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NON-CLOSED MINIMAL HYPERSURFACES OF S
4(1) WITH

IDENTICALLY ZERO GAUSS-KRONECKER CURVATURE

Tsasa Lusala

Abstract. We give a partial local description of minimal hypersurfaces M
3 with identically

zero Gauß-Kronecker curvature function in the unit 4-sphere S4(1), without assumption on the

compactness of M3.

Keywords and phrases: Minimal hypersurfaces in spheres, isoparametric hypersurfaces, identi-

cally zero Gauß-Kronecker curvature, nowhere zero second fundamental form.

§1. Introduction

Let x:M3 −→ S
4(1) ⊂ R

5 be a hypersurface immersion of a connected and orientable
3-dimensional manifold M3 of class C∞ into S

4(1) ⊂ R
5. Let λ1, λ2 and λ3 be the three

principal curvature functions. The normalized elementary symmetric curvature functions of
the immersion x are given by:

H :=
1

3

(

λ1 + λ2 + λ3

)

,

H2 :=
1

3

(

λ1λ2 + λ1λ3 + λ2λ3

)

,

K := λ1λ2λ3.

S. Almeida and F. Brito [1] suggested to classify closed hypersurface immersions for which
two of the three functions H, H2, K are constant. The paper [3] gives a survey of results
on closed hypersurfaces in S

4(1) with two constant curvature functions.

Particularly, the paper [2] investigated closed minimal hypersurfaces with constant Gauß-
Kronecker curvature function, corresponding to H ≡ 0 and K ≡ const. There it is
proved that closed minimal hypersurfaces with constant Gauß-Kronecker curvature K 6= 0
are isoparametric, therefore closed minimal hypersurfaces with constant Gauß-Kronecker
curvature K 6= 0 are classified. Brito conjectured that all hypersurfaces in S

4(1) with
K ≡ const 6= 0 and H ≡ const (or H2 ≡ const) must be isoparametric (personal commu-
nication). If K ≡ 0 on M3, the following is well known: a closed minimal hypersurface
immersion in S

4(1) with nowhere zero second fundamental form is a boundary of a tube
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2 TSASA LUSALA

which is built over a non-degenerate minimal 2-dimensional surface immersion in S
4(1) with

geodesic radius π

2
. This nice result proves the existence of non-isoparametric closed minimal

hypersurfaces with K ≡ 0 in S
4(1). But so far no explicit non-isoparametric example has

been given. In this paper we investigate local descriptions of minimal hypersurfaces (not
necessarily closed) in S

4(1) with identically zero Gauß-Kronecker curvature K, but with
nowhere zero second fundamental form. In particular we present the following two explicit
non-isoparametric examples:

Example 1.1. The mapping

x1:R
3 −→ S

4(1) ⊂ R
5

x1(u, v, z) =
1√

1 + z2

(

cos(
√
2u)C1 + sin(

√
2u)C2 + cos(

√
2v)C3 + sin(

√
2v)C4 + zC5

)

,

where C1, C2, C3, C4, C5 ∈ R
5 are constant orthogonal vectors in R

5 such that

1

2
=< C1, C1 >=< C2, C2 >=< C3, C3 >=< C4, C4 > and < C5, C5 >= 1,

defines a minimal hypersurface immersion with zero Gauß-Kroneker curvature. The principal
curvature functions take the values λ1(u, v, z) =

√
z2 + 1, λ2(z) = −

√
z2 + 1 and λ3(z) = 0;

they depend only on z.

Example 1.2. Let I ⊂ R be an open interval, 0 < c1, c2 ∈ R such that c2e
2v − 1− c21e

4v >

0 for all v ∈ I, and g, h: I −→ R two differentiable functions on I which are linearly
independent solutions of the second order differential equation

(c2e
2v − 1− c21e

4v)A′′

5(v) + (1− c21e
4v)A′

5(v) + 2A5(v) = 0,

and such that g2(v) + h2(v) = 1− e
−2v

c2
, for all v ∈ I. The existence of such functions will

be proved below, see Lemma 3.4 and Remark 3.5. Then the mapping

x2:R× I × R −→ S
4(1) ⊂ R

5,

x2(u, v, z) =
e−v

√

c2(z2 + 1)

(

cos(u)C1 + sin(u)C2

)

+
1√

z2 + 1

(

zC3 + g(v)C4 + h(v)C5

)

,

where C1, C2, C3, C4, C5 ∈ R
5 are constant orthonormal vectors, defines a minimal hyper-

surface immersion in S
4(1) with identically zero Gauß-Kronecker curvature. The principal

curvatures take the values

λ1(v, z) = c1e
2v
√

z2 + 1 , λ2(v, z) = −c1e
2v
√

z2 + 1 and λ3(v, z) = 0,

thus they depend only on v and z.

The principal curvatures of both examples do depend on at most two parameters. We prove
the following local classification of such hypersurfaces.

Main result: Let x:M3 −→ S
4(1) ⊂ R

4 be a minimal hypersuface immersion (with nowhere
zero second fundamental form) of a connected and orientable C∞-manifold M3 in S

4(1)
with identically zero Gauß-Kronecker curvature. If one of the two nowhere zero principal
curvature functions is constant along its associated principal curvature line, then there exist
local coordinates so that the immersion x locally can be described by one of the two non-
isoparametric hypersurfaces x1 and x2 (see Example 1.1 and Example 1.2) above, or locally

by Cartan’s minimal isoparametric hypersurface with principal curvatures
√
3, −

√
3 and 0.
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§2. Notations and integrability conditions

Let x : M3 −→ S
4(1) ⊂ R

5 be an immersion of a connected, orientable 3-dimensional C∞-
manifold M3 into the unit 4-sphere S

4(1). Denote by y a unit normal vector field on S
4(1)

along the immersion x, by <,> the canonical inner product of the Euclidean structure, and
by ∇̄ the flat connection of R5. Referring to [4] for details on geometry of submanifolds, recall
that as immersion of codimension 2 in R

5 the structure equations (Gauß and Weingarten
equations) for x state:

(2.1)

{

∇̄udx(v) := dx(∇uv) + II(u, v)y − I(u, v)x,

dy(u) := −dx(Su),
for all u, v ∈ TM3

where I denotes the first fundamental form (induced metric) with Levi-Civita connection ∇,
II defines the second fundamental form and S denotes the shape operator.

The structure equations imply the following integrability conditions (Gauß formula and
Codazzi equation) for any u, v, w ∈ TM3:

R(u, v)w = I(w, v)u− I(w, u)v + II(w, v)Su− II(w, u)Sv,(2.2)
(

∇uS
)

v =
(

∇vS
)

u,(2.3)

where R denotes the Riemannian curvature tensor for the induced metric I.

Let (e1, e2, e3) be a I-orthonormal local differentiable frame of principal curvature vector
fields on M3:

Se1 = λ1e1, Se2 = λ2e2 and Se3 = λ3e3.

There are 9 functions α1, · · ·, α9 such that

(2.4)











∇e1e1 = α1e2 + α2e3, ∇e1e2 = −α1e1 + α3e3, ∇e1e3 = −α2e1 − α3e2;

∇e2e1 = −α4e2 + α6e3, ∇e2e2 = α4e1 + α5e3, ∇e2e3 = −α6e1 − α5e2;

∇e3e1 = α9e2 − α7e3, ∇e3e2 = −α9e1 − α8e3, ∇e3e3 = α7e1 + α8e2.

Remark 2.1. Consider the situation that the three principal curvature functions λ1, λ2, λ3

are everywhere distinct; the fact that the frame (e1, e2, e3) is orthonormal implies that the
functions αi, i = 1, · · ·, 9 in (2.4) are defined on M3 uniquely up to sign.

Applying the Codazzi equation (2.3) to the vector fields e1, e2, e3 and using (2.4), one
gets the following equations:

(2.5)























































e1(λ2) = α4(λ2 − λ1),

e1(λ3) = α7(λ3 − λ1),

e2(λ1) = α1(λ1 − λ2),

e2(λ3) = α8(λ3 − λ2),

e3(λ1) = α2(λ1 − λ3),

e3(λ2) = α5(λ2 − λ3),

α9(λ1 − λ2) = α3(λ2 − λ3) = α6(λ1 − λ3).
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From now we assume that the immersion x (with nowhere zero second fundamental
form) is minimal and has identically zero Gauß-Kronecker curvature (K ≡ 0). There exists
a positive non-zero function λ such that the principal curvature functions associated to the
immersion x are λ1 = λ, λ2 = −λ and λ3 = 0. From the equations (2.5), one gets

e1(λ) = 2α4λ, e2(λ) = 2α1λ, e3(λ) = α2λ;(2.6)

α5 = α2, 2α9 = −α3 = α6, α7 = 0 = α8.(2.7)

Applying the Gauß formula (2.2) to the vector fields e1, e2, e3 and using the equations (2.4)
and (2.7), one gets

(2.8)































































e1(α4) + e2(α1) = 1− λ2 + α2
1 + α2

2 + 2α2
3 + α2

4

e3(α1) +
1

2
e1(α3) = α1α2 −

1

2
α3α4

e3(α4)−
1

2
e2(α3) = α2α4 +

1

2
α1α3,

e3(α2) = 1 + α2
2 − α2

3,

e3(α3) = 2α2α3,

e1(α2) = e2(α3),

e1(α3) = −e2(α2).

Note that the Lie brackets with respect to the vector fields e1, e2 and e3 are given by:

[e1, e2] = −α1e1 + α4e2 + 2α3e3, [e1, e3] = −α2e1 −
1

2
α3e2, [e2, e3] =

1

2
α3e1 − α2e2.

The fundamental equations (2.1) applied to the vector fields e1, e2, e3 give rise to the
following (partial) differential equations:

(2.9)























































































































∇̄e1dx(e1) = α1dx(e2) + α2dx(e3) + λy − x

∇̄e1dx(e2) = −α1dx(e1) + α3dx(e3)

∇̄e1dx(e3) = −α2dx(e1)− α3dx(e2)

∇̄e2dx(e1) = −α4dx(e2)− α3dx(e3)

∇̄e2dx(e2) = α4dx(e1) + α2dx(e3)− λy − x

∇̄e2dx(e3) = α3dx(e2)− α2dx(e2)

∇̄e3dx(e1) = −1

2
α3dx(e2)

∇̄e3dx(e2) =
1

2
α3dx(e1)

∇̄e3dx(e3) = −x

dy(e1) = −λdx(e1),

dy(e2) = λdx(e2),

dy(e3) = 0.
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§3. Proof of the main result

To describe locally hypersurface immersions in S
4(1) with K ≡ 0, one has to find local

coordinates to solve the structure equations (2.9) using the integrability conditions (2.6) and
(2.8). It seems to be very difficult to solve this problem in full generality.

In this section, we consider natural additional assumptions on the functions α1, α2, α3

and α4 to solve the structure equations (fundamental equations) for minimal hypersurface
immersions in S

4(1) with K ≡ 0; namely we assume that the function λ is constant along
the e1-direction. This additional assumption is suggested by the Examples 1.1 and 1.2.

Proposition 3.1. Let x:M3 −→ S
4(1) be a minimal hypersurface immersion with identi-

cally zero Gauß-Kronecker curvature function and nowhere zero second fundamental form.
Let α1, · · ·, α9 be the the functions as defined in (2.4). If the function α4 vanishes identically
on an open subset U of M3, i.e., the function λ is constant along the curvature line of the
vector field e1, then also the function α3 vanishes identically on U , or the immersion x is a
minimal Cartan isoparametric hypersurface on U .

Proof. Using the equations (2.6) and

e1e2(λ)− e2e1(λ)− [e1, e2](λ) = 0 = e1e3(λ)− e3e1(λ)− [e1, e3](λ),

one gets:
e1(α1) = α2α3 and e1(α2) = −α1α3.

Similarly, using (2.8) and

e2e3(α3)− e3e2(α3)− [e2, e3](α3) = 0,

one has:
α3e2(α2) = 0.

Assume now that α3 6= 0 everywhere. This implies that e2(α2) vanishes identically. Inserting
again the equations (2.6) into

e1e2(α3)− e2e1(α3)− [e1, e2](α3) = 0,

one gets:
α2
3α2 = 0.

Therefore α2 = 0 = α1 and α3 = ±1. Consequently, λ2 = 3. Thus the immersion is
isoparametric with principal curvatures λ1 =

√
3, λ2 = −

√
3 and λ3 = 0, i.e. the immersion

is a Cartan’s minimal isoparametric hypersurface in S
4(1).

Corollary 3.2. Let x:M3 −→ S
4(1) ⊂ R

5 be a closed minimal hypersurface immersion
of a connected and orientable manifold M3 into S

4(1) ⊂ R
5 with nowhere zero second

fundamental form and K ≡ 0. Assume that one of the functions α1 and α4 vanish identically
on M3. Then x(M) is a Cartan’s minimal isoparametric hypersurface of S

4(1), i.e., the
boundary of the tube Tube(V 2, π

2
) with radius π

2
around the Veronese surface V 2 ⊂ S

4(1).
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Proof. From the proposition above we have two possibilities:

(i) α3 vanishes identically on M3;

(ii) or α1 = α2 = α4 ≡ 0 and α2
3 = 1.

Assuming that the hypersurface M3 is closed, the case (i) above cannot happen because the
function e3(α2) = 1 + α2

2 − α2
3 should be zero at the minimum and maximum points of the

function α2; but with α3 ≡ 0, e3(α2) = 1 + α2
2 has no zeros. �

Proposition 3.3. Let x:M3 −→ S
4(1) ⊂ R

5 be a minimal hypersurface immersion of a
connected and orientable manifold M3 into S

4(1) ⊂ R
5 with nowhere zero second funda-

mental form and K ≡ 0. Assume that the immersion is non-isoparametric and the functions
α1 and α4 vanish identically on M3. Then there are local coordinates so that the immersion
x can be locally described by the parametrization of the hypersurface given in Example 1.1.

Proof. From Proposition 3.1 we may assume that the function α3 vanishes identically on
M3. Then the following equations hold:

e2(α2) = 0 = e1(α2) = e1(λ) = e2(λ),

e3(α2) = α2
2 + 1,

e3(λ) = λα2,

λ2 = α2
2 + 1.

The vector fields 1

λ
e1,

1

λ
e2 and 1

α2

2
+1

e3 satisfy:

0 =
[ 1

λ
e1,

1

λ
e2

]

=
[ 1

λ
e1,

1

α2
2 + 1

e3

]

=
[ 1

λ
e2,

1

α2
2 + 1

e3

]

.

Therefore there are local coordinates (u, v, z) on M3 such that

1

λ
e1 =

∂

∂u
,

1

λ
e2 =

∂

∂v
,

1

α2
2 + 1

e3 =
∂

∂z
.

The foregoing equations give

α2 = z and λ =
√

z2 + 1.

With respect to the frame ( ∂

∂u
, ∂

∂v
, ∂

∂z
) the structure equations (Gauß and Weingarten equa-

tions) are given by the following system of second order partial differential equations:
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λ2xuu = z(z2 + 1)xz + λy − x,(3.10)

xvu = 0 = xuv,(3.11)

xzu =
−z

z2 + 1
xu = xuz,(3.12)

λ2xvv = z(z2 + 1)xz − λy − x,(3.13)

xvz =
−z

z2 + 1
xv = xvz,(3.14)

(z2 + 1)2xzz = −2z(z2 + 1)xz − x,(3.15)

yu = −λxu,(3.16)

yv = λxv,(3.17)

yz = 0.(3.18)

Differentiating (3.10) with respect to u and using (3.12) and (3.16), one gets

xuuu = −2xu.

There are two vector valued functions A1 ≡ A1(v, z) and A2 ≡ A2(v, z) in R
5 depending

only on v and z such that

(3.19) xu =
√
2
(

− sin(
√
2u)A1 + cos(

√
2u)A2

)

.

One has

1

λ2
= I(xu, xu)

= 2
(

< A1, A1 > sin2(
√
2u)− < A1, A2 > sin(2

√
2u)+ < A2, A2 > cos2(

√
2u)

)

=< A1, A1 > + < A2, A2 > +(< A2, A2 > − < A1, A1 >) cos(2
√
2u)

− 2 < A1, A2 > sin(2
√
2u).

The linear independence of the functions 1, sin(2
√
2u) and cos(2

√
2u) implies

(3.20) < A1, A1 >=
1

2λ2
=< A2, A2 > and < A1, A2 >= 0.

Furthermore there is a vector valued function A3 ≡ A3(v, z) depending only on v and z such
that

x(u, v, z) = cos(
√
2u)A1(v, z) + sin(

√
2u)A2(v, z) + A3(v, z).

One has

1 =< x, x >

=
1

2λ2
+ 2 < A1, A3 > cos(

√
2u) + 2 < A2, A3 > sin(

√
2u)+ < A3, A3 > .
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From the linear independence of the functions 1, sin(
√
2u) and cos(

√
2u), one gets

1 =
1

2λ2
+ < A3, A3 > and < A1, A3 >= 0 =< A2, A3 > .(3.21)

Differentiating (3.19) with respect to z (and with respect to v, resp.) and using the equation

(3.12) (the equation (3.11), resp.) and the linear independence of the functions 1, sin(
√
2u)

and cos(
√
2u), one gets the following first order partial differential equations for the vector

valued functions A1(v, z) and A2(v, z):

(z2 + 1)
∂A1

∂z
= −zA1, (z2 + 1)

∂A2

∂z
= −zA2 and

∂A1

∂v
= 0 =

∂A2

∂v
.

There are constant vectors C1 and C2 in R
5 such that

A1 =
C1√
z2 + 1

and A2 =
C2√
z2 + 1

.

Because of (3.20), one has

< C1, C1 >=
1

2
=< C2, C2 > and < C1, C2 >= 0.

The immersion x takes the form

x(u, v, z) =
1√

z2 + 1

(

cos(
√
2u)C1 + sin(

√
2u)C2

)

+ A3(v, z).

After inserting the above expression for x into the equation (3.15), one gets the following
second order partial differential equation for the vector valued function A3(v, z):

(z2 + 1)2
∂2A3

∂z2
+ 2z(z2 + 1)

∂A3

∂z
+A3 = 0.

There are two vector valued functions A4 ≡ A4(v) and A5 ≡ A5(v) in R
5 such that

A3(v, z) =
A4(v)√
z2 + 1

+
zA5(v)√
z2 + 1

.

The equation (3.14) implies that the vector valued function A5(v) is constant:

A5(v) = C5 ≡ const.

Because of (3.21), one has

0 =< C5, A4(v) >=< C1, A4(v) >=< C2, A4(v) >=< C1, C5 >=< C2, C5 >,

< A4(v), A4(v) >=
1

2
and < C5, C5 >= 1.
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Now eliminating y from the equations (3.10) and (3.13), one has that the vector valued
function A4(v) is a solution of the following second order differential equation:

A′′

4(v) = −2A4(v).

Therefore there are constant vectors C3, C4 ∈ R
3 such that

A4(v) = cos(
√
2v)C3 + sin(

√
2v)C4.

The constant vectors C3, C4 are orthogonal to C1, C2, C5 and satisfy

< C3, C3 >=
1

2
=< C4, C4 > and < C3, C4 >= 0.

Finally, the local description of the immersion x is given by

(3.22) x(u, v, z) =
1√

z2 + 1

(

cos(
√
2u)C1+sin(

√
2u)C2+cos(

√
2v)C3+sin(

√
2v)C4+zC5

)

.

Note that the vector field y defined by

y(u, v, z) = − cos(
√
2u)C1 − sin(

√
2u)C2 + cos(

√
2v)C3 + sin(

√
2v)C4

is unit and normal to x. It is then easy to check that the mapping (3.22) defines a minimal
hypersurface immersion with K ≡ 0 in S

4(1). Clearly this hypersurface immersion is non-
isoparametric. �

Now we want to characterize Example 1.2. In order to succeed, we need to prove the
following lemma:

Lemma 3.4. Let I ⊂ R be an open interval and 0 < c1, c2 ∈ R be two constant positive
real numbers such that c2e

2v − 1− c21e
4v > 0 for every v ∈ I. Consider the following second

order differential equation for some function A on I:

(3.23) (c2e
2v − 1− c21e

4v)A′′(v) + (1− c21e
4v)A′(v) + 2A(v) = 0.

Then there exists a function φ: I −→ R such that the general solution A(v) for the equation
(3.23) takes the form

A(v) = a
√

c2 − e−2v cos
(

φ(v)
)

+ b
√

c2 − e−2v sin
(

φ(v)
)

,

where a, b ∈ R are constants.
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Proof. Let B: I −→ R be the function defined by

A(v) =:
√

c2 − e−2vB(v).

Inserting this expression of A(v) into the equation (3.23), one gets the following second order
differential equation in B(v):

(3.24) B′′(v)− (3 + c21e
4v + c2c

2
1e

6v − 3c2e
2v)B′(v)

(c2e2v − 1)(c2e2v − 1− c21e
4v)

+
c2c

2
1e

6vB(v)

(c2e2v − 1)2(c2e2v − 1− c21e
4v)

= 0.

Now take φ to be the function on I such that

φ′(v) =

√

c2c
2
1e

6v

(c2e2v − 1)2(c2e2v − 1− c21e
4v)

.

It follows that
φ′′(v)

φ′(v)
=

(3 + c21e
4v + c2c

2
1e

6v − 3c2e
2v)

(c2e2v − 1)(c2e2v − 1− c21e
4v)

.

Thus the equation (3.24) becomes

B′′(v)− φ′′(v)

φ′(v)
B′(v) + φ′2(v)B(v) = 0.

Therefore, there are constants a, b ∈ R such that

B(v) = a cos
(

φ(v)
)

+ b sin
(

φ(v)
)

.

�

Remark 3.5. The particular solutions g(v) and h(v) of the equation (3.23) given by

g(v) =
1√
c2

√

c2 − e−2v cos
(

φ(v)
)

and g(v) =
1√
c2

√

c2 − e−2v sin
(

φ(v)
)

are linearly independent and satisfy g2(v) + h2(v) = 1− e
−2v

c2
.

Proposition 3.6. Let x:M3 −→ S
4(1) ⊂ R

5 be a minimal hypersurface immersion of a
connected and orientable manifoldM3 into S4(1) ⊂ R

5 with identically zero Gauß-Kronecker
curvature, but with nowhere zero second fundamental form. Assume that the function
α4 vanishes identically and α1 is nowhere zero on M3. Then there are local coordinates
(u, v, z) such that the immersion x can be locally described by the parametrization of the
hypersurface given in Example 1.2.
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Proof. The vector fields 1

α1

e2 and 1

α2

2
+1

e3 satisfy

[
1

α1

e2,
1

α2
2 + 1

e3] = 0.

Define the function f on M3 by

(3.25) f :=
1

√

1 + λ2 + α2
1 + α2

2

.

The function f satisfies the following equations:

e1(f) = 0, e2(f) = −α1f and e3(f) = −α2f.

Consequently,

[fe1,
1

α1

e2] = 0 = [fe1,
1

α2
2 + 1

e3].

Therefore there are local coordinates (u, v, z) on M3 such that

∂

∂z
=

1

α2
2 + 1

e3,
∂

∂v
=

1

α1

e2,
∂

∂u
= fe1.

From above we get the following equations for α2, λ and α1.

Equations for α2:

∂α2

∂u
= fe1(α2) = 0,

∂α2

∂v
=

1

α1

e2(α2) = 0,
∂α2

∂z
=

1

1 + α2
2

e3(α2) = 1.

So

(3.26) α2 = z.

Equations for λ:
∂λ

∂u
= 0,

∂λ

∂v
= 2λ, and

∂λ

∂z
=

zλ

z2 + 1
.

Therefore

(3.27) λ ≡ λ(v, z) = c1e
2v
√

z2 + 1,

where 0 < c1 ∈ R.

Equations for α1:

∂α1

∂z
=

zα1

z2 + 1
,

∂α1

∂v
=

α2
1 + z2 + 1− λ2

α1

, and
∂α1

∂u
= 0;
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thus

(3.28) α2
1 ≡ α2

1(v, z) = (z2 + 1)(c2e
2v − 1− c21e

4v),

where v ∈ I ⊂ R an open interval and 0 < c2 ∈ R is a constant such that c2e
2v−1−c21e

4v > 0
for all v ∈ I. Inserting the expressions (3.26), (3.27) and (3.28) (of α2, λ and α1, respectively)
into (3.25), we see that the function f satisfies

(1 + z2)f2(v) =
e−2v

c2
.

With respect to the frame ( ∂

∂u
, ∂

∂v
, ∂

∂z
) the structure equations are given by the following

system of second order partial differential equations:

xvz = − α2

α2
2 + 1

xv = xzv,(3.29)

xzu = − α2

α2
2 + 1

xu = xuz,(3.30)

xvu = −xu = xuv,(3.31)

xuu = f2
(

α2
1xv + α2(α

2
2 + 1)xz + λy − x

)

,(3.32)

xzz = − 2α2

α2
2 + 1

xz −
1

(α2
2 + 1)2

x,(3.33)

xvv =
1

α2
1

(

− (α2
1 + α2

2 + 1− λ2)xv + α2(α
2
2 + 1)xz − λy − x

)

,(3.34)

yu = −λxu,(3.35)

yv = λxv,(3.36)

yz = 0.(3.37)

Differentiating the equation (3.32) with respect to u, one has:

(3.38) xuuu = f2(−α2
1 − α2

2 − λ2 − 1)xu = −xu.

There are vector valued functions A1 ≡ A1(v, z) and A2 ≡ A2(v, z) in R
5 depending only

on v and z such that

(3.39) xu = − sin(u)A1 + cos(u)A2.

One has:

f2 = I(xu, xu)

=< A1, A1 > sin2(u)− < A1, A2 > sin(2u)+ < A2, A2 > cos2(u)

=
< A2, A2 > + < A1, A1 >

2
+

< A2, A2 > − < A1, A1 >

2
cos(2u)

− < A1, A2 > sin(2u).
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Using the linear independence of the functions 1, cos(2u) and sin(2u), from the equation
above we deduce

(3.40) < A1, A1 >= f2 =< A2, A2 > and < A1, A2 >= 0.

Furthermore, there is a vector valued function A3 ≡ A3(v, z) depending only on v and z

such that

(3.41) x(u, v, z) = cos(u)A1(v, z) + sin(u)A2(v, z) +A3(v, z).

One has

1 =< x, x >

= f2+ < A3, A3 > +2 < A1, A3 > cos(u) + 2 < A2, A3 > sin(u).

Using the linear independence of the functions 1, cos(u) and sin(u), we get

(3.42) 1 = f2+ < A3, A3 > and < A1, A3 >= 0 =< A2, A3 > .

We differentiate the equation (3.39) with respect to z and v and use the equations (3.30) and
(3.31); then the linear independence of the functions cos(u) and sin(u) implies the following
first order partial differential equations for the vector valued functions A1(v, z) and A2(v, z):

∂A1

∂z
= − z

z2 + 1
A1,

∂A1

∂v
= −A1,(3.43)

∂A2

∂z
= − z

z2 + 1
A2,

∂A2

∂v
= −A2.(3.44)

Therefore,

(3.45) A1(v, z) = f(v, z)C1 and A2(v, z) = f(v, z)C2,

where C1, C2 ∈ R
5 are constant vectors; they are orthonormal because of (3.40), and from

(3.42) they are orthogonal to A3.

Differentiating (3.41) with respect to z we have:

xz =
∂f

∂z

(

cos(u)C1 + sin(u)C2

)

+
∂A3

∂z
,

xzz =
∂2f

∂z2

(

cos(u)C1 + sin(u)C2

)

+
∂2A3

∂z2
.

Using the equation (3.33), we get the following partial differential equation for A3, depending
only on z:

∂2A3

∂z2
= − 2z

z2 + 1

∂A3

∂z
− 1

(z2 + 1)2
A3.
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Therefore there are vector valued functions A4 ≡ A4(v) and A5 ≡ A5(v) depending only on
v such that:

(3.46) A3(v, z) =
z√

z2 + 1
A4(v) +

1√
z2 + 1

A5(v).

The equation (3.41) becomes

x(u, v, z) = f(v, z) ·
(

cos(u)C1 + sin(u)C2

)

+
z√

z2 + 1
A4(v) +

1√
z2 + 1

A5(v).

Differentiating the equation above and using (3.29), we have:

0 = xvz +
z

z2 + 1
xv

=
1√

z2 + 1
A′

4(v).

Therefore the vector valued function A4(v) is constant: A4(v) ≡ C3 ∈ R
5.

From the equation (3.42), one has

1 = f2 +
1

z2 + 1

(

z2 < C3, C3 > +2z < C3, A5(v) > + < A5(v), A5(v) >
)

and thus
< C3, C3 >= 1, < C3, A5(v) >= 0,

and

(3.47) < A5(v), A5(v) >= 1− (1 + z2)f2 = 1− e−2v

c2
.

Eliminating y from the equations (3.32) and (3.34), we get

0 = α2
1xvv + f−2xuu + (z2 + 1− λ2)xv − 2z(z2 + 1)xz + 2x

=
√

z2 + 1
(

(c2e
2v − 1− c21e

4v)A′′

5(v) + (1− c21e
4v)A′

5(v) + 2A5(v)
)

.

Therefore the vector valued function A5(v) satisfies the following linear ordinary differential
equation of second order:

(3.48) (c2e
2v − 1− c21e

4v)A′′

5(v) + (1− c21e
4v)A′

5(v) + 2A5(v) = 0.

By the Lemma 3.4, one can conclude that the general solution of the equation (3.48) is

A5(v) = g(v)C4 + h(v)C5,

where C4, C5 ∈ R
5 are constant vectors, and g and h are the functions given in Remark 3.5.
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But since from (3.47) the vector valued function A5 satisfies

< A5(v), A5(v) >= 1− e−2v

c2
,

we have that C4 and C5 are orthonormal. They constitute together with C1, C2, C3 an
orthonormal basis of R5. This proves Proposition 3.6. �

Our classifiaction theorem summarizes the results from Propositions 3.1-3.6.
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