
            

PAPER • OPEN ACCESS

Dissipative systems with nonlocal delayed feedback control
To cite this article: Josua Grawitter et al 2018 New J. Phys. 20 113010

 

View the article online for updates and enhancements.

This content was downloaded from IP address 130.149.176.172 on 26/11/2018 at 10:15

https://doi.org/10.1088/1367-2630/aae998
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/192017044/Middle/IOPP/IOPs-Mid-NJP-pdf/IOPs-Mid-NJP-pdf.jpg/1?


New J. Phys. 20 (2018) 113010 https://doi.org/10.1088/1367-2630/aae998

PAPER

Dissipative systems with nonlocal delayed feedback control

JosuaGrawitter , Reinier vanBuel , Christian Schaaf andHolger Stark
Institut für Theoretische Physik, TechnischeUniversität Berlin, Hardenbergstraße 36, D-10623Berlin, Germany

E-mail: josua.grawitter@physik.tu-berlin.de

Keywords: time-delayed feedback, closed-loop control, softmatter, latency, nonlocal control, spatiotemporal dynamics, double delay

Abstract
Wepresent a linearmodel,whichmimics the response of a spatially extendeddissipativemediumto a
distant perturbation, and investigate its dynamicsunder delayed feedback control. The time aperturbation
needs topropagate to ameasurementpoint is capturedby an inherent delay time (or latency). Adetailed
linear stability analysis demonstrates that anonzero systemdelay acts to destabilize theotherwise stable
fixedpoint for sufficiently large feedback strengths.The imaginary part of thedominant eigenvalue is
boundedby twice the feedback strength. In the relevant parameter space it changesdiscontinuously along
specific lineswhen switchingbetween eigenvalues.When the feedback control force is boundedby a
sigmoid function, a supercriticalHopf bifurcationoccurs at the stability–instability transition. Perturbing
thefixedpoint, the frequency and amplitudeof the resulting limit cycles respond toparameter changes like
the dominant eigenvalue. Inparticular, they show similar discontinuities along specific lines. These results
are largely independent of the exact shapeof the sigmoid function.Ourfindingsmatchwellwithpreviously
reported results on a feedback-induced instability of vortex diffusion in a rotationally drivenNewtonian
fluid (Zeitz et al 2015Eur. Phys. J.E 3822). Thus, ourmodel captures the essential features of nonlocal
delayed feedback control in spatially extendeddissipative systems.

1. Introduction

Many phenomena in softmatter science require exciting a dissipativematerial. Frommixing two liquids [1],
sorting colloids [2, 3], controlling reaction rates [4] and heat transport inmicrofluidic devices [5], tofluid optics
[1] and spiral patterns in liquid crystals [6], softmatter systems often display theirmost useful or interesting
properties under external stresses. Several control and driving schemes have already been applied to these
systems, including optimal control [7], hysteresis control [8], and time-delayed feedback [8–10]. Thesemethods
sense the characteristic response of amaterial and adapt their control to it. Here, we focus on time-delayed
feedback control of a linearmodel systemwith internal delay, which captures the essential features of how soft
matter systems respond to such a feedback scheme.

As control strategies several time-delayed feedback schemeswith one ormultiple delay times have been
proposed [11–13]. Among these, the so-called Pyragas scheme is particularly well suited for chaotic systems and
to stabilize unstable periodic orbits [14]. It has since been applied to various dynamical systems, such as lasers
[15–17] and neural networks [18]. Themethod falls into the broader category of closed-loop control schemes
because its control force depends purely on the present and past states of the controlled system.Often, the
Pyragas scheme is called a noninvasive control scheme, as its stabilizing force ideally vanishes in a stabilized
state [19].

Earlier theoretical studies [8, 10, 20] and experiments [9, 21] applied delayed feedback to the spatiotemporal
dynamics of specific systems. One study showed that a systemwith two delay times can bemapped to the
complexGinzburg–Landau equation [13].While several investigations of purely temporal systemswith an
intrinsic latency have focused on stabilizing unstable foci [22–24], in one earlier study on vortex diffusion at low
Reynolds numbers an oscillating fluid flow in a circular geometry was initiated by delayed feedback [8]. Thus,
time-delayed feedback used invasively can also destabilize stablefixed points and thereby potentially create novel
nonequilibrium states in softmatter systems.
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In spatially extended systems the response to a control force at locationF needs the systemor intrinsic delay
time to propagate to a distant locationA. There, it is sensed and then fed back into the system at the first
locationF (see the schematic infigure 1). Tomimic this situation, we propose a linear dissipativemodel system,
with the inherent systemdelay time appearing in the response function.We then apply additional time-delayed
feedback control and investigate the response for conditions concentrate on the case, where the system remains
stable for vanishing systemdelay.We perform a detailed linear stability analysis and demonstrate how a nonzero
systemdelay acts to destabilize the otherwise stablefixed point. Typically, the response of a physical system to an
external stimulus is bounded by nonlinearities. Tomimic such a behavior, we limit the strength of the feedback
control forcewith a sigmoid function. As a result, stable limit cycles appear in the otherwise unstable parameter
regions.While their amplitudes depend on the specific realization of the sigmoid as hyperbolic tangent, algebraic
sigmoid, and ramp function, their frequencies are similar. Both, the stability–instability transition and the
appearance of limit cyclesmatch to the findings in [8]. This suggests that ourmodel captures the essential
features of a spatially extended dissipative systemswhen subjected to nonlocal delayed feedback.

We present the linear dissipativemodel in section 2, derive the characteristic function of itsfixed point, and
describe our numericalmethods. In section 3we investigate and discuss the linear stability of the fixed point. In
section 4wemodify the feedback termby the sigmoid function such that its absolute value is limited and study
the stable limit cycles arising from thismodification. Finally, we summarize ourfindings and conclude in
section 5.

2. Linearmodel with nonlocal delayed feedback

2.1.Derivation
Wederive a simplemodel for a dissipative physical processA(t), which is driven by an external, nonlocal forceF
(t). Generally, the linear response ofA(t) to F(t) is written as

ò c= - ¢ ¢ ¢
-¥

¥
( ) ( ) ( ) ( )A t t t F t td , 1

where the response functionχ(t) characterizes the physical system completely. If F acts at some distance from
the positionwhereA is observed, therewill be a systemdelay (or latency) quantified by time ts, beforeA is
affected by F.We describe this causal link inχ using theHeaviside function tQ -( )t s . Furthermore, in
dissipative systems the response to some perturbation often decays exponentially with rateα and the response
function becomes

c t a t= Q - - -( ) ( ) [ ( )] ( )t t texp . 2s s

Substitutingχ(t) into equation (1) and differentiating both sides with respect to t, wefind

a t= - + -
( ) ( ) ( ) ( )A t

t
A t F t

d

d
. 3s

Following Pyragas [14], we now implement for F(t) delayed feedback control with delay time tc, control strength
k, and a constant external force F0,

k t= - - -( ) [ ( ) ( )] ( )F t F A t A t , 40 c

and substitute the expression into equation (3):

a k t t t= - + - - - - -
( ) ( ) [ ( ) ( )] ( )A t

t
A t F A t A t

d

d
. 50 s s c

Figure 1. Schematic of themodel with nonlocal delayed feedback. The processA(t)measured at locationA feeds back to the time-
delayed control forceF(t) at location, the response of which then propagates during timets to locationA.
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This equation has onefixed pointA*, where =A td d 0, which is determined by the first two terms because
the delayed control term vanishes for constant solutions

*
a

= ( )A
F

. 60

Wenondimensionalize timet and kwithα, forceF0 with *aA , andAwithA* to obtain

k t t t= - + - - - - -
( ) ( ) [ ( ) ( )] ( )A t

t
A t A t A t

d

d
1 . 7s s c

In the followingwe study this formof the delay differential equation (DDE).
Note that for k < 0 the delayed feedback term acts to destabilizeA, becausewhen t> -( ) ( )A t A t c the

feedback term gives a positive contribution to A td d . Already for t = 0s , this destabilizes the system for
sufficiently large k∣ ∣. In the followingwe take k 0 to explore the role of ts in themodel.

2.2. Characteristic function
Within control theory, equation (7) is categorized as a closed loop systemwith delayed feedback. Because such
systems can become unstable [25], we investigate the linear stability of the fixed point atA=1 by introducing
the perturbation ansatz

e l= +( ) ( ) ( )A t t1 exp 8

with e ∣ ∣ 1 and complex eigenvalues l Î into equation (7), which gives a transcendental equation forλ,

l k= - - -lt lt- -( ) ( )1 e 1 e . 9s c

In the followingwe solve this equation numerically and study the properties of its solutions.
The eigenvaluesλ are roots of the characteristic function l( )g ,

l l k= + + -lt lt- -( ) ( ) ( )g 1 e 1 e . 10s c

Note that they cannot be expressed using the LambertW function, as is usually possible for time-DDEs [19], due
to the double delay terms.However, we can infer some properties of the roots from the structure of g. First, with
each complexλ also its complex conjugate l̄ is a root of l( )g since k, ts, and tc are real parameters. Second, in
appendix Bwe show that any rootλ of gwith l >( )Re 0 has a nonzero imaginary part bounded by k2 ,

l k<∣ ( )∣Im 2 . Thus any eigenvalue associatedwith an unstable fixed point has a nonzero imaginary part, which
is bounded by control strength. Since the imaginary part is the oscillation frequency, we conclude that fast
oscillations require sufficiently large control strengths.

2.3. Numericalmethods
2.3.1. Root finding
In general, the roots of the characteristic function l( )g cannot be determined analytically. Therefore, we use a
numerical root finding algorithm tofind the dominant eigenvalue in our stability analysis, i.e. the eigenvalue
with the largest real part for one set of systemparameters. As a prerequisite we need to restrict the complex plane
to afinite box, which is guaranteed to contain the dominant eigenvalue. In appendix B, we prove that the
dominant eigenvalue for any parameter combination is contained in the compact complex region  Ì

   

 

l l
t

kt

l k t l t l

= Î - -

- + -

t
⎧⎨⎩

⎡
⎣⎢

⎤
⎦⎥
⎫⎬⎭

∣ ( ) ( )

( ) [ ( )]{ [ ( )]} ( )

W1 Re max 0,
1

2 e 1 ,

0 Im exp Re 1 exp Re . 11

s
s

s c

s

We search a rectangular superset of  (see appendix B)using an interval Newtonmethod[26], which provably
finds all complex roots of l( )g in  and is implemented in [27].

2.3.2. Numerical continuation
To track individual eigenvalues through parameter space, we implement a simple numerical continuation
scheme for the eigenvalue equation l =( )g 0.We explain it for the general problemoffinding the roots ( )u p of
a function ( )f u p, . Given a set of starting values( )u p,0 0 with =( )f u p, 00 0 , the continuation scheme first
calculates an approximate stepũ1 along the tangent vector of the implicit function ( )u p at u0.

= - D 
¶
¶

-˜ ( ) ( )
( )

u u f
f

p
p

. 12u

u p

1 0
1

,0 0

Here,Dp is a small number (in our calculations 10−2) and  fu is the Jacobianmatrix of f w.r.t.u. The
approximate value is then refined iteratively by solving =( )f u p, 01 1 for u1usingNewton’smethodwith

= + Dp p p1 0 and starting from ũ1. The procedure produces a new set of values ( )u p,1 1 and is repeated as

3

New J. Phys. 20 (2018) 113010 JGrawitter et al



necessary tofind approximate curves in parameter space. The derivatives are calculated using the library of [28]
andNewton’smethod is implemented in [29].

2.3.3. Trajectories
Wealso calculate the time evolution ofA(t) to investigate its long-time behavior, such as limit cycles in the case of
a bounded control force. To do so, we use themethod of steps based on a 5th-order Runge–Kuttamethod [30]
and the 4th-order RosenbrockmethodRODAS [31]when using the ramp function to bound the control force
(see section 4). Bothmethods are implemented in the software packageDifferentialEquations.jl[32].

Themethod of steps treats delay terms by splitting the domain of integration into a sequence of time
intervals, so that on each interval the delayed values of the dynamic quantities are fully known. In our case (see
equation (18) in section 4) themethod initially requires a history function describingA(t) for all times

t t- + <( ) t 0s c . The history function is used to integrate over the interval  t< t0 s because t-( )A t s

[and t t- -( )A t s c ] are then knownuntil t=t s. For remaining intervals t t< +( )n t n 1s s (with În )
integration continues usingA(t) from the previous intervals.

2.3.4. Periodic solutions
Tofind time-periodic solutions with periodT for theDDE

t t= - -
( ) [ ( ) ( ) ( )] ( )A t

t
f A t A t A t

d

d
, , 131 2

with delays t1 and t2 for a given functionf and initial conditions, we use the followingmethod. First, we
construct a truncated Fourier series ˜( )A t withN real coefficients corresponding to theN lowest-order sine and
cosine harmonics with periodicityT. Initially, the coefficients are chosen such that p=˜( ) ( )A t t T0.25 sin 2 .
From the givenDDEwe introduce a residual functione( )t , which describes the error of approximation Ã,

e t t= - - -( )
˜ ( ) [ ˜ ( ) ˜ ( ) ˜ ( )] ( )t
A t

t
f A t A t A t

d

d
, , . 141 2

Wealso truncate e( )t in Fourier spacewithN real coefficients (corresponding to the samemodes as before).We
apply a root-findingmethod tofind the set of coefficients for ˜( )A t , whichminimizes the absolute values of the
coefficients of e( )t .When all coefficients of e( )t become vanishingly small, we have arrived at a good
approximation forA(t). To discretize both Ã and ε in Fourier space, we use the library of [33]withN=20. For
rootfindingwe use up to 10iterations of a trust regionmethod implemented in [29].

Note that formany periodsT the only periodic solutions are fixed points. To distinguish fixed points from
limit cycles, we use the ratio of the amplitudes of ˜( )A t and ε(t): becausefixed points have exactly zero amplitude
but the residual nevertheless fluctuates, the amplitude ratio is small forfixed points and large for limit cycles. By
maximizing the ratiowe obtain the periods of limit cycles in our system. To perform the numerical optimization
ofT, we use a golden-section search implemented in [34].

Finally, we test the stability of limit cycles numerically using the time-integrationmethods described in
section 2.3.3 by introducing them as history functions and initial conditions. Due to numerical error, unstable
limit cycles eventually diverge from their orbits while stable limit cycles remain there.We observe trajectories for
100 units of time to determine stability.

All numerical calculations are performed using the Julia programming language[35] and all plots are
created using thematplotlib package [36].

3. Linear stability analysis

3.1. Stability for vanishing delays
In the limiting case of vanishing systemdelay, t  0s , thefixed point is always stable. To prove this, we set
t = 0s and take the real part of g:

l l k k t l= + + - t l-[ ( )] ( ) [ ( )] ( )( )gRe Re 1 e cos Im . 15Re
c

c

Weprove by contradiction1: suppose that l( )Re 0 togetherwith k t >, 0c . Then the final term in
equation (15) is the only (potentially)negative contribution necessary to obtain =( )gRe 0. However, because
the absolute value of this term is always smaller than or equal to k, roots with l( )Re 0 cannot exist. Therefore,
all eigenvalues have l <( )Re 0 and thefixed pointmust be stable for t  0s .

1
Alternatively, one could prove the same result using the analytic solution for t = 0s , which is

l k kt k t t= - + + +( ) { [( ) ]}W1 exp 10 c c c whereW0 is the 0th branch of the LambertW function.

4

New J. Phys. 20 (2018) 113010 JGrawitter et al



In the limit of vanishing control delay, t  0c , thefixed point is stable because the characteristic function

l l= +
t 

( ) ( )glim 1 16
0c

only has one (real) root at l = -1. This is also clear from equation (7) since the delay term vanishes completely.

3.2. Stability-to-instability transition
Afixed point is unstable if l >( )Re 0 for its dominant eigenvalueλ. Based on numerical calculations of the
dominant eigenvalues over a wide set of parameter combinations, wemake several observations, whichwe
report here. For each t > 0s and t > 0c , there is a critical control strength k t t( ),crit s c determined by l =( )Re 0
for the dominant eigenvalue and l( )Re 0 for all others beyondwhich thefixed point is unstable for all
k k> crit. The kcrit form amanifold in parameter space; cross sections for various ts are displayed infigure 2. For
t  0c the critical value kcrit diverges like t-c

1. In this limit l( )g is approximated to linear order in tc as

l l kt l= + + lt-( ) ( )g 1 e , 17c
s

fromwhich follows that any rootλ stays the same as long as the productktc remains constant. For increasingtc

specific values of kcrit exist, where a different eigenvalue becomes dominant.We observe that the resulting cusps
become less prominent as tc increases and eventually kcrit as a function of tc approaches a constant value for
each ts. Notably, these cusps imply that for k close to the cusp value alternating regions of stability and instability
occur as tc increases.We also observe that for small ts the cusps are closer to each other w.r.t.tc and kcrit

diverges with decreasing ts. From these observations and the findings of section 3.1, we conclude that only the
combination of bothnonzero delays causes the instability.

The dominant eigenvalue displays some general features (shown in figure 3): its real part is smallest (i.e. close
to−1) in regionswith either k or tc close to zero, where the control termbecomes negligible. Conversely, this
implies that delayed feedback slows down the decay of individualmodes. The imaginary part of the dominant
eigenvalue is nonzero and displays clear discontinuities w.r.t.tc and k in the unstable region and close to the
transition curve kcrit (see figure 3(b)). Since also l =( )Re 0 at the transition, there is aHopf bifurcation.
Furthermore, as tc increases the imaginary part repeatedly decreases and then jumps to a larger valuewhen a
different eigenvalue becomes dominant. Figure 3(a) shows that the jump lines correspond to valleys in the real
part of the dominant eigenvalue.

More generally, k t( )crit c is the envelope of a family ofHopf curves, i.e.lines in parameter space
corresponding to l =( )Re 0 for each conjugate pair of complex eigenvaluesλ±.We determine theHopf
curves numerically as implicit functions t( )u c defined by t =( )ug , 0c with l k= ( ( ) )u Im , andwith constant
ts (note that g is complex and therefore constrains both coordinates of u). SixHopf curves for successive
eigenvalues are displayed infigure 4with t = 0.2s (corresponding tofigure 3). Extending theHopf curves to
large k, we find that they approach constant values for tc. The cusps visible infigures 2 and 3 correspond to
intersectingHopf curves, i.e.two pairs of eigenvalues, where the real part switches fromnegative to positive at
the same set of parameters. The pairs of eigenvalues have positive real parts on the right-hand side of their
respective curves and, therefore, crossings imply that several eigenvalues can have positive real parts for the same

Figure 2. Stability–instability transition curves in the k–tc plane for various ts with the stable region to the left of each curve.

5

New J. Phys. 20 (2018) 113010 JGrawitter et al



set of parameters. Furthermore, whenwe project the numerically calculated curves k t( )c onto the l( )Im –k
plane, they all fall onto the same line (see inset offigure 3). This suggests there is a globalminimumof critical
control strength kcrit

min for the envelope k t( )crit c belowwhich no instability can occur. Lastly, we observe that
successiveHopf curvesk t( )c becomeflatter, whichmeans their envelope k t( )crit c approaches a straight line for
large tc.

We close with two comments. First, we note the similarities between our dominant eigenvalues and
eigenvalues described in [8] for the specific case of delayed feedback control applied to vortex diffusion in a
circular geometry. The characteristic function for that system is derived by solving the spatiotemporal problem
explicitly. It contains Bessel functions, which play a similar role as the exponentials in equation (10).
Furthermore, the diffusive response function (compare equation (20) in appendix Awith a  0), has an initial
increase and then decays to zero, just as in ourmodel.We consider these similarities a strong indication that
some spatiotemporal systemsmapwell on our simplifiedmodel response functions approximately given by
equation (2).

Second, when Pyragas feedback is applied to a systemwith spatial components like the Swift–Hohenberg
equation [37, 38] or an reaction-diffusion system [39], the relation kt = 1c marks the instability boundary,
where spontaneousmotion of spatial patterns occurs. In our simplemodel we do notfind an explicit expression
for the transition linek t( )crit c but a similar scaling in case of small control delays t  0c (see above).

4. Bounded control force

Typically, the response of a physical system to an external stimulus is bounded by nonlinearities because
ultimately no controlmechanism can exert an infinite force.Wemimic this behavior here by implementing a
bounded control force. Bounded delayed feedbackwas previously studied, e.g.to suppress overshooting due to

Figure 3.Dominant eigenvalueλ color-coded in tc–k plane together with stability–instability transition curvekcrit (dashed red/
white lines) for systemdelay t = 0.2s : (a) real part and (b) imaginary part.

Figure 4.Hopf curves of six successive eigenvaluesλ (solid colored lines) in the tc–k plane for systemdelay t = 0.2s . Inset: in the
l( )Im –k plane all sixHopf curves project onto the same curve (solid black line). As a result, they all share the sameminimumof

critical control strength kcrit
min (dashed gray line).
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overcompensating control forces [40], or for hydrodynamic vortex diffusion in a circular geometry to stabilize
unstablemodes [8].

4.1.Model and setup
We start bymodifying theDDEof equation (7) such that the time-delayed control term is limited by a
monotonically increasing odd function s ( )x with s ¥ = ( ) 1and s¢ =( )0 1:

s k t t t= - - - - - -
( ) ( ) { [ ( ) ( )]} ( )A t

t
A t A t A t

d

d
. 18s s c

Compared to equation (7)we set the constant force to zero, which shifts the fixed point of themodifiedDDE
with the bounded feedback to * =A 0. Linearizing around this fixed point, one recovers equation (7)without
the term+1.

To realize upper and lower bounds for the control forces, we consider three sigmoid functions: the
hyperbolic tangent s =( ) ( )x xtanh , which approaches±1 exponentially, an algebraic sigmoid
s = + -( ) ( ∣ ∣)x x x1 1, which approaches±1 like a power law, and the nonsmooth ramp function
s = = -( ) ( ) [ ( )]x x xramp min 1, max 1, . All three are displayed infigure 5.

We solve equation (18)numerically2 as described in section 2.3with the history function < =( )A t 0 0 and
a small initial perturbation3,A(t=0)=10−3. If thefixed point is unstable, the perturbationwill growover
time, otherwise it will decay to zero. Using this setup, we study the long-time behavior of the bounded system
and its relationship to the unstable fixed point studied in section 2 by calculating the time evolution ofA(t) until
timeT=103 and by examining the frequencies and amplitudes of the occurring limit cycles for times
0.8T<t<T.We chose these initial conditions becausewe are specifically interested in the long-time behavior
following a simple perturbation from the fixed point without any prescribedmode or frequency.

4.2. Long-time dynamics
For all three sigmoid functionsσ, the bounded systemdisplays aHopf bifurcation, where the fixed pointA
(t)=0 becomes unstable and a limit cycle emerges (seefigure 6). It is stabilized by the upper and lower bound of
the control force, whichwould otherwise grow to infinity. The limit cycle does not correspond to an unstable
periodic orbit of the uncontrolled system as envisaged in Pyragas’ original idea [14], because the feedback term
does not vanishwhen the limit cycle is reached. Generally, the limit cycles for all sigmoid functions should
converge for k  ¥ because in this limit they all approach the discontinuous step function. In the studied
parameter region, the frequencies of the observed limit cycles are determined by the imaginary part of the
dominant eigenvalue at the unstable fixed point. This becomes evident when comparing the frequency plots in
the left columnoffigure 6with figure 3(b). In particular, the jumps fromonemode to the other agreewell for
both frequencies. However, the amplitudeDA of the limit cycle ( )A tlc defined as
D = -[ { ( )} { ( )}]A A t A tmax min 2t tlc lc is generally not related to the real part of the dominant eigenvalue
(compare amplitudes in the right columnof figure 6withfigure 3(a)). It rather behaves like the frequency of the

Figure 5.Three realizations of a sigmoid function for implementing delayed control forces with upper and lower bounds plotted
versus x. Three asymptotic scalings for large ∣ ∣x are realized: flat (ramp), exponential (tanh), and power law.

2
Itmight be possible to find analytic approximations for limit cycles (observed in the following) and their Floquet exponents using the

Poincaré–Lindstedtmethod [41].
3
The discontinuity at t=0 is equivalent to a force proportional to theDirac delta function. Thus it is infinitely large and exerted over an

infinitesimally short period of time such that its integral over time (impulse) isfinite.
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limit cycle with one difference: it increases as tc grows and drops to a smaller valuewhen the long-time dynamics
switches to a different limit cycle. So, at the discontinuity lines the sudden increase in frequency is accompanied
by a sudden decrease in amplitude. This is explicitly demonstrated infigure 7.

Using themethod described in section 2.3.4we analyzed the two limit cycles displayed infigure 7 inmore
detail.Wefind that they co-exist for both sets of parameters (with slightly shifted amplitudes and frequencies).
For t = 1.0c only the limit cycle with the larger frequency is stable, while for t = 1.2c both limit cycles are stable
and the long-time dynamics depends on initial conditions. Apparently, in the bistable case the high-frequency
limit cycle attracts trajectories departing from the unstable fixed point, whichwhere attracted to the low-
frequency limit cycle for t = 1.0c . Notably, the transition to bistability occurs close to one of theHopf curves
displayed infigure 4, which suggests that the second limit cycle becomes stable as an additional pair of complex
eigenvalues acquires positive real parts.We, therefore, expect that for larger tc evenmore than two stable limit
cycles co-exist, depending on the number of complex eigenvalues with positive real part4.

Figure 6. Frequencies and amplitudes of the limit cycles resulting from theDDEof equation (18) color-coded in the k–tc parameter
space at t = 0.2s for different realizationsσ of the bounded control force: (a) ramp sigmoid, (b) hyperbolic tangent, and (c) algebraic
sigmoid. Zero frequency (dark blue) indicates the region of stable fixed point (no oscillations). The dashedwhite line indicates the
transition from stable to unstable fixed point.

4
Furthermore, we point out the possibility that the unstable limit cycles could be stabilizedwith an additional (noninvasive) time-delayed

feedback termwith a delay timematching its period.
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There are some notable differences between the limit cycles generated by the three sigmoid functions
bounding the control term.Most obviously, their amplitudes (right columnoffigure 6) behave differently at the
bifurcation line: while they increase smoothly from zero for the hyperbolic tangent and algebraic sigmoid
functions as in a supercritical Hopf bifurcation (rows (b) and (c)), they jump to a nonzero value for the ramp
sigmoid function (row (a)). The ramp function is a special case because it is linear up to the bounding values.
This causes the control amplitude to always reach itsmaximumvalue in the unstable region, once the transition
line is crossed. The step-like behavior could, for example, be used in experiments to accurately locate the
transition line. Furthermore, for the ramp function the amplitudes of the limit cycles are largest close to the
bifurcation line, while they increase for the smooth functionswhenmoving away from the bifurcation linewith
increasing k. Finally, a closer inspection shows that the discontinuity lines of the limit cycle frequencies for the
ramp function accurately track the corresponding lines in the imaginary part of the dominant eigenvalue in
figure 3(b). However, there are slight deviations for the smooth sigmoid functions.

4.3. Transient pulse trains
In particular, for large control timestc we observe transient pulse trains at the beginning of the dynamic
evolution of our system. They occur for stable and unstable fixed points with decaying or growing amplitude,
respectively. One example, when thefixed point is unstable, is displayed infigure 8(a). These pulse trains grow
into regular limit cycles, as shown infigure 8(b), while for stablefixed points their amplitude decays to zero.
Generally, we observe that pulse trains repeat with a periodicity given bytc and their oscillation frequency is
close to the imaginary part of the dominant eigenvalue l p( )Im 2 .

5. Conclusions

Motivated by the growing interest in applying delayed feedback to softmatter systems, we have studied a linear
dissipativemodel, whichmimics nonlocal delayed feedback coupling. To do so, we introduced an inherent
systemdelay in the response function, which represents the time a perturbation needs to propagate to a distant
location.Our results provide an indication hownonlocal delayed feedback in a spatially extended system
determines its dynamics and helps to classify the observed spatiotemporal response.

In our investigations we concentrated on the case where the system remains in its stablefixed point when the
intrinsic delay is not present. Turning on the intrinsic delay, the feedback-driven systembecomes unstable for
sufficiently large control strengths.We are able to show that the absolute imaginary part of the dominant
eigenvalue is bounded fromabove by twice the feedback strength. Stability–instability transition curves and the
imaginary part of the dominant eigenvaluematchwell with the findings reported in [8], where delayed feedback
was applied to vorticity diffusion of aNewtonian fluid in a circular geometry at lowReynolds numbers. This
demonstrates that our simplemodel system captures the essential properties of the spatiotemporal dynamics in a
specific system.

To further study the feedback-induced instability, we examined the long-time dynamics of ourmodel with
bounded feedback, which in linearized form yields the original system. Realizing the bounded feedback by
smooth sigmoid functions, the stability–instability transition occurs via a supercriticalHopf bifurcation. Thus,
thefixed point becomes unstable and a stable limit cycle evolves continuously. In contrast to Pyragas’ original
idea [14], this limit cycle does not correspond to an unstable periodic orbit of the uncontrolled system, but is

Figure 7. Limit cycles of a systemwith feedback control bounded by the hyperbolic tangent as sigmoid function at two different
control delays tc for k = 5 and t = 0.2s . The systemwith larger tc has larger periodicity but smaller amplitude.
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stabilized by the control force. For all three sigmoid functions and acrossmany parameter combinations, the
frequencies of the limit cycle, which attracts trajectories starting from thefixed point,matchwell the imaginary
part of thefixed point’s dominant eigenvalue. Discontinuity lines are visible, which occurwhen the long-time
behavior switches to a different limit cycle causing frequency to jumpup and amplitude to drop sharply. The
results for the nonsmooth ramp function differ from the other sigmoid functions, because at theHopf
bifurcation the amplitude of the limit cycle jumps to a nonzero value. In addition, the discontinuity lines of the
limit cycle frequencies accurately track the corresponding lines for the imaginary part of the dominant
eigenvalue of the linearized system. Both features predestine the ramp sigmoid function to accurately determine
the stability–instability transition in an experimental system.

The linear dissipativemodel presented in this article with its intrinsic delay time helps to classify and
understand the spatiotemporal response of a spatially extended system subject to nonlocal delayed feedback.
Ourwork demonstrates that thismodel already exhibits complex and nontrivial behavior. It also provides an
example for double delay systems, which have recently attracted attention [42–44]. In future studies wewill
apply delayed feedback to specific nonlinear softmatter systems such as photoresponsive fluid interfaces [45]
and viscoelastic flow inTaylor–Couette geometry [46]. Thework presented in this article will help us to
categorize the observed spatiotemporal dynamics.
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AppendixA. A physical systemwith intrinsic delay

Weconsider a diffusion-reaction equation of a substancewith density r ( )r t, , which decays at a rateα in two-
dimensions:

r r ar¶ =  -( ) ( ) ( ) ( )r rt D t x t, , , , 19t
2

whereD is the diffusion constant. As initial condition at t=0we choose a delta peak located at =r 0,
r d=( ) ( )r rN, 0 . The solution of this problem is given by

r
p

a= - -
⎛
⎝⎜

⎞
⎠⎟( ) ( )r t

N

Dt
t

r

Dt
,

4
exp

4
, 20

2

Figure 8.Dynamic response of the system to feedback control bounded by the hyperbolic tangent function for t = 0.4s , t = 25c , and
k = 2.1: (a) transient pulse trains and (b) limit cycle oscillations (note the different scales).
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where = ∣ ∣rr is the distance from the perturbation. The density at any point ¹r 00 increases up to the time

a
a

= + -
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )t

r

D

1

2
1 1 210

0
2

and then decreases to zero.Note that for pure diffusion (a  0) themaximum is reached at = -( )t r D40 0
2 1.

Thus, a disturbance initiated at r=0 needs the intrinsic delay time t0 to reach r0. To approximate this behavior
in a response function of the form given in equation (2), we assume a step functionwhere the substance ρ jumps
to itsmaximumvalue r ( )r t,0 0 and then decays exponentially

c r a= Q - - -( ) ( ) ( ) [ ( )] ( )r rt t t t t t, , exp . 220 0 0 0 0

Thus, t = ts 0 is the intrinsic delay time and the physical decay rateα of our substance enters directly the response
function. Because the step function prevents any response for <t t0, t0 is an effective propagation time.

Appendix B. Search region for dominant eigenvalues

Wefind the roots of the characteristic function gnumerically. Because a numerical search on the infinite
complex plane is unfeasible, we restrict our search to a bounded regionwhich is guaranteed to contain the
dominant eigenvalue, i.e. the root of gwith the largest real part.

First, we find an upper bound to the real part of all eigenvalues using l =[ ( )]gRe 0:

l
k

t t l t t l t l t l
+

= - + + - -
( ) [ ( ) ( )] [( ) ( )] [ ( )] [ ( )] ( )Re 1

exp Re cos Im exp Re cos Im . 23s c s c s s

The cosinesmay atmost change the signs of the terms such that both contribute positively. Thus

l
k

t l t t l
+

- + - +
( ) [ ( )] [ ( ) ( )] ( )Re 1

exp Re exp Re . 24s s c

Assuming l( )Re 0

l
k

t l
+

-
( ) [ ( )] ( )Re 1

2 exp Re , 25s

andwe solve for l( )Re using Lambert’sW function

l
t

kt -t( ) ( ) ( )WRe
1

2 e 1. 26
s

s s

With our previous assumptionwe have

l
t

kt -t
⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )WRe max 0,

1
2 e 1 . 27

s
s s

Notably the upper bound is independent of tc.
Second, wefind a lower bound for l( )Re such that our search region contains at least one eigenvalue. To

simplify our search, we concentrate on l Î , which is determined by

l t l t l= - - - - -( )[ ( )] ( )1 exp 1 exp . 28s c

On the interval -¥( ], 0 the lhsof this equation goes continuously from-¥ to 0 and the rhsgoes continuously
from+¥ to−1. Because both sides are continuous and strictlymonotonic for t t >, 0c s , they share exactly one
value in the overlap, i.e.  l-1 0. Therefore, a search regionwith l -( )Re 1, which also contains the real
axis, will always contain at least one (real) eigenvalue.

Third, we find an upper bound for the imaginary parts of all eigenvalues using l =[ ( )]gIm 0

l k t l t l k t t l t t l= - - - + +( ) [ ( )] [ ( )] [ ( ) ( )] [( ) ( )] ( )Im exp Re sin Im exp Re sin Im . 29s s s c s c

Here, we simply drop the sines, assuming all terms contribute positively

l k t l t l- + -( ) [ ( )]{ [ ( )]} ( )Im exp Re 1 exp Re . 30s c

The rhsdepends on l( )Re and on the interval determined for l( )Re . It ismaximal for l = -( )Re 1 implying
l k +t t( ) [ ]Im e 1 es c . Note that the symmetry l l=( ¯ ) ¯ ( )g g implies that we only need to search the positive

half of the complex plane, i.e. l( )Im 0, because all complex roots appear in conjugate pairs.
In summary, we have shown that the following set of complex numbers must always contain the

eigenvaluewith the largest real part:
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   

 

l l
t

kt

l k t l t l

= Î - -

- + -

t
⎧⎨⎩

⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭

∣ ( ) ( )

( ) [ ( )]{ [ ( )]} ( )

W1 Re max 0,
1

2 e 1 ,

0 Im exp Re 1 exp Re . 31

s
s

s c

s

For simplicity and safety we search a bounded rectangular regionwhich is a superset of  :

   

 

l l
t

kt

l k

Í Î - -

- +

t

t t

⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭

∣ ( ) ( )

( ) ( ) ( )

W1.1 Re max 0,
1.1

2 e 1.1 ,

0.1 Im 1.1 e 1 e . 32

s
s s

s c

Both regions are displayed infigure B1.
Note that the shape of  immediately implies that any eigenvalueλwith l >( )Re 0 has l k<∣ ( )∣Im 2 .

Furthermore, it can be shown that l >( )Re 0 implies l ¹∣ ( )∣Im 0 because equation (28) has no solutions for
l > 0. In this case the lhsof equation (28) is always positive while the rhsis always smaller than−1 and
therefore no solutionwith l >( )Re 0 and l =∣ ( )∣Im 0 exists.

ORCID iDs

JosuaGrawitter https://orcid.org/0000-0003-2944-7052
Reinier van Buel https://orcid.org/0000-0002-4025-9063
Christian Schaaf https://orcid.org/0000-0002-4154-5459
Holger Stark https://orcid.org/0000-0002-6388-5390

References

[1] WhitesidesGM2006Nature 442 368
[2] Zhang J, Yan S, YuanD, Alici G,NguyenNT,WarkianiME and LiW2016 LabChip 16 10
[3] Schaaf C and StarkH2017 SoftMatter 13 3544–55
[4] Samiei E, TabrizianMandHoorfarM2016 LabChip 16 2376
[5] Li FC, KinoshitaH, Li XB,OishiM, Fujii T andOshimaM2009Exp. Therm. Fluid Sci. 34 20–7
[6] Tran L, LavrentovichMO,DureyG,DarmonA,HaaseMF, Li N, LeeD, Stebe K J, KamienRDand Lopez-LeonT 2017 Phys. Rev.X 7

041029
[7] ProhmC, Tröltzsch F and StarkH2013Eur. Phys. J.E 36 118
[8] ZeitzM,Gurevich P and StarkH2015Eur. Phys. J.E 38 22
[9] LüthjeO,Wolff S and Pfister G 2001Phys. Rev. Lett. 86 1745
[10] von Lospichl B andKlapp S 2018Phys. Rev.E 98 042605
[11] Schöll E and SchusterHG (ed) 2008Handbook of Chaos Control 2nd edn (Weinheim:Wiley-VCH)
[12] LangR andKobayashi K 1980 IEEE J. QuantumElectron. 16 347–55

Figure B1. Example of a region, whichwith certainty contains the dominant eigenvalue as determined in equation (31) (red,
transparent), numerical search rectangle from equation (32) (white, transparent), and numerically located eigenvalues (black crosses)
for k = 5, t = 1c , t = 0.4s . The upper bound for the real parts of eigenvalues with large imaginary parts is displayed as awhite,
dashed line. The background shading indicates the absolute value of the characteristic function l∣ ( )∣g .

12

New J. Phys. 20 (2018) 113010 JGrawitter et al

https://orcid.org/0000-0003-2944-7052
https://orcid.org/0000-0003-2944-7052
https://orcid.org/0000-0003-2944-7052
https://orcid.org/0000-0003-2944-7052
https://orcid.org/0000-0002-4025-9063
https://orcid.org/0000-0002-4025-9063
https://orcid.org/0000-0002-4025-9063
https://orcid.org/0000-0002-4025-9063
https://orcid.org/0000-0002-4154-5459
https://orcid.org/0000-0002-4154-5459
https://orcid.org/0000-0002-4154-5459
https://orcid.org/0000-0002-4154-5459
https://orcid.org/0000-0002-6388-5390
https://orcid.org/0000-0002-6388-5390
https://orcid.org/0000-0002-6388-5390
https://orcid.org/0000-0002-6388-5390
https://doi.org/10.1038/nature05058
https://doi.org/10.1039/C5LC01159K
https://doi.org/10.1039/C7SM00339K
https://doi.org/10.1039/C7SM00339K
https://doi.org/10.1039/C7SM00339K
https://doi.org/10.1039/C6LC00387G
https://doi.org/10.1016/j.expthermflusci.2009.08.007
https://doi.org/10.1016/j.expthermflusci.2009.08.007
https://doi.org/10.1016/j.expthermflusci.2009.08.007
https://doi.org/10.1103/PhysRevX.7.041029
https://doi.org/10.1103/PhysRevX.7.041029
https://doi.org/10.1140/epje/i2013-13118-8
https://doi.org/10.1140/epje/i2015-15022-7
https://doi.org/10.1103/PhysRevLett.86.1745
https://doi.org/10.1103/PhysRevE.98.042605
https://doi.org/10.1109/JQE.1980.1070479
https://doi.org/10.1109/JQE.1980.1070479
https://doi.org/10.1109/JQE.1980.1070479


[13] Yanchuk S andGiacomelli G 2014Phys. Rev. Lett. 112 174103
[14] PyragasK 1992Phys. Lett.A 170 421
[15] OttoC, Lüdge K and Schöll E 2010Phys. Status Solidi b 247 829–45
[16] Pisarchik AN andFeudel U 2014Phys. Rep. 540 167
[17] Munnelly P, LingnauB, KarowMM,Heindel T, KampM,Höfling S, LüdgeK, Schneider C andReitzenstein S 2017Optica 4 303–6
[18] Schöll E,Hiller G,Hövel P andDahlemMA2009Phil. Trans. R. Soc.A 367 1079–96
[19] Schöll E,Hövel P, Flunkert V andDahlemMA2010Time-delayed feedback control: from simplemodels to lasers and neural systems

Complex Time-Delay Systems ed FMAtay (Berlin: Springer) ch 4, pp 85–150
[20] BabaN, AmannA, Schöll E and JustW2002Phys. Rev. Lett. 89 074101
[21] Kiss I Z, KazsuZ andGáspár V 2006Chaos 16 033109
[22] JustW, ReckwerthD, Reibold E andBrennerH 1999Phys. Rev.E 59 2826
[23] Hövel P and Schöll E 2005Phys. Rev.E 72 046203
[24] WünscheH J, Schikora S andHenneberger F 2008Noninvasive control of semiconductor lasers by delayed optical feedbackHandbook

of Chaos Control ed E Schöll andHGSchuster 2nd edn (Weinheim:Wiley-VCH) ch21
[25] Niculescu S I,MichielsW,GuK andAbdallahCT2010Delay effects on output feedback control of dynamical systemsComplex Time-

Delay Systems ed FMAtay (Berlin: Springer) pp 63–84
[26] Moore RE, Kearfott R B andCloudM J 2009 Introduction to Interval Analysis (Philadelphia, PA: Society for Industrial andApplied

Mathematics)
[27] 2018 IntervalRootFinding.jl version0.2.0 https://github.com/JuliaIntervals/IntervalRootFinding.jl
[28] Revels J, LubinMandPapamarkouT 2016 arXiv:1607.07892v1 (ForwardDiff.jl v0.7.5)
[29] 2018NLsolve.jl version1.0.1 https://github.com/JuliaNLSolvers/NLsolve.jl
[30] Tsitouras C 2011Comput.Math. Appl. 62 770–5
[31] Hairer E andWannerG 1991 SolvingOrdinaryDifferential equations vol 2 (Berlin: Springer)
[32] Rackauckas C andNieQ 2017 J. Open Res. Softw. 5 15
[33] 2018ApproxFun.jl version0.8.1 https://github.com/JuliaApproximation/ApproxFun.jl
[34] Mogensen PK andRiseth AN2018 J. Open Source Softw. 3 615
[35] Bezanson J, EdelmanA, Karpinski S and ShahVB 2017 SIAMRev. 59 65–98
[36] DroettboomM2018MatplotlibVersion 2.2.2 https://matplotlib.org/
[37] TlidiM,Vladimirov AG, PierouxD andTuraevD 2009Phys. Rev. Lett. 103 103904
[38] Gurevich SV and Friedrich R 2013Phys. Rev. Lett. 110 014101
[39] Gurevich SV 2013Phys. Rev.E 87 052922
[40] BennerH,ChoeCU,HöhneK, von LoewenichC, ShirahamaHand JustW2008Observing global properties of time delayed feedback

control in electronic circuitsHandbook of Chaos Control ed E Schöll andHGSchuster 2nd edn (Weinheim:Wiley-VCH) ch25
[41] Simmendinger C,HessO andWunderlin A 1998Phys. Lett.A 245 253–8
[42] LiN, YuanHand SunH2013NonlinearDyn. 73 1187–99
[43] WangKK,Wang Y J, Li SH andWu JC 2017Chaos Solitons Fractals 104 400–17
[44] BrunnerD, Penkovsky B, LevchenkoR, Schoell E, Larger L andMaistrenko Y 2018Chaos 28 103106
[45] Grawitter J and StarkH2018 SoftMatter 14 1856
[46] vanBuel R, Schaaf C and StarkH 2018EPL 124 14001

13

New J. Phys. 20 (2018) 113010 JGrawitter et al

https://doi.org/10.1103/PhysRevLett.112.174103
https://doi.org/10.1016/0375-9601(92)90745-8
https://doi.org/10.1002/pssb.200945434
https://doi.org/10.1002/pssb.200945434
https://doi.org/10.1002/pssb.200945434
https://doi.org/10.1016/j.physrep.2014.02.007
https://doi.org/10.1364/OPTICA.4.000303
https://doi.org/10.1364/OPTICA.4.000303
https://doi.org/10.1364/OPTICA.4.000303
https://doi.org/10.1098/rsta.2008.0258
https://doi.org/10.1098/rsta.2008.0258
https://doi.org/10.1098/rsta.2008.0258
https://doi.org/10.1103/PhysRevLett.89.074101
https://doi.org/10.1063/1.2219702
https://doi.org/10.1103/PhysRevE.59.2826
https://doi.org/10.1103/PhysRevE.72.046203
https://github.com/JuliaIntervals/IntervalRootFinding.jl
http://arxiv.org/abs/1607.07892v1
https://github.com/JuliaNLSolvers/NLsolve.jl
https://doi.org/10.1016/j.camwa.2011.06.002
https://doi.org/10.1016/j.camwa.2011.06.002
https://doi.org/10.1016/j.camwa.2011.06.002
https://doi.org/10.5334/jors.151
https://github.com/JuliaApproximation/ApproxFun.jl
https://doi.org/10.21105/joss.00615
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://matplotlib.org/
https://doi.org/10.1103/PhysRevLett.103.103904
https://doi.org/10.1103/PhysRevLett.110.014101
https://doi.org/10.1103/PhysRevE.87.052922
https://doi.org/10.1016/S0375-9601(98)00418-6
https://doi.org/10.1016/S0375-9601(98)00418-6
https://doi.org/10.1016/S0375-9601(98)00418-6
https://doi.org/10.1007/s11071-012-0434-y
https://doi.org/10.1007/s11071-012-0434-y
https://doi.org/10.1007/s11071-012-0434-y
https://doi.org/10.1016/j.chaos.2017.08.030
https://doi.org/10.1016/j.chaos.2017.08.030
https://doi.org/10.1016/j.chaos.2017.08.030
https://doi.org/10.1063/1.5043391
https://doi.org/10.1039/C7SM02101A
https://doi.org/10.1209/0295-5075/124/14001

	1. Introduction
	2. Linear model with nonlocal delayed feedback
	2.1. Derivation
	2.2. Characteristic function
	2.3. Numerical methods
	2.3.1. Root finding
	2.3.2. Numerical continuation
	2.3.3. Trajectories
	2.3.4. Periodic solutions


	3. Linear stability analysis
	3.1. Stability for vanishing delays
	3.2. Stability-to-instability transition

	4. Bounded control force
	4.1. Model and setup
	4.2. Long-time dynamics
	4.3. Transient pulse trains

	5. Conclusions
	Acknowledgments
	Appendix A.
	Appendix B.
	References



