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Le savant n’étudie pas la nature parce que cela est utile; il l’étudie parce qu’il y
prend plaisir et il y prend plaisir parce qu’elle est belle. Si la nature n’était pas
belle, elle ne vaudrait pas la peine d’être connue, la vie ne vaudrait pas la peine

d’être vécue. Je ne parle pas ici, bien entendu, de cette beauté qui frappe les sens,
de la beauté des qualités et des apparences; non que j’en fasse fi, loin de là, mais elle
n’a rien à faire avec la science; je veux parler de cette beauté plus intime qui vient

de l’ordre harmonieux des parties, et qu’une intelligence pure peut saisir.
— Jules Henri Poincaré (1854-1912)
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Abstract

Many phenomena in nature are characterized by discontinuous processes. To describe
them by suitable mathematical models is often a challenge. Evolution inclusions can
be a suitable means to model such discontinuous processes mathematically.
The present work is devoted to the nonsmooth analysis of doubly nonlinear evolution
inclusions of first and second order with leading subdifferential operators and non-
monotone and non-variational perturbations using methods from the theory of convex
analysis. The thesis is divided into two parts.
In the first part, we prove the existence of strong solutions to abstract Cauchy
problems for perturbed generalized gradient flows for a certain class of nonlinear and
monotone subdifferential operators acting on the time derivative of the solution, and
nonlinear and non-monotone subdifferential operators acting on the solution as well
as a certain class of perturbations. As an application of the abstract existence result,
we show the existence of weak solutions of an initial-boundary value problem.
In the second part, we prove the existence of strong solutions to abstract Cauchy
problems for doubly nonlinear evolution inclusions of second order. In doing so,
we treat the equations with linear and nonlinear damping separately. In the case
of linear damping, we consider a special class of leading linear potential operators
acting on the time derivative of the solution, and nonlinear subdifferential operators
acting on the solution. In the case of nonlinear damping, we consider the reverse case.
In both cases, we allow a perturbation which depends nonlinearly on the solution as
well as its time derivative. As an application of the abstract existence results, we
prove the existence of weak solutions to certain initial-boundary value problems.





Zusammenfassung

Viele Phänomene in der Natur sind durch unstetige Prozesse charakterisiert. Diese
durch ein geeignetes mathematisches Modell zu beschreiben, stellt oftmals eine
Herausforderung dar. Evolutionsinklusionen können ein geeignetes Mittel sein, solche
unstetigen Prozesse mathematisch zu modellieren.
Die vorliegende Arbeit widmet sich der nichtglatten Analyse von doppelt nichtlinearen
Evolutionsinklusionen erster und zweiter Ordnung mit führenden Subdifferential-
operatoren und nicht-monotonen und nicht-variationellen Störungen mit Methoden
aus der Theorie der konvexen Analysis. Die Arbeit ist in zwei Teile gegliedert.
Im ersten Teil weisen wir die Existenz von starken Lösungen zu abstrakten Cauchy
Problemen für gestörte verallgemeinerte Gradientenflüsse für eine bestimmte Klasse
von nichtlinearen und monotonen Subdifferentialoperatoren, welche auf die Zeit-
Ableitung der Lösung wirken, und nichtlinearen und nicht-monotonen Subdifferential-
operatoren, welche auf die Lösung wirken, sowie einer bestimmten Klasse von
Störungen nach. Als Anwendung des abstrakten Existenzresultats, zeigen wir die
Existenz von schwachen Lösungen eines Anfangs-Randwertproblems.
Im zweiten Teil weisen wir die Existenz von starken Lösungen zu abstrakten Cauchy
Problemen für doppelt nichtlineare Evolutionsinklusionen zweiter Ordnung nach.
Dabei behandeln wir hyperbolische Gleichungen mit linearer und nichtlinearer
Dämpfung gesondert. Im Fall der linearen Dämpfung betrachten wir eine spezielle
Klasse von führenden linearen Potentialoperatoren, welche auf die Zeit-Ableitung der
Lösung wirken, und nichtlinearen Potentialoperatoren, welche auf die Lösung wirken.
Im Fall der nichtlinearen Dämpfung betrachten wir den umgekehrten Fall. In beiden
Fällen erlauben wir eine Störung, welche nichtlinear von der Lösung sowie ihrer
Zeit-Ableitung abhängt. Als Anwendung der abstrakten Existenzresultate weisen
wir die Existenz von schwachen Lösungen zu gewissen Anfangs-Randwertproblemen
nach.
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Chapter 1

Introduction

People have always wrestled with understanding the essence of all things, whether it’s
been philosophers, mathematicians, artists, poets, composers, theologians, or natural
scientists. As the German poet and natural scientist Johann Wolfgang von Goethe
once formulated in his work Faust I, people desire to understand "what holds the
world together at its innermost core"1. Attempts at answering this question are
provided in a variety of methods, ranging from using music and painting, to language
and mathematics. And even if these attempts may all seem different and illuminate
only partial aspects of the truth (whatever that truth may be), they all agree on one
thing: there lies inherent within objects a certain harmony, which is usually identified
and described by its simplicity and beauty. The idea that objects carry such intrinsic
qualities was first developed by Greek philosopher of antiquity, Plato, who assigned
to every sensually perceptible object an abstract metaphysical form. Regardless of
whether these abstractions are real, they undoubtedly contribute towards establishing
and recognizing deeper connections between objects. This is especially true within
the discipline of mathematics, which thrives on abstracting concrete objects. Here,
abstraction serves as an indispensable means to find common structures and gain
heuristic insights of apparently different objects for further examination. If a class
of objects is successfully described on an abstract level, suitable methods can be
developed to investigate these objects on an individual and class level, and in abstract
and concrete forms. The present thesis is devoted to the study of abstract Cauchy
problems for doubly nonlinear evolution inclusions of first and second order.

The history of Cauchy problems have their roots in several places. In 1926, the
Austrian physicist Erwin Schrödinger postulated in his seminal work [149] the
linear partial differential equation

iℏ
∂

∂t
Ψ(x, t) =

(
− ℏ

2m∆+ V (x, t)
)
Ψ(x, t)

to describe a quantum mechanical state of a non-relativistic system and thus laid
the foundation of quantum mechanics. Here, Ψ denotes the so-called wave function
with the probability density |Ψ(x, t)|2 which can be interpreted as the probability of
a particle to stay in the point x in space and at the time t. In 1930, the English

1This a part of the English translation of line 382 in Goethe’s original work [159]: "Dass ich
erkenne, was die Welt im Innersten zusammenhält"



2 Chapter 1. Introduction

physicist Paul Dirac [60] generalized the Schrödinger equation to describe more
general situations, which include relativistic effects, therefore improving upon the
equation postulated by Schrödinger. He introduced the generalized equation in
the so-called bra-ket notation2 by

iℏ
∂

∂t
|Ψ(t)⟩ = Ĥ|Ψ(t)⟩, (1.0.1)

where Ĥ is the so-called Hamilton operator which acts on and takes values in
an abstract Hilbert space and generates the time evolution of the quantum state
described by |Ψ⟩. The function |Ψ⟩ can be seen as the abstract function associated
to Ψ which can be related to each other via |Ψ(t)⟩(x) = Ψ(x, t)3. In 1933, Paul
Dirac and Erwin Schrödinger received the Nobel prize "for the discovery of
new productive forms of atomic theory".

Although the equation (1.0.1) can be seen as the first abstract evolution equation,
the notion of an abstract Cauchy problem would not be formalized as such until
19524 by the American mathematician Einar Hille [92] following the concept of
an Cauchy problem first coined in 1923 by the French mathematician Jacques
Hadamard [90] for concrete problems. Hille investigated the abstract Cauchy
problem u′(t) = Au(t), t > 0,

u(0) = u0
(1.0.2)

with A being a linear, unbounded, and self-adjoint operator acting on a Banach
space X. He gave necessary and sufficient conditions for the operator A to generate a
strongly continuous semigroup (C0-semigroup) of contractions which is directly related
to the existence and uniqueness of mild5 and classical solutions6. He rediscovered
this result, known as the Hille–Yosida theorem, independently of the Japanese
mathematician Kôsaku Yosida who already gave a proof in 1948 [162]. The abstract
Cauchy problem (1.0.2) has been subsequently studied by many authors and also
extended to the non-autonomous, i.e., the time-dependent case [93, 97, 98, 110, 132].
Nevertheless, it took more than two decades to prove the nonlinear counterpart of
the Hille–Yosida theorem, which has been provided in 1971 by the American
mathematicians Thomas M. Liggett and Michael G. Crandall [49]. They proved

2Although the bra-ket is attributed creatively to Paul Dirac, it was already introduced in the
form [·|·] in 1862 by the German mathematician Hermann Grassmann [88] to describe an inner
product.

3Nowadays, most mathematicians use for the notational convenience the same notation for the
concrete function and the corresponding abstract function.

4However, the term "evolution equation" goes back to the French mathematicians Laurent
Schwartz [150] which introduced it in 1950. We refer the reader to Hazewinkel [91] and
Fattorini [82] for more historical remarks on Cauchy problems.

5A function u : [0, +∞) → X is called mild solution if u(t) ∈ dom(A) for almost every t > 0,
Au(t) is locally Bochner integrable, and there holds u(t) = u0 +

∫ t

0 Au(s) ds for all t > 0, see
Pazy [132].

6A function u : [0, +∞) → X is called classical solution to (1.0.2) if u(t) ∈ dom(A) for all
t > 0, it is continuous on [0, +∞) and continuously differentiable on (0, +∞), and it satisfies (1.0.2)
pointwise everywhere.
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in particular the existence of strong solutions, i.e., an absolutely continuous function
with a certain regularity, which fulfills the initial condition and satisfies the equation
pointwise almost everywhere, to the abstract Cauchy problem for the more general
nonlinear evolution inclusion

u′(t) + Bu(t) ∋ 0, t > 0,

for accretive operators B. This has first been extended in 1973 by the French
mathematician Haïm Brézis [32] to the case

Au′(t) + Bu(t) ∋ f(t), t ∈ (0, T ), (1.0.3)

where A is a linear, unbounded, and self-adjoint operator and B is a maximal
monotone operator on a Hilbert space. This has been extended further in 1975 by
the Romanian mathematician Viorel Barbu to the fully nonlinear case on a Hilbert
spacem, where he assumed that both operators are subdifferential or subgradient
operators, i.e., A = ∂ψ and B = ∂ϕ for proper, lower semicontinuous, and convex
functionals ψ and ϕ, see Section 2.2. This leads to the so-called generalized gradient
system

∂ψ(u′(t)) + ∂ϕ(u(t)) ∋ f(t), t ∈ (0, T ),

The equation7 (1.0.3) is also referred to as the doubly nonlinear evolution equation
of first type, whereas the equation

(Au(t))′ +Bu(t) ∋ f(t), t ∈ (0, T ), (1.0.4)

is referred to as the doubly nonlinear evolution equation of second type [84]. Since the
equation of second type was more interesting among mathematicians and physicists
from an application point of view, it has been studied more extensively in the early
70s, see Section 1.2.

Regarding evolution equations of second order of the type

u′′(t) + Au′(t) + Bu(t) = f(t), t ∈ (0, T ), (1.0.5)

one can formally reduce it to a system of equations of first order by introducing the
unknown variable v = u′ obtaining(

v(t)
u(t)

)′

+
(
A B
−I 0

)(
v(t)
u(t)

)
=
(
f(t)

0

)
, t ∈ (0, T ),

where I denotes the identity. However, this reduction can lead to the well-posedness8

of the problem under relatively strong assumptions on the operators A und B, e.g.,
the linearity or Lipschitz continuity, which reduces the number of application
enormously. First results to fully nonlinear evolution equations have been obtained

7Although it is strictly speaking an inclusion we will sometimes refer to an inclusion as equation.
8The notion of the well-posedness of a Cauchy problem has been introduced by Jacques

Hadamard [90] and describes Cauchy problems where existence and uniqueness of solutions that
continuously depend on the given data can be shown.
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in 1965 by the French mathematician Jacques-Louis Lions and the American
mathematician Walter A. Strauss in their seminal work [108] where they showed
well-posedness of the Cauchy problem for the doubly nonlinear evolution equation

u′′(t) + A(t, u(t), u′(t)) + Bu(t) = f(t), t ∈ (0, T ),

where B is an unbounded, self-adjoint, and linear operator and A is a fully nonlinear
operator which satisfies a monotonicity type condition. The peculiarity in this work
is the assumption that the operators A and B are defined on different spaces, whose
intersection is densely and continuously embedded in both spaces. This implies that
the solution u takes values in a different space than its time derivative u′. Since
then, many contributions have been made to nonlinear evolution equations; we will
include the most recent ones in Section 1.2.

This is the point of departure for the present work, which addresses the existence
of strong solutions to the abstract Cauchy problem for nonlinear evolution inclusions
of first and second order of the type

∂Ψu(t)(u′(t)) + ∂Et(u(t)) ∋ B(t, u(t)), t ∈ (0, T ), (1.0.6)

and

u′′(t) + ∂Ψu(t)(u′(t)) + ∂Et(u(t)) + B(t, u(t), u′(t)) ∋ f(t), t ∈ (0, T ), (1.0.7)

which has not been studied before in the generality presented here, where Ψ , E , and
B are called the dissipation potential, the energy functional, and the perturbation,
respectively, which satisfy certain conditions.

1.1 Structure of the thesis
This thesis is organized as follows. It consists of two parts: the first part deals with
evolution inclusions of first order, and the second part with evolution inclusions of
second order.

In Chapter 2, we give an introduction to the theory of convex analysis for the
analysis of nonsmooth functionals. We introduce the associated terminology and
notation, and present the results required for proofs in later chapters. These results
are sourced from existing literature, which are specified in the chapter, or proven by
the author, if they were not found in the literature. Section 2.1 is devoted to the
basic notions, such as the lower semicontinuity and the λ-convexity of a function.
In Section 2.2, we introduce the notion of a subdifferential and characterize the
subdifferential for λ-convex and for differentiable functionals. Then, in Section 2.3,
we define the Legendre–Fenchel transformation of a function and represent a
connection to its subdifferential that is essential for this work. Since the functionals
we are working with do not exhibit any kind of differentiability, it is necessary in
our existence proof to smooth, in an intermediate step, the functional acting on
the first derivative of the sought solution. This is done by the p-Moreau–Yosida
regularization, which will be defined in Section 2.5 and for which we prove important
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properties in Theorem 2.5.2. Theorem 2.5.2 is independent of our main results
presented from Chapter 3, 5, and 6, and has not been published. In Section 2.4, we
define the Γ - and Mosco-convergence for s sequence of functionals, and in Section
2.6, we introduce parameterized Young measures.

Part I

Chapter 3 is devoted to the strong solvability of the Cauchy problem for
the doubly nonlinear evolution inclusion (1.0.6). In order to show the existence
of solutions, we use a semi-implicit Euler-method and establish convergence of
the approximation scheme which is formulated in Section 3.1. In Section 3.2, we
collect the assumptions concerning the functionals Et and Ψu and the operator B.
After a discussion of the assumptions in Section 3.2.1, we present the main result
in Theorem 3.2.3. In Sections 3.3 and 3.4, we show a discrete energy-dissipation
inequality and derive from it a priori estimates for the interpolations. In Section 3.5,
we show the compactness of the interpolations in suitable spaces and characterize the
limit points by using parameterized Young measures. We then prove the main result
in Section 3.6, first by proving the existence of strong solutions to the regularized
problem, and then by concluding the proof by passing to the limit as ε ↘ 0 and
showing the existence strong solutions of the Cauchy problem for (1.0.6), which
fulfills an energy dissipation balance. The results of this chapter have been published
in Bacho, Emmrich & Mielke [21] with stronger assumptions, which will be
discussed more in detail in Section 3.2.

In Chapter 4, we show the existence of an initial-boundary value problem with
nonlinear constraints as an application of the theorem provided in Chapter 3.

Part II

In Chapter 5, we consider the Cauchy problem for the second-order evolution
inclusions (1.0.7) which we refer to as linearly damped inertial system. Here, we discuss
two cases. In the first case, we assume that ∂Ψ is a linear, bounded, strongly positive,
and self-adjoint operator, and in the second case, we allow a strongly continuous
nonlinear perturbation of the linear part. In both cases, the operator ∂Et is nonlinear
and the subdifferential of a proper, sequentially weakly lower semicontinuous, and
λ-convex functional Et, and the perturbation B is a fully nonlinear and strongly
continuous operator acting on u and u′. Here, the functionals Ψ and Et are defined on
different spaces for which we assume not that either of the two spaces is continuously
embedded in the other one. For both cases, we show the existence of strong solutions
of the Cauchy problem for (1.0.7), which fulfills an energy-dissipation inequality.
The results of this chapter have been prepublished under stronger assumptions in
Bacho [20]. The precise assumptions are presented in Section 5.1. After a discussion
of the assumptions in Section 5.1.1, we present the main result in Theorem 5.1.4.
The steps of the proof of the main result has the same structure as the proof of
the main result in Chapter 3, and is based on showing the convergence of a semi-
implicit time discretization of the inclusion (1.0.7). This is accomplished by first
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showing the solvability of the variational approximation scheme based on the time
discretization in Section 5.2. In Section 5.3, a discrete energy dissipation inequality
is shown and a priori estimates are derived. In Section 5.4, we show the compactness
of the interpolations and pass then to the limit as the step size vanishes in Section 5.5.

In Chapter 6, we switch the properties of the dissipation potential and the
energy functional, and allow the dissipation potential further dependence on the
state u. More precisely, we show the existence of strong solutions through the main
assumption that the leading or dominating part of ∂Et is a linear, bounded, strongly
positive, and self-adjoint operator and ∂Ψu is the subdifferential of a proper, lower
semicontinuous and convex operator Ψu of p-growth. The functionals Ψu and Et again
act on different spaces for which we again assume that neither of the two spaces is
continuously embedded in the other one. The perturbation is a fully nonlinear and
strongly continuous operator acting on u and u′. Under these assumptions (which will
be made more precise in Section 6.1), we show the existence of a strong solution of
the Cauchy problem for (1.0.7), which fulfills an energy-dissipation balance and will
be presented in Theorem 6.1.4 in the same section. The proof of the aforementioned
theorem is divided into the same steps as in Chapter 5. The results presented in this
chapter are novel and have not been published before.

In Chapter 7, we then apply the theorems proved in Chapters 5 and 6 to some
concrete examples to demonstrate the range of possible applications. In Sections 7.1
and 7.2, we consider differential inclusions, which fits into the framework of Chapter
5. In Section 7.3 and Section 7.4, we consider the equations of the martensitic
transformation in shape-memory alloys and a viscous regularization of the Klein–
Gordon equation. Finally, in Section 7.5, we consider a differential inclusion with
nonlinear damping.

1.2 Literature review

Results on abstract evolution inclusion or equations of type (1.0.3) and (1.0.5) have
been provided by several authors under various conditions and assumptions on the
operators A and B, as well as the underlying spaces the operators are acting on. Here
we give an overview of the most recent literature to nonlinear evolution equations of
first and second order.

Evolution equations of first order

In the above mentioned work of Colli & Visintin [45], the authors work in
their analytical framework with a Gelfand triple9 where V is compactly embedded
in H. Under the assumption that dom(A) = H and dom(B) ⊂ V , and that either

9A triple (V, H, V ∗) of vector spaces is called Gelfand triple if H is a Hilbert space and
V is a reflexive Banach space, which has the dual space V ∗, such that the following dense and
continuous embeddings hold: V

d
↪→ H ∼= H∗ d

↪→ V ∗, where H has been identified with its dual space
H∗ via the Riesz isomorphism.
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B is a subdifferential operator such that the potential and the operator A satisfy
certain coercivity conditions or that A is a subdifferential operator and B is a
Lipschitz continuous and strongly monotone operator, they showed the existence
of a strong solution with u ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) if f ∈ L2(0, T ;H) in the first
case and a strong solution u ∈ H1(0, T ;V ) if f ∈ H1(0, T ;V ∗) in the second case
to (1.0.3) in H and V ∗, respectively. Similar results for operators of p-growth with
1 < p < +∞ have been obtained by Arai [14], Barbu[24], Senba [151], and Colli
[44]. In order to obtain solutions, the aforementioned authors use regularization
and approximation techniques to construct functions that approximate a solution.
Some of the techniques include the Moreau–Yosida regularization and the Yosida
approximation for the operators, see Section 2.5.

A more elegant approach has been made by Stefanelli by using the celebrated
Brézis–Ekeland variational principle [26, 34, 36] in order to characterize and show
the existence of strong solutions to the Cauchy problem∂ψ(u′(t)) + ∂ϕ(u(t)) ∋ f(t) for a.e. t ∈ (0, T ),

u(0) = u0,
(1.2.1)

for proper, lower semicontinuous and convex functionals ϕ, ψ : V → (−∞,+∞]
defined on a reflexive Banach space V with norm ∥ · ∥V . The Brézis–Ekeland
variational principle states that a function is a solution to the parabolic equation
(1.2.1) if and only if it solves a minimization problem despite the equation in (1.2.1)
not having a variational structure. Rewriting (1.2.1) into the form

ξ(t) + ∂ϕ(u(t)) ∋ f(t) for a.e. t ∈ (0, T ),
ξ(t) ∈ ∂ψ(u′(t)) for a.e. t ∈ (0, T ),
u(0) = u0,

(1.2.2)

Stefanelli [155] showed that the couple (u, ξ) ∈ W1,p(0, T ;V ) × Lp(0, T ;V ) with
1 ≤ p < +∞ solves (1.2.2) if and only if (u, ξ) minimizes I : W1,p(0, T ;V ) ×
Lp(0, T ;V ) → [0,+∞] with

I(v, η) =
(∫ T

0
(ψ(v′(t)) + ψ∗(η(t)) − ⟨η(t), v′(t)⟩V ∗×V ) dt+ ϕ(v(t)) − ϕ(v(0))

)+

+
(∫ T

0
(ϕ(v(t)) + ϕ∗(f(t) − η(t)) − ⟨f(t) − η(t), v(t)⟩V ∗×V ) dt

)
+ ∥v(0) − u0∥2

V ,

where ⟨·, ·⟩V ∗×V denotes the duality pairing between V and its dual space V ∗, ϕ∗

and ψ∗ again the conjugate functionals of ϕ and ψ (see Section 2.3), respectively,
and x+ := max{x, 0}, x ∈ R. Furthermore, he showed that the assumption that
ψ has p-growth with p > 1 and ϕ has compact sublevel sets in V is sufficient to
obtain coercivity of the functional I with respect to a certain topology. He also
established a result on Γ -convergence by giving sufficient conditions for a sequence
of solutions of (1.2.2) to converge to another solution of (1.2.2). All the results
presented previously rely heavily on the convexity of the functional ϕ or the maximal
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monotonicity of the operator B. Mielke, Rossi & Savaré overcame this problem
by using the De Giorgi’s energy-dissipation principle, which states that under
suitable conditions solutions to the system (1.2.2) with f = 0 can be characterized
as absolutely continuous functions satisfying the so-called energy-dissipation balance

ϕ(u(t)) +
∫ T

0
(ψ(u′(t)) + ψ∗(−ξ(t))) dt = ϕ(u0).

The idea of the existence result is based on a metric space formulation of gradient
flows introduced by De Giorgi, Marino & Tosques in their pioneering work
[54] where one replaces the Fréchet derivatives by suitable metric derivatives10.
Based on the metric formulation, they showed first in [142] the existence of absolutely
continuous curves with values in a separable metric space. The main assumptions
are that ψ is proper, lower semicontinuous, convex, and has superlinear growth, and
that Et is lower semicontinuous, satisfies a chain rule, has compact sublevel sets, and
its subdifferential satisfies a certain closedness condition. These results have been
further generalized by the same authors in [122] when the metric space is a reflexive
Banach space where they considered the Cauchy problem for the generalized
gradient system of the form∂Ψu(t)(u′(t)) + Ft(u(t)) ∋ 0 for a.e. t ∈ (0, T ),

Et(u(t)) ⊂ Ft(u(t)) for a.e. t ∈ (0, T ),

by allowing a time-dependence of Et and a state-dependence of Ψu. We extended
this result to perturbed gradient systems by incorporating a non-variational and
non-monotone perturbation B in form of (1.0.6) into the equation and by avoiding
further a certain regularity assumption for Ψu which has been accomplished by
regularization arguments, see Chapter 3 and Section 3.2 for the precise assumptions.
However, the results do not include the case where Ψ has at most linear growth, which
is strictly related to rate independent systems where Ψ is positively homogeneous
of degree one, i.e. Ψ(αv) = |α|Ψ(v) for all α ∈ R. For results on rate-independent
systems, see Section 1.3.

Perturbed gradient systems have already been investigated by Brézis [32] and
Ôtani [126, 127], Akagi [4] and Akagi & Melchionna [5]. In [32, 126, 127],
the authors investigate the case when A = I and B = ∂ϕ for a proper, lower
semicontinuous, and convex functional ϕ on a separable Hilbert space where the
operator B is perturbed by a Lipschitz or multivalued operator that satisfies certain
growth and continuity conditions. The doubly nonlinear case has been studied by
Akagi and Akagi & Melchionna. In [4], the author assumed that Ψ = Ψt and E
are both proper, lower semicontinuous and convex, and B is a multi-valued operator
satisfying certain growth and continuity conditions in a Gelfand triple framework.
For different growth conditions for B, he showed local and global existence results.
In [5], the authors assumed in addition the Gâteaux differentiability of Ψ but
allowing more non-convex functionals of the form E = E1 − E2, where Ei, i = 1, 2, are

10We refer the reader to Ambrosio Gigli & Savaré [10] for a detailed treatise of gradient flows
in metric spaces. See also Ambrosio [8, 9] and the introduction of Chapter 3, where we elaborate
more on the metric formulation.
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again supposed to be convex. We remark that these kinds of non-convex functionals
can also be treated in our framework, see [122, 142, 143]. The perturbation is
supposed to be time-independent and continuous, which is also a special case in
our setting. Furthermore, the author works on a Gelfand triple (V,H, V ∗) which
excludes the case where ϕ has p-growth with p ∈ (1, 2). In addition, it has been
assumed that V is an uniformly convex Banach space, which in particular is
reflexive. Thus, while the latter work is completely covered by our work, we do not
include multi-valued perturbations and do not consider time-dependent functionals
Ψt. Also, our work only focuses on the second type of abstract doubly nonlinear
equations and only covers abstract doubly nonlinear equations of the first type (1.0.4)
if A is Fréchet differentiable with an invertible derivative DA, so that formally
(Au(t))′ = [DAu(t)]u′(t) and therefore Ψu(v) = 1

2⟨[DAu]v, v⟩. For results on this case,
we refer to Grange & Mignot [87], Bamberger [23], Barbu [25], DiBenedetto
& Showalter [56], Maitre & Witomski [111], Aizicovici & Hokkanen [2, 3],
Matas & Merker [113] and the references therein. For nonlinear equations
with Volterra operators, we refer to, e.g., Gajewski, Gröger & Zacharias
[84, Kapitel V], Gilardi & Stefanelli [85, 86], Eikmeier & Emmrich [66],
Eikmeier, Emmrich & Kreusler [67] and the references therein.

In the case of single-valued operators, Emmrich & Vallet [78] investigate the
Cauchy problem for the equation of Barenblatt-type

A(u′(t)) + B(u(t), u′(t)) = f(t) for a.e. t ∈ (0, T ),

where A is a hemicontinuous, monotone and coercive operator and B a strongly
continuous operator. The operator A is, in particular, maximal monotone (see, e.g.,
Barbu [26, Theorem 2.4, p. 36]) but not necessarily cyclical monotone and therefore
not necessarily a subdifferential operator, or in this case, potential operator, see
Brézis [32, Chapter II, Section 7, p. 38]. The operator B is not supposed to satisfy
any monotonicity assumption. For these types of equations, see also Bauzet &
Vallet [29] and the references therein. For abstract evolution equations, we also
refer to the monographs Roubíček [145, Part II], Wloka [160, Chapter IV], and
Zeidler [164, Chapter 30].

Evolution equations of second order

Results on abstract evolution equations of second order are in general much more
delicate and difficult. The reason is that, roughly speaking, the equations possess
the additional term ∂ttu describing the propagation of waves that, as opposed to
parabolic equations, has a nonsmoothing effect in the time evolution for the solution
u. As a consequence, much less existence results are available.

Evolution inclusions of second order of the form

u′′(t) + A(t)u′(t) + B(t)u(t) ∋ f(t), t ∈ (0, T ),

i.e., in the multivalued case, have been studied by Rossi & Thomas in [144] where
A(t) = A : V → V ∗ is a linear, bounded, strongly positive and symmetric defined on
the reflexive and separable Banach space, and B(t) = ∂Et is the subdifferential of
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a λ-convex functional with effective domain in a reflexive and separable Banach
space U . In the framework of the Gelfand quintuplet

U
d
↪→ V

d
↪→ H ∼= H∗ d

↪→ V ∗ d
↪→ U∗

and under the assumption that Et satisfies a chain rule and ∂Et satisfies a closedness
condition, they showed the existence of a strong solution. While this work is
completely covered with the result of Chapter 5, we allow further a strongly continuous
non-monotone and non-variational perturbation that depends on u and u′ as well
as a nonlinear monotone perturbation of A of variational type. We furthermore
do not assume the rather restrictive assumption that U d

↪→ V . Furthermore, the
strong closedness condition of ∂Et assumed in [144] excludes the application to
nonlinear elastodynamics where the operator satisfies a so-called Andrews–Ball
type condition, see Section 7.3. In Emmrich & Šiška [74], the authors develop an
abstract theory in the smooth setting with the application to nonlinear elastodynamics.
They prove the existence of strong solutions for the case where A : VA → V ∗

A is
linear, bounded, strongly positive and symmetric, and B : VB → V ∗

B is supposed to
be demicontinuous and a bounded potential operator. In addition, B satisfies an
Andrews–Ball-type condition, meaning that (B + λA) : V → V ∗ is monotone
where V := VA ∩ VB is densely and continuously embedded into the separable and
reflexive Banach spaces, VA and VB, for which we assume not that either of the two
spaces is continuously embedded in the other one. Since we allow a more general
nonsmooth functional E , this result is also covered by the main result presented
in Chapter 5. The case where the operator A is nonlinear has also been discussed
by several authors. Apart from the well-posedness result of Lions & Strauss
[108], Emmrich & Thalhammer [75] showed the existence of solutions where for
each t ∈ [0, T ], A(t) : VA → V ∗

A is a hemicontinuous operator that satisfy a suitable
growth condition such that A + κI is monotone and coercive, and the operator
B(t) = B0 + C(t) : VB → V ∗

B is the sum of a linear, bounded, symmetric, and
strongly positive operator and a strongly continuous perturbation C(t) with the
same assumptions on VA and VB as above. As mentioned before, the assumptions on
A imply that A+ κI is maximal monotone and therefore not necessarily a potential
operator. Therefore, the result obtained in Chapter 6 only partially generalizes the
above mentioned results. However, to the best of the authors’ knowledge, results
on the existence of strong solutions for multivalued operators A do not exist in the
literature.

Doubly nonlinear evolution inclusions where the leading parts of A and B are
both nonlinear and contain in the applications the same order of spatial derivatives,
is unfortunately not treatable in our framework. The main difficulty that arises in
showing the existence of global (weak, strong or classical) solutions is the identification
of the weak limits, which arise after applying a discretization method, in both
nonlinearities, A and B. If one of the operators is linear, then the identification is
usually accomplished by using monotonicity, compactness or fixed-point arguments.
However, in some concrete problems, this can been shown by exploiting the special
structure of the operators. For example, Puhst [134] showed the existence of
weak solutions under the assumption that the operators A and B are nonlocal
operators. Friedman & Nečas [83] showed the existence of weak solutions under
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the assumptions that the operators are potential operators that are twice differenti-
able such that the Hessian matrices are uniformly positive definite and bounded.
Bulíček, Málek & Rajagopal [38] and Bulíček, Kaplický & Steinhauer
[37] showed the existence of weak solutions under the assumptions that the operators
satisfy strong monotonicity, Lipschitz, and growth conditions, which has been
shown to be classical solutions under stronger regularity conditions on the operators.

For further results on nonlinear evolution equations, we refer to Leray [105],
Dionne [59], Emmrich & Thalhammer [76, 77], Emmrich, & Šiška [73]
including stochastic perturbations, Emmrich,Šiška & Thalhammer [75] for
a numerical analysis, Emmrich, Šiška & Wróblewska-Kamińska [79] and Ruf
[146] for results on Orlicz spaces, and the monographs Lions [106], Lions &
Magenes [107, Chapitre 3.8], Barbu [24, Chapter V], Wloka [160, Chapter V],
Zeidler [164, Chapter 33], Roubíček [145, Chapter 11] and the references therein.

The list of literature presented in this section is not intended to be exhaustive.

1.3 Outlook

There are still many open questions concerning doubly nonlinear abstract evolution
inclusions of first and second order with respect to their generalizations, and a
corresponding solution concept to them. Some of these questions are directly related
to our work and will be discussed here. The following list of problems is, of course,
not intended to be exhaustive.

Non-reflexive Banach spaces

The assumption that the underlying spaces are reflexive Banach spaces excludes
many spaces, including the function spaces C(Ω),L1(Ω) and L∞(Ω), in general
Orlicz spaces, the space of functions with bounded variation, the space of Radon
measures, etc., and therefore excludes many important applications. Therefore, it
is interesting to consider problems on Banach spaces that are not reflexive. By
employing the theory of semigroups, this has been accomplished by Hille [92]
and Crandall & Liggett [49] where they show the existence and uniqueness
of mild solutions to the parabolic equation (1.0.2) for unbounded, linear, and self-
adjoint operators or nonlinear accretive operators. The result for nonlinear accretive
operators can be extended to the case where A is perturbed by a locally Lipschitz
continuous operator, see, e.g., Barbu [26, Theorem 4.8, p. 150,]. An important
factor in the existence result of mild solutions is the fact that in the definition of a
mild solution, the solution is not required to possess any vector differentiability. This
is a problem if one asks for strong solutions, i.e., absolutely continuous functions with
a certain regularity that fulfill the differential inclusion pointwise almost everywhere.
The problem is based on the fact that absolutely continuous functions u : [0, T ] → X
with values in a Banach space do not possess the so-called Radon–Nikodým
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property11; these functions are in general not differentiable almost everywhere12.
This problem has been overcome for gradient flows of type (1.2.1) by introducing a
metric formulation of the gradient flow equation, where one replaces the derivative
u′ of an absolutely continuous function u : [0, T ] → X by its metric derivative |u′|
defined by

|u′|(t) := lim
s→t

d(u(t), u(s))
|t− s|

,

which always exists for almost every t ∈ (0, T ), see Ambrosio et al. [10, Theorem
1.1.2, p. 24]. However, due to the lack of a linear structure of the underlying space,
there is a need for an appropriate definition of a perturbed gradient flow in metric
spaces.

Rate independent systems.

An essential condition to obtain the existence of strong solutions is the superlinearity
of the dissipation potential Ψu and its convex conjugate Ψ ∗

u . The superlinearity
guarantees that the derivatives of the approximate solutions are equi-integrable, so
that we obtain a solution which is absolutely continuous. This is no longer given
if Ψu has at most linear growth. Nevertheless, this is an interesting case from a
mathematical and physical point of view and leads to the notion of so-called rate-
independent systems, which refers to systems where the dissipation potential is
homogeneously positive of degree one, i.e., Ψu(λv) = |λ|Ψ(v) for all λ > 0, v ∈ V
which implies that ∂Ψ(λv) = ∂Ψ(v) for all v ∈ V . Therefore, the class of solutions to
rate-independent systems is time scale invariant. Due to the lack of superlinearity, the
analysis of rate-independent systems are completely different from the case studied
here and therefore necessitates a different solution concept. Relying on the so-called
energetic formulation, rate-independent systems have been extensively studied for
the unperturbed case by Mielke and coauthors, see, e.g., [115, 116, 120, 121, 123]
and the references therein. In the energetic formulation, a curve u : [0, T ] → V
is called an energetic solution to a rate-independent system if it fulfills the global
stability condition

Et(u(t)) ≤ Ψ(u(t) − v) + Et(v) for all v ∈ V,

and the energy balance

VarΨ (u; [0, t]) + Et(u(t)) = E0(u(t)) +
∫ t

0
∂rEr(u(r))dr for all t ∈ [0, T ],

11A Banach space X does possess the Radon–Nikodým property if and only if every absolutely
continuous function u : [0, T ] → X is differentiable amost everywhere in which case there holds
u(t) − u(s) =

∫ t

s
u′(r)dr for all s, t ∈ [0, T ]. A sufficient condition for a Banach space X to have

the Radon–Nikodým property is the reflexivity of X or if X is separable and the dual space of
another Banach space, see p. 217 and pp. 61 in Diestel & Uhl [58] for more sufficient and
necessary conditions and for the definition of the Radon–Nikodým property, respectively.

12See, e.g., Emmrich [71, Beispiel 7.1.21, p. 162 ] for an example of an abstract function with
values in a non-reflexive Banach space which is nowhere differentable.
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where

VarΨ (v; [a, b]) = sup{
N∑
k=1

Ψ(v(tk) − v(tk−1)) : a = t0 < · · · < tM = b}

is the total variation of a function v : [0, T ] → V on [a, b] ⊂ [0, T ] induced by Ψ . The
question is whether the solution concepts can be modified in a mathematically and
physically reasonable way to a perturbed problem. We refer the interested reader to
Mielke & Roubíček [124] for a detailed treatise of rate-independent systems.

Periodicity of solutions.

An important question to address is the periodicity of solutions to abstract evolution
inclusions of first and second order. In the generality of our setting, there are no
such results known. However, under stronger assumptions, there are results available
for doubly nonlinear evolution inclusions of first order. Akagi & Stefanelli
[6] have shown the existence of periodic solutions to the doubly nonlinear case
where A is a maximal monotone operator of at most linear growth and B is the
subdifferential of a proper, lower semicontinuous and convex functional. Within the
class of subdifferential operators, this has very recently been extended by Koike,
Ôtani & Uchida [103] to the case where A is the Gâteaux derivative and B
is the subdifferential of proper, lower semicontinuous and convex functionals of
polynomial growth defined on an uniformly convex Banach space. To the authors’
best knowledge, there are no more results available for doubly nonlinear equations of
the first type (1.0.3). In contrast, the existence of periodic solutions to the second
type of equation (1.0.4) has been vigorously studied by many authors, see, e.g.,
[3, 94, 100, 101] and the references therein. For evolution equations of second order,
the existence of solutions has been shown in Gajewski et al. [84] when the operator
A is radially continuous, monotone and coercive and B is a linear, bounded, positive,
and self-adjoint operator, and both operators are defined on a Hilbert space.



Chapter 2

An Introduction to Convex
Analysis

In this preliminary chapter, we will introduce some useful tools from the theory of
convex analysis, and try to highlight their general importance and their relevance in
regard to the present work.

The theory of convex analysis deals in essence with the study of convex functions
and convex sets, and has numerous applications in various areas, e.g., convex
optimization, economics, mechanics and numerical analysis. The application in convex
optimization was motivated by the seminal results obtained in linear programming,
where minimization problems of linear functionals over polytopes, which are expressed
by linear constraints, are studied, in the hope of obtaining similar results for nonlinear
functionals subject to nonlinear constraints. As a result, the duality principle from
linear programming was extended to nonlinear problems and led to the notion of
the Legendre–Fenchel transformation and the subdifferentiability, which will be
defined in Section 2.3 and 2.2, respectively. Besides, we will introduce the Moreau–
Yosida regularization in Section 2.5, the Mosco-convergence in Section 2.4, and
parameterized Young measures in Section 2.6.

This chapter is mainly based on the excellent and self-contained monographs
of Ekeland & Temam [69], Rockafellar [139], Barbu & Precupanu [27],
Barbu [26]. More specific literature will be mentioned in the related sections.

2.1 Preliminaries and notation

The main objects of our study are defined on Banach spaces. However, many
properties and tools we present in this chapter are also available on more general
spaces. Therefore, if not otherwise specified, we consider a real Banach space X
equipped with the norm ∥ · ∥ and we denote with X∗ its topological dual space
equipped with the norm ∥ · ∥∗. The duality pairing between X and X∗ is denoted by
⟨·, ·⟩. Furthermore, we denote with R := R ∪ {−∞,+∞} the extended real line. On
R, we define a total order by setting −∞ ≤ a ≤ +∞ for all a ∈ R so that the set
can be equipped with the order topology. We extend the arithmetic operations of R



2.1. Preliminaries and notation 15

to R by setting

a+ ∞ = +∞ + a = +∞, a ̸= −∞,

a− ∞ = −∞ + a = −∞, a ̸= +∞,

a(±∞) = (±∞)a = ±∞, a ∈ (0,∞],
a(±∞) = (±∞)a = ∓∞, a ∈ [−∞, 0),
a

±∞
= 0, a ∈ R,

±∞
a

= ±∞, a ∈ (0,+∞),
±∞
a

= ∓∞, a ∈ (−∞, 0).

Many real world problems are optimization problems of the form

inf
v∈C

f̃(v)

where the objective is to find a value v ∈ C in an arbitrary set C ⊂ X which
minimizes the real-valued functional f̃ : C → R. The functional f̃ is often not
defined outside of the set C. Nevertheless, one can introduce the extended functional
f : X → R which takes values in the extended real line R by setting

f(v) =

 f̃(v) if v ∈ C,

+∞ otherwise.

Introducing extended functionals, not only simplifies the analysis from a notational
point of view, but has also the advantage that properties of sets can be translated to
properties of the functionals. If we consider, e.g., the indicator function ıC : C → R
of a convex and closed set C ∈ X, defined by

ıC(v) =

0 if v ∈ C,

+∞ otherweise,

then, there holds v ∈ C if and only if ıC(v) < +∞. Furthermore, it can be shown
that C is closed or convex if and only if ıC is a lower semicontinuous or convex
function, respectively. As a consequence, one can focus on optimization problems
with functionals that are defined on the whole space such as

inf
v∈X

f(v). (2.1.1)

A necessary condition for the solvability1 of such a minimization problem is indeed
that the set C is non-empty, or, in other words, the extended functional f is not
identically +∞, i.e., if the effective domain

dom(f) := {v ∈ X : f(v) < +∞}
1The minimization problem (2.1.1) is called solvable if there exists at least one element in X

that minimizes f and where f is finite.
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of f is non-empty. We call the functional f proper if it has a non-empty effective
domain and if it takes nowhere the value −∞. In what follows, we constantly assume
that f : X → (−∞,+∞] is an extended and proper functional.

Further properties of f that are indispensable for guaranteeing the solvability
of (2.1.1), are indeed the sequential (weak) lower semicontinuity, convexity and
coercivity, which are defined for extended functionals in the same manner as for real
valued functionals by respecting the arithmetic operations on R.
Definition 2.1.1 Let (X, τ) be a topological space. The functional f : X →
(−∞,+∞] is called lower semicontinuous in u ∈ X if there holds

f(u) ≤ lim inf
v→u

f(v).

The functional f is called sequentially lower semicontinuous in u ∈ X if for all
sequences (un)n∈N ⊂ X with un → u as n → ∞ there holds

f(u) ≤ lim inf
n→∞

f(un).

Finally, the functional f is called lower semicontinuous or sequentially lower semi-
continuous if it is lower semicontinuous or sequentially semicontinuous at every
point. If τ = σ(X,X∗) is the weak topology, we say f is sequentially weakly lower
semicontinuous or weakly lower semicontinuous.

Since we work with functionals that can take the value +∞, it is beneficial to
give equivalent characterizations of the lower semicontinuity in terms of the epigraph
and the sublevel sets of f , which is very useful in practice.
Lemma 2.1.2 Let (X, τ ) be a topological space and f : X → (−∞,+∞] be a proper
function. Then, the following assertions are equivalent:
i) The functional f is (sequentially) lower semicontinuous.

ii) For all γ ∈ R, the sublevel set {v ∈ V : f(v) ≤ γ} is (sequentially) closed in V .

iii) The epigraph of f , defined by

epi f := {(v, γ) ∈ V × R : f(v) ≤ γ},

is (sequentially) closed in V × R.
Proof. This is proven in Dixmier [61, Theorem 7.4.11, p. 79].

Since on a metric space, the sequential lower semicontinuity and lower semicontinu-
ity coincide, we will not distinguish between both terms. Furthermore, it is readily
seen that weak lower semicontinuity implies lower semicontinuity. The converse holds
true for convex functions, see, e.g., Brézis [35, Corollary 3.8, p. 61]. However, this,
in general, does not hold true for λ-convex functionals.
Definition 2.1.3 Let λ ∈ R. Then, the functional f : X → (−∞,+∞] is called
λ-convex if for all u, v ∈ X and t ∈ (0, 1) there holds

f(tv + (1 − t)u) ≤ tf(v) + (1 − t)f(u) + λt(1 − t)∥v − u∥2. (2.1.2)

The functional f is called convex if it is 0-convex and strictly convex if it is 0-convex
and the inequality (2.1.2) is strict for all u ̸= v.
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Remark 2.1.4 If X is a Hilbert space, the λ-convexity of f is equivalent to the
convexity of the functional f + λ∥ · ∥2 when the norm ∥ · ∥ is induced by the inner
product on X.

2.2 Subdifferential calculus
From the theory of calculus of variations, it is well-known that solutions (in particular
stationary solutions) to a large class of partial differential equations correspond, by
the variation principle, to critical or stationary points of functionals, which are also
called energy functionals. Critical points of a functional are those points where the
(Gâteaux) derivative of the functional is zero. For example, if v̄ ∈ X solves the
minimization problem (2.1.1), and the functional f is Gâteaux differentiable in
v̄ ∈ X, then by Fermat’s theorem, the point v̄ ∈ X is a critical point of f , i.e.,

DGf(v̄) = 0, (2.2.1)

where DG denotes the Gâteaux derivative of f . The equation (2.2.1) is also called
Euler–Lagrange equation associated to f .

Even if we deal with instationary (time-dependent) problems, we will encounter
minimization problems of the form (2.1.1) after discretizing the evolution inclusions
(1.0.6) and (1.0.7) in time and solving the discretized inclusions, see Sections 3.1,
5.2, and 6.2. However, the functionals we deal with are, in general, not Gâteaux
differentiable. Therefore, we need a generalization of Fermat’s theorem for a non-
differentiable functional f , which in fact is given by the (Fréchet) subdifferential
of f . The (Fréchet) subdifferential or subderivative of f is a generalized notion
of derivative, and is, unlike the weak derivative, a locally defined object, and, in
general, a multi-valued map from X to X∗.

Definition 2.2.1 (Fréchet subdifferential) Let f : X → R be proper and u ∈
dom(f). Then, the Fréchet subdifferential ∂f : X ⇒ X∗ of f at the point u is
defined by the set

∂f(u) :=
{
w ∈ X∗ : lim inf

v→u

f(v) − f(u) − ⟨w, v − u⟩
∥v − u∥

≥ 0
}

(2.2.2)

and the elements of ∂f are called subgradients. Furthermore, the domain of ∂f is
defined by

dom(∂f) := {u ∈ dom(f) : ∂f(u) ̸= ∅} .

Finally, f is called subdifferentiable at the point u ∈ dom(f) if u ∈ dom(∂f).

We refer to the Fréchet subdifferential simply as subdifferential. If we want to
highlight that the subdifferential of f has been taken on the space X, we write ∂Xf .
The reason for that is that the subdifferential always depends on the topology of
the underlying space. However, we can always extend the functional f to a larger
space which contains the space X by setting the value to +∞ outside its domain so
that specifying the subdifferential is in certain cases useful. We note that endowing
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the space X with an equivalent norm does not change the set (2.2.2). One can
also easily check that the subdifferential ∂f(u) is a closed and convex set for all
u ∈ dom(∂f). Moreover, from the definition of subdifferentiability, it is readily seen
that Fréchet differentiable functionals are in particular subdifferentiable, and that
the subdifferential becomes a singleton with the Fréchet derivative as a single
value. Therefore, the subdifferential is indeed a generalized notion of differentiability.
Similarly, for a Gâteaux-differentiable and convex function, the subdifferential
contains only the Gâteaux derivative, which is stated in Lemma 2.2.7 below.

The following lemma gives a characterization of the subdifferential of a λ-convex
functional, which is very useful in practice. The same characterization for convex
functionals is often used as a definition of the subdifferential. The lemma gives also
a sufficient condition for the graph Gr(∂f) := {(u, ∂f(u)) ⊂ X ×X∗ : u ∈ X} of ∂f
to be strongly-weakly closed.
Lemma 2.2.2 Let f : X → (−∞,+∞] be subdifferentiable in u ∈ dom(∂f). Then,
the following assertions hold:

i) Let f be λ-convex with λ ∈ R. Then, ξ ∈ ∂f(u) if and only if

f(u) − f(v) ≤ ⟨ξ, u− v⟩ + λ∥u− v∥2 for all v ∈ X. (2.2.3)

If f is lower semicontinuous, then Gr(∂f) is strongly-weakly closed.

ii) Let f be Gâteaux differentiable on a convex set A ⊂ X. Then, f is convex
over A if and only if

f(u) − f(v) ≤ ⟨f ′(u), u− v⟩ for all u, v ∈ A.

Proof. Ad i). Let ξ ∈ ∂f(u). Since the inequality (2.2.3) is trivially fulfilled for all
v ∈ X\ dom(f), it is sufficient to show (2.2.3) for all v ∈ dom(f). Therefore, let
v ∈ dom(f). Since the inequality (2.2.3) for v = u is obviously fulfilled, we assume
v ̸= u. Then, by definition

0 ≤ lim inf
ṽ→u

f(ṽ) − f(u) − ⟨ξ, ṽ − u⟩
∥ṽ − u∥

≤ lim inf
t→0+

f(u+ t(v − u)) − f(u) − ⟨ξ, t(v − u)⟩
∥t(v − u)∥

≤ lim inf
t→0+

tf(v) + (1 − t)f(u) + t(1 − t)λ∥u− v∥2 − f(u) − ⟨ξ, t(v − u)⟩
∥t(v − u)∥

= f(v) − f(u) + λ∥u− v∥2 − ⟨ξ, v − u⟩
∥v − u∥

for all v ∈ V,

where we have used the λ-convexity of f . The converse is clearly fulfilled. Now, let
un → u in V and ξn ⇀ ξ in V ∗ as n → ∞ be convergent sequences with ξn ∈ ∂f(un)
for all n ∈ N. Then, the lower semicontinuity of f and the characterization (2.2.3)
yields

f(u) − f(v) ≤ lim inf
n→∞

(f(un) − f(v))

≤ lim inf
n→∞

(
⟨ξn, un − v⟩ + λ∥un − v∥2

)
= ⟨ξ, u− v⟩ + λ∥u− v∥2 for all v ∈ X,
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whence ξ ∈ ∂f(u).
Ad ii). This follows from Ekeland & Temam [69, Proposition 5.3 & 5.4].

Remark 2.2.3 Let u, v ∈ dom(∂f). Then, the characterization (2.2.3) immediately
implies

−2λ∥u− v∥2 ≤ ⟨ξ − η, v − u⟩ for all ξ ∈ ∂f(u), η ∈ ∂f(v).

The operator ∂f is called strongly monotone if λ < 0 and monotone if λ = 0.
This definition indeed coincides with the definition of strong monotonicity and
monotonicity for single valued operators.

Hence, using the subdifferential, we see that v̄ being a global or local minimizer
of f implies

0 ∈ ∂f(v̄),

and the reverse holds true when f is convex. In the next example, we see a
subdifferentiable function that admits a global minimizer where the function is
not Fréchet differentiable. We also see an example of a function that is not
subdifferentiable.

Example 2.2.4 Let h : R → R and g : R → R with

h(x) =

x if x < 0,
1
2x

2 otherwise,
and g(x) = −|x|, x ∈ R,

be given. Since the functions h and g are differentiable on R\{0}, there holds
∂h(x) = {h′(x)} and ∂g(x) = {g′(x)} for all R\{0}. A simple calculation shows that
while the subdifferential of h at x = 0 is given by the closed interval [−1, 0], the
subdifferential of g at x = 0 is empty. Hence, the subdifferential of h and g are given
by

∂h(x) =


−1, if x ∈ (−∞, 0),
[−1, 0], if x = 0,
x, if x ∈ (0,+∞)

, ∂g(x) =


1, if x ∈ (−∞, 0),
∅, if x = 0,
−1, if x ∈ (0,+∞),

which is illustrated in figure 2.1.

As Figure 2.1 nicely illustrates, the subdifferential of the convex functional f in
the point x = 0 contains all subgradients which are tangential to the graph at the
point x = 0. In particular, there holds ξ = 0 ∈ ∂f(0) and therefore x = 0 is a global
minimizer of f .

An important question is whether the subdifferential operator is additive, i.e.,
the subdifferential of the sum of two functionals equals the sum of the subdifferential
of the individual functionals. In general, this is not true. Choose, e.g., f1 = f
and f2 = −f with f being any functional which is not subdifferentiable. Clearly,
the sum of the functionals is subdifferentiable, but does not equal the sum of their
subdifferentials.

The following lemmas give sufficient conditions so that subdifferential operator is
indeed additive.
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h(x)

x
ξ1
ξ2

∂h(x)

x

g(x)

x

∂g(x)

x

Figure 2.1: The figure shows the graph of the functions h and g, and their
subdifferential ∂h and ∂g, respectively. It also shows the subgradients ξ1 = −1

4 and
ξ2 = −1

2 of h at the point x = 0.

Lemma 2.2.5 Let f : X → (−∞,+∞] be given by f = f1 + f2, where f1 :
X → (−∞,+∞] is subdifferentiable and f2 : X → R is Fréchet differentiable in
u ∈ dom(f1). Then, f is subdifferentiable in u and the subdifferential is given by

∂f(u) = ∂f1(u) +Df2(u)
= {ξ +Df2(u) : ξ ∈ ∂f1(u)},

where Df2(u) is the Fréchet derivative of f2 in u.

Proof. This immediately follows from the definition of the subdifferential.

Combining Lemma 2.2.2 and Lemma 2.2.5, we obtain

Corollary 2.2.6 Under the assumptions of Lemma 2.2.5, let f1 : X → (−∞,+∞]
be convex. Furthermore, let dom(∂f1) ̸= ∅ and f2 be Fréchet differentiable at the
point u ∈ D(∂f1). Then, ξ ∈ ∂f(u) if and only if

f1(u) + ⟨ξ −Df2(u), v − u⟩ ≤ f1(v) for all v ∈ X.

If f2 is convex, then u is a global minimizer of f if and only if −Df2(u) ∈ ∂f1(u),
i.e.,

f1(u) + ⟨−Df2(u), v − u⟩ ≤ f1(v) for all v ∈ X.
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The previous results deal with the case where at least one functional is differenti-
able and do therefore not answer the question of the additivity of the subdifferential
operator when both functionals are non-differentiable. For general finite valued
functionals f1, f2 : X → R, there holds

∂ (f1 + f2) (v) ⊃ ∂f1(v) + ∂f2(v),

which immediately follows from the definition. However, this inclusion is not useful
since the right-hand side might be empty, while the left-hand side is non-empty. The
following lemma gives a satisfying answer to that question.

Lemma 2.2.7 (Variational sum rule) Let f1 : X → (−∞,+∞] and f2 : X →
(−∞,+∞] be proper, lower semicontinuous, and convex. Furthermore, assume that
there exists a point ũ ∈ dom(f1) ∩ dom(f2) where f2 is continuous. Then, there holds

∂(f1 + f2)(v) = ∂f1(v) + ∂f2(v) for all v ∈ X.

If, in addition, f2 is Gâteaux differentiable on V with Gâteaux derivative DGf2,
then there holds ∂f2(v) = {DGf2(v)} and we obtain

∂(f1 + f2)(v) = ∂f1(v) +DGf2(v) for all v ∈ X.

Proof. This has been proven in Ekeland & Temam [69, Proposition 5.3. & 5.6].

With the variational sum rule, we are able to decompose subgradients of f1 + f2
in terms of the subgradients of f1 and f2. Apart from that, we are also interested in
a special chain rule for the subdifferential of two composite functions Λ : X → Y
and f : Y → (−∞,+∞], which are defined on Banach spaces X and Y .

Lemma 2.2.8 Let Λ : X → Y be a linear, bounded operator and f : Y → (−∞,+∞]
be a proper, lower semicontinuous, and convex functional. If there exists a point
Λũ ∈ Y with ũ ∈ X, where f is finite and continuous, then for all u ∈ X, there holds

∂(f ◦ Λ)(u) = Λ∗∂f(Λu) for all u ∈ X,

where Λ∗ : Y ∗ → X∗ denotes the adjoint operator of Λ.

Proof. This has been proven in Ekeland & Temam [69, Proposition 5.7].

For the operator Λ, we have in particular in mind the gradient operator ∇ which
has as adjoint the divergence operator div, see Section 7.1.

2.3 Legendre–Fenchel transformation
If we take a closer look into the characterization (2.2.3) of the subdifferential of a
proper, lower semicontinuous, and convex functional, we find in particular

⟨ξ, u⟩ ≥ sup
v∈X

{⟨ξ, v⟩ − f(v)} + f(u). (2.3.1)
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We define the Legendre–Fenchel transformation f ∗ : X∗ → R of f by

f ∗(η) := sup
v∈X

{⟨η, v⟩ − f(v)} , η ∈ X∗,

which is also called the convex conjugate, Fenchel conjugate, or simply, conjugate
of f . We can then formulate 2.3.1 in terms of f and its convex conjugate by the
inequality

⟨ξ, u⟩ ≥ f(u) + f ∗(ξ). (2.3.2)

Hence by Lemma 2.2.2, the latter inequality holds for u ∈ V and ξ ∈ V ∗ if and only if
ξ is the subgradient of f in u, i.e., ξ ∈ ∂f(u). We note that by the Fenchel–Young
inequality

⟨η, v⟩ ≤ f(v) + f ∗(η) for all u ∈ X, ξ ∈ X∗,

which, by definition, is always fulfilled, we can replace the inequality (2.3.2) with an
equality.

We found another characterization of the subdifferential in terms of the conjugate
function. This, among others, is stated in the following lemma.

Lemma 2.3.1 Let f : X → (−∞,+∞] be a proper, lower semicontinuous, and
convex functional and let f ∗ : X∗ → (−∞,+∞] be the conjugate of f . Then, for all
(u, ξ) ∈ X ×X∗, the following assertions are equivalent:

i) ξ ∈ ∂f(u) in X∗;

ii) u ∈ ∂f ∗(ξ) in X;

iii) ⟨ξ, u⟩ = f(u) + f ∗(ξ) in R.

Proof. This has been proven in Ekeland & Temam in [69, Proposition 5.1 &
Corollary 5.2].

The preceding lemma reveals a deep relationship between f and f ∗, and is crucial
in the existence result presented in the following chapters. Hence, it is useful to
study the properties of the Legendre–Fenchel transformation.

Lemma 2.3.2 Let f : X → (−∞,+∞] be a proper, lower semicontinuous, and
convex function. Then, f is continuous over the interior of its effective domain and
the Legendre–Fenchel transformation f ∗ is proper, lower semicontinuous, and
convex. If f ≥ 0 on X and f(0) = 0, then f ∗ ≥ 0 on X∗ and f ∗(0) = 0. Furthermore,
if X is reflexive, then there holds f ∗∗ = (f ∗)∗ = f . Finally, for general functions
h, g : X → R with h ≤ g on X, there holds g∗ ≤ h∗ on X∗.

Proof. The fact that f is continuous over the interior of its effective domain, and
f ∗ is proper, lower semicontinuous, and convex, follows from Corollary 2.5, pp. 13
and the discussion in Section 4 in Ekeland & Temam [69]. If f ≥ 0 on X and
f(0) = 0, then

f ∗(ξ) = sup
v∈V

{⟨ξ, v⟩ − f(v)} ≥ ⟨ξ, 0⟩ − f(0) = 0
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and
f ∗(0) = sup

v∈V
{−f(v)} = 0.

If X is reflexive then f ∗∗ = (f ∗)∗ = f follows from Ekeland & Temam [69,
Proposition 4.1, p. 18]. The last assertion immediately follows from the definition of
the Legendre–Fenchel transformation.

In order to provide a better understanding of Lemma 2.3.1, we consider the
following examples.
Example 2.3.3 Let p ∈ [1,+∞) and f : R → [0,+∞] be defined by f(x) =
1
p
|x|p, x ∈ R. We want to calculate the conjugate f ∗ : R → [0,+∞]. To do so, we

distinguish the cases p = 1 and p > 1. First, let p = 1. We note that by Lemma
2.3.2, there holds f ∗ ≥ 0 on R. Then, for y ∈ [−1, 1], we obtain

f ∗(y) = sup
x∈R

{xy − |x|} ≤ 0

whence f ∗(y) = 0. For y ∈ R with |y| > 1, there holds
f ∗(y) = sup

x∈R
{xy − |x|}

≥ sup
x∈R

{(|y| − 1)|x|} = +∞

Therefore, the conjugate is given by the indicator function, i.e., f ∗ = ı[−1,1]. Now,
let p > 1. Then, by the differential calculus, x ∈ R maximizes the function
R ∋ x̃ 7→ x̃y − 1

p
|x̃|p for y ∈ R if and only if y = xp−2x. Hence, the conjugate is

given by f ∗(y) = 1
p∗ |y|p∗

, y ∈ R, where p∗ = p/(p− 1) is the conjugate exponent. For
p ∈ (1,∞), the Fenchel–Young inequality reads

xy ≤ 1
p

|x|p + 1
p∗ |y|p∗ for all x, y ∈ R. (2.3.3)

which, in fact, is Young’s inequality. Lemma 2.3.1 gives now an optimality criteria
for Young’s inequality: equality holds in 2.3.3 if and only if y = xp−2x.

The conjugate functional on an infinite-dimensional space is, in general, difficult
to calculate explicitly. However, if the functional is radial, i.e., if it depends only on
the length of a vector, then we can reduce the calculation of the conjugate functional
to the one-dimensional case, as it is shown in the following example.
Example 2.3.4 Let f : R → [0,+∞] be a proper and even function. We define
F : X → [0,+∞] by

F (u) := f(∥u∥), u ∈ X.

Then, the conjugate F ∗ : X∗ → (−∞,+∞] of F is given by
F ∗(ξ) = sup

v∈X
{⟨ξ, v⟩ − F (v)}

= sup
r≥0

sup
v∈X, ∥v∥=r

{⟨ξ, v⟩ − f(∥v∥)}

= sup
r≥0

{r∥ξ∥∗ − f(r)}

= f ∗(∥ξ∥∗) for all ξ ∈ X.
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We obtain for, e.g., f(x) = 1
p
|x|p with p ∈ [1,+∞) the functional F (v) = 1

p
∥v∥p

whose conjugate is given by F ∗(ξ) = 1
p∗ ∥ξ∥p∗

∗ if p > 1 and F ∗(ξ) = ıBX∗ (0,1)(ξ) if
p = 1, where BX∗(0, 1) denotes the closed unit ball in X∗. Here, Lemma 2.3.1 gives
a characterization of the subdifferential of F , the so-called p-duality map denoted
by F p

X , see Section 2.5 for more details. Hence, ξ ∈ ∂F (u) = F p
X(u), u ∈ dom(∂F ) if

and only if

⟨ξ, u⟩ = 1
p

∥u∥p + 1
p∗ ∥ξ∥p∗

∗

which by Young’s inequality holds true if and only if ⟨ξ, u⟩ = ∥u∥∥ξ∥∗ and ∥u∥p =
∥ξ∥p∗

∗ .

Thus, we obtain a real-valued formula that entirely describes the relation between
ξ and ∂f(u) in an infinite-dimensional vector space. In fact, this will allow us to
reformulate the generalized gradient flow equation by a real-valued equation, see
the introduction Chapter 3, where we elaborate more on this and stress why this is
crucial for our approach.

We may also ask, how the conjugate of the sum of two functionals can explicitly
be expressed in terms of conjugate of the individual functionals.

Lemma 2.3.5 Let (X, ∥ · ∥) be a Banach space, f1 : X → (−∞,+∞] and f2 : X →
(−∞,+∞] be proper, lower semicontinuous, and convex functionals such that⋂

λ≥0
λ (dom(f1) − dom(f2)) is a closed vector space,

where A − B := {a − b : a ∈ A, b ∈ B} for two sets A,B ⊂ X. Moreover, let
f ∗

1 , f
∗
2 : X∗ → (−∞,+∞] be the associated conjugate functional of f1 and f2. Then,

there holds

(f1 + f2)∗(ξ) = min
η∈X∗

(f ∗
1 (ξ − η) + f ∗

2 (η)) for all ξ ∈ X∗. (2.3.4)

Proof. This is proven in Attouch & Brézis [18, Theorem 1.1, pp. 126].

For an illustration of the preceding lemma, we consider

Example 2.3.6 Let (X, ∥ · ∥X) and (Y, ∥ · ∥Y ) be two Banach spaces such that
X ∩ Y , equipped with the norm ∥ · ∥X∩Y = ∥ · ∥X + ∥ · ∥Y , is dense in both X and
Y . Furthermore, we assume that X and Y are each continuously embedded into
another Banach space Z. Then, the space X ∩ Y becomes a Banach space itself
and the dual space can be identified as X∗ + Y ∗ with the dual norm ∥ξ∥X∗+Y ∗ =
infξ1∈X∗,ξ2∈Y ∗

ξ=ξ1+ξ2

max{∥ξ1∥X∗ , ∥ξ2∥Y ∗}, see, e.g., Gajewski et al. [84, Chapter I, Section

5]. Let p, q ∈ (1,+∞) and the functionals f1, f2 : X ∩ Y → R be defined by

f1(u) = 1
p

∥u∥pX , f2(u) = 1
q

∥u∥qY , u ∈ X ∩ Y.
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Then, according to Lemma 2.3.5, the conjugate (f1 + f2)∗ : X∗ + Y ∗ → (−∞,+∞]
is given by

(f1 + f2)∗(ξ) = min
ξ1∈X∗,ξ2∈Y ∗
ξ=ξ1+ξ2

(
1
p∗ ∥ξ1∥p

∗

X∗ + 1
q∗ ∥ξ2∥q

∗

Y ∗

)
for all ξ ∈ X∗ + Y ∗, (2.3.5)

where p∗ > 1 and q∗ > 1 again denotes the conjugate exponent of p and q, respectively.
Applying Young’s inequality to (2.3.5), we obtain the estimates

(f1 + f2)(u) ≥ C∥u∥X∩Y − C for all u ∈ X ∩ Y

(f1 + f2)∗(ξ) ≥ C∥ξ∥X∗+Y ∗ − C for all ξ ∈ X∗ + Y ∗

for some constant C > 0. We will make use of the latter estimates in Chapter 5 by
choosing X = L2(0, T ;V ) and Y = Lr(0, T ;W ).

We continue with addressing the following problem: let f(t, ·) → (−∞,+∞] be
a proper, lower semicontinuous, and convex functional for each t ∈ [0, T ] and define
the integral functional

F (v) =


∫ T

0 f(t, v(t))dt if f(·, v(·)) ∈ L1(0, T ),
+∞ otherwise.

(2.3.6)

We want to know whether the properties of f are inherited by F . The following lemma
provides sufficient condition to give a positive answer to this question. Furthermore,
it gives a relation between the subdifferential of F on Bochner-Lebesgue spaces
and f . To ensure that the mapping t 7→ f(t, v(t)) is Lebesgue measurable for
any Bochner measurable (strongly measurable) functional v : [0, T ] → X, we
introduce the notion of a normal integrand, which was introduced by the American
mathematician Ralph T. Rockafellar [138, 140, 141] in order to study integrals of
the form (2.3.6) for a wider class of integrands f than the classical Carathéodory
function2.

We denote with L(0,T ) the Lebesgue σ-algebra of the interval [0, T ] and with
B(X) the Borel σ-algebra of X. A functional f : [0, T ] × X → (−∞,+∞] is
called normal integrand if it is L(0,T ) ⊗ B(X)-measurable on [0, T ] ×X and for a.e.
t ∈ (0, T ) the mapping v 7→ f(t, v) is lower semicontinuous on X. Note that if f is a
normal integrand and X is a separable Banach space, then by the Pettis theorem,
see, e.g., Diestel & Uhl [58, Theorem 2, p. 42], the mapping t 7→ f(t, v(t)) is
Lebesgue measurable for any Bochner measurable functional v : [0, T ] → X.

The Bochner–Lebesgue spaces3 are as usual denoted by Lp(0, T ;X) for p ∈
[1,+∞].

Theorem 2.3.7 Let X be a separable and reflexive Banach space and f : [0, T ] ×
X → (−∞,+∞] be a normal integrand such that f(t, ·) : X → (−∞,+∞] is for
a.e. t ∈ (0, T ) a proper, lower semicontinuous and convex functional. Denote

2The functional f(t, ·) → R is called Carathéodory functional if the mapping t 7→ f(t, v) is
Lebesgue measurable for all v ∈ X and the mapping v 7→ f(t, v) is continuous for almost every
t ∈ (0, T ).

3See Roubíček [145, Section 1.5] for a definition of the Bochner–Lebesgue spaces.
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with f ∗ : [0, T ] × X∗ → (−∞,+∞] the conjugate functional given by f ∗(t, ·) =
(f(t, ·))∗, t ∈ [0, T ], and assume that there exists constants α, α∗, β, β∗ > 0 such that

f(t, v) + α∥v∥ + β ≥ 0 for a.e. t ∈ [0, T ] and all v ∈ X,

and

f ∗(t, ξ) + α∗∥ξ∥∗ + β∗ ≥ 0 for a.e. t ∈ [0, T ] and all ξ ∈ X∗.

Then following assertions hold

i) The functional f ∗ : [0, T ] ×X∗ → (−∞,+∞] is a normal integrand, and if F
is proper, then the conjugate functional F ∗ : Lp∗(0, T ;X∗) → R is proper, lower
semicontinuous and convex, and is given by the integral functional

F ∗(ξ) =


∫ T

0 f ∗(t, ξ(t))dt if f ∗(·, ξ(·)) ∈ L1(0, T ),
+∞ otherwise.

ii) The functional F is lower semicontinuous and convex on Lp(0, T ;X), and there
holds F (v) > −∞ for all v ∈ Lp(0, T ;X).

iii) Let F be proper, and let v ∈ dom(F ) and ξ ∈ Lp∗(0, T ;X∗). Then, ξ ∈ ∂F (v) ⊂
Lp∗(0, T ;X∗) if and only if ξ(t) ∈ ∂f(t, v(t)) ⊂ X∗ for a.e. t ∈ (0, T ).

Proof. Assertions i) and ii) follow from Kenmochi [99] and Rockafellar [140,
Proposition 2 & Theorem 2] as well as Lemma 2.3.2, respectively. Assertion iii)
follows from i), ii), Lemma 2.3.1, and the fact that∫ T

0
(f(t, v(t)) + f ∗(t, ξ(t)) − ⟨ξ(t), v(t)⟩) = 0 (2.3.7)

if and only if

f(t, v(t)) + f ∗(t, ξ(t)) − ⟨ξ(t), v(t)⟩ = 0 a.e. in (0, T ),

which in turn follows from the fact that the integrand in (2.3.7) is by the Fenchel–
Young inequality always non-negative.

2.4 Mosco-convergence
In this section, we introduce the notion of the Mosco-convergence, which was
originally introduced by the Italian mathematician Umberto Mosco [125] in order
to study variational inequalities. Before we motivate the Mosco-convergence, we
provide a definition.

Definition 2.4.1 A sequence of functionals fn : X → (−∞,+∞] converges to
f : X → (−∞,+∞] in the sense of Mosco (we write fn M−→ f) if and only if for
all u ∈ X a) f(u) ≤ lim infn→∞ fn(un) for all un ⇀ u in X,

b) ∃ûn → u in V such that f(u) ≥ lim supn→∞ fn(ûn).
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We note that the implication in b) can be replaced by f(u) = limn→∞ fn(ûn)
since the other direction of the inequality already follows from a). The existence of
a strongly convergent sequence in b) is often referred to as the recovery sequence.
We note further that constant sequences of functions do not, in general, converge
in the sense of Mosco since the functional is by a) assumed to be weakly lower
semicontinuous. However, if we deal with functionals that are lower semicontinuous
and convex, and thus weakly lower semicontinuous, then constant sequences converge
in the sense of Mosco. The Mosco-convergence is related to the notion of Γ -
convergence4 where the convergences in a) and b) in Definition 2.4.1 are assumed to
hold with respect to the same topology, which usually is either the strong topology
or the weak topology. The Γ -convergence gives a sufficient condition to conclude
that a sequence of solutions un to the minimization problems

inf
v∈X

fn(v)

converge in a certain topology to a solution to a limiting minimization problem
as n → ∞. The Mosco-convergence, which is a stronger notion of convergence,
provides a sufficient condition to conclude that a sequence of subgradients converge
to a subgradient of a limiting functional as we will see. Therefore, the Mosco-
convergence and the Γ -convergence are very useful tools in, e.g., phase transitions,
homogenization theory, dimension reduction, the formalization of the passage of a
discrete model to a continuous model, etc., see [30, 114, 117–119, 147, 152]. We refer
the interested reader to the monographs Braides [31] and Dal Maso [50] for an
introduction to Γ -convergence.

In Lemma 2.2.2, we have seen that the lower semicontinuity and λ-convexity
of a functional yields the strong-weak closedness of the graph of its subdifferential.
However, sometimes we do only have weakly convergent sequences un ⇀ u and
ξn ⇀ ξ with ξn ∈ ∂f(un), n ∈ N, at our disposal which is, in general, not enough
to conclude ξ ∈ ∂f(u). However, for a proper, lower semicontinuous, and convex
functional, a sufficient condition to make this conclusion is in fact given by the limsup
estimate

lim sup
n→∞

⟨ξn − ξ, un − u⟩ ≤ 0.

This holds even true for maximal monotone operators, see, e.g., Brézis, Crandall
& Pazy [33, Lemma 1.2], which in particular contain the set of subdifferential
operators of proper, lower semicontinuous, and convex functionals, see Rockafellar
[137, Theorem 4]. If we consider a sequence of functionals (fn)n∈N so that ξn ∈ ∂f(un)
is replaced by ξn ∈ ∂fn(un), our next question is: what type of convergence for the
sequence (fn)n∈N to a functional f is sufficient to conclude ξ ∈ ∂f(u). In fact, as we
mentioned before, such a convergence is given by the Mosco-convergence.

Lemma 2.4.2 Let f, fn : X → (−∞,+∞] be proper, lower semicontinuous, and
convex functionals for all n ∈ N, and denote with f ∗

n, f
∗ : X∗ → (−∞,+∞] the

4The Γ -convergence has originally been introduced by the Italian mathematician Ennio De
Giorgi [51–53, 55] in a series of articles, a couple of years after the introduction of the Mosco-
convergence, where he studied Green functions.
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associated conjugate functionals. Moreover, let vn ⇀ v in X and ξn ⇀ ξ in X∗ as
n → ∞ with ξn ∈ ∂fn(un), n ∈ N such that

lim sup
n→∞

⟨ξn − ξ, un − u⟩ ≤ 0.

If

fn
M−→ f or f(u) + f ∗(ξ) ≤ lim inf

n→∞
(fn(un) + f ∗

n(ξn)) ,

then u ∈ ∂f(u) and

lim
n→∞

fn(un) = f(u), lim
n→∞

f ∗
n(ξn) = f ∗(ξ) or f(u) + f ∗(ξ) = lim

n→∞
(f(un) + f ∗(ξn)) ,

respectively.

Proof. We assume first that fn M−→ f . Let v ∈ X, then by the Mosco-convergence of
(fn)n∈N there exists a strongly convergent sequence v̂n → v in X as n → ∞ such that
f(v) ≥ lim supn→∞ fn(v̂n). With the liminf estimate a) for the Mosco-convergence,
we obtain

f(u) − f(v) ≤ lim inf
n→∞

fn(un) − lim sup
n→∞

fn(v̂n)

≤ lim inf
n→∞

(fn(un) − fn(v̂n))

= lim inf
n→∞

⟨ξn, un − v̂n⟩

≤ lim sup
n→∞

⟨ξn, un − v̂n⟩

= ⟨ξ, u− v⟩ for all v ∈ X,

whence ξ ∈ f(u). Now, let ûn → u inX as n → ∞ such that f(u) ≥ lim supn→∞ fn(ûn).
Then, we obtain

f(u) ≤ lim inf
n→∞

fn(un)

≤ lim sup
n→∞

fn(un)

≤ lim sup
n→∞

(⟨ξn, un − ûn⟩ + fn(ûn))

≤ lim sup
n→∞

(⟨ξn − ξ, un − ûn⟩ + ⟨ξ, un − ûn⟩ + fn(ûn))

≤ lim sup
n→∞

⟨ξn − ξ, un − ûn⟩ + lim sup
n→∞

⟨ξ, un − ûn⟩ + lim sup
n→∞

fn(ûn)

≤ f(u),
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and hence limn→∞ fn(un) = f(u). Exploiting Lemma 2.3.1, we also obtain

f ∗(ξ) = ⟨ξ, u⟩ − f(u)
= lim

n→∞
(⟨ξn, ûn⟩ − fn(ûn))

≤ lim inf
n→∞

sup
v∈X

(⟨ξn, v⟩ − fn(v))

= lim inf
n→∞

(⟨ξn, un⟩ − fn(un))

= lim inf
n→∞

f ∗
n(ξn)

≤ lim sup
n→∞

f ∗
n(ξn)

= lim sup
n→∞

(⟨ξn, un⟩ − fn(un))

= lim sup
n→∞

(⟨ξn − ξ, un − u⟩ + ⟨ξ, u⟩ − fn(un))

≤ lim sup
n→∞

⟨ξn − ξ, un − u⟩ + ⟨ξ, u⟩ − lim
n→∞

fn(un)

≤ ⟨ξ, u⟩ − f(u)
= f ∗(ξ)

from which limn→∞ f ∗
n(ξn) = f ∗(ξ) follows. Now, we assume that f(u) + f ∗(ξ) ≤

lim infn→∞ (fn(un) + f ∗
n(ξn)). Then, with Lemma 2.3.1 and the Fenchel–Young

inequality, we find

⟨ξ, u⟩ ≤ f(u) + f ∗(ξ)
≤ lim inf

n→∞
(fn(un) + f ∗

n(ξn))

≤ lim sup
n→∞

(fn(un) + f ∗
n(ξn))

≤ lim sup
n→∞

⟨ξn, un⟩

≤ ⟨ξ, u⟩

whence ξ ∈ ∂f(u) and f(u) + f ∗(ξ) = limn→∞ (fn(un) + f ∗
n(ξn)).

In view of Lemma 2.3.1, we obtain the same implication in the previous result
by replacing fn M−→ f with f ∗

n
M−→ f ∗. So it seems natural to assume that there is

a relation between these two convergences. In fact, Attouch [17, Theorem 3.18,
p. 295] has shown that they are equivalent if the underlying Banach space X is
reflexive. Based on that, Stefanelli showed the following equivalence.
Lemma 2.4.3 Let X be a reflexive Banach space and let f, fn : X → (−∞,+∞]
be proper, lower semicontinuous, and convex functionals for all n ∈ N, and denote
with f ∗, f ∗

n : X → (−∞,+∞] the associated conjugate functionals. Then, fn M−→ f if
and only if 

a) f(u) ≤ inf{lim infn→∞ fn(un) : un ⇀ u in X},
b) f ∗(ξ) ≤ inf{lim infn→∞, f

∗
n(ξn) : ξn ⇀ ξ in X∗},

c) (f ∗
n)n∈N is uniformly proper,

where point iii) means that there exists a bounded sequence (ξn)n∈N ⊂ X∗ such that
ξn ∈ dom(f ∗

n) for all n ∈ N.
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Proof. This has been proven in Stefanelli [155, Lemma 4.1].

Lemma 2.4.3 gives a characterization of the Mosco-convergence in terms of a
functional and its conjugate without assuming the existence of a recovery sequence,
which makes it easier to verify in practice. The lemma also shows that the Mosco-
convergence fn M−→ f actually implies the liminf estimate for the sum fn + f ∗

n in
Lemma 2.4.2.

We want to employ the previous results in Chapter 3 where we study perturbed
gradient systems and in Chapter 6 where we study nonlinearly damped inertial
systems by choosing fn = Ψun . More precisely, we will choose fn = ΨUτn

(t) where
U τn

are the piecewise constant interpolations, see Section 3.4. In Chapter 3, we
will obtain a strong convergence of the sequence (U τn

)n∈N uniformly on [0, T ], which
makes it reasonable to assume the Mosco-convergence of the sequence (Ψun)n∈N for
strongly convergent sequences un → u. However, for nonlinearly damped inertial
systems, we only obtain a pointwise weak convergence of (U τn

)n∈N so that assuming
the Mosco-convergence of the sequence (Ψun)n∈N is too restrictive and not necessary
as we will see. Therefore, we will assume in Chapter 6 a liminf estimate for the sum
ΨUτn

(t) + Ψ ∗
Uτn

(t) on suitable Bochner–Lebesgue spaces, which is already implied
by the Mosco-convergence. The following lemma shows that this will be sufficient
in order to obtain the weak-weak closedness of the graph of the subdifferential.

Lemma 2.4.4 Let the functionals f, fn : [0, T ] × X → (−∞,+∞] be given and
fulfill the assumptions of Theorem 2.3.7, and let p ∈ (1,+∞). Furthermore, let
(vn)n∈N ⊂ Lp(0, T ;X) and (ξn)n∈N ⊂ Lp∗(0, T ;X∗) with ξn ∈ ∂Fn(vn) such that
vn ⇀ v in Lp(0, T ;X) and ξn ⇀ ξ in Lp∗(0, T ;X∗) as n → ∞ where Fn is the
integral functional associated to fn. If∫ T

0
(f(t, v(t)) + f ∗(t, ξ(t))) dt ≤ lim inf

n→∞

∫ T

0
(fn(t, vn(t)) + f ∗

n(t, ξn(t))) dt (2.4.1)

and there holds

lim sup
n→∞

∫ T

0
⟨ξn(t) − ξ(t), vn(t) − v(t)⟩dt ≤ 0,

then ξ(t) ∈ ∂f(t, v(t)) a.e. in (0, T ) and∫ T

0
(f(t, v(t)) + f ∗(t, ξ(t))) dt = lim

n→∞

∫ T

0
(fn(t, vn(t)) + f ∗

n(t, ξn(t))) dt

Proof. This immediately follows from Lemma 2.4.2 and Theorem 2.3.7.

Remark 2.4.5 It has been shown in Stefanelli [155, Lemma 4.1] that under the
assumptions of Lemma 2.4.4, the convergence fn M−→ f implies Fn M−→ F , which in
turn implies the liminf estimate (2.4.1).

2.5 The Moreau–Yosida regularization
In this section, we study for a general proper, lower semicontinuous, and convex
functional f : X → (−∞,+∞] on a normed space (X, ∥ · ∥) the properties of the
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so-called Moreau–Yosida regularization

fε(u) = inf
v∈X

{ 1
2ε∥u− v∥2 + f(v)

}
, u ∈ X,

of f , where ε > 0 is called the regularization parameter. In this section, we are
primarily guided by Barbu [26] and Barbu & Precupanu [27]. We show in this
section to what extent the geometrical properties of the dual space X∗ are translated
to the regularity properties of the regularization fε. Roughly speaking, the better
the geometrical properties of the dual space X∗ are, the better the regularization
becomes.

We recall the definition of the duality map FX : X ⇒ X∗, which is given by
FX(v) := {ξ ∈ X∗ : ⟨ξ, v⟩ = ∥v∥2 = ∥ξ∥2

∗}. As we have shown in Example 2.3.4, the
duality map is given by the subdifferential of 1

2∥ · ∥2, i.e., FX(u) = ∂(1
2∥u∥2) for all

u ∈ X. Furthermore, it is well-known that the set FX(u) is in every point u ∈ X
non-empty, convex, bounded, and weak∗-closed 5, see, e.g., Barbu & Precupanu
[27, Section 1.2.4]. The duality map has also a geometrical interpretation: by the
Hahn–Banach theorem6, there holds

∥u∥ = max
ζ∈X∗

∥ζ∥∗=1

⟨ζ, u⟩ = max
ζ∈X∗

∥ζ∥∗=∥u∥

⟨ζ, u⟩
∥u∥

≥ ⟨ξ, u⟩
∥u∥

for all ξ ∈ X with ∥ξ∥∗ = ∥u∥.

Thus, an element of the dual space belongs to the duality map ξ∗ ∈ FX(u) if and
only if it solves the maximization problem

max
ζ∈X∗

∥ζ∥∗=∥u∥

⟨ζ, u⟩
∥u∥

, (2.5.1)

for which the set of maximizers is non-empty. In other words, ξ∗ generates a closed
supporting hyperplane to the closed ball B(0, ∥u∥). We call a norm smooth if and
only if the duality map is single-valued, or geometrically speaking, each supporting
hyperplane which passes through a boundary point of the sphere S(0, ∥u∥) with
radius ∥u∥ is also a tangential hyperplane. We call a normed space smooth if there
is an equivalent smooth norm. From (2.5.1), it is readily seen that if the dual space
X∗ is strictly convex, i.e., the dual norm ∥ · ∥∗ is strictly convex, the element which
generates the supporting hyperplane is unique, meaning that the duality map FV (u)
is single-valued. In this case, the duality map is also demicontinuous 7, which implies
that the norm on X is Gâteaux differentiable. If the dual space X∗ is uniformly
convex8, then the duality map is uniformly continuous on every bounded subset of X
and the norm on X is uniformly Fréchet differentiable in the sense that the limit

lim
λ→0

∥u+ λv∥ − 1
λ

5Therefore, FX(u) is weak∗-compact.
6See, e.g., Brézis [35, Theorem 1.1, p. 1].
7A map f : X → Y between two normed spaces X and Y is called demicontinuous if it is

strong-to-weak* continuous.
8The normed space X is called uniformly convex if for every 0 < ε ≤ 2 there exists δ > 0 such

that for any two vectors x, y ∈ X with ∥x∥X = ∥y∥X = 1 the condition ∥x − y∥X ≥ ε implies that∥∥x+y
2
∥∥

X
≤ 1 − δ. An uniformly convex space is in particular strict convex.
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exists uniformly in x, y ∈ S(0, 1), see [26, 102]. Obviously, the regularity of the
norm of a Banach space is deeply related to the geometrical properties of its dual
space. If X is a reflexive Banach space, then by the renorming theorem due to
Asplund [16], there exist always equivalent norms ∥ · ∥ of X and ∥ · ∥∗ of the dual
space X∗ such that both X and X∗ equipped with these norms are strictly convex
and smooth, see Barbu & Precupanu [27, Theorem 1.105, p. 36]. Consequently, a
reflexive Banach space can be equipped with an equivalent Gâteaux differentiable
norm such that the duality map is demicontinuous. It is well-known that a Hilbert
space, in particular, is reflexive and that the duality map is identical with the Riesz
isomorphism between the Hilbert space and its dual. For a more detailed discussion
of the geometry of Banach spaces, and in particular, concerning the duality maps,
we refer the interested reader to [24, 26, 27, 39, 40, 57, 102, 165].

The question arises, if and to what extent the properties of the duality map are
related to the regularization properties of the Moreau-Yosida regularization. We
will see that the properties of the duality map are inherited by the subdifferential of
the Moreau-Yosida regularization. In fact, we will answer the question for the
more general so-called p-Moreau–Yosida regularization, which is for p > 1 given
by

fε(u) = inf
v∈X

{
ε

p

∥∥∥∥u− v

ε

∥∥∥∥p + f(v)
}

, u ∈ X. (2.5.2)

The reason why we want to study p-Moreau–Yosida regularization is simply
because it maintains the growth of the functional f if it has p-growth, see Section
3.2.

The following lemma shows some basic properties of the p-Moreau–Yosida
regularization on general normed spaces.

Lemma 2.5.1 Let f : X → (−∞,+∞] be a proper and convex functional, and,
for ε > 0 and p > 1, let fε be the p-Moreau–Yosida regularization defined by
(2.5.2). Then, fε is finite, convex, and locally Lipschitz continuous on X. If f
is in addition lower semicontinuous, and X is a reflexive Banach space, then the
infimum in fε(u) = infv∈X

{
ε
p

∥∥∥u−v
ε

∥∥∥p + f(v)
}

is attained at every point u ∈ X.

Proof. Let ũ ∈ dom(f) ̸= ∅. Then, on the one hand, there holds

fε(u) ≤ 1
pεp−1 ∥u− ũ∥p + f(ũ) < ∞ for every u ∈ X. (2.5.3)

On the other hand, by Ekeland & Temam [69, Proposition 3.1, p. 14], there exists
an affine linear minorant to f , i.e., there exist ξ ∈ X∗ and α ∈ R such that

f(v) ≥ α + ⟨ξ, v⟩ for all v ∈ X,

so that fε(u) > −∞ for every u ∈ X, whence dom(fε) = X. Now, let for λ ∈ (0, 1)
and u1, u2 ∈ V , (vin)n∈N ⊂ X be a minimizing sequence for fε(ui) for i = 1, 2. We
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set wn := λv1
n + (1 − λ)v2

n, n ∈ N. Then, by the convexity of f , there holds

fε(λu1 + (1 − λ)u2) = inf
v∈V

{
1

pεp−1 ∥λu1 + (1 − λ)u2 − v∥p + f(v)
}

≤ 1
pεp−1 ∥λu1 + (1 − λ)u2 − wn∥p + f(wn)

≤ λ

(
1

pεp−1 ∥u1 − v1
n∥p + f(v1

n)
)

+ (1 − λ)
(

1
pεp−1 ∥u2 − v2

n∥p + f(v2
n)
)

→ λfε(u1) + (1 − λ)fε(u2) as n → ∞,

which means that fε is convex. We note that by (2.5.3), fε is bounded on every open
bounded set of X. Hence, Ekeland & Temam [69, by Corollary 2.4, p. 12], fε is
locally Lipschitz continuous on X. Finally, if X is a reflexive Banach space, then
the infimum in fε(u) = infv∈X

{
ε
p

∥∥∥u−v
ε

∥∥∥p + f(v)
}

is attained at every point u ∈ X
by the direct method of calculus of variations.

In the next theorem, we will show properties of the p-Moreau–Yosida regulari-
zation under the assumption that X is reflexive such that, by the renorming theorem,
X and X∗ are simultaneously strictly convex and smooth. Before we progress to
the next theorem, we recall that the p-duality map F p

X is given by F p
X := ∂ 1

p
∥ · ∥p

for p > 1. Then, since the mapping v 7→ 1
p
∥v∥p is continuous and convex on X,

Ekeland & Temam [69, Proposition 5.1 & 5.2, Corollary 5.1, pp. 21] ensure that
F p
X is a bounded and set-valued map such that F p

X(u) is non-empty, convex, and
weak*-closed for all u ∈ X, and by Example 2.3.4, characterized by

F p
X(u) = {ξ ∈ X∗ : ⟨ξ, u⟩ = ∥u∥p = ∥ξ∥p∗

∗ }. (2.5.4)

As for p = 2, if the dual space is strictly convex, then by Kien [102, Proposition 2.3]
and Akagi & Melchionna [5, Lemma 19], the p-duality map is demicontinuous,
single-valued, and monotone in the sense that

⟨F p
X(u) − F p

X(v), u− v⟩ ≥
(
∥u∥p−1 − ∥v∥p−1

)
(∥u∥ − ∥v∥) for all u, v ∈ X.

With the above-mentioned properties of the p-duality map, we are able to proof in
the following theorem that the p-Moreau–Yosida regularization is under suitable
conditions Gâteaux differentiable with a demicontinuous Gâteaux derivative. This
result generalizes and follows the proof of Theorem 2.58, p. 98, in Barbu [26] where
the case p = 2 has been studied.

Theorem 2.5.2 Let X be reflexive such that X and its dual X∗ are strictly convex
and smooth, and let p > 1 and ε > 0. Furthermore, let f : X → (−∞,+∞] be proper,
lower semicontinuous, and convex. Then, the p-Moreau–Yosida regularization
is convex and locally Lipschitz continuous and if f is strictly convex, so is fε.
Moreover, fε(u) = infv∈X

{
1

pεp−1 ∥u− v∥p + f(v)
}

attains at every point u ∈ X
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its unique minimizer denoted by uε := argmin v∈X

{
1

pεp−1 ∥u− v∥p + f(v)
}
, and uε

satisfies the Euler-Lagrange equation

0 ∈ F p
X

(
uε − u

ε

)
+ ∂f(uε). (2.5.5)

Furthermore, fε is Gâteaux-differentiable at every point u ∈ X with the Gâteaux-
derivative Aε : X → X∗ being demicontinuous on X and satisfying Aε(u) =
−F p

X

(
uε−u
ε

)
. Moreover, the following assertions hold

i) fε(u) = ε
p
∥Aε(u)∥p∗

∗ + f(uε) for every u ∈ X,

ii) f(uε1) ≤ fε1(u) ≤ fε2(u) ≤ f(u) for all u ∈ X and all ε1 ≥ ε2 > 0,

iii) limε→0 ∥uε − u∥ = 0 for all u ∈ dom(f),

iv) limε→0 fε(u) = f(u) for every u ∈ X.

Finally, the mapping ε 7→ fε(u) is differentiable on (0,+∞) with

d
dεfε(u) = − 1

p∗εp
∥uε − u∥p for all ε > 0. (2.5.6)

Proof. By Lemma 2.5.1, the p-Moreau–Yosida regularization is convex and locally
Lipschitz continuous on X. Now, let f be strictly convex and let u0, u1 ∈ X and
t ∈ (0, 1). Then, we define ut = tu0 + (1 − t)u1 and assume

fε(ut) = tfε(u0) + (1 − t)fε(u1).

Then, using the convexity of ∥ · ∥p and f , we obtain

tfε(u0) + (1 − t)fε(u1) = fε(ut)

= inf
v∈X

{
1

pεp−1 ∥ut − v∥p + f(v)
}

≤ 1
pεp−1 ∥ut − (tu0

ε + (1 − t)u1
ε)∥p + f(tu0

ε + (1 − t)u1
ε)

≤ t

pεp−1 ∥u0 − u0
ε∥p + (1 − t)

pεp−1 ∥u1 − u1
ε∥p (2.5.7)

+ tf(u0
ε) + (1 − t)f(u1

ε)
= tfε(u0) + (1 − t)fε(u1),

where uiε := argmin v∈X

{
1

pεp−1 ∥ui − v∥p + f(v)
}
, i = 0, 1. Therefore, the inequality

(2.5.7) becomes an equality that implies the two equalities

1
pεp−1 ∥t(u0 − u0

ε) + (1 − t)(u1 − u1
ε)∥p = 1

pεp−1 ∥ut − (tu0
ε + (1 − t)u1

ε)∥p

= t

pεp−1 ∥u0 − u0
ε∥p + (1 − t)

pεp−1 ∥u1 − u1
ε∥p
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and

f(tu0
ε + (1 − t)u1

ε) = tf(u0
ε) + (1 − t)f(u1

ε).

Then the strict convexity of the norm ∥ · ∥ implies u0 − u0
ε = u1 − u1

ε and the strict
convexity of f implies u0

ε = u1
ε whence u0 = u1 and the strict convexity of fε.

The strict convexity of the norm also implies that the resolvent operator Jε(u) :=
argmin v∈X

{
1

pεp−1 ∥u− v∥p + f(v)
}

is single-valued for every u ∈ X and satisfies by
Lemma 2.2.7 the inclusion (2.5.5). We define Aε(u) := −F p

X

(
uε−u
ε

)
, and note that

from the characterization (2.5.4) of the p-duality map, there holds

fε(u) = ε

p

∥∥∥∥uε − u

ε

∥∥∥∥p + f(uε)

= ε

p

∥∥∥∥F p
X

(
uε − u

ε

)∥∥∥∥p∗

∗
+ f(uε)

= ε

p
∥Aε(u)∥p

∗

∗ + f(uε).

If we show that the operator Aε is the Gâteaux derivative of fε, i) follows. First,
Akagi & Melchionna [5, Lemma 19] have shown that the operator Aε : X → X∗

is demicontinuous, i.e., for all sequences un → u in X as n → ∞, there holds
Aε(un) ⇀ Aε(u) in X∗ as n → ∞. Second, we show that Aε(u) belongs to the
subdifferential ∂fε(u) for every u ∈ V . Let u, v ∈ X and uε = Jε(u), vε = Jε(v).
Then, in view of (2.5.4) and the fact that Aε(u) = −F p

X

(
uε−u
ε

)
∈ ∂f(u), we find

fε(u) − fε(v) = ε

p

∥∥∥∥uε − u

ε

∥∥∥∥p + f(uε) − ε

p

∥∥∥∥vε − v

ε

∥∥∥∥p − f(vε)

≤ ε

p

∥∥∥∥uε − u

ε

∥∥∥∥p − ε

p

∥∥∥∥vε − v

ε

∥∥∥∥p −
〈
F p
X

(
uε − u

ε

)
, uε − vε

〉
= ε

p

∥∥∥∥uε − u

ε

∥∥∥∥p − ε

p

∥∥∥∥vε − v

ε

∥∥∥∥p −
〈
F p
X

(
uε − u

ε

)
, uε − u

〉
−
〈
F p
X

(
uε − u

ε

)
, u− v

〉
−
〈
F p
X

(
uε − u

ε

)
, v − vε

〉
≤ ε

p

∥∥∥∥uε − u

ε

∥∥∥∥p − ε

p

∥∥∥∥vε − v

ε

∥∥∥∥p − ε
∥∥∥∥uε − u

ε

∥∥∥∥p
−
〈
F p
X

(
uε − u

ε

)
, u− v

〉
+ ε

p∗

∥∥∥∥F p
X

(
uε − u

ε

)∥∥∥∥p∗

∗
+ ε

p

∥∥∥∥v − vε
ε

∥∥∥∥p
= −

〈
F p
X

(
uε − u

ε

)
, u− v

〉
= ⟨Aε(u), u− v⟩ for all v ∈ X, (2.5.8)

whence Aε(u) ∈ ∂fε(u). Subtracting each side of (2.5.8) by ⟨Aε(v), u− v⟩, we obtain

0 ≤ fε(u) − fε(v) − ⟨Aε(v), u− v⟩ ≤ ⟨Aε(u) − Aε(v), u− v⟩ (2.5.9)

for all ε and u, v ∈ X. Choosing u = v + tw, where t > 0 and w ∈ X, and dividing
(2.5.9) by t, we obtain

lim
t↘0

fε(v + tw) − fε(v)
t

= ⟨Aε(v), w⟩ for all w ∈ V,
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where we used the demicontinuity of Aε. Hence, the functional fε is Gâteaux
differentiable with derivative Aε. We prove now the assertion ii). The chain of
inequalities f(uε) ≤ fε(u) ≤ f(u) follows immediately from the definition of the
p-Moreau–Yosida regularization. To conclude ii), it remains to show that the
mapping ε 7→ fε(u) is monotonically decreasing on (0,∞) for every fixed u ∈ X. Let
u ∈ X and 0 < ε2 < ε1. Then, by the definition of a minimizer

fε2(u) = ε2

p

∥∥∥∥uε2 − u

ε2

∥∥∥∥p + f(uε2)

≤ ε2

p

∥∥∥∥uε1 − u

ε2

∥∥∥∥p + f(uε1)

=
(

1
pεp−1

2
− 1
pεp−1

1

)
∥uε1 − u∥p + ε1

p

∥∥∥∥uε1 − u

ε1

∥∥∥∥p + f(uε1)

=
(

1
pεp−1

2
− 1
pεp−1

1

)
∥uε1 − u∥p + fε1(u) (2.5.10)

≤ fε1(u),

where we used 0 < ε2 < ε1 in the last inequality. Now, we aim to show (2.5.6). First,
switching the roles of ε1 and ε2 in the inequality (2.5.10), and dividing both sides by
ε1 − ε2 > 0, we obtain the chain of inequalities

1
p(ε2ε1)p−1

(
εp−1

1 − εp−1
2

ε1 − ε2

)
∥uε2 − u∥p

≤ −fε1(u) − fε2(u)
ε1 − ε2

(2.5.11)

≤ 1
p(ε2ε1)p−1

(
εp−1

1 − εp−1
2

ε1 − ε2

)
∥uε1 − u∥p

for all 0 < ε2 < ε1, which also implies

∥uε2 − u∥ ≤ ∥uε1 − u∥ for all 0 < ε2 < ε1. (2.5.12)

Second, since the real-valued mapping ε 7→ fε(u) is, by Lebesgue’s differentiation
theorem for monotone functions9,for every fixed u ∈ X monotone, it is differentiable
almost everywhere and there holds

dfε(u)
dε+ ≤ dfε(u)

dε− for all ε > 0, u ∈ X,

where dfε(u)
dε+ and dfε(u)

dε− denote the right and left derivative of ε̃ 7→ fε̃(u) in ε̃ = ε,
respectively. Let ε > 0 and h > 0 be sufficiently small. Then, choosing ε1 = ε+ h
and ε2 = ε in the first inequality as well as ε1 = ε and ε2 = ε − h in the second
inequality of (2.5.11) yields

1
p((ε+ h)ε)p−1

(
(ε+ h)p−1 − εp−1

h

)
∥uε − u∥p ≤ −fε+h(u) − fε(u)

h
(2.5.13)

9See, e.g., Elstrodt [70, Satz 4.5, p. 299]
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and

−fε(u) − fε−h(u)
h

≤ 1
p((ε− h)ε1)p−1

(
εp−1 − (ε− h)p−1

h

)
∥uε−h − u∥p (2.5.14)

≤ 1
p((ε− h)ε1)p−1

(
εp−1 − (ε− h)p−1

h

)
∥uε − u∥p

respectively, where we employed inequality (2.5.12). Finally, letting h → 0 in (2.5.13)
and (2.5.14) yields

dfε
dε = − 1

p∗εp
∥uε − u∥p for all ε > 0.

We continue with showing assertion iii). Let u ∈ dom(f), then the first inequality of
(2.5.11) implies

∥uε2 − u∥p ≤
(
p(ε2ε1)p−1

εp−1
1 − εp−1

2

)
(fε2(u) − fε1(u)) (2.5.15)

≤
(
p(ε2ε1)p−1

εp−1
1 − εp−1

2

)
(f(u) − fε1(u))

for all 0 < ε2 < ε1. Thus, we obtain limε2→0 ∥uε2 − u∥ = 0. Taking into account the
latter convergence and the lower semicontinuity of f , assertion ii) yields

f(u) ≤ lim inf
ε→0

f(uε)

≤ lim inf
ε→0

fε(u)

≤ lim sup
ε→0

fε(u) ≤ f(u) for all u ∈ dom(f).

If u ∈ X\ dom(f), we assume that there exists a sequence (εn)n∈N ⊂ (0,∞) with
εn → 0 as n → ∞ such that fεn(u) ≤ C for all n ∈ N for a constant C > 0.
However, Inequality (2.5.15) yields limn→∞ ∥uεn − u∥ = 0, and we obtain f(u) ≤
lim inf fεn(u) ≤ C, which is a contradiction to u ∈ X\ dom(f).

The theorem showed us that the Moreau–Yosida regularization has indeed a
regularizing effect. In fact, in view of assertion iv) and (2.5.6), one can interpret the
Moreau–Yosida regularization as a regularizing process described by the following
Hamilton–Jacobi equation supplemented with an initial condition

∂
∂t
u(t, x) + 1

p∗ ∥dxu(t, x)∥p = 0, x ∈ X, t > 0
u(0+, x) = f(x), x ∈ X,

(2.5.16)

where a solution u : [0,∞) ×X → R is given by the so-called Lax–Oleinik formula

u(t, x) = ft(x) = inf
y∈X

{
t

p

∥∥∥∥x− y

t

∥∥∥∥p + f(y)
}
,

see, e.g., Lions [109].
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Moreover, we have seen to what extent these regularizing and approximating
properties depend on the properties of X∗ . This, as previously mentioned, becomes
more clear when X = H is a Hilbert space. In this case, the Moreau–Yosida
regularization is even Fréchet-differentiable and has a Lipschitz continuous
derivative with Lipschitz constant equal to the reciprocal of the regularization
parameter ε, see, e.g., Barbu & Precupanu [27, Corollary 2.59, p. 99]. Thanks
to these nice properties of the regularization and its derivative only available on
a Hilbert space, the Moreau–Yosida regularization is more often applied on
Hilbert spaces, see, e.g., Bauschke & Combettes [28] for a detailed treatise on
Hilbert spaces. The Moreau–Yosida regularization is related to the so-called
Yosida approximation, which for a given operator A and ε > 0, refers to the
operator Aε = ε−1(I − Sε), which is approximative to A, where Sε = (I + εA)−1.
The Yosida approximation is successfully employed in the theory of semigroups in
order to generate strongly continuous semigroups as in the eminent Hille–Yosida
theorem [92, 162] or the nonlinear counterpart [49, 63] as well as in the theory of
maximal monotone operators in Brézis [32].

2.6 Parameterized Young measures
In this section, we introduce parameterized Young measures on infinite-dimensional
spaces. The notion of a Young measure was invented by the British mathematician
Laurence C. Young [163] in 1937 where he introduced them as generalized
curves. He introduced generalized curves in order to overcome, for a special class
of functionals, the general problem in the theory of calculus of variations that the
minimum in the minimization problem (2.1.1) may not be achieved on the space
X, but on a larger space X̃, even though, by Ekeland’s variational principle [68],
one might find a sequence of elements in X that can get f arbitrarily close to the
optimal value in (2.1.1). As we mentioned before, solutions to variational problems
correlate with weak solutions of differential equations. Therefore, by extending the
solution space to generalized curves (Young measures), he generalized the notion of
a solution. However, our purpose of introducing parameterized Young measures is
not to show existence of measure-valued solutions, but to use it as a tool in order to
characterize the weak limits of sequences in terms of Young measures. This section
is mainly guided by Stefanelli [155]. For a comprehensive treatise of Young
measures, we refer the reader to Castaing, Raynaud de Fitte, & Valadier
[42] for Young measures on separable Banach spaces, and to Málek, Nečas,
Rokyta, & Růžička [112] and Evans [81] for the classical Young measures on
finite-dimensional spaces.

First, we introduce some notions and functional spaces. Here, X is a reflexive and
separable Banach space. A L(0,T ) ⊗ B(X)-measurable functional f : [0, T ] ×X →
(−∞,+∞] is called weakly-normal integrand if for a.e. t ∈ (0, T ) the mapping
w 7→ f(t, w) is sequentially lower semicontinuous with respect to the weak topology
of X. Furthermore, a family µ = (µt)t∈(0,T ) of Borel probability measures on X is
called Young measure if the mapping (0, T ) ∋ t 7→ µt(B) is L(0,T )-measurable for
all B ∈ B(X). We denote with Y (0, T ;X) the set of all Young measures in X.
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The following theorem, the so-called fundamental theorem for weak topologies,
provides an infinite-dimensional and lower semicontinuous version of the classical
fundamental theorem for Young measures, see, e.g., Ball [22].

Theorem 2.6.1 (Fundamental theorem for weak topologies) Let fn, f : (0, T )×X →
(−∞,+∞] be for all n ∈ N a weakly normal integrand such that for all w ∈ X and
for almost every t ∈ (0, T ), there holds

f(t, w) ≤ inf{lim inf
n→∞

fn(t, wn) : wn ⇀ w in X}. (2.6.1)

For p ∈ [1,+∞], let (wn)n∈N ⊂ Lp(0, T ;X) be a bounded sequence. If p = 1, we
suppose further that (wn)n∈N is equi-integrable in L1(0, T ;X). Then, there exists a
subsequence (wnk

)k∈N and a Young measure µ = (µt)t∈(0,T ) such that for almost
every t ∈ (0, T ), there holds

sppt(µt) ⊂ Li(t) :=
∞⋂
p=1

closweak
(
{wnk

(t) : k ≥ p}
)
,

i.e., µt is concentrated on the set of all weak limit points of (wnk
)k∈N, and, if the

sequence (f−(·, wnk
(·))k∈N, with f−

n (t, wnk
(t)) := max{−fn(t, wnk

(t)), 0}, is equi-
integrable, there holds∫ T

0

∫
X
f(t, w)dµt(w)dt ≤ lim inf

k→

∫ T

0
fnk

(t, wnk
(t))dt.

Setting

w(t) :=
∫
X
w dµt(w) a.e. t ∈ (0, T ),

there holds

wnk
⇀ w in Lp(0, T ;X) as k → ∞,

with ⇀ replaced by ∗
⇀ if p = ∞.

Proof. This has been shown in Theorem 4.3 and a subsequent discussion of the same
theorem in Stefanelli [155].

For the sake of completeness, we want to introduce the Bochner spaces we
deal with throughout the thesis: for k ∈ N and p ∈ [1,+∞], we denote with
Wk,p(0, T ;X) the space of abstract functions v : [0, T ] → X which are weakly
differentiable up to the order k and whose k-th derivative is in the Bochner–
Lebesgue space Lp(0, T ;X). If p = 2, we write Hm(0, T ;X) = Wp,2(0, T ;X).
Furthermore, with AC([0, T ];X), C([0, T ];X) and Cw([0, T ];X) we denote the space
of abstract functions which are absolutely continuous, continuous, and continuous
with respect to the weak topology of X, respectively. All spaces are equipped with
the standard norm.
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Chapter 3

Perturbed Gradient System

In this chapter, we investigate the abstract Cauchy problem∂Ψu(t)(u′(t)) + ∂Et(u(t)) ∋ B(t, u(t)) in V ∗ for a.e. t ∈ (0, T ),
u(0) = u0 ∈ dom(E0)

(3.0.1)

on a separable and reflexive Banach space (V, ∥ · ∥), where Ψ : V ×V → R, (u, v) 7→
Ψu(v) is the dissipation potential or dissipation mechanism, E : [0, T ] × V →
(−∞,+∞], (t, u) 7→ Et(u) is the energy or driving functional, and B : [0, T ]×V → V ∗

is the perturbation. As the name suggests, the dissipation potential describes
dissipative or irreversible processes1 of a physical system modeled by (3.0.1). The
free energy or the entropy itself is described by the energy functional that drives the
evolution of the system. In a pure gradient system, i.e., if B = 0, the dissipation
potential and the energy functional completely determine the evolution of the system.
The equation, on the other hand, does not uniquely determine the dissipation
mechanism and the energy functional of the system, since there might be various
choices for them as we will see in some examples below. The perturbation in turn,
perturbs the subdifferential of the energy functional and is non-variational, i.e., does
not have a potential. The perturbed gradient system does, in general, not possess
a gradient flow structure, which means that the equations can not be formulated
as a generalized gradient system. However, to conclude that a concrete example
does not have gradient flow structure can be fairly non-trivial, since it depends
on the underlying space V , the choice of the dissipation potential as well as the
energy functional. If it can be shown that concrete equations are a perturbed
gradient system, this special structure of the equation can be used to characterize
and equivalently describe solutions. In order to demonstrate this heuristically, we
consider the classical gradient flow equation

u′(t) = −∇E(u(t)) in H for a.e. t ∈ (0, T ), (3.0.2)

with a Fréchet differentiable energy functional E : H → R defined on a Hilbert
space H with norm | · | and inner product (·, ·). The gradient of E is related with
its Fréchet differential DE via the Riesz isomorphism by ⟨DE(u), v⟩H∗×H =

1Dissipative or irreversible processes are those processes which lead to an irreversible
transformation of the free energy or the entropy to thermal energy, e.g., through friction.
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(∇E(u), v), v ∈ H. Then, by Lemma 2.3.1, an absolutely continuous curve u :
[0, T ] → H satisfies (3.0.2) if and only if

d
dtE(u(t)) = (∇E(u(t)), u′(t)) = −|∇E(u(t)|2 = −|u′(t)|2

= −1
2 |∇E(u(t)|2 − 1

2 |u′(t)|2 for a.e. t ∈ (0, T ).

The latter equality can be replaced by the inequality

d
dtE(u(t)) ≤ −1

2 |∇E(u(t)|2 − 1
2 |u′(t)|2, (3.0.3)

since the reversed inequality holds true by Young’s inequality. Integrating the latter
inequality over [0, T ] yields the so-called energy-dissipation balance

E(u(T )) +
∫ T

0

(1
2 |∇E(u(r))|2 + 1

2 |u′(r)|2
)

dr ≤ E(u(0)). (3.0.4)

Conversely, if an absolutely continuous curve u : [0, T ] → H fulfills (3.0.4), then
there holds ∫ T

0

(1
2 |∇E(u(r))|2 + 1

2 |u′(r)|2 + (∇E(u(r)), u′(r))
)

dr ≤ 0

and by the non-negativity of the integrand,

1
2 |∇E(u(t))|2 + 1

2 |u′(t)|2 = (−∇E(u(t)), u′(t)) for a.e. t ∈ (0, T ).

Again, by Lemma 2.3.1, u satisfies (3.0.2). We conclude that u is a classical solution
to (3.0.2), thus is in a smooth setting entirely characterized by the energy-dissipation
balance (3.0.4). Generalizing the solution concept, one can define a solution to
(3.0.2) as any absolutely continuous curve fulfilling the energy-dissipation balance
(3.0.4). This allows us to generalize the solution concept even further for complete
metric spaces (S , d) based on metric formulation of gradient flows introduced by
De Giorgi et al. [54]. The idea is to replace the norm of the time derivative |u′(t)|
by the so-called metric derivative

|u|′(t) := lim
s→t

d(u(t), u(s))
|t− s|

and the norm of the gradient of the energy functional |∇E(u(t)| by the so-called
upper gradient

|∂E|(u(t)) := lim sup
v→u(t)

(E(u(t) − E(v))+

d(v, u(t)) .

where (E(u(t) −E(v))+ = max{(E(u(t) −E(v)), 0}. In a Banach space setting, we
have

|u′|(t) = ∥u(t)∥ and |∂E|(u(t)) = ∥∂◦E(u(t))∥,
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where ∂◦E(u(t)) denotes the subdifferential of E in u(t) with the smallest norm. A
solution to a gradient flow on a metric space can then be defined as any absolutely
continuous curve u ∈ AC([0, T ]; S ) (for which the metric derivative always exists
a.e.) satisfying the energy-dissipation balance (3.0.4). Hence, in the case S is not a
linear space, solutions to (3.0.4) do not need to satisfy any vector differentiability
property. Therefore, the metric formulation of gradient flows has many advantages.
An obvious point is that the spaces can have a nonlinear structure. This implies that
nonlinear side conditions can be incorporated into the space or that the initial data
can be quite general. A particular case for the metric space S has revealed to be
very fruitful, not only from a theoretical point of view, but also from a numerical
point of view: when S is the Wasserstein space (Pp(X,Wp), p ≥ 1, the space of
all Borel probability measures µ : X → [0, 1] on a separable Hilbert space (X, d)
with finite p-moments∫

X
dp(x, x0)dµ(x) < ∞ for some x0 ∈ X,

endowed with the pth Wasserstein distance

Wp(µ, ν) :=
(

inf
γ∈Γ (µ,ν)

∫
X×X

d(x, y)dγ(x, y)
) 1

p

, µ, ν ∈ Pp(X),

where Γ (µ, ν) denotes the set of all couplings of µ and ν. It has been shown
that various partial differential equations can be viewed as a gradient flow in a
Wasserstein space, e.g., the Fokker–Planck equation, the porous medium
equation, the Landau equation, the Boltzmann equation, and other equations of
diffusion type, which was first pointed out by Otto in a series of seminal works
[96, 128–130], see also [11, 41, 80]. Besides, it has also been used to prove and
improve functional inequalities as the Sobolev, Gagliardo–Nirenberg, Brunn–
Minkowski, Prékopa–Leindler, isoperimetric inequality and other inequalities,
see, e.g., [1, 46–48, 131] We refer the reader to the monograph Ambrosio et al. [10]
for a comprehensive presentation of the theory of gradient flows in metric spaces and
in the space of probability measures and to Villani [158] for a description of the
interplay with the theory of optimal transportation.

The following simple example illustrates how the dissipation mechanism as well
as the driving functional can be chosen in multiple and non-trivial ways in order
to describe the same equation as a gradient system. We consider the homogeneous
diffusion or heat equation

∂tu(x, t) = a∆u(x, t), (x, t) ∈ Rd × (0, T ),
u(x, 0) = u0(x), x ∈ Rd,

which is a model to describe the heat in a homogeneous and isotropic medium
evolving over time for a given initial heat distribution u0 and possible boundary
conditions, where u(x, t) describes the temperature at point x ∈ Rd, d ∈ N, and time
t > 0, and a > 0 is the thermal conductivity. It is well-known that the heat equation
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is the gradient flow of the Dirichlet energy E : L2(Rd) → [0,+∞] defined by

E(v) :=


∫
Rd |∇v(x)|2 dx if ∇v ∈ L2(Rd),

+∞ otherwise,

with respect to the L2-metric, which is therefore the dissipation mechanism, see, e.g.,
Ambrosio et al. [10, Remark 2.3.9., p. 49]. Another choice for the energy functional
is E : H−1(Rd) → [0,+∞] with

E(v) :=


∫
Rd v2(x)dx if v ∈ L2(Rd),

+∞ otherwise,

on the Hilbert space H−1(Rd) which formally leads to the equation

(−∆)−1∂tu(x, t) = au(x, t), (x, t) ∈ Rd × (0, T ),

see, e.g., Rossi & Savaré [143]. Furthermore, Jordan, Kinderlehrer & Otto
[96] have shown that the more general Fokker–Planck equation2

∂tϱ(x, t) = ∇ · (∇Ψ(x)ϱ(x, t)) + a∆ϱ(x, t), (x, t) ∈ Rd × (0, T ),
ϱ(x, 0) = ϱ0(x), x ∈ Rd,

which describes the time evolution of a probability density functional under drift and
diffusion, is the gradient flow of the free energy functional F : P2(Rd) → (−∞,+∞]
with F (ϱ) = E(ϱ) + aS(ϱ) with respect to the Wasserstein metric, where E and
S are the energy functional and the negative of the Gibbs–Boltzmann entropy
functional, respectively, and are, on their effective domains, given by

E(ϱ) :=
∫
Rd

Ψ(x)ϱ(x)dx,

and

S(ϱ) :=
∫
Rd
ϱ(x) ln(ϱ(x))dx,

and taking the value infinity otherwise. Henceforth, we will simply give the values
of the functionals on the effective domain and implicitly assume they are infinity
otherwise. In the case Ψ = 0, F reduces to S which becomes then the driving
functional for the heat equation. These are only three of many examples on how one
can rewrite the heat equation gradient flow with different dissipation mechanisms
and energy functionals. Each formulation is preferable depending on the system to
be modelled. In each case, however, all choices share a common characteristic; the
energy functional serves as a Lyapunov functional for the gradient flow equation,

2The Fokker–Planck equation is also known as the Kolmogorov forward equation or the
Smoluchowski equation, and is also referred to as convection–diffusion equation when the equation
models the transfer of mass, energy, temperature or other physical quantities through diffusion and
convection.
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i.e., the solution to the pure gradient flow equation minimizes the energy functional
along the time-trajectory. This fact easily follows from the inequality (3.0.3), which
shows that the time derivative of E(u(t)) is non-positive. This is still true for the
the so-called generalized gradient flow equation referred to the equation

DΨu(t)(u′(t)) = −DE(u(t)) in V ∗,

which is also called force balance. In the nonsmooth setting, we will replace the
derivatives DΨu(t) and DE by their subdifferentials ∂E and ∂Ψu(t). For the purpose of
illustration, we assume for a moment that E and Ψ are sufficiently smooth. The crucial
assumptions on the dissipation potential are the convexity and lower semicontinuity.
Then, Lemma 2.3.1 allows us to reformulate this equation equivalently by the rate
equation

u′(t) = DΨ ∗
u(t)(−DE(u(t))) in V,

or the power balance

Ψu(t)(u′(t)) + Ψ ∗
u(t)(−DE(u(t)) = ⟨−DE(u(t), u′(t)⟩V ∗×V in R. (3.0.5)

A very important example is given by the quadratic case Ψu(v) = 1
2⟨G(u)v, v⟩V ∗×V

for which the conjugate functional is given by Ψ ∗
u(ξ) = 1

2⟨ξ,K(u)ξ⟩V ∗×V , where
G(u) : V → V ∗ is a linear, bounded, symmetric and positive definite operator for
each u ∈ V and G(u) = K−1(u), u ∈ V. In this case, the force balance and the rate
equation are given by

G(u(t))u′(t) = −DE(u(t)) and u′(t) = −K(u(t))DE(u(t)),

respectively, which are also known as Biot’s equation and Onsager’s or Ginzburg–
Landau equation, see [89, 119].

Assuming the dissipation potential is non-negative and satisfies Ψu(0) = 0, then
by Lemma 2.3.2, there holds Ψ ∗

u ≥ 0, so that equation (3.0.5) yields

d
dtE(u(t)) = ⟨−DE(u(t)), u′(t)⟩ = −Ψ(u′(t)) − Ψ ∗(−DEt(u(t))) ≤ 0,

i.e., the energy decreases along solutions. Thus, as previously seen, the energy
functional serves again as a Lyapunov functional for the generalized gradient
flow equation. However, this fact does not, in general, hold true in perturbed
gradient systems or in gradient systems where the energy functional is explicitly time-
dependent, which causes additional external forces. Therefore, the time-trajectory
of the energy along the solution of perturbed gradient systems is not minimizing,
which is illustrated in Figure 3.1. Nevertheless, the main idea of reformulating
the gradient system as a scalar-valued equation still applies for perturbed gradient
systems. This can be seen from the following reasoning: let u : [0, T ] → V be an
absolutely continuous curve satisfying the perturbed gradient flow equation

DΨ(u′(t)) = −DE(u(t)) + B(t, u(t)) in V ∗for a.e. t ∈ (0, T ). (3.0.6)
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u

E(
u)

u

u
u

perturbation

E(u0)

Figure 3.1: Evolution of the energy along solutions u and uperturbation to the pure
and the perturbed gradient flow equation, respectively.

Then, from the equivalent relations in Lemma 2.3.1, the equation (3.0.6) is equivalent
to the scalar equation

d
dtE(u(t)) = ⟨−DE(u(t)), u′(t)⟩

= −⟨B(t, u(t)) −DE(u(t)), u′(t)⟩ + ⟨B(t, u(t)), u′(t)⟩
= −Ψ(u′(t)) − Ψ ∗(B(t, u(t)) −DE(u(t)))

+ ⟨B(t, u(t)), u′(t)⟩ a.e. in (0, T ),

and after integration

E(u(t)) +
∫ t

s
(Ψ(u′(r)) + Ψ ∗(B(r, u(r)) −DE(u(r)))) dr

= E(u(s)) +
∫ t

s
⟨B(r, u(r)), u′(r)⟩dr

(3.0.7)

for all s, t ∈ [0, T ]. Hence, again the equation (3.0.6) is in a sufficiently smooth
setting equivalent to the energy-dissipation balance (3.0.7).

The question arises why it is interesting to study perturbed gradient systems.
Even though it has been shown that gradient flows cover a large class of differential
equations, there are still enough important equations that do not possess the gradient
flow structure. The probably most famous equations of this class are the Navier-
Stokes equations in fluid dynamics, which are for incompressible fluids given by∂tu(x, t) + (u(x, t) · ∇)u(x, t) − ν∆u(x, t) + ∇p(x, t) = f(x, t) on Ω × (0, T ),

∇ · u(x, t) = 0 on Ω × (0, T ),
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Choosing V := L2
σ(Ω)d the closure of the test functions C∞

c (Ω)d that are divergence
free with respect to the L2(Ω)d norm, we obtain for the energy functional Eε : V →
[0,+∞] and the dissipation potential Ψ : V → R

Eε(u) := ν

2

∫
Ω

|∇u(x)|2 dx and Ψ(v) :=
∫
Ω

|v(x)|2 dx.

The perturbation is (formally) given by

⟨B(u),w⟩L2 =
∫
Ω

(u(x) · ∇)u(x) · w(x)dx.

We refer the reader to Temam [157] for a detailed discussion of the Navier–Stokes
equations.
Even in finite dimensions, one can easily construct equations which do not possess
the gradient flow structure. Consider, e.g., the coupled system of linear ordinary
differential equations

u′
1(t) = −u1(t) + (η + λ)u2(t)
u′

2(t) = −u2(t) + (η − λ)u1(t)

with η, λ ∈ R and λ ̸= 0. The dissipation potential and energy functional are given
by

Ψ(v1, v2) = v2
1 + v2

2 and E(u1, u2) = 1
2(u2

1 + u2
2) − ηu1u2,

respectively. As a result, the perturbation is then given by the term

B(t, u1, u2) = B(u1, u2) = λ

(
u2

−u1

)
.

Rewriting the coupled system in the form(
u′

1(t)
u′

2(t)

)
=
(

−1 η
η −1

)(
u1(t)
u2(t)

)
+
(

0 λ
−λ 0

)(
u1(t)
u2(t)

)
= D(u1,u2)E(u1(t), u2(t)) + B(u1(t), u2(t)) on (0, T ),

we can see that the system can not be cast into a gradient flow formulation. A
more physical example is the rescaled fourth order parabolic Swift–Hohenberg
equation on the circle S := R/2πZ considered in Mielke [118] and given by

∂tu(x, t) = − 1
ε2

(
1 + ε2∂2

x

)2
u(x, t) + µu(x, t) + βε∂xu(x, t) − u3(x, t) on S × (0, T ),

which is a model to describe pattern formations in a self-organizing nonlinear system
where ε > 0 plays the role of a bifurcation parameter, see, e.g., [104, 117–119, 156]
for more details and different applications of this model. The equation is an exact
gradient flow on the space V := L2(S) if β = 0 and can be treated as a perturbed
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gradient flow otherwise, see Mielke [118]. In the latter case, the energy functional
Eε : V → (−∞,+∞] and the dissipation potential Ψ : V → R are given by

Eε(u) :=
∫
S

1
ε2

((
u(x) + ε2u′′(x)

)2
− µ

2u
2(x) − 1

4u
4(x)

)
dx

and

Ψ(v) :=
∫
S
v2(x)dx,

whereas the perturbation is (formally) given by ⟨Bε(u), w⟩L2 =
∫
S εβ∂xu(x)w(x)dx.

3.1 Variational approximation scheme
Showing the existence of strong solutions, i.e., functions u ∈ AC([0, T ];V ) to the
perturbed gradient system (3.0.1), is based on the idea of discretizing the equation
(3.0.1) in time via a semi-implicit Euler method. More precisely, we discretize the
terms coming from the energy functional and the dissipation potential implicitly
in u and u′, while the perturbation will be discretized explicitly. This approach is
advantageous for our purposes, since this allows us to construct a solution to the
discrete problem by a variational approximation scheme even though the system
(3.0.1) does not possess the gradient flow structure. To elaborate on this, we define
for N ∈ N and the associated step size τ := T

N
the partition of the time interval [0, T ]

Pτ = {0 = t0 < t1 < · · · tN = T},
τ = tn − tn−1,

where we have suppressed the dependence of tn on the step size τ for notational
convenience. Then, the discretized equation of (3.0.1) reads

∂ΨUn−1
τ

(
Un
τ − Un−1

τ

τ

)
+ ∂Etn(Un

τ ) ∋ B(tn, Un−1
τ ), n = 1, · · · , N, (3.1.1)

where the values Un
τ ≈ u(tn) for n = 0, . . . , N shall approximate the values of

the exact solution u at time t = tn, and are to be determined. If we assume the
energy functional and the dissipation potential to be (Fréchet) differentiable, the
differential inclusion (3.1.1) becomes the equation

DΨUn−1
τ

(
Un
τ − Un−1

τ

τ

)
+ DEtn(Un

τ ) = B(tn, Un−1
τ ), n = 1, · · · , N. (3.1.2)

This choice of discretization has several advantages. First, the values Un
τ which

for a given Un−1
τ are to be determined, can be characterized as a solution to the

Euler-Lagrange equation (3.1.2) associated to the mapping

v 7→ Φ(τ, tn−1, U
n−1
τ , B(tn, Un−1

τ ); v), (3.1.3)

where

Φ(r, t, u, w; v) = rΨu

(
v − u

r

)
+ Et+r(v) − ⟨w, v⟩ (3.1.4)
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for r ∈ R>0, t ∈ [0, T ) with r + t ∈ [0, T ], u, v ∈ V and w ∈ V ∗. This leads to the
so-called variational approximation scheme


U0
τ is given; whenever U1

τ , U
2
τ , . . . , U

n−1
τ are known,

find Un
τ ∈ argmin v∈V Φ(τ, tn−1, U

n−1
τ , B(tn, Un−1

τ ); v)
(3.1.5)

for n = 1, . . . , N,.
The solvability of the variational approximation scheme can be established by

virtue of the direct methods of calculus of variation, i.e, those methods where the
solvability of the Euler–Lagrange equation relies on the minimization of (3.1.3)
under relatively mild assumptions on the functionals Et and Ψu. The solvability of the
discrete problem by minimization would fail to accomplish with a full implicit
discretization in time, since the perturbation is not explicitly supposed to be
variational; the equation (3.0.1) does not possess the so-called gradient flow structure.
In order to solve the discrete problem in the case of a full implicit discretization,
one would have to use fixed point arguments for set valued maps as the fixed point
theorem of Kakutani3, which is a set-valued version of the fixed point theorem of
Schauder for which the compactness of the images of the set-valued operator has to
be assumed. This, however, is not satisfied, in general, by the subdifferential operator
∂Et, which might be unbounded as we will see in the applications. Besides, a fully
implicit discretization would not be useful, since one would not be able to obtain
appropriate a priori estimates without making further assumptions on the growth of
Ψ and the subgradients of ∂Et. However, we obtain a priori estimates immediately
when we solve the semi-implicit discretized problem by the direct method. This
leads us to the last and most important point which is the equivalence between the
force balance (3.0.1) and the energy-dissipation balance (3.0.7). As we mentioned
before, the main idea of our approach is based on the aforementioned equivalence
which allows us to infer the solvability of the perturbed gradient flow equation by
proving the energy-dissipation balance.

3.2 Topological assumptions and main result

In this section, we collect all assumptions for the system (V, E , Ψ, B) to ensure the
existence of a solution. We refer to the assumptions by (3.E), (3.Ψ) and (3.B) for
the energy functional, the dissipation potential and the perturbation, respectively.

We start with collecting the assumptions for Ψ and emphasize that in contrast
to Bacho et al. [21] and Mielke et al. [122], we will not suppose that for all
w1, w2 ∈ ∂Ψu(v) there holds Ψ ∗

u(w1) = Ψ ∗
u(w2), where Ψ ∗

u denotes the Legendre–
Fenchel transformation or the conjugate of Ψu. We circumvent this condition by
regularizing the dissipation potential via the p-Moreau–Yosida regularization and
let the regularization parameter ε afterwards tend to zero. To do so, we need to

3see, e.g., Aubin & Frankowska [19, Theorem 3.2.3, p. 87].
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verify that the following conditions imposed on Ψu are also inherited by the Moreau–
Yosida regularization, which will be shown in Lemma 3.2.4. Before we collect the
assumptions, we define for notational convenience G(u) := supt∈[0,T ] Et(u), u ∈ V .
Furthermore, we denote with D := dom(E) the time-independent effective domain of
Et, see Condition (3.Ea).

(3.Ψa) Dissipation potential. For all u ∈ D, let Ψu : V → [0,+∞) be lower
semicontinuous and convex with Ψu(0) = 0.

(3.Ψb) Superlinearity. The functionals Ψu and Ψ ∗
u are superlinear, uniformly with

respect to u on sublevels of G = supt∈[0,T ] Et, i.e., for all R > 0, there holds

lim
∥ξ∥∗→+∞

1
∥ξ∥∗

(
inf
u∈V

G(u)≤R

Ψ ∗
u(ξ)

)
= ∞, lim

∥v∥→+∞

1
∥v∥

(
inf
u∈V

G(u)≤R

Ψu(v)
)

= ∞.

(3.Ψc) Mosco-convergence The state dependence u 7→ Ψu on sublevels of E is
continuous in the sense of Mosco-convergence, i.e., for all R > 0 and all
sequences (un)n∈N ⊂ V with un → u ∈ V as n → ∞ and supn∈N G(un) ≤ R,
there holds Ψun

M−→ Ψu.

Before we proceed with the assumptions on the energy functional, we make some
important remarks.

Remark 3.2.1
i) We showed in Lemma 2.3.2 that the Conditions (3.Ψa) and (3.Ψb) together

imply that the conjugate Ψ ∗ is lower semicontinuous, convex, and non-negative
on V ∗ with Ψ ∗

u(0) = 0 for all u ∈ D. Furthermore, it is easy to show by
contradiction that Condition (3.Ψb) implies that Ψ ∗

u is finite everywhere, i.e.,
dom(Ψ ∗

u) = V ∗ for all u ∈ D.

ii) Condition (3.Ψb) is equivalent to say that for all R > 0 and γ > 0, there exists
K1, K2 > 0 such that

Ψu(v) ≥ γ∥v∥, Ψ ∗
u(ξ) ≥ γ∥ξ∥∗

for all u ∈ D with G(u) ≤ R and all v ∈ V and ξ ∈ V ∗ with ∥v∥ ≥ K1 and
∥ξ∥∗ ≥ K2, respectively.

iii) Condition (3.Ψc) implies in particular that the mapping (u, v) 7→ Ψu(v) is
strongly-weakly lower semicontinuous on Jα × V for each α ∈ R, where Jα :=
{u ∈ V : G(u) ≤ α}. Furthermore, Lemma 2.4.3 implies that Ψun

M−→ Ψu if and
only if for all v ∈ V and ξ ∈ V ∗

a) Ψu(v) ≤ inf{lim inf
n→∞

Ψun(vn) : vn ⇀ v in V },

b) Ψ ∗
u(ξ) ≤ inf{lim inf

n→∞
Ψ ∗
un

(ξn) : ξn ⇀ ξ in V }.

This in turn implies that the mapping (u, ξ) 7→ Ψ ∗
u(ξ) is strongly-weakly lower

semicontinuous on Jα × V ∗ for each α ∈ R.
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iv) We note that we can consider more general time-dependent dissipation potentials
Ψu : [0, T ] × V → [0,+∞) by assuming that Ψu are normal integrands for all
u ∈ D, the functional Ψu(t, ·) satisfies Condition (3.Ψa) and (3.Ψc) for every
t ∈ [0, T ] and Condition (3.Ψb) uniformly in t ∈ [0, T ].

Now, we present the assumptions for the energy functional.

(3.Ea) Lower semicontinuity. For all t ∈ [0, T ], let the functional Et : V → [0,+∞]
be proper and lower semicontinuous and and have a time-independent effective
domain D := dom(Et) for all t ∈ [0, T ].

(3.Eb) Compactness. For all t ∈ [0, T ], Et has compact sublevel sets in V , i.e., for
all t ∈ [0, T ] and R ≥ 0, the set {u ∈ V : Et(u) ≤ R} is compact in V .

(3.Ec) Control of the time derivative For all u ∈ U , the mapping t 7→ Et(u)
is differentiable and its derivative ∂tEt is controlled by Et, i.e., there exists
C1 > 0 such that

|∂tEt(u)| ≤ C1Et(u) for all t ∈ (0, T ) and u ∈ V. (3.2.1)

(3.Ed) Chainrule. For every absolutely continuous curves u ∈ AC([0, T ];V ) and
every integrable functions ξ ∈ L1(0, T ;V ∗) such that

sup
t∈[0,T ]

|Et(u(t))| < +∞, ξ(t) ∈ ∂Et(u(t)) a.e. in (0, T ),
∫ T

0
Ψu(t)(u′(t))dt < +∞ and

∫ T

0
Ψ ∗
u(t)(ξ(t))dt < +∞,

the mapping t 7→ Et(u(t)) is absolutely continuous on [0, T ] and there holds

d
dtEt(u(t)) ≥ ⟨ξ(t), u′(t)⟩ + ∂tEt(u(t)) a.e. in (0, T ). (3.2.2)

(3.Ee) Strong-weak closedness. For all t ∈ [0, T ] and all sequences (un, ξn)n∈N ⊂
V×V ∗ with ξn ∈ ∂Et(un) such that

un → u ∈ V, ξn ⇀ ξ ∈ V ∗, Et(un) → E ∈ R and ∂tEt(un) → p ∈ R

as n → ∞, the following relations hold

ξ ∈ ∂Et(u), p ≤ ∂tEt(u) and E = Et(u).

Before we continue collecting the assumptions for the dissipation potential, we discuss
the conditions.

Remark 3.2.2
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i) From the estimate (3.2.1), we obtain after integration

e−C1|t−s|Es(u) ≤ Et(u) ≤ eC1|t−s|Es(u) for all s, t ∈ [0, T ], (3.2.3)

and in particular

sup
t∈[0,T ]

Et(u) ≤ eC1T inf
t∈[0,T ]

Et(u) for all u ∈ D.

ii) The compactness condition (3.Eb) in particular implies that there exists a
constant C0 ∈ R such that the energy functional is bounded from below by
that constant, i.e.,

Et(u) ≥ C0 for all u ∈ V, t ∈ [0, T ],

see, e.g. Ambrosio et al. [10, Remark 2.1.1, p. 43]. We assume without loss
of generality that C0 = 0, since every potential is determined uniquely up to a
constant.

iii) It can be shown in the exact same manner to Proposition 4.2 in Mielke et
al. [122] that under the Assumptions (3.Ψa)-(3.Ψc), (3.Ea), and (3.Ee), the
variational sum rule holds: if for u0 ∈ V, r > 0, and t ∈ [0, T ) such that
r + t ≤ T , the point u ∈ V is a global minimizer of v 7→ rΨ

(
v−u0
r

)
+ Er+t(v),

then

there exists ξ ∈ ∂Et(u) such that w − ξ ∈ ∂Ψu0

(
u− u0

r

)
(3.2.4)

or equivalently w ∈ ∂Ψu0

(
u− u0

r

)
+ ∂Et+r(u). The variational sum rule as

it is stated for convex functionals in Lemma 2.2.7, is, in general, not true for
non-convex and non-differentiable functionals.

iv) The strong-weak closedness of the graph of ∂Et is already satisfied when
(t, u) 7→ Et ∈ C1([0, T ] × V ) or when Et = E is proper, lower semicontinuous,
and λ-convex. While the former follows immediately from the continuity of
DEt and ∂tEt, the latter can be seen as follows: from the characterization of
the subdifferential of λ-convex functions, there holds

E(un) ≤ E(v) + ⟨ξn, un − v⟩ + λ∥un − v∥2 for all n ∈ N.

Then, we obtain from the lower semicontinuity of E that

E(u) ≤ E ≤ lim inf
n→∞

E(un) ≤ lim inf
n→∞

(
E(v) + ⟨ξn, un − v⟩ + λ∥un − v∥2

)
= E(v) + ⟨ξ, u− v⟩ + λ∥u− v∥2

and hence ξ ∈ ∂E(u). Choosing v = u yields E = E(u).

Finally, we state the assumptions for perturbation B.
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(3.Ba) Continuity. The operator B : [0, T ] × D → V ∗ is continuous on sublevel
sets of Et, i.e., for every converging sequence (tn, un) → (t, u) in [0, T ] × V
with supn∈N G(un) < +∞, there holds B(tn, un) → B(t, u) in V ∗ as n → ∞.

(3.Bb) Control of the growth. There exist a real number p > 1 and constants
c1 ∈ (0, 1) and β > 0 such that

c1 Ψ
ε,∗
u

(
B(t, u)
c1

)
≤ β

(
1 + Et(u)

)
for all u ∈ D, t ∈ [0, T ] and ε ≥ 0,

where Ψ ε,∗u denotes the conjugate functional of the p-Moreau–Yosida regu-
larization of Ψu.

3.2.1 Discussion of the assumptions
Having collected the assumptions on the perturbed gradient system (V, E , Ψ, B),
we want to discuss several conditions more in detail apart from the assertions and
implications made in the remarks. In particular, we want to discuss the practical
meaning of the rather abstract and quite general assumptions and provide sufficient
conditions for them to hold true.

The advantage of the multivalued setting is that the domain of the functionals
Ψu and Et can, in general, be subsets of different spaces which share a common
dense subspace. This stems from the fact that the operators can be unbounded. For
example, if Ψu and the functional Ẽt are finite on the Banach spaces V and W such
that V ∩W is densely embedded in V and W , respectively, then one can extend Ẽt
to the whole V by setting

Et(v) =

Ẽt(v) if v ∈ dom(Ẽt) ∩ V,

+∞, otherwise.

However, the functional Et might not be coercive anymore on V , which is not a
problem if one assumes the coercivity of the sum Ψu + Ẽt. Since we have assumed
the coercivity of Ψu and Et separately, this case is not covered by the present work.
Indeed, it has been shown in Mielke et al. [122] that this case can easily be included
under the stronger assumptions that the mapping t 7→ Ψu(tv) is differentiable in
t = 1 for all u ∈ D, v ∈ V , which has been addressed in this work by regularizing
Ψu. The problem which occurs in the present work is that the condition Ψu + Et
to have compact sublevels in V is, in general, not satisfied by Ψ εu + Et, with Ψ εu
being the Moreau–Yosida regularization of Ψu. However, if we make the further
assumption that Ψu has p-growth, then we can solve this problem by taking the
p-Moreau–Yosida regularization of Ψu which maintains the p-growth for Ψ εu. The
proof of this case would require minor changes of the proof presented here, but will
not be discussed more in detail. We refer the reader to Chapter 5 and 6, where we
study evolution inclusions of second order where Ψu and Et are defined on different
spaces.
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Ad (3.Ψ). In case the dissipation potentials are state-independent, i.e., Ψu = Ψ
for all u ∈ D, then the Condition (3.Ψc) already follows from Condition (3.Ψa):
the liminf estimate a) in Definition 2.4.1 reduces to a weak lower semicontinuity
Ψ which is clearly satisfied, since Ψ is convex and lower semicontinuous and thus
weakly lower semicontinuous on V . The limsup estimate b) follows from the fact that
by Lemma 2.3.2 Ψ is continuous over its effective domain, which is by assumption
dom(Ψ) = V . The prototypical example for state-independent dissipation potentials
is

Ψ(v) =
∫
Ω

(
1
p

|v(x)|p + |v(x)|
)

dx

defined on the Lebesgue space Lp(Ω) with p ∈ (1,+∞). Although Conditions
(3.Ψa) and (3.Ψb) are satisfied by many functions with anisotropic and nonpolynomial
growth, it can not be treated in this setting, since the corresponding Orlicz spaces
are, in general, neither separable nor reflexive, see, e.g., Skaff [153, 154] and to the
monograph Rao & Ren [136] for a detailed treatise of the theory of Orlicz spaces.
For state-dependent dissipation potentials, an example for a general case is given by

Ψu(v) =
∫
Ω
ψ(u(x), v(x))dx

defined on the Lebesgue space Lp(Ω) with p ∈ (1,+∞) where ψ satisfies certain
growth and continuity conditions, see Chapter 4, where we discuss this more in
detail. As we mentioned in Remark 3.2.1 iv), we can allow time-dependent dissipation
potentials Ψu : [0, T ]×V → [0,+∞). However, we will not consider this for simplicity.
See Akagi [4], where doubly nonlinear evolution equations have been investigated
with time-dependent dissipation potentials.

Ad (3.E). The assumption that the energy functional Et has time-independent effective
domain is a natural consequence of the control of its time derivative ∂tEt (Condition
(3.Ec)). However, this does not imply that the domain of the subdifferential ∂Et
is time-independent, because it is generally not. A result on abstract evolution
inclusions where the domain of the energy functional is time-dependent has been
shown in Yamada [161] and Ôtani [126] with applications to the Navier–Stokes
equations in a time-dependent bounded domain.

A sufficient condition for Et to have compact sublevel sets is for its domain D
to be contained in a Banach space U which is compactly embedded into V . This
means in practice that the energy functional contains higher spatial derivatives than
the dissipation potential, so that the compact embedding U c

↪→ V is given by the
Rellich–Kondrachov theorem or other compactness theorems. As we mentioned
before, we do not impose any convexity condition on Et. Instead, we have to impose
two conditions, which are in particular fulfilled by convex functionals: the chainrule
condition (3.Ee) and the closedness condition (3.Ee). These conditions are not
only fulfilled by convex functionals, but also by λ-convex functionals, functionals of
the form Et = E1

t − E2
t where E1

t is convex and E2
t is either convex or continuously

differentiable functional, see Mielke et al. [122, 142] and Rossi & Savaré [143].
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Ad (3.B). The continuity condition (3.Ba) means that B is a continuous perturbation
of ∂Et. The term B contains in the applications non-variational and non-monotone
terms of lower order in terms of only containing lower order derivatives as well as
obeying a growth condition of lower order. This is reflected by Condition (3.Bb),
where B satisfies a growth condition in terms of the conjugate dissipation potential
Ψ ∗
u and the energy functional Et. In fact, the growth condition shows that the higher

the order of the growths of Ψu and Et are, the more we can allow for the growth of the
perturbation. Condition (3.Bb) ensures that we are able to derive a priori estimates.
Both conditions can be generalized in a framework that instead of a point-wise
continuity and a pointwise growth condition, a continuity on suitable Bochner
spaces can be imposed as well as a growth condition on the level of time integrals.
Furthermore, it would be sufficient to define the perturbation on the domain of the
subdifferential of Et or more generally to consider set-valued maps. This would allow
a broader class of perturbations, see Ôtani [126] and Akagi [4], where this has
been considered.
Now, we want to elaborate on why we imposed the growth condition on the regu-
larization Ψ εu instead of Ψu and why we regularize Ψu by the p-Moreau–Yosida
regularization and not the classical Moreau–Yosida regularization where p = 2.
The reason why it is important to regularize Ψu with the order p > 1 instead of
p = 2 is the Condition (3.Bb). Regularizing the dissipation potential with the order
p > 1 which is larger than the growth rate of Ψu might make Condition (3.Bb) too
restrictive. This can be seen as follows: assume that Condition (3.Bb) is fulfilled
only for Ψu, i.e., when ε = 0, and that Ψu fulfills the following growth condition: for
all R > 0, there exist a a real number p > 1 and a constant CR > 0 such that

Ψu(v) ≤ CR(∥v∥p + 1) for all v, u ∈ V with G(u) ≤ R. (3.2.5)

It is easy to see that the p-Moreau–Yosida regularization of Ψu satisfies the same
growth condition. Furthermore, by the calculation rules for the Legendre-Fenchel
transformation (Lemma 2.3.2), for all R > 0, there exist constants c̃R, C̃R > 0 such
that

c̃∥ξ∥q∗

∗ − C̃ ≤ Ψ ∗
u(ξ) for all ξ ∈ V ∗, u ∈ V with G(u) ≤ R.

Now, let c1 ∈ (0, 1) and β > 0 be from Condition (3.Bb). Then, there holds

c1Ψ
ε,∗
u

(
B(t, u)
c1

)
= c1ε

p∗

∥∥∥∥∥B(t, u)
c1

∥∥∥∥∥
p∗

+ cΨ ∗
u

(
B(t, u)
c1

)
(3.2.6)

≤
(
ε

p∗c̃
+ 1

)
c1Ψ

∗
u

(
B(t, u)
c1

)
+ C̃

c̃

≤
(
ε

p∗c̃
+ 1

)
β(1 + Et(u)) + C̃

c̃

≤ β̃(1 + Et(u)) for all u ∈ D, t ∈ [0, 1] and ε ∈ [0, 1],

for a constant β̃ > 0, where the equality (3.2.6) will be shown in the Lemma 3.2.4
below. Therefore, if p ≥ 2, we can in fact use the classical Moreau–Yosida regular-
ization with p = 2. However, if p < 2, we need to take the regularization with order p.



56 Chapter 3. Perturbed Gradient System

Having discussed the assumptions for the perturbed gradient system (V, E , Ψ, B), we
are in the position to state the main existence result, which also contains the notion
of a solution to (3.0.1).

Theorem 3.2.3 (Existence result) Let the perturbed gradient system (V, E , Ψ, B)
satisfy the Assumptions (3.Ψ), (3.E)and (3.B). Then, for every u0 ∈ D, there exists
an absolutely continuous curve u ∈ AC([0, T ];V ) with u(0) = u0 and an integrable
function ξ ∈ L1(0, T ;V ) with ξ(t) ∈ ∂Et(u(t)) for a.e. t ∈ (0, T ) such that the
following energy-dissipation balance holds:

Et(u(t)) +
∫ t

s

(
Ψu(r)(u′(r)) + Ψ ∗

u(r)

(
B(r, u(r)) − ξ(r)

))
dr

= Es(u(s)) +
∫ t

s
∂rEr(u(r))dr +

∫ t

s
⟨B(r, u(r)), u′(r)⟩dr for all s, t ∈ [0, T ].

(3.2.7)

We also want to show that for nonsmooth functionals Et and Ψu, every absolutely
continuous function which satisfies the energy-dissipation balance (3.2.7) is a solution
to the perturbed gradient system (3.0.1). First, by the chain rule (3.Ed), we obtain
after the integration of (3.2.2) that

Et(u(t)) ≥ Es(u(s)) +
∫ t

s
(⟨ξ(r), u′(t)⟩ + ∂rEr(u(r))) dr for all s, t ∈ [0, T ].

Plugging in the latter inequality into the energy-dissipation balance (3.2.7), we obtain∫ t

s

(
Ψu(r)(u′(r)) + Ψ ∗

u(r)

(
B(r, u(r)) − ξ(r)

)
dr − ⟨B(r, u(r)) − ξ(r), u′(r)⟩

)
dr

≤ 0 for all s, t ∈ [0, T ].

Since the integrand of (3.2.7) is by the Fenchel–Young inequality non-negative,
there holds

⟨B(t, u(t)) − ξ(t), u′(t)⟩ = Ψu(t)(u′(t)) + Ψ ∗
u(t)

(
B(t, u(t)) − ξ(t)

)
for almost every t ∈ (0, T ). Finally, by Lemma 2.3.1, there holds

ξ(t) ∈ ∂Et(u(t)), ∂Ψu(t)(u′(t)) ∋ B(t, u(t)) − ξ(t) for almost every t ∈ (0, T ).

Since the initial condition u(0) = u0 is fulfilled, we conclude that u solves (3.0.1). We
will refer to the just described equivalence between solutions to (3.2.7) and (3.0.1)
as the energy-dissipation principle.

The proof of Theorem 3.2.3 is divided in two main parts. In the first part, we show
the existence of solutions to the regularized problem emerging from the regularization
of the dissipation potential via the p-Moreau–Yosida regularization by proving
the convergence of a time discretization scheme. In the second part, the solvability
of the problem (3.0.1) is obtained by essentially repeating the same arguments, while
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instead of passing with the time step τ to zero, we let the regularization parameter ε
vanish.

Before we start with the proof of Theorem 3.2.3, we need several auxiliary results.
In the following lemma, we show that under the Assumption (3.Ψ), the p-Moreau–
Yosida regularization of Ψu satisfies certain properties including Conditions (3.Ψa)-
(3.Ψc). In fact, we will show that the p-Moreau–Yosida regularization satisfies
even more properties than it.

Lemma 3.2.4 Let the family of dissipation potential Ψu : V → R, u ∈ D, be given
and satisfy Assumptions (3.Ψa)-(3.Ψc) and let ε ∈ (0, 1] and p > 1. Then, the
p-Moreau–Yosida regularization Ψ εu fulfills (3.Ψa)-(3.Ψc) and the conjugate of Ψ εu
is given by

Ψ ε,∗u (ξ) = ε

p∗ ∥ξ∥p∗

∗ + Ψ ∗
u(ξ) for all ξ ∈ V ∗, u ∈ D, (3.2.8)

where p∗ > 1 is the conjugate exponent to p. Moreover, Ψ εu and Ψ ε,∗u are superlinear
uniformly with respect to ε > 0 and on sublevels of the energy. Finally, for all R > 0
and all sequences (εn, un)n∈N ⊂ (0, 1]×V with supn∈N G(un) ≤ R and (εn, un) → (0, u)
as n → ∞, there holds Ψ εn

un

M−→ Ψu.

Proof. First, for each ε > 0, the regularization Ψ εu is a dissipation potential. This
follows immediately from the fact that Ψ εu(0) = infv∈V

{
1

pεp−1 ∥v∥p + Ψu(v)
}

= 0 and
Lemma 2.5.1. The formula (3.2.8) follows from the calculations

Ψ ε,∗u (ξ) = sup
v∈V

{⟨ξ, v⟩ − Ψ εu(v)}

= sup
v∈V

{
⟨ξ, v⟩ − inf

w∈V

{
ε

p

∥∥∥∥v − w

ε

∥∥∥∥p + Ψu(w)
}}

= sup
v∈V

sup
w∈V

{
⟨ξ, v⟩ − ε

p

∥∥∥∥v − w

ε

∥∥∥∥p − Ψu(w)
}

= sup
w∈V

sup
v∈V

{
⟨ξ, v⟩ − ε

p

∥∥∥∥v − w

ε

∥∥∥∥p − Ψu(w)
}

= sup
w∈V

{
sup
v∈V

{
⟨ξ, v − w⟩ − ε

p

∥∥∥∥v − w

ε

∥∥∥∥p
}

+ ⟨ξ, w⟩ − Ψu(w)
}

= sup
w∈V

{
ε sup
v∈V

{〈
ξ,
v − w

ε

〉
− 1
p

∥∥∥∥v − w

ε

∥∥∥∥p
}

+ ⟨ξ, w⟩ − Ψu(w)
}

= sup
w∈V

{
ε

p∗ ∥ξ∥p∗

∗ + ⟨ξ, w⟩ − Ψu(w)
}

= ε

p∗ ∥ξ∥p∗

∗ + Ψ ∗
u(ξ)

for all ξ ∈ V ∗ and u ∈ D, where we have used the fact ( 1
pεp−1 ∥ · ∥p)∗ = ε

p∗ ∥ · ∥p∗
∗ . The

expression (3.2.8) also shows the superlinearity of Ψ ε,∗u uniformly in ε. We proceed
by showing the superlinearity of Ψ ε,∗u . To do so, we note that the superlinearity of Ψu
equivalently says that for all R > 0 and M > 0, there exists a positive real number
K > 0 such that

Ψu(v) ≥ M∥v∥ (3.2.9)
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for all u ∈ D with G(u) ≤ R and all v ∈ V with ∥v∥ ≥ K. The idea is to show that
for the regularization Ψ εu for all R̃ > 0 and M̃ > 0, there exists a positive real number
K̃ > 0 independent of the parameter ε > 0 with the above mentioned property. So,
let R̃ > 0 and M̃ > 0, then for R = R̃ and M = 2M̃ , there exists K > 0 such that
(3.2.9) holds. We find by Young’s inequality and the triangle inequality

Ψ εu(v) = inf
ṽ∈V

{
1

pεp−1 ∥v − ṽ∥p + Ψu(ṽ)
}

= min

 inf
ṽ∈V

∥ṽ∥≥K

{
1

pεp−1 ∥v − ṽ∥p + Ψu(ṽ)
}
, inf

ṽ∈V

∥ṽ∥≤K

{
1

pεp−1 ∥v − ṽ∥p + Ψu(ṽ)
}

≥ min

 inf
ṽ∈V

∥ṽ∥≥K

{
1

pεp−1 ∥v − ṽ∥p +M∥ṽ∥
}
, inf

ṽ∈V

∥ṽ∥≤K

1
pεp−1 ∥v − ṽ∥p


≥ min

 inf
ṽ∈V

∥ṽ∥≥K

{
M∥v − ṽ∥ +M∥ṽ∥ − Mp∗

ε

p∗

}
, inf

ṽ∈V

∥ṽ∥≤K

{
M∥v − ṽ∥ − Mp∗

ε

p∗

}
≥ min

{(
M∥v∥ − Mp∗

p∗

)
,

(
M∥v∥ −KM − Mp∗

p∗

)}

= M∥v∥ −KM − Mp∗

p∗

≥ M

2 ∥v∥ = M̃∥v∥

for all v ∈ V with ∥v∥ ≥ K̃ := 2
(
K + M̃p∗−1

p∗2p∗−1

)
and ε ∈ (0, 1]. This implies

the uniform superlinearty of Ψ εu uniformly in ε > 0, which in turn implies the
superlinearity for a fixed ε > 0. We continue by showing that Ψ εu is continuous
in the sense of Mosco-convergence. In fact, we show that for a fixed ε > 0, the
regularization satisfies a stronger version of Mosco-convergence, meaning that there
not only exists a recovery sequence, but that every sequence converging against the
same limit is a recovery sequence, or in other words, the mapping (u, v) 7→ Ψ εu(v) is
continuous with respect to the strong topology for u on sublevels of G and v in V .
Let (un)n∈N ⊂ V with supn∈N G(un) < ∞ be given such that un → u ∈ V as n → ∞,
and (vn)n∈N ⊂ V a weakly convergent sequence with weak limit v ∈ V . Now, let
(nk)k∈N be a subsequence such that

lim inf
n→∞

Ψ εun
(vn) = lim

k→∞
Ψ εunk

(vnk
).

For each k ∈ N, we denote by vkε the unique minimizer of v 7→ 1
pεp−1 ∥v−vnk

∥p+Ψunk
(v)

and note that thanks to the estimate

1
pεp−1 ∥vnk

− vkε∥p ≤ Ψ εunk
(vnk

) ≤ 1
pεp−1 ∥vnk

∥p, (3.2.10)

the corresponding sequence of minimizers (vkε )k∈N is bounded. Therefore, there exists
a subsequence (labeled as before) which is weakly convergent to an element ṽε ∈ V .
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Then, by the Mosco-convergence Ψun

M−→ Ψu, we observe

Ψ εu(v) ≤ 1
pεp−1 ∥v − ṽε∥p + Ψu(ṽε)

≤ lim inf
k→∞

{
1

pεp−1 ∥vnk
− vkε∥p + Ψunk

(vkε )
}

= lim
k→∞

Ψ εunk
(vnk

) = lim inf
n→∞

Ψ εun
(vn).

Now, let v ∈ V be arbitrary and (vn)n∈N ⊂ V any strongly convergent sequence
vn → v as n → ∞. We extract an arbitrary subsequence (nk)k∈N, and to each
k ∈ N, we denote the minimizers of v 7→ 1

pεp−1 ∥v − vnk
∥p + Ψunk

(v) again by vkε ∈ V
and by ṽε ∈ V the weak limit of a further subsequence of the very same sequence
which we label as before. Once more, by (3.Ψc), for the minimizer vε of Ψ εu(v), there
exists a strongly convergent recovery sequence (v̂k)k∈N ⊂ V fulfilling v̂k → vε and
limk→∞ Ψunk

(v̂k) = Ψu(vε). It follows

Ψ εu(v) ≤ 1
pεp−1 ∥v − ṽε∥p + Ψu(ṽε)

≤ lim inf
k→∞

{
1

pεp−1 ∥vnk
− vkε∥p + Ψunk

(vkε )
}

= lim inf
k→∞

Ψ εunk
(vnk

)

≤ lim sup
k→∞

Ψ εunk
(vnk

)

≤ lim sup
k→∞

{
1

pεp−1 ∥vnk
− v̂k∥p + Ψunk

(v̂k)
}

= lim
k→∞

{
1

pεp−1 ∥vnk
− v̂k∥p + Ψunk

(v̂k)
}

= 1
pεp−1 ∥v − vε∥p + Ψu(vε) = Ψ εu(v).

Therefore, every subsequence (nk)k∈N contains a further subsequence (nkl
)l∈N such

that liml→∞ Ψ εunkl

(vnkl
) = Ψ εu(v). By the subsequence principle, the convergence of

the whole sequence follows. In particular, this shows vε = ṽε.
Finally, we show the Mosco-convergence involving a vanishing sequence of regu-
larization parameters (εn)n∈N ⊂ (0, 1], i.e. satisfying εn → 0 as n → ∞. As before,
let the sequences (un)n∈N, (vn)n∈N ⊂ V with supn∈N G(un) < ∞ be given such that
un → u ∈ V and vn ⇀ v ∈ V as n → ∞, and let (nk)k∈N be a subsequence such that

lim inf
n→∞

Ψ εn
un

(vn) = lim
k→∞

Ψ
εnk
unk

(vnk
).

By ṽk ∈ V, k ∈ N, we denote again the minimizer of Ψ εnk
unk

(vnk
). Due to the same

estimate as (3.2.10) for (ṽk)k∈N, the sequence of minimizers is bounded and therefore
sequentially compact with respect to the weak topology. So, after extracting a
subsequence (labeled as before), we obtain a weak limit ṽ ∈ V such that ṽk ⇀ ṽ as
n → ∞. Now, we consider two cases:
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i) 1
pεp−1

nk

∥vnk
− ṽk∥p ≤ C for a constant C > 0,

ii) 1
pεp−1

nk

∥vnk
−ṽk∥p → ∞ as k → ∞ after possibly extracting a further subsequence.

Ad i). We immediately find v = ṽ and therefore ṽk ⇀ v as k → ∞. By the continuity
of Ψ in the sense of Mosco-convergence, it follows

Ψu(v) ≤ lim inf
k→∞

Ψunk
(ṽk)

≤ lim inf
k→∞

{
1

pεp−1
nk

∥vnk
− ṽk∥p + Ψunk

(ṽk)
}

= lim inf
k→∞

Ψ
εnk
unk

(vnk
)

= lim
k→∞

Ψ
εnk
unk

(vnk
)

= lim inf
n→∞

Ψ εn
un

(vn).

Ad ii). We obtain

Ψu(v) ≤ lim
k→∞

(
1

pεp−1
nk

∥vnk
− ṽk∥p

)

≤ lim
k→∞

{
1

pεp−1
nk

∥vnk
− ṽk∥p + Ψunk

(ṽk)
}

= lim
k→∞

Ψ
εnk
unk

(vnk
)

= lim inf
n→∞

Ψ εn
un

(vn).

It remains to show the existence of a recovery sequence. Let v ∈ V be arbitrarily
chosen. Then, there exists a recovery sequence (vn)n∈N ⊂ V for Ψu with vn → v
as v → ∞ such that limn→∞ Ψun(vn) = Ψu(v). Proceeding as before, we take an
arbitrary subsequence (nk)k∈N and denote by (ṽk)k∈N ⊂ V again the minimizing
sequence. Then, we consider again the two cases i) and ii).
Ad i). Since the recovery sequence is strongly convergent, it follows that the
minimizing sequence of Ψu is also strongly convergent with limit v ∈ V . We obtain

Ψu(v) ≤ lim inf
k→∞

Ψunk
(ṽk)

≤ lim inf
k→∞

{
1

pεp−1
nk

∥vnk
− ṽk∥p + Ψunk

(ṽk)
}

= lim inf
k→∞

Ψ
εnk
unk

(vnk
)

≤ lim sup
k→∞

Ψ
εnk
unk

(vnk
)

≤ lim sup
k→∞

Ψunk
(vnk

)

= lim
k→∞

Ψunk
(vnk

) = Ψu(v),
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which by the same argument as before implies the convergence of the full sequence,
i.e., limn→∞ Ψ εn

un
(vn) = Ψu(v).

Ad ii). Due to Ψ εn
un

(vn) ≤ Ψun(vn) and the convergence of the right-hand side, this
case can not occur, which completes the proof.

As mentioned above, the p-Moreau–Yosida regularization can be viewed as
a regularization process described by the Hamilton–Jacobi equation (2.5.16).
However, introducing the Moreau–Yosida regularization as a solution to the
Cauchy problem (2.5.16) does not seem "natural". Interestingly, the regularization
arises naturally when one deals with (generalized) gradient flow equations which
we have seen already in (3.1.2) and (3.1.4). To demonstrate this more clearly, we
consider the generalized gradient flow

−|u′(t)|p−2u′(t) ∈ ∂E(u(t)), t > 0,

of a functional E : H → (−∞,+∞] on a Hilbert space H. Discretizing the
equation by the implicit Euler scheme leads to

−
∣∣∣∣∣Un

τ − Un−1
τ

τ

∣∣∣∣∣
p−2

Un
τ − Un−1

τ

τ
∈ ∂E(Un

τ ), n = 1, 2, . . . , N,

where, starting with U0
τ = u0 ∈ dom(E), the values Un

τ , n = 1, . . . , N , can under
certain conditions be obtained by the time-incremental minimization scheme

Un
τ ∈ Jτ (Un−1) := argmin

v∈H

{
τ

p

∣∣∣∣∣v − Un−1
τ

τ

∣∣∣∣∣
p

+ E(v)
}
, n = 1, 2, . . . , N. (3.2.11)

Here, obviously the Moreau–Yosida regularization occurs naturally after time-
discretization of the equation and the approximative values Un

τ ∈ H are defined
by the Moreau–Yosida regularization Eτ where the regularization parameter is
given by the step size τ of the time-discretization. It is also worth mentioning that
the Moreau–Yosida regularization does not only regularize a function itself, but
the associated resolvent operator Jτ (u) regularizes in a certain sense its arguments
u ∈ H: the values Un

τ ∈ dom(∂E), which are achieved in the minimization scheme,
are not only contained in the domain of the functional E, but are also contained in
the domain of the subdifferential ∂E. The latter is also referred to as the regularizing
or smoothing effect of the gradient flow equation, which means that for a given initial
datum u0 ∈ dom(E) (or in some cases even u0 ∈ dom(E)) the solution does not only
belong to the domain of E but also to the domain of its subdifferential ∂E for an
infinitesimal larger time step, i.e, u(t) ∈ dom(∂E) for every t > 0. It is well-known
that in the case p = 2 and when E : H → (−∞,∞] is a proper, lower semicontinuous
and convex functional, the subdifferential operator ∂E is an infinitesimal generator
of a C0-semigroup such that S(t)u0 = u(t) is the unique solution to the Cauchy
problem u′(t) ∈ −∂E(u(t)), t > 0,

u(0) = u0 ∈ dom(E)
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and which fulfills S(t)u0 = limn→∞ Jnt/n(u0), where Jt/n denotes again the resolvent
operator given by (3.2.11), see, e.g., [24, 32]. This property even holds true in a
complete metric space under slightly weaker assumptions on the functional E, see
Ambrosio et al. [10] for a detailed discussion.
Since the solutions of the Cauchy problem we aim to study are, in general, not
unique (even for the discretized problem), the generation of a semigroup can not
be expected. Nevertheless, the nice regularizing effect can be maintained despite
the fact that the energy functional is not assumed to be convex, see Section 3.1 and
Assumption (3.E) in Section 3.2.

Now, in regard to the main evolution inclusion

∂Ψu(t))(u′(t)) + ∂Et(u(t)) ∋ B(t, u(t)),

and its time-discretization as performed in (3.1.1), it is worth investigating the
properties of the so-called Ψ ε-Moreau-Yosida regularization

Φr,t(w;u) : = inf
v∈V

Φ(r, t, u, w; v)

= inf
v∈V

{
rΨ εu

(
v − u

r

)
+ Et+r(v) − ⟨w, v⟩

}
, (3.2.12)

of Et + ⟨w, ·⟩, where u ∈ D,w ∈ V ∗, r > 0 and t ∈ [0, T ) such that r + t ∈ [0, T ].
As previously mentioned, the energy Et was not supposed to be convex. Hence, it
might be at first sight unclear what regularizing properties can be expected from
the Ψ ε-Moreau-Yosida regularization and why it is useful to study the function
Φr,t(w;u). This question will be answered in the following section.

3.3 The Ψ-Moreau-Yosida regularization
In this section, we study the properties of the Ψ ε-Moreau–Yosida regularization
(3.2.12), where for p > 1 and fixed ε > 0, Ψ ε is the p-Moreau-Yosida regularization
of the dissipation potential. In particular, we have to ensure that the infimum in
formula (3.2.12) is attained so that the resolvent set

Jr,t(w;u) := argmin
v∈V

Φ(r, t, u, w; v) = argmin
v∈V

{
rΨ εu

(
v − u

r

)
+ Et+r(v) − ⟨w, v⟩

}

is non-empty and we obtain solvability of the discretized inclusion (5.2.4).

Lemma 3.3.1 Let the perturbed gradient system (V, E , Ψ ε, B) satisfy the Assumptions
(3.Ea)-(3.Eb) and (3.Ψa). Then, for all r > 0, t ∈ [0, T ) with t+ r ≤ T , u ∈ D, and
w ∈ V ∗, the resolvent set Jr,t(w;u) is non-empty.

Proof. The proof is based on the direct method of calculus of variations: let u ∈
D,w ∈ V ∗ and r > 0, t ∈ [0, T ) with r + t ∈ [0, T ] be fixed. First, we note that
by the Fenchel–Young inequality and with the boundedness of the energy from
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below, there holds

Φ(r, t, u, w; v) = rΨ εu

(
v − u

r

)
+ Et+r(v) − ⟨w, v⟩

≥ −rΨ ε,∗u (w) + Et+r(v) − ⟨w, u⟩ (3.3.1)
≥ −rΨ ε,∗u (w) + S − ⟨w, u⟩

and hence Φr,t(w;u) > −∞. On the other hand, we have

inf
v∈V

{
rΨ εu

(
v − u

r

)
+ Et+r(v) − ⟨w, v⟩

}
≤ Et+r(u) − ⟨w, u⟩, (3.3.2)

so that we also find Φr,t(w;u) < +∞. Now, let (vn)n∈N ⊂ V be a minimizing sequence
for Φ(r, t, u, w; ·). From (3.3.1), we deduce with Remark 3.2.2 that (vn)n∈N ⊂ V is
contained in a sublevel set of the energy functional. Since the energy has compact
sublevels (Assumption (3.Eb)), there exists a subsequence (relabeled as before) which
converges strongly in V to a limit v ∈ V . The lower semicontinuity of the energy
functional and the dissipation potential yield the lower semicontinuity of the mapping
v 7→ Φ(r, t, u, w; v). Therefore, there holds

Φ(r, t, u, w; v) ≤ lim inf
n→∞

Φ(r, t, u, w; vn) = inf
ṽ∈V

Φ(r, t, u, w; ṽ),

and therefore v ∈ Jr,t(w;u) ̸= ∅ is a global minimizer from which v ∈ D follows.

The next lemma provides an analogous result to Theorem 2.5.2 for the Ψ ε-
Moreau–Yosida regularization and is crucial for the main existence result and
particularly for deriving a priori estimates. The result is an adaptation of the
unperturbed case of Lemma 4.2 in Rossi & Savaré [143] and Lemma 6.1 in
Mielke et al. [122], where w = 0 has been considered.

Lemma 3.3.2 Let the perturbed gradient system (V, E , Ψ, B) be given and satisfy the
Assumptions (3.Ψ) and (3.Ea)-(3.Ed). Then, for every t ∈ [0, T ), u ∈ D and w ∈ V ∗,
there exists a measurable selection r 7→ ur : (0, T − t) → Jr,t(w;u) such that

w ∈ DGΨ
ε
u

(
ur − u

r

)
+ ∂Et+r(u). (3.3.3)

Moreover, there holds

i) ∃C̃ > 0 : G(ur) ≤ C̃(G(u) + rΨ ε,∗u (w)) for all r ∈ (0, T − t), (3.3.4)

ii) lim
r→0

Φr,t(w;u) = Et(u) − ⟨w, u⟩, (3.3.5)

iii) lim
r→0

sup
ur∈Jr,t(w;u)

∥ur − u∥ = 0, (3.3.6)

for all t ∈ [0, T ), u ∈ D and w ∈ V ∗.
Finally, the mapping r 7→ Φr,t(w;u) is differentiable almost everywhere in (0, T − t)
and for every measurable selection r 7→ ur : (0, r0) → Jr,t(w;u), there exists a
measurable map r 7→ ξr : (0, T − t) → ∂Et+r(u) with ξr = w−DGΨ

ε
(
ur−u
r

)
such that
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d
drΦr,t(w;u) ≤ −Ψ ε,∗u (w − ξr) + ∂tEt+r(ur) for a.e. r ∈ (0, T−t). (3.3.7)

In particular, there holds

Et+r0(ur0) + r0Ψ
ε
u

(
ur0 − u

r0

)
+
∫ r0

0
Ψ ε,∗u (w − ξr)dr

≤ Et(u) +
∫ r0

0
∂tEt+r(ur)dr + ⟨w, ur0 − u⟩

(3.3.8)

for every r0 ∈ (0, T − t).

Proof. Let t ∈ [0, T ), u ∈ D and w ∈ V ∗ be arbitrary and fixed. Lemma 3.3.1
guarantees that the resolvent set Jr,t(w;u) is non-empty for all r ∈ (0, T − t). Then,
the existence of a measurable selection r 7→ ur : (0, T − t) → Jr,t(w;u) is ensured by
Castaing & Valadier [43, Cor. III.3, Prop. III.4, Thm. III.6, pp. 63]. The inclusion
(3.3.3) follows immediately from the variational sum rule (3.2.4). Further, we obtain
from the estimates (3.3.1) and (3.3.2) with the choice v = ur, r ∈ (0, T − t) the
inequality

Et+r(ur) ≤ Et+r(u) + rΨ ε,∗u (w).

The latter inequality together with the estimate (3.2.3) yields inequality (3.3.4). In
order to show the convergences in (3.3.5), we note again that the superlinearity of
the dissipation potential (Assumption (3.Ψb)) and Lemma 3.2.4 implies that for all
R > 0 and γ > 0, there exists K > 0 such that

Ψ εu(v) ≥ γ∥v∥

for all ε ∈ [0, 1], u ∈ D with G(u) ≤ R and all v ∈ V with ∥v∥ ≥ K. Based on this,
we infer

γ∥v∥ ≤ Ψ εu(v) + γK for all v ∈ V

and in particular

γ
∥∥∥∥ur − u

r

∥∥∥∥ ≤ Ψ ε
(
ur − u

r

)
+ γK for every r > 0.

In view of (3.3.2) and Remark 3.2.2 ii), this implies

γ∥ur − u∥ ≤ ⟨w, ur − u⟩ + Et+r(u) − Et+r(ur) + rγK

≤ ∥w∥∗∥ur − u∥ + Et+r(u) − S + rγK.

This yields

(γ − ∥w∥∗)∥ur−u∥ ≤ Et+r(u) − S + rγK ≤ C1E0(u) − S + rγK
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for all r ∈ (0, T − t) and ur ∈ Jr,t(w;u), where the constant C1 > 0 comes from
Remark 3.2.2 i). After taking the supremum over all ur ∈ Jr,t(w;u) and passing to
the limes superior as r → 0 in the last inequality, we finally obtain

(γ − ∥w∥∗) lim sup
r→0

sup
ur∈Jr,t(w;u)

∥ur − u∥ ≤ eCTE0(u) − S for every γ > ∥w∥∗.

By choosing γ > 0 sufficiently large, we conclude

lim sup
r→0

sup
ur∈Jr,t(w;u)

∥ur − u∥ = 0,

which shows (3.3.6). We proceed with showing the convergence (3.3.5). Taking into
account the estimate

Et+r(ur) − ⟨w, ur⟩ ≤ Φr,t(w;u)

= rΨ εu

(
ur − u

r

)
+ Et+r(ur) − ⟨w, ur⟩ ≤ Et+r(u) − ⟨w, u⟩,

the lower semicontinuity and the time continuity of the Et as well as the fact that
lim infr→0 Et+r(ur) = lim infr→0 Et(ur), which follows from the Lipschitz continuity
of the time dependence of the energy functional, the convergence (3.3.5) follows from

Et(u) − ⟨w, u⟩ ≤ lim inf
r→0

(Et+r(ur) − ⟨w, ur⟩)

≤ lim inf
r→0

Φr,t(w;u) ≤ lim sup
r→0

Φr,t(w;u)

≤ lim sup
r→0

(Et+r(u) − ⟨w, u⟩) = Et(u) − ⟨w, u⟩.

We complete the proof of this lemma by showing the last assertion. Let for
0 < r1 < r2 < T − t, uri

∈ Jri,t(w;u), i = 1, 2. Then, there holds

Φr2,t(w;u) − Φr1,t(w;u) − (Et+r2(ur1) − Et+r1(ur1))

≤ r2Ψ
ε
u

(
ur1 − u

r2

)
− r1Ψ

ε
u

(
ur1 − u

r1

)
= (r2 − r1)Ψ εu

(
ur1 − u

r2

)
+ r1

(
Ψ εu

(
ur1 − u

r2

)
− Ψ εu

(
ur1 − u

r1

))
≤ (r2 − r1)

(
Ψ εu

(
ur1 − u

r2

)
−
〈
w1

2,
ur1 − u

r2

〉)
= −(r2 − r1)Ψ ε,∗u (w1

2) ≤ 0, (3.3.9)

where w1
2 = DGΨ

ε
u

(
ur1 −u
r2

)
is the Gâteaux derivative of the regularized dissipation

potential, which exists everywhere in V , and we used in (3.3.9) again Lemma 2.3.1.
Employing (3.Ec), (3.3.1), and the inequality (3.3.4), we obtain

Φr2,t(w;u) ≤ Φr1,t(w;u) + (Et+r2(ur1) − Et+r1(ur1))
≤ Φr1,t(w;u) + (r2 − r1)CG(ur1)
≤ Φr1,t(w;u) + (r2 − r1)CG(u) + (r2 − r1)r1CΨ

ε,∗
u (w)

≤ Φr1,t(w;u) + (r2 − r1)CG(u) + 1
2(r2

2 − r2
1)CΨ ε,∗u (w)
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from which we conclude that the mapping r 7→ Φr,t(w;u) −C(rG(u) + 1
2r

2Ψ ε,∗u (w)) is
non-increasing on (0, T − t) and therefore as a real-valued function almost everywhere
differentiable. Since the latter function is the sum of the regularization r 7→ Φr,t(w;u)
and a differentiable function (in r), we conclude that the mapping r 7→ Φr,t(w;u) is
also almost everywhere differentiable in (0, T − t). Hence, there exists a negligible set
N ⊂ (0, T−t) such that the mapping r 7→ Φr,t(w;u) is differentiable on (0, T−t)\N ,
and we note that the set depends on u and w, i.e., N = Nu,w. Let r ∈ (0, T − t)\N
be arbitrary but fixed, and (hn)n∈N ∈ R>0 be a sequence which converges from above
to zero and whose elements are sufficiently small. Let the sequence (wrn)n∈N ⊂ V ∗ be
given by wrn = DGΨ

ε
u

(
ur−u
r+hn

)
for all n ∈ N. From the demicontinuity of DGΨ

φ
u , we

obtain the weak convergence wrn ⇀ wr =
{
DGΨ

ε
u

(
ur−u
r

)}
in V ∗. Then, by Lemma

2.3.1 and the continuity of Ψ εu (see Remark 3.2.1), we obtain

lim
n→∞

Ψ ε,∗u (wrn) = lim
n→∞

(〈
wrn,

ur − u

r + hn

〉
− Ψ ε

(
ur − u

r + hn

))
=
〈
wr,

ur − u

r

〉
− Ψ ε

(
ur − u

r

)
= Ψ ε,∗u (wr).

Since the mapping r 7→ ur is measurable, inclusion (3.3.3) ensures the measurability of
the mapping r 7→ ξr : (0, T −t) → ∂Et+r(u) given by ξr = w−DGΨu

(
ur−u
r

)
= w−wr.

Finally, by the differentiability of the mapping r 7→ Φr,t(w;u) in r ∈ (0, T − t)\Nu,w,
we deduce from (3.3.9)

d
drΦr,t(w;u)|r=r + Ψ ∗

u(w − ξr) = lim
n→∞

(
Φr+hn,t(w;u) − Φr,t(w;u)

hn
+ Ψ ∗

u(wrn)
)

≤ lim inf
n→∞

(
Et+r+hn(ur) − Et+r(ur)

hn

)
= ∂tEt+r(ur) for a.e. r ∈ (0, T−t),

(3.3.10)

where we also employed Assumption (3.Ec). Integrating (3.3.10) from r = 0 to r = r0
and making use of (3.3.5) leads to the desired result.

If we compare this lemma to the analogous result of Lemma 2.5.2, we see that
the assertions (3.3.3), (3.3.5) and (3.3.6) still hold true while (3.3.4) and (3.3.7) hold
true in a weaker form. This is mainly due to the lack of convexity of E . However,
the shown properties are sufficient to show existence of solutions. In particular, the
inequality (3.3.8) is crucial to obtain the right a priori estimates by choosing r = τ ,
Un
τ = ur, and Un−1

τ = u. It is quite remarkable that one can derive inequality (3.3.8)
without any convexity assumption for Et. It is not obvious how to obtain the term∫ r0

0
Ψ ε,∗u (w − ξr)dr

by only using the fact that ur0 is a minimizer of Φr,t(w;u), which would only lead to

Et+r0(ur0) + r0Ψ
ε
u

(
ur0 − u

r0

)
≤ Et+r0(u) + ⟨w, ur0 − u⟩

= Et(u) +
∫ r0

0
∂tEt+r(u)dr + ⟨w, ur0 − u⟩.
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In the latter inequality, the subgradient ξr = w−DGΨ
ε
(
ur−u
r

)
of the energy functional

Et+r(ur) does not appear so that we would not succeed in deriving a priori estimates
for ξr. However, if Et is convex, then the relation (3.3.3) implies with Lemma 2.2.2
and 2.3.1 that for r = r0, there holds

r0Ψ
ε
u

(
ur0 − u

r0

)
+ r0Ψ

ε,∗
u (w − ξr0)

= ⟨w − ξr0 , ur0 − u⟩,
= ⟨w, ur0 − u⟩ − ⟨ξr0 , ur0 − u⟩
≤ Et+r0(u) − Et+r0(ur0) + ⟨w, ur0 − u⟩

= Et(u) − Et+r0(ur0) +
∫ r0

0
∂tEt+r(u)dr + ⟨w, ur0 − u⟩,

which again leads to appropriate a priori estimates. It seems that the inevitable
assumption is the strong-weak closedness of the graph of the subdifferential ∂Et, i.e.,
Condition (3.Ee) is sufficient to obtain the right estimates.

3.4 Discrete energy-dissipation inequality and a
priori estimates

In this section, we derive with virtue of Lemma 3.3.2 a priori estimates on approximate
solutions. As a result of this, we need to define appropriate interpolations of the
approximative values Uk

τ ∈ V, k = 1, . . . , N, which we call interchangeably, discrete
solutions. To this aim, let for a given time step τ = T/N the initial value U0

τ ∈ D be
given. Furthermore, let (Un

τ )Nn=1 ⊂ D be the sequence of approximate values which
under the assumptions of Lemma 3.3.1 are always existent and are given by the
variational approximation scheme (3.1.5). Then, for a given sequence of approximate
values (Un

τ )Nn=0 ⊂ D, we define the piecewise constant and linear interpolations in
the following way

U τ (0) = U τ (0) = Ûτ (0) := U0
τ and

U τ (t) := Un−1
τ , Ûτ (t) := tn − t

τ
Un−1
τ + t− tn−1

τ
Un
τ for t ∈ [tn−1, tn),

U τ (t) := Un
τ for t ∈ (tn−1, tn] and n = 1, . . . , N. (3.4.1)

It is easy to verify that the piecewise linear interpolation is piecewise differentiable
in the classical sense with the piecewise derivative

Û ′
τ (t) = Un

τ − Un−1
τ

τ
for t ∈ [tn−1, tn), n = 1, . . . , N,

Apart from the piecewise constant and piecewise linear interpolations, which by
themselves are not target-aimed, we need to introduce the so-called De Giorgi
interpolation Ũτ in order to obtain proper estimates and especially the so-called
energy-dissipation estimate.
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The above mentioned De Giorgi variational interpolation Ũτ is defined as any
function whose values satisfies Ũτ (0) := U0

τ ,

Ũτ (t) ∈ Jr,t(B(tn, Un−1
τ );Un−1

τ ) for t = tn−1 + r ∈ (tn−1, tn]
(3.4.2)

and n = 1, 2, . . . , N . Since the De Giorgi scheme (3.4.2) yields the variational
scheme given by (3.1.5) for the choice r = τ , we assume without loss of generality
that all interpolations coincide on the points tn, n = 1, . . . , N , i.e.,

Ũτ (tn) = U τ (tn) = U τ (tn) = Ûτ (tn) = Un
τ for all n = 1, · · · , N.

We make the important observation that by virtue of Lemma 3.3.2, the De Giorgi
interpolation can be chosen to be measurable, since the same lemma ensures the
existence of a measurable selection of the mapping r 7→ ur ∈ Jr,t(w;u).

Furthermore, we introduce for notational reasons the piecewise constant interpola-
tions tτ : [0, T ] → [0, T ] and tτ : [0, T ] → [0, T ] of the time points tn, n = 1, . . . , N :

tτ (0) := 0 and tτ (t) := tn for t ∈ (tn−1, tn], n = 1, . . . , N,
tτ (T ) := T and tτ (t) := tn−1 for t ∈ [tn−1, tn), n = 1, . . . , N.

It is easy to verify that tτ (t) → t and tτ (t) → t as τ → 0.
The following simple example gives a rough idea of the unusually defined De

Giorgi interpolation.

Example 3.4.1 We consider the initial value problemu′(t) = −u(t), t ∈ (0, 6),
u(0) = 2

for which the exact solution is given by u(t) = 2e−t, t ∈ [0, 2]. We discretize the
equation via the implicit Euler scheme with an equidistant step size τ = T/N =
6/6 = 1 so that the grid points are given by tn = n, n = 1, . . . , 6. The De Giorgi
interpolation is then equivalently given by the corresponding Euler-Lagrange
equation

Ũτ (t) − Un−1
τ

t− tn−1
= −Ũτ (t) or Ũτ (t) = Un−1

τ

1 + t− tn−1
for t ∈ (tn−1, tn]

and n = 1, . . . , N . Figure 3.2 illustrates the De Giorgi interpolation in comparison
with the piecewise linear interpolation Ûτ and the exact solution u.

To understand the principle of the De Giorgi interpolation, we consider the
following example of a nonlinear ODE.

Example 3.4.2 We calculate Ũτ associated to the initial value problem We consider
the initial value problem u′(t) = −u2(t), t ∈ (0, 2),

u(0) = 2.



3.4. Discrete energy-dissipation inequality and a priori estimates 69
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ŨτÛτ u
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Figure 3.2: The figure shows the graphs of the piecewise linear interpolation
Ûτ and the De Giorgi interpolation Ũτ both approximating the function u(t) =
2e−t, t ∈ [0, 6].
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τ
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Figure 3.3: The figure shows the graphs of the piecewise constant interpolation
U τ and the De Giorgi interpolation Ũτ both approximating the function u(t) =
(t+ 0.5)−1, t ∈ [0, 2].
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Here, the exact solution to this problem is given by u(t) = (t + 0.5)−1, t ∈ [0, 2].
With the same discretization as above, the De Giorgi interpolation is equivalently
given by

Ũτ (t) − Un−1
τ

t− tn−1
= −Ũ2

τ (t) for t ∈ (tn−1, tn], n = 1, . . . , N. (3.4.3)

Choosing the positive solution to (3.4.3), we obtain the explicit formula

Ũτ (t) =

√
4(t− tn−1)Un−1

τ + 1 − 1
2(t− tn−1)

, for t ∈ (tn−1, tn], n = 1, . . . , N.

Figure 3.3 compares the exact solution to the De Giorgi interpolation. We can
see that Ũτ is a "better" approximation to the exact solution than U τ and Ûτ in the
sense that it catches more of the dynamic of the exact solution. This is because the
De Giorgi interpolation not only approximates, loosely speaking, the exact solution
on the grid points tn but their difference quotient approximates u′ at the same time.
This stems from the fact that the values of Ûτ are in every point determined by
(3.4.3) or more generally by (3.4.4) below. However, the function Ũτ quickly becomes
very difficult for highly nonlinear problems. If we consider the initial value problemu′(t) = −u3(t), t ∈ (0, 2),

u(0) = 2,

then one can show that Ũτ is given by

Ũτ (t) =
3

√
9(t− tn−1)2Un−1

τ +
√

3
√

27(t− tn−1)4(Un−1
τ )2 + 4(t− tn−1)3

3
√

18(t− tn−1)

−
3
√

2
3

3

√
9(t− tn−1)2Un−1

τ +
√

3
√

27(t− tn−1)4(Un−1
τ )2 + 4(t− tn−1)3

for all t ∈ (tn−1, tn] and n = 1, . . . , N. Here, we did not even consider non-
quadratic dissipation potentials. Figure 3.3 illustrates the De Giorgi interpolation
in comparison with the piecewise constant interpolation U τ and the exact solution u.

As we mentioned in the previous example, the De Giorgi variational interpola-
tion Ũτ (t) solves by definition a minimization problem at every time t ∈ (0, T ] so
that Ũτ (t) satisfies the inclusion

DGΨ
ε
Un−1

τ

(
Ũτ (t) − Un−1

τ

t− tn−1

)
+ ∂Et(Ũτ (t)) ∋ B(tn, Un−1

τ ), t ∈ (tn−1, tn] (3.4.4)

for n = 1, . . . , N , whereas the piecewise constant and linear interpolations together
merely satisfy the inclusion (3.4.4) on the gridpoints tn for all n = 1, . . . , N. So,
theoretically, the De Giorgi interpolation may be a better approximation to the
solution of perturbed gradient system (3.0.1) than U τ or Ûτ . In fact, the De Giorgi
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interpolation approximates the solutions just well enough to obtain the right estimate,
the so-called discrete upper energy estimate for the discrete solutions. The latter
estimate is the discrete analogue to the energy-dissipation balance (3.0.7) which is
obtained by plugging in the De Giorgi interpolation into the inequality (3.3.8)
substituting r 7→ ur in Lemma 3.3.2. We will see this in more detail in the following
lemma together with other a priori estimates.

Lemma 3.4.3 (A priori estimates) Let the perturbed gradient system (V, E , Ψ, B)
satisfy the Assumptions (3.Ψ), (3.E) and (3.B). Furthermore, let Ũτ , U τ , U τ and
Ûτ be the interpolations defined in (3.4.1)-(3.4.2) corresponding to an initial datum
U0
τ ∈ D and the step size τ > 0. Then, defining ξτ : [0, T ] → V ∗ by

ξτ (t) = B(tn, Un−1
τ ) −DGΨ

ε
Un−1

τ

(
Ũτ (t) − Un−1

τ

t− tn−1

)
(3.4.5)

for all t = tn−1 + r ∈ (tn−1, tn] and n = 1, . . . , N , there holds

ξτ (t) ∈ ∂Etn−1+r(Ũτ (t)) for all t ∈ (0, T ) (3.4.6)

and the discrete energy-dissipation inequality

Etτ (t)(U τ (t)) +
∫ tτ (t)

tτ (s)

(
Ψ εUτ (r)

(
Û ′
τ (r)

)
+ Ψ ε,∗Uτ (r) (B(tτ (r), U τ (r)) − ξτ (r))

)
dr

≤ Etτ (s)(U τ (s)) +
∫ tτ (t)

tτ (s)
∂rEr(Ũτ (r))dr +

∫ tτ (t)

tτ (s)
⟨B(tτ (r), U τ (r)), Û ′

τ (r)⟩dr (3.4.7)

holds for all 0 ≤ s < t ≤ T and ε > 0. If we additionally assume E0(U0
τ ) ≤ Ĉ for

all sequences of step sizes τ for a constant Ĉ > 0, then there exist positive numbers
M, τ ∗ > 0 such that

sup
t∈[0,T ]

Et(U τ (t)) ≤ M, sup
t∈[0,T ]

Et(Ũτ (t)) ≤ M, (3.4.8)

sup
t∈[0,T ]

∥B(tτ (t), U τ (t))∥∗ ≤ M, sup
t∈(0,T )

|∂tEt(Ũτ (t))| ≤ M, (3.4.9)
∫ T

0

(
Ψ εUτ (r)

(
Û ′
τ (r)

)
+ Ψ ε,∗Uτ (r) (B(tτ (r), U τ (r)) − ξτ (r))

)
dr ≤ M (3.4.10)

holds for all 0 < τ ≤ τ ∗ and uniformly in ε > 0. Besides, (Û ′
τ )0<τ≤τ∗ ⊂ L1(0, T ;V )

and (ξτ )0<τ≤τ∗ ⊂ L1(0, T ;V ∗) are equi-integrable with respect to τ in L1(0, T ;V ) and
L1(0, T ;V ∗), respectively. Finally, there holds

sup
t∈[0,T ]

(
∥U τ (t) − U τ (t)∥ + ∥Ûτ (t) − U τ (t)∥ + +∥Ũτ (t) − U τ (t)∥

)
→ 0 (3.4.11)

as τ → 0.

Proof. The mapping ξτ : [0, T ] → V ∗ satisfying the inclusion (3.4.6) follows from the
variational sum rule (3.3.3) with the choice r = τ, t = tn−1, ur = Ũτ (t), u = Un−1

τ

and w = B(tn, Un−1
τ ), n = 1, . . . , N , satisfying (3.4.6) and (3.4.5). The measurability

of ξτ : (0, T ) → V ∗ is given by Lemma 3.3.2.
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We seek now to show the discrete energy-dissipation inequality. For that, we make
use of inequality (3.3.8) in Lemma 3.3.2 and make the choice t = tn−1, u = Un−1

τ , r0 =
t − tn−1, ur0 = Ũτ (t), ur = Ũτ (tn−1 + r) and ξr = ξτ (tn−1 + r), where t ∈ (tn−1, tn].
Then, after substitution we find

(t− tn−1)Ψ εUn−1
τ

(
Ũτ (t) − Un−1

τ

t− tn−1

)
+
∫ t

tn−1
Ψ ε,∗
Un−1

τ

(
B(tn, Un−1

τ ) − ξτ (r)
)

dr + Et(Ũτ (t))

≤ Etn−1(Un−1
τ ) +

∫ t

tn−1
∂rEr(Ũτ (r))dr + ⟨B(tn, Un−1

τ ), Un
τ − Un−1

τ ⟩ (3.4.12)

for any t ∈ (tn−1, tn] and all n = 1, . . . , N . By choosing t = tn, we obtain particularly∫ tn

tn−1

(
Ψ εUτ (r)

(
Û ′
τ (r)

)
+ Ψ ε,∗Uτ (r) (B(tn, U τ (r)) − ξτ (r))

)
dr + Etn(U τ (tn))

≤ Etn−1(U τ (tn−1)) +
∫ tn

tn−1
∂rEr(Ũτ (r))dr +

∫ tn

tn−1
⟨B(tn, U τ (r)), Û ′

τ (r)⟩dr (3.4.13)

for all n = 1, · · · , N . Then, the discrete energy-dissipation inequality is obtainable
by summing up the inequalities from n = 1 to n = N . We continue with deriving the
estimates (3.4.8)-(5.3.7). We will establish the estimates by using the discrete version
of the Gronwall Lemma. First, from Assumption (3.Bb) and the Fenchel-Young
inequality, we obtain∫ tn

tn−1
⟨B(tn, U τ (r)), Û ′

τ (r)⟩dr

≤ c
∫ tn

tn−1
Ψ εUτ (r)

(
Û ′
τ (r)

)
dr + c

∫ tn

tn−1
Ψ ε,∗Uτ (r)

(
B(tn, U τ (r))

c

)
dr

≤ c
∫ tn

tn−1
Ψ εUτ (r)

(
Û ′
τ (r)

)
dr + τβ(1 + Etn−1(Un−1

τ ))

≤ c
∫ tn

tn−1
Ψ εUτ (r)

(
Û ′
τ (r)

)
dr + τβ(1 +G(Un−1

τ )),

where c ∈ (0, 1) is from Assumption (3.Bb). Together with the latter inequality,
inequality (3.4.13) yields, while employing again Assumption (3.Bb),∫ tn

tn−1

(
(1 − c)Ψ εUτ (r)

(
Û ′
τ (r)

)
+ Ψ ε,∗Uτ (r) (B(tn, U τ (r)) − ξτ (r))

)
dr + Etn(Un

τ )

≤ Etn−1(Un−1
τ ) +

∫ tn

tn−1
∂rEr(Ũτ (r))dr + τβ(1 +G(Un−1

τ ))

≤ Etn−1(Un−1
τ ) + τβ(1 +G(Un−1

τ )) + C1

∫ tn

tn−1
G(Un−1

τ )dr

+ C1

∫ tn

tn−1
(r − tn−1)Ψ ε,∗Un−1

τ
(B(tn, Un−1

τ ))dr (3.4.14)

≤ Etn−1(Un−1
τ ) + τβ(1 +G(Un−1

τ )) + C1

∫ tn

tn−1
G(Un−1

τ )dr

+ C1

∫ tn

tn−1
cτΨ ε,∗Uτ (r)

(
B(tn, U τ (r))

c

)
dr (3.4.15)
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≤ Etn−1(Un−1
τ ) + τβ(1 +G(Un−1

τ )) + C1τG(Un−1
τ )

+ C1τβ(1 +G(Un−1
τ ))

= Etn−1(Un−1
τ ) + τ2(β + C1)G(Un−1

τ ) + 2τ(β + C1) (3.4.16)

for all n = 1, . . . , N and 0 < τ ≤ 1, where in (3.4.14) we used the estimates

∂tEt(Ũτ (t)) ≤ CG(Ũτ (t))
≤ C1(G(Un−1

τ ) + (t− tn−1)Ψ ε,∗Un−1
τ

(B(tn, Un−1
τ ))), t ∈ (tn−1, tn],

(3.4.17)

coming from Lemma 3.3.2 and Assumption (3.Ec). In (3.4.15), we used the fact
that the mapping r 7→ rΨ ε,∗v

(
ξ
r

)
is increasing on (0,+∞) for every v ∈ V, ξ ∈ V ∗,

which follows from the convexity of Ψ ε,∗v on V ∗ and the fact that Ψ ε,∗v (0) = 0 for all
v ∈ U . We set A1 := C1Ĉ + 2C1T (β + C1) and α = 2C1(β + C1), and sum up the
inequalities (3.4.16) to obtain

G(Un
τ ) ≤ C1Etn(Un

τ )

≤ C1

(∫ tn

0

(
(1 − c)Ψ εUτ (r)

(
Û ′
τ (r)

)
+ Ψ ε,∗Uτ (r) (B(tn, U τ (r)) − ξτ (r))

)
dr
)

+ C1Etn(Un
τ ) (3.4.18)

≤ A1 + α
n∑
k=1

τG(Uk−1
τ ) (3.4.19)

for all n = 1, . . . , N and 0 < τ ≤ 1, where we used the non-negativity of the
dissipation potential and its conjugate. Now, for sufficiently small step sizes, i.e.,
τ < min{δ/α, δ} =: τ ∗ for a δ ∈ (0, 1), the discrete Gronwall lemma (Lemma
A.1.2) implies

G(Un
τ ) ≤ A2e

β̃
∑n−1

k=0 τk ≤ A2e
β̃T for all n = 1, . . . , N,

where we set β̃ = α
1−ατ and A2 = A1

1−ατ as well as τ0 = 0, whence the uniform
bound of G(Un

τ ) for all n = 1, . . . , N and 0 < τ < τ ∗. In view of (3.4.17),
(3.4.18), and Assumption (3.Bb) and (3.Ψb), we deduce also the rest of the bounds
in (3.4.8)-(5.3.7). The constant M > 0 can be chosen to be the sum of all
constants obtained from the shown inequalities. We proceed by showing the
equi-integrability of (Û ′

τ )0<τ≤τ∗ , (B(tτ , U τ ))0<τ≤τ∗ and (ξτ )0<τ≤τ∗ in L1(0, T ;V ) and
L1(0, T ;V ∗), respectively. This essentially follows from the superlinear growth of
Ψ εu and Ψ ε,∗u (Assumption (3.Ψb)) with the criterion of De La Vallée Poussin
for equi-integrability. We show the equi-integrability exemplarily for (Û ′

τ )0<τ≤τ∗

without using the weak compactness criterion of De La Vallée Poussin which
actually can be proved along the same lines. Let δ > 0 be an arbitrary positive real
number. Then, for M and M/δ, there exist by Assumption (3.Ψb) positive numbers
K1, K2 > 0 such that

Ψ εu(v) ≥ M

δ
∥v∥ (3.4.20)
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for all v ∈ V with ∥v∥ ≥ K1, and all u ∈ D with G(u) ≤ M . Then, by (3.4.20),
(3.4.8) and (5.3.7), we have

∫
{t∈[0,T ]:∥Û ′

τ (t)∥≥K1}
∥Û ′

τ (t)∥dt ≤ δ

M̃

∫
{t∈[0,T ]:∥Û ′

τ (t)∥≥K1}
Ψ εUτ (t)(Û ′

τ (t))dt ≤ δ

for all 0 < τ ≤ τ ∗, which shows the equi-integrability. Again, in regard to the
superlinear growth of Ψ ε,∗u , it can also be shown that (B(tτ , U τ ) − ξτ )0<τ≤τ∗ is equi-
integrable in L1(0, T ;V ∗). Since B(tτ , U τ )0<τ≤τ∗ is uniformly bounded, we obtain
the equi-integrability of (ξτ )0<τ≤τ∗ in L1(0, T ;V ∗). In order to show the convergences
(3.4.11), we first note that inequality (3.4.12) together with (3.4.8) and (5.3.7) imply

sup
t∈[0,T ]

(t− tτ (t))Ψ εUτ (t)

(
Ũτ (t) − U τ (t)
t− tτ (t)

)
≤ C2

for a constant C2 > 0. Employing once again Assumption (3.Ψb), we obtain for
every R > 0 and γ > 0 a positive constant K > 0 satisfying

γ∥Ũτ (t) − U τ (t)∥ ≤ (t− tτ (t))Ψ εUτ (t)

(
Ũτ (t) − U τ (t)
t− tτ (t)

)
+ (t− tτ (t))γK

≤ M + τγK for all t ∈ [0, T ] and all 0 < τ < τ ∗.

Finally, taking the supremum over all t ∈ [0, T ] and then taking the limes superior
as τ → 0, we obtain

γ lim sup
τ→0

sup
t∈[0,T ]

∥Ũτ (t) − U τ (t)∥ ≤ M (3.4.21)

for any γ > 0, which necessarily yields limτ→0 supt∈[0,T ] ∥Ũτ (t) − U τ (t)∥ = 0.
Choosing in the inequality (3.4.21) specifically t = tn, n = 1, . . . , N , we also obtain
limτ→0 supt∈[0,T ] ∥U τ (t) −U τ (t)∥ = 0, which in turn implies limτ→0 supt∈[0,T ] ∥Ûτ (t) −
U τ (t)∥ = 0 and hence the completion of the proof.

3.5 Compactness and parameterized Young
measures

In this section, we show the compactness of the interpolations in certain spaces.

Lemma 3.5.1 Let the perturbed gradient system (V, E , Ψ, B) be given and satisfy
the Assumption (3.Ψ), (3.E) and (3.B). Let u0 ∈ D and for a sequence (τn)n∈N with
τn → 0 as n → ∞, let (U0

τn
)n∈N ⊂ D be a sequence of initial values fulfilling U0

τn
→ u0

and E0(U0
τn

) → E0(u0) as n → ∞. Furthermore, for n ∈ N, let Ũτn , U τn , U τn
and

Ûτn be the interpolations defined in (3.4.1) and (3.4.2) associated to an initial value
U0
τn

, and ξτn the subgradient of Et satisfying (3.4.6) and (3.4.5). Then, there exists a
subsequence (τnk

)k∈N, an absolutely continuous curve u ∈ AC([0, T ];V ) with u(0) =
u0, an integrable function ξ ∈ L1(0, T ;V ∗), a function E : [0, T ] → R of bounded
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variation, an essentially bounded function P ∈ L∞(0, T ), and a parameterized
Young measure µ = (µt)t∈[0,T ] ∈ Y (0, T ;V × V ∗ × R) such that

Ûτnk
→ u in C([0, T ];V ), (3.5.1a)

U τnk
, U τnk

, Ũτnk
→ u in L∞(0, T ;V ), (3.5.1b)

Û ′
τnk

⇀ u′ in L1(0, T ;V ), (3.5.1c)
ξτnk

⇀ ξ in L1(0, T ;V ∗), (3.5.1d)
B(tτnk

, U τnk
) → B(·, u(·)) in L∞(0, T ;V ∗), (3.5.1e)

∂tEt(Ũτnk
(t)) ∗

⇀ P in L∞(0, T ), (3.5.1f)

as k → ∞, and the weak limits satisfy

u′(t) =
∫
V×V ∗×R

v dµt(v, ζ, p) for a.e. t ∈ (0, T ), (3.5.2a)

ξ(t) =
∫
V×V ∗×R

ζ dµt(v, ζ, p) for a.e. t ∈ (0, T ), (3.5.2b)

P(t) =
∫
V×V ∗×R

p dµt(v, ζ, p) for a.e. t ∈ (0, T ). (3.5.2c)

Finally, there holds

Et(U τnk
(t)) → E (t) as k → ∞ for all t ∈ [0, T ],

Et(u(t)) ≤ E (t) for all t ∈ [0, T ],
E0(u0) = E (0) and Et(u(t)) = E (t) for a.e. t ∈ (0, T ),
P(t) ≤ ∂tEt(u(t)) for a.e. t ∈ (0, T ),
ξ(t) ∈ ∂Et(u(t)) for a.e. t ∈ (0, T ),

(3.5.3)

and the energy-dissipation inequality∫ t

s

(
Ψ εu(r)(u′(r)) + Ψ ε,∗u(r)(B(r, u(r)) − ξ(r))

)
dr + Et(u(t))

≤ E (s) +
∫ t

s
∂tEt(u(t))dr +

∫ t

s
⟨B(r, u(r)), u′(r)⟩dr (3.5.4)

holds for all 0 ≤ s < t ≤ T.

Proof. We fix an arbitrary initial value u0 ∈ D, and for a sequence (τn)n∈N with
τn → 0 as n → ∞, let (U0

τn
)n∈N ⊂ D be such that U0

τn
→ u0 as n → ∞. We assume

without loss of generality that the step sizes are sufficiently small, i.e., τn < τ ∗ for all
n ∈ N. The assertion (3.5.1a) then follows by means of the Arzelà-Ascoli theorem
applied to the continuous functions (Ûτn)n∈N ⊂ C([0, T ];V ): the equi-continuity
of (Ûτn)n∈N is a consequence of the equi-integrability of (Û ′

τn
)n∈N leading to the

Lipschitz continuity of (Ûτn)n∈N with a Lipschitz constant independent of the
step size. Due to (3.4.8), showing that (U τn(t))t∈[0,T ] belongs to a sublevel set of the
energy functional Et independent of n ∈ N, which by Assumption (3.Eb), is supposed
to be compact in V , Mazur’s lemma implies that the convex hull of (U τn(t))t∈[0,T ] is
by itself compact in V , and therefore also (U τn(t))t∈[0,T ] for all n ∈ N. Thus, by the



76 Chapter 3. Perturbed Gradient System

theorem of Arzelà-Ascoli, there exists a subsequence (nk)k∈N and a continuous
function u ∈ C([0, T ];V ) such that Ûτnk

→ u in C([0, T ];V ) as k → ∞, and in
particular u(0) = u0. The convergences in (3.5.1b) follow then from those in (3.4.11).
Continuing, the Dunford-Pettis theorem, see, e.g., Dunford & Schwartz
[65, Corollary 11,p. 294], ensures the compactness of (Û ′

τnk
)n∈N and (ξτnk

)n∈N in
L1(0, T ;V ) and L1(0, T ;V ∗), respectively, with respect to the weak topology, since
both sequences are equi-integrable in the respective spaces. Hence, there exists a
subsequence (labeled as before) and weak limits v ∈ L1(0, T ;V ) and ξ ∈ L1(0, T ;V ∗)
such that Û ′

τnk
⇀ v weakly in L1(0, T ;V ) and ξτnk

⇀ ξ weakly in L1(0, T, V ∗) as
k → ∞. By standard arguments, one can show that u′ = v in the weak sense.
This yields u ∈ W1,1(0, T ;V ), and therefore u ∈ AC([0, T ];V ). We continue with
showing the convergence of the perturbation in (3.5.1e). We first note that by
supt∈[0,T ] Et(U τnk

)(t) ≤ M for all k ∈ N, see (3.4.8), the functions U τnk
and therefore

also U τnk
are contained in a compact subset K ⊂ D ⊂ V uniformly in k ∈ N and

t ∈ [0, T ], since the energy functional has by Condition ((3.Eb)) compact sublevel sets.
By Tychonoff’s theorem, the set [0, T ] × K is compact with respect to the product
topology of [0, T ] × V . Then, Condition (3.Ba) yields the uniform continuity of the
map (t, u) 7→ B(t, u) on [0, T ] × K. Second, the convergences (3.4.11) and (3.5.1a)
together imply (tτnk

(t), U τnk
(t))) → (t, u(t)) uniformly in t ∈ (0, T ) as k → ∞.

Finally, we obtain

lim
n→∞

sup
t∈(0,T )

∥B(tτnk
(t), U τnk

(t)) − B(t, u(t))∥∗ as n → ∞.

In order to show the convergence in (3.5.1f), we note that due to (3.4.8), we have the
uniform bound (∂tEt(Ũτnk

)k∈N ⊂ L∞(0, T ). Thus, since L∞(0, T ) is the dual space
of the separable Banach space L1(0, T ), there exists a weak* limit P ∈ L∞(0, T )
such that, up to a subsequence, there holds ∂tEt(Ũτnk

) ∗
⇀ P weakly∗ in L∞(0, T )

as k → ∞. Now, we aim to show that the weak limits can be expressed via a
parameterized Young measure. We define the product space V := V × V ∗ × R
endowed with the product topology, and for k ∈ N, wk := (Û ′

τnk
, ξτnk

, ∂tEt(Ũτnk
)).

Then, since V is a reflexive Banach space, the space V also becomes a reflexive
Banach space, and the fundamental theorem for weak topologies (Theorem 2.6.1)
ensures, due to the equi-integrability of (wk)k∈N in L1(0, T ; V), the existence of a
Young measure µ = (µt)t∈[0,T ] ∈ Y (0, T ; V) such that the (unique!) weak limit
(u′, ξ,P) ∈ L1(0, T ; V) of the sequence (wk)k∈N satisfies

(u′(t), ξ(t),P(t)) =
∫
V×V ∗×R

(v, ζ, p)dµt(v, ζ, p) for a.e. t ∈ (0, T ),

whence (3.5.2).
We proceed with showing (3.5.3). First, for notational convenience, we define for

all t ∈ [0, T ]

ητ (t) := Etτ (t)(U τ (t)) −
∫ tτ (t)

0
∂rEr(Ũτ (r))dr −

∫ tτ (t)

0
⟨B(tτ (r), U τ (r)), Û ′

τ (r)⟩dr.

Second, considering the non-negativity of Ψ εu and Ψ ε,∗u , from the discrete energy-
dissipation inequality (3.4.7), we deduce that the mapping t 7→ ητ (t) : [0, T ] → R is
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non-increasing. Then, by Helly’s theorem, see, e.g, Ambrosio et al. [10, Lemma
3.3.3, p. 70], there exists a non-increasing function η : [0, T ] → R such that (up to a
subsequence denoted as before) ητnk

(t) → η(t) as k → ∞ for any t ∈ [0, T ]. Defining

ψτ (t) :=
∫ tτ (t)

0
⟨B(tτ (r), U τ (r)), Û ′

τ (r)⟩dr and

ψ(t) :=
∫ t

0
⟨B(r, u(r)), u′(r)⟩dr for all t ∈ [0, T ],

it is, in view of (3.5.1c) and (3.5.1e), easily seen that

ψτnk
(t) → ψ(t) as k → ∞ for all t ∈ [0, T ].

The convergence of ητnk
and ψτnk

together with (3.5.1f) yields the pointwise conver-
gence of the energy functional, i.e.,

Etτnk
(t)(U τnk

(t)) → E (t) := η(t) +
∫ t

0
P(r)dr + ψ(t) as k → ∞ for all t ∈ [0, T ].

We observe that the real-valued function E is a sum of a monotone function η and
absolutely continuous functions ψ and

∫ ·
0 P(r)dr differentiable almost everywhere,

see, e.g., Elstrodt [70, Theorems 4.5, p. 299], and hence differentiable almost
everywhere on (0, T ). Now, we conclude the convergence in (3.5.3) by noting that

|Etτnk
(t)(U τnk

(t)) − Et(U τnk
(t))| → 0 as k → ∞ for all t ∈ [0, T ]

which follows from Lipschitz continuity of the time-dependence of the energy stated
in (3.2.1) and the bound (3.4.8) as well as tτnk

(t) → t as k → ∞ for all t ∈ [0, T ].
Further, from the lower semicontinuity of the energy functional and the convergence
(3.4.11), we obtain

Et(u(t)) ≤ lim inf Et(U τnk
(t)) = E (t) ≤ M for all t ∈ [0, T ],

whereas the last inequality is due to the bound (3.4.8). Moreover, by assumption,
there also holds E (0) = E0(u0). By Theorem 2.6.1, the Young measure µt is for
almost every t ∈ (0, T ) concentrated on the set

Li(t) :=
∞⋂
p=1

closweak
(
{wk(t) : k ≥ p}

)

of all weak limit points of wk(t), meaning that

sppt(µt) := clos{A ∈ B(V) : µt(A) > 0} ⊂ Li(t) ̸= ∅ for a.e. t ∈ (0, T ),

where B(V) denotes the Borel σ-algebra of V4. Let N ⊂ (0, T ) be the negligible
set such that the above-mentioned property holds on all (0, T )\N . Then, for a fixed
t ∈ (0, T )\N and for every w = (v, ζ, p) ∈ Li(t), there holds (up to a subsequence)

4In fact, since V = V × V ∗ × R is a separable metric space, the Borel σ-algebra on V coincides
with the product σ-algebra B(V) = B(V ) ⊗ B(V ∗) ⊗ B(R), see, e.g., Amann & Escher [7,
Theorem 1.15, p. 12].
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Û ′
τnk

(t) ⇀ v, ξτnk
(t) ⇀ ζ and ∂tEt(Ũτnk

(t)) → p as k → ∞, where in the latter
convergence we used the fact that the weak topology and the strong topology
coincide on finite-dimensional spaces. As a consequence of Condition (3.Ee), we have

ζ ∈ ∂Et(u(t)), p ≤ ∂tEt(u(t)) and E (t) = Et(u(t) (3.5.5)
for all (v, ζ, p) ∈ Li(t) for all t ∈ (0, T )\N .

Then, in view of (3.5.2), we find after integration with respect to µt on V that

P(t) =
∫
V×V ∗×R

pdµt(v, ζ, p) ≤ ∂tEt(u(t)) for a.e. t ∈ (0, T ),

ξ(t) =
∫
V×V ∗×R

ζ dµt(v, ζ, p) ∈ ∂Et(u(t)) for a.e. t ∈ (0, T ),

where the last inclusion follows from the fact that the subdifferential ∂Et(u(t)) is
closed and convex for almost every t ∈ (0, T ) and that µt is a probability measure
for all t ∈ [0, T ]. This implies (3.5.3). In order to show the remaining inequalities
(3.5.4), let s, t ∈ [0, T ] be chosen fixed with s < t. We employ Theorem 2.6.1 by
choosing f, fk : [0, T ] × V → R given by

fk(r, w) = Ψ εUτnk
(r)(v) + Ψ ε,∗Uτnk

(r)(ζ)

f(r, w) = Ψ εu(r)(v) + Ψ ε,∗u(r)(ζ), w = (v, ζ, p) ∈ V , r ∈ [s, t],

and f(r, w), fk(r, w) = 0 outside of [s, t], where M > 0 is the constant from the
boundedness in the a priori estimates. From Remark 3.2.1 iii) and the measurability
of U τnk

, k ∈ N, and u, we deduce that the functionals fn and f are weakly normal
integrands for all n ∈ N which satisfy the Condition (2.6.1) of Theorem 2.6.1.
Furthermore, by the a priori estimates (3.4.9) and (5.3.7), the sequence (wk)k∈N is
equi-integrable so that all assumptions of Theorem 2.6.1 are satisfied. Consequently,
there holds ∫ t

s

∫
V
f(r, w)dµr(w)dr ≤ lim inf

k→∞

∫ t

s
f(r, wk(r))dr. (3.5.6)

On the other hand, we have by Jensen’s inequality

Ψ εu(r)(u′(r)) ≤
∫
V×V ∗×R

Ψ εu(r)(v)dµr(v, ζ, p), (3.5.7)

Ψ ε,∗u(r)(B(r, u(r)) − ξ(r))) ≤
∫
V×V ∗×R

Ψ ε,∗u(r)(B(r, u(r)) − ζ)dµr(v, ζ, p) (3.5.8)

for almost every r ∈ (s, t). Integrating the inequalities (3.5.7) and (3.5.8) over the
interval (s, t) and taking into account (3.5.6) yields

∫ t

s
f(r, w(r))dr ≤ lim inf

k→∞

∫ t

s
f(r, wk(r))dr.

Thus, passing to the limit as k → ∞ in the discrete energy-dissipation inequality
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(3.4.7), we obtain

∫ t

s

(
Ψ εu(r)(u′(r)) + Ψ ε,∗u(r)(B(r, u(r)) − ξ(r))

)
dr + Et(u(t))

≤
∫ t

s

∫
V×V ∗×R

(
Ψ εu(r)(v) + Ψ ε,∗u(r)(B(r, u(r)) − ζ)

)
dµr(v, ζ, p) dr + Et(u(t))

≤
∫ t

s

∫
V×V ∗×R

(
Ψ εu(r)(v) + Ψ ε,∗u(r)(B(r, u(r)) − ζ)

)
dµr(v, ζ, p) dr + E (t)

≤ lim inf
k→∞

(∫ t

s

∫
V×V ∗×R

f(r, wk)dµr(v, ζ, p) dr + Etτnk
(t)(U τ (t))

)
≤ lim inf

k→∞

(∫ tτnk
(t)

tτnk
(s)

∫
V×V ∗×R

f(r, wk)dµr(v, ζ, p) dr + Etτnk
(t)(U τ (t))

)

≤ lim inf
k→∞

(
Etτ (s)(U τ (s)) +

∫ tτ (t)

tτ (s)

(
∂rEr(Ũτ (r)) + ⟨B(tτ (r), U τ (r)), Û ′

τ (r)⟩
)

dr
)

= E (s) +
∫ t

s
P(r)dr +

∫ t

s
⟨B(r, u(r)), u′(r)⟩dr

≤ E (s) +
∫ t

s
∂rEr(u(r))dr +

∫ t

s
⟨B(r, u(r)), u′(r)⟩dr (3.5.9)

for all 0 ≤ s < t ≤ T , which proves the assertion of this lemma.

Although we know that

ξτ (t) = B(tτ (t), U τ (t)) −DGΨ
ε
Uτ (t)

(
Ũτ (t) − U τ (t)
t− tτ (t)

)
, for all t ∈ [0, T ],

the strong convergence of the perturbation B and the demicontinuity of DGΨ
ε
Uτ

are
not sufficient to conclude ξ(t) = B(t, u(t)) − DGΨ

ε
u(t)(u′(t)). However, characterizing

the weak limits as parameterized Young measures, we can make this conclusion as
we will see in the following proof of the main result.

3.6 Proof of Theorem 3.2.3

In order to show that the curve u ∈ AC([0, T ];V ) obtained from Lemma 3.5.1 is
a solution to the differential inclusion (3.0.1), we employ the chain rule condition
(3.Ed), which is justified by (3.5.1f), (3.5.2a), (3.5.5), (3.5.7) and (3.5.8), where
µ = (µt)t∈[0,T ] ∈ Y (0, T ;V × V ∗ × R) is to be chosen as in Lemma 3.5.1. Hence, by
the chain rule condition (3.Ed), the mapping t 7→ Et(u(t)) is absolutely continuous
on (0, T ) and there holds

d
dtEt(u(t)) ≥ ⟨ξ(t), u′(t)⟩ − ∂tEt(u(t)) for a.e. t ∈ (0, T ),
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where we have used the characterization (3.5.2b) and (3.5.3). Thus, together with
(3.5.3), (3.5.2c) and (3.5.9), there holds for s = 0

∫ t

0

(
Ψ εu(r)(u′(r)) + Ψ ε,∗u(r)(B(r, u(r)) − ξ(r))

)
dr + Et(u(t))

≤ E0(u0) +
∫ t

0
∂rEr(u(r))dr +

∫ t

0
⟨B(r, u(r)), u′(r)⟩dr

≤ Et(u(t)) −
∫ t

0
⟨ξ(r), u′(r)⟩dr +

∫ t

0
⟨B(r, u(r)), u′(r)⟩dr

= Et(u(t)) +
∫ t

0
⟨B(r, u(r)) − ξ(r), u′(r)⟩dr for all t ∈ (0, T ).

Therefore, we obtain
∫ t

0
Ψ εu(r)(u′(r)) + Ψ ε,∗u(r)(B(r, u(r)) − ξ(r)) − ⟨B(r, u(r)) − ξ(r), u′(r)⟩)dr ≤ 0

(3.6.1)

for all t ∈ (0, T ). Then, from the Fenchel-Young inequality we deduce the
non-negativity of the integrand in (3.6.1) and infer

Ψ εu(t)(u′(t)) + Ψ ε,∗u(t)(B(t, u(t)) − ξ(t)) − ⟨B(t, u(t)) − ξ(t), u′(t)⟩ = 0 for a.e. t ∈ (0, T ).

By Lemma 2.3.1, this implies in fact that

ξ(t) = B(t, u(t)) − DGΨ
ε
u(t)(u′(t)) for a.e. t ∈ (0, T ).

Furthermore, by Lemma 3.5.1, there holds

ξ(t) =
∫
V×V ∗×R

ζ dµt(v, ζ, p) ∈ ∂Et(u(t)) for a.e. t ∈ (0, T ),

which shows that the couple (u, ξ) is a solution of the regularized perturbed gradient
system (V, E , Ψ ε, B) and in particular fulfills the energy-dissipation balance (3.2.7).
For each ε ∈ (0, 1], we denote with (uε, ξε) the couple of solutions of (V, E , Ψ ε, B).
Now, we want to pass to the limit with ε ↘ 0 and want to show that the couple
(uε, ξε) converge to a solution to the limiting system (V, E , Ψ 0, B) = (V, E , Ψ, B). The
steps are essentially the same as before:

1. We derive a priori estimates based on the energy-dissipation balance (3.2.7),

2. We show compactness of the solutions uε and the pointwise subgradients
ξε = B(·, uε) − DGΨ

ε(u′
ε) of E(uε) in appropriate spaces,

3. With the aid of Young measures, we pass to the limit as ε ↘ 0.

Therefore, we do not give all of the details of the proof and refer to the full proof of
the aforementioned lemmas. Instead, we highlight the difference from the previous
steps which mostly relies on Lemma 3.2.4 and the continuity of the dissipation
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potential in the sense of Mosco-convergence.
Ad 1. Starting from the energy-dissipation balance

Et(uε(t)) +
∫ t

0

(
Ψ εuε(r)(u′

ε(r)) + Ψ ε,∗uε(r)

(
B(r, uε(r)) − ξε(r)

))
dr

= E0(uε(0)) +
∫ t

0

(
∂rEt(uε(r)) +

〈
B(r, uε(r)), u′

ε(t)
〉)

dr

and proceeding in the exact same way as before, we obtain with the Gronwall
lemma (Lemma A.1.1) a constant M = M(E0(u0), T ) > 0 such that the bounds

sup
t∈[0,T ]

Eεt (uε(t)) ≤ M,

sup
t∈[0,T ]

∥Bε(t, uε(t))∥∗ ≤ M, sup
t∈(0,T )

|∂tEεt (uε(t))| ≤ M,

∫ T

0

(
Ψ εuε(r) (uε(r))) + Ψ ε,∗uε(r) (Bε(r, uε(r)) − ξε(r))

)
dr ≤ M

hold for all 0 ≤ ε ≤ 1. Besides, (u′
ε)0≤ε≤1 ⊂ L1(0, T ;V ) and (ξε)0≤ε≤1 ⊂ L1(0, T ;V ∗)

are equi-integrable with respect to ε in L1(0, T ;V ) and L1(0, T ;V ∗), respectively. The
equi-integrability follows from the fact that the dissipation potential and its conjugate
are superlinear uniformly in ε > 0 and on sublevels of the energy, which follows from
Lemma 3.2.4, and the criterion of de la Vallée-Poussin for equi-integrability.
Ad 2. For every vanishing sequence εk → 0, we find in the same manner as
Lemma 3.5.1, there exists a subsequence (labeled as before), an absolutely continuous
curve u ∈ AC([0, T ];V ) with u(0) = u0, an integrable function ξ ∈ L1(0, T ;V ∗), a
function E 0 : [0, T ] → R of bounded variation, an essentially bounded function P0 ∈
L∞(0, T ∗), and a parameterized Young measure ν = (νt)t∈[0,T ] ∈ Y (0, T ;V ×V ∗×R)
such that

uεk
→ u in C([0, T ];V ),

u′
εk
⇀ u′ in L1(0, T ;V ),

ξεk
⇀ ξ in L1(0, T ;V ∗),

B(·, uεk
(·)) → B0(·, u(·)) in L∞(0, T ;V ∗),
∂tEt(uεk

) ∗
⇀ P0 in L∞(0, T ),

as k → ∞, and the weak limits satisfy

u′(t) =
∫
V×V ∗×R

v dνt(v, ζ, p) for a.e. t ∈ (0, T ),

ξ(t) =
∫
V×V ∗×R

ζ dνt(v, ζ, p) for a.e. t ∈ (0, T ),

P0(t) =
∫
V×V ∗×R

p dνt(v, ζ, p) for a.e. t ∈ (0, T ).

Furthermore, there holds
Et(uεk

(t)) → E 0(t) as k → ∞ for all t ∈ [0, T ],
Et(u(t)) ≤ E 0(t) for all t ∈ [0, T ],
E0(u0) = E 0(0) and Et(u(t)) = E 0(t) for a.e. t ∈ (0, T ),
P0(t) ≤ ∂tEt(u(t)) for a.e. t ∈ (0, T ).
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and the inequality∫ t

s

(
Ψu(r)(u′(r)) + Ψ ∗

u(r)(B(r, u(r)) − ξ(r))
)

dr + Et(u(t))

≤
∫ t

s

∫
V×V ∗×R

(
Ψu(r)(v) + Ψ ∗

u(r)(B(r, u(r)) − ζ)
)

dµr(v, ζ, p) dr + Et(u(t))

≤ E 0(s) +
∫ t

s
∂tEt(u(t))dr +

∫ t

s
⟨B(r, u(r)), u′(r)⟩dr (3.6.4)

holds for all 0 ≤ s < t ≤ T . Here, in order to establish the inequality (3.6.4), we
use the Mosco-convergence Ψ εk

uεk

M−→ Ψu as k → ∞ and Theorem 2.6.1 by choosing
f, fk : [0, T ∗] × V → R by

fk(r, w) = Ψ εk

uεk
(r)(v) + Ψ εk,∗

uεk
(r)(ζ)

f(r, w) = Ψu(r)(v) + Ψ ∗
u(r)(ζ), w = (v, ζ, p) ∈ V , r ∈ [s, t],

and f(r, w), fk(r, w) = 0 outside of [s, t].
Ad 3. This part of the proof follows the same steps as the part where we show that
uεk

is a solution to the regularized perturbed gradient system (V, E , Ψ ε, B).

Remark 3.6.1 Along the same lines as the proof of Theorem 4.4 in Mielke et al.
[122], it can be proven that (up to a subsequence) the following convergences hold:

Et(uεk
(t)) → Et(u(t)),∫ s

r
Ψ εk

uεk
(t)(u

′
εk

(t))dt →
∫ s

r
Ψu(t)(u′(t))dt,∫ s

r
Ψ ∗
uεk

(t)

(
B(t, uεk

(t))−ξεk
(t)
)

dt →
∫ s

r
Ψ ∗
u(t)

(
B(t, u(t))−ξ(t)

)
dt

as k → ∞ for all 0 ≤ s < t ≤ T . Furthermore, if we additionally assume that the
dissipation potential Ψu and its conjugate Ψ ∗

u are strictly convex for all u ∈ V , then
we obtain the pointwise weak convergences

u′
εk

(t) ⇀ u′(t) and ξεnk
(t) ⇀ ξ(t) for a.e. t ∈ (0, T ).

In fact, it is feasible to show a more general existence result based on the so-called
evolutionary Γ -convergence where one shows that solutions to a perturbed gradient
system

Bε(t, u(t)) ∈ ∂Ψ εu(t)(u′(t)) + ∂Eεt (u(t))

which depends on a parameter ε, converge to a solution of the limiting (effective)
system (V, E0, Ψ 0, B0) under the assumption that Eεt → Et in the sense of Γ -
convergence, Ψ εu → Ψ 0

u in the sense of Mosco-convergence,Bε → B uniformly
on [0, T ] × V , see [21, 122].



Chapter 4

Application

In this chapter, we provide a nontrivial example of our abstract existence result
formulated in Theorem 3.2.3, which was developed and proven in Chapter 3. Before
we start with the example, we want to fix the notation.

In the following example, let d,m ∈ N and Ω ⊂ Rd be a bounded domain with a
Lipschitz boundary ∂Ω with the outward-pointing unit normal vector ν on the
boundary, T > 0 and ΩT := Ω × (0, T ). We denote the multi-dimensional vectors
and matrices with bold letters and the one-dimensional objects with small letters.
For two vectors x,y ∈ Rd and two matrices A,B ∈ Rd,m, the Euclidian and the
Frobenius scalar product are given by

x ·y =
d∑
i=1

xiyi and A :B =
d,m∑
i,j=1

Ai,jBi,j, respectively.

The norms on Rd and Rd,m induced by the Euclidian and the Frobenius scalar
product, respectively, are both denoted by | · |. Furthermore, for a real valued
function h : Ω → R and a vector valued function h : Ω → Rm,x 7→ h(x) :=
(h1(x), . . . , hm(x)), the nabla operator ∇ is defined as

∇h(x) =
(
∂h

∂xi
(x)

)d
i=1

and ∇h(x) =
(
∂hi
∂xj

(x)
)m,d
i,j=1

, x ∈ Ω.

For a vector valued function g : Ω → Rd,x 7→ g(x) := (g1(x), . . . , gd(x)) and a
matrix valued function A : Ω → Rm×d,x 7→ A(x) := (Aij(x))m,di,j=1, the divergence is
defined as

∇ · g(x) = div(g(x)) =
d∑
i=1

∂gi
∂xi

(x) and ∇ ·A(x) =
m,d∑
i,j=1

∂Ai,j
∂xj

(x)ej,

where ej ∈ Rd is the j-th standard unit vector. Finally, the Laplace operator
is defined by ∆ = ∇ · ∇ = ∇2. Higher order Laplacian’s are also denoted
by ∆k and we denote ∇k = ∆k/2 if k ∈ 2N or ∇k = ∇∆(k−1)/2 otherwise. For
p ≥ 1, the p-Laplace of the vector valued function h : Ω → Rm is defined
by ∆ph(x) = ∇ · (|∇h(x)|p−2∇h(x)) ,x ∈ Ω. For notational convenience, we
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use the short-hand notations ∂t = ∂
∂t

and ∂tt = ∂2

∂t2
for the first and second time

derivatives, respectively. For the Lebesgue and Sobolev spaces1, we use the
usual notation Lp(Ω)m and Wk,p(Ω)m for p ∈ [1,+∞] and k ∈ N equipped with the
standard norms, respectively. The space of functions in Wk,p(Ω)m with zero trace
is denoted by Wk,p

0 (Ω)m. For p = 2, we use the notation Hk(Ω)m = Wk,p(Ω)m
and Hk

0(Ω)m = Wk,p
0 (Ω)m. Furthermore, we will not distinguish between the

abstract function ũ and the concrete function u, which are related to each other via
[ũ(t)](x) = u(x, t). Finally, C > 0 denotes a generic constant.

We consider an initial-boundary value problem supplemented with nonlinear constraints
which has, in a modified version and without perturbation, been studied in Mielke
et al. [122]. The governing equations are given

(P1)



Dvψ(x,u, ∂tu) + p −∆pu + DW (u) + ∂ıK(u) + b (x, t,u) ∋ f in ΩT ,

p(x, t) ∈ Sgn (∂tu(x, t)) a.e. in ΩT ,

u(x, t) ∈ K a.e. in ΩT ,

u(x, 0) = u0(x) on Ω,

u(x, t) = 0 on ∂Ω × [0, T ],

where p ≥ 2, K ⊂ Rm is a compact and convex set, Sgn : Rd×m ⇒ Rd×m

Sgn(A) =

BRd×m(0, 1) if A = 0
A

|A| otherwise,
(4.0.1)

is the multi-valued and multi-dimensional sign function, and ıK → {0,+∞} denotes
the indicator function on K defined by

ıK(A) =

0 if A ∈ K

+∞ otherweise.

We could have also imposed other types of boundary conditions as non-homogeneous
Dirichlet, Neumann, or mixed boundary conditions which can be incorporated
into the energy functional or into the space, see, e.g., [69, 122, 143, 144], where these
cases have been considered.

Furthermore, we impose the following conditions on ψ, W , b and f . We start
with the assumptions on ψ.

(4.0.a) The function ψ : Ω × Rm × Rm → [0,+∞) is a Carathéodory function
such that ψ(x,y, ·) is a proper, convex, Gâteaux differentiable functional
with derivative Dzψ with respect to the third variable, and ψ(x,y, 0) = 0 for
almost every x ∈ Ω and all y ∈ K.

(4.0.b) The functional ψ satisfies the following growth condition: there exists a
number q > 1 and positive constants cψ, Cψ > 0 such that

cψ (|z|q − 1) ≤ ψ(x,y, z) ≤ Cψ (1 + |z|q) (4.0.2)

for a.e. x ∈ Ω and all z,∈ Rm,y ∈ K.
1See Brézis [35, Chapter 4 & 9] or Dobrowolski [62, Kapitel 4 & 5] for a definition and a

detailed discussion of the Lebesgue and Sobolev spcaes.



85

(4.0.c) The function W ∈ C1(Rm;R) is λ-convex and bounded from below.

(4.0.d) The function b : Ω × [0, T ] ×Rm → Rm is a Carathéodory function in the
sense that b(x, ·, ·) is continuous for almost every x ∈ Ω and that b(·, t,y) is
measurable for all t ∈ [0, T ] and y ∈ Rm.

(4.0.e) There exists a function h ∈ Lp∗(Ω) and a constant Cb > 0 such that

|b(x, t,y)| ≤ h(x) + Cb for a.e. x ∈ Ω, and all t ∈ [0, T ],y ∈ K. (4.0.3)

(4.0.f) There holds f ∈ C1([0, T ]; W−1,p∗(Ω)d).

Here, we assume for simplicity the (Gâteaux) differentiability of W and the
λ-convexity of W . More general nonsmooth functions in the form W = W1 − W2
with W1 being convex and W2 being convex or continuously differentiable where both
functionals satisfying certain growth conditions, see, e.g., [122, 142, 143, 148]. For the
external force, we could in fact assume f ∈ C1([0, T ]; W−1,p′(Ω)d)+C([0, T ]; Lp∗(Ω)m)
by treating the part from C([0, T ]; Lp∗(Ω)m) as perturbation.

Simple examples for ψ and b might be ψ(x,y, z) = ψ(z) = 1
q
|z|q, z ∈ Rm,

b(x, t,y) = b(y) = g(|y|),y ∈ Rm for any continuous function g ∈ C(R). Admissible
choices for W are the double-well potential W (z) = 1

4(|z|2 −1)2 = 1
4 (|z|4 + 1)− 1

2 |z|2,
or in a more general setting, the logarithmic potential

W (z) =

(z − z1)ln(z − z1) + (z2 − z)ln(z2 − z) − λ
2z

2 if z1 < z < z2

+∞, otherwise

if m = 1, where −∞ < z1 < z2 < +∞ are real numbers. It is easy to verify that
both functions are λ-convex.

Accordingly, we have V = Lq(Ω)m. Then, the energy functional Et : V → (−∞,+∞]
is given by

Et(u) =


∫
Ω

(
1
p
|∇u(x)|p +W (u(x)) +ıK(u(x)) −⟨f(t),u⟩W1,p

0

)
dx if u ∈ D,

+∞ otherwise,

where D := dom(Et) and ⟨·, ·⟩W1,p
0

is a shorthand notation for the duality pairing
between W1,p

0 (Ω)m and W−1,p∗(Ω)m. In order for the energy functional to be finite,
it must be true that u ∈ K a.e. in Ω, which implies u ∈ L∞(Ω)d. Therefore, by
the continuity of W , there holds

∫
ΩW (u(x)) dx < +∞ for all u ∈ D. Hence, we

have the characterization D = {u ∈ W1,p
0 (Ω)d ∩ L∞(Ω)d : u(x) ∈ K a.e. in Ω}. The

dissipation potential Ψ : V → R is given by

Ψu(v) =
∫
Ω

(ψ(x,u(x),v(x)) + |v(x)|) dx, v ∈ V,u ∈ D,

and the perturbation B : D → V ∗ by

⟨B(t,u),w⟩V ∗×V =
∫
Ω

−b(x, t,u(x)) · w(x)dx, u ∈ D,w ∈ V.
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From the Assumptions (4.0.b) and (4.0.d), the functional Ψu and the operator B are
well-defined. The conjugate Ψ ∗

u : V ∗ → R is with Lemma 2.3.5 and Ekeland &
Temam [69, Proposition 1.2, p. 78] given by the formula

Ψ ∗
u(ξ) =

∫
Ω

min
η∈B(0,1)

(ψ∗(x,u(x),η − ξ(x))) dx, ξ ∈ V ∗,u ∈ D,

where we have used the fact that (| · |)∗ = ıB(0,1). Once again, we want to prove that
under (4.0.a)-(4.0.f) the Conditions (4.Ψ), (4.E) and (4.B) are fulfilled.

We start with the dissipation potential and observe that it is readily seen by the
assumptions that Ψu is a lower semicontinuous and convex functional with Ψu(0),
which in turn implies these properties for Ψ ∗

u for all u ∈ D as we pointed out in
Remark 3.2.1 i) and thus (3.Ψa). By Assumption (4.0.2), for all R > 0, there exist
constants c̃Rψ , C̃R

ψ > 0 such that

c̃ψ(∥v∥qV − 1) ≤ Ψu(v) ≤ C̃ψ(∥v∥qV + 1) for all v,∈ V,u ∈ D,G(u) ≤ R,

where G = supt∈[0,T ] Et. Thus, we obtain for the conjugate

c∗(∥v∥q∗V ∗ − 1) ≤ Ψ ∗
u(v) ≤ C∗(∥v∥q∗V ∗ + 1) for all v,∈ V,u ∈ D

for constants c∗, C∗ > 0, where q∗ = q/(q − 1) > 1 is the conjugate exponent to
q. Thus, Condition (3.Ψb) is fulfilled. The sequential lower semicontinuity of the
integrals Ψu and Ψ ∗

u follows from the assumptions on ψ, the compact embedding
(4.0.4), and Ioffe [95, Theorem 3], which implies (3.Ψc). The subdifferential of Ψu

is according to Lemma 2.3.1 characterized by

η ∈ ∂Ψu(v) iff η(x) ∈ Dvψ(x,u(x),v(x)) + Sgn(v(x)) for a.e. x ∈ Ω

for all u ∈ D,v ∈ V .
We continue with showing the conditions for the energy functional. In order

to show the sequential lower semicontinuity of Et, we show that all sublevel sets
Ja := {v ∈ V : Et(v) ≤ a} are closed in V for all a ∈ R and t ∈ [0, T ]. So, let
t ∈ [0, T ], a ∈ R and un → u in V as n → ∞ be a strongly converging sequence
in V with un ∈ Ja for all n ∈ N. Then, obviously un ∈ D for all n ∈ N and
the sequence (un)n∈N is bounded in W1,p

0 (Ω)m. Hence, there exists a subsequence
(relabeled as before) such that un ⇀ u in W1,p

0 (Ω)m and un(x) → u(x) a.e. in Ω as
un → u, where the latter convergence follows from the converse of the dominated
convergence theorem, see, e.g., Brézis [35, Theorem 4.9, p. 94]. Since K is compact
and un(x) ∈ K a.e. in Ω for all n ∈ N, there holds u(x) ∈ K a.e. in Ω as well. We
obtain with the lemma of Fatou (see, e.g., Brézis [35, Lemma 4.1, p. 90])

Et(u) ≤ lim inf
n→∞

∫
Ω

(1
p

|∇un(x)|p +W (un(x)) +ıK(un(x)) −⟨f(t),un⟩W1,p
0

)
dx

≤ a

from which u ∈ Ja follows. Together with the compact embedding

L∞(Ω)m ∩ W1,p(Ω)m c
↪→ Ls(Ω)m for all s ∈ [1,+∞), (4.0.4)
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which follows from the Rellich–Kondrachov theorem (see, e.g., Brézis [35,
Theorem 9.16, p. 285]) and an interpolation between the Lebesgue spaces, this
implies that Et also has compact sublevels sets in V for every t ∈ [0, T ]. Hence,
(3.Ea) and (3.Eb) are fulfilled. The condition (3.Ec) is due to (4.0.f) obviously
fulfilled. Now, we want to verify the chain rule condition (3.Ed) and the strong-weak
closedness condition (3.Ee). To do so, we show that Et is Λ-convex uniformly in
t ∈ [0, T ], since in that case the energy functional complies with (3.Ed) and (3.Ee)
by Remark 3.2.2. First, the λ-convexity of W yields

Et(θv + (1 − θ)w) ≤ θEt(v) + (1 − θ)Et(w) + λ(1 − θ)θ∥v − w∥2
L2

≤ θEt(v) + (1 − θ)Et(w) + λC(1 − θ)θ∥v − w∥2
Lp

for all v,w ∈ D, t ∈ [0, T ], and θ ∈ (0, 1), where we used the Hölder inequality.
Therefore, there exists a Λ > 0 such that Et is Λ-convex uniformly in t ∈ [0, T ]. Since
the λ-convex part of the energy functional is Fréchet differentiable, we obtain with
Lemma 2.2.5 and Lemma 2.2.7 that

ξ ∈ ∂Et(u) iff ξ(x) = −∆pu(x) + DW (u(x)) + ∂ıK(u(x)) for a.e. x ∈ Ω

for all u ∈ D, where in turn η(x) ∈ ∂ıK(u(x)) ⊂ V ∗ = Lp∗(Ω)m if and only if∫
Ω
η(x)w(x)dx ≤

∫
Ω
η(x)v(x)dx

for all w ∈ V with w(x) ∈ K a.e. in Ω, which follows from (2.2.3).

Finally, we show that the perturbation B fulfills Conditions (3.Ba) and (3.Bb).
We first show that B is continuous on sublevel sets of Et. Therefore, let tn → t in
[0, T ] and un → u in V as n → ∞ and supn∈N,t∈[0,T ] Et(un) < +∞. Therefore, there
exists a subsequence (labeled as before) such that un(x) → u(x) as n → ∞ for a.e.
x ∈ Ω. Since b is a Carathéodory function, we infer that

lim
n→∞

|b(x, tn,un(x)) − b(x, t,u(x))| = 0 for a.e. x ∈ Ω

and by (4.0.3)

|b(x, tn,un(x)) − b(x, t,u(x))| ≤ |b(x, tn,un(x))| + |b(x, t,u(x))|
≤ 2h(x)2Cb, for a.e. x ∈ Ω,

where we have taken into account that (un)n∈N and u are in the domain of Et
and therefore takes their values in K almost everywhere. Thus, by the dominated
convergence theorem, there holds

lim
n→∞

∥B(tn,un) − B(t,u)∥V

lim
n→∞

= sup
w∈V ∗,∥w∥V ∗ ≤1

∫
Ω

(−(b(x, tn,un(x)) − b(x, t,u(x))) · w(x)) dx

lim
n→∞

≤
(∫

Ω
|b(x, tn,un(x)) − b(x, t,u(x))|q

∗
dx
) 1

q∗

.
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We continue by verifying that B is controlled in terms of Ψu and Et. Let c ∈ (0, 1),
then employing Hölder’s and Young’s inequality with ε ∈ (0, 1

p
)

c ψ∗
u

(
B(t,u)

c

)
≤ cC∗

∥∥∥∥∥B(t,u)
c

∥∥∥∥∥
q∗

Lq∗ (Ω)m

+ 1


≤ C
(
∥h+ Cb∥q

∗

Lq∗ (Ω)m + 1
)

≤ C
(
∥h∥q

∗

Lq∗ (Ω) + 1
)

≤ C
((1

p
− ε

)
∥∇u∥pLp(Ω)d×m + ∥h∥q

∗

Lq∗ (Ω)

− Cε,p,p∗∥f(t)∥p
∗

W−1,p∗ (Ω)m + Cε,p,p∗∥f(t)∥p
∗

W−1,p∗ (Ω)m + 1
)

≤ C
(1
p

∥∇u∥pLp(Ω)d×m + ⟨f(t),u⟩W1,p
0

+ ∥h∥q
∗

Lq∗ (Ω)

+ cε,p,p∗∥f∥p
∗

C([0,T ];W−1,p∗ (Ω)m) + 1
)

≤ β (Et(u) + 1) for all u ∈ D, t ∈ [0, T ],

for a constant β = β(f , h, p, q,K,Ω) > 0, where Cε,p,p∗ = (p∗(εp)
1

(p−1) )−1. Hence,
Condition (3.Ba) and (3.Bb) are fulfilled as well. Therefore, by Theorem 3.2.3, for
all u0 ∈ D, there exists an absolutely continuous function u ∈ AC([0, T ];V ) solving
(P1) in V ∗ = Lp∗(Ω)m such that the mapping t 7→ Et(u(t)) is absolutely continuous,
and the energy-dissipation balance holds

1
p

|u(t)|W1,p
0 (Ω)m +

∫
Ω
W (u(t))dx + ⟨f(t),u(t)⟩W1,p

0

+
∫ t

0

∫
Ω

(ψ(x,u(x, r), ∂tu(x, r)) + |∂tu(x, r)|) dxdr

+
∫ t

0

∫
Ω

min
η∈B(0,1)

(ψ∗(x,u(x, r),η + b(x, t,u(x, t) + ξ(x, t)))) dxdr

= 1
p

|u(s)|W1,p
0 (Ω)m +

∫
Ω
W (u(s))dx + ⟨f ′(s),u(s)⟩W1,p

0

+
∫ t

s
⟨f(r),u′(r)⟩W1,p

0
dr −

∫ t

s

∫
Ω
b(x, t,u(x, t)) · ∂ru(x, r)dxdr

for all s, t ∈ [0, T ], where ξ(t) ∈ ∂Et(u(t)) = ∆pu(t) + DW (u(t)) + ∂ıK(u(t)) a.e. in
(0, T ).
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Order



Chapter 5

Linearly damped Inertial System

In this chapter, we investigate the abstract Cauchy problemu′′(t) + ∂Ψ(u′(t)) + ∂Et(u(t)) + B(t, u(t), u′(t)) ∋ f(t), t ∈ (0, T ),
u(0) = u0, u′(0) = v0,

(5.0.1)

where Ψ is the dissipation potential, Et the energy functional, B the perturbation, and
f the external force. The functionals and operators are defined on suitable spaces,
which will be specified below. Here, the main assumptions are that the leading part of
Ψ is defined by a strongly positive, symmetric, and bounded bilinear form a, the energy
functional Et is λ-convex, and the perturbation B is a strongly continuous perturbation
of ∂Ψ and ∂Et. Within the above-mentioned class of dissipation potentials, we
consider the following two cases separately: in the first case (Case (a)), we assume
that Ψ(v) = a(v, v) and in the second case (Case (b)), we assume that Ψ = Ψ1 + Ψ2,
where Ψ1(v) = a(v, v) and Ψ2 is a strongly continuous and convex perturbation.
Furthermore, we will specifically consider the case when Et is convex. As already
mentioned in Section 1.2, the energy functional and the dissipation potential are in
general, defined on different spaces. An illustrative example in the smooth setting
that satisfies all assumptions above is given by

∂ttu− ∇ ·
(
A∇∂tu

)
+ ν |∂tu|q−2 ∂tu− ∇ ·

(
|∇u|p−2∇u

)
+W ′(u) + b(u, ∂tu) = f,

where p, q > 1 are to be chosen suitably, ν ≥ 0, A : Rd → Rd is a linear, symmetric,
and elliptic operator, W : R → R is a double-well potential given by W (u) =
1
4(u2 − 1)2, b : R → R a lower order perturbation, and f : R → R an external force.
The energy functional and the dissipation potential are given by

E(u) =
∫
Ω

(
1
p

|∇u(x)|p + 1
4(u2(x) − 1)2

)
dx

and

Ψ(v) =
∫
Ω

(
A(x)∇v(x) · ∇v(x) + ν

q
|v(x)|q

)
dx

and the perturbation is (formally) given by

⟨B(u, v), w⟩L2 =
∫
Ω
b(u(x), v(x))w(x)dx.
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Note that if ν = 0, we are in Case (a) and if ν > 0, we are in Case (b). More, in
particular, multi-valued applications will be discussed in Section 7.1 and 7.2.

5.1 Topological assumptions and main result

In the following, let (U, ∥·∥U ), (V, ∥·∥V ), (W, ∥·∥W ) and (W̃ , ∥·∥
W̃

) be real, separable,
and reflexive Banach spaces and let (H, | · |, (·, ·)) be a Hilbert space with norm
| · | induced by the inner product (·, ·).
We will assume the dense, continuous and compact embeddingsU ∩ V

d
↪→ U

c,d
↪→ W̃

d
↪→ H ∼= H∗ d

↪→ W̃ ∗ d
↪→ U∗ d

↪→ V ∗ + U∗

U ∩ V
d
↪→ V

c,d
↪→ W

d
↪→ H ∼= H∗ d

↪→ W ∗ d
↪→ V ∗ d

↪→ V ∗ + U∗

and if the perturbation does not explicitly depend on u or u′, then we do not need to
assume U c

↪→ W̃ or V c
↪→ W , respectively, but instead that V c

↪→ H. We stress that we
neither assume U ↪→ V nor V ↪→ U . The spaces can coincide if a certain embedding
is not assumed to be compact. For instance, the cases V = U , W̃ = H or W = H
are admissible. Introducing the spaces W and W̃ allows us to make use of the finer
structure of the spaces which enables us to treat additional nonlinearities of lower
order. As examples for the appearing spaces, we can think of the Sobolev spaces
U = Wk,p(Ω), V = Hl(Ω) and the Lebesgue spaces W = Lq(Ω) and H = L2(Ω)
or U = Wk,p(Ω), V = Ws,p(Ω), W = Hl(Ω) and H = L2(Ω) for suitably chosen
numbers k, l ∈ N and real values s, p, q > 0.

Before we present the precise assumptions on the functionals and the operators,
we recall some functional analytical facts. First, the space U ∩ V equipped with
the norm ∥ · ∥U∩V = ∥ · ∥U + ∥ · ∥V is a separable and reflexive Banach space
and the dual space is given by (U ∩ V )∗ = U∗ + V ∗ with the norm ∥ξ∥U∗+V ∗ =
infξ1∈U∗,ξ2∈V ∗

ξ=ξ1+ξ2

max{∥ξ1∥U∗ , ∥ξ2∥V ∗}, see Example 2.3.6. Furthermore, the duality
pairing between U ∩ V and U∗ + V ∗ is given by

⟨f, v⟩(U∗+V ∗)×(U∩V ) = ⟨f1, u⟩U∗×U + ⟨f2, u⟩V ∗×V , u ∈ U ∩ V,

for all v ∈ U ∩ V and any partition f = f1 + f2 with f1 ∈ U and f2 ∈ V . Second,
for any p ∈ [1,+∞], there holds Lp(0, T ;U) ∩ Lp(0, T ;V ) = Lp(0, T ;U ∩ V ), where
the measurability immediately follows from the Pettis theorem, see, e.g., Diestel
& Uhl [58, Theorem 2, p. 42]. And third, for the Banach spaces X, Y ∈
{U ∩ V, U, V,W, W̃ ,H} satisfying the embedding X ↪→ Y , there holds

⟨f, v⟩X∗×X = ⟨f, v⟩Y ∗×Y if v ∈ X and f ∈ Y ∗.

see, e.g, Brézis [35, Remark 3, pp. 136] and Gajewski et al. [84, Kapitel 1, §5].
Now, we want to collect all assumptions concerning the dissipation potential Ψ , the
energy functional E , the perturbation B as well as the external force f . Since the the
subdifferential of the main part of Ψ is linear, we refer to the inclusion (5.0.1) in the
given framework as linearly damped inertial system (U, V,W, W̃ ,H, E , Ψ, B, f). The
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assumptions we make for the linearly damped inertial system resembles the structure
to those we made for the perturbed gradient system where the same evolution
inclusion has been investigated after neglecting the inertial term u′′(t). Involving
inertia makes the situation much more delicate. As a consequence, we will impose,
in general, stronger conditions on the functionals and operator in order to ensure
solvability of the problem. Hereinafter, we collect the assumptions for the dissipation
potential Ψ and remind the reader that we distinguish two cases (a) and (b).

(5.Ψ) Dissipation potential.
Case (a): we assume that there exists a strongly positive, symmetric, and
continuous bilinear form a : V × V → R such that Ψ(v) = 1

2a(v, v), i.e., there
is a constant µ > 0 such that

µ∥v∥2
V ≤ Ψ(v) for all v ∈ V. (5.1.1)

Case (b): we assume that Ψ = Ψ1 + Ψ2, where Ψ1(v) = 1
2a(v, v) with the

bilinear form a : V × V → R as above and Ψ2 : W → R to be a lower
semicontinuous and convex functional with Ψ2(0) = 0 satisfying the following
growth condition: there exists a positive number q > 1 and constants ĉ, Ĉ > 0
such that

ĉ(∥v∥qW − 1) ≤ Ψ2(v) ≤ Ĉ(∥v∥qW + 1) for all v ∈ W. (5.1.2)

In addition, we assume that Ψ2 is Gâteaux differentiable on V with derivative
DGΨ2 being continuous as mapping from W to U∗ + V ∗ and satisfying the
following growth condition: for all R > 0, there exists a positive real constant
CR > 0 such that

∥DGΨ2(v)∥U∗+V ∗ ≤ CR(1 + ∥v∥q−1
W ) for all v ∈ W with |v| ≤ R. (5.1.3)

Remark 5.1.1
i) Assumption (5.Ψ) yields the convexity and continuity of the mapping v 7→ Ψ(v).

Furthermore, Ψ is Gâteaux differentiable with the Gâteaux derivative given
by a positive, linear bounded and symmetric operator A : V → V ∗ such
that ∂Ψ(v) = {Av} and the potential can be expressed by Ψ(v) = 1

2⟨Av, v⟩.
Assumption (5.Ψ) implies that the Legendre–Fenchel transform Ψ ∗ of
Ψ is convex, continuous, finite everywhere, i.e., dom(Ψ ∗) = V ∗, and can be
explicitly expressed by Ψ ∗(ξ) = 1

2⟨ξ, A−1ξ⟩, where A−1 : V ∗ → V is also
continuous, symmetric and positive, which follows from the Lax–Milgram
theorem, see, e.g., Brézis [35, Corollary 5.8, p. 140].

ii) From the properties of the conjugate, we obtain from (5.1.1) and (5.1.2) the
following growth condition for the conjugates Ψ ∗

1 : V ∗ → R and Ψ ∗
2 : V ∗ →

(−∞,+∞]: there exist positive constants c̄, C̄ > such that

c̄∥ξ∥2
V ∗ ≤Ψ ∗

1 (ξ) ≤ C̄∥ξ∥2
V ∗ for all ξ ∈ V ∗,

c̄(∥ξ∥q
∗

W ∗ − 1)
+∞

}
≤Ψ ∗

2 (ξ) ≤

C̄(∥ξ∥q
∗

W ∗ + 1) if ξ ∈ W ∗

+∞ otherwise ,
(5.1.4)
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where q∗ > 1 denotes the conjugate exponent of q. In order to justify the
formula (5.1.4), it is not restrictive to show it for Ψ 2(v) = 1

q
∥v∥qW , v ∈ V . To

do so, we employ Lemma 2.3.2, which shows that the conjugate function f ∗

of any proper, convex, and lower semicontinuous function f : V → R is also
proper, convex, and lower semicontinuous, and that f ∗∗ = f . Thus, defining
Ψ̃ : V ∗ → R through

Ψ̃(ξ) =


1
q∗ ∥ξ∥q

∗

W ∗ if ξ ∈ W ∗

+∞ otherwise ,

it follows that Ψ̃ is a proper, convex, and lower semicontinuous function on
V ∗ which easily follows from the fact that a function is convex and lower
semicontinuous if and only if its epigraph is convex and closed, see Lemma
2.1.2. Then, we show that Ψ̃ ∗ = Ψ2 which in turn implies Ψ ∗

2 = Ψ̃ = Ψ̃ ∗∗ where
the first equality follows from

Ψ̃ ∗(v) = sup
ξ∈V ∗

{
⟨ξ, v⟩V ∗×V − Ψ̃ ∗(ξ)

}
= sup

ξ∈W ∗

{
⟨ξ, v⟩W ∗×W − 1

q∗ ∥ξ∥q
∗

W ∗

}

= 1
q

∥v∥qW

= Ψ2(v) for all v ∈ W,

where we have used that ( 1
q∗ ∥ · ∥q

∗

W )∗ = 1
q
∥v∥qW on W , see Example 2.3.4.

iii) We remark that we could also allow for a time-dependent dissipation potential
Ψt = Ψ 1

t + Ψ 2
t when we assume that t 7→ a(t, u, v) ∈ C([0, T ]) ∩ C1(0, T ) for

all u, v ∈ V and a strong monotonicity and boundedness of A(t) : V → V ∗

uniformly in time as well as a slight modification of Assumption (3.Ec) and
(3.Bb), whereas for Ψ 2

t we would assume that for all t ∈ [0, T ], the functional Ψ 2
t

is lower semicontinuous, convex and Gâteaux differentiable with continuous
Gâteaux DGΨ

2
t being continuous on [0, T ] ×W and satisfying the Conditions

(5.1.2) and (5.1.3) uniformly in time. For simplicity, we will not consider this
case here.

We proceed with collecting the assumptions for the energy functional E . To do so, we
define Vλ = U if λ = 0 and Vλ = U ∩ V if λ > 0. We make this distinction because
for the convex case, i.e. when λ = 0, we will obtain a stronger result meaning that
the initial value u0 can be chosen to be in dom(Et) instead of dom(Et) ∩ V as in the
λ-convex case with λ ̸= 0, and that the subgradient of Et is in U∗ instead of U∗ + V ∗,
see Theorem 5.1.4.

(5.Ea) Lower semicontinuity. For all t ∈ [0, T ], the functional Et : U → (−∞,+∞]
is proper and sequentially weakly lower semicontinuous with time-independent
effective domain D := dom(Et) ⊂ U for all t ∈ [0, T ]. Furthermore, the set
D ∩ V is dense in D in the topology of U , and if Et is convex, the interior of
D is non-empty.
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(5.Eb) Bounded from below. Et is bounded from below uniformly in time, i.e.,
there exists a constant C0 ∈ R such that

Et(u) ≥ C0 for all u ∈ U and t ∈ [0, T ].

Since a potential is unique up to a constant, we assume without loss of
generality C0 = 0.

(5.Ec) Coercivity. For every t ∈ [0, T ], Et has bounded sublevel sets in U .

(5.Ed) Control of the time derivative. For all u ∈ U , the mapping t 7→ Et(u) is
in C([0, T ]) ∩ C1(0, T ) and its derivative ∂tEt is controlled by the function Et,
i.e., there exists C1 > 0 such that

|∂tEt(u)| ≤ C1Et(u) for all t ∈ (0, T ) and u ∈ U.

(5.Ee) Closedness of Gr(∂E). For all sequences of measurable functions (tn)n∈N
with tn : [0, T ] → [0, T ], n ∈ N, (un)n∈N, (ξn)n∈N, and measurable functions
u, ξ satisfying

a) tn(t) → t for a.e. t ∈ (0, T ), as n → ∞,
b) ∃C2 > 0 : supn∈N,t∈[0,T ] Et(un(t)) ≤ C2,

c) ξn(t) ∈ ∂Vλ
Etn(t)(un(t)) a.e. in (0, T ), n ∈ N,

d) un − ũ0
∗
⇀ u − ũ0 in L∞(0, T ;Vλ) and un − ũ0 → u − ũ0 in L2(0, T ;V )

for any ũ0 ∈ D and ξn ⇀ ξ in L2(0, T ;V ∗
λ ) as n → ∞. Additionally,

there exists a constant C3 > 0 such that for sufficiently small h > 0,
there holds Case (a):

sup
n∈N

∥σhun − un∥L2(0,T−h,V ) ≤ C3h (5.1.5)

Case (b):

sup
n∈N

∥σhun − un∥L2(0,T−h,V )∩Lr(0,T−h,W ) ≤ C3h, (5.1.6)

where σhv := χ[0,T−h]v(· + h) for any function v : [0, T ] → V ,
e) lim supn→∞

∫ T
0 ⟨ξn(t) − ξ(t), un(t) − u(t)⟩V ∗

λ
×Vλ

dt ≤ 0,

we have the relations

ξ(t) ∈ ∂Vλ
Et(u(t)) ⊂ V ∗

λ , Etn(t)(un(t)) → Et(u(t)) as n → ∞
and lim sup

n→∞
∂tEt(un(t)) ≤ ∂tEt(u(t)) for a.e. t ∈ (0, T ).

(5.Ef) λ-convexity. There exists λ ≥ 0 such that for every t ∈ [0, T ], the energy
functional Et is λ-convex on V (by extending E on V ), i.e., for all u, v ∈ U ∩V
and ϑ ∈ (0, 1), there holds

Et(ϑv + (1 − ϑ)u) ≤ ϑEt(v) + (1 − ϑ)Et(u) + λϑ(1 − ϑ)∥v − u∥2
V . (5.1.7)
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(5.Eg) Control of the subgradient. There exist constants C4 > 0 and σ > 0 such
that

∥ξ∥σV ∗
λ

≤ C4(1 + Et(u) + ∥u∥Vλ
) ∀t ∈ [0, T ], u ∈ D(∂Vλ

Et), ξ ∈ ∂Vλ
Et(u).

We first give a few relevant comments on these assumptions that will be important
later on.
Remark 5.1.2
i) From Assumption (5.Ed), we deduce again with Gronwall’s lemma (Lemma

A.1.1) the chain of inequalities
e−C1|t−s|Es(u) ≤ Et(u) ≤ eC1|t−s|Es(u) for all s, t ∈ [0, T ], u ∈ D.

In particular, there holds
G(u) = sup

t∈[0,T ]
Et(u) ≤ eC1T inf

t∈[0,T ]
Et(u) for all u ∈ D.

ii) In Case (b) it is possible to improve the assumption of λ-convexity in the
following way: there exist positive constants λ1, λ2 > 0 such that

Et(ϑu+ (1 − ϑ)v) ≤ϑEt(u) + (1 − ϑ)Et(v)

+ ϑ(1 − ϑ)
(
λ1∥u− v∥2

V + λ2Ψ(u− v)
1
q |u− v|

)
for all u ∈ D, v ∈ V and ϑ ∈ (0, 1), where q > 1 comes from Assumption
(3.Ψa).

Finally, we present the assumptions on the non-variational non-monotone pertur-
bation B and the external force f .
(5.Ba) Continuity. The mapping (t, u, v) 7→ B(t, u, v) : [0, T ] × W̃ × W → V ∗ is

continuous on the sublevels of G, i.e., for every sequence (tn, un, vn) → (t, u, v)
in [0, T ]×W̃×W with supn∈N G(un) < +∞, there holds B(tn, un, vn) →
B(t, u, v) in V ∗ as n → ∞.

(5.Bb) Control of the growth. There exist positive constants β > 0 and c, ν ∈ (0, 1)
such that

c Ψ ∗
(

−B(t, u, v)
c

)
≤ β(1 + Et(u) + |v|2 + Ψ(v)ν)

for all u ∈ D ∩ V, v ∈ V, t ∈ [0, T ].

(5.f) External force. There holds f ∈ L2(0, T ;H).
Remark 5.1.3 i) In fact, the continuity of the perturbation with image in V ∗

is only needed to show the energy-dissipation inequality (5.1.10). If we only
address the existence of solutions to the inclusion (5.1.9) without the energy-
dissipation inequality, then it is sufficient to suppose that B : [0, T ]×W̃ ×W →
U∗ + V ∗ is a mapping with values in U∗ + V ∗ which is continuous on sublevel
sets of the energy, see Example 7.3 for such an instance.

ii) The condition (5.Bb) can be relaxed to f ∈ L1(0, T ;H) + L2(0, T ;V ∗) in the
Case (a) and to f ∈ L1(0, T ;H) + L2(0, T ;V ∗) + Lq∗(0, T ;W ∗) in the case (b),
where q∗ > 1 is again the conjugate exponent to q > 1 from Assumption (5.Ψ).
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5.1.1 Discussion of the assumptions
Having collected the assumptions on the system (U, V,W,H, E , Ψ, B, f) system, we
want to discuss several conditions more in detail apart from the assertions and
implications made in the remarks. As for perturbed gradient systems, we want to
discuss the practical meaning of the assumptions and provide sufficient conditions
for them to hold true.

As we already mentioned in Section 1.2, evolution equations of second order are,
in general, more delicate than evolution equations of first order because of the
nonsmoothing effect in time caused by the term ∂ttu. This leads to a formation of
discontinuities or a blow-up of a solution in finite time despite having smooth initial
data which makes it more difficult to prove strong solutions, see, e.g., Zeidler [164,
Section 33.7] for a discussion of these phenomena in connection with problems arising
in physics. Therefore, we need well-adjusted assumptions which are, in general,
stronger than for perturbed gradient systems. However, here we deal with the case
where the energy functional and the dissipation potential are defined on different
spaces which has not been considered in Chapter 3.

Ad (5.Ψ). Here, the dissipation potential is (in Case (b)) the sum of a leading
part Ψ1, which is defined by a strongly positive and bounded bilinear form, and a
strongly continuous perturbation Ψ2 of polynomial growth. As mentioned in Remark
5.1.1 i), the subdifferential ∂Ψ = {A+ DGΨ

2} is given by a positive, linear, bounded,
and symmetric operator A and a strongly continuous perturbation DGΨ

2. The
important assumption here is that A is a positive, linear, bounded, and symmetric
operator, which is crucial in identifying the limit of a sequence of approximate
solutions stemming from a discretization scheme, see Section 5.2. As we mentioned in
Remark 3.2.1 iii), we can allow more general time-dependent dissipation potentials.
However, we will not assume that for simplicity.

Admissible examples of dissipation potentials are, e.g.,

Ψ1(v) = 1
2

∫
Ω

|∇nv(x)|2 dx and Ψ2(v) = 1
p

∫
Ω

|∇mv(x)|pdx

on the Sobolev space Hn(Ω) for any m,n ∈ N with m < n and p ∈ (1,+∞) such
that the compact embedding Hn(Ω) c

↪→ Lp(Ω) holds.

Ad (5.E). As for perturbed gradient systems, we assume that the effective domain
of Et is time-independent, which in fact is already implied by Condition (3.Ed), see
Remark 5.1.2 i). The assumption that D ∩ V is dense in D in Condition (5.Ea)
ensures the existence of an approximating sequence in D ∩ V to any initial value
u0 ∈ D, which is needed in order to obtain a priori estimates for the interpolations
in Lemma 5.3.1. The non-emptiness of D in the case that Et is convex ensures the
existence of a continuity point for Et, see Ekeland & Temam [69, Corollary 2.5., p.
13], which in turn allows us to use the variational sum rule in Lemma 2.2.7.

The Assumption (5.Ee) replaces the strong-weak closedness condition (3.Ee) for
∂Et in Chapter 3. The same assumption can not be made here, since we do not obtain
a pointwise strong convergence U τn(t) → u(t) in V as n → ∞ later in the proof of
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the existence result due to the fact that U is not assumed to be compactly embedded
in V . Instead, we have weak convergence on certain Bochner spaces. As we have
seen by Lemma 2.4.2 and Lemma 2.6.1, a sufficient condition for the subdifferential
of a convex functionals to be weak-weak closedness on a suitable Bochner space
is given by Condition (5.Ee) e). However, since Et is not convex but λ-convex, the
above-mentioned lemmas can not be employed directly and therefore we enforce the
implication by imposing this condition which also encounters for the time dependence
of the energy functional. The condition is formulated in such a way that it can
be applied to the piecewise constant interpolations un(t) := Un

τ and tn(t) = tn for
t ∈ (tn−1, tn] arising from a discretization scheme, see Section 5.2. For a sequence of
weakly differentiable functions (un)n∈N the conditions (5.1.5) and (5.1.6) are satisfied
when it is bounded in Hσ(0, T ;V ) and Hσ(0, T ;V ) ∩ W1,r(0, T ;W ), respectively.

The Condition (5.Eg) is necessary to obtain appropriate a priori estimates for
the subgradients of Et, which in turn is needed to obtain a priori estimates for u′′.
The situation was different for perturbed gradient systems, since the subdifferential
of Et could be controlled by Ψ ∗

u . In this situation, the sum of the subgradient of Et
and u′′ are controlled by Ψ ∗ which necessitates independent estimates. Condition
(5.Eg) could be replaced by the more general condition that ∂Et is a bounded operator.

Ad (5.B). Due to the same structure of the conditions for the perturbation in
perturbed gradient systems and here, the same conclusions hold here as well. The
difference is that here the perturbation also depends nonlinearly on u′.

Having discussed all assumptions, we are in a position to state the main result
which includes the notion of solution to (5.0.1).
Theorem 5.1.4 (Existence result) Let the linearly damped inertial system
(U, V,W,H, E , Ψ, B, f) be given and fulfill Assumptions (5.E), (5.Ψ) and (5.B) as
well as Assumption (5.f). Let the initial values u0 ∈ D ∩ Vλ and v0 ∈ H be given and
assume that there exists a sequence uk0 ∈ D ∩ V such that

uk0 → u0 in Vλ as k → ∞ and sup
k∈N

E0(uk0) < +∞.

Then, there exists a strong solution to (5.0.1), i.e., there exist functions
u ∈ Cw([0, T ];U) ∩ W1,∞(0, T ;H) with u′ ∈ L2(0, T ;V ), ξ ∈ L∞(0, T ;V ∗

λ ),
(5.1.8)

additionally satisfying u ∈ H2(0, T ;U∗ + V ∗) in Case (a) and u ∈ W1,q(0, T ;W ) ∩
W2,min{2,q∗}(0, T ;U∗ + V ∗) in Case (b) such that the initial conditions u(0) = u0 in
Vλ and u′(0) = v0 in H as well as the inclusions
ξ(t) ∈ ∂Vλ

Et(u(t)), f(t) ∈ u′′(t) + ∂Ψ(u′(t)) + ξ(t) + B(t, u(t), u′(t)) in U∗ + V ∗

(5.1.9)
are fulfilled for almost every t ∈ (0, T ). Furthermore, the energy-dissipation inequality

1
2 |u′(t)|2 + Et(u(t)) +

∫ t

s
(Ψ(u′(r)) + Ψ ∗(S(r) − ξ(r) − u′′(r))) dr

≤ 1
2 |u′(s)|2 + Es(u(s)) +

∫ t

s
∂rEr(u(r))dr +

∫ t

s
⟨S(r), u′(r)⟩V ∗×V dr, (5.1.10)
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holds for all 0 < t ≤ T for s = 0, and almost every s ∈ (0, t), where S(r) :=
f(r) − B(r, u(r), u′(r)), r ∈ [0, T ], and Vλ = U if Et is convex, i.e., λ = 0, and
Vλ = U ∩ V if Et is λ-convex with λ > 0.

5.2 Variational approxiomation scheme
The proof of Theorem 5.1.4 is based on the construction of strong solutions to (5.0.1)
via a semi-implicit time discretization scheme similar to Chapter 3. More specifically,
we will employ a semi-implicit Euler method where all terms will be discretized
implicitly, except for the non-variational perturbation term B in order to obtain a
variational approximation scheme to inclusion (5.0.1). Therefore, let for N ∈ N\{0}

Iτ = {0 = t0 < t1 < · · · < tn = nτ < · · · < tN = T}

be an equidistant partition of the time interval [0, T ] with step size τ := T/N , where
we omit the dependence of the nodes of the partition on the step size for simplicity.
The discretization of (5.0.1) is then given by

V n
τ − V n−1

τ

τ
+ ∂Vλ

Ψ (V n
τ ) + ∂Vλ

Etn(Un
τ ) + B

(
tn, U

n−1
τ , V n−1

τ

)
∋ fnτ in U∗ + V ∗

(5.2.1)

for n = 1, . . . , N , where V 0
τ = v0, V n

τ := Un
τ −Un−1

τ

τ
, and fnτ := 1

τ

∫ tn
tn−1

f(σ) dσ, n =
1, . . . , n, where ∂Vλ

denotes the subdifferential operator with respect to the strong
topology of Vλ. The inclusion (5.2.1) is equivalent to saying that there exists a
subgradient ξnτ ∈ ∂Vλ

Et(Un
τ ) such that

V n
τ − V n−1

τ

τ
+ DGΨ(V n

τ ) + ξnτ +B
(
tn, U

n−1
τ , V n−1

τ

)
= fnτ in U∗ + V ∗,

where DGΨ(V n
τ ) = AV n

τ in Case (a) and DGΨ(V n
τ ) = AV n

τ + DGΨ2(V n
τ ) in Case (b).

The values Un
τ ≈ u(tn) and V n

τ ≈ u′(tn) shall approximate the exact solution and
its time derivative, and are to be determined successively from (5.2.1). By Lemma
2.2.5, it follows that the approximate value Un

τ is characterized as the solution to the
Euler–Lagrange equation associated with the mapping

u 7→ Φ(τ, tn−1, U
n−1
τ , Un−2

τ , B(tn, Un−1
τ , V n−1

τ ) − fnτ ;u),

where

Φ(r, t, v, w, η;u) = 1
2r2 |u− 2v − w|2 + rΨ

(
u− v

r

)
+ Et+r(u) + ⟨η, u⟩V ∗×V

for r ∈ R>0, t ∈ [0, T ) with r + t ∈ [0, T ], u ∈ D, v ∈ V,w ∈ H, and η ∈ V ∗.
We end up with the recursive schemeU0

τ ∈ D ∩ V and V 0
τ ∈ V are given; whenever U1

τ , . . . , U
n−1
τ ∈ D ∩ V are known,

find Un
τ ∈ Jτ,tn−1(Un−1

τ , Un−2
τ ;B(tn, Un−1

τ , V n−1
τ ) − fnτ )

(5.2.2)



5.2. Variational approximation scheme 99

for n = 1, . . . , N , where Jr,t(v, w; η) := argmin u∈U∩V Φ(r, t, v, w, η;u) and U−1
τ =

U0
τ − V 0

τ τ .
The following lemma ensures the solvability of the variational scheme (5.2.2).

Lemma 5.2.1 Let the linearly damped inertial system (U, V,W,W,H, E , Ψ) be given
and let the Conditions (5.Ea)-(5.Ec), (5.Ef), and (5.Ψ) be fulfilled. Furthermore,
let r ∈ (0, T ) and t ∈ [0, T ) with r + t ≤ T as well as v ∈ V,w ∈ H and η ∈ V ∗.
Then, the set Jr,t(v, w; η) is non-empty and single valued if r ≤ µ

4λ , where µ and λ
are from (5.Ψ) and (5.Ef), respectively. Furthermore, to every u ∈ Jr,t(v, w; η) there
exists ξ ∈ ∂Vλ

Et(u) ⊂ V ∗
λ such that

u− 2v − w

r2 + DGΨ
(
u− v

r

)
+ ξ + η = 0 in U∗ + V ∗.

Proof. Since the proof is similar for the cases (a) and (b), we restrict the proof by
showing the assertion for the case (b). Let u ∈ D ∩ V, v ∈ V,w ∈ H, η ∈ V ∗, and
r ∈ (0, T ), t ∈ [0, T ) with r + t ≤ T be given. Employing the Fenchel–Young
inequality, we obtain

Φ(r, t, v, w, η;u) = 1
2r2 |u− 2v + w|2 + rΨ

(
u− v

r

)
+ Et+r(u) + ⟨η, u⟩V ∗×V

= 1
2r2 |u− 2v + w|2 + rΨ1

(
u− v

r

)
+ rΨ2

(
u− v

r

)
+ Et+r(u)

+ ⟨η, v⟩V ∗×V

≥ 1
2r2 |u− 2v + w|2 + 1

r
Ψ1 (u− v) + rc̃

(∥∥∥∥u− v

r

∥∥∥∥q
W

− 1
)

+ Et+r(u)

+ ⟨η, u− v⟩V ∗×V + ⟨η, v⟩V ∗×V

≥ 1
2r2 |u− 2v + w|2 +

(1
r

− ε
)
Ψ1 (u− v) − rc̃+ Et+r(u)

− εΨ ∗
1

(
−η

ε

)
− ⟨η, v⟩V ∗×V (5.2.3)

≥ 1
2r2 |u− 2v + w|2 +

(1
r

− ε
)
Ψ1 (u− v) − εΨ ∗

1

(
η

ε

)
− rc̃

− ⟨η, v⟩V ∗×V ,

where 0 < ε < 1
r
. This implies, on the one hand, infu∈U∩V Φ(r, t, v, w, η;u) > −∞.

On the other hand, we observe that

inf
u∈U∩V

Φ(r, t, v, w, η;u) ≤ 1
2r2 |ū− 2v + w|2 + rΨ

(
ū− v

r

)
+ Et+r(ū) − ⟨η, ū⟩V ∗×V

(5.2.4)

for any u0 ∈ D∩V , so that infu∈U∩V Φ(r, t, v, w, η;u) < +∞ holds as well. It remains
to show that the global minimum is attained by an element in D ∩ V . In order to
show that, let (un)n∈N ⊂ U ∩ V be a minimizing sequence for Φ(r, t, v, w, η; ·). From
(5.2.3) and the coercivity of Ψ1 and E , we deduce that (un)n∈N ⊂ U ∩ V is contained
in a sublevel set of Ψ1 and E , and thus bounded in U ∩ V . Hence, by reflexivity of
U ∩ V , there exists a subsequence (not relabeled) which converges weakly in U ∩ V
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to a limit ũ ∈ U ∩ V . By the sequential weak lower semicontinuity of the mapping
u 7→ Φ(r, t, v, w, η;u) on U ∩ V , we have

Φ(r, t, v, w, η; ũ) ≤ lim inf
n→∞

Φ(r, t, v, w, η;un) = inf
ṽ∈U∩V

Φ(r, t, v, w, η; ṽ),

and therefore, u ∈ Jr,t(v, w; η) ̸= ∅ and u ∈ D ∩ V . If r > 0 is sufficiently small, then
there is a unique global minimizer. Indeed, assuming there are two different global
minimizer ũ0, ũ1 ∈ D ∩ V , then in view of the λ-convexity of Et, the convexity of
Ψ2 and the fact that | · |2 and Ψ1 fulfil a parallelogram identity, we obtain for every
s ∈ (0, 1)

Φ(r, t, v, w, η; sũ0 + (1 − s)ũ1)
≤ sΦ(r, t, v, w, η; ũ0) + (1 − s)Φ(r, t, v, w, η; ũ1) − s(1 − s)|ũ0 − ũ1|2 + λ∥ũ0 − ũ1∥2

V

− s(1 − s)
r

Ψ1(ũ0 − ũ1)

= min
ṽ∈U∩V

Φ(r, t, v, w, η; ṽ) − s(1 − s)|ũ0 − ũ1|2 − s(1 − s)
r

Ψ1(ũ0 − ũ1) + λ∥ũ0 − ũ1∥2
V

≤ min
ṽ∈U∩V

Φ(r, t, v, w, η; ṽ) − s(1 − s)|ũ0 − ũ1|2 −
(
s(1 − s)

r
− λ

µ

)
Ψ1(ũ0 − ũ1),

where we also used the strong positivity of Ψ1 with constant µ > 0. Choosing s = 1
2 ,

the uniqueness follows. In order to prove the last assertion, we first assume that
the energy functional is λ-convex with λ > 0. Then, from Fermat’s theorem,
we know that for any minimizer u ∈ Jr,t(v, w; η), the functional Φ(r, t, v, w, η; ·) is
subdifferentiable in u and there holds

0 ∈ ∂U∩VΦ(r, t, v, w, η;u)

= ∂U∩V

( 1
2r2 |u− 2v + w|2 + rΨ

(
u− v

r

)
+ Et+r(u) + ⟨η, u⟩V ∗×V

)
Since all terms expect from the energy functional are convex and Gâteaux differen-
tiable on the space U ∩ V , we obtain with Lemma 2.2.5 that Et is subdifferentiable
in u and there holds

u− 2v − w

r2 + DGΨ
(
u− v

r

)
+ η ∈ ∂U∩V Et(u).

Thus, we define ξ := u−2v−w
r2 + DGΨ

(
u−v
r

)
+ η ∈ U∗ + V ∗. Now, we consider

the case when λ = 0. Then, we define the functionals Ψ̃ : U → (−∞,+∞] and
h : U → (−∞,+∞] by

Ψ̃(v̄) =

 Ψ(v̄) if v̄ ∈ V ∩ U

+∞ otherwise.
and h(v̄) =

 ⟨η, v̄⟩V ∗×V if v̄ ∈ V ∩ U

+∞ otherwise.

It can be shown that Ψ̃ + h is proper, convex, and lower semicontinuous on U .
The first two properties are readily seen. For the lower semicontinuity, we make
use of the equivalent characterization of the lower semicontinuity which states
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that all sublevel sets are closed in the strong topology of U . Thus, let α ∈ R
and (un)n∈N ⊂ Jα := {ṽ ∈ U : Ψ̃(ṽ) + h(ṽ) ≤ α} such that un → u ∈ U as
n → ∞. We want to show that u ∈ Jα. From the definition of Ψ̃ and h, there holds
Jα = {ṽ ∈ U : Ψ(ṽ) + ⟨η, ṽ⟩V ∗×V ≤ α} and that (un)n∈N is bounded in V by the
coercivity of Ψ on V . Hence, there exists a weakly convergent subsequence (labeled
as before) such that un ⇀ ũ ∈ V as n → ∞. Therefore, (un)n∈N is bounded in
U ∩ V and from the reflexivity of U ∩ V , we can extract a further weakly convergent
subsequence (labeled as before) such that un ⇀ û ∈ U ∩ V as n → ∞. We obtain,

⟨f, û⟩(U∗+V ∗)×(U∩V ) = ⟨f1, û⟩U∗×U + ⟨f2, û⟩V ∗×V

= lim
n→∞

(⟨f1, un⟩U∗×U + ⟨f2, un⟩V ∗×V )

= ⟨f1, u⟩U∗×U + ⟨f2, ũ⟩V ∗×V

for all f = f1 + f2 ∈ U∗ + V ∗ and in particular for all f ∈ U∗ and f ∈ V ∗ whence
u = ū = û in U ∩ V . From the weak lower semicontinuity of Ψ1 on V , we obtain

Ψ(u) + ⟨η, u⟩V ∗×V ≤ lim inf
n→∞

(Ψ(un) + ⟨η, u⟩V ∗×V ) ≤ α,

and thus, u ∈ Jα, from which the lower semicontinuity on U follows. Noting that

min
ṽ∈U∩V

Φ(r, t, v, w, η; ṽ) = min
ṽ∈U∩V

Φ̃(r, t, v, w, η; ṽ)

= min
ṽ∈U

( 1
2r2 |ṽ − 2v + w|2 + rΨ̃

(
ṽ − v

r

)
+ Et+r(u) + h(ṽ)

)
,

we obtain again by Fermat’s theorem

0 ∈ ∂UΦ̃(r, t, v, w, η;u)

= ∂U

( 1
2r2 |u− 2v + w|2 + rΨ̃

(
u− v

r

)
+ Et+r(u) + h(u)

)
for any global minimizer u ∈ Jr,t(v, w; η). In order to decompose the elements of
the subdifferential of the sum of the functionals in terms of the subgradients of
each functional, we employ Lemma 2.2.7 and note that with Remark 5.1.2 i) all
assumptions of that lemma are satisfied. Hence, there holds

∂U

( 1
2r2 |u− 2v + w|2 + rΨ̃

(
u− v

r

)
+ Et+r(u) + h(u)

)
= ∂U

( 1
2r2 |u− 2v + w|2

)
+ ∂U

(
rΨ̃

(
u− v

r

)
+ h(u)

)
+ ∂UEt+r(u)

and therefore there exists a subgradient ξ ∈ ∂UEt+r(u) such that

−u− 2v − w

r2 − ξ ∈ ∂U

(
rΨ̃

(
u− v

r

)
+ h(u)

)
.

Unfortunately, we are not allowed to decompose the right subdifferential further,
since the functional h is, in general, not lower semicontinuous on U . However, since
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the sum is proper, convex, and lower semicontinuous on U , we can make use of the
equivalent description of the subdifferential by the inequality

rΨ̃
(
u− v

r

)
+ h(u) − rΨ̃

(
ṽ − v

r

)
+ h(ṽ) ≤

〈
−u− 2v − w

r2 − ξ, ṽ − u
〉
U∗×U

for all ṽ ∈ U and in particular

rΨ
(
u− v

r

)
+ ⟨η, u⟩V ∗×V − rΨ

(
ṽ − v

r

)
− ⟨η, ṽ⟩V ∗×V

≤
〈

−u− 2v − w

r2 − ξ, ṽ − u
〉

(U∗+V ∗)×(U∩V )

for all ṽ ∈ U ∩ V , which in turn implies

−u− 2v − w

r2 − ξ ∈ ∂U∩V

(
Ψ
(
u− v

r

)
+ ⟨η, u⟩V ∗×V

)
= DGΨ

(
u− v

r

)
+ η ∈ U∗ + V ∗,

which means that we can decompose the elements of the subdifferential in the weaker
space U∗ + V ∗. We finally obtain

−u− 2v − w

r2 + DGΨ
(
u− v

r

)
+ ξ + η in U∗ + V ∗,

and hence the completion of the proof.

5.3 Discrete Energy-Dissipation inequality and a
priori estimates

Since the previous lemma ensures the solvability of the approximation scheme (5.2.2),
we are now able to define piecewise linear and constant interpolations which will
interpolate the values (Un

τ )Nn=0 and (V n
τ )Nn=0 for every τ > 0, respectively, and we

will derive a priori estimates for them. The interpolations shall approximate the
desired solution to (5.0.1) and its derivative, and are therefore also referred to as
approximate solutions to (5.0.1). In order to define the approximate solutions, we
assume for the moment that u0 ∈ D∩V and v0 ∈ V . In the main existence proof, we
will then approximate the initial values from D∩Vλ and H by sequences from V ∩V
and V , respectively. For τ > 0, let (Un

τ )Nn=1 ⊂ D ∩ V be the sequence of approximate
values obtained from the variational approximation scheme (5.2.2) for U0

τ := u0 and
V 0
τ := v0. Moreover, let (ξnτ )Nn=1 ⊂ V ∗

λ be a sequence of subgradients of the energy
determined by the preceding lemma and satisfying ξnτ ∈ ∂Vλ

Etn(Un
τ ), i = 1, . . . , N

and (5.2.1). The piecewise constant and linear interpolations are defined by

U τ (0) = U τ (0) = Ûτ (0) := U0
τ = u0 and

U τ (t) := Un−1
τ , Ûτ (t) := tn − t

τ
Un−1
τ + t− tn−1

τ
Un
τ for t ∈ [tn−1, tn), (5.3.1)

U τ (t) := Un
τ for t ∈ (tn−1, tn] and U τ (T ) = UN

τ , n = 1, . . . , N,
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as well as

V τ (0) = V τ (0) = V̂τ (0) := V 0
τ = v0 and

V τ (t) := V n−1
τ , V̂τ (t) := tn − t

τ
V n−1
τ + t− tn−1

τ
V n
τ for t ∈ [tn−1, tn), (5.3.2)

V τ (t) := V n
τ for t ∈ (tn−1, tn] and V τ (T ) = V N

τ , n = 1, . . . , N,

where V n
τ = Un

τ −Un−1
τ

τ
for n = 1, . . . , N . We note that Û ′

τ = V τ in the weak sense.
Furthermore, we define the functions ξτ : [0, T ] → V ∗

λ and fτ : [0, T ] → H by

ξτ (t) = ξnτ , fτ (t) = fnτ = 1
τ

∫ tn

tn−1
f(σ)dσ for t ∈ (tn−1, tn], n = 1, . . . , N,

(5.3.3)
ξτ (T ) = ξNτ and fτ (T ) = fNτ .

For notational convenience, we also introduce the piecewise constant functions
tτ : [0, T ] → [0, T ] and tτ : [0, T ] → [0, T ] given by

tτ (0) := 0 and tτ (t) := tn for t ∈ (tn−1, tn],
tτ (T ) := T and tτ (t) := tn for t ∈ [tn−1, tn), n = 1, . . . , N.

(5.3.4)

Obviously, there holds tτ (t) → t and tτ (t) → t as τ → 0.
At last, we are in a position to show useful a priori estimates.

Lemma 5.3.1 (A priori estimates) Let the system LDS (U, V,W,W,H, E , Ψ, B, f)
be given and satisfy the Assumptions (5.E), (5.Ψ), (5.B) as well as Assumption (5.f).
Furthermore, let U τ , U τ , Ûτ , V τ , V τ , V̂τ , ξτ and fτ be the interpolations defined in
(5.3.1)-(5.3.3) associated with the given initial values u0 ∈ D∩V, v0 ∈ V and the step
size τ > 0. Then, the discrete energy-dissipation inequality

1
2
∣∣∣V τ (t)

∣∣∣2 + Etτ (t)(U τ (t)) +
∫ tτ (t)

tτ (s)

(
Ψ(V τ (r)) + Ψ ∗

(
Sτ (r) − V̂ ′

τ (r) − ξτ (r)
))

dr

≤ 1
2
∣∣∣V τ (s)

∣∣∣2 + Etτ (s)(U τ (s)) +
∫ tτ (t)

tτ (s)
∂rEr(U τ (r))dr +

∫ tτ (t)

tτ (s)
⟨Sτ (r), V τ (r)⟩V ∗×V dr

+ τλ
∫ tτ (t)

tτ (s)
∥V τ (r)∥2

V dr (5.3.5)

holds for all 0 ≤ s < t ≤ T , where Sτ (r) := fτ (r) −B(tτ (t), U τ (t), V τ (t)), r ∈ [0, T ].
Moreover, there exist positive constants M, τ ∗ > 0 such that the estimates

sup
t∈[0,T ]

∣∣∣V τ (t)
∣∣∣ ≤ M, sup

t∈[0,T ]
Et(U τ (t)) ≤ M, sup

t∈[0,T ]
|∂tEt(U τ (t))| ≤ M, (5.3.6)

∫ T

0

(
Ψ
(
V τ (r)

)
+ Ψ ∗

(
Sτ (r) − V̂ ′

τ (r) − ξτ (r)
))

dr ≤ M (5.3.7)
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hold for all 0 < τ ≤ τ ∗. In particular, the families of functions

(U τ )0<τ≤τ∗ ⊂ L∞(0, T ;U), (5.3.8a)
(ξτ )0<τ≤τ∗ ⊂ L∞(0, T ;V ∗

λ ), (5.3.8b)
in Case (a)

(V τ )0<τ≤τ∗ ⊂ L2(0, T ;V ) ∩ L∞(0, T ;H), (5.3.8c)
(V̂ ′

τ )0<τ≤τ∗ ⊂ L2(0, T ;U∗ + V ∗), (5.3.8d)
(Bτ )0<τ≤τ∗ ⊂ L 2

ν (0, T ;V ∗), (5.3.8e)
in Case (b)

(V τ )0<τ≤τ∗ ⊂ L2(0, T ;V ) ∩ Lq(0, T ;W ) ∩ L∞(0, T ;H), (5.3.8f)
(V̂ ′

τ )0<τ≤τ∗ ⊂ Lmin{2,q}(0, T ;U∗ + V ∗), (5.3.8g)

(Bτ )0<τ≤τ∗ ⊂ L 2
ν (0, T ;V ∗) + L

q∗
ν (0, T ;W ∗), (5.3.8h)

are uniformly bounded with respect to τ in the respective spaces, where Bτ (t) :=
B(tτ (t), U τ (t), V τ (t)), t ∈ [0, T ], q∗ > 0 is the conjugate exponent of q > 1, and
ν ∈ (0, 1) stemming from Assumption (5.Bb). Finally, there holds

sup
t∈[0,T ]

(
∥U τ (t) − U τ (t)∥V + ∥Ûτ (t) − U τ (t)∥V

)
→ 0

sup
t∈[0,T ]

(
∥V τ (t) − V τ (t)∥U∗+V ∗ + ∥V̂τ (t) − V τ (t)∥U∗+V ∗

)
→ 0

(5.3.9)

as τ → 0.

Proof. Let (Un
τ )Nn=1 ⊂ D ∩ V be the approximative values obtained from the

variational approximation scheme (5.2.2) and let (ξnτ )Nn=1 ⊂ U∗ +V ∗ be the associated
subgradients. Then, by Lemma 2.2.5, the approximate value Un

τ solves the Euler–
Lagrange equation (5.2.1), i.e.,

Snτ − V n
τ − V n−1

τ

τ
− ξnτ ∈ ∂V ∩UΨ(V n

τ ) = {DGΨ(V n
τ )} and ξnτ ∈ ∂Vλ

Etn(Un
τ ),

(5.3.10)

where Snτ := fnτ − B(tn, Un−1
τ , V n−1

τ ). Due to Lemma 2.3.1, the first inclusion is
equivalent to

Ψ(V n
τ ) + Ψ ∗

(
Snτ − V n

τ − V n−1
τ

τ
− ξnτ

)
=
〈
Snτ − V n

τ − V n−1
τ

τ
− ξnτ , V

n
τ

〉
V ∗×V

and the second one implies

−
〈
ξnτ , U

n
τ − Un−1

τ

〉
V ∗

λ
×Vλ

≤ Etn(Un−1
τ ) − Etn(Un

τ ) + λ∥Un
τ − Un−1

τ ∥2
V

= Etn−1(Un−1
τ ) − Etn(Un

τ ) +
∫ tn

tn−1
∂rEr(Un−1

τ )dr

+ λ∥Un
τ − Un−1

τ ∥2
V
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for all n = 1, . . . , N . Using the identity

(u− v, u) = 1
2
(
|u|2 − |v|2 + |u− v|2

)
for all u, v ∈ H (5.3.11)

and the fact that ⟨w, v⟩V ∗×V = (w, v) for v ∈ V and w ∈ H, we obtain

1
2 |V n

τ |2 + Etn(Un
τ ) + τΨ(V n

τ ) + τΨ ∗
(
Snτ − V n

τ − V n−1
τ

τ
− ξnτ

)
− τ ⟨Snτ , V n

τ ⟩V ∗×V

(5.3.12)

≤ 1
2 |V n−1

τ |2 + Etn−1(Un−1
τ ) +

∫ tn

tn−1
∂rEr(Un−1

τ )dr + λ∥Un
τ − Un−1

τ ∥2
V

for all n = 1, . . . , N , which, by summing up the inequalities, implies (5.3.5). In order
to show the bounds (5.3.6) and (5.3.7), we make use of the following estimates: first,
from Assumption (5.Bb) and the Fenchel–Young inequality, we obtain

τ⟨Snτ , V n
τ ⟩ = ⟨−B(tn, Un−1

τ , V n−1
τ ) + fnτ , V

n
τ ⟩V ∗×V

= ⟨−B(tn, Un−1
τ , V n−1

τ ), V n
τ ⟩V ∗×V + ⟨fnτ , V n

τ ⟩V ∗×V

≤ cτΨ(V n
τ ) + cτΨ ∗

(
−B(tn, Un−1

τ , V n−1
τ )

c

)
+ τ

2(|fnτ |2 + |V n
τ |2)

≤ cτΨ(V n
τ ) + τβ(1 + Etn(Un−1

τ ) + |V n−1
τ |2 + Ψ(V n−1

τ )ν)

+ τ

2(|fnτ |2 + |V n
τ |2),

≤ cτΨ(V n
τ ) + τβ(1 + Etn(Un−1

τ ) + |V n−1
τ |2) + τεΨ(V n−1

τ ) + τC

+ τ

2(|fnτ |2 + |V n
τ |2),

for positive constants ε, C = C(ε, β) > 0 such that ε < 1−c
2 and C = β

1
1−ν

ε
ν

1−ν
. Second,

by the strong positivity of Ψ1 and the growth condition for Ψ2, we have in Case (b)

µ∥Un
τ − Un−1

τ ∥2
V = µτ 2∥V n

τ ∥2
V ≤ τ 2Ψ1 (V n

τ ) + τ 2Ψ2 (V n
τ ) + τ 2c̃ = τ 2Ψ (V n

τ ) + τ 2c̃

where c̃ > 0 is from Condition 5.1.2. In the Case (a), we only employ the strong
positivity of Ψ obtaining

µ∥Un
τ − Un−1

τ ∥2
V = µτ 2∥V n

τ ∥2
V ≤ τ 2Ψ (V n

τ ) .

Finally, we use the estimate following from Condition (5.Ed),∫ tn

tn−1
∂rEr(Un−1

τ )dr ≤
∫ tn

tn−1
C1Er(Un−1

τ )dr ≤ C1

∫ tn

tn−1
G(Un−1

τ )dr.

Inserting all preceding inequalities in (5.3.12) and summing up all inequalities from
1 to n, we find a positive constant C > 0 such that

1
2 |V n

τ |2 + 1
C1

G(Un
τ ) +

∫ tn

0

(
(1 − α(τ))Ψ(V τ (r)) + Ψ ∗

(
Sτ (r) − V̂ ′

τ (r) − ξτ (r)
))

dr

≤ C
(
|v0|2 + E0(u0) + T + ∥f∥2

L2(0,T ;H) + Ψ(v0)
)

(5.3.13)

+ C
∫ tn

0

(
|V τ (r)|2 + G(U τ (r))

)
dr,
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where α(τ) := c + c̃ + τ λ
µ
< 1 for all τ < τ ∗ := min{µ

λ
(1 − c − c̃), 1} and α(τ) is

decreasing for decreasing τ . In the step (5.3.13), we made use of the estimate for
the interpolation fτ

∥fτ∥2
L2(0,T ;H) =

n∑
k=1

τ |fkτ |2

=
n∑
k=1

1
τ

|
∫ tk

tk−1
f(σ)dσ|2

≤
n∑
k=1

∫ tk

tk−1
|f(σ)|2 dσ =

∫ tn

0
|f(σ)|2 dσ ≤ ∥f∥2

L2(0,T ;H). (5.3.14)

Then, by the discrete version of Gronwall’s lemma (Lemma A.1.2), there exists a
constant M > 0 such that (5.3.6) and (5.3.7) are satisfied. Now, we seek to show
the bounds in (5.3.8) by distinguishing the two cases (a) and (b).
Ad (a). Due to the coercivity of Ψ and Ψ ∗, the uniform boundedness of (V τ )0<τ≤τ∗ ⊂
L2(0, T ;V ) and (Sτ −V̂ ′

τ −ξτ )0<τ≤τ∗ ⊂ L2(0, T ;V ∗) ⊂ L2(0, T ;V ∗) follow immediately
from the a priori estimate (5.3.7). The boundedness of (Bτ )0<τ≤τ∗ ⊂ L2(0, T ;V ∗)
uniformly in τ is a consequence of Assumption (5.Bb) and the coercivity of Ψ ∗: there
holds

c̄
∫ T

0
∥Bτ (r))∥

2
ν∗ dr ≤

∫ T

0
Ψ ∗ (B(tτ (r), U τ (r), V τ (r)))

1
ν dr

≤
∫ T

0
cΨ ∗

(
B(tτ (r), U τ (r), V τ (r))

c

) 1
ν

dr

≤
∫ T

0

(
C((1 + Etτ (r)(U τ (r))

1
ν + |V τ (r)|2)

1
ν + Ψ (V τ (r))

)
dr

≤ N (5.3.15)

for positive constants C,N > 0 independent of τ , where c ∈ (0, 1) is from Assumption
(5.Bb) and where we have used the fact that for all ζ ∈ V ∗ the mapping r 7→ rΨ ∗(ζ/r)
is monotonically decreasing on (0,+∞) which follows from the convexity of Ψ ∗ and
Ψ ∗(0) = 0. Since (fτ )0<τ≤τ∗ is uniformly bounded in L2(0, T ;H), we infer that
(V̂ ′

τ +ξτ )0<τ≤τ∗ is uniformly bounded in L2(0, T ;V ∗) with respect to τ as well. Finally,
Assumption (5.Eg) implies a uniform bound for (ξτ )0<τ≤τ∗ in L∞(0, T ;V ∗

λ ). Since all
previous families of functions are bound in the common space L2(0, T ;U∗ + V ∗), we
deduce that (V̂ ′

τ )0<τ≤τ∗ is uniformly bounded in L∞(0, T ;U∗ + V ∗) with respect to τ .
Ad (b). Again, the coercivity of the dissipation potential Ψ leads to the boundedness
of the sequence of discrete derivatives (V τ ) in L2(0, T ;V ) ∩ Lq(0, T ;W ) uniformly in
τ ∈ (0, τ ∗). In order to show that (Sτ − V̂ ′

τ − ξτ )0<τ≤τ∗ ⊂ L2(0, T ;V ∗) + Lq∗(0, T ;W ∗)
is uniformly bounded with respect to τ , we make the following observation: let
ζ : [0, T ] → V ∗ be any measurable function such that∫ T

0
Ψ ∗(ζ(t))dt ≤ M.

We want to show that there exists a positive constant M̃ > 0 such that

M̃ ≥ ∥ζ∥L2(0,T ;V ∗)+Lq∗ (0,T ;W ∗).
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First, by the formula (2.3.4) from Lemma 2.3.5 and the growth conditions for the
conjugate in Remark 5.1.1, there exists a constant M1 > 0 such that

M1 ≥
∫ T

0
min
η∈W ∗

(
∥ζ(t) − η∥2

V ∗ + ∥η∥q
∗

W ∗

)
dt.

Second, the mapping t 7→ α(t) := minη∈W ∗

(
∥ζ(t) − η∥2

V ∗ + ∥η∥q
∗

W ∗

)
is Lebesgue

measurable: since V ∗ is separable, there exists a countable dense subset (ηn)n∈N ⊂ V ∗.
Then, there holds α(t) = infn∈N

(
∥ζ(t) − ηn∥2

V ∗ + ∥ηn∥q
∗

W ∗

)
and from the measurability

of the function αn(t) :=
(
∥ζ(t) − ηn∥2

V ∗ + ∥ηn∥q
∗

W ∗

)
for each n ∈ N, the measurability

of α follows. Further, we note that the mapping g : [0, T ] × W ∗ → R, (t, η) 7→
g(t, η) = ∥ζ(t) − η∥2

V ∗ + ∥η∥q
∗

W ∗ is a Carathéodory function and therefore, by the
Inverse Image Theorem, see, e.g., Aubin & Frankowska [19, Theorem 8.2.9, p.
315], the set-valued map

H(t) := {η ∈ W ∗ : g(t, η) = α(t)}

is measurable and there exists a measurable selection ω : [0, T ] → W ∗ with ω(t) ∈
H(t) and g(t, ω(t)) = α(t) for all t ∈ [0, T ]. We obtain

M1 ≥
∫ T

0
min
η∈W ∗

(
∥ζ(t) − η∥2

∗ + ∥η∥q
∗

W ∗

)
dt

=
∫ T

0

(
∥ζ(t) − ω(t)∥2

∗ + ∥ω(t)∥q
∗

W ∗

)
dt,

whence ω ∈ Lq∗(0, T ;W ∗) and ζ − ω ∈ L2(0, T ;V ∗). It follows

M1 ≥
∫ T

0

(
∥ζ(t) − ω(t)∥2

∗ + ∥ω(t)∥q
∗

W ∗

)
dt,

≥ inf
ξ1∈L2(0,T ;V ∗),ξ2∈Lq∗ (0,T ;W ∗)

ζ=ξ1+ξ2

∫ T

0

(
∥ξ1(t)∥2

∗ + ∥ξ2(t)∥q
∗

W ∗

)
dt

≥ inf
ξ1∈L2(0,T ;V ∗),ξ2∈Lq∗ (0,T ;W ∗)

ζ=ξ1+ξ2

(
∥ξ1∥L2(0,T ;V ∗) + ∥ξ2∥Lq∗ (0,T ;W ∗)

)
−M2

≥ inf
ξ1∈L2(0,T ;V ∗),ξ2∈Lq∗ (0,T ;W ∗)

ζ=ξ1+ξ2

max{∥ξ1∥L2(0,T ;V ∗), ∥ξ2∥Lq∗ (0,T ;W ∗)} −M2

= ∥ζ∥L2(0,T ;V ∗)+Lq∗ (0,T ;W ∗) −M2

for a constant M2 > 0 coming from Young’s inequality. Since the constant M̃ :=
M1 +M2 > 0 was obtained independently of the function ζ, the uniform bound of
the sequence (Sτ − V̂ ′

τ − ξτ )0<τ≤τ∗ in L2(0, T ;V ∗) + Lq∗(0, T ;W ∗) follows. Employing
Condition (5.Bb) for the perturbation B as in (5.3.15) and noting that
∫ T

0

(
min
η∈W ∗

(
∥ζ(t) − η∥2

∗ + ∥η∥q
∗

W ∗

)) 1
ν

dt =
∫ T

0
min
η∈W ∗

(
∥ζ(t) − η∥2

∗ + ∥η∥q
∗

W ∗

) 1
ν dt

≥
∫ T

0
min
η∈W ∗

(
∥ζ(t) − η∥

2
ν∗ + ∥η∥

q∗
ν
W ∗

)
dt,
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we obtain the uniform boundedness of (Bτ )0<τ≤τ∗ in L 2
ν (0, T ;V ∗) + L q∗

ν (0, T ;W ∗) by
arguing in the same way as for Case (a). This, together with the uniform bounds
of (fτ )0<τ≤τ∗ in L2(0, T ;H) and (ξτ )0<τ≤τ∗ in L∞(0, T ;U∗ + V ∗) yields the uniform
bound of (V̂ ′

τ )0<τ≤τ∗ in Lmin{2,q∗}(0, T ;U∗ + V ∗) with respect to τ . It remains to
show the uniform convergences (5.3.9), which follow immediately from the uniform
bounds of (V̂ ′

τ )0<τ≤τ∗ ⊂ Lmin{2,q∗}(0, T ;U∗ +V ∗) and (V τ )0<τ≤τ∗ ⊂ L2(0, T ;V ) in the
respective spaces together with the estimates

∥Ûτ (t) − U τ (t)∥V ≤ ∥U τ (t) − U τ (t)∥V =
∫ t(t)

t(t)
∥V τ (r)∥V dr and

∥V̂τ (t) − V τ (t)∥U∗+V ∗ ≤ ∥V τ (t) − V τ (t)∥U∗+V ∗ =
∫ t(t)

t(t)
∥V̂ ′

τ (r)∥U∗+V ∗ dr

for all t ∈ [0, T ].

5.4 Compactness
This section is devoted to the existence of convergent subsequences of the sequence
of approximate solutions in some proper Bochner spaces in order to pass to the
limit in the discrete inclusion (5.2.1) as the step size vanishes. As we will see, we
will indeed obtain in the limit a solution to the Cauchy problem (5.0.1). For this
purpose, we will make use of compactness properties of bounded sets in reflexive and
separable spaces with respect to the weak topology. We elaborate on this in the next
result.

Lemma 5.4.1 (Compactness) Under the assumptions of Lemma 5.3.1, let (τn)n∈N
be a vanishing sequence of positive numbers and let u0 ∈ D ∩ V and v0 ∈ V . Then,
there exists a subsequence, still denoted by (τn)n∈N, a pair of functions (u, ξ) with

u ∈ Cw([0, T ];U) ∩ H1(0, T ;V ) ∩ W1,∞(0, T ;H) and ξ ∈ L∞(0, T ;U∗ + V ∗)

that satisfies u ∈ H2(0, T ;U∗ + V ∗) in the case (a) and u ∈ W1,q(0, T ;W ) ∩
W2,min{2,q∗}(0, T ;U∗ + V ∗) in the case (b) while fulfilling the initial values u(0) = u0
in U and u′(0) = v0 in H such that the following convergences hold

U τn
, U τn , Ûτn

∗
⇀ u in L∞(0, T ;U ∩ V ), (5.4.1a)

Ûτn(t), U τn
(t), U τn(t) ⇀ u(t) in U for all t ∈ [0, T ], (5.4.1b)

U τn
(t) ⇀ u(t) in V for all t ∈ [0, T ], (5.4.1c)
U τn

→ u in Lr(0, T ; W̃ ) for any r ≥ 1, (5.4.1d)
Ûτn(t), U τn

(t), U τn(t) → u(t) in W̃ for all t ∈ [0, T ], (5.4.1e)
V τn , V τn

∗
⇀ u′ in L2(0, T ;V ) ∩ L∞(0, T ;H), (5.4.1f)

V τn , V τn
→ u′ in Lp(0, T ;H) for all p ≥ 1, (5.4.1g)

V τn(t), V τn
(t) → u′(t) in H for a.e. t ∈ (0, T ), (5.4.1h)

V τn
(t), V τn(t) ⇀ u′(t) in H for all t ∈ [0, T ], (5.4.1i)
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ξτn

∗
⇀ ξ in L∞(0, T ;V ∗

λ ), (5.4.1j)
fτn → f in L2(0, T ;H), (5.4.1k)

and in Case (a)
V̂ ′
τn
⇀ u′′ in L2(0, T ;U∗ + V ∗), (5.4.1l)

Bτn → B(·, u(·), u′(·)) in L2(0, T ;V ∗), (5.4.1m)
and in Case (b)
V τn ⇀ u′ in Lq(0, T ;W ), (5.4.1n)
V τn → u′ in Lmax{2,r}(0, T ;W ) for any r ∈ [1, q), (5.4.1o)

DGΨ2(V τn) → DGΨ2(u′) in Lr(0, T ;U∗ + V ∗) for any r ∈ [1, q∗), (5.4.1p)
V̂ ′
τn
⇀ u′′ in Lmin{2,q∗}(0, T ;U∗ + V ∗), (5.4.1q)

Bτn → B(·, u(·), u′(·)) in L2(0, T ;V ∗) + Lq∗(0, T ;W ∗), (5.4.1r)

where Bτ (t) := B(tτ (t), U τ (t), V τ (t)), t ∈ [0, T ].

Proof. Let U τ , U τ , Ûτ , V τ , V τ , V̂τ , ξτ as well as fτ be the interpolations with the
initial values u0 ∈ D ∩ V and v0 ∈ V as defined in (5.3.1)-(5.3.3). Since all
spaces are supposed to be separable and reflexive, we note that if a Banach
space X is separable and reflexive, the spaces Lp(0, T ;X) for 1 < p < ∞ are also
separable and reflexive, whereas L∞(0, T ;X) is the dual of the separable space
L1(0, T ;X∗). So, as a consequence of the Banach–Alaoglu theorem, bounded sets
in Lp(0, T ;X), 1 < p < ∞, and L∞(0, T ;X) are relatively compact with respect to
the weak and weak* topology, respectively. In view of the a priori estimates (5.3.6)
and (5.3.7), Assumption (5.Ec) implies that the sequence (U τn)n∈N is bounded in
L∞(0, T ;U). Together with the bounds (5.3.8), this already yields the existence of
converging subsequences (denoted as before) fulfilling (5.4.1a), (5.4.1f), and (5.4.1j).
We remark that the limit functions can be identified with u and u′ by standard
arguments. In order to show (5.4.1d), we make use of the Lions–Aubin–Dubinskǐi
lemma (Lemma A.2.1). The boundedness of the sequence of piecewise linear inter-
polations (U τn

)n∈N and the discrete derivatives (V τn
)n∈N uniformly in L∞(0, T ;U)

and L∞(0, T ;H), respectively, yields directly the relative compactness in Lr(0, T ; W̃ )
for all r ≥ 1. In view of (5.4.1b), this implies the convergence (5.4.1e). The just
proven convergence is indeed only needed to deduce the strong convergence of the
perturbation B, i.e., convergence (5.4.1m) and (5.4.1r). Before showing this conver-
gence, we first proceed with proving the pointwise weak convergence as stated in
(5.4.1i). First, we note that from V̂τn ∈ W1,1(0, T ;U∗ + V ∗) ↪→ C([0, T ];U∗ + V ∗)
and (5.4.1l) or (5.4.1q), there holds V̂τn(t) ⇀ u′(t) in U∗ + V ∗ as n → ∞ for all
t ∈ [0, T ]. Since V̂τn(t) is uniformly bounded in H for all t ∈ [0, T ], it is (up to a
subsequence) weakly convergent in H to u′(t). Since the weak limit is unique in
U∗ + V ∗, we obtain with the subsequence principle, the convergence of the whole
sequence. Together with the strong convergence in (5.3.9), this implies (5.4.1i). With
the same argument, we deduce the pointwise weak convergences (5.4.1b) and (5.4.1c)
where in the latter convergence we use the fact that u0 ∈ D ∩ V . Further, we recall
that L∞(0, T ;X) ∩ Cw([0, T ];Y ) = Cw([0, T ];X) for two Banach spaces X and Y

with X being reflexive and such that the continuous and dense embedding X d
↪→ Y
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holds, see, e.g., in Lions & Magenes [107, Lemma 8.1, p. 275]. Applying the latter
result to X = U and Y = H, there holds u ∈ Cw([0, T ];U). Now, we seek to apply
Lemma A.2.1 to the sequence (V τn)n∈N with X = V, B = H and Y = U∗ + V ∗ in
order to show the strong convergence in L2(0, T ;H) to the limit u′ ∈ L2(0, T ;H).
The Assumption (A.2.1) of Lemma A.2.1 follows for p = 2 and r = min{2, q∗} > 1
directly from the a priori estimate (5.3.6) and the following estimate

∥στnV τn − V τn∥Lq(0,T−τn;U∗+V ∗) = τn∥V̂ ′
τn

∥Lq(0,T ;U∗+V ∗) ≤ τnM for all n ∈ N,

from which the strong convergence V τn → u′ in L2(0, T ;H) as n → ∞ follows. Taking
into account the boundedness of the very same sequence in L∞(0, T ;H), we obtain
by a well-known interpolation inequality the strong convergence in Lr(0, T ;H) for all
r ≥ 1, i.e. (5.4.1g). This, in turn, implies pointwise convergence of the very sequence
almost everywhere in (0, T ), i.e., (5.4.1h). The assertion for V̂τn can be shown
analogously. Recalling the fact that the space of continuous functions C([0, T ];H) is
dense in L2(0, T ;H), for every ϵ > 0 there exists a function f ε ∈ C([0, T ];H) such
that ∥f ε − f∥L2(0,T ;H) < ε/3. In view of this approximation property and defining
f ετn

(t) = 1
τn

∫ n
tn1
f ε(σ)dσ, t ∈ [tn−1, tn), n = 1, . . . , N , we find

∥fτn − f∥L2(0,T ;H) ≤ ∥fτn − f ετn
∥L2(0,T ;H) + ∥f ετn

− f ε∥L2(0,T ;H) + ∥f ε − f∥L2(0,T ;H)

≤ ∥f − f ε∥L2(0,T ;H) + ∥f ετn
− f ε∥L2(0,T ;H) + ∥f ε − f∥L2(0,T ;H)

≤ ε/3 + ε/3 + ε/3 = ε

for sufficiently small step sizes τn, where we also used the estimate (5.3.14) for the
first term, and where we made the second term smaller than ε/3 for sufficiently small
step sizes which follows from the uniform continuity of f ε. We proceed by showing
the convergences which differ from each other in Case (a) and in Case (b).
Ad case (a). The weak convergence V̂ ′

τn
→ u′′ as n → ∞ in L2(0, T ;U∗ + V ∗)

follows immediately from the reflexivity of the space L2(0, T ;U∗ + V ∗) and the
uniform bound of the sequence (V̂ ′

τn
)n∈N in the very same space with respect to

n ∈ N. Further, we denote by B(u)(t) = B(t, u(t), u′(t)), t ∈ [0, T ], the associated
Nemitskǐi operator and recall that Bτn(t) = B(tτn(t), U τn

(t), V τn
(t)), t ∈ [0, T ]. In

order to show the strong convergence of the perturbation, we first note that from the
uniform convergence (5.4.1e) and the pointwise convergence (5.4.1h) together with
the continuity condition (5.Ba) implies

∥Bτn(t) − B(u)(t)∥V ∗ → 0 a.e. in (0, T ) (5.4.2)

as n → ∞. By the growth condition (5.Bb), we also obtain B(u) ∈ L 2
ν (0, T ;V ∗) so

that we have Bτn − B(u) ∈ L 2
ν (0, T ;V ∗) being uniformly bounded with respect to

n ∈ N. Using Egorov’s theorem, it is easy to deduce the strong convergence of
Bτn → B(u) in Lq(0, T ;V ∗) as n → ∞ for all 0 < q < 2

ν
, and since 2 < 2

ν
, we can

choose q = 2, i.e., (5.4.1m).
Ad case (b). From the boundedness of the sequences of (V τn)n∈N and (V̂ ′

τn
)n∈N in

Lr(0, T ;W ) and Lmin{2,q∗}(0, T ;U∗ + V ∗), respectively, we obtain the weak conver-
gences (5.4.1n) and (5.4.1q). Applying again Lemma A.2.1 to the sequence (V τn)n∈N
with the choices X = V, B = W and Y = U∗ with p = 2 and r = 1 yields compactness
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of the sequence in L2(0, T ;W ), and if q > 2, we obtain compactness of the sequence
in every intermediate space Ls(0, T ;W ) with 2 ≤ s < q between L2(0, T ;W ) and
Lq(0, T ;W ) by an interpolation inequality, and hence (5.4.1o). With the same
reasoning as for the perturbation, the latter convergence yields (5.4.1p) employing
Egorov’s theorem and the growth and continuity condition for DGΨ2 on W . The
strong convergence of the perturbation in the space L2(0, T ;V ∗) + Lq∗(0, T ;W ∗) is
more delicate and is established as follows: first, by the a priori estimate (5.3.8h),
the sequence Bτn is bounded in L 2

ν (0, T ;V ∗) + L q∗
ν (0, T ;W ∗) ⊂ L2(0, T ;V ∗) +

Lq∗(0, T ;W ∗) by a constant denoted by M̃ > 0. With the same reasoning as for the
first case, we obtain the convergence (5.4.2) and B(u) ∈ L 2

ν (0, T ;V ∗)+L q∗
ν (0, T ;W ∗).

We choose the constant M̃ > 0 such that M̃ ≥ ∥B(u)∥
L

2
ν (0,T ;V ∗)+L

q∗
ν (0,T ;W ∗)

. Second,
defining the set

Gn := {η ∈ L
q∗
ν (0, T ;W ∗) :∥Bτn − B(u) − η∥

L
2
ν (0,T ;V ∗)

≤ 2M̃,

∥η∥
L

q∗
ν (0,T ;W ∗)

≤ 2M̃},

there holds

2M̃ ≥∥Bτn − B(u)∥
L

2
ν (0,T ;V ∗)+L

q∗
ν (0,T ;W ∗)

= inf
η∈L

q∗
ν (0,T ;W ∗)

max{∥Bτn − B(u) − η∥
L

2
ν (0,T ;V ∗)

, ∥η∥
L

q∗
ν (0,T ;W ∗)

}

= inf
η∈Gn

max{∥Bτn − B(u) − η∥
L

2
ν (0,T ;V ∗)

, ∥η∥
L

q∗
ν (0,T ;W ∗)

} for all n ∈ N,

which restricts the set of functions where the infimum is taken over. Then, by
Egorov’s theorem, for every ε > 0 there exists a subset E ⊂ [0, T ] with measure
µ(E) < ε such that the uniform convergence

lim
n→∞

sup
t∈[0,T ]\E

∥Bτn(t) − B(u)(t)∥∗ = 0.

holds. Now, let η : [0, T ] → V ∗ be any measurable function chosen to be fixed. Then,
for every ε > 0 there exists an index N ∈ N such that for all n ≥ N , there holds

∥Bτn(t) − B(u)(t) − η(t)∥∗ ≤ ε+ ∥η(t)∥∗ for all t ∈ [0, T ]\E.

Invoking the latter estimate, we obtain

∥Bτn − B(u) − η∥L2(0,T ;V ∗)

≤
(∫

E
∥Bτn(t) − B(u)(t) − η(t)∥2

∗ dt
) 1

2
+
(∫

[0,T ]\E
∥Bτn(t) − B(u)(t) − η(t)∥2

∗ dt
) 1

2

≤ µ(E)1−ν
(∫

E
∥Bτn(t) − B(u)(t) − η(t)∥

2
ν∗ dt

) ν
2

+
(∫

[0,T ]\E
(ε+ ∥η(t)∥∗)2 dt

) 1
2

≤ ε1−ν2M̃ + (2T ) 1
2 ε+

(∫
[0,T ]\E

2∥η(t)∥2
∗ dt

) 1
2

≤ ε1−ν2M̃ + (2T ) 1
2 ε+ 2∥η∥L2(0,T ;V ∗)
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for all η ∈ L q∗
ν (0, T ;W ∗) ⊂ Lq∗(0, T ;W ∗) with ∥Bτn − B(u) − η∥

L
2
ν (0,T ;V ∗)

≤ 2M̃ .
Finally, we end up with

∥Bτn − B(u)∥L2(0,T ;V ∗)+Lq∗ (0,T ;W ∗)

= inf
η∈Lq∗ (0,T ;W ∗)

max{∥Bτn − B(u) − η∥L2(0,T ;V ∗), ∥η∥Lq∗ (0,T ;W ∗)}

= inf
η∈Gn

max{∥Bτn − B(u) − η∥L2(0,T ;V ∗), ∥η∥Lq∗ (0,T ;W ∗)}

≤ inf
η∈Gn

max{ε1−ν2M̃ + (2T ) 1
2 ε+ 2∥η∥L2(0,T ;V ∗), ∥η∥Lq∗ (0,T ;W ∗)}

≤ ε1−ν2M̃ + (2T ) 1
2 ε for all n ≥ N,

and hence (5.4.1r). Finally, thanks to (5.4.1b) and (5.4.1i), the initial conditions are
also fulfilled by u and u′, and since u0 ∈ D ∩ V , there holds u ∈ H1(0, T ;V ), which
completes the proof.

5.5 Proof of Theorem 5.1.4
We first show that the limit function obtained from the previous lemma is indeed
a solution to the Cauchy problem. Let u0 ∈ D ∩ Vλ, v0 ∈ H, and a vanishing
sequence of step sizes (τn)n∈N be given. We remark that for the estimate (5.3.13) and
the solvability of the variational approximation scheme, we needed necessarily the
initial data u0 and v0 to be in U ∩ V in order to solve the variational approximation
scheme (5.2.2) and to make use of the growth condition of B in (5.Bb) for the a
priori estimates, since the energy functional and the dissipation potential are defined
on different spaces. We circumvent this problem via approximating u0 ∈ D ∩ Vλ
and v0 ∈ H by approximating sequences (uk0)k∈N ⊂ D ∩ V and (vk0)k∈N ⊂ V such
that uk0 → u0 in U and vk0 → v0 in H as k → ∞, which exists by Condition (5.Ea).
Henceforth, we assume k ∈ N to be fixed and we define the interpolations associated
to the initial values uk0 and vk0 as in the previous lemma while omitting the dependence
on k for notational convenience. Then, again by the previous lemma, we obtain
after selecting a subsequence (not relabeled) of the interpolations, the existence
of a limit function u ∈ L∞(0, T ;U) ∩ H1(0, T ;V ) ∩ W1,∞(0, T ;H) with u(0) = u0
in U and u′(0) = vk0 in H that satisfies u ∈ H2(0, T ;U∗ + V ∗) in Case (a) and
u ∈ W1,q(0, T ;W ) ∩ Wmin{2,q∗}(0, T ;U∗ + V ∗) in Case (b), where again we omit the
dependence of the limit function on k. Now, the inclusion (5.3.10) fulfilled by the
interpolations reads in the weak formulation∫ T

0
⟨fτn(r) − Bτn(r) − V̂ ′

τn
(r) − ξτn(r) −DGΨ(V τn(r)), w(r)⟩(U∗+V ∗)×(U∩V ) dr = 0

for all w ∈ Lr(0, T ;U ∩ V ) with r = 2 in Case (a) and r = max{2, 1 + (q −
1)/(1 − δ(q − 1))} for a fixed δ ∈ (0, q∗ − 1) in Case (b), where again Bτn(r) =
B(t(r), U τn(r), V τn(r)), r ∈ [0, T ] and DGΨ(V τn(r)) = AV τn(r) in Case (a) and
DGΨ(V τn(r)) = AV τn(r) +DGΨ2(V τn(r)) in Case (b). For the readers convenience,
we confine ourselves to Case (b), but remark that Case (a) can be treated in the
exact same manner.
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Ad case (b). Since Ψ1(v) = a(v, v) is defined by a strongly positive quadratic
form, the Fréchet derivative is a linear bounded and strongly positive operator
A : V → V ∗, which implies that the associated Nemitskǐi operator A : L2(0, T ;V ) →
L2(0, T ;V ∗) ↪→ Lmin{2,q∗}(0, T ;U∗) is well defined, linear, bounded, and strongly
positive. Therefore, the Nemitskǐi operator is weak-to-weak continuous so that we
can pass with τn ↘ 0 to the limit as n → ∞. The Gâteaux derivative DGΨ2(V τn)
is strongly convergent to DGΨ2(u′) in Lmin{2,q∗−δ}(0, T ;U∗ + V ∗) so that passing to
the limit is also justified in this term. We are also allowed to pass to the limit as the
step size vanishes in the terms fτn and Bτn which, according to the previous lemma,
converge to f and B(·, u(·), u′(·)) strongly in L2(0, T ;H) ↪→ Lmin{2,q∗}(0, T ;V ∗) and
L2(0, T ;V ∗) + Lq∗(0, T ;W ∗) ↪→ Lmin{2,q∗}(0, T ;V ∗) as n → ∞, respectively. Also by
the previous lemma, there holds V̂ ′

τn
⇀ u′′ in Lmin{2,q∗}(0, T ;U∗ + V ∗) and ξτn ⇀ ξ in

L∞(0, T ;U∗+V ∗). Thus, we are allowed to pass to the limit in the weak formulation in
these terms as well. Then, by a well-known density argument and by the fundamental
lemma of calculus of variations, we deduce

u′′(t) +DGΨ(u′(t)) + ξ(t) + B(t, u(t), u′(t)) = f(t) in U∗ + V ∗ a.e. in (0, T ).
(5.5.1)

We proceed by showing that ξ(t) ∈ ∂U∩V Et(u(t)) in U∗+V ∗ for almost every t ∈ (0, T ).
To do so, we employ the closedness condition (5.Ee). Since we have already shown
that the conditions a)-c) are satisfied, it remains to show the conditions d) and e).
Condition d) follows immediately from

∥στnU τn − U τn∥L2(0,T−τn;V ) = τn∥Û ′
τn

∥L2(0,T ;V ) ≤ τnM,

within Case (a) and

∥στnU τn − U τn∥L2(0,T−τn;V )∩Lr(0,T−τn;W )

= ∥στnU τn − U τn∥L2(0,T−τn;V ) + ∥στnU τn − U τn∥Lr(0,T−τn;W )

≤ τn∥Û ′
τn

∥L2(0,T−τn;V )∩Lr(0,T−τn;W ) ≤ τnM,

in Case (b). Condition e) in turn is verified by the following calculations: let
t ∈ [0, T ], then we have∫ tτn (t)

0
⟨ξτn(r), U τn(r)⟩V ∗

λ
×Vλ

dr

=
∫ tτn (t)

0
⟨Sτn(r) − AV τn(r) − V̂ ′

τn
(r) −DGΨ(V τn(r)), U τn(r)⟩V ∗

λ
×Vλ

dr

=
∫ tτn (t)

0
⟨Sτn(r), U τn(r)⟩V ∗×V dr

−
∫ tτn (t)

0
⟨V̂ ′

τn
(r), U τn(r)⟩(U∗+V ∗)×(U∩V ) dr

−
∫ tτn (t)

0
⟨AV τn(r), U τn(r)⟩V ∗×V dr

−
∫ tτn (t)

0
⟨DGΨ2(V τn(r)), U τn(r)⟩V ∗×V dr

=: In1 (t) + In2 (t) + In3 (t) + In4 (t).
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The convergence of the first integral is due to the strong convergence of Sτn =
fτn −Bτn to f −B(u) in Lmin{2,q∗}(0, T ;V ∗) and the weak* convergence of U τn ⇀ u in
L∞(0, T ;U ∩V ) as n → ∞. For the second integral, we recall the discrete integration
by parts formula: let n ∈ N and vk, uk ∈ H, k = 0, . . . , n. Then, there holds

n∑
k=1

(vk − vk−1, uk) = (vn, un) − (v0, u0) −
n∑
k=1

(vk−1, uk − uk−1).

Employing the discrete integration by parts formula, we obtain

−
∫ tτn (t)

0
⟨V̂ ′

τn
(r), U τn(r)⟩(U∗+V ∗)×(U∩V ) dr

=
∫ tτn (t)

0
(V τn

(r), V τn(r))dr − (V τn(t), U τn(t)) + (v0, u0). (5.5.2)

Thus, by (5.3.9), (5.4.1b), (5.4.1g) and (5.4.1i)

lim
n→∞

In2 (t) =
∫ t

0
(u′(r), u′(r))dr − (u′(t), u(t)) + (v0, u0) for all t ∈ [0, T ].

Employing the more general integration by parts formula for Bochner spaces from
Lemma A.1 in Emmrich & Šiška [74] with a = u and b = u′, we obtain

∫ t

0
(u′(r), u′(r))dr − (u′(t), u(t)) + (v0, u0) = −

∫ t

0
⟨u′′(r), u(r)⟩(U∗+V ∗)×(U∩V ) dr

for all t ∈ [0, T ]. We proceed with showing the convergence of the third integral
In3 (t). To do so, we use the symmetry of A and the convexity of Ψ1, to obtain

−
∫ tτn (t)

0
⟨AV τn(r), U τn(r)⟩V ∗×V dr = −

∫ tτn (t)

0
⟨AU τn(r), V τn(r)⟩V ∗×V dr

= −
m∑
k=1

⟨AUk
τn
, Uk

τn
− Uk−1

τn
⟩V ∗×V

≤ −
m∑
k=1

(
Ψ1(Uk

τn
) − Ψ1(Uk−1

τn
)
)

= Ψ1(u0) − Ψ1(Um
τn

)
= Ψ1(u0) − Ψ1(U τn(t)). (5.5.3)

for m ∈ {1, . . . , N}. Furthermore, we observe that

d
dtΨ1(u(t)) = d

dt
1
2a(u(t), u(t)) = ⟨Au(t), u′(t)⟩V ∗×V for a.e. t ∈ (0, T ), (5.5.4)

which follows from the properties of A and the fact that u ∈ H1(0, T ;V ). Then,
taking into account (5.5.3), (5.5.4), the weak lower semicontinuity of Ψ1, the pointwise
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weak convergence (5.4.1c) as well as the symmetry of A, we obtain

lim sup
n→∞

In3 (t) ≤ lim sup
n→∞

(
Ψ1(u0) − Ψ1(U τn(t))

)
= − lim inf

n→∞

(
Ψ1(U τn(t)) − Ψ1(u0)

)
≤ Ψ1(u0) − Ψ1(u(t))

=
∫ t

0
⟨Au(r), u′(r)⟩V ∗×V dr

=
∫ t

0
⟨Au′(r), u(r)⟩V ∗×V dr.

In view of (5.4.1a) and (5.4.1p), we obtain for the last integral

lim
n→∞

In4 (t) = − lim
n→∞

∫ tτn (t)

0
⟨DGΨ2(V τn(r)), U τn(r)⟩(U∗+V ∗)×(U∩V ) dr

=
∫ t

0
⟨DGΨ2(u′(r)), u(r)⟩(U∗+V ∗)×(U∩V ) dr.

We end up with

lim sup
n→∞

∫ tτn (t)

0
⟨ξτn(r), U τn(r)⟩V ∗

λ
×Vλ

dr ≤
∫ t

0
⟨ξ(r), u(r)⟩V ∗

λ
×Vλ

dr

and thus

lim sup
n→∞

∫ T

0
⟨ξτn(r) − ξ(r), U τn(r) − u(r)⟩V ∗

λ
×Vλ

dr ≤ 0.

It remains to show the strong convergence U τn −un0 → u−u0 in L2(0, T ;V ) as n → ∞
in order to obtain the conclusions of Assumption (5.Ee). We show equivalently that
(U τn − un0 )n∈N is a Cauchy sequence in L2(0, T ;V ). To do so, we follow the idea of
the proof of Lemma 4.6 in Emmrich & Šiška [74] and consider in the first step

d
dtΨ1

(
Ûτl

(t) − Ûτm(t)
)

= ⟨A(Ûτl
(t) − Ûτm(t)), V τl

(t) − V τm(t)⟩V ∗×V

= ⟨A(V τm(t) − V τl
(t)), Ûτl

(t) − Ûτm(t)⟩V ∗×V

= ⟨A(V τm(t) − V τl
(t)), U τl

(t) − U τm(t)⟩V ∗×V

+ ⟨A(V τm(t) − V τl
(t)), Ûτl

(t) − U τl
(t) − Ûτm(t) + U τm(t)⟩V ∗×V

= ⟨ξτm(t) − ξτl
(t) + V̂ ′

τm
(t) − V̂ ′

τl
(t) + Sτm(t) − Sτl

(t)
−DGΨ2(V τl

(t)) +DGΨ2(V τm(t)), U τl
(t) − U τm(t)⟩V ∗×V + bl,m(t)

= ⟨ξτm(t) − ξτl
(t), U τl

(t) − U τm(t)⟩V ∗×V + ⟨V̂ ′
τm

(t) − V̂ ′
τl

(t), U τl
(t) − U τm(t)⟩V ∗×V

+ ⟨−DGΨ2(V τl
(t)) +DGΨ2(V τm(t)), U τl

(t) − U τm(t)⟩V ∗×V

+ ⟨Sτm(t) − Sτl
(t), U τl

(t) − U τm(t)⟩V ∗×V + bl,m(t)
≤ λ∥U τl

(t) − U τm(t)∥2
V + ⟨V̂ ′

τm
(t) − V̂ ′

τl
(t), U τl

(t) − U τm(t)⟩V ∗×V

+ ⟨−DGΨ2(V τl
(t)) +DGΨ2(V τm(t)), U τl

(t) − U τm(t)⟩V ∗×V
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+ ⟨Sτm(t) − Sτl
(t), U τl

(t) − U τl
(t)⟩V ∗×V + bl,m(t)

≤ 2λ∥Ûτl
(t) − Ûτm(t)∥2

V + 2λ∥U τl
(t) − Ûτl

(t) − U τm(t) + Ûτm(t)∥2
V

+ ⟨V̂ ′
τm

(t) − V̂ ′
τl

(t), U τl
(t) − U τm(t)⟩V ∗×V

+ ⟨−DGΨ2(V τl
(t)) +DGΨ2(V τm(t)), U τl

(t) − U τm(t)⟩V ∗×V

+ ⟨Sτm(t) − Sτl
(t), U τl

(t) − U τm(t)⟩V ∗×V + bl,m(t)

≤ 2λ
µ
Ψ1(Ûτl

(t) − Ûτm(t)) + 2λ∥U τl
(t) − Ûτl

(t) − U τm(t) + Ûτm(t)∥2
V

+ ⟨V̂ ′
τm

(t) − V̂ ′
τl

(t), U τl
(t) − U τm(t)⟩V ∗×V

+ ⟨−DGΨ2(V τl
(t)) +DGΨ2(V τm(t)), U τl

(t) − U τm(t)⟩V ∗×V

+ ⟨Sτm(t) − Sτl
(t), U τl

(t) − U τm(t)⟩V ∗×V + bl,m(t)

= 2λ
µ
Ψ1
(
Ûτl

(t) − Ûτm(t)
)

+ cl,m(t)

for almost every t ∈ (0, T ), where we have used the symmetry and strong positivity
of A, the λ-convexity of E , and that (5.3.10) is fulfilled. Then, by Gronwall’s
lemma (Lemma A.1.1), there holds

Ψ1(Ûτl
(t) − Ûτm(t)) ≤ cl,m(t) +

∫ t

0

2λ
µ
cl,m(r)e

2λ
µ

(t−r) dr.

Integrating the latter inequality from t = 0 to t = T and using the strong positivity
of Ψ yields

µ
∫ T

0
∥Ûτl

(t) − Ûτm(t)∥2
V dt ≤

∫ T

0
cl,m(t)dt+

∫ T

0

∫ t

0

2λ
µ
cl,m(r)e

2λ
µ

(t−r) drdt.

Employing again the convergences (5.3.9), (5.4.1a), (5.4.1g), (5.4.1i), (5.4.1k), and
(5.4.1p)-(5.4.1r), as well as the discrete integration by parts formula (5.5.2), we
obtain liml,m→∞

∫ t
0 cl,m(r) dr = 0 for all t ∈ [0, T ] and that

∫ t
0 cl,m(r) dr ≤ C for

all l,m ∈ N. Therefore, by the dominated convergence theorem, (Ûτn − un0 )n∈N is
a Cauchy sequence in L2(0, T ;V ). By the convergence (5.3.9), we obtain that
(U τn − un0 )n∈N is a Cauchy sequence in L2(0, T ;V ) as well and thus convergent.
Hence, by the closedness condition (5.Ee), there holds ξ(t) ∈ ∂Vλ

E(u(t)) as well as

Etτn (t)(U τn(t)) → Et(u(t)) and lim sup
n→∞

∂tEtn(t)(U τn(t)) ≤ ∂tEt(u(t)) (5.5.5)

for a.e. t ∈ (0, T ). Now, we show that the energy-dissipation inequality holds. Let
t ∈ [0, T ] and N ⊂ (0, T ] be a set of measure zero such that Etτn (s)(U τn(s)) → Et(u(s))
and V τn

(s) → u′(s) for each s ∈ [0, T ]\N . Then, exploiting the convergences (5.4.1)
and (5.5.5) as well as the condition (5.Ed) and Theorem 2.6.1, we obtain from the
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discrete energy-dissipation inequality,

1
2 |u′(t)|2 + Et(u(t)) +

∫ t

s
(Ψ(u′(r)) + Ψ ∗(S(r) − ξ(r) − u′′(r))) dr

≤ lim inf
n→∞

(
1
2
∣∣∣V τn(t)

∣∣∣2 + Etτn (t)(U τn(t))

+
∫ t

s

(
Ψ(V τn(r)) + Ψ ∗

(
Sτn(r) − V̂ ′

τn
(r) − ξτn(r)

))
dr
)

≤ lim sup
n→∞

(
1
2
∣∣∣V τn(s)

∣∣∣2 + Etτn (s)(U τn(s)) +
∫ tτn (t)

tτn (s)
∂rEr(U τn

(r))dr

+
∫ tτn (t)

tτn (s)
⟨Sτn(r), V τn(r)⟩V ∗×V dr + τλ

∫ tτ (t)

tτ (s)
∥V τ (r)∥2

V dr
)

= 1
2 |u′(s)|2 + Es(u(s)) +

∫ t

s
∂rEr(u(r))dr +

∫ t

s
⟨S(r), u′(r)⟩V ∗×V dr,

for all t ∈ [0, T ] if s = 0 and almost every s ∈ (0, t), where S(r) = f(r) −
B(r, u(r), u′(r)). This shows that u is a strong solution to (5.0.1) satisfying the
initial conditions uk(0) = uk0 ∈ D ∩ V and u′

k(0) = vk0 ∈ V, k ∈ N. We denote with
(uk)k∈N and (ξk)k∈N the associated solutions and subgradients of Et which satisfy
(5.1.8)-(5.1.10). We recall that uk0 → u0 in U ∩Vλ and vk0 → v0 in H as k → ∞. The
next steps are the same as before:

1. We derive a priori estimates based on the energy-dissipation inequality (5.1.10),

2. We show compactness of the sequences (uk)k∈N and (ξk)k∈N in appropriate
spaces,

3. We pass to the limit in the inclusion 5.1.9 as k → ∞.

Ad 1. From the energy-dissipation inequality (5.1.10) for t ∈ [0, T ] and s = 0 while
using the Fenchel–Young inequality, Condition (5.Bb) and (5.Ed), we obtain

1
2 |u′

k(t)|2 + Et(uk(t)) +
∫ t

0
(Ψ(u′

k(r)) + Ψ ∗(Sk(r) − ξk(r) − u′′
k(r))) dr

≤ 1
2 |vk0 |2 + E0(uk0) +

∫ t

0
∂rEr(uk(r))dr +

∫ t

0
⟨Sk(r), u′

k(r)⟩V ∗×V dr

≤ 1
2 |vk0 |2 + E0(uk0) + C1

∫ t

0
Er(uk(r))dr

+
∫ t

0
⟨f(r) − B(r, uk(r), u′

k(r)), u′
k(r)⟩V ∗×V dr

≤ 1
2 |vk0 |2 + E0(uk0) + C1

∫ t

0
Er(uk(r))dr +

∫ t

0

(1
2 |f(r)|2 + 1

2 |u′
k(r)|2

)
dr

+
∫ t

0
(c Ψ(u′

k(r)) + c Ψ ∗(−B(r, uk(r), u′
k(r))/c)) dr

≤ 1
2 |vk0 |2 + E0(uk0) + 1

2∥f∥2
L2(0,T ;H) + C1

∫ t

0
Er(uk(r))dr + 1

2

∫ t

0
|u′
k(r)|2 dr

+
∫ t

0

(
cΨ(u′

k(r)) + β(1 + Er(uk(r)) + |u′
k(r)|2 + Ψ ν(u′

k(r)))
)

dr
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≤ 1
2 |vk0 |2 + E0(uk0) + 1

2∥f∥2
L2(0,T ;H) + CT + C

∫ t

0

(
Er(uk(r)) + 1

2 |u′
k(r)|2

)
dr

+ (c+ c̃)
∫ t

0
Ψ(u′

k(r))dr

for a constant C = C(ν, C1, β) > 0, where Sk(r) := f(r)−B(r, uk(r), u′
k(r)), r ∈ [0, T ]

and β ≥ 0, c ∈ (0, 1), and c̃ > 0 such that c + c̃ ∈ (0, 1). Taking into account the
non-negativity of Ψ, Ψ ∗, by the lemma of Gronwall (Lemma A.1.1), there exists a
constant CB > 0 such that

1
2 |u′

k(t)|2 + Et(uk(t)) +
∫ t

0
(Ψ(u′

k(r)) + Ψ ∗(Sk(r) − ξk(r) − u′′
k(r))) dr ≤ CB (5.5.6)

for all t ∈ [0, T ].
Ad 2. With the same reasoning as in Lemma 5.4.1, we find (up to a subsequence)
the following convergences

uk
∗
⇀ u in L∞(0, T ;U), (5.5.7a)

uk − uk0
∗
⇀ u− u0 in L∞(0, T ;V ), (5.5.7b)

uk − uk0 → u− u0 in L2(0, T ;V ), (5.5.7c)
uk(t) ⇀ u(t) in U for all t ∈ [0, T ], (5.5.7d)

uk → u in Lr(0, T ; W̃ ) for any r ≥ 1, (5.5.7e)
uk(t) → u(t) in W̃ for all t ∈ [0, T ], (5.5.7f)

u′
k

∗
⇀ u′ in L2(0, T ;V ) ∩ L∞(0, T ;H), (5.5.7g)

u′
k → u′ in Lp(0, T ;H) for all p ≥ 1, (5.5.7h)

u′
k(t) → u′(t) in H for a.e. t ∈ (0, T ), (5.5.7i)
u′
k(t) ⇀ u′(t) in H for all t ∈ [0, T ], (5.5.7j)

ξk
∗
⇀ ξ in L∞(0, T ;U∗ + V ∗), (5.5.7k)

and in Case (a)
u′′
k ⇀ u′′ in L2(0, T ;U∗ + V ∗), (5.5.7l)

B(·, uk, u′
k) → B(·, u, u′) in L2(0, T ;V ∗), (5.5.7m)

in Case (b)
u′
k ⇀ u′ in Lq(0, T ;W ), (5.5.7n)
u′
k → u′ in Lmax{2,q−ε}(0, T ;W ) for any ε ∈ [1, q), (5.5.7o)

DGΨ2(u′
k) → DGΨ2(u′) in Lr(0, T ;U∗ + V ∗) for any r ∈ [1, q∗), (5.5.7p)

u′′
k ⇀ u′′ in Lmin{2,q∗}(0, T ;U∗ + V ∗), (5.5.7q)

B(·, uk, u′
k) → B(·, u, u′) in L2(0, T ;V ∗) + Lq∗(0, T ;W ∗), (5.5.7r)

except from the strong convergence (5.5.7c), which needs to be proven. Thus, we
show that (uk − uk0)k∈N is a Cauchy sequence in L2(0, T ;V ). To do so, we consider

d
dtΨ1(ul(t) − ul0 − um(t) + um0 )

= ⟨A(ul(t) − ul0 − um(t) + um0 ), u′
l(t) − u′

m(t)⟩V ∗×V
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= ⟨A(u′
l(t) − u′

m(t)), ul(t) − ul0 − um(t) + um0 ⟩V ∗×V

= ⟨ξm(t) − ξl(t) + u′′
m(t) − u′′

l (t) + Sm(t) − Sl(t), ul(t) − ul0 − um(t) + um0 ⟩V ∗×V

= ⟨ξm(t) − ξl(t), ul(t) − ul0 − um(t) + um0 )⟩U∗×U

+ ⟨u′′
m(t) − u′′

l (t), ul(t) − ul0 − um(t) + um0 ⟩(U∗+V ∗)×(U∩V )

+ ⟨Sm(t) − Sl(t), ul(t) − ul0 − um(t) + um0 ⟩V ∗×V

≤ ⟨ξm(t) − ξl(t), um0 − ul0⟩U∗×U

+ ⟨u′′
m(t) − u′′

l (t), ul(t) − ul0 − um(t) + um0 ⟩(U∗+V ∗)×(U∩V )

+ ⟨Sm(t) − Sl(t), ul(t) − ul0 − um(t) + um0 ⟩V ∗×V .

where we have taken into account that uk is a solution of (5.0.1) and that the
subdifferential operator ∂Et is monotone. Integrating the latter inequality and using
the integration by parts rule yields

µ∥ul(t) − ul0 − um(t) + um0 ∥2
V

≤ Ψ1(ul(t) − ul0 − um(t) + um0 )

≤
∫ t

0
⟨ξm(r) − ξl(r), um0 − ul0⟩U∗×U dr

+
∫ t

0
⟨u′′

m(r) − u′′
l (r), ul(r) − ul0 − um(r) + um0 ⟩(U∗+V ∗)×(U∩V ) dr

+
∫ t

0
⟨Sm(r) − Sl(r), ul(r) − ul0 − um(r) + um0 ⟩V ∗×V dr

=
∫ t

0
⟨ξm(r) − ξl(r), um0 − ul0⟩U∗×U dr

+
∫ t

0
|u′
m(r) − u′

l(r)|2 dr + (u′
m(t) − u′

l(t), ul(t) − ul0 − um(t) + um0 )

+
∫ t

0
⟨Sm(r) − Sl(r), ul(r) − ul0 − um(r) + um0 ⟩V ∗×V dr.

From the strong convergence uk0 → u0 in U as k → ∞ and in view of the convergences
(5.5.7) and the a priori bound (5.5.6), the right-hand side is uniformly bounded and
convergent to zero for every t ∈ [0, T ] as m, l → ∞. Thus, by the dominated
convergence theorem, we conclude that (uk − uk0)k∈N is a Cauchy sequence in
L2(0, T ;V ), and therefore strongly convergent in L2(0, T ;V ) with the limit u− u0.
Ad 3. With the same argument as before, we show that the equation (5.5.1) is
fulfilled. However, it remains to identify ξ(t) ∈ ∂UEt(u(t)) a.e. in (0, T ). But this
follows from the following limsup estimate and the closedness condition (5.Ee)

lim sup
k→∞

∫ t

0
⟨ξk(r) − ξ(t), uk(t) − u(t)⟩V ∗

λ
×Vλ

dr

lim sup
k→∞

∫ t

0
⟨ξk(r) − ξ(t), uk(t) − uk0 − u(t) + u0⟩V ∗

λ
×Vλ

dr

= lim sup
k→∞

(∫ t

0
⟨u′′(r) − u′′

k(r), uk(t) − uk0 − u(t) + u0⟩(U∗+V ∗)×(U∩V ) dr

+
∫ t

0
⟨B(r, u(r), u′(r)) − B(r, uk(r), u′

k(r)), uk(t) − uk0 − u(t) + u0⟩V ∗×V dr
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+
∫ t

0
⟨Au′(r) − Au′

k(r), uk(t) − uk0 − u(t) + u0⟩V ∗×V dr
)

= lim sup
k→∞

(∫ t

0
|u′(r) − u′

k(r)|2 dr + (u′(t) − u′
k(t), uk(t) − uk0 − u(t) + u0)

+
∫ t

0
⟨B(r, u(r), u′(r)) − B(r, uk(r), u′

k(r)), uk(t) − uk0 − u(t) + u0⟩V ∗×V dr

+
∫ t

0
⟨A(uk(t) − uk0 − u(t) + u0), u′(r) − u′

k(r)⟩V ∗×V dr
)

= 0

which again follows from the convergences (5.5.7). Thus, there holds ξ(t) ∈ ∂Vλ
Et(u(t))

a.e. in (0, T ), and hence the completion of this proof.

Remark 5.5.1 If we take a closer look into the proof, we see that the assumption
that Et is sequentially weakly lower semicontinuous has only been used to show the
existence of solutions to the discrete problem and to show the energy-dissipation
inequality. If we only address the existence of solutions without the energy-dissipation
inequality, we can relax the condition by assuming (in both cases) that there exists
r0 > 0 such that u 7→ 1

r0
a(u, u) + Et(u) is sequentially weakly lower semicontinuous.

The existence of discrete solutions under this assumption follows from the fact that

1
τ
a(u− u0, u− u0) + Et(u) = 1

τ
a(u, u) + Et(u) − 2

τ
a(u, u0) + 1

τ
a(u0, u0),

so that the first two terms are sequentially weakly lower semicontinuous and that
the remaining terms are weak-to-weak continuous. In Section 7.3, we will see that
this small difference in the proof makes a significant difference in the applications.



Chapter 6

Nonlinearly damped Inertial
System

In this chapter, we investigate the abstract Cauchy problemu′′(t) + ∂Ψu(t)(u′(t)) + ∂Et(u(t)) + B(t, u(t), u′(t)) ∋ f(t), for a.e. t ∈ (0, T ),
u(0) = u0, u′(0) = v0,

(6.0.1)

where again Ψu denotes the dissipation potential, Et the energy functional, B the
perturbation, and f the external force. In the second case, we essentially deal with
the case where Ψu is nonlinear and non-quadratic and Et = E1 + E2

t is the sum of a
functional E1 that is defined by a strongly positive, symmetric, and bounded bilinear
form and a strongly continuous λ-convex functional E2

t . The perturbation B is again
a strongly continuous perturbation of ∂Ψu and ∂Et. An illustrative example in this
framework is, in the smooth setting, given by

∂ttu− ∇ ·
(
g(u) |∇∂tu|q−2 ∇∂tu

)
−∆u+W ′(u) + b(u, ∂tu) = f,

where q > 1, W : R → R is a λ-convex and continuously differentiable function
with Lipschitz continuous derivative, b : R → R is a lower order perturbation, and
f : R → R an external force. The energy functional and the dissipation potential are
given by

E(u) =
∫
Ω

(1
2 |∇u(x)|2 +W (u(x))

)
dx and Ψu(v) = 1

q

∫
Ω
g(u(x))|∇v(x)|q dx,

and the perturbation is given by

⟨B(u, v), w⟩L2 =
∫
Ω
b(u(x), v(x))w(x)dx.

In Section 7.4 and 7.5, we discuss multi-valued equations.

6.1 Topological assumptions and main result

As in Chapter 5, we assume that (U, ∥ · ∥U), (V, ∥ · ∥V ), (W, ∥ · ∥W ) and (W̃ , ∥ · ∥
W̃

)
are real, reflexive, and separable Banach spaces such that U ∩ V is separable and
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reflexive and that (H, | · |, (·, ·)) is a Hilbert space with norm | · | induced by the
inner product (·, ·).
Similarly, we assume again the following dense, continuous and compact embeddingsU ∩ V

d
↪→ U

c,d
↪→ W̃

d
↪→ H ∼= H∗ d

↪→ W̃ ∗ d
↪→ U∗ d

↪→ V ∗ + U∗

U ∩ V
d
↪→ V

c,d
↪→ W

d
↪→ H ∼= H∗ d

↪→ W ∗ d
↪→ V ∗ d

↪→ V ∗ + U∗,

and if the perturbation does not explicitly depend on u or u′, then we do not assume
U

c
↪→ W̃ or V c

↪→ W , respectively. We further assume V ↪→ W if E2
t ̸= 0, see

Condition (6.Ea). We note that we neither assume U ↪→ V nor V ↪→ U as in
Chapter 5. Since in this case the subdifferential of Ψu is nonlinear, we refer to
the inclusion (6.0.1) in the given framework as nonlinearly damped inertial system
(U, V,W, W̃ ,H, E , Ψ, B, f).

We first collect all the assumptions for the energy functional Et, the dissipation
potential Ψu, the perturbation B as well as the external force f , and discuss them
subsequently. We start with the assumptions for the dissipation potential Ψ .

(6.Ψa) Dissipation potential. For every u ∈ U , let Ψu : V → [0,+∞) be a lower
semicontinuous and convex functional with Ψ(0) = 0 such that the mapping
(u, v) 7→ Ψu(v) is B(U) ⊗ B(V )-measurable.

(6.Ψb) Superlinearity. The functional Ψ satisfies the following growth condition,
i.e., there exists a positive real number q > 1 such that for all R > 0 there exist
positive constants cR, CR > 0 such that for all u ∈ U with supt∈[0,T ] Et(u) ≤ R,
there holds

cR(∥v∥qV − 1) ≤ Ψu(v) ≤ CR(∥v∥qV + 1) for all v ∈ V, t ∈ [0, T ]. (6.1.1)

(6.Ψc) Lower semicontinuity of Ψu + Ψ ∗
u . For all sequences vn ⇀ v in Lq(0, T ;V ),

ηn ⇀ η in Lq∗(0, T ;V ∗), and un(t) ⇀ u(t) in U for all t ∈ [0, T ] as n → ∞
such that supt∈[0,T ],n∈N Et(u(t)) < +∞ and ηn(t) ∈ ∂Ψun(t)(vn(t)) a.e. in
t ∈ (0, T ) for all n ∈ N, there holds∫ T

0

(
Ψu(t)(v(t)) + Ψ ∗

u(t)(ξ(t))
)

dt ≤ lim inf
n→∞

∫ T

0

(
Ψun(t)(vn(t)) + Ψ ∗

un(t)(ηn(t))
)

dt.

For the solvability of problem (5.0.1), only the previous assumptions are
required. If we additionally assume the uniform monotonicity of ∂Ψu, we
obtain stronger convergence of the discrete time-derivatives V τn in the space
Lq(0, T ;V ), see Lemma 6.4.1.

(6.Ψd) Uniform monotonicity of ∂Ψ . For all R > 0, there exists a constant
µR > 0 such that

⟨ξ − η, v − w⟩V ∗×V ≥ µR∥v − w∥max{2,q}
V

for all ξ ∈ ∂Ψu(v), η ∈ ∂Ψu(w) and u, v, w ∈ {ṽ ∈ V : Et(ṽ) ≤ R}.
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Remark 6.1.1
i) We recall that the conjugate Ψ ∗

u : V ∗ → R is lower semicontinuous and
convex itself and that the growth condition (6.1.1) implies the following growth
condition for the conjugate Ψ ∗: for all R > 0, there exist positive numbers
c̄R, C̄R > 0 such that for all u ∈ U with supt∈[0,T ] Et(u) ≤ R, there holds

c̄R(∥ξ∥q
∗

V ∗ − 1) ≤ Ψ ∗
u(ξ) ≤ C̄R(∥ξ∥q

∗

V ∗ + 1) for all ξ ∈ V ∗,

where q∗ = q/(q − 1).

ii) Also here, we can allow more general time-dependent dissipation potentials
Ψu : [0, T ]×V → [0,+∞) by making the same assumptions specified in Remark
3.2.1 iv).

Now, we proceed with the assumptions for the energy functional.

(6.Ea) Basic properties. For all t ∈ [0, T ], the functional Et : U → R is the sum
of functionals E1 : U → R and E2

t : W̃ → R. The functional E1(·) = 1
2b(·, ·)

is induced by a bounded, symmetric, and strongly positive bilinear form
b : U × U → R, i.e., there exist constants µ, α > 0 such that

b(u, v) ≤ α∥u∥U∥v∥U for all u, v ∈ U

µ∥u∥2
U ≤ b(u, u) for all u ∈ U.

(6.Eb) Bounded from below. Et is bounded from below uniformly in time, i.e.,
there exists a constant C0 ∈ R such that

Et(u) ≥ C0 for all u ∈ U and t ∈ [0, T ].

Since a potential is uniquely determined up to a constant, we assume without
loss of generality C0 = 0.

(6.Ec) Coercivity. For every t ∈ [0, T ], Et has bounded sublevel sets in U .

(6.Ed) Control of the time derivative. For all u ∈ U , the mapping t 7→ E2
t (u) is

in C([0, T ]) ∩ C1(0, T ) and its derivative ∂tE2
t is controlled by the function

E2
t , i.e., there exists C1 > 0 such that

|∂tE2
t (u)| ≤ C1E2

t (u) for all t ∈ (0, T ) and u ∈ V.

Furthermore, for all sequences (un)n∈N, u ⊂ D with un ⇀ u as n → ∞ and
supn∈N,t∈[0,T ] Et(un) < +∞, there holds

lim sup
n→∞

∂tE2
t (un) ≤ ∂tE2

t (u) for a.e. t ∈ (0, T ).

(6.Ee) Fréchet differentiability. For all t ∈ [0, T ], the mapping u 7→ E2
t (u) is

Fréchet differentiable on W̃ with derivative DE2
t such that the mapping

(t, u) 7→ DE2
t (u) is continuous as a mapping from [0, T ] × W̃ to U∗ on sublevel

sets of the energy, i.e., for all R > 0 and sequences (un)n∈N, u ⊂ W̃ and
(tn)n∈N, t ⊂ [0, T ] with supt∈[0,T ],n∈N Et(un) < +∞, un → u in W̃ , and tn → t
as n → ∞, there holds

lim
n→∞

∥DE2
tn(un) − DE2

t (u)∥U∗ = 0.
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(6.Ef) λ-convexity. There exists a non-negative real number λ ≥ 0 such that

E2
t (ϑu+ (1 − ϑ)v) ≤ϑE2

t (u) + (1 − ϑ)E2
t (v) + ϑ(1 − ϑ)λ|u− v|2

for all t ∈ [0, T ], ϑ ∈ [0, 1] and u, v ∈ U .

(6.Eg) Control of DE2
t . There exist positive constants C2 > 0 and σ > 0 such that

∥DE2
t (u)∥σ

W̃ ∗ ≤ C3(1 + E2
t (u) + ∥u∥

W̃
) for all t ∈ [0, T ], u ∈ W̃ .

Again, several remarks are in order.

Remark 6.1.2

i) The assumptions on the quadratic form E1 imply that the Fréchet derivative
DE1 is given by a linear, bounded, symmetric and strongly positive operator
E ∈ L(V, V ∗) such that E1(u) = 1

2⟨Eu, u⟩ is strongly convex and therefore
sequentially weakly lower semicontinuous. Furthermore, the corresponding
Nemitskǐi operator is a linear and bounded map from L2(0, T ;V ) to L2(0, T ;V ∗)
and hence weak-to-weak continuous from L2(0, T ;V ) to L2(0, T ;V ∗).

ii) From Assumption (6.Ed), it follows after integration

sup
t∈[0,T ]

E2
t (u) ≤ eC1T inf

t∈[0,T ]
E2
t (u),

|E2
t (u) − E2

s (u)| ≤ eC1T sup
r∈[0,T ]

E2
r (u)|s− t| for all u ∈ U, s, t ∈ [0, T ].

iii) The derivative of the λ-convex energy functional is characterized by the
inequality

E2
t (u) − E2

t (v) ≤ ⟨DE2(u), u− v⟩U∗×U + λ|u− v|2 (6.1.2)

for all t ∈ [0, T ], u, v ∈ U . In fact, the λ-convexity can be replaced by the
latter inequality, since we only make use of (6.1.2) in order to obtain a priori
estimates, see Lemma 6.3.1.

We recall that the Fréchet differentiability of Et implies the subdifferentiability
of Et and the subdifferential is a singleton with ∂E(u) = {DE(u)}.

Finally, we collect the assumptions concerning the perturbation B and the external
force f .

(6.Ba) Continuity. The mapping B : [0, T ] × W̃ × W → V ∗ is continuous on
sublevel sets of Et, i.e., for every converging sequence (tn, un, vn) → (t, u, v)
in [0, T ]×W̃×W with supn∈N G(un) < +∞, there holds B(tn, un, vn) →
B(t, u, v) in V ∗ as n → ∞.
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(6.Bb) Control of the growth. There exist positive constants β > 0 and c, ν ∈ (0, 1)
such that

c Ψ ∗
u

(
−B(t, u, v)

c

)
≤ β(1 + Et(u) + |v|2 + Ψ(v)ν)

for all u ∈ U, v ∈ V, t ∈ [0, T ].

(8.f) External force. There holds f ∈ L2(0, T ;H).

Remark 6.1.3 If the growth condition (6.Ψb) for Ψu holds uniformly in u ∈ U , then
more general external forces f ∈ L1(0, T ;H) + Lq∗(0, T ;V ∗) can be considered.

6.1.1 Discussion of the assumptions
Again, we want to discuss the assumptions more in detail.

As the name suggests, we consider in this case evolution equations of second order
with nonlinear damping, i.e., where ∂Ψu(t) is nonlinear and in general multi-valued.
This restricts us to the case where the principle part of the operator ∂E is linear. The
principle parts of ∂Ψu(t) and ∂E are defined on spaces for which we assume not that
either of the two spaces is continuously embedded in the other one. As mentioned in
the literature review (Section 1.2), this has not been studied before. However, for
single valued operators, a similar case has been investigated by Lions & Strauss
[108] and Emmrich & Thalhammer [77].

Ad (6.Ψ). The conditions for the dissipation potentials are similar to those
in Section 3.2.1 for perturbed gradient systems. In contrast to the superlinearity
condition (3.Ψb), we assume here that Ψu has p-growth on sublevel sets of Et, which
allows us to employ an integration by parts formula for the second derivative u′′

proven in Emmrich & Thalhammer [77], see Lemma 6.4.1 below.

As we mentioned in Remark 2.4.5, the liminf estimate in Condition (6.Ψc) is
already implied by the Mosco-convergence Ψun

M−→ Ψu for all sequences un ⇀ u.
The prototypical examples for state-independent dissipation potential which fulfill
Condition (6.Ψa)-(6.Ψd) are

Ψ(v) =
∫
Ω

(
1
p

|∇v(x)|p + |∇v(x)|
)

dx or Ψ(v) =
∫
Ω

(
1
p

|v(x)|p + |v(x)|
)

dx

on V = W1,p
0 (Ω) or V = Lp(Ω) with p ∈ (1,+∞), respectively. For state-independent

dissipation potentials more general integral functionals of the form

Ψu(v) =
∫
Ω
ψ(x, u(x), v(x),∇u(x),∇v(x))dx

can be considered on appropriate Sobolev spaces, where ψ is a proper, lower
semicontinuous and convex function satisfying certain growth and continuity conditions,
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see Chapter 4, where we discuss this more in detail. Similar to Chapter 3 and 5, we
could also consider here more general time-dependent dissipation functionals.

Ad (6.E). The crucial assumption we make for the energy functional Et = E1 + E2
t is

that the leading part E1 is defined by a bounded, symmetric, and strongly positive
bilinear form b : U × U → R. All other assumptions concern the strongly continuous
perturbation E2

t which are very similar to those made for the energy functional for
linearly damped inertial systems. The main difference is that we assume a Fréchet
differentiability of E2

t , see Section 5.1.1 for a discussion of the assumptions made in
Chapter 6. Ad (6.B). Since we have exactly the same conditions on B, we have the
same remarks as in Section 5.1.1 for linear damping inertial systems.

Having discussed all assumptions, we are in a position to state the main result
which again includes the notion of solution to (6.0.1).
Theorem 6.1.4 (Existence result) Let the nonlinearly damped inertial system
(U, V,W, W̃ ,H, E , Ψ, B, f) be given and fulfill Assumptions (6.E), (6.Ψa)-(6.Ψc) as
well as (6.B) and Assumption (6.f). Then, for every u0 ∈ U and v0 ∈ H, there exists
a solution to (5.0.1), i.e., there exist functions u ∈ Cw([0, T ];U) ∩ W1,∞(0, T ;H) ∩
W2,q∗(0, T ;U∗ + V ∗) with u− u0 ∈ W1,q(0, T ;V ) and η ∈ Lq∗(0, T ;V ∗) satisfying the
initial conditions u(0) = u0 in U and u′(0) = v0 in H such that
η(t) ∈ ∂Ψu(t)(u′(t)) and u′′(t) + η(t) + DEt(t) + B(t, u(t), u′(t)) = f(t) in U∗ + V ∗

(6.1.3)
for almost every t ∈ (0, T ). Furthermore, the energy-dissipation balance

1
2 |u′(t)|2 + Et(u(t)) +

∫ t

s

(
Ψu(t)(u′(r)) + Ψ ∗

u(t)(S(r) − DEr(r) − u′′(r)
)

dr

= 1
2 |v0|2 + E0(u0) +

∫ t

0
∂rEr(u(r))dr +

∫ t

0
⟨S(r), u′(r)⟩V ∗×V dr (6.1.4)

holds for almost every t ∈ (0, T ), where S(r) := f(r) − B(r, u(r), u′(r)), r ∈ [0, T ],
and if V ↪→ U , then (6.1.4) holds for all t ∈ [0, T ].

6.2 Variational approxiomation scheme
The proof of Theorem 6.1.4 again relies on a semi-implicit time discretization scheme.
Therefore, we will proceed in a similar way to the case in the previous section. The
main difference and difficulty arises in identifying the (a priori) weak limits associated
with the nonlinear terms DE and ∂Ψ . Again, for N ∈ N\{0}, let

Iτ = {0 = t0 < t1 < · · · < tn = nτ < · · · < tN = T}

be an equidistant partition of the time interval [0, T ] with step size τ := T/N , where
we again omit the dependence of the nodes from the partition on the step size.
Discretizing inclusion (5.0.1) in a semi-implicit manner yields
V n
τ − V n−1

τ

τ
+ ∂V ΨUn−1

τ
(V n

τ ) + DEtn(Un
τ ) + B

(
tn, U

n−1
τ , V n−1

τ

)
∋ fnτ in U∗ + V ∗

(6.2.1)
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for n = 1, . . . , N with V n
τ = Un

τ −Un−1
τ

τ
. The value Un

τ is to be determined recursively
from the variational approximation schemeU0

τ ∈ U ∩ V and V 0
τ ∈ V are given; whenever U1

τ , . . . , U
n−1
τ ∈ D ∩ V are known,

find Un
τ ∈ Jτ,tn−1(Un−1

τ , Un−2
τ ;B(tn, Un−1

τ , V n−1
τ ) − fnτ )

(6.2.2)

for n = 1, . . . , N , where Jr,t(v, w; η) := argmin u∈U∩V Φ(r, t, v, w, η;u) and U−1
τ =

U0
τ − V 0

τ τ with

Φ(r, t, v, w, η;u) = 1
2r2 |u− 2v + w|2 + rΨu

(
u− v

r

)
+ Et+r(u) − ⟨ζ, u⟩V ∗×V

for r ∈ R>0, t ∈ [0, T ) with r + t ∈ [0, T ], u ∈ U ∩ V, v ∈ V,w ∈ H and ζ ∈ V ∗.
The solvability of the discrete problem (6.2.2) and that every solution fulfills the
Euler–Lagrange equation (6.2.1) is ensured by the following lemma.

Lemma 6.2.1 Let the nonlinearly damped inertial system (U, V,W,H, E , Ψ) be
given and fulfill the Conditions (6.Ea)-(6.Ec), (6.Ee), (6.Ef) and (6.Ψa)-(6.Ψb).
Furthermore, let r ∈ (0, T ) and t ∈ [0, T ) with r+ t ≤ T as well as v ∈ V,w ∈ H and
ζ ∈ V ∗. Then, the set Jr,t(v, w; η) is non-empty and single valued if r ≤ 1

2λ , where λ
is from (6.Ef). Furthermore, to every u ∈ Jr,t(v, w; η), there exists η ∈ ∂V Ψu

(
u−v
r

)
⊂

V ∗ such that

u− 2v − w

r2 + η + DEt(u) + ζ = 0 in U∗ + V ∗.

Proof. The proof follows along the same lines as the proof to Lemma 5.2.1 by
employing the direct methods of the calculus of variations as well as Lemma 2.2.7.

Thus, Lemma 2.2.5 ensures that minimizer of the mapping

u 7→ Φ(τ, tn−1, U
n−1
τ , Un−2

τ , B(tn, Un−1
τ , V n−1

τ ) − fnτ ;u),

fulfil the Euler–Lagrange equation (6.2.1).

6.3 Discrete Energy-Dissipation inequality and a
priori estimates

In this section, we derive a priori estimates to the approximate solutions. Thus,
let the initial values u0 ∈ U ∩ V and v0 ∈ V as well as the time step τ > 0 be
given and fixed. As before, we will assume more general intial values in the main
existence result and approximate by suitable sequences of values. Then, for given
approximate values (Un

τ )Nn=0 with U0
τ := u0 and V 0

τ = v0 obtained from the variational
approximation scheme (6.2.2), we define again the piecewise constant and linear
interpolations U τ , U τ , Ûτ , V τ , V τ , V̂τ , ξτ , fτ as well as tτ and tτ as in (5.3.1)-(5.3.4).
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Furthermore, by Lemma 6.2.1, there exists a sequence (ηnτ )Nn=1 ⊂ V ∗ of subgradients
fulfilling ηnτ ∈ ∂V ΨUn−1

τ
(V n

τ ), n = 1, . . . , N , such that

V n
τ − V n−1

τ

τ
+ ηnτ + DEtn(Un

τ ) + B
(
tn, U

n−1
τ , V n−1

τ

)
= fnτ in U∗ + V ∗, n = 1, . . . , N.

Then, we define the measurable function ητ : [0, T ] → V ∗ by

ητ (t) = ηnτ for t ∈ (tn−1, tn], n = 1, . . . , N, and ητ (T ) = ηNτ . (6.3.1)

Having defined the interpolations, we are in the position to show the a priori
estimates in the following lemma.

Lemma 6.3.1 (A priori estimates) Let the system (U, V,W,H, E , Ψ, B, f) be given
and satisfy the Assumptions (6.E), (6.Ψ), (6.B) as well as Assumption (6.f). Fur-
thermore, let U τ , U τ , Ûτ , V τ , V τ , V̂τ , ητ and fτ be the interpolations associated with
the given values u0 ∈ U ∩ V, v0 ∈ V and the step size τ > 0. Then, the discrete
energy-dissipation inequality
∫ tτ (t)

tτ (s)

(
ΨUτ (r)(V τ (r)) + Ψ ∗

Uτ (r)

(
Sτ (r) − V̂ ′

τ (r) − DEt(r)(U τ (r))
))

dr

+ 1
2
∣∣∣V τ (t)

∣∣∣2 + Etτ (t)(U τ (t))

≤ 1
2
∣∣∣V τ (s)

∣∣∣2 + Etτ (s)(U τ (s)) +
∫ tτ (t)

tτ (s)
∂rEr(U τ (r))dr +

∫ tτ (t)

tτ (s)
⟨Sτ (r), V τ (r)⟩U∗×U dr

+ τλ
∫ tτ (t)

tτ (s)
|V τ (r)|2 dr (6.3.2)

holds for all 0 ≤ s < t ≤ T , where we have introduced the short-hand notation
Sτ (r) := fτ (r) − B(tτ (r), U τ (r), V τ (r)), r ∈ [0, T ]. Moreover, there exist positive
constants M, τ ∗ > 0 such that the estimates

sup
t∈[0,T ]

∣∣∣V τ (t)
∣∣∣ ≤ M, sup

t∈[0,T ]
Et(U τ (t)) ≤ M, sup

t∈[0,T ]
|∂tEt(U τ (t))| ≤ M, (6.3.3)

∫ T

0

(
ΨUτ (r)

(
V τ (r)

)
+ Ψ ∗

Uτ (r)

(
Sτ (r) − V̂ ′

τ (r) − DEt(r)(U τ (r))
))

dr ≤ M (6.3.4)

hold for all 0 < τ ≤ τ ∗. In particular, the families of functions

(U τ )0<τ≤τ∗ ⊂ L∞(0, T ;U), (6.3.5a)
(V τ )0<τ≤τ∗ ⊂ Lq(0, T ;V ), (6.3.5b)
(ητ )0<τ≤τ∗ ⊂ Lq∗(0, T ;V ∗), (6.3.5c)
(V̂ ′

τ )0<τ≤τ∗ ⊂ Lq∗(0, T ;U∗ + V ∗), (6.3.5d)
(Bτ )0<τ≤τ∗ ⊂ L

q
ν (0, T ;V ∗), (6.3.5e)

(DE2
t (U τ ))0<τ≤τ∗ ⊂ L∞(0, T ; W̃ ∗), (6.3.5f)
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are uniformly bounded with respect to τ in the respective spaces, where q∗ > 0 is the
conjugate exponent to q > 1 and ν ∈ (0, 1) being from Assumption (6.Bb). Finally,
there holds

sup
t∈[0,T ]

(
∥U τ (t) − U τ (t)∥V + ∥Ûτ (t) − U τ (t)∥V

)
→ 0

sup
t∈[0,T ]

(
∥V τ (t) − V̂τ (t)∥U∗+V ∗ + ∥V τ (t) − V τ (t)∥U∗+V ∗

)
→ 0

(6.3.6)

as τ → 0.

Proof. Let (Un
τ )Nn=1 ⊂ U∩V be the approximative values obtained from the variational

approximation scheme (6.2.2) which satisfy by Lemma 2.2.7 the Euler–Lagrange
equation

fnτ − B(tn, Un−1
τ , V n−1

τ ) − V n
τ − V n−1

τ

τ
− DEtn(Un

τ ) = ηnτ ∈ ∂V ΨUn−1
τ

(V n
τ ) (6.3.7)

for all n = 1, . . . , N . According to Lemma 2.3.1, inclusion (6.3.7) is equivalent to

ΨUn−1
τ

(V n
τ ) + Ψ ∗

Un−1
τ

(
fnτ − B(tn, Un−1

τ , V n−1
τ ) − V n

τ − V n−1
τ

τ
− DEtn(Un

τ )
)

=
〈
fnτ − B(tn, Un−1

τ , V n−1
τ ) − V n

τ − V n−1
τ

τ
− DEtn(Un

τ ), V n
τ

〉
V ∗×V

, n = 1, . . . , N.

Furthermore, the enhanced Fréchet subdifferentiability (6.Ef) yields

−
〈
DEtn(Un

τ ), Un
τ − Un−1

τ

〉
(U∗+V ∗)×(U∩V )

≤ Etn(Un−1
τ ) + λ|Un

τ − Un−1
τ |2

− Etn(Un
τ )

= Etn−1(Un−1
τ ) − Etn(Un

τ ) + λ|Un
τ − Un−1

τ |2

+
∫ tn

tn−1
∂rEr(Un−1

τ )dr

for all n = 1, . . . , N . Employing (5.3.11), we obtain

1
2 |V n

τ |2 + Etn(Un
τ ) + τΨUn−1

τ
(V n

τ ) + τΨ ∗
Un−1

τ

(
Snτ − V n

τ − V n−1
τ

τ
− DEtn(Un

τ )
)

≤ 1
2 |V n−1

τ |2 + Etn−1(Un−1
τ ) +

∫ tn

tn−1
∂rEr(Un−1

τ )dr + λ
∫ tn

tn−1
|V n
τ |2 dr + τ ⟨Snτ , V n

τ ⟩V ∗×V

for all n = 1, . . . , N , where Snτ := fnτ − B(tn, Un−1
τ , V n−1

τ ), n = 1, . . . , N . Summing
up the inequalities over n yields (6.3.2). Analogously to the proof of Lemma 5.3.1,
the estimates (6.3.3) and (6.3.4) are obtained by employing the discrete version of
Gronwall’s lemma (Lemma A.1.2) taking further into account that by Condition
(6.Ed), there holds

∂rE2
r (Un−1

τ ) ≤ C1E2
r (Un−1

τ )

for all r ∈ (0, T ) and n = 1, . . . , N . The estimates (6.3.3) and (6.3.4) in turn imply in
view of Assumption (6.Ea),(6.Ec),(6.Eg) as well as Assumption (6.Ψb) and Remark
6.1.1 the uniform bounds (6.3.5a)-(6.3.5f) and the convergences (6.3.6).
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6.4 Compactness
In this section, we prove the (weak) compactness of the approximate solutions in
suitable Bochner spaces in order to pass to the limit in the weak formulation
of the discrete inclusion (6.2.1) as the step size vanishes. After identifying all the
weak limits, we will indeed obtain a solution to the Cauchy problem (5.0.1). The
compactness result is given in the following lemma whose proof follow along the
same line as Lemma (5.4.1) for linearly damped inertial systems. Therefore, we will
prove the assertions which differ from the previously mentioned lemma.
Lemma 6.4.1 (Compactness) Under the same assumptions of Lemma 6.3.1, let
(τn)n∈N be a vanishing sequence of step sizes and let u0 ∈ U ∩ V and v0 ∈ V . Then,
there exists a subsequence, still denoted by (τn)n∈N, a pair of functions (u, η) with

u ∈ Cw([0, T ];U) ∩ W1,q(0, T ;V ) ∩ W1,∞(0, T ;H) ∩ W2,q∗(0, T ;U∗ + V ∗) and
η ∈ Lq∗(0, T ;V ∗),

and fulfilling the initial values u(0) = u0 in U and u′(0) = v0 in H such that the
following convergences hold

U τn
, U τn , Ûτn

∗
⇀ u in L∞(0, T ;U ∩ V ), (6.4.1a)

Ûτn(t), U τn
(t), U τn(t) ⇀ u(t) in U for all t ∈ [0, T ], (6.4.1b)

U τn
(t) ⇀ u(t) in V for all t ∈ [0, T ], (6.4.1c)
U τn

→ u in Lr(0, T ; W̃ ) for any r ≥ 1, (6.4.1d)
Ûτn(t), U τn

(t), U τn(t) → u(t) in W̃ for all t ∈ [0, T ], (6.4.1e)
V τn , V τn

∗
⇀ u′ in Lq(0, T ;V ) ∩ L∞(0, T ;H), (6.4.1f)

V τn , V τn
→ u′ in Lp(0, T ;H) for all p ≥ 1, (6.4.1g)

V̂τn(t), V τn
(t), V τn(t) ⇀ u′(t) in H for all t ∈ [0, T ], (6.4.1h)

ητn ⇀ η in Lq∗(0, T ;V ∗), (6.4.1i)
EU τn ⇀ Eu in L2(0, T ;U∗), (6.4.1j)

DE2
tτn

(U τn) → DE2
t (u) in Lr(0, T ; W̃ ∗) for any r ≥ 1, (6.4.1k)

V̂ ′
τn
⇀ u′′ in Lmin{2,q∗}(0, T ;U∗ + V ∗), (6.4.1l)

fτn → f in L2(0, T ;H), (6.4.1m)
Bτn → B(·, u(·), u′(·)) in Lr∗(0, T ;V ∗), (6.4.1n)

Furthermore, if the dissipation potential satisfies in addition Assumption (6.Ψd),
then, there holds

V τn → u′ in Lmax{2,q}(0, T ;U), (6.4.2a)
Ûτn → u in C([0, T ];U). (6.4.2b)

Finally, the function u satisfies the inequality
1
2 |v0|2 − 1

2 |u′(t)|2 + E0(u0) − Et(u(t)) +
∫ t

0
∂rEr(u(r))dr

≤ −
∫ t

0
⟨u′′(r) + DEr(u(r)), u′(r)⟩V ∗×V (6.4.3)
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for almost every t ∈ (0, T ).

Proof. We restrict the proof by only showing the convergence (6.4.1j),(6.4.1k),
(6.4.2a), and (6.4.2b) and note that the remainder of the proof can be proved
in the same manner as the proof of Lemma 5.4.1. First, convergence (6.4.1j) follows
from Remark 6.1.2 i) and the weak convergence (6.4.1a). Further, from the growth
condition (6.Eg), we obtain

∥DE2
tτn (t)(U τn(t))∥σ

W̃ ∗ ≤ C3(1 + E2(U τn(t)) + ∥U τn(t)∥
W̃

)

and in view of the a priori estimates (6.3.3),

∥DE2
tτn (t)(U τn(t))∥W ∗ ≤ C for all t ∈ [0, T ].

Together with the convergence (6.4.1e) and the continuity condition (6.Ee), this
leads to (6.4.1k). The last assertions (6.4.2a) and (6.4.2b) follow immediately from
Assumption (6.Ψd) and

lim sup
n→∞

∫ T

0
∥V τn(r) − u′(r)∥max{p,2}

V dr

≤ lim sup
n→∞

∫ T

0
⟨ηn(r) − η(r), V τn(r) − u′(r)⟩V ∗×V dr ≤ 0

and η(t) ∈ ∂V Ψu(t)(u′(t)) a.e. in (0, T ), which we will show in the proof of the
main result. It remains to show the inequality (6.4.3). The difficulty in proving the
aforementioned inequality is that we are not allowed to split the duality pairing in
the integral on the right-hand side and consider each integral separately. However,
since (6.4.3) is a slight modification of Lemma 6 in Emmrich & Thalhammer
[77], we follow their proof and regularize the function u′ by its so-called Steklov
average. For a function v ∈ Lp(0, T ;X), p ≥ 1, defined on a Banach space X and
being extended by zero outside [0, T ], the Steklov average is, for sufficiently small
h > 0, given by

Shv(t) := 1
2h

∫ t+h

t−h
v(r)dr.

It is readily seen that Shv ∈ Lp(0, T ;X) and ∥Shv∥Lp(0,T ;X) ≤ ∥v∥Lp(0,T ;X). Further-
more, it can be shown by a regularization argument that Shv → v in Lp(0, T ;X) as
h → 0, see , e.g., Diestel & Uhl [58, Theorem 9, p. 49].
Defining Kv(t) =

∫ t
0 v(r)dr, we commence with calculating

−
∫ t

s
⟨(Shu′)′(r) + DEr(u0 + (KShu′)(r)), (Shu′)(r)⟩V ∗×V dr

−
∫ t

s
⟨(Shu′)′(r) + E(u0 + (KShu′)(r)) + DE2

r (u0 + (KShu′)(r)), (Shu′)(r)⟩V ∗×V dr

= 1
2 |(Shu′)(s)|2 − 1

2 |(Shu)′(t)|2 + E1(u0 + (KShu′)(s)) − E1(u0 + (KShu′)(t))

+ E2
s (u0 + (KShu′)(s)) − E2

t (u0 + (KShu′)(t))
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for all s, t ∈ [0, T ] where we have applied the integration by parts formula, since the
duality pairing can be split now due to the fact that (Shu′)(t) = 1

2h(ũ(t+h)−ũ(t−h)),
where ũ is a continuous extension of u outside [0, T ] which makes sense, since
u ∈ L∞(0, T ;U) ∩ W1,1(0, T ;H) ⊂ Cw([0, T ];U) and therefore Shu′ ∈ L2(0, T ;U).
However, we are not allowed to perform the limit passage after splitting up all the
integrals, since the duality pairing in the limit would not be well defined because we
only know that u′′ + DEt(u) ∈ Lq∗(0, T ;V ∗). Nevertheless, since we have assumed
V ↪→ W̃ , we can treat the term involving DE2

t : W̃ → W̃ ∗ ↪→ V ∗ separately. First,
taking into account

u0 + (KShu′)(t) = u0 + 1
2h

∫ t+h

t−h
ũ(r)dr − 1

2h

∫ +h

−h
ũ(r)dr

and that u ∈ Cw([0, T ];U) ⊂ C([0, T ]; W̃ ) since U c
↪→ W̃ , there holds

lim
h→0

(u0 + (KShu′)) = u in C([0, T ]; W̃ ). (6.4.4)

Finally, by the continuity of E2
t and DE2

t , the convergences (6.4.4) and Shu
′ → u′ in

Lq(0, T ;V ) as h → 0, there holds

= −
∫ t

s
⟨DE2

r (u(r)), u′(r)⟩V ∗×V dr

= lim
h→0

−
∫ t

s
⟨DE2

r (u0 + (KShu′)(r)), (Shu′)(r)⟩V ∗×V dr

= lim
h→0

(
E2
s (u0 + (KShu′)(s)) − E2

t (u0 + (KShu′)(t))
)

= E2
s (u(s)) − E2

t (u(t)) (6.4.5)

for all s, t ∈ [0, T ]. Second, it has been shown in Emmrich & Thalhammer [77,
Lemma 6] that

−
∫ t

0
⟨u′′(r) + E(u(r)), u′(r)⟩V ∗×V dr

≤ 1
2 |v0|2 − 1

2 |u′(t)|2 + E1(u0) − E1(u(t))

for almost every t ∈ (0, T ). The latter inequality together with (6.4.5) implies (6.4.3),
which completes the proof.

6.5 Proof of Theorem 6.1.4
Let u0 ∈ U, v0 ∈ H and (τn)n∈N be a vanishing sequence of positive step sizes. Let
(uk0)k∈N ⊂ U ∩ V and (vk0)k∈N ⊂ V be such that uk0 → u0 in U and vk0 → v0 in H
as k → ∞. We let k ∈ N be fixed and we denote the interpolations associated
with the initial data uk0 and vk0 again by (5.3.1)-(5.3.3) and (6.3.1). Henceforth, we
suppress the dependence of the interpolations on k for simplicity. By the previous
lemma, there exists a subsequence (relabeled as before) of the interpolations and limit
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functions u ∈ Cw([0, T ];U) ∩ W1,∞(0, T ;H) ∩ W1,q(0, T ;V ∗) ∩ W2,r∗(0, T ;U∗ + V ∗)
(notice that uk0 ∈ U ∩ V ) and u(0) = uk0 in U and u′(0) = vk0 in H such that the
convergences (6.4.1) hold, where we again suppress the dependence of the limit
functions on k. First, we prove that the inclusion (6.1.3) holds. To do so, we note
that the Euler–Lagrange equation (6.3.7) reads

V̂ ′
τn

(t) + ητn(t) + DEtτn (t)(U τn(t)) + Sτn(t) = 0 in U∗ + V ∗,

ηn(t) ∈ ∂V ΨUτn
(t)(V τn(t))

(6.5.1)

for all t ∈ (0, T ), where Sτn(t) = B(tτn(t), V τn
(t), U τn

(t)) − fτn(t), t ∈ [0, T ]. Testing
equation (6.5.1) with w ∈ Lmax{2,q}(0, T ;U ∩ V ), we obtain

∫ T

0
⟨V̂ ′

τn
(r) + ητn(r) + DEtτn (s)(U τn(s)) + Sτn(r), w(r)⟩(U∗+V ∗)×(U∩V ) dr = 0.

Then, with the aid of the convergences (6.4.1), we are allowed to pass to the limit in
the weak formulation obtaining
∫ T

0
⟨u′′(r) + η(r) + DEs(u(s)) + B(t, u(r), u′(r)) − f(r), w(r)⟩(U∗+V ∗)×(U∩V ) dr = 0

for all w ∈ Lmax{2,q}(0, T ;U ∩ V ). Then, by a density argument and the fundamental
lemma of calculus of variations, we deduce

u′′(t) + η(t) + DEt(u(t)) + B(t, u(t), u′(t)) = f(t) in U∗ + V ∗

for a.e. t ∈ (0, T ). We shall identify the weak limit η as subgradient of the
dissipation potential almost everywhere, i.e, η(t) ∈ ∂V Ψu(t)(u′(t)) for almost every
t ∈ (0, T ). For that purpose, we will employ Lemma 2.4.4 with fn(t, v) = ΨUτn

(t)(v)
and f(t, v) = Ψu(t)(v) for all v ∈ X = V and n ∈ N. Assumption (2.4.1) is already
fulfilled by Condition (6.Ψc). Hence, it remains to show that

lim sup
n→∞

∫ T

0
⟨ηn(t), V τn(t)⟩V ∗×V dt ≤

∫ T

0
⟨η(t), u′(t)⟩V ∗×V dt. (6.5.2)

In order to show the latter limes superior estimate, we use the fact that ητn can be
expressed through the remaining terms of the Euler–Lagrange equation (6.5.1).
Therefore, we will split the integral on the left-hand side of (6.5.2) and note first
that

−
∫ t

0
⟨V̂ ′

τn
(r), V τn(r)⟩V ∗×V dr

= −
∫ t

0
⟨V̂ ′

τn
(r), V̂τn(r)⟩V ∗×V dr +

∫ t

0
⟨V̂ ′

τn
(r), V̂τn(r) − V τn(r)⟩V ∗×V dr

= 1
2 |v0|2 − 1

2 |V̂τn(t)|2 +
∫ t

0
⟨V̂ ′

τn
(r), V̂τn(r) − V τn(r)⟩V ∗×V dr

≤ 1
2 |v0|2 − 1

2 |V̂τn(t)|2,
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where we used the fundamental theorem of calculus for the absolutely continuous
function t 7→ 1

2 |V̂τn(t)|2 and that the estimate∫ t

0
⟨V̂ ′

τn
(r), V̂τn(r) − V τn(r)⟩V ∗×V dr

=
m−1∑
i=1

∫ ti

ti−1

(
V i
τn

− V i−1
τn

τn
, V i

τn

r − ti−1

τn
+ V i−1

τn

ti − r

τn
− V i

τn

)
dr

+
∫ t

tm−1

(
V m
τn

− V m−1
τn

τn
, V m

τn

r − tm−1

τn
+ V m−1

τn

tm − r

τn
− V m

τn

)
dr

= −
m−1∑
i=1

∫ ti

ti−1

(
V i
τn

− V i−1
τn

τn
,
(
V i
τn

− V i−1
τn

) ti − r

τn

)
dr

−
∫ t

tm−1

(
V m
τn

− V m−1
τn

τn
,
(
V m
τn

− V m−1
τn

) tm − r

τn

)
dr

= −
m−1∑
i=1

∫ ti

ti−1

ti − r

τ 2
n

∣∣∣V i
τn

− V i−1
τn

∣∣∣2 dr −
∫ t

tm−1

tm − r

τ 2
n

∣∣∣V m
τn

− V m−1
τn

∣∣∣2 dr ≤ 0

with t ∈ (tm−1, tm] for some m ∈ {1, . . . , N}.
We continue with the term involving the derivative of the energy functional and

start with the linear part:

−
∫ t

0
⟨EU τn(r), V τn(r)⟩U∗×U dr

= −
∫ t

0
⟨EÛτn(r), V τn(r)⟩U∗×U dr +

∫ t

0
⟨EÛτn(r) − EU τn(r), V τn(r)⟩U∗×U dr

= E1(u0) − E1(Ûτn(t)) +
∫ t

0
⟨E(Ûτn(r) − U τn(r)), V τn(r)⟩U∗×U dr

≤ E1(u0) − E1(Ûτn(t)),

where we used ∫ t

0
⟨E(Ûτn(r) − U τn(r)), V τn(r)⟩U∗×U dr ≤ 0,

which can be shown in the same way as above by using the strong positivity of E.
As for the nonlinear part, we obtain by employing the λ-convexity of E2

t that

−
∫ t

0
⟨DE2

tτn (r)(U τn(r)), V τn(r)⟩U∗×U dr

= −
m−1∑
i=1

⟨DE2
ti

(U i
τn

), U i
τn

− U i−1
τn

⟩U∗×U − t− tm−1

τn
⟨DE2

tm(Um
τn

), Um
τn

− Um−1
τn

⟩U∗×U

≤ −
m−1∑
i=1

(
E2
ti

(U i−1
τn

) − E2
ti

(U i
τn

) − λ
∣∣∣U i

τn
− U i−1

τn

∣∣∣2)

− t− tm−1

τn

(
E2
tm(Um−1

τn
) − E2

tm(Um
τn

) − λ
∣∣∣Um

τn
− Um−1

τn

∣∣∣2)
= −

m∑
i=1

(
E2
ti−1

(U i−1
τn

) − Eti(U i
τn

) +
∫ ti

ti−1
∂rE2

r (U i
τn

)dr + λτ 2
n

∣∣∣V i
τn

∣∣∣2)
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+ tm − t

τn

(
E2
tm(Um−1

τn
) − E2

tm(Um
τn

) − λ
∣∣∣Um

τn
− Um−1

τn

∣∣∣2)

= E2
0 (u0) − E2

tτn (t)(U τn(t)) +
∫ tτn (t)

0
∂rE2

r (U τn(r))dr + In(t),

where

In(t) = tm − t

τn

(
E2
tm(Um−1

τn
) − E2

tm(Um
τn

) − λ
∣∣∣Um

τn
− Um−1

τn

∣∣∣2)+ λτn

∫ tτn (t)

0
|V τn(r)|2 dr.

Now, we want to make use of the inequality (6.4.3). However, the aforementioned
inequality only holds true for almost every t ∈ (0, T ). Therefore, we take a sequence
of increasing values (βl)l∈N, βi ∈ (0, T ) for all i ∈ N, converging to T for which (6.4.3)
holds true. Then, choosing t = βl, we obtain with the convergences (6.4.1b), (6.4.1h),
(6.4.1e), and (6.4.1g), the sequential weak lower semicontinuity of E1

t and | · | and
the continuity of E1

t , the limes superior condition and growth condition (6.Ed) on
∂tE2

t and Fatou’s Lemma that

lim sup
n→∞

−
∫ βl

0
⟨V̂ ′

τn
(r) + DEtτn (r)(U τn(r)), V τn(r)⟩V ∗×V dr

≤ lim sup
n→∞

(1
2 |v0|2 − 1

2 |V̂τn(βl)|2 + E0(u0) − E1(Ûτn(βl)) − E2
tτn (βl)(U τn(βl))

+
∫ tτn (βl)

0
∂rEr(U τn(r))dr + In(t)

)
≤ 1

2 |v0|2 − 1
2 |u′(βl)|2 + E0(u0) − Eβl

(u(βl)) +
∫ βl

0
∂rEr(u(r))dr.

Since u ∈ Cw([0, T ];U) and u′ ∈ L∞(0, T ;H) ∩ W1,1(0, T ;U∗ + V ∗) ⊂ Cw([0, T ];H),
Lemma 6.4.1 then yields

1
2 |v0|2 − 1

2 |u′(βl)|2 + E0(u0) − Eβl
(u(βl)) +

∫ βl

0
∂rEr(u(r))dr

≤ −
∫ βl

0
⟨u′′(r) + DEr(u(r)), u′(r)⟩V ∗×V .

Then, in view of the convergences (6.4.1m) and (6.4.1n), the Euler–Lagrange
equation (6.5.1), we obtain

lim sup
n→∞

∫ βl

0
⟨ηn(t), V τn(t)⟩V ∗×V dt

= lim sup
n→∞

∫ βl

0
⟨Sτn(t) − V̂ ′

τn
(t) − DEtτn (t)(U τn(t)), V τn(t)⟩V ∗×V dt

≤
∫ βl

0
⟨f(t) − B(t, u(t), u′(t)) − u′′(t) − DEt(u(t)), u′(t)⟩V ∗×V dt

=
∫ βl

0
⟨η(t), u′(t)⟩U∗×U dt.

Together with Condition (6.Ψc) and Lemma 2.4.4, this implies η(t) ∈ ∂V Ψu(t)(u′(t))
for almost every t ∈ (0, βl) for all l ∈ N. Letting l → ∞ leads to η(t) ∈ ∂Ψu(t)(u′(t))
for almost every t ∈ (0, T ). This shows for each k ∈ N the existence of a function
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u satisfying the inclusion (6.1.3), and the initial values u(0) = uk0 ∈ U ∩ V and
u′(0) = vk0 ∈ V . Denote with (uk)k∈N the sequence of solutions to the associated
sequence of initial values, and with (ηk)k∈N the subgradients of Ψuk(t)(u′

k(t)). In the
last step, we want to show that there exists a limit function u which satisfies (6.1.3)
and (6.1.4) as well as the intial values u(0) = u0 in U and u′(0) = v0 in H. We recall
that uk0 → u0 in U and vk0 → v0 in H as k → ∞. As in Chapter 5, the next steps
are the following.

1. We derive a priori estimates based on the energy-dissipation inequality (6.1.4),

2. We show compactness of the sequences (uk)k∈N and (ηk)k∈N in appropriate
spaces,

3. We pass to the limit in the inclusion 6.1.3 as k → ∞.

Ad 1. Let t ∈ [0, T ] and N ⊂ (0, T ] a set of measure zero such that Etτn (s)(U τn(s)) →
Et(u(s)) and V τn(s) → u′(s) for each s ∈ [0, T ]\N . Then, employing the convergences
(6.4.1), we obtain

1
2 |u′

k(t)|2 + Et(uk(t)) +
∫ t

0

(
Ψuk(r)(u′

k(r)) + Ψ ∗
uk(r)(Sk(r) − DEr(uk(r)) − u′′

k(r))
)

dr

≤ lim inf
n→∞

(
1
2
∣∣∣V τn(t)

∣∣∣2 + Etτn (t)(U τn(t))

+
∫ tτn (t)

0

(
ΨUτn

(r)(V τn(r)) + Ψ ∗
Uτn

(t)

(
Sτn(r) − DEtτn (r)(U τn(r)) − V̂ ′

τn
(r)
))

dr
)

≤ lim sup
n→∞

(
1
2
∣∣∣vk0 ∣∣∣2 + E0(uk0) +

∫ tτn (t)

0
∂rEr(U τn

(r))dr

+
∫ tτn (t)

0
⟨Sτn(r), V τn(r)⟩V ∗×V dr + τλ

∫ tτ (t)

0
∥V τ (r)∥2

V dr
)

= 1
2 |vk0 |2 + E0(uk0) +

∫ t

0
∂rEr(uk(r))dr +

∫ t

0
⟨Sk(r), u′

k(r)⟩V ∗×V dr

for all t ∈ [0, T ], where Sk(r) = f(r) −B(r, uk(r), u′
k(r)). Again, taking into account

Condition (6.Ed), (6.Bb), and (6.Bb), we obtain with the lemma of Gronwall
(Lemma A.1.1)

1
2 |u′

k(t)|2 + Et(uk(t)) +
∫ t

0
(Ψ(u′

k(r)) + Ψ ∗(Sk(r) − DEr(uk(r)) − u′′
k(r))) dr ≤ CB.

for all t ∈ [0, T ] for a constant CB > 0.
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Ad 2. With the same reasoning as for the interpolations, we obtain the convergences

uk
∗
⇀ u in L∞(0, T ;U), (6.5.3a)

uk − uk0
∗
⇀ u− u0 in L∞(0, T ;V ), (6.5.3b)

uk(t) ⇀ u(t) in U for all t ∈ [0, T ], (6.5.3c)
uk(t) − uk0 ⇀ u(t) − u0 in V for all t ∈ [0, T ], (6.5.3d)

uk → u in Lr(0, T ; W̃ ) for any r ≥ 1, (6.5.3e)
uk(t) → u(t) in W̃ for all t ∈ [0, T ], (6.5.3f)
u′
k(t)

∗
⇀ u′ in Lq(0, T ;V ) ∩ L∞(0, T ;H), (6.5.3g)

u′
k(t) → u′ in Lp(0, T ;H) for all p ≥ 1, (6.5.3h)

u′
k(t) ⇀ u′(t) in H for all t ∈ [0, T ], (6.5.3i)

ηkτn
⇀ η in Lq∗(0, T ;V ∗), (6.5.3j)

Euk ⇀ Eu in L2(0, T ;U∗), (6.5.3k)
DE2

t (uk) → DE2
t (u) in Lr(0, T ;U∗) for any r ≥ 1, (6.5.3l)

u′′
k ⇀ u′′ in Lmin{2,q∗}(0, T ;U∗ + V ∗), (6.5.3m)

B(·, uk, u′
k) → B(·, u, u′) in Lr∗(0, T ;V ∗), (6.5.3n)

and if Ψu satisfies (6.Ψd), then

u′
k → u′ in Lmax{2,q}(0, T ;U),
uk → u in C([0, T ];U).

Ad 3. Therefore, u ∈ Cw([0, T ];U) ∩ W1,∞([0, T ];H) ∩ W2,q∗(0, T ;U∗ + V ∗) with
u− u0 ∈ W1,q(0, T ;V ) and η ∈ Lq∗(0, T ;V ∗) satisfies the initial conditions u(0) = u0
in U and u′(0) = v0 in H. Along the same lines as for the interpolations, we obtain
with Condition (6.Ψc) and Lemma 2.4.4 that u and η satisfy the inclusions (6.1.3).
It remains to show the energy-dissipation balance (6.1.4). The inequality

1
2 |u′(t)|2 + Et(u(t)) +

∫ t

0

(
Ψu(r)(u′(r)) + Ψ ∗

u(r)(S(r) − DEr(u(r)) − u′′(r))
)

dr

≤ 1
2 |v0|2 + E0(u0) +

∫ t

0
∂rEr(u(r))dr +

∫ t

0
⟨S(r), u′(r)⟩V ∗×V dr,

for all t ∈ [0, T ] with S(r) = f(r) − B(r, u(r), u′(r)) is obtained by passing to the
limit as k → ∞ while taking into account the convergences (6.4.1). Then, employing
again (6.4.3) and the Fenchel–Young inequality, we obtain∫ t

0

(
Ψu(r)(u′(r)) + Ψ ∗

u(r)(S(r) − DEr(u(r)) − u′′(r))
)

dr

≤ 1
2 |v0|2 − 1

2 |u′(t)|2 + E0(u0) − ET (u(t)) +
∫ t

0
∂rEr(u(r))dr

+
∫ t

0
⟨S(r), u′(r)⟩V ∗×V dr

≤
∫ t

0
⟨DEr(u(r)) − u′′(r), u′(r)⟩V ∗×V dr +

∫ t

0
⟨S(r), u′(r)⟩V ∗×V dr



138 Chapter 6. Nonlinearly damped Inertial System

=
∫ t

0
⟨S(r) − DEr(u(r)) − u′′(r), u′(r)⟩V ∗×V dr

≤
∫ t

0

(
Ψu(r)(u′(r)) + Ψ ∗

u(r)(S(r) − DEr(u(r)) − u′′(r))
)

dr

for almost every t ∈ (0, T ). Now, if V ↪→ U , then the inequality (6.4.3) indeed holds
as equality for all t ∈ [0, T ] by the classical integration by parts formula. This shows
(6.1.4), and hence the completion of the proof.

Remark 6.5.1 The proof of Theorem 6.1.4 reveals that one can consider dissipation
potentials that depend on a parameter ε. In this case, the Condition (6.Ψa) is
assumed to hold for every ε ≥ 0 while Condition (6.Ψb) holds uniformly in ε ≥ 0.
Condition (6.Ψc) can either be replaced with the Mosco-convergence Ψ εn

un

M−→ Ψ 0
u

for every sequence un ⇀ u as ε ↘ 0, or with a more general liminf estimate (2.4.1).



Chapter 7

Applications

In this section, we want to apply the abstract results on linear and nonlinear inertial
systems developed and proven in Chapter 5 and 6, respectively, to concrete examples.
We will give a sufficient number of examples to cover the range of applications
from the abstract results. Since our main results are established in a nonsmooth
setting, the examples with nonsmooth functionals, in particular, can not be cast into
the framework of the existing results. Those nonsmooth functionals correspond to
multi-valued equations or nonlinear constraints. We first start with examples for
linearly damped inertial systems and continue with examples for nonlinearly damped
inertial systems. We assume the same notation and function spaces as in Chapter 4.

7.1 Differential inclusion I A
In the first example, we consider a system, which can be treated in the Case (a) of
the linearly damped intertial system, where the dissipation potential is given by the
Dirichlet energy and the energy functional is a nonsmooth λ-convex function which
to the best of the authors’ knowledge can not be treated with the abstract results
known thus far. More precisely, we consider the initial-boundary value problem

(P1)



∂ttu −∆∂tu −∆pu + (|u|2 − 1)u − ∇ · p + b (x, t,u, ∂tu) = f in ΩT ,

p(x, t) ∈ Sgn (∇u(x, t)) a.e. in ΩT ,

u(x, 0) = u0(x) on Ω,

u′(x, 0) = v0(x) on Ω,

u(x, t) = 0 on ∂Ω × [0, T ],

where Sgn : Rd×m ⇒ Rd×m is the sign function defined in (4.0.1), f : Ω → Rm,
b : Ω × [0, T ] × Rm × Rm → Rm a Carathéodory function in the sense that
b(x, ·, ·, ·) is continuous for almost every x ∈ Ω and b(·, t,y, z) is measurable for all
t ∈ [0, T ] and y, z ∈ Rm. Furthermore, b is assumed to satisfy the following growth
condition: there exists a constant Cb > 0 and numbers q, r > 1 such that

|b(x, t,u,v)| ≤ Cb(1 + |u|q−1 + |v|r−1) for a.e. x ∈ Ω, t ∈ [0, T ] and all u,v ∈ Rm.

Here, p, q, r ≥ 1 are to be chosen in accordance with the assumptions.
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Choosing the spaces U = W1,p
0 (Ω)m ∩ L4(Ω)m, V = H1

0(Ω)m, W = Lmax{2,q}(Ω)m
and H = L2(Ω)m equipped with the standard norms, we assume f ∈ L2(0, T ;V ∗).
The energy functional E : V → (−∞,+∞] and the dissipation potential Ψ : V → R
are given by

E(u) =


∫
Ω

(
1
p
|∇u(x)|p + |∇u(x)| + 1

4(|u(x)|2 − 1)2
)

dx if u ∈ dom(E),
+∞ otherwise,

and

Ψ(v) = 1
2

∫
Ω

|∇v(x)|2 dx,

respectively, whereas the perturbation B : [0, T ] ×W ×H → V ∗ is defined by

⟨B(t,u,v),w⟩V ∗×V = ⟨B(t,u,v),w⟩W ∗×W =
∫
Ω
b(x, t,u(x),v(x)) · w(x)dx.

The Legendre–Fenchel transformation Ψ ∗ : H−1(Ω)m → R of Ψ is obviously
given by Ψ ∗(ξ) = 1

2∥ξ∥2
−1,2. Furthermore, it is readily seen that the energy functional

is not Gâteaux differentiable and its effective domain is given by dom(E) =
W1,p

0 (Ω)m∩L4(Ω)m. The values p, q, r ≥ 1 are to be chosen such that all assumptions
are fulfilled. We can choose, e.g.,

d = 1, p ∈ (1,+∞), r ∈ [1, 2], q ∈ [1, p/2 + 1],

d = 2, p ∈ (1,+∞), r ∈ [1, 2], q ∈

[1, pd/(p− d)) ∩ [1, p/2 + 1] if p ∈ (1, 2),
[1, p/2 + 1] if p ≥ 2,

d ≥ 3, p ∈ (1,+∞), r ∈ [1, 2], q ∈

[1, q∗) if p ∈ (1, 2),
[1, p/2 + 1] if p ≥ 3,

where q∗ = min{d(p+2)
2(d−p) ,

3d+4
d
, p + 1}. Then, by the Sobolev embedding theorem

and the Rellich–Kondrachov theorem, U and V are densely, continuously and
compactly embedded in W and H, respectively. We will verify for illustration the
assumptions for the case d ≥ 3. Since the dissipation potential is state-independent,
it is induced by the bilinear form a : V × V → R,

a(v,w) := 1
2

∫
Ω

∇v · ∇wdx,

and therefore satisfies all conditions. The conditions (5.Eb)-(5.Ed) are obviously
fulfilled by the energy functional. In order to verify (5.Ea), we note that every
convex and lower semicontinuous functional on a Banach space is weakly lower
semicontinuous. Taking the latter into account, we observe that for u ∈ dom(E), the
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energy functional

E(u) =
∫
Ω

(
1
p

|∇u(x)|p + |∇u(x)| + 1
4(|u(x)|2 − 1)2

)
dx

=
∫
Ω

(
1
p

|∇u(x)|p + |∇u(x)| + 1
4(|u(x)|4 − 2|u(x)|2 + 1)

)
dx

=
∫
Ω

(
1
p

|∇u(x)|p + |∇u(x)| + 1
4(|u(x)|4 + 1)

)
dx − 1

2

∫
Ω

|u(x)|2 dx

= W(u) − 1
2

∫
Ω

|u(x)|2 dx

is the sum of a convex function W and a concave function u 7→ −1
2
∫
Ω |u(x)|2 dx on

V . The lower semicontinuity of W on V follows immediately from the converse of
the dominated convergence theorem (see, e.g., Brézis [35, Theorem 4.9, p. 94]) and
Fatou’s lemma. Further, due to the compact embedding of V in H, the concave
function is continuous on V with respect to the weak topology. This implies E to be
weakly lower semicontinuous on V . In fact, the convex part of the energy is perturbed
by the negative Hilbert space norm of H squared which by the parallelogram law
and the embedding V ↪→ H leads to the λ-convexity of E with λ := C being the
constant of the very same embedding. Now, we show the closedness property (5.Ee).
First, we note that for each u ∈ D(∂E), there holds ξ ∈ ∂UE(u) = ∂UW(u) − u
if and only if ξ = −∆pu + ∇ · p + (|u|2 − 1)u ∈ U∗ for a measurable selection
p ∈ L∞(Ω)d×m satisfying p ∈ Sgn(∇u) a.e. in Ω. This can be seen as follows: we
define the functionals W1 : W 1,p

0 (Ω)m → [0,+∞] and W2 : L1(Ω)d×m → R as well as
the operator Λ : W 1,p

0 (Ω)m → L1(Ω)d×m via

W1(u) =


∫
Ω

(
1
p
|∇u(x)|p + 1

4(|u(x)|2 − 1)2
)

dx if u ∈ dom(E),
+∞ otherwise,

W2(A) =
∫
Ω

|A(x)|dx

and Λu = ∇u. We note that Λ is linear and bounded and has as adjoint operator
Λ∗ : L∞(Ω)d×m → W−1,p∗(Ω)m,A 7→ −∇ · A the divergence operator. Let u ∈
dom(∂UW), then by the variational sum rule (Lemma2.2.7) and Lemma 2.2.8, there
holds

ξ ∈ ∂U (W1(u) + W2(Λu))
= ∂UW1(u) + ∂UW2(Λu)
= ∂UW1(u) + Λ∗∂XW2(Λu),

where X = L1(Ω)m×d. Thus, there exists ξ1 ∈ ∂UW1(u) and ξ2 ∈ +Λ∗∂XW2(Λu)
such that ξ = ξ1 + ξ2. Now, we shall determine ξ1 and ξ2. Since W1 is Gâteaux
differentiable on W1,r(Ω)m∩L4(Ω)m, we deduce immediately ξ1 = −∆pu+(|u|2−1)u
a.e. in Ω. In order to determine ξ2, we note first that ξ2 = ∇·p with p ∈ ∂XW2(Λu).
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Second, we express ∂XW2(Λu) with the aid of Lemma 2.3.1 equivalently through
the equation

⟨p, Λu⟩X∗×X = W2(Λu) + W∗
2 (p). (7.1.1)

Third, by Ekeland & Temam [69, Proposition 1.2, p. 87], the conjugate W∗
2 is

given by

W∗
2 (B) =

∫
Ω
ıBRm×d (0,1)(B(x))dx,

with the indicator function ıBRm×d (0,1) → {0,+∞} defined by

ıBRm×d (0,1)(A) =

0 if |A| ≤ 1
+∞ otherweise.

This implies

W∗
2 (B) =

0 if |B(x)| ≤ 1 a.e. in Ω

+∞ otherweise.

Inserting the latter expression into the equality (7.1.1), we obtain∫
Ω
p(x) : ∇u(x)dx =

∫
Ω

|p(x)|dx

and |p(x)| ≤ 1 a.e. in Ω. Since p(x) : ∇u(x) ≤ |p(x)| by the Fenchel–Young
(or Cauchy–Schwarz) inequality, we deduce

p(x) : ∇u(x) = |p(x)| a.e. in Ω.

Therefore, p(x) ∈ BRm×d(0, 1) if |∇u(x)| = 0 and p(x) = ∇u(x)
|∇u(x)| otherwise. We

obtain p(x) ∈ Sgn(∇u(x)) a.e. in Ω. Now let un ∗
⇀ u in L∞(0, T ;U) ∩ H1(0, T ;V ),

un → u in L2(0, T ;V ), and ξn
∗
⇀ ξ in L2(0, T ;U∗) as n → ∞ such that ξn(t) ∈

∂E(un(t)) for almost every t ∈ (0, T ), supn∈N,t∈[0,T ] E(un(t)) ≤ C2, and

lim sup
n→∞

∫ T

0
⟨ξn(t),un(t)⟩U∗×U dt ≤

∫ T

0
⟨ξ(t),u(t)⟩U∗×U dt. (7.1.2)

We note that we can decompose ξ = ζ − u ∈ V ∗ with ζ ∈ ∂W(u). Then, defining
ζn := ξn+un, there holds ζn ∈ ∂W (un) and ζn ⇀ ζ := ξ+u in L2(0, T ;U∗). By the
Lions–Aubin lemma, we obtain the strong convergence of un → u in C([0, T ];H).
Thus, in view of (7.1.2), we deduce

lim sup
n→∞

∫ T

0
⟨ζn(t),un(t)⟩U∗×U dt ≤

∫ T

0
⟨ζ(t),u(t)⟩U∗×U dt.

Since W is convex, by Theorem 2.3.7, there holds ζ(t) ∈ ∂UW (u(t)) in U∗ and
W (un(t)) → W (u(t)) as n → ∞ a.e. in (0, T ), whence ξ(t) ∈ ∂UE(u(t)) a.e. in
(0, T ) and E(un(t)) → E(u(t)) as n → ∞ a.e. in (0, T ). We proceed with showing
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the control of the subgradient of E , i.e., Condition (5.Eg). Let u ∈ D(∂E) and
ξ ∈ ∂UE(u). Then, by Hölder’s and Young’s inequality, the Sobolev embedding
theorem, we obtain

⟨ξ,v⟩U∗×U =
∫
Ω

(
|∇u|p−2∇u : ∇v + p : ∇v + (|u|2 − 1)u · v

)
dx

≤ C
(

∥u∥p−1
W1,p

0 (Ω)m + ∥p∥L∞(Ω)m×d

)
∥v∥W1,p

0 (Ω)m

+ ∥u∥3
L4(Ω)m∥v∥L4(Ω)m + ∥u∥L2(Ω)m∥v∥L2(Ω)m

≤ C
(

∥u∥p−1
W1,p

0 (Ω)m + ∥p∥L∞(Ω)m×d + ∥u∥3
L4(Ω)m + ∥u∥L2(Ω)m

)
∥v∥U

≤ C

(
1 + 1

p
∥u∥pW1,p

0 (Ω)m + 1
4∥u∥4

L4(Ω)m + 1
2∥u∥2

L2(Ω)m

)
∥v∥U

≤ C

(
1 + 1

p
∥u∥pW1,p

0 (Ω)m + 1
4∥u∥4

L4(Ω)m − 1
2∥u∥2

L2(Ω)m + ∥u∥2
L2(Ω)m

)
∥v∥U

≤ C
(
1 + E(u) + ∥u∥L2(Ω)m

)
∥v∥U

≤ C
(
1 + E(u) + ∥v∥W1,p

0 (Ω)m

)
∥v∥U

for all v ∈ U = W1,p
0 (Ω)m ∩ L4(Ω)m, where we also used the fact that Sgn is

uniformly bounded, from which (5.Eg) follows. Finally, we verify the assumptions
on the perturbation B. The continuity condition (5.Ba) can easily be checked with
the dominated convergence theorem.
Ad (5.Bb). Let u ∈ dom(E) and v, w ∈ V . Then, by the Hölder & Young
inequalities as well as the Sobolev embedding theorem, there holds

⟨B(u,v),w⟩V ∗×V =
∫
Ω
b(x, t,u(x),v(x)) · w(x)dx

≤ Cb

∫
Ω

(|u(x)|q−1 + |v(x)|r−1)|w(x)|dx

≤ C
(
∥u∥q−1

L(q−1)2d/(d+2)(Ω)m + ∥v∥r−1
L(r−1)2d/(d+2)(Ω)m

)
∥w∥L(2d/(d−2)(Ω)m

≤ C
(

∥u∥q−1
W1,p

0 (Ω)m + ∥v∥r−1
L2(Ω)m

)
∥w∥H1

0(Ω)m

≤ C
(
(1 + E(u)) + ∥v∥2

L2(Ω)m

) 1
2 ∥w∥H1

0(Ω)m , (7.1.3)

where c̃ ∈ (0, 1). Recalling that the conjugate is given by Ψ ∗(ξ) = 1
2∥ξ∥2

V ∗ for
all ξ ∈ V ∗ = H−1(Ω)m, we conclude (5.Bb). Therefore, for every initial datum
u0 ∈ dom(E) = W1,p

0 (Ω)m ∩ L4(Ω)m and v0 ∈ L2(Ω)m, there exists a weak solution

u ∈ L∞(0, T ;U) ∩ H1(0, T ;V ) ∩ W1,∞(0, T ;H) ∩ H2(0, T ;U∗)

to (P1) in the sense that∫ T

0

(
⟨u′′,v⟩U∗×U +

∫
Ω

(
∇∂tu : ∇v + |∇u|p−2∇u : ∇v + (|u|2 − 1)u · v + p : ∇v

+ b(x, t, ∂tu,u)
)

dx+ ⟨f ,v⟩U∗×U

)
dt for all v ∈ L2(0, T ;U)
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with p(x, t) ∈ Sgn(∇u(x, t)) a.e. in ΩT , and the energy-dissipation inequality

1
2∥u′(t)∥2

L2(Ω) + E(u(t)) +
∫ t

s
Ψ(u′(r))dr

+
∫ t

s
Ψ ∗(f(r) − b(r,u(r),u′(r)) − u′′(r) − ξ(r))dr

≤ 1
2∥u′(s)∥2

L2(Ω) + E(u(s)) +
∫ t

s
⟨f(r) − b(r,u(r),u′(r)),u′(r)⟩V ∗×V dr

holds for all t ∈ [0, T ] if s = 0 and a.e. s ∈ (0, t), where ξ ∈ L∞(0, T ;U∗) and
ξ(t) = −∆pu(t) − (|u(t)|2 − 1)u(t) in U∗ = W−1,p∗(Ω)m + L 4

3 (Ω)m a.e. in t ∈ (0, T ).

7.2 Differential inclusion I B
In the following example, we will cover Case (b) while also highlighting the difference
between Case (a) and (b). To do so, we consider the initial-boundary value problem

(P2)



∂ttu −∆∂tu + ψ′(x, ∂tu) −∆pu + (|u|2 −1)u −∇ · p + b (x, t,u) = f in ΩT ,

p(x, t) ∈ Sgn (∇u(x, t)) a.e. in ΩT ,

u(x, 0) = u0(x) on Ω,

u′(x, 0) = v0(x) on Ω,

u(x, t) = 0 on ∂Ω × [0, T ].

where we assumed that the contribution of ∂tu in the perturbation from the first
example is variational, i.e., it has a potential ψ : Ω×Rm → R so that the perturbation
b has only a contribution from u. Here, ψ(x, ·) is for almost every x ∈ Ω a proper
and convex and Gâteaux differentiable function with derivative ψ′ : Rm → Rm

such that ψ′(x, ·) is a Carathéodory function and satisfies the following growth
conditions: there exists a number r > 1 and constants c1, c2, C̃1 > 0 such that

c1 (|z|r − 1) ≤ψ(x, z) ≤ C̃1 (1 + |z|r) ,
|ψ′(x, z)| ≤ c1

(
1 + |z|r−1

)
for almost every x ∈ Ω and all z ∈ Rm. As we discussed in Section 5.1.1 a
prototypical example is ψ(z) = 1

r
|z|r. We choose the same function spaces for

U = W1,p
0 (Ω)m ∩ L4(Ω)m, V = H1

0(Ω)m,W = Lmax{2,r}(Ω)m, W̃ = Lmax{2,q}(Ω)m, and
H = L2(Ω)m as above. Again p, q, r ≥ 1 are to be chosen suitably. The external
force is assumed to satisfy the weaker assumption f ∈ Lr∗(0, T ;W ∗) + L2(0, T ;V ∗).
Further, we assume u0 ∈ U and v0 ∈ H. In this case, the dissipation potential
Ψ : V → R is given

Ψ(v) = 1
2

∫
Ω

|∇v(x)|2 dx +
∫
Ω
ψ(x,v(x))dx.

The conjugate Ψ ∗ : V ∗ → R is by Lemma 2.3.5 given by the expression

Ψ ∗(ξ) = min
η∈W ∗

(1
2∥ξ − η∥2

−1,2 +
∫
Ω
ψ∗(x,η(x))dx

)
,
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where ψ∗ : Ω×Rm → R is the conjugate of ψ. The energy functional E : V → [0,+∞]
is given as in the previous example. The perturbation B : [0, T ] × W → V ∗ is
consequently given by

⟨B(t,u),w⟩V ∗×V =
∫
Ω
b(x, t,u(x)) · w(x)dx.

It is readily seen that the assumptions for the dissipation potential follow from the
assumptions on ψ. From 1

2∥v∥2
H1

0
≤ Ψ(v), we find Ψ ∗(ξ) ≤ 1

2∥ξ∥2
−1,2, and if we choose,

e.g.,

d ≥ 3, p ∈ (1,+∞), q ∈

[1, q∗) if p ∈ (1, 3),
[1, 1 + p) ∩ (1, 2d/(d− 2)] if p ≥ 3,

where q∗ = min{d(p+2)
2(d−p) ,

3d+4
d
, 2d

(d−2) , p/2 + 1}, d ≥ 3, p ∈ (1,+∞), we obtain again the
estimate (7.1.3) without any restriction on r. However, from the condition V

c
↪→ W ,

we obtain the restriction r ∈ [1, 1 +p) ∩ (1, 2d/(d− 2)], which is now a larger range as
opposed to the previous case. Simple calculations show that the same restrictions for
the exponents p, q and r hold in the dimensions d = 1 and d = 2. Again, we obtain
for every initial values u0 ∈ dom(E) and v0 ∈ H, the existence of a weak solution

u ∈ Cw([0, T ];U) ∩ H1(0, T ;V ) ∩ W1,∞(0, T ;H) ∩ W1,r(0, T ;W ) ∩ W2,r∗(0, T ;U∗)

with r∗ = min{2, r∗} to (P2) such that the initial conditions u(0) = u0 and u′(0) = v0
are satisfied, the integral equation∫ T

0

(
⟨u′′,v⟩U∗×U +

∫
Ω

(
∇∂tu : ∇v + ψ′(x, ∂tu) · v + |∇u|p−2∇u : ∇v + p : ∇v

+ (|u|2 − 1)u · v + b(x, t,u)
)

dx+ ⟨f ,v⟩U∗×U

)
dt for all v ∈ Lmax{2,r}(0, T ;U)

with p(x, t) ∈ Sgn(∇u(x, t)) a.e. in ΩT is fulfilled, and the energy-dissipation
inequality (5.1.10) holds.

7.3 Martensitic transformation in shape-memory
alloys

In this example, we consider equations which describe a solid-solid phase transition
in shape-memory alloys driven by stored-energy and a dissipation mechanism. As
critically discussed in Rajagopal & Roubíček[135], a commonly used model
describing this phenomena is for the isothermal case given by

ρ∂ttu + ν(−1)n∆n∂tu − ∇ · (σ(∇u)) + µ(−1)m∆mu = f , (7.3.1)

where f ∈ L2(0, T ; H−1,2(Ω)d), m,n ∈ N and µ, ν ≥ 0 are non-negative real values.
Here, ρ ≥ 0 denotes the density of the body, u : Ω × [0, T ] → Rd the displacement
of the body, which is related to the deformation y by u(x, ·) = y(x, ·) − x on a
reference body configuration Ω, and σ : Rd×d → Rd×d the Piola–Kirchhoff stress
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tensor depending on the gradient ∇u. The stress σ is, in general, not monotone
and for hyperelastic materials given by the derivative of a potential φ : Rd×d → R
describing the specific stored energy, i.e, σ = φ′ in turn is not quasiconvex1. The
contribution of µ(−1)m∆mu in the equations models a capillarity-like behaviour of
the solid and ν(−1)n∆n∂tu describes a higher order viscosity. In fact, the authors
in [135] suggest to incorporate a correction term into the equations which describes
plasticity effects of the body. More precisely, they suggest to consider the inclusion

ρ∂ttu + ν(−1)n∆n∂tu − ∇ · (σp + σ(∇u)) + µ(−1)m∆mu = f ,

σp ∈ Sgn (λ′(∇u(x)) : ∇∂tu(x))λ′(∇u(x)),

where Sgn : R ⇒ R is here the multi-valued and one-dimensional sign function,
σp : Rd×d → Rd×d is the plastic stress, and λ : Rd×d → R is a so-called phase
indicator and thus indicates the phase status of ∇u. As the inclusion contains the
deformation gradient ∇u and its time derivative ∂t∇u, the structure of the inclusion
does not allow us to apply our abstract theory. We refer the reader to Rajagopal
& Roubíček [135] and Plecháč & Roubíček [133] for a detailed analysis of both
evolution inclusions and to Arndt, Griebel & Roubíček [15] when the inertial
forces are neglected, i.e., when ρ = 0. Nevertheless, we are able to cover a good
scope of cases with our theory for the model which does not incorporate plasticity
effects. Many cases have been studied in the literature in different situations, i.e., for
different dimensions, numbers of n,m ∈ N, values of µ, ν ≥ 0. We refer to [74, 135]
and the references cited therein for a good overview of the existing results. Most
results deal with the situation ν > 0 and n = 1 case, since higher-order viscosity
implies a regularization of the solutions. The case ν = 0 and µ = 0 leads to the
equations of classical nonlinear elastodynamics where very few results are known,
see Emmrich & Puhst [72] for a nice survey on the existing results in comparison
to results for the corresponding nonlinear peridynamics, a nonlocal elasticity theory.
With the theory developed here, we show the existence of solutions for the cases
ν > 0, µ ≥ 0 and n ≥ 1,m ≥ 0, which essentially reproduce the known results from
the literature. For the sake of simplicity, we supplement the equation (7.3.1) with
homogeneous Dirichlet & Neumann boundary conditions. Before we specify
the values for n,m ∈ N and ν, µ ≥ 0, we set a system of equations and define the
associated functionals, operators and spaces. We consider the initial-boundary value
problem

(P3)


ρ∂ttu + ν(−1)n∆n∂tu − ∇ · (σ(∇u)) + µ(−1)m∆mu = f in ΩT ,

u(x, 0) = u0(x) on Ω,

u′(x, 0) = v0(x) on Ω,
∂ku
∂νk (x, t) = 0 on ∂Ω × [0, T ], k = 0, . . . ,max{m,n} − 1,

where we assume ν, µ ≥ 0 and ρ : Rd → [0,∞) to be a measurable function satisfying
ρ̄ ≥ ρ(x) ≥ ρ > 0 for a.e. x ∈ Ω. We want to show the existence of a weak solution
to (P3) for any initial data u0 ∈ Hm

0 (Ω)d and v0 ∈ L2(Ω)d and external forces f ∈
L2(0, T ; H− max{m,n}(Ω)d), i.e., a function u ∈ Cw([0, T ]; Hm

0 (Ω)d)∩H1(0, T ; Hn
0 (Ω)d)∩

1See, e.g., Roubíček [145, Remark 6.5, p. 175].
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W1,∞(0, T ; L2(Ω)d)∩H2(0, T ; H− max{m,n}(Ω)d) satisfying the initial conditions u(0) =
u0, v(0) = v0, the integral equation∫ T

0

(
⟨ρu′′,v⟩ +

∫
Ω

(ν∇n∂tu : ∇nv + σ(∇u) : ∇v + µ∇mu : ∇mv) dx
)

dt,

=
∫ T

0
⟨f ,v⟩dt for all v ∈ L2(0, T ; Hmax{m,n}

0 (Ω)d),
(7.3.2)

and an energy-dissipation inequality which becomes an equality if n ≥ m, where ⟨·, ·⟩
denotes the duality pairing between Hmax{m,n}

0 (Ω)d and its dual space H− max{m,n}(Ω)d,
where Hk

0(Ω)d is the Sobolev space of all measurable functions whose weak derivative
exist up to the order k ∈ N and are square-integrable, and the traces of all derivatives
up to the order k− 1 vanish on the boundary ∂Ω. It is readily seen that these spaces
equipped with the inner product (v,w)Hk

0×H−k =
∫
Ω ∇kv : ∇kwdx form a Hilbert

space and that by a classical density argument and the Poincaré–Friedrichs
inequality, the norm induced by this inner product is equivalent to the standard
norm. Now, since the stored energy φ was not supposed to satisfy any convexity
assumption, we have in general two possibilities of approaching this problem. On
the one hand, we can treat the stress σ as strongly continuous perturbation of the
capillarity if σ has at most linear growth. On the other hand, if we assume the stress
satisfies an Andrews–Ball type condition allowing any polynomial growth for σ,
we can treat the stored energy φ as part of the energy functional.

σ as perturbation: In the first case, we do not make any monotonicity assumption
for σ and do not assume that the material is hyperelastic, i.e., σ has a potential.
More precisely, we impose the following two conditions on σ:

(7.3.1a) The stress σ is continuous.

(7.3.1b) There exists a positive constant Cσ > 0 such that |σ(F )| ≤ Cσ(1 + |F |) for
all F ∈ Rd×d.

As we do not have more structure of the perturbation at our disposal, we want to
treat the stress as a strongly continuous perturbation which leads to the restriction
m ≥ 2 and µ > 0 if n = 1. Finding ourselves in Case (a), we choose the framework
U = Hmax{m,n}

0 (Ω)d, V = Hmax{m,n}
0 (Ω)d, W = H1

0(Ω)d all equipped with the semi-
norm and the Lebesgue space H := L2(Ω)d equipped with the inner product
(w,v) =

∫
Ω ρ(x)w(x) · v(x) dx, which is equivalent to the standard one by the

assumption for ρ. Then, the dissipation potential Ψ : V → R and the energy
functional E : V → (−∞,+∞] are defined by

Ψ(v) = ν

2

∫
Ω

|∇nv(x)|2 dx = ν

2 |v|2Hn
0

and

E(u) =


µ
2
∫
Ω |∇mu(x)|2 dx = µ

2 |u|2Hm
0

if u ∈ dom(E) = Hm
0 (Ω)d

+∞ otherwise.



148 Chapter 7. Applications

Consequently, the perturbation B : W → V ∗ is given by

⟨B(u),w⟩W ∗×W =
∫
Ω
σ(∇u(x)) : w(x)dx.

We will distinguish the cases m > n and n ≥ m by treating the system as either a
linear or a nonlinearly damped inertial system despite the dissipation potential being
quadratic in both cases. In the former case, we will obtain an energy-dissipation
inequality, and in the latter case, an equality instead. As in the previous example
seen, it is straightforward to show that the dissipation Ψ fulfills Assumption (5.Ψ).
In order to verify the conditions for the energy, we note that the energy E is convex,
sequentially weakly lower semicontinuous on V and is time-independent so that
the Assumptions (5.Ea)-(5.Ed) and (5.Ef) are verified. To verify the (sequential)
weak lower semicontinuity, it is sufficient to check that E is lower semicontinuous,
since E is convex. The lower semicontinuity in turn can easily be verified with
Lemma 2.1.2 by showing the closedness of the sublevel sets of E , i.e., showing that
Jα = {v ∈ V : E(v) ≤ α} is closed for all α ∈ R. If n ≥ m, then this is clear.
Otherwise, let α ∈ R and (uk)k∈N ⊂ Jα such that uk → u in V . Then, (uk)k∈N is
bounded in Hm

0 (Ω)d and therefore weakly convergent (up to a subsequence) to an
element u ∈ V . Since the norm on V is weakly lower semicontinuous, we infer u ∈ Jα.
To verify Condition (5.Ee), we note that for u ∈ dom(∂E), there holds ξ ∈ ∂UE(u)
if and only if ξ = µ(−1)m∆mu ∈ U∗. Now, let uk

∗
⇀ u in L∞(0, T ;U) ∩ H1(0, T ;V ),

uk → u in L2(0, T ;V ), and ξk ⇀ ξ in L2(0, T ;U∗) with ξk(t) ∈ ∂UE(uk(t)) in V ∗ for
a.e. t ∈ (0, T ) and supk∈N,t∈[0,T ] E(uk(t)) < +∞ such that

lim sup
k→∞

∫ T

0
⟨ξk(t),uk(t)⟩U∗×U dt ≤

∫ T

0
⟨ξ(t),u(t)⟩U∗×U dt.

Then, by Lemma 2.4.2 and Theorem 2.3.7 ii), there holds ξ(t) ∈ ∂UE(u(t)) in U∗ for
almost every t ∈ (0, T ) and limn→∞

∫ T
0 E(un)dt =

∫ T
0 E(u)dt, i.e., norm convergence

in L2(0, T ;U). Since L2(0, T ;U) is a uniformly convex space, weak convergence and
norm convergence imply strong convergence, whence limn→∞ E(un(t)) = E(u(t))
for a.e. t ∈ (0, T ). It remains to show that the subgradient of the energy can be
controlled by the energy: let u ∈ D(∂UE) and ξ ∈ ∂UE(u). Then, there holds

⟨ξ,v⟩U∗×U = µ
∫
Ω

∇mu · ∇mvdx

≤ µ
(∫

Ω
|∇mu|2 dx

) 1
2
(∫

Ω
|∇mv|2 dx

) 1
2

≤
(
µ/2 + µ/2

∫
Ω

|∇mu|2 dx
)

∥v∥U

= (µ/2 + E(u))∥v∥U ,

whence (5.Eg).
Finally, we verify the Assumptions (5.Ba) and (5.Bb) for the perturbation. The
continuity Condition (5.Ba) follows immediately from the dominated convergence
theorem and the Assumptions (7.3.1a) and (7.3.1b). The growth Condition (5.Bb)
follows from the fact that Ψ ∗(ξ) = 1

2ν∥ξ∥2
−m,2 for all ξ ∈ V ∗ = H−m(Ω)d and the
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inequality

⟨B(u),v⟩V ∗×V =
∫
Ω
σ(∇u) : ∇vdx

≤
(∫

Ω
|σ(∇u)|2 dx

) 1
2
(∫

Ω
|∇v|2 dx

) 1
2

≤ C
(∫

Ω
(1 + |∇u|)2

) 1
2

|v|n,2

≤ C (1 + |u|1,2) |v|n,2
≤ C (1 + |u|m,2) |v|n,2
≤ C

(
1 + E(u) 1

2
)

|v|n,2 for all v ∈ V.

Hence, we obtain

∥B(u)∥2
−n,2 ≤ C(1 + E(u)) for all u ∈ U.

Then, by Theorem 5.1.4, for all initial values u0 ∈ dom(E), v0 ∈ H, there exists a
weak solution

u ∈ Cw([0, T ];U) ∩ H1(0, T ;V ) ∩ W1,∞(0, T ;H) ∩ H2(0, T ;U∗)

to (P3) such that (7.3.2) is fulfilled, and the energy-dissipation inequality
1
2∥ρu′(t)∥2

L2(Ω)d + µ

2 |u(t)|2m,2 +
∫ t

s

1
2ν |f(r) + ξ(r) + ∇ · σ(∇u(r)) − u′′(r)|2−n,2 dr

+
∫ t

s

ν

2 |u′(r)|2n,2 dr

≤ 1
2∥ρu′(s)∥2

L2(Ω)d + µ

2 |u(s)|2m,2 +
∫ t

s
(⟨f(t),u′(r)⟩V ∗×V + σ(∇u(t)) : ∇u′(r)) dr

(7.3.3)

holds for all t ∈ [0, T ] for s = 0 and almost every s ∈ (0, t), where ξ ∈ L∞(0, T ;U∗)
with ξ(r) = µ(−1)m∆mu(r) a.e. in (0, T ). The inequality (7.3.3) holds as an equality
for almost every t ∈ [0, T ] and s = 0 if n ≥ m. This stems from the fact that we
can test with u′ in the integral equation (7.3.2) or that we can treat the system
of equations alternatively as a nonlinearly damped inertial system with the same
choices for E , Ψ, B, U,W and H but with V = Hm

0 (Ω)d.

σ as energy: Now, we suppose that σ fulfills, aside from certain growth and
continuity conditions, a potential, and that σ satisfies an Andrews–Ball type
condition which was originally introduced by Andrews & Ball to show global
existence of solutions for the one-dimensional equations in viscoelastodynamics, i.e.,
when ν > 0, n = 1 and µ = 0, see [12, 13]. The existence of weak solutions to the
aforementioned case in arbitrary dimensions has already been studied in a more
general abstract setting in Emmrich & Šiška [74] by making the crucial assumption
that the operator B + λA is monotone for some λ > 0, which in practice generalizes
the Andrews–Ball condition. The latter condition states that σ is monotone in
the large, i.e., there exists a positive value R > 0 such that(

σ(F ) − σ(F̃ )
)

:
(
F − F̃

)
> 0 for all F ,F ∈ Rd×d with |F − F̃ | ≥ R.
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We will impose the more general assumption of the convexity of φ+ λ
2 which is in

this smooth setting equivalent to the monotonicity of σ + λid. However, if m ∈ N
is sufficiently large so that we can again treat the stored energy φ as strongly
continuous perturbation, then the previous condition is redundant. Therefore, we
will not explicitly focus on this case. Having said that, the exact conditions which
we impose on the stress σ are the following:

(7.3.2a) There exists a continuously differentiable function φ : Rd×d → R such that
σ = φ′.

(7.3.2b) There exist positive constants c1
σ, C

1
σ > 0 and p > 1 such that

c1
σ|F |p − C1

σ ≤ σ(F ) : F
|σ(F )| ≤ C1

σ(1 + |F |p−1)
c1
σ|F |p − C1

σ ≤ |φ(F )| ≤ C1
σ(1 + |F |p) for all F ∈ Rd×d.

(7.3.2c) There exists a positive number λ > 0 such that φ+ λ
2 | · |2 is convex.

Condition (7.3.2c) is in fact equivalent to the following Andrews–Ball type
condition:(

σ(F ) − σ(F̃ )
)

:
(
F − F̃

)
≥ −λ|F − F̃ |2 for all F ,F ∈ Rd×d. (7.3.4)

This follows from the convexity and Gâteaux differentiability of φ + λ
2 | · |2, the

parallelogram identity of | · | and Lemma 2.2.2 and 2.2.6. The Andrews–Ball
condition in turn necessitates (7.3.4) if σ is in addition locally Lipschitz continuous,
see [74].

The obvious choice of the spaces are U = Hmax{n,m}
0 (Ω)d ∩ W1,p

0 (Ω)d, V = W =
Hn

0 (Ω)d and H as before. Further, we assume again f ∈ L2(0, T ; H− max{m,n}(Ω)d).
Then, the dissipation potential Ψ and the energy functional E are given by

Ψ(v) = ν

2

∫
Ω

|∇nv(x)|2 dx, and E(u) =
∫
Ω

(
φ(∇u(x)) + µ

2 |∇mu(x)|2
)

dx

= E1(u) + E2(u),

respectively, and therefore, B ≡ 0. There are essentially two cases to be discussed
here: the first case where the weak solution does not satisfy the energy-dissipation
inequality, and the second case where it does. In both cases, we assume n ≥ 1, ν > 0
and m ≥ 1. The first case then includes all µ ≥ 0, whereas the second case is
limited to µ ≥ λ

CHm
0 ,H1

0

, where CHm
0 ,H1

0
> 0 denotes the constant of the embedding

Hm
0 (Ω)d ↪→ H1

0(Ω)d. The lower bound on µ ensures the convexity of E and thus
implies that E is weakly lower semicontinuity which is necessary to show the energy-
dissipation inequality/balance. The weak lower semicontinuity of E1 is, in general, not
given. However, if E1 is weakly lower semicontinuous, then we allow µ ≥ 0. We focus
first on the case where the weak solution fulfills the energy-dissipation inequality
(balance), i.e., when E is weakly lower semicontinuous. Then, the assumptions on
the dissipation potential Ψ are for both cases easily verified. Hence, we need to
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verify the Conditions (5.Ea)-(5.Eg) for E . With the remarks made above and the
fact that E is time-independent, Conditions (5.Ea)-(5.Ed) and (5.Ef) are fulfilled.
From Assumption (7.3.2c) it follows that E is λ-convex, and Assumption (7.3.2a)
and (7.3.2b) imply that the energy functional E is Gâteaux differentiable on U and
that the derivative is given by

⟨DGE(u),v⟩U∗×U =
∫
Ω
σ(∇u(x)) : ∇v(x) + µ∆u(x) ·∆v(x)dx.

Consequently, by the subdifferential calculus, the subdifferential of the energy with
respect to U is single-valued with ∂UE(u) = {DE(u)} and hence ξ ∈ ∂UE(u) if and
only if ξ = −∇ · σ(∇u) + µ(−1)m∆mu ∈ U∗. Before we proceed with showing the
remaining conditions, we note that since λ ̸= 0, there holds Vλ = U ∩ V . Then,
Condition (5.Eg) follows from the following estimate:

⟨DGE(u),v⟩(U∗+V ∗)×(U∩V ) =
∫
Ω
σ(∇u(x)) : ∇v(x) + µ∇mu(x) · ∇mv(x)dx

≤
(∫

Ω
|σ(∇u(x))|p/(p−1) dx

)(p−1)/p (∫
Ω

|∇v(x)|pdx
) 1

p

+ µ
(∫

Ω
|∇mu(x)|2 dx

) 1
2
(∫

Ω
|∇mv(x)|2 dx

) 1
2

≤
(
Cσ2p/(p−1)

∫
Ω

(1 + |∇u(x)|p)dx
)(p−1)/p

∥v∥U∩V

+ µ
(∫

Ω
|∇mu(x)|2 dx

) 1
2

∥v∥U∩V

≤ C
(

1 +
∫
Ω

|∇u(x)|pdx + µ

2

∫
Ω

|∆u(x)|2 dx
)

∥v∥U∩V

≤ C
(

1 +
∫
Ω
φ(∇u(x))dx + µ

2

∫
Ω

|∆u(x)|2 dx
)

∥v∥U∩V

≤ C(1 + E(u))∥v∥U∩V ,

where we made use of Hölder’s and Young’s inequality as well as the growth
condition (7.3.2b). Finally, we verify the closedness condition for ∂U∩V E , i.e. (5.Ee):
let uk

∗
⇀ u in L∞(0, T ;U) ∩ H1(0, T ;V ), uk → u in L2(0, T ;V ), and DGE(uk) ⇀ ξ

in L2(0, T ;U∗) such that supk∈N,t∈[0,T ] E(uk(t)) < +∞ and

lim sup
k→∞

∫ T

0
⟨DGE(uk(t)),uk(t)⟩(U∗+V ∗)×(U∩V ) dt ≤

∫ T

0
⟨ξ(t),u(t)⟩(U∗+V ∗)×(U∩V ) dt.

This implies

lim sup
k→∞

∫ T

0
⟨DGE(uk(t))(t),uk(t)⟩(U∗+V ∗)×(U∩V ) dt

= lim sup
k→∞

∫ T

0
⟨DGE(uk(t)),uk(t)⟩(U∗+V ∗)×(U∩V ) dt+ λ

2

∫ T

0
|∇u(t)|2 dx

− λ

2

∫ T

0
|∇u(t)|2 dx

= lim sup
k→∞

(∫ T

0
⟨DGE(uk(t)),uk(t)⟩(U∗+V ∗)×(U∩V ) dt+ λ

2

∫ T

0
|∇u(t)|2 dx

)
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− λ

2

∫ T

0
|∇u(t)|2 dx

≤
∫ T

0
⟨ξ(t),u(t)⟩(U∗+V ∗)×(U∩V ) dt,

whence

lim sup
k→∞

∫ T

0
⟨DGE(uk(t)) + λ

2uk(t),uk(t)⟩(U∗+V ∗)×(U∩V ) dt

≤
∫ T

0
⟨ξ(t) + λ

2u(t),u(t)⟩(U∗+V ∗)×(U∩V ) dt.

The convexity of E + λ
2 | · |2 together with Lemma 2.4.2 and Theorem 2.3.7 implies

that ξ(t) = DGE(u(t)) = −∇ · σ(∇u(t)) + µ(−1)m∆mu(t) a.e. in (0, T ) and

lim
k→∞

∫ T

0
⟨DGE(uk(t)),uk(t)⟩(U∗+V ∗)×(U∩V ) dt

= lim
k→∞

∫ T

0

∫
Ω

(
σ(∇uk(t)) : ∇uk(t) + µ|∇muk(t)|2

)
dxdt

=
∫ T

0

∫
Ω

(
σ(∇u(t)) : ∇u(t) + µ|∇u(t)|2

)
dxdt

=
∫ T

0
⟨ξ(t),u(t)⟩(U∗+V ∗)×(U∩V ) dt.

Then, the strong convergence uk → u in L2(0, T ;V ) implies ∇uk → ∇u a.e. in ΩT as
k → ∞. Together with Assumption (7.3.2b), this yields un → u in Lp(0, T ; W1,p

0 (Ω))
and with the continuity of φ finally E(un(t)) → E(u(t)) a.e. in (0, T ) as n →
∞. Therefore, by Theorem 5.1.4, for every u0 ∈ U and v0 ∈ H, there exists a
weak solution u ∈ Cw([0, T ]; Hm

0 (Ω)d) ∩ H1(0, T ; Hn
0 (Ω)d) ∩ W1,∞(0, T ; L2(Ω)d) ∩

H2(0, T ; H− max{m,n}(Ω)d) satisfying the integral equation (7.3.2) and the energy
dissipation inequality

1
2∥ρu′(t)∥2

L2(Ω)d + µ

2 |u(t)|2m,2 +
∫
Ω
φ(∇u(t))dx+

∫ t

s

ν

2 |u′(r)|2n,2 dr

+ 1
2ν

∫ t

s
|f(r) − ∇ · σ(∇u(r)) + µ(−1)m∆mu(r) − u′′(r)|2−n,2 dr

≤ 1
2∥ρu′(s)∥2

L2(Ω)d + µ

2 |u(s)|2m,2 +
∫
Ω
φ(∇u(s))dx+

∫ t

s
⟨f(t),u′(r)⟩V ∗×V dr,

which holds for all t ∈ [0, T ] for s = 0 and almost every s ∈ (0, t). The inequality
(7.3.3) becomes again an equality and holds for almost every t ∈ [0, T ] and s = 0 if
n ≥ m, which stems from the fact that the system can be treated as a nonlinearly
damped inertial system.
If µ = 0, by Remark 5.5.1, we still obtain a solution satisfying the differential inclusion
(5.1.9) if there exists r0 > 0 such that v 7→ 1

r0
Ψ(v)+E(v) is sequentially weakly lower

semicontinuous. But since we assumed E + λ
2 | · |21,2 to be convex, which implies that

E + 1
2λCHn

0 ,H1
0
| · |21,n is convex with CHn

0 ,H1
0
> 0 being the constant of the embedding

Hn
0 (Ω)d ↪→ H1

0(Ω)d, this particularly implies that E +
λCHn

0 ,H1
0

2 | · |21,n is sequentially
weakly lower semicontinuous. Therefore, by the procedure carried out above, all
conditions are fulfilled so that we obtain the existence of a weak solution in the sense
of (7.3.2), which, in general, does not fulfill the energy-dissipation inequality.
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7.4 A viscous regularization of the Klein–Gordon
equation

The following example is a nonlinearly damped inertial system and can be interpreted
as a viscous regularization Klein–Gordon equation. The equations supplemented
with initial and boundary conditions are given by

(P4)



∂ttu− ∇ · p −∆u+ b(u) = f in ΩT ,

p(x, t) ∈ ∂vψ(x, u(x, t),∇∂tu(x, t)) a.e. in ΩT ,

u(x, 0) = u0(x) on Ω,

u′(x, 0) = v0(x) on Ω,

u(x, t) = 0 on ∂Ω × [0, T ],
∂u
∂ν

(x, t) = 0 on ∂Ω × [0, T ].

If ψ = 0 and b(u) = γu for a constant γ > 0, then the equation in (P4) reduces to
the classical Klein–Gordon equation, which is a relativistic wave equation with
applications in relativistic quantum mechanics that is related to the Schrödinger
equation.

We make the following assumptions on the functions ψ and b. For simplicity, we
choose d = 1 and note that the case d ≥ 2 can be (under stronger assumptions) be
treated in a similar way.

(7.4.a) The function ψ : Ω × R × R → [0,+∞) is a Carathéodory function such
that ψ(x, y, ·) is a proper, lower semicontinuous, and convex, and ψ(y, y, 0) = 0
for almost every x ∈ Ω and all y ∈ R.

(7.4.b) There exists a real number q > 1 and positive constants cψ, Cψ > 0 such that

cRψ (|z|q − 1) ≤ ψ(x, y, z) ≤ CR
ψ (1 + |z|q)

for a.e. x ∈ Ω and all z ∈ Rm, y ∈ R, |y| ≤ R.

(7.4.c) The function b : Ω → R is a continuous function and there exist a real number
p > 1 and a constant Cb > 0 such that

|b(u)| ≤ Cb(|u|p−1 + 1) for all u ∈ R.

Accordingly, the function spaces are given by V = W1,q
0 (Ω), U = H1

0(Ω), W̃ =
Lmax{p,2}(Ω) and H = L2(Ω). Then, we identify the dissipation potential Ψ : V → R
and the energy functional E : U → [0,+∞) as

Ψu(v) =
∫
Ω
ψ(x, u(x),∇v(x))dx and E(u) = 1

2

∫
Ω

|∇u(x)|2 dx,

respectively. The perturbation B : W̃ → V ∗ is given by

⟨B(u), w⟩
W̃ ∗×W̃ =

∫
Ω
b(u(x))w(x)dx.
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We note that the conjugate functional Ψ ∗
u can, in general, not be expressed as an

integral functional over Ω, since it is defined on W−1,q∗(Ω).

Obviously, E satisfies all Conditions 6.1. In view of the compact embedding
H1

0(Ω) c
↪→ C(Ω) and Fatou’s lemma, it is readily that Ψu satisfies Conditions (6.Ψa)

and (6.Ψb). In order to verify Condition (6.Ψc), we show that for every sequence
un ⇀ u in U with supn∈N E(un) < +∞, there holds Ψun

M−→ Ψu as n → ∞. As
we mentioned in Remark 2.4.5, the Mosco-convergence Ψun

M−→ Ψu implies the
Mosco-convergence of the related integral functionals defined by (2.3.6) that in turn
implies Condition (6.Ψc). The liminf estimate in the Mosco-convergence follows
from Ioffe [95, Theorem 3]. The limsup estimate is trivially fulfilled by choosing,
for each v ∈ V , the constant sequence vn = v, n ∈ N, and the dominated convergence
theorem.

If we assume p ∈ (1, 2], and f ∈ L2(0, T ;H), it is easy to check in the same way as
in the previous examples that Conditions (6.Ba), (6.Bb), and (6.Bb) are also fulfilled.
Therefore, Theorem 6.1.4 ensures that for every initial values v0 ∈ H and u0 ∈ U ,
the existence of a solution u ∈ Cw([0, T ];U) ∩ W1,∞(0, T ;H) ∩ W2,q∗(0, T ;U∗ + V ∗)
with u− u0 ∈ W1,q(0, T ;V ) to (P4) satisfying the integral equation

∫ T

0

(
⟨u′′v⟩(U∗+V ∗)×(U∩V ) +

∫
Ω

p · ∇v + b(u)vdx
)

dt =
∫ T

0

∫
Ω
fvdxdt

for all v ∈ Lmin{2,q∗}(0, T ;U∗ + V ∗) with p(x, t) ∈ ∂vψ(x, u(x, t),∇∂tu(x, t)) a.e. in
ΩT , and the energy-dissipation balance

1
2∥u′(t)∥2

L2(Ω) + 1
2∥u(t)∥2

H1
0 (Ω) +

∫ t

0

(
Ψu(t)(u′(r)) + Ψ ∗

u(t)(f(r) − u′′(r) −∆u(r))
)

dr

= 1
2∥v0∥2

L2(Ω) + 1
2∥u0∥2

H1
0 (Ω) +

∫ t

0
⟨f(r), u′(r)⟩L2(Ω)×L2(Ω) dr

holds for almost every t ∈ (0, T ) if q ∈ (1, 2) and for all t ∈ (0, T ) if q ≥ 2.

7.5 Differential inclusion II
In the final example, we consider a nonlinearly damped inertial system which can not
be treated with the known abstract results. The differential inclusion supplemented
with initial and boundary conditions is given by

(P5)



∂ttu+ |∂tu|q−2 ∂tu+ p−∆u = f in ΩT ,

p(x, t) ∈ Sgn (∂tu(x, t)) a.e. in ΩT ,

u(x, 0) = u0(x) on Ω,

u′(x, 0) = v0(x) on Ω,

u(x, t) = 0 on ∂Ω × [0, T ],

where q ≥ 2 and f ∈ L2(0, T ;H). We set U = H1
0(Ω), V = Lq(Ω), and H = L2(Ω).

The dissipation potential Ψ : V → R and the energy functional E : U → [0,+∞] are
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given by

Ψu(v) =
∫
Ω

(
1
q

|v(x)|q + |v(x)|
)

dx and E(u) = 1
2

∫
Ω

|∇u(x)|2 dx,

respectively. Consequently, B = 0 and E2
t = 0. Again, all the assumptions are easily

verified, so that Theorem 6.1.4 ensures for any initial values v0 ∈ H and u0 ∈ U the
existence of a solution u ∈ Cw([0, T ];U) ∩ W1,∞(0, T ;H) ∩ W2,q∗(0, T ;U∗ + V ∗) with
u− u0 ∈ W1,q(0, T ;V ) to (P5) fulfilling the integral equation∫ T

0

(
⟨u′′v⟩(U∗+V ∗)×(U∩V ) +

∫
Ω

|∂tu|q−2∂tuv + pv + ∇u · ∇vdx
)

dt =
∫ T

0

∫
Ω
fvdxdt

for all v ∈ L{2,q∗}(0, T ;U∗ + V ∗) with p(t,x) ∈ Sgn(u(x, t)) a.e. in ΩT , and the
energy-dissipation balance

1
2∥u′(t)∥2

L2(Ω) + 1
2∥u(t)∥2

H1
0 (Ω) +

∫ t

0
(Ψ(u′(r)) + Ψ ∗(f(r) − u′′(r) −∆u(r))) dr

= 1
2∥v0∥2

L2(Ω) + 1
2∥u0∥2

H1
0 (Ω) +

∫ t

0
⟨f(r), u′(r)⟩L2(Ω)×L2(Ω) dr

holds for almost every t ∈ (0, T ).



Appendix

A.1 The Gronwall lemma
In this section, we provide two versions of the Gronwall lemma, the discrete and
the classical version. The Growall lemma is indispensable for obtaining a priori
estimates or to show stability or uniqueness results.

Lemma A.1.1 (Gronwall) Let T ∈ (0,+∞], s ∈ [0, T ), a, b ∈ L∞(s, T ), λ ∈
L1(s, T ) with λ(t) ≥ 0 almost everywhere in (s, T ) such that

a(t) ≤ b(t) +
∫ t

s
λ(r)a(r)dr a.e. in (s, T ),

then, there holds

a(t) ≤ b(t) +
∫ t

s
eΛ(t)−Λ(r)λ(r)b(r)dr a.e. in (s, T ),

where Λ(t) =
∫ t
r λ(r)dr, t ∈ [s, T ].

Proof. A proof can be found in Emmrich [71, Lemma 7.3.1, pp.180].

Lemma A.1.2 (Discrete Gronwall) Let A,α ∈ [0,+∞) and αn, τn ∈ [0,+∞) for
all n ∈ N be satisfying

an ≤ A+ α
n∑
k=1

τkak for all n ∈ N,m := sup
n∈N

ατn < 1.

Then, setting β = α/(1 −m), B = A/(1 −m) and τ0 = 0, there holds

an ≤ Beβ
∑n−1

k=1 τk for all n ∈ N.

Proof. A proof can be found in Ambrosio et al. [10, Lemma 3.2.4, p. 68].

A.2 A compactness result
In this section, we provide a version of the Lions–Aubin or Lions–Aubin–Simon
lemma, a well-established strong compactness result for Bochner spaces. This
version is also known as the Lions–Aubin–Dubinskǐi lemma and deals with the
case of piecewise constant functions in time, which avoids the construction of weakly
time differentiable functions.
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Lemma A.2.1 (Lions–Aubin–Dubinskǐi) Let X,B and Y be Banach spaces
such that the embedding X ↪→ B is compact and the embedding B ↪→ Y is continuous.
Furthermore, let either 1 ≤ p < ∞ and r = 1 or p = ∞ and r > 1, and let (uτn)n∈N
be a sequence of functions that are constant on each subinterval ((k − 1)τn, kτn), 1 ≤
k ≤ n, T = nτn satisfying

τ−1
n ∥στnuτn − uτn∥Lr(0,T−τn;Y ) + ∥uτn∥Lp(0,T ;X) ≤ C for all n ∈ N, (A.2.1)

where στnu : = u(· + τn) and C > 0 is a constant which is independent of τ . If
p < ∞, then (uτn)n∈N is relatively compact in Lp(0, T ;B) and if p = ∞, there exists
a subsequence of (uτn)n∈N converging in Lq(0, T ;B) for all 1 ≤ q < ∞ to a limit
function belonging to C([0, T ];B).

Proof. A proof can be found in Dreher & Jüngel [64, Theorem 1].
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