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List of Abbreviations and Mathematical Symbols 

 

 

Abbreviations
1
 

 

BAM Bundesanstalt für Materialforschung und –prüfung (Bureau for Materials 

Research and Testing) 

BIPM Bureau international des poids et mesures (International Bureau of Weights 

and Measures) 

CDG Capacitance Diaphragm Gage(s) 

FSR Free Spectral Range 

GUM Guide to the Expression of Uncertainty in Measurement 

HWHM Half width at half maximum 

IEC International Electrotechnical Commission 

IEEE Institute of Electrical and Electronics Engineers 

IEEE-488 IEEE Standard Digital Interface for Programmable Instrumentation 

IFCC International Federation of Clinical Chemistry 

IG Ionization Gage 

IPSIAM Integrated Processing System for Integrated Absorbance Measurements 

ISO International Organization for Standardization 

IUPAC International Union of Pure and Applied Chemistry 

IUPAP International Union of Pure and Applied Physics 

LIA Lock-In Amplifier(s) 

NMI National Metrology Institute(s) 

OAP Off Axis Parabolic (mirror) 

OCE Open Confocal Etalon 

OIML International Organization of Legal Metrology 

PBS Pellicle-Beam-Splitter 

PMD Pressure Measurement Device(s) 

PTB Physikalisch-Technische Bundesanstalt (Physical-Technical Bureau) 

SRG Spinning Rotor Gage(s) 

TDLAS Tunable Diode Laser Absorption Spectroscopy 

TMD Temperature Measurement Device(s) 

                                                           
 
1 For the sake of clarity and readability, we will repeat the description of the abbreviations or mathematical 
symbols whenever they are used for the first time through this work, or when the given context requires 
explanation to avoid confusion.  
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VCMHC  Vacuum Chamber with a Movable Herriott Cell 

VIM  International Vocabulary of basic and general terms in metrology 

 

 

Mathematical Symbols (Latin Symbols) 
2
 

 

A Element (scalar or 2x2 matrix) of a Gaussian-Matrix in ray -optics. 

Aabs Area of the absorbance vs. wave-number curve (integrated absorbance). 

Ap Area of the segment p of the absorbance vs. wave-number curve. 

Au→l  Einstein coefficient for spontaneous emission. 

B Element (scalar or 2x2 matrix) of a Gaussian-Matrix in ray -optics. 

B Molecular rotational constant. 

Bl→u  Einstein coefficient for induced absorption. 

Bu→l  Einstein coefficient for induced emission. 

b Intercept of a linear fit. 

C Element (scalar or 2x2 matrix) of a Gaussian-Matrix in ray -optics. 

c Velocity of light in vacuum (299792458 m/s). 

D Element (scalar or 2x2 matrix) of a Gaussian-Matrix in ray -optics. 

D Diameter of the SRG-ball;  Molecular centrifugal constant. 

E Energy of some molecular state. 

exi  Measurement error of xi. 

eyi  Measurement error of yi. 

F(J ) Molecular rotational term. 

∆F Frequency marker (Etalon) free spectral range. 

Ff (ν – νc) Form-function with maximum value in νc.  Its value depends on ν, νc, and on 

other parameters not shown. 

G(υ) Molecular vibrational term. 

g   Acceleration of gravity; or statistical weight. 

h  Height difference between a PMD and the VCMCH. 

I (ν) Transmitted intensity of the radiation at the frequency ν directed after the 

absorbing media to the detector. 

Io (ν) Input intensity of the radiation at the frequency ν directed toward the 

absorbing media (and afterward to the detector) i.e. radiation intensity before 

being affected by the absorbing media. 

                                                           
2 The symbols used throughout this work, which represent a physical quantity, denote either the “true” value 
(unknown) of the physical quantity or the average of its traceable measurement. 
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IB Molecular moment of inertia about an axis perpendicular to the inter-nuclear 

axes and going through the molecule’s center of mass. 

Ic Total electrical current injected to the diode-laser by its controller. 

IcB Constant base electrical current injected to the diode-laser by its controller. 

Ic∆ Modulated electrical current injected to the diode-laser by its controller. 

ID0 Optical intensity arriving at Detector 1 (in the Detection channel) when the 

absorption cell was empty. 

IFM Optical intensity arriving at Detector 3 (in the Frequency Marker channel) 

after being transmitted by the Etalon. 

IDk Optical intensity arriving at Detector 1 (in the Detection channel) when the 

absorption cell contained some absorbing media which absorbed with an 

absorption coefficient k(νj – νc). 

IDΘk Optical intensity arriving at the entrance window of the recipient containing 

the absorbing media, which after traveling the absorbing path length and being 

affected by the absorbing media, originates the output optical intensity IDk at 

the output window of the recipient. 

IR0 Optical intensity arriving at Detector 2 (in the Reference channel) which is 

simultaneous to ID0. 

IRk Optical intensity arriving at Detector 2 (in the Reference channel) which is 

simultaneous to IDk. 

J Rotational quantum number. 

K Family-number for a Herriott Cell close-path configuration. 

k Coverage factor to calculate an expanded uncertainty. 

k (ν – νc) Absorption coefficient of the absorbing media for the specific radiation 

frequency ν and line center νc. 

k Boltzmann constant:  (1.38066·10-23 ± 1·10-28) J/K. 

L Path-Length of the radiation through the absorbing media. 

LHC Path-Length of the radiation inside the Herriott Cell. 

L0 Path-Length of the radiation in VCMHC, but outside the Herriott Cell. 

l Separation distance between the mirrors of the Herriott Cell. 

M  Molecular weight. 

M Matrix size 2x2 or 4x4 used in the Gauss-matrices formalism of ray -optics. 

m Slope of a linear fit. 

mf Slope of the deceleration rate vs. rotation frequency linear fit of the SRG 

offset characterization. 

mST Linear coefficient of the temperature dependency of the line intensity. 

muma  Atomic mass unit. 

mVt Time to voltage linear transformation coefficient of a triangular ramp. 
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mYV Voltage to current linear transformation coefficient of a diode -laser controller. 

mνY Current to wave-number linear transformation coefficient of a diode -laser. 

N Number of round-trips for a Herriott Cell close-path configuration. 

n Molecular density of the absorbing media (number of absorbing molecules per 

volume). 

ni  Molecular density of the gas number “i” of some gas mixture containing N 

different gas- “species”, and “i” being a natural number between 1 and N.  

Note that the differentiation among several gases does not include the isotopic 

difference, i.e. all the isotopes of the “same” chemical component are treated 

as belonging to the same gas with label “i”. 

P Total pressure of some gas or gas mixture.  

P(b, m) Vector of parameters (b, m). 

Pe “Evaluated” pressure i.e. the result of evaluating the calibrating function of a 

PMD with the device reading.  Pe equals the traceable pressure at the 

measuring pressure port of the PMD. 

Pi  Partial pressure of the gas number “i” of some gas mixture containing N 

different gas- “species”, and “i” being a natural number between 1 and N.  

Note that the differentiation among several gases does not include the isotopic 

difference, i.e. all the isotopes of the “same” chemical component are treated 

as belonging to the same gas with label “i”. 

Qp  Sum of absorbances αj for the segment p, used in the calculation of the 

integrated absorbance and its uncertainty. 

R Ideal gas constant:  (8.31451 ± 7·10-5) J/(K mol). 

R Pearson correlation coefficient. 

πν
0

R  Steradiancy:  radiancy per unit of solid angle measured with respect to the 

projected area. 

r0 Distance from the Herriott Cell front-mirror’s center to input/output hole. 

S Line intensity of the absorption line. 

S’ Integrated absorption, (integrated absorbance per unit length) of the absorption 

line. 

T Thermodynamic temperature. 

trk Optical transmission of the absorbing media that presents an absorption 

coefficient k. 

uPP(i, j) Covariance matrix for the elements of the vector P. 

uWW(i, j) Covariance matrix for the elements of the vector W. 

uXX(i, j) Covariance matrix for the elements of the vector X. 

uZZ(i, j) Covariance matrix for the elements of the vector Z. 
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VFM Signal (Voltage) recorded in channel3 of the digitizing oscilloscope which 

corresponds to the measurement of the optical intensity IFM in Detector-3. 

VD0  Signal (Voltage) recorded in channel1 of the digitizing oscilloscope which 

corresponds to the measurement of the optical intensity ID0 in Detector-1. 

VR0  Signal (Voltage) recorded in channel2 of the digitizing oscilloscope which 

corresponds to the measurement of the optical intensity IR0 in Detector2. 

VDk  Signal (Voltage) recorded in channel1 of the digitizing oscilloscope which 

corresponds to the measurement of the optical intensity IDk. in Detector-1. 

VRk  Signal (Voltage) recorded in channel2 of the digitizing oscilloscope which 

corresponds to the measurement of the optical intensity IRk. in Detector-2. 

VTR Voltage of the triangular ramp of the function generator. 

vi Vector characterizing the position and angle of a ray at the point i. 

W(i) Accessory vector used in the calculation of the integrated absorbance for a 

segment p, and its uncertainty. 

X(i) Accessory vector used in the calculation of the total integrated absorbance and 

its uncertainty. 

x(K, N) Function used in the characterization of the Herriott Cell. 

xi  Average measurement number “i”, of the quantity assigned to the abscissa. 

x’i  True value of the average measurement number “i” of the quantity assigned to 

the abscissa. 

yi  Average measurement number “i” of the quantity assigned to the ordinate 

scale. 

Z Signed distance from the VCMHC base point to the Herriott Cell back mirror 

(this distance is positive between when the back mirror is located between the 

base point and the confocal position). 

Zp Sum of products αj·(tj + tj+1) for the segment p, used in the calculation of the 

integrated absorbance and its uncertainty. 

Z(x, y) Vector sample. 

 

 

Mathematical Symbols (Greek Symbols) 
 

β Angle of a ray to the normal vector of the intersecting surface. 

δ Intercept of the deceleration rate vs. rotation frequency linear fit of the SRG 

offset characterization. 

δ(i, j) Dirac’s delta for the indexes i and j. 

θ Argument of a trigonometric function (angle). 

φ Argument of a trigonometric function (angle). 
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ν  Frequency (expressed in Hz or its decimal multiples or submultiples) or 

Wave-number (expressed in cm-1) of radiation.  The context will make clear 

which of this two is being used. 

Ξp Function of Ψp used in the calculation of the integrated absorbance and its 

uncertainty. 

ξ  Offset-correcting term equal to the average of the plateau signal at 100% 

absorption. 

µx’  Expected value of x’ for the distribution of true values x’i. 

Πp Function of Ψp used in the calculation of the integrated absorbance and its 

uncertainty. 

ρ Mass-density of the SRG-ball; or effective radius of curvature of the spherical 

mirrors of the Herriott Cell. 

ρν  Radiation spectral energy density. 

σo Accommodation coefficient of the SRG. 

σexex Variance of the distribution of errors of measurement of the xi. 

σeyey Variance of the distribution of errors of measurement of the yi. 

σx’x’ Variance of the distribution of true values x’i. 

υ Vibrational quantum number. 

Ψp  Temporal position of the frequency marker signal maxima p. 

Ωp Function of Ψp used in the calculation of the integrated absorbance and its 

uncertainty. 

ω Rotation frequency of the SRG-ball. 

ωe Vibrational frequency of the harmonic oscillator. 

 

 

 

End of Mathematical symbols  

 

 



 13 

 

Summary 

 

The goal of this work was to investigate the viability of Tunable Diode Laser Absorption Spectroscopy 

(TDLAS) for its use as a primary standard for partial pressure measurements. 

To undertake this investigation, we constructed a 3-channel spectrometer and developed a new 

controlling and processing software IPSIAM (Integrated Processing System for Integrated Absorbance 

Measurements) to implement a measurement procedure based on the direct numerical integration of the 

absorbance vs. wave-number curve (implied by the Beer-Lambert law). 

In order to improve the accuracy of the input quantities of our measurement procedure, we developed 

three novel measuring systems, which in spite of being simple, delivered good improvements to their respective 

tasks.  The first permits the simultaneous indirect measuring of the input intensity (entering the chamber) and 

transmitted intensity (leaving the chamber), with such accuracy that the ratio of them gives us the transmission 

figure with a relative uncertainty of 0.1%.  The second was the application of a linear model to the 

characterization of our Herriott Cell, which permitted us the indirect measurement of the Herriott Cell 

parameters, i.e. the effective curvature radius and mirrors’ distance, with reduced uncertainty (0.01%) using an 

external IR-laser interferometer and without having to remove the Herriott Cell out of the chamber.  The third 

was the direct measuring of the gas temperature inside the chamber using two internal PT-100 sensors.  Each 

sensor was welded to 4 small rods (4-wire resistance measurement) from the feed-trough connector to avoid 

contact with the chamber walls.  With our method we dropped the gas’ temperature uncertainty from 0.2% to 

0.002%. 

We developed two new algorithms in order to improve the accuracy of our measurements.  After 

observing that some of our measurements were affected by a non-negligible apparatus-function, we developed 

a new algorithm to deconvolutionate the spectra and get rid off the error introduced by the apparatus-function 

to the integrated absorbance measurement.  Our deconvolution algorithm, as far as we know, is the first one 

capable of correcting such measurements.  We implemented our algorithm in one of our IPSIAM programs, 

and made several simulations, which agreed with the measured data.  Another new algorithm developed by us 

permitted the measurement of the integrated absorbance and the calculation of its uncertainty according to 

GUM (by the first time, as far as we know).   

To improve the accuracy of the measurements’ output quantities (line intensities and partial pressures) 

we made repeated measurements and analyzed them in the framework of functional-structural linear analysis.  

Our system measured several line intensities of CO2 with a relative expanded uncertainty of 1.0% (k = 2, about 

95% level of confidence) which signifies an improvement in the level of accuracy by a factor of 4 (probably a 

factor of 10) in terms of the uncertainty figures given in HITRAN (nevertheless our results are in agreement 

with the values given in HITRAN).  We measured partial pressures of CO2 with a relative expanded uncertainty 

of 1.5% (k = 2, about 95% level of confidence); our results are in agreement with the corresponding 

gravimetric values reported by the PTB-Braunschweig (for a 5% CO2 in N2 mixture) and by the BAM (for a 

0.1% CO2 in N2 mixture).  As far as we know these are the first TDLAS traceable measurements of the 

corresponding line intensities and of partial pressures of CO2. 

The metrological level reached by our measuring installation permits to consider it as a primary 

standard for partial pressure measurements of CO2. 
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Zusammenfassung 

 

Ziel der vorliegenden Arbeit war die Untersuchung der Verwendbarkeit der durchstimmbaren 

Diodenlaser-Absorptionsspektroskopie (TDLAS) als Primärmethode für Partialdruck-Messung. 

Um diese Untersuchung durchführen zu können, konstruierten wir ein 3-Kanal-Spektrometer, das eine 

Vakuumkammer mit beweglicher Herriott-Zelle umfasst.  Weiterhin haben wir eine neue Steuerungs- und 

Verarbeitungssoftware IPSIAM (Integrated Processing System for Integrated Absorbance Measurements) 

entwickelt.  Es wurde ein Messverfahren auf Basis der direkten numerischen Integration des 

Absorptionsvermögens (nach dem Beer-Lambert-Gesetz) eingesetzt. 

Um die Genauigkeit der Eingangsgrößen unseres Messverfahrens zu verbessern, entwickelten wir drei 

neuartige Messsysteme, die trotz ihrer Einfachheit Verbesserungen bei der Lösung ihre jeweiligen Aufgaben 

lieferten.  Das erste Messsystem erlaubte die gleichzeitige indirekte Messung der Ein- und Ausgangsintensität.  

Die so erreichte relative Unsicherheit der optischen Transmission beträgt nur 0.1 % (k = 1).  Das zweite 

Messsystem beruht auf der Anwendung eines Linearmodells zur Charakterisierung der Herriott-Zelle ohne 

diese aus der Kammer entfernen zu müssen.  Eine indirekte Messung der Herriott-Zellenparameter (wirksamer 

Krümmungsradius und Distanz der Spiegel) wurde so ermöglicht.  Es wurde eine relative Unsicherheit von 

0.01 % (k = 1) erreicht.  Das dritte System ermöglichte die direkte Messung der Gastemperatur unter 

Verwendung von zwei PT-100-Sensoren im Inneren der Vakuumkammer.  Mit dieser Methode ließ sich die 

Unsicherheit der Gastemperatur um einen Faktor 100 auf 0.002 % verringern. 

Nachdem  eine nicht vernachlässigbare Apparatefunktion des Spektrometers beobachtet wurde, 

entwickelten wir einen neuen Algorithmus zur Entfaltung von Spektren.  Damit konnte der durch die 

Apparatefunktion auftretende Integrationsfehler beseitigt werden.  Nach unserem Wissensstand ist dies der 

erste Entfaltungs-Algorithmus, der in der Lage ist, Messungen des vorliegenden Typs zu korrigieren.  Ein 

weiterer neu entwickelter Algorithmus erlaubt die Messung des Gesamt-Absorptionsvermögens und erstmals 

die Berechnung der zugehörigen Unsicherheit gemäß GUM.   

Um die Genauigkeit der Ergebnisse der Messungen (Linienintensitäten und Partialdruck) zu verbessern, 

haben wir wiederholt gemessen und analysierten die Ergebnisse mit Hilfe der Funktional-Struktural-

Linearanalyse.  Mit unserem System konnten wir mehrere Linienintensitäten von CO2 mit einer relativen 

Unsicherheit von 1.0 % (k = 2, Vertrauensniveau von ungefähr 95 %) messen.  Das ergab eine Verbesserung 

der Genauigkeit um wenigstens den Faktor 4 (wahrscheinlich sogar den Faktor 10) im vergleich zu den 

Unsicherheiten in HITRAN.  Dennoch stimmen unsere Ergebnisse mit den in HITRAN gegebenen Werten 

überein.  Wir haben dem Partialdruck von CO2 mit einer relativen Unsicherheit von 1.5 % (k = 2, 

Vertrauensniveau von ungefähr 95 %) gemessen.  Unsere Ergebnisse stehen in Übereinstimmung mit den 

entsprechenden gravimetrischen Werten der PTB-Braunschweig (für eine Mischung von 5 % CO2 in N2) und 

der BAM (für eine Mischung von 0.1 % CO2 in N2).  Unsere Messungen sind die ersten rückführbaren 

TDLAS-Messungen der entsprechenden Linienintensitäten und des Partialdrucks von CO2 (so weit wir wissen). 

Die an unserem Messplatz erreichten geringen Messunsicherheiten zeigen, dass TDLAS als 

Primärmethode zur Partialdruckbestimmung zumindest von CO2 geeignet ist. 
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1. Introduction 

 

The accurate measurement of gas partial pressures and gas concentrations are important tasks 

needed in many different fields like environmental control [1, 2], semiconductor and others industrial 

processing [3, 4] and medical diagnostics [5, 6], among others.  In order to calibrate the instruments 

applied to make such measurements it is necessary to rely on some standard of measurement.  Up to 

now mixtures of gases of “known” concentrations are the standards used to calibrate a wide range of 

instruments which are used to measure partial pressure or concentration of gas.  The principle of 

operation of such instruments varies widely, including mass – spectroscopy, FTIR – spectroscopy, 

etc.  The “known” mixtures also represent a wide range of quality from user-prepared mixtures to 

Reference Materials prepared by some National Metrology Institute (NMI) to commercial mixtures 

available from gas manufacturers.  These mixtures may be traceable and are usually prepared using 

gravimetric techniques like those recommended by international standards [7].  Although being 

traceable, the gravimetric techniques impose an inherent level of uncertainty on the results which is 

usually bigger than the resolution that can be achieved with other (instrumental) techniques [1].  

Furthermore, through gravimetric procedures it is not possible to prepare gas mixtures of very low 

concentrations. 

At first sight it may seem that mass-spectrometers are candidates to be used as partial pressure 

secondary standards, but in practice it has been found that the signal of the mass-spectrometers 

depends heavily on the composition of the specific mixture being measured.  For instance two 

different mixtures A and B may have the same partial pressure of some specific gas X, but the 

reading of a mass-spectrometer for the gas X in the mixture A will be different from its reading in the 

mixture B if the other gases present in the mixtures are not the same, or they are present in different 

proportions.  That means, it is practically impossible to calibrate a mass-spectrometer to detect a 

given species in a general fashion, and therefore it is not suitable for being used as a reliable partial-

pressure measurement instrument, and of course it is even further away of being used as a secondary 

standard.   

The initial goal of this work was to investigate the viability of Tunable Diode Laser 

Absorption Spectroscopy (TDLAS) for its use as a primary standard for partial pressure 

measurements.  To this end we had to find out: 

• if TDLAS can be a reliable partial pressure measurement technique (PPMT), 

• if the TDLAS-PPMT can be set up as an absolute method with traceability for all its input 

quantities, and 

• if the TDLAS-PPMT can reach a metrological level high enough to be considered as a 

primary standard (see the definition of primary standard in section 7.4)  

It is worth to point out here that gravimetric procedures permit to make gas mixtures of known 

partial pressures, but not to measure directly the partial pressure of some gas in a given (unknown) 
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sample.  This last measurement is done by some instrument which has to be calibrated using 

reference materials.  As we will show in this work, we have been able to demonstrate that TDLAS 

can be set up as a reliable absolute measurement technique for partial pressure measurements.  In our 

approach we use the linear relation between the integrated absorbance and the product of the 

absorbing molecules density (i.e. number of molecules per cubic meter) times the absorbing length.  

This linear relation is implied by the Beer Lambert law.  The corresponding proportionality factor is 

defined as the Line Intensity of the absorption line.  We also found that when TDLAS is set up under 

several conditions, to be detailed later, it fulfills the metrological requirements to be used as a 

primary standard for partial pressures measurements.  One of those prerequisites is to know the value 

of the line intensity of the absorption lines used to take the measurements.  These values most be 

known with at least the same accuracy level as that of the sought partial pressure measurements 

accuracy.  Given that the line intensity uncertainty values found in the literature lie between 2% and 

40% and that the other input quantities of the Beer-Lambert law may be determined with uncertainty 

values of 0.5% or better, it is desirable to improve the accuracy of the line intensities to this same 

level in order to construct a Partial Pressure Measurement System which could be used as a Primary 

Standard. 

In order to measure the line intensities for several gases and absorption lines, we have 

constructed a three-channel spectrometer, which incorporates the Vacuum Chamber with a Movable 

Herriott Cell (VCMHC) developed by E. Lanzinger and K. Jousten as part of an earlier doctoral 

research work at the PTB-Berlin [8], as well as other electronic and optic equipments used with the 

one-channel spectrometer at that time, like a Phase Sensitive Detector (PSD or Lock-in Amplifier), 

and a Fourier Transformed Infrared  Spectrometer (FTIR-Spectrometer).  New equipment was added 

in order to improve the experiment from a one-channel to a three-channel system, including another 

Phase Sensitive Detector, two ray-splitters and other equipment to be described in chapter 3.  Using 

this system we were able to make traceable measurements of line intensities of several CO2 

absorption lines (R10 to R16) of the band centered at 4977.8 cm-1.  Furthermore, the uncertainties of 

our measurements are significantly smaller than those found up to now in the literature.  For instance 

a typical value of our line intensity measurements has a relative uncertainty of 1.2% with about 95% 

of confidence (k = 2, traceable measurement).  In addition our uncertainties are expressed according 

to the GUM.  As far as we know our results are the first traceable measurements of line intensities for 

the absorption lines measured.  The applicability of this technique for the absolute measurements of 

partial pressures was confirmed through measurements; that we carried out on samples sent by PTB – 

Braunschweig and on certified gas mixtures prepared by the German Federal Agency for Materials 

Science and Testing - BAM (Bundesanstalt für Materialforschung und –prüfung); as well as through 

measurements carried out by the Inorganic Analytic Group of PTB - Braunschweig [9, 10], using gas 

mixtures prepared by them. 

The improvement in accuracy of the line intensity measurements was possible not only 

through the improvement from one to three channels of our spectrometer, but also through the 

improvements made to the methods for collecting and analyzing the measured data.  We have 
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developed and used a completely new set of programs which permitted the automatic measurement 

of data, as well as its modular and documented processing.  Our approach avoided the assumption of 

some particular absorption form-function, as is the case for analysis programs which perform a fit 

against an a priori selected form-function like Gaussian, Voigt, etc.  So instead of calculating such a 

fit, we choose to perform a direct numerical integration of the absorbance vs. wave-number curve.  

The procedures of measurement are described in chapter 3. 

The theoretical frame of this work is described in chapter 2, which along the necessary general 

theoretical basis also include in the section 2.6 a summary of an earlier work of the author [11] that 

had found wide application on this research.  Being traceability one of the most important 

characteristics of the measurements that we have carried out, it is appropriate to include a copy of the 

certificates of calibration of all the calibrated equipment used in this work.  Such copies can be found 

in appendix 7.2.  This work is intended to be useful mainly for scientists working in metrology 

(especially partial pressure metrology) but it could be of interest also for researchers working in 

several fields, like applied spectroscopy, molecular physics, gas analysis, etc.  Given that some of 

these scientists may not necessarily belong to National Metrology Institutes or otherwise be familiar 

with the modern metrological concepts, we have included as appendix 7.4 a reproduction of some of 

the definitions of terms found on the International Vocabulary of Metrology [12], and from the Guide 

to the Expression of Uncertainty in Measurement.  In section 2.5 we discuss also some aspects of 

traceability, which is a modern metrological concept and it is very important for this work. 

In Chapter 4 we present the experimental results and the corresponding analysis about the Line 

Intensity Measurements of some absorption lines of CO and CO2 and its application to the 

measurement of partial pressure of CO2.   

In chapter 5 we discuss the applicability of TDLAS as a Primary Standard for Partial Pressure 

Measurements, including its advantages and limitations.   

In chapter 6 we make the general conclusions and of this work, as well as the list of some of 

the tasks that lie ahead to continue this line of research.   

All the appendices are collected together in chapter 7. 

 

 



 18 

 

2. Theoretical Aspects 

 

 

In this chapter we will try to summarize the theoretical background needed for the 

development of this work.  In more detail the material can be found in many good text books [13, 

14], and specialized books [15, 16] from which we just give a few references as example. 

One subsection of this chapter contains new material developed by the author: the Section 

2.2.2, which presents our algorithm to correct spectra affected by the apparatus-function.   

The section 2.6 presents a summary of some functional-structural methods for linear analysis.  

These methods were developed since many years ago (mainly by statisticians) but have not found 

general application among the other branches of science.  As we will see, the application of these 

Functional-Structural methods for linear analysis to our research has been very useful and permitted a 

physically consistent interpretation of several statistical parameters evaluated with our 

measurements. 

 

 

2.1. Vibrational-Rotational Infrared Spectra of Gases 

 

The molecular spectroscopy studies the interaction of electromagnetic radiation with molecules, 

especially when the energy states of the molecules are changed as a consequence of such interaction.   

A photon of energy ∆E will be absorbed by a molecule if through that absorption the molecule 

can change its original molecular state of energy E1 to a new molecular state of energy E2, where 

 

( 1 ) 

 

The total number of energy levels of any molecule is enormous and some simplifications are 

necessary.  The approximation in treating the molecule as if it possessed several distinct reservoirs of 

energy is in the majority of cases good enough to describe the observed molecular phenomena.  In 

this case the total energy may be viewed as additively composed from the different reservoirs, which 

can be described by an equation such as: 

 

( 2 ) 

 

The photons of the electromagnetic radiation in the infrared have energies that are similar to 

the vibrational-rotational energy differences of most molecules.  Therefore the structure of the IR-

.  12 EEhE −==∆ ν  

.   alelectroniclvibrationarotationalnalorientationuclearnaltranslatiototal EEEEEE ++++=  
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spectra will be determined by the quantum-mechanical laws that govern the vibrations and rotations 

of molecules. 

 

Rotation 

 

The quantum-mechanical solution for a molecule having some rotational energy can be 

described with help of the rotational quantum number J as 

 

( 3 ) 

 

where:  

• Er   is the rotational energy,  

• F(J)  is the rotational term value,  

• B  is the rotational constant, and  

• D  is the centrifugal constant. 

For the rotational constant B we have 

 

( 4 ) 

 

where: 

• IB  is the moment of inertia about an axis perpendicular to the inter-nuclear axis, and going 

through the molecule’s center of mass, 

• h is the Planck constant, and 

• c is the velocity of light in vacuum. 

The term D·J 
2
·(J + 1)2 has its origin in the non-rigidity of the molecule and is very small 

compared with the B·J ·(J + 1) term. 

A transition purely rotational (i.e. the molecular energy changes from a rotational state to 

another without changing the vibrational state of the molecule) can take place only on molecules 

which have a permanent electrical dipole moment. 

The selection rule ∆J = ± 1 applies to any transition affecting the rotational energy levels (i.e. 

rotational transitions or vibrational-rotational transitions). 

 

Vibration 

 

The vibration of a diatomic molecule can be described in the simplest case by a harmonic 

oscillator.  Finer details of the observed infrared and Raman spectra may require considering the 

diatomic molecule as an anharmonic oscillator. 

( ) ( ) ( ) ⋅⋅⋅++⋅⋅−+⋅⋅==   11 22 JJDJJBJF
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In general for a polyatomic molecule, it holds that, according to classical electrodynamics, any 

motion of the molecule which produces a variation of its electric or magnetic moments leads to the 

emission or absorption of radiation.  From the variation of the different moments, the variation of the 

electric dipole moment is the one which produces (or absorbs) the strongest intensities of radiation.   

In the harmonic oscillator approximation, any vibrational motion of the (polyatomic) molecule 

may be resolved into a sum of normal vibrations which frequencies correspond also to the 

frequencies of the photons that can be absorbed or emitted by the molecule.   

The eigenvalues of the vibrational energy Ev, taking into account the anharmonic corrections, 

(for small anharmonicity) are discretized and characterized by the quantum vibration number υ  as 

follows. 

 

( 5 ) 

 

where  

• Ev   is the vibrational energy,  

• ( )υG   is the vibrational term value,  

•  eω  is the vibrational frequency of the harmonic oscillator, 

•  ee xω ⋅  is the anharmonic quadratic term coefficient, 

•  ee yω ⋅  is the anharmonic cubic term coefficient. 

Furthermore it holds that eeeee xy ωωω <<⋅<<⋅  . 

The classical solution of the anharmonic oscillator (based on Fourier series) may be 

represented as a superposition of fundamental and overtone vibrations as follows: 

 

( 6 ) 

 

where x01, x02, x03, are the amplitudes of the fundamental, the first, and the second overtone, 

respectively. 

Turning back to the quantum mechanical description, the selection rules for the harmonic 

oscillator are 1±=∆υ , but for the anharmonic oscillator other transitions are also permitted with 

⋅⋅⋅±±=∆   3,  ,2 υ .  The observed transitions which take place between the ground state (v = 0) and 

these other superior states (v = 2, 3, …etc.) do not present frequencies which are exactly two, three, 

etc. times the frequency of the transition from v =1 to v = 0 (as it should be if the classical solution 

were the correct one), but are explained correctly with the quantum mechanical equations.  In spite of 

that the bands 1-0, 2-0, 3-0, etc. are still frequently named to as fundamental, first overtone (second 

harmonic), second overtone (third harmonic) and so on. 
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Vibrational-rotational energy levels 

 

By taking into consideration the interaction of vibration and rotation we obtain the term values 

on the molecule, for the approximation of the vibrating rotator, as 

 

 

( 7 ) 

 

 

A molecule may undergo pure rotational transitions (in which the vibrational state do not 

change, i.e. 0  ,1 =∆±=∆ υJ ) but usually a transition in which the vibrational state changes implies 

also a change in the rotational state ( 1  ; 3, ,2 ,1 ±=∆⋅⋅⋅±±±=∆ Jυ ).  Only in the special case 

when the molecule’s angular momentum J
r

 is in the molecular axis, it is possible to have “pure 

vibrational” transitions ( 0  ,1 =∆±=∆ Jυ ). 

 

Thermal distribution of quantum states and line intensities 

 

The intensity of a spectral line depends on the probability that a molecule undergoes a 

transition and on the number of molecules which populates the states affected by that transition. 

If the gas is in thermal equilibrium, the population of molecules in a given state is governed by 

the Boltzmann distribution, with the corresponding statistical weights g, which depends on the 

degeneracy of each state.  The relation of the number of molecules per unit volume nl with energy El 

to the number of molecules per unit volume nu with energy Eu is given by 

 

( 8 ) 

 

where the label l denotes the lower quantum state and the label u denotes the upper quantum state, g 

is the statistical weight (which is equal to the degeneracy of the state) and k is the Boltzmann 

constant. 

According to Einstein, the stochastic process of a molecule changing from one state to another 

under the influence of electromagnetic radiation can be described statistically under thermodynamic 

equilibrium with the help of some coefficients (Einstein coefficients), which are:   

• Bl→u Einstein coefficient for induced absorption, 

• Bu→l Einstein coefficient for induced emission, and 

• Au→l Einstein coefficient for spontaneous emission. 

The coefficient Au→l gives directly the probability of a molecule to undergo a transition from 

the upper to the lower state by spontaneous emission.  
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The coefficient Bl→u (Bu→l) is defined in such a way that the probability of a molecule to 

undergo a transition from the lower to the upper state (upper to lower state) by induced absorption 

(induced emission) is equal to the product of this coefficient with the radiation spectral energy 

density ( )luνρ .   

The radiation spectral energy density is described by the Planck blackbody distribution: 

 

( 9 ) 

 

At equilibrium, the number of molecules per unit volume per unit time that undergo a 

transition from the lower to the upper state must be equal to the number of molecules that undergo a 

transition the other way around (from the upper to the lower state), because only under this condition 

the distribution of states populations can be a stable (time independent) Boltzmann distribution.  

Therefore at equilibrium, it holds that 

 

( 10 ) 

 

which rearranged implies for the relation of populations that 

 

( 11 ) 

 

Substituting nl/nu from equation ( 8 ) in equation ( 11 ) we find for ( )luνρ  that 

 

( 12 ) 

 

 

Comparing equation ( 9 ) with equation ( 12 ), and using the Bohr’s condition for the absorbed 

or emitted radiation (Eu - El = h·ν(ul)), we find that the Einstein coefficients must fulfill the following 

relations: 

 

( 13 ) 

 

( 14 ) 

 

Now, assuming that the gas is uniformly distributed, in thermal equilibrium at temperature T, 

and presents isotropic optical properties, we may define the steradiancy, i.e. radiancy per unit of solid 
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angle measured with respect to the projected area, as πν
0

R .  Choosing the steradiancy to 

correspond to a blackbody at temperature T, we have that 

 

( 15 ) 

 

With help of the steradiancy we can define a spectral absorption coefficient per unit length at 

the frequency ν, which, after integrating over the complete solid angle, fulfills the following 

equation: 

( 16 ) 

 

which represents the rate of absorption of radiant energy per unit volume per unit time of 

photons of energy h·ν, in the frequency interval between ν and ν + dν.  Therefore the number of 

induced transitions ntr from the state with energy El to the state with energy Eu, which is equal to the 

number of absorbed photons, (both per unit volume per unit time) is 

 

( 17 ) 

 

If the absorption coefficient is non-zero only for a narrow frequency range ∆ν centered at ν (l, 

u) the last equation may be approximated by 

 

( 18 ) 

 

On the other hand, the net number of induced transitions ntr can be calculated with help of the 

Einstein coefficients for induced absorption and induced emission as 

 

( 19 ) 

 

Substituting ntr from equation ( 19 ) in equation ( 18 ) and rearranging we find the theoretical 

expression that links the integrated absorption S’lu with the Einstein coefficients and the thermal 

distributions of the molecules as follows: 

 

 

 

( 20 ) 

 

 

.  
4

0

π

ρ

π
νν

⋅

⋅
=

cR
 

,  4 ,

0

νρν νν
ν dkcd

dL

dR
L⋅⋅=⋅−  

.  ,∫
+∞

∞−

⋅
⋅

⋅= ν
ν

ρ
ν

ν dk
h

cn Ltr  

( )

( )
.  ,∫

+∞

∞−

⋅
⋅

⋅
= ν

ν

ρ
ν

ν
dk

luh

c
n L

lu

tr  

( ) ( ) .  luluuulltr BnBnn νρ⋅⋅−⋅= →→  

( ) ( )

( )

( ) 








⋅

⋅
−⋅⋅⋅⋅

⋅⋅
=

⋅
⋅








⋅

⋅
−⋅⋅=

⋅
⋅⋅−⋅=≡′

→

→

→→

+∞

∞−

∫

ul

lu

l

u

lul

ul

lu

ull

luuullLlu

gn

gn

g

g
An

lu

c

c

luh

gn

gn
Bn

c

luh
BnBndkS

1
8

                        

1                        

2

2

,

νπ

ν

ν
νν

 



 24 

Substituting the products of densities and statistical weights from the Boltzmann distribution 

(equation ( 8 )) in equation ( 20 ) we find, for thermal equilibrium: 

 

 

( 21 ) 

 

 

Finally for this subsection we will relate the integrated absorption S’ with the integrated 

absorbance Aabs and the line intensity S as they are usually defined in the literature and as we will use 

them in this work (an operational definition of Aabs and S will be given in section 2.2.1), for the case 

in which the molecular density in the lower state nl may be approximated as the total molecular 

density n of the absorbing gas, and for an absorption path-length L, then it holds that 

 

( 22 ) 

 

 

2.2. Tunable Diode Laser Absorption Spectroscopy 

 

2.2.1. Beer-Lambert Law 

 

The line intensity gives a measure of the strength of the absorption (or emission) of radiation 

by some molecule when two specific energy levels of this molecule are affected by this radiation 

(either going from the lower energy level to the upper one during absorption of radiation, or the other 

way around during emission).  It seems justified to use here the word “strength” in connection with 

our every-day experience: if we observe some light-emitting source through some material, we 

usually distinguish between the highly transparent materials (those which absorption of the light was 

“weak”) and opaque materials (those which absorption of light was “strong”).  Nevertheless we know 

that the physical process behind absorption or emission of light is the change of energy state of some 

molecule (or atom) under interaction with some photon with the right energy to fit in to the energy 

difference of those molecular (or atomic) states.  Such interactions between photons and molecules 

during absorption or emission are described correctly by means of the Einstein coefficients which 

give a measure of the probability of the transitions involved under some temperature and in the 

presence of some photon density.  It is possible to demonstrate that the line intensity is proportional 

to the probability of absorption (or emission) of radiation by the transition between the two energetic 

states associated with that line intensity.  Furthermore we can visualize this “probability measure” as 

the probability of interaction between a photon (of some specific frequency) and a molecule (in some 
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specific energy state), so the line intensity is a “transversal cross section” for this interaction, as 

evidenced when we look at the corresponding SI units for the line intensity:  m2/(molecule·s) (area 

per molecule and per second - available for the photon to undergo a “collision”).  Given that the 

molecule can stay in each energetic level or state only a finite period of time, the amount of energy 

associated with each state is not exact, but varies in connection with the life time of the state as 

dictated by the uncertainty principle.  Therefore there is not only one exact energy-match (frequency-

match) for the photon being emitted or absorbed during the transition, but a window of values best 

described by a bell-shaped distribution (either symmetric or not) which dictates the specific 

probability that a photon with a particular frequency may be absorbed or emitted by the transition.  

The sum of all this probability factors for all the possible frequencies of the photons being absorbed 

or emitted by this transition, gives the overall line intensity mentioned above.  As a consequence, if 

one wants to measure the line intensity for some specific transition, a possible way is to observe the 

amount of absorption of tunable monochromatic radiation for all the possible photon frequencies 

involved, and to perform the corresponding sum of coefficients.  This sum can be done as the 

integration over the absorption line in an absorbance vs. wave-number graph.  In this case the graph 

itself contains all the physical information collected during the experiment and, if the experiment is 

performed correctly, this experimental data can be easily understood by means of the Lambert-Beer 

law, 

( 23 ) 

where: 

• I (ν)  is the transmitted (i.e. not absorbed) intensity of the radiation at the frequency ν 

  directed after the absorbing media to the detector, 

• Io (ν)  is the input intensity of the radiation at the frequency ν directed toward the  

  absorbing media i.e. radiation intensity before being affected by the absorbing  

  media, 

• n  is the molecular density of the absorbing media (number of absorbing   

  molecules per volume), 

• L  is the length path of the radiation through the absorbing media, and 

• k (ν – νc)  is the absorption coefficient of the absorbing media for the specific radiation  

  frequency ν and line center νc. 

If the measurement was not made with a “monochromatic” source, the mathematical model 

needed to understand the experimental data still uses the Lambert-Beer law but only as part of a more 

complicated equation, as we will see in section 2.2.2. 

As mentioned above, the overall sum of the k (ν – νc) absorption coefficients over all the 

possible wave-numbers is what forms the quantity defined as line intensity (denoted here as S) 
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It is important to remind that although the Lambert-Beer law does not present an explicit 

dependency with temperature, the spectral absorption coefficients k(ν – νc) do depend on temperature 

and therefore the Line Intensity S also does depend on temperature.  It is customary to report the S 

value at some conventional temperature, like 296 K. 

In some cases the distribution of absorption coefficients (vs. wave-number) is well described 

by some known mathematical distribution, like those of Gauss, Lorentz or Voigt, and denoted here in 

general as “form functions” - Ff (ν – νc).  Therefore it is customary to write down the relation between 

the spectral absorption coefficient - k (ν – νc) - and the Line Intensity - S - as 

 

( 25 ) 

 

where the Ff (ν – νc) is always normalized such that 

 

( 26 ) 

 

In this case it is possible to extract the S value from the experimental data by mean of a “fit 

procedure” which optimizes the parameters needed to bring some form function as close as possible 

to the experimental data.  Although this may be very efficient from a numerical calculation point of 

view, care must be taken to assure that the experimental conditions were such that the data can be 

really explained by means of one of this form functions, for instance that the pressure was low 

enough to have a domination of Doppler broadening (which can be modeled by a Gaussian 

distribution).  Furthermore it has been observed by many authors that the experimental apparatus 

itself can affect the form of the spectrum (the so called apparatus form function) in a way that is not 

easy to model, and the experimental determination of this apparatus form function can be very time 

and effort consuming.  Based on these considerations and aimed to reach accuracy as high as 

possible, we have developed some procedures as part of our analysis programs, to numerically 

integrate directly the area of the “k (ν  - νc) vs. ν” curve (Aabs).  In this way we have not to worry 

about the validity of assumptions regarding form functions.  Nevertheless each procedure has 

advantages and disadvantages and in our case we have to be sure that we cover a spectral window 

wide enough around the absorption peak to be certain that we are integrating as much as necessary 

and that the discretization step in frequency space is small enough to achieve the needed accuracy.  

We have developed some tests to verify that our measurements meet both requirements. 

 

 

2.2.2. Deconvolution of Spectra Affected by the “Apparatus-Function” 

 

The Lambert-Beer law, described by the equation ( 23 ), permits to understand the absorption 

of radiation by an absorbing media under the assumption that the excited states of the transition 
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involved are poorly populated (i.e. in that forms it does not take account for stimulated emission).  

Therefore, if the stimulated emission can be neglected, equation ( 23 ) describes accurately the 

absorption of radiation process.  To apply this equation as measurement model there must be 

monochromatic irradiation.  The Laser is our best approximation for a monochromatic radiation and 

yet each laser beam has some type of emission profile, which in frequency (or wave number) domain 

looks sort of bell-like.  For diode lasers, the half width at half maximum (HWHM) in wave-number 

domain is usually in the order of 10-3 cm-1 for pulsed-lasers and 10-4 cm-1 for lasers driven in 

continuous wave (cw) mode [17], so that they are usually narrower than the majority of the vibration-

rotation absorption lines under Doppler-broadening.  Actually the laser beam profile is usually 

narrow enough to consider equation ( 23 ) as a good approximation for the measurement model of 

several TDLAS techniques. 

More rigorously treated, the transmitted intensity measurements of a spectroscopic experiment 

(in which the absorption peak of some transition is registered in dependency of the “irradiated wave-

number” ν ) are well described by a modified version of equation ( 23 ) which takes into account the 

apparatus function.  In case of TDLAS the apparatus function ( )νν −A  is basically the finite 

emission profile of the laser, which explicitly written in the equation ( 23 ) transforms it to 

 

( 27 ) 

 

where  

• ν    is the center of the laser emission profile and equal to the measured wave- 

  number, 

• ( )cI νν −  is the measured intensity for to the measured wave-number ν , 

• ( )ν0I  is the total (integrated) intensity emitted by the laser for all the wave-numbers  

  simultaneously at a given time point t and which, without absorbing media, is  

  detected at that point t as the intensity for the measured wave-number ν , and 

• ( )νν −A  is the emission profile of the laser, which is also a bell-like normalized form  

  function, such that 

 

( 28 ) 

 

 

From ( 27 ) and ( 28 ) we see that, when the absorption is very small, and the exponential can 

be approximated by its linear term, the convolution of the two normalized form-functions leaves 

another normalized form function.  This is the origins of the implicit believe of many authors, that 

the apparatus form function produces broadening of the observed absorption peak, while the 
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integrated absorbance is kept constant under that deformation.  This is true only to the extent that the 

linear approximation to the exponential term of the absorption is accurate enough for the purposes of 

the measurement application.  In other cases it is necessary to deconvolutionate the equation ( 27 ) in 

order to get rid off the apparatus-function and to recover the “real” extinction function, from which 

the line intensity can be determined.   

The deconvolution algorithms for spectroscopic analysis found by us in the literature, 

including books [18, 19] and articles [20, 21, 22, 23] assumed (explicitly or implicitly) the 

conservation of the area under the absorbance vs. wave-number curve3, and therefore those 

algorithms are not suitable to correct the measured spectra which was affected by the apparatus 

function in order to obtain the line intensity from the integrated absorbance.  Other articles [24, 25] 

and books [26, 27] describe correctly the error introduced by the apparatus function in the integrated 

absorbance measurement, but they do not offer a solution to correct the affected measured data (at 

least not to obtain the correct area under the curve). 

Given that some of our measurements gave evidence of being affected by a not negligible 

apparatus-function and that we did not find in the literature an algorithm appropriate to 

deconvolutionate the equation ( 27 ), we developed our own algorithm, which we will explain next. 

Our solution is based on the measurement of two spectra of the same absorption line: one with 

strong absorption (to have a big area to integrate) and other with weak absorption.  The idea is to take 

advantage that our facility is capable of produce and control very high levels of vacuum, so that we 

can measure gas absorptions at very low pressures, where the Doppler broadening is completely 

dominant.  Furthermore we can take measurements also with short absorption path-length, so that the 

exponential absorption term can be approximated by the linear term of its Taylor expansion.  From 

this measurement (Doppler-broadened weak absorption) we can found a preliminary apparatus-

function by the deconvolution with a theoretical Gaussian extinction function, which HWHM is the 

theoretical one for the respective molecule and temperature, and a preliminary value for the line 

intensity.  Then, we use the preliminary apparatus-function to deconvolutionate the strong-absorption 

spectra, and from it we measure an improved value for the line intensity.  With the new line intensity 

we run the whole process again, finding iteratively improved versions of the apparatus function and 

of the line intensity until they converge to stationary values. 

We implemented the deconvolutions with the discrete Fourier-transform and the inverse 

discrete Fourier-transform.  The equation to calculate the apparatus-function is: 

 

                                                           
3  Some examples to can be taken from the following citations:  From [18], page 93:  “deconvolution seems to 
preserve the (line) intensity quite well when the response function is reasonably completely removed”.  From [19], 
page 44:  “Measurements of the total integral absorption S may be made by using the methods of equivalent 
widths.  Such measurements are independent of instrumental broadening…”.  From [20], page 62: “The total area 
of the component bands are not effected by self-deconvolution”.  From [21], page 250:  “Since the deconvolution 
procedure conserves the area under the original spectral line …”.  From [22] page 1833:  “Since the apparatus 
function A(ν) can be determined experimentally for a given instrument, one can use the method of deconvolution 
first devised by Van Cittert in 1931 to invert the convolution integral by an iterative calculation:”  (This iterative 
method from Van Cittert uses the constancy of the area under the curve as part of the algorithm). 
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( 29 ) 

 

where 

• I1   is the transmitted intensity for the weak absorption measurement, 

• I01   is the original (predicted) intensity for the weak absorption measurement, 

• Φ(ν - νc)  is the ideal Gauss form-function with theoretical HWHM for the weak   

  absorption measurement. 

As we mentioned, with the apparatus-function we deconvolutionate the strong absorption 

measurement and obtained the improved corresponding extinction function, as follows: 

 

( 30 ) 

where 

• I2   is the transmitted intensity for the strong absorption measurement, and 

• I02   is the original (predicted) intensity for the strong absorption measurement. 

When the iterative process has reached a certain limit of accuracy, we integrate numerically 

the negative logarithm of the final corrected extinction function (i.e. we integrate the corrected 

absorbance vs. wave-number function) to obtain the corrected line intensity at the measured 

temperature S(T): 

 

( 31 ) 

 

 

 

2.3. Herriott-Cell 

 

The Herriott Cell was originally proposed by Herriott as a laser resonator [28].  Since the 

proposal of Altmann et al. [29], it has been widely used for gaseous absorption measurements with 

weak line intensities. Other applications are: optical delay line [30], high reflectivity 

measurements [31], to separate a sequence of pulses [32] and as improving part of a high resolution 

interferometer [33].   

The Herriott Cell consist of two concave spherical mirrors facing each other axially, so that 

they form a cavity, and one of them having a small hole near its edge. If the distance between the 

mirrors is conveniently chosen and a ray is injected in the cavity through the hole at some convenient 

angle, the ray will travel several times through the cavity and, after some number of reflections, it 

will leave the cavity through the same hole.  There are many distances between the mirrors that fulfill 
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the close-path output condition, so if we call front mirror the mirror having the hole, and back mirror 

the other one, it is possible to vary the total length traveled by the ray through the repositioning of the 

back mirror.  An important property of the “classical” arrangement of the Herriott Cell is that the 

direction of the output ray is independent of the number of reflections that the ray has undergone, so 

it is possible to adjust and fix the input and output optics of the experiment without having to re-

adjust when another path-length is selected.  The Figure 1 shows a schematic illustration of the 

Herriott Cell with the mirrors at “confocal” distance, in which the ray makes four passes through the 

cell.  The Figure 2 shows a picture of our apparatus where two spherical mirrors identical to the ones 

used in the VCMHC are positioned so that the ray makes six passes through the cell.   

 

 

Figure 1.  Herriott Cell: the path-length of the ray is (stepwise) selectable by re-positioning the back mirror. 

 

 

 

Figure 2.  Picture of a Herriott Cell in our system illuminated by a He-Ne laser. 

 

As it is customary in most Herriott Cell applications, we will calculate the total path length 

traveled by the ray inside the Herriott Cell (Herriott Cell path length, for short) using ray optics, i.e. 

Front Mirror Back Mirror 
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we will neglect the possible wave optic effects and we will keep our experimental arrangement in 

such way that this simplification may be always valid.  For instance we will not increase the number 

of reflections in the Herriott Cell beyond 65 (i.e. 66 passes), as then the reflecting points come to 

close to each other and interference among the rays at these points could not be neglected any longer. 

We will discuss rays in the paraxial approach [34], i.e. the angle of incidence β of the ray to 

any interacting surface (measured from the normal vector to the surface, as usually), is smaller that 

about 15° (β ≤ 0.25 radians), so that sin(β) ≈ tan(β) ≈ β.  We also use the Gauss-Matrices formalism 

[35], so that a ray starting in the point P1 is characterized by its distance and its angle to the z -axis 

(see Figure 3), and these parameters are combined to the ray vector v1.  

 

 

Figure 3.  Illustration for the ray optics with Gauss-Matrices formalism. 

 

 

Some examples of the vector v1 are: 

 

For circular symmetry, 

( 32 ) 

 

and for one-dimensional systems (separable rays), 

 

( 33 ) 

 

Now the optical transformations can be easily expressed in terms of appropriate matrices.  For 

example the propagation from P1 to P2 at distance l along the z -axis is described by (for a one 

dimensional system) 
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( 34 ) 

 

In the paraxial approach we can write in general the propagation of ray vectors through first 

order optical systems as 

( 35 ) 

where M is a matrix of the form 

 

( 36 ) 

 

and A, B, C and D are scalars for one -dimensional systems or 2x2 matrices for two -dimensional 

systems.  If the ray goes through several surfaces (transmissions, and/or refractions, and/or 

reflections) the vector of the final v2 ray can be calculated using the equation ( 35 ).  In that case, the 

matrix M is the product of all the matrices Mj, where Mj is the matrix corresponding to the jth surface: 

 

( 37 ) 

 

It is useful to recall the Sylvester’s formula [34], which states that given a 2x2 matrix 

 

( 36 ) 

 

its Nth power is given by 

 

( 38 ) 

 

where 

( 39 ) 

 

If we now consider an optical resonator formed by two spherical mirrors with radius of 

curvature ρ1 and ρ2, it follows that, after one round trip (i.e. two reflections), the original ray vector v0 

is transformed into the ray vector v1 = M·v0, where M is the resonator’s round trip matrix, 

 

( 40 ) 

 

where l is the distance between the two spherical mirrors and gi = 1  -  l /ρi. 

If the ray is reproduced after N round trips (close-path condition) then vN = MN
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reflection (reflection number 2·N).  That last reflection would take place in the surface where the hole 

is located (if there were not hole).  When the close-path condition is reached in the Herriott Cell, the 

output ray leaves the cavity trough the hole (i.e. after 2·N - 1 reflections).  Nevertheless we can still 

use the round trip matrix M, and the condition that MN must be the unity matrix, because once the ray 

comes back to the input (output) point, it is not important for the description of the (already traveled) 

path if the ray is reflected once more (reproducing the first ray) or it escapes through the hole.  Using 

the Sylvester’s formula we have 

 

( 41 ) 

 

with  

( 42 ) 

 

From equation ( 41 ) we see that, for the off-diagonal terms, we have 

 

( 43 ) 

 

 

and, for the terms in the diagonal, we have 

 

( 44 ) 

 

Substituting φ from equation ( 43 ) in equation ( 42 ), we have 

 

( 45 ) 

 

which we can transform in 

 

( 46 ) 

 

Now let’s define the effective radius of curvature of both mirrors ρ as ρ = (ρ1· ρ2)
1/2 and the 

factor g as g = 1  -  L/ρ.  From equation ( 46 ) we find that 
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and only when the distance between the mirrors l fulfills the equation ( 47 ) for some integral number 

p and some (natural) number of round-trips N, the resonator condition leads to a close-path trajectory 

and the output ray escapes through the hole (after 2·N passes and 2·N  - 1 reflections). 

In our setup, the mirror’s separation can be adjusted from semi-confocal (l = f/2 = ρ/4) to 

confocal (l = f = ρ/2), so that in taking the square root of equation ( 47 ) we need to choose the roots 

of equal sign at each side of the equation which leads to the following expression for l: 

 

( 48 ) 

 

It is interesting to note that p can be physically interpreted as the number of turns that the ray 

undergoes along the ellipsoid of reflecting points, until it returns to the initial (entrance and exit) 

point.  It has been shown [36] that the number of round trips N can be related with the number of 

turns p and an integral number K, which was called the Family-number, through the following 

equation: 

 

( 49 ) 

 

Substituting p from equation ( 49 ) in equation ( 48 ) we obtain: 

 

( 50 ) 

 

The whole path-length LHC traveled by the ray inside the Herriott cell, after N round-trips, is 

given with a very good approximation by [32] 

 

( 51 ) 

 

where r0 is the radial distance between the entrance hole and the mirror’s axis.  After substituting the 

mirror’s separation l from equation ( 50 ) in equation ( 51 ) and re-arranging the result, we get the 

equation for LHC as 
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2.4. Uncertainty Analysis 

 

The uncertainty determinations made in this work were done according to the prescriptions of 

the Guide to the Expression of Uncertainty in Measurement (GUM) [37].  Several concepts and 

explanations of the GUM have been incorporated in appendix 7.4 (glossary), in order to facilitate its 

lecture as complementary material for this work.   

The following is the “Summary of procedure for evaluating and expressing uncertainty” as 

given in GUM (clause 8): 

 

“1   Express mathematically the relationship between the measurand Y and the input quantities 

Xi on which Y depends: Y = f(X1, X2, ..., XN). The function f should contain every quantity, including 

all corrections and correction factors, that can contribute a significant component of uncertainty to 

the result of the measurement (see 4.1.1 and 4.1.2). 

2   Determine xi , the estimated value of input quantity Xi either on the basis of the statistical 

analysis of series of observations or by other means (see 4.1.3). 

3   Evaluate the standard uncertainty u(xi) of each input estimate xi. For an input estimate 

obtained from the statistical analysis of series of observations, the standard uncertainty is evaluated 

as described in 4.2 (Type A evaluation of standard uncertainty).  For an input estimate obtained by 

other means, the standard uncertainty u(xi) is evaluated as described in 4.3 (Type B evaluation of 

standard uncertainty). 

4   Evaluate the covariances associated with any input estimates that are correlated (see 5.2).  

5   Calculate the result of the measurement, that is, the estimate y of the measurand Y, from the 

functional relationship f using for the input quantities Xi the estimates xi obtained in step 2 (see 4.1.4). 

6   Determine the combined standard uncertainty uc(y) of the measurement result y from the 

standard uncertainties and covariances associated with the input estimates, as described in clause 5.  

If the measurement determines simultaneously more than one output quantity, calculate their 

covariances (see 7.2.5, H.2, H.3, and H.4).  

7   If it is necessary to give an expanded uncertainty U, whose purpose is to provide an interval 

y -U to y + U that may be expected to encompass a large fraction of the distribution of values .that 

could reasonably be attributed to the measurand Y, multiply the combined standard uncertainty uc(y) 

by a coverage factor k, typically in the range 2 to 3, to obtain U = k uc(y).  Select k on the basis of the 

level of confidence required of the interval (see 6.2, 6.3, and especially annex G, which discusses the 

selection of a value of k that produces an interval having a level of confidence close to a specified 

value). 

8   Report the result of the measurement y together with its combined standard uncertainty 

uc(y) or expanded uncertainty U as discussed in 7.2.1 and 7.2.3; use one of the formats recommended 

in 7.2.2 and 7.2.4.  Describe, as outlined also in clause 7, how y and uc(y) or U were obtained.” 
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The combined uncertainty uc(y) mentioned in the paragraph 6 above is calculated according to 

the following formula (GUM equation 13): 

 

( 53 ) 

 

where u(xi, xj) is the estimated covariance associated with xi and xj. 

But if several output quantities are measured simultaneously, not only the variances of each 

one of the output quantities must be calculated, but also their covariances.  In other words, all the 

elements of the output covariance matrix must be calculated and the equation ( 53 ) is replaced by a 

more general expression as follows (GUM equation H.9) 

 

( 54 ) 

 

The equation ( 54 ) permits to calculate the elements of the output covariance matrix u(yl, ym) 

(in our notation uYY[l,m]) in terms of the input covariance matrix u(xi, xj) (in our notation uXX[i,j]) 

and can be regarded as the more general form of the law of propagation of uncertainty.  The elements 

of the diagonal of the covariance matrices are the variances of the corresponding quantities (e.g. 

u(xi, xi) = u2(xi)). 

 

 

2.5. Some Considerations about Traceability 

 

Traceability is a concept on modern metrology developed to help assuring the credibility of 

the stated accuracy of a (traceable) measurement.  It does not imply that a traceable measurement has 

a high level of accuracy, but that the level of accuracy stated by the measurement result (whether 

enough accurate or not for some particular purpose), characterized by the stated uncertainty of the 

measurement result can be considered as a reasonable and credible in the sense that the reported 

uncertainty really covers a window of results, each of them being a reasonable value of the 

measurand at the level of confidence stated.  The definition of traceability is found in the 

International Vocabulary of Basic and General Terms in Metrology (VIM).  A copy of such 

definition is included in the glossary of this work, appendix 7.4.   

The importance of traceability as a mean to bring confidence in the result of a measurement 

has been recognized in several fields including commerce and industrial production.  To illustrate the 

implications of this concept we will cite from the web-site of the International Bureau of Weights and 

Measures (BIPM): 
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“Metrology is of fundamental importance in industry and trade – not only from the point of 

view of the consumer but also for those involved in manufacturing. Both groups must have 

confidence in the accuracy and reliability of the measurements upon which they depend. Within the 

manufacturing process, to ensure the accuracy of measuring instruments, it is essential that they 

should be periodically calibrated against more accurate standards, which in turn should have their 

calibration traceable to even more accurate national measurement standards at the national level and, 

eventually, the international level. When these various levels of calibration have been documented, a 

chain of traceable calibrations is created. 

Traceability means that the result of a measurement, no matter where it is made, can be related 

to a national or international measurement standard, and that this relationship is documented. In 

addition, the measuring instrument must be calibrated by a measurement standard that is itself 

traceable. Traceability is thus defined as the property of the result of a measurement or the value of a 

standard whereby it can be related to stated references, usually national or international, through an 

unbroken chain of comparisons all having stated uncertainties. The concept of traceability is 

important because it makes possible the comparison of the accuracy of measurements worldwide 

according to a standardized procedure for estimating measurement uncertainty.” 

It is clear from the citation that the property of traceability is very desirable for any 

measurement which result should be credible and accepted by many different parties.  The results of 

experimental research must be as credible as possible.  The measurement results of the scientific 

experiments must be stated in such a way that their comparability to the results of other experiments 

could be established as clear and as sound as possible.  Traceability is the best way to provide 

confidence and comparability to any measurement result.  Establishing traceability to the result of a 

measurement imply necessarily some effort and investment (both, in time and money), and it may 

seem for some people as something belonging to the quality control labs in the industry or 

governmental agencies.  Nevertheless, the research labs may benefit enormously if they incorporate 

some elements of the “metrological culture” (especially traceability) for the assurance of their results.  

On this regard it would be ideal, if some day all the published experimental results in the different 

scientific journals could have the property of being traceable. 

 

 

2.6. Functional-Structural Linear Analysis 

 

This subsection corresponds basically to an earlier publication of the author [11] 

 

The linear relationship, Y = m·X + b, is widely used in all the different fields of Science as a 

useful tool in the analysis of data (X, Y) that seems to be linearly related.  In the most part of the 
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published works, the Ordinary Least Squares technique is used to find out the values of the 

parameters m and b of the best fit line.   

To answer the question; which is the best fit line of this collection of (X,Y) pairs, the 

statistician needs some extra information. The reason for this is that given a collection of pairs, 

several 1ines could be drawn, all of them being reasonable estimators of the "best fit line". Even if X 

and Y are assumed to be measured without error, only in the case when all the Xi and Yi are exactly 

located in some 1ine, the parameters of that line can be determined without ambiguity.  If the points 

(Xi, Yi) are not exactly located in some line, but rather spread in a line-shaped cloud, then the 

information of the collection of points itself is not enough to determine a unique best line fit.  For 

example if we use the Ordinary Least Squares technique for that collection of points, we will get one 

set of parameters if we calculate the regression of Y on X, and a different one if we calculate the 

regression of X on Y.  Which of those is the "correct" best fit line?  The answer to that question may 

arise considering which the purpose of the relation sought is.  If you are willing to predict some Y 

value given an X value, probably you will choose the regression of Y on X as your best fit line; but if 

you are going to use a Y value to predict an X value, you better use the regression of X on Y as your 

best fit line.  And what if we are not trying to predict anything, but to observe some scientific law, or 

to corroborate some hypothesis about the m and b value?  And what if one or both variables are 

subject to error? 

Two types of information are essential to look for the "correct" best fit line [38]:   

• a) Information about the purpose of the best fit line.  In other words, how do you plan to use 

the parameters of the best fit line?  

• b) Technical information about the nature and structure oft he data.  For example: Do you 

know the variance of errors associated with the data?  Are there replicate measurements 

among the points?  Were the observation random pairs?  Were all points taken under the 

same conditions?  Is there any information about a third variable associated with X and Y? 

Depending on the answers to the above questions, the statistician would recommend, at least, 

one of three general frameworks to address the situation, each of one with several techniques 

available:  Regression, Functional or Structural analysis [39]. 

 

Three frameworks for linear analysis 

 

Regression analysis 

 

"Regression" is a statement forged by Galton in a work done between 1866 and 1868. His 

1877 synonym for "regression" was “reversion" ([39] page 308).  He used it to indicate "regression to 

mediocrity" in a situation where he found that the average stature of adult offspring increased with 

parent's stature, but not by as much. The term stuck firmly and was further used in association with 

studies of variables for predicting purposes. 
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Least Squares theory roots origins to Gauss, who brought its fundamental results [40]. 

Though the Least Squares method was developed considering an error-free independent 

variable, it is well suited to predict Y values even if X is subject to error, provided that the population 

parameters from which the new X is drawn are identical to those of the data set to which the 

regression was fitted [41].  For the situation in which the parameters of the estimation population 

differ from those of the prediction population, the prediction equation is no longer given by the Least 

Squares method and a structural relation is required to address this situation [42].  As usual, we call 

Ordinary Least Squares the technique that minimizes only the Y deviations from the line, but the 

Least Squares method include other techniques, like minimizing the X deviations from the line, 

which is equivalent to interchange the X and Y data and to apply then an Ordinary Least Squares.  

Since Ordinary Least Squares is not symmetric respect to the interchange of variables, the Ordinary 

Least Squares parameters should not be algebraically manipulated to calculate X for a given Y.  

Instead it is necessary to calculate the new parameters m' b' from the regression of X on Y (Ordinary 

Least Squares with the Y data in the abscissa axis). 

When dealing with predicting values, we usually try to establish some "estimation" in the 

statistical sense.  In general there will exist more than one consistent estimator of a parameter (one 

that tends to the "true value" as the sample tends to the population), even if we confine ourselves 

only to unbiased estimators (those that are close to the true value even for finite samples).  We need 

further criteria to choose between estimators, all of them with the common property of consistency.  

Such criteria arise naturally if we consider the sampling variances of the estimators.  An unbiased 

consistent estimator with a smaller variance will deviate less from the true value than one with a 

larger variance.  Hence we may regard it as better. 

Least Squares method gives the minimum variance unbiased linear estimators of any set of 

linear functions of the parameters m and b.  Therefore Least Squares is usually considered the best 

method for regression analysis.  Least Squares method is conceptually distinct from Maximum 

Likelihood (ML) method, but coincides with the ML method in the normally distributed observations 

case [43]. 

The results obtained by the Least Squares method assume nothing concerning the distribution 

of the errors (εxi, εyi) except the conditions concerning their first- and second-order moments.  We 

make unbiased estimators of the parameters, and of the sampling variances and covariances of these 

estimators, without distributional assumptions.  However, if we wish to test hypotheses concerning 

the parameters (constraints derived from physical laws or similar information), we need distributional 

information or distributional assumptions.  In those cases there are other methods with better 

performance for that task than the Least Squares method, because now the minimum variance is not 

enough criteria any longer. 

Those other methods arise in the frameworks of Functional Analysis and Structural Analysis 

as we will see next. 
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Functional analysis 

 

There is a field of interest concerning relationships of a strictly functional kind between 

variables, such as those of classical physics; this subject is of statistical interest because the 

functionally related variables are subject to observational or instrumental errors.  Kendall & Stuart 

call this the problem of functional relationship.  This point of view is very useful in several situations 

in Metrology, as any device of measurement is working based on the applications of known physical 

laws which are combined to bring a general mathematical model or function that relates the readings 

of the equipment with the external stimulus applied to it.  Some of these functions are quite simple 

like the mathematical model of the pressure balance.  For these simple models it is desirable to test 

the hypothesis about the values of the parameters assigned to the mathematical model, as they work 

in some stable equipment of measurement.  This practice is especially useful if several laboratories 

undergo such a study, so that their findings need to be compared in order to establish the equivalence 

of their metrological systems. 

 

Structural analysis 

 

In some cases, the function relating reading to external signals may be too complicated to 

handle, like the model relating the external pressure and the response in frequency of some kinds of 

frequency-based pressure transducers.  In those cases, a practical approach is just trying to find the 

structural relation among the variables observed, in the sense that we understand that there exist some 

physical laws behind the relationship among the variables, but since we do not have a workable 

model for that function, we do not apply the functional relationship, but instead, we try to observe the 

underlying structure that the variables show and we try to find out the best estimates of the 

parameters that impose that structure. 

 

Mathematical models 

 

Regression relationships 

 

The regression of y on x is defined to be the line that gives the relation between x and the 

expected value of y, given x.  In this situation, y is called the dependent and x the independent 

variable.  The regression relationship between x and y is written as 

 

( 55 ) 

 

exmby +⋅+=  



 41 

Where b + m·x is the population regression line and e represents the "error", or deviation, of Y 

from the straight line.  The following basic statistics for calculating m and b are used with the 

Ordinary Least Squares and several other methods: 

The variance of the x data: 

 

( 56 ) 

 

The variance of the y data: 

 

( 57 ) 

 

The covariance between the y and x data: 

 

( 58 ) 

 

And the Pearson correlation coefficient: 

 

( 59 ) 

 

The different methods that use the statistics ( 56 ) to ( 59 ) deliver a best fit line which passes 

through the centroid of the data ( )yx, , so once m is obtained, b can be solved from ( 55 ) (since 

0=e ) to obtain 

( 60 ) 

 

The Ordinary Least Squares solution for the regression of y on x (y is the dependent variable) 

gives for m: 

( 61 ) 

 

For the regression of x on y (x is the dependent variable) the value of m given by Least Squares 

is: 

( 62 ) 

 

The Ordinary Least Squares estimation of the overall uncertainty of the fit is given by the 

variance S (basic variance of the system): 
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( 63 ) 

 

The experimental variances for the parameters m and b, S
2(m) and S

2(b), are (for Ordinary 

Least Squares): 

( 64 ) 

 

 

( 65 ) 

 

And the correlation r(m, b) between the parameters m and b is: 

 

 

( 66 ) 

 

 

Functional- Structural relationships 

 

When we consider that x and y are both subject to error then we may write: 

 

( 67 ) 

 

 

Where x’ and y’ are the error-free counterpart of x and y.  x’ and y’ are not observable, all we 

have are the “erroneous” measurements x and y.  We assume that x’ and y’ are perfectly linearly 

related: 

( 68 ) 

 

For the derivation of the functional-structural relationships, it is assumed that the expectation 

values of the errors of x and y are zero, that the errors of x and y are not correlated to each other, and 

that the distribution of the errors ex is independent of x’ and characterized by the variance σ2
x.  

Further it is assumed that the distribution of the errors ey is independent of y’ and characterized by 

the variance σ2
y. 
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If we regard the x' as given numbers, this model is known as the functional relation.  If we 

assume rather that the x’ are drawn independently from a ( )2,σµN  distribution, i.e., x’ is normally 

distributed with mean µ and variance σ2, then the model is known as the structural relation. 

Regardless of the consideration of x’ as a random variable or not (i.e. if the relation is 

structural or functional) the maximal likelihood estimation of the parameters of these models are the 

same, provided that we have enough information to calculate them.  We need some extra information 

to avoid the unidentifiability problem.  This extra information is the error variances.  Madansky [38] 

found three maximal likelihood relations for the estimation of the slope, depending upon the 

information available among σ2
x, σ

2
y, or λ=σ2

y /σ
2

x. 

If σ2
y is known, then it holds that 

 

( 69 ) 

 

If σ2
x is known, then it holds that 

 

( 70 ) 

 

If λ=σ2
y /σ

2
x is known, then it holds that 

 

( 71 ) 

 

where the sign must be identical to the sign of Sxy.   

The basic variance of the system is estimated by 

 

( 72 ) 

 

From the three possibilities to calculate the parameters of the best fit line in the functional-

structural framework, we will treat in more detail the case in which σ2
x is known, because this case 

was applied in our research. 

 

 

Functional-structural analysis for abscissa-data variance known [44] 

 

The functional-structural model in this case is 
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 ( 73 ) 

 

 

 

where:  

• yi   is the average measurement number “i” of the quantity assigned to the ordinate 

  scale, 

• eyi   is the measurement error of yi, 

• x’i   is the true value of the average measurement number “i” of the quantity  

  assigned to the abscissa, 

• xi   is the average measurement number “i”, of the quantity assigned to the   

  abscissa, 

• exi   is the measurement error of xi, 

• µx’   is the expected value of x’ for the distribution of true values x’i, 

• σx’x’  is the variance of the distribution of true values x’i, 

• σeyey is the variance of the distribution of errors of measurement of the yi, 

• σexex is the variance of the distribution of errors of measurement of the xi and 

• i  goes from 1 to N, for N pair of average measurements (xi, yi). 

In this model, the variance σexex is assumed to be known, and all the other parameters of the 

model are derived using the σexex value and the first and second moments of the vector sample; i.e. the 

vector sample mean ( )yxZ ,= , and the vector sample covariance matrix uZZ, which has the 

components covariances (uZZ[x, x], uZZ[x, y], uZZ[y, y]), corrected for the degrees of freedom, such 

that: 

 ( 74 ) 

 

The maximal likelihood estimators of the parameters for this model are: 

 

 

 

( 75 ) 
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For the quantities defined in the equation set ( 75 ) to be proper estimators of the parameters, 

xx ′′σ̂  and eyeyσ̂  must be non-negative.  The hat in all the estimators’ symbols is used to distinguish 

between the (unknown) parameter and its (calculated) estimator. 

The (estimator of the) covariance matrix uPP of the (estimators of the) parameters’ vector 

P  =  (b, m)  is given in this model by 

 

( 76 ) 

 
where 

 

( 77 ) 

 

 

This model permits also the estimation x′ˆ  of the true values x’, using the following set of 

equations: 

 

 

( 78 ) 

 

 
 
The quantities defined in the last equation are very useful in judging the applicability of the 

model, through the graphical representation of the pairs ( )iix υ̂,ˆ′ , which is the equivalent of plotting 

the residuals in ordinary least squares analysis.  This plot often will give an indication of nonlinearity 

in the data, of lack of homogeneity of the error variances, of no normality of the distribution of 

errors, or of outlier observations.  The structural model we are discussing now postulates constant 

variance for eyi and exi, therefore υi = eyi - m·exi will also have constant variance.  Furthermore, 

because both eyi and exi are independent of xi; the expected value of υi given xi is zero.  All this 

indicates that the plot of υi versus xi should be a homogeneous scatter of points around the line υ = 0, 

if the analyzed data can be really explained with this structural model. 

To complement the graphical check, we present now two useful statistical tools (a test and a 

“rule of thumb”) that can be used to test the suitability of this model, specifically to judge:  

• if the equations ( 76 ) and ( 77 ) give good estimators of the variances and covariances of 

the parameters b and m, and (in the positive case);  

• if the Student’s t-distribution with (N - 2) degrees of freedom is a good approximation for 

their real distribution (i.e. if the Student’s t-distribution is suitable to construct an extended 

confidence level for the estimated parameters). 

The first question can be answered evaluating the following statistic: 
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( 79 ) 

 

 

The value of χ2 given by the equation ( 79 ) should be large compared to (or at least similar to) 

the value of the chi-square distribution with n-1 degrees of freedom in order to consider that the 

quantities given by the set of equations ( 75 ) are good estimators of their parameters. 

In that case, and answering the second question, we can use the Student’s t distribution to 

construct the extended confidence intervals of the parameters if the following “rule of thumb” is met: 

 

( 80 ) 

 

We finalize this subsection with a general recommendation about the application of linear 

analysis to different problems:  If the purpose of the analysis is to use the resulting equation to 

predict one of the variables based on the measurement of the other one, then use Ordinary Least 

Squares accordingly (independent variable assigned to abscissa data) as long as the new data in 

which the prediction is going to be made has similar variances as the data used to calculate the 

parameters.  If this last condition is not met, or if the purpose of the analysis is to obtain the 

parameters to assign them some interpretation as physical quantities, then use one of the functional-

structural methods.  The functional-structural method should be chosen so that the available 

information about the variances of the variables is used as good as possible. 
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3. Experimental Setup and Methods of Measurement 

 

 

We start this part with a general description of our spectrometer.  In the following sub-sections 

we describe the individual components of it, and the methods used to take the measurements of all 

the input quantities needed to measure the line intensities and the partial pressures of the gases 

investigated (in our case CO and CO2).  This description includes the specific methodology for the 

calculation of the corresponding uncertainties.  It is important to stress here the necessity to keep in 

mind that the result of a traceable measurement is always a given average and its uncertainty.  This 

is part of the core of the concept of traceable measurement as mentioned in the section 2.5.  

Whenever we refer to some measurement of a given quantity through this work, we mean its 

traceable measurement (unless the contrary is stated explicitly) and therefore such measurements 

should not be confused with the direct reading of the measuring devices (for the quantities that can be 

measured directly) or with the algebraic manipulation of the direct readings of measuring devices (for 

the quantities that can only be measured indirectly using some equation and its input quantities).  For 

this research, the direct readings of the measurement devices were always processed through some 

calibration functions given in (or found based on) the traceable certificates of calibration of their 

instruments.  The result of the calibration function is what we regard as the average of the traceable 

measurement (for the case of direct measurements).  The result of the equation given for some 

indirect measurement, fed with input quantities which are in turn the average of their traceable 

measurements, is the average of the traceable (indirect) measurement of the quantity.  In any case the 

result of the traceable measurement is only complete when the reported average is accompanied by 

its uncertainty.  That is why we keep here the description of the considerations, formulae and 

methods used to calculate the uncertainty of our measurements, together with the description of the 

considerations, formulae and methods used to calculate the average of our measurements.  Note that 

the word average is used here independently of the number of repetitions for a given measurement.  

Also in the case when a given quantity was measured only once, that result, as traceable 

measurement, includes the average (the calibrated result) and its uncertainty. 

 

 

3.1. General Description of the Spectrometer 

 

The Spectrometer with the three channels that we set up to undertake this research is described 

as follows (see Figure 4 in page 48):  The infrared laser is produced in the Laser Source, this being 

either a cryogenic Diode-Laser Base System, which is controlled by a Diode-Laser Electronic 

Control Unit (for the measurements on CO) or a DFB Laser tempered with Peltier-elements (for the 
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measurements on CO2).  After collimating in an Off Axis Parabolic Mirror (OAP) the ray goes 

through a monochromator with a resolution of about 1 cm-1 (only for CO measurements).  The 

purpose of the monochromator is to block the transmission of secondary emissions at other 

wavelengths from the cryogenic diode-laser, and therefore it is not needed when the DFB laser is 

used (the DFB do not produce secondary emissions).  After this, the beam is focused by another OAP 

in the plane of a chopper and re-collimated by a third OAP.   

 

 

 

Figure 4:  Schematic representation of our spectrometer 

 

 

The ray goes then to two beam splitters which divide it in three parts:  The first part of the ray 

is focused directly and detected on detector 2, where it is measured as the Reference-Signal.    The 

second part of the ray goes through a Small Cell, then through the VCMHC and finally is focused by 

a spherical mirror on detector 1, where it is measured as the Detection-Signal.  The third part of the 

ray goes through an Open Confocal Etalon (OCE) (Free Spectral Range – FSR: 0.0103745 cm-1) or 

through the Ge Etalon (FSR: 0.044396 cm-1 for radiation at 4988 cm-1) and is focused and detected 

on detector 3, where it is measured as the frequency-marker-signal.  The wavelength of the laser is 

slowly swept around the absorption line under study by means of a triangular ramp.  The ramp 

frequency used is 5 Hz, but we only observe the positive slope part of the signal so that the total 

observed period has a duration of 0.1 s and is therefore equivalent to a 10 Hz signal with a 50% duty 

cycle.  The ramp voltage is applied directly to the bias temperature connection of the laser controller.  
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The corresponding three signals detected respectively on the three mentioned detectors are 

demodulated (From the chopping modulation) by two different systems:  the signals from detector 1 

and 2 are demodulated using PSD Lock-in Amplifiers (a Perkin Elmer - LIA and a Stanford Research 

- LIA) and the signal from detector 3 is demodulated by a Band-Pass Filter of a Dual-Channel Filter. 

The three demodulated and amplified signals are detected simultaneously in channels 1 to 3 of a 500 

MHz digitizing oscilloscope, where the ramp voltage signal is also digitized simultaneously in the 

channel 4.  The four digitized signals are transferred to a PC by means of a GPIB card controlled by a 

LabVIEW program, which also reads other measuring instruments used in the experiment, like the 

Pressure Measuring Devices (Capacitance Diaphragm Gage – CDG, Spinning Rotor Gage – SRG and 

Ionization Gage - IG) and the Temperature Measuring Devices (Keithley Scanning System to 

measure the temperature of the walls of the vacuum chamber and two multimeters to measure the 

temperature from two PT100 located directly inside the VCMHC). 

 

 

3.1.1. General Description of Our Line Intensity and Partial Pressure 

Measurement Method 

 

Basically we try to measure as accurate as possible all the other input quantities of the 

Lambert-Beer law.  We calculate the corresponding absorption coefficient for each sampled 

frequency νi: 

 

( 81 ) 

 

We record the transmitted intensity I(νi – νc) as we sweep the frequency νi through an adequate 

frequency window around the center of the absorption line νc.  Both I(ν) and ν change continually (as 

do all the other measured quantities for this type of “classical limit” measurement), but we record a 

discretized sample of all the quantities.  Such discretization takes place during the digitization of the 

signals in the digitizing oscilloscope and in the other digital measuring equipments, like the 

multimeters.   

The oscilloscope samples and records the signals at discrete time points.  In order to transform 

this time scale to a frequency scale we must know how fast the ramp applied to the diode laser is 

shifting the laser emitted wave-length. For this determination we use the frequency marker: mostly 

the open confocal etalon OCE and seldom also the Ge etalon.  The details of these measurements will 

be presented in section 3.8. 

The number of molecules per volume n can be measured indirectly through measurements of 

the pressure and temperature of the gas (see section 3.4).  The path length of the ray through the 
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absorbing media L can be measured either directly, like the distance between windows of a one-pass 

cell, or indirectly using the properties of the Herriott Cell, like in our case (see sections 2.3 and 3.3). 

To measure the transmitted intensity I(ν) we use the detector 1 as explained below.  We also 

need to know the input intensity I0(ν) that would reach the detector 1 in case that no absorption were 

taking place.  For this reason we measure always a part of the ray directly on detector 2 and we have 

to include always a “null-scan” in each absorption measurement, in order to learn the transformation 

function from channel-2-I0 to channel-1-I0. 

Finally, in order to calculate the absorbance correctly we need a physical scale to measure the 

intensities.  The scale factor itself is not important as it is eliminated through the division I(ν)/I0(ν), 

(i.e. it is not important to express the intensity with some specific units) but the intensity scale must 

be physical in the sense that it has no “offset” errors, i.e. the zero of the system must be a real 

physical zero.  In order to find this “physical origin of the system of reference” we have to measure a 

100% absorption spectrum so that the portion of the line that was 100% absorbed indicates the 

position of the “zero” for the physical intensity scale.  Furthermore the observed “electrical” intensity 

scale (as voltage measured with our system) must have a linear relation with the optical intensity that 

reaches the detector.  See section 3.7. 

Summarizing, we need at least three measured spectra:   

• one without any absorption:  the so called null-absorption scan, to prepare the indirect 

measurement of I0(ν), 

• one with full absorption at the center of the line:  the so called total-absorption scan, to find 

the physical origin of the intensity scale, and 

• one with partial absorption:  the so called partial-absorption scan, to measure the line 

intensity itself (or the partial pressure later). 

These measurements have to be done shifted in time, because they must be carried out by the 

same detector.   

If we had just one optical channel, we would have to measure the frequency mark scan also 

shifted in time.  Another drawback for this case is that I0(ν) could not be indirectly (simultaneously) 

measured, but estimated only based on null-absorption scans and observations of the not absorbed 

portions of the spectrograph (the “wings” of the absorption line).  These would add bigger 

uncertainties to the frequency scale and I0(ν) values.  In order to avoid these problems we separated 

the ray in three parts by means of two bean splitters so that we are able to measure simultaneously 

the absorption signal, the frequency mark signal and the reference signal.  This last one is used to 

measure indirectly I0(ν). 

Detailed information about the implementation of this measurement method regarding the data 

sampling and manipulation can be found in appendix 7.1. 
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3
.2

. L
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u
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 W
e used tw

o L
aser-S

ources in this w
ork:  A

 cryogenically cooled lead-salt diode laser and a 

D
F

B
 laser operated at am

bient tem
perature.  T

heir respective equipm
ents are show

n in the next table. 
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n

 a
n

d
 co

n
tro

l o
f th

e IR
-L

a
ser. 

 

Nominal 

wavelength / 

wave-number 

2183 cm-1 

-- 

-- 

-- 

2004 nm 

-- 

 

Resolution / 

Efficiency 

3.4 mW/A at 

121 K 

-- 

-- 

15 µA / 5 mK 

0.15 W/A at 

25 °C 

-- 

 

Temperature 

Working 

Range 

(80 - 130) K 

-- 

-- 

(10 - 300) K 

(15 - 30) °C 

-- 

(0 - 30) °C 

Current 

Working Range 

(280 - 630) mA 

-- 

-- 

(0 - 1) A 

(21 - 80) mA 

-- 

(0 - 80) mA 

Serial 

Number 

322-HV-1-98 

93-2153 

110 

141 

-- 

PTB1076920

-0000 

-- 

Moel 

IR-2183 

L5736 

L5120-1 

L5830 

057/4-15 

-- 

-- 

Manufacturer 

Laser 

Components 

Laser Photonics 

Laser Photonics 

Laser Photonics 

Nanoplus 

PTB 

PTB 

Part 

Diode-Laser-1 

Diode-Laser-1 - 

Thermostat-Head 

Diode-Laser-1 - 

Base 

Diode-Laser-1 - 

Controller 

Diode-Laser-2 

Diode-Laser-2 - 
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3.3. Herriott-Cell 

 

The Herriott Cell is a key component of the spectrometer which permits the realization and 

measurement of several path lengths which can be step-wise selectable, as we showed in the Herriott 

Cell theoretical description, section 2.3, page 29. 

In order to change the position of the back mirror in the VCMHC, it is mounted on a movable 

plate which can be axially shifted along a high-precision three-rail system.  To shift the plate there 

are two mechanisms available in our system: a mechanical screw-driven system, which was already 

used in previous works [8, 47], and an electronically piezo-motor driven system -InchWorm®-. 

The VCMHC has a front window located close to the front mirror of the Herriott Cell, which 

permits the optical coupling of the probe-ray into the Herriott Cell (see Figure 5).  A back window at 

the other end permits the control of the position of the back mirror (see Figure 6).  This control is 

done with an interferometer, by measuring the distance ∆Z traveled by the back mirror from a well 

determined reference position (base point) to the transmitting position.  In order to find the relation 

between the ∆Z measurements and the ray’s configuration inside the Herriott Cell, we used the same 

He-Ne laser from the IR-laser-source base system which was used to adjust all the optics of our 

spectrometer.  The procedure used on this regard will be explained in the next sub-section. 

The equipments mentioned so far that were used for the absorbing path length measurements 

in our system are listed next (their details can be found in the Table 4, on page 59): 

• Herriott Cell in the VCMHC, 

• Interferometer, 

• He-Ne Laser, 

• UHV fed-through Screw-Driver (Drehdurchführung) and 

• InchWorm. 
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Figure 5.  Partial view of the VCMHC, where the front window and the detector-1 can be observed. 

 

 

Figure 6.  Partial view of the VCMHC, where the back window, the driven-screw and the interferometer 

sensor can be observed. 
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3.3.1. Herriott Cell Characterization 

 

We present here how we measured the effective radius of curvature ρ, the family-number K, 

and the number of round trips N, which permits the measurement of the ray path length inside the 

Herriott Cell using equation ( 52 ). 

The mirrors of the VCMHC have a nominal radius of 1 m, but we need a traceable 

measurement of the radius in order to have a traceable measurement of the absorbing path length L.  

Earlier researchers have tried to measure this radius through the direct measurement of the mirror’s 

separation l for a known configuration (i.e. K and N known) and using the equation ( 50 ), which can 

be rearranged as follows: 

( 82 ) 

 

 

Since the mirrors of this Herriott Cell are located inside the vacuum chamber, it was 

inconvenient to use this method [47].   

For this reason we developed a novel and simple approach to measure the mirrors’ effective 

radius of curvature ρ and separation l, both indirectly and simultaneously.  Our approach is based also 

on equation ( 50 ), 

 

( 50 ) 

 

but we treat it in the frame-work of a linear-analysis: 

 

 

 

( 83 ) 

 

 

where l is the mirror’s separation, which we interpret now as the measurement of the back-mirror 

position taking as reference the front mirror’s position.  We do not know exactly the front’s mirror 

position, but we can measure the back mirror’s positions using as reference the mechanical stop point 

of the screw-driven travel when the piezo-motor is in its “forward-limit” position.  This combination 

places the back mirror at about 0.75·f from the front one and is a very stable and reproducible fixed-

point position.  This position was called by us the “base-point” position.  From the base-point, the 

back mirror can be shifted toward the confocal position (0.75·f ≤ l < f ) using the screw-driven 

mechanism; or it can be shifted toward the semi-confocal position (0.5·f < l ≤ 0.75·f ) using the 
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InchWorm piezo-system.  The key issue is that the base-point is positioned at a fixed distance from 

the front mirror, so we can use it as a translated system of reference to measure the position of the 

back mirror.  As a result, the linear relation defined by the equations set ( 83 ) appears in the new 

(translated) system with the same slope and with a new intercept.  To differentiate both reference 

systems, we will call Z the position of the back mirror in the new system of reference (i.e. when 

measured from the base-point), then it holds, 

 

 

 

( 84 ) 

 

 

 

We can not directly measure l, but we do can measure the Z positions using the interferometer.  

Now if Z1(K1, N1) denotes the transmitting position of the back mirror for a given Herriott Cell 

configuration characterized by the integral numbers K1, N1, when the mirrors are separated by a 

distance l1; and Z2 denotes another transmitting position similarly characterized by the integral 

numbers K2, N2, when the mirrors are separated by a distance l2; it is a fact that 

 

( 85 ) 

 
because the distance between two points does not depend on the origin of reference chosen to 

measured their positions, which gives immediately the well known result that, 

 

( 86 ) 

 

i.e. the slope of a regression-line is independent of translations (in x or in y) of the reference system, 

as we already pointed it out in equation ( 84 ), which, compared with equation ( 83 ) gives 
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transmitting positions i and j is a distinguishing characteristic which permits to identify the 

participating number Ki, Ni, Kj, Nj.  So we applied the following five-step method: 

• Using the nominal radius, the K-values 1 to 9 and their non-cero N-values (from 3 to 33) 

we generated a table of nominal mirror separation differences (li  - lj). 

• Using the interferometer, the Screw-Driver, the InchWorm and the He-Ne laser, we 

measured the distances Z for 21 different transmitting positions.  To this end we observed 

the He-Ne signal transmitted through the Herriott Cell and projected on a screen which was 

fixed to the Detector-1 window.  We repeated the measurement 4 times for each 

transmitting point, always positioning the He-Ne point in the center of the projected area. 

• After calculating the means and standard deviations of the 21 Zs, we calculated a table of 

differences (Zp  - Zq), which compared with the differences (li  - lj) from the first step, 

allowed us to identify the corresponding integral numbers K and N for each measured Z. 

• With the known Ks and Ns we calculated the x components corresponding to each Z. 

• With the 21 pairs (x, Z) we found the parameters m’ and b’, and with them, the quantities ρ 

and l(K, N). 

According to the theory presented in section 2.6 (page 37), we should use the functional-

structural method for this linear analysis, as we are measuring the parameters m and b as physical 

quantities.  Nevertheless, as we explained there, the functional-structural method converges to the 

“regression of Y on X”-case when the X -uncertainties are negligible compared with the 

Y -uncertainties.  The present case is one of those, as we know exactly the K and N integral numbers, 

and the uncertainties of our x-values arise only through the limited computing accuracy of π and the 

cosine-function (relative uncertainty ≈ 10-15), while the Z-uncertainties vary from 0.003% to 0.4%.  

So we use the usual regression formulae of Z on x but conscious of its application as a limiting case 

for the functional-structural method.  Our Z and x measurements are presented in the Table 3, and 

summarized in the Figure 7.  The Z-uncertainties are not observable at this scale. 

The result of the linear analysis of the (x, Z) data is presented in the Table 2.  From it we have 

finally found the effective radius of curvature of the mirrors of our Herriott Cell. 

• ρ = 0.99912 m 

• u[ρ] = 0.00011 m   (0.011%) 
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HC Back-Mirror position vs. x(K,N)
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Figure 7.  Herriott Cell characterization:  Indirect measurement of the mirrors’ curvature radius ρ through 

the Z-vs.-x slope = 999.122 mm. 

 

 

Table 2. Linear analysis of the Z-vs.-x(K, N) data. 

Description Value  Description Value 

Slope (in mm)   

m’ 999.12208  

Intercept (in mm)   

b’ -708.0421 

 

Slope’s standard 

deviation (in mm) 

  s[m’] 0.1128  

Intercept’s standard deviation 

 (in mm) 

  s[b’] 0.0843 

Pearson’s correlation 

coefficient    

R2: 0.99999976  

Approximated  uncertainty of the 

predicted Z   

u[Zpredicted] 0.06817 

F-statistic 

F: 78524054.9  

Degrees of freedom 

df: 19 

Regression sum of 

squares 

SSreg 364891.87  

Residual sum of squares 

SSresid 0.088291 
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Table 3.  Data for the Herriott Cell characterization:  Measured Z, their corresponding K and N integral 

numbers, and their x(K, N) pairs.  

K 1 1 1 1 1 1 1
2N 46 42 38 34 30 26 22
Z Average  (mm) 222.9258 216.4215 208.5633 198.9460 186.6853 170.7485 148.8565
Z Std. Dev. (mm) 0.0225 0.0346 0.0117 0.0063 0.0214 0.0312 0.0237
u [Z] (%) 0.0101 0.0160 0.0056 0.0032 0.0115 0.0183 0.0159
x (K,N) 0.9318 0.9253 0.9174 0.9077 0.8955 0.8795 0.8577

K 1 1 1 6 5 4 3
2N 18 14 10 56 46 36 26
Z Average  (mm) 117.4683 68.6623 -17.8043 -38.9288 -43.5485 -50.6265 -63.1848
Z Std. Dev. (mm) 0.0640 0.0450 0.0688 0.0227 0.0249 0.0311 0.0243
u [Z] (%) 0.0545 0.0656 0.3864 0.0582 0.0572 0.0614 0.0384
x (K,N) 0.8264 0.7775 0.6910 0.6697 0.6651 0.6580 0.6454

K 5 7 2 5 3 7 4
2N 42 58 16 38 22 50 28
Z Average  (mm) -73.909 -78.781 -91.142 -110.250 -123.883 -134.349 -142.428
Z Std. Dev. (mm) 0.011 0.023 0.012 0.004 0.040 0.024 0.048
u [Z] (%) 0.014 0.029 0.013 0.004 0.032 0.018 0.034
x(K,N) 0.635 0.630 0.617 0.598 0.585 0.574 0.566  
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3.3.2. Absorption Path Length Measurements 

 

To calculate the total absorbing path length L, we just need to know the input quantities of 

equation ( 52 ) to calculate the distance traveled by the ray inside the Herriott Cell LHC, and the 

distance traveled by the ray inside the chamber but outside the Herriott Cell, L0; i.e. L0 is the distance 

traveled by the incoming ray from chamber’s window to the internal surface of the front mirror at 

hole’s point plus the distance traveled by the output ray from the internal surface of the front mirror 

at hole’s point to the chamber’s window.  Then we can calculate the total absorbing path length L as: 

 

( 88 ) 

 

That means that we need to know: 

• the ray configuration inside the Herriott Cell (given by the integral numbers K and N),  

• the hole-to-mirror center distance r0,  

• the Herriott Cell mirrors effective curvature radius ρ and,  

• the window-hole-window path-length L0. 

The r0 was measured when the VCMHC was constructed and its reported value is [47] 

r0 = (4.25 ± 0.02) cm (k = 1).   

The mirrors effective curvature radius ρ and the integral numbers K and N corresponding to 

each transmitting position of the back mirror were found as explained in section 3.3.1.   

The L0 was measured by us through disassembling the front window of the VCMHC, and 

measuring directly the different segments from the window’s internal surface to the mirror’s surface 

at hole’s position and taking into account the inclination angles of the ray’s trajectory.  We 

determined L0 = (26.02 ± 0.44) cm (k = 1).   

So combining equations ( 52 ) and ( 88 ) we obtain the final expression for the total absorbing 

path length L in terms of the mentioned input quantities: 

 

 

( 89 ) 

 

 

For each known configuration the integral numbers K and N are exactly determined (i.e. their 

uncertainty is zero).  The other input quantities are independent from each other, so that the 

uncertainty of L can be calculated as: 
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( 90 ) 

 

 

After calculating the derivatives, we find finally: 

 

 

 

 

 

( 91 ) 

 

 

 

 

 

In our measurement-example we had K = 1, N = 14 and the result was: 

• L = 1115.59 cm 

• u[L] = 0.51 cm  (0.046%; k = 1) 

 

 

3.4. Gas Density Measurements 

 

We measure the gas density under two different conditions:  using pure gas for line intensity 

measurements and using gas-mixtures for partial-pressure measurements.   

 

3.4.1. Gas Density Measurements of Pure Gas 

 

In this case we measure the gas density indirectly, applying the ideal gas law, 

 

 ( 92 ) 
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• ni   is the gas molecular density of the gas number “i” of some gas mixture 

containing N different gas- “species”, and “i” being a natural number between 1 and N.  
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• Pi   is its partial pressure,  

• k  is the Boltzmann constant and 

• T  is the thermodynamic temperature. 

Our pressure measurement devices only can measure the total pressure P, 

 

 ( 93 ) 

 

so that, if there is only one component (i.e. using pure gas) the measured total pressure was almost 

equal to the partial pressure of the gas under study (the “almost” stands for minor purity corrections).  

In this case we just calculated the corrected pressure Pc based on the total pressure measurement P 

(see section 3.5), further we measured the gas temperature T, as explained in section 3.6, and finally 

we applied directly the equation  ( 92 ) to obtain the gas density n. 

The standard uncertainty of the gas density measurement for this case is obtained quite 

straightforward according to the formulae presented in section 2.4 and the result is: 

 

( 94 ) 

 

 

 

3.4.2. Gas Density Measurements of a Gas in a Mixture 

 

In order to measure indirectly the gas density for this case, when the gas under study was part 

of a mixture, we applied an equation derived from the Lambert-Beer law, equation ( 23 ), and the 

definition and properties of the Line Intensity, equations ( 24 ) to ( 26 ), as explained next. 

Rearranging the equation ( 23 ) and taking natural logarithm results in 
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Substituting k from equation ( 25 ) in equation ( 95 ), integrating from minus infinite to plus 

infinite with respect to the wave-number and taking in account equations ( 24 ) and ( 26 ) results in 
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The right side of equation ( 96 ) represents the area under the “absorbance vs. wave-number” 

curve and is what we call the integrated absorbance Aabs: 
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 ( 97 ) 

 

So that we obtain for the gas density n: 

 

( 98 ) 

 

Given that the line intensity S depends on the temperature of the absorbing media T, this must 

be measured also in order to complete the information needed for applying the equation ( 98 ) in the 

measuring of the gas density n.  For details about these measurements see the sections 3.9 for Aabs; 

3.10 for S; 3.3 for L; and 3.6 for T. 

The standard uncertainty of the gas density measurement for this case is obtained also 

according to the formulae presented in section 2.4 but the result is a little more complicated given the 

correlation between S and Aabs.: 
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HITRAN [45] data basis at different temperatures in the range of our temperature measurements and 

performed a linear regression of the line intensities against the temperature.  For convenience we 

choose (T – T0) as the abscissa, so that the intercept of the line was the line intensity at the reference 

temperature T0: 

( 100 ) 

 

We have written already a minus in front of the slope because the line intensities studied for 

CO and CO2 decrease with increasing temperature.  More details and reasons for this behavior can be 

found in section 2.1. 

From equation ( 98 ) we see that the temperature dependency of the line intensity implies a 

temperature dependency for the integrated absorbance: 

 

( 101 ) 

 

Using the last two equations and the prescriptions given in the GUM we find: 

 

( 102 ) 

 

Finally, we obtain the uncertainty of the density of gas in a mixture, after substituting equation 

( 102 ) in equation ( 99 ):  

 

( 103 ) 

 

 

 

3.5. Pressure Measurements 

 

The pressure measurement devices used in this work were two capacitance diaphragm gages 

(CDG), for the measurements made under static conditions (stationary gas in the chamber), two 

spinning rotor gages (SRG) for the measurements made under dynamic conditions (continuous flow 

of gas throw the chamber) and one ionization gage for the characterization of the residual pressure in 

the vacuum chamber.  The two CDG were read through a digital multimeter, which in turn was 

controlled by the LabVIEW program through its IEEE-488 port.  Each SRG sensor had its own 

controller.  The SRG controllers and the IG were equipped with IEEE-488 ports, which were used to 

read the SRG or IG output through the LabVIEW program.  The details of these equipments are 

summarized in Table 8, on page 70. 
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As mentioned in the introduction of this chapter and in section 2.5, we tried to take traceable 

measurements as much as possible in all the steps along this research.  Furthermore we tried to take 

our measurements with the higher level of accuracy possible.  This implies not only using calibrated 

measuring instruments, but also using accordingly the results of such calibrations in order to convert 

the instrument reading in a traceable measurement of the measured quantity. 

The CDG and SRG used for this research were calibrated directly with the primary standards 

of the Vacuum Laboratory of the PTB, so that its traceability chain is as short as possible and the 

accuracy of our pressure measurements is as high as possible.  The two CDG were calibrated using 

the same digital multimeter as read-out interface, as they were used in our experiments. 

The principle of operation of any CDG, SRG or IG is described in many textbooks.  A very 

complete explanation including physical concepts as well as constructive details and calibration 

procedures may be found in the “Wutz Handbuch Vakuumtechnik”46.  Specifically CDG are 

described there in the section 12.2.5.5, SRG in the section 12.3, and IG in the section 12.7. 

Next we present the calibrating functions of the vacuum gages that we used to perform our 

traceable pressure measurements.  These functions can be found also in the copies of the certificates 

of calibration, in appendix 7.2.  We also describe other corrections applied when it was necessary. 

 

 

3.5.1. Pressure Measurements with the 10 Torr Capacitance Diaphragm Gage 

 

For the 10 Torr – CDG, the calibrating function is 

 

( 104 ) 

 

where:  

• Pe    is the evaluated pressure, which equals the traceable pressure at the 

measuring pressure port of the 10T-CDG.  Pe is given here in hPa. 

• P10CDG-Torr   is the reading of the 10T-CDG in Torr, (i.e. the 10T-CDG is read 

through an analog output which delivers a 0 V to 10 V signal -which is proportional to the 

pressure reading in Torr, with a proportionality factor of 1 - this voltage is read with the 

digital multimeter and send through the IEEE-488 port as the P10C D G -Torr). 

• e10CDG  is the error function (in percentage) of the instrument, as given in its 

certificate of calibration: 
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where Pmbar = 1.33322 · P10C D G -Torr and the coefficients a to g are given in the next table. 

 

 

Table 5:  Coefficients of the 10T-CDG calibration. 

 

 

Finally, taking in account that the height of the 10T-CDG was not the same as the height of the 

center of the VCMHC, it is possible to perform a “head-column” correction to find the mean gas 

pressure in the chamber P, 

 

( 106 ) 

where 

• M   is the molecular weight of the gas in g/mol, 

• muma  is the atomic mass unit in kg, 

• g    is the acceleration of gravity in m/s2,  

• h   is the height difference between the 10TCDG and the VCMCH, in meters, 

and as usual, the Boltzmann constant k is given in J/K and the thermodynamic temperature T is given 

in K.  Nevertheless this correction is too small for our measurements (compared with the uncertainty 

of the evaluated pressure) given the small gas densities in vacuum and the moderate height difference 

of our setup (40 cm). 

The standard uncertainty of the evaluated pressure, in the range of pressures measured with the 

10T-CDG for this research, was calculated based on the information given in its certificate of 

calibration, and found to be 0.3% of the evaluated pressure.  Furthermore we took a pressure 

measurement for each scan, so that when several (N) scans were combined, the final evaluated 

pressure was the mean of the N measurements and the standard deviation of the N measurements was 

combined with the standard uncertainty of the evaluated pressure: 

 

( 107 ) 

 

 

3.5.2. Pressure Measurements with the 1000 Torr Capacitance Diaphragm Gage 

 

For the 1000T – CDG, the calibrating function is: 
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( 108 ) 

where 

• Pe   is the evaluated pressure, which equals the traceable pressure at the 

measuring pressure port of the 1000T-CDG (Pe is given here in hPa), 

• P1kCDG   is the reading of the 1000T-CDG in Torr·10-1, (i.e. the 1000T-CDG is 

read through an analog output which delivers a 0 V to 100 V signal -which is proportional 

to the pressure reading in Torr with a proportionality factor of 10-1 - this voltage is read 

with the digital multimeter and send through the IEEE-488 port as the P1kC D G), 

• Korr(P1kCDG)  is a function of the instrument’s reading as given in its certificate of 

calibration, which is presented next: 

 

( 109 ) 

 

where the coefficients a to g are given in the next table. 

 

Table 6:  Coefficients of the 1000T-CDG calibration. 

 

 

The standard uncertainty of the evaluated pressure, in the range of pressures measured with the 

1000T-CDG for this research, was calculated based on the information given in its certificate of 

calibration, and found to be 0.22% of the evaluated pressure.  As with the 10T-CDG, we took a 

pressure measurement for each scan, so that when several (N) scans were combined, the final 

evaluated pressure was calculated with the mean of the N measurements and the standard deviation 

of the N measurements s[Pe] was combined with the standard uncertainty of the evaluated pressure: 

 

( 110 ) 

 

 

 

3.5.3. Pressure Measurements with the Spinning Rotor Gage 

 

For the SRG, the calibrating function is: 
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( 111 ) 

 

where  

• D   is the diameter of the SRG-ball in meters, 

• ρ  is the mass-density of the SRG-ball in kg/m3, 

• ωω&  is the SRG-ball relative deceleration rate in Hz (or s-1), 

• mf  is the slope of the deceleration rate vs. rotation frequency linear fit of the SRG 

 offset characterization, 

• ω  is the rotation frequency of the SRG-ball in Hz, 

• δ  is the intercept of the deceleration rate vs. rotation frequency linear fit of the 

 offset characterization in Hz, 

• σo  is the accommodation coefficient of the SRG (dimensionless), 

• R  is the ideal gas constant:  8.315 J/(K mol) 

• T  is the thermodynamic temperature of the ball in Kelvin, and 

• M  is the molecular weight of the gas in g/mol. 

The coefficients of the SRG calibrating functions are given in the next table: 

 

Table 7:  Coefficients of the SRG1 and SRG2 calibration. 

 

The coefficients mf and δ were found through the characterization of the deceleration rate 

offset in situ on the VCMHC.  The other coefficients shown in Table 7 were taken from the 

calibration certificates of the SRG. 

The SRG-controllers monitored continuously the deceleration rate and rotation frequency of 

the SRG-balls and send the data through the IEEE-488 ports to the controlling computer when the 

IPSIAM LabVIEW program ordered them to perform a measurement.  

The standard uncertainty of the evaluated pressure, as given by the certificate of calibration of 

the SRG1 and SRG2, is 0.5% of its evaluated pressure, so that for this two PMD we have: 

 

( 112 ) 

 

SRG-# D ρ mf δ σo 

1 4.762·10-3 7.715·103 0 3.00·10-7 1.222 

2 4.762·10-3 7.715·103 0 8.17·10-7 1.274 
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When using the SRG we took a pressure measurement for each scan and considered the mean 

of these measurements and their standard deviation when analyzing several scans together.  As we 

will explain in chapter 4, the scans that we combined had always a dynamic equilibrium, that was 

stable enough, so that the standard deviation of the measurements was completely negligible 

compared with the 0.5% of the calibration.  
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Short  

Name 

10T-CDG 

1000T-CDG 

-- 

SRG-1 

SRG-2 

IG 

Certificate of Calibration 

Number 

QS8/05 

QS04/05 

QS8/05 and QS4/05 

QS1/05 

QS2/05 

-- 

Resolution 

5 decades 

-- 

5 decades 

-- 

10 µV &         

0.1 mV 

10-7 mbar 

10-7 mbar 

10-2 of range 

per decade 

Measuring 

Range 

0 – 10 Torr 

x1 

(0 - 1000) 

Torr 

X1 & x.1 

(0 - 10) V & 

(o - 100) V 

(10-7 - 10-2 ) 

mbar 

(10-7 - 10-2 ) 

mbar 

(10-12 - 10-3 ) 

mbar 

Serial 

Number 

93109 

105A 

15462-2 

931061 02A 

93103202 A 

3146A 

31944 

158 82 D 

931100021 

158 83 D 

920400019 

1 

PTB 

0030283 

94008872 / 

01025825 

Model 

690A11 

TRB 

270C-0 

931061 

02A 

270C-5 

34401A 

VK-201 

VISCOVAC 

VM212 

-- 

-- 

IM520 / 

IE414-170 

Manu- 

Facturer 

MKS 

MKS 

MKS 

MKS 

Hewlett 

Packard 

Leybold 

PTB 

PTB 

MKS 

Leybold 

Part 

CDG - Sensor 

CDG - controller 

CDG - Sensor 

CDG - controller 

Digital 

Multimeter 

SRG - Sensor 

SRG - controller 

SRG - Sensor 

SRG  controller 

Ionization Gage 
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3.6. Temperature Measurements 

 

We measured the temperature at two different points inside the VCMHC, located each near an 

opposite end of the VCMHC cylinder.  Furthermore we measure the temperature in seven points 

distributed evenly over the outside part of the walls of the VCMHC.  All the thermometers were of 

PT100 type.   

The two thermometers inside, named here PT100 -1 and PT100 -2 were read with two digital 

multimeters, which read the resistances of the PT100 in a four wire configuration.  These resistances 

were sent, expressed in ohms, over the IEEE-488 ports of the digital multimeters to the controlling 

computer when the LabVIEW program ordered them to take the temperature measurements.  One 

temperature measurement per sensor was taken per each absorption scan.  The PT100-1 was 

calibrated by the Thermometry Laboratory at the PTB (together with its digital multimeter as a 

measuring unit) and was used to record the gas temperature.  The PT100-2 was used to monitor 

possible temperature gradients and relative changes inside the VCMHC and even though it was not 

calibrated, it played a key role in finding out which of all the “simultaneous” temperature 

measurements reflected better the gas temperature, as we will see in section 4.3.   

The seven external thermometers were read out by a Keithley 7700 Scanner, also in a four 

wire configuration, but the measurements were sent over the IEEE-488 port of the scanner expressed 

in degrees Celsius.  These 7 thermometers were continuously monitored and recorded by the IPSIAM 

LabVIEW program every two minutes (or every minute), independently of the oscilloscope scans.  

The seven external PT -100 together with the Keithley scanner were calibrated internally in the 

Vacuum Laboratory of the PTB using a temperature working standard, which in turn was calibrated 

by the thermometry Laboratory of the PTB. 

The details of all the Temperature Measurement Devices (TMD) used for this research are 

presented in the Table 10 on page 73. 

The calibrating function of the PT100-1, is: 

 

( 113 ) 

 

Where RΩ is the PT100-1 four-wire measured resistance in ohms and the mRi coefficients were 

calculated based on the information given in the PT100-1 certificate of calibration and are shown in 

the next table: 
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Table 9:  Coefficients of the PT100-1 calibration. 

 

 

The standard uncertainty of the evaluated temperature of one measurement is 6.1 mK, but 

taking into account that we read and recorded a temperature measurement for each oscilloscope scan, 

the overall temperature standard uncertainty for a measurement with several scans is 

 

( 114 ) 

 

where s[RΩ] is the standard deviation of the resistance measurements. 

The PT100-1 was calibrated after it was already welded to the rods of the feed-through 

vacuum-flange.  The same multimeter and cables used to read the PT100-1 signals in our 

spectrometer were used to read the PT100-1 during its calibration.  As can be read in its calibration 

certificate, the calibration was performed by comparison with two PTB working standards.  The 

PT100-1 was introduced in a glass tube and the glass tube were submerged in the calibrating thermal 

bath (to keep the PT100-1 reading the temperature of a gas, which temperature was controlled trough 

the thermal bath).  The vacuum flange served as a lid to the glass tube in order to prevent convective 

interchange of the gas in the tube with the atmosphere. 

The details of all the Temperature Measurement Devices (TMD) used for this research are 

presented in the Table 10 on page 73. 
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Short-name 

PT100-1 

PT100-2 

T1 to T7 

Keithley 

F250 

Certificate of Calibration 

Number 

165 PTB 03 

-- 

IC 20050517 

130 PTB 03 

Resolution 

-- 

1mΩ 

-- 

1mΩ 

 

0.01°C 

0.001°C 

 

Measuring 

Range 

-- 

(0 - 1) kΩ 

-- 

(0 - 200)Ω 

 

(-200 - 630) 

°C 

(0 - 50)°C 

 

Serial 

Number 

-- 

3146A 

31492 

-- 

3953007 

 

0941028/0

941368 

(A)SV191

5/A V  

2572 A 

1249027 

214 

Model 

PT100 

34401 

PT100 

8840A 

PT100 

7700/ 

2700 

PT100 

F250 

Manufacturer 

-- 

Hewlett 

Packard 

-- 

Fluke 

Keithley 

Keithley 

ASL 

ASL 

TMD-Part 

PT100internal 

Sensor 

PT100internal 

Readout 

PT100internal 

Sensor 

PT100internal 

Readout 

PT100external 

Sensors 

PT100external 

Readout 

Working Standard 

Sensor 

Working Standard 

Readout 
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3.7. Absorbance Measurements 

 

The absorbance measurements were made based on optical transmission measurements of an 

infrared laser ray through the absorbing media, as briefly described in the section 3.1.  The laser was 

divided in three rays, two of them being used for the absorbance measurements and therefore we will 

describe in this section all the equipment and procedures relevant for the detection of these two rays 

as well as the methods implemented to process that data and obtain the absorbance measurements.  

The third ray was used to generate a frequency marker signal and that will be covered on the section 

3.8. 

After being collimated by the OAP in the laser source device, the ray was redirected by a flip-

flop mirror toward a second OAP, which focused the ray to a position at 20 cm, where the blade of 

the chopper was positioned (if the flip-flop mirror was in “flop” state the ray was redirected by a 

fixed flat mirror positioned behind the flip-flop toward a FTIR, which was used for absolute wave 

number measurements).  After being chopped in this focus point, the ray continues toward a third 

OAP of the same focal length as the second one, which collimated the ray again and sent it through 

the “accessory area” and toward the first beam-splitter.  The beam-splitters used were of the Pellicle-

Beam-Splitter (PBS) type.  The ray reflected by the first PBS was focused by a spherical mirror on 

detector 2, where it was detected as the reference signal.  The ray reflected by the second PBS went 

through a small cell, then through the VCMHC, and was finally focused on to detector 1 as the 

detection signal.   

The signals from detectors 1 and 2 were preamplified by their respective preamplifiers and 

detected in two Lock-In Amplifiers (LIA) which used the 1·f reference signal from the chopper 

controller to perform the harmonic detection of the chopped signals.  The outputs of both LIA were 

recorded by a four channels digitizing oscilloscope:  The detection signal was recorded on the 

oscilloscope channel 1 and the reference signal on its channel 2.  So summarizing we see that the 

main parts involved in the measurement of the detection signal and the reference signal can be 

itemized as follows.   

a. Equipment shared for the measurement of all signals: 

• The chopper unit and its controller 

• Two 20 cm focal length OAP 

• Two pellicle beam splitters 

• The four channel digitizing oscilloscope 

b. Equipment dedicated solely to the measurement of the detection signal: 

• Detector 1  

• Preamplifier 1 

• Lock-In Amplifier 1 

c. Equipment dedicated solely to the measurement of the reference signal: 
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• Detector 2  

• Preamplifier 2 

• Lock-In Amplifier 2 

The details of these equipments are presented in two tables:  Those of list a. in Table 11, page 

78, and those of lists b. and c. in Table 12, page 79. 

Now we will explain the main optimization criteria, instrumental set up and operations that we 

made to measure the absorbance for some specific discretized wave number νj.  The explanation of 

the overall data manipulation for all the discretized wave-numbers measured in each scan will be 

described in appendix 7.1, page 153. 

In order to increase the quality of the absorption curve measurements we decided to increase 

the scan frequency from 0.5 Hz (used in an earlier research in this field and the same Laboratory 

[47]) to 10Hz reducing the time window where the form of the absorption line could be affected by 

transient effects.  We also increased the number of digitizing points from 500 to 2500 so that we 

could map more accurately the form of the absorption line and therefore achieve a more exact 

determination of the area under the absorption curve.  That left us a digitizing time per point of only 

0.1 s / 2500 = 40 µs, making it impossible to read the “R” signal of the LIA [R= (X2 + Y2)1/2] because 

this signal is actualized at a 512 Hz rate, i.e. about each 2 ms.  So we had to switch to the “fast mode” 

operation of the LIA, in which the LIA output is given only through “X” while its “Y” output is kept 

“equal to zero” by the Auto-Phase function of the LIA.  In the fast mode the output is actualized each 

4 µs so that the oscilloscope can integrate and average 10 LIA outputs for each discretized point per 

scan.   

To achieve a smooth form of the absorption line, but without over-filtering (which produces an 

artificial widening of the observed absorption figure), we found an optimizing combination of 

parameters when operating the chopper at 3140 Hz and setting the LIA’s time constants in 640 µs for 

the LIA -1 and 300 µs for the LIA -2. 

Now lets concentrate in the measurements done for a given discretized wave-number νj, with j 

fixed during this explanation (and 1 < j < 2500).  To facilitate the clarity of the exposition we will 

drop the subscript j from almost all the symbols for the rest of this section, which otherwise would 

have such label to denote that they belong to the discretized wave-number νj. 

For the measurement when the VCMHC was empty (what we will call a –null– scan later) we 

assign the following names: 

• ID0  is the optical intensity arriving at Detector 1 (in the Detection channel) when  

  the absorption cell was empty, 

• VD0   is the signal recorded in channel 1 of the digitizing oscilloscope which   

  corresponds to the measurement of the optical intensity ID0 in Detector 1, 

• IR0  is the optical intensity arriving at Detector 2 (in the Reference channel) which is 

  simultaneous to ID0. 
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• VR0   is the signal recorded in channel 2 of the digitizing oscilloscope which   

  corresponds to the measurement of the optical intensity IR0 in Detector 2. 

Note that VD0 is recorded simultaneously with VR0. 

For the measurement when VCMHC was filled with some amount of absorbing media (in 

what we will call a –part– scan) we assign the following names: 

• IDk  is the optical intensity arriving at Detector 1 (in the Detection channel) when  

  the absorption cell contained some absorbing media which absorbed with an  

  absorption coefficient k(νj – νc), 

• VDk   is the signal (Voltage) recorded in channel 1 of the digitizing oscilloscope  

  which corresponds to the measurement of the optical intensity IDk. in Detector 1, 

• IRk  is the optical intensity arriving at Detector 2 (in the Reference channel) which is 

  simultaneous to IDk, 

• VRk   is the signal (Voltage) recorded in channel 2 of the digitizing oscilloscope  

  which corresponds to the measurement of the optical intensity IRk. in Detector 2. 

As before, VDk and VRk are recorded simultaneously. 

Ideally the response of the detection system should be completely linear to the optical 

intensity, but as we shall see in section 4.5 that is not always the case, or at least not with the level of 

accuracy required for our research.  So we will leave at the moment the relation between recorded 

detection signal and optical intensity expressed in general as 

 

( 115 ) 

 

but for simplicity we will continue the talk about the optical intensities as if we were able to find 

them with the help of the function f:  IDk = f (VDk ),  We will yet use  V as equivalent to I when that 

helps to the clarity of the concepts. 

The absorbance is defined through the following equation: 

 

( 116 ) 

where  

• IDΘk is the optical intensity arriving at the entrance window of the recipient 

containing the absorbing media, which after traveling the absorption path length and being 

affected by the absorbing media, originates the output optical intensity IDk at the output 

window of the recipient. 

It is impossible to measure “directly” the original input intensity approaching the absorbing 

media IDΘk as this measurement would destroy the original arrangement (VDΘk would denote the signal 

that we would record if the direct measurement of IDΘk was possible).  That is why we set up the 

measurement of the reference channel, as a mean to perform an “indirect” measurement of IDΘk as 

follows: 
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We find a function g(VR0) that transforms the recorded signals from the reference channel 

(channel 2) in the recorded signals from the detection channel (channel 1) when there was no 

absorbing media in the chamber: 

 

( 117 ) 

 

Then, assuming that this function does not change during the following minutes separating the 

null- scan from the part- scan, we apply the same function to find the original input intensity of the 

detection channel based on the simultaneously recorded signal from the reference channel: 

 

( 118 ) 

 

Our function g is actually defined in 18 segments with different mathematical functions, each 

being a regression for the segment.  Each function can be a polynomial from grad 1 to grad 6, but 

from experience we saw that a linear regression is of sufficient accuracy. 

In the next step we make a small offset correction of the Intensity scale after observing the 

recorded signal of the 100% Absorption scan (called the tot- scan).  The level of the signal in the 

plateau of 100% absorption is always very close to zero, as we perform also an Auto-Offset 

procedure at the beginning of each scan- measurement, but even if small, the average of that plateau 

is subtracted from the recorded detection signals and the predicted original signals. 

Once we have the offset-corrected and the offset-corrected predicted original input intensity, 

we can calculate the optical transmission of the absorbing media trk as 

 

( 119 ) 

 

where ξ is the offset-correcting term which is equal to the average of the plateau signal at 100% 

absorption.  We measured these intensities and offset several times, so that the equation ( 119 ) is 

evaluated with the mean value of all those measurements and we calculate the standard uncertainty of 

the transmission u[tr] using the means and standard deviations of the repeated measurements as 

follows: 

( 120 ) 

 

Now we can calculate the corresponding absorbance and its standard uncertainty: 
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 Short-name 

Chopper 

TDS-510 

OAP2 

OAP3 

PBS1 

PBS2 

Resolution 

1 Hz 

2 mV 

4 mV 

1 mV 

0.4 mV 

-- 

-- 

-- 

-- 

Range 

(4 - 4000) Hz 

Ch1:  (0 - 10) V 

Ch2:  (0 - 20) V 

Ch3:  (0 - 5) V 

Ch4:  (0 - 2) V 

-- 

-- 

-- 

-- 

Serial Number 

7978 

B010441 

Pf12859-3 

Pf12859-4 

PTB-200011450 

PTB-200011452 

Model 

SR540 

TDS 510A 

AS25-200-D-

18/90° 

03BPL001/ 

05 

03BPL003/ 

05 

Manufacturer 

Stanford 

Research 

Tektronix 

Kugler GmbH 

Melles griot 

Part 

Chopper 

Digitizing 

Oscilloscope  

Second OAP 

Third OAP 

First PBS 

Second PBS 
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Short-name 

Detector-1 

Preamp-1 

LIA-1 

Detector-2 

Preamp-2 

LIA 2 

Data Sheet 

Number 

400005-1 

PB#218-PA9-44 

-- 

450186-1 

490095POD 

-- 

Gain or 

Resolution 

or 

Responsivity 

2.6 A/W 

2.5·104 V/A 

(0 - 90) dB 

2.1·104 V/W 

10 V/A 

(0 - 90) dB 

Range 

(2 - 5.5) µm 

DC to 1400 

kHz 

0.001 Hz to 

250 kHz /  

2 mV to 1 V 

(2 - 15 ) µm 

DC to 1 

MHz 

1  mHz to 

102 kHz / 

2 mV to 1 V 

Serial 

Number 

5-96-0331 

96-4-9555 

492 

5-04-0698 

04-03-

3180 

21467 

Model 

J10D-M204-

R01M-60 

PA-9-44 

7265 DSP-LIA 

J15D12-M204-S-

500U-60 

PA-300 

SR830 

Manufacturer 

EG & G  

Judson 

Perkin Elmer 

EG & G  

Judson 

Stanford 

Research 

Part 

Detection Signal 

Detector 

Detection Signal 

Preamplifier 

Detection Signal 

Lock In Amplifier 

Reference Signal 

Detector 

Reference Signal 

Preamplifier 

Reference Signal 

Lock In Amplifier 
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3.8. Wave-Number Measurements 

 

The wave-number measurements were made based on optical transmission measurements of 

an infrared laser through a Germanium Etalon or (mainly) through an Open Confocal Etalon that was 

developed by Pustogow as part of an earlier doctoral research at the Technical University Berlin [48].  

As mentioned in the section 3.1, the laser wave-number was swept using a current-ramp in order to 

scan the whole absorption line of interest.  Here we will present the methods implemented to process 

the respective data and obtain the relative wave-number measurements. 

Continuing the description made in the second paragraph of section 3.7, in page 74, the ray 

transmitted by the second PBS was redirected by flat mirrors towards the Etalon.  The ray transmitted 

through the Etalon, with intensity IFM, was redirected and focused by a spherical mirror onto the 

Detector 3.  The signal from this detector was preamplified and sent to a second “Low Noise 

Preamplifier” (LNP) which has also filtering functions.  The signal was processed through a Band 

Pass filter (0.03 – 100) Hz, which filter out the 3kHz modulation from the chopper.  The output of the 

LNP is recorded in the channel 3 of the digitizing oscilloscope as the frequency marker signal VFS.  

This is done as the signals are swept through different wave-numbers repetitively, with a repetition 

frequency determined by the effective ramp-frequency of the function generator, 10 Hz.  This ramp 

frequency commands the trigger of the digitizing oscilloscope and also affects the current to 

wavelength conversion of the tunable diode laser as we will see later. 

Summarizing the equipment description for this section, the main parts involved in the 

measurement of the frequency marker signal, and that were not already mentioned in the list a. in 

page 74 , can be itemized as follows: 

Equipment shared for the measurement of all signals at different wave-numbers: 

• The function generator 

Equipment dedicated solely to the measurement of the frequency marker signal: 

• The Germanium Etalon, or 

• The Open Confocal Etalon 

• Detector 3  

• Preamplifier 3 

• The Low Noise Preamplifier with Filter 

The details of these equipments are presented in Table 14 in page 91. 

The method of measurement is the following:  A triangular ramp from the function generator 

is used to sweep the wavelength of the laser.  In order to obtain a sampling as linear as possible in the 

wave-number axis of the absorbance vs. wave-number curve, the current injected to the diode-laser is 

modified linearly in time as follows:  The laser controller injects the diode-laser with a current IC 

composed of a constant base current ICB plus a “delta” current IC∆: 
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( 123 ) 

 

The IC∆ is obtained from an internal linear voltage-to-current converter in the laser controller, 

which is fed with the voltage of the triangular ramp from the function generator output VTR: 

( 124 ) 

 

The voltage-to-current coefficients mIcV are 20 mA/V for the L5830 controller and 10 mA/V 

for the DFB controller.  The base currents used are typically 390 mA for the L5830 controller and 40 

mA for the DFB controller. 

For each recorded period τ, the triangular ramp voltage VTR is a linear function of time t, 

 

( 125 ) 

 

Substituting equations ( 125 ) and ( 124 ) in equation ( 123 ) we obtain 

 

 

( 126 ) 

 

 
 
If the current to wave-number conversion rate dν/dIC was constant, so would be the timely 

variation of the wave number as the current is linearly swept: 

 

 

( 127 ) 

 

 

In this case the observed Etalon transmission (see Figure 8, page 82) would present its maxima 

(the Airy function maxima) centered at temporal positions Ψ1, Ψ2, Ψ3,…etc. which are evenly 

distributed along the scanned frequency marker signal, so that the time intervals ∆Ψp = Ψp - Ψp-1  

would be constant and given by the constant dν/dt and the Etalon FSR, ∆F: 

 

( 128 ) 

 

In this case it would be possible to measure the constant time-to-wave-number transformation 

coefficient dν/dt with the measurement of the temporal positions of any pair of transmitted 
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frequency-marker maxima peaks Ψp and Ψp-1..  Using the known Etalon FSR, ∆F, from the 

rearrangement of equation ( 128 ) as follows: 

 

( 129 ) 

 
 
For reasons becoming clear in the following, we define a variable Γp as the temporal center 

between the successive frequency marker maxima Ψp and Ψp-1: 

 

( 130 ) 

 

We also define a variable pϑ  as the Etalon FSR ∆F divided by the temporal separation of the 

frequency marker maxima ∆Ψp for the pair p: 

 

( 131 ) 

 

 

 

Figure 8.  Transmission of the OCE from one of our measurements (example-measurement). 

 

 

If equation ( 128 ) is true for any pair of maxima p, we will expect consequently no variation 

of pϑ  for the different Γp, and a graphic representation of pϑ  vs. Γp would be a horizontal line. 
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In Figure 9 we present a pϑ  vs. Γp curve from our example-measurement, which presents the 

typical behavior of the measurements.  The Etalon in this case was the OCE, from which we 

analyzed in detail 9 transmissions maxima around the center of the absorption peak.  The 

corresponding absorption scan and reference predicted scan for the same measurement and time 

window are shown in Figure 10. 

It is immediately evident that the assumption of constancy for dν/dt was not confirmed 

experimentally.  

To linearize our wave-number axis with as much accuracy as possible, we used the fact that 

the distance from maxima to maxima in the wave-number axis must be exactly equal to the Free 

Spectral Range, ∆F, i.e. the dν/dt function must fulfill the integral equation ( 132 ) no matter how its 

local variation may be. 
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Figure 9:  pϑ  vs. Γp  as example for a typical measurement. 
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Figure 10:  Detection Signal and Reference Predicted Signal of our example-measurement. 
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( 132 ) 

 

Since we had no additional information to find the local temporal dependency of the dν/dt 

function we decided to use a linear approximation for each segment p (from Γp-1 to Γp) as the first 

terms of a Taylor series: 

( 133 ) 

 

Doing so, we obtain a set of 7 linear approximations which together achieve a similar accuracy 

as a polynomial expansion of grade 7. 

 

The coefficients ap and bp are found immediately from the data used to generate the Figure 9, 

as each version p of the equation ( 133 ) has the two pairs ( 1−pϑ , Γp-1 ) and ( pϑ , Γp ) as boundary 

conditions (to fulfill the requirement imposed by the equation ( 132 )): 

 

 

 

( 134 ) 

 

 

 

p goes from 1 to 9, a1 = a9 = 0, b1 =  1ϑ , Γ0 = 0, b9 =  8ϑ , the segment 1 goes from ∞−  to Γ1 

and the segment 9 goes from Γ8 to ∞+ .  Or in other words, we assume that in Figure 9 the function 

is a horizontal line from ∞−  to the first point Γ1 and so is it also a horizontal line from the last point 

Γ8 to ∞+ .  These assumptions are justified, as those segments are already positioned over the wings 

of the absorption line, quite far away from its center (see Figure 10), where the absorption can be 

neglected and therefore an accurate knowledge of the wave-number scale is no longer needed. 

Integrating the equation ( 133 ) we find an approximation grad 2 for the direct temporal 

dependency of the wave-number function in each segment p: 
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So that from the 9 functions ( 135 ), those 7 with ap ≠ 0 working together achieve an accuracy 

similar to that of a polynomial approximation grad 14 for the overall function v(t) over the 

corresponding 7 segments together (segment 2 to segment 8). 

Since we are only interested in a relative wave-number scale in the sense that we only need to 

measure wave-number differences, we assign the ad-hoc value of zero to c1 and then we calculate the 

following coefficients c2 to c8 requiring the continuity condition on the frontiers between successive 

segments: 

 

 

( 136 ) 

 

 

We will need not only the 24 coefficients, but also their variances and covariances in order to 

be able to calculate properly the uncertainty of each discretized wave-number.  To explain these 

operations we need to present some information about the operative implementation of IPSIAM on 

this regard. 

Our IPSIAM performs almost all the mentioned steps automatically, except for a few 

decisions that are taken by the operator after looking at the graphs generated by IPSIAM:  IPSIAM 

performs an automatic recognition of all the peaks of Figure 8 and generates a table where these 

peaks are indexed and their corresponding approximate positions (cell of the maximum value) are 

presented.  See Figure 11.  

 

 

Figure 11.  Screen shot of IPSIAM: Table with recognized maxima of transmission of the OCE. 
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Looking at the graph of Figure 8, the operator decides which of the observed peaks will be 

chosen as the first peak (corresponding to Ψ0 in our notation) of the group of 9 that are needed for our 

calculations, and gives this decision to the program through the indication of that index.  For example 

in the Figure 8, IPSIAM found 16 peaks and the operator choose the peak index 5 as the first of the 9.  

See Figure 12. 

The operator choose the index of the first selected OCE transmission maxima trying to leave 

the absorption peak as well centered as possible in the middle of the area defined by the segments 2 

to 8 together.   

 

 

 

Figure 12 Screen shot of IPSIAM: The operator indicates the index of the selected first peak on cell E10. 

 

Once the selected index is given in the cell E10, the program performs automatically:   

• the accurate measurement of the positions Ψp of all the 9 selected transmission maxima;  

• the calculation of the 8 centers between maxima Γp, and  

• the calculation of the 24 coefficients ap, bp and cp. 

In the Figure 13 we show a screen shot where part of the results of this automatic calculations 

are shown for the same data of the example-measurement. 
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Figure 13.  Screen shot of IPSIAM:  Part of the automatic calculated coefficients and time limits Γp. 

 

 

The equations that IPSIAM applies in calculating the means of the 24 coefficients were 

already presented in the sets of equations ( 134 ) and ( 136 ).  We also mentioned that IPSIAM makes 

an automatic detection of all the observable maxima of the frequency marker signal with approximate 

determination of their positions, but we have not said yet how IPSIAM performs the accurate 

measurement of the 9 selected maxima positions Ψp and their uncertainty.  This explanation is as 

follows: 

IPSIAM performs a fit of second grade around each approximate maximum so that the best 

parabola that covers and reproduces the form of the tip of each maximum is found.  To perform this 

calculation IPSIAM uses a set of shifted reference systems, so that the parameters of each parabola 

have a diagonal covariance matrix, i.e. we choose to calculate the coefficients over the system of 

reference that eliminates the internal correlation among the parameters (see section 2.4 for more 

detail about the fact that the total uncertainty of a quantity is independent of the system of reference, 

but how that total uncertainty is distributed in terms of the variances and covariances of the input 

sub-quantities depends on the selection of the system of reference for those sub-quantities).  Calling 

mFMp2, mFMp1, and mFMp0 the parameters of the best fir parabola for the maximum p, we have: 

 

( 137 ) 

 

01
2

2 FMpFMpFMpFMp mtmtmI +⋅+⋅=  
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And because of the symmetry of the parabola, its center is located on its maximum (or 

minimum) and maximizing the equation ( 137 ) gives us the desired position Ψp for the maximum p: 

 

( 138 ) 

 

Given that the parameters of the parabola are uncorrelated, the standard uncertainty of the 

position of the maxima, u[Ψp] is easy calculated as: 

 

( 139 ) 

 

As we will see, we will need also the covariances u[Ψp, Ψq] so that we also determined 

experimentally the correlation coefficients r for these pairs for a group of measurements (because in 

general u[X Y] = R[X Y]. u[X] u[Y]).  The data and results are presented in the Table 13.  The result 

is applicable for all the measurements. 

 

Table 13:  Data and results for the experimental determination of r[Ψp, Ψq] 

k Ψo Ψ1 Ψ2 Ψ3 Ψ4 Ψ5 Ψ6 Ψ7 Ψ8
1 30.22 36.65 42.91 49.19 55.47 61.57 67.77 73.91 79.92
2 30.43 36.90 43.19 49.51 55.75 62.03 68.22 74.22 80.51
3 31.07 37.48 43.83 50.06 56.31 62.50 68.62 74.73 80.79
4 31.12 37.50 43.86 50.13 56.34 62.60 68.69 74.79 80.85
5 29.97 36.36 42.70 48.97 55.16 61.39 67.50 73.55 79.67
6 29.90 36.24 42.64 48.82 55.03 61.28 67.39 73.56 79.62

s(Ψp,Ψp) 0.4864 0.4956 0.4966 0.5055 0.5122 0.5196 0.5128 0.5022 0.5096
r(Ψp,Ψp+1) 0.9967 0.9957 0.9963 0.9984 0.9934 0.9967 0.9941 0.9840
r(Ψp,Ψp+2) 0.9991 0.9985 0.9936 0.9968 0.9941 0.9933 0.9953
r(Ψp,Ψp+3) 0.9961 0.9997 0.9923 0.9936 0.9965 0.9897
r(Ψp,Ψp+4) 0.9946 0.9925 0.9846 0.9946 0.9796
r(Ψp,Ψp+5) 0.9892 0.9916 0.9928 0.9794
r(Ψp,Ψp+6) 0.9825 0.9960 0.9685
r(Ψp,Ψp+7) 0.9927 0.9755
r(Ψp,Ψp+8) 0.9633  

 

All the correlations coefficients R[Ψp, Ψq] were found as almost 1 (from 0.9633 to 0.9997) so 

that we made the slightly simplifying generalization: 

 

( 140 ) 

 

Now that we have the variances of the 9 Ψp and their covariances, we can use them to 

calculate the variances and covariances of the 8 Γp and of the 24 coefficients of the set of equations 

( 135 ), so that we could at last calculate the variances and covariances of the discretized wave-

number points.  Nevertheless it will prove to be more efficient to calculate the variances and 

covariances of the segments of integrated absorbance directly, as we will see in section 3.9.  In that 
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moment we will need to make use of all the variances and covariances that we have calculated up to 

now, plus two more that are the last to discuss as part of this section.  The other two input quantities 

needed to calculate the wave-numbers, for which we have not said nothing yet about their variances 

and covariances are the FRS, ∆F, and the discretized sampling of times, t. 

The uncertainty of the FSR is presented together with the description of the FSR measurement 

in the following sub-section. 

Given that the discretization of the time sampling was done with a 500 MHz oscilloscope and 

that we used a sample size of 2500 points and a sampling frequency of 10 Hz, the discrete time step 

of 40 µs was big enough compared with the uncertainty of the sampling of less than 2 ns, (i.e. relative 

uncertainty of less than 0.005%).  We considered this uncertainty as negligible and regarded the t 

inputs as exact. 

 

 

3.8.1. Free Spectral Range Measurements 

 

We performed the FSR measurement through the application of one of the programs of 

IPSIAM, which was optimized to measure the wave-number difference of two absorption peaks 

copied on the same scan.  With this program we measured and processed a wave-number window 

which included the R32 and R33 lines of CO2.  Then we varied in IPSIAM the FSR input, until we 

obtained the reference value for the wave-number difference for these two lines.  As reference value 

we use the calculated difference using the center of peaks data reported in HITRAN.  The Figure 14 

shows some of the cells of the corresponding IPSIAM program.  Is important to note that this 

program performs exactly all the same operations as does the program used to measure line 

intensities or the one used to measure the partial pressures.  The linearization of the wave number 

scale is exactly as accurate as explained above. 

The measured values of the FSR are: 

• For the Ge Etalon at 28°C:   ∆F = 0.0443964 cm-1 

• For the Open Confocal Etalon: ∆F = 0.0103745 cm-1 

 

 

Figure 14.  Part of the IPSIAM program used to measure the FSR. 

Measured

R33-R32

Wave-Number

Difference: 5.1068144E-02 cm-1

HITRAN:

Line1 Name R32 R33-R32

line1 center freq:4987.617549 Wave-Number

Line2 Name R33 Difference from

line2 center freq:4987.668617 HITRAN: 5.1068000E-02 cm-1  
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The standard uncertainty of the FSR u[∆F] was dominated by the experimental standard 

deviation of the repeated measurements and, for all the etalons, it was found to be: 

 

( 141 ) 

 

The approach of referring our FSR to the wave-number difference of two absorption line 

centers reported in HITRAN (CO2 R32 and R33 in this case) is very practical, as in the future all our 

results may be easily corrected if the HITRAN data are changed. 
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Short name 

Detector-3 

Preamp-3 

LNP 

FG 

Ge Etalon 

OCE 

Data Sheet  

Number 

IRA - 330 

-- 

-- 

-- 

-- 

Gain / 

Resolution / 

u[FSR] 

3.61 A/W 

-- 

(0 - 90) dB 

0.001 Hz 

0.000067 

cm-1 

0.000016 

cm-1 

Range / 

FSR/ 

Responsivity 

(2 - 5.5) µm 

-- 

0.03 Hz -  

1 MHz /  

(0 - 1) V 

(0 - 100) 

kHz 

0.044396  

cm-1 

0.010375  

cm-1  

Serial Number 

GIL-553-S-IS 

GILP-079-S-

IS 

01303 

2831A 01953 

-- 

-- 

Model 

IS-1.0 

PPA-15-IS 

SR560 

3245A 

-- 

-- 

Manufacturer 

Grasseby Infrared 

Stanford 

Research 

Hewlett Packard 

Laser Photonics 

TU- Berlin 

Part 

Freq. Marker Signal 

Detector 

Freq. Marker Signal 

Preamplifier 

Low Noise 

Preamplifier 

Function Generator 

Germanium Etalon 

Open Confocal 

Etalon 
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3.9. Integrated Absorbance Measurements 

 

IPSIAM calculates the integrated absorbance twice, each time using a different method which 

corresponds to a different stage in the development of the calculation of its uncertainty.  It is 

important to remind at this point that the GUM-compliant estimation of the uncertainty is an 

unavoidable requirement in order to claim traceability for the respective measurement.   

From all the uncertainty determinations, the one for the integrated absorbance measurement 

was the most challenging.  As far as we know this is the first time that an Integrated Absorbance has 

been measured with a GUM-compliant uncertainty.  Furthermore the resulting values represent the 

smallest relative uncertainties published so far for this type of quantities, although it is actually 

difficult (if not impossible) to compare measurements if their respective uncertainties are not 

calculated under the same criteria. 

The two methods mentioned in the first paragraph of this section deliver the same result for 

the mean of the integrated absorbance.  For the first one we have calculated two uncertainty limits 

(one under-estimated and one over-estimated), neither of them taking care of covariances and 

therefore neither of them having confidence levels known; so they are not GUM-compliant.  For the 

second one we have made a fully GUM-compliant uncertainty determination.  This GUM-compliant 

determination takes into account, on the one hand, all the possible correlations of each discretized 

wave-number point with all the other discretized wave-number points (they are correlated because 

the time-to-wave-number transformation functions were calculated using the same etalon, because 

they share some or all the parameters of their respective equations and because those parameters 

were calculated based on the etalon maxima position Ψ which are all 100% correlated with each 

other).  On the other hand, it calculates two limiting cases for the correlations between the 

absorbance measurements (the absorbance measurements are correlated because they have the same 

form-function and the other input quantities of the Beer-Lambert law in common, therefore their 

relative sizes (and changes in sizes) are not independent, or in other words, they have some degree of 

correlation).  The lower limit of the correlation between the absorbances is found assuming that the 

correlation matrix is the diagonal identity (i.e. correlations taken as zero for different absorbances).  

The upper limit is found assuming that each absorbance is fully positively correlated with all the 

others (i.e. the correlation matrix has a “1” in all its entries).  In the last step we use the 

GUM-compliant lower-limit uncertainty and the GUM-compliant upper-limit uncertainty to combine 

them according to GUM criteria; so that we are able to calculate a final, unique, well-defined, 

GUM-compliant uncertainty.  Of course, when several scans are combined to give an average scan, it 

is also possible to calculate rigorously the 2500x2500 experimental covariance matrix for the 

discretized absorbance points, but this approach is not applicable for measurements made with only 

one scan, and it would imply also the processing of less averaged scans, as for each averaged scan it 

would have been necessary to process also the individual scans that made up the averaged one, and 



 93 

therefore the time required in processing the data would be so long that less data could have been 

processed during this research.  Given that we wanted to combine our individual Line Intensity (or 

partial pressure) measurements in order to analyze them in the framework of linear analysis (for the 

reasons given in section 2.6), it was desirable to have as much measurements as possible so that the 

regressions or functional-structural analysis could be fed with as much data pairs as possible.  That’s 

why we did not implement the more rigorous approach to the determination of the absorbance’s 

covariance. 

Now let’s see the formulae used by IPSIAM to calculate the two versions of the integrated 

absorbance and their respective uncertainties. 

The first version to calculate the integrated absorbance, Aabs is 

 

( 142 ) 

 
where 

( 143 ) 

 

Nini and Nend are respectively the initial and final discretization-label numbers of the total 

wave-number segment to be integrated.  This two numbers are chosen by the operator as part of the 

decisions that have to be made during the application of IPSIAM.  A typical value for Nini is 625 and 

for Nend is 2075.  Furthermore, αkj is given by the equation ( 121 ) in page 77.  In that equation the 

label j was suppressed for simplicity, because we were talking about a unique wave-number νj 

without sweeping j, but now that we consider all the different values for j, we will write down the 

equations with j explicit in the variables that should carry it, as shown next: 

 

( 144 ) 

 

( 145 ) 

 

νj is given by the equation ( 135 ) in page 84.  We write down that equation now also with the 

label j explicit, but without the label p because p takes successively all its values from 1 to 9 (each 

value only for its corresponding segment) as j is swept, therefore it passes through the 9 segments, 
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and the label p takes its following value when tj enters the following segment, 

 

 

 

as j is swept through its consecutive values: 

 

 

 

The following figures illustrate the reasons for some of the other decisions made for the 

selection of the numerical integration method and its corresponding equations.  The Figure 15 

presents an absorbance vs. wave-number curve.  The bars for the standard uncertainties at both axes 

are no visible since they are quite small compared with the size of the symbols.  For this reason the 

standard uncertainty for each axis is presented in the following two figures (Figure 16 and 

Figure 17).  Figure 18 presents the standard uncertainty of the wave-number difference ∆νj.  

Figure 19 presents a zoom where the rectangular areas implied by the equation ( 142 ) can be 

visualized.  These rectangular areas are added up to give the total area under the curve.  Figure 20 

presents the same data pairs zoomed as before, but instead of showing the rectangles, now the 

standard uncertainties of the absorbance αkj and of the wave-number difference ∆νj are also included, 

but the uncertainty of the wave-number difference is not observable at this scale. 
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Figure 15.  Example-measurement:  Absorbance vs. wave-number. 
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Standard Uncertainty of Absorbance vs. Wave-Number
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Figure 16.  Example-measurement:  Uncertainty of absorbance vs. wave number. 
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Figure 17.  Example-measurement:  Standard uncertainty of wave-number vs. wave number. 
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Figure 18.  Example-measurement:  Standard uncertainty of wave-number difference vs. wave-number. 
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Absorbance vs. Wave-Number
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Figure 19.  Example-measurement:  Absorbance vs. wave-number. Zoom around 0.088 cm
-1

 and 

integrating rectangles. 
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Figure 20.  Example-measurement:  Absorbance vs. wave-number.  Zoom around 0.088 cm
-1

 and standard 

uncertainty bars. 

 

The Figure 19 and Figure 20 show clearly why we took only rectangular forms to cover the 

area from point to point:  For the small-slope sectors of the curve the uncertainty of the absorbance is 

bigger that the change in absorbance from one point to the next, making it improper to follow the 

form of the curve by e.g. trapezoids.  In addition, because of the symmetry of the curve, the small 

negative error produced by the rectangular steps in the positive-slope sector is compensated by the 

small positive error produced by the rectangular steps in the negative-slope sector of the curve. 

Now let’s present how we calculated the two non-GUM-conformal estimations of the 

uncertainty of the integrated absorbance Aabs.   

The under-estimated limit was calculated assuming total independency of all the wave-number 

differences and absorbances, thus: 
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( 147 ) 

 

The over-estimated limit was calculated using a formula derived from the analogy of the 

uncertainty of the area of a rectangle: 

 

( 148 ) 

 

The hyphen across the u  indicates that these uncertainties do not conform the GUM criteria. 

For the example-measurement we found: 

• Aabs  =  2.142·10-2 cm-1 

• [ ]
underabsAu   =  1.8·10-5 cm-1  (0.08%) 

• [ ]
overabsAu     =  4.8·10-4 cm-1  (2.24%) 

 

We present next the second version of the calculation of the integrated absorbance and its 

(GUM-compliant) standard uncertainty.  The majority of the algebraic calculations of this part of our 

work were done using Mathematica-4.0®.   

For clarity let’s recall the first version of the integrated absorbance equation: 

 

 ( 142 ) 

 

We see that Aabs has 2·(Nend – Nini) input quantities: (Nend – Nini) for αk and (Nend – Nini) for ∆ν,  

The easiest way to write down the GUM-compliant formula for its standard uncertainty is with help 

of an accessory vector X(i), of length 2·Ntot = 2·(Nend – Nini), and the matrix uXX(i,j), of size 2·Ntot x 

2·Ntot.  The first Ntot elements of the vector X are the αk, the second Ntot elements of the vector X are 

the ∆ν, and the elements of the uXX matrix are the corresponding covariances among the elements of 

the vector X (i.e. the element uXX(i,j) contains the covariance of the elements X(i) and X(j)).  Now 

the standard uncertainty of Aabs is found after solving the following equation: 

 

( 149 ) 

 

As we explained it in the third paragraph at the beginning of this section, the experimental 

determination of the elements of the uXX matrix would require too much effort and computational 

time for a practical implementation of the primary-standard.  So, we decided to try an analytical-

numerical implementation of the equation ( 149 ) that could be directly applied in our IPSIAM and 

also that could be equally valid for both: individual scans and averages of grouped scans. 
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The main difficulty with the analytical-numerical implementation of the equation ( 149 ) is of 

course the determination of the uXX matrix.  This problem can be divided in three main problems: 

• the determination of the u(αi, αj) covariances, 

• the determination of the u(αi, ∆νj) covariances, and  

• the determination of the u(∆νi, ∆νj) covariances. 

Note that we have dropped the label k from the αkj because we will not need it for the rest of 

this discussion.  The analytical determination of the u(αi, αj) covariances is not possible because it 

would require the exact knowledge of the absorption form-function Ff , among other things.  However 

it is possible to make some general observations about the correlation matrix R(αi, αj) on this regard, 

which is useful given that u(αi, αj) = R(αi, αj).u(αi).u(αj).  For instance the R(αi, αj) terms are zero over 

the wings of the absorption curve, where no more absorption takes place (i.e. u(αi, αj) = 0 where 

αi, ≈ αj ≈ 0).  Furthermore it is easy to see that the R(αi, αj) terms are close to one for those 

absorbances which are located either very close together or symmetrically positioned, at equal 

distances of the center of the absorption peak (i.e. u(αi, αj) = u(αi).u(αj) where αi, ≈ αj. ≠ 0).  And 

finally we can see that in any case the correlations are positive, i.e. 0 ≤ R(αi, αj) ≤1, because the 

absorbance vs. wave number curve is always positive bell-shaped and the increase (decrease) of one 

absorbance point (e.g. through increasing (decreasing) number of absorbing molecules) implies the 

increase (decrease) of all the other points on the curve (at different rates of course, except for the 

symmetrical pairs).  Based on these considerations we have developed two formulae: one for the case 

R(αi, αj) = δ(i, j), which give us the GUM-compliant lower limit of u(αi, αj), and another for the case 

R(αi, αj) = 1, which give us the GUM-compliant upper limit of u(αi, αj). 

Although the absorbances αi are clearly correlated with the wave-numbers νj through the 

Lambert-Beer law, they are poorly correlated with the wave-number differences ∆νj so for this work 

we have assumed u(αi, ∆νj) = 0. 

The u(∆νi, ∆νj) covariances have their origin in the common input quantities that those two 

differences may share.  It is very difficult to write down a general formula for the covariance of two 

arbitrary wave-number differences, as the amount of shared input quantities depends on the relative 

“distance” in wave-numbers between the difference ∆νi and the difference ∆νj.  For instance if both 

differences belong to the same segment p then they were calculated with exactly the same 

coefficients ap, bp, and cp; but if they belong to different segments then they were calculated using 

different sets of coefficients.  In order to overcome this difficulty we decided to apply a hierarchical 

solution where the variation from segment to segment could be accounted for.  To this end, we broke 

down the total area Aabs as the sum of the areas under different segments in the first place: 

 

( 150 ) 

 

where the area of each segment is given by: 
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( 151 ) 

 

In this way we simplify the calculation of the uncertainty of the integrated absorbance through 

separation in different stages, where in the last stage the solution is found according to GUM with 

 

 ( 152 ) 

 
which can be simplified to 

 

( 153 ) 

 
The elements of the right hand side of the equation ( 153 ) are the elements which must be 

calculated in the first stage:  We substitute in the equation ( 151 ) the ∆νj recursively by their input 

quantities and their expressions; i.e. we substitute ∆νj by the right hand side (r.h.s.) of equation 

( 143 ), then νj and νj+1 with the corresponding r.h.s. of equation ( 146 ), then the coefficients ap, bp 

and cp by the equations ( 134 ) and ( 136 ), then the Г by the equation ( 130 ) and the ϑ  by the 

equation ( 131 ).  After these substitutions we have an expression which is written explicitly in terms 

of ∆F and the α, s, and Ψ input quantities, as follows: 

 

( 154 ) 

 

For simplification we define three functions of the Ψ: 

 

( 155 ) 

 

( 156 ) 

 

( 157 ) 

 
With these function, the equation ( 154 ) can be written as 

 

( 158 ) 

 
where Qp and Zp include the terms with the sums 

 

( 159 ) 

 

( 160 ) 

.  
1

1

∑
−

= −

∆⋅=
p

p

N

Nj

jjpA να  

[ ] [ ] ,  ,
9

1

9

1

2 ∑∑
= =

⋅














∂

∂
⋅














∂

∂
=

p q

qp

q

abs

p

abs

abs AAu
A

A

A

A
Au  

[ ] [ ] [ ] .  ,2
8

1

9

1

9

1

22 ∑∑∑
=

−

=
+

=

⋅+=
q

q

p

qpp

p

pabs AAuAuAu  

( ) ( )
( ) ( ) ( )∑

−

= −−−−

+−−−−

−















Ψ−Ψ⋅Ψ−Ψ⋅Ψ−Ψ

+⋅Ψ−Ψ−Ψ⋅+Ψ+Ψ⋅−Ψ
⋅∆⋅∆⋅=

1

1212

121
22

1
2

2

1

22p

p

N

Nj pppppp

jjpppppp

jp

tt
tFA α  

,  2 22
1

2
2 pppp Ψ+Ψ⋅−Ψ=Ω −−  

,  2 21 −− Ψ−Ψ−Ψ⋅=Ξ pppp  

( ) ( ) ( ) .  1212 ppppppp Ψ−Ψ⋅Ψ−Ψ⋅Ψ−Ψ=Π −−−−  

( ) ,  pppp

p

p ZQ
tF

A ⋅Ξ+⋅Ω
Π

∆⋅∆
=  

,  
1

1

∑
−

= −

=
p

p

N

Nj

jpQ α  

( ) .  
1

1

1

∑
−

=
+

−

+⋅=
p

p

N

Nj

jjjp ttZ α  



 100

The equations from ( 154 ) to ( 160 ) are well defined for 1 < p < 9.  In order to apply these 

formulae also to the segments p = 1 and p = 9, we define two extra Ψ as follows: 

• Ψ-1 = Ψ0 – (Ψ1 – Ψ0) = 2·Ψ0 - Ψ1, 

• u[Ψ-1] = (u[Ψ1] + u[Ψ0])/2, 

• Ψ9 = Ψ8 + (Ψ8 – Ψ7) = 2·Ψ8 – Ψ7, 

• u[Ψ9] = (u[Ψ7] + u[Ψ8])/2. 

Doing so, the formulae above give the correct results consistent with the equations ( 134 ) and 

the explanations given between the equations ( 134 ) and ( 135 ), on page 84. 

Now we can use our accessory vector X(i), of length 11 this time, charged with the input 

quantities of equation ( 158 ) as follows (as a remainder, we do not include ∆t because for practical 

purposes this is an exactly known constant): 

 

 

 

 

( 161 ) 

 

 

 

 
 
From these input quantities we know already that ∆F is completely independent from all the 

other quantities, the Ω, Ξ, and Π are correlated among them through the Ψ, but independent from the 

Q and the Z.  In turn the Q and Z are correlated through the α.  Taking all this in account we see that 

the corresponding 11x11 uXX(i,j) matrix has the form: 

 
 
 

 

 

( 162 ) 

 

 

 

 

So, once the non-zero terms of the uXX matrix are known, we can calculate the variances and 

covariances of the equation ( 153 ) with the following equation: 
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Now let’s see how the elements of the uXX matrix were calculated.  The uXX(1,1) term was 

found as explained in section 3.8.1.  The other terms of the uXX matrix (equation ( 162 )) are 

calculated in 4 steps, as shown next.  In the first and second steps we calculate the terms that depend 

on the Ω, Ξ or Π.  In the third and fourth step we calculate the terms that depend on the Q and/or Z.  

Observe that now we are going to descend to the next level of the hierarchical approach, where the 

elements uXX are the targets (not the sources like in equation ( 163 )).  Therefore we need another 

accessory vector (W) and its covariance matrix (uWW).  They will take the place of source in the 

equations type ( 163 ), which will be repeated several times because it is the general version of the 

formula of propagation of uncertainty (see section 2.4). 

Step 1: The 9 terms of the square sub-matrix with diagonal uXX(2,2) to uXX(4,4) as well as 

the 9 terms of the square sub-matrix with diagonal uXX(7,7) to uXX(9,9) are calculated with the 

general formula of propagation of uncertainty.  To this end we use another accessory vector W(i) of 

length 3 and its corresponding 3x3 matrix uWW(i,j).  The elements of W(i) are the input quantities of 

the Ωs, Ξs and Πs.  Observe that the Ωs, Ξs and Πs belong all to the same label, either P (for the first 

sub-matrix) or L (for the second sub-matrix), so we will write down the formula using a general label 

M to denote any of the labels P or L.  Observing the equations ( 155 ) to ( 157 ) we recall that ΩM, ΞM 

and ΠM are all different functions of the same three input quantities, which we charge in the 

accessory vector W(i): 

 

( 164 ) 

 

To find the elements of the matrix uWW(i,j), we recall that, based on the measurements 

summarized in the Table 13, we concluded that r(Ψp, Ψq) ≈ 1 for all the labels p and q.  Therefore: 

 

( 165 ) 

 
 

and the u[ΨM-j] are given by the equation ( 139 ). 

Now we can calculate the variances and covariances of the Ω, Ξ and Π with the general 

formula of propagation of uncertainty: 

 

( 166 ) 

 
where the Ω, Ξ and Π are the elements of the vector X as defined by the equation ( 161 ) and the 

indexes i and j are restricted to the values 2 to 4 for the label P and 7 to 9 for the label L. 

From the 18 elements calculated with the equation ( 166 ) (actually only 12 different elements 

were calculated because of the symmetry of the matrix) we will present next only the uXX(2,2) and 

the uXX(7,8) as example.  
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( 167 ) 

 

( 168 ) 

 

 

Step 2: The 9 terms of the square sub-matrix with diagonal uXX(2,7) to uXX(4,9) as well as 

the 9 terms of the square sub-matrix with diagonal uXX(7,2) to uXX(9,4) are calculated with the 

general formula of propagation of uncertainty.  To this end we use an extended accessory vector W(i) 

with elements given as explained next.  For i = 1 to 3 we have an expression similar to equation 

( 164 ), but the label is restricted only to P.   

 

( 169 ) 

 

New elements are added as needed according to the following rules:   

• W(4) = ΨP + 1, if L = P + 1, plus 

• W(5) = ΨP + 2, if L = P + 2, plus 

• W(6) = ΨP + 3, if L = P + 3. 

For L = P+q, with q ≤ 4 ≤ 9 the vector W has anyway only 6 elements, where the first three are 

steel given by the equation ( 169 ) and the last three are given by an equivalent equation as follows: 

 

( 170 ) 

 
 
The corresponding matrix uWW(i,j) may be a 4x4, 5x5, or 6x6 matrix according to the length 

of W(i).  Observe that the ΩP, ΞP and ΠP (i.e. the X(i) for 2 ≤ i ≤ 4) are all different functions of the 

same three input quantities ΨP-2, ΨP-1, and ΨP (i.e. the W(i) for 1 ≤ i ≤ 3)  .In turn, the ΩL, ΞL and ΠL 

(i.e. the X(i) for 7 ≤ i ≤ 9) are all different functions of the same three input quantities ΨL-2, ΨL-1, and 

ΨL (i.e. the W(i) for 4 ≤ i ≤ 6).  So the XP may or may not have input quantities in common with the 

XL but in any case all their input quantities are correlated with correlation coefficient R = 1 as found 

in the Table 13, so that according to equation ( 140 ) we have that uWW(i,j) = u[W(i)].u[W(j)].  We 

call lw the length of the vector W (i.e. 4 ≤ lw ≤ 6) and now we have all what we need to calculate the 

uXX elements of this step with the general formula of propagation of uncertainty as follows: 
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Again we remind that only 2 ≤ i ≤4 when 7 ≤ j ≤9 and 7 ≤ i ≤9when 2 ≤ j ≤4 are the cases 

covered in this step. 

Given the high degree of correlation of the input quantities, all the results found for this step 

have the same form independently of the length of the vector W (i.e. independently of the sharing or 

not of input quantities) so we will present as example the terms uXX(2,7) and uXX(7,3) written in 

general with labels P and L, but some of the ΨP may be the same as the ΨL for the cases L = P + 1 

and L = P + 2. 
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In the 3rd and 4th step we deal with the Q and Z, which have the α, and α and t, as input 

quantities.  We do not include the tj + tj+1 input quantities in the vector W because, as already 

explained, these quantities are exactly known for our setup and practical purposes.  The elements of 

the matrix uWW are now the covariances among the absorbances α.  For the reasons given above, in 

the paragraph dealing with absorbance covariances, in page 98, we have developed two formulae: 

one for the case R(αi, αj) = δ(i, j), which give us the GUM-compliant lower limit of u(αi, αj), and 

another for the case R(αi, αj) = 1, which give us the GUM-compliant upper limit of u(αi, αj), so for the 

two following steps or explanations we will have that: 

• uWW(i,j)min = u[W(i)].u[W(j)].δ(i, j) 

• uWW(i,j)max = u[W(i)].u[W(j)] 

We combine the results of both cases to calculate the final result, so both limits will be 

presented along for each part of the calculation. 

Step 3: The 4 terms of the square sub-matrix with diagonal uXX(5,5) to uXX(6,6) as well as 

the 4 terms of the square sub-matrix with diagonal uXX(10,10) to uXX(11,11) are calculated with the 

general formula of propagation of uncertainty.  To this end we use again the accessory vector W(i), 

this time of length (NM – NM – 1) and its corresponding (NM  - NM  - 1)x(NM  - NM  - 1) matrix uWW(i,j).  

The elements of W(i) are the absorbances α.  Observe that the Q, and Z (i.e. the X(i)) belong all to the 

same label, either P (for the first sub-matrix, 5 ≤ i ≤6) or L (for the second sub-matrix, 10 ≤ i ≤11), so 

we will write down the formula using again a general label M to denote any of the labels P or L.  The 

formula is then: 

 

( 174 ) 

 

where i and j are restricted to take values from 5 to 6, for M = P; and from 10 to 11, for M = L.  We 

have already all the information to solve the equation ( 174 ), and the results are presented next. 
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The terms uXX(10,10), uXX(11,11) and uXX(10,11) are given by the equivalent equations of 

sets ( 175 ), ( 176 ) and ( 177 ) respectively, but with label L instead of P. 

Step 4: The 4 terms of the square sub-matrix with diagonal uXX(5,10) to uXX(6,11) as well as 

the 4 terms of the square sub-matrix with diagonal uXX(10,5) to uXX(11,6) are calculated with the 

general formula of propagation of uncertainty.  To this end we use again the accessory vector W(i), 

this time of length {(NP  - NP  - 1) + (NL  - NL  - 1)} and its corresponding 

{(NP  - NP  - 1) + (NL  - NL  - 1)}x{(NP  - NP  - 1) + (NL  - NL  - 1)} matrix uWW(i,j).  The elements of W(i) 

are the absorbances α of the segment P, for the first (NP  - NP  - 1) entries, and the absorbances α of the 

segment L, for the following (NL  - NL  - 1) entries.  Observe that for these elements of the matrix uXX 

the corresponding Q and Z (i.e. the X(i)) belong always to different labels, either P or L, so that they 

never have input quantities in common.  Nevertheless all the groups of absorbances have some 

degree of correlation, from which we are calculating the two extreme cases.  To simplify the notation 

we call again lw the length of the vector W.  This time lw = {(NP  - NP  - 1) + (NL  - NL  - 1)}.  Now we 

can calculate these last elements of the uXX matrix, and the formula takes again the form: 
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where i and j must fulfill that only 5 ≤ i ≤6 when 10 ≤ j ≤11 and 10 ≤ i ≤11 when 5 ≤ j ≤ 6, so the 

solutions of equation ( 178 ) are as follows. 
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The other 4 terms have the same expressions because the symmetry of the covariance matrix, 

i.e. uXX(i,j) = uXX(j,i). 

At this point we have finished the description of the 4 steps to calculate the components of the 

uXX matrix, so that now we are able to go up to the upper level of the hierarchical approach and 
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calculate the variances and covariances u[Ap, Aq] as given by the equation ( 163 ), in page 100, but 

because we have two versions for some elements of the uXX matrix:  uXX(i,j)min and uXX(i,j)max, we 

have also the corresponding two versions of the segmented integrated area covariances:  u[Ap, Aq]min 

and u[Ap, Aq]max.  With the known u[Ap, Aq]min and u[Ap, Aq]max, we can calculate the two limits of the 

standard uncertainty of the integrated absorbance u[Aabs]min and u[Aabs]max using the equation ( 153 ). 

According to the GUM, it is necessary to use all the information available in order to calculate 

properly the uncertainty of a given measurement.  With this in mind, we recall from the statements 

made in the paragraph dealing with the absorbance covariances, on page 98, that u(αi, αj) = u2[αi]·δij 

where αi, ≈ αj ≈ 0.  Therefore only for the segments with appreciable absorbance it makes sense to 

consider the two limits of the variances and covariances, while for the segments clearly positioned 

over the wings it only makes sense to consider their minimal variances and covariances, because over 

the wings αi, ≈ αj ≈ 0, and therefore u(αi, αj) = u2[αi]·δij, which is the condition for the minimal 

version of the variances and covariances.  Comparing the Figure 15 with the Figure 17 or Figure 18 

we see that only the segments 4, 5 and 6 have appreciable absorbance, while the segments 1, 2 and 3 

are mainly positioned over the left wing of the absorption peak and the segments 7, 8 and 9 are 

mainly positioned over the right wing of the absorption peak.  For this reason it does not make sense 

to use the pure u[Aabs]max calculated with full absorbance correlation over all the segments, but we 

need to define an upper limit for the integrated absorbance area which is calculated with full 

correlation only for the absorbances of segments 4, 5 and 6.  Doing so, we found the next formulae 

for the lower and upper limit of the integrated absorbance area. 
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Finally we combine the results of the lower and upper limits to calculate the standard 

uncertainty of the integrated absorbance.  We know that the final result lies somewhere between the 

lower and upper limit.  Furthermore we know that the probability for the final result to be equal to the 

lower limit is zero, as we can not neglect the correlations among the appreciable absorbances in 

segments 4, 5 and 6 (and these correlations were neglected in the lower limit case).  Similarly, we 

know that the probability for the final result to be equal to the upper limit is zero, as we know that not 

all the correlations among the appreciable absorbances can be exactly 1, but most of them have an 

intermediate value between 0 and 1.  Using all this information we calculate a component of the 

uncertainty which covers the gap between the lower and upper limit using a symmetric trapezoidal 
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probability distribution (having equal sloping sides) and a top chosen ad-hoc to be 90% of the base.  

So we resume the known facts, that: 

• the probability to find the final result anywhere between the given limits is one,  

• the probability to find the final result close to the limits (95% close in this case) is small, 

• the probability to find the final result exactly on the given limits is zero, and 

• we do not have more information about the probability distribution of the final result, so we 

assume a flat distribution for the 90% of the values between the limits. 

According to GUM, the standard uncertainty u[x] of a quantity x having estimated bounds a- to 

a+ and a symmetric trapezoidal distribution, a base of width a+  - a- = 2·a and a top of width 2·a·β is 

given by (see GUM section 4.3.9):   

 

( 185 ) 

 

So in our case, we have β = 0.9 and a = (u[Aabs]upper  - u[Aabs]lower).  Furthermore we treat this 

component as fully correlated with the lower limit component, so the final result is: 

 
 

( 186 ) 

 

which can be simplified to 

 

( 187 ) 

 

With the equation ( 187 ) we have finally reached two of our goals:  

• to calculate the standard uncertainty of the integrated absorbance in full agreement with 

GUM, and  

• to optimize our result according to the computational resources and practical needs. 

As example of the implementation, we present next the numerical results u[Aabs]lower, 

u[Aabs]upper, and u[Aabs] for the example-measurement:  

• Aabs  =  2.142·10-2 cm-1 

• u[Aabs]lower = 3.47·10-5 cm-1  (0.16%) 

• u[Aabs]upper = 1.87·10-4 cm-1  (0.88%) 

• u[Aabs] = 1.19·10-4 cm-1  (0.55%) 

IPSIAM calculated these results using exactly the formulae presented above.  In the following 

figures we present screen shots of some parts of IPSIAM where these calculations are implemented. 
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Figure 21.  IPSIAM screen shot:  Part of the calculation of u[Aabs]. 

 

 

 

Figure 22.  IPSIAM screen shot:  Part of the calculation of u[Aabs]. 
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Figure 23.  IPSIAM screen shot:  Part of the calculation of u[Aabs]. 

 

 

 

Figure 24.  IPSIAM screen shot:  Part of the calculation of u[Aabs]. 
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Figure 25.    IPSIAM screen shot:  Part of the calculation of u[Aabs]. 

 

 

We remind now that the integrated absorbance was measured at some temperature T.  So 

afterwards we use it to measure the corresponding line intensity or partial pressure, at that 

temperature T dictated by the experimental conditions.  But we would like to combine the results of 

many measurements, which not necessarily were taken at the same temperature; we also would like 

to report the line intensities at some reference temperature T0, as it is customary.  So in the last part of 

this section we will show how we calculated the integrated absorbance Aabs(T0) at some reference 

temperature T0, as well as its standard uncertainty. 

As explained in page 63, we modeled the temperature dependency of the line intensity by 

means of a linear regression of the output values of the HITRAN data basis for the corresponding 

line intensity at different temperatures.  These temperatures were selected to be similar to those 

measured during our experiments.   

Substituting equation ( 100 ) in equation ( 101 ) and regrouping we have: 

 

( 188 ) 

 

We have use the symbol Aabs|T  to emphasize that the integrated absorbance was measured at a 

given temperature T.  We did not use Aabs(T) in equation ( 188 ) in order to not cause confusion when 

the partial derivatives are applied to that equation, as the temperature dependency of Aabs is already 

explicitly written there.  On this regard is also important to note that although we measured the gas 

density n indirectly by means of the ideal gas law, where also the temperature is an input quantity, 

( ) ( ) LnTTmATA STTabsabs ⋅⋅−⋅+= 00  
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the temperature there is also correlated with the pressure in such a way that the gas density n actually 

does not have any correlation with the temperature.  This can be seen more easily recalling that n is 

the number of molecules per cubic centimeter, which must be a conserved quantity in a closed 

environment independently of its temperature, as long as such processes as adsorption or desorption 

are not significantly affected by the temperature changes.  The temperature dependency of L (< 10-

5/K) was neglected.  So, in our case, we can consider all the input quantities of equation ( 188 ) as not 

correlated and the standard uncertainty of the integrated absorbance at reference temperature T0 takes 

the form: 

 
 

( 189 ) 

 
 
 
As in HITRAN we have chosen as reference temperature 296 K.  In the measurement of the 

example the temperature was (295.5422 ± 0.0061) K, the temperature coefficient was mST = (-

4.122 ± 0.045)·10-24 cm-1/K, the molecular density was (1.5279 ± 0.0026)·1016 molec/cm3 and the 

absorption length was (1116.46 ± 0.65) cm (standard uncertainties). So that the integrated absorption 

at reference temperature was: 

• Aabs(T0)  =  2.139·10-2 cm-1 

• u[Aabs(T0)] = 1.2·10-4 cm-1  (0.55%) 

 

 

3.10. Line Intensity Measurements 

 

In the previous sections we explained how the IPSIAM workbooks calculate the gas density n 

(section 3.4), the total absorbing path-length L (section 3.3.2), and the integrated absorbance at 

reference temperature Aabs(T0) (section 3.9).  With this input quantities the line intensity S(T0) at the 

reference temperature T0 is also calculated in IPSIAM as 

 

( 190 ) 

 
The n and L are not correlated among each other, so that the standard uncertainty of the line 

intensity is easily calculated by 
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The example-measurement corresponds to the R12 line of CO2 and its resulting line intensity 

measurement is: 
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• S(T0) = 1.2549·10-21 cm-1 

• u[S(T0)] = 8.2·10-24 cm-1  (0.65%) 

The next figure present a screen shot of part of IPSIAM where these calculations take place. 

 

 

 

Figure 26.    IPSIAM screen shot:  Part of the calculation of S(T0), u[S(T0)] and other quantities. 

 

 

3.11. Partial Pressure Measurements 

 

The modified version of the “0-normaliztion-***.xls” workbook, called 

“0-pp-normalization-***.xls” performs the same tasks as the previous one, but, at the end, this 

IPSIAM program calculates the partial pressure pi of the absorbing gas based on the known line 

intensity S and on the other input quantities of our model, i.e. absorbance-area Aabs, temperature T, 

absorbing length L and Planck’s constant k, according to the formula 

 

( 192 ) 

 

The equation ( 192 ) is easily found using the equation ( 98 ), which we recall next, 

 

( 98 ) 
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and the ideal gas law, 

 

 ( 92 ) 

 

In these equations the line intensity must be given at the same measured temperature T at 

which the integrated absorbance Aabs|T  was measured, so the explicit model is 

 

( 193 ) 

 

The 106 factor is necessary to change the gas density units from molec/m3 to mole/cm3, in 

order to make it compatible with the customary units of the line intensity (cm/molec).  All the terms 

of equation ( 193 ) are uncorrelated.  The standard uncertainty of the partial pressure is given then by 

 

 

 

 

 

( 194 ) 
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4. Experimental Results and Analysis 

 

 

In this chapter we will present the results and analysis of the most important measurements 

and characterizations that we made in order to try to set up our spectrometer as a top-level instrument 

for line intensity measurements and as a primary standard for partial pressure measurements.  To this 

end we will present first the general results of the measurements and their analysis of the most 

important input quantities individually, dedicating a subsection for each one of those.  Then we will 

discuss the results and analysis of the line intensity and partial pressure measurements, where all the 

previous results are combined.  All the uncertainty figures given in this chapter are standard 

uncertainties (k = 1). 

In order to bring all the important experimental data, we will present tables with the results of 

the measurements for the most important input quantities used in the determination of the line 

intensities.  To this end we will present the names of the IPSIAM-Results-Files where these results 

were calculated, in Appendix 7.3, while the tables with the corresponding results will be presented 

along the exposition in this chapter.  The Table 25 shows the name of the IPSIAM-Results-Files used 

to calculate the CO2 - R12 line intensity, and the Table 15 presents the first part of input quantities 

measured and calculated in those files. 

 

 

4.1. Length Measurements 

 

The length measurements were made as explained in the section 3.3.2.  The Herriott Cell in 

our system can realize path lengths from (717.78 ± 0.47) cm to (6317.9 ± 1.5) cm (for the 

configurations K = 1, N = 5 and K = 1,  N = 33, respectively). 

For the measurement of the CO2 R12 line intensity we used 6 different path lengths from the 

minimal value to (1613.29 ± 0.58) cm, as can be seen in the Table 15.  Observe that the path length 

increase more rapidly than its uncertainty, so that with increasing path length the relative uncertainty 

decreases.  In this case the path length relative uncertainty decreased from 0.07% to 0.04%. 
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Table 15.  CO2 R12 line intensity measurement input quantities - 1. 

File L u[L] u[L] P u[P] u[P] T u[ T ] u[T] n u[n] u[n]

Consecutive cm cm (%) Pa Pa (%) K K (%) molec/cm3 molec/cm3 (%)

Number

1 717.78 0.47 0.066 56.99 0.17 0.30 295.9571 0.0061 0.002 1.3945E+16 4.2E+13 0.30

2 717.78 0.47 0.066 54.40 0.16 0.30 296.7029 0.0077 0.003 1.3280E+16 4.0E+13 0.30

3 717.78 0.47 0.066 68.30 0.21 0.30 296.6836 0.0070 0.002 1.6674E+16 5.0E+13 0.30

4 717.78 0.47 0.066 86.49 0.26 0.30 296.6785 0.0067 0.002 2.1114E+16 6.3E+13 0.30

5 717.78 0.47 0.066 136.00 0.41 0.30 296.6651 0.0061 0.002 3.3203E+16 1.0E+14 0.30

6 717.78 0.47 0.066 58.75 0.18 0.30 296.6666 0.0061 0.002 1.4343E+16 4.3E+13 0.30

7 1014.96 0.50 0.049 87.13 0.26 0.30 295.5814 0.0061 0.002 2.1349E+16 6.4E+13 0.30

8 1014.96 0.50 0.049 95.85 0.29 0.30 295.6084 0.0061 0.002 2.3483E+16 7.0E+13 0.30

9 1014.96 0.50 0.049 95.83 0.29 0.30 295.6117 0.0062 0.002 2.3480E+16 7.0E+13 0.30

10 1014.96 0.50 0.049 107.12 0.32 0.30 295.5893 0.0061 0.002 2.6246E+16 7.9E+13 0.30

11 1014.96 0.50 0.049 107.11 0.32 0.30 295.5856 0.0064 0.002 2.6244E+16 7.9E+13 0.30

12 1115.61 0.51 0.046 62.35 0.21 0.34 295.5422 0.0061 0.002 1.5279E+16 5.2E+13 0.34

13 1115.61 0.51 0.046 47.59 0.15 0.31 295.4831 0.0065 0.002 1.1665E+16 3.6E+13 0.31

14 1115.61 0.51 0.046 36.43 0.11 0.31 295.4393 0.0061 0.002 8.9307E+15 2.8E+13 0.31

15 1115.61 0.51 0.046 80.53 0.24 0.30 295.8597 0.0061 0.002 1.9713E+16 5.9E+13 0.30

16 1115.61 0.51 0.046 106.53 0.32 0.30 295.9043 0.0061 0.002 2.6075E+16 7.8E+13 0.30

17 1313.79 0.54 0.041 54.07 0.16 0.30 295.5595 0.0061 0.002 1.3249E+16 4.0E+13 0.30

18 1313.79 0.54 0.041 66.09 0.20 0.30 295.5739 0.0061 0.002 1.6193E+16 4.9E+13 0.30

19 1313.79 0.54 0.041 87.70 0.26 0.30 295.5778 0.0061 0.002 2.1488E+16 6.4E+13 0.30

20 1313.79 0.54 0.041 80.70 0.24 0.30 295.5964 0.0061 0.002 1.9774E+16 5.9E+13 0.30

21 1514.92 0.56 0.037 66.31 0.20 0.30 295.7259 0.0061 0.002 1.6240E+16 4.9E+13 0.30

22 1514.92 0.56 0.037 80.22 0.24 0.30 295.6938 0.0061 0.002 1.9649E+16 5.9E+13 0.30

23 1514.92 0.56 0.037 53.97 0.16 0.30 295.6747 0.0061 0.002 1.3219E+16 4.0E+13 0.30

24 1613.29 0.58 0.036 51.36 0.15 0.30 297.7333 0.0069 0.002 1.2494E+16 3.7E+13 0.30

25 1613.29 0.58 0.036 62.97 0.19 0.30 297.6879 0.0062 0.002 1.5320E+16 4.6E+13 0.30

26 1613.29 0.58 0.036 55.37 0.17 0.30 297.7012 0.0135 0.005 1.3470E+16 4.0E+13 0.30

27 1613.29 0.58 0.036 71.38 0.21 0.30 297.6926 0.0063 0.002 1.7365E+16 5.2E+13 0.30

28 1613.29 0.58 0.036 76.45 0.23 0.30 297.7004 0.0063 0.002 1.8599E+16 5.6E+13 0.30

 

 

 

4.2. Pressure Measurements 

 

The pressure measurements were made for a wide range of situations, from high-vacuum with 

dynamic flux to static measurements under moderated vacuum and low vacuum. 

These pressure measurements of the CO2 R12 Line Intensity Measurement were taken with the 

10T-CDG.  Their values varied from (36.43 ± 0.11) Pa to (136.00 ± 0.41) Pa.  The relative 
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uncertainties of these pressure measurements varied from 0.30% to 0.34%.  All the 28 pressure 

measurements are shown in the Table 15. 

The dynamic measurements were made with the SRG1 and SRG2 simultaneously.  They were 

located in opposite points of the VCMCH, so that we could control if there was a gradient of pressure 

during the measurements.  We found no pressure gradient and the two measurements agreed always 

very well, so that we finally used the mean of both measurements.  

 

 

4.3. Temperature Measurements 

 

All our experiments were made at room temperature.  As explained in section 3.6, we 

measured the temperature with two PT100 located inside the vacuum chamber (close to the opposite 

extremes of the chamber) and with seven PT100 in contact with the exterior walls of the chamber 

(evenly distributed around it).  The two internal PT100 are not in contact with walls, but just fixed 

through their four contact legs.  The sensor legs are soldered to four feed-through contacts that are 

about 10 cm long, so that the sensors are “hanging in space” inside the chamber. 

We wish that we could measure the line intensities and partial pressures with the VCMHC 

kept at constant temperature at the milli-Kelvin level.  Nevertheless we had no way to actively 

control the VCMCH temperature at that level, so that we had to take our measurements under 

temporal drifts (about 0.2°C per hour) and spatial gradients (about 0.5°C).  We read the temperature 

sensors during all our measurements, including those when a high vacuum was made inside the 

chamber.  This helped us to realize that the two internal sensors gave a better measurement of the gas 

temperature than the 7 outside sensors.  These are too few to make a reliable map of the temperature 

distribution outside the chamber.  In addition, we do not have information about the temperature of 

the surfaces inside the chamber, as from the mirrors, the rail system, the piezo-motor, etc. 

At any given time point, there must be a well defined mean temperature for all the surfaces 

inside the chamber, despite the temperature gradients that may be present along the system, and 

despite the fact that this mean temperature may be changing with time.  That mean is of course the 

integral of the temperature function over all the chamber internal surfaces divided by the whole 

internal surface area, as can be seen from the “extended first mean value theorem of the integral 

calculus [49]”.  Given the high velocity of the gas molecules at ambient temperature and their 

uniform spatial distribution filling the whole volume inside the chamber, we conclude that the 

molecules undergo many collisions with practically all the segments of the internal surfaces in the 

chamber.  After many collisions, the mean temperature of the gas must be equal to the mean 

temperature of the internal surfaces of the chamber.   

We will present now as example the temperature measurements that we carried out on 2005-

05-23.  These temperature measurements are typical, and the conclusions that we make from them 
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are generally valid.  Let’s start with the measurements made with the seven external PT100 sensors 

(T1 to T7, see Figure 27 and Figure 28). 
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Figure 27.  Temperature measurements on 20050523:  Individual readings of the VCMHC external sensors. 
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Figure 28.  Temperature measurements on 20050523:  Mean and standard deviation of the VCMHC 

external sensors. 

 
 

It appears that, if we take the mean of the external sensors readings as an estimator of the gas 

temperature, its uncertainty would be at least 0.1°C, perhaps higher due to our lack of knowledge of 

the temperature of the internal surfaces.  Let’s take a look now to the measurements made with the 

two internal sensors simultaneously.  Figure 29 to Figure 32 present their means and standard 

deviations. 
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PT100-1 
Average Four-Wire Resistance  vs. Time
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Figure 29.  Temperature measurements on 20050523:  Mean of the VCMHC internal sensor PT100-1. 
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Figure 30. Temperature measurements on 20050523:  Standard Deviation of the VCMHC internal sensor 

PT100-1 
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Figure 31.  Temperature measurements on 20050523:  Mean of the VCMHC internal sensor PT100-2. 
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PT100-2 
Four-Wire Resistance Standard Deviation vs. Time

0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

2.5E-03

3.0E-03

3.5E-03

19:00 19:30 20:00 20:30 21:00 21:30 22:00 22:30 23:00

time (hours:minutes)

re
si

st
an

ce
 s

td
. d

ev
. (

O
hm

s)

 

Figure 32.  Temperature measurements on 20050523:  Standard Deviation of the VCMHC internal sensor 

PT100-2. 

 

As we can see in the Figure 29 and Figure 31, both sensors show a somewhat complicated 

structure.  To clarify the significance of these structures let’s present in the Figure 33 the pressures 

that we measured on that day. 
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Figure 33.  Pressure measurements on 20050523. 

 

Comparing Figure 31 with Figure 33, it is clear that all the temperature “elevated” points were 

measured when there was high vacuum (P = 0 Torr) inside the VCMHC.  PT100-2 is located inside 

the chamber in a region quite close to the external sensor T7.  In Figure 27 we can see that, given the 

spatial gradient, the sensor T7 showed always the highest temperature of all the external 

measurements, i.e. in that region the chamber wall has a higher value than the mean temperature.  It 

can be concluded, that when high vacuum was inside the chamber, the internal sensor started to 

measure the temperature of the conductors in contact with its legs.  In contrast, when there was gas 

inside the chamber, the internal sensor signal was dominated by the gas temperature.  The observed 

temperature structures are a superposition of two different curves: one for the temperature of the wall 

in that region (when there was high vacuum) and the second for the temperature of the gas (which is 
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equal to the mean temperature of the internal surfaces, as the chamber acts as a thermal-reservoir).  In 

the following figures we present the internal measurements again, showing the approximate location 

of both curves and indicating explicitly which measurements belong to high vacuum and which to 

gas present.  Furthermore we present the readings of the PT100-1 converted to temperature units 

according to its calibration certificate (Figure 35). 
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Figure 34.  Temperature measurements on 20050523:  Mean of the VCMHC internal sensor PT100-2.  The 

plum curve shows the temporal variation of the chamber wall temperature in the region near the sensor, 

while the red curve shows the temporal variation of the mean temperature inside the chamber (which is 

equal to the gas temperature inside the chamber). 

 

 

PT100-1 - Temperature vs. Time
With Gas - High Vacuum

25.9

26.0

26.1

26.2

26.3

26.4

26.5

26.6

19:00 19:30 20:00 20:30 21:00 21:30 22:00 22:30 23:00

time (hours:minutes)

T
 (

°C
)

 

Figure 35.  Temperature measurements on 20050523:  Mean of the VCMHC internal sensor PT100-1.  The 

plum curve shows the temporal variation of the chamber wall temperature in the region near the sensor, 

while the red curve shows the temporal variation of the mean temperature inside the chamber (which is 

equal to the gas temperature inside the chamber). 
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The PT100-1 is located quite close to the external sensor T3.  Figure 27 shows that, at the 

beginning, the external sensor T3 measured a lower than the mean temperature; but then its reading 

increased until reaching the mean temperature.  Correspondingly, the Figure 35 shows that the wall 

temperature close to PT100-1 presents a temporal variation which starts at lower than the mean 

values and grows intercepting the mean temperature curve (at about 21:00 hours) and grows beyond.  

This explains the structure of the PT100-1 temperature measurements.  The red curves of both 

internal sensors (i.e. temperature measurements when there was gas inside the chamber) have the 

same form and correspond to the same temperature (the mean gas temperature), but we used only the 

readings of the PT100-1 because this one was calibrated while the PT100-2 not. 

Through our method of measuring directly with PT100 inside the chamber (and avoiding its 

contact with the internal side of the chamber walls) we are able to perform a “direct” measurement of 

the gas temperature inside the VCMHC.  Given the small uncertainty of the PT100-1 calibration (5 

mK, k = 1), as well as the stability of the repeated measurements (compare the standard deviations in 

Figure 30 and Figure 32 with the means in Figure 29 and Figure 31), we were able to improve the 

accuracy of the gas temperature measurement in our experiment by two orders of magnitude 

compared with the earlier situation, when only the chamber wall temperatures were recorded; i.e. we 

dropped the temperature uncertainty from 0.2% to 0.002%. 

 

Temperature Measurements for the CO2 R12 Line Intensity Measurement 

 

These temperature measurements varied from (22.2893 ± 0.0061) °C to 

(24.5833 ± 0.0069) °C.  The relative uncertainty of these measurements was mostly 0.002%.  In two 

cases the relative uncertainties were 0.003% and 0.005%.  All the 28 temperature measurements are 

shown in the Table 15 on page 115. 

 

 

4.4. Gas Density Measurements 

 

The density values for the CO2 R12 line intensity measurement varied from 

(8.9307 ± 0.0069)·1015 molec/cm3 to (3.3203 ± 0.0011)·1016 molec/cm3.  The relative uncertainties of 

these gas density measurements were typically 0.034% or less.  Only 3 of the 28 density 

measurements presented bigger relative uncertainties (0.077%, 0.084% and 0.17%).  See Table 15 on 

page 115.   

 
 

4.5. Transmission Measurements for Linearization of the Absorbance Scale 

 

The first version of the integrated absorbance and line intensity results are shown in Table 16. 
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Table 16.  First version of the integrated absorbance and line intensity measurements for the R12 line. 

File Aabs(To) u[Aabs(To)] u[Aabs(To)] S(To) u[S(To)] u[S(To)]

Consecutive cm-1 cm-1 (%) cm/molec cm/molec %

Number

1 1.2338E-02 2.2E-05 0.18 1.2326E-21 4.4E-24 0.36

2 1.1956E-02 8.1E-05 0.68 1.2543E-21 9.4E-24 0.75

3 1.4984E-02 7.4E-05 0.49 1.2520E-21 7.3E-24 0.58

4 1.8830E-02 9.7E-05 0.52 1.2425E-21 7.5E-24 0.60

5 2.9463E-02 1.5E-04 0.51 1.2363E-21 7.3E-24 0.59

6 1.2892E-02 7.3E-05 0.57 1.2523E-21 8.1E-24 0.64

7 2.6764E-02 6.8E-05 0.26 1.2352E-21 4.9E-24 0.40

8 2.9337E-02 5.7E-05 0.19 1.2309E-21 4.4E-24 0.36

9 2.9057E-02 2.0E-04 0.69 1.2193E-21 9.2E-24 0.75

10 3.2598E-02 1.6E-04 0.48 1.2237E-21 6.9E-24 0.57

11 3.2576E-02 2.1E-04 0.64 1.2230E-21 8.7E-24 0.71

12 2.1130E-02 1.2E-04 0.55 1.2396E-21 8.1E-24 0.65

13 1.6487E-02 1.2E-04 0.72 1.2669E-21 9.9E-24 0.78

14 1.2509E-02 8.1E-05 0.65 1.2555E-21 9.0E-24 0.72

15 2.7788E-02 5.0E-05 0.18 1.2635E-21 4.5E-24 0.35

16 3.5442E-02 6.9E-05 0.19 1.2184E-21 4.4E-24 0.36

17 2.1454E-02 7.7E-05 0.36 1.2326E-21 5.8E-24 0.47

18 2.6292E-02 1.0E-04 0.39 1.2358E-21 6.1E-24 0.49

19 3.4715E-02 2.3E-04 0.66 1.2297E-21 9.0E-24 0.73

20 3.1643E-02 1.5E-04 0.47 1.2180E-21 6.8E-24 0.56

21 3.0178E-02 7.8E-05 0.26 1.2266E-21 4.9E-24 0.40

22 3.6087E-02 1.0E-04 0.28 1.2123E-21 5.0E-24 0.41

23 2.4752E-02 5.7E-05 0.23 1.2360E-21 4.7E-24 0.38

24 2.5025E-02 1.3E-04 0.53 1.2416E-21 7.6E-24 0.61

25 3.0502E-02 1.8E-04 0.59 1.2341E-21 8.2E-24 0.66

26 2.6914E-02 1.6E-04 0.59 1.2385E-21 8.2E-24 0.66

27 3.4532E-02 2.8E-04 0.80 1.2326E-21 1.1E-23 0.86

28 3.6983E-02 3.2E-04 0.85 1.2325E-21 1.1E-23 0.90  

 

 

The Table 16 shows the first version of the results of our integrated absorbance and line 

intensity measurements for the CO2 - R12 line, while the other input quantities for these 

measurements are shown on the Table 15.  From that data we calculated the mean value and standard 

deviation of the line intensity:   

• ( ) ( ) cm/molec  10014.0236.1 21
.0

−

−
⋅±=

verfirst
TS . 

This value is concordant with the corresponding HITRAN value given its uncertainty; i.e. our 

result is 2.75% smaller than the HITRAN value, but the uncertainty given in HITRAN of 2% to 5% 

(k = 1) would cover our value.  Our smaller uncertainty of 1.1% (k = 1) would mean an improvement 



 123

in the accuracy of the R12 line intensity measurement.  In order to improve our accuracy, we 

analyzed the data in the framework of linear analysis.  By this way we could check that our results 

were compatible with the measurement model and we could find and correct for possible systematic 

errors, as was explained in section 2.6.   

The individual line intensity measurements presented in the Table 16 were performed as 

explained in section 3.10, using the equation ( 190 ), which we rearrange now and write it down in 

the form: 

 ( 195 ) 

 

Doing so we can consider the linear model: bxmy +⋅= , with: 

 

 ( 196 ) 

 

This linear model should be analyzed using a functional-structural method, because our goal is 

to find the parameters of the model as physical quantities, and not to perform some regression or 

prediction of the variables.  Nevertheless we will also show the results of the Ordinary Least Squares, 

or regression analysis.  We remind at this point that Ordinary Least Squares gives two different sets 

of parameters for the same set of data (one for the regression of y on x and another for the regression 

of x on y) and therefore it is not suitable to assign physical interpretation to those parameters.  The 

next figure presents the graphical representation of Aabs vs. n·L and its regression for the data of 

Table 15 and Table 16. 
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Figure 36.  Results (first version) of the measurements for the R12 line intensity determination. 
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In this case the points show small scatter, so that the two cases of Ordinary Least Squares 

regression analysis deliver almost the same result, as shown in the next table. 

 

 

Table 17.  Ordinary Least Squares analysis of the A(T0) and n·L from the Table 15 and Table 16. 

Ordinary Least Squares (OLS): m u [m ] b u [b ]

Regression of A (T 0) on n ·L 1.2081E-21 6.3E-24 5.3E-04 1.4E-04

Regression of n ·L on A (T 0) 1.2090E-21 6.3E-24 5.1E-04 1.4E-04  

 

 

With the results of Table 17 we can see the first signal that something was wrong, because 

according to our model we expected “b = 0”.  More rigorously, we expected a b value comparable to 

the “zero control” integrated absorbance areas that we obtain for lack of absorbing gas.  These 

measurements are performed and processed as ordinary measurements in order to check the 

performance of IPSIAM in several aspects, including the indirect measurement of the input laser 

intensity I0.  During the measurement campaign for the R12 line intensity we took 20 “zero control” 

measurements, which are noted in Table 26 (Appendix 7.3, page 168). 

Based on the measurements shown in Table 26, we expected a maximum value for b in the 

order of 5·10-5 cm-1.  We also expected u[b] > b so that we could regard b as statistically equivalent to 

zero.  But the Ordinary Least Squares preliminary results presented an intercept which is about 4 

times bigger than its standard uncertainty and therefore it can not be considered as equivalent to zero 

from a statistical point of view. 

We confirmed our suspicions when we performed a functional-structural linear analysis, as we 

will explain next. 

In order to apply the functional-structural methods presented in section 2.6, the variances of 

the errors distributions of “y” and “x” must be independent from “x” and independent from each 

other.  This requirement can be roughly checked assuming that the standard uncertainties of the 

individual measurements are actually good estimators of the standard deviations of their distributions 

(this should be true if the standard uncertainty was calculated correctly according to GUM and the 

measurement model is complete enough) and then checking the correlations among the quantities 

mentioned.  The correlations found were: 

• R(n·L, u[n·L]) = 0.43, 

• R(n·L, u[Aabs(T0)]) = 0.58, and 

• R(u[n·L], u[Aabs(T0)]) = 0.29  . 

The correlation between n·L and u[Aabs(T0)] is not strong, but not negligible. Later on two tests 

will be applied in order to decide whether the model can be considered statistically suitable to 

describe the data. 
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Functional-Structural analysis for abscissa-data variance known 

 

We applied this F-S analysis method to the Aabs(T0) vs. n·L data, and the results are:  

 

 

 

 

( 197 ) 

 

 

 

 
Furthermore we found that 
 
 

( 198 ) 

 

and 

( 199 ) 

 

Both, the chi-test and the “rule of thumb”, gave positive response about the suitability of this 

F-S model to analyze the data.  Also the graphical check presented a reasonable behavior, as we can 

see in the following figure, except for one point that perhaps may be considered as “outlier”. 
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Figure 37.  Graphical check of the structural model with abscissa-data known applied to the Aabs(T0) vs. n·L 

preliminary data. 
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After we verified the suitability of this Functional-Structural model for the analysis of the 

preliminary Aabs(T0) vs. n·L data, we realized that we could expect an intercept b slightly bigger than 

what we thought just considering the “zero control” measurements, i.e. we can expect actually 

something in the order of 10-4 cm-1, but in any case we still expected u[b] > b.  So we checked all our 

measurement procedures looking for some “offset” error.  For instance if we had an error in the 

measurement of the absorbing path-length, that error would produce also a constant contribution that 

would reveal itself at the end as a significant intercept.  We found no systematic errors in the 

measurements of any of the input quantities, until we checked the ratio of the laser intensity 

measurements in the detection channel. 

We never tried to measure the laser optical intensity in absolute units because we only need 

the ratio of intensity measurements.  The linearity of the detectors, however, was an assumption 

made in our evaluation so far. 

 

 

Measurements and Analysis for the Linearization of the Transmission Measurements 

 

Unfortunately we had no facilities to calibrate the IR detectors.  In order to test the linearity, 

we used our Pellicle Beam Splitters to make a series of (correlated) intensity measurements; in which 

we could use our knowledge of the measurement relations to deduct a calibration function for the 

ratio of the intensity measurements. 

Using two different PBS of 30% nominal transmission we took several measurements of the 

laser intensity as follows: 

• without filter (100% transmission), 

• through PBS1 (about 30% transmission), 

• through PBS2 (about 30% transmission), 

• through both PBS1 and PBS2 (about 9% transmission), and 

• laser blocked (0% transmission). 

The results of these measurements are shown in the next table. 

 

Table 18.  Measurements for the linearization of the transmission scale. 

Electrical Electrical Optical
Transmission Transmission Transmission

Filter Signal Signal Signal
average Std. Dev.

"none" 1 0 1
PBS1 0.3425 0.0062 ~ 0.3
PBS2 0.3242 0.0065 ~ 0.3

PBS1·PBS2 0.1132 0.0023 ~ 0.09
Total 0 0 0  
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If the transmission detection system was linear, the product of the transmission measurement 

for each of the PBS should be equal to the transmission measurement when both PBS were acting 

together.  The mentioned product is 0.1110, in contradiction to the measured value for both PBS 

together (0.1132).  Therefore the detection system produced a small positive error, at least close to 

the zone of 10% transmission.   

For further analysis we assumed that the non-linearity of the transmission system should be 

minimal and represented by a smooth function.  The positive error close to the 10% transmission 

region indicated that the error was also positive for all the other regions.  A physical model to explain 

the possible non-linearity of the transmission detection system could be that the detector produces an 

avalanche effect right at the beginning of the detection threshold, but grows linearly when the 

detected optical signal increases.  We described the avalanche-part of the curve with a small 

exponential term, which multiplies the linear term that describes the linear part of the curve.  

Figure 38 and Figure 39 illustrate the physical model with simulated data and reproduced quite well 

our measurements.  The first curve shows that the detectors response is actually fairly linear, while 

the second curve permits the visualization of the small non-linearity. 

 

Non-linearity of Transmission Detection:
Simulation of the avalanche plus linear effect for data similar to our 

measurements
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Figure 38.  Simulated data of detectors’ response similar to our measurements and showing the avalanche 

effect at the beginning of the curve:  Electrical transmission signal versus optical transmission. 
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Non-linearity of Transmission Detection:
Simulation of the avalanche plus linear effect for data similar to our 

measurements

0

0.001

0.002

0.003

0.004

0.005

0 0.2 0.4 0.6 0.8 1

optical transmission

(e
le

ct
ri

c 
- 

op
ti

ca
l)

 
tr

an
sm

is
si

on
 s

ig
na

l

 

Figure 39.  Simulated data of detectors’ response similar to our measurements and showing the avalanche 

effect at the beginning of the curve:  Residuals of the (electrical - optical) transmission signal versus optical 

transmission. 

 

Observing the Figure 39 we realized that our physical model to explain the detectors minor 

non-linearity has a rapid growth of the exponential term for the avalanche effect and afterwards the 

behavior is dominated by the linear term.  So we assumed that 4 of our 5 measurements, i.e. from 

(Idet. = 1, Iopt. = 1) to (Idet. = 0.1132,  Iopt. ~ 0.09), were located well over the linear term and only the 

(Idet. = 0,  Iopt. = 0) measurement was part of the exponential behavior.  This permitted us to find the 

optical transmission values through the application of two restrictions: 

• that the four points must lie over a straight line, as said above, and 

• that the product of the two transmissions close to 30% must be equal to the transmission 

close to 10%, which is a physical restriction independent of our model. 

In this way we found enough information to solve the problem analytically and calculate both 

the real optical transmission values and the parameters of the linear part of the detectors’ response 

curve.  The results for the calculated optical transmissions are presented in the Table 19.  The 

corresponding linearizing regression function to predict the optical transmission based on the 

measured electrical transmission signal is: 

 

( 200 ) 

 

Table 19.  Measurements for the linearization of the transmission scale with the calculated values of the 

optical transmission. 

Electrical Optical
Transmission Transmission

Filter Signal
average

"none" 1 1
PBS1 0.3425 0.3392
PBS2 0.3242 0.3208

PBS1·PBS2 0.1132 0.1088  

00497.000497.1 −⋅= electopt tt  
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We corrected our transmission measurements using the equation ( 200 ) to linearize the 

transmission columns in the IPSIAM workbooks, and obtained in this way the final data with the 

corrected absorbances. 

 

 

4.6. Line Intensity Measurements of CO2 

 

Once we corrected our first set of measurements of the CO2 - R12 line intensity for the 

linearization of the transmission scale, we proceeded to analyze them in the framework of linear 

analysis again.  The final integrated absorbance and line intensity results are shown in the Table 20.  

The mean and standard deviation of the R12 line intensity individual measurements is now:   

• ( ) ( ) cm/molec  100098.02582.1 21
..0

−⋅±=
measind

TS .  

This is not that different from the result obtained from linear analysis, as can be seen after comparing 

it with the slope of the following figure, which presents the Aabs(T0) vs. n·L plot for the corrected 

data. 
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Figure 40.  Final results of the measurements for the R12 line intensity determination. 
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Table 20.  Corrected integrated absorbance and line intensity measurements for the R12 line. 

File Aabs(To) u[Aabs(To)] u[Aabs(To)] S(To) u[S(To)] u[S(To)]

Consecutive cm-1 cm-1 (%) cm/molec cm/molec %

Number

1 1.2439E-02 2.2E-05 0.18 1.2426E-21 4.4E-24 0.36

2 1.2050E-02 8.2E-05 0.68 1.2642E-21 9.4E-24 0.75

3 1.5120E-02 7.5E-05 0.49 1.2633E-21 7.3E-24 0.58

4 1.9035E-02 9.8E-05 0.52 1.2560E-21 7.5E-24 0.60

5 3.003E-02 1.6E-04 0.52 1.2600E-21 7.6E-24 0.60

6 1.2998E-02 7.4E-05 0.57 1.2626E-21 8.1E-24 0.64

7 2.7211E-02 7.0E-05 0.26 1.2558E-21 5.0E-24 0.40

8 2.9903E-02 5.8E-05 0.19 1.2546E-21 4.5E-24 0.36

9 2.961E-02 2.1E-04 0.70 1.2426E-21 9.5E-24 0.76

10 3.337E-02 1.6E-04 0.49 1.2527E-21 7.2E-24 0.58

11 3.334E-02 2.2E-04 0.66 1.2517E-21 9.2E-24 0.73

12 2.139E-02 1.2E-04 0.55 1.2549E-21 8.2E-24 0.65

13 1.665E-02 1.2E-04 0.72 1.2793E-21 1.0E-23 0.78

14 1.2611E-02 8.2E-05 0.65 1.2658E-21 9.1E-24 0.72

15 2.8265E-02 5.1E-05 0.18 1.2852E-21 4.5E-24 0.35

16 3.6453E-02 7.3E-05 0.20 1.2531E-21 4.6E-24 0.36

17 2.1726E-02 7.8E-05 0.36 1.2482E-21 5.9E-24 0.47

18 2.673E-02 1.1E-04 0.39 1.2562E-21 6.2E-24 0.50

19 3.569E-02 2.5E-04 0.69 1.2641E-21 9.6E-24 0.76

20 3.236E-02 1.6E-04 0.48 1.2457E-21 7.1E-24 0.57

21 3.0794E-02 8.1E-05 0.26 1.2516E-21 5.0E-24 0.40

22 3.717E-02 1.1E-04 0.30 1.2487E-21 5.3E-24 0.42

23 2.5123E-02 5.9E-05 0.23 1.2545E-21 4.8E-24 0.38

24 2.540E-02 1.4E-04 0.54 1.2603E-21 7.7E-24 0.61

25 3.113E-02 1.9E-04 0.60 1.2596E-21 8.5E-24 0.67

26 2.737E-02 1.6E-04 0.60 1.2592E-21 8.4E-24 0.67

27 3.546E-02 3.0E-04 0.84 1.2656E-21 1.1E-23 0.89

28 3.815E-02 3.4E-04 0.90 1.2715E-21 1.2E-23 0.95
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Functional-Structural analysis for abscissa-data variance known 

 

We applied this F-S analysis method to the corrected Aabs(T0) vs. n·L data, which assumes that 

the variance of the abscissa-data is known, and in this case it corresponds to the variance of the n·L 

data, which is: 331009.4 ⋅=exexσ .  This Structural-Functional method is well suited for the analysis 

of our data, because we really know quite well the uncertainty of the individual measurements 

according to GUM and they present a fairly homogeneous set of values as can be seen in the 

Table 15.  The mean and standard deviation of the uncertainty of the n·L data is: 

 u[n·L] = (6.4 ±2.0)·1016, and therefore [ ] 332 1009.4 ⋅=≡⋅ exexLnu σ . 

The estimators of the parameters calculated with this F-S model are: 

 

 

( 201 ) 

 

 

we remind that x = n·L, y = Aabs(T0), and y = m·x + b.  Furthermore we found that 

 

( 202 ) 

 
and 
 

( 203 ) 

 

so that both, the chi-test and the “rule of thumb”, gave positive response about the suitability 

of this F-S model to analyze the data.  Also the graphical check presented a reasonable behavior, as 

we can see in the following figure. 
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Figure 41.  Graphical check of the structural model with abscissa-data known applied to the Aabs(T0) vs. n·L 

final data. 
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Now we obtained, as expected from the physical model, u[b] = 1.4·10-4 > 5.8·10-5 = b, an 

intercept smaller than its uncertainty and in the order of the “zero control” measurements (~ 5·10-5 

see Table 26), so that we can consider that the intercept is statistically equivalent to zero and the 

results are fully compatible with the physical model derived from the Beer-Lambert law. 

The slope of the Functional-Structural model gives us the final result for our measurement of 

the CO2 - R12 line intensity S(T0) at reference temperature T0 = 296 K: 

• R12:  S(T0) = (1.2550 ±0.0062)·10-21 cm/molec (k = 1, 26 degrees of freedom). 

The relative uncertainty of our measurement of the CO2 - R12 (line center at ν = 4987.308758) 

line intensity is therefore 0.49% (k = 1).  Our measurement is 1.26% smaller than the corresponding 

HITRAN value, but in agreement with HITRAN given the bigger uncertainty of the HITRAN value. 

 

Other transitions 

 

We also measured the line intensities of three other CO2 transitions in the same band: R10, 

R14 and R16.  For lack of time we did not take enough repetitions to analyze these measurements in 

the framework of linear analysis.  Next we present our results for these three transitions, which are 

respectively the mean value of a few measurements. 

• R10:  S(T0) = (1.171 ± 0.010)·10-21 cm/molec (k = 1, 9 degrees of freedom). 

• R14:  S(T0) = (1.324 ± 0.010)·10-21 cm/molec (k = 1, 5 degrees of freedom). 

• R16:  S(T0) = (1.327 ± 0.010)·10-21 cm/molec (k = 1, 2 degrees of freedom). 

The relative uncertainty of these measurements is about 0.77% (k = 1) and they are in 

agreement with the respective values given in HITRAN. 

 

4.7. Partial Pressure Measurements of CO2 

 

Once we measured the line intensity of the CO2 - R12 line we were prepared to use the 

spectrometer to measure partial pressures of CO2 in gas mixtures using our improved value of the 

R12 line intensity.  By this way we could compare our method with other methods of partial pressure 

measurement.  We measured the partial pressure of CO2 of two mixtures: 

• A sample of the mixture code C49286 prepared by the BAM, which is a mixture of CO2 

and N2 with reference relative amount of substance: 

o (0.10680 ± 0.00029) mol/mol % CO2 (k = 1), and 99.8927 mol/mol % N2. 

• A sample of mixture prepared by Jorge Koelliker at the PTB-Braunschweig, which is also a 

mixture of CO2 and N2 with reference relative amount of substance of CO2 of: 

o (5.1743 ± 0.0046) mol/mol % CO2 (k = 1). 
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Partial Pressure Measurements of CO2 in the Sample from BAM-Mixture C49286 

 

We measured the partial pressure of CO2 in this mixture two times.  The main results of these 

measurements are shown in the following tables.  The names of the corresponding IPSIAM-Results-

files are given in the Table 27, on page 168. 

 

Table 21.  Results of partial pressure measurements of CO2 in mixture C49286:  Absorption path-length, 

total pressure, temperature and integrated absorbance. 

File L u [L ] u [L ] P total u [P total ] u [P total ] T u [T ] u [T ] A abs (T ) u [A abs (T )] u [A abs (T )]

Consecutive cm cm (%) Pa Pa (%) K K (%) cm-1 cm-1 (%)

Number

1 4573.2 1.1 0.025 1314.5 3.9 0.30 301.0067 0.0062 0.0021 1.899E-03 3.7E-05 1.9

2 4573.2 1.1 0.025 7514 17 0.22 302.0011 0.0062 0.0021 9.79E-03 1.3E-04 1.3

 

Table 22.  Results of partial pressure measurements of CO2 in mixture C49286:  R12 line intensity at 

measurement temperature, normalized integrated absorption and partial pressure of CO2. 

File S (T ) u [S (T )] u [S (T )]

A abs ·k ·T ·106/S

(T )

u [A abs ·k ·T ·106/S

(T )]

u [A abs ·k ·T ·106/S

(T )] Ppart u[Ppart]

u[Ppart]/

Ppart

Consecutive cm/molec cm/molec % Pa·cm Pa·cm % (%) (%) (%)

Number

1 1.2344E-21 6.2E-24 0.50 6394 128 2.0 0.1064 0.0022 2.0

2 1.2303E-21 6.2E-24 0.50 33195 467 1.4 0.0966 0.0014 1.4  

 

The measurement #1 was made with a total pressure of 13.1453 hPa, measured with the 

10Torr-CDG.  The measured relative partial pressure is concordant with the calibrated reference 

value of the BAM-mixture as we can see better comparing the two values as follows: 

• 20050618 measurement: relative partial pressure = (0.1064 ± 0.0021) % (k = 1) 

• Certified value:               relative partial pressure = (0.10680 ± 0.00029) % (k = 1) 

Our value is 0.37% smaller than the reference value, out of its 0.27% of relative uncertainty 

(k = 1), but it is covered by its extended relative uncertainty of 0.54% (k = 2).  Nevertheless our 

relative uncertainty of 2% (k = 1) was quite big for our purposes and we wanted to reduce it.  In order 

to reduce the relative uncertainty of the measured partial pressure it was necessary to increase the 

area of the integrated absorbance, and we increased the total pressure of the mixture in the chamber 

to 75.14 hPa (Measurement #2) 

This measurement gave a result clearly smaller than the reference value: 

• 20050620 measurement: relative partial pressure = (0.0966 ± 0.0014) % (k = 1) 

• Certified value:                relative partial pressure = (0.10680 ± 0.00029) % (k = 1) 
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We reduced the relative uncertainty of our measurement to 1.4%, but the result was now 

9.55% smaller than the certified value.  The reason for this error was that as we increased the 

pressure in the chamber, the absorption peak grew wider because of the pressure-widening effect.  It 

appeared that our wave-number window was not wide enough to include the whole peak, as can be 

seen on figures for measurement #2 (Figure 45 to Figure 47) compared with the figures for 

measurement #1 (Figure 42 to Figure 44). 
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Figure 42.  Partial pressure measurement on 20050618:  Total absorption signal, partial absorption signal 

and reference signal predicted for the partial absorption signal. 
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Figure 43.  Partial pressure measurement on 20050618:  Partial absorption signal and reference signal 

predicted for the partial absorption signal. 
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Figure 44.  Partial pressure measurement on 20050618:  Reference signal predicted for the partial 

absorption signal minus the partial absorption signal. 
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Figure 45.  Partial pressure measurement on 20050620:  Total absorption signal, partial absorption signal 

and reference signal predicted for the partial absorption signal. 
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Figure 46.  Partial pressure measurement on 20050620:  Partial absorption signal and reference signal 

predicted for the partial absorption signal. 
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Figure 47.  Partial pressure measurement on 20050620:  Reference signal predicted for the partial 

absorption signal minus the partial absorption signal. 

 
 

The Figure 45 and Figure 47 present the difference between the partial-absorption scan and its 

reference and they show that only the measurement made on 20050618 had a wave-number window 

wide enough compared to the width of the observed absorption peak.  On 20050620 the pressure 

widening had caused that the same wave-number window was not enough any more to cover all the 

significant absorption region of the observed peak.  This is especially evident for the right wing of 
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Figure 47, where the curve clearly has not reached yet the constant-level zone, but shows a slope 

until the end.  This is the reason for the bias of the measurement taken on 20050620.  Unfortunately, 

with these measurements we consumed the whole sample of C49286, so that we could not study the 

reproducibility of our measurements on this sample. 

 

Partial Pressure Measurements of CO2 in the Sample from PTB-mixture 

 

We repeated the partial pressure measurement of CO2 in this mixture 15 times.  The main 

results of these measurements are shown in the Table 23 and Table 24.  The corresponding IPSIAM-

Results-Files names are presented in the Table 28, on page 169. 

The 15 individual measurements of the CO2 partial pressure were slightly biased towards 

smaller values, as we can see comparing the mean value of our results with the reference value: 

• Our result of PTB-mixture as mean of individual measurements:  

o relative partial pressure = (5.122 ± 0.039) % (k = 1) 

• PTB-mixture reference value:  

o relative partial pressure = (5.1743 ± 0.0046) % (k = 1) 

The mean of the individual measurements is 1.0% smaller than the reference value, but it is 

still concordant with the reference value because our relative uncertainty of 1.5% at the 95% level of 

confidence (k = 2) includes clearly the reference value.  

It is worth to emphasize the agreement between the mean of the standard uncertainties of the 

individual measurements of the partial pressure calculated in each IPSIAM-results file (0.0394%) 

and the standard deviation of the 15 individual measurements of the partial pressures (0.0392%).  

This agreement is a statistical confirmation that our system is actually calculating correctly the 

uncertainties according to GUM.  This implies also that the assumptions made in trying to calculate 

correctly the rather difficult uncertainty of the integrated absorbance, were actually justified. 

Finally for this section we would like to apply the F-S linear analysis to the partial pressure 

measurements.  For this purpose we decided to analyze the “normalized integrated absorbance” vs. 

Pt·L (see Figure 48).  We defined the “normalized integrated absorbance” as Aabs·k·T·106/S(T), in 

order to cancel out the variation of the area due to the temperature variation of the line intensity.  The 

106 factor is necessary because of the presence of spectroscopic units cm-1 (for the integrated 

absorbance) and molec/cm (for the line intensity) together with the SI unit J/K (for the Boltzmann 

constant). 
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Table 23.  Results of partial pressure measurements of CO2 in PTB-mixture:  Absorption path-length, total 

pressure, temperature and integrated absorbance. 

File L u [L ] u [L ] P t u [P t ] u [P t ] T u [T ] u [T ] A abs (T ) u [A abs (T )] u [A abs (T )]

Consecutive cm cm (%) Pa Pa (%) K K (%) cm-1 cm-1 (%)

Number

1 1115.61 0.51 0.046 656.1 2.0 0.30 299.9489 0.0064 0.0021 1.119E-02 1.0E-04 0.93

2 1115.61 0.51 0.046 972.6 2.9 0.30 302.6626 0.0061 0.0020 1.6248E-02 7.5E-05 0.46

3 1115.61 0.51 0.046 1143.3 3.4 0.30 302.6597 0.0061 0.0020 1.894E-02 1.1E-04 0.56

4 1806.74 0.60 0.033 656.1 2.0 0.30 299.9649 0.0062 0.0021 1.8084E-02 9.6E-05 0.53

5 1806.74 0.60 0.033 911.5 2.7 0.30 302.6696 0.0061 0.0020 2.457E-02 1.2E-04 0.49

6 1806.74 0.60 0.033 972.6 2.9 0.30 302.6660 0.0061 0.0020 2.627E-02 1.1E-04 0.42

7 2498.23 0.72 0.029 656.2 2.0 0.30 299.9780 0.0063 0.0021 2.505E-02 1.1E-04 0.42

8 2498.23 0.72 0.029 806.5 2.4 0.30 302.9500 0.0061 0.0020 3.020E-02 1.4E-04 0.47

9 2498.23 0.72 0.029 872.3 2.6 0.30 302.9523 0.0061 0.0020 3.266E-02 1.2E-04 0.38

10 3189.83 0.85 0.027 656.2 2.0 0.30 299.9912 0.0064 0.0021 3.248E-02 1.5E-04 0.47

11 3189.83 0.85 0.027 572.8 1.7 0.30 302.9227 0.0061 0.0020 2.746E-02 1.2E-04 0.42

12 3189.83 0.85 0.027 536.0 1.6 0.30 302.9243 0.0061 0.0020 2.570E-02 1.0E-04 0.40

13 3881.49 0.99 0.025 505.7 1.5 0.30 300.0133 0.0062 0.0021 3.033E-02 1.4E-04 0.47

14 4573.2 1.1 0.025 363.7 1.1 0.30 300.0245 0.0062 0.0021 2.574E-02 1.0E-04 0.40

15 4573.2 1.1 0.025 281.6 0.8 0.30 302.8915 0.0061 0.0020 1.9546E-02 9.5E-05 0.49
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Table 24.  Results of partial pressure measurements of CO2 in PTB-mixture:  R12 line intensity at 

measurement temperature, normalized integrated absorption and partial pressure of CO2. 

File S (T ) u [S (T )] u [S (T )]

A abs ·k ·T ·

106/S (T )

u [A abs ·k ·T ·

106/S (T )]

u [A abs ·k ·T ·

106/S (T )] P part u [P part ]

u [P part ]/

P part

Consecutive cm/molec cm/molec % Pa·cm Pa·cm % % % (%)

Number

1 1.2387E-21 6.2E-24 0.50 37420 397 1.1 5.113 0.056 1.1

2 1.2275E-21 6.2E-24 0.51 55312 379 0.69 5.098 0.038 0.75

3 1.2275E-21 6.2E-24 0.51 64475 485 0.75 5.055 0.041 0.81

4 1.2386E-21 6.2E-24 0.50 60466 442 0.73 5.101 0.040 0.79

5 1.2275E-21 6.2E-24 0.51 83657 591 0.71 5.080 0.039 0.77

6 1.2275E-21 6.2E-24 0.51 89418 590 0.66 5.089 0.037 0.73

7 1.2386E-21 6.2E-24 0.50 83756 547 0.65 5.109 0.037 0.72

8 1.2263E-21 6.2E-24 0.51 102991 712 0.69 5.111 0.039 0.75

9 1.2263E-21 6.2E-24 0.51 111398 702 0.63 5.112 0.036 0.70

10 1.2385E-21 6.2E-24 0.50 108614 747 0.69 5.189 0.039 0.75

11 1.2265E-21 6.2E-24 0.51 93657 616 0.66 5.126 0.037 0.72

12 1.2264E-21 6.2E-24 0.51 87630 567 0.65 5.125 0.037 0.71

13 1.2384E-21 6.2E-24 0.50 101453 694 0.68 5.169 0.039 0.75

14 1.2384E-21 6.2E-24 0.50 86113 554 0.64 5.178 0.037 0.71

15 1.2266E-21 6.2E-24 0.51 66640 467 0.70 5.175 0.039 0.76

Mean: 1.2316E-21 6.2E-24 0.5034 82200 566 0.706 5.122 0.0394 0.77

Std. Dev.: 5.9E-24 2.5E-27 0.0026 21285 116 0.103 0.0392 0.0049 0.10
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TDLAS  Measurement of CO2  Partial Pressure in a Mixture 

using the CO2 - R12 Line
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Figure 48.  Plot of the data for the CO2 partial pressure measurement in the PTB-mixture. 

 

 

Functional-Structural analysis for abscissa-data variance known 

 

We applied this F-S analysis method to the Aabs·k·T·106/S(T) vs. Pt·L data, which assumes that 

the variance of the abscissa-data is known, so that in this case the abscissa-data variance corresponds 

to the variance of the Pt·L data, which is: 2340=exexσ .  As before, this Structural-Functional 

method is well suited for the analysis of our data, because we really know quite well the uncertainty 

of the individual measurements according to GUM and they present a fairly homogeneous set of 

values as can be seen in Table 23.  The mean and the standard deviation of the uncertainty of the Pt·L 

data is: 

• u[Pt·L] = 48.4 ±12.4, and therefore [ ] 23402 =≡⋅ exext LPu σ . 

The estimators of the parameters calculated with this F-S model are: 
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and 

 

( 206 ) 

 

so that both, the chi-test and the “rule of thumb”, gave positive response about the suitability of this 

F-S model to analyze the data. 

We obtained an intercept statistically equivalent to zero at the 95% level of confidence. 

Now our result for the CO2 partial pressure in the PTB-mixture is not biased from the 

reference value, as we can see through their comparison: 

• Our result on PTB-mixture as slope of the linear analysis:  

o relative partial pressure = (5.170 ± 0.042) % (k = 1) 

• PTB-mixture reference value:  

o relative partial pressure = (5.1743 ± 0.0046) % (k = 1) 

This result is only 0.08% smaller than the gravimetric reference value, i.e. it agrees fully with 

the reference value even for its relative small uncertainty of only 0.1%.  Our relative uncertainty is 

larger (0.8%) but small enough to use our spectrometer as a primary standard to calibrate partial 

pressure measuring instruments (at least for CO2 in the 0.1% to 5% relative partial pressure). 

We interpret the improvement obtained in the partial pressure measurement result (when it 

was analyzed in the framework of linear analysis, as opposed to the mean of individual 

measurements) as the consequence of the coincidence of methodology in measuring both the line 

intensity and the partial pressure (the line intensity, which is an input quantity for the partial pressure 

measurement, was also measured using linear analysis). 

 

 

4.8. Line Intensity Measurements of CO 

 

When we obtained the first results of our line intensity measurements for the CO R4 line (line 

center at 2161.9682 cm-1), we noticed that, as we varied the optical depth of the sample, our results 

presented a scatter in which the difference between the measurements were much bigger than the 

estimated uncertainty for the individual measurements.  Furthermore the observed HWHM under 

Doppler conditions were always around three times bigger than the theoretical HWHM value. 

After checking all the possible instrumental broadening effects, we concluded that the origin 

of this problem should lie in a too wide emission profile from our diode-laser.  We developed a new 

algorithm to correct for this effect as explained in section 2.2.2, since we did not find a solution for 

this type of problem in the literature (the deconvolution algorithms published so far in the literature 

were designed to either separate partly overlapping peaks or reduce the amount of noise in the 

spectra, but always keeping a constant area for the absorbance vs. wave-number curve). 
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We implemented our algorithm in a sub-group of our IPSIAM LabVIEW programs.  With 

these programs we were able to deconvolutionate our measurements as well as to generate and 

analyze synthetic data with different levels of noise.  This was important in order to bring a statistical 

frame to interpret our (corrected) measurement results. 

Figure 49 shows the measurement data of a transmission spectrum.  The two shoulders at the 

base of the peak were quite intriguing, as well as the fact that the integration of the area under the 

corresponding absorbance curve gave a result for the line intensity of 2.50·10-19 cm/molec, which is 

36.5% smaller than the HITRAN value (3.94·10-19 cm/molec).  The molecular density for this 

measurement was 1.990·1013 molec/cm3 and the absorption path length was 1916 cm.  With help of 

another measurement of weaker absorption (taken a few minutes earlier) we found the effective 

apparatus function for these measurements, which is graphically represented in the Figure 50. 

After deconvolutionating the strong absorption measurement we found the “corrected” 

extinction function as shown in Figure 51.  Now the integration of the area under the corresponding 

absorbance curve gave a result for the line intensity of 3.65·10-19 cm/molec, which is only 7.4% 

smaller than the HITRAN value. 

 

Figure 49.  Graph from our IPSIAM program to deconvolutionate spectra affected by non-negligible 

apparatus function:  Transmission of the strong absorption measurement. 

 

 

Figure 50.  Graph from our IPSIAM program to deconvolutionate spectra affected by non-negligible 

apparatus function:  Calculated apparatus function. 
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Figure 51.  Graph from our IPSIAM program to deconvolutionate spectra affected by non-negligible 

apparatus function:  Corrected extinction function of the strong absorption measurement. 

 

 

The oscillations at the base of the corrected extinction function are a signal of the noise 

present in the spectra measurements.  In order to study the effects of noise and other influences in our 

deconvolution process, we made several sets of simulations. 

In the first set of simulations we studied the effect of the apparatus-function width (relative to 

the line absorption width) in the apparent line intensity of two “measurements” (one with 3% 

maximum absorption and the other with 10% maximum absorption) and in the corrected line 

intensity (calculated with our algorithm using the 3% max. absorption as the weak absorption signal 

and the 10% max. absorption as the strong absorption signal) and assuming zero-noise data.  The 

results are shown in the next figure. 
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Figure 52.  Simulated spectra affected by the apparatus-function:  Apparatus-function width effect on the 

measurement of the line intensity based on apparent and corrected absorption lines. 
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The error of the apparent spectra was always negative (i.e. the apparatus-function broadening 

produce always an absorbance curve with smaller area than the “real” curve), but we plotted the 

absolute value of the error to use a logarithmical scale.  As expected, the error grows with increasing 

apparatus function width (abscissa axis, left direction) and with increasing optical depth (curves are 

positioned at upper positions for increasing absorption).   

The residual error of the corrected data is 0.1% and practically independent of the apparatus 

function’s width (although it does depend on the optical depth as we will see shortly).  The result of 

the integration over an apparent line may be better than that of the corrected one (i.e. error smaller 

than 0.1%) if the apparatus-function width is narrow enough for a given optical thickness (from our 

example: if the apparatus-function width is 1/5 or less of the absorption line width for the 3% max. 

absorption spectrum; or 1/10 or less for the 10% max. absorption spectrum), or if the optical depth is 

thin enough for a given apparatus-function width (from our example: if the maximum absorbance is 

about 3% or less for an apparatus-function width which is 1/3 of the absorption line width). 

In the second set of simulations we studied the effect of the optical depth in the apparent and 

corrected line intensity of spectra “measured” with an apparatus-function HWHM which is 2.57 

times wider than the real Doppler HWHM (i.e. similar to our experimental conditions), still assuming 

zero-noise data and a fixed weak absorption spectrum of 3% maximum absorption (i.e. we varied 

only the optical depth of the strong absorption spectrum).  The results of this second set of 

simulations are shown in the next figure. 
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Figure 53.  Simulated spectra affected by the apparatus-function:  Optical depth effect on the measurement 

of the line intensity based on apparent and corrected absorption lines. 

 

 

The improvement in accuracy reached with our method is about a factor of 40 in most cases.  

The apparent line errors begin at 2% for a line with 3% apparent maximum absorption and goes up 

60% for an apparent maximum absorption of 55%.  The corrected spectrum has a residual error of 



 144

only 0.02% for the 3% apparent maximum absorption and reaches 1% just when the apparent 

maximum absorption is 40%.   

The measurement presented in the Figure 49 is in agreement with the simulation presented in 

the Figure 53:  According to the simulation, a line with apparent minimum of transmission of 70% 

will produce an error in the (not-corrected) measurement of the line intensity of -30%.  The error 

found in our measurement is about -36% (with an apparent minimum of transmission of 73%), but 

the simulation was noise-less and we expect some effects arising from the noise present in the data. 

In the third set of simulations we studied the effect of the noise level in the result of the line 

intensity “measured” with the corrected spectrum (for an apparatus-function HWHM which is 2.57 

times wider than the real Doppler HWHM, and original spectra with apparent maximum absorption 

of 3% for the weak absorption and 10% for the strong absorption).  For each noise-level, 100 spectra 

were generated and processed.  We calculated the mean and standard deviation for each group of 100 

“measurements”.  The results of this third set of simulations are shown in the next figure. 
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Figure 54.  Simulated spectra affected by the apparatus-function:  Noise level effect on the measurement of 

the line intensity based on corrected absorption lines. 

 

 

The effect of a 5% of noise in the spectra is “catastrophic” for our algorithm, as it produces a 

spread of results which mean is biased with -45% error and a standard deviation of 45%.  A noise 

level of 1% produced already an unbiased mean but the spread of data is still quite big (standard 

deviation of 20%).  The mean is kept unbiased for noise levels of 1% or less.  As the noise level is 

reduced so is the spread of results, but when the noise level reaches 1 ppm, the standard deviation of 

the results is still slightly over 1%. 

The noise level of our measurements is in the order of 10-3 (i.e. 0.1%), so according to our 

simulation, if we perform many measurements (e.g. 100) the mean of our corrected measurements 

will give the correct value of the line intensity, but the measurements will show a spread of values 
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characterized by a standard deviation of about 8% (see Figure 54).  Therefore the result of our 

corrected measurement (which presented a bias of -7.4%) is in good agreement with the predictions 

of our simulations. 

In conclusion we could find the causes of the “strange” measurements successfully.  The new 

algorithm is able to correct the effect of the apparatus-function in the integrated absorbance 

measurements (as far as we know this is the first time that such effect is corrected).  Nevertheless our 

simulations demonstrated that the application of this algorithm would require an extremely high 

number of measurements in order to find the correct (unbiased) value of the line intensity (given the 

level of noise of our data).  Therefore we decided not to proceed any further with this diode laser, but 

measure with lasers which have an emission profile narrow enough, so that we do not have to 

deconvolutionate the spectra. 

Unfortunately we could not buy a new diode-laser on time to continue with the CO line 

intensity measurements (neither to measure CO partial pressures later), so that we had to leave the 

CO measurements like that and continued with the measurements on CO2. 
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5. Discussion of TDLAS for Application as Primary Standard for Partial 

Pressure Measurements 

 

Tunable Diode Laser Absorption Spectroscopy (TDLAS) is a well developed measuring 

principle which includes a variety of different techniques, like wavelength modulation spectroscopy, 

high frequency modulation spectroscopy, cavity enhanced absorption spectroscopy and others [50]4.  

Each of these techniques has its own advantages and disadvantages in dependency of different 

specific purposes and applications.  Wavelength modulation integrated spectroscopy is not the most 

sensitive of the TDLAS techniques, but for our purposes it has the important advantage that, when 

applied to the complete integration over an isolated absorption line, it permits to eliminate the form-

function of the Lambert-Beer law and leaves a simple equation (A(T)abs = S(T)·n·L) which input 

quantities can be traceably measured.  Furthermore, from that equation and the ideal gas law, it is 

possible to derive a simple measurement model for the partial pressure [Pi = Aabs·k·T·106/(S(T) L)].  

This model should permit the measurement of the gas partial pressure in absolute terms, i.e. without 

need of calibrating the spectrometer with some reference material of known partial pressure.  

Through the present research we have demonstrated the feasibility of that concept with the 

construction of a spectrometer (hardware), the development of IPSIAM (software) and its application 

to the absolute measurements of partial pressures of CO2 in N2 (using the R12 absorption line, which 

has its wave number center at 4987.308758 cm-1, according to HITRAN). 

Our method is based on the accurate measurement of a physical-chemical “constant” of the 

gas (a line intensity) and therefore it should be applicable to other gases that present “isolated” 

absorption lines, where the measurement of the corresponding line intensities can be done according 

to our procedure.   

Other procedures (and software in general) may be implemented using the same 3-channels 

spectrometer set up that we constructed (or even simpler versions).  An example on this regard is the 

pioneering work of E. Lanzinger and K. Jousten.  They used the same VCMHC utilized in this work 

to set up a one-channel spectrometer and the program MARTA (from Dr. M. Martin) to measure line 

intensities and partial pressures of CO [8, 47].  Their approach included the fit of the absorbance vs. 

wave-number curve with a model form-function.  At that time it was difficult to apply the GUM 

recommendations to that type of fits, but recently several methods including Monte-Carlo techniques 

[51] are being developed and some of them will be officially added to the GUM soon [52].  These 

techniques will facilitate the implementation of the GUM recommendations also to that type of 

                                                           
4   The mentioned techniques have been also implemented with quantum cascade lasers (QCL) and quantum 
cascade distributed feedback (QC-DFB) lasers by several groups.  Quantum cascade lasers are not diode lasers so 
that perhaps a broader term like Tunable Semiconductor Laser Absorption Spectroscopy (TSLAS) could be useful 
to designate all these techniques and the different semiconductor devices that may be used to produce the laser 
beams. 
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measurement models.  Another example is the development of a two-channel spectrometer by the 

Analytical Chemistry Group of the PTB in Braunschweig.  That group and our group at PTB-Berlin 

worked collaboratively to the development of our goals, although the emphasis at the PTB-

Braunschweig was the measurement of amount of substance using spectroscopic techniques5, and 

they use the fit-of-data-to-some-form-function method.  They also demonstrated the feasibility of 

their TDLAS approach through their own measurements of CO2 concentration in N2 [10].   

On the other hand, our IPSIAM programs could be used to control and process the results of 

other 3-channel spectrometers similar to our setup, i.e. our software is not limited to be used with our 

specific hardware, but can be implemented with similar versions of hardware (including of course 

other brand-names than those used in this research).  As with any implementation of a measurement 

method, care must be taken that the inherent conditions of validity for the application are met.  Two 

of those critical conditions for our method are: 

• the apparatus-function’s width must be negligible compared with the absorption line’s 

width and, 

• the transformation procedure that permit to convert the reference measurement (channel 2 

signal) in predicted original intensity for the absorption spectrum (channel 1 intensity if no-

absorption had taken place) must be kept working as accurate as possible.  Quality controls 

like our “zero-control” measurements and the observation of the residuals of the “ch1 

minus original ch1 prediction” graph at the wings of the absorption peak must be 

implemented to avoid an out-of-specification use of the measurement method. 

In our experiments we found two cases of out--of-specification conditions for applying our 

method, which we will comment next.   

The first out-of-specification- condition was the wide emission profile function of one of our 

diode-lasers, which emitted al laser signal about 2.5 wider than the CO absorption peak that we were 

trying to measure.  It is interesting to note that although in the old days of pre-laser spectroscopy the 

people was very well aware of the limitations imposed by the apparatus-function of the old 

spectrometers, nowadays it seems that that awareness has declined given the (usually) extreme 

narrow emission profile of most diode lasers compared with the Doppler-widened absorption lines of 

all substances.  Only in one [53] from many modern publications (including books and articles), we 

found caveats about the dependency of the line intensity measurement with real finite apparatus-

function width of any spectrometer.  Accordingly we did not find any deconvolution algorithm 

published which could be used to correcting data in order to eliminate the error introduced by the 

                                                           
5  It is worth noting that as part of our collaboration we, in Berlin, received the visit of Jorge Koelliker, from 
Braunschweig, who participated in a two weeks measurement campaign with us and used our IPSIAM programs 
to take some of the measurements used for the CO2 R12 line intensity determination.  He also made the selection 
of the 28 independent measurements out of a bigger number of measurements, where some of them could be 
considered as non-independent.  Other collaborative works include our measurement of the free spectral range of 
the Si Etalon used by the Braunschweig group (with our two-lines R32-R33 method explained in section 3.8.1), as 
well as the gravimetric preparation of the PTB-mixture made by the group of Braunschweig and used by us to 
corroborate the accuracy of our measurements.  We are working in the articles to publish the results of our 
collaborative work [9]. 
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apparatus function in the line intensity measurements.  On the contrary, all the deconvolution 

algorithms that we found (ref. from [18] to [23]) use the “constancy” of the area under the 

absorbance-vs.-wave-number-curve (i.e. the constancy of the line intensity) as part of their procedure 

to separate overlapped absorption peaks in measured spectra (even in those cases where the 

overlapping was caused by the finite apparatus-function width).  Therefore we developed and proved 

our own algorithm to correct for the influence of the apparatus function in the measurement of the 

line intensity in those cases when the apparatus function width is not negligible small compared with 

the measured absorption line width.  We applied this algorithm to the correction of CO spectra 

measured by us and we obtained results that are concordant with the values published by HITRAN, 

as we showed in section 4.8.  With help of a simulation that we programmed to find the statistical 

properties of our algorithm under the conditions of our measurements, we find that the results after 

the deconvolution have a spread of about 10% around the mean (unbiased) value and therefore they 

are not good enough to be used as part of a primary standard.  Nevertheless our algorithm may be 

useful even for primary standards under other conditions, e.g. when the apparatus function is about 

the same or smaller width than the absorption line.  Furthermore our deconvolution algorithm may be 

useful for other measuring instruments which require less accuracy than a primary standard, and are 

also based on TDLAS techniques, like some recently commercially available instruments [54]. 

The second out-of-specification- condition was found when we increased the amount of 

C49286 sample in the measuring chamber (in order to increase the area of the absorption peak) and 

as a consequence we produced a pressure-broadening of the observed peak, so that our observed 

wave-number window was not wide enough to copy the whole absorption peak.  In this case the main 

error was not introduced by the small area under the wings that we did not integrate, but by the 

erroneous localization of the predicted original intensity, which produced a reducing effect for the 

values of the absorption coefficients in the absorption peak (i.e. all the absorbance readings were 

erroneously smaller because of the systematic effect). 

As shown in the “Results and analysis” chapter, when our system is used according to its 

specifications, it is capable of measuring line intensities with relative uncertainties of 0.50% (k = 1).  

This represents an improvement in the accuracy of this type of measurement of at least a factor of 4 

(and probably a factor of 10) compared with the results published in HITRAN, which states 

uncertainties between 2% and 10% for the same lines measured by us.  The improvement in accuracy 

reached in this work is not only quantitative, but also qualitative, as our measurements, as far as we 

know, are the first traceable measurements of integrated absorbances and line intensities of the 

studied transitions of CO2.  Their uncertainties were calculated in fully agreement with the GUM 

recommendations   

The results of our line intensity measurements can be used in a wide spectrum of applications 

that have the line intensity as part of their input quantities.  For instance we used our line intensity 

value as input quantity for partial pressure measurements.  Our partial pressure measurements have 

relative uncertainties of 0.77% (k = 1) and, as far as we know, they are the first non-gravimetric 

traceable partial pressure measurements of a gas.  The accuracy of our measurements was 
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experimentally confirmed through its application to the measurement of partial pressure of CO2 on 

certified mixtures of known concentrations (mixture C49286 from BAM and PTB-mixture prepared 

at the PTB in Braunschweig).  In both mixtures our measurement was in agreement with the 

reference gravimetric values for the CO2 content (our bias: -0.37% for the C49286 mixture and 

-0.08% for the PTB-mixture) and the dispersion of repeated measurements of the same mixture (with 

a new sample of the PTB-mixture for each new measurement) shows the same standard deviation as 

predicted from our GUM-compliant uncertainty calculations (relative standard deviation = 0.77% = 

relative standard uncertainty). 

The metrological level reached by our measuring installation permits to consider it as a 

primary standard for partial pressure measurements of CO2. 
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6. Conclusions 

 

Integrated absorbance spectroscopy is a measuring technique that can be used to make 

traceable measurements of line intensities and partial pressures.  To this end several conditions must 

be met in several fields including the experimental setup, processing system and the implementation 

of a measurement assurance program capable to demonstrate the traceability of the measurement 

results. 

We have demonstrated this possibility through the setting up of a 3 channel TDLAS 

spectrometer, the development of our IPSIAM software, and the implementation of the key elements 

of a measurement assurance program as part of our experiment.  This measurement assurance 

program included: 

• The selection of a measurement model that could deliver accurate results which 

uncertainties may be thoroughly calculated according to GUM.  To this end we avoided the 

use of form-functions as part of the measurement model, which was the Lambert-Beer law.  

Instead we choose to perform a direct numerical integration of the absorbance curve.   

• The traceable calibration of the measuring instruments that we used to measure the input 

quantities of our measurement model.  These calibrations were performed by the respective 

laboratories of the PTB.  Therefore our traceability chain is as short as possible and a high 

level of accuracy was achieved for all the measurements of our input quantities. 

• The electronic and written documentation of all the information involved in making our 

measurements including the methods of measurement, the algorithms, the measurement 

procedures, the calibration of the measuring instruments and the processing of the 

measurement data.  All the original files with raw data and their distinctive names were 

backed up.  The names of those files were passed on along the analysis process and the 

whole workbook, where all the operations are made to obtain the results of our 

measurements were also backed up.  In this way each one of our measurements was clearly 

connected to the source of information and processing that permitted its result, those 

sources being backed up.  Our results are 100% auditable.  

• Independent traceable realizations of the measured quantity to check our results.  To this 

end we used a Certified Reference Material from BAM and a certified mixture from PTB-

Braunschweig.  Our results agreed with those measuring standards. 

• The confirmation of the validity of our (GUM-compliant) uncertainty determination model 

through the study of the variability of repeated measurements.  The confirmation was 

definitively positive. 
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With the confidence that brings the implementation of a measuring assurance program to 

support the results of a traceable measurement, our system was capable to measure several line 

intensities of CO2 (R10, R12, R14, R16 of the first overtone of the fundamental band) with a relative 

expanded uncertainty of 1.0% (k = 2, about 95% level of confidence), (1.4% for individual 

measurements); which signifies an improvement in the level of accuracy of a factor of 4 (probably a 

factor of 10) in terms of the uncertainty figures given in HITRAN; but even more important, our 

measures represent an enormous qualitative improvement in these types of measurements because 

they are, as far a we know, the first measurements of these line intensities having the very important 

property of being traceable. 

With the same confidence mentioned in the previous paragraph, our system was capable to 

measure partial pressures of CO2 with a relative expanded uncertainty of 1.5% (k = 2, about 95% 

level of confidence).  As far as we know these measurements (and the similar measurements made by 

the partner research group in PTB-Braunschweig) are the first traceable measurements of partial 

pressures of CO2 (besides from gravimetric measurements, which of course can be traceable, but 

gravimetric techniques are used to prepare samples, not to measure the partial pressure of a gas in 

some unknown sample).  

As part of our investigations we had to deal with laser emission functions that implied a non-

negligible apparatus-function for our spectrometer.  This led us to develop a new algorithm to correct 

for this effect on the measured spectra (as far as we know, this is the first time that such correction 

has been made for integrated absorbance measurements).  We made several simulations based on an 

implementation of our deconvolution algorithm in LabVIEW, and compared the results of those 

simulations with the results of the application of our algorithm to measured spectra.  There was 

agreement between the measured and the simulated results. 

Whenever possible we analyzed the measured data in the framework of linear analysis because 

it permitted a thorough statistical interpretation of the data; plus other benefits, like eliminating the 

error introduced by a constant offset in the result of a measurement (if that measurement is evaluated 

as the slope of a linear relation) and permitting the corroboration of validity for an assumed (linear) 

physical model.  To this end we reviewed the work done by statisticians on this regard.  We found 

that Ordinary Least Squares (regression analysis) should be applied only to predict ordinate-data 

based on the measurement of abscissa-data.  For applications seeking a physical interpretation of the 

slope and intercept (as measurable quantities), a Functional-Structural method should be applied.  

Therefore we applied either Ordinary Least Squares or a Functional-Structural method, as 

appropriate for the case at hand, along a variety of applications. 

Several tasks lie ahead to continue with this line of research.  Some of them are listed next:   

• The spectrometer and its IPSIAM may be used to obtain high accuracy traceable 

measurements of line intensities for other transitions of CO2 and for other gases as well.   

• Our deconvolution algorithm may be improved using a Bayesian approach, which could be 

interesting to further investigate the effect of the apparatus-function (which never is the 
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ideal Dirac’s delta) upon the line intensity measurements (especially if further improvement 

in the accuracy of this type of measurements is sought).   

• Other, more sensible TDLAS techniques may be investigated in order to make traceable 

measurements with them.  As part of this investigation we studied the theoretical aspects of 

the high frequency modulation technique on this regard and found that it was not suitable to 

set up a primary standard for line intensity and partial pressure measurements because the 

modulation factor represented a calibration factor that does not allow to realize the 

measurement in absolute terms, but further investigation is necessary to draw definitive 

conclusions about that issue. 

• Our system may be used to complement line-shape studies in which different form-

functions are investigated to find their suitability to describe the real form of some 

absorption line.  Because the non-linearity of the form-functions, the optimization methods 

used to find their parameters produce results that are not independent from each other and 

there is always risk that the algorithm gets stacked in some local minimum instead of 

finding the “real” solution.  Our system could be used to independently measure the area 

under the absorbance curve; this parameter is then used and kept fixed by the fit algorithm, 

which in turn can then find more accurately the rest of parameters, like the half with at half 

maximum, the Doppler-component-wide, the Lorentz-component-wide etc.   

• Our IPSIAM may be used to process the data of a spectrometer having a temperature-

controlled chamber.  This would open a very good perspective to be able to measure the 

temperature dependency of line intensities and form-functions (in connection with the 

previous paragraph).  On this regard it is worth to note the success achieved by us in the 

accurate measuring of the gas temperature (in spite of our lack of control of the chamber 

temperature).  We achieved a gas temperature measurement relative uncertainty of only 

0.004% (k = 2, about 95% level of confidence).  Our strategy is worth to be recommended 

for all the applications which need accurate temperature measurements of the gas under 

study.   

Finally we would like to comment that, given the successful construction of the spectrometer 

and the development of its IPSIAM software for its implementation as a primary standard for partial 

pressure measurements; the Vacuum Laboratory at the PTB may bring calibration services of partial 

pressure measuring instruments, at least for CO2 for the moment, and probably also for CO and other 

gases in the future. 
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7. Appendix 

 

7.1. Description of Data Manipulation for Line Intensity and Partial Pressure 

Measurements 

 

In order to be able to gather and process the amount of data needed to implement our method 

of measurement, a high degree of automatization for the collection and analysis of data was needed.  

To accomplish such automatization, we have written a group of programs including LabVIEW 

programs, Batch files with DOS-like commands, several EXCEL workbooks and several EXCEL 

macros; distributed in several folders of a special directory structure.  All the programs and structures 

are part of an Integrated Processing System for Integrated Absorbance Measurements (IPSIAM). 

The IPSIAM LabVIEW program stores the oscilloscope readings in files (named here o-files).  

Each o-file includes 5 columns of data:  The first column is a time reading and corresponds to the 

time order of the data measured by the oscilloscope:  Each time step is equal to the physical time 

span between two measured points of the oscilloscope scans.  The other 4 columns are in order the 

readings from detectors one to three and from the ramp voltage.  The digitizing oscilloscope is used 

in average mode, typically accumulating 75 scans per measurement.  Each stored o-file corresponds 

to just one mean scan which is the result of 75 individual scans.  The date and time (hh:mm:ss) is 

integrated in the o-file name, producing a new stored o-file for each scan.  As part of the 

measurement procedure the o-file name must include a “wildcard” to indicate which type of 

measurement is being registered and to permit the corresponding automatic handling of the o-files by 

the IPSIAM analysis programs (to be described later).  The wildcards are: 

• -null- for null-absorption scan, 

• -part-  for partial-absorption scan and 

• -tot-  for total-absorption scan. 

Other useful information is also included as part of the o-file names.  The part of the o-file 

name including that useful information is called here the file base name.  We operate the oscilloscope 

with a sample size of 2500 points; therefore each o-file contains 2500 measuring points per column, 

for a total of 12500 points per o-file. 

If the operator chooses so, the IPSIAM LabVIEW programs can also read and/or store the 

readings of the PMD and TMD in files.  The files containing the PMD and TMD data are called here 

m-files (from multimeter - files) and their names incorporate also some wildcards to permit the 

automatic handling of the data by the IPSIAM analysis programs.  These wildcards are: 

• -img-  for pressure measurements made with the ionization gauge. 
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• -press-cdg-  for pressure measurements made with the CDG. 

• -press-srg1-  for pressure measurements made with the SRG1. 

• -press-srg2-  for pressure measurements made with the SRG2. 

• -resis1-   for temperature measurements made with the internal PT100 #1 

• -resis2-   for temperature measurements made with the internal PT100 #2 

• -keithley-   for temperature measurements made with the 7 PT100 of the Keithley 

Scanner. 

If these measurements are stored, the IPSIAM LabVIEW program automatically incorporates 

the date and hour as part of their m-file names, which are completed with their wildcards and the 

base name of the corresponding o-file which was written at the “same” time.  If the base name is not 

changed by the operator, then the m-files accumulates successive readings under the same m-file 

name, until the hourly change gives a new hour figure, which being incorporated in the m-file name 

produces a new m-file for storing. 

The IPSIAM analysis programs take the measured raw data stored by the IPSIAM LabVIEW 

program in the o-files and in the m-files and process them until the final result is found: either the 

line intensity or the partial-pressure.  IPSIAM can handle any number of o-files from 3 (one null, one 

part, one tot) to 4500 (1500 of each null, part and tot) and their corresponding m-files.  As part of the 

strategy of general applicability, we have devised a method in which the IPSIAM creates a series of 

name-files in which the original m-files and o-files names are stored so that the data files can be 

renamed to some standard numbered names which are used by the rest of the programs of IPSIAM.  

In this way clarity is kept about which data is being analyzed and the name of the files containing the 

raw data is passed along until the final result is obtained.   

In order to document all the steps in using IPSIAM, we have written two sets of instructions 

for the operator:  The general analysis protocol and the 0-normalization-protocol.  They give the 

specific instructions that must be followed to complete the analysis procedure and contain the fields 

to document the decisions made by the operator. 

The IPSIAM directory structure contains fifteen sub-folders, each capable to handle up to 300 

o-files (100 null-files 100 partial-files and 100 total-files).  The operator must copy the o-files 

distributed in those folders as needed, for instance using only one folder if there is less than 100 files 

of each type.  In each sub-folder the “000rntxt.bat” must be called in order to copy the list of original 

file names and then rename the o-files with the generic names:  null-xx.txt, part-yy.txt and tot-zz.txt, 

where “xx”, “yy” and “zz” stands for consecutive numbers which goes from 01 to the total number of 

null- partial- and total- files respectively.  Then, macros in the workbook “000filenames.xls” read the 

text-format lists of names and create its equivalents in excel tables saved with excel format.  Macros 

in the workbook “00txt2xls.xls” read the excel file name tables and count the total number of files for 

each type of scan (null-, part-, tot-) so that the next macro – “open txt and save xls” - can open each 

one of these files and save it with excel format (null-xx.xls, part-yy.xls and tot-zz.xls, respectively).  

Each one of the null-xx files are considered repetitions of the same null-measurement.  The same 
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applies for the part-yy and tot-zz files.  So the next step, accomplished by the macros in the 

workbook “actualizes.xls”, is to open and actualize the workbooks “asnull-v.xls”, “aspart-v.xls” and 

“astot-v.xls”, where “v” stands for a letter varying from a to d (fifteen workbooks in total), which 

have links to the null- part- and tot- files respectively.  Each as***-v workbook calculates the mean 

and standard deviation of a column of the original files, or more explicitly: 

• asnull-a.xls calculates two columns where each row is the mean (in the first column) and 

standard deviation (in the second column) of all the entries at that same row and first 

column of all the null-xx files (time measurement), 

• asnull-b.xls calculates two columns where each row is the mean (in the first column) and 

standard deviation (in the second column) of all the entries at that same row and second 

column of all the null-xx files (signal from detection channel - detector #2 measurement), 

• asnull-c.xls calculates two columns where each row is the mean (in the first column) and 

standard deviation (in the second column) of all the entries at that same row and third 

column of all the null-xx files (signal from reference channel - detector #1 measurement), 

• asnull-d.xls calculates two columns where each row is the mean (in the first column) and 

standard deviation (in the second column) of all the entries at that same row and forth 

column of all the null-xx files (signal from frequency-marker channel - detector #3 

measurement), and 

• asnull-e.xls calculates two columns where each row is the mean (in the first column) and 

standard deviation (in the second column) of all the entries at that same row and fifth 

column of all the null-xx files (signal from function generator – ramp voltage 

measurement). 

The equivalent explanation applies to the aspart-v.xls and astot-v.xls workbooks.  Each of 

these fifteen “as***-v.xls” workbooks also reads and stores the list of names of the original files they 

are processing. 

Once all the “as***-v.xls” workbooks have been actualized in all the sub-folders used, the 

operator goes to the parent folder and opens and actualize the workbooks “average-stddev-abs-

null.xls”, “average-stddev-abs-part.xls” and “average-stddev-abs-tot.xls”.  On opening these 

workbooks update their links to all the “as***-v.xls” files in all the sub-folders, so that the overall 

average and standard deviation of each row of the five columns are calculated for the null-, part-and 

tot- scans respectively.   

In a similar way as described above, the m-files are read and processed to give their 

information to the last workbook of IPSIAM.  This last workbook is called “0normalization-

yymmdd-particular-name.xls”, where “yymmdd” stands for the year, month and day of the 

measurement date of the files being processed, and the “particular-name” contains the rest of 

information given by the operator to identify this final-result workbook properly.  That information is 

given through a “save as” command so that the entire workbook is reproduced and the final result is 

saved in the workbook containing also all the information needed to evaluate the whole 
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measurement.  When the “0-normaliztion-***” workbook is updated, its links to the “average-stddev-

abs-null.xls”, “average-stddev-abs-part.xls”, “average-stddev-abs-tot.xls workbooks, as well as to the 

press-01.xls, resis-01.xls, srg-01.xls and srg-02.xls workbooks are actualized.  Based on this 

information, and in some instructions and data given by the operator after looking to some control-

graphs, this workbook performs automatically all the operations needed to find the “absorbance vs. 

wave-number” curve (see sections 3.7 and 3.8) and performs its numerical integration to give what 

we call the integrated absorbance or absorbance-area Aabs (see section 3.9).   

This workbook calculates also the gas density n (see section 3.4) and the total absorbing path-

length L (see section 3.3.2), so that the line intensity S at the measured temperature T is calculated 

also in this workbook as: 

( 207 ) 

 

Finally the transformation to reference temperature T0 of both, the integrated absorbance 

Aabs(T0) and the line intensity S(T0) is made. 

 

( 208 ) 

 

A modified version of the “0-normaliztion-***.xls” workbook, called 

“0 - pp -normalization - ***.xls” performs the same tasks as the previous one, but, at the end of 

IPSIAM, this program calculates the partial pressure of the absorbing gas Pi based on the known line 

intensity S of the absorption line observed, and on the other measurements including the absorbance-

area Aabs and temperature T, according to the formula: 

 

( 209 ) 

 

When the absorbing gas is a component of known concentration c of a certified mixture, the 

measurement of the partial pressure Pi is verified through the measurement of the total pressure P 

and the relation: 

( 210 ) 
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7.2. Certificates of Calibration (mini-copies) 

 

 

 

 

 

 

 



 158

 

 

 

 

 

 

 

 

 

 



 159

 

 

 

 

 

 

 

 

 

 

 



 160

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 161

 

 

 

 

 

 

 



 162

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 163

 

 

 

 

 

 

 

 

 

 

 



 164

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 165

 

 

 

 

 

 

 

 

 

 

 



 166

 

 

 

 

 

 

 

 



 167

 

7.3. IPSIAM-Results-File names 

 

 

Table 25.  IPSIAM-Results-Files for the CO2 R12 line intensity measurement. 

File Name File

Consecutive

Number

0normalization-050330-HC-N10-K1-0p4torr-scan7from12.xls 1

0normalization-050331-HC-N10-K1-01-0p4torr-centered-1.xls 2

0normalization-050331-HC-N10-K1-02-0p5torr-centered.xls 3

0normalization-050331-HC-N10-K1-03-0p65torr-centered.xls 4

0normalization-050331-HC-N10-K1-04-1p02torr-centered.xls 5

0normalization-050331-HC-N10-K1-0p44torr-centered-1.xls 6

0normalization-050404-HC-N16-K2-part-175033-to-175103-centered-1.xls 7

0normalization-050404-HC-N16-K2-part-180033-1.xls 8

0normalization-050404-HC-N16-K2-part-180203-to-180333-centered-1.xls 9

0normalization-050404-HC-N16-K2-part-181703-to-181733-centered-1.xls 10

0normalization-050404-HC-N16-K2-part-181803-to-181903-centered-1.xls 11

0normalization-050217-HC-N14-stat-p55-centered-01.xls 12

0normalization-050217-HC-N14-stat-p55-centered-02.xls 13

0normalization-050217-HC-N14-stat-p55-centered-03.xls 14

0normalization-050403-HC-N14-K1-0p6torr-1scan18-38-33-centered-1.xls 15

0normalization-050403-HC-N14-K1-0p8torr-1scan17-43-03-centered-1.xls 16

0normalization-050404-HC-N22-K3-0p4torr-scan9a10de10-200003-200033-centered-f1s30-1.xls 17

0normalization-050404-HC-N22-K3-0p5torr-scan3a4de10-200503-200533-centered-f1s30-1.xls 18

0normalization-050404-HC-N22-K3-0p66torr-scan8a9de10-202333-202403-centered-f1s30-1.xls 19

0normalization-050404-HC-N22-K3-0p6torr-scan8a9de11-201503-201533-centered-f1s30-1.xls 20

0normalization-050404-HC-N18-K1-0p5torr-1scan-14-15-33-centered-1.xls 21

0normalization-050404-HC-N18-K1-1scan-15-30-03-0p6torr-centered-1.xls 22

0normalization-050404-HC-N18-K1-1scan-15-37-33-0p4torr-centered-1.xls 23

0normalization-050405-HC-N28-K4-0p39torr-scan1a13de13-181033-181633-f1s30-1.xls 24

0normalization-050405-HC-N28-K4-0p45torr-scan1a12de12-173203-173733-f1s30-1.xls 25

0normalization-050405-HC-N28-K4-0p4torr-scan1a17de17-172003-172833-f1s30-1.xls 26

0normalization-050405-HC-N28-K4-0p54torr-scan1a12de12-174003-174533-f1s30-1.xls 27

0normalization-050405-HC-N28-K4-0p57torr-scan1a12de12-174903-175433-f1s30-1.xls 28
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Table 26.  Zero control measurements that were taken “parallel” to the R12 line intensity measurements. 

"Zero Control" File Name A abs (T )

0normalization-050404-HC-N18-K1-zero-control.xls -1.0108E-04

0normalization-050331-HC-N10-K1-02-zero-control-non-centered.xls -8.8098E-05

0normalization-050331-HC-N10-K1-zero-control-01-non-centered.xls 9.2165E-05

0normalization-050331-HC-N10-K1-zero-control-04-1p02torr-non-centered.xls -6.8014E-05

0normalization-050403-HC-N14-K1-final-zero-control-1.xls 4.9964E-05

0normalization-050330-HC-N10-K1-zero-control-non-centered.xls -6.1624E-05

0normalization-050217-HC-N14-stat-p55-zero-control-01.xls 1.3153E-06

0normalization-050217-HC-N14-stat-p55-zero-control-02.xls 6.1576E-06

0normalization-050217-HC-N14-stat-p55-zero-control-03.xls 9.5759E-06

0normalization-050404-HC-N22-K3-cero-control-scan10a12de14-211633-211733-f1s30-1.xls 5.3006E-07

0normalization-050404-HC-N22-K3-cero-control-scan13a14de14-211812-211833-f1s30-1.xls -2.0010E-05

0normalization-050404-HC-N22-K3-cero-control-scan1a3de14-211203-211303-f1s30-1.xls -3.5591E-05

0normalization-050404-HC-N22-K3-cero-control-scan4a6de14-211333-211433-f1s30-1.xls -5.4089E-05

0normalization-050404-HC-N22-K3-cero-control-scan7a9de14-211503-211603-f1s30-1.xls -2.9805E-05

0normalization-050405-HC-N28-K4-cero-control-scan10a11de13-183411-183433-f1s30-1.xls 2.3101E-05

0normalization-050405-HC-N28-K4-cero-control-scan12a13de13-183503-183533-f1s30-1.xls 1.8487E-05

0normalization-050405-HC-N28-K4-cero-control-scan1a13de13-182933-183533-f1s30-1.xls 1.9260E-05

0normalization-050405-HC-N28-K4-cero-control-scan1a3de13-182933-183033-f1s30-1.xls 2.3347E-05

0normalization-050405-HC-N28-K4-cero-control-scan4a6de13-183103-183203-f1s30-1.xls 4.4615E-06

0normalization-050405-HC-N28-K4-cero-control-scan7a9de13-183233-183333-f1s30-1.xls 2.8091E-05

Mean [A abs (T )] = -9.093E-06

Standard Deviation [A abs (T )] = 4.810E-05

 

 

 

Table 27.  Results of partial pressure measurements of CO2 in mixture C49286:  IPSIAM-results file names 

and numbers. 

File Name File

Consecutive

Number

0normalization-pp-050618-HC-CO2R12-K6-N64-194050-194550-mixture0p1perc-9p84torr.xls 1

0normalization-pp-050620-HC-CO2R12-K6-N64-190120-190550-mixture0p1perc-1000TCDG-56p3torr.xls 2

 



 169

 

 

 

Table 28.  Results of partial pressure measurements of CO2 in PTB-mixture:  IPSIAM-results file names 

and numbers. 

File Name File

Consecutive

Number

0normalization-pp-050525-HC-CO2R12-K1-N14-scan-1-to-11-of-11-235450-235950-
mixture5perc-4p92torr-1.xls 1

0normalization-pp-050601-HC-CO2R12-K1-N14-181550-182050-scan-1-to-11-of-11-
mixture5perc-7p28torr-1.xls 2

0normalization-pp-050601-HC-CO2R12-K1-N14-183120-183520-scan-1-to-10-of-10-
mixture5perc-8p56torr-1.xls 3

0normalization-pp-050525-HC-CO2R12-K2-N24-scan-1-to-9-of-9-234150-234550-
mixture5perc-4p92torr-1.xls 4

0normalization-pp-050601-HC-CO2R12-K2-N24-175120-175550-scan-1-to-10-of-10-
mixture5perc-6p83torr-1.xls 5

0normalization-pp-050601-HC-CO2R12-K2-N24-180250-180750-scan-1-to-11-of-11-
mixture5perc-7p28torr-1.xls 6

0normalization-pp-050525-HC-CO2R12-K3-N34-scan-1-to-11-of-11-232950-233450-
mixture5perc-4p92torr-1.xls 7

0normalization-pp-050531-HC-CO2R12-K3-N34-224420-224950-scan-1-to-12-of-12-
mixture5perc-6p04torr-ncg-1.xls 8

0normalization-pp-050531-HC-CO2R12-K3-N34-225620-225950-scan-1-to-8-of-8-
mixture5perc-6p53torr-ncg-1.xls 9

0normalization-pp-050525-HC-CO2R12-K4-N44-scan-1-to-12-of-12-231720-232250-
mixture5perc-4p92torr-1.xls 10

0normalization-pp-050531-HC-CO2R12-K4-N44-205020-205550-scan-1-to-12-of-12-
mixture5perc-4p29torr-ncg-1.xls 11

0normalization-pp-050531-HC-CO2R12-K4-N44-210120-210950-scan-1-to-5-and-11-to-
15-of-15-mixture5perc-4p02torr-ncg-1.xls 12

0normalization-pp-050525-HC-CO2R12-K5-N54-scan-1-to-12-of12-225320-225850-
mixture5perc-3p79torr-1.xls 13

0normalization-pp-050525-HC-CO2R12-K6-N64-scan-1-to-12-of12-223420-223950-
mixture5perc-2p72torr-1.xls 14

0normalization-pp-050531-HC-CO2R12-K6-N64-184450-184850-scan-1-to-9-of-9-
mixture5perc-2p11torr-1.xls 15
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7.4. Glossary 

 

The terms included in this glossary are reproduced from the given sources.   
 
 
Measurement (VIM 2.1) 

 
Set of operations having the object of determining a value of a quantity 
 
Note:  The operations may be performed automatically. 
 
Uncertainty (of the measurement) (VIM 3.9) 
 
Parameter, associated with the result of a measurement, that characterizes the dispersion of the values 
that could reasonably be attributed to the measurand. 
 
Notes: 
1.  The parameter may be, for example, a standard deviation (or a given multiple of it), or the half- 
width of an interval having a stated level of confidence. 
2.  Uncertainty of measurement comprises, in general, many components. Some of these components 
may be evaluated from the statistical distribution of the results of series of measurements and can be 
characterized by experimental standard deviations.  The other components, which also can be 
characterized by standard deviations, are evaluated from assumed probability distributions based on 
experience or other information. 
3.  It is understood that the result of the measurement is the best estimate of the value of the 
measurand, and that all components of uncertainty, including those arising from systematic effects, 
such as components associated with corrections and reference standards, contribute to the dispersion. 
 
Other notes and concepts from GUM about measurement and uncertainty: 
 
“2.2.4  The definition of uncertainty of measurement given in 2.2.3 is an operational one that focuses 
on the measurement result and its evaluated uncertainty.  However, it is not inconsistent with other 
concepts of uncertainty of measurement, such as 
 A measure of the possible error in the estimated value of the measurand as provided by the 
 result of a measurement; 
 An estimate characterizing the range of values within which the true value of a measurand lies 
 (VIM, first edition, 1984, entry 3.09). 
Although these two traditional concepts are valid as ideals, they focus on unknowable quantities: the 
“error” of the result of a measurement and the “true value” of the measurand (in contrast to its 
estimated value), respectively. Nevertheless, whichever concept of uncertainty is adopted, an 
uncertainty component is always evaluated using the same data and related information.  (See also 
E.5)” 
 
“3.1  Measurement 
 
3.1.1  The objective of a measurement (B.2.5) is to determine the value (B.2.2) of the measurand 
(B.2.9), that is, the value of the particular quantity (B.2.1, note 1) to be measured. A measurement 
therefore begins with an appropriate specification of the measurand, the method of measurement 
(B.2.7), and the measurement procedure. (B.2.8). 
Note:  The term “true value” (see annex D) is not used in this Guide for the reasons given in D.3.5, 
the terms “ value of a measurand” ( or a quantity) and “ true value of a measurand” ( or a quantity) 
are viewed as equivalent. 
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3.1.2  In general, the result of a measurement (B.2.11) is only an approximation or estimate (C.2.26) 
of the value of the measurand and thus is complete only when accompanied by a statement of the 
uncertainty (B.2.18) of that estimate. 
3.1.3  In practice, the required specification or definition of the measurand is dictated by the required 
accuracy of measurement (B.2.14). The measurand should be defined with sufficient completeness 
with respect to the required accuracy so that for all practical purposes associated with the 
measurement its value is unique. It is in this sense that the expression “value of the measurand” is 
used in this Guide. 
Example:  If the length of a nominally one- metre long steel bar is to be determined to micrometer 
accuracy, its specification should include the temperature and pressure at which the length is defined.  
Thus the measurand should be specified as, for example, the length of the bar at 25,00°C and 101 325 
Pa (plus any other defining parameters deemed necessary, such as the way the bar is to be supported). 
However, if the length is to be determined to only millimetre accuracy, its specification would not 
require a defining temperature or pressure or a value for any other defining parameter. 
 
Note:  Incomplete definition of the measurand can give rise to a component of uncertainty 
sufficiently large that is must be included in the evaluation of the uncertainty of the measurement 
result (see D.1.1, D.3.4, and D.6.2) 
 
3.1.4  In many cases , the result of a measurement is determined on the basis of series of observations 
obtained under repeatability conditions (B.2.15, note 1) 
 
3.1.5  Variations in repeated observations are assumed to arise because influence quantities (B.2.10) 
that can affect the measurement result are not held completely constant. 
 
3.1.6  The mathematical model of the measurement that transforms the set of repeated observations 
into the measurement result is of critical importance because, in addition to the observations, it 
generally includes various influence quantities that are inexactly known.  This lack of knowledge 
contributes to the uncertainty of the measurement result, as do the variations of the repeated 
observations and any uncertainty associated with the mathematical model itself. 
 
3.1.7  This Guide treats the measurand as a scalar (a single quantity).  Extension to a set of related 
measurands determined simultaneously in the same measurement requires replacing the scalar 
measurand and its variance (C.2.11, C.2.20, C.3.2) by a vector measurand and covariance matrix 
(C.3.5).  Such a replacement is considered in this Guide only in the examples (see H.2, H.3 and H.4) 
 
3.2  Errors, effects and corrections. 
 
3.2.1  In general, a measurement has imperfections that give rise to an error (B.2.19) in the 
measurement result.  Traditionally, an error is viewed as having two components, namely a random 
(B.2.21) component and a systemic (B.2.22) component. 
Note:  Error is an idealized concept and errors cannot be known exactly. 
3.2.2  Random error presumably arises from unpredictable or stochastic temporal and spatial 
variations of influence quantities. The effects of such variations, hereafter termed random effects, 
give rise to variations in repeated observations of the measurand. Although is not possible, to 
compensate for the random error of a measurement result, it can usually be reduced by increasing the 
number of observations, its expectation or expected value (C.2.9, C.3.1) is zero. 
 
Notes: 
1  The experimental standard deviation of the arithmetic mean or average of a series of observations 
(see 4.2.3) is not the random error of the mean, although it is so designated in some publications. It is 
instead a measure of the uncertainty of the mean due to random effects. The exact value of the error 
in the mean arising from these effects cannot be known. 
2  In this Guide, great care is taken to distinguish between the terms “error” and “uncertainty”. They 
are not synonyms, but represent completely different concepts: they should not be confused with one 
another or misused. 
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3.2.3  Systematic error, like random error, cannot be eliminated but it too can often be reduced. If a 
systematic error arises from a recognized effect of a influence quantity on a measurement result, 
hereafter termed a systematic effect, the effect can be quantified and, if it is significant in size 
relative to the required accuracy of the measurement, a correction (B.2.23) or correction factor 
(B.2.24) can be applied to compensate for the effect. It is assumed that, after correction, the 
expectation or expected value of the error arising from a systematic effect is zero. 
 
Note:  The uncertainty of a correction applied to a measurement result to compensate for a systematic 
effect is not the systematic error, often termed bias, in the measurement result due to the effect as it is 
sometimes called.  It is instead a measure of the uncertainty of the result due to the incomplete 
knowledge of the required value of the correction. The error arising from imperfect compensation of 
a systematic effect cannot be exactly known. The terms “ error” and “ uncertainty” should be used 
properly and care taken to distinguish between them. 
 
3.2.4  It is assumed that the result of a measurement has been corrected for all recognized significant 
systemic effects and that every effort has been made to identify such effects. 
EXAMPLE  -  A correction due to the finite impedance of a voltmeter used to determine the potential 
difference (the measurand) across a high-impedance resistor is applied to reduce the systematic effect 
on the result of the measurement arising from the loading effect of the voltmeter. However, the 
values of the impedances of the voltmeter and resistor, which are used to estimate the value of the 
correction and which are obtained from other measurements, are themselves uncertain.  These 
uncertainties are used to evaluate the component of the uncertainty of the potential difference 
determination arising from the correction and thus from the systematic effect due to the finite 
impedance of the voltmeter. 
 
Notes: 
1  Often, measuring instruments and systems are adjusted or calibrated using measurement standards 
and reference materials to eliminate systematic effects; however, the uncertainties associated with 
these standards and materials must still be taken into account. 
2  The case where a correction for a known significant systematic effect is not applied is discussed in 
the note 6.3.1 and in F.2.4.5. 
 
3.3  Uncertainty   
 
3.3.1  The uncertainty of the result of a measurement reflects the lack of exact knowledge of the 
value of the measurand (see 2.2) The result of a measurement after correction for recognized 
systematic effects is still only an estimate of the value of the measurand because of the uncertainty 
arising from random effects and from imperfect correction of the result for systematic effects. 
 
Note:  The result of a measurement (after correction) can unknowably be very close to the value of 
the measurand (and hence have a negligible error) even though it my have a large uncertainty.  Thus 
the uncertainty of the result of a measurement should not be confused with the remaining unknown 
error. 
 
3.3.2  In practice, there are many possible sources of uncertainty in a measurement, including: 
a)  incomplete definition of the measurand; 
b)  Imperfect realization of the definition of the measurand; 
c)  Non representative sampling – the sample measured may not represent the defined measurand; 
d)  Inadequate knowledge of the effects of environmental conditions on the measurement or 
imperfect measurement of environmental conditions; 
e)  Personal bias in reading analogue instruments; 
f)  Finite instrument resolution or discrimination threshold; 
g)  Inexact values of measurement standards and reference materials; 
h)  Inexact values of constants and other parameters obtained from external sources and used in the 
data-reduction algorithm; 
i)  Approximations and assumptions incorporated in the measurement method and procedure; 
j)  Variations in repeated observations of the measurand under apparently identical conditions. 
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These sources are not necessarily independent, and some of sources a) to i) may contribute to source 
j).  Of course, an unrecognized systematic effect cannot be taken into account in the evaluation of the 
uncertainty of the result of a measurement but contributes to its error. 
 
3.3.3  Recommendation INC-1 (1980) of the Working Group on the Statement of Uncertainties 
groups uncertainty components into two categories based on their method of evaluation, “A” and “B” 
(see 0.7, 2.3.2 and 2.3.3).  These categories apply to uncertainty and are not substitutes for the words 
“random” and “systematic”.  The uncertainty of a correction for a known systematic effect may in 
some cases be obtained by a Type A evaluation while in other cases by a Type B evaluation, as may 
the uncertainty characterizing a random effect. 
 
Note:  In some publications uncertainty components are categorized as “random” and “systematic” 
and are associated with errors arising from random effects and known systematic effects, 
respectively.  Such categorization of components of uncertainty can be ambiguous when generally 
applied.  For example, a “random” component of uncertainty in one measurement may become a 
“systematic” component uncertainty in another measurement in which the result of the first 
measurement is used as an input datum.  Categorizing the methods of evaluating uncertainty 
components rather than the components themselves avoids such ambiguity. At the same time, it does 
not preclude collecting individual components that have been evaluated by the two different methods 
into designated groups to be used for a particular purpose (see 3.4.3). 
 
3.3.4  The purpose of the Type A and Type B classification is to indicate the two different ways of 
evaluating uncertainty components and is for convenience of discussion only; the classification is not 
meant to indicate that there is any difference in the nature of the components resulting from the two 
types of evaluation.  Both types of evaluation are based on probability distributions (C.2.3) and the 
uncertainty components resulting from either type are quantified by variances or standard deviations. 
 
3.3.5  The estimated variance u2 characterizing an uncertainty component obtained from Type A 
evaluation is calculated from series of repeated observations and is the familiar statistically estimated 
variance s2 (see 4.2).  The estimated standard deviation (C.2.12, C.2.21, C.3.3) u, the positive square 
root of u2, is thus u = s and for convenience is sometimes called a Type A standard uncertainty.  For 
an uncertainty component obtained from a Type B evaluation, the estimated variance u2 is evaluated 
using available knowledge (see 4.3), and the estimated standard deviation u is sometimes called a 
Type B standard uncertainty. 
 
Thus a Type A standard uncertainty is obtained from a probability density function (C.2.5) derived 
from an observed frequency distribution (C.2.18), while Type B standard uncertainty is obtained 
from an assumed probability density function based on the degree of belief that an event will occur 
(often called subjective probability (C.2.1)).  Both approaches employ recognized interpretations of 
probability. 
 
Note:   A Type B evaluation of an uncertainty component is usually based on a pool of comparatively 
reliable information (see 4.3.1) 
 
3.3.6  The standard uncertainty of the result of a measurement, when that result is obtained from the 
value of a number of other quantities, is termed combined standard uncertainty and denoted by uc.  It 
is the estimated standard deviation associated with the result and is equal to the positive square root 
of the combined variance obtained from all variance and covariance (C.3.4) components, however 
evaluated, using what is termed in this Guide the law of propagation of uncertainty (see clause 5). 
 
3.3.7  To meet the needs of some industrial and commercial applications, as well as requirements in 
the areas of health and safety, and expanded uncertainty U is obtained by multiplying the combined 
standard uncertainty uc by a coverage factor k.  The intended purpose of U is to provide an interval 
about the result of a measurement that may be expected to encompass a large fraction of the 
distribution of values that could reasonably be attributed to the measurand. The choice of the factor 
k, which is usually in the range 2 to 3, is based on the coverage probability or level of confidence 
required of the interval (see clause 6). 
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Note:  The coverage factor k is always to be stated, so that the standard uncertainty of the measurand 
quantity can be recovered for use in calculating the combined standard uncertainty of other 
measurement results that may depend on that quantity. 
… 
3.4.3  In order to decide if measurement system is functioning properly, the experimentally observed 
variability of its output values, as measured by their observed standard deviation, is often compared 
with the predicted standard deviation obtained by combining the various uncertainty components that 
characterize the measurement.  In such cases, only those components (whether obtained from Type A 
or Type B evaluations) that could contribute to the experimentally observed variability of these 
output values should be considered. 
 
Note:  Such an analysis may be facilitated by gathering those components that contribute to the 
variability and those that not into two separate and appropriately labelled groups. 
… 
3.4.8  Although this Guide provides a framework for assessing uncertainty, it cannot substitute for 
critical thinking, intellectual honesty, and professional skill.  The evaluation of uncertainty is neither 
a routine task not a purely mathematical one; it depends on detailed knowledge of the nature of the 
measurand and of the measurement. The quality and utility of the uncertainty quoted for the result of 
measurement therefore ultimately depend on the understanding, critical analysis, and integrity of 
those who contribute to the assignment of its value.” 
 
 
Standard uncertainty (GUM 2.3.1) 
 
Uncertainty of the result of a measurement expressed as a standard deviation. 
 
Type A evaluation (of uncertainty) (GUM 2.3.2) 
 
Method of evaluation of uncertainty by the statistical analysis if series of observations. 
 
Type B evaluation (of uncertainty) (GUM 2.3.3) 

 
Method of evaluation of uncertainty by means other than the statistical analysis if series of 
observations. 
 
Combined standard uncertainty (GUM 2.3.4) 

 
Standard uncertainty of the results of a measurement when that result is obtained from the values of a 
number of other quantities, equal to the positive square root of a sum of terms, the terms being the 
variances or covariances of these other quantities weighted according to how the measurement result 
varies with changes in these quantities. 
 
Expanded uncertainty (GUM 2.3.5) 

 
Quantity defining an interval about the result of a measurement that may be expected to encompass a 
large fraction of the distribution of values that could reasonably be attributed to the measurand. 
Notes: 
1.  The fraction may be viewed as the coverage probability or level of confidence of the interval. 
2.  To associate specific level of confidence with the interval defined by the expanded  uncertainty 
requires explicit or implicit assumptions reading the probability distribution characterized by the 
measurement result and its combined standard uncertainty.  The level of confidence that may be 
attributed to this interval can be known only to the extent to which such assumptions may be 
justified. 
3.  Expanded uncertainty is termed overall uncertainty in paragraph 5 of Recommendation INC- 1 
(1980). 
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Coverage factor (GUM 2.3.6) 
 
Numerical factor used as a multiplier of the combined standard uncertainty in order to obtain an 
expanded uncertainty. 
Note: a coverage factor k, is typically in the range 2 to 3. 
 
(Measurable) Quantity (VIM 1.1) 

 
Attribute of a phenomenon, body or substance that may be distinguished qualitatively and 
determined quantitatively. 
Notes: 
1 The term quantity may refer to a quantity in a general sense [see example a)] or to a  particular 
quantity' [see example b)]. 
EXAMPLES 
 a) quantities In a general sense: length, time, mass, temperature, electrical resistance,  
 amount-of substance concentration; 
 b) particular quantities: 
 -length of a given rod 
 -electrical resistance of a given specimen of wire 
 -amount-of-substance concentration of ethanol in a given sample of wine. 
2 Quantities that can be placed in order of magnitude relative to one another are called 
 quantities of the same kind. 
3 Quantities of the same kind may be grouped together into categories of quantities, for 
 example: 
 -work, heat, energy 
 -thickness, circumference, wavelength. 
4 Symbols for quantities are given in ISO 31. 
 
System of quantities (VIM 1.2) 

 
Set of quantities, in the general sense, among which defined relationships exist. 
 
Base quantity (VIM 1.3)  
 
One of the quantities that, in a system of quantities, are conventionally accepted as functionally 
independent of one another. 
EXAMPLE:   the quantities length, mass and time are generally taken to be base quantities in  
  the field of mechanics. 
Note:    The base quantities corresponding to the base units of the International System  
  of Units (SI) are given in the Note to 1.12. 
 
Derived quantity (VIM 1.4) 
 
Quantity defined, in a system of quantities, as a function of base quantities of that system. 
EXAMPLE:  in a system having base quantities length, mass and time, velocity is a derived  
  quantity defined as: length divided by time. 
 
Value (of a quantity) (VIM 1.18) 

 
Magnitude of a particular quantity generally expressed as a unit of measurement multiplied by a 
number. 
EXAMPLES 
a) length of a rod: 5,34 m or 534 cm; 
b) mass of a body: 0,152kg or 152g; 
c) amount of substance of a sample of water (H2O) 0,012 mol or 12 mmol. 
Notes: 
1  The value of a quantity may be positive, negative or zero. 
2  The value of a quantity may be expressed in more than one way. 



 176

3  The values of quantities of dimension one are generally expressed as pure numbers. 
4  A quantity that cannot be expressed as a unit of measurement multiplied by a number may be 
expressed by reference to a conventional reference scale or to a measurement procedure or to both. 
 
True value (of a quantity) (VIM 1.19) 
 
Value consistent with the definition of a given particular quantity. 
Notes: 
1  This is a value that would be obtained by a perfect measurement. 
2  True values are by nature indeterminate. 
3  The indefinite article "a", rather than the definite article "the", is used in conjunction with "true 
value" because there may be many values consistent with the definition of a given particular quantity. 
 
Conventional true value (of a quantity) (VIM 1.20) 

 
Value attributed to a particular quantity and accepted, sometimes by convention, as having an 
uncertainty appropriate for a given purpose. 
EXAMPLES 
a)  at a given location, the value assigned to the quantity, realized by a reference standard may be 
taken as conventional true value; 
b)  the CODATA (1986) recommended value for the Avogadro constant, NA: 6,0221367 x 1023 mol-1. 
Notes: 
1  "Conventional true value" is sometimes called assigned value, best estimate of the value, 
conventional value or reference value.  "Reference value", in this sense, should not be confused with 
"reference value" in the sense used in the Note to 5.7. 
2  Frequently, a number of results of measurements of a quantity is used to establish a conventional 
true value. 
 
Numerical value (of a quantity) (VIM 1.21) 

 
Quotient of the value of a quantity and the unit used in its expression. 
EXAMPLES 
in the examples in 1.18, the numbers: 
a)  5,34   , 534; 
b)  0,152 , 152; 
c)  0,012 , 12. 
 
Metrology (VIM 2.2) 
 
Science of measurement. 
Note:  Metrology includes all aspects both theoretical and practical with reference to measurements, 
whatever their uncertainty. and in whatever fields of science or technology they occur. 
 
Principle of measurement (VIM 2.3) 
 
Scientific basis of a measurement. 
EXAMPLES 
a)  the thermoelectric effect applied to the measurement of temperature; 
b)  the Josephson effect applied to the measurement of electric potential difference; 
c)  the Doppler effect applied to the measurement of velocity; 
d)  the Raman effect applied to the measurement of the wave number of molecular vibrations. 
 
Method of measurement (VIM 2.4) 

 
Logical sequence of operations, described generically, used in the performance of measurements. 
Note:  Methods of measurement may be qualified in various ways such as: 
 -substitution method 
 -differential method 
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 -null method 
 
Measurement procedure (VIM 2.5) 
 
Set of operations, described specifically, used in the performance of particular measurements 
according to a given method. 
Note:  A measurement procedure is usually recorded in a document that is sometimes itself called a 
"measurement procedure" (or a measurement method) and is usually in sufficient detail to enable an 
operator to carry out a measurement without additional information. 
 
Measurand (VIM 2.6) 
 
Particular quantity subject to measurement. 
EXAMPLE  vapour pressure of a given sample of water at 20°C. 
Note: The specification of a measurand may require statements about quantities such as time, 
temperature and pressure. 
 
Influence quantity (VIM 2.7) 
 
Quantity that is not the measurand but that affects the result of the measurement. 
EXAMPLES 
a)  temperature of a micrometer used to measure length; 
b)  frequency in the measurement of the amplitude of an alternating electric potential difference; 
c)  bilirubin concentration in the measurement of haemoglobin concentration in a sample of human 
blood plasma. 
 
Measurement signal (VIM 2.8) 
 
Quantity that represents the measurand and which is functionally related to it. 
EXAMPLES 
a)  the electrical output signal of a pressure transducer; 
b)  the frequency from a voltage-to-frequency converter; 
c)  the electromotive force of an electrochemical concentration cell used to measure a difference in 
concentration. 
Note:  The input signal to a measuring system may be called the stimulus; the output signal may be 
called the response. 
 
Result of a measurement (VIM 3.1) 
 
Value attributed to a measurand, obtained by measurement. 
Notes: 
1  When a result is given, it should be made clear whether it refers to: 
-the indication 
-the uncorrected result 
-the corrected result 
and whether several values are averaged. 
2  A complete statement of the result of a measurement includes information about the uncertainty of 
measurement. 
 
Indication (of a measuring instrument) (VIM 3.2) 
 
Value of a quantity provided by a measuring instrument. 
Notes: 
1  The value read from the displaying device may be called the direct indication; it is multiplied by 
the instrument constant to give the indication. 
2  The quantity may be the measurand, a measurement signal, or another quantity to be used in 
calculating the value of the measurand. 
3  For a material measure, the indication is the value assigned to it. 
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Uncorrected result (VIM 3.3) 
 
Result of a measurement before correction for a systematic error. 
 
Corrected result (VIM3.4) 
 
Result of a measurement after correction for systematic error. 
 
Accuracy of measurement (VIM 3.5) 

 
Closeness of the agreement between the result of a measurement and a true value of the measurand. 
Notes: 
1  “ Accuracy” is a qualitative concept. 
2  The term precision should not be used for “ accuracy”. 
 
Repeatability (of results of measurements) (VIM 3.6) 

 
Closeness of the agreement between the results of successive measurements of the same measurand 
carried out under the same conditions of measurement. 
Notes: 
1  These conditions are called repeatability conditions. 
2  Repeatability conditions include: 

• The same measurement procedure 
• The same observer 
• The same measuring instrument, used under the same conditions. 
• The same location 
• Repetition over a short period of time. 

3  Repeatability may be expressed quantitatively in terms of the dispersion characteristics of the 
results. 
 
Reproducibility ( of results of measurements) (VIM 3.7) 

 
Closeness of the agreement between the results of measurements of the same measurand carried out 
under changed conditions of measurement. 
Notes: 
1  A valid statement of reproducibility requires specification of the conditions changed. 
2  The changed conditions may include: 

• principle of measurement 
• method of measurement 
• observer 
• measuring instrument 
• reference standard 
• location 
• conditions of use 
• time 

2  Reproducibility may be expressed quantitatively in terms of the dispersion characteristics of the 
results. 
4  Results are here usually understood to be corrected results. 
 
Experimental standard deviation (VIM 3.8) 
 
For a series of n measurements of the same measurand, the quantity s characterizing the dispersion of 
the results and given by the formula: 
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Xi being the result of the ith measurement and X  being the arithmetic mean of the n results 
considered. 
Notes: 

1  Considering the series of n values as a sample of a distribution, X  is an unbiased estimate of the 
mean µ, and s2 is an unbiased estimate of the variance σ2 of that distribution. 

2  The expression ns  is an estimate of the standard deviation of the distribution of X  and is 

called the experimental standard deviation of the mean. 
3.  "Experimental standard deviation of the mean" is sometimes incorrectly called standard error of 
the mean. 
 
Error (of measurement) (VIM 3.10) 
 
Result of a measurement minus a true value of the measurand. 
 
NOTES 
1  Since a true value cannot be determined, in practice a conventional true value is used (see 1.19 and 
1.20). 
2  When it is necessary to distinguish "error" from "relative error", the former is sometimes called 
absolute error of measurement.  This should not be confused with absolute value of error, which is 
the modulus of the error. 
 
Deviation (VIM 3.11) 
 
Value minus its reference value. 
 
Relative error (VIM 3.12) 

 
Error of measurement divided by a true value of the measurand. 
Note:  Since a true value cannot be determined, in practice a conventional true value is used (see 1.19 
and 1.20). 
 
Random error (VIM 3.13) 
 
Result of a measurement minus the mean that would result from an infinite number of measurements 
of the same measurand carried out under repeatability conditions. 
Notes: 
1  Random error is equal to error minus systematic error. 
2  Because only a finite number of measurements can be made, it is possible to determine only an 
estimate of random error. 
 
Systematic error (VIM 3.14) 

 
Mean that would result from an infinite number of measurements of the same measurand carried out 
under repeatability conditions minus a true value of the measurand. 
Notes: 
1  Systematic error is equal to error minus random error. 
2  Like true value, systematic error and its causes cannot be completely known. 
3  For a measuring instrument see "bias" (5.25). 
 
Correction (VIM 3.15) 
 
Value added algebraically to the uncorrected result of a measurement to compensate for systematic 
error. 
Notes: 
1  The correction is equal to the negative of the estimated systematic error. 
2  Since the systematic error cannot be known perfectly. the compensation cannot be complete. 
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Correction factor (VIM 3.16) 
 
Numerical factor by which the uncorrected result of a measurement is multiplied to compensate for 
systematic error. 
Note:  Since the systematic error cannot be known perfectly, the compensation cannot be complete. 
 
Measuring instrument (VIM 4.1) 

 
Device intended to be used to make measurements, alone or in conjunction with supplementary 
devices(s). 
 
Material measure (VIM 4.2) 

 
Device intended to reproduce or supply, in a permanent manner during its use, one or more known 
values of a given quantity. 
EXAMPLES 
a)  a weight; 
b)  a  measure of volume (of one or several values, with or without a scale) 
c)  a standard electric resistor 
d)  a gauge block 
e)  a standard signal generator 
f)  a reference material. 
Note:  The quantity concerned may be called the supplied quantity. 
 
Measuring chain (VIM 4.4) 
 
Series of elements of a measuring instrument or system that constitutes the path of the measurement 
signal from the input to the output. 
EXAMPLE:  an electro-acoustic measuring chain comprising a microphone, attenuator, filter, 
amplifier and voltmeter. 
 
Measuring system (VIM 4.5) 
 
Complete set of measuring instruments and other equipment assembled to carry out specified 
measurements. 
EXAMPLES 
a)  apparatus for measuring the conductivity of semiconductor materials; 
b)  apparatus for the calibration of clinical thermometers. 
Notes: 
1  The system may include material measures and chemical reagents. 
2  A measuring system that is permanently installed is called a measuring installation. 
 
Sensor (VIM 4.14) 

 
Element of a measuring instrument or a measuring chain that is directly affected by the measurand. 
EXAMPLES 
a)  measuring junction of a thermoelectric thermometer; 
b)  rotor of a turbine flow meter; 
c)  Bourdon tube of a pressure gauge; 
d)  float of a level-measuring instrument; 
e)  photocell of a spectrometer. 
Note:  In some fields the term “detector” is used for this concept. 
 
Detector (VIM 4.15) 
 
Device or substance that indicates the presence of a phenomenon without necessarily providing a 
value of an associated quantity. 
EXAMPLES 
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a)  halogen leak detector; 
b)  litmus paper. 
Notes: 
1  An indication may be produced only when the value of the quantity  reaches a threshold, 
sometimes called the detection limit of the detector. 
2  In some fields the term “detector” is used for the concept of “sensor”. 
 
 
Note to VIM chapter 6: 

 
“In science and technology, the English word "standard" is used with two different meanings: as a 
widely adopted written technical standard, specification, technical recommendation or similar 
document (in French "norme") and also as a measurement standard (in French "etalon"). This 
Vocabulary is concerned solely with the second meaning and the qualifier "measurement" is 
generally omitted for brevity.” 
 
 
(Measurement) standard (VIM 6.1) 
 
Material measure, measuring instrument, reference material or measuring system intended to define, 
realize, conserve or reproduce a unit or one or more values of a quantity to serve as a reference. 
EXAMPLES 
a)  1 kg mass standard; 
b)  100.Ω standard resistor; 
c)  standard ammeter; 
d)  caesium frequency standard; 
e)  standard hydrogen electrode; 
f)  reference solution of cortisol in human serum having a certified concentration. 
Notes: 
1  A set of similar material measures or measuring instruments that, through their combined use 
constitutes a standard is called a collective standard. 
2  A set of standards of chosen values that, individually or in combination, provides a series of values 
of quantities of the same kind is called a group standard. 
 
International (measurement) standard (VIM 6.2) 
 
Standard recognized by an international agreement to serve internationally as the basis for assigning 
values to other standards of the quantity concerned. 
 
National (measurement) standard (VIM 6.3) 
 
Standard recognized by a national decision to serve, in a country, as the basis for assigning values to 
other standards of the quantity concerned. 
 
Primary standard (VIM 6.4) 
 
Standard that is designated or widely acknowledged as having the highest metrological qualities and 
whose value is accepted without reference to other standards of the same quantity. 
Note:  The concept of primary standard is equally valid for base quantities and derived quantities. 
 
Secondary standard (VIM 6.5) 

 
Standard whose value is assigned by comparison with a primary standard of the same quantity. 
 
Reference standard (VIMM 6.6) 
 
Standard, generally having the highest metrological quality available at a given location or in a given 
organization, from which measurements made there are derived. 
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Working standard (VIM 6.7) 
 
Standard that is used routinely to calibrate or check material measures, measuring instruments or 
reference materials. 
Notes: 
1  A working standard is usually calibrated against a reference standard. 
2  A working standard used routinely to ensure that measurements are being carried out correctly is 
called a check standard. 
 
Transfer standard (VIM 6.8) 
 
Standard used as an intermediary to compare standards. 
Note:  The term transfer device should be used when the intermediary is not a standard. 
 
Travelling standard (VIM 6.9) 
 
Standard, sometimes of special construction, intended for transport between different locations. 
EXAMPLE:  a portable battery-operated caesium frequency standard. 
 
Traceability (VIM 6.10) 
 
Property of the result of a measurement or the value of a standard whereby it can be related to stated 
references, usually national or international standards, through an unbroken chain of comparisons all 
having stated uncertainties. 
Notes: 
1  The concept is often expressed by the adjective traceable. 
2  The unbroken chain of comparisons is called a traceability chain. 
 
Calibration (VIM 6.11) 

 
Set of operations that establish, under specified conditions, the relationship between values of 
quantities indicated by a measuring instrument or measuring system, or values represented by a 
material measure or a reference material, and the corresponding values realized by standards. 
Notes: 
1  The result of a calibration permits either the assignment of values of measurands to the indications 
or the determination of corrections with respect to indications. 
2  A calibration may also determine other metrological properties such as the effect of influence 
quantities. 
3  The result of a calibration may be recorded in a document, sometimes called a calibration 
certificate or a calibration report. 
 
Conservation of a (measurement) standard (VIM 6.12) 
 
Set of operations necessary to preserve the metrological characteristics of a measurement standard 
within appropriate limits. 
Note:  The operations commonly include periodical calibration, storage under suitable conditions and 
care in use. 
 
Reference material (RM) (VIM 6.13) 
 
Material or substance one or more of whose property values are sufficiently homogeneous and well 
established to be used for the calibration of an apparatus, the assessment of a measurement method, 
or for assigning values to materials. 
Note:  A reference material may be in the form of a pure or mixed gas, liquid or solid.  Examples are 
water for the calibration of viscometers, sapphire as a heat-capacity calibrant in calorimetry, and 
solutions used for calibration in chemical analysis. 
This definition, including the Note, is taken from ISO Guide 30:1992. 
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Certified reference material (CRM) (VIM 6.14) 
 
Reference material, accompanied by a certificate, one or more of whose property values are certified 
by a procedure which establishes traceability to an accurate realization of the unit in which the 
property values are expressed, and for which each certified value is accompanied by an uncertainty at 
stated level of confidence. 
Notes: 
2  CRMs are generally prepared in batches for which the property values are determined within 
stated uncertainty limits by measurements on samples representative of the whole batch. 
3 The certified properties of certified reference materials are sometimes conveniently and reliably 
realized when the material is incorporated into a specially fabricated device, e.g. a substance of 
known triple-point into a triple-point cell, a glass of known optical density into a transmission filter, 
spheres of uniform particle size mounted on a microscope slide.  Such devices may also be 
considered as CRMs. 
4  All CRMs lie within the definition of "measurement standards" or "etalons" given in the 
"international Vocabulary of basic and general terms in metrology (VIM)". 
5  Some RMs and CRMs have properties which, because they cannot be correlated with an 
established chemical structure or for other reasons, cannot be determined by exactly defined physical 
and chemical measurement methods.  Such materials include certain biological materials such as 
vaccines to which an International unit has been assigned by the World Health Organization. 
This definition, including the Notes, is taken tram ISO Guide 30:1992. 
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