
Learning Control and Inertial Realtime
Gait Analysis in Biomedical Applications
Improving Diagnosis and Treatment by Automatic Adaption and Feedback Control

vorgelegt von
Dipl.-Ing. Thomas Seel
geboren in Magdeburg

von der Fakultät IV – Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
– Dr.-Ing. –

genehmigte Dissertation

Promotionsausschuss:
Vorsitzender: Prof. Dr.-Ing. Clemens Gühmann
Gutachter: Prof. Dr.-Ing. Jörg Raisch
Gutachter: Prof. Dr.-Ing. Dirk Abel
Gutachter: Dr. Juan C. Moreno Sastoque
Tag der wissenschaftlichen Aussprache: 15. Dezember 2015

Berlin 2016





In memory of my dad.





Abstract

Improved medical diagnosis and treatment can be achieved by combining modern
technologies with well-developed methods. This dissertation aims for deriving new
methods that facilitate the use of inertial measurement units and learning control
techniques in biomedical systems and at demonstrating how advanced diagnosis and
treatment systems can be designed by incorporating these technologies.

To this end, a modular set of novel methods for inertial realtime gait analysis
is proposed. This includes methods for the detection of characteristic gait events
as well as for realtime assessment of the foot orientation. Moreover, methods for
joint axis and position estimation are derived that exploit the kinematic constraints
induced by the joint, and methods for flexion/extension joint angle measurement are
proposed. All of these methods avoid the use of magnetometers and can therefore
be used indoors as well as in the proximity of ferromagnetic material and magnetic
disturbances. Furthermore, they supersede precise sensor mounting requirements as
well as restrictive calibration protocols and automatically adjust themselves to the
user. For each of the new methods, a practical proof of concept is provided by means
of gait experiments with healthy subjects, stroke patients, or transfemoral amputees.

Just as inertial sensing, Iterative Learning Control (ILC) is considered a promising
tool for biomedical application systems by a growing number of researchers. This
dissertation addresses the fact that classic ILC theory is technically too restrictive for
some of these applications and extends the classic ILC design in the lifted-systems
framework to the class of repetitive trajectory tracking tasks with variable pass
length. Two standard learning laws are considered. The maximum-pass-length error
is introduced as a useful concept for convergence analysis of variable-pass-length
systems, and necessary and sufficient conditions for monotonic convergence of this
error are derived. All results are summarized in a set of practical control design
guidelines.

The potential of ILC for biomedical systems is then demonstrated using the ex-
ample of a continuous blood pressure measurement technique that requires precise
control of the blood flow through a superficial artery. This dissertation demon-
strates that the controller performance, and thus the measurement accuracy, can
be improved by exploiting the repetitive nature of the control problem. A learning
cascaded controller is designed and evaluated experimentally.

In a second application example, methods from inertial gait analysis and ILC
are combined to propose an adaptive system for improved treatment of the drop
foot syndrome via functional electrical stimulation (FES) of the peroneal nerve. A
novel three-electrodes setup and a piecewise linear controller output mapping are
proposed to provide two independent FES parameters, which are manipulated by
a decentralized ILC scheme to control the pitch and roll angle of the paretic foot
during swing phase. Experiments with stroke patients demonstrate that this closed-
loop approach allows the system to quickly adjust the FES to the patient’s needs
and to compensate changes in muscular tone and fatigue automatically.
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Zusammenfassung

Viele medizinische Diagnose- und Behandlungssysteme können verbessert werden,
indem moderne Technologien mit Methoden kombiniert werden, die diese Technolo-
gien optimal einsetzen. Diese Arbeit stellt neue Methoden vor, welche die Verwend-
barkeit von Inertialsensorik und lernenden Regelungen in medizinischen Systemen
verbessern. Darüber hinaus wird anhand zweier Anwendungen aufgezeigt, welche
Fortschritte sich durch den Einsatz dieser Technologien erzielen lassen.

Zunächst wird eine Reihe neuer Methoden für die inertialsensorbasierte Echtzeit-
Ganganalyse entwickelt. Dies umfasst Verfahren für die Gangphasenerkennung und
die Echtzeitmessung von Fußorientierungswinkeln und Kniegelenkwinkeln sowie für
die automatische Bestimmung lokaler Gelenkachsen- und Gelenkpositionskoordina-
ten durch Ausnutzung kinematischer Zwangsbedingungen. All diese Verfahren ver-
zichten auf die Nutzung von Magnetometermessdaten und können daher in Gebäu-
den sowie in der Nähe ferromagnetischer Materialien und magnetischer Störfelder
eingesetzt werden. Des Weiteren ermöglichen sie dem Sensornetzwerk, sich automa-
tisch an den Nutzer anzupassen, wodurch bislang übliche Restriktionen bezüglich
exakter Sensoranbringung oder präzise auszuführender Kalibrierungsbewegungen
entfallen. Für jede der neuen Methoden wird in experimentellen Untersuchungen
der Fortschritt gegenüber dem Stand der Technik aufgezeigt.

Neben der Inertialsensorik gelten auch die iterativ lernenden Regelungen (ILR) ei-
ner zunehmenden Zahl von Forschern als vielversprechendes Mittel zur Verbesserung
medizinischer Diagnose- und Behandlungssysteme. Da die klassische ILR-Theorie für
viele biomedizinische Anwendungen zu restriktiv ist, erfolgt in dieser Dissertation
eine Erweiterung dieser Theorie auf sich wiederholende Folgeregelungsaufgaben mit
variabler Zyklusdauer. Es werden entsprechende Modifikationen zweier klassischer
Lerngesetze vorgeschlagen und Kriterien für die monotone Konvergenz mehrerer ge-
eigneter Regelabweichungsmaße hergeleitet. Alle Erkenntnisse werden schließlich in
einem Satz von praktischen Reglerentwurfsempfehlungen zusammengefasst.

Die Verbesserungsmöglichkeiten, die sich durch den Einsatz iterativ lernender Re-
gelungen ergeben, werden am Beispiel eines neuartigen kontinuierlichen Blutdruck-
messverfahrens aufgezeigt, welches die präzise Regelung des Blutflusses durch eine
oberflächlich verlaufende Arterie erfordert. Die vorliegende Dissertation zeigt, dass
die Wiederholbarkeit der Regelungsaufgabe ausgenutzt werden kann, um die Regel-
güte – und somit die Genauigkeit des Messverfahrens – zu verbessern. Dazu wird
eine lernende Kaskadenregelung entworfen und experimentell evaluiert.

Abschließend wird eine zweite Anwendung betrachtet, in der die Kombination
von ILR und inertialsensorbasierter Echtzeit-Bewegungsanalyse zu einer verbesser-
ten Behandlung von Fußheberschwäche führt. Durch eine neuartige Elektrodenan-
ordnung für die funktionelle Elektrostimulation des Peronaeusnervs und mittels ge-
eigneter Stellgrößenentkopplung gelingt die Implementierung dezentraler iterativ ler-
nender Regelungen, welche die Fußorientierungswinkel während der Schwungphase
des paretischen Fußes regeln. In Experimenten mit Fallfußpatienten wird gezeigt,
dass die lernende Neuroprothese sich innerhalb weniger Schritte den Bedürfnissen
des Patienten anpasst und muskuläre Veränderungen automatisch kompensiert.
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In favor of We

Dear reader, the following pages contain research results, derivations and discussions,
which I hope you find both comprehensible and enlightening. I would like to invite you
to go through the pages with me and read every section as if it was you and me who did
this research in the moment you read it. When you read a mathematical argument, I do
not want it to sound like something I derived long time before you read that line. (You
and me know very well that is true, so there is no reason to emphasize this fact.) When
you read the description of an experiment, I do not want it to sound like a retrospective
report of something that happened in the past. Instead, I want to invite you on a
journey on which we derive these equations and perform these experiments together and
experience every step as if it would happen at the time you read the lines.

Why would I like to do so? Because it is more inviting and more including than a sheer
report of the research I did during the last years. If I had tried to do the latter, I
had followed some of the rather antiquated style guides that recommend you to string
together sequences of facts and to use passive voice to avoid first person pronouns at all
cost. I would exanimate every sentence by making sure that everything is done while
nobody does anything; I would assure that the chapters are concerned with certain issues,
while nobody addresses these issues in the chapters; and I would make every equation
follow from another one, while nobody ever derives or combines equations. If I shall ever
write paragraphs for an encyclopedia, I may do so. But this dissertation was written
to describe a process of gaining knowledge and developing solutions, rather than just
presenting the results of both. Therefore, I will use the pronoun we in the following, and
it will not mean the royal we. It will mean you, my dear reader, and me. Furthermore,
I will use present tense, and it will mean that we carry out all steps and acquire all
knowledge together, as you read. This is the way some of the best publications I read
are written, and this is the way I would like to have a thesis written when I read one.

You might disagree. You might argue that this is bad style according to some guide
you read or some person who taught you to avoid the use of we. In that case, I truly
hope you forgive me. I enjoy reading style guides, and I have read quite a few that
tell you to ban this pronoun from your scientific writing. However, I never found a
compelling argument for this dogma. Most of them refer to multi-author publications
and talk about the ambiguity of whom the pronoun might refer to. A few of them claim
that using this particular form of we sounds condescending to the reader. I have never
felt that way when reading publications written in this style. In contrast, I have often
felt like becoming part of the research I was reading about. Since you are most likely a
scientist, my choice of style will not influence the facts and knowledge you extract from
the lines. It will, however, change the way you experience them.



If you have agreed with me from the start, you may wonder why I wrote this preface.
Many modern style guides agree with us as well and even encourage authors to overcome
the antiquated dogma. However, I have met a surprising number of people who judge
the style of a sentence by memorized rules rather than by its comprehensibility and
appeal. Some of them are among my best friends. I might have failed to convince them
this time, maybe also to convince you. We may never completely agree on this aspect
of style. We may, however, understand each others arguments and respect them. This
is one main reason for me to write these lines – the other is to cordially welcome you to
my dissertation, which I truly hope you enjoy reading.

Sincerely,
Thomas

P.S. Did you notice it? The other dogma of some strict style guides that I dared to
infringe? If so, please let me assure you that “But may be used to begin a sentence at
all levels of style” (The American Heritage Dictionary). Try to replace the But above
by However – it will no longer mean the same. “However indicates a philosophical sigh;
but presents an insuperable obstacle.” (St. Clair McKelway, The New Yorker)
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1 Introduction
1.1 Motivation and Overview

Biomedical engineering strives to enhance health care by the development of advanced
technical solutions for improved diagnosis and treatment of diseases and disorders. There
are two fundamental ways in which diagnosis and treatment systems can be improved:
one is by new technologies, the other is by new methods and algorithms that make the
most of these technologies. Systems and control theory can make vital contributions to
the latter aspect, since it allows us to understand and improve biomedical systems with
high complexity and challenging dynamics.

One of the latest technological revolutions is the dramatic reduction of cost and dimen-
sions of micro-electro-mechanical systems. Due to this development, inertial measure-
ment units (IMUs) have become small and lightweight enough to be used for human
motion analysis. This opens up numerous possibilities for the enhancement of existing
systems and the development of new solutions for orthopedics, rehabilitation engineer-
ing and sports medicine. However, as most new technologies, inertial motion analysis
is still subject to several limitations and currently available methods hardly meet the
particular practical demands of these application fields. The sensor units must be placed
on the body segments in predefined, restrictive positions and orientations, or a series of
precise calibration motions must be performed by the user. Moreover, most estimation
algorithms require an environment with a homogeneous magnetic field, which is hard
to achieve indoors and in the presence of ferromagnetic materials. Finally, only few
methods are currently available that estimate motion parameters in realtime, i.e. while
the subject moves.

This, however, is a fundamental requirement for the design of modern diagnosis and
treatment systems. In almost every domain of health care, there is an increased demand
for individualized solutions and treatment. But currently available biomedical systems
often require large calibration efforts and individual readjustments by experts. These
challenges can be overcome by means of systems and control theory. Using automatic
feedback control, one can design systems that adjust their parameters automatically to
the individual needs of a user and thereby optimize the treatment. In this context,
Iterative Learning Control (ILC) methods are particularly promising. However, the
classic ILC theory is technically too restrictive for many biomedical applications, in
which the human interacts with the controller and introduces additional variability.
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1 Introduction

The present dissertation aims at contributing to the continuous improvement of biomed-
ical systems and devices in multiple ways. Chapter 3 provides new methods for inertial
realtime gait analysis that overcome a number of current limitations of this technology.
In Chapter 4, the theory of iterative learning control is extended to improve its appli-
cability to systems in which the human is an essential part of the control loop. Both
inertial measurements and iterative learning control are techniques that have mainly
been used for mechanical systems and robotics in the past. It is a main objective of this
dissertation to reduce the restrictiveness of these methods and to enhance them in such
a way that they can become more useful for biomedical application systems.

Besides these methodological contributions, an equally important goal of the present
dissertation is to demonstrate how advanced solutions for diagnosis and treatment can
be developed by employing learning control methods and inertial motion analysis tech-
niques. To this end, two specific applications are considered. In Chapter 5, the measure-
ment accuracy of a novel noninvasive blood pressure measurement system is improved by
design of a learning cascaded controller. Subsequently, in Chapter 6, an adaptive neuro-
prosthesis is developed for improved treatment of the drop foot syndrome by functional
electrical stimulation (FES). Both systems are evaluated in experiments that demon-
strate the advancements one can achieve with respect to the current state of the art by
combining modern technologies with methods of systems and control theory.

1.2 Contributions to the State of the Art

As it is common practice in doctoral dissertations, I summarize the contributions of this
dissertation in an enumerated list for the reader who is familiar with both the funda-
mental concepts and the state of the art. With respect to methods of inertial motion
analysis and iterative learning control, the contributions of the present dissertation are
the following:

1. a method for realtime gait phase detection using an IMU on the foot/shoe
• the IMU is mounted in unknown arbitrary orientation and position
• the algorithm uses only measured accelerations and angular rates
• it adjusts its parameters automatically to the subject’s gait characteristics

2. a method for IMU-based realtime foot pitch and roll angle measurement
• the IMU is mounted in unknown arbitrary orientation and position
• the algorithm uses only measured accelerations and angular rates

3. a method for identification of the sensor-to-segment orientation and position

2



1.2 Contributions to the State of the Art

• the algorithm identifies the joint axis of approximate hinge joints and the
joint position of approximate hinge joints, saddle joints and spheroidal joints

• it requires one IMU on each end (segment) of the joint
• the IMUs are mounted in unknown arbitrary orientation and position
• the algorithm uses only measured accelerations and angular rates
• it uses measurement data of arbitrary motions of both ends of the joint
• it exploits the kinematic constraints that become manifest in the data

4. a method for realtime flexion/extension joint angle measurement
• the algorithm applies to joints that move approximately like hinge joints
• it requires one IMU on each end (segment) of the joint
• the IMUs are mounted in unknown arbitrary orientation and position
• the algorithm uses only measured accelerations and angular rates

5. a quantification of soft tissue motion artifacts in IMU-based gait analysis
6. a framework for the analysis of ILC systems with variable pass length

• extension of two standard learning laws to this class of systems
• derivation of closed-loop dynamics for both learning laws
• useful learning progress measures for this class of systems

7. necessary and sufficient conditions for monotonic convergence of the vector norm
of the maximum-pass-length error for a learning law without Q-filter

8. sufficient conditions for monotonic decrease of the maximum-pass-length error
norm above a potentially small threshold for a learning law with Q-filter

9. reduction of the conservativeness in matrix-norm-based convergence criteria by a
frequency-weighted indicator for the non-zero Q-filter-related residual error

10. a set of practical guidelines for the design of iterative learning controllers in the
presence of variable pass length

In addition to the above, the present dissertation also contributes to the state of the art
of noninvasive blood pressure measurement and FES-based drop foot treatment by the
following achievements:

1. a learning cascade control scheme for improved accuracy of a noninvasive, contin-
uous blood pressure measurement system

• the algorithm automatically identifies the current pulse rate
• it synchronizes the measurement cycles with the heart beat
• it learns to improve the measurement from cycle to cycle
• precise blood pressure values are obtained within three measurement cycles

2. an adaptive neuroprosthesis for improved treatment of the drop foot syndrome

3



1 Introduction

• IMU on the foot/shoe for assessment of the treatment outcome (foot motion)
• two FES channels via three electrodes to influence dorsiflexion and eversion
• two suitable parameterizations of the domain of admissible FES intensities
• decentralized ILC scheme for the pitch and roll angle of the paretic foot
• control of the entire pitch and roll angle trajectories during swing phase
• the controller achieves a desired foot motion within at most two strides
• it automatically adjusts the FES intensities to the current needs of the patient
• it supersedes manual adjustments of electrode positions and FES intensities
• it automatically compensates changes in, e.g., muscular tone and fatigue

1.3 Related Publications of the Author

The present doctoral dissertation is based in part on the publications listed below. They
are grouped by the field of research to which they contribute. The publications marked
IMU-x, x ∈ N, are contributions to the field of inertial realtime gait analysis. Some
results from these publications are presented and used in Chapter 3. The same holds,
respectively, for Chapter 4 and for the publications marked ILC-x, x ∈ N, on iterative
learning control. Below these two groups, you will find two more groups of publications,
one on blood pressure measurement (marked BPM-x, x ∈ N) and one on adaptive
peroneal stimulation (marked APS-x, x ∈ N), which are related to Chapters 5 and 6,
respectively.

[IMU-1] T. Seel, T. Schauer, J. Raisch, “Joint axis and position estimation from inertial
measurement data by exploiting kinematic constraints”, Proc. of the IEEE
International Conference on Control Applications (CCA), pp. 45–49, 2012.

[IMU-2] T. Seel, T. Schauer, “IMU-based Joint Angle Measurement Made Practical”,
Proc. of the 4th European Conference on Technically Assisted Rehabilitation,
2013.

[IMU-3] T. Seel, L. Landgraf, T. Schauer, “Online Gait Phase Detection with Automatic
Adaption to Gait Velocity Changes Using Accelerometers and Gyroscopes”,
Biomedical Engineering / Biomedizinische Techik, 59(S1):795–798, 2014.

[IMU-4] T. Seel, J. Raisch, T. Schauer, “IMU-based joint angle measurement for gait
analysis”, Sensors, 14(4):6891–909, 2014.
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1.3 Related Publications of the Author

[IMU-5] T. Seel, D. Graurock, T. Schauer, “Realtime Assessment of Foot Orientation
by Accelerometers and Gyroscopes”, Current Directions in Biomedical Engi-
neering, 1(1):466–469, 2015.

[ILC-1] T. Seel, T. Schauer, J. Raisch, “Iterative Learning Control for Variable Pass
Length Systems”, Proceedings of the 18th IFAC World Congress, pp. 4880–85,
2011.

[ILC-2] T. Seel and T. Schauer and J. Raisch, “Variable Pass Length ILC in FES-based
Drop Foot Rehabilitation”, Workshop AUTOMED, 2012.

[ILC-3] T. Seel, T. Schauer, J. Raisch, “Iterative Learning Control with Variable Pass
Length applied to FES-based Drop Foot Treatment” (in German), at – Au-
tomatisierungstechnik, 61(9):630–37, 2013.

[ILC-4] T. Seel, T. Schauer, J. Raisch, “Iterative Learning Control for Variable-Pass-
Length Systems”, International Journal of Control (under review), 2016.

[BPM-1] T. Seel, S. Weber, K. Affeld, T. Schauer, “Iterative Learning Cascade Control
of Continuous Noninvasive Blood Pressure Measurement”, Proceedings of the
IEEE International Conference on Systems, Man, and Cybernetics, pp. 2207–
2212, 2013.

[BPM-2] T. Seel, S. Weber, K. Affeld, T. Schauer, “Iterativ lernende kaskadierte
Regelung eines nichtinvasiven Blutdruck-Messsystems nach Penaz”, Workshop
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2 Fundamentals
Before we start to introduce novel concepts and develop new methods, let us briefly
review some more fundamental knowledge, which will improve our reception and com-
prehension of the following chapters. In Section 2.1, we will make ourselves familiar
with a few fundamental concepts of inertial measurement hardware and algorithms. We
will then review the classic theory of Iterative Learning Control (ILC) design in the
lifted-system framework. Finally, the concept of artificial muscle activation by func-
tional electrical stimulation (FES) will be introduced and discussed in the context of
motor rehabilitation.

2.1 Inertial Measurement Units

Inertial measurement units (IMUs), also known as inertial sensors, measure acceleration,
angular rate and the magnetic field vector in their own three-dimensional local coordinate
system. With proper calibration, the axes of this local coordinate system represent an
orthonormal base that is typically well aligned with the outer casing of the sensor. When
an IMU is rigidly attached to an object, the measured signals can be used to estimate the
orientation and velocity (and position) of that object with respect to a fixed (inertial)
coordinate system.

Currently, there is a remarkable growth in the use of inertial sensors for human motion
analysis across various application domains ranging from rehabilitation engineering and
sports research to filmmaking and video game development. Woodman [128] describes
these developments as follows: “Until recently the weight and size of inertial sensors
has prohibited their use in domains such as human motion capture. Recent improve-
ments in the performance of small and lightweight micro-machined electromechanical
systems (MEMS) inertial sensors have made the application of inertial techniques to
such problems possible.”

In the following, we will briefly review Woodman’s excellent technical report on inertial
motion analysis [128]. Thereby, we will introduce the fundamental measurement princi-
ples of MEMS gyroscopes and accelerometers, and we will discuss a few basic concepts
of strapdown inertial measurement systems, which we will need to derive and develop
new methods for IMU-based gait analysis in Chapter 3.
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m

g(t)

v(t)

v(t)

Fc(t)Fc(t)

Figure 2.1: Exploiting the Coriolis effect to measure angular velocity: A forced oscillation
(indicated by v(t) up and down) of the mass m causes another oscillation
(indicated by Fc(t) left and right, respectively) perpendicular to it. After
proper calibration, the absolute value of the angular velocity can be deter-
mined from the oscillation amplitude, while the phase difference between
both oscillations yields the direction of rotation.

2.1.1 MEMS Gyroscopes

Gyroscopes measure the angular velocity at which they rotate with respect to an inertial
frame of reference. In contrast to mechanical and optical gyroscopes, MEMS gyroscopes
are built using silicon micro-machining techniques, which results in low part counts (a
MEMS gyroscope can consist of as few as three parts) and low manufacturing costs [128].
The sensing mechanism exploits the Coriolis effect, which states that a mass m ∈ R>0
moving with velocity v(t) ∈ R3×1 with respect to a coordinate system that rotates at
angular velocity g(t) ∈ R3×1 experiences a force Fc(t) ∈ R3×1, with

Fc(t) = 2m(v(t) × g(t)), (2.1)

where the operator × denotes the vector (cross) product. The measurement principle
is illustrated for one coordinate axis (with scalar velocity v(t), angular rate g(t) and
force Fc(t)) in Figure 2.1. In a three-axis gyroscope, three of those single-axis units are
mounted such that their input axes are almost pairwise perpendicular to each other. To
compensate for mounting inaccuracies, an orthogonalization matrix is typically identi-
fied during calibration and then applied to the three-dimensional measurement output
vector.
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m

Δx(t)

Δx(t) a(t)

a(t)

Figure 2.2: Measurement principle of an accelerometer. The mass m is suspended in
such a way that it can move slightly up and down (i.e. along the input axis).
When the device is accelerated (indicated by a(t) up and down), inertia
effects cause a displacement (indicated by Δx(t) down and up, respectively)
of the mass with respect to the surrounding case.

2.1.2 MEMS Accelerometers

MEMS accelerometers contain a mass that is suspended, for example by a spring or
a cantilever, such that it is displaced when the device is accelerated. In mechanical
accelerometers, the displacement is measured directly. Surface acoustic wave accelerom-
eters, on the other hand, measure the change in frequency of a vibrating element that
is attached, for example, to a beam that bends when the device undergoes acceleration
[128]. The former is illustrated for one coordinate axis in Figure 2.2.

When the accelerometer is at rest or when it is moving at constant velocity, the mass
is only affected by gravity, i.e. it is drawn toward the center of earth. In that case,
the device measures the gravitational acceleration of approximately 9.8 ms−2 in vertical
upwards direction. Therefore, an accelerometer can yield information on the inclination
of the IMU with respect to the horizontal plane. When the device moves, however, it
measures the sum of this gravitational acceleration and the acceleration that is related
to change of velocity.

2.1.3 Error Characteristics of Accelerometers and Gyroscopes

When an accelerometer or gyroscope is not undergoing any acceleration or rotation, the
measurement output should be the zero vector or 9.8 ms−2 in vertical upwards direction,
respectively. In practice, however, an offset from these true values will be measured. The
average of this offset is called the bias of an accelerometer or gyroscope [128]. When
integrating a measurement signal affected by a (constant) non-zero bias over time, the
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result is affected by an error that grows (linearly) with time. This phenomenon is called
drift. Obviously, a constant bias error can be estimated by taking a long term average
of the measurement output whilst the device is at rest [128]. The bias can then be
compensated by subtracting it from the output. This is a standard procedure carried
out during calibration. However, as we will see shortly, the mentioned procedure only
approximates the bias error. Therefore, achieving complete bias compensation is very
difficult.

The bias is known to vary when the temperature changes due to changes in the envi-
ronment or due to sensor self-heating. According to Woodman [128], the relationship
between bias and temperature is often highly nonlinear for MEMS sensors. Many com-
mercially available inertial measurement units are equipped with on-board temperature
sensing, which some of them use to compensate (some portion of) the temperature de-
pendency automatically.

Furthermore, the bias of a MEMS gyroscope or accelerometer changes with time, even
at constant temperature, due to flicker noise in the electronics and in other components
susceptible to random flickering [128]. These bias fluctuations can be modeled as a zero-
mean, first-order random walk, which results in a second-order random walk error of the
integral. However, as Woodman [128] explains, the bias is in practice constrained to be
within some range, and therefore the random walk model is only an approximation of
the true process for short periods of time.

In addition to the bias error, the measurement output is typically perturbed by thermo-
mechanical noise that fluctuates at a rate much greater than the sampling rate of the
sensor [128]. As explained in detail by Woodman [128], this noise introduces a zero-
mean random walk error into the integrated signal, the standard deviation of which
grows proportionally to the square root of time.

Errors in the scale factors, alignments and linearities of the gyroscopes and accelerom-
eters lead to measurement errors that are collectively referred to as calibration errors
[128]. Such errors lead to the accumulation of additional drift in the integrated signal,
the magnitude of which is proportional to the rate and duration of the motions [29].
Obviously, such errors can be minimized by very precise calibration of the IMU.

For more details on the error characteristics of gyroscopes and accelerometers, please
refer to the excellent work by Woodman [128]. With respect to future deliberations on
inertial motion analysis in Chapter 3, we shall only keep in mind that the measurements
of MEMS gyroscopes and accelerometers are subject to biases that vary, for several
reasons, both on short and on long time scales.
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2.1.4 Strapdown Integration for Orientation Estimation

The orientation of (the local coordinate system of) an IMU relative to a fixed (reference)
coordinate system is determined by integrating the angular velocity signal g(t) over time.
This relative orientation can be described, for example, by a rotation matrix Rref(t).
This matrix shall be defined such that any vector x(t) in the coordinates of the moving
IMU frame becomes xref(t) = Rref(t)x(t) when expressed in the fixed coordinate system.
Obviously, this implies that x(t) = RT

ref(t)xref(t) yields the inverse transformation1, and
congruence of both coordinate systems is given if Rref(t) is the identity matrix I3×3.

In all future developments and analyses, the motion that the IMU undergoes is assumed
to be (at least well approximated by) a motion of piecewise constant angular rate and
acceleration. More precisely, denote an initial sample instant by t0 and assume that the
IMU rotates with the constant angular rate

g(t) = g(t0 + ts) = [gx(t0 + ts), gy(t0 + ts), gz(t0 + ts)]T ∀t ∈ (t0, t0 + ts], (2.2)

where ts is the sampling time and t0 denotes an initial sampling instant. Likewise,
g(t0 + kts), k ∈ N, shall be the angular rate at which the IMU is rotating during the
time interval t ∈ (t0 + (k − 1)ts, t0 + kts].

For the applications we will address in Chapter 3, it is convenient to choose the fixed
reference frame such that the local frame of the IMU and the reference frame coincide
for t = t0, which implies Rref(t0) = I3×3. Then the orientation Rref(t0 + ts) of the IMU
at the end of the subsequent sampling period is simply the rotation associated with
g(t0 + ts) from (2.2). This change in orientation shall be denoted by the rotation matrix
ΔR(t0 + ts). It is a well known fact2 of Euclidean geometry that this rotation matrix
can be calculated from the angular rate by the following equation (for a general time

1The inverse of any rotation matrix is equal to its transpose.
2See for example Woodman [128], Titterton and Weston [115] and references therein for derivations of

the given equation and of slightly different, but mathematically equivalent, expressions.
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IMU

t0 t0 + ts t0 + 2ts t0 + 3ts
g(t0 + ts) g(t0 + 2ts) g(t0 + 3ts)

ΔR(t0 + ts) ΔR(t0 + 2ts) ΔR(t0 + 3ts)

Rref(t0 + 2ts) = ΔR(t0 + ts)ΔR(t0 + 2ts)

Rref(t0 + 3ts) = ΔR(t0 + ts)ΔR(t0 + 2ts)ΔR(t0 + 3ts)

Rref(t0) = I3×3

Figure 2.3: Orientation strapdown integration requires concatenation of a series of small
rotations associated with consecutive sampling intervals. Each rotation ma-
trix transforms a vector from the local coordinate system of the IMU at one
moment in time to the local coordinate system of the IMU at a previous
moment in time, as indicated by the arrows.

instant t = t0 + kts, k ∈ N, and angular rate g(t)):

ΔR(t) := cos(||g(t)ts||2)I3×3

+
sin(||g(t)ts||2)

||g(t)||2

⎡
⎢⎣ 0 −gz(t) +gy(t)

+gz(t) 0 −gx(t)
−gy(t) +gx(t) 0

⎤
⎥⎦

+
1 − cos(||g(t)ts||2)

||g(t)||22

⎡
⎢⎣gx(t)

gy(t)
gz(t)

⎤
⎥⎦ [gx(t) gy(t) gz(t)

]
,

(2.3)

where || · ||2 denotes the Euclidean vector norm. It is important to note that this formula
yields the rotation matrix that transforms any vector from the local IMU coordinates
of a time instant (t0 + kts), k ∈ N, back into the local coordinate system of the previous
sample instant, not vice versa.

Using (2.3), we can likewise calculate the rotation matrices that correspond to the
changes of orientation associated with the angular rates measured during all follow-
ing sampling periods. The orientation matrix Rref(t) of any instant t = t0 + kts, k ∈ N,
is then simply the product of all these rotation matrices between t0 and t, as illustrated
in Figure 2.3. Therefore, the calculation of Rref(t) can be implemented by the following
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recursion:

Rref(t) = Rref(t − ts)ΔR(t), t = t0 + ts, t0 + 2ts, . . . . (2.4)

Please note that the order in which the rotation matrices are multiplied is important,
because rotations in three dimensions do not commute in general.

Since the calculation of Rref(t) requires integration of the angular rates, drift effects de-
teriorate the accuracy of the obtained orientation estimate typically within few seconds.
To compensate this effect, accelerometer and magnetometer readings are often combined
with the measured angular rates in a sensor fusion. A number of algorithms have been
proposed for sensor orientation estimation, see for example Sabatini [99] and references
therein. In most of these algorithms, the recursion (2.4) only serves as a prediction that
is repeatedly corrected based on the measured acceleration and magnetic field vector.
The drift in the inclination part of the orientation is eliminated using the assumption
that the measured acceleration is dominated by gravitational acceleration [56]. Similarly,
the estimation of the azimuth (or heading) requires the use of magnetometer measure-
ments. Therefore, time periods of strong accelerations and the presence of magnetic
disturbances (as induced, e.g., by ferromagnetic material) may limit the accuracy of the
orientation estimates, as demonstrated by Bachmann et al. [7] and by De Vries et al.
[19].

Recall that the rotation matrix Rref(t) can be used to transform vectors that are given
in local IMU coordinates into a fixed reference frame. In Chapter 3, we will exploit
this fact to determine, for example, knee joint angles and horizontal foot velocities.
However, in IMU-based gait analysis, the aforementioned limitations are of major im-
portance. Restricting the motion analysis to outdoor environments with a homogeneous
magnetic field would severely reduce its usefulness. Therefore, in Chapter 3, we will
aim at developing methods that avoid the use of magnetometer readings. Furthermore,
note that, during walking, the foot undergoes accelerations with a magnitude of several
times the gravitational acceleration. Hence, we will develop methods for foot orientation
estimation that only employ the accelerations measured during foot rest. While the foot
moves, we will use the gyroscope-based method described above and bear the fact that
the orientation estimates are only accurate on small time scales.
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2.2 Standard Iterative Learning Control

Several control problems in various application domains require the controller to repeat
the same trajectory tracking task multiple times. In such control systems, the tracking
performance can be improved by learning from previous executions by means of Iterative
Learning Control (ILC). However, for ILC theory to be applicable, certain assumptions
must hold:

• the control task repeats in trials of equal duration, which is called the pass length,
• the dynamics do not change from trial to trial, i.e. the same input causes the same

output when applied again in any of the following trials,3

• no input or output saturation shall occur.

If this can be assured, then a well-developed theoretical framework can be applied that
is briefly described (for the linear case) in the following. Prior to this, we introduce the
lifted-systems framework of linear time-invariant systems, which is known as supervector
framework in some literature and will be used for convergence analysis in the sequel of
this chapter.

Example of a Lifted-Systems Representation Consider the special case of a time-
invariant, single-input single-output, state-space system with output disturbance d ∈ R
and with sampling time ts:

x(t + ts) = Ax(t) + Bu(t), x(t0) = x0 ∈ Rr×1,

y(t) = Cx(t) + d(t), t = t0, t0 + ts, . . . .
(2.5)

Without loss of generality, the relative degree from the input u(t) ∈ R to the output
y(t) ∈ R shall be one, i.e. CB �= 0. Assume that we want to control the output y in
a time interval t ∈ [t0 + ts, t0 + nts]. Then we define the following input and output
vectors

u = [u(t0), u(t0 + ts), . . . , u(t0 + (n − 1)ts)]T , (2.6)
y = [y(t0 + ts), y(t0 + 2ts), . . . , y(t0 + nts)]T , (2.7)

which capture the entire discrete-time input and output trajectories on a finite time
interval and are called lifted signals or lifted vectors. Using the Markov parameters4 pk =

3This typically implies that the initial conditions are the same in each trial.
4i.e. the sample values of the impulse response, see for example Kailath [37]
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CAk−1B of the above state-space system, we find the lifted-system representation

y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1 0 0 · · · 0 0
p2 p1 0 · · · 0 0
p3 p2 p1 · · · 0 0
...

...
... . . . ...

...
pn−1 pn−2 pn−3 · · · p1 0
pn pn−1 pn−2 · · · p2 p1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
=:P∈Rn×n

u +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

CAx0 + d(t0 + ts)
CA2x0 + d(t0 + 2ts)
CA3x0 + d(t0 + 3ts)

...
CAn−1x0 + d(t0 + (n − 1)ts)

CAnx0 + d(t0 + nts)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
=:v∈Rn×1

. (2.8)

The vector v on the right-hand side of (2.8) is the lifted signal of the zero-input response
v(t) that is measured when the input is constantly zero, i.e. v(t) := y(t) if u(t) = 0 ∀t.
Although v is often called disturbance signal, it captures both the disturbance d(t) and
the initial condition dynamics. Note that it is assumed to be exactly the same signal
in each pass. Furthermore, note that the lifted-system matrix P is Toeplitz since the
state-space system (2.5) is time-invariant.

In the following, we consider the more general case of a system with relative degree m,
and we assume that the control task repeats in trials (or iterations or passes) of constant
finite time duration.

2.2.1 Linear ILC with Constant Pass Length

Due to the need of data storage, discrete-time is considered the natural domain for ILC
analysis [11]. For a single-input single-output system with relative degree m, let

uj = [u(t0,j), u(t0,j + ts), . . . , u(t0,j + (n − 1)ts)]T ∈ Rn×1, (2.9)
yj = [y(t0,j + mts), y(t0,j + (1 + m)ts), . . . , y(t0,j + (n − 1 + m)ts)]T ∈ Rn×1, (2.10)
v = [v(t0,j + mts), v(t0,j + (1 + m)ts), . . . , v(t0,j + (n − 1 + m)ts)]T ∈ Rn×1, (2.11)

be the lifted signal vectors (i.e. the vectors of a finite number of sequent sample values)
of the input signal, of the output signal and of an unknown (but iteration-invariant)
disturbance signal, respectively. Furthermore, n ∈ N is the pass length and j ∈ N0 is the
trial index (or iteration index or pass index). The system dynamics shall be given by

yj = P uj + v , (2.12)
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where P ∈ Rn×n is the aforementioned lifted-system matrix of the process. Furthermore,
the tracking error

ej = (r − yj) ∈ Rn×1 (2.13)

is defined with respect to a desired output trajectory r ∈ Rn×1, and the control task is to
successively, i.e. from pass to pass, reduce the error (in some norm) to a small number.
This shall be achieved by choosing an initial input trajectory u0 and by applying the
following input-update law after each trial:

uj+1 = Q ( uj + L ej ) , j = 0, 1, . . . , (2.14)

where the lifted-system matrices Q, L ∈ Rn×n are controller parameters that need to be
designed accordingly. The learning gain L is often chosen to have diagonal structure,
while the Q-filter matrix Q is typically the lifted-system representation of a lowpass
filter, or it is chosen to be the identity matrix Q = In×n, i.e. the Q-filter is not used.

The goal of the standard learning approach (2.14) is as follows: When a certain section of
an output trajectory is lower or higher than it should be, the update law (2.14) modifies a
corresponding section of the input trajectory in such a way that the output is increased
or decreased, respectively. If an adjustment was not sufficient, the deviation remains
and the input will be adjusted again, i.e. the employed learning law has integral action.
If, however, certain sections of the output trajectory perfectly track the corresponding
section of the reference trajectory, then a well-designed learning controller will try to
modify the input trajectory in such a way that these sections of the output trajectory
are influenced as little as possible.

To find out whether the learning law (2.14) yields a small tracking error, we analyze
how the tracking error changes from one iteration to the next. Combining (2.12), (2.13)
and (2.14) results in

ej+1 = r − Puj+1 − v = r − PQ(uj + Lej) − v (2.15)

with uj = P−1(r − ej − v), which yields the following closed-loop error dynamics:

ej+1 = PQP−1(In×n − PL) ej + (In×n − PQP−1) (r − v). (2.16)

From this, we conclude that the error converges to the finite value

e∞ := lim
j→∞

ej = (In×n − PQP−1(In×n − PL))−1(In×n − PQP−1) (r − v) (2.17)
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for all r, v, u0 if and only if the spectral radius

ρ(PQP−1(In×n − PL)) = ρ(PQ(In×n − LP)P−1) = ρ(Q(In×n − LP)) (2.18)

is smaller than one [75]. Obviously, this finite value e∞ is zero for all references r if and
only if the Q-filter is Q = In×n, i.e. if the Q-filter is not used.

Convergence of the tracking error to a small finite value is a valuable property. However,
it does not exclude the occurrence of large transient growth. Thus, it is instead often
demanded that the largest singular value σ̄(PQP−1(In×n − PL)) is smaller than one,
which guarantees strict monotonic convergence in the sense that

||ej+1 − e∞||2 < ||ej − e∞||2 (2.19)

holds for every trial j ∈ N0 (cf. for example [11]). For unknown v, this condition is also
necessary, which can be seen, for example, by choosing v such that e0 = (r − Pu0 − v)
points into the direction of maximum gain of (PQP−1(In×n − PL)). Also, please note
that the monotonic convergence condition might be rewritten in any other vector norm
and its induced matrix norm.

At the end of this brief introduction to convergence analysis of iterative learning control
systems, we shall note that the results discussed above represent only a very small por-
tion of the state of the art in ILC theory. Thanks to numerous contributions of many
researchers, a rich body of methods exists for various implementations and frameworks
of iterative learning control. For further reading, please refer, for example, to the mono-
graphs by Rogers et al. [94] and Moore et al. [63] as well as to the excellent research
articles by Freeman [30], Galkowski et al. [32], Norrlöf and Gunnarsson [75], Owens and
Hätönen [78] and Paszke et al. [82].

Despite the large body of work on ILC theory, there is currently no method that as-
sures monotonic convergence for ILC systems in which the pass length n varies from
trial to trial. In Chapter 4, we will discuss that this is an important phenomenon in
many biomedical application systems. We will thus extend the methods described above
to variable-pass-length systems in Chapter 4, and we will use these new methods to
develop an adaptive gait neuroprosthesis based on functional electrical stimulation in
Chapter 6.
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Figure 2.4: Sequence of conventional bi-phasic pulse waves applied at a stimulation fre-
quency fFES. Each pulse wave consists of two pulses with equal shape but
opposite sign (current amplitudes i1, i2 and pulse widths Δt1, Δt2), which
assures a zero net current.

2.3 Functional Electrical Stimulation

Functional electrical stimulation (FES) is a technology that enables the artificial activa-
tion of muscle contraction by applying tiny electrical pulses via skin electrodes with an
adhesive, conductive gel layer. Alternatively, these pulses can be applied via implanted
electrodes. However, due to the risk of complications associated with surgery and im-
plants, the noninvasive method is often preferred. Thus, we restrict our discussion to
FES via skin electrodes, although many of the following statements and arguments hold
equally for FES applied via implanted electrodes.

When using skin electrodes, 20–50 rectangular current pulses per second are typically
applied between a pair of electrodes, with each pulse having an amplitude of less than
a tenth of an Ampere and a pulse width of less than half a millisecond. If the current
amplitude of the pulses is above a threshold of about 5 mA (at a typical pulse width of
about 100 μs), each pulse triggers a bunch of action potentials in subcutaneous efferent
nerves located near the electrode that is acting as cathode. By increasing the frequency
or the current amplitude or the pulse width, one can trigger more action potentials and,
thereby, a stronger contraction of the muscle. By modulating these quantities properly,
it is possible to induce functional movements such as grasping, cycling, breathing, or
swallowing.

Since a non-zero net current through the body is known to cause electrolysis and tissue
damage in the long term [91], bi-phasic pulses are typically5 employed, as explained in

5see for example Valtin et al. [118] for an alternative approach
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2.3 Functional Electrical Stimulation

Figure 2.4. This pulse wave triggers action potentials in subcutaneous efferent nerves
located near any of the electrodes.

FES is widely applied in motor rehabilitation and in the treatment of motor disabilities.
Subjects with upper motor neuron lesions, for example, suffer from a limited ability to
move the affected limbs. If the associated peripheral motor nerves are still intact, then
FES can be used to recruit the muscles that these nerves innervate, to counteract atrophy
and to regain motor functions to some extent. Common examples of successful FES usage
include drop foot stimulation [54] and FES cycling for paraplegics [101]. Beyond that,
abundant research demonstrates the large potential of FES in neuroprosthesis design, see
for example Peckham et al. [84] and references therein, as well in a number of applications
beyond the restoration of skeleto-motor functions [97].

2.3.1 Limitations of Functional Electrical Stimulation

The aforementioned potential of FES is limited in several ways. For example, it is
important to note that FES typically also triggers action potentials in the afferent nerve
fibers of sensory nerves, which causes discomfort at medium and pain at high stimulation
intensities. This effect strongly limits the amount of joint torque and force that can be
generated by FES. In most subjects, however, the sensation is weak enough to allow
the generation of functional movements without discomfort. In subjects with a very low
FES tolerance, desensitization can be achieved, to some extent, by repeatedly applying
FES with intensities at the subject’s maximum comfortable intensity.

Another severe limitation lies in the accelerated fatigue of FES-activated muscles. To
understand this phenomenon, it is crucial to know that skeletal muscles contain a mixed
population of slow fatigue-resistant (type 1), fast fatigue-resistant (type 2A) and fast
fatiguable (type 2B) motor units, where the terms fast and slow refer to the contractile
speed of the muscle fibers. The fast fatiguing fibers of type 2B are associated with large-
diameter nerve fibers (axons). These axons are more susceptible to FES than the small-
diameter axons, which are associated with type 1 and type 2A motor units. Therefore,
when current pulses of low intensity are applied, these pulses activate mainly the rapidly
fatiguing motor units. As the intensity of the pulses is increased, also the more fatigue-
resistant muscle fibers are recruited. In other words, muscle fiber recruitment by FES
follows the opposite of Henneman’s size principle [36] of natural muscle activation.

In this context, we shall furthermore note that, at constant stimulation intensity, each
FES pulse activates almost the same motor units synchronously, which further promotes
muscular fatigue. This fact is illustrated in Figure 2.5. In contrast, the central nervous
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Figure 2.5: Triggering of action potentials in nerve fibers by FES. Identical FES pulses
excite almost identical sets of mainly large-diameter axons, which are associ-
ated with fast-fatiguing muscle fibers. At higher intensities, action potentials
are also triggered in some small-diameter axons, which activate slow-fatiguing
muscle fibers. Adapted from Schauer [101].

system activates all motor units asynchronously and in an alternating fashion. Unfortu-
nately, at the current state of the art, such physiological muscle recruitment has not yet
been achieved by means of electrical stimulation.

Finally, a major challenge in the use of FES is the variability of its effect both from
one subject to another subject and in dependence of the electrode position. Abundant
research and numerous experiments have demonstrated that modifying a good electrode
position by as little as two or three centimeters can easily result in a reduction of the
joint moments and forces by more than 50%. Therefore, and due to the previously de-
scribed effects, the dynamics of FES-induced motions are typically associated with large
uncertainties and time-variance. This represents a major challenge in the development
of neuroprostheses for motor rehabilitation and for the compensation of chronic motor
dysfunctions.

When facing these challenges, one very promising approach is to design feedback con-
trollers that automatically adjust the FES to the current needs of the user. Currently
available systems for FES-based gait support, however, employ only open-loop control
strategies and do not adapt to the user. In Chapter 6, we will discuss the limited capa-
bilities of these systems, and we will develop an adaptive gait neuroprosthesis that uses
feedback control methods to overcome the discussed limitations.
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3 Realtime Gait Analysis with Inertial
Sensors

Foot and leg motion analysis plays a central role in diagnosis and treatment of walking
disabilities. Functional electrical stimulation (FES) and powered orthoses represent
effective tools for active gait support (see for example Melo et al. [61] and Moreno et al.
[68]). Both technologies rely on realtime motion assessment. The conventional method
for motion assessment is optical motion capture (OMC) by means of reflective markers
and an optoelectronic multi-camera system. However, this method has the decisive
disadvantages that it is not suitable for realtime applications and that all markers must
always be in line of sight with at least two cameras. Furthermore, it is an expensive
technology and strictly limiting in space and time, since it restricts the analysis to a
laboratory environment.

Ambulatory realtime motion capture can be performed by the use of inertial measure-
ment units (IMU). They represent an inexpensive and easy-to-handle technology without
any of the mentioned limitations of OMC. When an IMU is attached to a body segment,
it provides measurements of the acceleration, rate of turn and magnetic field vector in
its local sensor coordinate system (cf. Chapter 2).

The present chapter provides a modular set of novel methods for IMU-based realtime
gait analysis, i.e. methods that derive useful information on the current state of motion
from the present or past local measurements of one or more inertial sensors. Several
drawbacks and limitations of the current state of the art are overcome by these new
methods, especially with respect to the application of realtime control in active gait
support systems. Precisely, the chapter is organized as follows:

In Section 3.1, we will develop methods for the detection of characteristic gait events
that separate the motion of a foot during each stride into different phases. This gait
phase detection will be accomplished by realtime analysis of the measurement signals
of a foot-mounted inertial sensor. In contrast to previous approaches, we will avoid
the use of magnetometers, and we will not restrict the mounting of the sensor to certain
locations or orientations. The algorithm will automatically adapt to the subject’s walking
velocity and gait characteristics. We will demonstrate the effectiveness of this approach
in experimental trials with healthy subjects and stroke patients.

Section 3.2 is dedicated to realtime assessment of the foot orientation by means of a
foot-mounted inertial sensor. We will consider a method that uses only accelerometer
and gyroscope readings to calculate the foot pitch and roll angle, i.e. the foot orientation
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3 Realtime Gait Analysis with Inertial Sensors

angle in the sagittal1 and frontal2 plane, respectively. Since magnetometers are avoided
completely, the method can be used indoors as well as in the proximity of ferromagnetic
material and magnetic disturbances. Furthermore, we will allow arbitrary mounting
orientation of the IMU with respect to the foot or shoe. The method will be validated
with respect to an optical motion capture system in trials with transfemoral amputees
walking with shoes and healthy subjects walking barefoot, both at different velocities.

In Section 3.3, we will consider inertial measurement units that are attached to rigid
bodies, e.g. human limb segments or links of a robotic manipulator, that are connected
by hinge joints and spheroidal joints. Novel methods for joint axis estimation and joint
position estimation will be proposed that exploit the kinematic constraints induced by
these two types of joints. As before, the presented algorithms will use only gyroscope
and accelerometer readings, and they will not require any knowledge about the positions
or orientations of the sensor units with respect to the body segments. Moreover, the
proposed methods will not include integration, which implies that they will be insensitive
to measurement bias. By means of a three-links simulation model, we will validate the
methods and analyze convergence of the estimates. Finally, the algorithms will be tested
using experimental data from IMU-based human gait analysis.

Section 3.4 is concerned with joint angle calculation based on inertial measurement data
in the context of human motion analysis. As before, we will focus on methods that
avoid assuming certain orientations in which the sensors are mounted with respect to
the body segments. After a review of available approaches that may cope with this
challenge, we will derive new methods for flexion/extension joint angle measurement.
Once again, these methods will use only gyroscopes and accelerometers and will not rely
on a homogeneous magnetic field. For validation purposes, we will analyze results from
gait trials of a transfemoral amputee, in which the IMU-based methods is compared to
an optical 3D motion capture system.

Since each of the Sections 3.1–3.4 address a separate measurement task, the state of
the art will be described for each of them separately, and a short conclusion will be
provided at the end of each section. Nevertheless, all of the methods that will be derived
are closely related in the sense that they enable the precise realtime assessment of the
human gait by means of inertial sensors.

1The sagittal plane is the vertical plane which passes from rear (posterior) to front (anterior), dividing
the body segment into right and left halves.

2The frontal (or coronal) plane is the vertical plane which passes from left to right, dividing the body
segment into front (anterior) and rear (posterior) halves.
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3.1 Gait Phase Detection

3.1 Gait Phase Detection

In this section, we will use the acceleration and angular rates measured by a foot-
mounted IMU to detect four different gait phases and various transitions between those.
First, we identify useful signals with robust characteristics and discuss criteria for the
detection of the gait phase transitions. Based on these criteria, we design a threshold-
based algorithm, which is then extended to adjust its parameters automatically to the
user’s gait. Finally, we will evaluate the reliability and robustness of this algorithm in
experiments with healthy subjects and stroke patients.

3.1.1 State of the Art in Gait Phase Detection

In the literature, the definitions of gait phases and gait events vary as well as the em-
ployed sensor technologies and methods. A good review of ambulatory gait phase de-
tection can be found in Rueterbories et al. [95]. Therein, a large number of methods is
reviewed, most of which employ force-based measurements, gyroscopes, accelerometers,
tilt sensors, or inertial measurement units comprising only gyroscopes and accelerometers
(6D) or additionally magnetometers (9D).

When force sensors are positioned between the ground and the sole of the foot, the ground
reaction force can be determined. Force-based gait event detection is still considered a
gold standard and used as a reference when determining the accuracy of other methods.
However, positioning the sensors on subjects with abnormal gait is difficult [5] and
distinguishing the load changes generated during walking from those caused by weight
shifting is hardly possible [79]. Furthermore, the practical applicability of force-based
systems is reduced by the cosmetic acceptance and durability of the hardware [111].

Since they have become small and lightweight, inertial sensors represent a promising
alternative and have been used successfully by many researchers to detect gait events.
Various options for sensor placement have been investigated. For example, Sabatini
et al. [98] and Veltink et al. [119] placed one IMU on the foot, while several other
authors used two IMUs, one on the shank and one on the thigh [20, 43, 60, 126]. For
a rather exhaustive list of placements and sensor setups, please refer to the review by
Rueterbories et al. [95].

Therein, several further publications are found in which full 9D IMUs are used. Magnetic
field measurements, however, are well known to be unreliable inside buildings and in
the presence of magnetic disturbances (see for example De Vries et al. [19]). Besides,
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3 Realtime Gait Analysis with Inertial Sensors

our primary goal is to provide a gait phase detection for synchronization of functional
electrical stimulation to the human gait in neuroprosthesis, for example in the Adaptive
Peroneal Stimulator [105]. Therefore, in the remainder of this review, we focus on
methods that both avoid the usage of magnetometers and work in realtime. Mansfield
et al. [58] proposed to place an accelerometer on the trunk to detect heel contact events
in FES-assisted walking, while Shimada et al. [111] positioned the sensor on the thigh
to detect the swing phase of stroke patients. Beyond these achievements, Williamson
and Andrews [127] and Kotiadis et al. [41] detected up to three different gait phases by
placing an IMU on the shank. This suggests that a larger number of gait phases can be
detected if the sensor unit is placed closer to the foot.

In a feedback controlled peroneal stimulator, a foot/shoe-mounted IMU yields the addi-
tional advantage that the stimulation outcome, e.g. the foot orientation angles, can be
assessed directly. This setup has been proposed, for example, by Veltink et al. [119] for
automatic tuning of a two-channel implantable drop-foot stimulator. Similarly, Rueter-
bories et al. [96] suggest the use of a foot-mounted accelerometer to detect four gait
phases from inflection points and curve extrema of the acceleration vector norm. Ex-
perimental evaluation was carried out in healthy and in hemiparetic subjects. However,
the subjects only walked at a predefined cadence and at self-selected speed, respectively.
A shoe-mounted inertial sensor is also used by Negård [74] and Negård et al. [73] in
FES-assisted gait training for hemiplegic stroke patients. Four distinct gait phases are
detected. The proposed detection algorithm was validated, with respect to an insole
pressure measurement system, in five stroke patients walking with weight support on a
treadmill at constant speed.

In the following section, a threshold-based method is proposed that uses the same prin-
ciples but exceeds the state of the art mainly in two ways: It automatically adapts
its parameters to the sensor hardware and to the characteristics of the subject’s gait.
Moreover, the method neither assumes a certain sensor-to-foot/shoe mounting orienta-
tion, nor does it assume that this arbitrary mounting orientation is known. In contrast
to most previous contributions, the developed algorithm is evaluated in experimental
trials with patients walking on stairs, on a treadmill and on level ground at different
velocities and with different walking aids.

3.1.2 Novel Methods for Gait Phase Detection

We use a 6D IMU comprised of a three-axial accelerometer and a three-axial gyroscope
with a common local coordinate system. The IMU is attached to the midfoot (or re-
spective part of the shoe) in arbitrary position and orientation. That means it might be,
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Figure 3.1: Finite state automaton model (phases and transitions) of the gait cycle of
one side. During foot-flat phase, the foot rests on the ground, while it has
no ground contact during swing phase. By means of a foot-mounted inertial
sensor (indicated by gray box), all transitions are detected in realtime.

e.g., tied on the instep or hidden in the sole of a shoe. The IMU provides realtime mea-
surements of the foot acceleration a(t) ∈ R3 and angular rate g(t) ∈ R3 via a wireless
link at a sample rate of fIMU = 100 Hz, i.e. with a sample period of ts = 0.01 s.

The cyclic motion that each foot of the subject exhibits during gait is modeled by
the finite state automaton depicted in Figure 3.1. The four states of this automaton
correspond to the four gait phases, while the transitions of the automaton correspond to
the gait events that mark the beginning and end of these phases [109]. Precisely, toe-off
and initial contact mark the beginning and end of the swing phase, while full-contact
and heel-rise mark the beginning and end of the foot-flat phase, respectively. This is in
accordance with standard literature on gait analysis, see for example Perry et al. [86].
In the remainder of this dissertation, we will call every time period between a heel-rise
and the next full-contact a stride. We further denote the stride number by j, and thr,j ,
tto,j , tic,j , tfc,j denote the time instants of the four gait phase transitions of stride j,
respectively.

In the following, the accelerations a(t) and angular rates g(t) measured by the foot-
mounted IMU are used to detect the gait events defined above. This shall be accom-
plished by a threshold-based algorithm that exploits characteristic features of the inertial
signals depicted in Figure 3.2. The plot is based on a large set of data from different gait
experiments, for which the true gait phase transitions were identified either manually or
by means of a reference measurement system. It is our goal for the remainder of this
section to detect these gait events based on the depicted characteristic signals. These
signals were chosen carefully after considering a multitude of similar inertial signals. For
the sake of brevity, only the result of this process, i.e. the most useful selection of signals,
is presented here. Below we discuss how they can be calculated and used to detect the
aforementioned gait phase transitions.
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Figure 3.2: Mean (solid) and standard deviation (bands) of characteristic inertial mea-
surement signal trajectories over the human gait cycle: (a) acceleration norm
||a(t)||2; (b) angular rate norm ||g(t)||2; (c) foot tilt rate Γ (t); (d) vertical
velocity ||vff

xy(t)||2; (e) jerk norm ||da(t)
dt ||2. Vertical lines indicate the four

gait phase transitions of a typical stride: heel-rise (hr), toe-off (to), initial
contact (ic) and full-contact (fc).
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3.1.2.1 Detection of Full-Contact and Heel-Rise

For detection of foot-flat phases, we use the standard approach of defining rest bands for
the Euclidean vector norms of the measured three-dimensional acceleration and angular
rate, i.e.

||a(t)||2 ∈ [9.81 − arest, 9.81 + arest], (3.1)
||g(t)||2 ∈ [0, grest], (3.2)

where || · ||2 denotes the Euclidean vector norm and the upper bounds arest, grest ∈ R>0
represent adjustable threshold parameters.

It is important to note that the IMU yields the same measurement signals when the foot
is moving at constant velocity and orientation with respect to the ground3 and when
it is at rest with respect to the ground. However, when both signal norms remain in
their rest bands for a sufficiently large number nff ∈ N>0 of consecutive sample instants,
then the entire foot (including heel and forefoot) is most likely resting on the ground.
Whenever that is the case, the automaton should switch to foot-flat phase regardless of
the current state. Formally, this means

||a(t − kts)||2 ∈ [9.81 − arest, 9.81 + arest] ∀k ∈ [0, nff − 1]
∧ ||g(t − kts)||2 ∈ [0, grest] ∀k ∈ [0, nff − 1]
⇒ foot-flat. (3.3)

On the contrary, the automaton should transition from foot-flat to pre-swing phase, as
soon as the foot starts to move again, i.e. when the following condition holds for a single
sample instant:

foot-flat ∧ ( |||a(t)||2 − 9.81| > αhr arest ∨ ||g(t)||2 > αhr grest )
⇒ pre-swing, (3.4)

where αhr ∈ R, αhr > 1, is a hysteresis factor that prevents chattering between foot-flat
and pre-swing. The sensitivity of heel-rise detection can be increased or decreased by
choosing αhr smaller or larger, respectively. Choosing larger numbers for nff and small
numbers for arest, grest leads to delayed detection of full-contact. However, doing the
opposite increases the chances of false foot-flat detection during swing phase periods
with low acceleration and rotation. That the latter is indeed a justified concern is

3In fact, the IMU can be said to be at rest in another inertial frame of reference, which is in constant
rectilinear motion with respect to the ground.
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illustrated by the upper two subplots (a) and (b) of Figure 3.2. Both signal norms
exhibit large standard deviations during swing phase. Further analysis of experimental
data reveals that strides in which the signal norms remain close to their rest values for
a period of up to 0.1 s occur frequently in most subjects. From this we conclude that nff
should be chosen clearly larger than ten (at fIMU = 100 Hz) if slightly delayed detection
of full-contact is more acceptable than false detection of this event.

3.1.2.2 Detection of Toe-Off

Subplot (c) and (d) of Figure 3.2 show typical courses of two signals that can be used to
detect the toe-off: the tilt rate Γ (t) ∈ R, which describes the rate of change of the tilt
(inclination) of the foot, and the horizontal foot velocity norm ||vff

xy(t)||2 ∈ R≥0. When
proper heel-rise detection is established, the tilt rate can be approximated as follows:

Γ (t) :=
g(t) · φ(t)
||φ(t)||2 , φ(t) :=

∫ t

thr,j

g(τ) dτ, (3.5)

where the central dot operator denotes the scalar product and the integral may be
replaced by its discrete-time approximation. In this definition of Γ (t), we exploit the
fact that the integral φ(t) accumulates the angular rate on the time interval [thr,j , t] and,
thus, is approximately aligned with the average pre-swing tilt axis of the foot, regardless
of the local coordinate system. Therefore, no prior knowledge about the sensor-to-foot
mounting orientation is required. As Figure 3.2 c illustrates, the tilt rate Γ (t) increases
during early pre-swing, when the midfoot is tilted (the heel is lifted while the toes remain
on the ground). At toe-off (and during swing phase), the tilt rate decreases to zero (and
negative values), due to the shank swinging forward around the knee. Please note that
the accumulating approach (3.5) also works if the foot is tilted around a combined pitch
and roll axis during swing phase, as it is often the case in the paretic gait of stroke
patients, for example.

The approach fails, however, if heel and forefoot are raised at the same time, i.e. with the
sole remaining parallel to the ground. Such a motion would not precisely be a toe-off, but
rather a combined heel-and-toe-rise. Hence, an additional criterion is required, which
exploits features of the second aforementioned signal, i.e. the horizontal foot velocity
norm ||vff

xy(t)||2. Estimating this velocity, however, requires integration of the measured
acceleration in a fixed coordinate frame. Thus, a few more calculation steps are required:
During each foot-flat (ff) phase, the accelerometer readings a(t) are integrated over time
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and the resulting vector is normalized to unit length:

zff,j :=
ẑff,j

||ẑff,j ||2 , ẑff,j :=
∫ thr,j

tfc,j−1
a(τ) dτ. (3.6)

Since gravitational acceleration dominates when the foot is (almost) at rest, zff,j is
(almost) vertical. At each heel-rise thr,j , a strapdown integration of the angular rates
is restarted that yields the rotation matrix Rff(t). As explained in Chapter 2, this
matrix transforms the local measurement vectors a(t) and g(t) of any time instant
t ∈ [thr,j , thr,j+1) between two heel-rises into the local coordinate system of the IMU at
the preceding foot-flat phase. We shall therefore denote the transformed measurement
vectors by

aff(t) := Rff(t)a(t), (3.7)
gff(t) := Rff(t)g(t). (3.8)

Please recall that, in the local coordinate system of each foot-flat phase, the gravita-
tional acceleration is known. We can exploit this fact to compensate the gravitational
portion of the transformed acceleration aff(t). Obviously, the term (aff(t) − 9.81 zff,j)
then only captures the acceleration component that is due to velocity changes. Moreover,
by projection of the transformed acceleration into the horizontal plane, the horizontal
acceleration of the IMU in local coordinates of the preceding foot-flat phase is found:

aff
xy(t) := aff(t) − (aff(t) · zff,j)zff,j . (3.9)

Periodic integration of both quantities over time finally yields the velocity and horizontal
velocity, respectively, of the foot for each stride j:

vff(t) :=
∫ t

thr,j

aff(τ) − 9.81 zff,j dτ , thr,j ≤ t < thr,j+1, (3.10)

vff
xy(t) :=

∫ t

thr,j

aff
xy(τ) dτ , thr,j ≤ t < thr,j+1. (3.11)

Recall from Chapter 2 that accelerometers may not always yield signal norms of precisely
9.81 m

s2 when they are at rest. Such measurement errors cause a strong drift in the velocity
estimate vff(t), even while the foot is still resting. The projected quantity vff

xy(t) is less
affected by such measurement errors. Therefore, we will prefer to use the latter for toe-off
detection. On the other hand, and with respect to the previous discussion of combined
heel-and-toe-rise, we shall also note that vff

xy(t) is less suitable for toe-off detection in
the (very rare) case in which the foot is only raised and not moved forward.
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With both the tilt rate Γ (t) and the horizontal velocity vff
xy(t) at hand, we can now

formulate the gait phase transition criterion: Toe-off is detected when the current state
is pre-swing and one of the following conditions is fulfilled: Γ (t) falls below a threshold
Γto after having exceeded 2 Γto, or ||vff

xy(t)||2 exceeds a threshold vto. Formally, this is
expressed as follows:

pre-swing ∧
(

( Γ (t) < Γto ) ∧ ( ∃τ ∈ [thr,j , t], Γ (τ) > 2Γto)

∨ ||vff
xy(t)||2 > vto

)
⇒ swing phase. (3.12)

The sensitivity of toe-off detection can be increased by decreasing the threshold values
Γto and vto. This might eventually lead to false (early) toe-off detection, while too large
threshold values might cause the automaton to remain in pre-swing until full-contact
is detected. Since the instep and the attached IMU already move forward during pre-
swing, i.e. before the toe-off, it can be difficult to find a suitable value for the velocity
threshold vto. This issue is addressed in the following by means of a slightly more
elaborate approach.

3.1.2.3 Using Forefoot Velocity Estimates for Toe-Off Detection

The described method for toe-off detection allows for arbitrary mounting orientation,
which means it can be used regardless of how the IMU is attached to the foot or shoe.
Nevertheless, some measurement systems, for which the proposed methods might be em-
ployed, restrict the sensor mounting already by hardware design. To give an example, a
miniature IMU might be embedded into the sole or the heel of the shoe. In such systems,
the approximate position oforefoot ∈ R3 of the forefoot in the local sensor coordinates4

is typically known. This allows us to propose the following optional extension of the
described method for toe-off detection.

Using oforefoot, we can estimate the acceleration â(t) of the forefoot by subtracting the
tangential and radial accelerations caused by rotations of the IMU around the forefoot
according to the kinematic equations of rotating rigid bodies (see e.g. [38, Section

4For example, the forefoot might be approximately 8 cm in positive x-direction from the IMU. Note
that these local coordinates of the forefoot do not change with time since the IMU is attached rigidly
to the foot.
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2.7]):

â(t) := aff(t) −
(
g(t) × oforefoot × g(t) + oforefoot × dg(t)

dt

)
, (3.13)

where the operator × denotes the vector (cross) product. To perform this calculation,
the time-derivative of the angular rate is required. It can be determined, for example,
via the symmetric third-order approximation

dg(t)
dt

≈ g(t − 2ts) − 8g(t − ts) + 8g(t + ts) − g(t + 2ts)
12ts

. (3.14)

The obtained forefoot acceleration â(t) is then transformed to foot-flat coordinates and
projected into the horizontal plane:

âff(t) := Rff(t)â(t), (3.15)
âff

xy(t) := âff(t) − (âff(t) · zff,j) zff,j . (3.16)

As before, periodic integration over time yields the velocity and horizontal velocity of
the forefoot for each stride j:

v̂ff(t) :=
∫ t

thr,j

âff(τ) − 9.81 zff,j dτ , thr,j ≤ t < thr,j+1, (3.17)

v̂ff
xy(t) :=

∫ t

thr,j

âff
xy(τ) dτ , thr,j ≤ t < thr,j+1 . (3.18)

Figure 3.3 illustrates the benefits of using this approach. While the IMU already moves
during pre-swing, the forefoot starts to move just at toe-off.

Please note that using the zero vector oforefoot = (0, 0, 0)T results in v̂ff(t) = vff(t) ∀t and
in v̂ff

xy(t) = vff
xy(t) ∀t. This shall be our default parameter setting for the experimental

validation in Section 3.1.3, since it represents the more general case of unknown forefoot
position vector.

3.1.2.4 Detection of Initial Contact

Even for considerably low walking speed, the initial contact is characterized by a large
peak in the jerk norm ||da(t)/dt||2 ∈ R≥0, as illustrated in the bottom subplot (e) of
Figure 3.2. We define a threshold ric ∈ R and detect initial contact by the jerk norm
exceeding that threshold. However, jerk norm peaks may also occur at (or near) toe-off,
especially in paretic gait. Hence, we propose two additional conditions. A certain time
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pre-swing swing

vff(t)

v̂ff(t)

vff(t)

v̂ff(t)

Figure 3.3: Sensor and toe velocity during pre-swing and swing – mean (solid) and stan-
dard deviations (bands) calculated over several strides. The toe velocity
v̂ff(t), which can be calculated if the approximate local coordinates of the
forefoot are known, enables a more precise detection of toe-off.

Tsw,min ≥ 0 since toe-off needs to have passed before initial contact detection is enabled.
Moreover, the velocity ||vff(t)||2 must have fallen below a certain ratio 0 < αic ≤ 1 of its
maximum-since-heel-rise value. Formally, this is expressed as follows:

swing ∧ t − thr,j > Tsw,min

∧ ∃τ ∈ [thr,j , t], ||vff(τ)||2 > vto

∧ ||vff(t)||2 < αic max
τ∈[thr,j ,t]

||vff(τ)||2
∧ ||da(t)/dt||2 > ric

⇒ loading response. (3.19)

The underlying assumption is that the velocity norm increases at toe-off, while it de-
creases (before or) at initial contact. Please recall that a toe-off does not necessarily
imply a large horizontal velocity norm. The velocity criterion might (unintentionally) be
fulfilled by (small) signal fluctuations appearing right after a toe-off with small ||vff(t)||2.
Therefore, in (3.19), the velocity norm is furthermore required to have exceeded its toe-
off threshold vto.

If the velocity criterion and the time criterion are fulfilled when the jerk exceeds its
threshold ric, then the automaton switches to loading reponse. Obviously, the second
velocity criterion can be deactivated by choosing αic = 1. Likewise, the time criterion
can be deactivated by choosing Tsw,min = 0. The smaller we choose αic and the larger we
choose Tsw,min and ric, the more we lower the sensitivity of the initial-contact detection,
which implies that the probability of false detection decreases, while the probability of
missing an initial contact rises. If the latter occurs, full-contact will nevertheless be
detected by the criterion described in Section 3.1.2.1.
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3.1 Gait Phase Detection

Finally, we shall briefly discuss a special case that is particularly relevant for paretic gait:
When the subject stumbles, the foot might briefly touch ground and thus decelerate but
move on forward before it comes to rest. In such gait, we may choose a rather large
αic and a rather small Tsw,min. This will assure that the automaton detects already the
first (initial) ground contact, whereafter it remains in the loading-response state until
full-contact is detected.

This approach holds a decisive advantage for adaptive FES-based gait support systems
that use foot motion measurements from previous swing phases to adjust stimulation
intensity parameters. Such adjustments are typically based on the assumption that the
observed foot motion is a direct outcome of the applied stimulation and that it is not
influenced by large stride-specific forces as they appear at the described intermediate
ground contacts. With the proposed method, this assumption holds exactly for the
period of time during which the automaton is in swing phase. Hence, the stimulation
system can be designed to only consider measurement samples from the swing phase for
adjustments.
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automatic adaption of transition thresholds to current signal dimensions

(3.3) (3.4) (3.12) (3.19)

arest(t)
grest(t)

Γto,j vto,j
ric,j

Tsw,min,j

gait phase detection algorithm

adaptive
finite state
automaton

calculate characteristic signalsa(t)

g(t) ||a(t)||2 ||g(t)||2 Γ (t)Γ (t) ||vff
xy(t)||2 ||da(t)/dt||2

gait
phase

Figure 3.4: Overview diagram of the adaptive gait phase detection algorithm. The accel-
erations and angular rates measured on the foot or shoe are used to calculate
characteristic signals, which exhibit prominent features (peaks, sign changes
etc.) at gait phase transitions. These signals drive a threshold-based state
automaton, the output of which is the detected gait phase. All thresholds
are automatically adapted to the current gait velocity and signal dimensions,
which change with gait velocity and from subject to subject.

36



3.1 Gait Phase Detection

3.1.2.5 Automatic Threshold Adaption

Comparing the norm signal trajectories ||g(t)||2, ||a(t)||2 for different subjects and dif-
ferent IMUs at different walking speeds yields the following findings. The amplitudes
of signal fluctuations during foot-flat as well as the signal amplitudes during motion
vary largely across subjects, walking speed and sensor hardware. This implies that it is
difficult (if at all possible) to find generic rest band limits arest, grest that yield proper
full-contact and heel-rise detection under all conditions. Likewise, this argument is also
true for the signals and thresholds used to detect toe-off and initial contact. Therefore,
we extend the previously described algorithms in such a way that they automatically
adapt their thresholds to the current signal characteristics. Figure 3.4 summarizes the
information processing structure of the algorithms and criteria described above and il-
lustrates how these methods are extended.

Regarding full-contact and heel-rise detection, we continuously calculate the mean values
μa(t), μg(t) and standard deviations σa(t), σg(t) of the last nσ ∈ N>0 samples values of
||a(t)||2, ||g(t)||2, respectively:

μa(t) :=
∑nσ−1

k=0 ||a(t − kts)||2
nσ

, (3.20)

σa(t) :=

√∑nσ−1
k=0 (||a(t − kts)||2 − μa(t))2

nσ − 1
, (3.21)

μg(t) :=
∑nσ−1

k=0 ||g(t − kts)||2
nσ

, (3.22)

σg(t) :=

√∑nσ−1
k=0 (||g(t − kts)||2 − μg(t))2

nσ − 1
. (3.23)

We further determine the smallest values σa,min(t), σg,min(t) of the last nobs samples of
the standard deviation signals σa(t), σg(t), respectively:

σa,min(t) := min
k∈[0,nobs−1]

σa(t − kts),

σg,min(t) := min
k∈[0,nobs−1]

σg(t − kts).
(3.24)

We now set nσ smaller than the shortest possible duration (in samples) of a foot-flat
phase, and we set the observation window size nobs larger than the longest duration
of (at least) one stride. Then the standard deviations σa,min and σg,min characterize
the amplitudes of the foot-flat signal fluctuations under the current circumstances (e.g.
sensor, subject, gait velocity). Hence, we set the rest band limits arest, grest continuously
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to a multiple of these quantities:

arest(t) = ασ σa,min(t), grest(t) = ασ σg,min(t), ασ ∈ R>1 . (3.25)

Let us assume that the described adaption strategy leads to proper heel-rise and full-
contact detection under all relevant circumstances. Then we would also like to compen-
sate the influence of these varying circumstances on toe-off and initial contact detection.
To this end, we determine the maximum values of Γ (t), ||vff

xy(t)||2 and ||da(t)/dt||2
between each two foot-flat phases:

Γmax,j := max
τ∈[thr,j ,tfc,j ]

Γ (τ) , (3.26)

vmax,j := max
τ∈[thr,j ,tfc,j ]

||vff
xy(τ)||2 , (3.27)

rmax,j := max
τ∈[thr,j ,tfc,j ]

||da(τ)/dt||2 . (3.28)

In each foot-flat phase, we set the threshold values Γto, vto and ric for the next stride to
25% of the average of the last madapt ∈ N stridewise maximum values, respectively:

Γto,j+1 = 0.25
∑madapt−1

k=0 Γmax,j−k

madapt
, (3.29)

vto,j+1 = 0.25
∑madapt−1

k=0 vmax,j−k

madapt
, (3.30)

ric,j+1 = 0.25
∑madapt−1

k=0 rmax,j−k

madapt
, (3.31)

where the lower index j indicates that the thresholds now vary from stride to stride.

Finally, we also determine the time duration

T¬ff,j := tfc,j − thr,j (3.32)

between each two consecutive foot-flat phases and set Tsw,min to 20% of the average of
this quantity over the last m strides:

Tsw,min,j = 0.20
∑madapt

k=1 T¬ff,j−k

madapt
, T¬ff,j := tfc,j − thr,j . (3.33)

This is based on the observation that 20% of T¬ff,j usually corresponds to about 30–50%
of the swing phase duration, i.e. a time window during which initial contact is very
unlikely, even in paretic gait.
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The proposed periodic adaptions assure that the gait phase detection algorithm is always
tuned to suit the current subject, sensor hardware and gait velocity. The speed of
adaption can be increased or decreased by choosing smaller or larger values for madapt,
respectively. Suitable initial values for all adaptive algorithm parameters (i.e. arest(t),
grest(t), Γto,j , vto,j , ric,j and Tsw,min) are obtained by applying the adaption to several
strides of representative recorded data.

With respect to (3.33), note that adapting Tsw,min,j based on the average swing phase
duration itself would be more direct, but it would imply that the parameter adaption
depends on the detection for which the parameter is used. To avoid such dependency
loops, we employ the described indirect approach instead.

Note furthermore that, beyond this example, the entire gait phase detection algorithm
is designed such that circular interdependencies are avoided. The detection of toe-off
and initial contact only depends on proper detection of full-contact and heel-rise, which
in turn only depends on the raw signal norms ||a(t)||2, ||g(t)||2. Therefore, even if the
subject’s gait characteristics could change dramatically from one stride to the next, the
algorithm described above would automatically adjust its parameters via the following
steps:

1. The new amplitude of the foot-flat signal fluctuations are determined according
to (3.24), and the new rest band threshold are set according to (3.25).

2. Full-contact and heel-rise are properly detected, i.e. the automaton at least switches
back and forth between foot-flat and pre-swing phase.

3. The new values of Γmax,j , vmax,j , rmax,j and T¬ff,j are determined and the respective
thresholds are adjusted according to (3.29), (3.30), (3.31) and (3.33).

4. Toe-off and (subsequently) initial contact are properly detected.

Since each of these steps only depends (if at all) on previous steps, deadlocks are avoided
and the algorithm successively adapts to the new gait characteristics.

3.1.3 Stroke Patient Experiments on Gait Phase Detection

For many application systems, including active realtime gait support systems, it is crucial
that the developed gait phase detection method achieves proper gait phase detection
not only in healthy gait, but also in paretic gait. Therefore, the proposed algorithm is
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evaluated in realtime simulations5 using measurement data from gait experiments with
both healthy subjects and stroke patients. Participants gave informed consent and the
study was approved by the ethics committee at Charité Universitätsmedizin Berlin.

The total number of 32 experimental trials can be split into three groups: ambula-
tory stroke patients in subacute6 phase (7 experiments), chronic7 drop foot patients
(15 experiments) and healthy subjects (10 experiments). In every experiment, an IMU
(RehaWatch, Hasomed GmbH, Magdeburg, Germany) was attached to the foot of the
paretic side (or an arbitrary side in case of healthy subjects). The accelerometer and
gyroscope signals were recorded at 100 Hz while the subjects walked between ten and
fifty strides, depending on their strength and abilities. The experiments have been car-
ried out either on level ground (21 experiments), on a treadmill (7 experiments), or on
stairs (4 experiments).

The subacute stroke patients performed each experimental trial at self-selected walking
speed, as well as at 25% faster and at 25% slower speed (or at maximum velocity if 25%
faster was not achievable). The chronic drop foot patients, on the other hand, were asked
to walk at comfortable speed on level ground with one of the following different levels of
support: with a conventional drop foot stimulator (6 experiments), with walking sticks
(2 experiments), with ankle-foot orthosis (2 experiments). Healthy subjects were asked
to walk at comfortable speed, either on level ground or on a treadmill or on stairs.

The resulting collection of data sets covers a wide range of different subjects, walking
conditions, terrains and velocities. The number of subjects is certainly too small for a
proper comparison of the gait phase detection quality between all these conditions. How-
ever, this data collection allows us to evaluate whether the proposed method is capable
of detecting all four gait phase transitions properly under all considered conditions. If
that was not the case, the algorithm would fail for at least one of the included data
sets.

Since the goal of this evaluation is only to provide the described proof of concept, the
parameters of the gait phase detection algorithm are chosen by the following arguments of
common sense rather than by optimizing them for the given data. The sample frequency
of the IMUs is fIMU = 100 Hz. Even in slow walking, the time passed between two full-
contacts does not exceed 1.5 s. In fast walking, on the other hand, the duration of a

5This means that the data is processed in an online manner, i.e. only current and previous data samples
are used by the algorithm.

6i.e. these patients were in a very early stage of stroke rehabilitation
7i.e. these patients suffered from a chronic disability to lift the foot, cf. Chapter 6
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foot-flat phase is above 0.3 s. Therefore, choosing

nobs = 200, nσ = 20 (3.34)

assures that the foot-flat signal fluctuation amplitudes are properly determined. The
rest thresholds are then set to ασ = 4 times the determined standard deviation, and the
full-contact detection parameter is chosen nff = 20. The latter implies that detection
of the foot-flat phase is delayed by up to 0.2 s. However, for many applications in the
domain of active gait support systems, a reliable detection of this event is more important
than a prompt detection (see for example Chapter 6). For similar reasons, we choose a
hysteresis parameter of αhr = 2, i.e. the raw signal norms must exceed eight times the
determined standard deviation before heel-rise is detected. This certainly leads to some
detection delays, but it substantially lowers the risk of false heel-rise detection. The
initial-contact criterion is used with αic = 0.75, and the automatic adaption horizon is
set to madapt = 5.

The results that the gait phase detection algorithm yields for the given data are inspected
visually stride-by-stride. Based on careful evaluation of the characteristic signals defined
above and based on partially available video recordings, incorrect gait phase transitions
are identified. Despite the large variety of subjects, terrains, gait velocities and walking
supports, more than 95% of the overall more than 300 strides are completely detected
in the sense that all four gait phase transitions are detected properly. Before we discuss
the remaining 5%, we inspect the case of completely successful gait phase detection in
more detail.

Figure 3.5 presents exemplary results from four strides of a chronic drop foot patient. All
three subplots reveal that each signal varies from stride to stride (not only in amplitude)
and that repeatability is only given to a very limited extent. In the upper subplot (a) of
Figure 3.5, the signal norms exhibit much larger fluctuations during the second and third
foot-flat phase than during the first foot-flat phase. Due to the automatic adaption, the
rest band limits are raised gradually. The loading response of the first (and third) stride
is almost nff samples short, which indicates that the foot touched ground with heel and
toes almost simultaneously – in contrast to the second (and fourth) depicted strides.

At the same time, the amplitudes of tilt rate and velocity in the middle subplot (b)
of Figure 3.5 remain almost the same, although the signals themselves do not precisely
repeat from one stride to the next. For example, the velocity is subject to a much
stronger drift during the first depicted foot-flat phase than during all following ones.
Likewise, the course of the tilt rate during swing phase varies largely. This demonstrates
how important it is to extract only those features for gait phase detection that are
reliably repeatable. In all four strides of the presented data and in a large portion of
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the analyzed data, the velocity exceeds its toe-off threshold almost at the same time at
which the tilt rate falls below its threshold. This suggests that both criteria are based
on rather robust8 signal features.

As the lower subplot (c) of Figure 3.5 shows, the jerk norm peaks also vary from stride
to stride. While there is hardly a peak at the first toe-off, the signal clearly exceeds the
jerk threshold during early swing phase of each following stride. Due to the time and
velocity criterion, these peaks are disregarded. The actual initial contact is detected
reliably, although the foot hits ground much softer in the initial contact of the last
depicted stride.

Figure 3.6 further illustrates the previously discussed fact that signal features and gait
characteristics may change considerably from stride to stride. The comparison of both
subplots reveals that these effects are stronger in level ground walking than in walking
on a treadmill while holding on to a handrail.

As mentioned above, all gait phases are correctly detected in 95% of all strides. In the
remaining 5% of the strides, either of the following phenomena is observed. In about 3%
of the strides, the initial contact is not properly detected due to sudden, large changes in
the jerk peak amplitudes. In about 2% of the strides, the foot-flat phase is not correctly
detected due to sudden, large changes in the signal norm fluctuation amplitudes. The
former phenomenon is found to be slightly more common in subacute stroke patients
than in chronic drop foot patients and in healthy subjects, while the latter phenomenon is
more common in walking stairs than in level ground or treadmill walking. However, none
of the analyzed walking trials contain more than two incorrectly detected transitions,
and the majority of the trials contain not a single one. This result allows us to state
that the proposed algorithm is capable of detecting the four gait phases in all subjects
and under all considered walking conditions.

Beyond this proof of concept, it is an important research question how accurately the
gait phase transitions are detected with respect to the time delay between the actual gait
event and its detection. This question is addressed by Müller et al. [70], who compare
a similar version of the proposed gait phase detection to a method that is based on
an optical motion tracking system. Therein, the time delay between optical detection
and inertial detection is found to be small for all gait phase transitions except for the
full-contact. Since the latter is of minor importance in FES-based gait support, the
algorithm is found to be well-suited for this application.

8robust in the sense that this feature remains even if other aspects of the signal change significantly
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Figure 3.5: Experimental results in a drop foot patient walking on level ground at self-
selected speed with FES support. (a) Automatically adapted thresholds of
acceleration and angular rate are used to detect full-contact and heel-rise.
(b) Toe-off is detected by sign change in tilt rate and a sudden increase in toe
velocity. (c) Initial contact is detected by a large jerk after/during ||vff

xy(t)||2
has fallen below 75% of its maximum-since-heel-rise velocity (dashed line).
Markers on the threshold line indicate fulfillment of the time criterion.
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Figure 3.6: Comparison of gait phase durations for a drop foot patient walking on a
treadmill and on level ground at self-selected speed. Stride-to-stride variance
is significantly smaller when the patient walks on the continuously moving
treadmill and holds on to the handrail.
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3.1.4 Conclusions and Future Research

We developed a new method for realtime gait phase detection that employs a single in-
ertial sensor on the foot or shoe and adapts its parameters automatically to the current
signal dimensions that may vary with sensor hardware, with the subject, and with the
walking velocity. We demonstrated that the method can handle the challenge of irreg-
ularity in stroke patient’s gait and is suitable for a large range of terrains and walking
speeds. Since only accelerometer and gyroscope readings are used, the method is robust
with respect to magnetic disturbances and the presence of ferromagnetic material.

In future research, the algorithm might be extended to facilitate analysis of running
motions. If, beyond the provided proof-of-concept, a detailed performance evaluation
for certain walking conditions is of interest, then a clinical evaluation study with a larger
and more homogeneous set of participants is advisable. As Müller et al. demonstrate, the
proposed method also achieves proper gait phase detection in barefoot walking, which
is highly relevant for several applications and will be very useful in the experimental
evaluation of the method for foot orientation angle measurement that is derived in the
following section.
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3.2 Inertial Foot Orientation Angle Estimation

In the previous section, it was demonstrated that a foot-mounted inertial measurement
unit can be used to detect gait events in realtime. Now we use the measurement data
of the same IMU to assess foot orientation angles in pitch and roll direction. Such mea-
surements are of particular interest in the analysis of paretic gait, since foot orientation
with respect to the ground is strongly related to the risk of stumbling and falling. If the
foot orientation is assessed in realtime, the measured angles can furthermore be used to
adjust stimulation intensity parameters in feedback-controlled gait neuroprostheses. In
the following, we derive methods that accomplish such realtime measurements by means
of a 6D IMU, i.e. without the use of magnetometer readings.

3.2.1 State of the Art in Inertial Foot Motion Assessment

There are a number of standard methods that estimate the orientation of the foot from
the measurement data of an IMU attached to the foot, see for example the review by
Sabatini [99] and references therein. Veltink et al. [119] propose to integrate the measured
angular velocity and to compensate integration drift by assuming certain initial and final
conditions for each stride. Precisely, the foot is required to be flat on the ground and
on the same vertical level at the beginning and the end of every stride. However, this
approach fails on stairs, and it was not evaluated with respect to a reference method.

Sabatini et al. [98] employ an inertial measurement unit composed of one biaxial ac-
celerometer and one monoaxial rate gyroscope. The IMU is placed on the instep of the
foot such that the sensitive axes of the accelerometer are located in the sagittal plane.
By sensor construction, the gyroscope sensitive axis is then perpendicular to this plane,
so as to measure the angular velocity component that is parallel to the mediolateral9
axis. As before, integration of the angular rate and periodic drift compensation are used.
The obtained sagittal orientation angles are, however, not compared to the results of a
reference method.

Liu et al. [48] use similarly restrictive sensor mountings, but they compare their results
to the orientation angles determined by a marker-based optoelectronic reference system.
Root-mean-square deviations are found to be below 4◦. However, the method is based
on offline data analysis and requires a calibration trial in which the subject is requested
to walk along a straight leading line.

9i.e. the horizontal axis of the body that points from the center straight to the left (for the left half of
the body) or to the right (for the right half of the foot)
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Van den Noort et al. [120] evaluate the accuracy of methods for inertial gait analysis with
respect to an optical reference system in children suffering from cerebral palsy. IMUs
are placed on each foot, shank, thigh and on the torso. Anatomical calibration of the
sensors is according to the Outwalk protocol [17]. The Kinematic Coupling algorithm
[57] is employed to estimate the orientations of all IMUs, and joint angles are calculated
from those. However, only the joint angles are evaluated with respect to the results
of the marker-based optical motion tracking system. Accuracies below 2◦ are reported,
which suggests that the accuracies of the foot orientation is in the same range.

Furthermore, it is important to note that these results are obtained with the optical
markers of the reference system being placed directly on top of the IMUs. This is
remarkable because the markers are placed on anatomical landmarks in the actual gold
standard method, i.e. in standard optical motion analysis. Even with a very rigid
mounting, a foot/shoe-mounted IMU will certainly move, to some extent, relative to the
foot or shoe. Therefore, the discussed evaluation study is too simplified to fully assess
the accuracy of IMU-based foot orientation measurements.

In the remainder of this section, we will develop a method for realtime foot orientation
assessment and evaluate it with respect to the actual gold standard method of opti-
cal motion analysis with markers placed on anatomical landmarks. Since, in indoor
environments, the magnetic field is often heavily disturbed and far from homogeneous
[19], we will consider an IMU-based method that calculates pitch and roll angles while
completely avoiding the use of magnetometer readings. Furthermore, we will allow arbi-
trary mounting orientation in the sense that none of the local IMU coordinate axes are
required to coincide with any physiological axis of the foot.

3.2.2 Methods for Foot Orientation Angle Estimation

The pitch angle α and roll angle β of the foot are defined via the posterior-anterior10

axis xfoot and mediolateral axis yfoot of the foot, as illustrated in Figure 3.7. Please
note that, by definition, these axes are horizontal when the foot rests on level ground.
Furthermore, the coordinates of both axes xfoot and yfoot in the local coordinate system
of the IMU are (almost) constant, since the sensor is (almost) rigidly connected with the
foot. Nevertheless, we consider these coordinates to be unknown because it is hard to
achieve (and restrictive to demand) a mounting orientation that aligns any of the local
coordinate axes with the anatomical axes of the foot. Hence, we must determine these
axis coordinates before we can measure the foot orientation angles.

10i.e. the horizontal axis of the body that points from rear straight to front
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Figure 3.7: The angle α that the posterior-anterior axis xfoot of the foot and its projection
into the horizontal plane (dotted lines) confine is a proper measure of foot
pitch, while foot roll can be quantified analogously using the mediolateral axis
yfoot of the foot. Left: The local coordinate axes of the IMU are not aligned
with any of the anatomical axes, but one of the local axes lies in the sagittal
plane. Right: The IMU is attached in completely arbitrary orientation.

3.2.2.1 Determining Local Coordinates of Anatomical Foot Axes

As we will see, for example, in Chapter 6, it is often desirable to attach the inertial
sensor to the instep of the foot. Since the instep is not a level surface, all we can
typically assure in practice is that one of the local coordinate axes lies in the sagittal
plane11, as illustrated in Figure 3.7. In the following, we exploit this fact to determine
the coordinates of the posterior-anterior axis xfoot and the mediolateral axis yfoot of the
foot, before we consider the even more general case of completely arbitrary mounting
orientation.

Almost Arbitrary Mounting Orientation: Without loss of generality, let us as-
sume that the local axis xlocal = (1, 0, 0)T of the IMU is known to lie in the sagittal
plane of the foot and to point approximately forward. Furthermore, assume that the
gait phase detection algorithm described in Section 3.1 is employed and achieves realtime
detection of the heel-rise thr,j and full-contact tfc,j of the current stride j. During every
foot-flat phase, i.e. when the foot rests on the ground, the local accelerometer readings
a(t) are integrated over time, and the resulting vector ẑff,j is normalized to unit length

11Note that this does not imply that this local axis is aligned with xfoot, since the instep is not level.

48



3.2 Inertial Foot Orientation Angle Estimation

(cf. Section 3.1.2.2), which yields

zff,j =
ẑff,j

||ẑff,j ||2 , ẑff,j =
∫ thr,j

tfc,j−1
a(τ) dτ. (3.35)

Since gravitational acceleration dominates when the foot is (almost) at rest, zff,j is
(almost) vertical. Therefore, we calculate the local coordinates of the mediolateral axis
yfoot during the first foot-flat phase as follows:

ŷfoot := zff,1 × xlocal, (3.36)
yfoot := +ŷfoot/||ŷfoot||2 for a left foot,

and yfoot := −ŷfoot/||ŷfoot||2 for a right foot. (3.37)

Note that the side-dependent sign definition assures that the mediolateral axis yfoot
points indeed from medial to lateral for both feet. Subsequently, we calculate the local
coordinates of the posterior-anterior axis xfoot as follows:

x̂foot := zff,1 × xlocal × zff,1, (3.38)
xfoot := x̂foot/||x̂foot||2,

where the vector product operations correspond to a projection of xlocal into the horizon-
tal plane, to which zff,1 is perpendicular. By construction, the axis triplet xfoot, yfoot, zff,1
is an orthonormal base.

Completely Arbitrary Mounting Orientation: If inertial sensors are attached by
the users, it is a common demand that inaccurate mounting of the sensor shall not entail
measurement errors. Thus, let us briefly assume that none of the axes can be assured to
lie in any anatomical plane. Then instead, xfoot and yfoot can be automatically identified
from the measurement data of a stride as follows. We assume that (at least during the
first stride) the foot travels mainly forward, or more precisely: into the direction at
which the posterior-anterior axis of the foot was pointing right before the stride. This
is typically assured even in paretic gait. We integrate the horizontal foot velocity vff

xy(t)
defined in Section 3.1 between heel-rise and full-contact. Exploiting the fact that the foot
is resting at full-contact, we remove integration drift and calculate the local coordinates
of the posterior-anterior axis xfoot of the foot:

xfoot =
x̂foot

||x̂foot||2 , x̂foot :=
∫ tfc,1

thr,1
(vff

xy(τ) − τ − thr,1
tfc,1 − thr,1

vff
xy(tfc,j)) dτ. (3.39)
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3 Realtime Gait Analysis with Inertial Sensors

Subsequently, we calculate the local coordinates of the mediolateral axis yfoot, once again
with side-dependent sign, as follows:

yfoot := zff,1 × xfoot for a left foot,
and yfoot := xfoot × zff,1 for a right foot. (3.40)

Note that the vector product of two orthogonal unit vectors yields a unit vector and
that, therefore, the axis triplet xfoot, yfoot, zff,1 is an orthonormal base.

3.2.2.2 Calculating Foot Pitch and Roll Angles

Recall from Section 3.1 that, at each heel-rise thr,j of each stride j, a strapdown in-
tegration [100] of the angular rates is restarted that yields the rotation matrix Rff(t).
This matrix transforms any vector given in the local coordinates of any time instant
t ∈ [thr,j , thr,j+1) between two heel-rises into the local coordinate system of the preced-
ing foot-flat phase.

+
_

+
_roll angle

α < 0
pitch angle
β < 0

Figure 3.8: In the pathological gait of drop foot patients, foot lift is weak during swing
phase, i.e. the toes hang below the heel (negative pitch). Additionally,
increased muscle tone often promotes the inversion of the foot, i.e. the outer
edge of the foot is lower than the inner edge (negative roll). Both angles are
defined with respect to level ground.

If we transform xfoot into this coordinate system, in which the vertical axis zff,j is known,
we can calculate the time-dependent foot orientation angle in pitch direction as follows:

α̃(t) :=
π

2
− �(zff,j , Rff(t)xfoot) = arcsin(zT

ff,jRff(t)xfoot) ∈ [−π

2
, +

π

2
], (3.41)

where �(·) denotes the angle that two three-dimensional vectors confine. Please note
that the pitch angle is defined to be positive when the toes are above the heel and
negative when the heel is above the toes, as illustrated in Figure 3.8. Likewise, we
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3.2 Inertial Foot Orientation Angle Estimation

calculate the time-dependent foot orientation angle in roll direction:

β̃(t) :=
π

2
− �(zff,j , Rff(t)yfoot) = arcsin(zT

ff,jRff(t)yfoot) ∈ [−π

2
, +

π

2
]. (3.42)

Due to the side-dependent axis definition, the roll angle is always positive when the outer
edge of the foot is above the inner edge, both for a right and a left foot, cf. Figure 3.8.

As we discussed in Chapter 2, strapdown integration of angular rates is always subject to
drift, since (even after proper calibration) the gyroscopes have non-zero bias. Therefore,
the accuracy of α̃(t) and β̃(t) decreases with time12 between each two foot-flat phases.
At every full-contact tfc,j , however, we can remove the drift from α̃(t), β̃(t) on the time
interval t ∈ [thr,j , tfc,j ] by assuming that neither the gyroscope bias nor the slope of the
ground changed significantly between the two foot-flat phases. The resulting angles are
denoted α(t), β(t) and calculated as follows:

α(t) := α̃(t) − t − thr,j
tfc,j − thr,j

(α̃(tfc,j) − α̃(thr,j)), (3.43)

β(t) := β̃(t) − t − thr,j
tfc,j − thr,j

(β̃(tfc,j) − β̃(thr,j)). (3.44)

3.2.3 Experimental Evaluation of Foot Pitch Angles

We now focus on the question how accurate the obtained orientation angles are with
respect to the results of a conventional optical motion capture (OMC) method under
different walking conditions. As before, our goal is not to carry out a detailed clinical
study, but rather to provide a proof of concept that demonstrates the capability of
the proposed method to provide reliable realtime foot orientation angles under different
walking conditions.

In contrast to almost all IMU validation studies, we place the optical markers on anatom-
ical landmarks instead of attaching them to the IMUs. Obviously, this means that
additional deviations between the measurements of both systems might be caused by
relative motions of the optical markers with respect to IMUs. We nevertheless choose
this approach, since we want to answer the question how accurate the proposed method
for foot orientation angle measurement is with respect to the conventional method and
its standard protocol. This approach confers the decisive advantage that the entire gait
analysis methods are compared instead of comparing only the measurement systems.

12For example, on level ground and with standard sensor hardware, we found that the angle α̃(tfc,j) at
the end of each integration interval is typically in the range of 2◦, whereas its true value is zero.
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Figure 3.9: Experimental setup with IMUs and optical markers attached to shoes and
bare feet. Note that the data of the IMUs that are attached to the shanks is
not used in this study.

As a reference method, we choose the optical gait analysis protocol by Davis et al. [18],
since it is widely accepted and used [8]. As the marker sets of all standard protocols,
the optical marker set of the Davis protocol includes only two markers on the foot, i.e.
one marker attached to the skin on the lateral malleolus and one marker attached to
the skin on the head of the fifth metatarsal (see Figure 3.9). This implies that we can
only determine the pitch angle of the foot, but not the roll angle, from the measured
optical marker positions. Therefore, the current evaluation is limited to comparing foot
pitch angles obtained by both measurement methods. However, please note that the
IMU-based methods for foot pitch and foot roll angles are identical up to the coordinate
axis around which the integration is carried out.

For evaluation of the proposed methods, we process the recorded data from trials of two
different experiments, denoted the shoe and the barefoot experiment, in a simulated-
online manner. In the barefoot experiment, two healthy subjects (one male, one female,
both aged 30–40 and body-mass index 20–25) walked barefoot at slow and fast pace,
whereas in the shoe experiment, two transfemoral amputees (both male, aged 40–50 and
body-mass index 20–25) walked with a leg prosthesis at self-selected speed while wearing
shoes on both the prosthetic and the contralateral foot.

In both trial series, optical markers of a visual motion capture system were attached to
the foot as described above, and a wireless inertial sensor (MTw by Xsens, Enschede,
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3.2 Inertial Foot Orientation Angle Estimation

Netherlands) was attached dorsally on the instep of each foot. In the shoe experiment,
the V612 system (Vicon Motion Systems Ltd., UK) was used to track the optical markers,
while the Smart-DX system (BTS Bioengineering, New York, USA) was used in the
barefoot experiment.

In both experiments, the subject walked through the observation volume of the optical
system at least six times. For each of these trials, the foot pitch angle is computed
according to (3.41) and (3.43). Likewise, we also calculate the foot pitch angle from the
three-dimensional optical marker positions of each of these trials.

The root mean square error (RMSE) with and without drift correction is determined for
each trial of each subject. We then calculate the average and standard deviations over
all trials for each foot. Table 3.1 shows the results, as well as the corresponding walking
velocities. In Figure 3.10a, the pitch angles of Subject 2 (cf. Table 3.1) are plotted
over one stride for both the prosthetic and the contralateral side. Furthermore, pitch
angles for different walking velocities of the barefoot walking Subject 3 are presented in
Figure 3.10b.

walking RMSE α̃ [◦] RMSE α [◦]
velocity [m

s ] (pure strapdown integr.) (periodic drift compens.)

Subj.1-shoe 0.81 2.66 ± 0.73 2.24 ± 0.41
Subj.1-prosth. 0.81 1.40 ± 0.21 1.20 ± 0.26
Subj.2-shoe 1.42 5.78 ± 1.49 3.97 ± 0.51
Subj.2-prosth. 1.42 3.97 ± 1.31 2.93 ± 0.75
Subj.3-barefoot 1.62 3.61 ± 0.87 3.63 ± 0.83
Subj.3-barefoot 0.85 3.14 ± 0.39 3.09 ± 0.36
Subj.4-barefoot 1.52 3.90 ± 0.91 3.79 ± 0.73
Subj.4-barefoot 0.78 3.37 ± 0.37 3.41 ± 0.31

Table 3.1: Deviations between inertial and optical measurements. Columns show the
walking velocity (vel.) as well as the root mean square error (RMSE), the
average values (and standard deviations) of which are calculated over sev-
eral strides. The rows refer to different subjects and their different footwear:
barefoot, shoe and shoe on the prosthetic side (prosth.).

3.2.3.1 Discussion of the Results

We first analyze the influence of the footwear for slow walking, i.e. Subject 1 (with
shoes) versus the slow walking trials (second lines in Table 3.1) of Subjects 3 and 4
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Figure 3.10: IMU-based foot pitch angles (solid) and reference angles (dashed) from an
optical motion capture system, (a) for one walking trial of Subject 2 (both
sides shown) and (b) for one slow and one fast walking trial of Subject 4
(only one side shown for each trial). For additional illustration, plus mark-
ers indicate the gait phase transitions detected by means of the algorithm
developed in Section 3.1.

(barefoot). The deviations between the results of both measurement systems are larger
in the barefoot trials than in the trials with shoes. This is probably due to the fact
that the foot is not a rigid body. Deformations of the foot during stance-phase and
push-off lead to relative motion of the IMU and the optical markers with respect to each
other. Since the IMU was attached directly to the skin in the barefoot trials, the effect is
stronger therein than in the shoe-trials, in which the shoe dampens this effect. However,
the discussed difference is no longer present in the fast walking trials (i.e. in Subject 2
versus first lines of Subjects 3 and 4).

Figure 3.10a reveals the characteristics of the pitch angle for the prosthetic and the con-
tralateral foot of Subject 2. The agreement between optical and inertial measurements
is equally well on both sides. However, the data in Table 3.1 demonstrates that the
deviations are slightly smaller on the prosthetic side, which might be due to the physical
differences between the human foot and a prosthetic foot. Since the prosthetic foot is
more rigid, it allows for less deformation and less relative motion of the markers and
IMU with respect to each other.

Figure 3.10b presents the pitch angles of Subject 3 for two different walking velocities. If
we compare RMSEs between the slow and fast trials of Subject 3 and 4, it is noticeable
that the deviations are smaller in slower walking. The same observation is also made
when comparing Subject 1 and Subject 2, the latter of which walked at a much faster
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pace. It is a well-known fact that the accuracy of both measurement systems decreases for
very fast motions. When the subject walks at about 1.5 ms−1, the foot travel almost twice
as fast during swing phase and undergoes accelerations of multiple times the gravitational
acceleration. Hence, inertia effects easily cause relative motion of the markers and the
IMU with respect to each other and to the foot bones.

By applying the periodic online drift compensation proposed in (3.43), the RMSE is
reduced by approximately 15–30% in the shoe-walkers. In the barefoot walkers, however,
the RMSE remains in the range of 3–4◦ even when the compensation is applied. In
order to find out how severe these deviations are in practice, we determine the stride-
to-stride variance in foot orientation angle trajectories of healthy subjects. This natural
variance is found to be typically in the range of 3–5◦ (standard deviation) for foot pitch
angle trajectories, which is as large as the disagreement between both measurement
systems in barefoot walkers and larger than the RMSE values achieved with periodic
drift compensation in shoe walkers.

3.2.4 Conclusions

A method for realtime foot pitch and roll angle estimation was proposed that avoids
magnetometers and copes with arbitrary sensor-to-segment mounting orientation. It is
therefore well suited for feedback control of mobile gait support systems, in particular if
the IMU is attached to the foot/shoe by the patients themselves.

The method was validated with respect to a conventional optical motion capture method
in subjects walking at different velocities with different footwear. Results indicate that
deformations of the foot and shoe lead to relative motion of the optical markers and the
IMUs with respect to each other, which are strongest in barefoot walking and weakest
in prosthetic feet. A more detailed study with a larger number of subjects is advisable
if the latter aspect is found to be of great interest.

The deviations between inertial and optical measurements are in the range of 2–4◦ un-
der all tested conditions, which is smaller than or in the range of the natural variance
observed in human gait. With respect to the intended application in FES-based gait sup-
port systems and active orthoses, we conclude that these deviations are small enough to
allow automatic correction of pathological foot motion via feedback control. In Chap-
ter 6, we will validate this claim by developing an adaptive drop foot neuroprosthesis that
controls the entire foot pitch and roll angle trajectories of the swing phase by automatic
adjustments of FES parameters.
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3.3 Joint Axis and Position Estimation

In the previous section, we have used inertial measurement units to measure the orienta-
tion of the midfoot, i.e. a single (almost) rigid body, with respect to a fixed coordinate
frame. Beyond this, IMUs can also be used to analyze the motion of kinematic chains
consisting of multiple (almost) rigid bodies connected by joints with certain degrees of
freedom. To this end, each joint segment is typically equipped with one IMU, and the
goal is to measure position and orientation of the links as well as one, two or three joint
angles, in case of a hinge, saddle joint, or spheroidal joint, respectively. These motion
parameters can be calculated from the measured accelerations and angular velocities
by strapdown integration and some coordinate transformation from the sensor coordi-
nate system to a joint-related coordinate system. For the latter, however, information
is required about the (constant) mounting orientation and position of the sensors with
respect to the segments they are mounted on, as illustrated in Figure 3.11.

Figure 3.11: Arbitrary placement of inertial sensors on the human body. The coordi-
nates of the joint axis direction (green arrows) and the joint position (blue
arrows) in the local coordinate systems of the sensors (each labeled x-y-z)
characterize the sensor-to-segment mounting.

In Section 3.3.1, we will review previously suggested approaches, which will lead us to
the conclusion that there is high demand for methods that enable accurate estimation of
sensor-to-segment mounting orientations and positions. We will then demonstrate how
this information can be extracted from the measurement data of almost arbitrary move-
ments by exploiting the kinematic constraints of the respective joints. In Sections 3.3.2
and 3.3.3, we will investigate how the rotational and translational restrictions of the
joints become manifest in the angular velocities and accelerations of the sensor units.
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A geometric model is introduced in order to provide a proof of concept via simulations
of a kinematic chain in Section 3.3.5. Finally, in Section 3.3.6, we analyze experimental
results based on inertial measurement data from a human gait analysis.

3.3.1 State of the Art in Joint Axis and Position Estimation

A fundamental problem in IMU-based human motion analysis is that the local coor-
dinate axes of the IMUs are not aligned with any physiologically meaningful axes; see
Figure 3.11 for an illustration. First, we shall note that in some publications this prob-
lem is ignored completely by assuming that the IMUs can be mounted precisely in a
predefined orientation toward the joint; see for example Favre et al. [24], Liu et al.
[49, 50]. As can also be seen in the figures therein, this is a rather rough approxima-
tion. In the more realistic and less restrictive case of arbitrary mounting orientation, it
is required to identify the sensor-to-segment mounting orientation and position of the
sensors attached to both ends of the joint. As illustrated in Figure 3.11, these mounting
orientations and positions are characterized by the local coordinates of the joint axis
and the joint position, respectively. Both quantities might be measured manually, but
in three-dimensional space, this is a cumbersome task that yields low accuracy results,
as demonstrated for example by Liu et al. [50].

Fortunately, at least for the axis direction vectors, alternatives exist. A common ap-
proach to estimate these vectors is via calibration postures and/or calibration move-
ments. Some authors, e.g. Favre et al. [25] and Takeda et al. [114], make the subject
stand with vertical, straight legs for a few seconds and use the acceleration measured
during that time interval to determine the local coordinates of the longitudinal axis of
the segment. Additional sitting calibration postures are used by Takeda et al. [114].
Besides static postures, predefined calibration motions can be used to identify the coor-
dinates of physically meaningful axes in the upper and lower sensor coordinate system.
Examples can be found in Figure 3.12 and in Favre et al. [25, 26], O’Donovan et al.
[77]. Moreover, a combination of postures and motions might be used to identify the
sensor-to-segment orientations, as for example in the Outwalk protocol [17, 27]. It em-
ploys pure flexion/extension motions and static poses to find the local coordinates of
joint-related axes. Finally, the protocol used by Roetenberg et al. [93] solves a closed
kinematic chain to refine joint axis and position coordinates that have been obtained
from a combination of calibration postures, predefined motion and manual measure-
ments of body dimensions. However, it is important to note that, both in calibration
postures and calibration motions, the accuracy is limited by the precision with which
the subject can perform the postures or motions. Therefore, we will propose a novel
method for joint axis estimation from arbitrary motions in Section 3.3.2.
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Sensor-to-segment calibration using: arbitrary motions →
. (see [110] for animations)
. precisely defined motions
. ↙ ↓ ↘

Figure 3.12: Examples for calibration motions that are used in the literature [17, 25, 27,
77, 93] to determine the coordinates of physiologically meaningful axes, e.g.
the knee joint axis, in the local coordinate systems of the sensors. In such
methods, the precision depends on how accurately the subject performs the
motion. In contrast, we propose a method that uses arbitrary motions and
identifies the sensor-to-segment mounting from the measurement data by
exploiting kinematic constraints.

Besides the need of knowing the joint axis, some joint angle algorithms require additional
knowledge of the joint position in local sensor coordinates; see for example Liu et al.
[50], Luinge et al. [57], Roetenberg et al. [92]. Those methods can therefore only be used
if reliable estimates of the local joint position coordinates are available. Besides, it has
been demonstrated by Young [131] that joint position vectors can be used to improve the
accuracy of body segment orientation estimates if the kinematic constraints of the joints
are exploited. Vice versa, kinematic constraints have been used by Roetenberg et al. to
estimate the joint positions based on accelerations and angular rates measured during
motion, as briefly described in Roetenberg et al. [92]. The method is also mentioned
as an optional part of the body segment orientation Kalman filter described in Luinge
et al. [57]. In Section 3.3.3, we will propose an alternative method that exploits the same
constraints but uses a nonlinear least-squares technique.

3.3.2 Constraints Induced by Hinge Joints

Consider two rigid segments that are free to rotate and move in space but are connected
by a hinge joint, as depicted in Figure 3.13. The segments shall be called the first and
the second segment, and each of them shall be equipped with a three-axial gyroscope
that is attached to the segment in some unknown arbitrary orientation. The unit joint
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Figure 3.13: Two rigid segments that are connected by a hinge joint, each of them
equipped with a three-axial gyroscope (represented by its local coordinate
system). The orientations of the gyroscopes toward their segments are as-
sumed to be, and in many application actually are, unknown.

axis vector with respect to the local coordinate system of the gyroscope attached to the
first segment shall be referred to as j1; and j2 shall be the very same unit joint axis vector
but in the coordinates of the local coordinate system of the gyroscope attached to the
second segment. Moreover, let the angular velocities measured by the gyroscopes in the
coordinates of their local frames be g1(t) and g2(t) for the first and the second segment,
respectively. Then it is a geometrical fact that g1(t) and g2(t) differ only by the joint
angle velocity and a (time-variant) rotation matrix. Hence, their projections into the
joint plane13 have the same lengths for each instant in time, which is mathematically
equivalent to

||g1(t) × j1||2 − ||g2(t) × j2||2 = 0 ∀t, (3.45)

where || · ||2 denotes the Euclidean norm. This constraint holds for every moment in time
regardless of where and in which orientation the sensors are mounted on the segments
[103].

This fact turns out to be very useful when faced with the task of identifying the hinge
joint axis in case the orientation of the sensors toward the segments is unknown. We
can simply choose a large set of measured gyroscopic data from both sensors and search
for the joint axis coordinates that fulfill (3.45) for all time instants in a least-squares
sense. More precisely, we consider the joint axis candidates ĵ1 and ĵ2 in the spherical
coordinates φ1, φ2 ∈ [−π

2 , π
2 ], θ1, θ2 ∈ [0, 2π) with

ĵ1 = (cos(φ1) cos(θ1), cos(φ1) sin(θ1), sin(φ1))T , (3.46)

ĵ2 = (cos(φ2) cos(θ2), cos(φ2) sin(θ2), sin(φ2))T , (3.47)

13i.e. the plane to which the joint axis is the normal vector
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where φi and θi are the inclination and azimuth, respectively, of ĵi in the ith sensor
coordinate system, i = 1, 2. In these reduced coordinates, we then define the sum of
squared errors

Ψ(φ1, φ2, θ1, θ2) :=
N∑

k=1
e2

axis,k (3.48)

with eaxis,k = ||g1(t0 + kts) × ĵ1||2 − ||g2(t0 + kts) × ĵ2||2. (3.49)
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Figure 3.14: Sum of squares Ψ(φ1, φ2, θ1, θ2) of the error in the kinematic con-
straint (3.45) plotted over the spherical coordinates of ĵ1 while keeping the
spherical coordinates of ĵ2 at their true values. The two minima represent
the true coordinates (j1 and −j1) of the joint axis in local coordinates of
the first sensor.

Figure 3.14 depicts the typical form of this cost function. Since (3.45) is invariant with
respect to the signs of j1 and j2, this cost function has four minima, which correspond
to the four possible combinations of signs, (j1, j2), (−j1, j2), (j1, −j2) and (−j1, −j2).
By minimizing Ψ(φ1, φ2, θ1, θ2) over its arguments, we can identify these true joint axis
coordinates.

Whether the proposed least-squares approach yields the true joint axis coordinates de-
pends on the motion that is performed while the gyroscopic data is recorded. If the joint
angle remained constant, i.e. if the links were rigidly connected, then g1(t) = R g2(t)
would hold at all times, where R is the (unknown) constant rotation matrix from the
second to the first sensor frame. Therefore, (3.45) would hold for any combination
(j1, j2), j1 = R j2, no matter what movement the two rigidly connected links perform.
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This leads to the conclusion that motions during which the joint angle remains constant
are not suitable for joint axis identification.

Instead, the motion of the segment should be such that the kinematic constraint of the
joint axis becomes manifest in the measured angular rates. Further investigations reveal
that it takes as little as moving the first segment while the second is fixed, and then vice
versa, to assure that the cost function (3.48) exhibits the depicted clear minima that
correspond to the true local axis coordinates ±j1 and ±j2.

3.3.2.1 Matching Signs of the Joint Axis Coordinates

Solving the least-squares problem defined above yields two estimates ĵ1 and ĵ2 of the
local joint axis coordinates that are approximately equal to the true coordinates ±j1
and ±j2 with one of the four combinations of signs. Whether the signs of the obtained
estimates match is important for many further calculations. For example, only if ĵ1 and
ĵ2 point to the same direction, then calculating the integral of (̂j1 · g1(t) − ĵ2 · g2(t)) over
time yields an estimate of the hinge joint angle that is very precise up to slow drift14.
Therefore, it is important to determine two estimates ĵ1 and ĵ2 the signs of which match,
i.e. which point to the same direction.

In practice, this can easily be achieved by a quick look at the approximate mounting
orientations of the sensors. An example is given in Figure 3.11, where the z-axes of
both sensors point roughly laterally15, which implies that the z-coordinates of j1 and
j2 have the same sign. If instead, to give another example, the local y-axis of the first
sensor points roughly medially, while the local z-axis of the second sensor points roughly
laterally, then the y-coordinate of j1 and the z-coordinate of j2 have opposite signs.

In case the mounting of the sensors cannot be observed at all, the correct pairing of the
signs can also be determined from the inertial data itself. As a first step, we choose a
period of time from the identification data during which the angular velocities around
the joint axis are negligible, i.e. g1(t) · ĵ1 ≈ 0, g2(t) · ĵ2 ≈ 0. Next, we define an arbitrary
pair of joint plane axes xi, yi ∈ R3, i = 1, 2, for each local frame

x1 = ĵ1 × c, y1 = ĵ1 × x1, x2 = ĵ2 × c, y2 = ĵ2 × x2, (3.50)

14We will consider the task of joint angle estimation in further detail in Section 3.4.
15More precisely, the coordinate axes point into the lateral half space, which is an easy observation; we

do not restrict the mounting orientation in any way.
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where c ∈ R3 is any arbitrary vector that fulfills c ∦ j1, c ∦ j2. We then use these
coordinate axes to project, for each sample, the angular velocities into the joint plane:

gi,proj(t) =
[
gi(t) · xi

gi(t) · yi

]
∈ R2, i = 1, 2. (3.51)

If we plot these projections versus the joint plane coordinates for both sensors, as in
Figure 3.15, then we find that they have the same length for each sample, which is in
fact the fundamental idea behind the kinematic constraint (3.45). Moreover, the traces
of the projected angular rates reveal the correct sign pairing for the joint axis estimates ĵ1
and ĵ2 that were used to calculate them. The traces are congruent (up to some rotation
around the origin) if the signs of ĵ1 and ĵ2 match, and they are (rotated) mirror images
of each other if the signs do not match.
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ĵ1 ↑↓ ĵ2

Figure 3.15: Projection of the measured angular rates of both sensors into the joint plane
(defined by the coordinates in (3.50)) for a motion with little flexion/exten-
sion. In both plots, the projections have the same length at each moment in
time, cf. (3.45). However, when the joint axis signs match, the two curves
are congruent up to some rotation around the origin (left), while they are
mirror images of each other in the case of opposite signs (right).
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Figure 3.16: Two rigid segments that are connected by a spheroidal joint, each of them
equipped with an inertial measurement unit consisting of a three-axial gy-
roscope and a three-axial accelerometer (represented by their common local
coordinate system). Both the exact locations of the IMUs and their orien-
tations toward their segments are assumed to be, and in many applications
actually are, unknown.

3.3.3 Constraints Induced by Spheroidal Joints

Now we consider two links connected by a spheroidal joint, as depicted in Figure 3.16.
Since this joint has three degrees of freedom, there is no general relation between the
measured angular velocities of the first and the second sensor. In order to exploit the
kinematic constraints, we need to incorporate the accelerometer readings. Let the ac-
celerations of the sensors be a1(t) and a2(t) for the first and the second segment, re-
spectively. Define o1 and o2 as the joint position vectors pointing from the origin of the
first and the second sensor frame, respectively, to the joint center16. Then the kinematic
equations of rotating rigid bodies (see e.g. [38, Section 2.7]) lead to the constraint:

||a1(t) − Γ(g1(t) , o1)||2 − ||a2(t) − Γ(g2(t) , o2)||2 = 0 ∀t, (3.52)

Γ(gi(t) , oi) := gi(t) × oi × gi(t) + oi × dgi(t)
dt

, i = 1, 2,

where the time derivative dgi(t)
dt of the angular rates can be calculated, for example,

using (3.14). The term Γ(gi(t) , oi) defined above represents the (radial and tangential)
acceleration component that is due to rotation around the joint center. Consequently,
(a1(t) − Γ(g1(t) , o1)) yields the acceleration of the joint center in the coordinates of the
first local frame, which must be equal to (a2(t) − Γ(g2(t) , o2)) up to multiplication by
some (time-variant) rotation matrix. Hence, the constraint (3.52) holds for each instant
in time and can be used to estimate o1 and o2 from a large number of measured data
sets containing accelerometer and gyroscope readings.
16Note that, just as before, the subscripts 1 and 2 indicate that the vectors are defined in the coordinates

of the first and second local frame, respectively.
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As discussed before, it is required that the motion performed during data recording is
rich enough to make the kinematic constraint become manifest in the measurement data.
Note, for example, that if we restrict the relative motion of both segments to only one
plane, then we basically have a hinge joint instead of a spheroidal joint, and (3.52) is
true for all points along the (virtual) hinge joint axis. This, as well as the feasibility of
the estimation itself, will be validated by simulation in Section 3.3.5. Prior to this, we
briefly discuss one specific implementation of the proposed methods for joint axis and
position estimation.

3.3.4 Algorithm Implementation

Assume that N data sets, precisely {g1(tk), g2(tk)}N
k=1, N � 4, were measured. By

restricting the joint axis estimates to unit length, the estimation problem becomes four-
dimensional. Hence, we denote the estimates of the joint axis vectors by ĵ1 and ĵ2 and
use the parameterization by spherical coordinates from Section 3.3.2:

ξaxis := [φ1, θ1, φ2, θ2]T , (3.53)

ĵ1 = [cos(φ1) cos(θ1), cos(φ1) sin(θ1), sin(φ1)]T ,

ĵ2 = [cos(φ2) cos(θ2), cos(φ2) sin(θ2), sin(φ2)]T .
(3.54)

In order to find the coordinates ξaxis that minimize the sum of squares Ψ(ξaxis) defined
in (3.48), we will consider one specific implementation that solves this nonlinear least-
squares problem by means of a Gauss-Newton algorithm [28]. To this end, the following
gradients of the left-hand side terms of (3.45) with respect to j1 and j2 are derived:

d(||gi(t) × ji||2)
dji

=
(gi(t) × ji × gi(t))T

||gi(t) × ji||2 ∈ R1×3, i = 1, 2. (3.55)

Note furthermore that the derivatives (dji/dξaxis), i = 1, 2, are easily derived from (3.54).
This allows us to calculate the Jacobian matrix

Jaxis :=
deaxis
dξaxis

∈ RN×4 (3.56)

of the error vector eaxis ∈ RN×1, the kth entry of which is denoted eaxis,k and defined
in (3.49). The kth row of the Jacobian Jaxis is

deaxis,k

dξaxis
=

(g1(t) × j1 × g1(t))T

||g1(t) × j1||2
dj1

dξaxis
− (g2(t) × j2 × g2(t))T

||g2(t) × j2||2
dj2

dξaxis
∈ R1×4. (3.57)
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The Gauss-Newton algorithm is then implemented as follows. At first, random initial
values for ξaxis are generated. Then the following update loop is executed repeatedly:

1. Use (3.54) to calculate ĵ1 and ĵ2 from ξaxis.

2. Calculate the error vector eaxis ∈ RN×1 and the Jacobian Jaxis .

3. Update ξaxis by ξaxis − (JT
axisJaxis)−1JT

axis eaxis and repeat from 1.

A similar update scheme is applied for the estimation of the local joint position coordi-
nates, but there we need data sets {g1(tk), g2(tk), a1(tk), a2(tk)}N

k=1, N � 6, that contain
also accelerometer readings. Furthermore, the optimization variable is the concatenation
of the estimated joint position vectors

ξpos =
[
ô1
ô2

]
∈ R6. (3.58)

The entries of the error vector epos ∈ RN×1 are then defined by

epos,k := ||a1(tk) − Γ(g1(tk) , ô1)||2 − ||a2(tk) − Γ(g2(tk) , ô2)||2. (3.59)

In order to determine the Jacobian matrix

Jpos :=
depos
dξpos

∈ RN×6, (3.60)

we consider the following gradients of the left-hand side terms of (3.52), for i = 1, 2,

d
(
||ai(t) − Γ(gi(t) , oi)||2

)
doi

=

(
ai(t) − Γ(gi(t) , oi)

)T

||ai(t) − Γ(gi(t) , oi)||2
d
(
ai(t) − Γ(gi(t) , oi)

)
doi

. (3.61)

Note that any vector product can be written as a matrix multiplication, and denote the
matrix-multiplication representation of the vector product (a×·) of any vector a ∈ R3×1

by the skew-symmetric matrix Ma× ∈ R3×3, i.e.

a × b = Ma×b = −MT
a×b ∀b ∈ R3×1. (3.62)
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With this definition, we can rewrite Γ(gi(t) , oi) in the following steps17

gi(t) × oi = Mgi(t)×oi , (3.63)
gi(t) × oi × gi(t) = −M2

gi(t)×oi , (3.64)

oi × dgi(t)
dt

= −Mġi(t)×oi , (3.65)

Γ(gi(t) , oi) = (−M2
gi(t)× − Mġi(t)×) oi . (3.66)

This allows us to simplify the gradients (3.61) as follows:

d
(
||ai(t) − Γ(gi(t) , oi)||2

)
doi

=

(
ai(t) − Γ(gi(t) , oi)

)T

||ai(t) − Γ(gi(t) , oi)||2 (M2
gi(t)× + Mġi(t)×) (3.67)

=
((

M2
gi(t)× + Mġi(t)×

)T ai(t) − Γ(gi(t) , oi)
||ai(t) − Γ(gi(t) , oi)||2

)T

=
((

M2
gi(t)× − Mġi(t)×

) ai(t) − Γ(gi(t) , oi)
||ai(t) − Γ(gi(t) , oi)||2

)T

,

where the fact that M2
gi(t)× is a symmetric matrix is exploited. Using (3.66), we finally

rewrite the gradients in the compact form

d
(
||ai(t) − Γ(gi(t) , oi)||2

)
doi

=

⎛
⎜⎝−Γ

(
− gi(t) , ai(t) − Γ(gi(t) , oi)

)
||ai(t) − Γ(gi(t) , oi)||2

⎞
⎟⎠

T

, (3.68)

which allows us to write the kth row of the Jacobian Jpos as follows:

depos,k

dξpos
=

⎡
⎢⎢⎢⎢⎢⎣

−
Γ
(

− g1(t) , a1(t) − Γ(g1(t) , o1)
)

||a1(t) − Γ(g1(t) , o1)||2
Γ
(

− g2(t) , a2(t) − Γ(g2(t) , o2)
)

||a2(t) − Γ(g2(t) , o2)||2

⎤
⎥⎥⎥⎥⎥⎦

T

. (3.69)

With this analytic expression for the Jacobian, it is straight forward to employ a Gauss-
Newton algorithm as the one described above for the joint axis identification.

The proposed implementations are rather simple in comparison to many more elaborate
methods one might want to employ instead. This simple approach, however, will prove
to yield good results in Section 3.3.6. One of the advantages of the proposed method

17Note that, for any a, b ∈ R3×1, we have a × b = −b × a and (a × b) × a = a × (b × a).
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lies in its simple numerics. The matrix that needs to be inverted in the calculation of
the pseudoinverse is of dimension 4 × 4 in the joint axis identification and of dimension
6 × 6 in the joint position identification.

Besides using other optimization techniques, one might consider several modifications of
the cost function. To give an example, in the kinematic constraint equations (3.45), (3.52)
of both estimation algorithms, one might as well divide the difference of the two norms
by the sum of both norms, and thereby use a relative error instead. However, in the
presence of measurement errors we prefer to give more weight to the data sets that yield
large norms. Hence we use the absolute errors, as defined above.

Furthermore, please note that the derived methods do not require high sample rates.
For normal-speed motions, recording data at a sample rate as low as 10 Hz will yield
equally good results (at less computational load) as recording at 100 Hz, since data
sets with almost the same angular velocities and accelerations hardly contribute to the
estimation. This holds the advantage that the proposed algorithms are suitable for large
IMU networks with considerably low sample rates.

Finally, we shall briefly discuss a straight-forward extension of the above (batch-like) op-
timization toward an online implementation: One might start applying the given update
procedure as soon as a reasonable number of measured data sets, typically about ten,
is available and then repeat the loop (steps 1–3) whenever a new data set is added, for
example every 0.1 s. Then the order of the least-squares problem N increases gradually,
and every updated estimate serves as a (very good) initial condition to the next larger
least-squares problem. Depending on the computational power, one might choose indi-
vidually for each data processing hardware, how many data sets are added before the
loop is repeated, and how many times it is repeated before the next data sets are added.
If the implementation is such that the oldest data set is removed from the memory
whenever a new data set is added, then the sensor-to-segment orientation and position
of the IMUs can be tracked even if the sensor mountings (body straps) are not rigid
(firm) enough to prevent slow slipping and shifting of the IMUs with respect to the
segments.

3.3.5 Simulation Results Using a Three-Segments Model

A kinematic simulation model of a leg is developed, which consists of three segments
(representing thigh, shank and foot) connected by a hinge joint and a spheroidal joint
(representing knee and ankle), see Figure 3.17. Each simulated inertial measurement
unit is rigidly connected to the respective segment. Prior to each simulation run, the
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t = 0 s t = 1 s t = 2 s t = 3 s

Figure 3.17: Simulation of a kinematic chain comprised of three segments connected by
a hinge joint (indicated by cylinder) and a spheroidal joint (indicated by
sphere). Each simulated IMU (orange axis triplets) is rigidly connected to
its segment (black beams) with randomly chosen mounting orientation and
position. The local joint axis coordinates (green axis pair) and the local
coordinates of both joints (blue vector pairs) are estimated starting from
random initial values. In a few seconds of leg and foot circling (and about
ten Gauss-Newton steps), the estimates converge to the true values. See
[110] for a video animation.

positions and orientations of the sensor coordinate systems are chosen randomly from
reasonable intervals. The true joint axis and joint position vectors, in the coordinates of
the respective sensor frames, is calculated and stored for comparison with the estimates.
Subsequently, the segments perform a user-defined motion including arbitrary translation
and rotation within the bounds of the kinematic constraints. Based on an adjustable
sample rate, the accelerations and angular velocities of the sensors are computed in the
coordinates of their local frames. A user-defined amount of measurement noise is added,
and the data is then provided to the estimation algorithms.

Both the joint axis estimation algorithm and the joint position estimation algorithm are
implemented as described in Section 3.3.4. The former is employed to determine the
knee joint axis from the simulated measurement data of the thigh and the shank sensor,
while the latter is employed to determine the ankle joint position from the simulated
measurement data of the shank and the foot sensor. Both algorithms are tested for
various motions, sample rates and noise amplitudes, both online and offline. It is found
that two to three periods of (simultaneous) small-amplitude oscillations in the direction
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of each degree of freedom already yield enough data for an accurate estimation. More-
over, even for a few hundred randomly chosen initial conditions, the estimates always
converge to the close proximity of the true values within five to ten iterations, see for
example Figure 3.17. At a signal-to-noise ratio of 100, the estimated joint axes and the
true axis confine angles of less than 1◦, while the joint position estimates differ from the
true values by less than 3%.

Figure 3.18: Different viewing angles of several joint position estimation results on a
simulated hinge joint. Each execution of the joint position estimation yields
a pair of local coordinates that describe a point on the joint axis.

As a final step, we apply the joint position estimation to the measurement data of the
thigh and shank sensor. We find that almost every run converges to a different pair
of joint position vectors, but each pair describes a point that happens to lie on the
hinge joint axis, as illustrated in Figure 3.18. Therefore, we use the estimated joint axis
coordinates ĵ1, ĵ2 to shift the obtained joint position coordinates ô1, ô2 along the joint
axis as close as possible to the sensors:

ô1,proj = ô1 − ĵ1
ô1 · ĵ1 + ô2 · ĵ2

2
, (3.70)

ô2,proj = ô2 − ĵ2
ô1 · ĵ1 + ô2 · ĵ2

2
. (3.71)

In other words, the point that is described by ô1, ô2 is projected into the plane that
is perpendicular to the joint axis and has equal distance to the origins of both sensor
coordinate systems. In Figure 3.17, these projected local joint position coordinates are
illustrated by the two blue vectors pointing from the thigh and shank sensor coordinate
systems to the middle of the green knee joint axis vectors.
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3.3.6 Experimental Results

For the sake of experimental validation of the proposed estimation algorithms, we apply
them to measurement data from an IMU-based gait analysis trial. Wireless inertial
sensors (MTw by Xsens, Enschede, Netherlands) are attached to the right thigh, shank
and foot using elastic straps. The true position and orientation of the local sensor
frames with respect to the ankle and knee are roughly18 determined using a combination
of manual measurements and calibration movements, as in Liu et al. [50] and O’Donovan
et al. [77], respectively. Subsequently, the subject performs leg and foot circling for about
five seconds and then walks about thirty meters at average speed. The accelerometer
and gyroscope readings are recorded and provided to the algorithms developed above at
a sample rate of 40 Hz.

One hundred algorithm runs are performed using random initial values and different
subsets19 of the available data to analyze both convergence and variance of the estimates.
Results are presented in Figure 3.19. In all runs, both the knee joint axis and the
ankle joint position are identified correctly within less than twenty Gauss-Newton steps.
However, the error vector norms do not entirely converge to zero and the final estimates
vary by about ±0.01 (in the units of the plots, respectively). This is not surprising,
since the sensor-to-leg connections are not very rigid, and since the knee and ankle are
not exactly a hinge and a spheroidal joint. But, as demonstrated, the least-squares
approach copes with these inaccuracies and still yields precise estimates. Obviously,
yet higher accuracy and less variance is expected in more rigid setups such as robotic
manipulators.

3.3.7 Conclusions and Future Research

We developed least-squares methods for the estimation of local joint axis and position
coordinates from 6D inertial measurement data. Explicit analytic expressions of the
required Jacobians have been provided as well as an example for algorithm implementa-
tion and a number of optional modifications. The drawback of potential misalignment
of the axis estimates has been addressed, and two simple practical solutions have been
suggested.

Unlike other methods for sensor-to-segment calibration, the developed method does not
require precise calibration poses or motions. The sensor units can be attached in ar-

18i.e. up to the limitations in accuracy that are inherent to these methods, cf. semicircles in Figure 3.19
19Note, however, that all subsets include data from both the circling and the walking phase.
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Figure 3.19: Joint axis and position estimation from IMU-based gait analysis data. For
one hundred random initial values and with different subsets of the available
data stream under consideration, the estimates always converge to the true
values (marked by semicircles) within less than twenty iterations. The final
values show little variance despite the flexibilities in the mechanical setup.

bitrary position and orientation, and the calibration can be carried out automatically
as the subject starts to move the respective limbs arbitrarily. The algorithm neither
requires high sample rates nor integration of measurement data. We demonstrated that,
regardless of the choice of initial estimates, convergence to the true joint axis and po-
sition coordinates is obtained both in simulation and experiment. In less rigid setups,
e.g. when skin motion artifacts occur in human motion analysis, it identifies the major
axis of motion (and the average joint position) thanks to the least-squares approach.

The obtained joint axis and position coordinates can be used in human motion analysis
to transform the sensor readings into joint-related coordinate systems, to calculate joint
angles, or to apply bias-eliminating techniques as in Young [131]. Further fields of
application include robotic manipulators, linked vehicles, or any other mechanical setup
in which rigid bodies are connected by joints.
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3.4 Flexion/Extension Joint Angle Measurement

Despite many recent advances, current IMU-based joint angle measurement methods
still require restrictive setup procedures as well as an environment with a homogeneous
magnetic field. In this section, we derive a set of new, practical methods for realtime mea-
surement of flexion/extension joint angles of the human knee and ankle during walking.
We start by discussing a few challenges of human motion analysis and the state of the
art in knee joint angle estimation in Sections 3.4.2 and 3.4.1, respectively. Subsequently,
in Section 3.4.3, we develop methods that use only gyroscopes and accelerometers and,
therefore, do not rely on a homogeneous magnetic field. The algorithms are derived
and discussed for the human knee joint, since it is an approximate hinge joint. Beyond
this, it is demonstrated in Section 3.4.4 how the proposed methods can be employed for
flexion/extension angle measurement on the ankle joint, which exhibits two degrees of
freedom but performs mainly flexion/extension during walking. Finally, in Section 3.4.5,
we analyze results from gait trials of a transfemoral amputee in which the novel IMU-
based methods are compared to a conventional optical 3D motion capture system.

3.4.1 Robotic Hinge Joint vs. Human Knee

To motivate the need for more practical methods, we briefly highlight some of the ma-
jor challenges of IMU-based human joint angle measurement. Although many of the
following statements are true in more general cases, we will focus our arguments on
hinge joints, i.e. joints with one rotational degree of freedom. It has been demonstrated
in many publications, e.g. Cheng et al. [15] and the references therein, that inertial
measurement data can be used to calculate hinge joint angles when at least one IMU
is attached to each side of the joint. In most robotic and mechanical applications, the
sensors can be mounted in such a way that one of the local coordinate axes coincides
with the hinge joint axis; see for example Cheng et al. [15], Moreno et al. [67]. In that
case, the hinge joint angle can be calculated by integrating the difference of both angular
rates around the corresponding coordinate axis. Since even the most precise calibration
will yield a non-zero bias, this calculated angle will be subject to drift. However, multi-
ple techniques have been suggested to eliminate this effect using additional information
from the accelerometers or the magnetometers, see e.g. Cheng et al. [15].

Similarly, inertial measurement units can be used to calculate hinge joint angles on
the human body, for example on the knee joint20. However, there is a very important
difference between the human leg and most robotic setups: It is very difficult to attach
20we will discuss the fact that the human knee is not a perfect hinge joint in Sections 3.4.2 and 3.4.4
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Figure 3.20: While most robotic actuators (left) consist of rigid joints and segments
with even, orthogonal surfaces, the human leg (right) exhibits none of these
properties. Black axis triplets indicate the local coordinate systems of the
attached inertial measurement units. Green and blue arrows indicate the
(local) joint axis and position coordinates, respectively.

IMUs to the leg in such a way that one of the local coordinate axes coincides exactly
with the knee joint axis, as illustrated in Figure 3.20. There have been some attempts
(see e.g. Favre et al. [24], Liu et al. [50]), but since the human body lacks even surfaces
and right angles, the accuracy of such approaches is limited. In contrast, the body straps
that are commonly used to attach IMUs to the leg yield an almost arbitrary orientation
of the IMU toward its segment. Nevertheless, the hinge joint angle can be calculated
from the inertial measurement data. However, the data from both sensor units must first
be transformed into joint-related coordinate systems, i.e. coordinate systems in which
one or two axes coincide with the joint axis and/or the longitudinal axis of the segment
[129]. This is a major challenge in IMU-based joint angle measurement, not only on
hinge-type joints. How these challenges have been faced in previous contributions, is
discussed in the following section.

3.4.2 State of the Art in IMU-Based Knee Joint Angle Estimation

Many algorithms and techniques have been suggested for IMU-based knee joint angle
estimation. Despite the variety of approaches, the vast majority of authors agree that
the flexion/extension angle of the knee joint is the angle between the upper and lower leg
along the main axis of relative motion, i.e. the knee joint axis [16, 25, 50, 114]. In other
words, the projections of the upper and lower leg into the joint plane, to which the joint
axis is normal, confine this angle; see Figure 3.21. However, we shall note that consid-
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ϕ

Figure 3.21: Placement of inertial sensors on the human body and definition of the joint
angle (left). Kinematic model of a hinge joint with local sensor coordinate
systems attached to both ends (right). The local sensor coordinate axes are
not aligned with the physiological axes and planes by which the joint angle
ϕ is defined.

ering the knee as a hinge joint is an approximation. Although flexion/extension is the
major degree of freedom, a biological joint, such as the knee, is not perfectly constrained
to rotation around one axis. This is often addressed by additionally considering abduc-
tion/adduction and internal/external rotation, which leads to a three-dimensional knee
joint angle, as in Brennan et al. [10] and Favre et al. [24, 25]. However, abduction/ad-
duction and internal/external rotation angles hardly ever exceed a range of ±10◦ [25, 86]
and are strongly affected by soft-tissue artifacts [89, 113]. Therefore, these additional
degrees of freedom are often neglected and only flexion/extension is considered, see for
example Cooper et al. [16], Cutti et al. [17], Ferrari et al. [27], Liu et al. [50], Takeda
et al. [114].

As mentioned before, the simplest approaches in the literature assume that the IMUs
are attached such that one of the local coordinate axes is aligned with the joint axis.
Integrating the difference of the angular rates of the upper and lower sensor around that
axis will yield a drifting flexion/extension angle. Favre et al. [24] removed this drift using
a high-pass filter. In another publication with the same mounting assumption, it was
demonstrated that the joint angle can also be estimated from the measured accelerations
if the position of the joint in both local coordinate systems is known [50]. Thereby, a
root mean square error (RMSE) of less than 4◦ with respect to an optical reference
system was achieved. Although both techniques may seem restricted to a special sensor
mounting, they are just as helpful in the case of arbitrary mounting orientation, as long
as the local joint axis coordinates are known.

A fundamentally different approach is employed by Takeda et al. [114]. After identifying
the local coordinates of the longitudinal axes of the shank and thigh, the authors cal-
culate the inclination of both segments and approximate the flexion/extension angle by
the difference of these inclinations. Thereby, they achieve an RMSE of approximately
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7◦ with respect to an optical reference system. However, their method is bound to the
assumption that the knee axis remains horizontal during the entire motion. While that
might be an acceptable approximation for most walking and running situations, this
assumption does not hold during quick direction changes and for a number of other
motions, like skating, hurdles or martial arts. Cooper et al. [16] have enhanced the
aforementioned method. Instead of assuming a horizontal knee axis, the authors model
the knee as a pure hinge joint and exploit its kinematic constraints using an extended
Kalman filter. Thereby, they are able to calculate flexion/extension angles in good ac-
cordance with an optical reference system, both at the speed of running (8 km/h, RMSE
< 4◦) and walking (3 km/h, RMSE < 1◦). Approximately the same precision for walk-
ing is achieved by Favre et al. [25]. Here, however, the complete orientation of each
IMU with respect to a global reference coordinate system is calculated using a fusion
algorithm that combines gyroscope and accelerometer readings. Similarly, the algorithm
used by Roetenberg et al. [92] and Luinge et al. [57] estimates sensor orientations from
accelerations and angular rates. Van den Noort et al. [120] achieved an RMSE below
4◦ by combining that algorithm with the Outwalk protocol mentioned in Section 3.3.1.
Finally, a mean error (RMSE not available) below 2◦ was reported for the proprietary
algorithm used by Zhang et al. [132]. While it employs calibration poses and optional
calibration motions to identify sensor-to-segment orientations (and, thus, the joint axis
coordinates), the algorithm uses a biomechanical model and kinematic constraints to
overcome integration drift [93].

It is important to note that almost all of the mentioned RMS errors were obtained with
the reference system markers being rigidly attached (usually in clusters on rectangular
or L-shaped cardboard or plastic tiles) to the inertial sensors in order to eliminate the
effect of soft tissue and skin motion artifacts on the measured joint angle difference
[92, 132]. The only exception from this statement is the work by Takeda et al. [114].
They placed optical markers on anatomical landmarks, as it is common practice in optical
gait analysis. Consequently, they obtain a clearly larger RMS error than those authors
who connected the reference markers to the IMUs (about 7◦ as opposed to about 2–3◦).
This means that most previous contributions only compare the measurement accuracy
of the optical and the inertial system, instead of comparing the results of an optical gait
analysis to those of an inertial gait analysis. The latter aspect has received too little
attention in previous publications. Therefore, we will place optical reference markers
on anatomical landmarks during the experiments in Section 3.4.5, although this might
increase the observed error.

Which of the reviewed methods is most suitable for a specific application depends also on
the available sensor information. In many of the mentioned publications, the orientations
of the thigh and shank are used to calculate the flexion/extension angle [16, 25, 27, 114].
This is straight forward if reliable sensor orientation estimates are available and if the
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3 Realtime Gait Analysis with Inertial Sensors

local joint axis coordinates are known. However, knowing the joint axis allows one
to reduce the problem to one dimension immediately. Therefore, especially if reliable
orientation estimates are not immediately available, it might be advantageous to use one
of the methods by Liu et al. [50] or Favre et al. [24] instead, or to combine them in a
new way. We will examine both approaches in Sections 3.4.3 and 3.4.5.

3.4.3 New Methods for IMU-Based Joint Angle Measurement

As explained in Section 3.3, handling arbitrary sensor-to-segment mounting is a ma-
jor challenge in gait analysis with inertial sensors. Manual measurements, as well as
calibration poses and movements, are commonly suggested solutions. Furthermore, we
discussed that the use of magnetometers is typically limited by the assumption of a ho-
mogeneous magnetic field. In this section, we describe a set of methods for IMU-based
joint angle estimation that allow us to face these two challenges in a new way. We will
combine elements of the methods reviewed above, but unlike most previous attempts,
we will:

• avoid sensor-to-segment mounting assumptions,
• require no manual measurements of any distances, joint coordinates or similar,
• not rely on the accuracy with which the subject performs predefined postures or

movements,
• and avoid the use of magnetometers.

Instead of employing any of these commonly used assumptions and restrictions, we make
use of the fact that the knee joint behaves approximately like a mechanical hinge joint.
In Section 3.3, the kinematic constraints that result from this fact were exploited to
obtain the position vector and the direction vector of the knee flexion/extension axis in
the local coordinates of both sensors. As mentioned before, this information is crucial to
precise joint angle calculation. We will use it to fill the gap between the sensor coordinate
systems and the joint-related coordinate systems in which the angles are defined. This
will allow us to calculate flexion/extension joint angles on joints with a major axis of
motion, for example the knee and the ankle during walking. First, we will propose a
combination of the methods from Section 3.3 and a standard literature approach for 9D
IMUs. Then, we will introduce a method that uses only angular rates and accelerations,
while the use of magnetometer readings is completely avoided.

Before we describe the respective algorithms, let us define the available measurement
signals. Assume that two inertial sensors, one attached to the upper leg and the other
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3.4 Flexion/Extension Joint Angle Measurement

attached to the lower leg, measure the accelerations a1(t), a2(t) ∈ R3 and angular rates
g1(t), g2(t) ∈ R3 at some sample period ts. Additionally, we assume that the time
derivatives dg1

dt (t), dg2
dt (t) ∈ R3 of the angular rates are determined, for example via the

third order approximation (3.14).

We assume that the local joint axis coordinates j1, j2 and the local joint position coordi-
nates o1, o2 have been successfully identified using the methods described in Section 3.3.
As explained before, this is crucial for IMU-based joint angle measurement. The identi-
fied values of j1, j2 and o1, o2 are now used to calculate the flexion/extension angle of an
anatomical joint with one major degree of freedom. While we consider a knee joint to
explain the methods, we extend them to the more general case of saddle and spheroidal
joints in Section 3.4.4.
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Figure 3.22: Two algorithms for IMU-based knee joint angle calculation are considered.
Left: Sensor orientation estimates are used to calculate the orientational
difference (i.e. the joint angle) around a given axis. Right: The problem
is reduced to one dimension immediately by integrating the difference of
the angular rates around the joint axis. An acceleration-based joint angle
estimate is used to remove drift via sensor fusion.

Figure 3.22 shows the main ideas of the two methods for joint angle measurement that
we will describe. The first method assumes that each IMU provides highly accurate
estimates of its orientation with respect to a common fixed reference coordinate system.
Together with the local joint axis coordinates, these orientations directly yield an accu-
rate flexion/extension angle. This approach is well known from the literature, see for
example Favre et al. [25], Takeda et al. [114], Van den Noort et al. [120]. The second and
novel method reduces the problem to the joint plane from the very start by integrating
both angular rates only around the joint axis, which yields a slowly drifting, but oth-
erwise highly accurate joint angle [108]. This angle is combined in a sensor fusion with
a noisy, but driftless, joint angle estimate that is calculated from the measured acceler-
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ations. At this point, the second method also uses the joint position vectors. Finally,
and most importantly, the second method does not rely on magnetometer readings. It
calculates the joint angle only from the measured accelerations and angular rates.

3.4.3.1 Joint Angle from Sensor Orientation Estimates

Some inertial sensors are equipped with on-board orientation estimation, which is usually
based on a sensor fusion of the acceleration, angular rate and magnetic field vector
measurements. The resulting estimates describe the orientation of the sensors with
respect to a fixed reference coordinate system, in terms of either quaternions, rotation
matrices, or Euler angles. Recall from Section 3.4.2 that it is an established method to
use sensor orientation estimates for the calculation of joint angles; see for example Favre
et al. [25], Takeda et al. [114], Van den Noort et al. [120]. In the following, we assume
that the orientation of both sensors with respect to a common fixed reference frame (i.e.
the reference frame must be identical for each sensor) are given by rotation matrices,
which we denote by R1(t) and R2(t). They shall be defined, such that they transform
a locally measured vector into the reference frame, i.e. the following holds:

R1(t)j1 = R2(t)j2 ∀t. (3.72)

Under these circumstances, the flexion/extension angle ϕacc+gyr+mag(t) can simply be
computed as:

ϕacc+gyr+mag(t) = �3D (R1(t)(j1 × c), R2(t)(j2 × c)) , c ∦ j1, c ∦ j2 , (3.73)

where �3D( ) denotes the (signed) angle between two vectors in R3 and c ∈ R3 can be
any vector that makes none of the vector products zero (for example, c = [1, 0, 0]T can be
used, unless j1 or j2 happens to be exactly [±1, 0, 0]T ). It is important to note that, by
construction, this joint angle can only be as precise as the employed sensor orientation
estimates, and it might be drifting if the orientation estimates are drifting.

3.4.3.2 Joint Angle from Accelerometer and Gyroscope Readings

In the following, we will compute the flexion/extension angle only from accelerations
and angular rates. A gyroscope-based flexion/extension angle can be calculated by
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3.4 Flexion/Extension Joint Angle Measurement

integrating the difference of the angular rates around the joint axis, i.e.

ϕgyr(t) =
∫ t

0
(g1(τ) · j1 − g2(τ) · j2) dτ . (3.74)

Furthermore, with the knowledge of the joint axis coordinates, it is straight forward to
develop more practical versions of many of the restrictive methods from the literature
reviewed above, which require the sensor axes to coincide with joint axes or segment axes.
In particular, we can extend the approach used by Liu et al. [50] to three-dimensional
space. We shift the measured accelerations onto the joint axis by applying:

ã1(t) = a1(t) − Γ(g1(t) , o1), ã2(t) = a2(t) − Γ(g2(t) , o2) , (3.75)

with Γ(gi(t) , oi), i = 1, 2, being defined in (3.52). As explained in Section 3.3.3, ã1(t)
and ã2(t) are the same quantity measured in two different local coordinate systems, which
rotate with respect to each other around one axis. Therefore, the flexion/extension angle
can be approximated21 by the angle between the projections of ã1(t) and ã2(t) into the
joint plane. Consequently, we use the pairs of joint plane axes x1, y1, x2, y2 ∈ R3 defined
in Section 3.3.2.1 to calculate the accelerometer-based joint angle by:

ϕacc(t) = �2d

([
ã1(t) · x1
ã1(t) · y1

]
,

[
ã2(t) · x2
ã2(t) · y2

])
, (3.76)

where �2d( ) denotes the (signed) angle between two vectors in R2. The resulting angle
ϕacc(t) is not affected by drift, since we did not employ any integration to calculate it.

We shall note that the above equations are sensitive to measurement errors if the shifted
accelerations ã1/2(t) are almost collinear with the joint axes j1/2. However, in almost
every practical situation, the gravitational acceleration dominates the acceleration sig-
nals a1(t), a2(t) and ã1(t), ã2(t). Therefore, the effect should only be significant when
the knee axis is close to vertical or during the periods in which the knee is strongly ac-
celerated in the medial or lateral direction. Both situations are rare in walking and most
other motions of sports or daily activities. Please also note that Γ(g1/2(t) , o1/2) in (3.75)
is typically small compared to gravitational acceleration and therefore sensitivity to in-
accuracies in o1, o2 is low. Especially in slow and normal-speed walking, the proposed
method is expected to yield almost the same accuracy when using o1 = o2 = [0, 0, 0]T .

Figure 3.23 shows the typical course of the two angle estimates ϕgyr(t) and ϕacc(t) that
we derived in this subsection. The gyroscope-based angle is very precise on short time
21With ideal measurements, the two angles would be identical, but due to measurement inaccuracies, it

is rather an approximation.
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Figure 3.23: Sensor fusion of the gyroscope-based and the accelerometer-based knee joint
angle of a leg prosthesis. The noisy but driftless angle ϕacc(t) is combined
with the drifting but (apart from that) very precise angle ϕgyr(t) using the
complementary filter (3.77). The resulting angle ϕacc+gyr(t) is accurate on
small and on large time scales.

scales, but exhibits some slow drift22 of about 1.5◦/s. The accelerometer-based angle
does not drift, but it is affected by the accelerometer noise and seems to be less reliable
in moments of large acceleration changes. Therefore, it is advantageous to combine both
angles using a standard tool of sensor fusion, for example a complementary filter [130]
or a Kalman filter. The result shall be denoted by ϕacc+gyr(t). A simple implementation
example of a complementary filter is given by

ϕacc+gyr(t) = λ ϕacc(t) + (1 − λ) (ϕacc+gyr(t − ts) + ϕgyr(t) − ϕgyr(t − ts)) , (3.77)

where λ ∈ [0, 1] is an adjustable filter weight. Figure 3.23 presents the result of the sensor
fusion for λ = 0.01 and a sample period ts = 0.02 s. As demonstrated, the combined
angle ϕacc+gyr(t) does not follow the spikes of the acceleration-based angle and also does
not exhibit the drift of the gyroscope-based angle. In Section 3.4.5, we will examine
how accurate this IMU-based flexion/extension angle measurement is with respect to an
optical reference measurement system. Prior to this, we briefly discuss the applicability
of the developed methods to joints with more than one rotational degree of freedom.

3.4.4 Applicability of the Methods to Saddle and Spheroidal Joints

The methods that were introduced in the preceding subsection assume that two segments
are connected by a joint with one rotational degree of freedom. As mentioned before, the
22Please note that the drift depends on the bias of the gyroscopes.
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human knee is not exactly such a hinge joint, since it admits some rotation in the frontal
and the transversal plane of up to about 8◦ [86]. These motions are even stronger when
saddle or spheroidal joints, for example the ankle or the hip, are considered. Therefore,
we briefly discuss the influence of these additional motions on the methods proposed
above. The joint axis estimation, which exploits the kinematic constraint (3.45) of a
hinge joint, can as well be employed on saddle and spheroidal joints. In such cases, the
method will always identify the main axis of motion, i.e. the axis that minimizes the
error norm defined in Section 3.3.4. This means that motion in other directions (i.e.
degrees of freedoms of the joint) may occur, but the motion should be primarily around
one (dominant) axis of the joint. In Section 3.4.5, we will demonstrate that, in the case
of the ankle joint, data from normal walking is sufficient to identify the approximate
plantarflexion/dorsiflexion23 axis.

Beyond this, note that small additional rotations in the other dimensions do not af-
fect any of the geometrical arguments used in the algorithms above. Therefore, these
algorithms can be employed for flexion/extension angle measurement on real saddle or
spheroidal joints, for example the hip or the ankle. In Section 3.4.5, we will examine
how accurately these methods work on the plantar/dorsiflexion of ankle joints.

3.4.5 Experimental Evaluation of Joint Angle Estimation

The two methods that were introduced in Section 3.4.3 are now evaluated in repeated
gait experiments with a transfemoral amputee (age 40–45, height 180–185 cm, weight
80–85 kg, K-level 4, i.e. the highest level of the Amputee Mobility Predictor). The
subject is wearing a leg prosthesis and has given informed consent to the investigations.
Reflective markers are placed on the subject’s body segments at corresponding physio-
logical landmarks; see Figure 3.24. The 3D positions of these markers are recorded at
120 Hz by an optical motion tracking system with ten cameras (V612 by Vicon Motion
Systems Ltd., UK). Furthermore, we use elastic body straps to equip the upper leg,
the lower leg and the foot of both the prosthesis and the contralateral leg with one
inertial measurement unit (MTw by Xsens, Enschede, Netherlands) each, as depicted
in Figure 3.24. At a measurement rate of 60 Hz, these six inertial sensors provide 3D
accelerations and angular rates in their local coordinates, as well as estimates of sensor
orientations with respect to a common global reference frame. We neither restrict the
mounting of the IMUs to certain locations or orientations, nor do we measure these
quantities. Instead, the subject is instructed to perform a combined circling motion of
the upper and lower leg with a few arbitrary changes in direction and amplitude (see
23i.e. the mediolateral axis of the ankle joint that admits pitch motions of the foot with respect to the

shank
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Figure 3.24: Placement of inertial measurement units and optical markers on the legs
of a transfemoral amputee. The optical markers are placed at the typical
physiological landmarks. The inertial measurement units are attached using
body straps, without restricting their position or orientation.

Figure 3.12 and [110] for illustration). This motion is executed for about ten seconds on
both sides.

The methods from Section 3.3 are used to estimate the direction and position vectors of
the knee joint axis on both sides from the recorded inertial data. Then the subject walks
repeatedly about ten meters at self-selected speed on a straight line within the range
of an optical gait analysis system and far away from potential magnetic disturbances.
The data that is gathered during one of these walking trials is used to identify the
direction and position vectors of the ankle plantar/dorsiflexion joint axis on both sides.
From the measurement data gathered during the following trials, we calculate the knee
flexion/extension angles and the ankle plantar/dorsiflexion angle of both legs using both
of the methods from Section 3.4.3.
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Figure 3.25: Comparison of the two IMU-based knee flexion/extension angle measure-
ments (ϕacc+gyr+mag(t) and ϕacc+gyr(t)) with the result of an optical gait
analysis system (ϕopt(t)). On the prosthesis side, there is no significant
deviation (RMS below 0.6◦). However, on the contralateral side, skin and
muscle motion effects, which are strongest during pre-swing and heel-strike,
lead to RMS deviations of almost 4◦.

The resulting ankle and knee joint angle traces of two different trials are provided in
Figures 3.25 and 3.26. The qualitative difference between the angle trajectories of the
prosthesis and the biological leg is considerable, but this aspect is outside the focus of this
dissertation and, therefore, shall not be discussed here. For additional orientation, gait
phase transitions are indicated, which were detected based on inertial measurement data
from the foot sensor using an offline version of the algorithm described in Section 3.1.

With respect to the optical system, both IMU-based methods achieve a root-mean-square
deviation of less than 0.6◦ on the prosthesis side and less than 4◦ on the contralateral
side. The deviations of a larger set of trials are summarized in Table 3.2. In all of them,
both IMU-based approaches yield similar values, although they use the inertial data in
completely different ways.

Quantifying soft tissue motion artifacts: It is important to note that the errors on
the biological leg are about four times larger than on the prosthesis. One might suppose
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Figure 3.26: Comparison of the two IMU-based ankle plantar/dorsiflexion angle mea-
surements (ϕacc+gyr+mag(t) and ϕacc+gyr(t)) with the result (ϕopt(t)) of an
optical gait analysis system. Both on the prosthesis side and on the con-
tralateral side, the deviation is about 1◦.

that this is because of the human knee being less close to a perfect hinge joint. However,
we just explained in Section 3.4.4 that the IMU-based algorithms ignore abduction/ad-
duction and internal/external rotations, just as the optical analysis does. Therefore, a
more reasonable explanation is found in the following remarkable difference between the
two sides. On the prosthesis, the IMUs and the optical markers are rigidly connected
by the artificial thigh and shank. In contrast, on the biological leg, the inertial sensors
and the markers move relative to each other as a result of muscle and skin motions. It is
very likely that such soft tissue motions cause the observed deviations on the contralat-
eral side. This argument is supported by the fact that deviations between optical and
IMU-based angles are largest during pre-swing and at initial contact, i.e. when the leg
is accelerated and decelerated. Furthermore, there are a number of experimental stud-
ies (see Section 3.4.2) in which the optical markers were placed directly on the inertial
sensors or onto rigid plastic or wood parts that also held the inertial sensors. Obviously,
with such a setup, the IMUs and optical markers of each segment can no longer move
relative to each other. In these studies, deviations of less than 2◦ between both measure-
ment systems were observed, which further supports the argument that the additional
deviation of 2–3◦ on the biological leg result from skin and muscle motions. It is a major
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Trials RMSE
1 2 3 4 5 6 σ average

knee prosthesis 0.46◦ 0.89◦ 0.59◦ 0.95◦ 0.57◦ 0.77◦ 0.19◦ 0.71◦

contralateral 3.25◦ 2.76◦ 3.10◦ 3.16◦ 0.40◦ 3.83◦ 1.20◦ 3.30◦

ankle prosthesis 0.92◦ 1.03◦ 0.91◦ 0.65◦ 0.67◦ 0.69◦ 0.16◦ 0.81◦

contralateral 0.95◦ 1.50◦ 1.25◦ 1.53◦ 1.85◦ 2.61◦ 0.57◦ 1.62◦

Table 3.2: Deviations between the knee flexion/extension and ankle plantar/dorsiflexion
angle measurements of the optical and the inertial system for six gait trials
of a transfemoral amputee. Results are given for ϕacc+gyr only, since both
methods yield very similar results. The deviations vary little (σ ≈ 1◦). For
the knee joint angles, the same difference in the accuracies of the prosthesis
and biological leg is observed as in Figure 3.25.

result of this study that these soft tissue motion artifacts can be quantified by direct
comparison of both legs of the transfemoral amputee.

3.4.6 Conclusions and Future Research

We discussed methods for IMU-based joint angle measurement on the human body.
Special attention was dedicated to the challenge of arbitrary mounting orientation and
position and to avoiding precise calibration motions as well as to avoiding the use of
magnetometers.

We described two methods for the calculation of precise flexion/extension angles on
hinge, saddle and spheroidal joints. The first method is known from the literature and
requires precise estimates of the sensor orientations with respect to a common fixed
reference frame. The second and novel method employs only accelerometer and gyro-
scope readings. Both methods were evaluated against an optical gait analysis system on
the gait of a transfemoral amputee. For both, we obtained highly precise results with
root-mean-square deviations of about 1◦ on the ankle joints, as well as on the prosthetic
knee, and we discussed the effect of skin and muscle motions on the contralateral knee,
which led to slightly larger deviations of about 3◦. Future research will be dedicated to
the question of how these effects can be compensated or minimized.

Furthermore, we shall note that the proposed algorithms use only present and past mea-
surement data, i.e. they are suitable for online use. Therefore, and since they supersede
precise sensor mounting requirements as well as restrictive calibration protocols, these
new methods pave the way for a plug-and-play gait analysis, in which one simply attaches
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the IMUs, moves the legs for a few seconds and then receives joint angle measurements
in realtime. This will be the subject of future research, including extensions for 2D and
3D joint angle measurements on ankle and hip joints.
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4 Iterative Learning Control for
Variable-Pass-Length Systems

Iterative Learning Control (ILC) methods have been used successfully in a multitude of
application systems including robotics, process engineering and biological systems (see
for example Ahn et al. [1] and references therein). Beyond that, a growing number of re-
searchers consider ILC a promising tool for numerous control problems in biomedical ap-
plication systems, see for example Duschau-Wicke et al. [22], Freeman et al. [31], Klauer
et al. [39], Wang et al. [121]. In the following, we will discuss why the conventional ILC
theory is technically too restrictive for some of these applications. We will identify non-
classic phenomena that typically arise when the trials in which the control task repeats
are cyclic motions or processes of the human body. Subsequently, we will extend the
standard ILC design in the lifted-system framework to the class of repetitive trajectory
tracking tasks with variable pass length.

Two learning laws will be considered – the standard input update with a single learning
gain matrix and the extended version with lowpass filter in the update loop. For both
cases, we will derive and analyze the closed loop dynamics, and we will discuss in which
sense the tracking error can be reduced by which control design strategies. In particular,
the maximum-pass-length (MPL) error will be introduced as a useful concept for con-
vergence analysis of variable-pass-length systems. Necessary and sufficient conditions
for monotonic convergence of different vector norms of this error will be derived. We
will then summarize all results in a set of practical control design guidelines. Finally,
the special dynamics that occur in variable-pass-length learning will be illustrated by a
simulation study.

4.1 Introduction and Motivation

Several control problems in various application domains require the controller to repeat
the same trajectory tracking task from the same initial condition multiple times. In such
control systems, the tracking performance can be improved by learning from previous
executions by means of iterative learning control. Please refer to Chapter 2 for a brief
introduction to ILC.

Depending on the analysis framework, the input and output trajectories of the system
to be controlled can be described in the frequency domain or by lifted vectors. In many
standard ILC application domains, especially in robotics, the analysis of the system

87



4 Iterative Learning Control for Variable-Pass-Length Systems

dynamics as well as the controller design are carried out in the frequency domain, rather
than in the lifted-system framework. This yields some advantages1, but for frequency
domain methods to be applicable, the trial duration is assumed to be magnitudes larger
than both the sampling time and the characteristic time constant of the system to be
controlled. This requirement does not hold in many ILC applications, especially in
those from the field of biomedical engineering. Therefore, it is advisable to use the
lifted-system framework when aiming to derive new methods for such applications.

A brief review of recent contributions reveals that the potential application fields for ILC
in biomedical engineering are numerous, including diabetes treatment (e.g. Wang et al.
[123]), rehabilitation robotics (e.g. del-Ama et al. [3], Duschau-Wicke et al. [22], Liu
et al. [51]), robotic surgery (e.g. Cagneau et al. [12]) and blood pressure measurement
(e.g. Seel et al. [106]). However, in these applications, often even the basic assumptions
of iterative learning control do not hold. One of these assumptions is that the dynamics
(including the initial condition) do not change from pass to pass, i.e. the same input
causes the same output when applied again in any of the following trials. This very
restrictive assumption has been relaxed by several author’s contributions, where ILC
methods yielding robustness of convergence properties with respect to iteration-variant
dynamics and initial conditions were proposed, see for example Donkers et al. [21], Moon
et al. [62], Park et al. [81]. However, a more fundamental assumption of ILC is that
each trial shall be of the same duration (i.e. the same pass length). In the previously
mentioned applications, the trials in which the control task repeats are, for example,
human arm motions, strides, or heart beats. In contrast to the rigidly defined motions
of robotic actuators, these processes can hardly be assumed or constrained to repeat in
trials of constant duration. Hence, the trial duration is not constant.

In the remainder of this section, we will discuss two ways in which a repetitive control
task can be defined for such application systems. At first, let us consider the case in
which there exists a desired trial duration but the trials terminate before this time has
passed. To illustrate this case, two examples from the context of functional electrical
stimulation (FES) are briefly discussed in the following:

Functional Electrical Stimulation for Upper Limb Movement: A complex func-
tional arm movement shall be produced via electrical stimulation of the respective mus-
cles through skin electrodes, as considered for example by Freeman et al. [31], Soska
et al. [112] and Klauer et al. [39]. If the desired motion is complex, then very precise
and well-timed stimulation patterns need to be applied. However, the system dynamics

1For example, the frequency-domain representations of the system dynamics and the controller dynam-
ics commute, which is in general not the case for their lifted-system representations.
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are very nonlinear and uncertain, since they depend on many details such as the exact
electrode position. Therefore, it can be hard to set stimulation parameters that gen-
erate (anything close to) the desired motion in the first trial. For successive learning
of the corresponding stimulation profile, the use of a robust ILC algorithm based on a
linear model seems promising. However, at least for the first passes, it is expected that
the actually achieved trajectory leaves the neighborhood of the reference trajectory very
early. Even if the ILC algorithm is very robust, the data gathered outside this neighbor-
hood is hardly useful since the dynamics and disturbances vary largely over state space.
Therefore, and for reasons of safety, a trial should be terminated whenever output and
reference begin to differ too much. Nevertheless, between the beginning and the (early)
termination of each trial, some valuable data is gathered that could be used for learning
if there was a way to deal with varying pass lengths.
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Figure 4.1: Iterative learning control of functional electrical stimulation for supporting
the foot motion during gait. The stimulation intensity trajectory is adjusted
from stride to stride to influence the foot orientation angle trajectory. Hip
and knee joint are moved by the patients themselves. Depending on their
strength and abilities, the steps are often cut short by suddenly putting the
foot down. Thus, swing phase duration varies from step to step.

Functional Electrical Stimulation for Gait Assistance: Many stroke patients
suffer from the drop foot syndrome, a limited ability to dorsiflex the foot, i.e. to lift
the foot toward the tibia. Patients walking at constant speed on a treadmill can be
supported, for example, by controlling the ankle joint angle via electrical stimulation
of the tibialis anterior muscle. This is illustrated in Figure 4.1. Due to the repetitive
nature of gait, ILC is a promising method for improving the stimulation profile for the
swing phase from step to step and to maintain the desired foot motion despite slow
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parameter variance. However, the foot is only in swing phase (i.e. above the ground) as
long as the hip joint and the knee joint are sufficiently flexed. Thus, depending on the
patient’s strength and abilities, the steps are often cut short by suddenly putting the
foot down. This means that the swing phase duration varies largely even when patients
walk at constant speed. In order to apply ILC methods, we must find a way to learn
from trials of varying duration.

Both application examples demonstrate that trials might be terminated early, either by
events that depend on the states of the system or on the controller performance, or by
randomly occurring events. A number of further examples for this phenomenon are found
in the aforementioned literature on other biomedical application systems. Due to a lack
of suitable methods, the fact that the trial duration varies is typically ignored completely,
or a heuristic approach is used with no guarantee of convergence being maintained (cf.
for example Nahrstaedt et al. [71], Longman and Mombaur [55]).

As mentioned above, there is a second way in which a repetitive control task can be
defined for application systems with variable trial duration. In particular, there exist
applications in which not only the trial duration but also the entire reference duration
varies (see for example Moore et al. [66] or Kurniawan et al. [42]). More precisely, the
reference trajectory that shall be tracked in one trial is scaled to a different time length
in another (shorter or longer) trial. This is illustrated by an example from the previously
discussed application context: Assume that FES is used to (successfully) perform the
same arm motion (for example drawing a large circle or a point-to-point reaching motion)
first within five seconds and then within three seconds. In that case, the time scale of
the entire tracking problem changes. Similar phenomena arise in the second example if
the gait velocity changes, as well as in FES cycling [122] and in control of respiratory
motion [4]. To highlight the fact that not only the trial duration but also the reference
duration changes, we will call these systems variable-reference-length systems.

In previous contributions, several solutions have been proposed which extend standard
ILC theory to the case of variable reference length. Moore et al. [66] suggested to
parameterize the input and output trajectory by a different (monotonously increasing)
parameter than the time. In walking, this parameter might be the gait cycle percentage,
while the crank angle might be used in FES cycling. This method, which is known as
spatial-based ILC, certainly represents an effective tool for handling repetitive control
problems with variable reference length. It is, however, not applicable to the previously
described class of variable-pass-length systems with fixed reference duration. In the
remainder of this chapter, we focus on the first class of systems, i.e. on control problems
with early trial termination and thus incomplete measurement information.
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4.2 Previous Work on Iterative Learning Control Systems
with Variable Pass Length

Currently, there are very few results available that consider convergence of ILC systems
in which the pass length is not constant. However, a few similar problems have been
addressed in the literature.

Moore [65] as well as Moore and Mathews [64] consider the problem of controlling a
gas-metal arc welding process, in which the time interval between detachments of mass
droplets from the end of a consumable electrode is considered a trial. They propose a
discontinuous, switching-based iterative learning control scheme that forces the system
to exhibit a uniform trial length. However, they assume that the system can be forced
to restart a trial by a known input, and they show convergence only for a very simple
input-update law with a diagonal learning gain matrix.

Li et al. [45, 46, 47] address an iterative learning control design problem for discrete-
time systems with randomly varying trial lengths. A stochastic matrix and an iteration-
average operator are introduced to present a unified expression of the ILC scheme. How-
ever, they assume the trial length to be a stochastic variable with a known (uniform)
probability distribution, and they only show convergence of the expectation of the track-
ing error to a small value after a large number of trials.

Ahn et al. [2] consider an ILC scheme that is implemented via a networked control sys-
tem in which data dropout occurs. They present a Kalman filtering approach and show
that it is possible to design a learning gain such that the system eventually converges
to a desired trajectory as long as there is no complete data dropout. With some sub-
stantial extensions, this method might be used for variable-pass-length systems. Ahn
et al. assume, however, that the data dropout probabilities are known, and they do not
establish monotonic convergence of the tracking error in any sense.

In the following, we will fill this gap by providing methods that assure monotonic con-
vergence for ILC systems with variable pass lengths. Under the sole assumption of a
(potentially very small) lower bound and a (potentially very large) upper bound of the
trial duration, we will show that monotonic convergence of the tracking error can be
achieved in different senses by applying slightly modified versions of standard input-
update laws.
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4.3 Iterative Learning Control for Variable-Pass-Length
Systems

In this section, a new class of iterative learning systems is introduced and its closed-
loop dynamics are derived. It is assumed, that the pass length n can vary from pass
to pass and that pass termination is sudden. This means that, for each pass j ∈ N0,
the pass length nj is not known before the pass ends. However, a possibly very small
lower bound n and a possibly very large upper bound n shall be given. Consequently, a
full-length desired output r ∈ Rn×1 must be defined, and (for each pass j) a full-length
input ūj ∈ Rn×1 with

ūj := [u(t0,j), u(t0,j + ts), . . . , u(t0,j + (n − 1)ts)]T , (4.1)

must be prepared, although only the first nj samples of that trajectory will actually be
applied to the system. In contrast, the output trajectory that is measured during the
same trial is denoted by yj ∈ Rnj×1 and contains only nj ≤ n sample values.

In order to cope with the varying length of the output vector and for the sake of a
more compact notation, we introduce the remove-last-(n − nj)-elements operator 〈·〉nj :
Rn×1 → Rnj×1 and the append-(n − nj)-zero-elements operator 〈·〉n : Rnj×1 → Rn×1.
Clearly, 〈·〉nj and 〈·〉n correspond to premultiplication by the matrices [Inj×nj , 0nj×(n−nj)]
and [Inj×nj , 0nj×(n−nj)]T , respectively, where Inj×nj denotes the nj-dimensional identity
matrix and 0nj×(n−nj) denotes a zero matrix with nj rows and (n − nj) columns. Thus,
for example, the desired output signal for pass length nj becomes 〈r〉nj , and the tracking
error ej ∈ Rnj×1 measured in pass j can be denoted by

ej := 〈r〉nj − yj . (4.2)

For the last (n − nj) samples of the reference trajectory, there exists no measurement
information, since the trial actually ends after nj sample periods. This means that the
complete input trajectory ūj must be updated using the incomplete error information ej .
This can be achieved, for example, by using the following modified version of a standard
ILC learning law:

ūj+1 = ūj + L 〈ej〉n , j = 0, 1, . . . , (4.3)

where L ∈ Rn×n is an adjustable learning gain matrix. As in classic ILC systems, an
initial input ū0 must be chosen for the first trial based on the (limited) prior knowledge
of the system dynamics. Every following input is then calculated using (4.3). Although
many of the following arguments would also hold for a learning gain that depends on
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the trial index, we will consider only the standard case of an iteration-invariant matrix
L in the present dissertation.

Rationale of the Variable-Pass-Length Learning Law: Recall from Chapter 2
that, whenever certain sections of the measured output trajectory perfectly track the
corresponding sections of the reference trajectory, then a well-designed learning controller
will try to modify the input trajectory in such a way that these sections of the output
trajectory are influenced as little as possible. By setting the last n − nj samples of the
error information vector to zero, we likewise demand a learning step that affects the last
n − nj samples of the output as little as possible. This is a very reasonable strategy,
since there is no measurement information about the values that these samples would
have under the current input trajectory.

In the following, we will introduce a linear system model and analyze the resulting closed
loop dynamics in the presence of variable pass length.

4.3.1 Linear System Dynamics

Assume that the input-output dynamics of the system to be controlled can be approx-
imated by a linear, discrete-time process with Markov parameters pk, k = 1, 2, . . .. The
maximum-pass-length output ȳj ∈ Rn×1 of the system, i.e. the output that the system
would yield if trial j was of full length, can then be described by

ȳj :=
[
yj

ŷj

]
:= Pūj + v , P =

⎡
⎢⎢⎢⎢⎢⎢⎣

p1 0 0 · · · 0
p2 p1 0 · · · 0
p3 p2 p1 · · · 0
...

... . . . . . . ...
pn̄ pn̄−1 · · · p2 p1

⎤
⎥⎥⎥⎥⎥⎥⎦ , (4.4)

where P ∈ Rn×n is the lifted-system matrix of the process and v ∈ Rn×1 is a bounded,
unknown, iteration-invariant disturbance.

Assume that the system dynamics P, v are only imprecisely known, and recall that
the trials end after nj samples. The last n − nj samples of ȳj are denoted by ŷj and
represent the unknown output that would (hypothetically) be measured if the trial was
of maximum length nj = n. This portion of the complete output ȳj is not known to
the controller when computing ūj+1. In fact, the only certain information the controller
obtains in each iteration is the measured output yj .
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4.3.2 Derivation of Closed-Loop Dynamics

Although we assume that the true system dynamics are only imprecisely known, we can
nevertheless derive equations that describe how the complete output ȳj and the tracking
error evolve for a particular lifted-system matrix P under consideration. Thereby, we will
develop a method that enables us to verify, for a given P, whether a certain controller
L yields desirable convergence properties in the presence of variable pass lengths.

In order to derive closed-loop dynamics, we define the maximum-pass-length (MPL) error
ēj ∈ Rn×1 analogously to the previous definition of the maximum-pass-length output:

ēj :=
[
ej

êj

]
:= r − ȳj . (4.5)

Therein, ej ∈ Rnj×1 is the actually measured control deviation, and êj ∈ R(n−nj)×1 is
the hypothetical error that would occur on the last n − nj sample instants if the trial
was of full length.

The previous definitions allow us to rewrite the update law (4.3) in the following, more
convenient form:

ūj+1 = ūj + L 〈 〈r〉nj − yj 〉n

= ūj + L Hnj ēj , (4.6)

in which the last n − nj samples of the MPL error are canceled by multiplication with
the block-diagonal matrix2 Hnj = blockdiag{Inj×nj , 0(n−nj)×(n−nj)}.

By inserting (4.4) and (4.6) into (4.5), we obtain

ēj+1 = r −
(
P(ūj + LHnj ēj) + v

)
= r −

(
r − ēj + PLHnj ēj

)
, (4.7)

which yields the following closed-loop MPL error dynamics:

ēj+1 =
(
In×n − PLHnj

)
ēj . (4.8)

2By definition, Hnj a = 〈〈a〉nj 〉n ∀a ∈ Rn×1
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In order to gain more insight into the interrelation of the measured error ej and the
hypothetical error êj , we introduce the following trial-dependent partition:[

G1,j G2,j

G3,j G4,j

]
:= In×n − PL, (4.9)

G1,j ∈ Rnj×nj , G2,j ∈ Rnj×(n−nj), G3,j ∈ R(n−nj)×nj , G4,j ∈ R(n−nj)×(n−nj). (4.10)

We then use (4.5) to rewrite the closed-loop dynamics as follows:[
ej+1
êj+1

]
=
[
G1,j 0nj×(n−nj)
G3,j I(n−nj)×(n−nj)

] [
ej

êj

]
=
[
G1,j G2,j

G3,j G4,j

] [
ej

0(n−nj)×1

]
+
[
0nj×1

êj

]
. (4.11)

Since the pass length may change from trial to trial, please note that, in general, ej+1
on the left-hand side and ej on the right-hand side do not have the same dimensions.

Equilibria of the Closed-Loop Dynamics: With respect to (4.8), we shall note a
remarkable difference between constant-pass-length and variable-pass-length ILC. If the
pass length is constant nj = n ∀j and (In×n − PL) is regular, then the only equilibrium
of (4.8) is the zero vector, i.e. perfect tracking of the given reference. For nj < n,
however, every vector ēj whose first nj entries are zero is mapped onto itself by (4.8).
This implies, for example, the following. If the sequence {nj} of pass lengths is such
that nj ≤ n∗ ∀j with some n∗ < n, then the entire nullspace of Hn∗ is an equilibrium
manifold of the closed-loop dynamics (4.8).

In the following sections, we will discuss in which sense the tracking error may reduce in
variable-pass-length systems, we will investigate how the learning gain matrix L must
be chosen to guarantee such a reduction, and we will discuss some fundamental effects
that appear in learning from trials with variable length. Prior to this, a low-dimensional
example of the error dynamics matrices in (4.8) is provided to improve the comprehen-
siveness of the subsequent convergence analysis.

Example of the MPL Error Dynamics Matrices: Assume that n = 4, n = 2, and
(without loss of generality) denote the product of P and L by

PL =

⎡
⎢⎢⎢⎣

a b c d
e f g h
k l m o
p q r s

⎤
⎥⎥⎥⎦ . (4.12)
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Then the MPL error dynamics matrices are given by

(I4×4 − PLH4) =

⎡
⎢⎢⎢⎣

1 − a −b −c −d
−e 1 − f −g −h
−k −l 1 − m −o
−p −q −r 1 − s

⎤
⎥⎥⎥⎦ , (4.13)

(I4×4 − PLH3) =

⎡
⎢⎢⎢⎣

1 − a −b −c 0
−e 1 − f −g 0
−k −l 1 − m 0
−p −q −r 1

⎤
⎥⎥⎥⎦ , (4.14)

(I4×4 − PLH2) =

⎡
⎢⎢⎢⎣

1 − a −b 0 0
−e 1 − f 0 0
−k −l 1 0
−p −q 0 1

⎤
⎥⎥⎥⎦ . (4.15)

Obviously, the dynamics matrices are column-wise blends of the classic closed-loop dy-
namics matrix (In×n − PL) and the identity matrix. Thus, note for example that with
perfect plant inversion, i.e. L = P−1, the matrix (I4×4 − PLH4) becomes a zero ma-
trix, while the rightmost one and two columns of (I4×4 − PLH3) and (I4×4 − PLH2),
respectively, would still be those of a four-by-four identity matrix.
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||e1||1 > ||e0||1
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Figure 4.2: In variable-pass-length ILC, the norm of the measured error ej is not a
useful performance measure, since it depends largely on the trial duration.
The longer trial 1 might yield a larger error norm than the shorter trial 0,
although the former exhibits better reference tracking than the latter.

4.4 Learning Dynamics for the Standard Input-Update
Law

4.4.1 Learning Progress on the Measured Time Interval

In classic ILC systems, controller design and implementation aims at reducing the p-
norm3 ||ej ||p of the measured error from one trial to the next, for some p ∈ {1, 2, ∞}.
In variable-pass-length ILC, the p-norm of the measured tracking error ej will vary as
nj varies, even if the input trajectory is not updated at all. A long trial might yield a
larger error norm than a short trial, despite the former yielding better reference tracking
than the latter, as illustrated in Figure 4.2.

Hence, we need a different concept to describe whether the reference tracking is improved
by an update step in the presence of variable pass length. Since, in each trial j, the
controller receives the measurement values of the first nj samples, it is reasonable to
demand that the reference tracking should be improved by the following update at least
on those first nj samples. In order to describe the degree to which this goal is achieved
in each trial, we define the learning progress indicator Δp,j as follows:

Δp,j :=
||ej ||p − ||〈ēj+1〉nj ||p

||ej ||p = 1 − ||〈ēj+1〉nj ||p
||ej ||p , (4.16)

where Δp,j > 0 means that the norm of the tracking error is reduced by the update, and
Δp,j = 1 refers to perfect tracking being achieved by the update.

3||x||1 :=
∑n

1 |x(n)| ∀x ∈ Rn×1, ||x||2 :=
√∑n

1 (x(n))2 ∀x ∈ Rn×1, ||x||∞ =: maxn |x(n)| ∀x ∈ Rn×1
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Note that the numerator is formulated such that the p-norm is calculated over the first nj

samples of the (j +1)th output trajectory, regardless of whether nj+1 is smaller or larger
than, or equal to, nj . Obviously, such a quantity cannot be assessed experimentally,
unless the sequence {nj} is nondecreasing with j. We can, however, answer the question
whether a given P and L yield a closed-loop system with positive learning progress. By
inserting (4.11) into (4.16) we obtain

Δp,j = 1 − ||G1,jej ||p
||ej ||p ≥ 1 − ||G1,j ||p , (4.17)

where we exploited the fact that every vector p-norm and its induced matrix norm4 are
submultiplicative5.

Recall the partition (4.9) and note that the induced p-norm of a matrix cannot be smaller
than the induced p-norm of any of its sub-matrices. Therefore, the learning progress is
positive for any p-norm if the matrix p-norm ||In×n − PL||p is smaller than one.

Due to the conservative nature of induced matrix norms, the learning progress may very
well be positive even if ||In×n − PL||p is larger than one. In practice, however, neither
the sequence {nj} of pass lengths nor the disturbance v are known. A learning gain
L that yields Δp,j > 0 only for some disturbances or pass length sequences is hardly
useful. Likewise, it is desirable to find a learning gain that does not need to be redesigned
when the reference trajectory r or the initial input profile ū0 are changed. Therefore, a
condition is needed that assures positive learning progress for all possible values of {nj},
v, r and ū0. The following theorem states that this is only assured if ||In×n − PL||p is
smaller than one.

Theorem 1. For a repetitive process (4.4) with input-update law (4.6), the learning
progress Δp,j is positive in every trial, for any sequence of pass lengths {nj}, for any
reference r, disturbance v, and bounded initial input ū0, i.e.

||〈ēj+1〉nj ||p
||ej ||p < 1 ∀ j ∈ N0, nj ∈ {n, ..., n}, r, v, ū0 ∈ Rn×1, (4.18)

if and only if

γp := ||In×n − PL||p =
∣∣∣∣∣
∣∣∣∣∣
[
G1,j G2,j

G3,j G4,j

]∣∣∣∣∣
∣∣∣∣∣
p

< 1. (4.19)

4i.e. ||A||p := max{||Ax||p, ||x||p = 1}
5i.e. ||ABx||p ≤ ||A||p||B||p||x||p ∀A, B, x
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ȳ2

ȳ3

Figure 4.3: Hidden error growth in ILC systems with variable pass length. Every second
trial is cut short, dotted lines indicate the hypothetical output ŷj . In both
plots, the tracking error is reduced in the sense of (4.18) in each trial. Nev-
ertheless, the tracking may get worse on the last n − nj samples (left) and
may theoretically even get worse on the entire time interval (right).

Proof. Sufficiency of the stated condition follows from (4.17). To prove necessity by
contradiction, consider the special case in which the first pass length n0 is equal to n,
and assume some reference r and initial input ū0 to be given. If γp ≥ 1, then there exists
at least one disturbance signal v that results in ē0 lying in the direction of maximum
gain of (In×n − PL), which means

||r − v − Pū0||p = ||ē0||p = ||e0||p ≤ ||(In×n − PL)ē0||p = ||〈ē1〉n0 ||p, (4.20)

i.e. the learning progress Δp,0 from trial j = 0 to trial j = is not positive. Hence, the
condition (4.19) is also necessary.

Theorem 1 highlights the relevance of the convergence indicator γp for learning progress
in a given vector p-norm. It provides a both simple and useful result with strong analogy
to the classic case of constant pass length (cf. Chapter 2). In constant-pass-length ILC
systems, a positive learning progress is equivalent to strict monotonic convergence of
the error norm, and (4.19) coincides with the well-known condition for strict monotonic
convergence.

However, the property (4.18) is still not sufficient to guarantee that the tracking error
remains bounded in the presence of variable pass length. Figure 4.3 illustrates this
remarkable fact. While the example dynamics chosen therein may seem unrealistic or
extreme, they nevertheless demonstrate that, in each trial, the performance on the first
nj samples might be improved at the cost of (severely) worsening the performance on
the last n − nj samples. Hence, a more rigorous convergence concept is needed that also
accounts for hidden growth of the hypothetical tracking error êj .
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4.4.2 Monotonic Convergence of the Maximum-Pass-Length Error

The convergence properties of ēj well describe whether the controller performance ac-
tually improves. Therefore, we aim at designing controllers that ensure reduction of a
p-norm ||ēj ||p of the MPL error, for example its sum-of-absolute-values norm (p = 1),
its Euclidean norm (p = 2), or its maximum-absolute-value norm (p = ∞). Obviously,
if ||ēj ||p is monotonically decreasing in j, then also ||ej ||p is bounded by trial-wise de-
creasing upper bounds, since

||ej ||p ≤ ||ēj ||p ∀j ∀p ∈ {1, 2, ∞}. (4.21)

Therefore, the concept of the MPL error is very useful for convergence analysis. In order
to have monotonic convergence for an arbitrary sequence of pass lengths {nj} and an
arbitrary disturbance signal v, the following condition must hold:

Lemma 1 (Monotonic convergence of the MPL error p-norm). For a repetitive
process (4.4) with input-update law (4.6), the monotonic convergence condition of the
MPL error is

||ēj+1||p ≤ ||ēj ||p ∀ j ∈ N0, nj ∈ {n, ..., n}, r, v, ū0 ∈ Rn×1

⇔ ||In×n − PLHn||p ≤ 1 ∀ n ∈ {n, ..., n}, (4.22)

for some vector norm || · ||p and its induced matrix norm.

Proof. Necessity and sufficiency follow from the definition of an induced matrix norm, i.e.
||A||p := max{||Ax||p, ||x||p = 1}, from the MPL error closed-loop dynamics (4.8), and
from the fact that (in each trial j) the pass length may take any value nj ∈ {n, ..., n}.

In practice, checking the condition of Lemma 1 would entail the need to calculate the
norm of (n − n + 1) matrices of dimension n × n, which is a potentially large number
of large-scale matrices when high sampling rates are used. Fortunately, simplified con-
ditions can be found for the 1-norm ||ej ||1 and the ∞-norm by exploiting the special
structure of the closed-loop error dynamics matrices (In×n − PLHn), n ∈ {n, ..., n}.

The following theorem exploits this special structure and provides a necessary and suf-
ficient condition for monotonic convergence of the 1-norm (i.e. the sum of the absolute
values) of the MPL error [102].

Theorem 2 (Monotonic convergence of the MPL error 1-norm). Given a repet-
itive process (4.4) with input-update law (4.6), the 1-norm of the MPL error ēj is mono-
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tonically decreasing, i.e.

||ēj+1||1 ≤ ||ēj ||1 ∀ j ∈ N0, nj ∈ {n, ..., n}, r, v, ū0 ∈ Rn×1, (4.23)

if and only if

γ1 = ||In×n − PL||1 ≤ 1 . (4.24)

Proof. Necessity follows from Lemma 1, since (4.24) repeats a special case (n = n, p = 1)
of the condition therein. Sufficiency is proved by the following argument, which holds
for every n ∈ [n, n):

(In×n − PLHn) = (In×n − PL)Hn + (In×n − Hn) . (4.25)

Note that the last n − n columns of (In×n − PL)Hn are zero and that (In×n − Hn) =
blockdiag{0n×n, I(n−n)×(n−n)}. Recall that the induced matrix norm || · ||1 is the maxi-
mum absolute column sum of the matrix. Therefore, we obtain

||In×n − PLHn||1 = max(||(In×n − PL)Hn||1, 1) (4.26)
≤ max(||In×n − PL||1||Hn||1, 1) ≤ max(γ1, 1) . (4.27)

With Lemma 1, monotonic convergence follows.

Of course, strict monotonic convergence is more desirable than just monotonic conver-
gence. But even for γ1 < 1, it turns out that ||In×n − PLHn||1 = 1 ∀ n < n, since the
last n − n columns each have an absolute-value sum of one. To clarify this issue, the
following corollary is given:
Corollary 1 (Almost-strict monotonic convergence of the MPL error 1-norm).
If the matrix L satisfies γ1 = ||In×n−PL||1 < 1, then ||ēj+1||1 < ||ēj ||1 for arbitrary pass
length nj ∈ {n, ..., n}, unless the first nj entries of ēj are zero. This follows from (4.11)
and from the special property ||ēj ||1 = ||ej ||1 + ||êj ||1 ∀j of the 1-norm, which allows the
following conclusion:

||ēj+1||1 ≤ ||In×n − PL||1||ej ||1 + ||êj ||1 < ||ēj ||1 . (4.28)

In practice, this simply means that the learning algorithm is not guaranteed to improve
the last n − nj input samples until long enough passes occur. But it always learns from
measured errors on the first nj samples and (unless they are all zero) improves the overall
controller performance by reducing the 1-norm of the MPL error, even for short pass
lengths.
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In some applications, it is of special importance how the maximum deviation between
reference trajectory and measured output evolves from trial to trial. To address this
question, the following theorem provides a necessary and sufficient condition for mono-
tonic convergence of the ∞-norm (i.e. the maximum absolute value) of the MPL error
[102].

Theorem 3 (Monotonic convergence of the MPL error ∞-norm). For a repetitive
process (4.4) with input-update law (4.6), the ∞-norm of the MPL error is monotonically
decreasing, i.e.

||ēj+1||∞ ≤ ||ēj ||∞ ∀ j ∈ N0, nj ∈ {n, ..., n}, r, v, ū0 ∈ Rn×1, (4.29)

if and only if

||In×n − PL||∞ ≤ 1 ∧ (PL)i,k = 0 ∀k < i ∀i > n , (4.30)

where i and k are the row index and column index of P, respectively.

Proof. Sufficiency and necessity is proved by the following argument, which holds for
every n ∈ [n, n):

(In×n − PLHn) = Hn(In×n − PL)Hn − (In×n − Hn)PLHn + (In×n − Hn) , (4.31)

as HnHn = Hn. Note that the last (n − n) rows of Hn(In×n − PL)Hn are zero, and
that the first n rows of both other terms on the right-hand side are zero. Recall that the
induced matrix norm || · ||∞ is the maximum absolute row sum of the matrix. Therefore,
we conclude

||In×n − PLHn||∞ = max
(

||Hn(In×n − PL)Hn||∞ ,

||(In×n − Hn)PLHn + (In×n − Hn)||∞
)
. (4.32)

With respect to the second term, note furthermore that the last (n − n) columns of
(In×n − Hn)PLHn are zero and that (In×n − Hn) = blockdiag{0n×n, I(n−n)×(n−n)}.
With i and k denoting the row index and column index, respectively, it follows that

||In×n − PLHn||∞ = max
(
||Hn(In×n − PL)Hn||∞ , max

i>n

n∑
k=1

|(PL)i,k| + 1
)

. (4.33)

Note that the right-hand side is at least one, and note that it is equal to one for all
n ∈ {n, ..., n} if and only if (4.30) holds. Combining this with Lemma 1 completes the
proof.
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4.4 Learning Dynamics for the Standard Input-Update Law

As for the 1-norm, we find that even if (4.30) holds with ||In×n − PL||∞ being strictly
less than unity, we still have ||In×n − PLHn||∞ = 1 for all pass lengths n < n. However,
as a corollary of the above proof, we find the following:

Corollary 2 (Almost-strict monotonic convergence of MPL error ∞-norm).
From the proof of Theorem 3, we conclude that

||ēj+1||∞ ≤ max( ||Hnj (In×n − PL)Hnj ||∞ ||ej ||∞ , ||êj ||∞ ). (4.34)

Since furthermore ||Hnj (In×n − PL)Hnj ||∞ ≤ ||In×n − PL||∞ holds, we find that the
slightly more demanding condition ((4.30) ∧ ||In×n − PL||∞ < 1) yields the property

||ej ||∞ > ||êj ||∞ ⇒ ||ēj+1||∞ < ||ej ||∞ = ||ēj ||∞ . (4.35)

In practice, this means that the controller performance strictly improves (in the sense
of the ∞-norm of the MPL error) in each pass that is long enough to contain the
sample(s) of largest error. If, however, P, L, r, v, ūj are such that the largest deviation
between output and reference would occur after the end of the trial, then only monotonic
convergence is assured, until the trial length or the input trajectory change in such a
way that the largest deviation occurs in the actually measured error ej .

Please note that both Theorems 2 and 3 are such that only the maximum-pass-length
matrix (In×n − PL) and its norm need to be calculated to check for (almost-strict)
monotonic convergence. But in the ∞-norm case, perfect plant inversion6 is required, at
least in the lower left corner of (PL). Therefore this criterion is deemed less practical.

4.4.2.1 Convergence of the 2-norm

For monotonic convergence of the Euclidean norm ||ēj ||2, no criterion is found that
significantly simplifies the condition given by Lemma 1. But based on the above criteria
for monotonic convergence of the MPL error in the 1-norm and the ∞-norm, the dynamic
behavior of ||ēj ||2 can be assessed using the well-known facts

||A||2 ≤ ||A||1 · ||A||∞ ∀ A ∈ Rn×n, (4.36)
||a||∞ ≤ ||a||2 ≤ ||a||1 ∀ a ∈ Rn×1. (4.37)

Precisely, the following properties shall be noted:
6i.e. choosing L such that PL is the identity matrix
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4 Iterative Learning Control for Variable-Pass-Length Systems

P1: If the MPL error converges monotonically both in the 1-norm and in the ∞-norm,
then it is also converges monotonically in the 2-norm.

P2: If the MPL error converges to zero in any of the three norms, then so it does in
the other two.

P3: If its 1-norm converges to a small value ε, then both its 2-norm and its ∞-norm
converge to or even fall below ε, with the 1-norm as an upper bound on both.

Therefore, it is in general sufficient to design a learning gain matrix L that satisfies the
condition (4.24).
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4.5 Learning Dynamics for Input-Update Laws with Q-Filter

4.5 Learning Dynamics for Input-Update Laws with
Q-Filter

In the previous section, a modified version of the standard learning law uj+1 = uj + Lej

has been employed. This is a reasonable choice for many applications. Often, however,
one wants to restrict the learning process to a low-frequency range in which model
uncertainties are at least limited. In order to avoid that high-frequency components
accumulate in the input trajectory via repetitive application of the update law, the
aforementioned standard learning law is often extended by a lowpass filter in standard
(i.e. constant-pass-length) ILC. Thus, in analogy, we propose the following for the
variable-pass-length case:

ūj+1 = Q (ūj + L 〈ej〉n) = Q
(
ūj + L Hnj ēj

)
, (4.38)

where Q ∈ Rn×n is a symmetric matrix with Toeplitz structure containing the Markov
parameters of a lowpass filter with cutoff frequency denoted by fQ. Multiplying a lifted
signal by Q corresponds to applying a zero-phase lowpass filter to the signal, see for
example Elci et al. [23] and Gustafsson et al. [33].

Using this modified learning law leads to more complex closed-loop dynamics. By com-
bining (4.4), (4.5) and (4.38), and under the assumption of a regular lifted-system matrix
P, we obtain the following maximum-pass-length error dynamics:

ēj+1 = PQP−1(In×n − PLHnj ) ēj + (In×n − PQP−1)(r − v). (4.39)

In order to gain more insight into the interrelation between the measured error ej and the
hypothetical error êj , (recall and) introduce the following trial-dependent partition:[

G1,j G2,j

G3,j G4,j

]
:= In×n − PL,

[
K1,j K2,j

K3,j K4,j

]
:= PQP−1, (4.40)

G1,j ∈ Rnj×nj , G2,j ∈ Rnj×(n−nj), G3,j ∈ R(n−nj)×nj , G4,j ∈ R(n−nj)×(n−nj),

K1,j ∈ Rnj×nj , K2,j ∈ Rnj×(n−nj), K3,j ∈ R(n−nj)×nj , K4,j ∈ R(n−nj)×(n−nj).
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4 Iterative Learning Control for Variable-Pass-Length Systems

This, together with the MPL error definition (4.5), allows us to rewrite (4.39) as fol-
lows:[

ej+1
êj+1

]
=
[
K1,j K2,j

K3,j K4,j

] [
G1,j 0nj×(n−nj)
G3,j I(n−nj)×(n−nj)

] [
ej

êj

]

+
[
Inj×nj − K1,j −K2,j

−K3,j I(n−nj)×(n−nj) − K4,j

]
(r − v)

=
[
K1,j K2,j

K3,j K4,j

]([
G1,j

G3,j

]
ej +

[
0
êj

])

+
[
Inj×nj − K1,j −K2,j

−K3,j I(n−nj)×(n−nj) − K4,j

]
(r − v) . (4.41)

As before, please note that, in general, the measured error ej+1 of trial j + 1 on the
left-hand side and the measured error ej of trial j on the right-hand side do not have
the same dimensions.

These dynamics exhibit a different structure than the previously considered dynam-
ics (4.8). Lemma 1 as well as Theorems 1–3 cannot be applied or trivially extended to
the present case. Therefore, a positive learning progress Δp,j > 0 ∀j or even monotonic
convergence of the MPL error norm ||ēj ||p cannot be guaranteed by any of the criteria
from Section 4.4. Even the deceptively intuitive choice of a learning gain and Q-Filter
that assure ||PQP−1(In×n −PLHn)||p ≤ 1 ∀n ∈ {n, ..., n} does not provide any of these
properties in general.

Equilibria of the Closed-Loop Dynamics: With respect to (4.39) and (4.41), we
shall note a remarkable difference between constant-pass-length and variable-pass-length
ILC. Consider the following steady-state equation for each n ∈ {n, ..., n}:

(In×n − PQP−1(In×n − PLHn))e∞,n = (In×n − PQP−1)(r − v). (4.42)

If the pass length is constant nj = n ∀j, then all solutions of (4.42) with n = n are equi-
libria of the closed loop system (4.39). Typically, the inverse of (In×n − PQP−1(In×n −
PL)) exists, and the equilibrium is a single steady-state error trajectory, the entries of
which are small if Q ≈ In×n (cf. Chapter 2). For an arbitrary sequence of pass lengths,
however, there exists, in general, no equilibrium.

In the following, we will analyze the closed-loop dynamics and investigate how the con-
troller parameters L, Q must be chosen to guarantee a positive learning progress and a
reduction of the maximum-pass-length error p-norm.
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4.5 Learning Dynamics for Input-Update Laws with Q-Filter

4.5.1 Learning Progress on the Measured Time Interval

Consider the input update at trial j and recall that the tracking error on the first nj

sample instants is ej = 〈r〉nj −yj . We want to quantify how effectively the update (4.38)
uses this information to improve the control signal. To this end, we recall the concept
of the learning progress Δp,j , which was defined in (4.16) as the relative reduction (from
trial j to trial j + 1) of the tracking error p-norm on the first nj sample instants.
With (4.41), we obtain

Δp,j = 1 −

∣∣∣∣∣∣(K1,jG1,j + K2,jG3,j)ej + K2,j êj +
[
Inj×nj − K1,j −K2,j

]
(r − v)

∣∣∣∣∣∣
p

||ej ||p ,

(4.43)

where ||·||p denotes any vector p-norm and its induced7 matrix norm. Recall furthermore
that Δp,j is between zero and one if the learning step reduces the error p-norm on the
first nj samples, and it is negative if that norm increases.

To simplify the right-hand side of (4.43), it is helpful to introduce the following scalar
convergence indicator γ̃p, residual indicator ε̃p and crosstalk indicator κ̃p:

γ̃p := ||PQP−1(In×n − PL)||p , (4.44)
ε̃p := ||In×n − PQP−1||p , (4.45)
κ̃p := ||PQP−1||p . (4.46)

Please note that these indicators do not depend on the current pass length, nor on the
reference or disturbance. They are constants that can easily be calculated for any given
system P and iterative learning controller L, Q. Therefore, we will try to formulate
convergence criteria and controller design guidelines in terms of these indicators.

Recall that any p-norm is submultiplicative8 and that the p-norm of a matrix cannot
be smaller than the p-norm of any of its sub-matrices. Revisiting (4.40), we find the

7recall that ||A||p := max{||Ax||p, ||x||p = 1}
8i.e. recall that ||ABx||p ≤ ||A||p||B||p||x||p ∀A, B, x
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following useful properties of γ̃p, ε̃p and κ̃p:

γ̃p ≥ ||K1,jG1,j + K2,jG3,j ||p, (4.47)

ε̃p ≥
∣∣∣∣∣∣[Inj×nj − K1,j −K2,j

]∣∣∣∣∣∣
p

≥ ||K2,j ||p, (4.48)

κ̃p ≥
∣∣∣∣∣
∣∣∣∣∣
[
K2,j

K4,j

]∣∣∣∣∣
∣∣∣∣∣
p

. (4.49)

Exploiting the first two of these properties, we obtain the following lower bound (worst
case) of the learning progress:

Δp,j ≥ 1 − γ̃p||ej ||p + ε̃p (||êj ||p + ||r − v||p)
||ej ||p . (4.50)

This approximation is certainly very conservative. However, it allows us to derive a few
compact statements on the learning dynamics:

If perfect model knowledge was available, then the choice L = P−1 and Q = In×n would
assure γ̃p = ε̃p = 0 and thus a learning progress of 1, i.e. reduction of the first nj

sample values of the tracking error to zero in each trial j. In the more realistic case
that a convergence indicator 0 < γ̃p < 1 can be assured, the following monotonous error
reduction property is given:

||ej ||p >
ε̃p

1 − γ̃p
(||êj ||p + ||r − v||p) ⇒ Δp,j > 0 . (4.51)

This means that there is positive learning progress (at least) until the norm ||ej ||p of
the tracking error falls below a certain threshold, which is small if the convergence
indicator γ̃p, the residual indicator ε̃p and the hypothetical error norm ||êj ||p are small.
This result is in accordance with the well-known result from classic ILC theory that a
non-zero steady state error is obtained if a Q-filter Q �= In×n is used.

Within this statement lies the major difference between the results of Section 4.4 and
all of the results that we will obtain for the update law (4.38) with Q-filter. Only when
the tracking error on the first nj samples is large enough, then γ̃p < 1 assures that there
is positive learning progress.

The usefulness of such statements largely depends on the conservativeness of the thresh-
old that defines what large enough means. Therefore, we will aim at reducing the
conservativeness of (4.51) in the following.
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4.5.2 Frequency-Weighted Residual Indicator

Assume that a nontrivial Q-filter is used, which is neither Q ≈ 0n×n nor Q ≈ In×n, i.e.
the cutoff frequency fQ is neither close to zero nor close to the Nyquist frequency9.
Then, for all regular lifted-system matrices P, we find that the scalar crosstalk indicator
κ̃p = ||PQP−1||p defined above can hardly be less than one. This is not surprising, since
multiplication by a lowpass Q-filter leaves low-frequency lifted signals almost unchanged.
At the same time, premultiplying a high-frequency lifted signal by Q yields a lifted signal
with very small norm. Therefore, the residual indicator ε̃p = ||(In×n − PQP−1)||p can
hardly be smaller than one.

Since this seems to be a very restrictive result, we briefly interpret it in more detail
by inspecting the system dynamics (4.4) and the learning law (4.38), which leads to
the following conclusion. If there are high-frequency portions in the reference r or
disturbance v, then these lead to high-frequency portions in the tracking error that will
not be removed by the learning controller unless fQ is larger than those frequencies.
This is in accordance with our previous statement that the Q-filter restricts the learning
process to a low-frequency range.

In that sense, however, using ε̃p in the left-hand side of the error reduction condi-
tion (4.51) is highly conservative. In the very realistic case that both r and v contain
only frequencies (far) below the chosen fQ, we may expect the error norm being reduced
to a much smaller value than (4.51) suggests.

In order to obtain a less conservative result, we define the frequency-weighted matrix
norm || · ||≤f0,p : Rn×n → R as follows:

||A||≤f0,p := ||AQf0 ||p ∀A ∈ Rn×n , (4.52)

where Qf0 ∈ Rn×n is the regular lifted-system matrix of a lowpass filter with some cutoff
frequency f0 (between 0 and the Nyquist frequency) and unity p-norm ||Qf0 ||p = 1. Note
that Qf0 has the same dimensions and structure as Q, but their cutoff frequencies f0
and fQ are (in general) not the same. While the latter is a controller design parameter,
the former is a parameter of the matrix norm definition (4.52).

Recall that the induced p-matrix norm is the largest gain by which the p-norm of a vec-
tor increases when multiplied with the matrix. Following this definition, the frequency-
weighted matrix norm || · ||≤f0,p yields the largest gain by which the p-norm of a low-

9i.e. half of the sampling frequency of a discrete-time system
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frequency vector increases when multiplied with the matrix10. Furthermore, please note
that, by definition, the proposed matrix norm || · ||≤f0,p exhibits the fundamental prop-
erties of a matrix norm, i.e. it is definite, homogeneous and subadditive.

Using this frequency-weighted matrix norm, we now define the frequency-weighted resid-
ual indicator

ε̃≤f0,p := ||In×n − PQP−1||≤f0,p , (4.53)

which is found to be clearly below one for Q-filters with fQ > f0. This allows us to
reduce the conservativeness of (4.51) and state the following useful result.

Theorem 4 (Positive learning progress). Consider a repetitive process (4.4) with
regular P and input-update law (4.38), and assume that the reference and disturbance
signals contain only frequencies below a known frequency f0, i.e.

Qf0(r − v) = (r − v), (4.54)

where Qf0, with ||Qf0 ||p = 1, is a regular lifted matrix of a lowpass filter with cutoff
frequency f0. Assume furthermore that the learning gain matrix L is chosen such that
γ̃p < 1. Then the learning progress Δp,j defined in (4.43) is positive, i.e. the tracking
error is reduced on the first nj samples from trial j to trial j + 1, if the norm of the
measured tracking error is sufficiently large, namely

||ej ||p >
ε̃≤f0,p||r − v||p + ||K2,j êj ||p

1 − γ̃p
. (4.55)

Proof. We start the proof by repeating (4.43) and deduce a lower bound by exploiting
sub-additivity as well as the properties (4.47) and (4.48) of the indicators defined above:

Δp,j ≥ 1 −
γ̃p||ej ||p + ||K2,j êj ||p +

∣∣∣∣∣∣[Inj×nj − K1,j −K2,j

]
(r − v)

∣∣∣∣∣∣
p

||ej ||p . (4.56)

Since adding additional elements to a vector does not decrease its p-norm, we obtain

Δp,j ≥ 1 − γ̃p||ej ||p + ||K2,j êj ||p + ||(In×n − PQP−1)(r − v)||p
||ej ||p . (4.57)

10more precisely: ||A||≤f0,p = max{||Ax||p, x = Qf0 x̂, ||x̂||p = 1}.
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We now write the difference on the right-hand side as a fraction and use (4.53), (4.54)
to complete the proof:

Δp,j ≥
||ej ||p −

(
γ̃p||ej ||p + ||K2,j êj ||p + ||(In×n − PQP−1)Qf0(r − v)||p

)
||ej ||p (4.58)

≥ (1 − γ̃p)||ej ||p − (||K2,j êj ||p + ε̃≤f0,p||r − v||p)
||ej ||p . (4.59)

Clearly, the numerator of the right-hand side is positive if (4.55) holds and γ̃p < 1.
Therefore, the learning progress Δp,j is positive.

4.5.3 Monotonic Decrease of the Maximum-Pass-Length Error

As already discussed in Section 4.3, it is technically not sufficient to consider only the
measured tracking error ej . In fact, it is easy to construct an example in which the
error is reduced on the first nj samples in each trial j, while the (complete) maximum-
pass-length error grows to infinity. This is also illustrated in Figure 4.3 on page 99.
Technically, Theorem 4 is formulated too weakly to exclude such hidden error growth.

Therefore, the following corollary is given that establishes sufficient conditions for mono-
tonic decrease of the MPL error in the presence of variable pass length.

Corollary 3 (Monotonic decrease of the MPL error norm above a threshold).
If the conditions of Theorem 4 hold with the slight modification

||ej ||p >
ε̃≤f0,p||r − v||p + κ̃p||êj ||p

1 − γ̃p
, (4.60)

then also the norm ||ēj ||p of the maximum-pass-length error is reduced from trial j to the
next, i.e. ||ēj+1||p < ||ēj ||p. To prove this, apply the triangle inequality to the closed-loop
error dynamics (4.41), which leads to

||ēj+1||p
||ēj ||p ≤ ||ēj+1||p

||ej ||p ≤
γ̃p||ej ||p +

∣∣∣∣∣
∣∣∣∣∣
[
K2,j

K4,j

]
êj

∣∣∣∣∣
∣∣∣∣∣
p

+ ε̃≤f0,p||r − v||p

||ej ||p . (4.61)

Using the inequalities (4.47), (4.49) and ||ej ||p > ε̃≤f0,p||r − v||p + κ̃p||êj ||p + γ̃p||ej ||p
from (4.60), we immediately see that the right-hand side of (4.61) is less than one.
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This result still seems to exhibit some weakness in the sense that κ̃p is typically close to
one, as discussed above. Furthermore, replacing ||ēj ||p by ||ej ||p in the first step of (4.61)
is still quite conservative. Both issues can be resolved if we decide to use the 1-norm for
convergence analysis. We then find the following condition for monotonic convergence,
which is clearly less conservative.

Theorem 5 (Monotonic decrease of MPL error 1-norm above a threshold).
Consider a repetitive process (4.4) with regular P and input-update law (4.38), and as-
sume that the reference and disturbance signals contain only frequencies below a known
frequency f0, i.e.

Qf0(r − v) = (r − v), (4.62)

where Qf0, with ||Qf0 ||1 = 1, is a regular lifted matrix of a lowpass filter with cutoff
frequency f0. Assume furthermore that the learning gain matrix L is chosen such that
γ̃1 < 1. Then the 1-norm of the maximum-pass-length error is reduced from trial j to
trial j + 1, i.e. ||ēj+1||1 < ||ēj ||1, if its measured portion is large enough to fulfill the
following condition:

||ej ||1 >
ε̃≤f0,1||r − v||1 + (κ̃1 − 1)||êj ||1

1 − γ̃1
. (4.63)

Proof. The proof follows the lines of the proof of Corollary 3, but it exploits the fact
that the 1-norm of a vector is the sum of the absolute values of its entries. Therefore,
we find

||ēj+1||1
||ēj ||1 =

||ēj+1||1
||ej ||1 + ||êj ||1 ≤ γ̃1||ej ||1 + κ̃1||êj ||1 + ε̃≤f0,1||r − v||1

||ej ||1 + ||êj ||1 , (4.64)

which is less than one, since (4.63) yields

||ej ||1 > γ̃1||ej ||1 + ε̃≤f0,1||r − v||1 + (κ̃1 − 1)||êj ||1 .

Theorem 4, Corollary 3 and Theorem 5 provide practically useful conditions for con-
vergence analysis. In particular, the conditions (4.55) and (4.63) yield upper bounds of
the residual errors that may occur when a Q-filter is used. It is known from standard
ILC theory that these residual errors depend on r − v. In variable-pass-length systems,
however, they also depend on the hypothetical tracking error êj that occurs on the last
n − nj samples.
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Figure 4.4: Blending effect of a zero-phase Q-filter in variable-pass-length learning (first
trial short, second complete). The tracking error e0 measured on the first n0
samples influences the last n−n0 samples of the next input ū1 and output y1.
Vice versa, the last n−n0 samples of 〈e0〉n used in (4.38) slightly deteriorate
the output y1 at sample instants just before n0. The extrapolating effect
of the Q-filter is usually advantageous (left), but if (r − v) contains high
frequencies, it might become slightly disadvantageous (right).

An explanation for this phenomenon is found by inspecting the learning law (4.38). Due
to the Q-filter, the last n − nj samples of the previous input trajectory uj have an
influence on the first nj samples of the updated input trajectory uj+1, and vice versa.
This results in a crosstalk of the first nj and the last n − nj samples of the tracking
error in the closed-loop dynamics (4.41). If the Q-filter was Q = In×n and L was almost
the inverse of P, then the first segment (samples 1 to nj) of the error would be reduced,
while the second segment (samples n − nj to n) would remain almost unchanged, see
also Section 4.4 above. A Q-filter with fQ below the Nyquist frequency, however, causes
a blending of the first segment (the one with error reduction) and the second segment
(the one with unchanged error).

This blending effect is illustrated in Figure 4.4. As suggested therein, the potential
deterioration of the learning progress is small if fQ is sufficiently large. This interrelation
also becomes manifest in the condition (4.55) for positive learning progress, wherein êj

is multiplied by K2,j . Since K2,j is (for all nj) an off-diagonal block element of PQP−1,
its entries are small for large Q-filter frequencies fQ.

Figure 4.4 further suggests that the aforementioned deterioration of the learning progress
on the first nj samples is partially compensated or even outweighed by a reduction of
the tracking error on the last n − nj samples that is due to the extrapolating effect
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of the blending. This partial compensation of both effects is also evident in the factor
(κ̃1 − 1) appearing before the norm ||êj ||1 of the hypothetical tracking error in the
condition (4.63) for monotonic decrease of the MPL error 1-norm.

In Section 4.8, we will investigate the discussed effects further by simulations. Prior to
this, we extend the above findings to the case of multiple-input multiple-output systems
and summarize them in guidelines for controller design.
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4.6 Multiple-Input Multiple-Output Systems

To simplify the preceding derivations and arguments, we have assumed that the input
and the output of the system to be controlled are both scalar. At this point, we shall
briefly comment on the value of the above results for multiple-input multiple-output
systems with u(t), y(t), r(t), v(t) ∈ Rm×1.

Obviously, for such systems ūj , ȳj , ēj , r, v ∈ Rmn×1 and yj , ej ∈ Rmnj×1 with

ūj :=
[
u(t0,j)T , u(t0,j + ts)T , . . . , u(t0,j + (n − 1)ts)T

]T
,

P, L, Q ∈ Rmn×mn,

〈·〉nj : Rmn×1 → Rmnj×1,

〈·〉n : Rmnj×1 → Rmn×1,

Hnj := blockdiag{Imnj×mnj , 0m(n−nj)×m(n−nj)}.

With these slight modifications and with Imnj×mnj instead of Inj×nj , we find that the
learning law, the definition of the maximum-pass-length error and the closed-loop dy-
namics are equivalent to (4.3), (4.5), (4.8), respectively.

Likewise, we proceed by redefining the dimensions of the partitions

G1,j ∈ Rmnj×mnj , G2,j ∈ Rmnj×m(n−nj),

G3,j ∈ Rm(n−nj)×mnj , G4,j ∈ Rm(n−nj)×m(n−nj),

K1,j ∈ Rmnj×mnj , K2,j ∈ Rmnj×m(n−nj),

K3,j ∈ Rm(n−nj)×mnj , K4,j ∈ Rm(n−nj)×m(n−nj).

This finally reveals that all of the results of Sections 4.4 and 4.5 also hold analogously
for the considered case of multiple-input multiple-output systems.
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4 Iterative Learning Control for Variable-Pass-Length Systems

4.7 Controller Design Guidelines

As Theorem 4 suggests, it is advantageous to choose a learning gain matrix that leads to
a small convergence indicator γ̃p. As also discussed above, the choice L = P−1 leads to
the fastest convergence. This, however, assumes that the input-output dynamics of the
system to be controlled are precisely known. If model uncertainties are significant, then
a more careful choice is advisable. As discussed in many contributions to classic ILC
(see for example Bristow et al. [11] and references therein), a small diagonal learning
gain will yield ||In×n − PL||p just below one for a large class of system dynamics, which
results in slow convergence with a potentially large residual error but good robustness
with respect to model uncertainties.

When faced with the question of how to choose the cutoff frequency fQ of the Q-filter,
one should note the following relationships. For a given f0, the indicator ε̃≤f0,p becomes
small if fQ is raised above f0. However, as discussed before, a small fQ improves
robustness with respect to model uncertainties by preventing high-frequency portions
of the measured output from influencing the learning process. As in standard control
theory, one must balance between controller performance (bandwidth) on the one hand
and robustness and measurement noise rejection on the other hand.

From the preceding discussion we conclude the following controller design guidelines for
ILC systems of the form (4.4), (4.38):

G1. An upper bound f0 for the largest frequency that occurs in the reference signal r
or in the disturbance signal v should be known.

G2. The model P should approximate the input-output dynamics of the system (at
least with small or moderate uncertainties) for frequencies between 0 and f0.

G3. The cutoff frequency fQ of the Q-filter Q should be smaller than the smallest
frequency at which large model uncertainties occur.

G4. At the same time, fQ should be chosen such that a small residual indicator ε̃≤f0,p

is achieved for the given system dynamics P. This typically implies fQ > f0.

G5. The learning gain matrix L should be chosen such that a small convergence indi-
cator γ̃p is achieved for some induced matrix norm || · ||p.

Following these guidelines will prevent hidden error growth and will assure that the
tracking error is quickly reduced (at least) until its norm falls below a small threshold.

116



4.8 Simulation Study of an Example System

4.8 Simulation Study of an Example System

The goal of this section is to illustrate some variable-pass-length learning phenomena and
to demonstrate the usefulness of the criteria derived above. For this purpose, controller
design and simulations are carried out for a simple example application system that
is motivated by Nahrstaedt et al. [71]. There, functional electrical stimulation of the
tibialis anterior muscle is used to induce a predefined foot movement during the swing
phase of gait (i.e. between toe-off and initial contact, when the foot moves forward
without ground contact).

4.8.1 FES System Model

The stimulation pulse width of the FES current pulses (in tenths of milliseconds) and
the ankle joint angle11 (in degrees) are the input variable u(t) and the output variable
y(t), respectively. Then the following linear difference equation model approximates the
input-output dynamics of the system at a sampling interval of ts = 0.02 s (cf. Nahrstaedt
et al. [72]):

y(t) + a1y(t − ts) + a2y(t − 2ts) = bu(t − 2ts), (4.65)
a1 = −0.8097002, a2 = −0.0777289, b = 0.6634.

The ankle joint angle y(t) shall be controlled to follow a predefined reference trajectory
in each trial, i.e. in the swing phase of each stride.

Based on experimental data (Seel et al. [105]), the duration of swing phase in the gait of
stroke patients is estimated to vary between 0.6 s and 1.0 s, which corresponds to n = 30
and n = 50. Therefore, the following full-length lifted signal vectors are defined:

ūj = [uj(t0 − ts), uj(t0), . . . , uj(t0 + 48ts)]T ∈ Rn×1, (4.66)
ȳj = [yj(t0 + ts), yj(t0 + 2ts), . . . , yj(t0 + 50ts)]T ∈ Rn×1, (4.67)
r = [r(t0 + ts), r(t0 + 2ts), . . . , r(t0 + 50ts)]T ∈ Rn×1, (4.68)
v = [v(t0 + ts), v(t0 + 2ts), . . . , v(t0 + 50ts)]T ∈ Rn×1, (4.69)

where the input-output time shift of two samples is chosen to compensate the relative
degree of the system dynamics (4.65). The Markov parameters of (4.65) are determined

11for the sake of simplicity, only the dorsiflexion joint angle is considered in this chapter, i.e. the angle
between the instep and the tibia; see Chapter 6 for a more detailed consideration of this application
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4 Iterative Learning Control for Variable-Pass-Length Systems

and, from those, the (regular, lower triangular Toeplitz) lifted-system matrix P is cal-
culated.

Based on experimental data, reasonable values for the sequence of pass lengths {nj}, for
the disturbance signal v and for the desired output r are found. The initial input ū0 is
chosen to be a constant pulse width of 0.2 ms.

4.8.2 Iterative Learning Controller Design

A two-parameter learning gain matrix Lopt is employed with (Lopt)i,i = l1 ∀i ∈ [1, n] on
the main diagonal and (Lopt)i,i−1 = l2 ∀i ∈ [2, n] just below the main diagonal. If no Q-
filter was used, this would correspond to the following first-order controller dynamics:

uj+1(t) = uj(t) + l1 (r(t + 2ts) − yj(t + 2ts))
+ l2 (r(t + 1ts) − yj(t + 1ts)) , t = t0, t0 + ts, . . . , t0 + (nj − 1)ts .

(4.70)

The parameters of Lopt are chosen by numerically minimizing the norm ||In×n−PLopt||1,
as suggested by Theorem 2, over wide ranges of both l1 and l2. For l1 = 1.5, l2 = −1.35,
an approximate plant inversion with a small convergence indicator of γ1 < 0.13 is
achieved. Therefore, when employing the learning law (4.6), almost-strict12 monotonic
convergence of ||ēj ||1 (for all j, nj , v, u0) follows from Corollary 1 without further com-
putational effort. By calculation of maxn∈{n,...,n} ||In×n − PLoptHn||2 ≈ 1.004, it is
furthermore found that the Euclidean norm ||ēj ||2 of the maximum-pass-length error is
not only bounded by ||ēj ||1 from above, but also bounded to rise (if at all) in no pass
by more than 0.4%.

A zero-phase lowpass filter (2nd-order Butterworth) is used as a Q-filter. Since r and
v are known to contain only frequencies below f0 = 2 Hz, the Q-filter cutoff frequency
is chosen to be fQ = 5Hz, such that ε̃≤f0,2 = 0.214. Calculation of the convergence
indicator defined in Section 4.5 yields γ̃2 = 0.092. According to Corollary 3, this implies
that the Euclidean norm of the MPL error decreases, (at least) as long as the measured
error norm is larger than a small threshold.

In practice, much less reliable model knowledge might be available. Therefore, and for
the sake of comparison, a second learning gain Ldiag is designed by simply choosing
a small diagonal learning gain Ldiag = 0.12 In×n, which yields a convergence indicator
of γ̃2 = 0.954. Obviously, this also guarantees monotonic decrease of ||ēj ||2 for large
12in the sense of Corollary 1, i.e. ||ēj+1||1 < ||ēj ||1 for all nj ∈ {n, ..., n} unless ej is the zero vector

118
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measured error norms, but a much slower decrease and a potentially larger residual
error norm should be expected.

4.8.3 Simulation Results

The lifted-system model P, v from Section 4.8.1 is simulated with both learning con-
trollers {Lopt, Q} and {Ldiag, Q} designed in Section 4.8.2. The scenario consists of
seven passes (trials) with pass lengths of {nj}6

j=0 = {34, 40, 30, 46, 50, 50, 37}. Simula-
tion results are presented in Figures 4.5 and 4.6.

The output trajectories depicted in Figure 4.5 illustrate a core phenomenon of variable-
pass-length learning: Whenever a pass is long enough to encounter samples that have
not been reached before, the controller starts to learn this piece of trajectory almost
from scratch, i.e. starting with the according piece of ȳ0 that (hypothetically) would
have been measured in the first pass if it had been long enough. Due to very fast and
accurate learning dynamics, the very next output already resembles the reference (up
to the longest pass length seen so far). The similarity of y2 and y3 shows that, when
shorter passes occur, controller performance is not improved significantly any more.

In contrast, the diagonal controller Ldiag learns more slowly and in a qualitatively differ-
ent fashion. The measured errors result in input updates that clearly affect the output
less precisely. After the first three learning steps (with pass lengths n0 = 34, n1 = 40
and n2 = 30), the error on the first 30 samples is still significant. However, the samples
40 − 46 of y3 are closer to the reference than the same samples of y3 in Figure 4.5. This
extrapolating behavior of the less precise input-update law seems advantageous. How-
ever, if either v or r would exhibit steeper slopes on the time interval t ∈ [n ts, ..., n ts],
this behavior would obviously lead to inferior performance (similar to the effect in Fig-
ure 4.4).

In several further simulations, similarly quick reduction of the tracking error is observed
for both learning gain matrices, which demonstrates that the criteria derived in the
previous sections are rather conservative – just as the convergence criteria of classic ILC
theory. Nevertheless, simulations with modified controller parameters l0, l1, l2 reveal that
the proposed convergence indicators γp and γ̃p are useful predictors of the learning speed
in the presence of variable pass length. Controllers with smaller indicators achieve, in
general, faster convergence. Therefore, it is advisable to minimize them during controller
design.
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Figure 4.5: Variable-pass-length ILC with optimized learning gain Lopt: The controller
learns to produce the reference r (black solid with dots) quickly. However, at
the largest previously seen pass length, the output drops to its initial trace
at the end of each pass that is longer than all previous passes, for example at
sample 34 of y1 and at sample 40 of y3. The end of each pass is marked with
a dot. Lines are continued in dashed style to illustrate the (hypothetical)
maximum-pass-length errors ēj = r − ȳj .
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Figure 4.6: Variable-pass-length ILC with diagonal learning gain Ldiag: Starting from
a constant input ū0, the controller learns to produce the reference r (black
solid with dots) more slowly and in a qualitatively different fashion than the
controller with two-parameter learning gain.
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4.8.4 Numerical Values for Simulation

Finally, for the sake of completeness, the numerical values of the system model and the
controller components are provided.

The lifted-system matrix P ∈ R50×50 is Toeplitz and thus completely defined by the
values of its first column. These can be gained from the impulse response of (4.65) by
omitting the leading zero-values. Precisely, the first column of P is

P(:, 1) = [0.6634000, 0.5371551, 0.4865000, 0.4356716, . . .] . (4.71)

Furthermore, every fifth entry of the reference and the disturbance, respectively, is pro-
vided here (to be connected by splines):

r(1 : 5 : 50) =[−14.767, −13.86, −11.679, −8.6404, (4.72)
− 5.114825, −1.962725, 0.0655, 1.1659, 1.51685, 0.71465], (4.73)

v(1 : 5 : 50) =[−14.952, −14.772, −14.692, −14.712, (4.74)
− 14.832, −15.052, −15.372, −15.792, −16.312, −16.932]. (4.75)

The learning gain matrix Ldiag is a Toeplitz diagonal matrix with Ldiag(i, i) = 0.12 In×n.
The learning gain matrix Lopt is a Toeplitz matrix with Lopt(i, i) = 1.5 ∀i ∈ [1, 50]
and Lopt(i + 1, i) = −1.35 ∀i ∈ [1, 49]. All other entries of Lopt are zero. The Q-filter
is calculated in two steps. First a Butterworth filter with cutoff frequency of 5Hz is
designed:

Q(z) =
0.067 + 0.135z + 0.067z2

0.413 − 1.143z + z2 . (4.76)

Then its response to its own time-inverted impulse response yields the first row of its
lifted representation

Q(1, :) = [0.214255, 0.1898998, 0.1331573, 0.0738052, . . .] . (4.77)

The symmetric Toeplitz matrix Q is fully defined by this vector. Multiplying a lifted
signal vector by q corresponds to a forward-and-then-backward filtering of the signal
with the above filter Q(z) and thus attenuates high frequencies without introducing lag,
see for example Elci et al. [23].
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4.9 Conclusions

A framework for the analysis of repetitive systems with variable pass length was de-
veloped. Iterative learning control schemes with and without lowpass filtering were
proposed. The resulting closed-loop learning dynamics were derived and analyzed with
respect to monotonous reduction of the tracking error. To cope with the variable di-
mension of the measured tracking error, we introduced a learning progress measure and
the hypothetical maximum-pass-length error. Both concepts proved to be useful for
convergence analysis in the presence of variable pass lengths.

For the standard input-update law without Q-filter, we obtained necessary and suffi-
cient conditions that guarantee monotonic convergence of the MPL error norm. For
the extended learning law with Q-filter, we derived conditions that assure a reduction
of the tracking error at least until it falls below a potentially very small threshold. In
this context, the issue of conservativeness in matrix-norm-based convergence criteria was
addressed by proposing a frequency-weighted residual indicator to assess the non-zero
residual error that is associated with Q-filter usage.

Based on all findings, we derived practical guidelines for the design of iterative learning
controllers in the presence of variable pass length. Since we did not restrict P to be
Toeplitz, all convergence criteria can be employed for a very large class of systems
including time-variant (but iteration-invariant) systems. Furthermore, all findings and
guidelines hold as well if the pass length is (almost) constant and can therefore also be
employed for convergence analysis and controller design in classic ILC systems. Although
motivated by biomedical applications, the new methods are equally useful for control
problems from other application domains in which the same challenges occur, see for
example Guth et al. [34].

The simulation example analyzed in Section 4.8 illustrated some of the complexity that
the closed-loop dynamics of ILC systems can exhibit when the pass length is not constant.
Furthermore, we utilized the example to demonstrate how the proposed convergence
criteria can be used to design controllers and predict convergence rates. With respect
to the latter, the derived criteria were found to be similarly conservative as classic
convergence conditions. Nevertheless, the controller design guidelines for L and Q will
proof to be very useful in Chapters 5 and 6. There, we will apply the guidelines to
iterative learning control tasks in noninvasive blood pressure measurement and in FES-
based foot motion control during walking, respectively.

Future efforts may aim at simplified criteria for monotonic convergence of the Euclidean
MPL error norm as well as at convergence analysis in nonlinear variable-pass-length
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systems. One may as well focus on the special cases in which additional (prior or
learned) knowledge on the input-output dynamics or the disturbance is available that
allows a reliable prediction of the hypothetical error that would have occurred in a trial
after its early termination.

Beyond all that, it should be noted that in the motivational examples in Section 4.1,
as in most other biomedical applications, the variability of the pass length is only one
of the difficulties that complicate the employment of classic ILC theory. Issues like
input saturation or iteration-variance (in the process dynamics, the initial conditions,
the disturbance, or the reference signal) should be addressed individually as well as in
the context of variable-pass-length systems.
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5 Continuous Noninvasive Blood
Pressure Measurement

To overcome the limitations of standard blood pressure measurement techniques, a non-
invasive continuous method has recently been developed by Weber et al. [124, 125].
This method requires precise control of the blood flow through a superficial artery. The
flow is measured using ultrasound and influenced by manipulating the pressure inside
an inflatable air balloon which is placed over the artery. Previous attempts to solve
the inherent control problem using standard feedback control have resulted in limited
controller performance [125].

This chapter is concerned with the question whether the controller performance can be
improved by exploiting the repetitive nature of the control problem. To this end, we
will design a learning cascade controller, which consists of two standard feedback control
loops and an iterative learning controller. The proposed controller will be evaluated
experimentally using the artificial cardiovascular system model developed by Weber
et al. [125].

5.1 Introduction to the Application

Blood pressure measurement is of vital importance in the diagnosis and treatment of
many diseases. In particular, it is a cornerstone for the diagnosis and treatment of, as
well as for the research on, arterial hypertension [88]. For more than one hundred years
[44], the sphygmomanometry developed by Riva-Rocci and Korotkoff has been the most
commonly used method. Its limitations, however, are becoming increasingly evident and,
therefore, alternative solutions are under investigation [80]. Especially when continuous
blood pressure monitoring is desirable, this conventional method is of disadvantage,
since it only allows repeated measurements at intervals of a few minutes. Furthermore,
only the maximum and the minimum of the blood pressure curve, i.e. the systolic and
the diastolic blood pressure, respectively, are identified. Finally, according to O’Brien
[76], most devices that use this measurement principle do not meet the standards set
by the British Hypertension Society (BHS) protocol and by the US Association for the
Advancement of Medical Instrumentation (AAMI).

These problems, and especially the problem of continuous measurement, are overcome
by another non-invasive technique that was proposed by Penaz [85] about twenty years
ago. The method uses continuous plethysmographic detection of the arterial volume
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(a)

(b)

Figure 5.1: (a) Non-invasive blood pressure measurement system. A voice coil and two
interconnected inflatable air balloons are used to press upon a superficial
artery and thus reduce the blood flow, which is measured via a Doppler
ultrasound sensor. (b) By controlling this flow to a constant small value,
one obtains equality – up to a small constant offset – between the controller-
induced balloon pressure and the arterial blood pressure.
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in a given measurement volume and closed-loop control for continuously changing the
pressure in the measurement volume such that the arterial volume is maintained at a
constant value, at which the tension of the arterial wall equals zero. Thereby, the desired
arterial pressure is obtained as the pressure in the measurement volume.

Weber et al. [125] enhanced the original approach by using ultrasound to measure the
arterial blood flow and maintain it at a small constant value. In that control system,
the manipulated variable is the pressure of an inflatable air balloon which is attached
to the lower arm such that it pushes upon the radial artery. As in the original setup,
the periodic pressure curve that is required to accomplish the control task equals the
course of the blood pressure to be determined. Figure 5.1 depicts the main components
of the measurement system and illustrates the measurement principle. Weber et al.
[125] employed a simple feedback controller to regulate the arterial blood flow to a small
constant value. At a coarse scale, this goal was achieved. However, the ultrasound-based
flow measurement is characterized by a particularly bad signal-to-noise ratio. Therefore,
setpoint deviations of up to a third of the peak amplitude were obtained.

Regardless of the particular controller and its parameterization, traditional feedback
control can only achieve limited bandwidth in the presence of measurement noise. In
this specific application, limited bandwidth implies limited blood pressure measurement
accuracy. In order to improve the controller performance, we will exploit the fact that
the blood pressure curve is periodic and exhibits only small changes from one pulse
to the next. More precisely, by looking at the pressure and flow curves of consecutive
pulses batch-wise, we can adapt the balloon pressure curve of the next pulse based
on the flow curve of the previous trials and thereby introduce a feedback from pulse
to pulse. This approach is known as Iterative Learning Control (ILC) and has been
introduced in Chapter 2. Applying ILC yields the additional advantage that lowpass
filters with zero phase shift [23] can be applied to the noisy flow measurement signal.
Therefore, it is expected that the controller performance, and thus the accuracy of the
novel measurement system, can be improved significantly by the use of ILC.

In the remainder of this chapter, we examine the challenges and benefits of ILC methods
to the flow control task in the introduced non-invasive continuous blood pressure mea-
surement system. A cascaded control structure consisting of two discrete-time feedback
controllers, surrounded by an iterative learning control loop, is designed. The system
identification and model-based controller design is carried out in Section 5.2. Subse-
quently, the controller performance is evaluated in Section 5.3 via a series of experiments
with a laboratory model of the cardiovascular system.
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Figure 5.2: Experimental setup including a laboratory model of the cardiovascular sys-
tem and the novel measurement system. The cardiovascular system model
has been developed and was provided by Weber et al. [125]. It provides an
artificial artery with either constant or physiologically pulsating blood pres-
sure. The latter is achieved by means of an oscillating piston, which is driven
by a linear motor. Adapted from Weber et al. [125].
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5.2 Controller Design

For controller design, the experimental setup described by Weber et al. [125] and in
Figure 5.2 is used. It provides an artificial artery with either constant or physiologically
pulsating blood pressure. The measurable signals are the air balloon pressure and the
ultrasound signal of the arterial blood flow. Both signals are obtained at a sample rate of
400 Hz, but the ultrasound signal is lowpass filtered and downsampled to 20 Hz in order
to remove a large portion of the severe measurement noise. Even after this treatment,
the signal exhibits a signal-to-noise ratio below 3. Since the precise relation of the
ultrasound signal to physical flow units is unknown (and not essential for the solution
of the given control task), we denote the maximum amplitude of the ultrasound signal
observed during normal operation by ymax and present the signal in percent of this value
in the remainder of this chapter.

The current of the voice coil actuator is set via pulse width modulation (PWM) at a
sample rate of 400 Hz. The larger the duty cycle is chosen, the more the actuator pushes
on an inflatable polyurethane balloon. Via the connecting tube of about 50 cm length,
this increase in pressure is forwarded to the second pressure balloon, which is constrained
by a housing to push, through a gelatin layer, on the artificial artery. Through this
artery flows a fluid, which carries tracer particles to mimic the ultrasound Doppler effect
observed in blood. When the balloon pushes on the gelatin layer, the flow of this fluid
is reduced and the amplitude of the ultrasound signal decreases.

In the following, a control structure is designed to maintain the blood flow at a constantly
small value by manipulating the voice coil current. The innermost loop of the cascaded
structure is a fast feedback control of the balloon pressure. The reference of this control
loop is set by a feedback control of the blood flow. The reference of this loop is updated
periodically by an ILC algorithm. Figure 5.3 illustrates this controller structure by a
block diagram. In the following subsections, the design of the feedback controllers and
the ILC are carried out in detail.

5.2.1 Pressure and Flow Controller

The design of the pressure controller is carried out via model-based, discrete-time pole
placement. In a first step, the dynamics from voice coil duty cycle (in %) to balloon
pressure (in mmHg) are identified by applying a pseudo-random binary signal to the
current and estimating the parameters of a discrete-time transfer function from the
pressure response recorded at 400 Hz. The pressure of the artificial artery is chosen
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Figure 5.3: Block diagram of the controller structure. Measurement signals are the pres-
sure, which is controlled by the inner feedback loop, and the flow, which is
controlled by the outer feedback loop. Both controllers are two-degree-of-
freedom structures consisting of prefilters Fi and feedbacks Ci, i = 1, 2. The
outermost loop is closed by an iterative learning controller, which learns in
trials triggered by an edge detection of the flow signal. The ILC records the
output trajectory of each trial and batch-wise updates the input trajectory
that is applied as a reference to the outer feedback control loop.
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Figure 5.4: System identification of the open-loop pressure dynamics and the flow dy-
namics with closed pressure loop. Left: The deviations of the voice coil
current and the balloon pressure from their operating point values are plot-
ted as input and output, respectively. Right: The deviations of the reference
pressure and the blood flow from their operating point values are plotted as
input and output, respectively. In both cases, a first order transfer function
(see (5.1) and (5.4)) yields good accordance of simulated and measured data.
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constant during this identification experiment. Estimation is carried out using standard
least-squares techniques (see for example Ljung [52]). Figure 5.4 shows that a first-order
transfer function with a dead time of three sampling instants is a good approximation
of the actual pressure dynamics. Precisely, we obtain:

G1(z) =
22.59z

z − 0.8098
1
z3 . (5.1)

This result is used to calculate transfer functions of a prefilter F1(z) and a feedback con-
troller C1(z) via pole placement (see for example Åström and Wittenmark [6]). Integral
action is used in the feedback controller, while unity DC gain of the closed-loop system
is assured by the prefilter. The dominating closed-loop dynamics are chosen to exhibit
a rise time of 0.05 s, i.e. twenty samples, and a damping coefficient of 0.9. The resulting
controller transfer functions are

F1(z) =
0.0023z

0.011z − 0.0085
, (5.2)

C1(z) =
0.011z3 − 0.0085z2

z3 − 0.7721z2 + 0.0081z − 0.236
. (5.3)

In a similar manner, the flow controller is designed. A pseudo-random binary signal
is applied to the reference of the pressure control loop (in mmHg) and the response
of the ultrasound blood flow signal (in % of ymax) is recorded at 20 Hz. Least-squares
parameter estimation yields the following first-order transfer function with a dead time
of three sampling instants:

G2(z) =
−0.0488z

z − 0.7353
1
z3 . (5.4)

Figure 5.4 shows that this well approximates the deterministic portion of the actual flow
dynamics (i.e. the dynamics without the measurement noise). The prefilter F2(z) and a
feedback controller C2(z) are designed to yield a rise time of 0.6 s, i.e. twelve samples,
and a damping of 1 via pole placement. As before, integral action is included, and the
closed loop is assured to have a DC-gain of one. This results in the following transfer
functions:

F2(z) =
0.7913z

2.9506z − 2.1161
, (5.5)

C2(z) =
−2.9506z3 + 2.1161z2

z3 − 0.8645z2 + 0.0048z − 0.1403
. (5.6)
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Figure 5.5: Sensitivity plots of the inner and outer feedback control loop. Dashed lines
indicate the gain of the (noise-attenuation- and reference-tracking-related)
complementary sensitivity functions T1(z), T2(z), while the continuous lines
represent the gain of the (disturbance-rejection-related) sensitivity functions
S1(z), S2(z). Both controllers are designed to yield similar damping, but the
inner loop exhibits a significantly larger bandwidth.

Figure 5.5 provides sensitivity plots of both control loops. The inner loop is significantly
faster than the outer loop. The ultrasound signal contains a high level of noise in the
frequency range from 5 Hz to 10 Hz (cf. Figure 5.4). Therefore, the rise time of the flow
control can hardly be decreased without amplifying this noise.

To investigate how severe this bandwidth limitation is, we activate the linear motor (cf.
Figure 5.2) such that it induces a physiologically pulsating pressure in the artificial artery.
As the experimental results in Figure 5.6 illustrate, the standard feedback control is not
fast enough to maintain the flow at a constant value. The oscillating arterial pressure
represents a disturbance that is hardly rejected by the controller. Only the largest peaks
in the flow signal are attenuated. This has been observed before by Weber et al. [125]. In
the following, we extend the controller by an ILC algorithm, which allows us to overcome
the classic bandwidth limitations by exploiting the periodicity of the control task.

5.2.2 Iterative Learning Controller

As explained before, the measurement principle requires that the balloon pushes on the
artery in such a way that the flow is reduced to a constant small value. From a medical
point of view, however, continuous reduction of the blood flow through the artery is
not desirable. Hence, the controller is deactivated periodically, and the balloon pressure
is reduced to a minimum value that allows for sufficient blood circulation. Precisely,
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time [s]

voice coil PWM [%]
(manipulated var.)
artery blood flow [ ]
(controlled variable)
desired blood flow [ ]
(90% of diastol. flow)

Figure 5.6: Classic cascade feedback control (without ILC, active from 2.5 s) of the blood
flow at physiologically pulsating blood pressure. The bandwidth of the con-
trol loop is limited. The periodic peaks can only be attenuated partially.
Note that an additional symmetric moving-average lowpass filter has been
applied to the blood flow signal in order to improve perception of the plot.

we alternate between letting three pulses pass and activating the controller for two
pulses. How the controller activation can be synchronized with the pulse of a human
will be discussed in Section 5.2.3. Prior to this, we focus on improving the controller
performance that is achieved during the periods in which the controllers are active.

As a result of the previous section, we obtain a damped, but still oscillating flow signal
in each of these activation periods. In order to eliminate the repeating deviations from
the reference value, we design an iterative learning controller. The double pulses in
which the controllers are active are defined as the trials (or passes) of the ILC. In each
of these trials, a feedforward control input trajectory will be applied as reference to the
flow feedback controller. This input trajectory is updated between the trials based on
measurement information from previous trials.

The ILC is designed in the lifted framework of repetitive discrete-time systems (cf.
Section 2.2). At a pulse rate fp and a sample rate of fs = 20 Hz, the trial duration (or
pass length) is n = �2fs/fp� samples, i.e. the smallest integer that is larger than or
equal to 2fs/fp. In every trial j ∈ N0 with starting time t0,j , the n sample values of the
measured blood flow y(t) are recorded and stacked in the following lifted signal vector

yj = [yj(t0,j + 1/fs), yj(t0,j + 2/fs), . . . , yj(t0,j + n/fs)]T ∈ Rn×1. (5.7)

The manipulated variable of the ILC shall be denoted u(t) and is given as a reference to
the flow feedback controller (see Figure 5.3). The n samples of that output, which are
modified by the ILC algorithm, are stacked in the lifted signal vector

uj = [uj(t0,j +(1−d)/fs), uj(t0,j +(2−d)/fs), . . . , uj(t0,j +(n−d)/fs)]T ∈ Rn×1, (5.8)
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where d ∈ N0 is a controller parameter that is chosen to eliminate dead time in the
system dynamics. Furthermore, an iteration-invariant lifted signal vector r ∈ Rn×1 is
defined, the entries of which are all equal to the desired flow value. During the first trial,
the input is chosen constant at u0 = r. At the end of each trial, the recorded deviation
ej between the flow yj and its reference value r is used to calculate the input uj+1 of
the next trial via the following learning law:

uj+1 = Q(uj + λej), ej = r − yj , j = 0, 1, . . . , (5.9)

where λ ∈ R is the learning gain, and Q ∈ Rn×n is the lifted-system matrix of a
non-causal lowpass filter. More precisely, Q is a symmetric Toeplitz matrix containing
the Markov parameters of a second-order Butterworth filter, whose cutoff frequency fQ
serves as an adjustable controller parameter. The learning gain λ is a positive scalar
that can be increased to obtain faster convergence while getting closer to overshooting,
and thus to instability.

In order to assess stability in the iteration domain formally, a model of the plant is
required. From (5.4), (5.5) and (5.6), we calculate the following closed-loop transfer
function of the feedback controlled system (cf. Figure 5.3):

T2(z) =
F2(z) C2(z) G2(z)
1 + C2(z) G2(z)

=
0.0407

0.6405z − 1.5998z2 + z3 . (5.10)

By calculating the first n Markov parameters pi of T2(z), we obtain the following lifted-
system matrix:

P =

⎛
⎜⎜⎜⎜⎝

p1 0 · · · 0
p2 p1 · · · 0
...

... . . . ...
pn pn−1 · · · p1

⎞
⎟⎟⎟⎟⎠ ,

p1 = 0.0407,
p2 = 0.0651,
p3 = 0.0781,

...

(5.11)

Recall from Chapter 2 that asymptotic stability in the iteration domain is assured for
all r, v, u0 if and only if

ρ(Q(In×n − λP)) < 1, (5.12)

where ρ denotes the spectral radius and In×n is the identity matrix of dimension n × n.
Similarly, monotonic convergence of the tracking error can be assessed via the criterion

σ̄(PQP−1(In×n − λP)) < 1 ⇒ ||ej+1 − e∞||2 < ||ej − e∞||2 ∀j , (5.13)
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Figure 5.7: Spectral radius (blue dashed) and maximum singular value (red solid) of
the closed-loop dynamics lifted matrix over the learning gain. Both lines
are plotted for a set of Q-filter cutoff frequencies ranging from the Nyquist
frequency of 10 Hz (uppermost curves) down to fQ = 1 Hz (lowest curves). As
indicated by the horizontal dashed line, asymptotic stability and monotonic
convergence can be achieved for λ < 3, while decreasing fQ seems to improve
the rate of convergence.

where σ̄ denotes the maximum singular value of a matrix, i.e. the induced matrix norm
of the Euclidean vector norm ||·||2, and e∞ := limj→∞ ej is the limit value of the tracking
error (cf. Chapter 2). Note furthermore that σ̄(PQP−1(In×n − λP)) is equivalent to
the convergence indicator γ̃2, which should be small according to the controller design
guidelines1 we derived in Chapter 4.

In order to determine suitable values for the ILC parameters, we calculate the spectral
radius ρ(Q(In×n −λP)) and the largest singular value σ̄(PQP−1(In×n −λP)) for a large
number of learning gains λ and Q-filter cutoff frequencies, see Figure 5.7. It is found that
the fastest convergence should be expected for small cutoff frequencies fQ of about 1 Hz
and a learning gain of λ ≈ 1.5. For these values, the maximum singular value indicates
that large tracking error norms will be reduced by at least 20% in each trial. In contrast,
learning gains below λ ≈ 0.75 and above λ ≈ 3 may lead to transient growth.

However, small Q-filter cutoff frequencies are known to cause large residual tracking
errors. Therefore, the controller design guidelines we derived in Chapter 4 recommend
to choose fQ larger than the largest frequency of the reference and disturbance signal
in order to assure that the error norm falls below a small threshold. In the present
application, the disturbances caused by the pulsating arterial pressure are found to

1Recall that these guidelines also apply to the classic case of constant pass length.
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exhibit frequencies of up to 5 Hz, which indicates that fQ should be chosen close to
10 Hz, i.e. Q should be (almost) the identity matrix.

Since all of the theoretical criteria and guidelines above are conservative in some sense,
we also analyze the convergence of the tracking error experimentally. To this end, the
artery model is set to provide a physiologically pulsating blood pressure, and the three
control loops are activated and deactivated in the periodic fashion described above.
While keeping parameters of the classic feedback controllers F1(z), C1(z), F2(z), C2(z)
constant, we evaluate the learning behavior for various Q-filter cutoff frequencies fQ
and learning gains λ in a sequence of experiments. Figure 5.8 shows the development
of input and output trajectories for well-chosen controller parameters, and Figure 5.9
shows the development of the tracking error norm in the iteration domain for two other
parameter settings.

In accordance with the theoretic predictions above, Figure 5.9 shows that smaller learn-
ing gains yield slower convergence and that smaller cutoff frequencies yield larger steady-
state errors. Increasing λ and fQ leads to increased convergence rates and smaller resid-
ual errors. However, for learning gains above λ ≈ 2, divergence and overshooting is
observed in some experiments. Therefore, we choose the controller parameters close to
λ = 1 and fQ = 10 Hz. As seen in Figure 5.8, these settings lead to a reduction of the
tracking error to less than 30% in the first learning step, which is clearly better than the
maximum singular values of σ̄ ≥ 0.75 in Figure 5.7 indicated.

In Section 5.3, we will investigate, whether the designed learning controller yields a
precise blood pressure measurement. Prior to this, however, we shall shortly discuss the
issue of limited repeatability in this non-standard ILC application.

5.2.3 Iteration-Variance and Pulse Rate Detection

In the past discussion, we constantly assumed that neither the system dynamics nor the
disturbances vary significantly. Short time had passed between system identification and
controller design and evaluation. However, by repeating the experimental evaluation
multiple times, we find that results vary considerably due to slight variations in the
placement of the ultrasound sensor, in the thickness and consistency of the gelatin layer
and in the concentration of the fluid tracer particles. Depending on the magnitude
of these variations, we observe either a deterioration of the controller performance or
even divergence and input saturation. Further investigation of this behavior reveal that
the strongly model-based design of the feedback controllers in Section 5.2.1 yields a
flow feedback controller with poor robustness. Since the aforementioned variations can
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Figure 5.8: Iterative learning control (fQ = 10 Hz, λ = 1) of the blood flow through
an artificial artery. Top: Within one step of learning, the flow is reduced
to the constant small reference value indicated by the horizontal dashed
line. Vertical dashed lines indicate the beginning and end of the ILC trials.
Bottom: The input of the ILC, which is fed as a reference to the flow feedback
loop, is adjusted from trial to trial based on the measured error and the ILC
update law (5.9). Compared to the first update, changes in the second and
third update are only minor. (All signals are given in percent of the maximum
ultrasound signal value ymax.)
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Figure 5.9: Convergence of the error norm for different ILC parameters. For λ = 0.5,
convergence is slow. When using a Q-filter with fQ = 2 Hz, the steady-
state error is unacceptably large. However, for λ = 1.0 and Q = In×n, the
Euclidean norm of the error is quickly reduced to about 20% of its initial
value and remains at this level in the following trials.

hardly be avoided in practice, the flow controller (5.5), (5.6) is replaced by a slower and
more robust feedback controller with a rise time of 0.9 s. The ILC, in contrast, is found
to cope well with all parameter variations, as well as with the new underlying feedback
controller, and to yield similar rates of tracking error reduction in all scenarios.

Besides this, it was assumed above that the controller activation is synchronized with
the blood pressure pulses. The human heart rate, however, is known to vary. Therefore,
the current heart rate must be identified in realtime and the controller activation must
be synchronized to the pulsation automatically. To achieve both goals, the following
strategy is employed: While the controller is inactive, falling edges are detected in
the ultrasound flow signal. From the duration between these edges, the pulse rate is
determined. At the third falling edge, the feedback control loops are activated. After
a short period of time, during which a large portion of the initial state dynamics of
the feedback control loops decays, the ILC start to apply the input trajectory uj as a
reference to the underlying flow controller. Another d sample periods later, the ILC
starts to record the output trajectory yj . As soon as the trial has reached a duration
of two pulse periods, the controller is deactivated, and the heart rate identification is
restarted.

The proposed strategy ensures that the ILC is always activated at the same instant of
a pulse, i.e. shortly before the minimum of the flow signal. Furthermore, it ensures
that the trial duration is always adjusted to be twice the pulse period. If the heart
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rate varies, the ILC trials will exhibit varying reference lengths, a phenomenon that has
been discussed in Chapter 4. If these variations are slow, the persistent adaptation of
the ILC will compensate them and maintain a small tracking error. However, if the
heart rate varies very quickly, then the knowledge gained in previous trials is hardly
useful for the next trial. If the blood pressure trajectories exhibit some similarity across
very different heart rates, then techniques similar to those proposed by Moore et al. [66]
might be employed. At the present state of development, however, this aspect is not yet
of interest. The available laboratory model of the cardiovascular system does not allow
experiments with variable pulse rate, and it does not model the heart-rate-dependent
variations of the blood pressure profile. Therefore, we focus on the case of slowly varying
heart rates and, in the following, answer the question whether the designed ILC improves
the accuracy of the novel blood pressure measurement technique.
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5.3 Experimental Validation of the Measurement Principle

In the previous section, the controller design was discussed in detail. We now investi-
gate whether the achieved regulation of the arterial flow yields a precise measurement
of the blood pressure. The artificial cardiovascular system is again used with physiolog-
ically pulsating blood pressure. In addition to the previously described setup, the true
pressure inside the arterial artery is measured and used as a reference measurement for
benchmarking the novel control-based measurement technique.

A series of experiments are performed, in which the learning cascade controller is eval-
uated in combination with the automatic pulse rate detection. The experiments differ
slightly in positioning of the ultrasound sensor, in thickness and consistency of the gelatin
layer, in the value of the flow reference and in the concentration of the tracer particles of
the liquid flowing through the artificial artery. Each of these variations is found to have
an effect on the tracking performance, but the control deviation is always reduced, within
few trials, to values clearly below the control deviations of the first trial, in which only
the robust feedback control is active. Figure 5.10 shows five trials from an experiment
with a blood pressure of 135 mmHg and 80 mmHg (systolic and diastolic, respectively).
Within two to three learning steps, the repeating portions of the control deviation are
eliminated, and the balloon pressure resembles the reference measurement signal. Hence,
precise values for the heart rate and the arterial blood pressure are obtained within three
trials.

5.4 Conclusions and Future Research

A novel blood pressure measurement technique was considered, which is based on control
of the arterial blood flow. For the inherent control problem, we developed a learning
cascade controller. It was demonstrated that the performance of standard feedback con-
trollers is severely limited by the poor signal-to-noise ratio of the ultrasound-based flow
measurement and by the large uncertainties in the system dynamics. To overcome these
limitations, an iterative learning controller was added, which exploits the periodic nature
of the control problem and the controller activation cycles. Controller performance was
evaluated in a laboratory model of the cardiovascular system with physiologically pul-
sating blood pressure. Thereby, it was demonstrated that the improved controller yields
precise measurements of the heart rate and blood pressure within less than twenty sec-
onds, without impairing blood circulation.
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Figure 5.10: Blood pressure measurement by learning cascade control of the arterial
blood flow. During the first trial, only the (slow but robust) cascade feed-
back control is active. From trial to trial, the reference signal of that feed-
back loop is adjusted by an iterative learning controller in such a way that
the residual control deviation is reduced. Simultaneously, and in accordance
with the intended measurement principle, the balloon pressure resembles
the arterial pressure better and better. For example, the deviation between
maximum balloon pressure and systolic arterial pressure decreases from the
first to the fifth trial as follows: 36.3; 22.1; 9.3; 3.9; 2.1 mmHg.

The implications of variable heart rates for the present control problem were discussed.
With respect to a practical implementation, further investigation of the speed of heart
rate and blood pressure changes are advisable. Furthermore, improving the signal quality
of the Doppler ultrasound flow measurement is expected to further improve the controller
performance and, thus, the accuracy of the novel method.
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6 Design of an Adaptive Drop Foot
Neuroprosthesis

Many stroke patients suffer from the drop foot syndrome, which is characterized by a
limited ability to lift (the lateral and/or medial edge of) the foot and leads to a patho-
logical gait. In this chapter, we consider the treatment of this syndrome via functional
electrical stimulation (FES) of the peroneal nerve during the swing phase of the paretic
foot.

A novel three-electrodes setup will allow us to manipulate the recruitment of m. tibialis
anterior and m. fibularis longus almost independently without violating the zero-net-
current requirement of FES. In order to cope with the nonlinearities in patients’ stim-
ulation intensity tolerance, we will apply a piecewise linear controller output mapping.
The pitch and roll angle of the foot will be estimated by means of an Inertial Measure-
ment Unit (IMU) and controlled via a decentralized Iterative Learning Control (ILC)
scheme. Finally, we will evaluate the effectiveness of this approach in experimental trials
with drop foot patients walking on a treadmill. Starting from conventional stimulation
parameters, the controller automatically achieves physiological foot pitch and roll angle
trajectories within only two strides.

6.1 Introduction to the Application

According to the World Health Organization (WHO), more than a million people suffer
a stroke in Europe each year [116]. Due to demographic changes and an increasing life
expectancy, this number will rise as with the demand for efficient rehabilitation and
medical devices. Stroke often leads to impaired motor function. Even after weeks of
rehabilitation, many patients suffer from a limited ability to lift the foot by voluntary
muscle contraction. This syndrome is known as drop foot (or foot drop), and it also
appears in patients with other neurological disorders. Regardless of the cause, foot drop
leads to a pathological gait with an increased risk of fall and injuries like ankle sprain.

A common treatment is to fix the foot in the lifted (dorsiflexed) position by a passive
orthosis. This approach may improve safety and stability in the patient’s gait, but it
further promotes muscle atrophy and joint stiffness.

If the lesion affects the central nervous system and the peripheral nerves are still intact,
then an alternative treatment can be provided by means of the technology known as
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Figure 6.1: The foot is raised by m. tibialis anterior whose tendon is attached to the
inner edge of the foot and by m. fibularis longus that lifts the outer edge.
By means of FES, physiological foot motions can be achieved (in both pitch
and roll direction) even in paretic limbs.

functional electrical stimulation [90]. As explained in Chapter 2, functional electrical
stimulation enables the artificial activation of muscle contraction by applying tiny elec-
trical pulses via skin electrodes with an adhesive, conductive gel layer or via implanted
electrodes. Due to the risk of complications associated with surgery and implants, we
restrict our discussion to the former case. Drop foot neuroprostheses, also known as
peroneal stimulators, are FES devices that aim at generating a natural foot lift via acti-
vation of the patient’s shank muscles. To this end, the electrodes are placed on the skin
near the peroneal nerve, whose branches innervate several shank muscles, as depicted in
Figure 6.1. When FES with well-chosen pulse dimensions is applied via well-positioned
electrodes in a well-synchronized manner during gait, then the physiological motion of
the foot can be restored even in paretic limbs.

6.1.1 Challenges in FES-based Drop Foot Treatment

There are several challenges that need to be faced when developing FES-based gait
support systems for drop foot patients. One is that the ankle joint has two degrees of
freedom that are actuated in a non-trivial way by at least two major shank muscles,
cf. Figure 6.1. More precisely, the human ankle includes the talocrural joint and the
subtalar1 joint. The former admits dorsiflexion and plantarflexion, i.e. lift and drop of
the foot with respect to the tibia, which corresponds to foot pitch in Euler angle notation.

1including the talocalcaneal part of the talocalcaneonavicular joint
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In contrast, the subtalar joint allows for supination and pronation, which corresponds to
rotation of the foot about a combined pitch, roll and yaw axis that is oriented 16◦ from
the sagittal plane and 42◦ from the horizontal plane [83]. Since this implies that every
yaw motion of the foot2 is directly affiliated with a roll motion3, we can disregard the
yaw motion and characterize the rotational state of the foot entirely by the pitch and
roll angle, cf. Figure 6.1.

The peroneal nerve divides into a superficial and a deep branch, which innervate the
m. fibularis longus and m. tibialis anterior, respectively. Both muscles can be activated
by FES via skin electrodes placed on the shank as depicted in Figure 6.1. Experiments
show that the motion that FES triggers depends on the subject, varies with time, and is
sensitive to small (~ 1 cm) changes in the electrode positions. In most subjects, however,
precise electrode placement leads to the following observations: Electrical pulses applied
with the cathode being the frontal electrode mainly recruit m. tibialis anterior. This
muscle raises the inner edge of the foot and thereby causes a combined pitch and roll
motion. On the contrary, pulses applied with the lateral electrode serving as cathode
recruit mainly m. fibularis longus and cause foot roll in the opposite direction by lifting
the outer edge of the foot. However, at higher intensities, the lateral stimulation increas-
ingly recruits additional muscles that also lift the inner edge to some (patient-individual)
extent. Finally, when bi-phasic pulses with a sufficiently long inter-pulse pause are ap-
plied, as explained in Chapter 2, then the effect of the lateral stimulation outweighs the
effect of the frontal stimulation for most electrode positions, resulting in an exaggerated
lift of the outer foot edge. Therefore, and due to the mentioned sensitivity to electrode
placement, it is challenging to find electrode positions and stimulation pulse dimensions
that generate a straight foot lift without inwards or outwards roll of the foot.

Another important issue is that FES-activated muscles fatigue rapidly [87]. To delay
the early onset of fatigue, it is essential to use the optimal stimulation parameters, i.e.
the smallest intensities that achieve a safe and physiological foot lift. This optimum
changes due to time-variant effects such as varying muscle tone (spasticity) and residual
autonomous muscle activity. When patients cross a street, for example, residual volun-
tary muscle activity as well as the muscle tone (spasticity) often change within a few
seconds or strides. Therefore, once a physiological foot motion has been achieved, it is
just as challenging to maintain it.

2i.e. rotation about a vertical axis; adduction/abduction in medical terms
3i.e. rotation about the longitudinal axis of the foot; eversion/inversion in medical terms
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6.2 State of the Art in Research and Industry

For drop foot treatment, a few commercially available solutions make use of FES, some
via skin electrodes, others via implanted electrodes. The review articles by Lyons et al.
[53] and Melo et al. [61] provide an excellent overview of drop foot stimulators in research
and industry and classify them in several ways. Until now, all commercially available
devices have been solely based on open-loop architectures, they only use sensors to time
the stimulation [61]. Most of them employ heel switches to detect two gait phases: one
when the heel of the paretic foot is on the ground and the other when it is not. In each
stride, as soon as the heel is lifted, FES is applied with a fixed stimulation intensity
profile over time, typically a trapezoidal shape tuned by an experienced clinician. Find-
ing stimulation parameters that yield a physiological foot motion is cumbersome and,
due to the described time-variant effects, requires repeated manual adaptations of the
intensity profile. An obvious escape strategy that is often pursued is to choose larger
stimulation intensities and accept exaggerated foot lift. While this strategy provides a
certain amount of safety and functionality, it accelerates muscular fatigue and leads to
a salient peculiarity in the patient’s gait.

The challenges described in Section 6.1.1 can be faced in a much more effective and
elegant way by the use of feedback control. The stimulation parameters can be adjusted
automatically to delay the onset of fatigue and to induce the optimal level of foot lift.
This requires measurement of the foot motion via, for example, an inertial sensor or
a goniometer. When inertial sensors are attached to the shank and foot, the ankle
dorsiflexion joint angle can be determined, as describe for example in Chapter 3. If only
the foot is equipped with an inertial sensor, the foot orientation with respect to the
horizontal plane is assessable (see also Chapter 3). Both quantities properly describe to
which extent the applied FES compensates the foot drop.

Despite increasing efforts in the last decades to make closed-loop gait neuroprostheses
a reality, it is still a challenging task to control paralyzed limbs with FES [61]. Several
control techniques have been proposed, and some respectable results have been obtained
at least for the much simpler case of a sitting or lying subject, i.e. without the tight time
constraints and the strong disturbances imposed by gait. For example, Kobravi et al. [40]
and Valtin et al. [117] proposed a fuzzy controller and an iterative learning controller,
respectively, and performed experimental trials with sitting subjects. Hayashibe et al.
[35] and Benedict and Ruiz [9] suggested the use of predictive control and PID control,
respectively, but tested their controllers in simulation studies only. Artificial neural
networks were employed by Chang et al. [13] and Chen et al. [14], who validated the
controller in trials with subjects lying on a bed.
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Besides those simplified in-vitro studies, intense efforts have also been made to close the
loop on FES during walking. Veltink et al. [119] used an inertial sensor on the foot to
tune an implantable drop foot stimulator such that a desired foot orientation just prior
to initial contact was achieved. Negård [74] proposed run-to-run control of the maximum
foot pitch angle occurring during swing phase and tested the controller in trials with a
walking drop foot patient. Previously, Mourselas et al. [69] had briefly reported similar
results obtained with a bend sensor and a fuzzy logic algorithm.

While these latter results represent important improvements with respect to all com-
mercially available stimulators, one major shortcoming remains: The entire foot motion
is reduced to a single scalar measure, for example a minimum foot clearance [59] with
respect to ground or a desired foot pitch angle at initial contact. Obviously, this is a
strong simplification of the control problem. As we will demonstrate, conventional stim-
ulation intensity profiles may yield (for example) a desired maximum foot pitch angle,
while causing too weak or too strong foot lift during the first half of the swing phase, or
while using larger intensities than necessary.

With respect to overcoming these limitations, it was demonstrated by Nahrstaedt et al.
[71] in preliminary experiments with healthy subjects that iterative learning control
might be used to control the entire foot pitch angle trajectory of drop foot patients
during the swing phase, i.e. from the last to the first ground contact (cf. Figure 6.1).
Controlling the entire trajectory is expected to actually yield a stimulation intensity
profile over time that induces a foot motion close to those of healthy walkers, while
using only as much FES as needed.

In the following, we will consider multivariable feedback control of the entire foot motion
during swing phase. Unlike all previous approaches, we will investigate in experimental
trials with drop foot patients how two FES intensities can be manipulated almost inde-
pendently to achieve desired foot pitch and roll angle trajectories by means of iterative
learning control.

The remainder of this chapter is organized as follows. First, we briefly introduce the
sensor concept in Section 6.3. In Section 6.4, a novel three-electrodes setup is used to
modify the charges applied to the frontal and the lateral electrode (cf. Figure 6.1) inde-
pendently without violating the zero-net-current demand. We then introduce a piecewise
linear controller output mapping that exploits the entire range of stimulation intensity
combinations tolerated by the patient. With this mapping in place, a decentralized ILC
scheme for the pitch and roll angle is designed in Section 6.5, which is then evaluated in
chronic drop foot patients walking on a treadmill in Section 6.6.
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6.3 The Sensor – Inertial Assessment of Foot Motion

As discussed above, inertial measurement units can be employed to assess ankle joint
angles and foot orientation angles. In Chapter 3, a set of methods has been development
for realtime assessment of both the ankle joint angles and the foot orientation angles.
Both motion parameters capture the main characteristics of the pathological gait, and a
closed-loop drop foot neuroprosthesis could very well be designed based on any of both
measurements. However, as a result of several discussions with experienced clinicians,
foot orientation angles are found to be practically more relevant than ankle joint angles,
mainly because the foot orientation is more directly linked to the foot clearance with
respect to the ground. Therefore, we only consider the case of foot pitch and roll angle
measurement in the following.

The foot motion is assessed by means of a single wireless inertial measurement unit,
consisting of a three-dimensional accelerometer and a three-dimensional gyroscope. Both
MEMS devices are assumed to be properly calibrated and to provide measurements in
the same orthogonal coordinate system, which is not required to be aligned with the
housing of the IMU. Although some inertial sensors also incorporate magnetometers,
we refrain from using their readings, since they are well known to be unreliable inside
buildings and in the presence of magnetic disturbances (see for example De Vries et al.
[19]).

The IMU is attached to the shoe (or the foot in case of barefoot walking) using adhesive
tape, elastic straps, or by putting it inside the shoe or between the shoe tongue and
shoelace. Unlike most previous approaches, we assume the orientation and position of
the sensor with respect to the foot or shoe to be unrestricted and unknown. This implies
maximum freedom of mounting and adds robustness to the methods introduced in the
following. Note that the task of inertial foot motion assessment would become much
simpler if we attached the sensor such that the sensor coordinate axes coincide with
anatomical axes of the foot. However, as discussed in Chapter 3, even surfaces and right
angles are rarely found on the human body. Moreover, since most hemiplegic patients
can use only one hand to attach the sensor, it would be particularly restrictive to demand
a certain sensor-to-foot/shoe orientation.

Therefore, the methods developed in Chapter 3 prove advantageous for the current ap-
plication. We employ them to detect the gait events heel-rise thr,j , toe-off tto,j , initial
contact tic,j and full contact tfc,j for every stride j of the paretic foot in realtime. Further-
more, the sensor-to-foot/shoe orientation is automatically identified, as also described
in Chapter 3, and drift-free trajectories of the foot pitch angle α(t), t ∈ [thr,j , tfc,j ], and
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6.3 The Sensor – Inertial Assessment of Foot Motion

foot roll angle β(t), t ∈ [thr,j , tfc,j ], are obtained at full contact, i.e. at the end of each
stride.

Figure 6.2 presents example trajectories of the foot pitch and roll angles from experi-
ments with five healthy subjects and with a drop foot patient who received conventional
FES support with different stimulation intensity settings. In the trial labeled standard
FES, we omitted the commonly used, but tedious procedure of manually optimizing
the foot motion by iteratively repositioning the stimulation electrodes and adjusting
the stimulation intensity. This results in an outwards foot roll (eversion) that is much
stronger than the physiological variability in the gait of healthy subjects. With some
adjustments, FES parameters are found that yield physiological foot motion (labeled
“optimal FES”). However, as discussed previously, this achievement typically vanishes
within minutes, or sometimes even seconds, due to muscular fatigue and time-variant
muscle tone. This confirms that automatic foot motion control is required in order to
avoid cumbersome manual adjustments and re-adjustments.

6.3.1 Scalar Pitch and Roll Indicators

Although our declared goal is to control the entire foot motion during swing phase,
it is sometimes cumbersome to handle or present the complete pitch and roll angle
trajectories. This is, for example, the case when investigating the effect of FES intensity
parameters on the foot motion in general, as we will do in Section 6.4. Therefore, it
is desirable to define a meaningful scalar measure that quantifies the overall amount of
pitch or roll that occurred during a stride.

In experiments with stroke patients and in discussions with experienced clinicians, it is
found that unphysiological foot motion is most undesirable in the second half of swing
phase, i.e. when the foot is closer to the ground and a negative pitch or roll angle would
increase the risk of stumbling and falling. We therefore define the following pitch and
roll indicators:

pj := 3

√
2

tic,j − tto,j

∫ tic,j

tto,j +tic,j
2

(α(τ) − αb)3dτ + αb ,

rj := 3

√
2

tic,j − tto,j

∫ tic,j

tto,j +tic,j
2

(β(τ) − βb)3dτ + βb,

(6.1)

where the base values αb = −40◦ and βb = 0◦ are chosen to approximate typical toe-off
angles in paretic gait. Please note that the cubic-average operation maintains the sign
and gives more weight to large deviations from the base values αb and βb. Since, even
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Figure 6.2: Pitch and roll angle trajectories (average lines + standard deviation bands) of
healthy subjects (left) and of a drop foot patient who received zero, optimal
and conventional FES support (right). The characteristics of drop foot gait
are well captured by foot orientation measurements. Vertical lines indicate
average gait phase transition times.

in paretic gait, strong positive and negative deviations from the base values never occur
in the same stride, the cubic indicators are usually found to be close to the maximum
deviation. But thanks to the averaging approach, they are not only based on one sample,
and are therefore less sensitive to measurement errors and noise than the maximum
deviation would be.

As demonstrated previously, such indicators correlate well with the foot motion rating
of experienced clinicians [107]. Hence, they are considered satisfactory scalar measures
of the clinically relevant foot motion in a stride.
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6.4 The Actuator – Multi-Channel FES of Shank Muscles

We now investigate how the complex musculature of the frontal and lateral shank can be
activated by FES. To this end, we use a three-electrode setup that enables the manipu-
lation of two independent stimulation intensities (pulse charges) via only three surface
electrodes and, nevertheless, ensures a zero net current. Subsequently, we solve the
problem of interdependent saturation limits in multi-channel FES, and we analyze the
multivariable couplings between the stimulation intensities of both channels and the foot
motion they trigger during gait.

6.4.1 Novel Three-Electrodes Setup

The force generated by FES increases monotonously with the frequency and the charge
(i.e. the product of pulse width and amplitude) of the applied current pulses. Therefore,
adjusting the stimulation intensity typically relates to adjusting either (or both) of these
quantities (cf. Chapter 2). For the sake of brevity, we assume a fixed pulse frequency of
50 Hz and manipulate only the pulse charge. In order to avoid high and narrow pulses
as well as low and wide pulses, we implement all stimulation intensity changes in such a
manner that pulse width and amplitude are always increased or decreased by the same
factor, i.e. their ratio remains constant.

Most FES devices employ two electrodes per stimulation channel and apply symmetric
bi-phasic pulse waveforms, i.e. two current pulses of equal dimensions but opposite sign
are applied subsequently, as explained in Chapter 2. Thereby, it is assured that, under
each electrode individually, the balance of charge pumped into or out of the body is
zero. This is a fundamental requirement, since a non-zero net current through the body
is known to cause electrolysis and tissue damage in the long term.

An intuitive approach to the considered application is to apply such bi-phasic pulses via
the lateral and frontal electrode, with one of them serving as cathode during the first
pulse and the other one serving as cathode during the second pulse (i.e. the counter
pulse). This approach would yield only one manipulated variable (the pulse charge of
both pulses). However, achieving a straight foot lift with both physiological pitch and
balanced roll, in general, requires manipulating the excitation of the nervous tissue below
lateral and frontal electrode independently. Therefore, we employ a stimulator with (at
least) two independent FES channels and use a novel three-electrode setup.
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6 Adaptive Drop Foot Neuroprosthesis

In this setup, a third electrode is placed below the lateral electrode and next to the
frontal electrode, see Figure 6.3. FES pulses applied to this location are found to cause
almost no muscle contraction in drop foot patients and only weak recruitment of m.
fibularis longus in healthy subjects. Therefore, the third electrode serves as common
counter electrode, i.e. as cathode for the balancing pulse of both the frontal and the
lateral electrode pulse. Both bi-phasic waveforms are applied subsequently within the
20 ms time window of each stimulation period, as illustrated in Figure 6.3. The product
of pulse width and current amplitude of the first channel (the lateral FES channel) shall
be denoted by qlat(t), while the product of pulse width and current amplitude of the
second channel (the frontal FES channel) shall be denoted by qfro(t). Even if these two
intensities are chosen independently, the net current is zero for each stimulation period
and for each electrode.

ilat

Δtlat

ifro

Δtfro

20 ms

FES Channel 1 qlat(t) = ilat(t) Δtlat(t)

FES Channel 2 qfro(t) = ifro(t) Δtfro(t)

Figure 6.3: Two-channel drop foot stimulation. The third electrode in the middle serves
as common counter electrode for both stimulation channels. Each bi-phasic
pulse waveform is charge-balanced. The intensity of the second channel can
therefore be chosen independently from the intensity of the first channel,
without violating the zero-net-current restriction.

152



6.4 The Actuator – Multi-Channel FES of Shank Muscles

6.4.2 Choosing Suitable Stimulation Intensity Parameters

Cartesian-type Coordinates Polar-type Coordinates
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Figure 6.4: The domain Q of stimulation intensity combinations tolerated by the subject
is defined by the initially determined maximum tolerated values qlat, qfro, qf+l.
It can be parameterized by the Cartesian-type coordinates ulat, ufro or by the
polar-type coordinates uΣ, ρ.

Before FES is applied and stimulation intensities are automatically adjusted, it is ad-
visable to identify the maximum intensity tolerated by the subject, i.e. the maximum
pulse charges that cause neither discomfort nor pain, and make sure that these values
are never exceeded. For the current application, recall that qlat(t) and qfro(t) are the
stimulation intensities of the first and the second FES pulse, which trigger action poten-
tials in nervous tissue near the lateral and frontal electrode, respectively. Since we can
manipulate them independently, we first set qfro(t) to zero and raise qlat(t) until the sub-
ject reports discomfort, and then vice versa. Denote the obtained maximum tolerated
values by qlat and qfro, respectively. When both intensities are raised simultaneously, the
subject feels the combined sensation of both pulses and typically tolerates only 70–80%
of the single-channel maximum intensities. Figure 6.4 shows typical values for qlat, qfro
and the maximum tolerated intensity qf+l for simultaneous stimulation via both elec-
trodes (qfro(t) = qlat(t)). By linear interpolation, we obtain the depicted quadrangle that
defines the domain Q of admissible stimulation intensities.

This gives rise to the question how the intensity should be limited in multivariable control
of foot orientation via FES. As discussed above, we aim at employing a decentralized
control scheme, i.e. two independent controllers for the foot pitch and roll. If the
stimulation intensities qlat(t), qfro(t) were used as controller outputs, then the maximum
value of each would depend on the current value of the other. This would complicate the
implementation of intensity limitations and anti-windup schemes. We avoid this problem
by parameterizing the domain Q in coordinates that are adapted to the geometry of the
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6 Adaptive Drop Foot Neuroprosthesis

quadrangle. For example, we can use the Cartesian-type coordinates ulat ∈ [0, 1] and
ufro ∈ [0, 1] to section the domain Q as depicted in the left-hand side of Figure 6.4.
Obviously, ulat = 0 implies qlat = 0, and ulat = 1 refers to points on the interpolated
line between qlat and qf+l, while the same holds for ufro, qfro and qfro, qf+l, respectively.
For every combination ulat(t), ufro(t), the corresponding pulse charges qlat(t), qfro(t) are
calculated as follows:

qlat(t) =
{

qf+l ulat(t) if ulat(t) ≤ ufro(t)
qf+l ufro(t) + qlat(ulat(t) − ufro(t)) if ulat(t) > ufro(t)

(6.2)

qfro(t) =
{

qf+l ulat(t) + qfro(ufro(t) − ulat(t)) if ulat(t) ≤ ufro(t)
qf+l ufro(t) if ulat(t) > ufro(t)

(6.3)

Alternatively, we may describe Q by the polar-type coordinates uΣ ∈ [0, 1] and ρ ∈
[−1, 1]. As also illustrated in Figure 6.4, ρ = −1 refers to qlat = 0 and ρ = +1 refers to
qfro = 0, while uΣ scales both qlat and qfro linearly between zero and their ρ-dependent
maximum values. These coordinates can therefore be interpreted as an overall (weighted
sum) intensity and a distribution of that intensity between both FES channels. For every
combination uΣ(t), ρ(t), the corresponding pulse charges qlat(t), qfro(t) are calculated as
follows:

qlat(t) =
{

uΣ(t)(qf+l(1 + ρ(t))) if ρ(t) ≤ 0
uΣ(t)(qf+l(1 − ρ(t)) + qlat ρ(t)) if ρ(t) > 0

(6.4)

qfro(t) =
{

uΣ(t)(qf+l(1 + ρ(t)) − qfro ρ(t)) if ρ(t) ≤ 0
uΣ(t)(qf+l(1 − ρ(t))) if ρ(t) > 0

(6.5)

Each of the proposed parameterizations enables us to implement two independent single-
input single-output controllers with properly defined saturation limits, i.e. we can ma-
nipulate each of new manipulated variables ulat(t), ufro(t) or uΣ(t), ρ(t) independently of
each other within their defined ranges without causing discomfort. In order to compare
the usefulness of both approaches, we investigate the influence of each pair of stimulation
intensity coordinates on the foot pitch and roll during swing phase in the following.

6.4.3 Experimental Analysis of Input-Output Couplings

As described above, the influence of FES pulses on the foot motion is not straight forward
and depends on the subject, on the electrode position, as well as on the muscle tone and
fatigue. Since results in sitting subjects [104] were found to differ from results in walking
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Figure 6.5: (a): Four different stimulation intensity settings A–D. (b): Foot orientation
angles of a chronic drop foot patient with settings A–D and witout FES
(dotted lines). Horizontal lines mark the respective indicators, as defined
in (6.1). Stimulation intensities that yield sufficient pitch and neutral roll
(cf. physiological ranges indicated by red brackets) are hard to find.

[107], we investigate this influence in a chronic drop foot patient walking on a treadmill
at constant, self-selected speed.

Dual-channel FES is applied with constant intensities qlat and qfro during the entire pre-
swing and swing phase of each stride. More precisely, the stimulation starts whenever
the heel of the paretic foot leaves the ground, and it stops at initial contact. Figure 6.5
presents foot orientation angle trajectories and pitch/roll indicators for a few example
parameterizations of both stimulation channels. It illustrates the aforementioned fact
that physiological motions are not easily achieved by manual adjustments.

Preliminary experiments further reveal that certain combinations of qfro and qlat do not
provide enough support to ensure a safe gait. This is illustrated in Figure 6.6. In order
to investigate the influence of the previously defined FES parameters, we perform a large
series of walking trials. Therein, we set uΣ = 0.6 and collect data from about 60 strides,
while gradually raising ρ from −0.3 to 0.3 every five strides. Subsequently, the procedure
is repeated for several other values of uΣ. For each combination of stimulation intensities,
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(a) Polar-type Coordinates:

(0, qfro)

(qf+l, qf+l)

(qlat, 0)
—analyzed range

(c) Foot Pitch and Roll vs.
Polar-type Coordinates:

(b) Cartesian-type Coordinates:

(0, qfro)

(qf+l, qf+l)

(qlat, 0)

—analyzed range

(d) Foot Pitch and Roll vs.
Cartesian-type Coordinates:

Figure 6.6: (a,b) Green polygons mark the subset of Q in which FES provided sufficient
support to enable the patient to walk properly. (c,d) Foot pitch and roll
during swing phase for various stimulation parameter settings from these
ranges. Each dot marker represents the average indicator of about five strides
with the respective stimulation settings. Sigma bars in the lower right corner
of each subplot indicate the average standard deviation of the presented data
points. Gray shades indicate the physiological values found in healthy gait
at similar speed.
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we calculate the average and standard deviation of the pitch and roll indicators defined
in (6.1). Since hysteresis effects are common in FES, we also modify uΣ between 0.6 and
1.0 while keeping ρ at several constant values.

Subsequently, we repeat the described procedure for the Cartesian-type coordinates: At
first we decrease ulat in small steps from 1 to 0.5 while keeping ufro constant. This is
done for various values of ufro. We then repeat the process vice versa, i.e. keeping ulat
constant while decreasing ufro from 1 to 0.5.

As a major result of these trials, it is found that all FES intensity parameters influence
both pitch and roll of the foot to some extend. However, foot pitch is mainly influenced
by ufro and uΣ, while foot roll is primarily influenced by ulat and ρ.

Figure 6.6 shows pitch and roll indicators plotted against the Cartesian-type coordinates
ulat, ufro as well as against the polar-type coordinates uΣ, ρ. By repeating the entire
procedure on different days and with different patients as well as with small variations
of electrode positions we confirm the aforementioned major result. However, apart from
that, we obtain different results each time, which is not surprising to those who work
with FES and the human neuro-muscular system. Therefore, we refrain from trying to
identify detailed models of the observed input-output behavior. Instead, we will employ
learning control methods with integral action that adapt the FES parameters repeatedly
as long as the foot orientation angles are above or below the desired values.

Figure 6.6 indicates that such methods can be used successfully. By inspecting the slope
of the curves, we make the following observations: For any fixed ρ, an increase(/decrease)
of uΣ leads to an increasing(/decreasing) or at least an almost steady foot pitch. Like-
wise, for any fixed uΣ, an increase(/decrease) of ρ leads to an increasing(/decreasing) or
at least an almost steady foot roll. These monotonicity properties are also found in the
results of the Cartesian-type coordinates of most patients. We therefore consider both
parameterizations of Q for decentralized learning control design in the following.
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6.5 Iterative Learning Control of Drop Foot Stimulation

In this section, we will design a controller network that manipulates the FES intensity
parameters in order to influence the orientation angles of the paretic foot during walking.
For the sake of brevity, the procedure is only described for the polar-type parameteriza-
tion. However, all following statements are analogously true, and the following procedure
is analogously carried out, for the Cartesian-type parameterization.

Recall that α(t) and β(t) are the measured pitch and roll angle of the foot, respectively,
and that the control objective is to manipulate the stimulation intensity parameters
uΣ(t) ∈ [0, 1] and ρ(t) ∈ [−1, 1] such that the pitch and roll angle trajectories α(t), β(t)
during swing phase resemble those of healthy subjects.

As discussed in Section 6.4.3, the cross-couplings between these manipulated and con-
trolled variables are considerable but vary from patient to patient and with electrode
position as well as with muscular tone and fatigue. In order to design a centralized mul-
tivariable controller, one would thus need to gain additional model knowledge from iden-
tification procedures (preferably during walking) at the beginning of each trial. While
this might be of academic interest, it is far from practical. Therefore, we focus in-
stead on the question whether a decentralized learning control scheme can cope with the
cross-couplings and achieve physiological foot motion in walking drop foot patients.

Recall from Section 6.4.3 that ρ(t) usually has a major influence on foot roll, while uΣ(t)
influences foot pitch to some extent. Hence, we choose to pair the manipulated variable
uΣ(t) with the controlled variable α(t) and to pair the manipulated variable ρ(t) with
the controlled variable β(t).

6.5.1 Formulating Drop Foot Stimulation as a Repetitive Control Task

While the paretic foot is loaded, FES-induced joint torques hardly influence the motion
of the foot or leg. Therefore, drop foot stimulation aims at influencing the foot motion
during swing phase, i.e. from toe-off to initial contact. Since the dynamics of FES-
induced movements are slow, the stimulation must start sufficiently early, i.e. typically
about δts ≈ 0.2 s, δ ∈ N, before the toe-off. Since drop foot patients usually walk at
slow, almost constant speed with pre-swing phase durations tto,j − thr,j > δts ∀j, we can
anticipate the toe-off based on previous pre-swing durations and start to apply FES at
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t0,j := thr,j +
j−1∑

k=max(1,j−3)

tto,k − thr,k
min(j − 1, 3)

− δts ≈ tto,j − δts. (6.6)

In a similar manner, we could anticipate tic,j − δts from previous strides and then stop
the stimulation at that moment. However, mainly for safety reasons, FES should be
applied at least until the initial contact is detected. Therefore, let the trajectories of the
stimulation intensity parameters uΣ(t) and ρ(t) applied in stride j be denoted by

uα,j := [uΣ(t0,j), uΣ(t0,j + ts), . . . , uΣ(tic,j)]T ,

uβ,j := [ ρ(t0,j), ρ(t0,j + ts), . . . , ρ(tic,j)]T ,
(6.7)

where ts is the sampling interval. The resulting pitch and roll angle trajectories are then
denoted as follows:

αj := [α(t0,j + δts), α(t0,j + δts + ts), . . . , α(tic,j)]T ,

βj := [β(t0,j + δts), β(t0,j + δts + ts), . . . , β(tic,j)]T .
(6.8)

Even in subjects walking on a treadmill at constant speed, the time duration tic,j − t0,j

will vary slightly from stride to stride. This natural variance is found to be even larger
in hemiplegic patients, as demonstrated for example in Chapter 3. To capture this effect
mathematically, we introduce the pass length

nj :=
tic,j − t0,j

ts
− δ + 1 (6.9)

of stride j. Then we can write the dimensions of the input and output trajectory of
stride j as αj , βj ∈ Rnj×1 and uα,j , uβ,j ∈ R(nj+δ)×1.

Even in paretic gait, the swing phase duration does not become arbitrarily small or large.
We can thus easily find a lower bound n and a (large) upper bound n for nj such that
nj ∈ [n, n − δ] holds for every stride j.

Finally, we define desired (physiological) pitch and roll angle trajectories rα, rβ ∈ Rn̄×1

based on data from healthy subjects walking at the same speed, cf. Figure 6.2. From a
medical point of view it is most important to ensure a clear heel-strike, i.e. positive foot
pitch at initial contact. Therefore, we define rα such that its last n−n sample values are
larger than 5 ◦. This completes a repetitive trajectory tracking task in which the inputs
uα,j , uβ,j must be chosen such that αj ≈ 〈rα〉nj and βj ≈ 〈rβ〉nj in each stride, where
〈·〉nj is the remove-last-(n − nj)-rows operator defined in Chapter 4.
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The large (translational and rotational) acceleration and deceleration of the shank that
occur during swing phase impose disturbances on the considered plant dynamics. Due to
increased muscle tone (related to spasticity), there is furthermore an additional torque4

acting on the ankle joint of many drop foot patients. This torque, as well as the patient’s
residual voluntary muscle activity, also act as disturbances on the previously defined
repetitive control task. Finally, please note that the amount of joint torque that can
be generated by FES is typically very limited. Therefore, these disturbances represent
major challenges.

From the preceding discussion we conclude that peroneal stimulation via surface elec-
trodes during gait requires solving a repetitive, multivariable control task with variable
pass length and with large delays and disturbances. As discussed in Section 6.1.1, many
of the system parameters and disturbances vary with time – some of them within min-
utes, others occasionally within less than ten seconds. A control method is required that
exploits the repetitiveness of gait and quickly adjusts the FES from stride to stride such
that the variability is compensated and the desired pitch and roll angle trajectories are
achieved in each stride (up to the natural stride-to-stride variance of healthy gait). This
task perfectly fits the framework of iterative learning control for variable pass length
systems, which has been introduced in Chapter 4. Therefore, we aim at solving the
repetitive trajectory tracking task by a decentralized ILC scheme in the following.

6.5.2 Decentralized Iterative Learning Control Law

As pointed out above, the overall dynamic delay of FES-induced foot motion is ap-
proximately 0.2 s, which is longer than a quarter of the typical swing phase duration
tic − tto ≈ 0.7 s. Moreover, gaining useful model knowledge requires burdening identifi-
cation procedures. Therefore, instantaneous feedback (i.e. using current measurement
information to adjust stimulation intensities) hardly reaches closed-loop rise times be-
low 0.5 s, and is practically useless for the present application. Instead, the stimulation
intensities for each stride must be chosen primarily based on measurement informa-
tion from previous strides. In terms of ILC theory, this means that we neither employ
current-iteration tracking error ILC nor design methods that rely on a (precise) system
model.

Since the pass length nj of stride j is not known before the initial contact of stride j
occurs, we must prepare full-length controller output trajectories ūα,jūβ,j ∈ Rn×1 for

4e.g. m. tibialis posterior may cause an inversion-promoting torque
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each stride j:

ūα,j := [uΣ(t0,j), uΣ(t0,j + ts), . . . , uΣ(t0,j + (n − 1)ts)]T ,

ūβ,j := [ ρ(t0,j), ρ(t0,j + ts), . . . , ρ(t0,j + (n − 1)ts)]T ,
(6.10)

although only the first nj + δ samples of both trajectories (i.e. exactly uα,j , uβ,j) will
actually be applied to the system.

In the first stride, when no measurement information from previous strides is available,
a conservative strategy is advisable: For example, we may set uβ,0 to constant zero
(corresponding to qfro = qlat) and uα,0 to a trapezoidal profile with an amplitude of 0.9
(corresponding to 90 % of the maximum tolerated intensities) and a considerably short
rise time. In most patients, this assures a safe swing phase with sufficient but most likely
exaggerated foot lift.

At the beginning of each following stride, we determine the element-wise deviation be-
tween the measured angle trajectories αj , βj and the first nj samples of the respective
reference trajectories rα, rβ to calculate the following error information vectors:

eα,j := 〈rα〉nj − αj , eα,j ∈ Rnj×1,

eβ,j := 〈rβ〉nj − βj , eβ,j ∈ Rnj×1.
(6.11)

For the last (n − nj) samples of the reference trajectory there exists no corresponding
measurement information, since the trial actually ended after nj sample periods. The
incomplete error information can nevertheless be used to adjust the controller output
trajectory ūj , by using the following modified version of a standard ILC learning law
(cf. Chapter 4):

ūα,j+1 = sat+1
0

(
Q
(

ūα,j + λαIn×n

[
eα,j

0(n−nj)×1

]))
,

ūβ,j+1 = sat+1
−1

(
Q
(

ūβ,j + λβIn×n

[
eβ,j

0(n−nj)×1

]))
,

(6.12)

where λα, λβ ∈ R≥0 are adjustable learning gains, and satb
a(·) denotes element-wise satu-

ration to the interval [a, b]. Furthermore, Q ∈ Rn×n is a symmetric matrix with Toeplitz
structure containing the Markov parameters of a lowpass filter (2nd order, Butterworth)
with cutoff frequency denoted by fQ. As explained in Chapter 2, multiplying a trajec-
tory vector by Q corresponds to applying a non-causal (zero-phase) lowpass filter to the
trajectory [23]. Thereby, we avoid the discomfort that is usually associated with sudden
large increases in stimulation intensity. Moreover, this improves the robustness of the
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ILC by restricting the learning process to the low frequency range in which at least some
model knowledge is available, as discussed in Chapter 4.

The rationale behind this learning approach is as follows: When a certain section of an
angle trajectory is lower than it should be, the update law (6.12) increases the corre-
sponding section of the respective controller output trajectory. On the contrary, when-
ever the foot pitch or roll is stronger than necessary, the respective stimulation intensity
parameter is reduced.

Please note that the large delay in the system dynamics is partially compensated by the
time shift δ in the trajectory definitions (6.7). If, for example, the roll angle is too low
during the first five samples of the swing phase in stride j, then the controller increases
the first five entries of uβ,j+1, which will be applied δ samples before the swing phase of
the next stride, i.e. early enough to correct the observed control deviation.

If an adjustment was not sufficient, the deviation remains and will be adjusted again,
i.e. the employed learning law has integral action. By integrating the control output
saturation directly into the learning law (6.12), we prevent integrator windup effects
that would otherwise occur whenever the controller outputs reach the boundary of the
domain Q of admissible stimulation intensities, cf. Figure 6.4.

6.5.3 Choosing Suitable Controller Parameters

Controlling foot motion by functional electrical stimulation during the swing phase of
gait represents a classic example of an ILC task with variable pass length. To apply the
controller design guidelines derived in Chapter 4, a lifted model of the plant dynamics
is needed. We therefore perform experiments with subjects sitting on a table with re-
laxed shank and foot. The subject’s m. tibialis anterior is stimulated with an intensity
profile that is typical for walking support of drop foot patients. The dynamics of foot
pitch (measured in radians) induced by the electrical stimulation (normalized to toler-
ated maximum) are identified using least-squares system identification methods (see for
example Ljung [52]). The obtained transfer function

Gpitch(z) =
1.0494z − 1.0174

z − 0.9816
z−10, with sample rate fs = 50 Hz, (6.13)

roughly approximates the dynamics from the stimulation intensity uΣ(t) to the foot pitch
angle α(t) defined in Section 6.4. The lifted-system matrix P is calculated from the (non-
zero) Markov parameters of Gpitch(z) as described in Chapter 2. In the following, we

162
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use this model to find suitable values for the learning gain λα and the Q-filter cutoff
frequency fQ of the iterative learning control scheme defined above.

diagonal learning gain λα
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Figure 6.7: Convergence indicator γ̃2 and residual indicator ε plotted over controller
design parameters.

We choose to analyze error reduction in the Euclidean norm || · ||2. Figure 6.7 shows
the convergence indicator γ̃2 plotted against the diagonal learning gain λα for Q-filter
cutoff frequencies fQ from the practically relevant interval5 fQ ∈ [1, 25] Hz. Recall from
Chapter 4 that positive learning progress and MPL error decrease for large error norms
are only assured if γ̃2 < 1. This is given if λα ∈ [0, 1.5], while the best convergence is
predicted for λα ∈ [0.5, 1]. Very similar γ̃2-values are obtained for all fQ ∈ [1, 25] Hz.

Moreover, we find ||PQP−1||2 ≈ 1 ∀fQ ∈ [1, 25] Hz. To resolve this issue, please recall
the concept of the frequency-weighted residual indicator proposed in Chapter 4. From
Sections 6.3 and 6.5, we conclude that a trial (i.e. a swing phase) is typically shorter than
one second and that both the defined reference and the large disturbance imposed by the
shank motion contain only frequencies below 2 Hz. In order to obtain a less conservative
result for low-frequency signals (r − v), we calculate the frequency-weighted residual
indicator

ε̃≤2 Hz := ||(In×n − PQP−1)||≤2 Hz . (6.14)

Figure 6.7 shows that ε̃≤2 Hz grows as the cutoff frequency fQ of the Q-filter is reduced.
However, as discussed before, a small fQ improves robustness with respect to model
uncertainties. To balance both aspects, we choose fQ = 5 Hz. With λα = 0.5, this
implies that the tracking error ej on the first nj samples is reduced in each learning
step at least until it falls below 1

1−0.4(||êj ||2 + 0.08||r − v||2). In the following section,
we will evaluate experimentally how conservative this statement still is and how small
the tracking error gets in practice.

5Note that for the given sample frequency fs = 50 Hz, the Nyquist frequency is 25 Hz.
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Prior to this, we shall briefly discuss robustness of our previous statements. As the
analysis of Section 6.4.3 indicated, it is a strong simplification to describe FES dynamics
by a linear model. In fact, the transfer function (6.13) captures the input-output dy-
namics only for the small region of stimulation intensities that have a strong influence
on the foot pitch angle. As Figure 6.6 demonstrates, the gain between uΣ(t) and α(t)
varies with uΣ(t) (and ρ(t)). If smaller intensities are chosen, the delay and lag time
of Gpitch might still have similar values, but the gain of the dynamics will certainly be
much smaller. Likewise, if the stimulation intensity and the pitch angle are very large,
then even a large increase of intensity will only cause a small additional increase of the
pitch angle. Therefore, the gain of Gpitch used for controller design is only the maximum
gain that occurs in that patient between uΣ(t) and α(t). Finally, experimental results
of numerous other subjects show that this maximum gain can be up to twice as large in
other subjects as in (6.13).

As discussed before, it is hardly feasible and (most of all) not practical to (re-)identify
these dynamics in their full complexity for each subject on each usage of the adaptive
neuroprosthesis. Instead, we account for these variations by considering the class of linear
systems G = kGGpitch with kG ∈ R, kG > 0. By calculating the convergence indicator γ̃2
for λ = 0.5 and for many values of k, we find that γ̃2 < 1 ∀k ∈ [0.1, 2.9]. This means that,
with the chosen controller parameters, our previously established convergence properties
are still guaranteed, even if the gain of the input-output dynamics is more than twice
as large as or ten times smaller than its nominal value6. Within this robustness lies a
major advantage of using iterative learning control for the present application.

To complete the controller design of the decentralized controller network, a second it-
erative learning controller needs to be designed that manipulates the stimulation dis-
tribution ρ(t) based on measurements of the foot roll angle β(t). Likewise, we need to
implement two single-input single-output iterative learning controllers when using the
Cartesian-type FES parameterization. For all three of these design tasks, the proce-
dures described above can be carried out analogously. Several preliminary experiments,
however, reveal that the respective input-output dynamics vary largely from patient to
patient and that the gain and lag time are typically close to the values found in (6.13).
Therefore, and for the sake of brevity, the same learning gain and Q-filter cutoff fre-
quency are employed for each single iterative learning controller in the following. Since
ILC is known to yield strong robustness with respect to model uncertainties, we may
nevertheless expect good performance.

6Even outside this range, monotonic convergence is typically achieved for a large set of initial input
trajectories, and asymptotic stability is achieved for an even larger set.

164



6.6 Experimental Evaluation in Stroke Patients

6.6 Experimental Evaluation in Stroke Patients

In experimental trials with drop foot patients, we now evaluate the previously designed
ILC scheme in combination with both FES parameterizations proposed in Section 6.4.
The six patients that were recruited for these trials are ambulatory, aged 50–70, BMI 20-
27, at least three months post-stroke and suffer from a drop foot syndrome in combination
with at most moderately increased muscle tone (hypertonia) of the leg musculature.
Some of them use a walking stick or an ankle-foot orthosis in everyday walking. All of
them have used FES before (at least three sessions of at least 30 min). Informed consent
of the patients was obtained and the trials have been approved by the ethics committee
of Charité Universitätsmedizin Berlin.

Initially, we determine the maximum tolerated stimulation intensities qlat, qfro, qf+l of the
patient by increasing the intensities of both FES channels (each individually and then
both together, respectively) until the patient reports discomfort. These values are then
used to implement the two previously defined controller output mappings, along with
the decentralized ILC network, on a realtime computer system.

During the subsequent evaluation trials, the patient walks on a treadmill at constant, self-
selected speed. A wireless inertial sensor is attached to the paretic foot and three FES
electrodes are placed on the shank as depicted in Figure 6.3. The measured accelerations
and angular rates are used to calculate the current gait phase as well as the foot pitch
angle and roll angle trajectories for each stride in realtime, cf. Section 6.3.

For the first stride j = 0, we choose uα,0 and uβ,0 as trapezoidal input profiles with
manually chosen heights and rise times. After each stride j ≥ 0, during the short period
of time for which the heel and toes of the paretic foot are on the ground, the controller
uses the measured pitch and roll angle trajectories αj , βj to adjust the stimulation
intensities uα,j+1, uβ,j+1 automatically according to the update law (6.12). During the
subsequent stride j +1, stimulation intensity trajectories qfro,j+1, qlat,j+1 are applied via
the frontal and lateral electrode, according to the chosen controller output mapping, cf.
Section 6.4.

We first employ the polar-type parameterization of the domain of admissible stimulation
intensities, i.e. the pitch angle controller manipulates the FES parameter uΣ(t), while the
roll angle controller manipulates the FES parameter ρ(t). Throughout a large number
of trials, both iterative learning controllers simultaneously adjust the stimulation in a
way that the foot motion resembles the desired physiological motion.
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Results from a representative trial are depicted in Figure 6.8. The desired foot pitch and
roll angle trajectories are indicated by large circle markers to improve readability and to
emphasize that, in practice, perfect tracking is not required. Instead, any trajectory that
is close to rα (or rβ) is desirable. For each sample instant of a stride, the curves in the
upper and lower subplot indicate the foot orientation measurements and FES parameter
values, respectively. The solid segments of these curves highlight which sample values
belong to the input trajectories ufro,j , ulat,j and output trajectories αj , βj , as defined in
Section 6.5.

Let us briefly analyze the learning process that is evident in Figure 6.8a. The manually
chosen initial stimulation intensity trajectories ūα,0, ūβ,0 induce a foot motion with too
weak foot pitch α0 and strong negative roll β0, i.e. the foot drops and exhibits inversion
similar to the foot depicted in Figure 3.8 of Chapter 3. Consequently, the controller pre-
pares input profiles uα,1, uβ,1 with increased values of uΣ(t) and ρ(t) for the next stride.
The resulting output trajectories α1, β1 exhibit clearly better foot lift and less inver-
sion. Therefore, the controllers perform only minor adaptations of the FES parameters
between the following strides.

However, we shall note that the FES distribution ρ(t) saturates shortly before the end
of the swing phase and that the roll angle at initial contact remains negative despite
all parameter adjustments. An explanation for this behavior is found in the fact that
the pitch angle controller chooses, at the same time instants, small values for the overall
stimulation intensity uΣ(t). Since foot pitch is sufficient, this is the expected behavior
of the pitch angle controller. With the polar-type controller output mapping, however,
this entails that the manipulated variable of the roll angle controller becomes ineffective.
This represents a major drawback of the polar-type parameterization – negative roll
cannot be compensated if pitch is (more than) sufficient.

Figure 6.9a shows results from a similar trial, but with the Cartesian-type controller out-
put mapping in place. This time, the initial stimulation intensity trajectories uα,0, uβ,0
are chosen conservatively high to assure a safe (but exaggerated) foot lift from the first
stride. Since these inputs induce a foot motion with too large foot pitch α0 and roll β0,
the stimulation intensities uα,1, uβ,1 are reduced before the next stride. Since the result-
ing foot pitch α1 still lies entirely above the desired reference trajectory, the intensity
of the frontal stimulation channel is further reduced. The foot roll β1, however, is too
high during the first half of swing phase and too low during the second half. Therefore,
the iterative learning controller slightly reduces the first half of the intensity profile uβ,2
and slightly increases its second half. In all following strides j > 1, the deviations of foot
pitch and roll are within the natural range that is observed in healthy subjects’ gait, as
Figure 6.9b indicates.
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Due to the natural fluctuation of many FES parameters and gait parameters, tracking
accuracies below the few-degrees level are not achieved by any setup. However, more
than fifty further walking trials confirm that, by persistent adaptation, the controller
scheme maintains the physiological foot motion, even when the muscles fatigue or when
the patient modifies his/her walking style (for example by increasing knee flexion during
swing phase and decreasing circumduction).

Similar series of trials with the five other drop foot patients yield similar results and
confirm all of the above findings. Since this dissertation only aims at providing a proof
of concept rather than a clinical study, these results are not analyzed in detail. It is,
however, important to note that the iterative learning process leads to highly individ-
ualized FES parameters that may vary largely from one patient to the next (and often
from day to day within one patient), even if the same FES parameterization and refer-
ence trajectories are used. Figure 6.10 illustrates this fact using the example of the roll
angle control results obtained in four different patients. The ρ-trajectories that lead to
a physiological foot roll motion differ considerably. For example, some patients require
larger intensities on the lateral stimulation channel than on the frontal channel during
pre-swing, while others need the opposite during the same gait phase. That such indi-
vidual requirements are automatically determined and satisfied is a major achievement
of the proposed feedback-controlled drop foot neuroprosthesis.
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Figure 6.8: Experimental results of ILC with polar-type FES parameters in a chronic
drop foot patient. (a) Starting from non-individualized values, the controller
adjusts the FES parameters from stride to stride and thereby achieves the
desired foot motion during swing phase. Dots mark heel-off and initial con-
tact of each stride. (b) Root-mean-square errors of the foot pitch and roll
are quickly reduced to the ranges found in healthy subject data.
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Figure 6.9: Experimental results of ILC with Cartesian-type FES parameters in a chronic
drop foot patient. (a) Starting from conservatively high values, the controller
adjusts the FES parameters from stride to stride and thereby achieves the
desired foot motion during swing phase. Dots mark heel-off and initial con-
tact of each stride. (b) Root-mean-square errors of the foot pitch and roll
are quickly reduced to the ranges found in healthy subject data.
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Figure 6.10: Results from ILC of the foot roll angle in four drop foot patients (indicated
by different line colors and styles) with equivalent reference trajectories.
The achieved roll angle trajectories resemble physiological trajectories (gray
band, cf. Section 6.3) and are far from the extreme values observed in the
same patients when applying no FES or too much FES (gray dash-dot lines).
Dots mark heel-off and initial contact of each stride.
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6.7 Conclusions and Further Research

FES-based drop foot treatment via surface electrodes has been considered as an appli-
cation for inertial foot motion analysis and iterative learning control with variable trial
duration. Benefits of a closed-loop approach were highlighted, and the state of the art
in research and industry was reviewed. We discussed the challenges arising from the
multidimensionality of the control task as well as from large delays and disturbances.

A two-channel stimulator with a three-electrode setup was chosen as the basis for an
adaptive drop foot neuroprosthesis. We characterized the domain of admissible stimu-
lation intensities that is defined by the patient’s maximum tolerated intensities. Two
parameterizations of this domain were proposed, both of which enable decentralized
iterative learning control of foot pitch and roll angles with independent input satura-
tion limits and anti-windup. These controller were designed by applying methods for
variable-pass-length ILC that had been derived in Chapter 4.

Experimental trials with a chronic drop foot patient revealed that predefined pitch and
roll angle trajectories are achieved by the designed controller within only two strides. Un-
like existing drop foot stimulators, the proposed system adapts the electrical stimulation
to the needs of a specific patient on a specific day with a specific electrode placement
and maintains a physiological foot motion even in the presence of disturbances. Re-
garding the FES parameterization, experimental results suggest that the Cartesian-type
coordinates are preferable in patients with weak foot roll and strong foot pitch.

Further research will focus on combining the present achievements with recent results
in peroneal stimulation via array electrodes (see e.g. Valtin et al. [117]). Moreover, in
subjects with low FES tolerance, we will investigate the effect of input saturation and
anti-windup schemes on the controller performance. Finally, variable gait velocity and
walking on stairs will be a focus of future research.
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This dissertation aimed for deriving new methods that facilitate the use of inertial mea-
surement units and learning control techniques in biomedical systems and at demon-
strating how improved diagnosis and treatment systems can be designed by incorporat-
ing these technologies. To what extent these objectives were achieved is analyzed in the
following by recapitulating and assessing the main results of each chapter.

7.1 General Conclusions on the Proposed Methods

In Chapter 3, a modular set of novel methods for inertial realtime gait analysis was
developed. On the one hand, this includes methods for the determination of gait phases
and foot orientation angles by means of a foot/shoe-mounted inertial sensor. On the
other hand, methods were proposed for the measurement of ankle dorsiflexion joint angles
and knee flexion/extension joint angles from two inertial sensors, one of which is attached
to either side of the respective joint. While the gait phase detection was demonstrated to
cope with the irregularity in stroke patients’ gait under various circumstances, the foot
orientation angles as well as the ankle and knee joint angles were found to be accurate
(RMSE<4◦ in all cases) with respect to reference measurement systems. Unlike the
vast majority of previous approaches, the proposed methods use only the measured
accelerations and angular rates, while they completely avoid the use of magnetometer
readings. Moreover, they neither restrict the sensor-to-segment mounting orientation,
nor do they require this orientation to be known. Instead, the algorithms automatically
identify these parameters from the measurement data of almost arbitrary motions by
exploiting either the kinematic constraints of the joints or the periodic rest of the foot
during walking.

Therefore, the proposed methods pave the way for a plug-and-play gait analysis, in
which one simply attaches the IMUs arbitrarily, starts walking in any environment and
receives gait phases, body segment orientations, as well as joint angles. By supersed-
ing precise sensor mounting requirements and restrictive calibration protocols, the new
methods largely improve the practical usability of inertial measurement units in am-
bulatory motion assessment, which is becoming increasingly important for diagnosis of
many motion-related diseases and disorders. Since all measurements are provided by
the methods in realtime, they can furthermore be used to provide biofeedback during
walking as well as to control active leg orthoses or FES-based gait support systems. An
increasing number of patients with various motion disorders are treated with such active
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gait support systems and might benefit from the advantages of the proposed methods.
Regardless of the specific application, the use of inertial measurement technologies in
diagnosis and treatment systems has become less restrictive and more practical.

Likewise, in Chapter 4, the theory of iterative learning control was extended to improve
its applicability to biomedical systems, in which variable pass length is a frequent phe-
nomenon. To cope with the variable dimension of the measured tracking error, a learn-
ing progress measure and the hypothetical maximum-pass-length error were introduced.
Necessary and sufficient conditions were derived that guarantee monotonic convergence
of that error norm if the standard input-update law without Q-filter is used. For the
extended learning law with Q-filter, conditions were deduced that assure a reduction
of the tracking error at least until it falls below a potentially very small threshold. In
this context, the issue of conservativeness in matrix-norm-based convergence criteria was
addressed by proposing a frequency-weighted residual indicator to assess the non-zero
residual error that is associated with Q-filter usage. All findings were combined in a set
of practical guidelines for the design of iterative learning controllers in the presence of
variable pass length.

For many application systems, these extensions of the classic ILC theory open the pos-
sibility to design controllers that guarantee practically desirable convergence properties.
Since assuring safety and stability is a major concern in the design of treatment and diag-
nosis systems, this achievement lays the foundation for the enhancement of these systems
via incorporation of user- and situation-adaptive learning and control algorithms. Several
biomedical applications in which measurement or control tasks repeat periodically might
be improved, from artificial pancreas systems to rehabilitation robotics and respiratory
support systems. Regardless of the specific application, the employment of learning con-
trol methods will lead to less manual calibration effort and parameter-adjustments and
to more individualized health care solutions.

7.2 General Conclusions on the Considered Applications

The benefits of using inertial realtime gait analysis or iterative learning control methods
in biomedical applications were demonstrated by specific examples in the application-
focused Chapters 5 and 6 of this dissertation. In Chapter 5, a novel blood pressure
measurement technique was considered, which requires feedback control of the blood
flow through a superficial artery. It was demonstrated that the performance of standard
feedback controllers is severely limited by the poor signal-to-noise ratio of the ultrasound-
based flow measurement and by the large uncertainties in the system dynamics. To
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overcome these limitations, an iterative learning controller was added, which exploits
the periodic nature of the control problem. By experiments in a laboratory model of the
cardiovascular system, it was demonstrated that the improved controller yields precise
measurements of the heart rate and blood pressure within less than twenty seconds,
while allowing for sufficient blood circulation.

In Chapter 6, an adaptive drop foot neuroprosthesis was developed that controls the
entire foot pitch and roll angle trajectories of the swing phase by automatic adjustments
of FES parameters. A three-electrode setup as well as two parameterizations of the
domain of admissible stimulation intensities were proposed. Experimental trials with
a chronic drop foot patient revealed that a predefined foot motion can be achieved
within only two strides by decentralized iterative learning control of the foot pitch and
roll angle. Unlike existing drop foot neuroprostheses, the proposed system adapts the
electrical stimulation to the needs of a specific patient on a specific day with a specific
electrode placement and maintains a physiological foot motion even in the presence of
disturbances.

Both the novel blood pressure measurement system and the adaptive drop foot neuro-
prosthesis clearly surpass the state of the art, and in particular all commercially available
systems, by adapting quickly to the individual human. Their performance does not only
depend on the employed hardware and sensor technologies but also on the methods and
algorithms that make the most of these components and adjust them automatically ac-
cording to the current circumstances. Through the combination of the former and the
latter, improved diagnosis and treatment is achieved by both of the developed systems.

7.3 Future Research

Several minor questions of future research have already been mentioned in the conclusion
sections of the individual chapters. At this point, these aspects are summarized and dis-
cussed in a broader sense as well as with respect to the global topic of the dissertation.

Future efforts will be dedicated to extending and transferring the proposed set of methods
for inertial realtime gait analysis to motion analysis of the hip joint as well as of the upper
limbs. Another main focus of research will be the compensation or minimization of skin
and muscle motion artifacts, which were demonstrated to be a major cause of deviations
between inertial and optical motion analysis results. Besides, there is a demand for
further extension of ILC theory. In most biomedical applications, the variability of the
pass length is only one of the challenges that must be overcome. Model uncertainties,
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nonlinearities and time-variance complicate the employment of classic ILC concepts as
well as of other learning control methods like repetitive control or run-to-run control.
To design and understand closed-loop systems with a human in the loop is a challenge
that requires research and progress in many disciplines.

This last statement applies in a remarkable way to both of the considered application
systems. Concerning the blood pressure measurement technique, further medical inves-
tigation of the speed of heart rate and blood pressure changes are advisable. On the
sensory side, improving the signal quality of the Doppler ultrasound flow measurement
might largely improve the controller performance and, thus, the accuracy of the novel
method. Finally, if the device is used to measure the blood pressure in the radial artery
of subjects who are able to raise and lower the arm, then this disturbance must be com-
pensated by the controller. To this end, an inertial sensor might be used that provides
realtime information of the arm motion.

The setup of the adaptive drop foot neuroprosthesis might also be improved by employ-
ment of additional IMUs. Those would yield realtime information on the shank and
thigh motion, which might be influenced via additional FES channels in an adaptive
multi-channel gait neuroprosthesis. However, the main potential for improvement of
FES-based motion support systems, in general, is the interface between the controller
and the muscle. FES will become a far more powerful and versatile technology as soon
as neural interfaces reach a state of art at which a muscle can be recruited artificially
with the effectiveness and efficiency of the central nervous system.
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