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Zusammenfassung

Nah-Infrarot Spektroskopie (NIRS) ist eine nicht-invasive Technik im Bereich der
neurowissenschaftlichen Bildgebung um hämodynamische Effekte zu messen, die
neuronalen Ereignissen folgen. NIRS verwendet nah-infrarotes Licht um über den
Farbunterschied von oxygeniertem und deoxygeniertem Hämoglobin die Konzen-
trationsdynamiken derselben zu ermitteln. Allerdings existieren Einschränkung für
diese Technik: NIRS hat eine geringe Eindringtiefe in das Gewebe und eine hohe
Empfindlichkeit gegenüber Artefakten, die von ruckartigen Bewegung oder kardio-
vaskulären Oszillationen stammen. Des Weiteren ist die hämodynamische Antwort
relativ langsam und überlappt sich bei schnellen Stimulationen. In der vorliegen-
den Arbeit stelle ich drei Analysekonzepte vor, die versuchen artefaktbedingte
Defizite von NIRS überwinden. Diese sind: Allgemeines Lineare Model (GLM),
maschinelles Lernen (ML) und funktionelle Konnektivität im Ruhezustand (RS-
FC). Für die GLM-Analyse wird ein Model der erwarteten hämodynamischen
Antwort generiert und mit gemessenen Daten verglichen. Ich zeige die Machbar-
keit einer solchen Analyse für NIRS anhand einer Studie über Spiegelillusionen
und einer Studie zur Entwicklung von Inhibition. In zuletzt genannter Studie wer-
den schnelle Stimuluspräsentationen verwendet, weswegen die hämodynamischen
Antworten überlappen. Diese können jedoch mit Hilfe des GLM entfaltet werden.
Eine ähnliche Analyse wurde durchgeführt um den gemittelten und entfalteten
Verlauf der hämodynamischen Antwort zu bestimmen. Beim maschinellen Lernen
wird versucht die maximale Trennbarkeit zwischen zwei Konditionen mit Hilfe der
gemessenen Daten zu bestimmen. ML-Analyse macht es zudem möglich Daten in
Echtzeit zu interpretieren, wie hier am Beispiel von Gehirn-Computer Schnittstel-
len gezeigt wird. Eine weitere Anwendungsmöglichkeit von ML-Analysen ist die
kontinuierliche Vorhersage des Aufmerksamkeitsstadiums eines Menschen. RS-FC
hat das Ziel funktionelle, neuronale Netzwerke aus Ruhedaten zu extrahieren. Dies
ist insbesondere sinnvoll um Menschen zu untersuchen die Konzentrationsschwie-
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rigkeiten haben, wie zum Beispiel Kinder oder Patienten mit schweren Schädi-
gungen. Die RS-FC-Analyse korreliert langsame, spontane Oszillationen zwischen
Bereichen des Gehirns die funktionelle Netzwerke bilden. In meiner Arbeit werden
Netzwerke vorgestellt, die über weite Distanzen miteinander verbunden sind. Dies
ist durch die Abdeckung des gesamten Kopfes mit Sensoren des NIRS möglich. Des
Weiteren wird die Entwicklung von funktionellen Netzwerken von Kindern zu Er-
wachsenen dargestellt. Die RS-FC-Anaylse von NIRS-Daten wird zudem anhand
von simultanen Messungen mit dem fMRT überprüft für welches RS-FC eigentlich
entwickelt wurde. Alle drei vorgestellten Analysewerkzeuge können für NIRS ver-
wendet werden. Jede Routine hat dabei spezifischen Anwendungsmöglichkeiten in
den Neurowissenschaften. Daher öffnen sich viele neue Forschungsgebiete in denen
es sinnvoll ist mit NIRS Daten zu erheben.
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Abstract

Near-Infrared Spectroscopy (NIRS) is a non-invasive neuroimaging technology. It
measures hemodynamic responses after local neuronal activity with near-infrared
light. NIRS depends on the different colors of oxygenated and deoxygenated
hemoglobin and measures their change of concentration over time. This technique
suffers from several limitations as there is its low depth penetration depth and its
sensibility to movement and cardio-vascular artifacts. Furthermore, the hemody-
namic response is relative slow and tends to overlap in fast experimental design. In
this work I present three recent analytical tools to overcome artifact related short-
comings of NIRS. The analyzing tools introduced here are General Linear Model
analysis (GLM), Machine Learning tools (ML) and Resting-State Functional Con-
nectivity analysis (RS-FC). For GLM analysis one creates a model of the expected
hemodynamic response to stimuli and compares it to the actual measured data.
I show the feasibility of GLM analysis for NIRS data in an experiment on mirror
illusion and a developmental study on inhibition. The later contains overlapping
hemodynamics which can be deconvolved by the GLM analysis. Further work on
GLM-like approaches is done to yield a deconvolution of the average hemodynamic
responses. ML tools maximize the separability between experimental conditions
in the data and are capable of real-time data analysis. I show an example where
we use ML techniques for Brain-Computer Interfaces. A second study shows the
ability of ML routines to continuously predict the subject’s attentional state. RS-
FC aims to analyze functional networks between brain areas using resting-state
data. This is useful for subjects that are not able to concentrate, like severely ill
patients or young children. RS-FC analyzes slow, spontaneous oscillations which
are correlated within areas forming a functional network. Here I present functional
networks derived by RS-FC analysis in an experiment where the whole-head of
the subjects was covered by NIRS sensors allowing also the estimation of long-
distance connection between parietal and frontal brain areas. Further results are
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presented for developmental effects within resting-state networks. This approach
is also validated against the golden standard of fMRI where RS-FC analysis stems
from. All three introduced analyzing techniques are feasible for NIRS data and
have their specific applications in neuroscientific research which opens new fields
of research for using NIRS.
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1. Introduction

The development of functional magnetic resonance imaging (fMRI) in the 1990s
by Ogawa and colleagues [Ogawa et al., 1990] led to a boom in in the non-invasive
branch of neurosciences. The underlying effect of the fMRI contrast, i.e. the fo-
cal changes in perfusion following neuronal activity in brain regions, had already
been discovered in the 19th century by Roy and Sherrington [Roy and Sherrington,
1890]. FMRI measures changes in local magnetic fields caused by concentration
changes of the oxygen-transport molecule, hemoglobin. Because of its non-invasive
nature and rather high spatial resolution (around 1 mm3), fMRI facilitated new
insights into the brain’s neuro-vascular dynamics and allowed the field of func-
tional brain imaging to emerge, affording the study of diverse areas encompassing
cognitive processes as well as neurological and psychological diseases. For all its
advantages, fMRI still suffers from some limitations: 1) the usage of strong mag-
netic fields, whose biological effects are not fully understood and which poses limits
on the possible target populations, 2) high costs, large size, and technical complex-
ity, 3) the fixation of the subjects’ head inside a confined space, 4) its stationary
nature, and 5) the subjects exposure to a high level of acoustic noise during mea-
surements. These limitations prevent the usage of fMRI measurements for certain
subjects, such as very young children, patients with anxiety or attention deficit dis-
orders, and patients with implanted electronic devices. Furthermore, fMRI studies
are often not feasible for bedside monitoring of patients and applications outside
of the clinical environment like Brain-Computer Interfacing, and not affordable for
the monitoring of therapeutic intervention outside of big hospitals. Some of these
limitations can be overcome by Near-Infrared Spectroscopy. While fMRI is based
on the magnetic properties of deoxygenated hemoglobin, NIRS depends on its
optical properties: The optical extinction coefficient has large spectral differences
for deoxygenated and oxygenated hemoglobin.
Using light in the near-infrared spectrum to indirectly determine neuronal activ-
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ity leads to several advantages over strong magnetic fields: 1) NIRS is completely
harmless and can be used for any subject of any age without any cumulative ad-
verse effects. 2) The head has not to be fixated and the subjects are able to move
around as the sensors are fixated in a cap. 3) Due to recent developments of low-
cost optoelectronic sensors and sources, NIRS is inexpensive. 4) The technology
readily lends itself to miniaturization, making it feasible for applications outside
of the laboratories and suitable for long-term bedside measurement. 5) Lastly,
it does not produce any sound or other artifacts disturbing the subjects’ concen-
tration during the measurements. Despite these advantages, which make NIRS a
promising tool in neuroimaging, the method also has shortcomings that limit its
scope of applicability. 1) Optical radiation is severely attenuated in tissue, which
limits the penetration depth and allows NIRS study only of the most superficial
brain regions (cortical activation). 2) NIRS is very sensitive to physiological noise
stemming from extra-cerebral tissue. 3) Because of light-scattering, the resolution
of NIRS imaging is fairly low (∼10-30 mm). Whereas the first of these major
drawbacks, the penetration limits of NIRS is dictated by physical limits and it
cannot be expected to be improved in a principle way, the other two shortcomings
can be enhanced by more sophisticated instrumental designs and analysis meth-
ods. Some studies have already shown that the spatial resolution of NIRS can be
enhanced up to a sub-centimeter range [Zeff et al., 2007,Koch et al., 2010,Haber-
mehl et al., 2012]. The present work focuses on improving the third - the most
severe limitation: The understanding of extra-cerebral noise, its sources, impact
on the signal, and possible ways of removing, correcting, or otherwise ameliorating
its effects.

1.1. Scientific Proposal

The purpose of this work twofold: 1) the evaluation and optimization of analysis
tools for NIRS data and 2) the usage of these tools to enhance the current appli-
cations of NIRS. In this dissertation the term analyzing tools is used to describe
mathematical approaches to analyze NIRS data. Which analyzing strategy is use-
ful depends on the current issue for what NIRS is applied. Each analyzing tool has
advantages and disadvantages over the other. Nevertheless, all of them have to
deal with the high extra-cerebral noise content in NIRS data, which is magnitudes
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higher then the actual signal of interest (i.e. the hemodynamic response to neu-
ronal activation). By developing and applying improved analysis tools the present
thesis aims to promote NIRS as a new neuroimaging tool for clinical applications
outside of the laboratory previously not amenable to the advantages of NIRS over
fMRI. To this end, we first conducted studies dedicated to improve the reliability
and signal quality of the used NIRS instruments. Following this, we evaluated
three different signal analysis strategies addressing challenges in different types of
studies:

• The general linear model (GLM) is the analytical basis for most fMRI results,
which we here applied to NIRS. GLM can be applied, when the neuroscientist
defines his hypothetical biological model of how the data should be and
compares this with the actual data to gain statistical significant results.
This analyzing tool is capable of separating the hemodynamic response from
the extra-cerebral noise and analyzing overlapping hemodynamic responses,
which frequently occurs due to the sluggish behavior of the response (with
peaks around 5-30 s, depending on the length of the stimulus).

• Machine Learning (ML) summarizes self-learning algorithms which adapt to
subject specific data. Multiple applications for NIRS outside the laboratory
like neuronal-guided therapy, Brain Computer Interfaces (e.g. to control a
robotic arm), monitoring of subjects attentional state or neuronal-assisted
learning demand for single trial analysis in real-time. ML algorithms are
capable of single trial and real-time analysis, regardless of the high noise
content in the NIRS data by combining information of several measurement
channels. Thereby, ML is necessary to exploit the mobility of NIRS in-
strumentations in natural environments. In this work we evaluate machine
learning algorithm for NIRS.

• Functional Connectivity Analysis (FC) overcomes the dependency on tasks,
which is necessary for bedside imaging and useful for studies with children.
This method is based on simultaneous oscillations in the brains’ networks
and allows to analyze their connectivity. FC concentrates on specific fre-
quencies in the data and, thereby, addresses the issue of noise.
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The second aim of this work is to apply the above mentioned analysis tools in
the fields where NIRS can be a useful device. This means 1) in clinical setups,
2) for developmental studies, 3) by monitoring of attentional states and diseases,
and 3) in brain-computer interfaces. We will exemplary study specific questions
in each of these research areas to show the future possibilities for the application
of near-infrared spectroscopy.
Thus, we address the following hypotheses:

• NIRS data analysis is feasible with general linear model approaches, machine
learning tools and functional connectivity analysis.

• NIRS can be used in clinical setups, for development studies, to monitor
attentional states, and for brain-computer interfaces.

1.2. Outline of the Thesis

The challenge of disturbing extra-cerebral signal contamination is explained by
introducing the basic principles of NIRS, which is done in Chapter 2.
Chapters 3, 4 and 5 contain the core methodological contributions of this thesis.

Each chapter describes one analyzing tool and is structured as follows: First, the
theoretical background is given, then the data analysis and experimental results
are discussed, and lastly the obtained results are discussed in the context of the
applied analysis tool. To this end, a multitude of physiological experiments were
conducted, which are introduced along with the analyzing tools used.

Chapter 3 sheds light on use of general linear model, probably the most com-
mon approach to NIRS analysis. First the biological foundations of the hemody-
namic response is discussed, which is the basis of the physiological models used
in GLM as introduced by Friston in 1994 [Friston et al., 1994] for fMRI analy-
sis. We outline the underlying math and describe the performed experiments and
our GLM NIRS data analysis. GLM is then applied to an experiment on mirror
illusion, which demonstrates the application of GLM for monitoring therapeutic
process in situations where fMRI is not available, specifically in mirror therapy to
recover traumatized limbs after e.g. a stroke. The second experiment evaluates
the capacity of GLM to recover overlapping hemodynamic responses, a common
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problem in NIRS experiments because of the sluggish hemodynamic response func-
tion, which peaks only after around 5 seconds following neuronal activation. This
advantage together with the applicability of NIRS for developmental studies was
used to research the neuronal background of inhibition in an experiment compar-
ing adults and children of the age between 3 and 6 years. A fourth experiment
uses a GLM-like approach, which does not rely on a model of the hemodynamic
response: Finite Impulse Response (FIR). Here, we analyzed data gained during
an attentive task and can show the predictive information content of the shape of
the hemodynamic response for the reaction time of the subjects.

The application of machine learning tools is presented in Chapter 4. These
algorithms are used for Brain-Computer Interfaces (BCI) paving the path for ex-
periments outside of the laboratories. We start with a description of the theoretical
background followed by an experiment testing the application of NIRS for BCIs.
Here we performed an experiment using the imagination of hand movements to
control a visual feedback analyzed with machine learning tools. This study was
performed simultaneously with electroencephalography (EEG), most often used
for non-invasive BCIs, allowing direct comparison of results from instruments and,
furthermore, the evaluation of a multimodal approach using information of both
instruments for the visual feedback.

In Chapter 5 we present functional connectivity analyses by means of exper-
iments on the connectivity of several regions in the brain during the subjects’
rest. Before going into the details of the actual experiments we introduce several
mathematical algorithms for the analysis of NIRS data. Resting-state networks
are signified by oscillation pattern in low frequencies (<0.1 Hz) and studies with
fMRI show that their analysis can lead to fruitful insights into numerous diseases.
Here, we were able to show that NIRS is also feasible with functional connectivity
analysis. The possibility of using NIRS to detect resting-state networks raises hope
for future applications like bedside monitoring in the clinics. In a first experiment
we used sensors on the whole head to gain insights into larger networks. Positive
results from this experiment inspired us to analyze differences in the development
from 3-6 years olds to adults by using data from the developmental study already
presented in Chapter 3. We furthermore performed simultaneous measurements
of NIRS and fMRI in the somato-motoric regions of the brain to evaluate the
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reliability of NIRS in finding resting-state networks.
This work concludes with a discussion on the used analyses and an outlook of

their future application areas in Chapter 6.
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2. Principles of Near-Infrared
Spectroscopy

This chapter describes the basic principles of Near-Infrared Spectroscopy (NIRS)
in the human brain. In Section 2.1 we first introduce how neuronal activity through
neurovascular coupling leads to hemodynamic responses. Following this, we de-
scribe the propagation of near infrared light through the brain’s tissue (Section 2.2)
and the formation of the optical hemodynamic contrast. Finally, we discuss the
time-frequency characteristics of NIRS signals in Section 2.3.
After describing the characteristics of the NIRS signal, we elaborate on the

preprocessing of the data in Section 2.4. An example of a simple analysis by
averaging of event-related, focal hemodynamical changes is shown in Section 2.5.
NIRS, as a functional imaging method, by itself is not capable of measuring

anatomical brain structures. We will therefore include a short discussion on proper
methods of statistical mapping functional signals onto anatomical brain models in
Section 2.6.
This is followed by a section describing the instruments used in this dissertation

in Section 2.7. One of the advantages of NIRS is its artifact-free use in concurrent
measurements with several electro physiological (EEG) and peripheral measure-
ments, which will be introduced in Section 2.8. This chapter concludes with a
discussion about the advantages and the limitations of NIRS for neuroscientific
research and application (Section 2.9).

2.1. From Neuronal Activity to the Hemodynamic
Response

Information transport in the brain is dominated by electric current exchanges of
neurons and neuronal populations. Neuroscientific research, therefore, focuses on
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the understanding how and why changes in the environment leads to changes in the
electric activity. Usually, one uses controlled paradigms or stimuli to enforce neu-
ronal activity changes which then are measured to support or contradict a hypoth-
esis. Because direct measures of neuronal activation require invasive measures,
one often has to resort to indirect measures of the electric or magnetic changes
caused by brain activity (e.g. electroencephalography and magnetoencephalogra-
phy). Relatively early, in 1890, Roy [Roy and Sherrington, 1890] detected that
the energy demand of neuronal activity also leads to changes in the local blood
supply (hemodynamics). The link between neuronal activity and changes in the
vascular system is called neurovascular coupling, which opened the research field
on hemodynamics. FMRI and NIRS use local blood flow changes as an indirect
measure of neuronal activity.

Figure 2.1 illustrates the example of a visual stimulus (e.g., a flickering checker-
board pattern) leading to neuronal activity followed by a response of the vascu-
lar system, which causes local changes in the cerebral blood flow and volume.
This results in concentration changes of the blood-borne cells and molecules in
the capillaries surrounding the neurons. Non-invasive measures of concentration
changes in the microvascular system are feasible by either functional magnetic
resonance imaging (fMRI) or NIRS. Both methods are sensitive to focal concen-
tration changes of the reduced and the oxygenated form of the oxygen transport
molecule hemoglobin, i.e., HbO (oxygenated hemoglobin) and HbR (deoxygenated
hemoglobin), respectively. While fMRI depends mostly on the magnetic dipole mo-
ment of HbR, NIRS measures the shift in the near-infrared absorption spectrum
of blood (i.e., its color) depending on the relative amount of HbO and HbR.

2.2. Photon Transport in the Human Brain

To detect hemodynamic changes with NIRS, a deeper understanding of how light
spreads in the human brain is needed as well as the mathematical background of
NIRS measurements. Both is presented in the following subsections.
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Figure 2.1.: Neuronal activity leads to changes in the tissue’s optical properties

2.2.1. Optical Window of Near-Infrared Light in Biological Tissue

NIRS is based on the differential absorption spectra of the two chromophores of
hemoglobin, shown in Figure 2.2, as a function of wavelength of the illuminating
light.

Figure 2.2.: Absorption coefficients of water, HbO and HbR in part of the visible
and near-infrared spectrum

Near-infrared radiation in the 700-900 nm region is optimally suited for prob-
ing dynamic changes of the hemoglobin concentration, because in this region,
hemoglobin is the main absorber, and light penetration into biological tissue is
maximal.
Outside of the so-called optical window, light show either high absorption for
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water (in higher wavelengths) or high absorption for hemoglobin. Both sides of this
optical window prevent the light from penetrating the head deep enough to reach
the cortex [Cope et al., 1988] because most photons will be absorbed in the first
millimeters. Commercially available NIRS instruments use two or more distinct
wavelengths for tissue illumination, to allow the separation of the concentration
changes of HbO and HbR (further explained in Section 2.2.3).

2.2.2. Non-invasive Measures of Near-Infrared Spectroscopy

The measurement of intra-cranial changes in hemoglobin concentration requires
the placement of a light source and a detector on the subject’s head at a sep-
aration distance of about 2-4 cm. The light travels into the brain undergoing
scattering and absorption by the tissue. A small fraction of photons escapes the
head and reaches the detector. These photons have a path whose probability can
be described as a banana-shaped volume in which the measurement of hemoglobin
concentration changes takes place as illustrated in Figure 2.3.

Figure 2.3.: Photon propagation in the brain. Photons (white dots) propagate
from the source to the detector with a banana-shaped probability (light
blue).

2.2.3. Absorption and Scattering of Light in Tissue

Both wavelengths used by the NIRS instrumentation are absorbed by either of
the two chromophores (see Figure 2.2) to different degrees, and their different
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contributions may be separated using an analytical approach which estimates the
concentration changes of HbO from HbR: the modified Beer-Lambert law. It is
based on the simple law formulated by Bouguer in 1729 which states that the
amount of photons transmitted through a solution of dye in an aqueous medium
is logarithmical dependent on the concentration of the dye and the length d of the
penetrated medium (see Figure 2.4 A). The attenuation A of the light is defined

Figure 2.4.: A) Schema of photons traveling through a cuvette of dye soluted in
water. B) Schema of photons traveling through a cuvette with scat-
tering media.

as follows:
A = −log(Idet/Iemit)d (2.1)

where Iemit is the light intensity emitted by the source, and Idet is the trans-
mitted intensity measured by the detector. This relation, usually termed the
Beer-Lambert law, can also be formulated in terms of the absorption coefficient
µa

A = −µad (2.2)

In general, µa(λ) is a medium-specific, wavelength-dependent quantity. The com-
bined wavelength dependent absorption coefficient of a mixture of chromophores
may be stated as:

µa(λ) =
∑
i

ei(λ)ci (2.3)

where λ is a specific wavelength and ei(λ) signifies the wavelength dependent
extinction coefficients of each chromophore i interacting with the light, and ci

their respective concentrations.
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In turbid media, such as tissue, matters get more complicated because the
photons are not only absorbed but also scattered (see Figure 2.4 B). Therefore,
one can no longer regard straight light paths. The mean free path length L takes
this into account and describes the most probable path of photons reaching the
detector, as defined by Beer in 1852 [Beer, 1852].
In 1998 Cope and Delpy [Delpy et al., 1988,Cope and Delpy, 1988] took also ad-

ditional losses caused by scattering into account. Assuming a constant scattering,
these losses are expressed by the summand G in Equation 2.4.

A = −µaL+G (2.4)

In NIRS measurements the scattering in the measured volume is unknown which
prevents us from a quantifying the concentration of the hemoglobin chromophores.
Nevertheless, functional measurements are feasible because calculating the changes
of hemoglobin concentration between two time points is independent from the scat-
tering. This only holds for the assumption of constant scattering and a constant
path length L over time [Obrig and Villringer, 2003], which can be held in the
case of brain tissue. We can formulate, with ∆ signifying a difference between two
points in time:

∆A = ∆µaL (2.5)

Using Equation 2.1 this can be re-written for two time points (t0 and t1 as:

∆A = −log(It0/I0) + log(It1/I0) = log(It1/It0) (2.6)

where the emitted light intensity I drops out. By choosing It0 as a reference
light intensity represented, e.g., by an initial baseline measurement, or a temporal
mean value. We are now able to calculate intensity changes for each time point of
a measurement.
Our aim is now two separate the concentration change of two chromophores

(HbO and HbR) from the actual measured attenuation change of two wavelengths
of light. For two chromophores (HbO and HbR) ∆µa and can be expressed with
Equation 2.3 as a dependency of the wavelength λ, the concentration c of each
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chromophore and the specific extinction coefficient e.

∆µa = eλ,HbO∆cHbO + eλ,HbR∆cHbR (2.7)

For two wavelengths (λ1 and λ2) this results in the following relation for the
concentration change of HbO [Kocsis et al., 2006], known as the modified Beer-
Lambert law defined by [Cope and Delpy, 1988].:

∆cHbO =
eHbR,λ1

∆Aλ2
Lλ2

− eHbR,λ2
∆Aλ1
Lλ1

eHbR,λ1eHbO,λ2 − eHbR,λ2eHbO,λ1

, (2.8)

and for HbR:

∆cHbR =
eHbO,λ1

∆Aλ2
Lλ2

− eHbO,λ2
∆Aλ1
Lλ1

eHbO,λ1eHbR,λ2 − eHbO,λ2eHbR,λ1

. (2.9)

The accuracy of determining the concentration changes of the different chro-
mophores’ is limited by two major effects, termed cross-talk (stemming from the
simplified assumption of homogeneous change) and separability (influenced by dif-
ferent noise levels of the used wavelengths), the concept of which is nicely reviewed
in [Kocsis et al., 2006]. These errors depend on the wavelengths used and can be
estimated using Monte-Carlo simulations (e.g. the simulation of a high number of
photons traveling through media) as shown by [Uludaĝ et al., 2004]. This means
the existence of optimal combinations of wavelengths for NIRS instrumentation
(see also Section 2.7).

2.3. Time-Frequency Characteristics of the Signals

Although NIRS aims to measure changes in the micro-vascular hemodynamics in
the brain, it is also influenced by other, so called extra-cerebral, changes of the
cardio-vascular system. This is due to the fact that all measured photons have
to cross the skin of the head twice: directly at the sources output and before
entering the detector (see Figure 2.3). Therefore, global concentration changes of
hemoglobin, such as caused by the heartbeat or breathing, have a strong potential
of poisoning NIRS measurements.
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Figure 2.5.: Time course and frequencies in one sample NIRS channel during rest.
Left: Time course of one NIRS channel for 30 s measurement time
and both chromophores. HbO (red) has a higher variance than HbR
(blue) and contains a larger fraction of heartbeat (fast oscillations)
and slower (around 0.1 Hz) oscillations. Right: Frequency spectra for
HbO and HbR. Most prominent are the heartbeat around 1.2 Hz and
its first harmonic (2.4 Hz) in HbO. The respiratory activity (around
0.22 Hz, HbR) is only a minor component, while between 0.1 and
0.2 Hz there is a huge peak in the spectrum. Overall, these global
physiological signatures are much less pronounced in the HbR signal.

The frequency characteristics of a typical NIRS channel (Figure 2.5), shows
peaks stemming from the heart beat around 1 Hz (and its higher harmonics) and
the breathing at around 0.3 Hz. A further peak is visible around 0.1 Hz, which
might be raised by auto-regulations of the brains’ vascular system or, at least
partly, stems from extra-cerebral blood pressure changes [Nikulin et al., 2012].

Extra-cerebral artifacts are more prominent in HbO. This is most likely because
the skin contains mainly HbO while HbR is most prominent in the arterioles and
capillary bed of the brain. This is an indicator that HbR might the more reliable
chromophore when studying brain’s activity.

The heartbeat is the fastest observed signal. As the heartbeat is extra-cerebral
noise and, thereby, a physiological artifact it has to be sampled with an adequate
sampling frequency to get rid of it. This means that, according to the Nyquist
theorem [Nyquist, 1928], the sampling rate of NIRS should not fall below ∼2.5 Hz
(e.g. the double of the highest frequency band of interest).
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Current NIRS instruments sample in a range of 3-20 Hz. This is a quite high
sampling rate, keeping in mind that the hemodynamic response peaks around 5 s
(0.2 Hz) and, especially, considering the low sampling rate of fMRI (mostly around
0.5 Hz). This causes a clearer signal (more information per time) but is mostly
needed to filter out extra-cerebral noise.
In contrast to the sampling rate, the duration of the measurements is not limited.

As there is no need for a patient or subject to lie down, or to keep high magnetic
fields constant, NIRS is suited to measure people all day long, which might be
useful for bedside measurements in the clinic (e.g. [Obrig and Steinbrink, 2011])
but also opens the field to brain computer interfacing (e.g. [Fazli et al., 2012b]).

2.4. Preprocessing of Data from Near-Infrared
Spectroscopy

2.4.1. Filtering

Given the extra-cerebral origin of some components in our data, there is need for
a proper filtering. To attenuate high frequency artifacts caused by heartbeat and
breathing all data shown in this work is low-pass filtered between 0.4 and 0.2 Hz.
To choose the appropriate low-pass filter frequency we consider the stimulus length
and the inter-trial interval to prevent the removal of task-induced hemodynamics.
Short stimulus length and fast inter-trial intervals suggest a low-pass filter below
0.2 Hz. Here, the HRF will peak at 0.2 Hz and lower filter would remove the
expected hemodynamic response and leave us with noise only.
For longer stimuli the HRF will peak later (i.e. the frequency of the expected

hemodynamics decreases) and long inter-trial intervals also cause a lower frequency
of the hemodynamic responses. In this case we have the possibility to filter in lower
frequency ranges. In the work presented we use a Butterworth 3rd order filter.
To attenuate drifts and very slow oscillation an additional high pass filter is

necessary. If not stated otherwise, we use a discrete cosine transform (DCT)
[Ashburner and Friston, 1999] approach to remove these frequencies from the data.
This approach uses a matrix of cosines with different frequencies which assumes
more an oscillatory than a spontaneous occurrence of the low frequency noise.
Removing oscillation around 0.1 Hz is a very sensitive problem. Assuming an
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occurrence in the whole head, the regression of a global mean is one way to reduce
these artifacts. This approach is also frequently used for preprocessing fMRI
data. If there is a possibility of measuring local skin hemodynamics by short
source-detector distances (the banana reaches only the skin) a favorable approach
would be nearest-neighbor correction used e.g. in [Gregg et al., 2010].

2.4.2. Applying the Modified Beer-Lambert Law

As a next step in the NIRS data processing we apply the modified Beer-Lambert
law to transform the actual measured attenuation (absorption) changes into con-
centration changes of HbO and HbR. The division of the actual measured intensity
by a reference intensity (Equation 2.6) causes the signal to vary around zero. It
is also the reason of minor errors as already discussed in Section 2.2.3.

2.4.3. Removing Artifacts Caused by Movement

In addition to physiological artifacts caused by the cardio-vascular system, the
movement of the subjects also causes frequently artifacts. These artifacts are
dependent on the subject’s nervousness and ability to concentrate. Especially
children are not able to control their movements during experimental situations.
These artifacts cause spikes with a length between 1 and 10 s in the data but
mostly the attenuation changes goes back to the channel’s individual baseline.
This return to baseline is essential for some of the ways to analyze data presented
in this dissertation (esp. general linear model analysis, Chapter 3). As there is
no standardized way to remove movement artifacts we mostly use, if necessary, a
semi-automated approach. We interpolate artifact loaded sequences of the data
with a simple line. Some analyses are still valid when data surrounding the artifact
is cut, as frequently done in EEG. For the analysis of correlation (Chapter 5) we
cut the artifacts out of the data, because movement artifacts and also interpolation
would induce a higher correlation.
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2.5. Statistics for Hemodynamic Responses: the
Difference Approach

After previously described preprocessing, results for experiments with long inter-
stimulus intervals and clearly defined tasks can be analyzed in epochs of the time
course around each repetition of a stimulus in each measurement channel. To
calculate the effect of a stimulus for a single subject the baseline activity given at
a time point before the stimulus onset t0 in data X is subtracted from a point in
time where one expects the peak of the hemodynamic response t1. In this work
we refer to this analysis as the difference method.

∆Xi,j = Xi,j(t1)−Xi,j(t0) (2.10)

Where ∆Xi,j is the result for each stimulus i and measurement channel j of
the data. This approach gains one value for each channel, stimulus and subject.
Statistics can now be calculated for the individuals and the group. Individual
results are processed by a (Students’) t-test where each single trial difference ∆Xj

is tested against zero (the null hypothesis) or the result for another stimulus. For
group level statistics we use averages of the differences ∆Xi,j in each subject and
calculate the t-test in a group level. In both cases one has to adjust the statistical
results for the number of measurement channels to prevent an over fitting e.g. by
a Bonferroni correction [Bonferroni, 1935].

2.6. Mapping of Statistical Results

NIRS itself does not recognize the brain structures underlying a measurement
channel which is required to reference statistical results to brain areas. There
are several approaches to coregister the channels to single subjects brains’ or, as
a rougher estimation, to a brain atlas (which is a standardized brain given by
an average over numerous individuals anatomical MRI scans such as the MNI
brain [Evans et al., 1992] or structural analysis of a post-mortem brain as the
Talairach atlas [Talairach and Tournoux, 1988]).
Though anatomical MRI-scans of the individuals are not always available (and

further decreases the advantages of NIRS - like low costs and portability) another
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way to link channel positions to the underlying brain structure is necessary. 3D
coordinates of the channels can be referenced to standardized locations of EEG
electrode position (e.g. the EEG 10-20 system [Jasper, 1958, Niedermeyer and
Da Silva, 2005]) for whom the underlying brain structure is (roughly) known
[Koessler et al., 2009].
The acquisition of the 3D coordinates for this approach can either be done

on a single subject basis with instrument like electromagnetic field based 3D
digitizing systems as the Polhemus system (www.polhemus.com), the Zebris 3D
digitizing system (www.zebris.de) based on ultrasound, Photomodeler software
(www.photomodeler.com) based on 3D reconstruction of photos from several per-
spectives, or infrared stereo cameras (e.g. www.nexstim.com).
Because all afore mentioned instrumentations have shown an error >0.5 mm

(these results have not been published) and the EEG-caps we use (www.easycap.de)
have a further uncertainty of ∼0.5 cm, we argue that a single subject measurement
of optode position is not precise enough and additionally time consuming (ca. 20
minutes until 1 hour per subject).
In this dissertation we use a EEG cap to fix the optodes inside (see Section 2.7.1)

which automatically references the optode positions to the EEG 10-20 system and
provides us with information about the underlying brain areas for each measure-
ment channel.
For visual inspection and demonstration of the results on a 3D brain we use the

freeware MATLAB toolbox NFRI (www.jichi.ac.jp/brainlab/tools.html) described
by [Singh et al., 2005], which estimates brain regions underlying the channel and
the EEG 10-20 position. This toolbox also allows to sketch experimental results
as colored circles at the channels locations on a 3 dimensional head surface but
prevents an interpolation between actual measurement channels e.g. as used in
NIRS-SPM (bisp.kaist.ac.kr/NIRS-SPM.html) [Ye et al., 2009]. This interpolation
is not favorable because it leads to the imagination of higher spatial sampling than
actually measured and drops the focal nature of NIRS measurements.

2.7. Instrumentation

Since the upcoming of NIRS technology [Villringer et al., 1993] the instrumenta-
tion has dramatically improved. Nowadays the instruments have enough channels
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2.7. Instrumentation

to cover the whole head with light sources and detectors (together called optodes).

2.7.1. Attachment of Optodes onto the Head

For a NIRS measurement there have to be sources and detectors. Glass fibers can
be used to transmit the light to and from the head. Thereby an electric contact
between the actual instrument and the head is prevented and allows artifact-
free simultaneous measurements with e.g. EEG or fMRI. For other measurements
sources and detectors can be attached directly on the head (without the glass fiber
as transmitter) [Krüger et al., 2012]. The advantage is that the weight and bulk
of glass fiber bundles are avoided and movement artifact become less pronounced.
There are several ways to attach NIRS probes on a subjects head. As already

stated earlier, one solution is to include them into an EEG-cap. Therefore, the
glass fibers are bent by 90◦ as shown in Figure 2.6 A in a plastic form, which is
also provides as an adapter for EEG electrode holders which are integrated into
the cap. With this arrangement one has the ability to put an optode and an EEG
ring-electrode at the same position of the head.
Classical EEG caps with 128 holders provide a distance between holders reaching

from 2.5 till 3.5 cm and are therefore well suited for NIRS measurements. This
distance is the favorable inter-optode-distance, because the banana shaped volume
is then deep enough to reach the upper layer of the cortex. Longer distances
than 4 cm between source and detector cannot be employed because then too few
photons will reach the detector. A bandage can press the optodes slightly onto
the skin to guarantee optimal contact.

2.7.2. Whole-Head Coverage

Recent instruments have up to 64 optodes which cover nearly the whole head when
spread with an inter-optode distance of 3 cm over the head. Such an arrangement
is shown in Figure 2.7, covering frontal, temporal, central and parietal parts of
the brain. Only the visual cortex is not covered. With such an approach it is
feasible to measure functional neuronal networks spreading not only in a small
part of the brain but connecting several areas spread all over the brains surface
(e.g. a connection of parietal and frontal regions).
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2. Principles of Near-Infrared Spectroscopy

Figure 2.6.: Integration the optodes into an EEG-cap. A) A black plastic adapter
ring is inserted into the electrode holder of a standard EEG-cap. The
optode (top) is then placed into the hole of the adapter. A retain-
ing ring is used to secure the optode on the adapter. B) Optode in
position. C) Bottom view of the optode (underside of the cap).

Figure 2.7.: Setup of whole-head coverage as used in [Mehnert et al., 2012a] and
[Mehnert et al., 2009] superimposed onto a brain surface. Red dots:
Laser emitter positions; blue: detector positions; green: actual NIRS
measurement channel positions with channel number. Note the use of
even / odd numbers for the right / left hemisphere and small / large
numbers for frontal / parietal areas
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2.8. Combination of NIRS with other Modalities

2.8. Combination of NIRS with other Modalities

A major advantage of NIRS is its possibility for artifact-free simultaneous mea-
surements with other neuroimaging devices such as EEG and fMRI, and also with
peripheral measurements to measure e.g. blood pressure, heart beat and/or skin
conductance. Multimodal imaging studies open wide fields of possible research.
A favorable combination is the simultaneous acquisition of electrophysiology and
hemodynamics. The signals of both devices contain complementary information.
Simultaneous NIRS and EEG measurements are, for example, used in order to re-
search language processing [Wartenburger et al., 2007,Ehlis et al., 2009,Telkemeyer
et al., 2009,Rossi et al., 2011,Grossmann et al., 2010] the visual cortex [Obrig et al.,
2002,Herrmann et al., 2008]. Multimodal approaches will enhance our knowledge
about the complexity of the human cortex and its cognitive functions [Bießmann
et al., 2011].

2.9. Advantages and Disadvantages of Near-Infrared
Spectroscopy

The major limitation of NIRS is its low penetration depth and physical restrictions
prevent from enhancing it. The spatial resolution can be enhanced by sufficient
data analysis and experimental setup as shown in [Zeff et al., 2007,Koch et al.,
2010,Habermehl et al., 2012]. What remains as benefits of NIRS are the mobility
of this device, its low cost and harmless nature. NIRS has also the advantage of
artifact-free simultaneous multimodal measurements, which then provides us with
information from both instruments.
Further technical improvement in miniaturizing NIRS devices enables neurosci-

entific research outside the laboratory environment. This makes applications in
real environments, for children and neonates possible but is also of interest for
long-term bedside monitoring in the clinics.
NIRS data requires sufficient data analysis to separate extra-cerebral noise from

the brains’ hemodynamics. In the next chapters we describe several ways to
analyze NIRS data.
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3. General Linear Model Analysis

The hemodynamic responses are quite slow. Therefore, the break after each stim-
ulus has to be at least 15 seconds long to avoid overlapping responses and allow
an analysis by averaging. Experimental settings with faster stimulus presentation
are not analyzable without deconvolving the overlapping responses. General lin-
ear model (GLM) analysis is a stable way to deconvolve overlapping hemodynamic
response for fast stimulus presentation. Here, a researcher models the overlapping
hemodynamics and estimates statistical results by comparing, i.e. regressing, his
model with the actual measured data. GLM, thereby, needs sensitive knowledge
about the hemodynamic response and a strong hypothesis about its behavior dur-
ing overlapping. Nevertheless, since the vascular response is quite well studied
and the onset of each stimulus is given by the experimental setup, GLM analy-
sis provides results which are statistically easy to prove and quite stable against
extra-cerebral and other artifacts. GLM is the only tool which is able to analyze
overlapping hemodynamic responses and allows relative short inter-trial-intervals
(ITI). This method was first applied to fMRI data and has been shown to be a
robust and reliable analysis method for NIRS [Cohen-Adad et al., 2007]. GLM has
been for example frequently used for NIRS data analysis in recent developmental
studies [Wartenburger et al., 2007,Telkemeyer et al., 2009,Minagawa-Kawai et al.,
2011, Rossi et al., 2011, Telkemeyer et al., 2011] though young children demand
attentive and relative fast stimuli presentations to stay concentrated.
This chapter discusses the reliability of the HRF approach and gives a brief

introduction into the math behind GLM analysis in Section 3.1. A first impression
of its advantages is given in Section 3.2 by analyzing data from a study on the
effect of mirror illusion in the precuneus brain area where the hemodynamics do
not overlap. An experiment with faster stimulus presentation and the analysis of
overlapping hemodynamic responses is shown in Section 3.3 in a study comparing
the underlying neuronal structure of response inhibition between children and
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3. General Linear Model Analysis

adults. Furthermore, other GLM-like analyzing approaches do not depend on a
specific model of the HRF. Finite impulse response (FIR) analysis has the average
hemodynamic responses as output, also the case when the responses overlap. It
also provides the possibility to test whether the subjects behavior on a single trial
has an influence on the height and shape of the HRF (similar approaches can be
used for classical GLM analysis). An example where we asses the effect of subjects’
reaction time on the hemodynamic response is given in Section 3.4. This chapter
concludes with an outlook on further analytical improvement in Section 3.5

3.1. Theory

3.1.1. Models of Hemodynamic Response

The occurrence of hemodynamic responses to neuronal activity [Fox and Raichle,
1986] led to models of it [Boynton et al., 1996,Friston et al., 2000,Buxton et al.,
2004]. This hemodynamic response function (HRF) is generated by a model in-
cluding the neuronal response and its vascular coupling described by [Friston
et al., 2000]. Recent implementation of the HRF uses a linear combination of
two gamma functions, originally introduced to blood oxygenation level dependent
(BOLD) fMRI [Friston et al., 2007] but also used for NIRS analysis. Note that
the HRF is quite slow: e.g. for a short stimulus and neuronal event it peaks
around 4-8 seconds afterwards and reaches baseline again after around 20 until
30 seconds. Further properties of the hemodynamics show that its behavior is lin-
ear and, thereby, also predictable for different lengths of stimuli and when HRFs
are overlapping [Boynton et al., 1996, Friston et al., 2000, Buxton et al., 2004].
Given this information it was shown that a good mathematical estimate of the
hemodynamics is a convolution of the HRF and a boxcar function of the stimulus
onset and length. With this idea, GLM analysis became popular and simple, and
dominates the fMRI community nowadays while it is also very frequently used for
NIRS analysis.

3.1.2. Mathematical Background

The general linear model (GLM) is a statistical linear model where the data X
is compared to a model of the researchers expectations M , which is also called
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3.1. Theory

Figure 3.1.: Models of the hemodynamics as response to different stimuli (black
lines). The green line signifies a boxcar function of stimulus onset and
length. Top, left hand: Convolution of a single pulse with Hemody-
namic Response Function (HRF) at time point 0 reveals the used HRF
(from [Boynton et al., 1996]) itself. Top, center: Hemodynamic re-
sponse to a stimulus with 10 s length with later peak and decay. Top,
right hand: Hemodynamic response for a stimulus with 30 s length.
Here, a plateau evolves. Bottom, left hand: Hemodynamic response
to 2 stimuli with short length and 30 s inter-trial-interval. Bottom,
center: Hemodynamic response to 2 stimuli with short length and 10
s inter-trial-interval. The hemodynamic responses start to overlap.
Bottom, right hand side: Further decrease of the inter-trial-interval
leads to a strong overlap of the hemodynamic responses.

design matrix. There is some (white) noise ε which cannot be explained by the
experiment, referred also as unexplained variance.

X = βM + ε (3.1)

The aim is now to fit the model M to the data X by minimizing the unexplained
variance (i.e. the error) in ε and, thereby, maximizing the values in β. The
minimizing procedure is usually done by least-square algorithms. β is a vector
with one entry for each regressor (model) and used for further statistical analysis.
This procedure was introduced to the NIRS community by [Cohen-Adad et al.,
2007].

Least square fitting is, in case of outliers, sensitive to over fitting. The number
of regressors used should therefore be much lower than the data points acquired
and outliers should be removed in the artifact correction before the fitting. The
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3. General Linear Model Analysis

model M is, hereby, created by a convolution of a boxcar function s (representing
stimulus onset and lengths) with a model of the hemodynamic response (i.e., the
HRF). This can mathematically described by

M = s ∗HRF (3.2)

where ∗ signifies the convolution. Results for this approach can be seen in Fig-
ure 3.1 for several examples of differing stimulus length and inter-trial-intervals.

3.1.3. Finite Impulse Response Analysis

Finite Impulse Response (FIR) does not take a strong biophysical model like the
HRF into account but uses one regressor for each time point of the hemodynamic
response. This regressor is a simple stick function. The βs in FIR are standing
thereby for the height of an amplitude in a time point after stimulus onset. The
model M from Equation 3.1 consists of impulse functions I. Each of these regres-
sors stands for a certain time point after stimulus onset and for every stimulus an
impulse is set. The number N of regressors, thereby, defines the resolution of the
result. The mathematical notation is:

M = I1...N (3.3)

This analyzing technique is schematized in Figure 3.2 for non-overlapping and
overlapping responses.
Using a second set of the regressors and a multiplication for the signal trials with

behavioral results gives the parametric modulation of the hemodynamic response.

3.2. General Linear Model Analysis in a Study on Mirror
Illusion

We applied the GLM approach in a study where overlapping hemodynamic re-
sponses are prevented by long inter-trial intervals to show its reliability. This
opens the possibility to compare the difference analysis, already presented in Sec-
tion 2.5, with the GLM approach. This study was further designed to investigate
the neuronal basis for mirror illusion [Mehnert et al., 2012b]. In recent years, the
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3.2. General Linear Model Analysis in a Study on Mirror Illusion

Figure 3.2.: Schema of Finite Impulse Response (FIR) analysis. The black line
is the hemodynamic response for one (left hand)/two (right hand)
short stimuli. Red lines show the regressors of the FIR for 9 time
points after stimulus onset. In case of the overlapping hemodynamics
(right hand) each regressor consist of 2 impulses because there are 2
stimuli given. The green stars show the resulting β, deconvolving the
overlapping hemodynamics (right side).

use of mirror illusion has become increasingly popular to treat limbs affected by
phantom pain [Ramachandran et al., 1995] or stroke [Ezendam et al., 2009,Roth-
gangel et al., 2011]. Mirror therapy works in patients with one sided affected
limbs. Here, the unaffected side is trained while the patients look into a mirror
image of the unaffected side, giving the illusion of training the affected side.

�

�

�

�

Experimental Procedure in Mirror Illusion Experiment
Tasks: 20 trials per condition (normal finger movements, mirrored

finger movements, static observation of the normal hand and
static observation of the mirrored hand)

Subjects: 20 healthy, right-handed volunteers (aged 21 to 40)
Instrumentation: NIRS: 16 sources, 16 detectors, 38 measurement

channels
See Appendix A.1 for a detailed description of the experimental

setup

Textbox: Experimental Procedure in Mirror Illusion Experiment
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3.2.1. Methods

To compare the effect of mirror illusion with and without movement we designed
an experiment consisting of four stimuli for each hand: (1) Finger movements,
normal (movement, NOR), (2) Finger movements, mirrored (movement, MIR),
(3) no movements, normal (static, NOR), and (4) no movements, mirrored (static,
MIR). For a direct comparison of the difference analysis with the GLM, movement
related trials (NOR and MIR) were pooled and analyzed with both methods. Using
the difference method we subtracted the temporal average between 5 s before until
trial onset Xi,j(t0) from the effect assumed to be within 5-15 s after trial onset
Xi,j(t1) for each channel j, trial i, chromophore and subject in the preprocessed
(and band-pass filtered) data (see also Section 2.4.1). Recalling Equation 2.10 this
results in:

∆Xi,j = Xi,j(t1)−Xi,j(t0), (3.4)

with t1 ∈ [5...15] and t0 ∈ [−5...0] seconds in relation to the stimulus onset. Single
trial results ∆Xi,j where then averaged within each subject, gaining one value for
each subject and channel, and used for further statistical comparison.
For the GLM analysis regressors were composed by a convolution of a boxcar

function, representing stimulus onset and length, with a hemodynamic response
function [Boynton et al., 1996]. Additional regressors are composed by a discrete
cosine transform (DCT) [Ashburner and Friston, 1999] working as high pass filter
(see also Section 2.4.1). All regressors were fitted to the preprocessed and low-pass
filtered data by a least square approach. For each subject, condition and channel,
the GLM provided two β values (for HbO and HbR, respectively), indicating the
strength of the modulation of the hemodynamic response. Furthermore, we tested
the assumption of white noise content for the error ε in the GLM (Equation 3.1) by
averaging the power spectral density for the residual (i.e. unexplained variance) in
the motor related channels. Please note, that stronger activity in both methods
is indicated by positive values for HbO and negative values for HbR [Fox and
Raichle, 1986,Logothetis and Wandell, 2004].
For the effect estimation of the mirror illusion, we further performed a GLM

analysis taking all four conditions into account. For visual inspection and demon-
stration we used the approach described in Section 2.6. The two imaging studies
by Dohle and colleagues [Dohle et al., 2004,Dohle et al., 2011], which also analyzed
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3.2. General Linear Model Analysis in a Study on Mirror Illusion

the mirror effect, indicated that comparable foci in the region of the precuneus
were activated (Figure A.1 B). Regions of interest (ROI) were defined correspond-
ing to the activation foci of the above-mentioned studies in the precuneus as the
three channels displayed in Figure A.1 C (further referred to as Precuneus-ROI )
for both hemispheres. ROIs in somato-motoric area (MA) were defined as the
four midsagittal channels on either hemisphere as these positions are known to
cover somato-motoric areas (see [Koessler et al., 2009]) (further referred to as
(MA-ROIs) (see Figure A.1 C).

3.2.2. Results

Results for the direct comparison of the difference and GLM analysis are shown for
left hand movements in Figure 3.3. Both methods lead to very similar topographies
in an average over the subjects. HbO and HbR reveal maximal effects on the right
somato-motoric area. As expected HbO increases and has about the double value
of concentration change than HbR, which decreases after stimulation (Figure 3.3).
Furthermore, the effect in HbO spreads also on the left hemisphere indicating a
more focal nature of the HbR signal (Figure 3.3 A).
Although GLM reveals higher significance for both chromophores, comparing

the average of somato-motoric channels against the null-hypothesis of no effect
(Figure 3.3 B), there is no significant difference neither between the HbO nor the
HbR results of both methods. Note that the significance for HbR is far higher in
both methods than for HbO (i.e. p-values are lower). The comparison of GLM
and difference method in single subjects (Figure 3.3 B) reveals similar results for
both methods as their results are highly correlated between subjects.
Further analysis on the residual ε of the GLM approach, namely the average fre-

quency spectrum over subject in the somato-motoric channels, reveals a rejection
of the white noise assumption made in Section 3.1.2 as can be seen in Figure 3.4.
There is still 1/f -noise (also called pink-noise) present in the residual which sig-
nifies a physiological origin of the noise. Effects in the frequency ranges of the
extra-cerebral noise (heartbeat (∼1 Hz), breathing (∼0.3 Hz) and blood pressure
(∼0.1 Hz); see Section 2.3) are not visible. Also the variance is not increased in
these frequency bands.
To estimate the effects of the mirror illusion, baseline-corrected time courses for
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3. General Linear Model Analysis

Figure 3.3.: Comparison of the difference and general linear model analysis for
non-overlapping hemodynamics. A) Resulting differences (left hand
side) and β-values (right hand side) for HbO (top) and HbR (bot-
tom) during left hand movements plotted on a schematic brain (top
= frontal). Note that the scale for HbO results is double the height
than for HbR results. As expected HbO shows positive values in the
right somatomotoric-areas while HbR becomes negative. The black
rectangle marks the channels used for the analysis shown in B). Re-
gional averages for both methods are shown in B) and tested against
the null-hypothesis of no effect (t-test). p marks the resulting sig-
nificance and the error bars the standard error of the mean over the
group. C) Comparison of β-values and differences for single subjects.
The correlation between results for GLM and difference method are
0.96 for HbO and 0.97 for HbR, both highly significant (p < 1010 and
p < 1011).

the Precuneus-ROIs were averaged across subjects and smoothed (moving window
of 10 s) for MIR and NOR conditions (shown in Figure 3.5, top). As expected,
we observed less concentration change for both chromophores in the contralat-
eral hemisphere (Figure 3.5, right hand side) when comparing MIR with in the
NOR condition. This difference peaks at about 10 s after stimulus onset in both
chromophores. In contrast, in the ipsilateral hemisphere (Figure 3.5, left hand
side), there is less concentration change in the NOR compared with the one in
MIR condition for both chromophores, with this difference peaking slightly later
at about 12 s after stimulus onset.

Baseline-corrected time courses for the MA-ROIs (Figure 3.5, bottom) show as
expected only a slight change of concentration in the ipsilateral and contralat-
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3.2. General Linear Model Analysis in a Study on Mirror Illusion

Figure 3.4.: Power spectral density for the residual ε of the general linear model
analysis for HbO (red) and HbR (blue) shown as an average of the
frequency spectra in the right somato-motoric area of all subjects.
The error bars signify the standard deviation over subjects.

eral hemisphere for the MIR compared with in the NOR condition (Figure 3.5,
bottom).
The four-way repeated measures ANOVA over the beta values show a signifi-

cant main effect of the factor movement (F(19)=4.92; p<0.05, η2=0.21) for HbO.
Furthermore, there is a significant two-way interaction of the factors mirror and
hemisphere (F(19)=4.59; p<0.05, η2=0.20) for HbO, although post-hoc analysis
of this two-way interaction revealed no significant effect in the paired t-tests. The
two-way interaction of the factors mirror and hemisphere failed to reach signifi-
cance for HbR (F(19)=1.71; p=0.21, η2=0.08).
In the somato-motoric ROIs the four-way ANOVA over the beta values show, as

expected, a significant main effect of the factor movement for HbO (F(19)=5.06;
p<0.05, η2=0.21) and also for HbR (F(19)=5.51; p<0.05, η2=0.23). Because
there was more activation in movement conditions then in static conditions, a
further three-way repeated measures ANOVA with the factors mirror (MIR /
NOR), hand (left / right) and hemisphere (ipsilateral / contralateral) was applied
on the beta values of the MA-ROI. This was done for the trials with movement to
confirm our hypothesis of minor influence of mirror illusion on the somato-motoric
area. This three-way ANOVA showed a main effect of hemisphere (F(19)=4.65,
p<0.05, η2=0.20) for HbR. The beta value for the hemisphere contralateral to the
moving hand was -0.11 and -0.04 for ipsilateral, which indicates more activation
contralateral than ipsilateral for the trials with movement. The same effect was
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3. General Linear Model Analysis

Figure 3.5.: Averaged time courses of the MA- and Precuneus-ROIs, contra- and
ipsilateral to the moving hand. The duration of stimulus presentation
is shaded in gray. HbO is presented in red while HbR is coded in blue.
Time courses have error bars with standard error of the mean.

observed for HbO, but failed to reach significance (F(19)=3.71 p=0.069, η2=0.16;
mean beta value contralateral: 0.33; mean beta value ipsilateral: 0.19). No other
effects reached significance for the three-way ANOVA validating our hypothesis of
minor influence of mirror illusion on MA.

3.2.3. Discussion

The comparison of the difference approach and the GLM analysis revealed simi-
lar results for both methods. This suggests that, in the case of non-overlapping
hemodynamics, an equivalent usage of GLM is feasible. Both methods show a
higher reliability and localization for the HbR chromophore. HbO is naturally
more poised by extra-cerebral artifacts which stem from the skin, where the HbR
concentration is negligible. We can show that the model of the hemodynamic re-
sponse is realistic, which serves the basis for analyzing overlapping hemodynam-
ics, as done in the next section. The frequency spectrum of the residual from the
GLM reveals a rejection of the assumption that the residual consists only of white
noise. The 1/f distribution over the frequencies suggest a physiological origin.
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Figure 3.6.: Mean beta values and differences and their corresponding standard de-
viations at the Precuneus-ROI (top row) and MA-ROI (bottom row).
Left column: mean beta values for HbO of the ipsi- and contralateral
hemisphere for the MIR and NOR conditions; middle column: mean
beta values for HbR of the ipsi- and contralateral hemisphere for the
MIR and NOR condition; right column: mean inter-hemispheric dif-
ferences in the MIR and NOR conditions for HbO and HbR (later
multiplied by -1 for direct comparison). Note that in the figures of
the right column values > 0 indicate higher activation in the ipsilateral
than in the contralateral hemisphere and values < 0 indicate higher
activation in the contralateral than in the ipsilateral hemisphere, re-
spectively.

This indicates that the DCT approach, used to model low-frequency oscillation of
physiological origin, is not capable to regress the low frequencies occurring in the
brain. This might be due to the oscillatory nature of the DCT approach while
the low-frequency content in the brain is from spontaneous origin. Nevertheless,
extra-cerebral artifacts from cardio-vascular mechanisms are not visible in their
typical frequency bands and seem, therefore, captured by the GLM.
Neural correlates of the mirror illusion were found ipsilateral to the moving

hand for the precuneus-ROI for HbO, but not in the primary motor cortex. This
is in line with previous studies [Dohle et al., 2004,Matthys et al., 2009,Michielsen
et al., 2011, Dohle et al., 2011]. The effect for the precuneus-ROI for HbR was
similar, but failed to reach statistical significance. However, in extension to pre-
vious findings our results showed that the mirror illusion does not simply induce
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increased activation ipsilateral to the moving hand. Rather, the presentation of a
right or left hand elicits a hemispheric lateralization in the precuneus opposite to
the seen hand - irrespective of the hand that is actually moved. This lateralization
is inverted by the mirror illusion. In contrast to the activation pattern of the pre-
cuneus, activity in MA is only modulated by the side of the hand which is actually
moved, but not by the visually perceived hand. In summary, we demonstrated
bilateral activation in MA- and Precuneus-ROI with dissociated lateralization pat-
terns: While motor cortex activity is lateralized opposite to the moving hand, the
precuneus activity is lateralized opposite to the visually perceived hand. These
patterns seem to be independent of each other.

These findings are not only important to understand the neuronal origin of
mirror illusion, but they might also help to understand and optimize the effect
of the mirror therapy. Our findings indicate that activity in the precuneus does
not depend on the hand that is actually used. This would imply that the effect
of mirror therapy would not differ from training with direct view on the affected
limb. This was confirmed by a recent systematic review, which found a significant
effect of mirror therapy only compared to therapies without view, but not with
unrestricted view on the affected limb [Thieme et al., 2012].

The physiological aim was to systematically examine the neural correlates of
the mirror illusion with near-infrared spectroscopy. As described in previous
studies [Dohle et al., 2004, Matthys et al., 2009, Michielsen et al., 2011, Dohle
et al., 2011], we found increased activation ipsilateral to the moving hand for the
Precuneus-ROI for HbO, but not in the primary motor cortex. The effect for the
Precuneus-ROI for HbR was similar, but failed to reach statistical significance.
Rather, the presentation of a right or left hand elicits a hemispheric lateralization
in the Precuneus opposite to the seen hand - irrespective of the hand that is ac-
tually moved. This lateralization is inverted by the mirror illusion. In contrast to
the activation pattern of the Precuneus, activity in somato-motoric areas was only
modulated by the side of the hand that is actually moved, but not by the visually
perceived hand. In summary, our findings indicate that the mirror illusion should
not be regarded as an isolated phenomenon. Rather, at least at the level of the
Precuneus, inversion of the visual feedback seems to be integrated into visuomo-
tor behavior in the same way as processing of regular, non-mirrored movements.
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Furthermore, the inversion of the visual feedback has no direct effect on MA.

3.3. Overlapping Hemodynamic Responses in a
Developmental Study on Inhibition

In the experiment described in the section above we used quite long inter-trial
intervals (15 s) and one therefore would also gain results by simple averaging (as
shown in Figure 3.5) or calculating the difference in amplitude before and after
stimulus onset (see Figure 3.3 and Section 2.5). This is not the case when the inter-
trial interval is short and the hemodynamic responses will overlap and add up.
Here, the GLM approach is one method to deconvolute the signal taking a model of
the HRFs behavior into account. Here, we present an experiment with overlapping
HRFs in the field of developmental research. With the GLM analysis we study
age-related differences in the ability and the neurophysiological background of
response inhibition between children at the age of 4-6 and adults [Mehnert et al.,
2012a].�

�

�

�

Experimental Procedure in Development of Inhibition
Experiment

Tasks: 108 trials with 75% go trials and 25% no-go trials (mean
inter-trial interval 5500 ms, jittered, ranging from 3750 to
12000 ms)

Subjects: 51 healthy, right-handed volunteers (21 adults, ranging
from 21 to 36; 30 children, ranging from 3-6 years)

Instrumentation: NIRS: 20 sources, 32 detectors, 80 measurement
channels

See Appendix A.2 for a detailed description of the experimental
setup

Textbox: Experimental Procedure in Development of Inhibition Experiment

3.3.1. Methods

Volunteers were asked to respond to frequent, visually presented targets by press-
ing a button with the right hand (go condition) and to avoid the response to
rare non-targets (no-go condition), i.e. to inhibit a reaction. The subjects were
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instructed to respond to the targets as fast as possible. We presented cartoon
images of Bob the builder and Wendy characters for go and no-go stimuli. Task
versions were balanced with respect to the stimulus material (i.e., which of the
characters was used as the go or no-go condition) and sex of participants for both
subject groups. The task consisted of two runs, each of which lasted 250 s and
contained of 54 trials with 75% go trials and 25% no-go trials. The order of the
presentation was randomized. The stimulus duration was 800 ms and the average
inter-trial interval was 5500 ms (jittered, ranging from 3750 to 12000 ms).
To estimate the effect of motoric activation within overlapping circumstances,

inhibition, and the differences between adults and children, we generated a hemo-
dynamic model, i.e. regressors, by convolving the temporal stimulus profile with
a canonical hemodynamic response function (HRF). We applied a GLM analysis,
separately for both hemoglobin chromophores (HbO and HbR), for each condi-
tion, and for each subject. The so obtain parameter estimates (i.e. β-values) are
a measure of the stimulus-related relative change of tissue hemoglobin concentra-
tion and the basis of all our further statistical analysis. To analyze differences
in brain activation between children and adults we applied a repeated measures
ANOVA model on the GLM analysis results including group (children vs. adults)
as a between-subject factor and condition (go v.s no-go) as within-subject factor.
Significant motor related changes (go-condition) in the adult group were post-hoc
analyzed within a region of interest. Here, we additionally applied a difference
analysis (using -1 until 0 s as baseline and 4 until 6 s as the time of effect) to
compare both analysis methods. See Section A.2 in the appendix for further in-
formation of the data processing.

3.3.2. Results

The ANOVA revealed 7 significant channels for the within subject factor condi-
tion (i.e. movement of the right hand during the go-condition) in the expected
motor-related areas of the left hemisphere. Figure 3.7 (left hand side) shows the
results of the channel-wise average over subjects for GLM and difference analysis.
As expected, the difference method did not reveal any significant changes (Fig-
ure 3.7 (right hand side)) within this region comparing the go-condition to the
null hypothesis due to the overlap of hemodynamics.
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Figure 3.7.: Comparison of the difference and general linear model (GLM) analy-
sis for overlapping hemodynamics. A) Resulting differences (left hand
side) and β-values (right hand side) for HbO (top) and HbR (bottom)
during the go-condition, which includes a button press with the right
hand, in the somato-motoric region of the brain. Note that the scale
for HbO results is double the height than for HbR results. As ex-
pected,the difference analysis is not capable to analyze overlapping
hemodynamics. HbO shows positive values fro the GLM analysis,
while HbR becomes negative. Regional averages for both methods
are shown in B) and tested against the null-hypothesis of no effect
(t-test). p marks the resulting significance and the error bars the
standard error.

Nevertheless, the GLM approach shows significant activation in the somato-
motoric region for the go-condition, reflecting its ability to take the overlapping
hemodynamics for fast motoric stimulations into account.
The effect of inhibition was estimated by a 2x2 (group and condition) ANOVAs.

This analysis revealed significant interactions in the channels over the right frontal
and right parietal cortices (see also Figure 3.8), when using the HbR values as
dependent variable and controlling for accuracy (AC) and reaction time (RT). In
the frontal regions, a group by condition interaction is based on a strong decrease
in the values of HbR (i.e. activation) for the no-go compared to go trials in adults.
This stands in contrast to children, who activated stronger frontal regions during
the go trials compared to the no-go trials. We observed the same qualitative
behavior in the parietal areas: considering the absolute magnitudes, we found
comparable activation magnitudes for the go and the no-go trials in the adult
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group. Although children showed a similar absolute activation strength of the
parietal areas in the go condition compared to adults, the activation during the
no-go-trials remained weak. In addition to the interaction effect, we found a
significant change in the HbR signals in the left motor areas when testing them
for the condition effect (go > no-go), which reflected the motor response with the
right hand.

Figure 3.8.: Group x condition interaction. F-scores of NIRS signal changes are
superimposed onto a brain surface. Bar plots represent group-specific
and condition-specific mean beta value of HbR. The left bar plot is
based on the average beta value of the two significant parietal chan-
nels, the right bar plot is based the average beta value of the four
significant frontal channels. Error bars represent ± 1 standard error.

The HbO signal showed significant changes of the GLM-derived values only in
the motor areas when considering the contrast condition go > no-go, signifying
the expected primary motor activation. However, there was no significant group
and condition interaction effect in the HbO signal (for a comparison of the NIRS
signal components HbR and HbO see above).
Due to significant correlation between age and both behavioral parameters (RT

and AC) we performed multiple regression analyses to reveal developmental effects
on brain parameters. Out of 80 channels, we identified a significant effect of task-
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induced brain activation change with age: In channel 30, located in the right
frontal lobe, age correlated significantly with the HbR values, (r = -.82, p<.05).

3.3.3. Discussion

In task-induced brain activation patterns during the go condition, we identified
a left-lateralized central activation across both groups, reflecting the motor acti-
vation during the go trials. There was no significant group difference in the go
condition, supporting the behavioral finding of the children being capable of ex-
ecuting the go trials. Nevertheless, the comparison of the GLM and difference
method revealed obvious results. The difference approach has not been able to
retrieve significant changes in the motoric regions of the adult subject. This is
caused by the overlapping hemodynamics in the fast experimental design. The
GLM approach takes the overlapping hemodynamics with a convolution into ap-
proach and can, thereby, reveal significant motor related changes. This result
shows that a deconvolution process is necessary when analyzing fast experimental
design causing overlapping hemodynamics. The higher significance for HbO can
be explained with stimulus-locked (extra-cerebral) cardio-vascular responses for
which is not corrected in the current way of analysis (like correct for this effect in
all channels) and which might overlap with the model of the cortical hemodynamic
response (see [Mehnert et al., 2012c]).
During the inhibition condition, however, significant group differences were de-

tected. In line with previous imaging studies [Durston et al., 2002,Rubia et al.,
2007], adults showed a stronger increase in task-induced fronto-parietal activation
during the no-go condition compared to the go condition. In contrast, the imma-
ture activation pattern in children was characterized by higher frontal activation
during go trials in comparison to no-go trials. This immature response pattern
fits well into the discussion of which cognitive processes are involved in a go no-go
task and what improvements are made during development. For example, Cragg
and Nation [Cragg and Nation, 2008] studied response inhibition in a group of
young children (5-7 years) and older children (9-11 years). They suggested that
the higher accuracy during the no-go trials of 9 to 11-year-olds might be more
likely due to a higher inhibition speed than a weaker motor preparation and initi-
ation. This means that older children were faster to inhibit the motor response and
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therefore did not complete the motor action whereas motor preparation also took
place in older children. Thus, Cragg and Nation (2008) differentiated between
partial inhibition (response initiation) and successful inhibition (no response ini-
tiation) and reported that in 5 to 7-year-olds only one third of correct inhibition
trials were a complete successful inhibition, whereas in the remaining no-go trials
a go response was at least initiated [Cragg and Nation, 2008]. This mechanism
might have played a role in our group of children, too. Reduced fronto-parietal
activation pattern in response to no-go trials in our children sample might reflect
a delayed inhibition initiation at the onset of the presentation of the no-go target.
Instead, they might have initiated a motor response, which they were able to stop
before conducting the motor response as seen in behavioral data. Unfortunately,
we did not use a paradigm differentiating between partial and successful inhibition,
and therefore can only speculate. However, the brain responses seem to indicate
similar processes in our study. The higher frontal activation during the go trials
in contrast to adults might reflect higher working memory demand for children to
keep online on which stimuli they had to react and on which they did not.
In the context of the introduced behavioral discussion about the difference be-

tween theoretical understanding of a go/no-go task and the actual behavioral
performance [Bell and Livesey, 1985, Livesey and Morgan, 1991, Zelazo et al.,
1995, Dowsett and Livesey, 2000], our results suggest immature inhibition skills
rather than impaired rule reflection: although we measured signal changes of
nearly the whole cortex, we found significant developmental differences only within
a fronto-parietal network, commonly associated with executive attention and re-
sponse inhibition. Following the idea of immature rule reflection one might have
expected differences in areas such as medial frontal and cingulate regions (e.g.
[Bengtsson et al., 2009]). Furthermore, findings revealed by regression analy-
ses reflect the high plasticity during the ages 4 and 6, which might also explain
the training effects of inhibition skills, reported by [Dowsett and Livesey, 2000]
and [Rueda et al., 2005].

3.4. Finite Impuls Response to Decode Vigilance

Here we present a study which uses an GLM-like approach without taking the
biophysical model of the HRF into account. With finite impulse response (FIR)
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analysis, averages of overlapping HRf can be deconvoluted. This study further
aims to evaluate the influence of vigilance (a form of attention) on the shape and
temporal behavior of the HRF, and will be part of the publication [Bogler et al.,
2012]. �

�

�

�

Experimental Procedure in Decoding Vigilance Experi-
ment

Tasks: 6 blocks of global-local Stroop task (60 trials/block)
Subjects: 9 healthy, right-handed volunteers (aged 20 to 30)
Instrumentation: NIRS: 16 sources, 16 detectors, 44 measurement

channels
See Appendix A.3 for a detailed description of the experimental

setup

Textbox: Experimental Procedure in Decoding Vigilance Experiment

3.4.1. Methods

To measure changes in vigilance subjects were presented with a global-local Stroop
paradigm [Weissman et al., 2006] where the reaction time served as a marker for
the actual vigilance of the subjects. See Section A.3 for a full description of the
paradigm. The preprocessed NIRS-data was analyzed using custom software. We
implemented a general linear model (GLM) that makes no assumptions about the
shape of the hemodynamic response. Therefore, according to Equation 3.3 we
estimated 15 regressors to model the average stimulus-locked response. The data
was recorded with a sampling frequency of 6.25 Hz which is much higher than
for fMRI paradigms (typically around 0.5 Hz). Each regressor modeled thereby
the average response of 6 consecutive time points with a boxcar function. The
15 regressors each with a length of 6 measured time points corresponded to 90
time points or 14.4 s (90/6.25 s). Furthermore we included a second set of 15
parametric regressors [Friston et al., 1997] which modeled the modulation of the
hemodynamic response due to variations in the mean corrected response times.
This regression approach was similar to the model used in the study [Weissman
et al., 2006]. See also Section 3.1.3 for a short introduction into the mathematical
background.

41



3. General Linear Model Analysis

3.4.2. Results

The betas for the set of regressors for the stimulus locked response (SLR) revealed
a shape of classical hemodynamic responses with a peak around 7 s and a HRF-
like shape in most channels of oxygenated hemoglobin. Also a few channels in
deoxygenated hemoglobin showed significant effects. As expected the curve here
was in the opposite direction than for HbO (see Figure 3.9).
The second set of regressors (i.e., the parametric regressors), where mean cor-

rected reaction times of the single trial were expressed by the height of the re-
gressors’ amplitude, is further referred to as parametric modulation (PM). Here,
there are also significant effects in both chromophores. Interestingly, there were
also significant effects before trial onsets (see Figure 3.9).

3.4.3. Discussion

Neuronal correlation of variation in reaction times during a global/local Stroop
paradigm could be identified using NIRS. Neural correlates of attentional slips
have been reported previously using fMRI [Weissman et al., 2006]. However, com-
pared to fMRI, NIRS has a much lower spatial resolution and can only assess
the hemodynamic response on the surface of the brain. Using univariate analysis
techniques (FIR) variations in reaction times are correlated with HbO changes
in frontal and parietal regions. Results of the FIR suggest higher effects in HbO
compared to HbR. Although most researchers showed higher reliability for deoxy-
genated hemoglobin (e.g. [Kirilina et al., 2012]) because HbO is more polluted by
peripheral physiological oscillations. The significances in SLR show physiologi-
cal meaningful results because in frontal and parietal areas we expect a classical
hemodynamic response which peaks between 5-8 seconds. The parametric mod-
ulation (PM) showed that the time of peak is related to the reaction time of the
subject: for a slower reaction time there is also a later peak of the hemodynamic
response.

42



3.4. Finite Impuls Response to Decode Vigilance

Figure 3.9.: Group average of β-values resulting from Finite Impulse Response
(FIR) analysis for stimulus locked response (SLR) and parametric
modulation (PM) for the most significant time point on a schematic
3D head surface and time courses of FIR-β for 2 reliable channels.
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3.5. Outlook and Discussion

General linear model analysis has shown to gain stable and significant results in
fMRI but also in NIRS. While experiments with long inter-trial distances can
also be analyzed in different ways, GLM is necessary when analyzing overlapping
hemodynamics. This mathematical approach has numerous advantages but suffers
from a strong dependency on models and is easy poised by e.g. baseline shifts.
With finite impulse response there are even possibilities to analyze data using
less a-priori information. It allows to estimate overlapping hemodynamics and the
influence of the behavior onto the hemodynamics can be researched. Nevertheless,
GLM analysis relies on the assumption that we know the behavior (e.g. peak time,
shape) of the hemodynamic response, whereas FIR and other approaches are not
dependent on such a model (e.g. [Bießmann et al., 2012]).
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4. Analysis with Machine Learning
Algorithms

Non-invasive Brain Computer Interfaces (BCI) allow a direct communication be-
tween computers and humans without harming the subject. They open a new
interface beyond mouse and keyboard to control computers and, thereby, other
devices such as robotic arms. Current research focuses on the clinical field. It has
been shown that BCI can enable locked-in patients, i.e. patients suffering from
whole-body paralysis, to communicate with their environment [Birbaumer et al.,
2008]. Further research has been undertaken in neuronal feedback-guided thera-
pies e.g. for stroke patients [Ang et al., 2011]. Possible applications for healthy
patients range from assistance in learning to gaming [van Erp et al., 2012]. Cur-
rent challenges in non-invasive BCI systems are to increase the robustness (e.g.
its sensitivity to motion artifacts), the information transfer rate and to enable
subjects currently unable to perform BCIs due to several reasons (so called il-
literates, [Vidaurre and Blankertz, 2010, Blankertz et al., 2010, Vidaurre et al.,
2011]).
Most current BCI systems base on EEG measurements and, thereby, by a single

source of the analyzed signal. With a combination of two or more devices hybrid
BCIs are formed [Müller-Putz et al., 2011]. This approach gains complementary
information from a neuronal event, e.g. EEG measures changes in the electric
field while NIRS measures the resulting hemodynamics. Combining both types
of signals will increase the robustness of a BCI, because they partly have inde-
pendent information content, and the information transfer rate [Bießmann et al.,
2011]. NIRS has the advantages of mobility and a robustness to motion artifacts.
Therefore, it is well suited for applications in the growing field of Brain-Computer
Interfaces (BCI). A further advantage of NIRS is its capability of artifact-free
combination with other devices like EEG, commonly used for non-invasive BCIs.
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This chapter introduces the basic concept of BCI and gives a brief overview of
the mathematical concepts of the necessary data analysis routines, i.e. machine-
learning tools, in Section 4.1. To test the reliability of using NIRS as an optical
BCI, we performed a somatomotoric-rhythm based BCI experiment with simul-
taneous measurements of NIRS and EEG which is presented in Section 4.2. This
chapter concludes with an outlook on the suitability of NIRS as an optical BCI in
Section 4.3.

4.1. Theory

4.1.1. Brain Computer Interfacing

The idea of Brain Computer-Interfaces (BCI) has been proposed in the early
70’s [Vidal, 1973] as a tool to give a subject feedback from analyzing neuronal data.
Early approaches used electrophysiological data for operant conditioning [Skinner,
1938], where the subject tries to modulate his electrophysiological rhythms in order
to control a device. The subject has, for example, to modulate his α-rhythm to
gain visual feedback or to control a device. In operant conditioning the learning
is done only by the subject. With recent approaches the learning is shifted to the
data analysis by means of machine learning algorithms. For BCI, we define classes
(also called conditions) and a classifier should detect to which class a current trial
belongs. This can for example be the imagination of a movement with the left
versus the right hand [Dornhege et al., 2007]. Given some training data, machine
learning algorithms can calculate a subject-specific classifiers by maximizing the
difference of the classes in the training data set. It therefore calculates in which
frequency band and combination of channels left and right hand imagination can
most probably be separated and creates a classifier used for the actual feedback.
The classifier gives an output to which condition the current trial belongs. This
output can be used to control a feedback like a cross on a screen.
Nowadays, BCIs use neuronal signals to control external devices like robotic

arms or to give the subject’s a feedback on their current neuronal state which is
meaningful in therapy of certain diseases (e.g. [Millán et al., 2010,Onose et al.,
2012]). Most literature uses EEG signals for non-invasive BCIs. The idea of using
NIRS as an optical BCI has been introduced by Coyle in 2004 [Coyle et al., 2004].
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Since then a number of groups followed the direction of using NIRS as a basis
for optical BCI [Coyle et al., 2007,Sitaram et al., 2007,Wriessnegger et al., 2008,
Bauernfeind et al., 2008,Kanoh et al., 2009, Luu and Chau, 2009] by examining
the resulting signals for imagery movements.
The continuous prediction of a subjects’ performance is another application of

machine learning tools. It can be used to analyze the subjects current attentional
state in order to prevent eventual mistakes, i.e. when a subject becomes tired. In
this kind of application the machine learning algorithm has to solve a regression
problem to provide a continuous prediction of the subjects attentional state. Both
aims demand real-time analysis of the neuronal data usually done by classification
of a current trial. In the next sections I will outline the mathematical concept
of Linear Discrimination Analysis and Support Vector Machine used as classifiers
for BCIs and Support Vector Regression which is capable to predict continuous
changes. Further overview can be found in [Lemm et al., 2011].

4.1.2. Linear Discriminant Analysis

A linear classification technique used to separate two or more classes for a BCI data
in real-time is Linear Discriminant Analysis (LDA). Given two conditions (classes)
(a and b) in an experiment for which training data D exists, LDA estimates a
hyperplane w which separates the space into two subspaces, each belonging to one
of the classes. In the 2 dimensional case the hyperplane is a line. Any new data
point will lie on one side of this line. The side describes if the new data point is
a member of either class a or b. Further assumption made by LDA is that the
mean of each class (µa and µb) might be different but their real (but unknown)
covariance matrix Σ is identical, e.g. the distribution of the classes are equal in
every direction of the space. The hyperplane w can be computed as:

w = Σ−1(µa − µb) (4.1)

LDA basically describes that new data can be assigned to a class by using a linear
combination of the training data. Its main problem is to approximate the unknown
covariance matrix and means of the classes from the training data. Given more
complex dependencies in the data where the assumption of linearity does not hold
anymore, one has to use other machine learning techniques.

47



4. Analysis with Machine Learning Algorithms

4.2. Linear Discriminant Analysis of NIRS Data for
Brain-Computer Interfacing

To examine the feasibility of NIRS as a BCI and to study its information content
when compared to EEG, we performed an experiment simultaneously measuring
EEG and NIRS during an somato-motoric rhythm (SMR) based BCI in compar-
ison to executed movements. Results have already been published [Fazli et al.,
2012b]. We exploit the responsiveness of EEG by extracting relevant NIRS fea-
tures to support and complement high-speed EEG-based BCI and thus forming
a hybrid BCI [Pfurtscheller et al., 2010]. We also enhance and robustify over-
all BCI performance by using information from the hemodynamics, which are not
contained within the EEG. Moreover, we evaluate the time delay and spatial infor-
mation content of the hemodynamic response during a SMR-based BCI paradigm.

�

�

�

�

Experimental Procedure in Brain Computer Interface
Experiment

Tasks: 2 blocks of motor execution (hand gripping, 24 tri-
als/block/condition); 2 blocks of EEG-based feedback (motor
imagery, 50 trials/block/condition)

Subjects: 14 healthy, right-handed volunteers (aged 20 to 30)
Instrumentation: NIRS: 8 sources, 16 detectors, 24 measurement

channels; EEG: 37 Ag/AgCl electrodes, 2 bipolar EMG, 2
bipolar EOG

See Appendix A.4 for a detailed description of the experimental
setup

Textbox: Experimental Procedure in Brain Computer Interface Experiment

4.2.1. Methods

Subjects had to perform 2 separate tasks: executed movements of left and right
hand and the imagination of left and right hand movements. One example for
this is to imagine lifting a heavy object with the left hand. The data from the
executed movement task was used to show the physiological reliability of our
approach. Data from motor imagery controlled a real-time feedback, based on the
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EEG data. The subject could move a cross to either the left or right side of a
screen. NIRS data was simultaneously acquired but analyzed offline.

The online data analysis followed a co-adaptive calibration approach as described
in [Vidaurre et al., 2011]. Therefore, the experiment is divided into blocks and
after each block a new classifier is calculated by integrating the newly measured
data. The classifier develops from a subject-independent one to a subject and
session specific classifier in an iterative manner. Hereby, not only the algorithm
learns about the subject specific data but also the subject learns how to increase
the performance.

The user was given instantaneous EEG-based BCI feedback for the two blocks of
motor imagery [Vidaurre et al., 2011]. During the first block of 100 trials we used
a subject-independent classifier, depending on band power estimates of laplacian
filtered and motor-related EEG channels. For the second block subject-dependent
spatial and temporal filters were estimated from the data of the first block and
combined with some subject-independent features. During the online feedback,
features were calculated every 40 ms with a sliding window of 750 ms.

The analysis of NIRS data was performed off-line. A baseline interval was de-
fined from -2 s to 0 s before stimulus onset, and its mean subtracted from each
trial. To examine how well the NIRS data classifies the given tasks we analyzed
the time courses with the help of a moving window (width 1 s, step size = 500 ms)
that we apply from 6 s, prior to stimulus onset and up to 15 s after stimulus
onset. We temporally averaged the time courses of HbO and HbR and used them
as features for the linear discriminant analysis (LDA). Validation was performed
by cross-validation with an 8-fold chronological split. Previous studies have shown
that a chronological split maintains non-stationarities of the data and thus repre-
sents a relatively conservative measure [Lemm et al., 2011]. Paired t-tests where
performed to test whether imagery movements show a significantly earlier peak
accuracy as compared to executed movements and in which chromophore accuracy
was higher. Trials of the two measured blocks per condition were pooled.

Offline EEG decoding was performed as follows: For both paradigms (real and
imagery movements) the two blocks were combined. Subject-dependent band-pass
filter coefficients were estimated by means of an established heuristic [Blankertz
et al., 2008]. Spatial filters, in form of Common Spatial Patterns [Koles and Soong,
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EEG data - training

[HbO] data - training

[HbR] data - training

Figure 4.1.: Flowchart of the cross-validation procedure.

1998] filters, and a LDA classifier were estimated. The previously mentioned pa-
rameters for subject-dependent temporal filters, spatial filters and linear classifier
were estimated solely on the training set of each cross-validation step. The cross-
validation followed the same principle as mentioned for the NIRS signals. For
the time course of classification accuracy the same moving window was applied
as for the NIRS data. Furthermore, to establish a single measure of classifica-
tion accuracy for each subject and paradigm, the time interval was chosen to be
750-3500 ms after stimulus onset for all subjects.
To examine the possible benefits of combining both signal domains, classification

results were calculated for EEG and NIRS separately, but also in combination by
estimating a meta-classifier. After estimation of the three individual classifiers
(one for the EEG features, one for the HbO features and one for the HbR features)
and their performance, we explore a number of possible combinations (such as
EEG, HbO or EEG, HbO, HbR etc.). As a meta-classifier we used an LDA, whose
weights are re-estimated within each cross-validation step in order to avoid any
over-fitting. The general procedure can be seen in Figure 4.1. To investigate
the potential improvement of a combination of NIRS and EEG measurements as
compared to a BCI, solely dependent on EEG, we show a table comparing EEG
classification accuracy and the improvement for EEG in combination with each
NIRS chromophore as well as both chromophores. To investigate, whether mostly
the same trials are classified wrongly by EEG and by NIRS, we sort the classifier
output for all three modalities (EEG, HbO, HbR) of single trials according to
their EEG classifier outputs. Hereby we can show the shared and complementary
information content of NIRS and EEG.
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4.2.2. Results

Our first aim is to show the physiological reliability of NIRS feature classification
both in time and location. We performed single trial classification of left and
right motor execution (and imagination) with a moving time window after stimulus
onset. Classification accuracies for each subject over time can be seen in Figure 4.2
for both chromophores of NIRS (top: HbO, bottom: HbR). The left column shows
imagery and the right column executed movements. A classification accuracy of
100% means that the two conditions are perfectly separable. Note that the figure
does not reflect the direction of the time course. EEG features are classifiable
earlier as compared to HbO and HbR for executed movements (p < 10−4 and
p < 10−4) and for imagined movements (p < 10−5 and p < 10−4). Furthermore
EEG shows a higher accuracy for executed movements versus HbO and HbR
(p < 10−3 and p < 0.01) and also for imagery movements, however here p-values
did not reach significance (p = 0.12 and p < 0.05).
HbR shows a higher average classification accuracy for executed movements

than HbO, but we are not able to report a significant relationship here. For
imagery movements HbO shows a significantly higher classification accuracy than
HbR (p < 0.001).
NIRS features are best classifiable at around 3-10 s after stimulus onset. Both

NIRS chromophores show in average higher peaks for imagery movements, as
compared to executed movements, but we could not find a significant relationship
here. To examine the topology of significant NIRS features, Figures 4.3 and 4.4
show log(p) significances of executed and imagery movements, respectively. The
time-dependent scalp plots show grand-averages over all subjects, based on the
point-biserial correlation coefficient rpb = [(M1 −M0)/sn]

√
(n1n0)/n2, where M1

andM0 are the mean values of data points xi in classes 1 and 0 (i.e., left and right
condition), sn =

√
(1/n)

∑n
i=1(xi − x̄), n1/0 the number of examples in classes 1

and 0 and n the total sample size. The point-biserial correlation coefficient is a
special case of the Pearson product-moment correlation coefficient and measures
the association of a binary random variable and a continuous random variable
[Tate, 1954]. The width of the scale on the right indicates the significance level of
the individual method. As can be seen for both paradigms EEG as well as NIRS
chromophores show highly significant patterns in motor-related cortical areas.
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Figure 4.2.: NIRS classification accuracy (LDA) for a 1 s moving time window
(top: HbO, bottom: HbR, left: motor execution, right: imagery move-
ments). Colored lines show the accuracy for the single subjects while
the black line is the average over subjects. The gray bar indicates the
time interval of cue presentation.

Interestingly we find higher significance levels of HbR in both paradigms, as
compared to the classification results, where HbO yielded higher accuracies for
imagery movements. A second interesting observation is the inverted polarity of
HbO for imagery movements. HbO has the expected shape of a hemodynamic
response function in the motor execution task, although it ascends in both hemi-
spheres but decrease in the imagery condition. HbR shows the expected time
courses for both tasks (imagery/executed) and both conditions (left/right).
While the examination of the NIRS classification itself gave us an idea of the

quality and localization of the NIRS features we acquired, our second aim was
to actually combine NIRS and EEG features to form a hybrid-BCI. We derived
a meta classifier for combining the individual signals. Table 4.1 shows classifica-
tion accuracies for EEG, HbR and HbO and their combinations for both tasks.
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Figure 4.3.: Scalp evolution of grand-average log p values for motor execution in
NIRS over all subjects (top: HbO, bottom: HbR).
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Figure 4.4.: Scalp evolution of grand-average log p values for imagery movements
in NIRS over all subjects (top: HbO, bottom: HbR).
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While the results in Table 4.1 indicate that combinations of EEG and NIRS are
beneficial for average decoding success for both paradigms, only combinations for
imagery movements score (highly) significant improvements. By comparing EEG
and EEG combined with HbO for imagery movements, we are able to report an av-
erage 5% classification accuracy increase over all subjects. This increase is highly
significant and the combination scores higher or equal classification rates for 13
out of 14 subjects. Furthermore we would like to note that by our combination
two subjects (VPeaa and VPeam) with very bad performance in EEG-BCI are
now well classifiable, with rates of 81% and 80.5%, respectively. The two other
subjects with very low EEG performance, namely VPeac and VPeal, do not show
further improvements.
An impression of shared and complementary information content is given in

Figure 4.5. Classifier outputs for single trials sorted according to the outputs
for EEG reveal a complementary structure of the information content for both
instruments as the positive NIRS outputs do not consistently appear when EEG
outputs are high.
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4.3. Outlook and Discussion

4.3. Outlook and Discussion

Recently BCIs that solely rely on NIRS have been realized [Tsubone et al., 2007,
Abdelnour and Huppert, 2009]. However, when looking at plain NIRS classifi-
cation rates it becomes apparent that NIRS cannot be a viable alternative to
EEG-based BCIs on its own. This becomes even clearer when taking the long
time delay of a hemodynamic response into account. However, in a combination
with EEG we find that NIRS is capable of enhancing event related desynchro-
nization (ERD) based BCI performance significantly. Not only does it increase
performance for most subjects, but it also allows meaningful classification rates
even for those who are not classifiable with solely EEG-based BCI.
In terms of information content, we show that both methods complement each

other. If NIRS and EEG had the same or very similar information content, then
substantial increases of performance would not be possible by their combination.
An increase of combined classification accuracy can be interpreted to be a first hint
to their independence. This is further supported by the fact that high classifier
outputs of the EEG do not correspond to high classifier outputs of NIRS.
In our study we validated the NIRS data as well as its combinations with EEG

in an offline fashion, but our methods could be applied to a real time experiment.
In addition, a large number of potential extensions are possible in order to make
the combined system faster to set-up. The current (wet) EEG channels could be
replaced by dry electrodes [Popescu et al., 2007] and a zero-training classifier [Fazli
et al., 2009,Fazli et al., 2011] could be established for NIRS.
While in this contribution we focused on ERD-based BCIs, there is no rea-

son why a NIRS-EEG combination would not also be beneficial for other BCI
paradigms, such as event-related potential (ERP)-based BCIs or steady-state vi-
sual evoked potential (SSVEP) based BCIs, among others. Future studies will
show if this combination will also yield beneficial results there.
The above mentioned studies have shown that machine learning is a technique

appropriate for analyzing NIRS data. Furthermore, NIRS data contains comple-
mentary information to EEG, which is a good reason for multimodal measure-
ments for BCI applications. This already led to further ways of combining data
from NIRS and EEG under BCI conditions [Fazli et al., 2012a].
Furthermore, it was shown that the prediction of reaction times is feasible with
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4. Analysis with Machine Learning Algorithms

NIRS. Although the results did not reveal significance before the actual trial onset,
the approach of analyzing NIRS data with machine learning algorithms looks
promising and needs further investigations.
Optical based feedback can be useful for certain therapies where specific areas

of the brain should be trained though NIRS has in comparison to EEG a higher
spatial resolution. Due to the sluggish hemodynamic response NIRS is not suited
for fast feedbacks, but it might provide information about the attentional state of
subjects [Fazli et al., 2012a]. Prediction of relative slow changing behavior like vig-
ilance is a good way to think about further research. The general way of analyzing
NIRS data has the advantage that it separates given conditions (classes) without
any assumption about the hemodynamics and, thereby, is relatively independent
of prior knowledge.
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5. Analysis of Resting-State Functional
Connectivity

In contrast to the analysis of events arising after stimulation as shown in Chap-
ter 3 and 4 (task-dependent analysis), resting-state functional connectivity (RS-
FC) analysis refers to the correlation of time courses during an experiment with
a resting condition (subjects are in a resting-state). A resting condition is ben-
eficial for subjects which cannot concentrate on attention-demanding tasks. It
opens the research to children of any age and for clinical applications in the di-
agnostics for numerous diseases. The use of correlation analysis on spontaneous
low-frequency fluctuations (<0.1 Hz) in fMRI data has been well established for
determining functional connectivity in the recent decade. Keeping the disadvan-
tages of fMRI over NIRS in mind, a major benefit of using NIRS for RS-FC would
be applications in children (harmless), bed-side monitoring (long-term), but also
for patient not suited for fMRI (e.g. with deep-stimulation electrode implants).
Only recently, similar methods have been applied to NIRS data [White et al.,
2009a,White et al., 2009b, Lu et al., 2010]. In this chapter I report correlation
analysis of low-frequency oscillations [Schroeter et al., 2005, Obrig et al., 2000]
with the aim of detecting functional connectivity networks. This work establishes
the feasibility of NIRS measurements for studying resting-state networks (RSN)
and, furthermore, the potential to extend this field of research to subject groups
ill-suited for fMRI studies, shown here in an example experiment with children at
the age of 4-6.
At first I will shortly discuss the biological background and mathematical ideas

behind resting-state functional connectivity in Section 5.1. During my work I
could show several intrinsic functional networks observed with near-infrared spec-
troscopy [Mehnert et al., 2009] during the subjects’ rest in Section 5.2. Thereafter,
an example of analyzing the development of RSNs using partial coherence analy-
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sis [Mehnert et al., 2012a] is shown in Section 5.3, I will introduce research on the
reliability of resting-state functional connectivity analysis of NIRS data. There-
fore, I show results of simultaneous measurements of NIRS and the golden standard
fMRI (from where this analyzing technique evolved) [Mehnert et al., 2010] in Sec-
tion 5.4. This is followed by a discussion of further possibilities for RS-FC analysis
in the field of near-infrared spectroscopy in the human brain (Section 5.5).

5.1. Theory

Resting-state functional connectivity analysis of brain imaging data has been first
reported by Biswal and colleagues in 1995 [Biswal et al., 1995]. Biswal analyzed
fMRI data in the somato-motoric areas of subjects during a resting period, i.e.
where the subjects did nothing but a visual fixation. By defining a so called seed
voxel in the motor areas Biswal could show that correlations of this seed voxel
in low frequencies (<0.08 Hz) reveal a network, well known from previous task-
dependent studies. It consists of voxels in the somatomotoric area of the same and
the other hemisphere and also includes other parts of the somatomotoric network
like Supplementary Motor Area (SMA). He could also show that this resting-state
network has also been involved in a finger tapping task and thereby that resting-
state functional connectivity and task-dependent GLM analysis can reveal similar
functional networks. This study has open research to a new field not anymore in
need of tasks in order to research functional networks. This kind of data analysis
is also highly clinical relevant though most patients have show their inability to
perform disease-relevant task in a clinical routine [Fox and Greicius, 2010].
A further main milestone was the detection of the so called default-mode network

(DMN) [Raichle et al., 2001,Greicius et al., 2003,Raichle and Snyder, 2007] which
basically deactivates [Shulman et al., 1997] during attentive tasks but activates
during resting condition and is associated with intrinsic thought, see e.g. [Spreng
et al., 2009]. This network has been extensively studied since it is connected to
numerous diseases [Buckner et al., 2008]. Nowadays there are at least 5 well-
known and reliable RSNs [Shehzad et al., 2009] including visual, somatomotoric,
default-mode, attentive (or task-positive as it is anticorrelated to the DMN) and a
network in the temporal lobes [Damoiseaux et al., 2006,De Luca et al., 2006,Smith
et al., 2009] but not all of them are suitable for NIRS due to the limitation of its
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penetration depth. Until now RSN in the motoric [White et al., 2009b,Lu et al.,
2010], visual [White et al., 2009b] and temporal [Lu et al., 2010] areas of the brain
have been observed with NIRS.

5.1.1. Biological Background

The biological reason for the appearance of spontaneous oscillation in the low fre-
quency range (<0.1 Hz) is widely unknown. There have been numerous reports
on resting-state spikes in electrophysiology (see [Buzsaki, 2006] for a review on
electrophysological rhythms of the brain and more recently [Deco et al., 2011])
but the link to slow oscillations in hemodynamics is still an open research ques-
tion. Recent publication have shown a dependency between electrophysiology and
hemodynamics [Hoshi et al., 1998,Moosmann et al., 2003, Lu et al., 2007,Man-
tini et al., 2007, Laufs, 2008] but further research is needed where simultaneous
measurements of NIRS and electrophysiology are a promising combination due to
their lack of disturbing interaction (no artifacts).
The reliability of RS-FC analysis has been broadly discussed as there are steps

in the preprocessing of fMRI data which influence the intensity of correlation
(esp. global mean correction, see [Murphy et al., 2009] but also [Fox et al., 2009,
Schölvinck et al., 2010]) and numerous extra-cerebral sources of artifacts caused
by physiological noise like breathing, heartbeat and blood pressure [Bianciardi
et al., 2009,Shmueli et al., 2007,Birn et al., 2008,Nikulin et al., 2012,Birn, 2012].
These are known to influence the hemodynamics (see also Section 2.3).
Furthermore, the term resting-state has been criticized though a real rest cannot

be obtained in humans, because humans always think about something [Morcom
and Fletcher, 2007].

5.1.2. Mathematical Background

Since the early stages of simple correlation analysis enhanced methods for RSN-FC
analysis were evolved. It could be shown that data driven methods like Principal
Component Analysis (PCA) [Zhong et al., 2009] or more frequently Independent
Component Analysis (ICA) (see e.g. [Beckmann et al., 2005]), and numerous sim-
ilar algorithms enhance the FC-RS analysis. Recent algorithms arise from graph
theory [Menon and Uddin, 2008,Wang et al., 2010,Lohmann et al., 2010]. Here,
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we focus on correlation and partial coherence analysis. Please see [Margulies et al.,
2010] for a current review on post processing tools.

5.1.3. Seed-Voxel Correlation Analysis

The work presented in the following sections is mostly based on seed-voxel cor-
relation analysis which includes two steps: first, one has to define a seed voxel
which needs previous knowledge from earlier studies (e.g. a location where a spe-
cific task reveals activation). In a second step, one correlates the time course of
the seed-voxel (or seed-channel in NIRS) with the remaining resting-state data to
retrieve correlation coefficients and, thereby, a dependence of each channel to the
seed-channel. This step needs a proper preprocessing of the data, i.e. a denoising
of the data to avoid correlations induced by movement of subjects or systemic
physiological fluctuations such as the arterial pulsation.

Correlation describes the linear dependence of one time course Xi to another Xj

and thereby contains predictive information. For seed-voxel analysis in NIRS we
use the Pearson correlation coefficient. Data X is given as X = C1, C2...CN where
C are the time courses of the NIRS channels and N is the number of channels.
We calculate a Matrix R containing the correlation coefficient between channel i
and j as:

Ri,j = cov(Xi,j)√
cov(Xi,i)cov(Xj,j)

(5.1)

where cov is the covariance. For a seed-channel Xi we gain a vector ri,j ∈ Ri,j
containing the correlation coefficient between our seed-channel and the data. In
case of comparing Xi with itself the correlation coefficient ri,i equals 1. In case of
an inverted time course Xj = −Xj the value will be -1, also called anticorrelation.
Correlation coefficents do not exceed -1 and 1, where zero means no correlation,
and are not arbitrary, i.e. for group comparison (averaging) they have to be nor-
malized by a Fisher’s Z-transformation. Though the time courses are normalized
by their variance, correlation analysis loses information about the height of am-
plitude in the single channels.
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5.1.4. Partial Coherence Analysis

Analysis of correlation does not look for information of specific frequencies al-
though it is very likely [Sasai et al., 2011] that independent RSNs have specific
frequencies in which their spontaneous oscillations occur. By analyzing the coher-
ence between the channels of data, one can extract the frequency specific relations
between the brain areas covered by the NIRS setup. In Section 5.3 we introduce
results of partial coherence analysis to compare connectivity differences between
an adult and a children’s group which performed the same experimental protocol.

Ordinary coherence K in a multivariate data set X describes the relation be-
tween the spectral matrix Si,j of two channels Xi and Xj dependent on the fre-
quency f

K{Xi, Xj , f} = Kij(f) = Sij(f)√
Sii(f)Sjj(f)

(5.2)

and is thereby very similar to the correlation described in Equation 5.1. In
classical analysis of coherence only the absolute value of the coherence, ranging
between 0 and 1, is considered. It describes the amount of in-phase components in
the two signals compared. Current research has shown that also the imagery part
of the coherence contains relevant aspects of brain interaction, at least for EEG
data analysis [Nolte et al., 2004] but this idea is not considered in the current
work.

Nevertheless, for multivariate data with more than two channels, indirect in-
fluence between channels becomes possible (if X1 → X2 → X3, then there is an
indirect influence from X1 → X3). To avoid influence of indirect relations partial
coherence Cij has been introduced [Kamiński, 2007]. Here a linear combination
of all other channels but the considered ones is subtracted from the ordinary co-
herence, leaving only direct influences. We can formulate partial coherence as:

Cij(f) = Mij(f)√
Mii(f)Mjj(f)

(5.3)

where M is a decomposition of S from Equation 5.2. More specifically, Mij is
a determinant of S with i-th row and j-th column removed. Cij can thereby be
expressed by elements of the inverse of S : dij = [S−1]ij .
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5. Analysis of Resting-State Functional Connectivity

Cij(f) = (−1)i+j dij(f)√
dii(f)djj(f)

(5.4)

Partial Coherence analysis uses partial coherence to measure the strength of the
connection between individual measurement channels.

This section was only a short introduction on measures of connectivity from
which only correlation and partial coherence is used in the following sections. It
outlines the intense need of work in this field of research.

5.2. Resting-State Networks achieved with Whole-Head
Near-Infrared Spectroscopy

Seed-voxel based functional connectivity analysis has recently been applied to
NIRS data [Lu et al., 2010, White et al., 2009b] studying the somatomotoric,
visual and temporal resting-state networks. One of the limitations of NIRS is the
low spatial resolution. To overcome this limitation, dense probe arrays had been
used in [White et al., 2009b]. However, full head coverage is desirable in order
to avoid that analysis is constrained to specific networks. Therefore I performed
a study with nearly whole-head coverage with the aim to show three separate
networks simultaneously without changing the setup [Mehnert et al., 2009].

�

�

�

�

Experimental Procedure in Whole-Head Functional Con-
nectivity

Tasks: 2 blocks of 15 min open-eyes rest
Subjects: 4 healthy, right-handed volunteers
Instrumentation: NIRS: 20 sources, 32 detectors, 80 measurement

channels
See Appendix A.5 for a detailed description of the experimental

setup

Textbox: Experimental Procedure in Whole-Head Functional Connectivity
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5.2. Resting-State Networks achieved withWhole-Head Near-Infrared Spectroscopy

5.2.1. Methods

Cortical oxygenation changes of 4 healthy adults (1 female) were measured at rest
with eyes-open (2 blocks of 15 min duration) using a near-infrared spectroscopy
(NIRS) imaging system (DYNOT 232 by NIRx Medizintechnik GmbH, Berlin,
Germany). The sensor array consisted of 52 probes (32 detector fibers, 20 emitter
fibers) with an inter-optode distance of approx. 2.5 cm, providing a total of 80
channels. The array covered nearly the whole head, only excluding the occipital
areas. The positions of optodes and channels has already been shown earlier in this
work in Figure 2.7. For each subject we selected a subset of 5 minutes of data for
further analysis, which was not contaminated by movement artifacts. Data were
low-pass filtered at 0.01 Hz, and the global mean of all channels was regressed
out to reduce the influence of extra-cerebral signal (e.g., oxygenation changes
in the skin). Subsequently, correlation analysis was performed for the oxygenated
and deoxygenated hemoglobin signal for each channel separately. Three individual
regions-of-interest of the temporal, somatomotoric and parietal areas of the cortex
were used as the basis for functional connectivity correlation analysis according
to the 10-20 EEG system [Koessler et al., 2009].

5.2.2. Results

Our findings indicate the detection of three well-known functional networks: (1)
bilateral motor areas, (2) bilateral temporal lobes and (3) a connection between
medial-frontal and bilateral parietal cortical areas. Furthermore, we find a high
intra-subject consistency for both oxygenated and deoxygenated hemoglobin, as
well as high inter-subject reliability. Figure 5.1 shows a z-transformed average of
the correlation coefficents for three seed-channels.

5.2.3. Discussion

Since RS-FC analysis has been shown for NIRS, further studies analyzed several
RSN [Zhang et al., 2011] and showed reliable results [Zhang et al., 2011] also
for different measurement systems [Niu et al., 2011] but also revealed strong de-
pendencies on proper preprocessing [Mesquita et al., 2010], because of the high
fraction of extra-cerebral noise in the data. Here we extend recent results to whole-
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5.3. Development of Resting-State Functional Connectivity

head measurement and demonstrate the appearance of three distinguished RSN,
including a RSN spreading from parietal to frontal areas. NIRS-RS-FC analysis
may help to further investigate the developmental effects in children and infants
(see Section 5.3), to facilitate bed-side measurements, or to study patients which
cannot be examined by fMRI (e.g. deep-brain stimulation).

5.3. Development of Resting-State Functional
Connectivity

While RS-FC of neonates has been shown by [White et al., 2012], the age from 4-6
is not well studied with brain imaging methods. In addition to the GLM analysis
shown in Section 3.3 we performed a functional connectivity analysis using partial
coherence coefficients (P) to study functional patterns age-related with inhibition.
This analytical approach uses partial coherence of several frequency bands [Sasai
et al., 2011] to investigate relations between brain areas.�

�

�

�

Experimental Procedure in Development of Inhibition
Experiment

Tasks: 54 trials with 75% go trials and 25% no-go trials (regressed
out in this analysis)

Subjects: 51 healthy, right-handed volunteers (21 adults, ranging
from 21 to 36; 30 children, ranging from 3-6 years)

Instrumentation: NIRS: 20 sources, 32 detectors, 80 measurement
channels

See Appendix A.2 for a detailed description of the experimental
setup

Textbox: Experimental Procedure in Development of Inhibition Experiment

5.3.1. Methods

Here we use functional connectivity analysis using partial coherence coefficients
(pCC), which performs the correlation analysis in the frequency domain as de-
scribed in Section 5.1.4. In contrast to conventional correlation analysis, influences
of neighboring effects and global physiological artifacts which otherwise are likely
to overwhelm any true physiological connectivity effects are thereby attenuated.
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5. Analysis of Resting-State Functional Connectivity

Figure 5.2.: Sketch of developmental effects in network coherence. Top graph:
Greater connectivity in adults compared to children are marked in
orange. Bottom graph: Greater coherence in children compared to
adults, marked in red. Arrows (magenta) represent increasing coher-
ence with age in the children’s group.

We suppressed task-related effects from the connectivity analysis by regressing out
the task-related HRF model function described above. To evaluate the degree of
functional connectivity within the fronto-temporo-parietal network, we generated
a coherence matrix with n2 = 8022 = 6400 entries (where n is the number of chan-
nels), each of which contains the bi-regional coherence coefficients for a specific
pair of channels, which were then compared between children and adults. For each
channel we computed the first eigenvector by singular value decomposition (SVD),
yielding the dominant component of the NIRS signal. A Fisher’s Z-transformation
was applied to produce a normal distribution. The bandwidth of the signals spec-
tra ranged from 0.01 to 0.122 Hz. We combined the frequencies into the bins <
0.03 Hz; < 0.08 Hz, and < 0.12 Hz. See Section A.2 in the appendix for further
information of the data processing.
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5.3.2. Results

The partial coherence analysis revealed stronger coherence in children compared to
adults within the right frontal and the right parietal lobe (see Figure 5.2, top). In
contrast, adults showed stronger coherence between bilateral frontal and parietal
areas compared to children (see Figure 5.2, bottom).
Likewise, age correlated significantly with pCCs in two channels within the left

frontal lobe and two within right frontal areas (Figure 5.2, bottom). However,
pCCs in left frontal channels were negatively correlated with age, coherence in the
right frontal lobe increased with age (see Figure 5.2, bottom).

5.3.3. Discussion

Using functional connectivity patterns we found stronger partial coherence in short
range functional connectivity in the right frontal and right parietal cortex in chil-
dren compared to adults. We also discovered significantly weaker long range func-
tional connectivity between right frontal and right parietal regions as well as left
frontal and right parietal structures. [Fair et al., 2007] and [Supekar et al., 2009]
also found weaker fronto-parietal functional connectivity in long range connections
in children agree. With regard to their findings of frontal maturation (abundance
of short range functional connectivity in childhood, differentiation during adoles-
cence), our results might point towards a developmental pattern in the parietal
lobe, which is similar to the frontal pattern: We found inter-parietal (short-range)
functional connectivity that was significantly stronger in children compared to
adults. Thus, this pattern might be valid not only for the frontal lobe but also for
other cortical lobes.
In addition to group differences in partial coherence, we found developmental

changes in connectivity between the ages 4 and 6 years. It seemed as if connec-
tivity within the right frontal lobe increased during that time of age, whereas
connectivity in the left frontal lobe decreased. These regions of increasing and de-
creasing partial coherence seem to be similarly located within the frontal lobes to
regions of immature brain activation: diffuse, bilateral frontal activation in young
children in contrast to a right lateralized fronto-parietal network in the matured
brain. This is in accordance with [Zuo et al., 2010] who found weaker homotopic
connection with increase of age in higher-order regions of the brain. Furthermore,
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changes in connectivity might be rather intrinsically triggered than performance
dependent maturation of functional connectivity, as multiple regression showed a
significant influence on partial coherence only for age, not for accuracy or reaction
time.
We showed that partial coherence analysis of NIRS data can gain new insights

into developmental aspects of neuroscience, coinciding with recent findings for
fMRI. This supports the reliability of pCC analysis for NIRS and opens numerous
fields of research, e.g. for diseases and also for further developmental aspects,
without the ability to perform attentive tasks.

5.4. Comparison of Resting-State Functional Connectivity
in NIRS and fMRI

While functional connectivity analysis is reliable in fMRI signals, the link of NIRS
to fMRI signal during rest remains open. Research is needed to show that the
correlations shown in [White et al., 2009a] and [Lu et al., 2010] are truly based on
the same signal sources like in RS-FC analysis of fMRI. To determine the source of
NIRS signals and their correlation to fMRI during rest and check the reliability of
RS-FC analysis in NIRS, we performed a simultaneous measurement with NIRS
and the golden standard fMRI [Mehnert et al., 2010]. With this measurement it
was possible to show the reliability for correlation analysis of slow oscillations in
NIRS. Only a small set of optical fibers in a typical grid (2-3 cm inter-optode
distance) was used to cover both motor cortices. Such a grid can be extended
to whole head coverage (as discussed in Section 5.2), without interfering with the
subject’s comfort.

5.4.1. Methods

As seed-channel analysis requires prior knowledge of the region of interest, a motor
task (see Section A.6) to define the seed-channel was performed by the subjects
after the 10 min resting period analyzed here. Maximally activated channels in
the motor task were used as seed channels for the correlation analysis. NIRS data
was global mean corrected by regressing an z-scored, average time course of all
channels from each channel (referred to asGlobal Mean Correction). Seed-channels
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�

�

�

�

Experimental Procedure in Comparison of NIRS and
fMRI

Tasks: finger-tapping (25 trials/hand, 10 s tapping, 10 s rest) +
open-eyes rest (600 s)

Subjects: 4 healthy, right-handed volunteers
Instrumentation: NIRS: 8 sources, 16 detectors, 26 measure-

ment channels; fMRI: 3 T MAGNETON TIM Trio scanner
gradient-echo EPI (TE=30 ms, BW=116 kHz, pixel dimen-
sions 3 mm2, slice thickness 4 mm / inter-slice gap 1 mm).

See Appendix A.6 for a detailed description of the experimental
setup

Textbox: Experimental Procedure in Comparison of NIRS and fMRI

based correlation analysis of task-independent NIRS data provided functional-
connectivity maps of the motor network (Figure 5.3, left hand side) and was used
as a regressor in statistical analysis of the fMRI data (Figure 5.3, right hand
side). Correlations between both methods in the absence of a task and functional
structures underlying the NIRS results are drawn.

5.4.2. Results

Functional connectivity analysis shows a compliant pattern in the NIRS data com-
paring it to the results of [White et al., 2009b] and [Mehnert et al., 2009]. Taking
the HbR time course of a right motor seed channel leads to high correlations in
bilateral motor cortices (inter-hemispheric correlation) and supplementary mo-
tor area (Figure 5.3, left hand side). Furthermore, the same pattern shows up
in resting-state fMRI, using the time course of a right motor NIRS channel as
a regressor in fMRI data (Figure 5.3 A, right hand side). But the correlation
coefficient is smaller than in the finger tapping task shown in Figure A.5 in the
appendix.

5.4.3. Discussion

The current study establishes the feasibility of resting-state data analysis for to-
pographical optode arrangements and opens a perspective of whole-head mea-
surements with NIRS. This data set allows the investigation of low frequencies
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5. Analysis of Resting-State Functional Connectivity

Figure 5.3.: A) Resting-state functional connectivity in simultaneous NIRS and
fMRI for a sample subject. Left: Correlation of resting state de-
oxygenated hemoglobin concentration changes. The peak channel for
right finger tapping was used as seed (deep red). Right: Correlation
of resting state deoxygenated hemoglobin concentration changes in
the right peak channel with fMRI during rest (p<0.05, corrected).
B) Time courses for the NIRS seed channel (HbR) and the maximal
correlated voxel in fMRI. The correlation between the time courses is
r = −0.52 (p < 10−21).

as measured by NIRS and fMRI and attempts to correct the signals for global
fluctuations, superficial artifacts and physiological noise. It must be stated that
the correlation between fMRI and NIRS in low frequencies of resting state data
is lower than for executed movements but it stays significant. Due to its simple
applicability, NIRS may develop into a tool for resting-state connectivity studies
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in subjects or patients not suited for fMRI experiments. Additionally, one can test
advanced analyzing and artifact correction methods like global mean regression or
ICA as further questions open to research.

5.5. Outlook and Discussion

We proved reliable resting-state functional connectivity analysis in NIRS data
and we gained similar results as in fMRI. Furthermore, the application of RS-
FC in a group not suited for fMRI (i.e. children at the age of 3-6) has been
shown.With the comparison of simultaneously measured NIRS and fMRI there is
a possibility to compare analytical approaches in pre- and post-processing with
a golden standard. NIRS opens the possibility of artifact-free combinations with
electrophysiology and peripheral devices to measure extra-cerebral physiology like
heartbeat, breathing and blood pressure to gain deeper insights into remaining
extra-cerebral noise, especially relevant for correlation dependent analyzing tools.
Even more importantly, insights into the biological origin of slow spontaneous
fluctuations of hemodynamic brain imaging data might become feasible.
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In recent years NIRS has gained increased interest of the neuroscience community,
but it suffers from analytical and technical limitations, which can only partially be
overcome. Especially movement artifacts and extra-cerebral artifacts, caused by
the cardio-vascular system, pollute the NIRS data. This work used sophisticated
ways to analyze the data. The analysis improved the reliability and overcame
relevant limitations of NIRS artifacts. Furthermore, we aimed to show fields where
NIRS enhances scientific insights and applications.

6.1. Analyzing Approaches

The straightforward analysis of NIRS data is to calculate the difference between
stimulus onset and the peak of the hemodynamic response. But this analysis is
not feasible when a task is impossible (e.g. when patient suffering from acute
stroke) or the inter-trial intervals are so short that the hemodynamic responses
overlap.
The general linear model analysis allows to formulate specific hypotheses about

the expected hemodynamic response and, thereby, stabilizes and enhances the
statistics. We showed that the GLM analysis allowed to analyze data with over-
lapping hemodynamics, while it retains similar results as the difference method for
non-overlapping hemodynamics. FIR further overcomes GLM’s need of a hemo-
dynamic model and allows to analyze the changes in the hemodynamic caused by
the subjects attentional state. Artifact reduction is mainly done by proper exper-
imental design, which means to avoid frequency ranges of known extra-cerebral
artifacts in the stimulus presentation. Further attenuation of artifacts is done
by filtering and interpolation of movement artifact loaded time intervals. General
Linear Model analysis is furthermore capable to analyze also overlapping hemody-
namics and thus allows faster experiments. This tool seems to become a standard
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way of analyzing NIRS data, but it also suffers from its strong dependence on the
model of hemodynamic response which has been shown to be highly specific to
the subject and brain area of interest. Furthermore, shifts in the baseline, caused
e.g. by movement artifacts, are critical for this kind of analysis.
When analyzing NIRS data with machine learning tools there is no need to

formulate strong hypotheses or models. The algorithms aim to maximize the
difference between conditions (classes) within the data. This is for example done
by searching for linear combinations of measurement channels to optimally reduce
the artifact related noise. A major advantage of analysis by machine learning
routines is their capability of real-time data analysis which makes them well-suited
for applications like Brain Computer Interfaces.
Resting-state functional connectivity allows a task-independent way of analysis

which is especially for children or patient a fruitful solution. This kind of analysis
works in frequency ranges below 0.1 Hz where no extra-cerebral artifact is known.
Movement artifact rejection can be done by simply cutting the effected temporal
window from the data used for analysis. The analysis of slow frequencies and
their correlations between several parts of the brain studies the connectivity of
functional networks which might be disturbed in patients. The most critical point,
which can be seen here, is the extra-cerebral content of the data. This can produce
significant correlations between channels not related on the brains’ hemodynamics.
We can conclude:

• General linear model approaches extend NIRS data analysis to overlapping
hemodynamics and shorter inter-trial-intervals.

• Machine learning tools open the applications of NIRS for neuronal feedbacks
during therapies and in learning environments.

• Functional connectivity analysis achieves neuroscientific insights without the
necessity of a task.

An analytical improvement would be to step from correlative analysis to causal
ones. There are already numerous tools for EEG and fMRI yielding to analyze
the direction of influence from one brain region to the other (e.g. [Stephan et al.,
2008,Nolte et al., 2008]) which are also usable for NIRS.
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6.2. Application of NIRS

We used NIRS data analysis in studies covering a variety of research fields to
exemplary show the further applications of this technique. A major role of NIRS
will be in monitoring subjects and patients. One step for a clinical usage of NIRS
is that resting-state networks can reliably identified using NIRS. The monitoring
of patients becomes thereby independent of a task and ease the application of
NIRS in the clinical routine.
To monitor subjects and patients, e.g. during therapies or learning situations,

it is furthermore of interest that the shape of the hemodynamic response is signifi-
cantly different between attentional states. More specific: the peak time increases
with lower attention.
Neuronal guided feedbacks might play a crucial role in therapies in the fu-

ture. Here we conclude that NIRS is suited for brain computer interfaces and
can enhance the accuracy of EEG-based feedbacks although the slowness of the
hemodynamic response might detain a broader usage.
In the field of clinical application, we showed that the neuronal mechanisms

underlying mirror illusion are mediated by the Precuneus and not in the motoric
areas which are affected in the case of traumatic limbs after a stroke. A monitoring
of mirror therapies with NIRS will therefore enhance the therapies outcome.
In developmental research our results suggest that inhibition in children is medi-

ated by small scale networks while adults use neuronal pathways between parietal
and frontal areas. Inhibition plays a major role for children affected by atten-
tion deficit hyperactivity disorder. Further research of developmental differences
between healthy and affected people is needed to extend our knowledge of this
disease.
To summarize:

• NIRS is on the way to become a monitoring tools for attentional states and
for therapies.

• NIRS is feasible to provide neuronal feedbacks.

• Research of the development of the brain can benefit using NIRS.
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6.3. Technical Improvement

Technical improvement is mostly done by increasing the number of measurement
channels and miniaturization of the devices. Whole-head measurements with mul-
tiple inter-optode distances can significantly improve the signal quality and spatial
resolution [Habermehl et al., 2012,Koch et al., 2010,Zeff et al., 2007], making NIRS
a clinical relevant instrument in the near future, while wearable devices will ex-
tend the application of NIRS to natural environments and bed-side monitoring of
patients [Krüger et al., 2012].
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A.1. Experiment 1: Mirror Illusion

In our study, 20 right-handed healthy subjects (5 female; 21-40 years old; mean
age 27.7) without any history of neurological or psychiatric disorders were in-
vestigated. Handedness was assessed by the German version of the Edinburgh
Handedness Inventory [Oldfield, 1971]. The participants were employees or stu-
dents of the Charité and participated voluntarily in the experiment with financial
compensation. The study was approved by the Ethics Committee of the Charité
- Universitätsmedizin Berlin and all subjects gave informed consent prior to the
experiment.
In order to allow a systematic and randomized variation of the seen and moved

hand without changing other co-factors we implemented the mirror paradigm in
accordance with the previous study of Dohle and colleagues [Dohle et al., 2004]
by means of a video chain (Figure A.1 A). Subjects either had to hold their hand
statically or had to perform a finger-thumb opposition movement sequence under
visual control. Subjects could not see their hand directly, it was covered by a black
paperboard in front of them. They observed their hand via a video link provided
by a webcam (Logitech Webcam Pro 9000). By means of a software package
(Logitech Webcam Software v1.1, frame rate: 50 Hz) the image was displayed in
real-time on a screen (Acer, 1280x1024 pixel, frame rate: 60 Hz) centered in front
of the subjects.
For each hand, a total number of 80 trials under these four conditions were

arranged in randomized sequences. Each trial was initiated by an acoustic cue
(start or stop) and lasted 10 s followed by a rest period with an average dura-
tion of 15 s (jittered from 10-20 s) in which only a black screen was presented.
This rest period served as a baseline for the analysis. Each condition was pre-
sented 20 times, yielding in a total experimental time of 38 min per hand. Each
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Figure A.1.: A) Photography of the experimental setup: 1) Subject wearing an
EEG cap with NIRS detectors and sources; 2) subjects hand inside
the black paperboard, covered by a black cloth / drapery being filmed
by 3) a web-cam inside the black; 4) visual feedback the subject gets
of his hand, in this case MIR and 5) the screen on which the visual
feedback is displayed. B) Display of optode positions, measurement
channels (numbered in purple), including main EEG positions from
the standard 10-20 system (white labels). Note that a number of
NIRS sources are at the same location as main standard EEG posi-
tion and therefore overlap. C) Channels chosen as regions of interest
(ROI) for further statistical analysis in the area of somato-motoric
areas (left) and the Precuneus (right).

hand was examined separately and the whole experiment lasted approximately
an hour and a half. During the whole experiment the subjects were instructed
to fixate the screen and to visually focus the hand during the active tasks. The
subjects’ adherence to the task was ensured by the investigator who was present
during the entire experiment. By comparing corresponding channels in both hemi-
spheres, a 2x2x2x2 study design with the four repeated measure factors movement
(movement / static), mirror (MIR / NOR), hand (left / right) and hemisphere
(ipsilateral / contralateral) was applied.
During the experiment, the blood oxygenation at the surface of the subjects’

brain was measured with a NIRS system which offers up to 16 detectors and 16
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emitters (NIRScout 16-16, NIRx Medizintechnik GmbH, Berlin, Germany) at two
wavelengths (850 and 760 nm). Based on previous publications on the role of the
Precuneus during movement mirroring [Dohle et al., 2004,Dohle et al., 2011], we
chose fiber optode positions to cover the bilateral occipito-parietal and somato-
motoric areas of the subject’s head, providing a total of 38 useful channels where
source and detector had a distance of 2 to 3 cm. This arrangement is shown in
Figure A.1 B. To guarantee optimum safety in optode localization and convenience
for the subjects, the emitters and detectors were integrated into a commercially
available EEG cap (www.easycap.de) with 128 possible positions. NIRS data were
continuously sampled at 3.13 Hz.

NIRS data was corrected for movement artifacts by a semi-automated approach
[Koch et al., 2009]. Subsequently, attenuation changes of both wavelengths was
transformed to concentration changes of oxy- and deoxygenated hemoglobin (HbO
and HbR) using a modified Beer-Lambert law [Cope and Delpy, 1988]. Data
were then band-pass filtered between 0.2 and 0.016 Hz to attenuate for heartbeat
and breathing-related changes. For the effect estimation of the mirror illusion,
we further performed a general linear model (GLM) analysis in the individual
subjects. For visual inspection and demonstration we used the approach described
in Section 2.6. The two imaging studies by Dohle and colleagues [Dohle et al.,
2004, Dohle et al., 2011], which also analyzed the mirror effect, indicated that
comparable foci in the region of the Precuneus were activated (Figure A.1 B).
Regions of interest (ROI) were defined corresponding to the activation foci of
the above-mentioned studies in the Precuneus as the three channels displayed in
Figure A.1 B (further referred to as Precuneus-ROI ) for both hemispheres (i.e.
for the left hemisphere (LH) channel numbers: 23, 24 and 31; for right hemisphere
(RH): 25, 26 and 32, see also Figure A.1 B). ROIs in somato-motoric area (MA)
were defined as the four midsagittal channels on either hemisphere (i.e. for the
LH channel numbers: 1, 2, 7 and 8; for RH: 3, 4, 9 and 10, see also Figure A.1 B)
as these positions are known to cover somato-motoric areas (see [Koessler et al.,
2009]) (further referred to as MA-ROIs).
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A.2. Experiment 2: Development of Inhibition

Fifty-one healthy subjects completed the study (21 adults, 30 children). Due to
either incomplete data sets or motion artifacts (i.e. if more than 30% of the
subjects’ data contained artifacts, we had to exclude one adult and thirteen chil-
dren from statistical analysis, resulting in a group of twenty adults (mean age =
26.3±4.3 years, age range 21 - 36 years, 9 males) and 17 children (mean age =
4.7±0.7 years, age range 4-6 years, 11 males). The rejection of the data from about
half the group has been reported by other child studies and does not seem to be
unusual. Provided a child is willing to perform the task, they are far more prone
to causing motion artifacts than are adults. This can not easily be compensated
by simply increasing the experiment length because the child’s attention level will
decrease. It is not possible to counter this effect by reducing the inter-stimulus
interval as this would cause subsequent HRF responses to overlap, which would
render the analysis impossible.
The NIRS system used in this study (DYNOT 232 by NIRx Medizintechnik

GmbH, Berlin, Germany) provides a maximum of 32 sequentially switched illumi-
nation positions (emitters) and 32 parallel acquired detector channels (detectors).
Fiber optic probes serving as sources and receivers were equidistantly arranged
on the head areas of interest (inter-fiber distance of 28±3 mm). Each pair of
neighboring emitters and detectors form a measurement channel which probes a
subsurface tissue volume centered in between them. The 52 probes (32 detectors
+ 20 emitters) used result in 80 channels which covered nearly the whole head
of the subjects, including the frontal, parietal, and temporal cortices (see Fig-
ure 2.7 in the previous chapter). NIRS data was continuously sampled at a rate of
2.44 Hz. To guarantee optimal safety and convenience for the subjects, the fiber-
optic bundles (emitter: 1 mm and detector: 3 mm in diameter) were integrated
into a commercially available EEG-cap (www.easycap.de). Optode-positions were
localized with reference to the EEG 10-20 system with the approach described in
Section 2.6.
In a first step we identified channels showing excessive noise level or other inter-

ferences caused by imperfect optical coupling of the probes to the head, possible
light blockage (e.g. hair) or extra-cranial cross-talk. As a criterion, we excluded
all channels whose mean signal was either below or above the known interval of
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acceptable detector operation (i.e., between 0.3 V and 4.0 V photovoltaic output).
A value below the lower bound signifies low signal-to-noise ratio, while a value
exceeding the upper bound risks detector saturation and hence signal distortion.

For the retained channels we converted attenuation changes measured at 760
nm and 830 nm into HbO and HbR concentration changes employing the modified
Beer-Lambert law [Cope and Delpy, 1988]. Movement artifacts, a major source of
noise in children, were smoothed by a semi-automated procedure which replaces
contaminated data segments by linear interpolation [Telkemeyer et al., 2009,Rossi
et al., 2011]. This procedure has proven to be capable of attenuating motion
artifacts sufficiently so that data sets may be salvaged rather than completely
rejected from the analysis. We interpolated an average amount of 17% of the data
for the children group and 11% for the adult group. There were no significant
differences between groups (comparing groups by a two-sided t-test).

Following data pre-processing a low-pass filter (0.4 Hz, 3rd order Butterworth)
was applied to attenuate high frequency noise and the cardiac signal. In addition;
a high pass filter of 1/120 Hz was used to reject signal drifts. We removed trials
of incorrect responses (i.e., non-responses to go-stimuli and responses to no-go-
stimuli) from the data set and excluded these from further statistical analyses. We
used the general linear model (e.g. [Nelder and Wedderburn, 1972]) to estimate the
statistical fit of a predicted hemodynamic model curve to the measured signals.

We applied GLM analysis separately to both hemoglobin chromophores (HbO
and HbR), for each condition, and for each subject. The so obtained statistical
fitting parameter β is a measure of the stimulus-related relative change of tissue
hemoglobin concentration and the basis of all our further statistical analysis. We
generated the hemodynamic model functions, or regressors, by convolving the
temporal stimulus profile with a canonical hemodynamic response function (HRF).
We used a HRF shape with a peak time of 5 s. Generating the regressors this
way accounts for the idiosyncrasy of the sluggish hemodynamic response, which
does not reach baseline for some 20 s after stimulus cessation. Results of the GLM
analysis are shown in Section 3.3 of this work.

For coherence analysis the full time courses of the oxygenation changes were used
after removing the pauses between the two runs. For each subject, we removed
these entries in the coherence matrix that did not pass the signal quality criteria
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as describe in 2.4 above. We rejected global effects such as caused by cardiac or
respiratory pulsation by regressing out the normalized global average of the HbR
or HbO signal. For each channel we computed the first eigenvector by singular
value decomposition (SCD), yielding the dominant component of the NIRS signal.
A Fisher’s Z-transformation was applied to produce a normal distribution. The
bandwidth of the signals spectra ranged from 0.01 to 0.122 Hz. We combined the
frequencies into the bins < 0.03 Hz; < 0.08 Hz, and < 0.12 Hz. Results of the
pCC analysis are shown in Section 5.3 of this work.

A.3. Experiment 3: Decoding Vigilance

9 healthy, young subjects (4 female; 22-25 years old) without any history of neu-
rological or psychiatric disorders participated voluntarily in our experiment and
gained financial compensation. One subject had to be excluded from all analysis
because of technical problems during the measurement. The study was approved
by the Ethics Committee of the Universitätsklinikum Leipzig and all subjects gave
informed consent prior to the experiment.
The experimental paradigm used to measure changes in vigilance was very sim-

ilar to the one used in [Weissman et al., 2006]. Subjects were presented with a
global-local Stroop paradigm. The visual stimuli consisted of multiple small let-
ters (either S or H ) that were arranged so that the shape of either a large S or
a large H was formed (see Figure A.2 A). Half of the trials were congruent, i.e.
the global and local letters were mapped to the same response, the other half was
incongruent. Before the start of each block subjects were instructed to attend
either to the local or the global letters. Stimuli were presented for 200 ms. Af-
ter the visual presentation subjects had to indicate the identity of the attended
letter. Inter-trial intervals (ITI) between visual presentations were exponentially
distributed with a mean ITI of 7.9 s (ranging from 7 to 12 s). Each subject per-
formed 6 blocks of the experiment during which 60 trials were presented. In the
first 3 blocks subjects were instructed to attend to either the global or the local
letters. In the subsequent 3 blocks subjects were instructed to attend to the local
or global letters, i.e. shift the attention from global to local or vice versa. The
subject’s single trial performance (i.e., mean corrected reaction time) was used as
an indicator for current vigilance for the further analysis.

84



A.3. Experiment 3: Decoding Vigilance

Figure A.2.: A) Sketch of the task including the 4 presented stimuli (middle) and
the time line of the task with the length of stimulus presentation
and inter-stimulus interval (ITI). B) Display of optode positions (16
sources and 16 detectors) and 44 measurement channels on the surface
of a 3D brain (view from the front/back is shown left/right).

During the experiment, the blood oxygenation at the surface of the subjects’
brain was measured with a NIRS system which offers up to 16 detectors and 16
emitters (NIRScout 16-16, NIRx Medizintechnik GmbH, Berlin, Germany) at two
wavelengths (850 and 760 nm). Based on previous findings, we chose fiber optode
positions to cover the frontal and parietal areas of the subject’s head, providing a
total of 44 useful channels where source and detector were at a distance of between
2 and 3 cm from each other. This arrangement is shown in Figure A.2 B. To
guarantee optimal safety in optode localization and convenience for the subjects,
the emitters and detectors were integrated into a commercially available EEG
cap (www.easycap.de) with 128 possible positions. NIRS data were continuously
sampled with 6.25 Hz.
Mapping of statistical results was done using the approach described in Sec-

tion 2.6 (used for Figure A.2 B and 3.9). Raw data was filtered at 0.25 Hz using
a third order digital Butterworth low pass filter. Afterwards attenuation changes
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of both wavelengths as measured by the device were transformed to concentration
changes of oxy- and deoxygenated hemoglobin (HbO and HbR) using a modified
Beer-Lambert law [Delpy et al., 1988]. Data was analyzed using FIR and SVR.
Results are shown in Section 3.4.

A.4. Experiment 4: Brain Computer Interface

14 healthy, right-handed volunteers (aged 20 to 30) participated in the study,
which lasted approximately 4 hours. The experiment was approved by the local
ethics committee (Charité University Medicine, Berlin, Germany), and performed
in accordance with the policy of the Declaration of Helsinki. The subjects were
seated in a comfortable chair with armrests and were instructed to relax their arms.
The experiment consists of 2 blocks of motor execution by means of hand gripping
(24 trials per block per condition) and 2 blocks of real-time EEG-based, visual
feedback controlled motor imagery (50 trials per block per condition). For all
blocks the first 2 s of each trial began with a black fixation cross, that appeared at
the center of the screen. A visual cue, in form of an arrow, then appeared pointing
to the left or right. For the case of imagery movements, the fixation cross started
moving for 4 s, according to the output of an LDA classifier based on the EEG data.
The online data analysis followed a co-adaptive calibration approach as described
in [Vidaurre et al., 2011]. Therefore, the experiment is divided into blocks and
after each block a new classifier is calculated by integrating the newly achieved
data. The classifier develops from a subject-independent one to a subject and
session specific classifier in an iterative manner. Hereby, not only the algorithm
learns about the subject specific data but also the subject learns how to increase
the performance. For the case of executed movements the fixation cross remained
fixed and the subjects were instructed to open and close their hands with an
approximate frequency of 1 Hz. After 4s the cross disappeared and the screen
remained blank for 10.5± 1.5s.
During both tasks EEG and NIRS were simultaneously measured. The NIRS-

System (NIRScout 8-16, NIRx Medizintechnik GmbH, Germany) was equipped
with 24 optical fibers (8 sources with wavelengths of 850 nm and 760 nm, 16
detectors convolving to 24 measurement channels). Frontal, motor and parietal
areas of the head were covered as shown in Figure A.3. The sampling frequency
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was fNIRS = 6.25 Hz. EEG, electrooculogram (EOG) and electromyogram (EMG)
were recorded with a multichannel EEG amplifier (BrainAmp by Brain Products,
Munich, Germany) using 37 Ag/AgCl electrodes, 2 bipolar EMG, 2 bipolar EOG
(vertical as well as horizontal EOG), sampled at fEEG = 5 kHz and down sampled
to 100 Hz by means of a Chebyshev type II digital filter. NIRS probes and EEG
electrodes were integrated in a standard EEG cap (extended 10-20 system with
a possibility of 256 electrodes) with inter-optode distances between 2-3 cm. The
optical probes are constructed to fit into the ring of standard electrodes. This
enabled us to situate the NIRS channel positions according to the standard 10-20
system, as shown in Figure A.3.

NIRS source

NIRS detector

NIRS channel

EEG electrode

Figure A.3.: Locations of EEG electrodes; sources, detectors and actual measure-
ment channels of NIRS. Note that electrodes and optodes might share
a location.

A.5. Experiment 5: Whole-Head Functional Connectivity

Cortical oxygenation changes of 4 healthy adults (1 female) were measured at rest
with eyes-open (2 blocks of 15 min duration) using a near-infrared spectroscopy
(NIRS) imaging system (DYNOT 232 by NIRx Medizintechnik GmbH, Berlin,
Germany). The sensor array consisted of 52 probes (32 detector fibers, 20 emitter
fibers) with an inter-optode distance of approx. 2.5 cm, providing a total of 80
channels. The array covered nearly the whole head, only excluding the occipital
areas (Figure 2.7). For each subject we selected a subset of 5 minutes of data for
further analysis, which was not contaminated by movement artifacts. Data were
low-pass filtered at 0.01 Hz, and the global mean of all channels was regressed
out to reduce the influence of extra-cerebral signal (e.g., oxygenation changes
in the skin). Subsequently, correlation analysis was performed for the oxygenated
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Figure A.4.: Setup for simultaneous measurements of NIRS and fMRI.

and deoxygenated hemoglobin signal for each channel separately. Three individual
regions-of-interest of the temporal, somatomotoric and parietal areas of the cortex
were used as the basis for functional connectivity correlation analysis according
to the 10-20 EEG system [Koessler et al., 2009]. See Section 5.2 for results of this
experiment.

A.6. Experiment 6: Comparison of NIRS and fMRI

We tested the reliability of NIRS during task-dependent and task-independent sit-
uations in comparison to the golden standard fMRI in hemodynamic neuroimag-
ing. The experiment consisted of a block-design finger-tapping task (25 trials,
10 s tapping, 10 s rest, left and right tapping in different sessions) and 10 minutes
of open-eyes rest during simultaneous measurement of fMRI and NIRS [Mehnert
et al., 2010]. 7 subjects participated in our study but data from 3 subjects had
to be discarded from further analysis. In their cases the elaborated experimental
procedure led to insufficient fixation of the NIRS optodes on the subjects head.
The setup for the simultaneous measurement is shown in Figure A.4. FMRI data
acquisition was performed on a whole-body 3 T MAGNETON TIM Trio scanner
(Siemens, Erlangen, Germany) equipped with a transmit/receive birdcage head
coil. A gradient-echo EPI sequence was used (TE=30 ms, BW=116 kHz, pixel
dimensions 3x3 mm2, slice thickness 4 mm / inter-slice gap 1 mm). 510 volumes
were acquired (15 coronal slices through the motor system, TR = 1 s, flip angle
62◦).
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Figure A.5.: Results for simultaneous measurements of NIRS and fMRI in a mo-
tor execution task for a sample subject. A) Statistical results for
deoxy-hemoglobin in NIRS (top row) and BOLD-fMRI (bottom row)
using right and left finger tapping of one subject. Note that high ac-
tivation is coded in blue (negative t-values) in the NIRS maps. The
fMRI results show associated regions of the motor system (p<0.05,
corrected). B) NIRS peak channel data taken as regressor for fMRI
analysis (p<0.001, corrected). C) Time courses in the peak voxel /
channel for deoxy-hemoglobin in NIRS and fMRI are anti-correlated
with a correlation coefficient of -0.8.

NIRS data was recorded with a NIRScout 8-16 (2 wavelengths, 8 sources, 16
detectors, sampling frequency 6.25 Hz), NIRx Medizintechnik GmbH, Berlin, Ger-
many. The optical probes were integrated into a standard EEG cap and were po-
sitioned over bilateral motor cortices. Optical data was low-pass filtered (0.2 Hz),
and attenuation was transformed to concentration changes of oxy- and deoxy-
genated hemoglobin using a modified Beer-Lambert law (see Section 2.2.3). A
GLM (see Chapter 3) was calculated for fMRI and NIRS data separately. This
analysis provided t-values for left and right finger tapping (Figure A.5 A).
The time course for right finger tapping was extracted from the NIRS channel

showing maximal activity and used as a regressor for the fMRI data (Figure A.5 B),
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Furthermore, the correlation coefficient between this and the time course showing
maximal activity in fMRI data (Figure A.5 C) was calculated.
The resting-state experiment consisted of 600 s data acquisition without any

task activation (eyes open). For fMRI data acquisition we used a gradient-echo EPI
sequence (TE=30 ms, BW=116 kHz, pixel dimensions 3x3 mm2, slice thickness
4 mm / inter-slice gap 1 mm). 300 volumes (30 axial slices, TR=2 s, flip angle 78◦)
were acquired. NIRS data was recorded in the same manner as in the motor task
and low-pass filtered (0.08 Hz). Attenuation was transformed to concentration
changes of oxy- and deoxygenated hemoglobin. Time courses of HbR in channels
showing maximal activity in the motor task were used as seed channels for a
correlation analysis within the NIRS data. The time courses of the seed channels
were also used as a regressor for the simultaneously acquired fMRI data to show
the relationship of both devices.
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