
Deterministic Pushdown Automata as Specifications
for Discrete Event Supervisory Control in Isabelle

vorgelegt von
Dipl. Inform.

Sven Schneider
ORCID: 0000-0001-9828-618X

von der Fakultät IV – Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
– Dr.-Ing. –

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Rolf Niedermeier
Gutachter: Prof. Dr. Uwe Nestmann
Gutachter: Prof. Dr. Jörg Raisch
Gutachter: Prof. Dr. Holger Giese
Gutachter: Dr. habil. Florian Kammüller

Tag der wissenschaftlichen Aussprache: 26. Februar 2019

Berlin 2019

Deterministic Pushdown Automata as Specifications
for Discrete Event Supervisory Control in Isabelle

Deterministic Pushdown Automata as Specifications
for Discrete Event Supervisory Control in Isabelle

Sven Falco Schneider

Technische Universität Berlin
Max-Planck-Institut für Dynamik komplexer technischer Systeme Magdeburg
Hasso-Plattner-Institut für Digital Engineering gGmbH

© 2018 by Sven Schneider. All rights reserved.

Contents

Contents

Abstract ix

1. Introduction 1

2. Abstract and Concrete Discrete Event Systems 15
2.1. Discrete Event Systems . 17

2.2. Extended Pushdown Automata . 18

2.3. Parsers . 22

2.4. Context-free Grammars . 27

3. Abstract and Concrete Supervisory Control Problems 31
3.1. Abstract Supervisory Control Problem

for Discrete Event Systems . 33

3.2. Concrete Supervisory Control Problem
for Deterministic Pushdown Automata 36

3.3. Correspondence between Abstract and Concrete
Supervisory Control Problems . 41

4. Abstract Controller Synthesis Algorithm
for Discrete Event Systems 45

4.1. Framework of Abstract Building Blocks
for Fixed-point Computation . 47

4.2. Abstract Building Blocks for Enforcing Properties
on Discrete Event Systems Least Restrictively 50

4.3. Abstract Controller Synthesis Algorithm
for Discrete Event Systems . 53

4.4. On the Termination
of the Abstract Controller Synthesis Algorithm 56

5. Concrete Controller Synthesis Algorithm
for Deterministic Pushdown Automata 61

5.1. Concrete Building Block for the Synchronous Composition
of Deterministic Pushdown Automata
with Deterministic Finite Automata 64

5.2. Concrete Building Block for Enforcing Nonblockingness
for Deterministic Pushdown Automata 65

5.3. Concrete Building Block
for Reducing Controllability to Nonblockingness
for Deterministic Pushdown Automata 82

5.4. Concrete Synthesis Algorithm as an Instantiation
of the Abstract Synthesis Algorithm 85

5.5. On the Termination
of the Concrete Controller Synthesis Algorithm 87

vii

6. Isabelle-based Formal Quality Assurance 89
6.1. Formal Methods for Quality Assurance 91

6.2. Isabelle-based Framework of Definitions and Properties 96

6.3. Isabelle-based Verification of the Translation
of Deterministic Pushdown Automata
into LR(1)-context-free Grammars 116

7. Application and Prototype-based Evaluation 141
7.1. Patterns for Specifications

using Deterministic Pushdown Automata 143

7.2. Application Domains for
Discrete Event Controller Synthesis 146

7.3. Applications and Use Cases
of the Concrete Controller Synthesis Algorithm 147

7.4. Prototype Realization
of the Concrete Controller Synthesis Algorithm 154

7.5. Prototype-based Evaluation . 157

8. Related, Ongoing, and Future Work 163
8.1. Related Work . 164

8.2. Ongoing Work . 188

8.3. Future Work . 209

9. Summary and Conclusion 219

A. Disclaimer on Collaborations and Joint Work 225

B. Isabelle-based Notation 227

C. Operational Properties for DPDA Controllers 233

D.The cfgEsplit Semantic for LR(1)-CFG 237

E. Bibliography 249

viii

Abstract

The problem of supporting the construction of software that is known to satisfy a
set of given requirements is one of the grand challenges in software engineering.
Herein, we focus on the field of control theory for systems with discrete states
and event-based communication. In this field, controllers coordinate components
given by a plant to ensure that the amalgamation of controller and plant executes
a desired behavior. We focus on the supervisory control problem, which, given a
plant and a specification, requires the synthesis of a controller in the form of a
piece of software. The least restrictive satisfactory controllers to be synthesized are
determined in this problem by the specification and additional well-formedness
conditions. Similar problems also occurred in the field of computer science and it
is of general importance in application domains such as in parallel, distributed,
and embedded systems.

We focus on the fully automatic synthesis of controllers using algorithms.
These algorithms construct controllers that are realizable in software and correct-
by-construction for the two aforementioned inputs. The applicability of these
algorithms is limited by insufficient expressiveness of the formalisms used for
plants and specifications. However, expressiveness can not be increased arbitrarily
while maintaining solvability of the problem in terms of a synthesis algorithm
that solves all problem instances.

Our main contribution is a controller synthesis algorithm that synthesizes a
DPDA controller when provided with a DFA plant model and a DPDA specifica-
tion. This algorithm supersedes earlier algorithms synthesizing a DFA controller
when provided with a DFA plant model and a DFA specification because DPDA
are strictly more expressive than DFA. The increased expressiveness of DPDA
compared to DFA allows for the specification and enforcement of more complex
patterns of behavior. Initial approaches to mitigate limitations of our algorithm,
such as its nontermination for some specifications stating requirements that are
unreasonable from a control-theoretic perspective, are presented in the form of
alternative constructions and optimizations.

We employed the interactive theorem prover Isabelle for the formal verification
of this controller synthesis algorithm to obtain trustworthy proofs, which are free
of faults and omissions. The resulting Isabelle framework for the formalization
and verification of algorithms outstrips existing similar frameworks in covered
formalisms, semantical properties, and provided results and is designed to be
highly extendable in these aspects. It covers the formalisms of DPDA, CFGs, and
Parsers as well as the notions relevant for our controller synthesis algorithm such
as the unmarked and marked languages, nonblockingness, and controllability.

An evaluation of our algorithm implemented as the Java prototype CoSy
shows promising efficiency. This evaluation was based on three examples from
manufacturing employing DPDA specifications. Using these examples, we also
demonstrate the application of three use cases of our algorithm for controller
synthesis, controller verification, and input validation.

ix

1
Introduction

The problem of supporting the construction of software that is known to satisfy a set
of given requirements is one of the grand challenges in software engineering. We
focus on software that interacts with its environment where the requirements
then refer to the closed loop, which is the amalgamation of the constructed software
and the environment. Established processes for the construction of such software
vary in their degree of automation: the spectrum ranges from fully automatic
synthesis to fully manual implementation. We focus in this thesis on fully automatic
synthesis and present a formally verified synthesis procedure as one of our key
contributions.

The fully automatic synthesis has been stated as a problem in the construction
of hardware circuits in 1957 [81, 121]. A second formulation of a controller
synthesis problem in terms of a game between a player representing the software
to be constructed and a player representing the environment was first described
as early as 1965 [244, 66, 237, 356]. In this game-based perspective, any finite
winning strategy employed by the first player translates to a realization of the
software to be constructed. Similar controller synthesis problems appeared in the
form of the submodule construction problem in 1983 [245] and the supervisory
control problem in 1984 [282].

Common to these formulations of control problems is the assumption of a
message-based communication between the system and the environment. This
assumption is readily satisfied by a variety of systems from the fields of computer
science and control theory in which software is required to control or to coordinate
components to ensure the execution of desired behavior such as communicating
and embedded systems. These control problems are based on the same kinds of
inputs: a model of the environment, of how software and environment coalesce
into the closed loop, and of the requirements to be satisfied by the software and
closed loop. We focus in this thesis on the supervisory control problem and
continue now with a more detailed introduction of it.

1

Chapter 1. Introduction

The Supervisory Control Problem
The supervisory control problem [282], for which we present an example on
page 5, is a software synthesis problem related to the field of control theory.
Hence, a field-specific terminology is used: the environment is called plant and
the software that interacts with the plant is called controller. The purpose of the
controller is to limit the behavior of the plant to the boundaries given by an
additional specification that states requirements specific to the problem instance.
A list of general requirements, which includes the satisfaction of the specification,
then describes all desirable controllers of which one is to be synthesized. We
now continue with a short discussion of the fundamental assumptions on how
plant and controller are combined into a closed loop and then also present the
requirements to be satisfied by controller and closed loop.

The plant and the controller are assumed to send messages, subsequently called
events, to each other using reliable synchronous communication in the closed
loop. Synchronous communication means here that the sending and the receiving
of a single event occurs in a single (atomic) step that is carried out by sender and
receiver at the same time. The reliability and synchronicity of the communication
ensure the absence of effects such as event loss, alteration, duplication, insertion,
or reordering. The events sent by the plant carry information from sensors
and the events sent by the controller represent commands to be carried out
by actuators. The sender and receiver of an event may change their local state
upon synchronization. The state of a component is thereby given by the local
knowledge of that component on the status of the closed loop that it has acquired
in the past and that is the foundation for decisions on steps in its future.

The response of the plant (if any) to communication attempts initiated by the
controller is predefined because the plant is one of the inputs to be provided.
That is, the provided plant model specifies for each state of the plant and each
event sent by the controller whether the plant is willing to synchronously receive
this event or whether the controller is not able to send the event. Thereby, the
controller is limited by the plant model in its capabilities to control the plant.
However, since the controller is to be synthesized, the existence of a response to
every event sent by the plant is an important requirement, called controllability.
The satisfaction of controllability by the controller ensures that (a) the state of
the controller also includes the relevant information on the state of the plant at
the same time, (b) the controller can derive well-founded decisions, and (c) the
models for controllers and closed loops are equivalent in formal considerations.

Figure 1.1: «The Supervisory Control Problem»

Plant PController C Specification S
Σuc

Σc

Closed Loop CL

satisfies

The general requirements of the control problem (which are discussed subse-
quently) rely on a uniform characterization of the behavior of the plant, the
controller, the closed loop, and the specification. This characterization is given for

2

each of these components by the set of unmarked behaviors and a particular subset
thereof called the set of marked behaviors. The unmarked behaviors of plant and
controller are the sequences of events from a finite set Σ that may be used in suc-
cessive steps by this component; the specification also describes such sequences
without use of an actual communication partner. The marked behaviors identify
a goal region or those unmarked behaviors in which a task has been completed.
While every prefix of an unmarked behavior is an unmarked behavior, we permit
cases where this does not apply for the marked behaviors. The (un)marked
behaviors of the closed loop are given by the intersection of the (un)marked
behaviors of plant and controller due to their synchronous composition.

The event set Σ is partitioned into the sets of events Σc and Σuc that are sent by
the controller and plant, respectively. The indices c and uc abbreviate controllable
and uncontrollable, respectively, and are chosen based on the perspective of the
prospective controller. Firstly, the decision on whether or not to send an event
from Σc is fully controllable by the controller. Secondly, the events that are sent by
the plant are not under the influence of the controller and must not be rejected.

The requirement of controllability states that the controller never prevents the
plant from sending an event by refusing its reception. An example of the notion
of controllability is given in Example 1.1|p.4.

The requirement of specification satisfaction states that the controller must suc-
cessfully restrict the (un)marked behaviors of the plant (that is, the uncontrolled
behaviors of the plant) to those of the specification (that is, the safe region and
the goal region). This means that the (un)marked behaviors of the closed loop
must be contained in those of the specification.

The requirement of nonblockingness states that every unmarked behavior of
the closed loop can be continued to a marked behavior of the closed loop. The
notion of nonblockingness is exemplified in Example 1.1|p.4. We conclude that
the marked behavior, which is required to be invariantly reachable, is also limited
by the marked behaviors of the specification when the specification is satisfied.
Figure 1.2: «Relationship between Plant, Specification, and Controller»
We relate the unmarked behaviors of the plant (Pum), the specification (Sum), and
the controller (Cum) using the Venn diagram below. The sets 1 and 2 are the
unmarked behaviors of the closed loop where the elements in 1 violate the
specification. The sets 3 and 4 are unmarked behaviors of the plant that are
prevented by the controller where only the elements in 4 had to be prevented
according to the specification. The sets 5 , 6 , and 7 are permitted by the
controller/specification even though the plant is not capable of executing them.

Pum

Sum

Cum
1

2

3 6

4

7

5

3

Chapter 1. Introduction

We conclude our presentation by stating the supervisory control problem in terms
of its inputs, outputs, and the requirements stated on them. The inputs are a
plant (model) to be controlled, a specification (model) to be enforced, and the
partitioning of Σ into the sets Σuc and Σc. The output is a controller (model) to
be synthesized that satisfies the three discussed requirements least restrictively.
The three requirements ensure the absence of undesirable behavior while the
property of least restrictiveness ensures a maximal amount of desirable behavior
(i.e., the set 3 in Figure 1.2|p.3 should be as small as possible).

The supervisory control problem as stated in [282] also used a second specifica-
tion that describes marked and unmarked behaviors that must be feasible in the
closed loop. However, the satisfaction of this requirement can also be checked a
posteriori for a synthesized controller and its induced closed loop.

In addition to the introduction of the two properties of controllability and
nonblockingness from before, we demonstrate violations of these two properties
in the following example.

Example 1.1: «Properties of Controllability and Nonblockingness»
We represent the sets of (un)marked behaviors of components as trees where
each path is an unmarked behavior and where each path to a filled node is
a marked behavior. The left tree for the closed loop is to be understood as a
subtree of the right tree for the plant: we label only the edges that are relevant to
our reasoning with the event used in this step and assume u ∈ Σuc and c ∈ Σc.
The closed loop violates the property of controllability at 1 because it prevents
the occurrence of the uncontrollable event u at the designated unmarked behavior.
The prevention of the step using the event c is no violation of controllability
because c is controllable.
The closed loop violates the property of nonblockingness at 2 because the
designated unmarked behavior cannot be continued to a marked behavior.

Closed Loop

1

2

Plant

c

u

4

Automata-based Concrete Supervisory Control Problem
Concrete instantiations of the presented supervisory control problem are obtained
by (a) selecting formalisms for modelling plants, specifications, controllers, and
closed loops, (b) defining for instances of these formalisms the sets of (un)marked
behaviors, and (c) defining an operation that, based on the selected formalisms,
constructs for a plant and a controller the induced closed loop. Every instance of
the resulting concrete supervisory control problem is then given, as before, by a
plant model, a specification model, and a set of events Σ that is partitioned into
Σc and Σuc as described.

In this thesis, we employ classes of automata as formalisms to model the
four above mentioned components with discrete states and an event-based com-
munication as in [282]. The used classes of automata have the generation of
(un)marked behaviors as a built-in concept and constructions for implementing
the synchronous composition of plant and controller are available as well. More-
over, these constructions also ensure that the sets of (un)marked behaviors of the
closed loop are equal to the intersection of the (un)marked behaviors of the plant
and the specification as assumed in the supervisory control problem.

A first concrete supervisory control problem occurred already in [282]. In this
concrete problem, to which we refer to as the pure DFA problem, all involved
components are deterministic finite automata (DFA). Moreover, this concrete
problem served as the foundation for the vast majority of further research results
in the domain of supervisory controller synthesis thereafter.

In this thesis, we consider a second concrete supervisory control problem in
which plants are modelled by DFA, where deterministic pushdown automata
(DPDA) allow for more complex specifications, and result in DPDA controllers
and closed loops. These DPDA can be understood as DFA that are endowed with
a stack of unbounded depth, which permits the storage of information for later
reuse at runtime and thereby increases the expressiveness of the specification.
Technically, a stack is a sequence of symbols that can only be modified by adding
symbols to its left or by removing symbols from its left and that only permits
read access to the left-most symbol. The second concrete problem subsumes the
pure DFA problem since each DFA is also a DPDA.

We now consider an instance of the second concrete supervisory control prob-
lem using a DPDA specification to motivate its meaningfulness.

Example 1.2: «Validation of Schedules Using Controller Synthesis»
Description of Scenario: A schedule is provided to the plant by an external operator
in the form of a list of events that are sent to the plant. The controller to be
synthesized records the events of the schedule using its stack and permits only
schedules that can be executed successfully to the end. The external operator
then initiates the execution of the schedule by the plant and the controller ensures
that the plant actually implements the entered schedule.
The notation used in the following visualizations for the DFA plant and the
DPDA specification is discussed below.

5

Chapter 1. Introduction

P: the plant DFA

0 1

2

3

ca

ca uc

cb

cb uc

cb

sa sb

cstart

udone ustop

ustop

ustop

S: the specification DPDA

4 5 6

ustop, x, x

−, a,− −, b,−ca, a,− cb, b,− uc, x, xsa, x, ax sb, x, bx
cstart, x, x

udone,�,�
−,�,� x ∈ {a, b,�}

Notation and Semantics: DFA and DPDA are visualized as labelled directed graphs
where nodes are called states. The states 0 and 4 are the initial states of the
two automata as indicated by the arrow without source state pointing to them.
These two states are also marking states as indicated by their double border line
and correspond to the goal region for both automata to be reached. Two edges
with common source and target are represented by only one edge where the two
labels are given next to each other (e.g. the edge from state 1 to state 0 or from
state 6 to state 6). The labels of the DFA edges have one component: the event
executed. The labels of the DPDA edges have three components separated by
commas: the event executed, the symbols that are popped from the top of the
stack, and the symbols that are pushed onto the stack. The symbol − is used to
denote the absence of symbols and events in a component and the placeholder x
is used to specify multiple edges at once. We introduce DPDA in section 2.2|
p.18 and subsection 6.2.6|p.112.
The steps of a DFA depend on the states contained in its configurations. An
application of an edge replaces the state in a configuration, which must be
the source state of the edge, with the target state of the edge. Iterated edge
applications lead to sequences of configurations called derivations. See also
Example 6.2|p.113 for an example of a derivation of another DPDA using two
equivalent semantics.
Configurations of DPDA additionally contain the current stack. Moreover, the
symbols given in the second component of a label of the edge, say w1, must also
be on top of the stack, i.e., the stack equals w1v for some v, for applicability of an
edge. A step then additionally updates the stack of the configuration to w2v. The
stack initially contains only the special symbol �, which denotes the bottom of
the stack and which stays there throughout any derivation. DPDA may perform
silent steps (e.g. using the edge from state 6 to state 4) executing no event.

6

Description: In the initial state 0 of the plant, a schedule can be entered by an
operator by executing the events sa and sb. These executions are to be recorded
by the controller as specified in state 4 where a and b are pushed onto the stack
for each execution of the events sa and sb, respectively (the symbol x allows for a
more compact visualization using edge schemas).
The execution of the event cstart changes the state to 1, ends the phase of entering
the schedule, and starts the phase in which the schedule is executed in some
process from the concrete application domain. The events executed in this
process are limited via the edges between the plant states 1–3 to sequences of at
least one ca, one cb, and at least one cb where further uc events may be executed
in between. The specification then also determines in state 5 how the controller
must restrict the plant in these states to implement the schedule by popping
symbols a and b from the stack for each execution of one ca and cb, respectively.
When the schedule is completed (that is, when it is empty) and the state 1 has
been reached again, the machine can return to the marking state 0 by executing
the ustop event. Finally, the operator may execute the event ustop to interrupt the
execution of the schedule, to reset the schedule in state 6 of the specification,
and to also return to the initial state 4.
In this example, we assume that the set of events Σ is partitioned into the sets
Σc = { sa, sb, ca, cb, cstart } and Σuc = { uc, ustop, udone }. This means that the
controller to be synthesized may prevent certain schedules from being entered
(e.g. those schedules that request to start with an event cb). This check is carried
out when the operator attempts to execute events sa and sb synchronously with
the controller, that is, the schedule is validated before the event cstart is executed.
Moreover, the controller to be synthesized can not prevent executions of the
uncontrollable event uc during schedule implementation.

Discussion: The usage of automata as an operational formalism leads to specifica-
tions that describe the usage of the stack by the prospective controller already
in great detail. We take advantage of this by using the specification as an ini-
tial controller candidate, which is then restricted in further steps. Hence, the
DPDA specification can refine the DFA plant because the specification does
not distinguish between restrictions that are meant to refine the plant model
and those that should be enforced by the prospective controller. However, this
specification-based refinement of the plant is limited because the occurrence of
events from Σuc is obtained from the plant alone for controllability.
Moreover, the usage of the stack of DPDA is used here to store the schedule to
be implemented and to preemptively check its validity. Such an upfront check
is not possible when using DFA specifications where a nonexecutable schedule
(entered event-wise at runtime or stored entirely without formal foundation
beforehand) would result in a deadlock at runtime.
Finally, resetting the schedule in state 6 requires an unbounded number of
internal steps in the controller and, hence, the controller to be synthesized will
not have a worst case execution time (WCET). However, a runtime environment
that executes the controller can clear the stack in constant time in this example.

7

Chapter 1. Introduction

Relevance and Applicability of our Contributions
The controller synthesis algorithm for solving the pure DFA problem from [282]
has been applied successfully in an abundance of domains such as manufacturing,
robotics, chemical process control, protocol design for communication, feature
interaction management in telephony, queueing systems, traffic control, database
systems, hybrid systems, and fault diagnosis [70, 71]. The development of a
controller synthesis algorithm in this thesis for more expressive specifications
given by DPDA enables the specification and enforcement of even more complex
properties and maintains applicability in the described domains.

We determine three complementing use cases for the application of our concrete
controller synthesis algorithm. These use cases take advantage of the fact that
our algorithm, in the same way as the algorithm provided in [282] for the pure
DFA problem, can not only be used to synthesize a controller but can also be
used to verify that a provided controller candidate is satisfactory or to determine
violations of controllability for a provided controller candidate. These algorithms
refine an initially determined controller candidate by (a) identifying violations of
the requirements and by (b) removing such violations in a follow up step while
maintaining all behaviors without violations.

Figure 1.3: «Use Cases of Our Concrete Controller Synthesis Algorithm »
Input/Output Situation for Controller Synthesis: The standard controller synthesis
(first use case) requires no human involvement, but defective inputs can lead
to a waste of resources and the resulting controller may not have all required
properties in some application contexts.

Controller
Synthesis
Algorithm

Plant P

Specification S

Uncontrollable Events Σuc

Controller C

Input/Output Situation for Controller Analysis: The fully automatic analysis of a
controller by means of a formal foundation can be useful if a manually con-
structed controller is to be verified (second use case) or when the specification as
the initial controller candidate is to be adapted manually to remove violations
by a domain expert (third use case).

Controller
Synthesis
Algorithm

Plant P

Specification S

Uncontrollable Events Σuc

Controller C

Empty Set of
Violating Derivations V

Non-empty Set of
Violating Derivations V

8

We underline the applicability of DPDA specifications in the context of controller
synthesis by introducing usage patterns for DPDA specifications (beyond what
was used in the scheduling Example 1.2|p.5 above) and demonstrated their
usefulness by applying them in examples in chapter 7|p.141. Moreover, DPDA
can be much more succinct compared to equivalent DFA and, hence, their usage
can ease the process of formalizing and managing also DFA specifications in
terms of the required expertise and costs. Additional challenges originating in the
use of DPDA and initial steps for their resolution, such as the potential absence
of a WCET, are discussed in chapter 8|p.163.

Potential applications of our algorithm for solving the considered instantiation
of the supervisory control problem with DPDA specifications in other contexts of
computer science for software synthesis (e.g. for solving instances of the submod-
ule construction problem) and extensions of this algorithm further strengthening
applicability are discussed in chapter 8|p.163.

Before detailing on our concrete controller synthesis algorithm for the con-
crete supervisory control problem, we now discuss several additional aspects
of systems not covered in this thesis and the alternative approach of manual
implementation.

Scope of this Thesis
The vast number of combinations of potential (kinds of) traits of the closed
loop and the properties of the closed loop to be guaranteed results in a large
multidimensional space of instances of control problems defined by means of
suitable formalisms capable of capturing these characteristics. Consequently,
research focuses on the construction of synthesis algorithms that solve meaningful
(classes of) control problems as in [282] and on establishing negative results stating
that certain (classes of) control problems defy solution as in [273].

An increased expressiveness allows for more precise modelling of the possible
event sequences, but it complicates the problem of fully automatic synthesis
because effective and efficient operations must be available (a) for the explicit
construction of a closed loop and (b) for the analysis and enforcement of the
properties that are required for controllers to be synthesized. For example, Turing
machines are beneficial for modelling due to their high expressive power but only
structural properties can be analyzed for them. Extending the pure DFA problem
by using the more expressive DPDA for expressing specifications is thereby one
further attempt to push the boundaries of fully automatic synthesis using one
particular choice of formalisms.

Further aspects that have been considered in controller synthesis to increase
expressiveness of models/specifications or to enhance decidability such as du-
ration of events, delay between events, probabilistic step decisions, imperfect
communication, asynchronous communication, costs, rewards, horizontal compo-
sition of controllers, and vertical composition of controllers are not in the scope
of this thesis. However, we point out relevant connections and approaches for
improving some aspects of our contributions in chapter 8|p.163.

9

Chapter 1. Introduction

Comparison of Fully Automatic Synthesis and Fully Manual Implementation
We now discuss general benefits and impediments of fully automatic and fully
manual controller construction as well as possibilities of their combination.

As pointed out before, automatic synthesis cannot replace manual construction
in all cases because some control problems do not allow for a general solution
in terms of a synthesis algorithm when the expressive power of the employed
formalisms is too large. However, models of such formalisms that occur in an
actual application may be simple enough for manual implementation. That is,
there is no known process for obtaining synthesis algorithms from the domain
expertise of developers of such manual solutions. We now assume a setting in
which both approaches are applicable.

The development of synthesis algorithms imposes additional upfront costs
compared to manual construction. However, once an effective, efficient synthesis
algorithm has been constructed, the synthesis costs are mostly related to hard-
ware costs and can be reduced by means of techniques such as multithreading
while costs in manual construction are related to the required time and human
personnel. Moreover, synthesis algorithms are limited to the formalisms for which
they have been developed whereas the manual construction is more flexible as it
does not require a general solution to all problem instances but rather the solution
of the single problem instance at hand.

The verification of synthesis algorithms is of particular importance because
(a) the manual analysis of each synthesis step would incur further costs and (b)
errors in the synthesis algorithms could have arbitrarily adverse effects. After all,
the correct-by-construction principle of controller synthesis is the key motivation
for its application because the trustworthiness of constructed controllers is vital.
Manual implementations of controllers are prone to error and require post-
construction analysis using e.g. computer-aided techniques such as simulation,
testing, or even more costly techniques of verification such as model checking or
manual verification depending on the tractability of the analysis and the desired
level of trustworthiness.

A precise understanding of the plant is required in either of the approaches.
The manual approach does not depend on the usage of a certain formalism
whereas synthesis algorithms require formal inputs. However, the formalization
of assumptions on the plant and guarantees given in the form of the specifica-
tion leads to a precise documentation. While this documentation requires an
additional effort in the manual implementation approach, it automatically stays
in sync with the synthesized controller. Defective plant/specification models
are a common problem of both approaches as they result in controllers that
induce closed loops with very limited or even unsafe behavior. While some kinds
of modelling defects would be detected by experienced developers, validation
techniques for these inputs are indispensable in both approaches.

A first combination of both approaches is given when controllers have been
developed using both approaches. These two controllers can then be compared
using back to back testing to reveal various implementation errors or modelling

10

defects. Moreover, some controller synthesis algorithms such as the one in this
thesis can be used to analyze a provided (possibly manually constructed) solution
by verifying the absence of violations of the requirements or by returning descrip-
tions of instances of such violations. Thereby, such synthesis algorithms allow
for the combination of manual implementation and fully automatic synthesis
with their respective advantages into a powerful technique as explained in the
previous paragraph. We conclude this basic comparison of the two approaches
by stating that the mentioned advantages and disadvantages may be of varying
relevance in different application scenarios.

Approach and Roadmap
We define our automata-based concrete controller synthesis algorithm as an
instantiation of an abstract controller synthesis algorithm, which is constructed
using three building blocks for synchronous composition, for enforcing control-
lability, and for enforcing nonblockingness. The abstract algorithm operates on
(abstract) discrete event systems (DES), which are obtained from automata by
selecting their two generated languages.
Figure 1.4: «Fixed-point Controller Synthesis Algorithm»
Abstract/Concrete Controller Synthesis Algorithm: The arrows represent dataflow
and the rhombus represents a test on whether the fixed point has been computed,
that is, whether the former controller candidate C is equal to the controller
candidate C′ obtained from enforcing controllability on C. For our formal
verification, we define pre/post conditions for each of the three major building
blocks used in this algorithm at the abstract level of DES as well as on the
concrete level of automata.

C← Synchronous
Composition(P, S)

C←Enforce
Nonblockingness(C)

C′←Enforce
Controllability(C, P, Σuc)

C←Enforce
Nonblockingness(C′)

C 6= C′
Controller C

C = C′

Plant P

Specification S

Uncontrollable
Events Σuc

11

Chapter 1. Introduction

In more detail, the abstract algorithm uses the DES specification S as a first
controller candidate, computes the closed loop for this controller candidate and
the given DES plant P, and then enforces the property of nonblockingness on
this closed loop to obtain a controller candidate that satisfies the properties of
nonblockingness and of specification satisfaction. The abstract algorithm then
proceeds by computing a fixed point, starting with this controller candidate,
and enforces controllability and nonblockingness alternatingly until the step of
enforcing controllability does not further restrict the controller candidate.
We provide automata-based operations instantiating these three building blocks
to obtain our concrete controller synthesis algorithm as an instantiation of the
abstract algorithm. Consequently, both algorithms operate equivalently on the
concrete DPDA controllers and on the abstract DES controllers.

Corresponding Fixed-point Computation of Both Algorithms: The concrete and the
abstract synthesis algorithms operate equivalently when being started on the
corresponding inputs: a DPDA specification S and a DFA plant P and on the DES
abstraction S′ and P′, respectively. That is, the obtained controller candidates
computed by the abstract algorithm will be the abstractions of the controller
candidates computed by the concrete controller synthesis algorithm (visualized
by the dashed arrow). This correspondence results from the construction of
the concrete algorithm as an instantiation of the abstract algorithm and the
compatibility of this instantiation with the pre/post conditions provided for
both algorithms.

DES C′0 DES C′1 . . . DES C′n
DES P′

DES S′ > > > =

DPDA C0 DPDA C1 . . . DPDA Cn
DFA P

DPDA S =

In this thesis, we rely on the interactive theorem prover Isabelle to ensure that our
definitions and constructions are type-correct and that the proofs of our theorems
are fault-free and omission-free. For this purpose, we developed a framework
in Isabelle for the handling of the involved formalisms and the constructions
applied on them in our synthesis algorithms. Note, we provide a brief overview
of the syntax and semantics of Isabelle in Appendix B|p.227.

Some of the contributions of this thesis (in particular results from section 3.1|
p.33, chapter 4|p.45, section 5.3|p.82, and an example in section 7.3|p.147) have
been published in [310, 301, 302] and unrefereed in [307, 309]. Further publications
[308, 306, 305] are not part of this thesis, but they lay the foundation for future
applications of our concrete controller synthesis algorithm. The role of the
coauthors for the development of the contributions presented in this thesis is
covered in Appendix A|p.225.

12

Contents of this Thesis

2|p.15 Abstract and Concrete Discrete Event Systems
We introduce the abstract and concrete formalisms of discrete event
systems, automata, context-free grammars, and Parsers used in our
controller synthesis algorithms.

3|p.31 Abstract and Concrete Supervisory Control Problems
We formally introduce the abstract and the concrete supervisory control
problem, which are defined by means of discrete event systems and
automata, respectively.

4|p.45 Abstract Controller Synthesis Algorithm for Discrete Event Systems
We formally introduce the above sketched abstract supervisory con-
troller synthesis algorithm including our theory of fixed-point iterators
ensuring the computation of the least restrictive DES controller.

5|p.61 Concrete Controller Synthesis Algorithm
for Deterministic Pushdown Automata

We formally introduce the instantiation of the abstract supervisory
control problem for DFA plants and DPDA specifications by providing
detailed instantiations of the three major building blocks.

6|p.89 Isabelle-based Formal Quality Assurance
We discuss our general usage of Isabelle and also the Isabelle frame-
work [303] developed specifically for the verification of our formal
results. Moreover, we provide a proof idea for our novel proof of the
fact that DPDA can be converted into LR(1)-CFG.

7|p.141 Application and Prototype-based Evaluation
We demonstrate the implementability of our developed concrete con-
troller synthesis algorithm by our prototype implementation CoSy [304].
Moreover, we discuss general applicability of the algorithm by means of
usage patterns for DPDA specifications and also consider the efficiency
of our implementation.

8|p.163 Related, Ongoing, and Future Work
We outline several meaningful results from ongoing research, provide a
discussion of related work as well as recommendations for future work.

9|p.219 Summary and Conclusion
We conclude the thesis with an overall evaluation of our contributions
and a discussion of their significance.

13

2
Abstract and Concrete Discrete Event Systems

Our concrete controller synthesis algorithm presented in chapter 5|p.61 requires
formalisms for describing plants, specifications, closed loops, and controllers.
The inputs and outputs of this algorithm are modelled using the concrete for-
malisms of DFA and DPDA defined in this chapter. We also introduce extended
pushdown automata (EPDA), Parsers, and context-free grammars (CFGs) for
models occurring during computations of this algorithm. As a foundational
theory, we formalize these concrete formalisms in Isabelle as instantiations of
abstract parametrized theories by providing for each parameter of these theories
and each concrete formalism an interpretation. We introduce the formalisms in
this chapter at an intuitive level and provide relevant details of our Isabelle-based
framework in section 6.2|p.96.

Common to these concrete formalisms is that they define unmarked and
marked languages as abstractions of actual and desired behavior. The abstract
formalism of DES captures theses two kinds of languages in a novel unified
representation, which has distinct benefits over approaches from the literature
using only one of the two languages. That is, we benefit from their simplicity
and the inclusion of both languages when defining the abstract supervisory
control problem in section 3.1|p.33 as well as when defining the abstract synthesis
algorithm in chapter 4|p.45 at this high level of abstraction. Moreover, we show
in section 3.3|p.41 that DES are a suitable abstraction for models of the used
concrete formalisms in the sense that the abstract and the concrete supervisory
control problem from section 3.2|p.36 correspond to each other.

15

Chapter 2. Abstract and Concrete Discrete Event Systems

Contents of this Chapter

2.1|p.17 Discrete Event Systems
We introduce the abstract formalism of discrete event systems (DES)
along with basic composition and comparison operations on them.
Moreover, we demonstrate that DES determine a complete lattice by
instantiating the corresponding parametrized theory.

2.2|p.18 Extended Pushdown Automata
We introduce the concrete formalism of extended pushdown automata
(EPDA) with various of its subclasses such as DFA, DPDA, and SDPDA.

2.3|p.22 Parsers
We introduce the concrete formalism of Parsers, of which instances
occur in computations of our concrete controller synthesis algorithm.

2.4|p.27 Context-free Grammars
We introduce the concrete formalism of context-free grammars (CFGs),
which is also used to represent intermediate models obtained in com-
putations of our concrete controller synthesis algorithm.

16

2.1. Discrete Event Systems

2.1. Discrete Event Systems

We use various concrete formalisms to represent plants, controllers, and specifi-
cations in our concrete controller synthesis algorithm in chapter 5|p.61. These
formalisms determine for their models marked and unmarked languages over an
event alphabet. On the one hand, these unmarked languages are prefix-closed
and describe all possible evolutions of the models. On the other hand, the
marked languages are contained in the unmarked languages and describe all
desired evolutions in the sense of safe regions. Our umbrella notion of a discrete
event system (DES) [310] captures these two languages and serves as an abstract
representation for the models of the concrete formalisms employed in this thesis.

The following definition introduces the type Σ des of DES, the constructor DES,
and the two selectors Ldes

um and Ldes
m . The constructor DES takes the unmarked

language and the marked language (formally given by sets of lists) over elements
from a type Σ to construct a DES. The two selectors Ldes

um and Ldes
m enable the

extraction of the unmarked and the marked languages, respectively, from a DES.

Definition 2.1: «Type of DES»

datatype Σ des = DES Ldes
um :: Σ list set Ldes

m :: Σ list set

We define the predicate valid-des to identify the DESs that satisfy the constraints
of prefix-closure and inclusion mentioned above.

Definition 2.2: «valid-des»
definition valid-des :: Σ des⇒ bool
where valid-des D ≡ Ldes

m D ⊆ Ldes
um D ∧ prefix-closure (Ldes

um D) = Ldes
um D

While the separation of the event alphabet into controllable and uncontrollable
events is required for controller synthesis, we do not include it in our formaliza-
tion at this level.

DESs determine a complete lattice according to the instantiation of the abstract
operations of a complete lattice as given in the following theorem where we make
use of operations from the complete powerset lattice over words of events.

Theorem 2.1: «Discrete Event Systems Form a Complete Lattice»

bot ≡ DES { } { }
top ≡ DES UNIV UNIV

less-eq ≡ λA B. Ldes
um A ⊆ Ldes

um B ∧ Ldes
m A ⊆ Ldes

m B
less ≡ λA B. less-eq A B ∧ A 6= B

inf ≡ λA B. DES (Ldes
um A ∩ Ldes

um B) (Ldes
m A ∩ Ldes

m B)

sup ≡ λA B. DES (Ldes
um A ∪ Ldes

um B) (Ldes
m A ∪ Ldes

m B)

Inf ≡ λX. DES (
⋂

(Ldes
um ` X)) (

⋂
(Ldes

m ` X))

Sup ≡ λX. DES (
⋃

(Ldes
um ` X)) (

⋃
(Ldes

m ` X))

17

Chapter 2. Abstract and Concrete Discrete Event Systems

By using this complete lattice later on, we deviate from [282] where a complete
lattice over only one of both languages is used to state a supervisory control
problem. The adequacy of DESs with their integrated handling of (un)marked
languages as abstract representations of concrete formalisms for the purpose
of controller synthesis is demonstrated in the subsequent chapters where the
complete lattice of DES is used extensively in the definition of the abstract
supervisory control problem in chapter 3|p.31 and the definition of our abstract
controller synthesis algorithm in chapter 4|p.45.

2.2. Extended Pushdown Automata

We introduce, amongst others, the automata formalisms of deterministic finite
automata (DFA), deterministic pushdown automata (DPDA) [129], simple de-
terministic pushdown automata (SDPDA) [189], and deterministic extended
pushdown automata (EDPDA) as restrictions of our novel formalism of extended
pushdown automata (EPDA) from which they inherit various definitions, results,
and semantics.

EPDA contain for every reasonable semantics a stack variable in their config-
urations, which stores words over an additional alphabet of stack elements. It
may be used to record information on previously executed steps and to limit step
applicability accordingly. For example, counting events and remembering their
orderings enables the description of languages containing (a) bracketed/balanced
words such as (()(())) with unbounded nesting depth, (b) words of the form
u2×nvn where the event u appears twice as often as the event v, and (c) words of
the form wxw−1 that are odd-length palindroms with the center element x not
contained in w.

We now define EPDA by introducing their type and by providing restrictions
that determine the subset of (valid) EPDA. Note, the edges of EPDA used in this
definition are defined subsequently.

Definition 2.3: «Type of EPDA and valid-epda»
If Q is a finite set of states, Σ is a finite set of events, Γ is a finite set of stack
elements, δ is a finite set of edges, q0 is an initial state in Q, � is an end-of-stack
element, and F is a finite set of marking states contained in Q, then EPDA G
that satisfy valid-epda G are of the following form.

epda-states=Q, epda-events=Σ, epda-gamma =Γ, epda-delta=δ,
epda-initial=q0, epda-eos =�, epda-marking=F

We do not partition the event alphabet Σ into controllable events Σc and uncon-
trollable events Σuc by introducing for them two separate record fields to obtain a
general formalization that can also be used for other application domains without
being cluttered by such a separation. However, we use the terminology of marking
states from control theory; these states are also called accepting or final states in
computer science.

18

2.2. Extended Pushdown Automata

The edges of EPDA (also called step labels), given in the definition above by
the set δ, have four different basic shapes. Firstly, each edge contains a source
state q1 and a target state q2. Secondly, each edge may contain an event a from
the set Σ. Thirdly, each edge contains two words of stack elements to be popped
and pushed, respectively. These two words may contain the end-of-stack element
� only at their end and, moreover, they must agree whether it occurs there.

Definition 2.4: «Type of Edges of EPDA and valid-epda-step-label»
If q1 and q2 are states from Q, a is an event from Σ, s1 and s2 are words
over Γ not containing �, x = None or x = Some a, and (w1, w2) = (s1, s2) or
(w1, w2) = (s1 @ [�], s2 @ [�]), then the edges e of an EPDA G that satisfy
valid-epda-step-label G e are records of the following form.

edge-src=q1, edge-event=x, edge-pop=w1, edge-push=w2, edge-trg=q2

By considering the four cases explicitly we have the following forms.

q1 , None , s1 , s2 , q2
q1 , None , s1 @ [�] , s2 @ [�] , q2
q1 , Some a , s1 , s2 , q2
q1 , Some a , s1 @ [�] , s2 @ [�] , q2

We now introduce our custom semantics epdaH of EPDA by introducing the
configurations, the step relation, and the derived notions of determinism as well
as the generated marked and unmarked languages.

A configuration is given by a state, a stack of stack elements (which always
has a trailing � and which is to be read from left to right), and a history variable
(which is used to log the events executed so far). The initial configuration is
constructed by taking the initial state, the stack containing only the � element,
and an empty history.

Definition 2.5: «(Initial) Configurations of an EPDA in epdaH»
If q is a state from Q, s is a word over Γ not containing �, and h is a word over Σ,
then configurations of an EPDA are of the following form.

epdaH-conf-state=q, epdaH-conf-history=h, epdaH-conf-stack=s @ [�]

The unique initial configuration is q0, [], [�] .

The step relation defines how a configuration Pre can be modified by an edge
Edge into a configuration Post. According to the four kinds of edge patterns
from above, we also differentiate between four kinds of steps in the following
definition. In the steps 1–4 the state is changed from q1 to q2. In the steps 1 and 2

no event is executed whereas in steps 3 and 4 the event a is executed. In the steps
1 and 3 a strict prefix of the stack is popped (hence, the end-of-stack element � is
not popped) whereas in steps 2 and 4 the entire stack is popped.

19

Chapter 2. Abstract and Concrete Discrete Event Systems

Definition 2.6: «Step Relation epdaH-step-relation»
If q1 and q2 are states from Q, a is an event from Σ, h is a word over Σ, s, s1, and
s2 are words over Γ not containing �, then there are the following kinds of steps.

Step 1 Edge: q1, None, s1, s2, q2
Pre: q1, h, s1 @ s @ [�]
Post: q2, h, s2 @ s @ [�]
Kind: execute no event, do not observe � at end of stack

Step 2 Edge: q1, None, s1 @ [�], s2 @ [�], q2
Pre: q1, h, s1 @ [�]
Post: q2, h, s2 @ [�]
Kind: execute no event, observe � at end of stack

Step 3 Edge: q1, Some a, s1, s2, q2
Pre: q1, h, s1 @ s @ [�]
Post: q2, h @ [a], s2 @ s @ [�]
Kind: execute event a, do not observe � at end of stack

Step 4 Edge: q1, Some a, s1 @ [�], s2 @ [�], q2
Pre: q1, h, s1 @ [�]
Post: q2, h @ [a], s2 @ [�]
Kind: execute event a, observe � at end of stack

The iterated application of this step relation results in derivations that are (pos-
sibly infinite) sequences of configurations and applied edges. Moreover, initial
derivations are those derivations that start in initial configurations and reachable
configurations are the configurations in initial derivations.

An EPDA is then deterministic if (during any of its initial derivations) every
two distinct steps that are applicable to a common configuration would add
different events to the history variable.

Definition 2.7: «Determinism for epdaH»
An EPDA is deterministic in epdaH if, whenever an initial derivation leads to a
configuration c and epdaH-step-relation G c e1 c1 and epdaH-step-relation G c e2 c2
are two applicable steps satisfying epdaH-conf-history c1 v epdaH-conf-history c2,
then e1 = e2 and c1 = c2.

Nondeterministic EPDA are more expressive than deterministic EPDA (EDPDA)
because, for example, they can nondeterministically guess the center of palin-
droms of the form ww−1. However, we expect that nondeterministic specifications
lead to nondeterministic controllers that would force the runtime environment
to maintain not only one current configuration, which would incur additional
undesirable costs for the runtime environment and used hardware. Hence, we do
not consider nondeterministic EPDA for modelling specifications or controllers
in this thesis.

EDPDA are more expressive than DFA because DFA may not change the stack
variable and therefore do not benefit from its existence.

20

2.2. Extended Pushdown Automata

The (un)marked language of an EPDA contains the (un)marked words that
are obtained from initial derivations d as follows. The unmarked words are the
histories contained in configurations of d. The marked words are the histories
contained in configurations c of d where (a) c contains a state that is a marking
state of the EPDA and (b) all configurations that follow c in d have the same
history. The condition (b) is required to ensure a proper correspondence with the
standard semantics epdaS (explained in more detail in section 6.2|p.96).
Definition 2.8: «unmarked-language and marked-language for epdaH»
The unmarked language of an EPDA is given by all words v over Σ such that
some configuration c is reachable by some initial derivation d at index n such
that epdaH-conf-history c = v.
An unmarked word is also in the marked language of the EPDA when, addition-
ally, epdaH-conf-state c is a marking state from F and when the history variable is
not extended after index n in the derivation d.

Based on the unmarked language and the marked language we define the DES
that corresponds to a given EPDA.
Definition 2.9: «Conversion of EPDA Using epda-to-des to DES»
If G is an EPDA, then epda-to-des G is a DES defined as

DES (epdaH.unmarked-language G) (epdaH.marked-language G).

We obtain the other automata formalisms as follows. PDA are EPDA where the
edge-pop component has length 1, FSA are PDA where the stack variable is never
changed, DPDA are deterministic PDA (we use the predicate valid-dpda), and
DFA are deterministic FSA. Moreover, SDPDA are DPDA (we use the predicate
valid-sdpda) with only three kinds of edges: edges executing a single event while
not modifying the stack, edges pushing a single element to the stack, and edges
popping the single top-stack element.

The following figure visualizes the relationship between these automata for-
malisms. The edges labelled with 1 and 2 are implemented by operations from
our concrete controller synthesis algorithm introduced in chapter 5|p.61, the edge
3 is subsumed by our reasoning for edge 2 , and the edge 4 is included only

for completeness and is not part of our formalization.
Figure 2.1: «Relationship Between Automata Formalisms»
Notation: A B denotes that A is a subclass of B and A B denotes that
every a ∈ A can be translated into an equivalent b ∈ B.

EPDA EDPDA

PDA DPDA

SDPDA

FSA DFA
4

3 2

1

formalisms changing
the stack variable

21

Chapter 2. Abstract and Concrete Discrete Event Systems

Finally, we provide an example of a DPDA for which no equivalent DFA exists.

Example 2.1: «DPDA Example»
The visualized DPDA G generates the marked language { anbn . n ∈ N } and the
unmarked language { anbm . n, m ∈ N, m ≤ n }. For this DPDA, the generated
unmarked language is the prefix closure of the generated marked language,
formally, epdaH.unmarked-language G = prefix-closure (epdaH.marked-language G).
Hence, every unmarked word can be extended to a marked word.

0 1 2 3
a,�, •�

a, •, ••
b, •,−

b, •,−
−,�,�

2.3. Parsers

Parsing theory is a fundamental and well established research domain in the field
of computer science. Many Parser constructions such as LR(k)-Parsers have been
developed for the parsing of programming languages. In this thesis we rely on
the general notion of Parsers as presented in [325], which relies on [189].

We consider two kinds of semantics in this thesis: branching and linear seman-
tics (see Par. Branching and Linear Semantics|p.105 for more details). Branching
semantics such as the semantics epdaH above for EPDA have a unique initial con-
figuration from which every unmarked word can be executed. Linear semantics
have one initial configuration for each potential unmarked word that is contained
in the configuration in the form of a scheduler variable to be followed.

For modelling, Parsers have three features that are not available in EPDA.

Partial Execution: Parsers have a refined event mechanism compared to EPDA
that decouples the observation of events (by a context) and their execution
(by the Parser). That is, Parsers may execute only a prefix of the events
observed in a step whereas EPDA execute an event in the step in which it
is observed. The fixed scheduler variable, handled implicitly or explicitly
in Parser semantics, consists of the observed events that have not been
executed so far. These events have to be executed before any subsequently
observed events. Also, in parsing theory, the term look ahead stands for
the list of events (or its length) the Parser can observe in a single step. A
longer look ahead allows for more concise Parsers because the look ahead
restricts rule applicability as well: the look ahead must be compatible with
the fixed scheduler as mentioned above and, in linear semantics, also with
the scheduler. From this perspective each EPDA has a look ahead of at
most 1 because the event component of an edge of an EPDA has a length of
at most 1.

22

2.3. Parsers

Parsers making use of this feature are intermediately obtained by our
concrete controller synthesis algorithm and are translated into Parsers not
using this feature by changing the stack variables such that they contain the
fixed scheduler variable explicitly (see F2 in section 5.2.3|p.78).

Multiple Event Generation: Parsers may execute/observe any (finite) number of
events in a single step whereas EPDA only allow the execution of at most
one event at a time.

However, apart from some results from parsing theory, we assume in many
of our proofs that the Parser at hand executes at most one event per step.

Processing Terminator: Parsers may fix a special end-of-input event parser-eoi (also
called processing terminator) in their steps. Fixing this special event pre-
vents the observation of further events in subsequent steps. That is, in
a branching semantics, the Parser may decide to stop the observation of
further events by fixing the parser-eoi event and, in a linear semantics, the
Parser may detect the parser-eoi event at the end of the scheduler variable.
In both cases the Parser may still execute previously observed and not yet
executed events and may also operate on the stack.

Parsers observing the processing terminator are intermediately obtained by
our concrete controller synthesis algorithm. We remove this usage without
invalidating desired semantical properties (see F1 in subsection 5.2.2|p.73).

In our concrete controller synthesis algorithm in chapter 5|p.61, we obtain in-
stances of LR(1)-Parsers, which are a subclass of deterministic Parsers. Then, we
verify that these LR(1)-Parsers can be translated into DPDA while preserving the
satisfaction of semantical properties that are of interest for controller synthesis.

We define Parsers, which make use of the notion of rules defined below.
Definition 2.10: «Type of Parser and valid-parser»
If N is a finite set of nonterminals, Σ is a finite set of events, q0 is an initial
nonterminal in N, F is a finite set of marking nonterminals from N, δ is a finite
set of rules, and $ is the end-of-input event from Σ, then Parsers G that satisfy
valid-parser G are of the following form.

parser-nonterms=N, parser-events =Σ,
parser-initial =q0, parser-marking=F,
parser-rules =δ, parser-eoi =$

The rules of Parsers, given above by the set δ, have two different shapes. The first
shape is used to change the current stack by exchanging a certain prefix of it, to
execute the events of a word v1, and to fix the events of v2 that have not been
fixed in an earlier step. The second shape is similar, but it fixes the processing
terminator if it has not been fixed in an earlier step and, hence, after applying
such a rule only the events from v2 can be executed subsequently.

23

Chapter 2. Abstract and Concrete Discrete Event Systems

Definition 2.11: «Type of Rules of Parsers and valid-parser-step-label»
If q1 and q2 are nonterminals from N, s1 and s2 are words over N, v1
and v2 are words over Σ not containing $, and (w1, w2) = (s1 @ s2, s2) or
(w1, w2) = (s1 @ s2 @ [$], s2 @ [$]), then the rules r of a Parser G that satisfy
valid-parser-step-label G r are of the following form.

rule-stack-pop =s1 @ [q1], rule-scheduler-pop =w1,
rule-stack-push=s2 @ [q2], rule-scheduler-push=w2

By considering the two cases explicitly we have the following forms.

s1 @ [q1] , v1 @ v2 , s2 @ [q2] , v2
s1 @ [q1] , v1 @ v2 @ [$] , s2 @ [q2] , v2 @ [$]

The elements q1 and q2 may be interpreted as the source and target state of the
rule, which are not separately stored as in the edges of EPDA. We also use the
notation x1 ||| y1 −→ x2 ||| y2 for rules x1, y1, x2, y2 from [325].

We now introduce our custom semantics parserHF of Parsers by introducing
the configurations, the step relation, and the derived notions of determinism as
well as the generated unmarked and marked languages. The more simple and
equivalent semantics parserS is explained in subsection 6.2.7|p.114.

A configuration is given by a stack of nonterminals, which is never empty and
which is to be read from right to left, a history for storing the already observed
events, which is extended to the right, and a fixed scheduler of the events
observed but not yet executed. The initial configurations are constructed using
the initial stack element, an empty history, and an empty fixed scheduler.

Definition 2.12: «(Initial) Configurations of a Parser in parserHF»
If s is a word over N, q is from N, v1 and v2 are words over Σ not containing $,
h = v1 @ v2, and f = v2 or f = v2 @ [$] then configurations of a Parser are of
the following form.

parserHF-conf-fixed= f , parserHF-conf-history=h, parserHF-conf-stack=s @ [q]

By considering the two cases explicitly we have the following forms.

v2 , v1 @ v2 , s @ [q]
v2 @ [$] , v1 @ v2 , s @ [q]

The unique initial configuration is [], [], [q0] .

The step relation determines how a configuration Pre can be modified by a rule
Rule into a configuration Post. We distinguish between seven kinds of steps due
to the interplay between fixed scheduler and history variable. In all seven steps
the stack is changed by replacing the top-most elements s1 @ [q1] by s2 @ [q2].
Also, in each of the seven steps the rule must respect the fixed scheduler in the
sense that the component rule-scheduler-pop of the rule is either a prefix of the
fixed scheduler of the Pre-configuration or has this fixed scheduler as a prefix.

24

2.3. Parsers

Definition 2.13: «Step Relation parserHF-step-relation»
If q1 and q2 are from N, s, s1, and s2 are words over N, h, v1, v2, and v3 are
words over Σ not containing $, and v1, v2, and v3 are not empty, then there are
the following kinds of steps.

Step 1a Rule: s1 @ [q1], v1 @ v2 @ v3, s2 @ [q2], v3
Pre: v1 , h , s @ s1 @ [q1]
Post: v3 , h @ v2 @ v3 , s @ s2 @ [q2]
Kind: (¬A), (¬B), (¬C), (D), (E)

Step 1b Rule: s1 @ [q1], v1 @ v2 @ v3, s2 @ [q2], v2 @ v3
Pre: v1 @ v2 , h , s @ s1 @ [q1]
Post: v2 @ v3 , h @ v3 , s @ s2 @ [q2]
Kind: (¬A), (¬B), (¬C), (D), (¬E)

Step 1c Rule: s1 @ [q1], v1 @ v2, s2 @ [q2], v2
Pre: v1 @ v2 @ v3 , h , s @ s1 @ [q1]
Post: v2 @ v3 , h , s @ s2 @ [q2]
Kind: (¬A), (¬B), (¬C), (¬D), (¬E)

Step 2a Rule: s1 @ [q1], v1 @ v2 @ v3 @ [$], s2 @ [q2], v3 @ [$]
Pre: v1 , h , s @ s1 @ [q1]
Post: v3 @ [$] , h @ v2 @ v3 , s @ s2 @ [q2]
Kind: (¬A), (B), (C), (D), (E)

Step 2b Rule: s1 @ [q1], v1 @ v2 @ v3 @ [$], s2 @ [q2], v2 @ v3 @ [$]
Pre: v1 @ v2 , h , s @ s1 @ [q1]
Post: v2 @ v3 @ [$] , h @ v3 , s @ s2 @ [q2]
Kind: (¬A), (B), (C), (D), (¬E)

Step 3a Rule: s1 @ [q1], v1 @ v2, s2 @ [q2], v2
Pre: v1 @ v2 @ v3 @ [$] , h , s @ s1 @ [q1]
Post: v2 @ v3 @ [$] , h , s @ s2 @ [q2]
Kind: (A), (B), (¬C), (¬D), (¬E)

Step 3b Rule: s1 @ [q1], v1 @ v2 @ [$], s2 @ [q2], v2 @ [$]
Pre: v1 @ v2 @ [$] , h , s @ s1 @ [q1]
Post: v2 @ [$] , h , s @ s2 @ [q2]
Kind: (A), (B), (C), (¬D), (¬E)

Legend: We use the following classification of the steps also explained below.

(A) $ is fixed in the Pre-configuration (i.e., parserHF-conf-fixed ends with $)
(B) $ is fixed in the Post-configuration (i.e., parserHF-conf-fixed ends with $)
(C) $ is observed by the rule (i.e., rule-scheduler-pop ends with $)
(D) new events are executed (i.e., new events are added to the history)
(E) the fixed scheduler of the Pre-configuration is entirely removed

25

Chapter 2. Abstract and Concrete Discrete Event Systems

Firstly, the labels (A)–(C) are related to the status and the observation of the
processing terminator: the processing terminator $ is not fixed in the Pre- and
Post-configurations of steps 1a–1c and in the Pre-configurations of steps 2a and
2b. Vice versa, the processing terminator $ is fixed in the Post-configurations
of steps 2a and 2b and in the Pre- and Post-configurations of steps 3a and 3b.
Secondly, the label (D) is related to the execution of further events: in steps 1a,
1b, 2a, and 2b further events are executed and possibly fixed. Finally, the label
(E) is related to the removal of the fixed scheduler: in steps 1a and 2a the entire
fixed scheduler is removed whereas in the other steps 1b, 1c, 2b, 3a, and 3b a
nonempty suffix of the fixed scheduler is retained.

Intuitively a given Parser is deterministic if (during any initial derivation) every
two distinct applicable steps would add different events to the history variable.

Definition 2.14: «Determinism for parserHF»
A Parser is deterministic in the semantics parserHF if, whenever a given initial
derivation reaches a certain configuration c and parserHF-step-relation G c e1 c1
and parserHF-step-relation G c e2 c2 are two applicable steps that satisfy that
parserHF-conf-history c1 v parserHF-conf-history c2, then e1 = e2 and c1 = c2.

The (un)marked language of a Parser contains the (un)marked words that are
obtained from initial derivations d as follows. The unmarked words are the
histories contained in configurations of d. The marked words are the histories
contained in configurations c of d where (a) the stack of c ends in a marking
stack element of the Parser and (b) all configurations that follow c in d have
the same history. As for EPDA, the condition (b) is required to ensure a proper
correspondence with the standard semantics parserS (explained in more detail in
section 6.2|p.96).

Definition 2.15: «unmarked-language and marked-language for parserHF»
The unmarked language of a Parser is given by all words v over Σ such that
some configuration c is reachable by some initial derivation d at index n such
that parserHF-conf-history c = v.
For a word to be in the marked language of the Parser we additionally require
that parserHF-conf-stack c is of the form s @ [q] where q is a marking stack
element from F and that the history variable is not extended after index n.

Based on the unmarked language and the marked language we define the DES
that corresponds to a given Parser.

Definition 2.16: «Conversion of Parsers Using parser-to-des to DES»
If G is a Parser, then parser-to-des G is a DES defined as

DES (parserHF.unmarked-language G) (parserHF.marked-language G).

In the following example, we present a Parser that does not rely on any of the
three Parser-specific features introduced above.

26

2.4. Context-free Grammars

Example 2.2: «Parser Example»
The Parser with the initial stack element 0, the marking stack elements {0, 3},
and the five rules below has the same unmarked and marked language as the
EPDA from Example 2.1|p.22.

r1 : 0 | a −→ �•1 | r4 : •2 | b −→ 2 |
r2 : •1 | a −→ ••1 | r5 : �2 | −→ 3 |
r3 : •1 | b −→ 2 |

2.4. Context-free Grammars

In this section, we introduce the well-known formalism of context-free grammars
(CFGs) from [80] and their subclass of LR(k)-CFGs from [189].

Intuitively, CFGs are rule-based replacement systems operating on words
over two kinds of elements: events (also called terminals in other contexts) and
nonterminals. In each step (of any semantics of CFGs) a single nonterminal that
is contained in the configuration is replaced by a (possibly empty) replacement
list according to one production of the CFG.

The parsing of programming languages, described by LR(k)-CFG, using LR(k)-
Parsers was introduced in [189] and more technical details and results for LR(k)-
CFG have been summarized in a consistent notation in [325]. In particular, the
LR(k)-CFGs can be parsed deterministically with look ahead k. Also, these Parsers
are correct-prefix-parsers [325, Volume II, Theorem 9.1, p. 291] stating that errors are
detected when they occur, which (a) supports users in finding the syntax errors
in their program to be parsed and which (b) is fundamentally required in our
control setting as it allows us to execute only the desired events.

In the fields of computer science and discrete control theory, the formalism
of CFG is not commonly used for the description of running systems. One
reason may be that the definition of LR(1)-CFG is more complex compared to
the definitions of determinism for formalisms such as DPDA resulting in a more
difficult modelling processes of deterministic systems. The formalism of LR(1)-
CFG is used in our concrete controller synthesis algorithm from chapter 5|p.61

where we also provide details on their equivalence to DPDA and LR(1)-Parsers.
We now define CFG already using productions that are defined subsequently.

Definition 2.17: «Type of CFG and valid-cfg»
If N is a finite set of nonterminals, Σ is a finite set of events, S is an initial
nonterminal in N, and P is a finite set of productions, then CFGs G that satisfy
valid-cfg G are of the following form.

cfg-nonterminals=N, cfg-events=Σ, cfg-initial=S, cfg-productions=P

As for EPDA and Parsers, we do not partition the event alphabet Σ into con-
trollable events Σc and uncontrollable events Σuc by introducing for them two
separate record fields to obtain a general formalization of CFGs.

27

Chapter 2. Abstract and Concrete Discrete Event Systems

The productions of CFGs, given above by the set P, have only one shape. In
general, a production is given by a left-hand-side nonterminal and a right-hand-
side word over nonterminals and events of the CFG. Formally, we distinguish
between nonterminals and events by using words ranging over a custom datatype
where the elements beA A and beA b represent nonterminals A and events b,
respectively. Informally, we omit the constructors beA and beB and use capital and
lower case letters for nonterminals and events, respectively. Given a CFG with a
set of nonterminals N and a set of events Σ we define the set of elements of such
words by bi-elem-domain N Σ = { beA A | A . A ∈ N } ∪ { beB b | b . b ∈ Σ }.
Definition 2.18: «Type of Production of CFGs and valid-cfg-step-label»
If A is a nonterminal from N, w is a word over bi-elem-domain N Σ, then the
productions p of a CFG G that satisfy valid-cfg-step-label G p are of the following
form.

prod-lhs = A, prod-rhs = w

We introduce subsequently the three semantics cfgSTD, cfgLM, and cfgRM for
CFG. They share identical definitions for the (initial) configurations, the generated
unmarked language, and the generated marked language, but they differ in their
step-relations as explained below.

A configuration of a CFG is given by a word over the set bi-elem-domain N Σ and
the initial configuration is constructed by taking only the initial nonterminal S.

Definition 2.19: «(Initial) Configurations of a CFG»
If w is a word over bi-elem-domain N Σ, then the configurations of a CFG are of
the following form.

cfg-conf=w

The unique initial configuration is [beA S] .

The three CFG semantics are branching semantics as they have a unique initial
configuration, which does not determine the unmarked word to be executed from
this initial configuration.

The step relations of the three semantics determine how a given Pre configura-
tion can be modified by a production Production into a configuration Post. We use
the operation lift-B to apply the constructor beB to each element in a word over Σ.

Definition 2.20: «Step Relations cfgSTD-step-relation, cfgLM-step-relation,
and cfgRM-step-relation»

If w1, w2, and w are words over bi-elem-domain N Σ and v is a word over Σ, then
steps are of the following form.

cfgSTD Production: A, w
Pre: w1 @ [A] @ w2
Post: w1 @ w @ w2
Kind: replace any occurrence of the nonterminal A

28

2.4. Context-free Grammars

cfgLM Production: A, w
Pre: (lift-B v) @ [A] @ w1
Post: (lift-B v) @ w @ w1
Kind: replace an occurrence of the nonterminal A,

if it not preceded by another nonterminal

cfgRM Production: A, w
Pre: w1 @ [A] @ (lift-B v)
Post: w1 @ w @ (lift-B v)
Kind: replace an occurrence of the nonterminal A,

if it not succeeded by another nonterminal

Because all three step relations depend on a nonterminal to be present in the
Pre-configuration, there are no steps applicable to a configuration not containing
any nonterminals.

The notion of determinism cannot be determined for CFG by checking local
structural conditions as for EPDA and Parsers. Instead the definition depends on
the notion of initial derivations. Consider the following simplified example from
[325, Volume II, Figure 6.9, p. 49] of a CFG that we consider to be not deterministic.

Example 2.3: «A Nondeterministic CFG»
We consider the CFG with initial nonterminal S and the following four rules.

ρ1 : S, [A, B, b] ρ2 : A, [a, b] ρ3 : S, [a, B, b] ρ4 : B, [b]

Discussion: There are initial derivations d1 and d2 that end in the configurations
c1 = [a, b, b, b] and c2 = [a, b, b] , respectively. Determinism would require
that both derivations apply the same productions until reaching configurations
having [a, b, b] as a prefix. However, this is not the case for the given example
where different productions are applied in the two derivations.

Note, the reasoning employed in this example corresponds closely to a similar
explanation of determinism for EPDA. That is, if an EDPDA generates the
unmarked words [a, b, b, b] and [a, b, b], then there is (using the semantics epdaH)
a unique initial derivation that appends the event b to the history [a, b] in its
last step. Note that special attention is required when formalizing determinism
along the lines of these intuitive explanations because EPDA and CFG allow
for steps not executing events. Determinism for CFG by means of the notion of
LR(1)-CFG is given in Definition 6.9|p.121 (where we analyze the relationship
between DPDA and LR(1)-CFG w.r.t. determinism) and is considered in more
detail also in subsection 5.2.1|p.69.

Finally, the marked and unmarked languages of a CFG are obtained from
its initial derivations d. Each nonterminal-free prefix of the word given in
a configuration c is an unmarked word of the CFG. Moreover, the marked
language is given by the words contained in configurations that contain no
further nonterminals.

29

Chapter 2. Abstract and Concrete Discrete Event Systems

Definition 2.21: «unmarked-language and marked-language for CFG»
The unmarked language of a CFG is given by all words v over Σ such that some
configuration c is reachable by some initial derivation d such that lift-B v is a
prefix of cfg-conf c.
For a word to be in the marked language of the CFG we require that lift-B v
equals cfg-conf c.

Based on the unmarked language and the marked language we define the DES
that corresponds to a given CFG.

Definition 2.22: «Conversion of CFG Using cfg-to-des to DES»
If G is a CFG, then cfg-to-des G is a DES defined as

DES (cfgLM.unmarked-language G) (cfgLM.marked-language G).

For the equivalence of the three semantics we note that initial derivations end-
ing in configurations without nonterminals can be translated among the three
semantics by reordering the application of productions. For cfgLM and cfgRM
these initial derivations are also unique. However, initial derivations that end in
configuration containing nonterminals cannot be translated among the semantics:
a piecewise translation from initial cfgRM derivations to initial cfgLM derivations
is considered for this case in the proof presented in section 6.3|p.116.

Finally, we end our introduction by giving an example of a CFG.

Example 2.4: «CFG Example»
The CFG with initial nonterminal S and the following two productions has
the same unmarked an marked language as the EPDA and the Parser from
Example 2.1|p.22 and Example 2.2|p.27, respectively.

ρ1 : S, [a, S, b] ρ2 : S, []

Chapter 2|p.15
(Abstract and Concrete Discrete Event Systems)

In this chapter, we introduced the abstract formalism of DES and the concrete
formalisms of EPDA, Parsers, and CFG. A DES is a semantical abstraction of an
instance of a concrete formalism and includes the marked and unmarked language of
that instance.

DES are the foundation for our definitions of the abstract supervisory control problem
and an abstract controller synthesis algorithm in chapter 3|p.31 and chapter 4|p.45,
respectively. DPDA and DFA, which are subclasses of EPDA, are used to define a
concrete supervisory control problem and a concrete controller synthesis algorithm
in chapter 3|p.31 and chapter 5|p.61, respectively. The other concrete formalisms
of Parsers and CFGs introduced here are used in this concrete controller synthesis
algorithm as well to represent intermediate controller candidates.

30

3
Abstract and Concrete Supervisory Control Problems

In this chapter, we introduce an abstract and a concrete supervisory control
problem to be solved by our abstract and concrete controller synthesis algorithms
from chapter 4|p.45 and chapter 5|p.61, respectively. As a foundation for these
problems, we use the complete lattice of DES and the automata formalisms from
section 2.1|p.17 and section 2.2|p.18, respectively. In section 3.3|p.41, we show that
both supervisory control problems are compatible under the expected limitations.

We employ DES for the characterization of the least restrictive satisfactory
controller to be obtained as stated by the abstract supervisory control problem.
While our definition of this abstract problem follows earlier definitions, we
believe that it is an improvement compared to the characterization presented in
[281] because it defines the unmarked and marked languages of the controller
to be constructed together, which is important to state properties referring to
both languages and, hence, also for the connection to the abstract controller
synthesis algorithm and the concrete controller synthesis algorithm. Moreover,
it cleanly separates the abstract and the concrete setting, which allows for a
separate handling of aspects that are only relevant in the concrete setting such as
for example the absence of livelocks. For comparison, the supremal controllable
unmarked language contained in the unmarked language of the plant was defined
based on the complete powerset lattice of unmarked words over the event alphabet
in [281, Section 2, p. 1073] while the marked language and nonblockingness were
handled separately in [282, Section 3, p. 482].

Note that the extension of controller synthesis algorithms to language classes
beyond regular languages was mentioned in [281, Section 4, p. 1074] as a possible
research goal already.

31

Chapter 3. Abstract and Concrete Supervisory Control Problems

Contents of this Chapter

3.1|p.33 Abstract Supervisory Control Problem
for Discrete Event Systems

We introduce the properties of controllability, nonblockingness, and
satisfaction of specifications that are then used to define the abstract
supervisory control problem for DES plants and DES specifications.
Additionally, we consider minimality for DES controllers.

3.2|p.36 Concrete Supervisory Control Problem
for Deterministic Pushdown Automata

We introduce the properties of operational controllability, operational
nonblockingness, operational satisfaction of specifications, deadlock
freedom, and livelock freedom that are then used to define the concrete
supervisory control problem for DFA plants and DPDA specifications.
Additionally, we consider two minimality notions and two accessibility
notions for DPDA controllers.

3.3|p.41 Correspondence between Abstract and Concrete
Supervisory Control Problems

We compare the two supervisory control problems and show that the
concrete supervisory control problem is a refinement of the abstract
supervisory control problem under the expected limitations.

32

3.1. Abstract Supervisory Control Problem for Discrete Event Systems

3.1. Abstract Supervisory Control Problem

for Discrete Event Systems

Following our introduction from chapter 1|p.1, we introduce the abstract supervi-
sory control problem. For this purpose, we rely on the abstract formalism of DES
from section 2.1|p.17 to model the controllers, plants, specifications, and closed
loops and introduce required constructions and properties on DES.

Construction of the Closed Loop
Recall that the closed loop CL of a plant P and a controller C is defined by their
synchronous composition. Because the two systems can only execute events
together (that is, send and receive operations are coupled), only those words
of events are preserved from P and C that are common to them. Hence, C
can prevent parts of P, but it cannot add further sequences to the common
behavior. The synchronous composition is constructed by the inf operation from
the complete lattice of DES, which constructs the intersection of the (un)marked
languages of P and C. That is, inf P C = DES (Ldes

um P ∩ Ldes
um C) (Ldes

m P ∩ Ldes
m C).

Property of Controllability
For a proper synchronization between the two components, we require that the
controller C must not refuse the reception of any event u ∈ Σuc that is send by
the plant P. Controllers not satisfying this property are generally not desirable as
they are capable of ignoring events sent by the plant that e.g. unveil an undesired
plant behavior. This property is also known in computer science where I/O
automata [227] are required to be input-enabled.

Formally, we state that whenever C may execute w and P may execute w @ [u]
for an uncontrollable event u, then C must be able to execute w @ [u] as well.

Definition 3.1: «DES-controllable»
definition DES-controllable :: Σ des⇒ Σ set⇒ Σ des⇒ bool
where DES-controllable C Σuc P

≡ ∀w u. (w ∈ Ldes
um C ∧ u ∈ Σuc ∧ w @ [u] ∈ Ldes

um P) −→ w @ [u] ∈ Ldes
um C

Property of Nonblockingness
The unmarked language and the marked language of the closed loop CL describe
a safe region and a goal region, respectively. Alternatively, from a task-oriented
perspective, they can be understood to describe tasks and completed tasks, respec-
tively. Nonblockingness then states that every started task can be completed or,
alternatively, that the goal region is permanently reachable from every part of
the safe region. Formally, each unmarked word w of the closed loop must be
extendable by some word v resulting in a marked word of the closed loop.

Definition 3.2: «DES-nonblocking»
definition DES-nonblocking :: Σ des⇒ bool
where DES-nonblocking CL ≡ Ldes

um CL ⊆ prefix-closure (Ldes
m CL)

33

Chapter 3. Abstract and Concrete Supervisory Control Problems

Property of Satisfaction of the Specification
We state safety and permanent reachability properties by using specifications in
the form of DES that are to be satisfied by the closed loop CL. On the one hand,
the set Ldes

um S characterizes the safe region that is not to be exited throughout
the execution of the closed loop. On the other hand, the set Ldes

m S characterizes
the goal region that is desirable to be reached. We define that a closed loop CL
satisfies a specification S whenever the unmarked and marked languages of CL
are contained in those of S. This is stated for DES by making use of the less-eq
relation of our complete lattice of DES from section 2.1|p.17.

Definition 3.3: «DES-satisfaction»
definition DES-satisfaction :: Σ des⇒ Σ des⇒ bool
where DES-satisfaction S CL ≡ CL ≤ S

Note, nonblockingness and specification satisfaction together imply that Ldes
um C

is a subset of prefix-closure (Ldes
m S). This expresses, again from the task-oriented

perspective, that each task of the closed loop can be extended to a completed task
of the specification.

Abstract Supervisory Control Problem for Discrete Event Systems
The supervisory control problem describes, for a given plant P and a given
specification S, a set of desirable controllers C. In this abstract setting, we use
(valid) DES to describe the plant, specification, controller, and closed loop.

We determine the controllers that may be used to safely control the plant by
collecting all valid DES satisfying the three properties introduced above.

Definition 3.4: «SCP-Controller-Satisfactory»
definition SCP-Controller-Satisfactory :: Σ des⇒ Σ des⇒ Σ set⇒ Σ des set
where SCPC

Sat P S Σuc
≡ { C . valid-des C

∧ DES-controllable Σuc P C
∧ DES-nonblocking (inf C P)
∧ DES-satisfaction S (inf C P) }

Based on these satisfactory controllers, we derive the satisfactory closed loops
inf C P for which a satisfactory controller C has been used.

Definition 3.5: «SCP-Closed-Loop-Satisfactory»
definition SCP-Closed-Loop-Satisfactory :: Σ des⇒ Σ des⇒ Σ set⇒ Σ des set
where SCPCL

Sat P S Σuc ≡ { inf C P | C . C ∈ SCPC
Sat P S Σuc }

Firstly, the set SCPC
Sat P S Σuc is never empty because Ldes

um C may be empty
without ever violating controllability. While this can be understood to be a
modelling problem (the non-emptiness could be included in the definition of a
valid DES), we follow here the definitions in [281] (see also section 3.3|p.41 for
further consequences). Secondly, all controllers contained in SCPC

Sat P S Σuc are

34

3.1. Abstract Supervisory Control Problem for Discrete Event Systems

equally satisfactory w.r.t. the properties discussed and result therefore in a safe
closed loop behavior by guaranteeing for example the absence of violations of
the specification.

The various controllers differ in the extend to which they limit the plant
behavior. For example, two controllers may be satisfactory while only one of
them is desirable as it actually activates the plant from an initial idle state by
sending a suitable start-up event. Hence, we restrict the set SCPC

Sat P S Σuc
to its members that are least restrictive w.r.t. the plant P. A controller C is
least restrictive if C is satisfactory, the closed loop of C and P is the supremal
satisfactory closed loop, and this supremal closed loop is a satisfactory closed loop
as well. The notion of least restrictiveness also ensures that further synchronous
controllers can be used in parallel to restrict the behavior of the closed loop.

Definition 3.6: «SCP-Controller-Least-Restrictive»
definition SCP-Controller-Least-Restrictive

:: Σ des⇒ Σ des⇒ Σ set⇒ Σ des set
where SCPC

LR P S Σuc
≡ { C . C ∈ SCPC

Sat P S Σuc
∧ inf C P = Sup (SCPCL

Sat P S Σuc)

∧ inf C P ∈ SCPCL
Sat P S Σuc }

Indeed, this definition of the set of controllers SCPC
LR P S Σuc can be simplified to

{ C . valid-des C ∧ inf C P = Sup (SCPCL
Sat P S Σuc) } because the four properties

used in SCPC
Sat are closed under the supremum (that is, closed under arbitrary

union), Sup (SCPCL
Sat P S Σuc) is contained in SCPCL

Sat P S Σuc, and controllability
of C can be derived from the controllability of inf C P.

With the definitions introduced and this final simplification, we state the
abstract supervisory control problem for DES.

Definition 3.7: «Abstract Supervisory Control Problem for DES»
Given a set of events Σ, which is partitioned into controllable events Σc and
uncontrollable events Σuc, a plant P in the form of a valid DES over Σ, and a
specification S in the form of a valid DES over Σ, determine a controller in the
form of a valid DES over Σ from SCPC

LR P S Σuc.

We discussed and related further alternative notions of controllability and the
abstract supervisory control problem in [310].

Additional Property of Minimality for DES
The set of solutions to the abstract supervisory control problem for DES is in gen-
eral no singleton. For example, we may require the controller C to be the smallest
solution, that is, we may require that the controller C equals Inf (SCPC

LR P S Σuc).
However, without a concrete description language for DES at hand, the infi-
mal solution is not arguably more desirable than the supremal solution (see
Par. Additional Property of Minimality for DPDA|p.39).

35

Chapter 3. Abstract and Concrete Supervisory Control Problems

3.2. Concrete Supervisory Control Problem

for Deterministic Pushdown Automata

We introduce a characterization of the least restrictive satisfactory controllers
for the setting of DFA plants and DPDA specifications. These controllers are
DPDA and ought to satisfy operational properties to be introduced subsequently.
However, the formal definitions for the properties are omitted here to increase
readability and are contained in Appendix C|p.233. In the subsequent section,
we compare these DPDA controllers with the least restrictive satisfactory DES
controllers from the previous section.

Construction of the Closed Loop
The synchronous execution of a DFA plant and a DPDA controller, where both
components synchronize on their common events, is defined by the usual product
construction FDPDA-DFA-Product of DFA and DPDA (see also [163, Theorem 7.27,
p.286]) and is discussed in more detail in section 5.1|p.64. In fact, the observation
of the feasibility of this construction triggered the entire research project at its
earliest stage.

Property of Determinism
We require controllers to be deterministic, that is, in this setting controllers
should be DPDA rather than nondeterministic PDA. Determinism means here
that the DPDA controller C always has a unique successor configuration for
each possible extension of the current history variable (see Definition 2.7|p.20).
Allowing nondeterministic PDA controllers is not suitable because the runtime
environment has to keep track of all configurations that are compatible with the
history variable. The set of these configurations should be as small as possible
to reduce memory requirements and, ideally, contains only one configuration as
guaranteed by determinism.

However, the controller may be allowed to execute different events from a
configuration. Firstly, the controller must satisfy controllability: it must accept
any given uncontrollable event that is nondeterministically chosen and sent by
the plant. Secondly, the controller must be least restrictive: it must choose nonde-
terministically a controllable event only being limited by the other properties to
be satisfied. These two steps of sending by plant and controller may not alternate
in general: it is possible that the controller continuously receives events from the
plant without sending events (thereby just monitoring the plant) and, as the other
extreme, it may send events to the plant without receiving any events from the
plant (thereby blindly controlling the plant in an open loop).

Property of Controllability
A concrete DPDA controller must accept uncontrollable events that are sent
by the plant as explained before. To define epda-operational-controllable C P Σuc
(see Definition C.1|p.233), we consider two initial derivations d1 and d2 of the
controller C and the plant P, respectively, where both derivations execute the

36

3.2. Concrete Supervisory Control Problem for Deterministic Pushdown Automata

events of a common word w of events in n1 and n2 steps, respectively, and where
the derivation d2 of the plant P executes an uncontrollable event u afterwards.
Then, the controller must be able to extend the initial derivation d1 by some
derivation dC also executing the event u.

This definition assumes determinism as a nondeterministic PDA controller
could also use an initial derivation for the execution of w @ [u] that is not an
extension of d1.

Property of Nonblockingness
The DPDA closed loop CL must satisfy the nonblockingness property to ensure
that the goal region can be reached continuously. The goal region is given by the
initial derivations of the specification that satisfy the marking condition (i.e., initial
derivation that contain a marking configuration, which in turn must contain a
marking state). However, as for the DES-based setting, this additional relationship
is established by additionally requiring the satisfaction of the specification by the
closed loop as stated below.

To define epda-operational-nonblockingness CL (see Definition C.2|p.234), we state
that each initial derivation dh of the closed loop CL of length nh can be extended
by a finite-length derivation dc such that the composition of dh and dc satisfies
the marking condition of CL.

Property of Satisfaction of the Specification
The closed loop CL must satisfy the requirements stated by the DPDA specifi-
cation S. That is, each initial derivation of CL must be equally feasible in the
specification S.

To define epda-operational-specification-satisfaction CL S (see Definition C.3|p.234),
we state that for each initial derivation d1 of the closed loop CL of length n1 there
is a corresponding initial derivation d2 of length n2 of the specification S such that
the last configurations of d1 and d2 agree on the events executed so far. Also, we
require d2 to satisfy the marking condition if d1 satisfies the marking condition to
ensure that the marking behavior of S is respected by the closed loop CL.

Property of Deadlock Freedom
The closed loop CL must not deadlock during its execution. A deadlock occurs
if the closed loop is unable to perform another step without being in a marking
configuration. That is, if no events are sent by the plant and the closed loop
has just finished a task, it is allowed to remain in an idle state not performing
any steps. It is an important observation that nonblockingness ensures deadlock
freedom for DPDA because nonblockingness forces the closed loop to reach a
marking configuration from any configuration at hand.

To define epda-deadlock-freedom CL (see Definition C.4|p.234), we state that for
each initial derivation d of the closed loop CL of length n that does not satisfy the
marking condition there is an applicable step from the last configuration of d.

Property of Livelock Freedom
The closed loop CL must not livelock during its execution. A livelock occurs if the
closed loop is unable to execute a further event while it may perform arbitrarily

37

Chapter 3. Abstract and Concrete Supervisory Control Problems

many internal steps. Since the plant is a DFA, the controller would perform these
internal steps autonomously. The consequence of a livelock is that the controller
is not able to respond to the plant in the sense of receiving or sending events.
Note, a livelock that does not visit a marking configuration infinitely often is
excluded for nonblocking DPDA as well.

To define epda-livelock-freedom CL (see Definition C.5|p.235), we state that there
is no infinite initial derivation d of the closed loop CL for which the events
executed so far are not changed after some index N.

Concrete Supervisory Control Problem for DPDA
We proceed similarly as for DES and collect the properties introduced above into
a single definition. This set characterizes all DPDA controllers that would result
in closed loops without undesirable behavior.

Definition 3.8: «SCP-Controller-Satisfactory-DPDA»
definition SCP-Controller-Satisfactory-DPDA

:: (plant-state, event, unused-stack) epda
⇒ (specification-state, event, specification-stack) epda
⇒ event set
⇒ (controller-state, event, controller-stack) epda set

where SCPC,DPDA
Sat P S Σuc

≡ { C . valid-dpda C
∧ epda-operational-controllable Σuc P C
∧ epda-operational-nonblockingness (FDPDA-DFA-Product C P)
∧ epda-operational-specification-satisfaction (FDPDA-DFA-Product C P) S
∧ epda-deadlock-freedom (FDPDA-DFA-Product C P)
∧ epda-livelock-freedom (FDPDA-DFA-Product C P) }

Based on these satisfactory DPDA controllers and the DFA plant P, we now
define the closed loops that are induced by them.

Definition 3.9: «SCP-Closed-Loop-Satisfactory-DPDA»
definition SCP-Closed-Loop-Satisfactory-DPDA

:: (plant-state, event, unused-stack) epda
⇒ (specification-state, event, specification-stack) epda
⇒ event set
⇒ ((controller-state, plant-state) tuple2, event, controller-stack) epda set

where SCPCL,DPDA
Sat P S Σuc

≡ { FDPDA-DFA-Product C P | C . C ∈ SCPC,DPDA
Sat P S Σuc }

As for DES, we now determine the least restrictive satisfactory DPDA controllers.
These DPDA controllers are satisfactory and result in satisfactory closed loops.
However, for least restrictiveness, we cannot proceed as for DES because there is
no complete (semi)lattice of DPDA as they do not allow for infinite joins. Instead,
we reuse the notion of supremality from the DES-based complete lattice and

38

3.2. Concrete Supervisory Control Problem for Deterministic Pushdown Automata

state that the closed loop obtained must be supremal w.r.t. (a) the satisfactory
DPDA closed loops (that is, there is no better DPDA controller than C) and
(b) the satisfactory DES closed loops (that is, there is no better DES controller
than epda-to-des C). The second property is required to ensure that the concrete
supervisory control problem refines the abstract supervisory control problem as
explained later on in section 3.3|p.41

Definition 3.10: «SCP-Controller-Least-Restrictive-DPDA»
definition SCP-Controller-Least-Restrictive-DPDA

:: (plant-state, event, unused-stack) epda
⇒ (specification-state, event, specification-stack) epda
⇒ event set
⇒ (controller-state, event, controller-stack) epda set

where SCPC,DPDA
LR P S Σuc

≡ { C . C ∈ SCPC,DPDA
Sat P S Σuc

∧ FDPDA-DFA-Product C P ∈ SCPCL,DPDA
Sat P S Σuc

∧ epda-to-des (FDPDA-DFA-Product C P)
= Sup (epda-to-des ` (SCPCL,DPDA

Sat P S Σuc))
∧ epda-to-des (FDPDA-DFA-Product C P)

= Sup (SCPCL
Sat (epda-to-des P) (epda-to-des S) Σuc }

With the definitions introduced, we now state the concrete supervisory control
problem for DPDA specifications and DFA plants.

Definition 3.11: «Concrete Supervisory Control Problem for DPDA and DFA»
Given a set of events Σ, which is partitioned into controllable events Σc and
uncontrollable events Σuc, a plant P in the form of a DFA over Σ, and a specifi-
cation S in the form of a DPDA over Σ, determine a controller in the form of a
DPDA over Σ from SCPC,DPDA

LR P S Σuc or determine that this set is empty.

This concrete control problem is solved up to nontermination by our concrete
controller synthesis algorithm as presented in chapter 5|p.61. Also, in the next
section, we relate the abstract and the concrete supervisory control problems.

Additional Property of Minimality for DPDA
The concrete control problem from above may have multiple solutions. We
propose two notions of minimal DPDA controllers, which can be used to restrict
the set of solutions. Firstly, a DPDA controller C is called language-minimal if it is
the smallest solution w.r.t. the size of the marked and unmarked languages (that is,
a DPDA controller C is language-minimal if Inf (epda-to-des ` (SCPC,DPDA

LR P S Σuc))
equals epda-to-des C). Secondly, a DPDA controller C is called size-minimal if it is
the smallest solution w.r.t. the number of states and edges.

We discuss in subsection 8.3.1|p.209 future work regarding these two notions
and our concrete algorithm results in language-minimal controllers even though
we would prefer size-minimal controllers to reduce the static memory require-
ments for the runtime environment while producing the identical closed loop.

39

Chapter 3. Abstract and Concrete Supervisory Control Problems

Additional Property of Accessibility for DPDA
Again, to identify a reasonable subclass of the solutions to the concrete control
problem, we propose two notions of accessibility of controllers. Firstly, a controller
C is accessible (by itself), formally written as epda-accessible C, if all of its elements
(i.e., states and edges) are used in some initial derivation of it (see Definition C.6|
p.235). Secondly, a controller C is accessible in the closed loop CL, formally written
as epda-accessible-in-closed-loop C CL, if all of its elements are used (in the expected
modified form due to the synchronous composition with the plant) in some initial
derivation of the closed loop (see Definition C.7|p.235).

These two properties, which cannot be defined at the level of DES, are not
required for a sound closed loop behavior in the concrete control problem.
However, to obtain size-minimal controllers in the future, we may invalidate
the property of accessibility in the closed loop on purpose (see Par. Outputs
of the Concrete Controller Synthesis Algorithm|p.212). Note that both notions of
accessibility are unrelated to the two previous notions of language-minimal and
size-minimal controllers.

Example 3.1: «Examples of Controllers with Their Properties»
Events: Σc = { a, b } and Σuc = { u }

P: the plant

a u
b

a
u

a b

S: the specification

a u

b b

C0

a

b

C1

a u

a b

C2

a u
b

b

C3

u

b

C4

a u

b u

C5

a u b

b

C6

a u

b u

b

C7

a u u

b a b u

C8

a u

b

40

3.3. Correspondence between Abstract and Concrete Supervisory Control Problems

Legend:

Properties of Controller C0 C1 C2 C3 C4 C5 C6 C7 C8

controllability 7 3 3 3 3 3 3 3 3

specification satisfaction 3 7 3 3 3 3 3 3 3

nonblockingness 3 3 7 3 3 3 3 3 3

satisfactory 7 7 7 3 3 3 3 3 3

+ least restrictive 7 7 7 7 3 3 3 3 3

+ language minimal 7 7 7 7 7 3 3 7 3

+ size minimal 7 7 7 7 7 7 7 7 3

accessible 3 3 3 3 3 3 7 3 3

accessible in the closed loop 3 3 3 3 7 3 7 7 3

3.3. Correspondence between Abstract and Concrete

Supervisory Control Problems

We compare the abstract supervisory control problem from Definition 3.7|p.35

and the concrete supervisory control problem from Definition 3.11|p.39. Note that
we are not aware of previous formal considerations on the relationship between
abstract suprema-based and concrete automata-based characterizations.

Figure 3.1: «Overview of Connection between Abstract and Concrete Problem»

Abstract Problem
(DES P and DES S)

Concrete Problem

(DFA P′, DPDA S′)

Abstract Solution
(DES C)

Concrete Solution

(DPDA C′)

epda-to-des

solution of

solution of

epda-to-des

Existence of Corresponding Instances
Not every instance of the abstract supervisory control problem (given by a DES
plant P, a DES specification S, and a set of uncontrollable events Σuc) corresponds
to some instance of the concrete supervisory control problem. This is due to
the lack of expressiveness of DFA and DPDA used for plants and specifications.
For example, the DES P may have the marked language { anbn . n ∈ N } that
cannot be realized by a DFA. Subsequently, we assume that P and S are realized
by a DFA P′ and a DPDA S′, respectively, in the sense of epda-to-des P′ = P and
epda-to-des S′ = S.

Existence of Abstract Solution for Abstract Problem
The abstract supervisory control problem has a solution for each of its instances.
The DES solution C is formally given by Sup (SCPCL

Sat P S Σuc) in all cases.

41

Chapter 3. Abstract and Concrete Supervisory Control Problems

Existence of Concrete Solution for Concrete Problem
The concrete supervisory control problem does not have a solution for each
of its instances: In the following example, we demonstrate that a satisfactory
DPDA controller cannot be obtained for each input. Note, the DES solution
Sup (SCPCL

Sat P S Σuc) of the corresponding abstract instance, which is the element
bot of the complete lattice of DES equal to DES {} {} in this case, cannot be
realized by a DPDA because every DPDA has the empty word in its unmarked
language.

Example 3.2: «Unrealizability of the Solution bot
of the Abstract Supervisory Control Problem»

Events: Σc = { } and Σuc = { u }

P: the plant

DES {[], [u]} {[], [u]}
S: the specification

DES {[]} {}
C: the controller

DES {} {}

P′: the plant

u

S′: the specification C′: the controller

does not exist

Besides this problem that originates from allowing empty unmarked languages in
valid DES as discussed below of Definition 3.5|p.34, we also cannot exclude that
further problem instances have no solution because, firstly, our concrete controller
synthesis algorithm from chapter 5|p.61 does not terminate in general (see sec-
tion 5.5|p.87) and, secondly, our second synthesis algorithm from subsection 8.2.2|
p.193 has not been formally verified to be sound and terminating. Hence, there
may be no DPDA solution to a particular concrete problem instance (that is,
SCPC,DPDA

LR P S Σuc may be empty) because there may be no suitable DPDA C
that realizes Sup (SCPCL

Sat P S Σuc) and that also satisfies the additional required
semantical properties. While the class of deterministic context free languages
(DCFL), which is generated by DPDA, is not closed under arbitrary union, the
satisfactory DPDA closed loops may be a sufficiently restricted subclass of DPDA
to allow for arbitrary unions in general. Of course, the closure under union of
satisfactory controllers is not required for the obvious termination of our second
algorithm from subsection 8.2.2|p.193.

Correspondence of Solutions for the Abstract and Concrete Instance
The definitions for the abstract and the concrete setting correspond closely. Firstly,
every satisfactory DPDA controller C translates to a satisfactory DES controller
epda-to-des C in terms of Definition 3.8|p.38 and Definition 3.4|p.34. Secondly,
every satisfactory DPDA closed loop CL translates to a satisfactory DES closed
loop epda-to-des CL in terms of Definition 3.9|p.38 and Definition 3.5|p.34. Lastly,
every least restrictive satisfactory DPDA controller C translates to a least restrictive
satisfactory DES controller epda-to-des C in terms of Definition 3.10|p.39 and
Definition 3.6|p.35. For the last part to be satisfied, we have to require the

42

3.3. Correspondence between Abstract and Concrete Supervisory Control Problems

equality of epda-to-des (FDPDA-DFA-Product C P) (that is, the DPDA closed loop
converted to a DES) and Sup (SCPCL

Sat (epda-to-des P) (epda-to-des S) Σuc) (that is,
the supremal DES closed loop) in Definition 3.10|p.39 to ensure that the least
restrictive DPDA controller must not be more restrictive than any satisfactory DES
controller that cannot be realized by a satisfactory DPDA controller. We conclude
that the concrete supervisory control problem refines the abstract supervisory
control problem as desired and that the reverse direction does not hold due to
the increased expressiveness of DES compared to DPDA and DFA (and the minor
unrealizability problem related to bot).

Chapter 3|p.31
(Abstract and Concrete Supervisory Control Problems)

In this chapter, we introduced the abstract and the concrete supervisory control
problem and ensured that they are compatible with each other under the expected
limitations. Also, the definition of the concrete supervisory control problem relied on
the definition of the abstract supervisory control problem by reusing the notion of
least restrictiveness stated on the foundation of DES.

In the next chapter, we determine for the abstract setting of DES an abstract
fixed-point controller synthesis algorithm that relates to the abstract supervisory
control problem. Afterwards, in chapter 5|p.61, we determine a concrete fixed-
point controller synthesis algorithm that relates to the concrete supervisory control
problem.
The correspondence between both supervisory control problems is due to the similari-
ties of the involved properties. Also, both controller synthesis algorithms reestablish
this correspondence by making use of corresponding building blocks.

43

4
Abstract Controller Synthesis Algorithm

for Discrete Event Systems

We introduce an abstract controller synthesis algorithm, which is applied to a
DES plant P, a DES specification S, and a set of uncontrollable events Σuc.

The least restrictive satisfactory controller (see Definition 3.6|p.35) that is
synthesized is equal to a greatest fixed point of an endofunction on DES, which
restricts the current controller candidate in each step least restrictively.

The used endofunction is constructed compositionally from multiple endo-
functions, which we call fixed-point iterators or abstract building blocks. Each
of these abstract building blocks then enforces a single property that is required
for satisfactory controllers. This compositional construction of the fixed-point
iterator simplifies reasoning at the abstract level of DES. Moreover, the concrete
controller synthesis algorithm introduced in chapter 5|p.61 uses concrete building
blocks operating on automata to implement the abstract building blocks. The
abstract controller synthesis algorithm thereby enables compositional reasoning
for the verification of the concrete controller synthesis algorithm and, moreover,
the transfer of results from the abstract to the concrete level.

The connection between the least restrictive satisfactory controller and the
greatest fixed point of a suitable endofunction operating on models of controller
candidates has been introduced in [281] for more restrictive settings with different
terminology and without considerations on composability of fixed-point iterators.

The abstract controller synthesis algorithm does not terminate in general if no
further restrictions on the inputs P and S are assumed. Moreover, the algorithm
is known to be terminating only for plants and specifications that are realizable
by DFA as of now. By also relating to our LR(1)-CFG based concrete controller
synthesis algorithm from subsection 8.2.2|p.193, we observe how the fixed-point
iterator for enforcing controllability should be adapted to result in a terminating
fixed-point computation also for specifications realizable by DPDA.

45

Chapter 4. Abstract Controller Synthesis Algorithm for Discrete Event Systems

Contents of this Chapter

4.1|p.47 Framework of Abstract Building Blocks for Fixed-point Computation
We introduce a framework for the computation of greatest fixed points
using abstract building blocks (given in the form of fixed-point iterators
on DESs). We attach signatures to the fixed-point iterators to allow for
results on suitable composition of fixed-point iterators.

4.2|p.50 Abstract Building Blocks for Enforcing Properties
on Discrete Event Systems Least Restrictively

We introduce abstract building blocks for enforcing least restrictively
the properties required for satisfactory controller such as for example
the properties of nonblockingness and controllability.

4.3|p.53 Abstract Controller Synthesis Algorithm for Discrete Event Systems
To compute the least restrictive satisfactory controllers from Defini-
tion 3.6|p.35, we define an abstract controller synthesis algorithm by
composing the abstract building blocks from section 4.2|p.50.

4.4|p.56 On the Termination of the Abstract Controller Synthesis Algorithm
We discuss classes of inputs for which the abstract controller synthesis
algorithm does (or does not) terminate resulting in least restrictive
satisfactory controllers.

46

4.1. Framework of Abstract Building Blocks for Fixed-point Computation

4.1. Framework of Abstract Building Blocks

for Fixed-point Computation

We introduce a framework of admissible abstract building blocks, which are
used to compute the least restrictive satisfactory controllers from Definition 3.6|
p.35. We recall the definition of the greatest fixed point of a function F, which
operates on the elements of a complete lattice, because both, the least restrictive
satisfactory controllers and greatest fixed points, are defined as certain suprema
in the complete lattice of DESs. Note, the type variable α that occurs subsequently
can be instantiated by Σ des because DESs constitute a complete lattice according
to Theorem 2.1|p.17.

Definition 4.1: «gfp»
definition gfp :: (α :: complete-lattice⇒ α)⇒ α
where gfp F ≡ Sup { A . A ≤ F A }

Monotonicity plays an important role for the existence of greatest fixed points
according to [338]. This ground laying work is part of the standard Isabelle
library and we can straightforwardly obtain the following result stating that the
supremum Sup { A . A = F A } is the greatest fixed point of the monotone
function F.
Corollary 4.1: «gfp Properties Using Monotonicity»

mono (F :: α :: complete-lattice⇒ α)
gfp F = Sup { A . A = F A } ∧ gfp F = F (gfp F)

To obtain an implementable algorithm, we introduce the function Compute-FP,
which starts with the initial value D and applies the function F, called fixed-point
iterator or abstract building block subsequently, until obtaining a fixed point.

Definition 4.2: «Compute-FP»
function (domintros) Compute-FP

:: (α⇒ α)⇒ α⇒ α
where Compute-FP F D

= (if D = F D then D else Compute-FP F (F D))

We denote, using standard Isabelle notation, that Compute-FP terminates on F
and D by Compute-FP_dom (F, D). Note that we believe that it is not possible to
provide properties on the fixed-point iterator F that ensure termination and that
are satisfied by our fixed-point iterators later on (see Theorem 4.12|p.56).

The sequence of values obtained during the computation of Compute-FP F D is
guaranteed to be decreasing in each step (that is, top ≥ F top ≥ F (F top) ≥ . . .)
if D is top. To also allow for fixed-point computations that are not starting with
top and, moreover, to allow for the proper composition of fixed-point iterators
later on, we require that fixed-point iterators satisfy the property of decreasing
arguments, that is, fixed-point iterators must satisfy F C ≤ C for every C.

47

Chapter 4. Abstract Controller Synthesis Algorithm for Discrete Event Systems

Moreover, to ensure that we obtain a greatest fixed point satisfying additional
properties (see the properties of satisfactory DES controllers in Definition 3.4|
p.34), we introduce signatures of fixed-point iterators. These signatures consist of
three sets describing the possible inputs Qinp, outputs Qout, and fixed points Qterm.
Obviously, Qinp and Qout are similarly contained in the Hoare calculus [161]. In
the following definition, we only require properties such as monotonicity and
decreasing arguments to be satisfied based on these three sets.

Definition 4.3: «FP-Iterator»
definition FP-Iterator

:: (α :: complete-lattice⇒ α)⇒ α set⇒ α set⇒ α set⇒ bool
where FP-Iterator F Qinp Qterm Qout

≡ ∀X ∈ Qinp. ∀Y ∈ Qinp.
F X ≤ X
∧ (X ≤ Y −→ F X ≤ F Y)
∧ F X ∈ Qout
∧ (X ∈ Qterm ←→ F X = X)

We are now able to state that Compute-FP F D computes a certain supremum by
computing the corresponding greatest fixed point smaller than the initial DES D.

Theorem 4.1: «Compute-FP Computes Supremum»
FP-Iterator F UNIV Qterm Qout
Compute-FP_dom (F, D)
Compute-FP F D = Sup { X . X ∈ Qterm ∧ X ≤ D }

A limitation of this theorem is that it requires the fixed-point iterator F to allow
arbitrary inputs (UNIV contains all DESs). This limitation is problematic because
the fixed-point iterators introduced later have more restricted input sets. However,
as stated in the next theorem, we can relate the fixed-point iterator F to be used
for implementation with an equivalent technical fixed-point iterator G. Basically,
the set Qinp must include the initial value D, G must be closed on Qinp, and F
and G must be equal on Qinp.

Theorem 4.2: «Compute-FP Computes Supremum Using Equivalent Iterator»
FP-Iterator G UNIV Qterm Qout
D ∈ Qinp
Qout ⊆ Qinp
(
∧

C. C ∈ Qinp G C = F C)
Compute-FP_dom (F, D)
Compute-FP F D = Sup { X . X ∈ Qterm ∧ X ≤ D }

This theorem is applied later on in section 4.3|p.53 by (a) constructing a fixed-point
iterator F with its expected specific input set and (b) constructing a fixed-point
iterator G that identifies the maximal element M contained in the input set of F
that is smaller than the provided input D and that applies (a simplified alternative
of) F on this element M.

48

4.1. Framework of Abstract Building Blocks for Fixed-point Computation

We introduce an unconditional and a conditional sequential composition of
fixed-point iterators. They allow to define a fixed-point iterator by means of
several more basic abstract building blocks, which enforce properties such as for
example nonblockingness and controllability on the DES. Firstly, unconditional
composition is defined by function composition of the two fixed-point iterators
F1 and F2 and by constructing the signature of the resulting fixed-point iterator
F2 ◦ F1 from the signatures of F1 and F2. The composed fixed-point iterator then
only has the fixed points that are fixed points of both fixed-point iterators.

Theorem 4.3: «Unconditional Composition of Fixed-point Iterators»
FP-Iterator F1 Qinp Qterm1 Qinter1
FP-Iterator F2 Qinter2 Qterm2 Qout
Qinter1 ⊆ Qinter2
FP-Iterator (F2 ◦ F1) Qinp (Qterm1 ∩Qterm2) Qout

Secondly, we define conditional composition where the second fixed-point iterator
F2 is skipped if the argument is a fixed point of F1. Intuitively, such a composition
is useful if every fixed point of F1 is a fixed point of F2 and the computation of F2
requires a non-negligible amount of resources.

Definition 4.4: «if-comp»
definition if-comp :: (α⇒ α)⇒ (α⇒ α)⇒ (α⇒ α)
where if-comp F2 F1 ≡ λC. if F1 C = C then C else (F2 ◦ F1) C

The resulting sets of fixed points and outputs are more bulky in the following
theorem compared to the case of unconditional composition above. However,
in the concrete applications later on, the resulting sets usually collapse to much
simpler forms.

Theorem 4.4: «Conditional Composition of Fixed-point Iterators»
FP-Iterator F1 Qinp Qterm1 Qinter1
FP-Iterator F2 Qinter2 Qterm2 Qout
Qinter1 ⊆ Qinter2
Qinp ∩Qterm1 ⊆ Qterm2
FP-Iterator (if-comp F2 F1) Qinp
{ C . if F1 C = C then C ∈ Qinp ∩Qterm1 else C ∈ Qterm1 ∩Qterm2 }
((Qinp ∩Qinter1 ∩Qterm1) ∪Qout)

We also make use of results on weakening and strengthening (of signatures) of
fixed-point iterators but these additional results are omitted here for readability.

For comparison, the supremal controllable sublanguage (of the unmarked
language) has been iteratively computed by a monotone function in [281] as well.
However, in [281] nonblockingness is not considered, composition of monotone
functions is not investigated, and it is based only on unmarked languages rather
than on DESs, which consider the marked and unmarked language at once as
required for the property of nonblockingness.

49

Chapter 4. Abstract Controller Synthesis Algorithm for Discrete Event Systems

4.2. Abstract Building Blocks for Enforcing Properties

on Discrete Event Systems Least Restrictively

Based on the framework of fixed-point iterators introduced before, we present for
each property that is required for satisfactory controllers (see Definition 3.4|p.34)
one fixed-point iterator that enforces this property least restrictively. In particular,
we present fixed-point iterators for restricting an arbitrary DES to a valid DES,
for enforcing the satisfaction of the specification, for enforcing nonblockingness,
and for enforcing controllability. We then compose these fixed-point iterators in
the next section for the computation of least restrictive satisfactory controllers.

4.2.1. Fixed-point Iterator Enforce-Valid-DES

We introduce the fixed-point iterator Enforce-Valid-DES for obtaining the supremal
valid DES that is smaller than an arbitrary (possibly not valid) element of the
complete lattice of DESs. We define the two languages of the resulting DES in
two steps: firstly, we determine the supremal prefix-closed sublanguage Aum of
the unmarked language of the input DES, and, secondly, we restrict the marked
language of the input DES to the marked words that are contained in Aum. This
construction ensures that we do not add elements to either of the two sets, which
would not be true if we would have maintained the marked language while using
its prefix-closure as the unmarked language.

Definition 4.5: «Enforce-Valid-DES»
definition Enforce-Valid-DES :: Σ des⇒ Σ des
where Enforce-Valid-DES C

≡ let Aum = Sup { A . A ⊆ Ldes
um C ∧ A = prefix-closure A }

in DES Aum (Aum ∩ Ldes
m C)

We now state that Enforce-Valid-DES is a fixed-point iterator and produces the
supremal satisfactory solution. We make use of the two variables SAT and RES
to represent the satisfactory solutions and computed solution, respectively.

Theorem 4.5: «Enforce-Valid-DES is Sound and Least Restrictive»
SAT = { A . A ≤ C ∧ valid-des A }
RES = Enforce-Valid-DES C
RES = Sup SAT ∧ RES ∈ SAT
∧ FP-Iterator Enforce-Valid-DES top { C . valid-des C } { C . valid-des C }

The fixed-point iterator Enforce-Valid-DES is only used later on in the fixed-
point iterator FP-Iterator-Step-Alt (see Definition 4.12|p.55), which is used for the
fixed-point iterator G occurring in Theorem 4.2|p.48. It also has, as opposed to
the subsequently introduced fixed-point iterators enforcing the satisfaction of
specifications, nonblockingness, and controllability, no correspondence in the
concrete controller synthesis algorithm in chapter 5|p.61 where each occurring
DPDA automatically generates a valid DES.

50

4.2. Abstract Building Blocks for Enforcing Properties on DES Least Restrictively

4.2.2. Fixed-point Iterator Enforce-Specification-Satisfaction

We enforce a specification S on a DES C by constructing their infimum. The usage
of the infimum operation, which also implements the synchronous communi-
cation between plant and controller, relates to the synchronous satisfaction check
between the specification S and the closed loop to be obtained.
Definition 4.6: «Enforce-Specification-Satisfaction»
definition Enforce-Specification-Satisfaction :: Σ des⇒ Σ des⇒ Σ des
where Enforce-Specification-Satisfaction S C ≡ inf S C

This construction is sound, least restrictive, and generates valid DESs whenever
the inputs are valid DESs as well.
Theorem 4.6: «Enforce-Specification-Satisfaction

is Sound and Least Restrictive»
valid-des S
valid-des C
SAT = { A . A ≤ C ∧DES-satisfaction S A ∧ valid-des A }
RES = Enforce-Specification-Satisfaction S C
RES = Sup SAT ∧ RES ∈ SAT
∧ FP-Iterator Enforce-Specification-Satisfaction
{ C . valid-des C }
{ C . valid-des C ∧DES-satisfaction S C }
{ C . valid-des C ∧DES-satisfaction S C }

4.2.3. Fixed-point Iterator Enforce-Nonblocking-DES

Nonblockingness is enforced by the fixed-point iterator Enforce-Nonblocking-DES,
which restricts the unmarked language of the input to the prefix closure of the
preserved marked language of the input.
Definition 4.7: «Enforce-Nonblocking-DES»
definition Enforce-Nonblocking-DES :: Σ des⇒ Σ des
where Enforce-Nonblocking-DES C ≡ DES (prefix-closure (Ldes

m C)) (Ldes
m C)

The following theorem now states that we construct the supremal, valid, and
nonblocking DES contained in the valid DES provided.
Theorem 4.7: «Enforce-Nonblocking-DES is Sound and Least Restrictive»

valid-des C
SAT = { A . A ≤ C ∧ valid-des A ∧DES-nonblocking A }
RES = Enforce-Nonblocking-DES C
RES = Sup SAT ∧ RES ∈ SAT
∧ FP-Iterator Enforce-Nonblocking-DES
{ C . valid-des C }
{ C . valid-des C ∧DES-nonblocking C }
{ C . valid-des C ∧DES-nonblocking C }

51

Chapter 4. Abstract Controller Synthesis Algorithm for Discrete Event Systems

4.2.4. Fixed-point Iterator Enforce-Marked-Controllable-Subset

We introduced controllability of a DES in Definition 3.1|p.33 to obtain a close
correspondence to the standard notion of controllability. However, when also
assuming nonblockingness we can equivalently define controllability as follows
based on the marked language of C.

Definition 4.8: «DES-marked-controllable»
definition DES-marked-controllable :: Σ des⇒ Σ set⇒ Σ des⇒ bool
where DES-marked-controllable C Σuc P

≡ ∀w′ w u.
(w′ ∈ Ldes

m C ∧ w v w′ ∧ u ∈ Σuc ∧ w @ [u] ∈ Ldes
um P)

−→ w @ [u] ∈ Ldes
um C

We now provide the fixed-point iterator Enforce-Marked-Controllable-Subset (see
section A|p.225 for a remark on coauthorship), which removes from the marked
language all words with controllability problems and from the unmarked lan-
guage all words that have a strict prefix with a controllability problem.

Definition 4.9: «Enforce-Marked-Controllable-Subset»
definition Enforce-Marked-Controllable-Subset

:: Σ set⇒ Σ list set⇒ Σ des⇒ Σ des
where Enforce-Marked-Controllable-Subset Σuc Pum C

≡ DES { w′ ∈ Ldes
um C . ∀w u. (w @ w′ ∧ u ∈ Σuc ∧ w @ [u] ∈ Pum)

−→ w @ [u] ∈ Ldes
um C }

{ w′ ∈ Ldes
m C . ∀w u. (w v w′ ∧ u ∈ Σuc ∧ w @ [u] ∈ Pum)

−→ w @ [u] ∈ Ldes
um C }

We now give an example of this fixed-point iterator.

Example 4.1: «Enforce-Marked-Controllable-Subset»
Events: Σc = { a, b, c, d, e } and Σuc = { u }
Application: Enforce-Marked-Controllable-Subset Σuc (Ldes

um P) C = C′

P: the plant DES

ba

e
dc

u

uu

C: input DES

ba

e
dc

C′: output DES

ba

e
d

Explanation: The marked words [a, c] and [b, d] are removed while the marked
word [b, e] without controllability problem is preserved. The unmarked word
[a, c] is removed because it has the strict prefix [a] with a controllability problem.

52

4.3. Abstract Controller Synthesis Algorithm for Discrete Event Systems

From the example above, we conclude that this fixed-point iterator, when applied
to a nonblocking DES, may return a DES that is neither controllable (in the
sense of DES-controllable from Definition 3.1|p.33) nor nonblocking. However, the
fixed-point iterator is useful because, when applied to a nonblocking DES, (a) it
returns the provided DES C when C is controllable and (b) it returns a DES C′

that is strictly smaller than C when C is not controllable.
Theses observations result in the following theorem.

Corollary 4.2: «Enforce-Marked-Controllable-Subset
is Sound and Least Restrictive»

valid-des C
valid-des P
DES-nonblocking C
SAT1 = { A . A ≤ C ∧ valid-des A

∧ DES-controllable Σuc P A ∧DES-nonblocking A }
SAT2 = { A . A ≤ C ∧ valid-des A }
RES = Enforce-Marked-Controllable-Subset Σuc (Ldes

um P) C
(RES = Sup SAT1 ∨ (C > RES∧ RES > Sup SAT1)) ∧ RES ∈ SAT2
∧ FP-Iterator Enforce-Marked-Controllable-Subset
{ C . valid-des C ∧DES-nonblocking C }
{ C . valid-des C ∧DES-nonblocking C ∧DES-controllable Σuc P C }
{ C . valid-des C }

Since the removal of controllability problems may invalidate the nonblockingness
property of the input, the nonblockingness is not a part of the output set of the
signature of the fixed-point iterator.

4.3. Abstract Controller Synthesis Algorithm

for Discrete Event Systems

The fixed-point computation of the least-restrictive satisfactory controller (see
Definition 3.6|p.35) is executed by applying Compute-FP (see Definition 4.2|p.47)
using an initial value D and a fixed-point iterator F. Firstly, we define D using
FP-Iterator-Init, which is the (parameterized) initial value to be used. Secondly,
we define F by composing the fixed-point iterators introduced in the previous
section into the (parameterized) fixed-point iterator FP-Iterator-Step.

The initial value D is given by FP-Iterator-Init P S top where P is the plant, S is
the specification, and top is the largest (valid) DES (see Theorem 2.1|p.17 for top).
We enforce the satisfaction of the adapted specification inf P S (see below) on the
(later inserted) input top and then enforce nonblockingness on the result.

Definition 4.10: «FP-Iterator-Init»
definition FP-Iterator-Init :: Σ des⇒ Σ des⇒ (Σ des⇒ Σ des)
where FP-Iterator-Init P S

≡ Enforce-Nonblocking-DES ◦ (Enforce-Specification-Satisfaction (inf P S))

53

Chapter 4. Abstract Controller Synthesis Algorithm for Discrete Event Systems

Note, by changing the used specification from S into inf P S we compute the
infimal controller that results in the supremal satisfactory closed loop (see Par. Ad-
ditional Property of Minimality for DPDA|p.39). Intuitively, we may change the
specification this way because the obtained controller is synchronized with the
plant to obtain the closed loop and it is not relevant for obtaining the least restric-
tive satisfactory controller whether we discard elements forbidden by P already
here or as late as in that final synchronization.

Even though FP-Iterator-Init is applied only once during the fixed-point com-
putation, we define it to be a fixed-point iterator with a signature by replacing top
by an arbitrary valid DES. The following theorem (obtained using Theorem 4.6|
p.51, Theorem 4.7|p.51, and Theorem 4.3|p.49) then states that FP-Iterator-Init
immediately (i.e., Qterm = Qout) enforces least restrictively (least restrictiveness
follows trivially also from the first two mentioned theorems) the satisfaction of
the properties of nonblockingness and specification satisfaction. However, the
initial parameter D = FP-Iterator-Init P S top is not controllable in general.

Theorem 4.8: «Fixed-point Iterator FP-Iterator-Init»
valid-des P
valid-des S
FP-Iterator (FP-Iterator-Init P S)
{ C . valid-des C }
{ C . valid-des C ∧DES-satisfaction (inf P S) C ∧DES-nonblocking C }
{ C . valid-des C ∧DES-satisfaction (inf P S) C ∧DES-nonblocking C }

Subsequently, we introduce the fixed-point iterator FP-Iterator-Step, which exe-
cutes two steps. Firstly, using Enforce-Marked-Controllable-Subset certain uncon-
trollable words are removed from the DESs’ languages. Secondly, if and only if
uncontrollable words have been removed, nonblockingness is reinstated by apply-
ing the fixed-point iterator Enforce-Nonblocking-DES. Note, in the corresponding
step of the concrete controller synthesis algorithm we must be able to decide
whether uncontrollable words have been removed in the first step to allow for
the termination of the controller synthesis algorithm (see section 5.4|p.85).

Definition 4.11: «FP-Iterator-Step»
definition FP-Iterator-Step

:: Σ set⇒ Σ des⇒ (Σ des⇒ Σ des)
where FP-Iterator-Step Σuc P

≡ if-comp
Enforce-Nonblocking-DES
(Enforce-Marked-Controllable-Subset Σuc (Ldes

um P))

Again, using the results on composability and strengthening of fixed-point itera-
tors we derive the desired signature of FP-Iterator-Step. This signature shows that
the fixed points of FP-Iterator-Step are satisfactory controllers.

54

4.3. Abstract Controller Synthesis Algorithm for Discrete Event Systems

Theorem 4.9: «Fixed-point Iterator FP-Iterator-Step»
valid-des P
valid-des S
FP-Iterator (FP-Iterator-Step Σuc P)
{ C . valid-des C ∧DES-satisfaction (inf P S) C ∧DES-nonblocking C }
{ C . valid-des C ∧DES-satisfaction (inf P S) C ∧DES-nonblocking C

∧ DES-controllable Σuc P C }
{ C . valid-des C ∧DES-satisfaction (inf P S) C ∧DES-nonblocking C }

To obtain least restrictiveness of FP-Iterator-Step, we cannot apply Theorem 4.1|
p.48 because the input set of FP-Iterator-Step is not UNIV. We solve this problem
by using Theorem 4.2|p.48 instead as described before. Firstly, we define the tech-
nical fixed-point iterator FP-Iterator-Step-Alt with the input set UNIV. Secondly,
we show that FP-Iterator-Step-Alt and FP-Iterator-Step are equivalent.

As the first step, we define the fixed-point iterator FP-Iterator-Step-Alt, which
least restrictively enforces the input set of FP-Iterator-Step before executing a
simplified unconditional form of it.

Definition 4.12: «FP-Iterator-Step-Alt»
definition FP-Iterator-Step-Alt :: Σ set⇒ Σ des⇒ (Σ des⇒ Σ des)
where FP-Iterator-Step-Alt Σuc P

≡ Enforce-Nonblocking-DES ◦
(Enforce-Marked-Controllable-Subset Σuc (Ldes

um P)) ◦
Enforce-Nonblocking-DES ◦

Enforce-Valid-DES

The signature of FP-Iterator-Step-Alt with UNIV as input set is given as follows.
Note, FP-Iterator-Step-Alt does not need to enforce the satisfaction of the spec-
ification according to Theorem 4.2|p.48; rather it only has to be equivalent to
FP-Iterator-Step on the input set of FP-Iterator-Step.

Theorem 4.10: «Fixed-point Iterator FP-Iterator-Step-Alt»
valid-des P
valid-des S
FP-Iterator (FP-Iterator-Step-Alt Σuc P)

top
{ C . valid-des C ∧DES-nonblocking C ∧DES-controllable Σuc P C }
{ C . valid-des C ∧DES-nonblocking C }

As the second step, we state in the following theorem that the two fixed-point
iterators FP-Iterator-Step-Alt and FP-Iterator-Step are equivalent.

Theorem 4.11: «Equivalence of FP-Iterator-Step-Alt and FP-Iterator-Step»
valid-des P
DES-nonblocking C
FP-Iterator-Step-Alt Σuc P C = FP-Iterator-Step Σuc P C

55

Chapter 4. Abstract Controller Synthesis Algorithm for Discrete Event Systems

Lastly, we conclude using Theorem 4.2|p.48 that, provided the termination of
Compute-FP, we obtain the infimal, least restrictive satisfactory controller when
executing Compute-FP with the fixed-point iterator FP-Iterator-Step Σuc P and the
initial value FP-Iterator-Init P S top.
Theorem 4.12: «Computation of the Least Restrictive Satisfactory Controller»

valid-des P
valid-des S
C = Compute-FP (FP-Iterator-Step Σuc P) (FP-Iterator-Init P S top)
Compute-FP_dom (FP-Iterator-Step Σuc P, FP-Iterator-Init P S top)
C ∈ SCPC

LR P S Σuc
∧ C = Inf (SCPC

LR P S Σuc)

4.4. On the Termination

of the Abstract Controller Synthesis Algorithm

The abstract controller synthesis algorithm as given in Theorem 4.12|p.56 by
Compute-FP (FP-Iterator-Step Σuc P) (FP-Iterator-Init P S top) terminates for some
but not for all two valid DES P (the plant) and S (the specification). That is,
the assumption Compute-FP_dom (FP-Iterator-Step Σuc P, FP-Iterator-Init P S top)
stating the termination of the computation is necessary for Theorem 4.12|p.56.

Determining further classes of languages for which the abstract synthesis
algorithm terminates and the definition of corresponding controller synthesis
algorithms is a challenge for the future. We consider only two relevant classes
of problem instances in the following two subsections. These classes correspond
to the two settings where the specification is realizable by a DFA and a DPDA,
respectively, while the plant is realizable as a DFA in each case.

4.4.1. Plants Realizable by DFA and Specifications Realizable by DFA

In this subsection we assume that the plant P and the specification S are both
realizable by DFA. For this problem instance, it is well known that the abstract
controller synthesis algorithm always terminates [281, Theorem 3.1, p. 1074]. The
argument for termination is based on the Myhill-Nerode-Equivalence: for a
nonblocking DES D, we define this equivalence on Ldes

um D, which is denoted ∼
subsequently, as follows: w1 ∼ w2 iff { w . w1 @ w ∈ Ldes

m D } = { w . w2 @ w ∈
Ldes

m D }. In [281, Theorem 3.1, p. 1074] it is stated that termination then follows
from the fact that the number of Myhill-Nerode-Equivalence classes of the in-
termediate controller candidates decrease suitably fast during the fixed-point
computation with the obvious lower bound 0. Also, a terminating concrete syn-
thesis algorithm, which operates on these DFA realizations, has been presented
already in [281]. Consider the following example where S ≤ P holds and where
the first controller candidate C0 is therefore equal to S.

56

4.4. On the Termination of the Abstract Controller Synthesis Algorithm

Example 4.2: «Termination for a Plant Realizable by a DFA and
a Specification Realizable by a DFA»

Events: Σc = { a, b, c } and Σuc = { u }

P: the plant DES

a

a

a

a

b

b

b

b

c

c

c

c

u

u

u

u

S: the specification DES

a

a

a

a

b

b

b

b

c

c

c

c

Myhill-Nerode-Equivalence classes:

DES Myhill-Nerode-Equivalence classes

P a∗ a∗b a∗c + a∗bu
S = C0 a∗ a∗b + a∗c
C1 a∗ a∗c

Discussion: In the first step of the fixed-point computation, only the words a∗b
would be removed from the marked language of the first controller candidate
C0 = S to obtain the controller candidate C1. Note that the number of Myhill-
Nerode-Equivalence classes of two is not strictly decreased in this step.
However, from inspecting the concrete controller synthesis algorithm from
chapter 5|p.61 or [281] for this setting, we observe that the controller candidate
C0 is realized by a DFA where the states are not in one-to-one correspondence
with its Myhill-Nerode-Equivalence classes due to the product construction that
implements the inf operation on two DFA, which results in a disambiguation as
follows. The states of the product DFA correspond then to all binary intersections
of one Myhill-Nerode-Equivalence class of P and one Myhill-Nerode-Equival-
ence class of S. That is, besides some empty intersections, we would obtain the
sets a∗, a∗b, and a∗c corresponding to the three states of the realization of C0.
Hence, the removal of a∗b reduces the number of states of C0.

We conjecture that, if P and S have nP and nS Myhill-Nerode-Equivalence classes,
respectively, then the fixed-point computation terminates after at most nP × nS
steps because the words from at least one of the remaining nonempty binary
intersections are removed in each step.

Determining a suitable disambiguation (here using the product of the realizations
of P and S) is a key step for controller synthesis throughout this thesis.

57

Chapter 4. Abstract Controller Synthesis Algorithm for Discrete Event Systems

4.4.2. Plants Realizable by DFA and Specifications Realizable by DPDA

The abstract controller synthesis algorithm terminates on many problem instances
when the plant is realizable by a DFA and the specification is realizable by a
DPDA: see [280, Example 2, page 644] and the examples in chapter 7|p.141.

However, as demonstrated by the following example, which is similar to [280,
Example 1, page 643], there are problem instances where the abstract controller
synthesis algorithm does not terminate. For these problem instances, the fixed-
point computation generates an infinite sequence of controller candidates that
are all not controllable.
Example 4.3: «Nontermination for a Plant Realizable by a DFA and

a Specification Realizable by a DPDA»

Inputs: Σuc = { u }, nonblocking plant P with Ldes
m P = { aibuj . i, j ∈ N }, and

nonblocking specification S with Ldes
m S = { aibui . i ∈ N }.

Explanation: Firstly, the initial controller candidate C0 is equal to S because
S ≤ P and S is nonblocking. Secondly, in step k ≥ 1, to obtain the controller
candidate Ck from the controller candidate Ck−1, we remove the infinite set of
words { ak+ibui . i ∈ N } from the marked and unmarked language of Ck−1
because each of them prevents the event u that is possibly sent by the plant. This
removal of words is also visualized in the picture below where only a small
part of the infinitely many words are included. Note, bot is the least restrictive
satisfactory controller, which is never obtained.

Application: Compute-FP (FP-Iterator-Step Σuc P) (FP-Iterator-Init P S top)
a a a a a

b
b

u

b

u

u

b

u

u

u

b

u

u

u

u
Step 1

Step 2

Step 3

Step 4

Step 5

In each step, the (infinite set of) words given by one row in the picture is removed.

We believe that the incompleteness of the abstract synthesis algorithm is not
relevant in the context of controller synthesis because all problem instances where
the abstract synthesis algorithm exhibits nontermination commonly require that
the execution of a certain number of uncontrollable events is specified in S. Such
specifications are not reasonable in the first place because the controller cannot
enforce the execution of (a certain number of) uncontrollable events. Consider the

58

4.4. On the Termination of the Abstract Controller Synthesis Algorithm

example above where the specification requires that, once the word anb has been
executed, it must be possible to subsequently execute up to n times the event u
but not n + 1 times.

Similarly to the example of the previous subsection, we can observe that one
Myhill-Nerode-Equivalence class is removed from the marked set of controller
candidates in each step: in step i precisely those words are removed that can be
extended with the words { uk . k ≤ i }. However, the number of Myhill-Nerode-
Equivalence classes is not bounded in this DPDA-oriented setting in contrast to
the DFA-oriented setting from the previous subsection.

The fixed-point iterator Enforce-Nonblocking-DES for enforcing nonblockingness
does not play a relevant role in the example above and, hence, we believe that it is
not the source of the nontermination. We rather conjecture that the second fixed-
point iterator Enforce-Marked-Controllable-Subset is the source of nontermination
because it is not sufficiently strong in the sense that it does not detect large enough
patterns of words to be removed in each step of the fixed-point computation.

To obtain a terminating fixed-point computation, we considered a stronger
fixed-point iterator for enforcing controllability, which does not only check for a
single missing uncontrollable event but for an arbitrary long nonempty sequence
of uncontrollable events. The underlying condition of controllability has been
introduced in [201, Theorem 3.2, page 6] to allow for a faster execution of the
synthesis algorithm [201, Algorithm 3.10, page 8]: basically, more uncontrollable
words are removed in each step, which usually results in fewer computation
steps to be executed. This stronger fixed-point iterator is helpful because it
detects for every anb that the sequence un+1 is missing for the example above.
This results in the removal of all words anb in the first step of the fixed-point
algorithm. However, in the following more elaborate example, the property of
nonblockingness is involved more prominently also resulting in a nonterminating
computation when using the stronger fixed-point iterator.

Example 4.4: «Nontermination for a Plant Realizable by a DFA and
a Specification Realizable by a DPDA with Nonblockingness»

Inputs: Σuc = { u }, nonblocking plant P with Ldes
m P = { aib(ub)j . i, j ∈ N }, and

nonblocking specification S with Ldes
m S = { aib(ub)i . i ∈ N }.

Explanation: Firstly, the initial controller candidate C0 is equal to S because S ≤ P
and S is nonblocking. Secondly, in step k ≥ 1, to obtain the controller candidate
Ck from the controller candidate Ck−1, we remove in (Step k–cont) the infinite
set of words { ak+ib(ub)i . i ∈ N } from the marked and unmarked language of
Ck−1 because each of them prevents the event u that is possibly sent by the plant
and in (Step k–nonblock) the infinite set of words { ak+i+1b(ub)iu . i > 0 } from
the unmarked language of Ck−1 to reestablish nonblockingness. This removal
of words is also visualized in the picture below where only a small part of the
infinitely many words are included. Note, bot is the least restrictive satisfactory
controller, which is never obtained.

59

Chapter 4. Abstract Controller Synthesis Algorithm for Discrete Event Systems

Application: Compute-FP (FP-Iterator-Step Σuc P) (FP-Iterator-Init P S top)
a a a a a

b

b

u

b

b

u

b

u

b

b

u

b

u

b

u

b

b

u

b

u

b

u

b

u

b
Step 1–cont

Step 1–nonblock

Step 2–cont

Step 2–nonblock

Step 3–cont

Step 3–nonblock

Step 4–cont

Step 4–nonblock

Step 5–cont

In each step, the (infinite set of) words given by one row in the picture is removed.

We conclude that the previously mentioned stronger fixed-point iterator for
enforcing controllability is also not sufficient to ensure termination.

When considering the similarities between the removed words in the example
above, we conjecture that a sufficient fixed-point iterator for enforcing controlla-
bility must incorporate the inherent bracketing/stack-behavior of DPDA to prune
enough words at once. We present initial ideas on this in subsection 8.2.2|p.193

in our second concrete controller synthesis algorithm.

Chapter 4|p.45
(Abstract Controller Synthesis Algorithm for Discrete Event Systems)

We introduced a framework of fixed-point iterators. This framework enables a
compositional approach for providing fixed-point iterators for enforcing the desired
properties of satisfactory controllers. We determined for these fixed-point iterators
suitable signatures and properties and constructed a fixed-point algorithm from these
fixed-point iterators for solving the abstract supervisory control problem.

The presented approach lays the foundation for the automata-based construction
of the concrete controller synthesis algorithm introduced in the next chapter. In
this concrete controller synthesis algorithm, we implement the abstract building
blocks (given by the abstract fixed-point iterators) by concrete building blocks using
automata-based operations. These concrete building blocks then satisfy concretiza-
tions of the signatures of the fixed-point iterators introduced in this chapter.

60

5
Concrete Controller Synthesis Algorithm
for Deterministic Pushdown Automata

We introduce our automata-based concrete controller synthesis algorithm as an
instantiation of the DES-based abstract controller synthesis algorithm verified in
Theorem 4.12|p.56. This instantiation is given in two steps. Firstly, we implement
the DES-based fixed-point iterators that are employed in the abstract controller
synthesis algorithm by concrete building blocks operating on automata, CFGs,
and Parsers. Secondly, we define the concrete controller synthesis algorithm by
resembling the combination of the fixed-point iterators in the abstract controller
synthesis algorithm by combining the concrete building blocks analogously. We
include three major building blocks in our concrete controller synthesis algorithm:
we construct the initial DPDA controller candidate satisfying the specification,
we enforce nonblockingness on a DPDA controller candidate, and we reduce
controllability of DPDA to the nonblockingness of DPDA.

The algorithm is sound in the sense that every DPDA controller obtained upon
a terminating fixed-point computation is a solution to the concrete supervisory
control problem given in Definition 3.11|p.39. Moreover, if the algorithm termi-
nates and returns no controller candidate, it is guaranteed that there is no DPDA
controller that is able to enforce the specification on the plant satisfactorily.

The algorithm does not terminate in general as explained in section 4.4|p.56

because some specifications may result in an infinite sequence of controller
candidates. Two different approaches to this problem are discussed as future and
ongoing work in subsection 8.3.1|p.209 and subsection 8.2.2|p.193, respectively.
Moreover, in chapter 7|p.141, we provide various examples where the algorithm
terminates to support our claim that the specifications leading to nonterminating
computations are always unreasonable specifications from a control theoretic
perspective.

61

Chapter 5. Concrete Controller Synthesis Algorithm for DPDA

Consider the overview of the building blocks of the concrete controller synthesis
algorithm in the following figure. The top-level building block A has input and
output edges attached on the left and right side, respectively. The edges between
the building blocks declare the usage of the target building block by the source
building block.

Figure 5.1: «Structure of the Concrete Controller Synthesis Algorithm»

D subsection 5.2.1|p.69

E subsection 5.2.2|p.73 F subsection 5.2.3|p.77

G subsection 5.2.4|p.80 B section 5.1|p.64

C section 5.2|p.65 H section 5.3|p.82

A section 5.4|p.85

Contents of this Chapter

5.1|p.64 Concrete Building Block for the Synchronous Composition
of Deterministic Pushdown Automata
with Deterministic Finite Automata

The introduced building block B represents the well-known automata-
based operation FDPDA-DFA-Product, which implements the DES-based
operation inf used for different purposes in the abstract controller
synthesis algorithm. The construction implements the well-known
synchronous-product automaton of a given DPDA and a given DFA.

5.2|p.65 Concrete Building Block for Enforcing Nonblockingness
for Deterministic Pushdown Automata

The second introduced building block C represents the DPDA-based
operation FDPDA-Enforce-Nonblocking,Opt, which implements the DES-based
operation Enforce-Nonblocking-DES from Definition 4.7|p.51 for enforc-
ing the nonblockingness property on a controller candidate. The
operation FDPDA-Enforce-Nonblocking,Opt also enforces the properties of ac-
cessibility, livelock freedom, and deadlock freedom for DPDA and is
based on the building blocks D, E, F, and G. These building blocks
are used to translate the given input DPDA into an LR(1)-CFG, which
satisfies the nonblockingness property, to translate this LR(1)-CFG back
into a DPDA, and to enforce the accessibility property on the resulting
DPDA.

62

5.3|p.82 Concrete Building Block for Reducing Controllability to Nonblockingness
for Deterministic Pushdown Automata

The third introduced building block H represents the DPDA-based
operation FDPDA-Reduce-Controllable, which implements the DES-based op-
eration Enforce-Marked-Controllable-Subset from Definition 4.9|p.52 for
reducing the controllability property to the nonblockingness property
for a given DPDA controller candidate. The operation also relies on
the building block G for enforcing the satisfaction of the accessibility
property from section 5.2|p.65.

5.4|p.85 Concrete Synthesis Algorithm as an Instantiation
of the Abstract Synthesis Algorithm

Finally, the introduced building block A represents the DPDA-based
concrete controller synthesis algorithm, which is given by the operation
FDPDA-DFA-Construct-Controller. The operation FDPDA-DFA-Construct-Controller im-
plements the DES-based controller synthesis algorithm as given in
Theorem 4.12|p.56. Both algorithms are fixed-point algorithms that
are started on a carefully obtained initial value. As explained, the
fixed-point iterators employed in the abstract controller synthesis
algorithm correspond directly to the concrete building blocks pre-
sented in this chapter. The central operations are FDPDA-DFA-Product
for constructing the adapted specification and for explicitly reintro-
ducing the state-correspondence with the plant as explained in sec-
tion 5.1|p.64, FDPDA-Enforce-Nonblocking,Opt for enforcing (amongst others)
the satisfaction of the nonblockingness property, and the operation
FDPDA-Reduce-Controllable for reducing the satisfaction of the controllability
problem to the satisfaction of the nonblockingness property.

5.5|p.87 On the Termination of the Concrete Controller Synthesis Algorithm
As for the abstract controller synthesis algorithm, we discuss the viable
nontermination of the concrete controller synthesis algorithm. For
this cause, we repeat an example for nontermination discussed in
subsection 4.4.2|p.58 by discussing the automata realizations of the
involved DPDA and DFA. This example demonstrates how the for-
malism of DPDA can be misused to define specifications resulting in
nonterminating fixed-point computations. Potential resolutions of such
nonterminating computations resulting from these artificial specifica-
tions are discussed as ongoing and future work in subsection 8.2.2|
p.193 and subsection 8.3.1|p.209, respectively.

63

Chapter 5. Concrete Controller Synthesis Algorithm for DPDA

5.1. Concrete Building Block for

the Synchronous Composition

of Deterministic Pushdown Automata

with Deterministic Finite Automata

Before discussing the implementation of the DES-based operation inf (see Theo-
rem 2.1|p.17), we recall its three central applications in the two previous chapters.
Firstly, given a DES controller C′ and a DES plant P′, we constructed their closed
loop inf C′ P′ (see Par. Construction of the Closed Loop|p.33). Secondly, given a DES
controller candidate C′ and a DES specification S′, we enforced the satisfaction
of S′ by constructing the next controller candidate inf S′ C′, which is entirely
contained in S′ (see Definition 4.6|p.51). Thirdly, given a DES plant P′ and a
DES specification S′, we constructed an adapted specification inf S′ P′, which is
entirely contained in P′ while imposing the same requirements on the behavior
of the closed loop (see Definition 4.10|p.53).

We introduce with building block B the usual automata-based product construc-
tion FDPDA-DFA-Product (see for example [163, Theorem 7.27, p.286]). It constructs
for a given DPDA and a given DFA their synchronous execution as a DPDA
where both automata synchronize on their events and where the DPDA performs
its internal steps autonomously. FDPDA-DFA-Product implements inf in the sense
of inf (epda-to-des C) (epda-to-des P) = epda-to-des (FDPDA-DFA-Product C P).

For the first case from above: we have already mentioned (see Par. Construction
of the Closed Loop|p.36) that we construct the closed loop FDPDA-DFA-Product C P for
a given DPDA controller C and a given DFA plant P. For the second case from
above: we enforce the satisfaction of the adapted DES specification inf P S in
Theorem 4.12|p.56 only on the DES top and we do not need to perform this step
in our concrete controller synthesis algorithm since inf S P ≤ S holds from the
beginning. For the third case from above: we adapt the DPDA specification S
using the DFA plant P into FDPDA-DFA-Product S P (see section 5.4|p.85).

For a fourth case, which does not occur in the abstract controller synthesis
algorithm: we construct for a DPDA controller candidate C and the DFA plant P
the DPDA controller candidate FDPDA-DFA-Product C P (see section 5.3|p.82). We
know that C and FDPDA-DFA-Product C P are equal w.r.t. their corresponding DES
counterparts because (a) the DPDA controller candidates are monotonically de-
creasing w.r.t. their corresponding DES counterparts and (b) the initial controller
candidate inf S P is smaller than P. However, we call this step a labelling step
because (a) FDPDA-DFA-Product C P has states of the form (q1, q2) where q1 is a state
of C and q2 is a state of P and (b) every initial derivation d of FDPDA-DFA-Product C P
can be projected to an initial derivation d′ of P (possibly of shorter length because
internal steps of C, which are not synchronously performed with P, are removed
during the projection) executing the same events. Moreover, we call this step a
disambiguation step because FDPDA-DFA-Product C P has at least as many accessible
states as C; intuitively, the synchronous composition results in the splitting of a

64

5.2. Concrete Building Block for Enforcing Nonblockingness for DPDA

state q1 contained in C into multiple states (q1, q2) for each state q2 of plant P.
In section 5.3|p.82, we rely on the fact that the application of FDPDA-DFA-Product
preserves operational nonblockingness, livelock freedom, deadlock freedom, and
operational controllability. For example, FDPDA-DFA-Product C P is known to be
operational nonblocking in section 5.3|p.82 because C is known to be operational
nonblocking and epda-to-des C ≤ epda-to-des P.

5.2. Concrete Building Block for Enforcing Nonblockingness

for Deterministic Pushdown Automata

The building block C represents the operation FDPDA-Enforce-Nonblocking,Opt, which
implements Enforce-Nonblocking-DES from subsection 4.2.3|p.51. It transforms a
DPDA controller C into another DPDA controller C′, which satisfies the properties
of nonblockingness, livelock freedom, deadlock freedom, accessibility, and which
generates the same marked language. The inner structure of C with its four steps
is given in the following figure and explained in the subsequent subsections.

Figure 5.2: «Overview of Enforcing Nonblockingness on DPDA»

D E F G

C

We discuss how the nonblockingness and accessibility properties can be enforced
for DFA, CFG, regular grammars (a strict subset of CFG, which are equivalent to
DFA), and LR(1)-CFG before considering the case of DPDA.

Enforcing the Nonblockingness and Accessibility Properties for DFA
The properties of nonblockingness and accessibility can be enforced for DFA
using the following static fixed-point backward and forward analysis algorithms.

Definition 5.1: «Enforce the Nonblockingness Property for DFA»

1. Define Q to be the set of all marking states of the input DFA.
2. Until a fixed-point is reached: if q1, a, s1, s2, q2 is an edge of the input

DFA and q2 ∈ Q, then add q1 to Q.
3. Restrict the input DFA to the states contained in Q

(side case: Q may not contain the initial state of the input DFA).

Definition 5.2: «Enforce the Accessibility Property for DFA»

1. Define Q to be the singleton set of the initial state of the input DFA.
2. Until a fixed-point is reached: if q1, a, s1, s2, q2 is an edge of the input

DFA and q1 ∈ Q, then add q2 to Q.
3. Restrict the input DFA to the states contained in Q.

65

Chapter 5. Concrete Controller Synthesis Algorithm for DPDA

Enforcing the Nonblockingness and Accessibility Properties for CFG
Enforcing the nonblockingness and accessibility properties for CFG can be done
analogously to the case for DFA using the following static fixed-point backward
and forward analysis algorithms.

Definition 5.3: «Enforce the Nonblockingness Property for CFG»

1. Define Q to be the empty set of nonterminals of the input CFG.
2. Until a fixed-point is reached: if prod-lhs = A, prod-rhs = w is a produc-

tion of the input CFG and every nonterminal contained in w is in Q, then
add A to Q.

3. Restrict the input CFG to the nonterminals contained in Q
(side case: Q may not contain the initial nonterminal of the input CFG).

Definition 5.4: «Enforce the Accessibility Property for CFG»

1. Define Q to be the singleton set of the initial nonterminal of the input CFG.
2. Until a fixed-point is reached: if prod-lhs = A, prod-rhs = w is a produc-

tion of the input CFG and A ∈ Q, then add every nonterminal contained
in w to Q.

3. Restrict the input CFG to the nonterminals contained in Q.

Moreover, we can enforce the nonblockingness property for regular grammars
and LR(1)-CFG by using the algorithm for arbitrary CFG because these subclasses
are closed under the removal of nonterminals and productions.

Enforcing the Nonblockingness and Accessibility Properties for DPDA
Enforcing the nonblockingness and accessibility properties on DPDA cannot
proceed analogously as for DFA or CFG because of the additional stack variable
contained in the configurations of a DPDA. This stack variable is a contextual
information on the state that has to be considered during analysis. For DFA and
CFG there is no such context on which the step relation additionally depends.

To correctly identify and to remove violations of nonblockingness from a
DPDA, we translate the DPDA controller candidate at hand into a CFG for
which we can identify and remove these elements in the form of certain CFG
productions obtaining an LR(1)-CFG without blocking problems. Adapting
results from parsing theory and by defining and employing additional operations,
we translate the obtained LR(1)-CFG back into a DPDA controller candidate
while maintaining the satisfaction of nonblockingness and the other mentioned
properties. Note, the translation of the DPDA into an LR(1)-CFG disambiguates
the model to ensure that precisely the required productions are removed/retained
and subsequent constructions preserve this disambiguation (e.g., the LR(1)-Parser
covers the possible future steps using the stack).

The notions of LR(1)-CFG and LR(1)-Parsers originate from [189] and many
subsequent developments have been later collected in [325] in consistent notation.
For the building blocks D and E, we adopted and formalized the constructions

66

5.2. Concrete Building Block for Enforcing Nonblockingness for DPDA

(which have been partially given as pseudo-code) from [189] and [325], respec-
tively. Besides fixing a minor error in the constructions from [189] (not leading
to a valid DPDA), we simplified some definitions (for example, the rules of an
LR(k)-Parser from [325, Volume II, Section 6.3, p. 31]).

The concrete controller synthesis algorithm returns a controller in the form
of a DPDA but not in the form of an LR(1)-CFG or an LR(1)-Parser because
DPDA seem to be more intuitive (in particular w.r.t. determinism) and more
easily implementable. We have to perform the translation between DPDA and
LR(1)-CFG in every iteration of the fixed-point computation because the building
block C (presented here) for enforcing the nonblockingness property operates
(at its core) on LR(1)-CFG and the building block H (see section 5.3|p.82) for
reducing the controllability property to the nonblockingness property operates
on DPDA. See subsection 8.2.2|p.193 for our second concrete controller synthesis
algorithm for enforcing controllability on LR(1)-CFG directly.

It is not possible to enforce the nonblockingness property on a DPDA by simply
removing certain states and edges from it. Multiple productions of the resulting
CFG may be constructed for one edge of the DPDA and a nonempty strict subset
of theses productions may be contained in the resulting LR(1)-CFG. A production
that is not in the resulting LR(1)-CFG would then imply that the edge should
be removed to enforce the nonblockingness property and a production that is
in the resulting LR(1)-CFG would imply that the edge should not be removed
to preserve the marked language. This possible ambiguity is resolved by the
construction of the LR(1)-Parser in our algorithm.

Finally, consider the DPDA in the following two examples, which demonstrate
that the task of enforcing the nonblockingness property is nontrivial for DPDA
because localizing violations of the nonblockingness property and the removal of
such violations are two nontrivial tasks.

Example 5.1: «Enforcing the Nonblockingness Property for DPDA»

C: input

0

1

2

a, •, ••
a,�, •�

b, •, •

c, •,−c, •,−

C′: output

0 3

1

2

a, •, ••
a,�, •�

a, •, ••
b, •, •

c, •,−c, •,−

Discussion: Every initial derivation of C that reaches state 2 with no further •
symbols on the stack violates the nonblockingness property. In the possible

67

Chapter 5. Concrete Controller Synthesis Algorithm for DPDA

solution C′, we ensure that this does not happen by enforcing that an even
number of events a has been executed once the event b is executed. In C′ the
number of • symbols on the stack is always odd for the states 2 and 3 and even
for the other states.
Firstly, detecting violations of the nonblockingness property requires the repre-
sentation of the (possibly infinite) set of all reachable configurations (with their
unbounded stack variables) from which no marking configuration is reachable.
It is obviously not sufficient to detect deadlocks and we are not aware of a simple
solution to the localization problem.
Secondly, removing violations is complex because the removal may depend on
the possibly many and arbitrarily long paths of edges in the DPDA from the
cause (execution of an odd number of events a in the example) and the earliest
point where the nonblockingness property is violated (when reaching state 2
with no further • symbols on the stack in the example). We are also not aware of
a simple solution to this non-local removal problem.

The following example demonstrates that the localization and the removal of
violations of nonblockingness can be complex and that deadlock detection is
insufficient for localization.

Example 5.2: «Enforcing the Nonblockingness Property for DPDA»

C: input

0

1

2

3

a, •, ••
a,�, •�

b, •, •◦
c, •, •d, •, •

e, •, •

f , •,−f , •,−

g,�,�

C′: output

0 4

1 5

2

3

a, •, ••
a,�, •�
b, •, •◦

a, •, ••

b, •, •◦ d, •, •c, •, • d, •, •

e, •, •

f , •,−f , •,−

Discussion: Every initial derivation of C that reaches state 3 with a top stack of
◦ or � violates the nonblockingness property. In C′ the length of the maximal
sequence of • symbols on top of the stack is always odd for the states 3, 4, and 5
and even for the other states.

68

5.2. Concrete Building Block for Enforcing Nonblockingness for DPDA

5.2.1. Convert DPDA into Equivalent LR(1)-CFG

In building block D, we convert a given DPDA into an LR(1)-CFG that satisfies
the properties of nonblockingness, accessibility, deadlock freedom, and livelock
freedom, and which generates the same marked language. The inner structure of
this building block D is given in the following figure and explained subsequently.

Figure 5.3: «Convert DPDA Into Equivalent LR(1)-CFG»

D4 D5 D6 D7 D2 D8 D10 D11

D

D1

D3

D9

Building block D consists of three steps.

1. In building block D1, we apply FDPDA→SDPDA to convert the given DPDA
into an equivalent SDPDA, which is a DPDA with only three kinds of edges.

2. In building block D2, we apply FSDPDA-Enforce-Unique-Marking-Early to convert the
obtained SDPDA into an equivalent SDPDA satisfying a certain nonambi-
guity property.

3. In building block D3, we apply FSDPDA→LR(1),Opt to convert the obtained
SDPDA into the desired LR(1)-CFG.

For the constructions used in these three steps, we relied on [189]. However, for
the first building block D1, we had to fix a minor mistake. Moreover, for the
last building block D3, we introduce an optimized version FSDPDA→LR(1),Opt of
the standard operation FSDPDA→LR(1),Std to increase the performance of the entire
concrete controller synthesis algorithm.

For the required proofs, we note that [189] contains no reasoning of correctness
for D1 and D2 and only a proof idea for the preservation of the marked language
for the operation FSDPDA→LR(1),Std. The fact that the constructed CFG satisfies
the LR(1)-property (confer [325, Volume II, Proposition 6.41, p. 53]) was the most
challenging single property that we verified. We sketch our proof of this property
in section 6.3|p.116 because we are not aware of a previous proof.

Convert DPDA into Equivalent SDPDA

In building block D1, we apply the operation FDPDA→SDPDA to the given DPDA
and obtain an SDPDA. The successive execution of the four steps of D1 ensures
that there are three remaining kinds of edges: executing edges, popping edges,
and pushing edges. Most importantly, the operation FDPDA→SDPDA preserves the
marked language between the input DPDA and the output SDPDA. The obtained

69

Chapter 5. Concrete Controller Synthesis Algorithm for DPDA

SDPDA allows for simpler definitions and proofs of subsequently applied op-
erations. In particular, the operations FSDPDA→LR(1),Std and FSDPDA→LR(1),Opt are
defined over the three kinds of edges occurring in SDPDA.

Building Block D4: FDPDA-Seperate-Executing-Edges
We separate the execution of events from the modifications of the stack. This
results in executing edges qs, Some r, s, s, qt that do not modify the stack and
non-executing edges qs, None, po, pu, qt that may modify the stack.

Building Block D5: FDPDA-Remove-Neutral-Edges
We remove neutral edges of the form qs, None, s, s, qt . These edges are replaced
by two edges, which, when executed in succession, add an element to the stack
and remove the element afterwards again. Hence, after this step, only edges
remain that are either executing an event or that modify the stack.

Note that we had to fix a minor error contained in [189] where it is not ensured
that the epda-eos symbol always remains on the stack.

Building Block D6: FDPDA-Seperate-Push-Pop-Edges
We ensure that the stack is modified in only two different kinds of ways. The
resulting automaton is then either popping a single element from the stack by
edges of the form qs, None, po, [], qt or it is pushing elements onto the stack by
edges of the form qs, None, po, pu @ po, qt .

Building Block D7: FDPDA-Remove-Mass-Pushing-Edges
We ensure that at most one element is pushed onto the stack in each step. For
this purpose, we split the edges that push more than one element onto the stack
into a sequence of such admissible edges.

Enforce Unique Marking Early for SDPDA

We apply the operation FSDPDA-Enforce-Unique-Marking-Early, which is implemented by
building block D2, to remove a certain ambiguity from the SDPDA prior to
the subsequent translation to CFG. In particular, we ensure that the resulting
SDPDA has a unique initial marking derivation ending in a marking state for
every marked word. That is, once a marking state has been accessed in an initial
derivation, further steps cannot enter marking states without prior execution of
an additional event. Thereby, the automaton is no longer able to mark a word
twice in a single initial derivation.

Also note that this operation ensures that livelocks (see Par. Property of Livelock
Freedom|p.37), which could potentially exist in the input SDPDA, are no longer
accessing marking states infinitely often. Livelocks are given by infinite initial
derivations d that are not executing events after some index N. The output
SDPDA then guarantees that d enters at most one marking state at index n > N.
The removal of livelocks is then trivial after the translation to CFG where the
nonterminals corresponding to the configurations beyond index n are removed
as they violate the nonblockingness property.

70

5.2. Concrete Building Block for Enforcing Nonblockingness for DPDA

Convert SDPDA into Equivalent LR(1)-CFG

In the building block D3, we convert the SDPDA obtained from before into
an LR(1)-CFG in two steps. In building block D8, we use either the operation
FSDPDA→CFG,Std from [189] or its optimized version FSDPDA→CFG,Opt to convert the
SDPDA obtained from before into a CFG. Then, in building block D9, we enforce
the satisfaction of the properties of nonblockingness and accessibility for this
CFG by applying FCFG-Enforce-Nonblocking and FcfgSTD

CFG-Enforce-Accessibile (see Definition 5.3|
p.66 and Definition 5.4|p.66) to obtain the resulting LR(1)-CFG in building blocks
D10 and D11, respectively. The operation used in D3 is called FSDPDA→LR(1),Std
or FSDPDA→LR(1),Opt depending on whether FSDPDA→CFG,Std or FSDPDA→CFG,Opt is
used.

Conversion Procedure
We construct the CFG such that its initial derivations resemble the initial deriva-
tions of the input SDPDA as follows (see Example 5.3|p.72 for an example of
the discussed conversion procedure). Recall that the input SDPDA has a unique
initial marking derivation d for every marking word w due to D2. Moreover, for
simplicity, assume that all elements that are pushed onto the stack are removed
later on in d. Hence, the marking configuration of the derivation d looks like
q, w, [�] . Let the term βi,j then denote the state of the configuration in which

the jth stack element contained in the stack of configuration i has been removed
later on in d. Given some configuration ci = q, w, [v1, v2, . . . , vk−1, vk] contained
in d at index i, we define the corresponding configuration of the resulting CFG
as follows: w @ [Lq,v1,βi,1 , Lβi,1,v2,βi,2 , . . . , Lβi,k−2,vk−1,βi,k−1 , Lβi,k−1,�] . Hence, the
configurations of the CFG that belong to the initial and marking configurations
c0 and cn are [Lq0,�] and w @ [Lq,�] for some q, respectively. Note, the
CFG performs one further step from the configuration w @ [Lq,�] to the con-
figuration w to actually insert w into its marked language. Moreover, if the
simplifying assumption from above stating that the stack is [�] in the marking
configuration cn is not satisfied, that is, if the stack is of the form [v1] @ s, then
βi,j is not only undefined for the last stack element �. In such a situation, the list
of nonterminals ends with the last Lβi,j−1,vj,βi,j where βi,j is defined. From these
explanations, it is straightforward to determine the productions of the resulting
CFG to allow for this configuration-based correspondence.

Efficiency of the Conversion Procedure
The construction of the CFG has a cubic complexity because we generate a
production for the CFG from any edge of the SDPDA that is pushing a stack
element onto the stack and any two states. The size of the resulting CFG is
problematic for two reasons: the space and time required for its construction.
However, the operation FSDPDA→CFG,Opt from [189] produces many nonterminals
and productions that are removed in the second step (that is, nonterminals and
productions never occurring in any initial marking derivation of the resulting

71

Chapter 5. Concrete Controller Synthesis Algorithm for DPDA

CFG). To reduce the resources required for the translation, we introduced an opti-
mized version FSDPDA→CFG,Opt. This optimization relies on an over-approximation
of the required sets of nonterminals and productions, which relies on an over-
approximation of the inter-configuration accessibility for the input SDPDA. Then,
only the nonterminals and productions that could not be excluded by this analysis
are generated for the resulting CFG. For the over-approximation of the inter-
configuration accessibility, we compute an over-approximation of the reachability
graph of the SDPDA. The nodes of this reachability graph are essentially given
by a state and a stack of bounded length k; hence, two actual configurations of
the SDPDA are represented by the same node in the reachability graph if they co-
incide in their state and the first k elements of their stack-variable. Typically, even
using k = 0 improves the performance significantly because the input SDPDA is
seldom a strongly connected graph (there is no directed path of edges between
any pair of vertices). The two alternative operations are equivalent in the sense
that, after the application of the second step, the resulting LR(1)-CFG coincide. In
subsection 8.2.1|p.188, we also present an even more efficient recursive conversion
procedure that lacks a formal verification as of the writing of this thesis.

Nondeterminism of the Resulting LR(1)-CFG
In addition to the preservation of the marked language from the input SDPDA,
we also preserve the determinism of the SDPDA: the resulting CFG satisfies
the LR(1)-property. As stated before, this property has not been verified before
(neither in [189] nor in [325]). We sketch our proof of this property in section 6.3|
p.116. However, from our explanations above, it is obvious that the resulting
CFG does not have a right-unique step-relation as demonstrated in the following
example where the SDPDA only marks words when having an empty stack.

Example 5.3: «Expected Nondeterminism of LR(1)-CFG»
Input SDPDA:

0 1

2

3

4

5

−,�, •� a, •, •

b, •, •

−, •,−

−, •,−

Productions of output LR(1)-CFG with initial nonterminal L0,�:
L0,� −→ L1,•,4 L4,�

L1,•,4 −→ a L2,•,4
L2,•,4 −→
L4,� −→

L0,� −→ L1,•,5 L5,�
L1,•,5 −→ b L3,•,5
L3,•,5 −→
L5,� −→

Discussion: The deterministic step from state 1 is translated into a nondetermin-
istic step in L0,� in the resulting LR(1)-CFG. However, given a first event to be
executed there is a unique step of the LR(1)-CFG to be executed from L0,�; the
required static analysis of the LR(1)-CFG to make this deterministic decision is
explained subsequently when we construct the LR(1)-Parser for the LR(1)-CFG.

72

5.2. Concrete Building Block for Enforcing Nonblockingness for DPDA

5.2.2. Convert LR(1)-CFG into Equivalent LR(1)-Parser

In building block E, we translate the obtained LR(1)-CFG into an LR(1)-Parser.

Figure 5.4: «Convert LR(1)-CFG Into Equivalent LR(1)-Parser»

E1 E4 E5 E3

E
E2

The constructions are based on the initial work in [189] where the more general
conversion of LR(k)-CFGs into LR(k)-Parsers was introduced. However, we opted
to rely on the presentation of these constructions in [325], which in turn is based
on [5]. While [325] provides a more thorough presentation including various
results, the algorithms are given in pseudo-code. Thus, one of our contributions
is also the formal definition of the algorithm employed. In fact, as the proofs are
mostly unaffected in terms of proof-complexity by the generalization to the LR(k)
setting, we have also carried out the relevant proofs for arbitrary look-ahead
lengths k instead of requiring k = 1.

The building block E consists of the following steps according to the figure
given above.

Building Block E1: FCFG-Augment
Using a fresh nonterminal S and a fresh event $, we add the production S, A
to the LR(1)-CFG and change the initial nonterminal from A to S. Thereby, we
wrap the executed words into a leading and trailing event $. This step simplifies
the definition of the subsequently applied operations because we have a unique
construction procedure throughout the application of FLR(k)-Machine below instead
of having a distinguished construction procedure for the initial production of the
LR(1)-CFG. Firstly, the leading $ event is removed during the construction of the
LR(1)-Parser in the building block E3 below. Secondly, the trailing $ event ends
up to be the processing terminator of the LR(1)-Parser. Hence, the marked and
the unmarked languages are not permanently altered by adding the leading and
trailing $ event.

Building Blocks E2 and E3: FLR(k)-Machine and FLR(k)-Parser
In Example 5.4|p.74, we discuss the construction procedure for the LR(1)-Machine
and for the LR(1)-Parser by an example. Firstly, the LR(1)-Machine is constructed
in the form of a DFA from the input LR(1)-CFG using two further operations:
(a) for a given configuration of the LR(1)-CFG, we compute the first events of all
accessible, nonterminal-free configurations in building block E4 (using FCFG-First)
and (b) we compute successor states and successor state sequences based on events
and sequences of events in the LR(1)-Machine in building block E5. Secondly,
we obtain the LR(1)-Parser by constructing the rules based on the previously
constructed LR(1)-Machine.

73

Chapter 5. Concrete Controller Synthesis Algorithm for DPDA

Example 5.4: «FLR(k)-Machine and FLR(k)-Parser for Nonregular LR(1)-CFG»
Input: Consider the following LR(1)-CFG with initial nonterminal S, which is
already the result of an application of the operation FCFG-Augment.

ρ1 : A −→ aAB
ρ2 : A −→ a
ρ3 : B −→ b
ρ4 : B −→
ρ5 : S −→ A

Derivation Tree (Left) and Parsing Derivation (Right):

S

$ A $

a A B

a b

S

$ A $

a A B

a b

(4)

(3)

(1) (2)

[] : a

$: a

$a : a

$aa : b

$aA : b

$aAb : $

$aAB : $

$A : $

A :

The derivation tree on the left side represents an initial marking derivation of
the input LR(1)-CFG (in any of the three semantics). The corresponding initial
marking derivation of the LR(1)-Parser is depicted in a custom notation on the
right side. Intuitively, we apply a post-order traversal to the derivation tree from
the left side to obtain a traversal of a the parsing derivation on the right side.
The obtained traversal starts in the small dot left to the nonterminal S and ends
in the small dot right to the nonterminal S. A node is called traversed if the small
dot on its right side has been reached/passed. Also, each edge in the parsing
derivation is labelled by (a) the list of node values visited on the shortest way to
it making use of the additional dotted connections below of nonterminals, and
(b) the next event that is reached subsequently. For example, the label $A : $ is
obtained by using the dotted edge below the nonterminal A essentially skipping
the derivation tree below of it and by using $ because it is the next event to be
reached.
When only following the non-dotted lines in the traversal, we obtain the sequence
of stacks of the LR(1)-Parser in the described initial marking derivation (because
the $ events are omitted in the Parser, the first and last step will be removed)
and, alternatively, we observe the generated events in the order of a left-most
initial marking derivation.

74

5.2. Concrete Building Block for Enforcing Nonblockingness for DPDA

Using the dotted lines, we obtain incomplete derivation trees in the right-most
semantics. That is, we may fold subtrees one after another by using the dotted
lines in the order (1), (2), (3), and (4). Each such folding step corresponds to what
the LR(1)-Parser is doing to its stack when reaching the small dot on the right
side of a nonterminal: it folds the subtree it just finished by using the dotted line
changing the stack using a so called reduce rule. The other kind of rules are shift
rules, which are used to execute events. Both kinds of rules may depend on the
current look-ahead symbol next to the separator : in the parsing tree above.
Note, the rule applicability depends on a finite suffix of the current stack, and,
hence, two reachable stack-values may be equivalent to the rule applicability.
Consequently, it is important that, whenever two rules are applicable, no nonde-
terminism arises. This may happen for CFG not satisfying the LR(1)-property in
the form of shift–reduce and reduce–reduce conflicts.
The stack-values used above are called viable-prefixes and they are given for each
CFG by a prefix-closed regular language, that is, they can be represented by the
unmarked language of a DFA, which is the LR(1)-Machine. Hence, the LR(1)-
Parser operates on finite, unbounded initial derivations of the LR(1)-Machine
and extends such a current derivation by one further step in shift-rules and
exchanges a finite suffix of such a current derivation in reduce-rules.
Intuitively, the LR(1)-Machine unfolds leading nonterminals by applying their
productions. This allows for the immediate decent using shift-rules (for example,
the two a events are executed in two successive steps and the production A, a is
not unfolded by the LR(1)-Parser in between) and, moreover, the LR(1)-Machine
keeps track of the unfolding steps using different states to allow for the step-wise
ascent using reduce rules (for example, after execution of the second event a).
Because the ascent is step-wise, it is important (for determinism) that the next
event to be executed is known already in the form of the look-ahead before
finishing the ascent.

The LR(1)-Parser with initial stack symbol $ then uses the following rules in
the order given to parse the word aab$. Note, we omit the other rules of the
LR(1)-Parser here.

$ ||| a −→ $, $a |||
$a ||| a −→ $a, $aa |||

$a, $aa ||| b −→ $a, $aA ||| b
$a, $aA ||| b −→ $a, $aA, $aAb |||

$aA, $aAb ||| $ −→ $aA, $aAB ||| $
$, $a, $aA, $aAB ||| $ −→ $, $A ||| $

The construction of the LR(1)-Parser preserves the (un)marked languages as
well as the satisfaction of the properties of determinism (stated by the LR(1)-
property for the input LR(1)-CFG) and nonblockingness. We believe that the
LR(1)-Parser satisfies the property of livelock freedom, but we do not verify its
satisfaction before building block F where we derive its satisfaction by also using
nonblockingness to avoid further preservation proofs along the way.

75

Chapter 5. Concrete Controller Synthesis Algorithm for DPDA

For the preservation of the marked language by the construction procedure, we
followed the informal verification given in [325] in which the theorems, lemmas,
and proofs turned out to be sufficiently sound and detailed. Also, the construction
process is introduced in [325] in a decomposed way, which eased the verification.
On the abstract level, viable-prefixes of the input CFG are introduced and used
to reason about the parsing steps of the LR(1)-Parser to be constructed. On the
concrete level, this connection is implemented by the LR(1)-Machine (based on
viable prefixes) and the corresponding LR(1)-Parser with the necessary rules.
However, we believe that our explanations contained in the example above are an
important additional contribution for supporting the intuition of the workflow of
the LR(1)-Parser construction.

For the preservation of determinism from the LR(1)-CFG to the LR(1)-Parser,
we followed the steps described in [325, Volume II, Theorem 6.39, p. 52]. This
theorem states that the obtained LR(1)-Parser is deterministic iff the LR(1)-Parser
has no reduce-reduce or shift-reduce rule-conflicts iff the LR(1)-Machine has no
item-conflicts between items leading to rules of the LR(1)-Parser iff the CFG is
an LR(1)-CFG. It is to be noted that the LR(1)-property is given differently in the
various sources and our work connects the characterization of the LR(1)-property
from [325] with the one in [189] by verifying that the construction from [189]
actually enforces the characterization of the LR(1)-property from [325]. This fact
has been stated without proof as [325, Volume II, Proposition 6.41, p. 53]. We
present our original proof in section 6.3|p.116.

The construction of the LR(1)-Parser preserves the satisfaction of the non-
blockingness property, which has been established for the input LR(1)-CFG
by applying the algorithm from Definition 5.3|p.66. The notion of nonblock-
ingness is also of special interest in the field of parsing theory where errors
contained in the input should be detected as early as possible [325, Volume II,
Section 9, p. 289] to be able to provide useful error messages. As a first at-
tempt to handle nonblockingness, we considered the notion of correct-prefix-
parsers [325, Volume II, Theorem 9.1, p. 291] and [218], which states that when-
ever a Parser reaches a configuration c, the history parserHF-conf-history c is a
prefix of some marked word of the Parser. This definition of the correct-prefix-
property states a weaker condition than the nonblockingness property because
it does not take the fixed scheduler parserHF-conf-fixed c into account. The word
parserHF-conf-history c @ parserHF-conf-fixed c (where the possibly trailing $ is
dropped) is an unmarked word according to our definition of the unmarked
language and is therefore required, by the language based nonblockingness, to be
extendable to a marked word of the Parser. Apparently, in [325] the fixed sched-
uler is not considered to be a part of the unmarked word, which is not problematic
in the field of parsing theory because fixing a part of the input has no relevant
side-effect there. To verify the stronger property of nonblockingness for the
constructed LR(1)-Parser, we strengthened [325, Volume II, Theorem 9.1, p. 289]
as well as the required lemmas and proofs. In fact, we started our attempts to
apply parsing theory for enforcing the nonblockingness property when realizing
the similarity of the nonblockingness property and the correct-prefix-property.

76

5.2. Concrete Building Block for Enforcing Nonblockingness for DPDA

5.2.3. Convert LR(1)-Parser into Equivalent DPDA

In building block F, we translate the obtained LR(1)-Parser into a DPDA.

Figure 5.5: «Convert LR(1)-Parser Into Equivalent DPDA»

F1 F2 F3 F5 F6

F
F4

We introduced the three formalisms of Parsers, EDPDA, and DPDA in chapter 2|
p.15 where we have also explained that Parsers have additional capabilities
compared to EDPDA (that is, they can determine the end of the input by fixing
the processing terminator, they can execute more than one event in one step, and
they are allowed to fix a prefix of the input without consuming it immediately in
so called top rules) and EDPDA have additional capabilities compared to DPDA
(that is, the stack-pop component of an edge may not be a word of length 1).

Conceptually, we execute the following three steps in this building block. Firstly,
we translate the input Parser into a Parser not making use of these additional
capabilities in the building blocks F1 and F2. Secondly, we convert the obtained
Parser into an EDPDA in building block F3. Finally, we translate the resulting
EDPDA into a DPDA in building blocks F5 and F6.

Subsequently, we introduce these building blocks in more detail.

Building Block F1: FParser-Remove-Input-Terminator-Usage
We translate the input LR(1)-Parser into a Parser that does not ever fix the
processing terminator. That is, we ensure that the processing terminator does not
occur in any rule of the resulting Parser. Technically, we simply remove all rules
containing the processing terminator, which preserves the important properties
because, whenever the input LR(1)-Parser can apply such a removed rule, it will
not execute further events and will mark the word executed so far after a finite
number of steps. Basically, once the LR(1)-Parsers fixes the processing terminator,
it is guaranteed to only execute further reduce rules afterwards. Consider for
example the rules given in Example 5.4|p.74 where the first four rules would
remain and the last two rules would be removed in this step; these last two rules
only reduce the stack of the Parser into the final stack $A. The marking stack
values of the resulting Parser are given by those elements q such that some rule r
has been removed satisfying rule-stack-pop r = w @ [q]. That is, q is a marking
stack value iff the finishing reduce sequence can start in q. Note that it is sufficient
to test for q instead of testing whether the removed rule r is applicable by testing
whether the current stack starts with rule-stack-pop r.

To the best of our knowledge, we are the first to observe that the LR(1)-Parser
can be simplified this way.

The operation preserves the marked and unmarked language as well as the
satisfaction of the properties of determinism and nonblockingness.

77

Chapter 5. Concrete Controller Synthesis Algorithm for DPDA

Building Block F2: FParser-Remove-Top-Rules
We ensure that every rule has an empty rule-scheduler-push component resulting
in empty fixed scheduler components throughout any initial derivation of the
resulting Parser. This is achieved by adapting the nonterminals on the stack
such that they also record the fixed scheduler of length at most 1 (that is, the
events observed but not executed). Additionally, we construct new rules such
that the behavior is preserved as follows. When the input Parser applies a
rule w1 @ [q1] ||| a −→ w2 @ [q2] ||| (executing the event a), we create the rules
(a) w1 @ [(q1, None)] ||| a −→ w2 @ [(q2, None)] ||| for the case where the event
was not fixed already and (b) w1 @ [(q1, a)] ||| −→ w2 @ [(q2, None)] ||| for the
case where the event was fixed already. When the input Parser applies a rule
w1 @ [q1] ||| a −→ w2 @ [q2] ||| a (possibly fixing the event a), we create the rules
(a) w1 @ [(q1, None)] ||| a −→ w2 @ [(q2, a)] ||| for the case where the event was not
fixed already and (b) w1 @ [(q1, a)] ||| −→ w2 @ [(q2, a)] ||| for the case where the
event was fixed already.

The operation preserves the marked and unmarked language as well as the
satisfaction of the properties of determinism and nonblockingness. Furthermore,
only executing rules are applicable to marking configurations in the output. This
will be exploited later on for establishing the satisfaction of livelock freedom.

Building Block F3: FParser→EDPDA
We translate the Parser, which is essentially an EDPDA after the application
of the two previous steps, into an EDPDA. The edges of the resulting ED-
PDA correspond bijectively to the rules of the input Parser as follows using
the operation rev for the reversal of a word: an executing rule of the form
w1 @ [q1] ||| a −→ w2 @ [q2] ||| results in an edge q1, a, rev w1, rev w2, q2 and,
similarly, a nonexecuting rule of the form w1 @ [q1] ||| −→ w2 @ [q2] ||| results in
an edge q1, None, rev w1, rev w2, q2 .

The operation preserves the marked and unmarked language as well as the
satisfaction of the properties of determinism, nonblockingness, and nonexistence
of nonexecuting edges applicable to marking configurations.

Building Block F4: FEDPDA→DPDA
We convert the input EDPDA obtained from before into a DPDA by restricting
the possible patterns of edges to those that are allowed in DPDA. The conversion
is executed using FEDPDA→DPDA, which applies the operations from the two
following building blocks F5 and F6 in succession.

The operation preserves the marked and unmarked language as well as the
satisfaction of the properties of determinism and nonblockingness. Also, we
establish in F6 that the resulting DPDA has no livelocks from marking states, that
is, there is no infinite derivation starting in a marking state not executing events.

Building Block F5: FEDPDA-Remove-Nil-Popping-Edges
We translate the input EDPDA into an output EDPDA without edge with empty
edge-pop component. Such edges originate from rules that are primarily created

78

5.2. Concrete Building Block for Enforcing Nonblockingness for DPDA

in our algorithm from shift rules of the LR(1)-Parser. Reduce rules on the other
hand have (besides the top-most nonterminal) further nonterminals in their
rule-stack-pop component unless they are created from productions with empty
right hand side. We make use of the fact that the epda-eos element is never
removed from the bottom of the stack and that, hence, there is always a top-
element on the stack that can be tested for. For each edge with an empty edge-pop
component and for each element x from the stack-alphabet epda-gamma an edge
is added to the resulting EDPDA. The resulting edge is adapted to pop and push
the element x from and to the stack, that is, x is an element borrowed from the
stack during the application of such a replacement edge.

The operation preserves the marked and unmarked language as well as the
satisfaction of the properties of determinism, nonblockingness, and nonexistence
of nonexecuting edges applicable to marking configurations. However, note that
many of the edges added will be inaccessible because for a given state q only
a small subset of stack-symbols may occur in reachable configurations together
with state q as a top-stack. Hence, similarly to section 5.2.1|p.71, we may construct
an approximation of the state space to obtain for each state an overapproximation
of the possible top-stacks to reduce the number of inaccessible generated edges.

Building Block F6: FEDPDA-Remove-Mass-Popping-Edges
We translate the input EDPDA into an output EDPDA where every edge has
an edge-pop component of length one. The construction procedure, as explained
in the following example, is much more involved compared to the operation
FDPDA-Remove-Mass-Pushing-Edges for replacing edges that are pushing more than two
elements at once.

Example 5.5: «Removal of Edges Popping More Than One Stack-symbol»
Input:

0 12
b, ◦, • a, ◦◦, ◦

Output: (0, λ,⊥)

(0, ◦,⊥)
−, ◦,−

(0, ◦◦,⊥)
−, ◦,−

(0, ◦◦, ◦)
−, ◦, ◦

(0, ◦◦, •)

−, •, •

(0, ◦◦,�)

−,�,�

(0, ◦,�)

−,�,�

(0, ◦, •)

−, •, •

(1, λ,⊥)
a, •, ◦•a,�, ◦�

a, ◦, ◦◦

(2, λ,⊥)
b, •, ••

b,�, •�
b,�, •◦� b, ◦, •◦◦ b, •, •◦•

79

Chapter 5. Concrete Controller Synthesis Algorithm for DPDA

Discussion: The naive construction idea is to replace every edge with an edge-pop
component of length greater than one by a corresponding sequence of edges with
edge-pop components of length one. However, to preserve determinism, different
edges leaving a common source state must be replaced collectively to ensure
that two applicable edges with common source state still make incompatible
requirements on either the event to be executed or the element to be popped
from the stack. The construction also needs to ensure that the epda-eos element
is never removed from the bottom of the stack.

The operation preserves the marked and unmarked language as well as the
satisfaction of the properties of determinism and nonblockingness. Also, we
establish that the resulting DPDA has no livelocks from marking states. However,
also in this step, we add edges of which many are likely to be inaccessible due to
stack-prefixes that never occur in accessible configurations. As in the previous
building block, we may make use of a state space approximation to reduce the
number of inaccessible edges generated.

Overall, in the concrete building block F, we translated the LR(1)-Parsers
obtained from before into DPDA preserving their marked language and enforcing
the satisfaction of the nonblockingness property. This conversion is the last
required step of the conversion procedure from DPDA via LR(1)-CFG via LR(1)-
Parsers to DPDA showing the equivalence of these formalisms. In the next
subsection, we solve the problem of possibly inaccessible edges generated in the
building blocks F5 and F6.

5.2.4. Enforce Accessibility on DPDA

In building block G, we remove all inaccessible states and edges from the input
DPDA using the operation FDPDA-Enforce-Accessible,Opt.

Figure 5.6: «Enforce Accessibility for DPDA»

D G5 G6 G7 G8 G9 G2

G
G1

G4

In building block G1 (described below), we determine the edges of the input
DPDA that are required to preserve the marked language. Then, in building
block G2, we (a) remove all edges from the input DPDA that are not determined
to be required and (b) also remove all states (besides the initial state, which is
always retained) that are not the source or target of a retained edge. That is, we
reduce the problem of enforcing accessibility for states and edges to the problem
of determining the required edges of the input DPDA.

80

5.2. Concrete Building Block for Enforcing Nonblockingness for DPDA

Building Block G1: FDPDA-Determine-Accessible-Edges
We identify the required edges of the input DPDA by translating it using building
block D (see subsection 5.2.1|p.69) into an LR(1)-CFG, which is accessible by
construction. Actually, we skip the building block D2 implementing the function
FSDPDA-Enforce-Unique-Marking-Early for enforcing a unique marking during this step.

Then, in building block G4, we apply a reversal procedure, which relies on
the fact that each initial marking derivation d1 of the LR(1)-CFG using the
semantics cfgLM corresponds to an initial marking derivation d2 of the input
DPDA. Moreover, the edges used in d2 can be computed from the productions
used in d1. This correspondence is exploited by our reversal operations, which
convert the productions of the obtained LR(1)-CFG back into edges of the original
input DPDA. Again, recall that such a reversal cannot be pursued to obtain a
restriction of the input DPDA that satisfies the nonblockingness property because
there may be edges of the input DPDA that are required for maintaining the
marked language while they also occur in initial derivations that cannot be
extended to marking derivations. See Example 5.1|p.67 where every edge of
the DPDA C participates in an initial marking derivation as well as in an initial
derivation that is eventually deadlocked in a non-marking state. However, for
enforcing accessibility, it is sufficient to determine those edges that are relevant
to the marked language: for theses edges at least one corresponding production
remains in the obtained LR(1)-CFG.

In each of the building blocks G5, G6, G7, G8, and G9, we revert one step from
the conversion of DPDA into LR(1)-CFG as given by the building blocks D3, D7,
D6, D5, and D4, respectively. In each case, the reversal is possible because two
distinct edges of the input DPDA resulted in disjoint sets of edges/productions
of the output DPDA/CFG of that step.

For the conversion of the SDPDA into a CFG, we may either use the operation
FSDPDA→LR(1),Opt or the operation FSDPDA→CFG,Std. However, as the following
example demonstrates, we have to make sure that we do not consider productions
that are not accessible in the obtained CFG for the used cfgLM semantics.

Example 5.6: «Necessity of Left-Most Accessibility for Productions»
Input SDPDA:

0 1 2 3 4
−,�, •� −, •, ◦• −, •,−

CFG obtained from applying FSDPDA→CFG,Std with initial nonterminal L0,�:
(excerpt of productions)

L0,� −→ L1,•,4 L4,� L1,•,4 −→ L2,◦,3 L3,•,4 L3,•,4 −→

Discussion: We included only some of the productions actually generated by
FSDPDA→CFG,Std. The nonterminal L2,◦,3 cannot be replaced by a list of events be-
cause there is no derivation of the input DPDA from state 2 to state 3 popping ◦
in the last step. Hence, we detect that L3,•,4 is not accessible in a left-most deriva-
tion in this CFG and, moreover, we detect that states 3 and 4 are inaccessible
because also no other accessible production makes use of them.

81

Chapter 5. Concrete Controller Synthesis Algorithm for DPDA

When using the operation FSDPDA→LR(1),Opt as mentioned above, we obtained a
CFG that contains only left-most accessible productions in this sense. However,
when using the operation FSDPDA→CFG,Std, we have to compute the left-most
accessible nonterminals in an additional step.

5.3. Concrete Building Block for

Reducing Controllability to Nonblockingness

for Deterministic Pushdown Automata

In building block H, we reduce the problem of enforcing the satisfaction of
controllability on DPDA to the problem of enforcing the satisfaction of the
nonblockingness property using the operation FDPDA-Reduce-Controllable. Note, we do
not use the terminology of enforcing the satisfaction of controllability because the
operation does not preserve the required satisfaction of nonblockingness from its
input DPDA to the output DPDA (see also Corollary 4.2|p.53). The well-known
DFA-based operation for enforcing controllability behaves similarly in terms of
not preserving the satisfaction of the nonblockingness property, but its satisfaction
is not a required assumption for soundness in this restricted DFA-based setting.

In the presented reduction, we make use of three previously introduced build-
ing blocks: building block B from section 5.1|p.64 is used to construct the product
automaton of a DPDA and a DFA, building block G from subsection 5.2.4|p.80

is used to remove inaccessible states and edges from a DPDA, and building
block D2 from section 5.2.1|p.70 is used to ensure uniqueness of initial marking
derivations for every marked word of a DPDA.

Figure 5.7: «Enforcing Controllability for DPDA»

B H1 H2 G H3

H

The presented reduction follows the construction presented in [301, 302, 309]
(see section A|p.225 for a remark on coauthorship). However, in this thesis,
we deviate from these earlier monolithic definitions and provide a modular
construction, which is also slightly modified and which allows for modular
proofs and explanations. Also note that Christopher Griffin worked on enforcing
controllability earlier and was able to determine controllability problems in a
similar way, but he removed them not least restrictively as discussed in detail
in subsection 8.1.7|p.180 where we also compare his approach to the reduction
presented here.

We adapt the input DPDA C0 in the four following steps into an equivalent
DPDA before being able to remove states with controllability problems without
undesired side-effects in the final step. That is, the first four steps remove
ambiguity in the states of the DPDA w.r.t. the property of controllability.

82

5.3. Concrete Building Block for Reducing Controllability to Nonblockingness

Building Block B: FDPDA-DFA-Product
We apply the operation FDPDA-DFA-Product from section 5.1|p.64 to obtain the DPDA
C1 by constructing the product automaton of the DPDA C0 and the plant DFA P.
By construction, the states of C1 are of the form (q, p) where p is a state of
the plant P and, moreover, whenever C1 can enter a state (q, p) using an initial
derivation d1, there is a corresponding initial derivation d2 of P entering p.

A state (q, p) in C1 may have a controllability problem if some edge exiting p
can execute an event u ∈ Σuc while for some stack-element X there is no edge
exiting (q, p) executing u and popping X from the stack. However, we should only
consider stack-elements X with which (q, p) is actually accessible as a top-stack.
Consequently, we refine the analysis of missing edges in the next steps.

Note, in the context of our overall controller synthesis algorithm this step does
not modify the marked language because we restrict the controller candidate’s
marked language already in the step preceding the fixed-point computation to a
subset of the marked language of the plant P.

Building Block H1: FDPDA-Observe-Top-Stack
We apply the operation FDPDA-Observe-Top-Stack on C1 and obtain the DPDA C2 by
distinguishing in each state between the subsequent behavior for the different
top-stacks. Recall that in DPDA, the edges have an edge-pop component of length
precisely one, that is, they consider in their step-relation precisely the single
top-stack element.

Technically, the resulting DPDA C2 is a bipartite automaton consisting of main
states, which are the states of C1, and additional auxiliary states, which are pairs
((q, p), X) containing a state of C1 and a stack-element X. Firstly, edges of the
form (q, p), None, [X], [X], ((q, p), X) test in C2 at runtime for the current top-
stack X in state (q, p) saving it explicitly in the target state ((q, p), X). Secondly,
all edges of C1 starting in state (q, p) requiring a top-stack X are changed to
start in the auxiliary state ((q, p), X) in C2. Finally, main states are not marking
and an auxiliary state ((q, p), X) is marking if (q, p) was marking in C1. As a
consequence, a state ((q, p), X) is only reachable with a top-stack of X and every
edge exiting that state is always applicable in a branching semantics where the
next event to be executed is not given by schedule.

We identify a state ((q, p), X) in C2 to have potentially a controllability problem
if some edge exiting p can execute an event u ∈ Σuc in P while there is no edge
exiting ((q, p), X) executing u (hence, we were able to drop the condition that the
edge is popping a certain element from the stack). However, this procedure is not
sufficient because it would be admissible for ((q, p), X) to execute this event after
an application of any finite number of non-executing edges. Consequently, we
refine the analysis of missing edges in the next steps to ensure that localization
of controllability problems requires only the analysis of a single state with its
adjacent edges.

This building block H1 was the starting point for the development of building
block H where the following two additional steps are required for soundness.

83

Chapter 5. Concrete Controller Synthesis Algorithm for DPDA

Building Block H2: FDPDA-Enforce-Unique-Marking-Late
We apply the operation FDPDA-Enforce-Unique-Marking-Late to obtain from the DPDA C2
the DPDA C3 ensuring that only auxiliary states that are only exited by executing
edges (called stable states) must be checked for missing edges.

Technically, we ensure that there is a unique initial marking derivation for
every marked word and that any sequence of non-executing steps cannot pass
through a marking state, that is, a marking state can only be exited by an ex-
ecuting edge. For this purpose, we facilitate the building block D2 with its
operation FSDPDA-Enforce-Unique-Marking-Early from section 5.2.1|p.70, but we adapt
the set of marking states to only contain stable states. In fact, after applying
FSDPDA-Enforce-Unique-Marking-Early each state q is flagged by whether any initial deriva-
tion reaching a configuration containing q has been in a marking state before
reaching q only executing internal steps afterwards. Hence, we obtain all marking
states of the DPDA, all states that can be visited from such a state not executing
further events and, finally, remove from this set all non-stable states. While the op-
eration FSDPDA-Enforce-Unique-Marking-Early ensures that any word is not marked twice,
the operation FDPDA-Enforce-Unique-Marking-Late then also ensures that every word is
marked as late as possible.

We identify a stable auxiliary state (m, ((q, p), X)) (where m is an additional
annnotation introduced by FDPDA-Enforce-Unique-Marking-Late that is not relevant subse-
quently) in C3 to have potentially a controllability problem if some edge exiting
p can execute an event u ∈ Σuc while there is no edge exiting (m, ((q, p), X))
executing u (that is, compared to before, we limited our analysis to the stable
auxiliary states). However, this procedure is not sufficient because inaccessible
states (m, ((q, p), X)) cannot have controllability problems.

Building Block G: FDPDA-Enforce-Accessible,Opt
We apply the operation FDPDA-Enforce-Accessible,Opt from subsection 5.2.4|p.80 to ob-
tain from the DPDA C3 the DPDA C4 removing all states and edges that are
inaccessible in C3.

For our controller synthesis algorithm, this step is necessary to reliably detect
that the fixed point has been obtained. This detection is based on the information
whether the operation FDPDA-Restrict-to-Controllable-States from the next paragraph re-
moved at least one state where the DPDA had a controllability problem. Hence,
we must ensure that the DPDA C0 has a controllability problem if and only if
some state is removed in the next step.

Similarly, when enforcing controllability for DFA, any removal of a state guar-
antees the modification of the given controller candidate because (a) accessibility
of the input is assumed as well and (b) inaccessibility is not introduced prior to
the detection and removal of states with controllability problems.

Also note, inaccessible states and edges that are removed in this step have
been added to the DPDA using the operation FDPDA-Observe-Top-Stack. With our state
space approximation (also used in F6 in section 5.2.3|p.79, D3 in section 5.2.1|p.71,
and F5 in section 5.2.3|p.78), we may also decrease the number of inaccessible

84

5.4. Concrete Synthesis Algorithm as an Instantiation of the Abstract Algorithm

states and edges added there, which would improve the performance of this step
in the future. Also note, due to the accessibility of the input DPDA, we know
that the set of possible top-stacks of non-marking states is given by the set of
top-stacks tested for in exiting edges.

Building Block H3: FDPDA-Restrict-to-Controllable-States
Finally, we apply the operation FDPDA-Restrict-to-Controllable-States to obtain from the
DPDA C4 the resulting DPDA C5 by detecting and removing accessible states with
controllability problems with their adjacent edges. Such states are selected by
considering auxiliary stable states (m, ((q, p), X)) for which some edge exiting p
can execute an event u ∈ Σuc while there is no edge exiting (m, ((q, p), X))
executing u. The suitability of this detection and removal mechanism follows
from the previously applied operations.

Building Block H: FDPDA-Reduce-Controllable
The operation FDPDA-Reduce-Controllable given by building block H combines the op-
erations used in these five steps and reduces controllability for a nonblocking
DPDA possibly invalidating the nonblockingness property. By only considering
stable auxiliary states, we do not ensure that all unmarked words with a control-
lability problem are removed, which is achieved by the DFA-based algorithms.
From the perspective of the DES generated from the DPDA C5, we implement
Enforce-Marked-Controllable-Subset from Definition 4.9|p.52.

We conclude that the disambiguation carried out in the building blocks B, H1,
and H2 is necessary to ensure that states with controllability problems can be
removed without preventing initial marking derivations without controllability
problems as well. Also, the accessibility established in building block G and
the nonblockingness as assumed for the initial input DPDA C0 are necessary to
ensure that the removal of a state implies that the marked language has been
restricted (that is, the controllability problem identified is accessible and relevant
to the marked language).

5.4. Concrete Synthesis Algorithm as an Instantiation

of the Abstract Synthesis Algorithm

The overall concrete controller synthesis algorithm for DPDA specifications and
DFA plants is now given by FDPDA-DFA-Construct-Controller as a combination of the
previously introduced building blocks.

Figure 5.8: «Overview of Controller Construction»
A

A1

A2

A3

B C H A4 C

85

Chapter 5. Concrete Controller Synthesis Algorithm for DPDA

In building block A, we apply the operation FDPDA-DFA-Construct-Controller to construct
the desired DPDA controller for a given DPDA specification S, a given DFA plant
P, and a given set of uncontrollable events Σuc along the lines of the DES based
controller synthesis algorithm presented in Theorem 4.12|p.56.

In building block A1, we apply the operation Ffp-start
DPDA-DFA-Construct-Controller, which

corresponds to the DES-based operation FP-Iterator-Init from Definition 4.10|p.53.
In this first step, we apply building blocks B and C to obtain the initial controller
candidate in the form of a DPDA, which satisfies the specification and the
nonblockingness property but which does not satisfy controllability in general. In
building block B we use FDPDA-DFA-Product to combine the DPDA specification S and
the DFA plant P into a DPDA generating inf (epda-to-des S) (epda-to-des P). Then,
in building block C we use FDPDA-Enforce-Nonblocking,Opt to enforce the satisfaction of
the nonblockingness property on this DPDA as in FP-Iterator-Init.

In building block A2, we apply the operation Ffp
DPDA-DFA-Construct-Controller, which

corresponds to the DES-based fixed-point iterator Compute-FP from Definition 4.2|
p.47, to obtain the desired DPDA controller. In this operation, we apply in build-
ing block A3 the one-step operation Ffp-one

DPDA-DFA-Construct-Controller, which corresponds
to the DES-based operation FP-Iterator-Step from Definition 4.11|p.54, until the
termination of the fixed-point computation is detected. This detection is rec-
ognized in building block A4 if and only if no state has been removed in the
building block H3 contained in building block H. Analogously to the fixed-point
iterator Compute-FP, we reduce controllability to nonblockingness in building
block H and enforce nonblockingness in building block C alternatingly with the
test for termination in between. Recall that re-establishing nonblockingness in the
second step may invalidate controllability of the obtained controller candidate.

By implementing the fixed-point iterators used in the DES-based controller
synthesis algorithm from Theorem 4.12|p.56 in the described way, we obtain
as a direct result that the DES generated by the obtained DPDA controller is
a solution to the DES-based supervisory control problem from Definition 3.7|
p.35. Moreover, we state that the operation FDPDA-DFA-Construct-Controller solves the
concrete supervisory control problem from Definition 3.11|p.39 up to termination.

Theorem 5.1: «Soundness of the DPDA-Based Synthesis Algorithm»
Whenever the operation FDPDA-DFA-Construct-Controller terminates and returns a
DPDA, then this DPDA is accessible, accessible in the closed-loop, language-
minimal, and a least restrictive satisfactory controller and, hence, a specific solu-
tion to the automata-based concrete supervisory control problem (see section 3.2|
p.36). Moreover, whenever the operation FDPDA-DFA-Construct-Controller terminates
and returns no DPDA, then there is no solution to the automata-based concrete
supervisory control problem.

However, the presented concrete controller synthesis algorithm does not terminate
in general as already discussed in section 4.4|p.56 for the abstract controller
synthesis algorithm.

86

5.5. On the Termination of the Concrete Controller Synthesis Algorithm

5.5. On the Termination

of the Concrete Controller Synthesis Algorithm

Recall that the abstract controller synthesis algorithm from Theorem 4.12|p.56

does not terminate on every DES plant, DES specification, and set of uncontrol-
lable events Σuc as discussed in section 4.4|p.56. In general, the nontermination of
the abstract controller synthesis algorithm can be expected because the formalism
of DESs is expressive enough to also serve as a model for more complex for-
malisms such as Turing machines, which are intractable according to well-known
undecidability results. On the one hand, the DES inputs S and P used in the
examples in section 4.4|p.56 are realizable by DPDA and DFA, respectively. On
the other hand, each fixed-point iterator employed in the abstract controller
synthesis algorithm is implemented by the corresponding building block in
our concrete controller synthesis algorithm in terms of the DES generated by
epda-to-des. Hence, we conclude that the concrete controller synthesis algorithm
does not terminate on all inputs as well. However, we state that the concrete
controller synthesis algorithm does not introduce additional partiality of the
algorithm by not terminating on automata realizing DES for which the abstract
controller synthesis algorithm terminates. Also note that this property is obtained
from the fact that all suboperations of the building block A terminate on all
inputs that occur during any application of the controller synthesis procedure.

As a first step, we observed that the abstract controller synthesis algorithm
terminates, as discussed in subsection 4.4.1|p.56, for the restricted class of DFA
plants and DFA specifications. Due to the direct correspondence of the concrete
controller synthesis algorithm presented in this chapter (see Theorem 5.1|p.86

above) with the abstract controller synthesis algorithm, we can conclude that
our concrete controller synthesis algorithm terminates in this restricted setting
(assuming that the informal proofs for termination from related work that are
cited in subsection 4.4.1|p.56 are valid).

As a second step, we discussed in subsection 4.4.2|p.58 two examples demon-
strating that the abstract and the concrete controller synthesis algorithms do not
terminate for arbitrary DPDA specifications. To the best of our knowledge and
supported by these two examples, the nontermination stems from specifications
stating unrealistic requirements, which can never be satisfied by controllers due
to controllability such as a lower/upper bound on uncontrollable events to be
executed. The abstract and the concrete controller synthesis algorithms do not
terminate for the examples provided because they fail to discard parts of the
controller candidate that violate the controllability property because they rely
on an iterated one-step unfolding procedure that is not sufficient for DPDA
specifications. We now reconsider the second more involved Example 4.4|p.59

by presenting the DPDA realizations of the intermediate controller candidates.
Note, the actual DPDA controller candidates obtained from applying our concrete
controller synthesis algorithm are equivalent but typically slightly larger.

87

Chapter 5. Concrete Controller Synthesis Algorithm for DPDA

Figure 5.9: «DPDA Realizing Controller Candidates of Example 4.4|p.59»
Inputs: Σuc = { u } and Σc = { a, b }

P: the plant

p0 p1 p2

a,�,�

b,�,� u,�,�

b,�,�

S: the specification

q0 q1 q2

a, •, ••
a,�, •� b, •, •

b,�,� u, •, •

b, •,−

Discussion: From Example 4.4|p.59, we conclude that the first controller candidate
C0 obtained when evaluating FDPDA-DFA-CC S P Σuc is equivalent to S. The
concrete controller synthesis algorithm then generates an infinite sequence of
controller candidates Ci (see below). Instead of expanding the number of events a
executed before reaching the event b it should prevent the event b, which would
lead to an empty marked language.

Ci: controller candidate after step i

ci ci−1 c2 c1 r0 r1 r2

a,�,� a,�,� a,�,�

a, •, ••
a,�, •� b, •, •

b,�,� u, •, •

b, •,−

Chapter 5|p.61
(Concrete Controller Synthesis Algorithm for DPDA)

We instantiated the compositional abstract controller synthesis algorithm from chap-
ter 4|p.45 to obtain an automata-based concrete controller synthesis algorithm. This
algorithm is also a fixed-point algorithm and consists of building blocks implementing
the corresponding fixed-point iterators of the abstract controller synthesis algorithm.
We verified its soundness w.r.t. the abstract and the concrete supervisory control
problem as stated in Definition 3.7|p.35 and Definition 3.11|p.39, respectively. Un-
der the condition of termination, the obtained DPDA controller is a least restrictive
satisfactory controller, which is, in addition, accessible, accessible in the closed loop,
and has the infimal marked language among such solutions. The verification of the
algorithm is based on its modularity given by the various building blocks for which
we determined and verified suitable and composable input-output specifications.

In the next chapter, we detail on our usage of Isabelle for quality assurance.

88

6
Isabelle-based Formal Quality Assurance

In the two previous chapters, we introduced our abstract and concrete controller
synthesis algorithms at an informal level. We have only provided basic intuitions
about the involved constructions and the ultimately obtained results. In this
chapter, we focus on our workflow, which is based on the theorem prover Isabelle
and which thereby guarantees soundness for the algorithms on the one side and,
up to programming errors, for the prototype implementation CoSy, discussed in
the next chapter, on the other side.

For readers not familiar with Isabelle, we provide a discussion on the advan-
tages and disadvantages of using theorem provers such as Isabelle for ensuring
quality. In the trade-off discussed, we gain trustworthy (that is, error-free and
omission-free) proofs as a great benefit, but we have to face the theorem prover
Isabelle as an infallible adversary that only accepts and also requires the most
detailed proofs. However, the ongoing development has reached a state where
the tedious manual creation of such highly detailed proofs is partially alleviated
by additional heuristics, external tools, and visualizations of intermediate proof
states.

We also provide some selected aspects of our Isabelle-based framework estab-
lished for the formalization of the correctness proofs of the abstract and concrete
controller synthesis algorithms available at [303]. However, we only present the
structure of our framework and formalization also providing some proof-code
measures, discuss some general purpose proof rules, and provide the basic ideas
of some parts of our framework for semantics.

Since Isabelle proofs with their high level of detail often lack accessibility, we
end this chapter by providing the proof idea of one of our more central proofs.
In particular, the outlined proof shows that the determinism of a given SDPDA
is properly transferred to LR(1)-CFG, which is an important step during the
verification of our concrete controller synthesis algorithm.

89

Chapter 6. Isabelle-based Formal Quality Assurance

Contents of this Chapter

6.1|p.91 Formal Methods for Quality Assurance
We discuss the usage of the theorem prover Isabelle, which we employ
to ensure quality, and compare this tool-based approach with conser-
vative manual approaches. We use Isabelle to ensure quality in terms
of, firstly, the theorems that state the soundness of our abstract and
concrete controller synthesis algorithms (see Theorem 4.12|p.56 and
Theorem 5.1|p.86) and, secondly, the fundamental software quality of
our prototype implementation discussed in chapter 7|p.141.

6.2|p.96 Isabelle-based Framework of Definitions and Properties
We address important aspects of our Isabelle-based framework used
heavily in our formalization of our two central theorems. For the
framework and formalization, we present information on their general
structure and their size. We then focus on our framework, present
further additional general purpose results, and then detail on our
locale-based framework of branching and linear semantics in which
we also cover various aspects of semantics relevant in this thesis.
Moreover, we discuss custom techniques based on locales that al-
low for the connection of semantics of possibly different formalisms.
Finally, we introduce for EPDA and Parsers further semantics and
discuss their advantages and disadvantages for certain verification
tasks.

6.3|p.116 Isabelle-based Verification of the Translation
of Deterministic Pushdown Automata
into LR(1)-context-free Grammars

We provide a proof sketch for the property that an SDPDA can
be converted into a language equivalent LR(1)-CFG by means of
the operation FSDPDA→LR(1),Std discussed in subsection 5.2.1|p.69. In
particular, we consider the preservation of the determinism of the
given SDPDA to the LR(1)-CFG. This single proof sketch demonstrates
(in connection to our explanations in section 6.1|p.91) how proofs that
have been formalized in theorem provers such as Isabelle can be
prepared to allow readers their comprehension with minimal effort.
In this presentation, we follow the style of classical presentations of
pen-and-paper proofs. We are not aware of alternate presentations
of (even informal) proofs of this property, which is required for the
overall soundness of our concrete controller synthesis algorithm.

90

6.1. Formal Methods for Quality Assurance

6.1. Formal Methods for Quality Assurance

In this section, we briefly discuss the steps of modelling, specifying, and verifying
that we followed to obtain the formal results presented in this thesis. By focussing
on the concrete controller synthesis algorithm from chapter 5|p.61, we motivate
the requirement for formal methods in general to ensure software quality. We
then provide a general discussion on the benefits of applying formal methods for
this aim. Finally, we focus on the interactive theorem prover Isabelle [265], which
we employ throughout the presented workflow to ultimately obtain a formally
verified algorithm.

Quality Assurance by Formalization in This Thesis
In this thesis, we developed the concrete controller synthesis algorithm presented
in chapter 5|p.61. However, our Java-based implementation of this algorithm, as
used in section 7.5|p.157, may contain any number of bugs. This gap between
verified mathematical constructions and unverified implementations has been
noticed before. However, because we verified the underlying algorithm, we can
be sure that every bug can be fixed once it is detected. Moreover, the removal
of these bugs will, due to the compositional construction of our algorithm and
the closely corresponding implementation, require the modification of a small
number of lines in each case. This is not the case for arbitrary programs where
detected bugs may result in realizing that the entire approach is incorrect and
that the problem can either not be solved at all or that the entire implementation
has to be changed. Also see subsection 8.3.1|p.209 for a discussion on the usage
of code-generation techniques in the future.

We tested our implementation thoroughly using unit tests with code coverage
and also considered various examples, like those reasonably realistic examples
discussed in section 7.3|p.147, for integration testing. Hence, even if the transla-
tion from the presented algorithm to Java-code, the compilation of this Java-code
to byte-code, and the execution of this byte-code in a virtual machine may in-
troduce errors, we excluded the most fundamental kinds of bugs already by
formalizing and verifying the correctness of our algorithm. The exclusion of these
kinds of errors is an immediate achievement of formal verification and a central
contribution of this thesis.

Quality Assurance by Formalization Using a Three-step Workflow
The exclusion of fundamental errors is the key motivation for formal verification
as just pointed out. We established this kind of quality following the subsequently
discussed three-step workflow of modelling the actual behavior, specifying the
expected behavior, and verifying the correspondence between actual and expected
behavior.

Providing formal definitions (that is, in a language with predefined syntax and
semantics) results in a nonambiguous model. This nonambiguity then allows for
team-based joint inspection as well as for the further steps towards specification

91

Chapter 6. Isabelle-based Formal Quality Assurance

and verification. Definitions in natural language or pseudocode are, by this
explanation, not formal and ambiguous. In this thesis, we omitted our formal
Isabelle-based constructions and introduced the building blocks only informally
in chapter 5|p.61 instead. Note, the Java-based implementation of our concrete
controller synthesis algorithm was only obtained from these definitions.

To obtain a specification, we express desired properties of our definitions in a
formal way in the form of theorems using a formal language, which is typically
based on the language for definitions and a suitable logic such as higher order
logic (HOL). Extending the definitions with such formal theorems then results
in a description of the expected behavior of the given definitions. In this thesis,
we have ultimately described the expected behavior of the concrete controller
synthesis algorithm by means of Theorem 5.1|p.86. However, this theorem
depends on various other definitions of which some have been discussed when
introducing the automata-based supervisory control problem in Definition 3.11|
p.39. Note, the process up to this point resulting in definitions and theorems,
even without a follow-up verification of these theorems, constitutes a reasonably
nonambiguous specification of our concrete controller synthesis algorithm that
allows for a team-based joint inspection and that is sufficient for determining the
suitability of the algorithm. That is, by inspecting Theorem 5.1|p.86 together with
the notions this theorem depends on (such as the supervisory control problem
from Definition 3.11|p.39) is sufficient for determining that the given algorithm
is meant to solve (i.e., a verification is called for) the expected problem (i.e., the
problem that is to be solved).

Finally, the verification of the correspondence of actual behavior (given by the
definitions) and the expected behavior (given by the theorems) serves multiple
purposes. Firstly, a trustworthy proof guarantees the absence of fundamental errors
in the definitions (of course only w.r.t. the properties stated in the theorems)
and may serve as a starting point for further developments in the future if
the employed syntax and semantics are sufficiently established. Secondly, an
easily accessible proof can be inspected to deepen the understanding of both,
the definitions and the theorems. Thirdly, an adaptable proof allows for good
maintainability when definitions and theorems are altered. These considerations
constitute our opinion on the purpose and the quality of proofs. However, to
the best of our knowledge there is an inherent trade-off between some of these
criteria as argued subsequently for three cases.

Isabelle as a Proof Assistant
So called pen-and-paper proofs are not trustworthy because they are prone to
human error. Moreover, these proofs are often not given in a predefined language
resulting in poor maintainability. However, by leaving out many details they are
often easily accessible to a certain audience by having a level of detail that fits
the expertise of the audience. Finally, building upon such untrustworthy proofs
can only result in untrustworthy results down the line.

92

6.1. Formal Methods for Quality Assurance

Formal proof-calculi have been introduced by Hilbert and Gentzen such as
natural deduction systems and the sequent calculus. In such calculi a proof of
a property Sn is given by a finite sequence of proof steps between properties
such as in True ` S1 ` S2 ` . . . ` Sn. Backward proofs are constructed from
the final property Sn backwards by applying proof rules such as the modus
ponens P −→ Q P Q. However, many proof rules such as the modus
ponens have multiple assumptions and, hence, the sequence of proof steps is
better represented by a traversal of a proof-tree where the root is the property to
be verified, the inner nodes are intermediate properties, and the leaf nodes are
assumptions. See Example 6.1|p.95 for an example of such a proof-tree. The linear
representation obtained from a traversal of this proof-tree then contains proof
states Sk of the finite shape

∧
i(φi0 . . . φij φi), which is a conjunction

of a finite number of consequences where each consequence may have a finite
number of assumptions φik . Then, a single proof step replaces one of these
consequences, which may be considered to be pending proof goals, by a finite
possibly empty set of consequences. A complete proof then ends with an empty
list of pending goals. Pen-and-paper proofs given in these proof calculi are not
trustworthy, but, by being stated in a formal language, they allow for a team-based
joint inspection analyzing their correctness in terms of fault- and omission-freeness.
A drawback of proofs given in these proof calculi is that the level of detail is fixed
and maximal and is henceforth not suitably accessible to typical audiences due
to the resulting size of the proofs. Moreover, maintainability of such proofs is
troublesome because most modifications to definitions and theorems require a
modification of the proofs in many places. Since providing such a high level of
detail also requires a tremendous amount of resources, these proof calculi are not
widely used for verification purposes.

The ongoing development of the interactive theorem prover Isabelle [265] dates
back to 1994. It implements a formal proof calculus as discussed in the previous
paragraph. The goal of the Isabelle developers is to remedy the problems of
proof-calculi that hinder their application by providing adequate tool-support.
Isabelle comes along with a syntax, that is, a formal language, for definitions,
theorems, and proofs. Definitions are obviously primarily given by terms, which
are close to the mathematical functional notation and the typed λ-calculus using a
syntax following the functional programming language ML. Theorems are based
on higher order logic (HOL) and on expressions as employed in definitions.

Isabelle has automatic support in the sense that theories (comprising definitions,
theorems, and proofs) are checked by Isabelle for syntactical correctness, type-
correctness (that is, operations are never applied to arguments of a wrong type or
arity), and, for the proofs, also for correctness in the sense of fault-freeness and
omission-freeness as discussed above. Note, the statements that can be expressed
in the input-language are too complex to allow for automatic derivation of proofs
in general. However, attached SAT (Satisfiability for Propositional Logic) and
SMT (Satisfiability Modulo Theories) solvers such as e [312], spass [171], and

93

Chapter 6. Isabelle-based Formal Quality Assurance

vampire [353] as well as various built-in heuristic proof strategies such as auto,
force, clarify, simp, and blast can be issued to obtain proof fragments that are
then checked by Isabelle in the usual way.

Internally, Isabelle translates every provided proof step into a low-level se-
quence of proof steps that are then checked by the Isabelle kernel. The trust-
worthiness of Isabelle-checked proofs is a commonly accepted fact and, hence,
using Isabelle for proof-checking ensures the highest confidence in proofs cur-
rently available. Due to the assumed trustworthiness it is, in our opinion, neither
necessary nor advised to inspect Isabelle proofs to determine their correctness.
Moreover, the usage of SAT and SMT solvers and heuristic proof strategies re-
duces the granularity of proofs, which typically increases readability of proofs
and reduces the resources required for entering proofs. However, it hampers the
possibility for step-wise analysis of the proofs because multiple proof steps are
executed internally by a single provided command.

An alternative input language for proofs called isar has been released with the
aim of increasing the accessibility and the adaptability of proofs. However, in our
opinion, this goal has not been achieved because the overwhelming amount of
proof-code of many theories (like the ones produced for this thesis) principally
precludes human-based inspection. To increase accessibility and adaptability,
we propose the usage of horizontal and vertical decomposition techniques as
follows. Firstly, theory files should be split where appropriate into smaller theory
files solving separate problems. Secondly, information hiding should be used to
expose only a small set of definitions and theorems to other theory files. Thirdly,
proofs should be split by introducing lemmas where appropriate to obtain smaller
proof-blocks. Fourthly, theories should be inspected by considering definitions
and theorems and the relationships among them as established by their proofs
(not considering the proofs) in a first step. Fifthly, proofs should be inspected
with the interactive support of Isabelle to display the intermediate lists of proof
goals. However, as for big software products, additional documentation such as
this thesis, may be required to describe the overall proof-strategy at the required
different levels of detail to reasonably support accessibility of Isabelle theories.
Moreover, while the proof-trees of the mentioned proof calculi nicely state the
application of rules (by precisely stating the employed matching and the used
assumptions), there is no suitable support in Isabelle yet for this matter. The
adaptability of proof-code is also at a very early stage (basically, after adaptation
of used definitions or theorems, Isabelle is able to localize points that require
modifications by throwing proof-checking errors in these lines) and reasonable
refactoring-techniques are called for. On the positive side, Isabelle allows for
the usage of abstract theories that can be instantiated to prevent duplications
of definitions, theorems, and proofs. Contradicting our own perception of how
progress should be made in this matter, the key strategy of the isar language is to
make the user enter as much data as possible to not only guide Isabelle to be able
to check the proof but also to obtain a human readable proof-script: we believe,
as mentioned above, that Isabelle proof scripts should not be inspected without

94

6.1. Formal Methods for Quality Assurance

the support of Isabelle, which renders the additional annotations unnecessary as
more relevant information can be derived automatically.

We conclude that we use the general purpose proof assistent Isabelle to en-
sure trustworthiness of our formal definitions, theorems, and proofs to exclude
fundamental problems from our concrete controller synthesis algorithm.

Consider the following example where we have given a very simple lemma
(which can be automatically solved by any of the built-in heuristic tactics) with
its proof in two different notations.
Example 6.1: «Formal Proofs and Isabelle»
Examples of Proof Rules: The proof rules mp and conjI are given by listing their
premises above the horizontal line and the conclusion below the horizontal line.

mp
P −→ Q P

Q
conjI

P Q
P ∧Q

Example of a Proof: The two given proof rules mp and conjI are applied in the
following proof. The lemma verified by the proof states that the three top-most
properties in the proof-tree p ∧ q −→ r, p, and q jointly imply the property r.
In the proof-tree, each proof step corresponds to one horizontal line where the
applied rule is given on the left side and where the instantiation of the proof
rule is given on the right side.

mp
p ∧ q −→ r

conjI
p q
p ∧ q

(P = p and Q = q)

r
(P = p ∧ q and Q = r)

Example of a Proof in Isabelle-Syntax: The same proof from above is entered in
Isabelle in the following syntax showing that the same two rules are applied
with the same variable substitutions as before. Also, the three leaf nodes of the
proof-tree are handled by stating that they occur among the premises of the
lemma by using the command assumption.
lemma “p ∧ q −→ r p q r”
apply (rule-tac P = “p ∧ q” and Q = “r” in mp)
apply (assumption)
apply (rule-tac P = “p” and Q = “q” in conjI)
apply (assumption)
apply (assumption)
done

Interactive Inspection of Proofs in Isabelle: As stated above, we recommend to inspect
proofs by using the interactive mode of Isabelle to display the intermediate lists
of pending proof goals. To give an idea of the benefits, we added in the following
listing this additional information generated by Isabelle during the step-wise
analysis. Note, commands are applied on the first pending goal 1 .

95

Chapter 6. Isabelle-based Formal Quality Assurance

lemma “p ∧ q −→ r p q r”
1 p ∧ q −→ r p q r

apply (rule-tac P = “p ∧ q” and Q = “r” in mp)
1 p ∧ q −→ r p q p ∧ q −→ r
2 p ∧ q −→ r p q p ∧ q

apply (assumption)
1 p ∧ q −→ r p q p ∧ q

apply (rule-tac P = “p” and Q = “q” in conjI)
1 p ∧ q −→ r p q p
2 p ∧ q −→ r p q q

apply (assumption)
1 p ∧ q −→ r p q q

apply (assumption)
done

6.2. Isabelle-based Framework of Definitions and Properties

In this section, we focus on the overall structure of our Isabelle-based formaliza-
tion [303] and on parts reusable in similar contexts in the future.

Firstly, to extend the built-in support of Isabelle for the verification of partial
recursive functions, we introduced a custom structured workflow, which is
based on definitions and theorems and which is presented in greater detail in
subsection 6.2.2|p.100.

Secondly, to support the compositional verification of functional algorithms, we
have followed a workflow using interfaces and decomposition, which is discussed
in subsection 6.2.1|p.99.

Thirdly, to formalize semantics for our concrete formalisms, we developed
and interpreted custom abstract parameterized theories (based on locales in
Isabelle), which encompass various general important definitions and theorems.
This framework of semantics allows for the application of techniques that are
well-known in the domain of computer science such as bisimulation. We provide
details on these abstract parameterized theories and their interpretation for the
concrete formalisms in subsection 6.2.3|p.102.

As additional contributions (discussed at an earlier stage in [310]), we formal-
ized equivalent notions of controllability for languages and discrete event systems,
introduced fixed-point iterators based on these notions as in subsection 4.2.4|p.52,
and defined equivalent sets of desirable solutions as in section 4.3|p.53. However,
these fixed point iterators have not been included in this thesis because we are
not aware of reasonable implementations of them based on DPDA.

On the next pages, we present two figures on the structure and size of our
formalization and on the size of proofs.

96

6.2. Isabelle-based Framework of Definitions and Properties

Figure 6.1: «Structure and Size of the Isabelle-based Formalization»
We present the basic structure of our Isabelle-based formalization consisting
of four major and 14 minor parts with their number of proofs and lines of
the proof scripts. The largest minor parts are: the locales for semantics and
their relationship (minor part 6), the instantiation of these locales for EPDA,
Parsers, and CFGs (minor parts 7–9), and the verification of our constructions for
enforcing nonblockingness on a given DPDA (minor part 12). The other minor
parts sum up 9.3 % of the lines of the overall proof script.

Content Page Proofs % Lines %

foundations
1 foundational and built-in operations 721 11.8 11 461 2.0
2 words and languages 224 3.6 4370 0.7

abstract controller synthesis
3 discrete event systems p. 17 0 0.0 265 0.0
4 abstract supervisory control problem p. 33 164 2.6 5402 0.9
5 abstract controller synthesis algorithm p. 45 206 3.3 10 135 1.8

concrete formalisms
6 locales for transition systems 434 7.1 49 527 8.8
7 interpretation of locales for EPDA p. 18 468 7.6 29 485 5.2
8 interpretation of locales for Parsers p. 22 630 10.3 53 015 9.4
9 interpretation of locales for CFGs p. 27 784 12.8 66 373 11.8

concrete controller synthesis
10 construction of closed loop p. 64 23 0.3 3204 0.5
11 concrete supervisory control problem p. 36 16 0.2 781 0.1
12 enforcing nonblockingness p. 65 2299 37.6 307 362 54.8
13 removing noncontrollability p. 82 95 1.5 15 865 2.8
14 concrete controller synthesis algorithm p. 85 40 0.6 3299 0.5

Σ 6104 Σ 560 544

Number
of Proofs

1

2
3

4

5

6

7

8
9

10

11

12

1314

Number
of Proof

Script Lines

123
4

5

6

7

8

9

10

11

12

13
14

97

Chapter 6. Isabelle-based Formal Quality Assurance

Figure 6.2: «Distribution of Proof Length of the Isabelle-based Formalization»
We analyze our Isabelle-based proofs by the number of lines that contain an
application of the apply() command (where we disregard all instances of variable
renamings). A fine-grained modularity of the relevant lemmas, which results
from short proofs, is preferable for maintenance tasks such as refactoring and
adaptation to changed definitions as well as for easing composition in future
applications. The numbers (visualized below) indicate that our proofs are rather
short with an average of 39.1 lines and a mean of 12 lines.

Major Part Proof Length

Average Mean

foundations 6.0 3
abstract controller synthesis 17.6 9
concrete formalisms 34.0 13
concrete controller synthesis 59.7 17

1

2

3

5

8

13

21

34

55

89

144

233

377

610

987

1597

2584

4181

100

200

300

400

500

600

700

800

lines

proofs

lines

1

2

3

5

8

13

21

34

55

89

144

233

377

610

987

1597

2584

4181

10 %
20 %
30 %
40 %
50 %
60 %
70 %
80 %
90 %

100 %

98

6.2. Isabelle-based Framework of Definitions and Properties

6.2.1. Verification of Composed Concrete Building Blocks

The concrete controller synthesis algorithm from chapter 5|p.61 is defined by
composition of various building blocks. For most operations, we defined in-
put/output-specifications to determine clean interfaces to ease building block
composition. Such an input/output specification is given for a building block
f :: α⇒ γ by a definition of the legal inputs SPi-f :: α⇒ bool and by a definition
of the expected relationship between inputs and outputs SPo-f :: α⇒ γ⇒ bool.

To discuss the verification of composed building blocks, we assume that f
is given as the composition of two building blocks g :: α ⇒ β and h :: β ⇒ γ.
However, note that our proposed solution also translates to more than just two
building blocks g and h and also to building blocks with more than one argument.
Moreover, we assume that g and h have been verified w.r.t. their input/output
specifications in a previous step, that is, we assume the satisfaction of

SPi-g X SPo-g X (g X) and (6.1)
SPi-h X SPo-h X (h X). (6.2)

That said, the satisfaction of the input/output specification of f is now decoupled
from the verification of g and h and can be realized using the following theorem.

Theorem 6.1: «Verification of Sequential Execution»
1 SPi-f X
2 SPi-f X −→ SPi-g X
3 SPi-g X −→ SPo-g X (g X)
4 SPo-g X (g X) −→ SPi-h (g X)
5 ∀A B C. SPo-g A B −→ SPo-h B C −→ SPo-f A C
6 ∀A. SPi-h A −→ SPo-h A (h A)
7 SPo-f X (h (g X))

Explanation: 1 states that X is an expected input for the function f and the con-
clusion 7 states that the composition of g with h (that is, the function f) is sound
w.r.t. the input/output specification of f . 2 states that the input specification
of g accepts any input that is valid for f . 3 states that the operation g satisfies
its input/output specification for the given X (cf. (Eq. 6.1)|p.99). 4 states that
the value g X obtained by applying g in the first step is an admissible input
for the operation h to be executed subsequently. 5 states that the composition
of the output specifications of g and h results in the output specification of
f , a requirement that guides the definition of the output specification of f for
applications of this theorem. Finally, 6 states that h satisfies its input/output
specification (cf. (Eq. 6.2)|p.99), which is in particular relevant for the value g X.

While the trivial proof of this theorem requires only a single line in Isabelle,
we included it here for its practical relevance for the verification of the concrete
controller synthesis algorithm where we applied it 46 times (also counting similar
formulations for handling multi-argument building blocks as well).

99

Chapter 6. Isabelle-based Formal Quality Assurance

6.2.2. Verification of Partial Recursive Functions in Isabelle

In this thesis, we make use of various concrete building blocks that obtain fixed
points by executing recursive functions of the form:

f :: α⇒ α (6.3)
f x = if Guard x then f (Call x) else x (6.4)

using the two functions

Guard :: α⇒ bool and Call :: α⇒ α. (6.5)

Subsequently, we are only concerned with functions f of this kind that terminate
for a relevant part of the domain elements but not for all domain elements because
(a) there is sufficient support for functions terminating on all domain elements
and (b) we often exhibit such partial functions in our concrete controller synthesis
algorithm from chapter 5|p.61.

For example, the concrete building block for enforcing accessibility for CFG
entails (see Definition 5.4|p.66) the construction of the greatest set of productions
of the given CFG that occur in initial derivations of the CFG. The domain of this
operation contains pairs (G, A) where G is of the type of CFG and where A is
a set of productions. However, the type does not impose sufficient restrictions
on these pairs. Firstly, G is not required to be a valid CFG with a finite set of
productions because this restriction is not part of the type but is imposed on top
of it by an additional definition of valid CFGs. Secondly, the set A may be infinite
and is also not required to be contained in the productions of G.

For the general case of a partial recursive function f , we identify a well-formed
subset of the domain by defining a function:

WF-Inputs :: α⇒ bool. (6.6)

This function returns True for the domain elements to which f may be applied.
Hence, it also describes an invariant to be satisfied throughout the recursive
computation. For the example, we require for a pair (G, A) that G is a valid CFG
with a finite set of productions and that A is a subset of these productions.

For the example, termination follows from the fact that the size of the set of
productions of G that are not already contained in A strictly decreases between
any two adjacent recursive calls. That is, if an argument (G, A) is modified into
(G, A′) for the next recursive call using the function Call from above, we verify that
card (cfg-productions G− A) is strictly greater than card (cfg-productions G− A′).

For the general case, we state this termination argument by defining a function

Measure :: α⇒ nat. (6.7)

This function maps each domain element to some natural number such that well-
formed arguments xi to which the function f is applied during a computation

100

6.2. Isabelle-based Framework of Definitions and Properties

have strictly decreasing values Measure xi. As expected, termination is guaranteed
for well-formed arguments because the number of further applications of f is
bounded by Measure xi for any given well-formed argument xi.

We introduced the following theorem to verify properties such as termination
of f on well-formed domain elements but also for more advanced properties
on the actual return values of f . The theorem lists as premises certain minimal
requirements that are needed to be satisfied to derive for a given domain element y
that the property P is satisfied for it. The theorem also requires for its instantiation
concrete definitions for Call, Guard, WF-Inputs, and Measure where the first two
are given by the definition of f and where the latter two are to be derived such
as in our example-based explanations above.

Theorem 6.2: «Partial Termination»
1 ∀x. WF-Inputs x −→ Guard x −→ WF-Inputs (Call x)
2 ∀x. WF-Inputs x −→ Guard x −→ Measure x > Measure (Call x)
3 ∀x. WF-Inputs x −→ ¬Guard x −→ P x
4 ∀x. WF-Inputs x −→ WF-Inputs (Call x) −→ P (Call x) −→ P x
5 WF-Inputs y
6 P y

Explanation: 1 states that all applications of f in recursive calls are made to
well-formed inputs, that is, the well-formedness of the initial input is preserved
throughout the computation. 2 states that the arguments to recursive calls
decrease during any computation w.r.t. the function Measure. 3 states that
the property P to be verified is satisfied upon termination. 4 states that the
satisfaction of property P can be translated backwards to arguments of earlier
recursive calls. 5 states that y is a well-formed input. Finally, the conclusion 6
states that y satisfies the given property P.

For the concrete example at hand for enforcing accessibility for CFG, we may
state as a property P that the recursive fixed-point computation terminates and
that the obtained result is the desired maximal set of productions that occur in
initial derivations.

We verified this simple theorem by complete induction on the Measure-values
and applied it successfully for the verification of nine different concrete building
blocks of our concrete controller synthesis algorithm. Due to our experiences
with this theorem, we believe that it may be beneficial to use it also in future
applications of our Isabelle-based framework and also, independently, in other
scenarios with partial recursive functions.

For a comparison, Isabelle introduces for the partial function f from above for
the purpose of handling termination only the following rule by default (where
the predicate f_dom states that f terminates on the argument).

f.domintros:(Guard x f_dom (Call x)) f_dom x (6.8)

However, this rule f.domintros proved insufficient for our purposes.

101

Chapter 6. Isabelle-based Formal Quality Assurance

6.2.3. Hierarchical Framework of Abstract Theories for Defining Semantics

We introduce a framework in which semantics of a broad range of formalisms that
describe discrete event systems can be defined. This framework allows for the
concise definition and uniform handling of semantics, which is of paramount im-
portance in the context of the Isabelle-based verification of our concrete controller
synthesis algorithm. In this thesis, we apply this framework to the formalisms
of EPDA, Parsers, and CFGs to obtain various semantics for them (confer chap-
ter 2|p.15, subsection 6.2.6|p.112, and subsection 6.2.7|p.114). Also confer to
subsection 8.1.8|p.186 for related Isabelle-based frameworks.

Abstraction and Concretion in Hierarchical Frameworks
Abstraction and concretion are important elements in the domain of software
engineering and mathematics as can be seen from the following two examples.
Firstly, the programming language Java offers support for abstraction and concre-
tion in the sense of abstract Java classes with generic types containing abstract and
concrete methods with input/output types ranging also over these generic types.
Concretions of such abstract Java classes then determine consistent substitutions
of the abstract types and abstract methods and inherit all concrete methods of
the abstract class as well. Secondly, algebraic structures are often introduced by
making use of abstraction and concretion. Abstract algebraic structures such as
rings and complete lattices are defined by listing abstract types, abstract func-
tions ranging over these abstract types, and assumptions to be satisfied by these
abstract functions. Also, in such an abstract algebraic setting, based on these
functions and assumptions, further notions and properties can be defined and
verified, respectively. Concrete algebraic structures are then determined by con-
sistent substitutions of the abstract types and functions such that the assumptions
of the abstract algebraic structure are satisfied. With these two examples in mind,
we move on with the framework’s introduction.

We define our framework of semantics in the form of a hierarchy of parameter-
ized theories where each parameterized abstract theory is formalized in Isabelle
using the locale-technology (type classes, which are special locales, are used in
the Isabelle distribution for the definition of algebraic structures such as rings
and complete lattices mentioned above). A single locale describes a single pa-
rameterized abstract theory as follows. The head of a locale is given by a list of
abstract type parameters, abstract functions, and assumptions on these abstract
functions. Moreover, the head may additionally contain a list of locales that are
to be extended together with their function parameters to obtain a hierarchy of
locales. The body of a locale consists of definitions and theorems where these
abstract types and functions can be used. In general, definitions not using any of
the abstract types or abstract functions are usually defined before introducing
the locale. Finally, a locale is interpreted by providing for each abstract type and
each abstract function a concrete function. More specifically, concrete theories are
obtained from our given hierarchy of locales by interpretation of all locales con-
tained in a selected subtree that includes the root node of the hierarchy. Locales
that are not selected may, for example, contain assumptions that are not satisfied

102

6.2. Isabelle-based Framework of Definitions and Properties

by the concrete theory to be obtained. Note, many nodes of our hierarchy contain
theorems and definition that are inherited upon concretization.

An abstract framework allows for a reduced number of definitions and proofs
because common derived notions (for example, derivations and languages in
our case) and derived properties (for example, compositionality of derivations
and inclusion of the marked language in the unmarked language in our case)
are defined and verified only once in the abstract domain and are inherited
to the concrete formalisms automatically. Moreover, uniform definitions using
the Isabelle built-in locale mechanism for our abstract parameterized theories
allow for intuitive interformalism considerations, for example, if instances from
one formalism are to be translated into instances of another formalism while
preserving or reflecting certain properties (see subsection 6.2.4|p.109).

A hierarchical framework is called for because there is an inherent trade-off
between abstractness and usefulness as follows. On the one hand, an abstract
parameterized theory should be as abstract as possible by restricting the amount
of knowledge it extracts from the concrete semantics through the listed abstract
functions and assumptions. On the other hand, an abstract parameterized theory
should be as useful as possible by containing as many useful definitions and
theorems as possible such that, upon instantiation of this theory, a broad useful
spectrum of concrete definitions and theorems is available in the concrete setting.
However, strong assumptions are required for the derivation of such useful
theorems. Given this trade-off, we argue that a single abstract theory is not
desirable and, instead, we propose to cope with this trade-off, similarly to
abstraction and concretion in Java and the corresponding handling of algebraic
structures above, by introducing, based on an abstract core theory, a tree shaped
hierarchy of abstract parameterized theories that gradually incorporate different
characteristics from the concrete settings.

To sum up, we employ a hierarchical framework for the definition of the
semantics of EPDA, Parsers, and CFGs. We construct this framework of locales by
gradually capturing aspects of the various semantics of the formalisms of EPDA,
Parsers, and CFGs. The additional locales are introduced as direct or indirect
extensions of a core locale by listing further function parameters and assumptions
thereon. Concrete semantics are then obtained as concretizations of the locales
given by a subtree of this hierarchy that includes the core locale.

We continue with the introduction of the abstract core theory, which is the root
node of our hierarchical framework, and then introduce our extensions of this core
locale, which we group for presentation purposes in three categories. Firstly, we
define the marked and unmarked language of a structure in Par. Abstract Theories
for Marked and Unmarked Languages|p.104. Secondly, we introduce locales to cover
certain kinds of components occurring in configurations such as scheduler and
history variables resulting in the classification of branching and linear semantics
in Par. Branching and Linear Semantics|p.105. Thirdly, we introduce locales for
the abstract definition of further operational properties such as accessibility,
nonblockingness, determinism, and controllability in Par. Abstract Theories for
Operational Properties|p.108.

103

Chapter 6. Isabelle-based Formal Quality Assurance

The Abstract Core Theory for Semantics
The core locale of our framework states only the most fundamental requirements.
It has the abstract type parameters structures, configurations, and labels. Moreover,
it uses the abstract function parameters WF-structures, WF-configurations, and
WF-labels for identifying well-formed elements of these three type parameters.
The function parameter step-relation maps a structure, a source configuration, a
used label, and a target-configuration to a boolean value. As a first assumption,
we state that the target configurations accessed by application of the step-relation
are always well-formed whenever the structure, the source configuration, and the
label are well-formed. Finally, the function parameter initial-configurations identi-
fies configurations where derivations are to be started. As a second assumption,
we state that the initial-configurations are well-formed configurations.

In this core locale, we define, for example, derivations (using the step relation)
and initial derivations (using the initial configurations) and verify results on their
composition and decomposition.

For structures and labels, we use in the interpretations for EPDA, Parsers, and
CFGs the corresponding record types as discussed in chapter 2|p.15. However,
while the configurations and initial configurations are of the same pattern for all
semantics of CFGs, we define custom configurations and initial configurations
based on custom record types for each semantics of EPDA and Parsers. Moreover,
we provide for each semantics of EPDA, Parsers, and CFGs a custom step relation.

Abstract Theories for Marked and Unmarked Languages
For the abstract definition of the marked and unmarked language of a structure,
we extend the core locale from above with the additional abstract type parameter
effects. This type parameter is interpreted for our concrete formalisms by lists of
events. Moreover, we introduce additional abstract function parameters. Firstly,
the function WF-effects describes for a structure the elements of the type effects that
may occur. For EPDA, Parsers, and CFGs these well-formed effects are the words
ranging over the event alphabet contained the respective structure. Secondly, the
function marking-condition is a predicate defining the initial derivations that mark
a word. Confer to our explanations in chapter 2|p.15 where we explained the
marking condition already for the semantics described there and also see our
explanations on marked and unmarked languages in the subsequent paragraph.
Finally, the two operations unmarked-effect and marked-effect define for each initial
derivation a set of unmarked effects that are executed in that derivation and a set
of marked effects that are marked in that initial derivation. In the locale given by
these extensions, we define the marked language and the unmarked language of
a given structure by gathering the marked and unmarked effects from the initial
derivations, respectively.

The interpretation of these parameters depends for concrete semantics obvi-
ously on the respective employed types of configurations. In further locales, we
specialize the type of effects to words and consider only finite initial derivations
for the definition of the two sets of languages.

104

6.2. Isabelle-based Framework of Definitions and Properties

Branching and Linear Semantics
As a major achievement, we introduced locales to distinguish between branching
and linear semantics. The usage of both kinds of semantics resulted in great
benefits throughout the verification of our concrete controller synthesis algorithm.

In branching semantics, the applicability of steps is solely restricted by the
structure whereas in linear semantics the applicability of steps is also governed
by a schedule. Such a schedule typically is a word of events that are to be executed
in that order. It is contained as a component in the configurations and guides the
future evolution because steps that conflict with the schedule are disabled. In the
linear and branching semantics of Parsers, we also encounter fixed schedulers
(see section 2.3|p.22) and unfixed schedulers as components of configurations as
a more explicit decomposition of scheduler variables. Linear semantics then have
a scheduler variable or an unfixed scheduler variable and branching semantics
(of Parsers with a look-ahead of at least one) may also fix events on the fly by
storing them in a fixed scheduler variable. Also, various semantics make use of
history variables that remember events executed in previous steps of the current
derivation.

The most common semantics for EPDA and Parsers in the literature are the
linear semantics discussed in subsection 6.2.6|p.112 and subsection 6.2.7|p.114.
For many other formalisms such as CFG and Petri net it is not common to have a
schedule guiding the upcoming behavior.

In this thesis, we introduce linear and branching semantics for EPDA and
Parsers and relate them suitably to allow for their interchangeable usage (see
subsection 6.2.4|p.109). Since branching and linear semantics have, as explained
later on, specific definitions of key notions such as determinism, it is important
to ensure that the different definitions coincide among the semantics of a for-
malism. Moreover, depending on the variables contained in the configurations,
it is also possible that multiple definitions of some notion are inherited from
different abstract locales upon concretization; in these cases, we also verify the
correspondence between these definitions.

As visualized in Figure 6.3|p.106 the two kinds of semantics result in different
shapes of accessibility graphs. In the linear semantics of EPDA and Parsers
presented in this thesis, there is a unique initial configuration for each word
over the event alphabet and for each of these initial configurations there is (up
to nondeterminism and maximality) a unique derivation starting in this initial
configuration. In contrast to this, the branching semantics presented in this
thesis have a unique initial configuration, each derivation starts in this initial
configuration, and the accessibility graph is of no degenerate form in general
because often multiple distinct effects may be executed depending on the EPDA,
Parser, or CFG at hand. If the executed events are recorded in a history variable
and each step appends a non-empty word to the history variable, the accessibility
graphs are of the form of trees. If no such history variable is used, as for example
in Petri net, the accessibility graph may contain loops.

105

Chapter 6. Isabelle-based Formal Quality Assurance

Figure 6.3: «Linear versus Branching Semantics for FSA»
Due to the existence (nonexistence) of a scheduler variable in configurations
of linear (branching) semantics, the accessibility graphs form a forest (tree) for
linear (branching) semantics. Incompatible steps (here e2 and e7 executing the
distinct events a and b) occur in different trees in linear but may occur from
the same node in branching semantics. Compatible steps (here e3 and e4 both
executing the event a) violating determinism result in branching of the trees in
linear semantics. Note, in both kinds of semantics the same sequences of edges
are applicable: [e1, e2, e3, e5], [e1, e2, e4, e6], and [e1, e7, e8, e9].

Linear Semantic

l0

l1

l2

l3 l4

l5 l6

e1

e2

e3 e4

e5 e6

l7

l8

l9

l10

l11

e1

e7

e8

e9

Branching Semantic

b0

b1

b2 b3

b4 b5

b6 b7

b8

b9

e1

e2 e7

e3 e4

e5 e6

e8

e9

FSA Realization

0

1

2 3

4 5

6 7

8

9

a

a b

a a

a a

a

a

Semantics where no (unfixed) scheduler variable is contained in the configura-
tion (that is, branching semantics) have the advantage that properties such as
operational nonblockingness can be defined easily by stating that for every initial
derivation there is some continuing derivation that can be appended to result in
a marking derivation. For a semantics where an (unfixed) scheduler variable is
contained in the configuration (that is, in a linear semantics) the definition is more
complicated because for the (unfixed) schedule remaining at the end of the given
initial derivation there may be no such continuing derivation, and, to handle
that problem, each configuration of the given initial derivation would have to be
adapted such that the remaining (unfixed) schedule is then chosen such that the
required continuation exists. Hence, branching semantics are, as demonstrated
by the example, more suitable when derivations are to be appended to a given
derivation.

Note, a similar problem occurs when a derivation is to be prepended to a given
derivation in a semantics where history variables are used in the configurations,
which is the case for our branching semantics for EPDA and Parsers. In this case
the history variables contained in all configurations of the given derivation may
need to be adjusted before the composition.

106

6.2. Isabelle-based Framework of Definitions and Properties

The definition of the marked and unmarked language also depends on the
variables available in the configurations. In a semantics where configurations have
no history and no scheduler variables, we define unmarked-effect and marked-effect
by replaying the impact of the labels contained in the derivation on the initial
configuration. Such a definition is quite complex and can be simplified when
scheduler variables are contained in the configurations. Using these variables,
we define unmarked-effect and marked-effect by considering configurations one by
one and by relying on the initial value of the scheduler variable. However, the
most simple definition requires history variables in the configurations. Using
these variables, we obtain unmarked-effect and marked-effect directly by considering
configurations one by one. We prefer semantics with history variables because
the complexity of such central definitions has a big impact on many subsequent
proofs and should be, for that reason, as simple as possible.

When having multiple semantics for a given formalism, we require the seman-
tics to coincide in this thesis. For the marking-condition this means that initial
derivations in different semantics applying the same sequence of labels should
coincide w.r.t. their corresponding marking conditions. We argue that this re-
quirement may lead to more complex definitions of the marking condition for
branching semantics compared to the equivalent linear semantics. For example,
consider the branching semantics epdaH and parserHF for EPDA and Parsers
where we check for marking configurations (see chapter 2|p.15) to determine
the satisfaction of the marking condition. For these branching semantics the
satisfaction of the marking condition is not preserved by step application as we
must check that no events are executed after the detected marking configura-
tion has been accessed. As an example supporting this claim consider the FSA
from Figure 6.3|p.106 where we expect that only the empty word is a marked
word. Since only the empty initial derivation satisfies the marking condition
in the linear semantics (every longer initial derivation in that semantics has a
different non-empty initial schedule), precisely the empty initial derivation of
the branching derivation must satisfy the marking condition. Consequently, the
execution of further events in all non-empty initial derivations of the branching
semantics must invalidate the satisfaction of the marking condition.

The fixed scheduler variable, which may occur in configurations of branching
and linear semantics, is the part of the scheduler that has been executed in the
initial derivation at hand but that has not been removed from the scheduler
yet. As steps of the initial derivation depended on this fixed scheduler any
modification of it may break the initial derivation. Conversely, the unfixed
scheduler variable is the part of the scheduler that has not been observed in the
initial derivation up to the configuration at hand. Hence, the unfixed scheduler
may be modified or exchanged entirely with the following restriction. Parsers
that detected/determined the special processing terminator may not execute
further events and, hence, the unfixed schedule contained in configurations of a
Parser may only be adapted if the processing terminator has not been fixed in a
prior step. We call unfixed schedulers extendable if they may be adapted.

107

Chapter 6. Isabelle-based Formal Quality Assurance

Abstract Theories for Operational Properties
We define accessibility, nonblockingness, determinism, and controllability by
introducing locales as extensions of the locales for linear and branching semantics,
which feature scheduler and history variables as introduced before.

For (operational) accessibility, we require in our locales type parameters and
function parameters to identify elements, called destinations, to be accessible and
function parameters for determining which of these elements are contained in a
given initial derivation at a given point. Then, operational accessibility means
that all elements that are to be accessible occur in some initial derivation.

Recall that operational nonblockingness means that every initial derivation
must be extendable to an initial marking derivation (cf. Definition C.2|p.234

for a concrete definition of nonblockingness for EPDA by the use of the epdaH
semantics) with the additional complication of schedule adaption mentioned in
the previous paragraph. We introduce equivalent definitions for nonblocking-
ness based on the availability of the scheduler variables in the configurations of
branching as well as linear semantics. In general, the various notions of opera-
tional nonblockingness should coincide with the language based nonblockingness
from Definition 3.2|p.33. However, Parsers may detect/determine the special
processing terminator without executing an event and, to obtain the desired
equivalence between both notions, we define weak operational nonblockingness
by excluding initial derivations where the processing terminator has been de-
tected/determined. Note, steps detecting/determining the processing terminator
may bring the Parser from a marking configuration into a deadlock configuration
that is not marking. In this case, the language based nonblockingness property is
satisfied, but the operational nonblockingness property from above is not satisfied.
This example shows that the language based nonblockingness property is not
entirely appropriate for formalisms such as Parsers that may detect/determine
the processing terminator silently as discussed already in [310].

Determinism for linear semantics means that two steps exiting an accessible
configuration must coincide and determinism for branching semantics means
that two steps exiting an accessible configuration must coincide if the word
w1 of events executed in the first step is a prefix of the word w2 of events
executed by the second step. We verified that the definitions for the branching
and linear semantics (with scheduler or history variables) coincide in all cases.
Note, the notion of determinism was already covered in chapter 2|p.15 for
EPDA and Parsers for the branching semantics epdaH and parserHF. In this
thesis, we only require operational determinism and do not employ syntactical
determinism, which would require for EPDA that two edges exiting the same state
are identical if they have compatible edge-pop and edge-event components. Such a
syntactical definition proved more complex in proofs as also inaccessible well-
formed configurations need to be considered where required invariants are then
not available. Moreover, such syntactical definitions cannot be stated concisely
at the abstract level of locales. Again, we provided a more general definition
of determinism for branching semantics of Parsers where unfixed schedulers

108

6.2. Isabelle-based Framework of Definitions and Properties

occurring in configurations may be unextendable. Intuitively, if w1 is a strict
prefix of w2 above and the special processing terminator is detected/determined
in the first step, then both steps do not need to be identical for determinism.

Based on the locale based foundation for branching semantics, we define
operational controllability in the context of an abstract parameterized theory
involving two abstract semantics. These two semantics are interpreted by the
branching semantics epdaH because the formalisms of DFA and DPDA used for
the plant and the controller in our concrete controller synthesis algorithm are both
subformalisms of the formalism of EPDA. The obtained definition is equivalent
to Definition C.1|p.233 and the language based controllability definition from
Definition 3.1|p.33.

6.2.4. Hierarchical Framework of Abstract Theories for Relating Semantics

In our Isabelle-based formalization, we state theorems and lemmas in which
instances and semantics of one, two, or more formalisms are used. Adequate
support is called for to allow for the derivation of simple and concise proofs of
these properties.

Categorization of Properties to be Verified
Firstly, we state intra-semantics intra-formalism properties using a single semantics of
a single formalism. For example, we show for a single EPDA that we obtain again
an EPDA with the same marked language when applying a certain operation on
it (two EPDA and typically one semantics). This default scenario is covered by
our introduction of our hierarchy of locales from the previous subsections.

Secondly, we state inter-semantics intra-formalism properties using at least two
semantics of a single formalism. For example, we show that the marked language
of an EPDA is equally defined using any of our branching and linear EPDA
semantics (one EPDA and at least two semantics). Also note, the semantics used
in this example may be both linear semantics, both branching semantics, or a
combination of the two kinds. For any selection of semantics of a single for-
malisms, we expect that the operational properties indeed coincide as explained
before. However, branching and linear semantics of a common formalism have
few similarities when it comes to locale interpretation: since configurations are
adapted, every parameter that depends directly or indirectly on configurations
is affected. From the locales presented so far, we typically only expect that the
interpretations agree on structure, step-labels, effects, and destinations. We support
this scenario as a special case of the following (last) scenario.

Thirdly, we state inter-semantics inter-formalism properties using at least two
semantics of at least two formalisms. For example, we convert a Parser into an
EPDA with equal marked language (one Parser, one EPDA, and two semantics).
In general, we are primarily interested (as for the previous case of inter-semantics
intra-formalism properties) in the marked and unmarked languages, nonblock-
ingness, accessibility, determinism, and controllability.

109

Chapter 6. Isabelle-based Formal Quality Assurance

Locale-based Approach to Relating Semantics
We now discuss our support of these kinds of properties by introducing various
parameterized abstract theories, called translational theories, by using once more
the locale technology of Isabelle. These translational theories are defined as
locales that extend more basic locales and that have type parameters, function
parameters, and assumptions on these parameters as before. Firstly, recall that
we define concrete semantics as interpretations of a selection of a subtree of our
locale hierarchy including the core locale. In fact, this selection also defines an
abstract semantics in the form of a locale where the leafs of this subtree are the
dependencies. The locale dependencies have to be provided with their function
parameters and types and, of course, different leafs overlap in their function
parameters as they extend more basic locales on a path to the core locale (at least
they agree on the types and function parameters of the core locale). Secondly, the
definition of a translational theory is a slightly more general case where two such
selections, which correspond to two abstract semantics, are listed as dependencies
and where the abstract types and function parameters occurring may overlap
also between these two lists of locales. Thirdly, as for other locales, we may add
further elements to such translational theories such as abstract types, function
parameters, and assumptions to require suitable characteristics and to impose
the satisfaction of additional constraints on the parameters, which may span over
the two semantics simultaneously.

Our translational theories differ in the abstract semantics (that is, in the se-
lections resulting the locale dependencies), in the overlapping between the two
semantics (depending on the characteristics of the semantics and formalisms
to be related), in the additional elements added to the locale’s head, and in
the semantical properties translated in the locales (each property may require a
different set of knowledge for its translation).

Abstract results obtained within translational theories are derived in their
concrete form for two given concrete semantics by interpretation of these locales.
For such an interpretation of a translational theory, we have to provide, as before,
consistent substitutions for the types and function parameters occurring in the
locale’s definition and verify the (additional) assumptions.

Note, relationships between two concrete semantics can only be established in
this approach when the abstract locales are strong enough in the sense of captur-
ing the characteristics required to derive the envisioned relationship. Definitions
only present in the concrete setting but not in the abstract setting cannot be used
within a translational locale as introduced here.

Techniques Employed for the Translation of Operational Properties
For two given abstract instances G1 and G2 with their corresponding abstract
semantics, we employ weak bisimulations on initial derivations to relate G1
and G2 as follows. A weak bisimulations on initial derivations R is a relation
containing pairs (d1, d2) where d1 and d2 are of the type of derivations of the first
and second abstract semantics, respectively. Moreover, to make this relation R
a weak bisimulations on initial derivations, we require (well-formedness) that for

110

6.2. Isabelle-based Framework of Definitions and Properties

every (d1, d2) ∈ R both, d1 and d2 are initial derivation of G1 and G2, respectively,
(completeness) that for each zero length initial derivation d1 of G1 there is some
initial derivation d2 of G2 such that (d1, d2) ∈ R (and vice versa), and (soundness)
that for every (d1, d2) ∈ R and every single-step derivation d′1 that may be
appended to d1 resulting in an initial derivation d′′1 of G1 there is a derivation d′2
that may be appended to d2 resulting in an initial derivation d′′2 of G2 such that
(d′′1 , d′′2) ∈ R (and vice versa).

For special purposes, we make use of more special and simple kinds of (bi)sim-
ulations. For example, (a) dropping the reverse assumptions on well-formedness
and soundness still allows for the verification of the preservation but not for the
reflection of properties, (b) stating that the derivations d′1 and d′2 have both length
1 results in strong (bi)simulations and is suitable when the relationship between
G1 and G2 is indeed that close, which is of course the case if G1 = G2 and some
inter-semantics intra-formalism property is to be verified, and (c) not using initial
derivations but well-formed configurations of G1 and G2 instead, which is useful
in cases where no further invariants are required and are to be established along
the way.

Besides (bi)simulation relations, we also employ maps. Firstly, we use bijective
maps on configurations and labels allowing for simple proofs. Secondly, we use
maps of initial derivations directly for relating linear and branching semantics
and for translating (the nonexistence of) infinite initial derivations.

Common to all the presented approaches is a relationship between the initial
derivations (or an abstraction thereof in the form of the last configuration for
finite derivations) that is compatible with the corresponding step relations of the
semantics.

Finally, once the initial derivations of two semantics are connected, we usually
have to state some further property-specific assumptions to be able to translate
for example the marked language between the two semantics.

6.2.5. Evaluation of our Hierarchical Framework of Semantics

We believe that our hierarchical framework of semantics presented in this section
is extendable by integration of further locales as needed due to its fine grained
structure. Moreover, we believe that it is interpretable for many further discrete
event formalisms such as Turing machines [346], context-sensitive grammars [79],
Petri nets [272], probabilistic automata [277], Büchi automata [65], input/output
automata [227], Statecharts [152], and timed automata [12]. Finally, the unclut-
tered and intuitive proofs that we constructed for the verification of our concrete
controller synthesis algorithm make us believe that our framework, which stabi-
lized rather soon during this verification process, is also applicable to many further
problems on discrete event systems in a natural way as well.

Our framework supports also Büchi automata because we allow for infinite
derivations and marking conditions that are defined on entire derivations. How-
ever, we do not support formalisms such as hybrid automata [10] because the
domain of our derivations is given by the natural numbers.

111

Chapter 6. Isabelle-based Formal Quality Assurance

6.2.6. Additional Semantics for EPDA

In section 2.2|p.18, we introduced the branching semantics epdaH for EPDA in
which configurations contain a history variable but no scheduler variable. As
explained in this section, we have also defined the standard linear semantics epdaS
for EPDA in which configurations contain no history variable but a scheduler
variable and have proven the equivalence of epdaS and epdaH. In fact, we relied
on a further linear semantics epdaHS where configurations contain a scheduler
and a history variable. The equivalence of the three semantics has been proven in
two steps by two interpretations of translational theories. The first translational
theory relates the two linear semantics epdaS and epdaHS and allows to add the
history variable to epdaS in the expected way. Then, the second translational
theory relates the linear semantics epdaHS and the branching semantics epdaH by
allowing to drop the scheduler from the configurations of the epdaHS semantics.
The interpretation of the translational theories requires, of course, proofs of the
satisfaction of the concretizations of the assumptions of the translational theories.
Note, the same translational theories are also used for the equivalence proofs for
the semantics of Parsers discussed in the next subsection.

We omit the epdaHS semantics, but we give the key definitions of epdaS corre-
sponding to the definitions given in section 2.2|p.18 for epdaH.

Definition 6.1: «(Initial) Configurations of an EPDA in epdaS»
If q is from Q, s is a word over Γ not containing �, and w is a word over Σ, then
configurations of an EPDA are of the following form.

epdaS-conf-state=q, epdaS-conf-scheduler=w, epdaS-conf-stack=s @ [�]

If w is a word over Σ, then the initial configurations are of the form q0, w, [�] .

When considered closely, the step relations of epdaS and epdaH appear to be
quite similar. Yet, the difference between the two semantics in terms of linear vs.
branching semantics is tremendous.

Definition 6.2: «Step Relation epdaS-step-relation»
If q1 and q2 are states from Q, a is an event from Σ, w is a word over Σ, s, s1, and
s2 are words over Γ not containing �, then there are the following four different
kinds of steps.

Step 1 Edge: q1, None, s1, s2, q2
Pre: q1, w, s1 @ s @ [�]
Post: q2, w, s2 @ s @ [�]
Kind: execute no event, do not observe � at end of stack

Step 2 Edge: q1, None, s1 @ [�], s2 @ [�], q2
Pre: q1, w, s1 @ [�]
Post: q2, w, s2 @ [�]
Kind: execute no event, observe � at end of stack

112

6.2. Isabelle-based Framework of Definitions and Properties

Step 3 Edge: q1, Some a, s1, s2, q2
Pre: q1, [a] @ w, s1 @ s @ [�]
Post: q2, w, s2 @ s @ [�]
Kind: execute event a, do not observe � at end of stack

Step 4 Edge: q1, Some a, s1 @ [�], s2 @ [�], q2
Pre: q1, [a] @ w, s1 @ [�]
Post: q2, w, s2 @ [�]
Kind: execute event a, observe � at end of stack

In the epdaS semantics a given EPDA is deterministic if there is a most one step
from any reachable configuration.
Definition 6.3: «Determinism for epdaS»
An EPDA is deterministic in epdaS, if whenever an initial derivation leads to a
configuration c and epdaS-step-relation G c e1 c1 and epdaS-step-relation G c e2 c2
are two applicable steps, then e1 = e2 and c1 = c2.

Finally, the marked and unmarked words and languages of an EPDA are obtained
by comparing a scheduler in a reachable configuration with the initial scheduler
in the initial derivation at hand.
Definition 6.4: «unmarked-language and marked-language for epdaS»
The unmarked language of an EPDA is given by all words v over Σ such that
some configuration c is reachable by some initial derivation d starting with
configuration c0 such that epdaS-conf-scheduler c0 = v @ epdaS-conf-scheduler c.
For a word to be in the marked language of the EPDA, we additionally require
that epdaS-conf-state c is marking state from F.

Finally, we present an example in which we demonstrate the similarities between
epdaH and epdaS derivations.
Example 6.2: «Derivations in epdaS and epdaH»
Corresponding Derivations of the DPDA G from Example 2.1|p.22:

0, , �
e1
epdaH,G 1, a , •�
e2
epdaH,G 1, aa , • •�
e3
epdaH,G 2, aab , •�
e4
epdaH,G 2, aabb, �
e5
epdaH,G 3, aabb, �

0, aabb, �
e1
epdaS,G 1, abb , •�
e2
epdaS,G 1, bb , • •�
e3
epdaS,G 2, b , •�
e3
epdaS,G 2, , �
e4
epdaS,G 3, , �

id edges of G id edges of G

e1 0, Some a,�, •�, 1 e2 1, Some a, • , •• , 1
e3 1, Some b, • ,− , 2 e4 2, Some b, • ,− , 2
e5 2, None ,�,� , 3

113

Chapter 6. Isabelle-based Formal Quality Assurance

6.2.7. Additional Semantics for Parsers

As for EPDA, we defined the standard linear semantics parserS for Parsers as it
has advantages over the branching semantics parserHF when verifying properties
that have simpler definitions in parserS such as determinism. We established
the equivalence of the semantics parserS and parserHF by relating them step-
wise to the further linear semantics parserHFS and parserFS as follows using
interpretations of abstract translational theories. The linear semantics parserS,
which is introduced below, has a scheduler variable in its configurations. We
add a fixed scheduler variable to the configurations resulting in the parserFS
semantics. Note, the fixed scheduler can be computed by replaying the steps of
a derivation in parserS, which results in additional complexity in proofs. Then,
we add a history variable (as between the EPDA semantics epdaS and epdaHS) to
the configurations resulting in the semantics parserHFS. Finally, we remove the
scheduler variable (as between the EPDA semantics epdaHS and epdaH) from the
configurations to obtain the branching semantics parserHF.

We omit the intermediate parserFS and parserHFS semantics, but we introduce
the key definitions of the parserS semantics that correspond to the definitions
given in section 2.3|p.22 for parserHF.

Definition 6.5: «(Initial) Configurations of a Parser in parserS»
If s is a word over N, q is from N, and v is a word Σ not containing $, then
configurations of a Parser are of the following form.

parserS-conf-stack=s @ [q], parserS-conf-scheduler=v @ [$]

If w is a word over Σ not containing $, then the initial configurations are of the
form [q0], w @ [$] .

For the step relation of parserS, we only have to consider the two patterns of
rules given in Definition 2.11|p.24 resulting in two kinds of steps. Hence, the
step relation of parserS has fewer kinds of steps compared to the step relation
of parserHF where the history and fixed scheduler variables resulted in many
different kinds of steps.

Definition 6.6: «Step Relation parserS-step-relation»
If q1 and q2 are from N, s, s1, and s2 are words over N, v1, v2, and v3 are words
over Σ not containing $, then there are the following kinds of steps.

Step 1 Rule: s1 @ [q1], v1 @ v2, s2 @ [q2], v2
Pre: s @ s1 @ [q1] , v1 @ v2 @ v3
Post: s @ s2 @ [q2] , v2 @ v3

Step 2 Rule: s1 @ [q1], v1 @ v2 @ [$], s2 @ [q2], v2 @ [$]
Pre: s @ s1 @ [q1] , v1 @ v2 @ [$]
Post: s @ s2 @ [q2] , v2 @ [$]

114

6.2. Isabelle-based Framework of Definitions and Properties

As for the epdaS semantics of EPDA, we define a given Parser to be deterministic
if there is at most one step applicable to every configuration reachable from any
initial configuration (confer to Definition 6.3|p.113).

Finally, the marked language and the unmarked language of a Parser is also
obtained similarly to the case for epdaS. However, we must incorporate the fixed
scheduler of parserS, which has to be recursively computed, into our definition.
That is, the events executed by a Parser in the parserS semantics is given by
the events removed from the schedule (obtained by comparison with the initial
configuration of the initial derivation at hand) and the fixed scheduler where the
possibly trailing $ element is removed. The recursive computation of the fixed
scheduler results in a technically more complex and undesirable definition.

Definition 6.7: «unmarked-language and marked-language for parserS»
The unmarked language of a Parser is given by all words v @ f over Σ such
that some configuration c is reachable after n steps by some initial deriva-
tion d starting with configuration c0 such that parserS-conf-scheduler c0 =
v @ parserS-conf-scheduler c and such that f is the fixed scheduler obtained
from replaying the derivation d up to the index n where the possibly trailing $
has been removed from f .
For such an unmarked word to be also in the marked language of the Parser, we
additionally require that parserS-conf-stack c is of the form s @ [q] where q is a
marking stack element from F.

Finally, we present an example in which we demonstrate the similarities between
two initial derivations using the Parser semantics parserHF and parserS. Both
of these two initial derivations apply the same sequence of rules, execute the
same unmarked words, and mark the same word aabb by means of the last
configuration.

Example 6.3: «Derivations in parserHF and parserS»
Corresponding Derivations of the Parser G from Example 2.2|p.27:

, , 0
r1
parserHF,G , a , � • 1
r2
parserHF,G , aa ,� • •1
r3
parserHF,G , aab , � • 2
r4
parserHF,G , aabb, �2
r5
parserHF,G , aabb, 3

0, aabb$
r1
parserS,G � • 1, abb$
r2
parserS,G � • •1, bb$
r3
parserS,G � • 2, b$
r4
parserS,G �2, $
r5
parserS,G 3, $

In this simple example, the fixed scheduler is permanently empty for both given
derivations because the rules of the Parser G that are used in the derivations
have empty rule-scheduler-push components. This is, however, not the case for the
Parsers that we obtain during the application of our concrete controller synthesis
algorithm in subsection 5.2.2|p.73.

115

Chapter 6. Isabelle-based Formal Quality Assurance

6.3. Isabelle-based Verification of

the Translation of Deterministic Pushdown Automata

into LR(1)-context-free Grammars

We provide an intuitive explanation of our formal proof of a theorem that plays
an important role for the overall soundness of our concrete controller synthesis
algorithm and parsing theory in general. To the best of our knowledge, no formal
or informal proof of this theorem has been presented previously, but it has been
conjectured in [189] and [325, Volume II, Proposition 6.41, p. 53].

As discussed briefly in subsection 5.2.1|p.69, we apply in our concrete controller
synthesis algorithm the operation FSDPDA→CFG,Std, which was first presented
in [189], to an SDPDA G that does not mark a word in any initial marking
derivation twice. The result FSDPDA→CFG,Std G of this application is a CFG that
is equivalent to G as it generates the same marked language. As the next step,
we apply the operation FCFG-Trim to FSDPDA→CFG,Std G to remove the least sets
of nonterminals and productions to obtain a CFG G′ where every nonterminal
and every production occurs in at least one initial marking derivation. Note,
the sequential application of FSDPDA→CFG,Std and FCFG-Trim defines the compound
construction FSDPDA→LR(1),Std, as also explained in section 5.2.1|p.71. Finally, the
theorem that is given below (in Isabelle notation) states that G′ satisfies the
LR(1)-CFG property. The LR(1)-CFG property is introduced subsequently and its
satisfaction means in this case that the determinism of the given SDPDA G has
been transferred successfully to G′ as desired.

Theorem 6.3: «FSDPDA→LR(1),Std Translates an SDPDA into an LR(1)-CFG»
1 valid-sdpda G
2 ¬duplicate-marking G
3 valid-cfg G′

4 cfg-sub G′ (FSDPDA→CFG,Std G)
5 cfg-nonterminals G′ =

cfgLM-accessible-nonterminals G′

∩ cfgSTD-nonblocking-nonterminals G′

6 cfg-LR G′ (Suc 0)

1 states that G is a valid SDPDA, 2 states that G has no initial marking deriva-
tion in epdaS where two configurations at distinct positions in the derivation
agree on their schedule and contain both a marking state, 3 states that G′ is a
well formed CFG, 4 states that G′ is contained in FSDPDA→CFG,Std G in the sense
that they agree on the set of events and the initial nonterminal and that the sets
of nonterminals and productions of G′ are contained in the corresponding sets
of FSDPDA→CFG,Std G, 5 states that every nonterminal A of G′ is accessible (that
is, there is some initial derivation that reaches a configurations containing A)
and eliminable (that is, there is some derivation of G′ that starts with the con-
figuration A and ends with a configuration without nonterminals), and the
conclusion 6 states that G′ satisfies the LR(1)-CFG property introduced below.

116

6.3. Isabelle-based Verification of the Translation of DPDA into LR(1)-CFG

Before continuing with the introduction of the LR(k)-CFG property, there are
two observations on the given theorem to be mentioned. Firstly, the theorem
states a slightly stronger property than necessary as it does not only consider the
unique maximal trim CFG contained in FSDPDA→CFG,Std G (observe that G′ may
vary in the set of productions), which does not exist whenever G has an empty
marked language. Secondly, the theorem is also applicable to our optimized
construction FSDPDA→CFG,Opt because the CFGs obtained by FSDPDA→CFG,Std and
FSDPDA→CFG,Opt are equal after the application of the operation FCFG-Trim.

We now provide the definition of the operation FSDPDA→CFG,Std occurring in
the theorem above (see Example 6.4|p.118 for a first example of an application of
this construction).
Definition 6.8: «FSDPDA→CFG,Std»
Nonterminals of the CFG: The nonterminals of the resulting CFG are of the two
forms Lq,X and Lq,X,p where q and p are states of the given SDPDA G and where
X is a stack-element of the given SDPDA G.

Initial Nonterminal of the CFG: The initial nonterminal Lq0,� is given by the initial
state and the end-of-stack element of the SDPDA G.

Event alphabet of the CFG: The event alphabet is given by the event alphabet of
the input SDPDA G.

Productions of the CFG: The productions of the resulting CFG are constructed
from the three kinds of edges of the SDPDA G and from its marking states. In
three of these four cases the resulting productions (below the horizontal line)
also depend on further elements (above the horizontal line) chosen from the
given SDPDA G.

Executing Edge e = q1, Some a, [X], [X], q2 and q ∈ epda-states G

Lq1,X,q −→ a Lq2,X,q
Lq1,X −→ a Lq2,X

Pushing Edge e = q1, None, [X1], [X2, X1], q2 and {q′, q′′} ⊆ epda-states G

Lq1,X1,q′′ −→ Lq2,X2,q′ Lq′,X1,q′′

Lq1,X1 −→ Lq2,X2,q′ Lq′,X2

Lq1,X1 −→ Lq2,X2

Popping Edge e = q1, None, [X], [], q2

Lq1,X,q2 −→ []

Marking States q ∈ epda-marking G and X ∈ epda-gamma G

Lq,X −→ []

In derivation trees (see for example block 6|p.120), we also write q X and q1 X q2
instead of Lq,X and Lq1,X,q2 , respectively.

117

Chapter 6. Isabelle-based Formal Quality Assurance

Before presenting our running example, we provide the following small set of
notations to enhance the readability of this section.

Figure 6.4: «Notations Used in This Section»
Variable Names: G′ is the CFG equal to FSDPDA→LR(1),Std G using the SDPDA G,
c is a configuration of G or G′, n and k are natural numbers, a through e are
events, α and σ are words of events, A is a nonterminal of G′, S is the initial
nonterminal of G′, δ and ω are words of events and nonterminals, e is an edge
of G, ρ is a production of G′, π is a word of either productions of G′ or of edges
of G, and d is a derivation of G or G′.

In the following running example, which is used throughout the remainder of this
section, we provide an SDPDA G with two distinct maximal initial derivations
using the epdaH semantics and the LR(1)-CFG G′ obtained from the SDPDA G
with the initial derivations corresponding to the two epdaH derivations of G using
the cfgLM and cfgRM semantics as well as using derivation trees.

Example 6.4: «Running Example for section 6.3|p.116 (Part 1/4)»
(1) Input SDPDA G: The only two initial derivations of G in the semantics epdaH
that cannot be extended are given in block 2|p.118.

1 2 3 4 5

6

78

91011

12

13

1415

−, •, •� −, •, •• e, •, • −, •,−

−, •, ••

−, •, ••

a, •, •

−, •,−

b, •, •c, •, •

d, •, •

−, •,−

−, •,−−, •,−

(2) epdaH Derivations d1,h and d2,h of G:
1, , �

e1
epdaH,G 2, , •�
e2
epdaH,G 3, , • •�
e3
epdaH,G 4, e , • •�
e4
epdaH,G 5, e , •�
e5
epdaH,G 6, e , • •�
e6
epdaH,G 7, e , • • •�
e7
epdaH,G 8, ea , • • •�
e8
epdaH,G 9, ea , • •�
e9
epdaH,G 10, eab , • •�
e10.2
epdaH,G 12, eabd, • •�
e12
epdaH,G 14, eabd, •�
e14
epdaH,G 15, eabd, �

1, , �
e1
epdaH,G 2, , •�
e2
epdaH,G 3, , • •�
e3
epdaH,G 4, e , • •�
e4
epdaH,G 5, e , •�
e5
epdaH,G 6, e , • •�
e6
epdaH,G 7, e , • • •�
e7
epdaH,G 8, ea , • • •�
e8
epdaH,G 9, ea , • •�
e9
epdaH,G 10, eab , • •�
e10.1
epdaH,G 11, eabc , • •�
e11
epdaH,G 13, eabc , •�

118

6.3. Isabelle-based Verification of the Translation of DPDA into LR(1)-CFG

(3) Output LR(1)-CFG G′: The only two initial derivations of G′ that cannot be
extended are given in the subsequent blocks in the two semantics cfgLM and
cfgRM and in the form of derivation trees.

id productions of G′ id edges of G

ρ1 L1,� →L2,•,15L15,� e1 1, None ,�, •�, 2
ρ2 L15,� → — —
ρ3 L2,•,15 →L3,•,5 L5,•,15 e2 2, None , • , •• , 3
ρ4 L5,•,15 →L6,•,14L14,•,15 e5 5, None , • , •• , 6
ρ5 L14,•,15→ e14 14, None , • ,− , 15
ρ6 L6,•,14 →L7,•,9 L9,•,14 e6 6, None , • , •• , 7
ρ7 L9,•,14 →b L10,•,14 e9 9, Some b, • , • , 10
ρ8 L10,•,14→d L12,•,14 e10.2 10, Some d, • , • , 12
ρ9 L12,•,14→ e12 12, None , • ,− , 14

ρ10 L7,•,9 →a L8,•,9 e7 7, Some a, • , • , 8
ρ11 L8,•,9 → e8 8, None , • ,− , 9
ρ12 L3,•,5 →e L4,•,5 e3 3, Some e , • , • , 4
ρ13 L4,•,5 → e4 4, None , • ,− , 5
ρ14 L1,� →L2,• e1 1, None ,�, •�, 2
ρ15 L2,• →L3,•,5 L5,• e2 2, None , • , •• , 3
ρ16 L5,• →L6,•,13L13,• e5 5, None , • , •• , 6
ρ17 L13,• → — —
ρ18 L6,•,13 →L7,•,9 L9,•,13 e6 6, None , • , •• , 7
ρ19 L9,•,13 →b L10,•,13 e9 9, Some b, • , • , 10
ρ20 L10,•,13→c L11,•,13 e10.1 10, Some c , • , • , 11
ρ21 L11,•,13→ e11 11, None , • ,− , 13

(4) cfgLM Derivations d1,lm and d2,lm of G′:
L1,�

ρ1
cfgLM,G′ L2,•,15L15,�
ρ3
cfgLM,G′ L3,•,5L5,•,15L15,�
ρ12
cfgLM,G′ eL4,•,5L5,•,15L15,�
ρ13
cfgLM,G′ eL5,•,15L15,�
ρ4
cfgLM,G′ eL6,•,14L14,•,15L15,�
ρ6
cfgLM,G′ eL7,•,9L9,•,14L14,•,15L15,�
ρ10
cfgLM,G′ eaL8,•,9L9,•,14L14,•,15L15,�
ρ11
cfgLM,G′ eaL9,•,14L14,•,15L15,�
ρ7
cfgLM,G′ eabL10,•,14L14,•,15L15,�
ρ8
cfgLM,G′ eabdL12,•,14L14,•,15L15,�
ρ9
cfgLM,G′ eabdL14,•,15L15,�
ρ5
cfgLM,G′ eabdL15,�
ρ2
cfgLM,G′ eabd

L1,�
ρ14
cfgLM,G′ L2,•
ρ15
cfgLM,G′ L3,•,5L5,•
ρ12
cfgLM,G′ eL4,•,5L5,•
ρ13
cfgLM,G′ eL5,•
ρ16
cfgLM,G′ eL6,•,13L13,•
ρ18
cfgLM,G′ eL7,•,9L9,•,13L13,•
ρ10
cfgLM,G′ eaL8,•,9L9,•,13L13,•
ρ11
cfgLM,G′ eaL9,•,13L13,•
ρ19
cfgLM,G′ eabL10,•,13L13,•
ρ20
cfgLM,G′ eabcL11,•,13L13,•
ρ21
cfgLM,G′ eabcL13,•
ρ17
cfgLM,G′ eabc

119

Chapter 6. Isabelle-based Formal Quality Assurance

(5) cfgRM Derivations d1,rm and d2,rm of G′: Note, the obvious connection between
the cfgLM and epdaH derivations is not available for the cfgRM derivations.

L1,�
ρ1
cfgRM,G′ L2,•,15L15,�
ρ2
cfgRM,G′ L2,•,15
ρ3
cfgRM,G′ L3,•,5L5,•,15
ρ4
cfgRM,G′ L3,•,5L6,•,14L14,•,15
ρ5
cfgRM,G′ L3,•,5L6,•,14
ρ6
cfgRM,G′ L3,•,5L7,•,9L9,•,14
ρ7
cfgRM,G′ L3,•,5L7,•,9bL10,•,14
ρ8
cfgRM,G′ L3,•,5L7,•,9bdL12,•,14
ρ9
cfgRM,G′ L3,•,5L7,•,9bd
ρ10
cfgRM,G′ L3,•,5aL8,•,9bd
ρ11
cfgRM,G′ L3,•,5abd
ρ12
cfgRM,G′ eL4,•,5abd
ρ13
cfgRM,G′ eabd

L1,�
ρ14
cfgRM,G′ L2,•
ρ15
cfgRM,G′ L3,•,5L5,•
ρ16
cfgRM,G′ L3,•,5L6,•,13L13,•
ρ17
cfgRM,G′ L3,•,5L6,•,13
ρ18
cfgRM,G′ L3,•,5L7,•,9L9,•,13
ρ19
cfgRM,G′ L3,•,5L7,•,9bL10,•,13
ρ20
cfgRM,G′ L3,•,5L7,•,9bcL11,•,13
ρ21
cfgRM,G′ L3,•,5L7,•,9bc
ρ10
cfgRM,G′ L3,•,5aL8,•,9bc
ρ11
cfgRM,G′ L3,•,5abc
ρ12
cfgRM,G′ eL4,•,5abc
ρ13
cfgRM,G′ eabc

(6) Derivation Tree T1 Corresponding to d1,h, d1,lm, d1,rm:
We use derivation trees for the visualization of cfgLM and cfgRM derivations to
provide a better understanding of the structure of how productions are applied
and to represent cfgLM and cfgRM derivations in one common formalism.

1 �

2 • 15 15 �
ρ1

3 • 5 5 • 15
ρ3

e 4 • 5
ρ12

[]
ρ13

6 • 14 14 • 15
ρ4

7 • 9 9 • 14
ρ6

a 8 • 9
ρ10

[]
ρ11

b 10 • 14
ρ7

d 12 • 14
ρ8

[]
ρ9

[]
ρ5

[]
ρ2

120

6.3. Isabelle-based Verification of the Translation of DPDA into LR(1)-CFG

(7) Derivation Tree T2 Corresponding to d2,h, d2,lm, d2,rm:
1 �

2 •
ρ14

3 • 5 5 •
ρ15

e 4 • 5
ρ12

[]
ρ13

6 • 13 13 •
ρ16

7 • 9 9 • 13
ρ18

a 8 • 9
ρ10

[]
ρ11

b 10 • 13
ρ19

c 11 • 13
ρ20

[]
ρ21

[]
ρ17

We continue with the correctness proof of the construction of a deterministic
LR(k)-Parser taken from [325, Volume II, Section 6.3, p. 31] by relying on the fol-
lowing definition of an LR(k)-CFG also taken from [325, Volume II, Theorem 6.39,
p. 52]. While this definition is given for arbitrary natural numbers k, we are only
interested in the case of k = 1 for the purpose of our concrete controller synthesis
algorithm (see Theorem 6.3|p.116) because the steps of DPDA may only consider
the next event to be executed (that is, they have only access to the first event
contained in the scheduler in the epdaS semantics).

The LR(k)-CFG property describes the preserved determinism property of the
SDPDA that has been translated to the obtained CFG. In this definition, two initial
right-most derivations must be identical w.r.t. the steps that generate compatible
nonterminal-free prefixes. Right-most derivations are used in [189, 325] because
the derivations of the LR(k)-Parser correspond more closely to the right-most
derivations than to the left-most derivations of the obtained CFG.
Definition 6.9: «cfg-LR»
A CFG G′ satisfies cfg-LR G′ k where k is a natural number if

S π1
cfgRM,G′ δ1A1σ1

ρ1
cfgRM,G′ δ1ω1σ1,

S π2
cfgRM,G′ δ2A2σ2

ρ2
cfgRM,G′ δ2ω2σ2,

δ1ω1α = δ2ω2, and
take k σ1 = take k (ασ2)

together imply δ1 = δ2, A1 = A2, and ω1 = ω2.

Note, the CFG G′ is not required to be trim by this definition of the LR(k)-CFG
property, but we only check this property for such CFG as in Theorem 6.3|p.116.
Hence, we may derive a nonterminal-free configuration α′ from δ2ω2 using some

121

Chapter 6. Isabelle-based Formal Quality Assurance

right-most derivation d. The productions π used for the derivation d may also be
used to extend the two given right-most derivations to reach a nonterminal-free
configuration in each case.

The first complication of this definition is that in the right-most semantics the
steps that generate the considered prefix are not solely executed at the beginning
of the given initial derivation but are distributed throughout the derivation and,
as for the mentioned derivation d, at the end. As a consequence of this problem,
we must relate left-most and right-most derivations of the CFG in the proof
presented subsequently.

The second complication is that the LR(k)-CFG property is asymmetric and, due
to the test for compatibility of the reached configurations, artificially compacted.
We approach this problem by splitting the LR(k)-CFG property for the case of
k = 1 into three more basic properties in the next subsection based on a case
distinction on the variables σ1, α, and σ2. Also, we provide a more intuitive
explanation for the three resulting properties below.

6.3.1. Basic Decomposition of the LR(1)-CFG Property

As just pointed out, we perform a case distinction, as given in the following
figure, on the variables σ1, α, and σ2 occurring in the definition of the LR(k)-
CFG property above. Also, we assume that k = 1 in the subsequent presentation
because we must verify for a given SDPDA that it satisfies the LR(1)-CFG property.
From the case distinction, we obtain three relevant cases resulting in the three
subsequent definitions of cfg-LR-A, cfg-LR-B, and cfg-LR-C. Note, for three cases,
we immediately obtain two, one, and zero additional conditions on the variables,
respectively, which are attached to the arrows in the figure below.

Figure 6.5: «Case Distinction for cfg-LR-A, cfg-LR-B, and cfg-LR-C»

cfg-LR-A

cfg-LR-B cfg-LR-C

k = 1

σ1 = []

α = []
σ2 = []

σ1 = bσ′1

α = []

σ2 = bσ′2

α = bα′

Subsequently, we discuss our verification approach for these three properties.

122

6.3. Isabelle-based Verification of the Translation of DPDA into LR(1)-CFG

The cfg-LR-A property states that when the CFG reaches identical configura-
tions in two right-most derivations that the previous configurations in the two
derivations are also identical. This implies that the two derivations are pointwise
identical in the configurations and productions applied.

Definition 6.10: «cfg-LR-A»
A CFG G satisfies cfg-LR-A G if

S π1
cfgRM,G′ δ1A1

ρ1
cfgRM,G′ δ1ω1,

S π2
cfgRM,G′ δ2A2

ρ2
cfgRM,G′ δ2ω2, and

δ1ω1 = δ2ω2

together imply δ1 = δ2, A1 = A2, and ω1 = ω2.

The cfg-LR-B property extends the cfg-LR-A property because the last configura-
tions are identical up to the possibly different nonterminal-free suffixes σ1 and σ2,
respectively. Moreover, the last steps also did not generate σ1 and σ2 and, hence,
the previous configurations should also be equal up to the trailing σ1 and σ2.

Definition 6.11: «cfg-LR-B»
A CFG G satisfies cfg-LR-B G if

S π1
cfgRM,G′ δ1A1bσ1

ρ1
cfgRM,G′ δ1ω1bσ1,

S π2
cfgRM,G′ δ2A2bσ2

ρ2
cfgRM,G′ δ2ω2bσ2, and

δ1ω1 = δ2ω2

together imply δ1 = δ2, A1 = A2, and ω1 = ω2.

Finally, the cfg-LR-C property states that the existence of the two given right-
most derivations is a contradiction. This contradiction is expected because the
common nonterminal-free prefix δ1ω1 is created in two different ways by the two
derivations. Also note that the last configurations match the last configurations in
the case of cfg-LR-B for σ2 = α1α2 and this implies there that the corresponding
previous configurations correspond to each other as well. But this implication is
violated due to the reverse step using ρ2 in the second derivation in cfg-LR-C.

Definition 6.12: «cfg-LR-C»
A CFG G satisfies cfg-LR-C G if

S π1
cfgRM,G′ δ1A1bσ1

ρ1
cfgRM,G′ δ1ω1bσ1,

S π2
cfgRM,G′ δ2ω2bα1A2α2

ρ2
cfgRM,G′ δ2ω2bα1α2, and

δ1ω1 = δ2ω2

together imply False.

123

Chapter 6. Isabelle-based Formal Quality Assurance

6.3.2. Verification of the cfg-LR-A Property

The rather trivial proof that the generated CFG satisfies the cfg-LR-A property
proceeds (at the highest level of abstraction) as follows.

1. There is a derivation dl in the cfgLM semantics from the configuration δ1ω1
to some nonterminal-free configuration α since the generated CFG has only
nonblocking nonterminals (according to 5 in Theorem 6.3|p.116).

2. The derivation dl can be translated into a derivation dr between the same
configurations δ1ω1 and α, because dl ends in a nonterminal-free config-
uration and consequently the productions occurring in dl can be simply
reordered to obtain an equivalent and unique right-most derivation.

3. The derivation dr executing the productions π can be appended to the two
given initial derivations d1 and d2 in the cfgRM semantics leading to the
two initial derivations d′1 and d′2 because δ1ω1 = δ2ω2.

4. Note, the generated CFG is nonambiguous with respect to the cfgLM se-
mantics because the given SDPDA satisfies ¬duplicate-marking G (according
to 2 in Theorem 6.3|p.116).

5. By formally verifying the relationship between left-most and right-most
derivations according to [325, Volume I, Section 4.3, pp. 122–], we also ob-
tained [325, Volume I, Lemma 4.12, p. 129], which also states that a CFG is
nonambiguous in cfgLM if and only if it is nonambiguous in cfgRM. Hence,
the generated CFG is also nonambiguous with respect to cfgRM.

6. We obtain that d′1 and d′2 are equal because the CFG is nonambiguous in
cfgRM and they are two initial derivations with the same final nonterminal-
free configuration α. Moreover, they pointwise agree on all their positions.

7. Also, the two derivations d′1 and d′2 are of equal length because they are
equal. Assuming that d1 be of length n1 + 1, that d2 be of length n2 + 1, and
that d be of length n, we obtain that n1 + 1 + n = n2 + 1 + n, which means
that n1 = n2. Then, d′1 and d′2 coincide in the position n1 = n2 because d′1
and d′2 coincide in each of their positions. Then, d1 and d2 coincide in the
position n1 = n2 because of the definition of appending derivations. This
means that δ1A1 = δ2A2. This implies δ1 = δ2 and A1 = A2 directly and
using δ1ω1 = δ2ω2, we also obtain ω1 = ω2 as required.

Figure 6.6: «Visualization for the Proof of the cfg-LR-A Property»

S

δ1A1

δ2A2

δ1ω1

δ2ω2

α==

π1

cfgRM, G′

π2

cfgRM, G′

ρ1

cfgRM, G′

ρ2

cfgRM, G′

π

cfgRM, G′

π

cfgRM, G′

124

6.3. Isabelle-based Verification of the Translation of DPDA into LR(1)-CFG

There are two more involved steps in this proof sketch.
Firstly, for the step (4) the translation of the nonambiguity property of the given

SDPDA (in the form of ¬duplicate-marking G using epdaH) by the construction
FSDPDA→CFG,Std to the resulting CFG (in the form of nonambiguity using cfgLM)
is established by an involved induction on the length of the derivations.

Secondly, for the steps (2) and (5), we formalized the required relationship
between cfgLM and cfgRM as follows. For every (initial) derivation in cfgLM
(cfgRM) ending in a nonterminal-free configuration (called complete derivation
subsequently) there is construction procedure showing that there exists a unique
(initial) complete derivation in cfgRM (cfgLM) where the lists of productions used
for the two derivations are equal up to a certain reordering. For example, d1,lm
and d1,rm from block 4|p.119 and block 5|p.120 correspond to each other and have
the following sequences of productions, respectively.

π1
lm = ρ1ρ3ρ12ρ13ρ4ρ6ρ10ρ11ρ7ρ8ρ9ρ5ρ2

π1
rm = ρ1ρ2ρ3ρ4ρ5ρ6ρ7ρ8ρ9ρ10ρ11ρ12ρ13

Note, in the semantics cfgLM and cfgRM, we can represent derivations by the
first configuration and the sequence of productions employed in the derivation
because the productions are applied in a deterministic way. Moreover, the first
configuration is not required for initial derivations such d1,rm and d1,lm. However,
the translation can be carried out easily when the derivations are visualized in
the form of derivations trees as in block 6|p.120 and block 7|p.121. We apply
the well-known preorder traversal as follows to obtain the cfgLM derivation
represented by a derivation tree T in the form of a list of productions.

• Step (a): start with the empty list of productions π and apply step (b) to the
root node of T and then return π,

• Step (b): add the production applied to the current node to π (if any) and
then apply step (a) to the subtrees of the current node from left to right and
append the resulting lists of productions to π.

We also apply the preorder traversal to obtain the derivation in cfgRM, but we
consider the subtrees in step (b) in reverse order, that is, from right to left.

Note, we formalized the recursive translation of any initial complete cfgLM
derivation into the corresponding cfgRM derivation by following [325, Volume I,
Section 4.3, pp. 122–]. This translation defines the required reordering of the
productions based on the structure of the right hand sides of the productions
occurring in the derivation. However, this relationship among cfgLM and cfgRM
established for this proof is insufficient for the remaining two parts of our
proof as it only covers derivations ending in a nonterminal-free configuration.
Subsequently, we combine and extend these proofs to come up with a more
general translation between cfgLM and cfgRM also integrating the construction
FSDPDA→CFG,Std.

125

Chapter 6. Isabelle-based Formal Quality Assurance

6.3.3. Extended Splitting Semantic cfgEsplit

We introduce a further branching semantics cfgEsplit for CFG by applying our
framework of semantics introduced in subsection 6.2.3|p.102. With this semantics,
we introduce a partial piece-wise translation of incomplete cfgRM derivations
into multiple cfgLM derivations. This partial translation thereby extends the
recursive translation for complete derivations discussed on the previous page.
The configurations in the cfgEsplit semantics then represent the corresponding
derivation tree obtained by the right-most derivation up to a certain point by
means of pieces of left-most derivations. This additional bookkeeping information
that is carried in the configurations of the cfgEsplit semantics then proves useful
subsequently for our overall verification task.

We now start with an example of the described decomposition of a cfgRM
derivation into multiple pieces of cfgLM derivations that is implemented by the
cfgEsplit semantics.

Example 6.5: «Running Example for section 6.3|p.116 (Part 2/4)»
(1) Incomplete Derivation Tree T1,p:
The derivation tree T1,p is a subtree of the derivation tree T1 from block 6|p.120.
It corresponds to the derivation d1,p,rm, which is given below as a prefix of the
right-most derivation d1,rm, but not to any left-most derivation.

1 �

2 • 15 15 �
ρ1

3 • 5 5 • 15
ρ3

6 • 14 14 • 15
ρ4

7 • 9 9 • 14
ρ6

b 10 • 14
ρ7

d 12 • 14
ρ8

[]
ρ9

[]
ρ5

[]
ρ2

Corresponding Right-most Derivation d1,p,rm of G′:
The derivation tree T1,p above corresponds to the incomplete right-most deriva-
tion d1,p,rm that is given by the following productions πR.

πR = ρ1ρ2ρ3ρ4ρ5ρ6ρ7ρ8ρ9 L1,�
πR
cfgRM,G′ L3,•,5L7,•,9bd

126

6.3. Isabelle-based Verification of the Translation of DPDA into LR(1)-CFG

Decomposition of d1,p,rm into Left-Most Derivations of G′:
This derivation d1,p,rm can be decomposed (suitably) into the five subsequent
left-most derivations.

πL1 = ρ1ρ3 L1,�
πL1
cfgLM,G′ L3,•,5L5,•,15L15,�

πL2 = ρ4ρ6 L5,•,15
πL2
cfgLM,G′ L7,•,9L9,•,14L14,•,15

πL3 = ρ7 L9,•,14
πL3
cfgLM,G′ bL10,•,14

πL4 = ρ8 L10,•,14
πL4
cfgLM,G′ dL12,•,14

πL5 = ρ9ρ5ρ2 L12,•,14L14,•,15L15,�
πL5
cfgLM,G′ []

The decomposition given here is constructed by means of the cfgEsplit semantics
introduced subsequently.

For the formal definition of the cfgEsplit semantics, we provide an interpretation
of the core locale and the locales for the marked and unmarked languages. Then,
for the CFGs such as G′ from Theorem 6.3|p.116, we show as a first step that every
initial derivation of cfgRM can be translated to an initial derivation of cfgEsplit
preserving the satisfaction of the marking condition, the marked effects, and the
unmarked effects.

Well-formed structures of cfgEsplit are given by the set of all CFG that actually
result from the translation using FSDPDA→CFG,Std.

Well-formed (initial) configurations of cfgEsplit are lists of elements of type
esplit-item that satisfy certain well-formedness conditions. A full presentation of
the configurations and the step relation of cfgEsplit is given in Appendix D|p.237.

Definition 6.13: «(Initial) Configurations of a CFG in cfgEsplit»
The cfgEsplit configurations of a CFG are lists of elements of type esplit-item,
which are of the following form.

esplit-item-elim : list of nonterminals,
esplit-item-from : at most one nonterminal,
esplit-item-ignore : list of nonterminals,
esplit-item-elim-prods : list of lists of productions,
esplit-item-prods : list of productions,
esplit-item-elem : at most one event or nonterminal,
esplit-item-to : list of nonterminals

Note, the components esplit-item-from and esplit-item-elem are defined using the
type option of Isabelle.

The unique initial configuration of cfgEsplit for a CFG G′ is given as follows.

[], Some S, [], [], [], Some S, []

127

C
hapter

6.
Isabelle-based

Form
alQ

uality
A

ssurance

Example 6.6: «Running Example for section 6.3|p.116 (Part 3/4)»
cfgEsplit Derivation d1,p,es Corresponding to T1,p: The derivation has 9 steps but we only show four configurations in detail.

esplit-item
-elim

esplit-item
-from

esplit-item
-ignore

esplit-item
-elim

-prods

esplit-item
-prods

esplit-item
-elem

esplit-item
-to

L1,� L1,�
ρ1ρ2ρ3ρ4ρ5ρ6ρ7
cfgEsplit,G′ L1,� ρ1ρ3 L3,•,5 L5,•,15L15,�

L5,•,15 L15,� ρ4ρ6 L7,•,9 L9,•,14L14,•,15
L9,•,14 L14,•,15L15,� ρ7 b L10,•,14
L10,•,14 L14,•,15L15,� L10,•,14

L14,•,15L15,� ρ5, ρ2
ρ8
cfgEsplit,G′ L1,� ρ1ρ3 L3,•,5 L5,•,15L15,�

L5,•,15 L15,� ρ4ρ6 L7,•,9 L9,•,14L14,•,15
L9,•,14 L14,•,15L15,� ρ7 b L10,•,14
L10,•,14 L14,•,15L15,� ρ8 d L12,•,14
L12,•,14 L14,•,15L15,� L12,•,14

L14,•,15L15,� ρ5, ρ2
ρ9
cfgEsplit,G′ L1,� ρ1ρ3 L3,•,5 L5,•,15L15,�

L5,•,15 L15,� ρ4ρ6 L7,•,9 L9,•,14L14,•,15
L9,•,14 L14,•,15L15,� ρ7 b L10,•,14
L10,•,14 L14,•,15L15,� ρ8 d L12,•,14

L12,•,14L14,•,15L15,� ρ9, ρ5, ρ2

1
2
8

6.3.
Isabelle-based

V
erification

ofthe
Translation

ofD
PD

A
into

LR
(1)-C

FG

Discussion: A more complete description of the step relation of cfgEsplit is included in Definition D.2|p.240. Also, see the
next page for a short explanation of the two steps using ρ8 and ρ9 in the derivation d1,p,es on the left.
The four given configurations contain one, five, six, and five cfgEsplit items, respectively. Each of the five items
of the last configuration corresponds to one of the five cfgLM derivations from Example 6.5|p.126. In general,
one item may describe multiple cfgLM derivations as explained below. The cfgRM configuration that corresponds
to a cfgEsplit configuration can be obtained by application of the operation esplit-sig, which returns the list of all
esplit-item-elem components of the items contained in the configuration. For example, the last cfgEsplit configu-
ration represents the cfgRM configuration L3,•,5L7,•,9bd, which is also the last configuration of the cfgRM derivation d1,p,rm.

We now discuss the two kinds of cfgLM derivations described by cfgEsplit items and the relationship between two
adjacent cfgEsplit items.

• Generating cfgLM derivations: The first four cfgEsplit items of the last configuration represent the first four cfgLM
derivations from Example 6.5|p.126. Each of these derivations starts with the esplit-item-from component, applies
the productions from the esplit-item-prods component, and generates the element in the esplit-item-elem component
with the additional remainder given in the esplit-item-to component.

• Eliminating cfgLM derivations: The last cfgEsplit item of the last configuration represents the fifth cfgLM derivations
from Example 6.5|p.126. In general, there is a cfgLM derivation that starts with an element from the esplit-item-elim
component, applies the productions from the corresponding list from the esplit-item-elim-prods component (in the
item considered, all three lists have length 1), and finally ends up with the empty string. That is, the last cfgEsplit
item of the last configuration stores the cfgLM derivation from Example 6.5|p.126 in three pieces, which can be
composed easily.

• Interline Connection: If one cfgEsplit item I1 is followed by a cfgEsplit item I2 in a cfgEsplit configuration, then the
two items are connected as follows. The remainder (esplit-item-to I1) @ (esplit-item-ignore I1) of the item I1 equals
the list (esplit-item-from I2) @ (esplit-item-ignore I2) of elements available for item I2. In this statement, we have
implicitly converted the optional elements esplit-item-to I1 and esplit-item-from I2 into lists of length at most one.
These two components may be empty (that is, None) for the last item.

1
2
9

Chapter 6. Isabelle-based Formal Quality Assurance

We now consider two cfgEsplit steps, which were presented in the example on the
previous page, in more detail.

1. The production ρ8 is used in d1,p,rm (see block 1|p.126) to replace L10,•,14
by dL12,•,14. In cfgEsplit we apply this production to an item I1 with
esplit-item-from I1 = L10,•,14 and we obtain two replacement items I2 and I3
with esplit-item-to I2 = d and esplit-item-to I3 = L12,•,14.

2. The production ρ9 replaces L12,•,14 by []. In cfgEsplit we apply this pro-
duction to an item I1 with esplit-item-from I1 = L12,•,14 and we merge the
eliminating derivation into the subsequent item where already two elimi-
nating derivations for L14,•,15 and L15,� are contained.

Well-formed labels of cfgEsplit are defined as for the other three semantics
cfgSTD, cfgRM, and cfgLM introduced before. That is, the labels in the cfgEsplit
semantics are also given by the productions of the CFG G′ at hand.

As a central result, we obtain that the step relations of cfgEsplit and cfgRM are
compatible w.r.t. the operation esplit-sig as given in the following figure. Hence,
the operation esplit-sig can be used to translate initial derivations of cfgEsplit into
initial derivations of cfgRM.

Figure 6.7: «Relationship of cfgRM and cfgEsplit»
The cfgRM derivation (bottom) is obtained from the cfgEsplit derivation (top) by
applying esplit-sig to each configuration of the cfgEsplit derivation.

cfgRM

cfgEsplit

c0 c1 ci ci+1

c′0 c′1 c′i c′i+1

ρ1

cfgRM, G′
π

cfgRM, G′
ρ2

cfgRM, G′

ρ1

cfgEsplit, G′
π

cfgEsplit, G′
ρ2

cfgEsplit, G′

es
pl

it-
si

g

es
pl

it-
si

g

es
pl

it-
si

g

es
pl

it-
si

g

To define the marked and unmarked language of a given CFG G′ in cfgEsplit,
we assume an initial cfgEsplit derivation d. This derivation d satisfies the mark-
ing condition of cfgEsplit if d is finite and ends in a configuration cmax where
esplit-sig cmax is nonterminal-free. The unique marked word of such a derivation
d is then given by esplit-sig cmax. Moreover, the unique unmarked word of a
configuration c that is contained in the derivation d is the maximal nonterminal-
free prefix of esplit-sig c. Then, based on these definitions, we state that the two
semantics cfgEsplit and cfgRM are equivalent w.r.t. the described marked and
unmarked languages for CFG constructed according to Definition 6.8|p.117.

130

6.3. Isabelle-based Verification of the Translation of DPDA into LR(1)-CFG

6.3.4. Partial Splitting Configurations

We now define the type of cfgPsplit configurations, which are the result of the
abstraction operation esplit-abs that is introduced in the next subsection. This
abstraction operation is applied to cfgEsplit configurations that are obtained from
initial cfgEsplit derivations of the CFG G′ as occurring in Theorem 6.3|p.116. Then,
in subsequent subsections, we apply this abstraction operation for the verification
of the satisfaction of the cfg-LR-B and cfg-LR-C properties by the CFG G′.

Similarly to the configurations of cfgEsplit, the configurations of cfgPsplit are
also defined as lists of cfgPsplit items. Moreover, the cfgEsplit items and the
cfgPsplit items are quite similar, but two of their components differ not only in
their names but also in their types as follows.

• The psplit-item-elem component is never empty. That is, the esplit-item-elem
component is None or Some A for some nonterminal A of G′ whereas the
psplit-item-elem component is A for some nonterminal A of G′.

• The psplit-item-prods component contains CFG productions and also EPDA
edges. That is, the esplit-item-prods component is a list containing (only) pro-
ductions ρ of G′ whereas the psplit-item-prods component is a list containing
productions ρ of G′ and edges e of G.

The definition of (the type) of cfgPsplit configurations is as follows.

Definition 6.14: «cfgPsplit Configurations of a CFG»
The cfgPsplit configurations of a CFG are lists of elements of type psplit-item,
which are of the following form.

psplit-item-elim : list of nonterminals,
psplit-item-from : at most one nonterminal,
psplit-item-ignore : list of nonterminals,
psplit-item-elim-prods : list of lists of productions,
psplit-item-prods : list of productions or edges,
psplit-item-elem : a single event or nonterminal,
psplit-item-to : list of nonterminals

We do not define a custom cfgPsplit semantics along with the cfgPsplit configu-
rations, which is sufficient as we only consider cfgPsplit configurations that are
images of the abstraction operation esplit-abs.

We also do not present well-definedness constraints for the cfgPsplit config-
urations because we inherit the well-definedness constraints of the cfgEsplit
configurations (given by the explanations in the previous subsection and Ap-
pendix D|p.237) along with our abstraction operation. That is, for a considered
cfgPsplit configuration esplit-abs c, we can inherit enough properties from the
cfgEsplit configuration c. Also note that the cfgLM derivations that are recorded
in the cfgEsplit configurations are preserved to the cfgPsplit configurations as
required for our proof.

131

Chapter 6. Isabelle-based Formal Quality Assurance

6.3.5. Abstraction from Extended to Partial Splitting Configurations

In this subsection, we introduce the abstraction operation esplit-abs mentioned
before. This operation abstracts a given cfgEsplit configurations and results in a
cfgPsplit configuration.

The abstraction operation esplit-abs requires two inputs. The first input is an
accessible cfgEsplit configuration c and the second input is a decomposition of
esplit-sig c into two words δ1 and δ2.

In the subsequently presented proof steps, we apply this abstraction operation
to the last configuration of the initial cfgRM derivations occurring in the cfg-LR-B
and cfg-LR-C properties (see Definition 6.11|p.123 and Definition 6.12|p.123). For
these configurations, we use the decompositions where δ2 is given by σ1, σ2, σ1,
and α1α2, respectively.

The fundamental goal of the abstraction operation is to remove all information
from I that relates to the δ2 suffix. Stated differently, we extract the information
from I that represents the generation of the prefix δ1 and drop the information
that is only responsible for the generation of the suffix δ2.

In the subsequent subsections, we apply the operation esplit-abs then for well-
chosen decompositions for the verification of the satisfaction of the cfg-LR-B and
cfg-LR-C properties by the CFG G′.
Definition 6.15: «Abstraction Operation esplit-abs»
We restrict a given cfgEsplit configuration that essentially consists of the list I
of cfgEsplit items with esplit-sig I = δ1δ2 using esplit-abs to obtain a cfgPsplit
configuration as follows.

• Step (a): We decompose I into I1 II2 such that esplit-sig (I1 I) = δ1.

• Step (b): We drop I2 and only retain I1 I.

• Step (c): We identify (esplit-item-to I) @ (esplit-item-ignore I) as the remain-
der of I1 I that is responsible for deriving δ2 via I2.

• Step (d): We remove this identified sequence from each item of I1 I as fol-
lows. For the last item I, we clear the esplit-item-ignore component, only re-
tain the first element of the esplit-item-to component and, if esplit-item-from I
and esplit-item-to I are of the form Lq1,X,q2 , we also drop the target state
q2 resulting in Lq1,X. The items from I1 are then adapted such that the
interline connection (see Example 6.6|p.128) is again satisfied.

• Step (e): We identify the productions ρ for which their right-hand-side is
not eliminated by the subsequently applied productions, that is, the last
configuration of the derivation contains a nonterminal originating from
this right-hand-side.

• Step (f): We replace these productions by the edges e of the SDPDA from
which they were constructed according to Definition 6.8|p.117.

132

6.3. Isabelle-based Verification of the Translation of DPDA into LR(1)-CFG

We now apply the described abstraction operation esplit-abs to cfgEsplit configura-
tions in the context of our running example. We also discuss how the application
of this abstraction operation can be used to derive that the two initial cfgRM
derivations considered in the running example do not violate the cfg-LR-B and
cfg-LR-C properties.

Example 6.1: «Running Example for section 6.3|p.116 (Part 4/4)»
(1) Overview of the Application of esplit-abs:
We consider the two initial cfgRM derivations d1,rm and d2,rm that are given in
block 5|p.120. From these two derivations, we obtain the corresponding two
initial cfgEsplit derivations d1,es and d2,es according to our description of the
cfgEsplit semantics given in subsection 6.3.3|p.126. The last configurations of
d1,rm and d1,es on the one hand and the last configurations of d2,rm and d2,es on the
other hand are also visualized as derivation trees T1 and T2 in block 6|p.120 and
block 7|p.121, respectively. We now apply esplit-abs to the visual representations
T1 and T2 of the last two configurations of d1,rm and d2,rm.
In this example, we have chosen the decomposition of the esplit-sig where we
drop the information from the derivation trees that is used to generate the events
following the event b in the two derivation trees. In block 3|p.134 and block 4|
p.134, we present intermediate trees where the part to be removed is highlighted.
However, as an important result, we obtain that the application of esplit-abs
yields the same cfgPsplit configuration for both trees T1 and T2. This common
configuration is visualized below in block 2|p.133 as an abstract derivation tree.
Also note that we replaced in the resulting trees the productions by edges that
are associated to nodes that have a modified subtree according to the description
of esplit-abs in Definition 6.15|p.132.

(2) Abstracted Derivation Tree Tabs Resulting from Either T1 or T2:

1 �

2 •
e1

3 • 5 5 •
e2

e 4 • 5
ρ12

[]

ρ13

6 •
e5

7 • 9 9 •
e6

a 8 • 9
ρ10

[]

ρ11

b 10 •
e9

133

Chapter 6. Isabelle-based Formal Quality Assurance

(3) Visualization for Application of esplit-abs to T1 from block 6|p.120:

1 �

2 • 15 15 �

e1

3 • 5 5 • 15
e2

e 4 • 5
ρ12

[]

ρ13

6 • 14 14 • 15

e5

7 • 9 9 • 14
e6

a 8 • 9
ρ10

[]

ρ11

b 10 • 14
e9

d 12 • 14
ρ8

[]

ρ9

[]

ρ5

[]

ρ2

15 15 �

15

14 14 • 15

14

14

d 12 • 14
ρ8

[]

ρ9

[]

ρ5

[]

ρ22

(4) Visualization for Application of esplit-abs to T2 from block 7|p.121:

1 �

2 •
e1

3 • 5 5 •
e2

e 4 • 5
ρ12

[]

ρ13

6 • 13 13 •

e5

7 • 9 9 • 13
e6

a 8 • 9
ρ10

[]

ρ11

b 10 • 13
e9

c 11 • 13
ρ20

[]

ρ21

[]

ρ17

13 13 •

13

13

c 11 • 13
ρρ20

[]

ρ21

[]

ρ1717

21

134

6.3.
Isabelle-based

V
erification

ofthe
Translation

ofD
PD

A
into

LR
(1)-C

FG

(5) Application of esplit-abs to cfgEsplit Configurations (Part 1/4):
After having applied esplit-abs to the visualizations of cfgEsplit configurations in the previous blocks, we now explain the
application of the abstraction operation to the following four cfgEsplit configurations, which are (in the upper part) the
last two cfgEsplit configurations of d1,es and (in the lower part) the last two cfgEsplit configurations of d2,es.

L1,� ρ1ρ3ρ12 e L4,•,5L5,•,15L15,�
L4,•,5 L5,•,15L15,� L4,•,5
L5,•,15 L15,� ρ4ρ6ρ10 a L8,•,9L9,•,14L14,•,15

L8,•,9 L9,•,14 L14,•,15L15,� ρ11 ρ7 b L10,•,14
L10,•,14 L14,•,15L15,� ρ8 d L12,•,14

L12,•,14L14,•,15L15,� ρ9, ρ5, ρ2

L1,� ρ1ρ3ρ12 e L4,•,5L5,•,15L15,�
L4,•,5 L5,•,15 L15,� ρ13 ρ4ρ6ρ10 a L8,•,9L9,•,14L14,•,15
L8,•,9 L9,•,14 L14,•,15L15,� ρ11 ρ7 b L10,•,14

L10,•,14 L14,•,15L15,� ρ8 d L12,•,14
L12,•,14L14,•,15L15,� ρ9, ρ5, ρ2

L1,� ρ14ρ15ρ12 e L4,•,5L5,•
L4,•,5 L5,• L4,•,5
L5,• ρ16ρ18ρ10 a L8,•,9L9,•,13L13,•

L8,•,9 L9,•,13 L13,• ρ11 ρ19 b L10,•,13
L10,•,13 L13,• ρ20 c L11,•,13

L11,•,13L13,• ρ21ρ17

L1,� ρ14ρ15ρ12 e L4,•,5L5,•
L4,•,5 L5,• ρ13 ρ16ρ18ρ10 a L8,•,9L9,•,13L13,•
L8,•,9 L9,•,13 L13,• ρ11 ρ19 b L10,•,13

L10,•,13 L13,• ρ20 c L11,•,13
L11,•,13L13,• ρ21ρ171

3
5

Chapter 6. Isabelle-based Formal Quality Assurance

(6) Application of esplit-abs to cfgEsplit Configurations (Part 2/4):
In this first step (confer to steps (a) and (b) in Definition 6.15|p.132), we drop all
cfgEsplit items beyond the cfgEsplit item that generates the event b. That is, we
employ the same decomposition as explained before in block 1|p.133.

L1,� ρ1ρ3ρ12 e L4,•,5L5,•,15L15,�
L4,•,5 L5,•,15L15,� L4,•,5
L5,•,15 L15,� ρ4ρ6ρ10 a L8,•,9L9,•,14L14,•,15

L8,•,9 L9,•,14 L14,•,15L15,� ρ11 ρ7 b L10,•,14

L1,� ρ1ρ3ρ12 e L4,•,5L5,•,15L15,�
L4,•,5 L5,•,15 L15,� ρ13 ρ4ρ6ρ10 a L8,•,9L9,•,14L14,•,15
L8,•,9 L9,•,14 L14,•,15L15,� ρ11 ρ7 b L10,•,14

L1,� ρ14ρ15ρ12 e L4,•,5L5,•
L4,•,5 L5,• L4,•,5
L5,• ρ16ρ18ρ10 a L8,•,9L9,•,13L13,•

L8,•,9 L9,•,13 L13,• ρ11 ρ19 b L10,•,13

L1,� ρ14ρ15ρ12 e L4,•,5L5,•
L4,•,5 L5,• ρ13 ρ16ρ18ρ10 a L8,•,9L9,•,13L13,•
L8,•,9 L9,•,13 L13,• ρ11 ρ19 b L10,•,13

(7) Application of esplit-abs to cfgEsplit Configurations (Part 3/4):
In this second step (confer to steps (c) and (d) in Definition 6.15|p.132), we
consistently remove all but the first nonterminal remaining after generation of
the event b by starting with the last item in each of the four configurations.
Moreover, we consistently drop the target states 14 and 13 from the remaining
nonterminals in the two pairs of cfgEsplit configuration, respectively, since these
states are not relevant for the generation of the event b as well. Note, these
removed target states are also highlighted in block 3|p.134 and block 4|p.134.

L1,� ρ1ρ3ρ12 e L4,•,5L5,•
L4,•,5 L5,• L4,•,5
L5,• ρ4ρ6ρ10 a L8,•,9L9,•

L8,•,9 L9,• ρ11 ρ7 b L10,•

L1,� ρ1ρ3ρ12 e L4,•,5L5,•,15
L4,•,5 L5,• ρ13 ρ4ρ6ρ10 a L8,•,9L9,•
L8,•,9 L9,• ρ11 ρ7 b L10,•

L1,� ρ14ρ15ρ12 e L4,•,5L5,•
L4,•,5 L5,• L4,•,5 L10,•
L5,• ρ16ρ18ρ10 a L8,•,9L9,•

L8,•,9 L9,• ρ11 ρ19 b L10,•

L1,� ρ14ρ15ρ12 e L4,•,5L5,•
L4,•,5 L5,• ρ13 ρ16ρ18ρ10 a L8,•,9L9,•
L8,•,9 L9,• ρ11 ρ19 b L10,•

136

6.3. Isabelle-based Verification of the Translation of DPDA into LR(1)-CFG

(8) Application of esplit-abs to cfgEsplit Configurations (Part 4/4):
In this last step (confer to steps (e) and (f) in Definition 6.15|p.132), we replace
those productions by their corresponding edges that are not entirely relevant
for the execution of the event b. As before, we obtain a unique result for each
of the two pairs of cfgEsplit configurations. That is, the cfgPsplit configurations
obtained from the last two cfgEsplit configurations and the two second but last
cfgEsplit configurations coincide.

ps
pl

it-
ite

m
-e

lim

ps
pl

it-
ite

m
-fr

om

ps
pl

it-
ite

m
-ig

no
re

ps
pl

it-
ite

m
-e

lim
-p

ro
ds

ps
pl

it-
ite

m
-p

ro
ds

ps
pl

it-
ite

m
-e

le
m

ps
pl

it-
ite

m
-t

o

L1,� e1e2ρ12 e L4,•,5L5,•
L4,•,5 L5,• L4,•,5
L5,• e5e6ρ10 a L8,•,9L9,•

L8,•,9 L9,• ρ11 ρ7 b L10,•

L1,� e1e2ρ12 e L4,•,5L5,•,15
L4,•,5 L5,• ρ13 e5e6ρ10 a L8,•,9L9,•
L8,•,9 L9,• ρ11 e9 b L10,•

(9) Identifying the last applied production:
We can now deterministically identify the last productions ρ13 and ρ12 that were
applied to reach the cfgPsplit configurations from above, respectively. We identify
these productions by inspecting the cfgPsplit items I contained in a cfgPsplit
configuration in the order given as follows.

• If psplit-item-elim-prods I is not empty, we select the first production with
empty right hand side from the first element of psplit-item-elim-prods I.

• If psplit-item-prods I contains a production ρ with empty right hand side,
we select the first such production ρ.

• If the item I′ succeeds I and psplit-item-elim-prods I′ and psplit-item-prods I′

are empty, we select the last element of psplit-item-prods I.

Above, we identify ρ13 and ρ12 according to the first and third case, respectively,
as desired. Also, for the abstract derivation tree Tabs from block 2|p.133 we can
visually determine the productions applied in reverse order by choosing the
first production visited by the right-to-left preorder traversal also used before
for obtaining the cfgRM derivation from a derivation tree. Using this procedure,
we obtain the sequence of productions ρ13ρ12ρ11ρ10 from Tabs, which are the
productions that are responsible for the generation of the events preceding the
event b in the derivations d1,rm and d2,rm.

137

Chapter 6. Isabelle-based Formal Quality Assurance

6.3.6. Verification of the cfg-LR-B Property

We now present the proof idea for the verification that the CFG G′ obtained from
FSDPDA→LR(1),Std satisfies the cfg-LR-B property from Definition 6.11|p.123.

1. We obtain two cfgEsplit derivations making use of the two lists of produc-
tions π1ρ1 and π2ρ2, respectively, as explained in subsection 6.3.3|p.126.

2. We apply the operation esplit-abs from Definition 6.15|p.132 to the last
configurations δ1ω1bσ1 and δ2ω2bσ2 of the two cfgEsplit derivations.

3. We obtain the result that the two obtained cfgPsplit configurations coincide
(as pointed out in block 8|p.137).

4. From this single cfgPsplit configurations, we determine the unique last
production ρ applied (as discussed in block 9|p.137).

5. By uniqueness of the last production, we obtain ρ = ρ1 = ρ2. Hence, by the
step relation of cfgRM, we obtain ρ1 = A1, ω1 = A2, ω2 = ρ2. Moreover,
using δ1ω1 = δ2ω2, we obtain δ1 = δ2.

This high-level proof idea is also visualized in the following figure where the
equality 1 symbolizes the equality of the two cfgPsplit configurations obtained
and where the implication arrow leading to the equality 2 symbolizes the step
of ensuring that also the two previous configurations coincide in this sense.

Figure 6.8: «Proof Idea for the cfg-LR-B Property»

S

δ1A1bσ1

δ2A2bσ2

δ1ω1bσ1

δ2ω2bσ2

S

δ1A1bσ1

δ2A2bσ2

δ1ω1bσ1

δ2ω2bσ2

δ1A1b

δ2A2b

δ1ω1b

δ2ω2b
esplit-sig

esplit-sig

esplit-sig

esplit-sig

esplit-sig

esplit-abs

esplit-abs

esplit-abs

esplit-abs

cfgPsplitcfgRM cfgEsplit

implies
2 1

π1

cfgRM, G′

π2

cfgRM, G′

ρ1

cfgRM, G′

ρ2

cfgRM, G′

π1

cfgEsplit, G′

π2

cfgEsplit, G′

ρ1

cfgEsplit, G′

ρ2

cfgEsplit, G′

138

6.3. Isabelle-based Verification of the Translation of DPDA into LR(1)-CFG

The equality of the two obtained cfgPsplit configurations and the uniqueness
of the last applied production are more complex properties requiring more
involved proofs when considering further details (such as the connection to
deterministic steps of the given SDPDA in the epdaH semantics). However, the
central achievement is that the cfgPsplit configurations are well-constructed in
the sense that (a) they carry enough information to allow for the identification of
the last production applied using the presented procedure and (b) they carry no
superfluous information to allow for the equality of the cfgPsplit configurations
obtained from the last cfgEsplit configurations.

6.3.7. Verification of the cfg-LR-C Property

We now present the proof idea for the verification that the CFG G′ obtained
from FSDPDA→LR(1),Std satisfies the cfg-LR-C property from Definition 6.12|p.123.
Indeed, the first steps of this proof are similar as in the previous subsection for
the cfg-LR-B property.

The two given cfgRM derivations are translated into cfgEsplit derivations, their
last configurations are abstracted into cfgPsplit configurations, the equality of the
two cfgPsplit configurations is obtained, and the unique last applied production
is obtained from this unique cfgPsplit configuration to be ρ1. Obviously, this
production is the correct production for the first derivation. Then, by soundness
of the identification procedure, we have that the production ρ1 was also used in
the last step of the second cfgEsplit derivation to reach the cfgEsplit configuration
δ2ω2bα1α2. Moreover, we not only obtain that ρ1 is the last production applied
but also the location where this production was applied. For the first cfgEsplit
derivation this means (and we just recall this fact here even though we do not
make use of it in the proof) that ρ1 can be applied backwards to the prefix δ1ω1b of
the last configuration δ1ω1bσ1. For the second cfgEsplit derivation this also means
that ρ1 can be applied backwards to the prefix δ2ω2b of the last configuration
δ2ω2bα1α2. However, the last step of the second cfgEsplit derivation could not
replace the left-hand side of ρ1 in the prefix δ2ω2b of δ2ω2bα1A2α2 because in
cfgEsplit we must replace the right-most nonterminal, which is A2 in this case.
Hence, we obtain the required contradiction.

6.3.8. Concluding Remarks

We conclude that we verified Theorem 6.3|p.116, which states that the CFG that
is obtained by the conversion operation FSDPDA→CFG,Std from the given SDPDA
satisfies the LR(1)-CFG property. That is, the determinism of the given SDPDA
is preserved to the obtained CFG. For the proof, we have decomposed the
LR(1)-CFG property into the three properties verified in subsection 6.3.2|p.124,
subsection 6.3.6|p.138, and subsection 6.3.7|p.139 using a simple case distinction.
While the proof of the cfg-LR-A property is straightforward, we had to determine
a suitable connection between epdaH derivations, cfgLM derivations, and cfgRM

139

Chapter 6. Isabelle-based Formal Quality Assurance

derivations on the foundation of a problem specific formalization of derivation
trees. These derivation trees then allowed to capture the common prefix of two
derivations given in the cfgLM semantics and, similarly, epdaH semantics. As
expected, our formalization of derivation trees also results in a close connection
with the cfgRM derivations used in the LR(1)-CFG property. However, to ease
of readability, we have only presented this high-level proof idea and omitted
detailed proofs carried out in Isabelle supporting the claims used in our informal
discussion.

Chapter 6|p.89
(Isabelle-based Formal Quality Assurance)

We discussed the theorem prover Isabelle as a tool with which we established our
trustworthy proofs (available at [303]) for the theorems presented in earlier chapters
such as for the abstract and concrete controller synthesis algorithms from Theo-
rem 4.12|p.56 and Theorem 5.1|p.86. Moreover, we introduced further important
foundational results and definitions contained in our Isabelle-based framework, which
we used heavily throughout the verification of the mentioned results. Finally, we
demonstrated our proposed approach to document involved and technical Isabelle
proofs by presenting the proof of a central property of our thesis at an informal
level making use of a running example. With these three steps, we underlined
the importance and usefulness of employing theorem provers such as Isabelle in
situations where avoiding errors is of paramount importance.

In the next chapter, we discuss the applicability of our concrete controller synthesis
algorithm by presenting three case studies and by evaluating the time and space
requirements of the prototype implementation of our concrete controller synthesis
algorithm.

140

7
Application and Prototype-based Evaluation

In the previous chapter, we discussed the use of Isabelle for the verification of our
concrete controller synthesis algorithm. In addition to the functional correctness,
which has been verified on a clean logical foundation, we focus in this chapter on
operability, constructiveness, and efficiency.

Firstly, operability of our algorithm is supported by various usage patterns for
the stack that is available in a DPDA specification. Thereby, we cover a broad
range of examples of use that can be combined and adapted in concrete appli-
cations. For demonstration purposes, we also discuss three concrete examples,
which make use of these patterns and which correspond to three distinct general
use-cases of our algorithm.

Secondly, constructiveness is demonstrated by implementing the controller
synthesis algorithm in the form of our Java-based prototype CoSy for Controller
Synthesis available at [304]. On the one hand, this entails the provisioning of Java
code for each building block (also for those making use of, for example, choice
operators). On the other hand, we substantiate our claim that intermediate values
of our concrete controller synthesis algorithm are always finite. This has been
verified for intermediate EPDA, Parsers, and CFG at the building block interfaces
and, since our prototype succeeds for various examples, we can also derive that
temporary intra-building block values are always finite in these cases.

Thirdly, from well-known results, we conclude that the required time and space
of applications of our concrete controller synthesis algorithm is exponential in
the size of the input DPDA (given by the synchronous product of plant and
specification) due to the construction procedure of the LR(1)-Machine. While
ongoing optimizations of our algorithm w.r.t. time and space requirements are
called for, we show that even our prototype CoSy can be applied successfully
with negligible to acceptable costs for the three examples provided where the
third example is a benchmark for which the costs can be scaled up arbitrarily.

141

Chapter 7. Application and Prototype-based Evaluation

Contents of this Chapter

7.1|p.143 Patterns for Specifications using Deterministic Pushdown Automata
The stack-based capabilities of DPDA for recording information dur-
ing a derivation can be used in various forms to describe desirable
behavior in specifications. We discuss the workflow of establishing a
DPDA specification as well as basic and advanced usage patterns of
the stack.

7.2|p.146 Application Domains for Discrete Event Controller Synthesis
We briefly discuss concrete application domains where supervisory
control or our concrete controller synthesis algorithm may be applied
to determine a controller or to verify a given controller. An in-depth
discussion of related work is postponed to section 8.1|p.164.

7.3|p.147 Applications and Use Cases
of the Concrete Controller Synthesis Algorithm

Three concrete problem examples from the application domain of
manufacturing are provided by means of plants, specifications, and
controllers given in the form of automata. These examples are con-
nected to the patterns of specifications from section 7.1|p.143 and
to three different use cases of our concrete controller synthesis algo-
rithm.

7.4|p.154 Prototype Realization of the Concrete Controller Synthesis Algorithm
A Java-based prototype CoSy is presented, which entirely covers our
concrete controller synthesis algorithm and thereby demonstrates its
implementability. Moreover, CoSy serves as a reference implemen-
tation that can be used in back-to-back testing. Finally, CoSy is a
test-bed for the development and analysis of optimizations and adap-
tations of our synthesis algorithm.

7.5|p.157 Prototype-based Evaluation
We apply our prototype CoSy from section 7.4|p.154 to the examples
given in section 7.3|p.147, discuss the time and space requirements,
and consider the obtained results w.r.t. the corresponding use-cases
identified in section 7.3|p.147. Even at this proof-of-concept stage, suit-
able optimizations and the use of multithreading result in acceptable
runtime when the provided memory is sufficient.

142

7.1. Patterns for Specifications using Deterministic Pushdown Automata

7.1. Patterns for Specifications

using Deterministic Pushdown Automata

For an application of our concrete controller synthesis algorithm, we require a
DFA plant model (uncontrolled behavior), a DPDA specification (desired con-
trolled behavior), and a partitioning of all events into controllable and uncon-
trollable events. We now focus on the definition of a DPDA specification and its
capabilities for expressing desired properties. Firstly, the definition of large and
complex DPDA can be supported by constructing such DPDA by composition
of smaller DPDA and DFA. Secondly, the use of the stack-based capabilities of
DPDA for expressing desired aspects can be supported by specification patterns,
which constitute a first step towards a high-level description language for DPDA
(see also subsection 8.3.1|p.209).

Composition of DFA and DPDA
We employ the operation FDPDA-DFA-Product from section 5.1|p.64 to construct the
synchronous composition of a DPDA and a DFA (or as a special case of two DFA).
Also see subsection 8.3.1|p.209 for future work on how to increase the descriptive
expressiveness of this synchronous composition operation.

As customary, see for example [71, Example 2.18, p. 83], a DFA plant can be
constructed using this composition operation out of multiple smaller DFA each
representing one physical or logical component of the plant or a connection
of such components. Ideally, this compositional construction can be applied
such that only small and simple DFA are to be defined. A specification can
be constructed similarly and, as by the contribution of this thesis, one of the
automata used in the curse of this compositional construction may be a DPDA.
This manual construction by composition is applied later in section 7.3|p.147 and
the related topic of compositional controller synthesis is discussed in Par. Synthesis
Considering Horizontal Composition (Modular and Distributed Control)|p.174. See
subsection 8.3.2|p.214 for future work on how to allow that multiple automata
facilitate a common stack variable using Visibly Pushdown Automata.

Unbounded Stacks of DPDA
The unbounded stack used by the formalism of DPDA is not available in practical
applications. However, the adequacy of the unboundedness assumption depends
on the likelihood that the stack of the generated controller requires more space
than available. We also consider this issue in subsection 8.3.2|p.214. Since a stack-
overflow cannot be precluded by construction in all cases, we argue that the use of
the stack for specification purposes and, thereby, for controlling purposes should
account for this inherent problem. That is, an upper bound should be established
or estimated rates for pushing and popping elements to and from the stack may
be used to obtain an estimated likelihood of out-of-memory errors. Also, the
likelihood of such errors can be reduced by emptying the stack periodically
during which all elements are removed explicitly or by restarting the entire
controller/closed loop as demonstrated in section 7.3|p.147.

143

Chapter 7. Application and Prototype-based Evaluation

Basic Specification Patterns for DPDA
Instances of SDPDA only allow for three simple operations: execution of an event,
pushing an element onto the stack, and popping an element from the stack. Then,
DPDA allow for compound operations, which can be implemented by multiple
simple operations; also, they allow to test for the current top-stack element.
Moreover, EDPDA loosen the syntactic restriction on the edges even further and
allow thereby for even more complex, compound operations.

Using such stack operations, we can obtain usage patterns such as a queue of a
bounded size (see also [143, Section 8.4, pp. 116–]). For such a bounded queue,
we implement the insertion of an element by a pushing edge and implement the
removal/test of an element by (a) removing all elements X1, . . . , Xn until reaching
the last element of the represented queue, by (b) removing this last element, and
by (c) pushing the elements Xn, . . . , X1 back onto the stack. See also Example 7.1|
p.145 for a similar implementation using an EDPDA and Example 7.4|p.151 for
an application of this pattern.

The access method to a bounded prefix of the stack, as just explained for
bounded queues, can be modified to determine further patterns. Firstly, we may
pop elements from the stack until a certain number of elements has been popped
or until a certain pattern of stack elements (for example, the end-of-stack marker)
is detected. During this process, we may count or remember the elements popped
using additional states (for example, we may check whether we removed an
odd number of elements or whether we removed at least n elements of a certain
kind). Secondly, we may then either modify the found pattern by removing
further elements (such as in the bounded queue), by testing for a certain extended
pattern (such as in a top operation for a bounded queue), or by pushing new
elements onto the stack (as in Example 7.1|p.145). Thirdly, we may recover the
stack elements stored in the first step and push them back onto the stack. We
may also apply arbitrary operations to such stored data before pushing the result
onto the stack such as orderings or reversals. Of course, the steps required for
pushing the result onto the stack depends then on the size of the result.

Similarly to hardware components (for example, central and graphics process-
ing units) that offer single-step implementations for complex, compound opera-
tions, we suggest the adaptation of our concrete controller synthesis algorithm
as well as the development of software and hardware support for compound
operations on EDPDA as just described to allow the specification to be stated
more easily and to allow the controller to be more concise and efficient. In par-
ticular, for the implementation of a bounded queue above, we require a number
of additional states to store the values Xn, . . . , X1 that grows exponentially with
the maximal length of the queue and the number of different stack elements
that may occur in the queue. This exponential growth, as demonstrated later
in Example 7.4|p.151, hampers the applicability of the bounded queue pattern
and therefore suggests further developments. Similarly, the use of stack elements
with an inner structure can be implemented by a flattening operation to elements
without inner structure also resulting in an exponential growth.

144

7.1. Patterns for Specifications using Deterministic Pushdown Automata

Advanced Specification Patterns for DPDA
Besides the subsequently discussed planning of future steps, the stack may be
used to log (a subset of) the executed events for later analysis, which requires
sufficient actual memory as discussed before, or to store the current mode of the
EDPDA in a fixed top-most part of the stack, which may drastically reduce the
number of states of the EDPDA.

Planning is the fundamental purpose of using the stack in a controller. That is,
the stack elements contained in the stack can be considered to be a todo-list, a
plan, a schedule, a program, or a decision list resolving some nondeterministic
choices to be executed in the future (also see [143, Section 3.7, p. 52]). In this
view, any modification of the stack is an alteration of the plan. In particular,
uncontrollable events received by the controller will result in such adaptations,
but also controllable events selected nondeterministically may result in such
modifications. A decisive contribution of our work is then that the plan given
by the stack is always executable due to nonblockingness (assuming that the
controller is marking a word once the schedule has been entirely processed). See
Example 1.2|p.5 where an operator attempts to enter a valid schedule by sending
events to the controller of the plant. In this case, the controller may detect and
reject schedules that may not be enforced on the plant.

The plan to be processed may be understood to be a nested response to
events such as in exception handling (see [143, Chapter 8, pp. 111–]). Also,
besides remembering the events as they were received in the stack, we may also
only count their number by mapping (possibly not injectively) each event to be
recorded to some stack element that is pushed onto the stack upon execution of
the event. Building on top of this counting mechanism, we may also store the
difference between the numbers of occurrences of two events (or two groups of
events where the events from one group are mapped to a common stack-element)
by encoding a difference of zero by the empty stack �, a positive difference by the
stack Xn�, and a negative difference by the stack Yn� (see Example 7.2|p.147).

In this concluding example, we make use of various patterns described above.

Example 7.1: «EDPDA Specification»
Informal Specification: The words vdnevn are desirable where the word v is a
schedule over {a, b, c} of length 5 and where dn is a unary encoding of how often
the schedule v is to be executed after the start-up event e.

EDPDA Implementation: Note the usage of abbreviations listed on the right side,
which result in numerous edges.

0 1 2

3

−,�, ◦5•�
x, ◦n◦•, ◦n•x
−, •,−
d, v, v•

e, x, x −, v•, v◦v

x, x,−
−, ◦,−

−, v�,�

0 ≤ n ≤ 4
x ∈ {a, b, c}
v ∈ {a, b, c}5

145

Chapter 7. Application and Prototype-based Evaluation

7.2. Application Domains for

Discrete Event Controller Synthesis

The research in the domain of discrete event control theory has been concerned
primarily with the synthesis of controllers for discrete event abstractions of
partially physical systems (also called reactive, embedded, or cyber physical
systems), which is exemplified in section 7.3|p.147. We now discuss how these
algorithms also have the potential to be widely used in application development
in the field of computer science at multiple levels of abstraction.

Christopher Griffin mentions already various high-level problems that can be
approached using DPDA specifications. Firstly, the synthesis of network pro-
tocols is discussed by an example in [143, Chapter 4, pp. 53–]. In this example,
the stack is used to store the number of possible remaining retries to be used
when connection attempts fail (which are the uncontrollable events). Secondly,
detection of security violations (which are the uncontrollable events) and subse-
quent restoration procedures are considered in [143, Section 6.5, pp. 87–]. In this
example, intrusions into a filesystem are detected and logged by use of the stack
and affected files are then corrected in the subsequent restoration phase. Thirdly,
the handling of exceptions (which are the uncontrollable events) is discussed by
an example in [143, Chapter 8, pp. 111–]. In this example, the occurring exceptions
(in a robot scenario) are stored on the stack and, as expected, are handled in the
nested order resulting from the use of a stack.

Similarly to the basic exception handling example, the adaptation engine
proposed in [128] handles a burst of exceptions at once by (a) selecting for
each exception a certain pre-given repair action (depending on attributes of
faulty components), by (b) optimizing the order of these repair actions (w.r.t.
their required duration and the expected reward), and by (c) applying these
repair actions in the obtained order. For systems where the response time of
the adaptation engine is critical, the adaptation step may consider (in a sliding
window mode) only the most recent n exceptions stored in the stack at once.
Moreover, if repair actions have more complex dependencies, certain restoration
sequences may fail resulting in, for example, deadlocks that can be prevented by
using our concrete controller synthesis algorithm.

We argue in section 8.1|p.164 that the field of submodule construction is closely
related to controller synthesis (also see [45]). For example, the early work [245]
on submodule construction mentions the development of parallel, distributed,
and communicating systems as an important broad domain in which submodule
construction techniques may prove useful when applying them to instances of
suitable size in a hierarchical approach (see section 8.1|p.164 for references on
developments on hierarchical controller synthesis).

Deadlocks, livelocks, and unsafe regions of the state space are to be avoided
in all these applications and, hence, the main goals of controller synthesis in
general and of our concrete controller synthesis in particular may apply very well.
However, as mentioned in section 8.3|p.209, our concrete controller synthesis
algorithm needs to be applied to concrete problem instances in the future.

146

7.3. Applications and Use Cases of the Concrete Controller Synthesis Algorithm

7.3. Applications and Use Cases

of the Concrete Controller Synthesis Algorithm

We present and, at the end of this section, also discuss and compare three manufac-
turing examples using the patterns for specifications introduced before.
Example 7.2: «Automated Fabrication Scenario A [302, Section 5.1, pp. 15–]»
Remark: See section A|p.225 for notes on coauthorship and note that the manual
controller synthesis was faulty in [302, 300] as discussed below.

Plant P: The DFA plant P is the synchronous composition of three DFA.

• The DFA PA represents a machine that is producing items of kind A using
event a.

• The DFA PB represents a machine that is producing two items of kind B
on every use where the events b1 and b2 represent the production of the
first and the second item of kind B, respectively.

• The DFA PO represents the access by the operator. The operator may
trigger the two machines to produce items (events a and b1), tell the system
that the working day is coming to an end (event r), tell the system that the
working day has been reached (event f), and tell the system that a new
working day has started (event s).

Intuitively, another machine, which is not included in this example, will consume
one item of kind A and one item of kind B to produce one item of kind C. Hence,
the plant should produce just as many items of both kinds in the long run.
But, since the items of kinds A and B are perishable, all such remaining items
are discarded once the periodically occurring event f is executed. The desired
controller should therefore act upon the mode changing event r to reduce the
resulting loss as far as possible.
The events r, f , and s are controllable by the operator of the system, that is,
they are uncontrollable to the controller to be synthesized. The event b2 always
happens after the event b1, and, hence it cannot be prevented by the controller
either. In conclusion, we obtain the partitioning of the events Σ into controllable
events Σc = {a, b1} and uncontrollable events Σuc = {r, f , s, b2}.

DFA PA

pa

a

x

x ∈ {b1, b2, r, f , s}

DFA PB

pb1 pb2

x y
b1

b2 s

x ∈ {a, r, f , s}
y ∈ {a, r, f }

DFA PO

ps pr

p f

r

fs

x x

x ∈ {a, b1, b2}

147

Chapter 7. Application and Prototype-based Evaluation

The composition of these three DFA results in the following DFA plant P.

p1 p3 p5

p2 p4 p6

a a

r

r

f

f
b1b2 b1b2

s

s

Specification S: In q1, the EDPDA specification uses the stack to remember the
difference between the numbers of produced items of kind A and kind B. That
is, in the state q1, a stack •n� represents the fact that n + m items of kind A and
m items of kind B have been produced and, vice versa, a stack ◦n� represents
the fact that m items of kind A and n + m items of kind B have been produced.
Once the event r is executed and the state q2 is reached, the specification disables
the events a and b1 unless their execution reduces the depth of the stack. Further
executions of a, b1, and b2 then alter the stack as before. Note, if r happened
between b1 and b2, the next b2 may actually increase the depth of the stack. Then,
the execution of event f brings the controller to the state q3 representing the
end of the production process. Subsequently, the stack is reset in q4 before the
system may be restarted on the next working day using event s.

q1 q2 q3 q4

a,�, •� a, •, •• a, ◦,−
b1,�, ◦� b1, •,− b1, ◦, ◦◦
b2,�, ◦� b2, •,− b2, ◦, ◦◦

a, ◦,−
b1, •,−
b2, •,−
b2, ◦, ◦◦

−, ◦,−
−, •,−

r,−,− f ,−,− −,−,−

s,�,�

This specification is not a suitable controller because, as an example, the sequence
[a, r, b1] drives P into state p4 and S into q2 with stack �. Then, P can execute the
uncontrollable event b2 in p4 that is prevented by S in q2. Detecting this problem
might suffice in this example as it would possibly show a faulty specification.
However, the specification should be enforced as given in general.

Controller C: In [302, Section 5.2, p. 24], we stated that a controllability problem
occurs if and only if an odd number of events a has been executed prior to the
execution of the event r. This claim was repeated in [300, Figure 11.5, p. 121].
However, preventing every word with an odd number of events a such as
w = [a, a, a, b1, r, b2, f] is not minimally restrictive. We believe that the two
looping edges b1, •,− at q1 and q2 must be changed into b1, ••, •, which means

148

7.3. Applications and Use Cases of the Concrete Controller Synthesis Algorithm

that they are only applied if there is a further • on the stack (see the framed
labels in the controller below). This guarantees that the subsequently occurring
b2 is also executable.
This described modification of the specification S results in the following ED-
PDA, which corresponds to the least restrictive satisfactory controller from
Definition 3.6|p.35. We applied our prototype implementation from section 7.4|
p.154 of the concrete controller synthesis algorithm from chapter 5|p.61 to this
example. The EDPDA obtained manually as discussed and automatically using
CoSy differ in their structure, but, by use of our prototype, we also ensured that
every unmarked/marked word of one of them (by use of an initial derivation
up to a certain length) is also an unmarked/marked word of the other EDPDA
solution.

r1 r2 r3 r4

a,�, •� a, •, •• a, ◦,−
b1,�, ◦� b1, ••, • b1, ◦, ◦◦
b2,�, ◦� b2, •,− b2, ◦, ◦◦

a, ◦,−
b1, ••, •

b2, •,−
b2, ◦, ◦◦

−, ◦,−
−, •,−

r,−,− f ,−,− −,−,−

s,�,�

Closed Loop CL: The closed loop CL obtained as the synchronous product of the
plant DFA P and the controller DPDA C from above is as follows.

1 · 1 3 · 2 5 · 3 5 · 4

2 · 1 4 · 2 6 · 3 6 · 4

a,�, •� a, •, •• a, ◦,− a,�, •� a, •, •• a, ◦,−

r,−,−

r,−,−

f ,−,−

f ,−,−

b1,�, ◦�
b1, ••, •
b1, ◦, ◦◦

b2,�, ◦�
b2, •,−
b2, ◦, ◦◦

b1, ••, •b2, •,−
b2, ◦, ◦◦

−,−,−

−,−,−

−, ◦,−
−, •,−

−, ◦,−
−, •,−

s,�,�

s,�,�

Note that b1 edges are adapted here according to the controller from above.

149

Chapter 7. Application and Prototype-based Evaluation

The following example uses the bounded queue specification pattern.

Example 7.3: «Automated Fabrication Scenario B [143, Section 3.4, pp. 46–]»
Remark: The marked and unmarked languages of the specification are contained
in the corresponding languages of the plant in this example. Moreover, the
concrete controller synthesis algorithm returns for this example a controller that
is equivalent to the specification. That is, the provided specification is already
the least restrictive satisfactory controller

Plant P: The plant produces a single widget in five steps:

• it cuts the basic shape using event c,

• it bends the shape using event b,

• it rotates the product clockwise by 180° using event r,

• it bends the shape a second time using event b, and

• it punches a round hole in the shape using event p.

The plant issues event s after successful completion of one widget. The plant
receives requests from the operator using event u. The operator chooses to halt
the machine using event h at any time. Also, an automatic check between two
steps may detect faults during the production, which leads to the disposal of the
current shape using event f .
The operator controls the events u and h and the automatic check may issue
the event f . Hence, we obtain the partitioning of the events Σ into controllable
events Σc = {c, b, r, p, s} and uncontrollable events Σuc = {u, f , h}.

p1 p2 p3
u

c b r p u f s

h

Specification S: The specification uses the stack in this example to insert a copy
of the program cbrbp behind the current working copy of it. Also, whenever a
failure is detected, the current working copy is substituted by a fresh copy of
the program. Hence, the specification requires the production of one widget for
every event u.

q1 q2

q3

q4
u,�, cbrbp•�

x, x,− s, •,− u,�, cbrbp•� u, w•, w•cbrbp•

f ,−,−−, •, cbrbp•
−,�, cbrbp•�

−, x,−

h,−,− w v cbrbp
x ∈ {c, b, r, p}

As stated above, this specification is a satisfactory controller already.

150

7.3. Applications and Use Cases of the Concrete Controller Synthesis Algorithm

In this last example, we use the specification to model parts of the plants behavior
and also use the bounded queue specification pattern.

Example 7.4: «Automated Fabrication Scenario C»
Plant P: The DFA plant P is the synchronous composition of five DFA.

• The DFA PA,j represents for each j ∈ {1, 2, 3} a machine that is ordering
(concurrently up to two) items of kind j using event oj. These items are
delivered using event dj into an input box of the following two machines.

• The DFA PB represents a machine that uses the items e1 and e2 to construct
an item c2. The event s is used as a start-up event of the global, composed
machine whereas the event s1 initiates the construction of c1 in PB.

• The DFA PC is similar to PB, but it uses and produces other items.

It is essential that the two machines PB and PC are only started using s1 and
s2, respectively, if the required items will be available to avoid deadlocks of the
plant. An operator of the system may send a task using the event t1 or t2 to the
closed loop to request the production of an item c1 or c2, respectively. We ensure
that no requests are lost (assuming no upper bound for pending requests) by
using the stack of the EDPDA specification below.
The task events t1 and t2 for stating item requests, which are controllable by the
operator of the system, and the delivery events d1, d2, and d3 are not preventable
by the controller. Hence, we obtain the partitioning of the events Σ into control-
lable events Σc = {s, s1, s2, c1, c2, eb

1, eb
2, ec

1, ec
3, o1, o2, o3} and uncontrollable events

Σuc = {t1, t2, d1, d2, d3}.

DFA PA,j (j ∈ {1, 2, 3})

paj,1

paj,2 paj,3 paj,4

s
oj

dj

oj

dj

x x x

x ∈ Σ− {oj, dj}

DFA PB

pb1

pb2

pb3 pb4

pb5x

x x

x

s

s1

eb
1

eb
2

c1

x ∈ Σ− {eB
1 , eB

2 , s1, c1}

DFA PC

pc1

pc2

pc3 pc4

pc5x

x x

x

s

s2

ec
1

ec
3

c2

x ∈ Σ− {eC
1 , eC

3 , s2, c2}

The composition of these five DFA results in the omitted DFA plant P.

151

Chapter 7. Application and Prototype-based Evaluation

Abbreviations used in the Specification S: In the EDPDA specification below, we
abbreviate large sets of edges by single edges. In these edges i (for tasks) and
j (for items) range over {1, 2} and {1, 2, 3}, respectively. Also, w denotes an or-
dered word of length 5 over the stack alphabet Γ = {�, ◦, t1, t2, o1, o2, o3, e1, e2, e3}.
Finally, in various edges, we replace in elements of such five element prefixes
of the stack one element for another: if wγ1 is popped and wγ2 is pushed to the
stack, then wγ1 contains γ1 according to the decomposition wγ1 = v1 @ [γ1] @ v2
(where γ1 does not occur in v2) and wγ2 is the ordered version of v1 @ [γ2] @ v2.
Note, the employed ordering of elements reduces the number of edges.

Specification S: Once the state q2 has been reached in S using the first edge, the
stack is partitioned into two components. Firstly, the first five elements of the
stack correspond to the input box of the plant, that is, each element is either ◦
(an empty compartment), oj (an empty compartment for which an element ej
has been ordered), or ej (a compartment filled with an ej element). Secondly, the
stack below this five element prefix is used to store the requests for production,
that is, an unbounded stack, which is using elements ti and which is terminated
by the � symbol. The usage of a stack instead of a queue is reasonable here as
usual if the average insertion rate is far below the average removal rate, that is,
if the stack is empty at sufficient intervals. The specification uses the event s to
establish this invariant structure of the stack.
In q2, the controller may actively order further items using the oj events staying
in q2 or it may decide to start the production of the top-most task reaching q3.
In q3, the controller uses the elements in the input compartment of the plant to
produce the item (the selection of items is governed by the plant P above) and,
finally, it returns back to q2 once the production has finished. The controller
can passively recognize in q2 and q3 the delivery of ordered items and further
incoming requests.

q1 q2 q3
s,�, ◦◦◦◦◦�

oj, w◦, woj dj, woj , wej ti, w, wti

si, wti, w

dj, woj , wej ti, w, wti e, we′ , w◦

ci,−,−

(e, e′) ∈ {(eb
1, e1), (eb

2, e2),
(ec

1, e1), (ec
3, e3)}

The controller must not order a wrong selection of items in q2 to ensure that
the production executed in q3 can always succeed without blocking. Also, since
new tasks are inserted onto the top of the stack (below of the five element prefix)
the controller cannot decide on its orders based on the task currently on top of
the stack. For example, the EDPDA S is not a suitable controller because, as an
example, the sequence [s, t1, s1] drives S into state q3 with stack ◦◦◦◦◦� from
which the marking state q2 is not reachable anymore (the items e1 and e2 have
not been ordered before starting the execution of t1 using s1).
Note, if eb

1, ec
1, eb

2, and ec
3 were chosen to be uncontrollable, that is, the machine

should not be stalled by the controller in its production, then the described
blocking situation is in fact a controllability problem as well.

152

7.3. Applications and Use Cases of the Concrete Controller Synthesis Algorithm

Controller C: Here, we assume that the current five element prefix of the stack is w.
Also, we define two functions cost and free on such prefixes. Firstly, cost(j, w) = 0
if w contains ej or oj and 1 otherwise. Secondly, free(w) equals the number of
occurrences of ◦ in w. Then, the expected least restrictive satisfactory controller
C permits

• the event s1 if and only if cost(1, w) = cost(2, w) = 0,

• the event s2 if and only if cost(1, w) = cost(3, w) = 0,

• the event o1 if and only if free(w) > cost(2, w) + cost(3, w),

• the event o2 if and only if free(w) > cost(1, w) + cost(3, w), and

• the event o3 if and only if free(w) > cost(1, w) + cost(2, w).

That is, s1 and s2 are only allowed once their requirements are met (or at least
ordered) and ordering of an item oj is only allowed if all other missing items
that may be required can still be ordered subsequently.

In the three examples above, we applied our concrete controller synthesis algo-
rithm and some of the DPDA specification capabilities from section 7.1|p.143 in
different ways as discussed and summarized subsequently. We used our concrete
controller synthesis algorithm for three different use cases in the examples (see
also Figure 1.3|p.8).

Use-case 1: The validity of a given specification has been analyzed in Example 7.2|
p.147. In particular, the provided specification prevented some step that
(potentially) should not have been prevented according to the informal
description. User assistance is provided by presenting the detected con-
trollability problems to the user. For example, a controllability problem
can be represented in the form of a reachable configuration of the closed
loop of the current controller candidate and the plant where the controller
prevents an uncontrollable event that can be executed by the plant. The
user may then inspect the controllability problems and determine whether
the controllability problem is the result of a faulty specification. Also, states
and edges of the specification that are not accessible in the closed loop
indicate invalid specifications or overspecification.

Use-case 2: The soundness of a controller (given as a specification) has been ana-
lyzed in Example 7.3|p.150. If the specification is given by a domain expert
who provides a very detailed description of all parts, then the specification
may already turn out to be a satisfactory controller and no controllability or
blocking problems are to be removed. Hence, in this use case the EDPDA
specification is already a description of the controller that was designed
having the plant description in mind. Of course, if a large plant description
makes the definition of such a controller-specification a hard task, the next
use case is required.

153

Chapter 7. Application and Prototype-based Evaluation

Use-case 3: The least restrictive satisfactory controller for a given specification has
been computed in Example 7.4|p.151. In this case, the specification provided
still requires many decisions to be made to ensure controllability. That is,
events are to be prevented in certain situations to reduce local options that
eventually lead to controllability problems.

Also, a user may seamlessly combine these use cases in one workflow as follows.
Firstly, the user may provide an initial controller candidate or specification in the
form of an EDPDA, which contains important specification aspects such as in the
examples above. Secondly, the user may apply the concrete controller synthesis
algorithm to detect and then inspect controllability problems resulting from
this specification. Consequently, the user may refine the specification or correct
errors discovered using this methodology. Finally, once no further refinements
or corrections of the specification are to be applied, the user may employ the
concrete controller synthesis algorithm to generate the least restrictive satisfactory
controller contained in the specification obtained so far.

The examples above demonstrated the discussed use cases and made use of
various advanced specification patterns discussed in Par. Advanced Specification
Patterns for DPDA|p.145: the compositional construction of the plant is used
in Example 7.2|p.147 and Example 7.4|p.151, the periodic removal of all stack-
elements is used in Example 7.2|p.147, the counting of events from two groups is
used in Example 7.2|p.147, the stack is used to describe future tasks/programs to
be executed in Example 7.3|p.150 and Example 7.4|p.151, and the stack is used to
describe a finite memory used by the plant in Example 7.4|p.151.

The three examples given in this section provide an overview on the capabilities
of EDPDA for the specification of admissible behavior and for use cases of our
concrete controller synthesis algorithm.

7.4. Prototype Realization

of the Concrete Controller Synthesis Algorithm

We now discuss our implementation of our concrete controller synthesis algorithm
in the form of our Java-based prototype CoSy available at [304], some relevant
aspects of this implementation, and some conclusions we have been able to
draw already from the implementation process. Moreover, in the next section,
we provide some results from applying this implementation to the examples
from the previous section also resulting in further observations on the concrete
controller synthesis algorithm in general and our implementation in particular.

We formalized and verified our concrete controller synthesis algorithm in
Isabelle [265] using higher-order logic by defining its building blocks (as presented
in chapter 5|p.61) in Isabelle and by verifying Theorem 5.1|p.86. However, the
existence of a suitable implementation of our algorithm in the form of a computer
program is not immediate because Isabelle with higher-order logic includes the
axiom of choice in the sense of the Ernst Zermelo-Abraham Fraenkel set theory.

154

7.4. Prototype Realization of the Concrete Controller Synthesis Algorithm

That is, Isabelle supports the axiom of choice by means of the ε-operator of David
Hilbert and the closely related ι-operator. Both operators have a similar purpose
and can be used to non-constructively select elements satisfying a property (see
also section B.1|p.228). Since there is no decision procedure implementing these
operators for arbitrary higher-order logic properties P, Isabelle definitions are
not constructive per se. This is a key difference compared to the theorem prover
Coq [172] where the axiom of choice is not given and all definitions can be
converted to Meta Language (ML) code. In comparison to Coq, the support of
automatic code generation techniques in Isabelle is, as of now, far from optimal
for various reasons. Firstly, the documentation does not adequately describe
the process and possible pitfalls, which complicates the process for users not
familiar with the actual implementation of the involved procedures. Secondly,
the errors produced during code generation are not suitable to guide the user to
the actual problem. Thirdly, the usage of code generation requires to paraphrase
constructions significantly to make use of a limited set of syntax and operations
for which implementations are available. Hence, the usage of Isabelle-based code
generation techniques is left for future work (see subsection 8.3.1|p.209) when
the support in Isabelle has reached an adequate maturity. We have still chosen
Isabelle over Coq, despite the lack of code generation support of Isabelle, as the
local and global Isabelle community seemed to be more active implying better
future availability of tool-support in the form of maintained theorem provers.

Besides the usage of the two choice operators in operations, further problems
may preclude executability or code-generation: iterative computations may not
terminate in general, intermediate values in computations may require infinite
space, and conditionals where the conditions require unavailable decision pro-
cedures. The inspection of the definitions of the constructions of our concrete
controller synthesis algorithm is a suitable first step towards deciding whether the
constructions contain such problems. As a second step, the constructions should
be implemented and tested to reveal further unforeseen complications; obviously,
infinite intermediate values and nontermination may not be excluded via testing,
but choice operators and conditionals decision procedures must be implemented.
We believe that, during the implementation process, we determined such decision
procedures and that intermediate states are always finite. Hence, we are confident
that the concrete controller synthesis algorithm is constructive.

We implemented the concrete controller synthesis algorithm along the formal
Isabelle-based definitions in Java using 271 classes (73 classes for building blocks,
35 classes for multithread implementations of building blocks, and 68 classes for
datatypes such as EPDA, Parsers, and CFG) with 29 619 lines (of which 10 245 are
pairwise distinct) and 89 test classes. Structurally, we implemented the (nested)
building blocks as given by the formal definitions to prevent fundamental errors
resulting from reorganization of building blocks, to make sure that bugs in the
implementation can be located easily by comparing the actual behavior of the
implementation with the expected behavior given by the formal definitions, to
ease understandability for reviewers of both representations (the algorithms

155

Chapter 7. Application and Prototype-based Evaluation

and their realization in code), to ease maintainability of the code due to the
resulting small sizes of methods, and to ease adaptability of the code once formal
constructions are adapted in the future to accomodate for optimizations.

While the concrete controller synthesis algorithm has been verified using
Isabelle, the Java-based CoSy prototype may contain bugs as mentioned in
section 6.1|p.91. For quality assurance, we used code coverage techniques to
ensure that our module tests and integration tests (see next section) cover the
relevant parts of our implementation. We have also applied our prototype to the
three examples from the previous section. The results of these applications are
discussed in the next section.

In our CoSy prototype, we implemented additional optimizations that can be
enabled optionally. For example, in formal definitions, there is no need to ensure
that an expression is not evaluated multiple times. Rather, the explicit usage of a
cache for such already evaluated expressions would drastically complicate proofs.
Hence, we believe that it is reasonable to proceed by: formally verifying the algo-
rithm, paraphrasing the algorithm for optimization and implementation purposes
(this optional intermediate step is left for future work (see subsection 8.3.1|p.209)
for some but not for all our optimizations), and implementing the algorithm
in a programming language. Aside from optimizations that prevent duplicate
computations, we have also removed inaccessible elements from EPDA, Parsers,
and CFG between building blocks that are applied in succession to simplify
subsequent operations. We conclude that even our well-tested optimizations that
are implemented in our prototype should be formally verified in Isabelle in the
future (see subsection 8.3.1|p.209).

The use of multithreading proved highly useful in CoSy. On the one hand, the
fixed-point computation has at the highest level of building blocks only sequen-
tially applied steps in which no parallelism can be used. On the other hand, many
lower level building blocks allow for massive parallel execution (for example,
when the LR(1)-Machine is constructed for a CFG). The implementation of the
prototype allowed us to determine its bottle necks, which are the conversion
of SDPDA into LR(1)-CFG and the construction of the LR(1)-Machine from the
LR(1)-CFG. To resolve the first bottle neck, we developed the optimization in
subsection 8.2.1|p.188 (and used parallelization for the formally verified optimiza-
tion from section 5.2|p.65 for the SDPDA state space approximation). To resolve
the second bottle neck, we used parallelization where each thread in the parallel
breadth-first-construction is then concerned with a certain subset of the pending
states. The use of parallel execution thereby significantly reduced computation
times as indicated by our subsequent tool-based analysis.

Finally, Stefan Jacobi [178] and Ramon Barakat developed a C++ prototype as a
plugin of the libFAUDES [32] tool. However, this plugin is not sufficiently efficient
(it employs neither optimizations nor multithreading) and not trustworthy (it was
not tested thoroughly and is does not implement in all cases the formally verified
constructions). The adaptation of this plugin to CoSy remains for the future.

156

7.5. Prototype-based Evaluation

7.5. Prototype-based Evaluation

In this section, we argue that the worst case complexity of our concrete con-
troller synthesis algorithm w.r.t. time and space is exponential (only considering
inputs where the algorithm terminates). Consequently, we have to argue for
the usefulness of our algorithm by discussing the required time and space for
applications to realistic examples. For this, we apply our Java-based prototype to
the concrete examples from section 7.3|p.147 and consider the resulting runtime
and the resulting memory consumption.

The worst case complexity of our concrete controller synthesis algorithm is
exponential because the operation FLR(k)-Parser for constructing an LR(1)-Parser
from an LR(1)-CFG may result in a LR(1)-Parser of a size that is exponential in
the size of the LR(1)-CFG. Stated differently, LR(1)-CFGs are exponentially more
succinct compared to deterministic LR(1)-Parsers [325, 127, 126, 157, 347, 217].
In [110, p. 128] Jay Early attributes the following sequence (indexed by n) of
LR(0)-CFG to John Reynolds, which result in exponentially larger LR(0)-Parsers.

Example 7.5: «Exponential Worst Case Cost for FLR(k)-Parser»
Sequence of LR(0)-CFG: For each natural number n > 0, we define an LR(0)-CFG
with initial nonterminal R using six patterns of productions.

1 ≤ i ≤ n : R−→ Ai 1 ≤ i ≤ n : Ai−→ ciBi
1 ≤ i 6= j ≤ n: Ai−→ cj Ai 1 ≤ i, j ≤ n: Bi−→ cjBi
1 ≤ i ≤ n : Ai−→ di 1 ≤ i ≤ n : Bi−→ di

Discussion: For this sequence, there is a constant c such that the LR(0)-
Machine and the LR(0)-Parser constructed using the operations FLR(k)-Machine
and FLR(k)-Parser have more than 2c×n states and rules, respectively. The reason
for this is that the LR(0)-Machine differentiates (by having a state for each case)
between exponentially many alternative sequences of executable events.

However, in our considered examples that were inspired by actual control prob-
lems, we never observed such LR(1)-CFG resulting in an exponential blowup.
Also, while the Parser construction above is used in each iteration, the unfolding
computed by this conversion is not refined by its applications in later iterations
except for the parts that have been adapted by removing some controllability
problems. Nevertheless, the computational bottle neck is the construction of the
LR(1)-Machine as of now according to our prototype-based analysis even when
constructing the LR(1)-Machine using multithreading.

The conversion from SDPDA into the LR(1)-CFG produces a cubic number of
productions according to the operation FSDPDA→LR(1),Std. Also our optimized op-
erations FSDPDA→LR(1),Opt (see section 5.2.1|p.71) and FSDPDA→LR(1),Rec (see subsec-
tion 8.2.1|p.188) still have this worst case complexity. When using the optimized
conversion procedure FSDPDA→LR(1),Opt, the vast amount of computation time is
used for computing the employed state space approximation.

157

Chapter 7. Application and Prototype-based Evaluation

We used two machines A and B given in the following table for our subsequent
prototype-based evaluation.

Table 7.1: «Machines A and B used for the Prototype-based Evaluation»

Machine A
Random-access Memory 256 GiB DDR4

Central Processing Unit 2 × E5-2643 @ 3.4 GHz × 6 cores × 2 threads
Hard Disk 600 GiB on 10 000 RPM RAID 1

Swap Partition 0 GiB
Focus Central Processing Unit

Machine B
Random-access Memory 384 GiB DDR3

Central Processing Unit 2 × E5-2630 @ 2.3 GHz × 6 cores × 2 threads
Hard Disk 1 TiB on 7200 RPM RAID 1

Swap Partition 0 GiB
Focus Random-access Memory

For the purpose of the evaluation, we conducted several experiments for each of
the three examples from section 7.3. For each experiment, we have applied our
prototype 10 times using the maximum number of 24 running worker threads and
rounded the measured usage of the memory (“Maximum resident set size”), wall
time (“Elapsed (wall clock) time”)1, and cpu (“Percent of CPU this job got”) using
the Linux tool time [139]. The values subsequently given in tables are the average
values over these 10 executions. In these experiments, we used all additional
optimizations implemented to reduce memory consumption and computation
time. We omit numbers for dry runs measuring the build up and tear down
operations as they required at most one second in each run. Also, we make use
of the following parameters in all our experiments.

• PM designates the name of the machine used.

• PAA is the maximal length of stack-approximations used to determine inac-
cessible states and edges in intermediate EPDA. This state space approxi-
mation was discussed in Par. Efficiency of the Conversion Procedure|p.71 for
the purpose of optimizing the conversion from SDPDA into LR(1)-CFG, but
we use our more efficient operation FSDPDA→LR(1),Rec from subsection 8.2.1|
p.188 in our experiments.

• PMEM is the maximal (heap) memory size in GiB the experiment may take.
We used the Java parameter −Xmx to restrict the size of the heap to this
value. We used different maximal memory values to determine the optimal
set up in which the garbage collector resulted in the minimal runtime
overhead.

1Hence, the just-in-time compilation of hotspot Java methods to native code at runtime (executed
by the JVM) does not corrupt our results.

158

7.5. Prototype-based Evaluation

Figure 7.1: «Prototype-based Evaluation for Examples»
We consider Example 7.2|p.147, Example 7.3|p.150, and different variations of
Example 7.4|p.151 and report on the set up that resulted in the optimal resource
consumption.

Evaluation for Example 7.2|p.147: Both machines achieved similar results and
required for PAA = 1 less than 746 MiB of memory and less than 14 s. The
resulting controller had 26 439 states, 66 615 edges, and 2322 stack symbols.

Parameters Performance Results

PM PAA PMEM memory wall time cpu
A/B nat GiB GiB min: s %

A 1 1 1 0:12 433
B 1 1 1 0:14 381

Evaluation for Example 7.3|p.150: Both machines achieved similar results and
required for PAA = 1 less than 301 MiB of memory and less than 2 s. The
resulting controller had 1180 states, 3079 edges, and 121 stack symbols.

Parameters Performance Results

PM PAA PMEM memory wall time cpu
A/B nat GiB GiB min: s %

A 1 1 0 0: 1 499
B 1 1 0 0: 2 439

Evaluation for Example 7.4|p.151: This example is designed as a scalable bench-
mark, which means that we can derive different variations of it using certain
parameters and, therefore, we can derive variations where the synthesis requires
a relevant amount of resources. The problem from Example 7.4|p.151 is given by
variation V1 and we obtain two simpler variations V2 and V3 by using different
values for five parameters v1–v5. The mapping from variations to values of
parameters (with their description) is given in the following table.

Parameter Description V1 V2 V3

v1 Number of common elements required by the two
machines PB and PC

1 1 0

v2 Number of elements only required by machine PB 1 1 1

v3 Number of elements only required by machine PC 1 1 1

v4 Length of the container storing elements 5 3 2

v5 Number of concurrent orders per element 2 1 1

We consider each of the three variations now separately.

159

Chapter 7. Application and Prototype-based Evaluation

Evaluation for Example 7.4|p.151: Variation V3: Both machines required for PAA = 1
less than 4 GiB of memory and less than 5 min where machine A was about 25 %
faster than machine B. The resulting controller had 122 080 states, 636 122 edges,
and 3429 stack symbols.

Parameters Performance Results

PM PAA PMEM memory wall time cpu
A/B nat GiB GiB min: s %

A 1 4 4 3:37 616
B 1 4 4 4:51 588

Evaluation for Example 7.4|p.151: Variation V2: Both machines required for PAA = 1
about 200 GiB of memory and less than 16 h where machine A was about 18 %
faster than machine B. The resulting controller had 2 139 865 states, 17 316 332
edges, and 21 734 stack symbols.

Parameters Performance Results

PM PAA PMEM memory wall time cpu
A/B nat GiB GiB h:min %

A 1 230 198 12:31 949
B 1 256 202 15:21 895

Evaluation for Example 7.4|p.151: Variation V1: Both machines do not terminate
within 24 h where the computation slows down due to excessive garbage collec-
tion when the maximal amount of memory has been allocated.

While the specification patterns used in Example 7.2|p.147 and Example 7.3|p.150

result in negligible costs for synthesis, we conclude from the scalable benchmark
obtained along the lines of Example 7.4|p.151 that the usage of a finite prefix of
the stack (using the random-access or queue pattern as discussed in Par. Basic
Specification Patterns for DPDA|p.144) is problematic. In the variations described
in the figure above, exponentially growing controllers are obtained because the
number of possible values of this prefix grows exponentially (in V1 at most
57 = 78 125 different prefixes are considered, due to the length 5 of the prefix
and the 7 different values {◦, o1, o2, o3, e1, e2, e3} contained in the prefix). Each of
these prefixes is considered separately in the resulting automaton and, moreover,
many of these values are not removed by the synthesis procedure. The large
controllers then require a huge amount of time and memory to be analyzed. This
example demonstrates that controller synthesis can be problematic while manual
construction can be supported and manual constructions can be verified along
the lines of the use cases presented at the end of section 7.3|p.147.

160

7.5. Prototype-based Evaluation

The size of the resulting controllers also demonstrates that static memory
requirements for implementations of the synthesized controllers potentially pose
problems in settings where the hardware is equipped with limited memory.
Also, the size of the resulting controller was discussed in Par. Additional Property
of Minimality for DPDA|p.39 and is considered as related and future work in
Par. Further Controller Characteristics|p.166, Par. Inputs of the Concrete Controller
Synthesis Algorithm|p.209, and Par. Operations of the Concrete Controller Synthesis
Algorithm|p.210.

The resource requirements of our prototype CoSy show that further improve-
ments are, albeit sufficient performance for the first two examples, required as
future work. The artificial benchmark example can be a guide for further im-
provements, which may even be specific to the characteristics of the machine on
which synthesis is executed in the future, and to reveal problems of the approach,
which are often specific to certain kinds of inputs (such as to the random-access
usage of a prefix of the stack). Moreover, this benchmark can be used to compare
competing tools and approaches in the future. Finally, we point out that our
second controller synthesis algorithm from subsection 8.2.2|p.193 has not been
evaluated here and may improve performance drastically as it does not rely on the
costly repeated conversion between LR(1)-CFG and DPDA controller candidates.

Chapter 7|p.141
(Application and Prototype-based Evaluation)

In this chapter, we discussed the operability of our concrete controller synthesis
algorithm by detailing on patterns that can be used when determining DPDA
specifications. Also, we introduced our Java-based prototype CoSy available at [304]
in which our algorithm is implemented. This prototype demonstrates the overall
constructiveness of the algorithm and is also used to evaluate the time and space
requirements for three concrete examples provided. Beyond standard controller
synthesis, we also discussed two further general use cases that can support the
process of determining a suitable controller for a given plant. The first additional
use case supports the tool-based support for the validation and manual adaptation of
a given specifications and the second additional use case supports the verification
of a manually provided controller. This chapter thereby extends the results on the
functional correctness established in previous chapters.

In the next chapter, we discuss related, ongoing, and future work.

161

8
Related, Ongoing, and Future Work

We survey related work focusing on alternative approaches to similar problems,
foundations of our contributions, and potential fields for applications of our
results. Moreover, we present three approaches that have not yet been formalized
in Isabelle but that are promising candidates on extending the contributions of
this thesis. Finally, we elaborate, based on open problems indicated throughout
the thesis and the presented related work, on various possible future extensions
and applications of our results.

Contents of this Chapter

8.1|p.164 Related Work
We discuss variations and extensions of the supervisory control prob-
lem from similar domains, we detail on the faulty controller synthesis
algorithm of Christopher Griffin for DFA plants and DPDA specifi-
cations, and we compare available tools for controller synthesis and
available relevant Isabelle-frameworks.

8.2|p.188 Ongoing Work
We present an operation for converting DPDA into LR(1)-CFG that is
more efficient, an operation for enforcing controllability for an LR(1)-
CFG that leads to a terminating and more efficient controller synthesis
algorithm, and approaches for ensuring that a DPDA controller has a
worst case execution time in its runtime environment.

8.3|p.209 Future Work
We recollect starting points for future work identified throughout the
thesis and discuss how the domains surveyed in the related work
section on the one hand and our contributions on the other hand can
mutually benefit from each other.

163

Chapter 8. Related, Ongoing, and Future Work

8.1. Related Work

Discrete event systems appear in many shapes in the literature and the synthesis
of programs/submodules/controllers in theses contexts is of general interest
as pointed out in chapter 1|p.1. Subsequently, we consider and discuss further
plant formalisms used earlier for controller synthesis and the aspects that can
be represented in these formalisms, different specification formalisms and the
properties and aspects that can be characterized using their instances, related
domains of closed-loop systems and further synthesis methodologies for discrete
event systems from different fields, some available tool-support for (supervisory)
controller synthesis, fundamental results of supervisory controller synthesis for
the classical pure DFA based setting as well as extensions to further formalism
characteristics, earlier results on supervisory control for formalisms with infinite
state spaces such as Petri nets and DPDA, and, finally, preexisting formal Isabelle-
based frameworks for the formalisms employed in this thesis.

8.1.1. Plant Characteristics and Formalisms

Plant descriptions using formal models can feature a broad range of characteristics
for which we now mention examples (references are pointed out throughout our
subsequent presentation in this section). The events executed by the plant may be
(non)observable, (non)forcible, or (non)controllable for the controller. Also, it is
sometimes assumed that controllable and noncontrollable events are alternatingly
executed to ensure some fairness between the execution of events contained in
the two sets. Event execution may require time (for example based on the event),
may follow nondeterministic, probabilistic, or stochastic rules, may impose costs,
which are to be minimized, or may provide rewards, which are to be maximized.
Formalisms may allow for parallel composition to describe multiple processes
at once and the synthesis procedure may operate symbolically on this parallel
composition or may require its explicit calculation, which typically results in a
state space explosion. The resulting composed processes may have basic join and
fork synchronization such as in Petri nets [272] or may communicate values such
as in the CCS [246]. Also, the employed process interaction model may consider
latency as well as other characteristics including for example a model of potential
kinds of errors.

While we only employ DFA as plant models in this thesis, other formalisms
with different characteristics (as discussed above) such as DFA variations (for
example, extended DFA in [6]), Petri nets, Control Flow Nets [115], State Tree
Structures [228], timed automata [12, 268], Büchi automata [65], process calculi [37,
28, 27, 242], Moore automata [86], DPDA [129], input/output automata [227],
Statecharts [152], hybrid automata [11], and CCS have been used in the context of
controller synthesis as discussed later on.

One important problem regarding the plant models is, of course, their con-
struction. However, this plant identification problem is beyond the scope of this
thesis and we therefore assume a given model of the (possibly physical) plant.

164

8.1. Related Work

8.1.2. Control Objectives and Specification Formalisms

We discuss different objectives to be enforced by controllers and their characteri-
zation using specification formalisms.

Controllability and Nonblockingness
Controllability and nonblockingness are the two central properties of supervisory
controller synthesis [283, p. 219]. On the one hand, controllability is a safety
property as it states that the closed loop never enters a state where the controller
prevents an uncontrollable event and, on the other hand, nonblockingness is a
liveness property stating that the closed loop can reach a marking state from
all reachable states. Equivalent characterizations of controllability including
the corresponding supremal controllable languages and their interplay with the
notion of nonblockingness have been discussed earlier (see [201, 141]). In our
Isabelle-based formalization of the abstract controller synthesis algorithm (see
chapter 4|p.45), we also considered such further notions that also lead to suitable
fixed point iterators. These results have been presented in [310].

Optimal Control
In optimal control, the controller has the additional objective to chose amongst the
viable controllable events to minimize costs (or, dually, to maximize rewards) that
are assigned to states or events (the term “optimal” also refers to other notions in
the literature). The notion of optimal control strengthens the nonblockingness
property by requiring that the next marking state is indeed reached with minimal
cost. That is, an optimal controller forces the plant into a marking state of the
closed loop. Hence, optimal control is obviously incompatible with the default
least-restrictiveness assumption. In [263] the optimal controller synthesis problem
was introduced for the DFA based setting. However, uncontrollable events, which
may interrupt calculated optimal plans, are not covered in this definition. Also,
for systems with finite state space, a solution considering the uncontrollable
events has been presented in [200] where (positive or negative) costs are awarded
to states (the cost is incurred only for states that are members of the ultimately
obtained state space) and a cost is considered for disabling events (uncontrollable
events have infinite disabling costs) and the max-flow min-cut algorithm identifies
a part of the state space in which all derivations have optimal costs. Further
notions of costs have been introduced for optimal control in [263, 262, 61, 315].
Optimal control in combination with controllability and nonblockingness was
considered in [317, 314, 313, 316] and applied for discrete event systems such
as communication protocols. Also, in [299] optimal control is considered for
scheduling multiple production processes. As these mentioned prior results
on optimal discrete event control are only applicable to finite state systems, we
believe that future work should also focus on optimal control for DPDA closed
loops with infinite state spaces. In [320] optimal control is considered for the
case when the closed loop is not in a safe region due to unmodelled intermittent
disturbances, which brings us to the following problem domain.

165

Chapter 8. Related, Ongoing, and Future Work

Robust Control
For robust control uncertainty is assumed, either in the plant model or by the
possibility of malfunctioning communication between plant and controller (po-
tentially even in the form of attacks), and the controller is required to be correct
even if the modelled undesirable behavior occurs. That is, the robust controller
to be synthesized should then be satisfactory for all possible plant behaviors. For
example, in [259] unobservable faults in the plant are considered. Also, in [56] a
controller is iteratively constructed for a set S of plants at once (also considering
time and forced events) and is thereby robust to changes of the plant as long
as the plant stays in S. Uncertainty in the plant behavior is characterized and
bounded by approach specific notions in [87, 88, 260, 336, 292, 233]. As stated
before, controllers should be robust to the adversarial effects in distribution and
on interconnection such as in [369, 355, 91].

Specification Formalisms
Various formalisms for the specification of relevant properties such as automata,
temporal logics, and ad-hoc properties exist. The DFA specification used in [282]
is an automata-based specification of the allowed marked and unmarked behavior.
Later, the capabilities of DPDA for specification purposes have then been investi-
gated by Christopher Griffin in [141] (see also subsection 8.1.7|p.180). Temporal
logics are often capable of expressing a broad range of properties. In [188] a
temporal logic is used to state tasks, goals, and properties in general and in [348]
such controller synthesis is combined with verification techniques in an incre-
mental way to reduce synthesis costs. Finally, when the chosen specification
formalism is insufficient, further desired properties such as controllability and
nonblockingness are stated using ad-hoc formulas as in [282] and this thesis.
In [13, 9] the linear temporal logic CaRet is introduced where non-regular prop-
erties can be stated by relating call and return positions in the infinite word under
interpretation. As stated in [112] some relevant properties cannot be stated using
(regular) temporal logics such as LTL, CTL, or CTL∗. Examples of such properties
relate different traces (for example, “a certain event occurs at the same time in
each trace”) or require a precise connection between events (“every transmission
is acknowledged”; “there are not more returns than calls” [196]). Examples of
context-free extensions of regular temporal logics are also considered in [26].

Further Controller Characteristics
Since a given specification may allow for more than one controller to be satis-
factory, further properties of the controller have been identified. Some of them
are even of high importance for the effectiveness of the entire approach. Firstly,
the size of the controller must not exceed the available memory of the hardware
on which it is to be executed. Secondly, the formalism used for the controller
must allow for a sufficiently fast computation of the admissible events and of
the corresponding successor configuration to be reached by the controller when
executing the respective event. As for the step-relation of DFA, it is also straight-
forward to implement the step-relation of DPDA efficiently. However, DPDA

166

8.1. Related Work

(and also the DPDA controllers constructed by our concrete controller synthesis
algorithm) allow for the execution of an unbounded but finite sequence of silent
internal steps. On the one hand, this behavior does not contradict controllability
because the sequence is finite for the obtained controllers, but, on the other
hand, the application of the steps of this sequence may require too much time.
Hence, a limitation of the worst case execution time (WCET) during controller
synthesis, an a posteriori analysis of the actual WCET, or optimizations of the
step-relation computations are called for (see subsection 8.2.3|p.207 for our initial
results on enforcing/analyzing a WCET). We also expect that techniques from
synchronous programming (see [8, 97, 240] for already considered connections
between synchronous programming and discrete event controller synthesis) may
prove suitable when tackling this particular problem in the future.

8.1.3. Methods for Controller Synthesis and Theories for Closed-loops

In this thesis, we followed the supervisory controller synthesis approach initially
developed in [282] for discrete event systems. We now consider research domains
where related synthesis methods are employed or where closed-loops play a
central role.

Program Synthesis
Program synthesis is a broad field, which can be understood to subsume con-
troller synthesis. For example, in [238], input- and output-conditions are stated
in first order logic and the corresponding program is synthesized deductively by
deriving a program from a realizability proof. Also, program synthesis in [358] is
based on counterexample guided abstraction refinement (CEGAR) [84], which
was introduced to reduce the search space during model checking of ACTL∗

properties. Indeed, the symbolic (i.e., static) supervisory controller synthesis
methodology already applies similar ideas where the current controller candidate,
which is an abstract model of the controller to be synthesized, is refined iteratively
by determining violations of nonblockingness and controllability and by refining
the abstract model accordingly. However, the initial abstract model used in [84] is
quite different as it is derived from a program and violations determined by our
algorithm are never spurious. The comparison would be more close if our initial
controller candidate would mark Σ∗ because counterexamples could be then
spurious when the relevant words would not be executable by the plant (also, the
specification satisfaction would have to be checked for violations in the iterations).
While we demonstrated by our concrete controller synthesis algorithms that the
removal of violations is realizable, the iteratively computed controllers may grow
undesirably. Hence, we point out that the development of automatic adaptations
of prior controller candidates such as the initial specification (which is typically
the smallest controller candidate) to determined violations of nonblockingness or
controllability may help to reduce the size of the ultimately obtained controller.
In [153] the semi-automatic synthesis of Statecharts from scenario-based require-

167

Chapter 8. Related, Ongoing, and Future Work

ments (given as live sequence charts) is explored along the ideas of game theory
from [64, 24] (also see next paragraph). As another approach to state control
problems for hybrid systems, initial work on hybrid control programs and the
corresponding controller synthesis was introduced in [324]. Choosing a suitable
level of abstractions is required in all cases to allow for effective and efficient
synthesis: for example, in [155] a program and a usage policy for low-level
security-critical primitives is used to synthesize a program that correctly uses
these primitives satisfying the policy at lower levels of the protocol stack. Also,
in [176, 173], Petri nets are employed for the synthesis of concurrent programs
(see also subsection 8.1.6|p.176).

Game Theory and Reactive Synthesis
Game theory (see [64] for initial work) takes the perspective of, in our terms, a
controller that plays a game against the plant where the plant attempts to execute
uncontrollable events to drive the closed loop into an undesirable configuration
(viz. violation of specification, nonblockingness, or controllability) and where
the controller tries to prevent such behavior. This perspective has been taken
in the initial work in [274, 1, 105] where reactive programs are synthesized by
considering possibly infinite games between an environment (plant) and a pro-
gram (controller) where a winning strategy can be represented by an infinite
tree. Also see the thesis [290] for a thorough introduction to reactive synthesis for
synchronous, asynchronous, and distributed systems. In [351], fairness conditions
are considered in the general workflow where temporal formula specifications are
translated into Büchi automata that accept at least one infinite tree if and only if
the specification is satisfiable (actually, the more restricted notion of realizability
has been used) by a finite program, which can also be obtained from such an
infinite tree. In fact, the mentioned approaches on infinite behaviors as well as
their connection to game theory can be seen as a foundation for later considera-
tions on controller synthesis on infinite words (see just below). A strong formal
connection between the two research domains of classical supervisory control (see
in the paragraphs below) and reactive synthesis (as described just above) is given
in [111]. For models of non-regular infinite behaviors, the verification has been
considered in [54, 53, 52, 51, 50] with various additional systems’ characteristics
such as for hybrid or parallel systems. Moreover, when restricting to regular
infinite behaviors, supervisory control has also been considered in [342, 202, 343,
344, 339, 341, 340, 249, 106]. For example, game theory has been applied in [31]
for reactive synthesis when using a suitable subset of LTL to define a subset of
LTL games and in [29] for decentralized control. Also, in [232] game theory has
been used to determine a resource manager for continuous time applications. The
perspective of game theory has also proven useful in domains related to controller
synthesis such as system verification [352], controller optimization [367], and
security protocols [154, 285]. In [196, pp. 441–] game theory is considered for
the fixed-point logic with chop (FLC) [252] where additionally stacks are used
in the otherwise regular games, that is, the games are then played on configu-

168

8.1. Related Work

rations of pushdown processes. More precisely, a visibly pushdown system is
employed (see subsection 8.3.2|p.214 for our considerations on visibly pushdown
systems for controller synthesis). Examples of conversions from non-regular
(deterministic) context free languages to FLC are given in [196, Subsubsection
3.2.2, pp. 434–] and the model-checking problem is considered (similarly, analysis
and model-checking of (timed) PDA is also considered in [92, 113]). Since the
used logic FLC extends the quite powerful modal-µ calculus [332] it would be
interesting whether the game-theoretic characterization also translates (possibly
with suitable restrictions) to a synthesis procedure in the form of a winning
strategy.

Adaptive systems
Adaptive systems [186, 215, 216, 77] serve as an umbrella notion for domains
where feedback loops are used at some level of abstraction such as in control
theory. Adaptive systems handle various kinds of uncertainty by incorporating
heuristics that are inspired by human made solutions into the actual running
system such that the system is able to adapt to changing conditions by executing
the encoded heuristics. This integration of domain knowledge and expertise is
supposed to make the systems resilient to such expected situations. Thereby, the
broad theory of adaptive systems focuses on quite dynamic system structures
compared to control theory (see [122] for a similar introduction to the multi-
controller scenario for highly reconfigurable systems): also, in this thesis, the
life-span of the controller ends whenever the plant model has to be modified.
However, in adaptive systems, the desired closed-loop properties are typically not
formally identified and analyzed [224]. Many relevant uncertainties and aspects of
systems (validity of abstractions, temporal drift among components, incomplete
knowledge about the system at start-up, unknown future inputs and parameter
selections, usage of automatic learning, decentralization in the sense of composed
systems), of goals (elicitation of requirements, accuracy of goal specifications,
and goal changes at runtime), of the context (sufficiency of the observability
of the execution context and noise as well as pertubations in sensing), and of
human involvement (dependability on assumptions on human behavior and
unpredictable changes of the plant) that have been considered in [215, pp. 33–36]
provide hints on future problems to be solved in more restricted settings such as
control theory as well. Vice versa, the integration of results of control theory into
adaptive systems is an ongoing key challenge as discussed in more detail in [224,
293] and [215, p. 25]. However, adaptive systems theory subsumes control theory
in the sense that it focuses on a broader range of software systems where cyber-
physical elements are not necessarily assumed to coexist with software components.
In particular, [215, pp. 358-363] detail on the connection of supervisory discrete
event controller synthesis and adaptive systems theory. For example, control
theory has been used in [357] for workflow scheduling and in [187] for sound
software adaptation. Also, Petri nets and control theory have been applied in [173,
176, 174, 225] for the synthesis and analysis of computing systems or to avoid

169

Chapter 8. Related, Ongoing, and Future Work

deadlocks as in [360, 359, 25, 107]. Moreover, supervisory controller synthesis has
been used in [123, 124] to restrict the behavior of a program when exceptions
reveal unsafe regions of behavior that are not known in advance. At the next
level, self-healing for adaptive systems is considered for example in [128] where
the healing mechanism is determined using more complex algorithms. A more
application oriented example where controller synthesis is used is given in [254]
where controllers are synthesized to solve an adaptive cruise control problem
for moving vehicles using two different approaches (using the state space of
the linear system and using a finite-state abstraction). Also, hierarchical control
has been considered for adaptive systems in [194, 98, 89]. Further applications
of control theory in the domain of self-adaptive software are given (see [224])
in [159] for the controlling of threading level, memory allocation, and buffer pool
sharing in commercial products, such as IBM Lotus Notes and IBM DB2, in [205]
for computer power control, in [2] for thread cluster management, in [120] for
admission control and video compression, and in [103] for performance and
denial of service attack mitigation. Examples of discrete control techniques
that are employed in self-adaptive systems are also [57, 89, 334] using planning
techniques based on artificial intelligence and [44, 90] using game theory (see
also above), and reactive synthesis [224]. Lastly, we state that efficiency is a
key challenge for adaptive systems because they typically evaluate decision
procedures at runtime: for adaptive systems and in discrete event control theory,
the rate of events should be sufficiently low compared to the WCET of the
decision procedures used by the controller (again, see subsection 8.2.3|p.207 for
our initial results on enforcing/analyzing a WCET).

Submodule Construction by Equation Solving via Quotienting
The supervisory control problem has been stated similarly in terms of the sub-
module construction problem (see also [45]) in which one submodule P and
a specification S are given and a second most general submodule C is to be
constructed such that the combination of P and C conforms to S. The formalisms
used for P, S, and C as well as the operations for the combination of submod-
ules and the conformance relation differ among instantiations of this problem.
For example, the concrete and the abstract supervisory control problems from
Definition 3.11|p.39 and Definition 3.7|p.35, respectively, are instantiations of
this submodule construction problem and also the supervisory control problem
for DFA plants from [282] is an instantiation. But, for the correspondence to
the supervisory control, the specification and the satisfaction of the specifica-
tion must be defined carefully to encompass the properties of nonblockingness,
controllability, and least restrictiveness.

The quotienting methodology refers to the fact that the solution C can be
obtained from solving an equation of the form P× C = S by dividing C on both
sides, that is, C is then obtained to be S/C where, of course, the relations ×
(composition), = (satisfaction), and / (quotienting) are to be interpreted for the
concrete setting. This means that the part of S that is already provided by C is

170

8.1. Related Work

removed and the remainder constitutes the desired submodule C. However, when
considering the supervisory controller synthesis, we can see that the quotient
idea does not simplify the synthesis tasks on its own.

Early work [245] on submodule construction focused on parallel, distributed,
and communicating systems as an important broad domain in which this tech-
niques may prove useful when applying them to instances of suitable size in a
hierarchical approach. In fact, the approach has been applied along these lines in
[245] for labelled transition systems, in [150] for prefix closed FSA, in [270, 368,
296] for FSA communication through message queues, in [275, 108, 109, 94, 93,
311] using input/output automata (also using input and output events similar to
uncontrollable and controllable events), and in [183] to synchronous FSA as in
classical supervisory control theory from [281]. Further work is also considered
with more complex satisfaction relations such as in [339] where liveness proper-
ties are covered, in [48] where safety and liveness properties are considered using
a modal logic, in [211] where parametrized bisimulations are used, in [18] where
the modal µ-Calculus is used, in [83] where a so called synchronization skeleton
is synthesized from a temporal logic specification given in CTL, in [239] where
CSP [162] processes are synthesized from propositional temporal logic, in [58,
213, 17, 210, 235, 20, 109] where continuous time properties are covered, in [47]
where first order logic is used to recover previous quotienting results of labelled
transition systems with interleaved and synchronous rendezvous, in [73] where
hybrid systems are considered, in [319, 261, 276, 19] where the CCS calculus with
weak bisimulation is used, and in [212] where the Hennessy-Millner-Logic with
recursion is employed with its custom satisfaction relation. Moreover, examples
of application domains of these techniques are in [185, 337, 74] the design of
protocol converters, in [271] the testing of a module in a context, in [45, 46] the
analysis of relational databases, in [321] the construction of network protocols
such as the alternating bit protocol where deadlocks and unused transitions are
removed similarly to nonblockingness in supervisory control, and in [284] the
application to a part of the X.21 protocol.

A problem of quotienting is that the size of the formula can increase drastically.
To mitigate this problem, a minimization procedure has been introduced in [210]
that is to be applied to the resulting formulas. Moreover, note that the referenced
works above consider various different forms of decomposition, continuous time,
specification logics, model formalisms, synchronization mechanisms, synthesis
procedures (such as tableau based or automata based), but none of them consider
stack-based capabilities as available in the DPDA used in this thesis.

8.1.4. Tools Implementing Discrete Event Controller Synthesis

Over the years, many prototypes for controller synthesis have been implemented,
but not all of these tools are available, maintained, and supported up to this day.
A list of tools for the controller synthesis and analysis based on FSA and Petri
nets is given at [326] and we now consider some of them in more detail.

171

Chapter 8. Related, Ongoing, and Future Work

Basic functionality for controller synthesis is provided by the following tools.
TCT [118, 117] and STSlib [229] are based on language models and support the
supervisory controller synthesis of [281]. Desco [114] supports, besides state
automata, also Petri nets for supervisor synthesis. UMDES [72] is a library for the
study of discrete event systems modeled by DFA. It supports many operations
of supervisory control theory and failure diagnosis of discrete event systems
following [71]. Supremica [6] also supports supervisory control for DFA and has
built-in support for code generation.

More current tools with a broader scope of functionality are as follows. lib-
FAUDES [32] supports controller synthesis and has also various plugins to
support, amongst others, hierarchical control, modular and decentralized control,
failure diagnosis, and controller synthesis for ω-languages. Also, as stated before,
an earlier version of the algorithm presented here has been implemented as a
plugin (called pushdown) in libFAUDES. CIF3 [35, 34] comes along with its custom
automata-based modelling formalism for discrete, timed, and hybrid systems
and supports specification, supervisory controller synthesis, simulation based
validation, verification, continuous time testing, and code generation. Visual-
State [335] is a commercial product that includes the quotienting techniques
from [48]. Sigali [241] is also used in the BZR compiler [99, 55, 100] of the syn-
chronous dataflow language Heptagon and also supports supervisor synthesis
based on implicit labelled transition systems. ReaX [42, 41, 40] has support for
symbolic controller synthesis for infinite state systems given by transition systems
with variables (of type Boolean, integer, or real). HCMC [209, 73] implements a
quotienting approach for hybrid systems (see above).

As for example pointed out in [70], tools used by the industry such as by
Siemens and Rockwell are typically not released to the public and, moreover,
adequate hardware support for controllers is known to increase computation
speed significantly, but we are not aware of such off the shelf solutions. However,
hardware support for Petri net controllers was reported in [323, 22, 214, 322].
Note that none of the tools presented here provide functionality comparable to
our prototype CoSy (see section 7.4|p.154).

8.1.5. Supervisory Control for DFA Plants and DFA Specifications

Supervisory controller synthesis for discrete event systems has been established in
[282] by considering the case of DFA plants and DFA specifications. Various fur-
ther works have then been published introducing and considering (combinations
of) certain aspects such as for example observability of events and diagnosability
of plants, discrete and continuous time, horizontal composition (modular and
distributed control), vertical composition (hierarchical control), failures and ro-
bustness (see above in Par. Robust Control|p.166), and forced events and optimal
control (see above in Par. Optimal Control|p.165). We now discuss these examples
in more detail and also consider cases where slight variations of DFA are used to
represent plants, specifications, and controllers.

172

8.1. Related Work

Synthesis Considering Observability and Diagnosability
Observability refers to the possibility that events or the current state are (not)
observable by the controller (see also [71, pp. 178–] for an introduction). Nonob-
servability is used to represent for example nonexistence of certain sensors or
failures of certain sensors and, hence, this topic is closely related to Par. Robust
Control|p.166. There are various characterizations of nonobservability: for exam-
ple, in [222, 256], where the set of all events is partitioned into observable and
nonobservable events and in [297] where events may become nonobservable at
runtime. Diagnosability then refers to the capability of the controller to determine
whether the plant is in a certain set of states when not all events are observable.

We only consider a small number of results that followed the initial work in
[279] where the state of the plant is partially observable and where events are
fully observable. In [82], this work is extended to a decentralized scenario (see
below) where only some events are observable to the controller. States are not
observable and events are partially observable in a similar result in [222]. Later,
in [220], online and offline diagnosis is discussed where the model is adapted
for the offline case. As mentioned before, other aspects are often considered
simultaneously such as in [223] where time and observability are considered
at once and, besides an adapted notion of observability, also another more
restrictive notion of normality is introduced and compared. Also, pure fault-
monitoring in the context of partial observability is discussed in [164] with the
obvious relationship to state of the art runtime monitoring (runtime verification)
approaches such as in [286]. In [78], deviations of the nominal plant behavior
are detected under partial event observability and, based on an analysis, the
controller is adapted to accommodate for the detected deviations based on their
quantitative classification. In [257], safe diagnosability is introduced to state the
fact that the degree of observability is sufficient to prevent malfunctioning in the
sense of a certain event occurrence. Moreover, an overview of this fault detection
and isolation research is provided in [208, 257]. A comparison of different tools
for diagnosability has been presented in [67] and observability and diagnosability
were also considered using different formalisms in [43, 268, 106, 68].

In this thesis, we have not considered partial observability.

Synthesis Considering Discrete and Continuous Time
The aspect of discrete time has been introduced to the setting of discrete event
supervisory controller synthesis in [219, 60]. In [60], an additional integer counter
variable is increased by one in each step of the plant and reset upon each state
change of the plant. However, no controller synthesis procedure is defined for
this scenario and, similarly to DPDA, the state space is infinite even with this
extension because there is no upper bound on the integer counter. In [219], the
impact of horizontal composition (see below) is considered where the correctness
of the controller depends on event delays (and the corresponding round-trip-
times) that are included in the model. The passing of time is modelled explicitly
in [59, 58, 223] where an additional tick event is used that has a lower priority

173

Chapter 8. Related, Ongoing, and Future Work

compared to so called forcible events. The employed specification formalism
can be compiled into a DFA and can express deadlines by limiting the number
of tick events. An optimal controller is obtained by determining the minimal
number of tick events which permits controller construction. Further work in
[363] refined the approach from [223] to ensure that the closed loop is an instance
of the used formalism as well, which is necessary for the proposed hierarchical
composition (see also below). In [56], the combination of robust control (see
Par. Robust Control|p.166) and time is considered. Delay-robustness is investigated
in [369] in a decentralized context similar to [59]. Modular controller synthesis
(see below) for timed discrete event systems is considered in [298]. For example,
the tool CIF3 [35, 34] supports supervisory controller synthesis where continuous
time models such as hybrid automata are abstracted to discrete event systems.

Controller synthesis using the quotienting approach (see Par. Submodule Con-
struction by Equation Solving via Quotienting|p.170) has been developed in [213,
210, 20] for (one-clock) timed automata. Moreover, in [235], a continuous time
controller is synthesized using an approach from game theory (see Par. Game
Theory and Reactive Synthesis|p.168).

We consider aspects of time along the basic ideas given in [223] in subsec-
tion 8.2.3|p.207 to enforce/analyze a WCET.

Synthesis Considering Horizontal Composition (Modular and Distributed Control)
While the classical supervisory controller synthesis for discrete event systems is
already confronted with the parallel (synchronous) execution of two modules, the
plant and the controller, it turned out that the usage of multiple plant instances or
of multiple controller instances at once results in further complications (see also
[71, Section 3.8, pp. 199–]). The goal of horizontal composition is to avoid the state
explosion problem resulting from the execution of the synchronous composition
of multiple (for example DFA based) plant instances. In this approach, controllers
are then synthesized for each plant instance separately, which drastically reduces
the resource requirements. However, this divide and conquer approach produces
complications. Firstly, there is no obvious way to divide a given huge mono-
lithic representation of a plant into smaller plant instances and, consequently,
decomposition is typically not applied, but instead separate components of the
(physical) plant are modelled independently in plant models (which results in
a granularity of plant models that cannot be adjusted automatically). Secondly,
specifications are required for the synthesis of the controllers for the different
plant models, but while a monolithic specification that is used for all plant models
may be more expressive, it does not fit nicely to the modular definition of the
plant models from the previous point (see also [71, Section 3.6, pp. 174–] for the
usage of modular specifications). Thirdly, once the controllers are synthesized,
the grand challenge of this approach is to derive (using the weakest possible
sufficient conditions), to check (using additional test procedures), or to ensure
(using additional synthesis algorithms) that the chosen form of controller compo-
sition yields a controller that is equivalent to a controller that would have been

174

8.1. Related Work

synthesized for the synchronous product of the plant instances (the global plant
instance). In particular, it turns out that nonblockingness is a property that can
be lost easily in this composition.

In [365], this approach has been introduced for two supervisors and a noncon-
flicting property ensures the preservation of controllability by the composition of
the controllers. This nonconflicting property is a rather strong sufficient condition
stating that one supervisor is more restrictive than the other. The desired least
restrictiveness is considered in [221] where the parallel composition of least
restrictive controllers is also least restrictive w.r.t. the global plant instance. Also
the additional aspect of time is considered in [219, 369] where the round-trip-
times of events between the components and simultaneity of events is considered
with respect to robustness and validity of the model itself. For the setting of
DFA plants and controllers, an additional controller is described in [364] that
should foresee upcoming conflicts between the individual closed loops resulting
in blocking or even deadlock and that then guides the individual controllers
accordingly. However, due to lack of further analysis, it is not immediate whether
the problem is effectively and efficiently solved for a reasonable class of problems
(for example, sufficient conditions could be too restrictive or additional manual
and/or computational effort for constructing the additional controller may turn
out to be limitations of this approach). Further reports in [371, 116, 192, 298]
elaborate on relevant results and extend the discussed approach from above.

The additional impact of an adversary in decentralized control is considered
in [258]. In [119], modular control is considered for the formalism of message
sequence charts for communicating processes. Similarly, state tree structures
(similar to statecharts) are considered in [228, 76, 69, 181] as a framework of
horizontal and vertical composition with efficient algorithms based on binary
decision diagrams (BDDs).

The impact of using multiple plant instances is often already considered in
the quotienting approach (see Par. Submodule Construction by Equation Solving via
Quotienting|p.170) such as in [213, 210, 20], but robustness as in [219] poses a
further challenge not yet considered explicitly.

See also subsection 8.3.2|p.214 for our considerations on horizontal controller
composition when using stack-based formalisms.

Synthesis Considering Vertical Composition (Hierarchical Control)
The previous discussion of horizontal composition already revealed connections
to vertical composition to some extend since the additional controller (see [364])
operates at a more abstract level in some concrete approaches. More precisely,
the approaches applied for hierarchical control typically rely on an abstraction on
the sets of events, that is, certain low-level events are omitted by the abstraction
function and are thereby not visible to the upper level. For example, only events
representing the start and end of a certain task could be sent to an upper layer
in a hierarchical control architecture. However, as for horizontal control (and
when both approaches are applied in combination) the paramount challenge is to

175

Chapter 8. Related, Ongoing, and Future Work

ensure that the overall closed loop has the desired properties of controllability and
nonblockingness. Note that abstractions are typically derived manually resulting
in an additional effort and, moreover, the abstractions limit the capabilities of
controller at more abstract layers regarding their capabilities to prevent/control
the plant, that is, the degree of freedom is reduced by this approach. The
potential benefits of hierarchical control are immediate when understanding the
employed concept of abstraction/concretion as a variation of the divide and
conquer principle.

The ideas above have been presented in the initial work in [370] and have been
extended later on in [362, 363] also focussing on ensuring overall nonblockingness
by providing sufficient conditions on the vertical event mappings. Note that the
sufficient condition (formulated as an observer and an observation equivalence) is
then similar to the notion of behavioral equivalence of for example CCS. The used
sufficient conditions were relaxed in [116]. Also, the mentioned approach on state
tree structures (see previous paragraph) also focuses heavily on the integration
of horizontal and vertical composition [228, 76, 69, 181]. Hierarchical control is
also applied in many other settings (as stated before) such as in [247, 96, 248, 278]
where hybrid systems are abstracted to discrete event systems.

Up to now, we have not yet considered hierarchical control when considering
stack-based formalisms as the horizontal controller composition (see subsec-
tion 8.3.2|p.214) seems to be a prerequisite for this development.

8.1.6. Supervisory Control Using Petri Nets

We now consider related work on the control of discrete event systems where
Petri nets [272] are employed. The use of Petri nets leads, similarly to the use of
DPDA specifications as discussed in the next subsection, to countable but infinite
state spaces. Note, as discussed already above, there are also other formalisms
such as hybrid automata that result in state spaces of uncountable size, but
supervisory controller synthesis is then typically based on an abstraction function
to obtain a discrete event system with finite state space instead.

Petri nets are advantageous compared to DFA (as formalisms for controllers,
specifications, and closed loops) as they represent a horizontal composition
of a varying number of DFA processes. In this interpretation, each token in
a Petri net marking can be considered to be the current state of one DFA in
such a composition and, by use of synchronization steps based on join and fork,
the contained DFA can interact and, moreover, since the number of tokens can
increase and decrease, this formalism permits the termination and creation of
DFA processes. Also, a Petri net can be understood to be a method to avoid the
state space explosion problem that results from the explicit calculation of the
synchronous product of multiple DFA because the Petri net can be seen as the
disjoint union of multiple DFA rather than the cartesian product (synchronization
is then added by shared places/transitions and duplicate structures can be
omitted, which also decreases the size of the model). However, the capability
of increasing the number of tokens beyond any bound results in a countable

176

8.1. Related Work

but possibly infinite state space and, at the same time, an increased expressive
power. The (un)marked languages of Petri nets are a reasonable choice for the
definition of the expressive power also for Petri nets. Note, infinite words of
Petri nets are also considered in [267]. The (un)marked words of Petri nets are
defined according to [135, 30, 149, 148, 269, 179] as follows: transitions of the
Petri net are mapped using a labelling σ to events from Σ (that is, all transitions
are observable), a sequence of fired transitions is then mapped to a sequence
of events by applying σ to each transition of the sequence, and this sequence
of events is then a word of the Petri net. Moreover, a word of a Petri net is a
marked word if the final marking of the firing sequence is an element of a set F
of marking markings. For example, languages such as { anbncn . n ∈ N } can be
represented by Petri nets (see the following example) but not by DFA or DPDA.
Example 8.1: «A Petri net Using Advanced Counting Capabilities»
Discussion: The marked language of the Petri net below (with the given initial
marking) is { anbncn . n ∈ N } where only (0, 0, 1, 0, 0) and (0, 0, 0, 0, 1) are
marking markings for the ordering (p1, p2, c1, c2, c3) of places. It ensures the
correct relative number of events by creating an additional token on the special
place p1 for every event a, by moving one token from p1 to the special place p2 for
each event b, and by removing one token from p2 for every event c. Note that the
Petri net contains nondeterminism (because we used a labelling function σ that is
not injective) in the sense that it decides nondeterministically whether it created
enough events a (t1 vs. t4) and b (t2 vs. t5). This is an undesirable situation for
the event b because it results in a blocking problem when t5 is used when the
current marking has more than one token on p1 (consider the unmarked word
aabc). In this case, the remaining tokens on p1 cannot be removed in subsequent
steps preventing that a marking marking can ever be reached. Essentially, in
a Petri net, it is not possible to prevent a transition (such as t5) from firing if
a certain number of tokens are on a certain place (such as p1). Also see the
discussion of inhibitor arcs later on.

a
t1 p1

b

t2 p2

c
t3

c1

a
t4 c2

b
t5 c3

Also, languages such as { wcw−1 . w ∈ {a, b}∗ } can be represented by DPDA
but not by DFA or Petri nets. Hence, Petri nets and DPDA are (by their standard
definition) incomparable regarding their expressive power w.r.t. their (marked)
languages. An important property of Petri nets, which is used in the subsequently
presented works, is that incidence matrix analysis can be used to analyze the
reachable state space in general and also for satisfaction of invariants.

177

Chapter 8. Related, Ongoing, and Future Work

A general classification of Petri net control is given in [167] as follows. In
the controlled behavior approach, the closed loop is given as a Petri net and a
controller is then to be obtained (in some different formalism) from this closed
loop model. See [180, 333, 372, 373] for examples of this approach. In the logic
controller approach, the controller is given as a Petri net and the closed loop be-
havior must be analyzed for suitability (for example, regarding nonblockingness
and controllability). See [374, 350, 63] for examples of this approach. In the
control theoretic approach, the supervisory controller synthesis approach is used in
accordance with [282]. We now focus on this last approach and provide a short
overview of relevant contributions, but it is important to mention that, firstly,
the notions of nonblockingness, controllability, and least restrictiveness are not
always considered and, secondly, controllers and specifications are not given by
Petri nets in each case. In particular, the controller may be given by some formula
that enables or disables the firing of transitions based on the current marking
and the specification may define forbidden markings using for example so called
generalized mutual exclusion constraints (which are weaker than Petri net).

Petri nets have been considered in the context of control theory in [95, 253,
198, 170, 140], but the controller synthesis problem was considered later in [197,
166, 199, 165] with heavy restrictions on the classes of Petri nets. Then, in
[135], the supervisory controller synthesis for Petri nets has been investigated
considering controllability along the lines of [282]. In [135], Petri nets are models
for the closed loops and, at the same time, for the controller to be synthesized
because the closed loop is usually entirely contained in the plant. That is, the
control is added in the form of additional places and arcs to the Petri net plant
model, but the use of inhibitor arcs such as in [329] results in undecidability
of even fundamental properties. Based on the definitions of unmarked and
marked language from above, the standard notions of nonblockingness and
controllability are recovered in [135] (along the lines of [282] and section 3.1|p.33)
to state the expected supervisor synthesis problem. However, only a subclass of
Petri nets generating regular languages was considered. In [130], this work was
extended, but a central problem is that the controller to be synthesized may not
be representable by a Petri net or that the closed loop is then not representable
by a Petri net (see [130, Section 4.3, p. 24]). In [133, 131], the previous result
was extended by identifying a subclass of Petri nets where accessibility and
nonblockingness may be enforced. Moreover, necessary and sufficient conditions
for the existence of a controller in the form of a Petri net are determined when
plants and specifications are given by Petri nets. In [327, 204], it was shown that
controllability is decidable for the setting of Petri nets because reachability of
problematic markings is decidable (however, only prefix closed languages are
considered where nonblockingness does not need to be enforced). In [136, 132],
an alternative (incomparable) semantics for Petri nets (in terms of marked and
unmarked languages) is proposed (a marking M is marking if and only if it
contains a marking marking M′, that is, if M(p) ≥ M′(p) for each place p; the
different M′ thereby describe different patterns of minimal numbers of tokens

178

8.1. Related Work

that are required on certain places) that leads to Petri nets that are closed under
parallel composition, but, still, the controller to be synthesized is no Petri net of a
known Petri net class (this is due to the fact that the generated languages are not
closed under arbitrary union as required to obtain the desired supremal element).
Due to these results, other control formalisms besides Petri nets where used
subsequently. In [134], standard integer linear programming is used for a class
of Petri nets to decide whether a Petri net controller is a satisfactory solution to
the supervisor control problem by deciding controllability and nonblockingness.
The survey [167] suitably collects earlier results of the corresponding authors and
also mentions results regarding controllability for timed [151] and colored [184]
Petri nets. In [33], supervisory controller synthesis is picked up again and, since
a unique least-restrictive satisfactory controller may not exist, some maximal
element is computed in the form of a Petri net. However, while alternative
maximal controllers cannot be combined or compared in general, it is an open
problem which of these maximal controllers is to be chosen (if one of them is to
be chosen at all).

Decidability of the reachability of forbidden markings is an important problem
(in [281], forbidden words are used as an alternative approach) as it is the first step
towards its prevention. The solvability of this problem depends on the class of
Petri nets and on the formalisms for specifying such forbidden markings. Results
on enforcing the above mentioned generalized mutual exclusion constraints based
on place invariants are discussed in [175] and conjunctions of disjunctions of
such constraints are used in [231] to specify desired behavior. Moreover, in [230],
a subclass of Petri nets (with conflicts and synchronization) and a subclass of
generalized mutual exclusion constraints is considered for controller synthesis.
The additional aspect of observability (see Par. Synthesis Considering Observability
and Diagnosability|p.173) is considered in [291] where the forbidden marking
problem is solved (for some class of Petri nets) by synthesis of a controller that is
least restrictive (but without preventing for example deadlocks).

Applications of controller synthesis (as well as controller synthesis results) for
Petri nets are summarized in [167, 175, 174, 138] such as [176, 173] where super-
visory control based on Petri nets is considered for the synthesis of concurrent
programs, [137] where controller synthesis has been applied (using certain specifi-
cations) to a railway network system where the controller and the plant are given
as Petri nets, and [184] where colored Petri nets are used in a manufacturing real-
time scenario. Also, the survey [174] describes a connection between the research
domain of schedulers (with the schedulability problem) and controllers (with the
supervisory control problem), but the used specifications and schedulers are of
different formalisms and future work is required to connect scheduling theory
and control theory. Finally, we mention [250] where shared resource systems
are modelled by a restricted kind of timed Petri nets called timed event graphs
(where the resources are modelled as tokens on a certain place in the Petri net),
where the additional aspects of time and optimal control (see Par. Optimal Control|
p.165) are incorporated, and where a controller synthesis procedure is provided.

179

Chapter 8. Related, Ongoing, and Future Work

Scenarios with restricted subclasses of Petri nets have been considered as well.
In [203], controllers are synthesized for Petri net plants and DFA specifications.
In [234], controllers are synthesized for colored (but bounded) Petri net plants
and so called consistent permutation symmetry specifications. In [177], a Petri net
controller that is preventing deadlocks is synthesized for Petri net plants. In [156],
horizontal and vertical (de)composition is considered from a different perspective,
but no controller synthesis algorithm is provided. In [104], the entire finite state
space is computed and a control policy is derived to prevent that the Petri net
reaches a forbidden marking (also, deadlocks are prevented but nonblockingness
is not enforced).

In conclusion, the languages of Petri nets (which allow for more advanced
counting capabilities) are incomparable to those of DPDA (which allow for the
recording of orderings) and the supervisory controller synthesis (including the
central aspects of nonblockingness, controllability, and least restrictiveness) for
unrestricted Petri net plants and suitable specifications (for example, based on
generalized mutual exclusion constraints) is a challenging problem that is yet to
be solved in full generality.

8.1.7. Supervisory Control for DFA Plants and DPDA Specifications

In the context of closed loops, DPDA have been used for example in [354] to
detect attacks by recording and monitoring the current call stack of a program
and in [295] where a timed DPDA model for a railroad crossing example is
verified using constraint logic programming over reals. Moreover, the possibility
of more compact representations for regular languages using DPDA has been
considered in [125].

Closed loops given by PDA and VPA with partial observability are analyzed
in [251, 190, 191] regarding the decidability of the problems of opacity (decide
from the observable events whether a certain secret state has been reached) and
diagnosability (decide whether a failure state had been reached) also using finite
state approximations of them.

For the supervisory controller synthesis, the use of deterministic context-free
specification languages (that is, the languages generated by DPDA) has been
considered in [283, Section 4] where it was shown that the employed fixed-point
computation of the controller may not terminate or may result in a deterministic
context-free language in such cases. In [328], the decidability of controllability has
been considered for non-DFA formalisms, but no definite results for DPDA were
obtained. In [160], the decidability of enforcing controllability for fully and par-
tially observable systems has been considered and verified for the case of DPDA,
but no construction procedure is given as in our work in [309, 301]. However, the
authors stated that it is “difficult” to extend the decidability proof to the problem
of enforcing nonblockingness. An undecidability result for controllability has
been presented in [243] for deterministic context-free languages to be used as
plant and specification languages.

180

8.1. Related Work

Besides these preliminary considerations, only Christopher Griffin worked
on a solution to the supervisor synthesis problem for DFA plants and DPDA
specifications in [141, 143, 142, 144, 145, 146] also considering further aspects
such as optimal control. However, the synthesis procedure he suggests produces
controllers that are not least restrictive as will be discussed in more detail below.
Our contributions on supervisory controller synthesis for DFA plants and DPDA
specifications have been published in [309, 307, 310, 301, 302].

We now discuss the approach to supervisory controller synthesis of Christopher
Griffin as presented in [143, Section 5.2, p. 65]. In his algorithm B [143, p. 67], he
assumes that all states of the given DPDA controller candidate and the given DFA
plant are marking. This implies that the marked languages of these automata are
prefix closed and that the automata satisfy the nonblockingness property. The
nonblockingness property is preserved by the algorithm and he does not consider
the problem of enforcing nonblockingness for DPDA. However, in contradiction
to [143, Theorem 5.2.4], his algorithm B results in a controller candidate that is
not least restrictive. In fact, he determines a substructure of the initial controller
candidate, but while this procedure is valid for DFA controllers, it is not valid for
DPDA controllers due to the additional stack variable. In particular, an edge of
the controller candidate may be used in an initial marking derivation such that
a controllability problem cannot be prevented subsequently while it is used in
an initial marking derivation where no controllability problem arises. Similarly
and also incorrectly, in [143, Section 7, p. 90] Griffin attempts to obtain such
a substructure by restricting controllable events to minimize costs for optimal
control. Since his analysis of controllability also reveals the pairs of states and
viable top-stacks where the current controller candidate violates the controllability
property that are obtained in our algorithm, we conclude that there are relevant
similarities between his algorithm B and our approach. Subsequently, we compare
our approach (see section A|p.225 for a remark on coauthorship) from section 5.3|
p.82 and the approach of Griffin for identifying controllability problems and then
explain the different handling of such detected problems in our approach and
the one of Griffin.

Comparison of the Identification of Controllability Problems
In both approaches, a DPDA controller candidate C0 and a DFA plant P are the
used inputs. The two algorithms then detect controllability problems as follows.

• We determine all pairs (q, X) of a state q of C0 and a stack element of C0
such that there is an initial derivation d1 of the plant P executing events
w reaching some configuration c1 with state p such that there is an initial
derivation d2 of the controller candidate C0 executing the same events w
reaching some configuration c2 with state q and top-stack X such that
the plant P can execute an uncontrollable event u ∈ Σuc from c1 but the
controller candidate C0 cannot execute the same event u from c2 (possibly
after applying internal steps).

181

Chapter 8. Related, Ongoing, and Future Work

• Griffin determines edges e of C0 that execute a controllable event x such
that there is an initial derivation d1 of the plant P executing events w ∈ Σ∗

and the event x reaching some configuration c1 such that there is an initial
derivation d2 of the controller candidate C0 executing the same events w
and x reaching some configuration c2 by using the edge e in the last step
such that there is a derivation d′1 of the plant P executing events v ∈ Σ∗uc
reaching some configuration c′1 with state p such that there is a derivation
d′2 of the controller candidate C0 executing the same events v reaching some
configuration c′2 such that the plant P can execute an uncontrollable event
u ∈ Σuc from c′1 but the controller candidate C0 cannot execute the same
event u from c′2 (possibly after applying internal steps).

That is, while we detect the actual controllability problem (the lack of a corre-
sponding executing edge in state c2), Griffin detects the latest edge that executed
a controllable event before reaching this configuration. We now consider the
steps of the algorithm B of Griffin and describe how he determines these edges.

• Step 1: Griffin constructs the complement DPDA C1 of the DPDA C0. This
operation follows the construction from [163, Theorem 10.1] and entails a
construction that enforces a unique marking behavior as in our approach
(see FDPDA-Enforce-Unique-Marking-Late from section 5.3|p.84). The construction of
C1 creates for each state additional edges such that every configuration can
be exited by executing any event from Σ (unless an empty step is already
possible for the current top stack). The added edges have a common target
that is a fresh state and this state is then the unique marking state of C1.
Hence, the DPDA C1 marks all words for which the DPDA C0 gets stuck in
some configuration due to a missing edge for the next event to be executed.

This step is applied because controllability problems are now overapprox-
imated by the initial derivations of C1 that apply an edge that has the
additional fresh state as a target state and that executes an uncontrollable
event u when P can execute the event u “in the same situation”.

• Step 2: Griffin constructs from P and C1 the product DPDA C2 by using
FDPDA-DFA-Product from section 5.1|p.64. The resulting DPDA C2 contains
states of the form (q, p) where q is a state of the DPDA C1 and p is a state
of the DFA P.

This step is applied because controllability problems are now identified by
the initial derivations of C2 that apply an edge that has the additional fresh
state as a target state and that executes an uncontrollable event u. That
is, by the product construction the derivations of C1 and P are suitably
connected and only initial derivations are retained where the two automata
can proceed together executing the same events. Note, we apply the same
product construction in our algorithm to achieve the same simplification.

182

8.1. Related Work

• Step 3: Griffin obtains the DPDA C3 by removing states and edges from
C2 that cannot occur in any initial marking derivation, but, as mentioned
above, he only refers to the general decidability known from the literature
for this step. Also, Griffin does not consider the case where all states and
edges including the initial state are removed from C2.

This step is applied because controllability problems are now identified
by the derivations of C3 that apply an edge e that executes a controllable
event x, that then execute a list of uncontrollable events v, and that then
apply an edge that has the additional fresh state as a target state and that
executes an uncontrollable event u. Note, the invalid assumption that there
is always a prior controllable event executed can be fixed by assuming that
plant and controller candidate jointly execute a controllable start-up event.
In our algorithm, we (roughly speaking) consider the simplified case where
the derivation only contains the last step, that is, the edge e executing x is
not assumed and v is considered to be the empty list. This is justified by
our different handling of controllability problems discussed below. Also,
differently from Griffin, we remove inaccessible states and edges using the
operation FDPDA-Enforce-Accessible,Opt from subsection 5.2.4|p.80 to ensure that
we detect the case where no controllability problems are removed.

• Step 4: Griffin constructs a so called predicting machine for C3 along
the lines of [163, Section 10.3]. The obtained predicting machine contains
representations of the derivations that end in a configuration with the
marking state as described in the previous step in its stack values.

This step is applied because controllability problems are now identified by
edges e of the predicting machine that execute a controllable event x where
the subsequent top-stack describes such a derivation. In our approach, we
do not consider longer sequences of uncontrollable events and determine
the relevant top-stack X by dividing each state according to the possible
top-stacks using FDPDA-Observe-Top-Stack from section 5.3|p.83 at an earlier step
and by removing those created states that cannot be reached as in the
previous step. Together with unique late marking and only checking stable
states, we then determine the pair (q, X) mentioned in the first item of the
previous list.

We conclude that our approach proceeds along the lines of the algorithm of
Griffin but is more compact as it avoids the predicting machine that considers
longer sequences of uncontrollable events.

Comparison of the Removal of Controllability Problems
The procedure of Griffin properly identifies controllability problems, but the
removal of all edges identified in the previous paragraph is not least restrictive.
Thereby, he correctly prevents initial derivations that use such an edge but
produce a stack where the subsequent execution of uncontrollable events leads

183

Chapter 8. Related, Ongoing, and Future Work

to a controllability problem, but he falsely prevents initial derivations that use
such an edge but never actually reach a controllability problem later on. The
following two examples demonstrate the difference between our algorithm and
the algorithm of Griffin for enforcing controllability. In the first example, both
algorithms produce the desired solution of the concrete supervisory control
problem, but the second example demonstrates that the algorithm of Griffin does
not result in the least restrictive controller in all cases.

Example 8.2: «Comparison of Algorithms for Enforcing Controllability (1/2)»
Inputs: The plant and specification are given as follows where Σuc = {u}.

Plant DFA P1

p0 p1 p2

a b

a

u

Specification DPDA S1

q0 q1 q2

a,�, •�
b,�,�

a, •,−

u,�,�

Analysis: Observe that (q1, •) is a controllability problem because q1 is accessible
with top-stack • but an edge executing u for this state and top-stack is missing
in S1. Griffin determines that the edge leading to q1 that executes the event
a is the last edge executing a controllable event that is applied whenever this
controllability problem is reached in an initial derivation of S1. Hence, a satisfac-
tory controller must prevent the event a altogether to resolve this controllability
problem. Moreover, a least restrictive controller must allow b and bu to be
marked words of the closed loop. Both algorithms succeed in the identification
of this controllability problem and result in the following two controllers.

Outputs: The resulting controllers using the two algorithms.

DPDA C1,a (this thesis)

c0 c1 c2 c3

a,�, •�
b,�,� −,�,� u,�,�

DPDA C1,b (Griffin)

c4 c5 c6

b,�,�

a, •,−

u,�,�

Discussion for the DPDA C1,a: After reducing controllability to nonblockingness,
nonblockingness is violated in state c1 for the top-stack •. Using the operation
FDPDA-Enforce-Nonblocking,Opt, we remove the edge executing a subsequently in our
algorithm resolving this problem.

Discussion for the DPDA C1,b: After removing noncontrollability, the edge ex-
ecuting a is inaccessible, which can be resolved as well. Note, that the edge
removed from S1 to obtain C1,b is only contained in initial marking derivations
of S1 where a controllability problem is reached.

184

8.1. Related Work

The following second example demonstrates how we successfully reduce con-
trollability to nonblockingness while Griffin generates a controller that is not
least restrictive. The example also demonstrates nicely that the property of least
restrictiveness is a crucial requirement of the abstract and concrete supervisory
control problem to ensure that an obtained solution is meaningful because the
controller of Griffin falsely cuts of a huge part of the desired solution. The steps
of the procedure of Griffin with the intermediate results have been included in
our presentation in [302].

Example 8.3: «Comparison of Algorithms for Enforcing Controllability (2/2)»
Inputs: The plant and specification are given as follows where Σuc = {u}.

Plant DFA P2

p0 p1 p2

a

b u

Specification DPDA S2

q0 q1 q2

a,�, •�
a, •, ••

b, •,− u, •, •

Analysis: Observe that (q1,�) is a controllability problem because q1 is accessible
with top-stack � but an edge executing u for this state and top-stack is missing
in S2. Griffin determines that the edge leading to q1 is the last edge executing
a controllable event that is applied whenever this controllability problem is
reached in an initial derivation of S2. Intuitively, the controller must ensure that
at least two a occur before the first b occurs to avoid this controllability problem.

Outputs: The resulting controllers using the two algorithms.

DPDA C2,a (this thesis)

c0 c1 c2 c3

a,�, •�
a, •, ••

b, •,− −, •, • u, •, •

DPDA C2,b (Griffin)

c4 c5 c6

a,�, •�
a, •, ••

u, •, •

Discussion for the DPDA C2,a: After reducing controllability to nonblockingness,
nonblockingness is violated in state c1 for the top-stack �. Using the operation
FDPDA-Enforce-Nonblocking,Opt, we ensure that at least two events a are executed before
the first b is executed resolving this problem.

Discussion for the DPDA C2,b: After removing noncontrollability, we obtain a
controller candidate that is not least-restrictive because it also prevents marked
words such as aabu. Note, that the edge removed from S2 to obtain C2,b is
not only contained in initial marking derivations of S2 where a controllability
problem is reached. For example, it is important for the marked word aabu that
should not have been removed.

185

Chapter 8. Related, Ongoing, and Future Work

We conclude that our algorithm for reducing controllability to nonblockingness
(see section A|p.225 for a remark on coauthorship) as presented in section 5.3|
p.82, proceeds along the lines of the algorithm of Griffin for the detection of
controllability problems but deviates in their handling by reducing this problem
to our novel algorithm enforcing nonblockingness. Such a reduction is also the
standard strategy in the simpler setting of (not necessarily prefix closed) regular
languages and their DFA realizations.

8.1.8. Isabelle Frameworks for EPDA, CFGs, and Parsers

While a broad spectrum of results has already been formalized in Isabelle, we
are not aware of alternative Isabelle-based frameworks allowing for the uniform
interpretation of the formalisms and semantics we require. Furthermore, existing
Isabelle frameworks are often hard to extend, to refactor, or to generalize to
make them applicable to a certain task. However, we believe that our framework
(see chapter 6|p.89) is, due to the locale hierarchy, easily applicable to various
other important formalisms that define discrete event transitions systems. For
example, the formalisms of Petri nets, Turing machines, and Büchi automata can
be formalized along the lines of the interpretations for the formalisms of EPDA,
CFGs, and Parsers presented in chapter 2|p.15 in our framework. Also, due to our
fine-grained locale hierarchy, we can presumably include many semantical notions
that may become relevant in the future in our framework as well. Furthermore,
the application to the controller synthesis algorithm shows that the meta-theoretic
definitions and theorems introduced are an acceptable foundation for further
formalizations of concrete algorithms. In particular, the transformational results
among different semantics and the theorems and definitions on derivations have
proven to be a suitable foundation that stabilized thoroughly throughout the
verification process of our synthesis algorithm.

The archive of formal proofs [266], where many Isabelle-based formalizations
are listed, contains various automata related contributions. These frameworks
cannot be extended easily for our purposes where various semantics of various
formalisms involving the various relevant semantical properties are to be covered.
Furthermore, in most cases, these frameworks have not been available when we
started with our formalization. Finally, none of the frameworks suitably covers
PDA or Parsers of some kind.

The following frameworks are concerned with regular languages, FSA (in
different shapes), CFGs (in Noam Chomsky normal form), and some other more
complex automata involving hierarchy or time. In particular, [195] and [366] are
concerned with regular expressions (not involving automata). [49] is an executable
formalization of the Cocke-Younger-Kasami-algorithm deciding whether a word
is contained in the marked language of context free grammar in Noam Chomsky
normal form (a formulation of grammars along with their semantics is provided
by domain specific definitions). [38] introduces FSA on bit strings and some
operations on them based on a certain locale for automata and provides an

186

8.1. Related Work

executable decision procedure for Presburger arithmetic. [255] introduces FSA
using functions as single- and multi-step-behavior and a translation of regular
expression into such FSA. In [158], Statecharts are formalized as an example of
hierarchical automata. The formalization is also based on sequential automata,
which are FSA without marking behavior. [345] defines regular and context free
languages based on a coinductive tree-like datatype. This tree-like datatype has
some similarities with the branching semantics introduced in Par. Branching and
Linear Semantics|p.105 that are interpreted for EPDA and Parsers in chapter 2|
p.15. [23] also covers systems with finite and infinite traces and is applied to
for example regular languages. [264] also covers FSA and closure operations on
them. [361] introduces the formalism of timed automata with its semantics. [62]
introduces DFA, FSA, and Büchi automata by means of a general framework.
Many of these frameworks are either not applied to concrete algorithms (thus
making an evaluation of the framework with respect to the applicability to
concrete algorithms impossible) or are targeted at a single formalism (thus
lacking a reasonable amount of generality).

Various process calculi are further formalisms that define discrete event systems
of some kind that have been formalized in Isabelle. A formalization of the π-
calculus has been provided in [287, 289, 288] and also the spi-calculus has been
formalized in [182]. More recently, formalizations of CCS, the π-calculus, and
the spi-calculus are given in [36, 266]. In all cases, binders occurring in the terms
are a major problem to be handled suitably. However, process calculi are not
primarily concerned with the semantical properties relevant in this thesis such
as languages and determinism and, hence, the formalizations are fundamentally
different.

We conclude that our framework, shortly presented in chapter 6|p.89, provides
a sensible enhancement to the world of Isabelle-based frameworks.

187

Chapter 8. Related, Ongoing, and Future Work

8.2. Ongoing Work

In the context of our concrete controller synthesis algorithm, we discuss an
optimization of the construction of the LR(1)-CFG from an SDPDA and an
operation for reducing controllability to nonblockingness that is applied to LR(1)-
CFG. These alternative and additional constructions have been implemented and
tested in our prototype, but the indispensable formal treatment in Isabelle is
missing as of now. We discuss these constructions by examples to demonstrate
their value. Moreover, we discuss an approach for enforcing and analyzing worst
case execution times (WCET) in the context of DPDA controllers, which is to be
applied to a range of concrete application scenarios to underline its usefulness in
the future.

8.2.1. Recursive Construction of the LR(1)-CFG

We introduce the operation FSDPDA→LR(1),Rec that translates, similarly to the two
operations FSDPDA→LR(1),Std and FSDPDA→LR(1),Opt from section 5.2.1|p.71, a given
SDPDA into the language-equivalent, accessible, and nonblocking LR(1)-CFG.
The three operations construct a language-equivalent CFG that is then restricted
to enforce nonblockingness and accessibility as required. In comparison to the
two other operations, the operation FSDPDA→LR(1),Rec generates a smaller CFG that
is still language-equivalent and nonblocking and the construction of the CFG and
the enforcement of accessibility require (as also supported by our prototype-based
evaluation) much less memory and time. We implemented FSDPDA→LR(1),Rec in
our prototype and used back-to-back testing with the other two operations, but a
formal verification is left for future work.

FSDPDA→LR(1),Rec constructs a finite directed (possibly cyclic) dependency graph
(with a root node) by symbolically applying productions that are possible ac-
cording to the construction rules given in Definition 6.8|p.117. The nodes of the
dependency graph contain left and right hand sides of potential productions
where three kinds of nodes also symbolically represent multiple such left and
right hand sides at once. We use a blue color for the successful nodes of the depen-
dency graph which are believed to be relevant for the subsequent generation of
productions. The dependency graph is constructed iteratively and we maintain a
list of pending nodes, which only contain left hand sides of potential productions,
that need to be treated subsequently by our construction procedure. Given such
a node containing a left hand side of the form Lq,X or Lq,X,q′ , we take action for
all edges of the given SDPDA that have q as a source state; also in the case of
Lq,X, we also take action when q is a marking state. We apply three kinds of
actions: adding further nodes with the required edges, updating existing nodes
(changing colors or extending the symbolic representation), or reusing existing
nodes also adding required edges. Reusing existing nodes then leads to possibly
cyclic dependency graphs (or as in the example below in a graph that is not a
tree).

188

8.2. Ongoing Work

Example 8.4: «Recursive Construction of the LR(1)-CFG»
(1) Input SDPDA C: Note the identifiers e1 through e8 for the edges of the SDPDA.

0 1

2

3 4

5 6 7 8

e1 −,�, •�

e2 a, •, •

e3 b, •, •

e4 c, •, •

e5 −, •,−

e6 −, •, •• e7 −, •,− e8 −, •,−

(2) Expected Resulting CFG: The productions in each of the three columns corre-
sponds to the productions that are used in that order in one of the three different
initial marking derivations of the expected LR(1)-CFG.

ρ1 : L0,� −→ L1,•
ρ2 : L1,• −→ a L2,•
ρ3 : L2,• −→

ρ4 : L0,� −→ L1,•,4 L4,�
ρ5 : L1,•,4 −→ b L3,•,4
ρ6 : L3,•,4 −→
ρ7 : L4,� −→

ρ8 : L0,� −→ L1,•,8 L8,�
ρ9 : L1,•,8 −→ c L5,•,8
ρ10 : L5,•,8 −→ L6,•,7 L7,•,8
ρ11 : L6,•,7 −→
ρ12 : L7,•,8 −→
ρ13 : L8,� −→

(3) Resulting CFG Dependency Graph for C: Note the identifiers 0 through 17 for
the nodes of the graph that are given to their left. Also note that node 0 is the
root node of the graph. Also, for example the hyperedge between nodes 15, 7,
and 16 states that the content of node 7 is the first nonterminal of the right hand
side given in node 15 and that node 16 is an instance of the second.

L2,•2 L5,•4 L3,•3 L4,�12 L1,•,q {4, 8}10 L8,�17

L1,•1 L1,•,qLq,� {4, 8}9

L0,�0

L5,•,q {8}14L3,•,q {4}11 L2,•,q {}13L6,•,qLq,• {}6L6,•5

L7,•8 L6,•,q1 Lq1,•,q2 {7 7→ {8}}15

L6,•,q {7}7 L7,•,q {8}16

189

Chapter 8. Related, Ongoing, and Future Work

(4) Incremental Construction: We provide all steps for the construction of the
dependency graph following our general explanation before.

C
on

si
d

-
er

ed
no

de

C
au

se
fo

r
ac

ti
on

Po
te

nt
ia

l
pr

od
uc

ti
on

K
in

d
of

ac
ti

on

R
es

ul
t

of
ac

ti
on

pending nodes: 0

0 Pushing e1 L0,� −→ L1,• add L1,•1

L0,� −→ L1,•,q Lq,� add L1,•,qLq,� {}9

add L1,•,q {}10

pending nodes: 1, 10

1 Executing e2 L1,• −→ a L2,• add L2,•2

Executing e3 L1,• −→ b L3,• add L3,•3

Executing e4 L1,• −→ c L5,• add L5,•4

pending nodes: 2, 3, 4, 10

2 Marking L2,• −→ upd L2,•2

upd L1,•1

upd L0,�0

pending nodes: 3, 4, 10

3 no cause

pending nodes: 4, 10

4 Pushing e6 L5,• −→ L6,• add L6,•5

L5,• −→ L6,•,q Lq,• add L6,•,qLq,• {}6

add L6,•,q {}7

pending nodes: 5, 7, 10

5 no cause

pending nodes: 7, 10

7 Popping e7 L6,•,7 −→ upd L6,•,q {7}7

add L7,•8

pending nodes: 8, 10

8 no cause

pending nodes: 10

continued

190

8.2. Ongoing Work

continued

pending nodes: 10

10 Executing e2 L1,•,q −→ a L2,•,q add L2,•,q {}13

Executing e3 L1,•,q −→ b L3,•,q add L3,•,q {}11

Executing e4 L1,•,q −→ c L5,•,q add L5,•,q {}14

pending nodes: 13, 11, 14

13 no cause

pending nodes: 11, 14

11 Popping e5 L3,•,4 −→ upd L3,•,q {4}11

upd L1,•,q {4}10

add L4,�12

pending nodes: 12, 14

12 Marking L4,� −→ upd L4,�12

upd L1,•,qLq,� {4}9

pending nodes: 14

14 Pushing e6 L5,•,q2 −→ L6,•,q1 Lq1,•,q2 add L6,•,q1 Lq1,•,q2 {}15

use L6,•,q {7}7

add L7,•,q {}16

pending nodes: 16

16 Popping e8 L7,•,8 −→ upd L7,•,q {8}16

upd L6,•,q1 Lq1,•,q2 {7 7→ {8}}15

upd L5,•,q {8}14

upd L1,•,q {4, 8}10

add L8,�17

pending nodes: 17

17 Marking L8,� −→ upd L8,�17

upd L1,•,qLq,� {4, 8}9

pending nodes: none
We use two kinds of symbolic representations in the dependency graphs. Firstly,
the set that is used in nodes 6, 9, 10, 11, 14, 13, 7, and 16 determines possible
replacements for the placeholder q used in these nodes (every state in the set is
a possible replacement). Secondly, the map that is used in node 15 determines
possible replacements for the two placeholders q1 and q2 used in that node (if
the map contains the assignment q1 7→ S and q2 ∈ S, then (q1, q2) is a possible
replacement).

191

Chapter 8. Related, Ongoing, and Future Work

We obtain the productions given in block 2|p.189 from the resulting dependency
graph given in block 3|p.189 by considering all non-hyperedges connecting two
blue nodes and by considering all blue nodes with a nonterminal Lq,X where q
is a marking state of the SDPDA. We can also maintain the relationship between
productions of the CFG and the edges of the SDPDA that is required for the
operation FDPDA-Enforce-Accessible,Opt. In this example, all productions are accessible
and, hence, the resulting CFG is already the desired LR(1)-CFG.

(5) Adapted Input SDPDA C′: Let the SDPDA C′ be defined as the SDPDA from
block 1|p.189 where the state 8 is no longer a marking state. For this adapted
SDPDA C′, we obtain (see the following dependency graph for C′ where only
nodes 9 and 17 are changed compared to the dependency graph for C) the same
productions from above except that ρ8 and ρ13 are not created because the final
step in the construction procedure above cannot be applied because 8 is no
longer a marking state. Hence, the resulting CFG would contain the inaccessible
productions ρ9, ρ10, ρ11, and ρ12. The reason for this is that when we traverse the
dependency graph to obtain the productions (after it has been created entirely),
we already obtained the inaccessible productions when realizing in node 9
that node 17 is not successful. Hence, the nodes 14, 15, 7, and 16 are falsely
assumed to be successful. We believe that an a posteriori removal of inaccessible
productions (see Definition 5.4|p.66 for a description of this procedure) may be
more efficient compared to preventing that inaccessible productions are obtained
in the first place.

(6) CFG Dependency Graph for C′:

L2,•2 L5,•4 L3,•3 L4,�12 L1,•,q {4, 8}10 L8,�17

L1,•1 L1,•,qLq,� {4}9

L0,�0

L5,•,q {8}14L3,•,q {4}11 L2,•,q {}13L6,•,qLq,• {}6L6,•5

L7,•8 L6,•,q1 Lq1,•,q2 {7 �→ {8}}15

L6,•,q {7}7 L7,•,q {8}16

different in the other
dependency graph in
block 1|p.189

A further optimization of this translation seems not necessary as our prototype-
based evaluation suggests that the construction of the LR(1)-Machine is the
bottleneck of our concrete controller synthesis algorithm as of now.

192

8.2. Ongoing Work

8.2.2. Reduce Controllability to Nonblockingness for LR(1)-CFG

The concrete controller synthesis algorithm presented in chapter 5|p.61 has two
drawbacks. Firstly, it does not terminate for some unrealistic specifications that
attempt to enforce a precise repetition of uncontrollable events (see section 5.5|
p.87 for an example and see subsection 8.3.1|p.209 for another approach to
solve this issue within the given algorithm). Secondly, it iteratively converts the
controller candidate between DPDA and LR(1)-CFG, which requires the vast
amount of time and memory resources (see subsection 8.3.1|p.209 and section 8.3|
p.209 in general for approaches to alleviate this issue).

These drawbacks suggest the desirability of a more efficient algorithm, which is
investigated subsequently. Firstly, we consider the case of enforcing controllability
for a given DPDA (i.e., not relying on a reduction to nonblockingness), which is
similar compared to enforcing nonblockingness for DPDA because it also entails
non-local modifications of the DPDA. Secondly, also for the domain of DPDA, we
argue that nonblockingness cannot be reduced to controllability to demonstrate
(together with the reduction of controllability to nonblockingness used in our
synthesis algorithm) that nonblockingness is more complex than controllability
(up to termination of the algorithm and when defining the reduction in terms of
local modifications of the DPDA). From these two points, we derive our claim
that solving both problems in the domain of DPDA is difficult. Then, since
enforcing nonblockingness is simple for the CFG obtained from translation of the
DPDA, we propose the investigation of enforcing controllability in the context of
the obtained LR(1)-CFG. That is, thirdly, we propose to instantiate our abstract
controller synthesis algorithm from section 4.3|p.53 to the setting of CFG.

In the following example, we consider the problem of enforcing controllability
for a given DPDA and describe the steps of analysis and modification that are
relevant for this procedure to conclude that it is a complex problem when it is not
reduced to another problem (that is, enforcing nonblockingness in our concrete
controller synthesis algorithm).

Example 8.5: «Enforcing Controllability for DPDA»
Inputs: The plant and controller candidate are given as follows where Σuc = {u}.

Plant DFA P

p0 p1 p2 p3a b
c

u

a

b

Controller Candidate DPDA C

c0 c1 c2 c3
a, x, •x
b, x, ◦x c, •, •

c,�,�

u, •,−

a, •, •
a,�,�

b, ◦, ◦
x ∈ {�, •, ◦}

193

Chapter 8. Related, Ongoing, and Future Work

Analysis of Controllability Problems: Note that only the state c1 of the DPDA C
may have controllability problems because only the corresponding state p1 in the
plant DFA P has an exiting edge that executes an uncontrollable event. Further
analysis shows that the state c1 can be reached with stacks represented by the
regular expression (•(•+ ◦)∗�) +�. While a controllability problem occurs
in state c1 only for the stack � it is also unavoidable to reach this controllability
problem whenever the state c1 is reached with a stack in •∗� (the admissible
stacks for state c1 are given by the regular expression •∗◦(•+ ◦)∗�) because the
controller must always permit the event a to reach the marking state c1 but it
prevents eventually the uncontrollable event u.

Detection/Localization of Unavoidable Controllability Problems: From the example
above, we can conclude that it is insufficient to consider only the top-stack to
determine controllability problems. However, considering a bounded prefix of
the stack to detect stacks that unavoidably lead to a controllability problem is
also insufficient because •k is a prefix of the stack •k� unavoidably leading to
noncontrollability but also of the admissible stack •k◦� definitely not leading to
a controllability problem. This observation also implies that the controller to be
synthesized cannot avoid controllability problems by inspecting a prefix of the
current stack at runtime.

Resolving Controllability Problems: We now assume that the stacks that unavoidably
lead to controllability problems have been detected by some procedure, that is,
for the current example, we assume that the regular expression •∗� denoting
such problematic stacks for c1 is given. Manually, we obtain the disambiguated
DPDA C′ below in which c1 is only reached with the problematic stacks •∗�
(and that can be removed for that reason) and where its counterpart c′1 is
reached with the remaining admissible stacks (given above). However, this
disambiguation requires a non-local modification, which is similarly applied for
enforcing nonblockingness for a given DPDA in Example 5.1|p.67. We claim that
also the problem of suitably modifying the DPDA is hard.

Controller Candidate DPDA C′

c0 c1 c2 c3a, x, •x
c, •, •
c,�,�

u, •,−

a, •, •
a,�,�

b, ◦, ◦

c′0 c′1 c′2 c′3
a, x, •x
b, x, ◦x c, •, •

c,�,�

u, •,−

a, •, •
a,�,�

b, ◦, ◦

b, x, ◦x

x ∈ {�, •, ◦}

removed to enforce
controllability

194

8.2. Ongoing Work

We believe that nonblockingness cannot be reduced to controllability by means of
local modifications because nonblockingness is defined in terms of reachability
by unboundedly long derivations whereas controllability is only concerned with
the immediately upcoming events. However, we demonstrate in the following
example how the removal of deadlocks, which is a subproblem of the removal of
nonblockingness, can be reduced to controllability.

Example 8.6: «Reducing Deadlocks to Controllability for DPDA»
Inputs: The plant and controller candidate are given as follows where Σuc = {}.

Plant DFA P

p0 p1 p2 p3a b
c

d

a

b

Controller Candidate DPDA C

c0 c1 c2 c3
a, x, •x
b, x, ◦x c, •, •

c,�,�

d, •,−

a, •, •
a,�,�

b, ◦, ◦
x ∈ {�, •, ◦}

Analysis of Deadlock Problems: The deadlock problems are given for state c1 with
the stack �. However, the state c1 can be reached with stacks represented
by the regular expression (•(•+ ◦)∗�) +� and also reaching the deadlock is
unavoidable whenever the state c1 is reached with a stack in •∗� (the admissible
stacks for state c1 are given by the regular expression •∗◦(•+ ◦)∗�) because
the controller must always permit the event a to avoid the deadlock in c2 but it
prevents eventually all further execution in c1.
Note that this analysis is quite similar to the analysis in Example 8.5|p.193.

Reduction of Deadlocks to Controllability: We obtain a plant P′, a controller can-
didate C′, and a set of uncontrollable events Σ′uc by adapting the plant P, the
controller candidate C, and the set of uncontrollable events Σuc as follows to
establish a controllability problem in C′ for every deadlock problem present
in C. For this purpose, we add a new marking state pd to P and C, add an
uncontrollable event u to Σuc, add edges of the form edge-src=ci, edge-event=u,
edge-pop=X, edge-push=X, edge-trg=pd to C for every non-marking state ci for
which no edge exits for the stack X, and add the corresponding edges also to P.

Plant DFA P′

p0 p1 p2 p3

pd

a b
c

d

a

b
u

195

Chapter 8. Related, Ongoing, and Future Work

Controller Candidate DPDA C′

c0 c1 c2 c3
a, x, •x
b, x, ◦x c, •, •

c,�,�

d, •,−

a, •, •
a,�,�

b, ◦, ◦

pd

u,�,�

x ∈ {�, •, ◦}

As a last reduction, we demonstrate that controllability problems can be reduced
to deadlocks. While this last reduction is not practical, we can now conclude,
together with the other reductions discussed before, that enforcing nonblocking-
ness is strictly harder than enforcing controllability and the absence of deadlocks,
which are equally hard (up to termination and when only relying on local modi-
fications of the DPDA in the reductions).

Example 8.7: «Reduce Controllability to Deadlocks for DPDA»
Inputs and Analysis of Controllability Problems: See Example 8.5|p.193 above for P,
C, Σuc, and the analysis why (c1,�) is the only controllability problem.

Reduction of Controllability to Deadlocks: We obtain a plant P′, a controller can-
didate C′, and a set of uncontrollable events Σ′uc by adapting the plant P, the
controller candidate C, and the set of uncontrollable events Σuc as follows to
establish a deadlock problem in C′ for every controllability problem present
in C. For this purpose, we add a new marking state pd to P and C, add an
uncontrollable event v to Σuc, add edges of the form edge-src=ci, edge-event=v,
edge-pop=X, edge-push=X, edge-trg=pd to C for every state ci with a potential
controllability problem for which no edge exits for the stack X, and add the
corresponding edges also to P.

Plant DFA P′

p0 p1 p2 p3

pd

a b
c

u

a

b
v

Controller Candidate DPDA C′

c0 c1 c2 c3

pd

a, x, •x
b, x, ◦x c, •, •

c,�,�

u, •,−v,�,�

a, •, •
a,�,�

b, ◦, ◦
x ∈ {�, •, ◦}

196

8.2. Ongoing Work

We now propose, by providing an example along the way, a controller synthesis
algorithm in which we reduce controllability to nonblockingness for a given LR(1)-
CFG controller candidate and where we enforce nonblockingness by trimming a
CFG. Also, to compute the initial nonblocking LR(1)-CFG controller candidate,
we reuse various operations used in our concrete controller synthesis algorithm
from chapter 5|p.61.
Example 8.8: «Controller Synthesis Algorithm for LR(1)-CFG»
(1) Inputs: The plant and the specification are given as follows where Σuc = {u}.

Plant DFA P

p0 p1 p2 p3a b
c u

d

e

Specification DPDA S

c0 c1 c2 c3
a, x, •x
b, x, ◦x c, •, •

c,�,�

u, •,−

d, •, •
d,�,�

e, ◦, ◦

x ∈ {�, •, ◦}

(2) Analysis: Both of the automata P and S satisfy the nonblockingness property,
the marked language of P contains the marked language of S, and the marked
language of S is the union of the following disjoint sets.

{ c . n ∈ N} (8.1)
{aan c . n ∈ N} (8.2)
{wbaan c . w ∈ {a, b}∗, n ∈ N} (8.3)

{aan am+1c(ud)m+1 . w ∈ {a, b}∗, n, m ∈ N} (8.4)

{ am+1c(ud)m+1 . w ∈ {a, b}∗, m ∈ N} (8.5)

{wbaanam+1c(ud)m+1 . w ∈ {a, b}∗, n, m ∈ N} (8.6)

{wb am+1c(ud)mue . w ∈ {a, b}∗, m ∈ N} (8.7)

When taking S as a controller candidate, there is only the immediate controllabil-
ity problem (c1,�) in which an edge executing u for this state and top-stack is
missing in S. However, a controllability violation is also unavoidable if and only
if no b occurs before reaching c1 (that is for (c1, •∗ •�) and (c2, •∗�)) because the
event e will never be enabled and the controller must return to state c1 whenever
it reaches c2 to satisfy nonblockingness and, hence, the controllability problem
(c1,�) is eventually reached. Stated differently, the sets (Eq. 8.1) and (Eq. 8.5)
contain marked words with immediate controllability problems, the sets (Eq. 8.2)
and (Eq. 8.4) contain marked words with unavoidable controllability problems,
and the sets (Eq. 8.3), (Eq. 8.6), and (Eq. 8.7) should be retained during controller
synthesis.

197

Chapter 8. Related, Ongoing, and Future Work

(3) Construction of the initial LR(1)-CFG controller candidate (1/4): We reuse multiple
operations from our concrete controller synthesis algorithm from chapter 5|p.61

to determine a controller candidate in the form of an LR(1)-CFG.

• We determine the DPDA C0 to be FDPDA-DFA-Product S P
See section 5.1|p.64.

• We determine the SDPDA C1 to be FDPDA→SDPDA C0
See section 5.2.1|p.69.

• We determine the SDPDA C2 to be FSDPDA-EUME C1
See section 5.2.1|p.70.

• We determine the optional LR(1)-CFG Copt
3 to be FSDPDA→LR(1),Rec C2

See subsection 8.2.1|p.188.

• If Copt
3 is None, we return None

We conclude that there is no satisfactory DPDA controller for C and P.

• If Copt
3 is Some C3, we continue.

• We determine the LR(1)-CFG C4 to be FCFG-Rename-Nonterminals C3
We construct an injective renaming function that maps each nonterminal A
of C3 to a pair n p . The association of A with the plant state p is contained
in A due to the product construction. The natural number n is used to
ensure injectivity. We only apply this renaming function to ease readability.
The default color for nontermimals is blue in the following.

Controller Candidate LR(1)-CFG C4 with initial nonterminal 0 p0

0 p0 −→ a 1 p0

0 p0 −→ b 3 p0

0 p0 −→ c 0 p1

1 p0 −→ 7 p0

1 p0 −→ 8 p0 0 p2

2 p0 −→ 10 p0

3 p0 −→ 10 p0

4 p0 −→ 7 p0

4 p0 −→ 8 p0 3 p2

5 p0 −→ 8 p0 2 p2

6 p0 −→ 7 p0

6 p0 −→ 8 p0 4 p2

7 p0 −→ a 4 p0

7 p0 −→ b 2 p0

7 p0 −→ c 2 p1

8 p0 −→ a 5 p0

8 p0 −→ c 1 p1

9 p0 −→ 10 p0

10 p0 −→ a 6 p0

10 p0 −→ b 9 p0

0 p1 −→
1 p1 −→ u 1 p2

0 p2 −→ d 0 p1

1 p2 −→
2 p2 −→ d 1 p1

4 p2 −→ e 0 p3

0 p3 −→

198

8.2. Ongoing Work

(4) Construction of the initial LR(1)-CFG controller candidate (2/4): We now determine
the set Npcp of nonterminals with potential controllability problems for which
further analysis is required to determine whether they describe true or false
controllability problems. Also, we determine their parent nonterminals Nppcp
and use these two sets in the next step to disambiguate the LR(1)-CFG C4.

• We determine Npcp to be FCFG-Potential-Controllability-Problems C4 P
A nonterminal n p contained in C4 has a potential controllability problem if
and only if there is some uncontrollable event u ∈ Σuc such that P has
an edge that exits p and that executes u and u is not in the first set of
the nonterminal n p (that is, if [u] is not in FCFG-First C4 1 [beA n p]; see
section 5.2.2|p.73). The elements of Npcp are colored red such as in n p .

• We determine Nppcp to be FCFG-Parents C4 Npcp
We determine all parent nonterminals of nonterminals in Npcp. Formally,
a nonterminal is in Nppcp if there is a finite initial marking derivation d in
cfgSTD ending in a configuration that contains a nonterminal from Npcp
that is not contained in any other configuration of d. The elements of
Nppcp − Npcp are colored green such as in n p .

We now visualize the LR(1)-CFG C4 similarly as in Example 8.4|p.189. Produc-
tions such as 1 p0 −→ 8 p0 0 p2 are represented by a hyperedge, productions
such as 0 p0 −→ a 1 p0 are represented by a labelled edge, productions such as
3 p0 −→ 10 p0 are represented by an unlabelled edge, and productions such as
0 p1 −→ [] are represented by an unlabelled exiting edge without target.

Controller Candidate LR(1)-CFG C4 with Npcp and Nppcp

0 p0 9 p03 p0

1 p0 10 p00 p1 2 p07 p0

0 p2 4 p0 6 p0

3 p2 2 p1

4 p28 p0

0 p35 p0 1 p1

2 p2 1 p2

c a

b

d
a

b

c

d

a

b

e

ud

a c

199

Chapter 8. Related, Ongoing, and Future Work

(5) Construction of the initial LR(1)-CFG controller candidate (3/4): We conduct in
this step and in the next step two disambiguations of the LR(1)-CFG C4 to ensure
that the subsequent removal of nonterminals with true controllability problems
is least restrictive, which should follow from the fact that all removed initial
derivations indeed exhibit a controllability problem.

• We determine the LR(1)-CFG C5 to be FCFG-Pull C4
To obtain C5, we add productions to C4 as follows. If ρ1 : n1 p1 −→ n2 p2

and ρ2 : n2 p2 −→ w are two productions of C4, we add the production
ρ3 : n1 p1 −→ w. This additional production does not alter the marked
language as it is just the merging of the two given productions. However,
if ρ2 is removed to reduce controllability to nonblockingness, this is then
not automatically also the case for ρ3 and, indeed, retaining ρ3 can then
result in least restrictiveness.

In the LR(1)-CFG C4, we have 6 productions of the form ρ1 and we have to add
the following 15 productions to obtain the resulting LR(1)-CFG G5.

Production ρ1 Production ρ2 Production ρ3

1 p0 −→ 7 p0 7 p0 −→ a 4 p0 1 p0 −→ a 4 p0
7 p0 −→ b 2 p0 1 p0 −→ b 2 p0
7 p0 −→ c 2 p1 1 p0 −→ c 2 p1

4 p0 −→ 7 p0 7 p0 −→ a 4 p0 4 p0 −→ a 4 p0
7 p0 −→ b 2 p0 4 p0 −→ b 2 p0
7 p0 −→ c 2 p1 4 p0 −→ c 2 p1

6 p0 −→ 7 p0 7 p0 −→ a 4 p0 6 p0 −→ a 4 p0
7 p0 −→ b 2 p0 6 p0 −→ b 2 p0
7 p0 −→ c 2 p1 6 p0 −→ c 2 p1

2 p0 −→ 10 p0 10 p0 −→ a 6 p0 2 p0 −→ a 6 p0
10 p0 −→ b 6 p0 2 p0 −→ b 6 p0

3 p0 −→ 10 p0 10 p0 −→ a 6 p0 3 p0 −→ a 6 p0
10 p0 −→ b 6 p0 3 p0 −→ b 6 p0

9 p0 −→ 10 p0 10 p0 −→ a 6 p0 9 p0 −→ a 6 p0
10 p0 −→ b 6 p0 9 p0 −→ b 6 p0

For our running example, we proceed by applying the disambiguation from the
following block 6|p.201 again to C4 (and not to C5 as defined by our algorithm)
for demonstration purposes. In particular, this allows us to discuss the impact of
the disambiguation above more clearly and keeps the intermediately obtained
LR(1)-CFGs suitably compact for presentation.

200

8.2. Ongoing Work

(6) Construction of the initial LR(1)-CFG controller candidate (4/4): We conduct
a further disambiguation of the LR(1)-CFG C5 to ensure that the subsequent
removal of nonterminals with true controllability problems is least restrictive,
which should follow from the fact that all removed initial derivations indeed
exhibit a controllability problem.

• We determine the LR(1)-CFG G0 to be FCFG-Split Nppcp C5
We consider all paths of C5 given by its initial derivations in cfgSTD and
use in each path a custom replica for each nonterminal in R = (Nppcp ∪
Npcp)− {0 p0}. Note, we consider the initial derivation only until no fresh
nonterminals occur in some configuration (that is, we do not unfold loops).
Also, the resulting LR(1)-CFG has a single replica for each nonterminal
not in R (e.g. 8 p0 0). For example, the two paths ω1 = 0 p0 · 0 p1 and
ω2 = 0 p0 · 1 p0 · 0 p2 · 0 p1 are disambiguated by using a different replica
(constructed by adding another natural number) of 0 p1 in the resulting
paths ω′1 = 0 p0 0 · 0 p1 0 and ω′2 = 0 p0 0 · 1 p0 0 · 0 p2 0 · 0 p1 1 in G0.

LR(1)-CFG G0

0 p0 0

0 p1 0 1 p0 0 3 p0 02 p1 0 9 p0 1

7 p0 0 10 p0 10 p2 0

2 p0 0 4 p0 0 0 p1 1 6 p0 1 2 p0 1

10 p0 0 3 p2 0 7 p0 1

6 p0 0 9 p0 0 2 p1 1 4 p0 1 2 p1 2

4 p2 0 8 p0 0 3 p2 1

0 p3 0 5 p0 0 1 p1 0 2 p1 3

2 p2 0 1 p2 0

a c

b

c a b

c

b
a

a

b

d

a
b

e d

ud

d

a c

This last step also replicated occurrences of nonterminals with potential control-
lability problems. The LR(1)-CFG G0 above contains now six such nonterminals.

201

Chapter 8. Related, Ongoing, and Future Work

(7) Reducing Controllability to Nonblockingness: We obtained an initial controller
candidate in the previous steps. In our overall fixed-point algorithm (see next
block), we enforce controllability on such controller candidates Gi that are given
in the form of an LR(1)-CFG as follows. The controller candidates must have
undergone the disambiguation steps in block 5|p.200 and block 6|p.201 to ensure
that the subsequently discussed removals do not invalidate least restrictiveness.
This is discussed for our example in block 9|p.203.

1. We construct the LR(1)-Machine Mi for the given LR(1)-CFG Gi as in our
concrete controller synthesis algorithm.
We determine the fresh symbol S′ not in cfg-nonterminals G,
we determine the fresh symbol $ not in cfg-events G,
we determine the augmented CFG G′i to be FCFG-Augment Gi S′ $, and
we determine the LR(1)-Machine Mi to be FLR(k)-Machine G′i 1 .
See subsection 5.2.3|p.77 for the employed operations.

2. We determine the set Nacp to be FCFG-Actual-Controllability-Problems P Mi Npcp

A nonterminal n1 pi n2 in Npcp is in the set of nonterminals with actual
controllability problems Nacp if and only if there is a state q of Mi that
contains an item I that has an empty first rhs and that has a left hand side
n1 pi n2 and where pi has an outgoing edge executing u in the plant P
and q has no outgoing edge executing u in Mi.

3. We determine the optional LR(1)-CFG Gi,ec,opt to be FCFG-Remove Gi Nacp
We remove the nonterminals Nacp from Gi and also remove all productions
mentioning one these nonterminals. The result is equal to None if the initial
nonterminal of Gi is in Nacp.

4. We return the obtained optional LR(1)-CFG Gi,ec,opt as a result. Note, if
Gi,ec,opt = Some Gi,ec, then Gi,ec is included in Gi w.r.t. the sets of nontermi-
nals, events, and productions. Also, Gi,ec is either equal to Gi, which means
that Gi has no further controllability problems to be removed, or Gi,ec is
strictly smaller than Gi.

By constructing the LR(1)-Machine for the given LR(1)-CFG, we “bind together”
different initial marking derivations (for which the LR(1)-Parser would apply
the same parsing rules) and can remove such a set of initial marking derivations
together once we determine that they collectively exhibit a controllability prob-
lem. For least restrictiveness, it is crucial that such a set either contains only
initial marking derivations exhibiting a controllability problems or, and this is
our approach, that falsely removed initial marking derivations execute words
that are still executable by retained initial marking derivations due to the two
disambiguation steps before. We apply this operation in block 9|p.203 below to
controller candidates given as LR(1)-CFGs.

202

8.2. Ongoing Work

(8) Proposed Controller Synthesis Algorithm: For a DFA plant P, a DPDA specifi-
cation S, and a set of uncontrollable events Σuc such as those given in block 1|
p.197, the algorithm proceeds as follows.

1. We obtain the initial LR(1)-CFG controller candidate G0 according to block
3|p.198, block 4|p.199, block 5|p.200, and block 6|p.201.

2. We apply the following fixed-point iterator on the controller candidates Gi
until a fixed point is obtained.

a) We obtain the (optional) LR(1)-CFG Gi,ec,opt by removing controllability
problems according to block 7|p.202.

b) If Gi,ec,opt = None, we return None and conclude that there is no
satisfactory DPDA controller for S and P.

c) If Gi,ec,opt = Some Gi, we conclude that no controllability problems
were removed and we convert this LR(1)-CFG into the resulting DPDA
controller by using operations of our concrete controller synthesis
algorithm discussed in chapter 5|p.61 and return this DPDA controller.

d) If Gi,ec,opt = Some Gi,ec (where Gi,ec 6= Gi), we enforce nonblockingness
by trimming Gi,ec to obtain the next LR(1)-CFG controller candidate
Gi+1 that is used in the subsequent iteration.

The termination of this procedure is immediate because the size of the sets of the
nonterminals of the LR(1)-CFG controller candidates Gi strictly decreases in each
iteration (considering for each Gi only the size of the subset of the nonterminals
with potential controllability problems is also suitable for this purpose).

(9) Resulting Satisfactory but not Least-restrictive Controller: For our running exam-
ple, we apply this proposed fixed-point computation to the initial LR(1)-CFG
controller candidate given in block 6|p.201 (where we omitted the step in block
5|p.200 for now). For this LR(1)-CFG, we determine, see block 2|p.197 for our
initial manual analysis of immediate and unavoidable controllability problems,
that two nonterminals are to be removed in each of the first two applications of
enforcing controllability.

• Iteration 1: Step a: Enforce Controllability

– The nonterminal 0 p1 0 has a controllability problem because it is
used for the initial marking derivation executing c, which is in the set
of immediate controllability problems in (Eq. 8.1)|p.197.

– The nonterminal 0 p1 1 has a controllability problem because it is
used for the initial marking derivation executing acud, which is in the
set of immediate controllability problems in (Eq. 8.5)|p.197.

• Iteration 1: Step b: Enforce Nonblockingness

– The nonterminal 0 p2 0 is removed by trimming the LR(1)-CFG.

203

Chapter 8. Related, Ongoing, and Future Work

• Iteration 2: Step a: Enforce Controllability

– The nonterminal 2 p1 0 has a controllability problem because it is
used for the initial marking derivation executing ac, which is in the
set of unavoidable controllability problems in (Eq. 8.2)|p.197.

– The nonterminal 2 p1 1 has a controllability problem because it is
used for the initial marking derivation executing aacud, which is in
the set of unavoidable controllability problems in (Eq. 8.4)|p.197.

• Iteration 2: Step b: Enforce Nonblockingness

– The nonterminal 3 p2 0 is removed by trimming the LR(1)-CFG.

In the third iteration, no further nonterminals are removed and the algorithm
terminates. The removed nonterminals are marked in the following picture.

Not Least Restrictive Obtained Controller LR(1)-CFG without block 5|p.200

0 p0 0

0 p1 0
1a

1 p0 0 3 p0 02 p1 0
2a

9 p0 1

7 p0 0 10 p0 10 p2 0
1b

2 p0 0 4 p0 0 0 p1 1
1a

6 p0 1 2 p0 1

10 p0 0 3 p2 0
2b

7 p0 1

6 p0 0 9 p0 0 2 p1 1
2a

4 p0 1 2 p1 2

4 p2 0 8 p0 0 3 p2 1

0 p3 0 5 p0 0 1 p1 0 2 p1 3

2 p2 0 1 p2 0

a c

b

c a b

c

b
a

a

b

d

a
b

e d

ud

d

a c

This resulting LR(1)-CFG controller candidate is not least restrictive because (for
example) the word abbac is falsely removed from the marked language of the

204

8.2. Ongoing Work

controller candidate as follows. Firstly, the word abbac is, according to block 1|
p.197, in the marked language of the specification S. Secondly, the extension
abbacu is a marked word of the controller candidate above.
The violation of least restrictiveness follows from the removal of the nonterminal
2 p1 0 in step 2a that must be removed to remove ac but that also removes the
word abbacu from the marked language. To resolve this problem, we require
the application of the disambiguation step in block 5|p.200 in which we add a
replica X of 2 p1 0 that is reachable from 6 p0 0 by executing c. This replica X is
then retained in the controller candidate and guarantees that the word abbacu
is retained in the marked language of the controller candidate. The satisfactory
and least restrictive controller is depicted in the next block.

(10) Resulting Satisfactory and Least-restrictive Controller: We do not visualize the
initial LR(1)-CFG controller candidate that results from applying both disam-
biguation steps from block 5|p.200 and block 6|p.201 due to its size. After the
third iteration our fixed-point computation in which no controllability problems
are resolved, we ultimately obtain the satisfactory and least restrictive controller
that is given as follows.

Least Restrictive Obtained Controller LR(1)-CFG with block 5|p.200

0 p0 1 p0

2 p0 3 p0

1 p1

a b

a

b

a

a

a

b

a

b

c c

2 p2 0 p3
e3 p22 p1

d 8 p0

5 p0 1 p1

2 p2

1 p2

a c

u

d

For example, the word abbac discussed above is also a marked word of this
controller candidate, which we computed using an extension of our prototype
CoSy. A close inspection shows that the marked language of this LR(1)-CFG is
equal to the union of the sets of words given in (Eq. 8.3)|p.197, (Eq. 8.6)|p.197,
and (Eq. 8.7)|p.197, which was the intended result.

205

Chapter 8. Related, Ongoing, and Future Work

The formal verification of the algorithm that is described and applied in this
example remains for future work, but applications to various different examples
including the one above are promising. There are some key issues to be verified
in addition to the results obtained for our concrete controller synthesis algorithm
from chapter 5|p.61. Firstly, the CFG controller candidate obtained upon termina-
tion of the fixed-point computation should satisfy the LR(1)-property to allow
the translation into a DPDA. We believe that the disambiguation operation from
block 6|p.201 and the removal of nonterminals and productions for enforcing
controllability and nonblockingness readily preserve the LR(1)-property. The
disambiguation operation from block 5|p.200 can invalidate this property but its
application can be reverted whenever the existence of multiple remaining replicas
results in the violation of the LR(1)-property (for simplicity, we left out this step
in the example above). Secondly, a proof for the termination of the fixed-point
computation is required. We expect that the reasoning given on this issue in
the example will suffice. Thirdly, the CFG controller candidate obtained upon
termination of the fixed-point computation should have no further controllability
problems and should also satisfy the nonblockingness property to ensure that it
is a satisfactory solution. Enforcing nonblockingness for CFG has already been
formally verified and our proposed approach using the LR(1)-Machine for identi-
fying controllability problems is directly related to the LR(1)-Parser constructed
in our concrete controller synthesis algorithm from chapter 5|p.61 where it is also
used to bind together initial marking derivations of the nonblocking LR(1)-CFG.
Fourthly, we must verify that the employed disambiguations suffice to ensure
least restrictiveness in particular for the operation for enforcing controllability.

If the formal verification of this proposed algorithm reveals unresolvable prob-
lems, we may still use the proposed algorithm as follows. Firstly, if it does not
remove all controllability problems, we can integrate it into our concrete controller
synthesis algorithm from chapter 5|p.61 by applying it in each of its iterations
when an LR(1)-CFG is obtained. Secondly, if it is not least restrictive (presumably
due to insufficient disambiguation), we can present alleged controllability prob-
lems to the user for manual validation (however, we propose the development of
further disambiguations in this case or to remove fewer controllability problems).
Thirdly, if it does not preserve determinism (presumably due to too extensive or
inadequate disambiguation), we can present alleged controllability problems to
the user for manual validation as well (however, we propose the development of
weaker or more precise disambiguations in this case).

The proposed controller synthesis algorithm has been implemented in our
prototype CoSy and back-to-back testing with our concrete controller synthesis
algorithm from chapter 5|p.61 for various examples did not reveal differences
in the marked and unmarked languages of the resulting DPDA controllers (for
inputs where our concrete controller synthesis algorithm from chapter 5|p.61

also terminates). If the formal verification of this proposed algorithm shows that
it is sound, least restrictive, and terminating, we believe that it is a reasonable
replacement for our concrete controller synthesis algorithm from chapter 5|p.61

because it is more efficient and guaranteed to terminate.

206

8.2. Ongoing Work

8.2.3. Enforce/Verify Worst-case Execution Times

The worst case execution time (WCET) of a controller is given by the maximal
amount of time it requires between two events and is required to ensure that the
controller reacts timely upon any event of the plant to ensure overall functional
correctness. Synchronous programming languages such as Esterel [39], Lustre [7],
and SyncCharts [21] in which controllers can be implemented also rely on the
existence of a WCET for a correct closed loop behavior. This requirement has
also been mentioned in Par. Further Controller Characteristics|p.166 for the setting
of controller synthesis. For DFA controllers, the WCET is negligible because the
step-relation can be encoded suitably and the controller does not have to perform
complex computations. However, the DPDA from the following examples does
not enjoy a WCET and, moreover, the example suggests that there is no procedure
that translates a DPDA without WCET into an equivalent DPDA with WCET.

Example 8.9: «Internal Steps are Essential for DPDA»
DPDA Controller C:

0 1

2

3

4

5

a, a, aa
a,�, a�

c,�,�
c, a, a

d,�,�
d, a, a

a, a,−
−,�,�

b, a, ba
b,�, b�

b, b, bb

d, b, b
−, b,−

−, a, a
−,�,�

c, b, b
b, b,−

−, a, a
−,�,�

Discussion: The DPDA controller C has the marked language { anbmcbm . n, m ∈
N } ∪ { anbmdan . n, m ∈ N }. It counts the number of occurrences of the
events a and b as it executes them until executing either the event c or the event d
resulting in the stack bman�. Then, for a word in the first set, the controller C
can check that it executes the same number of events b as before by popping one
b from the stack in each step (state 5). However, for a word from the second set,
the controller C has to drop the prefix bm from the stack (in state 4) to obtain
the stack an� before being able to check that it executes the same number of
events a as before by popping one a from the stack in each step (state 2). Hence,
the controller has no WCET because for every natural number m there is a
possible input such as bmd where the DPDA requires m steps before it can make
a decision on whether or not to execute the event a at least once.

207

Chapter 8. Related, Ongoing, and Future Work

However, an actual encoding of this DPDA controller in a programming language
may use more powerful stack-modification operations to guarantee a WCET by
(a) realizing that the loop at state 4 in the DPDA above has the effect that all
b-instances are removed from the top of the stack, by (b) maintaining a pointer
to the point in the stack that is just underneath the unbounded number of b-
instances (this pointer would be established when changing state from 0 to 3),
and by (c) cropping the stack using this pointer when reaching state 5.

When considering the LR(1)-CFG, the LR(1)-Machine, and the LR(1)-Parser for
the DPDA from the example above, we can indeed determine and use pointers
along this idea. Intuitively, the LR(1)-CFG for this DPDA contains a production of
the form X −→ YZ where Y can execute words in bmd and where Z can execute
a following event a. The pointer mentioned above should be established for the
look-ahead event a originating from Z when the first event b (or the event d) is
executed using the nonterminal Y. When the identified look-ahead event a is then
observed later on, which means that the nonterminal Z will not produce further
events, the stack should be cropped using the established pointer. In the example,
this avoids the application of an unbounded number of reduce rules that silently
revert steps applied to the nonterminal Z and its derivatives. However, these
preliminary results require further investigation.

Alternatively a WCET of k can be enforced on a computed controller candidate
C by (a) eliminating/merging adjacent edges not executing events, by (b) adapting
all edges not executing events to execute the fresh event τ, by (c) constructing
the product automaton of C and a DFA such as the one in the figure below, and
by (d) reverting τ-executing edges of the resulting automaton back into edges
executing no event.

Figure 8.1: «DFA Used for Enforcing a WCET of 5 on a DPDA»

σ σ σ σ σ

σ
τ τ τ τ τ

σ ∈ Σ− {τ}

However, the least restrictiveness of this procedure depends on the non-trivial
step (a) from above for reducing sequences of internal steps. Also note that
step (c) of this procedure may invalidate nonblockingness and controllability
because it may restrict the marked language. Hence, the employed controller
synthesis algorithm must then be restarted on the obtained automaton to ensure
the satisfaction of these two properties.

Also, while we are not aware of suitable optimizations of the definition of the
canonical LR(1)-Parser, the desired adaptations enforcing a WCET would also
result in more efficient parsing as intermediate reduce steps could be omitted.

208

8.3. Future Work

8.3. Future Work

We discuss several envisioned enhancements, extensions, and applications of the
contributions presented in this thesis. In particular, we strive to enhance and
optimize the concrete controller synthesis algorithm presented in chapter 5|p.61

and its prototype implementation CoSy discussed in section 7.4|p.154 in several
directions. Also, we will continue our work from the previous section building
opon the promising results presented.

8.3.1. Further Enhancements of the Contributions

We consider enhancements of our concrete controller synthesis algorithm (and
also its prototype implementation CoSy) regarding several important aspects
of the inputs, the performed computation, and the outputs. In particular, we
consider workflows and formalisms for the definition of inputs of our concrete
controller synthesis algorithm to ease applicability and to allow for stronger
specifications, we discuss aspects of the concrete controller synthesis algorithm
such as efficiency, trustworthiness, termination, and a supplementary workflow
integration, and we target the problem of minimizing the memory footprint of
the synthesized controller when being deployed.

Inputs of the Concrete Controller Synthesis Algorithm
We now continue our discussion from section 7.1|p.143 and discuss problems
regarding the (compositional) definition of the plant and the specification and
the use of specifications stronger than DPDA for the synthesis algorithm.

We will utilize a more relaxed CSP-style synchronization operation (see [162])
that synchronizes the steps of a DPDA G1 and of a DFA G2 only for the events
in an additionally provided set ΣS, written G1|[ΣS]|G2, and that allows for inter-
leaving of steps for events not in ΣS. Such an operation will ease applicability of
our synthesis algorithm because it allows for simplified plant and specification
automata (for example, the self loops for various additional events in Example 7.2|
p.147 could be omitted). By also using this synchronization operation, we will
define the plant DFA as the determinization of the product automaton of a set
of (possibly nondeterministic) FSA. Note that the usage of this synchronization
operation within the concrete controller synthesis algorithm as a replacement for
FDPDA-DFA-Product will impact our entire formalization (including the operation inf
defining the corresponding synchronization operation on DES instances). Addi-
tionally, to avoid the model explosion problem caused by the application of the
synchronization operation, we will investigate whether the computation of the
synchronization automaton can be avoided (see [228] for a DFA-based synthesis
approach for State Tree Structures that avoids the model explosion problem in
this way). Moreover, we will develop a reasonable input notation for DPDA and
DFA to simplify their definition, which was already required for Example 7.4|
p.151 where we automatically generated different DPDA specifications and DFA

209

Chapter 8. Related, Ongoing, and Future Work

plants for different sets of parameters for use in section 7.5|p.157. To further
increase the expressiveness of the specifications, we will select a logic such as
LTL, CTL, or CaRet [13] to be able to state additional relevant properties that
are to be satisfied by the closed loop. Then, given the controller candidate in
the form of a DPDA or in the form of an LR(1)-CFG, we will develop suitable
algorithms for enforcing these properties. Moreover, instead of using the DPDA
as a positive specification (as it is customary in supervisory controller synthesis),
we will evaluate whether the use of a DPDA for the definition of undesirable
behavior is beneficial. Note that we can readily apply our algorithm in this case
by applying the well-known complement operation on this negative DPDA (see
[168, Theorem 7.29, p. 289]) but that we cannot use a positive and a negative
DPDA specification at once because in this case the synchronous product of the
positive DPDA and the complement of the negative DPDA would not be a DPDA
as required. Moreover, as for the plant, where we may use nondeterministic FSA
and translate them to DFA before applying our algorithm, we may use a PDA
specification that is nondeterministic and convert it to a CFG. This conversion
preserves the marked language of the PDA also in this nondeterministic case
and, which warrants further analysis, removes the nondeterminism in some cases.
While not every PDA has an equivalent DPDA counterpart, we will analyze the
limitations of this conversion. Also, we will investigate whether the synthesis
procedure can be adapted to handle and preserve stack-elements with an inner
structure representing for example multiple values at once. Similarly, we will
determine whether compound operations (given for example by EDPDA edges)
that can be represented by multiple DPDA edges and that are used in the input
specification can be reestablished in the DPDA that is obtained from the inter-
mediate LR(1)-CFG. This would be beneficial as it would help to reduce the size
of the DPDA controller candidates and it would help to retain the connection
between the provided specification and DPDA controller candidates that occur
during the fixed-point computation. Finally, we note that an integrated workflow
accompanied with a tool environment requires also support for the validation
of the provided plant and the provided specification. Such validation will be
supported by producing diverse subsets of the marked languages, which can
be obtained for example by determining words derivable by all distinct subsets
of productions of the equivalent LR(1)-CFG. Each word of such a subset then
corresponds to a scenario that can be inspected.

Operations of the Concrete Controller Synthesis Algorithm
We will continue our work on the operations of the concrete controller synthesis
algorithm to increase its efficiency with respect to time and space, to increase
trustworthiness of all operations of its prototype implementation CoSy, to ensure
termination or at least to realize patterns that may indicate nontermination, and to
provide additional feedback during the fixed-point computation to allow the user
to check that the fixed-point computations proceeds as expected.

We already provided the first steps in subsection 8.2.2|p.193 towards an al-

210

8.3. Future Work

gorithm that is more efficient compared to our concrete controller synthesis
algorithm from chapter 5|p.61. In the fixed-point computations carried out by
both algorithms, we employ operations on sequences of only slightly changed
EPDA, CFGs, and Parsers. Hence, to increase efficiency, we will adapt the
employed operations to adapt results from earlier applications to the slightly
changed inputs. For example, a certain part of the DPDA controller candi-
date may have no controllability problems after iteration i and does not need
to be reconsidered in subsequent iterations. We will verify that the operation
FDPDA-Enforce-Accessible,Opt used at the end of the operation FDPDA-Enforce-Nonblocking,Opt
can be skipped because the LR(1)-Parser constructed in FDPDA-Enforce-Nonblocking,Opt
is accessible and the subsequent translation of this LR(1)-Parser into a DPDA pre-
serves accessibility. This conjecture is supported by a prototype-based evaluation
using CoSy that we carried out for this purpose. This analysis also showed that
we can expect a significant gain in efficiency when actually skipping the applica-
tion of FDPDA-Enforce-Accessible,Opt. Similarly, we will attempt to adapt the operation
FDPDA-Reduce-Controllable to be able to skip the application of FDPDA-Enforce-Accessible,Opt
in FDPDA-Reduce-Controllable as well by ensuring that every auxiliary state that is intro-
duced is always accessible (see section 5.3|p.82). Moreover, when implementing
our prototype CoSy, we determined various optimizations of building blocks
of our concrete controller synthesis algorithm. Some of these optimizations are
given by straightforward implementations using multithreading. Other opti-
mizations avoid recomputations for unchanged inputs using caches, compute
the outputs differently as the operation FSDPDA→LR(1),Rec presented in subsec-
tion 8.2.1|p.188, additionally reduce the size of the resulting EPDA, CFGs, and
Parsers by removing inaccessible parts or by merging adjacent edges, productions,
and rules, or exploit observations such as the one above on the application of
FDPDA-Enforce-Accessible,Opt. We will implement our algorithms in C++ by adapting
the libFAUDES [32] plugin mentioned in section 7.4|p.154 because our prototype
based evaluation from section 7.5|p.157 revealed that, when allocating more
memory than required for the Java runtime environment, the default memory
handling of Java causes a significant increase of runtime.

The above discussed optimizations of building blocks (and even more so the
discussed extensions) are on their own not trustworthy and their integration
and use in our prototype CoSy henceforth requires further formalization and
verification to reestablish a high degree of trustworthiness. This problem of
maintaining trustworthiness upon any kind of adaption is also not significantly
alleviated by the back-to-back testing with the formally verified original opera-
tions that we typically employ in initial stages of change development. In fact,
the manual implementation process from the Isabelle-based formalization of the
various building blocks to Java code is obviously subject to failure, but, as of
now, the Isabelle support for converting formalizations of building blocks from
Isabelle into functional programs is not adequate due to lack of documentation,
lack of automatic support, lack of generality (automatic handling of enough
language constructs and operators), and lack of code optimizations (such as

211

Chapter 8. Related, Ongoing, and Future Work

multithreading). We will use the Isabelle code generation techniques to obtain a
reference implementation once it reached a sufficient level of maturity.

We argued in section 5.5|p.87 that we believe that our concrete controller syn-
thesis algorithm from chapter 5|p.61 already terminates for all reasonable DPDA
specifications, which are not specifying the execution of an unbounded number of
uncontrollable events according to the elements of a previously established stack.
However, we will determine adaptations of our concrete controller synthesis
algorithm ensuring termination such as the synthesis algorithm discussed in
subsection 8.2.2|p.193 for which termination is not in doubt. When considering
various problem instances such as for example Figure 5.9|p.88 where our pro-
posed concrete controller synthesis algorithm did not terminate, we observed that
some controllability problems are not removed when the source of uncontrollabil-
ity is a stack element that may be hidden under an unbounded number of other
stack elements. The application of the fixed-point computation then resulted in a
sequence of obtained controller candidates that are all having a similar instance of
the “same” controllability problem. Intuitively, our algorithm fails in these cases
to remove unavoidable controllability problems as discussed in subsection 8.2.2|
p.193. From the considered example, we believe that the controllability problems
that are undesirably preserved between two successive controller candidates can
be identified in the form of preserved substructures. If the least restrictiveness
of the removal of these substructures can be formally verified, we may obtain a
terminating algorithm by integrating this check-and-remove procedure. Other-
wise, the user may take action based on well-formulated notifications on these
preserved controllability problems. However, the use of such an additional check
would also require and alteration of our proposed abstract controller synthesis
algorithm.

We believe that the synthesis-time analysis of the marked words that the con-
troller synthesis algorithm removes from the controller candidates will improve
the workflow of controller synthesis. This information will assist the developer
of the plant and the specification in their validation, will allow the developer to
make substantiated estimations on the termination of the algorithm, and will
enable the developer to manually adapt the specification to resolve identified con-
trollability problems with the benefit of maintaining a small controller candidate
(confer to Example 7.4|p.151 where the ultimately retained subset of edges of the
specification could be determined using this workflow).

Outputs of the Concrete Controller Synthesis Algorithm
In Par. Further Controller Characteristics|p.166, we have already discussed the need
for a resulting DPDA controller that does not require an excessive amount of
memory for its transition relation, in addition to the memory that is required for
the stack, when being deployed. In Par. Additional Property of Minimality for DPDA|
p.39 and in Par. Additional Property of Accessibility for DPDA|p.40, we described
the notions of size-minimal controllers, language-minimal controllers, accessible
controllers, and controllers that are accessible in the closed loop. To reduce the

212

8.3. Future Work

memory footprint of the DPDA controller, we are interested in size-minimal
controllers, but the known concrete controller synthesis algorithms generate
language-minimal controllers. This is due to the fact that they all start with a
candidate that is either the plant P or (if available) the synchronous product of
the plant P and the specification S. See for example the abstract and concrete
algorithms from [281] where specifications and marked languages are not used
and the abstract and the concrete algorithms from this thesis given in chapter 4|
p.45 and chapter 5|p.61. For example, if the specification S does not forbid any
behaviors of the plant P and the plant already satisfies the nonblockingness
property, then any controller C satisfying epda-to-des P ≤ epda-to-des C is a
least restrictive satisfactory controller. However, the smallest controller w.r.t. the
marked and unmarked language is P and the smallest controller w.r.t. the number
of states and edges is S (assuming that S contains only one state and one self-loop
for each event).

Language-minimal DFA controllers C can be translated into size-minimal
DFA controllers with equivalent marked language by standard minimization
algorithms. However, we are interested in a different equivalence notion here:
the obtained size-minimal DFA controller should result in the same closed loop
language instead. A straightforward approach to accomplish this goal should
be to add all words to the marked language of C that would be removed by
the synchronous composition with the plant and to minimize the obtained DFA
afterwards. Of course, we would not add words with events that are not occurring
in C. In the discussed example above, this would modify the controller that is
equal to P into the controller equal to S resulting in the described minimal DFA
controller of one state and one self-loop for every event.

However, there are no standard minimization algorithms for DPDA: there are
decision procedures for DPDA equivalence [318, 331, 330] and we use a similar
bisimulation-based approach for LR(1)-CFG that we integrated in our prototype
CoSy for testing purposes, but further heuristics for DPDA minimization are
called for. Nonetheless, we will attempt to apply the outlined approach for DFA
also for a DPDA C by modifying the DPDA controller along the same lines as for
the DFA above and by enforcing nonblockingness on this obtained DPDA. We
will then analyze whether the resulting DPDA is much smaller compared to the
initial DPDA C.

Besides these general procedures to minimize intermediately obtained LR(1)-
CFG or DPDA controllers, we note that the size of the LR(1)-Machine and the
LR(1)-Parsers that are constructed in subsection 5.2.2|p.73 depends on the input
LR(1)-CFG used in this step. Therefore, we will, on the one hand, attempt
to determine alternative approaches that do not rely on the conversion via
LR(1)-CFG and, on the other hand, develop operations such as our mentioned
bisimulation-based operations to obtain an equivalent LR(1)-CFG that results in an
LR(1)-Parser of reduced size. Moreover, size-minimal Parsers are also important
in the field of parsing theory because the Parsers for programming languages
can become quite large as well. The construction of the (canonical) LR(k)-Parsers

213

Chapter 8. Related, Ongoing, and Future Work

from [189] has been investigated in [193, 101, 102, 4, 3] for possible reductions
with respect to the size resulting in the notions of LALR(k)-CFG and SLR(k)-CFG.
The notion of LALR(k)-Parsers reduces the size of the (canonical) LR(k)-Parser by
merging all states of the LR(k)-Machine with same sets of item-cores (the core
of an item is the production to which it belongs). However, LALR(k)-Parsers
(and mixed versions such as LA(l)LR(k)-Parsers for l ≤ k) do not satisfy the
nonblockingness property because they may apply additional reduce rules before
determining an erroneous input (confer, [325, Volume II, p. 66]). To accomodate
for this problem, we will determine a mechanism that is to be used by the runtime
environment for the DPDA controller. This mechanism should ensure that the
event observed in such reduce rules is not actually permitted before reaching the
end of the finite sequence of reduce rules that is then followed by an application
of a shift rule. Also, if this shift rule is then missing, the runtime environment
would have to be able to execute a rollback of the applied reduce rules to allow
for a different evolution. Similarly, SLR(k)-Parsers can be used but they may
detect errors even later than LALR(k)-Parsers [325, Volume II, p. 73].

Finally, based on a set of patterns where each pattern is a word of stack elements
that are expected in that order on the stack, a runtime environment for DPDA
can reduce the required size of the memory by representing a stack by a list of
patterns that are associated with a number of repetitions. Besides this approach
that is inspired by our considerations on enforcing a worst case execution time in
subsection 8.2.3|p.207, the runtime environment may use lossless compression
algorithms such as the one of David Albert Huffman [169] to reduce the memory
consumption of the stack.

8.3.2. Further Extensions of the Contributions

We now consider further problems in the context of supervisory controller synthe-
sis that we have not been handled by formally verified algorithms in this thesis.
On the one hand, these problems are caused by the use of DPDA controllers
and specifications and, on the other hand, we simply consider variations of the
supervisory control problem that have been targeted in the past for the setting of
DFA controllers and specifications.

We have already considered the problem of enforcing a worst case execution
time (WCET) in subsection 8.2.3|p.207 in the context of DPDA. This work will be
continued along the presented lines to derive runtime environments for DPDA
controllers with support for compound stack operations that are executed instead
of a possibly unbounded sequence of internal steps. To this end, we will attempt
to ensure that there is a maximal number of steps between any two uncontrollable
events determining a WCET of the controller.

The risk of a stack overflow at runtime should be minimized as discussed in
Par. Unbounded Stacks of DPDA|p.143. For controllers where no upper bound
on the depth of the stack can be determined, we will continue the development
of stack-usage patterns to reduce the depth of the stack as much as possible

214

8.3. Future Work

and, additionally, we will use estimated rates for pushing and popping elements
to and from the stack or a probabilistic extensions of the DFA plant and the
DPDA controller to obtain a probabilistic model in which the likelihood of
out-of-memory errors can be bounded.

We have not handled the plant identification problem [349] in this thesis, but the
use of an inadequate plant model or robustness issues such as pertubations, drifts,
or imperfect communication can result in an actual plant not behaving according
to its model from the perspective of the controller. To approach robustness against
these adverse effects on the closed loop, we will determine whether error recovery
strategies from parsing theory can be used to resync the DPDA controller and
the DFA plant when detecting an error. Such error recovery algorithms may use
the notion of the minimum distance errors to determine the minimal number of
events to be changed in the currently parsed unmarked word to obtain a prefix
of a marked word and to change the configuration of the controller accordingly.

The problem of constructing a controller that selects controllable events to be
executed to drive the plant into a marking state has been discussed in Par. Optimal
Control|p.165. This problem can also be extended by assigning costs or rewards to
for example events or states and by requiring that the actual derivations that end
in marking states have minimal costs. The computation of an optimal schedule
that the DPDA controller is then supposed to follow is an open problem (the
approach proposed in [143, Chapter 7, pp. 90–] by Christopher Griffin does not
properly incorporate the stack as in the proposed synthesis procedure). Moreover,
we will investigate whether a probabilistic model can be used to reasonably
restrict the adversarial capabilities of the plant issuing uncontrollable events.

It is a well-known limitation of deterministic context free languages (that is, the
class of marked languages of DPDA) that they are not closed under intersection.
This implies that there is no operation that constructs the synchronous product
of two DPDA specifications or of two DPDA controllers and that results in a
DPDA in all cases. For the specifications, this impediment hampers our ability
to harness a compositional construction of the overall specification because
all stack accessing parts must be given collectively in a single DPDA. For the
controllers, the problem is similar; in a horizontal decomposition approach (see
Par. Synthesis Considering Horizontal Composition (Modular and Distributed Control)|
p.174) where each of a number of (modular) plants is controlled by one (modular)
controller, the synchronous product of these plants (the global plant) is formally
controlled by the synchronous product of the controllers (the global controller).
The central problem of this approach is, also in the setting of DFA specifications
and DFA plants, that the synchronous composition of the controllers yields a
satisfactory and least restrictive controller w.r.t. the global plant. The benefit of
modular modelling and modular controller synthesis is rescinded when the global
plant and global controller obtained must be constructed explicitly for further
analysis and restricted to obtain the final controller. Hence, syntactic/type-based
guarantees for a property-preserving composition are considered in the literature.
However, we expect that the use of DPDA controllers will aggravate the problem

215

Chapter 8. Related, Ongoing, and Future Work

of determining suitable guarantees and, also, only one of the controllers may be
a DPDA, which limits its general applicability to sets of plants where only one
plant is restricted by a DPDA specification. Visibly Pushdown Languages (VPL)
are defined as the class of languages of Visibly Pushdown Automata (VPA) in
[16] and also games for VPL have been considered in [226]. The class of VPL is
highly interesting because it is closed under union, complement, and intersection
and VPA can be determinized. However, some languages that are in DCFL are
not in VPL such as { anban . n ∈ N } but the slight alteration { anbcn . n ∈ N }
is a VPL. Intuitively, each event can be used either for pushing a symbol to the
stack or for popping a symbol from the stack (the end of stack marker � is
never popped and internal events do not alter the stack). This partitioning into
the three sets then restrict the synchronous composition sufficiently to ensure
the closure property for intersection. We will analyze whether our concrete
controller synthesis algorithm can be adapted to deterministic VPA to allow
for compositional specification (using multiple VPA specifications), for more
complex plants (using multiple VPA plants), and for compositional control (using
multiple VPA controllers). Pushdown Tree Automata (PDTA) [147] are extensions
of PDA operating on trees instead of on words. Further extensions such as Visibly
Pushdown Tree Automata (VPTA) [75], Visibly Tree Automata with Memory
(VTAM) [85], and Nested Word Automata (NWA) [14, 15] combine tree based
inputs with the event partitioning of VPA. The synthesis of VPTA, VTAM, or
NWA as controllers may be the next step once supervisory controller synthesis
has been extended to VPA as suggested above.

We will investigate whether controller synthesis for other formalisms such as
Markov Decision Processes [294], probabilistic timed automata [206] and hybrid
CCS [308] can be enabled by using DFA or VPA as a manageable abstraction
formalism for the mentioned more complex formalisms. This idea continues
applications of DFA as abstractions of physical plants in hierarchical control.

Similarly to horizontal decomposition as just discussed, we are interested in
hierarchical control for which we discussed related work in Par. Synthesis Consid-
ering Vertical Composition (Hierarchical Control)|p.175. Initial attempts have already
been made in [236] to extend our work to the scenario with DPDA specifications.
However, the proposed approach is only combining well-established results on
hierarchical control with our proposed concrete controller synthesis algorithm
and is still limited by using DPDA instead of for example VPA.

Supervisory controller synthesis for partially observable plants (see Par. Syn-
thesis Considering Observability and Diagnosability|p.173) has been considered for
DFA plants and DFA specification already in [279, 222, 256]. We will analyze how
these past developments can be recovered in the setting of DPDA specifications
and DPDA controllers. Specifically, we believe that the above proposed CSP-
style synchronization operation (see Par. Inputs of the Concrete Controller Synthesis
Algorithm|p.209) may already be appropriate to allow the plant to perform unob-
servable events without synchronization with the controller, which is therefore
not able to detect the execution of these events.

216

8.3. Future Work

We discussed the explicit handling of time already in Par. Synthesis Considering
Discrete and Continuous Time|p.173, but, implicitly, each event may be associated
with a certain delay. Besides the task of minimizing the WCET considered above
(where internal events are assumed to require some time that may add up to
a value above some acceptable threshold), discrete time has been considered
already in [219, 60]. However, we believe that meaningful results will built upon
optimal control resolving nondeterminism through explicit choice (see above) for
controllable events or by resolving nondeterminism using a probabilistic model
for uncontrollable events. Nondeterminism in the models such as in probabilistic
timed automata often leads to worst case resolutions of nondeterminism that are
unrealistic and result at the same time in unsatisfactory estimates on possible
behavior. Resolving nondeterminism (by either eliminating choices or by making
certain choices unlikely) is then a well-established approach to obtain better
analysis results. However, systems with infinite state spaces such as DPDA
pose a problem to the existing techniques. We will apply or adapt existing
techniques for formalisms with infinite state spaces (such as hybrid automata [11])
to determine algorithms to check formulas from probabilistic timed logics such
as PTCTL [207] or, as it appears more suitable for our context of DPDA closed
loops, by considering an extension of CaRet [13] by time and probabilities. Also,
the definition and guarantee of a notion of least restrictiveness in these settings
when resolving violations of desired properties is a major obstacle.

Chapter 8|p.163
(Related, Ongoing, and Future Work)

We discussed related work to point out problems similar to supervisory control and
alternative approaches to their solution, variations of supervisory control incorporat-
ing further aspects, a previous attempt at solving the supervisory control problem for
DPDA specifications, available tool-support for supervisory control, and available
Isabelle-support for verification of algorithms on the involved formalisms.
We presented three novel approaches that lack formal foundation as of now. Firstly, we
presented a conversion operation from DPDA into LR(1)-CFG that is more efficient
compared to the algorithm presented in chapter 5|p.61. Secondly, we provided an
algorithm for enforcing controllability based on an LR(1)-CFG to ensure termination
also for unreasonable DPDA specifications and to obtain a more efficient concrete
controller synthesis algorithm. Thirdly, we discussed steps towards enriching the
runtime environment used for the controller with suitable annotations to ensure that
the controller performs at most n internal steps in succession.
We identified important and promising future extension of our contributions ac-
cording to the presented related and ongoing work as well as according to various
observations throughout this thesis.

In the next chapter, we conclude on the results of this thesis.

217

9
Summary and Conclusion

In this chapter, we first concisely restate our research problem in its broader
context. Building on this foundation, we then summarize our approach and
contributions from the perspectives of computer science and control theory. We
then evaluate the relevance of our contributions from standard and proposed
application areas. As ongoing work, we suggest numerous adaptations and
extensions for improving the applicability of our results. Moreover, we identify
additional recommendations for future work. Finally, we conclude with an overall
assessment.

Research Domain and Problem
As discussed in more detail in chapter 1|p.1, we contributed to the research
domain of fully automatic supervisory controller synthesis for discrete event systems in
which the supervisory control problem initially appeared in the seminal work in [282].
This problem from control theory similarly occurs in computer science [81, 121]
where controllers are to be constructed for software systems.

Generally, the manual development of controllers and their synthesis using
fully automatic algorithms are competing approaches with specific advantages
and limitations as discussed in chapter 1|p.1. Most importantly, the applicabil-
ity of fully automatic synthesis algorithms for solving the supervisory control
problem is limited by an insufficient expressiveness of the formalisms used for
plants and specifications regarding the sequences of events they can describe. In
fact, synthesis algorithms developed in the past are variations of the algorithm
provided in [282] where plants and specifications are required to be given by
DFA. Advances towards Petri net models revealed unsolvability of the synthe-
sis problem in this setting (see subsection 8.1.6|p.176) and an earlier synthesis
algorithm for DFA plants and DPDA specifications proved to be erroneous (see
subsection 8.1.7|p.180).

Hence, our main research aim was the development of a fully automatic controller
synthesis algorithm with increased expressiveness of the involved formalisms.

219

Chapter 9. Summary and Conclusion

Main Contribution, Approach, and Challenge
Our main contribution is the concrete controller synthesis algorithm (see chapter 5|
p.61), which solves our concrete supervisory control problem (see Definition 3.11|
p.39) by synthesizing a DPDA controller for a DFA plant and a DPDA spec-
ification. This algorithm is supported by its prototype implementation CoSy
(see chapter 7|p.141 and [304]) and its formal Isabelle-based certification for which
we developed a foundational Isabelle framework (see chapter 6|p.89 and [303]).

Our approach to achieve this main contribution consists of the four steps 1 – 4
that are given and discussed in detail in the following figure.

Figure 9.1: «Overview of the Contributions and the Approach of This Thesis»

DES
section 2.1|p.17

EPDA
section 2.2|p.18

Parser
section 2.3|p.22

CFG
section 2.4|p.27

abstract supervisory
control problem

Definition 3.7|p.35

concrete supervisory
control problem

Definition 3.11|p.39

abstract controller
synthesis algorithm

chapter 4|p.45

concrete controller
synthesis algorithm

chapter 5|p.61

extends
requirements of
section 3.3|p.41

instantiates
building blocks of

solves
Theorem 4.12|p.56

solves
Theorem 5.1|p.86

1

2

3

4

Isabelle Certification
chapter 6|p.89

CoSy Tool
chapter 7|p.141

not verified

Ongoing Work
section 8.2|p.188

not verified

enhances implementsverifies

relies on relies onrelies onabstracts

In step 1 , we formalized the abstract supervisory control problem follow-
ing [281] on the basis of our abstractions of DFA and DPDA called discrete event
systems (DES). These DES recover both the marked and unmarked languages
generated by the automata, which contain the desirable and actual sequences of
events, respectively. The notion of DES is sufficient to state the most important
semantical properties (see below) in our abstract supervisory control problem.
In step 2 , we formally verified that our abstract (fixed-point) controller synthesis
algorithm (see chapter 4|p.45) indeed solves the abstract supervisory control
problem. This abstract algorithm is novel in the sense of operating on DES to
properly capture the steps of enforcing controllability and nonblockingness.

220

In step 3 , we relied on the notion of least restrictiveness of our abstract supervi-
sory control problem for the formal definition of our concrete supervisory control
problem. Moreover, we identified, besides controllability, nonblockingness, and
least restrictiveness, several additional syntactical and semantical properties to
be satisfied, such as the absence of livelocks in the closed loop, and that are
desirable, such as the existence of a worst case execution time (WCET).
In step 4 , we constructed our concrete controller synthesis algorithm as an
instantiation of our abstract controller synthesis algorithm (see chapter 4|p.45)
by determining instantiations for each of its abstract building blocks. The
verification of the resulting concrete synthesis algorithm proceeds in two steps.
As a first step, we verified that the concrete operations used for the instantiations
satisfy the interface specifications of the abstract building blocks. This ensures
that the concrete algorithm inherits the semantical properties enforced by the
abstract algorithm. As a second step, we verified that the concrete operations also
enforce the additional semantical requirements stated in the concrete supervisory
control problem such as the absence of livelocks in the closed loop, which
completes the certification of the concrete algorithm.

We now highlight one challenge we overcame, which was the instantiation of the
building block of the abstract algorithm that enforces nonblockingness on DES.
The corresponding concrete building block operates on DPDA and enforces non-
blockingness, the absence of deadlocks, the absence of livelocks, and accessibility
(see section 5.2|p.65). The difficulty of this instantiation problem stems from
the potentially infinite state space of a DPDA, which implies that all algorithms
that inspect only a bounded prefix of the stack of a given DPDA configuration
are insufficient due to ambiguity: Intuitively, a configuration may suffer from a
blocking problem due to a certain stack element that is covered by an unbounded
number of stack elements and that potentially remains concealed when consid-
ering only a bounded prefix of the stack. To meet this challenge, we employed
a symbolic removal of blocking problems: The algorithm firstly disambiguates
the input DPDA model and, secondly, removes safely and entirely a finite set of
elements from the model to prevent the reachability of the potentially infinite
set of configurations that exhibit blocking problems. By and large, the recurring
problem of defining for disambiguation highlighted here was the main theme of this
part of research.

Applications of our Concrete Controller Synthesis Algorithm
Our concrete algorithm is beneficial for applications in control theory and com-
puter science for the synthesis of controllers for cyber-physical and software
systems because our concrete algorithm permits DPDA specifications whereas
the earlier procedures only permit DFA specifications, which are less expressive
and which are unable to capture relevant classes of behaviors.

Also, the use of DPDA specifications proved useful in the domains of program
analysis and compiler optimization [16] where the potentially infinite state space
of a DPDA still limits the fully automatic analysis (for instance using model

221

Chapter 9. Summary and Conclusion

checking). Hence, our symbolic, translation-based controller synthesis algorithm
lays a new path for extending analysis and synthesis by equipping the involved
models with a stack while checking more expressive specifications using for
example the temporal logic CaRet. In general, since our controller synthesis algo-
rithm extends the capabilities of previous synthesis algorithms, it has applications
in the domains of manufacturing, robotics, chemical process control, protocol
design in communication networks, feature interaction management in telephony,
and fault diagnosis [70]. Moreover, the problems of controller synthesis and
analysis of closed loops occurs similarly in various examples in computer science
such as in submodule construction (which states a similar synthesis problem), in
the formalism of input/output automata (which requires instances to satisfy a
notion similar to controllability called input enabledness), and in adaptive systems
(where the usage and switching of controllers is a cornerstone in the employed
closed loop methodology). Further applications are discussed in section 8.1|p.164,
section 7.2|p.146, and by our examples provided in section 7.3|p.147.

To apply our synthesis algorithm in settings as described above, we require
a DFA plant model and a DPDA specification model. Firstly, this may require
an over-approximation of the behavior of the actual plant to obtain a DFA plant
model. Secondly, we discussed several specification patterns exploiting the
stack-based capabilities of DPDA (see section 7.1|p.143).

Our prototype CoSy, which is an implementation of our controller synthe-
sis algorithm, shows promising efficiency albeit subject to further optimization
according to our evaluation (see section 7.3|p.147 and section 7.5|p.157). The ap-
plicability and efficiency of CoSy was evaluated by considering several examples
from manufacturing employing DPDA specifications (in chapter 7|p.141).

Also note that the semantical properties of nonblockingness, absence of dead-
locks, absence of livelocks, and accessibility that are enforced by the building
block described in the previous paragraph are not specific to control theory (see
section 5.2|p.65). Hence, we propose to evaluate their value to other application
domains (see section 8.1|p.164) with stack-utilizing models as future work.

Adaptations to Mitigate Limitations of our Concrete Controller Synthesis Algorithm
We identified limitations of our concrete controller synthesis algorithm that hin-
der its applicability. Note that these limitations have an impact on our approach
to construct and analyze controllers with its three enabled use-cases explained
in chapter 1|p.1 as it is centered around this concrete controller synthesis algo-
rithm. We presented ongoing developments of suitable adaptations to mitigate
these limitations, which reached a reasonable level of maturity. However, these
adapations lack formal foundation as of the writing of this thesis and, moreover,
additional future work is called for to address further limitations (see section 8.2|
p.188 and subsection 8.3.1|p.209 for a complete discussion).

Our formally verified synthesis algorithm from chapter 5|p.61 is only claimed
to be terminating for all reasonable specifications (as substantiated by suitable
examples in section 5.5|p.87). To address this problem, we defined a second

222

synthesis algorithm in subsection 8.2.2|p.193, which follows the disambiguation
procedure for enforcing nonblockingness on DPDA more closely. This alternative
synthesis algorithm is more efficient and guaranteed to terminate.

Besides this (global) optimization, we also developed various (local) enhance-
ments of the building blocks of our formally verified concrete controller synthesis
algorithm to increase its efficiency (see section 8.2|p.188).

The usage of DPDA to express more complex specifications results in DPDA
controllers, for which new aspects become relevant. Firstly, these DPDA con-
trollers can become large (see section 7.5|p.157) due to our disambiguation
procedure. To mitigate this problem, we argued that the size of DFA and DPDA
controllers alike can be reduced by including steps that are not imitable by the
plant (see section 8.3|p.209). Secondly, DPDA controllers exploit internal steps
to operate on their stacks and may not exhibit a WCET. To obtain an equivalent
controller with WCET, we proposed an annotation of the runtime environment to
identify and shortcut the problematic unbounded sequences of stack manipula-
tions (see subsection 8.2.3|p.207). Thirdly, DPDA controllers may require more
space for their stack than available at runtime leading to stack overflows. To
minimize the likelihood of stack overflows, we proposed usage patterns prevent-
ing overly deep stacks. Also, to estimate the likelihood of stack overflows, we
proposed probabilistic extensions of the involved models.

These technical difficulties when applying our concrete controller synthesis al-
gorithm are moderated by the possibility to even further extend the specifications’
expressiveness in the future using temporal logics such as CaRet (see subsec-
tion 8.3.1|p.209). However, increasingly more expressive specifications create
the risk of defective specifications rendering processes for their validation indis-
pensable. We proposed use-cases and extended outputs to alleviate this problem
by reasonably re-integrating human personnel into the synthesis workflow (see
section 7.5|p.157).

Extensions of our Concrete Controller Synthesis Algorithm
Going forward, future extensions with practical importance of our synthesis
algorithm should, following research directions from related work, incorporate
further systems’ characteristics by enforcing stronger semantical properties on more
expressive formalisms (see subsection 8.3.2|p.214 for a complete discussion).

Four examples of such extensions are as follows. (a) We recommend to suitably
integrate a notion of time in the plants, the specifications, and the controller
synthesis algorithms to bridge the gap from logical time (where the models
merely describe causality of events) to real time (where the models describe
possible delays between events). (b) To obtain a controller that drives the plant
towards a desired goal region by implementing a winning strategy, constructions
that suitably restrict the synthesized least restrictive DPDA controller are called
for. (c) We envision the usage of Visibly Pushdown Automata (VPA) to allow for
the synchronous horizontal composition of multiple controlled plants, controllers,
and closed loops to further extend applicability. (d) The analysis of probabilistic
automata in the form of Markov Decision Processes (MDPs) as well as controllers

223

Chapter 9. Summary and Conclusion

in this setting have been developed, but a combination of MDPs and DPDA for
the fully automatic synthesis of controllers has not yet been considered.

Finally, as to whether the mentioned extensions permit combination thereof
remains to be further investigated.

Focus and Applications of our Isabelle Framework
For the formal verification of our concrete controller synthesis algorithm as the
first main contribution of this thesis, we provided an Isabelle framework, which
consists of abstract theories for semantics, definitions, and verified theorems (see
section 6.2|p.96). We applied this framework to prove the correctness of our
abstract controller synthesis algorithm operating on discrete event systems, to ob-
tain various semantics for the formalisms of EPDA, CFGs, and Parsers including
concrete interpretations for several abstract notions such as nonblockingness, and
to certify the correctness of our concrete controller synthesis algorithm operating
on instances of these three formalisms. This Isabelle framework is a sensible
enhancement to previous Isabelle frameworks (see subsection 8.1.8|p.186). It can
be applied to define the semantics of a multitude of further standard formalisms
and to verify similar constructions on them. Moreover, due to its modularity, it
can be extended into various directions (see subsection 8.1.8|p.186) by including
further characteristics of semantics or by including further abstract notions.

Overall Assessment
The problem of discrete event supervisory controller synthesis from control theory,
which is similar to the software synthesis problem from computer science, has
received great attention since its first publication [282] in 1984 and has resulted
in a research field that has been active ever since.

The particular problem of determining a synthesis algorithm for a reasonable
class of non-regular specification languages leading to infinite closed loop state
spaces was stated in [281] and has thereby been open for more than two decades.
It was shown to be unsolvable for Petri net plants and specifications and a
previous solution for DPDA specifications turned out to be erroneous.

By adapting existing theory on parsing and controller synthesis as well as on
existing technology for formal verification, we determined a mechanically verified
and implemented fixed-point algorithm that solves this pivotal problem for the
setting where DPDA specifications and DFA plant models are used. Our work is
the starting point for a vast potential of future research to enhance effectiveness,
efficiency, and applicability of the proposed synthesis algorithm. Most noticeably
we recommend the formal verification of the proposed second controller synthesis
algorithm that is additionally guaranteed to terminate on all inputs.

Due to the foundational nature of the solved problem, we expect further
applications of our controller synthesis algorithm (or its building blocks) in
computer science and control theory alike.

224

A
Disclaimer on Collaborations and Joint Work

Reduction of Controllability to Nonblockingness for DPDA Controllers
The building block of our concrete controller synthesis algorithm for the reduction
of DPDA controllability to DPDA nonblockingness in section 5.3|p.82 is small
in terms of the size of the definitions and proofs (see Figure 6.1|p.97) and is
a reformulation of a construction that was mainly developed by Anne-Kathrin
Schmuck. However, the formal Isabelle-based verification and adaptations to
indispensable runtime optimizations of this building block are our contributions.

The DES Fixed Point Iterator Enforce-Marked-Controllable-Subset
The building block from section 5.3|p.82 implements the fixed point iterator
Enforce-Marked-Controllable-Subset (see subsection 4.2.4|p.52) as discussed in [302,
301]. This fixed point iterator has been obtained by Anne-Kathrin Schmuck as a
modification of a fixed point iterator from [310]. The formalization of this fixed
point iterator, the formalization of the mentioned connection to the automata-
based building block, the entire theory and framework of DES including the
composition of fixed point iterators, and the other employed fixed point iterators
are our contributions.

The Automated Fabrication Scenario A
In Example 7.2|p.147, we presented an application of our concrete controller syn-
thesis algorithm to a manufacturing example presented earlier. The fundamental
ideas of (a) two kinds of items that are to be produced, (b) the remembering of
the difference/mismatch of the number of the two kinds of items using the stack,
(c) the second mode in which the mismatch is reduced to zero by disabling the
corresponding production units, and (d) the subsequent reset of the entire system
are our contributions. The idea to use multiple machines producing two kinds of
items was suggested by Thomas Moor. Finally, we attribute the compositional
definition of the plant and the actual realization in terms of [302, Section 5.1,
pp. 15–] to our coauthors Anne-Kathrin Schmuck and Jörg Raisch.

225

B
Isabelle-based Notation

We briefly cover the notation used for definitions and theorems, which is based
on the syntax of the interactive theorem prover Isabelle used in this thesis for
the formal verification of our results. The syntax and semantics of types and
terms in Isabelle is derived from the functional programming language Meta
Language (ML), which is based on the typed λ-calculus. Isabelle also enables the
use of functions as formal variables in quantifications or as values in arguments
to other functions. Moreover, the functional paradigm allows for the encoding of
functional programs as mathematical functions in standard notation and Isabelle
is therefore well suited for the verification of such functional programs. See [265]
for more elaborate introductions for users of Isabelle.

Contents of this Chapter

B.1|p.228 Standard and Custom Types and Operations in Isabelle
We introduce basic types (such as Booleans, lists, sets, and functions)
together with operations on them.

B.2|p.230 Defining Types, Terms, Functions, and Theorems
We introduce additional syntactical constructs that are used for defin-
ing types, terms, functions, and theorems.

B.3|p.231 Custom Notation for Derivations
We introduce our abbreviating notation for derivations along with
some basic operations on them.

227

Appendix B. Isabelle-based Notation

B.1. Standard and Custom Types and Operations in Isabelle

We discuss various types used in this thesis, which are all equipped with an
equality relation =.

The Type bool
The type of Boolean values bool is defined using the two constructors True and
False (both without arguments). For formulas, we make use of the standard
connectives of disjunction p1 ∨ p2, conjunction p1 ∧ p2, negation ¬p, implication
p1 −→ p2, equality p1 ←→ p2, existential quantification ∃x. p, and universal
quantification ∀x. p. Further abbreviations are available such as ∀x ∈ S. p instead
of ∀x. x ∈ S −→ p, ∃x ∈ S. p instead of ∃x. x ∈ S ∧ p, ∃x y. p instead of ∃x. ∃y. p
(also for universal quantification and longer lists of variables), and ∃!x. p instead
of ∃x. p ∧ (∀y. p −→ x = y). The two choice operators ιx. p and εx. p are
explained in the next paragraph.

The Type α option
The type of optional values α option is defined using the two constructors None
and Some e where e is an element of type α. This type is used when an operation
does not return a value (of type α) in every case. That is, the operation then
returns no values using None or returns a value e using Some e.

The ε-operator selects some element satisfying a property p according to the
axiom ∃x. p x p (εx. p x) and the ι-operator selects the unique element
satisfying a property p according to the axiom ∃!x. p x p(ιx. p x).

The Type nat
The type of natural numbers nat is defined using the two constructors 0 and Suc e
where e is an element of type nat. Moreover, the value 1 abbreviates Suc 0.

The Type (α, β) tuple2
The type of pairs (α, β) tuple2 is defined using the constructor tuple2 e1 e2 where
e1 is an element of type α and where e2 is an element of type β. We use the
selectors sel21 and sel22 for the two fields. We avoid the use of the standard pair
type α× β because it is only defined for two values. We also used types for more
values and provided a consistent naming scheme for the selectors.

The Type α set
Sets can be defined using set comprehension {x. p} where x is a variable of
type α, which possibly appears in the term p. Further abbreviations are available
such as the universal set UNIV instead of {x. True}, the empty set {} instead of
{x. False}, and the set enumeration (e.g. {e1, e2, e3} instead of {x. x = e1 ∨ x =
e2 ∨ x = e3}). For sets, we make use of the standard operations of union S1 ∪ S2,
intersection S1 ∩ S2, and inclusion S1 ⊆ S2. Also, we use the standard operations⋃ S = {x. ∃S ∈ S . x ∈ S} and

⋂ S = {x. ∀S ∈ S . x ∈ S}. The cardinality of a
set card S is defined in Isabelle to be 0 for infinite sets and to be the number of
contained elements for finite sets. That is, finite sets (but not infinite sets) can be
readily compared regarding their size using this operation.

228

B.1. Standard and Custom Types and Operations in Isabelle

Functions of Type α⇒ β
Functions can be defined inside terms using anonymous functions (without a
name) using the notation λx. t where x is the formal input variable of function,
which possibly appears in the term t. Anonymous functions with multiple
arguments can be defined as in λx y. t.

The function composition operation ◦ of two functions f and g of types α⇒ β
and β⇒ γ, respectively, results in a function g ◦ f of type α⇒ γ.

The monotone predicate mono f on a function f of type α ⇒ β is defined as
usual by ∀x. ∀y. x ≤ y −→ f x ≤ f y. Note that this definition makes use of
operations ≤ and ≤ on the types α and β, respectively.

The function image f ` S of a function f of type α⇒ β on a set S of type α set
returns a set {y. ∃x ∈ S. y = f x}.

The Type α list
The type of lists α list is defined using the two constructors [] and e # l where
e is an element of type α and where l is an element of type α list. Also, list
enumeration such as [e1, e2, e3] abbreviates e1 # (e2 # (e3 # [])).

We use the operation length l to determine the length of the list, the operation
l1 @ l2 for appending lists of common type, the operation concat L for appending
all lists in the list L (i.e., L is here of type α list list and the returned list is of
type α list), the operation rev l for reverting the order of the elements in a list, the
operation take n l for selecting the sublist of l consisting of the first n elements of l
(or fewer if l contains less than n elements), the operation drop n l for selecting
the sublist of l consisting of the elements subsequent to the first n elements of l
(or no elements if l contains less than n elements), and the operation l ! n for
selecting the nth element from l.

The prefix predicate l1 v l2 is satisfied if there is some l such that l1 @ l = l2.
The strict prefix predicate l1 @ l2 is satisfied if l1 v l2 and also l1 6= l2.
The prefix closure operation collects all prefixes of elements of a set S, that is,
prefix-closure S = {l1. ∃l2 ∈ S. l1 v l2}.

Moreover, the operation option-to-list converts an element of type α option into
an element of type α list by using the two equations option-to-list None = [] and
option-to-list (Some e) = [e].

The Type (α, β) bi-elem
For CFGs we introduced the type (α, β) bi-elem in section 2.4|p.27 to be able to use
lists of type (α, β) bi-elem list in which nonterminals of type α and events of type β
are both contained. The type (α, β) bi-elem is constructed by the two constructors
beA for nonterminals and beB for events. The operation bi-elem-domain N Σ =
{ beA A | A . A ∈ N } ∪ { beB b | b . b ∈ Σ } then determines all elements of this
type for given sets N and Σ of nonterminals and events, respectively.

We provide various operations such as filter-A l to select the nonterminals
contained in the list l and lift-B l to convert a list of events of type β list into a list
of type (α, β) bi-elem list by applying beB to each element.

229

Appendix B. Isabelle-based Notation

Note, we use this type also for other purposes in this thesis as in the cfgPsplit
semantics in section 6.3|p.116 for representing lists of EPDA edges and CFG
productions.

B.2. Defining Types, Terms, Functions, and Theorems

Defining Types
Possibly recursive sum types are defined using the datatype keyword. See
Definition 2.1|p.17 for the definition of the α des type (with one constructor) and
the following definition of the α option type from the previous section (with two
constructors and the selector the).

Example B.1: «Usage of datatype »
datatype α option =

None
Some the:α

Product types can be defined (besides using also datatype as for the definition of
the α des type) using the keyword record. In the following example, we define
the type (nonterminal, event) cfg to be a record with four fields.

Example B.2: «Usage of record »
record (nonterminal, event) cfg =

cfg-nonterminals nonterminal set
cfg-events event set
cfg-initial nonterminal
cfg-productions (nonterminal, event) cfg-step-label set

This definition also introduces selectors that are given by the names of the
fields. Finally, a record r of type (nonterminal, event) cfg can be updated as in
r cfg-nonterminals:={cfg-initial r} where cfg-initial has been used as a selector.

Defining Terms
The let–in construct from functional programming introduces inline abbreviations.
For example, (n + n) ∗ (n + n) can be rewritten into let m = n + n in m ∗m or
let m = n + n; r = m ∗m in r.

The if–then–else construct from functional programming is available as well
such as in if n = 0 then n else n + n.

Defining Functions
We define nonrecursive functions using the keyword definition and recursive
definitions using the keyword function (the additional keywords of primrec
and fun are used in our formalization but are not used in this document). The
keyword function permits the definition of functions where the termination of
the recursive computation is verified only for a subset of the domain by using the

230

B.3. Custom Notation for Derivations

keyword domintros. This is particularly important in cases where the domain
type contains more elements than desirable. For example, operations on CFGs
can also be applied on CFGs with infinite set of nonterminals but we restrict our
considerations to the subset of valid CFGs. Examples of usages of the keywords
definition and function are given in Definition 2.2|p.17 and Definition 4.2|p.47,
respectively.

Defining Theorems
Terms in the meta-logic are used for stating theorems, determine proof states,
and are constructed as follows. Firstly, if t is term of type bool, then t is also a
meta-logical term. Secondly, if P and Q are meta-logical terms, then P Q is
meta-logical term, which states that Q holds whenever P holds. Thirdly, if x is
a meta-logical variable and P is a meta-logical term, then

∧
x. P is meta-logical

term, which states that P holds for every x.
The following example is the standard induction theorem on natural numbers

and features the universal meta logical quantification in the second assumption.
The induction theorem is applicable to any given term P that contains a subterm
n of type nat.

Theorem B.1: «nat-induct»
P 0
(
∧

n. P n P (Suc n))
P n

B.3. Custom Notation for Derivations

We use c1
labels
semantics,structure c2 to state the existence of a derivation starting in c1

and ending in c2.

• The parameter semantics is the (name of the) semantics employed for the
derivation.

• The parameter structure is the EPDA, CFG, or Parser to which the configu-
rations and step-labels belong.

• The parameter labels is the list of edges of an EPDA, the list of productions
of a CFG, or the list of rules of a Parser used for the steps of the derivation.
That is, the length of the derivation is given by the length of the list of this
parameter.

Thereby, we define a relation between two configurations that is additionally
equipped with the three given parameters.

Also, we use c1
labels1
semantics,structure c2

labels2
semantics,structure c3 when an intermediate

configuration c2 is important.
If the semantics has a unique initial configuration and the derivation starts

with this configuration, we write init labels
semantics,structure c2.

231

C
Operational Properties for DPDA Controllers

The operational properties formally defined here are used in section 3.2|p.36 to
define satisfactory controllers in our concrete supervisory control problem. In
our Isabelle-based formalization, we define these properties in our hierarchy of
locales using abstract parameters such as marking conditions and then instantiate
these locales for EPDA using interpretations for each parameter. For presentation
purposes, we provide here equivalent definitions using the corresponding notions
of EPDA directly.

Operational controllability means that the controller is able to execute an
uncontrollable event u using a derivation in which also other silent steps can
be performed, whenever the plant can execute the event u and both, plant and
controller, executed the same word of events before.
Definition C.1: «epda-operational-controllable»
definition epda-operational-controllable

:: (controller-state, event, controller-stack) epda
⇒ (plant-state, event, unused-stack) epda
⇒ event set
⇒ bool

where epda-operational-controllable C P Σuc
≡ ∀π1 c1 π2 c2 p c′2 u.

init π1
epdaH,C c1

−→ init π2
epdaH,P c2

[p]
epdaH,P c′2

−→ epdaH-conf-history c1 = epdaH-conf-history c2
−→ epdaH-conf-history c′2 = epdaH-conf-history c2 @ [u]
−→ u ∈ Σuc
−→ (∃π3 c′1.

c1
π3
epdaH,C c′1

∧ epdaH-conf-history c′1 = epdaH-conf-history c′2)

233

Appendix C. Operational Properties for DPDA Controllers

Operational nonblockingness is satisfied if every initial derivation of the closed
loop to a configuration c1 can be continued to a configuration c2 in which the
state is a marking state of the EPDA.

Definition C.2: «epda-operational-nonblockingness»
definition epda-operational-nonblockingness

:: (state, event, stack) epda
⇒ bool

where epda-operational-nonblockingness CL
≡ ∀π1 c1. init π1

epdaH,CL c1

−→ (∃π2 c2. c1
π2
epdaH,CL c2 ∧ epdaH-conf-state c2 ∈ epda-marking CL)

The closed loop CL satisfies the specification S if every initial derivation of the
closed loop can be mimicked by the specification regarding the execution of events
and when also the closed loop only marks an executed word if the specification
also marks the word.
Definition C.3: «epda-operational-specification-satisfaction»
definition epda-operational-specification-satisfaction

:: (closed-loop-state, event, closed-loop-stack) epda
⇒ (specification-state, event, specification-stack) epda
⇒ bool

where epda-operational-specification-satisfaction CL S
≡ ∀π1 c1.

init π1
epdaH,CL c1

−→ (∃π2 c2.
init π2

epdaH,S c2

∧ epdaH-conf-history c1 = epdaH-conf-history c2
∧ (epdaH-conf-state c1 ∈ epda-marking CL

−→ epdaH-conf-state c2 ∈ epda-marking S))

The absence of deadlocks in the closed loop CL is stated by requiring that at least
one edge e′ is applicable to every accessible configuration where the current state
is not a marking state of the closed loop.

Definition C.4: «epda-deadlock-freedom»
definition epda-deadlock-freedom

:: (state, event, stack) epda
⇒ bool

where epda-deadlock-freedom CL
≡ ∀π c.

init π
epdaH,CL c

−→ epdaH-conf-state c 6∈ epda-marking CL
−→ (∃e′ c′. c [e′]

epdaH,CL c′)

234

For the absence of livelocks, we cannot use our notation for finite (initial) deriva-
tions. In the following definition, we state that d is an initial derivation of the
closed loop CL in the epdaH semantics using epdaH.derivation-initial CL d. More-
over, we state that d is infinite by stating that it has a configuration for every natu-
ral number n using ∀n. d n 6= None. Furthermore, we collect all unmarked words
(that is, the unmarked effects in the terminology of our formalization) executed
in d up to index i ∈ {n, N} using epdaH-unmarked-effect CL (derivation-take d i)
where derivation-take is used to crop the infinite derivation d to its finite prefix
of length i. That is, we state the absence of an infinite derivation that does not
change its epdaH-conf-history variable after some index N.
Definition C.5: «epda-livelock-freedom»
definition epda-livelock-freedom :: (state, event, stack) epda⇒ bool
where epda-livelock-freedom CL

≡ ¬(∃d. epdaH.derivation-initial CL d
∧(∀n. d n 6= None)
∧(∃N. ∀n ≥ N.

epdaH-unmarked-effect CL (derivation-take d N)
= epdaH-unmarked-effect CL (derivation-take d n)))

For accessibility of an EPDA C, we require that every edge e of the EPDA C can
be used in some initial derivation and that every state q of the EPDA C is used in
some configuration that occurs in some initial derivation.
Definition C.6: «epda-accessible»
definition epda-accessible :: (state, event, stack) epda⇒ bool
where epda-accessible C

≡ (∀e ∈ epda-delta C. ∃π c. init π @ [e]
epdaH,C c)

∧(∀q ∈ epda-states C. ∃π c. init π
epdaH,C c ∧ q = epdaH-conf-state c)

For accessibility in the closed loop, we obtain an edge of the controller C from an
edge of the closed loop CL by projecting on the first state of the pair of states.
Definition C.7: «epda-accessible-in-closed-loop»
definition epda-accessible-in-closed-loop

:: (controller-state, event, controller-stack) epda
⇒ ((controller-state, plant-state) tuple2, event, controller-stack) epda set
⇒ bool

where epda-accessible-in-closed-loop C CL
≡ (∀e ∈ epda-delta C. ∃π c e′. init π @ [e′]

epdaH,C c
∧ edge-src e = sel21 (edge-src e′)
∧ edge-event e = edge-event e′ ∧ edge-pop e = edge-pop e′

∧ edge-push e = edge-push e′ ∧ edge-trg e = sel21 (edge-trg e′))
∧(∀q ∈ epda-states C. ∃π c. init π

epdaH,C c
∧ q = sel21 (epdaH-conf-state c′))

235

D
The cfgEsplit Semantic for LR(1)-CFG

The material of this chapter belongs to section 6.3|p.116 where we presented a
proof idea in more detail. We list the well-formedness conditions that are satisfied
by the configurations of the cfgEsplit semantics, describe the cfgEsplit step relation,
and provide an example derivation using cfgEsplit.
Definition D.1: «Well-formed Configurations of cfgEsplit»
The configurations of the semantics cfgEsplit for a given CFG G′ are given by a
list I of elements I of type esplit-item as explained in Definition 6.13|p.127.

Basic Intuition for the Described cfgLM-Derivations:
Each item I contained in such a list I satisfies two basic properties. These two
properties determine our basic understanding of the semantics and its purpose
and are satisfied by the initial configuration of cfgEsplit and are preserved by the
step relation of cfgEsplit.
Firstly, each element of esplit-item-elim I (that is, the element at each index
i satisfying 0 ≤ i < length (esplit-item-elim I)) is eliminated by the left-most
derivation given by the corresponding sequence in esplit-item-elim-prods I.

(esplit-item-elim I) ! i (esplit-item-elim-prods I) ! i
cfgLM,G′ [] (D.1)

Secondly, if esplit-item-from I = Some A, then from A we derive by the left-
most derivation given by esplit-item-prods I an element χ stored as Some χ in
esplit-item-elem I with post context esplit-item-to I.

A esplit-item-prods I
cfgLM,G′ [χ](esplit-item-to I) (D.2)

This basic intuition, which explains the fundamental idea of the decomposition
captured in the configurations of the cfgEsplit semantics, is subsequently ex-
tended to the list of actual technical constraints.

237

Appendix D. The cfgEsplit Semantic for LR(1)-CFG

Constraints for Well-formed Configurations:
Besides that all productions, nonterminals, and events occurring in such a con-
figuration must belong to the given CFG G′, each well-formed configuration
containing a list I of elements of type esplit-item also satisfies the following
constraints.

1. We consider two sequences of nonterminals that are given by concatenat-
ing three lists each: the first sequence is obtained from esplit-item-elim I,
option-to-list (esplit-item-from I), and esplit-item-ignore I and the second
sequence is obtained from filter-A (option-to-list (esplit-item-elem I)),
esplit-item-to I, and esplit-item-ignore I.

These two sequences are proper l3-l2 sequences of nonterminals of the
CFG G′ in the sense that (a) all but the last nonterminal are of the shape
Lq1,σ,q2 , (b) the last nonterminal is of the shape Lq,σ, and (c) two adjacent
nonterminals Lq1,σ1,q2 Lq3,σ2,q4 and Lq1,σ1,q2 Lq3,σ2 agree on their interface (that
is, q2 = q3 in both cases). Note that also only such proper l3-l2 sequences
occur in left-most derivations of the CFG G′.

2. The list I of elements of type esplit-item is not empty.

3. The first item I of the list I satisfies (a) and either (b) or (c) where (a) states
that esplit-item-ignore I is empty, where (b) states that a word with at least
one event is derived by stating that esplit-item-from I = Some (cfg-initial G′)
and esplit-item-elim I = [], and where (c) states that the initial non-
terminal has already been eliminated to the empty list by stating that
esplit-item-from I = None and esplit-item-elim I = [(cfg-initial G′)]. Note,
the case (b) holds throughout the initial derivations of cfgEsplit except for
the case when the corresponding configuration in cfgRM reaches an empty
configuration resulting in the satisfaction of case (c).

4. The last item I of I satisfies that esplit-item-to I and esplit-item-ignore I are
empty. Note, this means in our case (also see Example 6.5|p.126) that the
last left-most derivation (which is represented by I) replaces all remaining
nonterminals by possibly empty words of events.

5. All items I contained in the list I (except for the last item) satisfy that
esplit-item-from I and esplit-item-elem I are not None. Note, this means that
all these items correspond already to some left-most derivation that leads
to an element esplit-item-elem I present in the cfgRM configuration to be
represented.

6. The last item I from the list I satisfies that if esplit-item-from I is None,
then esplit-item-elim I is not empty. Note, this means that the last item
also corresponds to some left-most derivation. In fact, throughout initial
derivations of cfgEsplit we have a last item that is either representing

238

an empty left-most derivation (see next item) or a left-most derivation
eliminating nonterminals to the empty string.

7. All items I from I (except for the last item) satisfy that an empty post-
context esplit-item-to I implies that esplit-item-prods I is empty and that
esplit-item-from I equals esplit-item-to I. Note, this case represents an empty
left-most derivation that appears (besides in the initial configuration) when-
ever using productions where two nonterminals A and B are on the right-
hand-side and where esplit-item-from I = A is then not yet modified by
some sequence of productions.

8. Two adjacent items I1 I2 occurring in I must agree on their interface in
the sense that the remainder of I1 is picked up by the item I2. That
is, the remainder given by the concatenation of esplit-item-to I1 and
esplit-item-ignore I1 of the first item I1 must equal the starting part given
by the concatenation of esplit-item-elim I2, option-to-list (esplit-item-from I2),
and esplit-item-ignore I2 of the second item I2. Note, this constraint en-
sures that the left-most derivations given by the items can be merged
suitably to a global left-most derivation once all nonterminals occurring in
esplit-item-elem components have been replaced when the cfgRM derivation
to be represented reaches a nonterminal-free configuration.

9. All items I contained in the list I also satisfy for the eliminating left-most
derivations (see (Eq. D.1)|p.237 above) that the two lists esplit-item-elim I
and esplit-item-elim-prods I agree on their length. This is required because
each list of productions contained at some index i in esplit-item-elim-prods I
belongs to the corresponding nonterminal at index i in esplit-item-elim I.

10. All items I from I also satisfy (a) and (b) for the generating left-most deriva-
tions (see (Eq. D.2)|p.237 above) where (a) states that if esplit-item-elem I
equals Some χ where χ is an event, then the list of employed productions
esplit-item-prods I has no strict prefix of productions generating this event,
that is, the event χ must be generated in the last step of the represented
left-most derivation and where (b) states that if esplit-item-elem I equals
Some χ where χ is a nonterminal, then no nonterminals are eliminated si-
multaneously (that is, esplit-item-elim-prods I is empty) and the represented
left-most derivation is of left-most-degenerate form (that is, the left-most
derivation replaces always the first element of the configuration, which is
throughout the derivation a nonterminal).

The initial derivations of the cfgEsplit semantics satisfy further invariants when
using LR(1)-CFG as constructed in our concrete controller synthesis algorithm.
These invariants could have been included here also as well-formedness con-
straints but they already focus on the actual proof strategy employed and are
therefore omitted here.

239

Appendix D. The cfgEsplit Semantic for LR(1)-CFG

We now informally introduce the step relation of cfgEsplit that is then also subse-
quently used in Example D.1|p.243. Moreover, we believe that the correspondence
between cfgRM derivations and cfgEsplit derivations is instructive enough for a
basic understanding of the step relation of cfgEsplit.
Definition D.2: «Step Relation cfgEsplit-step-relation»
We define the step relation cfgEsplit-step-relation G′ I ρ I ′ by describing the basic
idea first and by then describing the steps for the different kinds of productions
occurring in G′ according to the construction given in Definition 6.8|p.117.

General Construction: To achieve a behavior that is compatible with cfgRM we ap-
ply the production ρ = A, ω to the last nonterminal of the configuration given
by I . Firstly, we determine the last item I in I where esplit-item-elem I = Some A′

for some nonterminal A′. Secondly, the production ρ is then applicable if A = A′.
Thereby we decompose I into I1 II2 and distinguish below between empty and
nonempty sequences I2. In general, we construct from I a replacement list IR
(see next block) and then merge IR with the first item I′ of I2 (if existent) into
the merged replacement list IMR (see the block after next) to be used in the
resulting configuration I ′, which is equal to I1IMR(drop 1 I2).

Construction of Replacement List IR:
If ω is empty the replacement list IR contains only the following item (where I
has been modified in the esplit-item-prods and esplit-item-elem components).

esplit-item-elim = esplit-item-elim I,
esplit-item-from = esplit-item-from I,
esplit-item-ignore = esplit-item-ignore I,
esplit-item-elim-prods= esplit-item-elim-prods I,
esplit-item-prods = (esplit-item-prods I)ρ,
esplit-item-elem = None,
esplit-item-to = esplit-item-to I

The list IR then only contains this single item, which is then to be merged with
the first element of I2 (if existent) in the next block.
If ω is not empty it is of the form [χ, A], [A], or [A, B] where χ is an event and
where A and B are nonterminals (see Definition 6.8|p.117). We construct one
item for each element of ω. Firstly, if ω contains an event χ, we construct the
following item (where I has been modified in the esplit-item-prods, esplit-item-elem,
and esplit-item-to components). Also, Υ denotes the list of nonterminals in ω.

esplit-item-elim = esplit-item-elim I,
esplit-item-from = esplit-item-from I,
esplit-item-ignore = esplit-item-ignore I,
esplit-item-elim-prods= esplit-item-elim-prods I,
esplit-item-prods = (esplit-item-prods I)ρ,
esplit-item-elem = Some χ,
esplit-item-to = Υ(esplit-item-to I)

240

Secondly, we construct for the ith element of Υ the following item.

esplit-item-elim = [],
esplit-item-from = Υ ! i,
esplit-item-ignore = (drop (i + 1) Υ)

(esplit-item-to I)
(esplit-item-ignore I),

esplit-item-elim-prods= [],
esplit-item-prods = [],
esplit-item-elem = Some (Υ ! i),
esplit-item-to = []

The list of these (at most two) items then determines the replacement list IR.

Merging of Replacement List IR into IMR:
For merging, we use the first item I′ of I2 or (if I2 is empty) the following empty
item I′ to come up with a canonical definition for merging.

esplit-item-elim = [],
esplit-item-from = None,
esplit-item-ignore = [],
esplit-item-elim-prods= [],
esplit-item-prods = [],
esplit-item-elem = None,
esplit-item-to = []

Merging is necessary if ω is empty because in this case we constructed a single
item Is in the previous step with esplit-item-elem Is = None, which essentially
describes how a certain nonterminal can be eliminated using esplit-item-prods Is.
The merging defined in this block then moves these productions into an
esplit-item-elim-prods component of the resulting item and also constructs other
components as necessary.
In the simplest case, the eliminated nonterminal is esplit-item-from Is when
esplit-item-prods Is is of length 1 and esplit-item-to Is is empty. However, if
esplit-item-to Is is not empty, we eliminated some other nonterminal occurring
in left-most position during the left-most derivation that is described by
esplit-item-prods Is. Actually, we must consider the two cases (a) and (b)
where (a) means that the remainder esplit-item-to Is is entirely eliminated by I′

(esplit-item-to Is is a prefix of esplit-item-elim I′) and where (b) means that at least
one trailing nonterminal from esplit-item-to Is has not been eliminated in I′.

In case of (a) there is a decomposition (esplit-item-to Is)Υ′ = esplit-item-elim I′ and
by the well-definedness of the source configuration there is also a decomposition
Π1Π2 = esplit-item-elim-prods I′ where Π1 and Π2 are of length esplit-item-to Is
and Υ′, respectively. In this case, we merge the item Is into the item I′ by inte-
grating the eliminating derivation properly in the components esplit-item-elim

241

Appendix D. The cfgEsplit Semantic for LR(1)-CFG

and esplit-item-elim-prods. Here, option-to-list (esplit-item-from Is) is a list con-
taining one nonterminal that is eliminated by [(esplit-item-prods Is)(concat Π1)]
according to the productions of Is and the sequences of eliminating productions
existing in I′ for the remaining nonterminals given in esplit-item-to Is.

esplit-item-elim = (esplit-item-elim Is)
(option-to-list (esplit-item-from Is))
Υ′,

esplit-item-from = esplit-item-from I′,
esplit-item-ignore = esplit-item-ignore I′,
esplit-item-elim-prods= (esplit-item-elim-prods Is)

[(esplit-item-prods Is)(concat Π1)]
Π2,

esplit-item-prods = esplit-item-prods I′,
esplit-item-elem = esplit-item-elem I′,
esplit-item-to = esplit-item-to I′

In case of (b) there is a decomposition esplit-item-to Is = (esplit-item-elim I′)AΥ′,
which shows that there is insufficient information in I′ to allow for the en-
tire elimination of esplit-item-to Is (hence, I2 is not empty). Since I′ contin-
ues with the remainder of Is, we derive from the well-definedness of con-
figurations that esplit-item-from I′ equals A and esplit-item-ignore I′ equals
Υ′(esplit-item-ignore Is). Again, from the well-definedness of the configura-
tions, we derive that the item I′ handles the three parts of the decomposition
above, which are all contained in I′, by using the eliminating derivations in
esplit-item-elim-prods I′, by using the derivation on A from esplit-item-prods I′,
and by ignoring the elements in the esplit-item-ignore I′ component. We include
all productions from I′ into Is in the way that they further derive the remainder
(esplit-item-elim I′)AΥ′(esplit-item-ignore Is) of Is.

esplit-item-elim = esplit-item-elim Is,
esplit-item-from = esplit-item-from Is,
esplit-item-ignore = esplit-item-ignore Is,
esplit-item-elim-prods= esplit-item-elim-prods Is,
esplit-item-prods = (esplit-item-prods Is)

(concat (esplit-item-elim-prods I′))
(esplit-item-prods I′),

esplit-item-elem = esplit-item-elem I′,
esplit-item-to = (esplit-item-to I′)Υ′

In the following example, we provide the two full initial derivations of cfgEsplit
(corresponding to d1,rm and d2,rm from block 5|p.120) that were abbreviated in
Example 6.6|p.128.

242

Example D.1: «Running Example for section 6.3|p.116 (Additional Part)»
(1) Derivation d1,es Corresponding to d1,rm:
We provide the initial cfgEsplit derivation d1,es, which is constructed using the same productions as used for the initial
cfgRM derivation d1,rm.

esplit-item
-elim

esplit-item
-from

esplit-item
-ignore

esplit-item
-elim

-prods

esplit-item
-prods

esplit-item
-elem

esplit-item
-to

L1,� L1,�
ρ1
cfgEsplit,G′ L1,� ρ1 L2,•,15 L15,�

L15,� L15,�
ρ2
cfgEsplit,G′ L1,� ρ1 L2,•,15 L15,�

L15,� ρ2
ρ3
cfgEsplit,G′ L1,� ρ1ρ3 L3,•,5 L5,•,15L15,�

L5,•,15 L15,� L5,•,15
L15,� ρ2

ρ4
cfgEsplit,G′ L1,� ρ1ρ3 L3,•,5 L5,•,15L15,�

L5,•,15 L15,� ρ4 L6,•,14 L14,•,15
L14,•,15 L15,� L14,•,15

L15,� ρ2

continued

2
4
3

A
ppendix

D
.

The
cfgEsplitSem

antic
for

LR
(1)-C

FG

continued
ρ5
cfgEsplit,G′ L1,� ρ1ρ3 L3,•,5 L5,•,15L15,�

L5,•,15 L15,� ρ4 L6,•,14 L14,•,15
L14,•,15L15,� ρ5, ρ2

ρ6
cfgEsplit,G′ L1,� ρ1ρ3 L3,•,5 L5,•,15L15,�

L5,•,15 L15,� ρ4ρ6 L7,•,9 L9,•,14L14,•,15
L9,•,14 L14,•,15L15,� L9,•,14

L14,•,15L15,� ρ5, ρ2
ρ7
cfgEsplit,G′ L1,� ρ1ρ3 L3,•,5 L5,•,15L15,�

L5,•,15 L15,� ρ4ρ6 L7,•,9 L9,•,14L14,•,15
L9,•,14 L14,•,15L15,� ρ7 b L10,•,14
L10,•,14 L14,•,15L15,� L10,•,14

L14,•,15L15,� ρ5, ρ2
ρ8
cfgEsplit,G′ L1,� ρ1ρ3 L3,•,5 L5,•,15L15,�

L5,•,15 L15,� ρ4ρ6 L7,•,9 L9,•,14L14,•,15
L9,•,14 L14,•,15L15,� ρ7 b L10,•,14
L10,•,14 L14,•,15L15,� ρ8 d L12,•,14
L12,•,14 L14,•,15L15,� L12,•,14

L14,•,15L15,� ρ5, ρ2
ρ9
cfgEsplit,G′ L1,� ρ1ρ3 L3,•,5 L5,•,15L15,�

L5,•,15 L15,� ρ4ρ6 L7,•,9 L9,•,14L14,•,15
L9,•,14 L14,•,15L15,� ρ7 b L10,•,14
L10,•,14 L14,•,15L15,� ρ8 d L12,•,14

L12,•,14L14,•,15L15,� ρ9, ρ5, ρ2

continued

2
4
4

continued
ρ10
cfgEsplit,G′ L1,� ρ1ρ3 L3,•,5 L5,•,15L15,�

L5,•,15 L15,� ρ4ρ6ρ10 a L8,•,9L9,•,14L14,•,15
L8,•,9 L9,•,14L14,•,15L15,� L8,•,9
L9,•,14 L14,•,15L15,� ρ7 b L10,•,14
L10,•,14 L14,•,15L15,� ρ8 d L12,•,14

L12,•,14L14,•,15L15,� ρ9, ρ5, ρ2
ρ11
cfgEsplit,G′ L1,� ρ1ρ3 L3,•,5 L5,•,15L15,�

L5,•,15 L15,� ρ4ρ6ρ10 a L8,•,9L9,•,14L14,•,15
L8,•,9 L9,•,14 L14,•,15L15,� ρ11 ρ7 b L10,•,14

L10,•,14 L14,•,15L15,� ρ8 d L12,•,14
L12,•,14L14,•,15L15,� ρ9, ρ5, ρ2

ρ12
cfgEsplit,G′ L1,� ρ1ρ3ρ12 e L4,•,5L5,•,15L15,�

L4,•,5 L5,•,15L15,� L4,•,5
L5,•,15 L15,� ρ4ρ6ρ10 a L8,•,9L9,•,14L14,•,15

L8,•,9 L9,•,14 L14,•,15L15,� ρ11 ρ7 b L10,•,14
L10,•,14 L14,•,15L15,� ρ8 d L12,•,14

L12,•,14L14,•,15L15,� ρ9, ρ5, ρ2
ρ13
cfgEsplit,G′ L1,� ρ1ρ3ρ12 e L4,•,5L5,•,15L15,�

L4,•,5 L5,•,15 L15,� ρ13 ρ4ρ6ρ10 a L8,•,9L9,•,14L14,•,15
L8,•,9 L9,•,14 L14,•,15L15,� ρ11 ρ7 b L10,•,14

L10,•,14 L14,•,15L15,� ρ8 d L12,•,14
L12,•,14L14,•,15L15,� ρ9, ρ5, ρ2

2
4
5

A
ppendix

D
.

The
cfgEsplitSem

antic
for

LR
(1)-C

FG

(2) Derivation d2,es Corresponding to d2,rm:
We provide the initial cfgEsplit derivation d2,es, which is constructed using the same productions as used for the initial
cfgRM derivation d2,rm.

esplit-item
-elim

esplit-item
-from

esplit-item
-ignore

esplit-item
-elim

-prods

esplit-item
-prods

esplit-item
-elem

esplit-item
-to

L1,� L1,�
ρ14
cfgEsplit,G′ L1,� ρ14 L2,•
ρ15
cfgEsplit,G′ L1,� ρ14ρ15 L3,•,5 L5,•

L5,• L5,•
ρ16
cfgEsplit,G′ L1,� ρ14ρ15 L3,•,5 L5,•

L5,• ρ16 L6,•,13 L13,•
L13,• L13,•

ρ17
cfgEsplit,G′ L1,� ρ14ρ15 L3,•,5 L5,•

L5,• ρ16 L6,•,13 L13,•
L13,• ρ17

continued

2
4
6

continued
ρ18
cfgEsplit,G′ L1,� ρ14ρ15 L3,•,5 L5,•

L5,• ρ16ρ18 L7,•,9 L9,•,13L13,•
L9,•,13L13,• L9,•,13 L13,•

L13,• ρ17
ρ19
cfgEsplit,G′ L1,� ρ14ρ15 L3,•,5 L5,•

L5,• ρ16ρ18 L7,•,9 L9,•,13L13,•
L9,•,13 L13,• ρ19 b L10,•,13
L10,•,13 L13,• L10,•,13

L13,• ρ17
ρ20
cfgEsplit,G′ L1,� ρ14ρ15 L3,•,5 L5,•

L5,• ρ16ρ18 L7,•,9 L9,•,13L13,•
L9,•,13 L13,• ρ19 b L10,•,13
L10,•,13 L13,• ρ20 c L11,•,13
L11,•,13 L13,• L11,•,13

L13,• ρ17
ρ21
cfgEsplit,G′ L1,� ρ14ρ15 L3,•,5 L5,•

L5,• ρ16ρ18 L7,•,9 L9,•,13L13,•
L9,•,13 L13,• ρ19 b L10,•,13
L10,•,13 L13,• ρ20 c L11,•,13

L11,•,13L13,• ρ21, ρ17

continued

2
4
7

A
ppendix

D
.

The
cfgEsplitSem

antic
for

LR
(1)-C

FG

continued
ρ10
cfgEsplit,G′ L1,� ρ14ρ15 L3,•,5 L5,•

L5,• ρ16ρ18ρ10 a L8,•,9L9,•,13L13,•
L8,•,9 L9,•,13L13,• L8,•,9
L9,•,13 L13,• ρ19 b L10,•,13
L10,•,13 L13,• ρ20 c L11,•,13

L11,•,13L13,• ρ21, ρ17
ρ11
cfgEsplit,G′ L1,� ρ14ρ15 L3,•,5 L5,•

L5,• ρ16ρ18ρ10 a L8,•,9L9,•,13L13,•
L8,•,9 L9,•,13 L13,• ρ11 ρ19 b L10,•,13

L10,•,13 L13,• ρ20 c L11,•,13
L11,•,13L13,• ρ21, ρ17

ρ12
cfgEsplit,G′ L1,� ρ14ρ15ρ12 e L4,•,5L5,•

L4,•,5 L5,• L4,•,5
L5,• ρ16ρ18ρ10 a L8,•,9L9,•,13L13,•

L8,•,9 L9,•,13 L13,• ρ11 ρ19 b L10,•,13
L10,•,13 L13,• ρ20 c L11,•,13

L11,•,13L13,• ρ21, ρ17
ρ13
cfgEsplit,G′ L1,� ρ14ρ15ρ12 e L4,•,5L5,•

L4,•,5 L5,• ρ13 ρ16ρ18ρ10 a L8,•,9L9,•,13L13,•
L8,•,9 L9,•,13 L13,• ρ11 ρ19 b L10,•,13

L10,•,13 L13,• ρ20 c L11,•,13
L11,•,13L13,• ρ21, ρ17

2
4
8

E
Bibliography

[1] Martín Abadi, Leslie Lamport, and Pierre Wolper. “Realizable and Unrealizable Specifi-
cations of Reactive Systems”. In: Automata, Languages and Programming, 16th International
Colloquium, ICALP89, Stresa, Italy, July 11-15, 1989, Proceedings. Ed. by Giorgio Ausiello,
Mariangiola Dezani-Ciancaglini, and Simona Ronchi Della Rocca. Vol. 372. Lecture Notes
in Computer Science. Springer, 1989, pp. 1–17. doi: 10.1007/BFb0035748 (cit. on p. 168).

[2] T. F. Abdelzaher, J. A. Stankovic, Chenyang Lu, Ronghua Zhang, and Ying Lu. “Feedback
performance control in software services”. In: IEEE Control Systems 23.3 (June 2003),
pp. 74–90. doi: 10.1109/MCS.2003.1200252 (cit. on p. 170).

[3] Alfred Vaino Aho and Jeffrey David Ullman. “A Technique for Speeding up LR(k)
Parsers”. In: SIAM Journal on Computing (SICOMP) 2.2 (1973), pp. 106–127. doi: 10.1137
/0202010 (cit. on p. 214).

[4] Alfred Vaino Aho and Jeffrey David Ullman. “Optimization of LR(k) Parsers”. In: Journal
of Computer and System Sciences 6.6 (1972), pp. 573–602. doi: 10.1016/S0022-0000(72)80
031-X (cit. on p. 214).

[5] Alfred Vaino Aho and Jeffrey David Ullman. The Theory of Parsing, Translation, and
Compiling. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1972. isbn: 0-13-914556-7
(cit. on p. 73).

[6] Fabian Akesson and Vahidi Flordal. Supremica. 2017. url: http://supremica.org/
(cit. on pp. 164, 172).

[7] Université Grenoble Alpes. Lustre Programming Language. 2015. url: www-verimag.imag
.fr/The-Lustre-Programming-Language.html (cit. on p. 207).

[8] Karine Altisen, Aurélie Clodic, Florence Maraninchi, and Éric Rutten. “Using Controller-
Synthesis Techniques to Build Property-Enforcing Layers”. In: Programming Languages
and Systems, 12th European Symposium on Programming, ESOP 2003, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2003, Warsaw, Poland, April
7-11, 2003, Proceedings. Ed. by Pierpaolo Degano. Vol. 2618. Lecture Notes in Computer
Science. Springer, 2003, pp. 174–188. doi: 10.1007/3-540-36575-3_13 (cit. on p. 167).

[9] Rajeev Alur, Marcelo Arenas, Pablo Barceló, Kousha Etessami, Neil Immerman, and
Leonid Libkin. “First-Order and Temporal Logics for Nested Words”. In: Logical Methods
in Computer Science 4.4 (2008). doi: 10.2168/LMCS-4(4:11)2008 (cit. on p. 166).

249

https://doi.org/10.1007/BFb0035748
https://doi.org/10.1109/MCS.2003.1200252
https://doi.org/10.1137/0202010
https://doi.org/10.1137/0202010
https://doi.org/10.1016/S0022-0000(72)80031-X
https://doi.org/10.1016/S0022-0000(72)80031-X
http://supremica.org/
www-verimag.imag.fr/The-Lustre-Programming-Language.html
www-verimag.imag.fr/The-Lustre-Programming-Language.html
https://doi.org/10.1007/3-540-36575-3_13
https://doi.org/10.2168/LMCS-4(4:11)2008

Appendix E. Bibliography

[10] Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas A. Henzinger, Pei-Hsin
Ho, Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and Sergio Yovine. “The Algorithmic
Analysis of Hybrid Systems”. In: Theoretical Computer Science 138.1 (1995), pp. 3–34. doi:
10.1016/0304-3975(94)00202-T (cit. on p. 111).

[11] Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, and Pei-Hsin Ho. “Hybrid
Automata: An Algorithmic Approach to the Specification and Verification of Hybrid
Systems”. In: Hybrid Systems. Ed. by Robert L. Grossman, Anil Nerode, Anders P. Ravn,
and Hans Rischel. Vol. 736. Lecture Notes in Computer Science. Springer, 1992, pp. 209–
229. doi: 10.1007/3-540-57318-6_30 (cit. on pp. 164, 217).

[12] Rajeev Alur and David Lansing Dill. “The Theory of Timed Automata”. In: Real-Time:
Theory in Practice, REX Workshop, Mook, The Netherlands, June 3-7, 1991, Proceedings. Ed. by
J. W. de Bakker, Cornelis Huizing, Willem-Paul de Roever, and Grzegorz Rozenberg.
Vol. 600. Lecture Notes in Computer Science. Springer, 1991, pp. 45–73. doi: 10.1007/BF
b0031987 (cit. on pp. 111, 164).

[13] Rajeev Alur, Kousha Etessami, and Parthasarathy Madhusudan. “A Temporal Logic
of Nested Calls and Returns”. In: Tools and Algorithms for the Construction and Analysis
of Systems, 10th International Conference, TACAS 2004, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2004, Barcelona, Spain, March 29 - April
2, 2004, Proceedings. Ed. by Kurt Jensen and Andreas Podelski. Vol. 2988. Lecture Notes
in Computer Science. Springer, 2004, pp. 467–481. doi: 10.1007/978-3-540-24730-2_35
(cit. on pp. 166, 210, 217).

[14] Rajeev Alur and Parthasarathy Madhusudan. “Adding Nesting Structure to Words”. In:
Developments in Language Theory, 10th International Conference, DLT 2006, Santa Barbara,
CA, USA, June 26-29, 2006, Proceedings. Ed. by Oscar H. Ibarra and Zhe Dang. Vol. 4036.
Lecture Notes in Computer Science. Springer, 2006, pp. 1–13. doi: 10.1007/11779148_1
(cit. on p. 216).

[15] Rajeev Alur and Parthasarathy Madhusudan. “Adding nesting structure to words”. In:
The Journal of the ACM (JACM) 56.3 (2009), pp. 1–43. doi: 10.1145/1516512.1516518
(cit. on p. 216).

[16] Rajeev Alur and Parthasarathy Madhusudan. “Visibly pushdown languages”. In: Pro-
ceedings of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA,
June 13-16, 2004. Ed. by László Babai. ACM, 2004, pp. 202–211. isbn: 1-58113-852-0. doi:
10.1145/1007352.1007390 (cit. on pp. 216, 221).

[17] Henrik Reif Andersen. “Partial Model Checking (Extended Abstract)”. In: Proceedings,
10th Annual IEEE Symposium on Logic in Computer Science, San Diego, California, USA,
June 26-29, 1995. IEEE Computer Society, 1995, pp. 398–407. isbn: 0-8186-7050-9. doi:
10.1109/LICS.1995.523274 (cit. on p. 171).

[18] Henrik Reif Andersen, Colin Stirling, and Glynn Winskel. “A Compositional Proof
System for the Modal µ-Calculus”. In: Proceedings of the Ninth Annual Symposium on Logic
in Computer Science (LICS ’94), Paris, France, July 4-7, 1994. IEEE Computer Society, 1994,
pp. 144–153. isbn: 0-8186-6310-3. doi: 10.1109/LICS.1994.316076 (cit. on p. 171).

[19] Henrik Reif Andersen and Glynn Winskel. “Compositional Checking of Satisfaction”. In:
Computer Aided Verification, 3rd International Workshop, CAV ’91, Aalborg, Denmark, July,
1-4, 1991, Proceedings. Ed. by Kim Guldstrand Larsen and Arne Skou. Vol. 575. Lecture
Notes in Computer Science. Springer, 1991, pp. 24–36. doi: 10.1007/3-540-55179-4_4
(cit. on p. 171).

[20] Jørgen H. Andersen, Kåre J. Kristoffersen, Kim Guldstrand Larsen, and Jesper Nie-
dermann. “Automatic Synthesis of Real Time Systems”. In: Automata, Languages and
Programming, 22nd International Colloquium, ICALP95, Szeged, Hungary, July 10-14, 1995,
Proceedings. Ed. by Zoltán Fülöp and Ferenc Gécseg. Vol. 944. Lecture Notes in Computer
Science. Springer, 1995, pp. 535–546. doi: 10.1007/3-540-60084-1_103 (cit. on pp. 171,
174, 175).

250

https://doi.org/10.1016/0304-3975(94)00202-T
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/BFb0031987
https://doi.org/10.1007/BFb0031987
https://doi.org/10.1007/978-3-540-24730-2_35
https://doi.org/10.1007/11779148_1
https://doi.org/10.1145/1516512.1516518
https://doi.org/10.1145/1007352.1007390
https://doi.org/10.1109/LICS.1995.523274
https://doi.org/10.1109/LICS.1994.316076
https://doi.org/10.1007/3-540-55179-4_4
https://doi.org/10.1007/3-540-60084-1_103

[21] Charles André. SyncCharts Programming Language. 2005. url: http://www-sop.inria.fr
/members/Charles.Andre/SyncCharts/ (cit. on p. 207).

[22] Marco Antoniotti and Bud Mishra. “Descrete Events Models + Temporal Logic = Super-
visory Controller: Automatic Synthesis of Locomotion Controllers”. In: Proceedings of the
1995 International Conference on Robotics and Automation, Nagoya, Aichi, Japan, May 21-27,
1995. IEEE Computer Society, 1995, pp. 1441–1446. doi: 10.1109/ROBOT.1995.525480
(cit. on p. 172).

[23] Alasdair Armstrong, Georg Struth, and Tjark Weber. Kleene Algebra. 2013. url: http://w
ww.isa-afp.org/entries/Kleene_Algebra.shtml (cit. on p. 187).

[24] Tamarah Arons, Jozef Hooman, Hillel Kugler, Amir Pnueli, and Mark van der Zwaag.
“Deductive Verification of UML Models in TLPVS”. In: ńUMLż 2004 - The Unified Modelling
Language: Modelling Languages and Applications. 7th International Conference, Lisbon, Portugal,
October 11-15, 2004. Proceedings. Ed. by Thomas Baar, Alfred Strohmeier, Ana M. D.
Moreira, and Stephen J. Mellor. Vol. 3273. Lecture Notes in Computer Science. Springer,
2004, pp. 335–349. doi: 10.1007/978-3-540-30187-5_24 (cit. on p. 168).

[25] Anthony Auer, Jürgen Dingel, and Karen Rudie. “Concurrency control generation for
dynamic threads using discrete-event systems”. In: Science of Computer Programming 82

(2014), pp. 22–43. doi: 10.1016/j.scico.2013.01.007 (cit. on p. 170).
[26] Roland Axelsson, Matthew Hague, Stephan Kreutzer, Martin Lange, and Markus Latte.

“Extended Computation Tree Logic”. In: Logic for Programming, Artificial Intelligence, and
Reasoning - 17th International Conference, LPAR-17, Yogyakarta, Indonesia, October 10-15, 2010.
Proceedings. Ed. by Christian G. Fermüller and Andrei Voronkov. Vol. 6397. Lecture Notes
in Computer Science. Springer, 2010, pp. 67–81. doi: 10.1007/978-3-642-16242-8_6
(cit. on p. 166).

[27] Jos C. M. Baeten, Bert van Beek, Allan van Hulst, and Jasen Markovski. “A Process
Algebra for Supervisory Coordination”. In: Proceedings First International Workshop on
Process Algebra and Coordination, PACO 2011, Reykjavik, Iceland , 9th June 2011. Ed. by
Luca Aceto and Mohammad Reza Mousavi. Vol. 60. EPTCS. 2011, pp. 36–55. doi: 10.420
4/EPTCS.60.3 (cit. on p. 164).

[28] Jos C. M. Baeten, Dirk A. van Beek, B. Luttik, Jasen Markovski, and J. E. Rooda. “A
process-theoretic approach to supervisory control theory”. In: Proceedings of the 2011
American Control Conference. June 2011, pp. 4496–4501. doi: 10.1109/ACC.2011.5990831
(cit. on p. 164).

[29] Fabio Bagagiolo, Dario Bauso, Rosario Maggistro, and Marta Zoppello. “Game Theoretic
Decentralized Feedback Controls in Markov Jump Processes”. In: Journal of Optimization
Theory and Applications 173.2 (2017), pp. 704–726. doi: 10.1007/s10957-017-1078-3
(cit. on p. 168).

[30] Henry Baker. “Petri Nets and Languages”. In: Computation Structures Group - Memo No.
68 (May 1972) (cit. on p. 177).

[31] Ayca Balkan, Moshe Ya’akov Vardi, and Paulo Tabuada. “Mode-Target Games: Reactive
Synthesis for Control Applications”. In: IEEE Transactions on Automatic Control 63.1 (2018),
pp. 196–202. doi: 10.1109/TAC.2017.2722960 (cit. on p. 168).

[32] Ramon Barakat, Ruediger Berndt, Christian Breindl, Christine Baier, Tobias Barthel,
Christoph Doerr, Marc Duevel, Norman Franchi, Stefan Goetz, Rainer Hartmann, Jochen
Hellenschmidt, Stefan Jacobi, Matthias Leinfelder, Tomás Masopust, Michael Meyer,
Andreas Mohr, Thomas Moor, Mihai Musunoi, Bernd Opitz, Katja Pelaic, Irmgard
Petzoldt, Sebastian Perk, Thomas Rempel, Daniel Ritter, Berno Schlein, Ece Schmidt,
Klaus Werner Schmidt, Anne-Kathrin Schmuck, Sven Schneider, Matthias Singer, Ulas
Turan, Christian Wamser, Zhengying Wang, Thomas Wittmann, Shi Xiaoxun, Yang Yi,
Jorgos Zaddach, Hao Zhou, Christian Zwick, and et al. libFAUDES. 2018. url: http://w
ww.rt.eei.uni-erlangen.de/FGdes/faudes/faudes_about.html (cit. on pp. 156, 172,
211).

251

http://www-sop.inria.fr/members/Charles.Andre/SyncCharts/
http://www-sop.inria.fr/members/Charles.Andre/SyncCharts/
https://doi.org/10.1109/ROBOT.1995.525480
http://www.isa-afp.org/entries/Kleene_Algebra.shtml
http://www.isa-afp.org/entries/Kleene_Algebra.shtml
https://doi.org/10.1007/978-3-540-30187-5_24
https://doi.org/10.1016/j.scico.2013.01.007
https://doi.org/10.1007/978-3-642-16242-8_6
https://doi.org/10.4204/EPTCS.60.3
https://doi.org/10.4204/EPTCS.60.3
https://doi.org/10.1109/ACC.2011.5990831
https://doi.org/10.1007/s10957-017-1078-3
https://doi.org/10.1109/TAC.2017.2722960
http://www.rt.eei.uni-erlangen.de/FGdes/faudes/faudes_about.html
http://www.rt.eei.uni-erlangen.de/FGdes/faudes/faudes_about.html

Appendix E. Bibliography

[33] Francesco Basile, Pasquale Chiacchio, and Alessandro Giua. “Suboptimal supervisory
control of Petri nets in presence of uncontrollable transitions via monitor places”. In:
Automatica 42.6 (2006), pp. 995–1004. doi: 10.1016/j.automatica.2006.02.003 (cit. on
p. 179).

[34] Dirk A. van Beek, Wan Fokkink, D. Hendriks, A. Hofkamp, Jasen Markovs-ki, J. M.
van de Mortel-Fronczak, and Michel A. Reniers. “CIF 3: Model-Based Engineering of
Supervisory Controllers”. In: Tools and Algorithms for the Construction and Analysis of
Systems - 20th International Conference, TACAS 2014, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13,
2014. Proceedings. Ed. by Erika Ábrahám and Klaus Havelund. Vol. 8413. Lecture Notes
in Computer Science. Springer, 2014, pp. 575–580. doi: 10.1007/978-3-642-54862-8_48
(cit. on pp. 172, 174).

[35] Dirk A. van Beek, Wan Fokkink, D. Hendriks, A. Hofkamp, Jasen Markovs-ki, J. M. van de
Mortel-Fronczak, and Michel A. Reniers. CIF3. 2018. url: http://cif.se.wtb.tue.nl/
(cit. on pp. 172, 174).

[36] Jesper Bengtson. “Formalizing Process Calculi”. PhD thesis. Uppsala University, 2010

(cit. on p. 187).
[37] Harsh Beohar, Pieter J. L. Cuijpers, and Jos C. M. Baeten. “Design of asynchronous

supervisors”. In: CoRR (2009). url: http://arxiv.org/abs/0910.0868 (cit. on p. 164).
[38] Stefan Berghofer and Markus Reiter. Formalizing the Logic-Automaton Connection. 2009.

url: http://www.isa-afp.org/entries/Presburger-Automata.shtml (cit. on p. 186).
[39] Gerard Berry, Amar Bouali, Yannis Bres, Loic Henry-gréard, Jean-Paul Marmorat, Fabrice

Peix, Dumitru Potop-Butucaru, Annie Ressouche, Robert De_Simone, Xavier Thirioux,
and Eric Vecchie. Esterel Programming Language. 2012. url: http://www-sop.inria.fr/e
sterel.org/filesv5_92/ (cit. on p. 207).

[40] Nicolas Berthier and Hervé Marchand. “Deadlock-free discrete controller synthesis for
infinite state systems”. In: 54th IEEE Conference on Decision and Control, CDC 2015, Osaka,
Japan, December 15-18, 2015. IEEE, 2015, pp. 1000–1007. isbn: 978-1-4799-7886-1. doi:
10.1109/CDC.2015.7402003 (cit. on p. 172).

[41] Nicolas Berthier and Hervé Marchand. “Discrete Controller Synthesis for Infinite State
Systems with ReaX”. In: 12th International Workshop on Discrete Event Systems, WODES
2014, Cachan, France, May 14-16, 2014. Ed. by Jean-Jacques Lesage, Jean-Marc Faure, José
E. R. Cury, and Bengt Lennartson. International Federation of Automatic Control, 2014,
pp. 46–53. isbn: 978-3-902823-61-8. doi: 10.3182/20140514-3-FR-4046.00099 (cit. on
p. 172).

[42] Nicolas Berthier and Hervé Marchand. reaX. 2018. url: http://reatk.gforge.inria.f
r/ (cit. on p. 172).

[43] Benjamin Bittner, Marco Bozzano, Alessandro Cimatti, and Xavier Olive. “Symbolic
Synthesis of Observability Requirements for Diagnosability”. In: Proceedings of the Twenty-
Sixth AAAI Conference on Artificial Intelligence, July 22-26, 2012, Toronto, Ontario, Canada.
Ed. by Jörg Hoffmann and Bart Selman. AAAI Press, 2012. url: http://www.aaai.org
/ocs/index.php/AAAI/AAAI12/paper/view/5056 (cit. on p. 173).

[44] Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. “Syn-
thesis of Reactive(1) designs”. In: Journal of Computer and System Sciences 78.3 (2012),
pp. 911–938. doi: 10.1016/j.jcss.2011.08.007 (cit. on p. 170).

[45] Gregor von Bochmann. “Submodule Construction and Supervisory Control: A General-
ization”. In: Implementation and Application of Automata, 6th International Conference, CIAA
2001, Pretoria, South Africa, July 23-25, 2001, Revised Papers. Ed. by Bruce W. Watson and
Derick Wood. Vol. 2494. Lecture Notes in Computer Science. Springer, 2001, pp. 27–39.
doi: 10.1007/3-540-36390-4_3 (cit. on pp. 146, 170, 171).

252

https://doi.org/10.1016/j.automatica.2006.02.003
https://doi.org/10.1007/978-3-642-54862-8_48
http://cif.se.wtb.tue.nl/
http://arxiv.org/abs/0910.0868
http://www.isa-afp.org/entries/Presburger-Automata.shtml
http://www-sop.inria.fr/esterel.org/filesv5_92/
http://www-sop.inria.fr/esterel.org/filesv5_92/
https://doi.org/10.1109/CDC.2015.7402003
https://doi.org/10.3182/20140514-3-FR-4046.00099
http://reatk.gforge.inria.fr/
http://reatk.gforge.inria.fr/
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5056
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5056
https://doi.org/10.1016/j.jcss.2011.08.007
https://doi.org/10.1007/3-540-36390-4_3

[46] Gregor von Bochmann. “Submodule Construction for Specifications with Input Assump-
tions and Output Guarantees”. In: Formal Techniques for Networked and Distributed Systems
- FORTE 2002, 22nd IFIP WG 6.1 International Conference Houston, Texas, USA, November 11-
14, 2002, Proceedings. Ed. by Doron A. Peled and Moshe Ya’akov Vardi. Vol. 2529. Lecture
Notes in Computer Science. Springer, 2002, pp. 17–33. doi: 10.1007/3-540-36135-9_2
(cit. on p. 171).

[47] Gregor von Bochmann. “Using First-Order Logic to Reason about Submodule Construc-
tion”. In: Formal Techniques for Distributed Systems, Joint 11th IFIP WG 6.1 International
Conference FMOODS 2009 and 29th IFIP WG 6.1 International Conference FORTE 2009,
Lisboa, Portugal, June 9-12, 2009. Proceedings. Ed. by David Lee, Antónia Lopes, and Arnd
Poetzsch-Heffter. Vol. 5522. Lecture Notes in Computer Science. Springer, 2009, pp. 213–
218. doi: 10.1007/978-3-642-02138-1_14 (cit. on p. 171).

[48] Nicky O. Bodentien, Jacob Vestergaard, Jakob Friis, Kåre J. Kristoffersen, and Kim
Guldstrand Larsen. Verification of State/Event Systems by Quotienting. rs RS-99-41. 17 pp.
Presented at Nordic Workshop in Programming Theory, Uppsala, Sweden, October 6–8, 1999.
iesd: brics, Dec. 1999 (cit. on pp. 171, 172).

[49] Maksym Bortin. A formalisation of the Cocke-Younger-Kasami algorithm. 2016. url: http://w
ww.isa-afp.org/entries/CYK.shtml (cit. on p. 186).

[50] Ahmed Bouajjani. “Languages, Rewriting Systems, and Verification of Infinite-State
Systems”. In: Automata, Languages and Programming, 28th International Colloquium, ICALP
2001, Crete, Greece, July 8-12, 2001, Proceedings. Ed. by Fernando Orejas, Paul G. Spirakis,
and Jan van Leeuwen. Vol. 2076. Lecture Notes in Computer Science. Springer, 2001,
pp. 24–39. doi: 10.1007/3-540-48224-5_3 (cit. on p. 168).

[51] Ahmed Bouajjani, Rachid Echahed, and Peter Habermehl. “On the Verification Problem
of Nonregular Properties for Nonregular Processes”. In: Proceedings, 10th Annual IEEE
Symposium on Logic in Computer Science, San Diego, California, USA, June 26-29, 1995. IEEE
Computer Society, 1995, pp. 123–133. isbn: 0-8186-7050-9. doi: 10.1109/LICS.1995.5232
50 (cit. on p. 168).

[52] Ahmed Bouajjani, Rachid Echahed, and Peter Habermehl. “Verifying Infinite State
Processes with Sequential and Parallel Composition”. In: Conference Record of POPL’95:
22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San
Francisco, California, USA, January 23-25, 1995. Ed. by Ron K. Cytron and Peter Lee. ACM
Press, 1995, pp. 95–106. isbn: 0-89791-692-1. doi: 10.1145/199448.199470 (cit. on p. 168).

[53] Ahmed Bouajjani, Rachid Echahed, and Riadh Robbana. “Verification of Context-Free
Timed Systems Using Linear Hybrid Observers”. In: Computer Aided Verification, 6th
International Conference, CAV ’94, Stanford, California, USA, June 21-23, 1994, Proceedings.
Ed. by David Lansing Dill. Vol. 818. Lecture Notes in Computer Science. Springer, 1994,
pp. 118–131. doi: 10.1007/3-540-58179-0_48 (cit. on p. 168).

[54] Ahmed Bouajjani, Rachid Echahed, and Riadh Robbana. “Verification of Nonregular
Temporal Properties for Context-Free Processes”. In: CONCUR ’94, Concurrency Theory,
5th International Conference, Uppsala, Sweden, August 22-25, 1994, Proceedings. Ed. by Bengt
Jonsson and Joachim Parrow. Vol. 836. Lecture Notes in Computer Science. Springer,
1994, pp. 81–97. doi: 10.1007/978-3-540-48654-1_8 (cit. on p. 168).

[55] Tayeb Bouhadiba, Quentin Sabah, Gwenaël Delaval, and Éric Rutten. “Synchronous con-
trol of reconfiguration in fractal component-based systems: a case study”. In: Proceedings
of the 11th International Conference on Embedded Software, EMSOFT 2011, part of the Seventh
Embedded Systems Week, ESWeek 2011, Taipei, Taiwan, October 9-14, 2011. Ed. by Samarjit
Chakraborty, Ahmed Jerraya, Sanjoy K. Baruah, and Sebastian Fischmeister. ACM, 2011,
pp. 309–318. isbn: 978-1-4503-0714-7. doi: 10.1145/2038642.2038690 (cit. on p. 172).

[56] Sean E. Bourdon, Mark Lawford, and Walter Murray Wonham. “Robust nonblocking
supervisory control of discrete-event systems”. In: IEEE Transactions on Automatic Control
50.12 (2005), pp. 2015–2021. doi: 10.1109/TAC.2005.860237 (cit. on pp. 166, 174).

253

https://doi.org/10.1007/3-540-36135-9_2
https://doi.org/10.1007/978-3-642-02138-1_14
http://www.isa-afp.org/entries/CYK.shtml
http://www.isa-afp.org/entries/CYK.shtml
https://doi.org/10.1007/3-540-48224-5_3
https://doi.org/10.1109/LICS.1995.523250
https://doi.org/10.1109/LICS.1995.523250
https://doi.org/10.1145/199448.199470
https://doi.org/10.1007/3-540-58179-0_48
https://doi.org/10.1007/978-3-540-48654-1_8
https://doi.org/10.1145/2038642.2038690
https://doi.org/10.1109/TAC.2005.860237

Appendix E. Bibliography

[57] Víctor A. Braberman, Nicolás D’Ippolito, Jeff Kramer, Daniel Sykes, and Sebastián Uchitel.
“MORPH: a reference architecture for configuration and behaviour self-adaptation”. In:
Proceedings of the 1st International Workshop on Control Theory for Software Engineering,
CTSE@SIGSOFT FSE 2015, Bergamo, Italy, August 31 - September 04, 2015. Ed. by Antonio
Filieri and Martina Maggio. ACM, 2015, pp. 9–16. isbn: 978-1-4503-3814-1. doi: 10.1145
/2804337.2804339 (cit. on p. 170).

[58] Bertil A. Brandin and Walter Murray Wonham. “Supervisory control of timed discrete-
event systems”. In: IEEE Transactions on Automatic Control 39.2 (Feb. 1994), pp. 329–342.
doi: 10.1109/9.272327 (cit. on pp. 171, 173).

[59] Bertil A. Brandin, Walter Murray Wonham, and Beno Benhabib. “Manufacturing cell
supervisory control-a timed discrete event system approach”. In: Proceedings of the 1992
IEEE International Conference on Robotics and Automation, Nice, France, May 12-14, 1992.
IEEE, 1992, pp. 931–936. isbn: 0-8186-2720-4. doi: 10.1109/ROBOT.1992.220177 (cit. on
pp. 173, 174).

[60] Yitzhak Brave and Michael Heymann. “Formulation and control of real time discrete
event processes”. In: Proceedings of the 27th IEEE Conference on Decision and Control. Dec.
1988, pp. 1131–1132. doi: 10.1109/CDC.1988.194493 (cit. on pp. 173, 217).

[61] Yitzhak Brave and Michael Heymann. “On optimal attraction in discrete-event processes”.
In: Information Sciences 67.3 (1993), pp. 245–276. doi: 10.1016/0020-0255(93)90075-W
(cit. on p. 165).

[62] Julian Brunner. Transition Systems and Automata. 2017. url: http://isa-afp.org/entrie
s/Transition_Systems_and_Automata.html (cit. on p. 187).

[63] Giorgio Bruno and Giuseppe Marchetto. “Process-Translatable Petri Nets for the Rapid
Prototyping of Process Control Systems”. In: IEEE Transactions on Software Engineering
12.2 (1986), pp. 346–357. doi: 10.1109/TSE.1986.6312948 (cit. on p. 178).

[64] Julius Richard Büchi. “State-Strategies for Games in Fσ,δ Gδσ”. In: The Journal of Symbolic
Logic 48.4 (1983), pp. 1171–1198. doi: 10.2307/2273681 (cit. on p. 168).

[65] Julius Richard Büchi. “Symposium on Decision Problems: On a Decision Method in
Restricted Second Order Arithmetic”. In: Logic, Methodology and Philosophy of Science
Proceeding of the 1960 International Congress. Ed. by Ernest Nagel, Patrick Suppes, and
Alfred Tarski. Vol. 44. Studies in Logic and the Foundations of Mathematics. Elsevier,
1966, pp. 1–11. doi: 10.1016/S0049-237X(09)70564-6 (cit. on pp. 111, 164).

[66] Julius Richard Buchi and Lawrence Hugh Landweber. “Solving Sequential Conditions by
Finite-State Strategies”. In: Transactions of the American Mathematical Society 138 (1969),
pp. 295–311. issn: 00029947. doi: 10.2307/1994916. url: http://www.jstor.org/stabl
e/1994916 (cit. on p. 1).

[67] Maria Paola Cabasino, Alessandro Giua, Laura Marcias, and Carla Seatzu. “A comparison
among tools for the diagnosability of discrete event systems”. In: 2012 IEEE International
Conference on Automation Science and Engineering, CASE 2012, Seoul, Korea (South), August
20-24, 2012. IEEE, 2012, pp. 218–223. isbn: 978-1-4673-0429-0. doi: 10.1109/CoASE.2012
.6386425 (cit. on p. 173).

[68] Maria Paola Cabasino, Alessandro Giua, and Carla Seatzu. “Diagnosability of Discrete-
Event Systems Using Labeled Petri Nets”. In: IEEE Transactions on Automation Science and
Engineering 11.1 (2014), pp. 144–153. doi: 10.1109/TASE.2013.2289360 (cit. on p. 173).

[69] Kai Cai and Walter Murray Wonham. “Supervisor Localization of Discrete-Event Systems
based on State Tree Structures”. In: CoRR (2013). url: http://arxiv.org/abs/1306.5441
(cit. on pp. 175, 176).

[70] Xi-Ren Cao, Guy Cohen, Alessandro Giua, Walter Murray Wonham, and Jan Hendrik
van Schuppen. “Unity in Diversity, Diversity in Unity: Retrospective and Prospective
Views on Control of Discrete Event Systems”. In: Discrete Event Dynamic Systems 12.3
(2002), pp. 253–264. doi: 10.1023/A:1015617431563 (cit. on pp. 8, 172, 222).

254

https://doi.org/10.1145/2804337.2804339
https://doi.org/10.1145/2804337.2804339
https://doi.org/10.1109/9.272327
https://doi.org/10.1109/ROBOT.1992.220177
https://doi.org/10.1109/CDC.1988.194493
https://doi.org/10.1016/0020-0255(93)90075-W
http://isa-afp.org/entries/Transition_Systems_and_Automata.html
http://isa-afp.org/entries/Transition_Systems_and_Automata.html
https://doi.org/10.1109/TSE.1986.6312948
https://doi.org/10.2307/2273681
https://doi.org/10.1016/S0049-237X(09)70564-6
https://doi.org/10.2307/1994916
http://www.jstor.org/stable/1994916
http://www.jstor.org/stable/1994916
https://doi.org/10.1109/CoASE.2012.6386425
https://doi.org/10.1109/CoASE.2012.6386425
https://doi.org/10.1109/TASE.2013.2289360
http://arxiv.org/abs/1306.5441
https://doi.org/10.1023/A:1015617431563

[71] Christos G. Cassandras and Stéphane Lafortune. Introduction to Discrete Event Systems.
2nd ed. Springer Link Engineering. Secaucus, NJ, USA: Springer-Verlag New York, Inc.,
2008. isbn: 9780387333328 (cit. on pp. 8, 143, 172–174).

[72] Christos G. Cassandras and Stéphane Lafortune. UMDES. 2018. url: http://www.swmat
h.org/software/9523 (cit. on p. 172).

[73] Franck Cassez and François Laroussinie. “Model-Checking for Hybrid Systems by Quoti-
enting and Constraints Solving”. In: Computer Aided Verification, 12th International Confer-
ence, CAV 2000, Chicago, IL, USA, July 15-19, 2000, Proceedings. Ed. by E. Allen Emerson
and A. Prasad Sistla. Vol. 1855. Lecture Notes in Computer Science. Springer, 2000,
pp. 373–388. doi: 10.1007/10722167_29 (cit. on pp. 171, 172).

[74] Giovanni Castagnetti, Matteo Piccolo, Tiziano Villa, Nina Yevtushenko, Robert K. Brayton,
and Alan Mishchenko. “Automated Synthesis of Protocol Converters with BALM-II”. In:
Software Engineering and Formal Methods - SEFM 2015 Collocated Workshops: ATSE, HOFM,
MoKMaSD, and VERY*SCART, York, UK, September 7-8, 2015, Revised Selected Papers. Ed. by
Domenico Bianculli, Radu Calinescu, and Bernhard Rumpe. Vol. 9509. Lecture Notes in
Computer Science. Springer, 2015, pp. 281–296. doi: 10.1007/978-3-662-49224-6_23
(cit. on p. 171).

[75] Jacques Chabin and Pierre Réty. “Visibly Pushdown Languages and Term Rewriting”.
In: Frontiers of Combining Systems, 6th International Symposium, FroCoS 2007, Liverpool,
UK, September 10-12, 2007, Proceedings. Ed. by Boris Konev and Frank Wolter. Vol. 4720.
Lecture Notes in Computer Science. Springer, 2007, pp. 252–266. doi: 10.1007/978-3-54
0-74621-8_17 (cit. on p. 216).

[76] Wujie Chao, Yongmei Gan, Zhaoan Wang, and Walter Murray Wonham. “Modular
supervisory control and coordination of state tree structures”. In: International Journal of
Control 86.1 (2013), pp. 9–21. doi: 10.1080/00207179.2012.715754 (cit. on pp. 175, 176).

[77] Betty H. C. Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, and Jeff Magee, eds.
Software Engineering for Self-Adaptive Systems [outcome of a Dagstuhl Seminar]. Vol. 5525.
Lecture Notes in Computer Science. Springer, 2009. doi: 10.1007/978-3-642-02161-9
(cit. on p. 169).

[78] Kwang-Hyun Cho and Jong-Tae Lim. “Fault-tolerant supervisory control of discrete event
dynamical systems”. In: International Journal of Systems Science 28.10 (1997), pp. 1001–1009.
doi: 10.1080/00207729708929463 (cit. on p. 173).

[79] Noam Chomsky. “On Certain Formal Properties of Grammars”. In: Information and Control
2.2 (1959), pp. 137–167. doi: 10.1016/S0019-9958(59)90362-6 (cit. on p. 111).

[80] Noam Chomsky. “Three models for the description of language”. In: IRE Transactions
on Information Theory 2.3 (1956), pp. 113–124. doi: 10.1109/TIT.1956.1056813 (cit. on
p. 27).

[81] Alonzo Church. Applications of recursive arithmetic to the problem of circuit synthesis. Vol. 1.
In Summaries of the Summer Institute of Symbolic Logic. Cornell University, 1957, pp. 3–
50 (cit. on pp. 1, 219).

[82] Randy Cieslak, C. Desclaux, Ayman S. Fawaz, and Pravin Varaiya. “Supervisory control
of discrete-event processes with partial observations”. In: IEEE Transactions on Automatic
Control 33.3 (Mar. 1988), pp. 249–260. doi: 10.1109/9.402 (cit. on p. 173).

[83] Edmund M. Clarke and E. Allen Emerson. “Design and Synthesis of Synchronization
Skeletons Using Branching-Time Temporal Logic”. In: Logics of Programs, Workshop,
Yorktown Heights, New York, May 1981. Ed. by Dexter Kozen. Vol. 131. Lecture Notes in
Computer Science. Springer, 1981, pp. 52–71. doi: 10.1007/BFb0025774 (cit. on p. 171).

[84] Edmund Melson Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
“Counterexample-Guided Abstraction Refinement”. In: Computer Aided Verification, 12th
International Conference, CAV 2000, Chicago, IL, USA, July 15-19, 2000, Proceedings. Ed. by
E. Allen Emerson and A. Prasad Sistla. Vol. 1855. Lecture Notes in Computer Science.
Springer, 2000, pp. 154–169. doi: 10.1007/10722167_15 (cit. on p. 167).

255

http://www.swmath.org/software/9523
http://www.swmath.org/software/9523
https://doi.org/10.1007/10722167_29
https://doi.org/10.1007/978-3-662-49224-6_23
https://doi.org/10.1007/978-3-540-74621-8_17
https://doi.org/10.1007/978-3-540-74621-8_17
https://doi.org/10.1080/00207179.2012.715754
https://doi.org/10.1007/978-3-642-02161-9
https://doi.org/10.1080/00207729708929463
https://doi.org/10.1016/S0019-9958(59)90362-6
https://doi.org/10.1109/TIT.1956.1056813
https://doi.org/10.1109/9.402
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/10722167_15

Appendix E. Bibliography

[85] Hubert Comon-Lundh, Florent Jacquemard, and Nicolas Perrin. “Visibly Tree Automata
with Memory and Constraints”. In: Logical Methods in Computer Science 4.2 (2008). doi:
10.2168/LMCS-4(2:8)2008 (cit. on p. 216).

[86] Roger C. Conant. “Channel Capacity of Moore Automata”. In: Information and Control
12.5/6 (1968), pp. 453–465. doi: 10.1016/S0019-9958(68)90496-8 (cit. on p. 164).

[87] José Eduardo Ribeiro Cury and Bruce H. Krogh. “Design of robust supervisors for
discrete event systems with infinite behaviors”. In: Proceedings of 35th IEEE Conference on
Decision and Control. Vol. 2. Dec. 1996, pp. 2219–2224. doi: 10.1109/CDC.1996.572972
(cit. on p. 166).

[88] José Eduardo Ribeiro Cury and Bruce H. Krogh. “Robustness of supervisors for discrete-
event systems”. In: IEEE Transactions on Automatic Control 44.2 (1999), pp. 376–379. doi:
10.1109/9.746270 (cit. on p. 166).

[89] Nicolás D’Ippolito, Víctor A. Braberman, Jeff Kramer, Jeff Magee, Daniel Sykes, and
Sebastián Uchitel. “Hope for the best, prepare for the worst: multi-tier control for adaptive
systems”. In: 36th International Conference on Software Engineering, ICSE ’14, Hyderabad,
India - May 31 - June 07, 2014. Ed. by Pankaj Jalote, Lionel C. Briand, and André van der
Hoek. ACM, 2014, pp. 688–699. isbn: 978-1-4503-2756-5. doi: 10.1145/2568225.2568264
(cit. on p. 170).

[90] Nicolás D’Ippolito, Víctor A. Braberman, Nir Piterman, and Sebastián Uchitel. “Synthe-
sizing nonanomalous event-based controllers for liveness goals”. In: ACM Transactions on
Software Engineering and Methodology (TOSEM) 22.1 (2013), pp. 1–36. doi: 10.1145/24305
36.2430543 (cit. on p. 170).

[91] Eric Dallal, Daniel Neider, and Paulo Tabuada. “Synthesis of safety controllers robust to
unmodeled intermittent disturbances”. In: 55th IEEE Conference on Decision and Control,
CDC 2016, Las Vegas, NV, USA, December 12-14, 2016. IEEE, 2016, pp. 7425–7430. isbn:
978-1-5090-1837-6. doi: 10.1109/CDC.2016.7799416 (cit. on p. 166).

[92] Zhe Dang, Oscar H. Ibarra, Tevfik Bultan, Richard A. Kemmerer, and Jianwen Su. “Binary
Reachability Analysis of Discrete Pushdown Timed Automata”. In: Computer Aided
Verification, 12th International Conference, CAV 2000, Chicago, IL, USA, July 15-19, 2000,
Proceedings. Ed. by E. Allen Emerson and A. Prasad Sistla. Vol. 1855. Lecture Notes in
Computer Science. Springer, 2000, pp. 69–84. doi: 10.1007/10722167_9 (cit. on p. 169).

[93] Bassel Daou and Gregor von Bochmann. “Generalizing the Submodule Construction
Techniques for Extended State Machine Models”. In: Formal Techniques for Networked and
Distributed Systems - FORTE 2006, 26th IFIP WG 6.1 International Conference, Paris, France,
September 26-29, 2006. Ed. by Elie Najm, Jean-François Pradat-Peyre, and Véronique
Donzeau-Gouge. Vol. 4229. Lecture Notes in Computer Science. Springer, 2006, pp. 191–
195. doi: 10.1007/11888116_15 (cit. on p. 171).

[94] Bassel Daou and Gregor von Bochmann. “Submodule Construction for Extended State
Machine Models”. In: Formal Techniques for Networked and Distributed Systems - FORTE
2005, 25th IFIP WG 6.1 International Conference, Taipei, Taiwan, October 2-5, 2005, Proceedings.
Ed. by Farn Wang. Vol. 3731. Lecture Notes in Computer Science. Springer, 2005, pp. 396–
410. doi: 10.1007/11562436_29 (cit. on p. 171).

[95] Ajoy Kumar Datta and Sukumar Ghosh. “Synthesis of a Class of Deadlock-Free Petri
Nets”. In: The Journal of the ACM (JACM) 31.3 (1984), pp. 486–506. doi: 10.1145/828.322
441 (cit. on p. 178).

[96] Jennifer M. Davoren, Thomas Moor, and Anil Nerode. “Hybrid Control Loops, A/D
Maps, and Dynamic Specifications”. In: Hybrid Systems: Computation and Control, 5th
International Workshop, HSCC 2002, Stanford, CA, USA, March 25-27, 2002, Proceedings.
Ed. by Claire Tomlin and Mark R. Greenstreet. Vol. 2289. Lecture Notes in Computer
Science. Springer, 2002, pp. 149–163. doi: 10.1007/3-540-45873-5_14 (cit. on p. 176).

256

https://doi.org/10.2168/LMCS-4(2:8)2008
https://doi.org/10.1016/S0019-9958(68)90496-8
https://doi.org/10.1109/CDC.1996.572972
https://doi.org/10.1109/9.746270
https://doi.org/10.1145/2568225.2568264
https://doi.org/10.1145/2430536.2430543
https://doi.org/10.1145/2430536.2430543
https://doi.org/10.1109/CDC.2016.7799416
https://doi.org/10.1007/10722167_9
https://doi.org/10.1007/11888116_15
https://doi.org/10.1007/11562436_29
https://doi.org/10.1145/828.322441
https://doi.org/10.1145/828.322441
https://doi.org/10.1007/3-540-45873-5_14

[97] Gwenaël Delaval. “Modular Distribution and Application to Discrete Controller Syn-
thesis”. In: Electronic Notes in Theoretical Computer Science 238.1 (2009), pp. 3–19. doi:
10.1016/j.entcs.2008.01.003 (cit. on p. 167).

[98] Gwenaël Delaval, Soguy Mak Karé Gueye, Éric Rutten, and Noël De Palma. “Modular
coordination of multiple autonomic managers”. In: CBSE’14, Proceedings of the 17th
International ACM SIGSOFT Symposium on Component-Based Software Engineering (part
of CompArch 2014), Marcq-en-Baroeul, Lille, France, June 30 - July 4, 2014. Ed. by Lionel
Seinturier, Eduardo Santana de Almeida, and Jan Carlson. ACM, 2014, pp. 3–12. isbn:
978-1-4503-2577-6. doi: 10.1145/2602458.2602465 (cit. on p. 170).

[99] Gwenaël Delaval, Hervé Marchand, Marc Pouzet, and Éric Rutten. BZR. 2000. url:
http://heptagon.gforge.inria.fr/ (cit. on p. 172).

[100] Gwenaël Delaval, Hervé Marchand, and Éric Rutten. “Contracts for modular discrete
controller synthesis”. In: Proceedings of the ACM SIGPLAN/SIGBED 2010 conference on
Languages, compilers, and tools for embedded systems, LCTES 2010, Stockholm, Sweden, April
13-15, 2010. Ed. by Jaejin Lee and Bruce R. Childers. ACM, 2010, pp. 57–66. isbn: 978-1-
60558-953-4. doi: 10.1145/1755888.1755898 (cit. on p. 172).

[101] Franklin Lewis DeRemer. Practical Translators for LR(k) Tanguages. Tech. rep. Cambridge,
MA, USA: Massachusetts Institute of Technology, 1969 (cit. on p. 214).

[102] Franklin Lewis DeRemer. “Simple LR(k) Grammars”. In: Communications of the ACM 14.7
(July 1971), pp. 453–460. doi: 10.1145/362619.362625 (cit. on p. 214).

[103] Yixin Diao, Neha Gandhi, Joseph L. Hellerstein, Sujay S. Parekh, and Dawn M. Tilbury.
“Using MIMO feedback control to enforce policies for interrelated metrics with appli-
cation to the Apache Web server”. In: Management Solutions for the New Communications
World, 8th IEEE/IFIP Network Operations and Management Symposium, NOMS 2002, Florence,
Italy, April 15-19, 2002. Proceedings. Ed. by Rolf Stadler and Mehmet Ulema. IEEE, 2002,
pp. 219–234. isbn: 0-7803-7383-9. doi: 10.1109/NOMS.2002.1015566 (cit. on p. 170).

[104] Abbas Dideban and Hassane Alla. “Feedback control logic synthesis for non safe Petri
nets”. In: 13th IFAC Symposium on Information Control Problems in Manufacturing (IN-
COM0́9). Moscou, Russia, June 2009, pp. 946–951. url: https://hal.archives-ouverte
s.fr/hal-00463404 (cit. on p. 180).

[105] David Lansing Dill. Trace theory for automatic hierarchical verification of speed-independent
circuits. ACM distinguished dissertations. MIT Press, 1989. isbn: 978-0-262-04101-0 (cit. on
p. 168).

[106] Rayna Dimitrova. “Synthesis and control of infinite-state systems with partial observabil-
ity”. PhD thesis. Saarland University, 2014. url: http://scidok.sulb.uni-saarland.d
e/volltexte/2014/5946/ (cit. on pp. 168, 173).

[107] Christopher Dragert, Jürgen Dingel, and Karen Rudie. “Generation of concurrency control
code using discrete-event systems theory”. In: Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2008, Atlanta, Georgia,
USA, November 9-14, 2008. Ed. by Mary Jean Harrold and Gail C. Murphy. ACM, 2008,
pp. 146–157. isbn: 978-1-59593-995-1. doi: 10.1145/1453101.1453122 (cit. on p. 170).

[108] Jawad Drissi and Gregor von Bochmann. Submodule construction for systems of I/O automata.
Tech. rep. Dept. d’IRO, Université de Montréal, School of Information Technology &
Engineering, University of Ottawa, 1999 (cit. on p. 171).

[109] Jawad Drissi and Gregor von Bochmann. Submodule construction for systems of timed
I/O automata. Tech. rep. Dept. d’IRO, Université de Montréal, School of Information
Technology & Engineering, University of Ottawa, Jan. 2000 (cit. on p. 171).

[110] Jay Clark Earley. “An Efficient Context-free Parsing Algorithm”. PhD thesis. Pittsburgh,
PA, USA: Carnegie Mellon University Pittsburgh, 1968 (cit. on p. 157).

257

https://doi.org/10.1016/j.entcs.2008.01.003
https://doi.org/10.1145/2602458.2602465
http://heptagon.gforge.inria.fr/
https://doi.org/10.1145/1755888.1755898
https://doi.org/10.1145/362619.362625
https://doi.org/10.1109/NOMS.2002.1015566
https://hal.archives-ouvertes.fr/hal-00463404
https://hal.archives-ouvertes.fr/hal-00463404
http://scidok.sulb.uni-saarland.de/volltexte/2014/5946/
http://scidok.sulb.uni-saarland.de/volltexte/2014/5946/
https://doi.org/10.1145/1453101.1453122

Appendix E. Bibliography

[111] Rüdiger Ehlers, Stéphane Lafortune, Stavros Tripakis, and Moshe Ya’akov Vardi. “Su-
pervisory control and reactive synthesis: a comparative introduction”. In: Discrete Event
Dynamic Systems 27.2 (2017), pp. 209–260. doi: 10.1007/s10626-015-0223-0 (cit. on
p. 168).

[112] E. Allen Emerson. “Uniform Inevitability is Tree Automaton Ineffable”. In: Information
Processing Letters 24.2 (1987), pp. 77–79. doi: 10.1016/0020-0190(87)90097-4 (cit. on
p. 166).

[113] Javier Esparza, David Hansel, Peter Rossmanith, and Stefan Schwoon. “Efficient Algo-
rithms for Model Checking Pushdown Systems”. In: Computer Aided Verification, 12th
International Conference, CAV 2000, Chicago, IL, USA, July 15-19, 2000, Proceedings. Ed. by
E. Allen Emerson and A. Prasad Sistla. Vol. 1855. Lecture Notes in Computer Science.
Springer, 2000, pp. 232–247. doi: 10.1007/10722167_20 (cit. on p. 169).

[114] Martin Fabian and Anders Hellgren. Desco. 2018. url: http://www.swmath.org/softwa
re/1223 (cit. on p. 172).

[115] Lei Feng and Walter Murray Wonham. “Nonblocking coordination of discrete-event
systems by control-flow nets”. In: 46th IEEE Conference on Decision and Control, CDC 2007,
New Orleans, LA, USA, December 12-14, 2007. IEEE, 2007, pp. 3375–3380. doi: 10.1109/CD
C.2007.4434160 (cit. on p. 164).

[116] Lei Feng and Walter Murray Wonham. “Supervisory Control Architecture for Discrete-
Event Systems”. In: IEEE Transactions on Automatic Control 53.6 (2008), pp. 1449–1461. doi:
10.1109/TAC.2008.927679 (cit. on pp. 175, 176).

[117] Lei Feng and Walter Murray Wonham. TCT. 2006. url: http://www.lsv.fr/~fl/cmcweb
.html (cit. on p. 172).

[118] Lei Feng and Walter Murray Wonham. “TCT: A Computation Tool for Supervisory
Control Synthesis”. In: 2006 8th International Workshop on Discrete Event Systems. July 2006,
pp. 388–389. doi: 10.1109/WODES.2006.382399 (cit. on p. 172).

[119] Lei Feng, Walter Murray Wonham, and P. S. Thiagarajan. “Designing communicating
transaction processes by supervisory control theory”. In: Formal Methods in System Design
30.2 (2007), pp. 117–141. doi: 10.1007/s10703-006-0023-0 (cit. on p. 175).

[120] Antonio Filieri, Henry Hoffmann, and Martina Maggio. “Automated design of self-
adaptive software with control-theoretical formal guarantees”. In: 36th International
Conference on Software Engineering, ICSE ’14, Hyderabad, India - May 31 - June 07, 2014.
Ed. by Pankaj Jalote, Lionel C. Briand, and André van der Hoek. ACM, 2014, pp. 299–310.
isbn: 978-1-4503-2756-5. doi: 10.1145/2568225.2568272 (cit. on p. 170).

[121] Bernd Finkbeiner. “Synthesis of Reactive Systems”. In: Dependable Software Systems En-
gineering. Ed. by Javier Esparza, Orna Grumberg, and Salomon Sickert. Vol. 45. NATO
Science for Peace and Security Series - D: Information and Communication Security. IOS
Press, 2016, pp. 72–98. isbn: 978-1-61499-626-2. doi: 10.3233/978-1-61499-627-9-72.
url: https://doi.org/10.3233/978-1-61499-627-9-72 (cit. on pp. 1, 219).

[122] Markus P. J. Fromherz, Lara S. Crawford, and Haitham A. Hindi. “Coordinated Control
for Highly Reconfigurable Systems”. In: Hybrid Systems: Computation and Control, 8th
International Workshop, HSCC 2005, Zurich, Switzerland , March 9-11, 2005, Proceedings.
Ed. by Manfred Morari and Lothar Thiele. Vol. 3414. Lecture Notes in Computer Science.
Springer, 2005, pp. 1–24. doi: 10.1007/978-3-540-31954-2_1 (cit. on p. 169).

[123] Benoit Gaudin and Paddy Nixon. “Supervisory control for software runtime exception
avoidance”. In: Fifth International C* Conference on Computer Science & Software Engineering,
C3S2E ’12, Montreal, QC, Canada, June 27-29, 2012. Ed. by Bipin C. Desai, Emil Vassev, and
Sudhir P. Mudur. ACM, 2012, pp. 109–112. isbn: 978-1-4503-1084-0. doi: 10.1145/234758
3.2347598 (cit. on p. 170).

258

https://doi.org/10.1007/s10626-015-0223-0
https://doi.org/10.1016/0020-0190(87)90097-4
https://doi.org/10.1007/10722167_20
http://www.swmath.org/software/1223
http://www.swmath.org/software/1223
https://doi.org/10.1109/CDC.2007.4434160
https://doi.org/10.1109/CDC.2007.4434160
https://doi.org/10.1109/TAC.2008.927679
http://www.lsv.fr/~fl/cmcweb.html
http://www.lsv.fr/~fl/cmcweb.html
https://doi.org/10.1109/WODES.2006.382399
https://doi.org/10.1007/s10703-006-0023-0
https://doi.org/10.1145/2568225.2568272
https://doi.org/10.3233/978-1-61499-627-9-72
https://doi.org/10.3233/978-1-61499-627-9-72
https://doi.org/10.1007/978-3-540-31954-2_1
https://doi.org/10.1145/2347583.2347598
https://doi.org/10.1145/2347583.2347598

[124] Benoit Gaudin, Emil Vassev, Patrick Nixon, and Michael G. Hinchey. “A control theory
based approach for self-healing of un-handled runtime exceptions”. In: Proceedings of the
8th International Conference on Autonomic Computing, ICAC 2011, Karlsruhe, Germany, June
14-18, 2011. Ed. by Hartmut Schmeck, Wolfgang Rosenstiel, Tarek F. Abdelzaher, and
Joseph L. Hellerstein. ACM, 2011, pp. 217–220. doi: 10.1145/1998582.1998633 (cit. on
p. 170).

[125] Viliam Geffert, Carlo Mereghetti, and Beatrice Palano. “More concise representation of
regular languages by automata and regular expressions”. In: Information and Computation
208.4 (2010), pp. 385–394. doi: 10.1016/j.ic.2010.01.002 (cit. on p. 180).

[126] Matthew M. Geller and Michael A. Harrison. “On LR(k) Grammars and Languages”. In:
Theoretical Computer Science 4.3 (1977), pp. 245–276. doi: 10.1016/0304-3975(77)90013-5
(cit. on p. 157).

[127] Matthew M. Geller, Harry B. Hunt III, Thomas G. Szymanski, and Jeffrey David Ullman.
“Economy of Descriptions by Parsers, DPDA’s, and PDA’s”. In: 16th Annual Symposium
on Foundations of Computer Science, Berkeley, California, USA, October 13-15, 1975. IEEE
Computer Society, 1975, pp. 122–127. doi: 10.1109/SFCS.1975.12 (cit. on p. 157).

[128] Sona Ghahremani, Holger Giese, and Thomas Vogel. “Efficient Utility-Driven Self-Healing
Employing Adaptation Rules for Large Dynamic Architectures”. In: 2017 IEEE Interna-
tional Conference on Autonomic Computing, ICAC 2017, Columbus, OH, USA, July 17-21, 2017.
Ed. by Xiaorui Wang, Christopher Stewart, and Hui Lei. IEEE Computer Society, 2017,
pp. 59–68. isbn: 978-1-5386-1762-5. doi: 10.1109/ICAC.2017.35 (cit. on pp. 146, 170).

[129] Seymour Ginsburg and Sheila Adele Greibach. “Deterministic Context Free Languages”.
In: Information and Control 9.6 (1966), pp. 620–648. doi: 10.1016/S0019-9958(66)80019-0
(cit. on pp. 18, 164).

[130] Alessandro Giua. “Petri Nets as Discrete Event Models for Supervisory Control”. PhD
thesis. Rensselaer Polytechnique Institute, July 1992 (cit. on p. 178).

[131] Alessandro Giua and Frank DiCesare. “Blocking and controllability of Petri nets in
supervisory control”. In: IEEE Transactions on Automatic Control 39.4 (Apr. 1994), pp. 818–
823. doi: 10.1109/9.286260 (cit. on p. 178).

[132] Alessandro Giua and Frank DiCesare. “Decidability and closure properties of weak Petri
net languages in supervisory control”. In: IEEE Transactions on Automatic Control 40.5
(May 1995), pp. 906–910. doi: 10.1109/9.384227 (cit. on p. 178).

[133] Alessandro Giua and Frank DiCesare. “On the existence of Petri net supervisors”. In:
[1992] Proceedings of the 31st IEEE Conference on Decision and Control. 1992, pp. 3380–3385.
doi: 10.1109/CDC.1992.371011 (cit. on p. 178).

[134] Alessandro Giua and Frank DiCesare. “Petri net structural analysis for supervisory
control”. In: IEEE Transactions on Robotics and Automation 10.2 (1994), pp. 185–195. doi:
10.1109/70.282543 (cit. on p. 179).

[135] Alessandro Giua and Frank DiCesare. “Supervisory design using Petri nets”. In: [1991]
Proceedings of the 30th IEEE Conference on Decision and Control. Dec. 1991, pp. 92–97. doi:
10.1109/CDC.1991.261262 (cit. on pp. 177, 178).

[136] Alessandro Giua and Frank DiCesare. “Weak Petri net languages in supervisory control”.
In: Proceedings of 32nd IEEE Conference on Decision and Control. Dec. 1993, pp. 229–234. doi:
10.1109/CDC.1993.325158 (cit. on p. 178).

[137] Alessandro Giua and Carla Seatzu. “Modeling and Supervisory Control of Railway
Networks Using Petri Nets”. In: IEEE Transactions on Automation Science and Engineering
5.3 (2008), pp. 431–445. doi: 10.1109/TASE.2008.916925 (cit. on p. 179).

[138] Alessandro Giua and Carla Seatzu. “Petri nets for the control of discrete event systems”.
In: Software and System Modeling 14.2 (2015), pp. 693–701. doi: 10.1007/s10270-014-042
5-1 (cit. on p. 179).

[139] GNU. time - time a simple command or give resource usage. 2017. url: http://man7.org/li
nux/man-pages/man1/time.1.html (cit. on p. 158).

259

https://doi.org/10.1145/1998582.1998633
https://doi.org/10.1016/j.ic.2010.01.002
https://doi.org/10.1016/0304-3975(77)90013-5
https://doi.org/10.1109/SFCS.1975.12
https://doi.org/10.1109/ICAC.2017.35
https://doi.org/10.1016/S0019-9958(66)80019-0
https://doi.org/10.1109/9.286260
https://doi.org/10.1109/9.384227
https://doi.org/10.1109/CDC.1992.371011
https://doi.org/10.1109/70.282543
https://doi.org/10.1109/CDC.1991.261262
https://doi.org/10.1109/CDC.1993.325158
https://doi.org/10.1109/TASE.2008.916925
https://doi.org/10.1007/s10270-014-0425-1
https://doi.org/10.1007/s10270-014-0425-1
http://man7.org/linux/man-pages/man1/time.1.html
http://man7.org/linux/man-pages/man1/time.1.html

Appendix E. Bibliography

[140] C. H. Golaszewski and Peter Jeffrey Godwin Ramadge. “Mutual exclusion problems for
discrete event systems with shared events”. In: Proceedings of the 27th IEEE Conference
on Decision and Control. Dec. 1988, pp. 234–239. doi: 10.1109/CDC.1988.194301 (cit. on
p. 178).

[141] Christopher Howard Griffin. “A note on deciding controllability in pushdown systems”.
In: IEEE Transactions on Automatic Control 51.2 (2006), pp. 334–337. doi: 10.1109/TAC.200
5.863513 (cit. on pp. 165, 166, 181).

[142] Christopher Howard Griffin. “A Note on the Properties of the Supremal Controllable
Sublanguage in Pushdown Systems”. In: IEEE Transactions on Automatic Control 53.3
(2008), pp. 826–829. doi: 10.1109/TAC.2008.919519 (cit. on p. 181).

[143] Christopher Howard Griffin. “Decidability and Optimality in Pushdown Control Systems:
A New Approach to Discrete Event Control”. PhD thesis. Penn State, 2007 (cit. on pp. 144–
146, 150, 181, 215).

[144] Christopher Howard Griffin. “Exception Handling Controllers: An application of push-
down systems to discrete event control”. In: 2008 American Control Conference. June 2008,
pp. 1722–1727. doi: 10.1109/ACC.2008.4586740 (cit. on p. 181).

[145] Christopher Howard Griffin. “On partial observability in discrete event control with
pushdown systems”. In: Proceedings of the 2010 American Control Conference. June 2010,
pp. 2619–2622. doi: 10.1109/ACC.2010.5530531 (cit. on p. 181).

[146] Christopher Howard Griffin. “On partial observability in discrete event control with
pushdown systems”. In: Proceedings of the 2010 American Control Conference. June 2010,
pp. 2619–2622. doi: 10.1109/ACC.2010.5530531 (cit. on p. 181).

[147] Irène Guessarian. “Pushdown Tree Automata”. In: Mathematical Systems Theory 16.4 (1983),
pp. 237–263. doi: 10.1007/BF01744582 (cit. on p. 216).

[148] Michel Henri Théodore Hack. “Decidability questions for Petri nets”. PhD thesis. Mas-
sachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science,
1976 (cit. on p. 177).

[149] Michel Henri Théodore Hack. “Petri Net Languages”. In: Computation Structures Group -
Memo No. 124 (June 1975) (cit. on p. 177).

[150] Esfandiar Haghverdi and Hasan Ural. “Submodule construction from concurrent system
specifications”. In: Information & Software Technology 41.8 (1999), pp. 499–506. doi: 10.101
6/S0950-5849(99)00014-2 (cit. on p. 171).

[151] Chen Haoxun and Li Huifeng. “Maximally permissive state feedback logic for controlled
time Petri nets”. In: Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).
Vol. 4. June 1997, pp. 2359–2363. doi: 10.1109/ACC.1997.609097 (cit. on p. 179).

[152] David Harel. “Statecharts: A Visual Formalism for Complex Systems”. In: Science of
Computer Programming 8.3 (1987), pp. 231–274. doi: 10.1016/0167-6423(87)90035-9
(cit. on pp. 111, 164).

[153] David Harel, Hillel Kugler, and Amir Pnueli. “Synthesis Revisited: Generating Statechart
Models from Scenario-Based Requirements”. In: Formal Methods in Software and Systems
Modeling, Essays Dedicated to Hartmut Ehrig, on the Occasion of His 60th Birthday. Ed.
by Hans-Jörg Kreowski, Ugo Montanari, Fernando Orejas, Grzegorz Rozenberg, and
Gabriele Taentzer. Vol. 3393. Lecture Notes in Computer Science. Springer, 2005, pp. 309–
324. doi: 10.1007/978-3-540-31847-7_18 (cit. on p. 167).

[154] William R. Harris, Somesh Jha, and Thomas W. Reps. “Secure Programming via Visibly
Pushdown Safety Games”. In: Computer Aided Verification - 24th International Conference,
CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings. Ed. by Parthasarathy Madhusu-
dan and Sanjit A. Seshia. Vol. 7358. Lecture Notes in Computer Science. Springer, 2012,
pp. 581–598. doi: 10.1007/978-3-642-31424-7_41 (cit. on p. 168).

[155] William R. Harris, Somesh Jha, Thomas W. Reps, and Sanjit A. Seshia. “Program synthesis
for interactive-security systems”. In: Formal Methods in System Design 51.2 (2017), pp. 362–
394. doi: 10.1007/s10703-017-0296-5 (cit. on p. 168).

260

https://doi.org/10.1109/CDC.1988.194301
https://doi.org/10.1109/TAC.2005.863513
https://doi.org/10.1109/TAC.2005.863513
https://doi.org/10.1109/TAC.2008.919519
https://doi.org/10.1109/ACC.2008.4586740
https://doi.org/10.1109/ACC.2010.5530531
https://doi.org/10.1109/ACC.2010.5530531
https://doi.org/10.1007/BF01744582
https://doi.org/10.1016/S0950-5849(99)00014-2
https://doi.org/10.1016/S0950-5849(99)00014-2
https://doi.org/10.1109/ACC.1997.609097
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1007/978-3-540-31847-7_18
https://doi.org/10.1007/978-3-642-31424-7_41
https://doi.org/10.1007/s10703-017-0296-5

[156] Reiko Heckel and Mourad Chouikha. “Control Synthesis for discrete Event Systems: a
Semantic Framework Based on Open Petri Nets”. In: Transactions of the SDPS 6.4 (2002),
pp. 63–77. url: http://content.iospress.com/articles/journal-of-integrated-de
sign-and-process-science/jid6-4-05 (cit. on p. 180).

[157] Stephan Heilbrunner. “A Parsing Automata Approach to LR Theory”. In: Theoretical
Computer Science 15 (1981), pp. 117–157. doi: 10.1016/0304-3975(81)90067-0 (cit. on
p. 157).

[158] Steffen Helke and Florian Kammüller. Formalizing Statecharts using Hierarchical Automata.
2010. url: http://www.isa-afp.org/entries/Statecharts.shtml (cit. on p. 187).

[159] Joseph L. Hellerstein, Yixin Diao, Sujay S. Parekh, and Dawn M. Tilbury. Feedback Control
of Computing Systems. John Wiley & Sons, 2004. isbn: 047126637X (cit. on p. 170).

[160] Kunihiko Hiraishi and Petr Kuvcera. “Application of DES Theory to Verification of
Software Components”. In: IEICE Transactions 92-A.2 (2009), pp. 604–610. url: http://s
earch.ieice.org/bin/summary.php?id=e92-a_2_604&category=A&year=2009&lang=E
&abst= (cit. on p. 180).

[161] Charles Antony Richard Hoare. “An Axiomatic Basis for Computer Programming”. In:
Communications of the ACM 12.10 (1969), pp. 576–580. doi: 10.1145/363235.363259
(cit. on p. 48).

[162] Charles Antony Richard Hoare. “Communicating Sequential Processes”. In: Communica-
tions of the ACM 21.8 (1978), pp. 666–677. doi: 10.1145/359576.359585 (cit. on pp. 171,
209).

[163] John Edward Hocroft and Jeffrey David Ullman. Introduction to Automata Theory, languages
and computation. Ed. by Michael A Harrison. Addison-Wesley Publishing company, 1979

(cit. on pp. 36, 64, 182, 183).
[164] Lawrence E. Holloway and S. Chand. “Time templates for discrete event fault monitoring

in manufacturing systems”. In: American Control Conference, 1994. Vol. 1. June 1994,
pp. 701–706. doi: 10.1109/ACC.1994.751830 (cit. on p. 173).

[165] Lawrence E. Holloway and Bruce H. Krogh. “On closed-loop liveness of discrete-event
systems under maximally permissive control”. In: IEEE Transactions on Automatic Control
37.5 (May 1992), pp. 692–697. doi: 10.1109/9.135519 (cit. on p. 178).

[166] Lawrence E. Holloway and Bruce H. Krogh. “Synthesis of feedback control logic for a
class of controlled Petri nets”. In: IEEE Transactions on Automatic Control 35.5 (May 1990),
pp. 514–523. doi: 10.1109/9.53517 (cit. on p. 178).

[167] Lawrence E. Holloway, Bruce H. Krogh, and Alessandro Giua. “A Survey of Petri Net
Methods for Controlled Discrete Event Systems”. In: Discrete Event Dynamic Systems 7.2
(1997), pp. 151–190. doi: 10.1023/A:1008271916548 (cit. on pp. 178, 179).

[168] John Edward Hopcroft, Rajeev Motwani, and Jeffrey David Ullman. Introduction to
Automata Theory, Languages, and Computation. 2nd ed. Addison-Wesley, 2001. isbn: 0-201-
44124-1 (cit. on p. 210).

[169] David Albert Huffman. “A Method for the Construction of Minimum-Redundancy
Codes”. In: 40 (Oct. 1952), pp. 1098–1101 (cit. on p. 214).

[170] Atsunobu Ichikawa and Kunihiko Hiraishi. “Analysis and control of discrete event
systems represented by petri nets”. In: Discrete Event Systems: Models and Applications.
Ed. by Pravin Varaiya and Alexander B. Kurzhanski. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1988, pp. 115–134. isbn: 978-3-540-48045-7 (cit. on p. 178).

[171] Max Planck Institute for Informatics. SPASS Workbench. 2017. url: https://www.mpi-i
nf.mpg.de/departments/automation-of-logic/software/spass-workbench/ (cit. on
p. 93).

[172] Inria - Inventeurs du monde numérique. The Coq Proof Assistant. 2018. url: https://coq
.inria.fr/ (cit. on p. 155).

261

http://content.iospress.com/articles/journal-of-integrated-design-and-process-science/jid6-4-05
http://content.iospress.com/articles/journal-of-integrated-design-and-process-science/jid6-4-05
https://doi.org/10.1016/0304-3975(81)90067-0
http://www.isa-afp.org/entries/Statecharts.shtml
http://search.ieice.org/bin/summary.php?id=e92-a_2_604&category=A&year=2009&lang=E&abst=
http://search.ieice.org/bin/summary.php?id=e92-a_2_604&category=A&year=2009&lang=E&abst=
http://search.ieice.org/bin/summary.php?id=e92-a_2_604&category=A&year=2009&lang=E&abst=
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/359576.359585
https://doi.org/10.1109/ACC.1994.751830
https://doi.org/10.1109/9.135519
https://doi.org/10.1109/9.53517
https://doi.org/10.1023/A:1008271916548
https://www.mpi-inf.mpg.de/departments/automation-of-logic/software/spass-workbench/
https://www.mpi-inf.mpg.de/departments/automation-of-logic/software/spass-workbench/
https://coq.inria.fr/
https://coq.inria.fr/

Appendix E. Bibliography

[173] Marian V. Iordache and Panos J. Antsaklis. “Concurrent program synthesis based on
supervisory control”. In: Proceedings of the 2010 American Control Conference. June 2010,
pp. 3378–3383. doi: 10.1109/ACC.2010.5530904 (cit. on pp. 168, 169, 179).

[174] Marian V. Iordache and Panos J. Antsaklis. “Petri nets and programming: A survey”. In:
2009 American Control Conference. June 2009, pp. 4994–4999. doi: 10.1109/ACC.2009.515
9987 (cit. on pp. 169, 179).

[175] Marian V. Iordache and Panos J. Antsaklis. “Supervision Based on Place Invariants: A
Survey”. In: Discrete Event Dynamic Systems 16.4 (2006), pp. 451–492. doi: 10.1007/s1062
6-006-0021-9 (cit. on p. 179).

[176] Marian V. Iordache and Panos J. Antsaklis. Synthesis of Concurrent Programs Based on
Supervisory Control. Tech. rep. 2009 (cit. on pp. 168, 169, 179).

[177] Marian V. Iordache, John O. Moody, and Panos J. Antsaklis. “Synthesis of deadlock
prevention supervisors using Petri nets”. In: IEEE Transactions on Robotics and Automation
18.1 (2002), pp. 59–68. doi: 10.1109/70.988975 (cit. on p. 180).

[178] Stefan Jacobi. “Controller Synthesis for Discrete Event Systems in the Setting of a
Regular Plant and a Deterministic Context-Free Specification in libFAUDES”. MA thesis.
Technische Universität Berlin, Fachgebiet Regelungssysteme, 2013 (cit. on p. 156).

[179] Matthias Jantzen. “Language Theory of Petri Nets”. In: Petri Nets: Central Models and
Their Properties, Advances in Petri Nets 1986, Part I, Proceedings of an Advanced Course, Bad
Honnef, 8.-19. September 1986. Ed. by Wilfried Brauer, Wolfgang Reisig, and Grzegorz
Rozenberg. Vol. 254. Lecture Notes in Computer Science. Springer, 1986, pp. 397–412.
doi: 10.1007/BFb0046847 (cit. on p. 177).

[180] MuDer Jeng and Frank DiCesare. “A review of synthesis techniques for Petri nets with
applications to automated manufacturing systems”. In: IEEE Transactions on Systems, Man,
and Cybernetics: Systems 23.1 (1993), pp. 301–312. doi: 10.1109/21.214792 (cit. on p. 178).

[181] Ting Jiao, Yongmei Gan, Guochun Xiao, and Walter Murray Wonham. “Exploiting
symmetry of state tree structures for discrete-event systems with parallel components”.
In: International Journal of Control 90.8 (2017), pp. 1639–1651. doi: 10.1080/00207179.201
6.1216607 (cit. on pp. 175, 176).

[182] Temesghen Kahsai and Marino Miculan. “Implementing Spi-Calculus Using Nominal
Techniques”. In: Logic and Theory of Algorithms, 4th Conference on Computability in Europe,
CiE 2008, Athens, Greece, June 15-20, 2008, Proceedings. Ed. by Arnold Beckmann, Costas
Dimitracopoulos, and Benedikt Löwe. Vol. 5028. Lecture Notes in Computer Science.
Springer, 2008, pp. 294–305. isbn: 978-3-540-69405-2. doi: 10.1007/978-3-540-69407-6
_33 (cit. on p. 187).

[183] Timothy Kam, Tiziano Villa, Robert K. Brayton, and Alberto L. Sangiovanni-Vincentelli.
Synthesis of Finite State Machines: Functional Optimization. Spring-er, Boston, MA, Springer-
Verlag US 1997, 1997. doi: 10.1007/978-1-4757-2622-0 (cit. on p. 171).

[184] Era Kasturia, Frank DiCesare, and Alan A. Desrochers. “Real time control of multilevel
manufacturing systems using colored Petri nets”. In: Proceedings of the 1988 IEEE Interna-
tional Conference on Robotics and Automation, Philadelphia, Pennsylvania, USA, April 24-29,
1988. IEEE, 1988, pp. 1114–1119. doi: 10.1109/ROBOT.1988.12209 (cit. on p. 179).

[185] Samir G. Kelekar and George W. Hart. “Synthesis of Protocols and Protocol Converters
Using the Submodule Construcion Approach”. In: Protocol Specification, Testing and
Verification XIII, Proceedings of the IFIP TC6/WG6.1 Thirteenth International Symposium
on Protocol Specification, Testing and Verification, Liège, Belgium, 25-28 May, 1993. Ed. by
André A. S. Danthine, Guy Leduc, and Pierre Wolper. Vol. C-16. IFIP Transactions.
North-Holland, 1993, pp. 307–322. isbn: 0-444-81648-8 (cit. on p. 171).

[186] Jeffrey O. Kephart and David M. Chess. “The Vision of Autonomic Computing”. In: IEEE
Computer 36.1 (2003), pp. 41–50. doi: 10.1109/MC.2003.1160055 (cit. on p. 169).

262

https://doi.org/10.1109/ACC.2010.5530904
https://doi.org/10.1109/ACC.2009.5159987
https://doi.org/10.1109/ACC.2009.5159987
https://doi.org/10.1007/s10626-006-0021-9
https://doi.org/10.1007/s10626-006-0021-9
https://doi.org/10.1109/70.988975
https://doi.org/10.1007/BFb0046847
https://doi.org/10.1109/21.214792
https://doi.org/10.1080/00207179.2016.1216607
https://doi.org/10.1080/00207179.2016.1216607
https://doi.org/10.1007/978-3-540-69407-6_33
https://doi.org/10.1007/978-3-540-69407-6_33
https://doi.org/10.1007/978-1-4757-2622-0
https://doi.org/10.1109/ROBOT.1988.12209
https://doi.org/10.1109/MC.2003.1160055

[187] Narges Khakpour, Farhad Arbab, and Éric Rutten. “Supervisory Controller Synthesis
for Safe Software Adaptation”. In: 12th International Workshop on Discrete Event Systems,
WODES 2014, Cachan, France, May 14-16, 2014. Ed. by Jean-Jacques Lesage, Jean-Marc
Faure, José E. R. Cury, and Bengt Lennartson. International Federation of Automatic
Control, 2014, pp. 39–45. isbn: 978-3-902823-61-8. doi: 10.3182/20140514-3-FR-4046.0
0035 (cit. on p. 169).

[188] Eric Klavins. “A computation and control language for multi-vehicle systems”. In: 42nd
IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475). Vol. 4. Dec.
2003, pp. 4133–4139. doi: 10.1109/CDC.2003.1271797 (cit. on p. 166).

[189] Donald Ervin Knuth. “On the translation of languages from left to right”. In: Information
and Control 8.6 (1965), pp. 607–639. doi: 10.1016/S0019-9958(65)90426-2 (cit. on pp. 18,
22, 27, 66, 67, 69–73, 76, 116, 121, 214).

[190] Koichi Kobayashi and Kunihiko Hiraishi. “On opacity and diagnosability in discrete
event systems modeled by pushdown automata”. In: 2012 IEEE International Conference
on Automation Science and Engineering, CASE 2012, Seoul, Korea (South), August 20-24, 2012.
IEEE, 2012, pp. 662–667. isbn: 978-1-4673-0429-0. doi: 10.1109/CoASE.2012.6386310
(cit. on p. 180).

[191] Koichi Kobayashi and Kunihiko Hiraishi. “Verification of Opacity and Diagnosability
for Pushdown Systems”. In: Journal of Applied Mathematics 2013 (2013), pp. 1–10. doi:
10.1155/2013/654059 (cit. on p. 180).

[192] Jan Komenda, Tomás Masopust, and Jan Hendrik van Schuppen. “Distributed computa-
tion of maximally permissive supervisors in three-level relaxed coordination control of
discrete-event systems”. In: 55th IEEE Conference on Decision and Control, CDC 2016, Las
Vegas, NV, USA, December 12-14, 2016. IEEE, 2016, pp. 441–446. isbn: 978-1-5090-1837-6.
doi: 10.1109/CDC.2016.7798308 (cit. on p. 175).

[193] A. J. Korenjak. “A practical method for constructing LR(k) processors”. In: Communications
of the ACM 12.11 (1969), pp. 613–623. doi: 10.1145/363269.363281 (cit. on p. 214).

[194] Jeff Kramer and Jeff Magee. “Self-Managed Systems: an Architectural Challenge”. In:
International Conference on Software Engineering, ISCE 2007, Workshop on the Future of
Software Engineering, FOSE 2007, May 23-25, 2007, Minneapolis, MN, USA. Ed. by Lionel
C. Briand and Alexander L. Wolf. IEEE Computer Society, 2007, pp. 259–268. isbn:
0-7695-2829-5. doi: 10.1109/FOSE.2007.19 (cit. on p. 170).

[195] Alexander Krauss and Tobias Nipkow. Regular Sets and Expressions. 2010. url: http://ww
w.isa-afp.org/entries/Regular-Sets.shtml (cit. on p. 186).

[196] Stephan Kreutzer and Martin Lange. “Non-regular fixed-point logics and games”. In:
Logic and Automata: History and Perspectives [in Honor of Wolfgang Thomas]. Ed. by Jörg
Flum, Erich Grädel, and Thomas Wilke. Vol. 2. Texts in Logic and Games. Amsterdam
University Press, 2008, pp. 423–456. isbn: 978-90-5356-576-6 (cit. on pp. 166, 168, 169).

[197] Bruce H. Krogh. “Controlled Petri nets and maximally permissive feedback logic”. In:
(Sept. 1987), pp. 317–326 (cit. on p. 178).

[198] Bruce H. Krogh and C. L. Beck. “Synthesis of Place Transition Nets for Simulation
and Control of Manufacturing Systems”. In: IFAC Proceedings Volumes 20.9 (1987). 4th
IFAC/IFORS Symposium on Large Scale Systems: Theory and Applications 1986, Zurich,
Switzerland, 26-29 August 1986, pp. 583–588. doi: 10.1016/S1474-6670(17)55770-5
(cit. on p. 178).

[199] Bruce H. Krogh and Lawrence E. Holloway. “Synthesis of feedback control logic for
discrete manufacturing systems”. In: Automatica 27.4 (1991), pp. 641–651. doi: 10.1016/0
005-1098(91)90055-7 (cit. on p. 178).

[200] Ratnesh Kumar and Vijay Garg. “Optimal Supervisory Control of Discrete Event Dy-
namical Systems”. In: SIAM Journal on Control and Optimization (SICON) 33.2 (1995),
pp. 419–439. doi: 10.1137/S0363012992235183 (cit. on p. 165).

263

https://doi.org/10.3182/20140514-3-FR-4046.00035
https://doi.org/10.3182/20140514-3-FR-4046.00035
https://doi.org/10.1109/CDC.2003.1271797
https://doi.org/10.1016/S0019-9958(65)90426-2
https://doi.org/10.1109/CoASE.2012.6386310
https://doi.org/10.1155/2013/654059
https://doi.org/10.1109/CDC.2016.7798308
https://doi.org/10.1145/363269.363281
https://doi.org/10.1109/FOSE.2007.19
http://www.isa-afp.org/entries/Regular-Sets.shtml
http://www.isa-afp.org/entries/Regular-Sets.shtml
https://doi.org/10.1016/S1474-6670(17)55770-5
https://doi.org/10.1016/0005-1098(91)90055-7
https://doi.org/10.1016/0005-1098(91)90055-7
https://doi.org/10.1137/S0363012992235183

Appendix E. Bibliography

[201] Ratnesh Kumar, Vijay Garg, and Steven I. Marcus. “On controllability and normality of
discrete event dynamical systems”. In: Systems & Control Letters 17.3 (1991), pp. 157–168.
doi: 10.1016/0167-6911(91)90061-I (cit. on pp. 59, 165).

[202] Ratnesh Kumar, Vijay Garg, and Steven I. Marcus. “On supervisory control of sequential
behaviors”. In: IEEE Transactions on Automatic Control 37.12 (Dec. 1992), pp. 1978–1985.
doi: 10.1109/9.182487 (cit. on p. 168).

[203] Ratnesh Kumar and Lawrence E. Holloway. “Supervisory control of deterministic Petri
nets with regular specification languages”. In: IEEE Transactions on Automatic Control 41.2
(Feb. 1996), pp. 245–249. doi: 10.1109/9.481527 (cit. on p. 180).

[204] Ratnesh Kumar and Lawrence E. Holloway. “Supervisory control of Petri net languages”.
In: [1992] Proceedings of the 31st IEEE Conference on Decision and Control. 1992, pp. 1190–
1195. doi: 10.1109/CDC.1992.371529 (cit. on p. 178).

[205] Dara Kusic, Jeffrey O. Kephart, James E. Hanson, Nagarajan Kandasamy, and Guofei
Jiang. “Power and performance management of virtualized computing environments via
lookahead control”. In: Cluster Computing 12.1 (2009), pp. 1–15. doi: 10.1007/s10586-00
8-0070-y (cit. on p. 170).

[206] Marta Zofia Kwiatkowska, Gethin Norman, Roberto Segala, and Jeremy Sproston. “Veri-
fying Quantitative Properties of Continuous Probabilistic Timed Automata”. In: CONCUR
2000 - Concurrency Theory, 11th International Conference, University Park, PA, USA, August
22-25, 2000, Proceedings. Ed. by Catuscia Palamidessi. Vol. 1877. Lecture Notes in Com-
puter Science. Springer, 2000, pp. 123–137. doi: 10.1007/3-540-44618-4_11 (cit. on
p. 216).

[207] Marta Zofia Kwiatkowska, Gethin Norman, Jeremy Sproston, and Fuzhi Wang. “Symbolic
model checking for probabilistic timed automata”. In: Information and Computation 205.7
(2007), pp. 1027–1077. doi: 10.1016/j.ic.2007.01.004 (cit. on p. 217).

[208] Stéphane Lafortune, Demosthenis Teneketzis, Meera Sampath, Raja Sengupta, and Kasim
Sinnamohideen. “Failure diagnosis of dynamic systems: an approach based on discrete
event systems”. In: Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).
Vol. 3. 2001, pp. 2058–2071. doi: 10.1109/ACC.2001.946047 (cit. on p. 173).

[209] François Laroussinie. HCMC. 2005. url: http://www.control.toronto.edu/~wonham/R
esearch.html (cit. on p. 172).

[210] François Laroussinie and Kim Guldstrand Larsen. “Compositional Model Checking of
Real Time Systems”. In: CONCUR ’95: Concurrency Theory, 6th International Conference,
Philadelphia, PA, USA, August 21-24, 1995, Proceedings. Ed. by Insup Lee and Scott A.
Smolka. Vol. 962. Lecture Notes in Computer Science. Springer, 1995, pp. 27–41. doi:
10.1007/3-540-60218-6_3 (cit. on pp. 171, 174, 175).

[211] Kim Guldstrand Larsen. “Context-dependent Bisimulation Between Processes”. PhD
thesis. Institute of Electronic Systems, Aalbord University Centre, Denmark, 1986 (cit. on
p. 171).

[212] Kim Guldstrand Larsen. “Proof Systems for Satisfiability in Hennessy-Milner Logic with
Recursion”. In: Theoretical Computer Science 72.2&3 (1990), pp. 265–288. doi: 10.1016/030
4-3975(90)90038-J (cit. on p. 171).

[213] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. “Compositional and Symbolic
Model-Checking of Real-Time Systems”. In: 16th IEEE Real-Time Systems Symposium,
Palazzo dei Congressi, Via Matteotti, 1, Pisa, Italy, December 4-7, 1995, Proceedings. IEEE
Computer Society, 1995, pp. 76–87. isbn: 0-8186-7337-0. doi: 10.1109/REAL.1995.495198
(cit. on pp. 171, 174, 175).

[214] André Bittencourt Leal, Diogo L. L. da Cruz, and Marcelo da Silva Hounsell. “Supervisory
Control Implementation into Programmable Logic Controllers”. In: Proceedings of 12th
IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 2009,
September 22-25, 2008, Palma de Mallorca, Spain. IEEE, 2009, pp. 1–7. isbn: 978-1-4244-2727-7.
doi: 10.1109/ETFA.2009.5347090 (cit. on p. 172).

264

https://doi.org/10.1016/0167-6911(91)90061-I
https://doi.org/10.1109/9.182487
https://doi.org/10.1109/9.481527
https://doi.org/10.1109/CDC.1992.371529
https://doi.org/10.1007/s10586-008-0070-y
https://doi.org/10.1007/s10586-008-0070-y
https://doi.org/10.1007/3-540-44618-4_11
https://doi.org/10.1016/j.ic.2007.01.004
https://doi.org/10.1109/ACC.2001.946047
http://www.control.toronto.edu/~wonham/Research.html
http://www.control.toronto.edu/~wonham/Research.html
https://doi.org/10.1007/3-540-60218-6_3
https://doi.org/10.1016/0304-3975(90)90038-J
https://doi.org/10.1016/0304-3975(90)90038-J
https://doi.org/10.1109/REAL.1995.495198
https://doi.org/10.1109/ETFA.2009.5347090

[215] Rogério de Lemos, David Garlan, Carlo Ghezzi, and Holger Giese, eds. Software En-
gineering for Self-Adaptive Systems III. Assurances - International Seminar, Dagstuhl Castle,
Germany, December 15-19, 2013, Revised Selected and Invited Papers. Vol. 9640. Lecture Notes
in Computer Science. Springer, 2017. doi: 10.1007/978-3-319-74183-3 (cit. on p. 169).

[216] Rogério de Lemos, Holger Giese, Hausi A. Müller, and Mary Shaw, eds. Software Engi-
neering for Self-Adaptive Systems II - International Seminar, Dagstuhl Castle, Germany, October
24-29, 2010 Revised Selected and Invited Papers. Vol. 7475. Lecture Notes in Computer
Science. Springer, 2013. doi: 10.1007/978-3-642-35813-5 (cit. on p. 169).

[217] Hing Leung and Detlef Wotschke. “On the size of parsers and LR(k)-grammars”. In:
Theoretical Computer Science 242.1-2 (2000), pp. 59–69. doi: 10.1016/S0304-3975(98)0019
9-6 (cit. on p. 157).

[218] Jean Pierre Lévy. “Automatic Correction of Syntax Errors in Programming Languages”.
PhD thesis. Cornell University, Dec. 1971 (cit. on p. 76).

[219] Yang Li and Walter Murray Wonham. “On Supervisory control of real-time discrete-event
systems”. In: Information Sciences 46.3 (1988), pp. 159–183. doi: 10.1016/0020-0255(88)9
0048-5 (cit. on pp. 173, 175, 217).

[220] Feng Lin. “Diagnosability of discrete event systems and its applications”. In: Discrete
Event Dynamic Systems 4.2 (1994), pp. 197–212. doi: 10.1007/BF01441211 (cit. on p. 173).

[221] Feng Lin and Walter Murray Wonham. “Decentralized supervisory control of discrete-
event systems”. In: Information Sciences 44.3 (1988), pp. 199–224. doi: 10.1016/0020-0255
(88)90002-3 (cit. on p. 175).

[222] Feng Lin and Walter Murray Wonham. “On observability of discrete-event systems”.
In: Information Sciences 44.3 (1988), pp. 173–198. doi: 10.1016/0020-0255(88)90001-1
(cit. on pp. 173, 216).

[223] Feng Lin and Walter Murray Wonham. “Supervisory control of timed discrete-event
systems under partial observation”. In: IEEE Transactions on Automatic Control 40.3 (Mar.
1995), pp. 558–562. doi: 10.1109/9.376081 (cit. on pp. 173, 174).

[224] Marin Litoiu, Mary Shaw, Gabriel Tamura, Norha M. Villegas, Hausi A. Müller, Holger
Giese, Romain Rouvoy, and Éric Rutten. “What Can Control Theory Teach Us About
Assurances in Self-Adaptive Software Systems?” In: Software Engineering for Self-Adaptive
Systems III. Assurances - International Seminar, Dagstuhl Castle, Germany, December 15-19,
2013, Revised Selected and Invited Papers. Ed. by Rogério de Lemos, David Garlan, Carlo
Ghezzi, and Holger Giese. Vol. 9640. Lecture Notes in Computer Science. Springer, 2013,
pp. 90–134. doi: 10.1007/978-3-319-74183-3_4 (cit. on pp. 169, 170).

[225] Cong Liu, Alex Kondratyev, Yosinori Watanabe, Jörg Desel, and Alberto L. Sangiovanni-
Vincentelli. “Schedulability Analysis of Petri Nets Based on Structural Properties”. In:
Fundamenta Informaticae 86.3 (2008), pp. 325–341. url: http://content.iospress.com/a
rticles/fundamenta-informaticae/fi86-3-05 (cit. on p. 169).

[226] Christof Löding, Parthasarathy Madhusudan, and Olivier Serre. “Visibly Pushdown
Games”. In: FSTTCS 2004: Foundations of Software Technology and Theoretical Computer
Science, 24th International Conference, Chennai, India, December 16-18, 2004, Proceedings.
Ed. by Kamal Lodaya and Meena Mahajan. Vol. 3328. Lecture Notes in Computer Science.
Springer, 2004, pp. 408–420. doi: 10.1007/978-3-540-30538-5_34 (cit. on p. 216).

[227] Nancy Ann Lynch and Mark R. Tuttle. “Hierarchical Correctness Proofs for Distributed
Algorithms”. In: Proceedings of the Sixth Annual ACM Symposium on Principles of Distributed
Computing, Vancouver, British Columbia, Canada, August 10-12, 1987. Ed. by Fred B. Schnei-
der. ACM, 1987, pp. 137–151. isbn: 0-89791-239-X. doi: 10.1145/41840.41852 (cit. on
pp. 33, 111, 164).

[228] Chuan Ma and Walter Murray Wonham. “Nonblocking supervisory control of state
tree structures”. In: IEEE Transactions on Automatic Control 51.5 (2006), pp. 782–793. doi:
10.1109/TAC.2006.875030 (cit. on pp. 164, 175, 176, 209).

265

https://doi.org/10.1007/978-3-319-74183-3
https://doi.org/10.1007/978-3-642-35813-5
https://doi.org/10.1016/S0304-3975(98)00199-6
https://doi.org/10.1016/S0304-3975(98)00199-6
https://doi.org/10.1016/0020-0255(88)90048-5
https://doi.org/10.1016/0020-0255(88)90048-5
https://doi.org/10.1007/BF01441211
https://doi.org/10.1016/0020-0255(88)90002-3
https://doi.org/10.1016/0020-0255(88)90002-3
https://doi.org/10.1016/0020-0255(88)90001-1
https://doi.org/10.1109/9.376081
https://doi.org/10.1007/978-3-319-74183-3_4
http://content.iospress.com/articles/fundamenta-informaticae/fi86-3-05
http://content.iospress.com/articles/fundamenta-informaticae/fi86-3-05
https://doi.org/10.1007/978-3-540-30538-5_34
https://doi.org/10.1145/41840.41852
https://doi.org/10.1109/TAC.2006.875030

Appendix E. Bibliography

[229] Chuan Ma and Walter Murray Wonham. STSLib. 2014. url: https://github.com/chuan
ma/STSLib (cit. on p. 172).

[230] Ziyue Ma, Zhi Wu Li, and Alessandro Giua. “Characterization of Admissible Marking
Sets in Petri Nets With Conflicts and Synchronizations”. In: IEEE Transactions on Automatic
Control 62.3 (2017), pp. 1329–1341. doi: 10.1109/TAC.2016.2585647 (cit. on p. 179).

[231] Ziyue Ma, Zhi Wu Li, and Alessandro Giua. “Design of Optimal Petri Net Controllers
for Disjunctive Generalized Mutual Exclusion Constraints”. In: IEEE Transactions on
Automatic Control 60.7 (2015), pp. 1774–1785. doi: 10.1109/TAC.2015.2389313 (cit. on
p. 179).

[232] Martina Maggio, Enrico Bini, Georgios C. Chasparis, and Karl-Erik Årzén. “A Game-
Theoretic Resource Manager for RT Applications”. In: 25th Euromicro Conference on
Real-Time Systems, ECRTS 2013, Paris, France, July 9-12, 2013. IEEE Computer Society, 2013,
pp. 57–66. isbn: 978-0-7695-5054-1. doi: 10.1109/ECRTS.2013.17 (cit. on p. 168).

[233] Rupak Majumdar, Elaine Render, and Paulo Tabuada. “A theory of robust ω-regular
software synthesis”. In: ACM Transactions on Embedded Computing Systems (TECS) 13.3
(2013), pp. 1–27. doi: 10.1145/2539036.2539044 (cit. on p. 166).

[234] Mbi Makungu, Michel Barbeau, and Richard St.-Denis. “Synthesis of Controllers of
Processes Modeled as Colored Petri Nets”. In: Discrete Event Dynamic Systems 9.2 (1999),
pp. 147–169. doi: 10.1023/A:1008371814442 (cit. on p. 180).

[235] Oded Maler, Amir Pnueli, and Joseph Sifakis. “On the Synthesis of Discrete Controllers
for Timed Systems (An Extended Abstract)”. In: STACS. 1995, pp. 229–242. doi: 10.1007
/3-540-59042-0_76 (cit. on pp. 171, 174).

[236] Kaushik Mallik and Anne-Kathrin Schmuck. “Supervisory controller synthesis for de-
composable deterministic context free specification languages”. In: 13th International
Workshop on Discrete Event Systems, WODES 2016, Xi’an, China, May 30 - June 1, 2016.
Ed. by Christos G. Cassandras, Alessandro Giua, and Zhiwu Li. IEEE, 2016, pp. 22–27.
isbn: 978-1-5090-4190-9. doi: 10.1109/WODES.2016.7497821 (cit. on p. 216).

[237] Zohar Manna. “Knowledge and Reasoning in Program Synthesis”. In: Programming
Methodology, 4th Informatik Symposium, IBM Germany, Wildbad, September 25-27, 1974. Ed.
by Clemens Hackl. Vol. 23. Lecture Notes in Computer Science. Springer, 1974, pp. 236–
277. isbn: 3-540-07131-8. doi: 10.1007/3-540-07131-8_29. url: https://doi.org/10.1
007/3-540-07131-8_29 (cit. on p. 1).

[238] Zohar Manna and Richard Jay Waldinger. “A Deductive Approach to Program Synthesis”.
In: ACM Transactions on Programming Languages and Systems (TOPLAS) 2.1 (1980), pp. 90–
121. doi: 10.1145/357084.357090 (cit. on p. 167).

[239] Zohar Manna and Pierre Wolper. “Synthesis of Communicating Processes from Temporal
Logic Specifications”. In: Logics of Programs, Workshop, Yorktown Heights, New York, May
1981. Ed. by Dexter Kozen. Vol. 131. Lecture Notes in Computer Science. Springer, 1981,
pp. 253–281. doi: 10.1007/BFb0025786 (cit. on p. 171).

[240] Hervé Marchand, Patricia Bournai, Michel Le Borgne, and Paul Le Guernic. “Synthesis of
Discrete-Event Controllers Based on the Signal Environment”. In: Discrete Event Dynamic
Systems 10.4 (2000), pp. 325–346. doi: 10.1023/A:1008311720696 (cit. on p. 167).

[241] Hervé Marchand, Patricia Bournai, Michel Le Borgne, Paul Le Guernic, M. Samaan, and
Éric Rutten. Sigali. 2000. url: http://www.irisa.fr/vertecs/Logiciels/sigali.html
(cit. on p. 172).

[242] Jasen Markovski, Dirk A. van Beek, and Jos C. M. Baeten. “Partially-Supervised Plants:
Embedding Control Requirements in Plant Components”. In: Integrated Formal Methods
- 9th International Conference, IFM 2012, Pisa, Italy, June 18-21, 2012. Proceedings. Ed. by
John Derrick, Stefania Gnesi, Diego Latella, and Helen Treharne. Vol. 7321. Lecture Notes
in Computer Science. Springer, 2012, pp. 253–267. doi: 10.1007/978-3-642-30729-4_18
(cit. on p. 164).

266

https://github.com/chuanma/STSLib
https://github.com/chuanma/STSLib
https://doi.org/10.1109/TAC.2016.2585647
https://doi.org/10.1109/TAC.2015.2389313
https://doi.org/10.1109/ECRTS.2013.17
https://doi.org/10.1145/2539036.2539044
https://doi.org/10.1023/A:1008371814442
https://doi.org/10.1007/3-540-59042-0_76
https://doi.org/10.1007/3-540-59042-0_76
https://doi.org/10.1109/WODES.2016.7497821
https://doi.org/10.1007/3-540-07131-8_29
https://doi.org/10.1007/3-540-07131-8_29
https://doi.org/10.1007/3-540-07131-8_29
https://doi.org/10.1145/357084.357090
https://doi.org/10.1007/BFb0025786
https://doi.org/10.1023/A:1008311720696
http://www.irisa.fr/vertecs/Logiciels/sigali.html
https://doi.org/10.1007/978-3-642-30729-4_18

[243] Tomás Masopust. “A note on controllability of deterministic context-free systems”. In:
Automatica 48.8 (2012), pp. 1934–1937. doi: 10.1016/j.automatica.2012.06.004 (cit. on
p. 180).

[244] Robert McNaughton. Research in the Theory of Automata. Tech. rep. Project MAC Report.
MIT, 1965, pp. 58–63 (cit. on p. 1).

[245] Philip M. Merlin and Gregor von Bochmann. “On the Construction of Submodule
Specifications and Communication Protocols”. In: ACM Transactions on Programming
Languages and Systems (TOPLAS) 5.1 (1983), pp. 1–25. doi: 10.1145/357195.357196
(cit. on pp. 1, 146, 171).

[246] Robin Milner. A Calculus of Communicating Systems. Vol. 92. Lecture Notes in Computer
Science. Springer, 1980. doi: 10.1007/3-540-10235-3 (cit. on p. 164).

[247] Thomas Moor and Jennifer M. Davoren. “Robust Controller Synthesis for Hybrid Systems
Using Modal Logic”. In: Hybrid Systems: Computation and Control, 4th International Work-
shop, HSCC 2001, Rome, Italy, March 28-30, 2001, Proceedings. Ed. by Maria Domenica Di
Benedetto and Alberto L. Sangiovanni-Vincentelli. Vol. 2034. Lecture Notes in Computer
Science. Springer, 2001, pp. 433–446. doi: 10.1007/3-540-45351-2_35 (cit. on p. 176).

[248] Thomas Moor, Jörg Raisch, and Siu O’Young. “Discrete Supervisory Control of Hybrid
Systems Based on l-Complete Approximations”. In: Discrete Event Dynamic Systems 12.1
(2002), pp. 83–107. doi: 10.1023/A:1013339920783 (cit. on p. 176).

[249] Thomas Moor, Klaus Werner Schmidt, and Thomas Wittmann. “Abstraction-Based Con-
trol for Not Necessarily Closed Behaviours”. In: IFAC Proceedings Volumes 44.1 (2011).
18th IFAC World Congress, pp. 6988–6993. doi: 10.3182/20110828-6-IT-1002.00480
(cit. on p. 168).

[250] Soraia Moradi, Laurent Hardouin, and Jörg Raisch. “Optimal control of a class of timed
discrete event systems with shared resources, an approach based on the hadamard
product of series in dioids”. In: 56th IEEE Annual Conference on Decision and Control,
CDC 2017, Melbourne, Australia, December 12-15, 2017. IEEE, 2017, pp. 4831–4838. isbn:
978-1-5090-2873-3. doi: 10.1109/CDC.2017.8264373 (cit. on p. 179).

[251] Christophe Morvan and Sophie Pinchinat. “Diagnosability of Pushdown Systems”. In:
Hardware and Software: Verification and Testing - 5th International Haifa Verification Conference,
HVC 2009, Haifa, Israel, October 19-22, 2009, Revised Selected Papers. Ed. by Kedar S.
Namjoshi, Andreas Zeller, and Avi Ziv. Vol. 6405. Lecture Notes in Computer Science.
Springer, 2009, pp. 21–33. doi: 10.1007/978-3-642-19237-1_6 (cit. on p. 180).

[252] Markus Müller-Olm. “A Modal Fixpoint Logic with Chop”. In: STACS 99, 16th Annual
Symposium on Theoretical Aspects of Computer Science, Trier, Germany, March 4-6, 1999,
Proceedings. Ed. by Christoph Meinel and Sophie Tison. Vol. 1563. Lecture Notes in
Computer Science. Springer, 1999, pp. 510–520. doi: 10.1007/3-540-49116-3_48 (cit. on
p. 168).

[253] Tadao Murata, N. Komoda, K. Matsumoto, and K. Haruna. “A Petri Net-Based Con-
troller for Flexible and Maintainable Sequence Control and its Applications in Factory
Automation”. In: IEEE Transactions on Industrial Electronics IE-33.1 (Feb. 1986), pp. 1–8.
doi: 10.1109/TIE.1986.351700 (cit. on p. 178).

[254] Petter Nilsson, Omar Hussien, Ayca Balkan, Yuxiao Chen, Aaron D. Ames, Jessy W.
Grizzle, Necmiye Ozay, Huei Peng, and Paulo Tabuada. “Correct-by-Construction Adap-
tive Cruise Control: Two Approaches”. In: IEEE Transactions on Industrial Electronics 24.4
(2016), pp. 1294–1307. doi: 10.1109/TCST.2015.2501351 (cit. on p. 170).

[255] Tobias Nipkow. Functional Automata. 2004. url: http://www.isa-afp.org/entries/Fun
ctional-Automata.shtml (cit. on p. 187).

[256] Cüneyt M. Özveren and Alan S. Willsky. “Observability of discrete event dynamic
systems”. In: IEEE Transactions on Automatic Control 35.7 (July 1990), pp. 797–806. doi:
10.1109/9.57018 (cit. on pp. 173, 216).

267

https://doi.org/10.1016/j.automatica.2012.06.004
https://doi.org/10.1145/357195.357196
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/3-540-45351-2_35
https://doi.org/10.1023/A:1013339920783
https://doi.org/10.3182/20110828-6-IT-1002.00480
https://doi.org/10.1109/CDC.2017.8264373
https://doi.org/10.1007/978-3-642-19237-1_6
https://doi.org/10.1007/3-540-49116-3_48
https://doi.org/10.1109/TIE.1986.351700
https://doi.org/10.1109/TCST.2015.2501351
http://www.isa-afp.org/entries/Functional-Automata.shtml
http://www.isa-afp.org/entries/Functional-Automata.shtml
https://doi.org/10.1109/9.57018

Appendix E. Bibliography

[257] Andrea Paoli and Stéphane Lafortune. “Safe diagnosability for fault-tolerant supervision
of discrete-event systems”. In: Automatica 41.8 (2005), pp. 1335–1347. doi: 10.1016/j.au
tomatica.2005.03.017 (cit. on p. 173).

[258] Seong-Jin Park and Kwang-Hyun Cho. “Modular nonblocking state feedback control
of discrete event systems and its application to dynamic oligopolistic markets”. In:
International Journal of Control 84.12 (2011), pp. 2046–2057. doi: 10.1080/00207179.2011
.633231 (cit. on p. 175).

[259] Seong-Jin Park and Jong-Tae Lim. “Robust and fault-tolerant supervisory control of
discrete event systems with partial observation and model uncertainty”. In: International
Journal of Systems Science 29.9 (1998), pp. 953–957. doi: 10.1080/00207729808929587
(cit. on p. 166).

[260] Seong-Jin Park and Jong-Tae Lim. “Robust and nonblocking supervisory control of
nondeterministic discrete event systems using trajectory models”. In: IEEE Transactions
on Automatic Control 47.4 (2002), pp. 655–658. doi: 10.1109/9.995044 (cit. on p. 166).

[261] Joachim Parrow. “Submodule Construction as Equation Solving in CCS”. In: Theoretical
Computer Science 68.2 (1989), pp. 175–202. doi: 10.1016/0304-3975(89)90128-X (cit. on
p. 171).

[262] K. M. Passino and Panos J. Antsaklis. “Near-Optimal Control of Discrete Event Syetems”.
In: (Sept. 1989), pp. 915–924 (cit. on p. 165).

[263] K. M. Passino and Panos J. Antsaklis. “On the optimal control of discrete event systems”.
In: Proceedings of the 28th IEEE Conference on Decision and Control, Dec. 1989, pp. 2713–2718.
doi: 10.1109/CDC.1989.70672 (cit. on p. 165).

[264] Lawrence Charles Paulson. Finite Automata in Hereditarily Finite Set Theory. 2015. url:
http://www.isa-afp.org/entries/Finite_Automata_HF.shtml (cit. on p. 187).

[265] Lawrence Charles Paulson and Tobias Nipkow. Isabelle/HOL. 2017. url: http://isabell
e.in.tum.de (cit. on pp. 91, 93, 154, 227).

[266] Lawrence Charles Paulson and Tobias Nipkow. Isabelle/HOL: Archive of Formal Proofs. 2017.
url: http://www.isa-afp.org/topics.shtml (cit. on pp. 186, 187).

[267] Elisabeth Pelz. “Infinitary languages of Petri nets and logical sentences”. In: Advances in
Petri Nets 1987, covers the 7th European Workshop on Applications and Theory of Petri Nets,
Oxford, UK, June 1986. Ed. by Grzegorz Rozenberg. Vol. 266. Lecture Notes in Computer
Science. Springer, 1986, pp. 224–237. doi: 10.1007/3-540-18086-9_28 (cit. on p. 177).

[268] Hans-Jörg Peter and Bernd Finkbeiner. “The Complexity of Bounded Synthesis for
Timed Control with Partial Observability”. In: Formal Modeling and Analysis of Timed
Systems - 10th International Conference, FORMATS 2012, London, UK, September 18-20, 2012.
Proceedings. Ed. by Marcin Jurdzinski and Dejan Nickovic. Vol. 7595. Lecture Notes in
Computer Science. Springer, 2012, pp. 204–219. doi: 10.1007/978-3-642-33365-1_15
(cit. on pp. 164, 173).

[269] James Lyle Peterson. Petri Net Theory and the Modeling of Systems. Upper Saddle River, NJ,
USA: Prentice Hall PTR, 1981. isbn: 0136619835 (cit. on p. 177).

[270] Alexandre Petrenko and Nina Yevtushenko. “Solving Asynchronous Equations”. In:
Formal Description Techniques and Protocol Specification, Testing and Verification, FORTE
XI / PSTV XVIII’98, IFIP TC6 WG6.1 Joint International Conference on Formal Description
Techniques for Distributed Systems and Communication Protocols (FORTE XI) and Protocol
Specification, Testing and Verification (PSTV XVIII), 3-6 November, 1998, Paris, France. Ed.
by Stanislaw Budkowski, Ana R. Cavalli, and Elie Najm. Vol. 135. IFIP Conference
Proceedings. Kluwer, 1998, pp. 231–247. isbn: 0-412-84760-4 (cit. on p. 171).

[271] Alexandre Petrenko, Nina Yevtushenko, Gregor von Bochmann, and Rachida Dssouli.
“Testing in context: framework and test derivation”. In: Computer Communications 19.14

(1996), pp. 1236–1249. doi: 10.1016/S0140-3664(96)01157-7 (cit. on p. 171).
[272] Carl Adam Petri. “Kommunikation mit Automaten”. PhD thesis. Universität Hamburg,

1962 (cit. on pp. 111, 164, 176).

268

https://doi.org/10.1016/j.automatica.2005.03.017
https://doi.org/10.1016/j.automatica.2005.03.017
https://doi.org/10.1080/00207179.2011.633231
https://doi.org/10.1080/00207179.2011.633231
https://doi.org/10.1080/00207729808929587
https://doi.org/10.1109/9.995044
https://doi.org/10.1016/0304-3975(89)90128-X
https://doi.org/10.1109/CDC.1989.70672
http://www.isa-afp.org/entries/Finite_Automata_HF.shtml
http://isabelle.in.tum.de
http://isabelle.in.tum.de
http://www.isa-afp.org/topics.shtml
https://doi.org/10.1007/3-540-18086-9_28
https://doi.org/10.1007/978-3-642-33365-1_15
https://doi.org/10.1016/S0140-3664(96)01157-7

[273] Amir Pnueli and Roni Rosner. “Distributed Reactive Systems Are Hard to Synthesize”.
In: 31st Annual Symposium on Foundations of Computer Science, St. Louis, Missouri, USA,
October 22-24, 1990, Volume II. IEEE Computer Society, 1990, pp. 746–757. doi: 10.1109/F
SCS.1990.89597. url: https://doi.org/10.1109/FSCS.1990.89597 (cit. on p. 9).

[274] Amir Pnueli and Roni Rosner. “On the Synthesis of a Reactive Module”. In: Conference
Record of the Sixteenth Annual ACM Symposium on Principles of Programming Languages,
Austin, Texas, USA, January 11-13, 1989. ACM Press, 1989, pp. 179–190. isbn: 0-89791-294-2.
doi: 10.1145/75277.75293 (cit. on p. 168).

[275] Huajun Qin and Philip Lewis. “Factorisation of Finite State Machines under Strong and
Observational Equivalences”. In: Formal Aspects of Computing 3.3 (1991), pp. 284–307. doi:
10.1007/BF01245634 (cit. on p. 171).

[276] Huajun Qin and Philip Lewis. “Factorization of Finite State Machines under Observa-
tional Equivalence”. In: CONCUR ’90, Theories of Concurrency: Unification and Extension,
Amsterdam, The Netherlands, August 27-30, 1990, Proceedings. Ed. by Jos C. M. Baeten and
Jan Willem Klop. Vol. 458. Lecture Notes in Computer Science. Springer, 1990, pp. 427–
441. doi: 10.1007/BFb0039075 (cit. on p. 171).

[277] Michael Oser Rabin. “Probabilistic Automata”. In: Information and Control 6.3 (1963),
pp. 230–245. doi: 10.1016/S0019-9958(63)90290-0 (cit. on p. 111).

[278] Jörg Raisch and Thomas Moor. “Hierarchical Hybrid Control Synthesis and its Ap-
plication to a Multiproduct Batch Plant”. In: Control and Observer Design for Nonlinear
Finite and Infinite Dimensional Systems. Ed. by Thomas Meurer, Knut Graichen, and Ernst
Dieter Gilles. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 199–216. doi:
10.1007/11529798_13 (cit. on p. 176).

[279] Peter Jeffrey Godwin Ramadge. “Observability of discrete event systems”. In: 1986 25th
IEEE Conference on Decision and Control. Dec. 1986, pp. 1108–1112. doi: 10.1109/CDC.198
6.267551 (cit. on pp. 173, 216).

[280] Peter Jeffrey Godwin Ramadge and Walter Murray Wonham. “On the Supremal Control-
lable Sublanguage of a Given Language”. In: SIAM Journal on Control and Optimization
(SICON) 25.3 (1987), pp. 637–659 (cit. on p. 58).

[281] Peter Jeffrey Godwin Ramadge and Walter Murray Wonham. “On the Supremal Control-
lable Sublanguage of a given Language”. In: Decision and Control, 1984. The 23rd IEEE
Conference on. Vol. 23. 1984, pp. 1073–1080. doi: 10.1109/CDC.1984.272178 (cit. on pp. 31,
34, 45, 49, 56, 57, 171, 172, 179, 213, 220, 224).

[282] Peter Jeffrey Godwin Ramadge and Walter Murray Wonham. “Supervisory Control of a
Class of Discrete Event Processes”. English. In: Analysis and Optimization of Systems. Ed. by
A. Bensoussan and J.L. Lions. Vol. 63. Lecture Notes in Control and Information Sciences.
Springer Berlin Heidelberg, 1984, pp. 475–498. doi: 10.1007/BFb0006306 (cit. on pp. 1, 2,
4, 5, 8, 9, 18, 31, 166, 167, 170, 172, 178, 219, 224).

[283] Peter Jeffrey Godwin Ramadge and Walter Murray Wonham. “Supervisory Control of a
Class of Discrete Event Processes”. In: SIAM Journal on Control and Optimization (SICON)
25.1 (Jan. 1987), pp. 206–230. doi: 10.1137/0325013 (cit. on pp. 165, 180).

[284] C. V. Ramamoorthy, Siyi Terry Dong, and Yutaka Usuda. “An Implementation of an
Automated Protocol Synthesizer (APS) and Its Application to the X.21 Protocol”. In: IEEE
Transactions on Software Engineering 11.9 (1985), pp. 886–908. doi: 10.1109/TSE.1985.232
547 (cit. on p. 171).

[285] Stefan Rass, Bo An, Christopher Kiekintveld, Fei Fang, and Stefan Schauer, eds. Decision
and Game Theory for Security - 8th International Conference, GameSec 2017, Vienna, Austria,
October 23-25, 2017, Proceedings. Vol. 10575. Lecture Notes in Computer Science. Springer,
2017. doi: 10.1007/978-3-319-68711-7 (cit. on p. 168).

[286] Thomas Reinbacher, Matthias Függer, and Jörg Brauer. “Runtime verification of embed-
ded real-time systems”. In: Formal Methods in System Design 44.3 (2014), pp. 203–239. doi:
10.1007/s10703-013-0199-z (cit. on p. 173).

269

https://doi.org/10.1109/FSCS.1990.89597
https://doi.org/10.1109/FSCS.1990.89597
https://doi.org/10.1109/FSCS.1990.89597
https://doi.org/10.1145/75277.75293
https://doi.org/10.1007/BF01245634
https://doi.org/10.1007/BFb0039075
https://doi.org/10.1016/S0019-9958(63)90290-0
https://doi.org/10.1007/11529798_13
https://doi.org/10.1109/CDC.1986.267551
https://doi.org/10.1109/CDC.1986.267551
https://doi.org/10.1109/CDC.1984.272178
https://doi.org/10.1007/BFb0006306
https://doi.org/10.1137/0325013
https://doi.org/10.1109/TSE.1985.232547
https://doi.org/10.1109/TSE.1985.232547
https://doi.org/10.1007/978-3-319-68711-7
https://doi.org/10.1007/s10703-013-0199-z

Appendix E. Bibliography

[287] Christine Röckl. “A First-Order Syntax for the π-Calculus in Isabelle/HOL using Per-
mutations”. In: Electronic Notes in Theoretical Computer Science 58.1 (2001), pp. 1–17. doi:
10.1016/S1571-0661(04)00276-2 (cit. on p. 187).

[288] Christine Röckl and Daniel Hirschkoff. “A fully adequate shallow embedding of the π-
Calculus in Isabelle/HOL with mechanized syntax analysis”. In: Journal of Functional
Programming 13.2 (2003), pp. 415–451. doi: 10.1017/S0956796802004653 (cit. on p. 187).

[289] Christine Röckl, Daniel Hirschkoff, and Stefan Berghofer. “Higher-Order Abstract Syntax
with Induction in Isabelle/HOL: Formalizing the π-Calculus and Mechanizing the Theory
of Contexts”. In: Foundations of Software Science and Computation Structures, 4th International
Conference, FOSSACS 2001 Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2001 Genova, Italy, April 2-6, 2001, Proceedings. Ed. by Furio
Honsell and Marino Miculan. Vol. 2030. Lecture Notes in Computer Science. Springer,
2001, pp. 364–378. isbn: 3-540-41864-4. doi: 10.1007/3-540-45315-6_24 (cit. on p. 187).

[290] Roni Rosner. “Modular Synthesis of Reactive Systems”. PhD thesis. Rehovot, Israel: The
Weizmann Institute of Science, 1992 (cit. on p. 168).

[291] Yu Ru, Maria Paola Cabasino, Alessandro Giua, and Christoforos N. Hadjicostis. “Su-
pervisor synthesis for discrete event systems under partial observation and arbitrary
forbidden state specifications”. In: Discrete Event Dynamic Systems 24.3 (2014), pp. 275–307.
doi: 10.1007/s10626-012-0152-0 (cit. on p. 179).

[292] Matthias Rungger and Paulo Tabuada. “A Notion of Robustness for Cyber-Physical
Systems”. In: IEEE Transactions on Automatic Control 61.8 (2016), pp. 2108–2123. doi:
10.1109/TAC.2015.2492438 (cit. on p. 166).

[293] Éric Rutten, Nicolas Marchand, and Daniel Simon. “Feedback Control as MAPE-K Loop
in Autonomic Computing”. In: Software Engineering for Self-Adaptive Systems III. Assurances
- International Seminar, Dagstuhl Castle, Germany, December 15-19, 2013, Revised Selected
and Invited Papers. Ed. by Rogério de Lemos, David Garlan, Carlo Ghezzi, and Holger
Giese. Vol. 9640. Lecture Notes in Computer Science. Springer, 2013, pp. 349–373. doi:
10.1007/978-3-319-74183-3_12 (cit. on p. 169).

[294] Dorsa Sadigh, Eric S. Kim, Samuel Coogan, S. Shankar Sastry, and Sanjit A. Seshia. “A
learning based approach to control synthesis of Markov decision processes for linear
temporal logic specifications”. In: 53rd IEEE Conference on Decision and Control, CDC 2014,
Los Angeles, CA, USA, December 15-17, 2014. IEEE, 2014, pp. 1091–1096. isbn: 978-1-4799-
7746-8. doi: 10.1109/CDC.2014.7039527. url: https://doi.org/10.1109/CDC.2014.7
039527 (cit. on p. 216).

[295] Neda Saeedloei and Gopal Gupta. “Verifying Complex Continuous Real-Time Systems
with Coinductive CLP(R)”. In: Language and Automata Theory and Applications, 4th In-
ternational Conference, LATA 2010, Trier, Germany, May 24-28, 2010. Proceedings. Ed. by
Adrian-Horia Dediu, Henning Fernau, and Carlos Martín-Vide. Vol. 6031. Lecture Notes
in Computer Science. Springer, 2010, pp. 536–548. doi: 10.1007/978-3-642-13089-2_45
(cit. on p. 180).

[296] Yoshisato Sakai. “A Tableau Construction Approach to Control Synthesis of FSMs Using
Simulation Relations”. In: IEICE Transactions 90-A.4 (2007), pp. 836–846. doi: 10.1093/ie
tfec/e90-a.4.836 (cit. on p. 171).

[297] Antonia M. Sánchez and Francisco J. Montoya. “Safe Supervisory Control Under Ob-
servability Failure”. In: Discrete Event Dynamic Systems 16.4 (2006), pp. 493–525. doi:
10.1007/s10626-006-0022-8 (cit. on p. 173).

[298] Germano Schafaschek, Max Hering de Queiroz, and José Eduardo Ribeiro Cury. “Local
Modular Supervisory Control of Timed Discrete-Event Systems”. In: IEEE Transactions
on Automatic Control 62.2 (2017), pp. 934–940. doi: 10.1109/TAC.2016.2566884 (cit. on
pp. 174, 175).

270

https://doi.org/10.1016/S1571-0661(04)00276-2
https://doi.org/10.1017/S0956796802004653
https://doi.org/10.1007/3-540-45315-6_24
https://doi.org/10.1007/s10626-012-0152-0
https://doi.org/10.1109/TAC.2015.2492438
https://doi.org/10.1007/978-3-319-74183-3_12
https://doi.org/10.1109/CDC.2014.7039527
https://doi.org/10.1109/CDC.2014.7039527
https://doi.org/10.1109/CDC.2014.7039527
https://doi.org/10.1007/978-3-642-13089-2_45
https://doi.org/10.1093/ietfec/e90-a.4.836
https://doi.org/10.1093/ietfec/e90-a.4.836
https://doi.org/10.1007/s10626-006-0022-8
https://doi.org/10.1109/TAC.2016.2566884

[299] Klaus Werner Schmidt. “Optimal Supervisory Control of Discrete Event Systems: Cyclic-
ity and Interleaving of Tasks”. In: SIAM Journal on Control and Optimization (SICON) 53.3
(2015), pp. 1425–1439. doi: 10.1137/120892908 (cit. on p. 165).

[300] Anne-Kathrin Schmuck. “Building bridges in abstraction-based controller synthesis:
advancing, combining, and comparing methods from computer and control”. PhD thesis.
Berlin, Germany: Technische Universität Berlin, 2015. isbn: 978-3-7375-7174-6. doi: 10.14
279/depositonce-4906 (cit. on pp. 147, 148).

[301] Anne-Kathrin Schmuck, Sven Schneider, Jörg Raisch, and Uwe Nestmann. “Extending
Supervisory Controller Synthesis to Deterministic Pushdown Automata—Enforcing
Controllability Least Restrictively”. In: 12th International Workshop on Discrete Event
Systems, WODES 2014, Cachan, France, May 14-16, 2014. Ed. by Jean-Jacques Lesage,
Jean-Marc Faure, José E. R. Cury, and Bengt Lennartson. International Federation of
Automatic Control, 2014, pp. 286–293. isbn: 978-3-902823-61-8. doi: 10.3182/20140514-
3-FR-4046.00058 (cit. on pp. 12, 82, 180, 181, 225).

[302] Anne-Kathrin Schmuck, Sven Schneider, Jörg Raisch, and Uwe Nestmann. “Supervisory
control synthesis for deterministic context free specification languages—Enforcing con-
trollability least restrictively”. In: Discrete Event Dynamic Systems 26.1 (2016), pp. 5–32.
doi: 10.1007/s10626-015-0221-2 (cit. on pp. 12, 82, 147, 148, 181, 185, 225).

[303] Sven Schneider. An Isabelle Formalization for Controller Synthesis using Deterministic Push-
down Automata as Specifications. doi: 10.5281/zenodo.1412369. 2018. url: https://github
.com/ControllerSynthesis/Isabelle (cit. on pp. 13, 89, 96, 140, 220).

[304] Sven Schneider. CoSy: A Tool for Controller Synthesis using Deterministic Pushdown Automata
as Specifications. doi: 10.5281/zenodo.1346258. 2018. url: https://github.com/Control
lerSynthesis/CoSy (cit. on pp. 13, 141, 154, 161, 220).

[305] Sven Schneider, Leen Lambers, and Fernando Orejas. “Automated reasoning for at-
tributed graph properties”. In: International Journal on Software Tools for Technology Transfer
(June 2018). issn: 1433-2787. doi: 10.1007/s10009-018-0496-3. url: https://doi.org
/10.1007/s10009-018-0496-3 (cit. on p. 12).

[306] Sven Schneider, Leen Lambers, and Fernando Orejas. “Symbolic Model Generation for
Graph Properties”. In: Fundamental Approaches to Software Engineering - 20th International
Conference, FASE 2017, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings. Ed. by Marieke
Huisman and Julia Rubin. Vol. 10202. Lecture Notes in Computer Science. Springer,
2017, pp. 226–243. isbn: 978-3-662-54493-8. doi: 10.1007/978-3-662-54494-5_13. url:
https://doi.org/10.1007/978-3-662-54494-5_13 (cit. on p. 12).

[307] Sven Schneider and Uwe Nestmann. “Enforcing Operational Properties including Block-
freeness for Deterministic Pushdown Automata”. In: CoRR (2014). url: http://arxiv.o
rg/abs/1403.5081 (cit. on pp. 12, 181).

[308] Sven Schneider and Uwe Nestmann. “Rigorous Discretization of Hybrid Systems Using
Process Calculi”. In: Formal Modeling and Analysis of Timed Systems - 9th International
Conference, FORMATS 2011, Aalborg, Denmark, September 21-23, 2011. Proceedings. Ed. by
Uli Fahrenberg and Stavros Tripakis. Vol. 6919. Lecture Notes in Computer Science.
Springer, 2011, pp. 301–316. doi: 10.1007/978-3-642-24310-3_21 (cit. on pp. 12, 216).

[309] Sven Schneider and Anne-Kathrin Schmuck. Supervisory Controller Synthesis for Determin-
istic Pushdown Automata Specifications. Tech. rep. Technical University of Berlin, 2013. url:
https://www.eecs.tu-berlin.de/fileadmin/f4/TechReports/2013/tr_2013-09.pdf
(cit. on pp. 12, 82, 180, 181).

[310] Sven Schneider, Anne-Kathrin Schmuck, Uwe Nestmann, and Jörg Raisch. “Reducing an
Operational Supervisory Control Problem by Decomposition for Deterministic Pushdown
Automata”. In: 12th International Workshop on Discrete Event Systems, WODES 2014, Cachan,
France, May 14-16, 2014. Ed. by Jean-Jacques Lesage, Jean-Marc Faure, José E. R. Cury,
and Bengt Lennartson. International Federation of Automatic Control, 2014, pp. 214–221.

271

https://doi.org/10.1137/120892908
https://doi.org/10.14279/depositonce-4906
https://doi.org/10.14279/depositonce-4906
https://doi.org/10.3182/20140514-3-FR-4046.00058
https://doi.org/10.3182/20140514-3-FR-4046.00058
https://doi.org/10.1007/s10626-015-0221-2
https://github.com/ControllerSynthesis/Isabelle
https://github.com/ControllerSynthesis/Isabelle
https://github.com/ControllerSynthesis/CoSy
https://github.com/ControllerSynthesis/CoSy
https://doi.org/10.1007/s10009-018-0496-3
https://doi.org/10.1007/s10009-018-0496-3
https://doi.org/10.1007/s10009-018-0496-3
https://doi.org/10.1007/978-3-662-54494-5_13
https://doi.org/10.1007/978-3-662-54494-5_13
http://arxiv.org/abs/1403.5081
http://arxiv.org/abs/1403.5081
https://doi.org/10.1007/978-3-642-24310-3_21
https://www.eecs.tu-berlin.de/fileadmin/f4/TechReports/2013/tr_2013-09.pdf

Appendix E. Bibliography

isbn: 978-3-902823-61-8. doi: 10.3182/20140514-3-FR-4046.00057 (cit. on pp. 12, 17, 35,
96, 108, 165, 181, 225).

[311] Melanie Schuh and Jan Lunze. “Tracking control of deterministic I/O automata”. In:
13th International Workshop on Discrete Event Systems, WODES 2016, Xi’an, China, May
30 - June 1, 2016. Ed. by Christos G. Cassandras, Alessandro Giua, and Zhiwu Li. IEEE,
2016, pp. 325–331. isbn: 978-1-5090-4190-9. doi: 10.1109/WODES.2016.7497867. url:
https://doi.org/10.1109/WODES.2016.7497867 (cit. on p. 171).

[312] Stephan Schulz. The E Theorem Prover. 2017. url: http://wwwlehre.dhbw-stuttgart.de
/~sschulz/E/E.html (cit. on p. 93).

[313] Raja Sengupta. “Optimal control of discrete event systems”. PhD thesis. University of
Michigan, 1995 (cit. on p. 165).

[314] Raja Sengupta and Stéphane Lafortune. “A deterministic optimal control theory for
discrete event systems”. In: Proceedings of 32nd IEEE Conference on Decision and Control.
Dec. 1993, pp. 1182–1187. doi: 10.1109/CDC.1993.325369 (cit. on p. 165).

[315] Raja Sengupta and Stéphane Lafortune. “A graph-theoretic optimal control problem
for terminating discrete event processes”. In: Discrete Event Dynamic Systems 2.2 (1992),
pp. 139–172. doi: 10.1007/BF01797725 (cit. on p. 165).

[316] Raja Sengupta and Stéphane Lafortune. “An optimal control theory for discrete event
systems”. In: SIAM Journal on Control and Optimization (SICON) 36.2 (1998), pp. 488–541.
issn: 0363-0129 (cit. on p. 165).

[317] Raja Sengupta and Stéphane Lafortune. “Optimal Control of a Class of Discrete Event
Systems”. In: IFAC Proceedings Volumes 24.5 (1991). IFAC Symposium on Distributed
Intelligence Systems, Arlington, VA, USA, 13-15 August 1991, pp. 29–34. doi: 10.1016/S
1474-6670(17)51219-7 (cit. on p. 165).

[318] Géraud Sénizergues. “The Equivalence Problem for Deterministic Pushdown Automata
is Decidable”. In: Automata, Languages and Programming, 24th International Colloquium,
ICALP’97, Bologna, Italy, 7-11 July 1997, Proceedings. Ed. by Pierpaolo Degano, Roberto
Gorrieri, and Alberto Marchetti-Spaccamela. Vol. 1256. Lecture Notes in Computer
Science. Springer, 1997, pp. 671–681. doi: 10.1007/3-540-63165-8_221 (cit. on p. 213).

[319] M. W. Shields. “Implicit System Specification and the Interface Equation”. In: The Com-
puter Jounal 32.5 (1989), pp. 399–412. doi: 10.1093/comjnl/32.5.399 (cit. on p. 171).

[320] Mehrdad Showkatbakhsh, Paulo Tabuada, and Suhas N. Diggavi. “System identification
in the presence of adversarial outputs”. In: 55th IEEE Conference on Decision and Control,
CDC 2016, Las Vegas, NV, USA, December 12-14, 2016. IEEE, 2016, pp. 7177–7182. isbn:
978-1-5090-1837-6. doi: 10.1109/CDC.2016.7799376 (cit. on p. 165).

[321] Deepinder P. Sidhu and Juan Aristizabal. “Constructing Submodule Specifications and
Network Protocols”. In: IEEE Transactions on Software Engineering 14.11 (1988), pp. 1565–
1577. doi: 10.1109/32.9045 (cit. on p. 171).

[322] Celso F. Silva, Camilo Quintáns, Antonio Colmenar, Manuel Castro, and Enrique Man-
dado. “A Method Based on Petri Nets and a Matrix Model to Implement Reconfigurable
Logic Controllers”. In: IEEE Transactions on Industrial Electronics 57.10 (2010), pp. 3544–
3556. doi: 10.1109/TIE.2009.2038946 (cit. on p. 172).

[323] M. Silva and S. Velilla. “Programmable Logic Controllers and Petri Nets: A Comparative
Study”. In: IFAC Proceedings Volumes 15.7 (1982). 3rd IFAC/IFIP Symposium on Software
for Computer Control 1982, Madrid, Spain, 5-8 October, pp. 83–88. doi: 10.1016/S1474-
6670(17)62804-0 (cit. on p. 172).

[324] Vladimir Sinyakov and Antoine Girard. “Formal Controller Synthesis from Hybrid Pro-
grams”. In: Proceedings of the 21st International Conference on Hybrid Systems: Computation
and Control (part of CPS Week), HSCC 2018, Porto, Portugal, April 11-13, 2018. ACM, 2018,
pp. 271–272. doi: 10.1145/3178126.3186998 (cit. on p. 168).

272

https://doi.org/10.3182/20140514-3-FR-4046.00057
https://doi.org/10.1109/WODES.2016.7497867
https://doi.org/10.1109/WODES.2016.7497867
http://wwwlehre.dhbw-stuttgart.de/~sschulz/E/E.html
http://wwwlehre.dhbw-stuttgart.de/~sschulz/E/E.html
https://doi.org/10.1109/CDC.1993.325369
https://doi.org/10.1007/BF01797725
https://doi.org/10.1016/S1474-6670(17)51219-7
https://doi.org/10.1016/S1474-6670(17)51219-7
https://doi.org/10.1007/3-540-63165-8_221
https://doi.org/10.1093/comjnl/32.5.399
https://doi.org/10.1109/CDC.2016.7799376
https://doi.org/10.1109/32.9045
https://doi.org/10.1109/TIE.2009.2038946
https://doi.org/10.1016/S1474-6670(17)62804-0
https://doi.org/10.1016/S1474-6670(17)62804-0
https://doi.org/10.1145/3178126.3186998

[325] Seppo Sippo and Eljas Soisalon-Soininen. Parsing Theory. Ed. by Wilfried Brauer, Grzegorz
Rozenberg, and Arto Salomaa. 2nd ed. Vol. I(Languages and Parsing),II(LR(k) and LL(k)
Parsing). EATCS Monographs on Theoretical Computer Science. Heidelberg: Springer,
1990 (cit. on pp. 22, 24, 27, 29, 66, 67, 69, 72, 73, 76, 116, 121, 124, 125, 157, 214).

[326] IEEE Control Systems Society. Tools for Discrete Event Controller Synthesis. 2018. url:
http://discrete-event-systems.ieeecss.org/tc-discrete/resources (cit. on
p. 171).

[327] Ramavarapu S. Sreenivas. “A note on deciding the controllability of a language K with
respect to a language L”. In: IEEE Transactions on Automatic Control 38.4 (Apr. 1993),
pp. 658–662. doi: 10.1109/9.250543 (cit. on p. 178).

[328] Ramavarapu S. Sreenivas. “On a weaker notion of controllability of a language K with
respect to a language L”. In: IEEE Transactions on Automatic Control 38.9 (Nov. 1993),
pp. 1446–1447. doi: 10.1109/9.237665 (cit. on p. 180).

[329] Ramavarapu S. Sreenivas and Bruce H. Krogh. “On Petri net models of infinite state
supervisors”. In: IEEE Transactions on Automatic Control 37.2 (Feb. 1992), pp. 274–277. doi:
10.1109/9.121634 (cit. on p. 178).

[330] Colin Stirling. “An Introduction to Decidability of DPDA Equivalence”. In: FST TCS
2001: Foundations of Software Technology and Theoretical Computer Science, 21st Conference,
Bangalore, India, December 13-15, 2001, Proceedings. Ed. by Ramesh Hariharan, Madhavan
Mukund, and V. Vinay. Vol. 2245. Lecture Notes in Computer Science. Springer, 2001,
pp. 42–56. doi: 10.1007/3-540-45294-X_4 (cit. on p. 213).

[331] Colin Stirling. “Decidability of DPDA equivalence”. In: Theoretical Computer Science
255.1-2 (2001), pp. 1–31. doi: 10.1016/S0304-3975(00)00389-3 (cit. on p. 213).

[332] Colin Stirling and David Walker. “Local Model Checking in the Modal µ-Calculus”.
In: TAPSOFT’89: Proceedings of the International Joint Conference on Theory and Practice of
Software Development, Barcelona, Spain, March 13-17, 1989, Volume 1: Advanced Seminar on
Foundations of Innovative Software Development I and Colloquium on Trees in Algebra and
Programming (CAAP’89). Ed. by Josep Díaz and Fernando Orejas. Vol. 351. Lecture Notes
in Computer Science. Springer, 1989, pp. 369–383. doi: 10.1007/3-540-50939-9_144
(cit. on p. 169).

[333] Ichiro Suzuki and Tadao Murata. “A Method for Stepwise Refinement and Abstraction
of Petri Nets”. In: Journal of Computer and System Sciences 27.1 (1983), pp. 51–76. doi:
10.1016/0022-0000(83)90029-6 (cit. on p. 178).

[334] Daniel Sykes, Domenico Corapi, Jeff Magee, Jeff Kramer, Alessandra Russo, and Katsumi
Inoue. “Learning revised models for planning in adaptive systems”. In: 35th International
Conference on Software Engineering, ICSE ’13, San Francisco, CA, USA, May 18-26, 2013.
Ed. by David Notkin, Betty H. C. Cheng, and Klaus Pohl. IEEE Computer Society, 2013,
pp. 63–71. isbn: 978-1-4673-3076-3. doi: 10.1109/ICSE.2013.6606552 (cit. on p. 170).

[335] IAR Systems. VisualState. 2018. url: https://www.iar.com/iar-embedded-workbench
/add-ons-and-integrations/visualstate/ (cit. on p. 172).

[336] Shigemasa Takai. “Synthesis of maximally permissive and robust supervisors for prefix-
closed language specifications”. In: IEEE Transactions on Automatic Control 47.1 (2002),
pp. 132–136. doi: 10.1109/9.981732 (cit. on p. 166).

[337] Zhongping Tao, Gregor von Bochmann, and Rachida Dssouli. “A Formal Method for
Synthesizing Optimized Protocol Converters and Its Application to Mobile Data Net-
works”. In: Mobile Networks and Applications (MONET) 2.3 (1997), pp. 259–269. doi:
10.1023/A:1013692902855 (cit. on p. 171).

[338] Alfred Tarski. “A lattice-theoretical fixpoint theorem and its applications”. In: Pacific
Journal of Mathematics 5.2 (1955), pp. 285–309. url: http://projecteuclid.org/euclid
.pjm/1103044538 (cit. on p. 47).

273

http://discrete-event-systems.ieeecss.org/tc-discrete/resources
https://doi.org/10.1109/9.250543
https://doi.org/10.1109/9.237665
https://doi.org/10.1109/9.121634
https://doi.org/10.1007/3-540-45294-X_4
https://doi.org/10.1016/S0304-3975(00)00389-3
https://doi.org/10.1007/3-540-50939-9_144
https://doi.org/10.1016/0022-0000(83)90029-6
https://doi.org/10.1109/ICSE.2013.6606552
https://www.iar.com/iar-embedded-workbench/add-ons-and-integrations/visualstate/
https://www.iar.com/iar-embedded-workbench/add-ons-and-integrations/visualstate/
https://doi.org/10.1109/9.981732
https://doi.org/10.1023/A:1013692902855
http://projecteuclid.org/euclid.pjm/1103044538
http://projecteuclid.org/euclid.pjm/1103044538

Appendix E. Bibliography

[339] John G. Thistle. “On control of systems modelled as deterministic Rabin automata”. In:
Discrete Event Dynamic Systems 5.4 (1995), pp. 357–381. doi: 10.1007/BF01439153 (cit. on
pp. 168, 171).

[340] John G. Thistle and Hichem M. Lamouchi. “Effective Control Synthesis for Partially
Observed Discrete-Event Systems”. In: SIAM Journal on Control and Optimization (SICON)
48.3 (2009), pp. 1858–1887. doi: 10.1137/060673862 (cit. on p. 168).

[341] John G. Thistle and R. P. Malhamé. “Control of ω-automata under state fairness assump-
tions”. In: Systems & Control Letters 33.4 (1998), pp. 265–274. doi: 10.1016/S0167-6911(9
7)00106-0 (cit. on p. 168).

[342] John G. Thistle and Walter Murray Wonham. “Control of ω-Automata, Church’s Prob-
lem, and the Emptiness Problem for Tree ω-Automata”. In: Computer Science Logic, 5th
Workshop, CSL ’91, Berne, Switzerland, October 7-11, 1991, Proceedings. Ed. by Egon Börger,
Gerhard Jäger, Hans Kleine Büning, and Michael M. Richter. Vol. 626. Lecture Notes in
Computer Science. Springer, 1991, pp. 367–382. doi: 10.1007/BFb0023782 (cit. on p. 168).

[343] John G. Thistle and Walter Murray Wonham. “Control of Infinite Behavior of Finite
Automata”. In: SIAM Journal on Control and Optimization (SICON) 32.4 (1994), pp. 1075–
1097. doi: 10.1137/S0363012991217536 (cit. on p. 168).

[344] John G. Thistle and Walter Murray Wonham. “Supervision of Infinite Behavior of Discrete-
Event Systems”. In: SIAM Journal on Control and Optimization (SICON) 32.4 (July 1994),
pp. 1098–1113. doi: 10.1137/S0363012991217524 (cit. on p. 168).

[345] Dmitriy Traytel. A Codatatype of Formal Languages. 2013. url: http://www.isa-afp.org
/entries/Coinductive_Languages.shtml (cit. on p. 187).

[346] Alan Mathison Turing. “On computable numbers, with an application to the Entschei-
dungsproblem.” English. In: Proceedings of the London Mathematical Society (2) 42 (1936),
pp. 230–265. doi: 10.1112/plms/s2-42.1.230 (cit. on p. 111).

[347] Esko Ukkonen. “Upper Bounds on the Size of LR(k) Parsers”. In: Information Processing
Letters 20.2 (1985), pp. 99–103. doi: 10.1016/0020-0190(85)90072-9 (cit. on p. 157).

[348] Alphan Ulusoy, Tichakorn Wongpiromsarn, and Calin Belta. “Incremental controller
synthesis in probabilistic environments with temporal logic constraints”. In: International
Journal of Robotics Research (IJRR) 33.8 (2014), pp. 1130–1144. doi: 10.1177/027836491351
9000 (cit. on p. 166).

[349] Vladimir Ulyantsev, Igor Buzhinsky, and Anatoly Shalyto. “Exact finite-state machine
identification from scenarios and temporal properties”. In: STTT 20.1 (2018), pp. 35–55.
doi: 10.1007/s10009-016-0442-1. url: https://doi.org/10.1007/s10009-016-0442-
1 (cit. on p. 215).

[350] R. Valette, M. Courvoisier, J.M. Bigou, and J. Albukerque. “A Petri net based pro-
grammable logic controller”. In: IFIP First International Conference on Computer Applications
in Production and Engineering CAPE 83, Amsterdam (Apr. 1983). Ed. by E. A. Warman,
pp. 103–116 (cit. on p. 178).

[351] Moshe Ya’akov Vardi. “An Automata-Theoretic Approach to Fair Realizability and
Synthesis”. In: Computer Aided Verification, 7th International Conference, Liège, Belgium, July,
3-5, 1995, Proceedings. Ed. by Pierre Wolper. Vol. 939. Lecture Notes in Computer Science.
Springer, 1995, pp. 267–278. doi: 10.1007/3-540-60045-0_56 (cit. on p. 168).

[352] László Zsolt Varga. “Game Theory Models for the Verification of the Collective Behaviour
of Autonomous Cars”. In: Proceedings First Workshop on Formal Verification of Autonomous
Vehicles, FVAV@iFM 2017, Turin, Italy, 19th September 2017. Ed. by Lukas Bulwahn, Maryam
Kamali, and Sven Linker. EPTCS. 2017, pp. 27–34. doi: 10.4204/EPTCS.257.4. url: http
://arxiv.org/abs/1709.02126 (cit. on p. 168).

[353] Andrei Voronkov, Alexandre Riazanov, Krystof Hoder, Laura Kovacs, and Ioan Dragan.
Vampire’s Home Page. 2017. url: http://www.vprover.org/ (cit. on p. 94).

274

https://doi.org/10.1007/BF01439153
https://doi.org/10.1137/060673862
https://doi.org/10.1016/S0167-6911(97)00106-0
https://doi.org/10.1016/S0167-6911(97)00106-0
https://doi.org/10.1007/BFb0023782
https://doi.org/10.1137/S0363012991217536
https://doi.org/10.1137/S0363012991217524
http://www.isa-afp.org/entries/Coinductive_Languages.shtml
http://www.isa-afp.org/entries/Coinductive_Languages.shtml
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1016/0020-0190(85)90072-9
https://doi.org/10.1177/0278364913519000
https://doi.org/10.1177/0278364913519000
https://doi.org/10.1007/s10009-016-0442-1
https://doi.org/10.1007/s10009-016-0442-1
https://doi.org/10.1007/s10009-016-0442-1
https://doi.org/10.1007/3-540-60045-0_56
https://doi.org/10.4204/EPTCS.257.4
http://arxiv.org/abs/1709.02126
http://arxiv.org/abs/1709.02126
http://www.vprover.org/

[354] David A. Wagner and Drew Dean. “Intrusion Detection via Static Analysis”. In: 2001
IEEE Symposium on Security and Privacy, Oakland, California, USA May 14-16, 2001. IEEE
Computer Society, 2001, pp. 156–168. isbn: 0-7695-1046-9. doi: 10.1109/SECPRI.2001.92
4296 (cit. on p. 180).

[355] Masashi Wakaiki, Paulo Tabuada, and João Pedro Hespanha. “Supervisory Control of
Discrete-Event Systems under Attacks”. In: CoRR (2017). url: http://arxiv.org/abs/1
701.00881 (cit. on p. 166).

[356] Richard Jay Waldinger and Zohar Manna. “Knowledge and Reasoning in Program
Synthesis”. In: Advance Papers of the Fourth International Joint Conference on Artificial
Intelligence, Tbilisi, Georgia, USSR, September 3-8, 1975. 1975, pp. 288–295. url: http://ij
cai.org/Proceedings/75/Papers/041.pdf (cit. on p. 1).

[357] Charles R. Wallace, Paul Jensen, and Nandit Soparkar. “Supervisory control of workflow
scheduling”. In: Advanced Transaction Models & Architectures Workshop (ATMA). 1996. doi:
10.1109/CDC.1984.272178 (cit. on p. 169).

[358] Xinyu Wang, Isil Dillig, and Rishabh Singh. “Program synthesis using abstraction refine-
ment”. In: Proceedings of the ACM on Programming Languages (PACMPL) 2.POPL (2018),
pp. 1–30. doi: 10.1145/3158151 (cit. on p. 167).

[359] Yin Wang, Hyoun Kyu Cho, Hongwei Liao, Ahmed Nazeem, Terence Kelly, Stéphane
Lafortune, Scott A. Mahlke, and Spyros A. Reveliotis. “Supervisory control of software
execution for failure avoidance: Experience from the Gadara project”. In: 10th International
Workshop on Discrete Event Systems, WODES 2010, Berlin, Germany, August 30 - September
01, 2010. Ed. by Jörg Raisch, Alessandro Giua, Stéphane Lafortune, and Thomas Moor.
International Federation of Automatic Control, 2010, pp. 259–266. isbn: 978-3-902661-79-1.
doi: 10.3182/20100830-3-DE-4013.00044 (cit. on p. 170).

[360] Yin Wang, Stéphane Lafortune, Terence Kelly, Manjunath Kudlur, and Scott A. Mahlke.
“The theory of deadlock avoidance via discrete control”. In: Proceedings of the 36th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2009,
Savannah, GA, USA, January 21-23, 2009. Ed. by Zhong Shao and Benjamin C. Pierce.
ACM, 2009, pp. 252–263. isbn: 978-1-60558-379-2. doi: 10.1145/1480881.1480913 (cit. on
p. 170).

[361] Simon Wimmer. Timed Automata. 2016. url: http://www.isa-afp.org/entries/Timed
_Automata.shtml (cit. on p. 187).

[362] Kai C. Wong and Walter Murray Wonham. “Hierarchical control of discrete-event sys-
tems”. In: Discrete Event Dynamic Systems 6.3 (1996), pp. 241–273. doi: 10.1007/BF017971
54 (cit. on p. 176).

[363] Kai C. Wong and Walter Murray Wonham. “Hierarchical control of timed discrete-event
systems”. In: Discrete Event Dynamic Systems 6.3 (1996), pp. 275–306. doi: 10.1007/BF017
97155 (cit. on pp. 174, 176).

[364] Kai C. Wong and Walter Murray Wonham. “Modular Control and Coordination of
Discrete-Event Systems”. In: Discrete Event Dynamic Systems 8.3 (1998), pp. 247–297. doi:
10.1023/A:1008210519960 (cit. on p. 175).

[365] Walter Murray Wonham and Peter Jeffrey Godwin Ramadge. “Modular supervisory
control of discrete-event systems”. In: Mathematics of Control, Signals, and Systems (MCSS)
1.1 (1988), pp. 13–30. doi: 10.1007/BF02551233 (cit. on p. 175).

[366] Chunhan Wu, Xingyuan Zhang, and Christian Urban. The Myhill-Nerode Theorem Based on
Regular Expressions. 2011. url: http://www.isa-afp.org/entries/Myhill-Nerode.sht
ml (cit. on p. 186).

[367] Guanci Yang. “Game Theory-Inspired Evolutionary Algorithm for Global Optimization”.
In: Algorithms 10.4 (2017), pp. 111–126. doi: 10.3390/a10040111 (cit. on p. 168).

275

https://doi.org/10.1109/SECPRI.2001.924296
https://doi.org/10.1109/SECPRI.2001.924296
http://arxiv.org/abs/1701.00881
http://arxiv.org/abs/1701.00881
http://ijcai.org/Proceedings/75/Papers/041.pdf
http://ijcai.org/Proceedings/75/Papers/041.pdf
https://doi.org/10.1109/CDC.1984.272178
https://doi.org/10.1145/3158151
https://doi.org/10.3182/20100830-3-DE-4013.00044
https://doi.org/10.1145/1480881.1480913
http://www.isa-afp.org/entries/Timed_Automata.shtml
http://www.isa-afp.org/entries/Timed_Automata.shtml
https://doi.org/10.1007/BF01797154
https://doi.org/10.1007/BF01797154
https://doi.org/10.1007/BF01797155
https://doi.org/10.1007/BF01797155
https://doi.org/10.1023/A:1008210519960
https://doi.org/10.1007/BF02551233
http://www.isa-afp.org/entries/Myhill-Nerode.shtml
http://www.isa-afp.org/entries/Myhill-Nerode.shtml
https://doi.org/10.3390/a10040111

Appendix E. Bibliography

[368] Nina Yevtushenko, Tiziano Villa, Robert K. Brayton, and Alberto L. Sangiovanni-Vin-
centelli Alexandre Petrenko. Sequential Synthesis by Language Equation solving. Tech. rep.
UCB/ERL M03/9. EECS Department, University of California, Berkeley, 2003. url:
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2003/4063.html (cit. on p. 171).

[369] Renyuan Zhang, Kai Cai, Yongmei Gan, and Walter Murray Wonham. “Delay-robustness
in distributed control of timed discrete-event systems based on supervisor localisation”.
In: International Journal of Control 89.10 (2016), pp. 2055–2072. doi: 10.1080/00207179.20
16.1147606 (cit. on pp. 166, 174, 175).

[370] Hao Zhong and Walter Murray Wonham. “On the consistency of hierarchical supervision
in discrete-event systems”. In: IEEE Transactions on Automatic Control 35.10 (Oct. 1990),
pp. 1125–1134. doi: 10.1109/9.58555 (cit. on p. 176).

[371] Changyan Zhou, Ratnesh Kumar, and Ramavarapu S. Sreenivas. “Decentralized modular
control of concurrent discrete event systems”. In: 46th IEEE Conference on Decision and
Control, CDC 2007, New Orleans, LA, USA, December 12-14, 2007. IEEE, 2007, pp. 5918–5923.
doi: 10.1109/CDC.2007.4434489 (cit. on p. 175).

[372] Meng Chu Zhou and Frank DiCesare. Petri Net Synthesis for Discrete Event Control of
Manufacturing Systems. The Springer International Series in Engineering and Computer
Science. Springer US, 2012. isbn: 9781461531265 (cit. on p. 178).

[373] Meng Chu Zhou, Frank DiCesare, and Alan A. Desrochers. “Hybrid methodology for
the synthesis of Petri nets models for manufacturing systems”. In: IEEE Transactions on
Robotics and Automation 8.3 (1992), pp. 350–361 (cit. on p. 178).

[374] Meng Chu Zhou, Frank DiCesare, and Daryl L. Rudolph. “Design and implementation
of a petri net based supervisor for a flexible manufacturing system”. In: Automatica 28.6
(1992), pp. 1199–1208. doi: 10.1016/0005-1098(92)90061-J (cit. on p. 178).

276

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2003/4063.html
https://doi.org/10.1080/00207179.2016.1147606
https://doi.org/10.1080/00207179.2016.1147606
https://doi.org/10.1109/9.58555
https://doi.org/10.1109/CDC.2007.4434489
https://doi.org/10.1016/0005-1098(92)90061-J

	Titlepage
	Contents
	Abstract
	1 Introduction
	2 Abstract and Concrete Discrete Event Systems
	2.1 Discrete Event Systems
	2.2 Extended Pushdown Automata
	2.3 Parsers
	2.4 Context-free Grammars

	3 Abstract and Concrete Supervisory Control Problems
	3.1 Abstract Supervisory Control Problem for Discrete Event Systems
	3.2 Concrete Supervisory Control Problem for Deterministic Pushdown Automata
	3.3 Correspondence between Abstract and Concrete Supervisory Control Problems

	4 Abstract Controller Synthesis Algorithm for Discrete Event Systems
	4.1 Framework of Abstract Building Blocks for Fixed-point Computation
	4.2 Abstract Building Blocks for Enforcing Properties on Discrete Event Systems Least Restrictively
	4.3 Abstract Controller Synthesis Algorithm for Discrete Event Systems
	4.4 On the Termination of the Abstract Controller Synthesis Algorithm

	5 Concrete Controller Synthesis Algorithm for Deterministic Pushdown Automata
	5.1 Concrete Building Block for the Synchronous Composition of Deterministic Pushdown Automata with Deterministic Finite Automata
	5.2 Concrete Building Block for Enforcing Nonblockingness for Deterministic Pushdown Automata
	5.3 Concrete Building Block for Reducing Controllability to Nonblockingness for Deterministic Pushdown Automata
	5.4 Concrete Synthesis Algorithm as an Instantiation of the Abstract Synthesis Algorithm
	5.5 On the Termination of the Concrete Controller Synthesis Algorithm

	6 Isabelle-based Formal Quality Assurance
	6.1 Formal Methods for Quality Assurance
	6.2 Isabelle-based Framework of Definitions and Properties
	6.3 Isabelle-based Verification of the Translation of Deterministic Pushdown Automata into LR(1)-context-free Grammars

	7 Application and Prototype-based Evaluation
	7.1 Patterns for Specifications using Deterministic Pushdown Automata
	7.2 Application Domains for Discrete Event Controller Synthesis
	7.3 Applications and Use Cases of the Concrete Controller Synthesis Algorithm
	7.4 Prototype Realization of the Concrete Controller Synthesis Algorithm
	7.5 Prototype-based Evaluation

	8 Related, Ongoing, and Future Work
	8.1 Related Work
	8.2 Ongoing Work
	8.3 Future Work

	9 Summary and Conclusion
	A Disclaimer on Collaborations and Joint Work
	B Isabelle-based Notation
	B.1 Standard and Custom Types and Operations in Isabelle
	B.2 Defining Types, Terms, Functions, and Theorems
	B.3 Custom Notation for Derivations

	C Operational Properties for DPDA Controllers
	D The cfgEsplit Semantic for LR(1)-CFG
	E Bibliography

