapter 3. This was done for three exemplary stellarator
fields. The three configurations examined were found to have peak heat loads in
forms of localized hotspots or ‘ridges’, which could be quantified to have a factor of
200 to 400 higher peak heat loads than the averaged fast particle wall load over the
full first wall area. It is worth noting again that the calculations were gyro-center
simulations, instead of full gyro-orbit simulations, which would mitigate the wall load
magnitude. In this way, the conducted simulations are a conservative estimate of the
expected overall loads. In addition to the wall load results, it was demonstrated that
BEAMS3D can also be used to obtain inputs for transport modelling by simulating
heating power densities and thermal helium ash deposition profiles. A significant
difference to the usually employed profile based deposition profile was found and
a specific modification of the profile based method was suggested with significant
implications on the stellarator fusion burn point.

Application of the new systems code to stellarator optimisation.
Lastly, four applications of the new modifications of Process together with the pre-

processing tool were conducted and reported in chapter 4. A field-period-comparative,
cost-optimised, Helias reactor design analysis with the new Process version for
stellarators was published already in [130] and was not repeated here. Instead, two
Helias 5 design points were analysed with differently optimistic physics and techno-
logy assumptions. The conservative assumptions were based on currently available or
proposed technology and experimental values, while the optimistic scenario assumed
improvements in turbulence mitigation, blanket technology, superconductors and first
wall cooling mechanisms. With Process, both design points were first optimised
with respect to capital costs and then, at fixed major radius, with respect to maxim-
ized net electricity output. This way, both aspects, a small capital cost machine and
an operation point at the maximal allowable power at that machine-size is targetted.
Several key physics and technological quantities were presented for the found design
points, which can be seen as an updated version of the older Helias 5 design points
from [3, 245, 261]. From these results it is clear that the costs of a Helias 5 design
would heavily benefit from a compact blanket design which requires less radial space.
This was also a result of [130], compare Figure 11 therein. One blanket concept which
can potentially contribute to more compact devices are immersion blankets, a concept
that is based on the hope to circumvent volumetric structure elements of the blanket,
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called box manifolds and back platings, found in helium-cooled-pebble-bed [105] or
helium-cooled-liquid-lead [294] blanket concepts, which do not contribute significantly
to neutron shielding or tritium breeding, but instead provide structural integrity. The
technological readiness of the immersion blanket concept however still needs to be
shown. Together with the other assumptions, as increased confinement, such a blanket
concept would allow for a reduction of the major radius of Helias 5 from 17.1 Meters
using the conservative assumptions down to 12.5 Meters, at a minor radius of 1.02
Meters and a field strength of 5.86 Teslas, while running ignited.

It was found that the potential high critical current density of the assumed REBCO
superconductor could not be successfully exploited in the design points here: the
optimistic design, using REBCO based superconductors, features maximal magnetic
field of 12 T at the coils, which is far below the allowed critical value for high
temperature superconductors. The reason for this is due to imposed restrictions in
quench protection and the maximal allowable neutron wall load. A design with 12 T
on the coils can also be found with conventional NbTi superconductors at superfluid
helium temperatures. Only when lifting these the quench protection and the neutron
wall load constraints, a design with 8.5 T on axis and 22 T at the coils can be
found using REBCO superconductors, and only then, the actual advantage of high
temperature superconductors, namely their high critical field, can be reasonably
exploited.

The new Helias 5 designs points are also classified in terms of their dimensionless
physics-parameters (𝜈⋆, 𝜌⋆,𝛽) and are put into context with other existing and pro-
posed machines. It was argued, that the newly proposed Helias 5 designs lie in the
vicinity of existing experiments like W7-X, JET and ASDEX Upgrade in terms of
𝜈⋆, 𝜌⋆, and contrary to proposed tokamak reactor designs, thus might pose a lower risk
in terms of physics effects at reactor scale, as less physics extrapolation is required.

The employed neoclassical model suggested that a value of 𝜖eff ∼ 10−2 might
be not sufficient for a stellarator reactor configuration: Figure 4.3 shows that a
design with 𝜖eff ∼ 10−2 would likely be neoclassically dominated with potentially
undesirable impurity transport. These results relied on the analytical model presented
in subsection 2.2.3 and would need to require further back-up by dedicated neoclassical
calculations, e.g. with DKES, SFINCS, NEO or KNOSOS.

The fast particle thermal heat load on the first wall was found to be ∼ 12 MW/m2

for the conservative design point and about ∼ 1 MW/m2 for the advanced design point.
Usually, ∼ 1 MW/m2 is taken for the maximum heat load limit of the first wall [99],
so in order to reduce the peaked first wall alpha particle load in the conservative
Helias 5 design, a large reduction of the localization of the loads is required or
high fast particle confinement needs to be reached. However, a QI reactor relevant
configuration with coils, and sufficiently good fast particle confinement at finite beta,
is yet to be proposed. A first re-optimised version of W7-X in this regard was shown
in [234]. Also other possible localization mitigation techniques appear possible for
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evaluation, such as field line ergodization in the scrape-off-layer, tilted target plates
for fast particles or ferritic inserts, but these solutions were not explored further here.

In section 4.2, the new Process version implemented in this thesis was used to
explore possible design points of intermediate sized stellarators, with the design target
of reaching a fusion gain of 𝑄 = 10 robustly. More precisely, uncertainties on most
uncertain input parameters were assumed and propagated to the fusion gain 𝑄, using
Process, and the target design that reaches the 𝑄 = 10 goal with 95% confidence
was determined. The input uncertainties were applied to the three most relevant phys-
ics key parameters, 𝑓ren, 𝑓𝛼, 𝜏⋆

𝐻𝑒/𝜏𝐸, representing plasma confinement, fast particle
confinement and thermal helium confinement, using most available ‘best guesses’, if
possible, based on W7-X results and on results of recent stellarator Optimisation
efforts.

To resemble a scenario, at which the uncertainties on performance are evaluated,
once the machine is built, a scan over different device sizes, magnetic fields and
auxiliary powers was executed and a respective set of Process runs was run at each
of these fixed device sizes. For every every major radius, magnetic field strength and
auxiliary power, Process was run 1300 times for different values of 𝑓ren, 𝑓𝛼, 𝜏⋆

𝐻𝑒/𝜏𝐸,
optimizing the plasma parameters for maximized fusion gain 𝑄, using a deuterium-
tritium fuel. The output distribution function on 𝑄, could then be evaluated.

It was found that in order to reach at least 𝑄 = 10 with a confidence level of
95%, a W7-X like device (with advanced fast particle confinement) would need to be
constructed at 0.72 Meter minor radius and 9 Teslas magnetic field, or at 10 Teslas
magnetic field and 0.64 m minor radius. Both these values correspond to an auxiliary
power during operation of 45 MW. However, for all design points analysed, a higher
installed heating power increased also the fusion gain, while still staying below the
imposed heat flux limits. For example the 0.72 Meter minor radius and 9 Teslas
magnetic field machine would barely match the 𝑄 = 10 with 95% confidence at 35
MW installed power, but would do so with 45 MW.

An important result from the study in section 4.2 is also that if a robust 𝑄 = 10
stellarator is targetted, there is a high chance that this device could run ignited,
𝑄 = ∞, if not prevented by the imposed heat flux limit of 𝑝wall < 2MW/m2. This is
particularly visible in the respective POPCON plot (Figure 4.8), which showed that
the 𝑄 > 10 design points are past the point of maximal required auxiliary power,
and, if higher heat fluxes would have been allowed in the Process runs, could have
run in ignited state.

In section 4.3 the question of importance of common targets of stellarator Optimisa-
tion was investigated. This was investigated for two scenarios: a ‘pilot-plant’-scenario,
which targetted a machine that reaches ignition as cost effective as possible, as well
as a ‘power-plant’-scenario, where a net electricity output of 1 GW was targetted
with Process. This distinction can easily be made in Process by switching on
the ‘required net-electricity’ constraint. For the study, the uncertainty propagation
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of section 4.2 was generalized to include uncertainties of a set of common targets
of stellarator optimisation, namely fast particle confinement, plasma confinement,
thermal helium transport, the beta limit, maximal allowable neutron load, maximal
allowable photon load, coil stresses, coil-plasma distances, coil-coil distances, light
impurity transport (oxygen) and heavy impurity transport (tungsten). Three different
types of stellarator configurations were chosen for this analysis: a Helias 5 design, as
this configuration still is closest to a full, coherent reactor configuration, even though
it is already nearly 30 years old, a quasi-helical symmetric version from [49] with
newly optimised coils and a quasi-axisymmetric stellarator configuration from [49]
with new coils, optimised within this thesis. The corresponding Process parameters
were Monte-Carlo sampled and a minimum-size ignited stellarator reactor version
was optimised for with Process. The used Monte Carlo sampling range should cor-
respond to the current uncertainties of proposed stellarator configurations, although
of course, more approximately, than exactly, as accurate data on uncertainties is not
yet available.

Then, the chosen uncertainties were propagated to respective cost-minimized design
points, as found by Process. This analysis answers the question in which regimes
cost-effective reactor design points would be situated, given our current best guesses
on physics and technology, and to which approximate uncertainty these parameter
are valid. Such a quantitative analysis was not done before in the literature and is
presented here for the first time for stellarator reactors.

As comparably large initial errors were assumed, the output parameter range is
also comparably large: for example, the minimal required major radius to achieve
ignition varies from 14 to 20 Meters major radius for a Helias 5 reactor design
point. One example: a design with coils situated 20% farther away from the plasma,
together with respective improvement in confinement would result in machines at
14 Meters major radius, while designs, where the coils are situated 20% closer to
the plasma (and thus would require Process to scale up the overall machine by a
respective factor, to fit in a blanket between plasma and coils) and worse confinement
would result into machines with 20 Meters major plasma radius. Despite of the large
uncertainties, a minimally ignited stellarator, optimised with respect to capital costs,
with the given specifications would likely operate at densities between 2 and 4 ⋅1020

1/m3 volume averaged plasma density, central temperatures between 11 and 13 keV,
fusion powers between 800 MW and 1.5 GW, neutronic wall loads of 1 MW/m2, low
divertor heat loads of less than 2 MW/m2 (assuming 85 % SOL radiation) and a cost
variation between 4000 and 6000 Process cost units (1990 US$).

The uncertainty propagation also allows to quantify the importance of the varied
input parameters with respect to the cost and thus allows for a ranking of most ‘in-
fluential’ input parameters with respect to the overall plant costs. As the uncertainty
propagation is conducted for three different stellarators, also the configuration de-
pendent differences in this ranking could be quantified. It is found that the considered
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quasi-axisymmetric and the quasi-helical configuration, with their respective coil-sets,
would largely benefit from improvement in confinement and larger coil-coil distances
(or relaxed quench constraints, which is analogue), while the quasi-isodynamic con-
figuration would benefit from increased plasma confinement and larger coil-plasma
distances (or relaxed blanket constraints, i.e. thinner blankets).

Also, an imbalance in the relative importance of the input parameters is found:
for example, for the QI configuration, the coil-plasma distance is a comparably large
cost driver. In its importance for the overall cost of the machine, the distance is
comparable to the importance of reducing turbulence (here modelled by increasing
the confinement time pre-factor). From an economical point view, from these results,
one could argue that the research effort to improve the coil-plasma distance, or
equivalently, looking for more compact blanket designs, should experience the same
degree of focus as the mitigation of turbulence, at least when reducing the capital
costs of a future fusion power plant.

Stress mitigations seems to be significantly more important for the quasi-axisymmetric
configuration than for the other two configurations, which is influenced by the as-
pect ratio (the ratio 𝐵max/𝐵axis decreases with increasing aspect ratio), but also by
the limiting constraint: a design that is limited by the required blanket space, like
Helias 5, will not benefit by a reduction of forces.

Of course, the optimisation target strongly influences the result conducted in this
section: it is shown that if a certain minimal net electricity is imposed, the weighting
changes, and heat exhaust mitigations will be more prominent as a cost driver.

In the last section of chapter 4, in section 4.4, it is demonstrated that the new
Process version can not only be applied to different stellarator configurations now,
but can also be used as a technology and economics informed cost function for different
stellarator coil-sets, targetting the same magnetic equilibrium.

For this, 200 coil-sets with varying coil numbers and varying distances were created,
targetting the W7-X magnetic field. The field accuracy has been evaluated, and, even
though the flux surface averaged error fields were comparably high, between 10−3 and
10−2, the flux surfaces could be retained, as shown by respective vacuum Poincaré
plots, and, in some cases, even the desired 5/5 resonance outside of the target surface
could be obtained, despite not explicitly targetted.

For each of the 200 coil-sets, a Process run has been conducted, minimizing the
major radius of the device. It is shown that the minimal size strongly correlates with
the minimal plasma coil distance, which coincides with the findings of the previous
section and also with the findings in [130], where it is found that the Helias type
configurations are largely constrained in its size by the required blanket space. It is
also suggested that it is possible to create more feasible, reactor relevant coil-sets,
than the original W7-X coil-set – mainly by optimising for coil-sets with increased
coil-plasma distance. Also, configurations with a higher number of coils were found to
be more economical than configurations with a smaller number of coils. At first sight
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this is counter-intuitive, but can be understood that two equivalent configurations
with different numbers of magnetic field coils of course require the same total electric
current in the coils. The total current flows through several separated wires within
the coils and is either stacked in less, but then thicker coils, or in more, but thinner
coils, as for the design with more coils. Distributing the current in multiple coils is
more feasible here as the peak magnetic fields are reduced, and, the costly radial
space is not taken up the radial extension of the coils.

By applying Process to these different coil-sets and finding a clear differentiation
in the economic feasibility of these coil-sets, it was shown as a proof-of-principle that
the new Process version is in principle feasible as a technological and economical
cost function for stellarator coil optimisation. Such an ‘economical’ cost function is
not present yet in the today’s stellarator coil optimisation routines.

5.2. Conclusion

A systems code framework is part of the ‘right’ way to approach an involved systems-
design problem like a fusion power plant. Holistic, systematic tools are required to
identify design regions which are optimised for a high level target, like the capital
costs.

The generalization of Process conducted in this thesis now allows for the first
time to apply a systems code to nearly arbitrary stellarators. With this change, it is
now possible to directly map filamentary stellarator coils and the plasma shape to an
‘optimal’, conceptional, reactor design point, with more in-depth key numbers such as
required plasma transport parameters, thermal loads, electricity output, component
dimensions, systems requirements or neutronic parameters. Such designs are consistent
reactor designs points with respect to both, physics and technology, in the sense that
they match the imposed constraints. The models used for the reactor designs points
are mostly simplified 0D models and often rely on higher fidelity reference calculations
or scaling laws. It is clear, that reactor design points achieved by systems codes, would
need to be cross-validated with high fidelity codes, e.g. global turbulence codes and
high fidelity engineering codes, which however impose both, significant computational
and personnel effort.

With the changes conducted in this thesis, it is for the first time possible to find
reactor design points for given, generic stellarator configurations now with respect
to their costs, fully automated and computationally fast (in the timescale of ∼ 1
sec), given an already optimised stellarator configuration with coils and plasma. This
opens up the possibility to not only optimise machine sizes, profiles or technological
parameters, but also to change the configuration (coils and plasma) themselves in the
optimisation loop to find more economically viable stellarator configurations in an
automated manner.
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This development fits in the context of current stellarator optimisation research,
which moves towards large design space explorations with parametric near axis-
expansions and automated optimisation frameworks. The work conducted here thus
provides a solution for the missing link between the outcome of these efforts (the
filamentary coils and plasma) and the corresponding conceptional reactor design
point.

In the application chapter of this thesis, several stellarator reactor or pilot plant
design points were presented, including model based uncertainties. These design points
appear very attractive for a fusion power plant, as most designs are situated at a
minor radius of 1.4 m and below. The advanced configuration in section 4.1 even was
found with a minor radius of 1 Meter, and thus only has 1/4th of ITER’s plasma
cross section size. The stellarator configuration however, contrary to ITER, would
run ignited (following the imposed models) at 1000 MW fusion power, producing
300 MWe output power, which is a consequence of the higher operational space of a
stellarator, mainly characterized by a missing Greenwald density limit.

On the down-side, stellarators usually have a comparably large aspect ratio, which
lead to, approximately linear, increased costs, compared to a design with lower aspect
ratio, at the same minor radius. However, in this scenario, the large aspect ratio
machine would also produce higher fusion power, which likely lead to similar levelized
cost of electricity in machines with different aspect ratio.

Results of section 4.2 suggest, that if an intermediate-size stellarator is targetted as
a next step after W7-X, it might be meaningful to already target an ignited plasma
instead of a robustly designed 𝑄 = 10 design, as no to little extra machine size
and magnetic field would be required, as it was found that designs that reach the
𝑄 = 10 target with 95% certainty, also could run ignited with the same probability.
For ignited running devices, the wall materials would need to be designed to cope
with respective higher neutron and heat fluxes and respective control mechanisms
would need to be developed and installed.

The historical drawback for stellarators as fusion power plants was largely dimin-
ished by the construction of Wendelstein 7-X, experimentally showing the reduction
of neoclassical transport, showing the design and construction of 3D shaped coils and
components. With recent rapid advancement in stellarator optimisation (near-axis
expansion, precise quasi-symmetric and quasi-isodynamic optimisation and combined
coil-plasma optimisation methods) it likely is a matter of willpower now to create
a new, modern, consistent, optimised, cost effective stellarator reactor concept. Ad-
vancements of turbulence codes can help mitigating the risk of such conceptional
device points.

Nevertheless, already the existing, but quite outdated, Helias reactor concepts
would likely be sufficient for attractive reactor concepts. However, it is expected that
such Helias concepts would suffer the same degree of ion temperature gradient
driven turbulence, that W7-X experiences, given the fact that they follow the W7-X
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Figure 5.1.: Optimised confinement factor 𝑓ren against imposed maximal allowable
confinement factor for the same dataset as in section 4.3. Left: For a device without
imposed minimal fusion power, but with imposed ignition condition, the optimised
𝑓ren always matches the imposed limit. Right: For a cost effective fusion power plant
with at least 1000 MWe, the upper limit of 𝑓ren is far less important for the design
as long as it is above a value 1.2. This is seen as above 1.2, the found 𝑓ren is not at
the maximal allowable value.

line. Still, if the heat fluxes scale as Gyro-Bohm transport, so like the experimentally
found ISS04 transport energy confinement time scaling, an improvement factor of 1.2-
1.4, as seen in pellet discharges in W7-X, is likely sufficient to extrapolate to a feasible
reactor design. Figure 5.1 demonstrates this point (based on computational data from
section 4.3), showing (the right plot) that a confinement enhancement above a factor
of 1.2 is likely ‘over-engineered’ for reactor concepts with an imposed net electricity
output of 1 GW electric. This conclusion is a consequence of the requirement to
limit the temperature and thus the fusion power, which is related to the imposed
heat load limits on the components. Only devices without this imposed minimal
fusion power (the left plot Figure 5.1) would need to operate at the maximum of
the available confinement quality. Thus, a turbulence mitigation above the levels of
the pellet shots in W7-X [267] might even be undesirable in a fusion reactor with a
required net electric output of 1 GW, at least under the given assumptions. If one
wants to decrease the magnetic field if higher turbulence suppression is available, it
would require a higher 𝛽 limit.

The intrinsic steady-state prospect of stellarator reactors, the absence of disruptions,
the resiliency of confinement with respect to plasma parameters and the attractive
island divertor concept as heat exhaust solution would likely make stellarators a
comparably safe candidate for a fusion power plant. This point is also argued in [295].
The easier ignition threshold at higher plasma densities, their lower recirculating
power fraction by lack of current drive and the prospect of higher degree of turbu-
lence optimisation are arguments that stellarators might be more economical than
tokamaks as fusion power plants. Nevertheless, the simpler design, as well as the
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higher symmetry, is a strong argument also for tokamaks as fusion power plants.
In conclusion, the work in this thesis contributed to the systematic, holistic mod-

elling of stellarator fusion power plants using systems codes, provided an updated,
quantified view on current stellarator configurations as fusion power plants, gave
incentive to further pursue stellarator configurations as such, filled a missing link
between stellarator optimisation and holistic reactor modelling and thus contributed
to the advancements of stellarators towards fusion power plant candidates.
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A
0D-Power Balance

A 0D power balance analysis is usually written in integrated quantities, so e.g. in
terms of the heating or loss power density 𝑝 ≡ ⟨𝑝⟩𝑉 ≡ ∫

𝑉
𝑝𝑑𝑉, where 𝑉 is the plasma

volume, usually taken of the confining plasma volume up to a certain ‘core’ radius 𝑟.
If we adapt this terminology, the power balance is written as

𝑝loss
!= 𝑝heat, (A.1)

⇒ 𝑝rad + 𝑝conf = 𝑓𝛼𝑝𝛼 + 𝑝aux, (A.2)

⇒ 𝑝Brems +
𝑤
𝜏𝐸

= 𝑓𝛼𝐸𝛼𝑛𝐷𝑛𝑇⟨𝜎𝑣⟩𝑇 (1 + 𝑝𝛼) . (A.3)

In these equations, 𝑝loss is the volume averaged loss power density, 𝑝heat the heating
power density, 𝑝rad the loss power density by radiation and 𝑝conf the loss power
density by lack of confinement. 𝑓𝛼 is the quality how good the configuration confines
fast particles, 𝑝𝛼 is heating power density by fusion alpha particles, and 𝑝𝑎𝑢𝑥 is the
auxiliary heating power density. We have used that 𝑝rad ∼ 𝑝Brems, so the radiation
power density is dominated by bremstrahlungs effects and that 𝑝conf = 𝑤

𝜏𝐸
, where 𝑤

is the energy density in the plasma and 𝜏𝐸 is the energy confinement time. 𝐸𝛼 is the
energy carried by fast fusion alpha particles (3.5 MeV), 𝑛𝐷 and 𝑛𝑇 are densities of
deuterium and tritium in the plasma respectively. ⟨𝜎𝑣⟩𝑇 is the Maxwellian averaged
fusion reactivity. The left hand side of Equation A.3 represents the loss terms and
the right hand side of the equation the fusion and the auxiliary heating term. With
𝐷 − 𝑇 fusion, the charged particle fraction is 1/5th of the total fusion power in good
approximation. Then, the fusion gain 𝑄 can be written as 𝑄 ≡ 𝑃𝑓𝑢𝑠

𝑃𝑎𝑢𝑥
≃ 5𝑝𝛼

𝑝𝑎𝑢𝑥
.

Introducing implicit units now, one can write the integrated energy power balance
as

𝑎(2𝑓He + 1 + 𝑍𝑓𝑍)𝑛2
√

𝑇 +
𝑏(2 − (𝑍 − 1)𝑓𝑍 − 𝑓He)𝑛𝑇

𝜏𝐸
=

𝑐(1 − 𝑍𝑓𝑍 − 2𝑓He)2𝑛2⟨𝜎𝑣⟩𝑇 (1 +
5

𝑓𝛼𝑄
)

, (A.4)
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with parameters 𝑎 = 5.355 ⋅ 10−3, 𝑏 = 2.4 ⋅ 10−2, and 𝑐 = 14. Here the non-relativistic
expression for the bremsstrahlungs losses is taken, e.g. from [296]. Now, 𝑇 ≡ 𝑇 [keV],
𝑛 ≡ 𝑛[1020m−3], ⟨𝜎𝑣⟩ ≡ ⟨𝜎𝑣⟩[1020m3/s]. To resolve the helium fraction 𝑓He, one
introduces the alpha particle balance equation,

1
4
𝑛2𝑓2

𝑖 ⟨𝜎𝑣⟩𝑇 =
𝑛He

𝜏⋆
𝛼

=
𝑛𝑓He

𝜌𝜏𝐸
, (A.5)

⇒ 𝑛𝜏𝐸 =
4𝑓He

𝜌(1 − 𝑍𝑓𝑧 − 2𝑓He)2⟨𝜎𝑣⟩𝑇
, (A.6)

where we have used 𝑓𝑖 = 1 − 𝑍𝑓𝑧 − 2𝑓He and 𝜌 ≡ 𝜏⋆
𝛼

𝜏𝐸
. Solving this for 𝑓𝐻𝑒 gives:

𝑓𝐻𝑒 =
1 + 𝑓𝛼𝑛⟨𝜎𝑣⟩𝑇(1 − 𝑍𝑓𝑍)𝜌𝜏𝐸 ± √1 − 2𝑓𝛼𝑛⟨𝜎𝑣⟩𝑇(𝑍𝑓𝑍 − 1)𝜌𝜏𝐸

2𝑓𝛼𝑛⟨𝜎𝑣⟩𝑇𝜌𝜏𝐸
, (A.7)

where only the + root is of physical relevance. This expression can be substituted
into the energy balance equation Equation A.4.

To extrapolate to a reactor, one can use the ISS04 inter-machine scaling, which
reads [95]

𝜏𝐸 = 0.134 𝑓ren𝑎2.28𝐵0.84𝜄0.41
2/3 𝑛0.54

19 𝑅0.64𝑃−0.61. (A.8)

Rewriting 𝑃 in terms of 𝑇, 𝑃 = 𝑊/𝜏𝐸, where 𝑊 is the plasma energy, one arrives at

𝜏𝐸 = 0.152 𝑎2.78𝐵2.15𝑓2.56
ren 𝜄1.05𝑅0.113𝑛−0.18𝑇 −1.56, (A.9)

which is a useful expression for 0D exploratory studies.
This expression can be used in Equation A.4, together with Equation A.7. Of this,

then algebraically lengthy expression, lines of constant fusion gain 𝑄, constant heat
flux densities or other quantities can be extracted and plotted. This was shown in
particular in Figure 4.8.

For this plot, in addition the ‘Sudo Radiation Collapse Zone’ was extracted. The
maximum density achievable in a stellarator is set by the power balance, which can
be understood on the basis of transport modelling (including radiation effects). Such
a limit was expressed in terms of engineering (machine) parameters for W7-AS as

𝑛𝑒,𝑝𝑟𝑒𝑑 = 1.462 𝑝[MW/m3]0.48 𝐵[T]0.54, (A.10)

where 𝑝 is the volume-averaged loss power density. The so-called ‘Sudo’ limit of
stellarators takes a similar form,

𝑛𝑆𝑢𝑑𝑜 = 0.25 (
𝑃 [MW]
𝑅[m]

)
0.5

𝐵0.5 𝑎−1, (A.11)
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which can be written in terms of volume-averaged power density as

𝑛𝑆𝑢𝑑𝑜 = 1.11 (𝑝[MW/m3])0.5 𝐵0.5. (A.12)

Densities above this limit typically lead to radiation collapses and were indicated like
this in the POPCON plot Figure 4.8. As discussed in subsection 2.2.5, the radiation
limit is very dependent on the chosen impurity fractions, while the proposed limit
itself is not. Thus the limit should not be used carelessly in a reactor-setting. [155]
proposes an alternative form.
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B
Biot-Savart with Finite Conductor Size

This section was published also in [130].

Here we derive the magnetic field 𝐵 at a point p due to a current carrying rectan-
gular cuboid (Beam) as it is used in Equation 2.67. The cuboid and used conventions
in the following is shown in Figure B.1.

When a 3D stellarator coil is approximated by 𝑁 such beams, this procedure allows
a fast evaluation of the magnetic field near and, very useful for force calculations
and superconductor constraints, within the conductor. This method was also used
in [218].

Let b be the vector in longitudinal (𝑦-) direction of the beam, while n points in

z

y

x

α=1

α=2

α=3

α=4

α=5

α=6

α=7

α=8

p

t

Figure B.1.: Nomenclature of the formulas in the text: A straight cuboid, carrying a
homogenous current (Beam) is parametrized by 8 points. Those points are indexed
by 𝛼 in the text. The current flows in t direction. The B field at the point p is
derived in the text.
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Appendix B. Biot-Savart with Finite Conductor Size

normal (𝑥-) direction. Define the functions:

𝐹1(p) = ∫
ℎ

−ℎ
𝑑𝑦 ∫

𝑏

−𝑏
𝑑𝑥

𝑦𝑝 − 𝑦
𝑁(𝑥 − 𝑥𝑝, 𝑦 − 𝑦𝑝, 𝑧)3 (B.1)

𝐹2(p) = ∫
ℎ

−ℎ
𝑑𝑦 ∫

𝑏

−𝑏
𝑑𝑥

𝑥𝑝 − 𝑥
𝑁(𝑥 − 𝑥𝑝, 𝑦 − 𝑦𝑝, 𝑧)3 (B.2)

𝑁(𝑥, 𝑦, 𝑧) = √𝑧2 + 𝑦2 + 𝑥2 (B.3)

where 𝑥𝑝 are projections according to: 𝑥𝑝 = p ⋅ e𝑥. 2𝑏 is the dimension of the Beam
in 𝑥 and 2𝑑 in 𝑦 direction.

If the current density j in the winding pack is approximated as a continuous constant
function across a rectangular cross section, pointing w.l.o.g. in Cartesian 𝑧 direction,
Biot-Savart’s volume integral can be written as:

BBeam(p) =
𝜇0|j0|
4𝜋

∫ 𝑑𝑧 [𝐹1(p)e𝑥 − 𝐹2(p)e𝑦] . (B.4)

The integral over 𝐹1 and 𝐹2 have an analytical form then, as it is shown below.
For convenience, define

𝐹(𝑥,𝐴, 𝐵) ≡ ∫
𝑑𝑥

√
𝑥2 + 𝐴2 + 𝐵2

= arctanh (
𝑥

√
𝐴2 + 𝐵2 + 𝑥2

) , (B.5)

and (note the changed order of the arguments)

𝐼(𝐴,𝐵, 𝑥) ≡ ∫ 𝑑𝑥𝐹(𝐴,𝐵, 𝑥)

= 𝑥 𝐹(𝐴, 𝐵, 𝑥) − 𝑥 + 𝐴𝐹(𝑥, 𝐵, 𝐴)

− |𝐵| arctan (
𝐵2 + 𝐴(𝐴 +

√
𝑥2 + 𝐴2 + 𝐵2)

|𝐵|𝑥
).

(B.6)

Then

𝐹1(p) = ∫
𝑑

−𝑑
𝑑𝑦 ∫

𝑏

−𝑏
𝑑𝑥 𝜕𝑦

⎡
⎢
⎣

1

√(𝑥 − 𝑥𝑝)2 + (𝑦 − 𝑦𝑝)2 + 𝑧2

⎤
⎥
⎦

= ∫
𝑏

−𝑏
𝑑𝑥 [

1
𝑁(𝑥 − 𝑥𝑝, 𝑑 − 𝑦𝑝, 𝑧)

−
1

𝑁(𝑥 − 𝑥𝑝, −𝑑 − 𝑦𝑝, 𝑧)
]

= 𝐹(𝑏 − 𝑥𝑝, 𝑑 − 𝑦𝑝, 𝑧) − 𝐹(−𝑏 − 𝑥𝑝, 𝑑 − 𝑦𝑝, 𝑧)
− 𝐹(𝑏 − 𝑥𝑝, −𝑑 − 𝑦𝑝, 𝑧) + 𝐹(−𝑏 − 𝑥𝑝, −𝑑 − 𝑦𝑝, 𝑧).

(B.7)
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And analogously for 𝐹2 it is

𝐹2(p) = 𝐹(𝑑 − 𝑦𝑝, 𝑏 − 𝑥𝑝, 𝑧) − 𝐹(−𝑑 − 𝑦𝑝, 𝑏 − 𝑥𝑝, 𝑧)
− 𝐹(𝑑 − 𝑦𝑝, −𝑏 − 𝑥𝑝, 𝑧) + 𝐹(−𝑑 − 𝑦𝑝, −𝑏 − 𝑥𝑝, 𝑧).

(B.8)

This simplifies Equation B.4 to a one dimensional integral along the 𝑧-direction, which
can be solved numerically. However, using Equation B.6, the integral in 𝑧-direction
can also be solved analytically, and the magnetic field B can then be written as

BBeam(p) =
𝜇0|j0|
4𝜋

[e𝑥[𝐼(𝑏 − 𝑥𝑝, 𝑑 − 𝑦𝑝, ℎ) − 𝐼(−𝑏 − 𝑥𝑝, 𝑑 − 𝑦𝑝, ℎ)

− 𝐼(−𝑏 − 𝑥𝑝, −𝑑 − 𝑦𝑝, ℎ) + 𝐼(−𝑏 − 𝑥𝑝, −𝑑 − 𝑦𝑝, ℎ)
− 𝐼(𝑏 − 𝑥𝑝, 𝑑 − 𝑦𝑝, −ℎ) − 𝐼(−𝑏 − 𝑥𝑝, 𝑑 − 𝑦𝑝, −ℎ)

− 𝐼(−𝑏 − 𝑥𝑝, −𝑑 − 𝑦𝑝, −ℎ) + 𝐼(−𝑏 − 𝑥𝑝, −𝑑 − 𝑦𝑝, −ℎ)]

− e𝑦[𝐼(𝑑 − 𝑦𝑝, 𝑏 − 𝑥𝑝, ℎ) − 𝐼(𝑑 − 𝑦𝑝, −𝑏 − 𝑥𝑝, ℎ)

− 𝐼(−𝑑 − 𝑦𝑝, −𝑏 − 𝑥𝑝, ℎ) + 𝐼(−𝑑 − 𝑦𝑝, −𝑏 − 𝑥𝑝, ℎ)
− 𝐼(𝑑 − 𝑦𝑝, 𝑏 − 𝑥𝑝, −ℎ) − 𝐼(𝑑 − 𝑦𝑝, −𝑏 − 𝑥𝑝, −ℎ)

− 𝐼(−𝑑 − 𝑦𝑝, −𝑏 − 𝑥𝑝, −ℎ) + 𝐼(−𝑑 − 𝑦𝑝, −𝑏 − 𝑥𝑝, −ℎ)]].

(B.9)

The magnetic field at a point p due to a coil with finite size can be obtained by a
simple Riemann sum over the contribution of every Beam BBeam

𝑖 ,

Bcoil(p) = ∫
coil

𝑑B(p) ≃ ∑
𝑖

BBeam
𝑖 (p). (B.10)

The accuracy of Equation B.10 depends on the number of discretization points and
lies in the order of 𝛥𝐵/𝐵 ∼ 10−4. The left panel in Figure B.2 shows a benchmark
of Equation B.10 for an ideal toroid, which converges to the analytical solution at
negligable coil width sizes. The right panel in Figure B.2 shows a benchmark of Equa-
tion B.10 against the result of an independent filamentary Biot-Savart implementation
in the bean shaped plane of a Wendelstein-7X configuration. For both, small (0.01
m) and realistic (0.18 m) winding pack (WP) sizes, both implementation deviate
by 𝛥𝐵/𝐵 ∼ 10−4 at the axis (𝑥 ∼ 5.6 m). Near the coils however (𝑥 ∼ 5.2 m), the
filamentary Biot-Savart method diverges and Equation B.10 gives the more accurate
result, which explains the large deviation, 𝛥𝐵/𝐵 ∼ 1.
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Appendix B. Biot-Savart with Finite Conductor Size

200 400 600 800
Number of discretization points
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Figure B.2.: Left: The relative field error of Equation B.10 compared to the analytical
correct 𝜇0𝐼/(2𝜋𝑅), plotted against different number of discretization points in the
centre of an ideal toroid. Right: Comparison of magnetic field strength values from
Equation B.10 in the bean shaped plane of W7-X at 𝑧 = 0 against values calculated
by an independent filament Biot-Savart integration. The dashed line in both plots
show deviations by a significant coil thickness.
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C
Quench Protection

This section was published also in substantial parts in [130].
We shortly provide the derivation of the critical current density as limited by a

simple coil quench protection argument as given in the final form in [133].
In thermal equilibrium and without losses the heat produced by the copper res-

istivity during a quench is equal to the heat needed to rise the temperature in the
material by 𝑑𝑇,

𝑑𝑄ℎ𝑒𝑎𝑡 = 𝑑𝑄𝑡𝑒𝑚𝑝. (C.1)

Assuming the materials in the winding pack are thermally equilibrated, Equation C.1
takes the form

𝑃(𝑡)𝑑𝑡 = ∑
𝑖

𝑐𝑖𝜌𝑖𝑉𝑖 𝑑𝑇 , (C.2)

where 𝑃 is the power produced by the (resistive) current in copper fraction in time 𝑡.
The index 𝑖 runs over all winding pack materials and 𝑉𝑖 stands for the volume of the
𝑖th material in the winding pack. With 𝑃 = 𝐽2𝜂𝑉, where 𝜂 is the electrical resistivity,
Equation C.2 becomes

𝐽(𝑡)2𝑑𝑡 = ∑
𝑖

𝑐𝑖𝜌𝑖

𝜂𝐶𝑢(𝑇 )
𝑉𝑖

𝑉𝐶𝑢
𝑑𝑇 . (C.3)

Now, the quench restriction is to impose

∫ 𝐽(𝑡)2𝑑𝑡
!
< ∫

𝑇𝑚𝑎𝑥

𝑇𝑜𝑝

∑
𝑖

𝑐𝑖𝜌𝑖

𝜂𝐶𝑢(𝑇 )
𝑓𝑖 𝑑𝑇 . (C.4)

The integral on the left hand side runs over the whole quench time while the integral
on the right hand side goes from the operation temperature 𝑇𝑜𝑝 to a maximal 𝑇𝑚𝑎𝑥.
The difference 𝑇𝑚𝑎𝑥 − 𝑇𝑜𝑝 is usually chosen in the order of 150 K.
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Appendix C. Quench Protection

If one assumes an exponential decay of 𝐽 after a quench detection time 𝑡𝑑 as:

𝐽(𝑡) =
⎧{
⎨{⎩

𝐽0, if 𝑡 < 𝑡𝑑

𝐽0 𝑒
− 𝑡−𝑡𝑑

𝜏𝑑𝑢𝑚𝑝 , otherwise
(C.5)

then, ∫ 𝐽(𝑡)2𝑑𝑡 = 𝐽2
0 (1

2
𝜏𝑑𝑢𝑚𝑝 + 𝑡𝑑), where 𝐽0 is the initial current density, one gets

1
2
𝐽2

0 𝜏𝑑𝑢𝑚𝑝 < 𝑞𝐶𝑢 +
𝑉𝐻𝑒

𝑉𝐶𝑢
𝑞𝐻𝑒 +

𝑉𝑠𝑐𝑢

𝑉𝐶𝑢
𝑞𝑠𝑐𝑢, (C.6)

with

𝑞𝐶𝑢 ≡ ∫
𝑇𝑚𝑎𝑥

𝑇0

𝜌𝐶𝑢𝑐𝐶𝑢

𝜂𝐶𝑢(𝑇 )
𝑑𝑇 , (C.7)

𝑞𝐻𝑒 ≡ ∫
𝑇𝑚𝑎𝑥

𝑇0

𝜌𝐻𝑒(𝑇 )𝑐𝐻𝑒(𝑇 )
𝜂𝐶𝑢(𝑇 )

𝑑𝑇 , (C.8)

𝑞𝑠𝑐𝑢 ≡ ∫
𝑇𝑚𝑎𝑥

𝑇0

𝜌𝑠𝑐𝑢𝑐𝑠𝑐𝑢

𝜂𝐶𝑢(𝑇 )
𝑑𝑇 . (C.9)

Using the definition of the relative winding pack material fractions 𝑓 as in Equa-
tion 2.80 the volume fractions can be rewritten in terms of the conduit volume
𝑉conduit:

𝑉𝐶𝑢 = 𝑉conduit (1 − 𝑓𝐻𝑒) 𝑓𝐶𝑢, (C.10)
𝑉𝐻𝑒 = 𝑉conduit 𝑓𝐻𝑒, (C.11)
𝑉𝑠𝑐𝑢 = 𝑉conduit (1 − 𝑓𝐻𝑒) (1 − 𝑓𝐶𝑢). (C.12)

With this, one ends up with (identifying 𝐽0 with the copper current 𝐽𝑐𝑢)

𝐽𝑐𝑢 <
√√√
⎷

1
(1

2
𝜏𝑑𝑢𝑚𝑝 + 𝑡𝑑)

(𝑞𝑐𝑢 +
𝑓𝐻𝑒

(1 − 𝑓𝐻𝑒)𝑓𝐶𝑢
𝑞𝐻𝑒 +

1 − 𝑓𝐶𝑢

𝑓𝐶𝑢
𝑞𝑠𝑐𝑢). (C.13)

In terms of the total winding pack current density, Equation C.13 can be rewritten
using 1 − 𝑓𝐻𝑒 = 𝑓𝑐𝑜𝑛𝑑 and 𝐽𝑊𝑃 = 𝐽𝐶𝑢𝑓𝐶𝑢𝑓𝑐𝑜𝑛𝑑(1 − 𝑓𝑐𝑎𝑠𝑒):

𝐽𝑊𝑃 <(1 − 𝑓𝑐𝑎𝑠𝑒)

[
1

(1
2
𝜏𝑑𝑢𝑚𝑝 + 𝑡𝑑) 𝜂

(𝑓2
𝐶𝑢𝑓2

𝑐𝑜𝑛𝑑𝑞𝑐𝑢 + 𝑓𝐶𝑢𝑓𝑐𝑜𝑛𝑑(1 − 𝑓𝑐𝑜𝑛𝑑)𝑞𝐻𝑒

+𝑓𝐶𝑢𝑓2
𝑐𝑜𝑛𝑑(1 − 𝑓𝐶𝑢)𝑞𝑠𝑐𝑢)]

1
2

(C.14)
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Figure C.1.: Maximum allowable exponential quench dumping times with respect to
different copper purity (RRR) levels. A higher copper purity improves both, electric
and thermal conductivity of cryogenic copper.

Equation C.14 constrains the winding pack current density by a temperature rise
during a coil quench. This value is dependent on the chosen copper alloy, which enters
in 𝜂 and 𝑐𝑖. Example curves for different copper purity levels are plotted in Figure C.1.

Needed are:

• Copper Resistivity 𝜂𝐶𝑢(𝑇 )
• Copper isobaric heat capacity 𝑐𝐶𝑢(𝑇 )
• Copper density 𝜌𝐶𝑢

• Helium isobaric heat capacity 𝑐𝐻𝑒(𝑇 )
• Helium density 𝜌𝐻𝑒(𝑇 )
• Superconductor isobaric heat capacity 𝑐𝑠𝑐𝑢(𝑇 )
• Superconductor density 𝜌𝑠𝑐𝑢(𝑇 )

One can use a Bloch-Grüneisen parametrization for the copper resistivity,

𝜂𝐶𝑢(𝑇 [𝐾],𝑅𝑅𝑅) =
1.687 ⋅ 10−8

−1 + 𝑅𝑅𝑅
m + 2.8526 ⋅ 10−5mK

𝑇 5

(343.5𝐾)6 ⋅

∫
343.5/𝑇

0
𝑑𝑥 [

𝑥5

(𝑒𝑥 − 1)(1 − 𝑒−𝑥)
] .

(C.15)

This fit produces Figure C.2. One can store the respective material properties as a
list for a certain RRR value. For helium at 6 bar, all required cryogenic material
properties are listed at Table C.1.
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Appendix C. Quench Protection

Figure C.2.: Equation C.15 against experimental data from [297] with different copper
purity levels.

Only the 𝑞 integrals will be useful in the function so they can be pre-calculated in
advance and then included in the function later. Assume a maximal temperature rise
of 150 K, no matter from which operating temperature. The 𝑞 integrals are then only
dependent on the operating temperature and can be calculated by the above given
formula (RRR=100) to the values listed in Table C.2.
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Table C.1.: Cryogenic material properties needed for quench protection, as implemen-
ted in Process now.

𝑇 [𝐾] 𝜂RRR=100
𝐶𝑢 [n𝛺 m] 𝜂RRR=1000

𝐶𝑢 [n𝛺 m] 𝜌𝐻𝑒[kg/m3] 𝑐𝐻𝑒[J/(K kg)] 𝑐𝐶𝑢[J/(K kg)]

3 0.170402 0.016885 152.856 2101.29 0.053032
3.60679 0.170403 0.016886 148.769 2608.21 0.07452
4.33632 0.170405 0.016888 141.987 3385.88 0.108421
5.2134 0.17041 0.016893 129.934 4853.12 0.16335

6.26789 0.170423 0.016906 104.918 8961.91 0.254002
7.53566 0.170454 0.016937 61.3544 10143.3 0.404955
9.05986 0.170534 0.017017 40.6341 7513.53 0.663479
10.8923 0.170733 0.017216 30.2513 6480.71 1.11221
13.0955 0.171234 0.017717 23.6489 5987.61 1.91343
15.7442 0.172492 0.018975 18.967 5707.26 3.36621
18.9287 0.175651 0.022134 15.4393 5535.76 6.07632
22.7573 0.183558 0.030041 12.6813 5425.74 11.1119
27.3603 0.203074 0.049557 10.4741 5352.78 20.1398
32.8943 0.249439 0.095922 8.68137 5303.29 34.9171
39.5477 0.351986 0.198468 7.21103 5269.22 57.2157
47.5468 0.557186 0.403669 5.99756 5245.56 87.2477
57.1638 0.923482 0.769965 4.99205 5229.07 124.485
68.726 1.50757 1.35405 4.15677 5217.55 166.568

82.6269 2.35043 2.19691 3.46182 5209.53 209.698
99.3393 3.47297 3.31945 2.88313 5203.97 250.553
119.432 4.88336 4.72984 2.40104 5200.14 286.35
143.589 6.58981 6.43629 1.99935 5197.53 316.461
172.632 8.6117 8.45818 1.66466 5195.76 340.543
207.549 10.9861 10.8326 1.38581 5194.6 359.571
249.529 13.7707 13.6172 1.15353 5193.84 374.081

300 17.0442 16.8907 0.960071 5193.36 384.761
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Appendix C. Quench Protection

Table C.2.: 𝑞 integrals as obtained with data from Table C.1.

𝑇𝑜𝑝[𝐾] 𝑞𝐻𝑒[sA2/m4] 𝑞𝐶𝑢[sA2/m4]

4 3.44562 ⋅ 1016 1.08514 ⋅ 1017

14 9.92398 ⋅ 1015 1.12043 ⋅ 1017

24 4.90462 ⋅ 1015 1.12406 ⋅ 1017

34 2.41524 ⋅ 1015 1.0594 ⋅ 1017

44 1.26368 ⋅ 1015 9.49741 ⋅ 1016

54 7.51617 ⋅ 1014 8.43757 ⋅ 1016

64 5.01632 ⋅ 1014 7.56346 ⋅ 1016

74 3.63641 ⋅ 1014 6.85924 ⋅ 1016

84 2.79164 ⋅ 1014 6.28575 ⋅ 1016

94 2.23193 ⋅ 1014 5.81004 ⋅ 1016

104 1.83832 ⋅ 1014 5.40838 ⋅ 1016

114 1.54863 ⋅ 1014 5.06414 ⋅ 1016

124 1.32773 ⋅ 1014 4.76531 ⋅ 1016
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