

Real demonstration results of BEM performance simulation using BIM-SPEED Toolset

Deliverable 4.2 – Energy Performance Report – Warsaw I demo

Deliverable Report: Final version, issue date on 31.10.2022

BIM-SPEED

Harmonised Building Information Speedway for Energy-Efficient Renovation

This research project has received funding from the European Union's Programme H2020-NMBP-EEB-2018 under Grant Agreement no 820553.

Disclaimer

The contents of this report reflect only the author's view and the Agency and the Commission are not responsible for any use that may be made of the information it contains.

ENERGY REPORT – WARSAW I

Deliverable 4.2 – Energy Performance Report

Issue Date31st October 2022Produced byMOSTOSTAL (Dymarski P, Savchuk V.), RINA (Raggi E.)Version:V 01DisseminationPublic

Colophon

Copyright © 2019 by BIM-SPEED consortium

Use of any knowledge, information or data contained in this document shall be at the user's sole risk. Neither the BIM-SPEED Consortium nor any of its members, their officers, employees or agents shall be liable or responsible, in negligence or otherwise, for any loss, damage or expense whatever sustained by any person as a result of the use, in any manner or form, of any knowledge, information or data contained in this document, or due to any inaccuracy, omission or error therein contained. If you notice information in this publication that you believe should be corrected or updated, please get in contact with the project coordinator.

The authors intended not to use any copyrighted material for the publication or, if not possible, to indicate the copyright of the respective object. The copyright for any material created by the authors is reserved. Any duplication or use of objects such as diagrams, sounds or texts in other electronic or printed publications is not permitted without the author's agreement. This research project has received funding from the European Union's Programme H2020-NMBP-EEB-2018 under Grant Agreement no 820553.

page 1 - 19

Contents

TAE	TABLE OF FIGURES 3						
TAE	TABLE OF TABLES						
1.	GENER	AL INFORMATION	5				
	1.1 Building description						
	1.2	GIS and environmental data	6				
2.	ENERG	YMODELLING	7				
	2.1	BIM-to-BEM procedure and software tools used	7				
	2.2	Auditing procedures and data collection	7				
	2.3	Description of BEM's technical features	7				
		2.3.1 Envelope components and materials	7				
		2.3.2 HVAC systems	8				
		2.3.3 Occupancy, lighting, equipment and operating patterns	9				
3.	BEM CA	ALIBRATION	11				
4.	BUILDI	NG ENERGY PERFORMANCE SIMULATION RESULTS	11				
	4.1	General considerations	11				
	4.2	Energy KPIs	11				
5.	BUILDI	NG RENOVATION SCENARIOS	13				
	5.1	Renovation scenarios proposed	13				
	5.2	Scenario 1: description and results	14				
	5.3	Scenario 2: description and results	15				
	5.4 Scenario 3: description and results						
6.	5. TIME REDUCTION EVALUATION						

page 2 - 19

Table of Figures

Figure 1: Aerial view of the Warsaw I demo	5
Figure 3: Minimum, maximum and average air temperature distribution	6
Figure 5: Software tools used to complete the BIM-to-BEM procedure	7
Figure 13: Heating schedule	9
Figure 5: Occupancy, lighting and equipment schedule	10

page 3 - 19

Table of tables

page 4 - 19

1. General information

1.1 Building description

Warsaw I democase consists of three large buildings connected into one bigger, with 294 apartments in total, located in a high-density area of Warsaw. Buildings are connected to the district heating system, which is covering space heating needs and delivers heat for domestic hot water production. Below the bird's eye view of the demo.

Figure 1: Aerial view of the Warsaw I demo

Following a brief summary of the demo general data

General information				
Location	Warsaw, Poland			
Use category	Residential			
Building type	Multi-family block			
Construction year	1976			
Renovation year	-			
Number of floors	13			
Number of apartments/units	294			

Table 1: General information

page 5 - 19

1.2 GIS and environmental data

In order to apply proper environmental conditions to BEM, EnergyPlus weather file for nearest available location was included, which is POL_Warsaw.123750_IWEC. The external temperatures imported into the BEM model are showed in the following graph.

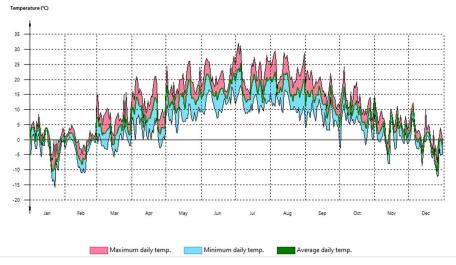


Figure 2: Minimum, maximum and average air temperature distribution

Error! Reference source not found. contains summary of general environmental data.

General environmental data					
Location	Warsaw, Poland				
Weather file	POL_Warsaw.123750_IWEC				
Altitude [m]	100				
Latitude [degrees]	52.1				
Longitude [degrees]	21.1				
Undistributed temp. of the soil [°C]	10.0				
Network water temperature [°C]	15.0				

Table 2: General environmental data

2. Energy modelling

2.1 BIM-to-BEM procedure and software tools used

To complete the BIM-to-BEM process of Warsaw I demo case, the CYPETHERM-based procedure has been applied and the following tools have been used:

Figure 3: Software tools used to complete the BIM-to-BEM procedure

The BIM model was developed with Archicad software and a proper .idf file was exported directly with the tool's utilities. Following the BimSpeed guidelines, the .idf file was uploaded to BIMserver.center platform using the Ifc Uploader provided by CYPE. Then the Open BIM Analytical Model was used to generate the analytical model of the building. A few adjustments have been required:

- a slight geometry simplification of main entrance of the building
- the adjacencies identification for those surfaces which are not in contact with surrounding air, such as walls shared with the adjacent building next.

Last step in Open BIM Analytical Model was to create thermal spaces and assign them into groups differentiating by the room purpose and usage profile. The analytical model, once generated, has been exported once again in BIMserver.center and the project has been synchronized to be open within the Open BIM Construction Systems for the characterization of the building elements under the thermal point of view, defining all types of external and internal partitions, layer by layer, providing specific physical properties for each of them.

Model updated with construction data was uploaded once again to platform and fetched into Cypetherm Eplus, in order to complete the BEM with all thermal boundary conditions (e.g. rooms temperature profiles, lighting, ventilation, occupancy) and the HVAC systems.

2.2 Auditing procedures and data collection

Draft Building Information Model for the building was available before the project has started. The gathering of the data was performed through the on-site visit and discussion with the building owner.

2.3 Description of BEM's technical features

2.3.1 Envelope components and materials

This paragraph summarises the construction systems implemented within the Warsaw I BEM to characterise the thermal behaviour of the building. Envelope and internal partitions data were collected from buildings documentation, checked by on-site assessment and aggregated into Energy data collection

page 7 - 19

spreadsheet. Gathering partitions data needed for BEM creation made the process faster and more reliable. Table 3 summarises all the materials implemented within the BEM.

Layers							
Material		e	ρ	λ	RT	Ср	
Concrete. Reinforced (with 1% of steel)		6.00	2300.00	2.30	0.03	1000.00	
EPS 5		5.00	8.50	0.08	0.63	1450.00	
Concrete. Reinforced (with 1% of steel)		14.00	2300.00	2.30	0.06	1000.00	
Gypsum (density 1200)		1.00	1200.00	0.43	0.02	1000.00	
Concrete. Reinforced (with 1% of steel)		25.00	2300.00	2.30	0.11	1000.00	
Plywood (density 500)		1.00	500.00	0.13	0.08	1600.00	
Concrete. Medium density (density 1800)		3.00	1800.00	1.15	0.03	1000.00	
EPS 3		3.00	8.50	0.06	0.54	1450.00	
Concrete. Medium density (density 1800)		2.00	1800.00	1.15	0.02	1000.00	
Used abl	breviatior	ns				<u>.</u>	
e Thickness cm	RT Ther	rmal resistanc	e (m²·K)/W				
ρ Density kg/m³	Cp Spec	cific heat J/(kg	g∙K)				
λ Thermal conductivity W/(m·K)							

Table 3:	Materials
----------	-----------

Within Table 4 all the construction systems created for the Warsaw I BEM using the Open BIM Construction Systems tool and stored within a dedicated library linked to the workflow on BIMserver.center have been reported.

Table 4: Construction systems							
External Walls_Reference name	Layers	Thickness [cm]	Total Thickness [cm]				
Data accuracy	every material present	± 1 cm	± 1 cm				
	Concrete. Reinforced 6	6					
Facade	EPS 5	5	25				
	Concrete. Reinforced 14 14						
Internal Walls_Reference name	Layers	Thickness [cm]	Total Thickness [cm]				
	Gypsum (density 1200)	1					
Partition wall	Concrete. Reinforced 25	25	27				
	Gypsum (density 1200)	1					
Slab on Grounf Floor_Ref. name	Layers	Thickness [cm]	Total Thickness [cm]				
	Plywood (density 500)	1					
Floor 0	Concrete. Medium density 3	14	22.00				
FIOOD	EPS 3	3	32.00				
	Concrete. Reinforced 14	14					
Floor Slabs_Reference name	Layers	Thickness [cm]	Total Thickness [cm]				
Floor 1	Plywood (density 500)	1	15.00				
FIOULT	Concrete. Reinforced 14	14	15.00				
Roofs_Reference name	Layers	Thickness [cm]	Total Thickness [cm]				
	Concrete. Reinforced 14	14					
Roof	Air cavity	15	43.00				
	Concrete. Reinforced 14	14					
Doors_Reference name	Door type	Thermal trar	nsmittance [W/m2K]				
Data accuracy		± 0,01					

Table 4: Construction systems

2.3.2 HVAC systems

Regarding the HVAC systems, the building is characterised by a district heating connection. No cooling systems or mechanical ventilation systems are installed. There are three types of thermal zones defined as following.

Thermal zone	Space classification	Min comfort temperature [°C]	Ventialation demand	DHW demand [l/day]
Thermal Zone 01	Occupied	20	8,3	35 per person
Thermal Zone 02	Occupied	24	13,9	35 per person
Thermal Zone 03	Not occupied	n.r.	n.r.	n.r.

2.3.3 Occupancy, lighting, equipment and operating patterns

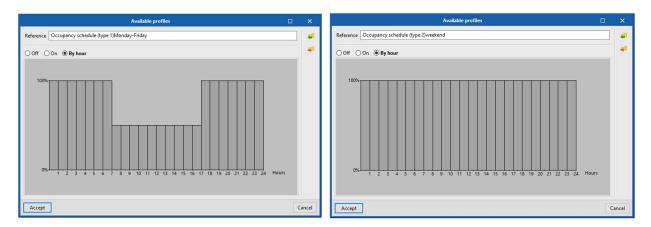
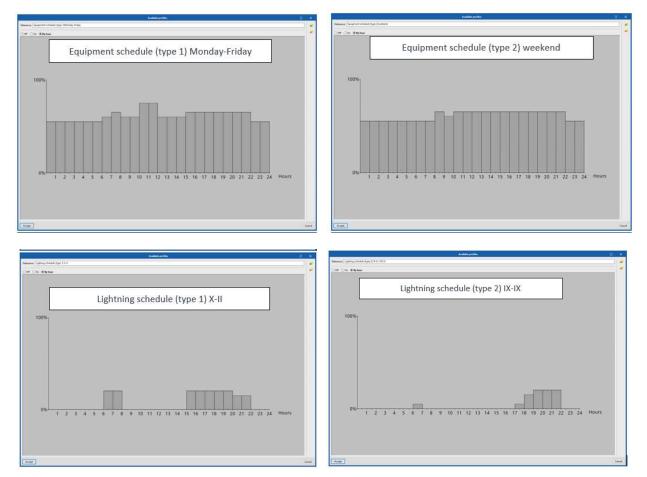
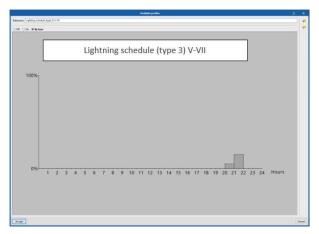

Warsaw I BEM has been characterised also under the point of view of the internal gains as summarised in following table 5.

Table 5: Internal gains features								
Thermal zone	Space classification	Installed light power [W/m2]	Internal equipment [W/m2]	Occupancy activity level [W/person]				
Thermal Zone 01	Occupied	1,9	8,3	126				
Thermal Zone 02	rmal Zone 02 Occupied		13,9	-				
Thermal Zone 03	Not occupied	-	-	-				

Relevant operating schedules and occupational patterns have been assumed based on standard residential uses and on a few information collected from the users. Following figures show a few of the patterns set for the Warsaw I BEM.




Figure 4: Heating schedule

3. BEM calibration

Owner of simulated building was not able to provide annual thermal energy utilization data. Due to the fact that calibration methodology and energy calculations with the use of CypeTherm+ were performed within P2ENDURE research project (https://www.p2endure-project.eu/en), and the demonstration building in Warsaw (from BIM-SPEED project) and demonstration buildings from P2ENDURE project have been constructed with similar construction technology, the calibration approach from P2ENDURE project was repeated for Warsaw demonstration project. In P2Endure project in Polish demonstration buildings (in Gdynia and Warsaw) were successfully calibrated basing on real annual thermal energy utilization data. Because of many similarities of both buildings, we decided to repeat calibration steps from P2Endure building energy model in current BEM case. Calibration methodology basically assumes that ventilation performance is decreased by 15% in all building's thermal spaces.

4. Building energy performance simulation results

4.1 General considerations

All openings of the simulated building have very poor thermal insulation properties with factors 3.1 W/m2K for windows and 2.6 W/m2k for entrance doors.

The highest heat consumption exists in thermal zones with highest minimum air temperature and ventilation requirements, such as bathrooms and kitchens.

4.2 Energy KPIs

The following Energy KPI have been calculated according to D4.1 descriptions.

BS.OPED: Operational Primary Energy Demand

The primary energy demand has been calculated from the final energy consumption at consumption point and multiplied by the conversion factor (specific for Poland) for final energy to primary energy. The table below summarises the primary energy demand related to natural gas and network electricity.

Table 6: BS.OPED Operational Primary Energy Demand					
BS.OPED: Operational Primary Energy Demand					
Ep [kWh/m ²]	234.64				

Energy vector	C	ef	fcep	c	f _{cep,nr}	
Lifergy vector	(kWh/year)	(kWh/m²·year)	сер	(kWh/year)	(kWh/m²·year)	Cep,nr
Coal	3411352.65	193.26	1.084	3697906.27	209.50	1.082
Electricity obtained from the network	52652.26	2.98	2.368	124680.54	7.06	1.954
Natural gas	266995.86	15.13	1.195	319060.06	18.08	1.189

Cer: Energy consumption at consumption point (final energy), kWh/m²·year.

*f*_{cep}: Conversion factor for final energy to primary energy.

C_{ep}: Primary energy consumption, kWh/m²·year.

...

BS.TED: Total Energy Demand

The energy demand of the building is the total amount of energy the technical systems of the building (heating and cooling) have to provide to maintain its indoor environment in comfortable conditions. The table below summarises the results obtained from the calculation of the heating energy demand (there is no cooling for the Warsaw II demo)

				Table 7: BS.TED Total Energy Demand											
				BS.TED: Total Energy Demand											
				QHEATING	_G [kWh	/m²yea	r]		184.6						
				QDHW [kWh/m	²year]			11.3						
				Q _{TOT} [k	«Wh/m	²year]			195.9						
		Jan (kWh)	Feb (kWh)	Mar (kWh)	Apr (kWh)	May (kWh)	Jun (kWh)	Jul (kWh)	Aug (kWh)	Sep (kwh)	Oct (kWh)	Nov (kWh)	Dec (kWh)	۲ و (kWh/year)	ear (kWh/m²·year)
BUILDING (Ş	19972 04552	3 m ² ; V = 4 562616. 1	0002/20102/1000		245059. 1	113746. 0	42346. 1	31110 4	. 30373. 7	116248. 7	251685. 9	399773. 2	528606. 6	3257841. 8	184.6
Energy demand	DHW	17007.3	15361.4	17007.3	16458.6	17007.3	16458. 6	17007 3	. 17007. 3	16458.6	17007.3	16458.6	17007.3	200246.9	11.3
	TOTAL	579623. 4	534406. 0	434238. 6	261517. 7	130753. 3	58804. 7	48117 6	. 47381. 0	132707. 3	268693. 2	416231. 9	545613. 9	3458088.	195.9

BS.TEC: Total Energy Consumption

Total Energy Consumption has been calculated directly using the simulation engine of CYPETHERM EPlus. Following table summarises Primary energy consumption for heating and domestic hot water production.

		Jan (kWh)	Feb (kWh)	Mar (kWh)	Apr (kWh)	May (kWh)	Jun (kWh)	Jul (kWh)	Aug (kWh)	Sep (kWh)	Oct	Nov (kWh)	Dec (kWh)		ear (kWh/m²·year
		(kwn)	(kwn)	(kwn)	(kwn)	(kwn)	(KWII)	(kwn)	(KWII)	(KWN)	(kWh)	(kwn)	(kwn)	(kWh/year))
BUILDING (S.	. = 17651.3	3 m²; V = 4	44714.10 m	3)											
	Heatin g	562616. 1	519044. 6	417231. 3	245059. 1	113746. 0	42346. 1	31110. 4	30373. 7	116248. 7	251685. 9	399773. 2	528606. 6	3257841. 8	184.6
Energy DHW demand	17007.3	15361.4	17007.3	16458.6	17007.3	16458. 6	17007. 3	17007. 3	16458.6	17007.3	16458.6	17007.3	200246.9	11.3	
	TOTAL	579623. 4	534406. 0	434238. 6	261517. 7	130753. 3	58804. 7	48117. 6	47381. 0	132707. 3	268693. 2	416231. 9	545613. 9	3458088. 7	195.9
	EF _{heat}	589126.8	543502.2	436891.4	256606.4	119105.8	44341.5	32576.3	31804.9	121726.4	263545.5	418610.7	553514.8	3411352.6	193.3
EPh	EPheat	638613.4	589156.4	473590.3	278161.3	129110.7	48066.1	35312.7	34476.5	131951.4	285683.3	453774.0	600010.0	3697906.3	209.5
	EP _{nr,heat}	637400. 1	588037. 0	472690. 5	277632. 8	128865. 4	47974. 8	35245. 6	34411. 0	131700. 7	285140. 5	452911. 9	598870. 0	3690880. 2	209.1
	EF _{light}	7325.2	6616.3	3662.6	3544.4	861.8	834.0	861.8	3662.6	3544.4	7325.2	7088.9	7325.2	52652.3	3.0
Coal (f _{cep} = 1.082)	EPlight	17346.0	15667.4	8673.0	8393.2	2040.7	1974.9	2040.7	8673.0	8393.2	17346.0	16786.5	17346.0	124680.5	7.1
	EP _{nr,light}	14313.9	12928.7	7157.0	6926.1	1684.0	1629.7	1684.0	7157.0	6926.1	14313.9	13852.2	14313.9	102886.4	5.8
	EFdhw	22676.4	20481.9	22676.4	21944.9	22676.4	21944.9	22676.4	22676.4	21944.9	22676.4	21944.9	22676.4	266995.9	15.1
	EPdhw	27098.3	24475.8	27098.3	26224.1	27098.3	26224.1	27098.3	27098.3	26224.1	27098.3	26224.1	27098.3	319060.1	18.1
	EP _{nr,dhw}	26962.8	24353.5	26962.8	26093.0	26962.8	26093. 0	26962. 8	26962. 8	26093.0	26962.8	26093.0	26962.8	317464.8	18.0
	Cef,total	619128. 3	570600. 4	463230. 4	282095. 7	142644. 0	67120. 3	56114. 4	58143. 9	147215. 7	293547. 0	447644. 5	583516. 3	3731000. 8	211.4
	C _{ep}	683057. 7	629299. 6	509361. 6	312778. 6	158249. 7	76265. 1	64451. 7	70247. 8	166568. 7	330127. 5	496784. 6	644454. 2	4141646. 9	234.6
	C _{ep,nr}	678676. 8	625319. 2	506810. 2	310651. 9	157512. 1	75697. 5	63892. 4	68530. 8	164719. 8	326417. 2	492857. 0	640146. 7	4111231. 4	232.9

BS.TEC: Total Energy Consumption				
EP _{heat} [kWh/m ²] 209.6				
EP _{cool} [kWh/m ²] Cooling not present				
EP _{light} [kWh/m ²]	7.1			
EP _{dhw} [kWh/m ²]	18.1			
EP _{TOT} [kWh/m ²] 234.6				

page 12 - 19

5. Building renovation scenarios

To perform and assess multiple energy simulations for building renovation scenarios, the CYPETHERM EPlus has been used taking the BEM baseline as a reference and changing the relevant parameters within the already developed BEM.

5.1 Renovation scenarios proposed

For the Warsaw I democase, the following building renovation scenarios have been assessed according to Task 7.1 premises. The following table summarises the configuration of each scenario.

	ETICS	Ventilated	Rooftop module	Windows	Second window	Indoor insualtion	PV
Scenario 01	Х		Х	Х		Х	Х
Scenario 02	Х		Х		Х		
Scenario 03		Х	Х			Х	

Table 9: Overview of the Warsaw I Renovation Scenarios

Here below the technical details of the interventions proposed..

External Walls_Reference name	Layers	Thickness [cm]	Total Thickness [cm]	
	Facing	8		
	Airgap	3		
Facada (vantilated)	Rockwool	15	51	
Facade (ventilated)	Concrete. Reinforced 6	6	51	
	EPS 5	5	-	
	Concrete. Reinforced 14	14		
External Walls_Reference name	Layers	Thickness [cm]	Total Thickness [cm]	
	Plaster	1		
	Plaster EPS 0032			
Facade		1	41	
Facade	EPS 0032	1		
Facade	EPS 0032 Concrete. Reinforced 6	1 15 6		
Facade Floor Slabs_Reference name	EPS 0032 Concrete. Reinforced 6 EPS 5	1 15 6 5		

Table 10: Technical features of the interventions

	EPS	15	
	Concrete. Reinforced 14	14	
Roofs_Reference name	Layers	Thickness [cm]	Total Thickness [cm]
	Bitumen membrane	1	
	EPS 0032	20	
- /	Bitumen membrane	1	
Roof	Concrete. Reinforced 14	14	65
	Air cavity	15	-
	Concrete. Reinforced 14	Concrete. Reinforced 14 14	
Doors_Reference name	Door type	Thermal transn	nittance [W/m2K]
M_single-flush_ext	wood external	2	61
Windows_Reference name	Window Type	Thermal transn	nittance [W/m2K]
1-Flügelfenster	plastic external	0.9	
2-Flügelfenster	plastic external		0.9

5.2 Scenario 1: description and results

In scenario 1, the following interventions has been analysed:

- ETICS have been added to the external walls;
- Insulation has been added to the roof of the building;
- Type 1 windows have been changed with better thermal properties;
- Indoor floor insulation has been added to all of the slabs;
- PV system has been installed on the roof with a yield of 43000kWh (84kWp).

The following KPIs have been calculated:

BS.OPED: Operational Primary Energy Demand

Table 11 ⁺ BS OPFD	Operational Primary	/ Fnergy Demand
10010 111 00101 10	operationari minar	

BS.OPED: Operational Primary Energy Demand					
Ep [kWh/m ²]	98.3				

BS.TED: Total Energy Demand

Table 12: BS.TED	Total Energy Demand			
BS.TED: Total Energy Demand				
QHEATING [kWh/m ² year]	93.3			
Q _{DHw} [kWh/m ² year]	11.3			
QTOT [kWh/m ² year]	104.6			

page 14 - 19

BS.TEC: Total Energy Consumption (and sub KPIs; Energy consumption for heating, cooling, lighting, DHW)

Table 101 Don Le Total Energy consumption			
BS.TEC: Total Energy Consumption			
EP _{heat} [kWh/m ²] 79.5			
EPcool[kWh/m ²] Cooling not present			
EP _{light} [kWh/m ²] 6.5			
EP _{dhw} [kWh/m ²] 18			
EΡ _{τοτ} [kWh/m ²]	ЕРтот[kWh/m ²] 98.3		

Table 13: BS.TEC Total Energy Consumption

BS.TES: Total Energy savings

BS.TES: Total Energy Savings			
	Baseline	Scenario 01	SAVING
$EP_{heat}[kWh/m^2]$	209.6	79.5	62 %
$EP_{cool}[kWh/m^2]$	Cooling not present		
EP _{light} [kWh/m ²]	7.1	6.5	8 %
EP _{dhw} [kWh/m ²]	18.1	18	0 %
EP _{TOT} [kWh/m ²]	234.6	98.3	58 %

5.3 Scenario 2: description and results

In scenario 2, the following interventions has been analysed:

- ETICS has been added to the exterior walls;
- insulation has been added to the roof.

The following KPIs have been calculated:

BS.OPED: Operational Primary Energy Demand

Table 15: BS.OPED Operational Primary Energy Demand

BS.OPED: Operational Primary Energy Demand			
Ep [kWh/m ²]	108.1		

BS.TED: Total Energy Demand

Table 16: BS.TED Total Energy Demand			
BS.TED: Total Energy Demand			
Q _{HEATING} [kWh/m ² year] 99.2			
Q _{DHW} [kWh/m ² year] 11.3			
Qтот [kWh/m ² year] 110.5			

BS.TEC: Total Energy Consumption (and sub KPIs; Energy consumption for heating, cooling, lighting, DHW)

Table 17: BS.TEC Total Energy Consumption

BS.TEC: Total Energy Consumption			
$EP_{heat}[kWh/m^2]$	83.6		

EPcool[kWh/m ²] Cooling not present	
EP _{light} [kWh/m ²]	6.5
EP _{dhw} [kWh/m ²]	18
EPTOT[kWh/m ²]	108.1

BS.TES: Total Energy savings

Table 18: BS.TES Total Energy Savings

BS.TES: Total Energy Savings			
	Baseline	Scenario 02	SAVING
$EP_{heat}[kWh/m^2]$	209.6	83.6	60 %
EP _{cool} [kWh/m ²]	Cooling not present		
$EP_{light}[kWh/m^2]$	7.1	6.5	8 %
EP _{dhw} [kWh/m ²]	18.1	18	0
EP _{TOT} [kWh/m ²]	234.6	108.1	53 %

5.4 Scenario 3: description and results

In scenario 3, the following interventions has been analysed:

- A ventilated facade with insulation has been added to the exterior walls;
- roof insulation and indoor floor insulation have been added;
- windows type 2 have been exchanged with triple glass;
- On top of the building thermal solar has been added with a yield of 80000kWh per year (84kWp).

The following KPIs have been calculated:

BS.OPED: Operational Primary Energy Demand

Table 19: BS.OPED Operational Primary Energy Demand

BS.OPED: Operational Primary Energy Demand			
Ep [kWh/m ²]	92.4		

BS.TED: Total Energy Demand

Table 20: BS.TED Total Energy Demand			
BS.TED: Total Energy Demand			
Q _{HEATING} [kWh/m ² year] 92			
Q _{DHW} [kWh/m ² year] 11.3			
Q _{TOT} [kWh/m ² year] 103.3			

BS.TEC: Total Energy Consumption (and sub KPIs; Energy consumption for heating, cooling, lighting, DHW)

Table 21: BS.TEC Total Energy Consumption			
BS.TEC: Total Energy Consumption			
$EP_{heat}[kWh/m^2]$	78.6		
EP _{cool} [kWh/m ²]	Cooling not present		
$EP_{light}[kWh/m^2]$	6.5		

EP _{dhw} [kWh/m ²]	18
EP _{TOT} [kWh/m ²]	92.4

BS.TES: Total Energy savings

Table 22: BS.TES Total Energy Savings

BS.TES: Total Energy Savings				
	Baseline	Scenario 03	SAVING	
$EP_{heat}[kWh/m^2]$	209.6	78.6	62 %	
EP _{cool} [kWh/m ²]	Cooling not present			
$EP_{light}[kWh/m^2]$	7.1	6.5	8 %	
$EP_{dhw}[kWh/m^2]$	18.1	18	0 %	
EP _{TOT} [kWh/m ²]	234.6	92.4	60 %	

page 17 - 19

6. Time reduction evaluation

Following table shows the results of the time reduction for the Warsaw I democase. The BIM SPEED process completed as previously described has been compared to the creation of a BEM using a traditional process, based on the expertise of the Mostostal's energy modeler on similar buildings.

Table 23: Time reduction analysis for the BIM-to-BEM process compared to traditional BEM creation process

		Traditional process		BIM SPEED PROCESS	
	Workflow required for the BEM creation	activity description	time required (working days)	activity description	time required (working days)
1	BUILDING DATA COLLECTION (site inspection, document/drawing analysis,), specific data for the thermal characterization are needed				
	a) direct geometrical measurements (needed if detailed and reliable technical drawings are not available)		3	Information extracted directly from BIM	0,5
	b) collection and detection of the thermal characteristics of building components (mapping of windows type, wall type)		1,5	Information extracted/partially extracted from BIM	0,5
	c) collection and identification of relevant HVAC characteristics (installed power, type of terminals,)		0,5	Not included in BIM (same for traditional process)	0,5
	d) data on building operational uses		1	Not included in BIM (same for traditional process)	1
2	Building geometry creation				
	a) 2D floorplans reconstruction from on site measurements (needed if detailed and reliable technical drawings are not available)		3	Not needed - geometrical information extracted directly from BIM	0
	b) creation of the 3D geometry of the building directly with specific Building Energy Simulation tools		5	creation of the Analytical model using BIM (just minor adjustments may be needed)	3
3	Building thermal characterisation				
	a) creation of the building components and related libraries (e.g. materials, stratigraphies)		3	the same as traditional process	2,5
	b) definition of the thermal zones (uses, internal gains - occupancy, lighting, equipment schedules - temperatures)		3	the same as traditional process	2,5
4	HVAC characterisation				
	a) creation of the HVAC components (and related libraries)		1	the same as traditional process	1
	b) definition of the systems		1	the same as traditional process	2
	TOTAL TIME REQUIRED		22		12,5

