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Abstract

This dissertation focuses on the modeling of two-phase flow processes including the water

and gas phase in porous media with fault zones which consist of fractures or macropores.

The aim of the thesis is to make applications and comparisons of different model concepts

in order to improve the process understanding and to reveal possibilities and limitations

of the different approaches as well as to provide knowledge related to the potential for

investigations of two-phase flow modeling in porous media with fault zones. Here, three

different model concepts were investigated: 2D fracture model concept, 1D fracture model

concept and fracture with pipe model concept.

Generally, the choice of model concept is strongly depending on the characteristics of

the problems being considered, for example, the scales of the problem. The modeling of

two-phase flow processes in porous media with fault zones has been applied to domains

with different scales (small scale (< 1m), laboratory scale (1-10m) and small field scale

(10-100m)).

The first application is carried out in a small scale domain. Water infiltration processes in

a single vertical fracture are analyzed. The numerical simulation results show an overall

very good agreement between two model concepts: 2D fracture model concept and 1D

fracture model concept. The pipe model concept is not suitable in this case.

The second application is carried in a laboratory scale domain. Seepage processes through

a dike are investigated for systems with one horizontal fault zone on different locations

ont the land or sea side. To check the model concepts, experiments from the laboratory

were compared to the numerical simulations. The 2D fracture model concept and 1D

fracture model concept are suitable for numerical model in this case, as a good agreement

between the experimental and numerical results was obtained. However, the results show

an over-estimation of the seepage processes for the pipe model concept. Therefore, this

model concept is not further recommended.

The last application is carried out in a small field scale domain. A slope which is idealized

from a natural hillslope in Vorarlberg Alps is chosen as a case study for the simulation.

The results show considerable influences of the preferential flow in macropores on the

water infiltration processes in the slope. Due to the property of macropores, the infil-
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tration is strongly speeded up. However, the maximum water pressure in the system is

somewhat smaller due to the macropores. The fast pressure increase in lower parts of a

layered hillslope is one main factor influencing the slope stability. The numerical results

are in principal agreement with observations in the field. For investigation the influences

of small-scale heterogeneities, geostatistical methods are used to generate permeability

fields. Comparative studies have been carried out and analyzed for cases with different

parameters like correlation lengths, variances, and anisotropies. The simulation results

illustrate a more or less strong influence of small-scale heterogeneities on the saturation

and pressure fields of the slope.



Kurzfassung

Diese Arbeit konzentriert sich auf die Modellierung von Zweiphasenströmungen der

Phasen Wasser und Gas in porösen Medien mit Störungszonen, wobei Klüfte und

Makroporen berücksichtigt werden. Die Zielstellung der Arbeit besteht aus der An-

wendung und dem Vergleich unterschiedlicher Modellkonzepte, um auf der einen Seite

das Prozessverständnis zu verbessern und um auf der anderen Seite die Möglichkeiten

und Grenzen der verwendeten Modellkonzepte sowie das Potential von Zweiphasen-

strömungssimulationen in porösen Medien mit Störungszonen aufzuzeigen. Es werden

hier drei unterschiedliche Modellkonzepte untersucht: 2D-Kluft-Modellkonzept, 1D-Kluft-

Modellkonzept und Kluft mit Rohrströmungsmodellkonzept.

Im Allgemeinen hängt die Wahl des Modellkonzepts stark von den Eigenschaften des Sys-

tems und der Problemstellung ab, beispielsweise von den zu berücksichtigenden Skalen-

bandbreiten. Daher wurden Untersuchungen auf unterschiedlichen Skalen (kleine Skala

(< 1m), Laborskala (1-10m) und kleine Feldskala (10-100m)) durchgeführt.

Im ersten Anwendungsbeispiel werden Wasserinfiltrationsprozesse in einer vertikalen

Kluft auf einer kleinen Skala analysiert. Die numerischen Simulationen zeigen eine

sehr gute übereinstimmung zwischen dem 2D- und dem 1D-Kluft-Modellkonzept. Das

Rohrströmungsmodellkonzept ist in diesem Fall nicht geeignet.

Das zweite Anwendungsbeispiel befasst sich mit der Durchsickerung von Deichen auf der

Laborskala, wobei eine horizontale Störungszone jeweils an verschiedenen Stellen land-

und seeseits angeordnet wurde. Die numerischen Untersuchungen wurden mit Laborex-

perimenten verglichen. In diesen Untersuchungen konnten gute übereinstimmungen zwis-

chen den numerischen Berechnungen mit dem 2D- und 1DKluft- Modellkonzept sowie

mit den Experimenten erzielt werden. Das Rohrströmungsmodellkonzept führt zu einer

überschätzung der Durchsickerung, so dass dieses Modellkonzept nicht weiter empfohlen

wird.

Im letzten Anwendungsbeispiel wird ein idealisierter Ausschnitt eines natürlichen Hanges

aus den Vorarlberger Alpen auf der kleinen Feldskala betrachtet. Die Ergebnisse belegen

den großen Einfluss der preferentiellen Strömungen in Makroporen auf die Wasserinfil-

tration am Hang. Aufgrund der Makroporen wird die Infiltration stark beschleunigt, je-
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doch ist der maximale Wasserdruck im System etwas kleiner. Der schnelle Anstieg des

Wasserdrucks in den unteren Bereichen geschichteter Hänge hat einen maßgeblichen Ein-

fluss auf die Stabilität solcher Hänge. Die numerischen Ergebnisse sind in prinzipieller

übereinstimmung mit Beobachtungen aus dem Feld. Auswirkungen von kleinskaligen Het-

erogenitäten auf die Simulationsergebnisse werden mit geostatistisch generierten Perme-

abilitätsfeldern abgeschätzt. Vergleichende Studien zu unterschiedlichen Korrelationen,

Varianzen und Anisotropien zeigen teilweise große und teilweise kaum Einflüsse der klein-

skaligen Heterogenitäten auf die Sättigungs- und Druckverteilungen im Hang auf.
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Chapter 1

Introduction

1.1 Motivation

Multiphase models for the simulation of processes in the subsurface are widely used in dif-

ferent fields of technical applications. Characteristic for such models is that they consider

flow of more than one fluid phase (e.g. water, gas, oil, alcohol). One major difficulty in nu-

merical simulation of multiphase flow in subsurface arises from the strongly heterogeneous

and anisotropic nature of soils. The typical heterogeneous porous media are often porous

media with fault zones including fractured porous media and macroporous media. The

description of multiphase flow in porous media with fault zones becomes a challenging

problem, because of the multiple scales involved and because of the non-linearity of the

governing equations.

Multiphase flows in heterogeneous porous media or porous media with fault zones are

described by the generalized Darcy law for the multi-fluid, coupled by a global continuity

equation, and supplemented with constitutive equations for the relative permeabilities and

capillary pressures being function of the saturations. The system of equations is generally

non-linear. With the presence of heterogeneties (e.g fault zones (fractures or macropores)),

the difficulty of the simulation stems from this non-linearity, from the sharp contrast of the

matrix and fault zone properties and from the random character of the medium geometry

(HELMIG (1993 [38]), BOGDANOV et al. (2003 [14]), EWING (2003 [32])).

Figure 1.1 shows a schematic cut-out of the hydrosystem subsurface where the flow and

transport processes are actived. The upper part of this subsurface system corresponds to

the unsaturated zone, where air and water fill the void space between the soil particles.

This area is mainly considered in this study.

Popular multiphase problems occurring in nature are two-phase flows such as water-gas

flow that can be activated in fractured porous media like in coal mines, CO2 storage

1
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Figure 1.1: Processes in the hydrosystem subsurface (NIESSNER and HELMIG (2006

[61]))

in the subsurface and seepage processes through dikes or water infiltration processes in

hillslopes.

• In coal mining areas, methane is degasing out of coal and migrating through the

saturated and the unsaturated zone of the subsurface to the surface of the earth. At

several locations, the methane fluxes are so high that they cause danger for human

life as well as restrictions for the use of buildings. A two-phase (water, methane)

flow model has to be chosen for simulating these problems (BREITING et al. (2000

[19]), HINKELMANN et al. (2002 [44])).

• In coastal areas, most of the dikes which serve as flood defense structures are made

of layered material, especially soils. As a consequence of increasing height and fre-

quency of storm surge levels, the probability of overtopping dikes increases, too.

Overtopping evokes complex gas-water flow processes inside the flood defense struc-

ture, enhances the stress, and thus has a significant influence on the stability of

such systems. The existing fault zones in dikes such as macropores, void spaces or

inhomogeneities caused by animals, roots of dead plants or construction measures
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can increase the failure mechanisms of the dikes. The water infiltration processes in

the dikes can be investigated by numerical simulation. The two-phase (water and

gas) flow model concept for fractured porous media has been applied for such prob-

lems (PAUL et al. (1999 [66]), HINKELMANN (2005 [42]), PHAM VAN et al. (2008

[75])).

• Landslides are one of the most dangerous natural hazards in mountainous regions

that have a severe impact on the welfare of societies. A landslide is the sliding

movement of masses of loosened rock and soil down a hillside or slope. In some

moutain areas, the hillslopes consist of a large number of macropores. Then, the

soil is a kind of fractured porous media. Due to the extreme rainfall situations, e.g.

heavy rainfall or long periods of rainfall, the water is transported very fast via runoff

and macropores into the subsurface. Many researches show that infiltration and the

preferential flow through the macropores in unsaturated zone are the major factors

influencing stability in shallow slopes (e.g. BOOGARD (2001 [13]), RAHARDJO

et al. (2005 [81]), LINDENMAIER et al. (2005 [55])). The two-phase flow model

including gas and water phases is being suitable for numerical simulation of the

occurring processes (HINKELMANN and ZEHE (2007 [45]), STADLER et al. (2008

[93])).

• Carbon dioxide (CO2) is a greenhouse gas, whose release into the atmosphere from

combustion of fossil fuels contributes to global warming. During the past few years,

focus has been made on new solutions that could prevent this by reducing the world

wide CO2 emissions. One of the good solutions is capturing and storing CO2 from

stationary point sources and pipe it into a geological formation where it is accu-

mulated for long-term safe-keeping. These processes are called CO2 sequestration.

To simulate these processes, the two-phase model including water and CO2 can be

applied for the heterogeneous system.

In a number of cases, the dissolution of components in the phases as well as mass transfer

processes must be considered. For such problems multiphase multicomponent model con-

cepts are required (see HINKELMANN (2005 [42]), EBIGBO et al. (2006 [31]), BIELIN-

SKI (2007 [11]), CLASS et al. (2007 [23])).

These examples represent only small part of wide field of multiphase flow processes. In

this research, the progress in two relatively new application fields of flow in porous media

with fault zones is chosen for simulation: seepage processes through dikes with fault zones

and water infiltration in natural slopes with macropores. These two application fields are

presented in detail in chapter 5 and chapter 6.
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1.2 State of the Art

Flow in Unsaturated Zone without and with Fault Zones: Many models of vary-

ing degree of complexity and dimensionality have been developed during the past several

decades to quantify the basic physical and chemical processes affecting water flow and

pollutant transport in the subsurface. From that, several models can be distinguished.

The physically-based hydrological model (e.g CATFLOW, SWAT) is based on the under-

standing of the physics of the hydrological processes which control catchment response

and mainly use conceptual model to describe these processes. In this model, the domain is

divided into spatially fixed subdomains: surface, unsaturated zone and groundwater where

the boundaries, for example between the unsaturated zone and groundwater cannot move.

The groundwater flow equation is applied to model the flow process in fully saturated

subsurface in some models (e.g FEFLOW, MODFLOW). In the problems (e.g coastal

zones), the groundwater table fluctuations are important. The moving boundary for vari-

able groundwater table is applied in the models and an iterative approach is needed for

the determination of the free groundwater surface. Often, the model concepts for flow

in the unsaturated zone - also called vadose zone - are based on the Richards equation

(RICHARDS (1931 [85])) and it is the standard method in soil science:

∂Θ(h)

∂t
−∇· (Kf (h)∇(h + z)) = Q0 (1.1)

where h is the unknown pressure head, Θ is the volumetric soil water content, Kf is the

soil hydraulic conductivity, z is the vertical space coordinate, t is the time and Q0 is the

source/sink term.

Combined with some parameterizations for the material properties, specifically for the

soil water characteristic and for the hydraulic conductivity (e.g. BROOKS-COREY

(1964 [21]), VAN GENUCHTEN (1980 [35]), BURDINE (1953 [24]), MUALEM (1976

[60]) it is possible to solve the system of equations numerically. This approach makes

the assumption that the air phase essentially remains at a constant pressure, equal to

atmospheric; the system is then reduced to the consideration of the water phase only.

The approach has been shown to be a good approximation for most applications in soil

sciences, however, problems occured in some situations where air phase can significantly

retard the movement of the water phase.

In the following part, several numerical codes for modeling of flow in vadose zone and

multiphase/multicomponent flow in subsurface systems which are widely used in the

’water world’ are introduced.
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The physically-based hydrological model CATFLOW was developed and expanded in

the hydrology section at the Universität Karlsruhe (TH) (MAURER (1997 [57]), ZEHE

(1999 [109]) and ZEHE et al. (2001 [110]))). The model permits the consideration of

the interaction between all relevant hydrological processes based on field observations.

These are: evapotranspiration, interception, inltration in micro- and macropores and

two-dimensional soil water movement (saturated/unsaturated) as well as surface runoff

and channel flow (including runoff from sealed surfaces). In the unsaturated zone, the

water and soil dynamics in the soil matrix are modeled my means of 2-D Richards

equation. By using a simplified approach, the flow in macropores is taken into account

in CATFLOW model.

FEFLOW (Finite Element subsurface FLOW system) is is one of the most sophisticated

software packages available for the modeling of flow and transport processes in porous

media under saturated and unsaturated conditions in both 2D and 3D. The software

is is developed by DHI-WASY GmbH, the German branch of the DHI group. Dealing

with problems in unsaturated zone, the program uses a finite element analysis to solve

the Richards equation. Different parameter models (e.g., Van Genuchten, Brooks-Corey)

can be invoked for unsaturated flow and transport problems. Primary variable switching

is used for an efficient simulation of unsaturated flows. Dealing with fractures, discrete-

fracture modeling approach is can be used in FEFLOW. The software incorporate

fractures as discrete feature elements (lower dimensional elements) (see FEFLOW by

DHI-WASY ([33])).

HYDRUS models and various modifications and extensions (e.g. SWMS-2D, HYDRUS-

1D, HYDRUS-2D, HYDRUS (2D/3D)) were developed jointly by the U.S. Salinity

Laboratory (USSL) and the University of California, Riverside (UCR) (SIMUNEK et

al. (2008 [89])). These tools include numerical models for one- or multidimensional

variably saturated flow and transport (e.g. HYDRUS-1D, HYDRUS-2D, and HYDRUS

(2D/3D)), analytical models for solute transport in soils and groundwater (e.g., CXTFIT

and STANMOD), and tools or databases for analyzing or predicting the unsaturated soil

hydraulic properties (e.g., RETC, Rosetta, and UNSODA). These modeling tools cover

a large number of processes, from relatively simple one-dimensional solute transport

problems to multidimensional flow and transport applications to relatively complex

problems involving a range of biogeochemical reactions. The HYDRUS2 model is a finite

element model simulating water flow in two-dimensional variably saturated domains as

described with the Richards equation. The fracture-matrix interactions are handled using

a dual-continua approach, such as the double- or multiple-porosity, or dual-permeability.
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Multiphase Flow Models for Porous Media without and with Fault Zones:

When we consider more than one fluid, the multiphase flow models are applied. Here, if

two or more fluids fill a volume (e.g. the pore volume) and are immiscible and separated by

a sharp interface, each fluid is called a phase of the multiphase system. The first numerical

simulators for the computation of multiphase flow in porous media were developed in

the petroleum industry in the 1960s (BARENBLATT et al. (1960 [20]), WARREN and

ROOT (1963 [101])). Since the 1980s numerical multiphase models are also applied to

environmental problems, e.g. the simulation of groundwater remediation technologies in

the saturated as well as unsaturated zone.

BEAR et al. (1993 [10]) has extensively reviewed the research on fracture flow phenomena.

DIDATO (1994 [30]) has reviewed many software packages, claimed to solve problem of

the fluid flow in fractured porous media. In this part, some well-known numerical codes

for multiphase flow in subsurface systems are introduced.

TOUGH2, the successor of TOUGH, is one of the best-known codes for the modeling

of multiphase/ multicomponent systems (PRUESS (1991 [76]). It was developed at

Lawrence Berkeley National Laboratory of the U.S. Department of Energy (DOE).

TOUGH2 is a numerical simulator for non-isothermal flows of multicomponent, mul-

tiphase fluids in one, two, and three-dimensional porous and fractured porous media.

The chief applications for which TOUGH2 is designed are in geothermal reservoir

engineering, nuclear waste disposal, environmental assessment and remediation, and

unsaturated and saturated zone hydrology. The numerical solution of multiphase flows

in TOUGH2 employs space discretization by means of Integral Finite Difference Method

(IFDM). The package TOUGH2 does not incorporate fractures as discrete elements. The

fracture-matrix interactions are handled using a dual-continua approach, such as the

double- or multiple-porosity, or dual-permeability (see section 2.4).

The computer model Subsurface Transport Over Multiple Phases (STOMP) was de-

signed by Mark White of Pacific Northwest Laboratory in order to simulate the flow and

transport of fluids in variably saturated soil (WHITE and OOSTROM (1996 [103])).

The STOMP simulator has been designed to solve a wide variety of non-linear multi-

phase, flow and transport problems for variably saturated geologic media. The STOMP

simulator solves the partial differential equations that describe the conservation of mass

or enegry quantities by employing an integral finite difference method for the spatial

discretization and a backward Euler scheme for the temporal discretization. The solver

for the resulting non-linear coupled algebraic equations is based on Newton-Raphson
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method. The simulator has been written with a variable source code that allows the

user to choose the solved governing equations (e.g., water mass, air mass, dissolved-oil

mass, oil mass, salt mass, thermal energy). Depending on the chosen operational mode,

the governing transport equations will be written over one to four phases (e.g., aqueous

phase, gas phase, (non-aqueous phase liquid) NAPL phase, ice phase, solid phase).

Finite Element Heat and Mass Transfer Code (FEHM) was developed by Hydrology,

Geochemistry and Geology Group, Los Alamos National Laboratory, USA (ZYVOLOSKI

et al. (1999 [112])). FEHM is a numerical simulation code for subsurface transport

processes. It simulate 2D, 2D radial, or 3D geometries, time-dependent, multiphase,

multicomponent, non-isothermal, reactive flow through porous media and fractured

porous media. FEHM has been used for simulation of hydrothermal oil, and natural-gas

reservoirs, nuclear-waste isolation, and groundwater modeling. The equations of heat

and mass transfer for multiphase flow in porous media are solved using the finite element

method. To solve the non-linear coupled algebraic equations, the Newton-Raphson itera-

tive procedure is used. Using either double-porosity/double-permeability or dual-porosity

models, FEHM can simulate flow that is dominated in many areas by fracture and

fault flow. Both TOUGH and FEHM are used for simulation of flow and transport in

variably saturated fractured systems at Yucca Mountain, Nevada, the proposed high-level

radioactive waste disposal site.

The software package ROCKFLOW (KOLDITZ et al. 1998 ([50])) was developed by the

Institute of Fluid Mechanics and Computer Applications in Civil Engineering, University

of Hannover, Gemany. ROCKFLOW can be used for numerical simulation of fractures,

porous media, and fractured porous media. The program is based on the finite element

method in a approach which can combine elements of different dimensions. As such,

it is possible to simulate, for example, discrete fracture networks with 2D elements

with arbitrary orientation in space embedded in a matrix of 3D elements. Recently, a

Lagrangian scheme for transport in fracture networks was added. The simulator uses a

dynamic hierarchical grid adaptation strategy (BARLAG (1997 [4])), which adapts the

grid during runtime on the basis of multiple indicators. The simulator consists of multiple

kernels for fully or partially saturated single-phase flow, multiphase flow and transport

of one or more components.

The numerical simulator MUFTE-UG is developed at the Institute of Hydraulic Engi-

neering, University of Stuttgart in cooperation with the Chair of Water Resources Man-

agement and Modeling of Hydrosystems, Technische Universität Berlin (part MUFTE
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(Multi-Phase Flow, Transport and Energy Model)) and the Technical Simulation Group

of the Interdisciplinary Center for Scientific Computing, University of Heidelberg (part

UG (Unstructured Grids)) (HELMIG et al. (1998 [40]), BREITING et al. (2002 [18]) and

HINKELMANN (2005 [42])).

The simulator provides several modules for the numerical simulation of isothermal

and non-isothermal multiphase / multicomponent flow and transport processes in

porous and fractured porous media. MUFTE-UG incorporates several different types

of spatial discretization methods (e.g. BOX, CVFE method) and the non-linearities

are handled with the Newton-Raphson Method, and the linearized equations are

solved with the BiCGSTAB Method using Multigrid preconditioning. MUFTE-UG cur-

rently supports the following schemes: single-phase stationary, solute transport (im-

plicit/explicit/characteristics), non-linear transport-reaction systems (implicit), two-

phase (implicit, sequential and IMPES), two-phase in fractured porous media (implicit),

two-phase/ three-component non-isothermal (implicit), three-phase/ three-component

nonisothermal (implicit).

MUFTE-UG simulation is based on the discrete model concept for fractured porous me-

dia. From 2008 the double continuum model concept was developed for numerical simu-

lation in the framework of project ”Großshang” (HINKELMANN and ZEHE (2007 [45]),

STADLER et al. (2008 [92]), MAYER (2008 [58])). The development processes are still

underway.

As I introduced in above part, there are several numerical codes for modeling of flow in un-

saturated zone. However, several deficits of the numerical simultion should be mentioned.

Modeling of flow and transport in porous media with fault zones including fractured

porous media and macroporous media, numerical problems can occur because of strong

heterogeneities. With macroporous media which consist of many macropores inside, there

is ’no’ physically proven concept for simulating two-phase flow processes.

1.3 Goal and Structure

This thesis focusses on the modeling of two-phase (gas and water) flow in porous media.

The porous media that we consider here are the porous media with fault zones including

fractured porous media and macroporous media. Resulting from the motivation, the

goals of the thesis can be summarised as following:

Normally, the choice of model concepts for description of flow processes in porous media

with fault zones is strongly depending on the characteristics of problems being considered,

for example, the scale of the problem. Before applying the numerical simulation in the



1.3 Goal and Structure 9

field scale, the model concepts should be investigated in different scales from small scale

to large scale. Here, three scales are used for simulation: small scale, laboratory scale and

medium/small field scale.

The overall objective of this work is to make an application and comparison of different

model concepts for the simulation of two-phase flow processes in porous media with fault

zones. The numerical simulation considers different applications from small scales to large

scales. Comparative studies using the results from different model concepts for accounting

for the fault zones are carried out in order to reveal possibilities and limitations of the

different approaches and provide knowledge related to the potential for investigation of

two-phase flow in heterogeneous structures. In oder to check the numerical model, labo-

ratory experiments have been used for comparisons. Through all these comparisons, the

process understanding is improved.

Modeling of flow and transport in porous media is always associated with uncertainties

coming from small-scale heterogeneities. The distribution of small-scale heterogeneities

can have a high impact on all flow and transport processes. In the thesis the influences

of small-scale heterogeneities are investigated by using geostatistical methods.

This dissertation is organized in seven chapters. It is structured as follows:

• Chapter 1 gives the introduction and the state of the art of flow models in the un-

saturated zone. Chapter 2 describes model concepts for flow in fault zones. Before

presenting different model concepts for flow in fractured porous media and macrop-

orous media, the flow process in a single fracture based on two parallel plates model

is explained in this chapter.

• In chapter 3, firstly, the physical fundamentals used for the model are introduced.

Then, the mathematical model of two-phase flow in porous media including gov-

erning equations, constitutive relationships, and several formulations is explained.

Different model concepts for modeling fault zones (fractures, macropores) are intro-

duced. Based on the governing equations, the numerical model concept is given. For

the numerical model, an overview of the different numerical methods is presented

and discretization techniques both in space and time are explained in detail, fol-

lowed by the introduction of the modeling system MUFTE-UG. Additionally, the

introduction to geostatistical methods with some theoretical variogram models is

presented in this chapter and it can be applied for analysing the influences of the

small-scale heterogeneities in subsurface.

• Depending on the mathematical and numerical model which are presented in chapter

3, different model concepts are applied for numerical simulation. Chapter 4, 5 and
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6 strongly focus on comparisons of model concepts for two-phase flow in fractured

porous media. Different model concepts are applied for numerical simulation of two-

phase flow processes in different scale domains (small/academic scale), laboratory

scale and medium/small field scale). Based on these investigations, the suitable

model concept can be chosen for the large field scale.

In chapter 4, a small scale (academic scale) system with a single fracture is applied

for the simulation.

• Chapter 5 focuses on laboratory scale problems. A dike with fault zones is introduced

for investigation. The seepage through the dike is investigated in detail by both the

numerical and experimental simulations.

• In chapter 6, the numerical simulation of two-phase flow processes is applied in a

medium scale (small field scale) domain. A slope (Heumoes slope) which is idealised

from a natural hillslope in the Vorarlberg Alps area is chosen as a case study do-

main for the simulation. The landslide problems which can occur in mountain areas

are briefly introduced and discussed in this chapter. The influences of small-scale

heterogeneities on the water infiltration processes in a slope are also investigated

using a geostatistical method.

• Chapter 7 concludes with a summary of this work and suggestions for future re-

search.



Chapter 2

Model Concepts for Porous Media

with Fault Zones

2.1 Basic Definitions

The understanding and prediction of fluid flow in porous media and fractured porous me-

dia are of great importance in various areas of research and industry. Table 2.1 lists the

areas where flow in porous media plays an important role. Petroleum engineers and hydro-

geologists need to model mulphiphase flow for production of hydrocabons from petroleum

reservoirs. Hydrologists and soil scientists are concerned with underground water flow in

connection with applications to civil, environmental and argiculture engineering. In other

disciplines, for example, fuel cells or solar cells are investigated.

In hydrogeology the term “fracture” is defined as planar stress features, which can be

found in stiff soil, e.g. clay deposits, and in most near surface rock units. It has a special

configuration: one of its dimensions - the aperture - is much smaller than the other

two ones. The term fractured rock (FR) is used when the blocks of rock surrounded by

fractures contain no void space. We shall employ the term fractured porous medium

(FPR), or fractured porous rock, when the blocks are porous. Thus, in a FPR, the void

space is composed of two parts: a network of fractures and blocks of porous media.

Fractures are described by a variety of properties (e.g. fracture width, length, aperture

and roughness). Figure 2.1 shows some parameters of the fractures which can be used in

this thesis.

In soil science, the “fracture” term can be called by the name that related to the

soil structure: “macropore”. The term macropore simply refers to a large soil pore.

Macropores are defined either by their size, their forming process (soil fauna, decay

of plant roots, wetting and drying processes, freeze-thaw cycle, the erosive action of

11
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Hydrology Groundwater flow, flow in unsaturated soil, salt water in-

trusion into coastal aquifers, soil remediation

Geology Petroleum reservoir engineering, geo-thermal energy, CO2

sequestration

Agriculture Irrigation, drainage, contaminant movement in soils, soil-

less cultures

Chemical engineering Packed bed rectors, filtration, fuel cells, drying of granular

materials

Mechanical engineering Solar cell design, wicked heat pipes, heat exchangers, porous

gas burners

Industrial materials Rubber foam, glass fiber mats, concrete, brick manufactur-

ing

Table 2.1: Areas where flow in porous media plays an important role (HOFFMANN (2003

[47]))

subsurface flow) or the dominant type of flow (laminar and turbulent) in macropores.

They are found in many types of soils and are typically of organic origin, including worm

holes, animal burrows, and root channels (see Figure 2.2).

The flow in fractures and macropores is commonly denoted preferential flow in natural

porous media. It occurs predominantly in fine-textured soils or media with pronounced

structure. In order to unify the names, the term “fault zone” in this study is understood

a synonym for the terms “fracture” or “macropore”.

In summary, the porous media with fault zones including fractured porous media and

soils with macropores represent a system that principally consists of properties:

• The fault zone system has a high permeability, a high porosity, a low total volume,

and low storage capacity.

• The matrix (or soil matrix) has a low permeability, a low porosity, a high total

volume, and a high storage capacity.
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Fracture roughness

Fracture aperture
Fracture width

Fracture length

Figure 2.1: Definition of some fracture parameters (DIETRICH et al. (2005 [28]))

macropore

macropore

S1(t)

O(t)

S1(t)
P(t)

S1(t)

I1(t)

I2(t)

I1(t)
S2(t)

soil matrix

Figure 2.2: Definition diagram for water flows in a block of soil with macropores: P(t):

Overall input (precipitation, irrigation); I1(t): Infiltration into the matrix from the surface;

I2(t): Infiltration into the matrix from the walls of the macropores; S1(t): Seepage into

macropores at the soil surface; S2(t): Flow within the macropores; O(t): Overland flow

(BEVEN and GERMANN (1982 [12])

2.2 Fractures Determination

Naturally, a domain can have a large number of the fractures inside. Characterization

of fractured systems is probably one of the most challenging problems that petroleum

geologists as well as hydrogeologists have to face. In the continuum approach, fractures

are considered to be sufficiently ubiquitous and distributed in such a manner that they

can be meaningfully described statistically (BEAR (1993 [10])).

DIETRICH et al. (2005 [28]) have developed an anquifer-analogue approach in a re-

search project to investigate the complex structure of natural fractured systems as well as
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flow and transport processes inside (Figure 2.3). The approach is based on the so-called

outcrop-analogue method, in which well defined samples from sandstone outcrops (quar-

ries) are used as a realistic representation of those sections of the (aquifer) system where

access is limited to (a few) boreholes.

In the above mentioned research, the complexity of natural fracture geometries is de-

scribed using statistical distribution functions and/or geostatistical parameters. From the

observations (borehole samplings, measurements on exposed rock surfaces), geometries of

fractured aquifer systems have been characterised and transfered mostly from a smaller

scale to the entire fractured aquifer. Hence, the assumption has been made that the

statistical patterns analyzed from observations can, to some extent, represent the frac-

ture geometries of the complete system. The geometries of fractures (e.g. orientation,

aperture, size, density) are generally described with log-normal or the exponential distri-

butions. Based on both the spatial characteristics of a fracture network and the statistical

distribution of fracture geometries, the representative fracture network is created by a

geostatistical fracture generator (see SILBERHORN-HEMINGGER (2002 [88])).

2.3 Flow in a Fault Zone

The flow in a single fault zone (i.e. single fracture or single macropore) is well introduced

in many text books and article (e.g. HELMIG (1997 [39]), SPILLER (2004 [90]), BRUSH

and THOMSON (2003 [16])). Most of the approaches depend on the geometry of the fault

zone. An overview of the most important approaches is given in Figure 2.4. Fundamentally,

single phase flow in single fracture is governed by Navier-Strokes equations which express

momentum and mass conservation over the fracture void space. Generally, laminar flow

of a Newtonian fluid with constant density and viscosity through a fracture is assumed.

The idealized parallel plate model is a model which consists of two plane parallel plates,

representing the fracture walls. The length scale l of the plates is much larger than the

distance between them b (l >> b). Figure 2.5 visualises this concept and Figure 2.6 shows

the two parallel plates and the parabola shaped velocity profile indicating laminar flow.

The Navier-Strokes equations may be written in vector form as:

ρ(u·∇)u = µ∇2u −∇p (2.1)

∇·u = 0 (2.2)

where ρ is the fluid density, µ is the fluid viscosity, u = (ux, uy, uz) is the velocity vector,

and p(x, y, z) is the hydrodynamic pressure. In equation 2.1 ρ(u·∇)u denotes the inertial

forces, −∇p stands for the pressure forces, and µ∇2u represents the viscous forces.
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Figure 2.3: Aquifer-analogue approach (DIETRICH et al. (2005 [28]))

The Navier Stokes equations form a non-linear system of partial differential equations

which are difficult to solve in irregular geometries and even in domains with simple ge-

ometry, such as a set of parallel plates and there are different methods for simplifications

of the Navier Stokes equations presented by BRUSH and THOMPSON (2003 [16]).

The first level of simplification is to assume that the inertial forces in the flow field are

negligible compared to the viscous and pressure forces. The Reynolds number is defined

as:

Re =
inertial forces

viscous forces
=

u0 · lv
ν

(2.3)

where ν denotes the kinematic viscosity, lv is the characteristic length of the viscous

forces and defined as mean fracture aperture, u0 is the characteristic velocity for the

inertial forces. The flow is in the validity of Darcy’s law having the range of Reynolds
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parallel plate model
LOMITZE, 1951

flow channel model
NEUZIL & TRACY, 1981

1D wave model
from SATO, 1984

1D saw tooth model
from ELSWORTH &
GOODMAN, 1985

2D raster element model
TSANG & TSANG, 1987

2D sceleton model,
BILLAUX, 1990

2D saw tooth model,
GE, 1997

real fracture

fracture models

Figure 2.4: Overview on models for a single fracture (DIETRICH et al. (2005 [28]))

number is up to 1. . . 10 (see Figure 2.7). For larger Reynolds numbers (Re > 10), the

so-called Forchheimer’s law with non-linear equation can be applied (FORCHHEIMER

(1901 [36])).

In the case of small Reynolds numbers (Re = 1...10), equation 2.1 reduces to:

µ∇2u = ∇p (2.4)

Combining equation 2.4 with equation 2.2, we have a linear system of equations called

b
aperture
Fracture

Natural single fracture Local parallel plates Parallel plates

Figure 2.5: From the nature to the parallel plate concept (SILBERHORN-HEMINGGER

(2002 [88]))
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b = 2H
x

y
z v(z)

z = +H

z = -H

l >> b

Figure 2.6: Laminar flow between two parallel plates: Parabola shaped velocity profile

the Stokes or creeping flow equations.

From a numerical point of view, the three-dimensional Stokes equations are also hard to

solve. The second simplification is to approximate the three-dimensional flow field given

by the Stokes equations with a two-dimensional description. Assuming that the variability

in the fracture aperture is gradual. Then, the velocity normal to the fracture walls will be

approximately zero (un = 0) and the viscous forces will be dominated by the shear forces

acting normal to the fracture wall (∇2u = ∂2u/∂n2). Incorporating these velocity condi-

tions into equation 2.3 and assuming that the fracture walls are approximately normal to

the z-axis gives:

0 = µ
∂2u

∂z2
−∇p (2.5)

where u = (ux, uy, 0) is a two-dimensional velocity vector with a direction parallel to

the x-y plane. Incorporating the no-slip condition (u=0) at the fracture walls, equations

2.5 and 2.4 may be integrated across the local aperture. With the help of the Hagen-

Poiseuille’s law of the flow in parallel plates, the average velocity in fault zone can be

determined (SNOW (1969 [87]), TSANG and TSANG (1987 [94])):

u =
b2

12

ρg

µ
∇h (2.6)

∇· (b · u) = 0 (2.7)

where b is the fault zone aperture, ρ is the fluid density, g is the acceleration of gravity,

µ is fluid viscosity, h is the average hydraulic head.

Inserting the equation 2.6 into 2.7 one obtains:

∇
(

b3

12

ρg

µ
∇h

)

= 0 (2.8)
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Figure 2.7: Deviation of Darcy’s law (BEAR (1972 [9]))

This relation is commonly called local cubic law for fluid flow in a rough-walled fracture.

With the validation of the Darcy law the permeability of the fault zone is chosen:

K =
b2

12
(2.9)

2.4 Model Concepts

Numerous researchers have developed model concepts describing fluid flow in porous media

with fault zones, mainly for fractured porous media and a few for macropores porous

media and several different model concepts have been proposed (e.g. HELMIG (1997 [39]),

REICHENBEGRER (2004 [83]), HINKELMANN (2005 [42]), DIETRICH et al. (2005

[28])). Fundamentally, each method can be distinguished on the basis of the storage and

flow capabilities of the porous medium and the fault zone. The storage characteristics are

associated with porosity, and the flow characteristics are associated with permeability. The

most common concepts which stem from the field of fractued porous media can generally

be distinguished into the following categories: discrete model concepts, equivalent model
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concepts and hybrid model concepts.

Discrete model concepts are subdivided into fracture-network approach and combined

approach. For these model concepts, two different types of overlapping domains are in-

troduced, the fracture network and the matrix.

In fracture-network approach, the matrix is assumed to be impermeable. The flow and

transport processes are only activated in fracture network and the exchange of fluid and

solutes between matrix and fracture network is neglected. However, some experimental

and numreical investigations have shown that the matrix and fracture network interaction

cannot be neglected for transport simulation (see KRÖHN (1991 [52]), HINKELMANN

(2005 [42])).

When the combined approach is applied, the fracture network and the matrix are con-

sidered. The fractures are treated as a porous medium; generally with a much higher

permeability and lower storage capacity compared to the matrix. They can be modeled

as equidimensional elements, for example, two-dimensional fracture in a two-dimensional

domain (which implies very high demands on net generation and the numerical tools for

solving the resulting equation system). The fractures can also be discretized as elements

of lower dimension (or mixed dimensional elements), for example, as one-dimensional

fracture in two-dimensional domain or as one-dimensional fracture or two-dimensional

fracture plain in a three-dimensional domain.

In equivalent model concepts (or continuum model concepts), the domain is homogenized

based on assumptions about the regularity of fractures. It is assumed that an REV can-

not only be obtained for the porous medium but also for the fractured system. In these

approaches, single-continuum, double-continuum and multi-continua approaches are dis-

tinguished (see Figure 2.11).

In the single-continuum approach, the whole fractured porous domain is represented as

an equivalent porous medium. That means its properties are averaged and assumed to be

constant over the REV.

In the double-continuum models, the fractured porous medium is represented as two dis-

tinct, overlapping and interacting continua, one consisting of the network of fractures and

the other of the porous blocks. The interaction between both continua is formulated by

an exchange function.

In some researches (e.g. PRUESS et al. (1985 [78]), ZIMMERMANN et al. (1999 [111]),

MORTENSEN (2001 [1]), WU et al. (2004 [104])), the double-continuum models can

be divided into the double-porosity (or dual-porosity) and double-permeability (or dual-

permeability) models. If flow only occurs in the fractures, the model is known as double-

porosity. Flow in the matrix is thus neglected and the matrix only contributes as an

additional storage term. If flow occurs within the fracture and the matrix, the model is
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known as a double-permeability model. Flow and transport are described using flow and

transport equations for the separated domains of the fracture and the matrix, respectively.

In a case where fractures of different scales are considered (e.g. small scale fissures and

medium scale fractures), the double-continuum concept can be extended to include more

than two continua; this is known as a multi-continua model (see Figure 2.8).

coupling via
exchange term

continuum 1

continuum 3

continuum 2

Figure 2.8: Proceduce for the multi-continua model (SILBERHORN-HEMINGGER (2002

[88]))

porous medium

fracture

pipe

porous medium

Figure 2.9: Combined model approach and coupling porous media with pipe flow

Additionally, the fractures can be excluded from the porous medium. The flow in the

fractures can be modelled, for example, as pipe flow, which is coupled to the porous media

flow along the common boundaries (see Figure 2.9). The exchange (leakage) parameters

must be determined.
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Hybrid model concepts (known as mixed discrete-continuum model concepts) have been

proposed as a method that combines discrete model concepts with the continuum model

concepts, for example, a discrete fracture-network approach is coupled with a single-

continuum, double-continuum or multi-continua approach (see Figure 2.11). The equiv-

alent continua are not located between the fractures but are coupled with the fracture

network by sink and source terms.

In principle, most model concepts for single phase (water phase) flow in porous media

are also applicable for two-phase flow in fractured media. However, due to very high

pemeabilities in fractures and macropores, the physical process can hardly be described

as posous medium flow and the numerical problems can occur in the simulation.

Q

Q

Q

matrix

in

out

macropore

Q
matrix

Figure 2.10: The idea of the CASCADE model concept (STADLER et al. (2008 [91]))

Dealing with macroporous soils, WEILER (2001 [102]) has developed a special model

concept (INfiltration-INitiation-INteraction Model (IN 3M)) to model the infiltration

into the soil with macropores. In this model, the macropore system is characterized by

the macropore density and the average macropore radius. Only vertical flow is assumed

in the macropores. The vertical infiltration in the soil matrix is calculated like the

horizontal infiltration using the Green-Ampt approach.

In the framework of the reseach project “Großshang” (Natural Slopes), STADLER et al.
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(2008 [91]) have developed a so-called CASCADE model concept and applied it for model-

ing the fluid flow in a single macropore and the exchange with the matrix. The numerical

results have been compared to experimental results. Like for hydrological concepts, the

idea of this model is to ensure the mass continuity in the macropore. The macropore is

modelled as a cascade of volumes where water is shifted through and exchanged to the

matrix driven by pressure gradients (see Figure 2.10).

The choice of model concepts for the description of flow processes in fractured media

is strongly depending on the characteristics of problems being considered. Some factors

that need to be taken into account include: the scale of the problem, the amount of data

available, the fracture characteristics (e.g. connectivity, spacing, and aperture), the matrix

characteristics (e.g. permeability and block size). In the researches of BEAR (1993 [10]),

KRÖHN (1991 [52]) and DIETRICH et al. (2005 [28]), the choice of model concepts is

denpending on the scale of the problem. For this point of view, the investitation domain

can be classified into four different types:

• The very near field: Interest is focused on flow and transport processes within

small-scale fractures and the pore space. Flow and transport processes are considered

in a well-defined single fracture.

• The near field: The flow and transport processes are considered in a relatively

small domain, which contains a small number of well-defined small and intermediate

fractures. The geometries of the individual fractures are deterministically defined or

they can be generated stochastically, based on statistical information from the real

system.

• The far field: On this scale, the flow and transport processes are regarded as taking

place, simultaneously, in at least two continua. One continuum is composed by the

network of large scale fractures and the other one by the porous rock. Mass of the

fluid phase and its components may be exchanged between the two continua.

• The very far field: The entire fractured medium is considered as one single con-

tinuum, possibly heterogeneous and anisotropic if geological layers and fault zones

on a large scale are taken into account.

The choice of different model concepts which depends on the scale of the investigated

problem is presented in Figure 2.12.
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coarse fractures rock matrix

matrix
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fissures fault zone
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single-continuum approach
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double-continuum approach

fissures and

coarse fractures

coarse fractures

fissures

matrix

fissures

coarse fractures

combined approach

discrete model concept

fracture-network approach

multi-continua approach

Figure 2.11: Model concepts for fractured-porous media (HINKELMANN (2005 [42])
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continuum model
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continuum model

Double− /Multi−
continuum model

Fracture network model

Fracture matrix model
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Single−fracture model
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(varied aperture)
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Figure 2.12: Relations between model concepts and scales of the investigated domain

(KRÖHN (1991 [52]), DIETRICH et al. (2005 [28]))



Chapter 3

Two-Phase Flow Model

3.1 Fundamental Principles

3.1.1 Phase and Component

For the multiphase/multicomponent system, the terms “phase” and “component” are

important terms. They are defined in many books and articles (e.g. HELMIG (1997 [39]),

KOBAYASHI (2004 [48])).

• Phase

An important point is that different types of phases are associated with different

physical properties. A term phase is defined as a matter which has a homogeneous

chemical composition and a physical state. Normally, three phases can be distin-

guished: a solid, a liquid, and a gas phase. However, speaking of phases in this work,

it is only referred to fluid phases, i.e. a two-phase system represents a system with

two fluids which are not soluble in one another and a solid matrix and the solid

phase are not treated here.

In the case of a single-phase system, the void space of the porous medium is filled by

a single phase fluid (e.g. water) or by several fluids completely miscible with each

other (e.g. fresh water and salt water). In a multiphase system, the void space is

filled by two or more fluids which are immiscible with each other (e.g. water and

gas, water and oil). In this thesis, a two-phase system represents a system with gas

and water and a solid matrix.

• Component

The term component stands for a constituent of a phase which can be associated

with a unique chemical species. The number of the components in a system is the

minimum number of independent chemical species necessary to define the compo-

25
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sition of all the phases present in the system. A phase usually consists of several

components considering the fact that in reality phases are never absolutely insol-

uble. A component can consist of a chemical element (e.g. hydrogen, nitrogen), as

well as of a molecular substance (e.g. pure water, sodium chloride), or a mixture of

different substances (e.g. alkalinity).

In this work, the two-phase flow including water and gas phase in soils is investigated and

the components are not considered. Some simplifications are assumed as followings:

- In the two-phase system, the temperature change is negligible and thus iso-thermal

conditions are assumed. The gas phase is considered to be compressible and the

ideal gas law is assumed to be valid.

- Porous media are compressible. However, a pressure dependence of the porosity is

supposed to be negligible, here.

- Effects of hysteresis are not considered, which means gravity is always in equilibrium

with capillarity.

3.1.2 Issue of Scales

Two-phase flow in porous media involves several complex processes that are relevant to

different spatial and temporal scales. A process that is dominant on one scale may become

insignificant if the same system is considered on a different scale. Having a clear definition

of scales and understanding their role is particularly crucial for the discussion of two-phase

flow in porous media.

The length scale of interest in porous medium systems may vary from a molecular level

on the order of 10−11 to 10−9m to a mega level on the order of 103km (or even more) for

some regional applications. Figure 3.3 graphically depicts the range of the spatial scales

of concern in a typical porous media system. The following scales can be distinguished:

• molecular scale [∼ pm]

• continuum scale [∼µm]

• micro-scale (pore scale) [∼ mm]

• local scale (REV scale) [∼ m]

• meso-scale [∼ 102m]

• field scale [∼ km]
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On the molecular scale, single molecules are considered. These are decisive for fluid prop-

erties such as viscosity, density, and interfacial tensions. The Lattice-Boltzmann methods

for small system can be applied. The numerical simulation of multiphase flow processes

is not feasible on this scale.

By averaging over a large number of molecules, the continuum scale is reached (see Figure

3.1). The transition from the molecular to the continuum consideration also allows for the

definition of continuum variables, such as pressure, temperature (see BEAR (1972 [9])).

Based on this concept, pressure is an averaged effect that arises from forces exerted by

a large number of molecules. Navier Stokes equations can be used for simulation of fluid

flow on this scale.

The consideration of several pore spaces leads to the micro-scale or pore scale. On this

scale, we consider a point within the considered phase or at the interface between phases.

The microscopic consideration implies that discontinuities (i.e. micro-cracks), which are

small compared to the pore or grain diameter or the fracture aperture, can still be clearly

recognized.

When talking about the local scale or REV scale (range from cm to m), the micro-scale

properties are averaged over a representative elementary volume (REV) that gives realistic

information on the porous medium. On this scale, we describe the porous medium as

a continuous medium (although the medium is discontinuous on smaller scales). This

leads to new parameters like porosity or saturation with new equations. Figure 3.2 shows

the search for a REV. As an example, a typical porous medium property is considered,

the porosity. Porosity of a porous medium is defined as the ratio of the volume of the

pores to the total volume of the considered medium. The pore geometry of a porous

medium is not recognizable and therefore the description of flow can be realized only

with averaged properties. If a very small averaging volume is chosen for the REV, the

porosity fluctuates between zero and one depending on whether a pore or a grain is being

considered. Enlarging this volume we will encounter oscillations starting from extreme

values and stabilizing at a more or less constant value, until larger scale heterogeneities

are included into the averaging volume. If the volume is increased to values that are too

large, heterogeneities on the macroscale of the porous medium start to have an effect on

the value of the averaged porosity.

On the meso-scale different macroscopic properties are assigned to sub-areas of the system.

Macroscopic heterogeneities have to be considered on this scale. The porous media cannot

be represented by a single REV as on the local scale. In Figure 3.2 this is represented by

the fact that in volume L macroscopic heterogeneities result in a change in the porosity.

Field scale has a range from m to km. The structures of different geological periods are

considered. These structures commonly involve several types of materials with different
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properties. If one tries to characterize porous media for a volume at this scale ([m]−[km]),

effective parameters may vary within it. In other words, the concept of the REV has also

an upper boundary due to large-scale heterogeneities. The concept is however the same as

the one used on the local scale: to build models on the field scale, a field scale domain is

split into several smaller local-scale sub-domains according to the geology, and the same

equations for flow as in the local scale are applied.

continuum considerationmolecular consideration

Figure 3.1: Consideration of water as a continuum
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Figure 3.2: Definition of the REV (BEAR (1972 [9]), HELMIG (1997 [39]), HINKEL-

MANN (2005 [42]))



3.1 Fundamental Principles 29

field scale

meso−scale

local scale

micro−scale

continuum scale

molecular scale

m
ac

ro
 s

ca
le

mµ

mm

km

m

pm

Figure 3.3: Spatial scale considerations in subsurface systems (KOBUS and DE HAAR

(1995 [49]), OCHS (2007 [62]))
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3.1.3 Porosity

A porous medium consists of a solid matrix and the pores. The porosity φ can be defined

as the ratio of the pore space within the REV and the total volume of the REV:

porosity =
volume of the pore space within the REV

volume of the REV
(3.1)

In reality, the fluids can only pass through when the pore spaces are connected, these are

called flow paths. The pores in which flow cannot exist are often called dead-end pores.

This characteristic leads to define the effective porosity:

effective porosity =
volume of flow paths

volume of the REV
(3.2)

In this case, only the part of the pore volume is considered which is usable for the flow.

Thus, the effective porosity is always equal to or smaller than the porosity defined in

equation 3.1.

3.1.4 Saturation

The saturation of the phase α is defined to be the ratio of the volume of fluid α within

the REV to the volume of the pore space within the REV:

Sα(x, t) =
φα(x, t)

φ
=

volume of fluid phase α within REV

volume of pore space within REV
(3.3)

The following relationships are valid:

nphase∑

α=1

φα = 1 for 0 ≤ φα ≤ 1 (3.4)

nphase∑

α=1

Sα = 1 for 0 ≤ Sα ≤ 1 (3.5)

where nphase is the number of phases in the model. In a two-phase system (gas-water

phase), like porosity, the concept of so-called effective water saturation Se is defined:

Se =
Sw − Swr

1 − Swr

(3.6)

where Swr is the residual saturation of the water. This concept tries to account for the mo-

bile portion of the water only in the pore space; thus the residual saturation is subtracted

from the saturation.
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3.1.5 Capillary Pressure

When a fluid is in contact with another immiscible fluid or solid, there is free energy

present at the interface, causing the surface to contract. The force present at the interface

between two fluids is called interfacial tension σ. The pressure discontinuities occur across

the fluid-fluid interfaces due to the interfacial tension. The difference between the pressures

of the non-wetting fluid and the wetting fluid is known as the capillary pressure pc , which

is a basic parameter in the study of the behavior of multiphase flow in porous media:

pc = pn − pw (3.7)

where pn is the pressure of the non-wetting phase and pw the pressure of the wetting

phase. The fluid with a boundary angle θ < 900 is referred to as the wetting fluid with

respect to the solid phase, the fluid with an obtuse boundary angle 1 − θ > 900 is the

non-wetting fluid. In Figure 3.4, the contact angle for the water is smaller than 90, thus

water is notated as the wetting phase (w) and gas is the non-wetting phase (n), θ denotes

the contact angle. Equilibrium requires that:

σwncos(θ) = σsn − σsw (3.8)
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Figure 3.4: Contact angle between a fluid-fluid interface (BEAR (1972 [9])), σwn represents

the interfacial tension between fluid phases, and θ denotes the contact angle

The capillary pressure can be defined quantitatively by considering a fluid-fluid interface

within a pore, as shown in Figure 3.5, where the wetting/non-wetting interface has two

principle radii of curvature, r1 and r2. The pressure difference across the interface can be

defined according to a balance of forces acting on the opposite side:

pc = pn − pw = σwn

(
1

r1

+
1

r2

)

=
2σwn

r∗
(3.9)
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Equation 3.9 is known as Laplace’s law for capillary pressure, where r∗ is the mean radius

of curvature.

2

1

wetting phasenon−wetting phase

solid

r

r

solid

Figure 3.5: Equilibrium at a wetting/non-wetting fluid interface within pores (BEAR

(1972 [9]))
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σsw σ wn
θ F
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g

h

c

c
water
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Figure 3.6: Capillary pressure in a cylindrical capillary tube with radius r

In the case of a cylindrical capillary tube with radius r, the water level in the capillary

tube is elevated up to a height hc at which the capillary forces (Fc) equal to gravity forces

(Fg) (see Figure 3.6), the capillary pressure is written as following:

A · 2σwncosθ

r
= ρwAhcg (3.10)
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pc = ρwghc =
2σwn

r
cosθ (3.11)

The above equation is called Young-Laplace’s equation, in which θ is the contact angle

between the fluid interface and the capillary wall.

On the macro-scale (local scale), the capillary pressure is dependent on the saturation.

If the saturation ratio of the wetting fluid decreases it retreats to smaller and smaller

pores which leads to an increase in capillary pressure. Thus, a macroscopic consideration

of capillary leads to a relationship of the form:

pc = pc (Sw) (3.12)

3.1.6 Permeability

The absolute (intrinsic or saturated) permeability K is a measure of the resistance of a

particular porous medium towards flow of a fluid in its pores. It is a material property of

the porous medium and assumed to be independent of the fluid. The absolute permeability

is linked to the hydraulic conductivity Kf by taking into account the viscosity µ and

density ρ of the fluid:

Kf = K
ρg

µ
(3.13)

On the micro-scale, saturated permeability K is uniquely determined by the pore struc-

ture. It is the key parameter describing the mobility of a viscous fluid in a porous medium.

For multiphase flow, when considering the flow of one fluid phase, the permeability of the

medium appears to be reduced with respect to the fluid considered since part of the pore

space is occupied by another fluid phase. The concept of the effective permeability Kα is

then adopted, defined as the permeability of the medium to the flow of a specific phase

α:

Kα = Kkrα (3.14)

where krα is the relative permeability and K is the absolute (intrinsic or saturated) per-

meability described above. Like for capillary pressure, the relative permeability for a REV

is a function of the saturation:

krα = krα (Sw) (3.15)

The relations given in 3.14 and 3.15 depend on the material and two-phase systems as

well. They should determined by fitting the parameters of analytical functions to measured

data (see subsection 3.2.4).
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3.1.7 Fluid Parameters

In this study, the model consists of two-phase flow which implies the two fluid flows:

water and gas. Due to the big difference of the two fluid properties, some parameters like

density, viscosity should be explained.

The density ρ of a fluid is the ratio of the mass m of that fluid in a certain volume V over

that volume:

ρ =
m

V
(3.16)

Generally, the density of fluid phase α depends on the pressure pα, temperature T as well

as on the composition xk
α of the phase. Here, two phases are considered and components

are not included. For the water phase, the pressure dependence is neglected, the water is

assumed to be an incompressible fluid. For gas phase, the gas density is determined by

the real gas law:

ρg =
pg

ZRgT
(3.17)

In this equation Z stands for the real gas factor. For a simple case, Z is chosen to be 1

which implies the ideal gas law. Rg stands for the universal gas constant and T for the

temperature.

Viscosity can be understood as the internal resistance of a fluid to flow. The dynamic

viscosity of water and gas is primarily determined by the temperature. With increasing

temperature, the viscosity of water decreases. Contrarily, the gas viscosity increases with

increasing temperature. The viscosity of the gas phase is about two order of magnitude

lower than that of water phase.

The relations for density and viscosity as a function of temperature for water and gas are

shown in HELMIG (1997 [39]).

3.2 Two-Phase Flow Equations

Usually, the model concepts for the subsurface and surface-water hydrosystems are based

on continuum-mechanical considerations. Therefore, the processes occurring on the micro-

scale must be averaged in space and/or time in order to serve as physical quantities, i.e.

effective parameters and processes, on meso-scale. The model concept of two-phase flow

in porous media assumes that the two fluids, here water (w) and gas (g), are not miscible

in each other and that mass transfer processes, for example evaporation or condensation,

are negligible. The processes on the micro-scale are averaged to the REV scale (see Figure

3.7).
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flow

fluid 1

fluid 2

− fluids, e.g. water, gas, NAPL, ...
− solid, e.g. soil
phases:

solid

to REV scale

from micro−scale

Figure 3.7: Phases in REV concept (HINKELMANN (2005 [42]))

3.2.1 Mass Balance Equation

The flow of two immiscible fluid phases in porous media can be described by the balance

equations for mass and for momentum (the generalized Darcy Law).

To formulate a model for two-phase flow in porous media, mass balance equations are

accounted for the individual phases in a control volume B. Based on an Eulerian approach,

a mass balance can be formulated for each phase α in a non-deforming control volume

with the Reynold’s transport theorem. The storage and sources/sinks terms are described

with volume integrals over B, while the flux term is described with an area integral of

fluxes over the boundaries Γ of the control volume:

∂

∂t

∫

B

φSαραdB +

∫

Γ

φραuαdΓ −
∫

B

ραqαdB = 0 (3.18)

Applying the Gaussian integral theorem, the equations are reformulated in the form:

∂

∂t

∫

B

φSαραdB +

∫

B

∇(φραuα)dB −
∫

B

ραqαdB = 0 (3.19)

The Darcy velocity v is defined as:

vα = φuα (3.20)

Inserting the Equation 3.20 into Equation 3.19 and choosing an infinitesimally small

control volume is equivalent to the consideration at a point for which is now formulated

the balance equation in its differential form (this equation is also known as continuity

equation):

∂(Sαφρα)

∂t
+ ∇ · (ραvα) − ραqα = 0 (3.21)
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Here, α is a subscript for the phases, the wetting phase w (e.g. water) and the non-wetting

phase n (e.g. NAPL, gas), respectively.

3.2.2 Momentum Equation

Darcy’s law can be extended to multiphase flows and it is then called generalised Darcy’s

law. Thus, it represents the momentum equation:

vα = − 1

µα

K
α
(∇ pα − ραg) (3.22)

vα = −krα

µα

K(∇ pα − ραg) (3.23)

In these equations, Kα is the effective permeability for phase α, φ stands for the porosity,

S for the saturation, ρ for the density, t for the time, q for a sink / source term, v for the

Darcy-velocity vector, kr for the relative permeability, µ for the dynamic viscosity, K for

the intrinsic permeability tensor, p for the pressure and g for the gravity vector.

3.2.3 System of Two-Phase Flow Differential Equations

If the momentum equation 3.23 is inserted into the continuity equation 3.21, the following

system of two-phase differential equations is obtained:

∂(Sαφρα)

∂t
−∇ ·

[

ρα
krα

µα

K(∇ pα − ραg)

]

= qαρα, α ∈ (w, n) (3.24)

or written in another way:

∂(Sαφρα)

∂t
− div

[
ραλαK(grad pα − ραg)

]
− qαρα = 0, α ∈ (w, n) (3.25)

In the last equation, λα = krα/µα denotes the mobility of phase α.

The system is completed by two further algebraic conditions. The void space in the porous

medium is completely filled by the different fluid phases (wetting and non-wetting phase):

Sw + Sn = 1 (3.26)

At the interface between two phases, the difference of the pressure at every point is a

function of the capillary pressure pc :

pc = pn − pw (3.27)

with the definition of the capillary pressure given above, pc and krα still depend on the

saturations of phases and the following relationships are needed (see subsection 3.2.4):

pc = pc (Sα) (3.28)
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krα = krα (Sα) (3.29)

3.2.4 Constitutive Relationships

3.2.4.1 Capillary Pressure - Saturation Relationships

On the macro-scale both capillary pressure and relative permeability depend on the sat-

uration. If the water saturation decreases, the wetting phase retreats into smaller and

smaller pores and thus the capillary pressure increases. The macroscopic consideration of

the capillarity results in a relationship given in Equation 3.12.

In general, there are two possibilities how to obtain capillary - saturation relationships.

The first method is direct measurement. The second method is to derive the functional

relationship between capillary pressure and saturation from theoretical considerations.

Usually, these models contain several parameters which are fitted to experimental data.

Several empirical models for the parameterization of a general capillary pressure - satura-

tion functional relationship have been proposed (i.e. BROOKS AND COREY (1964 [21]),

VAN GENUCHTEN (1980 [35]), CAMPBELL (1974 [22]), BRUTSAERT (1967 [17]); for

an overview see SHETA (1999 [86])). Among the most common ones are the relationships

of BROOKS-COREY (BC) and VAN GENUCHTEN (VG).

The capillary pressure - saturation relationship according to Brooks-Corey is defined with

the help of the effective saturation Se:

Se (pc) =
Sw − Swr

1 − Swr

=

(
pd

pc

)λ

for pc ≥ pd (3.30)

or

pc = pdS
− 1

λ
e (3.31)

In these equations, pc denotes the capillary pressure, pd the entry pressure, Se the effective

water saturation, and λ is the form parameter. The λ-parameter usually lies between 0.2

and 3. A very small λ-parameter describes a single-grain size material, while a very large

λ-parameter indicates a highly non-uniform material. The entry pressure pd is considered

as the capillary pressure required to displace the wetting phase from the largest occurring

pores.

In the model of Van Genuchten, the following capillary pressure - saturation relationship

is introduced:

pc(Sw) =
1

α
(S

− 1

m
e − 1)

1

n for pc > 0 (3.32)
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Here, the parameter m in the VG function is usually chosen as m = 1−1/n, and therefore,

only two free parameters n and α remain to be fitted. Typical values for n range from 2

to 5, α is a form parameter characterizing the pore-space geometry.

A correspondence between the Brooks and Corey and the van Genuchten models was

deduced by LENHARD et al. (1989 [54]). The parameters n and α in VG model can be

computed from the parameters Pd, λ in the BC model by following functions:

m = 1 − 1

n
(3.33)

λ =
m

1 − m

(

1 − 0.5
1

m

)

(3.34)

Sex = 0.72 − 0.35e−n4

(3.35)

α =
S

1

λ
ex

pd

(S
− 1

m
ex − 1)1−m (3.36)

with Sex is the a special effective saturation (see SHETA (1999 [86])).

In Figure 3.8, the capillary pressure - saturation relationship is shown for the BC and VG

models on equal physical conditions (pd = 700[Pa], λ = 2.3 in BC model and n = 5 and

α = 0.0011 in VG model).

The principle difference between the two types of relationships is the behavior of the

function at Sw = 1. Whereas for Van Genuchten, the capillary pressure is equal to zero

for a fully water saturated soil, the Brooks-Corey relation involves a displacement pressure

(the pressure needed to displace the wetting phase from the largest pore, pd).

The BC parameters (pd, λ) or the VG parameters (n, α) should be determined from

controlled experiments or they should be estimated from soil properties or taken from the

literature.

In cases of lacking of experimental data, LEVERETT (1941 [53]) introduces a function to

transfer known parameters, for example, to another medium with a different permeability

or porosity or another two-phase system (from water-gas to water-NAPL) with different

capillary pressure. The assumption is that the scaling factor pc√
kθ

equals the one in the

other porous medium or another two-phase system. This function is so-called Leverett

function (further information in LEVERETT (1941 [53]), SHETA (1999 [86])).

For fractured porous media, fractures are discretely taken into account. Two different

possibilities of capillarity can be determined. The fracture can be treated as a porous

medium as already described. The capillarity can also be formulated as a function of the

fracture-aperture distribution by a geostatistical model (see PRUESS and TSANG (1990

[77]), SILBERHORN-HEMMINGER (2002 [88])).

For the problems with small-scale heterogeneities, the geostatistical methods are applied

to generate the permeability field. The parameter pd can be determined according to the

Leveret function (see section 6.4).
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Figure 3.8: pc - Sw relationship after BC and VG, on equal physical conditions, (pd =

700[Pa], λ = 2.3 in BC model and n = 5 and α = 0.0011[1/Pa] in VG model)

water saturation Sw [-]

re
la

tiv
e

pe
rm

ea
bi

lit
y

[-]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Krn (Brooks-Corey)
Krn (Van Genuchten)
Krw (Brooks-Corey)
Krw (van Genuchten)

Figure 3.9: Relative permeability - saturation relationship after BC and VG, on equal

physical conditions, (λ = 2.3, n = 5, α = 0.0011[1/Pa], Swr = 0.18)
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3.2.4.2 Relative Permeability - Saturation Relationships

Based on pore-network models, relative permeability - saturation relationships are deter-

mined by integrating over the capillary pressure - saturation relationship. The BROOKS-

COREY (1964 [21]) model stems from the pore-network model of BURDINE (1953 [24]):

krw = S
2+3λ

λ
e (3.37)

krn = (1 − Se)
2
(

1 − S
2+λ

λ
e

)

(3.38)

The VAN GENUCHTEN model (1980 [35]) is determined by the pore-network model of

MUALEM (1976 [60]) and has the form:

krn = (1 − Se)
1/3

[

1 − S
1

m
e

]2m

(3.39)

The parameters are the same as in the context of the capillary pressure - saturation

relationship. Figure 3.9 shows these relative permeability-saturation relationships.

In discrete fractured systems, linear relative permeability-saturation relationships can be

used or other relations taking into account the fracture roughness, fracture aperture and

the fracture contact area. For further reading, see HELMIG (1997 [39]), BREITING et al.

(2002 [18]), HELMIG and CUNNINGHAM (2003 [41]) and HINKELMANN (2003 [42]).

3.2.5 Different Formulations

In Equation 3.25, the number of unknowns in the system is four (i.e. pw, pg, Sw, Sg),

and there are two mass conservation equations and two constraints. Thus, the system is

closed and it can be solved. Normally, in order to solve the equations, we first eliminate two

unknowns using the constraints and then formulate the two mass conservation equations

with the remaining two unknowns. Several possible formulations according to the choice

of the primary variables for the unknowns exist: the pressure formulation, the pressure-

saturation formulation and the saturation formulation. In the following steps, the three

formulations are briefly introduced.

3.2.5.1 Pressure Formulation

The pressure formulation uses the wetting and non-wetting phase pressure (pw and pn) as

the primary variables. Saturations are transformed to pressures by inverting the capillary

pressure - saturation relationship (see subsection 3.2.4.1). The constraint for using this
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formulation is, that the pc - Sw function has to be strictly monotonic in order to be

inversed:

Sα = f−1
α (pc) = f−1

α (pn − pw) (3.40)

The pw - pn formulation reads as follows:

wetting phase:

−∂(φρwf−1
w (pc))

∂t
− div

[

ρw
krw

µw

K(grad pw − ρwg)

]

− ρwqw = 0 (3.41)

non-wetting phase:

∂(φρnf
−1
n (pc))

∂t
− div

[

ρn
krn

µn

K(grad pc + grad pw − ρng)

]

− ρnqn = 0 (3.42)

These two equations are strongly coupled and a non-linear parabolic system. However, in

many practical examples, for example, in case of discrete fractures or transitions between

heterogeneities, the capillary pressure gradient ( ∂pc

∂Sα
) is zero or close to zero, so that this

formulation cannot be chosen. One major problem results of the effect that the total

velocity must be known in advance and another of the hyperbolic character for small

capillary pressure gradients.

3.2.5.2 Saturation Formulation

This formulation is only applicable to incompressible fluids. The saturation formulation

(Sw − Sn) is determined after calculating the total velocity vt = vw + vn and several

transformations. The system is reduced to one equation with only one primary variable

Sw or Sn.

3.2.5.3 Pressure - Saturation Formulation

For many cases, the pressure - saturation formulation is most suitable. This formulation

uses the pressure of one phase and the saturation of the other phase (pw, Sn or pn, Sw or

pw, Sw or pn, Sn) as primary variables. The following relations are obtained:

∇ pn = ∇ (pc + pw) (3.43)

∂Sw

∂t
=

∂(1 − Sn)

∂t
= −∂Sn

∂t
(3.44)
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Inserting Equation 3.43 and Equation 3.44 into the two-phase flow equation 3.25 leads to

the pw - Sn formulation (pn - Sw, pw - Sw, pn - Sn accordingly):

wetting phase:

−∂(Snφρw)

∂t
− div

[

ρw
krw

µw

K(grad pw − ρwg)

]

− ρwqw = 0 (3.45)

non-wetting phase:

∂(Snφρn)

∂t
− div

[

ρn
krn

µn

K(grad pc + grad pw − ρng)

]

− ρnqn = 0 (3.46)

These two equations are strongly coupled, highly non-linear and mixed

parabolic/hyperbolic type. The major advantage is that they are not limited to

small capillary-pressure gradients, i.e. the pressure-saturation formulation can be applied

to discrete fractured systems and heterogeneous media. Therefore, this formulation is

chosen for the work here. For further reading, see PRUESS (1991 [76]), HELMIG (1997

[39]), PAUL (2003 [65]), HINKELMANN (2005 [42]).

3.3 Numerical Modeling of Two-Phase Flow in

Porous Media

3.3.1 Introduction

In most cases, the systems of multiphase flow equations (Equation 3.25) lead to a system of

non-linear coupled differential equations, apart from some exceptions. Generally, it cannot

be solved analytically. Therefore, numerical methods, i.e. here discretization techniques

are usually necessary.

The first numerical simulator for incompressible two-phase flow in porous media has been

developed about 40 years ago. Since then, many different methods have been devised. In

the incompressible case, the pressure equation is elliptic and a fully explicit treatment

is not possible. Therefore, any numerical method for the multiphase flow problem has

to solve systems of algebraic equations, various degrees of implicitness and coupling are

possible (see BASTIAN (1999 [7])).

The development process of a numerical method is shown in Figure 3.10 starting with

the selection of the mathematical model, followed by the space discretization, i.e. grid

generation, on the one hand, and the discretization of the differential equation on the

other hand.
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For the discretization, the Fully Upwind Box Method is applied in space and the fully

implicit Euler Method in time. The non-linearities are handled with the Newton-Raphson

Method, and the linearized equations are solved with the BiCGSTAB Method using Multi-

grid preconditioning. A time-step adaptation depending on the number of non-linear it-

erations is carried out. For further reading see more in HELMIG (1997 [39]), BASTIAN

(1999 [7]), BASTIAN et al. (2000 [8]) and HINKELMANN (2005 [42]).

3.3.2 Temporal Discretization

Discretization methods are used in order to replace the differential terms in the two-phase

flow equations by algebraic terms. These methods approximate the solution function at

discrete points or nodes. The requirements for convergence of discretization methods are,

that they must be consistent and stable. Moreover, it is desirable to have a monotonic

solution behavior (which means in our case a non-oscillating solution) in order to avoid

over- or undershooting. To prevent the appearance of non-physical sinks and sources, a

conservative discretization is to be used. In order to combine the advantages of the (cell-

centered) finite volume (FV) discretization and the finite element (FE) discretization, the

BOX scheme was developed. This discretization technique is not only locally conservative

(like the FV method) but can also be applied to unstructured grids easily (like the FE

method). An overview of different discretization schemes and their properties can be

found, for example in HELMIG (1997 [39]), PAUL (2003, [65]) and HINKELMANN (2005

[42]).

For the temporal discretization in this work, the implicit Euler scheme (finite difference

method of first order), a one-step scheme, is applied. Here, the time-dependent partial

derivative of an unknown u is approximated by:

∂u

∂t
=

un+1 − un

∆t
= f

(
un+1

)
with ∆t = tn+1 − tn (3.47)

The indices n + 1 and n denote the point in time at which u is evaluated. The unknowns

on the new time level n+1 depend on each other and a system of equations with all

degrees of freedom has to be solved for each time step. So, the discretization with the

implicit Euler scheme for the time dependent terms in Equation 3.45 and 3.46 will be:

wetting phase:

−
(

[Snρw]n+1
j − [Snρw]nj

) φ

∆t
(3.48)

non-wetting phase:
(

[Snρn]n+1
j − [Snρn]nj

) φ

∆t
(3.49)
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Figure 3.10: Development of a numerical solution method (HELMIG (1997 [39]))
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3.3.3 Spatial Discretization

For the discretization in space, the BOX Method (subdomain collocation finite volume

method) is used in the frame of this work. In this technique, two different meshes are

needed. First, the model domain Ω is discretized with a finite element (FE) mesh that

consists of n nodes V = v1, ..., vn and m elements E = e1, ..., em. Dirichlet and Neuman

boundary conditions must be assigned along the boundaries of the domain. Then, a sec-

ondary control volume mesh is constructed in the following way: for each node vi, a control

volume or box Bi is constructed by connecting the mid points of the adjoining element

sides and the barycenters of the neighboring elements. Each control volume Bi consists of

l subcontrol volumes, which describe the intersection of elements connected to the node

ki (see Figure 3.11):

Bi =
l∑

i=1

bl
i (3.50)

control volume

element

barycenter of element ek

b l
i

K

B

i

i

Figure 3.11: Construction of control volume

The spatial distribution of an unknown u in the model domain Ω is required for the

solution of the equation system. To get this, discrete values of the unknown û are assigned

to the nodes of the finite element mesh. In between the nodes, a basis function Nj is

used for every node j to interpolate. (This function is also known as ansatz function,

interpolation function, or shape function). The approximated values of the unknown ũ

are defined:

ũ =
n∑

j=1

ûj · Nj (3.51)

where n is the number of nodes of in model domain. The value of Nj is always equal to

1 at nodes j and 0 at all other nodes. The function Nj can be described in Figure 3.12



3.3 Numerical Modeling of Two-Phase Flow in Porous Media 46

for the one-dimensional case. Applying this approximation procedure to the unknowns of

equations, some unknowns are given:

p̃w =
n∑

j=1

p̂wj · Nj, S̃w =
n∑

j=1

Ŝwj · Nj (3.52)

If the approximated unknown values are inserted into the weak formulation of balance

equations (which is obtained intergration over a control volume G), the differential equa-

tions are not sastisfied exactly and an error, the so-called residual ε is produced. With

a function Wi, ε can be weighted and intergrated over the whole domain G so that the

average residual becomes zero.

∫

G

Wi · εdG = 0, i = 1, 2, . . . , n (3.53)

For BOX method, a weighting function Wi is defined equal to 1 inside the control volume

and 0 outside the control volume:

Wi(x) =

{

1 if x ∈ Bi

0 if x /∈ Bi
(3.54)

W

N

j

j

x

i−1 i

x∆x∆

1

1

0
i+1

Figure 3.12: Shape and weighting function (HELMIG (1997 [39]))

The boundary and the volume integrals are solved for each control volume. The space

terms in equation 3.45 and 3.46 are:
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wetting phase:

−ρn+1
w,ijλ

n+1
w,ij

∫

Γi

KgradNjndO (pn+1
w,j − ρn+1

w,j g − pn+1
w,i + ρn+1

w,i g)
︸ ︷︷ ︸

discrete flow dfw

−qn+1
w,i Bi = 0

(3.55)

non-wetting phase:

−ρn+1
n,ij λn+1

n,ij

∫

Γi

KgradNjndO (pn+1
w,j + pn+1

c,j − ρn+1
n,j g − pn+1

w,i − pn+1
c,i + ρn+1

n,i g)
︸ ︷︷ ︸

discrete flow dfn

−qn+1
n,i Bi = 0 (3.56)

In these equations, the densities can be defined by averaging along the edges:

ρn+1
α,ij = 0.5(ρn+1

w,i + ρn+1
w,j ), α = w, n (3.57)

There are several ways to choose the mobility term λ. Here, the mobility term can be

determined with fully upwinding. This method is called Fully Upwind Box Method and

it is applied in this work. When the mobility λ is considered constant in an element, it

gets the value of the mobility at the upstream node of the discrete flow direction:

λn+1
α,ij =

{

λn+1
α,i if dfα ≥ 0

λn+1
α,j if dfα < 0

, α = w, n (3.58)

Several comparative studies of different discretization methods regarding monotocity,

mesh geometry, convection/ diffusion and heterogeities have been carried out. The studies

demonstrate that the Fully Upwind Box Method is monotonous, locally mass-conservative,

applicable for unstructured grids and it represents the correct physical behavior. A cer-

tain numerical diffusion can occur (see HELMIG (1997 [39]), PAUL (2003 [65]), HINKEL-

MANN (2005 [42])).

3.3.4 The Influence of Heterogeneties

With discontinuous porous media, such as fractured domains, we need a special treatment

for the discretization (see HELMIG (1997 [39]), REICHENBERGER et al. (2004 [83]),

REICHENBERGER et al. (2006 [84])). The whole domain Ω consists of different sub-

domains, e.g. the matrix Ωm and the fracture Ωf , with different absolute permeabilities.

The flux of phases and the capillary pressure across the interface have to be continuous.

We assume a mobile wetting phase in both matrix and fracture, hence we require that pw
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is continuous across the fracture-matrix interphase. The absolute permeabilities in their

respective domains are:

K(x) =

{

Kf (x) if x ∈ Ωf

Km(x) if x ∈ Ωm
(3.59)

Accordingly, the porosity φ depends on the domain as well as the capillary pressure

function pc(Sw) and the relative permeability functions krα(Sw). The capillary pressure

functions pc(Sw) are shaped like in Figure 3.13.

Two assumptions are essential without taking into consideration the blocking fractures

(e.g. fractures filled with clay):

• The absolute permeability in the matrix is smaller than the absolute permeability

in the fractures, Km(x) < Kf (y) for all x, y ∈ Ω.

• The values of the capillary pressure function in the matrix are larger than these in

the fractures for the same saturation (the entry pressure of the rock is larger than

the one of the fractures).

For the Brooks-Corey capillary pressure relation, the entry pressure is positive, and there

is a saturation S∗
w such that the continuity of the capillary pressure can only be achieved

if Sw < S∗
w. S∗

w is called threshold saturation.

In VAN DUIJIN et al. (1995 [99]) it is shown for a one-dimensional problem that for

Sw > S∗
w the capillary pressure is discontinuous and that Sw is 1 in the matrix Ωm.

Physically, if the non-wetting phase is not present (i. e. Sw = 1 and Sn = 0), then pn is

undefined and pc (which is defined as pn - pw) is also undefined. The proposed interface

condition is called extended capillary pressure condition and is shown in Figure 3.13. We

have:

Sm
w =

{

0 if Sf
w > S∗

w

(pm
c )−1 (pf

c

(
Sf

w

))
else

(3.60)

In the discretization of two-phase flow in fractured media, we employ two fundamental

properties of fractures being overlapping domains.

In the lower-dimensional fractures, the volumetric elements are complemented with lower

dimensional elements, e.g. 1D line elements in 2D domain; 1D line elements and (or) 2D

triangles/quadrilaterals in 3D domain (see Figure 3.15 (left)). The fractures appear as

inner boundaries to the domain where material properties change.

In equi-dimensional fractures, both fracture and matrix elements have the same dimen-

sionality (see Figure 3.15 (right)). A fracture can be a porous medium with a higher

permeability. It can also be a void space with a small aperture b, then K = b2/12.
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Like the case of interface conditions, we assume that the interface between two domains

are resolved by the grid and also that fractures are resolved by the grid. This situation is

depicted in Figure 3.14, where a part of a fracture and the surrounding grid is shown. The

vertex Ki in this figure is part of sub-domains: two matrix domains Ωm and the fracture

domain Ωf .

Sw

S S Sw w
f m*

fracture
matrix

fm mΩΩΩ

p
c

Figure 3.13: Brooks-Corey capillary pressure curve for discontinuous media

K
Ωm

Ωf fracture

i

Ωm

Figure 3.14: Example of a fracture in a grid

Ωf Ωf

Ω2

i

j

k

i

v

Ω1
v

Ω1

Ω2

Figure 3.15: Spatial discretization of lower- and equi- /dimensional fracture approach
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3.3.5 Numerical Simulator MUFTE-UG

Two-phase flow model concepts are implemented in the modeling system MUFTE-

UG that is a combination of MUFTE and UG (see Figure 3.16). MUFTE stands for

MUltiphase Flow, Transport and Energy model. UG is the abbreviation for Unstructured

Grids. The numerical simulator is developed at the Institute of Hydraulic Engineering,

University of Stuttgart in cooperation with the Chair of Water Resources Management and

Modeling of Hydrosystems, Technische Universität Berlin (part MUFTE) and the Techni-

cal Simulation Group of the Interdisciplinary Center for Scientific Computing, University

of Heidelberg (part UG).

The MUFTE software toolbox mainly contains the physical model concepts and discretiza-

tion methods for isothermal and non-isothermal multiphase / multicomponent flow and

transport process in porous and fractured porous media. In this toolbox, several modules

for the numerical simulation of isothermal and non-isothermal multiphase / multicom-

ponent flow and transport processes in porous and fractured-porous media have been

provided including the system with single-phase, two-phase and three-phase problems.

These problems can be illustrated in detail as following:

• single-phase systems

– single-phase flow: liquids, e.g. water, NAPLs, ...; gases , e.g. air, methane,...;

incompressible, compressible

– single- and multicomponent transport: e.g. contaminants, dissolved gases, ...

– fractures

– 2D, 3D

• two-phase systems

– two-phase flow: liquid / liquid, e.g. water / NAPL, water / oil, ...; liquid / gas,

e.g. water / air, water / methane, ...; incompressible, compressible

– two- and multicomponent transport: e.g. salt, dissolved gases, contaminants,

...

– isothermal and non-isothermal (including phase transitions)

– fractures

– 2D, 3D

• three-phase systems

– three-phase flow: liquid / liquid / gas, e.g. water / NAPL / air, ...; incompress-

ible, compressible
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– three- and multicomponent transport: e.g. contaminants, wator vapor, dis-

solved gases, ...

– isothermal and non-isothermal (including phase transitions)

– 2D

Several model concepts for fractured porous media including the discrete model concept

(e.g. combined approach) and equivalent model concept (e.g. double-continuum approach)

can be used in the MUFTE toolbox. Different flow laws and modeling techniques are

available for the flow through fault zones and fractures. MUFTE provides a large set

of constitutive relationships for the relative permeability and the capillary pressure as

well as state equations for some parameters (e.g. densities, viscosities). The MUFTE

toolbox includes also several different types of spatial discretization methods (e.g. BOX,

CVFE method) and time discretization schemes (explicit, implicit). The two most common

spatial discretization techniques are the Fully Upwind Box Method (BOX), which is a

Finite-Volume formulation with piecewise linear shape functions including fully upwinding

of the upstream mobilities, and a Control-Volume Finite-Element Method (CVFE), which

is a mass-conservative formulation on a discrete patch including a first-order upwinding

scheme. The time integration employs the Finite Difference Method, and the temporal

discretization is carried out fully implicitly.

Further information is found in HELMIG (1997 [39]), BASTIAN et al. (1997 [6]), BRE-

ITING et al. (2002 [18]), HELMIG and CUNNINGHAM (2003 [41]) and HINKELMANN

(2005 [42]).

MUFTE UG

Department of Hydromechanics and
Modeling of Hydrosystems,
University of Stuttgart
Department of Water Resourses Management
and Modeling of Hydrosystems,

Interdisciplinary Center of
Scientific Computing,
University of Heidelberg

− multigrid data structures

− local mesh refinement

− solvers (multigrid, ...)

− h,p,r − adaptive methods

− parallelization

− user interfaces

− graphics, visualization

− physical interpretation

− problem description

− constitutive relationships

− refinement criteria

− numerical schemes

− discretization methods

− physical and mathematical models

Technische Universität Berlin

Figure 3.16: Numerical simulator MUFTE-UG
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user interface

graphics numerics

grid manager

CHACO

PPIF

UG library

DDD domain manager

low−level functions

device manager

discretization of pde’s,
error estimator etc.

applications

boundary problems,
coefficient functions etc.

problem−class libraries

Figure 3.17: Structure of the UG toolbox (BASTIAN (1996 [5]))

UG is a toolbox for the solution of partial differential equations and it is currently used

by a number of different groups in engineering research and application. UG provides the

data structures and fast solvers based on parallel, adaptive Multigrid Methods. Special

advantages of the UG toolbox are the data structures for unstructured grids, i.e. the

ability to deal with complex geometries and boundaries in two and three dimensions,

functional parallelization, i.e. especially suitable for MIMD parallel computers, adaptive

local-grid refinement in order to minimize the degrees of freedom for a desired accuracy

and robust Multigrid solvers for linear and non-linear problems. UG has several pre- and

postprocessing tools which are also suitable for parallel computers, e.g. online graphics.

As shown in figure 3.17, UG is divided into three major parts: the UG library, problem-

class libraries and applications. The UG library is independent of the partial differential

equation, and it contains geometric and algebraic data structures, refinement and coarsen-

ing techniques, numerical algorithms, visualization techniques as well as a user interface.

The problem class libraries provide discretization methods as well as error estimators and

indicators. Finally, the applications describe the system set-up, i.e. the geometry, physical

parameters and their functional relationships as well as the initial and boundary condi-

tions. A simulation run is steered by a script file. More detailed information can be found

in the literature mentioned above and in several manuals which can be downloaded from

the UG homepage ([96]).

The overview of the modeling system of MUFTE-UG with pre- and postprocessor as well

as interfaces is shown in Figure 3.18.
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Figure 3.18: Modeling system MUFTE-UG with its pre- and postprocessors (HINKEL-

MANN (2005 [42]))
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3.3.6 Pre- and Post-Processing

3.3.6.1 Mesh Generation

After the geometric and physical information has been prepared, a mesh of the compu-

tational domain must be generated. The most basic form of mesh classification is based

upon the connectivity of the mesh: structured or unstructured.

Strictly speaking, a structured mesh can be recognized by all interior nodes of the mesh

having an equal number of adjacent elements. Structured means that, in 2D, each inner

node has a connection to 4 neighboring nodes and to 4 rectangular elements and, in 3D,

each inner node has a connection to 6 neighboring nodes and to 8 bricks elements. This

mesh is suitable for ’simple’ domains.

For complex domains and boundaries as well as spatial parameter distributions, unstruc-

tured meshes are recommended, i.e. triangles or quadrilateral in 2D and hexahedra in

3D. In the unstructured meshes, the node valence requirement is relaxed allowing any

number of elements to meet at a single node. Triangle and tetrahedral meshes are most

commonly thought of when referring to unstructured meshing, although quadrilateral and

hexahedral meshes can also be unstructured. Because the triangle mesh is more flexible

to adapt especially for complex domains. Most of the commonly used unstructured

mesh generation techniques are based upon the properties of the Delaunay triangulation,

the Advancing Front Method or block-structured methods (see FUCHS (1999 [34])).

Unstructured meshes are especially suitable for the Finite Element and Finite Volume

Method.

In this study, the unstructured meshes with triangular element in 2D are used with helps

of the software ART (developed by FUCHS (1999 [34])). ART is the abbreviation for

Almost Regular Triangulation which is based on the Delaunay triangulation method. It

generates high-quality triangles or tetrahedral with regular mesh structure and enables

area-wise higher mesh resolutions according to a user-defined density function. ART has

been extended to discrete fractured systems; for fractures as elements of lower dimensions

(e.g. 1D fractures in a 2D matrix) and for fractures as elements of equal dimensions (e.g.

2D fractures in 2D matrix). Figure 3.19 shows the process and the data input files which

are used in ART program.

3.3.6.2 Visualization

After the numerical simulation, the computed data are presented and analyzed in the

postprocessing. Postprocessing of simulation results is performed in order to extract the

desired information from computed flow field. In 1D, the function values are connected
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by straight lines. In 2D, the results of scalars, such as the water level, concentrations

or saturations, are presented with isoline or isoarea plots. The visualization module of

UG was designed in a scalable way, so that large parallel simulations can be visualized

in an efficient way. It employs the hierarchical data structure and is parallelized, thus

avoiding unnecessary calculations in the process. Output can be drawn to the screen or

to PostScript or Portable Pixmap (PPM) files (as well as to a native picture format).

For more sophisticated visualization it is possible to write data in several visualization

program formats: OpenDX/ Data Explorer, TecPlot, GRAPE and AVS. The visualization

tool which has been used for this study is the TECPLOT system.

2

1

3

1 6

45

4

1
1

−1
34

25

0

23

% Parameter for Delaunay_2D

type 2D
boudary input.bnd
finename  input
density 0.02
density_function 0

gen_net 6

save_net

% type of net: 2D or 2D
% "domain" description
% net data
% density of net
% density function

% mesh with optimisation level 6
% save net to file

Density function for fracture:

−1:   0.005

dens.func
$

0.00   0.00   0.00
1.00   0.00   0.00
1.00   0.50   0.00
0.50   0.50   0.00
0.00   0.50   0.00
0.50   0.25   0.00
$

%%Edges (Indices to List of Points)

%%Faces (Indices to List of Points)
1:  0  1  2  3  4
$

0   1 
1   2
2   3

4   0 
3   5 

1:   
2:   
3:   

3   44:   
5:   
−1:   

%%Vertices: x y z
%%Net: Vertices <−> Edge <−> Faces <−> Elements
%%DO NOT CHANGE LINES ABOVE !!!!
%%ElementNumber: 0

%%Version 3.0
%%VertexNumber: 6
%%EdgeNumber: 6
%%FaceNumber: 1

Data input file: input.bnd

Control file: default

Figure 3.19: Data input for ART
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3.4 Introduction to Geostatistical Methods

Most of the natural phenomena are variable in space and time. Time series analysis is

one of the first fields where variability has been considered and described with stochastic

methods. These methods were extended and further developed to analyse spatial vari-

ability. These spatial methods form the discipline called geostatistics (BARDOSSY (2004

[3]), YEH (2006 [108])).

What is Geostatistics? There are many definitions proposed in articles and texbooks. For

example:

“Geostatistics: study of phenomena that vary in space and/or time” (DEUTSCH (2002

[27])).

“Geostatistics can be regarded as a collection of numerical techniques that deal with the

characterization of spatial attributes, employing primarily random models in a manner

similar to the way in which time series analysis characterizes temporal data” (OLEA

(1999 [63])).

The word geostatistics is from the two parts, geo and statistics, similarly to geophysics or

geochemistry. It is used with different meanings (see BARDOSSY (2004 [3])):

• as a collection of all stastical and probabilistical methods applied in geosciences or

• as another name for the theory of regionalized variables.

Compared to the classic approaches which examine the statistical distribution of sample

data, geostatistics incorporates both the statistical distribution of sample data and the

spatial correlation between the sample data. Because of this difference, many earth science

problems are more effectively addressed using geostatistical methods.

Geostatistical methods were initially applied to mining engineering, but later found in-

teresting applications in many other fields such as subsurface hydrology, meteorology,

environmental sciences, agriculture, even structural engineering.

Before appling geostatistical methods to analyse the two-phase flow processes in porous

media with a case study in chapter 6. Several basic definitions will be introduced in the

following.

3.4.1 Stationary Processes

In geostatistics, the parameters of the governing equations are assumed to be random

spatial functions. A regionalized variable is the realization of a random function. This

means that for each point u in the d dimensional space, the value of the parameter being

interested in, z(u) is one realization of the random function Z(u).
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A stationary process is a random process in which none of its statistical properties varies

with time. The random process consists of random variables at the location u in time and

has all the properties of random variables, such as mean and variance.

A random process is classified as strictly stationary (or strong stationary) if its joint dis-

tributions are identical regardless of the separation vector h. The probability distribution

of random variables with same configuration of points does not change:

P (Z(u1), Z(u1), ..., Z(un)) = P (Z(u1 + h), Z(u1 + h), ..., Z(un + h)) (3.61)

Second-order stationary is a weaker form of the strictly stationary process. A random pro-

cess is second-order stationary if the expected value of random function Z(u) is constant

over the whole domain D and the covariance of two random variables corresponding to

two locations depends only on the vector h seperating two points:

E [Z(u)] = m for u ∈ D (3.62)

E [(Z(u + h) − m)(Z(u) − m)] = Cov(h) for u, u + h ∈ D (3.63)

The function Cov(h) is called covariance function.

A random process is intrinsic stationary if the expected value of random fuction Z(u) is

constant over the whole domain D and the variance of the increment corresponding to

two different locations depends only on the vector h seperating two points:

E [Z(u)] = m for u ∈ D (3.64)

V ar [Z(u + h) − Z(u)] = E
[
(Z(u + h) − Z(u))2

]
= 2γ(h) for u, u + h ∈ D (3.65)

The function γ(h) is called variogram (also semi-variogram because of the ‘half’ in front

of the equation):

γ(h) =
1

2
Var [Z(u + h) − Z(u)] (3.66)

γ(h) =
1

2
E
[
(Z(u + h) − Z(u))2

]
(3.67)

=
1

2

(
E
[
(Z(u + h))2

]
− 2E [Z(u + h)Z(u)] + E

[
(Z(u))2

])
(3.68)

(3.69)

If the random process Z is second-oder stationary, the variogram can be related to the

covariance:

γ(h) = Cov(0) − Cov(h) (3.70)
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3.4.2 Variogram Analysis

The variogram defined in Equation 3.67 and 3.68 is based on the ensemble concept. To

derive a variogram from a data set, again, the ergodicity assumption must be invoked,

and the variogram is called an experimental variogram or empirical variogram.

The experimental variogram γ(h) can be defined as following function:

γ(h) =
1

2N(h)

N(h)
∑

i=1

(Z(ui + h) − Z(ui))
2 (3.71)

Here Z(ui) is the sample value at point ui, h is distance or lag between observations, N(h)

is the number of data pairs of locations separated by the distance h.

In general, experimental variograms of a space data set are estimated from observed data

using equation 3.71 in a discrete form. The experimental variogram generally fluctuates,

in particular at large separation distances where the number of data pairs becomes small.

For the sake of kriging (or stochastic simulation), the experimental variogram is replaced

with an acceptable variogram model. An experimental variogram is often fitted with a

continuous theoretical variogram model and the spatial structure of the data set is then

described by the name of the theoretical model and its associated model parameters.

Figure 3.20 gives an illustration of an experimental and theoretical variogram.

The constraint of the intrinsic hypothesis is satisfied when a variogram function is a

positive-definite function. The variogram models imply that the adjacent data are more

correlated than the remote data, which means the correlation decreases when the separat-

ing distance h increases. If the separating distance h is larger than a range, the data are

no longer correlated and reach a plateau which is called a sill. There are many positive

definite variograms available, using h to represent the distance, a to represent the (prac-

tical) range, and C to represent the sill. Some of those commonly used are introduced

below. For comparison of the different variogram models, the curves of the four above

variogram models with the same variance/sill and the same range are shown in Figure

3.21.

• Nugget model:

γ(h) =

{

C if h > 0

0 if h = 0
(3.72)

The nugget model represents the discontinuity at the origin due to small-scale vari-

ation. The abrupt change of the variogram from 0 (at h = 0) to C (at h > 0)

indicates the variability of the variable over small scales or the measurement error.

On its own it would represent a purely random variable, with no spatial correlation

(see Figure 3.21).
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• Spherical variogram model:

γ(h) =

{

C
(

3h
2a

− 1
2

(
h
a

)3
)

if h ≤ a

C if h > a
(3.73)

The spherical variogram model actually reaches the specified sill value, C, at the

specified range, a (see Figure 3.21). In some articles, the model belongs to the group

of bounded models (variance reaches a sill at some range).

• Exponential variogram model:

γ(h) = C
(

1 − e
−h
a

)

for a > 0 (3.74)

Unlike the spherical variogram model, the exponential model has no well-defined range.

The model line comes asymptotically to the sill. The practical range is the value of 3a

where the variogram reaches 95% of the the sill value (see Figure 3.21).

• Gaussian variogram model:

γ(h) = C

(

1 − e
−h2

a2

)

for a > 0 (3.75)

The Gaussian variogram model, with its parabolic behavior at the origin, represents

very smoothly varying properties. The effective range is
√

3a and slope at the origin is

0. This model differs from the exponential model at small angles, variances are close to

zero in a ‘halo’ around each point (see Figure 3.21). In some articles, the exponential and

Gaussian variogram model belong to the group of bounded asymptotic models (variance

approaches a sill at some effective range).

Each of the theoretical variogram models as well as the covariance models represents some

type of heterogeneity pattern (perhaps, geologic depositional environment). In fact, only

subtle differences exist between spherical, exponential, and Gaussian variogram models.

More importantly, to accurately select a correct model for a data set, a very densely sam-

pled data set is required. As a densely sampled data set becomes available, a deterministic

approach is resorted in many situations as well. Therefore, the simple model such as the

exponential model is highly desirable and it is widely used (YEH (2006 [108])). In this

study, the object that we have been dealing with is subsurface simulations with proper-

ties, i.e. permeability field, fracture field. The exponential variogram model is chosen. The

model has been applied for simulations of the permeability field in a natural slope and

the detailed processes are discussed in section 6.4.
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Chapter 4

Water Infiltration Processes in a

Vertical Fault Zone

4.1 Introduction

Porous media with fault zones can be very complex. In natural systems, porous media

may have many fractures inside. To compare the different model concepts, first a very

simple and academic case is investigated dealing with two-phase flow processes in porous

media with a vertical fault zone. This example is set up to assess the differences between

three different model concepts: 2D fracture model concept, 1D fracture model concept and

fracture with pipe model concept (see section 2.4).

Normally, the saturated/unsaturated water flow in porous media is mathematically de-

scribed by the Richards equation (see section 1.2). For such infiltration processes, this

model concept would determine very similar results. Here, an active gas phase is of mi-

nor importance compared to the two-phase flow model concept chosen here (see section

3.2). A detailed disscusion is presented in PHAM VAN and HINKELMANN (2005 [71]),

PHAM VAN et al (2006 [72]), PHAM VAN and HINKELMANN (2007 [73]).

4.2 Model Concepts

4.2.1 2D Fracture Model Concept

Fractured porous medium is defined by two subdomains with different properties, the

fracture and the matrix. This system is characterized by a high permeability within the

fracture and a low permeability within the matrix. The 2D fracture model concept takes

the fracture and the matrix into account as elements of the same dimension. Here, the

fracture is set as the two-dimensional element in the two-dimensional domain. Therefore,

61
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the mesh is highly resolved in the fracture as well as in its close surroundings (see Figure

4.1).
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Figure 4.1: Mesh for the 2D fracture model concept (left), zoom around a fracture (right)

4.2.2 1D Fracture Model Concept

On meso- and large scales, the 2D fracture model concept cannot be used in a larger

domain due to the limitations of the CPU time. The 1D fracture model concept is based on

the combined model approach, i.e. fractures are considered as elements of lower dimension,

for example as one-dimensional elements in a two-dimensional domain. Generally, the

mesh resolution of the fracture-matrix space is coarser compared to the 2D fracture model

concept (see Figure 4.2 ). However, to compare both model concepts, approximately the

same mesh resolution is chosen here with 2641nodes.
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Figure 4.2: Mesh for the 1D fracture model concept (left), zoom around a fracture (right)
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4.2.3 Fracture with Pipe Model Concept

As the fracture permeability is much higher than the matrix, the flow velocities in fractures

are also much higher. The fractures or macropores in the soil are commonly referred to

as ’soil pipes’ and concentrated subsurface flow of water in these natural soil pipes is

called ’pipeflow’ (e.g. BEVEN and GERMANN (1982 [12]), UCHIDA et al. (2001[95])).

To set off the fracture model and illustrate the flow mechanism, a so-called ‘pipe model’ is

introduced for simulation (see Figure 4.3 ). In this simple concept, the fracture is idealised

as an open pipe. The water pressure in the pipe must be computed or estimated and it is

prescribed as a Dirichlet boundary condition along the pipe wall.
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zoom around the open pipe

Figure 4.3: Mesh for pipe model concept (left), zoom around the pipe (right)

4.3 Numerical Simulation

4.3.1 Model Setup

The rectangular domain of 1m x 0.5m shown in Figure 4.1, 4.2 and 4.3 is chosen for the

simulations. The setup includes one vertical fracture inside the domain. The fracture is

located along the line from (x=0.5m , y=0.25m) to (x=0.5m , y=0.5m). Water infiltration

processes are investigated in the system with the Dirichlet boundary condition (bc) on

the top. The water height is set to 1cm equivalent to pressure of 100100Pa. This is an

idealization of a heavy rainfall resulting in runoff with a 1cm water level. The other

sides of the domain are closed (Neumann no flow bc) (see Figure 4.4). The domain has

the permeability Km = 10−12m2 and the porosity φ = 0.57, and the fracture has the

permeability Kf = 10−9m2, the porosity φ = 0.9 and the fracture width b = 1cm.

The constitutive relationships of Brooks-Corey are chosen in this simulation with the

parameters λm = 2, pm
d = 2000Pa in matrix and λf = 2, pf

d = 63Pa in the fracture
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based on Leverett scaling function (see section 3.2). Initially, the gas saturation is set to

Sn0 = 0.9. The other parameters in the domain are set as follows:

ρw = 1000 [kg/m3] ρn = pn

RT
[kg/m3]

µw = 10−3 [Pas] µg = 1.65 · 10−5 [Pas]

Sm
wr = 0.1 Sf

wr = 0.1

Sm
nr = 0.01 Sf

nr = 0.01

Table 4.1: Parameters set up in the domain
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Figure 4.4: Sketch of the domain with one vertical fracture

4.3.2 Simulation Results

To examine the infiltration processes, three cross sections are considered in the system:

cut A-A lies directly in the axis of the fracture, cut B-B has a distance of 2cm and

cut C-C of 5cm from the fracture axis (see Figure 4.4). Figure 4.5 and Figure 4.6 show

the water saturation fields and water saturation distributions at different time steps in

the domain with the 2D fracture and the 1D fracture model concepts, respectively. For

detailed investigation, the water saturation distributions along the cut A-A, cut B-B and

cut C-C are drawn in these figures. From the results several conclusions can be drawn out

as following:

Firstly, due to a very high permeability in the fracture, the water movement in the fracture

is much faster than in the matrix. As can be seen in Figure 4.5 and 4.6 at the time step

t =30s that the water has already reached the bottom of the fracture.
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The fracture geometry has a notable influence on the simulation results. If the fracture

thickness increases, the faster water front occurs in the domain.

In the simulation, the flow in the fracture follows the validity of the Darcy law (see more

in section 2.3). The permeability of the fracture is chosen as Kf = 10−9m2 and it is

three orders of magnitudes higher compared to the permeability in the matrix. When

the fracture permeability is higher, the validity of Darcy law can be violated. If the

permeability of fracture increases to larger than Kf = 9 ·10−6m2, numerical problems can

occur.

The results show an overall very good agreement between two model concepts: 2D fracture

model concept and 1D fracture model concept. Theoretically, the domain with the 2D

fracture model concept needs longer CPU simulation time conpared to the 1D fracture

model concept because of the finer mesh surrouding the fracture. For the small scale, the

difference is small. Therefore, both model concepts (2D and 1D fracture) are suitable for

this scale.

In some cases, the fractures or macropores in the soil are commonly referred to as soil

pipes and for this case, the fracture can be idealised as an open pipe (see more in section

2.4). As the simple example, the Dirictlet boundary condition (bc) is set along the pipe

wall. Two examples are set up for simulation here: water pressure is prescribed as a hy-

drostatic bc and a atmospheric bc in the pipe (see Figure 4.8).

The first example is chosen as a reference case: water pressure is prescribed as the hydro-

static pressure bc along the pipe wall. The pipe is filled up with water. Figure 4.7 shows

the water saturations computed using the pipe model concept after t = 30s, t = 10min

and t = 40min. Big differences can be observed in the simulation results compared to

the domain with 1D and 2D fracture model concepts. They are illustrated in Figure 4.9,

Figure 4.10 and Figure 4.11 in detail. The results show a faster water infiltration process

into the system compared to the 1D and 2D fracture model concepts. The water flow

is over-estimated with open pipe model concept. The reason for these differences can be

explained inside the model itself. Using pipe model concept as reference case, the water

pressure is prescribed as a hydrostatic bc and the fracture (as an open pipe) is always full

with water and the capillarity is not included in this case. There are no flux limitations

in the fracture and the gas can not escape from the system.

Second example for the pipe model concept is the ideal case that the water pressure is

prescribed as the atmospheric bc in the pipe (Figure 4.8). That means the water pressure

along the pipe wall is set as atmospheric pressure pw = 1 · 105Pa. For this case, the result

is quite different because the flow in the fracture is under-estimated. The comparison of

three above cases is shown in Figure 4.12.
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Figure 4.5: Water saturation Sw[−] computed with the 2D fracture model concept
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Figure 4.6: Water saturation Sw[−] computed with the 1D fracture model concept
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Figure 4.7: Water saturation Sw[−] computed with pipe model concept after t=30s (left),

t=10min (middle), t=40min (right)
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Figure 4.8: Schematic view of a fracture as a pipe model concept: (left) pipe with atmo-

spheric pressure bc, (right) pipe as hydrostatic pressure bc
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Figure 4.9: Water pressure pw[Pa] (left) and water saturation distribution Sw[−] (right)

along cut B-B after t = 30s computed by the 1D fracture model concept and fracture as

pipe model concept
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Figure 4.10: Water pressure distribution pw[Pa] along cut B-B (left) and cut C-C (right)

after t = 10min computed by the 1D fracture model concept and fracture as pipe model

concept

Y [m]

S
w

[-]

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

fracture as pipe model concept
1D fracture model concept

Y [m]

S
w

[-]

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

fracture as pipe model concept
1D fracture model concept

Figure 4.11: Water saturation distribution Sw[−] along cut B-B (left) and cut C-C (right)

after t = 10min computed by the 1D fracture model concept and fracture as pipe model

concept



4.4 Conclusions 71

Y [m]

pw
[P

a]

0 0.1 0.2 0.3 0.4 0.5

92000

94000

96000

98000

100000

102000

fracture as pipe model concept -atmospheric bc
fracture as pipe model concept -hydrostatic bc
1D fracture model concept

Y [m]

S
w

[-]

0 0.1 0.2 0.3 0.4 0.50

0.2

0.4

0.6

0.8

1

fracture as pipe model concept -atmotspheric bc
fracture as pipe model concept -hydrostatic bc
1D fracture model concept

Figure 4.12: Comparison of the water pressure pw[Pa] (left) and water saturation distri-

bution Sw[−] (right) along cut C-C in cases of fracture as pipe model concepts and 1D

fracture model concept

4.4 Conclusions

In this chapter, the two-phase flow processes are investigated on a small scale domain

with a vertical fault zone (fracture). Three different model concepts are used for numerical

simulation: 2D fracture model concept, 1D fracture model concept and fracture with pipe

model concept.

In the domain with the 2D fracture model concept, a fault zone is discretized as a two-

dimensional element in the two-dimensional domain and the mesh is highly resolved in

the fault zone as well as in its close surroundings. Contrastly, in the domain with the

1D fracture model concept, the fault zone is discretized as a one-dimensional element

in a two-dimensional domain and the mesh resolution of the fracture-matrix space is

coarser compared to the domain with 2D fracture model concept. In the domain with a

fracture as pipe model concept, the fault zone is idealised as an open pipe and a Dirichlet

boundary condition is set up along the pipe wall. For this example, two cases are used for

investigation: water pressure is prescribed as a hydrostatic bc and as an atmospheric bc

in the pipe.

After applying the different model concepts for two-phase flow simulation, the results

have been analysed and compared to each other. Due to a very high permeability in the

fracture, the water movement in the fracture is much faster than in the matrix and the

fracture geometry has a notable influence on the simulation results. The results show an

overall very good agreement between two model concepts: 2D fracture model concept and

1D fracture model concept. Theoretically, the domain with the 2D fracture model concept
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needs longer CPU simulation time compared to the 1D fracture model concept because

of the finer mesh surrouding the fracture. In this small-scale example, the difference is

small. Therefore, both model concepts (2D and 1D fracture) are suitable for this scale.

In the domain with a fracture using the pipe model concept, different results can be

seen compared to the previous model concepts. The water infiltration process is over-

estimatimated in the domain with the hydrostatic bc along the pipe wall. Even though,

in the domain with the atmospheric bc in the pipe wall, the water infiltration process is

under-estimatimated. In such cases, pipe model concepts are not suitable.



Chapter 5

Seepage Processes through a Dike

with a Fault Zone

5.1 Problem Description

A large part of the world population lives close to oceans, seas, lakes and rivers, of course

they need dikes. That is why dikes play an important role for the protection of human

life and goods. In long history, the failures of dikes causes big damages for human lives

and goods. The causes and failure mechanisms of the dikes are quite complex. Figure 5.1

shows the failure mechanisms that can occur in dikes (see e.g. VRIJING (1994 [100]),

OUMERACI and SCHÜTTRUMPF (1999 [64]), KORTENHAUS et al. (2002 [51]), VAN

BAAR (2005 [97])).

slide circle inside slope settlement slide circle outside slope

piping wave overtopping erosion outside slope

micro−instability erosion foreland
softening

Figure 5.1: Dike failure mechanisms (VRIJING (1994 [100]))

A dike failure is often the result of different effects during a high-water level event. One

of the failure mechanisms is overflow or wave overtopping (Figure 5.2). With this failure

73
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mechanism, the dike collapses because large quantities of water run over the top of the

dike or because the waves break over the dike. During high floods, dikes are stressed by

an increasing water level. The water percolates through the dike body and may cause

instabilities due to processes of suffusion and erosion.

Figure 5.3 shows the model concept of the overtopping dike (see PAUL et al. (2000 [67]),

PAUL (2003 [65]) and HINKELMANN et al. (2005 [43])). In this case, the surface wave is

coupled with the flow in the porous medium along the common interface via the pressure.

The pressure field coming from the surface waves can be computed by a wave model or

it can be taken from experimental or field data.

Figure 5.2: Water overtopping event at a dike (left), breaking dike (right)

msl

h (t)

zone
unsaturated

saturated zone

couplingovertopping wave

surface water

Figure 5.3: Model concept of overtopping dike (after PAUL et al. (2000 [67]))

Statistics from the International Commission on Large Dams (ICOLD 1995) show that

dike problems and failures are often related to internal erosion in one way or another. The

existing fault zones in dikes such as macropores, void spaces or inhomogeneities caused

by animals, roots of dead plants or construction measures can increase these processes

(Figure 5.4). Due to the pressure of the water the sealing layer of clay behind the dike,

if present, first uplifts (becomes raised). This allows the “piping” to take place, in which

the sand is washed away and the dike subsides (collapses). With this mechanism, the dike

collapses due to sand being washed away from under the dike.
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Figure 5.4: A typical dike model with fault zones or piping inside

Normally, problems with a “simple” free-surface in the dike system can be treated with

a groundwater flow model which determines the free water surface iteratively. This is, for

example, the case for seepage problems when the water level on the seaside is higher than

on the landside (see WIBBELER (1995 [107]), HASELSTEINER (2007 [37])). However,

the influences of capillarity and variable initial water saturation in unsaturated zones in

dikes are not accounted for in such a model.

The flow processes in dike systems can be modeled as the flow of soil water in unsaturated

zone using the Richards equation (see section 1.2). This model is based on the implicit

assumption that the soil water freely flows through the porous medium: A change of

water content goes together with a change of gas content and therefore with the flow of

the gas. The air phase essentially remains at a constant pressure, equal to atmospheric;

the system is then reduced to the consideration of the water phase only. This assumption

is feasible since the density of air is about 1% of that of water for small to medium

water saturations. Under certain circumstances, however, larger packages of gas may

be trapped within fairly wet soil. Then, the extremely small relative permeability of

gas at high water saturations makes it difficult for the gas to escape. When overflowing

occurs in dikes, the shape of the free-surface might be very complex (Figure 5.3) and

regions with entrapped air may occur which can be pressed out at the landside boundary

(D’ELISO et al. (2006 [29])). To overcome the above problems and to work with a more

general tool which is also capable of simulating active gas flow in partially saturated

soils, the two-phase flow model concept for porous media is generally recommended and

chosen for analyzing the water infiltration processes in the dikes with fault zones.
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The different model concepts for the fault zone have been applied in the small scale

domain described in the chapter 4. The model concepts should be further investigated and

compared to controlled laboratory experiments before being transfered to larger scales.

The following work aims to discuss issues such as the evaluation of numerical model

introduced in chapter 3, the reliability of different approaches from the numerical and the

experimental point of view. For these purposes, a two-phase flow model concept is applied

in the laboratory scale. Here, a dike on a laboratory scale is used for simulation. The

results from numerical simulations are compared to laboratory experiments performed

in the Chair of Hydraulic Engineering, Technische Universität Berlin, Germany (see

PLESCHER and HAMM (2005 [79]), MINACK (2005 [59]), HINKELMANN et al. (2005

[43])). The experiments include a homogeneous sand dike and one with a horizontal fault

zone at different locations.

Detailed information about this work is also given in ROUALT et al. (2006 [82]), PHAM

VAN and HINKELMANN (2008 [74]), PHAM VAN et al. (2008 [75])

5.2 Laboratory Experiments

As part of a research project on dike monitoring, a physical model of a dike was built at

the Chair of Hydraulic Engineering, Technische Universität Berlin. A dike with a scale

1:8 had dimensions of 0.6m height, 4.0m length and 0.4m width (Figure 5.5). The instal-

lation was made on smooth PVC bed and glass walls. The inflow to the dike experiment

(on the seaside) was controlled by a gate and a pump was set up here to measure the

water discharge (Figure 5.6). The experiment is conducted with a quartz sand with grain

size diameters ranging from 0.06 to 3.0mm (see Figure 5.9 ). The material for the exper-

iments used here has a measured hydraulic conductivity Kf = 0.95 · 10−4m/s, density

ρ = 1.78kg/m3 and initial moisture w = 11.5% and porosity φ = 0.49. The fault zone

in the dike was made out of a system of several highly porous pipes being perforated

to a porosity of 0.5 to allow the water to enter from all directions. The fault has a 2cm

thickness and it is located on the seaside or the landside of the dike.

The model was equipped with several sensors to automatically acquire the experimental

data. The electrical method has been used for measurements on the physical model. To

measure the seepage processes, a system of electrical gauges was set up along the dike (see

Figure 5.7 and Figure 5.8). The discharge Q through the dike was also measured during

the experiment.
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Figure 5.5: Schematic experimental setup

Figure 5.6: View on the experimental dike

Figure 5.7: Water level gauges in the dike
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Figure 5.8: Installation of electrodes in the dikes
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Figure 5.9: Grain size distribution of the dike material
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Several experiments were performed with the dike. The purposes are investigating the

water infiltration processes in the dike under different conditions. The inflow in the tests

involved in most of the cases has been controlled by the gate in upstream. Therefore, the

upstream water level is increased during the time. The results are shown in Figure 5.11.

First experiments were carried out with a homogeneous dike. On the seaside of the dike,

a discharge was pumped until the water level reaches to h = 0.48m at time t = 1h25min

(see Figure 5.10). The water front evolution in this case is given in Figure 5.11a. The

seepage lines for different time steps can be seen in the results. The steady state occurred

after about t = 2h30min.

Similar experiments were carried out with different locations of the fault zone in the dike

(on the seaside and the landside). Figure 5.11b presents the water front evolution with a

fault zone on the seaside. The time for steady state is about t = 1h55min. Figure 5.11c

shows the water front evolution in the dike with a fault zone on the landside. For this

case, the steady state occurred approximately after t = 2h20min. Because of fault zone

influences, erosion was observed in the downstream of dike from time step t = 1h25min.
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Figure 5.10: Increasing water level for seaside boundary condition
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Figure 5.11: Experimental results in the dike: (a) homogeneous case, (b) dike with a fault

zone on the seaside and (c) dike with a fault zone on the landside
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5.3 Numerical Simulations

5.3.1 System and Parameters

For numerical simulations, the dike system shown in Figure 5.5 has been chosen. Four

different cases are investigated: homogeneous dike, dike with 2D fault zone model concept,

dike with 1D fault zone model concept and dike with fault zone with pipe model concept.

The results are compared to the experimental results of section 5.2. Initially, the saturation

of water Sw in the model domain is equal to 0.22 corresponding to the measured water

content w = 0.115 (see section 5.2) and the gas pressure pw is set to be atmospheric.

On the seaside, time dependent Dirichlet boundary conditions (bc) are applied for the

water and gas phase. The maximal water level reaches to h = 0.48m after time t =

1h25min in the experiments (see Figure 5.10). Therefore, the water level can be calculated

as a function of the time variable. The following lines show the implementation of the time

dependent boundary conditions (bc) and their values for one boundary segment in the

MUFTE code (given in the c-file (*.c).

time = in[IN_T];

waterlv=(((sqrt(576 + 960*((t-startt*60.0*60.0)/60)))-24)/480);

bndType[OUT_BNDTYP_pw] = DIRICHLET;

bndType[OUT_BNDTYP_Sn] = DIRICHLET;

pw = 1.013e5 +(Rhow * grav * (waterlv-h));

Sn = 0.0;

On the bottom, the Neumann no flow boundary condition is set up. The other sides of

the dike are atmospheric Dirichlet boundary conditions.

In the homogeneous case, the dike has the permeability K = 0.95 ·10−11m2, corresponding

to the measured hydraulic conductivity Kf = 0.95 · 10−4m/s, and it has the porosity

φ = 0.49. The fluid properties of water are ρw = 103kg/m3, µw = 10−3Pas and of air are

ρg = 1.2kg/m3, µw = 1.8 · 10−5Pas. Based on measurements with a similar sand carried

out by SHETA (1999 [86]), the constitutive relationships of Brooks-Corey are chosen with

the parameters λ = 2.0, pd = 350Pa. Residual water and gas (air) saturations are set to

Swr = 0.01, Sgr = 0.05.

In the heterogeneous cases (dike with fault zone), the permeability in the fault zone is

set to Kf = 1 · 10−9m2, the porosity of the fault zone φf = 0.9 and the fault zone

thickness b = 2cm. The Brooks-Corey parameters are calculated by the Leverett function

(see LEVERETT (1941 [53]), SHETA (1999 [86]) and PHAM VAN (2004 [68])):

J = pd

√

K

φ
(5.1)
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By scaling the entry pressure pd and neglecting the effect of porosity φ, the entry pressure

in the fault zone pf
d can be determined as follows:

pf
d = pm

d

√

Km

Kf
(5.2)

Therefore, in the fault zone, the Brooks-Corey parameters were set to λf = 2.0 , pf
d = 35Pa

(λm = 2.0 , pm
d = 350Pa in the matrix).

For the hererogeneous cases, different model concepts are chosen (in chapter 4): 2D fault

zone model concept, 1D fault zone model concept and fault zone with pipe model concept.

In the dike with 2D fault zone model concept, the fault zone was treated as a 2D porous

medium. It is characterized by a higher permeability compared to the matrix. The mesh

is highly resolved in the fault zone as well as in its close surroundings (Figure 5.12 (upper

part) and Figure 5.13).

In the dike with 1D fault zone model concept, to overcome the problem with highly

resolved meshes in and around the fault zone, a fault zone in the dike can be discretized

as elements of lower dimension (a one-dimensional fault zone in a two-dimensional domain)

(see Figure 5.12 (middle part)).

In the case of dike with fault zone with pipe model concept, a 2cm opening on the seaside

is chosen (see the mesh in Figure 5.12 (lower part)). As a simple approach, a hydrostatic

pressure was set as Dirichlet bc along the pipe wall.

5.3.2 Homogeneous Dike

The comparisons of the experimental and numerical results for water infiltration processes

in the dike at different time steps are given in Figure 5.14 at t = 60min and in Figure

5.15 at t = 1h20min. The results show an overall good agreement. Due to the small

entry pressure pd in the model, the influences of the capillarity are small in the numerical

results. The system reaches steady state after t = 2h10min (Figure 5.16 (upper)). In a two-

phase flow system, the so-called ’free flow boundary condition’ problem can occur, i.e. the

seepage line cannot reach the outflow boundary. This comes from the circumstance that

atmospheric pressure and residual water saturation is prescribed as Dirichlet boundary

condition along the boundary which is later the outflow boundary and switching the type

of boundary condition is generally not foreseen in a two-phase flow model. To overcome

this problem, the dike is artificially extended by a zone of much higher permeability, here

the permeability of the extended domain is chosen to be Kex = 1 · 10−9m2. A reasonable

agreement between computed and measured seepage lines as well as discharges for steady

state was observed in Figure 5.16 (below). The simulated discharge is Qnum = 0.37l/s

which reasonally agrees with the measured discharge Qex = 0.40l/s.
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Figure 5.12: Mesh of the domain: (upper) dike with 2D fault zone on the seaside, (middle)

dike with 1D fault zone on the seaside, (lower) dike with fault zone as a pipe on the seaside
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Figure 5.13: Mesh of the domain: (upper) dike with 2D fault zone on the landside, (lower)

zoom around the fault zone
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Figure 5.14: Water seepage through the homogeneous dike after t = 60min, comparison

of experimental and numerical results
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Figure 5.15: Water seepage through the homogeneous dike after t = 1h20min, comparison

of experimental and numerical results
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Figure 5.16: Steady state process in the homogeneous dike after t = 2h10min: (upper) no

extended domain, (below) extended domain

5.3.3 Dike with Fault Zone

In this case, a fault zone is set up in two different directions of the dike: on the seaside

and on the landside. Three model concepts have been chosen for numerical simulation:

2D fault zone model concept and 1D fault zone model concept and fault zone with pipe

model concept.

Figure 5.17 compares the water infiltration processes in the dike with a fault zone on the

seaside given by water saturation distributions at time step t = 60min in the experiment

and in the numerical simulations for the different model concepts. Due to the much higher

permeability of the fault zone, the water front moves much faster through this domain

compared to the background material. A very good agreement between the simulation

results in two model concepts (2D fault zone model concept, 1D fault zone model concept)

and experimental results was obtained, see Figure 5.17a, 5.17b and 5.17c after t = 60min.

For the 2D fault zone model concept (equi-dimensional fault zone), the fault zone has a

small thickness and the much finer mesh surrouding the fault zone is needed for spatial

discretization. Therefore, the 2D fault zone model concept requires longer CPU time

compared to the 1D fault zone model concept (lower-dimensional fault zone). For the
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Finite Volume Methods, the number of unknowns is equal to the number of nodes in

the grids, so that the system with 1D fault zone is easier to solve and requires less

iterations than the system with 2D fault zone model concept. The computations reached

steady state after t = 2h in case of the dike with fault zone on the seaside while this

occured after t = 1h55min in the experiment. A good agreement between simulated

and measured seepage lines was also observed in this case and similar computed water

discharge Q = 0.53l/s are obtained compared to the discharge Q = 0.49l/s in the

experiment.

In the following, the system with the fault zone on the landside is investigated. Figure

5.18 shows the comparison of the experimental and the numerical results for the different

model concepts in this case at the time step t = 1h20min. The computations reached

steady state after t = 1h55min while the experiment was somewhat slower with t

= 2hmin. A reasonable agreement between computed and measured seepage line was

observed in Figure 5.19. Overall, the experiments are somewhat slower compared to the

numerical simulations. An improvement could only be achieved when the dike permeabil-

ity would be reduced. However, the dike permeability was a measured value and let to

good agreements in the previous cases. The simulated discharge was Qnum = 1.14l/s and

the measured discharge was Qex = 1.05l/s and they are much bigger compared to the

steady state discharge 0.4l/s in the homogeneous case. Here, the influences of the fault

zone on the infiltration processes is clearly illustrated.

In the numerical simulation, the permeability of the fault zone is defined to follow the

validity of Darcy law. The permeability of the fault zone is chosen as Kf = 10−9m2

and is about two times order of magnitudes higher compared to the permeability of the

matrix. When the permeability of the fault zone is higher, the validity of Darcy law can

be violated. If the permeability of the fault zone increases to larger than Kf = 4 ·10−5m2,

numerical problems occur.

In the dike with fault zone as pipe model concept, the fault zone is idelized as a horizontal

open pipe. From the beginning, the pipe is filled up water, the hydrostatic pressure is set

as the Dirichtlet boundary condition along the pipe wall. An over-estimation of water

occurs in the system. The results show that the water infiltration processes are faster

than in previous cases (in system with 2D fault zone and 1D fault zone)(see Figure 5.17d)

and the steady state condition is reached earlier at the time t = 1h30min.
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Figure 5.17: Water seepage through the dike with a fault zone on the seaside after t =

60min: (a) experimental result, (b) numerical result in a dike with 2D fault zone, (c)

numerical result in a dike with 1D fault zone, (d) numerical result in a dike with fault

zone as a pipe
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Figure 5.18: Water seepage in the dike with a fault zone on the landside after t = 1h20min:

(a) numerical result with 2D fault zone, (b) numerical result with 1D fault zone
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Figure 5.19: Steady state process in the dike with a fault zone after t = 1h55min
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5.4 Conclusions

In this chapter, modeling of the two-phase flow in porous media is applied to a laboratory

scale domain. A dike with fault zones on different sides is chosen for both, experimental

and numerical simulations. Here, the fault zone is set in horizontal direction in the dike.

First, the experimental simulation of the dike is carried out to investigate the seepage

processes. The electrical method has been used for measurements on the physical model.

The seepage processes in the dike are investigated by numerical simulation. The results

have been compared with the experimental results.

For the homogeneous dike, due to the small entry pressure pd, the influences of the capillar-

ity in the numerical results are small. The seepage line and the water discharge through

the dike are calculated in the numerical simulation. The results show an overall good

agreement between the experimental and numerical simulations. Here, to deal with the

free flow boundary condition problem in the simulation, the domain should be extended

in the numerical simulation.

For the dike with the fault zone, the fault zone is set up in both landside and seaside of

the dike for the numerical simulation. Three different model concepts are also used: 2D

fault zone model concept and 1D fault zone model concept and fault zone with pipe model

concept.

The seepage lines as well as water discharge are computed in the numerical simulations.

The numerical results show mostly a very good agreement for two models concepts (2D

fault zone model concept, 1D fault zone model concept) and the experimental simula-

tions. The 2D fault zone model concept and 1D fault zone model concept are suitable for

numerical model in this case. The results show an over-estimation of water infiltration

processes for the pipe model concept. Therefore, this model concept is not recommended

for further investigations.



Chapter 6

Water Infiltration in a Natural Slope

6.1 Problem Description

Landslides occur almost every year in many regions of the world, more or less, small or

large. They are one of the most dangerous natural hazards in mountainous regions that

have a severe impact on the welfare of societies. A landslide is the sliding movement

of masses of loosened rock and soil down a hillside or slope. Landslide causes depend

on rock type, precipitation, seismic shaking, land development and zoning practices, soil

composition, moisture, and slope steepness. In some mountain areas, extreme rainfall

situations, e.g. heavy rainfall or long periods of rainfall are the main reasons for the slope

failures. One mechanism that leads to slope failures is that the negative pore-pressure

starts to increase when water start to infiltrate into the unsaturated zone. The loss of

negative pore-pressure decreases the shear strength of the soil below the mobilised shear

strength along the potential slip surface (RAHARDJO et al. (2002 [80])).

Many researches show that infiltration and the preferential flow through macropores

in unsaturated zone are also major factors influencing stability in shallow slopes. (e.g.

BOOGARD (2001 [13]), RAHARDJO et al. (2005 [81]), LINDENMAIER et al. (2005

[55]), VAN ASCH (1999 [98])). Figure 6.1 shows the schematic view of water infiltration

processes in a hillslope. Under these conditions, fast infiltration may result in large

volumes of water entering what was initially an unsaturated soil slope. The infiltration

may let the soil become fully saturated. The saturation of soil materials increases the

weight of slope materials which then leads to greater gravitational force. This large

amount of water in the soil can reduce the cohesive bonds between individual soil

particles resulting in the reduction of the internal strength of the hillslope enough to

trigger the failure (CHO and LEE (2000 [25])). In more complex landslide types with

deeper failure zones, a rising and falling groundwater table leads to changes in the stress

field (VAN ASCH (1999 [98]).
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In this chapter a natural slope case study from an interdisciplinary Research Unit spon-

sored by the Deutsche Forschungsgemeinschaft (German Research Foundation, DFG) is

chosen to investigate the effect of rainfall induced infiltration into a slope composed of

unsaturated soils. The two-phase flow model has been chosen for analysing the water

infiltration processes in the natural Heumoes slope, Austria. The 2D fault zone model

concept (combined model approach, see section 2.4) which was carefully investigated and

compared with other concepts on smaller scales in chapter 4 and 5 has been applied here

for macropore in the hillslope.

Further information about the infiltration studies is given in PHAM VAN et al. (2004 [69]),

PHAM VAN et al. (2004 [70]), PHAM VAN and HINKELMANN (2008 [74]), STADLER

et al. (2008 [93]).

1

3

2

4 3

Figure 6.1: Schematic view of water infiltration processes in a hillslope: (1): Infiltration in

micro- and macropores; (2): Overland flow; (3): Preferential flow; (4): Flow in micropores

(flow in matrix) (BRONSTERT (1994 [15]))

6.2 Natural Slope and Research Unit

The development of the movement of large hillslopes until failure is the result of com-

plex interactions of hydrological, subsurface-hydraulic and soil-mechanical processes rang-

ing over large space and time scales. As no reliable simulation methods exist today for

such purposes, an interdisciplinary Research Unit sponsored by the DFG named “Cou-

pling of Flow and Deformation Processes for Modeling the Movement of Natural Slopes -
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Großshang” has been launched for these purposes. Five groups from the Technische Uni-

versität Berlin, Technische Universität München, Universität Stuttgart and Universität

Karlsruhe (TH) participated in the project (HINKELMAN and ZEHE (2007 [45])).

In this Research Unit, new solutions are suggested which bring together improved process

models with coupling, averaging and upscaling methods while combining deterministic

and stochastic approaches to take the complexity of the processes as well as the available

data on the different scales into account. The tools which have been developed should

first be verified using controlled experiments (benchmarks) before being transferred to a

concrete field case for which a very good data set already exists. To improve the predictions

on the initiation of slope movements, a simulation tool which combines the coupled flow

and derformation processes has also been developed in this project.

The Research Unit consists of 5 sub-projects (see Figure 6.2). The work in this chapter is

a part of the sub-project 2. In this sub-project, the numerical simulation of two-phase flow

processes in the subsurface is applied particularly on a natural hillslope area. Based on a

model concept for multi-dimensional two-phase flow in fractured porous media, suitable

process models and coupling methods for the interaction of surface runoff, infiltration,

especially preferential flow, and multi-dimensional flow in the subsurface will be devel-

oped and validated by means of infiltration experiments. For these purposes, three model

concepts are further developed and compared: combined model approach, coupling porous

medium with a 1D pipe and a double-continuum approach (see section 2.4). Based on the

experiments the results will be transferred to the field case. The coupling to the deforma-

tion processes will be carried out and remediation measures will be investigated. For the

collaboration within the research units, a central internet-based information system will

be set up to also serve as a platform for software-technical model couplings in the range

of possibilities.

The natural slope Heumoes is a slow-moving alpine slope in Vorarlberg Alps (Austria)

which is chosen as case study in this research. The slope is located in the eastern

Vorarlberg Alps, 10km east of city of Dornbirn and 0.5km south of the village of Ebnit

(Figure 6.3). The Heumoes slope belongs to the head of a very steep mountainous

catchment which is drained by the Ebnit and Dornbirn rivers. The extension of the slope

is about 1800m in east-west and 500m in north-south direction. Several buildings, a small

vacation village and a skiing lift are situated on the slope. Two small slides occurred in

the over-steepened slope, the larger one must have occurred before 1965. In the year 2000,

one of the buildings was torn down due to its instability (Figure 6.4). Measurements on

the Heumoes slope showed that the high infiltration rates on the upper part of the slope

are supported by a complex network of macropores and soil-pipes (LINDENMAIER et

al. (2005 [55])).
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DEPENHAL and SCHMITT (2003 [26]) have measured the movements of the slope by

using GPS measurement methods (Figure 6.5). The monitoring detected slowly creeping

movements and their velocity variations contribute to the prediction of future risks. The

results of the vertical movements showed considerably smaller displacements than the

respective horizontal movements.

SP1: Hydrology

SP4: Technical Scale Experiments SP3: Continuum Mechanics

SP2: Subsurface HydraulicsSP5: Geophysics field
investigations concepts

model

Figure 6.2: Research working group distribution

S NEbnit

Ebnit Ache

Heumoes slope

Figure 6.3: View on the village Ebnit and the adjacent Heumoes slope, the white line

represents the catchment boundaries, the meadow on the right site is the moving hillslope

body. The view is towards the west, the drainage is towards the north (LINDENMAIER

(2007 [56]))
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Figure 6.4: Location of the Heumoes slope (left), and failure at “Hohe Kugel” (right)

Figure 6.5: (a) Map of GPS points with zones of similar movement behaviour on the

Heumoes slope; (b) Absolute deformation distance of GPS and terrestrial points for each

epoch (DEPENHAL and SCHMITT (2003 [26]))
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6.3 Numerical Simulations

As mentioned before in section 6.2, in the Research Unit the approach to develop

appropriate tools combines bottom up modeling with top down modeling. Bottom up

models are based on highly complex approaches for multiphase flow and interactions

between the fluid and the solid phase, including macropore flow which is crucial at

the natural site. These tools where in a first step validated based on sound benchmark

experiments. Top down modeling includes on one hand a physically based hydrological

simulation tool that successfully reproduced the complete water balance of a part of

the Heumoes slope. And second a tool to simulate large scale movements as well as

accumulations of masses in parts of the slope.

For better undestanding and visualising the water infiltration processes on Heumoes

slope which has been chosen as a case study, the numerical simulation is useful. Normally,

the model can be used as the model of flow of soil water in unsaturated zone using the

Richards equation. This model is based on assumption that the air phase essentially

remains at a constant pressure, equal to atmospheric; the system is then reduced to

the consideration of the water phase only (see section 1.2). In the system here, the gas

phase is important and should be included in the simulation because high gas pressures

can occurr in a layered aquifer (see Figure 6.6), especially if subdomain 3 has a low

permeability. Therefore, a two-phase flow model has been applied. The implemented

two-phase flow model concept assumes a fixed soil-matrix. The model concept does not

include soil processes like swelling and shrinking or deformations.

An idealized natural slope which has a geometry as shown in Figure 6.6 is chosen for sim-

ulations in this study (the mesh in Figure 6.7). The slope has a length of about 29m and a

height of 14.5m and consists of two main different types of soils (fine and coarse). The soil

properties used for simulation are typical for those from the Heumoes slope. The lower

part including subdomain 1 and subdomain 3 consists of coarse sand compared to the up-

per part (subdomain 2) with fine sand. The constitutive relationships of Brooks-Corey are

used in this simulation. All soil parameters are summarised in Table 6.1. Preferential flow

in the macropores is represented using combined model concept (i.e. 1D fracture model

concept). Macropores are modeled as as elements. Three macropores were set up in the

system each having a width b = 1cm, a permeability Kf = 10−9m2 and a porosity φ = 0.9.

In order to simplify the problem, the heavy rainfall is idealized as runoff with 1cm water

level on the slope. That means a Dirictlet boundary condition is set on the top of the

slope and the water height is set to 1cm equivalent to a pressure of 100100Pa. At the
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bottom of the domain a Neumann no flow boundary condition describes a non permeable

rock layer. As initial condition, the saturation of the wetting phase is set to Sw = 0.2 in

the whole domain. The other parameters are discribed in the Table 6.1.
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Figure 6.6: Idealized and schematic view of the natural slope (LINDENMAIER (2007

[56]))

Parameters Fine Sand Coarse Sand

K [m2] 9.05 · 10−15 3.1 · 10−11

Swr [-] 0.18 0.15

Snr [-] 0.01 0.01

pd [Pa] (Brooks-Corey) 2400.0 700.0

λ [-] (Brooks-Corey) 3.5 2.3

φ [-] 0.43 0.36

Table 6.1: Soil Properties
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Figure 6.7: Mesh of the domain used for numerical simulation

In the first case, the two-phase flow model is applied to the domain without macropores.

A slope is structured in two layers with 3 subdomains like in Figure 6.6. The lower layer

consists of 2 subdomains (subdomain 1 and and subdomain 3) with the same properties

(coarse sand). The upper layer is the subdomain 2 which consists of fine sand material.

Figure 6.8 presents the water pressure fields for different time steps (t1 = 3h, t2 = 5h, t3 =

7h and t4 = 15h) indicating the water infiltration by the increasing pressure over time.

Figure 6.9 shows the diagram describing the water pressure profiles at the 3 points A,

B and C at the bottom of the slope (see Figure 6.6). From the results, it is clear that

the water pressure in the deeper soil-layers (in A, B) increases stronger due to the low

permeable layer above. This is one main factor influencing the slope instability. When

the water pressure increases, driving forces can increase and with the high pore pressure,

the internal strength (shear resistance) of slopes is reduced.

Measurements in previous researches (i.e. LINDENMAIER (2007 [56])) show that the soil

in the Heumoes slope is highly heterogeneous. The macropores play a dominant role in the

soils, enhancing the heterogeneity of the soil and influencing the subsurface hydraulics. In

this area, former root holes from marsh plants are the most dominant circular macropores.

These macropores have diameters of around 0.3 to 1.0cm.

In the second case, the numerical simulation is done in a slope with macropores. To

simplify the problems, preferential flow in the slope is represented by the flow in three

macropores (see Figure 6.6).

Figure 6.10 shows the water pressure fields in the case of the slope with macropores (at
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time step t1 = 3h, t2 = 5h, t3 = 7h and t4 = 15h ). Due to the macropores, the whole

infiltration processes is speeded up, if it is compared to Figure 6.8. However, the maximum

pressures are a little bit smaller with the macropores.

The diagram describing the water pressure profiles at the 3 points A, B and C in the

bottom of the macro-porous slope is illustrated in Figure 6.11. In principal, the same

results as mentioned above are obtained, if Figure 6.11 is compared to Figure 6.9.

A comparison of the water saturation fields without and with macropore is given in Figure

6.12 also showing the acceleration of the infiltration due to the macropores, i.e. the soil

becomes much ealier saturated. Figure 6.13 illustrates the comparison of the results in

detail at the points A, B and C in the slope. At point A, the saturation reaches the

maximal value (saturated soil) after early time t = 20min. With the influences of the

macropores, the water pressure increases to the around 140000Pa, while it increases up

150000Pa in the case without macropores.

The numerical results principally agree with the observation in the field (in re-

seaches of LINDENMAYER (2007 [56]), DEPENHAL and SCHMITT (2003 [26]))) and

WIENHÖFER (2008 [105]).
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Figure 6.8: Water pressure pw[Pa] in the two-layer slope at different time steps
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Figure 6.9: Water pressure at point A, B and C in the two-layer slope
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Figure 6.10: Water pressure pw[Pa] in the slope with macropores at different time steps
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Figure 6.11: Water pressure at point A, B and C in the slope with macropores
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Figure 6.12: Water saturation fields in the slope without macropores (left) and with

macropores (right)
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Figure 6.13: Comparison of water saturation and water pressure in points A, B and C
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6.4 A Slope with Small-scale Heterogeneities

Numerical simulation of flow and transport in subsurface is always associated with un-

certainties. In the nature, the soil structure is highly heterogeneous and small-scale het-

erogeneities whose spatial distribution is generally unknown can influence the flow and

transport processes significantly, especially in two- and multiphase systems.

In this section, the influences of the heterogeneities in a natural slope (Heumoes slope)

which is shown in Figure 6.6 are investigated. The small-scale heterogeneties in the natural

slope domain are represented by the permeability field. First, the geostatistical method

is used to compute the pemeability field of the domain. Then, the two-phase flow model

is applied for numerical simulation of water infitration processes in the slope.

Geostatistic methods provide information about the spatial variability of a considered

property for given a mean value, variance and correlation length. Several variogram models

have been introduced in section 3.4 and some models can be used to determine geostastical

permeability distributions (see BARDOSSY (1992 [2])). Here, the exponential variogram

model is used.

An exponential variogram function γ(h) is characterized by the variance C, the correlation

length cl and the nugget effect ne (see the Figure 6.14). This function is written in the

following formula:

γ(h) = C
(

1 − e
−h
a

)

+ ne (6.1)

The variance C for a permeability field considered at location i is computed with the

arithmetic average Km as follows:

C =
1

n

n∑

i=1

(Ki − Km)2 (6.2)

Km =
1

n

n∑

i=1

Ki (6.3)

The length cl is the range that one random variable can affect the other random variable

in neighboring points, often called correlation length. If the distance between two points

is larger than the correlation length, they are not correlated. To take layering effect into

account, the correlation length in the horizontal direction can be chosen to be greater

than that in the vertical direction. Often, the horizontal correlation length is 5 to 10

times larger than the vertical one. The correlation length cl is assumed to be the practical

range value 3a where the variogram reaches 95% of the the sill value in the variogram

model.

Nugget ne (a nonzero variogram at the origin) is used to force a variogram to be discon-

tinuous near the origin. The nugget effect is often neglected in environment water.



6.4 A Slope with Small-scale Heterogeneities 104

h[m]

ne

(h)γ

cl

C

Figure 6.14: Exponential variogram

In this study the anisotropy ratio an comes from the anisotropic term when the correlation

scales of a stochastic process in x, y, and z directions are different. Anisotropy ratio

reflects the ratio of the vertical to the horizontal correlation length. Figure 6.15 shows an

illustration of the difference between the statistically isotropic process and the statistically

anisotropic process.

For two- and multiphase systems, it is mentioned that the entry pressure distribution pd

in a geostatistically varied field can be determined according to the Leverett function (see

LEVERETT (1941 [53])):

J = pd

√

K

φ
(6.4)

If the average permeability Km, the porosity φm and the entry pressure pd of a homo-

geneous system are known, the entry pressure at location i in the geostatistically varied

field can be computed as:

pdi = pd

√

Kmφi

Kiφm

(6.5)

Neglecting the effect of porosity, the equation 6.5 leads to:

pdi = pd

√

Km

Ki

(6.6)
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The geostatistic method is implemented in the statistical simulator SIMSET (see BAR-

DOSSY (1992 [2])). The SIMSET tool is using the Turning Band Method simulation for

generating geostatistical permeability fields. In the turning band method, 1D simulations

are performed on lines turned around a center point and these 1D simulations are merged

into 2D or 3D simulations. In other words, a point in the 2D or 3D space is projected onto

these lines at first, then 1D simulation are carried out on those lines and the sum of the

results of the 1D simulations yields the value in the 2D or 3D space. Different covariance

structures or variograms have to be chosen.

In this example, the exponential variogram with no nugget effect is applied. A correlation

length, a variance and an anisotropy ratio (correlation length in z-direction, x-direction)

have to be assigned.
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Figure 6.15: An illustration of the statistically isotropic process (above) and statistically

anisotropic process (lower)
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As the first case, pemeability fields are generated in a homogeneous slope with a

mean value Km = 10−12m2. In the framework of the Research Unit, experiments have

been carried out in the Heumos slope to measure the hydraulic conductivities (see

WIENHÖFER (2008 [106])). The test has been done in about 40 boreholes. Based on

these data, the variance can be estimated using equation 6.2 and 6.3. The correlation

length cl, varicance C, and anisotropy ratio an are chosen to 0.5, 0.8 and 0.2 respectively.

The case of cl0.5 C0.8 an0.2 is implied as the standard case. Here, the notation, for

example, cl0.5 C0.8 an0.2 means, that the variogram has a correlation length of 0.5m, a

variance of 0.8, and an anisotropy ratio of 0.2.

The influences due to the changes of the correlation lengths, variances and anisotropy

ratios are investigated by using the SIMSET model. Figure 6.16 shows the permeability

fields with different geostatistical parameters. From the simulation, several tendencies

were deduced:

• When the variance of the variogram decreases, in the example from C = 0.8 to C =

0.2, the permeability field becomes more homogeneous. This problem is similar if the

correlation length is changed. A low correlation length signifies greater randomness

in the spatial distribution of a quantity, while a high correlation length leads to a

distinct spatial structure of clusters of similar values (like large blobs of ink). The

influences due to the changes of of variances seem to be relatively higher compared

to the correlation lengths.

• When the constant values of correlation length and variance are taken, the

anisotropy is changed, the permeability field is changed, too. The differences come

from the definition of the anisotropic process. If the correlation scales of a stochas-

tic process in x, y, and z directions are different, the process then is said to be

statistically anisotropic. The system is considered as being made of many inclu-

sions of elliptic shapes. In reality, because of geologic deposition processes, geologic

materials are often spread over larger horizontal extents than the vertical. There-

fore, statistical anisotropy is a common and legitimate spatial structure of geologic

heterogeneity.

After generating the permeability field, the two-phase flow model in MUFTE-UG program

system is applied for the numerical simulation to demonstrate the influences of small-scale

heterogeneities on the water infiltration processes in the slope. The model and parameters

are the same as in section 6.3 (without macropore ). The Brooks-Corey model is applied

for both, the capillary pressure- and the relative permeability-saturation relations with

parameters depending on the permeability fields which are calculated in SIMSET. The
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entry pressure is strongly dependent on the permeability, which is considered applying

equation 6.6 with the mean values of the entry pressure pd = 1000Pa and the form

parameter λ = 2.

Figure 6.17 shows the comparison of water saturation fields between the homogeneous

slope (left) with K = 10−12m2 and the small-scale heterogeneus slope with different

geostatistical parameters (right) at the time t = 29h. More or less strong influences of

heteregeneities are observed. The influences due to the changes of variances seem to be

relatively higher compared to those of correlation lengths. A detailed comparison of the

water pressure and saturation at point A, B, C the homogeneous slope and the slope with

small-scale heterogeneitiess using the reference case (corelation length cl = 0.5, variance

C = 0.8, anitropy ratio an = 0.2) is presented in Figure 6.18. These results show more or

less strong influences of heteregeneities on the water infiltration processes.

If the domain consists of several subdomains (i.e. the case of a two-layer slope), the

permeability fields can also be generated. The result is shown in Figure 6.19.

Figure 6.20 shows the effect of the entry pressure on the saturation distribution for the

slope using the reference case. Here, the capillary pressure is dominant. The water can

approach quickly into the regions with higher entry pressure. The results clearly show

that a high saturation of water in the hillslope corresponds to high capillary pressures

(not close to the top boundary condition).
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Figure 6.16: Permeability fields K[m2] with different geostatistical parameters
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Figure 6.17: Comparison of water saturation distributions Sw[−] between homogeneous

slope (left) and small-scale hetererogeneous slope (right)



6.4 A Slope with Small-scale Heterogeneities 110

time [h]

pw
[P

a]

0 20 40 60 80 100 120 140
90000

100000

110000

120000

130000

140000

pw at point A -homogeneous domain
pw at point A -domain with small-scale heterogeneities

time [h]

S
w

[-]

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

Sw at point A -homogeneous domain
Sw at point A -domain with small-scale heterogeneities

time [h]

pw
[P

a]

0 20 40 60 80 100 120 140
90000

100000

110000

120000

130000

140000

pw at point B -homogeneous domain
pw at point B -domain with small-scale heterogeneities

time [h]

S
w

[-]

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

Sw at point B -homogeneous domain
Sw at point B -domain with small-scale heterogeneities

time [h]

pw
[P

a]

0 20 40 60 80 100 120 140
90000

100000

110000

120000

130000

140000

pw at point C -homogeneous domain
pw at point C -domain with small-scale heterogeneities

time [h]

S
w

[-]

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

Sw at point C -homogeneous domain
Sw at point C -domain with small-scale heterogeneities

Figure 6.18: Comparison of water pressure and water saturation at point A, B, C between

homogeneous slope and the slope with small-scale hetererogeneities using the reference

case
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Figure 6.19: Permeability fields K[m2] with different geostatistical parameters, 2-layer

domain
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Figure 6.20: Effect of entry pressure on the saturation distribution; left: capillary pressure

pc[Pa], right: water saturation Sw[−] in reference case
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6.5 Conclusions

In this chapter, the modeling of two-phase flow has been applied to a small field scale for

numerical simulations. A slope which is idealised from a natural hillslope in Vorarlberg

Alps area is chosen as a case study. The slope belongs to the head of a very steep

mountainous catchment which is slow-moving and highly heterogeneous. Measurements

on the slope showed that the high infiltration rates on the upper part of the slope are

supported by a complex network of macropores and thus trigger deformations.

In the previous chapters, the two-phase flow model with different approaches for account-

ing for fault zones has been applied and analysed on the small and laboratory scale. The

results have shown a very good agreement between two model concepts for fractures: 2D

fracture model concept and 1D fracture model concept and they are similar to the exper-

imental results. Thefore, the 1D fracture model concept for two-phase flow is chosen for

simulation in this example.

The numerical simulations show the very strong influence of macropores on the water

infiltration process in the slope. Because of the macropores, the infiltration is considerably

speeded up concerning the water pressure and water saturation. However, the maximum

pressure in the system is somewhat smaller compared to a system without macropores.

The pressure increase is one main factor influencing the slope stability. The principal

effects which have been numerically simulated qualitatively agree with observations in

the field.

The numerical simulation of two-phase flow is also applied to a slope with small-scale

heterogeneities which are represented by the permeability field. Here, the permeability

field of the slope is generated by a geostatistical method. In the calculations, comparative

studies are carried out and analysed varying different parameters like correlation lengths,

variances, and anisotropies. Based on the parameter study, a reference case has been

chosen for simulation. The numerical simulations indicate a more or less strong influence

of small-scale heterogeneities on the saturation and pressure fields in the slope.



Chapter 7

Summary and Outlook

7.1 Summary

Multiphase models for the simulation of processes in the subsurface are widely used in

different fields of technical applications. They link various fields from hydrogeology, hy-

draulic engineering, thermodynamics, computer science and mathematics. Characteristic

for such models is that they consider flow of more than one fluid phase (e.g. water, gas,

oil, alcohol). One major difficulty in numerical simulation of multiphase flow in subsurface

arises from the possibly strongly heterogeneous and anisotropic porous media. In the sub-

surface, the typical heterogeneous porous media are often porous media with fault zones

including fractured porous media and macroporous media.

The description of multiphase flow in porous media with fault zones becomes a challenging

problem, because of the multiple scales involved and because of the non-linearity of the

governing equations. With the presence of heterogeneties (e.g fault zones), the difficulty

of the simulation stems from this non-linearity, from the sharp contrast of the matrix and

fault zone properties and from the random character of the medium geometry.

Nowadays, there are several numerical codes for modeling of flow in subsurface system. For

the modeling of flow and transport in porous media with fault zones including fractured

porous media and macroporous media, numerical problems can occur because of the strong

heterogeneities. For macroporous media which consist of many macropores, there is ’no’

proven concept for numerically simulating two-phase flow processes.

In this study, a numerical model for two-phase flow including the gas and water phase in

porous media with fault zones is chosen for relatively new fields of application, seepage

processes through dikes with fault zones and water infiltration in natural slopes with

macropores.

The overall objective of this work is to make applications and comparisons of different

model concepts for the simulation of two-phase flow processes in porous media with fault

113
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zones. Based on the mathematical model which describes the model concepts, the numer-

ical model is applied for simulation. The numerical simulation is investigated in different

applications from small scales to large scales. A comparative study using the results from

the numerical simulations is carried out in order to reveal possibilities and limitations of

the different approaches and provide knowledge related to the potential for investigation

of two-phase flow in heterogeneous structures. In oder to check the numerical model, lab-

oratory experiments have been used for comparisons. Overall, the work contributes to an

improved process understanding.

Different model concepts for flow in porous media with fault zones are decribed in Chapter

2. The physical fundamentals used for the model are introduced in Chapter 3. Chapter

3 also explains the mathematical model including the governing equations, constitutive

relationships, several formulations and the numerical model of two-phase flow in porous

media with fault zones. The short description of the model can be summaried as following:

• The two-phase model is applied considering the water and gas phase. Here, different

components are not included. The temperature change is negligible and thus iso-

thermal conditions are assumed. The gas phase is considered to be compressible and

the ideal gas law is assumed to be valid.

• For mathematical modeling, two-phase flow in porous media with fault zones is de-

scribed by the balance equations for mass and for momentum (the generalized Darcy

Law). Additionally, two constitutive relationships are required: Brooks-Corey and

Van Genuchten. Several formulations for the primary variables have been introduced

in the thesis, although the pressure-saturation formulation is chosen. For the flow in

the fault zones, the validity of Darcy’s law is assumed. This is a crucial point when

the Reynolds number becomes larger than 10.

• The numerical model used in this work is supplied within the program system

MUFTE-UG. The Fully Upwind Box Method is applied for the spatial discretization

of the equations of the mathematical model. A fully implicit Euler scheme is used

for the time discretization.

• A Newton-Raphson algorithm is applied to handle the non-linearities of the sys-

tem of the discretized equations and the linearized equations are solved with the

BiCGSTAB Method with Multigrid preconditioning.

• Dealing with the problem of small-scale heterogeneities, geostatistical methods are

introduced. An overview of these methods is given and several theoretical variogram

models are explained. The exponential variogram model is chosen for the simulations

here.
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Generally, the choice of model concept for modeling of flow processes in porous media with

fault zones is strongly depending on the characteristics of problems being considered, for

example, the scales of the problem. The modeling of two-phase flow in porous media

with fault zones has been applied to domains with different scales (small scale, laboratory

scale and small field scale). For each problem, different model concepts are compared and

applied for numerical simulations.

Three different model concepts were used for the numerical simulations: 2D fracture model

concept, 1D fracture model concept and fracture with pipe model concept.

• In the approach with 2D fracture model concept, a fault zone is discretized as a

two-dimensional element in the two-dimensional domain and the mesh is highly

resoluted in the fault zone as well as in its close surroundings.

• Contrastly, in the approach with the 1D fracture model concept, the fault zone is

discretized as a one-dimensional element in a two-dimensional domain and the mesh

resolution of the fracture-matrix space is coarser compared to the domain with 2D

fracture model concept. This is also called combined approach.

• In the approach with a fracture as pipe model concept, the fault zone is idealised

as an open pipe and a Dirichlet boundary condition is set up along the pipe wall

assuming hydrostatic or atmospheric pressure distributions.

Firstly, an application is carried out in a small scale domain. It is presented in Chapter

4. Water infiltration processes in a single vertical fracture are analysed. The above-

mentioned three different model concepts for two-phase flow are used for the numerical

simulations. The results show an overall very good agreement between two model

concepts: 2D fracture model concept and 1D fracture model concept. The pipe model

concept is not suitable in this case.

The second application is done in a laboratory scale domain and it is presented in Chapter

5. Seepage processes through a dike are investigated for systems with one horizontal fault

zone on different locations. Here, the three different model concepts for two-phase flow

are also applied for the numerical simulation. To check the model concepts, experiments

from the laboratory were compared to the numerical simulations. Seepage proceses in the

dike can be quantified by both, experimental and numerical simulations. The 2D fracture

model concept and 1D fracture model concept are suitable for numerical model in this

case, as a good agreement between the experimental and numerical results was obtained.

However, the results show an over-estimation of the seepage processes for the pipe model

concept. Therefore, this model concept is not further recommended.
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The last application is carried out in a small field scale domain. It is presented in Chapter

6. A slope which is idealised from the natural hillslope in Vorarlberg Alps area is chosen

as a case study for the simulation. Based on the last applications, the 1D fracture model

concept is chosen for numerical simulation of two-phase flow proceses in the slope with

macropores. The results show the considerable influences of the preferential flow in macro-

pores on the water infiltration processes in the slope. Due to the property of macropores,

the infiltration is strongly speeded up. However, the maximum water pressure in the sys-

tem is somewhat smaller due to the macropores. The pressure increase in lower parts of

the layered aquifer is one main factor influencing the slope stability. The numerical results

are in principal argreement with observations in the field.

In case of a slope with small-scale heterogeneities, geostatistical methods are used to

generate permeability fields. Comparative studies have been carried out and analysed for

cases with different parameters like correlation lengths, variances, and anisotropies. The

simulation results illustrate a more or less strong influence of small-scale heterogeneities

on the saturation and pressure fields of the slope.

7.2 Outlook

• The research work presents the applications of different model concepts for sim-

ulation of two-phase flow processes in porous media with fault zones. The model

concepts are applied only in 2D domains. In some examples, e.g. dike problems, a

3D discretization should be used for simulation to better describe the fault zone

in future. Moreover, in the thesis work, the over-estimation of flow occured for the

2D domain with pipe model concept. This process is even stronger expected in 3D.

Therefore, the pipe model concept is not suitable for macropore infiltration. Overall,

improved model concepts based on controlled experiments should be developed in

the future.

• As mentioned the choice of model concepts for the modeling of flow processes in

porous media with fault zones is strongly depending on the characteristics of prob-

lems being considered, for example, scales of the problems. Model concepts with

combined approach have been applied for different problems on different scales

(small, laboratory and small field scale). When going to the larger field scale in the

future with complex geometries and parameter fields, a double-continuum model

concept should be used.

• In the framework of the Research Unit “Großshang”, the Heumoes slope which

has been chosen as a case study belongs to the head of a very steep mountainous
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catchment and contains a large number of macropores. To describe the macropore

network, geostatistical methods should be applied in the future.

• Coupling methods must be developed in the future which link surface runoff with

subsurface hydraulics and soil deformation processes.

• Additionally, intensive geophysical investigations must be carried out to describe

the geometry and the spatial parameter fields in detail. Field measurements will

also be used to calibrate and validate the models. This hind of models can support

vulneralbility and risk assessments for such alpine region in the future.
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sickerung, Dissertation, Mitteilungsheft Nr. 111, Lehrstuhl und Versuchsanstalt für

Wasserbau und Wasserwirtschaft, Technische Universität München

[38] Helmig, R. (1993): Theorie und Numerik der Mehrphasenströmungen in geklüftet-
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der Methode der Finite Elemente, Dissertation, Report No. 29/1991, Institut für

Strömungsmechanik und Elektronisches Rechnen im Bauwesen, Universität Han-

nover

[53] Leverett, M.C. (1941): Capillary Behavior in Porous Solids, Transactions of the

AIME, 142, pp. 152-169



BIBLIOGRAPHY 123

[54] Lenhard, R., Parker, J., and Mishra, K. (1989): On the correspondence between

Brooks-Corey and Van Genuchten models, Journal of Irrigation and Drainage En-

gineering, 115(4):744-751

[55] Lindenmaier, F., Zehe, E., Dittfurth, A. and Ihringer, J., (2005): Process identifica-

tion on a slow moving landslide, Hydrological Processes, 19: 1635-1651

[56] Lindenmaier, F. (2007): Hydrology of a large unstable hillslope at Ebnit, Vorarl-

berg - Identifying dominating processes and structures, Ph.D Thesis, Mathematisch-

Naturwissenschaftlichen Fakultät der Universität Potsdam

[57] Maurer, T. (1997): Physikalisch begründete, zeitkontinuierliche Modellierung des
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