
Technische Universität Berlin

Institut für Mathematik

Perturbation theory for structured matrix
pencils arising in control theory

Shreemayee Bora and Volker Mehrmann

Preprint 16/2004

Preprint-Reihe des Instituts für Mathematik

Technische Universität Berlin

Report 16/2004 June 2004





Linear perturbation theory for structured matrix

pencils arising in control theory

Shreemayee Bora∗ Volker Mehrmann∗

June 5, 2004

Abstract

We investigate the effect of linear perturbations on several struc-
tured matrix pencils arising in control theory. These include skew-
symmetric/symmetric pencils arising in the computation of optimal
H∞ control and linear quadratic control for continuous and discrete
time systems.
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1 Introduction

In this paper we study the effects of linear perturbations on the spectra
of structured matrix pencils arising in control theory. The results that we
present complement and generalize general perturbation results for Hamil-
tonian matrices as they were recently studied in [19] and we also extend
results in [29, 30, 31].

Our main motivation arises from the following classical problems in op-
timal and robust control. Consider a linear constant coefficient dynamical
system of the form

Ėx = Ax + Bu, x(τ0) = x0, (1)
∗Institut für Mathematik, Ma 4-5, TU Berlin, Straße des 17. Juni 136, D-10623 Berlin,

FRG; {bora,mehrmann}@math.tu-berlin.de. The authors were partially supported by
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where x(τ) ∈ Cn is the state, x0 is an initial vector, u(τ) ∈ Cm is the control
input of the system and the matrices E,A ∈ Cn,n, B ∈ Cn,m are constant.
Here we discuss only the case that the matrix E is nonsingular, thus we
allow implicit systems but we do not discuss descriptor systems.

The objective in linear quadratic optimal control is to find a control law
u(τ) such that the closed loop system is asymptotically stable and such that
the performance criterion

S(x, u) =
∫ ∞

τ0

[
x(τ)
u(τ)

]T [
Q S
SH R

] [
x(τ)
u(τ)

]
dτ (2)

is minimized, where Q = QH ∈ Cn,n, R = RH ∈ Cm,m is positive definite

and
[

Q S
SH R

]
is positive semidefinite. Here AH denotes the transpose of

the complex conjugate of A ∈ Cn,n.
The basics for this problem can be found in classical monographs on

linear control [2, 4, 8, 12, 23, 16, 18, 22, 25, 27, 32, 37].
Application of the maximum principle [25, 28] leads to the problem of

finding a stable solution to the two-point boundary value problem of Euler-
Lagrange equations

Nc

 µ̇
ẋ
u̇

 = Hc

 µ
x
u

 , x(τ0) = x0, lim
τ→∞

µ(τ) = 0, (3)

with the matrix pencil

Hc − λNc :=

 0 A B
AH Q S
BH SH R

− λ

 0 E 0
−EH 0 0

0 0 0

 . (4)

It is well known that the finite eigenvalues of Hc − λNc are symmetric with
respect to the imaginary axis (and if the problem is real then also with
respect to the real axis). If E is invertible, then under the usual control
theoretic assumptions [25, 35, 36], this pencil has exactly n eigenvalues in
the left half plane and n eigenvalues in the right half plane plus m infinite
eigenvalues. Clearly then the pencil has a unique deflating subspace associ-
ated with the eigenvalues in the open left half complex plane. If E or R are
not invertible, then the situation is more complex and different approaches
can be taken, [6, 9, 10, 11, 20, 21, 25]. In this paper we discuss mainly the
case that E and R are invertible.
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The solution of the boundary value problem (3) can be obtained in many
different ways. The approach in most computer aided control design pack-
ages is to decouple the boundary value problem via the computation of the
solution of an associated algebraic Riccati equation. But one may also di-
rectly solve the boundary value problem (3) by computing the generalized
Schur-form of the pencil Hc − λNc, [3, 14, 25, 36, 35], i.e., one determines
unitary matrices P,Q ∈ C2n+m,2n+m, such that

PNcQ =

 N11 N12 N13

0 N22 N23

0 0 N33

 , PHcQ =

 H11 H12 H13

0 H22 H23

0 0 H33

 ,

where the subpencil H11−λN11 has all its eigenvalues in the left half plane,
to decouple the forward and backward integration in the boundary value
problem.

In this paper we study the perturbation theory for the eigenvalue prob-
lem 4. For this several different types of perturbations should be considered
as separate cases. If one uses classical methods that do not preserve the
structure, like the QZ-algorithm [14], to compute the generalized Schur
form in finite precision arithmetic, then the special structure of the pencil is
ignored and hence the whole matrices Hc, Nc are subject to perturbations.
We not discuss this case here, since it is well analyzed in the monograph
[33].

If one studies perturbation theory in order to deal with uncertainties
in the data of the system, then the blocks E,A, B, Q, S, R are subject to
perturbations or only the blocks E,A, B, since typically the matrices of the

cost function is free to be chosen under the constraints that
[

Q S
SH R

]
is positive semidefinite and R positive definite. Also one may study the
particular case that E = I is not perturbed.

In all cases it is essential to analyze whether the perturbations can lead
to eigenvalues on the imaginary axis, in which case the spectral symmetry
and the uniqueness of the deflating subspace associated with the open left
half plane may be lost, see [13, 25, 29, 30, 31].

It is well-known, see [25, 26], that the discrete-time analogue to the
linear quadratic control problem leads to slightly different matrix pencils of
the form

Hd − λNd =

 0 A B
−EH Q S

0 SH R

− λ

 0 E 0
−AH 0 0
−BH 0 0

 . (5)
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Here the spectral symmetry is with respect to the unit circle, i.e. the
finite eigenvalues come in pairs λ, 1

λ or quadruples λ, λ̄, 1
λ , 1

λ̄
in the case of

real matrices. The perturbation problems can be discussed analogously and
here the important question that arises is to study perturbations which lead
to eigenvalues on the unit circle, where again the spectral symmetry and the
uniqueness of the deflating subspace associated with the eigenvalues in the
open unit disk may be disturbed.

The second motivation comes from the optimal H∞-control problem
which arises in the context of robust control in frequency domain, see, e.g.,
the recent monographs [15, 38]. In the context of the so called γ-iteration,
in the newly developed approach suggested in [7] generalized Schur forms
have to be computed for matrix pencils of the form

Ĥc(t)− λN̂c :=

 0 A B
AH 0 S
BH SH R(t)

− λ

 0 E 0
−EH 0 0

0 0 0

 (6)

with an indefinite Hermitian matrix

R(t) =
[

R11 − tI R12

RH
12 R22

]
which varies with the positive parameter t (playing the role of the parame-
ter γ in the γ-iteration), while the other coefficients are constant in t. Here
besides the classical questions of perturbation theory as above, we are in-
terested in the eigenvalues and deflating subspaces as functions of t and we
want to study the size of perturbations that is needed to bring any of the
finite eigenvalues to the imaginary axis.

Again there is a discrete-time H∞ analogue to this case [15] which leads
to matrix pencils

Ĥd(t)− λN̂d =

 0 A B
−EH 0 S

0 SH R(t)

− λ

 0 E 0
−AH 0 0
−BH 0 0

 . (7)

Here again we are interested in the eigenvalues and deflating subspaces
as functions of t and we want to study the size of perturbations that is
needed to bring any of the finite eigenvalues to the unit circle.

The paper is organized as follows. First we introduce the notation and
give some preliminary results in Section 2. In Section 3 we formulate a
framework for analyzing the effect of linear perturbations on general ma-
trix pencils. We then study the special cases of perturbations for general
skew-symmetric/symmetric pencils arising from continuous-time problems
in Section 4 and the corresponding discrete-time problems in Section 5.
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2 Notation and preliminaries

We denote the set of all complex (real) matrices of size n by Cn,n (Rn,n).
Given a matrix A, we denote its complex conjugate by A, its transpose by AT

and the transpose of its complex conjugate by AH . We denote the identity
matrix of size n by In. Also we consider the ‘flip’ permutation matrix

Fn :=


0 0 · · · 0 1
0 0 · · · 1 0
...

...
. . .

...
...

0 1 · · · 0 0
1 0 · · · 0 0

 ∈ Cn,n.

We denote the spectrum of a square matrix A and a pencil (A,B) by σ(A)
and σ(A,B), respectively. Given a set S we denote its boundary by ∂S. For
A ∈ Cn,n, we define the spectral radius of A as r(A) := max{|λ| : λ ∈ σ(A)}.

Also, given z ∈ C, we define

sepR(z, ∆H,∆N) := min{|t| : z ∈ σ(H + t∆H,N + t∆N), t ∈ R}.

It is well known (see e.g.[34]) that for every matrix A ∈ Cn,n(Rn,n), there
exist symmetric matrices T = T T and S = ST , where S is also nonsingular,
such that A = TS−1. Note that if A is not real then these factors in general
are complex symmetric but not Hermitian. Furthermore, if A ∈ Rn,n, then
T and S can be chosen to be real matrices. Since this result is due to
Frobenius, we refer to T and S as Frobenius factors of A. In our work,
we will need similar factorizations, however with Frobenius factors that are
Hermitian. It is easy to see that if A ∈ Rn,n, then A always has Hermitian
Frobenius factors. However, if A ∈ Cn,n, then Hermitian factors need not
exist. This follows by observing the fact that if A = TS−1 with TH = T
and SH = S, then we must have AS = SAH , that is A = SAHS−1. This,
implies that the matrices A and AH must be similar and hence they must
have the same eigenvalues. Thus, a necessary condition for the existence of
Hermitian Frobenius factors T and S is that σ(A) = σ(AH).

We show that σ(A) = σ(AH) is also a sufficient condition for A to have
Hermitian Frobenius factors. For this we first observe that σ(A) = σ(AH)
implies that for every non-real eigenvalue of A its complex conjugate is also
an eigenvalue with the same multiplicity.

Proposition 2.1 Let A ∈ Cn,n be such that σ(A) = σ(AH). Let η1, η2, . . . , ηr

be the pairwise distinct real eigenvalues of A and let λ1, λ2, . . . , λp, λ1, λ2, . . . , λp,
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be the pairwise distinct non-real eigenvalues of A. Furthermore, let m1,m2, . . . ,mp

be the multiplicities of the eigenvalues λ1, λ2, . . . , λp, respectively such that∑p
i=1 mi = m, and let k1, k2, . . . , kr be the multiplicities of η1, η2, . . . , ηr,

such that
∑r

j=1 kj = k, and n = 2m+k. Then, with the permutation matrix

U = diag
(
F2m1 , F2m2 , . . . , F2mp , Fn1 , Fn2 , . . . , Fns

)
,

we have that A and AH have the Jordan decompositions

A = PJP−1, AH = (P−HU)J(P−HU)−1,

where the blocks are ordered as in

J := diag
(
Jm1(λ1), Jm1(λ1), . . . , Jmp(λp), Jmp(λp),
Jn1(η1), Jn2(η2), . . . , Jnr(ηr)) , (8)

such that for i = 1, 2, . . . , p, j = 1, 2, . . . , r,

Jmi(λi) :=


λi ϕ 0 · · · 0 0
0 λi ϕ · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · λi ϕ
0 0 0 · · · 0 λi


and

Jnj (ηj) :=


ηj ϕ 0 · · · 0 0
0 ηj ϕ · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · ηj ϕ
0 0 0 · · · 0 ηj


with ϕ = 0 or ϕ = 1 and U satisfies JU − UJH = 0.

Proof. Let A = PJP−1 with J as in (8) be a Jordan decomposition of
A. Then, AH = P−HJHPH with

JH = (J)T = diag
(
Jm1(λ1), Jm1(λ1), . . . , Jmp(λp), Jmp(λp),

Jn1(η1), Jn2(η2), . . . , Jnr(ηr))
T ,

and for i = 1, 2, . . . , p,

[
Jmi(λi) 0

0 Jmi(λi)

]
F2mi =


λi ϕ

λi ϕ
. . . . . .

λi ϕ
λi




0 0 · · · 0 1
0 0 · · · 1 0
...

...
. . .

...
...

0 1 · · · 0 0
1 0 · · · 0 0
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=


0 0 · · · 0 ϕ λi

0 0 · · · ϕ λi 0
...

...
. . .

...
...

...
ϕ λi · · · 0 0 0
λi 0 · · · 0 0 0



=


0 0 · · · 0 1
0 0 · · · 1 0
...

...
. . .

...
...

0 1 · · · 0 0
1 0 · · · 0 0




λi

ϕ λi

. . . . . .
ϕ λi

ϕ λi


= F2mi

[
Jmi(λi) 0

0 Jmi(λi)

]T

Similarly for j = 1, 2, . . . , s, we have JnjFnj = FnjJ
T
nj

and thus it follows
that JU − UJH = 0.

Using Proposition 2.1 together with Theorem 12.5.1 of [24] we then con-
struct a nonsingular Hermitian solution S of the equation AS − SAH = 0.

Theorem 2.2 Let A ∈ Cn,n be such that σ(A) = σ(AH). Then there exists
a nonsingular Hermitian matrix S such that AS = SAH .

Proof. Using the notation of Proposition 2.1, it follows by Theorem
12.5.1 in [24] that all solutions of the equation AS − SAH = 0 are of the
form S = PY (P−HU)−1 = PY UPH , where Y satisfies JY −Y J = 0 and has
the block-form Y = diag (Y1, Y2, . . . , Yp, Ik), where for i = 1, 2, . . . , p, Yi =[

0 Yi,i

Yi,i 0

]
,∈ C2mi,2mi and Yi,i is an upper triangular Toeplitz matrix.

Since we want Y U to be Hermitian, a possible choice is Yi,i = Imi . Then for
i = 1, 2, . . . , p, we have

YiF2mi = diag (Fmi , Fmi) = F2miYi,

which implies that (Y U)H = UHY H = UY = Y U . Thus, S := PY UPH is
nonsingular and Hermitian.

Theorem 2.2 immediately provides a necessary and sufficient condition
for A ∈ Cn,n to have Hermitian Frobenius factors.

Corollary 2.3 Given A ∈ Cn,n, there exist Hermitian matrices, T and S
where S is also nonsingular such that A = TS−1 if and only if σ(A) =
σ(AH).
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Proof. Suppose that there exist Hermitian matrices T and S where S
is also nonsingular such that A = TS−1. Then T = AS and T = TH

and hence AS = SAH or A = SAHS−1, i.e., σ(A) = σ(AH). For the
converse suppose that σ(A) = σ(AH). Then by Theorem 2.2, there exists
a nonsingular Hermitian matrix S such that AS = SAH . This implies that
A = (SAH)S−1 and the proof follows by setting T = SAH .

Since the factorization A = TS−1 with SH = S and TH = T if it exists,
depends on the choice of S as a solution of AX − XAH = 0, it is evident
from Theorem 2.2 that this factorization is, in general, not unique.

Suppose now that σ(A) = σ(AH), and let A = TS−1 be a Frobenius fac-
torization of A with T = TH and S = SH . Using the spectral factorization
of T , there exists a unitary matrix U such that

T = U

 D+

D−
0

UH ,

where D+ ∈ Cπ,π,−D− ∈ Cν,ν are diagonal matrices with positive diagonal
elements, π ≥ ν and where (π, ν, ω) with π + ν + ω is the inertia-index of
T , see [24].

Setting

Q := U

 D
1
2
+

(−D−)
1
2

Iω

 , ĨT (z) :=

 Iπ

−Iν

0

 ,

we have for given z a factorization

A(z) = Q(z)ĨT (z)QH(z)S(z)−1. (9)

Note that the choice π ≥ ν makes the matrix ĨT (z) unique, while there
is still much freedom in the choice of the transformation matrix Q. In an
analogous way we can construct a factorization

A = T (V (ĨS(z))V H)−1 = TV −H(ĨS(z))V −1 (10)

by using the spectral factorization and the inertia index of S.
An interesting open question that one may discuss in this context is

how to obtain a smooth Frobenius factorization, when the matrix depends
smoothly on a parameter as in our case.
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3 Linear perturbation of general matrix pencils

In this section we consider the effect of perturbing a regular square ma-
trix pencil (H,N) where H,N ∈ Cn,n (Rn,n) by linear perturbations (H +
t∆H,N + t∆N). Here ∆H,∆N ∈ Cn,n(Rn,n) are fixed perturbation matri-
ces and the parameter t varies over the real numbers.

Lemma 3.1 For every z ∈ C we have sepR(z, ∆H,∆N) < ∞ if and only
if (∆H − z∆N)(H − zN)−1 has a non-zero real eigenvalue. Moreover, if
sepR(z, ∆H,∆N) < ∞, then

sepR(z, ∆H,∆N) =
[
max
λ∈R

{λ ∈ σ((∆H − z∆N)(H − zN)−1)}
]−1

.

Proof. The proof follows immediately from the fact that for λ 6∈ σ(H,N),
we have

H + t∆H − λ(N + t∆N) =
[
I + t(∆H − λ∆N)(H − λN)−1

]
(H − λN).

Hence λ ∈ σ(H + t∆H,N + t∆N) if and only if −1/t ∈ σ((∆H−z∆N)(H−
zN)−1).

As we have discussed in the introduction, we are interested in con-
ditions that guarantee that all the eigenvalues of the perturbed pencils
(H + t∆H,N + t∆N), t ∈ R, remain within a particular region, say, Cg

of the complex plane. Since a complex number z becomes an eigenvalue of
the perturbed pencil (H + t∆H,N + t∆N) for some t ∈ R if and only if
the matrix (∆H − z∆N)(H − zN)−1 has a non-zero real eigenvalue, it is
possible that there exist pencils (H,N) with corresponding perturbations
(∆H,∆N) and regions Cg such that the eigenvalues of the perturbed pen-
cils (H + t∆H,N + t∆N) always remain inside Cg as t varies over the real
numbers. This is illustrated by the following example.

Example 3.2 Consider the pencil (H,N) where

H :=
[

1 2
2 1

]
, and N :=

[
0 1
−1 0

]
.

Its eigenvalues are
√

3 and −
√

3. Let

∆H :=
[

1 0
0 −1

]
, ∆N := 0

be the perturbations to H and N , respectively.
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Let Cg := C \ {z ∈ C : Re(z) = 0}. Then the boundary ∂Cg of Cg is
evidently the imaginary axis. Therefore, by Lemma 3.1 for all t ∈ R, the
eigenvalues of the pencils (H + t∆H,N + t∆N) are always in Cg, if and only
if the matrix

(∆H − z∆N)(H − zN)−1 =
1

3− z2

[
−1 2− z
−(2 + z) 1

]
has no non-zero real eigenvalue for every z ∈ C lying on the imaginary
axis. The eigenvalues of (∆H − z∆N)(H − zN)−1 are i/

√
(3− z2) and

−i/
√

(3− z2). Now for every z lying on the imaginary axis, there exists a
real number γ, such that z = iγ. Therefore, for z ∈ ∂Cg, the eigenvalues of
(∆H − z∆N)(H − zN)−1 are i/

√
(3 + γ2) and −i/

√
(3 + γ2). This shows

that (∆H−z∆N)(H−zN)−1 has no real eigenvalues for all z ∈ ∂Cg. Hence,
σ(H + t∆H,N + t∆N) ⊂ Cg, for all t ∈ R. �

Since z ∈ σ(H + t∆H,N + t∆N) for some t ∈ R, if and only if the
matrix F (z) := (∆H − z∆N)(H − zN)−1 has a real eigenvalue, we identify
conditions under which the latter matrix has a real eigenvalue. Under the
assumption that σ(F (z)) = σ(F (z)H), let F (z) = T (z){S(z)}−1 be a Frobe-
nius factorization of F (z) where T (z)H = T (z) and S(z)H = S(z). The
following result gives a necessary and sufficient condition for this matrix to
have a real eigenvalue.

Lemma 3.3 For a fixed z ∈ C, let T (z) and S(z) be Frobenius factors of
F (z) := (∆H − z∆N)(H − zN)−1, where T (z)H = T (z), S(z)H = S(z) and
S(z) is nonsingular. Let (πT (z), νT (z), ωT (z)) with πT (z) ≥ νT (z) be the
inertia index of T (z). Furthermore, let ĨT (z), Q(z) be as in a factorization
of the form (9) of F (z).

Then (∆H − z∆N)(H − zN)−1 has a non-zero real eigenvalue if and
only if the matrix ĨT (z)Q(z){S(z)}−1Q(z)H has a non-zero real eigenvalue.

Proof. The proof follows, since F (z) and ĨT (z)Q(z){S(z)}−1Q(z)H are
similar.

It is evident that the roles of the matrices T (z) and S(z) in Lemma 3.3
can be interchanged.

Lemma 3.4 For a fixed z ∈ C, let the matrix T (z) and S(z) be Frobe-
nius factors of F (z) := (∆H − z∆N)(H − zN)−1 such that T (z)H =
T (z), S(z)H = S(z) and S(z) is invertible. Let (πS(z), νS(z), ωS(z)) with
πS(z) ≥ νS(z) be the inertia index of S(z). Let, furthermore, ĨS(z), V (z)
be the factors in a factorization of the form (10) of F (z). Then (∆H −
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z∆N)(H − zN)−1 has a non-zero real eigenvalue if and only if the matrix
V (z)−1TV (z)−H ĨS(z) has a non-zero real eigenvalue.

In general, the function sepR(z,∆H,∆N) is discontinuous as a function of
z, since it depends on the matrix (∆H − z∆N)(H − zN)−1 having a real
eigenvalue. However, it is possible that given a set Cg ⊂ C, the structure of
the matrices H,N, ∆H, and ∆N are such that the matrix (∆H−z∆N)(H−
zN)−1 always has one or more real eigenvalues for z ∈ ∂Cg. Let these
eigenvalues be h1(z), . . . , hp(z). Then for z ∈ C \ σ(H,N), (and hence in
particular for z ∈ ∂Cg) (∆H − z∆N)(H − zN)−1 is analytic (Theorem 1.5,
pp. 66, [17]) and the eigenvalues h1(z), . . . , hp(z) are continuous (Corollary
3, pp. 105, [5]). Therefore, for such cases we have

sepR(z, ∆H,∆N) = {max{|hk(z)| : k = 1, . . . , p}}−1, z ∈ ∂Cg,

which implies that sepR(z,∆H,∆N) is a continuous function of z. In the
special situation that all the eigenvalues of (∆H−z∆N)(H−zN)−1 are real,
we have sepR(z, ∆H,∆N) = {r((∆H − z∆N)(H − zN)−1)}−1 for all z ∈
∂Cg. In such cases, the distribution of the eigenvalues of (H+t∆H,N+t∆N)
on ∂Cg may be analyzed by plotting the level curves of the spectral radius
function r((∆H − z∆N)(H − zN)−1) in neighbourhoods of ∂Cg. Then the
magnitude of the smallest real number t for which some z ∈ ∂Cg is an
eigenvalue of (H + t∆H,N + t∆N) is evidently given by the smallest value
of ε for which the level set

L(ε,∆H,∆N) := {z ∈ C \ σ(H,N) : r((∆H − z∆N)(H − zN)−1) = ε−1}

intersects ∂Cg. By Proposition 2.1 of [1] the spectral radius function r((∆H−
z∆N)(H − zN)−1) is non-constant on open subsets of C \ σ(H,N). This
together with the fact that it is also continuous on C \σ(H,N) implies that
the level sets L(ε,∆H,∆N) are closed sets which have no interior points.
In other words, they are curves on the complex plane. Furthermore, the
curve L(ε,∆H,∆N) intersects ∂Cg at only a finite number of points, since
at each such point we must either have z ∈ σ(H + ε∆H,N + ε∆N) or
z ∈ σ(H − ε∆H,N − ε∆N).

In the following theorem, we give sufficient conditions for all the eigen-
values of the matrix (∆H − z∆N)(H − zN)−1 to be real.

Theorem 3.5 All the eigenvalues of the matrix F (z) = (∆H − z∆N)(H −
zN)−1, z ∈ C, are real if there exists a Frobenius factorization F (z) =
T (z)S(z)−1, with T (z)H = S(z), and S(z)H = S(z) and the Frobenius fac-
tors T (z) and S(z) satisfy any of the following conditions.
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(i) T (z) and S(z)−1 commute.

(ii) T (z) is positive semidefinite.

(iii) S(z) is positive definite.

Proof. (i) Since (∆H − z∆N)(H − zN)−1 = T (z)S(z)−1, where T (z)
and S(z) are Hermitian, the matrix (∆H − z∆N)(H − zN)−1 is Hermitian
if T (z)S(z)−1 = S(z)−1T (z) and therefore all its eigenvalues are real. This
proves (i).

(ii) If T (z) and S(z) do not commute but T (z) is positive semidefinite
with π(z) non-zero eigenvalues, then we obtain the Frobenius factorization

(9) as F (z) = Q(z)ĨT (z)Q(z)HS(z)−1 with ĨT (z) =
[

Iπ 0
0 0

]
. If we parti-

tion

Q(z)HS(z)−1Q(z) =
[

S11(z) S12(z)
S21(z) S22(z)

]
conformally with ĨT (z), then S11(z) is Hermitian and

Q(z)HT (z){S(z)}−1Q(z) =
[

S11(z) S12(z)
0 0

]
.

Therefore, σ((∆H − z∆N)(H − zN)−1) = σ(S11(z)) ∪ {0} which is real.
(iii) The proof follows as in (ii) by exchanging the roles of S and T and

using the factorization (10).
Note that Theorem 3.5 also holds if the condition of positive semidef-

initeness in (ii) and positive definiteness in (iii) are replaced by negative
semidefiniteness and negative definiteness respectively.

4 Linear perturbation of structured matrix pen-
cils arising from continuous-time control prob-
lems

In this section we apply the results from Section 3 to the specific pencils
from control theory that we introduced in Section 1. The matrices H and
N then have special structure and in order not to destroy the properties
of the pencils it should be guaranteed that the perturbations preserve this
structure.

This means that we study the effect of perturbations (H + t∆H,N +
t∆N), t ∈ R, where the matrices ∆H and ∆N have the same structure as
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H and N , respectively. Although we consider complex pencils, the results
of this section also hold for real pencils.

4.1 Perturbation of pencils arising in continuous-time con-
trol

The first application that we discuss are matrix pencils of the form (4)
where we perturb only the blocks E,A, B, Q, S, R but such that Q and R
stay Hermitian, i.e., we consider the case

H =

 0 A B
AH Q S
BH SH R

 , N =

 0 E 0
−EH 0 0

0 0 0

 , (11)

with A,Q,E ∈ Cn,n, B,SH ∈ Cn,m, R ∈ Cm,m, Q = QH , R = RH and we
assume that E is invertible. The perturbation matrices are

∆H =

 0 ∆A ∆B
(∆A)H ∆Q ∆S
(∆B)H (∆S)H ∆R

 , ∆N :=

 0 ∆E 0
−(∆E)H 0 0

0 0 0

 , (12)

where the dimensions are analogous and where we assume that (∆Q)H =
∆Q, (∆R)H = ∆R and that E + ∆E is still invertible. The pencils (H,N)
and (H + ∆H,N + ∆N) are then both Hermitian/skew Hermitian pencils
and we are interested in the set Cg := C \ {z ∈ C : Re(z) = 0}. Hence,
the quantity of interest is the smallest value |t|, t ∈ R, such that (H +
t∆H,N + t∆N) has a purely imaginary eigenvalue. In view of Lemma 3.1
(with z = iγ, γ ∈ R) this is equivalent to finding the smallest |γ| such that
the matrix (∆H − iγ∆N)(H − iγN)−1 has a non-zero real eigenvalue.

Evidently, we have the following expressions for Hermitian Frobenius
factors T (iγ) and S(iγ) of the matrix (∆H − iγ∆N)(H − iγN)−1.

T (iγ) =

 0 ∆A− iγ∆E ∆B
(∆A− iγ∆E)H ∆Q ∆S

(∆B)H (∆S)H ∆R

 ,

S(iγ) =

 0 A− iγE B
(A− iγE)H Q S

BH SH R

 .

We may directly use Lemma 3.3 and Lemma 3.4 to obtain conditions for
(H + t∆H,N + t∆N) to have a purely imaginary eigenvalue, as t varies
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in R. But the special structure of the Frobenius factors provides another
condition that is more specific to the problem at hand. To obtain it, we
assume without loss of generality that the matrix [A B] is not a square
matrix, i.e., that the matrix B has at least one column.

Theorem 4.1 Consider a matrix pencil (H,N) and associated perturba-
tions ∆H and ∆N as in (11) and (12). Let

P (t, γ) := [A− iγE + t(∆A− iγ∆E) B + t∆B],

Z(t) :=
[

Q + t∆Q S + t∆S
(S + t∆S)H R + t∆R

]
.

Let V (t, γ) be the set of right singular vectors of P (t, γ)H corresponding to
the singular value 0, and let W (t, γ) be the range of P (t, γ)H .

Then for given real numbers t 6= 0 and γ, the value iγ is an eigenvalue
of the matrix pencil (H + t∆H,N + t∆N) if and only if

Z(t)(V (t, γ)) ∩W (t, γ) 6= ∅.

Proof. We make use of the fact (H + t∆H,N + t∆N), t ∈ R has a purely
imaginary eigenvalue iγ, γ ∈ R if and only if −1/t is an eigenvalue of the
matrix (∆H − iγ∆N)(H − iγN)−1. Considering a Frobenius factorization

(∆H − iγ∆N)(H − iγN)−1 = T (iγ)(S(iγ))−1,

it follows that iγ is an eigenvalue of (H + t∆H,N + t∆N) if and only −1/t
is an eigenvalue of T (iγ)S(iγ)−1, i.e., if and only if there exists a vector
x 6= 0, such that T (iγ)S(iγ)−1x = −1

t x. Setting y := S(iγ)−1x, this, in
turn, implies that iγ, is an eigenvalue of (H + t∆H,N + t∆N), if and only
if there exists a vector y 6= 0, such that S(iγ)y = −tT (iγ)y. Writing down
the expressions for T (iγ), and S(iγ), we have 0 A− iγE + t(∆A− iγ∆E) B + t∆B

(A− iγE + t(∆A− iγ∆E)H Q + t∆Q S + t∆S
(B + t∆B)H (S + t∆S)H R + t∆R

 y = 0.

This in turn can be written as[
0 P (t, γ)

P (t, γ)H Z(t)

] [
y1

y2

]
= 0.

Hence, we have the following system of equations.

P (t, γ)y2 = 0
P (t, γ)Hy1 + Z(t)y2 = 0

14



From the first equation we have that either y2 = 0 or 0 is a singular
value of P (t, γ) and y2 a corresponding singular vector. But as [A B] is not
a square matrix, neither is P (t, γ) = [A−iγE+t(∆A−iγ∆E) B+t∆B]. As
a consequence a non-zero vector y2 satisfying the first equation always exists.
Therefore, a necessary and sufficient condition for iγ to be an eigenvalue of
(H + t∆H,N + t∆N), is that for every right singular vector y2 of P (t, γ)
corresponding to the singular value 0, there exists some vector y1, such that
−P (t, γ)Hy1 = Z(t)y2. This implies that the matrix Z(t) maps at least one
right singular vector of P (t, γ) corresponding to the singular value 0, to the
range of P (t, γ)H . Since V (t, γ) is the set of all these right singular vectors
of P (t, γ), it follows that iγ is an eigenvalue of (H + t∆H,N + t∆N), if and
only if Z(t)(V (t, γ)) ∩W (t, γ) 6= ∅.

In the applications from control theory, the matrices Q,R and S are as-
sociated with the cost function and often these cost functions can be chosen.
If this is case, then we may assume that the corresponding perturbations
∆Q,∆R and ∆S are all equal to zero. Under this assumption, we have the
following immediate corollary of Theorem 4.1.

Corollary 4.2 Suppose that W (t, γ) and V (t, γ) are as in Theorem 4.1 and

that Z0 :=
[

Q S
SH R

]
. Then the matrix pencil (H + t∆H,N + t∆N) has

an eigenvalue iγ if and only if Z0(V (t, γ)) ∩W (t, γ) 6= ∅.

Proof. The proof follows immediately from Theorem 4.1 by noticing the
fact that Z(0) = Z0.

Corollary 4.2 implies that for a given fixed real number t, the matrices
Q,S and R of the cost functional can be chosen in such a way that the pencil
(H + t∆H,N + t∆N) does not have any purely imaginary eigenvalues, cp.
[23].

Corollary 4.3 If P (t, γ) and V (t, γ) are as in Theorem 4.1 and Z0 :=[
Q S
SH R

]
, then for a fixed t ∈ R, the matrix pencil (H + t∆H,N + t∆N)

has no purely imaginary eigenvalues if and only if

Z0(∪γ∈RV (t, γ)) ∩ (∪γ∈RW (t, γ)) = ∅.

The condition of Corollary 4.3 is necessary and sufficient for a pencil (H̃, Ñ) :=
(H+t∆H,N +t∆N) to have no imaginary eigenvalues. Thus, this condition
generalizes well-known classical conditions that guarantee that the consid-
ered pencil has no purely imaginary eigenvalue, see e.g. [23, 25].
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For instance, it is well known that a matrix pair (H,N), with H and
N as in (11) has no purely imaginary eigenvalues if its blocks satisfy the
following conditions:

(i) The matrix R is positive definite and the matrix Q − SR−1SH is
positive semidefinite.

(ii) The triple (E,A, B) where A is has size n, is stabilizable, i.e., for all
complex numbers λ in the closed right half plane the rank of [A−λE, B]
is n.

(iii) If Q − SR−1SH = CHC is a full rank factorization of Q − SR−1SH ,
then (E,A, C) is detectable, i.e., (EH , AH , CH) is stabilizable.

The following example shows that there exist pencils (H,N) which arise
from systems that are not stabilizable and detectable and yet they do not
have any purely imaginary eigenvalues. This is due to the fact that they
satisfy the condition given in Corollary 4.3.

Example 4.4 Let

H :=


0 0 2 3 2
0 0 0 5 2
2 0 1 −1 1
3 5 −1 1 −1
2 2 1 −1 5

 , N :=


0 0 1 0 0
0 0 0 1 0
−1 0 0 0 0
0 −1 0 0 0
0 0 0 0 0

 .

The eigenvalues of the pencil (H,N) are 2,−2, 5,−3 and ∞. For this pencil
we have,

A :=
[

2 3
0 5

]
, E :=

[
1 0
0 1

]
, B :=

[
2
2

]
,

Q :=
[

1 −1
−1 1

]
, R := [5], S :=

[
1
−1

]
.

It is easy to see that (E,A, B) is not stabilizable as the matrix [A−2I,B] =[
0 3 2
0 3 2

]
, evidently has rank 1. We also note that

[
− 2√

5
2√
5

]H [
− 2√

5
− 2√

5

]
=
[

4
5 −4

5
−4

5
4
5

]
= Q− SR−1SH .
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Setting C :=
[
− 2√

5
2√
5

]
we observe that (E,A, C) is not detectable,

since [AH − 5I, CH ] =

[
−3 0 − 2√

5

3 0 2√
5

]
has rank 1. Hence the triples

(E,A, B) and (E,A, C) are also not completely controllable and completely
observable, respectively, see[23]. In this case, 0 is a simple singular value of

[A− iγE B]H :=

 2 + iγ 0
3 5 + iγ
2 2


with corresponding singular vector v := [−2, −2, 5 + iγ]T . The range
of [A − iγE B]H is spanned by the vectors u1 := [2 + iγ, 3, 2]T , and
u2 := [0, 5 + iγ, 2]T . Therefore, (H,N) has a purely imaginary eigenvalue

if and only if some linear combination of u1 and u2 is equal to
[

Q S
SH R

]
v.

This gives rise to the following equations.

(2 + iγ)x1 = 5 + iγ,

3x1 + (5 + iγ)x2 = −(5 + iγ),
2x1 + 2x2 = 5(5 + iγ).

Eliminating x1 and x2 from these equations, we get the relation γ = 5i /∈ R.
�

We note that Theorem 4.1 may be generalized to the case when the zero
blocks of the perturbation matrix ∆N are filled in such a way that the
resulting matrix remains skew-Hermitian, that is, ∆N is replaced by ∆N̂
where

∆N̂ :=

 0 ∆E ∆F
−(∆E)H 0 ∆G
−(∆F )H −(∆G)H 0

 . (13)

In this case, the matrix (∆H − iγ∆N̂)(H − iγN)−1 has a Frobenius factor-
ization

(∆H − iγ∆N̂)(H − iγN)−1 = T̂ (iγ){S(iγ)}−1

where

T̂ (iγ) =

 0 ∆A− iγ∆E ∆B − iγ∆F
(∆A− iγ∆E)H 0 ∆S − iγ∆G
(∆B − iγ∆F )H (∆S − iγ∆G)H 0

 .
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Theorem 4.5 Consider a matrix pencil (H,N) and associated perturba-
tions ∆H and ∆N̂ as given in (11), (12) and (13). Let

P̂ (t, γ) := [A− iγE + t(∆A− iγ∆E) B + t(∆B − iγ∆F )],

and Ẑ(t, γ) :=
[

Q + t∆Q S + t(∆S − iγ∆G)
(S + t(∆S − iγ∆G))H R + t∆R

]
.

Denote by V̂ (t, γ) the set of right singular vectors of P̂ (t, γ)H correspond-
ing to the singular value 0 and the range of P̂ (t, γ)H by Ŵ (t, γ).

Then, for given real numbers t 6= 0 and γ, the purely imaginary number
iγ is an eigenvalue of the matrix pencil (H + t∆H,N + t∆N̂) if and only if
Ẑ(t, γ)(V̂ (t, γ)) ∩ Ŵ (t, γ) 6= ∅.

Proof. The proof follows by replacing the set T (iγ) by T̂ (iγ) in the proof
of Theorem 4.1.

It follows trivially, that all the results of this section also hold for those
special cases when one or more of the blocks ∆A, ∆B, ∆Q,∆R and ∆S in
the perturbation matrix ∆H or the block ∆E in the perturbation matrix
∆N are equal to 0.

4.2 The continuous-time H∞ problem.

As mentioned in the introduction, in the case of the continuous-time, op-
timal H∞ control problem, from (6) we have ∆N = 0. Furthermore, the
perturbation ∆H of H has a very special structure. All its entries are zero,
except for the entries of the block ∆R which is itself a special diagonal ma-
trix, the first few entries on the main diagonal being each equal to −1 and
the remaining being all equal to zero. Due to this special structure, all the
eigenvalues of (∆H−z∆N)(H−zN)−1 are real and its non-zero eigenvalues
are precisely the non-zero eigenvalues of a leading principal submatrix of a
Hermitian matrix whose size is the same as that of the block R of H.

Theorem 4.6 Let the matrices H and N be as in (11) with R :=
[

R11 R12

R21 R22

]
.

Let ∆H and ∆N be as in (12) with ∆A = ∆B = ∆Q = ∆S = ∆E = 0

and ∆R :=
[
−Ij 0
0 0

]
, where Ij is an identity matrix of size j, the parti-

tion being conformal with that of R. Then for γ ∈ R, all the eigenvalues of
the matrix (∆H − iγ∆N)(H − iγN)−1 are real. In particular, the non-zero
eigenvalues are the same as those of the leading principal submatrix of size
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j of the Hermitian matrix

W (γ) := R−1

[ B
S

]H
[

−BR−1BH A− iγE −BR−1SH(
A− iγE −BR−1SH

)H
Q− SR−1SH

]−1

×

[
B
S

]
+ R

)
R−1.

Proof. For γ ∈ R,

H − iγN =

 0 A− iγE B
AH + iγEH Q S

BH SH R


=

 I 0 BR−1

0 I SR−1

0 0 I

×
 −BR−1BH A− iγE −BR−1SH 0

AH + iγEH − SR−1BH Q− SR−1SH 0
BH SH R

 .

Therefore,

(H − iγN)−1 =

 −BR−1BH A− iγE −BR−1SH 0
AH + iγEH − SR−1BH Q− SR−1SH 0

BH SH R

−1

×

 I 0 −BR−1

0 I −SR−1

0 0 I

 .

Let H̃ :=
[

−BR−1BH A− iγE −BR−1SH

AH + iγEH − SR−1BH Q− SR−1SH

]
,M :=

[
−BR−1

−SR−1

]
,

and Z :=
[

BH SH
]
. Then

(H − iγN)−1 =
[

H̃ 0
Z R

]−1 [
I M
0 I

]
=
[

H̃−1 0
−R−1ZH̃−1 R−1

] [
I M
0 I

]
=

[
H̃−1 H̃−1M

−R−1ZH̃−1 −R−1ZH̃−1M + R−1

]
=

[
H̃−1 H̃−1M

MHH̃−1 −MHH̃−1M + R−1

]
,
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which is Hermitian, since H̃ is Hermitian. Then, we obtain

(∆H − iγ∆N)(H − iγN)−1 =
[

0 0
0 ∆R

] [
H̃−1 H̃−1M

MH(H̃)−1 MHH̃−1M + R−1

]
=

[
0 0

(∆R)MHH̃−1 (∆R)(MHH̃−1M + R−1)

]
.

Therefore, the matrix (∆H− iγ∆N)(H− iγN)−1 has a non-zero real eigen-
value if and only if the matrix (∆R)(MHH̃−1M + R−1) has a non-zero real

eigenvalue. Replacing M by
[
−BR−1

−SR−1

]
we have

(∆R)(MHH̃−1M + R−1) = (∆R)R−1

([
B
S

]H

H̃−1

[
B
S

]
+ R

)
R−1

= (∆R)W (γ).

Note that since the matrices R and Q are Hermitian, W (γ) is also Hermitian
and hence all its eigenvalues are real. Let

W (γ) :=
[

W11(γ) W12(γ)
W21(γ) W22(γ)

]
(14)

be a partition of W (γ), conformal with that of ∆R. In view of the structure
of ∆R, it follows that

(∆R)W (γ) =
[
−W11(γ) −W12(γ)

0 0

]
.

Hence (∆H− iγ∆N)(H− iγN)−1 has a non-zero real eigenvalue if and only
if the block W11(γ) has a non-zero real eigenvalue. The proof follows from
the fact that W11(γ) is Hermitian.

From Theorem 4.6 it follows that for the continuous time H∞ control
problem we have sepR(z,∆H,∆N) = {r((∆H − z∆N)(H − zN)−1)}−1 for
all purely imaginary complex numbers z. However, for these problems we are
interested only in positive values of the parameter t for which (H+t∆H,N+
t∆N) has a purely imaginary eigenvalue. The following immediate corollary
of Theorem 4.6 suggests a procedure for obtaining the exact value of the
smallest positive parameter t for which the pencil (H + t∆H,N + t∆N) has
a purely imaginary eigenvalue or an upper or lower bound of this value.

Corollary 4.7 Let H,N, ∆H and ∆N be as in Theorem 4.6. The smallest
positive parameter t for which (H + t∆H,N + t∆N) has a purely imaginary
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eigenvalue is, say t = t0, if and only if
(i) 1/t0 is the smallest value of ε for which the set

L(ε,∆H,∆N) := {z ∈ C \ σ(H,N) : r((∆H − z∆N)(H − zN)−1) = ε−1}

touches the imaginary axis and
(ii) 1/t0 is an eigenvalue of largest magnitude of the matrix W11(γ0), given
by (14), iγ0 being the point at which L(1/t0,∆H,∆N) touches the imaginary
axis.

If all the eigenvalues of W11(γ0) are negative real numbers, then the
smallest positive parameter t for which (H + t∆H,N + t∆N), has a purely
imaginary eigenvalue is larger than {r(W11(γ0))}−1.

If W11(γ0) has positive eigenvalues but none of them is equal to r(W11(γ0)),
and α is the largest among these eigenvalues, then the smallest positive pa-
rameter t for which (H + t∆H,N + t∆N) has a purely imaginary eigenvalue
is less than or equal to 1/α.

Proof. The proof follows immediately from Theorem 4.6 in view of the
fact that given a positive real number t0, iγ0 is a purely imaginary eigenvalue
of (H + t0∆H,N + t0∆N) if and only if 1/t0 is an eigenvalue of W11(γ0).

In this section we have discussed linear perturbation theory for struc-
tured pencils arising in continuous-time control theory. In the next section
we discuss analogous results for discrete-time control problems.

5 Perturbation of structured pencils arising from
discrete-time control

There is a well-known analogy between continuous and discrete-time linear
quadratic optimal control problems, given by the Cayley transformation, see
[25, 26]. Thus, we expect similar results for the discrete time case. For these
problems the pencils have the following structures.

H :=

 0 A B
−EH Q S

0 SH R

 , N :=

 0 E 0
−AH 0 0
−BH 0 0

 , (15)

∆H:=

 0 ∆A ∆B
−(∆E)H ∆Q ∆S

0 (∆S)H ∆R

 , ∆N:=

 0 ∆E 0
−(∆A)H 0 0
−(∆B)H 0 0

 (16)
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where again QH = Q, RH = R, (∆Q)H = ∆Q, and (∆R)H = ∆R have the
same dimensions as in (11). Although we consider complex matrices, the
results of this section are true for real matrices as well.

In this case Cg := {z ∈ C : |z| 6= 1}, and the smallest |t|, t ∈ R such that
the perturbed pencil (H + t∆H,N + t∆N) has an eigenvalue z ∈ C, |z| = 1,
is the quantity of interest for these problems. This is equivalent to the matrix
(∆H − z∆N)(H − zN)−1 having a real eigenvalue for some z ∈ C such that
|z| = 1. We show first that for any z ∈ C on the unit circle, Hermitian
Frobenius factors T (z) and S(z) of the matrix (∆H − z∆N)(H − zN)−1

may be obtained from the matrices ∆H − z∆N and H − zN by a simple
scaling.

Theorem 5.1 Let the matrices H,N, ∆H and ∆N be as given in (15) and
(16). Then for z ∈ C, |z| = 1,

(∆H − z∆N)(H − zN)−1

=

 0 ∆A− z∆E ∆B
(∆A− z∆E)H ∆Q ∆S

(∆B)H (∆S)H ∆R

 0 A− zE B
(A− zE)H Q S

BH SH R

−1

.

Proof. For |z| = 1, we have,

H − zN =

 0 A− zE B
z(A− zE)H Q S

zBH SH R


=

 0 A− zE B
(A− zE)H Q S

BH SH R

 zI 0
0 I 0
0 0 I

 .

Similarly,

∆H − z∆N =

 0 ∆A− z∆E ∆B
(∆A− z∆E)H ∆Q ∆S

(∆B)H (∆S)H ∆R

 zI 0 0
0 I 0
0 0 I

 .

The proof follows from the fact that the matrix

 zI 0 0
0 I 0
0 0 I

 is unitary,

since |z| = 1.
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Hence for all z ∈ C, such that |z| = 1, we get Hermitian Frobenius
factors T (z) and S(z) of (∆H − z∆N)(H − zN)−1 as

T (z) :=

 0 ∆A− z∆E ∆B
(∆A− z∆E)H ∆Q ∆S

(∆B)H (∆S)H ∆R

 ,

S(z) :=

 0 A− zE B
(A− zE)H Q S

BH SH R

 .

Thus, given a complex number z lying on the unit circle, the results of
Section 3 may be applied to these Frobenius factors to obtain necessary
and sufficient conditions for the matrix (∆H − z∆N)(H − zN)−1 to have a
real eigenvalue. This in turn gives us necessary and sufficient conditions for
the matrix pencil (H + t∆H,N + t∆N) to have an eigenvalue on the unit
circle. However, as in the continuous time case, the special structure of the
Frobenius factors lead to another necessary and sufficient condition for the
pencil (H + t∆H,N + t∆N) to have an eigenvalue on the unit circle on the
lines of Theorem 4.1.

Theorem 5.2 Consider a matrix pencil (H,N) and associated perturba-
tions ∆H and ∆N as in (15) and (16). Let z ∈ C such that |z| = 1, and

P (t, z) := [A− zE + t(∆A− z∆E) B + t∆B],

Z(t) :=
[

Q + t∆Q S + t∆S
(S + t∆S)H R + t∆R

]
.

Let V (t, z) be the set of right singular vectors of P (t, z)H corresponding to
the singular value 0 and let W (t, z) be the range of P (t, z)H .

Then, for given a real number t 6= 0 and a complex number z ∈ C, |z| = 1
is an eigenvalue of the matrix pencil (H + t∆H,N + t∆N) if and only if
Z(t)(V (t, z)) ∩W (t, z) 6= ∅.

Proof. The proof follows by replacing iγ by z ∈ C, |z| = 1, in the proof
of Theorem 4.1.

As in the continuous time case, if we assume that the matrices Q,S, and
R which are associated with the cost function are unperturbed, that is, if
∆Q = ∆S = ∆R = 0, then we have the following corollary to Theorem 5.2.
It characterizes the choice of a cost function such that given t ∈ R, and
z ∈ C such that |z| = 1, z is not an eigenvalue of (H + t∆H,N + t∆N).
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Corollary 5.3 Let W (t, z), and V (t, z) be as in Theorem 5.2 and let Z0 :=[
Q S
SH R

]
. The matrix pencil (H + t∆H,N + t∆N) has an eigenvalue z

with |z| = 1 if and only if Z0(V (t, z)) ∩W (t, z) 6= ∅.

Proof. The proof follows immediately from Theorem 5.2 by the fact that
Z(0) = Z0.

The next corollary provides a characterization of all cost functions such
that for a fixed t ∈ R, the pencil (H + t∆H,N + t∆N) do not have any
eigenvalues on the unit circle.

Corollary 5.4 suppose that P (t, z) and V (t, z) are as in Theorem 5.2 and

that Z0 :=
[

Q S
SH R

]
. Then ,for a fixed t ∈ R, the matrix pencil (H +

t∆H,N + t∆N) has no eigenvalues on the unit circle if and only if

Z0(∪|z|=1V (t, z)) ∩ (∪|z|=1W (t, z)) = ∅.

The results of this section also hold if the perturbation matrices ∆H and
∆N are replaced by the matrices ∆Ĥ and ∆N̂ , respectively, which are given
by

∆Ĥ:=

 0 ∆A ∆B
−(∆E)H ∆Q ∆S
−(∆F )H (∆S)H ∆R

 ,∆N̂:=

 0 ∆E ∆F
−(∆A)H 0 0
−(∆B)H 0 0

 .

(17)
Then for z ∈ C such that |z| = 1, (∆Ĥ − z∆N̂)(H − zN)−1 = T̂ (z)S(z)−1,
is a Frobenius factorization of (∆Ĥ − z∆N̂)(H − zN)−1 where

T̂ (z) :=

 0 ∆A− z∆E ∆B − z∆F
(∆A− z∆E)H ∆Q ∆S
(∆B − z∆F )H (∆S)H ∆R

 .

With these new perturbation matrices, Theorem 5.2 takes the following
form.

Theorem 5.5 Consider a matrix pencil (H,N) and associated perturba-
tions ∆Ĥ and ∆N̂ as given in (15) and (17). Let

P̂ (t, z) := [A− zE + t(∆A− z∆E) B + t(∆B − z∆F )],

Z(t) :=
[

Q + t∆Q S + t∆S
(S + t(∆S))H R + t∆R

]
.
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Let V̂ (t, z) be the set of right singular vectors of P̂ (t, z)H corresponding
to the singular value 0, and let Ŵ (t, z) be the range of P̂ (t, z)H .

Then, for a given real number t 6= 0, a complex number z ∈ C with
|z| = 1 is an eigenvalue of the matrix pencil (H + t∆Ĥ, N + t∆N̂) if and
only if Z(t)(V̂ (t, z)) ∩ Ŵ (t, z) 6= ∅.

Proof. The proof follows by using arguments similar to those of Theo-
rem 4.1 with the matrix P (t, iγ) being replaced by P̂ (t, z).

Given t ∈ R and z ∈ C, |z| = 1, the following corollary provides a
characterization of the cost function such that z /∈ σ(H + t∆Ĥ,N + t∆N̂).

Corollary 5.6 Let P̂ (t, z), V̂ (t, z) and Ŵ (t, z) be as in Theorem 5.5 and let

Z0 :=
[

Q S
SH R

]
. Then, for a fixed real number t and z ∈ C, such that |z| =

1, we have z /∈ σ(H+t∆Ĥ,N+t∆N̂) if and only if Z0(V̂ (t, z))∩Ŵ (t, z) 6= ∅.

Finally we have a characterization of the cost function such that for a given
t ∈ R, the pencil (H + t∆Ĥ, N + t∆N̂) has no eigenvalues on the unit circle.

Corollary 5.7 Let P̂ (t, z), V̂ (t, z) and Ŵ (t, z) be as in Theorem 5.5 and let

Z0 :=
[

Q S
SH R

]
. Then for a fixed real number t, the pencil (H+t∆Ĥ,N +

t∆N̂) has no eigenvalues on the unit circle if and only if

Z0(∪|z|=1V̂ (t, z)) ∩ (∪|z|=1Ŵ (t, z)) 6= ∅.

Note that all results hold if any one or more of the blocks in the perturbation
matrices ∆H and ∆N are equal to 0.

6 The discrete-time H∞ problem

In the discrete-time optimal H∞ control problem, the matrices H and N of
the pencil (H,N) are also given by (15). But as in the case of its continu-
ous time analogue, the perturbations ∆N and ∆H are very special. From
equation (7) we have ∆N = 0 and all the blocks of ∆H are zero except for
∆R which is a special diagonal matrix. Only the first few diagonal entries
of ∆R are non-zero and these are each equal to −1. We show that given
|z| = 1, the matrix all the eigenvalues of (∆H − z∆N)(H − zN)−1 are real
and the non-zero eigenvalues are precisely the same as those of the leading
principal submatrix of a Hermitian matrix which is of the same size as the
block R of H.
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Theorem 6.1 Let the matrices H and N be as in (15) with R :=
[

R11 R12

R21 R22

]
.

Let ∆H and ∆N be as in (16) with ∆A = ∆B = ∆Q = ∆S = ∆E = 0

and ∆R :=
[
−Ij 0
0 0

]
, where Ij is an identity matrix of size j, the parti-

tion being conformal with that of R. Then for z ∈ C, such that |z| = 1, all
eigenvalues of the matrix (∆H − z∆N)(H − zN)−1 are real. In particular
its non-zero real eigenvalues are the same as those of the leading principal
submatrix of size j of the Hermitian matrix

W (z) := R−1

[ B
S

]H
[

−BR−1BH A− zE −BR−1SH(
A− zE −BR−1SH

)H
Q− SR−1SH

]−1

×

[
B
S

]
+ R

)
R−1.

Proof. Since R and Q are Hermitian, it is clear that W (z) is a Hermitian
matrix. For z ∈ C, |z| = 1, we have,

H − zN =

 0 A− zE B
−EH + zAH Q S

zBH SH R


=

 I 0 BR−1

0 I SR−1

0 0 I

×
 −zBR−1BH A− zE −BR−1SH 0

z(A− zE −BR−1SH)H Q− SR−1SH 0
zBH SH R

 .

Therefore,

(H − zN)−1 =

 −zBR−1BH A− zE −BR−1SH 0
−EH + zAH − zSR−1BH Q− SR−1SH 0

zBH SH R

−1

×

 I 0 −BR−1

0 I −SR−1

0 0 I

 .

Let

H̃ =
[

−zBR−1BH A− zE −BR−1SH

z(AH − zEH − SR−1BH) Q− SR−1SH

]
, M =

[
−BR−1

−SR−1

]
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and Z =
[

zBH SH
]
. Then,

(H − zN)−1 =
[

H̃ 0
Z R

]−1 [
I M
0 I

]
=
[

H̃−1 0
−R−1ZH̃−1 R−1

] [
I M
0 I

]
=

[
H̃−1 H̃−1M

−R−1ZH̃−1 −R−1ZH̃−1M + R−1

]
.

Let J̃ =
[

zI 0
0 I

]
where the partitioning is conformal with that of M .

Since |z| = 1, it is clear that J̃ is unitary and R−1Z = −MH J̃−1. This gives
R−1ZH̃−1 = −MH(H̃J̃)−1 and hence,

(H − zN)−1 =
[

(H̃J̃)−1 H̃−1M

MH(H̃)−H MH(H̃J̃)−1M + R−1

]
.

Therefore,

(∆H − z∆N) (H − zN)−1

= =
[

0 0
0 ∆R

] [
(H̃J̃)−1 H̃−1M

−R−1Z(H̃J̃)−1 −R−1ZH̃−1M + R−1

]
=

[
0 0

(∆R)MH(H̃J̃)−1 (∆R)(MH(H̃J̃)−1M + R−1)

]
.

This shows that the matrix (∆H − z∆N)(H − zN)−1 has non-zero real
eigenvalues if and only if the matrix

(∆R)(MH(H̃J̃)−1M + R−1)

has non-zero real eigenvalues or equivalently

(∆R)R−1

([
B
S

]H

(H̃J̃)−1

[
B
S

]
+ R

)
R−1

has non-zero real eigenvalues. Since,

H̃J̃ =

[
−BR−1BH A− zE −BR−1SH(

A− zE −BR−1SH
)H

Q− SR−1SH

]
,

we have,

(∆R)R−1

([
B
S

]H

(H̃J̃)−1

[
B
S

]
+ R

)
R−1 = (∆R)W (z).
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Let

W (z) :=
[

W11(z) W12(z)
W21(z) W22(z)

]
(18)

be a partition of W (z) conformal with that of ∆R. In view of the structure
of ∆R, we have,

(∆R)W (z) =
[
−W11(z) W12(z)

0 0

]
.

Hence the non-zero real eigenvalues of (∆H − z∆N)(H − zN)−1 are the
same as those of −W11(z) and the proof follows by the fact that W11(z) is
Hermitian.

By Theorem 6.1, it is clear that every point on the unit circle becomes
an eigenvalue of (H + t∆H,N + t∆N) for some real number t. However, as
in the case of the continuous time H∞ problem, we are interested only in the
positive values of the parameter t for which the pencil (H + t∆H,N + t∆N)
has eigenvalues on the unit circle. Since, for any z 6∈ σ(H,N), we have,
z ∈ σ(H + t∆H,N + t∆N) if and only if −1/t ∈ σ(∆H−z∆N)(H−zN)−1,
it follows from Theorem 6.1 that there exists t > 0 such that some z ∈ C,
with |z| = 1 is an eigenvalue of (H+t∆H,N +t∆N) if and only if the matrix
W11(z) has a positive eigenvalue. This suggests the following procedure for
finding the smallest positive number t for which (H + t∆H,N + t∆N) has
an eigenvalue on the unit circle on the lines of Corollary 4.7.

Corollary 6.2 Let H,N, ∆H and ∆N be as in Theorem 6.1. The smallest
positive parameter t for which (H + t∆H,N + t∆N) has an eigenvalue z
with |z| = 1 is say t = t0, if and only if
(i) 1/t0 is the smallest value of ε for which the set

L(ε,∆H,∆N) := {z ∈ C \ σ(H,N) : r((∆H − z∆N)(H − zN)−1) = ε−1}

touches the imaginary axis and
(ii) 1/t0 is an eigenvalue with largest magnitude of the matrix W11(z0), given
by (18), z0 being the point at which L(1/t0,∆H,∆N) touches the unit circle.

If all the eigenvalues of W11(z0) are negative real numbers, then the
smallest positive parameter t, for which (H + t∆H,N + t∆N) has an eigen-
value on the unit circle, is larger than {r(W11(z0))}−1.

If W11(z0) has positive eigenvalues but none of them is equal to r(W11(z0)),
and α is the largest among these eigenvalues, then the smallest positive pa-
rameter t for which (H + t∆H,N + t∆N) has an eigenvalue on the unit
circle is less than or equal to 1/α.

Proof. The proof is an immediate consequence of Theorem 6.1.
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7 Conclusion and future work

We have studied the effect of linear perturbations on several structured
matrix pencils arising in control theory. These include skew-symmetric/sym-
metric pencils arising in the computation of optimal H∞ control and linear
quadratic control for continuous and discrete time systems. We have given
characterizations when these pencils have eigenvalues on the imaginary axis
or the unit circle, respectively.

But several important questions remain open. Among these are a char-
acterization of the Kronecker structure associated with eigenvalues on the
imaginary axis and to develop numerical methods for the efficient compu-
tation of the smallest perturbations that move eigenvalues to the imaginary
axis or unit circle, respectively. We will address these issues in our future
work.
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