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ABSTRACT  

 

It is envisioned that Smart power Grid will depend on a large number of renewable 

energy resources connected directly to the low and medium voltage power network(s). 

The dependence on the intermittent renewable energy resources for feeding 

consumption in real time leads to stability and reliability problems. Controllable loads 

or an active consumer network are one way to tackle these problems. Loads should be 

controlled to respond to the time of low generation to maintain the system stability 

and reliability. To control and coordinate the operation of the network with these new 

characteristics efficiently and with a certain degree of reliability, intelligent 

coordination approaches are required. 

 The thesis work aims to propose and develop algorithms to control and coordinate the 

operation among different entities within the Smart Grid. Matching between supply 

and demand aims to maximize the dependability on the renewable energy resources 

and to minimize the stability problems within power networks that depend on the 

renewable and distributed resources. Variations between supply and demand affect the 

general system stability as well as the generation and the consumption units. 

For controlling demand and supply, information and communication technology (ICT) 

play a central role in this case. Our work belongs to the research efforts that are 

directed to developing optimization and coordination technique for the future smart 

grid. Because of the distributed nature of the problem the multi-agent systems are 

proposed as computing paradigm for developing and testing the performance of the 

proposed control and optimization algorithms. Depending on using agent technology, 

we can satisfy the local constraints of different entities (consumption and generation 

units) while simultaneously satisfying global goals by using intelligent approaches for 

coordinating and adapting the agents’ actions (resources production or consumption). 

For controlling and coordinating the multi-agent actions, intelligent coordination and 

optimization techniques are required. In this work, two quantum-inspired algorithms 

for developing coordination and optimization algorithms for the future Smart Grid are 

presented. The proposed coordination algorithms depend on integrating a quantum-

inspired evolutionary algorithms and multi-agent system, which in turn controls the 

power resources for matching supply and demand within the future power network(s).
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ZUSAMMENFASSUNG 

 

Es wird erwartet, dass intelligente Stromnetze, auch Smart-Grids, von einer großen 

Anzahl Erneuerbarer-Energieressourcen, welche direkt an die Mittel- und 

Niederspannungsnetze angeschlossen sind, abhängen werden. Die Abhängigkeit von 

fluktuierenden erneuerbaren Energieressourcen bei Echtzeitdeckung der Nachfrage 

führt zu potenziellen Stabilitäts- und Zuverlässigkeitsproblemen. Steuerbare Lasten 

bzw. ein aktives Konsumnetz sind ein möglicher Weg, diese Probleme anzugehen. 

Lasten sollten gesteuert werden, um auf Zeiten geringerer Einspeisung zu Reagieren 

und damit die Systemstabilität und –zuverlässigkeit aufrechtzuerhalten. Um die 

Betreibung eines Netzes mit diesen neuen Anforderungen effizient und zuverlässig 

regeln und koordinieren zu können, sind intelligente Koordinierungsansätze 

notwendig.  

Im Rahmen dieser Dissertation werden verschiedene Steuer- und 

Koordinierungsalgorithmen für den Betrieb zwischen verschiedenen Einheiten des 

Smart-Grids vorgeschlagen und entwickelt. Die Abstimmung zwischen Angebot und 

Nachfrage zielt darauf ab, die Verlässlichkeit erneuerbarer Energien zu maximieren 

und dabei die Stabilitätsprobleme im verteilten, auf Erneuerbaren beruhenden 

Stromnetz zu minimieren. Unterschiede zwischen Angebot und Nachfrage beeinflussen 

sowohl die allgemeine Systemstabilität als auch die Angebots- und 

Verbrauchseinheiten. 

Informations- und Kommunikationstechnlogien spielen eine zentrale Rolle für die 

Steuerung von Angebot und Nachfrage. Die vorliegende Arbeit leistet einen Beitrag zu 

dem Forschungsvorhaben bzgl. der Entwicklung von Optimierungs- und 

Koordinierungstechniken für das Smart-Grid der Zukunft. Aufgrund der verteilten 

Struktur des Problems gelten Multiagentensysteme als IT-Paradigma für die 

Entwicklung und Überprüfung der Leistung von Steuer- und Optimierungsalgorithmen. 

Durch die Nutzung von Agententechnologien können die lokalen Beschränkungen der 

verschiedenen Einheiten (Nachfrage und Generierung) eingehalten werden bei 

paralleler Erfüllung globaler Ziele durch die Nutzung intelligenter Ansätze für die 

Koordinierung und Anpassung der Aktionen von Agenten (Ressourcenproduktion oder 

-konsum). Zur Steuerung und Koordinierung der Multiagentenaktionen werden 

intelligente Koordinierungs- und Optimierungstechniken benötigt. In dieser 
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Dissertation werden zwei quanteninspirierte Algorithmen präsentiert für die 

Entwicklung der Koordinierungs- und Optimierungsalgorithmen des Smart-Grids der 

Zukunft. Die vorgeschlagenen Algorithmen beruhen auf der Integration eines 

quanteninspirierten evolutionären Algorithmus und eines Multiagentensystems, 

welches wiederum die die Elektrizitätsressourcen steuert zur Ausgleichung von 

Angebot und Nachfrage im zukünftigen Stromnetz.  
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‎1.1  Introduction 
 

1 

1 INTRODUCTION 

1.1 Introduction 

On the verge of a global call to address climate change, many communities around the 

world are under pressure to change the manner in which they generate and consume 

energy. Smart Grids have become the future choice by many utility departments to 

attain bottom line goals of energy management. The future Smart Grid is predicted to 

depend on a large number of renewable energy resources that is directly connected to 

the low and medium voltage power network [1]. While such energy resources are 

climate friendly, stability and reliability are major concerns when feeding energy 

consumers in real time due to the intermittent nature of renewable energy [2]. For 

example, the generation from solar photovoltaic panels and wind turbines depends on 

volatile weather conditions. To maintain the stability and reliability of the Smart Grid, 

an effective load controlling mechanism is needed. As the number of energy devices 

and their operation constraints increase, effective demand side management becomes 

a challenging prospect. In reality, control and coordination mechanisms (e.g. load 

shaping, valley filling, load clipping) for energy management depend on the type of 

device unit under control [3] and other factors such as time of the day, weather 

situation, and users’ preferences that must be taken into consideration. 

Currently, there are great efforts directed toward realizing the power network of the 

future, namely the smart grid [4]. The current electrical power network depends 

mainly on producing power in large central generation plants, what is costly and not 

eco-friendly. The future smart grid will be operated depending on significantly large 
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numbers of small-scale highly dispersed renewable energy resources connected 

directly to the low and medium voltage power network(s). The new architecture of the 

electrical power network reduces power losses during transmission, hence reducing 

the electrical power price and carbon dioxide emissions. However, many issues need to 

be addressed to realize the full scale of the future smart grid architecture. For example, 

to operate the future power systems securely and efficiently, it is necessary to monitor 

and control output levels and power schedules when connecting a diverse number of 

units to the power system since it is typically embedded at the distribution level. 

Another challenge is related to the dynamic nature of the electrical power consumption 

that needs continuous monitoring and controlling systems to manipulate the different 

issues and to make an efficient use of the electrical power energy. Transforming future 

power loads to be active loads instead of the current passive loads is clearly an 

important element for realizing smart grids, which requires novel and intelligent 

power control mechanisms. Furthermore, the future smart grid is expected to integrate 

renewable energy resources, which are known for its intermittency and variability 

nature. While adding storage elements to stabilize and optimize the future grid is 

helpful, these elements require new mechanics to control and coordinate their 

integration in the future smart grid.  

The aforementioned issues raise the following question: How to control and coordinate 

the operation in an efficient, reliable and distributed manner, given the new 

characteristics of the system? Information and communication technology is the key to 

answer this question. In this direction, intelligent coordination and control approaches 

are required to solve the control and coordination problems for effective realizing of 

the future power grid. Agent-based systems as a distributed computing approach are 

proposed and implemented to control and coordinate the operation of different entities 

within the future power network. Agent-based systems play a vital role in building the 

smart grid that depends on renewable distributed energy resources and is operated by 

multiple actors. Through using agent technology as computing paradigm, the local 

constraints of different entities can be satisfied while simultaneously satisfying global 

goals, using approaches for coordinating and adapting the agents’ actions (e.g. 

resources production or consumption).  

On the other hand, utilizing and exploring quantum computing principles to improve 

the performance of intelligent systems is one of the active research areas nowadays. 
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This research area is concerned with studying quantum computing, which is 

characterized by certain principles of quantum mechanics, combined with 

computational intelligence or soft computing approaches [5]. Similarly, quantum-

inspired evolution algorithms combine evolution theory and the quantum information 

theory. The quantum-inspired evolutionary algorithms follow the main scheme of the 

classical evolutionary algorithms [6]. However, the population space is represented 

using quantum bits (qubits) and the evolution operators are designed using some 

features inspired by the principles of quantum mechanics, such as quantum bit 

evolution (quantum bit rotation), interference, and superposition. 

In this thesis, control and coordination approaches that integrate quantum-inspired 

algorithms with a multi-agent to coordinate supply and demand within future smart 

power networks are presented. Matching between supply and demand aims to 

minimize the variability and the voltage flicker within power networks that depend on 

renewable and distributed resources, which affect the general system stability as well 

as the generation and consumption units. We belief that quantum soft computing and 

quantum inspired computing are promising lunge for introducing intelligent 

optimization, coordination, and control approaches for future smart grids. 

The rest of this chapter is organized as follows: The next section describes the new 

characteristics of the future power network. Section 3 presents the coordination and 

optimization techniques for the future smart grid. In Section 4, the quantum and the 

quantum-inspired computing are presented. Finally, Section 6 introduces an abstract 

for the thesis chapters.  

1.2 New characteristics of the future power network  

The current electric power networks depends on generating power in large central 

generation plants, transmitting the power to the consumption areas, and then 

distributing the power inside these areas. The architecture of such power networks can 

lead to blackouts resulting in economic losses. Furthermore, this architecture results in 

inefficient power losses: About 20% of the generated power is lost the during 

transmission and distribution process. Additionally, most current power plants depend 

on classical high-emissions fuels (e.g. coal power plants) or on unsafe fuels, such as 

nuclear power plants.  
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The smart power grid is envisioned as the paradigm for introducing solutions to all 

current power networks drawbacks. The smart grid will depend on small-scale 

distributed energy resources (DER) located near the low voltage consumption areas. 

Distributing power resources minimizes power losses during transmission and 

minimizes dependability on the central generating plant, what in turn minimizes the 

risk for blackouts. The combined heat and power units (CHP), the renewable energy 

resources, and the demand response resources (DRR) are examples of such small-scale 

power resources. Recently, the United States government decided to add about 40 

gigawatts of power from combined heat and power (CHP) units by 2020 [28]. 

 

 

Figure ‎1.1: Current (left) and smart (right) power grid architecture 

The contribution of distributed generation resources in the total electricity generation 

is above 30% in a number of European countries [7]. At the same time, depending on 

renewable energy resources help to reduce carbon dioxide emissions. Figure ‎1.1 

compares the architectures of the current and the future energy network. Using DERs 

changes the way of controlling the electricity networks [8]. 
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The dynamic nature of the electrical power consumption needs continuous monitoring 

and controlling systems to manipulate the different issues and to make an efficient use 

of the electrical power energy. Controlling power loads to be active loads instead of the 

current passive loads is clearly an important element for realizing smart grids. The 

future power consumption is expected to exhibit new and different consumption 

patterns. For example, consumers give permission to the energy service providers for 

direct control for some household appliances. This enables energy service providers to 

minimize or to shift the power consumption during peaks times. Power loads will have 

different priorities, which enable the energy service providers to use the low priority 

loads as dynamic loads that can be shed during the peaks time. There are number of 

demand controlling programs, e.g. interruptible load, direct load control, real-time 

pricing and time-of-use programs [9] [10] [11]. In addition, the increased use of 

electric vehicles creates opportunities to integrate the vehicles’ batteries to play an 

important role within the demand response program [12]. Also, there are 

consumer/producer users that are called hybrid users (prosumer). Those users have 

their own resources that may be partially sufficient for their consumption sometimes 

and exceed their consumption during other times. 

 

Figure ‎1.2: Main components of the coordination and optimization system within 

the smart power Network 

The previous new consumption patterns entail monitoring consumer consumption 

continuously for defining their participation and for the billing processes. For this 

purpose, there are efforts for realizing smart metering systems [13] [14] [15]. 

Constructing smart metering systems leads to a feedback indication from the 
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consumption section to the generation section and allows to link generation with 

consumption. The integration of advanced metering technology and load control 

technologies are used to achieve positive changes in energy-using behavior [16] [17] 

[18] [19]. The main components of the system are shown in Figure ‎1.2. The question is 

how the smart meters’ output can be manipulated to match between supply and 

demand within the smart grid? The answer to this question is effective coordination 

and optimization algorithms.  

Microgrids, virtual power plants (VPP), thermal storages, and electrical storages are 

used for realizing the future smart grid. In the following section, short descriptions of 

the different building blocks for realizing the future smart grid are presented. 

1.2.1 Power Microgrids 

Because of the new characteristics within electric power networks, the expected future 

architecture of the power network relies on microgrid and local low-volt power 

networks. These microgrids depend mainly on local renewable and distributed energy 

resources for feeding the local consumption of the network. Microgrids depend on 

control, optimization, and monitoring to coordinate the local network’s consumption, 

generation and storage units. The microgrid depends on control and optimization units 

for coordinating the local power network generation and consumption [20] [21] [22] 

[23] [24] [25]. The master control unit is responsible for the operation of the microgrid 

in isolation mode or connected mode with the main power network depending on the 

local and the global supply and demand, where local refers to the onsite supply and 

demand of the microgrid. Global refers to the supply and demand of the main network. 

In isolation mode, the microgrid depends on the onsite power generation without 

connection to the main power network. The master control unit has early predictions 

about the critical time depending on the expected local consumption and generation 

curves and the load of the general power network. The master controller unit depends 

on a number of local controller units (agent) for the different power resources 

(consumption, generation, and storage units).  

1.2.2 Virtual power plants (VPP)  

Despite depending on smart metering systems, the time of use pricing, demand 

response programs, and distributed generation introduces many benefits. However, 
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there are challenges for controlling, optimizing and insuring reliability of the new 

power network. How to manage the power network with these new characteristics? 

Virtual power plants (VPPs) are one of the concepts for managing the new power 

network. VPPs are an aggregation of a number of power units (consumption and/or 

generation) interconnected by an ICT-system and operated similar to a normal 

electrical power plant. Depending on advanced ICT infrastructure, the VPP represents a 

feasible solution to be implemented [26]. VPP models can be classified into commercial 

virtual power plants and technical virtual power plants. While the first one is directed 

to market activities such as maximizing the profit of generation, the latter is directed to 

provide power system quality, reliability and security. 

1.2.3 Vehicle to grid (V2G)  

Electric vehicles (EVs) are growing in popularity as more efficient, low-emission 

alternatives to the conventional fuel-based automobile. Depleting of the classical 

energy resources, attempts to stop the nuclear power stations, and increasing the 

governmental regulations to adopt more sustainable technologies have driven the 

development of electric vehicles. A number of famous automobile manufacturing 

companies have already begun to roll out EVs from their production lines [27] [28] 

[29]. The high penetration of EVs supports developing the greenest energy system of 

the future by maximizing the renewable energy resources using through storing 

surplus power during generation peaks [30]. At the same time, EVs can be utilized to 

improve the smart grid’s reliability and stability. EV batteries can be used in frequency 

regulation [31] [32] [33] [34], minimizing the power losses in the distribution network 

[35] [36], improving the system load profile, and reducing peak demand [37] [38].  

The high penetration of electric vehicles is a challenge for the future smart grid 

operation. For example, the uncontrolled charging of EVs undesirably reshapes the 

demand power cure within the future smart grid. EVs owners go home from work most 

probably at the same period and plug-in their vehicles to charge during an already 

peak demand time. This uncoordinated and random charging of EVs could significantly 

affect the distribution system. The random and unpredictable nature of EVs activity in 

a domestic household situation entails developing a fast and adaptable real-time 

coordination strategy. Thus, intelligent coordination and optimization algorithms are 

required for avoiding or mitigating the aforementioned affects for the future smart grid 

operation. 
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1.3 Smart power grid coordination and control algorithms  

The distributed nature of consumption and the generation units dictates a 

decentralized system to accomplish the coordination and the optimization task. 

Furthermore, services that are expected to be provided by the smart grid and the 

supporting computer networks are also distributed either logically or physically. 

Recently, several approaches on coordination and optimization have been proposed in 

an effort to optimally manage the diversified energy resources of the future smart grid. 

These are classified [39] into market-based and non-market-based approaches. In this 

section, we examine a sample of such studies that we believe to be representative and 

specifically related to our topic. Although far from being exhaustive, this section gives a 

comprehensive idea of the current state of the art.  

The author in [40] follows a microeconomic principle and proposed a multi-agent 

coordination system based on market oriented algorithms, which provides a 

framework for distributed decision making. In [41], Guo et al. proposed a coordination 

algorithm, which depends on a genetic algorithm for supply and demand matching. 

This algorithm depends on a fully distributed architecture of the resources agents 

(consumption/generation), where a stigmergic memory space [42] is used for indirect 

communication among the agents. Such features make the system scalable, adaptable 

and robust. The main disadvantage of this approach is the resulting solution’s sub-

optimality. 

Powermatcher [3] is another market-based algorithm with several applications. 

Powermatcher is a coordination approach that combines microeconomic with control 

theory principles. The system depends on tree architecture of distributed agents to 

match supply and demand within the controlled area. The powermatcher concept 

depends on the COTREE algorithm described in [40] to distribute the aggregation of 

the demand function to the intermediate agent in a binary tree. A demand function 

defines the amount of power the agent wishes to consume or produce at a certain price. 

Depending on using the COTREE algorithm, the computational complexity of the 

market approach becomes O(lg p) , where p is the number of participants in the 

market. The powermatcher concept was used in simulation and real life field tests such 

as those described in [43] [44] [45]. 

The work presented in [20] focuses on auction-based algorithms to define the state of 

supply and demand for the upcoming time periods. The solution is formulated as a 
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symmetrical assignment problem. The main advantage of this algorithm is that it 

allows the operator to determine if the supply is going to meet the local demand or not. 

While helpful, the approach does not intend to alter the demand to match the supply 

and hence requires other mechanisms to optimize the consumption level. 

In [46], the developed system depends on intelligent local controllers (ILCs) to 

maximize the use of local renewable energy units and to minimize the use of local fuel 

generation units within the microgrid. Since renewable energy resources are 

intermittent by nature, the system depends on storage units and ILCs for different 

loads to reshape the consumption curve when the consumption exceeds the local 

renewable energy generation. If the renewable resources and the storage elements are 

not sufficient to feed the local loads, ILCs discard lower priority loads. If the demand 

still exceeds the production, fuel generation units are used. ILCs have communication 

and negotiation abilities to communicate together and with different household 

devices to determine the loads that need to be shifted.  

In [47], the authors demonstrate the shortcomings using price mechanisms to reduce 

consumption level during peak demand. Using a price based cap to minimize energy 

consumption for specified time intervals synchronizes the device consumption and 

leads to instant consumption peaks when the price cap is released, which then can 

affect the system stability. On the other hand, forcing devices to operate at minimal 

consumption levels for long periods of time decrease their lifetime. The authors 

suggest the use of multi-objective functions to evaluate the effectiveness of the 

coordination system to match supply and demand. The coordination approach they 

proposed depends on a modified Q-learning algorithm for reinforcement learning [48]. 

The main disadvantage of this approach is the dependency on the initial information 

about the controlled consumption area to perform the learning process. Additionally, 

depending on the estimation model of the system behavior, the expected performance 

of this approach could be unpredictable, and, hence, it is not practical for large-scale 

deployment. 

In [49], the developed algorithm is implemented using the homeotaxis principle. The 

homeotaxis principle is inspired by the biology of organisms. Specifically, the principle 

is related to the organisms’ innate behavioral response to a specific directional 

stimulus. This stimulus may be temperature (thermotaxis), light (phototaxis) or 

electric current (galvanotaxis) [50]. This model, although interesting and ingenious, 
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does not suit the expected large-scale deployment due to the complexity of estimating 

the controlled system behavior. 

1.4 The quantum and quantum-inspired computing 

Quantum Computing is a branch of theoretical computer science dealing with the 

application of quantum mechanical features for solving computational problems. It is a 

new computing paradigm for solving untractable computational problems by using the 

classical computing paradigm. Quantum computing brings together ideas from classical 

information theory, computer science, and quantum physics to manipulate the complex 

computational problems. Quantum computing mimics behavior of atoms in processing 

information, where controlled evolution of quantum particles is used as a new efficient 

computation technique for solving the complex classical computational problem. The 

main principle is that since everything in this world is composed of quantum particles, 

any kind of process might be reduced to a quantum process (at least in principle) [51]. 

Quantum computing is characterized by certain principles of quantum mechanics such 

as standing waves, interference, quantum bits, coherence, and superposition of states. 

Additionally, the mathematical apparatus of quantum mechanics could be applied to 

introduce solutions of various problems outside physics, although it was developed to 

describe phenomena in the micro-world [51]. Quantum computation can provide 

dramatic advantages over classical computation for some computational problems [52] 

[53]. 

Currently, exploiting and exploring quantum computing principles to improve the 

performance of intelligent systems is one of the active research areas. This research 

area focuses on studying computing algorithms that are characterized by certain 

principles of quantum mechanics combined with computational intelligence or soft 

computing approaches [7]. Similarly, quantum-inspired evolution algorithms combine 

the evolution theory and the quantum information theory. Quantum-inspired 

evolutionary algorithms follow the main scheme of classical evolutionary algorithms 

[54]. However, the population space is represented using quantum bits (qubits) and 

evolution operators are designed by using some features inspired from the quantum 

mechanics principles such as quantum bit evolution (quantum bit rotation), 

interference, and superposition. Quantum-inspired algorithms do not require a 

functional quantum computer. In this thesis, we exploit the extra ability of the 
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quantum-insipid evolutionary algorithm to explore global optima for the multi-

objective optimization problem using the classical computer. 

1.5 Research aims 

Optimizing and stabilizing the consumption of energy inside the local power networks 

(microgrids) is a very important step for energy networks that depend on high 

penetration of renewable energy resources. The main aim of the thesis is to develop 

optimization and control algorithms that are responsive to different situations in the 

consumption area. We aim to introduce, develop, and test coordination and 

optimization approaches, which integrate multi-agent and quantum-inspired 

algorithms to control and coordinate different building entities for smart energy 

networks (e.g. microgrids, VPP, V2G). Quantum soft computing and quantum-inspired 

computing are promising lunge for introducing intelligent optimization, coordination, 

and control approaches for the future smart power grid. The proposed algorithms aim 

to define how the optimization and the coordination algorithms can lead power 

utilization within buildings or local power networks that depend on renewable energy 

resources. The proposed control and coordination algorithms contribute to the 

research effort for building control algorithms for microgrids and to allow cooperation 

and coordination within the future Smart Grid. The steps of this work can be 

summarized into the following points: 

 Reviewing the previously developed algorithms for coordinating supply and 

demand of the smart grid 

 Modeling different power (consumption/generation) units that are used for 

testing the developed algorithm 

 Developing coordination and optimization algorithms for supply and demand 

matching within the smart grid 

 Evaluating the developed algorithm for different operation constraints  

1.6 Structure of the thesis  

The contents of the thesis can be summarized as follows: The introduction chapter 

presents an overview about the characteristics of smart grids that entail using 

intelligent optimization and coordination algorithms. The review of the related work is 

presented in Chapter 2. An introduction to quantum and quantum-inspired algorithms 

is presented in Chapter 3. The fourth chapter presents the modeling and the simulation 
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environment of the smart building energy management (SBEM). Chapter 5 illustrates 

the quantum inspired evolutionary algorithm that is developed for supply and demand 

matching. Chapter 7 presents the proposed algorithm for matching supply and demand 

within the smart building environment. The proposed algorithm for controlling and 

coordinating virtual power plant (or microgrid) is presented in Chapter 8. Conclusion 

and future work are presented in Chapter 9. In the following section, the abstracts of 

the thesis chapters are presented: 

 Chapter 2: In this chapter, the review for the related work is presented. The 

developed algorithms can be classified into market and non-market-based 

algorithms. Three non-market-based algorithms (learning, bio-inspired and genetic 

algorithms) are presented. Market-based coordination algorithms are classified into 

without-altering-demand algorithms and altering-demand algorithms. In order to 

compare the features of the different algorithms, a comparison among them 

according to number of factors is presented at the end of the chapter. 

 

 Chapter 3: This chapter introduces quantum and quantum-inspired computing. 

Quantum computing is a branch of theoretical computer science dealing with 

applications of quantum mechanical principles for solving computational problems. 

Taxonomy of the research efforts for quantum and quantum-inspired computing is 

presented. Furthermore, the principles of quantum computing and the quantum-

inspired computing are presented. The quantum-inspired evolutionary algorithm is 

presented in details. 

 

 Chapter 4: In this chapter, the modelling of different consumption and generation 

units that are used in this work is presented. As a part of that, models of 

cooling/heating appliances, dryer machines, ventilation appliances, and heater 

water coils are presented. An electric vehicle battery model is presented as a 

storage unit within the smart home energy management system.  

 

 Chapter 5: description about the evolutionary optimization algorithm that is used 

for supply and demand matching within the smart power grid is presented. In 

addition, the evaluation of the multi-objective functions is presented. 
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 Chapter 6: The simulation environment of the smart building energy management 

system is described. The different agent’s roles within the smart environment are 

presented. Monitoring and control functions used within the simulation 

environment are presented. 

 

 Chapter 7: In this chapter, we introduce a non-market-based approach that 

integrates the quantum-inspired evolutionary algorithm (QIEA) with multi-agent 

systems to coordinate supply and demand within the smart home energy 

management environment. The mathematical formulation of the optimization 

problem is presented. A number of objective functions are formulated for 

optimizing the different consumption devices’ performance and the smart building 

energy management system performance. The effectiveness of the proposed 

algorithm is tested at the end of the chapter.  

 

 Chapter 8: In this chapter, a non-market-based approach that integrates the 

quantum-inspired evolutionary algorithm (QIEA) with multi-agent systems to 

coordinate supply and demand within the virtual power plant (VPP) or microgird is 

presented. The mathematical formulation of the optimization problem is presented. 

The objective functions for satisfying the system’s optimal performance 

requirements are formulated. The system performance is tested under different 

operation conditions. 

 

 Chapter 9: This chapter introduces the conclusion and the future work of the thesis. 

1.7 Publications 

In the following, we mention the journal, and conference papers which resulted as the 

outcome of this thesis. The contents of the published contributions are modified to 

construct the thesis chapters. 

Published papers 
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2 COORDINATION APPROACHES 
FOR POWER SUPPLY AND 
DEMAND MATCHING 

2.1 Introduction 

The future power network is predicted to depend on a large number of renewable 

energy resources that are directly connected to the low and medium voltage power 

network [1] . However, when depending on the intermittent renewable energy 

resources for directly feeding consumption, stability and reliability problems arise [2] 

[34]. Controllable loads or an active consumer network (one of the demand side 

management aims [55]) are one way to tackle these problems [1]. Loads should be 

controlled to respond to the time of low generation to maintain the system stability 

and reliability. There is large number of consumers with a variety of devices with 

different operation constraints. The challenge is to control and coordinate the response 

of these large numbers of entities without affecting the local constraints of different 

entities and maintain the global goals of the system. Agent-based systems are proposed 

and being implemented to control and coordinate the operation of different entities 

inside the future power network [21] [56] [57] [58] [59] [60] [61]. Agents as 

autonomous entities can satisfy the local operation constraint for the controlled 

entities (consumption or production). Additionally, agents as reactive entities can 
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respond to the changes in their environment to satisfy global goals [20] [62] [63] [64] 

[65]. 

The developed agent-based coordination approaches generally rely on hierarchal 

systems that comprise three levels of control [24] [47] [66]. The first level is the 

coordination agent that coordinates the consumption of a number of local controller 

(LC) agents (like home energy-management units). The second level consists of the 

local controller agents for controlling sub-groups of devices, while the third level 

comprises the controller agents of different devices. Device controller agents in some 

applications are replaced by on/off switches controlled by an intelligent local 

controller (ILC) agent [46]. The ability of the coordination agent is restricted by the 

abilities of the local controller agents to plan and alter the expected consumption or 

generation of the devices under their control for a certain period. The device controller 

agent’s task is to control the device in an economical manner. Under the flexible 

operation of the generation units and consumption loads, coordination approaches can 

be used to match supply and demand. For controlling consumption loads participating 

in the coordination task, two main types of control have been identified in the 

developed coordination approaches [47] [67], price-based control (indirect control) 

and direct-load control. While the first type depends on the manual response of the 

consumers according to price signals from the energy service provider or the network 

operator, the second type ignores the consumers’ response and directly changes the 

setting of the devices under prior permission from the consumers. Some directed load 

control approaches (market-based) use price as control signal to the devices to alter 

their consumption according to the predicted market price. The approaches mentioned 

in this chapter depend on the second control type.  

2.2 Supply and demand matching algorithm  

The capabilities of the agents which represent consumers and energy production units 

in the system and the data available to these agents about the inter-operation of the 

system components distinguish the different approaches that have been developed to 

match supply and demand. Such approaches can be classified in the following two 

groups: 

 Building coordination approaches based on market-based algorithms as 

described in [23] [3] [68], depend on modeling consumer and production units 
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as bidding entities (amount of power and price). The coordination agent collects 

bids from the local controller agents, and sets the equilibrium market price for 

selling and buying power to match between supply and demand as shown in 

Figure ‎2.1. The local controller agents adjust the actual consumption or 

generation according to the new market price signal. 

 

 

 

 

 

 

 

 

 

 

Figure ‎2.1: Market based algorithm      
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 Building non-market-based coordination approaches that depend on learning, 

bio-inspired and genetic algorithms as described in [47] [66] [41], depend on 

modeling consumer and production units as entities that have planning and 

modification abilities and can calculate the predicted levels of local consumption 

and generation. The coordination agent collects consumption levels (or plans), 

and sets the permitted consumption levels according to the available supply cap 

as shown in Figure ‎2.2. 

2.3 The non-market based approaches 

The non-market based coordination algorithms depend on the ability of the local load 

controllers to maintain the operation of a group of devices within an area where power 

is consumed. This area is defined according to the user preference and the constraints 

related to the different devices’ operation limits. In [47], the authors demonstrate the 

shortcomings of using a price-following mechanism and a minimal consumption level 

mechanism for reducing devices consumption during peak demand. Using a price-

based cap to minimize energy consumption for specified time intervals synchronizes 

the device consumption and leads to instant consumption peaks when the price cap is 

released, which then can affect the system stability. On the other hand, forcing devices 

to operate at minimal consumption levels for long periods of time decrease their 

lifetime. So, they developed non-market based approaches that depend on a multi-

objective function to evaluate the effectiveness of the coordination system to match 

supply and demand. This multi-objective function combines the consumption cost with 

system stability measures (in contrast to market-based approaches which depend only 

on the price) to assess the control strategy. 

Depending on the flexible operation of the local controllers, a central coordinator for a 

group of local controllers is implemented. The task of the central coordinator is to 

allocate the dynamically available power among the different local controllers, without 

violating the constraints for the different local controllers. 

The coordinator depends on a number of local controller agents to control and 

coordinate the consumption in an active consumer area. The task of the local controller 

agents is to define the minimal energy necessary for the operation of devices under 

their control taking into account the possibilities offered by device control agents (such 

as load shifting and load reduction). This minimal level is defined by the constraints 
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related to the device operation within the limits that are defined by the manufacturer 

or by the consumer. Also, local controller agents define the unconstrained consumption 

level of the devices under their control. The unconstrained consumption level is the 

consumption of appliances without any intervention during their operation. These two 

levels, in addition to the actual consumption level, are sent to the local coordinator to 

optimize the operation of a number of local controller agents. In this system, there is no 

negotiation between agents at the same level; the coordination is accomplished 

centrally on the higher level. The task of the coordinator is to define consumption 

levels for every local controller agent (between minimal and unconstrained level), 

without violating the available supply cap. The coordination systems objective is to 

achieve a balance between different parameters in the system, resource consumption, 

stability and the stress within the system. These parameters are interdependent, which 

means that changing one affects the others so the coordinator must compromise 

between these parameters. The local coordinator is implemented using different 

approaches; descriptions about number of the developed approaches are presented in 

the following sections. 

2.3.1 Reinforcement learning 

The reinforcement learning coordination algorithm depends on a modification of the Q-

learning algorithm as an approach for reinforcement learning [47] [48]. The learning 

data comes from the market (price, supply cap) and from the local controller agents 

(the minimum consumption level, the unconstrained consumption level and the actual 

consumption during the previous period). The reward function for the coordinator 

depends on a linear weighted combination of the cost of consumption and the stability 

of the system. The coordinator has two matrices: decision matrix Q and reward matrix 

R. During the learning process the system updates the two matrices (the action and its 

reward). After the learning process the coordinator depends on the Q-matrix for the 

decision making (setting the future energy quota for the local controllers agents). The 

disadvantage of this approach is the need for initial information about the controlled 

consumption area, like the overall consumption in order to set the threshold between 

the consumption levels. At the same time, the quality of the learning process depends 

on the model that estimates the system behavior, so this approach is not practical for 

large scale problems. Figure 2.3 shows the input and output signals for the 

coordination agent. 
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Figure ‎2.3: Input and output signal of two non-market based coordination 

techniques 

2.3.2 Coordination approach depending on self-organization 
principles 

The self-organization principles algorithm is implemented using the homeotaxis 

principle [49]. The homeotaxis principle is based on a principle inspired by biology, 

where some organisms have an innate behavioral response to a specific directional 

stimulus. This stimulus may be temperature (thermotaxis), light (phototaxis) or 

electrical current (galvanotaxis) [50]. The homeotaxis approach is a domain invariant 

self-organizing control mechanism for multi-agent systems, where agents depend on a 

internal-model for predicting the environmental conditions and compare predicted 

values with the actual values of the sensors to modify their behavior. The coordination 

agent uses the signals from the local controller agents and the market signal as the 

sensor inputs of the environment. Through comparing the signals to the predicted 

values from the internal system model, it can decide on the required changes in the 

energy consumption within the system to match the demand and the available supply 

cap. The output of the coordinator represents the actuation signals to local controller 

agents that alter the devices’ consumption under their control during the next 

operation cycle. As with the previous approach, the success of the coordination task 

depends on the model that estimates the controlled system behavior. 
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2.3.3 Evolutionary algorithm 

Evolutionary algorithms (EAs) are popular metaheuristic methods to solve 

optimization problem. Coordinators depending on evolutionary algorithm are 

described in a number of papers [69] [70] [41]. In [41] a genetic algorithm was used to 

centrally calculate the predicted consumption and generation plans (sequence of 

switching state (on/off) for different resources) for a group of resources for a future 

cycle. The objective of the genetic optimization algorithm is to minimize demand (that 

is, minimizing number of concurrently turned on resources) for this group of resources 

when demand exceeds generation without affecting the local constraint for the 

individual resources.  

The authors point out that by using genetic optimization algorithms the overall 

demand of the controlled resources can be minimized without affecting the local 

constraints of individual recourses. However, the lack of required scalability and 

adaptability to sudden changes are disadvantages for this coordination approach. In 

[69] the authors tried to avoid the disadvantage of the previous central planning 

coordination approach by distributing the planning task to different resource agents 

(every resource agent prepares its own plan depending on a model for its controlled 

recourse) and sending it to an indirect communication space between agents 

(stigmergic memory space [42]). The proposed coordination system consists of four 

components as shown in Figure ‎2.4: a group of resource agents (RA), broker agents 

(BA), a memory space for indirect communication and a summarizing agent (SA). The 

resource agents represent consumers’ loads and generation units. Each resource agent 

is the decision maker and controller for the respective resource and tries to satisfy 

local constraints given the global goal (minimizing overall demand). The broker agent 

(market operator) uses information about the predicted market and network usage 

and the demand and supply of the controlled resources to construct global goals 

(supply cap or power price). The memory space is used for indirect information 

exchange between the different agents. The summarizing agent relies on plans that are 

sent by resource agents to calculate the predicted total of the resource agents’ demand 

over time. The predicted supply and demand status can be checked by resource agents 

and the broker agent. Resource agents can respond to supply cap violations by revising 

their plans for consumption by using the so-called cordcap algorithm described in [69] 

[66], without affecting the local constraints (temperature range). Using this feature, 

resources agents become reactive to the overall changes of supply and demand.  
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Figure ‎2.4: Coordination system architecture for the evolutionary algorithm 

 In [20], the authors combined the previous two coordination approaches by using a 

genetic algorithm with the architecture of the second approach to optimize the 

response of number of consumer agents, according to the supply cap dictated from the 

broker agent. This approach depends on indirect communication between the resource 

agents and the broker agents, and no synchronization is required for modifying and 

sending consumption plans from different resources. Resource agents respond to 

supply cap violations in an unsupervised manner (by revising the consumption plan). 

These features make the system intrinsically scalable, adaptable and robust as 

reported in [70] [66]. Disadvantages of this approach are that the resulting solution is 

unknown or sub-optimal [66]. 

2.4 The market based approaches  

Multi-agent coordination based on market-oriented algorithms provides a framework 

for distributed decision making based on a microeconomic theory [40]. In market-

based power supply and demand matching, resource agents send their predicted 

generation/consumption to a central coordination agent. The coordination agent 

aggregates the total supply and demand and determines the equilibrium price that 

balances between total supply and demand in the system. The equilibrium price 

represents the control signal to the resource agents to alter their 

generation/consumption according to their local constraints and the predicted market 

price. The market-based algorithms represent the half way between fully centralized 
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and fully distributed algorithms, where communications between agents are limited to 

the bids and the price signals [71]. 

There are a number of agent-based market approaches that were developed to control 

and coordinate the consumption and generation of electrical energy for different aims. 

These approaches are different depending on the goal of the coordination as well as the 

abilities of the agents to control and coordinate the operation of different entities 

within the system. One of these algorithms [20] is used to match supply and demand in 

a microgrid (small electrical power network that can be operated in either islanded 

mode or connected to the main network) during time periods in the future to decide if 

the amount of energy from local generation units (e.g. renewable energy resources) 

will be more or less than the local demand. This approach does not try to alter the 

actual demand in order to match supply and demand.  

On the other hand, there are agent-based market approaches that aim to alter the 

operation of generation and consumption devices in order to match supply and 

demand during the peak time periods or when demand exceeds the supply [3] [46]. In 

the following section, different approaches in these two directions are described. 

2.4.1 Coordination without altering demand  

The developed system in [22] depends on a hierarchal structure of the control system, 

where the control system consists of three control levels, namely distribution network 

operator (DNO) and market operator (MO) that represent the technical and market 

operation of the main electrical power network, a microgrid central controller (MGCC) 

for active low voltage areas, and local controllers (LC) for energy resources or loads. 

The information flow between different entities of the system is shown in Figure 2.5. 

The coordination system depends on multiple agents and a market-based algorithm to 

coordinate the operation inside the power microgrid between the local generation and 

consumption units, as well the exchange of power with the main grid to optimize the 

operation of the microgrid. If the local generation resources are not sufficient for the 

local demand, the microgrid can buy power from the main grid. The microgrid central 

controller uses an algorithm to optimize the local resource allocation without altering 

the demand of the local loads. The problem is formulated as a symmetrical assignment 

problem and solved by an auction algorithm as described in [20]. The auction 

algorithm is accomplished by creating a number of virtual market agents to represent 

the production and consumption units in the negotiation process among supply and 
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demand units as shown in Figure 2.6. Each market agent represents a block (certain 

amount of energy) of local energy supply or a block of local energy demand, not an 

individual production or consumption unit. The auction is and ascending multiple 

items auction (English auction), where the agents that represent the blocks of local 

supply bid to the agents that represent the demand blocks. This process continues for a 

number of iterations until the auction assigns only one supply block for each demand 

block. From the trial test reported in [20], the number of iterations increases nearly 

linear with the number of agents (range: 10 to 40 agents) that participate in the 

auction algorithm. 

 

 

 

 

 

 

 

Figure ‎2.5 Information flow between different entities 

 

 

 

 

 

 

Figure ‎2.6: Virtual market-agents for define the supply and demand status for 

period into future 
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time last several minutes or hours. They concluded that the total number of agents that 

can be implemented to represent production and consumption units is no more than 

30 agents.  

The aim of this auction algorithm for the MGCC is to make the assignment of the local 

supply to the local demand in order to determine whether the local generation is 

sufficient for the next period of local market operation or if the microgrid has to buy 

power from the main grid. At the same time, the microgrid can sell power to the main 

grid when the local generation exceeds the demand. After the auction algorithm 

finishes, the MGCC sends the computed points to the local micro generation units for 

the next operation cycle. The distributed energy resources (DER) inside the microgrid 

adjust their operation point dependent on the negotiation with the other units, their 

operational cost and the local load demands. 

2.4.2 Coordination depends on altering demand  

Two coordination algorithms depend on modifying demand for matching supply and 

demand are introduced in the following section. The first coordination algorithm 

depends on intelligent load controllers for shedding the unimportant loads during the 

peak consumption periods. The second coordination algorithm depends on the 

powermatcher concept. 

2.4.2.1  Coordination depending on intelligent load controller (ILC) abilities 

This coordination approach depends on the same control architecture as the previous 

system (2.4.1). The developed control system in [46] aims to maximize the use of local 

renewable energy units and to minimize the use of local fuel generation units within 

the microgrid. Due to the intermittent nature of the renewable energy resources, the 

microgrid coordinator depends on storage units and intelligent local controllers for 

different loads to reshape the consumption curve when the consumption exceeds the 

local renewable energy generation. The microgrid local controller monitors the local 

renewable energy resources, storage elements and the local load consumption. If the 

renewable resources and storage elements are not sufficient to feed the local loads, a 

so-called shed signal is sent to the intelligent local controllers (ILCs) to shed 

unimportant loads. If the demand still exceeds the production even after the 

unimportant load shedding, the fuel generation unit is used. On the other hand, when 

the renewable energy resources generation exceeds the demand, a charge signal is sent 
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to the control agents of the storage elements. ILCs use PLC (power line communication) 

switches to turn devices in the home on or off when they receive a signal from the local 

microgrid controller for load shedding. This means that the local controllers’ decisions 

depend on the current status of demand and supply for the microgrid only, and the 

effects of these decisions to the comfort of consumers are ignored. However, the 

system tries to minimize the effects of load shedding by dividing loads into important 

and unimportant ones.  

 

 

 

 

 

 

Figure ‎2.7: Information flow between microgrid coordinator and its controlled 

entities 

At the same time, if the user wants to use a device considered unimportant, the system 

uses a negotiation algorithm between ILCs to divide the time of shedding for 

unimportant loads among different consumers inside the controlled area. The 

information flow between the microgrid central controller and its controlled entities is 

shown in Figure ‎2.7. 

The intelligent local controller (ILC) as described in [46] has communication and 

negotiation abilities to communicate with different household devices and with other 

local controllers to accomplish negotiation when needed. Additionally, ILCs measure 

different signals like frequency, current and voltage, continuously monitor the status of 

the controllable loads (on/off) and inform the local coordinator. The developed system 

was tested under real life condition in the Kythnos Microgrid in Greece [46].  

2.4.2.2 Powermatcher concept 

Powermatcher is a coordination approach that combines microeconomic with control 

theory principles, depending on agents to match supply and demand [3] [72] [73] [74]. 
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The coordination system depends on tree architecture of distributed agents 

(powermatchers) to match supply and demand within the controlled area as shown in 

Figure ‎2.8. A powermatcher agent represents a node for consumers and producers in 

the power network, and uses a local optimization algorithm to minimize the required 

communication within the system [75]. The powermatcher concept depends on the 

COTREE algorithm developed by [40] to distribute the aggregation of the demand 

function to the intermediate agent (powermatcher) in a binary tree, where the demand 

function defines the amount of power the agent wishes to consume or produce at a 

certain price. Through using the COTREE algorithm, the computational complexity of 

the market approach becomes O(lg p) ,where p is the number of participants in the 

market [3].  

 The system operation cycle starts from the root agent in the tree, by broadcasting a 

request signal through the branches to communicate their predicated demand 

functions during a given period in the future. The predicted demand functions 

(representing the consumption curve for the device with respect to the price changes) 

are aggregated by intermediate powermatcher agents in a bottom up manner. Supply 

units are considered negative demand functions. The root powermatcher computes the 

compound supply and demand function, sets the equilibrium price for the next period 

and broadcasts this price signal back to the system. The equilibrium price represents 

the root of the compound demand function (when supply equals demand) [72]. The 

consumption and production units adjust the actual consumption and generation 

according to the new price signal (altering their operation according to the broadcast 

future market price). The leaves of the tree are resource agents which are responsible 

for the economic operation of different consumption and production units; they send 

power bids to the direct powermatcher and adjust the operation of their respective 

units after receiving updates of the general market price. The powermatcher concept 

was used in number of simulation and real life field tests [43] [44] [45]. In [44], a 

powermatcher approach is described that coordinates the operation of a virtual power 

plant that comprising 10 micro-CHP (combined heat and power) units, in order to 

achieve significant peak load reduction in the low voltage power network. 
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Figure ‎2.8: Powermatcher architecture 

With respect to the coordination of the future power networks, there are two 

coordination goals, the coordination of network technical operations and the 

coordination of business operations. With respect to a dual coordination model for the 

technical and business goals, the powermatcher concept is used to implement multi-

goal coordination model by using multi-layered powermatcher networks [76]. 

Flexibility, high scalability, standard communication inside the system and local 

autonomy of each consumer are reported advantages of the powermatcher concept 

[75] [74]. 

2.5 Comparison of supply and demand matching algorithms  

Supply and demand matching is an essential task for the operation of the future power 

network that relies on distributed renewable energy resources. Multi-agent systems 

were proposed and are being developed to coordinate the supply and demand for the 

future power network. The developed coordination algorithms can be classified into 

two approaches: market-based and non-market-based. The distribution of 

consumption and generation units and the local constraints of these units entail using a 

decentralized system for accomplishing the coordination task. All developed systems 

presented here depend on multi-agent systems for the system implementation as a 

distribution approach. There is a distinction between the decentralization of design 

and implementation, and the decentralization of the computation [40]. 

 In order to compare the features of the developed market-based and non-market 

based systems, a comparison of the developed systems according to a number of 

factors is presented now. Table 1 shows a summary of the comparison of the developed 

systems. The coordination approach that depends on reinforcement learning is the 
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only one required Pre-information about the system to define the state space for the 

system before the learning process. 

The distribution of computation among agents within the developed systems is 

different from one to the other. A number of the reported systems in this article 

depend on a central computation agent (coordinator) to lead the coordination task 

within the system, which limits the system’s ability to manipulate large-scale 

applications. More details about the advantages and disadvantages of the central 

coordination approaches for multi-agent system are reported in [71]. On the other 

hand, the third non-market based algorithm (see Table 1) represents a fully 

decentralized computation approach, where there is no central coordination agent and 

the communication between agents is indirect. So, the system is scalable for large scale 

applications. The powermatcher approach represents the half way between the fully 

centralized and the fully decentralized approaches, where part of the demand function 

aggregation is delegated to the intermediate powermacher agents. Additionally, the 

communication is standard and limited to the bids and the price signals among 

different agents within the system. 

There are differences among the developed systems with respect to the information 

requirements and the quality of the resulted solution. Approaches that use a central 

coordinator rely on complete information about the system to coordinate the system 

operation and gravitate to the point of equilibrium.  

The advantage of those approaches is that the resulting solution is most probably 

optimal. On the other hand, the third non-market based algorithm depends on partial 

information about the system, but the resulting solution is sup-optimal. Information 

requirement is limited to bids and price signals in the powermatcher approach and the 

resulting solution is pareto optimal. The required computation cost with increasing 

numbers of resource agents is an important indicator for system performance. We 

compared the developed systems according to the reported available data of 

experimental tests for the computation cost with increasing numbers of resource 

agents. While the reported data reveals that the required computation cost increased 

nearly linear in the approaches that depend on central coordinator (non-altering 

demand, reinforcement learning and self-organization), the computation cost is nearly 

constant in the fully decentralized approach (evolutionary algorithm). The 

computation cost for the powermatcher is proportional to O(lg p), where p is the 
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number of resources agent. Two of the developed systems are already used in field 

tests (ILCs and powermatcher), the others are laboratory tested. 
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Table 1: Comparison of the developed coordination systems 

While market-based algorithms suffer from a number of drawbacks as reported in [19], 

some of the non-market-based algorithms lack the required scalability due to their 

dependence on central optimization techniques, while the fully decentralized non-

market-based algorithms lack the required solution optimality. The most current 

developed approaches rely on the transfer of information (partial or complete) to a 

central coordination agent to coordinate their consumption and gravitate to the point 

of equilibrium. While these coordination algorithms might solve the supply and 

demand matching problem, the obvious question is the communication cost between 

the system entities and the scalability of these approaches for large scale applications.  



‎2.5  Comparison of supply and demand matching algorithms 
 

31 

The current coordination approaches rely on the restricted abilities of the local 

controller agents of energy resources and loads. Whenever improving local controllers’ 

abilities for computation and communication, more information and control abilities 

for the home devices can be obtained and more intelligent coordination approaches 

can be developed. At the same time, whenever improving the local controllers’ abilities, 

optimization tasks can be assigned to the local controllers to mitigate the 

communication burden and the required processing for the system coordination can be 

flattened (instead of the current hierarchal processing). 
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3 QUANTUM AND QUANTUM-
INSPIRED COMPUTING 

3.1 Introduction  

Quantum Computing is a branch of theoretical computer science dealing with 

applications of quantum mechanical principles for solving computational problems. It 

is a new computing paradigm for solving un-tractable computational problems by 

using the classical computing paradigm. Quantum computing brings together ideas 

from classical information theory, computer science, and quantum physics to 

manipulate the complex computational problems. Quantum computing mimics 

behavior of atoms in processing information, where controlled evolution of quantum 

particles is used as a new efficient computation technique for solving the complex 

classical computational problem. The main principle is that: since everything in this 

world is composed of quantum particles, any kind of process might be (at least in 

principle) reduced to quantum processes [51] [77]. Quantum computing is 

characterized by certain principles of quantum mechanics such as standing waves, 

interference, quantum bits, coherence and superposition of states. Additionally, 

mathematical apparatus of quantum mechanics could be applied to introduce solutions 

of various problems outside physics, although it was developed to describe phenomena 

in the micro-world [51] [78]. It is proved that Quantum computation can provide 
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dramatic advantages over classical computation for some computational problems [52] 

[53].  

There are number of reasons push the research for realizing quantum computers. One 

of these reasons is the Moore’s law, which states that computer power is doubled for 

constant cost roughly once every two years. As electronic devices are going to be 

smaller and smaller, quantum effects are beginning to interfere their functioning. One 

of the solutions for this problem is developing the quantum computing paradigm, 

which based on the idea of using quantum mechanics to perform computation instead 

of classical physics. Another reason for quantum computers realization is that they will 

solve certain types of problems faster than any classical computers. Prominent 

examples for hard problems are the traveling salesman problem, and the graph 

isomorphism problem, and the problem of factoring a number into primes [79]. 

Quantum computing is a new and different paradigm compared with the classical 

computing. For example, there are differences between composing state in classical 

and quantum system. Assume a classical and a quantum systems consist of number of 

subsystems which define the overall state of the two systems. To define the overall 

state of the classical system, the different states of subsystems are just permuted to 

define the individual states of the state space of system. In quantum system, the overall 

system state is defined depending on mixing the states instead of just permuting them. 

There are two parameters define the result of the mixing process, the state amplitudes 

and the state phases. State amplitudes can be amplified to enforce the desired states in 

the mixing. State phases can be used to control the constructive and destructive 

interference in the mixing process.  

There are number of features that give the quantum computation superiority higher 

than the classical computation. Quantum computation exploits the inherent parallelism 

that is provided by the superposition of the quantum state. A quantum register with n 

binary cells is able to store 2𝑛 sequences simultaneously, in contrast to a classical 

register, which can store only 1 of the 2𝑛 sequences at a time. Depending on exploiting 

the parallel process for those states, quantum algorithms can provide substantial 

exponential speedup over classical methods [80]. Thereby quantum information 

turned out to be extremely useful for speeding up or securing a number of important 

information processing and communication tasks [79]. It was proved that a quantum 

computer can factorize an integer number in polynomial time (Peter Shor's algorithm) 

[52], or search for an element within an unstructured list of "n" elements, in time 
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square root of "n" (Grover's search algorithm) [53]. Additionally, using quantum 

computer as a computing tool it could solve problems almost instantly by using qubits 

without using any transistors or chips, and in theory computer could run without 

energy consumption while being a billion times faster than the current computers [79]. 

 

 

Figure ‎3.1: Research directions for quantum computing 

The research for exploiting quantum principle for enhancing the computing ability to 

solve the complex computational problem takes several aspects. Figure ‎3.1 shows the 

research directions for the quantum computing. The first research effort is directed to 

realize the quantum computer. With the rapid development of quantum computation 

technology, some quantum computer models can be constructed [81]. Recent advances 

in nanofabrication have made it possible to create nanostructures such as quantum 

dots and quantum wells that behave like artificial atoms or molecules and exhibit 

complex quantum behavior [82]. Some physical realization methods of the qubit are 

being experimented with varying degrees of success. Quantum dot basically is a single 

electron trapped inside a cage of atoms. The electron has two energy levels, the ground 

state and the exited state. The existence of the electron in the two energy levels is 

controlled by using laser light. One laser pulse moves the electron from ground state 

represented by "0" to the existed state represented by "1". Using another laser pulse 
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the electron return to the ground state. Another method for realizing qubits depends 

on a sea of molecules (quantum liquids) to store the information instead of using a tiny 

and isolated medium for representing qubits. This quantum liquid when it held in a 

magnetic field, each nucleus within a molecule spins in a certain direction, which can 

be used to describe its state. Spinning upwards can represent a "1" state and spinning 

down can represent a "0". Nuclear Magnetic Resonance (NMR) techniques can be used 

to detect these spin states and bursts of specific radio waves can flip the nuclei from 

spinning up "1" state to spinning down "0" state and vice-versa. Unfortunately, there 

are number of practical problems face the realization of the two methods. 

Although the discovery of efficient quantum algorithm by Shor and Grover has interest 

in the field of quantum computing, it is still hard to find new quantum algorithm [83]. 

The low level of the quantum program is one of the reasons for this problem. So, there 

are research effort directed toward simulate quantum algorithms on the classical 

computer for testing and developing new quantum algorithms which called quantum 

soft computing [84]. Simulating quantum algorithms on a classical computer entails 

developing quantum programming languages [85] [86] [87]. This simulation aims to 

test and develop new quantum algorithms. Without efficient quantum algorithms, the 

power of quantum computer cannot be exploited. The third research direction directed 

toward combines the quantum mechanics principles with computational intelligence 

approaches for improving the performance of the computational intelligence 

approaches which called quantum-inspired computing [5]. Quantum-inspired 

evolutionary algorithm [88] [89] [90] [91] [92], quantum-inspired reinforcement 

learning [93] [94] [95], quantum-inspired immune clonal algorithm [96], multi-agent 

reinforcement learning based on quantum theory [97] [98] and quantum-inspired 

neural networks [99] [100] [101] are examples for the quantum-inspired algorithms.  

3.2  Quantum postulates and quantum computing  

Quantum computation is based on several principles of quantum mechanics which is a 

mathematical model that describes the evolution of physical elementary particles. 

Quantum unitary evolution, quantum interference, quantum parallelism and quantum 

entanglement are features that are used for constructing the quantum computational 

algorithms. In the following section, the interaction between quantum mechanics and 

quantum computation are presented. 
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3.2.1 Quantum system state 

Quantum mechanics is a mathematical framework for the development of the physical 

theory. Quantum mechanics stands on number of postulates, these postulates provide a 

connection between physical world and mathematical world [5]. In quantum 

mechanics the system is described by using wave function (state function) which is a 

function of all coordinates of the particles and of the time.  

Ψ=Ψ(x, y, z, t) 

By using this function the quantum system state can be expected. Wave function 

contains all the dynamic information about the system it describes. The wave function 

itself has no physical interpretation since it can be a complex function. However the 

square modulus of the wave function at state x is proportional to the probability of 

finding the system at state x. 

 In quantum computing a quantum system is represented by state vector in complex 

state space called Hilbert space. Qubit is the basic quantum unit in the quantum 

computing. System with single qubit can be mathematically represented by the Dirac 

notation as follows: 

 1|0||   

Where  and  are complex numbers, ||2 and ||2 are the probability of finding the 

system in state "0" or "1" respectively when it is measured.  Under the condition that 

||2 +||2=1. |0> = [1 0]T and |1>=[0 1]T are orthogonal vectors called the basis vector 

of the state space. For describing a composite quantum system consists of number of 

subsystems (qubits) for example three qubits. The composite system is described by 

using the tensor product of the three systems as follows:  

 
)1|0|()1|0|()1|0|(|

332211
 

 

     
 111|...............001|000|

321321321


 

       111|...............001|000|
821

   

   



‎3.2  Quantum postulates and quantum computing 
 

37 

The composite system is represented by superposition of all its basis state. The square 

of the coefficients of the basis states 
i

  that called amplitude, represent the probability 

of the basis state to be the system state when the system is measured. 

3.2.2 Quantum gate representation 

In quantum computation, most quantum algorithms are described through a quantum 

circuit that is represented as a finite sequence of quantum gates. The quantum gate 

operates on fixed number of qubits. Figure ‎3.2 describes the single and the double 

quantum gate. The first is called the phase gate that rotates the state of the qubit by  

angle. The second is called the control NOT gate that simulates the XOR operation. 

When |> is |0> the output corresponding to the quantum qubit |> and when |> is 

|1> the output is the inversion of |>. There are a lot of fundamental quantum gates 

used for constructing quantum algorithms like Hadmard gate, Pauli(X,Y,Z) gates, Toffoli 

gate and Fredkin gate[8].  

 

 

 

Figure ‎3.2: One and Two bit quantum gate 

3.2.3 Quantum system evolution  

The quantum mechanical system evolution with time is described by the following 

Schrödinger equation: 







|
|

H
dt

d
i

 

Where   is the plank’s constant depends on the system. H is a Hermitian operator 

known as the Hamiltonian of the system. If we know   and H, the system dynamics can 
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be understood completely. Through solving this equation, everything about the system 

can be known. The solution of the Schrödinger equation is as follows:  

)0()/exp()(  iHtt   

 In quantum computing the quantum system evolution is described by unitary 

transformation. This transformation is described by the following equation: 

|Ψ(t) > = U |Ψ(0) > 

Where U is unitary operator which changes the system state from |Ψ(0) > to |Ψ(t)>. 

There are a lot of unitary operators that can be used to change the quantum system 

state, depends on the required evolution of the system. There are universal unitary 

operators like the two qubits CNOT (controlled-NOT gate) UCNOT. This gate inverts the 

second qubits if the first qubit is "1", and does nothing if the first qubits is "0". 

Figure ‎3.3-a and Figure ‎3.3-b show the symbol and the matrix representation for the 

CNOT gate.  
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      (a)                                                  (b)                                                                   (c) 

Figure ‎3.3: Representation of the Controlled-NOT gate 

Where (a) The matrix representation Controlled-NOT gate (b) The symbol of 

Controlled-NOT gate and (c) The input and the output of the Controlled-NOT gate 

|a> |b> 

The output 

|a>  ab|  

0 0 0 0 

0 1 0 1 

1 0 1 1 

1 1 1 0 
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3.2.4 Quantum system observation (measurements) 

The quantum system observing requires some type of interaction with the quantum 

system called measurements. Measurements in the quantum world are accomplished 

by using collection of operators called measurements operators. The quantum wave 

function assigns probabilities for the system basis states. These probabilities define the 

different basis states probability to be the system state when the system is measured. 

When the system is measured, the wave function collapses into only one of the basis 

states. Because of basis states represent all possible outputs of a measurement, the sum 

of the state probabilities must be one. Similarly, in quantum computation, measuring 

quantum system is accomplished by using collection of unitary operators acting on the 

state space of the system that is measured. Each operator represents by a Hermitian 

matrix constitutes the spectrum of the operators.  

3.3 Quantum algorithm  

Quantum computational algorithm depends on number of operators to control 

quantum states (qubits) evolution from the initial state to the final state that by 

measuring it we could find answer for the problem. There are two parameters used to 

control quantum states evolution for the most quantum algorithms [5], the state 

amplitudes and the state phases. State amplitudes can be used to amplify desired states 

during the evolution process. State phases can be used to control the constructive and 

destructive interference for the states during the interference process. Quantum 

algorithm input is a function to investigate its qualitative property. The output of the 

algorithm is a quantitative form according to the qualitative properties of the function 

[84]. The quantum algorithm can be described by quantum circuit that is a language for 

describing the sequence of the algorithm operations to direct the system evolution 

[102]. Quantum circuit consists of sequence of unitary quantum operators (quantum 

gates) which specify the procedure of computation during the states evolution from the 

initial state to final state Figure ‎3.4 shows the general structure of the quantum 

circuits. Quantum operators that are used in the quantum algorithm can be divided into 

four groups: superposition, entanglement, interference and measurement operators. 

Each operator is embedded in quantum gate that represents certain evolution for the 

quantum states. Quantum computation exploits the inherent parallelism that is 

provided by the superposition of the quantum state. Superposition operator acts on the 

quantum register initial pure state to convert it into a superposition mixed state. 
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Figure ‎3.4: General structure of the quantum circuits 

 A quantum register with n binary cells is able to store 2𝑛 sequences simultaneously, in 

contrast to a classical register, which can store only 1 of the 2𝑛 sequences at a time. 

After that, entanglement operator is used. Entanglement is the potential for quantum 

systems to exhibit non-local correlations among subsystems that cannot be 

accomplished by classical computation. In quantum computation an entanglement is 

carried by an entanglement operator, where CNOT (controlled-not) operator can 

create the entanglement operator from superposition of quantum states. Interference 

is a familiar wave phenomenon. Wave peaks that are in phase constructively add, while 

those that are out of phase interfere destructively. Similarly, interference operators 

arrange interaction among the parallel computational paths to cancel undesired states 

and enforce expected desired state. While interference is a quantum operator with a 

classical counterpart, entanglement is a completely quantum phenomenon for which 

there is no direct classical analog. 

3.3.1 Simulating quantum algorithm on classical computers  

Design Large scale quantum computer until now is leading step [81]. For testing and 

developing quantum algorithm, simulating quantum algorithm on the classical 

computer is required. There is research effort for developing schema for simulating 

quantum algorithm on the quantum computers [83]. These efforts aim to develop a 

systematic way for design quantum algorithms and to minimize the computational 

complexity of simulating quantum algorithm on classical computers. It is proved that 

any classical function computation can be converted to quantum computation with 

certain computational complexity [103] [85]. The problem of simulating quantum 

algorithms on classical computer is the computational complexity of the algorithm and 
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the memory required. There, the matrix dimension of the unitary operator increases 

exponentially with the number of input qubits.  

The direct representation of the quantum operators is stable and precise, but the 

required memory growth exponentially with increasing the number of qubits.  So, this 

method is useful for representing quantum algorithm with small number of qubits (for 

11 qubits the memory required is about 1G bytes). The algorithm simulation for the 

quantum operator aims to avoid the total storing for the quantum operators. Thereby, 

the maximum number of qubits that can be represented on classical computer is 

affected by the number of operation that is required to calculate the operator elements 

and the required memory for storing the state vector (by this method up to 19 qubits 

or more can be represented). Compute on demand approach can lead to approach-

oriented problems related to storing infinitesimal number (1/2𝑛/2) when the number 

of qubits is high. 

3.3.2 Tools for quantum soft computing 

Quantum computation depends on number of specific transformations of an n qubits 

system. The computation cost of performing qubits transformation is important factor 

for implementing and simulating different quantum algorithms. The question is how to 

implement the efficient qubits transformation? Efficient means the implementation 

takes a number of steps that is polynomial in n [104]. Exploiting quantum computing 

features for creating new computing algorithms for complex computational problems 

require developing new building blocks that exploit the quantum parallel processing 

[104] [105] [106] [107]. Tools for quantum computing have been developed and used 

in the developed quantum algorithms. There are two sorts of tools are reported. First, 

the mixing amplitudes tools, such as the Fourier and Walsh transform. Second, the 

Selective phase change tools. Therein, the phases of certain states are changed to 

promote amplitude cancellation or amplification when states are mixed during states 

evolution. The computational cost for implementing those tools is investigated [104].  

The computational cost is reported in terms of time, calls to the oracle function for the 

algorithm and the number of additional qubits that are required for implementation. 

3.4 Quantum-inspired computing  

Exploiting and exploring quantum computing principles to improve the performance of 

intelligent systems is one of the active research areas nowadays. This research area 
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concerned with studying quantum computing that is characterized by certain 

principles of quantum mechanics combined with computational intelligence or soft 

computing approaches [5]. Research on applying principles of quantum computing to 

improve engineering of intelligent systems has been launched since late 1990s. There 

are number of quantum-inspired computing systems have been developed for solving 

the complex computational problems. Quantum-inspired evolutionary algorithm [108] 

[109], quantum- inspired reinforcement learning [93], quantum-inspired swarm 

intelligence [110] [111], quantum-inspired immune system and quantum-inspired 

neural networks [100] [112] [99] are examples for the quantum-inspired approaches. 

Through exploiting advantages of quantum computation, the inspired integrated 

algorithms by quantum principles enhance the performance of existing algorithms on 

traditional computers. Additionally, encouraging the development of related research 

areas such as quantum computer and machine learning. In the following section, the 

quantum-inspired evolutionary algorithms are shortly presented.  

  

 The quantum-inspired evolutionary algorithm 

Evolutionary algorithms (EAs) are one of the popular metaheuristic to solve 

optimization problem [55] [113] [114] [115]. The major problem of EAs is that they 

may be trapped in the local optima of the objective function. Therefore, various new 

methods have been proposed and developed. Exploiting quantum mechanics features 

for enhancing evolutionary algorithms abilities for exploring the population space to 

reach to the optimal solution is one the recent research directions. Quantum-inspired 

evolution algorithm inspired from the biological evolution (the evolution theory) and 

the unitary evolution of the quantum system (the quantum information theory). 

Where, the population space representation depends on the quantum bits (qubits) and 

the evolution operators are designed by using some features inspired from the 

quantum mechanics principles like the quantum bit evolution (quantum bit rotation), 

interference and superposition. The quantum evolutionary algorithm follows the main 

scheme of the classical evolutionary algorithm. However, the main stages of the 

algorithm are implemented upon principles of quantum computing. There are two 

types of quantum-inspired evolutionary algorithms according to the population space 

representation [108] [6]. Algorithms of the first type rely on the quantum binary 

representation for the population space [6]. The second type algorithms depend on 
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real-valued representation for the population space [108]. There are several reported 

applications of the two types for combinatorial and numerical optimization problems 

[88] [116] [117]. Quantum aspects that are employed to modify and enhance the main 

stages of classical evolutionary algorithms are briefly presented in the following area.  

 The quantum population space representation 

Quantum-inspired evolution algorithm employs binary quantum coding and real-

coding for population space representation. In binary quantum coding the qubits are 

used to represent the evolutionary genes instead of the classical binary bits [6]. Qubits 

is the basic unit in the quantum information theory. Qubits mathematically is 

represented by using the Dirac notation (there is also Heisenberg notation) as follows: 

 1|0||   

Where  and  are complex numbers, |0> =[1 0]T , |1>=[0 1]T and ||2 +||2=1 

 

 

 

 

 

 

 

 

                                       (a)                                                                     (b) 

Figure ‎3.5: The real and binary coding of the population space individuals 

Where (a) Three instances of the real-coded gene and (b) The binary qubits 

representation 

Figure ‎3.5-b shows the graphical representation of the binary qubit state. The vector 

position defines the probability of the quantum state to be "0" (||2) or to be "1" (||2) 

when it is measured or observed. The quantum population space is represented by 

using quantum chromosome (or quantum register) that contains number of qubits 

|Ψ> 

|1> 

|0> 
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(quantum genes) equal to the number of the solution variable. The quantum 

chromosome is as follows: 

),,.........,(
21 Nj

gggq   

gNgg

gNgg

j
q


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.......

21

21

  

qj Q , Q is the quantum solution space, and N is the number of solution variables 

 

While in real-coded population space, the evolutionary genes are represented by real 

pulses. Each pulse width covers the variable solution domain that it represent and its 

height is defined depends on the population space size [108] [118]. For example, if the 

real coded quantum gene represents variable x in the population space where 10<x<30 

and the population space size is M. The gene width will be 20 and the height of the gene 

will be 1/(20*M) . Through this representation, the summation of the areas of all genes 

of quantum individuals that represent the same variable is one. Figure ‎3.5-a shows 

three instance for the real-coded gene. More details and description about the 

quantum-inspired real-coded algorithm can be found in [108] [118].  

 

 Evolution of the quantum individual 

Quantum operators are used to acting to the quantum population space for creating the 

new generation. Quantum operators are represented by using rotation gates, which a 

unitary operator is acting on the qubit basis states. The general quantum operator for 

single bit is as follows: 
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The quantum bit after update by angle θ is as follows: 



















 











i

i

i

i













)cos()sin(

)sin()cos(

'

'

 



‎3.4  Quantum-inspired computing 
 

45 

There are two ways for selecting the quantum individual for reproduction according to 

their fineness. The first way evaluates the quantum individuals in the quantum 

population space. There are various stochastic and deterministic measures of quality 

for quantum individuals are possible. The second way, quantum individuals is mapped 

into the classical population space first and then evaluated. After that the best classical 

individuals are selected to update the quantum population space.  
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4 THE POWER RESOURCES 
MODELLING FOR SMART 

BUILDING SIMULATION 

ENVIRONMENT 

4.1 Introduction 

Smart building energy management (SBEM) systems are expected to be one of the 

basic building units for Smart Grid and it is expected to play a crucial role in energy 

efficiency. Innovative SBEM systems for effective control of the energy-using are 

needed. At the same time, research efforts toward more efficient use of energy dictates 

that collecting specific information about the household appliances energy 

consumption leads to maximizing the ability of using more energy conservation 

approaches [119] [120] [121] [122]. SBEM systems will be the effective controller for 

energy-using in the building and the source of information for constructing 

coordination and optimization algorithm within the local power network or microgrid. 

For simulating the SBEM system in this work, a multi-agent computing paradigm is 

used to represent the performance of the different appliances and resources in the 

simulation environments. A SBEM system relies on number of agents for controlling 

and optimizing the devices operation. Consumption appliances and energy resources 
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agents rely on device model for each device under their control. Agents use these 

models for define the operation periods (start/stop) for the appliances, which define 

the appliances power consumption. In this simulation, models are built depending on 

physical and operational characteristics of the appliances [123]. The operational 

control of energy power resources and residential devices are presented in [3]. The 

energy power resources can be classified to stochastic generation resources, 

controllable resources and storage units. The stochastic generation resources (e.g. 

solar and wind generation units) operation depend on unpredictable parameters such 

as weather conditions. Controllable resources (e.g. diesel generators) can be turned 

"on" or "off" as required. The power storage units allow usage control based on market 

prices. The residential consumption devices can be classified to shift operation devices 

(e.g. washing and drying machines), thermal buffer devices (e.g. heating and cooling 

devices) and user action devices (e.g. audio and lighting loads). In [124] the loads are 

classified into two categories: controllable and critical. Controllable loads are defined 

as the loads that can be controlled without noticeable effects to the consumers’ 

comfort. The critical load category contains loads that are either very important or 

noticeable when being controlled. 

Thus, for simulating the participation of the consumer/prosumer in the smart power 

networks and for developing coordination and control algorithms, number of models 

for the power resources, storage units and residential load models are required. These 

models can facilitate the study of changes in electricity demand in response to 

customer behavior and/or signals from the energy service provider. At the same time, 

load models are used to evaluate the proposed control and coordination algorithms 

effects to consumers’ preferences, to the general performance of the power network 

(e.g. stability and reliability) and at the distribution circuit level (e.g. the power flow). 

For appropriate modeling of loads that is used for the demand response simulation, 

some characteristics are required [123]. For example, the availability of external 

intervention to alter their default operation without affecting the constraints related to 

the device operation within the limits that are defined by the manufacturer or by the 

consumer. The variety of controllable loads should be modeled and the models should 

reflect the semi-real behaviors for the tested appliances. So, these models should be 

built depending on physical and operational characteristics of the appliances. 

Additionally, the aggregated response of the models within the local network 

(microgrid) should reflect reasonable load profile for the controlled power network. 
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 In this Chapter, number of the appliance models is presented. In addition to the 

household appliance models, the electric vehicle (EV) battery is used as onsite storage 

element for the home. Solar panel and small wind turbine generation profile are used 

to represent the renewable energy resources within the low-voltage network. In the 

following sections details and tests for the consumption device, generation resources, 

and storage element are presented. 

4.2 Residential load modeling  

For controlling and coordinating the participation of the consumer in the smart power 

networks, number of residential load models is used. These models are used for testing 

the proposed algorithms in the next Chapters. For each consumer there is minimum 

consumption level or critical loads that must be served to avoid the intervention to the 

user’ living activities. After these critical loads, the smart home management system 

can control and coordinate the other loads consumption to optimize the energy usage 

into the home. Models for shiftable and controllable appliances are required, for 

analyzing, developing control coordination algorithms for consumers’ participation in 

the smart power network. Space cooling/heating (AC) units, water heater coils (WHC), 

clothes dryer machine (CDM), and ventilation device (VD) are models that are used as a 

consumption appliances. In the following section number of residential load models is 

presented.  

4.2.1 Cooling and heating devices 

The heating and cooling devices belong to the controllable load that can be controlled 

without a lot of notable effects to users’ comfort level. The cooling and heating devices 

temperature set points can be used as a control variable to alter the energy 

consumption during the power peak consumption time [3]. The time of the start/stop 

can be used to keep the temperature between the desired temperature settings. Other 

control action, the temperature setting point for the appliance can be changed by one 

or two degree without big intervention to the users’ preferences. The start/stop cycle 

depends on fixed and dynamic parameters related to the space. The fixed parameters 

for example are space area, surface, walls and the area of the windows. The dynamic 

parameters are the difference between indoor and outdoor temperature, the 

ventilation rate and the preference of the space’s users. For modeling the operation 

model of the space heating/cooling, all of those parameters have to be taken into 
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consideration. The refrigerator operation is different which it is operated between two 

setting points (maximum and minimum) and the control actions have to be only inside 

the operation range without changing these limits. There are number of assumption for 

formulating the operation model of the space cooling /heating process [125]. The 

start/stop of the space cooling/heating appliance during the operation horizon is 

divided into sub-interval N, where n={1,…,N}. The space temperature is checked each 

sub-interval to change the appliance state (ON/OFF). The air-condition (AC) device 

operates in a range of temperature around the user’s set point )(
s
T . The appliance aims 

to maintain the space temperature between the two temperature set points (the 

minimum and maximum points). When the space temperature exceeds the maximum 

temperature point, the AC unit is turned "ON" to return the room temperature to the 

minimum temperature point and then turned "OFF". If the current temperature within 

the temperature range, the device keep the current state. The space temperature model 

can be defined by using the following equation.  

c
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Where: 

Tn  : space temperature during time slot n, 

t : period of time slot n, 

Gn : heat gain rate for the room during the time slot n, positive if the temperature 

outdoor  greater than the temperature indoor and negative if situation is opposite.  

c  : Energy needed to change the temperature one degree in the space. 

α   : cooling/ heating capacity of the AC appliance.  

WAC, n: state of the device (1/0 or ON/OFF) during time slot n. 

 

The appliance status can be represented as follows: 
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TTT
s


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
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Where: 

s
T   : user setting temperature 

min
T : minimum temperature  

:
max
T maximum temperature  

n
T   : temperature of the space during sub-interval n.  

T  : temperature range of the AC operation. 

StatusAC(n): state of the air-condition at time slot n (ON/OFF) 

 

Algorithm1: The Normal operation Algorithm for the AC appliance (thermostat control) 

 

 

Algorithm2: Controlled operation algorithm of the AC device during the simulation 
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Algorithm1 shows the operation algorithm for the device with only thermostat control. 

Algorithm2 shows the controlled operation algorithm using user temperature setting 

control, by changing the temperature setting during the peak consumption time. Also, 

by using the optimized time control plan to define the start/stop time of the device as 

long as the temperature within the desired temperature rang. The time control plan 

can be used to distribute and optimize the start/stop times for a group of appliances to 

minimize power consumption or to minimize the number of devices simultaneously 

"ON". Those control options can be used within the building energy management 

system to optimize the repeated start/stop for a group of cooling/heating devices for 

optimizing the energy use in the building. Figure 1 shows three temperature profiles 

for the AC appliance (Thermostat control, optimized time control and thermostat 

control with user temperature setting control (Ts)). The first approach, temperature 

thermostat only defines the start/stop of the device depending on the user 

temperature setting. Figure ‎4.1 shows that the start/stop times are defined depending 

on the temperature bounders (Tmin and Tmax). The second approach, the start/stop is 
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defined depending on the optimized time control plan which aims to avoid user setting 

Ts violation. Figure 1 shows that the start/stop of the device is defined within the 

operation range between the two bounders (Tmin and Tmax). The start/stop of the AC 

appliance is defined by using the optimization algorithm that is presented in the next 

Chapter. The third approach, temperature thermostat defines the start/stop time, with 

changing Ts (0.5 to 2 degrees) depending on the available power or during peak 

consumption times. For example, Figure ‎4.1 shows that Ts is increased by 1.5 degree 

during operation cycles 16 and 17. This action minimizes the normal "ON" period 

during operation 16 and shift the second "ON" period to be at the start of the operation 

cycle 18.  

 

Figure ‎4.1: Temperature profiles for three control approaches for the AC 

applicance 

 (a) Thermostat control (b) optimized Time control (c) Thermostate+ user temperature 

setting( Ts ) control ) 

4.2.2 Shiftable operation appliances 

There are number of household appliances that can be shifted from the peak 

consumption times to the low consumption times. Washing machine and dryer 
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machine are example of the shiftable appliances. The washing machine is needed to 

work for one or two hours per a day, which can be shifted to the low consumption 

times. The dryer machine (DM) can be shifted to the low consumption times or 

minimized its consumption during the operation time. In the following section the 

operation model of the dryer machine. 

  

 Operation model of the dryer machine(DM) 

The clothes dryer machine is operated for a certain time until the drying task is 

completed. The operation period can be divided into number of periods. This feature 

can be used to minimize the power consumption during the peak consumption times. 

The clothes dryer machine is turned "ON" as long as the accumulated "ON" periods are 

less than the required total time to complete a clothes dryer job. When the 

accumulated "ON" periods reach the required task total time, the clothes dryer is 

turned "OFF". A clothes dryer consists of a rotating tumbler and heating coils. The 

power consumption of the motor is usually in the range of several hundred watts (e.g. 

300 watts), while the heating coils can be several kilowatts [9]. The operation model 

for the dryer machine (DM) is as follows: 

 
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Where 
nac
TT ,  are the total required time for the dryer task and the accumulated total 

"ON" periods of the dryer machine (DM) until the sub-interval n  

 

 Controlled operation of the dryer machine(DM) 

The total task "ON" period of the dryer machine can be divided into number of "ON" 

periods according to the available power (On-period control). Controlling On-period 

distributes the operation period to minimize the device consumption according to the 

available supply cap. Also, the total operation task can be totally shifted to the high 

generation or low consumption times. Figure ‎4.2 shows the consumption curves by 

using different operation schemes for the dryer machine. The uncontrolled operation 

make consumption peak during the low generation time. The first control scheme 

minimizes the consumption during the low generation by stopping or minimizes the 
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heating coil operation time. However the total consumption still exceeds the local 

generation during the low generation time. 

 

 

Figure ‎4.2: Consumption curve by using different control scheme for the dryer 

machine 

 

Figure ‎4.3: On/Off sequence of the dryer machine for controlled and 

uncontrolled operation 

Figure ‎4.2 shows the start/stop sequence of the dryer machine by using the first 

control scheme. The second control scheme shifts totally the operation time to the high 

generation period. Figure ‎4.3 shows the On/Off sequence of the different operation 

scheme. 
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4.2.3 Ventilation appliances 

Indoor air quality is affected by humidity, odors, and contaminants. The regular 

replacement of the indoor air with outside air controls the air quality. The number of 

air replacement per hour (ARH) is defined depending on the type of the building (e.g. 

normal house, commercial building, industrial building), the area of the building, and 

the occupation (number of persons). Ventilation can be mechanical/forced (using 

fans), natural (windows), mixed and infiltration. The number of replacement for the 

tightly insulated house is between 0.41 to 0.5 ARH and for the loosely insulated house 

is between 1.11 to 1.47 ARH [126]. The required air for ventilation is calculated by 

cubic feet per minute for each person (CFM/P) or for each square feet of the space area 

(CFM/f2). The range of required outdoor air for each person is between 5 to 20 CFM/P. 

The range of required outdoor air for each square feet is between 0.12 to 2.14 CFM/f2. 

Ventilation process increases the energy needs for heating/cooling in addition to the 

energy of ventilation process. The energy recovery ventilation can be used to mitigate 

the energy consumption. In our simulation, the ventilation appliance operates for 

certain period depends on the size of the space and the number of persons in it. 

 

 Operation model for the ventilation appliance 

For controlling and coordinating the start/stop of the ventilation fan/fans (VF), the 

operation horizon is divided into number of sub-interval N (n= {1,…,N}). The indoor air 

quality (IAQ) in the space is checked each sub-interval to change the VF operation state 

(ON/OFF). We assume that VF operates in a pre-setting air quality range (ex. between 

0.2 and 1). The VF aims to maintain the space IAQ between the two IAQ setting points 

(minimum and maximum points). Measuring the air quality Model is described in the 

next section. When the space IAQ become below the IAQmin, VF unit is turned "ON" to 

return the space IAQ to the maximum quality point and then is turned "OFF". If the 

current IAQ within the air quality range, the appliance keep the VF current state. The 

operation model is as follows: 
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Where: 

:
n

IAQ  indoor air quality during the sub-interval n 

:
min

IAQ  minimum indoor air quality setting point 

:
max

IAQ  maximum indoor air quality setting point 

:)(nStatus
VF

 status of the VF during the sub-interval n 

 Indoor air quality model  

Indoor air quality (IAQ) model can be defined using the following equations, these 

equations represent the role of the air quality sensor in reality to send the actuating 

signal to the VF. For each sub-interval n equation 1,2,3 and 4 are calculated to define 

the air quality level within the space to decide the status of the VF.   

IAQ(n) = (ν1 (n) - ν3 (n) )/ ν2 (j)                          (1) 

 ν1 (n)= ν1 (n-1)+ t *VFrate* )(nStatus
VF

       (2) 

ν3 (n)= χ (n)* ν4* t  + μ * ν5* t                            (3) 

ν2 (j)= φ (j)* ν4*Pcycle+ μ * ν5* Pcycle                 (4) 

Where: 

IAQ(n ): air quality during the sub-interval n 

ν1(n)  : outdoor air volume in the space during sub-interval n 

ν2(j)   : expected required outdoor air for the space during the operation cycle j 

ν3(n)  : exhausted outdoor air in the space during the sub-interval n  

t     : duration of the sub-interval n (minutes) 

Pcycle : operation cycle period (minutes) 

VFrate : ventilation fan rate CF/hour (cubic feet per hour) 

χ(n)   : number of persons in the space during the sub-interval n (occupancy sensor) 

ν4     : required outdoor air in cubic feet per minute for each person (CFM/P)  

μ     : space area (square feet) 

ν5     : required outdoor air in cubic feet per minute for each square feet (CFM/F2)  



‎4.2  Residential load modeling 
 

57 

φ(j)   : expected number of persons during the next operation cycle j 

)(nStatus
VF

: ventilation fan status ON/OFF (1/0) 

 

Algorithm3: the operation algorithm for the space ventilation device  

 

 

 Controlled operation of the space ventilation 

Algorithm3 represents the operation algorithm of ventilation fan with and without 

control. Figure ‎4.4 and 4.5 show the controlled and uncontrolled operations of the 

ventilation fan during the low renewable energy generation. As shown in Figure ‎4.4, 

generation exceeds consumption until the operation cycle 9. Thus, the controlled and 

uncontrolled operation is identical. During operation cycles 9 to 19 the 

control/optimization algorithm is used to minimize and distribute the start/stop of the 

device without a lot of violation as possible to the air quality setting (The air quality 

setting between o.2 and 1). 
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Figure ‎4.4: space ventilation quality of the controlled and uncontrolled operation 

 

Figure ‎4.5: operation sequence of controlled and uncontrolled operation of the 

VF 

4.2.4 Heating water coils  

Normally, the user defines the setting temperature point )(
s
T  for the hot water tank. 

The heating water coil (HWC) tries to maintain the water tank temperature close to 
s
T  

defined by user. When the hot water temperature falls under defined minimum 

temperature, the heating appliance turned "ON". The heating appliance continues in the 

"ON" state until the water temperatures returns to the setting temperature by the user 

and then turned "OFF". The heating appliance keeps its status, if the hot water 

temperature is within the desired range. The status of the heating water appliance can 

be defined form the operation model as follows: 
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Where: 

s
T  : The user hot water tank setting temperature 

min
T : The minimum temperature for the hot water tank  

)(
tan

nT
k

: The temperature of the hot water during sub-interval n.  

T  : The temperature range for the appliance operation. 

StatusHWC(n): The state of the appliance at time slot n (ON/OFF) 

 

 The hot water tank temperature model  

The hot water tank temperature changes can be defined by using the following model:  
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Where: 

nhwc
w

,
: status of the water heater coil during time slot n (1/0)) 

Atank: surface area of the tank  

Vtank: volume of the tank  

Ttank: mixed water temperature in the tank 

Tinlet: inlet water temperature  

t  : duration of each time slot n  

frate(n): hot water flow rate during time slot n  

k
c

tan
  : power required to change the tank temperature by one degree. 

G(n)  : heat gain rate of the tank during the time slot n 



‎4.  The Power Resources Modelling for Smart Building Simulation Environment 
 
 

60 

Rtank   : heat resistance of the tank 

Phwc   : power capacity of the water heater (kW) 

 

 The controlled operation of HWC 

The status of the HWC can be controlled by using thermostat only, where HWC is 

turned "ON" when tank temperature falls under the minimum temperature and still 

"ON" until the tank temperature return to the user setting Ts and then is turned "OFF". 

If there is a prediction about the amount of the hot water required for the future use, 

the heating period (ON period) can be shifted before the actual time of use. Also, the 

heating period can be controlled (can be divided to a number of "ON" periods) 

according to the available power.  

4.3 Storage units for the smart power grid  

The energy storage units will play a crucial role for exploitation of the renewable 

energy resources. Several electricity storage technologies are under development (e.g. 

lithium-ion batteries, plug-in hybrid electric vehicles) [127]. On the other hand, new 

technologies for thermal energy storage are now available (such as hot salt tanks). The 

plug-in electric vehicles (PEV) are expected to play an important role for minimizing 

emission and to be an important storage element within smart power grid [36] [128]. 

The battery capacity and the charging rate are key factors for the battery operation and 

for studying the participation of the PEV batteries into the demand side management. 

The battery operation is normally limited to a given charging and discharging level to 

avoid damage and for increasing the battery life of use [122]. The allowed energy state 

of the battery is limited to state of charging maximum (SOCmax) and state of charging 

minimum (SOCmin). The available battery capacities and the available chargers are 

reported in [123] [36] [129]. In Belgian, government statistics states that there are 

three categories of PEV (10, 20 and 30 kwh) and two types of chargers available at 

home and at work (3.3 and 7.2 kw) [129]. In Australia, depending on limitation of the 

household wiring, the expected chargers rate range from 2.4 to 4 Kw for single-phase 

connection and about 16.6 kw for three-phase connection [36]. In PEVs market, the 

battery capacities range from 16 to 53 kwh and the charging rate range from 1.9 to 9.6 

kw [9]. In the following section, PEV battery model is presented. 
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 PEV battery model 

For simulating and analyzing the PEV batteries participation into the smart power grid, 

a battery model is required. The battery model for charging and discharging is non-

linear depending on several variables, like the battery state of energy, the internal 

resistance, the output voltage, and the maximum and the minimum voltage allowed for 

the battery [121]. In this work for simplicity, a linear model for the PEV battery 

charging/discharging is used. The vehicle battery is used as own storage element for 

the smart home management system. This battery is charged or discharged for more 

exploitation of the local renewable energy resources. The operation status of the 

battery (charging, discharging, and stop) is defined depending on, the state of charge of 

the battery (SOC), the connectivity state (CS) and the supply-demand state (SDS). The 

battery operation model is defined using the following equations: 
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The battery SOC can be updated as follows: 
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Where: 

nEV
BA

,
: battery availability during the time slot n  

nEV
CS

,
: connectivity state of the battery during the time slot n  

j
SDS  : expected supply and demand state during the operation cycle j  

)(nstatus
EV

: operation status of the battery during the time slot n  

)(nSOC
Ev

 : battery state of charging during the time slot n 

t    : Length of the time slot n (minutes) 

batt
C   : Battery rated capacity (kWh) 

max
SOC  : maximum state of charge of the battery  

min
SOC  : minimum state of charge of the battery 

disch
P     : discharge rate of the battery (kw) 

ch
P       : charging rate of the battery (kw) 

 

 Analyzing the battery performance depending on charging/discharging rate  

In this section the battery model performance with different charging and discharging 

rates is presented. The ability of the storage element to reshape the local power curves 

and the local demand curve depends on a number of parameters, like the capacity of 

the battery, the charging rate, the discharging rate, and the running cost of the battery. 

There are number of technologies for building storage elements which is different in 

price, life cycle, capacity, charging and discharging rates [123] [129].  



‎4.3  Storage units for the smart power grid 
 

63 

 

Figure ‎4.6: Power curves for the SBMS with depending on the local renewable 

energy resources and the storage elements 

 

Figure ‎4.7: Local power curves with using batteries with different charging rate: 

Battery-1) 1 kw, Battery-2) 2.5 kw, Battery-3) 6.5 kw, and discharging rate for all is 2.5 

kw 
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While, discharging rate defines the ability of the battery to cover the consumption 

peaks, charging rate define the ability of the battery to clipping the variable generation 

peaks which also affects the amount of modification to the consumption curve. 

Figure ‎4.6 shows the power curves for a smart home energy management system 

(SHEMS), the onsite renewable energy supply curve, the modified local power curve by 

using battery, the actual consumption curve (using the developed optimization 

algorithm Chapter 7) and the battery charging state curve. When the modified 

generation curve (Generation+ Battery) exceeds the supply cap curve, this mean the 

battery in discharging state to cover the consumption peak. When the modified 

generation curve under the supply cap curve, this is mean that the battery in charging 

state to store the surplus power above the local consumption. When the modified 

generation curve and the supply cap curve identical, this is mean there is no charging 

or discharging for the battery or the battery is not available in this time. 

 

Figure ‎4.8: Local power curves with using batteries with different discharging 

rate 

Battery-1) 1 kW, battery-2) 2 kW, battery-3) 2.5 kW  and charging rate is 3.5 kW 

 

Figure ‎4.7 illustrates modifications to the local supply cap curve by using the same 

renewable energy resources and batteries that have different charging rate and the 
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same discharge rate. The higher battery charging rate produces lower peaks power 

curves (G+battery-3). This is because the battery able to cover the consumption peaks 

without a lot of consumption shifting. At the same time, the bottoms of the curve 

(G+battery-3) are deeper, which refers to more exploitation (storing) for the local 

renewable generation. 

Figure ‎4.8 shows the comparison among the local supply cap curves by using the same 

renewable energy resources and batteries with different discharging rate and the same 

charge rate. The lower battery discharging rate produces lower peaks power curves, 

this is because the low discharge rate distributes the storage power over long 

operation period (G+battery-1 curve during operation cycle 21 to 26). This increases 

the power stress within the home, which is the unsatisfied power or the shifted power 

from the high consumption period to the low consumption period. When the 

consumption exceeds the generation by amount of power greater than the ability of the 

battery to cover totally, the modifications by the storage element to the local power 

curve is uniform (by the maximum rate). Whenever increasing discharge rate, waving 

in the local power supply curve appears (e.g. G+battery-2 and G+battery-3 curves 

during the operation cycles 21 to 26). The high consumption peaks appears because 

there is shifted consumption from the low generation operation cycle (before 

operation cycle 21). The high discharge rate makes high consumption peaks after the 

controlled consumption period. So, this is the place of the battery optimization 

algorithm that has to be used by the battery agent to define the amount of power and 

the time of participation for battery charging and discharging taking into consideration 

users’ preference, technical and economic considerations. 

4.4 Renewable generation resources modeling 

The use of small-scale generation units for Onsite consumption is becoming more 

widespread due to efforts that aim to reduce greenhouse gas emissions, as well as the 

desire to improve system flexibility and security. With increasing dependence on 

distributed energy resources and intelligence in the electricity infrastructure, the 

possibilities for minimizing costs of household energy consumption increase [8]. As 

penetration of distributed resources increases, there are growing needs to studying, 

modeling and testing the composite behavior of groups of distributed generation (DG) 

resources.  
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Figure ‎4.9: Three wind turbine generation profiles for a day (5 , 7, 10) kw 

 

Figure ‎4.10: Three photovoltaic units' generation profiles for a day 

Micro wind turbines, photo-voltaic arrays (PV), and micro combined heat and power 

(MicroCHP) are three technologies currently in use as a small scale DG. Wind turbines 

have been utilized for many years, and their operating characteristics are well known. 

Typically, a wind turbine has an associated power curve, which provides the 

relationship between the output power and the input wind speed. This graph can be 

used to determine the output power from any given input wind speed, whether this is a 

single wind speed, or a probability distribution of wind speeds [130]. Photovoltaic cells 

(PV) are an old technology, have only become viable for electricity production with the 

recent increase of semiconductor conversion efficiencies. PV generators derive their 

power output from solar irradiance over the area of the array. In the following section, 
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the generation profiles for the residential renewable energy resources that are used in 

our work are presented. 

 

 Residential wind turbine generation profile  

The wind generation forecast is procured based on the typical wind power curve and 

generated wind speed data. The mean daily wind speed is 10 m/s, which follows a 

Weibull distribution function with Weibull coefficient equal to 2.1 [30]. The variations 

of the wind speed average over the seasonal, monthly, diurnal and even short term 

(less than 10 minutes) which affect the predicted generation from the wind turbine 

[130]. The wind speed is also very dependent on the location. Differences between two 

sites close to each other can be significant. For testing using onsite residential wind 

turbine in this work, generation function for the wind energy resources is 

implemented. Figure ‎4.9 shows the three generation curves for residential wind energy 

unit as a renewable energy rescores for feeding homes locally. 

 

 Residential photovoltaic unit generation profile  

Generation function for residential photovoltaic unit is used for emulating the 

generation profile of the household solar panel. Figure ‎4.10 describes three generation 

curves for small solar energy unit used as a renewable energy rescores for homes. 
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5 QUANTUM-INSPIRED 
EVOLUTIONARY ALGORITHM 

FOR SUPPLY AND DEMAND 

MATCHING  

5.1 Introduction  

Due to the current trend towards depending on the distributed energy resources 

(DER), coordination and optimization software is required. The distribution natural of 

the small scale and renewable energy resources entails depending on distributed 

software connected with communication networks to coordinate the resources 

operation. Recently, several coordination and optimization approaches have been 

proposed for optimally manage the diversified energy resources of the future Smart 

Grid. These approaches are classified in [39] into market-based and non-market-based. 

Market-based algorithms depend on modeling consumer and production units as 

bidding entities (amount of power and price). The central agent (coordinator) collects 

bids from consumer and production units, and sets the equilibrium market price for 

selling and buying power to match between supply and demand. Non-market-based 

coordination approaches depend on modeling consumer and production units as 

entities that have planning and modification abilities and can calculate the predicted 
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levels of local consumption and generation. The central agent (coordinator) depends 

on a searching algorithm (learning, bio-inspired and genetic algorithms) and multi-

objective functions for optimally allocating the available power for matching supply 

and demand. 

The developed algorithm is a non-market-based coordination approach [41] [66] [47] 

uses coordination agents that collect consumption levels from sub-agents, and set the 

permitted consumption levels according to the multi-objective functions that takes the 

available supply cap and the system stability into consideration. In this chapter, a 

quantum-inspired evolutionary optimization that is used for coordinating multi-agent 

operation within the Smart Grid for matching supply and demand is presented. 

The rest of the chapter is organized as follows: The next Section describes the quantum 

inspired optimization algorithm proposed. The third Section introduces the multi-

objective functions evaluation.  

5.2 The quantum-inspired evolutionary algorithm 

Quantum-inspired evolution algorithms combine the evolution theory and the 

quantum information theory. There, the solution space is represented using quantum 

bits (qubits) and the evolution operators are designed using some features inspired 

from the quantum mechanics principles like the quantum bit evolution(quantum bit 

rotation), interference and superposition. In our implementation, we rely on the 

quantum-inspired evolutionary algorithm (QIEA) that is developed in [118] [108], 

which depend on a real-valued representation for the solution space for solving the 

coordination agent optimization problem. It is reported that this algorithm introduces 

superior performance when compared to classical and other quantum-inspired 

evolutionary algorithm. 

The quantum-inspired evolutionary algorithm uses quantum chromosomes to 

represent solution individuals. Each chromosome consists of a number of qubits that 

represent the solution variables. We represent each device agent power requirements 

by a quantum-like gene 
i
g  in optimization problem. The quantum genes represent the 

controller agents’ consumption range (or period of consumption) in the quantum 

population space. The quantum population space contains a set of quantum individual 

qj Q  j {1,…,M}, where Q is the quantum population space and M is the size of this 

space. Each quantum individual contains N genes qj = [g1, g2,…, gN]. Each gene is 
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represented by two values, the mean and the width of the local controller agent 

consumption range
i
x .  

There is analogy between the mentioned quantum-inspired evolutionary algorithm and 

the quantum computation algorithm. Quantum computing algorithms have four main 

stages [79], the initialization stage, the superposition stage, entanglement stage and the 

measurements stage. Figure ‎5.1 shows the algorithm flowchart. The first stage is the 

quantum population space initialization. The initialization of the quantum population is 

carried out by generating number of quantum individuals with random mean inside 

the problem domain and with width equal to the total domain width. One of the 

advantages of the quantum inspired evolutionary algorithm over the classical genetic 

evolutionary algorithm(GEA) is the fair distribution of the solutions inside the problem 

domain which minimize the probability for tripping in local minimum or local 

maximum solutions which is one of the shortcomings of the classical GEA. The second 

stage is the superposition of the quantum individual genes. This step is accomplished 

by the probability density function (PDF) formulation for each quantum gene, where 

the individual quantum genes existence defines the probability distribution of different 

solutions in the problem domain. PDF is similar to the wave function |  in the 

quantum mechanics world, which specifies the probability of the quantum particle 

existence in the space around atom [79]. There is no step represents entanglement in 

this quantum-inspired evolution algorithm. The last step is the measurement step, 

which is accomplished by constructing the cumulative distribution function (CDF). The 

main steps of the quantum-inspired evolutionary algorithm are as follows: 

1. Initialize the quantum population space depending on the collected data from the 

local controller agents. 

2. Convert the quantum population space to the classical population space. 

3. Evaluate the classical population space according to objective functions. 

4. Select the best classical individual and use it to update the quantum population 

space. 

5. Repeat steps 1 to 4 until the objective functions are satisfied. 

Next, we present the details about the algorithm and for each step in the following 

subsections. 
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5.2.1 The quantum population space representation 

The used Quantum-inspired algorithm depends on real-coded population space, where 

the evolutionary genes are represented by real pulses. Each pulse spectrum covers the 

variable solution domain that it represents. Its height is defined based on the 

population space size. For example, if the real-coded quantum gene represents variable 

x in the population space where 5<x<45 and the population space size is M. The gene 

spectrum will be 40 (mean of the gene is 25) and the height of the gene will be 

1/(40*M). Through this representation, the summation of the areas of all genes of 

quantum individuals that represent the same variable is one. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎5.1: Quantum-inspired evolution algorithm 
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5.2.2 Initializing the quantum population space  

Each local controller agent is represented by quantum-like gene in the quantum 

population space. A quantum gene represents the local controller agent’s expected 

consumption range for the next operation cycle. Each gene is represented by two 

values, the mean and the spectrum of the local controller agent’s consumption range. 

Each quantum individual consists of a number of quantum-like genes equal to the 

number of local controller agents that are coordinated by the coordination agent. 

Different quantum individuals can be generated in the population space by randomly 

generating centers for the quantum gene inside the consumption range and with 

spectrum value equals to the consumption range.  

5.2.3 Converting the quantum population space to the classical 
population space  

To evaluate the quantum individuals for reproduction according to their quality, a 

mapping between quantum population space and classical population space is 

required. The probability density functions (PDF) and cumulative distribution 

functions (CDF) of quantum genes are used to map the quantum population space to 

classical population space. The PDFs of the quantum genes are constructed depending 

on the different genes of all quantum individuals. This allow us to define the 

probabilities of the different solutions in the population space. Creating PDF functions 

for the different genes represent interference process between the quantum 

individuals. In this process, all pulses that represent certain quantum gene in the 

population space individuals are summed. Mathematically, the PDF of gene j, on 

generation t of the algorithm, is given by the following equation: 
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 Then, CDFs are used to define one value for each quantum gene in the solution space. 

Thus, we generate the random variable x, such that ]1,0[x . This variable is used to 

define one solution for the quantum gene by using the inverse function of the 

cumulative distribution function CDF-1(x) for this gene.  

The PDF and CDF functions for quantum gene evolve through the different generations 

of the algorithm until the appropriate solution is defined. Figure 5.2 and 5.3 track the 

PDF and the CDF functions of one quantum gene in four different generations (1, 15, 20, 

55). The graphs describe the convergence to the appropriate solution. The gene’s PDF 

and CDF in the first generation spread over a wide range of values (the total expected 

consumption range). During the evolution of the quantum gene, the range that is 

covered by the two functions is shrunk in the offspring. This means, by evolving the 

quantum genes in the population space, the randomness of converting quantum 

population space to classical population space (the quantum genes measurement (CDF-

1(x))) is decaying which leads to convergence to the appropriate solution according to 

the objective functions.  

 

 

 

 

 

 

 

 

 

Figure ‎5.2: The probability distribution function evolution of a real-coded 

quantum gene for four generations (1, 15 , 20, 55) 
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Figure ‎5.3: The cumulative distribution function evolution of a real-coded 

quantum gene for four generations (1, 15, 20, 55) 

Depending on the CDFs the classical population space is created. This algorithm 

depends on quantum population space and two classical population spaces E(t) and 

C(t). In the first generation, E(t) and C(t) are identical. In the proceeding generations, 

E(t) contains the classical population of the current generations by direct mapping the 

quantum population using CDFs. After that, the crossover operator is used between E(t) 

and C(t) before evaluating the individuals in E(t) . Then, the best solutions in the 

current generation is selected and transferred to C(t). 

5.2.4 Evaluating the classical population space  

The developed algorithm depends on two classical population spaces. The first one is 

the temporary classical space E(t) for the current generation. The second one is C(t), 

which contains the best classical solutions from all generations until the current 

generation. The classical population E(t) is updated using a crossover operator 

between C(t) and E(t). The number of individuals in the two classical population spaces 

is equal. The crossover operator takes each two individuals (Ei(t) and Ci(t)) from the 

two classical spaces. Then, a random variable r is generated for each gene in the 

classical individual Ei(t), such that )1,0[r . If r  less than the crossover rate  (< 1), 
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the classical individual gene in Ei(t) is updated by the corresponding gene in 

Ci(t),otherwise there is no change in Ei(t). E(t) is then evaluated based on the t-norm of 

the objective functions. After that, the best individuals in both classical population 

spaces (E(t) and C(t)) are selected to update C(t). 

5.2.5 Update the quantum population space  

The new quantum population space is created by updating the center and the spectrum 

of each gene depends on the following two strategies:  

1- Updating the gene center in the quantum population space by making the new 

centers equal the best classical individuals of the classical population space 

C(t).  

2- Updating quantum genes spectrum depending on the current classical 

generation rate of improvement ( ) over the previous generation. The 20% 

rule is used to update the gene spectrum [118] [108]. To decide if the new 

genes spectrum is increased or decreased, the following rule is used : 

 If %20  the genes spectrum is decreased 

 If %20  the gene spectrum is increased  

 If %20  there is no change  

The rate of decreased or increased depends on the variable ]1,0[ . 

5.3 The multi-objective solution evaluation  

The proposed coordination system formulates the supply and demand matching as a 

multi-objective optimization problem, where there are multiple criteria exist to 

evaluate the matching point quality, and there is an objective function attached to each 

of these criteria. For solving the multi-objective optimization problem, we have to 

consider number of decisions for implementing the appropriate algorithm for our 

optimization problem [131]. In the following section, the design points are presented. 

5.3.1 Research and decision-making combination 

There are three alternatives for combining research and decision making as follows:  

1- Decision-first and then search. First, setting the objective functions and 

start search for solutions that satisfied these criteria. 
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2- Search-first and then decision-making. Search the solution space first for 

finding the set of feasible solutions after that identify the best one.  

3- Decision-making during search. Decision-maker intervenes during the 

search in order to guide it towards promising solutions by adjusting the 

preferences in the process. 

5.3.2 Combination of the objective functions  

For evaluating the solution space in multi-objective optimization, method for 

manipulating objective functions is required. There are reported methods for 

manipulating objective functions for evaluating the solution space: 

1- Combine the objectives. In this method the objective functions are combined 

to single objective function. After that this objective function is used for 

evaluating the individual solution in the solution space. The weighted sum of 

the objective functions is example for this method.  

2- Alternating the objectives. In this method one criterion at a time is optimized 

while imposing constraints on the others. Here, important question arises, 

how to establish the ordering in which the criteria should be optimized, 

because this can have an effect on the success of the search. 

3- Pareto-based evaluation. In this method, objective functions values for certain 

solution is arranged in a vector which represents the solution fitness. For 

comparing the individual solution, the dominance principle is used. A solution 

x is said to be non-dominated (optimal) if there is no other solution that is 

better than x in all the population space [131]. 

In the proposed coordination algorithm, we depend on "decision-first and then search" 

approach. There, we first set the objective functions and then search the solution space 

for the best solution for satisfying the objective functions. For evaluating population 

space depends on  multi-objective functions, t-norm algorithm [132] is used. t-norm 

(triangular norm) is a binary operation on the unit interval which is commutative, 

associative, increasing and has neutral element 1. t-norm can be defined as follows: 

]1,0[]1,0[:
2

T  

For evaluating the solution space in the proposed coordination system, three t-norm 

methods are tested. Let A and B are two objective functions. The value of the two 
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objective functions at solution x is A(x) and B(x). The t-norm value of the two objectives 

functions is calculated by one of the three t-norm method. 

- t-norm-1 (A(x), B(x)) = min (A(x), B(x)) 

- t-norm-2 (A(x), B(x)) = A(x)*B(x) 

- t-norm-3 (A(x), B(x)) = max (A(x) + B(x)-1, 0)  

The t-norm value differs depending on the t-norm used. For example if A(x) = 0.5 and 

B(x) = 0.6, the t-norm value for the two objective function will be 0.5, .3 and 0.1 for t-

norm-1, t-norm-2 and t-norm-3 respectively. 

 The first method t-norm-1 sets the evaluation for the solution as the value of minimum 

objective function among them; this means the evolution algorithm will improve this 

objective function until this objective function value becomes greater than another 

objective function. Then, the other objective function is selected and improved and so 

on until there is no improving for all objective functions. There is problem with this 

method, when one objective function is always the lowest among the rest objective 

functions, the solutions evaluation depends on this objective function only without 

concern to the rest of objective functions. In this situation, the selected solution is the 

best with respected to the lowest objective function only. When objective functions 

values are close to each other, all objective functions are improved until the min 

(maximum) objective function value among them. In all situations, the selected solution 

will be the min (maximum) value among all objective functions.  

The second method t-norm-2 combines the objective functions depends on the 

multiplication of the values of the objective function. This means all objective functions 

contribute in solutions evaluation. We cannot say the selected solution is the best 

solution for any objective function.  

The third method t-norm-3 combines the two objective functions values if the 

summation of the evaluation values greater than one otherwise the solution evaluation 

is zero. This means if the evaluation is low for all solutions in the population space, all 

solutions evaluation will be zero and there is no way to define what the best is and 

what the worst is in the solution space. Through using the third norm, there is no 

compromising among the different objective functions. For example, if we have three 

objective functions by using the third t-norm the following two solutions evaluation 

(0.1, 1, 1) and (0.7, 0.7, 0.7) are equally evaluated to 0.1.  
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5.3.3 Commensurability of the objective functions  

Commensurable means the units used to measure the compliance with each of the 

objective function are comparable. Incommensurability of objective functions adds to 

the difficulty of the problem because the aggregation or comparison of different 

objectives is not straightforward. In the proposed coordination system, we use an 

application function for each objective function. Application function can be considered 

as measure for the goodness of the proposed solution [133]. If the objective function is 

f(x) where x is the proposed solution, the application function will be H(f(x)) [0,1]. 

The following application function for the objective functions is used: 
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Where Mi= max fi(x) and mi= min fi(x) 

We found that this conversion depends on the maximum and the minimum of the 

solutions of each generation. We rely on evolution algorithm to converge to the optimal 

or near-optimal solution for the multi-objective problem. So, comparison between 

solution generations (parents and their offspring) is needed to select the best from 

both. With this application function setting, solutions of successive generations for 

some objective function cannot be compared true because of different maximum and 

minimum of each generation (application functions setting are changed from one 

generation to another). So, we have to set the maximum and minimum of the 

application function to fixed values. We again face another problem, where the system 

is used to coordinate supply and demand for different situation and the gap between 

supply and demand changes dramatically from one operation cycle to another 

operation cycle; fixed values for maximum and minimum is not appropriate for all 

operation cycle. Finally, we depend on variable setting for application functions over all 

operation cycles and fixed in each operation cycle, where application functions setting 

depend on the maximum demand for each operation cycle. Using this setting, 

application function setting is fixed in each operation cycle, at the same time is 

appropriate for the demand in each cycle. Application function setting affects the 

overall system performance as will be shown in the simulation test in Chapter 8. 
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5.3.4 Confliction of the objective functions  

The proposed coordination system in Chapter 8 depends on number of objective 

functions to optimize the coordination agent allocation of the available supply cap. One 

of these objective functions deals with the supply cap violation. There, the total 

permitted consumption levels have not to exceed the supply cap of the system. The 

second objective function aims to improve power system stability. There, we depend 

on the objective function to minimize the difference between the actual consumption 

levels of the current operation cycle and the permitted consumption levels for the next 

operation cycle. This objective function aims to avoid large overshoots in the local 

controller agents’ consumption and smoothing the transition between the operation 

cycles. The third objective function is concerned with minimizing intervention in the 

local controller agents operation and maximizing power satisfaction level for the local 

controller agents, by maximizing the allocated power to each agent as possible 

according to the power network supply and demand.  

  

 

 

Figure ‎5.4: Objective functions roles for matching supply and demand 

Figure ‎5.4 shows power curves (supply and demand) and where each objective 

function work. The supply cap objective function aims to remove or minimize the 

distance between the coordinated consumption point and the supply cap point. The 

demand satisfaction objective function aims to minimize the distance between the 

coordinated consumption point and the unconstrained demand curve point. The 

stability objective function aims to minimize the distance between the current 
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consumption point and the coordinated consumption point to minimize the 

consumption overshoots between two successive operation cycles. 

The position of the next consumption point defines if there is confliction or there is no 

confliction among the objective functions. As shown in figure 5, there is confliction 

between demand satisfaction function and supply cap objective function. Where 

demand satisfaction objective function aims to minimize the distance between the 

expected consumption point and the demand curve, at the same time, supply cap 

objective function aims to minimize or remove the distance between the expected 

consumption point and the supply cap curve. At this consumption point, there is no 

confliction between the supply cap objective function and stability objective function. 
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6 SIMULATION ENVIRONMENT 

OF SMART BUILDING ENERGY 
MANAGEMENT SYSTEM  

6.1 Introduction 

Distributed energy resources (DERs) that depend on distributed power generators, 

electricity storages, and load management options can play an important role in 

supporting the objectives of market liberalization, combating climate change, 

increasing the amount of electricity generated from renewable sources, and enhancing 

energy saving. The widespread of DERs will affect the electricity infrastructure 

functioning: it will bring radical changes to the traditional model of generation and 

supply as well as to the business model of the energy industry [134]. With increasing 

use of distributed energy resources and intelligence in the electricity infrastructure, 

the possibilities for minimizing costs and shifting of residential power consumption 

increase. Technology is moving toward a situation in which households manage their 

own energy generation and consumption, possibly in cooperation with each other. 

About 40% of the worldwide energy consumed in building [135], smart building will 

play a crucial role in Smart Grid and in energy efficiency. The smart building energy 

management system (SBEMS) is expected to be the basic building unit for the virtual 

power plant (VPP). The proposed SBEMS include sensors, meters and a computer 

server. All household devices interact with the computer server through wireless and 
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power-line communication. The SBEMS depends on the forecasted data about the local 

power resources generation, consumption and the charging level of the storage 

element (electric/heat) for a pre-defined operation period to optimize the energy 

utilization, device operation, and the storage element utilization (e.g. EV battery). 

SBEMS determines what the actions are that fulfill residential electricity and heat 

requirements depending on the local renewable energy resources and the local storage 

element. At the same time, coordinate the connection between the home and the local 

power network. 

For simulating the SBEMS in this thesis, a multi-agent computing paradigm is assumed 

to represent the performance of the different devices and recourses in the simulation 

environments. A SBEMS simulation environment relies on number of agents for control 

and optimizes the local devices operation. The optimization agent and device agents 

are example of agents that are used for building SBEMS. The simulation environment 

entails developing different device models, the different control algorithms for each 

device, monitoring, optimization, and prediction and performance evaluation functions. 

The device models, EV battery model as storage element, the renewable energy 

resources generation profile (solar and wind) are presented in the previous chapter 

(chapter 4). EV battery is used as a storage element in the home environment for 

absorbing the excess onsite renewable energy generation above the local consumption. 

For controlling the connection between the SBEMS and local power network, 

optimization function takes place depending on the local power price and economical 

of storage and retrieving power from EV battery. In the next chapter development of an 

SBEMS optimization algorithm for managing household appliances and local 

generation units is presented. 

In this simulation environment, number of device models is used to represent the 

variety of household appliances that can be used within the house. The energy power 

resources can be classified to stochastic generation resources, controllable resources 

and storage units. The stochastic generation resources (e.g. solar and wind generation 

units), their operation depend on unpredictable parameters such as weather 

conditions. Controllable resources (e.g. diesel generators) can be turned ON/OFF as 

required. The power storage units allow usage control based on market prices. The 

residential consumption devices can be classified into shift operation devices (e.g. 

washing and drying machines), thermal buffer devices (e.g. heating and cooling 
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devices) and user action devices (e.g. audio and lighting loads). In [6] loads are 

classified into two categories: controllable and critical. Controllable loads are defined 

as the loads that can be controlled without noticeable effects to the consumers’ comfort 

level. The available operational control of energy power resources and residential 

devices are presented [3]. Controlling demand response (DR) for a residential home 

can be classified with respect to the level of automation to manual DR, semi-automated 

DR and fully automated DR according to the automation levels exist [10].  

 

Figure ‎6.1: The expected prosumer model 

With the development of the Smart Grid, dynamic load models are required. These 

models can facilitate the study of changes in electricity demand in response to 

customer behavior and/or signals from the energy service provider. Such load models 

are useful to evaluate the developed control and coordination algorithms effects to 

consumers’ preferences, to the general performance of the power network (e.g. 

stability and reliability) and at the distribution circuit level (e.g. the power flow). For 

appropriate loads modeling, to be used in the demand response simulation, some 

characteristics are required [123]. For simulating the participation of the 

consumer/prosumer in the smart power networks, number of models for renewable 

and controllable power resources, storage units and residential load models are 

required. In this simulation, number of the resources/appliances agents is presented. 

These agents are used for testing the proposed algorithms in the next chapters. Space 

cooling/heating (AC) units, water heater coils (WHC), clothes dryer machine (CDM), 
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ventilation fan (VF) are example of devices that are used as a consumption appliances. 

The electric vehicles (EV) battery is used as storage element. Solar panel and small 

wind turbine generation profile will be used to represent the renewable energy 

resources. In the following section details about the simulation environment of SBEMS 

is presented. Figure 1 shows the expected prosumer model [26].  

 

 

Figure ‎6.2: Proposed architecture for smart building environment simulation  

6.2 The proposed SBEMS architecture 

The proposed SBEMS depends on a number of agents for accomplishing the 

optimization and control task within the SBEMS environment. Figure ‎6.2 shows the 

main agents of the system that control and coordinate the SBEMS operation. Master 

agent, device control agent for each device within the home (building), optimization 

agent, the renewable resources agent and the EV battery agent are the main agents 

within the simulation environment. The master agent coordinates/optimizes the 

operation of a group of devices within a home (e.g. cooling, heating and ventilation 

devices). The master agent depends on device controller agents of different devices 

(e.g. air-conditioner, refrigerator, ventilation fan) to coordinate the operation of the 

device under its control. For optimizing the system performance, multi-objective 

functions for coordinating the multi-agent system operation for matching supply and 

demand within the SBEMS environment are used. The master agent depends on the 

ability of the device controller agents to maintain device operation within an area 

where power is consumed. This area is defined according to the user preference and 
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the constraints related to the different devices’ operation limits. Depending on a 

flexible operation of the device controller agents and the EV storage unit, more 

exploitation of the onsite renewable energy resources can be accomplished. 

Description about the proposed SBEMS components is presented in the following 

section. 

 

Figure ‎6.3: SBEMS master agent Components 

6.2.1 The Master agent  

Master agent is responsible for SBEMS operation in isolated mode or in connected 

mode with the local power networks depending on the local supply and demand 

situation. In this simulation, master agent makes early predictions about power critical 

time depending on the onsite consumption and generation curve for a pre-defined 

operation cycle. Figure ‎6.3 shows components of the Master agent. A pre-defined 

operation cycle period, the master agent collects data from sub-agents to define the 

expected supply, demand and the state of the battery of the next operation cycle. The 

master agent sends its request to the device controller agents asking for the minimal 

energy level and unconstrained (maximal) consumption level, and the time for 

consumption (start/stop) within the next operation cycle. These data is sent to 

optimization agent to allocate power for next operation cycle. After that, if SBEMS is a 

part of virtual power plant (VPP) or microgrid, the total expected consumption ranges 

(minimal and maximal) for the device group will be defined. These two levels, in 

addition to the actual consumption level of the current operation cycle, are sent to the 
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VPP agent to optimize the power consumption operation within the local power 

network (or microgrid) for the next operation cycle. 

The monitoring function of the master agent records the overall consumption, the local 

renewable generation and the power supplied/taken to/from the local power network. 

In case the SBEMS participates in local coordination task, the master agent sends the 

consumption or generation range to the local power network coordination agent for 

optimization over the entire local power network. The master agent fills the following 

roles in the SBEMS: 

1- Collects consumption levels from the device controller agents under its control, 

define the expected consumption range minimal and maximal and the time of 

consumption within the next operation cycle for each device (minimal, maximal, 

the best time for consumption). 

2- Define the available local renewable generation from the power resources agent 

and the amount of power for charging/discharging the battery. 

3- After receiving the coordinated consumption plan from optimization agent, send 

the coordinated consumption plans to the different devices and 

charging/discharging power to the battery agent. 

4- If SBEMS is a part of virtual power plant (VPP) or microgrid, the total expected 

consumption range (minimal and maximal) for the device group will be defined, 

and send the consumption levels (minimal, maximal and actual consumption 

levels for the current operation cycle) to the VPP coordination agent. 

6.2.2 The device controller agents  

The device agent has a model for the device under its control by this model the 

expected consumption range for the next operation cycle can be defined. The device 

agent defines the minimal consumption level, unconstrained (maximal) consumption 

level, and the time for consumption (start/stop) within the next operation cycle. The 

minimal consumption level is determined by the device agent based on the constraints 

defined by the manufacturer or by the consumer. For example the cooling devices 

operate between two temperature levels. The task of the device agent is to maintain 

the temperature between these two levels. Depending on the current temperature of 

the device, device controller agent can define the minimum time of the "on" period 

(minimal power) that is required to maintain the temperature between these two 
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levels during the next operation cycle. The maximum power is the device consumption 

without any intervention from the device controller agents. The main components of 

each device controller agent in the simulation environment are shown in Figure ‎6.4. 

Each device agent contains the device operation model, the task model, the different 

control algorithms, the monitoring functions and the power consumption prediction 

function. There is operation model for each device, for defining the device state 

(ON/OFF) and the power consumption. Also, there is task model for each device for 

tracking variation in the target variable (e.g. Temperature (AC), air-quality (VF), and 

state of charge (battery)).  

 

 

 

 

 

 

 

 

 

 

Figure ‎6.4: Device agent contents in the simulation environment 

The controlled device operation depends on the controlled variable variation or 

depending on the optimize time control plan. Control function represents the actuator 

for start/stop times for each device. Also, there is control plan modification function for 

modifying the control plan after the optimization process. The monitoring function is 

for recording the device state during the operation horizon, the power consumption, 

the controlled variable variation, and other variables for analyzing the device 

operation. In complete SBEMS view, this data should be used for updating the device 

performance memory to be used for predicting the device consumption for the future 

operation cycle/cycles. The power consumption prediction functions are used for 
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calculating the future consumption of the device for optimizing the device 

consumption. In our proposed SBEMS, the device controller agent is responsible for the 

following:  

1- Define the appropriate consumption plan for the next operation cycle based on 

the device model it controls (air-condition, water heater coil, ventilation fan, 

etc.). The consumption plans include the minimal and the maximal consumption 

levels and the time of consumption (start/stop) within the next operation cycle. 

  

2- Executing the coordinated consumption plan that is defined for the next 

operation cycle. Obviously, the plan which is determined for any particular 

device must not violate the operation limits of the device.  

 

 

 

 

 

 

 

 

 

Figure ‎6.5: Renewable resource agent in the simulation environment 

6.2.3 The renewable resources agent 

The main components of the renewable resource agent are shown in  

Figure ‎6.5. In this simulation two household renewable generation resources are used, 

the solar panels and micro-wind turbines. Normally, the renewable resources output 

depends on the predicted weather conditions (ex. wind speed) for the defining the 

expected output power. The monitoring function is used for recording the generation 
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profile for the future use of the unit generation prediction. The generation prediction 

function defines the expected generation level for the generation, depending on the 

weather conditions and the previous generation profile.  

 

 

 

 

 

 

 

 

 

 

Figure ‎6.6: Components of the battery controller agent 

6.2.4 The battery agent 

The main components of the battery controller agent are shown in Figure ‎6.6. The 

battery operation model define the state of the battery depends on the state of charge 

(SOC), the driving profile , the connectivity state ( connected/not-connected) and the 

supply-demand situation. The battery model defines SOC depending on the 

input/output power to the battery; this depends on charging/discharging rate, the 

available power and the time of charging/discharging. Normally, there is minimum SOC 

for each battery, this level is updated by user’s driving profile. The monitoring function 

records the battery operation state, the state of charge, and input/output power. The 

exchange function defines the amount of power that can be discharged during the next 

operation cycle or the amount of power that is needed for charging the battery during 

the next operation cycle.  
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Figure ‎6.7: The optimization agent components 

6.2.5 The optimization agent 

The optimization agent depends on local demand and the available supply (local 

renewable resources generation, storage device and local power network) to optimize 

the power using by the device agents. The main components of the optimization agent 

are shown in Figure ‎6.7. The quantum-inspired algorithm is used for searching solution 

space for the optimal/sub-optimal solution each pre-defined operation cycle. The 

system objective functions are used for defining the quality of the different proposed 

solutions in the solution space. For example, to minimize the supply cap violation and 

to improve the satisfaction level of the different devices. The objective functions for the 

devices are used for defining the quality of the different proposed solutions in the 

solution space with respect to the optimal time (start/ stop) of using the allocated 

power. Solutions evaluation function used for leading the search algorithm to the 

optimal/sub-optimal solution for the system. For evaluating the control algorithm, 

device operation evaluation function required. Each device needs evaluation algorithm 

according to the required profile of the controlled variable.  

6.3 Simulation framework  

The proposed SBEMS system relies on an agent that coordinates a number of device 

controller agents which in turn control a number of device controller agents. The 

proposed algorithm depends on the multi-agent computing paradigm for testing the 

proposed algorithm in the next two chapters. Each device controller agent controls one 
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device. For testing the proposed algorithms, an operation day is divided to 48 

operation cycles where each cycle represents 30 minutes. Minimizing operation cycle 

periods increases processing and communication cost, at the same time increases the 

responsive of the coordination system to manipulate the variability of supply and 

demand within the power network. The last five minutes of each operation cycle is 

assigned to negotiation among the master agent and the device and power resources 

agents. Each device controller agent sends the expected consumption range of the next 

operation cycle and the time of consumption within the next operation cycle to the 

master agent. The master agent allocates the available local renewable supply 

(renewable generation and storage element) to the device controller agents according 

to the number of objective functions. It then sends the coordinated consumption levels 

to the device controller agents. The operation day has peaks for generations and peaks 

of consumption. We try to emulate different situations between consumption and the 

local renewable energy generation resources.  

 The proposed SBEMS coordinates consumption and local renewable energy resources 

of a home in an active power network or as a part of a virtual power plant (VPP). The 

SBEMS depends on the device controller agents’ abilities to minimize or shift their 

consumption for certain operation cycles. Shifting or minimizing power consumption 

depends on the device types under control. For the real-life applications this 

performance can be obtained if the device agents control devices for cooling/heating, 

washing and drying clothes, and ventilation in the home, to name a few. For example, 

the temperature setting of cooling/ heating devices can be up (down) by one or two 

degrees during the peak demand without a lot of problems for the user. The device 

on/off cycle can be controlled to minimize and distribute the device consumption and 

to minimize the number of active devices during the same time. The ventilation devices 

operation period can be minimized or shifted before or after the peak demand. The 

operation time for the dryer device can be shifted to the predicted high renewable 

resources generation. Depending on the flexible operation of the consumption devices 

and the storage element maximizing the renewable energy exploitation can be 

accomplished. We assume that the device agents able to shift the power consumption 

without affecting the users’ preferences. 
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Figure ‎6.8: Snapshot for the virtual power plant supply and demand coordination 

system  

Figure ‎6.8 shows the proposed VPP multi-agent system using the JIAC-V (Java 

Intelligent Agent Component ware version V) agent platform [136]. This snapshot is 

taken using the ASGARD (Advanced Structured Graphical Agent Realm Display) 

software [137] for monitoring multi-agent systems. The ASGARD monitor provides a 

method for monitoring and controlling multi-agent system infrastructures using an 

interactive 3D visualization. The snapshot shows a number of multi-agent platforms 

where agents can live and accomplish their tasks. The coordinator agent runs on a 

separate platform and is able to communicate with the local controller agents on the 

other platforms. Each local controller agent runs on one platform which contains ten 

device controller agents and the local controller agent able to communicate with them. 

6.4 The performance monitoring functions  

For monitoring, evaluating and analyzing the proposed power consumption 

coordination system performance, a number of monitoring functions are implemented, 
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such as demand stress within the system function and the global system satisfaction 

level function. The demand stress function measures the difference between the 

aggregated total demand and the aggregated total coordinated consumption levels 

within the system. This function monitors the cycle of curtailed amount of demand 

during the peak demand time and the system recovery of this amount during the low 

demand time. The peak of this curtailed power within the system and the time for 

recovery is an important indication for the system stability. Demand stress monitoring 

function can be considered as measure for the quality of shifting the demand from the 

peak time to the low demand time. The global system satisfaction level function 

measures the global demand satisfaction level (social welfare) for all local controller 

agents in the area under the coordination system control. 
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7 QUANTUM-INSPIRED 
ALGORITHM FOR SMART 

BUILDING ENERGY 
MANAGEMENT SYSTEM  

7.1 Introduction  

Depending on the smart Building energy management system (SBEMS) that is 

presented in the previous chapter, an operational algorithm for optimizing the 

performance of the SBEMS is presented. SBEMS considers as a building unit for virtual 

power plants (VPP) that is presented in the next chapter. The SBEMS depends on the 

forecasted data about the local power network, the predicted consumption of the 

building devices and the level of charging for the local storage 

element(thermal/electric) for the next operation period to optimize the device 

operation, the local energy utilization and optimizing the local storage elements 

utilization. SBEMS relies on a number of agents for control and optimize the local 

devices operation. In chapter 6, description about the SBEMS is presented. In chapter 5, 

the device models and the different control algorithms, are presented. 

In this chapter development of a SBEMS optimization algorithm for managing 

household power-intensive appliances is presented. In this simulation environment, 
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space cooling/heating (AC) units, water heater coils (WHC), clothes dryers (CD), 

ventilation fans (VF) and battery of electric vehicles (EV) is used. The level of load 

curtailments possible for residential customers can be interpreted as demand response 

(DR) potentials in residential markets with automated DR. Controlling demand 

response for a residential load can be classified to manual DR, semi-automated DR and 

fully automated DR according to the automation levels exist. While the first type 

depends on the manual response of the consumers according to price signals from the 

energy service provider or the network operator, the third type ignores the consumers’ 

response and directly changes the setting of the devices under prior permission from 

the consumers. The approaches mentioned in this chapter depend on the third control 

type. 

 Depending on the automated response of the SBEMS, quantum-inspired optimization 

algorithm for the SBEMS is presented in this chapter. The objectives of SBEMS are to 

achieve a balance between different objectives within the system, such as optimize the 

renewable resource using, the demand satisfaction, and the comfort level of the users. 

For optimizing devices operation, objective functions are proposed and implemented. 

The supply cap objective function, the consumption distribution objective function, the 

devices consumption satisfaction objective function and improving device performance 

objective functions are example of the objective functions that are used.  In this work, 

we depend on multi-objective functions for coordinating the multi-agent system 

operation for matching supply and demand within an active consumer area 

(controllable loads) or microgrid power network.  

7.2 System architecture  

We follow a hierarchal system approach that comprises two levels of control namely 

the master agent, and the device and power resources agents. In the first level the 

master agent coordinates the consumption of sub-groups of devices (e.g. cooling, 

heating and ventilation devices in home), and the second level comprises the agents of 

different devices (e.g. air-conditioner, water heater, ventilation fan) and power 

resources agent. A detail about the SBEMS simulation is presented in the previous 

chapter (Chapter 6). The SBEMS depends on the ability of the device agents to maintain 

the operation of a group of devices within an area where power is consumed. This area 

is defined according to the user preference and the constraints related to the different 
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devices’ operation limits. Depending on this flexible operation of device agents, the task 

of supply and demand matching can be accomplished. 

The SBEMS task is to allocate consumption levels for the device agents within the 

expected consumption range according to certain number of objective functions 

related to the overall system performance. Number of objective functions is used to 

optimize the SBEMS allocation of the available supply cap. For example, one of the 

objective functions deals with the available supply violation. The aim of this function is 

to keep the total consumption levels around the available local supply by the 

renewable resources and the available local storage elements. Another objective 

function aims to distribute the devices consumption for minimize the number of 

devices that are "ON" in the same time. For each objective function there are 

application functions for preparing the objective functions to the evolution step.  

The SBEMS master agent send consumption levels request to the device agents. Also, 

the generation level and state of charge (SOC) of battery requests are sent to the 

generation resources agent and battery agent respectively. The device agents define 

minimal, maximal and the time of consumption (start/stop) for devices operation 

under their control. The SBEMS sends this data to the optimization agent. Optimization 

agent depends on this data to allocate consumption levels for every device agent 

(between minimal and maximal level) and define the time of consumption within the 

operation cycle for each device avoiding the available supply cap violation. The 

available supply cap is the expected onsite local renewable energy resources 

generation and the available power from the storage element. If more power required 

for the next operation cycle, SBEMS connect to the local power network for supply the 

amount of the excess power. The SBEMS agent use a quantum inspired algorithm for 

optimizing the power allocating for the different devices and optimize the renewable 

resources using. Then, SBEMS agent sends the coordinated consumption levels to the 

device controller agents. 

7.3  The SBEMS optimization algorithm  

The optimization problem is formulated as a multi-objective optimization problem 

solved by quantum-inspired evolution algorithm. Let N be the number of device 

agents. Each agent i ( },......2,1{ Ni  ) represented by ],,[
maxmin css

ikikikik
txxx   for the 
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next operation cycle k ( ...}2,1{k ), where 
min

ik
x  , 

max

ik
x , 

css

ik
t  are the minimal and 

maximal expected consumption levels, and the center of operation period(start/stop) 

within the next operation cycle respectively. Let ),....,,(
21 Nkkkk

xxxX   be the 

consumption data vector for all device agents. Each device controller agent is 

represented by real-coded quantum-like gene 
i
g  in the quantum population space. The 

quantum population space contains a set of quantum individuals (chromosome) 
j

q (

},...2,1{ Mj  ) where M is the space size. Each quantum chromosome contains N

genes as follows: 
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Where: 

Qq
j

 , Q is the quantum population space, 

1
S

j
q  and  2

S

j
q  are the chromosomes of the first stage and second stage respectively 

i
g
c and 

i
g

w  are the center and the width of consumption range 

css

g
i

t and ON

g
i

t are the center and the width of operation period of device agent i  

 

The optimization algorithm contains two stages: 1) the first stage is the available 

power allocation stage 2) the second stage is consumption distribution and the device 

performance optimization. The quantum genes in the first stage represent the device 

agents’ expected consumption for the next operation cycle in the quantum population 

space. Each gene is represented by two values, center and width of consumption. The 

quantum genes in the second stage represent the device agents’ center and width of 

operation period ("ON" period) within the next operation cycle. each ON

ik

t  For device i 
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for the operation cycle k is defined after the first optimization stage depending on the 

allocated power for each device for the next operation period. 

During the first stage, different quantum individuals can be generated in the population 

space by randomly generating centers inside the consumption range and with width 

equal to the consumption range. After that, the Q space is converted to the classical 

population space X with the same size M to be evaluated. In this stage, the optimization 

algorithm task is to allocate consumption levels for the device agents within the 

expected consumption range, take into consideration the satisfaction of objective 

functions related to the overall system performance. Two objective functions are used 

in the first stage to optimize the available supply cap allocation. The first objective 

function deals with the supply cap violation. The aim of this function is to make sure 

that the total consumption levels do not exceed the available supply cap. The second 

objective function is concerned with minimizing intervention into the device agents 

operation and maximizing power satisfaction levels for the device agents, by 

maximizing the allocated power to each agent as possible according to the expected 

supply and demand.  

The proposed optimization algorithm consists of two stages, The first stage defines the 

allocated power for each device according to the expected consumption power from 

the device and according to the available supply cap. The first stage depends on two 

objective functions, the supply cap violation objective function and the consumption 

satisfaction objective function. The second stage of the algorithm defines the place of 

the "ON" period within the operation cycle for each device. This stage for improving the 

performance of the devices (improving the controlled variable of the device for 

example the temperature profile within the room with respect to the air-condition 

devices) and to distribute the operation periods which leads to power consumption 

distribution. The second optimization stage depends on objective functions for 

improving each device operation and the consumption distribution objective function. 

The two stages depend on a quantum inspired algorithm (Chapter 5) for defining the 

appropriate solution for each operation cycle. 

7.4 Multi-objective formulations  

The optimization algorithm depends on number of objective functions for optimizing 

the SBEMS performance with respect to the renewable resources utilization and the 
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different device performance and the users’ comfort level. There are two system 

objective functions and four device objective functions. The system objective functions 

are the supply cap violation and consumption distribution objective functions. The 

device objective functions are the device consumption satisfaction objective function 

and three functions for improving the device performance (air-condition device, water 

heater coil and the ventilation fan) and avoiding violation of the normal device’s 

setting. The optimization algorithm contains two stages:  

 The first stage is the available power allocation stage 

 The second stage is consumption distribution and the device performance 

optimization. 

 

Two objective functions are used in the first stage to optimize the available supply cap 

allocation. The first objective function deals with the supply cap violation. The aim of 

this function is to make sure that the total consumption levels do not exceed the 

available supply cap. The second objective function is concerned with minimizing 

intervention into the device agents operation and maximizing power satisfaction levels 

for the device agents, by maximizing the allocated power to each agent as possible 

according to the expected supply and demand. The mathematical formulation for the 

two objective functions is as follows: 

 The supply cap objective function 

)x(max
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
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Where 
cap

k
p is the maximum available power for the operation cycle k  

 The consumption satisfaction objective function 
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During the second stage, different quantum individuals can be generated in the 

population space by randomly generating centers within the range [ css
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and with width equal to the operation period ON

g
i

t . After that, the Q space is converted 

to the classical population space X with the same size M to be evaluated. In this stage, 

the optimization algorithm task is to distribute the devices consumption periods("ON" 

periods) within the next operation cycle, take into consideration the satisfaction of 

objective functions related to the each device. In this stage, four objective functions are 

used. The consumption distribution objective function, the space cooling/heating 

objective function, the water heater coil objective function and the ventilation fan 

objective function. The mathematical formulation of the four objective functions is as 

follows: 

 The consumption distribution objective function 

This functions aims to distribute the device consumption by minimize the number of 

device "ON" in the same time. This function concerns with the place of the consumption 

period (device "ON" period) within the operation cycle. Aiming to minimize the 

number of devices "ON" in the same period. This function used during the peak 

consumption time to distribute the consumption particularly for the devices with 

repeated discontinuous operation time like ventilation and air-condition devices. The 

formulation of the objective function is as follows: 

)/ln()/*)((max
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
ik
x

   },....2,1{ Ni   

d: number of devices under the master agent control 

ns : number of time slots inside the prediction period. 

statusi (ej): The state of device i (ON/OFF or 1/0) inside the prediction period e for the 

time slot j for the individual solution x, x  where   is the solution space. 

i
P  : The device i power capacity  

Ptotal : The total power capacity (weight) of the devices under control 

 The application function for the distribution objective function  
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Where the maximum value 
i

M of the objective function calculated by assuming each 

device is "ON" and all other devices are "OFF" in the same time slot. This is the 

maximum value of the distribution objective function.  

 The objective function of space cooling/heating device  

The space cooling/heating objective function aiming to improve the temperature 

profile for the room by minimize the number of violation to the user's temperature 

setting and to keep the temperature around the temperature setting for the next 

proposed consumption plan. Normally there is temperature setting from the user, and 

the device operates in range of temperature above or under this setting by T . T is 

defined by the device manufacture setting.  The objective function is as follows:  
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Where: 

max
T  : The maximum temperature 

min
T  : The minimum temperature  

AC
x  : The proposed consumption of the space cooling/heating device in the solution x  

)(
Ac
xT : The expected temperature profile when the power consumed by the device is 

AC
x   

)( jT
AC
x

: The expected room temperature in the time slot j when the power consumed 

by the device is 
AC
x   



‎7.  Quantum-inspired Algorithm for Smart Building Energy Management System 
 
 

102 

))(( jTV
ACx

: The temperature profile violation in the time slot j. 

 The application function for the AC objective function 

If the objective function is )( xf
AC

where x the proposed solution is, the application 

function will be ]1,0[))((( xfH
AC

. The application functions is as follows: 
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Where 
i

M and 
i

m is the maximum and the minimum for the objective function i  

respectively. 

 The objective function for the Water heater coil (WHC) 

The objective function aims to improve the temperature profile for the water tank by 

minimizing the number of violation to the temperature setting and to keep the 

temperature around the temperature setting for the next proposed consumption plan. 

Normally there is temperature setting from the user, and the device operates in range 

of temperature under this setting by T . T is defined by to the device manufacture 

setting. 
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s
T   : The setting temperature 

min
T  : The minimum temperature  

WHC
x  : The proposed consumption for the water heater coil device in the solution x  

)( jT
WHC
x

: The expected tank temperature in the time slot j when the power consumed 

by the device is
WHC
x .  



‎7.4  Multi-objective formulations 
 

103 

))(( jTV
WHC
x

: The temperature profile violation in the time slot j. 

 The application function for the WHC objective function 

If the objective function is )( xf
WHC

, where x  the proposed solution is, the application 

function will be ]1,0[))((( xfH
AC

. The application functions model is as follows: 
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Where 
i

M and 
i

m is the maximum and the minimum for the objective function i  

respectively 

 The objective function for the ventilation fan (VF) 

The ventilation fan objective function aims to improve the ventilation quality profile 

for the room by minimizes the number of violation to the ventilation quality setting by 

the user for the next proposed consumption plan. The ventilation quality (VQ) depends 

on the period of "ON" and "OFF" time of the ventilation fan and the ventilation space 

parameter like the number of persons in the space and the activities in this space ( 

]1,0[VQ ). The objective function is as follows: 
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Where: 

max
VQ  : The maximum ventilation quality  

min
VQ  : The minimum ventilation quality setting  

VF
x   : The proposed consumption for the ventilation device in the solution x  

)( jVQ
VF
x

: The expected room ventilation quality in the time slot j when the power 

consumed by the device is 
VF
x   

))(( jVQV
VF
x

: The ventilation quality profile violation in the time slot j . 
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 The application functions for the ventilation device(VM) 

If the objective function is )( xf
VD

where x  the proposed solution is, the application 

function will be ]1,0[))((( xfH
VD

. The application functions model is as follows: 
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Where 
i

M and 
i

m is the maximum and the minimum for the objective function i  

respectively 

7.5 The simulation framework  

The proposed SBEMS system relies on one agent that coordinates a number of device 

controller agents which in turn control a number of device controller agents. The 

proposed algorithm implemented as a multi-agent computing paradigm for testing the 

system performance. Each device controller agent controls one device. For testing the 

proposed algorithm, an operation day is divided to 48 operation cycles where each 

cycle represents 30 minutes. The last five minutes of each operation cycle is assigned to 

negotiation among the home master agent and the device controller agents. Each 

device controller agent sends the expected consumption range of the next operation 

cycle and the actual consumption of the current operation cycle to the master agent. 

The master agent allocates the available local renewable supply (renewable generation 

and storage element) first to the device agents according to the number of objective 

functions. It then sends the coordinated consumption levels to the device agents. The 

operation day has peaks for generations and peaks of consumption. We try to emulate 

different situations between consumption and the local renewable energy generation 

resources.  

 The proposed SBEMS coordinates consumption and local renewable energy resources 

of a home in active power network or as a part of a virtual power plant VPP. The home 

management agent depends on the device controller agents’ abilities to minimize or 

shift their consumption for certain operation cycles. The shifting or minimizing power 

consumption depends on the types of the devices under control. For the real-life 

applications this performance can be obtained if the device controller agents control 

devices for cooling/heating, washing and drying clothes, and ventilation in the home, to 
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name a few. For example, the temperature setting of cooling/heating devices can be up 

(down) by one or two degrees during the peak demand without a lot of problems for 

the user. The device on/off cycle can be controlled to minimize and distribute the 

device consumption and to minimize the number of active devices during the same 

time. The ventilation devices operation period can be minimized or shifted before or 

after the peak demand. The operation time for the dryer device can be shifted to the 

predicted high renewable resources generation. Depending on the flexible operation of 

the consumption devices and the storage element maximizing the renewable energy 

exploitation can be accomplished.  

7.6 The effectiveness of the optimization algorithm  

In the following area, the responses of the optimization algorithm with and without the 

proposed objective functions are presented. The first case illustrates the consumption 

distribution function effectiveness. The system performance show the effectiveness of 

this function for distributing the devices consumption and minimize number of device 

"ON" in the same operation period. The second case illustrates the space 

cooling/heating objective function. Depending on using space cooling/heating 

objective function, the device avoids the temperature setting violation when the overall 

consumption exceed the available generation. In the following area, the performance of 

the system in the two cases is presented. 

7.6.1 Consumption distribution objective function effectiveness   

Consumption distribution objective function aims to distribute the period of 

consumption for the household devices to minimize the number of "ON" devices in the 

same operation slot. Figure ‎7.1 and 7.2 show the effectiveness of the consumption 

distribution objective function for minimizing the number of simultaneous devices 

operation times. This function can be used during the peak consumption times to 

minimize the consumptions peaks.   
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Figure ‎7.1: Number of simultaneous devices "ON" with and without the 

Consumption distribution Objective Function (CDOF) 

 

 

Figure ‎7.2: Percentage of number of simultaneous devices "ON" over all 

operation cycles with and without the Consumption Distribution Objective 

Function (CDOF) 
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it’s normal, there are contradiction between the consumption distribution objective 

function and the different device operation optimization function. Figure ‎7.1 shows 

that without using consumption distribution objective function, the number of "ON" 

devices reaches 4 (maximum) during operation cycle 25 and reaches 3 during 

operation cycles 27 and 29. Figure ‎7.2 shows comparison between the system 

performance with and without consumption distribution objective function. The 

unoccupied time is minimized from 38% to 28% over all operation cycle by using 

consumption distribution objective function. Depending on using consumption 

distribution objective function the most operation times for the devices is 1 or 2 

devices each operation slot (72% ( 57% + 15%)) and just 0.1% of the operation time is 

3 devices each operation slot. 

 

Figure ‎7.3: Temperature profile of the controlled operation with and without the 

air-condition objective function (ACOF) 

7.6.2 The space cooling/heating objective function effectiveness  

The space cooling/heating objective function aims to avoid the temperature setting 

violation during the low generation periods. The objective function aims to define the 

best solution in the solution space that optimizes the position of the device operation 

period (start/stop) within the next operation cycle. The best operation period for the 

cooling/heating device (the optimal solution ) is the period that is not violate the 

device temperature setting or that minimize the violation to the temperature setting as 

possible when the allocated power to the device is low. Figure ‎7.3 and 7.4 show the air 

condition device operation with and without the objective function. As shown in 
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Figure ‎7.3, there are temperature setting violations during the operation cycles 14, 17 

and 19. 

 

 

Figure ‎7.4: Air-condition operation sequence (start/stop) of the controlled 

operation with and without the air-condition objective function (ACOF) 
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8 DEVELOPING CONTROLLING 
AND COORDINATING 
ALGORITHM FOR VIRTUAL 
POWER PLANT OPERATION  

8.1 Introduction 

Due to the current trend towards depending on the distributed energy resources 

(DER), coordination and optimization software is required. The distribution natural of 

the small scale and renewable energy resources entails depending on distributed 

software connected with communication networks to coordinate the resources 

operation. Virtual power plant (VPP) is a software paradigm for managing a collection 

of distributed generation resources, controllable loads, and storage systems, to behave 

like autonomous real power plant for the rest of the power network. VPP Software 

takes advantages of the emerging trend towards microgrids depend on distributed 

generation resources, communication network technology and the controlled 

operation by remote controller. This new concept is one of the techniques that can 

cope with the new development in the future Smart Grid which depends on the 

distributed renewable energy resources instead of the classical central fossil power 

plant. VPP can be used for more flexible response to the load and price variations [138] 

[139]. It has shown that, on the premise of an advanced Information and 
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Communication Technology (ICT) infrastructure, VPP represents a feasible solution to 

be implemented [139]. 

 There are number of different VPP models that are used in the previous researches 

[134] [140] [8] [127]. According to the aims from building the VPP, VPP can be 

classified into commercial virtual power plant (CVPP) and technical virtual power 

plant (TVPP). While the first one directed to the market activities like maximizing the 

profit of generation, the second one directed to provide the power system quality, 

reliability and security. In [138], VPP is defined as an entity/Energy Management 

System that aggregates multi-fuel, multi-location and possibly multi-owned DER units 

via advanced ICT infrastructure either for the purpose of energy trading or to provide 

system support services. The developed coordination algorithm in this chapter 

depends on the VPP definition in [141]: 

"The virtual power plant (VPP) is an aggregating software approach for centralized 

control number of controllable distributed energy (CDE) units. This aggregation aims 

to optimize the local power network performance which CDE units involved in and 

coordinates the participation of CDE units in the power markets"  

 

The controllable loads in this work are a group of SBEMS (Chapter 5) that are 

represented by number of local controller agents. In this chapter, a control and 

optimization algorithm for the VPP is developed, utilizing the quantum-inspired 

evolutionary algorithm. We depend on a model for the virtual power plant that 

optimize and coordinate a group of consumer or prosumers operation. The expected 

prosumer Energy management system in the future Smart Grid will be able to smartly 

mange the production and the consumption of energy to maximize the local profit for 

the prosumer, at the same time contributes to provide the local power network that is 

involved in. The model that is used in the current study depends on number of different 

consumption, generation and storage units as described in (Chapter 4, Chapter 5). 

The developed algorithm is a non-market-based coordination approach uses VPP 

coordination agents that collect consumption levels from the local controller agents, 

and set the permitted consumption levels according to the multi-objective function that 

takes the available supply cap and the system stability into consideration. In this 

chapter, an optimization approach that combines quantum-inspired evolutionary 
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algorithm with multi-agent computing paradigm to coordinate the supply and demand 

for VPP in the future power networks is presented. 

The rest of the chapter is organized as follows: Next Section describes the architecture 

of the proposed system. Third Section introduces the operation algorithm. Fourth 

Section introduces the Mathematical formulation of the optimization algorithm. Fifth 

Section illustrates the simulation framework. Sixth Section presents the performance 

analysis of the proposed algorithm. Finally, seventh Section is the conclusion. 

8.2 System architecture  

The developed agent-based VPP coordination approach relies on a hierarchal system 

that comprises three levels of control namely the coordination agent, the local 

controller agents and the device controller agents. In the first level the coordination 

agent coordinates the consumption of a number of local controller agents (e.g. SBEMS 

units). The second level consists of the local controller agents for controlling sub-

groups of devices, and the third level comprises the controller agents of different 

devices (e.g. air-conditioner, refrigerator, ventilation fan). Figure ‎8.1 shows the 

architecture of the proposed system. 

 

 

Figure ‎8.1: Architecture of the hierarchical coordination system 
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In this work, we depend on a non-market-based approach for coordinating multi-agent 

system for matching supply and demand within a VPP or a microgrid power network. 

The non-market based coordination algorithms depends on the ability of the SBEMS to 

maintain the operation of a group of devices within an area where power is consumed. 

This area is defined according to the user’s preference and the constraints related to 

the different devices’ operation limits. Depending on this flexible operation of the 

SBEMS, a central coordinator for a group of local controllable loads can be 

implemented. The coordinator allocates the dynamically available power among the 

different SBEMS, without violating the constraints for the different local SBEMS. 

8.3 The coordination algorithm 

The VPP coordinator depends on a number of local controller agents to control and 

coordinate the consumption in an active consumer area (VPP or microgrid). The task of 

the local controller agents is to define the minimal energy necessary for the operation 

of devices under their control taking into account the possibilities offered by device 

control agents (such as load shifting and load reduction). This minimal level is defined 

by the constraints related to the device operation within the limits that are defined by 

device setting or by the consumer. Local controller agents define their maximum 

consumption level, that is, the consumption of devices without any intervention during 

their operation. These two levels, in addition to the actual consumption level of the 

current operation cycle, are sent to the coordinator. Figure ‎8.2 depicts the operational 

interaction among the agents in the system. The details are as follows: 

 The local coordination agent sends consumption levels requests and supply cap 

request to the local controller agents and the generation market agent respectively. 

The local controller agents define minimum, maximum and actual power levels for the 

devices operating under their control, taking into account the possibilities offered by 

the device controller agents (e.g. load shifting and load reduction). Depending on such 

data from local controller agents, the coordination agent allocates consumption levels 

for every local controller agent (between minimal and maximal level). Such 

consumption level must not violate the available supply cap, that is, the expected local 

renewable energy resources generation which is defined by the generation market 

agent.  
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The main goal of the proposed coordination system is to achieve a balance between 

different parameters in the system, such as resource consumption, the demand 

satisfaction, and the stability within the system. The local coordination agent sends the 

coordinated consumption levels to the local controller agents and receives the 

expected actual consumption levels for the next operation cycle. If more power is 

required for the next operation cycle, the coordination agent sends the new supply cap 

to the generation market agent. The generation market agent is responsible to define 

and order the classical generation units to supply the required additional power for the 

next operation cycle. In the next subsections, we explain the agent roles in more detail. 

 

 

Figure ‎8.2: The sequence of the data flow among the multi-agent system 

8.3.1 Roles of agents in the coordination system 

The coordination system for matching supply and demand consists of three main agent 

types: the device controller agents, the local controller agents and the coordination 

agent. In the following section, different agent roles in the coordination system are 

presented. 

8.3.1.1 The device controller agent  

It must be mentioned that controlling energy power resources and consumption vary 

according to their availability to be controlled. In other words, controlling energy 

power resources that are stochastically operating (e.g. solar and wind generation 
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units) depends on unpredictable parameters such as weather conditions, controllable 

resources (e.g. diesel generators), and power storage units which allow usage control 

based on market prices. Also, consumption devices can be shift operation devices (e.g. 

washing and drying machines), thermal buffer devices (e.g. heating and cooling 

devices) or user action devices (e.g. audio and lighting loads). In our work, we depend 

on a device model for simulating the thermal buffer devices behavior. Air-conditioners 

are one example of such devices where we can change the temperature setting to 

minimize the consumption during the peak time or change the on/off time periods. In 

our proposed coordination system, the device controller agent is responsible for the 

following:  

1. Creating consumption plans for the next operation cycle based on the 

device model it controls (air condition, refrigerator, ventilation fan, 

etc.). The consumption plans include the minimum and the maximum 

consumption levels of these devices.   

2. Responding to the local controller agent with the best suitable plan to 

meet the coordinated consumption level defined for the next operation 

cycle. Obviously, the plan which is determined for any particular device 

must not violate the operation limits of the device. 

8.3.1.2 The local controller agent  

Local controller agents’ task (SBEMS) is to define the expected minimal energy 

necessary for the operation of sub-groups of device controller agents under their 

control taking into account the possibilities offered by device control agents. This 

minimal level is defined by the constraints related to the device operation within the 

limits that are defined by the manufacturer or by the consumer. Also, local controller 

agents define their unconstrained (maximum) consumption level, that is, the 

consumption of devices without any intervention during their operation. Each local 

controller agent collects consumption levels or plans from all device controller agents 

under its control. After that, it defines the minimum and the maximum consumption 

levels for the device group depending on the different consumption levels from the 

device controller agents. These two levels, in addition to the actual consumption level 

of the current operation cycle, are sent to the coordinator agent to optimize the power 

consumption operation within the local (microgrid) power network for the next 
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operation cycle. The local controller agents fill the following roles in the coordination 

system: 

1. Collect the minimum and the maximum consumption levels from the 

device controller agents under their control. 

2. Aggregate the devices consumption levels and defines the expected 

consumption range (maximum and minimum) for the device group. 

3. Send the consumption levels (maximum, minimum and the actual 

consumption levels) to the coordination agent. 

4. After receiving the permitted consumption level from the coordination 

agent use the quantum-inspired evolution algorithm to allocate the 

permitted consumption level to the different devices under its control.  

5. Send the proposed consumption levels to the device agent and receive 

the actual consumption for the next operation cycle. Aggregate all 

actual consumption levels from devices and send it to the coordinator.  

8.3.1.3 The VPP coordination agent  

The coordination agents’ task is to allocate the dynamically available power (that 

depends on renewable energy resources) among the different local controller agents 

without violating the consumption constraints for the different local controller agents. 

The coordinator defines consumption levels for each local controller agent (between 

minimal and maximum level), without violating the available supply cap. The 

coordination aims to optimize the power consumption according to number of 

parameters, such as the cost of consumption, resource consumption and stability 

within the system. These parameters are interdependent, which means that changing 

one affects the others so the coordinator must compromise among those parameters to 

achieve the balance among them. The coordination agent roles are as follows: 

1. Collects the consumption levels from local controller agents 

2. Allocates the expected available supply to local controller agents using 

the quantum-inspired evolution algorithm.  

3. Sends the allocated coordinated consumption levels to the local 

controller agents and receives the modified consumption levels from 

local controller agents and defines the total consumption for the next 

operation cycle. 
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Figure ‎8.3: Information flow among the coordination system agents 

Once the data is available to the coordination agent, it defines if the expected supply is 

sufficient for the next operation cycle or not. If the total consumption exceeds the 

expected supply, the coordination agent sends the request to the market generation 

agent to provide classical fuel resources to increase the supply cap for the next 

operation cycle.  

Figure ‎8.3 shows the sequence of the data transfer between the different agents.  

8.4 Mathematical formulation of the optimization problem 

We formulate the coordination agent problem as a multi-objective optimization 

problem solved by quantum-inspired evolution algorithm. Let N be the number of 

local controller agents. Each agent i ( },...,2,1{ Ni  ) provides the expected 

consumption level ],[
maxmin

ikikik
xxx   for the next operation cycle k ( ...}2,1{k ), 

where 
min

ik
x  and 

max

ik
x  are the minimum and maximum expected consumption levels 

respectively. Let ),...,,(
21 Nkkkk

xxxX   be the consumption range vector for all local 

controller agents. Each local controller agent is represented by real-coded quantum-

like gene 
i
g  in the quantum population space. The quantum population space contains 

a set of quantum individuals (chromosome) 
j

q ( },...,2,1{ Mj  ) where M is the space 

size. Each quantum chromosome contains N genes as follows: 
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Where: 

Qq
j

 , Q is the quantum population space, 
i
g
c  and 

i
g

w are the center and the 

spectrum of the local controller agent i consumption range. 

 

The quantum genes represent the local controller agents’ expected consumption for 

the next operation cycle in the quantum population space. Each gene is represented by 

two values, the center and the spectrum of the local controller agent consumption 

range. Different quantum individuals can be generated in the population space by 

randomly generating centers inside the consumption range and with spectrum equal to 

the consumption range. After that, the Q space is converted to the classical population 

space X with the same size M.  

As mentioned in the previous section, the coordination agent’s task is to allocate 

consumption levels for the local controller agents within the expected consumption 

range according to certain number of objective functions related to the overall system 

performance. Three objective functions are used to optimize the coordination agent 

allocation of the available supply cap.  

The first objective function deals with the supply cap violation. The aim of this function 

is to make sure that the total consumption levels do not exceed the supply cap of the 

system. The second objective function aims at improving the power system stability. 

This function allows us to minimize the difference between the actual consumption 

levels of the operation cycle k and the coordinated consumption levels for operation 

cycle k-1. The third objective function is concerned with minimizing intervention in the 

local controller agents operation and maximizing power satisfaction levels for the local 

controller agents. This is done by maximizing the allocated power to each agent as 

possible according to the power network supply and demand. The mathematical 

formulation for the objective functions is as follows: 

 

 The supply cap objective function is given by 
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Where 
cap

k
p is the maximum available power for the operation cycle k  

 The system stability objective function is as follows 
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yyyY represents the actual consumption vector for 

the local controller of the previous operation period. 

 The consumption satisfaction objective function is 
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1
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To evaluate the solutions of the above mentioned objective functions, we use the t-

norm algorithm proposed in [132]. The following two steps are used to evaluate 

solutions depending on the multi-objective functions [142].  

Firstly, each objective function is converted to an application function that measures 

the quality of the solution individuals [133]. If the objective function is )( xf where x

the proposed solution is, the application function will be ]1,0[))((( xfH . The 

application functions model is as follows: 
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Where 
i

M and 
i

m is the maximum and the minimum for the objective function i  

respectively. 
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The setting of the maximum 
i

M  and the minimum 
i

m of the application functions that 

represent the objective functions affect the system performance. Section 5.2 elaborates 

on system performance for two settings of the stability application function. 

Secondly, t-norm (triangular norm) [132] is used to combine application functions to 

evaluate the population space individuals. For evaluating the solution space in the 

proposed coordination system, three t-norm methods are tested. In more details, 

consider we have A and B as two objective functions. The value of the two application 

functions that represent the two objective functions at solution x is )( xH
A

and )( xH
B

. Then, the t-norm value of the two application functions is calculated by one of the 

three following t-norm method:  

 t-norm-1 ))(),(min())(),(( xHxHxHxH
BABA

  

 t-norm-2 )(*)())(),(( xHxHxHxH
BABA

  

 t-norm-3 ))(),(( xHxH
BA

= )0,1)()(max(  xHxH
BA

 

The t-norm value differs depending on the t-norm used. For example if 5.0)( xH
A

 

and 6.0)( xH
B

, the t-norm value for the two objective function will be 0.5, 0.3 and 0.1 

for t-norm-1, t-norm-2 and t-norm-3 respectively. The coordination agent relies on the 

quantum-inspired real-coded evolutionary algorithm (chapter 5) for solving this multi-

objective optimization problem. In the following section, a description of this algorithm 

is presented. 

 For evaluating solutions depending on the previous three objective functions the t-

norm [5] algorithm is used. In our implementation, we use the following two steps to 

evaluate the solution depending on the multi-objective functions [142]. The first step 

aims to convert each objective function to an application function that measures the 

goodness of the proposed solution [133]. The second step combines application 

functions to single objective function depending on the t-norm algorithm [132]. The 

combined objective function is used to evaluate the individual solution in the solution 

space. The coordination agent relies on the quantum-inspired evolutionary algorithm 

(chapter 5) for solving this multi-objective optimization problem. 
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8.5 The simulation framework 

The proposed coordination system relies on one coordination agent, number of local 

controller agents which in turn control number of device controller agents. For testing 

the proposed algorithm, an operation day is divided into 48 operation cycles where 

each cycle is 30 minutes. The last five minutes of each operation cycle is assigned for 

negotiation among the coordination agent and the local controller agents. Each local 

control agent sends the expected consumption range of the next operation cycle and 

the actual consumption of the current operation cycle to the coordination agent. The 

coordination agent allocates the available supply cap to the local controller agents 

according to the objective functions presented in Section 4. It then sends the 

coordinated consumption levels to the local controller agents. The operation day has 

two main consumption peaks, the first one between 7 and 10 AM and the second one 

between 17 and 21 PM. We try to emulate the natural power consumption peaks in real 

life [124].  

 The proposed coordination system is able to coordinate the total consumption of the 

active consumer networks under its control depending on the local controller agents’ 

abilities to minimize or shift their consumption for certain operation cycles. One or 

more shifting strategies can be used for the local controller agents. Each local 

controller agent defines the unsatisfied consumption of a certain number of previous 

operation cycles and updates the demand for the next operation cycles. We assume 

that the local controller agents are able to repeat this shifting strategy without affecting 

the device operation. This assumption is based on real life applications where device 

controller agents control devices for cooling, heating and ventilation. For example, the 

temperature setting of an air condition can be up by one or two degrees during the 

peak demand which can be easily controlled by the agent. The cooling device on/off 

cycle can be controlled to minimize and distribute the device consumption and to 

minimize the number of active devices during the same time. The ventilation devices 

operation period can be shifted before or after the peak demand. Depending on the 

flexible operation of the consumption devices the coordination task can be 

accomplished. 

For monitoring, evaluating and analyzing the proposed coordination system 

performance, a number of monitoring functions are implemented, such as demand 
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stress within the system function and the global system satisfaction level function. The 

demand stress function measures the difference between the aggregated total demand 

and the aggregated total coordinated consumption levels within the system. This 

function monitors the cycle of curtailed amount of demand during the peak demand 

time and the system recovery of this amount during the low demand time. The peak of 

this curtailed power within the system and the time for recovery is an important 

indication of the system stability. Demand stress monitoring function can be 

considered as measure for the quality of shifting the demand from the peak time to the 

low demand time. The global system satisfaction level function measures the global 

demand satisfaction level (social welfare) for all local controller agents in the area 

under the coordination system control. 

8.6 The coordination algorithm convergence  

For testing the coordination algorithm, one coordination agent and 100 local 

coordination agents are used. Each local controller agent controls 3 to 10 device 

controller agents. The average time required by the quantum-inspired algorithm that is 

used by the local coordination agents to allocate the available power to the 100 local 

controller agents is 4.6 second/cycle. The required time by the quantum-inspired 

algorithm changes depending on the maximum number of generations allowed for the 

quantum-inspired algorithm to converge to the appropriate solution. Such convergence 

depends on the situation of supply and demand. Figure 5 shows the relation between 

the average time required by the algorithm for convergence to the solution and the 

maximum number of generation allowed for running the quantum-inspired algorithm. 

In Figure ‎8.4, we show that the required average time is nearly constant after 150 

generation/cycle. The required number of generations changes from cycle to cycle 

depending on the situation between supply and demand. In this case, the time required 

for convergence to the appropriate solution during the peak demand increases up to 10 

second/cycle. The average number of generations required for convergence is 102 

generation/cycle.  

Also, for investigating the system performance, we repeated the proposed algorithm 

several times (>5 times) in the same operating conditions. After that, the operating 

conditions are changed and the test is repeated again number of times. 
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Figure ‎8.4: The quantum-inspired algorithm convergence average time/ cycle 

The algorithm response in each case is nearly identical which reflect the stability and 

the reliability of the proposed algorithm in different operating conditions. One of the 

main advantages of the quantum-inspired evolutionary algorithm [30] is the balanced 

distribution of the population space which avoids trapping in local optima. 

8.7 The proposed system performance analysis and 
monitoring  

In order to explore the proposed approach abilities to coordinate and control the 

power consumption of number of local controller agents to match between supply and 

demand, the proposed coordination algorithm with simulated supply and demand 

profiles under different operation conditions is tested. First, the system is tested under 

different combination of the objective functions to illustrate the role of each objective 

function in the system performance. Second, the system is tested under different 

setting for the objective functions. Third, the system is tested under different 

evaluation method (t-norm).  

For monitoring and analyzing the performance of the coordination system, number of 

monitoring function for evaluating the coordination system under different operation 

conditions is needed. These monitoring functions are required for testing system 
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performance under different operation conditions and for evaluating the proposed 

coordination system. We depend on number of monitoring function for the system 

performance to analysis the system performance. The following monitoring 

parameters are used to evaluate the system performance: 

  The global system satisfaction function: this function measures the global 

demand satisfaction level for all local controller agents in the area under the 

coordination system control. 

  The power change/cycle: this function measures the power difference 

between two successive operation cycles. When this parameter is small system 

stability is better, where there is no large overshoots for the demand in the 

system. This parameter measure the ability of the coordination system to 

coordinate the consumption without affect the overall system stability.  

  The variance of the satisfaction levels of the local controller agents: this 

function measures the variance of the individual satisfaction levels of the local 

controller agents. This parameter measures the fairness of the power 

allocation among the local controller agents. 

 Stress within the system: this function measures the difference between the 

aggregated total demand and the aggregated total coordinated consumption 

levels within the system. This parameter monitors the cycle of curtail amount 

of demand during the peak demand time and the system recovery of this 

amount during the low demand time. Where the peak of this curtails power 

within the system and the time for recovery is important indication for the 

system stability. This parameter defines the ability of the coordination 

algorithm to satisfy the system power consumption and in the same time 

improve the system technical parameter. 

 

Depending on these monitoring functions, we can evaluate the system performance 

according to the effects of the coordination system to the different consumption units, 

the quality of matching between supply and demand, and the overall system stability. 

In the following area, results and analysis for the simulation tests for the proposed 

coordination system is presented. 
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8.7.1 Objective functions roles and system performance analysis 

The coordination system depends on number of objective functions to coordinate the 

power consumption in microgrid or local consumption area for matching supply and 

demand. In this item, the performance of the coordination system for different 

combination of objective functions is presented. We aim to illustrate the role of each 

objective function for improving the coordination system performance. First, the 

supply cap objective function is used for coordinating the power consumption during 

the peak demand in the microgrid to match between supply and demand. Figure ‎8.5 

shows the system four power curves: supply cap, demand, the modified demand and 

the coordinated consumption curve of the system. The coordination system with this 

objective function able to prevent supply cap violation by minimizing the consumption 

of the local controller agents without violates the consumption range of each local 

controller agent. The coordination system force local controller agents to minimize 

their consumption during the peak demand times. The curtail amount of power from 

demand is large and this amount of power is recovered partially during the next low 

demand times. This is means, there is amount of power is shifted again to the next 

operation cycles. This leads to the modified demand increases continuously because 

there is always amount of unsatisfied demand moves to the next operation cycles. This 

consumption behavior is not possible in the power system because local controller 

agents able to shift or minimize their consumption for certain operation cycle depend 

on the device types that are controlled by the local controller agents. With only 

depending on the supply cap objective function, the system just minimizes the overall 

consumption to maintain it under the total supply of the system without concern to the 

system stability or the local controller agents demand satisfaction. This mean there is 

future expected expanding gab between supply and demand by using supply objective 

function only. Consequently, performance degradation arises, like low voltage rate and 

low power system frequency which leads to system unstability. 

For improving the system performance, let us concern with the other part of the 

system, the local controller agents. The satisfaction objective function is added to the 

system for improving the satisfaction levels of the local controller agent to minimize 

the intervention in their operation and to minimize the curtail power from demand 

during the peak demand time.  
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Figure ‎8.5: Coordination system with using supply cap objective function when 

demand exceeds supply 

 

 

Figure ‎8.6: Coordination system with using supply cap and the consumption 

satisfaction objective functions 
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Figure ‎8.7: Coordination system with using three objective functions (supply cap, 

consumption satisfaction and the system stability objective functions) 

 

 

Figure ‎8.8: Coordinated consumption with different combinations of objective 

functions 
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Figure ‎8.6 show the four power curves of the system. For comparing the system 

performance before and after using the satisfaction objective function, Figure ‎8.9, 8.10, 

8.11 and 8.12 show the two systems performance. Improvement in the demand stress 

within the system and global satisfaction level of the local controller agents can be seen 

clearly. At the same, the global system consumption still under the total supply cap of 

the system. Figure ‎8.9 shows the highly improvement in the demand stress within the 

system, where the demand stress waves in certain range of power depends on the 

times of peak and low demand. Additionally, the peaks of the waves decrease with 

time. Figure ‎8.10 shows that the power changes between each two successive 

operation cycles are also improved. Figure ‎8.11 shows that the global demand 

satisfaction for local controller agents is improved totally. Figure ‎8.12 shows that the 

local controller agents’ satisfaction variance is minimized. Large consumption 

overshoots affect the system stability. The stability objective function is added to the 

system for minimizing the power overshoots between the successive operation cycles, 

for smoothing the system consumption performance and for minimizing the effects of 

the demand and supply variation on the system performance.  

Figure ‎8.7 shows the four power curves of the system with the three objective 

functions. This objective functions combination able to coordinate the local controller 

agents consumption and minimize the effects of the supply and the demand variation 

on the system stability. For comparing the system performance, Figure ‎8.13, 8.14, 8.15, 

and 8.16 shows the comparison between the two systems performance before and 

after using the stability objective function. The improvement in the demand stress 

within the system and the global satisfaction level of the local controller agents can be 

seen clearly. Figure ‎8.14 shows the minimization of the power changes between each 

two successive operation cycles. This improvement in stability come at the expense of 

increasing demand stress within the system (Figure ‎8.13) and reduction in the global 

demand satisfaction within the system (Figure ‎8.16).  

Figure ‎8.8 shows the three coordinated consumption curves for the previous three 

combinations of the objective functions. There is no supply cap violation for the three 

systems and the systems able to match between supply and demand. The system 

performance can be improved by Adding objective functions. Using those objective 

functions, technical, social and commercial parameter can be identified and improved.  
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Figure ‎8.9: Demand stress within the system for supply cap only vs. supply cap 

and consumption satisfaction 

 

Figure ‎8.10: Power consumption change /cycle for supply cap only vs. supply cap 

and consumption satisfaction 

 

Figure ‎8.11: Global satisfaction level for supply cap only vs. supply cap and 

consumption satisfaction 
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Figure ‎8.12: Satisfaction levels variance for supply cap only vs. supply cap and 

consumption satisfaction 

 

Figure ‎8.13: Demand stress within the system for supply cap and consumption 

satisfaction vs. the three objective functions 

 

Figure ‎8.14: Power consumption change/cycle for supply cap and consumption 

satisfaction vs. the three objective functions 
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Figure ‎8.15: Global satisfaction level for supply cap and consumption satisfaction 

vs. the three objective functions 

 

Figure ‎8.16: Satisfaction levels variance for supply cap and consumption 

satisfaction vs. the three objective functions 
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Figure ‎8.17: Coordinated consumption for two setting of the stability objective 

function 

 

Figure ‎8.18: Demand stress within the system for two setting of the stability 

objective function 
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increase by decreasing this factor. Demand stress increasing leads to peaks of 

consumption in other consumption points. So, we should compromise between 

minimizing the total consumption variation and improving the system stability and 

increasing stress within the system. Figure ‎8.18 shows the demand stress within the 

system for the two setting. The demand stress of the second setting is greater than the 

first setting. Figure ‎8.19 shows that the average consumption variation between two 

successive operation cycles in stability-2 system is less than stability-1 system. This 

improvement in stability come at the expense of increasing demand stress within the 

system (Figure ‎8.18) and reduction in the global demand satisfaction within the system 

(Figure ‎8.20). 

We can conclude that stability-2 function setting can be used when there is large 

variation in demand and supply and the demand and supply close to each other. 

 

 

 

Figure ‎8.19: Power consumption change/cycle for two setting of the stability 

objective function 
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Figure ‎8.20: Global satisfaction level for two setting of the stability objective 

function 
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each two successive operation cycle for the third t-norm is high compared to the first 

and the second t-norm. 

 

 

Figure ‎8.21: System performance with the first t-norm 

 

 

Figure ‎8.22: System performance with the second t-norm 
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Figure ‎8.23: System performance with the third t-norm 

 

 

Figure ‎8.24: Coordinated consumption for the three t-norms 
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Figure ‎8.25: Power consumption changes for two successive operation cycles for 

the three t-norms 

 

Figure ‎8.26: Stress within the system for the three t-norms  

 

Figure ‎8.27: Global satisfaction level for the three t-norms 
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Figure ‎8.28: Satisfaction levels variance for the three t-norms 

Figure ‎8.26 shows that the third t-norm affects the system stability where the demand 

stress within the system increase continuously which means the system goes to 

unstable state. On the other hand, for the first and the second t-norm demand stress 

within the system oscillates in certain range and decreases with time which means the 

system is stable. Figure ‎8.27and 8.28 show that the first t-norm gives the highest global 

satisfaction level and the lowest satisfaction level variance within the system, while the 

third t-norm is the worst one. 

8.8 Conclusion  
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first test illustrates the roles of the different objective functions for modifying the 

system performance. The second test shows that by appropriate setting for the 

objective functions smooth and robust performance can be obtained. The different 

performance parameters within the system have to be compromised. The third test 

shows that the evaluation method (t-norm) affect the total system performance and 

can cause system unstability.  
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The proposed system can be used for monitoring a local power network (microgrid) 

consumption to define the general consumption behavior of the network. Thereby 

using the proposed system, the system performance parameter can be analyzed as a 

first step for improving the consumption performance for the power area under 

control. For example, depending on knowing the demand stress curve within the 

system, we can define the best time for using storage elements (charging or 

discharging). Depending on knowing the consumption changes between each 

successive operation cycle, times for the system performance degradation can be 

defined. Depending on knowing the global satisfaction level for local controller agents, 

the intervention in the user behavior can be minimized. 
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9 CONCLUSION AND FUTURE 
WORK 

The future smart grid is predicted to depend on a large number of renewable energy 

resources that are directly connected to the low and medium voltage power network. 

For controlling demand and supply within future smart grid, information and 

communication systems will play the central role. To maintain stability and reliability 

within the smart grid, an effective load controlling mechanism is necessary. Matching 

between supply and demand aims to minimize the oscillation and the voltage flicker 

within power networks that depend on the renewable and distributed resources, 

which affect the general system stability as well as the generation and consumption 

units. We can control the device consumption to minimize the oscillation and the 

voltage flicker that affect the network as well as the generation and the consumption 

devices. Controlling the consumption devices improves the future energy system’s 

performance that is depended on the intermittent and variable energy resources. This 

applies especially given the amount of devices used by consumers and their operation 

constraints. Furthermore, the ability to coordinate the consumption and generation of 

such devices depends on the type of the device unit under control. It also depends on 

the time of the day, the weather situation, and users’ preferences. The aforementioned 

conveys two major challenges in coordinating supply and demand in the smart grid: 

First, at the local level (namely the users’ level), operation constraints must be 

accounted for to meet the users’ preferences and comforts. Second, at the global level, 
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coordination and optimization solutions must take into consideration the supply 

capacity and the sustainability of the smart grid. Intelligent coordination approaches 

are an essential step toward integrating the renewable energy resources into the smart 

grid. 

To address these challenges, we propose and develop in this thesis coordination and 

optimization algorithms to control and coordinate the operation among different 

entities within the smart grid. Our work belongs to the research efforts directed to 

developing optimization and coordination techniques for the future smart grid. 

Because of the distributed nature of the problem, multi-agent systems are proposed as 

the computing paradigm for development and performance of the proposed control 

and optimization algorithms. For controlling and coordinating the power-resource-

controlling multi-agent actions, intelligent coordination and optimization techniques 

are required. 

Exploiting quantum-computing principles to improve the performance of intelligent 

systems is one of the active research areas nowadays. For example, quantum-inspired 

evolution algorithms combine the evolution theory and the quantum information 

theory to improve the evolutionary algorithm’s performance. It was proven that the 

performance of the quantum-inspired evolutionary algorithm outperforms classical 

and other quantum-inspired evolution algorithms.  

 In this work, two quantum-inspired algorithms for developing coordination and 

optimization algorithms for the future smart grid were presented. We proposed 

coordination algorithms that depend on integrating a quantum-inspired algorithms 

and a multi-agent system, which in turn controls the power consumption for matching 

supply and demand. The coordination problem was formulated as a multi-objective 

optimization problem solved by a quantum-inspired evolution algorithm. The system 

performance was tested. The test result showed that the proposed coordination system 

is able to coordinate the consumption of the active consumer networks under its 

control during the peak consumption times, depending on the local controller’s (for 

consumption units) abilities to minimize or shift their consumption for a certain 

period. The test revealed that the system performance can be adapted according to the 

relation between supply and demand and according to the nature of supply 

(intermittent and variability). 
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The thesis contributions may be summarized as follows:  

 The second Chapter introduced a comprehensive review for the pervious 

developed algorithms for coordinating supply and demand for the smart grid. 

Additionally, comparison and analysis for the different algorithms were 

presented. 

 The third chapter of the thesis introduced an introduction for the quantum and 

the quantum-inspired computing principles and features. 

 Modeling of different consumption and generation units that are used in the 

thesis were presented in Chapter 4. 

 A detail about the evolutionary optimization algorithm that is used for supply 

and demand matching within the smart power grid was presented in Chapter 5. 

Also, the evaluation of the multi-objective functions was presented. 

 The simulation environment of the smart building energy management system 

was presented in Chapter 6. Monitoring and control functions that were used in 

the simulation environment were also presented. 

 The seventh chapter represented the first proposed algorithm for supply and 

demand matching. In this chapter, we introduced a non-market-based 

approach for coordinate supply and demand within the smart Building energy 

management environment. The mathematical formulation of the optimization 

problem was presented. A number of objective functions was formulated for 

optimizing the different consumption devices’ performance and the smart 

home energy management system performance. The developed algorithm 

compromised between device performance and system performance. This 

algorithm aimed to minimize the simultaneous "ON" time for consumption 

devices in home/building under control aiming to distribute the devices 

consumption and to minimize consumption peaks. 

 The second proposed algorithm for supply and demand matching was 

presented in Chapter 8. In this chapter, we introduced a non-market-based 

approach for coordinating supply and demand within a virtual power plant 

(VPP) or microgird. VPP is a group of distributed energy resources and a group 

of consumer bundled together with a communication network that behaves like 

power plant. The mathematical formulation of the optimization problem was 

presented. The objective functions for satisfying the system optimal 
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performance requirements were formulated. The system performance was 

tested under different operation conditions.  

Future work  

The proposed algorithms in this thesis are considered as the first step into the 

direction of implementing a coordination system able to manipulate the real power 

networks optimization problem for the future smart grid, which depends on a large 

number of renewable energy resources directly connected to the low and medium-

voltage power network. 

Concerning future work, we plan to develop and test the proposed system for more 

realistic power optimization scenarios. In this regard, we aim to test the proposed 

system depending on more realistic models for the energy demand, more device types 

and with a larger number of local controller agents. We are planning to perform a 

comprehensive comparative study in all aspects of the proposed system versus similar 

existing studies. The other part of the future work will concern with 

integrating/exploiting other quantum-inspired algorithms for improving the 

optimization and coordination algorithms within smart grid.  
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