
Machine Learning Based

Myoelectric Control

Towards Clinical Application

Janne Hahne





Machine Learning Based

Myoelectric Control

Towards Clinical Application

Dipl.-Ing. Janne Hahne

geb. in Berlin

Von der Fakultät IV – Elektrotechnik und Informatik

der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften (Dr. rer. nat.)
genehmigte Dissertation

Prüfungsausschuss

Vorsitzender: Prof. Dr. Benjamin Blankertz

Gutachter: Prof. Dr. Klaus-Robert Müller

Prof. Dr. Lucas C. Parra

Prof. Dr. Dario Farina

Tag der wissenschaftlichen Aussprache: 18.1.2016

Berlin, 2016

D 83





Abstract

Electromyographic (EMG) signals are used to control electrically powered hand and arm

prostheses. In recent years the number of actuated joints in clinically available prostheses

has increased significantly. However, the control strategies have not kept up with this

development and limit the potential of these devices. Typically there are used only two

electrodes on antagonistic muscle groups to control a single degree of freedom (DOF).

To actuate other DOFs, the active prosthetic joint has to be selected by co-contraction or

other heuristics, which is slow and does not allow for natural and fluent movements.

Significant research has been conducted in the past decades to overcome these limita-

tions, mainly focusing on classification-based approaches. But these efforts had almost

no impact on the clinical practice so far. The main reason for this is the lack of reliability

under real-world conditions. In this thesis it is demonstrated that the reliability and ro-

bustness of the classification-based approach can be significantly increased by means of

optimized spatial filters, which enhance the signal characteristics in raw-signal domain.

As the classification-based approach has still limitations regarding the flexibility of

combining different motions, regression-based control techniques are explored, which

allow for an independent simultaneous and proportional control of multiple DOFs. Four

control methods are analyzed offline with a special focus on clinical applicability, namely

linear regression (LR),mixture of linear experts (ME),multilayer perceptrons (MLP) and

kernel ridge regression (KRR). Results show that the simple and computationally efficient

methods LR andME can perform as well as the more complex non-linear methods MLP

and KRR if a proper feature representation is used. Furthermore, two DOFs of the wrist

are linearly separable, which allows to estimate combined motions with high precision,

even when trained with non-combined movements only.

For adaptive control techniques a training of both the user and the algorithm, is re-

quired. This is a long process which typically requires several iterations of alternated

(re)training of the algorithm and testing and correcting by the user. A novel training

strategy is introduced for regression-based control, in which the user and the algorithm

can adapt concurrently. In a real-time study the benefits of this co-adaptive learning ap-

proach are demonstrated in comparison with conventional training. With this approach

all ten able-bodied subjects and the two persons with congenital limb deficiency, who

participated in the study, reached an independent, simultaneous and natural control of

two DOFs within a very short time. Due to its minimal computational requirements the

regression model can be readily applied on a microcontroller available on prosthetic de-

vices. This is demonstrated by an implementation on an embedded system that fulfills

clinical requirements. In tests with a physical hand prosthesis a subject with transradial

amputation learned reliable simultaneous and proportional control the two DOFs.
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Zusammenfassung

Elektromyographische Signale werden verwendet um elektrisch angetriebeneHand- und

Armprothesen zu steuern. In den letzten Jahren hat sich die Anzahl der aktiven Gelen-

ke bei klinisch verfügbaren Prothesen signifikant erhöht. Die Entwicklung der Steue-

rungsalgorithmen konnte mit dieser Entwicklung allerdings nicht mithalten und bildet

momentan den Flaschenhals, der den Nutzen neuartiger Prothesen limitiert. Typischer

Weise werden nur zwei EMG-Elektroden auf antagonistischen Muskelgruppen benutzt,

umeinen einzelnen Freiheitsgrad zu steuern.Umweitere Funktionen anzusteuern, ist ein

Wechsel des aktiven Gelenks mittels einer Kokontraktion oder einer anderen Heuristik

notwendig. Dies ist langsam und ermöglicht keine flüssigen, natürlichen Bewegungsab-

läufe.

Trotz beachtlicher Anstrengungen diese Einschränkungen mit Hilfe von Klassifizie-

rungsalgorithmen zu überwinden, haben die Forschungsansätze in diesem Bereich die

klinische Praxis kaum beeinflusst. Die Hauptgründe dafür sind die mangelnde Zuverläs-

sigkeit unter realen Bedingungen. In dieser Arbeit wird gezeigt, dass sich die Zuverlässig-

keit und Robustheit der Klassifikation durch den Einsatz optimierter räumlicher Filter,

die die Signaleigenschaften im Rohsignal-Raum verbessern, signifikant steigern lässt.

Da der Klassifizierungsansatz jedoch nur eingeschränkte Möglichkeiten bietet ver-

schiedene Bewegungen zu kombinieren, werden insbesondere auch Regressionsverfah-

ren betrachtet, die eine unabhängige simultane Proportionalsteuerung mehrerer Funk-

tionen ermöglichen. Ein Besonderer Schwerpunkt der Untersuchungen dieser Arbeit ist

die klinische Anwendbarkeit. Vier Methoden, Lineare Regression (LR) einschließlich der
Erweiterung Mixture of Linear Experts (ME), Multilayer Perceptrons (MLP) und Kernel
Ridge Regression (KRR) werden offline analysiert. Dabei schneiden die einfachen Me-

thoden LR undMEmit geringen rechentechnischen Anforderungen nicht schlechter als

die komplexeren, nichtlinearen Methoden MLP und KRR ab, sofern geeignete Feature-

Repräsentationen der Signale verwendet werden.

Klassifikations- und Regressionsverfahren erfordern ein Training, sowohl des Anwen-

ders, als auch des Algorithmus. Dies ist oft ein langwieriger Prozess der viele Iterationen

aus wechselseitigem (neu)trainieren des Algorithmus und des Testens und Korrigierens

durch den Nutzer benötigt. Hier wird ein neuer Trainingsansatz für Regressionssteue-

rungen präsentiert, bei dem Anwender und Algorithmus gleichzeitig lernen können. In

einer Echtzeitstudie wird gezeigt, dass dieser Ansatz des koadaptieven Lernens erhebli-

che Vorteile gegenüber konventionellem Training hat. Mit dieser Methode konnten alle

getesteten Versuchspersonen mit normaler Anatomie und zwei Personen mit angebo-

rener Fehlbildung des Unterarms innerhalb kürzester Zeit zwei Freiheitsgrade simultan

und proportional steuern. Die verwendeten Algorithmen kommen mit minimaler Re-

chenleistung aus und lassen sich problemlos auf den vorhandenen Mikrocontrollern ei-

ner Prothese verwenden. Dies wird durch die Implementierung auf einem minimalis-

tischen eingebetteten Echtzeitsystem demonstriert, dass die wichtigsten klinischen An-
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forderungen erfüllt. In Tests mit einer elektrischen Handprothese, konnte die Versuchs-

person mit transradialer Amputation die beiden Freiheitsgrade der Prothese zuverlässig

simultan und proportional steuern.
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1 Introduction

Losing a hand in an accident is often a highly traumatic experience for the affected per-

son. Moreover, it typically comes along with a radical change of life, as in many cases

the professional occupation cannot be continued and simple activities of daily living like

eating, dressing/undressing or cooking may become very difficult. Even though hand

prostheses may never be able to fully replace the original limb, they can provide impor-

tant practical and also psychological support to the user. The most common control-

signals for actuated upper limb prostheses are electromyographic (EMG) signals, which

are small electrical potentials that muscles generate during contractions.

Great advances in mechatronics in the past years led to the development of several

highly functional commercially available prostheseswith individually actuated digits that

have the capability of decreasing the gap between the artificial device and the actual limb.

However, so far there exists no controller that is capable of extracting a sufficiently high

number of control signals from the intention of the user, tomake full use of the advanced

hardware. Despite several decades of research on myoelectric control aiming to improve

this human-machine interface and impressive results in the literature, so far this had al-

most no impact on the clinical practice. The clinical state of the art allows for controlling

only one degree of freedom (DOF) at a time and the user has to switch between the active

joints or pre-defined grip patterns. The reason for this mismatch between academic re-

sults and its applicability is that in most academic studies many clinically relevant factors

were excluded and that the methods become unreliable under real-world conditions.

The aim of this work is to develop novel control strategies for myoelectric hand pros-

theses that are applicable also under real-world conditions and have the potential to in-

crease the quality of life for prosthesis users. Therefore, this thesis will be focusing on

factors of practical relevance.

1.1 Outline of this Thesis

Chapter 2 introduces the neurophysiology, underlying the generation of electromyo-

graphic signals and provides an overview on the history of upper-limb prostheses and

control techniques. Research approaches will be summarized that have been described

in the literature, including classification and regression-based techniques. In chapter 3,

the concept of spatial filters will be introduced and applied to classification-based myo-

electric control with the aim to increase the reliability and robustness of this approach.

In particular, different multiclass extensions of a technique known as as common spa-
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1 Introduction

tial patterns (CSP) are investigated. The robustness to real-world issues is evaluated by

including a variation of the arm position and by adding artificial sensor-noise. Chap-

ter 4 compares previously applied regression techniques for independent simultaneous

and proportional control of multiple DOFs with novel approaches. In this comparison

a special emphasis on clinical relevant factors is given. Based on these offline investiga-

tions, a real-time control is developed. It is evaluated in chapter 5 in a closed-loop, which

allows the user to adapt to the provided feedback. A novel and promising training ap-

proach is introduced and carefully investigated in a real-time study, in which both the

user and the algorithm learn simultaneously. The usability of the developed techniques

is demonstrated on an embedded system used to independently control two DOFs of a

real prosthesis by a subject with upper limb deficiency.

1.2 Scienti�c Contribution

This is the first work that applies common spatial patterns in the context of myoelectric

control. These spatial filters are optimized in a supervised training procedure for each

user individually and enhance the relevant information in raw-signal domain. This does

not only improve classification accuracy and robustness but also gives access to filter-

patterns that allow for a physiological interpretation of the results.

Regression has been proposed recently to archive simultaneous and proportional con-

trol of multiple degrees of freedom. In this work two previously applied methods (linear

regression andmultilayer perceptrons) are compared with twomethods that are novel in

this context (mixture of experts and kernel ridge regression). Systematic investigations

of the relationship between EMG features and joint angles revealed that relatively sim-

ple and computationally significantly more efficient methods can perform equally well

as more complicated and computationally expensive techniques. This is very important

for a future transfer into a clinical application as the algorithms are required to run on a

minimalistic hardware with low power consumption to be integrated into a prosthesis.

For the first time it is systematically investigated how the amount and the diversity of

training data influences the performance. Useful suggestions can be derived from this

analysis on training protocols for a practical clinical application of the methods.

Finally this is the first realization of co-adaptive learning in myoelectric control. The

real-time study demonstrates that this novel closed-loop training concept is much more

efficient than conventionally applied open-loop calibration or alternating phases of hu-

man and machine learning that are usually present when a conventional trained system

is evaluated and retrained in case of insufficient performance.

Large parts of the results have beenpublished previously by the author in peer reviewed

journal and conference publications. An overview on the related publications is given

below. The author wants to thank his co-authors for allowing to use materials of joint

publications in this thesis.
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2 Fundamentals

2.1 Electromyography

Electromyographic signals are small electrical potentials that are generated in muscles

during contraction. All body movements are driven by muscles that apply forces to the

skeleton when contracting. Muscles are composed of fibers that shorten after activa-

tion by depolarization of the cell-membrane. They are controlled by the central nervous

system (CMS) via motor neurons. All muscle fibers that are controlled by one motor

neuron form a motor unit (MU) and contract always simultaneously. The number of

muscle fibers per MU varies within and across muscles and amounts to several hun-

dred [Buchthal and Schmalbruch, 1980]. Also the number of MU per muscle differs

across muscles and falls in the range of 100 - 400 units for the muscles relevant for my-

oelectric control [Al-Faiz and Al-Mashhadany, 2009]. To activate a MU, local depolar-

izations of the motor neurons membrane (action potentials) travel along the axons from

the spinal cord towards the muscles. At the neuro-muscular junction, each neural action

potential triggers the release of neurotransmitters, which cause a local depolarization of

all muscle fibers of that MU. The depolarization starts in the innervation zone, typically

located in the central section of themuscle. Amotor unit action potential (MUAP) prop-

agates in both directions of the muscle fibers and causes the contraction of all fibers of

that MU. Two factors are determining the force level: the number of activated MUs and

the firing rates of the individual MUs [Despopoulos and Silbernagl, 2003].

Invasive recodings with needle-electrodes (which are also used for certain medical

diagnostics) have a very high selectivity and allow to directly detect individual MUAPS.

Due to the volume conduction of the tissue, the local depolarizations of the individual

MUs superimpose and form the surface electromyogram (sEMG) measured on the skin.

Both the number of activated MUs and the firing rates are reflected in the amplitude

of the sEMG. It consists of frequencies in the range of approximately 0 - 500 Hz. The

amplitude increases with the contraction force and can reach levels in the range of a few

millivolts for strong contractions. Although recent developments in high density EMG

recording and signal processing techniques allowed to reconstruct MUAP spike trains at

low contraction levels even non-invasively [Holobar et al., 2010, Glaser et al., 2013], for

myoelectric control typically more global features are extracted from the sEMG.

For medical diagnostics and research proposes, the EMG is often recorded with Ag/

AgCl-Electrodes in combination with conductive electrode gel. This minimizes the elec-

trode-skin impedance and disturbing half-cell potentials and allows to record at very low
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2 Fundamentals

Figure 2.1: Schematic illustration of the neuromuscular system showing twomotor units.

Reprinted from [Marieb and Hoehn, 2013] with permission of Pearson Education, Inc.,

Upper Saddle River, NJ

noise levels [Clancy et al., 2002]. For a long-term use in prosthetics, electrodes with gel

are not suitable, and typically dry steel-electrodes are used instead. Due to the increased

impedances, dry electrodes typically have higher noise levels and require more advanced

amplifiers designs [Chi et al., 2010]. Because of its relation to muscle-force, the EMG

can be used as a consciously controllable user input for devices such as myoelectric hand

prostheses [Muzumdar, 2004].

2.2 Upper Limb Prostheses

The number of trauma related amputations and congenital limb deficiencies of the up-

per extremity in developed countries per year and 100.000 inhabitants is in the range of

0.5 - 1 for the hand, 0.05 - 0.2 for below the elbow (transradial) and 0.05 - 0.1 for above

elbow (transhumoral) cases [Dillingham et al., 1998, James and Luff, 2006,Kutzenberger

and Hackl, 2006]. Prostheses are artificial replacements of a missing body part. First

indications for artificial limb-replacements are found already onmosaics and vases from

pre-historic times [Putti, 2005]. A famous and one of the oldest still existing examples

for mechanical hands is the “iron hand” (Fig. 2.2) of Gottfried (“Götz”) von Berlichingen

(1481 - 1562). It is made from metal and includes sophisticated mechanics which allows

to close and lock the fingers in different positions with the intact hand to grasp and hold

objects.
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2.2 Upper Limb Prostheses

Figure 2.2: Historic example of mechanical upper limb prosthesis: The second version

of the “iron hand” of Götz von Berlichingen, manufactured around 1530 (Drawing by

Christian von Mechel 1815, picture from [Berlichingen-Rossach, 1861], public domain).

More recent examples of body-powered mechanical devices use cable-controls for di-

rectly actuating the mechanic to open or close the device (Fig. 2.3). They are still very

popular because of their low costs, low weight and very high robustness [Berning et al.,

2014]. As the device is directly actuated by other muscles, the user obtains a direct force-

feedback — a very useful feature that modern myoprostheses still miss. Drawback of

the body-powered devices are the relatively low grip force and the limitation to a single

actuated DOF.

The first research prototypes for electrically powered hand prostheses which use the

EMG as control source were introduced after the 2nd world war in Germany [Reiter,

1948] and the first commercially available devices were developed in the 1960’s in Rus-

sia [Sherman, 1964]. Over many decades myoelectric-prostheses had only one actuated

DOF for opening and closing the hand and optionally a second one for a rotation of

the wrist. In the last years, great advances were achieved in the development of highly

functional electrically powered hand prostheses with a high number of actuated joints.

Currently at least four manufacturers offer multifunctional hand prostheses with six to

eleven actuated joints (Fig. 2.4) [Belter et al., 2013] and there exist research prototypes

with up to 20 active joints [Miguelez, 2011, Fite et al., 2008,Cipriani et al., 2011a]. In the

design of new prostheses, there are always trade-offs between functionality (number of

joints and actuators), maximal grip strength, complexity, anatomical correctness on one
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2 Fundamentals

Figure 2.3: Modern example of a body powered, cable driven prosthesis: Split-hook from

Fillauer (picture used with permission of Fillauer).

side and costs, weight, size and mechanical robustness on the other side. In many hard-

ware designs some of the joints are thereforemechanically coupled to reduce the number

of actuators, which reduces the weight, costs and size and can increase grip strength. Un-

til now no controller for independent control ofmore than oneDOF is clinically available

(see sec. 2.3.1), the actuators are typically coupled by the controller (e.g. all fingers open or

close simultaneously) and different programs are selected heuristically to access different

grip patterns or control different joints.

2.3 Myoelectric Control

Despite several decades of research on advancedmyoelectric control algorithms all man-

ufacturers of myoelectric hand prostheses still use the same simple control strategy that

was introduced in the 1960’s. Only very recently a start-up company has introduced a

classification-based controller that can be used in combination with the hand-prostheses

of the most important manufacturers [Coapt-LLC, 2015]. In this section the clinical state

of the art is described and an overview on the research-approaches that are found in the

literature is provided. The properties of the most important approaches are summarized

in figure 2.6.

2.3.1 Clinically Available Control Techniques

Clinically available myoelectric control techniques are relatively simple. Individuals with

hand amputation usually maintain a phantom feeling for their lost limb and movements
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(a) (b) (c) (d)

Figure 2.4: Examples of clinically available multifunctional hand prostheses: (a) Touch

bionics “i-limb ultra”, (b) RLS Steeper Group “Bebionic”, (c) Vincent Systems “Evolution

2”, Otto Bock “Michelangelo”. All pictures are provided by the manufacturers and used

with permission.
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Figure 2.5: Clinical state of the art. The amplitudes of two electrodes on antagonisticmus-

cles are used to control one DOF. Above threshold levels on the flexor electrode close the

prosthesis and the opposite for the extensor electrode. The signal amplitude is mapped

to the speed or grip-force of the prosthesis. When both muscles are activated together,

this co-contraction triggers the switching to another DOF.
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with the phantom hand cause contractions of the residual muscles in the forearm. To

control a hand prosthesis, they typically perform muscle contractions, corresponding to

extensions and flexions of the wrist. Bipolar EMG signals obtained from the residual

extensors and flexors are used as control inputs and the signals are directly mapped into

one DOF [Muzumdar, 2004]. Activity at the extensor-electrode opens the prosthetic

hand, and activity at the flexors closes it. The movements the subject has to perform to

control the prosthesis are not identical to the movements executed by the prosthesis, but

the contraction patterns related to the activated muscles are spatially well separated and

allow for a very robust control. Within very short time the association is learned by the

user and the control becomes intuitive.

A proportional control is possible, i.e. by varying themuscle force, the user can control

the speed of the prosthesis. If an object is touched, the grip-force is controlled instead

of the velocity. With this method, referred to as direct control, it is not possible to con-

trol more than one DOF at a time. Simply extending direct control to more DOFs is

not possible with surface EMG because usually there are not enough independently ac-

tivatable control sites available. An exception is given by targeted muscle reinnervation

(TMR), a surgical procedure, where additional control sites are obtained by transferring

the nerves that used to control the lost limb into other, still existing muscles, which are

spatial well separated. There is ongoing research to develop electrode implants that pick

up the signals directly at the muscles [Herberts et al., 1968,Weir et al., 2009,Baker et al.,

2010,Lewis et al., 2013,Prabhav et al., 2014]. This can potentially give a higher number of

distinct input signals even without TMR and may also allow to extend direct control to

more than one DOF [Smith et al., 2014,Pasquina et al., 2015].

For all other users, additional functions like a rotation of the wrist are controlled by

switching the active DOF. This can be achieved by a co-contraction where both muscle-

groups are activated for a short time together. Then the same two control signals as for the

first DOF are used to control another DOF (Fig. 2.5). Other clinically available functions

such as individually actuated fingers cannot be controlled independently at all. Instead,

only pre-defined trajectories and grip patterns have to be selected heuristically, e.g. by

manual switching. This control scheme is very cumbersome, time consuming and limits

the benefit of additional prostheses functions [Amsuess et al., 2014b].

2.3.2 Classi�cation-Based Approaches

To obtainmore advanced control signals, research in the last decades has focusedmainly

on classification-based approaches. Even if the signals of more than two electrodes are

typically not independent, additional information can be obtained by increasing the num-

ber of channels. The electrodes are either placed in a targeted way on muscles that are

involved in the specific contractions, or equally distributed over the entire region of in-

terest. A classifier is trained to distinguish between different contraction patterns. Typ-

ically there are used four to ten electrodes and the features that are required as a clas-
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sifier input are extracted from the filtered EMG-signals in a block-wise manner. Re-

views on classification-based approaches are provided by [Zecca et al., 2002,Parker et al.,

2006, Oskoei and Hu, 2007, Scheme and Englehart, 2011, Peerdeman et al., 2011]. A

wide range of feature ensembles and classifiers has been investigated extensively. The

explored features include simple time-domain features [Hudgins et al., 1993], such as

the mean absolute value (MAV), variance (VAR), root mean square (RMS), number of

zero crossings (ZC), number of slope sign changes (SSC) andwavelength (WL) and time-

frequency sensitive features based on short-time Fourier transformation [Hannaford and

Lehman, 1986], wavelet transformation [Englehart et al., 2001], wavelet packed transfor-

mation [Chu et al., 2006] and auto regressive [Graupe and Cline, 1975] models.

Proposed classifiers for myoelectric control include among others linear discriminant

analysis (LDA) [Englehart and Hudgins, 2003], multi-layer perceptrons (MLPs) [Kelly

et al., 1990], Gaussian mixture models [Huang et al., 2005,Castellini and van der Smagt,

2009], and support vector machines [Castellini et al., 2009]. Promising results have been

achieved to classify dynamic muscle contractions with time-frequency-based features

offline, but this scheme turned out to be unpractical in a real-time application. Return-

ing to a rest-state between two contractions was needed and made the system again slow

and cumbersome. Instead, a schemewith instantaneous classification of steady-state con-

tractions was shown to be much more effective [Englehart and Hudgins, 2003].

Dimensionality reduction with principal component analysis (PCA) was suggested,

to reduce the effect of overfitting, when limited amount of training data is available and

feature ensembles lead to high dimensional feature spaces. In chapter 3 regularization of

the classifier will be introduced as an alternative to handle high-dimensional feature-sets

in myoelectric control. After a lot of effort has been put into the development and ap-

plication of various features and classifiers, it became evident that a simple time-domain

feature-set proposed by Hudgins [Hudgins et al., 1993] (MAV, ZC, SSC, WL) in combi-

nation with an LDA classifier performs equally well or better than other, less efficient

methods [Englehart and Hudgins, 2003].

Classification rates above 90% have been reported consistently inmulticlass tasks with

eight and more classes for able-bodied subjects. But despite several decades of research

and increasing classification performances, none of the approaches have influenced clin-

ical practice so far.

The main reason for this limited transfer from research into clinical application is

the lack of reliability of many approaches under real-world conditions [Almström et al.,

1981, Lorrain et al., 2011, Jiang et al., 2012a, Farina et al., 2014]. Many studies that re-

ported very high performance investigated only static contraction patterns with gelled

electrodes under laboratory conditions and with fixed arm-position from single session

recordings [Zecca et al., 2002, Oskoei and Hu, 2007]. The high performance levels ob-

tained with the applied techniques often drop when natural variations in the EMG pat-

terns and noise-sources that are typical for real-world conditions are introduced [Amsuss

et al., 2013,He et al., 2015,Vidovic et al., 2015]. These non-stationarities [von Bünau et al.,
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2009, Samek et al., 2012] may be caused by changed electrode impedances due to sweat

or dry skin [Jiang et al., 2012a], altered arm position [Fougner et al., 2011,Radmand et al.,

2014], mechanical load due to theweight of the prosthesis [Cipriani et al., 2011b,Roy et al.,

2007], small shifts of electrode positioning [Hargrove et al., 2008, Young et al., 2011] or

variations in the way the user performs the contractions. To be suitable for a clinical

application, a method needs to be sufficiently robust against these factors.

A classifier provides only an estimation which movement is executed but not the level

of contraction that is needed to control the velocity or grip force of a prosthesis. To obtain

a proportional control, which is clinically important, the discrete signals of the classifier

output can be combined with a force-estimate [Castellini and van der Smagt, 2009] that

is typically achieved the averaged amplitude of all EMG channels [Jiang et al., 2012a]. For

each class a specific scaling factor is applied to compensate for the fact that some move-

ments are associated with significantly larger or more superficial muscles, which cause

larger EMG amplitudes [Scheme et al., 2014]. Problematic with this approach is that vari-

ations in the force-level can degrade the classification accuracy [Al-Timemy et al., 2013].

It can have dramatic consequences when a contraction with strong EMG amplitude is

misclassified as a class corresponding to smaller amplitudes. As the wrong scaling factor

is applied, there can occur a false movement at a very high speed. This extended clas-

sification scheme provides direct access to all functions of the prosthesis, but does not

allow for a simultaneous control of several DOFs. Thus, complex tasks still have to be

split into several subtasks which have to be executed sequentially. Even classification-

based approaches with combined classes [Young et al., 2013] do not provide independent

control of multiple DOFs because the speed of each DOF cannot be controlled indepen-

dently. Instead, combinedmovements are activated in fixed ratios only. For example, it is

not possible to slowly open or close the hand while rotating the wrist at medium speed.

Also smooth transitions from one movement to another that are required for a natural

appearance are not possible.

2.3.3 Regression-Based Approaches

Contrary to classification, regressors do not decide for certain classes but estimate in-

stead continuous multivariate outputs comprising all DOFs simultaneously [Fougner

et al., 2012]. This allows for an independent simultaneous and proportional estimation

and can facilitate a fluent and natural control, given an accurate estimation. The lack

of such natural control is indeed one of the main limitations of the classification-based

control approach [Jiang et al., 2012a].

One benefit in regression-based approaches is the possibility of intuitive correction by

the user, when real-time feedback is provided. Since also small changes in the EMG-

signals lead to a directed change in the control output, the user gets immediate feedback

and may intuitively correct his contraction patterns. A recent real-time study based on

regression control demonstrated a relatively high robustness against variations in arm
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position [Hwang et al., 2014b].

To train a regressor, typically EMGdatawith known activation profiles (data labels) are

required. [Jiang et al., 2009] and [Nielsen et al., 2011] measured the torques or forces of

all related DOFs to obtain these labels. [Muceli and Farina, 2012] and [Jiang et al., 2012b]

have shown that it is also possible to use joint-angles instead of forces for training. A

direct comparison of these strategies is provided in [Ameri et al., 2014c].

A major challenge for regression methods in myoelectric control is to obtain accu-

rate training labels in the absence of a limb. For unilateral amputees who represent the

majority of the hand prostheses users, a supervised training is possible with a bilateral

training strategy. The subjects perform bilateral mirrored contractions and the regressor

is trained with forces or kinematics measured at the contra-lateral side. Another strategy

that can be applied also for bilateral amputees is to use visual cues instead of measured

kinematics or forces [Ameri et al., 2014b].

A few studies explored the possibility to use linear mappings for the regression [Jiang

et al., 2009, Ziai and Menon, 2011], but mostly multilayer perceptrons (MLPs) were ap-

plied [Nielsen et al., 2011,Muceli and Farina, 2012, Jiang et al., 2012b,Ameri et al., 2014c].

[Ameri et al., 2014a] investigated recently also kernel methods for regression-based my-

oelectric control. In this thesis, the relationship between EMG-features and wrist angles,

measured by a motion tracking system will be investigated in more detail and several

linear and non-linear regression techniques will be compared under practical relevant

conditions.
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Figure 2.6: Comparison of the possible range ofmotion for different control strategies (il-

lustrated for two DOFs): The industrial state of the art “direct control” allows for propor-

tional control but is limited to one DOF at a time. Pure classification-based approaches

allow for directly accessing several functions but still require a sequential execution of the

movements. A proportional control can be added by an additional signal path for force-

estimation and including combined classes allows for actuating more than one function

at the same time. However, as simultaneous classes can be activated in a fixed ratio only,

the range of possible motions is still limited. A fully independent and proportional con-

trol of several DOFs is possible with regression-based approaches.
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3.1 Introduction

The amplitude of myoelectric potentials measured on the skin does typically not exceed

a few millivolts, which is relatively low compared to electromagnetic interferences and

other noise-sources that can be several magnitudes larger. To extract the desired EMG

signals, the signal to noise ratio (SNR) can be increased by temporal and spatial filtering.

For removing DC offsets, motion artifacts, power-line interferences and noise outside

the EMG frequency-band, temporal filters are applied. The idea of spatial filters is to

combine multiple channels with the goal to enhance certain signal characteristics. If

x(t) is a vector with DX EMG-signals at time instance t, a linear, instantaneous spatial
filter can be achieved by a simple vector multiplication:

s(t) = w⊤x(t) (3.1)

The output of the filter s(t) is called a component and the filter properties are determined

by the weight-vector w.

A bipolar derivation is used for clinically available myoelectric controllers and also in

most research studies [Zecca et al., 2002, Oskoei and Hu, 2007]. This can be seen as a

very simple spatial filter with the coefficientsw = [ 1 −1 ]⊤, i.e. the potentials of two
electrodes are subtracted. Since the interfering signals are usually very similar in adja-

cent regions, most of the noise cancels out while the locally varying EMG is enhanced

if the electrodes are located properly. Other static spatial filters that involve more elec-

trodes such as Laplacians, have been applied in EMG-research [Disselhorst-Klug et al.,

1997,Merletti et al., 2009, Farina et al., 2003]. In this chapter a class of spatial filters is

investigated that not only increases the signal to noise ratio, but is optimized to directly

enhance information that is relevant for the classification task.

In the context of brain computer interfaces (BCI, [Vidal, 1973, Dornhege et al., 2007,

Wolpaw and Wolpaw, 2012]) the performance of motor-imaginary movement classifica-

tion was significantly improved by using subject specific spatial filters on the electroen-

cephalography (EEG) signals. The filter weightsw were optimized based on subject spe-

cific training data. In particular, Common Spatial Patterns (CSP, [Ramoser et al., 2000])

have shown to be very powerful for binary classification problems [Blankertz et al., 2008].

Also multiclass CSP has been suggested [Dornhege et al., 2004].

In the following sections, several multiclass extensions of CSP will be presented and

applied to high dimensional EMGdata of ten able-bodied subjects. In a classification task
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Figure 3.1: Typical signal processing chain for a classification-based myoelectric control

system with added spatial filtering step. Both, the classifier and the spatial filter are

trained in a supervised fashion. As the classifier estimates only the type of movement

but not the force, an additional processing path is used to enable proportional control.

with six hand and wrist movements, the algorithms are compared to a classical pattern

recognition approach in terms of classification accuracy and robustness. The trained

filter coefficients give access to patterns that are physiological interpretable.

This chapter is based on prior publication in [Hahne et al., 2012a].

3.2 Common Spatial Patterns (CSP)

CSP is a supervised algorithm to obtain linear spatial filters that maximize the variance

of one class and at the same time minimize the variance of a second class. Given that

the information is coded in the variance, the classes become maximally separated. Thus,

extracting features from the CSP-components instead of the EMG channels simplifies

the task for the classifier. As the variance of the EMG increases with increasing muscle

force and carries therefore the most important information, it is expected that CSP can

improve classification-based myoelectric control.

LetXc ∈ RDX×NXc denote amatrixwhich contains themultivariate EMGsignalsx(t)
for NXc time instances during contractions of class c. With Σc = 1

NXc−1
XcX

⊤
c being

the empirical covariance matrix of Xc, the variance of the filter-output s(t) is given by

w⊤Σcw and the optimization problem can be formulated as:

w = argmax
w

w⊤Σ1w

w⊤Σ2w
(3.2)

In many cases more than one filter is desired. One could repeat the optimization pro-

cedure iteratively with the additional constraint that the new filters are orthogonal to all
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Figure 3.2: Demonstration of the CSP algorithm for 2-class EMG data. The left panels

show raw EMG data and the right panels the corresponding CSP components for the

movements hand open and hand close. While the variances of the raw signals are relative

similar, they become clearly separated after transformation into CSP components.

previously defined filters. By this procedureDX orthogonal weight vectorswi could be

obtained.
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Figure 3.3: Simultaneous diagonalization of the covariance matrices for two classes with

CSP: (a) Visualization of the covariance matricesΣ1,Σ2 and the diagonal matricesD1

andD2. (b) Eigenvalue spectra, extracted from the principal diagonals. The variances of

the uncorrelated components S sum up to one and differ maximally in the first and last

dimensions.

A direct solution for a full filter matrix with rankDX is provided by solving the gen-

eralized eigenvalue problemΣ1w = λΣ2w, i.e. finding the matrixW that diagonalizes

bothΣ1 andΣ2:

WΣ1W
⊤ = D1 (3.3a)

WΣ2W
⊤ = D2 (3.3b)

D1 + D2 = I (3.4)

W ∈ RDX×DX contains DX spatial filters as row vectors. Applying W to the raw

signals would giveDX components S = W ∗ X . The variances of all components for

inputs of class 1 are indicated by the corresponding eigenvalues λ1
i that form the principal

diagonal of D1. Similarly, the eigenvalues λ2
i in D2 represent the variances for input

signals of class 2. As indicated by (3.4), the eigenvalues λ1
i and λ2

i sum up to one for all

components. Thus, choosing a component with high variance for one class has a low

variance for the other.
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Note that if both the temporal and the spatial filters are linear, the order of these pro-

cessing steps can be exchanged which reduces computational load, if the number of spa-

tial componentsDS is smaller than the number of input channelsDX .

An example of covariance matrices for EMG signals of two classes, the corresponding

diagonal matrices D1 and D2 and the eigenvalue spectra is shown in figure 3.3. The

block structure of the covariance matrices is caused by the row wise positioning of the

channels within electrode arrays.

Since the filters inW are sorted in a way that the eigenvalues inD1 are in descending

order, the first and the last components have the best separation properties. However,

when dealing with real biosignals, often more components are selected to increase the

robustness [Blankertz et al., 2008]. This will be explored in more detail for a myoelectric

control task in the experimental section 3.4.

3.3 Multiclass CSP

Although the classical CSP approach is limited to two classes, there are several options

to extend CSP to more classes. One way is to combine several binary CSP filters in an

one vs. rest or an one vs. one combination scheme. Another approach is to extend the

optimization problem to a simultaneous diagonalization of more than two covariance

matrices [Dornhege et al., 2004]. These extensions are introduced in the following sec-

tions.

3.3.1 One vs. Rest

In the one vs. rest (OvR) approach each filter is optimized to maximize the variance of

the corresponding class and minimize the sum (or average) of the variances of all other

classes:

wc = argmax
w

w⊤
c Σcwc

w⊤
c

(∑
i ̸=cΣi

)
wc

(3.5)

This can be achieved by solving the generalized eigenvalue problem with Σ1 = Σc

andΣ2 =
∑

i ̸=c Σi for each class c. Only the filters with highest eigenvalues inD1 are

selected, as the components that maximize the rest are of no interest. This is repeated for

each class. The features of all selected components are concatenated and classified by a

multiclass classifier.

In the OvR extension, the number of components is growing linearly with the number

of classes. Since only the average of the other classes is minimized, there is no guarantee

that each individual counter class results in a low variance output. Thus, the filters might

be suboptimal in terms of separating properties.
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3.3.2 One vs. One

In the one vs. one (OvO) approach the binary CSP algorithm is applied for all possi-

ble class combinations. The filters are chosen in the same way as in the binary case for

each combination. The components have optimal separation properties for the classes

belonging to each combination, but the response for unrelated classes is not determined.

In this approach the number of filters grows quadratically with the number of classes.

The number of combinations is Ncomb = (N2
c − Nc)/2. Depending on the number of

classesNc and the number of components selected for each combination, this can result

in a very large number of components and a high dimensional feature space. Given the

limited amount of training data this can cause overfitting problems in the classification

task that have to be compensated by regularization techniques. In the present approach,

the features of all components are concatenated into one feature vector and applied to a

multiclass classifier. An alternative would be to apply for each class combination a paral-

lel classifier and combine the classification outputs. But in a pilot study this led to worse

results than concatenating features of all combinations and is therefore not applied here.

Nevertheless, this approach might be interesting to increase the robustness against false

activations in a real-world scenario (see also [Scheme et al., 2011]).

3.3.3 Joint Diagonalization

Another approach is the simultaneous diagonalization of more than two covariance ma-

trices, i.e. to optimize a filter matrixW that diagonalizes the covariance matrices of all

classes:

WΣcW
⊤ = Dc ; c = 1...Nc (3.6)

∑
c

Dc = I (3.7)

Contrary to the two class case, the solution can be only approximated. Here the ffdiag
algorithm described in [Ziehe et al., 2004] is used. Figure 3.4(a) shows an example of the

approximated diagonal matrices for the six class problem described below for one rep-

resentative subject. The standard error in the off-diagonal elements was always smaller

than 5× 10−3, indicating a successful approximation.

The elements of the principal diagonals ofDc form the eigenvalue spectrum for class

c. As in the binary case the eigenvalue λc
i indicates the variance (or power) of component

i for signals of class c.
Selecting good components for classification is not as straight forward as in the binary

case, where the componentwith the highest eigenvalue for one class has automatically the

lowest eigenvalue for the other class. [Dornhege et al., 2004] compared different strategies

in a BCI context. In this work the best results were obtained by simply adding for each
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class the components with highest eigenvalues λc
i . If a component would be selected

twice, the component with the next highest eigenvalue λc
j is selected for the class with

lower eigenvalue λc
i . The eigenvalue spectra for an representative example are shown

in figure 3.4(b). If λc
i is close to 1 for one class and very low for all other classes, this

component has good separation properties. In the given example this is the case for

some of the classes (e.g. component 75 for class 5). In other cases (e.g. class 1) the highest

λc
i is much lower than 1 and the corresponding component will also capture power for

other classes. The first components that are selected for each class are marked by vertical

lines.

(a) (b)

Figure 3.4: Example of simultaneous joint diagonalization for a 6 class problem. (a): Di-

agonal matricesD1 toD6. Since the solution is only an approximation, the off-diagonal

elements are very small but not exactly zero. (b): Eigenvalue spectra for all classes. As

in the two class CSP algorithm, the eigenvalues of all classes sum up to one, but select-

ing components is not as straight forward. The gray lines indicate heuristically selected

components for that the spectra strongly differ for different classes.

3.4 Experiments

3.4.1 Setup and Paradigm

For this study, 96 monopolar EMG signals were recorded from the non-dominant fore-

arms of 10 able bodied subjects, five females and five males. “Brain Amp DC” biosignal

amplifiers were used with a sampling frequency of 2500 Hz and two Ag/AgCl electrode

arrays with an inter electrode distance of 8 mm (OT-Bioelettronica ELSCH064R3S). The

arrays were placed on the forearm, at approximately one third of the distance from the
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Figure 3.5: High density EMGelectrode arraysmounted on the forearmof an able-bodied

subject.

elbow to the wrist (Fig. 3.5). For a reproducible electrode placement in tangential direc-

tion, the location of the ulna was used as a reference position, which was identified by

palpation. The approximate position of the electrodes relative to the forearm muscles is

shown in figure 3.9.

The subjects were instructed to perform six different classes of handmovements (hand

open, hand close, pronation, supination, wrist flexion, wrist extension) in five different

arm positions (arm down, half lifted, extended to the front, in front of the body, in front

of the face). A visual feedback was provided of the root mean square (200 ms mov-

ing window), averaged over all channels and scaled to maximum voluntary contraction

(MVC) for each class. To adapt the scaling, the subjects performed an MVC for each

class-position-combination in the beginning of the session.

Each trial was formed by a contraction of three secondswith approximately 40% force.

The trials were recorded in several runs, where each run contained each class-position-

combination exactly once. In between two trials was a break of 4 seconds, in which the

subject had to change the arm position. The order of trials within each run was ran-

domized in class and position. When the subject or the experimenter noticed a failure

(e.g. wrong or delayed contraction, wrong arm position) in the execution of a trial, it

was marked during the experiment and not used in the evaluation of this study. The

number of removed trials was very low for all subjects (0 to 0.83 % of trials, average

0.41% ± 0.28%). After each run the subject was allowed to have a break and relax for

some minutes. Each subject performed 25 to 35 runs. In this way, 750 to 1050 trials were

obtained from each subject. This is enough independent data for a proper statistical eval-

uation. For this study, only the static part of the contractions is used, i.e. the beginning

and end of each contraction were removed. All signals were filtered with a highpass (500

Hz, 4th order Butterworth), a low pass (20 Hz, 4th order Butterworth) and a band stop

filter (45 - 55Hz, 2nd order Butterworth) to remove noise, movement artifacts and power-
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Figure 3.6: Data recording during the execution of the experimental paradigm. The sub-

ject is visually instructed to execute a certain contraction in a defined arm-position. To

ensure stable contraction levels and minimal subject-related delays in the execution of

the commands, themean EMGamplitude across channels is provided as a real-time feed-

back. The subject follows pre-defined profiles with the feedback curve.

line interferences. The experiments are in accordance with the Declaration of Helsinki

and approved by the local ethics commission (Ethikkommison Charité Berlin, approval

number EA4/085/11).

3.4.2 Feature Extraction

In this study the features were extracted from overlapping blocks of 200 ms, with an in-

crement of 50 ms. This scheme was chosen in order to fulfill the time constraints that

would arise in a real-time application [Smith et al., 2011]. Longer window sizes would in-

crease the classification accuracy, but cause also larger delays which reduces the usability

of an online control system. The choice of 200 ms window length is a good compromise

in this trade-off [Farrell and Weir, 2007].

To capture the discriminative information of the CSP-components, variance-sensitive

features should be extracted. Instead of directly using the block-wise computed empirical

variance, LOG-VAR features (eq. 3.8) are applied. The logarithm causes a compression of

the value range which results in a feature distribution closer to Gaussian that is beneficial

for the following classification step using Fischer LDA:

φ(t) = log

[
1

N − 1

∑
i ∈ bt

s(i)2

]
(3.8)

where bt contains theN (raw-data) sample-indices of block t.
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3 Spatial Filters for Robust Classi�cation

3.4.3 Baseline Method

In order to compare the performance of the proposed algorithms, a commonly used

method was implemented to obtain a baseline performance. A set of bipolar signals was

derived by a couple-wise subtracting of monopolar channels with inter-electrode dis-

tance (IED) of 16 mm and aligned with the direction of the muscle fibers. From the bipo-

lar signals theHudgins feature set (mean absolute value, zero crossing, slope sign changes

and wavelength, [Hudgins et al., 1993]) was extracted in the same scheme as for the other

methods described in section 3.4.2. Englehart and Hudgins found that for steady-state

EMG signals these rather simple features in combination with linear discriminant analy-

sis outperformmany other, more complexmethods [Englehart andHudgins, 2003]. This

scheme was used in many other studies [Peerdeman et al., 2011].

3.4.4 Classi�cation Scheme

For both classification of features extracted fromCSP components and in BCI [Blankertz

et al., 2008] and of the Hudgins feature set in myoelectric control, Fisher linear discrim-

inant analysis (LDA) has been proposed. This is the optimal Bayes classifier for data that

is Gaussian distributed and has the same covariances for all classes in feature space.

Each to be classified feature vectorφ is assigned to that class c with highest probability

regarding the following equations:

ŷ = argmax
c

δc(φ) (3.9)

δc(φ) = φ⊤Σ−1µc −
1

2
µ⊤

c Σ
−1µc + log(pc) (3.10)

Where µc =
1
Nc

∑
φc is the empirical mean calculated from training samples of class

c andΣ = 1
C

∑C
c=1Σc is the pooled feature covariance matrix. The a-priori-probability

pc is assumed to be equal for all classes: pc =
1
C
.

Even if the assumption of equal covariance matrices for all classes is often violated for

EMG data-sets, it was found that multiclass-LDA performs equally well as other, more

complex classifiers [Englehart and Hudgins, 2003]. Also in a pilot analysis for this study

quadratic discriminant analysis (QDA), which considers the individual covariances of all

classes did not perform better than LDA. Since the dimensionality of the feature space

can become relatively large depending on the number of selected components and the

type of CSP multiclass extension, the robustness of the empirical covariance estimation

can becomeproblematic due to the limited amount of available training data. Therefore, a

shrinkage regularized version of LDAwas applied in which the pooled covariancematrix

was replaced by a regularized version with decreased off-diagonal elements [Blankertz

et al., 2011]. The regularization parameter was automatically selected solely based on the

training set as proposed by [Ledoit and Wolf, 2004]. All arm positions were included in
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both training and test sets. For extensive investigations on training strategies for position

robust control with reduced amount of training data see [Fougner et al., 2011].

For a practical application as the control of hand prostheses, it is not suitable to use

too many channels. The power consumption and the production costs would be too

high for a clinical application. Therefore, the classification performance was investigated

with a reduced set of 22 channels, located in two rows with a distance of 16 mm. Within

each row the channels were equally spaced and formed a ring around the forearm. All

classification results were obtained from the reduced channel set. For the derivation in

the baselinemethod, the bipolar couples were formed by opposite channels of both rows.

3.4.5 Cross-validation Results

(a) (b)

Figure 3.7: Cross-validation results for a six-class classification task. (a): Classification

error for the baseline method and all investigated CSP-extensions (mean and standard-

deviation across subjects). The gray-level indicates the number of components used per

combination and the curve bellow the total number of components that corresponds to

the dimensionality in feature-space. (b): Direct comparison of the classification errors

with the baseline method bipolar for each subject and p-values for t-test
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3 Spatial Filters for Robust Classi�cation

The cross-validation error is reported for all CSP extensions and various numbers of

components (Fig. 3.7). Choosing more components within each of the proposed CSP

extensions generally improved the performance. Even when the total number of compo-

nents became larger than the number of raw signals, the performance increased further.

If a sufficiently high number of components was selected, CSP OvR and CSP OvO per-

form better than the reference method Bipolar. Both extensions had approximately the

same error rates for the same number of total components. The error increased again

slightly, for the highest number of investigated components at CSP OvO. This might be

caused by overfitting, due to the high dimensional feature space and the limited amount

of available training data. For Joint Diagonalization, it is not possible to select more com-

ponents than raw signals. With the highest choice of three components per class this

method did not perform better than the baseline method.

In figure 3.7(b), all CSP methods are directly compared with the reference method

bipolar for each subject individually. For each method only a fixed number of compo-

nents is shown. The total number of components was 18 in case of Joint Diagonalization
(3 components× 6 classes), 120 forCSPOvR (20 components× 6 combinations) and 120

for CSP OvO (8 components× 15 combinations). Above each plot the t-test significance

value is shown for that comparison. CSP OvR and CSP OvO performed better than the

baseline method for all but one subject and the differences were significant. Joint Diag-
onalization performed for four subjects better, for four worse and for two similar as the

baseline method. There were no significant differences.

3.4.6 Robustness to Sensor-noise

Figure 3.8: Evaluation of the robustness to artificially added sensor-noise. All CSPmulti-

class extensions are less affected by the noise than the baselinemethodwithout optimized

spatial filters.
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Due to the low electrode-skin impedances of the wet Ag/AgCl electrodes used in this

study and the high-quality biosignal amplifiers (very high input impedance and common

mode rejection ratio), the noise level of the signals is very low. For a practical application

in prosthetics, dry electrodes are needed, which can increase the noise level significantly

depending on the skin conditions. Therefore, the robustness of all methods to an in-

creased noise level is investigated. Uncorrelated white Gaussian noise was added to all

monopolar signals (training and test data). The noise was filtered in the same way as the

EMG, so only the frequency components within the pass bands of the temporal filters af-

fected the signals. Five different noise-levels are investigated with a post-filter-amplitude

of 1− 100µVrms. This corresponds to the range of noise levels that are common for dry

electrodes, depending on the skin conditions and the level of electromagnetic interfer-

ence.

The degradation of classification error depending on the level of added noise is shown

in figure 3.8. The number of components is the same as for the significance tests (totally

120 for CSP OvO and CSP OvR, 18 for Joint Diagonalization). For all methods, the clas-

sification error is monotonically increasing with increasing noise level. The increase in

error is strongest in the case of bipolar derivation while all CSP extensions are affected

less by the decreasing signal quality. CSP OvR and CSP OvO that performed already best

without additional noise show also the lowest error under noisy conditions.

3.4.7 Interpretation of Spatial Filters

Each spatial filter as introduced in equation 3.1 is defined by its weights w and charac-

terizes a linear mapping from sensor space in a component with certain properties — in

case of CSP optimal class-separation. An analysis of the learned filter weightsw can be

useful to understand its behavior and draw conclusions to the underlying physiology. As

worked out in [Haufe et al., 2014], a direct spatial interpretation of the filter-coefficients

is not meaningful. Sensors with large filter coefficients do not necessarily contain the

underlying physiological signal, but may instead provide information about the noise

that corrupts other sensors with the signal of interest [Parra et al., 2005]. Instead, the

filter weights w, which correspond to a (data-driven) backward model to some hidden

components can be transferred into a forward model a, which is well interpretable:

x(t) = a⊤s(t) (3.11)

The entries of the activation pattern ai describe the strength and direction with that

the i’th component si(t) is represented in each individual channel. This allows for local-

izing the origin of the component and can give insights into its underlying physiology.

In case of CSP, where the full squared filter matrix W ∈ RD×D is available, the trans-

formation from a backward into a forward model is given by the transpose of its inverse:

A = (W−1)⊤.
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Extensor Carpi

Ulnaris

Extensor

Digitorum

Extensor Carpi

Radialis Longus

Brachioradialis

 Pronator Teres

Flexor Carpi Radialis

Palmaris Longus

Dorsal Palmar

Array 1 Array 2

Flexor Carpi Ulnaris

Extensor Carpi

Radialis Brevis

Figure 3.9: Anatomy of the forearm with approximated electrode position (modified

from [Gray, 1918]).

In the graphical representations (Fig. 3.11, 3.12 and 3.13) blue represents negative entries

of the forward coefficients a, red positive entries and white values close to zero. Each dot
corresponds to the position of one sensor and the values in between are obtained by cubic

interpolation. The first patterns are of particular interest (for OvO also last patterns),

since they show the sources of the most discriminative components. In order to relate

the patterns with the underlying muscle activity they are compared with the variance

patterns which show the distribution of EMG activity over the arrays (Fig. 3.10). The

approximate position of the arrays in relation to the muscles is given in figure 3.9.

Patterns of CSP One vs. Rest and Joint Diagonalization

Since the patterns of CSP OvR (Fig. 3.11) and joint diagonalization (Fig.3.12) are very sim-

ilar, they are analyzed together. In some cases the signs are flipped, but this is of less inter-

est, as CSP is invariant with respect to the signs which have no influence on the variances
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Figure 3.10: Variance patterns of the raw, temporal filtered signals. Since the range of

variances is quite different for different classes, each plot is scaled individually. White

corresponds to no activity and black to the variance of the strongest channel.

of the corresponding components. The reason for the similarity between the patterns of

both methods can be found in the optimization criteria of these two approaches, which

are actually not so different. Even if CSP OvR does not diagonalize each of the individual

covariance matrices of the “rest classes” explicitly, in both methods a component with

maximal variance for one class has a minimized sum of variances over all other classes.

Class 1 - Hand Open The variance pattern shows EMG activity mainly above mus-

culus extensor digitorum, which is responsible for extension of the fingers and wrist. The

first three CSP patterns focus in the same region which is physiologically meaningful, as

this muscle is responsible for extending the fingers when opening the hand.

Class 2 - Hand Close The variance pattern shows activity above a wide region in-

cluding Extensor Carpi Radialis Brevis and Longus, Extensor Carpi Ulnaris and Flexor

Carpi Radialis which can be explained by the fact the subject made a fist for that many

muscles contract to stabilize wrist and hand. The CSP patterns focus mainly in regions
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3 Spatial Filters for Robust Classi�cation

Figure 3.11: First three patterns for each class of CSP one vs. rest

Figure 3.12: First three patterns for each class of CSP joint diagonalization
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with moderate variance but interestingly the region with maximal variance above Exten-

sor Carpi Radialis Brevis and Longus is completely left out in the CSP patterns.

Class 3 - Pronation The variance pattern shows two regions of strong activation.

One is located above Pronator Teres, which is the most important muscle for the prona-

tion of the wrist. The second region is located above Extensor Digitorum, which may be

co-activated in strong pronations. TheCSP patterns focusmainly above a physiologically

meaningful area above Pronator Teres but a light and smooth activity above Brachioradi-

alis, Carpi Radialis Longus and Carpi Radialis Brevis is observed. The latter might come

from some spillover of Pronator Teres through the other muscles.

Class 4 - Supination The principal muscle for supination in the region of the elec-

trodes is Musculus Supinator, which is a relatively small and deep muscle, covered by the

extensors. For that reason no strong signals can be expected and indeed the variance is

quite low, as the scaling of the variance pattern shows. There are two active spots in the re-

gion of Extensor Carpi Ulnaris and the left (ulnar) side of Extensor Digitorum. The CSP

pattern focus mainly in the same region as the variance pattern but additionally a light

contribution over large regions of both arrays is observed. Likely, the algorithm focused

on co-activated finger-extensions, which if consistently activated during supination may

provide more discriminative information in the surface EMG than the deep Musculus

Supinator.

Class 5 - Wrist Flexion The variance pattern shows activity above Flexor Carpi Ra-

dialis and Palmaris Longus which is physiologically meaningful for wrist flexion. Addi-

tionally there is activity in the region of Pronator Teres. Either this muscle is co-activated

for stabilization, or the activity comes from another muscle like Brachioradialis, which

overlaps Pronator Teres partly. The second and third CSP pattern focus only in the

anatomical plausible regions of Flexor Carpi Radialis and Palmaris Longus. The other

activity above Pronator Teres and Brachioradialis is captured in the first CSP-component.

This is an interesting example, which demonstrates that often more than one component

per class is needed to capture all relevant information.

Class 6 - Wrist Extension The variance pattern shows high activity mainly above

Extensor Digitorum, similar as for the class hand open. The CSP patterns focus in the

same region plus in a second region, above Extensor Carpi Radialis Brevis and Longus,

which are also involved in the extension of the wrist.

Summary For hand open and wrist flexion the CSP patterns focus in the same regions

as the variance patterns. For pronation, supination and wrist extension the CSP-patterns

focus partly in the regions with high variance, but additional discriminative regions are
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found that are not visible in the variance patterns. For hand close the best discriminative

regions are found in areas completely distinct from those with highest signal power. This

shows that the regions with strongest muscle activity are not necessarily the regions with

most discriminative information.

Patterns of CSP One vs. One

Figure 3.13: Example of CSP patterns of the one vs. one extension for the class combina-

tion hand open and wrist extension

Due to the high number of combinations for the one vs. one extension only an interest-
ing example is shown, which involves a combination of two classes that corresponds to

similar muscle activation, namely hand open and wrist extension. The similarity is seen

in the variance patterns (Fig. 3.10 class one and six), which reveal activity in similar re-

gions, overlapping each other partly. Figure 3.13 shows the first and last three patterns

of the CSP filter that separate the chosen classes. The lower three patterns correspond

to the components with high output for the class wrist extension and focus in a region

with high EMG activity for that class. A careful comparison of the CSP patterns with

the variance patterns shows that the focus of the CSP patterns is on the very right side
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of the region with high variance for that class. In this region the other class hand open is

less active, since its variance pattern is located slightly more to the left. The upper three

patterns correspond to the class hand open. They focus in a region on the second array,

far beside the region of maximal variance. The region is rather in a location, where hand
open has moderate activity, while the other class is not active at all. This demonstrates

how CSP can extract highly separable components, by utilizing also EMG activity from

less active regions, which potentially originates from synergistically activated muscles.

3.5 Discussion

3.5.1 Impact

The results of this analysis show the off-line performance for static contractions, which

cannot be put on a level with the performance in a real-world application. But by mixing

different arm positions and adding artificial noise, the analysis included two important

factors that can degrade the performance in a real-world application. This does not ren-

der online-tests in out-of-lab conditions redundant, but it brings the off-line analysis

closer to the real-world scenario. It was shown that with a sufficiently high number of

CSP-components the classification error can be almost halved compared to the baseline

method. Under noisy conditions this significant advantage is even larger. These results

indicate that the proposedmethods can significantly increase the reliability of amyoelec-

tric control system.

3.5.2 Pattern Interpretation

In contrast to many other methods, CSP allows for a physiological interpretation of the

results. EMG signals have a very good SNR and the variance patterns provide already

a good overview about the regions with muscle activation for each movement. As one

would expect, many CSP patterns focus in regions with high variance. But since the goal

of CSP is an optimal separability, themost important patterns do not necessarily coincide

with the regions of largest signal amplitude. Instead, other regions with weaker signals,

which may be related to smaller, deeper or synergistically activated muscles, are in many

cases equally important to distinguish the movements. This is consistent with previous

findings on heuristic channel selections [Hahne et al., 2010].

In future work, channel-selection techniques based on the CSP patterns could be de-

veloped to efficiently determine good electrode configurations for clinical applications.
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3.5.3 Limitations

Even though it was shown that six different contraction patterns could be reliably clas-

sified, the study in this chapter has certain limitations. The classification approach does

not provide an estimation of the muscle force that could be used to control the veloc-

ity or the grip-force when applied in prosthetics. The approach is also limited to a fixed

set of pre-defined patterns. Even if additional classes of combined movements could be

integrated, more complex movements would still require to be split into different sub-

movements that need to be executed sequentially. Thus, despite the great improvements

compared to the current state of the art used in prosthetics, the approach does not allow

for natural and fluent movements. Further, this study was done with able-bodied sub-

jects only. It remains to be shown that a sufficient accuracy can be reached for subjects

with amputation or congenital limb deficiency who are potential users of the methods.

These shortcomings will be addressed in the following chapters.
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4.1 Introduction

To increase the functionality of myoelectric control, research has focused in the past dec-

ades mainly on classification-based approaches. Reviews on this development are pro-

vided by [Zecca et al., 2002, Oskoei and Hu, 2007, Scheme and Englehart, 2011]. Since

a classifier only decides which movement is activated but does not allow for controlling

the speed or the force of a prosthesis, classification-based approaches can be combined

with a force estimation. Typically the mean amplitude of all EMG channels is used for

that. Since this value differs significantly between different types of movements, individ-

ual scaling factors for each class are applied, which are obtained by analyzing maximum

voluntary contractions. One problem with this approach is that classification errors can

lead to very strong false activations, since in case of classification errors also the wrong

scaling factor is applied.

In contrast to the clinical state of the art described in section 2.3.1, classification-based

approaches allow to directly access all functions of the prosthesiswithout time-consuming

mode-switching. However, since only one function can be activated at a time, complex

movement still have to be split into several sub-tasks, which have to be executed sequen-

tially as in the clinical state of the art. Recent efforts have extended the classifiers by

combined motion classes [Buerkle et al., 2006,Geng et al., 2012,Young et al., 2013,Ortiz-

Catalan et al., 2014]. This allows to activate two functions at the same time, but still

limits the diversity of possible movements because the speed of the related DOFs cannot

be controlled independently.

Instead, regression techniques can be applied to achieve an independent proportional
and simultaneous control [Fougner et al., 2012]. The major difference to classification

is that a regressor does not decide for a certain class, but instead a continuous (propor-

tional) output value is estimated for eachDOF.This can facilitate a very fluent and natural

control. Lacking of this natural control is indeed one of the main limitations of the cur-

rentmyoelectric control approach based on classification [Jiang et al., 2012a]. Relative lit-

tle work has been done on regression in the context of myoelectric control, mostly focus-

ing on multilayer perceptrons (MLPs) [Nielsen et al., 2011,Muceli and Farina, 2012, Jiang

et al., 2012b,Ameri et al., 2014c].

The study described in this chapter aims at a comprehensive and systematic compar-

ison of state-of-the-art regression methods for independent proportional and simulta-

neous myoelectric control of multiple DOFs. Simple linear models are compared with
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state-of-the-art non-linear and non-parametricmachine learningmethods. For a clinical

application, amethod should require little user training, be computationally efficient and

also perform well with few electrodes. Those aspects are addressed as well in the present

study by reducing the amount of training data, reducing the number of EMG channels

and by evaluating the processing times of the algorithms.

Previous studies on simultaneous myoelectric control explored different feature-sets,

such as the variance of the EMG (also denoted as mean square value) [Jiang et al., 2009,

Jiang et al., 2012b] or, similarly, the lowpass-filtered, down-sampled squared raw EMG-

signal [Muceli et al., 2014] and various time-domain and frequency domain features

[Nielsen et al., 2011]. Differences in performance have been reported for different fea-

tures, but the reasons for these differences where not fully discovered. In this study it

is demonstrated that the relationship between the variance of the EMG and the wrist

angle is highly non-linear and that simple transformations in feature space can simplify

the problem. This allows to use linear methods, which are computationally very efficient.

Four linear and non-linear regression techniques, namely linear regression (LR),mixture

of linear experts (ME),multilayer perceptrons (MLPs) and kernel ridge regression (KRR)

are compared. This provides an evaluation of the potential use of EMG for simultaneous

and proportional control and indications on the main factors of influence for regression

performance.

This chapter is based on previous publications, in particular [Hahne et al., 2012b], [Hahne

et al., 2014a] and [Hahne et al., 2014b].

4.2 Regression Techniques

A regressor predicts continuous target variables y from continuous input features φ. In
general both the input and the target variable can be multivariate. It is important to

choose a suitable complexity for the regression model to fit the underlying problem.

If the complexity is too low, the target variable cannot be approximated properly. If

the complexity off the model is too high, there is an increased risk of overfitting to the

training-samples. Thus the complexity class should be chosen high enough to model the

underlying problem but not larger. To reduce the complexity within one model class,

regularization techniques can be applied.

Let Φ ∈ RDΦ×NΦ denote the set of DΦ dimensional feature vectors for NΦ time in-

stances (feature-samples), and Y ∈ RDY ×NΦ contain the corresponding wrist angles

for DY DOFs as data labels. The goal of all regression techniques is to find a mapping

Ŷ = f(Φ), where Ŷ is an approximation of Y .

50



4.2 Regression Techniques

4.2.1 Linear Regression

In linear regression (LR) [Bishop, 2007] the mapping function is linear:

Ŷ = W⊤Φ+w0 (4.1)

W ∈ RDΦ×DY contains the weight vectors and w0 the bias that can compensate for

possible offsets. By convention w0 can be included in W by extending Φ by an addi-

tional dimension withNΦ ones. Under the assumption of Gaussian noise, the maximum

likelihood solution forW is obtained by minimizing the sum-of-squares error function:

E(W ) =
1

2

DY∑
d=1

(yd −w⊤
d Φ)2 (4.2)

The solution can be derived easily and is given in a closed form by:

W = (ΦΦ⊤)−1ΦY ⊤
(4.3)

The term (ΦΦ⊤)−1Φ is known as theMoore-Penrose pseudo-inverse. Especially when
little amount of training data is available, there is a risk of overfitting the model to the

training samples, which can be reduced by regularization. The complexity of themodel is

decreased by penalizing large entries inW . This is done by extending the error function

with a regularization term that includes a particular norm of W (eq. 4.4). For the L2

norm large entries are penalized strongly while the model is less impaired for smaller

coefficients. In opposition to other norms the solution remains in a closed form and

extends to:

E2(W ) =
1

2

DY∑
d=1

(yd −w⊤
d Φ)2 +

1

2
λ

DY∑
d=1

w2
d (4.4)

W = (ΦΦ⊤ + λI)−1ΦY ⊤
(4.5)

I is the identity matrix and the regularization constant λ can be determined using grid-

search techniques in a nested cross-validation. Note that other norms can be used for

different regularization goals. E.g. the L1 norm leads to sparse solutions and can thus be

used for feature or channel selection [Hwang et al., 2014a].
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4.2.2 Mixture of Linear Experts (ME)

In LR each column vectorwd ofW is responsible for the mapping fromΦ to one DOF

in Ŷ . This means that in LR the same coefficients are used for both antagonistic wrist

movements (positive and negative labels of the same DOF), which is physiologically not

reasonable, since the antagonistic movements involve different muscles.

Therefore, an extension of LR is proposed, which uses two different weight vectors,

wd+ and wd−, for each DOF d that are individually trained using only time intervals

with positive or negative labels, respectively. The outputs of both filters are combined

smoothly according to the probability to which direction the current feature sample be-

longs to, estimated by logistic regression [Parra et al., 2005,Bishop, 2007]:

ŷ(t) =

[
w+

w−

]⊤ [
φ(t) p(c = 1|φ(t))
φ(t) p(c = −1|φ(t))

]
(4.6)

It is assumed that the data, when projected onto one coordinate, follows a logistic dis-

tribution. I.e. the likelihood that a sampleφ(t) belongs to the positive class, c = 1, follows:

p(c = 1|φ(t)) = σ(s) =
1

1 + e−s
=

1

1 + e(β
⊤φ(t)+β0)

(4.7)

This likelihood is parameterized by the coefficients β and a bias β0. For the negative

class it is defined as p(c = −1|φ(t)) = 1 − σ(s). The parameters (β0 can be integrated

in β) are obtained by maximizing the likelihood for a set of training samples:

β = arg min
β

L(β) (4.8)

with the negative log-likelihood, defined as:

L(β) = −
∑
t

log p(ct|φ(t)) (4.9)

There exists no closed-form solution for this problem, but the optimization can be

done efficiently with an algorithm based on iterative reweighted least squares:

βd
(k+1) = βd

(k) − E

[
∂2L(βd)

∂βd∂βd
⊤

]−1
∂L(βd)

∂βd

(4.10)

ME can be seen as piece-wise linear with a smooth transition between two linear re-

gions per DOF.
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4.2.3 Multilayer Perceptrons (MLPs)

MLPs constitute a class of artificial neuronal networks that have been widely used in the

context of myoelectric control for classification [Kelly et al., 1990, Hudgins et al., 1993]

and recently also for regression [Nielsen et al., 2011,Muceli and Farina, 2012]. MLPs con-

sist of units (perceptrons), which are arranged in several layers (Fig. 4.1). The input layer

is followed by one or more hidden layers and an output layer. The output of each unit is

a linear combination of all outputs from the previous layer, filtered by a potentially non-

linear activation function ϕ. Each unit in the input layer represents one input signal, i.e.

the number of input units is defined by the dimensionality of the feature spaceDΦ. The

number of units in the output layer corresponds to the number of values to be estimated

by the network. Typically one output unit per class is chosen in architectures for classifi-

cation. For regression, one output unit is needed per DOF that is to be estimated by the

MLP. The number of units in the hidden layer(s) is typically determined empirically.

It has been shown that an MLP with one hidden layer with sigmoidal activation func-

tion and a linear activation function in the output layer, can approximate any continuous

mapping function f : Rn → Rm, given that sufficiently high number of units in the hid-

den layer are provided [Funahashi, 1989,Hornik et al., 1989]. Mathematically the output

of an MLP with that structure can be described as follows:

ŷ(t) = W (2)⊤(ϕ(W (1)⊤φ(t) +w
(1)
0 )) +w

(2)
0 (4.11)

ϕ(x) is the sigmoid function andW (1) andW (2) are linear mappings from the input

to the hidden and from the hidden to the output layer, respectively.w
(1)
0 andw

(2)
0 are bias

vectors of the corresponding mappings. To train the MLP network, the coefficients are

initialized randomly and outputs ŷ(t) are generated for a certain set of training samples

φ(t) with known labels y(t). The squared error over these training samples is computed

at the output of the network:

EMSE =
1

2

1

NΦ

NΦ∑
t=1

(ŷ(t)− y(t))2 (4.12)

With the Levenberg-Marquardt backpropagation algorithm, the partial derivatives of

the error with respect to the parameters are computed for all layers of the network. The

coefficients are then updated by standard gradient decent techniques and the procedure

is repeated until the weights converge [Bishop, 2007]. To reduce the problem of over-

fitting, the error function is extended by a regularization term, which penalizes large

entries in the coefficientsW :

E = (1− λ)EMSE + λ ∥W ∥2 (4.13)
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The optimal regularization parameter λ is determined in a nested cross-validation.

φ

φ

φ

φ

∑

∑

W(1) W(2)

Input Layer Hidden Layer Output Layer

Figure 4.1: Schematic visualization of an MLP network structure with one hidden layer

with sigmoidal activation function and a linear activation function in the output layer.

In this work, an individual network was applied for each DOF with the structure de-

scribed above and only one output unit, as suggested previously for myoelectric con-

trol [Muceli and Farina, 2012]. All MLP computations including training with the back-

propagation algorithm were implemented with the MATLAB neural network toolbox.

A grid search on a range between one and 20 hidden neurons showed that the perfor-

mance did not increase when more than three neurons per MLP were used, indepen-

dently of the number of features. When too many neurons were used, the performance

decreased again, as the amount of training data needed to properly train the network in-

creases with its complexity. Thus, the size of the hidden neurons was fixed to three units

per MLP. Similar results were also reported by other studies [Nielsen et al., 2011,Muceli

and Farina, 2012]. An alternative approach with a single MLP and two output units for

estimating both DOFs by the same network led to similar results, when twice as many

neurons were applied in the hidden layer. But due to the reduced complexity, the first

approach with two individual networks was more stable and faster to train.

In some previous studies, where MLPs were applied with a high-dimensional feature-

sets, the number of network inputs was reduced by principal component analysis (PCA)

[Muceli and Farina, 2012, Hahne et al., 2012b]. The number of PCA components was

defined by a threshold on the fraction of variance, captured by those components. This

can speed up the training, but may lead to a reduced performance. For a fair comparison

with the other methods no dimensionality reduction was applied here.

4.2.4 Kernel Ridge Regression (KRR)

A simple but very powerful non-linear regression method is kernel ridge regression. The

key idea of KRR is to map the data from feature space through a potentially non-linear
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4.2 Regression Techniques

kernel function h into anM dimensional kernel space. In kernel space h(φ) the problem
is solved linearly (eq. 4.14) using the same regularized optimization function as for LR.

ŷ =
M∑

m=1

βmhm(φ) = β⊤H (4.14)

The essence of the kernel trick [Müller et al., 2001, Schölkopf et al., 1998,Müller et al.,

2003, Schölkopf and Smola, 2002] is that one can obtain the estimate ŷ instead also as

a linear combination of the inner products between the test feature sample φ and all

training feature samples φi in kernel space (eq. 4.15). Therefore, the representation of

the features in kernel spaceH ∈ RM×NΦ does not need to be known explicitly. Instead

only the inner product in kernel space k(φi,φj) =< h(φi),h(φj) >h is needed. This

inner product can be seen as a measure of similarity between feature samples.

ŷ =

NΦ∑
i=1

αik(φ,φi) (4.15)

The L2 regularized least mean squares solution of eq. 4.14 can be brought into a form

satisfying eq. 4.15. The dual coefficientsα are then given by eq. 4.16, whereK = H⊤H
is the kernel matrix. Again the representations of features in kernel space are not explic-

itly needed, since K consists only of inner products in kernel space Ki,j = k(φi,φj);
i, j = 1..NΦ. Note that KRR scales easily up to multidimensional outputs corresponding

to several DOFs, by changing the dimensionality of Y in eq. 4.16.

α = (K + λI)−1Y ⊤
(4.16)

In this work the Gaussian kernel function with width σ is used:

k(φi,φj) = exp(− 1

2σ2
(φi − φj)

2), (4.17)

A proper choice of the hyper-parameters σ and λ is essential, as KRR is very sensi-

tive to overfitting to the training data. In this work, they were optimized by a logarith-

mic grid-search in a nested cross-validation. As the number of elements in the kernel

matrix is growing quadratically with the number of training-samples NΦ, KRR can be-

come computationally challenging and requires a significant amount ofmemory for large

training-sets. There exist approaches to address this problem [Rahimi and Recht, 2008].

For a detailed review of KRR see [Hastie et al., 2003,Shawe-Taylor and Cristianini, 2004].

55



4 Regression-based Control

4.3 Experiments

4.3.1 Setup

This study involved ten able bodied subjects (3 females, 7 males, age 19 - 30) and one

person with congenital upper limb deficiency (male, age 39) performing a series of wrist

movements. Accurate data labels were gained by recording the wrist angles with a mo-

tion tracking system (Xsens with MTx sensors, Fig. 4.2(b)). EMG was recorded with a

high density 192-channel electrode grid (ELSCH064NM 3-3, OT Bioelettronica, 8 x 24

channels, 10 mm inter-electrode-distance) in a monopolar configuration. The electrode

array was placed on the proximal portion of the left forearm.

Extension Flexion

Radial Deviation

Ulnar Deviation

Radial Trajectories

1
y

2
y

Circular Trajectories

r

(a)

motion
sensors

preamp.

electrode
array

dsdf

(b)

radial
dev.

ulnar
dev.

extension flexion

target

feedback

(c)

Figure 4.2: Experimental setup: (a) Radial and circular target trajectories the subjects

were instructed to follow (dashed and dash-doted lines). Labels y spanned by the two

wrist angles in Cartesian and in polar coordinates (r and θ). (b) Placement of electrodes

and motion sensors. (c) Visual feedback during recording.

The biosignal amplifier was a 12 bit “OT Bioelettronica EMGUSB-2”, configured to a

sampling rate of 2048Hz. The reference electrode was a disposable Ag/AgCl electrode

placed on the elbow. Ground was formed by an electrode band placed at the distal end

of the forearm. Synchronization between kinematic and EMG signals was performed

offline via a square-wave synchronization signal provided by the motion tracking system

that was recorded as an additional (auxiliary) channel.

4.3.2 Paradigm

This study will focus only on two DOFs, wrist flexion/extension and radial/ulnar devia-

tion (Fig. 4.2(a)). This restriction helped to prevent long recording times and difficulties

with recording stability. Rotation, the third DOF of the wrist, causes the muscles to shift

56



4.3 Experiments

−50 0 50
−50

0

50

flexion (+) / extension (−)

ra
di

al
 (

+
) 

/ u
ln

ar
 (

−
) 

de
v.

(a)

−50 0 50
−40

−20

0

20

40

flexion (+) / extension (−)

ra
di

al
 (

+
) 

/ u
ln

ar
 (

−
) 

de
v.

(b)

Figure 4.3: Motion traces obtained by the motion tracking system (in degree) for (a): ra-

dial trajectories and (b): circular trajectories. The motion signals form the data labels

y(t) used to train and test the regressors.

relative to the skin in able-bodied subjects and it is not clear if this complication occurs

also at persons with limb deficiency.

The target movement trajectories (Fig. 4.2(a)) included moving the wrist in 16 (radial)

directions and drawing circles of two different diameters (each clockwise and counter-

clockwise). Subjects were instructed to keep the fingers in a relaxed position and not to

rotate the wrist (keeping the thumb pointing upwards). At the beginning of each session,

the individual range of motion in both DOFs of the subject was measured. The exper-

imental paradigm was calibrated in such a way that the radial trajectories would start

at the center (rest position) and reach the maximal range of motion for each direction.

The time from the center position to the maximal position was 3 s, followed by 2 s at the

maximal position and 3 s for returning to the center position. Circular trajectories were

located at 90% and 60% of the maximal range of motion and had a duration of 10 s. The

completion of one trajectory will be referred in the following as a trial. The experiment

was divided into several runs, where each run contained each type of trajectory (16 ra-

dial and 4 circular trials) exactly once. During the recordings, the target wrist angles were

displayed on a computer screen together with the actual angles obtained by the motion

tracking system (Fig. 4.2(c)). This online feedback assisted subjects in better matching

the target trajectories. Six able bodied subjects and the subject with congenital deficiency

performed 15 runs and 4 subjects stopped after 10 runs because of fatigue. The time to

record one session with 15 runs was about one hour plus another hour for placing the

electrodes and motion sensors and familiarizing with the system.

To investigate the transferability of the results to the contra-lateral training strategy, for

five out of the ten able bodied subjects, motion data was recorded from both sides, while

the subjects performed bilateral mirrored movements [Nielsen et al., 2011]. This allowed

for comparing the performance of ipsi-lateral training (motion data from the EMG side

were used as training labels) with contra-lateral training (motion data from the other

side were used as training labels). The contra-lateral training is relevant, particularly for
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4 Regression-based Control

future applications in uni-lateral amputees, wheremotion data can only be obtained from

the intact side. The kinematic feedback for all able bodied subjects was provided for the

side of EMG recordings. An example of the recorded motion data is shown in figure 4.3.

To prove that the applied methods are also suitable for users of upper limb prostheses,

one subject with congenital limb deficiency was included. The subject’s forearm termi-

nates at the wrist level. This subject performed also bilateral mirrored contractions. The

EMG signals were recorded from the side with deficiency (right side) and motion data

were obtained from the contra-lateral side with intact limb. All experiments were in

accordance with the Declaration of Helsinki and were approved by the local ethics com-

mission. (Ethikkommission d. Med. Fak. Göttingen, approval number 8/2/11)

4.3.3 Preprocessing and Feature Extraction

The data were filtered using a 4th order Butterworth highpass filter (fc = 20Hz) to
removemovement artifacts, a lowpass (fc = 500Hz) to remove high frequency noise and

a 50Hz combfilter to remove power-line interference, including harmonics. Sample-wise

commonmean subtractionwas performed to remove correlated noise and distortion that

might be caused by activity at the reference electrode.

Features were extracted from non-overlapping intervals of 200 ms. This window du-

ration is within the acceptable time delay between user command and prosthesis ac-

tion [Farrell and Weir, 2007, Smith et al., 2011]. To obtain good estimation results when

using linear methods the relationship between the features and the target labels (i.e. the

motion data) should be as linear as possible. As the first feature the variance is used,
whichwas frequently used for simultaneousmyoelectric control [Jiang et al., 2009,Muceli

and Farina, 2012]:

φV AR(t) =
1

N − 1

∑
i ∈ bt

x(i)2 (4.18)

bt contains all N (raw-data) sample-indices of the t’th block. It will be shown in sec-

tion 4.3.5 that the variance is increasing monotonically with the deflection of the wrist

in any direction, but the relationship between deflection and variance is not linear (see

Fig. 4.4(a)). Two simple non-linear transformations of the variance features are tested

that result in features denoted by RMS and LOG-VAR, to linearize the relationship:

φRMS =
√

φV AR (4.19)

φLOG−V AR = log(φV AR) (4.20)
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Commercially available myoprostheses use active electrode modules, which provide

the mean absolute value (MAV) of the EMG. This is very similar to the RMS, but easier

to generate in analog circuits. For the sake of completeness and to demonstrate practical

relevance, the MAV is also included in the following investigations:

φMAV (t) =
1

N

∑
i ∈ bt

|x(i)| (4.21)

All dimensions in feature space are normalized to have on average unit variance. This

is useful formethodswith parameters that depend on the numerical range of the features,

such as the kernel width for KRR. The scaling factors are calculated based on the training

data sets only.

4.3.4 Performance Evaluation and Parameter Optimization

To evaluate the performance, a five-fold cross-validation is applied. The folds are formed

by entire runs. This is done in order to keep training and test set not only disjoint but as

independent as possible [Lemm et al., 2011] and to guarantee a balanced appearance of

movements within both sets. As a performance metric the r-square value is used:

r2 = 1−
∑

d Var(yd − ŷd)∑
d Var(yd)

(4.22)

yd is the wrist deflection angle of the dth DOF, measured by the motion tracking sys-

tem, and ŷd its estimate, predicted by the regression models. The numerator is the mean

squared error, which is normalized by the variance of the correct labels in the denom-

inator. Thus, the r-square value is not influenced by the numerical range of the labels.

Themaximal r-square value at perfect estimation is one. Note that also negative r-square

values are possible for estimation errors larger than the variance of the targets.

For optimizing parameters such as the regularization constants, a nested cross-validation

is applied. I.e. with the training set of each fold, a second (inner) cross-validation is done

to determine the performance for a certain parameter configuration. This inner cross-

validation is repeated for a number of parameter configurations and the best configura-

tion is used to train the algorithm for the outer cross-validation [Müller et al., 2001,Lemm

et al., 2011]. The reported performance is measured on the test sets of the outer cross-

validation, which is not used to determine the parameters. Simply repeating a normal

cross-validation with different parameter settings would lead to a wrong performance es-

timation, since the parameters would over-fit to the test data sets. A typical session in this

study with 15 runs contains 14700 feature samples whereof 11760 are used in each outer

fold for training and parameter optimization and 2940 for testing. For the investigations

in section 4.3.8 the training sets are reduced while the test-sets are kept unchanged.
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4.3.5 E�ect of Feature Transformations
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Figure 4.4: Visualization of feature intensity (features averaged over all channels) vs.

wrist inclination r for radial trajectories in polar coordinates (a-d). Each line was ob-

tained by polynomial fitting of the intensities for one direction of wrist inclination θ.
For this illustration, only radial trajectories were used and the color of each curve in-

dicates the direction of the trajectory as illustrated in the legend in panel a. The lower

panels (e-h) show an example of the estimations ŷ by linear regression and the true la-

bels y for all features. The lower curves show the DOF flexion/extension and the upper

curves show ulnar/radial deviation. For the LOG-VAR feature the relationship between

the wrist inclination and the feature intensity is almost linear (a), which results in the

best estimation (h).

This section presents a qualitative analysis of the chosen feature-type and its influence

to the predictionwith a linearmethod. Quantitative results based on cross-validationwill

follow in section 4.3.6 and 4.3.10. Figure 4.4 illustrates the linearization of the problem by

simple transformations in feature-space. Since it is impossible to visualize the relation-

ship between the labels and the features in full dimension, the features are averaged over

all channels. Although this “feature intensity” does not contain enough information for

the regression task, it can give insights to the complexity of the underlying relationship.

The top row (a-c) illustrates the relationship between the wrist inclination r and the EMG

feature intensity. Several trials of the radial trajectories are plotted. The x-axis shows the

distance from center position, the y-axis shows feature intensity, and different target di-
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4.3 Experiments

rections are distinguished by different colors. The curves are obtained by polynomial

fitting with a model complexity limited to third order.

Prediction with variance features Plot (a) in figure 4.4 illustrates the non-linear

relationship between EMG variance and wrist inclination. When estimating the labels

with LR, the predicted wrist angles cannot be modeled well, as depicted in figure 4.4(e).

For wrist angles close to the origin, the predicted angle is underestimated while at wrist

angles far from the origin, the predicted angles tend to be overestimated.

Prediction with RMS features The panels in the second column of figure 4.4 show

data and results for the square root of the variance features. Panel (b) illustrates that the

non-linearity between wrist inclination and EMG features is not as pronounced as in the

case of the variance features in panel (a). This leads to a better prediction, as visualized

in figure 4.4(f).

Prediction with MAV features For theMAV features both the relationship between

wrist angles and feature intensity in panel (c) and the linear estimation in panel (g) are

very similar to the ones related to RMS.This emphasizes the similarity of the two features.

Prediction with LOG-VAR features The results obtained when taking the loga-

rithm of the EMG variance are depicted in the panels in the right column of figure 4.4. In

contrast to the other features, the relationship between wrist angles and EMG LOG-VAR

is almost linear, as illustrated in panel (d). This leads to a significantly better predic-

tion with less under- or overestimation at small or large targets as shown qualitatively in

figure 4.4(h).

4.3.6 Regression Performance

The effect of linearization is also seen in the cross-validation performance, quantified by

the r-square value (Fig. 4.5). To check for statistical significance 3-wayANOVA(p = 0.05)
was performed. The three factors were regressor, feature and subject. Subjects 8 and 9

had large negative r-square values (at LR with VAR, < −10) and were excluded from

the test as outliers. The full model ANOVA (with all two-way interactions and the three-

way interaction) revealed no significant three-way interaction (p = 0.99), and two-way

interactions including subject (p = 0.36) with regressor and p = 0.58 with feature, re-

spectively. These interaction terms were pooled to perform a three-way ANOVA with

only the two-way interaction between regressor and feature. Significant interaction was

detected (p < 10−3).

Subsequently, compartmentalized two-way ANOVA tests were performed by fixing

the level of one of the two interacting factors. When the level of regressor was fixed

61



4 Regression-based Control

(a) factor regressor fixed (b) factor feature fixed

Figure 4.5: Mean cross-validation performance of ipsi-lateral training for all features and

regressors. Factor regressor (a) and factor feature (b) fixed for statistical comparison. The

error bars indicate standard deviation and the lines with stars above the bars mark cases

that are significantly different (p = 0.05).

Figure 4.6: Cross-validation performance for a subject with congenital deficiency,

trained with contra-lateral motion data. Error bars indicate inter-fold standard devia-

tion. The effect of feature transformations is the same as for able-bodied subjects: RMS

andMAV lead to better and LOG-VAR to best results for all regressors and the effect was

stronger for linear methods.

at LR, ME, MLP, and KRR, the 2-way ANOVA tests found that the factor feature was

significant (p < 10−3) for LR and ME and not significant for MLP and KRR (p = 0.08
and p = 0.07 respectively). Post-hoc Tukey-Kramer tests showed that only VAR features

performed significantly worse than all other features for LR and ME (Fig. 4.5(a)).

When the level of features was fixed at VAR, RMS, MAV, and LOG-VAR, the 2-way

ANOVA tests found that regressor was not significant for LOG-VAR (p = 0.15), while
it was significant for VAR, RMS and MAV (p < 10−3 for all cases). Post-hoc Tukey-

Kramer tests showed that, for the VAR feature, LR was significantly worse than the other

three regressors, ME was significant worse than MLP and KRR, while there was no sig-

nificant difference between MLP and KRR. For the RMS and the MAV features, LR was
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significantly different from ME, MLP and KRR, and no other significant different pairs

were found. For LOG-VAR features, no significant differences were found among all the

regressors (Fig. 4.5(b)).

All in all the linear or piecewise linear methods LR and ME performed significantly

worse than non-linear methods with variance features. When transformed with a log-

arithm into LOG-VAR features, all regressors performed similar. For the features RMS

and MAV, only the linear regressor performed slightly worse than the other regressors.

For the non-linear regressors MLP and KRR all features performed similar. The exten-

sion of LR by ME to two linear regions for antagonistic movements led to significant

improvements for all features except LOG-VAR.

For the subject with congenital limb deficiency the effect of feature transformationwas

similar to able-bodied subjects (Fig. 4.6). With the LOG-VAR feature the r-square value

was 0.7 to 0.8, which is almost as good as the average of able-bodied subjects. Because

for LOG-VAR features all regressors perform equally well, the following investigations

(except section 4.3.10) are based on this feature only.

Figure 4.7: Cross-validation performance for ipsi- (u.) and contra-lateral training (d.);

the decrease in performance from ipsi- to contra-lateral training is approximately pro-

portional to the ability of the subjects to copy the movements from left and right wrist as

indicated by the black horizontal lines.

63



4 Regression-based Control

4.3.7 Contra-lateral Training

In order to assess the ability of all investigated methods to be applied to uni-lateral am-

putees, each model was trained with the contra-lateral and tested with the ipsi-lateral

labels (available for five subjects, Fig. 4.7). The performance decreased from approxi-

mately 0.8 - 0.9 (ipsi-lateral training, upper panel) to 0.6 - 0.7 (contra-lateral training,

lower panel) for four subjects and to 0.3 - 0.4 for one subject. This is to be compared to

the accuracy of matching between the kinematics of the left and the right hand (black

lines in Fig. 4.7, lower panel). The fact that the performance of the contra-lateral train-

ing is approximately proportional to this accuracy reveals that the performance drop is

largely a result of the inability of the subject to perform exact mirror movements.

4.3.8 In�uence of Amount and Diversity of Training Data
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Figure 4.8: Cross-validation performance with reduced training data. Curves indicate

median across subjects and whiskers show 25/75 percentiles. The numbers above the

curves indicate the number of runs used for training. 1000 feature-samples correspond

to 200 s of data. ME, KRR and LR are less influenced by the reduction of training data as

compared to MLP.

For a clinical application a regressor should be calibrated with as few training data

as possible and generalize well from a small number of training trajectories to all pos-

sible combinations of co-activated DOFs. This includes also regions where two DOFs

are activated in a different proportion. The generalization performance of all regressors

is quantified by successively reducing the amount and the diversity of the training data.

These results are based on the six able-bodied subjects for whom 15 runs are available.
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Figure 4.9: Cross-validation performance for a combined reduction training trajectories

and runs. The curves indicate median across subjects and whiskers show 25/75 per-

centiles. For all regressors the performance increases with increasing number of training

samples nearly independently of the specific choice of trajectories.

First all 20 trajectories are used in the training-sets and only the amount of training

data is reduced by successively excluding entire runs from the training-sets in the cross-

validation. The test-sets remain unchanged. As expected, the performance decreases

when the amount of training data is reduced (Fig. 4.8). KRR, ME and LR are relatively

robust to a reduction of training data, the performance remains above 0.8, even if only

one run is used. In contrast, MLP require a larger set of training examples.

Second a combined reduction of the diversity and the amount of training data is per-

formed. The aim of this investigation is to assess whether it is better to reduce the density

of combined training movements or to reduce the number of repetitions if the time for

collecting training data is limited. For the diversity reduction the following subsets of

trajectories are defined:
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1) all trajectories (20 trials per run)

2) all radial trajectories (22.5◦ steps, 16 trials per run)

3) half of radial trajectories (45◦ steps, 8 trials per run)

4) quarter of radial trajectories (90◦ steps, 4 trials per run)

5) all circular trajectories (4 trials per run)

Again, the results are shown in dependence of the amount of training samples, which

corresponds to the time that would be needed to record the data (Fig. 4.9). The per-

formance depends mainly on the total amount of training samples and the curves of all

trajectory subsets are located in relative narrow corridors. Whether the same number

of samples is obtained by using a higher diversity and less repetitions or the other way

around has almost no influence. As long as enough training samples are used (e.g. more

than 1500), different trajectory subsets perform almost equally well. Even if only single

activations of individual DOFs are used for training (“1/4 radial trajectories”), all meth-

ods performed still very well on the test data, which included all combined movements.

This indicates that all four regressors can generalize from a relatively small set of co-

activations to all regions in y. Only in the case where just circular trajectories are used,

LR performs slightly worse and the case with 1/2 radial trajectories seems to perform

slightly better for MLP. These results show only the testing performance averaged over

all regions of y. A more detailed view will be provided in section 4.3.10.

4.3.9 Computational Costs

As an indication of the computational load of the algorithms, the processing time for

training is measured (Fig. 4.10(a)). All processing is done in MATLAB 64 bit, running

on a system with a 2.67 GHz processor and 8 GB of memory. Evidently LR is exceedingly

fast (100 ms with all data included). In contrast, the MLP can take substantial amount of

time for training (up to 5 minutes). ME and KRR require moderate training times of less

than one minute with all data included.

The computational cost for applying the methods is shown in figure 4.10(b). The time

to apply LR, ME and MLP does not depend on the amount of training data and is very

fast (LR:5 ms, ME:40 ms andMLP:100 ms for the entire test data of 3000 samples or 600

seconds of EMG data). KRR is a non-parametric model and needs to access all training

data samples during testing. Testing time for KRR thus increases with increased training-

set and reaches around 2.5 s for the largest training set (10ms per sample).
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Figure 4.10: Computational costs, empirically investigated by measuring (a) the training

and (b) the testing time as functions of the training set size.

4.3.10 Linear Separability

To investigate the influence of the features and the training trajectories inmore detail, the

performance of LR is visualized for all regions of y individually (Fig. 4.11). Since the r-

square value is not usable as a performancemetric for single feature samples, the absolute

estimation error in degrees is used as another intuitive metric. The error is computed on

the testing-sets of all radial trajectories and interpolated for the regions in between. To

exclude the influence of the training set size, the same amount of data is used in all three

training modalities (3 trials with 16 trajectories, 6 trials with 8 trajectories and 12 trials

with 4 trajectories).

Figure 4.4 indicated that the features VAR, RMS and MAV are not linearly related

to the wrist angles and over-shoots were observed for large angles. This indication is

confirmed by figure 4.11. For variance-features, the estimation error is relatively small for

small angles and increases dramatically for wrist angles above 20-30 degrees. For RMS

andMAV features the region of accurate estimation is increased, but still large estimation

errors are observed for wrist angles close to the maximal range of motion. With LOG-

VAR features almost all regions are estimated equally well.

Figure 4.9 indicated that for the overall performance it is not needed to include com-

bined movements in the training. Figure 4.11 shows explicitly that the selection of train-

ing trajectories has also little influence on the distribution of the error in the output space

y. For LOG-VAR features thewrist angels are estimatedwith an errormostly below 12 de-

grees. Moreover, the estimation error is almost uniform over the entire range of motion,

independently of the diversity of training trajectories. The fact that the error is almost

uniform, even if only non-combined movements are used for training, underlines the

generalization abilities of the linear regressor and shows that the investigated DOFs are

separable. I.e. they can be trained individually and superimpose linearly.
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Figure 4.11: Estimation error for all regions of y for LR and one representative subject.

The left column shows the training trajectories used in this row and the other columns

the absolute interpolated estimation error (in degrees) for the features VAR, RMS, MAV

andLOG-VAR.The titles indicate the average errors of the corresponding plots. ForVAR,

RMS and MAV the error is large mainly in the outer regions. With LOG-VAR the wrist

angels are estimated well in all regions. The used training trajectory subset has almost no

influence on the distribution of the error. Even if only single DOFs are active for training

(lower row), the estimation error is low, also in regions of combined movements.

4.3.11 Channel Reduction

For this study data was recorded with 192 channels. Cost and power consumption will

set limits on the number of channels that can be used in a clinical prosthetic system.

Therefore, the performances of the algorithms are also investigated for reduced sets of

96, 48, 24, 16, 12 and 6 channels with a regular spacing (Fig. 4.12).

For all methods the performance increases with increasing number of channels and

saturates at half of the available channels. When the number of channels is reduced be-

low approximately 12 to 16, the performance drops abruptly. KRR performs best in all

cases and achieves an r-square value of 0.8 with only 12 monopolar channels. However,
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Figure 4.12: Reduced channel-sets: (a) Cross-validation performance with reduced

channel-sets for able-bodied subjects (median and 25/75 percentiles across subjects). The

performance decreased with decreasing number of channels and dropped abruptly when

fewer than 12 to 16 channels were used. (b) Cross-validation performance with reduced

channel-sets for the subject with congenital deficiency. The results were similar to those

from the able-bodied subjects, but the performance drop occurred when fewer than 22

channels were used. (c) Definition of the regular spaced channel subsets.
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the differences between the methods are rather small. E.g. the computational cheaper

method ME has with the same number of channels still a performance of 0.73.

Similar results are obtained for the subject with congenital deficiency (Fig. 4.12 (b)).

The number of channels differs from figure 4.12(c) because the electrode array had to be

cut to fit the size of the residual limb without overlap. Again, KRR performance is best

and a drop in performance below a certain number of channels is observed (22 channels

in this case).

4.4 Discussion

This chapter presented a systematic comparison of EMG features and regression tech-

niques for simultaneous and proportional control of multiple DOFs. The evaluation sce-

narios, in which the methods are compared, have targeted aspects that are important for

clinical applications.

4.4.1 Feature Representation

Previous studies on simultaneous and proportional control have often used variance-

features to capture EMG activity [Jiang et al., 2009, Jiang et al., 2012b, Muceli and Fa-

rina, 2012]. However, the variance increases disproportionately to the wrist angles as

force increases to achieve extreme wrist inclinations. A simple non-linear transforma-

tion (logarithm) can account for this non linearity and thus improves the performance

for all methods tested. This is particularly true for the linear and step wise linear meth-

ods (LR and ME), which obtained with this simple modification a performance closer

to the more complex non-linear algorithms. For opposite directions there are used dif-

ferent muscles, which leads to an additional non-linearity of the problem. The goal of

the mixture of expert technique proposed here is to break the linear trajectory into two

regressors, each specializing into antagonistic movements for each DOF.With this mod-

ification the remaining non-linearity is largely addressed and the performance increases

to levels comparable to state-of-the-art non-linear regression algorithms.

A major advantage of linear methods is the dramatically reduced computational de-

mand for training and evaluation; both LR and the ME model are convex problems that

can be solved very efficiently. Moreover, linear methods are less prone to overfitting than

non-linear methods. LR and ME can be easily realized on a very simple and cheap mi-

crocontroller with little power consumption and are readily modified for real-time adap-

tation. In contrast to linear methods, non-parametric models like KRR suffer from large

memory requirements and significantly longer evaluation times for large calibration data

sets. Parametric non-linear models such as artificial neural networks on the other hand

do not require as much memory and are relatively fast during evaluation, but training

can be slow and they require longer calibration sessions.

70



4.4 Discussion

4.4.2 Clinical Applicability

Separability of movements

Itwas demonstrated that combinedmovements of the investigatedDOFsflexion/extension

and radial/ulnar deviation are almost equally well estimated with linear methods as non-

combinedmovements, even if not included in training. This indicates that the individual

DOFs are separable, i.e. the features superimpose linearly from non-combined move-

ments. For the clinical application this is of very high value, as individuals with upper

limb deficiencies have often problems to produce precise combined contractions. More-

over, accurate data labels which would render a precise execution of the movements re-

dundant cannot be obtained for those persons as motion tracking is limited to the contra

lateral side. Future work should investigate, if this separability is also given for other

DOFs.

Amount of calibration data

In clinical practice it is desirable that the controller requires as little calibration data as

possible to reduce the temporal effort for fitting. With approximately 2000 feature sam-

ples (less than seven minutes training data) the ME algorithm performs already reason-

ably well. Increasing the recording time beyond this point provides diminishing returns.

With the current implementation of MLP about 5000 training samples (more than 15

minutes) are needed to avoid a substantial drop in performance. However, there exist

techniques that could increase the performance for small training sets [Montavon et al.,

2012].

In most previous studies on myoelectric control an arbitrary amount of training sam-

ples was recorded. The investigations in this work demonstrated the strong effect of the

amount of training data on the performance. It is suggested to consider this in the design

of future training protocols.

Computational costs

The current clinical standard for fitting the prosthetic device involves a computer to vi-

sualize the EMG signals and configure the parameter settings. Thus, the computational

cost of training is of lesser concern. However, future devices may aim to adaptively cal-

ibrate the device in real-time, in which case efficient learning algorithms are a key re-

quirement. The training times for LR is negligible and the algorithm is readily converted

into a real-time setting. For the full data set ME and KRR needed almost a minute. But

assuming a reduced data set of 2000 samples, which would still lead to a reasonable per-

formance, ME and KRR could be trained in less than 5 seconds. To train MLP with 5000

samples requires approximately 60 seconds, which would preclude real-time adaptation.
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This could perhaps be mitigated by reducing the number of channels and more efficient

implementations.

The computational costs during execution is critical because they need to fulfill real-

time requirements on an embedded system with little computational power. The time to

evaluate one test sample must not exceed a few milliseconds. Therefore, the processing

times measured on the machine described in section 4.3.8 can only give a rough assess-

ment. The processing for LR consists only of a single matrix-vector multiplication and is

negligible. ME andMLP consist of several matrix-vector multiplications and evaluations

of sigmoid functions. This is also possible on a relatively simple system. The applica-

tion of KRR involves evaluating the kernel-function for the test sample with all training

data points and a matrix-vector multiplication with the dual coefficients. The processing

costs and the memory requirements are growing with the number of training samples

and are relatively high already for medium training data sets. The substantially larger

computational costs in the application phase and the larger memory requirements make

KRR less attractive for an application in prosthetics, where minimal hardware resources

are required. Note that there exist techniques to reduce the memory requirements and

computational costs of KRR (see e.g. [Seeger, 2008], [Rahimi and Recht, 2008]).

Number of channels

Because of costs, power consumption and reliability, the number of electrodes for a clini-

cal application should be as small as possible. Reducing the number of channels leads to a

reduced performance for all investigated methods. But even with 12 channels the regres-

sors were still able to estimate the wrist position with an r-square value of 0.7 to 0.8. For
the subject with congenital deficiency, 22 channels were sufficient to reach an r-square

value of 0.6 to 0.7. The number of needed channels may vary significantly for subjects

with limb deficiency depending on the individual anatomy and capabilities. The chan-

nels were selected arbitrarily with a regular spacing. With automatic channel-selection

methods a higher performance can be reached with even fewer channels [Hahne et al.,

2010,Hwang et al., 2014a]. This is important particularly for potential users of myopros-

theses.

Transfer to individuals with upper limb de�ciency

It was demonstrated for one subject with congenital limb deficiency that the algorithms

work also for potential users of prosthetic devices. The performance was only slightly

below that of able-bodied subjects and the main findings, including the positive effect

of the feature transformations, were valid also for this subject. This indicates that the

findings may transfer to potential users of myoelectric prostheses and emphasizes the

relevance of this work.
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For subjects with uni-lateral limb deficiency, contra-lateralmotion tracking is one pos-

sibility to train the algorithms, whichwas also investigated in this study. Theperformance

in this case depends on both the ability of the user to execute the contractions with the

disabled side and the ability to copy the movements from the intact side. As shown in

section 4.3.7, the capability to precisely mirror movements has a large variability, even

for able-bodied subjects. The subject with congenital limb deficiency who participated

in this study performed relatively good, which may be caused in parts by his long resid-

ual limb. Excluding combined movements from the training protocol as discussed in

section 4.4.2 may be one step to simplify training and enable simultaneous and propor-

tional control to a larger group of prosthetic users.

The experiments in this study are based on two DOFs, namely flexion/extension and

radial/ulnar deviation of the wrist, where the latter is not available in current prosthesis

hardware. Muscles active for those movements are located close to the skin leading to

good EMG signals and less problems due to skin-muscle-shifts are expected compared to

pronation/supination. These problemsmight be a minor issue when applied to amputees

because of different anatomy. However, the control signals from radial/ulnar deviation

can also be used to control the rotation unit of the prosthesis if this leads to more stable

results.

4.4.3 Limitations

Themethods described in this chapter would allow for a significantly improved andmore

natural control in comparison with the classification approach and the study focused on

clinically relevant factors. However, there are still issues that need to be addressed. The

used semi-disposable Ag/AgCl electrodes that are applied with electrode-gel provide a

very good signal quality with high SNR, but they are not suitable for a use in prosthetics.

Preparation time, costs and long-term stability would not fulfill the constraints of this

application, where dry electrodes are required. The motion-tracking-system used in this

study provides accurate labels for training the algorithms, but its costs would exceed

clinical requirements and it cannot be used for bi-lateral amputees who would benefit

most from advanced control-techniques.

The evaluation should be done in a closed-loop real-time system to allow the user to

correct for shortcomings of the algorithm. Also user-training needs to be addressed, es-

pecially for subjects with amputation or congenital limb deficiency, who may need to

(re-)learn the execution of muscle-contractions which they usually do not perform in

their daily life. Static regression models as used in this study may limit potential devel-

opment of the user. These issues will be addressed in the next chapter.
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Learning

5.1 Introduction

Most studies on myoelectric control including those described in the previous chapters

are done offline with pre-recorded data. While this is very useful to compare different

algorithms and to optimize parameters, it allows only for limited conclusions on the us-

ability in a final application. Offline metrics do not necessarily correlate with the perfor-

mance in a real-time application [Jiang et al., 2014b]. If the user receives real-time feed-

back, he/she can adapt the muscle-contractions to optimize the performance. In such a

closed loop-control both user related errors caused by variations in the execution of the

contractions and algorithm-related errors, may be corrected by user-adaptation. More-

over, the user can learn to generate EMG patterns that are more suitable for myoelectric

control (e.g. stronger, better separable or more consistent).

Other real-time studies on myoelectric control typically work with static models, i.e.

the model is trained once based on calibration data and is not changed during the appli-

cation phase [Ameri et al., 2014c, Jiang et al., 2014a,Wurth and Hargrove, 2014, Fougner

et al., 2014]. This allows for a more realistic performance evaluation compared to offline

studies. However, due to the fixed machine learning model the user will adapt in a direc-

tion that gives optimal results for that particular model, learning of the user is therefore

restricted and only possible within a certain range.

Several studies have investigated adaptation in the context ofmyoelectric control. Most

of them focused on the classification-based approach [Nishikawa et al., 2001, Sensinger

et al., 2009,He et al., 2012,Zhang et al., 2013,Chen et al., 2013] and employed adaptation

with the goal to compensate for non-stationarities [Vidovic et al., 2015]. In classification,

unsupervised adaptation is possible by using the classifier-output as adaptation target

and considering only classifier decisions with high confidence. It was shown offline that

this can reduce the impact of slowly changing signal conditions, but there is the risk

that false labels are used for adaptation. This can cause a destructive avalanche effect,

as it increases the likelihood of further fail-adaptations [He et al., 2012]. Therefore, su-

pervised adaptation, which requires explicit user-interaction is more robust [Sensinger

et al., 2009].

For regression approaches the confidence-based unsupervised adaptation is not appli-

cable because no discrete states are given, which could be used as adaptation targets.
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However, since the user gets a direct real-time feedback in regression-based control,

which reacts direction-dependent on all changes in the EMG (and not just if a classifica-

tion boundary is crossed) he/she can intuitively compensate for undesired drifts of the

output caused by non-stationarities. Gijsberts et al. proposed a supervised adaptation

approach for regression-based control, but investigated the adaptation only offline [Gi-

jsberts et al., 2014].

[Powell et al., 2014] demonstrated the great importance of user-training for classifica-

tion-based myoelectric control. They used a strategy based on alternating offline cal-

ibration of the classifier and real-time evaluation with a virtual prosthesis. With the

support of confusion matrices and measures for quantifying inter-class distances and

within-class-consistencies [Bunderson et al., 2012], problematic movements were iden-

tified manually and improved by a targeted user-training.

[Pilarski et al., 2011] explored the possibility to use actor-critic reinforcement learning

for training and adaptation of amyoelectric controller. This is a very interesting approach

as it allows for adaptation based on a single, binary reward signal only. However, the

approach was tested on one able-bodied subject only and included only two contraction

patterns. Thus, it remains to be seen if this strategy can also efficiently be used to control

more than one DOFwith free activation ratios, as required for independent proportional

control.

The aim of the study described in this chapter is to investigate the benefits of interac-

tive real-time learning for regression-basedmyoelectric control as a complement to com-

monly performed offline calibration. In real-time experiments the behavior of a closed

loop system consisting of the user and the controller was analyzed while both user and

algorithm were adapting towards the common goal to reach optimal performance. This

concept of mutual (or co-adaptive) learning has been proven to be highly efficient in the

context of brain-computer-interfaces [Vidaurre et al., 2011b,Vidaurre et al., 2011a,Lemm

et al., 2011]. A co-adaptive system of this type is influenced by the speed with that both

learners, the human and the machine, are adapting [Vidaurre et al., 2011a]. While the

learning speed of the human is not known and may vary between subjects, the adapta-

tion speed of the machine can be controlled via hyper-parameters of the algorithm.

A real-time-learning algorithm, namely Recursive Least Squares is applied in an ex-

periment with ten able-bodied subjects and two individuals with congenital limb defi-

ciency. The influence of the algorithms adaptation speed is investigated and the real-time

performance of the adapted models is compared with several control-conditions based

on offline calibration. It will be shown that co-adaptive real-time learning is beneficial

compared to offline-calibration and that the optimal learning speed of the algorithm is

consistent between able bodied subjects and the potential users in prosthetic application.

This chapter is based on previous publications, in particular [Hahne et al., 2015a] and

[Hahne et al., 2015b].
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5.2 Recursive Least Squares

A linear regression model can be trained offline using a batch algorithm, as shown in the

last chapter. Typically the least mean-squares solution [Bishop, 2007] is applied:

W = (ΦΦ⊤)−1ΦY ⊤
(5.1)

In the supervised, co-adaptive learning paradigm that will be described in more detail

in section 5.3, the regression model is to be continuously updated. In cases like this, on-

line learning algorithms are more efficient than repeated batch training with increasing

training sets. Here, the exponential Recursive Least Squares (RLS) algorithm was cho-

sen, which is an efficient and stable extension of the batch algorithm [Hayes, 1996]. RLS

minimizes the following cost function:

E(t) =
t∑

i=0

λt−ie2(i) (5.2)

e2(i) is the squared error and 0 < λ ≤ 1 an exponential weighting constant that

determines the influence of new data-samples and thus the speed of adaptation. Based

on an adaptiveWiener filter with this cost function the following set of update equations

can be derived:

α(t) = y(t)⊤ − φ(t)⊤W (t− 1) (5.3)

g(t) = P (t− 1)φ(t)
(
λ+ φ(t)⊤P (t− 1)φ(t)

)−1
(5.4)

P (t) = λ−1P (t− 1)− g(t)φ(t)⊤λ−1P (t− 1) (5.5)

W (t) = W (t− 1) +α(t)g(t) (5.6)

α(t) is the error with that the model from the previous update step would predict a

new incoming data-sample at time instance t. P (t) is the inverse of the exponentially
weighted deterministic covariance matrix and g(t) is the gain vector. Small values for λ
cause a relatively fast adaptation and larger values (close to one) cause slower adaptation.

For λ = 1 the algorithm becomes the growing window RLS, which gives equal weight to

all samples and results in exactly the same solution as the batch algorithm trained with

all collected data points. A detailed introduction on RLS is found in [Hayes, 1996].

In the following experiments, the model is initialized with the conventional batch al-

gorithm (W (0) as Eq. (5.1) and P (0) = (XX⊤)−1) based on some calibration data.

This approach can be seen as a two-stage procedure: calibration with growing window

RLS followed by real-time adaptation with exponentially weighted RLS. This scheme was

chosen to give equal weight to all calibration samples and to start with the same condi-

tion for all learning constants to be investigated. In the experiments, the influence of the

adaptation speed, determined by the learning constant λ, is investigated.
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5.3 Experimental Evaluation

5.3.1 Experimental Setup

(a) (b) (c)

Figure 5.1: EMG acquisition setup including the textile hose with integrated dry EMG

electrodes. (a) Setupmounted on an able-bodied subject. (b) Setupmounted on a subject

with transradial amputation. (c) Custom-made dry EMG electrode mounted on pre-

amplifier.

The experimental setup comprised a 24 bit, 16 channel biosignal amplifier with an ex-

tension for dry electrodes (g.tec USBamp + g.tec Sahara), 16 custom-made dry, monopo-

lar steel electrodes with 12mmdiameter that were integrated into a custommade stretch-

able textile hose (Fig. 5.1). The signals were sampled at 1200 Hz and frequencies above

the Nyquist criterion were removed with internal low pass filters provided by the am-

plifier. All further processing and visualization were performed in MATLAB 12a 64 bit

running on a 2.67 Ghz, dual-core computer with 8 GB RAM. An overview on the signal

processing chain is given in figure 5.2.

The electrodes were equally distributed on two circles with a distance of 35 mm to each

other and the circumference of the textile hose adapted to the armof the subject. Thehose

was placed on the dominant forearm, such that the electrodeswere located approximately

above the region with largest diameter. Ground and reference electrodes were placed on

bony sections of the wrist and the Olecranon with little EMG activity. All experiments

were in accordancewith theDeclaration ofHelsinki andwere approved by the local ethics

commission (Ethikkommison Charité Berlin, approval number EA4/085/11).

5.3.2 Pre-processing and Feature Extraction

The data were acquired and processed in blocks of 40 ms, corresponding to the update

rate of the system (fupdate = 25Hz). Sample-wise common mean subtraction was per-

formed to remove correlated noise and distortion that may be introduced by activity at
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Figure 5.2: Schematic overview on the signal processing chain. In conventional open-

loop training the user receives fixed instructions when training data is collected. In the

proposed real-time training, the loop is closed via feedback provided to the user, while

the regression coefficients are updated with RLS. Pre-processing and feature extraction

blocks were omitted in the open-loop training path for sake of readability.

the reference electrode and 50 Hz comb filters were applied to remove power-line in-

terferences, including its harmonics. To reduce movement artifacts and maximize the

signal-to-noise-ratio, the data were further filtered by 4th order Butterworth band-pass

filters with a pass band between 30 and 300 Hz. After pre-processing, the data were writ-

ten into a queue buffer so that the last 12 s of data were available for feature extraction

and real-time visualization.

As shown in chapter 4, the LOG-VAR of the band-pass filtered EMG is approximately

linear related to the joint angle and thus allows for using the computationally very effi-

cient linear regression approach. Therefore, this feature was extracted for each channel,

resulting in a 16-dimensional feature-vector φ(t). The feature extraction was based on

blocks of 200 ms with an increment of 40 ms, equivalent to the update rate of the system.

This window duration is within the acceptable time delay between user command and

prosthesis reaction [Englehart and Hudgins, 2003], [Farrell and Weir, 2007].

5.3.3 Regression and Post-Processing

To estimate thewrist angles fromEMGfeatures an instantaneous, linear regressionmodel

was applied:

ŷ(t) = W⊤φ(t) (5.7)
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Each dimension in ŷ(t) corresponds to one estimated joint angle and the feature-

vector φ(t) is extended for each time instance by the constant 1 to incorporate a bias

compensation in W . Here, the weight matrix W , which characterizes the regression

model, is therefore of size< 17× 2 >.

Since the instantaneous regression output ŷ(t) contains undesired high-frequency

components caused by the stochastic nature of the EMG signal, an exponential moving-

average filter (EMA) was applied to obtain a smooth controller output ŷ′(t). The advan-

tage of an EMA filter in comparison with a commonly used Butterworth post-processing

filter is that it reacts relatively fast and does not introduce a systematic overshoot in its

step-response. These are important properties in real-time control tasks. The EMA filter

is defined as:

ŷ′(t) = γŷ′(t− 1) + (1− γ)ŷ(t) (5.8)

The filter-constant γ determines the amount of smoothing, which is a trade-off between

stability and speed. It was determined empirically to γ = 24/25, which gave a relative

stable output without causing any significant delays, so that the subjects had the feeling

of an immediate response.

5.3.4 Experimental Paradigm
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Figure 5.3: Experimental paradigm. (a) Display presented to the subject during calibra-

tion phase without feedback. A green “target-cursor” moves along pre-defined trajec-

tories and the subject is asked to follow this cursor with wrist deflections. The upcom-

ing target location is indicated with three small dark green circles to minimize delays

between the instruction and user-reaction. (b) Display presented to the subject during

performance evaluation and adaptation phases. The subject controls the red cross with

muscle contractions and tries to hit the green circle, i.e. remain within the stationary

target circle for one second without leaving it.
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Figure 5.4: Experimental setup during real-time control performed by a subject with con-

genital limb deficiency.

This study involved simultaneousmovements of the twowrist DOFs flexion/extension

and radial/ulnar deviation, which were already investigated offline in the previous chap-

ter. The relative wrist angles were visualized on a user screen by a two dimensional co-

ordinate system, in which the horizontal axis corresponds to flexion/extension and the

vertical axis to radial/ulnar deviation (Fig. 5.3). The center corresponds to the rest po-

sition and all points on the outer circle (100%) to a full inclination of the wrist into the

corresponding direction. This control scheme is referred to as position-control and pro-

vides a direct view on the capabilities of the regressor [Ameri et al., 2014b]. Figure 5.4

shows the entire setup during the experiment with one of the subjects with congenital

limb-deficiency.

Calibration Runs

For people with limb deficiency who are the potential users of the proposed method it is

very difficult to perform accurate combined movements without the intrinsic feedback

of the limb. In the offline-study, described in the previous chapter, it was found that even

when trained with individually activated DOFs only, combined movements of the two

wrist DOFs investigated here can be estimated with relatively high accuracy, even by a

linear regressor. Therefore, the calibration runs in this study are composed of single DOF

activations only. In this study the motion-tracking system is omitted and visual cues are

used as training targets for an initial offline calibration and the control conditions. The
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5 Real-time Control and Co-Adaptive Learning

subjects were instructed to follow a target that moved along predefined trajectories with

their wrists angles and the subjects with congenital limb deficiencywere asked to perform

equivalent contractions. The trajectories were defined as follows: three seconds move-

ment from rest position to maximal inclination, two seconds remaining in this position

and three seconds returning to rest position. In each calibration-run this was repeated

once for all four directions (Fig. 5.3 (a)).

Evaluation Runs

For real-time evaluation, the current wrist position estimated from the EMG was visu-

alized on an user screen by a red cursor. Circles with a radius of 0.15 units appeared

within the coordinate system and the subject was asked to hit the stationary targets by

moving the red cursor into the circle and remaining there for one second without leav-

ing it. To allow for a fair and systematic comparison, the circle-positions were taken in

randomized order from a pre-defined list that consisted of 8 equally spaced circles with

a center-to-origin distance of 0.5 units and 16 circles at 0.85 units. The circle-positions

are shown in figure 5.6. In order to approach each target from the rest-position and thus

avoid possible influences of the randomized order (e.g. when two circles appear close

to each other), before each regular target, an additional “rest-target” was placed at the

origin of the coordinate system. Thus, one evaluation run consisted of 24 regular targets

and 24 “rest-targets”. The latter ones were not counted for the performance-evaluation.

If a circle was not hit within ten seconds, a time-out took effect and the run continued

with the next target.

Themetrics used to evaluate the performance (completion rate, completion time, over-

shoot ratio and path efficiency) are explained in table 5.1. All hit and missed targets were

included in the performance evaluation in order to avoid the potential bias caused by

easier targets closer to the origin that were hit more frequently.

Table 5.1: Performance Metrics

Metric Description

Completion Rate Ratio of successfully hit targets and

total number of targets

Completion Time Average time to hit a target, for missed

targets the time-out is counted (10 s)

Overshoot Ratio Number of times a target was left before 1 s dwell

time, normalized by the total number of targets

Path Efficiency Average ratio of shortest path to reach

the target and actually traveled path-length
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Adaptation Runs

A similar paradigm as in the evaluation runs was applied for real-time adaptation. In

order to adapt the model only for problematic regions, the adaptation started when a

circle was not hit within the first five seconds after its appearance and stopped when

the target was hit or the ten second time-out occurred. The subjects were informed by

an auditory signal about the start of the adaptation phase and were instructed to keep

trying to hit the target. During the adaptation-phase the current feature vector was used

to adapt the regression model towards the circle position by one RLS-iteration in each

system update circle. This usually improved the regression model for the region of the

current target. Since the target position is known to the algorithm during adaptation, a

fair evaluation of the performance during these runs is not possible. Thus, the adaptation-

runs were not taken into account for performance evaluation.

Study Design

The goal of this study was to explore co-adaptive real-time-learning as a tool to train re-

gression algorithms formyoelectric control and to investigate the influence of the adapta-

tion speed within the two-learners problem consisting of human and machine. To com-

pare the results of co-adaptive learning with those of conventional offline training and

determine to which extend improvements may be caused by pure user-learning, four

control conditions were included which will be explained below inmore detail. Ten able-

bodied subjects (five females, five males, age 21-53) and two individuals with congenital

limb-deficiency (congenital 1: female, age 36, residual limb length approximately 1/3 of

the normal forearm; congenital 2: male, age 41, residual limb until wrist-level) were re-

cruited to participate in this study. A chronological overview of the experiment is pro-

vided in table 5.2.

In the beginning of the session the signal quality was checked by visual inspection of

the filtered EMG during rest and contraction. The experimenter explained the paradigm

to the subject and demonstrated the wrist movements, which were copied by the sub-

ject for training purpose. A real-time visualization of the EMG-amplitudes was used for

the subjects with congenital limb-deficiency, to verify that they generated different con-

traction patterns for the four non-combined movements of the two DOFs used in this

study. After one demo run that was rejected and only done for familiarization purposes

with the paradigm, four calibration runs were recorded and used to generate a regression

model by conventional offline training using the batch algorithm (Eq. 5.1). This model

was tested with one evaluation run as a baseline condition denoted by “init 1”.

In the following phase co-adaptive real-time-learningwas investigated. For each adap-

tation-speed, two runs were performed: One adaptation run and one evaluation run.

For each adaptation run the RLS algorithm was initialized as described in section 5.2,

based on the first three calibration runs. This was done to utilize approximately the same
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amount of data for obtaining the adapted model as in the baseline condition. After com-

pleting each adaptation run, the adapted model was tested in one evaluation run. This

was repeated for each learning speed determined by λ. The values for λ to be tested (0.96

- 1) were selected empirically. In order to avoid a bias due to user-learning without con-

fusing the subjects, the values of lambda were for half of the subjects in ascending and

the other half in descending order.

To evaluate learning effects of the user in an isolated way, the same model as for the

baseline condition was tested a second time, when the user obtained more experience

with the paradigm and the control (“init 2”). Since a major shortcoming of the baseline-

condition was in many cases a limited range of motion, another control-condition (“up-

scale”) was tested, where the output was upscaled by a factor that was determined for

each subject individually, such that all regions of the output space could be reached.

As a final control condition, four additional calibration runs were recorded in the end

of the session and used to train a regression model as in the baseline condition. This was

done to test, if re-calibration after obtaining experience with the control could improve

the performance in a final evaluation run (“re-calibration”).

Table 5.2: Chronological overview of the runs performed in this study

run type init with run description

1 - 4 cal calibration

5 eval 1 - 4 init 1

6,8,10,12,14 adapt 1 - 3 adaptation with different λ

7,9,11,13,15 eval evaluation of adapted models

16 eval 1 - 4 init 2

17 eval 1 - 4 test upscaling

18 - 21 cal re-calibration

22 eval 18 - 21 test re-calibration

5.3.5 Quantitative Performance

For all subjects the real-time performance was evaluated in four control conditions and

after real-time-learning with five different adaptation speeds (Fig. 5.5 (a) - (d)). To test

for statistical differences for the ten able bodied subjects, one-way repeated-measure

(RM)-ANOVA was conducted using SPSS. The significance threshold was set to 0.05.

Since RM-ANOVA assumes equal variances for all conditions, Mauchly’s Test of Spheric-

ity was conducted. A significant difference between the variances of each condition

was found for path efficiency, therefore Greenhouse-Geisser correction [Greenhouse and
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Figure 5.5: Real-time evaluation results for the four control conditions and after adapta-

tion with different λ (not in chronological order). Blue circles and error bars showmean

and standard deviation across all able bodied subjects, the red squares and green dia-

monds indicate the performances of the two congenital subjects. Panel (a) - (d) show

completion rate, completion time, overshoot ratio and path efficiency. The plots in panel

(e) show the RM-ANOVA results, black fields indicate statistically significant differences

between the corresponding conditions (p < 0.05). The best performance across all met-

rics is obtained after adaptation with λ = 0.995. Completion rate and time show similar

results for the upscaled condition but the poor overshoot ratio and path efficiency ob-

tained with the upscaled model indicate a drop in stability. The subjects with congenital

limb deficiency show the same trends as able-bodied subjects and reach a similar perfor-

mance after co-adaptive real-time learning.
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Geisser, 1959] was done for this metric. For all four performance metrics, significant dif-

ferences were found (completion rate: F (8, 72) = 24.378, p < 0.001; completion time:

F (8, 72) = 23.018, p < 0.001; overshoot-ratio: F (8, 72) = 13.625, p < 0.001, path
efficiency: F (2.66, 23.98) = 4.664, p = 0.013). To identify the conditions with signif-

icant differences, a Bonferroni multiple comparison test was performed. The results of

this comparison are visualized in figure 5.5 (e).

For co-adaptive learning, the test related to λ = 0.995 showed the best performance

with the highest completion rate, lowest completion time and highest path efficiency.

Completion rate and completion time significantly improved compared to the baseline

condition “init 1”, while overshoot ratio and path efficiency did not show any signifi-

cant difference to the baseline. The control condition “init 2”, in which the same regres-

sion model as in the model as in “init 1” was tested a 2nd time to investigate isolated

user-learning effects, showed a slight trend of improvement in all metrics compared to

“init 1”, but none of these differences were significant. A similar trend was observed for

the re-calibration condition. Here only completion time showed significant improve-

ments. Note that the slightly improved performances for “init 2” and “re-calibration” in

terms of completion rate and completion time were still significantly lower than the ones

of the best adapted model (λ = 0.995).
The upscaled model showed improvements in the completion rate and completion

time thatwere statistical significant, similar as real-time learningwith optimal adaptation

speed. However, the control became rather unstable. This is seen in the overshoot ratio,

which worsened significantly and showed the lowest performance among all conditions.

The difference to the best adaptation condition is marginally significant (p = 0.052) and

statistically significant to the other conditions. The upscaled condition showed also the

lowest path efficiency, which was significantly worse than for “init 2” and the adapted

model with suitable λ.
For the two subjects with congenital limb deficiency, similar trends as for the able-

bodied subjects were observed, except that “congenital 2” performed relatively poor in

all control conditions. Especially the condition “upscaled” showed very low performance

in all metrics and the very high overshoot ratio and very low path efficiency confirmed

that the control was rather unstable. After co-adaptive learning with suitable adapta-

tion speed, both subjects with congenital limb deficiency performed as good as the able-

bodied subjects. Moreover, the optimal learning constant was consistent between able-

bodied subjects and those with limb deficiency (λ = 0.995).

5.3.6 Qualitative Observations

The cursor-traces and target hit maps for two representative able-bodied subjects and the

two subjects with congenital limb deficiency are presented in figure 5.6. In the baseline

condition (“I1”) the black traces and themissed targets indicate that certain regions could

not be reached. The accessible range remained almost unchanged in the second test of
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Figure 5.6: Representative qualitative visualization of control performance for two able-

bodied subjects with relatively low (able-bodied 1) and high (able-bodied 2) initial per-

formance and for the two subjects with congenital limb deficiency. The black curves show

the traces of the control cursor, green circles represent successfully hit targets, red circles

missed targets and orange circles targets that were entered but not hit because of insuf-

ficient dwell time. For the adaptation runs green circles represent targets that were hit

before adaptation started, violet circles targets that were hit during the adaptation phase

and red circles targets that were missed despite adaptation. Above the dashed line the

four control conditions are presented: Initial model tested in the beginning (I1) and to-

wards the end of the session (I2), upscaled output (UP) and re-calibrated (RE). Below the

adaptation runs with different learning constants λ are shown (Adapt) next to the evalu-

ation runs to test the adapted models (Test). Best results were obtained after adaptation

with λ = 0.995. The range became more uniform and covered in most cases the entire

unit circle, while the control-stability was maintained.
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the initial regression model, after the subject gained more experience with the control

(“I2”). The repeated offline learning with new calibration runs recorded at the end of the

session (“RE”) could slightly improve the accessible range in some cases, but never solved

that issue fully.

In the evaluation runs after real-time learning with λ = 0.995 the range improved for

all subjects and became also more uniform, so that most targets could be hit or at least

shortly entered (for able-bodied 1). For slower adaptation (λ = 1) the range increased
only slightly, while too fast adaptation (λ ≥ 0.99) led also to suboptimal ranges. The

fastest adaptation speed (λ = 0.96) caused a poor and often very asymmetrical range.

This indicates that the regressor overfitted to the last recent adaptation targets and “for-

got” the relation between EMG features and output-space for other regions. Checking

the (randomized) order in which the targets in these particular cases appeared confirmed

that the accessible range was indeed formed by the last adaptation targets only.

Upscaling of the regression output (“UP”) caused by definition an extended range of

motion, so that all targets came into the accessible range. However, even if almost all tar-

gets could be entered at least once after upscaling, in many cases the user did not succeed

in keeping the cursor within the target for one second, as required by the test. This indi-

cates that the controllability was dramatically decreased and becamemuch worse than in

the tests after real-time learning with optimal adaptation speed. While the straight traces

after real-time learning indicate that the subjects could approach the targets directly and

with high confidence, the trace in the upscaled condition reveal that there were strong

overshoots and that the subjects often had to correct the direction. No qualitative differ-

ence is observed between able-bodied subjects and those with congenital limb deficiency.

5.4 Demonstration in Prosthetic Application

To demonstrate that the methods described above are transferable into clinical practice,

an embedded system for prosthetic control was developed. In the design of the embed-

ded system, attention was payed to fulfill clinical and commercial requirements. I.e., the

size, power-consumption and costs were minimized. An overview on the hardware and

software components is given in figure 5.7.

5.4.1 Hardware

To match clinical requirements, simplify the integration of the electrodes to a prosthetic

socket, and to ensure robustness against electromagnetic interferences and patient-safety

[Webster, 2007], certified, commercially available electrodes (Otto Bock, 13E200) were

used. These active, bipolar electrodemodules incorporate amplifierswith adjustable gain,

temporal filters and a rectification and low-pass filtering of the signals. Thus, the provided

outputs form the mean absolute values (MAV) of the EMG signal, which can be directly
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Figure 5.7: Block diagram of the embedded system for simultaneous and proportional

real-time control of a prosthetic hand with two DOFs. After training with the support of

a PC, the system run fully autonomously.

used as a feature for regression. As shown offline in the previous chapter, MAV features

do not perform significantly worse than LOG-VAR features with a linear regressor.

A commercially available, certified prosthetic hand (Otto Bock, DMC Hand Plus)

was used, in combination with a rotation unit (Otto Bock, Electric Wrist Rotator). The

rechargeable 7.2 V, 900 mAh lithium-ion battery of the prosthetic hand was also used to

power the embedded system.

An ATMEL ATXMEGA32-A4U was selected as microcontroller (MC). This 8 bit de-

vice can be operated with up to 32 MHz and has already most required components

included, such as analog to digital converters (ADC), pulse-width modulated (PWM)

outputs, a hardware multiplier, a calibrated R/C-oscillator, flash, EEPROM and SRAM

memory and a USB-interface. A linear voltage regulator (Texas Instruments, TPS7233)

was used with regulated output of 3.3 V, to transfer the prosthesis battery voltage into the

operation range of the MC.

Two electrode signals were emulated for opening and closing, which are normally used

as control-inputs in the standard clinical application (see section 2.3.1). This was done to

control the prosthetic hand without any modifications on the device. The two required
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Figure 5.8: Miniaturized version of the embedded system

analog signals were generated by smoothing two PWM signals with passive RC low-pass

filters. The rotation unit is driven proportionally by a motor driver IC (ON Semiconduc-

tor, LV8548MC), which is controlled by PWM signals and provides the required currents

for the rotation motor.

A picture of the assembled printed circuit board of the embedded system is shown in

figure 5.8. With a size of 56× 28× 15 mm and a weight of 10 g it can be easily integrated

into a prosthetic socket. The costs are approximately 10 e and the power consumption

at 7.2 V is 15 mA plus 650 µA for each electrode module.

5.4.2 Software

As training of the machine (and the user) is significantly easier with the visualization

possibilities offered by a computer screen, in the chosen design this is still done with

the support of a PC. This complies with the clinical practice, which for many prosthetic

devices supports or even requires the use of a PC.

The same MATLAB framework is used for training as in the experiments described

in section 5.3. The two DOFs are mapped into the two functions of the prosthesis, hand

open/close and rotation. The software framework was extended by another data-acqui-

sition class, which allows to use the embedded system as input device. In this way, all

tools, including the co-adaptive learning paradigm are available also in combinationwith

the embedded system. Once, a linear regression model has been trained, it can be tested

with the prosthesis by sending control signals via USB to the prosthesis. When training

is finished, the regression coefficients are transmitted to the embedded system and stored

permanently in the EEPROM. Then the embedded system is disconnected from the PC

and runs in an autonomous mode. The acquired electrode signals are directly mapped

into control signals for the prosthesis. All operations were implemented in 16 bit fixed-

point operations with an update rate of 25 Hz. In the power-on sequence of the firmware
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Figure 5.9: Evaluation of the first prototype of the embedded system on a subject with

transradial amputation in the standardized “clothes-pin test” that requires the use of both

DOFs. The subject was able to quickly and safely replace the pins from the vertical to the

horizontal bar and vice versa and the movements appeared very smooth and natural.

the stored regressionmodel is automatically loaded from EEPROM and the autonomous

mode is started. Therefore, the device can be used as simple as a conventional prosthesis,

once it is configured and intermediately switched off to recharge the battery without any

need for a PC.

5.4.3 Evaluation on subject with transradial amputation

A prototype of the system was tested on one subject with transradial hand amputation

(male, 25 years). Eight electrodes were integrated into a customized socket on which the

prosthesis was mounted. After a short training period that involved three calibration

runs and one adaption run with λ = 0.995 in neutral arm position (arm down), the

user could accurately control the speed for both DOFs of the prosthesis simultaneously

and independently. As a smooth transition between the activation of both DOFs was

possible, themovements appeared very fluent and natural. Also single activations of both

DOFs were possible in both directions, without unintended simultaneous activations.

No decrease in performance was observed when the arm position was changed, during

walking, after donning and doffing the socket, or using the trained model on another

day.

In a preliminary evaluation with the standardized clothes pin test [Kuiken et al., 2004],

in which the subject was asked to pick up three clothes pins from a horizontal bar, rotate

them and place them on a vertical bar he required 10.6 s± 0.6 s (mean± std) — a result

that compares very competitively to the literature [Amsuess et al., 2014a].
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5.5 Discussion

In this chapter, it was shown that by using computationally efficient linear regression

techniques, two degrees of freedom could be controlled in real-time by all tested able

bodied subjects and two individuals with upper limb deficiency. A novel co-adaptive

learning based paradigm was introduced, which proved to be efficient and beneficial

compared to conventional offline calibration. In this approach both the human and the

machine learner are provided with a common target and real-time feedback of the es-

timated position in 2D. The paradigm was defined such, that machine adaptation was

limited to problematic targets, resulting in improvements particularly for those regions.

In conventional training approaches, any improvement of the machine learning model

require a retraining with new calibration data [Simon et al., 2012]. When feedback is

provided only in the testing phase, and not during the collection of training samples, the

learning of the users and the algorithm are interleaved and the user can only very slowly

adjust his contraction patterns. Thus, many iterations of sequential user and machine

adaptation may be required until the performance converges on a satisfying level. In the

presented adaptation paradigm the machine learning model is updated at the same time

as the user learns to adjust muscle contractions to reach the desired target. The exper-

iment demonstrated that this co-adaptive learning approach leads in most cases within

very short time to a well performing and stable control.

5.5.1 Learning Speed

A crucial trade-off in co-adaptive learning is that between stability and speed of adapta-

tion [Vidaurre et al., 2011a]. If the machine learner is adapting too fast, the system may

become instable. If it is adapting too slow, only little improvements may be achieved

within a given time. In the presented study this trade-off was regulated by the learning

constant of the recursive least-squares algorithm. It was found that all subjects (able-

bodied and with congenital limb-deficiency) achieved best performance with a similar

learning constant, suggesting that this parameter is fundamentally the same and should

be applicable to most individuals. This means that the time-consuming parameter op-

timization could be omitted, which would make the suggested approach very efficient.

Within very short time the human and the machine can concurrently learn and a good

regression model is obtained as an outcome.

5.5.2 Alternative Approaches

Theco-adaptive learning strategy was compared with several alternative approaches. The

same conventionally open-loop trained model as in the baseline condition “init 1” was

tested a second time towards the end of the experiment to evaluate effects of pure user-

learning. As each of the five adaptation runs started with this model, the user had rela-
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tively large amount of time to learn how to overcome the limitations of the initial regres-

sion model, by adapting the muscle contractions. The fact, that no significant improve-

ments were found in this test, showed that limitations of the initial regression-model

could not be compensated by the user within the investigated time. With the repeated

open-loop calibration, one iteration of interleaved user and machine adaptation was ex-

ecuted. This resulted only in relatively small improvements, which were not significant

for most performance metrics. Repeating this interleaved adaptation procedure several

times, as previously suggested [Powell et al., 2014], may lead to further improvements,

but is a very time-consuming procedure. In contrast, the proposed co-adaptive learning

approach required only one run of concurrent user and machine adaptation to converge

in a good performance.

One of the major problems in the open loop trained model was a limited range of

motion (30% to 80%of themaximal range for somedirections). Thismay be at least partly

caused by inaccurate data-labels, due to the abandonment of a motion tracking system,

which would not be applicable to bilateral amputees. A heuristic compensation approach

was tested by upscaling of the regression output with an individually determined factor

to reach all regions of the unit circle, in which the targets appeared. This did not solve

the problem, as it resulted in a loose of fine-control. This means that the extended range

was acquired with the price of reduced stability. In contrast, subsequent co-adaptation

compensated for the initial miss-calibration and led typically to an extended motion-

range while maintaining the possibility of fine-control.

5.5.3 Clinical Applicability

Attention was paid in the design of the experiments, desribed in section 5.3, to fulfill

clinical requirements. Even if gel-electrodes provide a better signal quality [Clancy et al.,

2002], a dry electrode system was selected, as only dry electrodes are suitable for an ap-

plication in prosthetics. Further, a motion tracking system was omitted, which aside of

concerns about cost, is not applicable to bilateral amputees, who stand to benefit themost

from advanced hand prostheses. Finally, very efficient linear processing techniques were

used that provide minimal latency and can be readily implemented in low-power and

low-cost digital hardware required for a clinical application [Jiang et al., 2012a].

Section 5.4 demonstrated the usability of the presented approach in a prosthetic ap-

plication. Miniaturized EMG electrode modules from conventional myoprostheses were

used, which can be integrated into a prosthetic socket, instead of the 24 bit lownoise desk-

top biosignal amplifier. The computations, that are required for the control, were reduced

to 16 bit fixed-point operations in order to be executed on a miniaturized embedded sys-

temwith a low-power, low-cost 8 bit microcontroller that fulfills clinical requirements. It

has been shown previously in real-world tasks with a physical prosthetic device, that for

90 % of the users an additional processing delay of 100 - 125 ms has no influence on the

performance [Farrell andWeir, 2007]. The additional reaction time of the presented em-
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bedded system compared to the conventional control is around 40ms in the autonomous

mode, which is clearly within the acceptable range and was not noticed by the user.

In the preliminary tests a robust control was possible even when disturbing factors

such as altered arm position, the weight of the prosthesis or donning and doffing of the

socket were introduced. If these initial results will be confirmed also in permanent use,

this critical clinical requirement is fulfilled.

One of themajor complains of poweredhandprostheses isweight [Kejlaa, 1993]. There-

fore, many amputees and persons with congenital limb deficiency prefer to use a sig-

nificantly lighter cosmetic prosthesis without any active functionality or refuse to use a

prosthesis completely. Depending on the model and size, the weight of a commercially

available prosthetic hand is in the range of 350-600 g [Belter et al., 2013]. Additionally

200-400 g have to be counted for the socket with integrated electrodes and 50-150 g for

the rechargeable battery. The battery is usually dimensioned to operate the device for an

entire day and themajority of the power is consumed by themotors that actuate the pros-

thesis. With only 10 g, the additional weight of the embedded system is negligible. Due to

the low power-consumption and the possibility to supply the system with the prosthesis

battery, also indirect weight increase due the need for additional batteries is avoided.

Once the locations for EMG detection are defined and the electrodes are integrated

into the socket, the system can be worn and used as a conventional myoelectric pros-

thesis, i.e. the complexity for the user is sufficiently low for a clinical application. The

fitting process with the presented system on the other hand is significantly more com-

plex as for a conventional myoelectric prosthesis. The identification of suitable electrode

locations, user-training and algorithmic calibration may become challenging when the

methods would be used clinically in a larger scale. In future work this procedure should

be automatized as far as possible to reduce the likelihood of fitting problems. Channel-

selection algorithms in combination with a high density electrode grid such as the one

proposed in [Hwang et al., 2014a] could support this process.

5.5.4 Limitations and Future Work

It was shown that co-adaptive learning can be used as an efficient tool to let the hu-

man and a regression model converge in a common, well performing control strategy.

However, this was demonstrated for the two DOFs flexion/extension and radial/ulnar

deviation only. It remains to be investigated if the linear approach is also sufficient for

othermovements andwhen the number of DOFs is increased. E.g. a rotation of the wrist,

which is still possible formany amputees and individuals with congenital limb deficiency,

can cause a re-orientation of the forearm muscles. This may result in a non-linear inter-

action between individual DOFs when simultaneously activated. Therefore, non-linear

regression methods may be required. But integrating this into the presented framework

is straight-forward, since real-time learning algorithms are available also for many non-

linear regression techniques [Nishikawa et al., 2001,Gijsberts et al., 2014]. With increas-
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ing number of DOFs the presented strategy to adapt explicitly for problematic regions is

expected to be particularly efficient, as the amount of combinedmovements grows expo-

nentially with the number of DOFs, making it practically impossible to collect training

data for all combinations.

To prove that the system is reliable enough for a daily use, long-term tests with more

subjects under real-world conditions and a systematical investigation of the robustness

are required: The influence of some of the disturbing factors such as altered armpositions

and electrode shifts should be quantified in specially designed laboratory experiments.

However, additional factors like sweat, variations of the stump-volume or other, yet un-

known factors, may show up outside the laboratory and during long-term use only. Also

a judgment of the users is required after long term tests and a careful comparison with

the clinical state of the art .
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The concept of using EMG signals to control powered upper limb prostheses was intro-

duced 1948 by Reiter and the proposed technique, based on two bipolar electrodes that

allows for controlling only one function at a time, is still the clinical state of the art. Sev-

eral decades of research onmore advanced control systems had relatively little impact on

the clinical practice because most proposed techniques failed under realistic conditions.

Many studies have been conducted fully offline, did not consider clinically important

factors and were done on able-bodied subjects only. The aim of the work presented in

this thesis is to develop robust machine learning based control techniques that fulfill the

clinical requirements and are therefore clinically applicable.

Classification-based approaches, that have been the focus of research since many dec-

ades, achieved very high performance under stable conditions but often collapsed when

disturbing factors were introduced, which occur under real-worlds conditions. Thework

presented in chapter 3 aimed to increase the robustness of the classification-based control

approach. Optimized spatial filters, which maximize the difference in variance between

classes in raw-signal domain, were introduced tomyoelectric control. In particular three

multiclass extensions were investigated, namely one vs. one, one vs. rest and joint diago-
nalization of the common spatial pattern algorithm.

The accuracy and robustness against two important factors, that impair the perfor-

mance in real-world conditions, were investigated on experimental data with particularly

introduced variations of the arm position and artificially added noise. The one vs. one
and the one vs. rest extension led to a significantly improved performance and a higher

robustness against noise compared to the conventional approach without spatial filters.

Moreover, by transferring the backwardmodels of the spatial filters into forwardmod-

els, the locations of underlying components, that are most relevant for classification, are

discovered and allow for a physiological interpretation of the learned filter coefficients.

It was found that the regions of best discrimination do not necessarily coincide with the

regions of strongest muscle-activity. Instead, other regions, possibly related to smaller,

deeper, or synergistically activated muscles provide in some cases better information to

distinguishes the movements.

Chapter 4 provided a detailed and thorough comparison of regression techniques,

which allows for simultaneous and proportional control ofmultipleDOFs. It was demon-

strated that the relationship between wrist angles and the EMG variance is rather non-

linear, which requires computationally expensive non-linear regression techniques like

neuronal networks or kernel ridge regression. By transforming the variance-featureswith
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simple non-linear transformations, like the square-root or a logarithmic function, the

relationship between features and wrist-angles can be linearized, which allows for using

computationally very efficient linear regression techniques. A mixture of linear experts

was introduced, to compensate for additional non-linearities that are caused by the fact

that for antagonistic movements within the same DOF different muscles are required.

This is an extension of linear regression, which splits the problem into two linear sec-

tions per DOF. The results were consistent between able-bodied subjects and an individ-

ual with congenital limb deficiency.

A special focus was given to the analysis of practical relevant factors. For the first time

a systematic investigation regarding the amount and the diversity of data was provided,

which is needed to train regression-based myoelectric controllers. It was found that the

absolute amount of training samples investigatedwithin a practicalmeaningful range has

a strong influence on the performance, but that the diversity of the training movements

has almost no influence. Even if only individual movements were used in the training,

most combined movements were estimated well even with linear methods. This shows

that the two investigated wrist-DOFs are separable, i.e. they can be trained individu-

ally and superimpose linearly. Since potential users of myoelectric prostheses are often

not able to execute precise combined movements without the intrinsic feedback of the

missing limb, this finding is of very high practical relevance.

A real-time system for simultaneous and proportional control was developed, based

on these results, and presented in chapter 5. After calibrating the system in a way that is

also suitable formost prosthetic users, based on individualmovements andwithout using

motion tracking, most subjects were able to simultaneously control 2 degrees of freedom,

but certain regions could often not be reached. A novel real-time learning paradigm was

introduced, in which the regression model is adapted in a supervised manner while the

regression output is provided as visual feedback to the user. As the user immediately

reacts on the provided feedback, this leads to a co-adaptation between the controller and

the user. When a proper adaptation speed is chosen, the control significantly improves

within short time. Moreover, the optimal range for the critical choice of the learning

constant was consistent between most able-bodied subjects and the two individuals with

congenital limb-deficiency.

An embedded system was developed for a prosthetic hand with two degrees of free-

dom, to prove that the presented techniques for simultaneous and proportional control

are clinically applicable. A test was conducted on a user with transradial amputation and

a physical hand prosthesis, mounted to a prosthetic socket with integrated electrodes. He

was able to control the two functions, open/close and wrist rotation independently and

reliably, also during walking, in altered arm positions and when using the same regres-

sion model on a second day without retraining.

In conclusion, a simple and efficient machine learning based systemwas developed for

independent simultaneous and proportional myoelectric control of two DOFs, which is

practical applicable. It can be used in combinationwith commercially available prosthetic
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components and provides great improvements compared to the clinical state of the art.

In combination with the presented learning strategy it is expected to be useful for a large

number of end-users.
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