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Starting from a relaxation equation for the alignment tensor, an algorithm is derived which allows 
the numerical calculation of the dynamic and static behavior of the director field n with the correct 
nematic symmetry property, where n and — n are equivalent. As a first application, a two-dimensio
nal problem is treated where the typical nematic defects with half-integer winding numbers only 
occur when the algorithm with the correct nematic symmetry property is used. Furthermore, the 
method is applied to the static and dynamic behavior of a Frederiks cell with strong and weak 
anchoring.

1. Introduction

Simple differential equations can posses rather 
complicated solutions. This also applies to the equa
tions of nemato-dynamics [1-3] governing the direc
tor n which describes the local orientation of nematic 
liquid crystals. Analytic solutions can often just be 
obtained for rather special cases. Thus it is desirable to 
use numerical solution procedures for the application 
of the fundamental equations to display devices [4, 5]. 
Numerical methods are also of interest from a mathe
matical point of view [6] and for the understanding of 
the rich physical phenomena occurring when the 
molecular orientation is subjected to the competing 
influences of external fields, of walls and of flow pro
cesses [7],

It is the purpose of this article to present a numer
ical method for the analysis of the static and dynami
cal behavior of the director field n of a nematic liquid 
crystal, where the physical equivalence of n and — n is 
taken into account. This point is of little concern for 
analytic calculations where the solutions with the cor
rect symmetry can be selected by inspection or by 
making an appropriate ansatz. A numerical method 
designed to be applicable to one-, two-, and three-di
mensional problems, however, has to take the correct 
symmetry of "order parameter space" into account 
since the topological properties of defects are affected 
by the symmetry [8]. In particular, defects with half-in-
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teger winding numbers to which the nematic threads 
are attached [1, 2] occur only when n and — n are 
equivalent.

For simplicity and in order to focus on the essential 
points, the coupling between orientation and flow is 
disregarded and the elasticity of nematics is treated in 
the one-coefficient approximation. Two specific appli
cations of the numerical method are discussed. The 
first one is a two-dimensional boundary value prob
lem which shows the expected differences between re
sults obtained with the new "tensorial" algorithm and 
those found with the standard "vectorial" method. 
The second example, viz. the determination of the 
Frederiks transition for a one-dimensional problem, 
where a (partial) comparison with the analytic results 
is possible, is meant to demonstrate the reliability of 
the numerical procedure.

This article proceeds as follows. The derivation of 
the algorithm is outlined in section 2. Point of depar
ture is a relaxation equation for the (second rank) 
alignment tensor [9, 10] which allows a unified de
scription of nonequilibrium alignment phenomena 
both in the isotropic and the nematic phases of a 
liquid crystal. The standard equations of elasto-ne- 
mato-dynamics are recovered if one assumes the 
alignment tensor to be uniaxial and to posses a con
stant magnitude which is essentially the Maier-Saupe 
order parameter S. Furthermore, the tensorial equa
tion is reduced to the usual vectorial equation of the 
director field n by a projection. It is demonstrated that 
the discretization of the spatial derivatives needed for 
the numerical computations must be made prior to 
this projection if one wants to preserve the nematic
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694 A. Kilian and S. Hess ■ The Local Orientation of Nematic Liquid Crystals

symmetry inherent in the tensorial description, i.e. the 
equivalence of n and — n.

The stationary solutions of the relaxation equation 
correspond to minima of a free energy functional. The 
discretization of this quantity is also discussed.

Section 3 is devoted to the above mentioned appli
cations.

2. Derivation of the Algorithm

2.1 Relaxation Equation for the Alignment Tensor

The orientation of (effectively) uniaxial molecules 
with their figure axis parallel to the unit vector u is 
characterized by the (second rank) alignment tensor

a = C<u Mv>. (1)

Cartesian components are denoted by Greek sub
scripts, the summation convention is used for them. 
The bracket ( .. .)  indicates an average (to be evalu
ated with the one-particle distribution function). The 
symbol refers to the symmetric-traceless (irreduc
ible) part of a tensor t, e.g.

tß\< 2 ̂ t Vfl ) I (2)

where Ö is the unit tensor. The factor £ occurring in 
(1) can be chosen conveniently, its specification is not 
needed here. Of course, measurable properties are in
dependent of C- In an uniaxial state the alignment 
tensor reduces to

flMV = v /|flV »v. (3)
where the unit vector n is the director. The "magni
tude" (modulus) of the alignment tensor is

(4)

plicity. the relaxation equation for aßX reads

5 aUY , 
ta -  C5 Aaßy + <PßV -  Fmv = 0. (5)

where S = <P2 (n • u)> is the Maier-Saupe order param
eter. The factor yf\ has been inserted in (3) such that
aßVaßV = a2.

Coupled nonlinear relaxation equations for the 
alignment tensor have been derived within the frame
work of irreversible thermodynamics [9-11] and by 
starting from a generalized Fokker-Planck equation 
[12]. These equations allow a unified treatment of 
nonequilibrium phenomena in the isotropic and the 
nematic phases: the de Gennes theory for the pretran- 
sitional behavior [1, 2] and the Ericksen-Leslie theory 
for nematics are special cases of the unified theory. If 
the coupling with the flow field is disregarded for sim-

Here ta is a (phenomenological) relaxation time coeffi
cient; c0 is a bare correlation length (typically of the 
order of the length of a molecule), and A = Vk V- is the 
Laplacian. In general, additional terms [13] involving 
spatial derivatives F of the alignment tensor have to 
be included in (5) in order to recover the full anisotropy 
of the Frank elasticity involving three coefficients K,. 
For simplicity, the present analysis is restricted to the 
one-coefficient approximation with — K2= X3. 
The quantity

<P =
60

(6)

is the derivative of a (dimensionless) Landau-de Gen
nes potential 0 depending on the scalar invariants of 
aßV. A specific expression for </> is not needed here. The 
free energy density associated with the alignment is

/ LG = -A BT 0 , 
in (7)

where q is the mass density of the fluid, m the mass of 
a molecule, kR the Boltzmann-constant, and T the 
temperature. The tensor FßV is describing the influence 
of an orienting external field; e.g. for molecules with 
an anisotropic magnetic susceptibility in the presence 
of a magnetic field B. one has

F . .= U - k » T (X p ar-Z p c r^o '^ ß v  (8)

Here, / par and ypcr are the susceptibilities parallel and 
perpendicular to the molecular symmetry axis for a 
perfectly oriented sample (S =1); pi0 is the magnetic 
permeability coefficient of the vacuum. Note that /  
here is defined by Mß = Hq 1 By rather than by 
M -  Hx [3]. For an electric field E instead of a 
magnetic field B. //q 1 (/par — XPcr) is replaced by 
e0(epar — epcr) where e0 is the dielectric permeability of 
the vacuum, and £par, epcr are relative dielectric coeffi
cients. The change of a2 = a ^ a ^  with time can be 
inferred from (5) after multiplication by aßV. In a sta
tionary and spatially homogeneous state and in ab
sence of external fields this equation reduces to

1 d da
— a~ = a„v----

2 dr dt
= fl„, <f> = 0. (9)
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A. Kilian and S. Hess ■ The Local Orientation of Nematic Liquid Crystals 695

Since 0 is a nonlinear function of the alignment tensor 
(1), (2), this equation yields the equilibrium value aeq 
for the order parameter a, cf. (3).

In the nematic phase of thermotropic liquid crys
tals, the magnitude acq is practically not affected by 
applied fields [14]. External fields, however, exert 
torques which are discussed next in connection with 
the local orientation.

2.2 Equation of Change for the Director

Directional changes can be inferred from (5) after 
multiplication by C • eXx/1 axv, where eXxß is the totally 
antisymmetric isotropic tensor of rank three (with it, 
the cross product of two vectors b and c reads 
(b x c)- = zkxß bx cß). The factor C can be chosen con
veniently. The resulting equation is

C-e,
8a^
a t

= 0  (10)

since eXxß axv <PßV = 0. If one now assumes that the ten
sor aßV is of the uniaxial form (3) and that the magni
tude of a is given by its constant equilibrium value acq, 
(10) reduces to

(11)

with 

W„ = n 7i -K A (n vnß) -  yap0 1 BßBy

(12)

Due to the choice of C = 2 — /cBT, which is determined 
m

by an analysis of the free energy (Sect. 2.4), the Leslie 
coefficient y1? the Frank elasticity coefficient K, and 
the susceptibility coefficient ya associated with the 
molecular anisotropy are related to the coefficients ia,
Co' and / par -  yper by

Q
Vi = 3acq Ta-fc B T,

due to nvnv = 1 leads to the standard "vectorial" ex
pression

dn.
(15)

which is linear in n. Solution of the equation Wß = 0 
subject to the constraint nß nß = 1 is the usual way to 
treat nemato-dynamics (in the one-elasticity coeffi
cient approximation).

In the mathematical literature [6, 15], the study of 
the equation zln = 0 with the constraint nß nß = 1 is 
often called the "liquid crystal problem". As already 
mentioned in the introduction, the physical equiva
lence of n and — n is not apparent in the standard 
approach. In the vectorial description, which is more 
appropriate for a ferro-magnetic system, n can be rep
resented by a point on the two-sphere S2. For the true 
nematic symmetry it is to be represented by a point on 
the projective two-plane P2. Moreover, it was recently 
shown that there are conceptional problems with the 
derivation of a macroscopic director from an ensem
ble of molecular directors within the framework of 
statistical physics [16].

Next, it is demonstrated that a spatial discretization 
needed for a numerical method which starts from (12) 
rather than from (15) maintains the nematic symme
try.

2.3 Spatial Discretization

For the numerics, the rectangular coordinates r , 
p. = 1, 2, 3 are discretized according to rß = ißöl with 
integers iß. The length öl is the distance between the

a2lattice points. The second spatial derivative a

function G at the point i is approximated by

a2
öl~2[G(il -1-1, i2, i3) + G(il — 1, i2, i3) 

— 2G(i\, i2, i3)]. (16)

K = 3a2 £2- k BT, (13)

= ĉq t (/par /per /per / '

The special choice of £ = sj^- used in (9)-(13) leads to
a2q = 5S2. .

Use of nv — n = 0 and
a t v

ex*k nx(nvA(nx,nß) -  Anß)= 0 (14)

This expression follows from an expansion of the func
tion G at the lattice positions with ix ± 1, i2, i3 around 
h » h> where terms of the order öl4 are disregarded.

a2 a2
Analogous expressions hold for —r and —̂  needed

ar2 a r3
in the Laplacian occurring in (12) and (15). For 2-di- 
mensional problems, the discretization error can bc 
reduced to the order öl8 if (16) is replaced by an ex
pression involving four more neighbors [17]. The spa
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696 A. Kilian and S. Hess ■ The Local Orientation of Nematic Liquid Crystals

tially discretized version of Wß = 0 with Wß given by 
(12) is

y, -  n„(i) -  MÖ 1 U Bß Bvnv(i) -K S l~ 2 Dj(i) = 0, (17) 

where Dß is an abbreviation for

D id ,, h , i3) = {«vO't +1. »2. 'a) «„('i + 1. '2» »3) (18) 
+ nv(/1- l , i 2,»3)"M(ii-l,i2 .'3 )}  

•nv(/1, i2, i 3) - 2 ^ ( j 1, i2, i 3) + ... .

The ellipses in (18) stand for the analogous terms in
volving 1*2 i  1 and /3±1 corresponding to the spatial 
derivatives with respect to r2 and r3 needed for two- 
and three-dimensional problems, respectively.

The spatial discretization of Wß — 0, cf. (15), leads 
to an equation like (17) but with DJß replaced by

DjO'x, i2, i3) = + i2,i3) + "„(»'1-1. «2» '3)
- 2 n ß(il , i2, i 3) + ... . (19)

Again, the ellipses stand for the analogous terms in
volving i2 + 1 and i3 ± 1. The superscripts "T" and "V" 
in (18) and (19) refer to "tensorial" and "vectorial" 
since (18) preserves the tensorial symmetry. If the vari
ation from one grid point to its neighbors is small, one 
has nv(/1? i2, i3) nv(i{ ± 1, i2, t3) % 1, and DTß reduces to 

On the other hand, for directors which enclose 
angles > 90 at adjacent grid points, the difference 
between (18) and (19) is really crucial. In particular, 
antiparallel neighbors are treated like parallel ones 
according to (18), but not to (19).

For a given initial condition, the first order differen
tial equation (17) can be integrated by standard tech
niques. The simplest approximation is the replace
ment

where n"cw is the value of nß at the next time step 
t +- St. This leads to the iterative algorithm

n : r  = {nß + öt 7 r 1 [K SI ~2 D J + Pö1 Xa "v Bv Bß]}, (20)

where it is understood that nß and Dß arc to be taken 
at the lattice points , i2, /3, and /. is determined by 
the constraint nßnß = 1.

With the abbreviations

*ß = 6 ty ;1 n ö ^ B 2

(21)

(20) can be rewritten as

= X {(l-2da) nß + a [2d<nßnv> + ßBßBv] nv},
(22)

where <nß/?v> is the average over all 2d nearest neigh
bors on a (/-dimensional rectangular lattice and B is a 
unit vector parallel to the magnetic field B.

This equation shows clearly that the action of the 
nematic environment <nßnv), considered as a mean 
field, on a "computational molecule" is of the same 
(tensorial) types as the action of an external field B.

Fastest convergence is achieved by the choice of 
2d y. = 1. This implies a time scaling of

YlSl2 1dt = ------  = ---T.
2d K 2d a 

and (22) reduces to

SI^

to,

n:r~ = /.j< n ßnY) + -  Bß Bv\n v;

(23)

(24)

ß depends on the material parameters and the length 
scale like

„ 7 j l  , ■ 01 ß = ' B — sign(y.d) ~t2 •> 
Ho K Cb

(25)

where the magnetic coherence length c,B is defined by 
[1,2]

Z i2 = t*öl M  B2K~*. (26)

For nematics with /? < 0, i.e. with a negative an
isotropy of the magnetic susceptibility, ya < 0, how
ever. a modification is needed for reasons of numerical 
stability. More specifically, (22) is rewritten as

= ;.{(1 - 2  dot + otß) nß + <x2d(nß nv> 
- a  ß(nß - B ßBvnv)}. (27)

Here, the negative action of the magnetic susceptibil
ity on the vector BßBvnv is substituted by a positive 
action on the complementary vector (/a < 0 leads to 
- x ß > 0 ) .  The choice of (1 -  2d a + a ß) = 0 yields 
fastest convergence; but now, the implied time scaling 
depends on the strength of the external field like

St = 7i SI2
2 Sil2 '2d K — ya Bz SI

(28)

w hich means that strong fields cause an effective slow
ing down of the iteration.

For an electric field E instead of the magnetic field 
B. 1 and ya have to be replaced by the dielectric
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697 A. Kilian and S. Hess ■ The Local Orientation of Nematic Liquid Crystals

permeability coefficient e0 of the vacuum and by ca, 
the anisotropy of the relative dielectric coefficient, re
spectively. In the absence of an external field one has
ß = 0.

2.4 Free Energy

The stationary solution of (5) corresponds to a (lo
cal) minimum of the free energy F = j / adr3, with the 
free energy density

/a = -  kB T[0 -  F a + (F; a .)]. (29)m

As indicated in (6), the quantity <PßV occurring in (5) is 
the derivative of 0 with respect to the alignment ten
sor aßV. For a uniaxial alignment with constant order 
parameter acq, (29) reduces to

/ a — — kBT(f) + f ° r, (30)m

where the orientational part of the free energy density

+ iK V x(nßnv)Vx(nßnv). (31)

Due to 7x(nß nv) Vx(nß nv) = 2 F- nß FA nß, (31) is equiva
lent to the standard expression for f ° r in the one-coef
ficient approximation [1-3]. The factors occurring in 
(8) and (13) have been chosen such that (31) follows 
from (29). 0

If the first spatial derivative —— of a function G is
crdtscretized according to 1

—  G % s r 1 [GO, + 1, i2, i3) -  GO,, i2, i 3)],
drx

the discretized version of the integral over (31) is 

K. Öl
\ f ; r dr3 = - — £ Z U Y T -  ß(Bßnv)2] (32)

 ̂ 'i h '3

with

y T(i i , '2' h) = d ~ K(»i + T i2, i 3) nß{il , i 2, i3)]2
- . . . ,  (33)

where d is the dimension and the ellipses stand for 
analogous terms involving i2 + 1 and i3 + 1 needed 
for two- and three-dimensional problems. The energy 
equation (33) refers to a liquid crystal with the size öl 
in each omitted dimension and has therefore to be 
multiplied by a suitable factor to match the desired

Energy of distortion between 2 neighbors

1.0

.5

.0

Fig. 1. Tensorial and vectorial form of the anisotropic en
ergy between a pair of computational molecules. Only for 
small angles, the difference is negligible.

size. Discretization of the vectorial expression 
Vknß Vknß leads to (32) with YT replaced by

Yy(il , i2, i3) = d — (n^iy + 1, i2, i3) nß(il , i2, i3))~ .. . ,
(34)

with the ellipses meaning the same as in (33). Again, 
for nß(iy + 1, i2, i3) ^  nß(i{, i2, i3), (33) reduces to (34). 
However, for neighbors which enclose angles larger 
than about 90° the difference between (33) and (34) is 
significant. This can also be inferred from Fig. 1 where 
7 T and 7 V are displayed (for a one-dimensional spa
tial dependence) as functions of the angle if/ between 
directors at neighboring sites.

3. Applications

3.1 Relaxation after a Temperature Quench

The first application of the algorithm is the simula
tion of the relaxation process of a nematic liquid crys
tal beginning with an isotropic director configuration. 
This describes the alignment after a fast cooling down 
from the isotropic state.

The iteration was performed on a two-dimensional 
lattice with 21x21 grid points and homeotropic 
boundary conditions. The interior vectors n(i) were 
produced with the aid of a random number generator 
and a suitable algorithm that provides an isotropic 
distribution.

Figure 2 shows the director configuration obtained 
with the usual vectorial algorithm, cf. (17) and (19). It 
leads, like the corresponding differential equations

1 = vectorial, 2 = tensorial calculus

enclosed angle [degrees]
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Fig. 2. Equilibrium director configuration for a square with 
homeotropic boundary conditions, vectorial calculus. The 
director field escapes into the third dimension.

Fig. 3. Equilibrium director configurations obtained after 
1000 iterations with the tensorial algorithm. In Figs. 3-5 the 
iterations started with different random isotropic initial con
figurations. Preferential orientations and the number of de
fects (with half integer winding numbers) depend sensitively 
on the initial conditions.

(11) and (15) to a unique solution. Since this algorithm 
depends on the polarity of the vectors, a steady 
boundary conditions was chosen to allow comparison 
with analytic solutions, i.e. all boundary vectors are 
directed to the interior of the square. Here, the direc
tor field has only one possibility to minimize the con
flict caused by the contradicting boundary conditions: 
to escape to the third direction perpendicular to the 
plane.

A corresponding problem, which can be solved an
alytically, is a circle-shaped area instead of a square, 
rotational symmetry provided. The solution is an an
gle (J) of the director with the plane, that depends on 
the radius like 0(") = nj2(1 — r/R), with R the circ'c 
radius.

In contradistinction to the vectorial algorithm, the 
tensorial one leads to a great variety of different direc
tor configurations, depending very sensitively on the 
initial conditions, i.e. the initialization of the random 
number generator. Figures 3, 4, and 5 show different 
stable states. According to their initialization indices

(3, 7, 6, 8), (16. 17, 9, 20) and (14, 19, 11, 1) they have 
low, medium, and high anisotropic energies, respec
tively. cf. Fig. 6. Similar to real nematics, the director 
field is not steady, but disclinations occur. It should be 
mentioned that the configuration from Fig. 2 is also a 
stable solution of the tensorial algorithm but in con
nection with the applied initial conditions a rather 
improbable one. The states shown in Figs. 2-5 were 
reached after 1000 iteration steps. The directors in the 
corners of the squares were not used in the calculation 
but added in the figures for aesthetic reasons.

Figure 6 exhibits the effect of the disclinations on 
the anisotropic energy, cf. (33). Most of the director 
configurations with disclinations have energies lower 
than the smooth one shown in Figure 2.

However, the energy of real disclinations cannot be 
deduced in this way because the size of the disclina
tions occurring in the computer-simulation is com
parable to the lattice-spacing öi whereas the real 
disclination core is rather within the range of molecu
lar dimensions, which causes quite different energies.
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Fig. 4. Same as Fig. 3 but with different random initial con
figurations.

5 10 15
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Fig. 6. The equilibrium anisotropic energies of different di
rector configurations found after 1000 iterations starting 
from different random initial configurations labeled by the 
numbers 1 to 21. The final configurations shown in Fig. 3 
correspond to the numbers 6, 8, 3, 7; those of Fig. 4 to 9, 20, 
16, 17, and those of Fig. 5 to the initialization numbers 11,1, 
14, 19. Dashed, the energy of Fig. 2 (vectorial calculus).

Furthermore, a possible biaxiality and a spatial varia
tion of the order parameter is not taken into consider
ation here [18].
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Fig. 5. Same as Figs. 3 and 4 with different random initial
configurations.

3.2 Simulation of a Frederiks Cell

This example is meant to check the reliability of the 
program with respect to the Frederiks-threshold, to 
demonstrate the dynamical behavior of the relaxation 
process, and to examine the effect of weak anchoring 
on the response function to an external field

The calculations were done in one dimension, 
which is well applicable to usual Frederiks cells, where 
the thickness of the nematic layer is small compared to 
the cell dimensions, and where the applied field pre
vents disclinations, such that the director field may be 
considered homogeneous in the planes parallel to the 
anchoring surfaces of the cell.

3.2.1 D irec to r P rofile

The Frederiks cell is characterized by parallel 
boundary conditions and an external field perpendic
ular to the boundaries. The coordinates need not to be 
specified here because the three Franck elastic con
stants are assumed equal. The case ß > 0 (ya > 0) was 
considered, where the director wants to be parallel to 
the applied field. Some technical details on the calcu
lation of the equilibrium profile are in order. First, the 
threshold field was determined by a routine which
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Fig. 7. Equilibrium director profiles of a (one-dimensional) Frederiks cell for various field strengths B > Bfred as a 3 D-Plot. 
Even for angles up to 70°, the profile is sine-shaped.

searches for the field where the maximum value of the 
component of the director parallel to the applied field 
has a prescribed small but nonzero equilibrium value 
(e.g. 10~3) with a prescribed variance (±10~5). Then 
the field strength was increased in small steps and the 
equilibrium profiles were calculated for the various 
values of the field. Every 100th time step, the director 
field was compared with the previously stored config
uration; if the change of any component at any site 
was smaller or equal a prescribed variance (typically 
10-5), the iteration was terminated.

Analytically, the behavior of the Frederiks cell 
slight above the threshold field, ß fred, can be found by 
the use of the "small angle approximation", which 
yields, in the limit of small distortions, a sine-shaped 
spatial dependence of the angle cp between the director 
n and the easy direction.

Figure 7 shows the director profile of a Frederiks 
cell for an external field strength ß = 1... 4 ßfred. It is 
to be seen that the small angle approximation even 
holds for distortion angles 70 , corresponding to a 
range of the applied field up to twice the Frederiks 
threshold.

3.2.2 D ynam ics of the R e laxation  Process 
at D iffe ren t Field S tren g th s

It is well known that the director profile of a Fred- 
eriks cell as a function of the external field describes a 
phase transition of the first kind [1, 2], with a critical 
value Bfrcd below which the applied field does not 
affect the nematic layer: BfTCd depends on the material 
properties like

n (K
ßfred = /'0 " £  ' I ~ (35)

Xa > 0 and strong anchoring provided. With it, (25) 
can be generalized to

ß-=-  W  
U x t

where the generalized force X is either an electric or a 
magnetic field strength.

Figure 8 shows the number of time steps needed for 
the relaxation process as a function of the field 
strength. As an example, inserting the material 
parameters of a typical room temperature nematic
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Number of time steps needed for the relaxation

.10E+06 - 
.90E+05 -#- 
.80E+05 4j- 
.70E+05 -j j- 
.60E+05 4j- 
,50E+05# 
.40E+05- 
.30E+05- 
.20E+05 - 
.10E+05 -J- 
.00E+00 -

1.5
B / B fred

Fig. 8. Number of iteration time steps needed to reach the 
equilibrium state as a function of the applied field strength.
The relaxation time diverges for B 
down).

ßfred (critical slowing

.40 .50 .60 
/ B fred - 1

Fig. 9. Same information as in Fig. 8, but now the inverse 
number of time steps is plotted versus B/B(red — 1.

such as MBBA or 5 CP, 0.1 Pas and
K »  10-10"12 N into (23), assuming a cell thickness 
of L = 20 pm and a lattice spacing of öl = 250 nm one 
obtains a time step of öt «  0.3 ms.

The divergence of the relaxation time at the critical 
field is well known as "critical slowing down". Gener
ally, the relaxation time depends on the relative differ
ence from the critical point XCTit like [17]

Maximum speed of the director rotation

T = C
X 

X „,;
(36)

with C a constant depending on the units and X a 
generalized force; y depends on the special type of the 
phase transition. Here, it was found that (36) applies 
with y = — 1. This is evident from Fig. 9 where the 
inverse number of the iterations needed at different 
field strength B > B(red is displayed as a function of 
B/Bfred— 1. The steps in the curve at high field 
strengths are due to the fact that the equilibrium con
dition in the computer program was checked every 
100th iteration.

Referring to the speed of the relaxation process, it is 
not surprising that the iteration exhibits an exponen
tial slowing down, at least near the equilibrium. Fig
ure 10 shows the speed of the iteration (defined as the 
maximum of the change of any component of the 
director at any site) for a two-dimensional liquid crys
tal as e.g. in Figs. 2-5 in absence of external fields as 
a function of the iteration number, i.e. its time depen
dence. The irregularities are due to the random 
"isotropic" starting condition.

J§->

200 300 400 500 600 700 800 900 1000 
Iteration number

Fig. 10. The speed of the iteration for the relaxation of a 
two-dimensional liquid crystal which leads to a state as 
shown in Figs. 3-5 is an exponential function (log. scale) of 
the number of iterations performed after the initialization.

3.2.3 F re d e rik s-T h re sh o ld  of a Cell 
w ith Weak A nchoring

The physics of the anchoring process, i. e. the inter
action between the walls and the nematic fluid, is not 
yet well understood. Different forms of boundary con
ditions have been proposed [19].

Here, the weak anchoring was realized by altering 
the length of the boundary vectors, |nw| < 1. This 
could either be understood as the influence of an inter
mediate layer near the wall with an elastic constant 
Kw = |nw| • K, where K is the Frank elastic constant 
in the bulk. Alternatively, irregularities of the an-
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Response functions of the Frederiks cell 

for different anchoring strengths

Fig. 11. Response functions for weak, medium, and strong 
anchoring Kw/K = |nw| = 0.1/0.55/1.0). Diminishing the an
choring strength causes a shift of the response function with
out altering its shape.

Critical Field

.40 .50 .60 .70 
Anchoring Strength

.90 1.00

Fig. 12. Influence of the coupling constant between the bulk 
and the boundary on the threshold field, for a thickness of the 
wall layer R = 1/80 of the cell thickness.

choring surface may diminish the order parameter a at 
the boundary and therefore the length of nw, cf. (3), 
(4).

To examine the effect of weak anchoring on the 
director profile it is sufficient to focus on the center of 
the nematic layer. The an«!e between the director field 
in the middle of the cell and the easy direction will be 
referred to as the response function. Figure 11 shows 
the response functions for different degrees of an
choring, |n%N | = 0.1 ... 1. The applied field strength is 
measured in units of the theoretical value of the 
threshold field. (35). The response function for |nw| =1 
(strong anchoring) should meet the x-axis at Bf

B(rcd = 1. Slight differences are due to the discretiza
tion error (a field length of 80 was used) and to the 
finite computing time.

The first result is, that weak anchoring causes a shift 
of the response function but practically does not alter 
it's shape. Second, the coupling constant between the 
bulk and the boundary has not much influence on 
the threshold field, cf. Fig. 12, at least for the ratio 
R/L = 1/80 used here. In experiments, the thickness R 
of the wall layer was found to be in the range of 0.3 pm 
[20], so that the data obtained here are appropriate for 
cells with L % 20 pm.

4. Concluding Remarks

Starting from a relaxation equation for the align
ment tensor, an algorithm has been derived which 
allows the numerical calculation of the dynamic and 
static behavior of the director field n with the correct 
nematic symmetry property where n and — n are 
equivalent. So far, the special case of the one-coeffi
cient approximation for the Frank elastic energy has 
been treated. The generalization to two different coef
ficients, in particular the case where one has 
K! = K3 ^  K2 is straight forward. For the general 
case of three different elasticity coefficients K l , K2, 
K3 one has to start from equations which also involve 
the 4lh rank alignment tensor [13].

The extension to cholesterics is desirable and seems 
to be feasible.

The applications considered were meant to show 
the difference between the conventional vectorial al
gorithm and the new tensorial one which is essential 
for the occurrence of the defects typical for nematics, 
as displayed in Figs. 3-5, and, secondly, the appli
cability of the method to a quantitative analysis of the 
static and dynamic response of the local orientation 
subjected to an external field. So far, a Frederiks tran
sition was studied. In view of the interest for display 
applications, the study of the 7r-cell and analogous 
devices [21] as well as of supertwisted cells is desirable. 
Furthermore, the director field under the influence of 
a strong laser field as observed in nonlinear optical 
experiments [22] can be treated. For the direct com
parison with the experiments, also the optical proper
ties have to be calculated from the director field. A 
simple modification of the boundary layer was consid
ered here. The method also allows a more systematic 
analysis of the effect of modified boundary conditions.
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(e.g. caused by scratches, imperfections, and modula
tions of the anchoring of the molecules of a surface) on 
the behavior of a nematic cell.
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