
J. Chem. Phys. 140, 054905 (2014); https://doi.org/10.1063/1.4862953 140, 054905

© 2014 AIP Publishing LLC.

Effects of flow on topological defects in a
nematic liquid crystal near a colloid
Cite as: J. Chem. Phys. 140, 054905 (2014); https://doi.org/10.1063/1.4862953
Submitted: 11 November 2013 • Accepted: 10 January 2014 • Published Online: 04 February 2014

Tillmann Stieger, Martin Schoen and Marco G. Mazza

ARTICLES YOU MAY BE INTERESTED IN

Topological defects around a spherical nanoparticle in nematic liquid crystal: Coarse-grained
molecular dynamics simulations
The Journal of Chemical Physics 141, 114903 (2014); https://doi.org/10.1063/1.4894438

Defects in liquid crystals
Physics Today 35, 48 (1982); https://doi.org/10.1063/1.2915094

Lattice Boltzmann simulation of asymmetric flow in nematic liquid crystals with finite
anchoring
The Journal of Chemical Physics 144, 084905 (2016); https://doi.org/10.1063/1.4940342

https://images.scitation.org/redirect.spark?MID=176720&plid=1689643&setID=533015&channelID=0&CID=616274&banID=520577610&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=9bae6abd127771db46248d5d7925570316299378&location=
https://doi.org/10.1063/1.4862953
https://doi.org/10.1063/1.4862953
https://aip.scitation.org/author/Stieger%2C+Tillmann
https://aip.scitation.org/author/Schoen%2C+Martin
https://aip.scitation.org/author/Mazza%2C+Marco+G
https://doi.org/10.1063/1.4862953
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.4862953
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.4862953&domain=aip.scitation.org&date_stamp=2014-02-04
https://aip.scitation.org/doi/10.1063/1.4894438
https://aip.scitation.org/doi/10.1063/1.4894438
https://doi.org/10.1063/1.4894438
https://aip.scitation.org/doi/10.1063/1.2915094
https://doi.org/10.1063/1.2915094
https://aip.scitation.org/doi/10.1063/1.4940342
https://aip.scitation.org/doi/10.1063/1.4940342
https://doi.org/10.1063/1.4940342


THE JOURNAL OF CHEMICAL PHYSICS 140, 054905 (2014)

Effects of flow on topological defects in a nematic liquid crystal
near a colloid

Tillmann Stieger,1 Martin Schoen,1,2 and Marco G. Mazza3

1Stranski-Laboratorium für Physikalische und Theoretische Chemie, Technische Universität Berlin,
Straße des 17. Juni 115, 10623 Berlin, Germany
2Department of Chemical and Biomolecular Engineering, Engineering Building I, Box 7905,
North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27695, USA
3Max-Planck-Institut für Dynamik und Selbstorganisation (MPIDS), Am Faßberg 17,
37077 Göttingen, Germany

(Received 11 November 2013; accepted 10 January 2014; published online 4 February 2014)

We perform molecular dynamics simulations of a nematic liquid crystal flowing around a colloidal
particle. We study the flow-induced modifications of the topological defects in the liquid crystal due
to the presence of the colloid. We show that flow distorts Boojum defects into an asymmetrically
larger downstream lobe, and that Saturn ring defects are convected downstream along the flow di-
rection, which is in agreement with experimental observations. Additionally, for a Janus colloid with
both parallel and perpendicular patches, exhibiting a Boojum defect and a Saturn ring defect, we find
that the Boojum defect facing the upstream direction is destroyed and the Saturn ring is convected
downstream. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4862953]

I. INTRODUCTION

Colloids dispersed in a nematic liquid crystal (LC) host
fluid have attracted considerable attention because of their in-
triguing properties, such as colloidal self-assembly1, 2 leading
to novel photonic band-gap devices,3–5 and to the possibility
of selecting or sorting particles depending on their size,6 or
surface properties.7, 8

A nematic LC is characterized by a high degree of orien-
tational order along a specific direction, the director n̂0. But
introducing a colloid can greatly affect the physical proper-
ties of its host, namely, it distorts the orientational order of
the nematic LC. The distortion is caused by the alignment of
LC molecules on the curved surface of the colloid, and can be
measured by the local director field n̂ (r). Perturbations of the
director field lead to long-range, anisotropic forces, which in
turn mediate effective interactions among colloids. Due to the
distortions in the orientational order of the nematic LC defect
topologies arise around the surface of the colloid. To date, a
variety of different defect topologies such as Boojum defects
or Saturn rings have been observed.9, 10 To understand the
self-assembly of colloids through the effective forces caused
by different defect topologies in a nematic LC host one has to
study the topologies themselves.

Modern microfluidic devices use flow to manipulate and
control fluids and cargoes.11 Whereas the majority of mi-
crofluidic applications is based on isotropic liquids, a novel,
flexible approach based on anisotropic fluids, that is, LC’s, has
already been proposed.12 Therefore, it is timely and impor-
tant to understand how hydrodynamic flow affects topological
defects.

However, the effect of flow on the defect topologies has
so far received only moderate scientific attention. Billeter and
Pelcovits13 performed a falling ball experiment with the aid
of molecular dynamics (MD) simulations. They could show

that high driving forces acting on the colloidal particle distort
the Saturn ring defect topology. Stark and Ventzki14 showed
that a hedgehog defect moves upstream. They also predicted
that flow could turn a hedgehog defect into a Saturn ring.
Later Fukuda et al.15 and Yoneya et al.16 could not observe
such a transition and found in contrast that the hedgehog de-
fect moves downstream rather than upstream. Yoneya et al.16

could also show that a Saturn ring is pushed downstream, es-
caping from the particle and finally shrinking to a hyperbolic
hedgehog defect. Araki and Tanaka17 showed a detachment
of the Saturn ring from the colloid, and reported a strong
deformation of the Saturn ring when the flow direction is
perpendicular to the global director. With numerical simula-
tions Zhou et al.18 showed that flow sweeps a hedgehog de-
fect and Saturn ring downstream. Khullar et al.19 have per-
formed the only experimental study we are aware of. They
found that defect structures around rising bubbles and droplets
move downstream, and also observed the transition from a
Saturn ring into a hedgehog defect. However, Gettelfinger
et al.20 recently reported MD simulations showing that the
Saturn ring around a solid nanoparticle moves upstream, con-
tradicting Refs. 15–19, while the Saturn ring around a nano-
droplet moves downstream. There is, therefore, still some dis-
agreement on the direction of motion of the defect structures
around a colloid.

Here, we present nonequilibrium MD simulations of a
nematic LC flowing around a spherical colloidal particle. We
pay particular attention to the computational challenges of ap-
plying a thermostat in a highly nonequilibrium state. If we are
to trust the results of computer simulations, we need an effi-
cient way of removing viscous heat from the fluid without
introducing artificial dynamical states (an early example of
these artifacts is Ref. 21). The Nosé-Hoover thermostat22–24

is immediately ruled out because of its global nature. It would
remove kinetic energy from regions of low viscous stress

0021-9606/2014/140(5)/054905/10/$30.00 © 2014 AIP Publishing LLC140, 054905-1

http://dx.doi.org/10.1063/1.4862953
http://dx.doi.org/10.1063/1.4862953
http://dx.doi.org/10.1063/1.4862953
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4862953&domain=pdf&date_stamp=2014-02-04


054905-2 Stieger, Schoen, and Mazza J. Chem. Phys. 140, 054905 (2014)

to compensate for the high viscous heating on the upstream
side of the colloid. We adopt instead the method of Stoyanov
and Groot,25, 26 which uses a momentum-conserving pairwise
force to control the temperature. This choice appears to us as
a flexible and robust method for nonequilibrium MD simula-
tions of spatially inhomogeneous systems. We find from our
simulations that a Saturn ring around a solid homogeneous
nanoparticle moves downstream and is deformed by the hy-
drodynamic flow.

We also consider Janus colloids. Experimental and the-
oretical studies of a Janus colloid dispersed in a nematic LC
have led to a variety of new defect topologies.27, 28 Thus, dis-
tortions of a flowing nematic LC on the topological defects
generated by a Janus particle may offer other surprises. This
work represents the first computational study of a Janus par-
ticle immersed in a flowing nematic LC host. The Janus par-
ticle consists of a patch enforcing planar anchoring, whereas
the rest of the surface enforces homeotropic anchoring. In ab-
sence of flow the Janus particle generates a Boojum defect
(above the planar patch) and a Saturn ring (above the perpen-
dicular patch). We find that hydrodynamic flow can destroy an
upstream Boojum defect and convect the Saturn ring down-
stream.

The remainder of this work is organized as follows. In
Sec. II, we describe the model chosen for the LC and for the
colloids studied. In Sec. III, we provide details about the MD
algorithm and the numerical implementation. In Sec. IV, we
explore some static and dynamic observables useful to charac-
terize the physical state of our system. In Sec. V, we describe
our results, and finally in Sec. VI, we discuss our results and
summarize our conclusions.

II. MODEL

A. Liquid crystal fluid

The interactions among LC molecules, or fluid-fluid (ff)
interactions, are described by the Hess-Su29 model potential
energy

uff (r ij , ûi , ûj ) = 4εff

[(
σ

rij

)12

−
(

σ

rij

)6

× {1 + �(r̂ ij , ûi , ûj )}
]

, (1)

where εff is our unit of energy throughout this work,
r ij ≡ r i − rj is a distance vector between the centers of mass
of molecules i and j, r̂ ij = r ij /rij and rij = |r ij | is the mag-
nitude of the distance vector. The orientation of molecule i
is described by a unit vector ûi . Equation (1) is a modified
Lennard-Jones potential where the attractive term depends on
the orientations of the molecules. In fact, the LC molecules
deviate only slightly from a spherical shape, and σ is ef-
fectively the diameter. The anisotropy of the model stems
from the interaction rather than its elongated shape and is ac-
counted for by the function

�(r̂ ij , ûi , ûj ) = 5ε1P2(ûi · ûj )

+5ε2[P2(ûi · r̂ ij ) + P2(ûj · r̂ ij )], (2)

where ε1 = 0.04 and ε2 = −0.08 are anisotropy parameters
and P2(x) = (3x2 − 1)/2 is the second Legendre polynomial.
The anisotropy function � preserves the head-tail symme-
try of the molecules, i.e., ûi ↔ −ûi . The simplicity of the
Hess-Su model makes it well suited for computer simula-
tions and it has been successfully used to study and char-
acterize LC phases.30–35 It is worth noting that to compare
with experiments a single Hess-Su particle should be thought
of as a nearly spherical group of elongated liquid crystal
molecules.30

The molecules are confined between two planar atomistic
substrates in the z-direction. The interaction between the fluid
and the substrate (fs) is described by the model potential

uf s(r ij , ûi) = εf sρsσ
2

[
2

5

(
σ

rij

)10

−
(

σ

rij

)4

g(ûi)

]
, (3)

where the parameter εfs = 5 εff/3 and ρsσ
2 ≈ 1.1 is the areal

density of a single layer of substrate molecules. In Eq. (3)

g(ûi) = (û · êx)2 (4)

determines the preferential molecular orientation at the solid
surface, the so-called anchoring function, and êx is a vector
pointing along the x-axis in a space-fixed Cartesian coordi-
nate system. This anchoring function enforces a far-field di-
rector n̂0 parallel to the x-axis. This is comparable to a typical
experimental setup.37

B. Homogeneous colloid

In our simulations, we consider one colloidal particle
fixed in space at the center of the simulation box. This cor-
responds to an experimental setup where optical tweezers are
used to fix a colloid in space.10, 36 We use a slightly modified
Lennard-Jones potential to describe the interaction between
the fluid and the colloid (fc)

uf c(r i , ûi) = 4εf c

[(
σ

ri − r0

)12

−
(

σ

ri − r0

)6

gh(r̂ i , ûi)

]
,

(5)

where r̂ i is the unit vector between the centers of mass of a
molecule and the colloid, r0 = 3σ is the hard-core radius of
the colloid and εfc denotes the strength of the interaction. We
consider homogeneous colloids with either planar or perpen-
dicular anchoring, which is realized by specifying the form of
gh(r̂ i , ûi). We choose

g‖(r̂ i , ûi) = (1 − |ûi · r̂ i |)2, (6)

g⊥(r̂ i , ûi) = (ûi · r̂ i)
2, (7)

where Eqs. (6) and (7) correspond to planar and perpendicular
anchoring, respectively. We use εfc = 2εff for the perpendic-
ular anchoring, but εfc = 4εff for the planar anchoring. This
is due to the fact that perpendicular anchoring is energetically
favored on surfaces and therefore one has to increase the depth
of the potential well to favor planar anchoring.
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C. Janus colloid

To model Janus colloids38, 39 one has to consider at the
same time two different patches with planar and perpendicular
anchoring to the surface.28 This can be achieved by replacing
gh in Eq. (5) with

gJ (r̂ i , ûi) = ω‖g‖(r̂ i , ûi) + αω⊥g⊥(r̂ i , ûi), (8)

where Eqs. (6) and (7) are used and 0 ≤ α ≤ 1 is a dimension-
less parameter to weaken the (normally preponderant) perpen-
dicular anchoring. Throughout this work we use α = 0.5. In
Eq. (8), the anchoring functions are weighted according to

ω‖ = 1 − γ‖(1 + r̂ i · êx)1/2, (9)

ω⊥ = 1 − γ⊥(1 − r̂ i · êx)2, (10)

where γ ‖ ≤ 2−1/2 and γ ⊥ ≤ 0.25 to guarantee that ω‖ and ω⊥
be larger than or equal to zero. We choose γ ‖ = 0.7 and γ ⊥
= 0.05 to guarantee a rather smooth and numerically stable
transition between the two patches. This choice of parame-
ters corresponds to a planar-anchoring patch of about 13% of
the total spherical surface. We choose a Janus colloid of the
same radius r0 = 3.0σ as the homogeneous colloid. The plane
of the equator of the colloid is perpendicular to the versor êx

and r i · êx = +1(−1) defines the right (left) hemisphere of
the colloid. The position and orientation of the colloid are
kept fixed in all simulations. The weighting function ω‖(r̂ i)
(Eq. (9)) assumes a maximum on the left hemisphere of the
colloid, whereas ω⊥(r̂ i) (Eq. (10)) has the opposite behav-
ior and reaches its maximum on the right hemisphere of the
colloid. Furthermore, changing the exponents in Eqs. (9) and
(10) controls the relative size of the two different patches.

III. NUMERICAL DETAILS

A. Simulation protocol

We perform MD simulations of N = 12 000 molecules
at a pressure P = 1.8 and temperature T = 0.9 that define
an equilibrium thermodynamic state well into the nematic
phase. A simulation box with volume V = lx ly lz ≈ (24.0σ )3

is used to eliminate confinement effects on the defect struc-
tures around the colloid (r0 = 3.0σ ) resulting in a mean num-
ber density ρ̄ ≈ 0.85. For the computation of local quantities
we discretize our system into cubes with a side length of 0.2σ .
Every simulation is performed according to the following pro-
tocol: (i) we equilibrate the system composed of LC and col-
loid in the NPT ensemble without flow; (ii) a hydrodynamic
flow is applied and a second equilibration run is performed in
the NV T ensemble to reach the steady state; and (iii) finally,
we perform the production run in the NV T ensemble, and
calculate all physical observables discussed below.

A homogeneous, external body-force Fe is generally suf-
ficient to induce hydrodynamic flow in a MD simulation of
a homogeneous system. However, the presence of the col-
loid in our system breaks translational invariance, so that ap-
plying a homogeneous body-force to molecules located in
the slipstream of the colloid would be somewhat artificial.
Therefore, we restrict the application of the body-force to
molecules in a three-dimensional slice of width 2σ in the

x-direction, located upstream of the colloid. This guaran-
tees that molecules are still flowing along the x-direction but
molecules are not dragged out of the slipstream. One can in-
terpret this as the remaining molecules being pushed by the
accelerated molecules.

In the remainder we adopt a Cartesian coordinate sys-
tem where the confining walls are located at z = ±lz/2 and
periodic boundary conditions are applied in the x- and y-
directions. In all simulations presented here we choose Fe =
Fe êx ; thus, the direction of the flow is parallel to the x-axis.
In our simulations, we employ a slightly modified version of
the velocity-Verlet algorithm to gain more computational effi-
ciency. Therefore, we follow Ref. 40 and implement their al-
gorithm to calculate velocities, rotational velocities, and ori-
entations. Throughout our simulations we use an MD time
step δt = 10−3.

B. Galilean-invariant thermostat

For MD simulations the natural thermodynamic en-
semble is the microcanonical ensemble, where number of
molecules N, volume V, and energy E are conserved. To per-
form simulations under constant temperature T one has to im-
plement a thermostat. A common choice is the Nosé-Hoover
thermostat.22–24 This thermostat has a global nature, because
the temperature is regulated through the total kinetic temper-
ature. The thermostat is also non-Galilean invariant, because
all calculations are performed in the reference frame where
the system’s barycenter is at rest. Therefore, this thermostat
does not conserve momentum locally. A straightforward im-
plementation of the Nosé-Hoover thermostat is not suitable
when external forces acting on the system set a macroscopic
fluid flow into motion.

There have been modifications of the Nosé-Hoover ther-
mostat to make it local and thus also conserve local momen-
tum. One simple way of doing this is to separate the system
into slices and to apply an isolated Nosé-Hoover thermostat to
each slice.41, 42 Unfortunately, this modification of the Nosé-
Hoover thermostat is not satisfactory for our system. For a
system containing LC molecules flowing around a colloid the
sliced thermostatted system would lead to artifacts such as
freezing. This is due to the fact that the colloid is obviously
introducing a spatial inhomogeneity that greatly affects the
thermostatting of the slices containing parts of it.

The profile-unbiased thermostat43 is a common choice in
nonequilibrium MD. This thermostat needs a fine mesh parti-
tioning the system into cells containing only few molecules.
We share the skepticism of Ref. 41 about the appropriateness
of a definition of temperature based on few molecules per cell.
Only few molecules cannot undergo a large number of colli-
sions necessary to establish local equilibrium. However, the
profile-unbiased thermostat correctly points to the necessity
of a local control of the temperature.

In this work, we employ a thermostat based on a pair-
wise interaction that was first introduced by Stoyanov and
Groot.25, 26 This thermostat is local and Galilean invariant
and therefore conserves momentum locally. The difference
between the Stoyanov-Groot and the Nosé-Hoover thermostat
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is that the former acts on pairs of molecule while the latter on
single molecules. Below, we briefly describe our implemen-
tation of the Stoyanov-Groot thermostat.

First, we consider the thermostatting pairwise force act-
ing on the molecules i and j

Fth
ij = λψ(rij /rc)

[
1 − 1

2
(Ti + Tj )/T0

]
×[(vi − vj ) · r̂ ij ]r̂ ij /δt, (11)

where λ is a thermostat coupling parameter, ψ = 1 − rij/rc

is a smearing function, rc is a cutoff radius, vi is the veloc-
ity of particle i, T0 is the target temperature, and Ti is the
local temperature of molecule i. If the local temperature Ti

is lower than the target temperature T0, Fth
ij performs work

on the fluid and increases its energy, otherwise Fth
ij dissipates

energy. Note that Fth
ij vanishes if the target temperature T0 is

reached. A desirable feature of the Stoyanov-Groot thermo-
stat is that Fth

ij is deterministic and does not need the use of
random numbers. This is similar to the Nosé-Hoover thermo-
stat. The coupling parameter λ remains constant during the
simulation. The local temperature Ti of molecule i in Eq. (11)
is calculated by

kBTi =

∑
j

ζ (rij /rc) μ (vi − vj )2

3
∑

j

ζ (rij /rc)
, (12)

where we choose the smearing function ζ = ψ (in principle
the smearing function and the cutoff radius rc for the ther-
mostatting force and the local temperature could be different),
μ = m/2 is the reduced mass, m is the molecular mass, and
kB is the Boltzmann constant. Throughout this work we use
λ = 0.3 and rc = 1.2. The sums in Eq. (12) run over all parti-
cles j subject to the condition i �= j.

IV. STATIC AND DYNAMIC OBSERVABLES

A. Local nematic director

To compute the local director field n̂(r) we consider the
local alignment tensor44, 45

Q(r) ≡ 1

2ρ(r)

N∑
i=1

〈[3ûi(r i) ⊗ ûi(r i) − I] δ(r − r i)〉 ,

(13)
where “⊗” is the dyadic product, δ is the Dirac δ-function, I
is the unit tensor, and angular brackets indicate the ensemble
average. Therefore, Q(r) is a real, symmetric, and traceless
second-rank tensor which can be represented by a 3 × 3 ma-
trix. To calculate the local nematic order parameter one has
to solve the eigenvalue equation Q(r) · n̂n(r) = λn(r)n̂n(r)
where λn is the nth eigenvalue and n̂n(r) the associated eigen-
vector. The three eigenvalues λ−(r) < λ0(r) < λ+(r) can be
obtained numerically. One can define the local nematic order
parameter S(r) as the largest eigenvalue λ+(r) and the asso-
ciated eigenvector as the local director n̂(r).

B. Elastic constants

In the hydrodynamic limit a LC can be described by the
elastic constants emerging from a continuum description.46

To calculate the elastic constants of our system we follow
Refs. 47–49. This calculation requires the Fourier transform
of the alignment tensor Q(r)

Q̂(k) =
∫

Q(r) exp(ik · r) d3r. (14)

We define a coordinate system a, b, c such that Q(r) is di-
agonal and the local director is n̂(r) = (0, 0, 1). For a wave
vector k = (k1, 0, k3) in the 1–3 plane the fluctuations are50

E13
(
k2

1, k
2
3

) ≡ 9

4

S2V kBT〈|Q̂13(k)|2〉 = K1k
2
1 + K3k

2
3, (15)

E23
(
k2

2, k
2
3

) ≡ 9

4

S2V kBT〈|Q̂23(k)|2〉 = K2k
2
1 + K3k

2
3, (16)

where S is the nematic order parameter and K1, K2, and K3,
are the splay, twist, and bend constants, respectively, in the
Frank free energy

F = 1

2
[K1(∇ · n̂)2 + K2(n̂ · ∇ × n̂)2 + K3(n̂ × ∇ × n̂)2].

(17)

The approximation of linearity in k2
1 and k2

3 of Eqs. (15)
and (16) is only valid in the limit of small k because the elastic
constants are only defined for long wavelength director fluctu-
ations. The values at the origin E13(0, 0) and E23(0, 0) should
be manually set to zero rather than obtaining them from the
simulation, because E13(0, 0) and E23(0, 0) vanish only as
V → ∞.47–49

To obtain k2
1 and k2

3 bulk simulations are performed at
constant V and T with neither a colloid nor flow for different
values of N and V, while keeping the number density ρ̄ ≈ 0.85
fixed. In Figs. 1(a) and 1(b), we show the dependence of E13

and E23 on k2
1 and k2

3. As predicted from the theory, a linear
fit can be applied for not too large values of the wavevectors.
We note that the slopes of the two fits are almost identical.
In our calculations we find elastic constants K1 ≈ K2 ≈ K3

≈ K ≈ 1.6εff/σ . The fact that the observed elastic constants
of our system are equal, within statistical accuracy, is due to
the rather small asphericity of LC molecules in the Hess-Su
model. Usually, the elastic constant K3 is higher than the elas-
tic constants K1 and K2.47 But for molecules of nearly spheri-
cal shape the bend configuration is energetically more or less
equal to the splay and twist configuration. This is obviously
not the case for much more elongated molecules that are truly
anisotropic in shape, as is the case for the Gay-Berne model
of LCs.47–49

C. Dynamic viscosity

An important quantity that will help us to character-
ize the dynamic state is the dynamic viscosity. From the
Navier-Stokes equation within the weak-flow limit for pla-
nar Poiseuille flow of a uniform fluid with a constant ρ̄ and
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FIG. 1. Dependence of E13(k2
1 , k2

3) (black circles) and E23(k2
2 , k2

3) (red
squares) on (a) k2

1 for k2
3 = 0 as well as on (b) k2

3 for k2
1 = 0.

dynamic viscosity η one can derive51–53 the steady-state
streaming velocity

vx(z) = − ρ̄Fe

2η

[
z2 − lz

4

]
, (18)

where Fe is the external driving force acting on the system
and lz is the distance between the two stationary walls in z-
direction. Thus, we can calculate η by fitting the velocity pro-
file with a second-order even polynomial vx(z) = c2z

2 + c0,
hence η = −ρ̄Fe/2c2. To generate a streaming velocity pro-
file NV T simulations without a colloid for different external
driving forces Fe were performed. The simulation box is sep-
arated into slices of constant volume lxly�z , where lx and
ly represent the box length in the x- and y-directions and �z
= 0.2σ . Figure 2 shows the velocity profiles obtained with
the recipe just described. A second-order polynomial pro-
vides a reasonably good fit of vx(z). From the fit we find
η ≈ 50

√
εff m/σ 2).

D. Dimensionless measures of flow

Two key dimensionless quantities that can precisely char-
acterize our systems are the Reynolds number R , which is
widely used in fluid mechanics, and the Ericksen number E ,
which is common in the field of LCs. Introduced by Stokes54

and established by Reynolds55 the Reynolds number is a mea-
sure of the ratio of inertial to viscous forces

R = ρ̄v∞l

η
, (19)

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12
z

0.2

0.4
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0.8

1.0
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1.6

1.8

v x

FIG. 2. Streaming velocity profile for external driving forces Fe = 0.1 (cir-
cles), Fe = 0.2 (squares), Fe = 0.3 (diamonds), Fe = 0.4 (triangle up),
Fe = 0.5 (triangle down) and corresponding second-order polynomial fits
(dashed lines). For the sake of clarity we show every third data point.

where v∞ is the streaming velocity at steady state and l is the
characteristic length of the system. We choose the distance
between the two confining walls lz = 24σ as the typical length
scale of our system.

The Ericksen number is a measure of the deformation of
the director field under flow. Following Refs. 14 and 56, we
define E as the ratio of viscous forces (ηv∞/l2) and the elastic
forces (K/l3) in the momentum balance of the Navier-Stokes
equation

E = ηv∞l

K
, (20)

where K represents an average Frank elastic constant.
In Table I, we list R and E for the flow regime stud-

ied in this work. Streaming velocities v∞ are obtained from
NV T simulations of the confined LC fluid in the presence of
the homogeneous colloid for different external driving forces
Fe. This leads to Reynolds numbers 0.041 ≤ R ≤ 0.241, in-
dicating that the conditions of all our simulations pertain to
the laminar flow regime. The measured Ericksen numbers
75.0 ≤ E ≤ 443.5 emphasize a dominant effect of viscous
forces over elastic forces.

One should bear in mind that the magnitude of the dimen-
sionless quantities strongly depends on what one chooses as
the typical length scale of the system. In previous studies16, 20

the radius of the colloid is often used as the typical length
scale. This leads to smaller dimensionless quantities than the
ones presented here. We use the confinement length scale,
more specifically the box length lz, to measure dimensionless
quantities of flow. In our opinion a length scale based on the

TABLE I. Reynolds numbers R and Ericksen numbers E for different ex-
ternal driving forces Fe and corresponding streaming velocities v∞ used in
our simulations.

Fe v∞ R E

0.1 0.10 0.041 75.0
0.2 0.22 0.090 165.0
0.3 0.31 0.126 232.5
0.4 0.44 0.180 330.0
0.5 0.59 0.241 443.5
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radius of the colloidal particle would be more suitable for a
physical situation where a colloidal particle (liquid droplet) is
deformed.18

V. RESULTS

A. Homogeneous colloid

Figures 3(a)–3(c) show three-dimensional representa-
tions of the defect structures around a homogeneous colloid
with planar anchoring for different Ericksen numbers E . We
mark only locations with a local nematic order parameter
S(r) ≤ 0.2, which we arbitrarily choose to represent the de-
fect structures. Figures 3(d) and 3(e) show cross-sectional
maps of the local nematic order parameter S(r) and of the
local director n̂ (r) for the same conditions as in Figs. 3(a)–
3(c). The cross-sections are taken along the x-z-plane that
goes through the center of the defect topologies.

Colloidal suspensions of a homogeneous colloid with
planar local anchoring in a nematic LC are known to form
Boojum defects.9 Figure 3(a) shows that in the system at rest
(E = 0) a Boojum defect topology arises due to the strong
planar anchoring of the molecules on the colloidal surface.
This is indicated as well by the low values of S(r) on the left
(negative x-axis) and right (positive x-axis) sides of the col-
loid in Fig. 3(d). In these areas n̂ (r) is oriented planar to the
colloidal surface, and therefore perturbs the global director
field n̂0.

For E > 0, the upstream lobe of the Boojum defect
shrinks, see Figs. 3(b) and 3(c), because the molecules on the
upstream side of the colloid are squeezed more tightly against

the colloid with increasing E which results in their enhanced
ordering; at the same time the lobe of the Boojum defect in
slipstream of the colloid grows in size because molecules are
locally decompressed in the slipstream, resulting in a disor-
dering effect. Figures 3(e) and 3(f) show in detail the com-
pression of the upstream Boojum lobe and the expansion of
the slipstream one.

Figure 4 is as Figure 3 but for the case of perpendicular
anchoring. When homogeneous colloids with perpendicular
anchoring are dispersed in a nematic LC they are known to
form Saturn ring defect structures.10 When no external driv-
ing force is applied (E = 0) a Saturn ring defect topology
arises around the colloid, because of the strong perpendicu-
lar anchoring applied in our simulations (Fig. 4(a)). The Sat-
urn ring defect topology is also indicated by the low values of
S(r) at the north and south pole of the colloid (Fig. 4(d)). In
these areas the director field is strongly distorted because the
anchoring opposes the far-field director.

Our MD simulations show that for E > 0 the defect
structures (Figs. 4(b) and 4(c)) are distorted and convected
along with the flow in x-direction. This is also indicated by
the position of the area of low nematic order in Figs. 4(e) and
4(f). This contradicts the results found by Gettelfinger et al.20

but is in agreement with earlier theoretical studies16–18 as well
as experimental work by Khullar et al.19

As E increases, the local nematic director n̂ (r) at the
north and south pole of the colloid becomes more and
more parallel to the global director n̂0. For E > 0 the Sat-
urn ring defect deforms and moves downstream along the
x-direction (see Fig. 4(c)). The deformation takes the
shape of a wide-open mouth. Therefore, we refer to this

FIG. 3. (a)–(c) A three-dimensional representation of the defect structures (S(r) ≤ 0.2) around a homogeneous colloid (gray sphere). (d)–(f) Cross-section
along the x-z plane of the local nematic order parameter S(r), where the color indicates the magnitude of S(r), as well as the local director n̂ (r) represented by
a black line. Plots are generated for different Ericksen numbers E for a colloid with planar anchoring and the black arrow indicates the direction of the streaming
velocity v∞.
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FIG. 4. (a)–(c) A three-dimensional representation of the defect structures (S(r) ≤ 0.2) around a homogeneous colloid (gray sphere). (d)–(f) Cross-section
along the x-z plane of the local nematic order parameter S(r), where the color indicates the magnitude of S(r), as well as the local director n̂ (r) represented by
a black line. Plots are generated for different Ericksen numbers E for a colloid with perpendicular anchoring and the black arrow indicates the direction of the
streaming velocity v∞.

deformation as “stomal defect”. Figure 5 shows the reason
for this deformation. We calculate the x-component of the ve-
locity vx averaged over a plane perpendicular to the z-axis,
and study its dependence on z. We repeat the calculation for
planes perpendicular to the y-axis to study the dependence of
vx on y as well. On the colloidal surface vx(z) > vx(y), that
is, the molecule moving between the north (south) pole and
the top (bottom) wall move faster than the molecules on the
equator of the colloid.

An interaction of the Saturn ring and confining walls was
observed in experiments by Khullar et al.19 However, in their
case the walls of the experimental cell have a pinning effect on
the defect, which, we deduce, drastically reduces the velocity

-12 -9 -6 -3 0 3 6 9 12
y , z

0.2

0.3

0.4
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0.6

0.7

v x

FIG. 5. Streaming velocity profile for a homogeneous colloid with perpen-
dicular anchoring for a Ericksen number E = 443.5 along the y- (squares)
and z-directions (circles) where blue lines represent the diameter of the col-
loid. For the sake of clarity we show every second data point.

of the LC fluid between colloid and walls. Thus, the section
of the Saturn ring closer to the walls moves slower than the
sections at 90◦ from them.

B. Janus colloid

We also perform MD simulations of a Janus colloid
with a planar-anchoring patch on the upstream side and a
perpendicular-anchoring patch on the downstream side. The
planar patch is smaller than the perpendicular one, although
the transition between the different patches is rather smooth.

Figure 6(a) shows that for the system at rest (E = 0) a
ring defect topology arises around the equator. This is due to
the fact that the patch with perpendicular anchoring covers
most of the colloid’s surface. However, at the smaller patch
with planar anchoring a Boojum defect topology comparable
to the defect for the homogeneous colloid with planar anchor-
ing arises. Therefore, this defect topology corresponds to a
Boojum ring.27, 28 This is also indicated by the low values of
S(r) at the north and south pole as well as on the upstream
side of the colloid [see Fig. 6(d)]. On the north and south pole
the global director field is perturbed, which is indicated by
the perpendicular orientation of n̂ (r) with respect to the col-
loid surface. On the other hand, n̂ (r) is oriented planar with
respect to the colloid surface on the upstream side of the col-
loid and therefore the global director field is perturbed here as
well.

For increasing values of E one can see the ring defect
structure moves downstream [see Figs. 6(b) and 6(c)]. This is
equivalent to the configuration described above for the
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FIG. 6. (a)–(c) A three-dimensional representation of the defect structures (S(r) ≤ 0.2) around a Janus colloid. (d)–(f) Cross-section along the x-z plane of the
local nematic order parameter S(r), where the color indicates the magnitude of S(r), as well as the local director n̂ (r) represented by a black line. Plots are
generated for different Ericksen numbers E for a colloid favoring planar anchoring (dark gray) on the upstream side and perpendicular anchoring (gray) on the
downstream side and the black arrow indicates the direction of the streaming velocity v∞.

FIG. 7. (a)–(c) A three-dimensional representation of the defect structures (S(r) ≤ 0.2) around a Janus colloid. (d)–(f) Cross-section along the x-z plane of
the local nematic order parameter S(r), where the color indicates the magnitude of S(r), as well as the local director n̂ (r) represented by a black line. Plots
are generated for different Ericksen numbers E for a colloid favoring perpendicular anchoring (gray) on the upstream and planar anchoring (dark gray) on the
downstream side and the black arrow indicates the direction of the streaming velocity v∞.
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homogeneous colloid with perpendicular anchoring.
Figures 6(e) and 6(f) confirm this observation. The re-
gion of low nematic order is moving downstream. However,
the defect structure on the upstream side of the colloid is
completely destroyed for high values of E [see Fig. 6(c)].
This effect can also be observed in the rapid increase of S(r)
[see Figs. 6(e) and 6(f)]. The destruction of the point defect
structure is due to the fact that molecules are pushed out of
the rather small patch favoring planar anchoring by the strong
flow applied to the system.

We note that if the Janus colloid is reversed, and there-
fore exhibits the planar patch in the downstream direction,
the Boojum defect grows in size as E increases. At the same
time the Saturn ring deforms into a stomal defect and slowly
merges with the growing Boojum lobe (see Fig. 7).

VI. CONCLUSION

We study the defect topologies arising around homoge-
neous colloids with either planar or perpendicular anchoring
to the colloid’s surface dispersed in a confined liquid crystal.
This leads to well known defect topologies such as the Boo-
jum defect or the Saturn ring. Here, we focus on the effect of
flow on these defect structures. In all our simulations, we em-
ploy a flow well situated in the laminar flow regime, meaning
low Reynolds numbers. However, we study a range of rather
high Ericksen numbers and therefore our system is dominated
by viscous forces over elastic forces. Furthermore, we make
sure that the distance between confinement and colloid is big
enough to guarantee that the confinement is not affecting the
topological defect structures.

In our calculations we find that for our model system the
elastic constants in the Frank free energy are equal within nu-
merical precision. This is due to the fact that the anisotropy of
our LC model stems from interaction rather than the elongted
shape of its molecules. This leads to a rather small aspect ra-
tio of LC molecules. Therefore, the bend configuration is en-
ergetically roughly equal to the splay and twist configuration
for LC molecules of nearly spherical shape.

To guarantee an adequate treatment of the nonequi-
librium conditions of our system, we employ a Galilean-
invariant thermostat that is based on local pairwise
interactions.25, 26 Therefore, the thermostat conserves momen-
tum locally. Furthermore, it is completely deterministic and
thus suitable for MD simulations.

The question of the direction of movement of the de-
fect structures does not seem to be completely settled, be-
cause there are still some results20 contradicting experimental
work19 and earlier theoretical studies.16–18 Our MD simula-
tions show that in fact flow has a significant impact on de-
fect structures around a colloidal particle. In a Boojum de-
fect topology the upstream lobe is swept away by the flow,
while the downstream lobe grows in size as E grows. A Sat-
urn ring is instead convected downstream and deformed into
a stomal defect. Our results are in agreement with the exper-
imental observations19 that Saturn ring defects move down-
stream accompanied by a deformation of the defect.

We also study flow-induced modifications of topological
defects generated by Janus colloids.28 We find that hydrody-

namic flow can destroy a Boojum lobe when it faces the up-
stream direction, and that a Saturn ring is deformed into a
stomal defect.
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