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Abstract

Since the dawn of computer vision, semantic and geometric scene understanding has

been an essential problem. It impacted early works and led to numerous real-world

applications. A scene is a place where an agent can act with or navigate. Scene

understanding is the process of analyzing the semantic information inside the static

2D image and the relationships between the scene contents.

This dissertation presents the use of deep learning models and how they can be

applied to recognize the surrounding environment given a single still image. The scene

captured in an image contains different objects from various classes and they are

looking in different directions. These objects appear in the image either small because

they are far from the camera or large because they are very close to the camera. When

the scene is complex, we find that some objects are occluded and it is hard sometimes

to predict contextual information about the complete 3D object. Also, using a single

view always leads to ill-posed problems as there is no enough information to reveal

the ambiguity. So, to build a useful and complete understanding of a given scene, we

have to answer the following questions: (1) what are the object classes that appear in

the image? (2) from which direction do they look at the camera? (3) are the objects

far or close to the camera? (4) if some object parts are hidden, how can the machine

generate the 3D information of the object?

More specifically, this dissertation approaches scene understanding by answering the

above-mentioned questions. First, we present a multi-task CNN model that performs

object classification and viewpoint estimation simultaneously. These two problems seem

to have opposite representative features. For object classification, the features should

be powerful so that they are orientation-invariant features. For viewpoint estimation,



the features should preserve the orientation characteristic and the ability to describe

the same object with different viewpoints. To this end, the proposed CNN has a shared

network for both tasks and task-specific sub-networks. With this design, the mentioned

problems can be solved using the same model without proposing parallel models and

separating the tasks.

Second, we address the problem of depth estimation from a single image. We

formulate this problem as a regression task and propose two different CNN models

to solve this task. The first model uses a series of stacked convolutional layers that

generate the depth map from a single image. This model is a fully convolutional

network that regresses the depth information for each pixel. However, the generated

depth images are smaller than the input images and they are blurry. To overcome this

drawback, we propose a second model that has encoder-decoder architecture. This

model has an encoder part to extract useful features and a decoder part to reconstruct

the image and generate the final depth image. The useful information extracted in

the encoder part is transferred to the decoder part using the skip-connections. This

information helps in generating more accurate depth images with sharper objects’ parts.

For this task, we select a non-convex loss function to train the models and optimize

the network weights. The no-convex loss function is robust against to the outliers and

converges faster.

In the last part of the dissertation, we propose a CNN model that reconstructs

3D point clouds of objects form a single image. Single-view reconstruction is a hard

task as the 3D structure can be inferred accurately for specific object classes given

restricted assumptions. The proposed model is a simple, yet powerful, that utilizes an

initial point cloud of a sphere shape to generate the final point cloud. For this problem,

we use a large-scale 3D dataset to train the model. Many images are rendered from

each 3D model and used for training. To generate the ground-truth point clouds, we

sample the points from the object’s surface. The proposed model takes a single image

of an object and generates a point cloud that presents the desired object accurately. An

initial sphere is used to spread the points evenly on the reconstructed object surface

and prevents the points to be grouped in some parts of the objects.
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This dissertation demonstrates the leverage of using deep learning technology to

give a comprehensive understanding of a scene using a single image only. We conclude

this dissertation with a general discussion and propose several potential future research

directions for better deep learning understanding and interpretation in solving computer

vision tasks.
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Zusammenfassung

Seit dem Beginn von Computer Vision war das semantische und geometrische

Verständnis von Szenen ein essentielles Problem. Es beeinflusste erste Arbeiten und

führte zu zahlreichen Anwendungen. Eine Szene beschreibt einen Ort in welchem

ein Agent agiert oder navigiert. Daher ist das Verständnis einer Szene der Prozess

semantische Informationen in einem statischen 2D Bild zu analysieren und die

Beziehungen zwischen den einzelnen Inhalten in diesem Bild zu verstehen.

Diese Dissertation präsentiert wie verschiedene Deep Learning Modelle genutzt

und für ein Verständnis von Szenerien aus einem einzigen Bild eingesetzt werden

können. Ein aufgenommenes Bild enthält verschiedene Objekte aus verschiedenen

Klassen, die unterschiedlich ausgerichtet sind. Diese Objekte können entweder durch

eine große Distanz zur Kamera sehr klein erscheinen oder groß, wenn sie sich direkt

vor der Kamera befinden. Enthält eine Szene viele Objekte, verdecken einige Objekte

andere und schränken somit die verfügbaren Informationen über das komplette 3D

Objekt ein. Somit führt ein einzelnes Bild immer zu Problemen mit unzureichenden

Informationen um Unklarheiten aufzulösen. Für das kreieren eines nützliches und

komplettes Verständnis einer gegebenen Szene müssen folgende Fragen beantwortet

werden: (1) Welche Objektklassen kommen in dem Bild vor? (2) Aus welcher Richtung

betrachtet die Kamera die Szene? (3) Sind die Objekte nah an der Kamera oder weit

weg? (4) Wenn Teile von Objekten verdeckt sind, wie kann eine Maschine diese 3D

Informationen ergänzen?

Genauer, diese Dissertation nähert sich dem Problem des Szenenverständnisses

indem sie die oben genannten Fragen beantwortet. Als erstes wird ein multi-task CNN

Modell vorgestellt, welches sowohl Objektklassifizierung als auch den Betrachtungs-



standpunkt schätzt. Diese beiden Probleme scheinen gegensätzliche repräsentative

Features zu benutzen. Für Objektklassifizierungen sollten die Features invariant zur

Orientierung des Objektes sein. Für die Schätzung des Betrachtungsstandpunktes

sollte jedoch die Orientierung erhalten bleiben. Zusätzlich sollte die Fähigkeit bestehen

bleiben Objekte von verschiedenen Blickwinkeln aus zu beschreiben. Dennoch hat

das vorgeschlagene Modell ein neuronales Netz, das für beide Probleme genutzt wird,

und problemspezifische Subnetze. Mit diesem Design können beide Aufgaben mit dem

gleichen Modell gelöst werden statt jedes Problem parallel und separat zu lösen.

Als zweites wird die Problematik der Tiefenbestimmung aus einem Bild behandelt.

Hierfür werden zwei verschiedene CNNs vorgeschlagen um das Problem als Regression

zu lösen. Das erste benutzt eine Reihe von aufeinanderfolgenden Faltungen, die eine

Tiefenkarte aus einem einzelnen Bild generiert. Dieses ist ein reines Faltungsnetz,

welches die Tiefe für jeden Pixel per Regression bestimmt. Allerdings sind diese

generierten Bilder kleiner als das Ursprüngliche und verwaschen. Daher wird ein

weiteres Modell vorgeschlagen, welches einer encoder-decoder Architektur folgt. Der

Encoder extrahiert nützliche Features aus denen der Decoder dann das ürsprüngliche

Bild rekonstruiert und das fertige Tiefenbild generiert. Die nützlichen Informationen

werden im Encoder extrahiert und durch sogenannte Skip-Connections an den Decoder

weiter gegeben. Diese Informationen verbessern die Genauigkeit der Tiefenkarte und

schärferen Objektkanten. Für das Trainieren und Optimieren der Netzwerkgewichte

wurde eine nicht konvexe Verlustfunktion gewählt. Die nicht konvexe Verlustfunktion

führt zu weniger Einfluss von Ausreißern und konvergiert schneller.

Im letzten Teil der Dissertation wird ein CNN Modell eingeführt, das 3D

Punktwolken aus einem einzigen Bild rekonstruiert. Rekonstruktionen durch einen

einzigen Betrachtungswinkel ist ein schweres Problem, da die 3D Struktur für spezifische

Objekte nur durch Annahmen genau geschlussfolgert werden kann. Das vorgeschlagene

Modell is einfach und trotzdem wirkungsvoll. Es benutzt eine Punktwolke einer Kugel

um daraus die Punktwolke des Objekts zu generieren. Der Trainingsprozess basiert

auf einem großzügig angelegten 3D Datenset. Aus 3D Modellen wurden viele Bilder

erzeugt, die als Trainingsgrundlage dienen. Als optimale Lösung wurden Punkte auf
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der Oberfläche der 3D Geometrien extrahiert. Das vorgeschlagene Modell nutzt daher

ein einzelnes Bild um daraus eine Punktwolke zu generieren, welche das gewünschte

Objekt akkurat visualisiert und beschreibt. Die ursprüngliche Kugel wird genutzt um

die Punkte gleichmäßig auf dem rekonstruierten Objekt zu verteilen. Sie verhindert,

dass sich Punkte an einigen Stellen des Objekts gruppieren.

Es wird demonstriert welchen Wirkungsgrad Deep Learning Technologien haben

können um ein umfassendes Verständnis von Szenen aus nur einem einzelnen Bild zu

erlangen. Die Arbeit wird mit einer Diskussion beendet und schlägt verschiedene poten-

tielle Forschungsrichtungen vor, die zu einem besseren Verständnis und Interpretation

von Deep Learning in Computer Vision führen können.
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1
Introduction

A picture is worth a thousand words.

Arthur Brisbane

The main task of this dissertation is how we can make the computer understands the

human-made objects in the 3D world from a single image. This understanding includes

the geometry and the semantic information of different objects from a single image.

The understanding process is performed through proposing and building intelligent

models, namely deep learning models. These models can learn the 3D surrounding

environment from the available labeled data and extract useful information of different

objects that appear in the images.

1.1 Motivation

Our eyes are among the most sensitive and significant organs we use to discover the

surrounding environment. They can capture ten gigabits of information per second

from the surrounding world, and the brain can process the captured information within

less than a second [7]. This information helps the brain to learn and understand the

world around us. Computer vision is the science of granting computers the ability to

learn and experience the captured visual data (images and videos). It is the process
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of gaining high-level information to understand the presented objects in the world

from images and videos. From a single image, we can identify a person in the airport,

distinguish between objects’ shapes and colors, judge if the presented objects are far

or near, and complete the missing parts of partially occluded objects. This process

of understanding the surrounding environment is known as Scene Understanding.

However, granting the computer the ability to understand the world from images

is a challenging task, and many algorithms have been proposed to achieve human

performance and robustness in understanding the surrounding 3D world.

Under the scene understanding task, many sub-tasks can lead to a complete

understanding of a captured scene. An image contains one or more objects that have

different sizes and shapes. These objects have some meaningful relationships that help

to describe the captured scene. The classification task is one significant task related

to scene understanding. It is the task of assigning an expressive label to each object

found in the image. This label classifies the objects to one of the pre-defined groups.

In this way, we can describe the scene by knowing the names of the objects. Moreover,

localizing objects in the image and estimating their viewpoint leads to more scene

understanding. Object depth information also is a useful feature that describes how far

the objects are from the camera. It helps in distinguishing between different objects by

the depth values. The reconstruction task of objects is the process of estimating the

geometry of the object and capturing its shape and appearance. It enriches the scene

with more detail for a better understanding. For example, if we have a navigation

agent asked to perform a specific task in an indoor environment, this agent has to

perform multiple tasks to accomplish the requested task. This includes: 1) understand

the objects in the environment and their orientation, 2) determine the near and the far

objects to control the motion speed and navigate through the environment safely, and

3) estimate the 3D shapes of the objects for accurate manipulation. In summary, the

mentioned tasks are considered as separate tasks in computer vision. However, they

may overlap and complement each other to achieve better scene understanding.

Besides computer vision, Machine Learning (ML) plays a significant role in solving

many computer vision tasks. After introducing deep learning in computer vision for
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solving image recognition tasks [8], many researchers have formulated the problems

as functions that can be learned from the target data. The contributions of this

dissertation are to propose object-oriented deep learning-based models that solve

different scene understanding tasks from a single image. More specifically, the proposed

models tackle the problem of scene understanding from the geometric and semantic

perspectives. From the images, we are trying to look at the objects and reconstruct them

geometrically as well as recognize them semantically. By geometry, we are interested

in the shape and size of the objects. It describes the shape and the structure of the

objects in the 3D world. This information includes object pose, depth, and shape.

Another aspect of understanding is using semantics. Semantics is the language used to

describe the objects in the scene and the relationships among them. It includes object

classification, localization, and segmentation. These properties help understand the

surrounding environment and influence many practical applications such as medical

imaging, augmented reality, and autonomous driving.

In this dissertation, we study how to formulate deep learning models for scene

understanding from a single image. The understanding process is performed from an

object-oriented perspective. It includes:

• Object classification and viewpoint estimation: it is a multi-task problem where

we classify the objects that appeared in the image (classification) and where they

look (viewpoint estimation).

• Monocular depth estimation: it is a task where we have to estimate how far away

the objects are and try to generate high-quality depth map images.

• 3D Object Reconstruction: it is the task of estimating the shape of an object and

visualizing it in the 3D world.

1.2 Challenges

We rely on deep learning models to propose the methods for solving the object-oriented

scene understanding task. It is a powerful tool for extracting useful features from the
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Figure 1.1: An overview of the challenges appeared when proposing a deep learning
model. L is the loss function, P is the predicted output, and GT is the ground-truth.

available data. Mostly, the promising models were proposed to solve the classification

tasks, e.g., AlexNet [8], VGGNet (Visual Geometry Group Network, from Oxford

University) [9], and Residual Net (ResNet) [10]. Applying these models to solve new

tasks from different domains is not a straightforward process. Also, suggesting other

models for solving different problems in computer vision is challenging. The challenges

occur because of some factors such as the availablility of datasets for training, the output

representations, the loss function, and the proposed model. Figure 1.1 demonstrates

the mentioned challenges.

To approach a given problem and propose a suitable model to solve it, we focus on

defining and formulating it through the following factors:

• Problem Understanding: The first step when solving a task using deep

learning is to understand and define the given task. Task understanding includes

defining the nature of the problem, such as a classification or a regression task.

Understanding the given task helps in choosing the data representation for

both the input and the output data. For example, when the task is considered

as classification, the output can be represented as one-hot vector or vector of

probability values. In Chapter 3, we treat the viewpoint estimation task as a

classification problem where we sample the viewpoint angles of the objects into

equal ranges and consider each range as a class.

• Dataset: Finding a suitable dataset to train a convolutional neural network

(CNN) model impacts the accuracy of the solution. The dataset needs to have well-

annotated in most cases and enough samples to ensure the model generalization.

We can also apply different data augmentation techniques to overcome the lack
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of data issue. Mixed data, containing real and synthetic samples, are useful to

increase the training dataset and to improve the model performance. In Section

3.5, we explain how the synthetic data can be used to increase the training data

and to improve the model performance.

• CNN Architecture: After defining the problem and proving the labeled dataset,

we have to think about the suitable architecture to solve the given task. The

architecture depends mostly on the nature of the task. For example, when the

problem is considered a classification task, the model has to generate an output

with probability values for each class, and the final result is the class with the

highest probability value. When the task is a regression task, the model should

generate an output with continuous values such as depth values. Additionally,

the model may consist of many stages or sub-networks according to the definition

of the problem. For example, a depth estimation model may contain an encoder

part to extract the features and a decoder part to generate the depth map image.

In Section 4.3, we propose two different models to solve the same task, and how

one architecture outperforms the other one on the same conditions. So, it is

crucial to think about the properties and the characteristics of the model when

designing it for a given task.

• Loss Function: It is significant to select the suitable loss function depending

on the given task. The purpose of the loss function is to optimize the network

weights during the training process. It measures the error between the predicted

output and the corresponding ground-truth. It should fulfill some conditions,

such as it should be differentiable and robust against noise. In Section 4.3.3 and

Section 5.3.2, we demonstrate different loss functions and report how they can be

applied to optimize the model parameters and improve the model performance.

The adequate loss function helps the model to converge very fast during training

and improves the performance. Generally, we modify and update the selected

loss function to overcome some issues, such as the generated noise in the output

and the imbalanced data problem.
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Figure 1.2: Dissertation contributions: different CNN models for scene understanding
focusing on the objects. VP is the object viewpoint and class is the object class.

There are no clear answers to formulate these factors. Each task has its definition

and the conditions that should be considered while solving it. We approach the given

tasks by considering these factors and defining them to propose a suitable CNN model.

1.3 Dissertation Contributions and Organization

The contributions of this dissertation are in the field of deep learning. We explain how

to formulate different computer vision tasks to solve them using CNNs. As illustrated

in Figure 1.2, we start all tasks from a single image of an object detected in the

given image. Then, we propose the CNN model and train it to solve a specific task

and generate the desired output. We can summarize the main contributions of this

dissertation in the area of object-oriented scene understanding as follows:

• A novel multi-task CNN model that classifies the detected object in an image and

estimates its viewpoint angle simultaneously. The model was trained completely

on synthetic data and tested on real data.

• Two different CNN models to estimate the depth information from a single

image. Each model generates plausible depth map images but with different

resolutions. We study the impact of using different loss functions to optimize the
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models’ parameters. We conclude that some loss functions can deal with noise

and outliers.

• A novel and simple CNN model that can infer the 3D shape of an object from a

single image. The model has a simple architecture and utilizes a spherical point

cloud to generate the final 3D shape. The model was trained on synthetic data

and tested on both synthetic and real data.

We now provide the outline of the dissertation and give a brief overview of each

chapter. For each chapter, we review the related work of the chapter’s topic.

Chapter 2 reviews the literature background of several related topics, i.e., single-

view reconstruction, deep learning for computer vision, and CNN-based model for

multiple computer vision tasks.

In Chapter 3, we address the problem of joint object classification and viewpoint es-

timation. We propose a multi-task CNN architecture that performs object classification

and viewpoint estimation simultaneously. The first part of the CNN is shared between

the two tasks, and the second part is two subnetworks to solve each task separately. We

use synthetic images to increase the training dataset to train the proposed model. To

evaluate the proposed model, we use the PASCAL3D+ dataset [1] to test our proposed

model, as it is a challenging dataset for object detection and viewpoint estimation.

In Chapter 4, we introduce the task of depth estimation from a single image using

deep learning. Depth estimation plays a vital role in many computer vision tasks,

including scene understanding and reconstruction. We propose two different CNN

models to estimate the depth information from a single image. The first model is a

fully-convolutional model that generates depth values with a resolution lower than the

original input resolution. To solve this issue, we design a simple fully-convolutional

encoder-decoder CNN that generates an output with a resolution equal to the input

image resolution. For robustness, we leverage a non-convex loss function that is robust

to the outliers while optimizing the network parameters.

Chapter 5 focuses on the problem of 3D object reconstruction from a single image.

We propose a simple, yet powerful, CNN model that generates a point cloud of an
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object from a single image. 3D data can be represented in different ways. Point clouds

have proven to be a common and simple representation. The proposed model was

trained end-to-end on synthetic data with 3D supervision. It takes a single image of

an object and generates a point cloud with a fixed number of points. An initial point

cloud of a sphere shape is used to improve the generated point cloud.

Chapter 6 concludes the dissertation and suggests some promising directions for

future work.
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2
Background

All things are difficult before they are easy.

Thomas Fuller

In this chapter, we will give an overview of the concepts and methods that are the

most relevant to this dissertation.

We will start with a brief presentation of the field of 3D reconstruction from multi-

view and single-view perspectives. After the introduction, we will present and review

different types of image cues and priors that were used in the single-view reconstruction

process to overcome the ill-posedness of this problem.

We will then present an intensive introduction to applying ML techniques in solving

computer vision tasks. First, we will explain the supervised and unsupervised learning

concepts and their application. Then, we will explain the main building layers of

CNNs in detail. Finally, we will present the application of CNNs in solving scene

understanding related tasks such as classification, detection, and regression problems.

2.1 Multi-view and Single-view 3D Reconstruction

Inferring 3D geometry of an object or a scene can be done using multiple images or

a single image. Multi-view reconstruction is to estimate the 3D geometry of a model
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from a set of images. The core of image creation is a projection from a 3D scene onto

the 2D plane. 3D reconstruction is a reverse process of generating 2D images from 3D

models or scenes. When two images are available, the position of a 3D point can be

estimated by the intersection of two projection rays of two corresponding points, and

it is referred to as triangulation.

Multi-view reconstruction from static images has been a hot topic in the field

of computer vision for a long time. Many researchers proposed different methods

to tackle this problem. Silhouette-based method is one of the earliest proposed

methods for multi-view reconstruction. From the 2D silhouettes, 3D shapes can be

reconstructed by projecting them back from the corresponding known viewpoints and

intersecting the projection rays [11, 12]. In the case of multiple images with unknown

or arbitrary-distributed viewpoints, voxel-based matching is used, and the photo hull

is defined by iteratively carving the voxels with high photometric errors [13]. This

method is known as space carving. However, it is not robust because of the high

sensitivity to the outliers, and it does not work in convexities.

Other methods were proposed to generate point clouds or meshes to represent

the 3D geometry. Given multiple images of the same scene, point clouds are computed

based on image feature matching [14]. The process of computing the points’ positions

is repeated, and the number of points is increased. Then some points are filtered out

due to inconsistencies in the feature matching. The generated dense point cloud is then

used to create a mesh using Poisson surface reconstruction [15].

With the absence of multiple images from different views of a scene, inferring 3D

geometry from a single image becomes an ill-posed problem. Given a single image, not

enough information is available to recover the depth information or directly estimate

the scene geometry. In the literature, various methods were proposed to infer 3D

geometry with specific assumptions [16].

Next, we will review some image cues and priors that are used in different

reconstruction methods to overcome the ambiguity and the ill-posedness of the problem.

A detailed overview of single-view reconstruction approaches is presented in Section

5.2.2.
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2.2 Image Cues and Priors for Single-View Reconstruc-

tion

Due to the ambiguity and the ill-posedness of the single-view reconstruction problem,

an infinite number of candidates can potentially be the correct reconstruction of a

given scene. To overcome this issue, local cues of the input image and prior knowledge

are used to compensate for the lost information. Furthermore, the class-domain of the

input image, the user-interaction, and the application-domain are used to narrow and

restrict the generated results. Here, we discuss the image cues and priors that help to

solve the ambiguity of the problem and generate plausible 3D geometry of the scene.

Shape from Shading (SfS) [17] is one of the earliest methods for single-view

reconstruction. SfS infers a surface from a single gray level image by using the gradual

variation of shading induced by the surface interaction of light. It also estimates the

light conditions and reflection properties.

Contour Edges are salient structures in the image induced by discontinuities,

object boundaries, or reflectance changes. They are used to give evidence for geometry

and the position of objects. Corners and junction points are also important for single-

view reconstruction. Shape from Contour [18] methods aim to estimate geometry

information from the object contours alone. However, the reconstruction becomes

difficult when the surfaces are smooth and don’t exhibit adequate contour lines in the

image.

Silhouette is a featureless projected image of an object or a scene from 3D to 2D

that shows the general shape of the object. Silhouette cue is used to find the geometric

reconstruction of an object such that the projection of the object into the image plane

agrees with this silhouette. The disadvantage of the silhouette is that there are always

many objects that are silhouette consistent if it is used alone for reconstruction. For

general curved surfaces, silhouette-based methods are mostly used to recover the 3D

models from a single view [19, 20].

Texture and Location of an object may be used as information for reconstruction.

If an object is assumed to have a regular and known texture, it is possible to infer the
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geometry of the object. The location of objects can allow inferring semantic knowledge

about the objects. For example, the ground, the floor, or the sky can be identified by

their location, and this can be helpful for the 3D reconstruction. In [21], texture and

location cues are combined to reconstruct the objects by distinguishing their position

and texture.

Besides the mentioned image cues, priors are important in single-view reconstruction

to overcome the problem of ill-posedness. There are high-level and low-level priors,

and depending on the reconstruction goals and the target object, different priors or a

combination of them can be applied to estimate the 3D model.

Smoothness is the small partial change of some property. In single-view

reconstruction methods, a dense reconstruction is difficult. Therefore, surfaces are

chosen to be smooth and indicating the consistency between the object surfaces. This

property plays a vital role in reconstructing curved objects [22].

Geometric Relations are very helpful before the reconstruction process, especially

in man-made environments. By assuming planes to be parallel or perpendicular, one

can derive some parameters, and the reconstruction process tends to be easier. Also,

knowing that an object is symmetric can help us to determine the geometry of the object.

It can be seen as a weak multi-view reconstruction that provides more information

[23].

Semantic Relations allow inferring high-level information on the relative position

and the structure of different objects in the image. For example, inferring occluded

points based on semantic knowledge can improve the reconstruction, e.g., the leaves

are connected to the plant [24]. The knowledge of object location, e.g., the sky and the

ground, is an important feature that helps to start the reconstruction. And it ensures

consistency between different objects in the reconstructed scene.

Shape Priors impose high-level knowledge on the objects to be reconstructed,

and they are the most restrictive priors on objects. They limit the applicability of

the proposed methods and usually work without the need for user input. They can

be defined or learned. In [25], a shape grammar was defined for the reconstruction

of facades. It limits the proposed method to reconstruct buildings. In contrast, the
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proposed method in [26] used a database to learn the shape priors on some objects.

So, the reconstructed objects are restricted to the classes in the pre-defined database.

2.3 Machine Learning in Computer Vision

ML is a field of Artificial Intelligence (AI) that extracts features from input data and

uses statistics to perform a specific task. ML systems learn to extract features from

examples implicitly. The learned features are extracted without controlling the types

of features (edges or texture), and they don’t follow hand-crafted rules. ML systems

take data of input and the corresponding ground-truth and generate a model that can

be used to generate similar output from new data.

To build an ML system, there are different choices concerning the available data

and the training method. ML systems can be categorized into supervised, unsupervised,

and reinforcement learning.

Supervised Learning is used when input examples and the corresponding labels

are available. The model tries to learn a function that maps the inputs to the labels.

This mapping function can then be used to estimate the label of unseen data. Artificial

Neural networks (ANN) and random forests are examples of supervised learning

methods.

In some cases, it is hard to collect or find a dataset that has both the inputs

and the corresponding labels. Unsupervised Learning is the solution for this case.

Given the input examples, and with the absence of the corresponding labels, the model

attempts to automatically discover structure in the data by extracting useful features.

Clustering algorithms are a good example of unsupervised learning models.

When the input data and the corresponding labels are absent, Reinforcement

Learning is applied. In reinforcement learning, the model interacts with a dynamic

environment that has a current state and action to perform a specific task. It receives

feedback for each decision it takes and updates its next action to maximize the

objective function that measures how well the model performs. This method is out of

this dissertation’ scope.
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2.4 Convolutional Neural Networks

CNNs are well-known deep learning architectures biologically-inspired by the natural

visual perception mechanism of living creatures. The history of CNNs started with

the experiments conducted by Hubel and Wiesel in 1959 [27]. They found that the

cells in animals’ visual cortex are responsible for detecting light in the receptive

fields. In 1990, LeCun et al. [28] published a paper where they described the modern

framework of CNN. They introduced a neural network called LeNet-5 which is used to

classify the handwriting digits. They used the backpropagation algorithm to train the

neural network. However, due to the lack of data and the computation power at that

time, the proposed networks couldn’t perform well in large-scale problems. After that,

many researchers have developed methods to overcome some problems encountered in

training deep CNNs. In 2012, Krizhevsky et al. [8] proposed a deep CNN architecture

to solve the problem of image classification. They showed significant improvements

and outperformed results upon previous methods. They won the ImageNet Large-Scale

Visual Recognition Challenge (ILSVRC) [29]. The proposed architecture was similar

to LeNet-5 but with a deeper structure. It is known as AlexNet. With the success

of AlexNet, many CNN architectures have been proposed to improve performance

and get more accurate results such as ZFNet [30], VGGNet [9], GoogleNet [31], and

ResNet [10]. ResNet is the deepest architecture. It is 20 and 8 times deeper than

AlexNet and VGGNet, respectively. It is observed that deeper architectures are better

for classification tasks. The reason behind this is that the network can approximate the

output, because of the increasing nonlinearity allowing to extract more representative

features. This section was published in [32].

2.4.1 General CNN Architecture Blocks

Many CNN architectures have been proposed for solving different computer vision

tasks. The general building blocks are similar, and they are different in some layers

depending on the tasks they want to solve. For example, LeNet-5 [28] and AlexNet

[8] are almost similar in the general building blocks, but AlexNet is deeper than
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Figure 2.1: LeNet-5 Architecture.

LeNet-5. The main blocks of the CNNs are convolutional layers, pooling layers, and

fully connected layers (FC). Each block has its own specifications and features, and it

can vary from one architecture to another according to the problem to be solved. In

the following, we will explain each building block of the CNNs in detail. Figure 2.1

shows LeNet-5 architecture [28].

Convolutional Layer. Convolutional layers are the main building blocks of the

CNNs. They learn the feature representation of the input data (images in our case) by

performing convolutions over the inputs. The convolutional layer consists of several

kernels that are used to compute different features from the input images. They ensure

that the local connectivity-neurons are connected to a small region of the input which is

known as the receptive field. The extracted feature maps are calculated by convolving

the input with the kernels and then add the bias parameters to the feature. The

convolutional layer has many kernels, and they are applied to the input image to

calculate the output feature map. Each kernel is shared by all special locations of

the input. The advantage of weight sharing is to reduce the complexity of the model

and the training process of the network becomes easier. Figure 2.2 illustrates the

convolution operation. Mathematically, consider x as the input image, W is the kernel,

and b is the bias for the convolutional layer. The feature map z generated from this

layer is calculated as:

z = Wx + b (2.1)

Many researchers proposed different types of convolutional layers to improve feature

representation and to learn some kind of invariance. Tiled CNN [33] is one kind of the
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Figure 2.2: A convolutional operation with a 3 × 3 filter.

enhanced convolutional layers that tiles and multiplies different feature maps to learn

rotation and scale-invariant features. Dilated CNN [34] is another recent development

of the standard CNN where more hyper-parameters are introduced to the convolutional

layer. This strategy enhances the performance for tasks that need a large receptive

field when they make the prediction, such as scene segmentation and speech synthesis

and recognition. Also, there are other improved convolutional layers such as Network

in Network (NIN) [35] for classification task which replaces the normal convolutional

layer with a multilayer perceptron convolution layer (mlpconv). It is like a micro neural

network with more complex structures rather than a conventional convolutional layer

that uses linear filters followed by a nonlinear activation function. NIN enhances the

model discriminability for local patches within the receptive field for the classification

task. Transposed Convolution [30] is another type of convolutional layer that is used

to reconstruct the input again in regression tasks such as image segmentation, depth

estimation, visualization, and image super-resolution. In the literature, this layer is

called the deconvolutional layer. The deconvolutional layer first upsamples the input to

a specified factor and then performs normal convolution operation on the upsampled

result.

Activation Function. CNNs have some linear components and nonlinear

components. The activation functions are the nonlinear components that follow the

convolutional layers to introduce the nonlinearities to the CNN to detect the nonlinear

features and to improve the CNN performance. Rectified Linear Unit (ReLU) is one of

the most popular activation functions used in CNNs. It has been shown that CNNs
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can be trained efficiently using ReLU [36]. ReLU is defined as:

a = max(z, 0). (2.2)

where z is the input to the activation function and a is the output. ReLU keeps

the positive part of the input and prunes the negative part to zero. Another version

of ReLU is leaky ReLU (LReLU) [37] that defines a parameter λ in range (0, 1) to

compress the negative part rather than mapping it to zero. Mathematically, LReLU is

defined as:

a = max(z, 0) + λ min(z, 0). (2.3)

This makes a small and non-zero gradient when the unit is not active (negative value).

Exponential Linear Unit (ELU) is another activation function that enables faster

learning of CNN and improves the accuracy of the classification task. Like ReLU and

LReLU, ELU [38] sets the positive values to identity to avoid the vanishing gradient

problem, and the negative part is used for fast learning and it is robust to noise.

Mathematically, ELU is defined as:

a = max(z, 0) + min(λ(ez − 1), 0). (2.4)

where λ is a controlling parameter to saturate ELU for negative inputs.

A different activation function with respect to the output is the sigmoid function

(σ) [39]. Sigmoid function is used often in the ANNs to introduce the nonlinearity in

the model. It takes real numbers and squashes them into range (0, 1).

Mathematically, the sigmoid function is defined as:

a = σ(z) = 1
1 + e−z

. (2.5)

In general, the activation functions are applied after the convolutional layers in

CNN to add the nonlinearity and project the values from one range to the desired

range. It means that the CNN can approximate functions that don’t follow linearity

and successfully predict the class of a function which has a non-linear decision
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Figure 2.3: Different activation functions.

boundary. In fact, it is hard to find a physical world phenomenon that follows

linearity straightforwardly. Therefore, the non-linear functions help us to understand

and approximate the non-linear phenomenon. The “Activation Function” term is

biologically inspired. In the real brain, neurons get signals from other neurons and

decide whether or not to fire by taking the cumulative input into account. This decision,

based on the cumulative input, is the output from the activation function. Figure 2.3

shows the activation function we have discussed.

Pooling Layer. The purpose of the pooling layer is to ensure the shift-invariance

and lowers the computational burden by reducing the resolution of the feature maps.

It is usually placed after the convolutional layer. It takes the feature map which is

generated from the convolutional layer and outputs a single value for each receptive

field (pooling window) according to the pooling operation. The pooling layer performs

max-pooling [40] or mean (average) pooling [41]. Figure 2.4 shows different pooling
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Figure 2.4: Different Pooling Operations with 2 × 2 filters and stride 2.

operations. Also, there are other versions of pooling layers proposed for some tasks,

such as Spatial Pyramid Pooling (SPP) [42] that can generate a fixed length of features

regardless of the input size.

Fully Connected Layer (FC). In classification tasks, FC layers [8] are used at

the end of the CNN after the convolutional layers and the pooling layers. FC layers

aim to generate specific semantic information. The neurons in the FC layers have a full

connection to all neurons in the previous layer. It can be considered as a special case

of a convolutional layer where the receptive field size is equal to one. Usually, dropout

is used after the FC layers to avoid CNN from overfitting.

Regularization. One of the most problematic issues regarding CNN training is

overfitting. Overfitting happens when the model fits too well to the training dataset,

and it cannot generalize to new examples that are not in the training dataset. So,

overfitting is an unneglectable problem in deep CNNs [43]. There are many proposed

solutions to reduce the overfitting effectively, such as Dropout [44], L1 regularization,

and L2 regularization [43].

In deep learning, Dropout is widely used as regularization after the FC layers. It

deletes or deactivates some neurons so that not all connections between the layers are

activated at that time during training. It is not preferable to add them in the first

layers because dropout causes information to get lost. And if the information is lost

in the first layers, it will be also lost for the whole network and this will affect the

performance of the network. During testing time, dropout layers are bypassed and

they are not active.
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2.4.2 Data Augmentation and Optimization

To train a CNN, many steps should be done such as preparing the training dataset,

designing the CNN and initializing the weights, choosing the loss function, and training

the CNN using backpropagation to optimize and update the network weights.

It is well known that training a deep CNN mostly depends on the availability of

the training data. The more training data we have, the better-trained model we can

get. However, in some applications such as medical problems, the available datasets

are small and we cannot rely on them to train a deep CNN. To overcome this issue,

data augmentation [45] is applied to the training dataset. The purpose of the data

augmentation is to increase the number of training samples by transforming the images

into new data without altering the nature of the content. The commonly used data

augmentation methods include simple geometric transformations such as mirroring,

shifting, scaling, rotating, and spatial cropping [8]. This method not only helps to

overcome the problem of training data scarcity, but also trains the network and

updates its weights more accurately. Figure 2.5 illustrates an example of applying data

augmentation on an image.

After preparing the training data, global data normalization is usually applied on

the training dataset to transform the data to zero-mean and unit variance. However,

during training and as the data flow deeper through the network, the distribution of

the input data changes which affects the training process and the network accuracy.

Batch Normalization (BN) is applied to the input data in some layers to avoid this

problem [46]. It fixes the means and the variances of the layer inputs by computing

them after each mini-batch rather than the entire training set.

Deep CNN has numerous parameters to be optimized. A proper initializing of

these parameters is important for fast convergence and to avoid the vanishing gradient

problem. If the weights start with small values, the input signal shrinks as it passes

through each layer and it drops to a very low value, and becomes no longer be useful.

If the weights start with large values, the input signal starts to increase and it becomes

too large and useless. Initializing the network with the right weights can help the
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(a) Original (b) Flip (c) Rotate

(d) Crop (e) Color Transform (f) Scale

Figure 2.5: Applying different data augmentation techniques to an image.

network to converge in a reasonable amount of time. Many methods have been proposed

to initialize the weights. In [8], the network weights were initialized from a zero-mean

Gaussian distribution with a standard deviation of 0.01. Another weight initialization

method is Xavier [47]. The idea in the Xavier method is to initialize the weights from

a Gaussian distribution with zero mean and a variance of 2
(nin+nout) , where nin is the

number of neurons feeding into the layer and nout is the number of the neurons that

the result is fed to. Xavier method and its improved version allow deep networks to be

trained and they converge fast. The motivation for Xavier initialization is to initialize

the weights with values so that the activation functions can generate meaningful values

that are not saturated or begin from dead regions. In other words, the weights are

initialized with random values that are neither large nor small.

To optimize the CNN, the backpropagation algorithm is used to train the CNN

which uses gradient descent to update the CNN parameters. Among the optimization

methods, Stochastic Gradient Descent (SGD) [48] is commonly used to estimate the

gradient on the basis of a single randomly picked example (xi, yj) from the training
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dataset:

θi+1 = θi − ηi∇θL(θi; xi, yj). (2.6)

where θ is the network parameters, xi is the input, and yj is the output. L is the

objective function that is used to train the network, and η is the learning rate. In

practice, the network parameters are updated with respect to mini-batch. To guarantee

the convergence and speed up the learning process, momentum is proposed to make the

current gradient depends on historical batches [49]. The classical momentum update

accumulates a velocity vector in the relevant direction, and it is given by:

νi+1=γνi − ηi∇θL(θi; xi, yj);

θi+1 = θi + νi+1.
(2.7)

where νi+1 is the current velocity vector and γ is the momentum term which is usually

set to 0.9. Nesterov momentum [50] is another way of using momentum in gradient

descent optimization that moves in the direction of the previously accumulated gradient,

calculates the gradient, and then updates the parameters.

2.4.3 CNNs in general Computer Vision Applications (Classification,

Detection, Segmentation)

CNNs were proposed widely in computer vision to solve many problems. These problems

include image classification, object localization and detection, depth estimation,

semantic segmentation, and action recognition. These models were proposed to achieve

state-of-the-art performance, method generalization, and to outperform traditional

methods that depend on hand-crafted features. Following, we introduce recent CNN

models that were applied to solve different computer vision tasks.

Many CNN models have been applied to solve image classification problem. The

breakthrough results achieved by AlexNet [8] encouraged researchers to propose different

models that achieved significant improvements in classification accuracy. These models

have either reduced the filter size or proposed deeper networks (e.g. VGG and ResNet).
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Moreover, the publicly available datasets, such as ImageNet and Pascal VOC, helped

in improving the models’ accuracy.

Moreover, object detection has been studied in deep learning. In [51], Girshick et

al. has shown that the learned features from classification problem can be transferred

and used to solve the problem of object detection. Region-based CNN (R-CNN) was

proposed where candidates were extracted from the input image using Selective Search

(SS) [52] to narrow the search space of the objects in the image. The candidates were

fed to the network and classified between the background or one of the target classes.

After that, Faster R-CNN [53] was proposed to overcome the problem of generating the

candidates. In the proposed model, a region proposal network (RPN) was introduced for

object proposal generation and achieves further speed-up. Some models were proposed

to perform the object detection learning problem in one shot. YOLO (You only look

once) [54] dealt with the problem of object detection as a regression task. It generates

the bounding boxes and predicts the object class in a single network. This speeds up

the detection process as the model detects, localizes, and classifies the objects directly

from the input image.

Also, CNN was applied to solve the problem of image segmentation. Image

segmentation is the task of dividing the input image into multiple consistent regions.

In contrast to object classification or detection, image segmentation is a pixel-level

task and each pixel is labeled and the pixels with shared properties, such as color,

texture, intensity, etc., are then merged to create one region. One of the leading

network architectures proposed for image segmentation and dense prediction was Fully

Convolutional Network (FCN) [55] in 2014. From its name, one can see that this

architecture is composed of convolutional layers without using FC layers. This allows

the segmentation image to be generated from any input image with arbitrary size.

After that, different architectures have been proposed for image segmentation. U-Net

[56] is an encoder-decoder architecture that was proposed to segment medical images.

The encoder part extracts the features from the input image and reduces the resolution

of the input image through the pooling layers, and the decoder part reconstructs the

image and recovers the object details with the help of the skip connections between the
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encoder and the decoder layers. SegNet [57] is another architecture proposed for image

segmentation. Authors introduced the transferring of max pooling indices instead of

the whole values from the encoder to the decoder using skip connections to improve

the segmentation resolution for faster training.

In summary, CNN has proved its ability to solve different computer vision tasks

and outperformed traditional methods that depend on hand-crafted features. Also, it

has been applied to 2D data and extended to 3D data to perform various tasks.
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3
Object Classification and Viewpoint

Estimation

A complex system that works is invariably found to

have evolved from a simple system that works.

John Gall

3.1 Introduction

One fundamental task in computer vision aims to understand, describe, and extract

useful information from an input image of a scene. Formally, this task is known

as Scene Understanding. It can be tackled by solving sub-tasks such as object

classification and viewpoint estimation. Object classification and viewpoint estimation

have become popular research topics in computer vision field because of their wide

applications. Addressing these two tasks at the same time is beneficial to describe

an object under the general object recognition task [58]. For example, a robot that

manipulates with objects and carries them from one place to another needs to know

the object category and its viewpoint. This information can help it to correctly execute

a target task without human supervision. Also, selecting a piece of furniture from a
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massive database to design an office or a living room needs to infer the correct object

pose and the object category. Object Classification is the problem of assigning the

correct label to the object in an image. This problem concerns many object classes

with different visual instances. For better object understanding, viewpoint estimation

is an important step in many applications, such as image retrieval and model matching.

Viewpoint Estimation is the problem of estimating the view angle with respect to

the camera.

Human visual system can recognize different objects of the same class with different

viewpoints easily, and it can differentiate between various classes by matching these

objects with the correct classes. However, some computerized vision systems can

recognize specific objects, but they have trouble in learning and understanding more

object categories. Even among some learned classes, these systems find difficulties in

recognizing and classifying some objects because of the changes in lighting conditions,

occurrence in different poses, or occurrence in cluttered or occluded environment [59].

From a given image, we are interested in detecting and localizing the objects in

the image using R-CNN [60]. The detected objects are then categorized and the pose

information is predicted. Object pose can either be a relative pose or an absolute pose.

The relative pose is the rigid transformation between the object and the camera. The

absolute pose is the rigid transformation with respect to the canonical coordinate

system. The 3D pose is about object translation and orientation in R3. Viewpoint

estimation is the prediction of the azimuth angle, the elevation angle, and the distance

between the object and the camera (as shown in Figure 3.1). In our case, we are

interested mostly in estimating the azimuth angle of the object.

Object classification and viewpoint estimation problems have been studied as

separate problems intensively. However, finding a standalone system that is capable of

performing both tasks simultaneously is difficult because these tasks have opposite

directions in terms of feature representation. For object classification, the system has to

learn invariant features with respect to object viewpoint. So, it can easily classify the

same object that appears in different poses. With regard to estimating the viewpoint

of an object, the system has to learn a representation that preserves the geometric and
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Figure 3.1: 3D pose of an object. Figure from [1] website.

the visual information in order to distinguish between different viewpoints of the same

object [61].

Classical object classification methods extract hand-crafted features for different

categories firstly, and then train a classifier to classify objects of different categories.

Such features used are Histogram of Oriented Gradients (HOG) [62], Scale-Invariant

Feature Transform (SIFT) [63], and Speeded-Up Robust Feature (SURF) [64]. With the

rise of deep learning models, many computer vision tasks have been solved using CNNs

such as object recognition and detection [51], segmentation [55], and object depth

estimation [65]. These problems have been considered either classification problems

or regression problems. The models have been proposed to solve a single task, and

they have shown impressive results. They were pre-trained to perform a specific task

and then fine-tuned to perform another task, which is known as transfer learning [66].

Extending these architectures to solve multiple tasks at the same time can be done,

but careful design is needed. This means that some layers of the network will be shared

for both tasks and other layers will be separated.

In deep learning, collecting or finding a sufficient dataset to train a model for a

specific task is a challenging issue. Training a CNN model needs a huge number of
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images. One solution is to fine-tune a pre-trained CNN. In practice, very few people

train a CNN from scratch nowadays. This is because training a CNN from scratch needs

a dataset of sufficient size. Instead, it is common to use the weights of a pre-trained

CNN, that was trained on a very large dataset such as ImageNet, and fine-tune them

on the new task. To transfer the knowledge from an existing CNN to a new one, there

are two options. The first option is to use the pre-trained CNN as a feature extractor

for the new task. That means, taking a pre-trained CNN, removing the last FC layers,

freezing the weights of the remaining network, and using it as a feature extractor. On

top of this model, one can train a classifier for the new dataset to perform the new

task. The second option is not to train a classifier on top of the feature extractor

model, but also to fine-tune the whole model end-to-end for the new dataset to perform

the new task. Also, it is possible to select and fine-tune some layers and freeze the

remaining ones. In [66], it is explained that earlier layers extract generic features that

are applicable to many datasets and tasks. So, freezing them can boost the training

process when fine-tuning the model. What we discussed is called Transfer Learning.

It is the idea of utilizing the learned knowledge of a model that solves a task and using

it to solve related ones.

With the availability of large-scale online 3D models repositories (e.g. ModelNet

[67] and ShapeNet [68]), a huge number of images with known viewpoints can be

rendered which can be used for training. In order to make the synthesized images as

real ones, the synthesized images can be overlaid with real images as a background

image. This step helps the CNN to train on synthesized images, similar to the real

images, and to overcome the lack of data issue [3].

The contributions of this chapter are summarized as follows. We propose a multi-

task CNN model that jointly solves object classification and viewpoint estimation

tasks. We use a complete synthesized dataset rendered from 3D objects with rich

annotations to increase the training set and to train the CNN for both tasks. Also, we

build a class-dependent subnetwork for the viewpoint estimation task that takes care of

estimating the viewpoint and depends on the object class. Our proposed model showed
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impressive results in both tasks and is comparable to the state-of-the-art results. The

results reported in this chapter were published in [69].

3.2 Related Work

Object classification and viewpoint estimation have been studied recently, especially

with the evolution of deep learning methods in solving computer vision tasks.

3.2.1 Object Classification

In [8], the authors proposed a CNN model, now it is known as AlexNet, to solve

the problem of object classification. They submitted their results to the ImageNet

Large-Scale Visual Recognition Challenge (ILSVRC) [29]. They achieved the top results

in the competition. The model was deep consisting of successive convolutional layers,

with activation functions and max-pooling layers, and FC layers.

After the impressive results of AlexNet, several networks have shown remarkable

improvements and scored higher classification accuracy by modifying the layers’ filter

size [30] or going deeper with the network [9, 10]. In [31], the authors proposed a

deeper model where they used a well-designed convolutional block named the Inception

block. The proposed model, named GoogleNet, achieved outstanding results on the

image classification task. In [10], He et al. proposed a very deep model consisting of

152 layers. To overcome the difficulties of training very deep models, they reformulated

and arranged the layers and forced them to learn residual function. Since that, the

new structure of this arrangement is called residual blocks.

Moreover, many proposed work solved the classification task with the help of

object part annotation. They benefit object part information to improve classification

accuracy. Barnson et al. [70] proposed a method to detect object parts and extract

features using CNN from multiple pose-normalized regions. The proposed method

extracted features from different image regions and integrated lower-level and higher-

level features to improve classification accuracy. Lin et al. [71] proposed a recognition

system composed of part localization, alignment, and classification and named it Deep
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LAC. The model comprises three sub-networks to perform each task. The output of

each sub-network is forwarded to the next sub-network. First, object part locations are

estimated. Then, the alignment sub-network takes the localization results and performs

template alignment. Finally, the classification sub-network predicts the object class

depending on the aligned template. The drawbacks of the above-mentioned methods

are the difficulties of finding well-annotated datasets and that they are applicable for

specific categories and cannot be generalized for more classes.

In [72], the authors fine-tuned a CNN pre-trained on ImageNet dataset to compute

mid-level image representation from images different from ImageNet dataset and

performed object classification on Pascal VOC dataset [73]. Also, [42] obtained state-

of-the-art results in object detection and classification by training new FC layers on

the top of convolutional layers of a network previously trained on ImageNet dataset.

They introduced the Spatial Pyramid Pooling layer (SPP) that is flexible enough to

handle different scales, sizes, and aspect ratios of the image.

3.2.2 Viewpoint Estimation

Object orientation is an important geometric feature of the objects in images that can

be used for 3D reconstruction. While some previous works dealt with the problem

of object viewpoint estimation as a regression problem, we consider this problem as

a classification task using CNN. The main limitation of considering the viewpoint

estimation task as a regression problem is the ambiguous representation of the different

viewpoints for some objects. For example, the table has almost a symmetrical shape

that makes the estimation of the viewpoint unclear. Moreover, estimating the viewpoint

of a bottle is almost unattainable as it looks the same from all directions.

Previous methods focused on estimating the object viewpoint of a single object

class. They considered simple models of objects without considering the large intra-

class variations. Also, they didn’t generalize their methods to handle different object

categories because the dataset annotation was insufficient.

To estimate the object pose, many proposed methods predicted 2D keypoints and

used them to estimate the pose. Pavlakos et al. in [74] used 2D keypoints that are
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semantically meaningful projected points of the 3D models. From the input image, the

proposed method predicted a probability map of the 2D keypoints and estimated the

3D pose by comparing it with some pre-defined models. Instead of using the semantic

2D keypoints, other methods used 2D keypoints that are the projection of the 8 corner

points of the 3D bounding box surrounding the target object. These methods trained

a network to find the correct 2D keypoints locations and compared them with the

corresponding points projected from the 3D keypoints of the ground-truth to estimate

the pose [75]. The estimated pose is used then as a prior to retrieving the closed 3D

model that accurately represents the object geometry that appeared in the input image.

However, these methods require 3D models with the annotated 3D keypoints and the

corresponding 2D projection of them to estimate the pose.

Recently, PASCAL3D+ dataset [1] has been introduced as a challenging dataset for

object detection and pose estimation. It augments 12 rigid objects with 3D annotations.

Most related works used this dataset to evaluate their models on object detection and

viewpoint estimation. The output is considered to be correct if the object detection

part is correct (the bounding box overlap is larger than 50%) AND the viewpoint

estimation part is correct. R-CNN [51] and Fast R-CNN [76] are mostly used as ready

detectors to detect the objects first and then estimate the viewpoint. In [5], the authors

considered the viewpoint estimation as a classification problem and trained CNN to

predict the viewpoint. To evaluate their model, they used R-CNN to detect the objects

and the detected regions were used to estimate the viewpoint. Also, [6] solved the

problem of detection and pose estimation in a single fast shot. They combined the

detection and the pose estimation at the same level by extending the fast SSD detector

[77] to estimate object pose at the same time. To overcome the scarcity of training data

to train the CNN for solving the problem of viewpoint estimation, [3] proposed to use

synthetic images in training. They rendered images from 3D online model repositories

and mixed them with real images for training. We adopt this method to train our

model for both object classification and viewpoint estimation.

In sum, object classification and viewpoint estimation tasks have been studied and

the proposed methods have attained good results. Mostly, the two tasks are considered
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(a) Parallel Models

(b) Shared Model

(c) Multi-Task Model

Figure 3.2: Different network setups for joint object classification and viewpoint
estimation. (a) Independent and parallel models for each task. (b) A shared model for
both tasks and the output layer splits into two layers; one for each task. (c) A multi-task
model that has a shared network and branches into two networks; one for each task.

separately and CNN models are created for each task. Conversely, we consider the

two tasks by proposing a new multi-task CNN architecture that performs object

classification and viewpoint estimation simultaneously. We also train our model using

a synthesized image dataset and test it using a real image dataset.

3.3 Problem Statement

Designing a multi-task model is not a straightforward process. The tasks’ representation

and the extracted features influence the proposed model. Looking deeper into the

targeted problems, the object classification task and viewpoint estimation task have

opposite feature representations. For the object classification task, the extracted

features should be viewpoint invariant to classify the object correctly. For the viewpoint

estimation task, the learned features should preserve the visual features and learn to

distinguish different viewpoints of the same object.
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One solution to solve the given tasks is to train independent and parallel models

for each task, as shown in Figure 3.2a. The advantage of this choice is that there

is flexibility in selecting and designing the models for each task. The models are

independent and different for each task. However, the drawback of this setup is that

it doesn’t leverage the fact that the same image representation can be shared with

different tasks [78].

To overcome this limitation, a multi-task model can be proposed to solve the two

tasks by splitting the last layer into two layers; one for each task. The model consists of

a shared network to extract common features for both tasks and branches at the end of

the network into two task-specific layers, as illustrated in Figure 3.2b. A serious issue

with this setup is that one task-specific layer is not enough to learn useful features for

each task [79]. Moreover, the viewpoint is an intrinsic object feature, and a single layer

estimating the viewpoint of different object classes is theoretically inaccurate.

To address the limitations of the above-mentioned setups, we propose a multi-tasks

model that has a shared network and task-specific networks as shown in Figure 3.2c.

The shared network extracts general features that can be shared across multiple tasks.

The task-specific network is trained to extract specific features to solve the target task.

3.4 Multi-Task CNN Architecture

We adopt the well-known CNN architecture introduced by [8] and extend it to solve

our problem. The original architecture consists of five consecutive convolutional layers

followed by three FC layers and it was trained on ImageNet dataset to classify 1000

object classes.

Figure 3.3 shows the proposed multi-task model. This architecture is divided into

two parts; a shared part and a task-specific part. The shared part consists of five

convolutional layers and it acts as a feature extractor for both tasks. After the fifth

convolutional block, the model branches into two sub-networks, one for each task. Each

branch consists of three FC layers.
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Figure 3.3: The proposed CNN architecture. ReLU is the activation function we use for
the nonlinearity. Max-pooling is used in the first, second, and fifth convolutional blocks.
The FC viewpoint output layer is an object category dependent layer. FC layers are
followed by a dropout layer with a rate of 0.5.

The loss function L that is used to train the proposed model has a classification

term and a viewpoint term. Formally, it is defined as:

L(W ) = λc · lossc(x, lc) + λvp · lossvp(x, lvp) (3.1)

where the ourput is generated from a softmax function and lossc and lossvp are a

cross-entorpy loss function of the object classification task and the viewpoint estimation

task, respectively. x is the input image, and lc and lvp are the class label and the

viewpoint label, respectively. λc and λvp are parameters to balance the training process

between the two tasks. They are set to 1 as we have separated task-specific networks

after the shared network that they have completely independent parameters (the FC

layers). W is the CNN weights to be learned and optimized. We apply max-pooling

after the first, second, and fifth convolutional layers. Max-pooling layers are used to

reduce the computation time and to control overfitting.

In [66], the authors demonstrated that early layers in CNNs extract generic features,

while the last ones are original-dataset-specific layers. Features from earlier layers

can be utilized as general features for different tasks. The last layers extract specific

features that help in solving a specific task. In our proposed model, the convolutional

blocks extract the generic features and the FC layers are task-specific layers. So, the

network branches after the fifth convolutional block. The new sub-networks contain
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rich and specific features that represent the objects for a specific task as shown in

Figure 3.3.

3.5 Implementation Details and Training Dataset Prepa-

ration

We used MatConvNet [80], a MATLAB toolbox implementing CNNs for computer

vision application, to implement and evaluate our proposed model. The weights of the

shared layers are initialized using the corresponding weights in VGG-m model [81],

which was pre-trained on the ILSVRC data for image classification. The weights of

the classification subnetwork layers are initialized from the same network while the

viewpoint subnetwork weights were initialized randomly. We fine-tuned the subnetworks

using backpropagation. Stochastic gradient descent (SGD) algorithm was used to

optimize the network weights with the following settings: the momentum is set to 0.9,

and the weight decay is set to 10−5. The learning rate is initialized to 10−3 and is

decreased by 10 when the validation error doesn’t change.

With reference to the object classification and viewpoint estimation, we train our

model on 11 object classes which are introduced in the PASCAL3D+ dataset [1].

For the viewpoint estimation task, it is known that the nature of the viewpoint is

continuous, and many research works deal with this problem as a regression problem

[82, 4]. However, we consider the task as a classification problem. More specifically,

we focus on estimating the azimuth angle and we divide the viewpoint range into 36

classes (10 angles in each class). We excluded the bottle class from our experiments as

it is very hard to estimate the viewpoint. It has always a symmetrical shape, and the

viewpoint solution would belong to an infinite set.

Regarding the training data, CNNs are always hungry and need a massive amount

of data for training. The publicly available datasets don’t have accurate and rich

annotations for both tasks (classification and viewpoint estimation). Also, collecting

and annotating images for both tasks is a hard and expensive task. With the availability

of large-scale online 3D model repositories [68], it is possible to utilize them to generate
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a complete and well-annotated dataset under full control. We use these 3D models

to render object images with different orientations. The rendering process helps to

introduce more images to train the CNN for object classification and viewpoint

estimation. We can control the rendering process and generate a huge number of

images. Rendered images provide a reasonable number of images for CNN to be

trained well [3]. Also, we performed data augmentation on the rendered images which

resulted in increasing the training data. To make the rendered images more realistic,

we overlaid the rendered images with real images as a background to guide the network

towards convergence and to avoid the wrong classification. Figure 3.4 shows the process

of preparing the training set. The proposed model was only trained on a complete

synthetic images. We didn’t use any real images for training. In Section 3.6.2 and 3.6.3,

we show how the proposed model performs on the real images.

3.6 Experimental Results

In this section, we will introduce the testing datasets that we used to evaluate the

proposed model. Also, we will present the experimental results for object classification

and viewpoint estimation. Moreover, we will compare our results against other methods

that considered the same problems.

3.6.1 Datasets

ImageNet is a large-scale dataset of over 15M labeled high-resolution images belonging

to roughly 22,000 categories [29]. The images were collected from the web and labeled

by humans. ILSVRC is an annual challenge that uses a subset of ImageNet with

roughly 1.2M training images, 50K validation images, and 150K testing images. All

these images are belonging to 1000 categories, each contains almost 1000 images.

ImageNet consists of variable-resolution images. As our proposed model requires

a constant image dimensionality, the images were resized to the desired resolution of

224 × 224. Following the traditional method in resizing [8], the images were rescaled
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Figure 3.4: Preparing the training data. We render many images from the synthetic 3D
models from different orientations. The rendered images are overlaid with real background
to mimic the real data.

so that the shorter dimension was of length 224, and then a centered rectangle was

cropped from the image with a size of 224 × 224.

PASCAL3D+ [1] is a well-known challenging dataset for object detection and

viewpoint estimation captured in the wild. It contains 12 rigid categories of PASCAL

VOC 2012 [73] with rich 3D annotations. That is, each object is annotated with its

viewpoint (azimuth angle, elevation angle, and distance from the camera) and bounding

box values surrounding the object in the image. Furthermore, more images were added

from ImageNet [29] for each category with rich annotations, and we use them to

evaluate our model on the object classification task.
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3. Object Classification and Viewpoint Estimation

Figure 3.5: Examples of ImageNet (first two columns) and PASCAL3D+ (last two
columns) datasets.
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Table 3.1: Object Classification Performance on ImageNet dataset and PASCAL VOC
2012 val dataset.

Dataset aero bicycle boat bus car chair d.table mbike sofa train tv mAP
ImageNet 99.0 94.3 98.4 94.5 97.4 72.1 97.7 90.8 86.3 95.1 97.9 93.1

VOC 12 val 89.6 81.7 79.1 81.0 77.5 76.1 65.6 78.9 58.0 78.6 85.8 77.5

Figure 3.5 shows some example images of the ImageNet dataset and the

PASCAL3D+ dataset. From the visualized images, we can notice that the PASCAL3D+

images are more challenging than ImageNet images. In ImageNet images, the objects

are clearly seen and the image almost contains one object. In PASCAL3D+ images,

the images usually contain many objects from different classes (Figure 3.5, fourth row,

last column), and they are occluded or some parts of the object are missing (Figure

3.5, eighth row, last column).

3.6.2 Object Classification Results and Comparisons

We tested our model on the ImageNet dataset for object classification on the same

object classes that are introduced in the PASCAL3D+ dataset (11 object classes). Also,

we test it on Pascal VOC 12 (the validation set) on the same object classes. Table

3.1 reports the quantitative results of our proposed model. We use the mean Average

Precision (mAP) as a metric to evaluate our model.

From Table 3.1, we notice that our proposed model can classify the objects

accurately. The proposed model was completely trained on synthesized images and

tested on real images. The results show that the synthesized images can be used to

train CNNs and improve the performance of the trained model. Also, the trained model

generalizes very well to the real images. We got a 93.1% classification mAP when we

consider the maximum output value from CNN on the ImageNet test set.

Moreover, we conducted another experiment to evaluate the performance of the

proposed model using the PASCAL VOC 2012 val dataset on the same object classes

introduced in the PASCAL3D+ dataset. This dataset is challenging because the images

were captured in the wild, and each image contains many objects of different classes.

We use the ground-truth bounding box to extract the objects from the input image

and resize them to fit the CNN model input size. Table 3.1 reports the performance of
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our model on the PASCAL VOC 2012 val dataset. We notice that the chair and the

table classes record low accuracy. The reason behind this is that they appear mostly

together in the same image. Also, it appears as a cluttered or occluded object when we

extract the object. We can conclude that the proposed model performs well for object

classification.

To validate our proposed model and the training procedure, we compare it against

other methods. We use the PASCAL VOC 2007 test set as most of the literature

uses this dataset for comparison. Our proposed model solves the object classification

and viewpoint estimation problems simultaneously. We compared our results against

[83], [72], and [84]. In [83], the authors proposed a deep learning framework in weakly

supervised settings that can classify multiple objects in a single image and perform

image annotation. The authors in [72] proposed a method to exploit the image

representations learned by CNNs, trained on the large-scale annotated dataset, to

other recognition tasks. They used the layers trained on the ImageNet dataset to

extract mid-level features from the PASCAL VOC dataset and trained new layers for

object classification problem. That is, they have applied the transfer learning concept

to exploit the pre-trained layers to extract generic features and train new layers on a

different dataset for the same task. Razavian et al. [84] used the features extracted

from the OverFeat network [85] as generic features to solve many object recognition

tasks, such as object classification and scene recognition. For each task, they selected a

suitable dataset according to the task. After that, a linear SVM classifier was applied

to the extracted features from the network. We have to point out that the previously

mentioned works used the whole 20 object classes in PASCAL VOC 2007 test dataset

to test their proposed methods. In our work, we just train and test the proposed model

on the object classes introduced in the PASCAL3D+ dataset, which are 11 object

classes. Also, the images we used in training are synthetic images to overcome the

lack of training data problem. Table 3.2 demonstrates the comparison between the

results reported in the previous works and our results. The proposed model scored

80.9% mean average precision (mAP), and it outperformed the previous works in the

object classification task on most classes.

40



3.6 Experimental Results

Table 3.2: Object Classification results and comparison with other methods on PASCAL
VOC 2007 test dataset.

Category Wu et al., 2015 [83] Oquab et al., 2014 [72] Razavian et al., 2014 [84] Ours
aero 93.5 88.5 90.1 90.4
bicycle 83.4 81.5 84.4 86.7
boat 83.6 82.0 84.4 76.9
bus 81.6 75.5 73.4 84.3
car 86.6 90.1 86.7 87.5
chair 54.5 61.6 61.3 77.2
d.table 53.8 67.3 69.6 73.3
m.bike 79.0 80.0 80.0 81.0
sofa 63.7 58.0 67.3 67.4
train 91.1 90.4 89.1 77.1
tv 80.4 77.9 74.9 87.5
mAP 77.4 77.5 78.3 80.9

3.6.3 Viewpoint Estimation Results and Comparisons

To evaluate the proposed model on the viewpoint estimation task, we first checked the

best configuration of representing the viewpoint classes. We compared two different

setups of the proposed model for viewpoint estimation with respect to the output

layer. The first setup of the model was the same proposed model with respect to the

viewpoint sub-network as shown in Figure 3.3 where the last FC layer is a class-specific

layer. That is, we divided the last FC layer into class-based viewpoint bins. Each group

of bins is reserved for the viewpoint of a specific class. We denoted this model by

specific_model . The second model shared the same output layer between all classes. So,

it didn’t care about the object class when the model estimates the object viewpoint. We

denoted this model by general_model . We trained both proposed models on synthetic

images and tested them on PASCAL VOC 2012 val dataset. We used the ground-truth

bounding box to extract the object from the image during testing, and we used the

Average Precision (AP) as a metric to compare the performance of the models. We

performed the experiment on 4 different viewpoint categorizations as introduced in [1].

Figure 3.6 shows the results of both models, and we can clearly notice that the

class-specific layer at the end of the sub-network performs better and more accurately

than when using the same FC layer without embedding the object class. This is because

of the variety of geometry information between different classes and even between the

objects in the same class.
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3. Object Classification and Viewpoint Estimation

Figure 3.6: Comparison of Different Viewpoint Discretization between different Viewpoint
Estimation Models. The viewpoints are discretized into 4 (VP-4), 8 (VP-8), 16 (VP-16),
and 24 (VP-24) bins.

Moreover, we conduct an experiment to validate the performance of our model on

object viewpoint estimation and compare it against other models. We use PASCAL

VOC 2012 val dataset as most of the previous methods used it to evaluate their models.

As introduced in PASCAL3D+, Average Viewpoint Precision (AVP) metric [1] was

used to evaluate object detection and viewpoint estimation jointly. In computing AVP,

the output from the model is considered to be correct if and only if the bounding box

overlap that detects the object is larger than 50% AND the estimated viewpoint is

correct. As the proposed model was trained to solve only the viewpoint estimation task

without object detection, we use R-CNN [51] detector to generate the bounding box and

detect the objects in the input image. Other methods used either their own detectors or

other proposed detectors like Fast R-CNN [76]. Table 3.3 shows a detailed comparison

between our method and other previous methods handling the same problem.

We compared our model against the following models. DPM-VOC+VP [2] used

a modified version of DPM to predict viewpoint. It was trained on real images from

PASCAL3D+ VOC 2012 train set. Render for CNN [3] used R-CNN for object detection

and it was trained on synthetic and real images. Viewpoints & Keypoints [5] proposed

a model to estimate the object viewpoint and leverage it for object keypoint prediction.

The authors in [6] proposed a fast model that detects the object using the proposed

SSD detector and estimates its pose, and they achieved comparable results with the

state-of-the-art. In [4], the authors considered the viewpoint estimation as a regression

42
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problem as the pose space is continuous. They trained VGG-m model to estimate the

viewpoint. As reported in Table 3.3, our model outperforms the other methods on four

different quantization cases of 360-degree views (the viewpoint is divided into 4, 8, 16,

and 24 bins respectively, with increasing difficulty). The proposed model was trained

on synthetic data to perform two different tasks simultaneously and utilized earlier

layers to extract generic features for both tasks. Pascal3D+ dataset is a challenging

dataset that contains images captured in the wild. Our proposed model succeeded to

generalize on real images and it performed accurately on the real images.

3.7 Conclusion

In this chapter, we considered object classification and viewpoint estimation tasks.

Solving both tasks simultaneously improves the performance of many applications

such as in robotics and for better scene understanding. We presented a new multi-task

CNN architecture that has shared layers performing as features extraction layers for

both tasks and separated sub-networks for each task. Owing to the opposite nature of

the two tasks, the branching is necessary. Object classification task requires viewpoint

invariant features while viewpoint estimation task requires capturing the variations of

the viewpoint for different objects of different classes. We also trained our network on

synthesized images and this helped us in solving the problem of the lack of data. Our

results in both tasks showed that the proposed model has high accuracy on both tasks

and is comparable to the state-of-the-art methods.
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4
Object Depth Estimation from a

Single Image Using CNN

Life can only be understood backwards;

but it must be lived forwards.

Soren Kierkegaard

4.1 Introduction

Estimating depth information from images is a significant problem in many computer

vision fields. Depth information is an important component for a better understanding

of the 3D geometry of a scene. Many computer vision problems have proven to benefit

from using depth information such as semantic labeling [86], pose estimation [87],

scenes modeling [88], robotics [89], and virtual reality. Combined with the RGB images,

depth information adds a significant meaning to understand the scene and provides a

richer representation for the objects and scenes. Normally, RGB-D data are obtained

by depth sensors such as Microsoft Kinect for indoor scenes or LiDAR sensor for

outdoor applications. The data, collected using these sensors, were used to investigate

the problem of estimating the depth from RGB images and incorporate the outcomes
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4. Object Depth Estimation from a Single Image Using CNN

to solve other related problems. However, it is an ill-posed problem and inherently

ambiguous. Using one captured image of an object, it is difficult to map an intensity or

color measurement into a depth value [90]. Prior knowledge and external information are

required to formalize the problem and extract useful information for depth prediction.

The importance of solving this problem with accurate prediction helps to improve

many computer vision tasks, such as reconstruction [91] and recognition [92].

While for humans, inferring depth information and the 3D structure from a single

image is effortless, it is a challenging task for computer vision systems due to lack

of knowledge and information. Depth estimation from multi-view images has been

extensively researched compared to the single-view scenario. One of the reasons

is in the multi-view scenario, provided the accurate local image correspondences,

depth information can be recovered. Structure-from-Motion (SfM) [93] is one of the

promising methods that uses multiple images to estimate the camera poses, the local

correspondences, and the depth. It takes multiple RGB images (n > 1) and estimates

the depth map by matching the local correspondences in the images. In contrast,

single-view depth estimation is inherently ambiguous and it requires the use of prior

knowledge and cues such as object sizes and positions, line angels, etc. Prior knowledge

and cues can restrict the scene environment such as parallel lines for the indoor scenes,

the sky and the ground for the outdoor scenes, or assuming a box model for room

scenes. Also, object position and size play an important role in depth estimation from

a single view. These assumptions and cues restrict the considered scenarios and cannot

be generalized for further data or even new tasks. Other non-parametric methods

depend on retrieving similar models that try to align them with the input scene to infer

depth information [94]. In recent years, researchers have incorporated different sources

of information such as user annotations and labeling to perform depth estimation. Still,

the mentioned methods depend on hand-crafted features to solve the problem of depth

estimation from a single image and they generate many physically implausible results.

Recently, CNNs have shown a breakthrough performance in solving the problem of

object classification. This success inspired many researchers to apply deep learning to

solve different computer vision tasks. Starting from AlexNet [8] as a base network for
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object classification, many deeper networks have been proposed to solve the same task

such as VGGNet [9], GoogLeNet [31], and deep ResNet [10]. Moreover, U-Net model

[56] and its different variations have mostly been used to solve the regression tasks.

They are employed to learn implicit relations between RGB images and some semantic

information, such as object detection and localization, scene segmentation, and depth

estimation. In general, deep learning models outperform the traditional hand-crafted

features methods (e.g. SIFT [63], HOG [62], and Fisher kernel (FK) [95]) in solving

these problems as the CNNs learned useful features directly from the images. They

scored higher records for a wide variety of computer vision tasks.

In this chapter, we present two different CNN models to estimate the depth

information from a single RGB image. The first model is a Fully-CNN (F-CNN)

where we directly predict the depth values using it. The resolution of the generated

output from this model is smaller than the input image. The second model is a fully

convolutional, encoder-decoder model inspired by V-Net [96], proposed for 3D medical

image segmentation, with skip connections between the encoder and the decoder

to generate a more accurate depth image. To target the complete meaning of fully-

convolutional, the pooling layers were replaced with strided convolutional layers [97]

in the encoder. The decoder network is mirrored from the encoder with additional

layers; the upsampling layers (deconvolutional layers) and the concatenation layers.

The skip concatenation layers, which perform as fusion layers, fuse features from the

encoder part with the features from the upsampling layers in the decoder. In this way,

the fine-grained features are transferred and fused with the decoder features, where

the decoder features lose some information due to the upsampling operation. As a

consequence, this step improves the quality of the predicted depth image. Both models

were trained using a non-convex loss function named Tukey’s biweight loss function

[98] which is robust in regression tasks. The results presented in this chapter were

published in [65] and [99].
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4.2 Related Work

The first work on depth estimation was originally based on stereo vision where pairs

of images of the same scene are used for 3D shape reconstruction. Most approaches

for single-view depth estimation depend on different shooting conditions; such as

Shape-from-Shading (SfS) [100] and Shape-from-Defocus (SfD) [101]. Generally, these

methods utilize geometric or triangulation differences to estimate the depth information.

With the absence of these cues in the single-view scenarios, estimating depth becomes a

challenging task. Following, we review the related work of single-view depth estimation

using both classical and deep learning methods.

Traditional methods, which rely on geometric information, impose hard assumptions

such as modeling a scene of a room as a box model. And suppose that the objects

are located on the floor and the walls have the properties of parallel planes in the

indoor scenes [102]. For the outdoor scenes, the global geometric constraints are like

the sky should be on top of the scene and the ground is on the bottom. Also, the size

of the objects is large when they are near the bottom of the scene and very small when

they are on the top. These methods and assumptions restrict the target applications

and cannot be generalized in different scenarios. Another group of work comprises

non-parametric approaches, e.g., textons, SIFT [63], HOG [62], where features between

the query image and the images in a database are matched to find the nearest neighbors

and then perform depth transfer between the matched parts. Karsch et al. [94] used a

kNN depth transfer utilizing SIFT Flow with a global optimization method to estimate

the depth map. Liu et al. [103] defined the problem as a discrete-continuous Conditional

Random Field (CRF) to learn the depth of different segmented superpixels. They

assumed that the similar regions in the retrieved RGB images have similar depth cues.

These approaches are well-scaled to the pre-defined database, but the inferred depth

maps depend on the depth quality of the training images.

Moreover, supervised learning methods based on probabilistic graphical models have

been investigated to infer the depth information. An early work by Saxena et al. [104]

used a Markov Random Field (MRF) for predicting depth from a single image using
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strong assumptions about scene geometry. The authors used superpixels to enforce

the consistency between neighboring regions and improve their approach. Following

this work, Liu et al. [105] combined the problem of semantic segmentation with depth

estimation, where the predicted segmentation is used as a source of information to

predict depth in order to guide the 3D reconstruction.

After the success of CNNs in classification tasks [8], researchers applied deep

learning in solving the depth estimation problem. Eigen et al. [90] proposed a CNN

to directly predict the depth from a single image. The model was multi-stage where

a coarse depth was predicted from the first stage of the network and was combined

with the output of the first convolutional layer in the second stage to infer the final

depth map. The authors extended their model to a multi-task model that estimates

depth, normals, and semantic labels from a single image [106]. In both studies, the

first stage was initialized based on AlexNet [8] or VGG [9], and the second and the

third stages were initialized as fully CNNs. More recently, Liu et al. [107] proposed a

model that combines a deep CNN and CRFs to predict depth from a single image. The

model learns the unary and pairwise potentials during training with CRF to model the

relations of neighboring superpixels. The authors further improved their method by

proposing an efficient training method based on a fully convolutional network and a

superpixel pooling method [108]. Whereas most of the researchers defined the problem

of depth estimation as a regression task, other researchers considered this problem as a

classification problem. The success of the deep residual networks [10] in solving object

classification problem has inspired Cao et al. [109] to define the depth estimation as a

pixel-wise classification task. They first discretized the continuous depth values into

multiple categories and label each category according to the depth range. They trained

a fully convolutional deep residual network to estimate the depth label of each image

pixel. To improve the output depth map, fully connected CRFs were applied as a

post-processing step to enforce local smoothness interactions.
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4.3 Methodology

The best practice when designing a CNN model for solving a problem is to consider

these factors. The first factor is the nature of the problem. In our case, the depth

estimation problem is considered as a regression problem. So, the proposed model

should generate an image with continuous values for each image pixel. It is an image-

to-image problem. The second factor is the training data and the values that should

be generated from the output layer. For example, if the desired values are positive

and bounded between 0 and 1, sigmoid activation function is the best to infer the

output values. The third factor is choosing a suitable loss function. In deep learning,

the loss functions are used to train and optimize the network parameters. Selecting

a suitable loss function with respect to the problem and the training data helps in

fast and better convergence. So, these factors affect how to design and shape the best

model to solve the target problem. Following, we present the two proposed models in

more detail.

4.3.1 Fully-CNN Architecture (F-CNN)

Most CNN architectures consist of consecutive blocks that perform linear and non-

linear operations. These blocks extract useful features and decrease the input image

resolution through the convolutions and the pooling operations, respectively. The

proposed network is a fully CNN model as shown in Figure 4.1. It takes an RGB

image as input and generates an image of 1/4-resolution of the original input image

with continuous depth values. The proposed model is composed of five convolutional

blocks. The first four blocks consist of two convolutional layers followed by ReLU as

a non-linear activation function. The pooling layers are used in the first two blocks

to decrease the feature resolution and to minimize the computational cost. The last

block of the network consists of a convolutional layer followed by a sigmoid function to

generate the depth image. Here, the sigmoid function is used to generate continuous

values between 0 and 1. The kernel size of the convolutional layers is 3 × 3. We didn’t

use FC layers as they are useful in the classification tasks but our task is a regression
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Figure 4.1: The proposed F-CNN Architecture. All convolutional layers have a filter size
of 3 × 3. Pooling layers are used after the first and the second convolutional blocks. All
activation functions after the convolutional layers are ReLU except in the last block, the
activation function is sigmoid.

task. Although max-pooling layers affect the accuracy of the regression problems, it

prevents the network from the overfitting.

As experienced, regression tasks require fewer filters with small kernel size and

almost no need to use FC layers compared to classification tasks [110]. This reduces

the number of parameters and the computational cost and extracts more powerful

features from the input image.

As mentioned above, the output resolution is 1/4-resolution of the original input

image. This is due to the using of the pooling layers in the first two convolutional

blocks. This will affect the quality of the inferred depth image and generate some

noise on the borders. To overcome this drawback, we propose a second model that can

generate more accurate depth images and have the same input image resolution as

well.

4.3.2 mini V-Net Architecture

The second model we proposed is inspired by U-Net [111] and V-Net [96] that were

proposed for medical image segmentation. The proposed CNN model is an encoder-

decoder model to infer the depth information from a single 2D image. The model is

trained end-to-end from scratch and is a fully convolutional model in the encoder and

decoder as shown in Figure 4.2.

The encoder consists of three fully consecutive convolutional blocks with feature

sizes of 16, 32, and 64, respectively. In the first two blocks, we use two convolutional

layers, and in the third block, we use three convolutional layers. The convolutional

layers have a kernel of size 3 × 3 and a stride of 1. Each convolutional layer is followed

by leaky-ReLU [112] as an activation function. We use the strided convolutional layers
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Figure 4.2: mini strided V-Net architecture. Pooling layers are replaced by strided-
convolutional layers to generate an output of the same resolution as that of the input.

instead of the pooling layers to decrease the features’ size. In [97], authors proved that

the pooling layers can simply be replaced by convolutional layers with increased stride.

The advantage of using the strided convolutional layers is that they can be easily

reversed, trained, and tuned rather than fixing the layers to max or average operations.

They are trainable layers and extract useful features. In the proposed model, the kernel

size of the strided convolutional layers is 2 × 2 with a stride of 2. This decreases the

size of the feature maps to a half.

The decoder has the same structure of the encoder, but with some additional layers

that reconstruct the image again and generate the depth image with the same resolution

as that of the input image. The sizes of the features for each convolutional block in

the decoder are 64, 32, and 16, respectively. In particular, we add the upsampling

(upconvolution) layers of 3×3 kernel size in the decoder part to reconstruct the features

and generate the final depth image with the same resolution of the input image. LReLU

is used as an activation function after each convolutional layer in each block. To

generate a better depth image with more details, we concatenate the output of some

layers from the encoder part with the corresponding output of the upsampling layers
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from the decoder part as shown in Figure 4.2 (the concatenation links between the

encoder part and the decoder part). After the concatenation, we apply a convolutional

operation of 1 × 1 kernel size to fuse the concatenated feature maps. We notice that

the concatenation layers (or as they are called the skip connections) add more details,

and as a consequence, the objects in the output images have sharper edges and hence

are less blurry. The depth image is generated using a sigmoid layer as the output range

is between the interval of (0, 1).

In summary, the encoder-decoder models have been introduced into many computer

vision tasks such as semantic segmentation, image reconstruction, and optical flow

estimation. They have significantly outperformed other models in solving the same tasks.

In the results section, we will prove that the results generated from the encoder-decoder

model are more accurate than the results generated from the F-CNN.

4.3.3 Loss Function

Selecting a suitable loss function plays a critical step in training a CNN. In our

case, the loss function measures the error between the generated depth image and

the ground-truth image to optimize and update the model weights. It should fulfill

some constraints regarding the task and the nature of the training dataset. Our depth

estimation problem is considered as a regression task and a straightforward loss function

like L2 norm can be used to compute the error between the estimated values ŷ and

the ground-truth y [113].

For depth estimation, L2 norm (Eq. 4.1) is not robust to outliers (the large error

calculated between the predicted depth and the ground-truth) [113]. Optimizing the

model using L2 norm biases the training process towards the outliers because small

errors (differences between the ground-truth and the predicted depth values) have

little influence on the CNN weight modifications, while the large errors (outliers) incur

a large penalty.

ℓ2 = ∥ŷ − y∥2 (4.1)
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To overcome this issue, we propose to use a non-convex loss function that is robust

in regression tasks, namely, Tukey’s biweight loss function (Eq. 4.3) [98]. The advantage

of using this loss function is that the small residual values (the difference between the

predicted depth and the ground-truth depth) influence the training process and it is

robust to the outliers. During the training process, the loss function suppresses the

influence of the outliers and sets the magnitude of the outlier gradients close to zero.

Formally, the difference between the ground-truth depth y and the estimated depth

value ŷ (i.e. the residual r) is calculated as:

r = ŷ − y (4.2)

Given the residual r (Eq. 4.2), Tukey’s biweight loss function is defined by:

ρ(r) =



c2

6

[
1 −

(
1 −

r2

c2

)3]
if |r| ≤ c

c2

6 if |r| > c

(4.3)

The first-order derivative of Tukey’s biweight loss with respect to r is defined as:

ρ́(r) =


r

(
1 −

r2

c2

)2

if |r| ≤ c

0 if |r| > c

(4.4)

In our work, the value of c is not constant during training. It changes in each

gradient step according to the maximum error in the respective step. During training,

c is set to be at 20% of the maximal residual in that gradient step. Another benefit of

using Tukey’s biweight loss is that it is differentiable and the training process converges

better when the depth values are represented on a log scale. Transforming depth

values to log space can minimize the contribution of regions with large depth values.

It benefits the training because the regions with large depth values (far regions in

the image) have less rich information for depth estimation. Figure 4.3 shows Tukey’s

biweight loss and its first derivative when c = 1.
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Figure 4.3: Tukey’s biweight loss function (left) and its first-order derivative (right)
where c = 1.

4.4 Evaluation

In this section, we present the implementation details of the proposed models and the

dataset used for training. We will also discuss the evaluation metrics that will be used

to evaluate the performance of the proposed models.

4.4.1 Implementation Details

The following implementation details were applied to both models. We used MatCon-

vNet [80], a MATLAB toolbox implementing CNNs for computer vision applications,

to train and evaluate the proposed models. The weights of the layers were initialized

using Xavier initialization method [47]. The model was trained end-to-end from scratch

using backpropagation. Stochastic Gradient Descent (SGD) was used to optimize and

update the network weights with the following settings: the momentum was set to 0.9

and the weight decay was set to 10−5. The learning rate was initialized to 10−3 and

was divided by 10 when the validation error didn’t change. The training process was

repeated until the validation accuracy stopped increasing.

4.4.2 Dataset Preparation

The proposed models were trained on real images in order to predict the depth of

objects from a single image. A Large Dataset of Object Scans [114] is a publicly

available dataset that contains tens of thousands of 3D scans of different real objects
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Figure 4.4: A sample of a training RGB image with the corresponding depth image.
From left to right: RGB image, original depth image, and preprocessed depth image.

captured at a resolution of 640 × 480. It includes RGB images and their corresponding

depth images of real objects. We collected different shapes of the class chair from it.

The collected dataset was split into a training set and a testing set with a respective

distribution of 80% and 20%, respectively. We selected the chair object because the

dataset has a massive number of images with diversity in shapes text (the proposed

methods can easily be applied for other objects). The proposed models were trained on

almost 10 different shapes of chairs. Each chair shape was between 1K and 2K images

of different viewpoints and distances in both indoor and outdoor scenes. We applied a

pre-processing step on the depth images to fill the missing depth values in the images

using the NYU Depth Dataset toolbox [91] as shown in Figure 4.4.

We also augmented the training set to reduce the overfitting during training and

for better generalization performance. Horizontal flipping (mirroring) of images is

applied at a probability of 0.5. Vertical flipping on indoor scene images will not help

during training. Also, we applied photo-metric transformation, i.e. swapping the color

channels of the RGB images, to increase the performance.

4.4.3 Evaluation Metrics

We evaluated our experimental results using several error and accuracy measures which

have been used in prior works:

Mean Absolute Relative Error (rel):

1
|T |

∑
ŷ∈|T |

|y − ŷ|
y

(4.5)
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Root Mean Square Error (rms):

√ 1
|T |

∑
ŷ∈|T |

(y − ŷ)2 (4.6)

Average log10 Error (log10):

1
|T |

∑
ŷ∈|T |

| log10 y − log10 ŷ| (4.7)

Accuracy with threshold: percentage (%) of ŷ, s.t.:

max(
y

ŷ
,
ŷ

y
) < δi where δi = 1.25i i = 1, 2, 3 (4.8)

where y and ŷ are the ground-truth of the RGB input image and the estimated depth,

respectively. |T | is the number of valid pixels in all images in the validation set.

4.5 Experimental Results and Discussions

In this section, we report thorough analyses and results of the proposed models on

single-view depth estimation in indoor and outdoor scenes. Moreover, we performed

ablation studies to analyze the impact of the loss functions on the encoder-decoder

model. Finally, we compared the proposed models and discuss their results and the

performance quantitatively and qualitatively. The quantitative and qualitative results

showed that the encoder-decoder model with non-convex loss function performed

better than the F-CNN model trained on the same loss function. For the quantitative

evaluation and comparison, we will use the metrics stated in Section 4.4.3.

4.5.1 Evaluation Performance of F-CNN

Figure 4.5 shows the depth estimation results that were predicted using the proposed

F-CNN model. The results were inferred from the same architecture but trained on

two different loss functions (L2 norm and Tukey’s biweight loss). As visualized, the
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predicted depth images from the model trained on Tukey’s biweight loss are better

and more accurate than the predicted depth images from the same model trained on

the L2 norm. The objects in the scene have better details and they are not fused with

the background. However, the inferred depth images from the model trained on the L2

norm are not accurate. It is clearly seen that the object parts are missing and in some

results (the last image in the last row), the chair details are completely missed.

However, the proposed F-CNN has some weaknesses. The generated depth image

is 1/4-resolution of the original input image. As a consequence, many fine details

are missed and the depth information isn’t inferred accurately. Also, the generated

images are blurry and the objects’ details are fused with the background. Moreover,

some border areas are lost. A trivial solution for this problem is to apply a post-

processing step to the inferred depth image. Applying bilinear interpolation to enlarge

the generated depth image can improve the quality of the output. However, this will

Figure 4.5: Qualitative results from F-CNN on Large Dataset of Object Scans (chosen
from the testing set). From top to bottom: input RGB image, ground-truth, results from
the model trained on Tukey’s biweight loss, and results from the model trained on L2
norm. Depths are shown in log scale and in color (blue is close, red is far).
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generate a smooth depth image and still, the details will not be recovered well. Another

solution is to modify the CNN model to generate an output that has the same resolution

as the input. We will investigate this solution in the next section.

4.5.2 Evaluation Performance of mini V-Net

The proposed F-CNN model shows some limitations such as the output resolution

and the blurry inference of the information. The proposed encoder-decoder model

overcomes these limitations. Figure 4.6 demonstrates the inferred depth results from

the proposed encoder-decoder model. The predicted depth images have preserved the

object details and can be easily distinguished from the background. The fine details of

the objects such as the holes in the back of the chairs are predicted accurately and the

model has succeeded to estimate the objects’ parts. Interestingly, the proposed model

predicts directly depth information from a single input image without any further

post-processing steps. Moreover, the generated depth image has the same resolution as

the input image. The model is trained end-to-end to estimate the depth of an image in

a single shot. On the other hand, other previously described methods improved the

predicted depth images through many steps. One method used a multi-stage model

and combines the coarse depth image generated in one stage and the original RGB

input image to generate the final depth image. This may introduce noise and reduce

global scale depth information. Also, the output resolution is usually smaller than

the input resolution and many details may be missed. Other methods used CRF

as a post-processing step to generate a more detailed depth image. As a result, the

predicted depth image cannot be estimated directly from CNN. However, our model

differs from these models in being a single-stage model whereby no post-processing

steps are required to generate the output.

Moreover, we reconstruct the images in 3D using the predicted depth values as

shown in Figure 4.6 (the last row). It clearly is shown that the depth values were

predicted very well and there are different levels of depth values that can distinguish

between object parts, the floor, and the background.
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Figure 4.6: Qualitative results from mini V-Net on Large Dataset of Object Scans (chosen
from the testing set). From top to bottom: input RGB image, ground-truth, predicted
depth image, and the reconstructed images using the predicted depth values. Depths are
shown in log scale and in color (blue is close, red is far).

4.5.3 Analysis of Different Loss Functions

To test the importance and the efficiency of choosing a suitable loss function for better

training, we evaluated the performance of the mini V-Net model on two different loss

functions quantitatively and qualitatively. We trained the model using two different loss

functions; L2 norm and Tukey’s biweight loss. The training environment was fixed and

the same training images were used to train both models. In depth estimation task, the

small difference between the depth values is important to update the network weights

because these values highlight the basic features of the object and differentiate it from

other objects in the scene. We compared the error and the accuracy of the estimated

depth from Tukey’s biweight loss with the one from L2 norm loss quantitatively. Figure

4.7 (left) shows that the error computed from Tukey’s biweight loss model is smaller

than the model trained on the L2 norm with a large margin. Also, the accuracy
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Figure 4.7: Error and Accuracy results of the mini V-Net model using different loss
functions.

(right) when using the non-convex loss function is better for training the model in the

regression problems.

Figure 4.8 elucidates that the model trained using Tukey’s biweight loss outperforms

the model trained using the L2 norm. In detail, the pixels with smaller distances are

sensitive to smaller errors. This influences the relative error to be higher and results in

larger gradients of Tukey’s biweight loss over L2 norm. Consequently, the non-convex

loss function is more robust to the outliers and takes care of the small errors between

distances such that the output is estimated with finer details compared to the L2 norm

model. Figure 4.8 also shows that the results predicted by the model trained using

L2 norm are relatively blurry depth images and the object details are almost missed

(the fourth row in Figure 4.8). Some object parts are fused with the background and

the object details are not visible. On the other hand, the depth images generated by

Tukey’s biweight loss have captured finer details and the object inside the images can

be recognized easily from the background (the third row in Figure 4.8). In addition,

the network learns to preserve some details related to object shapes such as the holes

in the chair’s arms and the empty space between the back of the chair and seat.

4.5.4 Comparison of the proposed models

So far, we have proposed two different models to estimate the depth information from

a single image. To show the influence of the network design, we compared both models

quantitatively and qualitatively. The first model (F-CNN) is a fully convolutional

model that uses the pooling layer to decrease the feature size and the computation
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Figure 4.8: Qualitative comparison results on Large Dataset of Object Scans using
different loss functions on mini V-Net model. From top to bottom: input RGB image,
ground-truth, model trained using Tukey’s biweight loss, model trained using L2 norm.
Depths are shown in log scale and in color (blue is close, red is far).

cost. The second model (mini V-Net) is an encoder-decoder model that uses strided

convolutional layers instead. F-CNN was trained with two different configurations.

First, we trained the F-CNN model, and the output resolution was fixed (the generated

the depth image that had a size of 1/4-resolution of the input image size). In the

second configuration, the generated output from the F-CNN model was upsampled

to meet the resolution of the input image. All models were trained end-to-end using

the same loss function. The output of F-CNN has a smaller resolution than the input

image, but the second model generates a depth image with the same input image

resolution. Table 4.1 shows the quantitative comparison with respect to errors and

accuracy. Figure 4.9 shows the qualitative results generated by both models.

As reported in Table 4.1, the F-CNN model trained to generate images without

any post-processing step outperforms the same model when the output is upsampled.

This is because the upsampling step generates blurry images and many details are
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Table 4.1: Performance Comparison of different methods trained using different loss
functions on Large Dataset of Object Scans (↓ lower is better, ↑ higher is better).

Architecture rel↓ rms↓ log10↓ δ1 ↑ δ2 ↑ δ3 ↑
Models trained using Tukey’s biweight loss

F-CNN (upsampled) 0.2940 0.9516 0.1264 0.4895 0.7958 0.9205
F-CNN 0.2341 0.7644 0.0970 0.5971 0.8940 0.9720
mini V-Net 0.0507 0.2314 0.0218 0.9713 0.9927 0.9972

Models trained using L2 norm
F-CNN (upsampled) 0.3047 1.2146 0.1661 0.3771 0.6662 0.8344
F-CNN 0.2571 0.9976 0.1317 0.4453 0.7794 0.9202
mini V-Net 0.1150 0.4104 0.0479 0.8825 0.9772 0.9935

lost as they are an extension to the neighboring regions. However, the mini V-Net

model outperforms both configurations of the F-CNN model when using different loss

functions with a large margin. The measured error is very small and the accuracy is

very high comparing with F-CNN. Figure 4.9 validates this result as the generated

depth images from the mini V-Net model are more accurate than the ones generated

from F-CNN. This is because the F-CNN model uses two pooling layers which decreases

the image resolution twice and some features are lost from these layers. However, mini

V-Net is an encoder-decoder model, where deconvolutional layers (upconvolutional

layers) are used to reconstruct the image again to its original resolution. Using these

layers allows us to solve the issues related to the output resolution. Furthermore,

we used skip connections between the encoder and the decoder to transfer useful

information that has been extracted from the encoder part and utilized them when

predicting the depth information in the decoder part. These connections improve the

quality of the generated images and make the objects’ parts sharper. The object parts

and the holes in the chairs can be easily recognized from the depth images generated by

our encoder-decoder model. To decrease the feature dimensions, strided convolutional

layers are used that have features to be learned and can extract useful features, unlike

the pooling layers.

Figure 4.9 demonstrates that the encoder-decoder models perform better than

normal F-CNN models in solving regression problems (where the problem is an image-

to-image problem). Moreover, the encoder-decoder model predicts the depth at a higher

63



4. Object Depth Estimation from a Single Image Using CNN

Figure 4.9: Qualitative comparison results on Large Dataset of Object Scans. From top
to bottom: input image, ground-truth, F-CNN trained on Tukey’s biweight loss, and mini
V-Net trained on Tukey’s biweight loss. Depths are shown in log scale and in color (blue
is close, red is far).

quality where the edges and the holes almost match the ground-truth images with

fewer artifacts.

4.6 Conclusion

Depth estimation from a single image is an extremely challenging problem. In this

chapter, we have presented two different CNN models to estimate the depth information

from a single image. The first model was a fully convolutional network (F-CNN) that

generates plausible depth images from a single image. However, the generated images

are blurry and resolution is smaller than the input image. To overcome the first model’s

limitations, we proposed a fully-convolutional encoder-decoder model to solve the

same task. Unlike the traditional models that require multi-stage or post-processing

steps to predict the depth, our model is a simple single-stage model that predicts

the depth images directly without any further post-processing steps. By contrast to
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other methods, that struggle to generate high-resolution images, the generated depth

images using our model have the same resolution as that of the input images. We

experimentally demonstrated that the loss function influences the final output, and

for our specific problem the non-convex loss functions are more suitable for regression

tasks because they are robust to the outliers. We showed that our simple and well-

designed model outperforms other models on the same datasets and using the same

loss functions during training. Our work generates high-quality depth images that

capture the boundaries and reveal finer object parts such as the holes in the back.
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5
3D Object Reconstruction from a

Single Image

Simplicity is the ultimate sophistication.

Leonardo da Vinci

5.1 Introduction

The goal of this chapter is to infer the 3D geometry and the structure of an object from

a single image only. This is a long standing ill-posed problem and fundamental to many

applications such as object recognition, scene understanding, and 3D reconstruction.

Single-view 3D reconstruction means using a single input image of an object and the

reconstructed output can be viewed from all directions.

For multiple input images, many methods have been proposed which are able to

present high-quality reconstruction results. The challenge appears when a single input

image is just available to be used for the reconstruction process. Some methods were

proposed with special assumptions on both the input image and the object class to

be reconstructed. The term class, here, means the object nature with its properties

like shape, color, topology, etc. Single view 3D reconstruction is a hard problem and it
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mainly depends on the available information and the restricted assumptions about the

object. This information or cues provide prior knowledge that helps in generating 3D

shapes with plausible precision [16].

Multi-view reconstruction for objects has been investigated extensively [115]. With

multiple cameras, methods such as triangulation can estimate the depth information

and help to generate the object’s surface. However, applying the triangulation method

to a single image will generate an infinite number of models that the projection of the

generated shapes could be similar to the input object image. To solve this ill-posed

problem, object cues such as shading and silhouette can be used as a condition to

estimate the 3D shape. Many methods were proposed to utilize object cues to solve this

problem. The drawback of these methods is the assumptions they impose regarding

the nature of the objects and the need sometimes for user inputs.

As humans, we can easily extract the 3D geometry of images using our visual

system and leveraging the prior knowledge we have about the scenes. Moreover, humans

can generate and infer the 3D models of any object from either a single image or

using one eye only. For unseen objects, we can guess and generate plausible 3D shapes

with approximated size by utilizing the prior knowledge and can infer the geometry of

unseen objects from different viewpoints. This can easily be done by humans because

the brain has the ability to understand surrounding scenes and build a strong prior

information about it. Then, the brain utilizes this information to recognize the new

3D geometry of this scene depending on learned knowledge from real world. Thanks to

our complex visual system, this ill-posed problem can be solved for any class of the

object without imposing any prior assumptions regarding the scene.

With the astonishing results obtained by applying deep learning on different

computer vision problems, many researchers have formulated single-view reconstruction

problem to be solved using deep learning and exploiting the available large-scale datasets

[68] for training. The inferred shape is represented in different ways. The easiest and

the most common representation is volumetric as the CNN can be generalized from

2D to 3D [116]. The output resolution is small as in the volumetric representation,

the computational and memory costs increase cubically when increasing the object
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resolution. Other methods proposed to use meshes, multi-view, and point clouds to

represent the object.

3D reconstruction from single or multiple images has many useful applications.

In the entertainment industry, it has been applied to aid in the process of movie-

making. For example, a scene with a large number of horses galloping in a field can

be achieved in a simple way. First, reconstructing the dynamics of a horse galloping

in the field is made. Then, the new views of the horse can be synthesized from the

obtained 3D horse model. Finally, the scene can be created by inserting as many

horse models into the scene as desired. This simple example shows that without the

aid of 3D reconstruction, computer graphics artists would spend many tedious hours

of modeling when the objects are rendered. Also, many times, they may face many

problems to make the realism of the object or the scene. Other techniques have been

explored and used in recreating 3D models such as attacking markers. This technique

is often inconvenient and uncomfortable to be used. The main reason is that markers

disrupt the performance of the user and photo-realistic 3D models based on markers

are difficult. To make the process attractive, the ability to create 3D reconstructions

using only images is used. 3D reconstruction from multiple images has been used and

found in many applications such as creating movies, computer games, and animations.

However, the challenge appears when there is a lack of views, or only a single image is

available for reconstruction.

Also, 3D reconstruction is widely applied in the medical field [117]. It has been

used to create models of organs as well as brains and teeth. Other applications include

body motion modeling, object recognition, surveying such as the modeling of buildings

and terrain, robot navigation, surveillance, and teleconferencing. Depending on the

application, the quality of the image and the user input are decided. For example,

robots and building modeling tend to capture images using stereo cameras, while

human body modeling allows for a multiple-camera setup.

The projection from 2D to 3D is difficult because of the mysterious correspondences

between the pixels in 2D and the points in 3D space. To this end, we propose a CNN

model that solves the task of single-view reconstruction. The model has an encoder-
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generator shape where the encoder extracts useful features from the input image and

the generator infers the point clouds of the object shown in the 2D image. To generate

more accurate point clouds, an initial point cloud is used to improve the reconstruction

quality. We find that starting from an initial point cloud, the points distribute equally

on the shape surface and preserve the object parts. We summarize our contributions

as follows: (1) we design a CNN model that can infer the 3D geometry of an object

from a single image. The 3D object is represented as a point cloud. (2) Instead of

directly inferring the point cloud, we propose to utilize an initial point cloud of a sphere

shape to generate the final object point cloud. The experimental results that using an

initial point cloud helps in generating better and more accurate reconstruction. (3) We

evaluate the proposed model on synthetic and real data qualitatively and quantitatively.

Our model outperforms the state-of-the-art methods and shows significant results for

the task of single-view reconstruction. The results represented in this chapter were

published in [118].

5.2 Background and Literature Review

In this section, we will discuss two categories of methods that were proposed to solve

the problem of single-view reconstruction. The first category imposes priors and cues

on the target object that is needed to be reconstructed. The second category depends

on deep learning methods. But first, we will revisit different 3D data representations

and how they can be used in deep learning.

5.2.1 3D Representation

The recent development in 3D sensing technology and low-cost devices have facilitated

the process of 3D data collecting. Based on the used scanning device for data collection,

the generated raw data are saved in different forms. They vary in structure and

geometric properties. When applying deep learning models to generate 3D shapes or

to solve other tasks such as segmentation, recognition, or object classification, the

object representation plays an important role in designing the network. This leads
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(a) An example
of a volumetric
representation.

(b) An example of a multi-view rep-
resentation.

Figure 5.1: Euclidean representation.

to classifying the 3D representation of the objects into Euclidean and Non-Euclidean

representations.

Euclidean-structured data have the properties of global parametrization and a

common system of coordinates. These properties allow us to easily extend the 2D CNNs

for 3D data processing. Following, we will discuss volumetric data and multi-view data

representations as they are mostly used in deep learning to represent the 3D data.

Volumetric data can be represented as a regular grid in the 3D space [119].

Voxels are used to visualize 3D data and show the distribution of the 3D object in

the 3D space. Each voxel in the 3D space that describes the object can be classified

into a visible, occluded, or self-occluded voxel according to the viewpoint. Voxel-based

representation is very simple and has the ability to encode the 3D object information

and its viewpoint. However, it is sometimes an inefficient representation because each

voxel in the 3D grid should be represented (occupied and non-occupied voxels) and this

leads to preserve a huge useless space in the memory and increase the computational

time when processing the volumetric data. Also, fine-grained shape parts get lost

because the voxel is represented as either occupied or unoccupied. Figure 5.1a shows a

chair represented in voxels of size 128 × 128 × 128.
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Octree-based representation is an efficient modified version of voxel-based represen-

tation [120]. In octree-based representation, the voxel size is not constant nor equal.

Each occupied voxel is divided into smaller cubes that are either inside or outside

the 3D object. This helps in preserving the fine details of the object compared to

voxel-based representation. However, both representations don’t preserve the shape

smoothness of the surface.

Multi-view data can be understood as capturing multiple 2D images of the same

object from different viewpoints [121]. It helps in extracting multiple features for

noise reduction and solving the problem of partial occlusion and incomplete shape

reconstruction. Representing 3D data as multi-view images aims to learn 3D information

of the object from different views separately. Then, the learned information is combined

to represent the whole 3D shape and to generalize to other 3D shapes of the same

object class. However, there is no optimal number of views that can be used to generate

an accurate 3D object. On one hand, a small number of images might not capture the

general properties of the 3D shape. On the other hand, a massive number of views can

cause unnecessary computational overhead and memory allocation. Figure 5.1b shows

an example of a multi-view representation.

Both representations (volumetric and multi-view) are used nowadays in deep

learning to solve different tasks, especially with rigid data.

The other type of 3D data representation is for the non-Euclidean data. Non-

Euclidean data don’t have a global parametrization or a common system of coordinates.

This makes it difficult in extending the 3D CNNs to process these data. Point clouds

and 3D meshes are mostly used as 3D data representation in deep learning.

3D Meshes are commonly used to represent the 3D shapes. The structure of a

3D mesh comprises a set of polygons which are called faces [122]. These polygons are

described using a set of vertices that describe how the mesh coordinates exist in the

3D space. Beside the 3D coordinates of the vertices, there is a connectivity list that

specifies how the vertices are connected to each other. Figure 5.2a shows a mesh of a

chair.
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(a) An example
of a mesh.

(b) An example
of a point cloud.

Figure 5.2: Non-Euclidean representation.

3D Point Cloud is a set of unordered 3D points that approximate the geometry

of 3D objects [123]. This makes it a non-Euclidean geometric data representation.

However, a point cloud is a simple uniform structure that can be encoded and learned

very easily. It allows simple geometric transformation and deformation without the

need for connectivity updates. Figure 5.2b shows a point cloud of a chair represented

by 1024 points.

Applying deep learning techniques on 3D data represented as meshes is a challenging

task. Extending the 2D CNNs to deal with non-Euclidean data is not a straightforward

task because of the irregular representations. Also, these data usually suffer from

resolution problems, noise, and missing data. In our work, we applied deep learning

directly to generate the point cloud of an object from a single image without the

pre-processing or post-processing stages.

5.2.2 Single-view Reconstruction before Deep Learning

There are many approaches that proposed different methods in the field of single

view reconstruction. Some of them were applied to real-world images without any

assumptions on how the capturing process was performed. Also, the output of these

approaches is plausible. The proposed approaches that depend on the cues and priors
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can be categorized according to the target objects or scenes. There is a difference

between object and scene reconstruction. In scene reconstruction, the proposed method

tries to infer depth information and produce 3D features from the whole input image.

In object reconstruction, however, the proposed methods focus on a single object in

the scene and try to produce smooth objects. The reconstructed target objects can be

categorized as the following:

• Curved Objects

• Piecewise Planar Objects

• Learning Specific Objects

• 3D Impression from Scenes

In curved objects approaches, an energy function is defined to minimize the object

surface with respect to some constraints such as a fixed area or volume. An early work,

done by Zhang et al. [124], proposed a method for interactive depth map editing based

on the input image. The proposed algorithm takes a set of user-specified constraints

as input such as surface positions, surface normals, and silhouettes to reconstruct a

plausible 3D surface according to the inputs. The proposed method recalculates and

displays the reconstructed result each time the input changes in a real-time manner.

Prasad et al. [19, 125] proposed a framework for single-view reconstruction. The objects

to be reconstructed are of a curved surface. Silhouette is used as a cue to reconstruct

the object. An energy function was minimized to generate a smooth surface subject to

the silhouette as a constraint. Oswald et al. [20] proposed a method that computes

the closed minimal curved surface of a symmetric object. The input of the method is

a side view of an object and its silhouette that is obtained by segmenting the object

from the background. The object is reconstructed by finding a smooth surface that the

2D projection of the output is compatible with the silhouette input. The similarity

measurement is calculated using a distance function between the 2D projected image

and the silhouette. Toppe et al. [22] also proposed a framework similar to [20] that

requires the object silhouette as input. The difference between them is how they
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represented surface inflation. The first one proposed a heuristic data term for surface

inflation, but the second method suggests that the surface volume has to comply with

a user-specified volume input.

The second class focuses on piecewise planar objects such as buildings and man-

made environments. Criminisi et al. [126] used a single perspective view to calculate

the 3D affine measurements of a scene containing planes and parallel lines. The authors

assumed that a vanishing line and a vanishing point can be calculated from a reference

plane. From the vanishing line and point, an affine scene structure can be obtained.

Different measurements are calculated from the input images: the distance between

parallel planes, length and area ratios on these planes, and the camera positions. Based

on the computed vanishing line and point in the image, the 3D reconstruction can

be obtained and the camera position can be estimated. Delage et al. [127] proposed

a method for reconstructing indoor scenes. The indoor scenes consist of parallel and

orthogonal planes. They assumed that the camera is calibrated, the scene consists only

of planes and edges, and the camera’s axis is vertical to the floor of the scene and

the height is known. Hong et al. [23] studied the relation between the symmetry of

objects and the viewer’s relative pose of the object. The advantage of the assumption

symmetric of objects is that one image of a symmetric object is equivalent to multiple

images.

Methods in the third class cannot reconstruct arbitrary objects but are inherently

limited to specific object classes by shape information learned from sample databases.

Some researchers proposed methods for the reconstruction of objects with some prior

knowledge of the object properties. These methods cannot reconstruct arbitrary objects

but can reconstruct specific objects with some shape information learned from sample

databases. Han and Zhu [24] proposed a reconstruction method with manually defined

shape priors. They assumed that identifying prior information of an object automatically

is hard to learn because of the lack of real training data. To reconstruct a full 3D

scene, the input image is transformed into two graphs; one for the 3D objects and the

other one representing the relations between the objects in the scene. An example, in

the grass tree-like scene, authors assumed smooth and evenly separated curves for the
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objects and the relation graph describes the regularity constraints on touching objects.

Nagai et al. [128] used a sample database to learn objects. Then, they used Hidden

Markov Model to model the correspondence between intensity and depth.

The fourth class methods didn’t aim to generate exact or plausible 3D geometry but

rather reconstruct a pleasing 3D Impression from Scenes. Hoiem et al. [21] proposed

a fully automatic method for creating 3D models from single images. They divided

the world into the sky, ground, and vertical objects. To reconstruct the 3D model, the

bottom of the vertical region is fit with the ground, the sky is removed from the model,

and the vertical pixels are assumed to belong to the objects above the ground. In [88],

Saxena et al. proposed another approach similar to [21] to obtain a 3D structure from a

single image. They assumed that the world consists of small planes, whose 3D position

and orientation are to be estimated. They divided the input image into superpixels and

infer the depth values and the orientation for each of them. This method is modeled

using Markov Random Field (MRF) and solved using a linear program. The inferred

3D structure is a polygonal mesh representation of the 3D model.

In general, most of the above literature has advantages and disadvantages. The

advantages are that most of them have high reconstruction precision. The results are

plausible. They used some inputs to improve the final results. The disadvantages are

some of the proposed methods take a long time for reconstruction. They are limited to

some objects domain that refer to a set of objects that can be reconstructed successfully.

5.2.3 Single-view Reconstruction using Deep Learning

Theoretically, inferring the 3D structure of an object from a single image is an ill-posed

problem, but many attempts have been done such as SFM and SLAM [129, 130].

Moreover, ShapeFromX, where X can be shadow, texture, etc., needs prior knowledge

on the nature of the input image [131].

With the emergence of deep learning, enormous models were proposed to solve

different computer vision tasks such as object classification, segmentation, etc.

Nowadays, with the availability of large-scale 3D shape datasets, e.g. ShapeNet [68],

deep learning 3D-based models have made great progress in solving different tasks
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using 3D data directly such as classification, object parts segmentation, and 3D shape

completion.

The reconstructed output generated by the deep learning models were represented

using different forms. To extend the 2D convolutions to 3D, the volumetric repre-

sentation has been mostly used. It is simple in implementation and compatible with

the 3D-CNN. 3D-GAN [132] proposed a generative adversarial network (GAN) to

generate 3D objects from a probabilistic space using volumetric CNN. They mapped a

low-dimensional probabilistic space to the 3D object space and by this, they outperform

other unsupervised learning methods. Moreover, a 3D recurrent neural network (RNN)

has been proposed to estimate the 3D shape of an object. 3D-R2N2 [116] proposed

to use long short-term memory (LSTM) to infer the 3D geometry using many images

of the target object from different perspectives. A more accurate representation is

octree. Octree Generation Networks (OGNs) [120] proposed a decoder that infers

the 3D shape in a computed and memory-efficient way by representing the output

using octree. The proposed architecture doesn’t have the cubic complexity and the

output can be represented in higher resolution with more object details. The critical

limitation of using the volumetric representation in the above-mentioned methods is

the computational and the memory cost and the restriction of the resolution.

To avoid the limitation of the volumetric representation, mesh representation is

more attractive for real applications as the shape details can be modeled accurately.

Applying deep learning models directly to generate meshes is a challenge as they are

not regularly structured. A parameterization-based 3D reconstruction is proposed in

[133] that generates geometry images which encode x; y; z surface coordinates. Three

separated encoder-decoder networks were used to generate the geometry images. The

networks take an RGB image or a depth image as an input and learn the x; y; and

z geometry images. Other methods proposed to estimate a deformation field from

an input image and apply it to a template 3D shape to generate the reconstructed

3D model. In [134], an end-to-end deep learning model was proposed to generate a

triangulated 3D mesh from a single image. The proposed network represented the 3D

mesh in graph-based CNN (GCNN) and deform an ellipsoid leveraging the perceptual
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features extracted from the input image. They adopted a coarse-to-fine strategy that

makes the deformation process stable. Kuryenkov et al. [135] proposed DeformNet

that takes an image and a nearest 3D shape to that image from a dataset as input.

Then, the template shape is deformed to match the input image using Free Form

Deformation layer (FFD). A limitation of using meshes for reconstruction is that the

generated output is limited mostly to the initial mesh or the selected template as an

initial shape to be deformed.

Point cloud representation is a flexible form to represent the 3D structure and it

becomes a commonly used representation in deep learning as it is simple and highly

efficient in terms of memory requirements (compared to volumetric representation).

A point cloud is a not-regular structure and applying deep learning models on this

representation is a challenging task. A 3D shape can be represented using an unordered

set S of N elements where,

S = {(xi, yi, zi)}N
i=1 (5.1)

To overcome this limitation, points can be represented either as a matrix of size

N × 3, a 3-channel grid of size H × W × 3 where each pixel encodes the (x, y, z)

coordinates and H × W equals to the number of points, or depth maps from different

known viewpoints. Point Set Generation Network (PSGN) [123] was the first proposed

model to generate a point cloud of an object from a single image and outperforming

the volumetric approaches. RealPoint3D [136] has two encoders; one for the input

image the target object and the second for the nearest shape retrieved from ShapeNet

dataset. The encoded features from both encoders are integrated and forwarded to

a decoder to generate fine-grained point clouds. The point cloud from the retrieved

shape influences the inferring process and generates finer point clouds. 3D-LMNET

[137] trains a 3D point cloud auto-encoder and then learned the mapping from the

2D images to the learned embedded features. Another direction to generate the point

cloud is to generate depth images of different perspectives and fuse them to generate

the final point cloud. In [138], a generative modeling framework used 2D convolutional

operation to predict multiple pre-defined depth images and use them to generate a

dense 3D model.
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Figure 5.3: The proposed CNN Architecture. The encoder network extracts features
from the input image. The extracted feature vector is concatenated with the coordinates
of the sphere points. The generator takes the extracted feature vector and the coordinates
of the sphere as input and generates the final point cloud of the input object.

5.3 Methodology

Our main goal is to infer a complete 3D shape of an object from a single RGB image.

We selected point cloud to represent the 3D shapes (Eq. 5.1). We set the number of

the points generated from the CNN to N = 2048. From our experiments, we found

that this number of points is sufficient to cover the whole surface of the object and

preserve the major structures.

5.3.1 3D CNN Model

The proposed network is illustrated in Figure 5.3. It consists of two parts; the encoder

part and the generator part. The encoder part is a set of consecutive 2D convolutional

layers followed by ReLU as a non-linear activation function. These layers are used to

extract the object features from the 2D input images. To predict the 3D point cloud

of the object, an initial point cloud with a sphere shape is used. The initial point

cloud is concatenated with the extracted features from the encoder as shown in Figure

5.3. Then, it is fed into the generator part to get the final point cloud of the object,

where FC layers are used to generate an N × 3 matrix, where each row contains the

coordinates of one point. Following, we will explain the network in detail.

Encoder Net The role of the encoder part is to extract the distinction features

from the input image that can correctly describe the object with details. It consists of

consecutive layers of 2D convolutional layers and ReLU layers. The convolutional layers
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are seven layers feature. The first three convolutional layers are with sizes of 32, 64, and

128, respectively. The remaining layers are with a size of 256. All convolutional layers

have a kernel size of 3 × 3 and a stride of 2. The stride of 2 in the convolutional layers

helps in decreasing the spatial size of the features as the pooling layers do. However,

the strided convolutional layers are trainable and extract useful features. The size of

the input image is 128 × 128. The extracted feature from the encoder has a size of

1 × 1 × 256, which is then reshaped and concatenated with the initial point cloud.

Generator Net The generator part is a simple network consisting of four FC

layers. After extracting the features from the encoder, the feature is reshaped as 1×256

and then concatenated with the initial point cloud. The initial point cloud has a

sphere shape and the size of 256 × 3, where each row represents the coordinates of a

point in 3D. The reshaped feature is concatenated with each point of the initial point

cloud, and the new feature has a size of 256 × (3 + 256). Figure 5.3 shows the reshape

concatenation process. The initial point cloud with the concatenated feature is fed into

the generator. After three FC layers followed by ReLU, the generator ends with a FC

layer that predicts the final point cloud with a shape of 2048 × 3.

The proposed network is different from other single-view reconstruction models

as the proposed model utilizes an initial point cloud with a sphere shape for better

inference of the final point cloud. In the results section, we will discuss and show the

importance of using an initial point cloud and how this improves the final results and

distributes the points evenly.

5.3.2 Loss Function

Selecting a suitable loss function to train the CNN model is a critical step. The nature

of the problem, the dataset representation, and the output values are the points that

should be considered when designing the loss function. The loss function measures the

error between the inferred output and the corresponding ground-truth and according to

the error, the model weights are optimized and updated. In our case, the loss function

will measure the distance between the generated point cloud and the ground-truth

shape. It should satisfy the following conditions:
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1. the selected loss function should be efficient to compute and differentiable, with

respect to the point locations, so that it can be used for the backpropagation

step, and

2. it should be robust against the outliers.

So, the required loss function L between two 3D shapes, Spred, Sgt ⊆ R3, is defined

as:

L({Spred}, {Sgt}) =
∑

d(Spred, Sgt) (5.2)

where Spred and Sgt are the predicted 3D shape and the correspondence ground-truth

shape, respectively.

Since the point cloud is an orderless representation, the loss function should be

invariant to the ordering of the points. To this end, we propose to use and train the

proposed model using two different loss functions: Chamfer Distance (CD) [139] and

Earth Mover’s Distance (EMD) [140]. Both distances are only piecewise differentiable.

Chamfer Distance: The Chamfer Distance between Spred, Sgt ⊆ R3 is defined

as:

dCD(Spred, Sgt) =
∑

x∈Spred

min
y∈Sgt

∥x − y∥2
2 +

∑
y∈Sgt

min
x∈Spred

∥x − y∥2
2 (5.3)

In the first term of Eq. 5.3, for each point in the predicted point cloud, CD finds

first the nearest neighbor in the ground-truth point cloud and sums the squared

distance up. The second term of Eq. 5.3 does the same but from the ground-truth

point cloud to the predicted point cloud. CD is piecewise smooth and continuous, and

the search process is independent for each point. So, this function is parallelizable and

produces high-quality results. The lower the value, the better and more accurate the

generated shape. The drawback of CD is that there is no clear mechanism to enforce

the uniformity of the generated point cloud because the optimization process leads to

a minimum where a subset of points accounts for the whole shape and clusters the

remaining points.
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Earth Mover’s Distance: The EMD between Spred, Sgt ⊆ R3 is defined as:

dEMD(Spred, Sgt) = min
ϕ:Sgt→Spred

∑
x∈Sgt

∥x − ϕ( x) ∥2 (5.4)

where ϕ : Sgt → Spred is a bijection and the size of Spred and Sgt is equal, s = |Spred| =

|Sgt|.

In EMD, ϕ maps each point from Spred to a one unique point in Sgt. It enforces a

point-to-point assignment between the two point clouds. EMD is differentiable almost

everywhere and parallelizable but computationally expensive (with respect to the time

and the memory for high-resolution point clouds).

5.4 Evaluation

In this section, we will outline the implementation details of the proposed architecture

and the datasets used for training. We will also discuss the testing datasets that will

be used to evaluate and compare the proposed method against the state-of-the-art.

5.4.1 Implementation Details

We implemented and train the proposed model in TensorFlow [141]. The input image

size is 128 × 128. For each object category, we trained separate models. The encoder

outputs a latent feature of dimension 256. The generator network outputs a point cloud

of size 2048 × 3. Adam optimizer [142] was used to optimize the network parameters

with a learning rate of 5e−5 and a minibatch of size 32. We trained the model until

the validation accuracy stopped increasing.

5.4.2 Dataset preparation

ShapeNet [68] is a large-scale synthetic 3D dataset that is widely used in 3D research

such as 3D model retrieval and reconstruction. ShapeNetCore is a subset of the

ShapeNet dataset that we used in our experiment. It is manually cleaned and aligned.

It has more than 50K unique 3D models which cover 55 common object categories.

We focus on 13 categories and use the 80% − 20% train-test split provided by [68]. The
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input images provided by [116] are used during training, where each model is rendered

from 24 different azimuth angles.

To show the generalization of the proposed method on real images, we tested it

using Pix3D dataset [143]. Pix3D is a publicly available dataset of aligned real-world

image and 3D model pairs. It contains a large diversity in terms of object shapes and

backgrounds and is highly challenging. We will test and report the performance of the

proposed method on the chair, sofa, and table categories from the Pix3D dataset.

5.4.3 Baselines

We tested the proposed model trained on the ShapeNet dataset. First, we test the

proposed model without an initial point cloud and the model is an encoder-generator

model that generates the point could directly from the input image. Then, we tested

the model with an initial point cloud of a sphere shape. The feature vector generated

from the encoder part is concatenated with the 3D coordinates of each point. The

generator generates the final point cloud from the initial point cloud and the input

image feature vector. Also, we compareed the proposed model against PSGN [123]

and 3D-LMNet [137] qualitatively and quantitatively. Chamfer distance (Eq. 5.3) and

Earth Mover’s distance (Eq. 5.4) are used to report the quantitative evaluation.

5.5 Experimental Results & Comparisons

In this section, we discuss the performance of the proposed model and report it

quantitatively and qualitatively. First, we show and discuss the general results and

how the proposed model generates the 3D point cloud from a single image on synthetic

images. Then, we show the performance of the model with different setups. The

performance is also compared against the state-of-the-art. Finally, the proposed method

is tested on real images to check its generalization.

83



5. 3D Object Reconstruction from a Single Image

5.5.1 General Results

We tested the proposed model on the testing set of ShapeNet. The proposed model was

trained on synthetic images of objects rendered from different viewpoints. The testing

was performed on 13 different categories. Figure 5.4 shows the qualitative results of 8

different categories. It is clearly demonstrated that the generated point cloud of the

objects from a single view is very close to the ground-truth and it captures the object

geometry. Also, the proposed model learned to generate the point clouds and keeps

the salient features such as free spaces between the splats in the back of the chair

and the holes between the back and the seat of the bench. Moreover, the proposed

model successfully learned to generate some thin and rare parts such as the stretchers

between the chair legs as these parts are not common in the chair category. Many

categories have various geometrical shapes such as the top surface of the tables. In

Figure 5.4 (last row), two different tables are used to generate the point cloud. They

have different top surfaces and different legs’ shape. The proposed model generates

the circle surface accurately as the input image with the cylindrical pillar and the four

small legs. For the second table, the top surface is well reconstructed and the legs are

very close to the ground-truth. Furthermore, the proposed model generates complete

and plausible shapes. The generated points are evenly distributed and cover the whole

parts of the objects.

However, the proposed model fails to generate very accurate shapes in some cases.

Figure 5.5 shows some failure cases. Most thinner and narrower parts of the objects

are missed such as the chair or bench armrests and the airplane tail. Also, the objects

with extra parts that don’t usually exist are also missed such as a monitor with two

bases or a table with three legs on each side. Normally, the narrow and extra parts are

missed because the network didn’t learn to predict them. However, if this happens in

one example, the network tries to generate and estimate the closest shape to the input

image as the table with the six legs in Figure 5.5 (the last row). The proposed model

reconstructs and generates a plausible point cloud that is close to the input image but

it misses the leg in the middle.
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Figure 5.4: Qualitative results of ShapeNet on different categories. From left to right:
input image, ground-truth, generated point cloud.
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Figure 5.5: Failure cases of ShapeNet on airplane class from two viewpoints. From left
to right: input image, ground-truth, generated point cloud.

5.5.2 Effect of the Initial Point Cloud

To test the efficacy of using the initial point cloud in reconstructing a finer point cloud,

we conducted an experiment to test and evaluate the performance of two different

setups of the proposed model as shown in Figure 5.6. The first setup is shown in Figure

5.6a that uses an initial point cloud, where the second setup is the same model but

without using the initial point cloud (Figure 5.6b), and the point cloud is reconstructed

directly from the input image. Both setups were trained on the training set of ShapeNet

and were tested on the testing set of the same dataset.

Figure 5.7 illustrates the results of the different setups of the proposed model. The

point clouds generated by the proposed model without using an initial point cloud

suffer from the uneven distribution of the points for the whole shape. Many points

gather at some parts of the shape. In the chair example, many points are grouped at

the back corners of the seats and fewer points are in the legs. However, the points

are well distributed and the chair legs are well reconstructed using the model with an

initial point cloud. Also, in the table examples, the point cloud generated without an

initial point cloud have poor reconstructed legs but they are well reconstructed using
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(a) CNN with an initial point cloud.

(b) CNN without an initial point cloud.

Figure 5.6: A general sketch of the proposed CNN model with different setups. (a) the
proposed CNN with an initial point cloud. (b) the proposed CNN without the initial point
cloud. E: Encoder, G: Generator, PC: Point Cloud, FV: Feature Vector.

an initial point cloud during training. In the plane examples, the engines and the trail

are not reconstructed and the points are concentrated on the body of the plane, but

they are reconstructed accurately when using the initial point cloud. From Figure 5.7,

we conclude that adding the initial point cloud to the proposed model improves the

reconstructed point cloud and distributes the points evenly on the whole shape’s parts

and generates the object details accurately.

Quantitatively, Table 5.1 reports a comparison between the different setups of the

model. It is clearly noticed that the model with the initial point cloud outperforms the

same model without using the initial point cloud.

5.5.3 Generating Plausible Shapes from Ambiguous 2D Inputs

To validate the performance of the proposed model, we conducted an experiment to

test the model whether it can recognize and generate plausible shapes from 2D images

of the chair class where the geometry of the objects is almost covered (the back-view
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5. 3D Object Reconstruction from a Single Image

Figure 5.7: Qualitative results of different setups of the proposed model on ShapeNet.
From left to right: input image, ground-truth, results generated by the proposed model
without initial point cloud, and results generated by the proposed model with initial point
cloud. 88
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Table 5.1: Quantitative comparison of different setups of the proposed model on ShapeNet.
All metrics are scaled by 100.

Category Chamfer EMD
w/o. PC w. PC w/o. PC w. PC

airplane 4.03 3.29 4.91 3.82
bench 4.34 4.59 10.20 4.31
cabinet 5.97 6.07 11.18 4.94
car 4.21 4.39 4.69 3.61
chair 7.00 6.48 7.30 6.45
lamp 6.31 6.58 32.08 8.45
monitor 6.62 6.39 19.83 5.94
rifle 2.71 2.89 11.06 4.25
sofa 6.49 5.85 6.24 5.03
speakers 7.86 8.39 20.61 7.37
table 6.47 6.26 7.00 6.05
telephone 4.03 4.27 6.36 3.77
vessel 5.64 4.55 6.58 4.89
Mean 5.52 5.38 13.7 5.30

of the chair). Figure 5.8 shows the qualitative results of this experiment. For each

image, we show the back and the side views of the reconstructed model along with the

ground-truth with the same viewpoint. It is clearly shown that the proposed model

succeeded in guessing the 3D geometry of the input image and generating plausible

shapes that are consistent with the input images and the ground-truth. Also, the

proposed model manages to memorize and reconstruct the chair parts such as the legs

and the arms without seeing them in the 2D input images. Figure 5.8 proves that the

proposed model can generate plausible shapes that are consistent with the ambiguous

2D images and are close enough to the ground-truth.

5.5.4 Arithmetic Operations on the 2D Input Image Feature Vector

Another interesting experiment is to check if the extracted 2D features from the

input images have meaningful information or not. To do so, we extract the 2D

features from different 2D images of the same category and apply arithmetic

operations on them to generate a new 3D shape. In [144], it was shown that

(King)−vector(Man)+vector(Woman) gives a vector that the nearest neigh-

bor to it was a vector for Queen. The experiment performs similar to this idea.
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5. 3D Object Reconstruction from a Single Image

Figure 5.8: Qualitative 3D reconstruction results for ambiguous 2D inputs. From left to
right: 2D input image, grount-truth view-1, generated output view-1, ground-truth view-2,
generated output view-2.
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Figure 5.9: Results of applying arithmatic operations on 2D features extracted by the
encoder for different shapes.
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5. 3D Object Reconstruction from a Single Image

We select random triples, extract their 2D features using the encoder network, and

apply the arithmetic operations (fv1 − fv2 + fv3). The resulting feature is then passed

to the generator to generate the 3D point cloud.

Figure 5.9 shows the results of applying the arithmetic operations of some categories.

The first experiment was applied to the airplane category. In Figure 5.9a, the first

image is an airplane with two engines on each side and the second image is an airplane

with one engine on each side. We subtract the extracted features of both images and

then add the difference to the third image of an airplane that has just one engine on

each side. As shown in Figure 5.9a, the generated new shape is an airplane that has

two engines on each side. This means that the difference between the first two images

generates a feature of an engine and then adds it to the third image results in a new

airplane with two engines.

The second example was applied to the chair category. The main image is for a

chair with arms. The other images are chairs without arms. We want to test if we can

subtract the arms from the first shape and add them to the new shape. Figure 5.9b

shows that when subtracting the feature of a chair that doesn’t have arms from a chair

that has arms and then adds the new feature to a third one we get the same shape of

the third chair but with arms. This means that the difference between the two features

generates a feature that has the chair arms information. And when adding this feature

to a new image generates a shape that is similar to the input image that contains the

transferred arms.

A third example was applied to the table category. The first image is for a table

with a bottom shelf and the second image is for a table without the bottom shelf. When

we subtract the feature of the second image from the feature of the first image and

add the result to the third feature of a new image results in a table with the bottom

shelf. The generated table is similar to the third image plus the bottom shelf. As can

be seen in Figure 5.9c, the generated tables are similar to the third images where, for

example, the table with long legs preserves its geometry after adding the new feature.
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As shown in Figure 5.9, the proposed model extracts meaningful features that

contain meaningful information. These features can be used to generate real shapes

that have extra parts.

5.5.5 Comparison Results against Other Methods

We benchmark our proposed model against PSGN [123] and 3D-LMNet [137]. Both

models were trained on the same training set of ShapeNet. PSGN is the first model to

solve the problem of single-view reconstruction using CNN that generates point cloud.

The reported results in [123] show that the point cloud-based models outperform the

state-of-the-art voxel-based models significantly. Table 5.2 reports the comparison

results of our proposed model against PSGN and 3D-LMNet on ShapeNet dataset. It

is clearly shown in the table that our proposed model outperforms PSGN in 8 out of

13 categories in the Chamfer metric and all 13 categories in the EMD metric. Also,

our proposed model outperforms 3D-LMNet in 6 out of 13 categories in the Chamfer

metric and all 13 categories in the EMD metric. Overall, the average performance

of our proposed model outperforms both models in both metrics despite that our

proposed model is simple and efficient comparing with the others. Looking deeper

into Table 5.2, EMD values denote better visualization of the generated point cloud of

the objects. Also, since EMD is a point-to-point distance, it results in a high penalty

when computing the distance between the points, and the two point cloud sets should

have the same number of points. In Chamfer distance, the nearest points are used to

calculate the distance in a forward manner (from the generated point cloud to the

ground-truth) and in a backward manner (from the ground-truth to the generated

point cloud). It is not necessary that the generated point cloud and the corresponding

ground-truth have the same number of points.

Figure 5.10 highlights the qualitative comparison. It is clearly shown that the

generated point clouds by our proposed model are visualized better than the ones

generated by PSGN and 3D-LMNet. Our proposed model captures the details of the

object and generates the object parts more accurately. In the riffle image (Figure 5.10,

8th row), the small parts of the riffle are captured in more detail compared to the
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5. 3D Object Reconstruction from a Single Image

Figure 5.10: Comparison results between different methods on ShapeNet. From left to
right: input image, ground-truth, resutls generated from PSGN, results generated from
3D-LMNet, and results generated from the proposed model.
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Table 5.2: Quantitative comparison of single-view reconstruction results on ShapeNet
dataset. The metrics are computed on 1024 points after performing ICP alignment with
the ground-truth point cloud. All metrics are scaled by 100.

Category Chamfer EMD
PSGN 3D-LMNet Ours PSGN 3D-LMNet Ours

airplane 3.74 3.34 3.29 6.38 7.44 3.82
bench 4.63 4.55 4.59 5.88 4.99 4.31

cabinet 6.98 6.09 6.07 6.04 6.35 4.94
car 5.20 4.55 4.39 4.87 4.10 3.61

chair 6.39 6.41 6.48 9.63 8.02 6.45
lamp 6.33 7.10 6.58 16.17 15.8 8.45

monitor 6.15 6.40 6.39 7.59 7.13 5.94
rifle 2.91 2.75 2.89 8.48 6.08 4.25
sofa 6.98 5.85 5.85 7.42 5.65 5.03

speakers 8.75 8.10 8.39 8.70 9.15 7.37
table 6.00 6.05 6.26 8.40 7.82 6.05

telephone 4.56 4.63 4.27 5.07 5.43 3.77
vessel 4.38 4.37 4.55 6.18 5.68 4.89
Mean 5.62 5.40 5.38 7.75 7.00 5.30

generated point cloud of 3D-LMNet as it doesn’t generate the grip or the magazine

and in PSGN where these parts are almost fused with each other and they cannot

be separated. Also, our proposed model generates a well-distributed point cloud that

the points are fairly distributed on the whole shape and not concentrated in one part

or at the center of the shape. Also, this can be noticed in the chair image (Figure

5.10, 6th row) where our proposed model successfully generates and separates the

chair legs and the armrest. Thanks to the initial point cloud that helps in generating a

well-distributed point cloud. However, the other models have considered them either a

fully connected part of the chair (e.g. the armrest) or one part (e.g. the chair legs).

5.5.6 Pix3D Dataset Results

The proposed model was trained on synthetic images that are clean and the objects

appear well in the images. To test the performance of the model in real scenarios,

the Pix3D dataset is used. This dataset contains a large collection of real images and

the corresponding metadata such as masks along with ground-truth 3D CAD models
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Table 5.3: Single-view reconstruction results on the real world Pix3D dataset. All metrics
are scaled by 100.

Category Chamfer EMD
PSGN 3D-LMNet Ours PSGN 3D-LMNet Ours

chair 8.05 7.35 6.82 12.55 9.14 7.45
sofa 8.45 8.18 3.95 9.16 7.22 3.28
table 10.82 11.20 5.22 15.16 12.73 5.17

Mean 9.11 8.91 5.33 12.29 9.70 5.30

of different object categories. The shared categories between ShapeNet and Pix3D

datasets are used to test and evaluate the proposed method. The testing images are

preprocessed. The images are cropped to center-position the object of interest in the

image, and the background is masked. Then the image is resized to match the training

image size (128 × 128). The proposed model isn’t fine-tuned on the Pix3D dataset but

it is directly tested on the images.

Table 5.3 reports the quantitative results of testing Pix3D images on the proposed

model against PSGN and 3D-LMNet. The three models were trained on ShapeNet

and tested on Pix3D. The reported numbers are taken from [137]. It is clear that the

proposed model outperforms the other models by a large margin in both metrics and

on all object categories. This demonstrates the efficiency of the proposed model on

real data.

Figure 5.11 visualizes the reconstruction results of some selected Pix3D images

generated from the proposed model along with 3D-LMNet. 3D-LMNet performs well

on real-world images, but our model performs better and the generated point cloud

is more accurate and very similar to the ground-truth. Our model distributes the

points evenly on the whole object shape and covers the object parts accurately. This

shows that the proposed model generalizes well to the real-world images and generates

accurate models that describe the input images, even though the images are from a

different distribution than the training set.
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Figure 5.11: Qualitative results on chair, sofa, and table categories from Pix3D dataset.
From left to right: input image, ground-truth, results generated from 3D-LMNet, and
results generated from the proposed model.
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5. 3D Object Reconstruction from a Single Image

5.6 Discussion & Conclusion

Though single-view 3D object reconstruction is a challenging task, the well-created

human eyes and the brain have the ability to infer and predict the geometry of a scene

and the objects within it from a single image. With more complicated scenarios such

as high occlusion of the objects, the human brain is able to guess a number of plausible

shapes that could match what is seen. This is because of the prior information that is

stored in the human brain and is retrieved, utilized, and updated when seeing new

scenes. Recently, different research fields exploit the ability to reconstruct objects from

a single image in many applications such as the field of robotics in object grasping and

manipulation. However, it is an ill-posed problem and many plausible reconstructions

could be a solution for one single view due to the uncertainty.

In this chapter, we have proposed a simple, yet powerful CNN model to generate

the point cloud of an object from a single image. 3D data can be represented in different

ways. Point clouds have proven to be a common and simple representation (See Eq.

5.1). The proposed model trained end-to-end on synthetic data with 3D supervision.

It takes a single image of an object and generates a point cloud with a fixed number

of points (N = 2048). An initial point cloud of a sphere shape is used to improve the

generated point cloud. Qualitative and quantitative evaluation on synthetic and real

data demonstrate that the proposed model is able to generate point clouds that are

very close to the ground-truth and more accurate in comparison with other methods.

Moreover, we show that the initial point cloud has improved the final results as it

distributes the points on the whole object shape evenly. The qualitative results show

that the points are grouped in some object parts densely and other parts have fewer

points when the proposed model doesn’t use the initial point cloud. Furthermore, the

performance of the proposed model on the real-world dataset illustrates the outstanding

generalization to the new and unseen images and scenes.
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Conclusion and Outlook

You’ve achieved success in your field when you don’t

know whether what you’re doing is work or play.

Warren Beatty

This dissertation systematically addresses the problem of understanding objects

through a single image from geometry and semantics perspectives using deep learning.

Object geometric understanding aims to capture the 3D information of the object

within the 3D environment. This includes object viewpoint estimation, object depth

prediction, and 3D object reconstruction. Object semantics understanding focuses on

retrieving semantic information related to the object such as object classification.

This chapter summarizes the contributions and findings of the work discussed in

the dissertation. Section 6.1 discusses the contributions and outcomes of the proposed

methods. Section 6.2 lists some limitations and difficulties that emerged during the

experiments and the results. In addition, it highlights some potential future directions

that help in extending the research in the same direction.
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6.1 Summary

Nowadays, deep learning models have proven their significance in solving computer

vision tasks. In this dissertation, we proposed different deep learning models to

understand the geometry and semantics information of the objects from a single

image. These models reduced the need for hand-crafted features engineering and train

efficiently thanks to the available datasets. We approached the object understanding

task by addressing the following target tasks. Firstly, we studied the task of joint object

classification and viewpoint estimation. Then, we addressed the depth estimation task

by proposing different CNN models and defined it as pixel-wise depth estimation.

Finally, we proposed a simple, yet powerful CNN model to generate 3D point clouds

of objects by the guidance of an initial sphere. The findings and the outcomes of this

dissertation are summarized as follows:

• Object classification and viewpoint estimation are important tasks in scene

understanding. Looking closer at the nature of these tasks, we can conclude

that the represented features of both tasks are opposite to each other. On one

hand, to classify an object correctly, the network should learn it from different

orientations. On the other hand, the network has to learn the orientation of the

object accurately so that it can recognize the object’s direction. Thus, proposing

a network capable of solving these tasks requires a careful design. In Chapter 3,

we proposed a multi-task CNN model for joint object classification and viewpoint

estimation with a known bounding box around the object in the image. In

designing the network, many conditions were considered such as the extracted

features and the shared layers. As a result, the shared network performed as a

feature extractor while separated networks performed as task-specific feature

extractors. We showed that the proposed multi-task network achieved better

results than other models for this joint task on the Pascal3D+ dataset.

• Another finding in the direction of object geometry understanding is the dense

pixel-wise depth prediction from a single image. Depth estimation from a single
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image is an extremely challenging task. In Chapter 4, we proposed two different

end-to-end and single-shot trainable CNN models to estimate the depth of objects

in a scene from a single image. The first model is a fully CNN that predicts the

depth values from a single input image (Section 4.3.1). However, the proposed

model generates blurry and low-resolution depth image. To overcome this problem,

we proposed another model that solves the previous issues. Mini V-net model

(Section 4.3.2) generates a depth image that has the same resolution as the

input image with sharper features and displays more object details. Besides the

well-designed models, the chosen loss function influences the model accuracy. We

proposed to use a non-convex loss function (Tukey’s biweight loss function) to

train both models (Section 3.1). The quantitative and qualitative results proved

the importance of selecting the suitable loss function along with well-designed

models and how these factors affect the final results.

• For 3D object reconstruction from a single image, we proposed a simple, yet

powerful CNN model that can generate the 3D geometry of an object based on

point cloud representation (Chapter 5). The proposed model trained end-to-end

on a completely synthetic dataset. It utilizes an initial point cloud of a sphere to

generate well-distributed points and shape the geometry structure of the object.

The quantitative and qualitative results demonstrated that the proposed single

model outperforms other methods on both synthetic and real datasets. Moreover,

The encoder network learned to extract useful features from the 2D images that

can be used to apply the arithmetic operations on the features and generate

plausible objects. Furthermore, the model succeeded to infer plausible 3D point

clouds of objects from the single input images of ambiguous views.

All the previous contributions were achieved with the help of the data availability

and the carefully chosen loss function. In the object classification and viewpoint

estimation task, the proposed multi-task model was trained on a completely synthetic

dataset. We rendered many images from 3D synthetic models from different viewpoints.

This helped us in overcoming the problem of annotated data. Also, for the 3D object
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reconstruction task, we trained the proposed model on synthetic data. For both models,

we tested and proved the generalizability of the trained models on real data and

compared their performance against other methods. The trained models outperform

other methods on both tasks. Thus, we can conclude that synthetic data can be used

to train CNN models and overcome the problem of annotated data.

With respect to the loss function, we saw that the carefully selected loss function

improved the performance of the model. In the depth estimation task (Chapter 4), we

used a non-convex loss function and compared it against the L2 norm as another loss

function normally used for regression problems. We found that the model optimized

using the non-convex loss function outperforms the same model optimized using the

L2 norm. This demonstrates that the loss function is an essential factor that should be

carefully considered when training the model. Loss function selection depends on the

task that we want to train the model to solve.

To summarize, the proposed solutions for the above-mentioned tasks were a result

of modeling the following decisions: 1) the nature of the problem (e.g. classification,

regression, etc.), 2) the available dataset and how it is represented, and 3) the carefully

chosen loss function.

6.2 Limitations and Future Work

While the proposed CNN models, presented in the dissertation, proved the capability

to solve many tasks, there are still some limitations and potential suggestions for future

work.

• CNN models are always data-hungry due to the millions of parameters to be

optimized. To achieve a high performance of a CNN, a large-scale and well-

annotated dataset should be available. However, collecting and annotating real

data are very expensive since the collection process is time-consuming, and the

annotation process needs experts for annotating and verification. One solution

to overcome the lack of data problem is to use synthetic data for training.

Generally, synthetic data are considered as error-free ground-truth because the
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whole synthesizing process is fully-controlled. We have shown that the synthetic

data can be used for training where we rendered the images from the synthetic

models and overlayed them with real backgrounds (Section 3.5). It is also easy to

annotate them for the target task. However, there is a gap between the real data

and the synthetic data used for training as the synthetic data are not enough to

ensure the generalizability of the model. Some works attempt to generate real

and natural-looking images using GANs [145]. GANs are promising models which

can be used to generate synthetic images that look like the real ones. But still,

some generated images could contain incompatible structures. This can be solved

by adding some semantic cues while generating the images. Another direction to

overcome the lack of data issue is to consider semi-supervised and unsupervised

techniques for training. Leveraging large amounts of unlabeled data, besides a

small amount of annotated data, enables the understanding of the structure of the

data. This is because we are interested in the learned intermediate representation

which can carry useful semantic meanings that can be beneficial for other tasks.

This is an open direction of how the unlabeled data can be incorporated with

the labeled data in training CNN models.

• As we explained in Chapter 5, there are different representations for the 3D

data (multiple views, voxel, mesh, and point cloud). Each representation has

its own benefits and limitations. However, it is still unclear which one is the

most appropriate representation for 3D data. With voxel-based representation,

the shape has limited details in a simple representation. When the shape

representation has to be dense with more details, point cloud or mesh-based

representation is used. However, extending the available CNN models to work

directly on 3D data is a fresh area of research. PointNet [146] and PointNet++

[147] are examples where the proposed models work directly on point cloud-based

data for classification and segmentation. It is an interesting direction to study

how different 3D representations perform in solving different tasks, and how to

achieve full geometric and semantic understanding for objects with respect to

the invariance property (e.g. rotation).
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• One last direction is to investigate and explain the internal mechanism of the

CNN models and investigate why they succeed in solving different computer

vision tasks. During the training process, it is still ambiguous how the layers learn

useful features from the most salient regions of the images, how some filters learn

to extract the object edges, and other filters learn to extract the shape of the

objects. Likewise, other questions arise like, why the earlier layers are extracting

general features to the level that the learned parameters can be transferred to

other models while the last layers are considered as task-specific layers. One

attempt to understand the internal operation and performance of CNNs is by

visualizing the features learned by the layers [30]. Though the empirical success

of CNNs, the internal understanding and the theoretical proof behind the success

of the deep learning models in solving computer vision tasks are still missed.

To summarize, deep learning influences the computer vision community in the

current decade. This dissertation opens many research questions and opportunities

that will lead to a better understanding of future work.
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