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[N]ature isn’t classical, dammit, and if you want to make a simulation of nature, you’d
better make it quantum mechanical, and by golly it’s a wonderful problem, because it
doesn’t look so easy.
— Richard Feynman





Abstract

Large-scale quantum networks in which quantum information is transferred between flying and
stationary qubits play a central role in quantum information processing and communication. A
promising platform for their implementation is waveguide quantum electrodynamics (WQED).
In such setups, non-negligible delay times offer the possibility to control the system dynamics.
From a theorist’s point of view, however, they present a difficulty since they require a description
beyond the Markov approximation. In this thesis, we explore characteristic features of WQED
systems with feedback focussing on the generation of entanglement in different realms.

The first part of the thesis is concerned with multiphoton pulses in WQED systems with feedback,
the inclusion of which is essential to account for the transmission of quantum information. For
the simulation of the dynamics, we employ two different methods complementing each other.
The first is based on the matrix product state (MPS) framework and allows for the inclusion
of multiple photons due to the efficient handling of the entanglement in the system. In the
fundamental setup of a two-level emitter coupled to a semi-infinite waveguide, a bound state
exists in the continuum of propagating modes. Our simulations show that in the highly non-
Markovian regime of long delay times, the excitation of the bound state by multiphoton pulses via
stimulated emission can be significantly more efficient than its excitation via the spontaneous
decay of an initially excited emitter. The second method is a Heisenberg-operator approach,
where the arising hierarchy of multi-time correlations is unraveled by introducing a Hilbert space
unity. The method allows for the straightforward inclusion of arbitrary pulse shapes and makes
the microscopic dynamics accessible so that additional dissipation channels can be included.
This way, we are able to examine the complex interplay of the pulse shape and the feedback
delay time, as well as the influence of a phenomenological pure dephasing rendering the bound
state unattainable. Proceeding toward more complex multi-emitter networks, we study the
entanglement of two macroscopically separated emitters coupled to an infinite waveguide with
MPS. Investigating different excitation schemes, we find that, by addressing the bound state in
the system, it is possible to generate stable and controllable long-range entanglement.

The second part of the thesis deals with photon pairs entangled in different degrees of free-
dom and possibilities to control their entanglement. The energy-time entanglement of a pair
of photons emitted from a ladder-type three-level system can be detected in a Franson-type
interferometer via an interference in the second-order coherence function. The visibility of this
interference depends crucially on the decay rates of the emitter. Simulating the time evolution
within the MPS framework, we show that the implementation of an additional feedback channel
allows controlling the decay process. As a consequence, the visibility can be increased for a wide
range of parameters. Furthermore, the polarization entanglement of a pair of photons emitted
from a biexciton cascade in a semiconductor quantum dot exhibiting an excitonic spin precession
is investigated. We model the precession as a coherent process and, after the verification of
the model using experimental data, find that it affects the entanglement in the same way as a
finite fine-structure splitting. Thus, the precession is detrimental in a time-integrated measure-
ment setup, while, for a time-resolved measurement, a high degree of entanglement is attainable
nevertheless.
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Kurzfassung

Quantennetzwerke, in denen Quanteninformation zwischen fliegenden und stationären Qubits
übertragen wird, spielen eine zentrale Rolle in der Quanteninformationsverarbeitung sowie der
Quantenkommunikation. Für ihre Realisierung stellt die Wellenleiter-Quantenelektrodynamik
(WQED) eine vielversprechende Plattform dar. Im Falle nicht vernachlässigbarer Laufzeiten
bietet die kohärente zeitverzögerte Feedbackkontrolle die Möglichkeit, die Systemdynamik zu
steuern. Allerdings führen die Verzögerungszeiten zu einer Komplikation der theoretischen Be-
schreibung, da sie die Markov-Näherung invalidieren. In dieser Arbeit werden charakteristische
Eigenschaften von WQED-Systemen mit Feedback untersucht, wobei der Fokus auf der Erzeu-
gung von Verschränkung liegt.

Im ersten Teil der Arbeit werden Multiphotonenpulse in WQED-Systemen mit Feedback un-
tersucht, die es ermöglichen, die Übertragung von Quanteninformation selbstkonsistent zu be-
schreiben. Für die Simulation der Dynamik werden zwei verschiedene Methoden verwendet und
ein Zwei-Niveau-System vor einem Spiegel betrachtet, für das ein gebundener Zustand im Kon-
tinuum der propagierenden Moden existiert. Die erste Methode basiert auf der Zeitevolution
mit Matrix-Produkt-Zuständen (MPS). Durch den effizienten Umgang mit der Verschränkung
im System ermöglicht sie es, eine Vielzahl von Photonen zu betrachten. Die MPS-Simulationen
zeigen, dass die Anregung des gebundenen Zustandes mittels stimulierter Emission durch Mul-
tiphotonenpulse im Bereich langer Laufzeiten wesentlich effizienter sein kann als seine Anregung
über den spontanen Zerfall eines initial angeregten Emitters. Bei der zweiten Methode handelt es
sich um einen Heisenberg-Operator-Ansatz, wobei die auftretende Hierarchie von Mehr-Zeiten-
Korrelationen durch die Einführung eines Einselements aufgelöst wird. Sie ermöglicht die direk-
te Simulation beliebiger Pulsformen und macht die mikroskopische Dynamik zugänglich, sodass
zusätzliche Dissipationskanäle einbezogen werden können. Somit kann das komplexe Zusammen-
spiel von Pulsform und Feedback-Verzögerungszeit sowie der Einfluss einer phänomenologischen
reinen Dephasierung, welche den gebundenen Zustand unzugänglich macht, untersucht werden.
Auf dem Weg hin zu komplexen Multi-Emitter-Netzwerken werden zudem zwei Emitter, die an
einen Wellenleiter koppeln, betrachtet. Dabei zeigt die Simulation verschiedener Anregungssze-
narien mittels MPS, dass es möglich ist, verbunden mit der Anregung des gebundenen Zustandes
im System eine stabile Verschränkung zwischen den Emittern zu erzeugen.

Der zweite Teil der Arbeit befasst sich mit Möglichkeiten, die Verschränkung von Photonenpaaren
in verschiedenen Freiheitsgraden zu kontrollieren. Die Energie-Zeit-Verschränkung eines Photo-
nenpaares ist über die Zwei-Photonen-Interferenz in einem Franson-Interferometer detektierbar.
Die Simulation des Systems mittels MPS offenbart, dass der Emissionsprozess durch einen zu-
sätzlichen Feedbackkanal beeinflusst und so die Visibilität der Interferenz erhöht werden kann.
Darüber hinaus wird die Polarisationsverschränkung eines Photonenpaares untersucht, das von
einer Biexziton-Kaskade in einem Halbleiterquantenpunkt emittiert wird, der eine exzitonische
Spinpräzession aufweist. Die Modellierung dieser Spinpräzession als kohärenter Prozess führt
zu einer guten Übereinstimmung mit experimentellen Daten. Innerhalb dieses Modells wird die
Verschränkung auf die gleiche Weise beeinflusst wie durch eine Feinstrukturaufspaltung, die bei
einem zeitintegrierten Messaufbau problematisch ist, während bei einer zeitaufgelösten Messung
trotzdem ein hoher Grad an Polarisationsverschränkung erreicht werden kann.
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1 Introduction

1.1 Motivation

The exploitation of characteristic quantum mechanical features for information processing
has led to a technological paradigm shift. With the current advances in quantum technol-
ogy, the solution of problems that are hard to solve classically comes within reach. Among
them are the factorization of large numbers [1] and the search in unsorted databases [2]
with potential applications for the realization as well as the breaking of cryptography pro-
tocols [3, 4]. The simulation of quantum systems [5] and the realization of a quantum
internet [6, 7] are further auspicious fields of application. The smallest unit of quantum
information, the qubit, a quantum mechanical two-level system (TLS), is based on fun-
damentally different principles than the classical bit. While the classical bit yields a de-
terministic measurement outcome, for the qubit, measurement outcomes are probabilistic.
This is the case because the qubit can be in a superposition state, which gives rise to
interference effects and inherent parallelism. At the heart of many quantum technologi-
cal applications lies, furthermore, the concept of entanglement, which describes nonlocal
correlations that are unattainable classically. Already in 1935, Schrödinger acknowledged
entanglement as “the characteristic trait of quantum mechanics, the one that enforces its
entire departure from classical lines of thought” [8]. Since then, entanglement has under-
gone an impressive development from a theoretical concept [9–11] to an essential resource
in quantum information processing [12–19].

For the implementation of quantum information processing applications, waveguide quan-
tum electrodynamics (WQED) provides a promising platform [20–22]. In WQED, the light
field is confined to a one-dimensional geometry, which allows for strong interactions be-
tween quantum emitters and photonic waveguide modes, while, in free space, the leakage to
external modes typically dominates. A strong light-matter interaction, however, is a pre-
requisite for the observability of quantum optical phenomena. As a consequence, WQED
setups are natural building blocks for quantum networks [6,23] and suitable candidates for
the realization of single-photon transistors [24, 25]. For their theoretical description, it is
convenient to treat WQED systems within the framework of open quantum systems, where
a distinction is made between the system of interest and its environment so that different
approximation methods can be applied to the individual components [26]. This approach
enables a numerical treatment despite the exponential growth of the corresponding Hilbert
space with the number of elements in the system. In this way, it allows accounting for de-
coherence and dissipation. To handle open quantum systems, commonly, master equations
are employed, of which the best-known form is the Lindblad master equation [27, 28]. It
relies on the Markov approximation, which assumes a unidirectional flow of information
from the system of interest into the environment and, thereby, neglects any retardation
effects. However, recent technological developments allow for the preparation, the manip-

3



1 Introduction

ulation, and the measurement of quantum systems on ever shorter time scales. Therefore,
the time-scale separation implied by the Markov approximation becomes questionable and
non-Markovian methods that go beyond this assumption gain in importance [29,30].

The ability to control quantum systems is an essential prerequisite for the realization of
quantum information processing protocols. One way to achieve this is by means of feed-
back, which has been applied to both classical [31–33] and quantum systems [34–38]. In
the quantum regime, feedback control can be either measurement-based or coherent de-
pending on how information is extracted. In measurement-based feedback control schemes,
quantum coherence gets lost due to the involved measurement process [39–41]. Coherent
feedback control, in contrast, uses another quantum system or the system to be controlled
itself as the control unit and preserves coherence by construction [42]. Consequently, the
latter approach is eligible for the control of inherently quantum mechanical properties such
as entanglement [43–46]. In addition to that, time-delayed feedback has been proposed as
a way of creating entangled photonic cluster states enabling universal photonic quantum
computation [47]. If feedback delay times are non-negligible, the Markov approximation is
inapplicable so that non-Markovian methods have to be employed. In contrast to the non-
Markovianity imposed by structured reservoirs [48–51], the time delays cannot be treated
appropriately using perturbative methods. Among the possible approaches for the sim-
ulation of the time-delayed feedback are cascaded quantum systems [52], the evaluation
of the quantum stochastic Schrödinger equation within the matrix product state (MPS)
framework [53], and quantum trajectory simulations [54,55].

In this thesis, we theoretically study WQED systems with time-delayed feedback concen-
trating, in particular, on the generation of entanglement in different realms. First, we
look at WQED setups with feedback, where strongly entangled emitter-reservoir states
emerge due to the non-Markovianity of the dynamics. Incorporating quantum pulses in
the model allows for the self-consistent description of the transmission of quantum infor-
mation. Furthermore, interesting phenomena, such as the population of a bound state
in the continuum via multiphoton scattering and the emergence of stable long-range en-
tanglement between the emitters, can be investigated. For the numerical simulation, we
employ different methods. On the one hand, we calculate the time evolution of the system
state using MPS. On the other hand, we propose an alternative approach based on the
calculation of the dynamics within a Heisenberg representation. Here, the focus of the
investigation determines which method is preferable. Moreover, we study photon pairs
entangled in different degrees of freedom and explore possibilities to control the degree
of their entanglement. Applying coherent time-delayed feedback to a two-photon source
allows manipulating the emission process. Therefore, this method is, in principle, suitable
for controlling the energy-time entanglement of the photons, which is detectable using the
Franson interferometer. Furthermore, we consider the polarization entanglement of a pair
of photons emitted from a biexciton cascade in a semiconductor quantum dot. In this
context, we focus on the effect of an excitonic spin precession as well as the impact of the
detector resolution on the entanglement of the photons and compare the calculations with
experimental data.
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1.2 Structure of the thesis

1.2 Structure of the thesis

The thesis consists of three main parts. In part I, we introduce the basic concepts under-
lying the work presented in this thesis. In Chap. 2, a summary of the quantum mechanical
framework is given to establish common ground and clarify the notation. Thereby, we
focus on the different pictures of quantum mechanics, the concept of the density matrix,
and the quantization of the light field. An introduction with respect to the field of WQED
is given in Chap. 3, where we discuss experimental platforms as well as their theoretical
description. In this context, we formalize the light-matter interaction and touch upon the
theory of open quantum systems. The theoretical background of entanglement is presented
in Chap. 4. First, we outline the concept of entanglement and, subsequently, consider dif-
ferent possibilities to characterize and quantify it.

Part II of the thesis is concerned with the study of WQED systems with feedback inducing
entanglement in the emitter-reservoir state. In Chap. 5, a two-level emitter with self-
feedback is studied, where multiphoton pulses can lead to population trapping due to the
excitation of a bound state in the continuum. We start the chapter with an introduction of
the MPS formalism and the corresponding time evolution method. Since we are interested
in the role of multiphoton pulses, we discuss how it is possible to model them in the MPS
framework. Subsequently, we examine the resulting feedback dynamics focussing, in partic-
ular, on the dependence of the bound-state excitation probability on the number of photons
in the pulse. An alternative approach for the study of WQED systems with feedback using
Heisenberg equations is proposed in Chap. 6. After introducing and benchmarking the
method for the TLS with self-feedback, we use it to consider arbitrary pulse shapes so that
the impact of the pulse shape on the excitation efficiency of the atom-photon bound state
can be examined. Furthermore, it allows including additional dissipation channels such as
the phenomenological pure dephasing we include for demonstration purposes. To proceed
toward more complex multi-emitter networks, in Chap. 7, we study the onset of collective
effects for two macroscopically separated two-level emitters. Simulating the dynamics in
this WQED setup using MPS, we explore the potential of different excitation schemes for
the generation of stable long-range entanglement between the emitters.

The subject of part III of the thesis is the control of photon entanglement in different
degrees of freedom. The energy-time entanglement of a pair of photons can be detected
using the Franson interferometer, which we study in Chap. 8. First, we consider the
conventional Franson interferometer without feedback, where the visibility of the two-
photon interference depends on the decay rates of the three-level emitter we assume as
the two-photon source. The subsequent addition of coherent time-delayed feedback opens
up the possibility to control the emission dynamics and has the potential to enhance the
energy-time entanglement of the photons. In Chap. 9, we concentrate on the polarization
entanglement of a pair of photons emitted from a biexciton cascade, for which an excitonic
spin precession can be detected. We model the system treating the spin precession as
a coherent process, where the comparison of the results with experimental data allows
verifying the model. After that, we use the model to estimate the degree of entanglement
for arbitrary precession strengths and temporal resolution of the corresponding detector.

Finally, in Chap. 10, the thesis concludes with a summary of the results and an outlook
on possible future research directions.
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Part I

Theoretical background
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2 Quantum mechanical framework

The success story of quantum mechanics has been closely intertwined with the study of the
interaction of light and matter from its very beginning. In the early 20th century, Planck
was able to explain the spectrum of the black-body radiation by quantizing the energy in
discrete packages via the introduction of the quantum of action [56]. Subsequently, Einstein
succeeded in describing the photoelectric effect by postulating that the electromagnetic field
itself consists of individual light quanta, which later led to the concept of the photon [57].
It was, however, not until Dirac formally combined the wave-like and the particle-like
properties of light that it became possible to treat light and matter on an equal footing via
the association of each mode of the light field with a quantized harmonic oscillator [58].
This treatment reveals properties that cannot be found when assuming a classical light field.
In particular, the discovery of vacuum fluctuations has had far-reaching consequences.

While the quantum theory was spectacularly successful in explaining experimental obser-
vations from a mathematical point of view, it also raised fundamental questions about our
understanding of the world. In classical mechanics, a system follows, at least in principle,
a deterministic evolution. Everything we can say about a quantum mechanical system, in
contrast, according to the Copenhagen interpretation, is of probabilistic nature. The dis-
parity between the predictions of quantum mechanics and the intuitively valid assumptions
of locality and reality becomes most apparent in the discussion of the Einstein-Podolsky-
Rosen paradox and the concept of entanglement, see Chap. 4.

This chapter aims to review some quantum mechanical basics. This allows clarifying the
notation and lays the foundation for the subsequent work. Since the methods we employ
in this thesis are based on different pictures, the possible pictures of quantum mechanics
and their connections are discussed in Sec. 2.1. Furthermore, in Sec. 2.2, we introduce the
density matrix, which is an important concept in the context of open quantum systems
and allows for the description of the state of a system the preparation of which is not fully
known. Finally, we outline the quantization of the electromagnetic field in Sec. 2.3 as a
preparation for the fully quantized description of the interaction of light and matter as
covered in Chap. 3.

2.1 Quantum mechanics in different pictures

Quantum mechanics provides a mathematical framework for the modeling of physical sys-
tems. At its heart lies the description of the state of a system as a unit vector |ψ⟩,
⟨ψ|ψ⟩ = 1, in an associated Hilbert space H. Classically, an individual system has a de-
fined state and follows a deterministic time evolution. Quantum mechanics, in contrast,
allows for the description of a system in a linear combination of the basis states {|ψi⟩},
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2 Quantum mechanical framework

that is, in a superposition state
|ψ⟩ =

∑
i

ci |ψi⟩ . (2.1)

Here, the coefficients ci can be interpreted as the probability amplitudes that give the
probabilities |ci|2 to find the system in the state |ψi⟩ when measuring in the respective
basis. For a physical system composed of multiple subsystems, the associated state space
is the tensor product of the subspaces, H = H1 ⊗ H2 ⊗ · · · ⊗ Hn. If the subsystem i
is prepared in the state |ψi⟩ ∈ Hi, the state of the composite system is given as |ψ⟩ =
|ψ1⟩⊗ |ψ2⟩⊗ · · ·⊗ |ψn⟩. For notational simplicity, however, we often refrain from explicitly
expressing the state as a tensor product.

Measurements allow extracting information about a system. They correspond to the eval-
uation of an observable represented by a Hermitian operator Ô with a spectral decompo-
sition

Ô =
∑
i

Oi |ϕi⟩ ⟨ϕi| . (2.2)

The eigenvalues Oi are the possible outcomes of the measurement, occurring with proba-
bilities pi = |⟨ϕi|ψ⟩|2. When an experimentalist performs a measurement, the state of the
system is projected onto the eigenvector |ϕi⟩ associated with the measured value Oi. This
is often referred to as the “collapse of the wavefunction”. Thus, only at the moment of
the measurement, the system is forced to assume a definite state. Therefore, in quantum
mechanics, the measurement process itself is of central importance. In general, we cannot
predict the outcome of an individual measurement. It is, however, possible to calculate
expectation values. For a system in the state |ψ⟩, the expectation value of the operator Ô
is given as

⟨Ô⟩ = ⟨ψ| Ô |ψ⟩ . (2.3)

Since measurements influence the state of the system, the order in which multiple mea-
surements are performed is decisive. This is reflected in the fact that two operators Ô1

and Ô2 do not necessarily commute but satisfy the commutation relation[
Ô1, Ô2

]
= Ô1Ô2 − Ô2Ô1. (2.4)

To model an experiment theoretically, we need to know how the system evolves with time.
The time evolution of a closed quantum system is reversible and can, therefore, be described
as a unitary transformation. For a system the total energy of which is represented by the
Hamiltonian H, the state |ψ⟩ obeys

|ψ (t)⟩ = U (t, t0) |ψ (t0)⟩ , U (t, t0) = T exp

[
− i

ℏ

∫ t

t0

dt′H(t′)

]
, (2.5)

where U (t, t0) is the time evolution operator from time t0 to time t. The explicit form of
the time evolution operator arises from the integration of the Schrödinger equation

d
dt

|ψ(t)⟩ = − i

ℏ
H |ψ(t)⟩ . (2.6)

In general, for the time evolution operator U(t, t0), Eq. (2.5), the time ordering operator T
has to be accounted for since the Hamiltonian of the system does not necessarily commute
with itself at different times.
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2.2 Density matrix

When calculating the time evolution via the Schrödinger equation, the state of the system
is assumed to change with time while the operators are constant. This is referred to as the
Schrödinger picture of quantum mechanics. While this approach is common, other pictures
of quantum mechanics are possible. Within the Heisenberg picture, the state of the system
is assumed to be time-independent, whereas the operators evolve in time according to the
Heisenberg equation of motion

d
dt
ÔHB(t) =

i

ℏ

[
H, ÔHB(t)

]
+

(
∂

∂t
ÔS

)
HB

. (2.7)

The last term on the right-hand side of Eq. (2.7) is usually omitted, which is justified if
there is no explicit time dependence of the operator ÔS, which could arise, for example,
from a time-dependent external field. The transformation between the Schrödinger (S) and
the Heisenberg picture (HB) is possible via the time evolution operator U , as introduced
in Eq. (2.5), according to

|ψ(t)⟩S = U (t, t0) |ψ⟩HB , U † (t, t0) ÔS U (t, t0) = ÔHB(t). (2.8)

This implies that the formulations coincide at the starting time of the dynamics, t = t0.

Another picture of quantum mechanics is the interaction picture, where both the states
and the operators carry part of the time dependence. This picture is particularly useful
for the separation of the free evolution of a system from its evolution due to interactions,
that is, if the Hamiltonian can be written as

H = H0 +H1, (2.9)

where H0 describes the free evolution while H1 refers to an interaction. We can choose the
interaction picture, for example, in such a way that states and operators evolve according
to

d
dt

|ψ(t)⟩I = − i

ℏ
HI(t) |ψ(t)⟩I ,

d
dt
ÔI(t) =

i

ℏ

[
H0, ÔI(t)

]
+

(
∂

∂t
ÔS

)
I
, (2.10)

respectively, where, under the assumption of a time-independent H0,

HI(t) = U †
I (t, t0)H1UI(t, t0), UI(t, t0) = exp

[
− i

ℏ
H0(t− t0)

]
. (2.11)

The transformation between the Schrödinger (S) and the interaction picture (I) is possible
via

|ψ(t)⟩I = U †
I (t, t0) |ψ(t)⟩S = U †

I (t, t0)U (t, t0) |ψ (t0)⟩S , ÔI(t) = U †
I (t, t0)ÔSUI(t, t0). (2.12)

The experimentally accessible and, thus, physically relevant quantities such as eigenvalues
and expectation values are independent of the specific picture, and it depends on the
problem at hand which picture is most convenient.

2.2 Density matrix

So far we assumed our system to be in a pure state |ψ⟩ represented by a specific vector in
the associated Hilbert space. However, there are many scenarios in which we do not fully
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2 Quantum mechanical framework

know the preparation of the system. One reason for this is that a realistic physical system
can never be fully isolated but always interacts with its environment to some extent. Under
these circumstances, often the best we have is a statistical ensemble of states the system
might be prepared in. A generalization of pure to such mixed states is possible by means
of the density matrix ρ,

ρ =
∑
m

pm |ψm⟩ ⟨ψm| , (2.13)

where pm denotes the probability that the system is prepared in the state |ψm⟩. The time
evolution of the density matrix can be determined by extending the Schrödinger equation
to the case of mixed states, where we obtain the Von-Neumann equation

d
dt
ρ = − i

ℏ
[H, ρ] . (2.14)

The calculation of expectation values can be generalized to the notion of mixed states via
the trace,

⟨Ô⟩ = tr
(
ρÔ
)
. (2.15)

If we consider a mixed state of a composite system, ρAB ∈ HA ⊗ HB, but we are only
interested in the state of subsystem A, we can calculate the reduced density matrix by
taking the partial trace with respect to subsystem B with basis states {|ψB,i⟩},

ρA = trB (ρAB) =
∑
i

⟨ψB,i| ρAB |ψB,i⟩ ∈ HA. (2.16)

The expectation value of an operator ÔA acting only on HA, so that in the composite
system it can be expressed as ÔA ⊗ 1B, where 1B denotes the identity in the Hilbert space
HB, can be calculated with this reduced density matrix according to

⟨ÔA⟩ = trA
(
ρAÔA

)
. (2.17)

It is important to note that the pure coherent superposition state introduced in Eq. (2.1)
can give rise to interference of the probability amplitudes. The density matrix in Eq. (2.13),
in contrast, describes an incoherent statistical mixture of the states {|ψm⟩} and, thus, does
not lead to interference between these states. The density matrix is particularly useful
for the treatment of open quantum systems as discussed in Chap. 3. Furthermore, mixed
states play an important role in the context of entanglement, see Chap. 4.

2.3 Quantized light field

The fully quantized interaction of light and matter is a central topic of this thesis. Due
to its importance for this work, here, we outline the approach for the quantization of the
free electromagnetic field where we identify the field with a set of quantized harmonic
oscillators. More details on the derivation can be found, for example, in Refs. [59, 60].

The starting point for the quantization of the electromagnetic field in vacuum is the La-
grangian density

L =
ϵ0
2

E2 − 1

2µ0
B2, (2.18)

12



2.3 Quantized light field

with the electric field E and the magnetic field B as well as the permittivity ϵ0 and the
permeability µ0 of free space, ϵ0µ0 = c−2, where c is the speed of light in vacuum. The
Lagrangian density L postulated in Eq. (2.18) is justified since, when evaluating Lagrange’s
equations, Maxwell’s equations can be recovered, which read

∇ · E = 0, ∇× E = −∂B
∂t
, ∇ · B = 0, ∇× B =

1

c2
∂E
∂t
. (2.19)

The electric and the magnetic field can be calculated from the vector potential A in the
Coulomb gauge, where ∇ · A = 0, according to

E = − ∂

∂t
A, B = ∇× A. (2.20)

The state of the electromagnetic field is, thus, determined by the components of the vector
potential, Ai, i ∈ {x, y, z}, with the associated conjugate momenta

Πi =
∂L
∂Ȧi

= −ϵ0Ei. (2.21)

Performing the Legendre transformation of the Lagrangian density to switch from the
representation in terms of the coordinates Ai and the velocities Ȧi to one in terms of the
coordinates Ai and the conjugate momenta Πi according to

H =
∑
i

ΠiȦi − L, (2.22)

we obtain the Hamiltonian of the electromagnetic field

H =

∫
d3rH =

∫
d3r

[
ϵ0
2

E2 +
1

2µ0
B2

]
. (2.23)

From Maxwell’s equations, Eq. (2.19), for the vector potential in Coulomb gauge, the wave
equation

□A = 0 (2.24)

can be derived. Therefore, it is reasonable to expand the vector potential in terms of the
plane wave mode functions u(λ,k)(r), which, under the assumption of a field restricted to
a cubic volume in space, a cavity of volume V = L3, take the form

u(λ,k)(r) =
1√
V

ê(λ)eik·r. (2.25)

Here, ê(λ) is the unit polarization vector, λ ∈ {1, 2}, and k the wave vector, the components
of which, for periodic boundary conditions, take on the values

kx =
2πnx
L

, ky =
2πny
L

, kz =
2πnz
L

, nx, ny, nz ∈ Z. (2.26)

In the following, for the sake of readability, we combine the polarization λ as well as the
wave vector k into a multi-index k, (λ,k) → k. Since the mode functions are required to
satisfy the transversality condition, ∇·uk(r) = 0, the polarization vector ê(λ) and the wave
vector k have to be perpendicular [61]. Note that the case where one of the components
of the wave vector k vanishes represents a special case for which there is only a single
polarization direction [62].
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2 Quantum mechanical framework

The vector potential can now be expressed as

A(r, t) =
∑
k

[
ckuk(r)e−iωkt + c∗ku

∗
k(r)e

iωkt
]

(2.27)

with ωk = c |k|, where the complex conjugate contribution in the expansion ensures that
A is real. Introducing the dimensionless amplitudes a(∗)k to normalize the coefficients c(∗)k ,
we rewrite the vector potential as

A(r, t) =
∑
k

(
ℏ

2ωkϵ0

)1/2 [
akuk(r)e−iωkt + a∗ku

∗
k(r)e

iωkt
]
. (2.28)

Plugging in the plane wave mode functions from Eq. (2.25), for the electric field, accord-
ingly, the expression

E(r, t) = i
∑
k

(
ℏωk

2ϵ0V

)1/2

ê(λ)
[
ake

−iωkt+ik·r − a∗ke
iωkt−ik·r

]
(2.29)

can be found as well as a corresponding expression for the magnetic field B. To now describe
the field in terms of the second quantization, the complex amplitudes a(∗)k are replaced by
operators r(†)k satisfying the bosonic commutation relations[

rk, r
†
k′

]
= δkk′ , [rk, rk′ ] =

[
r†k, r

†
k′

]
= 0. (2.30)

These operators describe the annihilation (creation) of a photon in the associated mode
k and, this way, allow modeling the electromagnetic field as a collection of quantized
harmonic oscillators according to

E(r, t) = i
∑
k

(
ℏωk

2ϵ0V

)1/2

ê(λ)
[
rke

−iωkt+ik·r − r†ke
iωkt−ik·r

]
. (2.31)

To obtain the second quantized Hamiltonian of the free electromagnetic field, we plug the
quantized electric field and the corresponding expression for B into the classical Hamilto-
nian of the electromagnetic field, Eq. (2.23), which yields

H =
∑
k

ℏωk

(
r†krk +

1

2

)
. (2.32)

Here, r†krk is the occupation number operator of the k-th photon mode, that is, the mode
defined by (λ,k), with energy ℏωk. The term ℏωk/2 describes the respective vacuum fluctu-
ations, which arise since the operators rk and r†k do not commute, Eq. (2.30). The vacuum
fluctuations are, thus, an inherently quantum mechanical phenomenon. The eigenvalue
of the occupation number operator r†krk is the occupation number nk, nk ∈ N, with the
corresponding eigenstate |nk⟩. The states {|nk⟩} are the Fock states, which form a basis
of the Hilbert space. The Fock state describing nk excitations in the k-th mode can be
created from the vacuum state of the k-th mode according to

|nk⟩ =

(
r†k

)nk

√
nk!

|0⟩ . (2.33)
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3 Waveguide quantum electrodynamics

The study of the quantized interaction of light and matter has resulted in fundamental
discoveries such as spontaneous emission [58], the Lamb shift [63], and Dicke superradiance
[64]. Furthermore, it enabled a thorough understanding of the laser, which has become
an integral part of our everyday life [65]. At the few-photon level, a strong light-matter
interaction, that is, an interaction strong in relation to any dissipation and decoherence
processes, is essential for the observability of predicted quantum optical effects. In free
space, however, the coupling is typically inefficient due to a small atomic dipole moment
and a large extension of the unconfined light field. As a consequence, enhancing the light-
matter interaction is a central goal, for the achievement of which two main approaches
have been developed.

The first approach is an enhancement of the light-matter interaction via the confinement
of the light field to a cavity supporting a discrete set of modes [66–69]. Technological ad-
vances have enabled the fabrication of small-scale cavities with high quality factors. This
opens up the possibility to increase the light-matter interaction significantly by letting the
light pass emitters placed inside the cavity multiple times. Already in the weak-coupling
regime, where the losses from the system exceed the light-matter coupling strength, the
modification of the environment in cavity quantum electrodynamics (CQED) setups can
result in effects such as increased or inhibited emission rates as proposed by Purcell [70]
and cavity-induced energy shifts following Casimir and Polder [71]. In the strong-coupling
regime, the interaction of a two-level emitter with a single cavity mode allows for a de-
scription via the Jaynes-Cummings model, which predicts Rabi oscillations due to the
oscillatory exchange of energy between the emitter and the cavity mode [72,73].

While remarkable progress has been made, CQED setups may be difficult to scale up.
As an alternative approach, the field of WQED has emerged [21, 74]. In these setups,
emitters are coupled to the continuum of propagating modes in a quasi-one-dimensional
waveguide. Due to the confinement of the light field, strong light-matter interactions
are achievable in a single pass. WQED setups are natural building blocks for quantum
networks, in which photons transport quantum information between emitters [6,20]. Input
and output channels, which allow for the preparation and the measurement of the light
field, respectively, can be implemented straightforwardly. Furthermore, fundamentally new
phenomena such as chiral interactions [75] and the formation of atom-photon bound states,
which mediate long-range interactions between emitters, emerge [76].

This chapter serves as an introduction to the field of WQED. We begin with an overview of
experimental platforms in Sec. 3.1, discussing quantum emitters in the form of natural and
artificial atoms as well as waveguide implementations. Subsequently, in Sec. 3.2, we derive
the fully quantized interaction of quantum emitters and the light field, while in Sec. 3.3,
the theory of open quantum systems is introduced, which forms the basis for an efficient
numerical simulation of the system dynamics.
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3 Waveguide quantum electrodynamics

a) b) c)

Figure 3.1: Schematic representation of platforms for the experimental realization of WQED.
(a) Atoms coupled to an optical nanofiber, based on Ref. [81]. (b) Atoms coupled
to an alligator photonic crystal waveguide, based on Ref. [82]. (c) Superconducting
circuit, based on Ref. [83].

3.1 Experimental platforms

WQED is concerned with the interaction of quantum emitters with photons propagating
in a quasi-one-dimensional waveguide. The emitters can be realized either as natural
atoms (such as neutral atoms or ions) or as artificial atoms (such as spins in solids or
superconducting circuits). In this section, we review some state-of-the-art platforms for
the implementation of WQED. Their suitability for quantum computational tasks can
be assessed using DiVincenzo’s criteria [77]. A WQED-specific estimate can be obtained
by considering the number of atoms that can be coupled to the waveguide, N , as well
as the coupling efficiency β = Γ1D/Γtot, that is, the ratio of the radiative decay rate of
an individual emitter into the waveguide modes, Γ1D, and its total decay rate, Γtot =
Γ1D + Γloss, where Γloss describes the decay into external modes [78].

Probably the most obvious realization of a qubit is a natural atom. Out of the typically
complex level structure, a single transition in the optical or microwave regime can be
isolated to create an effective two-level system. Due to their weak interaction with the
environment, the coherence times of natural atoms are long so that the qubit states are
protected from the destructive impact of the noisy environment for a long time. A further
advantage is that atomic level structures as well as ways to control and measure atomic
states have been studied extensively in the past so that a lot of knowledge has been
accumulated. Neutral atoms can be cooled down and arranged in optical lattices created
by laser beams allowing for their manipulation and measurement [79], whereas ions can be
laser-cooled and trapped by electric or magnetic fields [80].

For the realization of a WQED setup, atoms can be trapped close to an optical nanofiber
as has been shown with laser-cooled cesium [81, 84] as well as rubidium atoms [85] and is
schematically illustrated in Fig. 3.1 a. Optical nanofibers are optical fibers that are tapered
to a diameter below the optical wavelength. This results in the possibility of significant
evanescent fields on the outside of the fiber surface, which allows for a strong interaction
of the waveguide modes with emitters close to the fiber. To arrange the atoms, in practice,
two types of lasers are used, a laser red-detuned from resonance to attract the atoms and
a blue-detuned laser to keep the atoms away from the surface of the nanofiber [86, 87]. In
experiments, optical nanofibers have been coupled to a high number of atoms, N ∼ 1000.
The coupling efficiency, however, is typically low, β ∼ 0.01.
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A possibility to increase the coupling efficiency when working with natural atoms is by
coupling them to a photonic crystal waveguide. Photonic crystals are nanostructures ex-
hibiting a periodicity in their refractive index, which results in the appearance of a band
gap for the propagating photons. In analogy to an electronic band gap, a photonic band
gap defines an energy range of inhibited optical modes. To create a low-loss waveguide,
a line defect is introduced into the crystal, through which the light propagates. In this
structure, the light field is confined by Bragg reflection resulting from the photonic band
structure together with total internal reflection. Near the band edge, the strong dispersion
in the waveguide results in a reduced group velocity. By aligning the band edge to an
atomic transition, thus, an enhanced emission into the waveguide via a slow-light effect
is enabled [88, 89]. It has been shown that when coupling trapped cesium atoms to an
alligator photonic crystal waveguide, as illustrated in Fig. 3.1 b, a coupling efficiency of
β = 0.5 can be obtained. This comes, however, at the cost of a reduced number of atoms
coupling to the waveguide, N ∼ 3 [82, 90].

While for natural atoms, their efficient trapping is a major challenge, this obstacle is elim-
inated for artificial atoms realized as solid-state emitters as they are fixed in their host
material. This category includes semiconductor quantum dots, which are nanostructures
with a diameter of a few nanometers. Their electrons are confined in all three dimensions,
which results in a discrete atom-like level structure. A variety of fabrication techniques
such as molecular beam epitaxy or lithography allows engineering the energy levels. Fur-
thermore, the incorporation into the solid-state material opens up the possibility to control
the quantum dots either electronically or optically. A drawback, however, is the emergence
of several decoherence mechanisms. For example, the interaction with the lattice vibrations
of the surrounding material results in a reduction of the coherence time in comparison to
isolated cold atoms [91, 92]. Since solid-state emitters are directly incorporated into the
photonic structure, their coupling efficiency is typically very high: A coupling efficiency of
β = 0.99 has been observed for a quantum dot coupled to a photonic crystal waveguide [93].
In addition to semiconductor quantum dots, another type of artificial atom based on spins
in solids is given by point defects such as nitrogen-vacancy color centers in diamond [94].

A different approach to the realization of artificial atoms is superconducting circuits oper-
ating in the microwave regime. As with spin-based qubits, their properties such as their
energy levels can be tuned, which is an advantage over natural atoms. The key element
for the creation of a qubit is the Josephson junction introducing a nonlinear element into
the circuit. This way, the energy spectrum is rendered anharmonic, which allows iso-
lating a single transition to create an effective TLS. There are three fundamental types
of superconducting qubits, the charge, the flux, and the phase qubit, encoding quantum
information in different ways. Controlling and measuring these qubits is possible using
currents, voltages, magnetic fields, or microwave photons [95]. A particularly important
type of superconducting charge qubit is the so-called transmon qubit. This type of qubit
has been used for the famous N = 53 qubit chip that Google researchers claimed to have
achieved quantum supremacy [96] (or quantum advantage, following the criticism of the
original term [97]). For WQED setups with superconducting circuits, the waveguide is typ-
ically realized as a microwave transmission line, to which N ∼ 10 superconducting qubits
can be coupled either inductively or capacitively [98]. Such setups, as schematically shown
in Fig. 3.1 c, which are closely related to circuit QED, allow for an on-chip integration and
can achieve high coupling efficiencies [83,99,100]. For example, the coupling efficiency for
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3 Waveguide quantum electrodynamics

a transmon qubit coupled to a transmission line via a capacitor has been shown to exceed
β = 0.995 [101].

3.2 Light-matter interaction

The interaction of light and matter forms the basis of the phenomena considered in this
thesis. Here, we derive the Hamiltonian describing the coupling between quantum emit-
ters and the quantized electromagnetic field. There are situations in which a semiclassical
treatment of the light-matter interaction is sufficient, where the emitters are treated quan-
tum mechanically while the light field is considered to be a classical system. However, only
the fully quantized treatment of the light-matter interaction allows accounting rigorously
for effects such as spontaneous emission as well as including quantum pulses. We start
with the light-matter interaction in free space, where we make use of the quantized light
field derived in Sec. 2.3 and, subsequently, discuss some waveguide-specific properties.

3.2.1 Free space

The total energy of an emitter interacting with the light field can be described by the
minimal coupling Hamiltonian in the dipole approximation [102]

H = HA +HF − er · E, (3.1)

so that the energy of the composite system is given as the sum of the energies of the individ-
ual components plus an interaction contribution. By applying the dipole approximation,
we assume that the wavelength of the light is much larger than the extent of the emitter
as is typically justified so that the light field can be assumed to be uniform over the entire
emitter. The emitter characterized by the energy eigenvalues Ei and the eigenstates {|i⟩}
with the corresponding transition operators σij = |i⟩ ⟨j| is described by the Hamiltonian

HA =
∑
i

Eiσii. (3.2)

As derived in Sec. 2.3, the quantization of the free electromagnetic field results in the
Hamiltonian of the light field

HF =
∑
k

ℏωk

(
r†krk +

1

2

)
. (3.3)

Here, k is the multi-index denoting the polarization λ as well as the components of the
wave vector k, (λ,k) → k. In the following, the zero-point energy is omitted. For the
quantization of the light-matter interaction, we rewrite

er =
∑
i,j

µijσij (3.4)

with the electric-dipole transition matrix element µij = e ⟨i| r |j⟩. Subsequently, we plug
the quantized version of the electric field, Eq. (2.29), evaluated at the position of the
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emitter into Eq. (3.1). This finally results in the expression

H =
∑
i

Eiσii +
∑
k

ℏωkr
†
krk +

∑
i,j

∑
k

ℏσij
(
gijk rk + gij∗k r†k

)
(3.5)

with the coupling constant

gijk = − i

ℏ

√
ℏωk

2ϵ0V
µij · ê(λ). (3.6)

Let us now consider the special case of a two-level emitter with ground state |g⟩ ≡ |0⟩,
the energy of which we set to zero, Eg = 0, and excited state |e⟩ ≡ |1⟩ with energy
Ee = ℏω0. In this case, under the assumption of a real coupling constant, gge

k = geg
k = gk,

the Hamiltonian takes the form

H = ℏω0σ+σ− +
∑
k

ℏωkr
†
krk +

∑
k

ℏgk (σ+ + σ−)
(
rk + r†k

)
(3.7)

with σ− ≡ |g⟩ ⟨e|, σ+ ≡ |e⟩ ⟨g| = σ†−. We proceed by transforming the Hamiltonian into the
rotating frame defined by its non-interacting part, that is, by performing a transformation
into the interaction picture as introduced in Sec. 2.1. To that end, we define the unitary
operator

U = exp

[
− i

ℏ
H0t

]
, H0 = ℏω0σ+σ− +

∑
k

ℏωkr
†
krk, (3.8)

and calculate the interaction picture Hamiltonian

HI = U † (H −H0)U =∑
k

ℏgk
(
σ+rke

i(ω0−ωk)t + σ+r
†
ke

i(ω0+ωk)t + σ−rke
−i(ω0+ωk)t + σ−r

†
ke

−i(ω0−ωk)t
)
. (3.9)

Under the assumption of a light field, the dominant frequency of which is approximately
resonant with the transition frequency of the emitter, ωk0 ≈ ω0, the terms rotating rapidly
at frequency ω0 + ωk can be neglected. They are assumed to average to zero while the
terms varying slowly with ω0 − ωk are kept. This is the rotating wave approximation and
translates to discarding the terms in the Hamiltonian that describe energy nonconserving
processes. This way, the number of excitations in the system is conserved. The application
of the rotating wave approximation is, however, only valid for a coupling that is weak
in comparison to the transition frequency of the emitter, |gk| ≪ ω0. After the back
transformation, we arrive at the Hamiltonian

H = ℏω0σ+σ− +
∑
k

ℏωkr
†
krk +

∑
k

ℏgk
(
σ+rk + σ−r

†
k

)
(3.10)

describing the interaction of a two-level emitter with the quantized light field in the dipole
and the rotating wave approximation.

3.2.2 Waveguide

Thus far, we considered the electromagnetic field in free space, where the field can propa-
gate in arbitrary directions. In a quasi-one-dimensional waveguide, in contrast, there is a
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single direction of propagation. As a consequence, we are dealing with a scalar instead of
a three-dimensional wavevector, k → k. Without loss of generality, we can, for example,
assume the light to propagate in the z-direction while being polarized in the x-direction.
The quantization of the electromagnetic field in such a structure works analogously to
the quantization in free space presented in Sec. 2.3. As we saw in Sec. 3.1, a variety
of platforms can be used for the implementation of WQED, and a rigorous treatment of
the light-matter interaction is possible using a Green’s function approach for the specific
geometry and material [103, 104]. For the interaction of a two-level emitter with the elec-
tromagnetic field inside a waveguide, in the dipole and the rotating wave approximation,
a Hamiltonian of the same form as in Eq. (3.10) can be derived where, for our purposes,
it suffices to consider a general coupling strength gk.

A waveguide that we assume to expand infinitely supports a continuum of modes, where
the mode spacing goes to zero, ∆k = 2π/L → 0. Therefore, it is justified to replace the
sum over the photon modes in the light-matter interaction Hamiltonian, Eq. (3.10), by an
integral,

∑
k → L

2π

∫
dk. Absorbing the prefactors into the operators rk and r†k as well as

into the coupling strength gk, we can express the Hamiltonian as

H = ℏω0σ+σ− +

∫
dk ℏωkr

†
krk +

∫
dk ℏgk

(
σ+rk + σ−r

†
k

)
. (3.11)

Furthermore, commonly, the Hamiltonian is given in frequency space, where a change of
variables under the assumption of a linear dispersion relation ω = c |k|,

∫∞
−∞ dk → 2

c

∫∞
0 dω,

results in
H = ℏω0σ+σ− +

∫
dω ℏωr†ωrω +

∫
dω ℏg(ω)

(
σ+rω + σ−r

†
ω

)
. (3.12)

Here, the bosonic operator r(†)ω describes the annihilation (creation) of a photon with
frequency ω and the coupling of the emitter to the photon mode with frequency ω is
quantified by the coupling strength g(ω).

3.3 Theory of open quantum systems

A central effort in the experimental realization of quantum technologies such as quantum
computers is to isolate the system of interest from its environment so as to reduce the
leakage to environmental modes. Such an unwanted interaction with the environment in-
troduces decoherence as well as dissipation. If the loss of coherence is too strong, the
genuine quantum effects relying on interference, which are essential for quantum informa-
tion processing tasks, cannot be exploited anymore. However, a system can never be fully
isolated from the environment. Already at the fundamental level, the interaction with the
environment is inevitable since any quantum information processing protocol includes a
measurement of the system state. To that end, the system has to be brought into contact
with a measurement device, which has a generally non-negligible influence on the system.
The description of the system dynamics via the unitary time evolution of a pure state, as
introduced in Sec. 2.1, is therefore typically insufficient. Yet, including all environmental
modes explicitly and treating them on an equal footing with the system modes is, in gen-
eral, infeasible. The theory of open quantum systems provides a framework to deal with
this problem by separating the Hilbert space H into the Hilbert space of the system of
interest, HS , and the Hilbert space of its environment, HE , so that H = HS ⊗ HE [26].
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Environment System
S-E

S-E

Figure 3.2: Schematic representation of the open quantum systems approach. The total system
with the Hilbert space H, the Hamiltonian H, and the state ρSE is separated into
the system of interest (S) and its environment (E). The system is characterized by
the Hilbert space HS, the Hamiltonian HS, and the state ρS. The environment is
described by the Hilbert space HE, the Hamiltonian HE, and the state ρE. The
system and the environment interact with each other as included via the interaction
Hamiltonian HS-E.

This is illustrated in Fig. 3.2. Assuming the total system S + E to be isolated from the
larger environment, its total state evolves unitarily in time governed by the Hamiltonian

H = HS +HE +HS-E. (3.13)

Here, HS andHE are the free Hamiltonians of the system and the environment, respectively,
while HS-E describes their interaction. An environment with a continuous mode structure
is called a reservoir. If such a reservoir is, furthermore, in a thermal equilibrium, it is
referred to as a bath. In analogy to classical thermodynamics, it is often not necessary
to completely determine the microscopic behavior of the total system. The open system
treament allows applying analytical methods and approximation schemes to the system and
the environment separately, thus, making an efficient calculation of the relevant dynamics
possible. Commonly, a reduced description in the system space is employed. The reduced
system state ρS can be obtained from the state of the total system ρSE by tracing out the
environmental degrees of freedom, as discussed in Sec. 2.2,

ρS = trE (ρSE) . (3.14)

The interaction with the environment can impose irreversible dynamics on the reduced
system state so that the time evolution of the system state is rendered non-unitary and
even an initially pure system state, in general, becomes mixed.

In this thesis, we are mostly concerned with the interaction of few-level emitters with
the electromagnetic field in a waveguide. As discussed in Secs. 2.3 and 3.2, the waveguide
modes can be identified with harmonic oscillators and form a continuum. The total system,
thus, has an infinite number of degrees of freedom making an exact solution generally
inaccessible. We can, however, treat the emitters as an open system interacting with a
photonic reservoir.
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3 Waveguide quantum electrodynamics

3.3.1 Markov approximation and non-Markovianity

It is the standard approach to describe the dynamics of an open quantum system within
the Markov approximation, which assumes a unidirectional flow of information from the
system to the environment. This assumption is justified if the correlation functions of the
environment decay fast in relation to the processes of interest so that memory effects can
be essentially neglected. Using the Markov approximation to derive a master equation for
the reduced system state, the well-known Lindblad master equation can be obtained as
discussed in more detail in Sec. 3.3.2. However, neglecting the backflow of information
from the environment into the system and with it all memory effects is a strong assumption
that fails in the presence of strong system-environment couplings, structured reservoirs, or
time delays. In this case, non-Markovian approaches that allow for the efficient calculation
of the dynamics under the inclusion of memory effects have to be employed.

Throughout this thesis, the notion of non-Markovianity is used in terms of methods that
do not rely on the Markov approximation as well as systems the essential features of
which cannot be fully captured employing a Markovian approach. Formally, the non-
Markovianity of a process can be quantified via different measures, a detailed discussion
of which can be found in Refs. [29, 105]. The RHP (Rivas, Huelga, and Plenio) measure
quantifies the violation of the divisibility criterion [105,106], which states that a family of
trace-preserving maps {E(t2,t1), t2 ≥ t1 ≥ 0} is divisible and, thus, describes a Markovian
evolution, if for all t2, t1, E(t2,t1) is a completely positive map satisfying

E(t3, t1) = E(t3, t2)E(t2, t1), t3 ≥ t2 ≥ t1. (3.15)

As an alternative possibility to measure the non-Markovianity of a process, the BLP
(Breuer, Laine, and Piilo) measure quantifies the backflow of information from the en-
vironment into the system in terms of the distinguishability of pairs of evolving quantum
states [107].

Approaches for modeling the dynamics of open quantum systems that are not based on
the Markov approximation include non-Markovian master equations for the reduced den-
sity matrix of the system [108, 109] and path integral methods, which rely on the quan-
tum analogue of the principle of least action and allow going beyond the weak-coupling
approximation non-perturbatively [110, 111]. Furthermore, stochastic Schrödinger equa-
tions can be employed, where the environment is treated as a noise source for the sys-
tem state [49, 112–114]. The evaluation of the quantum stochastic Schrödinger equation
within the MPS framework is one of the methods employed in this thesis, see Chap. 5.
Alternatively, it is possible to describe the open quantum system within a Heisenberg
representation, where the input-output formalism, originally derived under the Markov
approximation [115], can be generalized to the non-Markovian case [116, 117]. A related
Heisenberg approach is proposed in Chap. 6.

3.3.2 Lindblad master equation

One of the most important approaches for treating the dynamics of open quantum systems
is the use of master equations. Master equations allow for the calculation of the dynamics
of the reduced density matrix of the system without the need to consider the dynamics
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g

e

Figure 3.3: TLS coupled to an infinite waveguide. The emitter with energy difference ℏω0 be-
tween ground state |g⟩ and excited state |e⟩ decays with rate Γ and can be driven
via an external laser with Rabi frequency Ω(t).

of the total system explicitly. Starting from the Von-Neumann equation for the density
matrix of the total system, see Sec. 2.2, the Lindblad master equation

d
dt
ρS = − i

ℏ
[HS, ρS] +

∑
l

(
2AlρSA

†
l − ρSA

†
lAl −A†

lAlρS

)
(3.16)

can be derived for the density matrix ρS of the relevant subsystem [27, 28]. Here, the
first term on the right-hand side of Eq. (3.16) generates the unitary time evolution. The
second term describes effective jumps of the system due to the interaction with the environ-
ment, where the system operators Al are the so-called Lindblad operators. This effective
interaction with the reservoir results in irreversible dynamics rendering the time evolu-
tion non-unitary. The Lindblad equation is valid under the Born-Markov approximation,
which consists essentially of two parts: A weak system-reservoir interaction is assumed
so that correlations between system and environment develop slowly and we can approx-
imate ρ(t) ≈ ρS(t) ⊗ ρB(0) (Born approximation). Furthermore, the correlation times of
the environment are assumed to be short in comparison to the time scales of the system
evolution (Markov approximation). The Lindblad equation corresponds to a completely
positive and trace-preserving dynamical map so that the evolution to a valid density matrix
is ensured.

For example, for a TLS coupled to the vacuum field inside an infinite waveguide, the
relevant Lindblad operator is the transition operator of the emitter

(
Al →

√
Γσ−

)
, see

Sec. 3.2, and the Lindblad master equation takes the form

d
dt
ρS = − i

ℏ
[HS, ρS] + Γ (2σ−ρSσ+ − ρSσ+σ− − σ+σ−ρS) . (3.17)

The corresponding setup is shown in Fig. 3.3. For an initially excited emitter, the master
equation describes the exponential decay of the emitter exitation due to the interaction
with the reservoir, where the coupling strength determines the decay rate Γ. Furthermore,
it is possible to include an external, classically treated laser field with Rabi frequency Ω(t)
via the system Hamiltonian HS.
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Figure 3.4: TLS with decay rate Γ excited by a continuous-wave laser field with Rabi frequency
Ω. (a) Emitter dynamics for different Rabi frequencies Ω. (b) Corresponding power
spectra of the TLS emission.

If the TLS is driven by a resonant continuous-wave laser field with Rabi frequency Ω, the
phenomenon of resonance fluorescence can be observed [118]. The effects this implies are
illustrated in Fig. 3.4. As presented in Fig. 3.4 a, the emitter undergoes Rabi oscillations
before reaching a non-zero steady-state population. The particular steady-state value and
the transient time depend on the Rabi frequency in comparison to the decay rate of the
emitter, Ω/Γ. At most, a steady-state population of limt→∞ ⟨σ+σ−⟩ = 0.5 is attainable.
This is due to the fact that stimulated emission gains in importance in relation to absorption
as the population increases so that no stable population inversion can be achieved. A
characteristic feature of resonance fluorescence is, furthermore, the emergence of sidebands
in the spectrum of the light emitted from the TLS with increasing drive strength, the so-
called Mollow triplet, as shown in Fig. 3.4 b. Following the Wiener-Khinchin theorem [119],
the power spectrum S(ω) for a stationary field can be obtained as the Fourier transform
of the first-order coherence function g(1)(τ) according to

S(ω) =
1

2π

∫ ∞

−∞
dτ g(1)(τ)eiωτ . (3.18)

Because of the stationarity of the field, g(1)(τ) only depends on the time difference τ and
is given as

g(1)(τ) =
⟨E(−)(t)E(+)(t+ τ)⟩
⟨E(−)(t)E(+)(t)⟩

, (3.19)

where E(−) and E(+) are the negative and positive frequency part of the quantized electric
field, respectively, see Sec. 2.3. In the considered Markovian system of a TLS coupled
to an infinite waveguide, the first-order coherence function can be calculated analytically
applying the quantum regression theorem [102]. Note, however, that the results presented
in Fig. 3.4 are numerical results obtained using the MPS framework as introduced in detail
in Chap. 5.
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4 Entanglement

Entanglement, as a property of composite quantum systems, describes nonclassical correla-
tions between subsystems and marks the boundary between the classical and the quantum
realm. It has preoccupied scientists in different contexts for nearly a century. Initially,
entanglement was merely a theoretical concept and the subject of a philosophical debate
about the foundations of quantum mechanics. However, with technological progress, en-
tanglement has found its way into the laboratories. It is now considered a fundamental
resource for quantum computation [12, 120], enables secure quantum communication, for
example via quantum key distribution [121,122], and allows for measurements more precise
than achievable classically [16,123–125].

In 1935, Einstein, Podolsky, and Rosen (EPR) raised concerns about the completeness of
quantum mechanics since its predictions turned out to be incompatible with the seemingly
natural assumptions of locality and reality [9]. In particular, the fact that the state of
one subsystem can be determined by measuring another, possibly distant subsystem seem-
ingly violates the general theory of relativity because of the faster-than-light transmission
of information. This “spooky action at a distance” was later termed “Verschränkung”
(entanglement) by Schrödinger [8]. EPR hypothesized that the completeness of quantum
mechanics could be restored by introducing hidden variables into the theory that determine
the outcomes of the measurements in advance. However, since, in 1964, Bell formulated
his famous inequality that allows to test quantum mechanics against local hidden-variable
theories (LHVT) [10], experimental evidence strongly suggests the correctness of quantum
mechanics.

Entanglement can, in principle, be found in any composite quantum system. While EPR
focussed on the position and the momentum of a pair of particles, following the reformula-
tion of the EPR paradox by Bohm and Aharonov [126], Bell assumed a pair of spin one-half
particles in a singlet state. In optical experiments, typically, polarization-entangled photon
pairs are used. This type of entanglement forms the basis of the work presented in Chap. 9.
Furthermore, photons can also be entangled in other degrees of freedom such as their or-
bital angular momenta [127] or with respect to their energies and times of emission [128].
This energy-time entanglement is the subject of study in Chap. 8. Beyond that, other
physical systems have also been used for the experimental demonstration of entanglement,
among them neutrinos [129], electron spins [130], as well as macroscopic systems such as
diamonds [131] and hybrid mechanical-spin oscillators [132].

The purpose of this chapter is to provide an overview of the topic of entanglement and
discuss possible ways to detect it. To that end, in Sec. 4.1, we begin by formally introducing
the notion of entanglement and, subsequently, in Sec. 4.2, we present different possibilities
for its characterization and quantification.
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4 Entanglement

4.1 Concept

To formalize the concept of entanglement, let us consider a bipartite quantum system with
the associated Hilbert space HAB = HA ⊗HB spanned by the orthonormal product basis
{|i⟩A ⊗ |j⟩B}. Due to the superposition principle, a general pure state of the system can
be written as

|ψ⟩ =
∑
i,j

ψi,j |i⟩A ⊗ |j⟩B . (4.1)

Product states of the form |ψ⟩ = |ϕ⟩A ⊗ |χ⟩B only constitute a fraction of all possible
states. If the system is in such a product state, it is possible to assign single state vectors
to the individual subsystems and the composite system is said to be separable. If this is
not the case, the composite system is said to be entangled [18].

A prominent example for states that cannot be written as product states are the maximally
entangled Bell states or EPR pairs

|ϕ±⟩ = 1√
2
(|00⟩ ± |11⟩) , |ψ±⟩ = 1√

2
(|01⟩ ± |10⟩) , (4.2)

which form a basis of the two-qubit system with Hilbert space H = C2 ⊗ C2. For a two-
qubit system in such a state, we have perfect knowledge about the composite system but
are completely ignorant with respect to the states of the individual qubits in so far as the
composite system is in a pure state, whereas the reduced density matrix of each subsystem
describes a mixed state. The fact that the Bell states are maximally entangled signifies that
no other state in the considered Hilbert space can exhibit a higher degree of entanglement
where an overview on how entanglement can be quantified is given below in Sec. 4.2.

To illustrate the implications of such Bell states we imagine two spatially separated parties
(typically called Alice and Bob) each holding one qubit from a source of EPR pairs. Sup-
pose, for example, that the source reliably prepares the state |ϕ+⟩ = (|00⟩+ |11⟩) /

√
2. If

Alice now performs a measurement on her qubit in the {|0⟩ , |1⟩} basis, it is equally likely
for her to measure her qubit either in the state |0⟩ or in the state |1⟩. What is remarkable
are the consequences of Alice’s measurement for Bob: Before the measurement, it was also
equally likely for Bob to find his qubit in the state |0⟩ and in the state |1⟩ when measuring
in the respective basis. Due to the measurement performed by Alice, however, the wave-
function collapses. If Alice measures the state |0⟩, the composite system collapses to the
state |00⟩ and Bob necessarily finds his qubit in the state |0⟩. If, in contrast, Alice measures
the state |1⟩, afterwards, the total system is in the state |11⟩ and, as a consequence, Bob’s
qubit can only be found in the state |1⟩. It was this correlation, incompatible with the
local realist view of causality, which led EPR to conclude that the quantum mechanical
formalism must be incomplete and that there must be hidden variables allowing to restore
the determinism of the theory.

Generalizing the definition from the case of pure states, the mixed state ρAB of the com-
posite system defined on HAB = HA ⊗HB is separable if it can be expressed as

ρAB =
∑
i

piρ
i
A ⊗ ρiB, (4.3)

where pi is a probability distribution and ρiA ∈ HA, ρiB ∈ HB. That is, the state is separable
if it can be expressed as a mixture of separable pure states. Otherwise, it is entangled.
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In addition to the bipartite entanglement discussed so far, a system consisting of more
than two subsystems can exhibit multipartite entanglement. Detecting and quantifying
multipartite entanglement is a rich and active area of research (see for example Refs. [18,
133–137]), which, however, goes beyond the scope of this thesis.

4.2 Quantifying entanglement

After several years of qualitative debates about the concept of entanglement, Bell’s in-
equality provided a first opportunity to test the predictions of quantum mechanics exper-
imentally, thus, adding a quantitative layer to the discussion. Since then, there has been
an increasing interest in finding ways to characterize and quantify entanglement, espe-
cially with the growing importance of entanglement as a resource in quantum information
science.

Thus far, we discussed either separable product states exhibiting no entanglement or maxi-
mally entangled Bell states. In general, particularly for mixed states, it is, however, highly
non-trivial to decide “how entangled” a state is. To answer this question, various schemes
for the classification of entanglement have been proposed. A possibility to detect the pres-
ence of entanglement is given by entanglement witnesses. One example is the violation of
a Bell-type inequality, which is only possible if the state of a system exhibits nonclassical
correlations [138]. Furthermore, we can formally define functions quantifying the amount
of entanglement contained in a quantum state, which determine the usefulness of quantum
states for specific nonclassical tasks. Such functions, mapping from density matrices to
positive real numbers, have to satisfy certain axioms [139, 140]: (1) The functions do not
increase under local operations and classical communication (LOCC) 1. (2) The functions
vanish on separable states.

In this section, we concentrate on the entanglement witnesses and measures that are im-
portant for the topics covered in this thesis, while the selection is not intended to be
exhaustive. Further information can be found, for example, in Refs. [18, 136].

4.2.1 Bell’s inequality

In his famous paper “On the Einstein Podolsky Rosen paradox”, Bell assumed a singlet
spin state of the form |ψ⟩ = (|↑1, ↓2⟩ − |↓1, ↑2⟩) /

√
2 and theoretically showed that the

state can produce outcomes in a correlation measurement that violate the upper bound
imposed by LHVT [10]. This way, Bell showed that a decisive experiment between LHVT
and quantum mechanics can, in principle, be constructed. Bell-type inequalities have been
proposed in a variety of forms in the ensuing decades. Particularly common is the Clauser,
Horne, Shimony, and Holt (CHSH) inequality [11]. As a generalization of Bell’s theorem
from perfectly correlated to experimentally accessible states, it enabled actual experimental

1LOCC are an important class of operations in quantum information theory. They allow only local
operations to be performed on individual subsystems and can only be coordinated via classical commu-
nication. This way, it is possible to differentiate between classical and quantum correlations: Classical
correlations are the correlations generated by LOCC, while LOCC cannot produce quantum correla-
tions.
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tests of the predictions of quantum mechanics against those of LHVT: Assume that we
have a correlated pair of particles, which are measured at two spatially separated detectors.
The first detector has the possible settings a and a′, the second detector can be either set
to b or b′. The possible outcomes for all measurements are either +1 (+) or −1 (−). Then,
under the assumption of local realism, the inequality∣∣S(a, a′, b, b′)∣∣ = ∣∣E(a, b)− E(a, b′) + E(a′, b) + E(a′, b′)

∣∣ ≤ 2 (4.4)

holds. Here, E(a, b) is the correlation coefficient for the measurement setting (a, b),

E(a, b) = P++(a, b) + P−−(a, b)− P+−(a, b)− P−+(a, b), (4.5)

where Pij(a, b) describes the probability to measure i at the first detector with setting
a and j at the second detector with setting b with i, j ∈ {+,−}. Quantum theory, in
contrast, allows for a higher upper bound [141],

|SQM| ≤ 2
√
2. (4.6)

This upper limit is reached for maximally entangled states. However, also states that are
nonclassically correlated but not maximally entangled can lead to a violation of the CHSH
inequality since there is a margin not admitting an explanation by LHVT.

A typical experiment to show a violation of the CHSH inequality is an optical experiment
where correlations between pairs of photons are analyzed using photon detectors with
variable polarizer orientations [142, 143]. The correlations manifest as an interference in
the coincidence rate R when varying the angles of the polarizers. The visibility of the
interference fringes is defined as

V =
Rmax −Rmin

Rmax +Rmin
. (4.7)

The connection to the quantity S in the CHSH inequality is given via S = 2
√
2V , where

a maximally entangled state corresponds to perfect visibility, V = 1. As a consequence, a
violation of the CHSH inequality can be found for a visibility V > 1/

√
2. The violation

of a Bell-type inequality indicates nonclassical correlations and, thus, can be viewed as an
entanglement witness [138]. Furthermore, the amount of violation can be used to define
an entanglement measure [136].

A number of experiments has been performed that showed an agreement with the quantum
mechanical predictions [144–146]. However, the experimental setup for such a Bell test
must be carefully designed to rule out possible loopholes. Such loopholes would in principle
allow for LHVT despite the apparent violation of a Bell-type inequality. One issue is that
if the detector settings are maintained for a long enough period of time, information about
the setting at one detector could travel to the other detector and affect the measurement
without violating the locality principle. This is what is know as the “locality loophole”
and was regarded by Bell as a fundamental problem, which could, however, be prevented
by changing the settings of the measurement devices randomly during the flight of the
entangled particles [10, 147]. Another problem is the “detection loophole”. It originates
from the fact that realistic detectors make it impossible to register all generated pairs.
Especially in optical experiments, in the past, efficiencies of the photon detectors were
typically low. Initially, experiments could show a violation of a Bell-type inequality only
together with a fair sampling hypothesis assuming that the detected subset of particles
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is representative of all particles [145]. However, technological progress made new and
highly efficient photon detectors available allowing for the omission of this hypothesis in
later experiments [148, 149]. After several experiments closing either the locality or the
detection loophole, in 2015, three groups managed to close both loopholes simultaneously
for the first time [130, 150, 151]. These results significantly strengthen the confidence in
the correctness of the quantum mechanical predictions although the possibility of further
loopholes prohibits ruling out LHVT altogether.

Another point that is important for this thesis is the postselection loophole in the Franson
setup, which we discuss in Chap. 8. In the original Franson setup, even in the case of perfect
detection efficiency, 50% of the events are discarded, which allows for the construction of
a local hidden-variable model [152]. Only a modified setup and an adapted Bell-type
inequality make it possible to show an incompatibility of the observed correlations in
energy and time with LHVT [143,153,154].

4.2.2 Entanglement and entropy

There is a deep connection between the concepts of entanglement and entropy. Entropy,
the key concept of information theory, measures the uncertainty associated with the state
of a physical system. In classical information theory, the information we gain on average
from the value a random variable X with the probability distribution p1, p2, . . . , pn takes
on is quantified in terms of the Shannon entropy

H(X) = −
∑
i

pi log pi. (4.8)

This way, it is a measure of the uncertainty associated with a classical probability distri-
bution. Its counterpart in the quantum realm is the Von-Neumann entropy [155]. Here, a
density matrix ρ with eigenvalues λ1, λ2, . . . , λn takes the place of the probability distribu-
tion. The Von-Neumann entropy, which we also touch upon in the context of the Schmidt
decomposition in Sec. 5.1.2, is defined as

S(ρ) = −trρ log ρ = −
∑
i

λi log λi. (4.9)

Entanglement as a property of composite quantum systems can be found when analyzing
the relation between the information the state of a composite quantum system gives us
about the total system and the information it provides about the individual subsystems.
For classical systems, it holds that the Shannon entropy of two random variables X and Y is
always larger than that of the individual random variables, H(X,Y ) ≥ H(X), H(X,Y ) ≥
H(Y ). Thus, our knowledge about the total system cannot be larger than the knowledge
about the subsystems. In the quantum case, in contrast, there are states violating the
corresponding expressions for the Von-Neumann entropy,

S (ρAB)− S (ρA) ≥ 0, S (ρAB)− S (ρB) ≥ 0, (4.10)

where ρAB ∈ HAB = HA ⊗HB, ρA ∈ HA, and ρB ∈ HB. These equations can be used as
a criterion of separability since the entropy of a subsystem can only be higher than the
entropy of the total system if the state is entangled [156]. If no entanglement is present,
the equations are satisfied since for separable states the global disorder is higher than the
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local disorder [157, 158]. Based on this concept, the relative entropy of entanglement has
emerged as a measure of entanglement [139,159],

ER = inf
σ∈SEP

S (ρ||σ) , S (ρ||σ) = tr [ρ (log ρ− log σ)] . (4.11)

Here, S (ρ||σ) is the quantum relative entropy measuring the distinguishability of states
ρ and σ, where σ for the relative entropy of entanglement belongs to the set of separable
states (SEP).

4.2.3 Concurrence and negativity

Two common approaches to quantify entanglement, which are relevant since in many prac-
tical cases their evaluation is convenient, are the concurrence and the negativity. In the
case of pure two-qubit states, both are equivalent, by our definition, up to a factor of two
as for the concurrence C ∈ [0, 1], while for the negativity N ∈ [0, 0.5].

The concurrence of the state ρ is specifically defined for two qubits as

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}, λ1 ≥ λ2 ≥ λ3 ≥ λ4, (4.12)

where {λi} are the square roots of the eigenvalues of the matrix ρ (σy ⊗ σy) ρ
∗ (σy ⊗ σy)

with Pauli matrix σy [160, 161]. Although the concurrence itself is not an entanglement
measure in the strict sense, it is of interest due to its monotonic relation to the entan-
glement of formation, which is an actual entanglement measure but rather complicated
to evaluate [136]. The concurrence is particularly simple in the case of a pure state
of the form |ψ⟩ = a00 |00⟩ + a01 |01⟩ + a10 |10⟩ + a11 |11⟩, where it takes on the value
C (|ψ⟩) = 2 |a00a11 − a01a10|.

The negativity as an alternative way to quantify entanglement is based on the Peres-
Horodecki or positive partial transpose (PPT) criterion of separability [162]. The partial
transposition is the transposition of a matrix with respect to one subsystem. Specifically,
the partial transpose of a matrix ρ defined on a bipartite system HAB = HA ⊗ HB with
respect to subsystem B is denoted by ρTB and defined via

ρ =
∑
i,j,k,l

ρij,kl |i⟩ ⟨j| ⊗ |k⟩ ⟨l| , ρTB =
∑
i,j,k,l

ρij,kl |i⟩ ⟨j| ⊗ |l⟩ ⟨k| . (4.13)

The partial transposition can be understood in terms of the partial time reversal in one of
the subsystems. Making use of this concept, the PPT criterion states that the state ρ is
separable if its partial transpose (with respect to either subsystem) has only non-negative
eigenvalues. This signifies that if the two subsystems are not entangled then performing a
transposition on one of the subsystems should still result in a valid density matrix. The
negativity N(ρ), which is defined as

N (ρ) =
1

2

[
tr
(√

(ρTB)† ρTB

)
− 1

]
, (4.14)

provides a way to quantify the violation of this criterion [163].
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Part II

Memory-induced entanglement in
WQED with quantum pulses
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5 Exciting the atom-photon bound state
with multiphoton pulses

Photons are promising candidates for the transport of quantum information between the
stationary nodes in a large-scale quantum network realized, for example, as a WQED
setup [20,66,164–167]. In this context, a semiclassical treatment of the light-matter inter-
action is, in general, insufficient and a description of the emitter excitation through the
waveguide field via quantum pulses is of fundamental importance [168,169]. Furthermore,
if the separations between the nodes are non-negligible compared to the wavelength of the
light, the time-delayed back action of the electromagnetic field on the nodes cannot be dis-
regarded and non-Markovian effects emerge. As a consequence, Markovian approaches such
as the Lindblad master equation introduced in Sec. 3.3.2 fail to describe the dynamics.

A paradigmatic non-Markovian WQED setup is a TLS in front of a mirror realized via a
semi-infinite waveguide [170,171], which has been implemented in a number of experiments
[172–177]. A finite emitter-mirror separation results in time-delayed self-feedback, which
can potentially be used to govern the system dynamics via coherent feedback control [42].
A remarkable feature in this setup is the existence of an atom-photon bound state with an
energy inside the continuum of propagating modes [178]. Since it allows for the trapping
of single photons, this phenomenon is of particular interest for the realization of effective
quantum memories [179]. There are two possibilities to populate the bound state: Either
via the incomplete decay of an excited emitter in vacuum or via multiphoton scattering,
where the effectiveness of these schemes depends crucially on the feedback delay time. The
behavior is especially complex in the case of multiphoton scattering, where the excitation
probability depends non-monotonously on the delay time as well as on the pulse properties,
that is, the pulse shape and the contained number of photons [180].

In this chapter, we study the feedback dynamics for a TLS in front of a mirror and, in
particular, the excitation of the atom-photon bound state via multiphoton pulses. The
chapter is based on our work published in Ref. [181]. For the simulation of the non-
Markovian system dynamics, we use the MPS framework, which makes the light field
directly accessible and allows including pulses beyond the usual few-photon limit due to
the efficient handling of the entanglement in the system. We start with an introduction
of the time evolution method based on MPS in Sec. 5.1. In Sec. 5.2, we discuss how
quantum pulses can be included in the MPS framework. Subsequently, in Sec. 5.3, we
look at the resulting dynamics, where it is possible to find the emitter in the excited state
in the long-time limit due to the excitation of the atom-photon bound state. Finally, in
Sec. 5.4, we study the excitation of the bound state via multiphoton pulses containing
up to four photons and investigate the interplay of the emitter-mirror separation and the
photon number.
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5 Exciting the atom-photon bound state with multiphoton pulses

Figure 5.1: TLS coupled to a semi-infinite waveguide. The emitter with energy difference ℏω0

between ground state |g⟩ and excited state |e⟩ decays with rate Γ. The closed end
of the waveguide functions as a mirror and provides feedback at the delay time τ .
An excitation of the TLS via a quantum pulse of shape f(t) is possible.

5.1 Matrix product state framework

The non-Markovian time evolution method based on MPS as introduced by Pichler and
Zoller in Ref. [53] is of central importance for this thesis. Here, we present the approach
for a TLS coupled to a semi-infinite waveguide. The closed end of the waveguide functions
as a mirror and provides feedback for the emitter at the delay time τ = 2d/c with d being
the emitter-mirror separation and c the speed of light in the waveguide. The setup is
illustrated in Fig. 5.1. The modeling of the quantum pulse of shape f(t), which describes
the excitation of the emitter through the waveguide, is discussed below in Sec. 5.2. MPS
form a particular type of tensor network and have been developed in the condensed matter
context [182–186]. Originally, they were used to study one-dimensional many-body systems
such as spin chains with spatial correlations at a given time. We, in contrast, focus on a
single emitter interacting with photons in time bins instead, where the approach enables
a time-local description as well as justified truncations of the Hilbert space.

5.1.1 Stroboscopic time evolution in a time-bin basis

We start with the Hamiltonian describing the TLS interacting with the electromagnetic
field as derived in Sec. 3.2. The Hamiltonian is transformed into the interaction picture
defined by the freely evolving contributions from the emitter and the light field, see Sec. 2.1,
which yields

HI =

∫
dω ℏ

[
g(ω)r†ωσ−e

i(ω−ω0)t + H.c.
]
. (5.1)

The bosonic operator r(†)ω models the annihilation (creation) of a photon with frequency ω,
while the operators σ− = |g⟩ ⟨e| and σ+ = |e⟩ ⟨g| = σ†− are the transition operators of the
TLS with ground state |g⟩ and excited state |e⟩ separated by the energy ℏω0. The coupling
between the TLS and the photonic reservoir is described by g(ω), which is, in general,

34



5.1 Matrix product state framework

frequency dependent. In the case of a semi-infinite waveguide, the boundary condition of
a vanishing electric field at the position of the mirror has to be satisfied. This is encoded
via the coupling strength

g(ω) = gL(ω)e
iωτ/2 − gR(ω)e

−iωτ/2, (5.2)

where gL(ω) and gR(ω) describe the coupling to the left- and right-propagating light field,
respectively, and the mirror is assumed to be perfectly reflecting. If we assume the coupling
to be constant over the relevant bandwidth due to a flat spectral density of the reservoir
modes around resonance and identical for both directions, gL(ω) = gR(ω) ≡ g0/(2i), g(ω)
takes on the form [170,171,178,187]

g(ω) = g0 sin(ωτ/2). (5.3)

Note that, this way, the time-delayed feedback mechanism introduces a backflow of in-
formation from the environment into the system resulting in non-Markovianity as op-
posed to non-Markovianity due to structured reservoirs reflected in a coupling that is itself
frequency-dependent.

We transform the Hamiltonian from Eq. (5.1) into the time domain by introducing the
quantum noise operator

r†t =
1√
2π

∫
dω r†ωe

i(ω−ω0)t. (5.4)

While the operator r†ω describes the creation of a photon of frequency ω, as its Fourier
transform, the operator r†t describes the creation of a photon at time t and satisfies the
bosonic commutation relation

[
rt, r

†
t′

]
= δ(t− t′).

This way, after performing a time-independent phase shift φ → φ− ωτ/2 via the unitary
transformation

H ′ = U †HIU, U = exp

(
i

∫
dω r†ωrωωτ/2

)
, (5.5)

the Hamiltonian takes on the form

H ′ = −iℏ
√
Γ
(
r†tσ− − r†t−τσ−e

−iω0τ − H.c.
)

(5.6)

with Γ ≡ πg20/2. Here, the first term on the right-hand side accounts for the immediate
interaction of the emitter with the light field. The second term arises due to the interaction
of the emitter with the feedback signal, that is, the excitation that returns to the emitter
from the mirror after the round-trip time τ . This feedback contribution gives the system a
memory so that Markovian approaches such as the Lindblad master equation introduced
in Sec. 3.3.2 fail to capture the essential features of the dynamics.

To prepare the treatment of the non-Markovian dynamics within the MPS framework,
we discretize time into steps ∆t that are small in comparison to all emitter time scales.
Subsequently, the continuous system evolution can be approximated using the stroboscopic
time evolution operator Uk, which describes the discrete time evolution from time tk to
tk+1, tk = k∆t, k ∈ N. As introduced in Sec. 2.1, the time evolution operator can be
obtained from solving the Schödinger equation and satisfies

|ψ(tk+1)⟩ = Uk |ψ(tk)⟩ , Uk = T exp

[
− i

ℏ

∫ tk+1

tk

dt′H ′(t′)

]
. (5.7)
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5 Exciting the atom-photon bound state with multiphoton pulses

Loop

Figure 5.2: Schematic representation of the discretization of the reservoir dynamics via the in-
troduction of a time-bin basis. The reservoir can be envisioned as a conveyor belt
of time bins (blue) interacting with the emitter (green) successively. Feedback is
accounted for by an additional loop encompassing l = τ/∆t time bins (here l = 4).
Thus, the emitter interacts with the reservoir at two points in time.

For the considered setup, if we assume that the feedback delay time is a multiple of the
step size, τ = l∆t, l ∈ N, Uk can be expressed as

Uk = exp
[
−
√
Γ
(
∆R†

kσ− −∆R†
k−lσ−e

−iω0τ − H.c.
)]
. (5.8)

Here, we introduced the noise increment

∆R†
k =

∫ tk+1

tk

dt r†t , (5.9)

which describes the creation of a photon during the k-th time step and satisfies[
∆Rk,∆R

†
k′

]
= ∆tδkk′ , that is, it satisfies bosonic commutation relations up a normaliza-

tion factor. Note that in comparison to the general time evolution operator, Eq. (5.7), the
time ordering operator T has been omitted in Eq. (5.8). This is justified if the time step
is sufficiently small so that H ′ commutes with itself during one time step.

With the noise increments, a discrete time-bin basis of the Hilbert space can be constructed.
The Fock state denoting ik photons in the k-th time bin can be obtained from the vacuum
state via

|ik⟩k =

[
∆R†

k

]ik√
ik! (∆t)

ik
|0⟩k . (5.10)

Thus, the reservoir dynamics are discretized into a “conveyor belt” of time bins, which is
shifted by one bin at every time step so that the emitter interacts with the time bins suc-
cessively as illustrated in Fig. 5.2. The feedback mechanism is translated into an additional
loop at the end of which the time bins interact with the emitter for a second time before
entering the output channel.

In this time-bin basis, the general state of the emitter and the photonic reservoir can be
written as

|ψ(tk)⟩ =
∑

i1,...,ik−1,iS,ik,...,iN

ψi1,...,ik−1,iS,ik,...,iN |i1, . . . , ik−1, iS, ik, . . . , iN ⟩ . (5.11)
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5.1 Matrix product state framework

The index iS ∈ {g, e} refers to the state of the emitter, which can be either in the ground
(g) or the excited state (e), while the index ij , j ∈ {1, . . . , N}, denotes the occupation of
the j-th time bin. At the k-th time step, all indices to the left of the emitter index describe
past time bins, while the indices to the right of the emitter index can be associated with
future time bins and, overall, N time steps are taken into account. The coefficient tensor
ψ ≡

(
ψi1,...,ik−1,iS,ik,...,iN

)
of the total state now is, in general, 2pN -dimensional, where up

to (p− 1) photons per time bin are considered. Thus, the dimension of the Hilbert space
grows exponentially with the number of time bins and handling it numerically becomes
quickly infeasible.

5.1.2 Matrix product state decomposition

For the efficient numerical handling of the entangled state of the emitter and the reservoir
when calculating the dynamical map in Eq. (5.7), we employ the MPS framework [184].
The key idea of this approach is to express the coefficient tensor ψ in Eq. (5.11) as a
product of matrices according to

ψi1,...,ik−1,iS,ik,...,iN = Ai1 · · ·Aik−1AiSAik · · ·AiN . (5.12)

At the heart of the decomposition of a general state into an MPS lies the singular value
decomposition (SVD). It allows decomposing an arbitrary matrix M into a product of
three matrices according to

M = USV †. (5.13)

Here, U is a matrix with orthonormal columns, that is, U is left-normalized. Matrix S is
a diagonal matrix, the non-negative entries of which are the singular values. According to
convention, these singular values are arranged in descending order, s1 ≥ s2 ≥ · · · ≥ sr > 0.
The number of non-zero singular values, r, is called the Schmidt rank of M . Matrix V † is
a right-normalized matrix with orthonormal rows. The SVD can be illustrated as shown in
Fig. 5.3 a. The diagrammatic representation is a useful tool for the visualization of tensor
networks such as MPS as well as the algorithms performed on it. In this representation,
a box denotes a tensor, that is, a generalized matrix. The legs of the tensor correspond
to its indices, where the number of indices defines its rank. A tensor of rank zero is
a scalar, vectors are tensors of rank one, while matrices are rank two tensors. In the
diagrammatic representation, we distinguish two types of indices: Vertical lines, on the one
hand, represent physical indices corresponding to actual physical dimensions of the system.
They can, for example, refer to a particular time bin or the emitter. Horizontal lines, on the
other hand, describe virtual link indices functioning as auxiliary degrees of freedom. They
do not correspond to physical quantities but contain information about the entanglement
of the tensors they connect. Indices shared by two tensors can be summed over. As the
inversion of their decomposition, this results in the contraction of the tensors. The different
colors of the tensors in the illustration indicate their orthogonality properties. A green box
indicates a left-normalized tensor, while a blue box describes right-normalization. The red
diamond corresponds to the diagonal singular value matrix. After the SVD, the singular
value matrix can be contracted with one of its neighboring matrices as shown in Fig. 5.3 b.
This way, the orthogonality center (OC) is defined, which is marked by a black box in the
diagrammatic representation, and the initial matrix is decomposed into a product of two
matrices.
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5 Exciting the atom-photon bound state with multiphoton pulses

Figure 5.3: Diagrammatic representation of the SVD. (a) The matrix M is decomposed into
three matrices via an SVD: the left-normalized matrix U , the diagonal singular
value matrix S, and the right-normalized matrix V †. (b) The singular value matrix
S can be contracted with one of the other matrices to define the OC, here placed at
Ṽ †.

In the so-called Schmidt decomposition, the SVD is used to decompose the state of a
bipartite quantum system. A general pure state |ψ⟩ in the composite Hilbert space HAB =
HA ⊗ HB with orthonormal bases {|i⟩A} and {|j⟩B} of HA and HB, respectively, can be
written as

|ψ⟩ =
∑
i,j

ψi,j |i⟩A ⊗ |j⟩B . (5.14)

Decomposing the coefficient matrix ψ ≡ (ψi,j) via an SVD, ψ = USV †, this state can be
expressed as

|ψ⟩ =
r∑

α=1

sα |α⟩A ⊗ |α⟩B . (5.15)

Here, {sα} are the singular values of the coefficient tensor ψ with Schmidt rank r, which
are also referred to as the Schmidt coefficients. The new basis states can be obtained via

|α⟩A =
∑
i

Ui,α |i⟩A , |α⟩B =
∑
j

V ∗
j,α |j⟩B . (5.16)

If there is only a single non-zero singular value (r = 1), the state can be expressed as
a product state, that is, the state is separable. The case of multiple non-zero singular
values (r > 1), in contrast, corresponds to an entangled state, which cannot be written as
a product state.

The reduced density matrices of the subsystems can be calculated by taking the partial
trace, which yields

ρA =

r∑
α=1

s2α |α⟩A ⟨α|A , ρB =

r∑
α=1

s2α |α⟩B ⟨α|B . (5.17)

Using the Von-Neumann entropy of the reduced density matrices,

S(ρA) = S(ρB) = −
r∑

α=1

s2α log s
2
α, (5.18)

the entanglement encoded in the pure state of the composite system can be quantified. If
the reduced states are pure (S(ρ) = 0), the state of the composite system is separable,
while mixed reduced states (S(ρ) > 0) imply an entangled state. For a more detailed
discussion of the concept of entanglement, see Chap. 4.

By making the entanglement between the subsystems accessible, the SVD allows for a
justified truncation of the Hilbert space. To that end, the state of the system |ψ⟩ is
approximated by a state |ψ′⟩ with coefficient matrix ψ′ = US′V †, where S′ is a diagonal
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(i1,i2,...,iN) i1
a)

b)

...
(i2,i3,..,iN)

...
... i1 i2 iN-1 iN...

i1 i2 iN-1
iN... c) i1 i2 ik-1 iS... ik ... iN-1 iN

Figure 5.4: Diagrammatic representation of a decomposition of a state into an MPS. (a) The
tensor carrying the indices (i1, i2, . . . , iN ) is decomposed into two tensors, one with
the index i1, the other carrying the remaining indices (i2, i3, . . . , iN ). This step is
repeated until each tensor carries a single physical index and a left-canonical MPS
is created. (b) MPS in right-canonical form. (c) Mixed-canonical MPS where the
OC is placed at the TLS bin denoted by the index iS.

matrix with entries s1 ≥ s2 ≥ · · · ≥ sr′ ≥ 0, r′ < r. By setting the smallest (r−r′) singular
values to zero, we neglect only the least important parts of the Hilbert space, and it can
be shown that this |ψ′⟩ is the optimal approximation of |ψ⟩ in a state space of dimension
r′ [184]. This way, we make an approximation of the system state by bringing it formally
closer to a product state, which results in a drastic reduction of the numerical complexity
of the problem.

To now decompose the state given in Eq. (5.11) into an MPS, a series of SVDs is per-
formed, which is illustrated in Fig. 5.4. Here, the label of each bin refers to its associated
physical index or indices. If we start the decomposition on the left, as shown in Fig. 5.4 a,
the coefficient tensor is decomposed into a tensor carrying the index i1 and a tensor carry-
ing the remaining indices (i2, i3, . . . , iN ), which are grouped into a compound index when
performing the SVD. To further decompose the tensor with the indices (i2, i3, . . . , iN ), the
procedure is repeated for the bipartition into the subsystems defined by the indices i2 and
(i3, i4, . . . , iN ), respectively, and so on until the state has been completely decomposed and
each tensor carries a single physical index. Subsequently, all tensors are left-normalized
and the OC is positioned at the rightmost tensor. This corresponds to a left-canonical
MPS. However, there is gauge freedom with respect to the position of the OC. Another
possibility is starting the decomposition from the right, which yields right-normalized ten-
sors and the OC at the leftmost tensor, that is, a right-canonical MPS, see Fig. 5.4 b.
Furthermore, we can also start to decompose the state from both sides and place the OC
at an arbitrary position, which results in a mixed-canonical MPS containing both left-
and right-normalized tensors. In Fig. 5.4 c, an exemplary mixed-canonical MPS is shown
where the OC is placed at the TLS bin. In this thesis, in general, we make use of the
mixed-canonical form and move around the OC for the inclusion of feedback contributions
as well as the application of operators. The position of the OC is particularly important for
the efficient evaluation of expectation values as is discussed below in Sec. 5.1.3. It can be
shifted via the contraction and the subsequent decomposition of the OC and a neighboring
tensor, where the singular value matrix has to be contracted with the tensor we would like
the OC to be placed at.

The MPS decomposition yields a state of the form

|ψ(tk)⟩ =
∑

i1,...,ik−1,iS,ik,...,iN

Ai1 · · ·Aik−1AiSAik · · ·AiN |i1, . . . , ik−1, iS, ik, . . . , iN ⟩ , (5.19)
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Figure 5.5: Diagrammatic representation of operators in the MPS framework. (a) In analogy to
the MPS decomposition, an operator can be decomposed into an MPO where each
tensor carries an ingoing and an outgoing index. (b) Diagrammatic representation
of the time evolution operator for the TLS inside a semi-infinite waveguide acting
on the TLS bin iS, the current time bin ik, and on the feedback bin ik−l. (c)
Evaluation of the expectation value of the single-site operator Ô acting on the TLS
bin, ⟨ψ| Ô |ψ⟩, where due to the construction of the MPS, only the site the operator
acts on has to be considered explicitly.

where a time-local description is obtained since each matrix A carries a single physical
index and refers either to the emitter or to a particular time bin.

Usually, the coefficient tensor does not have to be decomposed explicitly. If we assume
that the emitter and the reservoir are initially separable, we can initialize these subsystems
individually. Furthermore, for a reservoir initially in the vacuum state, the time bins
are separable among themselves as well so that each time bin can be initialized in the
ground state individually. Consequently, there is no entanglement in the system at the
beginning of the dynamics. However, the interaction of the light field with the emitter
creates entanglement between the emitter and the reservoir as well as between the time
bins themselves. This entanglement information between the bins is reflected by their bond
dimension, that is, the dimension of their link index, which corresponds to the Schmidt
rank of the bipartition. For the separable initial state, all bond dimensions are equal to one
at the beginning and grow during the time evolution. Here, the numerical complexity can
be reduced by limiting the bond dimension in each SVD performed for the time evolution
and setting excess singular values to zero as discussed above, where we, however, have to
check for convergence.

5.1.3 Matrix product operators and expectation values

To be able to efficiently evaluate observables as well as to perform the time evolution for an
MPS, we need a corresponding formulation for operators. Generalizing the decomposition
of an arbitrary state into an MPS, it is possible to decompose an arbitrary operator into a
matrix product operator (MPO) by expressing it as a linear combination of projectors and
decomposing the associated coefficient tensor. For example, if we consider an operator Ô
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acting on a bipartite system, it can be written as

Ô =
∑

i′,j′,i,j

Ψi′,j′,i,j |i′, j′⟩ ⟨i, j| =
∑

i′,j′,i,j

Oi′,iOj′,j |i′, j′⟩ ⟨i, j| , (5.20)

where in the last step, the coefficient tensor Ψ ≡
(
Ψi′,j′,i,j

)
has been decomposed into two

matrices via an SVD as illustrated in Fig. 5.5 a. In contrast to the state decomposition, each
site now carries two physical indices: an ingoing and an outgoing index. The application
of the MPO to an MPS can be realized by performing a bin-wise contraction over their
shared indices, where the MPS form is preserved automatically.

At this point, the time-local description of the dynamics in the MPS approach is of great
advantage: If we apply an operator that only acts on a limited number of sites, we do
not have to calculate its effect on the entire system state but only contract it with the
involved bins. This is particularly useful in the case of an operator acting on neighboring
sites corresponding to short-range interactions in the condensed matter context. The
time evolution operator for our system, consisting of an emitter coupled to a semi-infinite
waveguide, as introduced in Eq. (5.8), is illustrated in Fig. 5.5 b. The immediate interaction
of the emitter with the light field can be modeled as a short-range interaction. The influence
of the feedback signal, however, corresponds to a long-range interaction in time, for the
efficient inclusion of which a more complex algorithm is needed that swaps the feedback
bin next to the other bins. This swapping algorithm is presented in Sec. 5.1.4.

The MPS approach allows evaluating observables for the emitter as well as for the radiation
field efficiently. The expectation value of a single-site operator Ô for a system in the
state |ψ⟩, ⟨ψ| Ô |ψ⟩, can be calculated as illustrated in Fig. 5.5 c. Note that the complex
conjugation of an MPS in the diagrammatic representation corresponds to mirroring the
physical indices on the horizontal. If the MPS is in the mixed-canonical gauge with the
OC at the site the operator Ô acts on, all tensors to its left are left-normalized so that
the contraction with their complex conjugates yields the identity. All tensors to the right
of the OC are right-normalized. When contracting them with their complex conjugates,
we also obtain the identity by construction of the MPS. Thus, for the evaluation of the
expectation value of the operator, it suffices to consider the bin it directly acts on.

5.1.4 Time evolution with matrix product states

Having introduced the basics of the MPS formalism, we now apply it to determine the
time evolution for a TLS coupled to a semi-infinite waveguide. As given in Eq. (5.8), the
stroboscopic time evolution operator governing the time evolution from time tk to tk+1,
tk = k∆t, k ∈ N, according to |ψ(tk+1)⟩ = Uk |ψ(tk)⟩ takes on the form

Uk = exp
[
−
√
Γ
(
∆R†

kσ− −∆R†
k−lσ−e

−iω0τ − H.c.
)]
. (5.21)

Here, the operator ∆R†
k describes the creation of a photon in the k-th time bin, σ− = |g⟩ ⟨e|

is the transition operator of the TLS, which is characterized by the transition frequency
ω0 and the decay rate Γ, and τ = l∆t, l ∈ N, is the feedback delay time. If Uk is applied
to the state |ψ(tk)⟩ in MPS form, the operator acts on three different bins: The TLS bin
(via σ−), the k-th time bin, that is, the current time bin (via ∆R†

k), and the (k − l)-th
time bin, that is, the feedback bin (via ∆R†

k−l).
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k 1 S... ik ...k ikk+1-
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Figure 5.6: Diagrammatic representation of the time evolution in the MPS framework without
feedback. The TLS bin S is located to the left of the current time bin k. When
performing a time evolution step, the time evolution operator Uk is applied to the
TLS bin and the current time bin. The resulting tensor is decomposed and the TLS
bin is shifted one step to the right. Thus, after the time evolution step, the former
current time bin k is located to the left of the TLS bin and accounts for the emission
into the output channel. To the right of the TLS bin, the new current time bin k+1
can be found.

If we consider the case of Markovian dynamics inside an infinite waveguide, we can essen-
tially neglect the feedback contribution in Eq. (5.21) so that Uk only acts on the TLS bin
and the current time bin. The time evolution algorithm without feedback is illustrated in
Fig. 5.6. For the sake of clarity, here, the time bins are labeled with the numbers of the
corresponding indices (1, 2, . . . , N), while the TLS bin is denoted as S. Due to the way we
construct the MPS, at the k-th time step, the k-th time bin is located to the right of the
TLS bin. Without feedback, we perform the time evolution by simply contracting the TLS
bin, the current time bin, and the time evolution operator. Subsequently, we restore the
MPS form while shifting the position of the TLS bin one step to the right. The former
current time bin, which is positioned to the left of the TLS bin after the time evolution
step, accounts for the emission into the output channel. During the time evolution, the
OC is kept at the TLS bin. Note that this setup, in principle, corresponds to a chiral
waveguide with a unidirectional propagation of light. In the case of a vacuum field in the
waveguide, this is equivalent to the case of a bidirectional waveguide with equal coupling
strengths to left- and right-propagating modes with an adapted decay rate Γ → 2Γ. How-
ever, if the mirror symmetry about the TLS is broken, either by a quantum pulse encoded
in the initial state of the reservoir, see Sec. 5.2, or due to different coupling strengths
to left- and right-propagating modes, we have to consider separate channels for left- and
right-propagating modes. The implementation in this case works analogously to the case
of two TLS coupled to an infinite waveguide as discussed in Chap. 7.

With the feedback mechanism in place, performing the time evolution is a more complex
task since long-range interactions in time have to be accounted for. The time evolution al-
gorithm is illustrated in Fig. 5.7. To facilitate the efficient application of the time evolution
operator, a swapping algorithm is implemented, which brings the feedback bin to the left of
the TLS bin [188]. For this purpose, the feedback bin is contracted with the bin to its right.
In the subsequent decomposition, the positions of the two bins are exchanged (Fig. 5.7 a).
This procedure is repeated (l− 1) times until the feedback bin is situated next to the TLS
bin (Fig. 5.7 b). The time evolution operator can then be applied by contracting it with
the three bins it acts on (Fig. 5.7 c). The resulting tensor is decomposed via two SVDs.
The right bin is the TLS bin, which, as a consequence, is moved one step to the right. The
former current time bin is placed to the left of the TLS bin and accounts for the emission
into the feedback loop. The former feedback bin represents the emission into the output
channel and, after the decomposition, is placed to the left of the former current time bin.
It is then swapped back to its original position to restore the correct order of the time
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5.1 Matrix product state framework

Figure 5.7: Diagrammatic representation of the time evolution in the MPS framework with
feedback. (a) The feedback bin k− l is moved one step to the right by swapping the
positions of the feedback bin and the bin to its right. (b) The swapping procedure is
repeated until the feedback bin is located to the left of the TLS bin S. (c) The time
evolution operator Uk is applied to the TLS bin S, the current time bin k, and the
feedback bin k−l. (d) The resulting tensor is decomposed, and the TLS bin is moved
one step to the right. The former current time bin accounting for the emission into
the feedback loop is kept to the left of the TLS bin. The former feedback bin is
swapped back to its original position to restore the order of the MPS and describes
the emission into the output channel. (e) At the end of the time evolution step, the
OC is shifted to the new feedback bin k − l + 1.
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5 Exciting the atom-photon bound state with multiphoton pulses

bins (Fig. 5.7 d). For the time evolution algorithm with feedback, the OC is kept at the
feedback bin unless observables for other bins, for example the TLS bin, are evaluated. In
this case, the OC is shifted to the bin under consideration. After one time evolution step
is completed, the OC is shifted one step to the right, that is, onto the feedback bin for the
next time evolution step (Fig. 5.7 e). Even before the feedback signal itself can influence
the dynamics, that is, for t < τ , the interaction of the TLS with the feedback loop has to
be accounted for. This is important to ensure a consistent treatment of the dynamics as
well as to account for the interaction of the TLS with vacuum noise initially present in the
feedback loop. For the numerical implementation, we used the ITensor C++ library [189].

5.2 Modeling quantum pulses

Typically, the TLS (S) and the reservoir (R) are assumed to be initially separable so that
the initial state of the entire system can be expressed as

|ψ (t0)⟩ = |i⟩S ⊗ |ϕ0⟩R , i ∈ {g, e}. (5.22)

Furthermore, it is common to consider a reservoir that, at the beginning, is in the vacuum
state, |ϕ0⟩R = |0, . . . , 0⟩. In this case, the bins form a product state and there is no
entanglement in the system. As a consequence, each bin can be initialized individually
and a numerically expensive decomposition of the initial state into an MPS as discussed in
Sec. 5.1.2 is not necessary. Dynamics arise under these circumstances if the TLS is either in
the excited state initially (|i⟩S = |e⟩S) or excited externally, for example by a laser driving
the TLS resonantly at frequency ωL = ω0 with amplitude Ω(t), which can be included by
introducing the term

HL = Ω(t) (σ+ + σ−) (5.23)

in the interaction picture Hamiltonian given in Eq. (5.1) [53, 55]. If the amplitude can be
assumed as constant during one time step, Ω(t) → Ωk, t ∈ [tk, tk+1[ , the time evolution
operator given in Eq. (5.8) can be extended to

Uk = exp
[
−iΩk (σ+ + σ−)∆t−

√
Γ
(
∆R†

kσ− −∆R†
k−lσ−e

−iω0τ − H.c.
)]
. (5.24)

However, since we pursue a fully quantized and self-consistent description of the light field,
we encode the excitation in the initial state of the reservoir so that the TLS is excited by a
quantum pulse through the waveguide, as illustrated in Fig. 5.1. For a single-photon pulse,
the initial state of the reservoir can be created from the vacuum state according to

|ϕ0⟩R = a†f |0, . . . , 0⟩ , (5.25)

where a†f is the creation operator of a wave packet with pulse shape f(t) [119]. This pulse
shape f(t) has to satisfy the normalization condition∫

dt |f(t)|2 = 1. (5.26)

The wave packet creation operator a†f is a weighted integral over the creation operators r†t
describing the creation of a photon at time t,

a†f =

∫
dt f(t)r†t . (5.27)

44



5.2 Modeling quantum pulses

An equivalent formulation in frequency space can be obtained using the Fourier transformed
coefficients

f(ω) =
1√
2π

∫
dt f(t)e−i(ω−ω0)t. (5.28)

They allow expressing the wave packet creation operator as

a†f =

∫
dω f(w)r†ω. (5.29)

The wave packet creation operator satisfies the commutation relation
[
af , a

†
f

]
= 1 and

can be interpreted as the creation operator of a photon in the temporal mode defined by
f(t) [190]. Due to the pulse encoded in the reservoir state, the involved time bins, that is,
the bins for which there is a finite probability that they contain a photon, are no longer
separable but become entangled in the time domain. In the following, we refer to these
time bins as pulse bins. For the implementation within the MPS framework, we express the
initial state of the reservoir in the time-bin basis assuming the pulse shape to be constant
during one time step so that f(t) = fk for t ∈ [ tk, tk+1 [ , k ∈ {1, . . . , N}. This yields the
reservoir state

|ϕ0⟩R =
N∑
k=1

fk∆R
†
k |0, . . . , 0⟩ . (5.30)

As an illustrative example, let us consider a rectangular pulse starting at tstart = t1 and
ending at tend = t2. In this case, the reservoir state takes on the form

|ϕ0⟩R =
1√
2∆t

[
∆R†

1 +∆R†
2

]
|0, . . . , 0⟩

=
1√
2

[
|1, 0⟩1,2 + |0, 1⟩1,2

]
⊗ |0, . . . , 0⟩3,...,N , (5.31)

where the subscripts in the second line indicate the associated time bins. From the second
line, it is clear that the initial state of the reservoir is no longer a product state. On
the contrary, in this example, time bins one and two form a maximally entangled Bell
state, see Chap. 4. As a consequence, the pulse bins have to be initialized collectively
and subsequently decomposed into the MPS form. For a rectangular single-photon pulse
of arbitrary duration, a general formula for the initialization of the pulse bins can be
found [191]. To implement a pulse of duration, that is, width tD = M∆t, M ∈ N,
encompassing bins p1, p2, . . . , pM , pi ∈ N, i ∈ {1, . . . ,M}, the matrices A[p]ip , where p
denotes the time step and ip is the corresponding physical index, are initialized according
to

A[p1]
1 =

(
1 0

)
, A[p1]

2 =
(
0 1

)
, (5.32)

A[pk]
1 =

(
1 0

0
√

1
k

)
, A[pk]

2 =

(
0
√

k−1
k

0 0

)
, (5.33)

A[pM ]1 =
(
0
√

M−1
M

)T
, A[pM ]2 =

(√
1
M 0

)T
(5.34)

with 1 < k < M . Here, we assume time bins of dimension two so that at most one photon
per time bin is considered.
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5 Exciting the atom-photon bound state with multiphoton pulses

After having concentrated on a single photon in the reservoir so far, we now turn to the
case of an n-photon pulse. To that end, we generalize the formula for the creation of the
reservoir state from the vacuum, Eq. (5.25), to n photons according to

|ϕ0⟩R =
1√
n!

(
a†f

)n
|0, . . . , 0⟩ . (5.35)

The extension of the example of a rectangular pulse starting at tstart = t1 and ending at
tend = t2 to the case of n = 2 photons yields the reservoir state

|ϕ0⟩R =
1√
4

[
|2, 0⟩1,2 + |0, 2⟩1,2 +

√
2 |1, 1⟩1,2

]
⊗ |0, . . . , 0⟩3,...,N . (5.36)

For a rectangular two-photon pulse of arbitrary duration, in analogy to the single-photon
pulse, an analytical formula can be used to initialize the time bins. In this case, with three-
dimensional time bins accounting for up to two photons per bin, the involved matrices take
the form

A[p1]
1 =

(
1 0 0

)
, A[p1]

2 =
(
0 1 0

)
, A[p1]

3 =
(
0 0 1

)
, (5.37)

A[pk]
1 =


1 0 0

0
√

k−1
k 0

0 0
√

(k−1)2

k2

 , A[pk]
2 =

0
√

1
k 0

0 0
√

2(k−1)
k2

0 0 0

 ,

A[pk]
3 =

0 0
√

1
k2

0 0 0
0 0 0

 , (5.38)

A[pM ]1 =
(
0 0

√
(M−1)2

M2

)T
, A[pM ]2 =

(
0
√

2(M−1)
M2 0

)T
,

A[pM ]3 =
(√

1
M2 0 0

)T
(5.39)

with 1 < k < M . The extension to three, four, or even more photons is straightforward.
The explicit form of the corresponding matrices for three and four photons, as used for the
calculations presented in Sec. 5.4, can be found in Appendix A.1. The MPS framework
is well suited for the inclusion of a large number of photons due to the efficient handling
of the entanglement in the system and, this way, allows surpassing the usual limit of
one or two photons. The increase in required computational resources is reflected by an
increasing bond dimension as we see below in Sec. 5.4. A possibility to reduce the numerical
complexity beyond limiting the bond dimension is limiting the dimension of the time bins,
that is, the dimension of the physical indices. In particular, for a pulse encompassing
a large number of time bins, that is, for a long pulse duration or in the case of a fine
discretization, the probability to find multiple photons per time bin becomes negligibly
small.

5.3 Feedback dynamics

Having presented the methodology in the preceding sections, in this section, we look at
the resulting dynamics. Here, we concentrate on the TLS and, in particular, evaluate the
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Figure 5.8: Dynamics of the TLS population without feedback for an initially excited emitter
decaying in vacuum (|e, 0⟩, black line) and for an emitter initially in the ground state
subjected to a rectangular pulse of width ΓtD = 1 containing a single photon (|g, 1⟩,
red line) or two photons (|g, 2⟩, green line).

expectation value of the occupation operator of its excited state, ⟨ψ(t)|σ+σ− |ψ(t)⟩, also
referred to as the TLS population. The MPS framework, moreover, makes the state of the
light field directly accessible, which we make use of, for example, in Chap. 8.

Before looking at the non-Markovian dynamics of a TLS coupled to a semi-infinite wave-
guide, as a reference, we consider the Markovian case of a TLS coupled to an infinite
waveguide. The setup is illustrated in Fig. 3.3. Here, however, we treat the light field
in a fully quantized manner as indicated by the quantum pulse of shape f(t) in Fig. 5.1.
The dynamics we obtain in this case are presented in Fig. 5.8. The initial state of the
system is denoted as |ψ(t0)⟩ = |i, n⟩, where i ∈ {g, e} denotes the state of the emitter
and n ∈ {0, 1, 2} is the number of photons in the reservoir, that is, in the temporal mode
defined by the pulse shape f(t). For an initially excited emitter, the population decays
exponentially due to the interaction with the vacuum noise in the waveguide (black line).
If the emitter is initially in the ground state and excited by a quantum pulse, after the
pulse has passed, the emitter decays exponentially to the ground state as well (red line for
a single-photon pulse, green line for a two-photon pulse of rectangular shape and width
ΓtD = 1).

In the case of a semi-infinite waveguide, see Fig. 5.1, the behavior becomes more complex
due to the feedback mechanism, which induces memory effects and, thus, renders the
dynamics non-Markovian. A signal that is emitted from the TLS toward the mirror returns
after the delay time τ . The interference of the emission from the TLS and the feedback
signal can strongly modify the dynamics in comparison to the Markovian case. The specific
impact of the feedback depends on the phase ϕ ≡ ω0τ a resonant photon acquires during
one round trip, where ω0 is the transition frequency of the TLS. An initially excited emitter
decays exponentially until, at time t = τ , the feedback mechanism comes into play and
either accelerates or slows down the decay, which is illustrated in Fig. 5.9 a. The decay
is maximally accelerated for a feedback phase ϕ = (2m + 1)π, m ∈ N (blue line). The
opposite case of a maximally decelerated decay can be observed if ϕ = 2πm (black line).
For this feedback phase, it is even possible to stabilize the TLS at a non-zero steady-state
value of the population after a transient time. For all other feedback phases ϕ ̸= 2πm,
the emitter necessarily decays to the ground state in the long-time limit. In the case of
an initially excited emitter, the dynamics are accessible analytically via a solution in the
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Figure 5.9: Dynamics of the TLS population with feedback at the delay time Γτ = 1. (a) Initially
excited emitter subjected to feedback at phase ϕ = (2m+1)π, m ∈ N, (blue line) and
at phase ϕ = 2πm (black line). (b) Emitter initially in the ground state subjected
to feedback at phase ϕ = 2πm. The emitter is excited by a rectangular pulse of
width ΓtD = 1 containing a single photon (|g, 1⟩, red line) or two photons (|g, 2⟩,
green line).

Laplace domain, which yields with |ψ(0)⟩ = |e, 0⟩ [171,192]

⟨ψ(t)|σ+σ− |ψ(t)⟩ = |ce(t)|2 , ce(t) =
∞∑
k=0

e−Γt

k!

[
Γeiω0τ+Γτ (t− kτ)

]k
Θ(t− kτ), (5.40)

in accordance with our numerical results. If, instead, the emitter is initially in the ground
state and excited by a quantum pulse, the number of photons in the pulse crucially influ-
ences the observed behavior. This scenario is illustrated in Fig. 5.9 b, where a feedback
phase ϕ = 2πm is assumed. For a single-photon pulse, the feedback modifies the dynamics
(red line). In the long run, however, the TLS decays to the ground state for all values of ϕ.
For a pulse containing two or more photons, in contrast, a stabilization of the population
is possible (green line).

The stabilization of the TLS population we observe for a feedback phase ϕ = 2πm can
be attributed to the excitation of an atom-photon bound state. In this case, the atom
is dressed with a single photon, which is confined to the region between the emitter and
the closed end of the waveguide and has a frequency that lies inside the continuum of
propagating modes [180]. Bound states are typically observed for frequencies outside the
continuum, where the energy cannot be radiated away [193, 194]. Nevertheless, bound
states can also be found inside the continuum. Since the imaginary part of the frequency
that a state can be associated with corresponds to its leakage rate, these bound states in
the continuum can be associated with real frequencies [195].

The atom-photon bound state we observe has the frequency ω0, which is the same as the
transition frequency of the emitter so that the TLS functions as a perfect mirror. The
bound state consists of two components: There is an atomic component describing the
probability to find the emitter in the excited state and a photonic component associated
with the probability to find a photon in the waveguide between TLS and mirror [178].
While, for small separations between the emitter and the mirror, the atomic component
dominates, the photonic component becomes more important for increasing separations.
Eventually, in the highly non-Markovian regime, where Γτ ≫ 1, the photonic component
dominates. As we see in Fig. 5.9, there are different excitation schemes for the atom-photon

48



5.4 Photon-number dependence of the bound-state excitation

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50
0

0.2

0.4

0.6

0 10 20 30 40 50

⟨σ
+
σ
−
⟩

Γt

a)
Γτ = 0.2
Γτ = 0.5
Γτ = 1.0
Γτ = 2.0
Γτ = 4.0

⟨σ
+
σ
−
⟩

Γt

b)
Γτ = 0.2
Γτ = 0.5
Γτ = 1.0
Γτ = 2.0
Γτ = 4.0

Figure 5.10: Bound-state excitation for different feedback delay times Γτ . (a) Initially excited
emitter. (b) Emitter initially in the ground state excited by a rectangular two-
photon pulse of width ΓtD = 1.

bound state: The first possibility is letting an initially excited emitter decay in vacuum,
while the second possibility is addressing the bound state via multiphoton scattering. In
the latter case, it is the intrinsic nonlinearity of the TLS that enables the excitation of the
bound state via stimulated emission, which, however, only comes into play if the pulse the
emitter is excited by contains at least two photons.

The efficiency of the bound-state excitation depends on the overlap of the initial state of
the system with the bound state. Therefore, the specific parameter regime determines
which excitation scheme is most efficient. In our investigation, we focus particularly on
the steady-state population of the emitter, that is, the atomic component of the bound
state, as a measure of the population trapping. Exciting the bound state via the decay
of an initially excited emitter is particularly effective in the parameter regime of small
separations, Γτ < 1. For this excitation scheme, the steady-state value of the emitter
population decreases monotonically with the delay time, see Fig. 5.10 a. The behavior
becomes more complex if the bound state is excited by a multiphoton pulse. In this case,
the steady-state value of the emitter population depends non-monotonously on the delay
time, see Fig. 5.10 b, where a rectangular two-photon pulse of width ΓtD = 1 is considered.
A certain minimum separation is crucial for this scheme to work since its efficiency is
determined by the overlap of the initial multiphoton state with the photonic component
of the bound state. As a consequence, it is interesting to study the impact of the number
of photons in a pulse as well as its shape.

5.4 Photon-number dependence of the bound-state excitation

We investigate how the steady-state value at which the emitter population stabilizes when
excited by a quantum pulse depends on the number of photons in the pulse. Throughout
this section, we assume that a feedback phase ϕ = 2πm, m ∈ N, is implemented so
that the excitation of the atom-photon bound state is possible. Furthermore, we assume
a rectangular pulse shape, while the influence of different pulse shapes is the subject of
study in Chap. 6.
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Figure 5.11: TLS subjected to feedback at Γτ = 0.5. (a) Dynamics of the TLS population where
the emitter is either initially excited and decays in vacuum (|e, 0⟩, black line) or
initially in the ground state and excited by a rectangular pulse of width ΓtD = 0.5,
which contains n photons (|g, n⟩), n ∈ {1, 2, 3, 4}. (b) Bond dimension of the time
bins in the MPS implementation for an n-photon pulse.

We begin in the regime of medium delay times. For a TLS with Γτ = 0.5 that is excited
by rectangular pulses of duration ΓtD = 0.5 containing up to four photons, the emitter
dynamics that are shown in Fig. 5.11 a can be observed. The behavior for an initially
excited emitter decaying spontaneously in vacuum is included for comparison purposes
(black line). A single-photon pulse excites the emitter temporarily (red line). Eventually,
however, the emitter decays to the ground state. At least two photons in the pulse are
essential for the excitation of the atom-photon bound state. In this case, the first photon
partially excites the emitter and the scattering of the remaining photons stimulates the
population of the atom-photon bound state so that a non-zero steady-state value of the
emitter population is possible. For a two-photon pulse, such a non-trivial steady-state value
is reached (green line). Increasing the number of photons further to three (dark blue line)
and four photons (light blue line), the steady-state value increases, where in the considered
parameter regime an approximately linear dependence of the steady-state value on the
photon number emerges. When comparing the emitter dynamics for the two excitation
schemes, the steady-state population for an initially excited emitter exceeds the value the
emitter stabilizes at when excited by the considered multiphoton pulses containing up to
four photons. The specific pulse width for the dynamics shown in Fig. 5.11 was chosen since
it results in the highest steady-state value possible for the given emitter-mirror separation
and a rectangular pulse shape. This observation also holds in general: In the considered
parameter range of medium to large separations, the highest steady-state value can be
found for pulses satisfying tD ≲ τ .

To give an impression of the scaling of the MPS approach with the number of excitations in
the pulse, we show the bond dimensions of the time bins for the first five feedback intervals
in Fig. 5.11 b. In the MPS framework, the bond dimension functions as a measure of
the entanglement between the bins and, this way, quantifies the required computational
resources. Here, we did not limit the bond dimension and used (n + 1)-dimensional time
bins for the inclusion of an n-photon pulse to capture the full dynamics. In the case of
a single-photon pulse, the maximum value is reached at t = tstart when the pulse begins.
For two or three photons in the pulse, the bond dimension is maximum after the first
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Figure 5.12: TLS subjected to feedback at Γτ = 4. (a) Dynamics of the TLS population where
the emitter is either initially excited and decays in vacuum (|e, 0⟩, black line) or
initially in the ground state and excited by a rectangular pulse of width ΓtD = 4,
which contains n photons (|g, n⟩), n ∈ {1, 2, 3, 4}. (b) Bond dimension of the time
bins in the MPS implementation for an n-photon pulse.

feedback roundtrip time at t = tstart + τ before it decreases again later. If a four-photon
pulse is considered, the highest bond dimension is found after two feedback intervals at
t = tstart + 2τ .

In the next step, we turn to the highly non-Markovian regime, where Γτ ≫ 1. In particular,
we consider a system where feedback at the delay time Γτ = 4 is implemented and the
emitter is subjected to rectangular pulses of duration ΓtD = 4. This results in the dynamics
presented in Fig. 5.12 a. Furthermore, the dynamics for an initially excited emitter are
shown. In this parameter regime, the photonic component of the atom-photon bound
state dominates, and the excitation via multiphoton scattering is more effective than for
small emitter-mirror separations. This opens up a range of possibilities for controlling and
specifically maximizing the trapping probability by choosing the number of photons as well
as the pulse shape accordingly. For the considered system, a two-photon pulse results in a
steady-state population that approximately matches the value an initially excited emitter
stabilizes at, ⟨σ+σ−⟩st.st. ≡ limt→∞ ⟨σ+(t)σ−(t)⟩ = 0.040. For an additional photon in the
pulse, that is, in the case of a three-photon pulse, we get a result that considerably exceeds
this value. A four-photon pulse causes even a slightly higher steady-state population at
⟨σ+σ−⟩st.st = 0.085, where the dependence of the steady-state value on the photon number
is clearly nonlinear. If we compare the two excitation schemes, an increase of about 110%
in the steady-state value of the emitter population is possible if the bound state is excited
by multiphoton pulses.

The bond dimensions of the time bins for the calculation of the dynamics in the highly non-
Markovian regime are presented in Fig. 5.12 b to allow for an assessment of the required
computational resources. Comparing the results to those obtained in the regime of medium
delay times shown in Fig. 5.11 b, we see that the scaling of the bond dimensions with the
number of photons in the pulse depends critically on the delay time. Thus, in addition
to the number of excitations in the system, the emitter-mirror separation has a significant
impact on the numerical costs.
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5.5 Conclusion

In this chapter, we investigated the non-Markovian feedback dynamics of a two-level emit-
ter coupled to the electromagnetic field in a semi-infinite waveguide focussing, in particular,
on the impact of quantum pulses. For the simulation of the time evolution, we employed
the MPS framework, which enables the efficient calculation of the feedback dynamics with
multiple excitations. We discussed the inclusion of quantum pulses via the initial reservoir
state and found an explicit MPS form for them so that no resource-intensive decomposition
of the initial state is required.

In the considered system, an atom-photon bound state exists, which can be addressed
either via an initially excited emitter decaying in vacuum or via multiphoton scattering.
The effectiveness of the schemes depends crucially on the emitter-mirror separation and,
thus, on the feedback delay time. For small delay times, the excitation of the bound state
via an initially excited emitter is most effective. In the highly non-Markovian regime of
large delay times, however, our findings showed that multiphoton pulses allow stabilizing
the emitter population at a steady-state value exceeding that of an emitter decaying in
vacuum significantly. We considered up to four photons in the pulses and found an in-
crease of 110 % for the system under consideration. The results show that multiphoton
pulses are a versatile tool to control the system dynamics and particularly the bound-state
excitation, where they induce a stimulated emission process that can enhance the trapping
probability in comparison to the spontaneous decay of an initially excited emitter. This
way, quantum pulses enable the quantum optical preparation of an excited emitter as well
as the realization of tailored trapping scenarios via pulse engineering.
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6 Heisenberg treatment of multiphoton
pulses in WQED with feedback

Non-Markovian feedback in WQED systems generates strongly entangled system-reservoir
states, for which perturbative and master equation methods typically used for Markovian
systems fail to capture the essential features of the dynamics, as discussed in Chap. 5.
To deal with such systems, over the last years, different approaches have been developed:
While it is, in principle, possible to perform a brute-force integration of the full Schrödinger
equation [43, 196], this procedure is only feasible for a very limited number of excitations
and short times. A more complex approach is based on the evaluation of the Von-Neumann
equation, where a series of cascaded quantum systems accounts for the system being driven
by a past version of itself [52]. Although this insightful method has been pioneering, it
is only applicable to small systems and short-time dynamics because it scales with the
exponentially growing dimension of the corresponding Liouvillian. Additionally, the com-
patibility of the method with factorization schemes is questionable due to the complicated
construction of the Liouvillian. Another sophisticated method relies on solving the quan-
tum stochastic Schrödinger equation within the MPS framework [53], as introduced in
Chap. 5. The approach allows for long-time simulations and fast convergence times as
well as the inclusion of several excitations due to the efficient handling of the entangle-
ment in the system. It is, however, intrinsically limited to unitary evolutions and the
exact treatment of additional Hamiltonian-based interactions. Furthermore, the required
memory cannot be determined beforehand since the number of necessary Schmidt values
is not known without a convergence analysis. Recently, another approach for the study of
WQED systems with coherent time-delayed feedback has been proposed that makes use of
quantum trajectory simulations in a space-discretized waveguide [55,197].

Complementing these existing methods and, especially, as a readily accessible alternative
to the intricate MPS method employed in Chap. 5, in this chapter, we present a method for
the numerically exact simulation of non-Markovian feedback dynamics in WQED systems
within a Heisenberg representation. The method gives access to the microscopic dynamics
and allows including dissipation channels, where approximation methods can be applied
without losing exactness in the coherent quantum feedback dynamics. As an exemplary
system, in analogy to Chap. 5, we consider a TLS coupled to a semi-infinite waveguide
excited by quantum pulses. To unravel the hierarchy of multi-time correlations arising
for the Heisenberg equations due to the non-Markovianity of the system [30], a projection
onto a complete set of states in the Hilbert space is performed. The work presented here is
based on our publication in Ref. [198]. We start in Sec. 6.1 by introducing the Heisenberg
approach, the validity of which is verified by the benchmarks of the dynamics presented
in Sec. 6.2. As an illustration of the capabilities of the method, we study the impact
of multiphoton pulses of variable shape in Sec. 6.3 and include a phenomenological pure
dephasing as an additional dissipation channel in Sec. 6.4.
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6 Heisenberg treatment of multiphoton pulses in WQED with feedback

6.1 Heisenberg-operator approach

We introduce the method that allows calculating the exact feedback dynamics in WQED
systems with quantum pulses within a Heisenberg representation using the paradigmatic
example of the TLS coupled to a semi-infinite waveguide as considered in Chap. 5 and
depicted in Fig. 5.1. The interaction-picture Hamiltonian describing the system, as stated
in Eq. (5.1), reads

HI =

∫
dω ℏ

[
g(ω)r†ωσ−e

i(ω−ω0)t + H.c.
]

(6.1)

with the bosonic photon annihilation (creation) operator r(†)ω and the transition operators of
the TLS σ− = |g⟩ ⟨e| and σ+ = |e⟩ ⟨g| = σ†−. The TLS is characterized by its transition fre-
quency ω0 and couples to the photonic reservoir with coupling strength g(ω) = g0 sin(ωτ/2)
accounting for the implemented feedback mechanism at the delay time τ as introduced in
Sec. 5.1.

In order to study the dynamics of the system, we use the Heisenberg equation of motion,
see Eq. (2.7), and derive differential equations for the relevant time-dependent system
operators σ−(t) and rω(t). This way, we obtain the coupled equations

d
dt
σ−(t) = −i

∫
dω g(ω)e−i(ω−ω0)t [1 − 2σ+(t)σ−(t)] rω(t), (6.2)

d
dt
rω(t) = −ig(ω)ei(ω−ω0)tσ−(t). (6.3)

Since the focus lies on the dynamics of the emitter, it is justified to eliminate the explicit
reservoir dynamics. To that end, the reservoir operators can be integrated out, which
yields

rω(t) = rω(0)− ig(ω)

∫ t

0
dt′ ei(ω−ω0)t′σ−(t

′). (6.4)

This shows that the occupation of the reservoir modes depends on the interaction with the
TLS as well as on the initial occupation of the reservoir. As we saw in Chap. 5, a quantum
pulse can be modeled via this initial occupation of the reservoir. To be able to express the
quantum pulse in the time domain, a Fourier transform of the initial reservoir operators is
performed yielding quantum noise operators as introduced in Chap. 5, see Eq. (5.4),

rt =
1√
2π

∫
dω rω(0)e

−i(ω−ω0)t. (6.5)

The operator rt describes the annihilation of a photon at time t and allows an interpretation
as an input operator in the context of the input-output theory [115, 199]. Subsequently,
with the decay rate Γ = πg20/2, the differential equation for the TLS operator σ− can be
expressed as

d
dt
σ−(t) = −Γσ−(t)−

√
Γ [1 − 2σ+(t)σ−(t)] rt,τ

+ Γeiω0τ [σ−(t− τ)− 2σ+(t)σ−(t)σ−(t− τ)] Θ(t− τ), (6.6)

where the delayed input operator

rt,τ ≡ rt− τ
2
eiω0

τ
2 − rt+ τ

2
e−iω0

τ
2 (6.7)
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has been introduced. The first line on the right-hand side of Eq. (6.6) accounts for the
immediate interaction of the emitter with the light field, where the first term describes
the decay of the emitter excitation due to spontaneous emission and the second term the
interaction of the emitter with potential excitations in the reservoir. The second line, in
turn, arises due to the feedback mechanism and only comes into play for times t ≥ τ ,
where the feedback signal interferes with the emission from the TLS, the impact of which
is determined by the feedback phase ϕ = ω0τ .

In the next step, we evaluate the TLS population, that is, the expectation value of the
occupation operator of its excited state, ⟨ψ|σ+(t)σ−(t) |ψ⟩. The initial state |ψ⟩ is the
combined state of the TLS and the reservoir. For simplicity, we assume that the TLS and
the reservoir are initially separable so that |ψ⟩ = |j⟩ ⊗ |n⟩ ≡ |j, n⟩ although the method
is not limited to this class of states. It is also applicable in the case of entangled states
and can, furthermore, be extended to incorporate mixed states. The state |j⟩ denotes the
state of the TLS, that is, either the ground (|j⟩ = |g⟩) or the excited state (|j⟩ = |e⟩), while
|n⟩ describes n photons in the reservoir, n ∈ N. To obtain the n-photon state from the
vacuum, the wave packet creation operator a†f of a photon in the temporal mode defined by
the normalized pulse shape f(t) is employed, which, as introduced in Sec. 5.2, satisfies

a†f =

∫
dt f(t)r†t ,

∫
dt |f(t)|2 = 1. (6.8)

Its n-fold application yields the n-photon state according to

|j, n⟩ = 1√
n!

(
a†f

)n
|j, 0⟩ . (6.9)

To calculate the TLS population, as a consequence, the differential equation

d
dt

⟨j, n|σ+(t)σ−(t) |j, n⟩ = −2Γ ⟨j, n|σ+(t)σ−(t) |j, n⟩

−
√
nΓ [f∗τ (t) ⟨j, n− 1|σ−(t) |j, n⟩+ H.c.]

+ Γ
[
e−iω0τ ⟨j, n|σ+(t− τ)σ−(t) |j, n⟩+ H.c.

]
Θ(t− τ) (6.10)

has to be solved, where fτ (t) denotes the delayed pulse defined as

fτ (t) ≡ f
(
t− τ

2

)
eiω0

τ
2 − f

(
t+

τ

2

)
e−iω0

τ
2 . (6.11)

The expectation value in Eq. (6.10) couples to the single-time matrix element of the TLS
operator ⟨g, n− 1|σ−(t) |g, n⟩, which, in turn, obeys the differential equation

d
dt

⟨j, n− 1|σ−(t) |j, n⟩ = −Γ ⟨j, n− 1|σ−(t) |j, n⟩

−
√
nΓfτ (t) [1− 2 ⟨j, n− 1|σ+(t)σ−(t) |j, n− 1⟩]

+ Γeiω0τ [⟨j, n− 1|σ−(t− τ) |j, n⟩ − 2 ⟨j, n− 1|σ+(t)σ−(t)σ−(t− τ) |j, n⟩]
×Θ(t− τ). (6.12)

Before the feedback mechanism sets in, that is, for times t < τ , we obtain time-local and,
therefore, essentially Markovian dynamics since the time-delayed feedback terms do not
yet contribute as ensured by Θ(t − τ). In this case, the dynamics for n photons in the
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Figure 6.1: Scheme of the contributing matrix elements for the dynamics without feedback for
three photons in the reservoir initially. Here, the abbreviation [A]

i,j
m,n denotes the

matrix element ⟨i,m|A(t) |j, n⟩.

reservoir can be calculated recursively using the results for n − 1 photons [181, 200]. The
differential equations that have to be solved in this case are

d
dt

⟨g, n|σ+(t)σ−(t) |g, n⟩ = −2Γ ⟨g, n|σ+(t)σ−(t) |g, n⟩

−
√
nΓ [f∗τ (t) ⟨g, n− 1|σ−(t) |g, n⟩+ H.c.] , (6.13)

d
dt

⟨g, n− 1|σ−(t) |g, n⟩ = −Γ ⟨g, n− 1|σ−(t) |g, n⟩

−
√
nΓfτ (t) [1− 2 ⟨g, n− 1|σ+(t)σ−(t) |g, n− 1⟩] . (6.14)

The matrix elements relevant for a TLS initially in the ground state and a pulse containing
up to three photons are exemplarily sketched in Fig. 6.1. In the figure, the abbreviation
[A]i,jm,n denotes the matrix element ⟨i,m|A(t) |j, n⟩. Thus, to determine the TLS population
for three photons in the reservoir initially, the results for two photons and for one photon
have to be determined.

When feedback effects influence the dynamics, that is, for times t ≥ τ , the time-delayed
feedback terms in Eqs. (6.10) and (6.12) become relevant and the single-time correlations
couple to two-time correlations. In general, these two-time correlations couple to three-
time correlations and so on. To deal with this hierarchical structure and obtain a closed set
of differential equations, we unravel the multi-time correlations via the insertion of a unity
operator between the operators with different time arguments. This unity operator is a
projector onto a complete set of states in the Hilbert space of the TLS and the photonic
reservoir. With the reservoir in the time domain, it takes the form

1 =
{
|g⟩ ⟨g|+ |e⟩ ⟨e|

}
⊗

{
|0⟩ ⟨0|+

∫
dt′ |t′⟩ ⟨t′|+ 1

2

∫
dt′
∫
dt′′ |t′, t′′⟩ ⟨t′, t′′|+ . . .

}
. (6.15)

The variables t′ and t′′ are, in general, assumed to run from −∞ to +∞. For readability,
however, the bounds of integration for the unity operator are omitted here and in the
following. The reservoir state |t′⟩ denotes a single photon in the reservoir, created at time
t′, |t′⟩ = r†t′ |0⟩. The state |t′, t′′⟩ describes two photons in the reservoir, created at t′ and
t′′, respectively, |t′, t′′⟩ = r†t′r

†
t′′ |0⟩, and so on. Since the photons are indistinguishable,

the factor 1/2 ensures normalization. In general, for n photons in the reservoir, the factor
1/(n!) is required. With the insertion of the unity operator from Eq. (6.15) between
operators at different times when evaluating Eqs. (6.10) and (6.12), the explicit calculation
of multi-time correlations with time-ordering can be avoided. Instead, the problem is
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Figure 6.2: Scheme of the contributing matrix elements for the dynamics with feedback. The
abbreviation [A]

i,j
m,n denotes the matrix element ⟨i,m|A(t) |j, n⟩. When decomposing

the expectation value of the TLS occupation, the matrix elements in the colored
boxes have to be calculated and saved. The elements can be calculated recursively
where, however, additionally the matrix elements outside the colored boxes couple
to the dynamics. The underlined time variables indicate the scaling of the algorithm
for the corresponding number of photons since they have to be integrated over and
determine the required computational resources.

shifted to the calculation of matrix elements of single-time Heisenberg operators. If we
additionally insert the unity operator between operators at the same time, in particular,
in between σ+(t)σ−(t), we only have to deal with matrix elements of the operator σ− for
the calculation of the TLS dynamics.

In principle, an infinite number of matrix elements has to be calculated when inserting the
unity operator to account for all possible numbers of photons in the reservoir. It depends,
however, on the number of excitations in the system which elements effectively contribute
to the dynamics. We study which matrix elements have to be evaluated and, thus, which
resources are needed for the calculation depending on the initial state of the system. For
simplicity, we focus on the case of a TLS initially in the ground state and all excitations
in the reservoir, while the extension to an initially excited TLS is straightforward.

As a first step, we decompose the expectation value of the TLS population according to

⟨g, n|σ+(t)σ−(t) |g, n⟩ = ⟨g, n|σ+(t)1σ−(t) |g, n⟩ (6.16)

to determine the contributing matrix elements as well as to obtain a way to benchmark
the decomposition. We find that only matrix elements of the form ⟨ψn−1|σ−(t) |g, n⟩
contribute to the dynamics, where |ψn−1⟩ denotes a state comprising n − 1 excitations.
The state |ψn−1⟩ can describe either the TLS in the excited state and n− 2 excitations in
the reservoir or the TLS in the ground state and n − 1 excitations in the reservoir. As a
consequence, only projectors onto such states |ψn−1⟩ have to be taken into account in the
unity operator. Using this property, we decompose all matrix elements in such a way that
we only have to deal with single-time correlations of the operator σ−.

Analogous to the case without feedback, the results with feedback for n photons in the
reservoir can be calculated recursively using the results for n − 1 photons. Due to the
feedback mechanism, however, further matrix elements have to be evaluated as sketched in
Fig. 6.2 for up to three photons in the reservoir. Correspondingly, we outline the approach,
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6 Heisenberg treatment of multiphoton pulses in WQED with feedback

starting with a single photon and progressing to two and three photons in the pulse. Higher
numbers of photons can then be treated similarly. The explicit differential equations can
be found in Appendix A.2.

For a single excitation in the reservoir, we only have to consider the projector onto the
state |g, 0⟩ describing zero excitations in the system when inserting the unity operator for
the evaluation of the TLS population. Therefore, it can be decomposed according to

⟨g, 1|σ+(t)σ−(t) |g, 1⟩ = ⟨g, 1|σ+(t) |g, 0⟩ ⟨g, 0|σ−(t) |g, 1⟩ . (6.17)

This case is represented by the red, solid box in Fig. 6.2. We have to determine a single
matrix element and store the past elements up to t − τ to account for the feedback. The
computational resources that are required for the calculation of the dynamics accordingly
grow linearly with the number of time steps T , O(T ).

In the case of a two-photon pulse, the elements that describe a single excitation in the
system, either in the TLS or in the reservoir, contribute when inserting the unity operator.
As a consequence, decomposing the corresponding expectation value yields

⟨g, 2|σ+(t)σ−(t) |g, 2⟩ = ⟨g, 2|σ+(t) |e, 0⟩ ⟨e, 0|σ−(t) |g, 2⟩

+

∫
dt′ ⟨g, 2|σ+(t) |g, t′⟩ ⟨g, t′|σ−(t) |g, 2⟩ . (6.18)

Note that times t′ for which f(t′) = 0 cannot be omitted in the integral. Although
there is no pulse contribution from these terms, they can still yield a noise contribution.
In particular, negative times t′ < 0 have to be considered accounting for the vacuum
noise initially in the feedback channel. In Fig. 6.2, this scenario is represented by the
green dashed box. For the calculation of the dynamics, as indicated by the green dashed
underlined times, two nested integrations have to be performed in each time step. The
required computational resources for two excitations in the system, thus, grow with the
number of time steps to the power of three, O

(
T 3
)
.

If a three-photon pulse is assumed, all elements describing two excitations in the system
contribute when inserting the unity operator. The decomposition of the expectation value
of the TLS population, therefore, results in

⟨g, 3|σ+(t)σ−(t) |g, 3⟩ =
∫
dt′ ⟨g, 3|σ+(t) |e, t′⟩ ⟨e, t′|σ−(t) |g, 3⟩

+
1

2

∫
dt′
∫
dt′′ ⟨g, 3|σ+(t) |g, t′, t′′⟩ ⟨g, t′, t′′|σ−(t) |g, 3⟩ . (6.19)

Here, the indistinguishability of the photons has to be taken into account. The case
is represented by the turquoise dotted box in Fig. 6.2. The turquoise dotted underlined
variables indicate the scaling. As five time variables have to be integrated over, the required
resources grow with the number of time steps to the power of six, O

(
T 6
)
.

6.2 Benchmark of the dynamics

We perform a benchmark of the dynamics to verify the validity of our Heisenberg approach.
To solve the differential equations for the relevant matrix elements, we employ a Runge-
Kutta algorithm. First, we consider the case before feedback sets in, that is, for t < τ ,
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Figure 6.3: Benchmark for the TLS population with the initial state |g, n⟩ as a function of time.
The TLS is excited by a rectangular pulse of duration ΓtD = 2 (yellow shaded area)
containing n photons, n ∈ {1, 2, 3}. (a) Benchmark for the decomposition of the
expectation value before feedback sets in, where the expectation value is calculated
either directly (solid lines) or using the decomposition via the insertion of the unity
operator (dashed lines). (b) Benchmark for the feedback dynamics with feedback at
the delay time Γτ = 2 and the phase ϕ = 2πm, m ∈ N, where the results are obtained
employing the MPS framework (solid lines) or using the proposed Heisenberg method
(dashed lines).

where the dynamics can be calculated recursively, see Eqs. (6.13) and (6.14). In this regime,
we compare the results obtained from the direct calculation with those obtained after
decomposing the expectation value via the insertion of the unity operator. In Fig. 6.3 a,
the dynamics for a TLS excited by a rectangular pulse of duration ΓtD = 2 (yellow shaded
area) containing up to three photons are shown. The results obtained from the direct
calculation (solid lines) and the results for the decomposition of the expectation values
(dashed lines) coincide perfectly suggesting the correctness of the decomposition.

Including later times, t ≥ τ , where feedback influences the dynamics, the expectation values
can no longer be calculated directly. To benchmark the results we obtain with feedback,
we employ the MPS framework as discussed in Chap. 5. In Fig. 6.3 b, the dynamics for a
TLS excited by a rectangular pulse of duration ΓtD = 2 (yellow shaded area) containing
up to three photons are shown, where the TLS is subjected to feedback at the delay time
Γτ = 2 and the feedback phase ϕ = ω0τ = 2πm, m ∈ N. The results obtained using
the MPS framework (solid lines) and the results of the Heisenberg method (dashed lines)
agree perfectly indicating the validity of the latter approach for the calculation of the
non-Markovian feedback dynamics.

6.3 Pulse-shape dependence of the bound-state excitation

In Sec. 5.3, we studied the feedback dynamics that can be observed for a TLS coupled to
a semi-infinite waveguide. In this system, if a feedback phase ϕ = ω0τ = 2πm, m ∈ N,
is implemented, multiphoton pulses can induce the population of an atom-photon bound
state, where the efficiency of the excitation scheme depends on the feedback delay time as
well as on the pulse properties. The investigation in Sec. 5.4 using MPS showed that the
number of photons in the pulse strongly influences the excitation probability of the bound
state. In this section, we explore the pulse shape as an additional way of controlling the
system dynamics and, in particular, the bound state excitation. While the MPS method
is well suited to account for multiple excitations in the system, the Heisenberg method
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Figure 6.4: Excitation of the atom-photon bound state via two-photon pulses. (a) TLS pop-
ulation as a function of time (blue lines) for a TLS with feedback at Γτ = 2 and
ϕ = 2πm, m ∈ N, excited via a two-photon pulse of shape f(t) (red lines). From
left to right: Rectangular pulse with ΓtD = 2, Gaussian pulse with Γσ = 1, ex-
ponentially decaying pulse with ΓPulse/Γ = 1. (b) Steady-state value of the TLS
population as a function of the width of the pulse and the feedback delay time, τ .
From left to right: Rectangular pulse with duration tD, Gaussian pulse with width
σ, exponentially decaying pulse with decay rate ΓPulse.

has the advantage that it makes the inclusion of arbitrary pulse shapes significantly more
convenient via the choice of f(t).

In Fig. 6.4, the results for a TLS subjected to feedback at ϕ = 2πm and excited by
two-photon pulses of different shapes are presented. The first considered pulse shape is
a rectangular pulse shape characterized by f(t) = AΘ(t − t0)Θ(t0 + tD − t), where A
is a constant ensuring that the normalization condition

∫
dt |f(t)|2 = 1 is fulfilled, t0 is

the starting point, and tD is the duration of the pulse. Furthermore, a Gaussian pulse is
applied with f(t) = A exp

[
−(t− µ)2/(2σ2)

]
, where A again is a normalization constant,

µ is the offset of the pulse, and σ determines its width. Finally, the emitter is subjected
to an exponentially decaying pulse, where f(t) = AΘ(t − t0) exp

[
−ΓPulse(t− t0)

]
with

normalization constant A, starting point t0, and decay constant ΓPulse. Fig. 6.4 a shows
the dynamics of the TLS population (blue lines) for two-photon pulses of different pulse
shapes f(t) (red lines) in the case of feedback at the delay time Γτ = 2. The considered
pulse shapes are a rectangular pulse with ΓtD = 2, a Gaussian pulse with Γσ = 1, and an
exponentially decaying pulse with ΓPulse/Γ = 1 (from left to right). For all considered pulse
shapes, the TLS is excited and, after a transient time, stabilizes at a non-zero steady-state
population, which points to the excitation of the atom-photon bound state. The steady-
state population ⟨σ+σ−⟩st.st. ≡ limt→∞ ⟨g,2|σ+(t)σ−(t) |g, 2⟩ for the different pulse shapes
as a function of the width of the pulse and the feedback delay time is presented in Fig. 6.4 b.
In the results, the non-monotonous dependence of the steady-state population on the delay
time can be observed. Furthermore, it can be seen that there is a complex interplay between
the feedback delay time and the pulse shape that determines the effectiveness of the bound
state excitation.
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6.4 Additional dissipation channel

As discussed in Sec. 3.3, a realistic quantum system can never be completely isolated.
Instead, the interaction with its larger environment introduces energy dissipation and de-
coherence in the system dynamics. For example, if WQED setups are realized using a solid-
state platform where semiconductor quantum dots function as the emitters, the interaction
of the emitters with the surrounding host material plays a crucial, often non-negligible role
rendering the dynamics effectively non-unitary [51, 201–206]. For the corresponding theo-
retical description, the Heisenberg method is ideally suited since it makes the microscopic
dynamics accessible and allows for the inclusion of additional exactly or perturbatively
treated dissipation channels.

As an exemplary dissipation channel, we include a phenomenological pure dephasing at
rate γ and study its impact on the emitter dynamics. Pure dephasing dephases coherences,
while it does not directly influence populations. For its inclusion, we, therefore, treat the
TLS coherence operator σ− and the TLS population E ≡ σ+σ− separately and introduce
pure dephasing in the equations for the matrix elements of the coherence operator as an
additional Markovian, Lindblad-type decay channel. In this model, for example, the matrix
element ⟨g, 0|σ−(t) |g, 1⟩, which has to be calculated to describe a single-photon pulse in
the reservoir, obeys the differential equation

d
dt

⟨g, 0|σ−(t) |g, 1⟩ = −(Γ + γ) ⟨g, 0|σ−(t) |g, 1⟩ −
√
Γfτ (t)

+ Γeiω0τ ⟨g, 0|σ−(t− τ) |g, 1⟩Θ(t− τ). (6.20)

For more details on the inclusion of pure dephasing see Appendix A.3.

The results for the emitter dynamics in the case of feedback implemented at Γτ = 1.2 are
shown in Fig. 6.5, where different scenarios are considered. An initially excited emitter
decaying in vacuum is not affected by pure dephasing before the feedback signal returns
to the emitter as can be seen in Fig. 6.5 a. Only for t ≥ τ , pure dephasing comes into
play as it influences the interference between the TLS emission and the feedback signal.
In the setup, a feedback phase ϕ = ω0τ = 2πm, m ∈ N, is implemented, where without
pure dephasing the stabilization of the emitter excitation can be observed. For γ > 0,
however, the stabilization becomes impossible and the emitter decays necessarily to the
ground state, where it holds that the higher the dephasing rate, the faster the decay.

The stabilization of the excitation can, in principle, also be observed in the case of a
multiphoton pulse exciting a TLS initially in the ground state if it holds that ϕ = 2πm. It
is, thus, interesting to study the effect of pure dephasing under such circumstances. The
results for the case of a rectangular two-photon pulse of duration ΓtD = 1 and different
pure dephasing rates γ are illustrated in Fig. 6.5 b. In contrast to the previous case of an
initially excited emitter decaying in vacuum, with a quantum pulse in the system, pure
dephasing already influences the dynamics for t < τ and manifests in a reduced excitation
efficiency of the emitter. The higher the dephasing rate in relation to the pulse width,
the less effective the excitation as pure dephasing counteracts the build-up of coherence.
Furthermore, the atom-photon bound state becomes inaccessible with pure dephasing so
that the emitter inevitably decays to the ground state in the long-time limit.
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Figure 6.5: TLS population as a function of time under the influence of pure dephasing at
different rates γ for feedback at Γτ = 1.2 for a system in the initial state |ψ⟩.
(a) Initially excited emitter decaying in vacuum, |ψ⟩ = |e, 0⟩, with feedback phase
ϕ = 2πm, m ∈ N. (b) Emitter initially in the ground state excited by a rectangular
two-photon pulse of duration ΓtD = 1, |ψ⟩ = |g, 2⟩, with feedback phase ϕ = 2πm.
(c) Emitter initially in the ground state excited by a rectangular single-photon pulse
of duration ΓtD = 1, |ψ⟩ = |g, 1⟩, with feedback phase ϕ = 2πm. (d) Initially excited
emitter decaying in vacuum, |ψ⟩ = |e, 0⟩, with feedback phase ϕ = (2m+ 1)π.

A reduced efficiency of the emitter excitation can also be found in the case of a single-photon
pulse. In Fig. 6.5 c, pure dephasing at higher rates than assumed for Figs. 6.5 a and 6.5 b
is considered and leads to an even stronger reduction of the excitation efficiency. However,
pure dephasing has not necessarily a detrimental effect at all times. As it counteracts
constructive as well as destructive interference, dephasing can give rise to a TLS population
that is temporarily increased in comparison to the case without dephasing.

Next, we turn away from the premise ϕ = 2πm. Instead, we look at the impact of pure
dephasing for an initially excited TLS decaying in vacuum with a feedback phase ϕ = (2m+
1)π as illustrated in Fig. 6.5 d. Without dephasing, the decay is maximally accelerated at
this feedback phase. Dephasing, however, reduces the impact of the feedback mechanism
and with an increasing dephasing rate, the decay approaches the Wigner-Weißkopf decay
that occurs in the absence of feedback.

6.5 Conclusion

In this chapter, we proposed a method for the calculation of the non-Markovian dynamics
in WQED setups with feedback within a Heisenberg representation. The arising hierarchi-
cal structure of differential equations can be unraveled by introducing a unity operator,
that is, a projector onto a complete set of states in the Hilbert space, between the operators
with different time arguments so that only single-time correlations have to be calculated.
As an alternative to the MPS method introduced in the previous chapter, the Heisenberg
approach allows for the efficient calculation of the system dynamics with memory require-
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ments known a priori. It is, furthermore, a versatile tool for the inclusion of arbitrary
pulse shapes as well as additional dissipation channels.

Considering the exemplary system of a TLS coupled to a semi-infinite waveguide excited by
quantum pulses, we studied how the number of matrix elements that have to be calculated
and with it the required numerical resources depend on the number of excitations in the
system. We applied the method to study how the complex interplay of the feedback
delay time and the pulse shape affects the excitation efficiency of the atom-photon bound
state that exists in the considered system. Furthermore, we included a phenomenological
Markovian pure dephasing, which renders the bound state inaccessible.
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7 Generating long-lived entanglement of
macroscopically separated emitters

Complex quantum networks consist of multiple nodes, which render them quantum many-
body systems facilitating cooperative phenomena. In quantum electrodynamics, a well-
studied collective effect is Dicke superradiance, where the emission characteristics of an
ensemble of emitters differ significantly from those of the individual emitters due to a
modification of their common electromagnetic environment [64,207]. In large-scale WQED
networks, non-Markovianity arising from non-negligible delay times opens up the possi-
bility to modify the collective emission so that superradiance and subradiance phenom-
ena can be further enhanced or inhibited [208–210]. Moreover, in WQED networks with
macroscopically separated nodes, long-range entanglement between the emitters can be
generated [211–213]. In this way, entangled natural or artificial atoms in WQED provide
an alternative to entangled photons (which are the topic of part III of this thesis) for
implementing quantum information processing applications [214].

The most fundamental WQED setup in which feedback effects arise is a single TLS coupled
to a semi-infinite waveguide as studied in the previous chapters, Chaps. 5 and 6. On the
path toward more complex quantum networks, two TLS coupled to an infinite waveguide
provide an ideal toy model for which the onset of collective effects can be observed [215].
Since the emitters act as perfect mirrors on resonance, they form a cavity allowing for the
confinement of the electromagnetic field between them and, as a consequence, the existence
of a bound state in the continuum of propagating modes [101,216]. In this bound state, the
emitters can exhibit a high degree of long-lived entanglement. Its excitation is possible via
spontaneous emission, where the emitters can spontaneously relax to an entangled state
even in the case of a separable initial state [212, 217, 218]. Furthermore, the bound state
can be populated by multiphoton scattering, which allows inducing stable entanglement in
the system without the need to drive the emitters continuously [180].

In this chapter, we investigate the dynamics of two two-level emitters coupled to an infinite
waveguide at macroscopically separated points. In particular, we focus on the potential
of generating stable long-range entanglement with different excitation schemes. Sec. 7.1
serves as an introduction of the setup and the MPS algorithm employed for the efficient
numerical simulation of the feedback dynamics. Subsequently, in Sec. 7.2, we study the
emergence of emitter entanglement comparing the scenarios of initially excited emitters,
emitters excited by an external laser field, and emitters excited by quantum pulses.
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7 Generating long-lived entanglement of macroscopically separated emitters

Figure 7.1: Two identical TLS coupling to a waveguide at x1 = −d/2 and x2 = d/2 resulting in
the delay time τ = d/c for the light field between them. The emitters with transition
frequency ω0 between ground state |g⟩ and excited state |e⟩ decay with rate Γ. The
left (right) emitter can be excited by a right-propagating (left-propagating) pulse
with temporal shape fR(t) (fL(t)).

7.1 Matrix product state method

The considered system consisting of two TLS coupled to an infinite waveguide at two
spatially separated points is depicted in Fig. 7.1. Extending the Hamiltonian from Sec. 3.2
to the case of two emitters, it can be described by

H = ℏω0σ
(1)
+ σ

(1)
− + ℏω0σ

(2)
+ σ

(2)
− +

∫
dω ℏω

(
l†ωlω + r†ωrω

)
+

∫
dω ℏg0

{[(
l†ωe

−iωτ/2 + r†ωe
iωτ/2

)
σ
(1)
− + H.c.

]
+
[(

l†ωe
iωτ/2 + r†ωe

−iωτ/2
)
σ
(2)
− + H.c.

]}
. (7.1)

The left emitter (TLS 1) and the right emitter (TLS 2) with the transition operators σ
(1)
±

and σ
(2)
± , respectively, are assumed to be identical with transition frequency ω0. To account

for the two possible directions of propagation for the photons, two separate channels are
considered with the bosonic operators l

(†)
ω and r

(†)
ω modeling the annihilation (creation) of

left- and right-propagating photons of frequency ω, respectively. The left emitter couples
to the waveguide at x1 = −d/2, the right emitter at x2 = d/2. As a consequence, the
light field with speed c needs the time τ = d/c to cover the distance between the emitters
resulting in the relative phase factors e±iωτ/2 in the Hamiltonian. The coupling between
the TLS and the reservoir, g0, is assumed to be constant over the relevant frequency range.
Note that here the coupling strength is the same for both directions of propagation, where,
however, the extension to a chiral coupling with gL ̸= gR is straightforward. In the next
step, the Hamiltonian is transformed into the interaction picture (H → HI, see Sec. 2.1)
and subjected to a time-independent phase shift φ → φ− ωτ/2 via

H ′ = U †HIU, U = exp

[
i

∫
dω

(
l†ωlω + r†ωrω

)
ωτ/2

]
, (7.2)
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so that the left emitter interacts with the right-moving field without delay and the right
emitter interacts with the left-moving field without delay. This results in

H ′ =

∫
dω ℏg0

{[(
l†ωe

−iωτ + r†ω

)
σ
(1)
− ei(ω−ω0)t + H.c.

]
+
[(
l†ω + r†ωe

−iωτ
)
σ
(2)
− ei(ω−ω0)t + H.c.

]}
. (7.3)

Proceeding analogously to Sec. 5.1, the quantum noise operators for the left- and the
right-propagating photon channels are introduced according to

l†t =
1√
2π

∫
dω l†ωe

i(ω−ω0)t, r†t =
1√
2π

∫
dω r†ωe

i(ω−ω0)t. (7.4)

This way, we cast the Hamiltonian from Eq. (7.3) into the form

H ′ = ℏ
√
Γ

{[(
l†t−τe

−iω0τ + r†t

)
σ
(1)
− + H.c.

]
+
[(
l†t + r†t−τe

−iω0τ
)
σ
(2)
− + H.c.

]}
(7.5)

with Γ ≡ 2πg20. The corresponding stroboscopic time evolution operator describing the
time evolution from time tk to tk+1, tk = k∆t, k ∈ N, according to

|ψ (tk+1)⟩ = Uk |ψ (tk)⟩ , Uk = exp

[
− i

ℏ

∫ tk+1

tk

dt′H ′(t′)

]
, (7.6)

can be expressed by introducing the noise increments for the left- and right-propagating
photons

∆L†
k =

∫ tk+1

tk

dt l†t , ∆R†
k =

∫ tk+1

tk

dt r†t , (7.7)

which satisfy
[
∆Lk,∆L

†
k′

]
= ∆t δkk′ and

[
∆Rk,∆R

†
k′

]
= ∆t δkk′ . Under the assumption

of a delay time τ that is a multiple of the step size, τ = l∆t, l ∈ N, this yields

Uk = exp

{
− i

√
Γ
[(

∆L†
k−le

−iω0τ +∆R†
k

)
σ
(1)
− + H.c.

]
− i

√
Γ
[(

∆L†
k +∆R†

k−le
−iω0τ

)
σ
(2)
− + H.c.

]}
. (7.8)

A scheme of the time evolution is presented in Fig. 7.2. The noise increments introduced
in Eq. (7.7) define discrete time-bin bases for the left- and the right-propagating photons.
Both emitters have an immediate interaction with one of the channels and a time-delayed
interaction with the other channel. For each time evolution step, the two “conveyor belts” of
time bins are shifted one step in the corresponding direction of propagation. The emitters
are modeled as a collective four-level system, with the possible states |g1, g2⟩, |e1, g2⟩,
|g1, e2⟩, and |e1, e2⟩, where the first entry denotes the state of the left emitter (TLS 1),
while the second entry indicates the state of the right emitter (TLS 2). Thus, the interaction
of the collective emitter system with four time bins has to be accounted for in each time
step.

The time evolution in the MPS framework is performed in analogy to Sec. 5.1.4, where,
however, there are now two time bins for each time step, one right- and one left-propagating
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,

,,
,

Figure 7.2: Schematic representation of the discretization of the reservoir dynamics into two
separate conveyor belts of time bins for the left-propagating (red) and the right-
propagating photons (blue) interacting with the emitters successively. The two
emitters TLS 1 (orange) and TLS 2 (yellow) are treated as a collective four-level
system (green). The time-delayed interaction between the emitters is accounted for
by an additional feedback loop for each direction of propagation containing l = τ/∆t
time bins (here l = 2) so that the collective emitter system interacts with two time
bins per direction of propagation.
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7.1 Matrix product state method

Figure 7.3: Diagrammatic representation of the time evolution for the two TLS in the MPS
framework. For each time step, two time bins are accounting for the propagation to
the left (L, red boxes) and the right (R, blue boxes). (a) The feedback bins at time
step k− l are brought next to the emitter bin S. (b) The time evolution operator Uk

is applied to the feedback bins, the emitter bin, and the current time bins at time
step k. (c) When decomposing the contracted tensor, the emitter bin is moved two
steps to the right. The former current time bins account for the emission into the
feedback loops and are kept to the left of the emitter bin. The former feedback bins
are returned to their original position and contain the output signal. (d) After the
correct order of the MPS has been reestablished, the next time evolution step can
be performed.

time bin. In the diagrammatic representation, the time evolution can be visualized as is
shown in Fig. 7.3. Here, the colors of the time bins, in contrast to Sec. 5.1, do not denote
their orthogonality properties but encode their direction of propagation (red boxes, L:
propagation to the left; blue boxes, R: propagation to the right). During the time evolution,
the OC is kept at one of the feedback bins except when evaluating operators acting on other
bins. At the beginning of each time evolution step, the left- and the right-moving feedback
bin are swapped to the right and placed to the left of the emitter bin (Fig. 7.3 a). This
way, it is possible to apply the time evolution operator efficiently by contracting it with
the feedback bins, the emitter bin, and the current time bins (Fig. 7.3 b). Subsequently,
the resulting tensor is decomposed in such a way that the emitter bin is moved two steps
to the right and the former feedback bins are swapped back to restore the original order
of the MPS (Fig. 7.3 c). After that, the procedure can be repeated for the following time
step (Fig. 7.3 d).

If the excitation in the system is stored in the emitters at the starting point of our in-
vestigation, the emitter state and the reservoir state are initially separable. Since the
reservoir is in the vacuum state at the beginning of the dynamics, in addition to that, all
time bins are separable and can be initialized in the ground state individually. The same
assumptions are valid if the emitters are excited externally by a laser field. This external
excitation, in analogy to the case of a driven single TLS discussed in Sec. 5.2, can be
modeled semiclassically by introducing the term

HL = Ω(j)(t)
(
σ
(j)
+ + σ

(j)
−

)
, j ∈ {1, 2}, (7.9)
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7 Generating long-lived entanglement of macroscopically separated emitters

Figure 7.4: Diagrammatic representation of the initialization of the reservoir time bins in the
case of quantum pulses involving the time steps p1, . . . , pM . (a) For the time bins
involved in the pulse, first all left-moving time bins, then all right-moving time bins
are initialized. Depending on the specific pulse configuration, the bins are set to the
ground state or describe a quantum pulse. The left-moving bins are swapped to the
right to establish the correct order of the MPS. (b) After the pulse bins have been
rearranged, the time evolution of the MPS can be performed.

into the interaction picture Hamiltonian, Eq. (7.3), for a laser with amplitude Ω(j)(t)
driving the TLS j resonantly at frequency ωL = ω0. Assuming the laser amplitudes to be
constant during one time step, Ω(j)(t) → Ω

(j)
k , t ∈ [tk, tk+1[ , the time evolution operator

from Eq. (7.8) can be extended to

Uk = exp

{
− i

∑
j=1,2

Ω
(j)
k

(
σ
(j)
+ + σ

(j)
−

)
∆t− i

√
Γ
[(

∆L†
k−le

−iω0τ +∆R†
k

)
σ
(1)
− + H.c.

]
− i

√
Γ
[(

∆L†
k +∆R†

k−le
−iω0τ

)
σ
(2)
− + H.c.

]}
. (7.10)

Quantum pulses, in contrast, are included in the initial state of the reservoir. As a conse-
quence, the reservoir time bins involved in the pulses are not separable anymore but are in
an entangled initial state as discussed in Sec. 5.2. In contrast to the case of a single emitter
in front of a mirror, in the setup considered in this chapter, the two possible directions of
propagation have to be accounted for. To initialize the reservoir accordingly, we proceed
as illustrated in Fig. 7.4. For a pulse of duration tD = M∆t, M ∈ N, encompassing the
time steps p1, . . . , pM , pi ∈ N, i ∈ {1, . . . ,M}, first, all left-moving bins are initialized
followed by the right-moving bins. Depending on whether there is a pulse propagating to
the left with temporal shape fL(t), a pulse propagating to the right with temporal shape
fR(t), or pulses in both directions, these bins are either initialized in the ground state or
the pulse state as given explicitly for a rectangular pulse containing up to two photons in
Sec. 5.2 and up to four photons in Appendix A.1. Subsequently, the left-moving pulse bins
are swapped to the right to bring the bins in the correct order for the time evolution of
the state.

7.2 Bound state excitation and stable entanglement

After having introduced the considered setup of two TLS coupled to an infinite waveguide
as well as the MPS algorithm for its simulation, in this section, we study the resulting
dynamics. In particular, we explore the possibilities to generate emitter entanglement
with different excitation schemes, namely, initially excited emitters, emitters excited by an
external laser field, and emitters subjected to quantum pulses.
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Figure 7.5: Dynamics of the TLS populations and the concurrence with feedback at Γτ = 5.
(a) Population of emitter i, i ∈ {1, 2}, for the initial state |e1, g2⟩ with different
feedback phases ϕ, where m ∈ N. (b) Population of the emitters for the subradiant
initial state (|ψ−⟩, black line) and the superradiant initial state (|ψ+⟩, red line) with
feedback phase ϕ = mπ. (c) Concurrence of the emitters for the initial state |e1, g2⟩
with different feedback phases ϕ. (d) Concurrence of the emitters for the subradiant
initial state (|ψ−⟩, black line) and the superradiant initial state (|ψ+⟩, red line) with
ϕ = mπ.

7.2.1 Initially excited emitters

Let us first consider the case where the emitters initially carry all excitation in the system
and the reservoir is prepared in the vacuum state. For an emitter system with a single
excitation in the initial state |e1, g2⟩, that is, the left TLS in the excited state and the
right TLS in the ground state, the population dynamics presented in Fig. 7.5 a can be
observed, where Γτ = 5. The population of the left TLS starts at ⟨ψ(0)|σ(1)+ σ

(1)
− |ψ(0)⟩ = 1

and decays exponentially due to the interaction of the emitter with the vacuum field in
the waveguide (black/blue line). At t = τ , the right emitter becomes excited by the right-
moving signal emitted from the left emitter (red/green line). After another delay interval,
at t = 2τ , the left emitter receives a feedback signal from the right emitter, where the
feedback phase ϕ ≡ ω0τ determines the impact of the feedback signal. For ϕ = mπ, m ∈ N,
the populations of both emitters stabilize at a non-zero steady-state value (black/red line).
In this case, it is possible to measure a photon in the region between the two TLS in the
long-time limit due to the existence of a bound state in the continuum of propagating
modes. For phases ϕ ̸= mπ, no stabilization can be observed and the fastest decay occurs
if ϕ = (m+ 1/2)π (blue/green line). This is in analogy to the case of a single emitter
in front of a mirror with ϕ → 2ϕ, see Sec. 5.3, since, in the two-emitter setup, a signal
emitted from one of the TLS returns to the same TLS only after two delay intervals 2τ .
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7 Generating long-lived entanglement of macroscopically separated emitters

Collective effects are particularly pronounced if the emitters are initially prepared in
the subradiant state |ψ−⟩ = (|e1, g2⟩ − |g1, e2⟩) /

√
2 or the superradiant state |ψ+⟩ =

(|e1, g2⟩+ |g1, e2⟩) /
√
2. In the subradiant state, the emitter populations do not decay

completely due to the possibility of exciting the bound state. In the superradiant state, in
contrast, the interaction of the emitters results in a decay rate exceeding that of emitters
decaying individually in vacuum. While these effects were originally described employing
the Markov approximation, taking the time-delayed feedback of the emitters into account
gives rise to non-Markovian dynamics beyond the usual Dicke sub- and superradiance [209].
The dynamics for both initial states are shown in Fig. 7.5 b for a system characterized by
Γτ = 5 and ϕ = mπ, where the results for the left and the right emitter coincide.

While the emitters exchange excitation through the waveguide, their entanglement evolves.
Here, the entanglement is evaluated in terms of the concurrence C of the collective density
matrix of the emitters as introduced in Sec. 4.2. The concurrence as a function of time for
the systems assumed for Figs. 7.5 a and b are presented in Figs. 7.5 c and d. As can be
seen in Fig. 7.5 c, in the case of an initial emitter state |e1, g2⟩, there is a “sudden birth of
entanglement” at t = τ , where the emitters begin to influence each other [219]. Thus, even
though their initial state is separable, the emitters become entangled as a consequence of
their spontaneous emission into the waveguide. After another delay interval, the emission
signals start to interfere and, for a phase ϕ = mπ, stable entanglement can be generated as
there is a finite probability of finding the emitters in the excited state in the long-time limit
(black line). For a phase ϕ ̸= mπ, where the emitters eventually decay to the separable
ground state |g1, g2⟩, after a transient time, the concurrence decays to zero (blue line). In
Fig. 7.5 d, the maximally entangled sub- and superradiant initial states |ψ−⟩ (black line)
and |ψ+⟩ (red line) are considered with ϕ = mπ, where it is noteworthy that the dynamics
of the population and the concurrence coincide except for a factor of two.

The steady-state value that the population stabilizes at strongly depends on the
emitter separation. In Fig. 7.6 a, the steady-state population ⟨σ(i)+ σ

(i)
− ⟩st.st. ≡

limt→∞ ⟨ψ(t)|σ(i)+ σ
(i)
− |ψ(t)⟩ as a function of the delay time for different initial states

is presented. Here, we assume that a phase ϕ = mπ is implemented, where a non-zero
steady-state population is, in principle, possible. The steady-state value decays monoton-
ically in the considered cases with a single excitation in the system, that is, for |e1, g2⟩
(black line) and |ψ−⟩ (blue line), while the doubly excited initial state |e1, e1⟩ evokes a
more complex and non-monotonic behavior (red line). The corresponding steady-state
concurrence Cst.st ≡ limt→∞ C(t) shows an analogous behavior, see Fig. 7.6 b.

7.2.2 Semiclassical excitation

If the emitters are excited by an external laser field, the number of excitations in the
system is no longer conserved. In the case of a resonant continuous-wave laser field at
Rabi frequency Ω, Rabi oscillations of the emitter populations are induced as can be
seen in Fig. 7.7 a. Here, only the left emitter is driven with Ω = 0.1Γ and the delay time
between the emitters is Γτ = 1. The interplay of driving and decay results in an equilibrium
state, where the populations of the two emitters stabilize at, in general, different non-zero
steady-state values. Note that this steady state differs fundamentally from the bound
state that can be excited by an initially excited emitter decaying in vacuum, as considered

72



7.2 Bound state excitation and stable entanglement

0

0.2

0.4

0.6

0.8

1

0 10 20 30
0

0.2

0.4

0.6

0.8

1

0 10 20 30

⟨σ
(i
)

+
σ
(i
)

−
⟩ s

t.
st

.

Γτ

a)
i ∈ {1, 2}, |e1, g2⟩
i ∈ {1, 2}, |e1, e2⟩
i ∈ {1, 2}, |ψ−⟩

C s
t.
st

.

Γτ

b)
|e1, g2⟩
|e1, e2⟩
|ψ−⟩

Figure 7.6: Steady-state values of the TLS population and the concurrence as a function of
the delay time between the emitters with feedback phase ϕ = mπ, m ∈ N, for
different initial states of the emitters. (a) Steady-state population. (b) Steady-state
concurrence.
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Figure 7.9: Dynamics of the TLS populations and the concurrence with feedback at Γτ = 4
and phase ϕ = mπ, m ∈ N, between emitters initially in the ground state |g1, g2⟩,
where a rectangular pulse of width ΓtD = 9 containing n photons, n ∈ {1, 2, 3}, is
incident from the left. (a) Population of emitter i, i ∈ {1, 2}. (b) Concurrence of
the emitters.

in Sec. 7.2.1, or by multiphoton scattering, as discussed in Sec. 7.2.3 below, since energy
must be continuously supplied to the system. The feedback mechanism crucially influences
the steady state of the system. In the system assumed for Fig. 7.7, the highest steady-
state populations can be obtained with a phase ϕ = mπ (black/red line), while a phase
ϕ = (m+ 1/2)π results in the lowest steady-state values (blue/green line). In contrast to
the bound state, however, a non-zero steady-state population can still be found even for
ϕ ̸= mπ. Like the emitter populations, the concurrence also stabilizes after a transient,
where the particular steady-state value strongly depends on the feedback phase as can be
seen in Fig. 7.7 b.

The impact of the phase on the steady-state concurrence depends on the degree of non-
Markovianity in the system. This can be concluded from Fig. 7.8, where the steady-
state concurrence as a function of the feedback phase ϕ is shown for different delay times
τ . The attainable concurrence decreases with the separation of the emitters. For large
separations, Γτ > 3, the behavior even changes qualitatively exhibiting the highest steady-
state concurrence for phases other than ϕ = mπ.

7.2.3 Quantum pulses

Accounting for the excitation of the emitters through the waveguide by implementing quan-
tum pulses, we observe a significantly different behavior than in the case of the excitation
by an external laser field. In Fig. 7.9 a, the population dynamics for a system consisting of
two emitters initially in the ground state |g1, g2⟩ with the delay time Γτ = 4 and the phase
ϕ = mπ are presented. A pulse is incident from the left and propagates to the right until
reaching and exciting the left emitter. Here, the pulse is assumed to have a rectangular
temporal shape of width ΓtD = 9. The behavior that can be observed depends crucially
on the number of photons in the pulse. A single-photon pulse evokes oscillations of the
emitter populations, where the excitation is exchanged between the two TLS (black/red
line). In the long run, however, the emitters return to the ground state. Multiphoton
pulses, in contrast, allow for the excitation of a bound state similar to the case of a single
TLS in front of a mirror, see Sec. 5.3 and Ref. [180]. Thus, there is a finite probability
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7.2 Bound state excitation and stable entanglement

Figure 7.10: Steady-state value of the concurrence for emitters subjected to a rectangular mul-
tiphoton pulse as a function of the delay time and the width of the pulse. (a)
Two-photon pulse. (b) Three-photon pulse.

to find the emitters in the excited state in the long-time limit as well as the possibility
to measure a photon confined to the region between them. Comparing the results for two
(blue/green line) and three photons in the pulse (grey/purple line), we observe that an
increased number of photons leads to an enhanced excitation probability of the bound
state.

The concurrence of the setup considered in Fig. 7.9 a as a function of time is shown in
Fig. 7.9 b and indicates that the incident pulse induces entanglement in the system. If the
emitters decay to the separable ground state, as they do for a single-photon pulse, their
concurrence vanishes in the long-time limit (black line). In the case of multiphoton pulses
allowing for the excitation of a bound state, in contrast, the concurrence stabilizes which
points to the generation of stable long-range entanglement between the emitters. As the
steady-state population increases when adding a photon to the pulse, the same can be
observed for the steady-state concurrence (blue line for two, grey line for three photons in
the pulse).

To explore ways to maximize the entanglement, it is interesting to study how it depends
on the spatial separation of the emitters as well as on the pulse properties. In Fig. 7.10,
the steady-state concurrence as a function of the emitter delay time and the pulse width
is shown for the case of a rectangular pulse containing two (Fig. 7.10 a) or three photons
(Fig. 7.10 b). It becomes apparent that the concurrence depends non-monotonically on
the distance of the emitters as well as on the pulse width. The highest value for a given
separation can be found for a pulse width that corresponds to approximately twice the
delay time, tD ≈ 2τ . Thus, the highest amount of entanglement is generated if the pulse
ends at the point in time at which the left TLS starts to receive the feedback signal from the
right TLS. Since we find the steady-state concurrence to be proportional to the steady-state
population of the emitters, the observed behavior matches our findings for a single emitter
in front of a mirror, where we found the highest steady-state excitation for tD ≈ τ , see
Chaps. 5 and 6. Proceeding from two to three photons in the pulses, we find that a higher
steady-state concurrence is obtained for the whole parameter regime under consideration,
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7 Generating long-lived entanglement of macroscopically separated emitters

which can be attributed to the fact that an increased number of photons renders the bound
state excitation by stimulated emission more efficient.

7.3 Conclusion

In this chapter, we explored possibilities to generate entanglement between two macroscop-
ically separated emitters in a WQED setup using different excitation schemes. Under the
assumption of initially excited emitters, entanglement develops even in the case of initial
separability with a non-negligible delay time giving rise to a “sudden birth of entangle-
ment”. For certain emitter separations, a bound state in the continuum can be populated
allowing for long-lived entanglement, where the achievable degree of entanglement depends
on the emitter separation as well as on the initial state of the emitters. To account for an
influx of energy, we included an external continuous-wave laser field. The resulting equi-
librium state of the emitters and their entanglement appeared to depend sensitively on the
feedback mechanism, the impact of which changes with the degree of non-Markovianity
in the system. To generate long-lived entanglement with this excitation scheme, however,
a continuous supply of energy is necessary to maintain the steady state. If the emitters
are driven with quantum pulses through the waveguide instead, the bound state in the
continuum can be populated by multiphoton scattering. This opens up the possibility to
induce stable long-range entanglement between the emitters, which can be controlled by
tuning the emitter separation as well as the pulse shape.
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Part III

Controlling photon entanglement
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8 Boosting energy-time entanglement
using coherent time-delayed feedback

Many quantum information processing protocols with entangled photon pairs involve
polarization-entangled photons, which are, however, sensitive to the dispersion of the po-
larization mode when transported in optical fibers [220–222]. Another degree of freedom
in which photons can be entangled is with respect to their energies and their times of
emission, as proposed by Franson in 1989 [128]. This energy-time entanglement and its
discretized version, time-bin entanglement [223], are robust when transported in optical
fibers over long distances, as has been demonstrated experimentally [224]. It can be used
for various applications such as quantum key distribution [225,226] or quantum-enhanced
positioning and clock synchronization [227].

Franson suggested a setup to visualize the energy-time entanglement of a pair of photons
emitted from a three-level system (3LS) in ladder configuration via an interference in the
second-order correlation function. The visibility of the interference fringes depends strongly
on the decay rates of the 3LS. If the upper state decays slowly in comparison to the middle
state, a high visibility can be observed. In this case, the photons are highly correlated with
respect to their times of emission, which, following Heisenberg’s uncertainty principle, is
accompanied by a high correlation in the energies of the emitted photons, see Fig. 8.1 a.
In the opposite case of an upper state decaying fast in relation to the middle state, the
visibility is low since the emitted photons are little correlated in their times of emission
and, correspondingly, their energies, see Fig. 8.1 b.

The Franson interferometer has been realized in a variety of experiments [228–233], where
the entangled photon pairs have been created via spontaneous parametric down-conversion,
spontaneous four-wave mixing, or sampling from the Mollow triplet. Another typical source
of entangled photons is given by semiconductor quantum dots [234], see also Chap. 9. In
such systems, a biexciton cascade can be used for the creation of energy-time entangled
photon pairs, where, however, the expected visibility of the interference fringes in the
Franson interferometer is low since the biexciton state generally has a shorter lifetime than
the exciton state [222, 235–237]. As a consequence, possibilities to control the emission
dynamics in such a way that the visibility is enhanced are of interest. One option to achieve
this goal is using resonator-based schemes, where, however, the device geometry limits the
accessible scenarios [238–241]. Complementarily, coherent time-delayed feedback provides
the opportunity to steer the emission dynamics. Since it inherently preserves coherence,
this type of feedback is particularly well-suited for the control of entanglement [43].

In this chapter, we explore the potential of coherent time-delayed feedback to increase the
visibility of the interference in the second-order correlation function that can be detected
using the Franson interferometer. The chapter is based on our work presented in Ref. [242].
For reference, we first consider the conventional Franson setup without feedback in Sec. 8.1,
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8 Boosting energy-time entanglement using coherent time-delayed feedback

a) b)

Figure 8.1: Schematic representation of the radiative broadening of the energy levels in a ladder-
type 3LS. (a) Slowly decaying upper state |a⟩ in comparison to the middle state |b⟩,
that is, Γa ≪ Γb. (b) Fast decaying upper state |a⟩ in comparison to the middle
state |b⟩, that is, Γa ≫ Γb.

where the second-order correlation function can be calculated analytically. Subsequently,
in Sec. 8.2, we study the influence of feedback simulating the system dynamics within the
MPS framework.

8.1 Two-photon interference in the Franson interferometer

The Franson interferometer allows for the analysis of two-photon correlations. To start
with, we look at the setup of the interferometer without feedback and evaluate the second-
order correlation function analytically. This serves as a benchmark for the numerical
simulation in the MPS framework and provides a basis on which we can study the effect
of feedback.

8.1.1 Setup of the interferometer

The setup of the conventional Franson interferometer is depicted in Fig. 8.2. We model
the source of the photons as a ladder-type 3LS initially in the upper state |a⟩. Under the
emission of a photon, the 3LS decays with rate Γa to the middle state |b⟩. From the state
|b⟩, the emitter, in turn, decays with rate Γb to the ground state |c⟩ and emits a second
photon. After their emission, the photons impinge on a 50:50 beam splitter and enter
one of two arms constituting the Franson interferometer. Each of these arms forms an
unbalanced Mach-Zehnder interferometer, where the photons can take either a short path
(S) of length lS or a long path (L) of length lL, defined by beam splitters and mirrors, to
the corresponding detector D1 or D2. Here, we assume a symmetric setup with identical
arms.

Only those events in which either both photons take the short or both photons take the
long paths to the corresponding detector contribute to the interference effect as we will
see below. As a consequence, postselection is inherent in the Franson setup as already
touched upon in Chap. 4. Even in the ideal case without any losses, 50% of all possible
events are discarded so that a loophole is opened up. This loophole allows constructing a
local hidden-variable model even if a Bell-type inequality is apparently violated [152,243].
It is, however, possible to adapt the Franson setup to show the violation of a chained Bell
inequality and proof the presence of genuine energy-time entanglement [153,244–246].

For the later inclusion of a feedback mechanism that enables the individual control of
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c

a a

b
a

b
b

Figure 8.2: Setup of the Franson interferometer, which enables the measurement of the second-
order correlation function of two photons emitted from a 3LS in ladder configuration.
The interferometer consists of two arms separated by a beamsplitter. Frequency
filters can be installed to ensure that the first photon is detected by the detector D1

and the second photon is registered by the detector D2. The photons take either a
short (S) or a long path (L) defined by beamsplitters and mirrors to the respective
detector.

the photons, we assume that the first photon enters the first arm and is detected by the
detector D1, while the second photon enters the second arm and is registered by the detector
D2. Experimentally, this can be realized by placing frequency filters in the optical paths.
In general, it is possible to omit this assumption and implement a feedback mechanism
affecting both photons collectively. For the sake of simplicity and numerical convenience,
however, we make the distinction. In this case, the effects that occur are more pronounced
and serve as a proof of principle.

Two-photon interference in the Franson interferometer manifests as an oscillation of the
central peak in the second-order correlation function with the relative phase between the
short and the long paths to the detectors. This interference is visible even in the parameter
regime of a time delay between the short and the long paths, T = (lL − lS)/c, where c is
the speed of light, that exceeds the first-order coherence time of the photons, Γa/bT ≫ 1.
In this case, single-photon interference in the individual arms of the interferometer can be
ruled out and the oscillation can be attributed solely to the interference of the two-photon
probability amplitudes of the photons taking the different paths to the detectors. The
visibility of this interference can be used as an indicator of the energy-time entanglement
of the photons.

Proceeding analogously to Sec. 3.2, we obtain the Hamiltonian governing the dynamics in
the case of a three-level emitter in ladder configuration and two separate photon reservoirs
in the dipole and the rotating wave approximation,

H = ℏωaσaa + ℏωbωbb +

∫
dω ℏω

(
r†(1)ω r(1)ω + r†(2)ω r(2)ω

)
+

∫
dω ℏga(ω)

(
r†(1)ω σ

(1)
− + H.c.

)
+

∫
dω ℏgb(ω)

(
r†(2)ω σ

(2)
− + H.c.

)
. (8.1)

The operator σaa (σbb) describes the occupation of the upper (middle) level of the 3LS
with the energy ℏωa (ℏωb), while the energy of the ground state |c⟩ is set to zero. A photon
of energy ℏω can be annihilated (created) via the bosonic operator r(†)(i)ω , i ∈ {1, 2}, where
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8 Boosting energy-time entanglement using coherent time-delayed feedback

i refers either to the first or to the second arm of the interferometer. These two separate
reservoirs are considered since we distinguish between the first and the second photon
using frequency filters as discussed above. The second line of Eq. (8.1) arises due to the
coupling between the 3LS and the reservoirs. We assume that the |a⟩ ↔ |b⟩ (|b⟩ ↔ |c⟩)
transition, which is encoded in the transition operator σ(1)− ≡ |b⟩ ⟨a| (σ(2)− ≡ |c⟩ ⟨b|), couples
to the first (second) reservoir with coupling strength ga(ω) [gb(ω)]. In general, the coupling
strengths are frequency dependent. Under the assumption of Markovian dynamics, where
there is no backflow of information from the photonic reservoirs into the emitter, we can,
however, set the coupling to a constant value, ga(ω) → ga, [gb(ω) → gb]. If we transform
the Hamiltonian from Eq. (8.1) into the rotating frame defined by its non-interacting part,
that is, its first line, it takes the form

HI =

∫
dω ℏga

(
r†(1)ω σ

(1)
− e−i(ωab−ω)t + H.c.

)
+

∫
dω ℏgb

(
r†(2)ω σ

(2)
− e−i(ωb−ω)t + H.c.

)
, (8.2)

where ωab ≡ ωa − ωb is the transition frequency of the |a⟩ ↔ |b⟩ transition.

8.1.2 Second-order correlation function

The second-order correlation function as a function of the delay time between the detection
events of the two photons, τD, is given as

G(2)(τD) =

∫ ∞

0
dt1 G

(2)(t1, t2)
∣∣∣
t2→t1+τD

, (8.3)

G(2)(t1, t2) = ⟨Ψ|E(−)
1 (t1)E

(−)
2 (t2)E

(+)
2 (t2)E

(+)
1 (t1) |Ψ⟩ . (8.4)

Here, the state |Ψ⟩ represents the two-photon state that is emitted from the 3LS. The
operators E(+)

i and E
(−)
i , i ∈ {1, 2}, are the positive and negative frequency parts of the

electric field operator at the detector Di, Ei, respectively, see Sec. 2.3, with

Ei(t) = E
(+)
i (t) + E

(−)
i (t). (8.5)

The operator E(+)
i comprises the photon annihilation operators in Eq. (2.31), while its

complex conjugate E(−)
i describes the photon creation. Since the photons can reach the

detectors via two equiprobable paths, we split up the operators according to

E
(+)
i (t) =

1

2

[
E

(+)
i,S (t) + E

(+)
i,L (t)

]
. (8.6)

This way, we account for the photon i taking either the short (first term on the right-hand
side) or the long path (second term on the right-hand side) to the detector Di.

For the evaluation of the second-order correlation function, the two-photon state that is
emitted from the 3LS has to be determined. As shown in Appendix A.4, it takes the
form

|Ψ⟩ =

∫
dω

∫
dω′ −gagb[

i (ω + ω′ − ωa)− Γa
2

] [
i (ω′ − ωb)− Γb

2

] |1ω, 1ω′⟩ , (8.7)
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8.1 Two-photon interference in the Franson interferometer

where Γa and Γb are the decay rates of the upper and middle state of the 3LS, respectively,
and the state |1ω, 1ω′⟩ denotes one photon of frequency ω and a second photon of frequency
ω′. From the two-photon state |Ψ⟩, we can evaluate the second-order correlation function.
To that end, we rewrite the two-time second-order correlation function G(2)(t1, t2) as

G(2)(t1, t2) = |Ψ(t1, t2)|2 , (8.8)

where we introduce the two-photon probability amplitude Ψ(t1, t2). Inserting a unity
operator between the positive and the negative frequency parts in Eq. (8.4), only the
projector onto the vacuum state (|0⟩ ⟨0|) survives and the probability amplitude can be
expressed as

Ψ(t1, t2) =
1

4
⟨0|
[
E

(+)
2,S (t2) + E

(+)
2,L (t2)

] [
E

(+)
1,S (t1) + E

(+)
1,L (t1)

]
|Ψ⟩

= ΨS,S(t1, t2) + ΨS,L(t1, t2) + ΨL,S(t1, t2) + ΨL,L(t1, t2). (8.9)

In the second line, the quantity

Ψr1,r2(t1, t2) = ⟨0|E(+)
2,r2

(t2)E
(+)
1,r1

(t1) |Ψ⟩ , r1, r2 ∈ {S,L}, (8.10)

arises, which can be interpreted as the two-photon probability amplitude of the first photon
taking the path r1 to the detector D1 and the second photon reaching the detector D2 via
the path r2. As shown in Appendix A.5, it takes the form

Ψr1,r2(t1, t2) = ηe−(iωa+
Γa
2 )(t1−

r1
c )Θ

(
t1 −

r1
c

)
× e

−
(
iωb+

Γb
2

)
[(t2− r2

c )−(t1−
r1
c )]Θ

[(
t2 −

r2
c

)
−
(
t1 −

r1
c

)]
(8.11)

with the constant η defined in the appendix. Subsequently, we can evaluate the two-time
second-order correlation function G(2)(t1, t2) and integrate it to obtain the second-order
correlation function as a function of the delay time of the detection events, τD, according
to Eq. (8.3). For simplicity, we assume a variable but equivalent relative phase ϕT between
the short and the long path for both photons,

ϕT ≡ ωabT = ωbT + 2πz, z ∈ Z. (8.12)

Alternatively, it would also be possible to consider non-equivalent phases or adjust the
phases via an asymmetric interferometer with different delay times Ta and Tb in the two
arms. Evaluating the second-order correlation function defined piecewise, we obtain

G(2)(τD) =

0, −T > τD
η2

4Γa
e−Γb(τD+T ), −T ≤ τD < 0

η2

2Γa
e−ΓbτD

[
1 + 1

2e
−ΓbT + e−Γa

T
2 cos (2ϕT )

+
(
e−Γb

T
2 + e−(Γa+Γb)

T
2

)
cos (ϕT )

]
, 0 ≤ τD < T

η2

2Γa
e−ΓbτD

[
1 + 1

2

(
e−ΓbT + eΓbT

)
+ e−Γa

T
2 + e−Γa

T
2 cos (2ϕT )

+
(
1 + e−Γa

T
2

)(
e−Γb

T
2 + eΓb

T
2

)
cos (ϕT )

]
, T ≤ τD.

(8.13)

The analytical results for the second-order correlation function are presented in Fig. 8.3 for
different phases ϕT between the short and the long paths to the detectors. Fig. 8.3 a shows
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Figure 8.3: Second-order correlation function as a function of the delay time between the regis-
tration of the first and the second photon for different phases ϕT (mod 2π) between
the short and the long paths to the detectors. Inset: Height of the central peak at
τD = 0 as a function of ϕT (mod 2π). (a) ΓaT = 0.25, ΓbT = 10. (b) ΓaT = 2.5,
ΓbT = 10.

the results for ΓaT = 0.25, ΓbT = 10 and Fig. 8.3 b for ΓaT = 2.5, ΓbT = 10. In this limit
of ΓaT ≪ ΓbT , three separate peaks arise. While the two side peaks at τD = −T and
τD = T are independent of ϕT , the height of the central peak at τD = 0 changes when ϕT
is varied. This is due to the fact, that the left peak at τD = −T can be uniquely associated
with the scenario of the first photon taking the long path and the second photon taking the
short path to the respective detector. The right peak can be clearly attributed to the first
photon taking the short and the second photon taking the long path. The central peak,
in contrast, originates from either both photons taking the short or both photons taking
the long paths to the detectors. The ignorance of the actual paths the photons take gives
rise to interference manifesting as an oscillation of the height of the central peak with the
phase ϕT . This oscillation is shown in the insets of Fig. 8.3. The asymmetric shape of the
peaks in Fig. 8.3 can be attributed to the fact that we frequency-filter the photons and,
therefore, know which photon is detected by which detector. Without this assumption,
additional terms arise in Eq. (8.11) where the roles of the photons are interchanged. This
leads to symmetric peaks in the second-order correlation function G(2)(τD) as discussed in
more detail in Appendix A.6.

8.1.3 Visibility of the interference

When comparing Figs. 8.3 a and b, we see that the amplitude with which the height of
the central peak oscillates depends strongly on the system parameters. The height of the
central peak as a function of the relative phase between the short and the long paths to
the detectors, G(2)

0 (ϕT ), for ΓaT ≪ ΓbT , obeys

G
(2)
0 (ϕT ) =

η2

2Γa

[
1 + e−Γa

T
2 cos (2ϕT )

]
, (8.14)
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Figure 8.4: Visibility of the G(2) interference in the Franson interferometer as a function of the
system parameters ΓaT and ΓbT .

which takes on its minimal value at ϕT =
(
n+ 1

2

)
π, n ∈ N, and its maximal value at

ϕT = nπ. We can quantify how pronounced the oscillation with the phase ϕT is by
introducing the visibility of the interference, V , according to

V ≡
G

(2)
0 (0)−G

(2)
0

(
π
2

)
G

(2)
0 (0) +G

(2)
0

(
π
2

) . (8.15)

For the system considered in Fig. 8.3 a, the visibility we find is V = 0.88, while the
parameters used for Fig. 8.3 b result in V = 0.29. The visibility as a function of the decay
rates of the 3LS scaled with the delay time T between the long and the short paths to the
detectors, that is, ΓaT and ΓbT , is shown in Fig. 8.4. A high visibility can be found for
systems in which it holds that ΓaT ≪ 1 and ΓbT ≫ 1, while systems in which the decay
rates are comparable, and especially if ΓaT ⪆ ΓbT > 1, a relatively low visibility is to be
expected.

8.2 Controlling the visibility of the two-photon interference

After studying how the visibility of the G(2) interference in the Franson setup depends on
the system parameters, we include a feedback mechanism to control the emitter dynamics
and, hence, the second-order correlation function. We simulate the system within the MPS
framework, as introduced in Sec. 5.1, which allows for an efficient and numerically exact
treatment of the non-Markovian system dynamics.

8.2.1 Setup of the Franson interferometer with feedback

We subject the 3LS to coherent time-delayed feedback at the delay time τFB by imple-
menting an additional feedback loop as shown in Fig. 8.5. We consider separate channels
to be able to subject the transitions of the 3LS to feedback individually. As a proof of
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8 Boosting energy-time entanglement using coherent time-delayed feedback

Figure 8.5: Setup of the Franson interferometer with feedback. To the conventional Franson
setup, shown in Fig. 8.2, a feedback loop is added, which allows subjecting the
|a⟩ ↔ |b⟩ transition of the 3LS to feedback at the delay time τFB.

principle, we implement feedback solely on the |a⟩ ↔ |b⟩ transition of the 3LS, which is
realizable experimentally by frequency-filtering the photons. In the Hamiltonian of the sys-
tem, given in Eq. (8.1), the feedback mechanism can be encoded via the coupling strength
between the 3LS transition and the corresponding reservoir, see Sec. 5.1.1. With feedback,
the coupling of the |a⟩ ↔ |b⟩ transition to the first channel takes on a sinusoidal form,
ga(ω) = ga sin (ωτFB/2), while the coupling of the |b⟩ ↔ |c⟩ transition to the second chan-
nel without feedback can be assumed as constant, gb(ω) = gb. The Hamiltonian describing
the system with feedback in the rotating frame of its non-interacting part, thus, reads

HI =

∫
dω ℏga sin(ωτFB/2)

(
r†(1)ω σ

(1)
− e−i(ωab−ω)t + H.c.

)
+

∫
dω ℏgb

(
r†(2)ω σ

(2)
− e−i(ωb−ω)t + H.c.

)
. (8.16)

In the next step, this Hamiltonian is used for the simulation of the system dynamics.

8.2.2 Simulation within the matrix product state framework

For the simulation of the time evolution in the Franson interferometric setup, the MPS
framework is employed. In analogy to Sec. 5.1.1, we derive the stroboscopic time evolution
operator Uk describing the time evolution from time tk to tk+1, tk = k∆t, k ∈ N, according
to

|ψ (tk+1)⟩ = Uk |ψ(tk)⟩ , Uk = T exp

[
− i

ℏ

∫ tk+1

tk

dt′H ′(t)

]
. (8.17)

The Hamiltonian H ′ is obtained from HI, Eq. (8.16), by performing the time-independent
phase shift

H ′ = U †HIU, U = exp

[
i

∫
dω r†(1)ω r(1)ω ωτFB/2

]
, (8.18)

and transforming the Hamiltonian into the time domain via the quantum noise operators

r
†(i)
t =

1√
2π

∫
dω r†(i)ω ei(ω−ωi)t, i ∈ {1, 2}, (8.19)
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where ω1 = ωab and ω2 = ωb. In contrast to Sec. 5.1.1, where we looked at a two-level
emitter interacting with a single photonic reservoir, here, a three-level emitter coupling
to two separate reservoirs is considered. The photon creation in the different reservoirs is
reflected by two types of noise operators describing the photon creation in the first (i = 1)
or the second reservoir (i = 2). The noise operators satisfy

[
r
(i)
t , r

†(j)
t′

]
= δijδ(t − t′) and

lead to the expression

H ′ = iℏ
√

Γa

[(
r
†(1)
t − r

†(1)
t−τFB

eiωabτFB
)
σ
(1)
− − H.c.

]
+ ℏ
√

Γb

[
r
†(2)
t σ

(2)
− + H.c.

]
(8.20)

with the decay rates Γa = πg2a/2 and Γb = 2πg2b. Note that the definitions of the decay
rates differ by a factor four, which allows treating the non-Markovian feedback channel
and the Markovian channel without feedback on an equal footing without having to take
additional time bins for the Markovian channel into consideration, see Sec. 5.1.4. We
evaluate the stroboscopic time evolution operator and introduce the noise increments for
the two channels,

∆R
†(i)
k =

∫ tk+1

tk

dt r
†(i)
t (8.21)

with the commutation relation
[
∆R

(i)
k ,∆R

†(j)
k′

]
= ∆tδijδkk′ . Assuming τFB = l∆t, l ∈ N,

we obtain

Uk = exp
{√

Γa

[
σ
(1)
+

(
∆R

(1)
k −∆R

(1)
k−le

iωabτFB
)
− H.c.

]
− i
√

Γb

[
σ
(2)
+ ∆R

(2)
k + H.c.

]}
. (8.22)

When setting up the MPS, the two channels are accounted for by two time bins per time
step, one for each channel. Furthermore, in analogy to Eq. (8.6), the noise increments are
split up to account for the two equiprobable paths to the detectors according to

∆R
†(i)
k =

1

2

(
∆R

†(i)
k,S +∆R

†(i)
k,L

)
, (8.23)

where the delay time between the short and the long paths to the detectors is assumed to
be a multiple of the step size T = NT∆t, NT ∈ N. Thus, in total, there are four time bins
per time step. The time evolution algorithm is illustrated in Fig. 8.6. The four types of
time bins are denoted as S-1 (short path to detector D1, red box), S-2 (short path to D2,
orange box), L-1 (long path to D1, green box), and L-2 (long path to D2, black box). At
the beginning of each time step, the bins containing the feedback signal (S-1 and L-1) are
swapped 2(l− 1) steps to the right so that they are placed next to the 3LS bin (blue box)
(Fig. 8.6 a). This way the time evolution can be performed efficiently by contracting the
3LS bin, the feedback bins, and the current time bins with the stroboscopic time evolution
operator (purple box) (Fig. 8.6 b). Afterward, the resulting tensor is decomposed. The
four output bins are swapped to the left of the feedback loop, while the two time bins that
are kept next to the 3LS bin account for the emission into this feedback loop (Fig. 8.6 c).
Subsequently, the next time evolution step can be performed (Fig. 8.6 d). After N time
steps, the time evolution is completed and we rearrange the bins to include the different
path lengths and the relative phase between the short and the long paths. To that end,
all bins describing the photons taking the short paths to the detectors are swapped 2NT

steps to the left and subjected to a phase shift (Fig. 8.6 e). The 2NT vacuum bins placed
at the beginning of the MPS describe the vacuum signal reaching the detectors via the
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Figure 8.6: Diagrammatic representation of the time evolution algorithm for the Franson setup
with feedback within the MPS framework. There are four types of time bins de-
scribing the short path to the detector D1 (S-1, red box), the short path to D2

(S-2, orange box), the long path to D1 (L-1, green box), and the long path to D2

(L-2, black box) as well as a bin representing the three-level system (3LS, blue box).
(a) The time bins containing the feedback signal are swapped next to the 3LS bin.
(b) The feedback bins, the 3LS bin, and the current time bins are contracted with
the stroboscopic time evolution operator (U , purple box). (c) The output bins are
placed to the left of the bins in the feedback loop. (d) The procedure is repeated
N times. (e) After the time evolution is completed, the bins referring to the short
paths are swapped 2NT steps to the left and subjected to a phase shift to account
for the delay time and the relative phase between the short and the long paths. (f)
The procedure is repeated N times.
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8.2 Controlling the visibility of the two-photon interference

long paths initially. The step is repeated until all bins accounting for the short paths have
been moved (Fig. 8.6 f). Note that the colors used in the diagrams in this section do not
describe the orthogonality properties of the bins as in Sec. 5.1. Instead, we use them to
distinguish the different types of bins. During the time evolution, the OC is kept at one of
the feedback bins. Subsequently, when rearranging the bins, the OC is moved to the short
bins that are shifted to the left in each step.

After the time evolution has been completed and the time and phase shifts between short
and long paths to the detectors have been included, we can evaluate the second-order
correlation function of the photons. To that end, we calculate the two-time second-order
correlation function G(2)(t1, t2) as introduced in Eq. (8.4) via the MPS algorihm illustrated
in Fig. 8.7. The output bins describe the signal that reaches the detectors at the time
step ui, i ∈ {1, . . . , N}. We start at the left end of the MPS by calculating G(2)(u1, u1)
(Fig. 8.7 a). Subsequently, the time bins describing the signal at the detector D1 for time
step u1 are swapped with the corresponding bins for the next time step u2 (Fig. 8.7 b)
so that it is possible to evaluate G(2)(u1, u2) efficiently (Fig. 8.7 c). This is repeated
until we have evaluated G(2)(u1, uk) for all k ∈ {1, . . . , N}. We then start again at the
beginning and calculate G(2)(u2, u1) and so on, until G(2)(t1, t2) has been determined for all
possible combinations of t1 and t2, where t1, t2 ∈ {u1, . . . , uN}. Integrating the two-time
second-order correlation function according to Eq. (8.3), we finally obtain the second-
order correlation function as a function of the delay time of the photon detection events,
G(2) (τD).

To ensure the validity of the MPS approach, the results are benchmarked in the case
without feedback using the analytical results presented in Sec. 8.1, see Appendix A.7 for
more details.

8.2.3 Enhancing the visibility of the interference

The implementation of a coherent time-delayed feedback mechanism opens up the possi-
bility to modify the decay of the excitation in the 3LS and, thus, allows controlling the
times of emission of the photons. Here, we study the effect of feedback on the dynamics
as well as on the second-order correlation function focussing on the case where only the
first channel coupled to the |a⟩ ↔ |b⟩ transition of the 3LS with transition frequency ωab
is subjected to feedback.

If a photon is emitted into the feedback loop, it is reflected on the mirror and fed back
to the 3LS after the delay time τFB. During one round trip, a resonant photon acquires a
feedback phase ϕFB = ωabτFB, which determines the impact of the feedback signal on the
system dynamics in analogy to Sec. 5.3. On the one hand, the interference of the emission
from the 3LS and the feedback signal can result in an accelerated decay of the excitation
in the 3LS compared to the usual Markovian behavior. The strongest effect occurs for
a phase ϕFB = (2m + 1)π, m ∈ N. On the other hand, the decay can be slowed down,
where the impact is highest for ϕFB = 2πm. In comparison to the two-level emitter we
considered in Sec. 5.3, however, it is not possible to stabilize the emitter excitation at a
non-zero value in the long-time limit. Eventually, the emitter decays to the ground state
and two photons are emitted.
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Figure 8.7: Diagrammatic representation of the algorithm for the evaluation of the two-time
second-order correlation function G(2)(t1, t2), t1, t2 ∈ {u1, . . . , uN}. Two nested
loops are necessary to account for all possible combinations of t1 and t2. (a) Eval-
uation of G(2)(u1, u1). (b) The time bins describing the signal registered at the
detector D1, S-1 and L-1, are exchanged with the corresponding time bins for the
next time step u2. (c) G(2)(u1, u2) is calculated. The procedure is repeated until
G(2)(u1, uk) has been determined for all k ∈ {1, . . . , N}. (d) Afterward, we start the
second loop through the MPS by calculating G(2)(u2, u1) until we have completely
determined G(2)(t1, t2).
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Figure 8.8: Dynamics of the population of the upper state, ⟨σaa⟩, and of the middle state, ⟨σbb⟩,
of a 3LS characterized by Γa = Γb in the case without feedback (no FB, solid lines)
and with feedback at ΓaτFB = 1 (FB, dashed lines).

In Sec. 8.1, we saw that the visibility of the G(2) interference for the conventional Franson
interferometer depends strongly on the decay rates of the 3LS. A high visibility can be
found if the upper state of the 3LS decays slowly in comparison to the middle state.
Therefore, it is interesting to implement a feedback mechanism that slows down the decay
of the upper state and study the possibility to enhance the visibility of the G(2) interference
in this way. Since the decay is slowed down maximally for a feedback phase ϕFB = 2πm,
in the following, we assume that this condition is fulfilled in the considered systems.

As an exemplary system, we look at a 3LS with Γa = Γb and compare the emitter dynamics
without feedback and with feedback at ΓaτFB = 1 on the |a⟩ ↔ |b⟩ transition as shown
in Fig. 8.8. With feedback, the decay from the upper state is slowed down (dashed black
line) in comparison to the case without feedback (solid black line). The modified decay of
the emitter from the upper to the middle state also modifies the population dynamics of
the middle state itself (dashed red line) compared to the dynamics without feedback (solid
red line). Overall, the feedback mechanism results in an accelerated decay of the upper
state in relation to the decay of the middle state.

In the next step, we study the impact the feedback mechanism has on the second-order
correlation function for the system considered above. Evaluating G(2)(τD) without and with
feedback for the 3LS with Γa = Γb, here ΓaT = ΓbT = 4, we observe the behavior shown
in Fig. 8.9. To obtain the depicted results, we simulated the dynamics up to Γatmax = 20
to ensure that two photons have been emitted from the 3LS. In the considered parameter
regime, a relatively low visibility of the G(2) interference is to be expected, see Fig. 8.4.
More precisely, without feedback (solid black and red lines) we find a visibility of the G(2)

interference of V = 0.19. If feedback is implemented, the peaks are split and shifted on
the x-axis by −τFB due to the additional time a photon needs in the feedback loop. The
height of the central peak at τD = −τFB is increased for a relative phase between the short
and the long paths to the detectors of ϕT = 2πn, n ∈ N, (dashed black line). For a relative
phase ϕT = 2(n + 1/2)π, the height is reduced (dashed red line). The visibility that can
be observed in the case with feedback is V = 0.51. Thus, there is a 168% increase in
the visibility in comparison to the case without feedback. With feedback, the visibility is
raised above the classical threshold of V = 0.5 [228, 230, 247]. A visibility surpassing this
limit does not imply a violation of a Bell-type inequality, which would require a different
setup and a higher visibility, as discussed in Sec. 8.1.1, but points toward the non-classical
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Figure 8.9: Second-order correlation function for ΓaT = ΓbT = 4 without feedback (no FB,
solid lines) and with feedback at ΓaτFB = 1 (FB, dashed lines) for different relative
phases between the short and the long paths to the detectors, ϕT (mod 2π). Inset:
Height of the central peak as a function of ϕT (mod 2π) without feedback (solid
line) and with feedback (dashed line).

nature of the light. The inset of Fig. 8.9 illustrates that the oscillation of the height of the
central peak with ϕT is significantly more pronounced with feedback (dashed blue line)
than without feedback (solid blue line).

The potential to increase the visibility of the G(2) interference depends strongly on the
system parameters. In Fig. 8.10, the visibility as a function of ΓaT and ΓbT is presented
for the case of feedback at τFB = T/4 (green plane) and compared to the visibility without
feedback (blue plane). The classical limit of V = 0.5 is indicated by the grey plane. To
ensure that two photons have been emitted from the 3LS, we have adjusted the simulation
time tmax according to the decay rates Γa and Γb and checked for the complete decay of the
3LS from the upper to the ground state. We focus on the parameter regime of relatively
large ΓaT and ΓbT , where without feedback a visibility well below the classical threshold
of V = 0.5 is found. With feedback, the visibility is raised above this limit in much of the
considered parameter area. In the considered regime, the feedback mechanism has a larger
impact than in the regime of small decay rates. In Fig. 8.11, the visibility with feedback
in relation to the visibility without feedback, VFB/Vno FB, as a function of ΓaT and ΓbT is
shown and we can conclude that the effectiveness of the feedback control scheme depends
particularly on the decay rate of the upper state, while the decay rate of the middle state
plays a minor role.

8.3 Conclusion

In this chapter, we studied the potential of coherent time-delayed feedback to enhance the
visibility of the interference in the second-order correlation function that can be observed
using the Franson interferometer. In the conventional setup of the interferometer, that
is, without feedback, the visibility depends strongly on the system parameters. For two
photons emitted from a 3LS in ladder configuration, a high visibility can only be observed
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Figure 8.10: Comparison of the visibility of the G(2) interference in the Franson interferometer
as a function of the system parameters ΓaT and ΓbT without feedback (no FB, blue
plane) and with feedback at τFB = T/4 (FB, green plane). The classical threshold
of V = 0.5 is indicated by the grey plane.

Figure 8.11: Enhancement of the visibility of the G(2) interference with feedback at τFB = T/4,
VFB, in relation to the visibility without feedback, Vno FB, as a function of ΓaT and
ΓbT .
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if the upper state decays slowly in comparison to the middle state. In common two-
photon sources, such as the biexciton-exciton cascade in a semiconductor quantum dot,
however, this requirement is typically not met. To nevertheless obtain a high visibility,
we suggested implementing coherent time-delayed feedback to decelerate the decay of the
excitation from the upper state of the 3LS. Simulating the non-Markovian dynamics within
the MPS framework, we studied the impact of feedback on the second-order correlation
function and found that the approach can increase the visibility significantly. The effect of
the feedback mechanism is particularly strong in the case of a fast decaying upper state.
Since the visibility of the two-photon interference in the Franson interferometer indicates
the energy-time entanglement of the photons, we conclude that coherent feedback opens
up the possibility to control and, in particular, enhance the energy-time entanglement of
the photons.
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9 Entanglement robustness to excitonic
spin precession in a biexciton cascade

As a promising source of polarization-entangled photon pairs, the radiative biexciton cas-
cade in a semiconductor quantum dot has attracted considerable attention [248–250]. It
is of interest due to its integrability and scalability and, furthermore, allows for the on-
demand creation of entangled photon pairs via two-photon excitation [222, 251]. For the
realization of quantum information processing protocols it, therefore, has an advantage over
probabilistic ways of generating polarization-entangled photon pairs such as spontaneous
parametric down-conversion [252].

A biexciton is a zero-spin bound complex of two electrons and two holes. If the electron-
hole pairs recombine, two photons are emitted successively. These photons are of opposite
circular polarization since angular momentum has to be conserved. As a consequence, there
are two equally probable decay paths from the biexcitonic state to the ground state via
two possible intermediate excitonic states. If the excitonic states are degenerate, a max-
imally polarization-entangled photon pair is emitted, which, in the rectilinear {|H⟩ , |V⟩}
polarization basis of horizontally (H) or vertically (V) polarized photons, is described by
the state

|Ψ⟩ = 1√
2
(|HH⟩+ |VV⟩) . (9.1)

Typically, however, the excitonic states are nondegenerate and exhibit a fine-structure
splitting ℏ∆FSS due to an anisotropic electron-hole exchange interaction [253,254]. In the
emitted two-photon state, the fine structure manifests as a relative phase that precesses
with time so that

|Ψ(t)⟩ = 1√
2

(
|HH⟩+ e−i∆FSSt |VV⟩

)
, (9.2)

where t is the time between the emission of the biexciton photon and the emission of the
exciton photon. The fine-structure splitting makes it, in principle, possible to spectrally
distinguish the decay paths and, therefore, is detrimental to maximal entanglement in a
time-integrated measurement setup [255]. To deal with this problem, various techniques
have been developed that aim at reducing the fine-structure splitting below the radiative
linewidth [256–259] or at reducing the influence of the nondegeneracy [249, 250]. In a
time-resolved polarization measurement, a highly entangled two-photon state is possible
despite a finite fine-structure splitting [260]. A perfect temporal resolution, according to
Heisenberg’s uncertainty principle, results in ignorance with respect to the energy of the
photons so that the which-path information is erased and a maximally entangled two-
photon state can be obtained. A finite temporal resolution limits the attainable degree of
entanglement but still allows for highly entangled photon pairs.

Another obstacle for the generation of maximal entanglement from the biexciton cascade
are spin-flip dephasing processes in the excitonic states, which are thought to result from
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the interaction of the exciton with nuclear spins or the scattering with excess charges [261].
In this context, an excitonic spin precession leading to transitions between the excitonic
states and enabling the emission of crosslinearly polarized photons (one horizontally and
one vertically polarized photon) has usually been viewed as a disqualifier for the respective
quantum dot as a source of highly entangled photon pairs. However, as we show here, in a
time-resolved measurement setup such an undifferentiated preselection is not justified.

In this chapter, which is based on our work presented in Ref. [262], we study the impact
of an excitonic spin precession on the polarization entanglement of a photon pair emitted
from a biexciton cascade. We show that, when it can be modeled as a coherent process,
this spin precession does not necessarily have a detrimental impact and for a sufficiently
high temporal resolution, a highly entangled photon pair can be obtained. To that end,
in Sec. 9.1, we construct a theoretical model including transitions between the excitonic
states in the unitary time evolution of the system, which we validate by comparison with
experimental data from a polarization tomography. Subsequently, in Sec. 9.2, we evaluate
the impact of the excitonic transitions on the entanglement of the emitted photons in a
time-resolved measurement setup.

9.1 Modeling the biexciton cascade with excitonic transitions

The biexciton cascade with a fine-structure splitting ℏ∆FSS and excitonic transitions at rate
f is illustrated in Fig 9.1. The Hamiltonian governing the dynamics of the quantum dot
interacting with the electromagnetic field in the dipole and rotating-wave approximation,
see Sec. 3.2, reads

H = ℏωBσBB + ℏ
(
ωXG − ∆FSS

2

)
σHH + ℏ

(
ωXG +

∆FSS

2

)
σVV + ℏf (σHV + σVH)

+

∫
dω ℏω

(
a†ω,BHaω,BH + a†ω,BVaω,BV + a†ω,XHaω,XH + a†ω,XVaω,XV

)
+

∫
dω ℏg0

(
a†ω,BHσHB + a†ω,BVσVB + a†ω,XHσGH + a†ω,XVσGV + H.c.

)
. (9.3)

Here, the operators σij = |i⟩ ⟨j| describe transitions between the electronic states,
|i⟩ , |j⟩ ∈ {|B⟩ , |XH⟩ , |XV⟩ , |G⟩}. These states denote the biexciton, the exciton about
to emit a horizontally polarized photon, the exciton about to emit a vertically polarized
photon, and the ground state, respectively. As a subscript, the excitonic label is replaced
by the corresponding direction of polarization for readibility, XH → H, XV → V. The two
excitonic states are separated by the energy ℏ∆FSS and centered around the energy ℏωXG so
that the |XH⟩ exciton has the energy ℏωH = ℏ

(
ωXG − ∆FSS

2

)
while the energy of the |XV⟩

exciton is ℏωV = ℏ
(
ωXG + ∆FSS

2

)
. The energy of the biexciton is ℏωB = ℏ (ωXG + ωBX)

with the biexciton-exciton transition energy ℏωBX = ℏ (ωXG − ωbind), where ℏωbind de-
scribes the biexciton binding energy. With respect to the photonic reservoir, we distin-
guish between the biexciton photon (B) and the exciton photon (X) as well as between
the horizontal (H) and the vertical polarization direction (V). The annihilation (creation)
of a photon with frequency ω is described by the operator a(†)ω,im satisfying the bosonic

commutation relation
[
aω,im, a

†
ω′,jn

]
= δ(ω − ω′)δijδmn, i, j ∈ {B,X}, m,n ∈ {H,V}. The
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Figure 9.1: Biexciton cascade in a semiconductor quantum dot functioning as a source of
polarization-entangled photon pairs. From the biexcitonic state |B⟩, the quantum
dot decays to one of the intermediate excitonic states |XH⟩ and |XV⟩ emitting either
a horizontally or a vertically polarized biexciton photon. Transitions between these
excitonic states, which exhibit a fine-structure splitting of ℏ∆FSS, occur at rate f .
From the excitonic states, the quantum dot decays to the ground state emitting a
second photon of either horizontal or vertical polarization.

coupling strength between the emitter and the photonic reservoirs, g0, is considered to be
constant since we assume Markovian dynamics, while it would be also interesting to study
the impact of feedback on the considered system in future research. The coupling strength
is related to the radiative decay rate Γ according to g0 =

√
Γ/π.

In the interaction picture, this Hamiltonian can be expressed as

HI = ℏ
∆FSS

2
(σVV − σHH) + ℏf (σHV + σVH)

+

∫
dω ℏg0

(
a†ω,BHσHBe

i(ω−ωBX)t + a†ω,BVσVBe
i(ω−ωBX)t

+a†ω,XHσGHe
i(ω−ωXG)t + a†ω,XVσGVe

i(ω−ωXG)t + H.c.
)
. (9.4)

We show that the excitonic transitions do not change the system qualitatively but like the
excitonic fine-structure splitting lead to a phase precession at a generalized frequency Ω in
an adapted excitonic basis. To that end, we diagonalize the Hamiltonian in Eq. (9.4) with
respect to the emitter contribution by transforming the excitonic states according to

|X−⟩ = α |XH⟩ − β |XV⟩ , |X+⟩ = β |XH⟩+ α |XV⟩ , (9.5)

where α2 = [1 + ∆FSS/ (2Ω)] /2, β2 = [1−∆FSS/ (2Ω)] /2, and Ω2 = f2 + (∆FSS/2)
2.

Analogously, the photonic states are transformed as

|−⟩ = α |H⟩ − β |V⟩ , |+⟩ = β |H⟩+ α |V⟩ (9.6)

with the corresponding photon annihilation (creation) operators a
(†)
ω,im satisfying the

bosonic commutation relation
[
aω,im, a

†
ω′,jn

]
= δ(ω − ω′)δijδmn, i, j ∈ {B,X}, m,n ∈

{−,+}. In this basis, the Hamiltonian reads

HI = ℏΩ (σ++ − σ−−) +

∫
dω ℏg0

(
a†ω,B-σ-Be

i(ω−ωBX)t + a†ω,B+σ+Be
i(ω−ωBX)t

+a†ω,X-σG-e
i(ω−ωXG)t + a†ω,X+σG+e

i(ω−ωXG)t + H.c.
)
. (9.7)

By comparison with Eq. (9.4), it becomes clear that the excitonic transitions do not change
the physics of the system qualitatively since the Hamiltonian describing its dynamics can
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be mapped isomorphically to a Hamiltonian without excitonic transitions, f → 0, but with
a renormalized fine-structure splitting, ∆FSS → 2Ω.

What we are interested in is the two-photon state that is emitted during the decay of the
biexciton cascade. As shown in Appendix A.8, it takes the form

|Ψ⟩ =
∫ ∞

0
dt′
∫ t′

0
dt′′
[
Pcol(t

′′, t′) |H(t′′),H(t′)⟩+ P ∗
col(t

′′, t′) |V(t′′),V(t′)⟩

+Pxl(t
′′, t′) |H(t′′),V(t′)⟩ − P ∗

xl(t
′′, t′) |V(t′′),H(t′)⟩

]
(9.8)

with the coefficients for the collinear (col) and crosslinear (xl) components

Pcol(t
′′, t′) = −2Γe−Γ(t′+t′′)

{
cos
[
Ω
(
t′ − t′′

)]
+ i

∆FSS

2Ω
sin
[
Ω
(
t′ − t′′

)]}
, (9.9)

Pxl(t
′′, t′) = i2Γ

f

Ω
e−Γ(t′+t′′) sin

[
Ω
(
t′ − t′′

)]
. (9.10)

In Eq. (9.8), the state
|m(t′′), n(t′)⟩ = a†Xn(t

′)a†Bm(t′′) |vac⟩ (9.11)

with

a†Bm

(
t′′
)
=

1√
2π

∫
dω ei(ω−ωBX)t′′a†ω,Bm, (9.12)

a†Xn

(
t′
)
=

1√
2π

∫
dω ei(ω−ωXG)t′a†ω,Xn, (9.13)

m,n ∈ {H,V}, describes the biexciton photon of polarization m emitted at time t′′ and
the exciton photon of polarization n emitted at time t′. Correspondingly, the detection
of the biexciton photon with polarization m emitted at time t′′ and the detection of the
exciton photon with polarization n emitted at t′ can be described by the operators aBm(t′′)
and aXn(t

′), respectively. As a consequence, the detection of the biexciton photon emitted
at time t′′ and the exciton photon emitted at t′ in the different polarization states can be
expressed via the state

|Ψ
(
t′′, t′

)
⟩ = Pcol

(
t′′, t′

)
|H(t′′),H(t′)⟩+ P ∗

col
(
t′′, t′

)
|V(t′′),V(t′)⟩

+ Pxl
(
t′′, t′

)
|H(t′′),V(t′)⟩ − P ∗

xl
(
t′′, t′

)
|V(t′′),H(t′)⟩ (9.14)

with the corresponding measurement matrix elements

ρkl,mn

(
t′′, t′

)
= ⟨k(t′′), l(t′)|Ψ(t′′, t′)⟩ ⟨Ψ(t′′, t′)|m(t′′), n(t′)⟩ , (9.15)

k, l,m, n ∈ {H,V}. Note that the state |Ψ(t′′, t′)⟩ itself is not normalized but the state
|Ψ⟩ =

∫∞
0 dt′

∫ t′

0 dt′′ |Ψ(t′′, t′)⟩ is. If we normalize the state |Ψ(t′′, t′)⟩, this gives us the prob-
ability amplitudes to measure the photons with certain polarizations under the condition
that they are emitted at t′′ and t′.

With the measurement matrix ρ, the elements of which are given in Eq. (9.15), we can
model the polarization tomography that is performed experimentally to reconstruct the
density matrix of the two photons emitted from the biexciton cascade and, this way, verify
the validity of our approach. The key idea of a quantum state tomography is that a series
of measurements on identically prepared copies of the system is performed so that it is
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9.1 Modeling the biexciton cascade with excitonic transitions

possible to reconstruct its density matrix using linear transformations of the measured
quantities. To reconstruct the polarization state of the two photons, we have to perform
sixteen independent correlation measurements, where the two photons are each projected
onto a set of states from the three orthogonal polarization bases {|H⟩ , |V⟩}, {|D⟩ , |A⟩}
with

|D⟩ = 1√
2
(|H⟩+ |V⟩) , |A⟩ = 1√

2
(|H⟩ − |V⟩) , (9.16)

and {|R⟩ , |L⟩} with

|R⟩ = 1√
2
(|H⟩+ i |V⟩) , |L⟩ = 1√

2
(|H⟩ − i |V⟩) . (9.17)

From these measurements, it is possible to calculate the two-photon Stokes parameters,
which fully characterize the polarization state of the photons [263].

In Fig. 9.2, the correlation measurements that are necessary for the full tomography of
the two-photon polarization state are shown. The black lines represent experimental data
obtained by Dr. S. Bounouar and co-workers in the group of Prof. Dr. S. Reitzenstein using
an InGaAs/GaAs quantum dot. Details on the experimental realization can be found in
Ref. [262]. The red lines are obtained from our theoretical model. The joint detection
probability to measure the biexciton photon with polarization m and the exciton photon
with polarization n, m,n ∈ {H,V,D,R}, as a function of the delay time t between the
detection of the biexciton photon emitted at t′′ and the detection of the exciton photon
emitted at t′ is given by

Pmn(t) =

∫ ∞

0
dt′′ ρmn,mn(t

′′, t′)

∣∣∣∣
t′→t′′+t

. (9.18)

To account for the finite temporal resolution of the detectors, we convolve the theoretical
results with the system response function, which we assume to be a Gaussian G(t) with a
full width at half maximum of 100 ps, so that

P conv
mn (t) =

∫ ∞

−∞
dτ Pmn(t)G(t− τ). (9.19)

To fit the experimental data, we used the parameters Γ = 2.4 ns−1 and ℏ∆FSS = 12.7µeV.
From the measurements, we estimated the excitonic transition rate to be f = 9.5 ns−1.

If no excitonic transitions were taking place, we would find an exponential decay for the HH
and the VV measurements and no signal for the HV and the VH measurements [260,262].
The oscillations nevertheless observable in the measurements in Fig. 9.2 provide evidence
for the occurrence of excitonic transitions, as included in our model as a manifestation of
an excitonic spin precession. The frequency of the oscillations in our model is determined
by the transition rate f . The oscillations that arise for the measurements in the {|D⟩ , |A⟩}
and the {|R⟩ , |L⟩} bases, in contrast, can be attributed to an excitonic phase precession
due to a fine-structure splitting. Since they can be observed in different bases, it is possible
to study the two processes independently.

The experimental data and the theoretical model agree well for most polarization direc-
tions. However, some discrepancies arise, for example, in the RV and VR measurements,
where the theoretical model underestimates the coincidences observed in the experiment.
Among other points related to the specific experimental realization, a reason for this could
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9 Entanglement robustness to excitonic spin precession in a biexciton cascade

Figure 9.2: Sixteen correlation measurements that are needed for the full tomography of the two-
photon polarization state (black lines) and theoretical model (red lines), where the
normalized coincidences are shown as a function of the delay between the detection
of the biexciton and the exciton photon. The label in each subgraph indicates the
directions of polarization onto which the biexciton and the exciton photon have been
projected for the respective measurement. Adapted from Ref. [262].

be that the model assumes a deterministic preparation of the biexciton while, experimen-
tally, the situation is more complex due to the preparation of the biexciton by a continuous-
wave laser. Another possible explanation for the slight deviations between experiment and
theory is that, theoretically, we assume a unitary time evolution while dissipation and de-
coherence processes may have an influence in the experiment. While it has been shown that
pure dephasing does not affect the entanglement in the case of degenerate excitonic states
without transitions [264], for the general case, a more detailed model taking into account
pure dephasing as well as other incoherent processes could provide further insights [265].

9.2 Polarization entanglement of the photons

After developing and validating our model, we study the impact of the excitonic transi-
tions on the entanglement of the two photons emitted from the quantum dot. As we saw
in Sec. 9.1, the considered system can be mapped isomorphically to the biexciton cascade
without excitonic transitions, which allows for the creation of a maximally entangled pho-
ton pair in the case of a perfect temporal resolution [260]. Since unitary transformations
do not affect the entanglement of a composite system, we can infer that two maximally
entangled photons are produced in the case of a perfect temporal resolution despite the
excitonic transitions. To confirm this, we use the negativity of the normalized two-photon
density matrix ρN(t

′′, t′) = ρ(t′′, t′)/tr [ρ(t′′, t′)], describing the emission of the biexciton
photon at t′′ and the emission of the exciton photon at t′, as a measure of the entangle-
ment, see Sec. 4.2. Indeed, we find for the density matrix of the system, the elements of
which are given in Eq. (9.15),

N
[
ρN
(
t′′, t′

)]
=

1

2
(9.20)
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9.3 Conclusion

Figure 9.3: Negativity that can be extracted from the polarization tomography as a function
of the delay between the detection of the biexciton and the exciton photon for a
temporal resolution of 100 ps (red line) compared to the negativity that we find
theoretically in the case of a perfect temporal resolution (blue line) corresponding
to maximal entanglement. Adapted from Ref. [262].

corresponding to maximal entanglement for all times t′′, t′ with t′′ < t′ .

In realistic experiments, however, the temporal resolution is limited. The density matrix
reconstructed from the polarization tomography shown in Fig. 9.2 results in the negativity
presented in Fig. 9.3 (red line), where it is compared to the negativity we obtain theo-
retically in the case of a perfect temporal resolution (blue line). The theoretical model
we developed in Sec. 9.1 allows for an estimation of the degree of entanglement of a pair
of photons emitted from the quantum dot for a finite temporal resolution. Assuming, for
simplicity, a rectangular system response function of width δres, we obtain the averaged
density matrix

ρav (t, δres) =
1

δres

∫ t+δres

t
dt′ ρN(0, t

′), (9.21)

where, without loss of generality, we set the time of the emission of the biexciton photon
to zero. The negativity that can be calculated for the averaged density matrix is

N [ρav(t, δres)] =
1

2
|sinc(Ωδres)| . (9.22)

Thus, the negativity oscillates as a function of the renormalized frequency Ω =√
f2 + (∆FSS/2)

2 and of the temporal resolution δres. The negativity as a function of
the excitonic transition rate f and the fine-structure splitting frequency ∆FSS for differ-
ent temporal resolutions is shown in Fig. 9.4. We see that, depending on the temporal
resolution, the entanglement of the two photons is more or less robust to a fine-structure
splitting and excitonic transitions. For a sufficiently high resolution, that is, a sufficiently
small δres, highly entangled photon pairs can be generated from the biexciton cascade de-
spite the phase and spin precession. The limit of the time-integrated measurement arises
naturally from our model, where the presence of even a small fine-structure splitting or
excitonic transition rate is detrimental to the entanglement of the photons.

9.3 Conclusion

We studied the radiative biexciton cascade in a semiconductor quantum dot focussing on
the impact of excitonic spin precession processes on the polarization entanglement of the
emitted photons. Such processes manifest experimentally as anomalous oscillations in the
rectilinear {|H⟩ , |V⟩} basis correlations and are commonly thought to prohibit the genera-
tion of highly entangled photon pairs. Including the spin precession in the form of excitonic
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Figure 9.4: Negativity N of the density matrix describing the state of the photon pair emitted
from the biexciton cascade with the fine-structure splitting frequency ∆FSS and the
excitonic transition rate f for a finite temporal resolution δres of the measurement
obtained from our theoretical model. (a) δres = 0.05 ns. (b) δres = 0.1 ns.

transitions, we showed that the data obtained in a polarization tomography can be mod-
elled adequately without taking decoherence processes into account, which can, thus, be
considered as slow in comparison to the excitonic lifetime. The estimation of the entangle-
ment of the photons emitted from the cascade showed that excitonic transitions have the
same influence as a fine-structure splitting of the excitonic states. While a perfect tem-
poral resolution allows for maximally entangled photons due to the erasure of which-path
information, in a time-integrated measurement setup, excitonic transitions are detrimental
to the entanglement of the photons. For a finite detector resolution, the negativity as a
measure of the entanglement was found to be oscillating with the excitonic transition rate
as well as with the fine-structure splitting, so that a high degree of entanglement is possible
despite excitonic transitions during the decay of the biexciton cascade.
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10 Conclusion and outlook

The aim of this thesis was to explore the emergence of entanglement in non-Markovian
WQED systems. After an introduction of the basic concepts in part I, we presented our
results in parts II and III of the thesis.

In part II, we considered the fundamental setup of WQED with feedback, a TLS with
self-feedback realized by coupling the emitter to a semi-infinite waveguide. The simulation
of the non-Markovian dynamics within the MPS framework allows accounting for multiple
excitations due to the efficient handling of the entanglement in the system. The modeling
of quantum pulses enables a self-consistent description of the transmission of quantum
information. They can be included via an entangled initial state of the reservoir, for which a
decomposition into the MPS form has to be performed. To avoid this numerically expensive
procedure, we calculated the explicit decomposition for rectangular pulses of arbitrary
duration. This way, we were able to study the feedback dynamics for pulses containing up
to four photons. A striking feature in the considered system is the existence of a bound
state in the continuum, which can be excited either via the decay of an initially excited
emitter in vacuum or via multiphoton scattering. We studied the excitation probability
of the bound state for pulses containing different numbers of photons and compared it to
that of an initially excited emitter. In the regime of short delay times, the excitation via
an initially excited emitter is most effective. We showed that in the highly non-Markovian
regime of long delay times, in contrast, multiphoton pulses can result in a strikingly higher
excitation probability depending nonlinearly on the number of photons in the pulse.

As an alternative approach for simulating the feedback dynamics of the considered sys-
tem, we proposed a method based on a Heisenberg representation. To unravel the arising
hierarchical structure of differential equations for multi-time correlations, we performed
a projection onto a complete set of states in the Hilbert space. The method makes the
microscopic dynamics accessible and allows for efficient calculations, where the required
numerical resources are known in advance. This way, we were able to explore the complex
interplay of the feedback delay time and the pulse shape with respect to the excitation
efficiency of the atom-photon bound state. Furthermore, the introduced approach enables
the inclusion of additional dissipation channels. The phenomenological pure dephasing
we considered exemplarily resulted in a reduced excitation efficiency of the emitter and
the inaccessibility of the bound state. In future work, it would be interesting to include
dissipation channels perturbatively. Of particular interest is the study of the effects of
non-Markovian dephasing, which can have a stabilizing effect under certain conditions as
has been shown in Refs. [51, 266].

To proceed in the direction of more complex WQED setups exhibiting collective dynamics,
we considered two macroscopically separated TLS and studied their dynamics for different
excitation schemes using MPS. The results in the case of initially excited emitters showed
that entanglement can be generated by spontaneous emission. In the system, similar to
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10 Conclusion and outlook

the single TLS with self-feedback, a bound state in the continuum exists. Letting the
emitters decay, the bound state can be populated, which is accompanied by the emergence
of long-lived entanglement between the emitters. An influx of energy can be modeled, on
the one hand, by introducing an external laser field that drives the emitters. In this case,
we only obtain stable entanglement when driving the emitters continuously. Alternatively,
the emitters can be excited by quantum pulses through the waveguide. In this scenario,
the population of the bound state by multiphoton scattering facilitates the generation of
long-lived entanglement, where the degree of entanglement can be controlled by adjusting
the emitter separation and tuning the pulse properties.

In part III, we considered a pair of photons correlated in their energies and times of emis-
sion. A sufficiently high visibility of the two-photon interference that is observable in the
Franson interferometer indicates the nonclassical energy-time entanglement of the pho-
tons. As our analytical calculations showed, the visibility depends strongly on the system
parameters. To enhance it, we proposed the implementation of an additional feedback
channel. Studying the resulting second-order correlation function numerically within the
MPS framework, we found that feedback has the potential to increase the visibility of the
interference significantly, for example, by delaying the emission of the first photon. The
results, thus, point to the fact that the energy-time entanglement of a pair of photons can
be controlled using coherent time-delayed feedback. In further research, an adaptation of
the model to a concrete experimental situation, for example, the description of the photon
generation by resonance fluorescence, could provide further insights.

Turning to another type of photon entanglement, we studied the polarization entanglement
of a pair of photons emitted from a biexciton cascade in a semiconductor quantum dot. In
particular, we focused on the impact of an excitonic spin precession resulting in anomalous
oscillations in cross-correlation measurements due to the possibility of transitions between
the excitonic states. We found a good agreement with experimental data accounting for
the transitions as a coherent process. In this model, the entanglement is affected by the
transitions in the same way as by a fine-structure splitting, which, in a time-integrated
measurement setup, has a detrimental effect. In a time-resolved measurement setup, in
contrast, a highly entangled photon pair is possible, where the attainable degree of entan-
glement depends on the detector resolution as well as on the excitonic transition rate and
the fine-structure splitting. While decoherence processes are typically slow in comparison
to the excitonic lifetime, including them in the model in subsequent investigations is of
interest to complete the picture.

In summary, from a methodical point of view, we extended the toolbox for the treatment
of non-Markovian WQED by extending and proposing state-of-the-art numerical methods.
We applied them to study characteristic features of feedback systems with strongly entan-
gled emitter-reservoir states as well as to explore ways to control the entanglement of pairs
of emitters and photons. In this way, the work contributes to a better understanding of
the theoretical basis of implementations for quantum information processing.
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A Appendix

A.1 Initialization of the matrix product state pulse bins

If the TLS we consider in Chap. 5 is subjected to a quantized pulse, we have to decompose
the tensor describing the entangled state of the involved time bins to allow the initialization
of the reservoir state in MPS form. For a rectangular pulse starting at tstart = p1∆t
and ending at tend = pM∆t containing three photons, the matrices have to be initialized
according to

A[p1]
1 =

(
1 0 0 0

)
, A[p1]

2 =
(
0 1 0 0

)
,

A[p1]
3 =

(
0 0 1 0

)
, A[p1]

4 =
(
0 0 0 1

)
, (A.1)

A[pk]
1 =


1 0 0 0

0
√

k−1
k 0 0

0 0
√

(k−1)2

k2
0

0 0 0
√

(k−1)3

k3

 , A[pk]
2 =


0
√

1
k 0 0

0 0
√

2(k−1)
k2

0

0 0 0
√

3(k−1)2

k3

0 0 0 0

 ,

A[pk]
3 =


0 0

√
1
k2

0

0 0 0
√

3(k−1)
k3

0 0 0 0
0 0 0 0

 , A[pk]
4 =


0 0 0

√
1
k3

0 0 0 0
0 0 0 0
0 0 0 0

 , (A.2)

A[pM ]1 =
(
0 0 0

√
(M−1)3

N3

)T
, A[pM ]2 =

(
0 0

√
3(M−1)2

M3 0

)T
,

A[pM ]3 =
(
0
√

3(M−1)
M3 0 0

)T
, A[pM ]4 =

(√
1

M3 0 0 0
)T

(A.3)

with 1 < k < M . Here, the time bins are of dimension four to be able to account for
up to three photons per time bin. If the same pulse but with a photon number of four
is considered, we have to use five-dimensional time bins if we want to capture the full
dynamics. The involved matrices, in this case, have to be initialized as

A[p1]
1 =

(
1 0 0 0 0

)
, A[p1]

2 =
(
0 1 0 0 0

)
,

A[p1]
3 =

(
0 0 1 0 0

)
, A[p1]

4 =
(
0 0 0 1 0

)
,

A[p1]
5 =

(
0 0 0 0 1

)
, (A.4)
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A[pk]
1 =



1 0 0 0 0

0
√

k−1
k 0 0 0

0 0
√

(k−1)2

k2
0 0

0 0 0
√

(k−1)3

k3
0

0 0 0 0
√

(k−1)4

k4


,

A[pk]
2 =



0
√

1
k 0 0 0

0 0
√

2(k−1)
k2

0 0

0 0 0
√

3(k−1)2

k3
0

0 0 0 0
√

4(k−1)3

k4

0 0 0 0 0


,

A[pk]
3 =


0 0

√
1
k2

0 0

0 0 0
√

3(k−1)
k3

0

0 0 0 0
√

6(k−1)2

k4

0 0 0 0 0

 ,

A[pk]
4 =


0 0 0

√
1
k3

0

0 0 0 0
√

4(k−1)
k4

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,

A[pk]
5 =


0 0 0 0

√
1
k4

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , (A.5)

A[pM ]1 =
(
0 0 0 0

√
(M−1)4

M4

)T
, A[pM ]2 =

(
0 0 0

√
4(M−1)3

M4 0

)T
,

A[pM ]3 =
(
0 0

√
6(M−1)2

M4 0 0

)T
, A[pM ]4 =

(
0
√

4(M−1)
M4 0 0 0

)T
,

A[pM ]5 =
(√

1
M4 0 0 0 0

)T
. (A.6)

A.2 Heisenberg equations of motion

For the calculation of the dynamics employing the Heisenberg approach as proposed in
Chap. 6, when the feedback mechanism influences the dynamics, we insert the unity oper-
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A.2 Heisenberg equations of motion

ator

1 =
{
|g⟩ ⟨g|+ |e⟩ ⟨e|

}
⊗

{
|0⟩ ⟨0|+

∫
dt′ |t′⟩ ⟨t′|+ 1

2

∫
dt′
∫
dt′′ |t′, t′′⟩ ⟨t′, t′′|+ . . .

}
(A.7)

between the operators with different time arguments to unravel the arising multi-time
correlations. Additionally, we can insert the unity operator between the operators σ+(t)
and σ−(t) so that we only have to deal with single-time matrix elements of the TLS operator
σ−. The operator obeys the differential equation

d
dt
σ−(t) = −Γσ−(t)−

√
Γ [1 − 2σ+(t)σ−(t)] rt,τ

+ Γeiω0τ [σ−(t− τ)− 2σ+(t)σ−(t)σ−(t− τ)] Θ(t− τ). (A.8)

Here, the explicit calculations for the matrix elements of σ− for up to three photons are
presented.

Single-photon pulse

For the initial state |g, 1⟩, only the projector onto the state |g, 0⟩ describing the TLS in the
ground state and no photons in the reservoir contributes when decomposing the expectation
value of the TLS occupation into matrix elements of the TLS operator σ− and it holds
that

⟨g, 1|σ+(t)σ−(t) |g, 1⟩ = ⟨g, 1|σ+(t) |g, 0⟩ ⟨g, 0|σ−(t) |g, 1⟩ . (A.9)

Thus, the only relevant matrix element is ⟨g, 0|σ−(t) |g, 1⟩, which can be determined via
the differential equation

d
dt

⟨g, 0|σ−(t) |g, 1⟩ = −Γ ⟨g, 0|σ−(t) |g, 1⟩ −
√
Γfτ (t)

+ Γeiω0τ ⟨g, 0|σ−(t− τ) |g, 1⟩Θ(t− τ). (A.10)

Two-photon pulse

In the case of an initial state |g, 2⟩, the projector onto states describing one excitation in
the system, either in the TLS or in the reservoir, contributes to the dynamics and we can
decompose the expectation value of the TLS occupation according to

⟨g, 2|σ+(t)σ−(t) |g, 2⟩ = ⟨g, 2|σ+(t) |e, 0⟩ ⟨e, 0|σ−(t) |g, 2⟩

+

∫
dt′ ⟨g, 2|σ+(t) |g, t′⟩ ⟨g, t′|σ−(t) |g, 2⟩ . (A.11)
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The matrix elements of the TLS operator σ− describing the transition from two to one
excitation in the system that have to be evaluated evolve as

d
dt

⟨e, 0|σ−(t) |g, 2⟩ = −Γ ⟨e, 0|σ−(t) |g, 2⟩+ 2
√
2Γfτ (t) ⟨e, 0|σ+(t) |g, 0⟩ ⟨g, 0|σ−(t) |g, 1⟩

+ Γeiω0τ

{
⟨e, 0|σ−(t− τ) |g, 2⟩ − 2

[
⟨e, 0|σ+(t) |g, 0⟩ ⟨g, 0|σ−(t) |e, 0⟩ ⟨e, 0|σ−(t− τ) |g, 2⟩

+

∫
dt1 ⟨e, 0|σ+(t) |g, 0⟩ ⟨g, 0|σ−(t) |g, t1⟩ ⟨g, t1|σ−(t− τ) |g, 2⟩

]}
Θ(t− τ) (A.12)

and

d
dt

⟨g, t′|σ−(t) |g, 2⟩ = −Γ ⟨g, t′|σ−(t) |g, 2⟩

−
√
2Γfτ (t)

[
⟨g, t′|g, 1⟩ − 2 ⟨g, t′|σ+(t) |g, 0⟩ ⟨g, 0|σ−(t) |g, 1⟩

]
+Γeiω0τ

{
⟨g, t′|σ−(t− τ) |g, 2⟩ − 2

[
⟨g, t′|σ+(t) |g, 0⟩ ⟨g, 0|σ−(t) |e, 0⟩ ⟨e, 0|σ−(t− τ) |g, 2⟩

+

∫
dt1 ⟨g, t′|σ+(t) |g, 0⟩ ⟨g, 0|σ−(t) |g, t1⟩ ⟨g, t1|σ−(t− τ) |g, 2⟩

]}
Θ(t− τ) (A.13)

with ⟨g, t′|g, 1⟩ = f(t′). These equations, in turn, couple to matrix elements of σ− that
refer to the transition from one to zero excitations. The matrix elements that contribute
in addition to the element ⟨g, 0|σ−(t) |g, 1⟩, which has already been introduced in the
single-excitation case above, obey

d
dt

⟨g, 0|σ−(t) |e, 0⟩ = −Γ ⟨g, 0|σ−(t) |e, 0⟩+Γeiω0τ ⟨g, 0|σ−(t− τ) |e, 0⟩Θ(t− τ) (A.14)

and

d
dt

⟨g, 0|σ−(t) |g, t′⟩ = −Γ ⟨g, 0|σ−(t) |g, t′⟩ −
√
Γ ⟨g, 0| rt,τ |g, t′⟩

+ Γeiω0τ ⟨g, 0|σ−(t− τ) |g, t′⟩Θ(t− τ) (A.15)

with
rt,τ |g, t′⟩ =

[
δ
(
t′ − t+

τ

2

)
eiω0

τ
2 − δ

(
t′ − t− τ

2

)
e−iω0

τ
2

]
|g, 0⟩ . (A.16)

Three-photon pulse

If the system is in the state |g, 3⟩ initially, the projector onto states describing two excita-
tions in the system contributes and we obtain

⟨g, 3|σ+(t)σ−(t) |g, 3⟩ =
∫
dt′ ⟨g, 3|σ+(t) |e, t′⟩ ⟨e, t′|σ−(t) |g, 3⟩

+
1

2

∫
dt′
∫
dt′′ ⟨g, 3|σ+(t) |g, t′, t′′⟩ ⟨g, t′, t′′|σ−(t) |g, 3⟩ . (A.17)
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The arising matrix elements of σ− referring to the transition from three to two excitations
in the system can be determined via

d
dt

⟨e, t′|σ−(t) |g, 3⟩ = −Γ ⟨e, t′|σ−(t) |g, 3⟩

+ 2
√
3Γfτ (t)

[
⟨e, t′|σ+(t) |e, 0⟩ ⟨e, 0|σ−(t) |g, 2⟩+

∫
dt1 ⟨e, t′|σ+(t) |g, t1⟩ ⟨g, t1|σ−(t) |g, 2⟩

]
+ Γeiω0τ

{
⟨e, t′|σ−(t− τ) |g, 3⟩

− 2

[∫
dt2 ⟨e, t′|σ+(t) |e, 0⟩ ⟨e, 0|σ−(t) |e, t2⟩ ⟨e, t2|σ−(t− τ) |g, 3⟩

+

∫
dt1

∫
dt2 ⟨e, t′|σ+(t) |g, t1⟩ ⟨g, t1|σ−(t) |e, t2⟩ ⟨e, t2|σ−(t− τ) |g, 3⟩

+
1

2

∫
dt2

∫
dt3 ⟨e, t′|σ+(t) |e, 0⟩ ⟨e, 0|σ−(t) |g, t2, t3⟩ ⟨g, t2, t3|σ−(t− τ) |g, 3⟩

+
1

2

∫
dt1

∫
dt2

∫
dt3 ⟨e, t′|σ+(t) |g, t1⟩ ⟨g, t1|σ−(t) |g, t2, t3⟩ ⟨g, t2, t3|σ−(t− τ) |g, 3⟩

]}
×Θ(t− τ) (A.18)

and

d
dt

⟨g, t′, t′′|σ−(t) |g, 3⟩ = −Γ ⟨g, t′, t′′|σ−(t) |g, 3⟩ −
√
3Γfτ (t)

{
⟨g, t′, t′′|g, 2⟩

− 2

[
⟨g, t′, t′′|σ+(t) |e, 0⟩ ⟨e, 0|σ−(t) |g, 2⟩ +

∫
dt1 ⟨g, t′, t′′|σ+(t) |g, t1⟩ ⟨g, t1|σ−(t) |g, 2⟩

]}

+ Γeiω0τ

{
⟨g, t′, t′′|σ−(t− τ) |g, 3⟩

− 2

[∫
dt2 ⟨g, t′, t′′|σ+(t) |e, 0⟩ ⟨e, 0|σ−(t) |e, t2⟩ ⟨e, t2|σ−(t− τ) |g, 3⟩

+

∫
dt1

∫
dt2 ⟨g, t′, t′′|σ+(t) |g, t1⟩ ⟨g, t1|σ−(t) |e, t2⟩ ⟨e, t2|σ−(t− τ) |g, 3⟩

+
1

2

∫
dt2

∫
dt3 ⟨g, t′, t′′|σ+(t) |e, 0⟩ ⟨e, 0|σ−(t) |g, t2, t3⟩ ⟨g, t2, t3|σ−(t− τ) |g, 3⟩

+
1

2

∫
dt1

∫
dt2

∫
dt3 ⟨g, t′, t′′|σ+(t) |g, t1⟩ ⟨g, t1|σ−(t) |g, t2, t3⟩ ⟨g, t2, t3|σ−(t− τ) |g, 3⟩

]}
×Θ(t− τ), (A.19)

where ⟨g, t′, t′′|g, 2⟩ =
√
2f(t′)f(t′′).

For the relevant matrix elements that describe the transition from two to one excitation,
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beyond the equations already considered in the two-excitation case, we have to evaluate

d
dt

⟨e, 0|σ−(t) |e, t′⟩ = −Γ ⟨e, 0|σ−(t) |e, t′⟩

−
√
Γ
[
⟨e, 0| rt,τ |e, t′⟩ − 2 ⟨e, 0|σ+(t) |g, 0⟩ ⟨g, 0|σ−(t)rt,τ |e, t′⟩

]
+ Γeiω0τ

{
⟨e, 0|σ−(t− τ) |e, t′⟩ − 2

[
⟨e, 0|σ+(t) |g, 0⟩ ⟨g, 0|σ−(t) |e, 0⟩ ⟨e, 0|σ−(t− τ) |e, t′⟩

+

∫
dt1 ⟨e, 0|σ+(t) |g, 0⟩ ⟨g, 0|σ−(t) |g, t1⟩ ⟨g, t1|σ−(t− τ) |e, t′⟩

]}
Θ(t− τ), (A.20)

d
dt

⟨g, t′|σ−(t) |e, t′′⟩ = −Γ ⟨g, t′|σ−(t) |e, t′′⟩+ 2
√
Γ ⟨g, t′|σ+(t) |g, 0⟩ ⟨g, 0|σ−(t)rt,τ |e, t′′⟩

+Γeiω0τ

{
⟨g, t′|σ−(t−τ) |e, t′′⟩−2

[
⟨g, t′|σ+(t) |g, 0⟩ ⟨g, 0|σ−(t) |e, 0⟩ ⟨e, 0|σ−(t− τ) |e, t′′⟩

+

∫
dt1 ⟨g, t′|σ+(t) |g, 0⟩ ⟨g, 0|σ−(t) |g, t1⟩ ⟨g, t1|σ−(t− τ) |e, t′′⟩

]}
Θ(t− τ), (A.21)

d
dt

⟨e, 0|σ−(t) |g, t′, t′′⟩ = −Γ ⟨e, 0|σ−(t) |g, t′, t′′⟩+2
√
Γ ⟨e, 0|σ+(t) |g, 0⟩ ⟨g, 0|σ−(t)rt,τ |g, t′, t′′⟩

+Γeiω0τ

{
⟨e, 0|σ−(t−τ) |g, t′, t′′⟩−2

[
⟨e, 0|σ+(t) |g, 0⟩ ⟨g, 0|σ−(t) |e, 0⟩ ⟨e, 0|σ−(t− τ) |g, t′, t′′⟩

+

∫
dt1 ⟨e, 0|σ+(t) |g, 0⟩ ⟨g, 0|σ−(t) |g, t1⟩ ⟨g, t1|σ−(t− τ) |g, t′, t′′⟩

]}
Θ(t− τ), (A.22)

and

d
dt

⟨g, t′|σ−(t) |g, t′′, t′′′⟩ = −Γ ⟨g, t′|σ−(t) |g, t′′, t′′′⟩

−
√
Γ
[
⟨g, t′| rt,τ |g, t′′, t′′′⟩ − 2 ⟨g, t′|σ+(t) |g, 0⟩ ⟨g, 0|σ−(t)rt,τ |g, t′′, t′′′⟩

]
+ Γeiω0τ

{
⟨g, t′|σ−(t− τ) |g, t′′, t′′′⟩

− 2

[
⟨g, t′|σ+(t) |g, 0⟩ ⟨g, 0|σ−(t) |e, 0⟩ ⟨e, 0|σ−(t− τ) |g, t′′, t′′′⟩

+

∫
dt1 ⟨g, t′|σ+(t) |g, 0⟩ ⟨g, 0|σ−(t) |g, t1⟩ ⟨g, t1|σ−(t− τ) |g, t′′, t′′′⟩

]}
Θ(t− τ). (A.23)

The elements ⟨e, 0| rt,τ |e, t′⟩ and ⟨g, 0|σ−(t)rt,τ |e, t′⟩ can be evaluated in analogy to
Eq. (A.16), while, for the elements ⟨g, 0|σ−(t)rt,τ |g, t′, t′′⟩ and ⟨g, t′| rt,τ |g, t′′, t′′′⟩, the ef-
fect of the operator rt,τ on the two-photon state |g, t′, t′′⟩ has to be taken into account,
which yields

rt,τ |g, t′, t′′⟩ =
[
δ(t′ − t+

τ

2
)eiω0

τ
2 − δ(t′ − t− τ

2
)e−iω0

τ
2

]
|g, t′′⟩

+
[
δ(t′′ − t+

τ

2
)eiω0

τ
2 − δ(t′′ − t− τ

2
)e−iω0

τ
2

]
|g, t′⟩ . (A.24)
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A.3 Phenomenological pure dephasing within the Heisenberg
representation

Pure dephasing dephases coherences, while populations are not directly affected. To be
able to account for this fact when including a phenomenological pure dephasing in Chap. 6,
not all matrix elements are decomposed into single-time matrix elements of the operator
σ− but are distinguished into matrix elements of the coherence operator σ− and the TLS
occupation operator E ≡ σ+σ−. This way, for the calculation of the dynamics for a TLS
initially in the ground state and a single-photon pulse in the reservoir, we have to solve

d
dt

⟨g, 1|E(t) |g, 1⟩ = −2Γ ⟨g, 1|E(t) |g, 1⟩ −
√
Γ [f∗τ (t) ⟨g, 0|σ−(t) |g, 1⟩+ H.c.]

+ Γ
[
e−iω0τ ⟨g, 1|σ+(t− τ)σ−(t) |g, 1⟩+ H.c.

]
Θ(t− τ). (A.25)

The insertion of the unity operator between the operators with different time arguments
yields

d
dt

⟨g, 1|E(t) |g, 1⟩ = −2Γ ⟨g, 1|E(t) |g, 1⟩ −
√
Γ [f∗τ (t) ⟨g, 0|σ−(t) |g, 1⟩+ H.c.]

+ Γ
[
e−iω0τ ⟨g, 1|σ+(t− τ) |g, 0⟩ ⟨g, 0|σ−(t) |g, 1⟩+ H.c.

]
Θ(t− τ). (A.26)

The expectation value couples to the matrix element ⟨g, 0|σ−(t) |g, 1⟩, for which we add a
phenomenological pure dephasing at rate γ so that it obeys

d
dt

⟨g, 0|σ−(t) |g, 1⟩ = −(Γ + γ) ⟨g, 0|σ−(t) |g, 1⟩ −
√
Γfτ (t)

+ Γeiω0τ ⟨g, 0|σ−(t− τ) |g, 1⟩Θ(t− τ). (A.27)

Analogously, for a two-photon pulse in the reservoir, we have to evaluate the expectation
value

d
dt

⟨g, 2|E(t) |g, 2⟩ = −2Γ ⟨g, 2|E(t) |g, 2⟩ −
√
2Γ [f∗τ (t) ⟨g, 1|σ−(t) |g, 2⟩+ H.c.]

+ Γ

{
e−iω0τ

[
⟨g, 2|σ+(t− τ) |e, 0⟩ ⟨e, 0|σ−(t) |g, 2⟩

+

∫
dt′ ⟨g, 2|σ+(t− τ) |g, t′⟩ ⟨g, t′|σ−(t) |g, 2⟩

]
+ H.c.

}
Θ(t− τ). (A.28)

After the introduction of a phenomenological pure dephasing at rate γ, the matrix element
⟨g, 1|σ−(t) |g, 2⟩ coupling to the dynamics obeys the differential equation

d
dt

⟨g, 1|σ−(t) |g, 2⟩ = −(Γ + γ) ⟨g, 1|σ−(t) |g, 2⟩ −
√
2Γfτ (t) [1− 2 ⟨g, 1|E(t) |g, 1⟩]

+ Γeiω0τ

[
⟨g, 1|σ−(t− τ) |g, 2⟩ − 2 ⟨g, 1|E(t) |e, 0⟩ ⟨e, 0|σ−(t) |g, 2⟩

−2

∫
dt′ ⟨g, 1|E(t) |g, t′⟩ ⟨g, t′|σ−(t− τ) |g, 2⟩

]
Θ(t− τ). (A.29)

The remaining elements that contribute to the dynamics can be treated analogously until,
eventually, the system of differential equations closes.
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The calculation of the dynamics for other initial states, such as |e, 0⟩ describing the TLS
initially in the excited state and the reservoir in the vacuum state, works analogously.
For the differentiation into matrix elements of the operators σ− and E, the number of
matrix elements that have to be determined and saved increases. The asymptotic runtime,
however, remains unchanged.

A.4 Two-photon state emitted from the ladder-type
three-level system

To evaluate the second-order correlation function for the Franson interferometer introduced
in Chap. 8 without feedback analytically, we need to determine the two-photon state |Ψ⟩
that is emitted from the 3LS. We do this following Ref. [102]. The state of the combined
system of the 3LS and the photonic reservoirs, in the two-excitation limit, takes on the
general form

|ψ(t)⟩ = ca(t) |a, 0⟩+
∫
dω cb,ω(t) |b, 1ω⟩+

∫
dω

∫
dω′ cc,ω,ω′(t) |c, 1ω, 1ω′⟩ . (A.30)

The first term on the right-hand side of Eq. (A.30) describes the 3LS in the upper state |a⟩
and no photons in the reservoir. The second term refers the 3LS in the middle state |b⟩ and
a single photon with frequency ω in the reservoir. The third term eventually represents
the emitter in the ground state |c⟩ and two photons in the reservoir, the first one with
frequency ω, the second one with frequency ω′. From the Schrödinger equation, Eq. (2.6),
we determine the dynamics of the coefficients using the Hamiltonian given in Eq. (8.2),

HI =

∫
dω ℏga

(
r†(1)ω σ

(1)
− e−i(ωab−ω)t + H.c.

)
+

∫
dω ℏgb

(
r†(2)ω σ

(2)
− e−i(ωb−ω)t + H.c.

)
, (A.31)

and find

ċa(t) = −iga
∫
dω ei(ωab−ω)tcb,ω(t), (A.32)

ċb,ω(t) = −igae−i(ωab−ω)tca(t)− i

∫
dω′ gbe

i(ωb−ω′)tcc,ω,ω′(t), (A.33)

ċc,ω,ω′(t) = −igbe−i(ωb−ω′)tcb,ω(t). (A.34)

In the Weisskopf-Wigner theory of spontaneous emission, the decay of an atomic state in
a continuum of photon modes can be approximated using the decay rates Γa and Γb of the
upper state |a⟩ and the middle state |b⟩, respectively, according to

−iga
∫
dω ei(ωab−ω)tcb,ω(t) = −Γa

2
ca(t), (A.35)

−igb
∫
dω′ ei(ωb−ω′)tcc,ω,ω′(t) = −Γb

2
cb,ω(t). (A.36)
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If the 3LS is initially in the upper state, that is, with ca(0) = 1 and cb,ω(0) = cc,ω,ω′(0) = 0
for all values of ω, ω′, the integration of Eqs. (A.32) – (A.34) yields

ca(t) = e−
Γa
2
t, (A.37)

cb,ω(t) =
−iga

i (ω − ωab)−
(
Γa
2 − Γb

2

) (e−i(ωab−ω)t−Γa
2
t − e−

Γb
2
t
)
, (A.38)

cc,ω,ω′(t) =
−igagb

i (ω − ωab)−
(
Γa
2 − Γb

2

)
×
∫ t

0
dt′
(
e−i(ωa−ω−ω′)t′−Γa

2
t′ − e−i(ωb−ω′)t′−Γb

2
t′
)
. (A.39)

In the long-time limit, for t→ ∞, the coefficients ca(t) and cb,ω(t) go to zero since the 3LS
decays to the ground state and two photons are emitted into the reservoir. In this limit,
the state is completely determined by limt→∞ cc,ω,ω′(t). Omitting the 3LS contribution,
we, thus, arrive at the two-photon state emitted from the 3LS in the long-time limit

|Ψ⟩ =

∫
dω

∫
dω′ −gagb[

i (ω + ω′ − ωa)− Γa
2

] [
i (ω′ − ωb)− Γb

2

] |1ω, 1ω′⟩ . (A.40)

A.5 Two-photon probability amplitudes in the Franson
interferometer

In this section, we derive an explicit expression for the two-photon probability amplitude
in the Franson interferometer as discussed in Chap. 8,

Ψr1,r2(t1, t2) = ⟨0|E(+)
2,r2

(t2)E
(+)
1,r1

(t1) |Ψ⟩ , (A.41)

describing the first photon reaching the detector D1 via the path r1 and the second photon
taking the path r2 to the detector D2, r1, r2 ∈ {S,L}. The two-photon state |Ψ⟩ that is
emitted from the 3LS is given in Eq. (A.40). In Eq. (A.41), the operator E(+)

i,ri
, i ∈ {1, 2},

contains the positive frequency part of the electric field operator at the detector Di for
photons that have taken the path ri,

Ei,ri(t) = E
(+)
i,ri

(t) + E
(−)
i,ri

(t), E
(−)
i,ri

(t) =
[
E

(+)
i,ri

(t)
]†
. (A.42)

The operator E(+)
i,ri

comprises the photon annihilation operators r(i)k according to

E
(+)
i,r (t) = i

∑
k

E(ωk)r
(i)
k e−iωk(t− r

c ), E(ωk) =

√
ℏωk

2ϵ0V
, (A.43)

with vacuum permittivity ϵ0 and quantization volume V as derived in Sec. 2.3. Since we
consider a continuum of photon modes in a one-dimensional geometry, it is justified to
switch from a sum over the multi-index k = (λ,k) to an integral over the photon frequency
ω = c |k| so that

E
(+)
i,r (t) = i

∫
dω σ(ω)E(ω)r(i)ω e−iω(t− r

c ), (A.44)
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a) b)

Figure A.1: Illustration of the possible paths the two photons can take in the arms of the Fran-
son interferometer as described by the two-photon probability amplitudes Ψr1,r2 ,
r1, r2 ∈ {S,L}. (a) With frequency filters, we can ensure that photon 1 is regis-
tered by detector D1 and photon 2 is registered by D2. As a consequence, there are
four different possibilities for the two photons to reach the detectors. (b) Without
frequency filters, we do not know which photon is registered by which detector, so
additional terms have to be included where the roles of the photons are swapped.

where σ(ω) is the density of states. We approximate σ(ω) and E(ω) with their values at
the atomic resonances, that is, at ω = ωab and ω = ωb, and, this way, obtain

Ψr1,r2(t1, t2) = gagbσ (ωab)σ (ωb) E (ωab) E (ωb)

×

∫
dω

∫
dω′ e−iω(t1− r1

c )e−iω′(t2− r2
c )[

i (ω + ω′ − ωa)− Γa
2

] [
i (ω′ − ωb)− Γb

2

] . (A.45)

For the evaluation of the double integral, we use the residue theorem, which finally results
in the expression

Ψr1,r2(t1, t2) = ηe−(iωa+
Γa
2 )(t1−

r1
c )Θ

(
t1 −

r1
c

)
× e

−
(
iωb+

Γb
2

)
[(t2− r2

c )−(t1−
r1
c )]Θ

[(
t2 −

r2
c

)
−
(
t1 −

r1
c

)]
, (A.46)

where η ≡ −4π2gagbσ (ωab)σ (ωb) E (ωab) E (ωb).

A.6 Franson interferometer without frequency filters

If we omit the frequency filters in the Franson setup, Chap. 8, we admit the possibility
that the first photon is registered by detector D2 and the second photon is registered by
D1. This leads to additional terms when evaluating Ψr1,r2(t1, t2), see Eq. (8.11), where the
roles of the two photons are interchanged according to

Ψr1,r2(t1, t2) = ηe−(iωa+
Γa
2 )(t1−

r1
c )Θ

(
t1 −

r1
c

)
× e

−
(
iωb+

Γb
2

)
[(t2− r2

c )−(t1−
r1
c )]Θ

[(
t2 −

r2
c

)
−
(
t1 −

r1
c

)]
+ (1 ↔ 2). (A.47)

The possible scenarios for both cases, with and without frequency filters, are illustrated in
Fig. A.1. Due to the ignorance which photon is registered by which detector, additional

114



A.7 Benchmark of the matrix product state results for the second-order correlation
function in the Franson interferometer
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Figure A.2: Second-order correlation function for a system without frequency filters, ΓaT = 0.25,
ΓbT = 10, and different phases ϕT (mod 2π).

interference terms arise. The resulting second-order correlation function is

G(2)(τD) =

η2

2Γa

{
e−Γb|τD|

[
1 + 1

2

(
e−ΓbT + eΓbT

)
+ e−Γa

T
2 cos (2ϕT )

+
(
e−Γb

T
2 + eΓb

T
2

)(
1 + e−Γa

T
2

)
cos (ϕT )

]}
, |τD| ≤ T

η2

2Γa

{
e−Γb|τD| (1 + 1

2e
−ΓbT

)
+ 1

2e
Γb|τ |−ΓbT + e−Γb|τD|−Γa

T
2 cos(2ϕT )

+
[
e−Γb|τD|

(
e−(Γa+Γb)

T
2 + e−Γb

T
2

)
+ e−Γa

|τ |
2
−Γb

T
2 + e−(Γa+Γb)

T
2

]
cos(ϕT )

}
, |τD| > T

(A.48)

In Fig. A.2, the results for a system with ΓaT = 0.25, ΓbT = 10 are shown. In contrast to
the case with filters as shown in Fig. 8.3, the three peaks are symmetric since it is equally
likely for both detectors to register the first or the second photon.

A.7 Benchmark of the matrix product state results for the
second-order correlation function in the Franson
interferometer

To verify the validity of our MPS approach for the calculation of the dynamics in the
Franson interferometer, Chap. 8, we benchmark the results in the case without feedback.
To that end, we compare the second-order correlation function we obtain using MPS with
the one calculated analytically. In the MPS framework, this can be realized by omitting
the feedback channel when deriving the stroboscopic time evolution operator, that is, by
setting ga(ω) = ga and gb(ω) = gb in Eq. (8.16). In this case, instead of Uk given in
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Figure A.3: Benchmark of the MPS results for the second-order correlation function without
feedback. The MPS solution (dashed lines) is compared to the analytical solution
(Ana., solid lines) for different values of the relative phase ϕT between the short
and the long paths to the detectors. Here ΓaT = 2.5, ΓbT = 10, Γa∆t = 0.05,
Γatmax = 10.

Eq. (8.22), we obtain

Uno FB
k = exp

{
− i
√

Γa

[
σ
(1)
+ ∆R

(1)
k + H.c.

]
− i
√

Γb

[
σ
(2)
+ ∆R

(2)
k + H.c.

]}
, (A.49)

where Γa = 2πg2a, Γb = 2πg2b. We can perform the Markovian time evolution in the
MPS framework straightforwardly, see Sec. 5.1.4, without having to perform a swapping
algorithm to include the feedback contributions. The subsequent evaluation of G(2)(τ) as
described in Sec. 8.2.2 then yields the results shown in Fig. A.3, where we reproduced the
results of Fig. 8.3 a using MPS for a system characterized by ΓaT = 2.5, ΓbT = 10. For
the numerical simulation, we used a step size of Γa∆t = 0.05 and simulated the dynamics
up to Γatmax = 10. The agreement of the MPS (dashed lines) and the analytical results
(solid lines) indicates the validity of our MPS approach.

A.8 Two-photon state emitted from the biexciton cascade

We use the Hamiltonian HI given in Eq. (9.7),

HI = ℏΩ (σ++ − σ−−) + ℏg0
∫
dω
(
a†ω,B-σ-Be

i(ω−ωBX)t + a†ω,B+σ+Be
i(ω−ωBX)t

+a†ω,X-σG-e
i(ω−ωXG)t + a†ω,X+σG+e

i(ω−ωXG)t + H.c.
)
, (A.50)

to determine the two-photon state |Ψ(t)⟩ emitted from the biexciton cascade discussed in
Chap. 9 via the Schrödinger equation, see Eq. (2.6). Initially, the system is in the state
|Ψ(0)⟩ = |B, vac⟩, that is, the quantum dot is in the biexciton state and there are no
photons in the reservoir. The transformation of the photon creation operators from the
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frequency into the time domain according to

a†B±(t) =
1√
2π

∫
dω ei(ω−ωBX)ta†ω,B±, (A.51)

a†X±(t) =
1√
2π

∫
dω ei(ω−ωXG)ta†ω,X± (A.52)

describing the creation of a biexciton photon and an exciton photon in ± polarization at
time t, respectively, allows writing the state as

|Ψ(t)⟩ = e−2Γt |B, vac⟩

− i
√
2Γe−Γt

∫ t

0
dt′ e−Γt′

[
e−iΩ(t−t′) |X−,−(t′)⟩+ eiΩ(t−t′) |X+,+(t′)⟩

]
− 2Γ

∫ t

0
dt′
∫ t′

0
dt′′ e−Γ(t′+t′′)

[
e−iΩ(t′−t′′) |+(t′′),+(t′)⟩+ eiΩ(t′−t′′) |−(t′′),−(t′)⟩

]
. (A.53)

The state |X±,±(t′)⟩ denotes the quantum dot in the exciton state after the emission of a
± polarized photon at time t′. The state |±(t′′),±(t′)⟩ describes two ± polarized photons
emitted at t′′ and t′. In this case, the quantum dot is found in the ground state, which has
been neglected in the notation. Since we are interested in the two-photon state emitted
from the quantum dot, we focus on the limit t → ∞, where the decay is completed. In
this limit, transformed back into the {H,V} basis, the state takes the form

|Ψ(∞)⟩ = −2Γ

∫ ∞

0
dt′
∫ t′

0
dt′′ e−Γ(t′+t′′)

×
({

cos
[
Ω(t′ − t′′)

]
+ i

∆FSS

2Ω
sin
[
Ω(t′ − t′′)

]}
|H(t′′),H(t′)⟩

+

{
cos
[
Ω(t′ − t′′)

]
− i

∆FSS

2Ω
sin
[
Ω(t′ − t′′)

]}
|V(t′′),V(t′)⟩

−i f
Ω
sin
[
Ω(t′ − t′′)

] [
|H(t′′),V(t′)⟩+ |V(t′′),H(t′)⟩

])
. (A.54)
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