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Background: Agriculture is a large and dynamic sector, essential for the supply of the population 
and thus in a complex area of tension. The growing population and the resulting need for optimiza-
tion, greater efficiency and intensification are in direct conflict with the demand for sustainability, 
environmental compatibility and, above all, mitigation of climate change and its consequences. 
Precision agriculture can make a decisive contribution to increasing efficiency in particular. Because 
through the targeted and demand-oriented application of fertilizers and pesticides, but also  spatial-
ly variable sowing, resources can be used better and in the best case even increase yields. Above all, 
if fertilizers are applied in the way that the plants need and can absorb them, in contrast to uniform 
application across the entire field, a surplus that can be washed into the groundwater can be avoi-
ded. A basis is therefore needed on which this variable application of resources can be determined. 
In practice, maps of current condition in the form of zones in the field or on-the-go measurements 
from sensors on the tractor are often used here. However, for comprehensive planning and holistic 
cultivation of crop, current and past spatial information maps, such as zone maps, are necessary. 
Satellite data are a data basis for such zones, as they are available in various types, current and retro-
spective and cover large areas spatially. 

Objective: This work explores possibilities to derive this zoning from satellite data and developes 
different approaches. The interrelations between satellite data, geoinformation data and agricultural 
data such as yield will be investigated and combined. The focus of the method development is the 
applicability in practice and the associated requirements of the farmer. 

Data: For method development and analysis 179 RapidEye scenes, 512 Landsat scenes, 43 Senti-
nel-2 scenes and 21 Planetscope scenes were used. Furthermore, the soil map „Bodenschätzung“, 
which not only transmits the information about the respective soil type, but also a quantification 
of the fertility respectively the yield potential in the form of „Bodenzahl“ and „Ackerzahl“. Digital 
terrain models in different spatial resolutions were used as well as in-situ measurements of nutrients, 
electrical conductivity and phenology. 

Methods and Results: In this thesis two methods and a data analysis are presented. The first met-
hod uses only optical satellite data (RapidEye) and processes these automatically into five relative 
yield zones, which reflect the expected relative yield averaged over several years. The method inde-
pendently selects the appropriate data sets for a prescribed field, using different thresholds resulting 
from the reflectance values of individual bands. The zones are then separated on the basis of quan-
tile values using an synthetic, averaged raster of the near infrared bands. The method is validated 
with actual yield data using the characteristics of box plots. The yield zones generated can then be 
used as management zones in precision farming. The second method also generates relative yield 
zones, suitable for use as a management zone, using RapidEye satellite data as well as soil map and 
relief information. This data fusion for yield zone modeling is based on belief structures and uses 
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the Transferable Belief Model. Thus, individual expert knowledge from practical agriculture can be 
integrated into the fusion process. The knowledge generated in the course of method development 
about the relationship between remote sensing and GIS data and the actual yield on the field will 
be extended and consolidated in a large-scale data analysis with a time series of 13 years and 755 
satellite scenes. It shows that there is a strong correlation between satellite data and yield data (up to 
a correlation value of r = 0.75, some values even higher). However, this correlation depends strongly 
on the phenological timing of - in this case - cereals and canola. In addition, the spectral and spatial 
resolution, as well as the growing conditions and the soil available water.  

Conclusion: Satellite data are very well suited for agricultural applications and for the derivation 
of management zones for precision crop cultivation. However, a lot of expert knowledge has to be 
applied in the selection of the appropriate remote sensing data as well as in the processing and me-
thodology. The scientific and practical use of remote sensing data should be adapted to the specific 
problem and external conditions. 



Hintergrund: Die Landwirtschaft ist ein großer und dynamischer Sektor, essentiell für die Ver-
sorgung der Bevölkerung und dadurch in einem komplexen Spannungsfeld. Die steigende Be-
völkerung und der dadurch bestehende Bedarf an Optimierung, mehr Effizienz und Intensivie-
rung steht im direkten Konflikt mit dem Anspruch nach Nachhaltigkeit, Umweltverträglichkeit 
aber vor allem der Eindämmung des Klimawandels und seiner Folgen. Gerade bei Fragen der 
Effizienzsteigerung kann der Bereich der Präzisionslandwirtschaft einen entscheidenden Beitrag 
leisten. Denn durch die gezielte und bedarfsorientierte Anwendung von Dünger und Pflanzen-
schutzmitteln, aber auch die gezielte und räumlich variable angepasste Aussaat, können Ressource 
besser genutzt werden und im besten Falle den Ertrag sogar steigern. Vor allem wenn Düngemittel 
so ausgebracht werden, wie die Pflanzen ihn benötigen und aufnehmen können, im Gegensatz 
zu einer uniformen Ausbringung über das ganze Feld hinweg, kann ein Überschuss, welcher in 
das Grundwasser ausgewaschen werden kann, vermieden werden. Es braucht also eine Grund-
lage, auf welcher diese variable Ausbringung von Ressourcen bestimmt wird. Hier werden in der 
Praxis oft Zustandskarten in Form von Zonen im Feld verwendet oder „on-the-go“-Messungen 
von Sensoren auf dem Traktor. Für die umfassende Planung und eine holistische Bearbeitung der 
Bestände sind aber aktuelle und zurückliegende, wie zusammenfassende Zustandskarten, bezie-
hungsweise Zonenkarten nötig. Eine Datengrundlage für solche Zonen sind Satellitendaten, da sie 
in verschiedenster Art, aktuell und retroperspektiv vorliegen und große Flächen räumlich erfassen. 

Ziel: Diese Arbeit erforscht Möglichkeiten aus Satellitendaten eben diese Zonierung abzulei-
ten und sucht dabei verschiedene Herangehensweisen. Es sollen die Zusammenhänge zwischen 
Satellitendaten, Daten der Geoinformation und landwirtschaftlicher Daten wie Ertrag unter-
sucht und miteinander kombiniert werden. Im Fokus der Methodenentwicklung steht die An-
wendbarkeit in der Praxis und die somit einhergehenden Anforderungen des Landwirtes. 

Daten: Für die Methodenentwicklung und die Analyse wurden 179 RapidEye Szenen, 512 Landsat-
Szenen, 43 Sentinel-2 Szenen und 21 Planetscope-Szenen verwendet. Weiterhin die Bodenkarte Bo-
denschätzung, welche nicht nur die Informationen über die jeweilige Bodenart übermittelt, aber auch 
eine Quantifizierung der Fruchtbarkeit beziehungsweise des Ertragspotentials in Form von „Boden-
zahl“ und „Ackerzahl“. Digitale Geländemodell in unterschiedlichen räumlichen Auflösungen wurden 
verwendet, ebenso wie in-situ-Messungen von Nährstoffen, elektrischer Leitfähigkeit und Phänologie. 

Methoden und Ergebnisse: In dieser Doktorarbeit werden zwei Methoden und eine Datenana-
lyse vorgestellt. Die erste Methode verwendet einzig optische Satellitendaten (RapidEye) und ver-
arbeitet diese automatisiert zu fünf relativen Ertragszonen, welche den zu erwartenden relativen 
Ertrag gemittelt über mehrere Jahre spiegelt. Die Methode wählt dabei eigenständig die passen-
den Datensätze für ein vorgeschriebenes Feld aus, unter Verwendung verschiedener Schwellwerte, 
die sich aus den Rückstrahlwerten einzelner Bänder ergeben. Auf Basis eines gemittelten Rasters 
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der Bänder des nahen Infrarots werden dann auf Basis von Quartilswerten die Zonen separiert. 
Die Methode wird mit tatsächlichen Ertragsdaten mithilfe der Charakteristika von Boxplots vali-
diert Die erzeugten Ertragszonen können dann als Bearbeitungszonen in der Präzisionslandwirt-
schaft verwendet werden. Die zweite Methode erzeugt ebenfalls relative Ertragszonen, geeignet 
für die Verwendung als Management Zone, verwendet neben RapidEye Satellitendaten auch die 
Informationen der Bodenkarte und des Reliefs. Diese Datenfusion zur Modellierung von Er-
tragszonen basiert auf Überzeugungsstrukturen und verwendet das Transferable Belief Model. 
Somit kann individuelles Expertenwissen aus der praktischen Landwirtschaft in den Fusions-
prozess integrieren werden. Die Erkenntnisse, die im Laufe der Methodenentwicklung über die 
Zusammenhänge von Fernerkundungs- und GIS Daten und dem tatsächlichen Ertrag auf dem 
Feld generiert wurden, werden in einer großangelegten Datenanalyse mit einer Zeitreihe von 13 
Jahren und 755 Satellitenszenen erweitert und gefestigt. Sie zeigt, dass es einen starken Zusam-
menhang zwischen Satellitendaten und Ertragsdaten gibt (bis zu einem Korrelationswert von r 
= 0.75, einzelne Werte höher). Diese Korrelation hängt aber stark ab vom phänologischen Zeit-
punkt von – in diesem Falle – Getreide und Raps. Außerdem von der spektralen und räumli-
chen Auflösung, sowie den Wachstumsbedingungen und dem bodenverfügbaren Wasser.  

Fazit: Satellitendaten eignen sich sehr gut für die Anwendung in der Landwirtschaft und für die 
Ableitung von Bearbeitungszonen für den Präzisionspflanzenbau. Allerdings muss in der Auswahl 
der passenden Fernerkundungsdaten und auch der Verarbeitung und Methodik viel Expertenwis-
sen angewandt werden. Die wissenschaftliche und praktische Verwendung von Fernerkundungs-
daten sollte an die spezifische Fragestellung und die äußeren Bedingungen angepasst werden. 
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Modern agriculture finds itself in a global field of tension in which very different interests and chal-
lenges meet. A growing world population, including a growing middle class with increased nutritional 
demands, is driving up the demand for agricultural products. At the same time, agricultural land and 
soil as a resource are limited. A changing climate aggravates the situation of farmers, as the probability 
of extreme weather events - whether droughts or floods - increases with climate change (IPCC 2019; 
Semenov and Shewry 2010; Zhang et al. 2019). 

Agriculture must therefore manage its resources more efficiently and use them sustainably. Politics and 
society are additionally strengthening the demand for nature conservation and sustainable agriculture. 
It is not easy for agricultural companies to find their way in this area of tension, especially since price 
pressure on the national and international agricultural market is very high. Many stakeholders, inclu-
ding the German Federal Government, are relying on the digitization of agriculture (BMEL 2018) to 
make it more efficient and sustainable. The agricultural industry has long recognized the potential of 
digitization and precision farming as a large market, which is why new machines and software solutions 
are constantly being developed and distributed. However, the area of satellite data evaluation for pre-
cision farming applications is still relatively small and very little represented among end users, at least 
in Germany. 

Satellite data provide frequent information about large areas with little or no cloud cover. Meanwhile, 
there are a number of satellites relevant for agriculture, including the freely available data from the 
European COPERNICUS mission and the American LANDSAT series. However, the path from data 
acquisition in space to the user in the field is very long and can currently hardly be taken without ex-
pert knowledge about data processing and interpretation. For use in precision farming applications, 
raster data based on pixels is currently still very poorly suited and zoning for further processing is often 
necessary. 

This work therefore deals with the investigation of the potential of satellite data in precision farming 
and methods for zoning an agricultural field. Two methods are presented which have been developed 
and validated in this thesis. In addition, the question under which conditions satellite data correlate 
with yield data on the field and for what reason is investigated. 

1.1.2	 Structure of thesis 

At the beginning of the work in Chapter 1, the scientific background on precision farming, remote 
sensing in agriculture and zoning methods is presented. Chapter 1 also includes the research objectives 
and a brief summary of the three consecutive stand-alone manuscripts presented in chapters 2-4. These 
were written as stand-alone manuscripts for international peer-reviewed journals. Two manuscripts 
were published (Georgi et al. 2017; Vallentin et al. 2019) in „Precision Agriculture“. The third article 
was recently submitted to “Agronomy” (10th of February 2020). 

1.1.1	 Motivation 

1.1	 Motivation and Structure
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1. Georgi, C., Spengler, D., Itzerott, S., Kleinschmit.B (2018). Automatic delineation algo-
rithm for site-specific management zones based on satellite remote sensing data. Precision Agricul-
ture, 19, 4, pp. 684-707. DOI: 10.1007/s11119-017-9549-y (Chapter 2)

2. Vallentin, C., Dobers, E.S., Itzerott, S., Kleinschmit, B., Spengler, D. (2019). Delineation 
of Management Zones with spatial data fusion and belief theory. Precision Agriculture. DOI: 
10.1007/s11119-019-09696-0 (Chapter 3)

3. Vallentin, C., Itzerott, S., Kleinschmit., B., Conrad, C., Spengler, D. (2020). Yield estima-
tion with remote sensing: Suitability of various satellite data and geodata in NE Germany. Sub-
mitted to Precision Agriculture on 22nd of March 2020, author's preprint version (Chapter 4)

Fig. 1.1  Structure of this cumulative dissertation.

https://link.springer.com/article/10.1007/s11119-019-09696-0#article-info
https://link.springer.com/article/10.1007/s11119-017-9549-y
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The first manuscript introduces an automatic delineation method for agricultural fields in which 
suitable multispectral satellite images are automatically selected over several years and five relative 
yield zones are identified. The second manuscript presents a data fusion method that not only takes 
into account multispectral satellite data, but also combines it with GIS data to delineate relative 
yield zones within a field. The third manuscript analyses the relationship between different multi-
spectral satellite data and thresher yield data in a time series of 13 years.

The Synthesis in Chapter 5 discusses the research findings of Chapter 2-4 and suggests future re-
search on the topics. 

1.2	 Research Background

1.2.1  Precision agriculture 

The basis for precision agriculture (PA) is the spatial and temporal variability and heterogeneity 
of soil and crop characteristics within a field (Zhang,Wang and Wang 2002). PA practice in crop 
farming includes better management of resources such as fertilizers, herbicides, seeds, but also fuel 
consumed in field cultivation. Better management means using these resources in the right place at 
the right time (Mulla 2012).

The widespread practice - at least in Germany - in agriculture is the uniform spreading of these re-
sources onto a field. The PA approach means to divide a field into management zones (MZ), where 
each zone gets customized inputs of the resources. This customization depends, for example, on soil 
differences or the heterogeneity of plant vitality. PA offers a more efficient use of the resources used 
and, in the case of precisely applied fertilizers or herbicides, can protect the environment (Robert et 
al. 1993; Mulla,Perillo and Cogger 1996; Mulla et al. 2002; Tian 2002). 

However, the profitability of PA is discussed controversially (Swinton and Lowenberg-DeBoer 
1998; Robert et al. 1999; Griffin et al. 2018). On the one hand, the acquisition costs of correspon-
ding machines working with PA are very high. It is debatable though, if the precise output saves 
costs. More efficient use can, however, have the aim of homogenizing yields in the field and facilita-
ting harvesting or push the high-potential yield zones and neglect low-potential yield zones to save 
resources. Ultimately, PA does not usually save on resources, but distributes them around the field 
according to the needs of the plant, thus preventing fertilizer from being released into the ground-
water, for example. The profitability seems to depend on the type of PA measure taken (Griffin et 
al. 2018) and is less for example for variable rate application of fertilizer and quite higher for the 
implementation of GPS controlled vehicles, which is quite common in modern agriculture anyway. 
However, it is conceivable that PA could be applied to the application of pesticides and thus pre-
serve biodiversity to a greater extent than application without PA. Furthermore, the analysis of 
the data on which PA is based could also lead to new management strategies that promote nature 
conservation and biodiversity. These include, for example, the designation of flower strips or rena-
turation zones, for example on the basis of yield zones with low profitability.
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The basis of PA is the aggregation and evaluation of data and the associated information manage-
ment (Mulla 2013). The central component of PA - the GPS positioning of agricultural vehicles - is 
already well established in practice. In order to make decisions in the PA, however, spatial and tem-
poral data must inevitably be evaluated. Relevant data here are yield data, satellite and other remote 
sensing data, soil maps, records of ground-level sensors, measurements of electrical conductivity 
and nutrient content, as well as topographic maps and their products. 

Most PA-optimized machines work on the basis of zones, they need vector data or polygons as input. 
Very few applications rely on continuous data, raster data, when adjusting fertilizer or spreading rates. 

1.2.2	 Spatial variability and management zones

The spatial variability of a field is therefore currently represented by zones. Management zones are 
subdivisions of a field, each characterized by relative homogeneity of crops and/or environmental 
parameters (Doerge 1999). The more general term „management unit“ was introduced by Lark 
and Stafford in 1997. Since then, many methods have been developed to divide a field into zones. 
A very obvious possibility to divide a field into zones and at the same time to establish a relation 
to the yield potential of a field is to use yield data (Lark 1998; Pedroso et al. 2010). However, this 
presupposes that yield data is also available and can be trusted. A standard yield measurement is, 
however, not given at harvest time and, above all, not common for many cropss. The data recorded 
by a thresher during harvesting can involve many sources of error (Blackmore and Marshall 1996; 
Doerge 1999; Dobers 2002), such as when several threshers are harvesting in the field and not 
calibrated, as well as uncertain recordings at the boundaries of the field. However, if a farmer has 
reliable yield data, this is a valuable data basis and is very suitable for delineation of MZ.

Information on soil and topography can also be used to spatially divide a field into zones (MacMil-
lan et al. 1999; van Alphen and Stoorvogel 1999). The quality of the soil has a very large influence 
on the yield potential of a field as well as on the topography, especially in regions with high altitude 
differences. Erosion of topsoil on steep slopes can have just as unfavorable an effect on the cultiva-
tion of crops as sandy hilltops. However, depressions in which fine, loamy material accumulates can 
be good conditions for cultivation - unless they are too wet. MZ on the basis of soil characteristics 
is common in practice to derive seed maps, since the agricultural expert has experience with the 
emergence potential of his seed depending on the soil type. However, as for soil inventory maps, a 
sufficient scale is needed for precision farming applications (Franzen et al. 2002). Additionally, the 
question of relevance arises, when for example the standard soil map – such as the “Bodenschät-
zung” in Germany – dates back to the 1930s. Intensive soil grid mapping for status-quo maps is 
often not cost-effective and does not necessarily reflect the total spatial variability of crop growth 
(Hornung et al. 2006). The derivation of MZ from soil and topography information as a basis for 
a management decision on the crop during the season, as well as the application of nitrogen ferti-
lizer during the growth phase, rather harbors risks concerning this data source. Although there is a 
strong relationship between soil and yield, soil patterns do not necessarily reflect crop patterns in a 
field (Chapter 4). 

The zoning of a field is sometimes derived from data from near-soil sensors, such as maps of elect-
rical conductivity (EC) (Kitchen et al. 2005; Cambouris et al. 2006). One standard instrument to 
measure electrical conductivity in the field is “EM38”. The interpretation of these data refers to soil 
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parameters, such as the grain size of the soil. The electrical conductivity of the soil depends on it as 
well as on the water content, texture and salinity. In addition, EC of soil is influenced by a number 
of complex and mostly inter-related parameters (Lück et al. 2009), therefore interpretation is not 
necessarily straightforward. 

Since spatial patterns in EC measurements are affected by seasonal effects (e.g. weather conditions; 
Lück et al. 2009), single EC maps cannot be compared to EC maps for other fields in every case. 
The suitability as a basis for the derivation of MZ is therefore not ideal if the interesting variable 
is related to the plant growth itself, the vitality and the yield. Information on the condition of the 
crop during the vegetation phase, as well as retrospectively, is obtained by looking at the crop itself. 
It is common practice for a farmer to regularly check the condition of his crops. However, especially 
with large farms, not all areas and all spatial heterogeneity can be recorded manually on the ground. 
Remote sensing data promise to provide comprehensive information about the fields, plant covered 
or uncovered. In theory, the farmer has a lot of remote sensing data at his disposal, from images of 
various satellite sensors, as well as drone and aircraft mount sensors. The derivation of MZ from 
remote sensing data is becoming more and more important both in science and in the advisory 
agricultural sector (e.g. Song et al. 2009; Hank,Bach and Mauser 2015; Georgi et al. 2017). 

In addition to the briefly mentioned methods for delineating MZ, which usually focus on one data 
type, there are also approaches to combine and merge several data types and data sources and to 
increase the information content (Fridgen et al. 2003; De Benedetto et al. 2013; Yao et al. 2014; 
Vallentin et al. 2019). These approaches are primarily an attempt to address the complexity of vege-
tation growth and to compensate for uncertainties in individual data sources. A detailed treatment 
of the topic of data fusion and MZ is given in Chapter 3.

Fig. 1.2  Spectra of vegetation and soil. 
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1.2.3	 Remote sensing in agriculture 

Remote sensing in agriculture is based on the interaction of electromagnetic radiation emitted 
from the sun with soil and plant material. Optical remote sensing measures the proportion of 
electromagnetic radiation reflected by the earth‘s surface materials rather than the transmitted and 
absorbed radiation. The degree of reflection, transmission and absorption depends on the chemical 
and physical composition of the material to which the solar radiation is incident. This results in 
characteristic reflection curves, so-called reflection spectra. With the help of these spectra, which 
plot the reflection against the wavelength of the electromagnetic radiation, materials and partly 
their condition can be detected. Thus, the spectra of vital vegetation differ from dry vegetation and 
from soil (Fig. 1.2).

Reflection can be measured on different platforms. These include satellites, aircraft, drones (UAV 
- Unmanned Aerial Vehicle), tractors and hand-held sensors. Optical remote and near sensing co-
vers the spectral range from ultraviolet up to infrared, including the visible fraction of light. In this
work the reflection from the visible to the near infrared was evaluated. The most common sensors
of mentioned platforms, especially the satellites, are operating on the multispectral principle. A
multispectral sensor therefore only records in certain wavelength ranges, the channels or bands
of the sensor. The respective channels form an average value over a certain bandwidth of the elec-
tromagnetic spectrum. The satellite sensors, whose data are the basis of this work, often have very
different positions and numbers of their bands (Fig. 1.3).

The analysis of vegetation makes use of the high contrasts in the vegetation spectrum (Fig. 1.2). 
By forming ratios from the different bands, vegetation indices (VI) can be calculated, which can 
indirectly measure the condition of the vegetation cover. The most common VI is the Normalized 
Difference Vegetation Index (NDVI)(Rouse et al. 1974; Tucker 1979). The NDVI calculates a ratio 
by using the red and the near infrared (NIR) band. A high, positive NDVI indicates a high vegeta-
tion coverage or a high vitality, while a low, positive NDVI indicates vegetation-free areas. NDVI 
has also been widely used since the early 1980s because of its strong correlation with the Leaf Area 
Index (LAI) and fAPAR (fraction of Absorbed Photosyntetically Active Radiation)(Prince 1991).

Fig 1.3  Band postions of optical satellite sensors used in this thesis.
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In addition to multispectral sensors, there is a whole range of other sensors which are certainly rele-
vant for agricultural applications. These include the hyperspectral sensors, which contain even more 
spectral information and can therefore offer new possibilities in the field of agriculture (Mauser et 
al. 2012). They draw a nearly continuous spectrum in very many and very narrow bands. This pro-
perty is important in the agricultural context in soil science for the mapping of organic carbon and 
nutrients (Zheng 2008). Furthermore, hyperspectral data are used in the determination of water 
stress in plants (Tilling et al. 2006; Cao,Wang and Zheng 2015), determination of pigments and 
plant nutrients (Blackburn 2007; Zhang et al. 2008; Clevers and Kooistra 2012), as well as biomass 
(Hansen and Schjoerring 2003) and numerous others. 

Temperature sensitive remote sensing sensors such as thermal systems can provide valuable infor-
ma-tion on crop temperature and detect stress situations. Similarly, the analysis of soil moisture 
with thermal data is conceivable (Qui 2006; Elsayed et al. 2017; Khanal,Fulton and Shearer 2017). 
How-ever, thermal and hyperspectral sensors on satellite basis have a rather low spatial resolution 
(> 30m). For PA applications in Germany such Ground Sampling Distances (GSD) are often too 
coarse resolved. 

Radar data can be used to make different statements in agricultural remote sensing. These systems 
actively transmit a signal which they receive again after various scattering. In contrast to optical sys-
tems, radar systems are independent of cloud cover. In agriculture, radar data are used for example 
in phenology determination (Nasrallah et al. 2019), soil moisture determination (Paloscia et al. 
2013) and biomass estimation (Harfenmeister,Spengler and Weltzien 2019). 

1.2.4	 Remote sensing for precision agriculture 

The use of satellite data in PA focuses on the detection and analysis of spatial variability of field 
parameters. This variability may concern plant vitality, biomass, LAI, chlorophyll content, weed di-
spersal or soil differences. The principle of PA is the active management of spatial variability, which 
is best captured by spatial data.

Remote sensing should derive the condition of the plant or the soil in order to make appropriate 
decisions in farming. Soil moisture (Ahmad,Kalra and Stephen 2010; Rahimzadeh-Bajgiran et al. 
2013) or organic carbon (Zheng 2008; Blasch et al. 2015) derived from remote sensing can serve 
the farmer to create spatially variable seed maps or to evaluate the yield potential of the field dif-
ferently. Such soil characteristics can also be used as an aid in designing soil sampling schemes. In 
this procedure, a soil sample is taken selectively at different positions in the field. This procedure is 
obligatory and cost-intensive for farmers in Germany, which is why targeted sampling, depending 
on the heterogeneity of the field, is desirable. 

Remote sensing in precision agriculture can also derive parameters of the condition of the crop, the 
most relevant for the farmer being the nitrogen status, which can also be conditionally derived from 
remote sensing, especially hyperspectral sensors (Zheng 2008; Mahajan et al. 2014). The retrieval of 
canopy chlorophyll is more established and also possible with multispectral sensors (Delloye, Weiss 
and Defourny 2018) and linked with nitrogen uptake. On the basis of this information, fertiliza-
tion can then be adjusted during the growing season. Such a variable and precise adjustment then 
supplies the crop with the amount of fertilizer they need and saves the scrap of unneeded fertilizer 
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which could otherwise be washed into the groundwater. Precision farmers often use an agricultural 
machine equipped with a sensor to measure the nitrogen status during fertilization. In this case the 
remote sensing data can make a contribution by feeding and improving the „online“ measured data 
of the near plant sensor in the „Map Overlay“ procedure.

Remote sensing of plant ripeness (Herwitz et al. 2004) can give the farmer the opportunity to make 
decisions about the optimal harvest time, especially when meteorological low pressure areas and 
storms are expected. The estimation of yield (Benedetti and Rossini 1993; Drummond et al. 2002; 
Kowalik et al. 2014) and yield potential (Raun et al. 2001; Andarzian et al. 2008; Van Wart et al. 
2013) are also useful applications in precision farming. The estimation of the yield, for example, 
contributes to economic planning and precise fertilizer application. The yield potential can be used 
to optimize crop rotation or to divide entire fields into sub-fields in order to make sustainable use 
of variability. The derivation of absolute yield data is, however, extremely difficult, since a remote 
sensing sensor does not directly measure the grain yield. Absolute modelling may be possible if past 
yield data from the same field are used to calibrate the model parameters and if the quality of such 
yield data is sufficient. The use of growth models and the integration of meteo-data  (Hank,Bach 
and Mauser 2015) is also promising here. 

The derivation of yield from satellite data is an interpretation, but the correlation between the ref-
lectance and the cereal yield and with limitations canola is definitely given (Chapter 4, Kyratzis et 
al. 2015; Sulik and Long 2016). The yield - especially for cereals - is a function of a rate of biomass 
or seed dry matter accumulation expressed over a finite time (Egli 2017). The number and density 
of plants is also related to the final yield, at least at certain phenological stages (Geisler 1983). Yield 
cannot be assessed by remote sensing directly, but grain growth is based on cell multiplication and 
the assimilation rate in the plant. Grain-growth important assimilation is driven by the photosyn-
thetic activity of the top most plant parts (Geisler 1988), which is visible to the remote sensing 
sensors.

If it were possible to determine the absolute yield on a field and subfield basis on the basis of remote 
sensing data only, this would certainly be valuable for farmers, authorities and scientists alike. But 
also, the relative yields, which are the focus of this paper, contribute a valuable part to precision 
farming applications. Since most agricultural machines used for PA management work with zoned 
maps anyway, the methods presented here have been developed towards zoning and not with the 
aim of maps with continuous pixel values. 

Numerous scientific publications deal with the topic of yield modelling from satellite data with va-
rying success (e.g. Shanahan et al. 2001; Doraiswamy et al. 2003; Gontia and Tiwari 2011; Pantazi 
et al. 2016). Investigated are the most frequently cultivated crops in Germany, cereals (Labus et al. 
2002; Laurila et al. 2010), canola (Cowley et al. 2014; Gong et al. 2018), maize (Sakamoto,Gitelson 
and Arkebauer 2013; Torino et al. 2014) and grassland (Jianlong,Tiangang and Quangong 1998), 
as well as numerous other arable crops such as soya (Ma et al. 2001) and wine (Cunha,Marçal and 
Silva 2010) are also investigated. However, the questions and the data basis of many publications 
cannot be applied to the data basis of this work and are therefore only comparable to a limited 
extent in the development of methods. The yield modelling is often focused on regional (Ren et al. 
2007, 2008) scales. In some cases on global scale through the modelling of net primary production 
(Field,Randerson and Malmström 1995), country-wide scale (Laurila et al. 2010; Bolton and Friedl 
2013), whereby the heterogeneity of yields within a field is very rarely investigated with satellite 
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data. Studies on within-field variability mostly deal with the creation of management zones. The 
availability of high-resolution yield data as dense point measurements on fields with an average size 
of more than 100 hectares is rather rare. Especially the fourth chapter of this thesis exploits the 
immense time series of remote sensing and agricultural yield data scientifically. 

1.3	 Research Objectives 

The advancing digitization in agriculture continues to require solutions especially for precision far-
ming in order to make agriculture sustainable, efficient and adapted. With „Big Data“ as the data 
basis, the information is available, but the methods for data processing must be constantly develo-
ped. The objectives of this dissertation are the analysis of optical satellite data and their usability in 
PA as well as the development of methods to automate and partially automate the analysis of these 
data in order to generate added value for farmers in practice. Data from 6 satellite sensors from the 
years 2006-2018 were used as a basis for this analysis and the development of methods and were 
linked to agricultural data such as yield maps, soil information and nutrient content. The concrete 
research objectives (R) are: 

R-01: Development of a fully automated method based on optical satellite data, which divides
an agricultural field into long-term relative yield zones, which can be used as MZ.

R-02 a: Development of a method which, in addition to satellite data, also considers other map
material, such as soil information, to generate relative yield zones using a data fusion model.

R-02 b: Evaluation of a statistical model which is able to integrate the expert knowledge of a
farmer into the data fusion in order to open the algorithm for human knowledge and thus im-
prove the method.

R-03: Analysis of the relations between optical satellite data of different sensors at different
times and the yield data of the corresponding years. Which satellite data are best suited for
yield-relevant questions and at which point in time?

The scientific questions are of high relevance for both science and practice. An accompanying goal 
is to develop applications that can be transferred into practice, which is why applicability has a high 
priority in development. However, the transferability of the developed methods to other scientific 
areas and questions in dealing with spatial data also has potential. Above all, the analysis of the 
purely statistical relationships between satellite data and yield as well as GIS data is a valuable con-
tribution for research and practice.
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1.4	 Research Area

The research area is located in the federal state Mecklenburg-Vorpommern, in the north-eastern 
lowlands of Germany (Fig. 1.4). The federal state is sparsely populated (≤67 inhabitants per km²) 
and is used intensively for agriculture (approx. 58% cultivated area). Half of the cultivated crops 
are cereals (51.9 %). Also widespread is the cultivation of canola as part of the oil crops (18.5%) 
and crops for green harvest (18.7%), which includes maize (Statistisches Amt Mecklenburg-Vor-
pommern 2019).

The soils of the research area belong to the young moraine soil-covered areas of northern Germany. 
They have typical glacial morphological features, such as extensive ground moraine areas, push 
(end) moraines, glacial valleys, lake basins, eskers, kettle holes and sandars, formed by recurrent 
glacial processes during the Weichselian Glaciation of the last Pleistocene. Characteristic soil types 
in the research area are Luvisole, Stagnosole, Cambisole and Albeluvisole. In the floodplains there 
are peaty soils (Bundesanstalt für Geowissenschaften und Rohstoffe 2006). The research area is part 
of the observatory TERENO-NE (Heinrich et al. 2018).

The method development of this work was primarily carried out on fields of an agricultural com-
pany, 15 kilometers southwest (53°99’N,13°27’E) of Greifswald. The farm cultivates about 2000 
hectares of cereal, canola, maize, sugar beet and grassland. During the data recording period on 
which this dissertation is based, the farm operated precision agriculture, especially in the area of 
fertilization. The topography on this area is not very pronounced, with the southern fields descen-
ding towards the Peene River, where the greatest topographical differences can be seen, e.g. in the 
pronounced drainage channels. For the analytical part of this work, fields of a second farm were also 
used, which extend over a large area between Greifswald and Demmin (53°54’N, 13°3’E).

Fig. 1.4  Research area, located in the NE of Germany. Below: Topography of main research 
area with agricultural fields investigated. 



30 Chapter 1   ·   Introduction

1.5	 Data

The primary data basis for this work are optical satellite data of the following sensors: RapidEye, 
Landsat-5, Landsat-7, Landsat-8, Sentinel-2 and Planetscope (Table 1.1). Each of these satellite 
data has different spectral and spatial characteristics and therefore addresses different questions. The 
method development was carried out on the basis of RapidEye satellite data. As additional infor-
mation in the background, optical ortho photos of the state of Mecklenburg were used as a WMS 
service, as well as UAV photos and data from hyperspectral flight campaigns. For the analysis, a map 
of organic carbon generated from satellite data by Blasch et al. 2015 was also used. 

The GIS data used included field boundaries, soil maps, yield data, nutrient sampling and electrical 
conductivity measurements. A detailed description of these data can be found in the publications 
summarized here.

Table 1.1 Data sets used in this thesis for method development and analysis

Data source or type Years
No. of 

data sets
Spatial

resolution 1 
Spectral resolution 

used in study 2 
Used in chapter 3 

Satellite Data

RapidEye
from RESA Archive

2009-2018 179 6.5 / 5 m 
5 bands: blue, green, 

red, red edge, nir
Chapter 2-4

Landsat 5
2006, 2007, 
2009-2011

105 30 m

4 bands: blue, green, 
red, nir

Chapter 4

Landsat 7 2006-2017 280 30 m

Landsat 8 2013-2018 127 30 m

Planetscope 2017-2018 21 3 m

Sentinel-2 2017-2018 43 10 m/ 20 m
8 bands: blue, green, 
red, 3 red edge bands, 

nir

Other Raster Data

Digital elevation 
model

2011 1 5 m
- 

Chapter 3, 4

Corg Map 2009-2014 1 5 m Chapter 4

Vector Data

Soil map 1930s 1 Polygon

- 

Chapter 3, 4

EM38 2009 1 Point Chapter 4

Yield Data 2006-2018 947 Point Chapter 2-4

1 of used bands
2 Sensors offer more band choices
3 For methods, calculations and analysis
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1.6	 Method Finding

For the processing of research objectives and the development of practical methods, techniques of 
image processing, segmentation and data fusion had to be explored. In this section the steps to find 
these methods are explained. 

Selection of the appropriate remote sensing data 

The RapidEye satellite system was used for the method development of Chapter 2 and Chapter 
3. It consists of five equivalent satellites and has a high spatial resolution of 6.5 meters, which are
resampled to 5 meters by the provider as standard. The repetition rate of the recording is 5.5 days
at Nadir and the spatial coverage is sufficiently large with a 77 km long swath width. The primary
suitability, however, for the analysis of crop patterns lies in the spectral resolution of the system.
RapidEye has five spectral bands, the channels blue, green, red, red edge and near infrared (NIR).
Since vegetation reflects particularly strongly in the NIR range, this channel is a crucial component
and is of great importance in the method of Chapter 2.

The extensive data available from the RapidEye Science Archive (Grant Number 617 FKZ)  (Borg, 
Daedelow and Johnson 2012), free of charge for research, therefore provides a valuable basis for 
questions in the field of agriculture. 

Fig. 1.5  Time series of NDVI rasters, calculated from Planetscope data for four dates 
in 2018 on field 360-01. 

N
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For the analysis of Chapter 4, the data set has been extended to test other optical satellites suitable 
for yield modelling. The systems Landsat, Sentinel-2 and Planetscope (Table 1.1) were considered, 
which are either completely freely available or, like the latter, free for research purposes and students. 
All these systems have spectral properties relevant for the research of crops and crop parameters. 

Choosing the right GIS data

For the method development of Chapter 3 and the analysis of Chapter 4, the GIS data already men-
tioned were used. Especially the soil information as soil map with several information layers and the 
digital elevation model are of relevance, because they offer area-wide and relevant information. In 
order to analyse, understand and model crop patterns and related parameters, the combination of 
elevation model and soil type provides more information on the pattern distribution. 

Evaluation of the appropriate segmentation method for plant patterns

Segmentation approaches are widely used in the field of remote sensing and even companies like 
Trimble have specialized in pattern mapping with software like eCognition (Trimble). Segmen-
tation algorithms differ from image classification in that they are object-oriented. This results in 
discrete zones rather than classes with certain properties (such as landscape classification of forest, 
field, soil, water, etc.). Segmentation algorithms aim at homogeneous zones with respect to the se-
lected parameter (e.g. soil color, plant vitality). Most segmentation methods follow two basic prin-
ciples: the contour-based and the region-based ones (Bolon et al. 1995; Pedroso et al. 2010). The 
contour-based family is particularly suitable for object recognition, while the region-based family 
is more suitable when no clear lines are present. This is the case with within-field variations of soil 
or plant parameters and is therefore very well suited for agricultural data zoning. Object-oriented 
questions can be solved with commercial software (Liu et al. 2017), the claim of method develop-
ment from Chapter 2 and Chapter 3 of this dissertation was primarily a non-commercial solution, 
which is applicable and transferable into practice. Commercial software as part of the workflow 
therefore had to be excluded. In the agrar-specific remote sensing disciplines, plant and soil patterns 
are segmented with k-means (Johann et al.; Cheng, Peng and Liu 2013) or fuzzy kmeans (Song et 
al. 2009) after exclusion of these criteria. 

The k-means approach forms clusters of similar attributes in a collection of values but can lead to 
marginalization of certain classes in a raster data set. If there are a few pixels whose values are ex-
tremely different from all others, they form their own class, which is mathematically correct, but 
does not naturally fit with the visual analysis of a satellite image of a field. If plants were destroyed 
on a densely overgrown field, for example by damage caused by boars or other wild animals, and 
the soil signal dominated, then this local place in the field would receive its own class. Especially 
yield data can contain a number of outliers that occur locally. At the edge of a field or around a sink 
hole. If these outliers have a critical number of points, they themselves are identified as the center 
of a cluster. A further hurdle when using k-means is that it is not clear which class stands for which 
value range. So, it is not clear which class represents low and which high vitality. 

As explained in Chapter 1.2.3 (Remote sensing for precision agriculture), there are strong correlations 
between yield and reflectance, especially in the NIR range. In order to perform a simple segmen-
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tation, the segmentation method in Chapter 2 uses exactly this band and divides it into five zones. 
The thresholds are four evenly distributed quantiles of each data set. If fixed NIR values were to be 
used for all data sets, the data range of each individual data set would not be respected and classes 
with an unequal number of values could also result. The use of quantile values guarantees that there 
are enough pixels in each class, while the result is verifiable.

This method allows data sets of different ranges to be segmented, while the classification of zones 
into the interpretation „very low yield“, „low yield“, „medium yield“, „high yield“ and „very high 
yield“ follows the assumed and proven dependence on remote sensing data and yield in Chapter 4.

Evaluation of the suitable data fusion method 

The use of satellite data for spatial questions, which document the actual state, is increasing in 
value, since the availability of data is also constantly increasing. Not only current problems can be 
dealt with, but also change analyses and comparisons can be carried out, which can draw on an 
ever-increasing data archive. As already explained, under the right conditions there is a high corre-
lation between satellite data and yield, especially for cereals, which is related to the intensity of the 
back radiation and the associated degree of vitality. However, it is quite possible that other plants, 
such as weeds, also produce a high level of reflection and that modelling with - only the satellite 
image - in these areas is wrong. Of course, yield modelling with satellite images also entails the un-
certainty that not only the connection between yield and vitality, but also the connection between 
reflection and vitality is an interpretation. The question therefore arises as to whether this more 
up-to-date data can be upgraded by combining it with existing GIS data. Especially if these other 
data also allow conclusions to be drawn about the yield and are also used and better understood by 
a farmer than satellite data. The second method of this work (Chapter 3) therefore deals with the 
question of whether and how satellite data, a soil map and relief information can be combined to 
achieve the best possible yield zoning. 

The use of fusion methods in remote sensing is not new, but highly complex. This is due to the fact 
that different data have different formats (raster, polygons, points), different spatial and spectral 
resolution or are recorded and interpreted in a completely different way (e.g. radar). There are many 
ways to combine different data sources into the same parameter, such as  Bayesian techniques (Xue, 
Leung and Fung 2017), Neural Networks (Teimouri, Mokhtarzade and Valadan Zoej 2016), Sup-
port Vector Machines (Park and Im 2016), Random Forest (Crnojevic et al. 2014) and Dempster-
Shafer Theory (DST) (Le Hegarat-Mascle, Richard and Ottle 2002; Ran et al. 2008). 

The challenge of method finding in this thesis was that most fusion approaches in the field of remo-
te sensing aim at classification. For example, the classification of a scene into forest, meadow, field, 
water, urban development. The division of a field into yield zones, whose boundaries are naturally 
fluid, is a topic that can hardly be found in the current publication landscape. Another claim of the 
method is to work simply and transparently. Even a user - the farmer or a consulting firm - must be 
able to understand the fusion method. The use of a „black box“ algorithm in this industry is more 
likely to lead to mistrust and resentment. Machine-learning algorithms such as Support Vector Ma-
chine or Random Forest were therefore out of the question. The method should support the farmer 
and at the same time be able to incorporate the expert knowledge and experience of the farmer into 
its calculation. 
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For the method from Chapter 3, an interpretation of the Dempster-Shafer theory was used, the 
Transferable Belief Model (TBM), developed by Smets and Kennes in 1994. The suitability for 
agricultural questions has already been tested by co-author Dobers in 2008. In its functionality and 
structure, the TBM is very similar to the Bayesian model, but is based on quantified beliefs and not 
on probabilities. It is able to integrate expert knowledge based on experience and knowledge. 

The use of the Bayes method has been intensively studied, precisely because there is much more 
experience with this approach in the literature. However, the calculation in the fusion process does 
not allow a conviction for the occurrence of several classes to be possible. For example, if the farmer 
in a sink of the field expects both a high yield (because it is constantly humid) and a low yield (be-
cause it could be too wet or flooded by heavy rain). 

The TBM allows the assignment of a combined quantified belief for the assumption of both events, 
whereas in the Bayesian model one belief or probability has to be assigned for each event. This in 
turn affects the practicability for the farmer in practice and could realistically only be supported by 
a machine learning algorithm. 

The TBM, on the other hand, is also very flexible in this respect. The default settings and inter-
pretations of the individual data sources and classes of data sources can be carried out completely 
manually by the expert. Optionally an automatically generated input based on machine learning is 
possible as well as the correction of these suggestions by the expert himself. A detailed explanation 
of the TBM as well as the terminology and mathematics of the model are described in Chapter 3. 

1.7	 Summary of Chapters 2 – 4: Research Manuscripts

Chapter 2: Automatic delineation algorithm for site-specific management zones based on sa-
tellite remote sensing data

The aim of this study was to develop a method to divide an agricultural field into five relative yield 
zones based on satellite data. The algorithm works automatically and requires only the field boun-
daries as a vector file and a collection of multispectral satellite data recorded in the years relevant 
to the user. Relative yield zones averaged over these selected years are modelled. The mapping of 
these yield zones is based on the growth and vitality patterns of the field crops wheat, rye, barley 
and canola and deals with research objective R-01. The method is transparent and simple and was 
successfully transferred to other fields as part of the method development. As with the other manu-
scripts, the test area for the development corresponds to the research area described in Chapter 1.4 
(Research Area). The working steps of the manuscript are: 

• Select RapidEye satellite images of a field to investigate and define appropriate images which
show plant patterns (and are not free of vegetation or too dense vegetation)
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• Recognize plant patterns on a field with RapidEye satellite data and define the spectral bands
that are most sensitive to these patterns.

• Establish the relationship between plant patterns, reflection values of satellite imagery and yield
data.

• Design an automated workflow with selection criteria and thresholds that automatically selects
the appropriate RapidEye scenes for the field

• Choose a method that divides the selected acquisitions into five relative yield zones

• Validate the result with actual yield data

• Test the transferability of the method on three other different fields

Chapter 3: Delineation of Management Zones with spatial data fusion and belief theory 

The aim of this study was to find a way to combine satellite data, soil map and relief information in 
order to derive relative yield zones within a field within the framework of research objective R-02 
a. With this method, the integration of expert knowledge (R-02 b) is possible, since the delineation
of the management zones is carried out on the basis of belief structures. The study presents the
possibilities of this data fusion with beliefs, describes their possibilities and limitations and gives
several examples of the combination and the respective results. In comparison to the manuscript
from Chapter 2, only three relative yield zones are formed, which is due to the complexity of the
method. The study tries to test the data fusion algorithm at the simplest level in order to test the
feasibility and explain the principles. The steps include:

• Analysis of the input data: RapidEye satellite images, soil map, relief information and their
correlation with the thresher yield data.

• Analysis of relations between input data and yield data for evaluation of the input data as data
source for the Transferable Belief Model (Hypotheses, Belief, Reliability)

• Set-up of the TBM: Formatting / classifying the input data, assigning variables relevant for the
TBM and programming the workflow.

• Validation of combination results with actual yield data

• Testing of all possible combinations of the eleven input data sets and ranking of the best results
in a combination matrix

• Selection of the most relevant and correlating results



36 Chapter 1   ·   Introduction

Chapter 4:  Yield estimation with remote sensing: Suitability of various satellite data and geo-
data in NE Germany

The study analyses the correlation between a series of multispectral satellite data and selected GIS 
data with actual yield data from two farms in the study area. The aim is to investigate which data 
sets correlate best with the yield data and which parameters characterize these well correlated data 
sets (R-03). One additional goal is to provide assistance for those who want to model yields using 
satellite data and seek the appropriate data for the appropriate time periods. In the flood of satel-
lite data - often freely available - it is often not trivial to find the most suitable and reliable data to 
model the yield. The study investigates the significance of the factors spectral and spatial resolution, 
time of recording and phenology of the crop and examines the suitability of a number of vegetation 
indices. The work steps include: 

• Collection and processing of satellite data from the Landsat (5,7,8), RapidEye, Sentinel-2 and
Planetscope sensors from 2006 onwards for the study area

• Establish a correlation table that takes into account the above factors and allows identification
of the best correlating data sets

• Identification of the best correlating data sets and analysis of the parameters which describe the
respective datasets

• Derivation of new knowledge about which data at which phenological stage are most suitable
for which crop to model yield
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Fig. 1.6  Context and relations of research manuscripts in this thesis.
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Abstract

In light of the increasing demand for food production, climate change challenges for agriculture, 
and economic pressure, precision farming is an ever-growing market. The development and distri-
bution of remote sensing applications is also growing. The availability of extensive spatial and tem-
poral data – enhanced by satellite remote sensing and open-source policies – provides an attractive 
opportunity to collect, analyze and use agricultural data at the farm scale and beyond. The division 
of individual fields into zones of differing yield potential (management zones (MZ)) is the basis of 
most offline and map-overlay precision farming applications. In the process of delineation, manual 
labor is often required for the acquisition of suitable images and additional information on crop 
type. The authors therefore developed an automatic segmentation algorithm using multispectral 
satellite data, which is able to map stable crop growing patterns, reflecting areas of relative yield 
expectations within a field. The algorithm, using RapidEye data, is a quick and probably low-cost 
opportunity to divide agricultural fields into MZ, especially when yield data is insufficient or non-
existent. With the increasing availability of satellite images, this method can address numerous 
users in agriculture and lower the threshold of implementing precision farming practices by provi-
ding a preliminary spatial field assessment.

2.1	 Introduction

The major aim of precision agriculture is to optimize crop management by addressing spatial varia-
bility, and thus optimize the use of farm inputs such as fertilizers and herbicides (Mulla 2013). In 
general, vast information is accumulated and used for the analysis of field inventory, crop growth 
and yield patterns. With this information, customized inputs can be applied to management zones 
(MZ), i.e. the units into which large farm fields are divided (Mulla 2013). 

The delineation of MZ is the basis of most precision agriculture (PA) practices, addressing the 
within-field variability of crop and crop yield. MZ are subdivisions of a field, each characterized by 
relative homogeneity of crops and/or environmental parameters (Doerge 1999), which therefore 
differ in the need for specific input rates of treatment. The more generic term ‘management unit’ 
was introduced by Lark & Stafford (1997), and numerous delineation methods have emerged since 
then. They are usually either based on yield maps (Pedroso et al. 2010; Lark 1998), soil and topo-
graphic properties (MacMillan et al. 1999; van Alphen and Stoorvogel 1999), electrical conductivi-
ty data (Kitchen et al. 2005; Cambouris et al. 2006), remote sensing and vegetation indices (Ahn et 
al. 1999; Song et al. 2009), or a combination of these methods (Fridgen et al. 2003; De Benedetto 
et al. 2013; Yao et al. 2014).

Every automatic method to determine MZ has several disadvantages in terms of accuracy and ap-
plicability. Commonly, segmentation applications rely on yield maps, which are acquired neither 
by every farmer nor for every field, even if the company is in possession of the required technology. 
Yield data have significant error sources, such as via sensor, georeferencing, operator or data proces-
sing errors (Simbahan et al. 2004), and are also complicated to prepare (Blackmore and Marshall 
1996). Moreover, the irregular distribution of data points in regard to the spatial variation in yield 
can impede accurate interpolation, which is a necessity for most spatial analyses. 
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The use of soil sampling data and soil maps for delineation of MZ is also a common approach, espe-
cially if yield maps are not available. However, as for soil inventory maps, a sufficient scale is needed 
for precision farming applications (Franzen et al. 2002). Additionally, the question of relevance 
arises, when for example the standard soil map – such as the “Bodenschätzung” in Germany – dates 
back to the 1930s. Intensive soil grid mapping for status quo maps is often not cost-effective and 
does not necessarily reflect the total spatial variability of crop growth (Hornung et al. 2006). 

Electrical conductivity (EC) maps acquired with instruments like the standard “EM38” can also 
be used for successful MZ delineation (Cambouris et al. 2006). They reflect soil differences due to 
such factors as moisture content, salinity and texture. However, even if these characteristics influen-
ce crop growth significantly, EC maps may not always give a direct picture of in-season vegetation 
patterns. In addition, EC of soil is influenced by a number of complex and mostly interrelated para-
meters (Lück et al. 2009), therefore interpretation is not necessarily straightforward. Since spatial 
patterns in EC measurements are affected by seasonal effects (e.g. weather conditions; Lück et al. 
2009), single EC maps cannot be compared to EC maps for other fields in every case. 

Promising point-based measurement approaches are fusion and (fuzzy) clustering techniques (Frid-
gen et al. 2003; Fu et al. 2010; Shaddad et al. 2016), though they have only been tested on small 
and medium fields (≤ 40ha) according to the literature. Point measurements, whether from soil 
sampling, EC or, in some cases, topographic information, are expensive and time consuming to 
acquire and may be unsuitable for large commercial fields, since they do not completely represent 
spatial variability (Cohen and Levi 2013). 

Satellite remote sensing provides added value mainly with its spatial continuity and extent, spectral 
crop information and low cost – depending on satellite type. When analyzing time series, satellite 
remote sensing is often more cost-effective and offers an archive of already acquired data by opera-
ting sensors. When it comes to determining MZ on the basis of actual crop growth patterns, satel-
lite imagery applications are valuable tools in precision farming (Basnyat et al. 2005). 

Compared to drone and aircraft-based images, as well as data from crop and soil sensors, most 
open-source and commercial multispectral remote sensing data has a coarser spatial resolution 
(centimeters versus meters). The major disadvantage of optical satellite imagery however is the 
dependence on a clear, cloud-free view of the object of interest, which is especially challenging in 
temperate and rainy regions. 

Still, remote sensing has a long tradition in agriculture,  Seelan et al. (2003) reported the early be-
neficial use of aerial photography dating back to 1929. However, by the launch of the Landsat series 
of satellites in the 1970s and the subsequent availability of recurring landscape imagery and spectral 
reflectance characteristics, remote sensing for agriculture has truly emerged. It has been used for a 
wide variety of agricultural applications, such as crop yield estimation (Idso et al. 1980; Hank et 
al. 2015; Lobell et al. 2015), biomass monitoring (Lu 2006; Ahamed et al. 2011), soil parameter 
derivation (Barnes et al. 2003; Ge et al. 2011) and many others (Moran et al. 1997; Atzberger 
2013; Mulla 2013). A considerable number of studies related to crop growth and yield are based on 
satellite images within one growing season (Ren et al. 2007; Song et al. 2009). 
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However, Thenkabail (2003) pointed out the potential of multi-temporal analysis of archived re-
mote sensing data in combination with real time data. The time series approach is especially im-
portant for the identification of stable recurring crop patterns, which consequently define general 
MZ. Yield zones, which are comparable to MZ, are characterized by temporal variability and need 
to be addressed by a multi-temporal approach, which considers yield data and landscape attributes 
(Schepers et al. 2004).

A variety of approaches for delineating MZ with multispectral satellite images have been developed. 
Song et al. (2009) generated and compared delineation methods based on soil, nutrient and yield 
maps, a vegetation index (VI) distribution of one multispectral satellite scene, and combinations 
thereof. De Benedetto et al. (2013) used a data fusion method of proximal and remote sensing 
information, while Boydell & McBratney (1999) based their delineation on modelled yield data 
from Landsat imagery. 

However, methods in the literature have so far mostly relied on additional information besides sa-
tellite images. Additionally, manual selection of imagery is required to avoid cloud-covered scenes, 
as well as to determine specific dates representing specific phenological stages (emerging and ripe-
ning). These are preferred (Idso et al. 1980; Boydell and McBratney 1999; Sakamoto et al. 2013) 
because they are assumed to reflect yield and yield potential. 

While these approaches address the complexity of crop cultivation, they do not also imply an 
easy, cost-effective and practical usage for farmers. This leads to the question as to whether the 
delineation of a field into MZ is possible based only on satellite data. If so, this would make basic 
precision farming information available for every farmer, especially in the light of the open data 
development of earth observation data. To answer this question, the authors propose an automatic 
segmentation algorithm for within-field crop patterns by using only multi-temporal multi-spectral 
satellite images. 

The following study showed that this algorithm works well on fields with stable spatial and distin-
guishable patterns and fairly on more complex fields, which either change their appearance over 
time and/or are very homogenous in crop vigor. While the algorithm addresses the requirements of 
simplicity and efficiency, the use of satellite images narrows the accurate and competitive outcome 
mainly because of the disadvantages of frequency/acquisition date (no or not enough cloud-free 
images available in certain time frames) and unilateral information (e.g. no crop type information). 

2.2	 Materials and Methods

The algorithm presented automatically selects suitable images for crop pattern delineation and 
works independently of additional information regarding crop type, growth stage and soil type. The 
subdivision of the field is performed on the near-infrared (NIR) spectral band of RapidEye (Tyc et 
al. 2005)  satellite images. The result is a division into five classes, each resembling different produc-
tivity or yield expectancy zones (YEZ). These relative yield zones are suggested as being functionally 
equivalent to MZ. 
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2.2.1	 Study area

The segmentation algorithm was developed and predominately tested on a 120 ha tilled field (“field 
100-01”; Upper Left Corner (ULC): 13°14’E, 53°59’N; Lower Right Corner (LRC): 13°16’E, 
53°58’N), part of a 2000 ha farm near the village of Görmin, located 15 km SW of Greifswald in 
the North-Eastern Lowlands of Germany. All other test and validation fields belong to the same 
farm and vary in area, crop rotation and soil type distribution. Geologically, the region was shaped 
by recurring glacial processes during the Weichselian Glaciation, and evolved into a hilly ground 
moraine landscape with representative glacial features. Flat, hilly and undulating ground moraines 
alternate with hilly terminal moraines, glacial valleys, lake basins, kettle holes, eskers and outwash 
plains (Bundesanstalt für Geowissenschaften und Rohstoffe 2006). Lakes and river systems, inclu-
ding the nearby river Peene, are closely associated with the near-surface ground water table.
 
The altitude of field 100-01 ranges from 9 m to 25 m above sea level (mean 19 m , standard devia-
tion 3 m) and slope angle varies between 0° and 5.5° (mean 0.8°, standard deviation 0.5°; Amt für 
Geoinformation Vermessungs- und Katasterwesen, 2011). This results in relatively flat topography 
at the field scale, which is traversed by natural drainage towards the River Peene (Fig. 2.1) as it 
lowers in elevation towards the southern boundary. Field 100-01, similarly to the region, is charac-
terized by a young morainic soil inventory, dominated by Stagnosols (northern part) and Luvisols. 
These glacial tills are clayey and loamy sands, with increasing loam content towards the southern 
end of field 100-01. 

Fig. 2.1  Digital elevation model of field 100-01 with a decrease of elevation towards the southbound 
river Peene. Cavities in the fields shape represent a kettle hole (North-East) and housing (East).
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Weather recordings from the Greifswald weather station (1985-2014) indicate a mean temperature 
of 8.94 °C and a mean precipitation of 607 mm/year. On field 100-01, the crop rotation is domi-
nated by winter wheat, canola and, rarely, beetroot. 

2.2.2	 Remote sensing data

The method was developed using a RapidEye time series from April 2009 until August 2015. The 
RapidEye satellite system works with five spectral bands (blue, green, red, red edge, near infrared), 
where the near infrared (NIR) is, in general, especially sensitive to the vigor of vegetation (Rees 
2001; Basnyat et al. 2005). The return frequency at nadir is 5.5 days and the spatial resolution is 
6.5 m, resampled to 5 m. The images were made available through the RapidEye science Archive 
(RESA), where 74 radiometric calibrated and georeferenced scenes (Level 1B, Level 3A) could be 
found for field 100-01 (Table 2.1). Atmospheric correction was performed using ATCOR (Rich-
ter 2010) for ERDAS Imagine 2014 (Leica Geosystems, Atlanta, Georgia, USA) and the images 
were geometrically aligned using an image to image coregistration algorithm developed in-house 
(Behling et al. 2014). Further preparations for the development and testing of the segmentation 
algorithm included coordinate transformation, cartographic projection, and clipping the scenes to 
the area of interest, which is at the farm-scale in this case.  

 

2.2.3	 Farm data

For this study, field boundary, crop cultivation and yield data for the test field were provided by an 
agricultural company. Additional available data, not used by the algorithm, but by the authors for 
understanding the field, were: soil map, nutrient supply from 2009 (phosphorus, pH, magnesium 
and potassium), map of electrical conductivity. 

Yield data were available as point measurements for the years 2006, 2007 and 2009 – 2015 (well 
above 60,000 point measurements per harvest), although 2012 was an exception, since the field was 
divided into two areas of different crop. Yield data from 2015 was also insufficient, due to technical 
problems during harvesting and consequential data gaps. For visualization, kriging was performed 

Table 2.1  Number of RapidEye images available for the Görmin area, per year and month
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on yield data with the software VESPER (Haas 1990; Whelan et al. 1996) with a local kriging and 
local variogram method, especially designed for yield map kriging with respect to local, rather than 
global prediction models. Field 100-01 has been managed with precision farming practices (mostly 
variable fertilization rates) for at least ten years, which is why the field appears very dynamic over 
time. The appearance and separability of the predominant crop patterns fade over time, since the 
PA measures are somewhat successful and compensate low yield zones – leading to more spatial 
homogeneity in vigor and yield. Field 100-01 was chosen despite this development, because of its 
size, number of patterns with differing origins and density of available farm and field data. Additio-
nally, the analysis of all data show which patterns are stable over time (e.g. soil), which patterns can 
be homogenized (e.g. lack of nutrients) and how long this process takes. Bearing in mind that field 
100-01 changes its appearance, the algorithm was tested on three other fields with – according to 
yield and remote sensing data – less dynamic patterns. 

2.2.4	 Segmentation algorithm

For the automatic delineation of MZ, a segmentation algorithm was developed on the basis of Ra-
pidEye satellite images. The workflow (Fig. 2.2) was divided into three steps: a) automatic selection 
of suitable satellite images which reflect crop patterns, b) combining the NIR bands of all selected 
images to one averaged raster and dividing the result into five classes, c) conversion into vector data 
and assignment to areas of relative yield expectation (corresponding to MZ). Detailed information 
on these steps are described below. 

Before the selection process, every image was clipped to the extent of the field 100-01, including a 
negative buffer of 18 m to exclude margin artefacts, especially in the area of headland. 

The algorithm was programmed in R (R Core Team 2012) with the use of the packages ‚raster‘, 
‚maptools‘, ‚stringr‘, ‚ rgeos‘, ‚diptest‘ and ‚moments‘.

2.2.5	 Selection of suitable images

The principal idea behind the selection process was automation. A selection of suitable images is ne-
cessary, since not every scene offers the contrast of reflectance values caused by crop patterns. Images 
disturbed by clouds, or other spatial objects overlapping crop patterns, must be left out.  However, 
the potential user of this algorithm should not have to manually select appropriate images. Therefo-
re, the algorithm makes its own selection, using standard deviation (SD) thresholds of the blue and 
the NIR band, as well as thresholds of bimodality of the normalized differenced vegetation index 
(NDVI) histogram, NDVI mean value and NDVI SD (Fig. 2.2). The SD was chosen instead of the 
variation coefficient (CV), since the SD does not vary along with the mean value. Consequently, an 
increase of SD values throughout a selection of subsets does not have to coincide with an increase 
in CV values. The thresholds were generated empirically by expert knowledge, after analyzing all 
available field subsets and their statistics. The chosen thresholds have been successfully tested on 
other test fields of the company, though not with different sensor data or in a completely different 
region/ environmental setting. 
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Fig. 2.2   Workflow of segmentation algorithm.
NDVI = Normalized Difference; Vegetation Index, SD = Standard deviation
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In total, the algorithm used three spectral bands of the RapidEye sensor: blue, red and NIR. 

a)	 Blue band: Clouds 

For elimination of cloud-covered scenes, the blue band proved to be the most suitable, even though 
cloud reflection is high in all optical wavelengths (Jensen 2007).  In the blue band, the reflection 
signal of vegetation and soil is rather low in comparison, leading to a high contrast between cloud 
and non-cloud. For every field subset, the standard deviation (SD) of the blue band reflectance 
values was calculated. If the SD exceeded a threshold of 120, the subset image was removed from 
further steps in the algorithm. 

b)	 NIR: Cloud Shadow, small clouds and machining artefacts 

The blue band threshold did not detect subsets with marginal cloud coverage or cloud shadows. 
Here, the SD of the near-infrared band was used as a limit for selection. If the subset exceeded a SD 
value of 500, the entire image was removed. This approach removed not only cloud-disturbed sub-
sets but also processes like harvest or the complete division of the field into subfields with different 
crop (and therefore growth cycles). These disturbances showed a high contrast in the near-infrared 
reflection, which superimposed the native growth patterns. 

Fig. 2.3  a-c  RapidEye false-color subsets of field 100-01 (NIR-G-B); a 09-04-2011, wheat at tillering; 
b  28-06-2011, wheat at ripening; c 17-6-2010, canola at fruit development; d-f Histograms of NDVI 

of each subset raster, y-axes not graphical-ly normalized due to value range of f to d and e.
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c)	 NDVI: Field partitioning, growth stage

For the next selection step, the NDVI was calculated for each pixel, as well as the mean per subset. 
The NDVI histogram was tested for bimodality by applying the dip test, revealing images of field 
partitioning (Fig. 2.10, Chapter Appendix) or similar disturbances which were possibly not filtered 
by the prior step. The histogram of regular subsets covered by vegetation and their (natural) patterns 
appeared unimodal. 
During this step of the selection process, decisions were made on the basis of vegetation growth 
and vegetation vitality. Thus the NDVI, as a normalized value, was sufficient for the estimation 
and comparison of crop activity (Ustin 2004). The mean NDVI of each subset was used to remove 
all images of bare soil (< 0.3) and very dense vegetation (> 0.73) (Fig. 2.3 c). While this mean was 
not a direct indicator for crop coverage, spectrally distinguishable crop patterns were still apparent 
during early and very late crop phenological stages (Fig. 2.3). In contrast, vegetation that was too 
dense – especially on high potential plots like field 100-01 – led to a high mean or even saturated 
NDVI (as shown in Fig. 2.3 c). This was additionally characterized by a small SD of the histogram. 
This was especially true for cereal crops, which developed a high spatial density within the planting 
rows while leaving the tramlines free of biomass (in contrast to canola, sugar beet or other crops). 
Hence, if the cereal biomass was high overall, reflecting a high NDVI value, the only apparent pat-
terns were the tramlines.

2.2.6	 Classification of the averaged image

The NIR band of all remaining images was used to determine the final vegetation patterns, for the 
following two reasons: 

1) NIR reflectance and yield relationship

Relative reflectance values in the NIR have been shown to quite adequately reveal patterns seen in 
yield maps. Reflectance in the NIR is an indicator of health for leaf tissue, cell structure and, the-
refore, the vitality of the plant (Gausman 1973, 1977; Jones and Vaughan 2010). Consequently, it 
is a major indicator for final yield. On a macroscale, crops under advantageous growing conditions 
are more likely to grow taller and denser. They develop more biomass and leaves, which leads to 
increased NIR reflectance relative to the entire field. Leaf area index (LAI) is expected to be closely 
related to yield for certain crops, since grain yield is closely linked to crop growth (Serrano et al. 
2000; Song et al. 2009). On the other hand, a reduction in LAI, similar to reduced chlorophyll 
content or surface temperature, is an expression of stress symptoms in plants (Baret et al. 2007). 
Reasons for stress symptoms are often water shortage, insufficient nutrient supply, and diseases like 
fungi or pests. Crops under stress often show decreased leaf area production and an increased sene-
scence rate. On a microscale, the cell structure of the leaf is heavily altered, since the plant mobilizes 
all protein and minerals for the development of seeds. Senescence, either natural or stress-induced, 
is also accompanied by a decrease in leaf water content (Hurd-Karrer and Taylor 1929). This overall 
collapse of the leaf structure leads to decreased reflection in the NIR region, since the electromagne-
tic waves strongly scatter within healthy mesophyll tissue.  In conclusion, reflectance in the NIR is 
a very suitable indicator for field growing conditions and prospective yield. Naturally, the red-edge 
band as a chlorophyll indicator (Barnes et al. 2000) was also considered. However, empirical analysis 
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of the data sets in this study did not show a strong correlation between reflection and yield as in the 
NIR band. Additionally, yield prediction on the basis of red-edge reflectance seems to be highly de-
pendent on the phenological stage (He Ke-xun et al. 2013). In this study, the NIR reflectance values 
were converted into relative values, enhancing crop type and possibly regional independence. 

2) Difficulties using vegetation indices for segmentation

The classification was not conducted using ratio images, such as NDVI, due to increased noise pat-
terns and artefacts which are a common disadvantage of band ratios (Lillesand and Kiefer 1987). 
This effect is less desirable when a high degree of internal homogeneity is required for segmentation. 
The algorithm was nevertheless also tested by using NDVI images instead of NIR images. The results 
here were characterized by described noise patterns and numerous artefacts and did not lead to the 
same homogenous spatial patterns as when NIR is used.

Although precautions (single band basis, median filter) are taken to avoid small polygons in the end 
result, small features will still occur (< 3%). In agricultural practice, the user must decide how much 
detail is necessary and which features should be neglected. 

Every NIR raster was normalized to a percentage, where 100 % is equal to the average NIR value of 
each raster. To balance years with differing amounts of available satellite raster images, all rasters for 
each year were averaged (e.g. three rasters of 2009 become one average NIR raster). The resulting 
yearly average raster were also normalized. The subsequent raster was processed using a 7x7 median 
filter for six times to smooth boundaries and eliminate small fragments. Of course, the use of such 
intense smoothing filters had a strong impact on the level of detail and information in the image. 
However, the focus here was on the delineation of geometric zones. In precision agriculture applica-
tions, spatial zones do not necessarily benefit from small-scale details, since farming machinery has 
practical limits when it comes to fine-tuned control and implementation of highl detailed GIS data. 

The post-filter raster was classified into five value ranges, using quantiles of 10%, 35%, 65% and 
90%. Due to the fact that every averaged NIR subset may have different value ranges, predefined va-
lues for separate classes are not feasible. The quantile values were chosen empirically on field 100-01 
and others. The goal was to achieve class boundaries that generate well-balanced (amount of pixel) 
and clearly visual spatial classes. A change of the quantile values may lead e.g. to a dominant ‘middle’ 
class and very marginal classes of very low and very high NIR values. 

A cluster method (e.g. k-means) was not used at this point, because the generated clusters a) were 
not guaranteed to entail an “average” class with values around 100% NIR reflectance, b) lack of 
information about their relative sorting (“very low” to “very high” and c) therefore lack of a stable, 
reoccurring control factor like the preset quantile thresholds. 

In the process of (visually) analyzing the yield maps and satellite images of field 100-01 and neig-
hboring fields, the class number of five was found to be suitable to map and reflect the heterogenei-
ty of especially large fields. The odd number ensures a resulting “average” middle class. In theory, 
every desirable class number can be accomplished by the algorithm. Less classes (3) could be consi-
dered for a broader overview or in the case of low-contrast patterns. More classes (7) would lead to 
a more fragmented result, which would be less feasible for technical implementation into current 
machine systems for fertilizer or seed distribution. These systems mostly work in increments (e.g. 
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+/- 20% grain), rather than with continuous rates, which justifies the decision on discrete classes. 
An odd number of classes is required to generate an average class. Every class was exported into a 
polygon (not necessarily continuous), with which further analysis could be done. The resulting clas-
ses resembled zones of increasing vitality, relative to one another, which is why the five classes were 
named “very low” (1), “low” (2), “average” (3), “high” (4), “very high” (5) yield expectation. 

2.2.7	 Attributes of classes

To better assess the vitality status and yield expectancy of each class, and because the value range 
of the reflection within the NIR band seemed quite narrow, every class was additionally assigned a 
relative NDVI value and stored in a protocol. This value was generated by averaging all disturbance-
free NDVI rasters with a NDVI between 0.3 and 0.78. For every class, the mean NDVI value within 
the class polygon was extracted, resulting in five relative NDVI values in percent. In this study, these 
NDVI values were highly linear (R2 > 0.9) to the relative yield values extracted from an interpolated 
yield map (average of multiple years, corresponding to satellite data selection). Since no universal, 
field-independent conversion equation from relative NDVI to relative yield could be determined, 
the results shown in this paper will refrain from focusing on these NDVI values. 

2.2.8	 Validation with yield data 

The segmentation algorithm aims to give insights into yield distribution, especially for farmers la-
cking sufficient or total yield maps of their fields. In order to test the segmentation result in regard to 
yield expectancy zones, actual yield data were used for this validation (described in 2.3). 

Stratified sampling 

For validation, the concept of stratified sampling was preferred. As described in Webster & Oliver 
(1990), the sample points for validation were randomly distributed within regular grid cells, divi-
ding the target raster area. Sample points within a 10 m buffer of the segmentation boundaries were 
eliminated. The sample size ranged around roughly 6%. Yield values are based on point measure-
ments, converted into relative values in % and averaged over the selected years. For each sample 
point, the relative yield value and the corresponding class id (1-5) were extracted.

The result was plotted as a boxplot, depicting relation and separability between each class. In addi-
tion, two statistical tests were applied: a) the Kruskal-Wallis-Test and b) the Pairwise T-Test (class ID 
versus relative yield value). The result with a p-value < 2.2e-16 confirmed the general separability of 
the five classes, even if run based on different sample points.

The Pairwise T-Test applied compares each test series with one another and tests if there are statisti-
cally significant differences. This test normally requires normally distributed data, which is not ne-
cessarily given in this case. However, this condition may be violated if the number of sample points 
is high (Bartlett 1935) and the variance of the test series is comparable. With both of these being the 
case, the test was run a second time with logarithmic transformed values, to assure normality and test 
the validity. Additionally, the Pairwise Wilcox-Test for data without a normal distribution was run.
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2.3 Results and Discussion

After the automatic selection process, 14 out of 74 rasters for fi eld 100-01 remained for segmenta-
tion (Table 2.2). Data from the years 2012 and 2013 were neglected by the algorithm, which will be 
examined later on. Th erefore, the method is discussed based on a result from fi ve non-continuous 
years (Table 2.2).

Figure. 2.4 shows a fi nal result of the segmentation process, compared to the averaged relative yield 
map of the corresponding years (2009, 2010, 2011, 2014, 2015). On fi rst examination, the fi ve 
classes resembling yield expectation zones (YEZ) moderately resemble the actual yield zones of 
high-, low- and medium yield. 

Table 2.2  Final raster (acquisition dates) for segmentation and crop type

year date crop

2009:  3
21-04-2009
25-04-2009
24-06-2009

wheat

2010:  1 16-07-2010 canola

2011:  6

08-04-2011
09-04-2011
20-04-2011
21-04-2011
28-06-2011
16-07-2011

wheat

2014:  3
10-03-2014
20-03-2014
09-07-2014

canola

2015: 1 17-03-2015 wheat

Fig. 2.4  Left Segmentation result; Middle relative yield map; Right Histogram of yield raster, Average of years: 
2009, 2010, 2011, 2014, 2015
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2.3.1	 Validation
 
All three statistical tests had p-va-
lues lower than the significance 
level (0.05), indicating a good se-
parability of the five determined 
classes (Table 2.3).

Despite that, the boxplot (Fig. 2.5) 
still shows overlapping sampling 
values for every segment, whereas 
only segment 1, “very low yield ex-
pectancy”, appears to have slightly 
more discrete values than the other 
segments. Statistically, the Pairwise 
T-Test indicates independence bet-
ween the classes. 

This overlapping of classes and left-
skewed outliers is apparent in all 
segmentation test runs, even if the 
criteria (quantiles of class bounda-
ry; number of classes; NDVI thres-
holds as described above) for seg-
ment building are adjusted. Due to 
the overall high yield potential of 
field 100-01 (and therefore lack of 
strong contrast), the segmentation 
process has difficulties in distinguis-
hing five apparently separated clas-
ses. 

An average yield map of the years 
2009, 2010, 2011, 2014, 2015 
does not present drastic yield vari-
ance over the field (Fig. 2.4), com-
pared to fields in more vulnerable 
regions of Germany (Dobers 2005). 
The relative yield ranged from 25.0 
% to 141.9 % (mean: 102.2 %, SD: 
8.5 %), whereas field 100-01 yields 
were above average and could be as-
sumed to be relatively homogenous 
with a small yield variance.

Test Result (p-value / significance value)
Kruskal-Wallis-Test < 2.2e-16

Pairwise T-Test

1 2 3 4

2 3.1e-14 - - -

3 < 2e-16 3.8e-12 - -

4 < 2e-16 < 2e-16 3.9e-13 -

5 < 2e-16 < 2e-16 < 2e-16 1.2e-06

Pairwise T-Test
(log of data)

1 2 3 4

2 3.0e-13 - - -

3 < 2e-16 2.5e-12 - -

4 < 2e-16 < 2e-16 5.1e-12 -

5 < 2e-16 < 2e-16 < 2e-16 7.2e-06

Pairwise Wicox-Test

1 2 3 4

2 < 2e-16 - - -

3 < 2e-16 1.7e-13 - -

4 < 2e-16 < 2e-16 < 2e-16 -

5 < 2e-16 < 2e-16 < 2e-16 3.2e-06

Table 2.3  Statistical significance tests on segmentation result. The separabili-
ty of each seg-ment by extraction of actual yield values is tested and expressed 
as the significance value „p-value“ (< 0.05 supports separability hypothesis)
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Fig. 2.5  Boxplot of sampling 
result, yield per segment
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2.3.2	 Interpretation of results

1) NDVI and yield expectation relationship

The result shows the capacity of the method to form zones of different growth and yield levels for 
one field. However, it is problematic to reliably link these zones to percent-based relative yield va-
lues, and even more difficult to determine absolute yield values. A comparison of the five NDVI 
mean values with the actual yield values (mean value per class) reveals a highly linear relationship 
(R2 = 0.97), as well as NDVI values that are slightly lower (1-2 %) than the mean relative yield va-
lues per class. Unfortunately, any empirical relationship determined for this field cannot be applied 
elsewhere, since a universal conversion from vegetation indices to yield values does not exist. 

Numerous efforts have been made to determine this relationship (Shanahan et al. 2001; Doraiswa-
my et al. 2003; Dalla Marta et al. 2013), with results indicating that replicability is mostly limited 
by crop type and climate zone. In this study, however, the focus is on identifying field zones of 
similar crop growth and vitality, regardless of the crop type cultivated. Therefore, the resulting crop 
patterns resemble a mixed signal of vitality patterns indicated by more than one crop type or even 
crop group. For absolute yield estimation, crop type knowledge as well as date and duration of cri-
tical phenological stages (Idso et al. 1980) are required in order to use the given satellite data and 
spectrally sensitive parameters impacting yield (Dalla Marta et al. 2013). This algorithm, however, 
seeks simplicity and functionality based on multispectral satellite images alone.

2) Disregard of crop type 

The individual demands and phenological characteristics of crop types has not yet been considered 
by the algorithm. It can be argued that each crop type responds differently to field inventory and 
development prerequisites, and should therefore not be compared to other crop types. However, 
the analysis of satellite images, yield maps, soil and nutrient data of field 100-01 and the rest of the 
farm shows that the main drivers for reoccurring crop patterns are soil type and nutrient supply 
(Fig. 2.10, Chapter Appendix). This observation is relevant for the crop types grown in the area: 
cereal, canola, maize and sugar beet. Vitality patterns are stronger in more sensitive crop types such 
as cereal, and more prominent under unfavorable weather conditions. 

Still, for the image segmentation, the crop cultivated is of no importance. The thresholds only 
select subsets with a certain amount of spectral heterogeneity. In most cases – at least during early 
phenological stages or at the transition between green and dry biomass – the plants reveal spatial 
patterns regardless of the type. 

The algorithm currently yields good results even without the crop information, and can be valida-
ted even if the result shows a mixed crop signal. With an increasing number of satellite images and 
recorded years, the impact of specific phenological events, crop type specifications, or outstanding 
weather conditions would be alleviated However, it is equally true that the algorithm could be 
even better with knowledge of the crop type. Hence, future research could focus on adapting the 
algorithm to crop families (e.g. cereal; discussed further in the section “Outlook and Possibilities”).
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2.3.3 Stability of the results 

1) Variation of input years

Figure 2.6 shows the segmentation and validation results of three trial runs with diff erent input ye-
ars. Figure 2.6a is the result of the fully automated selection, which includes data from years 2009-
2011 and 2014-2015. Th e result is similar to that of 2009-2011 (Fig. 2.6 c). Figure 2.6 b lacks year 
2009, and appears to produce a much more homogenous result. Th e classes appear to be the most 
separable in Figure 2.6 c, the only test run without the year 2015. For this year, the yield data were 
only moderately reliable due to technical diffi  culties during harvest. 

Fig. 2.6  Segmentation results of diff erent test runs; a automatic selection (years 2009, 2010, 2011, 2014, 
2015); b years 2010, 2011, 2014, 2015; c Period of 2009-2011; d-f Corresponding average yield maps; g-i 

Boxplots of sampling, yield per class;  j-l Histograms of average NIR raster, on which basis classifi cation is done
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It is clear that the segmentation results can diff er depending on the selected satellite imagery. Th is 
is why the target parameter is yield expectancy and not yield potential. Additionally, the result has 
to be interpreted as average yield expectancy for the n number of years (which are selected for seg-
mentation) under the conditions x (weather and growing conditions), which were present in the 
selected years. Consequently, the segmentation result is a refl ection of spatial growth and vitality 
variability over plot 100-01. 

Data from the year 2012 was not selected due to fi eld partitioning in this year (wheat/ sugar beet). 
For 2013 (wheat), an insuffi  cient number of cloud-free images were available and the remaining 
images did not match the thresholds. 

Th e year 2009 had an obvious impact on segment building, which is explained by the combination 
of crop type and nutrient supply. Th e rectangular patch of low yield expectancy in the NW corner 
of fi eld 100-01 is lacking in several nutrients (Fig. 2.10, Chapter Appendix), primarily indicated by 
wheat, as is the case in 2009 and in 2011 (Fig. 2.7, Fig. 2.10, Chapter Appendix). If 2009 is not taken 
into account, the image changed (Fig. 2.6 b) to a more homogenous result, showing less high-con-
trast nutrient patterns and more closely resembling soil type and relief patterns (Fig. 2.10, Chapter 
Appendix). Th is change is explained by the dynamics of fi eld 100-01. For one, the farmer was able to 
compensate the nutrient defi ciencies from 2009 onwards (Fig. 2.10, Chapter Appendix) .Additionally, 
his precision farming management led to an increasing equalization of yields, represented in Figure 
2.8 by the decreasing value ranges in boxplots of 2009, 2011 and 2013 (all wheat). 

Th is successful development in farming practice has the disadvantage of aff ecting the stability and 
reliability of this segmentation algorithm, when there are simply no high-contrast plant patterns on 
a fi eld. Th e NIR image can still be classifi ed by quantiles, but the resulting classes can no longer be 
successfully validated for their separability (Fig. 2.8). Th e value ranges of each class are very similar, 
and small segments with a low pixel count (e.g. class number 5) do not fi t yield maps. Th is pheno-
menon is refl ected in the histogram of the averaged NIR band subset (Fig. 2.6 k), which is slightly 
less stretched than the other histograms. It can be concluded that the segmentation results following 
averaged NIR subset histograms with low scatter of values and high uni-modality are not trustworthy. 
Classes with a very low number of pixels should also be evaluated with caution since they mostly do 
not coincide with the yield data.  For dynamic fi elds like 100-01, fi ve or more growing seasons are 
required to depict average patterns and to compensate strong changes or high impacts of crop types 
and overall conditions. For other fi elds, a time frame of three years is enough to map out crop pattern. 

Fig. 2.7  Segmentation run on satellite data for each year, 2010 and 2015 are only based on one input image. 
Th e „mean“ result is – as the automatic segmentation – based on all the displayed years. 
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2) Validation with single yield maps

In precision farming practice, the question arises as to the reliability of computed MZ, and whet-
her they can be utilized for adapting management in future cultivation seasons. In principle, the 
presented segmentation algorithm can fulfi l these requirements, if the crop patterns are more or 
less stable and high in contrast over multiple years. In the case study of fi eld 100-01, this demand 
can only be met to a certain extent. Figure 2.8 shows the validation boxplots of the fi ve segments 
(result of 2009-2011, Fig. 2.6c) versus the relative yield of single yield maps. Ideally, the order of 
the mean relative value continuously increases from segments 1 to 5. Th is is the case for the yield 
maps of 2009, 2011, 2013 and 2015 – all of which were years of wheat cultivation. However, the 
range of yield values and the position of the boxes change. Despite yearly individual weather re-
gimes, the strong crop patterns of 2009 and (partially) of 2011 decreased over time. Th is was due 
to the sustainable management of fi eld 100-01 by the farmer, who constantly equalized nutrient 
defi ciencies and optimized fertilization during the growing season. Th is explains why, in this case, 
the segmentation result is not always applicable for every year. 

Th e greatest potential of the algorithm lies within fi elds where there is no comparable positive 
change, and crop patterns are more or less stable. Otherwise, the result has to be interpreted strictly 
as what it is: an averaged refl ection of plant growth over multiple years. As Figure 2.8 shows, the seg-
mentation does not validate well with canola yield maps (2010, 2014). For a detailed analysis from 
a farmer’s perspective and the linked crop-type-specifi c measures, crop cycle information is needed. 
However, the multi-year approach is still feasible because it does not favor crop specifi cations, but 
rather growth patterns with suffi  cient impact. 

Fig. 2.8 Upper row Validation boxplots; segments (2009-2011) vs. average yield in % of single year yield maps; 
Lower row Yield maps of years 2009-2015 (wheat,canola, wheat, wheat, canola, wheat); Map 2009 includes 
data gaps; map 2015 is a little unreliable, due to technical problems during harvest, resulting in gaps in yield



58 Chapter 2   ·   Automatic Delineation of Management Zones 

2.3.4 Method transferability to other fi elds

Th e automatic segmentation method was tested on three other farm fi elds, with varying areas and 
crop rotations (Table 2.4). Validation was likewise carried out with yield data (for the one season of 
sugar beet, yield data was not recorded). 

Table 2.4  Crop rotation and area of the three additional fi elds, 2009 - 2015

ha 2009 2010 2011 2012 2013 2014 2015

200-01 11.6 barley canola wheat canola wheat barley canola
360-01 74.5 rye canola wheat rye rye canola wheat
270-01 89.3 canola wheat sugar beet wheat canola wheat wheat

Fig. 9 a-c Segmentation result of fi eld 200-01, 360-01, 270-01: 2009-2015; d-f validation boxplots; 
g-i soil map for each fi eld
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The result (Fig. 2.9) shows the successful transferability of the method to other fields, which is at-
tributable to the fact that all three plots show heterogeneous crop patterns for all years and are less 
dynamic than field 100-01. Test runs comparing the number of input years (three versus six years) 
resulted in similar results. The authors can therefore conclude that the algorithm performs well 
with a small amount of multi-temporal images (from three years) – if high contrast crop patterns 
predominate and if these are roughly spatially stable. This is mostly the case when crop patterns are 
mainly inherited by soil patterns, which is generally the case for these three fields (Fig. 2.9 i). Howe-
ver, a large number of satellite images is still preferred, since the result is increasingly independent of 
crop type impact on patterns and temporal changes due to weather events. The size of a field does 
not matter. It can be up to the farmer in practice, as to whether five classes of yield expectancy are 
suitable for small fields like 270-01, or if three are sufficient. 

2.3.5	 Outlook and possibilities

Therefore, suggested future improvements include the implementation of a cloud mask and fur-
ther testing of vegetation indices and existing studies for the derivation of yield values. This testing 
would require knowledge of the crop type and could be addressed by either a crop classification 
method (Itzerott and Kaden 2006; Foerster et al. 2012) or better yet by manual input of the 
potential user. These users are assumed to be farmers and agricultural consultants, interested in 
cultivating their crop with precision farming methods.The method offers a quick delineation of the 
desired field, especially if yield maps are not or are insufficiently available. The segmentation could 
then be used for management decisions in fertilization, seeding or crop protection. An upcoming 
milestone will be the coupling of the segmentation results with additional geospatial data, such as 
soil, relief and nutrient maps. This would allow for further optimization of the results and enable 
a transition from yield expectancy zones to yield potential zones. Additionally, the fusion of diffe-
rent multispectral sensor systems such as RapidEye, Sentinel-2 and Landsat could be an attractive 
method for further exploiting the big data pool and increasing the density of information for image 
segmentation. With a vast data base and additional crop information from the user, the segmen-
tation could also be computed for crop types or families, adding more stability and knowledge for 
crop-specific strategies. 

2.4	 Conclusion 

This study presented a straightforward algorithm for the delineation of crop patterns on agricultu-
ral fields based solely on optical multispectral satellite data, but with certain limitations. The crop 
patterns can be interpreted as relative yield expectancy zones, and are influenced by prior growing 
conditions on a field. The result can be utilized as potential MZ, in order to implement and en-
hance precision farming practices. The algorithm operates with atmospherically corrected remote 
sensing reflectance data, and does not need any further information besides the field outlines. Con-
sequently, the method enables an effortless and quick overview of past averaged growing conditions, 
without manual work. As such, this algorithm addresses upcoming important developments of big 
data, open source satellite data access and digital / smart farming. As a disadvantage, the method is 
unable to use partly cloud-covered images and suffers slightly from images with a strong tramline 
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imprint, leading to noisy images which require smoothing filters. The result is also unreliable for 
fields lacking crop patterns and homogenous growing conditions, which is indicated by the output 
variables of the algorithm. As with numerous agricultural remote sensing methods, parameters and 
values are derived from image interpretation. Although the segmentation result could be validated 
with yield maps, it is also an interpretation of crop spectral characteristics. The gross division of 
crop patterns can be assumed to reflect overall growing conditions. However, small adjustments of 
the algorithm’s parameters are reflected in changes on a pixel scale, confirming the belief that actual 
crop can seldom be addressed by image interpretation on a detailed scale. Generally, algorithms ba-
sed on optical remote sensing are always dependent on the availability of sensor data for the desired 
time frame and the quality of the data.
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2.8 Chapter 2 Appendix

Fig 2.10 (Left) RapidEye subset, false-color (NIR-G-B), 14-05-2012 wheat and bare soil; (Right) NDVI histogram of 
fi eld raster with strong bimodality, which would not pass the selection process of the algorithm

Fig. 2.11   a) segmentation for single years, no suitable images in 2012-2013; b) precipitation and temperature 2009-2015, 
weather station Greifswald by Deutscher Wetterdienst “German Weather Service”; c) interpolated nutrient data of fi eld 

100-01(potassium, magnesium, pH and phosphorus), August 2010; d) soil map of fi eld 100-01 e) relief of fi eld 100-01
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Abstract

Precision agriculture, as part of modern agriculture, thrives on an enormously growing amount of 
information and data for processing and application. The spatial data used for yield forecasting or 
the delimitation of management zones are very diverse, often of different quality and in different 
units to each other. For various reasons, approaches to combining geodata are complex, but necessa-
ry if all relevant information is to be taken into account. Data fusion with belief structures offers the 
possibility to link geodata with expert knowledge, to include experiences and beliefs in the process 
and to maintain the comprehensibility of the framework in contrast to other „black box“ models. 
This study shows the possibility of dividing agricultural land into management zones by combining 
soil information, relief structures and multi-temporal satellite data using the Transferable Belief 
Model (TBM). It is able to bring in the knowledge and experience of farmers with their fields and 
can thus offer practical assistance in management measures without taking decisions out of hand. 
At the same time, the method provides a solution to combine all the valuable spatial data that 
correlate with crop vitality and yield. For the development of the method, eleven data sets in each 
possible combination and different model parameters were fused. The most relevant results for the 
practice and the comprehensibility of the model are presented in this study. The aim of the method 
is a zoned field map with three classes: „low yield“, „medium yield“ and „high yield“. It is shown 
that not all data are equally relevant for the modelling of yield classes and that the phenology of the 
plant is of particular importance for the selection of satellite images. The results were validated with 
yield data and show promising potential for use in precision agriculture. 

3.1	 Introduction

The dissemination of Precision Agriculture (PA) as an essential component of crop production has 
become increasingly important in recent years. New and intelligent solutions are constantly being 
developed and sought with a view to sustainable agriculture, which must nevertheless increase its 
efficiency. PA is not a new development (Mulla 2013), but it is an important component for mo-
dern agriculture and its problems (IPCC 2014; DLG e.V. 2017). Data-based PA applications rely 
on data from a variety of sources, such as proximal sensor techniques (Adamchuk 2011; Colaço and 
Bramley 2018), remote sensing (RS) and Geographic Information Systems (GIS) (Goswami 2012; 
Mauser et al. 2012; Mulla 2013). With the help of these data and the PA applications, the applica-
tion of fertilizers (Sharma and Bali 2017; Colaço and Bramley 2018), plant protection (Mahlein et 
al. 2012; Šedina,Pavelka and Raeva 2017) or irrigation (Navarro-Hellín et al. 2016), for example, 
can be adapted to the needs of plants and soil.

In the spatial analysis of field data the partitioning of a field in Management Zones (MZ) is of great 
importance in many publications (Flowers,Weisz and White 2005; Pedroso et al. 2010; Gili et al. 
2017) and applications. Within ideally stable zones homogeneity is expected and represented by 
similar level of plant vitality, yield potential and / or soil quality. MZs have been successfully deli-
neated on the basis of spatial data such as yield maps (Brock et al. 2005), soil attributes (Yao et al. 
2014), electrical conductivity (EC) measurements (Cambouris et al. 2006; Moral,Terrón and Silva 
2010) and remotely sensed images (Song et al. 2009; Georgi et al. 2017). 
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However, the use of one type of data source poses risks. The data currently available may be unre-
liable or the information density needed for safe interpretation may be low. Therefore, data fusion 
methods are a valuable addition to the breadth of MZ delineation methods.

The most common scientific motivation for the development of data fusion methods is the classi-
fication of spatial data, such as RS imagery, elevation data or soil maps into surface units, such as 
cities, water bodies or forest. Successfully applied models for this type of data fusion are for example 
Bayesian techniques (Xue,Leung and Fung 2017), Neural Networks (Teimouri,Mokhtarzade and 
Valadan Zoej 2016), Support Vector Machines (Park and Im 2016), Random Forest (Crnojevic et 
al. 2014) and Dempster-Shafer Theory (DST) (Le Hegarat-Mascle,Richard and Ottle 2002; Ran et 
al. 2008). DST belongs to the group of evidential reasoning, a generic evidence-based multi-criteria 
decision analysis approach.

For this study, the authors applied an interpretation of the DST, namely the Transferable Belief 
Model (TBM), developed by Smets and Kennes, 1994. In its functionality and structure, the TBM 
is similar to the Bayes Model. However, it does not work with quantified probabilities, but with 
quantified beliefs. The specific rules and variables address the needs of agricultural issues much bet-
ter. Wu et al. 2002 find the DST (consequently also the interpretation TBM) much more suitable 
than the Bayesian interference for mapping human thought processes and argumentations. The 
concept of evidence-based models is therefore very well suited for integrating expert knowledge into 
the process of geodata fusion. In agricultural practice, it is rarely an algorithm that interprets data 
and maps and makes decisions, but the farmer or his advisor. Each data source is evaluated with 
background knowledge and often many years of experience with a field. Different types of data are 
related to each other and their information content is enhanced. To illustrate and automate this way 
of decision making in a model, the authors present a fusion method for delineation of MZ using 
the TBM. 

The subject of this study is therefore the question of how remote sensing data can be combined with 
other GIS data to make a common statement about the yields of a field. However, this fusion also 
focuses on the question of how the knowledge and experience of the farmer himself can theoreti-
cally be integrated into this mathematical fusion process. Another objective is to find an alternative 
fusion method to the less comprehensible fusion methods in the field of machine learning. 
The visual and numerical evaluation of satellite data and GIS data from many fields studied sug-
gests that there are connections between the data mentioned and the yield maps. This leads to the 
scientific hypothesis that a mathematical approached data fusion with incorporation of the human 
estimation must be possible. The delineation method presented was developed in order to achieve 
the general goals of this study and to confirm this research hypothesis, but also to create an applica-
tion for practical agriculture. The validation of the functionality of this method by the comparison 
of modelled yield zones and actual yield zones, derived from the yield data of the farmer, is at the 
same time the validation of the scientific hypotheses. 

Since the possibility to put the application into practice as well should be given, the focus during 
development was on the requirements of the farmer. Since MZ represent the field-internal varia-
bility, the method presented was developed on one field and not across fields on the whole farm. 
The application models yield classes with relative values that can be used as MZ. A classified map 
is not only more understandable than continuous data, most agricultural machines with variable 
rate applications work on the basis of classes. Modeling classes involves the risk of information loss 
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through generalization. However, they are better suited for setting up the model and for the usabi-
lity of the end product.

The preparation of the data fusion with the TBM is so far very labour intensive. Both in terms of 
data formatting and the integration of expert knowledge. However, the method is transparent and 
the fusion logic understandable, in contrast to algorithms that work according to the black box 
principle. The presented method can be individually adapted to individual agricultural fields and 
their yield-relevant characteristics. The data used in the model can be weighted according to rele-
vance, reliability, up-to-date status or completeness. After each individual fusion with an additional 
data set, the model output displays where the data sources contradict each other with regard to the 
parameter yield to be modelled and where they suggest the same interpretation. These conflict maps 
are another important advantage of the method for evaluating the result, but also the individual 
data sources. This study gives some examples how the combination of soil, relief and satellite data 
is possible for modelling three yield zones of a wheat field for PA application.

3.2	 Study Area and Data 

3.2.1	 Study area

The presented method for delinea-
tion of yield zones on the basis of 
evidential reasoning has been de-
veloped on field “200-01”, part 
of a 2000 ha farm near the village 
of Görmin, located 15 km SW of 
Greifswald in the North-Eastern 
Lowlands of Germany. Geologi-
cally, the region was shaped by 
repeated glacial processes during 
the Weichselian Glaciation and 
transformed into a hilly ground 
moraine landscape with represen-
tative glacial features. Flat, hilly 
and undulating ground moraines 
alternate with hilly terminal mo-
raines, glacial valleys, lake basins, 
kettle holes, eskers and outwash 
plains (Bundesanstalt für Geowis-
senschaften und Rohstoffe 2006). 
The differences in topography on 
a field basis are quite modest and 
represent relative flat terrain in the 
region (Fig. 3.1). Natural and arti-
ficial drainage systems impact the 

Fig. 3.1  Field 200-01, central coordinate: 54°1’13.10’’N, 
13°16’39.25’’E; mean elevation: 36.22 m above sea level; mean 
slope: 2.43°; field has three kettle holes, which are not cultivated. 
Soil type (a), fertility index „Ackerzahl“ (b), topographic positio-

ning index (c), digital elevation model (d)
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topography and consequently the soil inventory of the fields. All fields are characterized by a young 
morainic soil type.

3.2.2	 Data 

In the process of delineation MZ with data fusion, 11 data source raster are processed and combi-
ned. These data sets entail soil and relief data, as well as satellite derived crop information. 

Soil map

Soil information is based on the German “Bodenschätzung” (1:10.000) (BS) (Arbeitsgruppe Boden 
2005), a soil map edited in the 1930s, which is kept updated, though not at the same spatial grid 
as the original data acquisition (50 x 50 m). The soil map contains soil polygons with information 
about parent material, integrated soil texture to a depth of 1 m and the soil development stage. 
Dobers, Ahl and Stuczyński (2010) elaborate on the development and characteristics of the BS. The 
parameters “Bodenzahl” (BZ) and “Ackerzahl” (AZ) are quantitative assessments of soil fertility and 
an indicator for potential agricultural productivity. They are given in integers in a range from 0 to 
100, where 100 is the reference for the most fertile soil in Germany. The BZ is based on soil type 
and therefore productivity only, while the AZ takes other factors such as morphology and climatic 
characteristics into account. Figure 3.1 shows the BS of field 200-01 with soil type and AZ, which 
is the index used further in this study. 

Digital elevation model

The digital elevation model (DEM) has a resolution of 5 m and is based on airborne LIDAR measu-
rements (Amt für Geoinformation Vermessungs- und Katasterwesen 2011). The elevation data was 
used to calculate the Topographic Positioning Index (TPI) (Jenness 2006) with the GIS software 
SAGA (Conrad et al. 2015). The TPI has generally six classes describing lands forms such as hilltop, 
upper slope, etc. and is dependent on the scales used in the calculation and classification process. 
Figure 3.1 shows the calculated TPI for field 200-01.

Satellite data 

The method was developed using a RapidEye images from April 2011 until July 2011. The Ra-
pidEye satellite system works with five spectral bands (blue, green, red, red edge, near infrared), 
where the near-infrared (NIR) is, in general, especially sensitive to the vitality of vegetation (Rees 
2001; Basnyat et al. 2005). The return frequency at nadir is 5.5 days and the spatial resolution is 
5 m. The radiometric calibrated and georeferenced scenes (Level 1B, Level 3A) were made availa-
ble through the RapidEye science Archive (RESA). Atmospheric correction was performed using 
ATCOR (Richter 2010) for ERDAS Imagine 2014 (Leica Geosystems) and the images were geo-
metrically aligned using an image to image co-registration algorithm developed in-house (Behling 
et al. 2014). Further preparations for the development and testing of the segmentation algorithm 
included coordinate transformation, cartographic projection, and clipping the scenes to the area of 
interest, which is at the farm-scale in this case.  
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The Normalized Difference Vegetation Index (NDVI) was calculated and used for the method 
development. Numerous studies have shown a close connection between NDVI at a certain pheno-
logical stage of the grain and the biomass of the plants, which can be an indicator of the final yield 
(Benedetti and Rossini 1993; Ren et al. 2007; Knoblauch et al. 2017).

The satellite images available were selected according to their acquisition date. In the test region, 
suitable images for the method were acquired in spring approximately at the “Stem Elongation” 
phase of cereal, end of May/ beginning of June during and after “Heading” and end of June during 
the (BBCH) development of fruit phase.  

The NDVI raster have been divided into three classes to simplify the necessary interpretation wit-
hin the model. The two class boundaries are defined by the quantile value of the lower third (33% 
quantile) and the quantile value of the upper third (66% quantile). This results in three classes that 
have a stable number of pixels per class, regardless of the value range. If, on the other hand, a k-me-
ans approach is used, a few extreme values can lead to a spatially very small class that is difficult to 
interpret and makes little sense in terms of suitability for agricultural machinery. 

Phenological data 

Phenological data was provided by The German Meteorological Service (DWD) according to the 
BBCH-Codes (Hack et al. 1992), which is a decimal code system to identify phenological develop-

Fig. 3.2 Phenology data (BBCH Scale) acquired at three DWD stations near Görmin from April to August 
(green lines). The phenology at different stations is not always the same but shows slight differences in the 

development of plants at similar times. The stages of wheat phenology are numbered and described according 
to the BBCH scale (right side); Acquisition dates of RapidEye images (red lines)
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ment stages of a plant and the standard phenology-scale in Germany. Figure 3.2 draws data from 
three stations in 10-12 kilometers distance from the test site. Phenology was not measured directly 
on the test field, but in regular, though not weekly, DWD stations in the surrounding area. Coming 
from this official institution, these data are considered to be very reliable.

Farm and yield data 

For this study, field boundary, crop cultivation and yield data for the test field were provided by an 
agricultural company. The yield data was taken during harvest by a GPS controlled harvester. Yield 
measure was taken approximately every 1 meter within a tram line, if the sensor operated flawless, 
which is not always the case. After acquisition, questionable yield measurements were removed for 
the most part, by applying filters on tresher speed (discarding of values < 2% and > 99%), swath 
width (discarding of values < 4 m and > 9 m) and statistical outliers (e.g. grouping of point values 
and discarding of yield values with a difference of more than 2.5 times the standard deviation of 
the group). Kriging was performed on yield data with the software VESPER (Haas 1990; Whelan 
et al. 1996) with a local kriging and local variogram method, especially designed for yield map kri-
ging with respect to local, rather than global prediction models. Kriged pixels with a high kriging 
variance, hence a large distance between interpolated pixel and original yield value, were deleted. 

3.3	 Method

3.3.1  Evidential reasoning

The Dempster-Shafer Theory (DST) of evidence is probably the best-known and most widely used 
theory in evidential reasoning fusion models. The DST is a mathematical theory from the field 
of probability theory. It is used to assemble information from different sources with the so-called 
Dempster rule of combination to an overall statement, whereby the credibility of these sources is 
taken into account in the calculation. Evidence theory is used above all where uncertain statements 
from different sources have to be combined to form an overall statement. DST can quantify un-
certainties and incompleteness of data.  When modelling a parameter or classifying spatial objects, 
data fusion with a DST model can also be achieved with data sources that are not fully trusted in-
dividually or that have data gaps. The principle of evidential reasoning is therefore very relevant for 
agricultural problems. There is no doubt that each image or map is subject to a certain uncertainty 
compared to the actual state of, for example, soil, crop and yield. This may be due to interpola-
tion, acquisition errors, coarse spatial or spectral resolution, and much more. Evidential reasoning 
is particularly useful when merging data sources of different spatial resolutions and units. It can 
also integrate information from older maps and current spatial data such as satellite images within 
a vegetation period. The processes in belief theory are understandable and comprehensible for the 
user, in contrast to black box methods from machine learning such as neural networks or support 
vector machines. 

Fusion methods based on evidential reasoning should reduce uncertainties in the overall model 
and improve the classification result. Successful examples of the fusion of geodata with the DST 
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have been achieved by Al Momani, McClean and Morrow 2007; Mora, Wulder and White 2013; 
Okaingni et al. 2017. All used satellite data, products thereof, digital elevation data and other geo-
data. The difference between these studies lies in the way a belief (the equivalent of probability in 
Bayes‘ model) is assigned to a pixel of a grid. In the DST, this transfer of belief to an expected class 
(e.g. „wheat“, „grassland“, „forest“) is called a mass function. In these studies, this mass function is 
derived differently using the methods of the Maximum Likelihood and Classification Tree Method 
and the pixel occurrence statistics. 

The common element of these studies is the structure of the mass functions and the combination of 
these by Dempster‘s rule of combination. Nevertheless, the mass function in the DST is associated 
with a kind of probability assessment or measurement (as in the Maximum Likelihood Method) 
and this is a disadvantage of the DST argue Smets and Kennes 1994. Their interpretation of the 
DST is called the Transferable Belief Model (TBM), which does not require underlying probability 
distribution, even though they may exist. It is a model for representing quantified beliefs based on 
belief functions and therefore a very suitable fusion method to work on agricultural problems, while 
supporting the expert knowledge of the user (e.g. farmer, farming consultants). This knowledge 
and experience are a major key factor for success in agriculture as well as precision agriculture and 
cannot be replaced by algorithms and software applications. The latter may aid the farmer little or 
tremendously, but only in combination with expert knowledge

Compared to other multi-source methods such as neural networks, probabilities and reliability of 
data sources within the TBM do not need to be calculated in advance. In addition, the data sources 
do not need to be classified into end parameters beforehand, which would be difficult for the far-
mer as end user to achieve. For example, it would be difficult to divide a satellite image without 
experience into yield classes (the final parameter).  As a solution, a pre-defined set of rules, as one 
example described in this study, can be used to support the farmer.

Table 3.1  Terminologies of the TBM

Terminology Description Scale

Source of evidence (SOE)
A data source that delivers information and is part of 

the fusion process
Raster

Reliability (r)
The degree of how much the interpreter / expert trusts 

the SOE on a scale from 0 to 1
Raster

Hypothesis { }

Resemble the classes of the end parameter (here: yield 
class 1, 2, 3). Hypotheses are assigned pixelwise, based 

on what the expert would expect in accordance with the 
SOE value of that raster cell. The assumption of more 

than one hypothesis is also possible.

Pixel

Frame of discernment  Ω The range of all hypotheses, the whole hypotheses set. Pixel

Masses of belief (MOB)
A weighing assigned to the hypothesis, depending on 
how much the expert believes in this assignment on a 

scale from 0 to 1.
Pixel



72 Chapter 3   ·   Delineation with spatial data fusion and belief theory 

3.3.2 The Transferable Belief Model

Hypotheses and masses of belief

Th e TBM is a model for representing quantifi ed beliefs based on belief functions (Smets and Ken-
nes 1994). In other words, it can represent an idea of reality with a number of hypotheses (Dobers 
2008). As listed in Table 3.1, the term „hypothesis“ is part of the fi xed terminology in the TBM. In 
the following, the term „hypothesis“ is used as part of this terminology and diff ers from and should 
not be confused with the research hypothesis. Th e hypotheses of the TBM are weighted by quanti-
fi ed beliefs, called masses of belief (MOB), by means of an interval between 0 and 1: 

         (1)

with

                  (2)
   

Th e whole set of hypotheses is called the frame of discernment Ω and the sum of all MOB assigned 
to the hypotheses is 1. 
In this study, the hypotheses describe and include three classes of relative yield of a fi eld. Th ese yield 
classes can be used as MZ in practice and are described as follows: {1} - „Low yield“, {2} - „Average 
yield“, {3} - „High yield“. 

Th e theory of TBM states that the number of hypotheses may increase if additional knowledge is 
gained or a paradigm shift occurs. For example, if the TBM is used to improve the accuracy of soil 
maps, where the diff erent soil types (e.g. clay or sand) correspond to the hypotheses (Dobers 2005, 
2008). However, the evaluation of the data sources consulted can provide evidence that further soil 
types are available that are not yet represented in the entire set of hypotheses Ω. Th is is the case, for 
example, when old soil maps are used as evidence and past soil processes, such as erosion or tillage, 
have uncovered unmapped soil types. In the TBM, the case described corresponds to the „open-
world assumption“. It is therefore assumed that there are other classes or hypotheses than those 
that have been defi ned. In this study, this „open-world assumption“ does not have to be taken into 
account, since the three relative yield classes cover the entire range of possibilities in a fi eld. Th e 
„low yield“ class therefore also includes areas in which no return is to be expected at all, which is 
very rarely the case. In the TBM, this is referred to as the „closed world assumption“. 

Sources of evidence

Th e aim of this study is to use the TBM to combine various data sources in order to fi nd the most 
realistic yield class per pixel and thus obtain an overall picture, a map. Th e data sources used are 
called sources of evidence (SOE). All available SOE available at time t form the evidence corpus. 
In this example, eleven data sources (Table 3.2, Fig. 3.9 ), SOE, are used to model the yield classes. 
In addition to the eleven selected SOE, it is possible to use many other SOE, which can provide 
information on the distribution of the yield classes.  

         (1)

                  (2)
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Before data fusion, each SOE must be interpreted. At this point, the expert knowledge is integrated 
into the model. Each class or value range defined for each SOE is interpreted with respect to the 
hypotheses in Ω - the available hypotheses of each unit are thus assigned to the SOE. For example, 
when interpreting a soil map, one might expect „low yield“ in the very sandy soil class due to lower 
fertility. The hypothesis of „high yield“ could be attributed to highly fertile loess soils. However, 
several hypotheses can also be assigned to an SOE class. If, for example, the class of loess soils lies 
in a strong depression, the expert could define both „high yield“ and „low yield” as hypotheses due 
to possible waterlogging in wet years. If a class of an SOE cannot be clearly interpreted with regard 
to the hypotheses, the entire set of hypotheses can also be assigned. This would be the case, for 
example, if a topographical map were interpreted and the „level“ class could not provide any signi-
ficant conclusions about the level of yield. The fact that the TBM allows this multiple assignment 
distinguishes it from the classical probability theory, in which the singletons of Ω must be weighted 
individually. In the TBM, the MOB (i.e. the quantification of belief ) can also be assigned to subsets 
of Ω.

Reliability 

Every SOE is assigned a reliability r with a value between 0 and 1. For example: the expert might 
find the soil map more reliable (e.g. 0.9) then the elevation data, because in his1 experience the soil 

1	 or her

Table 3.2  Selection of used sources of evidence to model yield zones

Data source Description
Original Spatial 

Resolution
Usage Source

Satellite image
(9 scenes from 9 

dates in total)

RapidEye multi-spec-
tral data (Product 
Level 3A), NDVI

5 m

Used as SOE in 
the TBM

RapidEye Science Archi-
ve, 2011 (8, 9, 20, 21 
April; 21 May; 3,6,28 

June, 16 July)

Soil map

“Bodenschätzung” 
with quantified 

description of soil 
quality / yield poten-

tial (“Ackerzahl”)

50 m

Original data from the 
1930s as described in 
Arbeitsgruppe Boden 

(2005)

Digital elevation 
model

Converted to a Topo-
graphical Index (TPI) 

map
5m

(Amt für Geoinforma-
tion Vermessungs- und 
Katasterwesen 2011)

Yield maps
Derived from GPS-
tracked harvester in 

tons per hectare

Irregular point 
data (1.5 – 10 m)

Used for valida-
tion

GPS-Tresher of farmer, 
06 August 2011
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map does refl ect the real yield potential distribution more likely than the elevation map. Contrary, 
the expert could also argue, because of the low spatial resolution or early date of acquisition of the 
soil map (e.g. 1930s), he assigns a lower reliability (e.g. 0.6). Th e reliability of the SOE alters the 
MOB given for every pixel by multiplication.

Fusion and Dempster’s Rule of Combination

With a minimum of two SOE, both assigned with MOB and reliabilities, the MOB can be combi-
ned using Dempster’s Rule of Combination (Shafer 1976, 2016), which mathematically is a cross 
product. Any two independent mass functions m1 and m2 are combined to a single function m1,2:

          (3)

where 

     (4)

An example from this study applies Dempster‘s combination rule as follows:

SOE 1, the soil map, is combined with SOE 2, the topographic positioning index TPI. For one 
pixel x, the class of SOE 1 is class 3 and for SOE 2 is class 2 (Table 3.3).  

Table 3.3  Example of the assignment of hypotheses, masses of belief and reliability to one pixel x

Parameter SOE 1 (class 3) SOE 2 (class 2)

expected hypotheses / 
yield zone

“average yield”, „high yield“ =
{2,3}

“low yield” =
 {1}

MOB 0.8 0.6

reliability r 0.7 0.9

Ω  “low yield”, “average yield”, “high yield“ = {1,2,3}

Th e expert is 80% convinced (MOB = 0.8) that in class 3, SOE 1 „average yield“ or „high yield“ can 
be expected. However, it gives SOE 1 only 70% confi dence (r = 0.7) to be the appropriate source to 
make a reliable statement about the yield level. Following the same pattern, the expert assigns the 
hypotheses, beliefs and reliability for SOE 2, class 2.

With this defi ned interpretation, the fusion process of SOE can now begin and Dempster’s Rule of 
Combination applied: 

          (3)

     (4)
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Th e hypothesis that receives the highest value of MOB after cross-counting is the hypothesis (or 
hypotheses) that both SOEs agree with. Unless the SOE support opposing hypotheses - as in this 
example - and a confl ict arises. Th e hypothesis with the highest MOB value is the empty set {∅}. 
From here the TBM off ers two ways: the open and the closed world acceptance. As already explai-
ned, the latter is chosen in this study. In this case {∅} is ignored and all remaining MOB values are 
normalized to a sum of 1. From the height of the MOB of {∅} the weight of confl ict (woc) is cal-
culated. It is later a measure for the contradiction between the data sources. After the normalization 
there is a new distribution of the MOB and a new hypothesis, which gets the highest MOB: m{1} 
= 0.34, m{2,3} = 0.37, m{Ω} = 0.29. Th e woc is given by 

(5)

In the example, the maximum belief lies with the hypotheses set {2,3}. One can also calculate the 
degree of belief of a hypothesis or set of hypothesis (A). Bel(A) is defi ned as the sum of all masses 
that support A 

(6)

Th e degree of plausibility function Pl(A) quantifi es the total amount of belief that might support A: 

(7)

Consequently, Bel({1}} = 0.24 and Pl({1}) = 0.63, because {1} is also part of Ω. Plausibility can 
be interpreted as “the pessimistic assumption”. Total Ignorance is represented by m(Ω) = 1, hence 
bel(A) = 0 – In this case, one has no useful indication of a realistically modelled hypothesis and 
must assume that any hypothesis or combination of all is possible.

= 0.34, m{2,3} = 0.37, m{Ω} = 0.29. Th e woc is given by 

                Table 3.4 Example for Dempster‘s Rule of Combination for values set in Table 3.3
                                                                                 

SOE 2

{1}
m({1})= 0.54

{Ω}
m({Ω})=0.46

SOE 1

{2,3}

m({2,3}) = r ∙ mob = 0.7 ∙ 0.8 = 0.56
m{Ø} = 0.30 m{2,3} = 0.26

{Ω}

m({Ω}) = ∑mob - m({2,3}) = 1 - 0.56 = 0.44 m{1} = 0.24 m{Ω} = 0.20
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The result of this SOE combination can then further be combined with another SOE and so on, 
until all data sources are integrated in the model. Because the combination is multiplicative, the 
order in which the SOE are combined is irrelevant. The simplicity in which evidence is considered, 
weighed and combined is a tremendous asset of DST and TBM, because it is comprehensible not 
only for developers of applications, but for users (e.g. farmers) too. Contrary to other current mo-
dels, it is not a black box and very transparent. 

3.3.3	 Application of the TBM

In this study, the TBM was used to model yield zones, or MZ by fusion of the spatial soil informa-
tion, elevation and satellite-derived NDVI images. Each data source – already classified as described 
above – was interpreted with regard to the expected yield zone(s), which are represented by the 
hypotheses. Following the workflow of Figure 3.3, the data was prepared for and combined with 
the TBM. 
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Pre-Processing 

The TBM is applied on field basis. Therefore, SOE are clipped (with a “crop” function) to the same 
extent and – if needed – resampled to a resolution of 5 m (pre-classified images with the method 
‘nearest neighbour’).     

Interpretation 

Each SOE and each unit / class of SOE must be interpreted prior to data fusion with respect to 
the yield classes expected. This interpretation is given a quantified conviction, the MOB. During 

SOE unit description hypo MOB r explanation

TPI (relief )

1 Ridge { 1 } 1

0.6

Erosion of upper layers of soil on and 
around hilltops is expected to produce 

lower yield2 Upper slope { 2 } 1

4 Flat terrain {1,2,3} 1
The relationship between flat slope and 

yield is undefined, all yield classes can be 
expected

5 Lower Slope { 3 } 1 Land forms favouring water supply and 
alluvial soils are expected to foster high 

yield.
6 Dip { 3 } 1

Satellite 
NDVI

1
low NDVI

( 0 – 1/3 Quantile )
{ 1 } 0.8

0.55 - 
0.9

Final yield is expected to be positively 
correlated with plant vitality at certain 
crop stages, indicated by the NDVI. 

NDVI class 1-3 is therefore interpreted in 
favour of yield classes 1-3. The reliability 
is variable, since the correlation between 
NDVI and yield varies in accordance to 

the phenological stage of crop.

2
medium NDVI

 (1/3 Quantile – 2/3 
Quantile )

{ 2 } 0.7

3
high NDVI

( 2/3  Quantile – 1 )
{ 3 } 0.6

Soil 0.8

It is expected, that with increasing fertility 
index, hence with increasing relative 

% value, higher yield can be expected. 
Average fertility index regions could be 

also under the influence of relief or preci-
sion management, so all yield classes are 
expected. Relative values assure an easier 

transfer of the method to other fields.

1 < 75 % {1} 1
2 75 - 85 % {1} 1
3 85 - 90 % {1,2} 1
4 90 - 95 % {1,2} 1
5 95 - 99 % {1,2,3} 1
6 99 - 101 % {1,2,3} 1
7 101 -105 % {2,3} 1
8 105 - 110 % {2,3} 1
9 110 – 120 % {3} 1
10 < 75 % {3} 1

Table 3.5 Example for a lookup table for field 200-01. “SOE” describes the source of evidence, “hypo” 
the hypotheses, “MOB” the masses of belief and “r” the reliability. The TPI lacks a class 3, which is 

characterized by a steep slope, which is not given in this region.
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the development phase of this model, a MOB of 1 was defined for almost all classes of the SOE for 
reasons of simplification. However, some test runs of the data fusion also provided indications that 
a gradation of the MOB for the NDVI maps is reasonable, which were subsequently adjusted. The 
interpretations are stored in a lookup table (Table 3.5) and one can create each field individually or 
use them for all fields, but then lose individuality. For better results, individual interpretation of the 
data on a field basis is recommended, as in practice the farmer also evaluates each field individually.

The presented method is supposed to be driven by expert knowledge and in this case resulted from 
literature research, empirical comparison of SOE and yield data and many conversations within the 
work group, including a farmer and a farming consultant. Still, a machine learning approach to 
derive most likely hypotheses could be possible to generate a rule set to begin with. Existing yield 
records can give indications of which hypotheses are likely to occur in the units of the SOE. 

Fuzzy boundaries

For the TBM, the SOE must be classified in advance so that the interpretation remains compre-
hensible. Geodata to which hard limits are assigned, however, do not reflect the reality of yield 
distribution. On the other hand, the conversion of continuous data into narrow classes and a large 
number of classes in order to almost map the actual continuity is difficult to handle, at least for a 
human interpreter. 

To resolve these hard boundaries, a distance-dependent fuzzy function is applied to the class boun-
daries. Adapted from Dobers 2008, the overlapping class solution (OCS) assumes, that within 
a buffer b outside of one class boundary (e.g. polygon boundary), two classes are possibly valid. 
Consequently, if the SOE is transferred to a spatial polygon, every polygon feature overlaps into 
the neighbouring feature. Within b, the MOB would decrease form 1 (on the boundary) towards 0 
(distance b into the neighbouring feature. Class boundaries are thus respected and softened through 
a weighting.

Output layers

The model produces several output layers, which can be converted to raster for visualisation and 
validation, as described in Table 3.6. 

3.3.4	 Validation

For validation, the concept of stratified sampling was applied. As described in Webster & Oliver 
(1990), the sample points for validation were randomly distributed within regular grid cells, divi-
ding the target raster area. Yield values are based on point measurements. For each sample point, 
the relative yield value and the corresponding class labels (= hypotheses) were extracted.

The result was plotted as a box plot, depicting relation and separability between each class. In ad-
dition, two statistical tests were applied: a) the Kruskal-Wallis-Test and b) the Pairwise T-Test (class 
ID versus relative yield value). The result with a p-value < 2.2e-16 confirmed the general separabi-
lity of the classes, even if run based on different sample points.
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Table 3.6   Output layers of the TBM and their descriptions.

Name of layer Description of value in a raster cell

Winning hypothesis The hypothesis or hypotheses with the maximum belief

Normalized
The hypothesis or hypotheses with the normalized maximum belief 

(without the empty set)

Weight of Conflict The measure of conflict between the SOE being fused

Maximum of Belief The maximum belief as numeric value

Most Plausible Hypothesis The hypothesis with the highest plausibility

Maximum Plausibility Highest plausibility as numeric value

Method

The Pairwise T-Test applied compares each test series with one another and tests if there are statis-
tically significant differences. This test normally requires normally distributed data, which is not 
necessarily given in this case. However, this condition may be violated if the number of sample 
points is high (Bartlett 1935) and the variance of the test series is comparable. 

In addition to the statistical tests, the modeled yield classes (1-3) were compared to an interpola-
ted yield map, classified into three classes divided by the 33% (1/3) and 66% (2/3) Quantile. The 
sampling scheme followed a 5 x 5 m grid, coherent with the SOE raster resolution. The pixel-wise 
comparison provided a measure of accuracy, roughly indicating the quality of each fusion result. 
Roughly and best compared in relation to the range of all accuracy values (9% - 57%), because the 
pre-classification of the validation basis can be chosen quite randomly (e.g. rigid thresholds, k-me-
ans classification). Therefore, the final quality assessment of a fusion result was a combination of 
the physical properties of the box plot (indicators implying a high separability of classes 1, 2, 3), a 
visual analysis of the box plot and the accuracy. 

During the model development, all possible 2047 combinations of fusing 11 sources of evidence 
(Fig. 3.9, Chapter Appendix) with each other and with varying number of SOE (1-11) were fused. 
Following this process is a combination matrix, listing an accuracy index, which is either the actual 
accuracy, if the statistical tests mentioned above were negative, or the actual accuracy plus 100, if 
the statistical tests were positive. This way, the results can be distinguished in a fast manner. 

3.4	 Results and Discussion

In order to explain the TBM and its application in agricultural questions, five combinations of the 
eleven SOE are presented. These examples can be used to show the success of the method, but also 
to generate information on how to work with the TBM and where it has weak points. Table 3.7 
lists the five examples presented here, together with the number of data sources considered and the 
corresponding figure reference. 
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Meaningful results are indicated by a good separability of the three modelled yield classes in the 
corresponding box plots. The statistical tests must support the separability. The calculation of the 
accuracy has a lower priority in the ranking of the results, since it can only be a guideline and not 
the „true“ accuracy. On the one hand, the yield measurements in this study were not collected ma-
nually with absolute reliability, but the data from the thresher is trusted. Secondly, the yield map 
itself was classified before the 1:1 calculation of the accuracy and it is difficult to say which class 
boundaries would reflect a zoning on the field with absolute reliability.

If that accuracy is accepted it is first and foremost a relative measure, analyzing the evolution of 
the values calculated after each fusion from the respective result is very revealing. With fusion steps 
that bring a gain in information, the accuracy value increases. If another data source does not bring 
relevant or even false information into the model, the accuracy decreases after such a fusion. This is 
the case with result R1 (Fig. 3.4) and the last iterative step.

R1 shows the case when all eleven available SOE are combined, without regard to their individual rele-
vance, but with the aim of combining as much information as possible. Figure 3.4 b is the normalized 

Table 3.7  Overview of TBM combinations presented in this study

Result Number of SOE Names of SOE
Iterative 

step
Figure

R1 11 (all SOE)

1.  Soil Quality (“Ackerzahl”)
2.  TPI (Relief Index)
3.  NDVI  08 April 2011
4.  NDVI  09 April 2011
5.  NDVI  20 April 2011
6.  NDVI  21 April 2011
7.  NDVI  21 May 2011
8.  NDVI  03 June 2011
9.  NDVI  06 June 2011
10.  NDVI  28 June 2011
11. NDVI  16 July 2011

1

Fig. 3.4
Fig. 3.5
Fig. 3.10

2
3
4
5
6
7
8
9
10

R2 5

1.  Soil Quality (“Ackerzahl”)
2.  NDVI  20 April 2011
3.  NDVI  21 May 2011
4.  NDVI  03 June 2011
5.  NDVI  28 June 2011

1
Fig. 3.6
Fig. 3.11

2
3
4

    R3 2
1.  Soil Quality (“Ackerzahl”)
2.  NDVI  20 April 2011

1 Fig. 3.7

R4 2
1.  Soil Quality (“Ackerzahl”)
2.  TPI (Relief Index)

1
Fig. 3.10

(Iteration 1)

R5 4

1.  NDVI  20 April 2011
2.  NDVI  21 May 2011
3. NDVI  03 June 2011
4.  NDVI  28 June 2011

1
Fig. 3.122

3
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result of the TBM fusion and shows a map with three yield classes. The corresponding box plot 
(Fig. 3.4 d) implies that the three yield classes can be effectively separated. The distribution of the 
three classes can also be seen visually in the yield map (Fig. 3.4 c). Looking at the non-normalized 
result (Fig. 3.4 a), the occurrence of the conflict areas that occurred during the last iteration step of 
the fusion can be traced. In these conflict areas the class of the empty set appears. If one adds up all 
weights of conflict (Fig. 3.4 f) that occur during the fusion steps, one can see in which areas in the 
field there are large uncertainties in the modelling and in which areas the data sources agree. The dis-
tribution of conflicts is slightly comparable with the modeled yield classes, where the highest sums 
of conflicts are mostly associated with zones of lower yield. If the soil map indicates good fertility 

Fig. 3.4   R1 - Fusion result with all 11 SOE
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conditions, but the crop growth is limited by other factors, such as weather or short-term nutrient 
deficiency, the soil map conflicts with the satellite derived NDVI mapping the actual growth. If the 
soil map indicates less fertility, but the farmer takes measures to compensates the preconditions by 
precision agriculture actions, the growth would reflect positively in the NDVI SOE and therefore 
contradict with the soil SOE. Conflicts are not thus not a measure for the unfitness of the model, 
but an indicator for the relevance of each SOE concerning the modeled parameter.

R1 and also all other presented results are strongly fragmented and the classes are often not con-
nected as a unit. This effect is a product of the high-resolution satellite images which, during the 
growing season, also record the stripped patterns through the lanes or rows of wheat. For agricul-
tural practice, a kind of standardization of the result would have to be made at this point. This 
could be a multiple median filter, as applied to similar data in Georgi et al. 2017. Or a resampling 
of the satellite images to a coarser spatial resolution. With these methods, of course, information 
is lost, which is why the authors in this study have refrained from smoothing the results for purely 
scientific reasons.

The interim results of the data fusion provide information on how additional data sources affect the 
final outcome of the fusion and which data sources are particularly appropriate. Figure 3.5 shows 
the box plots of the validation of the intermediate results of the fusion process of result R1, as well 
as the course of the accuracy. It is noticeable that after the first five fusion steps there are still pixels 
in the result for which the TBM does not model concrete classes but assumes several hypotheses 
(Fig. 5a - 5d). The reason for this is the preliminary interpretation of the SOE, as described in the 
lookup table (Table 3.5). In this case (R1) SOE1 (soil map) and SOE 2 (TPI) are almost exclusively 
represented by multiple hypotheses. 
The more satellite data are added, which here are basically only assigned with the hypotheses {1}, 
{2} and {3}, the more the pixels with the diffuse classes disappear, which do not make a clear state-
ment. This is of course desirable in this method, since the result is more user-friendly, especially 
when using yield classes or MZ in GIS systems or machine software. In contrast, the areas with 
multi hypotheses also offer more flexibility and room for interpretation of the result. At this point 
the farmer himself can decide whether in his experience a class {1,2} is to be assigned to a rather low 
or rather medium yield. 

Figure 3.5a - 3.5i also shows that the spread of the modelled yield classes {1}, {2} and {3} increases 
steadily during the fusion steps 1-10 and the result is improved, especially from the 5th fusion on-
wards. The same trend is indicated by the trend of accuracy (Fig 3.5 I.). Only the last fusion with 
the final result (Fig. 3.5 j) does not provide any improvement, the separability of the classes in the 
box plot decreases again. The SOE added is a NDVI map from 16.7.2011, during which the wheat 
is already too ripe. The plant patterns on the satellite image correlate much less strongly with the 
yield at this time.

R1 is an example of a large data basis for the TBM, which is mostly not the case and not always 
necessary. It was found – on the basis of the combination matrix -  that the relief information does 
not add significant information regarding yield on this specific field and is dispensable in this case. 
The result R4, which is part of R1 and the result of the first fusion of soil and relief information 
(Fig. 3.5 and Fig. 3.10) supports this finding by a box plot with lack of separability, especially class 
2 and 3, as well as a relatively low accuracy compared to other fusion results (Fig. 3.5 I.). For the 
delineation of MZ on this field, remote sensing data is clearly necessary. 
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Fig. 3.5  Validation box plots for every fusion step (a-j), y-axis represents the value of the yield map taken for 
validation, x-axis represents the modeled hypotheses up for validation; accuracy throughout the fusion process 
for normalized results (I.) and for normalized result with the assumption, that pixel with multi-hypotheses 

count as successfully classified, if they include the yield class provided by the yield map (II.)
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The acquisition of optical satellite images is highly dependent on cloud-free conditions and, whi-
le the importance of each satellite image is dependent on the acquisition date and the according 
phenological phase. Depending on the current phenology, the reliability of each individual satellite 
image can be adjusted. The values used in this example were determined in several test loops, during 
which results of fusions with all possible reliability combinations were validated with the yield data.
The reliabilities for each NDVI data set reflect the correlation between final yield and certain phe-
nological phases. The most relevant NDVI input layers are taken on the 28th June (development of 
fruit1  / ripening1), 03rd and 06th June (heading) and 20th April (stem elongation1).

  

3.4.1	 Suitability of multi-temporal satellite images

When modelling the yield, it therefore makes sense to use only certain satellite images of selected 
recording times. During the early phenological phases of cereal, the growth patterns reflect the basic 
spatial differences of soil, nutrients and water supply. These patterns are often very well visible in 
multispectral satellite data (Georgi et al. 2017).

The NDVI as an indicator of plant vitality highlights where more or less plants with more or less 
vitality grow in the field (e.g. because more or less seeds have developed and/or soil conditions are 
different). The number and density of the plants should correlate with the final yield, since the 
ability of the cereal crop to enter the phenological tillering phase depends on the germination capa-
city and the amount of plants from the seed (Geisler 1983). The latter plant distribution is exactly 
what NDVI can represent. A high distribution of weeds can mislead this impression, but it is not 
assumed that there are many weeds in field 200-01 - especially not at the beginning of the growth 
phase and the conventional agricultural methods applied. Thus, satellite data recorded in spring 
around the tillering and the stem elongation phase are very suitable for an early assessment of the 
plant growth of wheat. Consequently, these data are suitable for an early estimation of the yield dif-
ferences (Marti et al. 2007), which also indicates the result R4, in which only the soil information 
and a satellite image data set from April were used for the TBM.

However, the yield of plants such as wheat does not consist of above-ground biomass, but of storage 
organs, which is why yield measurement with RS can only be indirect. In addition, these yields are 
dependent on the meteorological conditions in critical growth conditions (Knoblauch et al. 2017) 
and for modelling yield zones additional RS data throughout the growing season is crucial. 

A very positive influence on the TBM result in this study was a satellite image taken on May 21 at 
the beginning of the phenological heading phase. In this phase, the leaf coverage of wheat is at its 
maximum (Geisler 1988). 

Some studies have shown the highest correlation between NDVI and yield in this phase (Knob-
lauch et al. 2017), Field 200-01 correlates most strongly during the milk development stage of grain 
development (BBCH 71-77), which is also described by Marti et al. 2007. However, a high leaf area 
index (LAI) can also have a negative effect. If the crop is too homogeneous, the NDVI is saturated 
and the differences in vitality in the field are no longer visible. In this case, other vegetation indices 
would have to be used. If this is not the case, yield modelling can use the direct relationship between 
plant density and yield as one of many influencing factors on yield (Geisler 1988).

1	 Phase name according to the BBCH scale in English
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The most positive impact on the fusion process has the NDVI at 28 June. During milk-grain stage, 
where the wheat grains reached a maximum volume, whereas the grain, the spike and the top most 
leaves are green and synthetically active (Geisler 1988). As mentioned, wheat yield cannot be as-
sessed by RS directly, but grain growth is based on cell multiplication and assimilation rate in the 
plant. Grain-growth important assimilation is driven by the photosynthetic activity of the top most 
plant parts, which is precisely the plant parts most visible to RS and the reason why the NDVI is 
sensitive to potential prospective yield differences in a field. 

Finally, when the ripening process advances and the overall vitality is decreasing after milk-grain 
stage (Geisler 1988), remote sensing information decreases in relevance. The Mid-July image in this 
study does not show significant correlation with the final yield map. 

3.4.2	 Combination of only relevant SOE

The result R1 and the explanations on the relevance differences in satellite imagery imply that only 
certain relevant SOEs are preferable for the TBM. If only relevant evidence sources (Table 3.7, SOE 
as basis for R2) are used under exactly these aspects, the result R2 shows a high separability of the 
box plot classes as well as a relatively high accuracy (56.7 %). R2 is thus the best possible result of 
all combinations and would be recommended for use in practice. The accuracy increases during the 
fusion process and all intermediate results are statistically positively validated (Fig. 3.11).

It is also possible to model yield zones without GIS data and only with satellite data (Table 3.7, 
Fig. 3.12). The corresponding result R5 also achieves a good result with good separability of the 
individual classes (Fig. 3.12) and an accuracy of 55.4%. However, the result is not quite as accurate 
as R2 and the soil information adds more value to the fusion process.  

Fig. 3.6 Result R2, Normalized resulting hypotheses (left), validation box plot (right)
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3.4.3	 Early yield zone prediction 

The most optimal result R2 integrates satellite data that are recorded late in the season. Early de-
tection of vitality structures is also possible in spring. The fusion with an early satellite image from 
20 April with the soil information can give an early estimate of the yield zones (Fig. 3.7). However, 
the TBM result is strongly dominated by zones to which the TBM has assigned multiple hypothe-
ses. From this and resulting from the geometric structure of the soil map and the fuzzy boundary 
function, the result R3 is difficult to interpret (Fig. 3.7 a). The separability of the box plot classes is 
very high (Fig. 3.7 b), but the accuracy is only 14.37 %. If one tests whether one of the modelled 
multiple hypotheses corresponds to the actual yield class of the yield map per pixel (e.g. {1} [yield 
map] in {1,2} [TBM]), the accuracy increases to 85.4%. The sources of evidence find a result that is 
not wrong, but that cannot be used in practice. One solution is to use another TBM product, the 
most plausible hypothesis (Table 3.6, Fig. 3.7 c). Thus, the hypothesis with the highest plausibility 
is presented instead of the hypothesis per pixel that received the most belief during the application 
of Dempster‘s Rule of Combination. This is the hypothesis that appears most frequently in the cross 
calculation, whether as a single hypothesis or as part of a hypothesis set. The result (Fig. 3.7 c) is 
clearer, more comprehensible and achieves an accuracy of 51.6% in the validation with the yield 
map.

3.4.4	 Comparison of selected results

The comparison between R1 and the 9th fusion result of R1, R2 and R5 shows a great visual simi-
larity (Fig. 3.8). The classified NDVI map from June 28 also shows similar patterns, which is also 
due to the high weighting of the reliability of this data source in R1, R2 and R5 and increases the 
dominance of this data source. In the validation step R2 turns out to be the most optimal result, but 

Fig. 3.7 Result R3, normalized resulting hypotheses (left), validation box plot (middle), maximum 
plausible hypotheses (right)
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Figure 3.8 shows that several results of the TBM are usable in practice and it may be the case that 
there is not one correct result. Even if the yield structures can already be seen on the satellite image 
from 28 June, it is advisable to compress the information by several data sets. After all, it is not 
certain that a satellite data set is available at the desired time or whether it is dominated by clouds. 
The penultimate intermediate results of the fusion of R2 and R5 Fig. 3.11 and Fig. 3.12) show that 
there is a well validated result even without this data set, although it is less accurate.

The comparison of all results with each other shows small and less small differences and thus also 
the nature of the TBM. The model is very flexible and can be fully adapted to the individual charac-
teristics of a field and the farmer‘s experience. However, this requires a high degree of preparation 
and definition of several parameters by the user.  The user has full control over the model and can 

Fig. 3.8 Comparison of Results R1, R2, NDVI at 28 June, R1 at fusion iteration 9 and R5 (only satellite data), as 
well as the classified yield map
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easily understand the values and the calculation. The parameters hypothesis, mass of beliefs and 
reliability can be adjusted in such a way that little or no pixels with multiple hypotheses appear in 
the result. This reduces the scope for interpretation and could also lead to incorrect classification if 
the classes of the sources of evidence are interpreted very rigidly.

3.5	 Conclusion and Outlook 

This study presents a method for data fusion based on evidential reasoning in the agricultural con-
text. With the Transferable Belief Model, satellite data and GIS data can be fused independently 
of their unit and spatial resolution to model yield zones. These yield zones can then be used as ma-
nagement zones in precision farming applications, because they represent vitality differences in the 
field, which can be addressed by precision farming measures. The TBM calculates with quantified 
beliefs, not probabilities, because probabilities are very difficult to determine in an agricultural con-
text. The beliefs allow the expert knowledge and experience of the user - e.g. a farmer or a consul-
tant - to be integrated into the model. The calculation of the quantified beliefs is easy to understand 
and transparent. A wheat field in north-eastern Germany was used to show how the method works 
and what values the parameters influencing the TBM could have. The method leaves the farmer a 
lot of freedom in decision making and does not risk patronizing him with an intransparent, finis-
hed solution. In practice, however, the determination of this large number of parameters can be an 
obstacle to the successful implementation of the method. A further development of the method 
could therefore be to automatically develop a standard ruleset on the basis of past yield maps and 
the data used as sources of evidence. The farmer could then still adapt this standard rule set indivi-
dually but would not have to work without reference. An analysis of a large amount of yield data in 
similar habitats and the existing GIS data as well as the large archive of remote sensing data could 
be a reliable data basis for such a ruleset. Especially if the farmer does not have his own yield data. 
Data mining algorithms would be very effective for the analysis. 

The study presents only one field in one year as a development environment, but the method has to 
be tested on many fields, in various years and in different natural areas before being introduced into 
practice. The AgriFusion project (Spengler and Heupel 2017) is also further developing the TBM 
method, also on fields in other regions of Germany.

For practical relevance, it is important to generate an output format that can be used for agricultu-
ral machinery. The hitherto fragmented raster data dominated by pixels could be smoothed with a 
filter function and then converted into coherent vector polygons. This study aims to demonstrate 
the principle, relevance and feasibility of the method. 

In the context of „big data“ development, the TBM offers endless possibilities for data fusion. 
Many yield-relevant data can be integrated into a TBM, such as electrical conductivity maps, nu-
trient distribution, water balance maps, and remote sensing data from other satellite sensors or dro-
nes. This further development is particularly important in years with heavy cloud cover to guarantee 
the recording of remote sensing data. In terms of yield expectations as well as in modelling yield 
potential, yield data from previous years can also be used as source of evidence in order to improve 
the accuracy of the results. 



89Conclusion and Outlook

Based on this and other studies, the approach of evidential reasoning as part of Precision Farming 
applications is quite relevant for further development and implementation in practice. The method 
adapts organically to the complexity of plant growth and yield development and integrates exactly 
the valuable knowledge that farmers have generated over the years.
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3.9 Chapter 3 Appendix

Fig. 3.9  All sources of evidence in this study
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Fig. 3.10  Fusion process of result R1 with all SOE. 
Pictured are the hypotheses with the maximum of be-
lief, the hypotheses based on the normalized maxi-
mum belief, the weight of conflict and the validation 
box plot.
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Fig. 3.11  Fusion process of result R2. Pictured are the hypotheses with the maximum of belief, the hypotheses based on 
the normalized maximum belief, the weight of conflict and the validation box plot.
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Fig. 3.12 Fusion process of result R5 (satellite data only). Pictured are the hypotheses with the maximum of belief, the 
hypotheses based on the normalized maximum belief, the weight of conflict and the validation box plot.
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Abstract

Information provided by satellite and geodata in general is becoming increasingly important in 
the field of agriculture. Estimating biomass, nitrogen content or crop yield can improve farm ma-
nagement and optimize precision agriculture applications. A vast amount of data is made available 
both as map material and from space. However, it is up to the user to select the appropriate data 
for a particular problem. Without the appropriate knowledge, this may even entail an economic 
risk. This study therefore investigates the direct relationship between satellite data from six different 
optical sensors, as well as different geodata and yield data from cereal and canola recorded by the 
thresher in the field. A time series of 13 years is considered, with 947 yield data sets consisting of 
dense point data sets and 755 satellite images. In order to answer the question of how well the rela-
tionship between remote sensing data and yield is, the correlation coefficient r per field is calculated 
and interpreted in terms of crop type, phenology and sensor characteristics. The correlation value r 
is particularly high when a field and its crop are spatially heterogeneous and when the correct phe-
nological time of the crop is reached at the time of satellite imaging. Satellite images with higher 
resolution, such as RapidEye and Sentinel-2 performed better in comparison with lower resolution 
sensors of the Landsat series. The additional Red Edge spectral band also has advantage, especially 
for cereal yield estimation. The study concludes that there are high correlations between yield data 
and satellite data, but several conditions must be met which are presented and discussed here. 

4.1	 Introduction

Modern agriculture is increasingly primarily a digital agriculture and the solutions to the major 
challenges can hardly do without data. In precision farming, Geographic information systems (GIS) 
and increasingly satellite data serve as a basis for the management. The flood of data from space is 
both a curse and a blessing. With the launch of the Sentinel satellite series, data, highly relevant for 
agriculture due to their spectral, spatial and temporal resolution, are now freely available. In cloud-
free conditions, a data set can provide information on the growth and condition of the crop up to 
once a week, allowing conclusions to be drawn on parameters such as biomass, plant density and 
drought stress. But for the user himself, especially at farmer level, it is still difficult to interpret the 
data and select the appropriate satellite images. The estimation of crop yield is of great importance 
for the farmer, but also for the authorities – both historically and during the season. 

The derivation of yield from satellite and GIS data is not trivial, since the yield formation of each 
plant species depends on complex factors and is different for every crop type (Geisler 1988). The 
final yield of a field is mainly dependent on number of seeds, soil type and therefore soil fertility, 
water supply, nutrient supply and duration of sunshine throughout the season (Geisler 1988; T., 
Evans and A. Fischer 1999). The grain yield of cereals, for example, cannot be measured directly 
from satellite data, which is why such methods are based on proxies such as biomass (Babar et al. 
2006; Ren et al. 2008), leaf area index (LAI) (Gaso, Berger and Ciganda 2019; Peng et al. 2019) or 
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chlorophyll content (Guo et al. 2018; Serrano,Filella and Pen 2000). These proxies are often mo-
delled using vegetation indices such as the Normalized Difference Vegetation Index (NDVI) (Marti 
et al. 2007; Bognár et al. 2017), which is considered to be very reliable. But also, less used indices 
like the Enhanced Vegetation Index (EVI) or the Normalized Difference Red Edge Index (NDRE) 
can be used successfully to estimate yield indicators. 

But it is not only a question of the right index, but also of the time of acquisition. The correlation 
between a vegetation index and the crop yield is not congruent with every phenological stage. For 
wheat, the stages stem elongation (BBCH-Code 31), Heading (BBCH-Code 51) and Development 
of Fruit until early Ripening (BBCH-Code 75-83) of the BBCH scale (Hack et al. 1992; BBCH 
working group 2001) are stated to be suitable to derive the spatial yield patterns from satellite data 
(Knoblauch et al. 2017; Marti et al. 2007). 

One limiting factor, however, is the spatial resolution of the products of many publications. This is 
because yield models on a (sub)national or regional basis (Ren et al. 2007, 2008; Baruth et al. 2008) 
with spatial resolutions of 250 meters (MODIS) to 1000 meters (SPOT VEGETATION) can only 
be used to a limited extent in agricultural practice. In European countries, the average field size of  
around 56 hectares (Statistische Ämter des Bundes und der Länder 2010) is many times smaller 
than, for example, in the USA with around 447 hectares (Macdonald,Korb and Hoppe 2013). If a 
farmer wants to integrate products from satellite data into his precision farming routine, informa-
tion at field level is needed. Mainly because the main strategy of precision farming is the variable 
application of resources within a field. 

The approach to field-based yield estimation must therefore answer the following questions: Which 
satellite sensor with which spatial, spectral and temporal resolution is best suited for yield estima-
tion of the individual crop? At what point in time do these data have to be acquired to obtain a 
robust estimate and can geodata do the same? The current publication landscape covers only partial 
aspects of these questions, but cannot answer all of them, especially for grain and canola. And rarely 
for long periods of time.

For this reason, this study analyzes the statistical correlation of high-resolution yield data and satel-
lite data of various spatial and spectral resolutions. 947 yield data sets from wheat, barley, rye, and 
canola fields collected between 2006 and 2018 are available. In addition, 755 satellite images, from 
which 15 different indices were calculated. Additionally, environmental GIS-data, such as soil type, 
soil quality, relief information and wetness index, were taken into the analysis. The correlations were 
compared with phenological stages, weather data and modelled plant-available soil water. The study 
evaluates for which crop type and which phenological stage yield estimation is mostly suited and 
which sensors are with which spatial and spectral resolution is necessary. 

4.2	 Study Area 

The study area lies in the north-eastern lowlands of Germany (Figure 1), where the analyzed fields 
are located within the observatory TERENO-NE (Heinrich et al. 2018). The observatory is ope-
rated by Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences (GFZ) The 
central point of the study is roughly around 53.948 N, 13.186 E. Geologically, the region was 
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characterized by repeated glacial processes during the last glaciation („Weichsel Ice Age“) and trans-
formed into a hilly ground moraine landscape with representative glacier characteristics. Flat, hilly 
and undulating ground moraines alternate with hilly terminal moraines, glacial valleys, lake basins, 
kettle holes and eskers (Bundesanstalt für Geowissenschaften und Rohstoffe 2006). Natural and 
artificial drainage systems influence the topography and thus the soil composition of the fields. All 
fields are characterized by young moraine soil types.

4.3	 Data 

4.3.1	 Earth observation data

All available optical satellite images recorded by Landsat 5, Landsat 7, Landsat 8, RapidEye, Sen-
tinel-2 and Planetscope covering our study area between 2006 and 2018 (Fig. 4.2) were obtained. 
At the beginning of the period only data from Landsat 5 and 7 are available, the number of sensors 
increases to five in 2017. For some years (e.g. 2013) only few data sets are available for the study 
area, among other things due to the mostly cloudy weather conditions. The different sensors have 
their specific characteristics such as spatial and spectral resolution (Table 4.1), which are examined 
in the study for their suitability with regard to yield prediction. The data were transmitted at diffe-
rent processing levels and further processed if necessary, to work with an atmospheric corrected and 
georeferenced data base (Table 4.1). 

Fig. 4.1 Study area and location in Germany (left). Sentinel-2 satellite image, ESA (right). 
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Table 4.1 Overview of the availability and characteristics of the individual remote sensing sensors, as well as 
the processing steps performed. Not all recorded tiles are available for RapidEye at all times. Therefore, not every 

„No. of data sets“ can always cover all yield data at the time of the recording.

Sensor Years
No. of 
data 
sets

Spatial
Resolution 1 

Spectral resolution 
used in study 2 

Processing Literature

RapidEye
Level 1B, 3A from 

RESA Archive
2009-2018 179 6.5 / 5 m  

5 bands: blue, green, 
red, red edge, nir

Atmospheric 
Correction with 
ATCOR, Geo-
referencing with 

AROSICS

(Richter 2010; 
Borg,Daedelow 

and Johnson 
2012; Scheffler et 

al. 2017)

Landsat 5
2006, 
2007, 

2009-2011
105 30 m

4 bands: blue, green, 
red, nir

Atmospheric 
Correction with 

ATCOR
(Richter 2010)

Landsat 7 2006-2017 280 30 m

Landsat 8 2013-2018 127 30 m

Planetscope
Level 3A

2017-2018 21 3 m Planetscope
(Planet Team 

2017)

Sentinel-2 2017-2018 43 10 m
8 bands: blue, green, 
red, 3 red edge bands, 

nir

Atmospheric 
Correction and 

cloud masking with 
GTS2, Georeferen-

cing with ARO-
SICS

Scheffler et al., 
2017; GFZ Pots-

dam)

	

1	 of used bands
2	 Sensors offer more band choices

Fig. 4.2 Heatmap of satellite data availability for this study
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4.3.2	 Environmental data 

Soil map (soiltype, BZ, AZ)

Soil information is based on the German “Bodenschätzung” (1:10.000) (BS) (Arbeitsgruppe Boden 
2005), a soil map edited in the 1930s, which is kept updated, though not at the same spatial grid 
as the original data acquisition (50 x 50 m). The soil map contains soil polygons with information 
about parent material, integrated soil texture to a depth of 1 m and the soil development stage. 
Dobers, Ahl and Stuczyński (2010) elaborate on the development and characteristics of the BS. The 
parameters “Bodenzahl” (BZ) and “Ackerzahl” (AZ) are quantitative assessments of soil fertility and 
an indicator for potential agricultural productivity. They are given in integers in a range from 0 to 
100, where 100 is the reference for the most fertile soil in Germany. The BZ is based on soil type 
and therefore productivity only, while the AZ takes other factors such as morphology and climatic 
characteristics into account.

Digital elevation model (TPI, TWI)

The digital elevation model (DEM) has a resolution of 5 m and is based on airborne LIDAR mea-
surements (Amt für Geoinformation Vermessungs- und Katasterwesen 2011). The height data was 
used to calculate the Topographic Positioning Index (TPI) (Jenness 2006) with the GIS software 
SAGA (Conrad et al. 2015). The TPI has generally six classes describing land forms such as hilltop, 
upper slope, etc. and is sensitive to the scales used in the calculation and classification process. The 
shape of classes changes, if the outer radius of annulus in cells according to Jenness 2006 is changed. 
Therefore, two variations of the TPI were calculated: „TPI fine“ with a radius of 25 meters and „TPI 
coarse“ with a radius of 50 meters. The DEM was also used to calculate the Topographic Wetness 
Index (TWI) (Beven and Kirkby 1979), which is a steady state wetness index and is a function of 
slope and the upstream contribution area. 

Map of Organic Carbon (Corg )

Correlation analysis is also applied to a remote sensing product for mapping organic carbon. It is a 
distribution of organic carbon at the surface, developed by Blasch et al. 2015, using a multispectral 
RapidEye time series.

4.3.3	 Farm and yield data 

Yield data (Yield) 

For this study, field boundary, crop cultivation and yield data for the test area were provided by 
two agricultural companies. The yield data was taken during harvest by a GPS controlled harves-
ter. Yield measure was taken approximately every 1 meter (Farm 1) and approximately every 10 
meters (Farm 2) within a tram line, if the sensor operated flawless, which is not always the case. In 
addition, Farm 1 operates Precision Farming over the entire time series with the aim of achieving 
homogeneous yields.
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Farm 1 provided 315 yield records from 2006 to 2018 for this study, Farm 2 provided five large farm-
wide records from 2012 and 2014 to 2017. The records were cropped to individual field-based yield 
data using field boundaries and resulted in 632 datasets of very various density. The data quality of the 
yield data is therefore different and is determined as much better for Farm 1. 

After acquisition, false yield measurements were removed for the most part, by applying filters on 
tresher speed (discarding of values < 2% - treshold of all values and > 99% - threshold of all values), 
swath width (discarding of values < 4 m and > 9 m) and statistical outliers (e.g. grouping of point 
values and discarding of yield values with a difference of more than 2.5 times the standard deviation 
of the group). The Inverse Distance Weighted method was used to interpolate the point data into a 
5-meter grid to visualize the yield data.

Electrical conductivity map (EM 38)

For Farm 1 maps of electrical conductivity from 2009 are available. These are measurements of a 
soil sensor, which vary depending on soil type and condition. Consequently, soil conditions can be 
derived from the measurements (Kühn et al. 2008). However, this parameter is highly variable, as it 
depends above all on the current soil moisture during the measurement. The data are available as point 
data. The data points were transferred to a grid. Due to the partly large point distance no interpolation 
was used, but a 25m buffer around the point values around the points was created.

Phenology data (BBCH)

Phenological data was provided by The German Meteorological Service (DWD) and by GFZ accor-
ding to the BBCH-Codes (Hack et al. 1992), which is a decimal code system to identify phenologi-
cal development stages of a plant and the standard phenology-scale in Germany. The records of the 
DWD are part of a long time series. For the years 2012 to 2018, field observations of BBCH collected 
by GFZ are available in the study area (Harfenmeister, Spengler and Weltzien 2019). Depending on 
the existence and the distance of the BBCH information to the respective field, the source (DWD or 
GFZ) for the phenological information was chosen in this study.

Weather data (Temperature, Precipitation)

Temperature and precipitation data for the entire observation period are provided by the climate 
stations in the DEMMIN area, which are operated by German Aerospace Center (DLR) (Borg et al. 
2018) and GFZ (Itzerott et al. 2018). As reference values the median of the data of the 6 - 43 stations 
were determined.

Modeled soil moisture (moisture)

In order to supplement the weather data, the soil moisture was modeled for the interpretation of 
the results using the METVER model (Bach 2011). This is a complex 1D water balance model for 
calculating the evaporation of agricultural production areas. The values of the climate stations as well 
as soil information are used as input. The soil information around the station „Görmin“ (54.098 N, 
13.408 E) was used. The soil characteristics are described by the parameters of the field capacity and 
the permanent wilt point. 
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In order for the model to produce a very good calculation of the soil water, the exact crop rotation 
with catch crops must be specifi ed. As this was not completely known at the time of the study, the 
model was always calculated for one crop and may therefore deviate from the optimum. 

4.4 Method 

To understand the relationship between remote sensing and yield data, a large number of data sets 
from 13 years were analyzed. Th e data was obtained by extracting the satellite raster values or GIS 
raster values per yield point measurement. Th at is, if the area in question was not covered by clouds. 

Table 4.2   Overview of the calculated vegetation indices, their formula, their origin and which sensor is available for the 
calculation. L5 = Landsat 5, L7 = Landsat 7, Landsat 8 = Landsat 8, RE = RapidEye, S2 = Sentinel 2, PS = Planetscope

Index Name Formula Ref. L
5

L
7

L
8

R
E

S
2

P
S

NDVI Normalized Diff erence 
Vegetation Index

Rouse et al. 
1974 X X X X X X

GNDVI
Green Normalized 

Diff erence Vegetation 
Index

Gitelson,Kauf-
man and 

Merzlyak 1996
X X X X X X

SAVI Soi Adjusted Vegetation 
Index Huete 1988 X X X X X X

NIR Absolute refl ectance 
values of the NIR band NIR X X X X X X

SR Simple Ratio NIR / Red Jordan 1969 X X X X X X

IR/G Ratio NIR and Green 
band (simple ratio) NIR / Green Jordan 1969 X X X X X X

EVI Enhanced Vegetation 
Index

Huete,Justice 
and van Leeu-

wen 1999
X X X X X X

CVI Chlorophyll Vegetation 
Index

Vincini,Frazzi 
and D’Alessio 

2008
X X X X X X

GLI Green Leaf Index Viña et al. 
2011 X X X X X X

NDWI Normalized Diff erence 
Water Index Gao 1996 X X X X X X

MCARI
Modifi ed Chlorophyll 
Absorption in Refl ec-

tance Index

Daughtry et al. 
2000 X X

NDRE Rededge Normalized 
Diff erence Red-Edge

BARNES et al. 
2000 X X

NDRE 
/ NDVI

Ratio of NDRE and 
NDVI NDRE / NDVI See above X X

CCCI Canopy Chlorophyll 
Content Index

Barnes et al. 
2000 X X

REIP Red Edge Infl ection 
Point Guyot 1990 X
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Therefore, a threshold for the blue band within the extent of each field was applied. If the standard 
deviation of such extent exceeded 150, cloud coverage was very likely and the data was therefore 
neglected. Depending on the spectral resolution, 15 indices were calculated from the satellite data, 
whereby 10 indices could commonly be calculated for all sensors (Table 4.2). In accordance with 
(Georgi et al. 2017; Vallentin et al. 2019), based on the same satellite and yield datasets the choice 
of indices was narrowed down to yield-relevant spectral indices as follows. Nonetheless, the collec-
tion does not claim exhaustiveness and could be extended in future studies.

4.4.1	 Correlation calculation

These experiments were conducted: 

A.	 by the direct correlation calculation between all grid points and yield points per field, 

B.	 by the correlation calculation of the mean satellite grid values and mean yield values per 

field and year and 

C.	 by the correlation calculation of all satellite grid values and all yield point values per year 

and per fruit, independent of the fields. 

For each experiment and each data pair the Spearman correlation (Daniel 1990) was determined. 
Earlier studies (Georgi et al. 2017; Vallentin et al. 2019) showed a monotonous but non-linear 
correlation between satellite data and yield data, which would rules out correlation methods based 
on linear correlation assumptions. Often one reason for the non-linearity is the saturation of vege-
tation indices, which in high ranges do not correlate as strongly with the yield as in the lower and 
middle ranges.

It will be investigated how individual data sets correlate with yield data to find out which data sets 
are most suitable for potential yield modelling. Since each data set, be it satellite data or geodata, 
makes a different statement about the vitality of the crop and at least the satellite data are not mu-
tually dependent, a bivariate analysis was chosen. In this way, the relevance of individual data sets 
can be highlighted and examined. The correlation values were therefore calculated into absolute 
values, to enable a ranking

They were then evaluated in terms of crop, phenology, yield level, choice of data source and indices, 
and weather conditions. In the following analysis of the results, the guideline for good correlations 
is the median of correlations in the respective group considered. Nevertheless, the outliers were also 
evaluated upwards in order to give an assessment of which parameters correlate most with each 
other. The correlation is given as Spearman Correlation Coefficient r also called “Spearman’s Rho” 
and this always refers to the correlation between the yield data and the data source to be analyzed.

The analysis and visualisation was done by using R (R Core Team no date) with the use of the pa-
ckages ‘raster’ (Hijmans 2015), ‘rgdal’ (Bivand,Keitt and Rowlingson 2015), ‘stringr’ (Wickham 
2012), ‘data.table’ (Dowle et al. 2014), ‘ggplot2’ (Wickham 2009), ‘gridExtra’ (Auguie 2012) and 
‘automap’ (Hiemstra et al. 2008). 
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4.5	 Results and Discussion 

4.5.1 	 Experiment A: Direct correlation calculation between all grid points and yield points 
per field

4.5.1.1  Main results and observations

The correlation analysis based on the extraction of data source values per yield data point contains 
a broad spectrum of correlations. From no correlation up to correlation values of r=0.94. However, 
high correlation values above 0.75 are more outliers than standard and the median of all correlation 
values is 0.16, which also reflects unfavorable conditions. The results show however, that a positive 
correlation between yield and satellite data exists under certain conditions (e.g. Fig. 4.10). These 
conditions are influenced by the density and homogeneity of the crop, by the choice of satellite 
data, by the choice of index, the analyzed crop itself and by the acquisition date of a satellite image. 
Consequently, it is also possible to deduce yield characteristics from remote sensing data. The en-
vironmental GIS data have shown very low correlations in this study (Fig. 4.16). The certainty of 
a yield prediction is influenced by additional factors, such as level of average (expected) yield and 
phenology of the crop. A brief overview of the best performances in this study is summarized in 

Table 4.3 Short summary of the results and indication of which vegetation index with which sensor 
has the highest correlations to which phenological phase.

CROP TOP INDIZES BEST BBCH BEST SYSTEM FIGURE

Rye

NDRE (RapidEye)
early: 31,33

late: 65, 61, 83
RapidEye Fig. 4.12

Fig. 4.23
(Chapter 4 Appendix)

Red-NIR-Ratios:
NDVI, EVI, SAVI, SR

early: 33 RapidEye

late: 65, 61, 51 Planetscope

Wheat

NDRE (Rapideye)
early: 31

late: 76, 83, 51, 75
RapidEye Fig. 4.10, Fig. 4.12

Fig. 4.22, Fig. 4.24
(Chapter 4 Appendix)

Red-NIR-Ratios: 
NDVI, EVI, SAVI, SR, 

GNDVI

early: 31 Planetscope, Sentinel-2

late: 83, 76, 75, 51 Planetscope, RapidEye

Barley
Red-NIR-Ratios:

NDVI, EVI, SAVI, SR, 
IR / G, NDWI

early: 31 Planetscope, RapidEye
Fig. 4.12

Fig. 4.25 
(Chapter 4 Appendix)

late: 51
late: 75, 61

Planetscope, Senti-
nel-2, RapidEye

Canola

NIR early: 31 Sentinel-2
Fig. 4.5, Fig. 4.13    

Fig. 4.21, Fig. 4.26
(Chapter 4 Appendix)

Red-NIR-Ratios:
NDVI, EVI, SAVI, SR, 

GNDVI
late: 77, 71

late: 61
RapidEye, Planet, 

Sentinel-2
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Table 4.3. 
As mentioned, environmental GIS data play a minor role in this study compared to satellite data 
for yield prediction, as they are almost always underperforming. This makes it all the more im-
portant to recognize that up-to-date data sets are needed to map the actual condition of the plants, 
although the growth of crop is undoubtedly directly dependent on the composition of the soil and 

topography. 
In general, the correlation analysis shows certain tendencies, which data sets and which band com-
binations are favorable at which phenological stage to estimate the yield. Figure 4.3 shows that when 
examining cereal, RapidEye data often show higher correlations than all other sensors. In this study 

Fig. 4.3   Heatmap of all Spearman correlations calculated. Per sensor and BBCH stage for all cereal types.

Fig. 4.4   Heatmap of all Spearman correlations calculated. Per index and BBCH stage for all cereal types.
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RapidEye belongs to the spatially high-resolution sensors and also has a band in the Red edge range. 
However, the availability of the data in this analysis is much higher than the data from Sentinel-2 
and Planetscope. If this analysis is applied to canola, a similar pattern appears (Fig. 4.21, Chapter 
Appendix). 

When considering which index, i.e. which combination of spectral bands, might be best suited to 
draw conclusions about the yield, certain patterns also emerge (Fig. 4.4). When looking at cereals, it 
can be observed that the correlations between satellite image and yield are almost consistently high 
in certain phenological phases, regardless of the index chosen. With the exception of the REIP. Ho-
wever, some indices perform well at certain BBCH stages, while others show much less correlation. 
This effect can be seen for example in BBCH stage 30 in Figure 4.4.

The fact that there is a stronger correlation in certain BBCH phases than in others can also be ob-
served for canola (Fig. 4.5), but the appropriate indices here are partly different (Table 4.3, Fig. 4.5).

Overall, it can be observed that the correlations are highest for cereal crops wheat, barley and rye 
and less for canola. Factors to be considered when choosing satellite data for yield estimation and 
interpreting the results are: 

I.    Density of crop over field / Heterogeneity of field 

II.   Sensor resolution, spectral and spatial

III.  Calculated vegetation index 

IV.   Phenological stage of crop 

These factors are presented and discussed below. When interpreting the results, it should be noted 
that not only the type of data and yield levels have an influence on the correlation results, but also 

Fig. 4.5   Heatmap of all Spearman correlations calculated. Per vegetation index 
and BBCH stage for canola.
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farm management and the way the data are aggregated in the A-C experiments.
4.5.1.2    Impact of managing strategy and quality of yield data on the results

The evaluation of the data also revealed differences between the correlation strength of Farm 1 and 
Farm 2. The positive outliers are usually attributable to Farm 2, which often measured far less yield 
value points in the fields studied compared to Farm 1 (Fig. 4.19, Chapter Appendix). It cannot be 
excluded that the mass of yield measurement points of Farm 1 contains more uncertainties than 
the low number of Farm 2. The reliance on yield measurements as a basis for analysis can in itself 
be problematic, as the researchers rarely stand directly on the fields and check the accuracy of the 
thresher recording over time. The available data sets are very valuable due to their long time series 
and high spatial coverage but should not always be interpreted without skepticism. 

However, the different correlation levels of Farm 1 and Farm 2 can be the consequence of the dif-
fering farming strategies. Farm 1 has been operating precision farming for more than ten years and 
seeks to homogenize the crop over the season until harvest. Farm 2, to the authors‘ knowledge, did 
not operate any precision farming during the period under review and may aim to exploit the high-
yield areas in the field to the full. The yields of Farm 2 are on average higher than those of Farm 1, 
but the crop is spatially more heterogeneous. This can therefore also be seen in the satellite data and 
leads, for the reasons explained above, to a higher correlation.

4.5.1.3     Impact of decrease of resolution on the result 

In the experiments B) and C) in this correlation analysis, in which the extracted data points are 
generalized in two different ways, much better correlations appear than in the experiment of A) 
mainly discussed in the following chapter. The generalization of the data and the associated reduc-
tion of the resolution of the points inevitably leads to a reduction of the information. However, 
the aim of this study is above all a correlation analysis within a field for the area of application of 
precision farming. 

4.5.1.4	    Factor i : Density of crop over field / Heterogeneity of field

In this case, the years 2015 to 2018 are selected in order to illustrate the influence of different yield 
levels per year on the correlation, as the data basis is also densest here. A comparison of the years 
2015 to 2018  (Fig. 4.6) shows that the mean and maximum correlation values achieved for 2015 
and 2017 are far below those for 2016 and 2018, although the data density is comparable and high-
resolution satellite data are available throughout. 

If the yield information is added, the picture is reversed. In those years in which the farmers achie-
ved high yields, the correlations between yield and satellite imagery are lower than in those years 
with low yields. The reason for this is the proxy approach. The satellite sensors do not directly 
measure the grain yield as recorded during yield mapping. The vegetation indices are sensitive to 
variables such as biomass, vitality, LAI, density and chlorophyll content, which in turn are related 
to yield potential (Babar et al. 2006; Ren et al. 2008). If the crop is very vital and very dense, i.e. 
has a high LAI and a high biomass, even a sensor from space can only detect a few spatial patterns. 
In addition, saturation occurs in most indices above a certain threshold value, so that nuances in 
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the upper value range can no longer be detected (Haboudane et al. 2004). 

However, if the crop develops very heterogeneous because the soil and / or weather conditions 
are not in favor for growth and / or development, the probability of successfully recognizing yield 
patterns appears to increase according to these results. Especially for cereals, the maximum correla-
tions per field can depend on the average yield of the field. In high-yield locations, i.e. fields whose 
biomass is in usually very high, the correlations between NDVI and the average yield of the field 
decrease (Fig. 4.7). Fields with low and average yield perform better in the correlation analysis. 

These findings do not apply though, if the final yield is reduced by extreme weather events or da-
mage caused by animals and diseases, which were all not by the satellite data or only occurred after 
the recording date may have reduced the yield. 

Figure 4.3 and Figure 4.4 show for the test area and the present large data set a correlation between 
the amount of yield and the correlations between yield and satellite data sets. This leads to the con-
clusion that in case of high homogeneity of the fields and high expected yield, the satellite data can 
be less reliable to make a reliable statement about the yield than in the other case. During the gro-
wing season, it is usually difficult to estimate the expected yield. For agronomists, however, the con-
sideration of weather data and the availability of water close to the roots can provide information. 
The availability of water is a decisive factor in yield development. Water scarcity reduces strom-
atal conductance and photosynthesis in the leaves. This can - in theory - influence the metabolic 
capacity of the seed (Egli 2017). In water-intensive phases such as heading, low availability is par-
ticularly critical. Water stress in the 7-10 days after anthesis additionally causes a reduction of the 
final grain yield (Evans and Fisher 1999). In the grain filling phase, the temperature is also decisive. 

Fig. 4.6   Spearman Correlation per year, restricted to NDVI calculations, all BBCH stages (a). Mean 
yield level per field in tons per hectare per years 2015 – 2018 (b).
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High temperatures in this phase can significantly reduce the grain yield (Evans and Fisher 1999). 
Soil moisture modelling from 2016 and 2018 shows a rapid and steady drop in values already at 
the beginning of the phenological phase of wheat. In all relevant phenological phases, less and less 
water was available, which led to poorer yields (Figure 4.8). The precipitation and temperature data 
support this (Fig. 4.8). In 2017, on the other hand, precipitation was significantly increased and 
thus soil water and yields also increased. 

If, therefore, the availability of water in the soil falls steadily from the beginning of the growing 
season - as in 2016 - or from an early phenological phase on - as in 2018 - this is an indication of 
poorer yields than in other years. This in turn is an indication of the greater reliability of satellite 
data in predicting yield estimates, at least in this study area. The same applies to the evaluation of 
data from previous years. The indicators on how reliable remote sensing prediction of yield is, can 
be drawn from yield data itself and from the presented meteorological data.

Fig. 4.7   Presentation of spearman (only index NDVI) correlation versus average yield per field to show 
the influence of high yields on the correlations. For cereal (a) and for canola (b).
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4.5.1.5	   Visible homogeneity on satellite images and histogram

The overall result shows a large variation in correlations. With the ideal combination of satellite 
image at the right phenological time with the right sensor, high correlations are still not guaranteed. 
This is because it is possible that there are simply no patterns in a field and the crop is homogeneous 
(Fig. 4.9 a). Whether a field is too homogeneous to model yield can often be seen visually in the 
satellite image or by the histogram of vegetation index values of the entire field. If the spread is 
particularly small, especially in comparison to a field that is visually very heterogeneous (Fig. 4.9 b) 
or whose soil map shows strong differences (Fig. 4.9 d), homogeneity is indicated. The impact of 
this homogeneity can be assumed by the distinguished levels of median Spearman correlations in 
Figure 4.9 g). 

Fig. 4.8 Left column: Weather data from the Demmin area weather stations. Right column: Modeled soil 
moisture for Wheat in the area around farm 1 (blue line) and BBCH stages of wheat (red lines).
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4.5.1.6  Factor II: Dependence on sensor resolutions, spatial and spectral

Spatial resolution

For these data in this study area, it can be observed that the spatial resolution of the different satellite 
sensors has different effects on the correlation strength. In the years in which the median correlations 

Fig. 4.9   Comparison of two fields 300-01(a,c,e) and 320-01 (b, d, f ), belonging to farm 1. a) and b) 
False color image Planetscope, band combination NIR-Red-Green from 08.06.2018, wheat. c) and d) 
Soil types of the soil map. e) and f ) Histograms of the NDVI values of the fields at the time of recording 

with different spread. ) The variation of correlation values per field and data source, showing a clear diffe-
rence between fields (g).
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are very high (e.g. 2018), the high-resolution sensors (Rapideye, Planetscope) perform much better 
than the poorly resolved sensors (Landsat series) and better than the 10m-resolved Sentinel-2 sensor 
(Figure 4.10 b). In years in which the correlation is poor and the yields very high (e.g. 2017), these 
differences are no longer as pronounced and the differences between the sensors almost disappears 
(Figure 4.10 a). Nevertheless, the better-resolved sensors perform generally a little better. 
(e.g. 2017), these differences are no longer as pronounced and the differences between the sensors 
almost disappears (Fig. 4.10 a). Nevertheless, the better-resolved sensors perform generally a little 
better. 

Fig. 4.10  Correlation per calculated index for Wheat in 2017 (a) and 2018 (b) and 
color-distinguished by remote sensing sensor.
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Fig. 4.11 Spearman correlations for all crop types in all years versus the vegetation index of remote 
sensing data, distinction between cereals and canola.

It has to be considered, however, that the point yield data were directly compared with the pixel 
data of the satellite data in the analysis. The raster of the Landsat sensors therefore includes several 
yield points into one 30m pixel, whereby the same vegetation index is collected for each yield point. 
If the variance of the yield data in small areas is very high, this effect can lead to uncertainty. Aver-
aging the yield values per grid cell would be possible but would also lead to data loss. 
However, it cannot be ruled out that the differences in the performance of these sensors are also due 
to the different positions of the respective spectral bands (Fig. 4.20, Chapter Appendix)

Spectral resolution 

As far as the yield parameter is concerned, vegetation indices from the red and NIR bands achieve 
the highest correlation in numerous cases (Fig. 4.10 - 4.11). Therefore, spectral resolution is not 
necessarily the decisive factor, if the red band and the NIR band are covered by the sensor. But this 
is only true if phenology is not taken into account. If the correlations are analyzed in a more diffe-
rentiated way, as is done in the crop specific observations, indices with calculation of the red-edge 
channel at certain phenological points in time present themselves as more advantageous. Further-
more, if the nitrogen content or the pure biomass or leaf chlorophyll content is modelled, indices 
working with Red-Edge channels show very good results (Barmeier, Hofer and Schmidhalter 2017; 
Cui et al. 2019). This study cannot replicate this for the yield parameter generally, but for certain 
phenological stages. 

The general suitability of a sensor depends additionally on the temporal resolution. The more often 
an image is available, the higher is the probability to meet the „appropriate“ phenological phases 
and to make a yield statement with low uncertainty. 
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4.5.1.7  Factor III:  Dependence on calculated vegetation index 

Even if the correct index was selected for the correct BBCH stage, the correlation is not the same 
for every field. Here again the degree of heterogeneity of the crop is decisive. If, however, a field 
shows clear crop and therefore most likely yield patterns, then there is rarely a single best index, but 
several, with the same band combination.  Some indices, especially the NDVI, tend to saturate at 
a certain LAI and are no longer sensitive in the high-density range. For cereals, the NDRE, which 
includes the Red-Edge channel, has the best performance, according to Figure 4.11. If compared 
to the REIP, which can be calculated with the Sentinel-2 bands and which is also used by online 
fertilization sensors in precision agriculture, the REIP underlies the NDRE by far in this study – 
concerning the correlation with yield. 

Fig. 4.12 Spearman correlation per BBCH stage for all cereal types, color-distinguished by NDVI and NDRE indices.
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Performance of NDVI and red edge index NDRE for cereal

In the literature and in practice the NDVI already has a very high standing. However, if one com-
pares the correlations between NDVI and yield and sets this against the correlations when using 
the NDRE, which includes the red edge band, the NDVI in this study predominantly performs 
less well for cereal (Fig. 4.12). However, the strength of the correlation depends on the cereal type 
and the respective BBCH stage and there are certainly times when the NDVI performs better. In 
the early BBCH stages of barley (11, 21) the NDVI performs better than the NDRE (Fig. 4.12 a). 
From BBCH 51 the image changes and the NDRE performs far better than the NDVI. Towards 
the end of the vegetation phase, the two indices are equal. This strong contrast is probably due to 
the structure of the barley spikes, which form long awns during the vegetation period. The spikes of 
barley lie down with increasing weight, so that the surface of a barley field has a completely different 
structure than, for example, a wheat field. Depending on the phenology, this structural difference 
can be easily detected with radar satellite data (Harfenmeister, Spengler and Weltzien 2019).

In the case of rye (Fig. 4.12 b), the NDRE almost always performs better than the NDVI, except in 
BBCH stage 61 and at the end of the vegetation phase.

Looking at the correlations in wheat, the NDVI performed better than the NDRE at the beginning 
of the vegetation phase and at the end. In the phenological phases in between, NDRE performs 
better, but the differences between NDVI and NDRE are not as strong as for rye and barley.

It can therefore be concluded that the correlation strength in the data available is influenced by 
multiple factors, which do not have the same effect on each other in every constellation. As shown 
in Figure 4.4 - 4.5, the phenological stage of the crop during which a satellite image is taken is a 
very important factor, whereas many indices perform equally well or similarly, if the optimal BBCH 
stages are met.

4.5.1.8 Factor IV: Phenological stage of crop

For all types of crops applies: not every phenological phase is suitable for yield prognosis. The pha-
ses in which no significant growth has taken place, in which the crop is fully dense or completely 
ripened, are not suitable (Fig. 4.3 - 4.5, 4.12). For remote sensing sensors to provide meaningful 
values, the crop must be present but not too homogeneous in appearance, specifically in spectral 
characteristics. In the context of this study, certain phenological phases for yield prediction have 
proven to be favorable for specific crop species (Table 4.3), which also coincides with existing lite-
rature (Marti et al. 2007; Knoblauch et al. 2017). A detailed discussion on the topic of phenology, 
which is crop group dependent, will follow in the results and discussion on crop specific observa-
tion – IV a) and IV b) .

Despite the reliable data basis of the phenological data, no weekly recordings of the BBCH stages 
were available for this study, neither cloud-free satellite images in this frequency. Therefore, this 
study presents the best correlations at the times and with the data available for this purpose and 
does not claim to be exhaustive.
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Fig. 4.13 Spearman correlations per phenological phases according to BBCH scale, 
wheat, all years, Index: NDVI and NDRE.

Cereal

The cereal types wheat, rye and barley are basically very well suited for yield prediction, so the ab-
ove factors of homogeneity and BBCH stage are given in the selection of satellite images and their 
acquisition date. This study identifies the best growing stages of cereal for the determination of final 
yield at the beginning of flowering, during the development of the fruit and at the very beginning 
of the ripening phase. Still, also good correlations were achieved during stem elongation and begin-
ning of heading (Fig. 4.13). 
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The grain yield cannot be measured directly with remote sensing. But the grain yield is closely re-
lated to the vegetative components of the cereal plant. The yield itself is produced during the grain 
filling phase. But the photosynthetically active plant parts such as stem, leaves and roots form the 
synthetic capacity to enrich the grains. It therefore makes sense that the correlation between vegeta-
tion index and final yield in the early stages of the grain filling phase shows a very high correlation 
(Fig. 4.13), as already discussed by Shanahan et al. 2001 and Marti et al. 2007. 

The distribution of the relative biomass, which can be indicated by vegetation indices, can also be 
recorded before the ripening phase, which is why correlations between satellite image and yield are 
already present during tillering and more so stem elongation (Fig. 4.13). However, the uncertainty 
of a yield prediction depends on the further development of the plant under the given weather 
conditions and the management. 

The comparison of Figure 4.13 a and Figure 4.13 b shows here also, that the NDRE performs better 
than or NDVI when the three cereals are taken together. Nevertheless, the NDVI correlations are 
also acceptably high in similar phenological phases (except 58 and 65).

Canola 

The results concerning canola are much less straight forward than for cereals. The correlation ana-
lysis showed results with high uncertainty for canola. Among the fields of Farm 2 there were high 
correlation values (max r = 0.94, median r = 0.15) between vegetation indices and canola yield, but 
on Farm 1 the maximum correlations were much lower (max r = 0.71, median r = 0.16). 

Fig. 4.14  Spearman correlations per phenological phases according to BBCH scale, canola, all years
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A yield prognosis for canola is much more difficult than for cereals or maize, since the vegetative 
parts of the plant are less significant in the formation of the grain yield (Sulik and Long 2016). It 
is assumed that the number of flowers is a suitable proxy, but due to their spectral characteristics 
they are less sensitive to indices involving the red and infrared channels (Sulik and Long 2016). 
An important temporal finding is that the relationship between NDVI and yield decreases with 
flowering (Piekarczyk,Sulewska and Szymańska 2011). Holzapfel et al. 2009 found that the NDVI 
data obtained between the six-leaf stage (BBCH 16) and the beginning of flowering (BBCH 60) 
are correlated with the canola harvest. In this study the highest correlations were also more or less 
obtained in these stages, at BBCH 31 and BBCH 61 (Fig. 4.14). Even higher correlations were 
achieved at BBCH 71 and 77 during fruit development.  

The „classic“ vegetation indices are therefore less suitable for yield estimation or are associated with 
great uncertainty. Remote sensing indices such as NDVI record vegetative growth, for crops such as 
canola there is interest in the seed that belongs to reproductive growth. Indices such as NDVI are 
very useful in the analysis of crops such as wheat and maize that have inconspicuous flowers and 
simply „green-up“ and then „green-down“ after entering the reproductive growth phases. Nume-
rous Brassica oilseeds have „green-up“, then „yellow-up“ with striking yellow flowers and an overlap 
of „yellow-down“ and „green-down“ during ripening (Sulik and Long 2016). 

For those reasons and the lack of a clear – farm-independent – pattern in this analysis, the aut-
hors do not feel confident to make similar recommendations for the choice of the „right“ satellite 
images, as in the case of cereals. The fact that there are far fewer studies on the correlation of spatial 
data to canola yield, compared to cereals, indicates caution in the interpretation of the results of the 
canola yield analysis and suggests further studies 

Interestingly, if correlations between NDVI and NIR with yield data are analysed, the reflection in 
the NIR band correlates much better for BBCH stage 61 and later (Fig. 4.15). Whereas before that, 
the NDVI yields better results.

Fig. 4.15 Spearman correlation for canola from all years and by BBCH stage. Color distinction by NIR and 
NDVI index.
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4.5.1.9   Relevance of environmental GIS data 

The relevance of GIS data for yield modelling is considered negligible in this study. In most cases, 
the correlation values between GIS data set and yield are very low (mean r = 0.12, median r = 0.09, 
max r = 0.9). The performance of geodata and satellite data (Fig. 4.16) can be clearly distinguished. 
When analyzing the correlations for each crop individually, the inferior performance is also abun-
dant (Fig. 4.23 - 4.26, Chapter Appendix). In the years in which the overall correlations are poor, 
this difference is also less pronounced. 

The best performance is achieved by those „GIS“ data that are a product of satellite data in this 
study, such as the map of the organic matter (mean r = 0.16, median r = 0.15, max r = 0.71). It 
cannot be denied that the crop growth system is very complex, and that soil and relief certainly 
influence the yield. Therefore, it makes sense to use these data in addition to the satellite images 
for an extended yield prognosis, possibly with a lower weighting, as they usually do not show the 
actual condition of the crop. 

The fields in this study are mostly located in regions with flat topography and rather fertile soil com-
pared with other regions. Furthermore, Farm 1 has been operating precision agriculture for more 
than a decade, aiming to homogenize the fields despite the heterogeneous inventory. These factors 
can also be reasons for the underperformance of environmental GIS data in this study.

The comparison between the point yield data and often polygon-based geodata, which are thus 
much more coarsely resolved, is probably unfavorable as an analytical approach. It would be more 
advantageous to calculate an average yield per polygon and calculate the correlation. However, re-
sults from earlier studies (Vallentin et al. 2019) allow the conclusion that the satellite data are much 
more meaningful for the yield prognosis in the fields investigated here.

Fig. 4.16 Spearman correlations for all crop types in all years versus the vegetation index of 
remote sensing data and environmental GIS data, distinction between cereals and canola.
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4.5.2	 Experiment B and C: Correlation calculation of the mean satellite grid values and mean yield 
values per field and year (B) and correlation calculation of all satellite grid values and all yield point 
values per year and per crop, independent of the fields (C).

A field-internal yield estimate is not always required and mean values for a field or regional trend 
are sufficient. The results discussed so far are based on the correlations calculated A) per field. For 
a regional view one can also evaluate the correlation of B) the mean values of each individual field 
and C) the correlation of all extracted yield and reference data per crop and year, independent of 
the fields. The performance of these three methods is very different.

Method B) stands out particularly due to its high correlations (Fig. 4.17). If only the mean values 
formed per field are considered, a better yield modelling can be achieved. However, then no field-
internal patterns are analyzed and there is uncertainty - depending on the size of the region - that 
the crops under consideration are not in the same phenological stage, which makes the selection of 
satellite images difficult. Nonetheless, a monotonous relationship can be observed when comparing 
the mean yield values with the mean NDRE values, for example for cereal in BBCH stage 76 (Fig. 
4.18). Methods A) and C) perform similar, with C) usually performing a little better. Here, the pure 
mass of yield data compared with satellite data could compensate for individual noise within the 
fields. From these observations follows the hypothesis that yield modelling should not be carried 
out on a point or pixel basis, but on a partial field basis. Remote sensing yield modelling could be 
very promising per field zone, which is also in line with most PA methods.

Fig. 4.17 Comparison of extraction methods as a basis for correlation analysis. A) extraction of yield 
and data values per field; B) extraction of mean values of each individual field; C) extraction of yield 

and data values for all points per fruit and year, independent of the fields.
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4.6 	 Conclusions and Outlook

This study has shown that not every satellite image can be used for yield estimation or yield zoning. 
One must make a careful selection, depending on the type of crop, the phenology of the crop, the 
resolution of the sensor and the spectral bands considered in the index calculation. It can also be 
seen that a yield estimate for cereals promises much more success than for canola, which also reflects 
the distribution of scientific work to date. For the user, it is advisable to evaluate the heterogeneity 
on the satellite image visually and using the histogram, for example the NDVI values. If no patterns 
are recognizable and the crop is homogeneous, the uncertainty in the yield estimation is very high. 

Fig. 4.18  Dependence of mean yield per field on mean NDRE per field for Cereal in phenological BBCH 
phases 21, 23 (tillering), 76 (medium milk / development of fruit), 89 (fully ripe). 
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The data basis of this study is very large, but not complete. If the estimation of yield from satellite 
data is to be introduced as a standard procedure, a solid data basis for the validation and extension 
of the results presented here must be collected. Ideally, the exact phenology per field would have 
to be collected in large and multiple test areas, for example on the basis of remote sensing met-
hods(Chu et al. 2016; Hufkens et al. 2019; Nasrallah et al. 2019). Working in Germany and in 
countries with similar average field sizes, the use of optical sensors with the spatial and spectral re-
solution of Sentinel-2, RapidEye and Planetscope satellites is recommended. Furthermore, it would 
have to be ensured that the yield data were recorded completely correctly and that random samples 
were taken if necessary. However, this approach is associated with high manpower and cooperation 
with farmers. When looking at canola in particular, further studies are useful because the correlati-
ons are not yet quite clear in the literature. An analysis of the same data in other regions and natural 
habitats would provide a valuable basis for the use of satellite data in agriculture. Such a correlation 
analysis should not only be a point-to-point comparison, but also the correlations per management 
zone of the field or per soil type area in the field.

Concerning the method of correlation analysis, future work should use not only a bivariate analysis, 
but also a multivariate one. The plant and soil system and the factors influencing yield are com-
plex. For yield modelling, it is useful to combine several relevant remote sensing data sets in order 
to obtain the best possible result (Vallentin et al. 2019). The investigation of remote sensing data 
from the radar and hyperspectral range should be used in future analyses as well as UAV data. With 
increasing knowledge gained from this type of data analysis, yield modelling from satellite data and 
sustainable management in agriculture can be established. Satellite data will not be able to predict 
the direct grain yield, but with further research under different aspects in different natural areas and 
climate zones, the estimates will certainly become better and better.
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Fig. 4.20 Bands positions of sensors used in this study.

Fig. 4.19  Differentiation of the Spearman Correlations per year between Farm 1 and Farm 2

4.10	 Chapter 4 Appendix
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Fig. 4.21  Heatmap of all Spearman correlations, per satellite sensor and BBCH stage for Canola

Fig. 4.22 Correlation by index in 2018 for wheat. Only the most suitable BBCH stages 
were selected. Color distinction by satellite sensor.
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Fig. 4.23 Spearman correlation per index for rye, all years and all fields

Fig. 4.24  Spearman correlation per index for wheat, all years and all fields

Additional figures for rye

Additional figures for wheat
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Additional figures for barley

Fig. 4.25 Spearman correlation per index for barley, all years and all fields. TPI = Topographic Positioning Index, 
em38 = electrical conductivity measurement, twi5 = Topographic Wetness Index (5m), 

az = „Ackerzahl“, bz = „Bodenzahl“, c.org = Map of organic carbon.

Additional figures for canola

Fig. 4.26  Spearman correlation per index for canola, all years and all fields
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5.1	 Conclusions

The overall research objective of this thesis is to investigate the suitability of optical satellite data for 
precision agriculture applications. In this large topic area, this thesis investigates the relationship 
between different characteristics of satellite data and yield data of cereals and canola, as well as the 
possibility of dividing an agricultural field into management zones based on this relationship. This 
chapter discusses the results of this work in the context of the research objectives posed, as described 
in Section 1.3, and more generally the suitability of satellite data in PA applications. 

5.1.1	 General conclusions and evaluation of results

In the investigation of the relationships between optical satellite data and yield data, which links 
all three research manuscripts, the results show not only correlation between the two data types, 
but also the possibility to use this correlation for zoning within each field. There is also the consi-
deration that the grain yield and the nitrogen content of the plant cannot be measured directly by 
remote sensing. Nevertheless, satellite data provide sufficient information to assess at least relatively 
the yield distribution and thus generate added value for agriculture. This added value in agriculture 
and especially in precision farming can lead to better, more efficient and above all more sustainable 
practices. 

The importance of this is the awareness that the inference of yield and other agronomic parameters 
from satellite data is not done directly, but by means of a model. For models that are developed 
on a field basis, as in this thesis, their transferability must be tested before they are ready for the 
commercial market. If the results of the correlation analysis are used and the input of satellite data 
is limited to certain phenological periods, a transferability of the developed methods to other fields 
and regions can be regarded as positive. This is especially the case for cereals, since here the correla-
tions between satellite image and yield are on average stronger and above all more comprehensible 
than, for example, for canola. 

The zoning of the fields using the two methods developed is based on the assumption that patterns 
can be identified in a field and that the plants do not grow homogeneously. This results in a broad 
range of reflectance values in a satellite image tailored to the field. It is precisely on the basis of these 
values that the zoning is generated using quantile class boundaries and thus follows a simple and 
recurring principle. Exactly for this reason it should not matter if the methods are applied in anot-
her region, because it is only decisive that heterogeneity is given in a field. At this point, however, it 
would still be important to validate the successful transferability with the corresponding yield data 
and to adapt the methods accordingly. 

A real consolidation of remote sensing in agriculture requires above all very robust and trustworthy 
models. The experience with farmers shows that there is a high demand to get really reliable infor-
mation. If too much is promised that cannot be delivered, the disapproval of the new methods is all 
the more persistent. The methods developed here, as well as the correlation analysis, should there-
fore be extended to include and evaluate a wide range of other data. Such a process should not be 
underestimated, however, since the aggregation and evaluation of big data is very time-consuming. 
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The use of remote sensing in agriculture currently still requires a lot of expert knowledge and ma-
nual work. But the data of the COPERNICUS mission are freely available, very relevant for agri-
culture and for the methods presented here. The data from the Sentinel-2 satellite also show partly 
strong correlations to yield data. There are, however, factors that reduce the success of optical satelli-
te data in agriculture. These include the strong dependence on a cloud-free or low-cloud scene. The 
interpretation of the patterns on a field is simply not possible if a cloud or a cloud shadow covers 
the area of interest. In particularly rainy years or rainy regions, the use of optical satellite data can 
only be made possible to a limited extent. In addition, the Sentinel-2 data are too coarse resolved 
for some applications at 10 or 20 meters in Germany.This is hardly sufficient for the detection of 
weeds or plant diseases. Drones can be a great help for these questions. Not only can they provide 
high-resolution remote sensing data, they can also be used flexibly and spontaneously. Meanwhile, 
they can carry all kinds of sensors. Multispectral cameras with NIR coverage are already common. 
In this case, the methods discussed here can also be used, because they are applicable independent 
of spatial resolution. The processing of UAV data, however, requires either a lot of time or a mostly 
commercial software. 

In any case, remote sensing, as well as the contents of this thesis, can add value to agriculture and 
precision farming. The way of automation still has a long way to go, the automatic and semi-auto-
matic zoning method presented here can bring the process a few steps forward.  

5.1.2	 Automatic delineation algorithm for site-specific management zones based on sa-
tellite remote sensing data

Research Objective R-01: Development of a fully automated method based on optical satellite 
data, which divides an agricultural field into long-term relative yield zones, which can be used 
as MZ

The core of the method is characterized by the value spectrum of reflections in different bands 
within the boundaries of a field. Both the automatic selection of the suitable satellite images, for 
example cloud clearance, plant growth, not maximum plant density, etc., as well as the division of 
the field into zones are based on this value range within the field. The results of the study show that 
a simple division of the field into zones can be successful and transferable to other fields of the same 
farm. In theory, the method should also be transferable to any other field, because the zoning works 
with relative thresholds, which always refer to the respective value range. 

Any field on which green plants grow will reflect strongly in the near infrared range and show pat-
terns by the spatial variation of this reflection. The transfer of the automatic selection process to 
another satellite sensor is not quite trivial, because the thresholds, which have been tested for the 
method, work for RapidEye data sets. Most likely, these thresholds have to be tested and adapted 
for data from other sensors, which in turn limits transferability.

The method makes a zoning on the basis of mean values over several years and therefore makes a 
statement about the yield potential of the past years rather than about the expected yield within a 
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current growth period. It functions independently of the knowledge about the type of crop, but this 
is exactly where there is a shortcoming in the method. If a user, for example a higher authority, does 
not know the crop rotation of a field, the presented method works, but is not as reliable as the crop 
rotation is known. This is due to the fact that the correlation between satellite data and yield data 
varies for different crops. This variation is evident in the analysis in Chapter 4. 

If the automatic zoning method is only used for cereals or maize, much more reliable and better 
results can be obtained. The reliability of using the automatic zoning method on canola fields is 
rather low, as can be seen from the correlation analysis in Chapter 4 as well as from the literature 
cited. It is assumed that there is a correlation, which has not yet been understood exactly, because it 
is not straight-forward like the correlation between satellite data and cereal yield, where the biomass 
at certain stages of phenology has an impact. Naturally, the fertility of the soil is independent of 
the type of crop. In the same way, the topography, the water holding capacity and thus the water 
supply and nutrient content play a decisive role. However, these are also factors which are extreme-
ly difficult or even impossible to detect by remote sensing. If only the reflection properties of the 
above ground biomass are considered, a conclusion about the canola yield is uncertain. This does 
not imply that rape cannot be managed with PA. Variable sowing and variable fertiliser application 
are available in practice. But the support with satellite data cannot be defined clearly enough by the 
results of this thesis and the current publications.

The question remains as to whether crop patterns from other crops could also provide information 
about the yield, as many crops are grown in addition to cereals and canola. Single satellite images 
of the field 100-01 showed sugar beet in an early stage of development - with pronounced spatial 
crop patterns. These crop patterns were mainly characterized by soil, relief and nutrient differences 
of the field. An empirical relationship could not be established because no yield data were available 
for sugar beet. Neither could maize, which is often cultivated in the region, be included. However, 
scientific studies on the yield estimation of maize from remote sensing data are often available and 
predominantly from the American region (e.g. Shanahan et al. 2001; Jaynes et al. 2003; Jiang et al. 
2009). The automatic delineation method could theoretically be transferred to all crop types, for 
which the final yield is assumed to correlate with the above-ground biomass and / or LAI within the 
growing period or at specific points in time.  

 
5.1.3	 Delineation of Management Zones with spatial data fusion and belief theory

Research Objectives R-02 a and b: Development of a method which, in addition to satellite 
data, also considers other map material, such as soil information, to generate relative yield 
zones using a data fusion model. Evaluation of a statistical model which is able to integrate the 
expert knowledge of a farmer into the data fusion in order to open the algorithm for human 
knowledge and thus improve the method.

The method of this scientific work combines a data fusion approach for spatial data and the inte-
gration of human knowledge into the fusion process. The method also aims to classify yield zones 
that can be used as MZs. Thus, all data sources used in the fusion process must also be interpreted 
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with regard to the parameter. For practical application it would therefore be realistic that there are 
not only one, but two experts whose knowledge is integrated. On the one hand there is the remote 
sensing expert, who interprets the satellite data in terms of yield expectations, and on the other 
hand there is the farmer, who, for example, interprets soil classes or relief units such as a hilltop or a 
depression in his own field in terms of yield expectations. The method can be individually adapted 
to each field and offers a high degree of individuality. It also gives the end user the possibility to 
influence the result of the zone modelling and adapt it to his individual experience. The method 
also takes into account the uncertainties that can arise both from the quality or reliability of the data 
sources and from the uncertainty that the expert has.

Modeling with beliefs is not widespread in agriculture, but has high potential precisely because of 
the possibility of user involvement. The „AgriFusion“ project (Spengler and Heupel 2017) funded 
by the Ministry of Food and Agriculture also uses the TBM for modelling yield potential and has 
been able to attract several companies from the geo- and agribusiness sector. Especially the calcula-
tion of the set parameters in the TBM with each other is comprehensible and therefore potentially 
more trustworthy for a large group of users in agriculture than a comparable „black box“ algorithm, 
which cannot explain the calculation path to the result. 

The hurdle of the method is currently a complex set-up of the input parameters. Thus each data 
source must be classified in units in order to make an interpretation of the classes possible at all. A 
soil map is already available in units (soil type, „Bodenzahl“), but an elevation model must first be 
converted into a morphology describing format, such as the Topographic Positioning Index. The 
resulting classes (e.g. flat, hilltop, slope) depend on the respective threshold values that are set when 
calculating the TPI. An automated conversion of the elevation data into a TPI can therefore not 
take place, since the user of the TBM must first deal with the morphology of the respective field or 
also with the sub-region, in which the fields are located. The TPI must at least be compared visually 
with the elevation model to determine whether the calculated units make sense or whether they 
were mapped too coarsely or too finely. This preliminary classification is therefore a first source of 
uncertainties in the later result. 

The same applies to the classification of the remote sensing data used in the TBM. If the interpreta-
tion of the data sources is done by a human expert, it is nearly impossible to interpret a continuous 
data set (e.g. a NDVI raster of a field) regarding the yield expectation or the MZ. In this case, a 
classification of the data set must also be carried out in advance. In the presented scientific work, the 
NDVI raster was divided into three classes, separated by two quantile thresholds, each determined 
by the respective value range of the raster. The type and the relative position of the threshold value 
were tested in several loops and those with the correlation of the resulting zones with the yield zo-
nes were tested. However, it cannot be ruled out that there is now a better method of classification 
which can reduce the uncertainty. 
If all input data is classified in advance, the interpretations must be assigned to each class. Depen-
ding on the number of input data and the number of classes, this process can take a long time. 
This is especially the case when the expert‘s experience in different fields diverges and the set-up of 
the TBM for each field has to be strongly adapted. From a scientific point of view, this step also 
entails the risk of uncertainties and errors. From a practical point of view, this is a hurdle because 
the time-consuming process may not be supported by experts from agriculture. It would therefore 
be conceivable here if the advance classification and at least one interpretation on a proposal basis 
were automatically generated from learning algorithms. 
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As a result of the „AgriFusion“ project (Spengler and Heupel 2017), however, a web application 
has been developed in which farmers can contribute their knowledge in a user-friendly manner, so 
that yield potential can be calculated with the help of the TBM. So there are definitely marketable 
applications that address TBM and data fusion.

Input data from previous years as well as yield data and weather data could be used here for lear-
ning purposes. On the one hand, this would reduce the transparency of the method, since machine 
learning methods would be integrated. Nevertheless, this automated interpretation could be scru-
tinized or adapted by the expert if it does not correspond to the actual experience with the field. 

The method presented in this thesis was introduced using a limited example: one field in one year 
for one type of crop. This is sufficient to explain the TBM fundamentally and to develop the met-
hod. Nevertheless, the method cannot be considered robust at this stage and must be tested and 
validated in other fields, with other crops, multi-temporally and with other data sources. Only this 
further development and development of robustness can increase the relevance of the method and 
make the chance of a transfer into practice possible. 

5.1.4	 Agricultural yield mapping with satellite time series and geodata - an evaluation of 
various data frames

Research Objective R-03: Analysis of the relationships between optical satellite data of different 
sensors at different times and the yield data of the corresponding years. Which satellite data are 
best suited for yield-relevant questions and at which point in time?

The work investigates the relationship between optical satellite data, environmental geodata and 
agricultural yield data. The method used is the determination of the Spearman correlation between 
the respective parameters, consequently a bivariate dependency analysis. This correlation analysis 
should answer the question whether the yield can be estimated with spatial image and geodata be-
fore the harvest and at what time. In a time series of 13 years, a wide range of yield and spatial data 
was evaluated. It shows that the range of correlations within this study is very large. These data sets 
are therefore suitable for predicting the yield within the season to a certain extent. This seems most 
likely to work for cereals and less for canola. However, there are also data sets that do not correlate 
at all with the yield. These include above all environmental GIS data and remote sensing data of 
recording dates irrelevant for yield estimation. 

The study gives a very good overview of the direct bivariate dependencies and can therefore also be a 
guideline for other scientists and practitioners. The investigation of such a dense and long-term data 
set is not available in the representative region of Northern Germany. One reason for this is often 
either the non-existence of yield data or the fact that these data are not passed on to persons or in-
stitutions that evaluate them. The quality of yield data also varies greatly. If a field is harvested with 
several machines, then these yields must be calibrated. In the peripheral area of the field, incorrect 
measurements often occur (Blackmore and Marshall 1996; Doerge 1999; Dobers 2002), as well as 
when the speed and other parameters deviate greatly. So the question is how much one can trust 
these data. The quality of the yield data in this study certainly also varies between the two farms. 
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Nevertheless, the point density of Farm 1 is very high and the data goes back to 2006. Thus, not 
only is the data availability high, but it indicates, that the farmer himself has gained enough expe-
rience with the data to reduce possible faultiness and rise reliability of the data over the years. The 
alternative to these yield data would be manual yield measurements in the field. But such a data-
set is not available for this period and this large area. Consequently, the accuracy of the yield data 
and the associated correlation results must not be evaluated completely quantitatively, but rather 
the correlation values relative to each other. The resulting picture is much clearer and gives room 
for further study of the interesting data sources. The analysis therefore provides at least which data 
sets are relatively best suited and thus also provides input for the application of the methods from 
Chapters 2 and 3. 

The difficulty of evaluating the correlation analysis also lies in the choice of the presentation of the 
results. The selected figures explain individual dependencies, such as the phenological phase. Ho-
wever, they often illuminate partial aspects, since the complete database is not always represented in 
one illustration, but a subset that is subject to different filters. The evaluation of the analysis shows 
the most important aspects, the database without question holds further potential for the investi-
gation of further questions.

Discussion of the correlation analysis
 
The approach of a simple correlation analysis with the background of the number of machine lear-
ning algorithms does not seem to cover the complex topic well enough. Nevertheless, the bivariate 
analysis shows the basic relationships and significance of individual data sources. These relation-
ships must be understood in order to go one step further towards multivariate analysis and advan-
ced algorithms. Also, to be able to question the results of these again. 

For understanding the complexity of the crop growing system and the interrelations with remote 
sensing and GIS data, a correlation analysis under consideration of the combination of several data 
sources would be meaningful. The analysis presented here gives first indications for a preselection 
of the data sources. Thus, only clearly relevant data sources can be used in a constructive correlation 
analysis in order to reduce the calculation and information intensity.

5.2 	 Impact on Agriculture 

Agriculture in Germany and around the world is becoming increasingly important in the debate 
about the drivers and consequences of climate change. Ecological demands are rising, as are the 
demands of a growing population that needs to be fed. Competition on the world market and com-
petition between agricultural areas - the cultivation of food versus animal feed versus biomass for 
energy use - is increasing the pressure on agriculture. The German government is currently pursuing 
plans to optimize agriculture through digitization and precision farming within the framework of 
laws and regulations. Agriculture in Germany is partly restricted in its activities by the European 
Union, but also by the regulations of the federal governments. The demands that the current fer-
tilizer regulation, which restricts the use of fertilizers on fields, are aggravated are increasing and 
becoming louder. As soon as this planned tightening occurs, solutions that lead to efficient, local 
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and demand-oriented fertilization will become even more important. These include methods that 
can divide the fields into yield zones and management zones, which are distributed according to the 
vitality of the plants and the yield potential of the crop. 

In this respect, the scientifically developed methods of Chapters 2 and 3 can make a valuable con-
tribution if they are put into practice. Both a cost-effective method (Chapter 2) could be imple-
mented, and an even more precise one, which is partly controlled by the experiences of the farmer 
himself (Chapter 3). The MZs derived from the methods could be used either directly for planning 
soil sampling and seed sowing, or for variable fertilizer application. The MZs can also be used to 
support the measurements of online sensors, which measure during the fertilizer application in the 
field. In the so-called „Map Overlay“ procedure, the addition of remotely sensed MZs  can optimize 
the calculation of the fertilizer application. 

Although the methods presented here require further development, validation and testing for trans-
fer into practice, this thesis, especially Chapter 4, shows that there is definitely a connection bet-
ween remote sensing and agricultural parameters. Although this is widely known in the scientific 
community, the analysis of a 13-year data series underpins this fact immensely. The analysis also 
reveals that not every type of satellite image makes the same statement about a parameter as the 
yield. The knowledge at which specific phenological time of the crop an indication for crop yield is 
possible is not widely spread in the literature, which is why this was investigated. It cannot be ruled 
out, of course, that companies specializing in yield modelling have already generated this know-
ledge. Still, for all stakeholders in agriculture, whether farmers, consultants or companies, such an 
analysis brings added value and knowledge. 

5.3	 Highlights

•	 Optical satellite data are suitable for applications in precision farming, if they provide informa-
tion at least in the near infrared range, better in the red edge range

•	 There is an empirical correlation between grain yield and optical satellite data; to a certain ex-
tent this also applies to rapeseed

•	 High-resolution remote sensing data in significant phenological phases of the crop determine 
the reliability of a yield estimation

•	 Development of two practice-oriented methods suitable for precision farming

•	 The delineation of a field into relative yield zones, which can also be used as management zo-
nes, is made possible with these methods: automatically and semi-automatically by bringing in 
agronomic expert knowledge

•	 The automatic method requires only multispectral satellite data and the outline of the field, 
whereby the appropriate satellite data are automatically selected and the field is then classified 
into five relative yield zones
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•	 The semi-automatic method uses the TBM model, i.e. belief structures, to achieve a data fusion 
of satellite images, relief and ground information. The user can contribute his knowledge to this 
process and make the classification of the three relative yield zones more precise and reliable

•	 Two novel zoning methods for precision farming and newly generated knowledge about the 
relationship between remote sensing and yield enrich the field of agronomic remote sensing

5.4	 Future Research

5.4.1	 Management Zones in PA

There is no doubt that the need for research in the field of smart agriculture is very high. National 
strategies for the digitization of agriculture, as proclaimed by the Federal Ministry of Food and 
Agriculture in Germany (BMEL 2018), support these research projects. The aim should be for 
every farmer to be able to obtain a map of the management zones of his farm‘s fields in order to 
adapt his measures such as fertilization, irrigation or sowing in a sustainable, resource-saving and 
environmentally friendly way. In order to provide such an information service, however, intensive 
research into crop pattern recognition using satellite data and classification into MZ is still required. 
An automated method as described in Chapter 2 can be applied here and further developed. 

The method could be tested with different satellite data, especially the freely available COPER-
NICUS and Landsat data. The method can be improved by including additional crop types and 
developing MZ according those crops. It would therefore be necessary to investigate how different 
crops cultivated at least in Germany or Central Europe show crop patterns in satellite images, under 
which conditions and to what extent these patterns also correlate with yield or other parameters 
such as biomass or nitrogen content. In Germany, a broad network of phenological data is freely 
available through the Deutscher Wetterdienst (DWD). These data could also be included in such 
an analysis, as the work from Chapter 4 has shown that the time of taking a satellite image is de-
cisive for a robust inference of data on yield. This will apply not only to the crop types canola and 
cereals studied, but also to many other arable crops. 

With an automated method for the delineation of MZ, there is still great potential in the integ-
ration of methods of machine learning. It can be explored whether the provision of past data sets, 
especially remote sensing data and yield data, has a beneficial effect on the modelling of current 
MZ or yield - if these data are linked by machine learning. The problem here can be that this past 
data must be trusted because neither satellite data nor yield data can be re-recorded. If, however, 
trustworthy data is available, research into the automated generation of knowledge from archive 
data brings immense added value for further development. 

A major advantage of future research over the research presented here is the constantly growing ar-
chive of remote sensing and in-situ data. While in the method of the second chapter RapidEye data 
from five years were combined, one could now consider up to nine years, or apply the method only 
to the same crops or groups as cereals, strengthened by the robustness of a multi-year data basis. 
It could also be explored whether the success and the validation of the models differ depending on 
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Fig 5.1 Context in which the individual works can be further developed individually and 
together within the framework of future research.
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the meteorology of the years. In order to answer the question, if the delineation method perform 
better in rather dry years, where crop yields are down, as teh results of Chapter 4 indicate.  With an 
increasing amount of satellite data, the influence of the growth-enhancing conditions of individual 
years on the final result could be investigated. 

5.4.2	 Data fusion in precision agriculture 

In the field of data fusion in precision farming, there is currently still a great need for research, and 
the data fusion method presented in Chapter 3 also has great potential for further research. It could 
be explored how the validation of data fusion changes if other years are taken into consideration 
and how these results are compared. One question is whether the method works better in dry ye-
ars with little rain or in wet years with a lot of rain. As a result, it can be investigated whether the 
method is particularly suitable for certain regions or climate zones, and whether the same applies 
to the automatic delineation method. Particularly in the case of questions dealing with data fusion, 
the research process is seldom completely completed because there is always more data that can be 
taken into account in the fusion. 

Possible data sets that can be tested in further work: optical satellite data, radar satellite data, UAV 
images of various spectral characteristics, hyperspectral images, maps of electrical conductivity, nu-
trient maps of field sampling, past yield maps, biomass maps of the online sensor on the thresher, 
derived products from GIS and remote sensing data such as Topographic Wetness Index, evapo-
transpiration, but also the integration of point measurements and meteorological data. Such an 
analysis would be very time- and computation-intensive, but would advance the area of data fusion 
for the derivation of MZ and other agricultural parameters. Such an analysis can then also test 
which data is most important and relevant in relation to the final parameter - for example yield. 
Such quantification can then be reflected in the TBM variable „reliability“. 

Further research may also focus on the evaluation of individual data sources for the TBM. The 
consideration of expert knowledge in the workflow of the method gives the potential user control. 
Nevertheless, this interpretation will be very subjective, which is also intended in principle. If a 
preset interpretation were to be made available, not only retrospective satellite data and the corre-
sponding yield data could be analyzed, but also the individual interpretation of the individual data 
sources from a significant number of different farmers. It would be necessary to answer the question 
whether a farmer in region A provides a soil map with the same hypotheses and beliefs as a farmer 
in region B. Here it can be compared which physical characteristics of a field lead to which interpre-
tation and to what extent these interpretations differ from each other. In the creation of preset in-
terpretations by deep learning, this could be exactly what integrates humanity back into the system. 

Further potential for research in this area is the comparison of different fusion methods. The choice 
of the TBM in this paper is well-founded and understandable. However, it was not tested how this 
system performs in the delineation of MZ in comparison to other fusion methods such as Bayes or 
support vector machine - using the same initial data. And to what extent can the user still contri-
bute his own experience? Such an analysis would also be quite intensive in the preparation of the 
data and the programming of the individual method, tailored to the question and the creation of 
MZ. In general, there is no large comparative study that analyses and qualitatively compares the 
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current methods for delineation of MZ. This step is also rather difficult, since each author and each 
developer of a method has used different and sometimes not comparable data. But at least not the 
same yield data for the validation of the respective method. In such a comparative study there is a 
high research potential that can benefit science and the user.

5.4.3	 Transferability of Methods / Research and Development

In the research area of PA, of which the derivation of MZ is a subarea, new methods for deriving 
agricultural parameters such as yield are constantly being developed as digitisation progresses and 
the availability of current data increases. The basic difficulty is that the system of crop cultivation 
with the many components from soil and water supply to the plant and the management measures 
is highly complex. This complexity is increased by comparing different regions with different con-
ditions. Therefore, the question often arises as to whether models, which anyway represent only a 
part of these complex systems, are transferable at all. For future research, this would therefore be 
an absolutely important object for developing robust models. Unfortunately, transferability does 
not usually involve new methodological developments or groundbreaking research results and is 
therefore more likely to be found in „research and development“ departments of companies. Ne-
vertheless, testing the methods presented here and other methods would be very important for the 
division of MZ and yield modelling. If this test of transferability is again put in connection with 
a comparison with other methods, a scientific gain can also be achieved here, which makes it wor-
thwhile to publish a scientific paper on it. The fact that a method may not be transferable also leaves 
room for scientific discussion of the reasons for this and thus leads to a better understanding of the 
large system of plant cultivation.

5.4.4	 Further Analysis of Big Data 

In order to understand and investigate this complex system and to further develop the methods de-
veloped for it, a much more large-scale study to analyse the relationships between the data would be 
very valuable. In Chapter 4 of this thesis, this was done for a spatially limited region and a selection 
of data. Since the results here are very exciting and informative for the application of remote sen-
sing in agriculture, the extension of such a study is scientifically very relevant. Based on the analysis 
presented here, a similar correlation analysis could be carried out in other regions. The same applies 
to other crops, if yield data are available for them. Also the consideration of further remote sensing 
data sets, such as hyperspectral, thermal or radar data, recorded in different scales, from UAV to 
satellite would be relevant. The relationship between these correlations and the meteorological data 
could also be investigated in such research. In the analysis in this thesis, the weather conditions 
during the season were mainly used to explain the results. The logical link in the analysis and a 
parameter derived from it, which describes under which meteorological conditions the correlation 
between spatial data set and yield is highest, is still to be developed. 

An important parameter in the study is phenology, which is provided in Germany by the Deutscher 
Wetterdienst (DWD), the meteorological service, but in large meshed time periods. The use of 
phenology derived from satellite data (Chu et al. 2016; Hufkens et al. 2019; Nasrallah et al. 2019) 



141Future Research

can increase the density of phenological information, create more knowledge and generate more 
robust statements.

The correlation results could be stored in a database or used directly as input for the interpretation 
steps in the TBM. However, this would require that the quality of the correlation results, which de-
pend significantly on the quality and density of the yield data, be assigned to each correlation value. 
With such a gradation of the quality of the results, a real Big Data analysis can also be carried out 
and it would not be necessary to directly select in advance which data are worth analyzing. 

Such a large-scale analysis of a large number of data sets would be extremely computationally in-
tensive and would also require large storage capacities. When evaluating such a scientific project, it 
is therefore important to assess whether a) the mass of big data must be limited and only represen-
tative regions or data sets can be used, whether b) further correlation coefficients can be calculated 
or other parameters can be used to measure the correlation, and whether c) additional data mining 
algorithms of machine learning or artificial intelligence can be applied to obtain the best qualitative 
results. The latter also offers the possibility of further tasks in research dealing with the question 
which data mining algorithms are best suited for the exploration of remote sensing data. 

5.4.5	 Conclusions on future research and development

The future of precision farming should automatically integrate and process remote sensing data, as 
well as other agronomically relevant data, into processes and operational systems. This automation 
is necessary because the farmer himself has few resources available to evaluate the data manually. 
This degree of automation requires both knowledge, which is generated and constantly expanded, 
and methods that function robustly and generate products and recommendations on the basis 
from remote sensing data. The methods presented in this thesis provide an excellent basis to  be 
integrate into such a system. Especially the TBM is able to generate the uncertainties per pixel and 
would provide the result with a quality index, which would be necessary for the broad integration 
in practice. 

Especially the integration of the methods still needs to be worked on in practice, because the inter-
faces in the farm management software and the agricultural machinery are not well developed. 
Likewise, the transfer of technology from science to practice must be a focus of attention. With 
projects like „AgriFusion“ this is already being realised, but much more effort is needed to close the 
gap between science and established applications in agriculture.

The need for further research is therefore high and so is the transfer of knowledge about the con-
nections between remote sensing and agriculture into the practice.
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