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Abstract. In this article sufficient optimality conditions are established for optimal control
problems with pointwise convex control constraints. Here, the control is a function with values in
R™. The constraint is of the form u(z) € U(z), where U is an set-valued mapping that is assumed
to be measurable with convex and closed images. The second-order condition requires coercivity of
the Lagrange function on a suitable subspace, which excludes strongly active constraints, together
with first-order necessary conditions. It ensures local optimality of a reference function in a L°°-
neighborhood. The analysis is done for a model problem namely the optimal distributed control of
the instationary Navier-Stokes equations.
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1. Introduction. We are considering optimal control problems with convex con-
trol constraints. The abstract problem, we have in mind, reads as follows

min f(y,u) subject to E(y,u) =0 and u € Uggq.

Here, the set of admissible controls U,q is a subset of LP(D)™ where D is a domain
in R™ and p > 1. The controls have to satisfy for almost all £ € D the pointwise
constraint

u(§) € U($),

where U : D ~» R" is a given set-valued measurable function. The equality constraint
FE will be a partial differential equation. Thus, the function y will be the state of the
system.

Problems of this form are often studied in literature. Optimality conditions were
established for optimal control problems for partial differential equations in the last
two decades. Sufficient conditions to ensure local optimality were presented for in-
stance in [7, 8, 12]. Other type of constraints, such as state or mixed control-state
constraints, are topic of current research, and the theory of sufficient optimality condi-
tions is far from being complete. First results are proven for instance in [18]. Sufficient
optimality conditions are basic requirements to prove stability of optimal controls,
convergence of optimization algorithms, and even convergence of numerical schemes.
See for example [21] for a convergence analysis of the SQP-method applied to optimal
control of semilinear parabolic equations.

The problems studied in the mentioned articles are subject to box-constraints on
the control. This is the most suitable choice in cases where the control is a scalar
such as heating, cooling and so on. But in some applications the control has a vector
nature. For instance, in fluid dynamics the control is a velocity, which apparently is a
vector in R? respectively R3. A second application is the control of reaction-diffusion
equations. Here, the system is controlled by supply of the involved chemicals. In
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those cases, it is more adequate to have control constraints of the form g(&; u(€)) =
g(&ui(),...,un(§)) =0o0r u() e U) C R™.

Optimal control problems with such control constraints are rarely investigated in
literature. Second-order necessary conditions for problems with the control constraint
u(§) € U(&) were proven in [15] involving second-order admissible variations. In [4,
5, 9], second-order necessary as well as sufficient conditions are established. However,
the set of admissible controls has to be polygonal and independent of £, i.e. U(§) =
U. This results were extended in [6] to the case of finitely many convex contraints
gi(u(€)=0,i=1,...,L

The aim of the present article is the following. The control constraint is treated
as an inclusion u(§) € U(§). The advantage of our approach is that the analysis
is based on rather elementary say geometrical arguments, hence there is no need
of any constraint qualification. We will prove a second-order sufficient optimality
condition. It requires the fulfillment of first-order necessary conditions together with
coercivity of the Lagrange function on a suitable subspace, which excludes strongly
active constraints. Here, the set of strongly active contraints is defined by geometrical
terms, which means it is independent of the representation of the control constraint
U(-). Then, the second-order condition ensures local optimality of a reference function
in a L*-neighborhood.

As a model problem serves the optimal distributed control of the instationary
Navier-Stokes equations in two dimensions. We emphasize that the restriction to two
dimensions is only due to the limitation of the analysis of instationary Navier-Stokes
equations. As long as there exists an applicable theory of a state equation in R"™, all
results are ready for an extension to the n-dimensional case.

To be more specific, we want to minimize the following quadratic objective func-
tional:

0% «
J(y,u) = TT/QIy(x,T)—yT(:E)IdeJrTQ/QIy(x,t) — yq(z,t)|*dadt
+O‘—R/ |cur1y(g:,t)|2dxdt+1/ u(z, t)2dzdt  (1.1)
2 Jg 2 Jq

subject to the instationary Navier-Stokes equations
ye —vAy+(y-V)y+Vp=u inQ,
divy=0 inQ, (1.2)
y(0)=yo inQ,

and to the control constraints u € U,q with set of admissible controls defined by
Uud = {u € L*(Q)*: u(w,t) € U(x,t) a.e. on Q}.
Here, Q is a bounded domain in R?, ) denotes the time-space cylinder @ := Qx (0, T).

Let us underline the fact that for (x,t) € @ the control u(z,t) is a vector in R?.

The conditions imposed on the various ingredients of the optimal control problem
are specified in Sections 2.1 and 2.2, see Assumptions (A) and (AU).

The plan of the article is as follows. At first, in Section 2, we supply some basic
material such as the definition of functions spaces and solvability of the state equation.
The pointwise control constraint is studied in Section 2.2. In Section 3 we write down
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briefly the well-known necessary optimality conditions of the model problem. The
main result of the article is stated in Section 4 and proven afterwards in 4.2.

2. Notations and preliminary results. At first, we introduce some notations
and provide some results that we need later on. To begin with, we define the spaces
of solenoidal or divergence-free functions

H:={ve L*Q)?: divv =0}, V= {ve H}(Q)?: divv=0}.

These spaces are Hilbert spaces with scalar products (-, -) g respectively (-,-)y. The
dual of V with respect to the scalar product of H we denote by V' with the duality
pairing <~7 '>V’,V-

We will work with the standard spaces of abstract functions from [0,T] to a real
Banach space X, L?(0,T; X), endowed with its natural norm,

T 1/p
Iyl r(x) = Yl Loo,rsx) = </0 Iy(t)l’%dt> 1<p< oo,
Iyl oo (x) = V{gé&}%ﬂy(t”x-

In the sequel, we will identify the spaces LP(0,T; LP(2)?) and LP(Q)? for 1 < p < oo,
and denote their norm by |[ull, := |u|rr(g)2. The usual L?(Q)*-scalar product we
denote by (-, ) to avoid ambiguity.

In all what follows, || - || stands for norms of abstract functions, while | - | denotes
norms of "stationary” spaces like H and V.

To deal with the time derivative in (1.2), we introduce the common spaces of
functions y whose time derivatives y; exist as abstract functions,

W0,T;V) :={y € L*(0,T;V) : y, € L*(0,T;V")}, W(0,T):=W?0,T;V),
where 1 < o« < 2. Endowed with the norm

lyllweo,r:vy == lyllzzcvy + yell e vy,

these spaces are Banach spaces, respectively Hilbert spaces in the case of W(0,T).
Every function of W(0,T) is, up to changes on sets of zero measure, equivalent to a
function of C([0,T], H), and the imbedding W (0,7T) — C([0,T], H) is continuous, cf.
2, 13].

2.1. The state equation. Before we start with the discussion of the state equa-
tion, we specify the requirements for the various ingredients describing the optimal
control problem. In the sequel, we assume that the following conditions are satisfied:

1. Q has Lipschitz boundary I' :== 0$2, such that Q is locally on
one side of T,

(A) 2. Yo, ya € H, yg € L*(Q)?,
3. ar, ag, ag >0,
4. v, v>0.

The assumptions on the set-valued mapping U are given in the next section. Now, we
will briefly summarize known facts about the solvability of the instationary Navier-
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Stokes equations (1.2). First, we define the trilinear form b: V x V x V — R by

2
v;
b(u,v,w) = ((u-V)v,w :/ ui=—2 w; d.
(o) = (- Fpw)a = [ 37 w5 w,

i,j=1

Its time integral is denoted by bg,

by, v, w) = / by (1), o(t), w(t))d.

To specify the problem setting, we introduce a linear operator A : L2(0,T;V)
L*(0,T; V') by

/ (A)(t), v(t))vr vt = / (u(t), v(t) v,
0 0

and a nonlinear operator B by

T T
| B o0y dei= [ 00,900, (0
0 0

For instance, the operator B is continuous and twice Frechét-differentiable as operator
from W(0,T) to L?(0,T;V").

Now, we concretize the notation of weak solutions for the instationary Navier-
Stokes equations (1.2) in the Hilbert space setting.

DEFINITION 2.1 (Weak solution). Let f € L?(0,T;V’) and yo € H be given. A
function y € L?(0,T; V) with y; € L*(0,T;V") is called weak solution of (1.2) if

ye +vAy + B(y) = f,

2.1
y(0) = vo- @1
Results concerning the solvability of (2.1) are standard, cf. [20] for proofs and further
details.

THEOREM 2.2 (Existence and uniqueness of solutions). For every source term
f € L*0,T; V") and initial value yo € H, the equation (2.1) has a unique solution
y € W(0,T). Moreover, the mapping (yo,u) — y is locally Lipschitz continuous from
H x L*(0,T; V') to W (0, T).

It is well-known that the control-to-state mapping is even Fréchet-differentiable,
whereas the first derivative can be computed as the solution of a linearized equation,
cf. [22].

REMARK 2.3 (Linearized state equation). We consider the linearized equation

y +vAy+ B (9)y = f,
t y(0) = o, (22)

for a given state §, which is usually the solution of the nonlinear system (2.1). Fol-
lowing the lines of Temam, one can prove existence and uniqueness of a weak solution
y in the space W(0,T).
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2.2. Convex control constraints. In this section, we want to investigate the
convex control constraint, which has to hold pointwisely

u(z,t) € U(x,t) a.e. on Q.
We recall the definition of the set of admissible controls U,q,
Uaa = {u € L*(Q)* : u(z,t) € U(x,t) a.e. on Q}.

Here, we have to make clear, which assumptions we impose on the constraint mapping
U(-). At first, we want to introduce measurable, set-valued functions.

DEFINITION 2.4. A set-valued mapping F : Q ~~ X with closed images is called
measurable, if the inverse of each open set is measurable. In other words, for every
open subset O C X the inverse image

FHO)={weQ: Flw)nO # 0}

has to be measurable.

Once and for all, we specify the requirements for the function U, which defines
the control constraints.

The set-valued function U : Q ~» R? satisfies:
1. U is a measurable set-valued function.

2. The images of U are closed and conver with non-empty in-
(AU) terior a.e. on Q. That is, the sets U(x,t) are closed and
convex with non-empty interior for almost all (x,t) € Q.

3. There exists a function fy € L*(Q)?* with fu(z,t) € U(x,t)
a.e. on Q.

Assumption (%) and (ii) guarantee that there exist a measurable selection of U, i.e. a
measurable single-valued function fa; with fas(z,t) € U(x,t) a.e. on Q. However, the
function fjs needs not to be square-integrable. The existence of at least one square
integrable, admissible function is then ensured by the third assumption. Further, it
allows us to prove that the pointwise projection on U,y of a L2-function is itself a
L2-function. Please note, we did not impose any conditions on the sets U(z,t) that
are beyond convexity such as boundedness or regularity.

COROLLARY 2.5. The set of admissible controls Uyq defined by
Uud = {u € L*(Q)*: u(x,t) € U(x,t) a.e. on Q}

is non-empty, convexr and closed in L*(Q)?.

Proof. By assumption (AU), we have fy € U,q. It is obvious that U,q is convex,
since U(z,t) is convex for almost all (z,t) € Q. Let a sequence {f,}>2; C U4
converging in L? to f be given. Then, we can find a subsequence f,,, which converges
to f pointwise almost everywhere. Since U(z,t) is closed, it follows f(z,t) € U(z,t)
a.e. on (). Hence, it holds f € Uygq. O

COROLLARY 2.6. Let be given a function u € L*(Q)?. Then the function v
defined pointwise a.e. by

’U(l‘, t) = PrOjU(x,t) (’U,(.T, t))
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is also in L*(Q)%. Further, if for some p > 2 the functions u and fy are in LP(Q)?,
then the projection v is in LP(Q)? as well.

Proof. By assumption (AU), the set-valued function U is measurable with closed
and convex images, and u is a measurable single-valued function. Then the function
v is measurable as well, cf. [3, Cor. 8.2.13]. By Lipschitz continuity of the pointwise
projection, it holds

(@, t) = fu(z, t)] = | Projy (g (w(@, ) = Projy .. (fu(z,1))]
< |u(337t) - fU(xvt)l

almost everywhere on (. Thus, squaring and integrating gives
lo = full < llu = full3 < oo,
which implies v € L?(Q)2. If in addition, v and fy are in LP(Q)? for some p > 2,

then we can prove analogously that the projection is also in LP, i.e. v € LP(Q)?. O

Let us recall some definitions from the theory of convex sets. For a convex set
C € R"™ and an element u € C, we denote by N¢(u) and 7o (u) the normal cone
respectively polar cone of tangents of C' at the point u, which are defined by

Now)={zeR": 2T (v —u) <0 VYveC},
To(u) ={z€R": 270 <0 Vv e Ne(u)}.

Further, we will need the linear subspaces
Ne(u) = el spanNe(u),  To(u) = Ne(u)*t.

Now, we want to use these notations with C' = U,q4. Let be given an admissible control
u € Uygq. Tt is well-known, that the sets Ny, , (u), Tv,,(u), Nu,,(u), and Ty, , (u) admit
a pointwise representation as Uy,q itself, cf. [3, 17]. For instance, the set Ny, ,(u) is
given by

Maa(w) = {v e L*(Q)*: v(z,t) € Nyp(u(z,t)) ae. on Q}.

We introduce the following projection operations. Let be given a function u €
LP(Q)™, 1 < p < o0, with u(z,t) € U(z,t) a.e. on Q. For w € LP(Q)™ we define

wy (z,t) = PrOj[NU(m,t) ()] (w(z,t)), (2.3)

which is the pointwise projection of w(x,t) on the space of normal directions of U(x, t)
at u(x,t). Its orthogonal counterpart is denoted by

wp(z,t) = Proj[TU(mﬁt)(u(myt))] (w(z,1)). (2.4)

Following the lines of [3, Sect. 8], it is not difficult but technical to prove that if
the set-valued mapping U : @@ ~» R" is measurable, then the set-valued mappings
Nu, Ty, Ny, Ty : Q ~ R™ are measurable as well. By [3, Cor. 8.2.13], the projec-
tion of a measurable function on the images of a measurable set-valued mapping is
measurable. So, we find that the functions wy and wr are measurable. Since the
projection is pointwise non-expansive, it holds w,,, wr € LP(Q)".
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3. First order necessary optimality conditions. We briefly recall the nec-
essary conditions for local optimality. For the proofs and further discussion see
[1, 10, 11, 22] and the references cited therein.

DEFINITION 3.1 (Locally optimal control). A control @ € Uaq is said to be locally
optimal in LP(Q)?, if there exists a constant p > 0 such that

J(G,a) < J(Yp, up)

holds for all u, € Ugq with ||t —u,|, < p. Here, § and y, denote the states associated
with 4 and wu,, respectively.

In the following, we denote by B’(g)* the formal adjoint of B’(§), given by
[B'(5)"Alv = bo(5,v, ) + bo(v, 7, A).

THEOREM 3.2 (Necessary condition). Let @ be a locally optimal control with
associated state § = y(@). Then there exists a unique weak solution X € W*/3(0,T; V)
of the adjoint equation

Xt + VAN + B' ()" X = aq(§ — yo) + agcurl curl (3.1)
AT) = ar(y(T) - yr). .
Moreover, the variational inequality
(’7@ + 5\, U — ﬂ)LZ(Q)Q >0 Yu €Uy (32)

is satisfied.
Proofs can be found in [10, 22]. The regularity of \ is proven in [12].

The variational inequality (3.2) can be reformulated equivalently in different
forms. At first, a pointwise a.e. discussion yields the projection representation of
the optimal control

u(z,t) = Projy(, ) (%J\(x,t)) a.e. on Q. (3.3)

See for instance [14]. Using the normal cone of the set of admissible controls, the
variational inequality (3.2) can be written equivalently as the inclusion

—(ya+ ) € Ny, (@). (3.4)

The adjoint state A is the solution of a linearized adjoint equation backward in
time. So it is natural, to look for its dependence of the given data. For convenience,
we denote by f the right-hand side of (3.1), and by Ar the initial value ar(5(T) —yr).

THEOREM 3.3 (Regularity of the adjoint state). Let A\r € H, f € L?(0,T; V"),
andy € L*(0,T;V)NL>(0,T; H) be given. Then there exists a unique weak solution \
of (3.1) satisfying A € W*/3(0,T). Moreover, the mapping (f, A1) — X is continuous
from L2(0,T; V') x H to W*3(0,T).

A prove is given in [12].
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3.1. Regularity of locally optimal controls. Let us comment on the regu-
larity of a locally optimal control 4. By (3.3), it inherits some regularity from the
associated adjoint state . If the inhomogeneities of the adjoint system are more reg-
ular than required in the previous theorem, one gets more regular adjoint states, see
[12]. This can be applied to obtain more regular optimal controls. If X is in LP(Q)?
for some p > 2 then we know from Corollary 2.6 that @ is in LP(Q)? as well.

In the presence of box constraints
ua,i(xat) Sul(x,t) S’U,b,i(l',t), i= 1,...77’7,,

one can prove even more. If the adjoint state X is in H'(Q)? then the control % is
in H1(Q)? as well, provided u,, u, € H*(Q)? holds, see [23]. However, in our case
of convex constraints it is not clear under which assumptions on U(-) the regularity
A € HY(Q)? can be carried over to u € H'(Q)2.

3.2. Lagrangian formulation. We introduce the Lagrange functional
L:W(0,T)x L>(Q)* x W*3(0,T) — R
for the optimal control problem as follows:
L(y,u, A) = J(u,y) = { e, N r2vny,c2vy + v N 2oy + 0o, 4,A) — (u, g}

This function is twice Fréchet-differentiable with respect to (y,u) € W (0,T) x L2(Q)?,
cf. [22]. The reader can readily verify that the necessary conditions can be expressed
equivalently by

Ly(g,4,\)h =0 Yh e W(0,T) with h(0) =0, (3.5)
‘Cu(gvfhj\)(ufﬂ) ZO VUGUad. ’

Here, L,, £, denote the partial Fréchet-derivative of £ with respect to y and w.

In the sequel, we denote the pair of state and control (y,u) by v for convenience.
The second derivative of the Lagrangian £ at y € W(0,T) with associated adjoint
state A in the directions v1 = (wy, h1), v2 = (w2, ha) € W(0,T) x L*(Q)? is given by

ﬁvv (ya U, A)[Ulv U2] = Eyy (ya u, A)[wla w2] + Euu (ya U, A)[hla h?] (36)
with
Loy (Y, u, N)[wr, we] = ar(wi(T), we(T)) g + ag(wi, w2)g + ag(curl wy, curlws)g
— bQ(wl, w2, )\) — bQ(wg, w1, )\)
and
£uu(y, u, )‘)[hla h2] = ’Y(h‘la h2)2'
It satisfies the estimate
|Lyy (y, u, N wr, wo]| < ¢ (1+ 1M z20) lwrllw o, lwallw o, (3.7)

for all wq,wy € W(0,T), confer [22].

To shorten notations, we abbreviate [v,v] by [v]?, i.e.

Lo (T)’ X)[(w, h)]2 = Loy (T)v X)[(w’ h)? (w, h)]
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4. Second-order sufficient optimality conditions. Before we can work with
the set of strongly active constraints, we have to define some more notations.

The relative interior of a convex set is defined by
riC={reaff C:3e>0,B(x)Naff C C C},
its complement in C' is called the relative boundary
tbC =C\riC.
The distance of a point u € R™ to a set C C R™ is defined by

dist(u,C) = min |u — x|.
zeC

For fixed € > 0, we define the set of strongly active constraints by

Q. = {(z, t) € Q: dist (—('yﬂ(x,t) + Mz, b)), rb./\/U(Lt) (ﬁ(:z:,t))) > E} . (4.1)

In the following, o = (7, @) is a fixed admissible reference pair. We suppose that
the first-order necessary optimality conditions (3.1)—(3.2) are fulfilled at ©. Further-
more, we assume that the reference pair o = (7, ) satisfies the following coercivity
assumption on £” (7, ), in the sequel called second-order sufficient condition:

There exist € > 0 and 6 > 0 such that

Loo(@, N)[(2,h)]* = 8 ||hl3
holds for all pairs (z,h) € W(0,T) x L*(Q)? with
(S8C) he Ty, (a), hy =0 on Q.,

and z € W(0,T) being the weak solution of the linearized equation

h
0.

2zt + Az + B'(9)z
z(0)

The main result of the present article is the following theorem that states the suffi-
ciency of (SSC).

THEOREM 4.1. Let v = (g, @) be admissible for the optimal control problem and
suppose that v fulfills the first order necessary optimality conditions with associated

adjoint state . Assume further that (SSC) is satisfied at ©. Then there exist a > 0
and p > 0 such that

J(v) > J(0) +alu—al3

holds for all admissible pairs v = (y,u) with |u — U|sc < p.

We will give the proof in Section 4.2 after a series of auxiliary results. At first,
we consider the set of strongly active constraints. We prove its measurability, which
is a non-trivial result obtained using set-valued analysis. Secondly, we derive from
the strongly active contraints some positiveness in directions of test functions that
are not included in (SSC).
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4.1. Strongly active constraints. Before we turn to the discussion of measur-
ability, we give some interpretation of the set of strongly active constraints. To keep
the illustration as simple as possible, the following considerations are only valid for
two-dimensional controls, i.e. U(x,t) C R2.

We will distinguish some cases whether @(x,t) lies in the interior, on an edge or
in a corner of the admissible set U(z,t).

At first, consider the case that @(x,t) lies in the interior of U(x,t). Then it holds
Nu(a,p(@(z,t)) = Ny (a(e,t)) = {0}. Thus, the first-order necessary optimality
conditions imply ya(x,t) + A(z,t) = 0, which is equivalent to —(vya(z,t) + A(x,t)) €
tb Ny (z,0)(@(x,t)). Hence by condition (4.1), the set of strongly active constraints
can not contain points where @(z,t) lies in the interior of U(z,t). This is what one
expects, since no constraint is active.

Now, assume that @(z,t) lies on a smooth part of OU(z,t), i.e. the normal
cone Ny (z4)(@(z,t)) is one-dimensional. Then, its relative boundary is the origin,
tb Ny (o) (a(z,t)) = {0}. Consequently, (4.1) means |yu(z,t) + A(z,t)] > € on
Q. The latter relation is often used to define strongly active constraints for box-
constrained optimal control problems, cf. [7, 22].

If @(x,t) is a corner of U(z,t) then the dimension of Ny, 4 (t(z,t)) is equal to
the space dimension two. Here, Ny, 4)(@(x,t)) is the convex and conical hull of two
extremal vectors n; and na. We can assume that |nq| = |n2| = 1 holds. The relative
boundary of the normal cone admits the representation

I‘bNU(z’t)(a(.’L‘,t)) = {a1 n1| a; > 0} U {a2 7’LQ| as > 0}

The condition (4.1) is equivalent to the fact that — (i + A) lies in a cone that is the
result of a shifting of the normal cone by o(n1 + ns), i.e.

_(’717'(37775) + 5\(15, t)) € U(nl + n2) +NU(z,t)(a(x7t))’

e

see Figure 4.1. Here, o is given by o = Tt

—(ya+A)

o(n1 + n2) + Ny (a)

Fia. 4.1.

Now, we want to prove the measurability of the set of strongly active constraints.

LEMMA 4.2. Suppose @ and X\ fulfill the first-order necessary optimality condi-
tions, and U : Q ~ R? is measurable. Then the set Q. defined in (4.1) is measurable
as well.

Proof. At first, one finds for a convex set N'C R™ and a vector u € N C R"™ that
the following

dist (u, rtb ') = dist (u, span N\ N) (4.2)
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holds. As already mentioned, the set-valued mapping (x,t) ~ Ny (u(z,t)) is
measurable. Using proving techniques of [3], one can check measurability of (z,t) ~
span Ny (x4 (@(z,t)). By [3, Cor. 8.2.13], the distance between a measurable function
u and a measurable set-valued function U, which is a function defined by

[dist(u, U)](z, t) := dist(u(z,t), U(x,t)),
is also measurable. This implies that the function dar given by
d(z,t) = dist (= (ya(z, t) + Az, 1)), span Ny (g0 (@(, t)) \ Nz (@, 1))

is measurable. By assumption, @, A fulfill the first-order necessary optimality condi-
tions especially relation (3.4). Therefore, we can apply (4.2) and obtain that

diSt (*(’}/1_1,(1’7 t) + /_\(ZL', t))v I‘bj\/U(z,t) (ﬁ(za t))) = d_/\[(ﬂf, t)
is a measurable function from @ to R. Using the representation
Q- = di} ((~50,—2) U (5, +00))

we finally find that Q. is a measurable set. O

The condition (SSC) requires coercivity of the second derivative of the Lan-
grangian only with respect to test functions h, whose normal components are zero,
i.e. hy = 0. However, by the following Lemma, we gain an additional positive term
that we will need in the proof of sufficiency, see Section 4.2. To this aim, we denote
the LP-norm with respect to the set of positivity for u € LP(Q)? and 1 < p < oo by

1/p
lullr(q.) = </Q |u(z, t)|P dx dt) )

The positiveness result then reads as follows.

LEMMA 4.3. For all u € Ugq with ||u — t||ce < p it holds
_ Y _ € _
(Ya+ A u—u)q > ;H(U — vz,

where (-)n denotes the pointwise projection on Ny (g 4 (u(x,t)), which is the space of
normal directions of U(x,t) at a(x,t).

Proof. Let u € U, be given. Since (@, \) fulfills the first-order necessary opti-
mality conditions, it holds

/ (ya(z,t) + Xz, 1)) - (u(z,t) — a(z,t)) dedt > 0.
Q\ Q<

Hence, we only need to investigate the difference © — @ on the set of strongly active
constraints Q.. Now, take (z,t) € Q.. We split the difference of both controls into
parts belonging to the space of normal directions N(x,t) = Ny, (u(z,t)) and its
orthogonal complement T'(x,t) = Ty (¢ (u(x,t)) = N(z,t)*,

u(z,t) — a(z,t) = (u(z,t) — alz, t)) v + (u(x,t) — a(x, t))r.
The necessary optimality conditions imply

—(vai(z, t) + A2, 1)) € Ny(aa (@@, 1)) € Ny (e, 1)) = N(,1),
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which allows us to conclude

(vu(x,t) + Mx, t)) - (u(z, t) — a(z,t))r =0 (4.3)

almost everywhere on ().. Now, we have to distinguish two cases: whether the normal
component (u(z,t) — @(z,t))n vanishes or not. If it is zero, we have trivially

0= (va(e,t) + M@, 1)) - (u(z,t) — u(z, t))n = &l (u(z,t) — a(z, 1)) n| = 0.
On the other hand, suppose (u(x,t) — @(x,t))y # 0. By definition, the gradient

—(ya(z, t) + A(w,t)) belongs to the relative interior of Ny, ¢ (@(x,t)). Thus, there
exists 7 > 0, such that

—(yu(z, t) + Az, 1) + T(u(z, t) — u(z, 1)) N € tbNy(p (U, t))
is satisfied, which is equivalent to

(va(z, t) + Mz, t) — 7(u(z, t) — u(z,t)N) - (u(z,t) — u(z,t) > 0. (4.4)

But we know even more, we can estimate the norm of the correction 7(u — ) n using
(4.1) by

7| (u(z, t) — u(z,t))N| > .

Combining (4.3), (4.4), and the previous estimate, we obtain for (x,t) € Q.

(ya(x,t) + Mz, 1)) - (u(z,t) — a(z, b)) > 7(u(z, t) — a(x, t) y - (w(z,t) —a(z, b)) N
> 7| (u(e, t) — a(x, b)) v
> el(u(z,t) —a(z,t))n|.

Now, we integrate over @) and take (4.3), (4.5) into account to get
[ Gt + 3w 0) - (e t) - a(e 1) do
Q
> / (v, ) + Ma ) - (ula, t) — Gz, 1)) da dt
> 5/ |(u(z,t) — w(x, b)) N]| da dt
= ell(u —w)n L.
An interpolation argument together with the pre-requisite ||u — @l < p yields
/ (vu(z, t) + M, 1)) - (u(z, t) — w(z, 1)) dedt > el|(u— @) x| L1 (0.
Q
£ _ _ 9 _ 2
> ;ll(u —@nllLi@oll(w =) NlLe@.) = ;H(U — 0N ll72(q.);

which is the desired result. 0
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4.2. Proof of Theorem 4.1. Throughout the proof, ¢ is used as a generic
constant. Suppose that o = (g, @) fulfills the assumptions of the theorem. Let (y,u)
be another admissible pair. We have

J(®) = L(®,\) and J(v) = L(v, ),
since ¥ and v are admissible. Taylor-expansion of the Lagrange-function yields

L(v,\) = L(®0,\) + Ly,(0,\)(y —9) + Lo(0, ) (u—1u) + %Em(f}, N[v—v,v—10]. (4.6)

Notice that there is no remainder term due to the quadratic nature of all nonlinear-
ities. Moreover, the necessary conditions (3.5) are satisfied at ¢ with adjoint state
X. Therefore, the second term vanishes. The third term is nonnegative due to the
variational inequality (3.2). However, we get even more by Lemma 4.3,

Lo,(0,\)(u—1) = /Q('yﬂ + ) (u — @) dedt > %H(u - ﬂ)N”%%QE)'

Here, p is a parameter such that ||u — @] < p, which will be chosen sufficiently small
in the course of the proof. So we arrive at

J(0) = JE) + Ly(0 N~ 1) + Lul@ V)@ — ) + 5 Loo (5, Do — 7] -
4.7
> J(0) + 5 Lun(o. Dl = o + S = D e,

We set du := u — u. Let us define dy to be the weak solution of the linearized system

Syt + vAdy + B'(y)dy = ou,
oy(0) = 0.

When we use Jy instead of y — 3, we make a small error r1 := (y — §) — dy. A short
calculation shows that r; solves the following linearized system

re +vAr + B'(y)r = B"(§)ly — 7]?,
r(0) =0.

Thus, we can estimate the norm of the error r1 by
Irillwo.r < el B" @)y — 91(l2vr) < elly = 3l o,m)-

Since the solution mapping of the nonlinear problem is locally Lipschitz continuous,
we find

1w, <clly — l,_/”%/V(O,T) < c||oul3-
Substituting y — y = dy + r1, we obtain
Lyy (@0, Ny = 51 = Lyy (0, N[6Y]* + 2Ly (0, N)[8y, 1] + Ly (0, N)[11]?
= Lyy (0, N)[6y]* + 12,
where 7 is a remainder term satisfying

72w 0,1

— 0 as ||dul]|]z — 0.
[[6ull3
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Let us abbreviate v = (dy, du). We achieved the following estimate for the difference
of the objective values

_ 3 £ _
J() = J(0) 2 5Ly (7,N)[00] + Sl = DNz (. + 72,

1
2
provided ||u — @]lcoc < p holds. In the next step, we want to apply the coercivity
assumption (SSC). To this aim, we split du in two components as follows:

ou = hy + 7y,
where h, and r, are defined by
n our on Q. oupn on Q).
u = ) Ty = .
ou on Q\ Q- 0 on Q\ Q-

Observe, that h, and r, are orthogonal, i.e. (hy, ) = 0. Moreover, it follows from
the definition that the identity

Irally = I(w = @)nllrq.) (4.8)

holds. Similarly, we split 0y = h, +7,, where h, and r, are solutions of the respective
linearized systems with right-hand sides h, and r,. Further, we set h, := (hy, hy)
and 7, := (ry, 7). We continue the investigation of the Lagrangian,

Lo (0, N)[00]% = Loy (0, N) [Bo]? + 2L (0, N[, 7] + Lo (0, ) [10]% (4.9)
Now, we can use (SSC) to obtain
Lon (@ N[ > dllhu3 (4.10)

The following estimate is a conclusion of the inequality (3.7) and the Lipschitz conti-
nuity of the solution mapping of the linearized system

|2£vv(7_’v X)[hva Tv] + Evv(l_’a /_\)[rv]2| > *C”TyHW(O,T) (th”W(O,T) + ||Ty||W(O,T))
—cllrullz (Ihull2 + I7ull2)

Y

V

0
=5 1Pulls = clirul3.

(4.11)

Using the relation ||hy |3 > 1/2]|6ul|3 — ||r.]|3, we get by (4.9)—(4.11)

- 1) 1
Lo (0, N)[00]* 2 Sllhallz = ellrull3 = Zl10ullz — cllrull3.

So far, we proved the following estimate

U0 2 i
J(0) = J(@) > S oull3 + (E - > I(u = Dwllz2q. + 72

Here, we used the identity (4.8). Choosing p small enough, we finally find

_ 0 o _
T(0) = 1(0) = o 6ull3 = = — al}

Thus, we proved quadratic growth of the objective functional in a L*°-neighborhood
of the reference control. It implies the local optimality of the pair (g,a). d
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4.3. Generalizations, concluding remarks.

4.3.1. General objective functional. The analysis of the proof of sufficiency
in not restricted to the special quadratic nature of the objective functional J defined
n (1.1). Let us consider the minimization of the functional

j(y,u):/Qw(m,y(a:,T))da?+/Qq(m,t,y(Lt),u(a?,t))dxdt.

We have to require appropriate measurability and differentiability assumptions, which
are standard in the literature, see for instance [7, 16]. Furthermore, we need L>°-
regularity of the state and control to obtain Frechét differentiability of the objective
functional. Regarding instationary Navier-Stokes equations, it is known that the
regularity u € LP(Q)? with p > 2 gives the regularity of the state y € L>(Q)?, cf.
[19, 24]. Additionally, we get an extra second-order remainder term in the Tayor
expansion (4.6) of the Lagrange functional. Up to this differences, the method of
proof remains the same.

4.3.2. Local optimality in L*-neighborhood. The condition (SSC) together
with the first-order necessary optimality conditions yields the local optimality of a
reference control in a L*°-neighborhood. This means more or less that jumps of the
optimal control have to be known a-priorily. With minor modifications, one can proof
optimality of a reference pair (g, %) in neighborhoods of the control @ defined by norms
weaker than L.

Let be given two numbers ¢ and s satisfying 4/3 < ¢ < 2 and 1/¢ =1/2+1/(2s).
This implies 2 < s < oo to hold. The first assumption is needed to ensure LY C
W(0,T)*, which yields continuity of the control-to-state mapping from L? to W(0,T).
The second one allows us to estimate ||ul|q < ||u|| }/2 ||u||i/2, which is used in connection
with strongly active constraints. Summarizing, one can proof along the lines of Section

4.2 the following:

THEOREM 4.4. Let v = (g, a) be admissible for the optimal control problem and
suppose that v fulfills the first order necessary optimality conditions with associated
adjoint state . Assume further that (SSC) is satisfied at ©. Then there exist a > 0
and p > 0 such that

J(v) ZJ(T/)‘FO&‘U*TLE

holds for all admissible pairs v = (y,u) with |u —als < p.

Observe, that we achieve quadratic growth of the objective functional in the L?-
norm which is weaker than L?, but the growth takes place in a L°-neigborhood of the
reference control. For a more detailed discussion, we refer to [22].
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4.3.3. Equivalent formulation. In [4, 6], Bonnans proposed the following for-
mulation of (SSC):

It holds

Lo (0, N)[(2,h)]* >0
for all pairs (z,h) € W(0,T) x L*(Q)? with h # 0,
(88Co) h € Ty,, (), hn =0 on Qo,

and z € W(0,T) being the weak solution of the linearized equation

h
0.

2zt + Az + B'(9)z
z(0)

Despite the fact, that (SSCp) looks weaker than (SSC), it can be proven that
both conditions are equivalent, cf. [22]. Moreover, condition (SSCy) implies quadratic
growth of the objective functional. Although in the original paper the control con-
straints were described by finitely many inequalities of the form

gi(u(z,t)) <0, i=1,...,q,

the proofs carry over to the control constraints considered in the present article.
However, the methods of proof are taylored to the case that L,, is a Legendre form.
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