
FACHBEREICH 3

MATHEMATIK

A COMPUTATIONAL STUDY ON

BOUNDING THE MAKESPAN

DISTRIBUTION IN STOCHASTIC PROJECT

NETWORKS

by

ARFST LUDWIG ROLF H. MÖHRING

FREDERIK STORK

No. 609/1998

A Computational Study on Bounding the Makespan

Distribution in Stochastic Project Networks

Arfst Ludwig� Rolf H. Möhringz Frederik Storkz x

June 30, 1998, revised April 14, 2000

Abstract

Due to the practical importance of stochastic project networks (PERT-

networks), many methods have been developed over the past decades in order

to obtain information about the random project completion time. Of particular

interest are methods that provide (lower and upper) bounds for its distribution,

since these aim at balancing efficiency of calculation with accuracy of the ob-

tained information.

We provide a thorough computational evaluation of the most promising of

these bounding algorithms with the aim to test their suitability for practical ap-

plications both in terms of efficiency and quality. To this end, we have imple-

mented these algorithms and compare their behavior on a basis of nearly 2000

instances with up to 1200 activities of different test-sets. These implementations

are based on a suitable numerical representation of distributions which is the

basis for excellent computational results. Particularly a distribution-free heuris-

tic based on the Central Limit Theorem provides an excellent tool to evaluate

stochastic project networks.

1 Introduction

In order to cope with stochastic influences when executing projects, planners naturally

assume activity durations to be random. In combination with precedence constraints

among activities this leads to so-called stochastic project networks or PERT networks

D = (N;A;p). Here, A = f1; :::; ng is the set of activities and (N;A) is a digraph (or

network) characterizing the precedence constraints as activity-on-arc representation.

The nodes v 2 N of D are called project events. The distribution of activity durations

is given by a vector p = (p

1

; :::;p

n

) of independent random variables, where p

j

denotes the distribution associated with activity j 2 A. In principle, these distributions

are assumed to be known (though, as will become clear later, there are methods that

can deal with incomplete information).

�Lufthansa Systems Berlin GmbH, Fritschestraße 27–28, D-10585 Berlin, Germany,

Arfst.Ludwig@LHSystems.COM, http://www.lhsystems.com
zTechnische Universität Berlin, Department of Mathematics, Sekr. MA 6–1, Straße des 17.Juni 136,

D-10623 Berlin, Germany, fmoehring,storkg@math.tu–berlin.de, http://www.math.tu–berlin.de/coga.
xThe author is supported by the Deutsche Forschungsgemeinschaft (DFG) under grant Mo 446/3-3

1

Typical tasks in the evaluation of stochastic project networks are the computation

of “most critical” paths, “most critical” activities, as well as the calculation of the dis-

tribution function of the project completion time and/or some of its moments. Unfor-

tunately, these problems are very hard to solve in general. With respect to determining

the distribution function, researchers have therefore focused on computing both upper

and lower bounds for the exact, but unknown distribution function. However, none

of these approaches has been systematically tested and empirically analyzed within a

comprehensive computational study.

Contribution of the paper. The purpose of this paper is to provide an extensive com-

putational evaluation of stochastic bounds on the makespan distribution with the aim

to test their suitability for practical applications both in terms of efficiency and qual-

ity. We have selected the most promising ones from the literature, which have been

developed by Kleindorfer [11] (lower and upper bound), Dodin [7] (upper bound),

and Spelde [22] (lower bound and heuristic procedure). They all rely on structural

modifications of the underlying network and presume independence of activity dura-

tions. Their common idea is to modify the given network into a series-parallel project

network, for which the makespan distribution can be computed more easily.

We have implemented these algorithms and compare their behavior on a basis of

nearly 2000 instances with up to 1200 activities of different test-sets. These implemen-

tations are based on a suitable numerical representation of distributions which allows

a fast and stable implementation of the required numerical operations. The bounds are

compared with the exact distribution which is computed by exhaustive simulation. Our

computations show that both quality and computation time is excellent. Networks with

1200 activities can be evaluated within less than 10 seconds on a desktop computer.

We also consider a heuristic procedure that is based on the Central Limit Theorem. It

is particularly suitable for coping with incomplete information since only mean E[p

j

℄

and variance V [p

j

℄ of the distributions are required. It provides results of similar qual-

ity within fractions of time when compared to the bounding routines. We here require

less than one second of computation time.

Related work. Since most planning processes in industry and commerce bear un-

certainty, there is a vast literature that considers problems being related to stochastic

project networks. Early work is compiled in [4, 13, 9]; more recent reviews have been

contributed by Adlakha and Kulkarni [1] and Soroush [21].

Hagstrom [10] has shown that some of the most fundamental problems in this re-

spect are #P -complete in general. Assuming two-point distributions, she has shown

that the computation of even a single point of the distribution function of the project

completion time is #P -complete. The same holds for the computation of the mean.

For more complicated distributions the complexity status of computing the mean is

open, since the longer encoding of the distributions may possibly admit a polynomial

algorithm. But such an efficient algorithm seems very unlikely to exist, since, assum-

ing discrete distributions, Hagstrom has also shown that the mean cannot be computed

in time polynomial in the number of possible values of the makespan, unless P = NP .

Intuitively, the possibly exponential number of paths in the network and the fact that

distributions of path lengths are correlated are the reasons for the hardness of these

2

problems.

Methods for computing stochastic bounds on the makespan distribution have been

proposed by Robillard and Trahan [17], Kleindorfer [11], Dodin [7], Spelde [22],

Shogan [20], and Meilijson and Nadas [15]. While the first four approaches require

independent activity durations, the method proposed by Shogan [20] partially allows

dependencies among the distributions of the activity durations. However, in the inde-

pendent case Shogan’s bounds reduce to those of Kleindorfer. Möhring and Müller

[16] introduced a unified model for such bounding results in terms of a chain–minor

notion for project networks that covers and generalizes all approaches which are based

on the transformation of the given project network into series-parallel networks. The

bound proposed in [15] covers arbitrary dependencies among activity durations but is

based on a weaker stochastic ordering of random variables.

Organization of the paper. In the next section, we will establish the stochastic basis

for the bounding procedures which are stated in Section 3. Section 4 is then concerned

with the computational study, where we also discuss the implementation of a suitable

representation of distributions for our purpose. We conclude with some remarks on

future research.

2 Stochastic Background

A random variable x is said to be stochastically smaller than y if E[g(x)℄ � E[g(y)℄

for all non-decreasing real functions g. For real-valued random variables x and y

this is equivalent to F

x

� F

y

, where F

x

and F

y

are the distribution functions of x

and y, respectively. Throughout the paper we compare distributions on the basis of

this stochastic order (for details on this and related stochastic orders see [19]). We

assume that activity durations are given by independent continuous distributions of

finite range, represented by their distribution functions F
j

(t) = Prob(p

j

� t), j 2 A.

Computationally, we handle all distribution functions as piecewise linear functions

with sp supporting points. Details are given in Section 4.3 below.

The basic stochastic operations for computing the project makespan in a stochastic

network are the maximum and the sum of random variables. For independent x and

y it is well known that the distribution function of their maximum F

maxfx;yg

can

be computed as F
x

� F

y

. The distribution function of their sum is the convolution

F

x

� F

y

:=

R

1

�1

F

y

(t� s)f

x

(s)ds, where f
x

denotes the density function of x.

Since random variables x and y of activity completion times are correlated in

general, F
x

� F

y

is not the distribution function of their maximum. However, the

following inequalities are valid.

F

x

� F

y

� F

maxfx;yg

� minfF

x

; F

y

g (1)

Here, minfF

x

; F

y

g denotes the pointwise minimum of F
x

and F
y

. For the validity of

(1) we refer to Esary, Proschan, and Walkup [8] and Kleindorfer [11]. Note that we do

not need bounding inequalities for the sum of random variables because this operation

is applied to independent random variables only and can therefore be computed exactly

(within reasonable numerical precision).

3

Finally, for notational convenience, we define Æ
t

as the characteristic function of

the interval [t;1), t � 0, i.e., Æ
t

(s) := 0 if s < t and Æ
t

(s) := 1 if s � t.

3 Stochastic Bounds on the Project Makespan

In this section we give an algorithmic description of the implemented bounds. We have

considered algorithms for two upper and two lower bounds as well as one heuristic

approach which is based on the Central Limit Theorem. The common paradigm of all

methods is to transform the given network D into a series-parallel network. It is well

known that such networks can be evaluated more efficiently (see, e. g., Martin [14]).

The reason for this fact is that, when performing all required maximum operations on

the random variables (produ
t operations on the corresponding distribution functions)

in a suitable ordering, all involved distributions are independent.

In the following we denote the source and the target node of an activity j in D by

s(j) and t(j), respectively. The nodes �s and �

t are the (unique) global source and sink

of D.

3.1 The Bounds of Kleindorfer

Kleindorfer [11] provided both a stochastic upper and a stochastic lower bound on the

makespan distribution of stochastic project networks. The procedures traverse the net-

work along a topological sort and assign a distribution function F

[v℄

to each node v of

the network (the brackets in F

[v℄

indicates that the distribution is associated with an

event of D instead of an activity). F
[v℄

is computed as the product (upper bound) or

minimum (lower bound) of all convolutions F
[s(j)℄

�F

j

with t(j) = v. Then, with (1),

F

[v℄

bounds the distribution function of the start time of all activities i with s(i) = v

from above (stochastically lower bound) or below (stochastically upper bound). De-

tails for the upper bound are provided by Algorithm 1. For the lower bound simply

replace the product operator by the minimum operator.

Input : A directed acyclic graph D = (N;A); a distribution function F

j

for

each activity j 2 A.

Output : A distribution function of an upper bound on the makespan.

F

[�s℄

:= Æ

0

;

for nodes v 2 N n f�sg along a topological sort do

F

[v℄

:=

Q

j2A;t(j)=v

[F

[s(j)℄

� F

j

℄;

return (F

[

�

t ℄

);

Algorithmus 1: Upper bound of Kleindorfer.

For both bounds, at most jAj convolution and product (minimum) operations are

performed. The running time is therefore O(jAj � (
onv(sp) + prod(sp))) where

onv(sp) and prod(sp) denote the complexity of the convolution and the product op-

eration depending on the number sp of supporting points.

4

3.2 Dodin’s Upper Bound

The upper bound of Kleindorfer is exact for each node v if the completion times of the

incoming arcs (activities) j are stochastically independent. This is the case if the paths

from �s to v are pairwise disjoint. A bounding algorithm proposed by Dodin [7] is exact

for a larger class of networks, namely series-parallel networks. It utilizes the classical

series-parallel reductions to a single arc (see, e. g., [14]), and, if no such reduction is

possible, a so-called duplication is performed.

1. Series reduction: If there exists a node v 2 N such that Indegree(v) = 1 and

Outdegree(v) = 1, then the activities i; j 2 A; t(i) = s(j) = v are said to

be in series. They are substituted by a single activity h, where s(h) = s(i) and

t(h) = t(j). The distribution function F

h

of the duration of h is F
i

� F

j

.

2. Parallel reduction: If there exist activities i; j 2 A such that s(i) = s(j) and

t(i) = t(j), then i and j are said to be in parallel. They are substituted by a

single activity h, where s(h) = s(i) and t(h) = t(i). The distribution function

F

h

of the duration of h is F
i

� F

j

.

3. Duplication: If there exists a node v 2 N such that Indegree(v) = 1 and

Outdegree(v) > 1, then v and the activity i 2 N; t(i) = v, are duplicated

as follows: Insert a new node v

0 and a new activity i

0 such that s(i0) = s(i)

and t(i

0

) = v

0. Then select an activity j 2 A; s(j) = v, and set s(j) := v

0.

The distribution function F

i

0 of the duration of i0 is set to F

i

. An analogous

duplication can be performed if Indegree(v) > 1 and Outdegree(v) = 1.

Having reduced the network to a single arc j by repeatedly applying one of these

network operations, the distribution function which is associated with j is returned.

Dodin has proven that the algorithm always terminates and that the computed distri-

bution function provides an upper bound on the distribution of the makespan of the

original network. Moreover, Dodin has shown that the bound is tighter than the upper

bound proposed by Kleindorfer. A detailed description of our implementation is given

by Algorithms 2 and 3. Note that each duplication step is followed by a series reduc-

tion and, if applicable, by a parallel reduction. These operations are integrated in the

duplication subroutine (Algorithm 2), see also Figure 1.

If neither a series reduction nor a parallel reduction is applicable, the node cho-

sen for duplication is not uniquely determined. Since the correlation among involved

path lengths increases with each duplication we would like to perform as few of them

as possible. A measure in this direction is the number of node reductions introduced

in [3]. A reduction on node v with Indegree(v) = 1 is defined as a sequence of

Outdegree(v) � 1 duplications on v (an analogous reduction can be performed if

Outdegree(v) = 1). Bein, Kamburowski, and Stallmann [3] have have shown that

the minimal number of node reductions to obtain a series-parallel network can be com-

puted in polynomial time by solving a vertex cover problem in an auxiliary, transitively

orientable graph. However, we did not integrate their result because first, it requires

that all duplications on a selected node are performed which is not necessarily advan-

tageous for our application. Second, the quality of the result of Dodin’s algorithm

5

ii

i

i

0

j

j

h

h

Figure 1: After a duplication step we immediately perform a series and, if applicable,

a parallel reduction.

depends on the distribution of the duration of the activities which have been dupli-

cated. For these reasons, the integration of their reduction algorithm will not lead to

an improvement in general.

The worst case complexity of Algorithm 3 is O(jAj � (
onv(sp) + prod(sp)) +

d

in

d

out

), where d
in

(d
out

) denotes the maximum in-degree (out-degree) of the nodes

of D. Although it takes only linear time to decide whether a given network is series-

parallel [23], Dodin’s algorithm requires more effort: Once a reduction step has been

performed it has to be checked if new parallel arcs have been created (first if-statement

in Algorithm 2).

3.3 The Bounds of Spelde

Spelde [22] investigated sets of paths of the network in order to obtain bounds on the

distribution function of the makespan. He derived both a lower and an upper bound

by considering a set of pairwise disjoint paths and the set of all different paths, re-

spectively. The bounds are subsequently obtained by computing the maximum over

all (random) lengths of the considered paths.

When computing such a set of paths, we use the sum of the expectations of the

activity durations to measure their length (it could also be valuable to choose other

criteria such as the so-called criticality index, cf., e. g., Dodin [6]).

Lower bound. If we consider a subset of paths, such that no activity occurs on more

than one path, then their lengths are stochastically independent. Thus, no error occurs

when computing the maximum on these path lengths by the product operator. Since

we have not taken all paths into account we obtain a stochastic lower bound on the

makespan distribution. Note that the paths need not necessarily be �s-�t-paths, i.e. paths

from the global source to the global sink of the network. It suffices to consider only

subsets of activities of �s-�t-paths. Implementation details are given in Algorithm 4.

The second condition length(P) = 0 of the repeat-loop is required in order to handle

dummy activities of length zero which may occur in activity-on-arc networks. The

worst case complexity is O(jAj � (
onv(sp) + prod(sp)) + jAj

2

).

Upper bound / heuristic approach / incomplete information. The upper bound is

obtained by simply considering all �s-�t-paths. Clearly, we now have to deal with heavy

dependencies among path lengths. Moreover, since the number of paths is exponential

in the number of activities we cannot generate all paths in general and thus the straight-

forward approach to take the maximum of all path lengths is not applicable. Within our

6

Input : A directed acyclic graph D = (N;A) (with associated distribution

functions); an arc j 2 N ; the list L of nodes suitable for a series

reduction.

Output : The graph D after the reduction step with respect to j.

v := s(j);

i := incoming arc of v;

if there exists an arc h with s(h) = s(i) and t(h) = t(j) then

F

h

:= F

h

� (F

i

� F

j

);

Remove arc j from D

else

F

j

:= F

i

� F

j

;

s(j) := s(i);

if v has no outgoing arcs then remove v from D;

Update the list L;

return (D);

Algorithmus 2: The Reduction Subroutine of Dodin’s Algorithm

Input : A directed acyclic graph D = (N;A); a distribution function F

j

for

each activity j 2 A.

Output : A distribution function of an upper bound on the makespan.

Perform all possible parallel reductions in D;

Create a list L containing all nodes v with Indegree(v) = Outdegree(v) =

1;

while jAj > 1 do

while L 6= ; do

Extract node v from L;

Reduction(D, outgoing arc j of v, L);

if jAj = 1 then

break;

Find a node v with Outdegree(v) > Indegree(v) = 1 and a suitable

outgoing arc j of v;

Reduction(D, j, L);

return distribution function of the remaining arc;

Algorithmus 3: Upper bound of Dodin

7

Input : A directed acyclic graph D = (N;A); a distribution function F

j

for

each activity j 2 A.

Output : A distribution function of a lower bound on the makespan.

F := Æ

0

;

for j 2 A do

label(j) := true;

repeat

F

P

:= Æ

0

P := Longest path among the activities j with label(j) = true;

for j 2 P do

F

P

:= F

P

� F

j

;

F := F � F

P

;

for j 2 P do

label(j) = false;

until all activities are labeled false or length(P) = 0;

return (F)

Algorithmus 4: Lower bound of Spelde (based on pairwise disjoint paths).

implementation, we therefore only consider the K longest paths for a suitable choice

of K . Due to the reduced number of paths, we cannot guarantee the bounding prop-

erty anymore, and we therefore refer to this approach as a heuristic. However, for a

sufficiently large number of paths it is very likely that we still obtain a stochastic upper

bound, at least for large quantiles. In order to find the K longest paths we use a variant

of the algorithm proposed by Dodin [6].

In practice, it is often the case that distributions of activity durations are not com-

pletely known. Usually, only information about the expected activity duration and its

variance is available. In the context of Spelde’s bounds, this situation can be easily

managed, since it follows from the Central Limit Theorem that the sum of the ac-

tivity durations of the path is approximately normally distributed. Then, the product

of the resulting normal distribution functions approximates the distribution function

of the makespan. This issue has been studied by many authors, see, e. g., [9, 2, 18].

Anklesaria and Drezner [2] as well as Sculli and Shum [18] considered multi-variant

normal distributions in order to model correlations among paths. They also report on

computational experiences on some small networks and obtained very promising re-

sults. With respect to the applicability of the Central Limit Theorem we observed that

10 activities on a path suffice to obtain an excellent approximation of the path length

distribution. Algorithm 5 displays an implementation of the heuristic (Normal(m; v)

denotes the distribution function of a normally distributed random variable with mean

m and variance v). Within our computations we have generated at most 1

3

jAj paths for

each instance.

8

Input : A directed acyclic graph D = (N;A); an expectation E[p

j

℄ and a

variance V [p

j

℄ for each activity j 2 A.

Output : A distribution function approximating the makespan.

F := Æ

0

;

repeat

P := longest currently unconsidered path;

m :=

P

j2P

E[p

j

℄;

v :=

P

j2P

V [p

j

℄;

F := F �Normal(m; v);

until Prob(P is longest path) is sufficiently small;

return (F);

Algorithmus 5: Heuristic computation based on the Central Limit Theorem.

4 Computational Study

4.1 Computing Environment

Our experiments were conducted on a Sun Ultra 1 with 143 MHz clock pulse operating

under Solaris 2.6 with 64 MB of memory. The code has been written in C++ and is

compiled with the EGCS g++ compiler version 1.1.2 using the O3 optimization option.

All reported CPU times to compute the stochastic bounds are averaged over three runs.

4.2 Benchmark Instances

We have tested the algorithms stated in Section 3 on two different test-sets which have

been generated randomly. All instances are represented by activity-on-arc-networks

and the activity durations are given by their mean and their variance. In order to ob-

tain appropriate distribution functions for the activity durations, we generate gamma,

normal, uniform, and triangle distributions based on these parameters. For gamma

and normal distributions (which do not have a finite range) we have computed suit-

able border points according to the precision given by the used number of supporting

points.

Most of the experiments have been performed on a test-set which is generated by

an approach inspired by [5] (Test-set A). This test-set consists of 1600 instances in

total, which are obtained by systematically modifying four different parameters. Two

of these parameters clearly are the number of activities (n =300, 600, 900, and 1200)

and the number of nodes in the activity-on-arc network (n

10

;

n

8

;

n

6

;

n

4

, and n

2

). Then, re-

call that activity-on-arc networks do not contain any isolated nodes. To ensure this fact

we initially create a certain number of paths (3rd parameter) such that all nodes except

�s and �

t are contained in exactly one path. We thus have two parameters to control

the “degree of parallelism” of the network. Long paths as well as many nodes in the

network indicate a low parallelism. Correspondingly, short paths and few nodes in the

network indicate a high parallelism of the activities. So far, the constructed networks

only contain activities (arcs) that guarantee that no isolated nodes exist. All remaining

activities that must be generated according to the fixed parameter n are inserted by

9

randomly choosing their source and target node. The method to perform these random

choices is taken from [5]. Expected activity durations are chosen uniformly between

0 and 100 (activities of duration 0 can be seen as dummy activities which are required

to model arbitrary precedence constraints in activity-on-arc networks). The fourth pa-

rameter controls the variance of the activity durations. We have chosen all variances

uniformly out of one of the intervals [0; 10℄ or [0; 100℄, respectively. Thus we have

instances with low variances and others with high variances.

A second test-set (Test-set B) we have considered has been generated by Pro-

Gen [12], a widely accepted instance generator for resource-constrained project

scheduling problems. Since we do not consider a model with limited resources, we

ignore all parameters that control resource constraints. We have systematically mod-

ified the parameters that control network characteristics, i.e. the maximum number of

immediate successors and predecessors of an activity (1 – 7) and the so-called network

complexity, which reflects the average number of immediate successors of an activity

(1.0 – 3.9). The expected activity durations vary between 0 and 50. The whole test-

set contains 320 instances each of which consists of 150 activities. We have added a

variance for each activity duration which taken randomly from the interval [5; 15℄. For

further details on this instance generator we refer to [12].

4.3 Representation of Distributions and Numerical Operations

The representation of the probability distributions is among the most important com-

ponents of a code for computing stochastic bounds. The decision on the representation

has to be made with respect to an efficient and numerically stable computation of the

sum and the maximum of random variables. Since the maximum operation is per-

formed easily on distribution functions, we decided to represent each random variable

by a piecewise linear approximation of its distribution function.

It turned out that the arrangement of supporting points is a crucial issue in such

an approximation. Within our first experiments we assumed them to be equidistant on

the abscissa. Unfortunately, the associate procedures for computing the product and

the convolution operation are rather complicated in this case. In addition, the results

did not behave numerically stable in a reasonable manner. We therefore occasionally

allowed to split certain intervals and added another supporting point but this leads to

complicated case distinctions and the results are still unsatisfactory with respect to

numerical stability.

We have then implemented a representation, in which the supporting points are

arranged equidistantly on the ordinate. Thus, we represent distribution functions by

their inverse. We require that all distribution function are represented by the same

number of supporting points. This allows a simple implementation of the product

and the convolution procedure when compared to implementations based on the pre-

viously mentioned representations. In addition, these procedures turn out to compute

reasonably stable results when a suitable number of supporting points is chosen. The

product operation can be performed in linear time in the number of supporting points

sp whereas the convolution requires quadratic running time in sp. We represent all

distribution functions F by an array d of size sp such that Prob(x � d(k)) =

k

sp�1

,

k = 0; : : : ; sp�1 (an example with sp = 11 is depicted in Figure 2). This particularly

means that F (x) = 0 for x � d(0) and F (x) = 1 for x � d(sp� 1).

10

1:0

0:2

0:4

0:6

0:8

k

0:0

d(0) d(6) d(sp� 1)

F (d(6)) = 0:6

Figure 2: Distribution functions are represented by an array of supporting points that

are arranged equidistantly on the ordinate.

The only numerical error which turns out to be of relevant magnitude occurs at

the borders of distribution functions F obtained by the convolution operation. Here, a

linear function is not an appropriate approximation of the exact distribution function.

One solution to this problem would be to refine the resolution of supporting points in

the intervals [d(0); d(1)℄ and [d(sp � 2); d(sp � 1)℄ (d denotes our representation of

F) but this is not conform with our implementation which requires that all distribution

functions have identical equidistant supporting points on the ordinate. Instead, we

heuristically rearrange the border points (d(0); 0) and (d(sp � 1);

1

sp�1

) by slightly

increasing d(0) and decreasing d(sp� 1).

4.4 Computational Results

In order to measure the quality of the computed distribution functions, we have calcu-

lated approximate distribution functions by simulation. Allowing exhaustive compu-

tation time, we have simulated more than 1.5 million realizations for each instance.

We compare distribution functions by means of 10 different quantiles p, namely

p 2 f0:01; 0:05; 0:1; 0:2; 0:5; 0:8; 0:9; 0:95; 0:975; 0:99g. For each of these quantiles

we measure the relative error (in percent) of the given distribution function from the

simulated approximation (we always quote the average of these values). Experiments

of three degrees of accuracy have been performed, namely for 50, 100, and 200 sup-

porting points per distribution function.

We first analyze how the required computation times depend on the number of ac-

tivities and the number of supporting points. For the instances of Test-set A, both de-

pendencies are visualized in Figure 3 (a) and (b). They show a curve for each of the dis-

cussed procedures. We have plotted only one curve for the algorithms of Kleindorfer,

since the running times of the upper and the lower bound are almost identical. Contrary

to their theoretical running time, the computation time for Dodin’s upper bound and

Spelde’s lower bound is minor when compared to those ones of Kleindorfer’s bounds.

For all network sizes and variations of the number of supporting points considered, the

convolution operator consumed most of the computation time and therefore, network

11

transformations (which cause larger theoretical running times) are not the bottleneck.

Kleindorfer’s procedures clearly require n convolutions. On the considered networks,

Dodin’s algorithm requires slightly fewer convolutions than Keindorfer’s procedures,

but for Spelde’s lower bound suffice roughly n

2

convolutions. The reason here is that

after having extracted paths with many activities from the network, there remains quite

a number of paths with only one activity, for which no convolution need to be com-

puted. Finally, since the heuristic procedure does not compute any convolutions, its

computation time is negligible when compared with the bounding routines. Detailed

results are provided in Table 1. Besides the average computation times we also include

maximum computation times. The results for Test-set B coincide with the observations

made for Test-set A. We therefore omit the details here.

We next consider the quality of the computed bounds compared with the crude

simulation approach. As depicted in Figure 3 (c), for Test-set A the results are excel-

lent. The average relative error of the computed bounds is less than 1% for most of

the considered instances, number of supporting points and distributions. The relative

error decreases slightly when the number of supporting points increases. The upper

bound procedures show expected behavior: Dodin’s approach outperforms Kleindor-

fer’s algorithm. With respect to the lower bounds, we obtain better results for Spelde’s

algorithm based on disjoint paths. Detailed results are given in Table 2. The relative er-

ror also depends on the distribution type of the activity durations. When using uniform

or triangle distributions, we obtain better results than for gamma or normal distribu-

tions, cf. Figure 3 (d). A similar behavior is observed when comparing instances with

low and with high variances, respectively. For instances with variances in [0; 10℄ we

obtain an average relative error of 0.3% (max. 1.9%) while the corresponding values

for variances in [0; 100℄ is 0.9% (max. 5.7%). Note that the quality of the computed

distributions does not seem to depend on the number of activities. We here observed a

constant relative error.

The relative errors for Test-set B are still remarkably small, but they cannot com-

pete with corresponding results for Test-set A, cf. Table 3. In particular, the average

relative error varies between 1.6% and 3.7%. The maximum error occasionally ex-

ceeds 15%. However, this only occurs for the quantiles which are directly affected by

the computation of border points at the computation of convolutions, i.e., the 0.01 and

the 0.99 quantile. When disregarding these extreme quantiles, the maximum relative

error reduces to 11%. Since the heuristic procedure does not require any computa-

tion of a convolution, we here obtain better results when compared to the bounding

algorithms.

In summary, the used representation of distribution functions yields results of ex-

cellent quality within adequate computation times. This particularly holds for the re-

sults obtained by the heuristic procedure based on the Central Limit Theorem.

5 Concluding Remarks

Within this computational study we have empirically evaluated several procedures to

bound or approximate the distribution function of the makespan of stochastic project

networks that are based on network transformations. It turned out that the heuristic

procedure based on the Central Limit Theorem provides excellent estimates at virtu-

12

Average CPU time (s) Maximum CPU time (s)
Algorithm #sp

300 600 900 1200 300 600 900 1200

50 1.5 3.3 5.1 7.0 2.0 4.1 6.3 8.9

Dodin 100 6.0 12.9 19.9 26.9 7.9 16.0 24.2 33.1

200 23.9 51.4 79.3 107.1 31.8 63.7 100.2 134.3

50 1.7 3.4 5.1 6.8 1.9 3.9 6.7 9.0
Kleindorfer

100 6.8 13.6 20.5 27.5 8.5 15.8 24.1 37.9
(upper)

200 27.1 54.5 82.1 110.5 32.1 63.4 94.4 126.4

50 1.7 3.4 5.1 6.8 2.3 4.0 5.8 7.8
Kleindorfer

100 6.7 13.6 20.9 27.8 8.1 16.1 26.7 36.5
(lower)

200 27.0 54.6 82.2 109.6 31.9 64.1 94.9 127.0

50 1.1 2.1 3.3 4.4 1.5 3.4 4.2 5.7
Disjoint

100 4.2 8.5 12.8 17.3 5.6 11.5 16.8 24.8
paths

200 16.8 33.9 51.0 67.9 22.0 48.3 68.1 90.1

50 0.1 0.3 0.4 0.6 0.1 0.3 0.5 0.8

Spelde 100 0.3 0.6 0.9 1.2 0.3 0.7 1.0 1.3

200 0.7 1.3 2.0 2.7 0.7 1.4 2.1 2.8

Table 1: Test-set A: Average and maximum required CPU time of the algorithms,

depending on the number of activities and the number of supporting points.

Average rel. error Maximum rel. error
Algorithm #sp

gam nor tri uni gam nor tri uni

50 0.9 0.8 0.5 0.5 4.6 4.4 3.9 4.1

Dodin 100 0.7 0.7 0.5 0.4 5.2 4.7 4.3 4.3

200 0.6 0.6 0.5 0.4 5.0 4.5 4.4 4.3

50 1.0 1.0 0.6 0.6 5.1 4.8 4.4 4.6
Kleindorfer

100 0.9 0.8 0.6 0.5 5.5 5.0 4.7 4.7
(upper)

200 0.8 0.7 0.6 0.5 6.3 5.7 4.8 4.7

50 0.6 0.6 0.7 0.5 9.5 9.9 9.2 7.8
Kleindorfer

100 0.5 0.5 0.4 0.4 8.1 8.5 7.8 7.2
(lower)

200 0.4 0.4 0.3 0.3 7.6 7.9 7.4 7.2

50 0.6 0.6 0.6 0.4 6.5 7.0 6.1 4.7
Disjoint

100 0.4 0.4 0.3 0.3 4.5 4.6 4.2 3.7
paths

200 0.3 0.3 0.2 0.2 3.6 3.8 3.4 3.3

50 0.6 0.6 0.7 0.6 5.0 5.1 5.3 5.0

Spelde 100 0.7 0.7 0.8 0.7 6.1 6.1 6.3 6.1

200 0.7 0.7 0.8 0.7 6.2 6.3 6.4 6.2

Table 2: Test-set A: Average and relative error from simulated distribution, depending

on the type of distribution and the number of supporting points.

13

300 600 900 1200
Number of activities

0

10

20

30

40

50

C
P

U
ti

m
e

in
se

co
n
d
s

Heuristic

Disjoint

Kleindorfer

Dodin

(a)

50 100 150 200
Number of supporting points

0

5

10

15

20

25

C
P

U
ti

m
e

in
se

co
n
d
s

Heuristic

Disjoint

Kleindorfer

Dodin

(b)

50 100 150 200
Number of supporting points

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
el

at
iv

e
E

rr
o
r

in
%

Kleindorfer LB

Heuristic

Disjoint

Kleindorfer UB

Dodin

(c)

50 100 150 200
Number of supporting points

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
el

at
iv

e
er

ro
r

in
%

uniform

triangle

normal

gamma

(d)

Figure 3: Plots (a) and (b) show the running time of the different algorithms depending

on the number of activities and the number of supporting points. Plot (c) visualizes

how the average relative error decreases when increasing the number of supporting

points. Plot (d) shows the average relative error depending on the used type of distri-

bution.

ally no computational expense. The approach is therefore a remarkable alternative

to (computationally costly) simulation techniques which are mostly used in practice.

The upper and lower bounding procedures consume more time but they also allow an

efficient computation of distribution functions that “sandwich” the exact distribution

function. The key to an efficient implementation is a suitable representation of the

distributions and a numerically stable implementation of the product and convolution

operations.

Future work will include the analysis of bounds that cover stochastic dependencies

as provided by Meilijson and Nadas [15].

References

[1] V. G. Adlakha and V. G. Kulkarni. A classified bibliography of research on

stochastic PERT networks: 1966-1987. INFOR, 27:272–296, 1989.

[2] K. P. Anklesaria and Z. Drezner. A multivariate approach to estimating the com-

pletion time for PERT networks. Journal of the Operational Research Society,

40:811–815, 1986.

14

[3] W. W. Bein, J. Kamburowski, and M. F. M. Stallmann. Optimal reduction of two-

terminal directed acyclic graphs. SIAM Journal on Computing, 21:1112–1129,

1992.

[4] C. G. Bigelow. Bibliography on project planning and control by network analysis.

Operations Research, 10:728–731, 1962.

[5] E. Demeulemeester, B. Dodin, and W. Herroelen. A random activity network

generator. Operations Research, 41:972–980, 1993.

[6] B. Dodin. Determining the k most critical paths in pert networks. Operations

Research, 32:859–877, 1984.

[7] B. Dodin. Bounding the project completion time distribution in PERT networks.

Operations Research, 33:862–881, 1985.

[8] J. D. Esaray, F. Proschan, and D. W. Walkup. Association of random variables,

with applications. Ann. Math. Statist., 38:1466–1474, 1967.

[9] D. Golenko. Statistische Methoden der Netzplantechnik. Teubner Verlagsge-

sellschaft, 1972.

[10] J. N. Hagstrom. Computational complexity of PERT problems. Networks,

18:139–147, 1988.

[11] G. B. Kleindorfer. Bounding distributions for a stochastic acyclic network. Op-

erations Research, 19:1586–1601, 1971.

[12] R. Kolisch and A. Sprecher. PSPLIB - a project scheduling problem library.

European Journal of Operational Research, 96:205–216, 1996.

[13] S. Lerda-Olberg. Bibliography on network-based project planning and control

techniques. Operations Research, 14:925–931, 1966.

[14] J. J. Martin. Distribution of the time through a directed acyclic network. Opera-

tions Research, 13:46–66, 1965.

[15] I. Meilijson and A. Nadas. Convex majorization with an application to the length

of critical paths. J. Appl. Prob., 16:671–677, 1979.

[16] R. H. Möhring and R. Müller. A combinatorial approach to bound the distribu-

tion function of the makespan in stochastic project networks. Technical Report

610/1998, Technical University of Berlin, Department of Mathematics, Germany,

1998.

[17] P. Robillard and M. Trahan. Expected completion time in PERT networks. Op-

erations Research, 24:177–182, 1976.

[18] D. Sculli and Y. W. Shum. An approximate solution to the PERT problem. Com-

puters and Mathematics with Applications, 21:1–7, 1991.

[19] M. Shaked and J. G. Shanthikumar. Stochastic orders and their applications.

Academic Press, 1994.

15

[20] A. W. Shogan. Bounding distributions for a stochastic PERT network. Networks,

7:359–381, 1977.

[21] H. Soroush. Risk taking in stochastic PERT networks. European Journal of

Operational Research, 67:221–241, 1993.

[22] H. G. Spelde. Stochastische Netzpläne und ihre Anwendung im Baubetrieb. PhD

thesis, Rheinisch-Westfälische Technische Hochschule Aachen, 1976.

[23] J. Valdes, R. E. Tarjan, and E. L. Lawler. The recognition of series-parallel

digraphs. SIAM Journal on Computing, 11:298–314, 1982.

16

Average rel. error Maximum rel. error
Algorithm #sp

gam nor tri uni gam nor tri uni

50 3.7 3.2 2.0 2.1 10.5 7.9 6.3 6.9

Dodin 100 3.4 2.8 2.2 1.9 12.3 9.3 7.5 7.5

200 2.9 2.4 2.2 1.7 13.0 9.7 7.7 7.6

50 3.7 3.2 2.0 2.1 10.5 7.9 6.3 6.9
Kleindorfer

100 3.4 2.8 2.2 1.9 12.3 9.3 7.5 7.5
(upper)

200 2.9 2.4 2.2 1.7 13.0 9.7 7.7 7.6

50 3.4 3.4 3.2 2.7 16.5 17.9 13.1 10.3
Kleindorfer

100 2.7 2.7 2.4 2.4 12.0 13.2 10.2 9.4
(lower)

200 2.3 2.3 2.0 2.2 9.3 9.8 9.0 8.6

50 3.4 3.3 3.2 2.7 15.4 16.8 12.3 9.9
Disjoint

100 2.7 2.6 2.4 2.3 10.1 11.3 9.2 8.5
paths

200 2.3 2.2 2.0 2.2 8.2 8.4 7.8 7.8

50 1.6 1.6 2.1 1.6 8.0 7.7 8.4 7.7

Spelde 100 1.9 1.9 2.5 2.0 9.2 9.0 9.7 9.1

200 1.9 1.9 2.6 2.0 9.4 9.3 9.9 9.4

Table 3: Test-set B: Average and maximum relative error from simulated distribution,

depending on the type of distribution and the number of supporting points.

17

Reports from the group

“Combinatorial Optimization and Graph Algorithms”

of the Department of Mathematics, TU Berlin

669/2000 Michael Naatz: A Note On a Question of C. D. Savage

667/2000 Sándor P. Fekete and Henk Meijer: On Geometric Maximum Weight

Cliques

666/2000 Sándor P. Fekete, Joseph S. B. Mitchell, and Karin Weinbrecht: On the

Continuous Weber and k-Median Problems

664/2000 Rolf H. Möhring, Andreas S. Schulz, Frederik Stork, and Marc Uetz: A Note

on Scheduling Problems with Irregular Starting Time Costs

661/2000 Frederik Stork and Marc Uetz: Resource-Constrained Project Scheduling:

From a Lagrangian Relaxation to Competitive Solutions

658/1999 Olaf Jahn, Rolf H. Möhring, and Andreas S. Schulz: Optimal Routing of

Traffic Flows with Length Restrictions in Networks with Congestion

655/1999 Michel X. Goemans and Martin Skutella: Cooperative facility location

games

654/1999 Michel X. Goemans, Maurice Queyranne, Andreas S. Schulz, Martin

Skutella, and Yaoguang Wang: Single Machine Scheduling with Release Dates

653/1999 Andreas S. Schulz and Martin Skutella: Scheduling unrelated machines by

randomized rounding

646/1999 Rolf H. Möhring, Martin Skutella, and Frederik Stork: Forcing Relations

for AND/OR Precedence Constraints

640/1999 Foto Afrati, Evripidis Bampis, Chandra Chekuri, David Karger, Claire

Kenyon, Sanjeev Khanna, Ioannis Milis, Maurice Queyranne, Martin Skutella,

Cliff Stein, and Maxim Sviridenko: Approximation Schemes for Minimizing

Average Weighted Completion Time with Release Dates

639/1999 Andreas S. Schulz and Martin Skutella: The Power of �-Points in Preemp-

tive Single Machine Scheduling

634/1999 Karsten Weihe, Ulrik Brandes, Annegret Liebers, Matthias Müller–

Hannemann, Dorothea Wagner and Thomas Willhalm: Empirical Design of Ge-

ometric Algorithms

633/1999 Matthias Müller–Hannemann and Karsten Weihe: On the Discrete Core of

Quadrilateral Mesh Refinement

632/1999 Matthias Müller–Hannemann: Shelling Hexahedral Complexes for Mesh

Generation in CAD

631/1999 Matthias Müller–Hannemann and Alexander Schwartz: Implementing

Weighted b-Matching Algorithms: Insights from a Computational Study

629/1999 Martin Skutella: Convex Quadratic Programming Relaxations for Network

Scheduling Problems

628/1999 Martin Skutella and Gerhard J. Woeginger: A PTAS for minimizing the

total weighted completion time on identical parallel machines

627/1998 Jens Gustedt: Specifying Characteristics of Digital Filters with FilterPro

620/1998 Rolf H. Möhring, Andreas S. Schulz, Frederik Stork, and Marc Uetz: Re-

source Constrained Project Scheduling: Computing Lower Bounds by Solving

Minimum Cut Problems

619/1998 Rolf H. Möhring, Martin Oellrich, and Andreas S. Schulz: Efficient Algo-

rithms for the Minimum-Cost Embedding of Reliable Virtual Private Networks

into Telecommunication Networks

618/1998 Friedrich Eisenbrand and Andreas S. Schulz: Bounds on the Chvátal Rank

of Polytopes in the 0/1-Cube

617/1998 Andreas S. Schulz and Robert Weismantel: An Oracle-Polynomial Time

Augmentation Algorithm for Integer Proramming

616/1998 Alexander Bockmayr, Friedrich Eisenbrand, Mark Hartmann, and Andreas

S. Schulz: On the Chvátal Rank of Polytopes in the 0/1 Cube

615/1998 Ekkehard Köhler and Matthias Kriesell: Edge-Dominating Trails in AT-free

Graphs

613/1998 Frederik Stork: A branch and bound algorithm for minimizing expected

makespan in stochastic project networks with resource constraints

612/1998 Rolf H. Möhring and Frederik Stork: Linear preselective policies for

stochastic project scheduling

609/1998 Arfst Ludwig, Rolf H. Möhring, and Frederik Stork: A computational study

on bounding the makespan distribution in stochastic project networks

605/1998 Friedrich Eisenbrand: A Note on the Membership Problem for the Elemen-

tary Closure of a Polyhedron

596/1998 Andreas Fest, Rolf H. Möhring, Frederik Stork, and Marc Uetz: Resource

Constrained Project Scheduling with Time Windows: A Branching Scheme

Based on Dynamic Release Dates

595/1998 Rolf H. Möhring Andreas S. Schulz, and Marc Uetz: Approximation in

Stochastic Scheduling: The Power of LP-based Priority Policies

591/1998 Matthias Müller–Hannemann and Alexander Schwartz: Implementing

Weighted b-Matching Algorithms: Towards a Flexible Software Design

590/1998 Stefan Felsner and Jens Gustedt and Michel Morvan: Interval Reductions

and Extensions of Orders: Bijections to Chains in Lattices

584/1998 Alix Munier, Maurice Queyranne, and Andreas S. Schulz: Approxima-

tion Bounds for a General Class of Precedence Constrained Parallel Machine

Scheduling Problems

577/1998 Martin Skutella: Semidefinite Relaxations for Parallel Machine Scheduling

Reports may be requested from: Hannelore Vogt-Möller

Fachbereich Mathematik, MA 6–1

TU Berlin

Straße des 17. Juni 136

D-10623 Berlin – Germany

e-mail: moeller@math.TU-Berlin.DE

Reports are also available in various formats from

http://www.math.tu-berlin.de/coga/publications/techreports/

and via anonymous ftp as

ftp://ftp.math.tu-berlin.de/pub/Preprints/combi/Report-

number-year.ps

