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Abstract

Dryland degradation is a challenging environmental problem in the context
of global change and China is among those countries that are most severely
affected. The far-west province of Xinjiang Uyghur Autonomous Region ex-
perienced ambitious agricultural development and land reclamation projects
which caused major environmental degradation, loss of forest cover and
the advancement of desertification. Efforts from the Chinese government
to restore the degraded floodplain ecosystem are ongoing. This dissertation
aimed to enhance the monitoring of forest dynamics in the floodplains of
the Tarim river in Southern Xinjiang, by examining the suitability of multi-
sensor time series to assess forest disturbance and restoration response. The
main focus was on the applicability of very high, high and medium spa-
tial resolution satellite imagery to improve forest disturbance and forest re-
growth monitoring.

First, I studied the growth and decline of individual tree crowns with bi-
temporal change detection of very high spatial resolution satellite images
(Chapter 2). Second, I investigated the dynamics of forest disturbance caused
by an insect pest outbreak. It was examined whether forest disturbance maps
produced with additional synthetic high resolution images would improve
the accuracy of disturbance detection (Chapter 3). Finally, I used a medium
spatial resolution Landsat time series to monitor trend shift dynamics of the
floodplains forest, shrubland and grassland areas. A special focus lay on the
spatial pattern of longitudinal and transverse linkages to known river dis-
charges (Chapter 4).

Results showed predominantly positive growth at all investigated spatial
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scales. At local scale, findings confirmed increased P. euphratica tree crown
growth. The applied OBIA approach proved to be useful in the semi-arid
forest setting, producing moderate accuracies. Forest disturbance mapping,
with added synthetic scenes, improved significantly when compared to the
original data set. The most important factor for the accuracy increase was
the timing, rather than the number of images involved in the analysis. Im-
ages which were recorded at the end of the insect disturbance period per-
formed best during the disturbance detection. This stage was found particu-
larly important in distinguishing defined defoliation severity classes. Finally,
the trend shift analysis showed increased rates of forest, shrub- and grass-
land growth in times when water deliveries were conducted. The absent of
discharge had a substantial interrupting effect on the prevalence of trend
shifts. Vegetation showed resilience after a drought year, with above aver-
age growth in subsequent years. Longitudinal effects, with more pronounced
vegetation reactions, was found in the upper zones and less apparent reac-
tions in the lower sections of the river catchment area. Transverse impacts
showed a delayed growth response of ~six month in areas adjacent to the
river channel.

This dissertation demonstrates the value of multi-sensor time series analy-
sis for monitoring forest dynamics. The expressed findings increase knowl-
edge and enhance understanding towards disturbance effects and response
dynamics in semi-arid forest ecosystems, and shall help to improve future
management decisions.



Zusammenfassung

Die Degradation der Trockengebiete ist ein groes Umweltproblem speziell
im Zusammenhang mit dem globalen Klimawandel. China ist eines der Lén-
der das am stérksten betroffen ist. Besonders die westlichste Provinz im Uig-
urisch Autonomen Gebiet Xinjiang erfuhr eine ehrgeizige Landgewinnung
vornehmlich fiir Landwirtschaft. Diese Entwicklung hat grole Umweltzer-
storungen wie zum Beispiel den Verlust von Waldfldchen und die Wiistenbil-
dung verursacht. Die chinesische Regierung hat diese Entwicklung erkannt
und ist um die Sanierung der degradierten Auenokosysteme bemiiht. Das
Ziel der vorliegenden Dissertation ist das Monitoring der Auwalddynamiken
entlang des Tarim Flusses in Siid-Xinjiang zu verbessern. Dabei soll die
ZweckmaiBigkeit von multisensoralen Zeitreihen bewertet werden. Auf3er-
dem soll die Anwendbarkeit verschiedener (sehr hoch, hoch und mittlerer)
riumlicher Auflosungen von Satellitenbildern fiir die Erfassung und Uber-
wachung von Waldschidden sowie die Reaktion auf die Sanierung bewertet
werden.

Zuerst wurde das Wachstum bzw. die Reduzierung einzelner Baumkronen-
durchmesser anhand einer bi-temporalen Verdnderungsdetektion mit sehr
hoch aufgeltsten Satellitenbildern bestimmt (Kapitel 2). Danach wurden die
Dynamiken von Waldstérungen, verursacht durch Insektenfra3, untersucht.
Dabei wurde gepriift ob sich die Genauigkeit bei der Erfassung von Wald-
schiaden mit zusitzlichen, synthetisch erzeugten, Bildern erhoht (Kapitel 3).
Abschlieend wurde eine Landsat Zeitreihe mit mittlerer raumlicher Auflo-
sung genutzt um plotzliche Verdnderungen im Hinblick auf die Entwick-
lungsdynamiken von verschiedenen Landbedeckungsklassen (Wald, Busch-
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land und Grassland) zu erkennen. Ein besonderer Schwerpunkt lag auf der
Erkennung raumlicher Muster entlang bzw. quer zum Fluf} in Verbindung
mit 6kologischen Wassergaben (Kapitel 4).

Die Ergebnisse zeigten iiberwiegend positives Wachstum bei allen unter-
suchten raumlichen Skalen. Auf lokaler Ebene bestitigten sich Erkennt-
nisse vom Zuwachs der P. euphratica Baumkronen. Die objektbasierte Bil-
danalyse erwies sich im semi-ariden Milieu als niitzlich und hat moderate
Genauigkeiten geliefert. Verglichen mit dem urspriinglichen Datensatz, hat
sich die Erkennung von Waldschdden mit der Nutzung von synthetischen
Szenen deutlich verbessert. Der wichtigste Faktor fiir die Verbesserung der
Genauigkeiten war der Zeitpunkt der Aufnahme und nicht die Anzahl der
Bilder die in die Analyse einbezogen wurden. Dabei waren Bilder die am
Ende der Fraperiode erfasst wurden am wichtigsten fiir die Erkennung der
Waldschéden. Diese Phase war auch bei der Unterscheidung von Schaden-
sklassen wichtig. Die Untersuchung der Entwicklungsdynamiken der Auen-
vegetation hat erhohtes Wachstum nach 6kologischen Wassergaben gezeigt.
Bei fehlenden Wassergaben gab es eine Unterbrechung bei den Trend-
verdanderungen. Nach einem Trockenjahr zeigte die Vegetation Resilienz mit
tiberdurchschnittlichem Wachstum in den Folgejahren. Ausgeprigte Trend-
veranderungen der Vegetation wurden entlang des Flufles, speziell in den
nordlichen Zonen und weniger in siidlichen Flussabschnitten, gefunden.
Verzogerte Wachstumseffekte von sechs Monaten gab es in unmittelbarer
Umgebung zum Fluf3.

Die vorliegende Arbeit zeigt den Wert der Multi-Sensor-Zeitreihenanalyse
fiir die Uberwachung von Walddynamiken. Die gezeigten Ergebnisse ver-
bessern das Verstidndnis gegeniiber Storeffekten und Reaktionsdynamiken
in semi-ariden Waldokosystemen. Die Ergebnisse tragen dazu bei kiinftig
verbesserte Managemententscheidungen zu treffen.
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1.1 Monitoring forest disturbance and recovery dynamics

Forest dynamics describe the underlying physical and biological forces that
form a forest over time and characterize the continuous state of change that
alters its composition and structure (Ashton et al., 2012). Forest ecosystems
are always influenced by both the current environment and legacies of pre-
vious environmental fluctuations and disturbances (Chapin et al., 2011). A
disturbance is understood as a relative discrete event in time (Brokaw et al.,
1985), that shape forest systems by affecting their composition, structure,
and functional processes (Dale et al., 2001). Disturbances include both nat-
ural and human induced processes. Natural processes can be biotic such as
insect or herbivore agents or abiotic like drought, hurricane or volcanic erup-
tions. However, human activities have altered the frequency and size of many
natural disturbances and have produced new types of disturbances such as
large scale logging or open-pit mining (Chapin et al., 2011). In contrast to
a one off disturbance event, refers the disturbance regime to the spatial and
temporal dynamics of disturbances over a longer time period (Turner, 2010).
Naturally occurring disturbances play an important integral part in the lifecy-
cle and succession dynamics of many forest system, and shall be considered
as normal property of ecosystems (Chapin et al., 2011).

After disturbance follow recovery and renewal. Resilience to disturbance
shows the capacity of an forest ecosystem to sustain its fundamental function
and structure after perturbations (Chapin et al., 2011), and adapt or adjust to
stress (Dobbertin, 2005; Kozlowski and Pallardy, 2002). Hence, fostering
resilience in forest ecosystems should be the key target of sustainable devel-
opment of forest resources (Yan et al., 2011).

1.1.1 Importance of dryland forests

Forests, defined by Food et al. (2006) as “land spanning more than 0.5
hectares with trees higher than 5 meters and a canopy cover of more than 10
percent ... ”, cover 31% of the world's land surface (FAO, 2015). Many areas
in arid lands, including semi-arid and dry sub-humid lands, have sparse tree
populations such as trees outside of forest, also defined as “other wooded
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land”, where “tree canopy is between 5 and 10%”. Trees outside forests
play a major role in arid lands particularly where agroforestry systems are
abundant (Lam et al., 2011). Arid land forests and wooded lands count for
6% of the world's forest area (Malagnoux, 2007). The amount is equiva-
lent to approx. 230 million hectare. Semi-arid forests provide key ecosystem
services. They play a vital role in rural livelihood activities, regulate local
and regional climate (Assessment, 2003), and increase carbon sequestration
(Griinzweig et al., 2003). Semi-arid ecosystems dominate the recent pos-
itive global CO; sink trend (Ahlstrom et al., 2015) due to an increase in
woody vegetation (Andela et al., 2013) especially in the Sahel region (Fen-
sholt et al., 2012) and in Australia (Metcalfe, 2014). Although mainly driven
by rainfall, the increase in tree cover might be supported by increasing levels
of atmospheric CO; concentrations (Brandt et al., 2015), which are expected
to lead to a CO, fertilization effect (Donohue et al., 2013).

Semi-arid forest ecosystems are regularly exposed to different types of dis-
turbances, high among them are wild fires (Barbero et al., 1990; Williams
et al., 2010) and drought (Guardiola-Claramonte et al., 2011; Liang et al.,
2003). Even though semi-arid forests are well adapted to these natural dis-
turbance regimes (Perry et al., 2008) superimposed climate change effects
may increase their severity and frequency (Dale et al., 2001) with the conse-
quence that affected forests fall below their resistance threshold (Dobbertin,
2005) and a regime shift becomes increasingly likely (Elmqvist et al., 2003).

In order to gain knowledge and improve understanding towards disturbance
effects and response dynamics in semi-arid forest ecosystems, forest moni-
toring is essential. Such knowledge gain requires information on forest status
with high spatial, temporal and thematic detail (DeVries et al., 2016). In this
regard, remote sensing offers several desirable characteristics including large
footprint sizes and regular data collection cycles (Chubey et al., 2006). Espe-
cially in isolated arid environments where vegetation cover is usually sparse
and scattered is the usage of satellite imaging technology meaningful. In this
context, China is a prime example to monitor forest dynamics with satellite
imagery time series, especially in remote western China, where semi-arid
forest areas are disturbed by recurring drought events and prolonged water
deficits.
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1.2 Remote sensing based forest monitoring

The first known remote sensing based forest monitoring was recorded in
the Berliner Tageblatt of September 10, 1887 (Spurr et al., 1960, as cited
in Franklin, 2001). The article reported about an attempt of an anonymous
German forester who mapped a forest based on photos obtained from a hot-
air balloon. The methods and technologies of remote sensing, including air-
borne and spaceborne sensors, have shown tremendous advancements since
then (Franklin, 2001). At present there is a variety of satellite constellations
monitoring the earth's surface. Each satellite, or rather sensor, is built with a
particular intended target in mind. Be it for atmospherical, gravity & mag-
netism, snow & ice or land science. When designing the sensor, it has to
be decided, what specific characteristics the sensor is supposed to have in
terms of its spatial, radiometric, temporal and spectral resolutions. Spatial
resolution refers to the size of the ground element represented by an indi-
vidual pixel (Jones and Vaughan, 2010). The radiometric resolution is the
number of distinct grey levels which are measured between pure black and
pure white (e.g. 256 for 8-bit) (Gibson et al., 2013). The temporal resolution
is the time between successive images and the spectral resolution refers to
the dimension and number of specific wavelength intervals in the electro-
magnetic spectrum to which a sensor is sensitive (Al-Wassai and Kalyankar,
2013). Because of physical limitations in data storage and processor speed
(Lefsky and Cohen, 2003) there is no sensor with high resolutions in all
domains. There is a resolution trade—off e.g. a high spatial resolution is as-
sociated with a low spectral resolution and vice versa. This would mean a
satellite system with a high spectral resolution can only offer a medium or
low spatial resolution (Kalkhan, 2011). However the resolution dilemma is
the main reason why there are hundreds of different satellite missions' and
all have their valid justification.

In this dissertation, six optical sensors were used with very high (2), high
(1) and medium spatial resolutions (3) (see Figure 1.1). The level of detail
in very high spatial resolution sensors, such as WorldView-2, is often appre-
ciated for object detection such as tree crown mapping (e.g. Karlson et al.,
2014; Gomes and Maillard, 2013). However, the narrow multispectral bands
provide also great potential for robust extraction of forest structural param-

! Satellite Missions Database
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eters (Ozdemir and Karnieli, 2011), improved forest biomass and carbon
estimations (Eckert, 2012), and to discriminate forest tree species (Peerbhay
et al., 2014).

Landsat 8 OLlI 164 30m mmms m = 1 mm —
Landsat 7 ETM+ 16d  30m mmees mm  mees —— —
Landsat 5TM  16d 30m s mm o — —
RapidEye T —

QuickBird 1ad o — . m—

i o = ABM e—
WorldView-2 160 o e e e

L spatial
Revisit
interva Hum /A NIR SWIR
sensi ty L L | 1 ! 1

Fig. 1.1: The multispectral satellite systems used in the dissertation.

System Name

For the identification of plant nutrition and health status, the red-edge band
has been recognized as important (e.g. Banninger, 1990; Curran et al., 1990,
1991). Plant pigments strongly absorb light in the red portion of the elec-
tromagnetic spectrum, the reflectance of leaves or needles is therefore low
in red bands. On the other hand, mostly as a results of multiple scattering
in the mesophyll, the reflectance of vegetation in the near-infrared region of
the spectrum is very strong (Sahu, 2007). In a typical spectral response of
green vegetation, the red-edge band (see Fig. 1.1, the dark red coloured band
located between red and near-infrared) covers the portion of the spectrum
where reflectance drastically increases from the red portion towards the near-
infrared plateau (Weichelt et al., 2012). The RapidEye system, conceived to
serve the agricultural and forestry markets (Weichelt et al., 2012), was the
first high resolution, multi-spectral satellite system to include the red-edge
band. The sensors additional red-edge information proved already useful for
the monitoring of forest disturbance (Eitel et al., 2011; Marx, 2010).

At the level of the medium resolution, could Landsat already provide impor-
tant insights for forest monitoring. Recent foci were on forest cover trends
(Lehmann et al., 2013), forest disturbance and recovery (Kennedy et al.,
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2010; Cohen et al., 2010; Frazier et al., 2015), and forest biomass dynamics
(Powell et al., 2010; Pflugmacher et al., 2014; Gémez et al., 2014). An-
other increased research topic was the fusion of Landsat with other coarse
sensors, mainly MODIS, to analyse forest phenelogy (Walker et al., 2012),
forest cover change (Hansen et al., 2008), improve forest disturbance map-
ping (Hilker et al., 2009a) and push the time scale towards near real-time
monitoring (Xin et al., 2013).

A prominent modern example of near real time forest monitoring gives the
recently developed Global Forest Watch (World Resources Institute, 2016)
online platform. This application offers worldwide forest loss and gains es-
timates between 2000-2014, at a spatial resolution of 30 meters (Hansen
et al., 2013). The incorporated alert system provides locals with necessary
information to better manage and conserve forest landscapes. While, Tropek
et al. (2014) raised the issue on the inclusion of tree cover vegetation that is
shorter than 5 m (e.g., pineapple, soybeans, or tea plantations) in contrast to
the given definition of forest, the application also excludes scattered trees or
tree-stands larger then 5 m and above the required minimum canopy density
(> 10%). For example, the Tugay forest along the lower reaches of the Tarim
river is unfortunately not included in the application, despite frequently oc-
curing tree-stands beyond 5 m (Conradie et al., 2007; Thomas et al., 2016;
Westermann et al., 2008; Aishan et al., 2016).

Scale is a real issue in forest research. Forest dynamics involve multiple
processes at different levels so we must decide on the best scale to use in
order to study certain features or phenomena. This requires often multiscale
observation to overcome the resolution dilemma. For example, very high
resolution data provide a great level of spatial detail and can be used to iden-
tify individual trees and track their growth changes over time. While the
level of detail has many positive aspects for fine scale application it might
be troublesome and ineffective for regional studies. Consequently, the study
of forest dynamics in dryland forest requires multiscale observations where
medium-resolution satellite data provide frequent regional overviews and
very high and high-resolution satellite data to zoom into specific areas of
interest in multi-year intervals in order to validate, more accurately interpret
and, if necessary, recalibrate the medium-resolution data (Leprieur et al.,
2000; Jones and Vaughan, 2010).
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1.3 The Tugay forest along the Tarim river

The Tarim basin is an endorheic basin in northwest China occupying an area
of about 1 million km? (Chen et al., 2006a). The basin, mostly covered by
the Taklamakan desert, is surrounded by the Kunlun, Tian Shan and Pamir
mountains (Zerbe and Thevs, 2011). The long distance to the nearest ocean
cuts the region off from the effects of the Asian monsoon, hence rainfall is
in general rare and low, resulting in a arid climate (Zhang et al., 2005).

The basin got its name from the Tarim river (chinesisch: Talimu He) which is
fed by melting water and precipitation in the mountains through its three trib-
utaries Aksu, Hotan, and Yarkant (Thevs, 2005). The Tarim river flows along
the edge of the Taklamakan desert and reaches after 1,321 km the Tetema
end lake (see Figure 1.3). The river is the lifeline for the entire region, pro-
viding water for urban life, oasis agriculture, and the natural ecosystems in
the floodplains (Rumbaur et al., 2015).

Tugay? vegetation is the most dominant vegetation distributed along flood-

plains of the Tarim river. It is composed from forests, e.g. Tugay forests,
dominated by Populus euphratica, Tamarix bush communities and reeds
(Thevs, 2005). The Tugay vegetation provides an important habitat for plant
and animal life, and harbors the highest biodiversity in the region (Thevs,
2005). In addition, it constitutes major natural resources (e.g. wood) for lo-
cal communities and serves as grazing ground for livestock (Saumel et al.,
2011). Furthermore, it supplies a wide range of ecosystem services such as
landscape preservation, wind protection, and stabilization of moving sand,
soil, and riverbanks (Eusemann et al., 2013). These services contribute enor-
mously to prevent further desertification (Wang et al., 2012), especially in
the lower reaches of the Tarim river where the Tugay forest acts as green cor-
ridor, slowing or even preventing the Taklamakan and Kuruk Tagh deserts
from merging.

However, significant river regulations and land reclamations have taken
place over the last decades due to increasing population pressure and inten-
sified agricultural activities (Liu and Chen, 2006; Zhao et al., 2013). These

2 Tugay vegetation comes from the Uyghur word Tugay (synonym with Tugai), which
refers to vegetation along rivers in arid areas in Central Asia (Thevs, 2005).
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Fig. 1.2 Tugay forest in the
lower reaches of the Tarim
river. Clusters of Populus
euphratica trees stand close to
the river where groundwater
levels are low.

regulations have a profound effect on the environment. By way of example,
the construction of the Daxihaizi reservoir in 1973, located at the end of
the middle reaches of the Tarim river, disrupted the stream flow to the lower
reaches for 20 years (Lyle and Gaofeng, 2011). As a result, groundwater lev-
els dropped and salinization increased. Consequently, the natural floodplain
vegetation degraded and Tugay forests declined by 70% (Fan, 1996).

The intensification of wind erosion severely threatened the provision of the
green corridor ecosystem service along the lower reaches of the Tarim river
(Halik et al., 2006; Betz et al., 2015). Facing the threat of a serious environ-
mental disaster, the Chinese government declared the conservation of Tugay
vegetation along the Tarim river as one key project in their implementation
of the UN Convention to Combat Desertification (CCICCD, 1996).

In 2000, the Chinese government implemented the Integrated Environmental
Management of the Tarim Basin project in order to secure the regions eco-
logical, economical and social sustainability (Lyle and Gaofeng, 2011). An
important sub-project is the Ecological Water Conveyance Project (EWCP)
which includes i) regular water diversions from the Daxihaizi reservoir to-
wards the lower reaches of the river to mimic the natural flood regime, and
ii) hydrological engineering measures such as enbankment constructions, the
installation of weirs or the shortenings of meanders (Zheng et al., 2004; Zhu
et al., 2006; Halik et al., 2006). These measures shall contribute to recharge
groundwater tables up to a level where natural floodplain vegetation can re-
vitalize, and create condition under which generative regenerations are pos-
sible.
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1.4 Problem statement

Numerous studies provided evidence of the effect of recharged groundwater
on Tugay vegetations growth and revival at the lower reaches of the Tarim
river (e.g. Thomas et al., 2016; Westermann et al., 2008; Aishan et al., 2015;
Li et al., 2013b; Ling et al., 2015). While most studies highlight response
effects at individual sites under specific conditions, the spatial pattern of
Tugay vegetation response rates remain largely unknown. In addition, the
consequences of hydrological engineering measures on Tugay vegetation
rehabilitation lack also understanding. Hence, monitoring the vegetation dy-
namics may provide deeper insights into the Tugay growth and decline pro-
cesses and may further improve forthcoming decision making on rehabilita-
tion measures.

As described above, there is a growing number of research on the effect
of the EWCP on groundwater dynamics and riparian vegetation. However,
large scale forest disturbances such as recurring insect pest outbreaks are
completely overlooked. For example, the annual defoliation of about 80-
90% of the P. euphratica trees caused by the defoliator moth A. cinerarius
has not yet been investigated, neither is the additional effect on tree degrada-
tion (Conradie et al., 2007). There is a need to better understand the dynam-
ics of forest disturbance and provide information on the temporal and spatial
dimension of such defoliation and its severity. The level of analysis is con-
nected to the availability of multi-sensor satellite imagery and the scale of
field validation data, and shall ideally range from local (e.g. individual trees)
to regional levels (e.g. lower reaches river network).

1.5 Objectives and research questions

The research described in this dissertation aims to enhance the monitoring
of forest dynamics in the lower reaches of the Tarim river by examining
the suitability of multi-sensor time series to assess forest disturbance and re-
sponse. The main focus is on the applicability of very high, high and medium
spatial resolution satellite imagery to improve forest disturbance and forest
regrowth monitoring.
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The setting of the lower reaches of the Tarim river provides a rare research

opportunity, where external factors are low (e.g. precipitation), river dis-
charge is controlled (via EWCP) and the isolated location reduces human
influences to a bare minimum. Here, I conducted my study at two research
sites. The first research site is around the Arghan forest monitoring station
where the old Tarim river and the Chiwinkol river branch merge (see Alagan
in Figure 1.3). The local Tugay forest revitalized after the implementation
of the EWCP, hence I expressed the following two research questions:

Research Question 1 — Can we observe individual tree crown changes
with very high spatial resolution satellite imagery in semi-arid forests?
(Chapter 2)

I answer this question with a bi-temporal change detection analysis of
two very high spatial resolution satellite images. I compare field mea-
sured crown changes with OBIA derived crown diameters and assess tree
crown growth and decline between the years of 2005 and 2011 at a local
scale. Finally, I provide an accuracy assessment for the chosen approach.

Research Question 2 — Can a multi-sensor data fusion time-series
improve forest disturbance detection in semi-arid forests and which
factors are most important? (Chapter 3)

This question is directly linked to the second problem statement (see
Section 1.4). Annual defoliation causes forest disturbances with com-
plex spatial dynamics. In order to monitor affected areas, decision mak-
ers seek but often lack information with high spatial and temporal preci-
sion. This study examines whether the analysis of a RapidEye time series
would benefit from the availability of synthetically generated images at
the spatial resolution of RapidEye and the additional temporal resolution
of Landsat 8. I applied a sensor fusion model to downscale Landsat 8
scenes to concurrent RapidEye scenes. I performed a pixel-based regres-
sion analyses in order to evaluate the quality of the synthetically created
image products. Furthermore, I examined if forest disturbance maps pro-
duced with synthetic images improve the accuracy of disturbance detec-
tion.
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The second research site covers the entire lower reaches of the Tarim river
from the Daxihaizi reservoir until the Tetema end lake. Here I focus on the
trend shifts of Tugay forest, shrubland and grassland and answer the third
and last research question.

Research Question 3 — What were the rates and spatial patterns of
Tugay vegetation trend shifts in the lower reaches of the Tarim river
since 2000? (Chapter 4)

The ecological restoration of degraded riparian Tugay forests in the lower
reaches is critical in order to keep the green corridor intact and com-
bat desertification in this region. I answer the third research question by
means of a medium resolution time series (Landsat) of 14 years. I search
the time series for abrupt changes in long term vegetation trends which
can be generally described as trend shifts. I analyse similarities and dif-
ferences between several Tugay vegetation types in their response effects,
and examine spatial patterns of longitudinal and transverse linkages to
known river discharge.

1.6 Dissertation outline

This dissertation consists of five chapters. This introduction is followed by
three core research chapters (Chapters 2-4) that have been described in the
previous section. Chapter 5 provides a synthesis of the entire thesis, summa-
rizing the main outcomes of the individual research chapters and provides
answers to the research questions asked. Finally the main conclusions are
drawn.

The core research chapters (Chapters 2 - 4) are based on a series of three
stand-alone papers that have been published in, or submitted to internation-
ally peer reviewed ISI ranked journals:
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Chapter 3

Chapter 4

Girtner, P., Forster, M., Kurban, A., & Klein-
schmit, B. (2014). Object based change detec-
tion of Central Asian Tugai vegetation with
very high spatial resolution satellite imagery. In-
ternational Journal of Applied Earth Observa-
tion and Geoinformation, vol 31, pages 110-121,
DOI:10.1016/j.jag.2014.03.004

Girtner, P., Forster, M., & Kleinschmit, B.
(2016). The benefit of synthetically generated
RapidEye and Landsat 8 data fusion time series
for riparian forest disturbance monitoring. Remote
Sensing of Environment, vol 177, pages 237-247,
DOI:10.1016/j.rse.2016.01.028

Giartner, P., Forster, M., & Kleinschmit, B.
(2016). Revealing trend shift dynamics after eco-
logical water deliveries using Landsat TM/ETM+
time series in a semi-arid forest ecosystem. Under
Review: Remote Sensing of Environment
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Fig. 1.3: Map illustrating the geographic setting of the Tarim basin including its terrain, oasis settlements and reservoirs (Paproth,

2004).
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Abstract

Ecological restoration of degraded riparian Tugai forests in north-western
China is a key driver to combat desertification in this region. Recent restora-
tion efforts attempt to recover the forest along with its most dominant tree
species, Populus euphratica. The present research observed the response of
natural vegetation using an object based change detection method on Quick-
Bird (2005) and WorldView2 (2011) data. We applied the region growing
approach to derived Normalized Difference Vegetation Index (NDVI) val-
ues in order to identify single P. euphratica trees, delineate tree crown ar-
eas and quantify crown diameter changes. Results were compared to 59
reference trees. The findings confirmed a positive tree crown growth and
suggest a crown diameter increase of 1.14 meters, on average. On a single
tree basis, tree crown diameters of larger crowns were generally underesti-
mated. Small crowns were slightly underestimated in QuickBird and overes-
timated in Worldview?2 images. The results of the automated tree crown de-
lineation show a moderate relation to field reference data with R2509s: 0.36
and R%y0;;: 0.48. The object based image analysis (OBIA) method proved
to be applicable in sparse riparian Tugai forests and showed great suitability
to evaluate ecological restoration efforts in an endangered ecosystem.
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2.1 Introduction

Ecological restoration of degraded riparian Tugai forests in north-western
China is a key driver to combat desertification in this region. Past and cur-
rent restoration efforts attempt to recover the forest along the Tarim river
with its most dominant tree species, Euphrates Poplar (Populus euphratica),
which provides desirable services to the local ecosystem such as sand fixa-
tion, wind break, and riverbank protection (Weisgerber, 1994). The response
of the natural vegetation to applied restoration decisions are of particular in-
terest to restoration managers, who seek for accurate long-term monitoring
which requires the detection of change and quantification of its rate (Coppin
et al., 2004).

Current field-survey methods deliver accurate data for the detection and
quantification of forest change but may not be suitable for long-term and
large scale monitoring due to low sample coverage and infrequent survey
opportunities (Pouliot et al., 2002). Furthermore, in large arid or semi-arid
areas, where vegetation cover is usually sparse and scattered, field surveys
become time-consuming and cost intensive. In this context, remote sensing
offers several desirable characteristics from a forest restoration monitoring
perspective including large footprint sizes, and regular data collection cycles
(Chubey et al., 2006). Nevertheless, the potential to detect changes in forest
ecosystems are intrinsically limited by the satellite images spatial resolution
(Coppin et al., 2004). Generally, medium spatial resolution (~ 30 m) sensors
such as Landsat, SPOT, or ASTER have the potential to monitor changes in
large forest stands (> 10 ha). Typical approaches detect forest cover change
due to clear cuttings (Desclée et al., 2006) or selective harvesting (Kennedy
et al., 2007; Sader et al., 2003). The results are reliable and have been, for
instance, operationally utilized by the Swedish Forest Agency to verify cut-
ting permits (Olsson et al., 2005).

With the launch of QuickBird2 (QB) (2001), GeoEye-1 (2008), and World-
View2 (WV2) (2009), data from three satellites with very high spatial reso-
lution (VHSR) sensors are available. This changed the opportunities for the
analysis of forest ecosystems using remote sensing and shifted the scale of
interest from forest stands down to the individual tree level (Falkowski et al.,
2009).
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The spatial resolution in a sub-meter dimension (< 0.8 m) allowed reliable
computation of several forest inventory parameters such as canopy closure
(Leckie et al., 2005), stem density (Hirata, 2008), and crown size (Ozdemir,
2008). Combining VHSR data with the height information from light detec-
tion and ranging (LiDAR) data allowed accurate recognition of tree crowns
and the determination of tree height (Leckie et al., 2003a), tree volume
(Mora et al., 2013), and, by means of allometric equations, improved esti-
mations of the above ground forest biomass and carbon stocks (Bright et al.,
2012). However, its operational implementation in forest ecosystem analysis
is still limited due to the high cost for large area surveys.

In VHSR imagery, the target entity (individual tree) is normally composed of
several pixels with a high degree of spatial detail. In order to allow meaning-
ful image analysis, groups of homogeneous pixels need to be aggregated into
one object, the individual tree object. The aggregation process suggested a
change from traditional pixel based image analysis towards an object based
image analysis (OBIA) (Blaschke, 2010). With the OBIA approach, each
image tree object can be described by its spectral characteristics as well as
spatial features such as shape, position, size, and the relationship to neigh-
boring objects (Blaschke et al., 2011) and hence allowed the development of
semi-automated algorithms for tree cover information extracted for each tree
entity. The core of the developed information extraction algorithms relies on
sub processes such as a) tree crown detection and b) tree crown delineation,
whereas for some methods, tree crown detection is a required step prior to
crown delineation (Ke and Quackenbush, 2011Db).

A range of methods for tree crown detection exist in the literature includ-
ing local maximum (LM) filtering (Gebreslasie et al., 2011; Wulder et al.,
2000, 2004), scale analysis (Pouliot et al., 2005), template matching (Nic-
colai et al., 2010) and directional local filtering (van Coillie et al., 2012).
An emerging approach is the LM filtering which applies a moving win-
dow and takes the pixel with the maximum value to represent the treetop
(Pouliot et al., 2002). A key matter remains the size of the moving-window
which is dependent on the relationship between the tree-crown dimension
and spatial resolution of the image (Gougeon and Moore, 1988). A previous
study from Gebreslasie et al. (2011) used a panchromatic IKONOS image
for the detection of tree location in a plantation forest with mainly flooded
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gum (Eucalyptus grandis) in KwaZulu-Natal, South Africa. The approach
included Gaussian smoothing, and vegetation masking prior two LM filter-
ing approaches with: a) a variable window size selection based on semi-
variogram techniques and b) a standard fixed window size. In young dense
plantation forest the variable window size approach achieved 75% detection
accuracy. The accuracy increased (up to 90%) with increasing tree age and
decreasing tree density. However, the fixed window size LM filtering ap-
proach achieved 67% detection accuracy in young forest stands and up to
88% in the older stands.

Wulder et al. (2004) compared LM filtering for the identification of indi-
vidual trees on a 1 meter airborne MEIS II and a 1 meter IKONOS image in
a plantation forest and a mature stand of Douglas fir (Pseudotsuga menziesii)
and western red cedar (Thuja plicata) in Canada. The LM filtering with vari-
able window size performed poorly on the IKONOS image, resulting in low
overall accuracy (61%) and large errors of commission (48%). However, the
results from the LM filtering with a 3 x 3 fixed window size on the IKONOS
image indicated that individual trees were identified with greater accuracy
(85%). A LM filter with a fixed window size is used in the present study.

Tree crown delineation algorithms are based on the underlying assumption
that crown tops have higher spectral reflectance than the lower parts of the
crown, particularly at the boundaries between crowns (Katoh and Gougeon,
2012). Today, a variety of methods for tree crown delineation exist and can
be generally categorized into, valley following (Gougeon and Leckie, 2006;
Leckie et al., 2003b), region growing (Bunting and Lucas, 2006; Culvenor,
2002; Pouliot et al., 2002; Tiede et al., 2008) and watershed segmentation
(Wang et al., 2004). The region growing method is a threshold-based clus-
tering approach which requires the maxima-derived treetops from the LM
filter approach as starting point and a specified threshold value as boundary
constraint (Culvenor, 2002). Examples of region growing applications can
be found in open mixed species forest with crowns of differing crown shape
and size (Bunting and Lucas, 2006) or even aged Mountain Ash forest (Eu-
calyptus regnans) (Culvenor, 2002), both in Australia.

Change detection of tree crown objects with VHSR satellite imagery have
been developed recently (Ardila et al., 2012a,b; van der Sande, 2010). Ardila
et al. (2012a) introduced a multi-temporal detection strategy based on active
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contours to monitor urban tree crowns in a series of very high resolution
aerial images in Enschede and Delft, The Netherlands. The identification of
abrupt and gradual tree crown changes was computed on a one-to-one ob-
ject comparison which performed superior to an alternative region growing
segmentation approach. Another promising methodology was introduced by
Ardila et al. (2012b), where crown changes as well as change uncertainty
of trees in an urban environment Enschede and Delft are quantified. Their
method iteratively fits a Gaussian function to crown membership in QB and
aerial images of two dates and afterwards identified tree crown elliptical ob-
jects. For the retrieved tree crown objects crisp changes are identified. Ad-
ditionally, change uncertainties are computed based on fuzzy membership
functions which take spatial characteristics and mixed-pixel effects of tree
crown pixel locations into account. Both previous studies were applied in ur-
ban environments and used visual interpretation and digitization of the input
images as reference data for quantitative performance evaluation.

While there have been studies assessing multi-temporal change detection
of urban trees, to our knowledge no studies investigated long-term changes
of degraded open Tugai forest based on single tree crowns with VHSR im-
agery and neither were they validated with field-based crown diameter mea-
surements. Therefore, the objective of this study was to apply the OBIA ap-
proach to quantify tree crown changes based on object to object comparison
using VHSR imagery (QB and WV2). The study area was a Central Asian
Tugai forest in the lower reaches of the Tarim River in northwest China,
which experienced recent revitalisation due to ecosystem restoration efforts.
Accuracies for tree crown diameter measures are produced and compared to
reference data of visual tree delineation and field-based tree crown measure-
ments. Finally, we indicate the suitability of the proposed method with re-
gards to ecosystem restoration evaluation purposes. The following research
questions were addressed in this study:

1. How did Populus euphratica tree crowns develop during 2005 and 2011
in the lower reaches of the Tarim River?

2. How accurate are OBIA tree crown delineation results in comparison to
a) visually interpreted and digitised and b) terrestrial tree crown measure-
ments?
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Fig. 2.1: Location of the Xinjiang Uyghur Autonomous Region in China (upper left);
Study area at Arghan, along the lower reaches of Tarim River Basin (black line) in Xin-
jiang Uyghur Autonomous Region (lower left); Location of 25 randomly selected field
plots established by Lam et al. (2011) (background image: WV2, date: 29/07/2011, False
Colour Composite) (right)

2.2 Methodology

2.2.1 Study area

The study area (Fig. 2.1) is located at the Arghan forest station in the Xin-
jiang Uyghur Autonomous Region in north-west China where the old Tarim
River and the Chiwinkol river branch merge (N 40°8.72' E 88°21.26"). The
regional climate shows extreme arid characteristics with precipitation below
50 mm and potential evaporation above 2000 mm. per annum (Chen et al.,
2006c). Average monthly temperatures vary from just under —12° C in Jan-
uary, to over 27° C in July, while the annual average is at 11.7° C. The area
is dominated by open sandy areas with dense clusters of Populus euphratica
along the riverbanks and to sparse isolated trees towards the desert. A forest
inventory in 2004/2005 revealed that about 4500 P. euphratica trees exist
within the study area (Lam et al., 2011).

Common shrub species in the area include Tamarix ramosissima, Tamarix
hispida, Tamarix leptostachys, Elaeagnus angustifolia, and Karelina caspica.
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These are all drought-enduring and salt-tolerant species (Zhou et al., 2010),
however as phreatophytes their roots need continuous contact to groundwa-
ter for their growth and survival ((Thevs et al., 2012)). Although there are
some old stumps, no silvicultural management operations have been carried
out and the forest can be considered to be in a semi-natural stage. The area
represents the characteristic floristic composition and health situation of Tu-
gai floodplain vegetation at the lower reaches of the Tarim river.

2.2.2 Ground Reference Data

The open Tugai vegetation in the research area was mapped in a stratified
random sample covering the full range of vegetation diversity and density.
For a consistent and comparable long time monitoring, twenty-five perma-
nent sampling plots were established in 2005 (Lam et al., 2011) (Fig. 2.1).
The default plot radius was 20 m. In areas with fewer large trees, the plot
size was decreased to 15 m. Within the sampling plots, 62 reference trees
were randomly selected and their height, diameter at breast height (DBH),
and crown diameter were measured. The measurements were conducted in
the summer of 2005 and 2011 during the vegetation’s maximum develop-
ment phase. Tree crown diameters were derived by projecting the edges of
the crown to the ground and measuring the length of the longest canopy axis
(major axis) and the crown axis perpendicular to this axis (minor axis). The
average of both values provides the mean crown diameter, a single summary
value to evaluate image crown delineations.

2.2.3 Image Acquisition and Preprocessing

Two very high resolution satellite imageries from 2005 and 2011 were used
in this work. On 20th of July 2005, the QB satellite acquired an image of the
study area in four spectral bands covering blue, green, red, and near-infrared
(NIR). The WV2 satellite recorded the same area on 29th of July 2011. Be-
side the four standard bands (blue, green, red, NIR), the WV2 imagery also
contains 4 additional bands (coastal 0.400 - 0.450 um, yellow 0.585 - 0.625
um, red-edge 0.705 - 0.745 pum, and additional NIR 0.860 - 1.040 pm). The
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data provider resampled the panchromatic ground resolution to 0.6 m (QB)
and 0.5 m (WV2) and multispectral resolution to 2.4 m (QB) and 2.0 m
(WV2) and radiometrically corrected the image pixels before delivery. Be-
cause both sensors are in sun synchronous orbit their nodal crossing time is
similar (see Table 2.1). The difference of nine days between the acquisition
dates result in a 1.41 min shift in acquisition time and hence in a slightly dif-
ferent sun elevation and azimuth. However, the major dissimilarity between
the images is the off nadir view angle. The view angle of the QB scene is
12.5° while the WV?2 off nadir angle is about 5.2° larger.

We corrected the images geometrically and calculated top of atmosphere re-
flectance values using sensor and band specific calibration factors (Krause,
2005; Updike and Comp, 2010). The Hyperspherical Colour Sharpening
(HCS) (Padwick et al., 2010) algorithm was applied to fuse the multispec-
tral and panchromatic bands into one multispectral dataset with a final spatial
resolution of 0.6 m (QB) and 0.5 m (WV2). For the analysis were normal-
ized difference, ratio-based and soil-line-related vegetation indices calcu-
lated and employed. Apart from the original normalized difference vegeta-
tion index (NDVI) (Tucker, 1979), its red edge adaptation (NDVI-RE) (Gi-
telson and Merzlyak, 1994) and its modified form (Mod-NDVI-RE) (Sims
and Gamon, 2002) was the Green NDVI (Gitelson et al., 1996) and the nor-
malized difference water index (NDWI) (McFeeters, 1996) created. As ratio-
based vegetation index served the Simple Ratio Index (SRI) (Jordan, 1969).
The used soil-line vegetation indices were the soil-adjusted vegetation index
(SAVI) (Huete, 1988) its modified form (MSAVI) (Qi et al., 1994) and its

Table 2.1: Main acquisition parameters for QB and WV2 images

Date of ac- Acquisition Spatial Sun EI- Sun Off- Sensor
quisition time resolution  evation Azimuth Nadir = Azimuth
(panchro- angle  angle  view angle
matic /multi- angle
spectral)
GMT)  (m) I O B O T

QB 07/20/2005 05:12:53 06/2.4 66.9 142.0 125 207.7
WV2 07/29/2011  05:14:34 05/2.0 65.4 1449 177 55.1
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optimized form (OSAVI) (Rondeaux et al., 1996).

The NDVI layer was used to create a vegetation mask using a multi-
threshold segmentation which splits and classifies image objects based on
a automatic NDVI threshold selection. The algorithm uses a combination
of histogram-based methods and the homogeneity measurement of multi-
resolution segmentation to calculate a threshold dividing the selected set of
pixels into two subsets, so that heterogeneity is increased to a maximum
(eCognition, 2012).

2.2.4 OBIA approach for Change Detection

The change detection approach we present here was applied to both acquired
images and combines six sequential steps to: (A) classify tree, shrub and
grassland areas; (B) detect individual tree seed points with local maxima val-
ues, (C) delineate seeds into tree crown object, (D) post-process tree crown
objects, (E) quantitatively assess the tree detection and crown delineation,
and finally (F) calculate detected changes between 2005 and 2011.

A) Vegetation Classification

Tree crown identification is largely affected by the low spectral separability
of tree crown pixels with respect to other vegetated surfaces such as shrub
and grass cover, which impede the correct identification and delineation of
tree crowns (Ardila et al., 2012a). Hence, our first step was to identify shrub
and grassland cover and exclude them prior to tree detection (Fig. 2.2). In to-
tal 407 training areas were manually selected based on field information and
visual image interpretation (tree cover: 170, shrub cover: 175 and grassland
cover: 62). The Classification And Regression Tree (CART) classifier was
used to build a decision tree model with mean values of the original spectral
bands of the QB and WV2 sensor and mean values of vegetation indices,
listed in section 2.2.3. The classifier creates a binary tree model with max-
imal depth using the impurity Gini index (Breiman et al., 1984) and prunes
it back to obtain the optimal tree by determining the lowest misclassifica-
tion errors (Laliberte et al., 2007). We allowed a maximum tree depth of 6
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Fig. 2.2 P. euphratica tree
cover of the study area in
false color composite images
(QB - 2005 - upper left, WV2
-2011 - lower left) with image
inlets of their corresponding
NDVI (dark - low values,
bright - high values). Tree
photographs (upper row -
2005, lower row - 2011)
correspond to green and red
vectors.

Tree cover

nodes with a minimum number of 5 samples per node, and a 6-fold cross
validation. Based upon the produced decision tree model, threshold values
for separating the three classes could be afterwards implemented as a rule
set in the eCognition (Trimble Geospatial, version 8.8.) software.

B) Tree Crown Detection

Under normal conditions is the crown peak of deciduous trees more likely
to be directly illuminated, and has therefore higher spectral reflectance than
the crown edge (Culvenor, 2002). To identify probable P. euphratica crown
peaks we applied a pixel based minimum / maximum filter on the NDVI
layer. The filter effectively accentuates crown edges with high values while
values drop in areas where the NDVI increases and plunge to zero at NDVI
maximum. Next, without using hard coded NDVI thresholds, we assigned
filter pixels with the value O (highest NDVI value) as crown peak. In com-
parison to conifers, the P. euphratica crown can be morphologically charac-
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Fig. 2.3 Example of tree QB - 2005 WV2 - 2011
crowns delineated in the Ll
images of QB-2005 (left
column) and WV2-2011
(right column). The top row
images display the minimum
/ maximum filter band and the
assigned crown peaks (step
B). The middle row images
illustrates the NDVI band and
derived candidate seeds (first
iteration)(step C) whereas the
bottom row images show false
color composites with the
final crown objects.
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terised as relatively flat. Therefore, we considered pixels in the immediate
vicinity of the declared crown peaks and with a filter value below or equal
to 0.03 to belong to the crown peak (Fig. 2.3 - top row). We restricted the
search domain to the previously created tree cover area and fixed the search
range to 7 x 7 pixels filter window.

C) Tree Crown Delineation

To delineate crown peaks into individual tree cover objects we applied a
threshold based region growing approach implemented in the Conditional
Quad Tree segmentation (eCognition, 2010). The procedure iteratively seg-
ments tree cover objects into quadtree grids consisting of squares (eCogni-
tion, 2012) where the user defined conditions of a) minimum object size (1)
and b) adjacent existence of crown peak objects are met (Fig. 2.3 - middle
row). Next, crown peak objects grew into or merged with neighboring tree
cover objects if the mean NDVI difference was below a predefined threshold
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(£ 0.01). With each iteration grew the crown peak larger until the boundary
of the tree cover (step A) was reached or a neighbouring crown blocked its
growth (Fig. 2.3 - bottom row). Crown peaks adjacent to one another were
merged in the first two steps of region growing.

D) Post processing

Tree crown borders were smoothed using a morphology operation which
applied a binary mask. Image objects completely containing the mask were
added to the tree crown and smaller holes inside the tree crowns were filled.

The appearance of tree crowns in VHSR satellite imagery are affected by
the sun illumination angle and the sensor off nadir view angle (Song et al.,
2010). As the off nadir viewing increases the size of the projected tree crown
in the image, we used a view angle correction factor F in order to have com-
parable crown delineation results of the QB and WV2 sensors. The angle
correction was applied for the statistics and did not alter the crown objects.
Factor F was obtained by dividing 1 by the cosine from the sensor off nadir
view angle called theta [F = 1/ cos (theta)].

E) Accuracy Assessment

For validation of tree detection and crown delineation we used: a) manually
digitized crowns as reference crowns and b) field measured crown diameters
as ground truth. The tree detection error was analysed at the individual tree
level. We computed the ratio between reference crowns to crown seeds from
the local maxima approach (adapted from Leckie et al. (2004) modified by
Ke and Quackenbush (2011a)). In our study, error of omission was counted
when no seed was identified within the boundary of an existing reference
crown (0 seed: 1 reference tree) and error of commission was registered
when a seed was within an image object other than a reference tree (1 seed:
0 reference tree). We considered a tree as correctly identified when a single
seed was completely within one reference tree boundary (1 seed: 1 reference
tree). Two or more seeds in one reference tree illustrated a commission error,
this case was registered as 2:1 (or > 3: 1 for three or more seeds) correspon-
dence. In the case where a group of trees (e.g. three trees) was erroneously
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covered by a single seed, the corresponding ratio would have been 1:3 (1
seed: 3 reference trees).

To compare field measured crown diameter vs. automated crown diameter
we performed an analysis of linear regression outliers to determine those
field measured crown diameter values that were likely to be a measurement
error. These outliers were excluded from the analysis. In order to quantify
crown measurement errors, we compared the mean crown diameter from the
automatically extracted and manually digitized tree crowns with the aver-
aged field measured crown diameter. The root mean square error (RMSE)
and a coefficient of determination R?> were used to quantify the deviation of
tree crown diameters between remote sensing derived crowns (automatically
extracted and manually digitized) and field measured crowns.

F) Change Calculation

We selected in each image delineated reference tree crowns and measured
the major axis (passing through the tree peak) and the perpendicular minor
axis of the tree crowns. The arithmetic mean of both values marked the im-
age based crown diameter. We compared the image derived crown diameter
between the 2005 and 2011 and calculated the detected changes.

2.3 Results

From the 4.500 inventoried P. euphratica trees were about 3.610 (80,2%) in
the QB and around 3.455 (76,7%) in the WV2 imagery successfully recog-
nised. Between 2005 and 2011 disappeared 180 trees and 25 new trees were
identified. However, the average tree cover increased from 26,77 m? to 31,22
m? between 2005 and 2011. The following sections describe the results of
the undertaken change analysis focusing solely on the reference trees.
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Table 2.2: Descriptive statistics for reference P. euphratica trees used in growth evaluation
(N=62)

height (m) DBH (cm) tree crown diameter (m)

min max mean sd min max mean sd min max mean sd

2005 21 157 69 26 1.7 107.7 295 165 25 72 44 10
2011 32 136 76 23 6.0 111.0 342 179 24 77 49 13

2.3.1 Descriptive analysis of field data

A total of 62 P. euphratica reference trees were measured in the field for
change detection analysis. Descriptive statistics (Table 2.2) of the tree at-
tributes indicate that on average tree heights increased from 6.9 to 7.6 m and
the mean DBH rose from 29.5 to 34.2 cm. Crown diameters ranged from
2.5t0 7.2 m in 2005 and 2.4 to 7.7 m in 2011. The mean crown diameter
increased from 4.4 m to 4.9 m over the last 6 years.

2.3.2 Tree Crown Detection

Table 2.3 shows the tree detection results obtained after applying a LM
filter to both images. The large number of correctly identified tree crowns
(QB: 54; WV2: 53) was achieved because of the absence of disturbing un-
derstorey vegetation, of similar spectral behaviour, and primarily isolated
trees resulting in low forest complexity. However, by comparing the results
of both images it can be concluded that in the QB image were more trees
correctly identified than in the WV2 image. The error of omission (0:1) was
low in both scenes and occurred only in areas with small tree crowns adja-
cent to medium trees. The maximum NDVI value of small trees is generally
lower compared to medium size trees. If a small and medium sized tree oc-
curs in one filter window instance, the small tree will be ignored and the
medium sized tree gets the LM assigned. In neither of the two images was a
false positive case identified. Errors of commission (2:1 or 3:1) occurred in
6 trees of the QB image and in 8 trees within the WV2 image.
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Table 2.3: Results of tree detection using fixed size LM filter and mean difference to
maximum NDVI > 0.03.

tree seed vs. reference crowns
0:1 1:0 1:1 2:1 3:1

QB - 2005 2 0 54 6 0
WV2-2011 1 0 53 5 3

2.3.3 Tree Crown Delineation

The conducted linear regression outlier test identified a total of three outliers
(4.8% of the whole dataset) that appeared inconsistent with the remainder of
the data. Because there was only one outlier in the 2005 data set and two out-
liers in the 2011 data set, the regression diagnostics identified these observa-
tions reliably (for all p < 0.002). All outlier were removed and 59 trees re-
mained in the dataset. Data in table 2.4 reveal that diameters from manually
digitized crowns correspond better with field measurements than automat-
ically extracted crowns. For both years the RMSE was lower (RMSEjqs:
0.96 m and RMSE20112 0.69 m) and R2 higher (R22005: 0.49 and R220112
0.75). This is, among other factors, because the diameter range of digitized
crowns (rangesgps: 1.62 - 6.15 cm; rangezor1: 2.86 - 7.62 cm) is smaller than

Fig. 2.4 Example of automat-
ically delineated P. euphratica
tree crowns in false color
composite QB (top row) and
WV2 (bottom row) images.
The overview map shows the
location of the close up views i
within the study area. €3 crown abjec
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the diameter range of automatically extracted crowns (rangegps: 0.60 - 7.20
cm; rangezol1: 2.38 - 7.62 cm). The magnitude of error for the automatically
extracted crowns has approximately the size of two pan sharpened image
pixels (RMSE.QB2005Z 1.16 m; RMSE.WV220112 1.03 m)

Comparing diameters of individual crowns by means of their absolute dif-
ference, the difference between remote sensing derived (automatically ex-
tracted and manually digitized) and field measured crown diameters, in-
dicated a greater crown diameter underestimation in 2005 and an evenly
balanced crown diameter estimation in 2011 (Fig. 2.5). Equally for both
years, larger crowns tended to be more underestimated by the automated
delineation approach. For 2011 there was a minor overestimation of small
crowns. In 2005, small crowns were slightly underestimated. However, the
automated delineation results were not significantly different from those
manually digitized (p.2005: 0.49; p.2011: 0.11).

2.3.4 Change Detection

Table 2.5 summarizes the detected changes of P. euphratica crown diame-
ters between 2005 and 2011. An overall crown diameter rise was detected in
all methods. The field measured results indicated a crown diameter growth of
0.61 m on average. Considering the field measured data as reference, the au-
tomatic delineation method overestimated crown diameters by 0.53 m while
the diameters of manually digitized crowns were overestimated by 0.4 m, on
average. The main reason for overrating is the crown diameter underestima-

Table 2.4: Mean crown diameter measurement error obtained from automated delin-
eations and manually digitization compared with ground truth field data (N 59, outliers
removed).

2005 2011

Error measure Automated Digitized Automated Digitized

RMSE (m) 1.16 0.96 1.03 0.69
R? 0.36 0.49 0.48 0.75




2.3 Results

Fig. 2.5 The relation between
absolute differences in crown
diameter measured from au-
tomatically delineated and
manually digitized crown di-
ameters to ground-measured
crown diameters (top: 2005;
bottom: 2011). Third degree
polynomial line graph sum-
marizes the relationships;
(digitized - solid black, auto-
mated — dashed black)
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tion in 2005 from the QB scene. The automated region growing approach
underestimated crowns by 0.35 m and the digitizing method underestimated
crowns by 0.47 m, on average (Fig. 2.6). On a single tree level were negative
crown diameter changes of up to 2.3 m and positive crown diameter changes

of up to 4 m observed.

A scatter diagram and a crown diameter change distribution were used to de-
termine the relationship between crown diameter measurements from 2005
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Fig. 2.6 Example of 4 study
plots (black) with automati-

cally (yellow) and manually

(blue) delineated P. euphrat-
ica tree crowns in false color
composite QB (left column)

and WV2 (right column) im-
ages.

@ Crown automatically delineated

O Sampling plots

and 2011 (Fig. 2.7). All points left from the 1:1 black reference line indi-
cate a crown diameter increase; points on the other side indicate a decrease.
The results in figure 2.7 indicate that projected points cluster closely around
their mean for field collected crown diameter (SDpqge: 0.85) and manually
digitized crown diameter (SDcpange: 0.89) while projected points of the auto-
matic delineation (SD¢pange: 1.28) are further away from their mean. Points
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Table 2.5: Summary change statistics for P. euphratica crown diameters between 2005
and 2011 (N 59).

Method crown change crown 95% Confidence Interval
diameter (X) diameter (X) for change (X)
2005 2011 Total (Annual) Lower Upper
Field (m) 4.29 4.90 0.61 (.10) 0.39 0.83 (£ .22)
Digitized (m) 3.82 4.83 1.01 (.17) 0.78 1.24 (£ .23)
Automated (m) 3.94 5.08 1.14 (.19) 0.81 1.47 (£ .33)

beyond the 95% confidence interval may be subject to errors, and those er-
rors contribute to the uncertainty of the measurements.

2.4 Discussion

In this study, we applied an object based change detection method to a semi-
arid open P. euphratica Tugai forest, aiming to quantify the rate of tree crown
changes over a period of six years. The implemented OBIA approach pro-
duced meaningful image objects that resemble P. euphratica tree crowns
(Fig. 2.4). Our results demonstrate that derived tree crown diameter esti-
mates from VHSR imagery agree reasonably well with field reference data,
with an average RMSE of 1.16 m (2005) and 1.03 m (2011) and can there-
fore support field based tree crown monitoring efforts. Essential characteris-
tics of the applied method and the obtained results are discussed below.

2.4.1 Field reference data

Various factors may influence the accuracy of tree diameter estimation in
this study. One of the most probable source of error are the in-situ measured
reference data for accuracy validation. These data are not ‘ground truth’, as
it is often erroneously referred to (Foody, 2010), but may contain uncertainty
(Richter et al., 2011). Our field data were collected in 2005 and 2011 by two
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Fig. 2.7 Scatterplots of crown
diameters in 2005 (x axis) and
2011 (y axis) illustrate the
change detected for each
method. A 1:1 reference line
is drawn as black solid line.
Semi-transparent ‘shadow’
points show the distribution
of change scores with thin
grey lines leading from each
raw measurement point to

its shadow projection on the
change distribution. The range
of the change distribution is
drawn as a blue line beneath
the shadow points. Averages
for 2005 and 2011 crown
diameters are plotted as thin
dashed vertical and horizontal
lines. Rug plots are presented
for the distributions of 2005
(at the top of graphic) and
2011 (on the right side). The
95% confidence interval for
the change results is shown
as a green dashed band. field
measured (top); manually dig-
itized (middle); automatically
delineated (bottom).

~ o

2011- Field Crown Diameter

~»

TTTTTITI T
o .
. ® .
e
)
'.%‘,' y
A
L] 4 .
XX

T
2 4 6
2005 - Field Crown Diameter

w 3
L 1

2011- Digitized Crown Diameter

o
L

3
2005 - Digitized Crown Diameter

o
1

2011- Automated Crown Diameter

°
L

I TTITTITImTTT

0 5
2005 - Automated Crown Diameter

[T

LU

JITNRRL N




2.4 Discussion 39

different groups of people, using the same measurement process. Assuming
both groups measured carefully and precisely, differing interpretation of the
same object may result in subjectivity and bias. How accurate can a vague
or rather fuzzy crown border be measured when difficulties arise in defining
the ‘exact’ crown boundary in the field? Lam et al. (2011) observed for the
studied P. euphratica stand, that the general crown shape varies from rela-
tively dense hemispherical shapes for young and healthy trees to wide open
jagged, serrated shapes for older trees. Several old trees lost the top portion
of the crown, and some of them formed patches of secondary crowns from
dormant buds. When seen from space, these disperse crown forms are not
observed as round and may be underrepresented by only two crown diame-
ter measurements. We therefore propose to increase the field crown diameter
measurements to four diameter measurements, 45 degree apart from each
other as it is carried out during stand area determinations (Rohle, 1986).

2.4.2 Tree Crown Detection and Delineation

The heterogeneous crown form of P. euphratica was frequently accompanied
by a high within-crown spectral variability. The canopy reflectance plunged
in parts of dead primary crowns, lacking photosynthetic material while re-
flectance rose in parts with foliated secondary crowns. This caused crowns
to differ from the typical ellipsoidal crown shapes of other deciduous tree
species. The spectral responses to the irregular branch pattern were multi-
ple reflectance peaks, especially in sub-meter resolution imagery (Pouliot
et al., 2002). In fact, in 10% of the analysed trees (QB scene, 2005) we ob-
tained at least two reflectance peaks per tree (13% in WV2 scene, 2011).
The rising number of multiple reflectance peaks was expected due to the in-
crease of within crown variability with higher spatial and spectral resolution
(from 0.6 m to 0.5 m). To illustrate the issue, figure 2.8 presents a three-
dimensional view of NDVI values for two trees, one with an irregular crown
structure (right) and one medium sized tree with a homogeneous tree crown
(left). In normal procedure a tree with three reflectance peaks (crown peaks
highlighted in red, Fig. 2.8) would have caused an error of commission (3:1
error). In our case the detection of multiple reflectance peaks in an irreg-
ular shaped crown should not be considered as commission error because
those peaks exist. However, difficulties arise when to validate detected re-
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flectance peaks in the field. Extracting individual vertical structure of tree
crowns from LiDAR would improve the analysis since reliable tree height
and treetop data are detectable (Chen et al., 2006a). We did not find litera-
ture information concerning the distance between LiDAR measured treetop
data and crown peaks from sunlit reflectance maxima.

The high accuracy of the individual tree detection that we obtained are con-
sistent with those of Whiteside and Ahmadb (2008), who achieved a local
maxima seed detection in Eucalypt dominant savannah with a user accuracy
of 84.3% and a producers accuracy of 96.3% within a QB image. In Zhou
et al. (2012) field validated detection rate exceeded 82% in Eucalyptus plan-
tation with WV2. In our study, 1:1 detection success ranged from 85.5% in
WV2 to 87.1% in QB. The essential difference between above mentioned
surveys was because of the existence of undergrowth, shrubs and annual
grasses and the homogeneous tree spacing due to plantation outlines.

Fig. 2.8: Tree crown detection results for two trees. Tree peaks (red), manually delineated
crown (blue) (QB — 2005 (left), WV2 — 2011 (right); Axis labels: x and y — in pixel, z:
NDVI values)

The crown diameter from the manually digitized tree crowns agreed better
with the field reference data than the results from automated delineation ap-
proach. However, the OBIA approach achieved RMSE in both sensor types
below two image pixels (Table 2.4). These accuracy levels are similar with
studies which compared their results to field-measured crown areas rather
than manually digitized reference trees (Pouliot et al., 2002, 2005; Song
etal., 2010). One source of error is related to the mixed pixel effect which oc-
curs in the vicinity of the crown boundary and influences the crown bound-



2.4 Discussion 41

ary delineation result. Mixed pixels tend to smooth reflectance variability
and cause tree crown overestimation if included and underestimation if ex-
cluded (Rocchini et al., 2013). In our results, the measurements of the crown
diameter touch the crown boundary in two sides of the crown axis, therefore
appears the mixed pixel effect twice. For the bi-temporal tree crown change
detection we selected two peak green summer images because of their ade-
quate quality as well as the phenological stability (Coppin et al., 2004). The
quality of the QB image was slightly reduced after the HCS image fusion
process due to small NIR artefacts, observed close to tree crown edges.

We also found that the region growing algorithm works better at isolated
or scattered trees than in dense or closed forest areas. A uncertainty factor
for the crown delineation method is the fact that the method dependence on
the presence of crowns peaks. A tree crown peak is almost certainly found
at isolated trees, but in dense or closed stocks are situations were a dominant
tree covers its neighbour and its peak will remains undetected. The conse-
quence is that the region growing method segments over the dominated tree
and the resulting tree crown appears rather big and unshapely.

2.4.3 Change of Vegetation Cover

The long term ecological restoration of degraded riparian Tugai forests along
the lower reaches of the Tarim river has beneficial influence on the P. eu-
phratica population. Our findings confirmed a positive tree crown growth
and suggest a crown diameter increase of 1.14 m, on average. The detected
expansion of above ground green biomass corresponds to natural succession
and suggests improved groundwater conditions after Ecological Water Di-
version from 2000 until 2011 (Zhandong et al., 2009). The results of the
automatic tree crown delineation show a moderate relation to the reference
data (with R%500s: 0.36 and R%,0;;: 0.48) but can be considered useful due
to a similar magnitude of the error like the manually digitized results. The
OBIA method proved to be applicable in arid environments with scattered
trees such as the sparse riparian Tugai forests and showed great suitability to
evaluate ecological restoration efforts in a remote ecosystem.
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2.5 Conclusion and Outlook

We used two very high resolution satellite images to quantify recent tree
crown diameter changes in a degraded riparian Tugai forest in north-western
China. Our results suggest a positive tree crown growth with an average
crown diameter increase of 1.14 m. On a single tree basis, small crowns
were slightly underestimated in QB and overestimated in WV2. Tree crown
diameters of larger crowns were generally underestimated. The results of the
automated tree crown delineation show a moderate relation to 59 reference
trees measured in the field (R%005: 0.36 and R%59;1: 0.48). The automated
OBIA method proved to be applicable in scenes of both evaluated sensors
for sparse riparian Tugai forest, especially in feature extraction of individual
tree crowns and produced useful results.
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Abstract

Insect defoliation causes forest disturbances with complex spatial dynam-
ics. In order to monitor affected areas, decision makers seek but often lack
information with high spatial and temporal precision. Within the context of
a riparian Tugai forest disturbed by the insect Apocheima cinerarius, this
study examines whether the analysis of a RapidEye time series would bene-
fit from the availability of synthetically generated images at the spatial reso-
lution of RapidEye and the additional temporal resolution of Landsat 8. We
applied the Enhanced Spatial and Temporal Adaptive Reflectance Fusion
Model (ESTARFM) to downscale Landsat 8 Normalized Difference Vege-
tation Index (NDVI) scenes to concurrent RapidEye NDVI scenes. We a)
performed a pixel-based regression analyses in order to evaluate the qual-
ity of the synthetically created NDVI products and b) examined if forest
disturbance maps produced with synthetic images improve the accuracy of
disturbance detection. The results show that the ESTARFM predictions have
a sufficiently good accuracy, with a correlation coefficient between 0.878 <
r<0.919 (p <0.001) and an average root mean square error 0.015 < RMSE
< 0.024. The overall accuracy of forest disturbance detection with added
synthetic images increased from 42.8% to 61.1 & 65.7% compared to the
original data set. Forest recovery detection accuracy improved from 59.5%
to 80.9%. The main source of error in the disturbance analysis occurs during
the temporal interweaving between foliation and defoliation in spring.
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3.1 Introduction

Forest disturbances — caused by drought, fire, storms, fungi and insect pests
— lead not only to economic losses but also have numerous environmental
impacts (Coppin and Bauer, 1996). Remote sensing has long been seen as a
useful tool for large scale monitoring of their effects and serves as an early
warning system (Banskota et al., 2014). For insect pests the patterns of in-
sect attack, defoliation, and forest recovery are complex and not always fully
understood (Hall et al., 2006). In a variety of cases, the spatial and temporal
patterns of these disturbance effects start with a slow intensity dispersion,
followed by rapid defoliation and regeneration (De Beurs and Townsend,
2008; Kennedy et al., 2010). Therefore, fine scale monitoring and opera-
tional planning rely on high temporal and spatial resolution imagery for the
assumed time period of the attack. Although the Landsat suite of sensors
are suitable to track some forest diseases in terms of temporal coverage, the
30 m spatial resolution limits its applicability for fragmented forests (Arnett
et al., 2015).

RapidEye, with a ground sampling distance of 6.5 m is commonly used for
grassland mapping (Franke et al., 2012; Schuster et al., 2015), has proven to
be valuable for land cover change detection (Behling et al., 2014) and map-
ping of biophysical forest parameters (Tillack et al., 2014; Wallner et al.,
2015).

The RapidEye satellite constellation has been delivering high temporal res-
olution imagery (Stoll et al., 2012), allowing for greater spatial detail for
patterns and objects in comparison to Landsat (Arnett et al., 2015), and pro-
vides greater potential for fine scale mapping of local forest disturbances.
RapidEye has already been used mono-temporally (Adamczyk and Os-
berger, 2014; Adelabu et al., 2014; Ortiz et al., 2013) and bi-temporally
(Marx, 2010) to detect insect pest outbreaks and forest fire hazards (Arnett
et al., 2015). Major storm events were mapped with inter-annual images
(Osberger et al., 2013) and intra annual images (Elatawneh et al., 2014) in
Central European forests. However, storm events are often one-off events
leading to rapid destruction of forest areas, and can be easily identified due
to abrupt and significant changes in spectral characteristics. In contrast, sub-
tle changes in forest conditions such as foliage discoloration and gradual
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defoliation due to insect pest outbreak are more difficult to detect (Goodwin
et al., 2008).

A major challenge for the successful use of satellite imagery for map-
ping insect pest outbreaks is the timing of image acquisition (Hall et al.,
2006) in relation to the life cycle of the defoliator and the phenology of
the host. While some remote sensing studies rely on change detection be-
tween mid-summer imagery from a non-defoliation year to the defoliation
year (De Beurs and Townsend, 2008; Townsend et al., 2004), others analyse
pre- and post-outbreak images of the same year in order to detect spectral
response differences resulting from insect defoliation (Dennison et al., 2009;
Thomas et al., 2007).

Currently, it is practically unreasonable to monitor regional insect outbreaks
solely with the commercially operating RapidEye sensor, due to the high
costs of obtaining large numbers of high resolution images. To reduce mon-
itoring expenses, the fusion of RapidEye data with sensors operating un-
der a free and open data policy would be a cost-saving alternative. Re-
cently developed data fusion models combine high temporal and low spa-
tial resolution imagery, such as MODerate resolution Imaging Spectrome-
ter (MODIS) , with low temporal and high spatial resolution imagery, like
Landsat TM/ETM +, in order to generate a synthetic Landsat-like image at
MODIS temporal resolutions (Hilker et al., 2009a; Schmidt et al., 2012).

Widely used data fusion models include: (a) the Spatial and Temporal
Adaptive Reflectance Fusion Model (STARFM) (Gao et al., 2006); (b)
the Enhanced version of STARFM (ESTARFM) (Zhu et al., 2010); (c¢)
the Modified version of ESTARFM (mESTARFM) (Fu et al., 2013); (d)
the Spatial Temporal Adaptive Algorithm for mapping Reflectance Change
(STAARCH) (Hilker et al., 2009a); and (e) a semi-physical fusion approach
using a Bi-directional Reflectance Distribution Function (Roy et al., 2008).

The fusion models listed here have been successfully applied with Land-
sat/MODIS configurations in a variety of land cover types ranging from low
to high biomass, including the Australian savannah (Schmidt et al., 2012),
complex Mediterranean pseudo-steppe landscape in southern Portugal (Senf
etal., 2015), dryland forest in Arizona, USA (Walker et al., 2014, 2012) and
in mixed broadleaf and coniferous forest in central British Columbia (Hilker
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et al., 2009b) and western Alberta, Canada (Coops et al., 2012).

These data fusion methods are mainly based on spatially integrating re-
flectance observations (Hilker et al., 2009a), and despite not being explicitly
designed for mapping abrupt changes such as forest disturbance events, they
have been successfully applied (Gaulton et al., 2011; Hilker et al., 2009a;
Schmidt et al., 2015). The research from Hilker et al. (2009a), Hilker et al.
(2009b), who applied the STAARCH model in dense coniferous forest in
west-central Alberta, has shown that forest disturbance-based changes could
be identified with improved spatial and temporal accuracies (93% and 88%
respectively). Schmidt et al. (2015) applied the STARFM model over a sa-
vannah region in central southeast Queensland (Australia) and generated a
time series for a period of 12 years with a time-interval of 8 days. They re-
ported high correlations between the synthetic and the observed NDVI val-
ues in homogeneous forest and grassland areas. Their high temporal NDVI
time series were able to detect primary clearing events with 94% accu-
racy within 40 days of a clearing event. Tewes et al. (2015) used a Rapid-
Eye/MODIS configuration with ESTARFM to monitor vegetation dynamics
in a semi-arid rangeland in South Africa and concluded that synthetic image
accuracies, while good during phases with little vegetation dynamics, dete-
riorated during times of quick vegetation growth.

While there have been numerous studies on forest disturbance mapping with
a blend of medium (e.g. Landsat) and coarse (e.g. MODIS) resolution sen-
sors, we are not aware of any analysis using a fusion of high (RapidEye) and
medium (Landsat 8) resolution sensors in this context.

We therefore examined in this study, whether the analysis of an insect-
defoliated riparian Tugai forest would benefit from synthetically generated
images at the spatial resolution of RapidEye and the temporal resolution
of Landsat 8. The forest disturbance detection accuracies are produced and
compared to reference data from visual estimates of foliage classes. Finally,
we indicate the suitability of the combined sensor fusion product with re-
gards to forest disturbance monitoring purposes. The following research
questions were addressed in this study: (a) Do land cover differences in a
semi-arid riparian forest lead to varying degrees of accuracy in the result-
ing ESTARFM imagery? (b) Can a synthetically derived product be used
to detect forest disturbance caused by Apocheima cinerarius with increased
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accuracy in comparison to the original data set? and (c) Does the temporal
resolution of the RapidEye and synthetic Landsat 8 images generated with
ESTARFM influence the forest disturbance detection accuracy?

3.2 Materials and methods

3.2.1 Study area

The research was carried out at the Arghan forest station in the Xinjiang
Uyghur Autonomous Region (see Fig. 3.1) in north-west China (N 40°8.72
E 88°21.26'). The climate in this region shows extreme arid characteris-
tics with mean annual rainfall below 50 mm/year and potential evaporation
above 2000 mm/year (Chen et al., 2006c). Average monthly air tempera-
tures vary from just under -12 °C in January, to over 27 °C in July, while
the annual mean air temperature is about 11.7 °C. Typical vegetation of this
floodplain area include open sandy patches with dense clusters of Euphrates
Poplar (Populus euphratica) along the riverbanks, and sparse isolated trees
towards the desert. The average tree age is 60 years (Westermann et al.,
2008) and the general tree vitality can be described as degraded (Aishan
et al., 2015). The stem density is 24 plants / ha and mean tree height is 7 m
and the mean crown diameter is mbox4.9 m (Girtner et al., 2014). Besides
P. euphratica , the floodplain forest contains common shrub species such
as Tamarix ramosissima, Tamarix hispida, Elaeagnus angustifolia, Alhagi
sparsifolia Shap. and Karelina caspica Less.. These are all drought-enduring
and salt-tolerant species (Zhou et al., 2010); however, as phreatophytes their
roots need continuous contact with groundwater for their growth and sur-
vival (Rumbaur et al., 2015; Thevs et al., 2012). The depth to the groundwa-
ter table ranges from 5.5 to >8 m.

Although individual trees have been cut in the area, no silvicultural man-
agement operations have been carried out and the forest can be considered
to be in a semi-natural stage. The area represents the characteristic floristic
composition and health situation of Tugai floodplain vegetation at the lower
reaches of the Tarim River.
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Five phenological periods are observed for P. euphratica. The first phe-
nological phase is the flowering, which lasts from the end of March until
the beginning of April. In early April, leaves begin to unfold rapidly and
reach full expansion about three weeks later. By that time the caterpillars of
A. cinerarius hatch from the eggs and proceed to feed on 80 — 90% of the
poplar leaves (see Section 3.2.2). Shortly afterwards, the second foliation
phase begins, which lasts from mid-May to early June. Leaf senescence (de-
crease of leaf chlorophyll content) begins in late September and leaves are
shed by the end of October or early November (Abdurahman et al., 2013).

3.2.2 Infestation dynamics of A. cinerarius

A. cinerarius (Erschoff, 1874) (Lepidoptera: Geometridae: Ennominae), a
cyclic defoliator pest, is a widely distributed moth in northern China and
Central Asia (Liu et al., 2014). A. cinerarius hibernates as pupae in the soil
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layer 20 — 50 cm beneath the surface, close to P. euphratica tree trunks. Soil
temperatures rise to 0 °C in spring (late February or March) and triggers the
moth§ emergence from the cocoon. After mating, the wingless females lay
fertilized eggs in openings and under loose scales of tree bark. Once devel-
oped, the caterpillars hatch and feed on the buds and leaves of poplars (the
caterpillar can defoliate deciduous trees in a few days) (see Fig. 3.2). From
late April to mid-May, the caterpillars enter the soil and pupate, beginning
the life cycle anew (Beljaev and Ponomarenko, 2005). During the period
from 2005 to 2007, between 0.88 and 1.42 million ha in China were infested
with poplar defoliators (Ji et al., 2011).

(A)

(B)

Fig. 3.2: Patches of P. euphratica tree clusters defoliated by A cinerarius (A). The major-
ity of trees recover from the insect attack and refoliate until the end of May (B). Photo
courtesy Tobias Wommelsdorf: A) April 25, 2013, B) May 20, 2013.

3.2.3 Data acquisition

To provide evidence of insect defoliation caused by A. cinerarius, images
were acquired in the narrow time window between the middle and end of
April when changes resulting from defoliation were most observable. Even
within this time window the acquisition date of the scenes are crucial. As
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shown in Fig. 3.3, acquisition dates for RapidEye (triangles) could miss the
leaf foliation peak starting of the defoliation and therefore provide less in-
formation about the disturbance (dotted black arrow). In this schematic case,
an additional scene at the peak of the first foliation can provide a better esti-
mate of the defoliation (solid black arrows). In order to map the subsequent
forest recovery, images acquired within the large time window from mid-
May until mid-September would be sufficient (see phenological seasons in
Fig. 3.3). The primary high resolution dataset for this project was a Black-
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Fig. 3.3: Schematic representation of insect infestation and the altered NDVI curve over
time. Dots indicate L8, Triangles indicate RE data. Derived disturbance measures are
shown (black and dotted line). Phenological Seasons: A — Flowering, B — First Folia-
tion, C — Defoliation due to Apocheima cinerarius , D — Second Foliation, E — Leaf
growth under crown closure.

Bridge RapidEye (RE) satellite image time series, consisting of eight images
captured during the 2013 growing season (see Table 3.1). The imagery was
delivered as a level 3A product, with radiometric, sensor, and geometric cor-
rections done by the data provider. The spatial resolution of the imagery is
5 m and it has a bit depth of mbox16-bit unsigned integers.

All RapidEye data were geometrically corrected to a previously georefer-
enced WV2 scene with a ground resolution of 0.5 m, resulting in a final
accuracy error of less than half a pixel. Clouds and cloud shadows were
masked out manually. We converted digital numbers to Top of Atmosphere
(ToA) reflectance values using sensor- and band-specific calibration factors
(RapidEye, 2011). Relative radiometric normalization was then performed
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Table 3.1: RapidEye (RE) and Landsat 8 (L8) time series from 2013, sorted by the day
of year (DOY); vertical bars: two base images pairs (black) and two model cross-check
image pairs (grey).

RapidEye (DOI) ESTARFM Input Landsat 8 (DOI) Path/Row Label

March 29 (88) REgg
April 15 (105) 142/32  L8s.105
April 20 (110) RE ;o
April 24 (114)  141/32  L8s114
May 16 (136) base image (t!) RE 36
base image th May 17 (137) 142/32  L8;37
May 31 (151) RE;s,

June 2 (153) 142/32  L8ss3
June 11 (162) 141/32  L8s.i62
June 27 (178)  141/32  L8s.178
July 4 (185) 142/32  L8s.i8s
July 14 (195) RE 95
July 20 (201)  142/32  L8g20
base image (t2) July 29 (210) 141/32  L8yjo
July 31 (212) base image (t2) RE> 12
Al.lg. 27 (239) RE239
Aug. 30 (242) 141/32  L8so4

on the ToA reflectance values using the Iteratively Reweighted Multivariate
Alteration Detection (IR-MAD) algorithm (Canty and Nielsen, 2008). The
automatic procedure is based on the invariance property of MAD transfor-
mation and performs an orthogonal linear regression (Canty and Nielsen,
2008) of the target image pixels on to the reference image pixels. The refer-
ence image was a cloud and haze free RapidEye image from July 31st. The
normalization of all images was followed by the calculation of the Normal-
ized Difference Vegetation Index (NDVI) (Tucker, 1979). We followed the
‘index first then blend’ approach rather than the ‘blend first then index ap-
proach’ (Tian et al., 2013) assuming that a linear mixture model is applicable
to an index (NDVI) as it is for reflectance bands. That is, the mixed NDVI
for each Landsat pixel is the sum of the NDVI weighted by the land cover
surface proportions (Jarihani et al., 2014). The assumption could introduce
some error in the linear mixture model (Kerdiles and Grondona, 1995) but
the procedure reduces the computationally expensive processing by half due
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to blending a single index rather than multiple bands (red and NIR) and more
importantly increases accuracy due to less error propagation (Jarihani et al.,
2014).

An additional medium resolution dataset was acquired consisting of ten
Landsat 8 satellite images captured between April 15 and September 10 in
2013 (see Table 3.1). Landsat 8 data are recorded in 185 km swaths and
segmented into 185 km x 180 km scenes defined in the second World-wide
Reference System (WRS-2) of path (ground track parallel) and row (lati-
tude parallel) coordinates (Roy et al., 2014). The study area is located in
the overlapping area between two adjacent paths (141/142) on the same row
(32). From the overall ten images acquired, five originate from path 141 and
five from path 142.

The imagery was acquired as standard level-one terrain-corrected (L1T)
products, which have had systematic radiometric and geometric corrections.
As with the preceding RE processing steps, we manually masked out clouds
and their shadows, converted digital numbers to ToA reflectance values and
normalized all L8 images to a L8 reference image from July 29 according
to the IR-MAD technique. The normalization procedure was followed by
the NDVI calculation. The pixel size at this point in the processing chain is
30 m. Figure A.2 shows the spectral response curves for both sensors using
the red and NIR bands, highlighting the differences for the latter.

As shown schematically in Fig. 3, the scenes REgg, L8s.105, RE119 and
L8s.114 were used for the forest disturbance analysis, because these im-
ages are in the small window of first leaf foliation and defoliation. All other
scenes not utilized for the ESTARFM approach (see Table 3.1) were used
to derive the value on the recovery within the second leaf foliation.

3.2.4 Data processing using ESTARFM

The ESTARFM algorithm generates a synthetic image from two base pairs
of RapidEye and Landsat 8 images acquired on the same or similar days (t'
and t?) and one additional Landsat 8 image from the prediction date (t3). We
selected the RapidEye image from May 16 (DOY 136) and the Landsat 8
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image from May 17 (DOY 137) as the first base pair (t!), and the RapidEye
image from July 31 (DOY 212) and the Landsat 8 image from July 29 (DOY
210) as the second base pair (t2).

We selected the image base pairs according to their time of acquisition in
regards to the variability of the vegetation’s state. Base pair t' represents the
time when the potential defoliation occurred and little vegetation is present,
while t? characterizes the peak vegetation in the middle of the growing sea-
son. In total, eight synthetic images were generated with the ESTARFM
algorithm. The synthetic images are named: L8gxx where “S” stands for
“synthetic” and xx will be replaced by the DOY.

Prior to the ESTARFM implementation we resampled all L8 images to
the spatial resolution of the RE scenes (5 m) using the bilinear resampling
method, and co-registered (image to image) all L8 images to the RE base
image pairs. We ran the ESTARFM algorithm with the standard settings in
regards to the search window size and the number of classes.

3.2.5 Assessment of ESTARFM synthetic RapidEye images

At first we quantitatively assessed the two base pair images t' and t> (Tbl.
1 image pairs t!: REj36 / L8137 and t2: L83;9 / RE3j2) which form the
basis of the blending application. We used the linear regression model
(Y = Bo+ B1 - x) do describe the model fit.

Thereafter, we selected two original RapidEye scenes (RE;5;, RE239) to-
gether with their corresponding generated synthetic images (L8s.1s53 and
L8s.242) in order to cross-check the quality of the ESTARFM predictions
(image pair label: cross-check; & cross-check;). The time lag between the
image pairs does not exceed 3 days (see Table 3.1).For both cross-check
image pairs was the prediction accuracy assessed spatially by plotting the
residuals of the observed vs. predicted RapidEye NDVI linear regression
model.

This was followed by a per pixel comparison between the observed vs. pre-
dicted NDVI values for a selected set of correlation-based measures, such
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as the Pearson correlation coefficient (r), the slope and intercept values. The
used error indices were the root mean square error (RMSE) and its nor-
malized version (NRMSE). The cross-check was performed for five differ-
ent land use / land cover classes. We therefore classified the image with a
knowledge-based classification ruleset in eCognition, which differentiated
the following land cover classes with very good mapping accuracies (over-
all accuracy 91.2%): asphalt, cotton field, desert sand, river water and Tugai
forest (see Fig. 3.4).

3.2.6 Creation of a time series for forest disturbance analysis

Once the L8g images were created, the image stack was arranged for the
analysis of forest disturbance. The disturbance analysis was based on the
relative NDVI difference calculation in which co-registered images from two
dates are subtracted pixel by pixel. The difference calculation is shown in Eq.
(1) where:

o (NDV]ij 12 — NDVI; Tl) "
Y NDVIjm

100 3.1)

Dj; is the disturbance (defoliation) image expressed in percent. NDVI;; 1> and
NDVI;; 71 are the NDVI values of pixel (i,j) for imagery captured during the
first foliation phase (7'1), and the imagery captured between defoliation and
the next succeeding recovery phase (also known as second foliation) (72).
As shown in Fig. 3.3 (dotted and solid arrows) D;; was created a) with RE
imagery only (NDVIgrg ss; NDVIgE 110) and b) with RE and L8g (NDVIggss;
NDVI; g s 105 and NDVIgg 110, NDVI g s 114) in order to evaluate whether the
accuracy has increased with the use of synthetic data at the peak of the first
foliation.

Furthermore, we calculated the percent recovery rate (R;;) in order to anal-
yse which trees recovered from the preceding defoliation and which deteri-
orated. The recovery calculation is shown in Eq. (2) where:
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i=1

n
<ZNDVIij 13 — NDVI; T2>
* 100

Ry = (3.2)

NDVIij 2

Rjj is the recovery image expressed in percent. As in Eq. (1), the NDVI;; 7>
is the NDVI value of pixel (i,j) for imagery that was captured after defo-
liation but before the next succeeding recovery phase (12). NDVI;; 13 be-
longs to imagery captured during the second foliation and the summer pe-
riod (where leaf growth is under full crown closure) (73), while variable n
hold the number of imagery used. R;; was first created with RE imagery only
(NDVIRE. 110; from NDVIgg ;36 til NDVIgg 253) and repeated with RE and L8g
jointly (NDVI; g s.174 and all images between NDVIgg 136 - NDVIREg 253).

In the last step, we grouped the NDVI percentage differences (D;; and R;;)
into one out of four disturbance severity classes (see Table 3.2) based on
Buxton and Maclauchlan (2014) and Schomaker et al. (2007).

The accuracy of the disturbance severity classes derived above was assessed
spatially with ground reference information. We evaluated field notes, fire
tower photos and 131 individual tree photos on 13 established field plots
(see Fig. 3.4 and Table S.3 in the online supplementary data). Defoliation
severities were assessed for each tree individually, based on the visual es-
timation of defoliation rates (10% classes) during the peak defoliation and
the second foliation phase. In the next step, WV2 and Google Earth imagery
was used to search and mark the visually assessed trees in RapidEye as val-
idation pixels. These pixels were used to calculate confusion matrices for
each disturbance class and derive user (UA), producer (PA) and overall ac-
curacies (OA) values.


http://www.sciencedirect.com/science/MiamiMultiMediaURL/1-s2.0-S0034425716300256/1-s2.0-S0034425716300256-mmc1.docx/271745/html/S0034425716300256/d52057e113361e7acf4d06f36c3b1d99/mmc1.docx
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Fig. 3.4: Detailed map of land cover classes found in the study area, where about 13.81%
of the total land cover is classified as Tugai forest. Established field plots are shown in red
overlaid by selected validation trees (yellow). The number of pixels per land cover class
is shown in the legend.

3.3 Results

3.3.1 Accuracy of ESTARFM simulation

The Pearson correlation coefficient was determined to assess the strength
and direction of the relationship between REnpy1 and L8npy; values for the
two selected base pair images (see Fig. 3.5). There was a strong positive cor-
relation between REnpvr and L8xpvy values for t! : r= .68 and 2 : r = .795.
The linear regression equation for t! was: REnpyr = - .06 + 1.042 x (L8xpvi);
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Table 3.2: Grouping schema based on defoliation severities.

Percent
Class Class label Definition defoliation &
number recovery
[% Djj; Rij]
Dy No defoliation vital tree without signs of <0

defoliation

some branch tip and upper
D, Light defoliation crown defoliation, tree is >0-30
still in good condition

Moderate thin foliage, top third of

D> defoliation tree is severely defoliated

>30-50

bare branch tips and
completely defoliated
D; Severe defoliation  tops, most trees sustaining > 50
> 50% total defoliation,
tendency to deterioration

and for t? it was: RENpv1 =- .061 + 0.893 x (L8Npv1). All regression models
were statistically significant p < 0.001. Figure A.1 shows regression models
for four additional image pairs in spring [DOY 105 vs. 110], in early sum-
mer [DOY 151 vs. 151; 201 vs. 195] and late summer [DOY 239 vs. 242]. In
general the correlation values were strong (.68 < r < .795). Intercept values
were always negative but close to 0 (-.097 < By < -.038). Slope values were
between .704 < 31 < 1.632.

With the base pair images t! and t*> and the required L8 image (t*) for the
prediction dates, the ESTARFM blending algorithm produced in total eight
synthetic images (L8s), covering the whole study site. Fig. 3.6 shows the
comparison between the cross-check image pairs, consisting of original RE
and L8g at similar dates, with the linear regression residuals shown spatially.
The residual values in the two images are positive in areas of the Tugai forest
(cross-check;: p =.009; cross-check;: u = .002), indicating a slight NDVI
overestimation. The cotton field in the north-western corner of the study area
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Fig. 3.5: Per pixel comparison between the two base pair images of Landsat 8 (x-axis)
and RapidEye (y-axis). Correlation was highest between the second image base pair (right
image) from August 27/30 and weaker for the first image base pair (left image) recorded
on May 31 and June 2.

has negative residuals in May (cross-check;: pt =-.004), which shows NDVI
underestimation when the field is bare and vegetation coverage is very low.
During the transition when bare soil is replaced by the green cotton plants,
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Fig. 3.6: Spatial distribution of the linear regression residuals of the two cross-check
image pairs RE;s5; vs. L8g.153 (A — cross-check;) and REj39 vs. L8g247 (B — cross-
checky).
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the residuals are positive and NDVI values are overestimated (cross-checks:
1 = .01). The relatively homogeneous area of the desert sand has a rather
speckled appearance with very low negative residuals and a low spatial vari-
ance (cross-check;: u =-.001; cross-checky: u =.001).

Table 3 shows the goodness-of-fit measures for five land cover classes
(percent area distribution: asphalt 0.14%, cotton field 0.60%, desert sand
84.15%, Tugai forest 13.81% and Tarim river 1.3%) for two cross-check im-
age pairs to evaluate the performance of the ESTARFM blending algorithm.
The Pearson correlation coefficient, r, is for both cross-check image pairs
very strong (cross-check;: r = .919; cross-check;: r = .878). The highest
correlation values were observed for the Tugai forest class in early summer
(cross-check;: r = .844) between the leaf growth phase and the crown clo-
sure and during peak summer (cross-check;: r = .756). The desert sand has
relatively stable correlation numbers (cross-check;: r = .788; cross-checks:
r =.726) and a homogeneously low NDVI throughout the year. The level of
statistical significance (p-value) of the correlation coefficient is for all land
use classes < .0001, which means that there is a statistically significant rela-
tionship between the observed vs. predicted image values: RE vs. L8 NDVI
values.

The regression equation for Tugai forest was: cross-check;: RE = .031 +
0.729 L8gs, cross-checky: RE = .02 + 0.664 L8s. In general, all land use
classes had a small intercept; however, the intercept for the entire image in-
creases slightly from ¢ = 0.005 (cross-check)) in late spring to 8¢ = 0.006
(cross-checky) in summer. The slopes of the linear regression lines range
from 1 = 0.896 in late spring to B; = 0.767 in summer. This indicates an
overestimation of NDVI values in areas of low vegetation cover. In areas
with denser vegetation, the values conform better to the RE values, and less
differences between the observed and predicted image values occur. See Fig.
3.7 for the respective Tugai forest class scatterplots.
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Table 3.3: Selected error indices and correlation measures, partitioned into five land use /
land cover classes, for the two model validation image pairs.

Sefnsor typc? & Land cover : Intercept  Slope RMSE  NRMSE
image pair class (Bo) B1)

Asphalt 0.736 0.014 0.797 0.026 92.9

Cotton field 0.409 0.007 0.422 0.011 107.4

cross-check; Desert sand 0.788 0.008 0.722 0.012 68.9
REjs; vs. L8s.153  Tugai forest 0.844 0.031 0.729 0.021 62.6
Tarim river 0.487 -0.041  0.280 0.055 160.7

Total 0.919 0.005 0.896 0.015 41.0

Asphalt 0.456 -0.003  0.332 0.029 136.6

Cotton field 0.742 0.053 0.651 0.071 137.5

cross-checks Desert sand 0.726 0.008 0.681 0.017 76.8
RE239 vs. L8s242  Tugai forest 0.756 0.020 0.664 0.035 90.5
Tarim river 0.342 -0.077 0.316 0.089 148.8

Total 0.878 0.006 0.767 0.024 55.2

Perfect Fit: r: -1/1; intercept: 0; slope: 1; RMSE: 0.

3.3.2 Forest disturbance & recovery analysis

From the 131 reference trees were 46% severely defoliated and 34% either
with light or moderate defoliation. 20% were not affected by A. cinerarius.
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Fig. 3.7: Forest class scatter plots of observed and ESTARFM predicted NDVI values
from the two cross-check image pairs (black line = 1:1 base line, green line = linear
regression model).
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The overall mapping accuracy results show that the added L8g images, gen-
erated using ESTARFM, had a significant positive impact on all analysed
stages (see Fig. 3.8). Forest disturbance accuracies increased from 42.8%
using RE (Dre.gs/110) to 61.1 & 65.7% (Dre.ss/is.s.105 & DRrE.110/.8.5.114)
with additional L8g imagery, while forest recovery accuracies improved
from 59.5% to 80.9%. Images which were taken at the end of the in-
sect disturbance period performed best during the disturbance detection
(DRE.110/L8.5.114)-

Considering the individual disturbance classes, we conclude that PA’s for
trees with no or light defoliation (class Cy & C;) were consistently high.
Trees with moderate or severe defoliation (classes C, and C3) were not suf-
ficiently recognized using only RE during spring defoliation (see Table 3.4).
When L8g was added to the analysis, PA’s for vital trees (Cp) remained high
while PA’s increased for moderate defoliated trees (Cy: 52.4% and 61.9%)
and severely defoliated trees (C3: 54.9% and 64.8%), respectively. PA’s for
the recovery phase improved for refoliated trees (Cp) from 64.8% with only
RE to 100% with additional L8g. In-situ reference data didn’t include trees
with class C3 in the recovery (refoliation) phase.

Overall, it can be noted that the process of defoliation and recovery is highly
dynamic in time and space within the given time window (see Fig. S4). The
disturbance analysis with RE underestimated the insect infestation signifi-
cantly (see Fig. A.3) and mainly confused heavily defoliated trees (> 50%)
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Table 3.4: Map accuracies for forest disturbance and recovery detection with RE and
added L8g imagery.

Imagery Period Accuracy [%]
Co C C Cs
UA PA UA PA UA PA UA PA
RE Dress/iio 20.2 100.0 70.8 77.3 75.0 14.3 100.0 26.8
RRrE 110/136:253 90.764.8* 29.4 417 0 0 0
RE & DrEss/is.s.105 70.8 100 449 59.1 478 524 709 549
L8 Dre110/18.5.114 438 824 542 59.1 48.1 619 958 64.8
s RRre110RE 185136253 80.87100% 100 4.2 0
* Recovery

with trees of class Cy (< 0% defoliation) (see Table A.2). According to the
disturbance map with the highest accuracy during the insect defoliation pe-
riod (Drg.110/L8.5.114 With 65.7%), we would mistakenly conclude that ap-
proximately 58% of the area was not affected by A. cinerarius (see Figure
A.4). According to these results, 11% of the area was either moderately or
severely defoliated (see Table A.1). Generally, the combined information of
RE & L8g shows a higher variability and more distinct spatial pattern of the
disturbance (see Figure A.4). In comparison with the in-situ reference data,
we can conclude that we underestimated the insect infestation.

3.4 Discussion

3.4.1 Accuracy of ESTARFM simulation

The pixel-based comparison between the observed RE and L8 NDVI values
for the two cross-check image pairs revealed differing but satisfactory cor-
relations for the five land use / land cover classes. Correlation coefficients
between observed and predicted images were higher when the prediction



3.4 Discussion 67

date was closer to the observation date (cross-check; = 3 days, cross-check,
= 4 days) because temporal variability is lower.

Correlation values for the Tugai forest class were high in both cross-check
image pairs. The results suggest that ESTARFM is able to predict reflectance
values for patches of tree clusters and sparse isolated trees sufficiently. Our
results are comparable to accuracies reported by other studies mapping for-
est areas with Landsat/MODIS (0.728 < 1% < 0.888)(Walker et al., 2012);
0.50 <12 < 0.84 (Hilker et al., 2009b). The Likewise, fairly constant cor-
relation values for the asphalt and desert sand classes were achieved. Both
classes have no phenological changes and can be characterized as spatially
and temporally stable. However, the elongated shape of the asphalt road re-
sulted in more mixed (heterogeneous) low resolution pixels; therefore, the
ESTARFM achieved lower correlation values compared to the homogenous
desert sand.

It was also apparent that pixels covering the Tarim River had the lowest cor-
relation results for every validation image, except for cotton in spring (cross-
check;). One reason might be the temporal variation of the surface water
levels due to current water conveyance practices (Rumbaur et al., 2015).
Changing surface water levels influence local soil moisture dynamics and
vary the spectral contrast and spatial variation in the endmember fractions
of coarse-resolution pixels (Landsat 8). One possible modification of the
fusion model would be to adapt the fixed search window size during the ES-
TARFM process according to the current heterogeneity or complexity level
of the land surface being processed. The search window size could be dy-
namically adapted depending on the amount of neighboring pixels with the
same land cover type as the central pixel in process.

3.4.2 Forest disturbance & recovery analysis

The key finding of our analysis is that forest disturbance caused by A.
cinerarius can be detected more accurately with the aid of synthetically de-
rived images compared to the original data set. Forest disturbance mapping
based solely on RapidEye (Drg 88/110) underestimated the actual defoliation.
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We reason that the defoliation underestimation between REgg and RE g is
caused by a number of factors. The main reason can be attributed to the
sensor off-nadir view angles, which are considerably higher for both scenes
(REgg —16.25° and RE ;g 13.77°) compared to the average off-nadir view
angle (6.89°) of the remaining RE scenes. The high view angles affect the
canopy reflectance geometry and decrease the NDVI values as viewing angle
increases (Skidmore, 2003). As a consequence, in Drg gg/110 was the defoli-
ation considerably underestimated.

Another reason is due to the low sun elevation during the overflight, espe-
cially for the image scene REgg (53.41°; 65.11° of the remaining RE scenes).
L8 and RE are sun synchronous sensors and pass the study area at effec-
tively the same local time, with changing sun elevation and azimuth angles
during the year. A declining sun elevation angle causes variation in the il-
lumination condition under which imagery is obtained. A low sun elevation
reduces the solar radiation intensity, weakening the recorded signal and con-
sequently lowering the signal to noise ratio (SNR). A lower SNR reduces
the reflectance and thus the NDVI.

A less obvious but quite important factor is the broad spectral bandwidth
of the RE sensor, especially for the NIR band (see Figure A.2). The broad
range of wavelengths in the NIR band produces a stronger signal but de-
creases the spectral resolution, and is therefore less sensitive to reflectance
variability.

The accuracy of forest disturbance detection was strongly reliant on the
temporal resolution of the imagery. During the reported insect outbreak,
which lasted in our case study three to four weeks, there were three images
recorded (one RE image and two Landsat 8 images). The most accurate map
was generated based on the images from RapidEye [DOY 110] and Land-
sat 8 Synthetic [DOY 114]. During this period, temporally interweaved and
spatially unevenly distributed processes such as bud break, leaf unfolding
and growth occur. Efficient discrimination between trees foliating and trees
being defoliated remains a challenging task (see Fig. 3.9).

Nevertheless, the suitable timing of the images (here 5 days) allowed for
the reliable detection of foliation differences and hence insect infestation.
Due to the rare circumstance that our study area is located in an overlapped
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Fig. 3.9: Worldview?2 (left; bands 7-5-3), RapidEye (middle; bands 5-3-2) and Landsat 8
(right; bands 5-4-3) image chips showing a typical spatial distribution for the Tugai forest
along a floodplain area with patches of dense Euphrates Poplar (P. euphratica) clusters
along the riverbanks and sparse isolated trees towards the desert. The spatial resolution of
Landsat 8 (30 m) does not support distinction between single trees and tree clusters nor
their defoliation state.

area of two Landsat paths we had a higher image frequency to work with. Ar-
eas with less Landsat observations could incorporate data from Sentinel-2A
which offers similar spectral/spatial coverage as Landsat 8. With the launch
of Sentinel-2B (planned for mid-2016) the two platforms will provide a 5-
day global land coverage. Although our work is based on RapidEye and
Landsat, the ESTARFM approach would be also applicable to Sentinel-2
data.

Our analysis generated high goodness-of-fit values with plausible forest dis-
turbance & recovery occurrences. However, several shortcoming need to be
discussed. First, we did not account specifically for the scaling effect be-
tween the two used sensors and its possible impact of non-linearity on the re-
lationship between fractional ground cover and NDVI. Because ESTARFM
uses a sophisticated identification of pixel similarity within neighbourhoods
(Zhu et al., 2010) to define locally influenced linear relationships between
RE and L8, which results in non-linear spatial functions between both sen-
sors at the entire image scale (Emelyanova et al., 2013). Second, we used
relative radiometric normalized ToA reflectance values instead of surface
reflectance values. Our main reason for doing so was the absence of atmo-
spheric property records at the time of image acquisition, which are required
to perform a sound atmospheric correction. The introduced uncertainty may
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have influenced the disturbance & recovery detection accuracy. Finally, we
cannot fully discriminate between the effects of a) the image quality (e.g.
off-nadir angles of RE), b) the scaling effect between RE and Landsat, and c)
the influence of an additional synthetic Landsat 8 scene with a more suitable
acquisition date for the forest disturbance detection. Despite the mentioned
uncertainty, it is not feasible to repeat the disturbance analysis including
solely original Landsat scenes due to the insufficient spatial resolution for
the detection of sparse forest vegetation. Hence, we cannot judge about or
compare the data quality of the sensor types. It is still very obvious that the
disturbance maps including Landsat show a more distinct disturbance pat-
tern, which reflects the outbreak and dispersion of the calamity much better
than RapidEye alone (see maps in Figure A.4).

The results of this study are comparable to the results obtained in previ-
ous forest disturbance mapping studies relying solely on RapidEye images
(Adelabu et al., 2014; Marx, 2010). For example, Adelabu et al. (2014) dif-
ferentiated three defoliation classes using RapidEye-generated NDVI layers
(un-defoliated, partly defoliated and refoliated trees after severe defoliation)
and reported an overall classification accuracy of 61% (random forest, RF)
and 51% (support vector machine, SVM). In this study, we achieved sim-
ilar results with RapidEye (42.8 / 59.5%). However, Adelabu et al. (2014)
increased their classification accuracies (84% RF, 93% SVM) when the Red-
Edge NDVI was used instead of NDVI. We increased our accuracy by fusing
and using better-suited data pairs (DOY [110/114]; see . Fig. 3.8).

It is also worth noting that, due to the random sampling design followed
in this study, we had no validation samples which covered the severely de-
foliated trees in the recovery phase. Thus, we suggest that studies in similar
ecosystems consider following the double sampling approach for stratifica-
tion, especially for the monitoring of sparse tree populations (Lam et al.,
2011).

3.5 Conclusions & outlook

This case study focused on determining whether the addition of synthetic
images derived from a RapidEye / Landsat 8 configuration would increase
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the accuracy of forest disturbance detection compared to the original data
set. Furthermore, we analysed which pre- and post-infestation image pairs
were the most important for differentiating defoliation severity.

Our results suggest: (a) A. cinerarius infestation severity can be classified
with RapidEye at a moderate accuracy. However, accuracy increased by
~ 23%, reaching ~ 66% when ESTARFM generated synthetic images were
added. (b) Defoliation severity accuracies decreased with increasing distur-
bance levels. (c) Images taken at the end of the first foliation and at the peak
of the caterpillars feeding were superior to images acquired at an earlier
stage; this stage was found to be particularly important for differentiating
between the light, moderate and severe defoliation classes. Although it is
evident that the L8g images retain a high spatial level of detail, further re-
search should focus on a scale comparison between 30 m and 5 m resolution.

We recommend that the timing of data acquisition should consider host tree
phenology and the peak manifestation of insect damage, especially for image
tasking requests. It is the timing, rather than the number of images, which
has the most influence on accuracy in this context. The use of commercial
data products (e.g. RapidEye) in particular requires conscientious acquisi-
tion planning, in order to reduce the high cost of data purchase. The pre-
sented work shows the first data fusion application between RapidEye and
Landsat 8 and presents a useful alternative to the regular Landsat / MODIS
configuration.
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Abstract

The ecological restoration of degraded riparian Tugay forests in north-
western China is critical for combating desertification in this region. Local
stakeholders and restoration managers are particularly interested in under-
standing the response of these forests to recent restoration efforts and in-
creasing knowledge regarding their resilience.

Satellite derived time series make it possible to detect abrupt changes in
long term vegetation trends. These trend shifts may give decision makers
some hindsight regarding the effect of change. In this research, we applied
the Breaks for Additive Seasonal and Trend (BFAST) algorithm to a 14
year Landsat TM/ETM+ time series. We a) analyzed the occurrence of trend
shifts, b) researched similarities and differences between vegetation types in
their response effects, and c¢) examined longitudinal/transverse linkages to
known river discharges.

Our results show increased vegetation growth during water delivery periods.
In turn, the absent of discharge had a substantial effect on the prevalence of
trend shifts. Vegetation showed resilience after a drought year, with above
average growth in subsequent years. The reaction of the vegetation was more
pronounced in the upper and middle zones, and less apparent in the lower
section of the river catchment area. This longitudinal effect can be explained
by the fact that at least five out of the twelve water deliveries did not reach
the lower section. Transverse impacts showed a delayed growth response of
approximately six month in areas adjacent to the river channel. The time lag
increased by around one month for every 500 m from the river towards the
desert.
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4.1 Introduction

Dryland degradation is one of the most pressing environmental issues of the
21st century (Ravi et al., 2010), and is driven by various factors including
changes in climatic conditions and increasing human activities (UNCED,
1992). A frequent cause for degradation processes is intensive agricultural
cultivation at the upper reaches of a river, which causes severe water scarcity
in the lower reaches. Ecosystems which face chronic disturbances shift into
a less desirable state and lose the capacity for renewal and reorganization,
causing the resilience of the ecosystems to fade (Elmqvist et al., 2003). To-
gether with grazing pressure (Sdumel et al., 2011), this can result in a com-
plete loss of vegetation cover (Zeleke and Hurni, 2001) and subsequently in
desertification.

Since the early 1960s, large areas in central Asia and western China have
experienced the consequences of cropland mismanagement combined with
precipitation deficits (Piao et al., 2010; Yaning et al., 2009; Zhang et al.,
2010). The floodplains along the large endorheic rivers, such as the Amu-
Darya, the Syr-Darya or the Tarim, are representative examples (Novikova
et al., 1998; Kotlyakov, 1991; Xu et al., 2004) of large-scale water with-
drawals for crop irrigation and soil degradation due to pervasive salinity
problems in irrigated land (Dregne, 2002).

These repercussions have also affected the natural riparian Tugay forests.
These forests are threatened by flow regime changes linked to river regula-
tion (Nilsson and Berggren, 2000) and increasing human demands for water
(Richter et al., 1997). The continuously falling groundwater table and de-
creasing soil moisture levels prevent tree and shrub roots from connecting to
the necessary water resources. The consequence is large-scale Tugay forest
disturbance with alarming rates of forest degradation. The situation causes
concern due to the particular importance of the local riparian forests, which
serve as a green belt between the adjoining deserts. Therefore, understanding
the response of riparian Tugay forests to these stressors and further general-
izing knowledge regarding their resilience is of particular interest for local
residents, forest and restoration managers.

Within local plant communities each individual species develops its own
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specific survival strategy. The two local key species Populus euphratica and
Tamarix ramosissima for example, try to keep roots in permanent contact
with the groundwater and therefore maintain a high level of transpiration
(Gries et al., 2003; Thomas et al., 2006; Thevs, 2007). Prolonged droughts
and severe groundwater shifts force P. euphratica to repress transpiration
and avoid desiccation by growth inhibition. This survival strategy is demon-
strated through the dieback phenomenon, where the top of the tree crown
shows damage (Liu et al., 2011) as a consequence of height suppression
and leaf abandonment (Monda et al., 2008; Westermann et al., 2008). P. eu-
phratica responds to rising groundwater levels with the establishment of a
secondary crown (Aishan et al., 2015), vigorous shoot growth (Liphschitz
and Waisel, 1970) and increasing leaf area (Wang et al., 2007). T. ramo-
sissima, a subdominant species in this riparian ecosystem, exhibits different
adaptive traits in response to hydrological fluctuations. It shows the ability to
increase root elongation when groundwater declines below the initial root-
ing depth (Li et al., 2013a), leaving less carbon available for above-ground
growth (Gries et al., 2003). These plant specific morphological adaptations
are synchronized with river flow patterns and provide benefits when distur-
bances, e.g. reduced water availability, occur (Li et al., 2013a). As a conse-
quence, there are fluctuations in the above-ground net primary productivity,
which have been accurately measured by means of litter mass (Niu et al.,
2015), diameter (Westermann et al., 2008; Li et al., 2006; Qisen et al., 2010;
Yu et al., 2012) or basal area (Gries et al., 2003), and volume increments
(Ni et al., 2001; Gries et al., 2005). However, these field methods may not
be suitable for long term and large scale forest monitoring due to low sam-
ple coverage and infrequent survey opportunities. Remote sensing methods
are therefore particularly suited for monitoring the growth of floodplain for-
est ecosystems in response to changes in water availability, especially for
areas in western China with large regions prone to desertification and lim-
ited access to many remote areas (Yang et al., 2005). For this purpose, the
Landsat satellites have proven to be of unmatched value, providing a free
(Woodcock et al., 2008) window into the past (Wulder et al., 2012). Landsat
data are well suited for capturing pre- and post-disturbance features (Assal
et al., 2016). The information is frequently collected (16 day revisit cycle)
in spectral bands spanning the visible and infrared wavelengths, and has
a pixel size (30 m) which is capable of resolving most disturbance types
(e.g., natural and anthropogenic) occurring in forest systems (Townshend
and Justice, 1988; Wulder et al., 2008; Schroeder et al., 2011). Further-
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more, the opening of the Landsat data archive has encouraged the use of
long-term time series, as well as the development of change detection al-
gorithms applicable to forest ecosystems (e.g. Vegetation Change Tracker
(VCT) (Huang et al., 2010), (Landsat-based detection of Trends in Dis-
turbance and Recovery (LandTrendr) (Kennedy et al., 2010), Continuous
Change Detection and Classification (CCDC) (Zhu and Woodcock, 2014)),
Breaks For Additive Season and Trend (BFAST) (Verbesselt et al., 2010a,b)
and BFAST-Monitor (Verbesselt et al., 2012). BFAST-Monitor has been suc-
cessfully used to track post-disturbance dynamics in tropical forests with
Landsat time series (DeVries et al., 2015a,b; Dutrieux et al., 2015). How-
ever, the need of a historically stable forest profile limits the applicability
to areas where such monitoring period is steady over time. Due to histori-
cally unstable temporal profiles for our study area, we chose BFAST over
the BFAST-Monitor approach.

Vegetation species react with different strategies to shortages in resources
such as nutrients and water, as well as to disturbances such as fires or in-
festations. While some species tend to die quickly but re-establish soon after
(ruderal strategy), others endure limitations (stress tolerant strategy) (Grime,
1977). Although the above named methods are applied frequently to distur-
bances for different vegetation types, there is limited knowledge on how to
relate the different trends and breaks to ecological effects.

Many studies have been published showing a predominantly positive veg-
etation response in the lower reaches of the Tarim river, using field mea-
surements (Tao et al., 2008; Xu et al., 2007; Chen et al., 2008; Ling et al.,
2015), and also including remote sensing data (Kong et al., 2009; Sun et al.,
2011; Liu et al., 2014; Gértner et al., 2014). These publications vary by sen-
sors used, the related spatial scale and the applied methods. In this study,
they shall only be used as a basis for a general statement regarding the
ecosystem’s current state. While there have been numerous studies on for-
est disturbance mapping with BFAST using medium (e.g. MODIS) (Wen
and Saintilan, 2015; Watts and Laffan, 2014; Darmawan and Sofan, 2014)
or coarse (e.g. AVHRR) (Schucknecht et al., 2013) resolution sensors, the
authors know of only one other study by (DeVries et al., 2016) who applied
the BFAST algorithm on high resolution data, such as Landsat. The over-
all aim of this study was to assess the usefulness of the BFAST algorithm
in conjunction with a 16 day Landsat Normalized Difference Vegetation In-
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dex (NDVI) (Tucker, 1979) time series, for mapping long term trends and
abrupt changes between 2000-2013 for different species of riparian Tugay
vegetation in a semi-arid region in western China. An important focus of
the presented research was to gain knowledge and increase understanding
of the effects of an ongoing ecological restoration program (e.g. river regu-
lations via hydrological engineering and additional river discharge), on the
responses of different Tugay vegetation types and on observed vegetation
trend shifts. In particular, we addressed three main research questions:

1. Can Tugay vegetation trend shifts be observed in a Landsat time series
between 2000 and 2013 and if so, are there different longitudinal (along
the river) or transverse (across the river) linkages in the landscape mo-
saic?

2. Which similarities and differences do the analyzed Tugay vegetation
types show in their response effects?

3. Isthere a response in vegetation to river discharges and if yes, how strong
is the relation between the amount of discharge and the response?

4.2 Material and methods

4.2.1 Study area

The Tarim river is the longest inland river in China with a length of about
1,321 km (Chen et al., 2006a). Our study focused on the last 321 km, which
is the most degraded section as a consequence of water mismanagement be-
ginning in the late seventies. This section marks the river’s lower reaches
between the Daxihaizi reservoir in Yuli county and the Tetema end lake
in Ruoqgiang county (chinese: Taitema, Uyghur: Titama) (see Fig. 4.1). The
river course is divided into two streams from the Daxihaizi reservoir on-
ward; the western branch is called old Tarim river while the eastern branch
is called Chiwinkol river. The two branches are roughly parallel and merge
near Arghan forest station (N 40°8.72' E 88°21.26").

The region is characterized by an extreme arid climate with mean annual
precipitation < 50 mm and potential evaporation > 2,000 mm per year (Chen
et al., 2015). The region is dominated by open sandy areas with dense clus-
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ters of young Populus euphratica along the riverbanks, and sparse isolated
withered trees towards the desert. The most common shrub species in the
area belong to the Tamarix genus (Tamarix ramosissima, Tamarix hispida
and Tamarix leptostachys). Predominant herbs and grasses are Karelina
caspica, Alhagi sparsifolia and Phragmites australis. All species of Tugay
vegetation are drought-enduring and salt-tolerant (Zhou et al., 2010); how-
ever, as phreatophytes their roots need continuous contact to groundwater
for their growth and survival (Thevs et al., 2012). The groundwater regime
is regulated by Tarim river discharge which drives the region’s ecology, in-
cluding vegetation responses to soil water availability. No major silvicultural
management operations have been carried out and the forest can be consid-
ered to be in a semi-natural state.

In recent years, construction measures have been carried out to protect river
banks and control the course of the river bed. Numerous retaining weirs con-
trol the inflow and outflow in strategic river stretches while breakthroughs
shorten meanders and increase the speed of stream flow (Zhu et al., 2006).

4.2.2 Datasets

4.2.2.1 Satellite data

We obtained all available images recorded by the Thematic Mapper (TM)
sensor on board Landsat 5 and Enhanced Thematic Mapper Plus (ETM+)
sensor on board the Landsat 7 satellite, covering the two adjacent paths
141/142 on row 32 (see Figure 4.1). Because there were no image acqui-
sitions on our study area for 1999, we restricted our time series to all data
after and including 2000 until 2013. The Landsat images were downloaded
from the USGS Earth Explorer portal, provided as a surface reflectance data
product generated from the Landsat Ecosystem Disturbance Adaptive Pro-
cessing System (LEDAPS) (Masek et al., 2006). We excluded unwanted dis-
turbances such as clouds, cloud shadows and snow using the supplied Fmask
layers (Zhu and Woodcock, 2012). Data gaps, due to Scan Line Corrector
failures in ETM+ scenes, were filled for scenes recorded after May 31, 2003
(Scaramuzza et al., 2004). From a visual assessment, we did not find any re-
markable geolocation errors in the Landsat image stack. On average we had
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Fig. 4.1: Location of the study area at the lower reaches of the Tarim river Basin between
the Daxihaizi reservoir and the Tetema end lake in Xinjiang Uyghur Autonomous Region
in Peoples Republic of China. Longitudinal zones correspond to areas influenced by the
same discharge event: from Daxihaizi reservoir until Karday gauging station (zone A),
from Karday until the Arghan gauging station (zone B) and from Arghan gauging station
until the Tetema end lake (zone C).

275 Landsat TM/ETM+ images available (see figure A.5). We computed
the NDVI from the pre-processed surface reflectance layers. This vegetation
index is sensitive to chlorophyll and sufficiently stable to permit meaningful
comparisons of seasonal and inter-annual changes in vegetation growth and
activity (Huete et al., 2002).

4.2.2.2 Hydrological data
Discharge data were provided by the Tarim Basin Water Resources Com-

mission. Discharge water volumes were collected at four gauging stations.
The Karday station is located on the Chiwinkol river while Arghan, Korghan
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Table 4.1: Ecological water deliveries to the lower reaches of the Tarim river. Discharges
with an asterisk (*) were interrupted, the duration is specified for the actual days with
discharge. Data are provided by Tarim Basin Water Resources Commission.

Delivery Start date End date Duration Discharge volume Section

(dd.mm.yy)  (dd.mm.yy) (days) (x 107 m?) reached
I 14.05.2000 13.07.2000 61 9.9 Karday
ond 03.11.2000 14.02.2001 104 22.7 Arghan
3rd 01.04.2001 17.11.2001 97 & 67 18.4 & 19.8 Arghan
4th 20.07.2002 10.11.2002 114 29.3 Tetema
5th % 03.03.2003  07.11.2003 131 & 56 25&9 Tetema
oth = 22.04.2004 15.09.2004 64 & 46 10.2 & 23 Tetema
7th 18.04.2005  02.11.2005 32 & 65 52&23 Tetema
gth 25.09.2006  30.11.2006 66 23.3 Korghan
gth 15.10.2007  21.11.2007 38 5.0 Karday
10t 12.05.2009  20.06.2009 39 6.0 Karday
11t 25.06.2010 11.11.2010 139 36.4 Tetema
12th = 07.01.2011 23.11.2011 19 & 151 2.8&13.6 Tetema

and Tetema are on the main Tarim river (see Figure 4.1). Between May 2000
and November 2011 there were twelve water diversions with a total volume
of about 28 x 108 n? (Aishan et al., 2015). Because of the quick infiltra-
tion into the dry river bed, no more then seven water deliveries reached the
Tetema end lake (accounting for ~ 68 % of the total water volume) (Abay-
dulla et al., 2012). In 2008 the upstream inflow into the Daxihaizi reservoir
decreased dramatically, with the consequence that no water could be deliv-
ered to the lower reaches during this year (Sun et al., 2011). Details of the
delivery timing, duration, volume and gauging stations reached are provided
in table 4.1.

4.2.2.3 Land cover data

In order to restrict the time series analysis to Tugay vegetation areas only,
we developed a land cover map by means of a Random Forest classifier
(Breiman, 2001). The land cover classification was performed in Google™
Earth Engine, a geospatial data analysis platform designed for parallel pro-
cessing using Google’s computing infrastructure (Padarian et al., 2015). The
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input parameters used for the Random Forest classifier include the number
of decision trees to create per class (300), the number of variables per split
(v/45), minimum size of a terminal node (1), out-of-bag mode (true) and
the fraction of input to bag per tree (0.5). The classification was based on
a Landsat 8 image stack consisting of five nearly cloud free (<1 %) images
from April 24, 2013; April 11, 2014; May 29, 2014; September 18, 2014;
and September 5, 2015. Forty-five predictor variables were drawn from the
spectral data of the first seven bands (band 1 - band 7) plus an additionally
created NDVI (Rouse Jr et al., 1974) and SAVI (Huete, 1988) layer for each
image. Reference data were obtained for 502 samples from Digital Globe via
Google Earth, covering all six land cover classes (see Table A.3). Reference
data were split randomly into training (60%) and validation (40%) sets prior
to the classification. To assess the accuracy of the classification, we used a
confusion matrix (Stehman, 1997).

4.2.3 Change type analysis

4.2.3.1 NDVI time series preparation

To perform a breakpoint and trend detection analysis with the BFAST algo-
rithm, it was necessary to transform the non-equidistant Landsat TM/ETM+
NDVI data into an equidistant time series format. The following steps as-
sume a NDVI value y; recorded at non-equidistant dates x;.

First step we created a synthetic daily regular time series object, includ-
ing each measured NDVI value (y;) at the recorded time (X;). Second, we
replaced missing values between measured NDVI records with the robust
periodic seasonal trend decomposition using Loess (STL) (Cleveland et al.,
1990). The STL starts after the point number k of the time series, and is
processing until the point number N-k, where N is the number of observed
points of the time series. Finally, we aggregated the daily NDVI time series
to a mean 16-day time interval product with a frequency of 23 observations
per year.
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4.2.3.2 Breakpoint detection

The magnitude and timing of abrupt changes (breakpoints) in the 16-day
Landsat time series were detected using the BFAST algorithm, as imple-
mented in the bfast package version 1.5.8 (Verbesselt et al., 2010a,b) in R,
version 3.2.0 (R Core Team, 2015). BFAST is able to decompose time series
into trend, seasonal, and remainder components, as well as detect and char-
acterize abrupt changes within the trend and seasonal components. BFAST
allows trend changes to be recognized within the time series (assuming that
non-linearity can be approximated) by fitting a piecewise linear model (Ho-
rion et al., 2016).

In our research, BFAST was run using the dummy seasonal model, which
was implemented in Verbesselt et al. (2010b) to fit the seasonal component
and find trend changes (rather than temporal shifts) in land surface phenol-
ogy (Watts and Laffan, 2014). The BFAST algorithm has an important con-
trol parameter (h-parameter) which determines the potential number of de-
tectable breaks within the time series. The parameter defines the minimum
period to fit a piecewise linear segment in the trend model (Verbesselt et al.,
2010a). Ideally, & is small enough to detect significant change but still large
enough to get reasonable estimates from the linear regression model in each
segment. We fixed the h-parameter at ! /g, allowing the minimal segment size
between detected breaks to be 2!/, years (equivalent to ~52 observations).
The maximum number of breaks was set to five while the critical signifi-
cance level (&) for the detection of breakpoints was set to 0.05.

4.2.3.3 Trend shift derivation

For each pixel, the BFAST method returned: (a) intercepts and slopes of
trend segments, (b) magnitude and timing of breakpoints and (c) the confi-
dence intervals of the breakpoint timing. Features of (a) and (b) were com-
bined and further analyzed in order to characterize the timing and frequency
of changes. According to the main trend and break characteristics we divided
each time series into one out of six trend shift classes, which are labeled as
follows: Monotonic Increase, Monotonic Decrease, Interrupted Trend Type
I (Interrupted TT1I), Interrupted Trend Type 2 (Interrupted TT2), Reversed
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Trend Type 1 (Reversed TT1) and Reversed Trend Type 2 (Reversed T12)
(see Fig. 4.2).

Monotonic Increase Monotonic Decrease

40 B0 B0 1000 1200

Monotonic Trend
w w0 o 10w 120

2000 2002 2006 2006 2008 2010 2012

Interrupted Trend Type 1 (TT1)

Interruption Trend
40 o0 a0 1000 1200 1400
0 o0 a0 1000 1200 1400

2000 2002 2006 2006 208 2010 2012 000 2002 2004 2006 2008 2000 2012

Reversed Trend Type 1 (TT1) Reversed Trend Type 2 (TT2)

Reverse Trend
20 400 00 800 1000
200 400 600 500 1000

2000 2002 2004 2006 2008 2010 2012 2000 2002 2006 2006 2008 2010 2012

Fig. 4.2: The classification scheme used here has been adapted from de Jong et al. (2013)
and Horion et al. (2016). Top: Time series with a significant (p < 0.05) Monotonic Increase
(left) or Monotonic Decrease (right) without breakpoints. Middle: Time series with a
trend interrupted by a breakpoint. Trend segments have the same direction. Positive trends
before and after the breakpoint are labelled as Typel, while negative trends before and
after the break are classified as Type 2. Bottom: Time series with a Reversed Trend marked
by a breakpoint. Trend segments have opposite directions. Decreasing trend followed by
an increasing trend is labelled as Type 1, while a positive trend followed by a negative
trend is logged as Type 2.

4.2.4 Analysis of the BFAST algorithm

BFAST’s ability to recognize disturbance and recovery events was evalu-
ated by comparing the timing of trend shifts with the timing of known river
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discharges. River discharge is the main driving force of the Tugay vegeta-
tion life-cycle. The rise of the groundwater level is highly dependent on the
plant’s distance to the river channel. The same applies to the reaction of the
vegetation on the improved groundwater situation. The response of the veg-
etation might be delayed by several months. A sudden positive change in
the NDVI time series is regarded as vegetation response to river discharge,
triggered by the plant’s groundwater access. In terms of the six established
trend shift classes, we associated the positive response with Interrupted &
Reversed TT1. In periods with permanently absent water discharges, we ex-
pected a decreasing NDVI trend and thus Interrupted & Reversed TT2. The
exact timing of water transfers was unknown for each pixel location. There-
fore, we related the start dates of each river discharge with the time of the
trend shift events, within a transverse corridor of 1.5 km to the river. For each
vegetation and trend shift type we produced a response curve (smoothed gen-
eralized additive model - GAM) showing the temporal delay in relation to
the river distance.

4.3 Results

4.3.1 Land cover classification

There was a total of about 1.25 million ha land classified, 93.74% of which is
desert land. The forest area covers about the same area as grassland (12,400
ha, or 1%), while shrubland covers around 24,600 ha, or 2%. Agriculture
and water surfaces share around 2%.

Our land cover classification meets the criteria of Anderson (1976), who
suggests a minimum level of interpretation accuracy of at least 85% and
about equal interpretation accuracies among classes. We achieved an over-
all accuracy of 86.13% (kappa accuracy: 82.11%), and none of the classes
had a producer or user accuracy below 77%. The results of the land cover
classification are displayed in a map in figure A.6. The confusion matrix for
the validation of the Random Forest classification is listed in table A.4, and
includes also training accuracies (see Table A.S).
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Table 4.2: Proportions of statistically significant changes of vegetated areas.

Total area sign. change
Land cover ha ha (%)
Shubland 24,590 23,174 (94.2)
Forest 12,494 11,963 (95.7)
Grassland 12,434 9,144 (74.0)
Sum 49,518 44,281 (89.4)

4.3.2 Tugay vegetation dynamics

Approximately 89.4% of the total natural vegetated area (49,518 ha) ex-
perienced significant (p < 0.05) vegetation productivity changes between
2000 and 2013 (see table 4.2). Around 10.6% (5,237 ha) of the vegetated
area remained in a stable steady-state condition. The most frequently re-
vealed break rate in our study was for a single breakpoint (see Table 4.3).
The number of breakpoints decreased nearly linearly with each rank posi-
tion. However, we found in 12% (= 2,800 ha) of shrubland no evidence of
abrupt NDVI changes. Thus, among the three vegetation classes, shrubland
had the largest area without obvious alterations in the above ground biomass
since 2000. Grassland had the largest share of its area with three breakpoints
(21.2%, with shrubland and forest ~ 13%). Within the whole study area,
only 0.6 ha had five breakpoints detected. We observed on average (incl.
area with no breaks) 1.55 breakpoints per pixel (shrubland x = 1.47; forest x
= 1.57; grassland x = 1.74).

In figure 4.3 (a complete map is provided in figure A.7) we can observe a
general trend of fewer breakpoints in areas further away from the main river
channel. Vegetated domains in the immediate vicinity of flooding areas and
meandering river sections show more breaks. However, areas with little or
no discharge near river side arms show less dynamic vegetation responses as
well. Locations with four or more breaks were found mainly on submerged
sites, stocked mostly with Phragmites australis.
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Table 4.3: Area ratio for the number of breakpoints in the main land cover classes.
Weighted percentage ratio (%) was analyzed for each land cover class individually. Aver-
age breakpoint number per pixel is 1.55.

Shrubland Forest Grassland Total
Nbr of Area % of Area % of Area % of Area % of
breaks (ha)  class (ha)  class (ha)  class (ha)  class
None 2,791.3 120 950.9 7.9 578.5 6.3| 4,320.7 9.8
One 990100 47 R 50077 42.0 35106 3R 41 1844718 417
0 3750 7500 m

Nbr of breaks ; — o .

[ ] No break

I One

I Two

Il Three

I Four

[ Five

Land cover

[ Desert e, i . g s

Il Water 0 3750 7500 m 0 2500 5000 m

Fig. 4.3: Nr. of breaks. Inlet location is shown in figure 4.4.

4.3.3 Trend shift succession

After transforming each trend and break succession into a corresponding
trend shift class (see Fig. 4.2), we note from the relative frequency percent-
ages in table 4.4 that single (one trend shift) positive trends prevail. The In-
terrupted TT1 was the most dominant for all vegetation land cover classes. In
fact, an increasing trend with a setback was detected in more than /3 of the
forest, shrubland and grassland area. Monotonic Increase without an abrupt
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interrupting event was observed in approximately 10.9% of the shrubland
area. Single decreasing trends, either monotonic or interrupted, were found
in less than 2% of the vegetated area. However, Monotonic Trends were pre-
dominantly observed near cut-off meanders or dry side arms further towards
the desert (see figure 4.4). The median slope of the monotonic trend is 0.012
NDVI units, or 26% (shrubland 0.0115; forest 0.0163 and grassland 0.0097
NDVI units).

We observed succession dynamics with two consecutive trend shifts in about
14,685 ha, or !/3 of the study area. Combining the trend shift successions
into sequences revealed eight possible combinations (the middle section in
Table 4.4 shows seven sequences with area percentage > 1). The possible
combination of sequences was limited, since the second trend segment of
the first trend shift must have the same direction as the first trend segment of
the following trend shift. In the supplementary material figure A.9 lists the
eight possible sequence combinations and their distribution over time.

Two successive Interrupted TT1 occurrences were the most prevalent in
shrubland (11.8%) and forest (15.6%) areas. We regard this as a continu-
ing positive NDVI trend, which was interrupted by two significant setbacks
more than two and a half years apart. It is important to note that more than
16.1% of the grassland area experienced a sequence of two Reversed Trends,
starting with type 2 followed by type 1. This indicates a positive trend at the
beginning of the study period, followed by a disturbance event and an asso-
ciated reversed trend (now negative). This was followed by a second break,
where the trend switched again into a positive direction at the end of the
study period. All species in the grassland class (mainly A. sparsifolia, K.
caspica and Phragmites) are perennial and herbaceous, with their above-
ground components dying back in winter. Discharge events with a short du-
ration and/or low volume may not be sufficient to stimulate physiological
responses. Thus, grassland species do not grow new entire shoots each sea-
son, resulting in a temporally negative trend. However, the sequence has a
positive final trend segment, indicating a grassland recovery in the most re-
cent years.

Approximately 6,356 ha had a sequence of three trend shifts in the NDVI
time series. The most significant, with respect to its area, was the sequence
Reversed TT2 - Interrupted TT2 - Reversed TT1 (in total 2,285 ha). This se-
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Table 4.4: Area (ha) and relative frequency (%) of up to three trend shift sequences are
shown. Relative frequencies were derived from the total number of times each trend shift
was observed divided by the total area of the land cover class in which observations were
made. The trend shift color schema match class labels in fig. 4.2. Trend shifts with < 1%
are not shown.

Trend Shift Shrubland Forest Grassland
(ha) (%) (ha) (%) (ha) (%)
Monotonic Trends
) 2531 10.9 871 7.3 498 5.4
) 260 1.1 80 v 80 9
Interruption Trends
@) 7990 34.5 4044 33.8 3145 34.4
@) 463 2.0 187 1.6 88 1.0
Reverse Trends
O 468 2.0 256 2.1 95 1.0
O 988 4.3 540 4.5 183 2.0
Succession of Two Trend Shifts
020 214 9 71 .6 88 1.0
@-20 350 1.5 162 1.4 331 3.6
0O-20 2745 11.8 1863 15.6 431 4.7
O-20 237 1.0 102 9 59 .6
O=20 765 33 424 3.5 262 2.9
O=20 1800 7.8 931 7.8 1470 16.1
O=20 1199 5.2 727 6.1 256 2.8
Succession of Three Trend Shifts
02020 192 .8 81 Wi 128 14
0O=20-20 239 1.0 117 1.0 77 .8
0O=20-20 236 1.0 133 1.1 117 1.3
O=20-20 386 1.7 338 2.8 163 1.8
O=20-20 809 35 461 39 1015 11.1

quence was similar to the one in the previous section, with the difference that
the negative period was prolonged and another Interrupted TT2 was inserted
in the middle. Grassland was the most affected by this effect (11.1%).
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Fig. 4.4: Trend shift frequency in three close up zones.

4.3.4 Trend shift timing and longitudinal linkages

Figure 4.5 presents the temporal occurrence of single trend shifts. The preva-
lence is normalized by zone areas along longitudinal river sections (zone
A-C) and land cover classes (% area weighted). Shrubland has the largest
share of natural vegetation with a single trend shift. Shrubland areas de-
crease sharply from zone A (5,700 ha or 58%) towards downstream areas
(685 ha or 7%). In shrubland the Interrupted TT1 predominated, especially
at the end of the time series. About 80% (aw) of the measured type 1 class
was recorded after summer 2009 within zone A (90% in zone B). We ob-
served the Interrupted TT1 in the southern tip of zone C in approx. 70 ha of
the shrubland after 2011, due to the shortening of a meander and associated
river course amendments (N 39°37.004’ E 88°26.588").

In forest and grassland areas, the Interrupted TT1 class also occurred with
higher frequency at the end of the time series. The most frequent occurrence



92 4 Revealing trend shift dynamics using Landsat time series
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Fig. 4.5: Area weighted percentages (%) of single trend shift occurrences. Numbers are
normalized by land cover class and river sections. Each facet grid sums to a total of 100%.
Temporal occurrence was aggregated from the 16 day interval to a quarter of a year (3
months). Black rug points represent the water deliveries with volumes > 1 M m?.

of type 1 appeared in grassland in winter 2011 with > 60% (zone B). An
example time series with the Interrupted TT1 in summer 2010 is shown in
figure 4.7 (top). Reversed TT2, the second most common class, appeared
regularly in small quantities. Interrupted TT2 occurred in zone A on a regu-
lar basis, in zone B & C only between spring of 2002 and spring 2004 and
again very rarely between 2008 and 2009. In zone C, grassland had more
area weighted percentages of Interrupted TT2 than forest or shrubland.

Figure 4.6 presents the temporal occurrence of twofold trend shifts. About
5,500 ha of trend shift occurrences were found in winter of 2009 and spring
of 2010 (and and additional 2,964 ha in spring 2011). In summer 2003, 2,319
ha of the study area had a trend shift. Notably, trend shift occurrences in zone
B included approximately 60% of shrubland, 55% of forest and up to 45% in
grassland. This sequence of a double Interrupted TT1 occurred in the com-
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Fig. 4.6: Area weighted percentages (%) of twofold trend shift occurrences. Numbers are
normalized by land cover class and river sections. Each facet grid sums to a total of 100%.
Temporal occurrences were aggregated from the 16 day interval to a quarter of a year (3
months). Black rug points represent the water deliveries with volumes > 1 M m?.

bination 2006 and 2010 in all land use classes, with 912 ha (see figure 4.7
- middle). This sequence Reversed TT2 - Interrupted TT2 - Reversed TT1
appeared in the combination 2004 - 2007 - 2011 in all land use classes most
frequently, with 538 ha (see Figure 4.7 - bottom row).

4.3.5 Occurrence of trend shifts relative to known water
deliveries

The evaluation of the BFAST algorithm was based on the comparison of the
induced water discharge events versus the timing of recognized trend shifts.
Because river discharge is not a specific event with immediate impacts such
as fire or insect infestation, there is an expected temporal delay of vegetation
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Fig. 4.7: BFAST results for the most prevalent trend shift classes in the study area. The
colour coding for the trend shifts sequences is according to figure 4.2. Y axis represents
NDVI while x axis represents time in the 16day Landsat time series.

response to the water delivery (Hao and Li, 2014).

The tenth (2009) water delivery had the strongest effect on the vegetation,
most likely due to the complete absence of water in 2008 (Table 4.5). Ap-
proximately 28% of all detected trends shifts occurred with or after the tenth
water delivery. In at least four consecutive months (6 to 9 months time lag),
the vegetation corresponded with more than 5% of all trend shifts. In the
drought year 2008, considerably less trend shifts were recognized. Shrub-
land (mainly 7amarix) had the biggest drought resistance with 2.1% positive
(Interrupted TTI) trend shifts. Forest (mainly Populus) and grassland fol-
lowed thereafter with 1.8% and 1.5%.

Water deliveries and recognized trend shifts exhibited the strongest relation-
ship with a time delay between three and six months. In this period, more
than half (in total 61%) of all identifie d trend shifts occurred. In years when
water deliveries were interrupted, the vegetation response almost stopped.
However, BFAST was also unable to detect a declining response in vegeta-
tion vitality. With the continuation of the water delivery delayed trend shifts
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Table 4.5: Percentages (%) of all recognized trend shifts listed according to the determi-
nant water delivery and the observed lag time (per month). Values are rounded to integers.
Underlined values highlight the continuation of interrupted vegetation response due to
interrupted water deliveries.

Delivery Time Lag (month)
0O 1 2 3 4 5 6 7 8 9 10 11 | Sum
------------ percentages - -----------

4th 1 1 1 1 1 1 2 1 9
5th s 1 2 2 6 2 2 1 1 1 18
6th 1 1 1 2 1 6
7th 1 1 1 1 1 2 1 2 1 11
gth 1 1 2 2 3 1 1 11
gth 1 4 3 1 1 1 1 1 13
1ot 1 1.9 7 6 7 32

Sum 26611111116127963|

were once again detected. This phenomenon can be observed between the
fifth and seventh water transfer (underlined values in Table 4.5).

The Tarim Basin Water Resources Commission registered discharge data for
2000/2001 as well as 2011; however, at these times no breaks were detected.
It is very likely that trend shifts would have been identified for these water-
ing events if a) the Landsat time series would have started earlier and lasted
longer or b) if the water deliveries would have been further away from the
starting and end point of the time series. As Watts and Laffan (2014) pointed
out, while the & parameter controls the minimum segment length between
potential breaks, it also determines a minimum distance from the start and
the end of the time series where breaks cannot be detected. The / parameter
applied here was too large to allow a break recognition before the summer
of 2001 and after the summer of 2011.

In addition to the general delay of vegetation response to water deliveries,
table 4.5 shows a steady increase in delay times. While the response starts
immediately for the first water deliveries (4" and 5™ water delivery), vege-
tation responses of later water deliveries are strongest at month 3 to 7. This
could be interpreted as a saturation effect of the vegetation, which had al-
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ready responded before.

River discharge is the main driving force of the Tugay vegetation life-cycle.
Water conveyance influences the groundwater depth, which decreases with
increasing distance from the river (Chen et al., 2010; Hao et al., 2010). The
transverse distance effect is visible in figure 4.8, especially for shrubland
and forest areas. Using the example of a positive response, such as the In-
terrupted TT1, we observed an increasing time lag (1 - 1.5 months) with
increasing proximity to the river (up to one kilometer). The type Rever-
sal TT1 shows almost no transverse effect in forest and shrubland, and a
less-pronounced effect in grassland. This decreasing sporadic occurrence of
grassland with increasing distance from the river causes the confidence inter-
val to drift apart, allowing no firm statement regarding its transverse effect.

Shrubland Forest Grassland

=== Interrupted Trend T2
Interrupted Trend T1
Reversal Trend T2

10 Reversal Trend T1

Time lag (month)
©

[
‘ /'“v/_ //"/ \/\/V\/

0 500 1000 1500 0 500 1000 1500 0 500 1000 1500
Distance to water (m)

Fig. 4.8: Trend shift response curve depicting the temporal delay (y-axis) in relation to
the river distance (x-axis). Response curve is based on a smoothed generalized additive
model. The grayed out confidence interval had a level of 95%.
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4.4 Discussion

The overall results of this study reveal trend shift dynamics after twelve
years of water deliveries in a semi-arid forest ecosystem. A fourteen year
Landsat TM/ETM+ time series enabled a breakpoint detection tool, such as
BFAST, to detect major ecological developments for different species and
reveal varying spatial pattern and trend shifts.

Our results show increased vegetation growth in times when water deliver-
ies were conducted. In turn, the impact of absent discharge had a substantial
effect on the prevalence of trend shifts. Vegetation showed resilience after
a drought year (2009) with above average growth in subsequent years. The
reaction of the vegetation was more pronounced in the upper and middle
zones and less apparent in the lower section. This longitudinal effect can be
explained by the fact that at least five out of the twelve water deliveries did
not reach the lower section. Transverse impacts showed a delayed growth
response (~ six month) in areas adjacent to the river channel. The time lag
increased by around one month for every 500 m from the river towards the
desert.

Previous change analysis studies in the area used NDVI differencing (Kong
et al., 2009) and seasonally integrated NDVI (SINDVI) (Sun et al., 2011) al-
terations as evidence for the detected vegetation changes. Kong et al. (2009)
determined an average NDVI increase by 30% to have occurred, based on bi-
temporal Landsat TM images from 1999 and 2004. Sun et al. (2011) found
a mean SINDVI value increase of more than 25% between 2001 and 2007
with MODIS data. Our results are in accordance with the above listed stud-
ies. For monotonic trends without breakpoints, an average NDVI increase of
26% was registered. However, our usage of all available TM/ETM+ images
decreased the uncertainty in respect to reflectance variability and different
acquisition characteristics.
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4.4.1 Response effects of vegetation types

As expected for a highly degraded and fast changing environment, a high
percentage of significant changes could be detected in all differentiated
vegetation classes. However, grassland seemed to undergo more significant
changes (see Table 4.3) than shrubland and forest, where around ' /4 of the
area experienced a series of three or four rapid responses. This can be ex-
plained by the different strategies of the vegetation types according to the
competitors — stress tolerators — ruderals (CSR) scheme of Grime (1977).
Although all species in this region have to be stress tolerant, there is a ten-
dency for the grassland types, as perennial plants, to be more ruderal. There-
fore, more area is quickly vegetated and then abandoned when water scarcity
increases, which explains the overall high percentages of change for grass-
land. Shrubland and forest are clearly more stress tolerant, with a small ten-
dency of the dominant tree species P. euphratica to out-compete the shrubs
(Tamarix) with increasing water availability. This can be seen in the slightly
higher numbers of the forest class for two or three breaks (see Table 4.3) of a
positive trend shift (see Table 4.4) compared to shrubland. However, Hiiseyi-
nova et al. (2013) emphasize that species may change strategies within CSR
space due to habitat characteristics, nutrient availability, light conditions,
and intensity of disturbance factors.

In times of drought, shrubland’s Tamarix had a greater tolerance than P. eu-
phratica. In 2008, when the water transfer was absent, Tamarix generally
had more positive trend shifts than P. euphratica. This suggests that Tamarix
has a higher water use efficiency which is in accordance with Cao et al.
(2011) and Xu and Li (2006).

Although heavily disturbed by other external factors, such as the cyclic de-
foliator Apocheima cinerarius (see Gértner et al., 2016), the positive trends
in biomass development for forest are still increasing, especially in the lower
reaches of the Tarim. This indicates that a stable water delivery over more
than one decade has had a positive cumulative effect.

Most of the established river regulations induced delayed effects on plant
growth. The closure of river tributaries adversely affected hinterland grass-
and shrubland vegetation. Sidearm abandonment (for example near

N 40°25.327'E 88°7.951" or N 40°29.298' E 87°53.050") reduced the hy-
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drologic connectivity and hence the water supply between the main stream
and the floodplain. We found substantially reduced growth in the immediate
vicinity for two to four years after regulations were implemented.

Positive effects were prevalent near artificial river straightening and ad-
ditional river-bank stabilization. These interventions counteracted any re-
newed meandering. Higher flow rates increased flooding frequencies espe-
cially below the straightened sections. Shrubland (7amarix) in these loca-
tions benefited from the regulation, and generally showed more and consis-
tently positive trend shifts. In contrast, the shrubland alongside the drained
meander reacted significantly less often with mixed trend shift directions.
At least eight retaining in-channel weirs were located along the Tarim lower
reaches. No significantly increased occurrences of vegetation shifts occurred
either upstream or downstream of the weirs.

4.4.2 Longitudinal and transverse trend shift effects

Longitudinal and transverse effects notably weakened the impact of the wa-
ter discharge on the vegetation. All trend shifts occurred most frequently
in zone A and decreased linearly towards zone C for shrubland and forest.
Grassland had equally high percentages of trend shift occurrences in zone
A & B (~ 45%). We found two plausible driving forces for this effect. The
most obvious force is the longitudinally decreasing groundwater table (Chen
et al., 2010; Xu et al., 2007; Chen et al., 2004). The longitudinally declining
groundwater table causes not only reduced vegetation coverage (see Figures
4.5, 4.6), density (Chen et al., 2008) and richness (Chen et al., 2006a), but
also affects the vegetation’s vulnerability.

The second factor was determined to be the age structure for P. euphrat-
ica. Due to mostly unfavorable soil conditions, generative reproduction oc-
curs only infrequently (Tao et al., 2008; Zhao et al., 2006) and, only in the
vicinity of the river channel. The seedlings germinate and grow a deep tap
root in the shelter of the shrubs, and soon over-top them. Root suckers never
develop a tap root but utilize the horizontally stretching root of their par-
ent trees (Wiehle et al., 2009). Without substantial river course changes, the
forest rejuvenates only along the river (Thevs et al., 2008). The remaining
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forest grows to maturity, individual trees die and no young saplings grow up
to replace them. Hence, the age distribution of P. euphratica gallery forest
increases transversely (Westermann et al., 2008). Over time, the age-related
tree productivity changes and the adaptability declines towards drought
events. We argue therefore that the P. euphratica age structure is a factor
for fewer responses in the southern zone C due to its reduced vitality.

4.4.3 Occurrence of delayed trend shifts relative to known
water deliveries

Our third research question was related to the intensity of the relationship
between river discharge and lag in the vegetation response. We showed evi-
dence that recorded water deliveries had a strong positive impact on the veg-
etation development. Evidence for this can be seen in the average increase
of the NDVI between 2000 and 2013. However, when looking at the trend
shifts for the detected breaks (see Table 4.5) the cumulative positive effect
of the water deliveries becomes apparent. Often, the positive interrupted or
reversed trends (such as Interrupted TT1 or Reversed TTI) which account
for most changes for all vegetation types can be explained by the absence of
the upstream water delivery (as was the case in 2008 - see Table 4.1). These
trends appear more frequently after such a drought period, as can be seen
for the year 2009 (see Fig. 4.5 and Fig. 4.6). Liu et al. (2014) performed a
post-classification change detection in the area and recorded an above aver-
age positive vegetation change in 2009 as well.

Trend shifts exhibited the strongest relationship to water deliveries with a
time delay between three and six months (60%). Around 37% occurred be-
tween seven and eleven months. This seems quick compared to time lagged
tree ring responses of 1-2 years for P. euphratica (Deng et al., 2015; Yu
et al., 2012). Wang et al. (2007) noted in case of P. euphratica, that plant
performances improved quickly with the water releases. This response was
measured in increased eco-physiological parameters such as the number of
leaves per current year shoot, the shoot-length and the leaf-blade size. Be-
cause the NDVI signal correlates strongly with above-ground net primary
productivity (Pettorelli et al., 2005), the TM/ETM+ sensor recorded the
biomass changes as they occurred.
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An adequate vegetation response was not detected after every water deliv-
ery. The sixth water transfer in 2004, for example, had a volume of more
than 3 x 108 m> meters, which was diverted during two periods in spring and
late summer. The vegetation response after the delivery remained by approx.
4%, which is far below the expected reaction when compared to other water
deliveries. One possible reason for this phenomena is the fact that the NDVI
increased the year before (2003) more significantly than in 2004. BFAST
placed the breakpoint in 2003 where it recognized a NDVI burst (16% of all
breaks). However, due to the & factor, the next possible break at the same
location is a minimum of 2.25 years after 2003, and therefore the 2004 wa-
ter delivery may have missed out on proper vegetation responses. The same
issue was reported by Watts and Laffan (2014) in their analysis of the semi-
arid Paroo region (Australia) as well.

The size of the h parameter concurrently determines the period at the end of
the time series in which no breaks can be detected. Further research should
consider alternative algorithms such as BFAST-Monitor (Verbesselt et al.,
2012) which was specifically built to overcome this limitation and allow
break detection at the end of time series.

4.4.4 Landsat time series and BFAST settings

Compared to conventional ground-based surveys, satellite image time se-
ries analysis offers an effective tool for assessing the state of vegetation at
a broad spatial scale (Kong et al., 2009). Landsat provided a sufficiently
long and dense time series for our study area. Our analysis generated a
plausible relation to known water deliveries. However, several shortcom-
ing need to be discussed. First, we excluded flooded areas in the analysis
by a simple threshold assumption. A pixel was excluded from the analysis
if it was covered with water for longer than 32 days. With this decision, we
excluded areas from the analysis which were affected by prolonged floods.
We wanted to ensure that breakpoints occur only due to rapidly increased
or reduced biomass growth and not because of floods and their associated
negative NDVI values.
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Second, we did not account specifically for possible land cover changes
within the study period and their possible impact on the trend shift analysis.
Wu and Cai (2004) observed only relatively slow and small land cover con-
versions in the lower reaches, while major land cover changes were found
by Zhao et al. (2013), mainly in the upper or middle reaches of the Tarim
River.

Finally, we tried to accommodate the ecosystem’s versatility by setting the
BFAST h parameter to !/, enabling each pixel in the time series to poten-
tially break at most five times. Early testing with similar 4 parameter settings
produced equivalent breakpoint quantities with slightly shifted time stamps
(< 2 month). This phenomenon was also observed by de Jong et al. (2011);
Watts and Laffan (2013, 2014) using similarly small / parameters.

4.5 Conclusions

We revealed trend shift dynamics in vegetation responses to ecological water
discharges using a fourteen year Landsat TM/ETM+ time series in a semi-
arid forest ecosystem in western China. We applied the BFAST trend and
breakpoint detection tool to identify major ecological break points for the
three main land use classes, namely shrubland, grassland and forest.

Our results show increased vegetation growth at times when water deliver-
ies were conducted. In turn, the impact of absent discharge had a substantial
effect on the prevalence of trend shifts. Vegetation showed resilience after a
drought year with above average growth in subsequent years. The reaction
of the vegetation was more pronounced in the upper and middle zones and
less apparent in the lower section of the river. This longitudinal effect can be
explained by the fact that at least five out of the twelve water deliveries did
not reach the lower section. Transverse impacts showed a delayed growth
response of approximately six month in areas adjacent to the river channel.
The time lag increased by around one month for every 500 m from the river
towards the desert.

We demonstrated that trend shifts in vegetation index trajectories give useful
insights to forest dynamics. We recommend the use of satellite image based
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time series analysis in order gain further knowledge in forest disturbance
and recovery dynamics, retrospectively judge past decisions and allow for
better future decisions among the new generation of restoration managers.
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5.1 Summary

The importance of forests, trees outside forests and shrubs in semi-arid zones
cannot be underestimated. They are essential constituents of fragile ecosys-
tems, made more so by periodic droughts and increasing overexploitation
of meagre resources (Malagnoux, 2007). However, forests, trees and shrubs
play a significant role for human livelihoods in semi-arid zones because they
maintain suitable conditions for agriculture, prevent soil erosion, offer wa-
tershed protection, provide habitats for animals, store carbon, and mitigate
climate change (Bonan, 2008; Hartanto et al., 2003; Postel and Thomp-
son, 2005). It is therefore very important to map and monitor for any forest
change that may take place whether due to natural causes or human interven-
tion (Jones and Vaughan, 2010). In order to mitigate the negative impacts of
deforestation and disturbance of forest, tree and shrub formations, we have
to enhance our understanding of the whereabouts of forest change and the
causality behind the underlying processes and drivers.

In this regard, remote sensing is the most important tool for detecting and
labeling of forest changes and predestined for long term forest monitoring.
However, the detection of forest change is strongly associated with the level
of detail desired and the manner in which images of a scene change, as a
function of their spatial resolution (Woodcock and Strahler, 1987). Here,
spatial resolution is used analogous to the scale of observations. Besides the
issues related to spatial scales within the domain of remote sensing, ma-
jor challenges remain, especially in regards to mismatches of scales when
remotely sensed observations are combined with sample based field obser-
vations.

This dissertation enhances the monitoring of forest dynamics in semi-arid
zones and examines the suitability of multi-sensor time series to assess for-
est disturbance and regrowth in the lower reaches of the Tarim river in west-
ern China. The main focus was on the applicability of very high, high and
medium spatial resolution satellite imagery to improve forest disturbance
and forest regrowth monitoring.

This dissertation contains three core research chapters (Chapter 2—4), each
addressing one research question (see section 1.5). In the following section,
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each research question is discussed and answered. Thereafter, my main con-
clusions are drawn and future research niches are identified.

Research question I (Chapter 2)

Can we observe individual tree crown changes with very high spatial
resolution satellite imagery in semi-arid forests?

Numerous methods have been developed and tested, especially in urban ar-
eas, to observe with very high spatial resolution satellite images individual
tree crown changes (Ardila et al., 2012a,b; van der Sande, 2010). However,
studies of tree crown changes in semi-arid Central Asia or western China are
absent. Possible reasons are a) difficulties in providing historical field mea-
sured tree crown validation data, and b) the relatively high purchase price
for very high spatial resolution imagery make large or frequent acquisitions
unlikely. A typical archived (previously acquired) scene will cost at least
$20 km~! with a minimum purchase of 25 km? !

In chapter 2, I described a region growing approach in order to identify indi-
vidual P. euphratica trees, delineate their tree crown areas and quantify tree
crown diameter changes between QB (2005) and WV2 (2011) data. Results
were compared to 59 field measured reference trees.

We successfully observed individual tree crown changes with VHSR satel-
lite imagery. The applied OBIA approach proved to be applicable in QB and
WV2 scenes of a semi-arid riparian forest producing moderate results. The
findings confirmed a positive tree crown growth and suggest a crown diame-
ter increase of 1.14 m, on average. Crown diameters from manually digitized
crowns corresponded better with field measurements than automatically ex-
tracted crowns (Table 2.4).

These findings underline the importance of field validation data. The ex-
clusive use of manually digitized data for validation would have signifi-
cantly overestimated the actual tree crown growth. The results additionally

! Digital Globe Imagery FAQ
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showed that higher spatial resolution images provided more accurate results
for tree crown change detection. Error measures for WV2 results (0.5 m pan-
sharpened) were lower than for QB (0.6 m pan-sharpened).

The availability of satellite imagery with VHSR and acceptable quality, in
terms of view angles, cloud cover and phenological condition, drive the fea-
sibility of change detection studies. Because of an ongoing gap (from 2006
onwards) in VHSR observations for my study site, I had to accommodate di-
rect tasking of WV2 image collection in order to close the gap and conduct
the study. Given the new data availability, the presented analysis is essen-
tially confined to a bi-temporal change detection with a six-year time inter-
val, which is eventually adequate to reliably detect canopy change (Coppin
and Bauer, 1995).

Research question II (Chapter 3)

Can a multi-sensor data fusion time-series improve forest disturbance
detection in semi-arid forests and which factors are most important?

Forest disturbance caused by insect infestation has numerous environmen-
tal impacts, including the elevated risk to reduced resistance towards other
stressors (e.g. drought, fungi). The riparian Tugay forest along the lower
reaches of the Tarim river experiences an annual disturbance by the defolia-
tor moth Apocheima cinerarius which feeds on 80-90% of the P. euphratica
leaves (see section 3.2.2). Depending on the infestation severity and the level
of degradation the majority of trees refoliate and thus recover to their pre-
disturbance state.

In chapter 3, I examined whether a series of fused RapidEye and Landsat
8 data can be used to detect forest disturbance and recovery with increased
accuracy in comparison to the original RapidEye time series. To start with,
the applied ESTARFM generated synthetic images at the spatial resolution
of RapidEye and the additional temporal resolution of Landsat 8 (Table 3.1).
Thereafter, defoliation and refoliation were mapped pixelwise based on rel-
ative NDVI difference calculations (Equation 3.1), at first only with Rapid-
Eye, after that using all observations within the time series. The accuracy



110 5 Synthesis

of the disturbance severity classes was assessed against ground reference in-
formation in form of field notes and 131 individual tree photos, highlighting
again the importance of in-situ data.

The study showed forest disturbance mapping, based solely on RapidEye,
underestimated the actual defoliation. Insect infestation severities were clas-
sified only at a moderate accuracy (Section 3.4.2). However, I identified the
considerably higher off-nadir view angles and low sun elevations as main
factor for the lower performances.

Overall mapping accuracies showed that the added data fusion images had
a significant positive impact on all analysed stages. Forest disturbance de-
tection, with added synthetic scenes, improved by ~23% when compared to
the original data set (Figure 3.8). The most important factor for the accu-
racy increase is the timing, rather than the number of images involved in the
analysis. Images which were recorded at the end of the insect disturbance
period, at the peak of the caterpillars feeding, performed best during the dis-
turbance detection. This stage was found particularly important for differ-
entiating between light, moderate and severe defoliation classes. Knowing
that observation timing is the key factor for forest disturbance monitoring is
a valuable asset, especially for image tasking requests. In order to lower the
costs of potential multiple tasking requests demands extra detailed image ac-
quisition planning, especially for commercial data products like RapidEye.
Considerations should balance the cost against the need for timeliness, the
width of the collection window and the level of required image quality (e.g.
cloud cover or tilt angle constraints).

Fine scale forest disturbance mapping in semi-arid riparian Tugay forests
demands high, or very high (see Chapter 2), spatial resolution imagery. The
sole use of Landsat 8 Operational Land Imager (OLI) sensor, with its 30 m
medium spatial resolution, does not provide the spatial detail for distinct pat-
terns and object discrimination (Arnett et al., 2015). But, the sensor is very
useful for data fusion applications due to two essential properties; a) the low
spatial fusion ratio of 1:6 (5 m RapidEye to 30 m Landsat) and b) because of
its high temporal resolution. The Landsat 8 satellite images the entire Earth
every 16 days in an 8-day offset from Landsat 7. The data collected are avail-
able for download, free of charge, within 24 hours of reception. ESTARFM
also functions with Landsat 7, and gives therefore high flexibility towards a
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possible near real time forest disturbance mapping as new observations of
either of the two sensors become available.

Overall, the presented work showed the first data fusion application between
RapidEye and Landsat 8 and exhibited therefore a useful alternative to the
regular Landsat/MODIS configuration.

Research question 111 (Chapter 4)

What were the rates and spatial patterns of Tugay vegetation trend
shifts in the lower reaches of the Tarim river since 2000?

Since the early 1960’s experienced the lower reaches of the Tarim river the
consequences of cropland mismanagement in combination with precipita-
tion deficits. The natural riparian Tugay forest degraded due to flow regime
changes linked to river regulations, dam constructions and increasing human
demands for water.

In the year 2000 established the Chinese government a EWCP with regular
controlled floodings to mimic the natural flood regime. The official aim was,
to recharge groundwater tables up to a level where the floodplain ecosystem
can revitalize and the Tugay forest ecosystem can be restored. The ecologi-
cal restoration of the degraded forest is critical for combating desertification
in this region. Locals and restoration managers are particularly interested in
understanding the response of these forest to recent restoration efforts and
increasing knowledge regarding their resilience.

In chapter 4, I used a 14 year Landsat TM/ETM+ NDVI time series to apply
the BFAST algorithm. The BFAST algorithm is capable to detect and char-
acterize abrupt changes within the trend component of the time series, also
known as trend shifts (see Figure 4.2). I mapped the distribution of forest,
shrub- and grassland classes and assessed the rates and spatial patterns of
trend shifts since 2000.

Along the lower reaches of the Tarim river, between the Daxihaizi reser-
voir and the Tetema end lake are 12,000 ha stocked with Tugay forest, an-
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other 12,400 ha are covered with Tugay grassland while 24,600 ha is Tugay
shrubland. The results of the trend shift analysis clearly showed significant
increased rates of forest, shrub- and grassland growth in times when water
deliveries were conducted (Figures 4.5 & 4.6). Positive interrupted trends
were most dominant (~34%) in all listed vegetation land cover classes. The
absent of discharge had a substantial interrupting effect on the prevalence
of trend shifts. However, vegetation showed resilience after a drought year
(2009), with above average growth in subsequent years. This was particu-
larly noted in 16% of the grassland area, which recovered after a disturbing
drought event.

Regarding the spatial patterns, I found more pronounced vegetation reac-
tions in the upper and middle zones and less apparent reactions in the lower
sections of the river catchment area. This longitudinal effect can be ex-
plained by the fact that at least five out of the twelve water deliveries did
not reach the lower section of the Tarim river (Table 4.1). Transverse im-
pacts showed a delayed growth response of ~six month in areas adjacent
to the river channel. The time lag increased by around one month for every
500 m from the river towards the desert.

Most of the established river regulations induced delayed effects on plant
growth. The closure of river tributaries adversely affected hinterland grass-
and shrubland vegetation. Sidearm abandonment reduced the hydrologic
connectivity and hence the water supply between the main stream and the
floodplain. I found substantially reduced growth in the immediate vicinity
for two to four years after regulations were implemented. Positive effects
were prevalent near artificial river straightening and additional river-bank
stabilization.

The overall results of this chapter reveal positive trend shift dynamics with
the implementation of the EWCP in a semi-arid forest ecosystem. A four-
teen year Landsat TM/ETM+ time series enabled a breakpoint detection
tool, such as BFAST, to detect major ecological developments for differ-
ent species and revealed varying rates and spatial pattern of trend shifts.

Restoration managers can use my presented findings in order to evaluate
whether water deliveries and river regulations have had their desired effect.
Furthermore, the results can help to identify suitable new areas for further
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restoration efforts. The carried out restoration measures made already great
contributions to revitalize the Tugay forest along the lower reaches of the
Tarim and thus slowing or even preventing further merging of the neighbor-
ing Taklamakan and Kuruk Tagh deserts.

5.2 Main conclusions and outlook

The objective of this dissertation was to analyse the usefulness of multi-
sensor time series for assessing forest dynamics, based on a case study of the
riparian Tugay forest ecosystem along the lower reaches of the Tarim river in
western China. The main aim was to contribute towards an enhanced semi-
arid forest monitoring through the implementation of a set of image analysis
methods under the use of multiple optical sensors. This section highlights
the main conclusions from the presented dissertation and lists overlooked or
under-studied topics for additional future investigations.

5.2.1 Multi-temporal remote sensing for forest monitoring

The earth is constantly recorded by satellites, which assist to monitor the
state and change of forest habitats especially over large areas. However, most
scientists are involded in short to medium-term research projects where they
can use the entire depth of satellite data archives, but often lack long-term
field-recorded validation data. The absence of historical field recordings
limits applicable analytical methods because of lacking validation options.
However, Vanclay (1995) and Allen et al. (2003) noted, long-term field stud-
ies are especially important for validation and to detect subtle trends, so old
plots and data should not be neglected but treasured. I was in the fortunate
position to use existing forest plot data from Conradie et al. (2007), recorded
in 2005. Recognising the advantage of past measurements, I repeated mea-
surements in 2011 on the exact same trees. This led to the work in chapter 2,
where I conducted, a field-validated, bi-temporal tree crown change detec-
tion analysis with VHSR imagery. The results proofed tree crown growth,
indicating improved ground water situations due to the established EWCP.
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The optical sensors used in this dissertation had a theoretical revisit in-
terval of ~1 (RapidEye) to 16 (Landsat 8) days. In practice, is the number
of usable images limited because of cloud cover (Wilson and Jetz, 2016)
or other factors (e.g. high off-nadir view angle). In chapter 3, I used the
ESTARFM sensor fusion model to increase the frequency of synthetic high
resolution spatial data (5 m). The resulting short temporal scale improved
the forest disturbance detection. The dynamics in the forest were quick. Be-
tween the individual image recordings had some trees their leaves already
unfold, others started to be defoliated by A. cinerarius. Despite the improved
temporal scale of the available images, the scale was still too large to iden-
tify the mixed phases of foliation and defoliation confidently. Therefore was
the temporal and spatial interweaving between foliation and defoliation in
spring 2013 as main source of error identified. In this instance, would daily
sensor recordings have been more suitable to improve the omnipresent tem-
poral scaling issues. Because rapid image acquisitions are highly uneconom-
ical, a feasible alternative would be VHSR image recordings with unmanned
aerial vehicles.

Multi-temporal remote sensing is capable to monitor forest struc-
tures and processes efficiently. The study in chapter 2 assessed crown
growth of tagged trees with a large temporal scale (6 years) while
chapter 3 investigated short term forest disturbance which happened
in a matter of weeks. The results show for most P. euphratica trees a
positive long-term crown growth, although affected by annually recur-
ring insect infestations. Both analysis are important in order to better
understand the dynamics in the Tugay forest.

5.2.2 Sensor fusion for forest monitoring

The long-awaited new era of open-access satellite data has finally arrived
(Wulder and Coops, 2014). The starting signal was given by the USGS with
the opening and free accessing of the Landsat archives in 2008 (Woodcock
et al., 2008). Since then, there is a steady increasing number of enhanced
fusion algorithms (Section 3.1) which take advantage of these archives by
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blending multi-source remotely sensed data. A prominent combination is
the fusion of Landsat and MODIS data to predict daily surface reflectance
at Landsat spatial resolution and MODIS temporal frequency (Zhu et al.,
2010). However, I presented in chapter 4 the first ESTARFM based fusion
application between RapidEye and Landsat 8. The main conclusion thereof
is:

Data fusion between RapidEye and Landsat 8 significantly enhances
forest disturbance and recovery analysis. Forest disturbance detection
increased by ~ 23%, reaching ~ 66% when ESTARFM generated syn-
thetic images were added. In this dissertation, I showed that the most
important factor for the accuracy increase is the timing, rather than the
number of images involved in the analysis. Landsat 8 images recorded
at the end of the insect disturbance period performed best during the
disturbance detection. This stage was found particularly important for
differentiating between light, moderate and severe defoliation classes.

The presented findings provide a valuable knowledge base for further re-
search in the domain of multi-source sensor fusion. Multi-source sensor fu-
sion options include the integration between optical sensors, Synthetic Aper-
ture Radar or LIDAR data. The two last mentioned are discussed in detail by
Joshi et al. (2016); Treuhaft et al. (2004) and Dalponte et al. (2008). The fu-
sion of optical multi-resolution data shall be the focus here and I follow up
on the successful data fusion between RapidEye and Landsat 8 (Chapter 3).
Considering the research carried out in my dissertation, I encourage relevant
future actions such as:

* The enduring focus on the continuity of the Landsat legacy with Landsat 9°
and the temporally backward fusion of RapidEye with Landsat OLI,
ETM+, TM and MSS sensors. The created product may enhance histori-
cal forest disturbance analysis.

» The fusion of the next smaller scale combination between e.g. WV2 (0.5
m pan-sharpened) and RapidEye (5 m) with a spatial fusion ratio of 1:10.
A special feature would be the creation of a synthetic Red-Edge band.
The synthetically generated scenes will surely add value to the develop-
ment of tree degradation research.
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* The fusion of WV2 (0.5 m pan-sharpened) or even WV3 (0.31 m pan-
sharpened) with open-access data of the Sentinel-2 sensor (10 m or 20
m) also offer the fusion of Red-Edge bands and hence the creation of a
Red-Edge NDVI. The Red-Edge NDVI may provide key information on
vegetation states, especially with regard to tree vitality loss due to water
stress.

5.2.3 Sustainable water management and prospective forest
monitoring

Tarim river discharge drives the region’s ecology. This relation was repeat-
edly confirmed in the aftermath of the established EWCP (see Section 1.3)
(e.g. Chen et al., 2003; Westermann et al., 2008; Chen et al., 2006b; Zhang
et al., 2005; Chen et al., 2004; Feng et al., 2001; Chen et al., 2010; Xu et al.,
2007; Aishan et al., 2015).

Knowing the importance of the Tarim river discharge on the regions ecology
reinforces the significance of a sustainable water management. A sustain-
able water management requires effective feedback mechanisms between
the strategic management level of the Tarim Basin Water Resources Com-
mission (TBWRC) and the operational monitoring level of the Forestry De-
partment of Xinjiang (FDX) province. The Forestry Department — or Ting
in Chinese (Lei, 2008) — needs to provide concrete information on the state
and response of the Tugay forest to recent restoration efforts made by the
TBWRC. The feedback information has to be timely and spatially explicit
in order to improve upcoming decisions such as e.g. duration, volume and
timing of river discharge (Table 4.1) or river regulations via hydraulic engi-
neering.

In that regard, multi-sensor remote sensing can contribute to give valuable
feedback information at differing spatial scales to both administration bod-
ies. My main conclusions for the use of multi-sensor remote sensing to assist
prospective forest monitoring in semi-arid zones are:
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Remote sensing with very high spatial resolution imagery can de-
liver detailed forest inventory information (e.g. number of individual
trees) with low errors of omission and commission (Section 2.3.2). It
can aid forest growth assessments with data regarding individual tree
crown sizes (e.g. crown diameter) and their changes, with moderate
accuracies (Section 2.3.4).

Remote sensing times series with high spatial resolution im-
agery can assist in forest health surveys by providing estimates on
defoliation severity classes after e.g. insect infestation. With the
aid of sensor fusion, leading to a higher temporal resolution, forest
disturbance and recovery detection is feasible with moderate to high
accuracies (Section 3.3.2).

Remote sensing with medium spatial resolution imagery al-
lows tracing the extent and spatial distribution of land cover classes
(e.g. Tugay forest, shrub- and grassland) with a high overall accuracy
(Section 4.3.1). Time series analysis of medium spatial resolution
imagery reveals positive trend shift dynamics in Tugay vegetation
with the establishment of the EWCP (Section 4.3). Comprehensive
descriptions of longitudinal & transverse Tugay vegetation response
effects, to known water deliveries, allow for the creation of a knowl-
edge base regarding their resilience (Section 4.3.4 & 4.3.5). Positive
and negative effects of hydraulic engineering can be derived from
resulting Tugay vegetation growth dynamics.
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However, a operational multi-scale forest monitoring system requires more
than a collection of individual scientific findings. It requires a smart inte-
gration of in-situ observations and remote sensing data. A priori monitor-
ing objectives shall be set, including the definition and recognition of target
classes, their respective monitoring intervals and mapping units. The col-
lection of in-situ data, in this sparsely populated semi-arid region, could be
realized in a double sampling for stratification strategy as proposed by Lam
etal. (2011). This sampling strategy employs stratification without requiring

a priori delineation of strata.
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Having said that, the collection of calibration and validation data needs a
centralised organisation in order to avoid duplicate field works. Furthermore,
all in-situ data shall be made publically available to all individuals participat-
ing in the forest monitoring efforts. The ultimate task is the timely reporting
to restoration decision makers, regarding recent vegetation disturbance or
regrowth changes in order to adjust pending decisions on future water deliv-
eries or hydraulic engineering tasks.

After listing potential requirements for prospective forest monitoring, I
would like to give general recommendations for future work in the field of
multi-sensor time series analysis in the area around the lower reaches of the
Tarim river.

» From the spatial perspective, is further research on the explicit identifica-
tion of individual trees and tree clusters needed (Chapter 2). A more de-
tailed crown segmentation could refine estimates of biomass and carbon
storage. With the destruction of QuickBird® shrunk the set of very high
spatial resolution sensors suitable for a proper detection of tree crowns.
Perhaps in the long run is the use of unmanned aerial vehicles a less ex-
pensive alternative to the purchase of commercial satellite imagery. The
availability of very high spatial resolution imagery from unmanned aerial
vehicles greatly increases the spatial scales over which e.g. tree degrada-
tion or tree morphology patterns and processes can be studied.

* The above mentioned efforts should go hand in hand with the establish-
ment of consistent long-term medium spatial resolution satellite image
time series. Recent developments towards temporally composited mo-
saics such as the Web Enabled Landsat Data (WELD) project (Roy et al.,
2010) or the LandsatLinkr project (Braaten, 2015), a automated system to
build spectrally consistent chronologies across Landsat MSS, TM, ETM+
and OLI sensors, stimulate regional to global disturbance-recovery analy-
sis with high thematic detail. Ideally, standard products are hierarchically
structured (weekly, fortnightly, monthly, yearly) so the end user is self-
determining the temporal resolution of its analyzed processes.

* Based on the experience of this thesis, I am strongly in favor to relo-
cate time-consuming and process-intensive time series analysis to cloud

3 QuickBird burned up on Jan. 27, 2015 while re-entering the atmosphere.
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processing services. A prominent example is the Google Earth Engine
with its planetary-scale analysis capabilities. Surely, existing and future
change detection, trend and breakpoint analysis tools need to be reimple-
mented but this may also give smaller, less equipped research labs the
opportunity to work beyond local scales. In that sense, cloud computing
truly begins a second new era in the field of remote sensing.


https://earthengine.google.com/
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Appendix regarding Chapter 3

Table A.1: Area changes between the defoliation and the recovery stage. Left side: only

RapidEye, right side: RE with additional L8s. Data unit: hectare.

RE RE & L8
DRESS/110 RRE.[10/136:253 O RE DRES8Y/L8.5.105 _ DRE110/185.114 _ RRE. ISI()/RE 185.136:253 NA-C AB-C

o (!3232]}39‘732) (7282(7)93%) -17.58 (6127_?{;‘%) (5,136 22'3.;0) (§§§§; ) 7928 89.88
G (]f)?(;i“t%) (12(} 3170) 20.96 (2?51,0) (32154% (92_ (;;;z ) 4396 -59.80
G (2.76337") (z?z';]%) L2 <gz, ‘;'gsfn) (; f);zf) (0%337") 2434 2505
s (14.‘5‘2.;,) (0.27.29%) 221 <3l,]9f%) ( 11;?7%) (0%2;)) 1098 -5.03

* Tpost.defolialion: No Defoliation; Trecovery.summer: Recovery
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Table A.2: Confusion matrices for forest disturbance and recovery detection with RE and
added L8g imagery

RE RE & L8
Dre.ss/110 RRE.110/136:253 DrE.ss/1.8.5.105 Dretionss.ii4 RRE1I0/RE L8.5.136:253
Class Co C] Cz C3 C() C] Cz C3 C() C] Cz C3 Co C| Cz C3 CO C| Cz C3
Co 17 5 1547 68 7 0 O 17 1 0 6 14 9 1 8 105 23 2 ¢
C 017 3 4 23 10 0 0 13 2 14 3 13 5 3 0O 1 0 0
Cy 00 3 1 5 1 0 0 0 11 12 0 0 13 14 0O 0 0 O
C3 00 019 9 6 0 0O 8 8 39 0 0 2 46 0O 0 0 o0

1
0
1

Cyp: No Defoliation; C;: Light Defoliation; C,: Moderate Defoliation; C3: Severe
Defoliation
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Fig. A.1: Per pixel comparison between base pair images of Landsat 8 (x-axis) and Rapid-

Eye (y-axis).
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Fig. A.2: Relative spectral response functions of the red and near-infrared channels for
the RapidEye and Landsat8 sensor systems used in this study.
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Fig. A.3: Forest Disturbance Maps classified into four classes derived from RapidEye
images: No Defoliation, Nil to Light (0-30 %, Moderate (30-50 % and Severe (above 50
%) (Buxton and Maclauchlan, 2014).
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Severe (above 50 %) (Buxton and Maclauchlan, 2014).
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Table A.3: Land cover class definitions are based on Anderson (1976) land-use and land-
cover classification system. Plant community description was derived from (Zhang et al.,
2004). There are few small urban areas and green spaces which were excluded in the
classification process.

Class name

Definition in the classification procedure

Water

Desert,
semi-desert

Agricultural
Land

Tugay Forest

Tugay
Shrubland

Tugay
Grassland

Perennial reservoir and lakes, the river
mainstream and side arms filled with wa-
ter

Desert, semi-desert, often sand dunes,
vegetation coverage < 25%

Agricultural fields mainly stocked with ir-
rigated Cotton

Land stocked with the predominant
Euphrates poplars (Populus euphratica)
which shows a tree-crown areal density
(crown closure percentage) of 25% or
more

Dominated by bushes of the Tamarix
genus together with sporadic Lycium
ruthenicum, Haloxylon ammodendron,
Nitraria sibirica and other halophyte
shrubs

Land dominated by grasses & herbs with
sparse to rich coverage. Species con-
sist of e.g. Phragmites australis, Karelina
caspica and Alhagi sparsifolia
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Table A.4: Validation matrix (pixel counts) of land cover classification

Desert  Agri- Shrub- Forest Grass- Water Sum|PA UA
culture  land land
Desert 68 0 1 0 1 0 70 |197.14 88.31
Agriculture|0 18 0 0 0 0 18 (100.0 100.0
Shrubland |5 0 48 4 3 0 60 |80.00 77.42
Forest 1 0 8 41 2 0 52 [78.85 91.11
Grassland |2 0 5 0 24 0 31 [77.42  80.00
Water 1 0 0 0 0 6 7 |85.71 100.0
Sum 77 18 62 45 30 6 205 [OA:  86.13

Table A.5: Resubstitution accuracy of land cover classification. PA: Producer Accuracy
(%); UA: Users’s Accuracy (%); OA: Overall Accuracy

Desert  Agri- Shrub- Forest Grass- Water Sum|PA UA
culture  land land
Desert 130 0 1 1 0 0 132 |98.48 95.59
Agriculture [0 24 1 0 1 0 26 (92.31 9231
Shrubland |3 0 61 9 3 0 76 |80.26 63.54
Forest 1 0 20 37 2 0 60 (61.67 72.55
Grassland |1 1 13 3 35 0 53 166.04 83.33
Water 1 1 0 1 1 10 14 [71.43 100.0
Sum 136 26 96 51 42 10 297 [OA: 8227
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Fig. A.7: Number of detected breakpoints with BFAST algorithm for the lower reaches

of the Tarim River.
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