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Zusammenfassung

Die Kapazität-Spannung (C-V) Spektroskopie bietet eine experi-
mentelle Möglichkeit, Quantenpunkte (QDs) elektrisch zu unter-

suchen. Ohne detaillierte Simulationen war es bisher jedoch nicht
möglich, genauere Interpretationen der experimentellen Daten zuzu-

lassen. Die C-V Charakteristiken stellen eine Abbildung der zum
Teil sehr komplizierten räumlichen Ladungsverteilung einer Struk-

tur dar, weshalb in dieser Arbeit mehrere theoretische Modelle ent-
wickelt werden, um diese zu berechnen. Es werden numerische Si-

mulationen von Dioden mit QDs durchgeführt, z.B. zur Bestim-
mung der Energieniveaus in den QDs und deren homogene Verbrei-
terung durch einen Vergleich mit experimentellen Daten. Die dreidi-

mensionalen Rechnungen zeigen, daß die Coulomb-Wechselwirkung
zwischen den QDs eine zentrale Stellung einnimmt. Sie führt zusam-

men mit der inhomogenen Ladungsverteilung in der Schicht der
QDs selbst bei Vernachlässigung aller wachstumsbedingten Fluk-

tuationen zu einem intrinsischen Verbreiterungsmechanismus der
diskreten Zustandsdichte einzelner QDs. Diese hängt zudem stark

von der elektronischen Umgebung der QDs ab, die sich z.B. durch
die angelegte Spannung ändern kann. Es werden QDs ohne struk-
turelle Fluktuationen aber auch mit zufälligen Fluktuationen sowie

Ensembles von QDs, die aus Wachstumssimulationen entnommen
werden, simuliert. Generell lassen nur diese sehr detaillierten Rech-

nungen eine Interpretation von experimentellen Daten bezüglich der
Größenverteilung zu.

Die räumliche Ladungsverteilung auf immer kleinem Raum wirft
natürlich auch die Frage nach der Rolle von Coulomb-Streuung
zwischen Elektronen an unterschiedlichen Orten und von unter-

schiedlicher Dimension auf. Im Speziellem wird hier auf Strukturen
im Zusammenhang mit QDs eingegangen, also die Streuung zwi-

schen Elektronen in den QDs und räumlich ausgedehnten, drei- und
zweidimensionalen Elektronen. Es zeigt sich dabei, daß eine solche

Kinetik stark auf den Ort der QDs begrenzt ist.
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Abstract

Capacitance-Voltage (C-V) spectroscopy provides an experimental
method to investigate the electrical properties of quantum dots

(QDs). So far, without detailed simulations it has not been pos-
sible to give clear interpretations of the experimental data. C-V

characteristics represent a mapping of the very complicated spatial
charge distribution of a device which can be calculated by the the-

oretical models developed in this work. Numerical simulations of
diodes are performed, e.g., to obtain values for the QD energy levels

and their homogeneous broadenings by a fit to experimental data.
The three-dimensional simulations show that the Coulomb interac-
tion between the QDs is of central importance. Together with the

inhomogeneous charge distribution in the QD layer it leads to an in-
trinsic broadening mechanism of the zero-dimensional QD density

of states, even if all structural fluctuations are neglected. These
interactions between QDs depend strongly on the electronic envi-

ronment of the QDs which can be changed, e.g., by applying a bias.
QDs without structural fluctuations but also QDs with random fluc-

tuations and QDs taken from growth simulations are investigated.
Generally, only the detailed calculations performed here make an in-
terpretation of the experimental data regarding the size fluctuations

possible.
The spatial charge distribution on an increasingly smaller length-

scale of course raises the question about the role of Coulomb scatter-
ing between electrons of different dimensions and located at different

positions. In this work structures with QDs are investigated, i.e.,
the scattering between electrons in the QDs and spatially extended,
two- and three-dimensional electrons. It is shown that such kinetics

has a strong local character.
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1 Introduction

1.1 General background

Over the last decades, semiconductor physics and technology has

distinguished itself by the rapid pace of improvement of applications
used in information technology. Integration level, cost-per-function,
speed, power consumption, compactness and functionality are the

principal categories of improvement. Most of these trends have re-
sulted principally from the technological ability to exponentially

decrease the minimum feature sizes used to fabricate integrated cir-
cuits. Of course, the most frequently cited trend is in integration

level which is usually expressed as Moore’s Law [Moo65]: “The num-
ber of components per chip doubles every 18 months”. The ongoing

demand for further miniaturization has led to structure sizes of typ-
ically 100-200 nanometers in nowadays commercial computer chips.
The most significant trend for society is the decreasing cost-per-

function which has led to significant improvements of productivity
and quality of life through proliferation of computers, electronic

communication, and consumer electronics.

Understanding and controlling the properties of materials is be-
coming the crucial step required for improving the information tech-
nology on which our modern life is increasingly built. Therefore, one

goal of research is to develop theoretical models and apply feasible
computational techniques for modeling the linear and nonlinear re-

sponse properties of semiconductor nanostructures.
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1 Introduction

1.2 Quantum dots

In the pursuit of further miniaturization of semiconductor devices,

such as transistors or diodes, nanometer technology made it pos-
sible that the spatial motion of electrons was confined from three
to lower dimensions. In this progress, one is currently reaching

the regime where a quantum mechanical description and Coulomb
effects gain relevance, substituting standard “bulk” semiconductor

physics. New terms as two-dimensional electron gas (2DEG) or one-
dimensional quantum wire were brought to life in material science.

Confining few electrons in all three spatial dimensions within a
small potential box and reducing the spatial motion of the electrons

to zero dimensions denotes the ultimative miniaturization in semi-
conductor technology. Similarly as in atoms, according to quantum

mechanical laws, electrons occupy discrete energy levels. Therefore,
such semiconductor structures are called quantum dots or QDs (see
Ref. [Bim99] and references therein for a more detailed introduction

about QDs).

Modern epitaxial techniques allow to form crystal layers with
atomic precision. Wetting a plain crystal surface with a lattice
mis-matched material may lead under certain conditions to the so-

called self-organized formation of QDs. The resulting QDs can be
very small, from a few up to several hundreds of nanometers, of reg-

ular size and shape and may be grown with very high surface densi-
ties. The detailed kinetics leading to the formation of regular QDs

have been subject of recent investigations [Sch98b, Shc98, Mei01c,
Mei01a, Mei01b, Mei02b, Mei03a, Mei03b]. Interestingly, such a
growth process has been described already in 1938 by Stranski and

Krastanov [Str39], but the first successful realizations of such semi-
conductor structures have been reported only about a decade ago

[Eag90, Mo90].

Since then, different applications based on QDs have been demon-

strated, such as charge storage in field-effect transistor structures
[Yus97, Yus98, Fin98, Koi00] or laser devices (see Ref. [Gru00a]

and references therein). For all kinds of applications, the detailed

2



1.3 This work

understanding of the electronic structure and the exchange with the
surrounding semiconductor matrix is of essential importance.

1.3 This work

Capacitance-voltage (C-V) spectroscopy is a successful method to

investigate QDs electrically. The modifications of the local charge
and potential distribution due to the charged QDs embedded in

a diode provide information about the QDs themselves. Unfortu-
nately, the spatial charge and potential distribution in such devices

is rather complicated, and new theoretical approaches are necessary
to provide a deeper understanding of the experimental capacitance
signals.

In layers of small QDs, where single QDs can confine only few
electrons one has to deal with three important parameters: (i) the

quantum mechanical confining energy which will suffer from size
fluctuations of the QDs, (ii) the charging energy, i.e., the Coulomb

repulsion of more than one electron in a QD, and (iii) the Coulomb
repulsion of electrons within neighboring QDs. All three parameters

are typically of about equal size. It is therefore one of the aims
of this work to evaluate the role of Coulomb charging effects and
structural fluctuations, i.e., size and position fluctuations of QDs

within a layer of self-organized QDs.

The three-dimensional character of a structure with embedded

QDs makes it necessary to provide a spatially three-dimensional
description of the potential and charge distribution in QD devices.

The electric field and the charge carrier distribution are related to
each other by a set of differential equations, i.e., the Poisson equa-

tion and transport equations. The charge distribution which solves
all equations simultaneously is called the self-consistent solution.
There exist sophisticated techniques to find these solutions, usu-

ally involving an iteration scheme. Especially for arrays of many
QDs this can result in numerical and conceptional difficulties. Ad-

ditionally, if including the charge distribution of a whole QD device,

3



1 Introduction

length scales of tenth of nanometers up to several microns have to
be treated simultaneously.

After a short introduction to C-V spectroscopy in chapter 2, the
self-consistent models used in this work are proposed in chapter 3.
The one-dimensional model is used to find values for the energy

levels in the QDs and their broadenings by a fit of simulated C-V
curves to experimental data in chapter 4. The three-dimensional

model, also proposed in chapter 3, allows an effective and feasible
numerical solution of the non-linear three-dimensional Poisson equa-

tion. It is a huge improvement towards a more detailed description
compared to the one-dimensional model. Simulations of equi-sized

and periodically ordered arrays QDs show that Coulomb charging
is strongly effected by the charge distribution in the semiconduc-
tor matrix the QDs are embedded in (chapter 5). With the ability

to simulate arbitrary ensembles of QDs, size and position fluctua-
tions of QDs as well as temperature fluctuations are investigated in

chapter 6.
Additionally, the electron kinetics which is of principal scientific

interest and is important for applications such as memory devices
can be influenced by carriers in the vicinity of the QDs. Scattering
between the QD electrons and continuum carriers in the vicinity by

Coulomb forces can contribute to the energy relaxation or excitation
in QDs, overcoming the so-called phonon bottleneck. A theory for

a detailed description of remote Coulomb scattering or Auger-type
scattering with two- or three-dimensional continuum electrons is

proposed in chapter 7. The resulting scattering rates for different
device geometries are shown in chapter 8, discussing the general role

of Coulomb scattering in QD structures.
Finally, the main results are briefly summarized at the end of this

work.
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2 C-V spectroscopy

When investigating semiconductor structures such as QDs by ca-
pacitance-voltage (C-V) spectroscopy, these structures usually have

to be embedded in diodes as the pn junction. Since the pn diodes
provide a background capacitance, its origin is briefly revisited first.

2.1 Depletion layer capacitance

If an n-doped and a p-doped semiconductor material are brought
in electrical contact, charge in form of free carriers will flow until
both parts are in thermodynamic equilibrium. As a consequence,

ionized donors and acceptors are left behind in the vicinity of the
interface leading to a local violation of the charge neutrality. The

layer depleted of free carriers is usually referred to as the “depletion
layer”. The depletion layer width for an abrupt, one-sided (e.g. the

acceptor concentration is much larger than the donor concentration)
junction is given by [Sze81]

W =

√

2ε0εr(Ubi − U)

eNB
. (2.1)

Here, Ubi is the built-in potential, i.e., the difference between the
conduction band edge between the two contacts in equilibrium, U

is the applied bias, NB is the lower doping concentration, ε0 and
εr are the absolute and relative permittivities, and e > 0 is the
elementary charge. Figure 2.1 shows for example a sketch of the

conduction band profile for an n-sided pn diode. Equation 2.1 is
found straight forwardly from solving the Poisson equation for an

abrupt pn junction. The depletion layer capacitance per unit area

5



2 C-V spectroscopy
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Figure 2.1: Sketch of the band profile of a pn diode with depletion
layer width W ; A sheet of QDs with discrete energy

levels is positioned in the n−-doped layer.

is defined as

C =

∣

∣

∣

∣

dQ

dU

∣

∣

∣

∣

, (2.2)

where dQ is the incremental change in the depletion layer charge

per unit area for an incremental change in the applied voltage dU .
The incremental space charges on the n- and p-sides of the depletion
region are equal but with opposite polarity, thus maintaining overall

charge neutrality. This incremental charge dQ results a change in
the electric field by an amount dQ/(ε0εr) = eNBdW/(ε0εr). There-

fore, the depletion capacitance is given by

C =
dQ

dU
=
eNBdW

dU
=
ε0εr
W

. (2.3)

Inserting Eqn. (2.1) into Eqn. (2.3) results in the typical behavior
of the C-V characteristics of an abrupt pn junction:

C(U) =

√

eε0εrNB

2(Ubi − U)
(2.4)

6



2.2 C-V spectroscopy on QDs

Many circuit applications employ the voltage-variable capacitance
properties of reverse biased pn diodes. A diode designed for such a

purpose is called “varactor” which is the shortened form of variable
reactor. For example, when a varactor is connected to an induc-
tion L in a resonant circuit, the resonant frequency varies with the

voltage applied to the varactor:

ω =
1√
LC

∝ U1/4 (2.5)

2.2 C-V spectroscopy on QDs

C-V spectroscopy providing experimental capacitance-voltage char-

acteristics is widely used to receive information about the spatial
doping profile [Sze81] or band offsets [Ari00, Lu98]. The struc-
ture under investigation is therefore usually embedded in a pn or a

Schottky diode. In this work, arrays of self-organized QDs are inves-
tigated. Structures with embedded self-organized Ge/Si [Kap00b,

Mie00] or InAs/GaAs [Luy99, MR95, MR97b, MR97a, Bru99] QDs
in Schottky- or tunnel-diodes have already been subject of intense

experimental investigations. Here, C-V spectroscopy is used to find
information about the electronic structure of InAs QDs in pn diodes
as shown in Fig. 2.1. An array of QDs is positioned in the n−-doped

region of a pn diode. If a reverse bias U < 0 is applied to the de-
vice, the depletion layer width rises. First, depletion of the bulk

electron concentration arises. When the depletion layer reaches the
QD layer, the local potential at the QDs changes, leading to an

successively emptying of the electrons initially trapped in the QDs.
The modification of the local potential by the charge located in

the QDs leads to a variation of C-V characteristic of the depletion
layer, containing information about the QDs. These complicated lo-
cal modifications of the potential in the vicinity of the QDs cannot

be estimated by simple expressions as for a bulk pn junction. More
sophisticated models and numerical simulations are necessary.
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3 Self-consistent models

The accurate theoretical description of the electronic QD levels in
semiconductor devices is one top goal of research efforts. It is impor-

tant for the interpretation of fundamental experiments such as the
shot noise properties of Coulomb correlated QDs [Kie03a, Kie03b],

as well as for the development of future applications involving QDs.
The spatial potential distribution, the charge distribution, and the

band structure determine the QD energy levels and therefore also
the occupation of the QDs with carriers. For a limited number of
devices, where the charge distribution in the vicinity of QDs is neg-

ligible, one may use simple estimations for the electrical potential,
such as the so-called lever-arm method [MR97b, MR97a]. For ex-

ample, if the QDs are embedded in a p-i-n structure, and neglecting
the charge in the QDs themselves, the potential at the QDs is simply

given by

Φ(zQD) = Φp − E t
d
, (3.1)

where Φp is the potential at the p-contact, E is the constant electric
field in the intrinsic, charge neutral region, d is the total width of

the intrinsic region, and t is the distance of the QD layer from the
highly doped p-contact. But for most device geometries such simple

approaches must fail, and improved methods are necessary.

In this chapter two models are proposed which allow to calculate
self-consistently the potential distribution in a semiconductor device
containing a sheet of QDs. Special interest is turned to GaAs pn

diodes as shown in Fig. 3.1 where a sheet of self-organized InAs
QDs is positioned in an n−-doped region.

The one-dimensional sheet charge model [Wet00, Wet01b] approx-

imates the charge stored in the QDs as a homogeneous charge per

9



3 Self-consistent models
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Figure 3.1: Layer sequence of the pn diode with an embedded array
of self-organized InAs QDs

unit area, using the QD energy levels and their broadenings as pa-
rameters. It allows to find values for the QD energy levels and their
broadenings by a fit of simulated C-V characteristics to experimen-

tal data.

The three-dimensional model [Wet03b] accounts for the inhomo-
geneous charge distribution in the QD layer and different QD ensem-
bles can be simulated in order to investigate the role of fluctuations

in position and size of the QDs. Charging effects are described in
detail including the bulk charge distribution in the semiconductor

matrix.

3.1 Sheet charge model

The sheet charge model is spatially one-dimensional in the vertical

growth direction (z-axis). The spatial bulk charge density distribu-
tion per unit volume ρ in a pn device consists of the bulk electron

density n, the bulk hole density p, the ionized donor N+
D and accep-

tor concentration N−
A . Therefore, ρ is expressed as

ρ(z) = e
[

p(z) − n(z) +N+
D (z) −N−

A (z)
]

, (3.2)

where e > 0 is the elementary charge.

Charge from electrons trapped in the QD layer is assumed to

be homogeneously distributed in the lateral (x-y) directions. The

10



3.1 Sheet charge model

electron density per unit area in the QD layer is denoted by σQD
n .

χQD shall be the characteristic function given by

χQD(z) = 1/h for zQD − h/2 < z < zQD + h/2 (3.3)

χQD(z) = 0 else,

where h is the height of the QDs and zQD is the position of the QD

layer, to account for the confinement in the vertical direction.
The charge densities will lead to an inhomogeneous potential dis-

tribution Φ which is given by the one-dimensional non-linear Poisson
equation

∂z [εr(z)∂zΦ(z)] ε0 = −ρ(Φ, EFn, EFp) − σQD
n χQD(z), (3.4)

where ε0 and εr are the absolute and relative permittivities, respec-
tively. EFn and EFp are the quasi-Fermi levels of the electrons and

the holes. Equation (3.4) is non-linear in Φ, i.e., ρ is a function of Φ,
since density gradients and electric fields will lead to a current flow

as described in the drift-diffusion model which is used in this work.
Latter can be derived from a moment expansion of the Boltzmann

equation to the first order, where the charge density is the moment
of zero order, and the current is the moment of first order of the
distribution function [Mar90, Sch98a]. For small electric fields, the

bulk electron density can be expressed by the local potential and
the electron quasi-Fermi level

n(z) = Nc(z)F1/2 (β [EFn(z) − Ec(z)]) . (3.5)

Here, β is given by β = 1/(kBT ) with the Boltzmann constant

kB and the temperature T , Ec is the conduction band edge Ec =
Ec0 − eΦ and Nc is the effective density of states

Nc(z) = 2

(

kBTm
∗
n(z)

2π~2

)3/2

, (3.6)

where m∗
n is is the effective mass of the conduction band. Ec0 de-

notes the intrinsic conduction band edge, including the gap between

11



3 Self-consistent models

the conduction and valence band edge. Fj(x) denotes the Fermi in-
tegral of order j defined by

Fj(x) =
1

Γ(j + 1)

∞
∫

0

du
uj

1 + exp(u− x)
, (3.7)

where Γ is the Gamma function (Γ(3/2) =
√
π/2). The hole density

is given by the sum of the light and heavy hole densities p = pl +ph.
Analogously to the electron density, p is given by

p(z) = Nv(z)F1/2 (β [Ev(z) − EFp(z)]) , (3.8)

with the valence band edge Ev = Ev0 − eΦ and the effective density
of states

Nv(z) = 2

(

kBTm
∗
p(z)

2π~2

)3/2

. (3.9)

The density of states effective hole mass is given by

m∗
p =

(

m∗
l
3/2 +m∗

h
3/2

)2/3

, (3.10)

with the light and heavy hole masses m∗
l and m∗

h. Under the usual
assumption that all doping atoms are singly ionized, the concentra-

tion of the ionized donor and acceptor atoms can be approximated
by the doping concentration. In the steady state, the electron and

hole drift-diffusion current densities are given by [Mar86]

jn(z) = µn(z)n(z)∂zEFn(z)

jp(z) = µp(z)p(z)∂zEFp(z), (3.11)

with the electron and hole mobilities µn and µp, respectively. Ne-
glecting generation and recombination in the active region, the con-

tinuity equations

∂zjn(z) = 0

∂zjp(z) = 0 (3.12)

hold.

12



3.1 Sheet charge model

To find an expression for the QD electron density, discrete QD
energy levels Ej < 0, measured from the conduction band edge

with a degeneracy αj are used. These levels are inhomogeneously
broadened mainly due to QD size fluctuations with a full width at
half maximum ∆Ej. Ej can therefore be conceived as an average

QD level energy of the ensemble. In steady state, where transition
rates from each Fermi distributed k-state in the conduction band

into the QD state j and the respective reverse rates balance, the QD
electrons are in quasi-equilibrium with the conduction band leading

to a Fermi occupation of the QD states. With the QD sheet density
NQD the QD electron density per unit area can be expresses as

σQD
n = NQD

∑

j

αj

σj

√
2π

∞
∫

−∞

dE
exp

(

− [E−Ec(zQD)−Ej ]
2

2σ2
j

)

1 + exp (β[E −EFn(zQD)])
, (3.13)

with σj = ∆Ej/
√

8 ln 2.
In this work, also a device where only a quantum well (QW)

structure has been grown instead of the QD array will be considered.
To describe the charge density for such a device, σQD

n has to be

replaced by the quantum well sheet charge density σQW
n given by

[And82]

σQW
n =

m∗kBT

π~2
ln

(

1 + exp

(

EFn(zQD) − [Ec(zQD) + EQW]

kBT

))

.

(3.14)

Here, EQW < 0 denotes the quantization energy of the one-di-
mensionally confined electrons measured from the conduction band

edge.
The Poisson equation (3.4) and the continuity equations (3.12)

define a self-consistent problem with the variables Φ, EFn and EFp

[Sel84]. The highly doped Ohmic contacts provide boundary condi-
tions for the potential and the quasi-Fermi levels. Vanishing space

charge density ρ at the boundaries is assumed to hold for Ohmic
contacts [Rid74], i.e., the electron density equals the donor con-

centration N+
D in the n-contact, and the hole density equals the
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3 Self-consistent models

acceptor concentration N−
A in the p-contact. In equilibrium, where

EFn = EFp = EF, with the Fermi level EF and choosing EF=0 this

leads to values for the equilibrium potential in the left and right
contact, Φeq

L and Φeq
R , respectively. In order to hold ρ = 0 for all

bias conditions, a bias U is applied by choosing the boundary values

as

EFn,L = EF + eU/2 EFp,L = EF + eU/2 ΦL = Φeq
L − U/2

EFn,R = EF − eU/2 EFp,R = EF − eU/2 ΦR = Φeq
R + U/2, (3.15)

where EFn,L, EFn,R, EFp,L, EFp,R, ΦL, and ΦR are the boundary
values for the quasi-Fermi levels and the potential.

According to the definition (2.2) the simulated depletion layer ca-

pacitance is given by the self-consistent electric field in the depletion
layer

C = ε0εr

∣

∣

∣

∣

d [∂zΦ(zDL)]

dU

∣

∣

∣

∣

, (3.16)

where zDL is a fixed position in the depletion layer.

3.2 Three-dimensional model

In this section a much more detailed model is proposed which in

comparison to the sheet charge model includes the charge inhomo-
geneity in the QD layer. The aim is to derive a description for

the Coulomb interaction including all charges, i.e., bulk charge and
charges from electrons in the QD. Each level in each single QD is

treated as a state which can be occupied by an electron. Since
only a small but essential part of the structure is not translational

invariant in the lateral (x,y) directions, but most of the device is
inhomogeneous only in the vertical growth direction (z) the electro-
static potential is divided up into three parts for practical reasons.

To obtain the QD charging energies, the capacitance matrix of a QD
ensemble is calculated which, in contrast to other models [Wha96],

includes the spatial charge distribution within a device.
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3.2 Three-dimensional model

The spatial potential distribution in a device is described by the
three-dimensional Poisson equation

∇
[

εr(z)ε0∇Φ3D(r)
]

= −ρtot(r), (3.17)

where Φ3D is the three-dimensional potential distribution and ρtot

is the self-consistent total charge distribution in the device includ-

ing bulk and QD charges. The idea is to perform a linear Taylor
expansion around the solution Φ1D of the one-dimensional Poisson

equation

∂z

[

εr(z)ε0∂zΦ
1D(z)

]

= −ρ(z) − χ(z)σQD
n , (3.18)

where the QD charge has been approximated as a sheet charge σQD
n

averaged over the cross section area A of the sample

σQD
n =

−e
A

∑

αµ

pαµ. (3.19)

Here, pαµ denotes the integer occupation numbers of the level µ

in the QD labeled with α (pαµ = 0 if state αµ is not occupied,
pαµ = 1 if state αµ is occupied). ρ is the one-dimensional bulk

charge distribution as obtained from a self-consistent solution with
the current equations as in the previous section. Approximating the

QD charge as a three-dimensional perturbation, a Taylor expansion
in the bulk charge density now leads to

∇
[

εr(z)ε0∇Φ3D(r)
]

= −ρ(z) − ∂ρ(z)

∂Φ

[

Φ3D(r) − Φ1D(z)
]

− ρQD
n (r),

(3.20)
where ρQD

n is the three-dimensional QD charge distribution. Due to

the linearity of the Poisson equation, Φ3D can be written as a sum
of the one-dimensional potentials Φ1D and Φ̂1D, with

∂z

[

εr(z)ε0∂zΦ̂
1D(z)

]

= χ(z)σQD
n − ∂ρ(z)

∂Φ
Φ̂1D(z) (3.21)

and the three-dimensional part ΦQQ, with

∇
[

εr(z)ε0∇ΦQQ(r)
]

= −ρQD
n (r) − ∂ρ(z)

∂Φ
ΦQQ(r), (3.22)
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3 Self-consistent models

as

Φ3D(r) = Φ1D(z) + Φ̂1D(z) + ΦQQ(r) (3.23)

Note that ΦBQ = Φ̂1D + Φ1D can be conceived as a background

potential for a single QD electron, excluding all other QD charges.
Equation 3.22 can be solved by a Green’s function technique. The

respective Poisson equation for the Green’s function reads as

∂z [ln(εr(z))∂zG(z, rq, z
′)] + ∆rq

G(z, r, z′) = (3.24)

−δ((0, z
′) − (rq, z))

εr(z)ε0
− λ2

3D(z)

e2
G(z, r, z′).

where ∆rq
is the two-dimensional Laplace operator, rq = |rq| is

the radial distance in the lateral plane and λ3D is the static Debye
screening wave length [Lan91]

λ3D(z) =

√

e2

ε0εr(z)

∂ρ(z)

∂Φ1D
. (3.25)

Note that G has a cylinder symmetry, since λ3D and εr depend only
on z.

The QD charging energies, i.e., the values of the three-dimensional
potential at the QDs, are of interest for a self-consistent solution,

since they determine the level energies and therefore the occupa-
tion of the QDs with electrons. The QD level µ is represented by
µ = (nx, ny, nz) with the quantum numbers nx, ny and nz. Here,

the intrinsic quantization energy of electronic QD states E intr
αµ < 0

is measured from the background conduction band edge Ec0(zQD)−
eΦBQ(zQD). E intr

αµ is a material parameter. Throughout this work
fitted results of k · p calculations [Sti99] are used to account specif-

ically for the size dependence of E intr
αµ of InAs QDs as shown in

Fig. 3.2.

Treating the charging energies Echar
αµ as a first order perturbation,

the total QD electron energy can be expressed as

EQD
αµ = Ec0(zQD) − eΦBQ(zQD) +E intr

αµ + Echar
αµ . (3.26)
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Figure 3.2: Size dependence of the electron level energies E intr
αµ for

µ=(000), (100), and (010) according to a fit to k · p

calculations [Sti99] for a single QD

The level charging energy is obtained by a summation over all oc-
cupied QD levels

Echar
αµ = e2

∑

βν

pβν

(

C−1
)

αβ
[1 − δαµ,βν ] , (3.27)

where δαµ,βν ensures that an elementary charge does not interact

with itself. C is the capacitance matrix of the QD ensemble. The
elements of the inverse capacitance matrix is calculated by using

the Green’s function

(

C−1
)µν

αβ
=

∫ ∫

|ψαµ(r)|2G(r, r′) |ψβν(r)|2 d3r′d3r, (3.28)

with the QD wave functions ψαµ and ψβν [War98]. For well confined

QD electrons, the electrons are assumed to be homogeneously dis-
tributed over the QD volumes Vα and Vβ, neglecting further details

of the wave functions. Then C−1 has only indices of the QD labels,
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3 Self-consistent models

leading to

(

C−1
)

αβ
=

1

VαVβ

∫

Vα

∫

Vβ

G(r, r′)d3r′d3r. (3.29)

To determine the stationary occupation of the QD layer with elec-

trons, each level is occupied statistically according to the occupation
probability fαµ, in order to account for the statistical character of
the microscopic in and out scattering processes in QDs [Gru97]. fαµ

is a function of the local quasi-Fermi level and the QD level energies
which can be derived from detailed balance consideration between

a QD level and the continuum electrons of the conduction band.
In thermodynamic equilibrium, emission and capture rates have to

“balance in detail”, i.e., the scattering rates from each microscopic
continuum state k to a QD level have to be equal to the scattering

probability of the respective reverse process, thus

Wk,αµf
eq
k

[

1 − f eq
αµ

]

= Wαµ,kf
eq
αµ [1 − f eq

k ] (3.30)

must hold, where f eq
k and f eqαµ denote the occupation probabilities

of a continuum k-state and the QD level, respectively, and Wk,αµ

and Wαµ,k denote the transition probabilities from state k into the
QD state αµ and vice versa. In the case of equilibrium the occupa-

tion probabilities are given by the Fermi distribution functions

f eq
k =

1

1 + exp (β [Ek −EF])
(3.31)

and

f eq
αµ =

1

1 + exp
(

β
[

EQD
αµ − EF

]) . (3.32)

Inserting Eqn. (3.31) and (3.32) into (3.30) leads to

Wαµ,k = Wk,αµ exp
(

β
[

EQD
αµ −Ek

])

. (3.33)

Assuming that the latter relation holds under all bias conditions

leads to the stationary non-equilibrium occupation probability of
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3.2 Three-dimensional model

the QD level

fαµ =
1

1 + exp
(

β
[

EQD
αµ −EFn(zQD)

]) . (3.34)

Since only a finite cross-section area A can be simulated, contain-
ing typically a hundred QDs which is smaller than typical cross sec-

tion areas in experiments with millions of QDs, appropriate bound-
ary conditions have to be chosen in the lateral directions. Here,

periodic boundary conditions as obtained from a charge distribu-
tion outside A as shown in Fig. 3.3 are used. The cross section
area A with its QD charge distribution is surrounded by eight iden-

tical areas with identical QD charge distributions. It is necessary
that the typical screening length, i.e., the extension of the Green’s

function in lateral directions, is shorter than the base length of the
quadratic area A to avoid artificial double-counting.

In conclusion, the self-consistent, non-linear problem of calculat-
ing the QD energy levels with respect to the three-dimensional po-

tential distribution has now been reduced to:

• finding the self-consistent, one-dimensional solution Φ1D, EFn

and EFp of the Poisson equation and the current equations for
a given σQD

n

• solving the two-dimensional Poisson equation in order to find

the Green’s function

• calculation of the inverse capacitance matrix

• statistical realization of a new QD occupation configuration to

find the QD sheet charge σQD
n by changing the occupation of a

single QD state by one electron

• start from the beginning with the new σQD
n

Note that the occupation of the QD levels according to (3.34) is
coterminous to the stationary solution of a respective Master-equa-

tion [vK81].
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3 Self-consistent models

A

Figure 3.3: Sketch of the QD layer with one center cross-section
area A and the eight cross-sections which hold the pe-
riodic boundary conditions: relevant Coulomb interac-

tion (solid yellow arrows) occurs only within the typical
screening length (black circle)

Because λ3D depends on σQD, the capacitance matrix is changed

whenever the occupation of a single QD state changes. Therefore,
the iteration scheme is still very time consuming. In the following

context this three-dimensional model is referred to as model A.

For small QD surface charges one may neglect the dependence of
the screening length and therefore the capacitance matrix on the
QD occupation (model B, [Wet03b]). Then the iteration scheme

reduces to:

• finding the self-consistent, one-dimensional solution Φ1D, EFn

and EFp of the Poisson equation and the current equations for

σQD
n = 0
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3.2 Three-dimensional model

• solving the two-dimensional Poisson equation in order to find
the Green’s function

• calculation of the inverse capacitance matrix

• statistical realization of QD occupation configurations to find
the average QD sheet charge σQD

n

• finding the self-consistent, one-dimensional solution Φ1D, EFn

and EFp of the Poisson equation and the current equations for

σQD
n

Now three different self-consistent models are available, one one-

dimensional and two versions of a three-dimensional model, to sim-
ulate the charge distribution in QD devices.

Analogously to the one-dimensional model (see Eqn. (3.16)), the
depletion layer capacitance is given by the bias dependence of the
vertical electric field in the depletion layer

C = ε0εr

∣

∣

∣

∣

∣

d
[

∂zΦ
1D(zDL)

]

dU

∣

∣

∣

∣

∣

. (3.35)
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4 Energy level analysis

Many groups have investigated QDs by optical techniques such as
photoluminescence spectroscopy (PL) (see Ref. [Bim99] and ref-

erences therein), providing information on the transition between
strongly correlated excitonic levels. The study of single levels,
e.g., in electrostatically defined QDs [Ash92] or self-organized QDs

[Dre94, Kap99, Bro98] can only be accomplished by electrical meth-
ods like C-V spectroscopy. Here, a pn diode as displayed in Fig. 4.1

considered. A triple stack of InAs QDs was grown in the Stranski-
Krastanov mode within the n−-doped GaAs layer [Kap98, Kap99].

Since the barriers between the QDs are only about 0.8 nm thin,
the stacked QDs with a total height of h=9.1 nm behave like a

single QD. This is also manifested by the shape of QD wave func-
tions as obtained from k · p calculations. The QD sheet density is
NQD=1010 cm-2 as has been obtained from top view transmission

electron microscopy (TEM), and circular mesas with a radius of
400 µm were defined by chemical etching. A wetting layer (WL) de-

vice containing the triple quantum well (QW) or wetting-layer (WL)
structure, and reference device were grown under identical condi-

tions. C-V characteristics have been measured for all three struc-
tures at T=75 K and an AC measurement frequency of f=1 kHz
using an amplitude of 100 mV [Wet00, Wet01a].

The temperature is chosen such that on one hand thermal broad-

ening effects are kept as small as possible, and on the other hand
to avoid dynamical effects, i.e., all QD electrons can follow the fre-
quency which has been chosen as small as possible. If the QD elec-

trons have to overcome an energy barrier of ∆E to leave the QD into
the conduction band continuum, the emission rate strongly depends

on the temperature. The minimum temperature to measure a sta-
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4 Energy level analysis

GaAs:Zn (NA=2.5 1017cm-3)

GaAs:Si (ND=1.7 1016cm-3)

n+-GaAs substrate

GaAs:Si (ND=1.7 1016cm-3)

(9.1 nm)

1600 nm

480 nm

3 x 1.7 ML InAs

Figure 4.1: Left: layer sequence of the pn diode with embedded

quantum dots; Right: (a) cross-section TEM image of
the QD layer, (b) close-up of a single QD stack, (c)

approximate geometry [Kap99]

tionary C-V characteristics can be estimated by a detailed balance
consideration (see chapter 3.2) as

T =
∆E

kB ln(f/c)
, (4.1)

where c is the capture rate. For c=1 ps−1, a minimum temperature
of 58 K for ∆E=100 meV is estimated. Typically, ∆E is equal to
the QD level energy below the conduction band edge, or the QD

energy level spacing to an excited QD state from which electron
can leave the QD very fast, e.g., by a tunneling process. The tem-

perature dependence of the emission process is for example used in
dynamical capacitance measurements or deep level transient spec-

troscopy (DLTS) to find values for the energy levels of the QD states
[Kap99].

4.1 Reference device

The experimental C-V curve of the reference device is displayed in

Fig. 4.2 (black symbols). Over all it shows the typical behavior of
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Figure 4.2: Symbols: experimental C-V characteristics for the sam-

ple of Fig. 4.1; Lines: simulated C-V curves for a QD
device (red), WL device (blue) and a reference device

(black); graphs of the WL and reference device are off-
set by -7 nFcm−2 and -14 nFcm−2, respectively. Ex-

perimental data by courtesy of Christian Kapteyn, (TU
Berlin) [Wet00, Wet01a]

the depletion layer capacitance of a pn diode except a little kink
around U=-1.5 V. Numerical simulations of this structure and a

fit to the experimental data, where the doping densities of the n−-
doped buffer layers are used as fit parameters, are performed. The

resulting curve is shown in Fig. 4.2 as a solid black line. A doping
density of ND=1.7×1016cm−3 is found except in a 70 nm layer above
the region where the QDs would have grown. Here, the doping

density is reduced by 75 %. This reduced doping can be explained by
the fact that the growth temperature is temporarily reduced when

the QDs are grown, and that the identical temporal temperature
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4 Energy level analysis

profile has been used for the reference and the WL sample. It is
well known that the diffusion of doping atoms is reduced with lower

temperature. Also further investigations of similar devices with
this model have shown the impact of the diffusion of doping atoms
during the growth process [Rac02a]. The following simulations of

the WL and QD device include this reduction of the concentration
of donor atoms above the WL and QD layer.

4.2 Wetting layer device

The WL device is considered next. The experimental C-V char-

acteristic is shown in Fig. 4.2 as blue symbols. In contrast to the
reference device it exhibits a flat plateau between U=-1.8 V and U=-

3.0 V. The change of capacitance in this bias region originates from
charge in the WL region. It has been shown analytically [Wan96]

that a two-dimensional electron gas results in a constant capacitance
in the bias region, where a quantum well is discharged as a direct
consequence of the constant density of states [Moo98, Bro94, Bro96].

Here, the simulated C-V characteristics is fit to the experimental
data (blue solid line in Fig.4.2), using the WL energy EQW as the

fit parameter. This fit leads to a WL quantization energy for the
triple WL structure of EQW=-55 meV. Note that for a single WL

structure higher values, i.e., binding energies closer to the conduc-
tion band edge are expected [Sti99].

4.3 Quantum dot device

Figure 4.2 shows the experimental C-V characteristic for the QD

device for T=75 K (red symbols). It exhibits the typical depletion
layer behavior, modified by two plateaus in the bias region -3.6 V ≤
U ≤ -0.8 V which can be attributed to the emptying of the QD

levels. In order to analyze the experimental data, the level energies
E0 and E1 of the ground and excited state and the respective level

broadenings ∆E0 and ∆E1 are used as fit parameters in the sheet
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4.3 Quantum dot device

charge model. Degeneracy factors including the spin of α0=2 for the
ground state (000), and α1=6 for the excited levels consisting of the

states (100), (010) and (001) are used. This degeneracy corresponds
to the nearly cubic symmetry of the triple-stacked QDs, and has also
been shown by the 8-band k · p calculations. A fit (Fig. 4.2, solid

red line) to the experimental data leads to the values E0=-211 meV,
E1=-128 meV, ∆E0=141 meV and ∆E1=95 meV. A variation of the

parameters corroborates an accuracy of the results of about 10 meV
[Wet00].

This structure has also been investigated by deep-level-transient-
spectroscopy (DLTS) and 8-band k · p calculations [Kap99, Kap98].

The DLTS measurements resulted in a separation of the (000) state
and the excited states of 94 meV which is only 11 meV less than
obtained here. Also the k · p calculations (E0=-195 meV, E1,2=-

115 meV, E3=-111 meV) result in only slightly smaller energies with
about the same separation.

The ground state broadening is also in good agreement with the
broadening of the photoluminescence peak for this structure [Kap99]

(both about 150 meV). But the results also indicate that the broad-
ening of the ground state is larger than that of the excited states.
This is in contrast to the size dependence of the QD energies as

found by k · p theory, where the excited states have been found to
be more sensitive to size fluctuations.

So far, the one-dimensional model has allowed to find values for
the QD level energies and their broadenings, by simulating the

charge distribution in the vicinity of the QDs. Over all, this method
seems to be suitable to measure the QD level energies by C-V spec-

troscopy. However, these findings also indicate the possibility of
an over-simplification of Coulomb charging effects especially for the
excited states in the QD array and emphasize the need to account

for the truly three-dimensional nature of the QD layer.
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5 Charging effects

In this chapter the true three-dimensional character of arrays of self-

organized QDs is taken into account in the simulations [Wet03b].
With the three-dimensional models proposed in chapter 3 different
ensembles of QDs and their C-V characteristics can be simulated. In

the present chapter, the detailed Coulomb charging effects in arrays
of QDs are investigated. Structural fluctuations are neglected. The

QDs are of the same size and are periodically ordered.

5.1 C-V characteristic

A pn diode similar to the structure proposed in chapter 4 is con-

sidered, with a QD sheet density of NQD = 1010 cm−2, a n−-doping
of 3 × 1016 cm−3 in the surrounding semiconductor matrix, a QD

diameter of 15 nm, and a QD height of 3 nm. The distance of the
QD layer to the pn interface is 400 nm. Arrays of 10×10 QDs are
simulated. Size or position fluctuations are neglected, thus all QDs

have the same size and are periodically ordered. The calculations
are performed for T=70 K.

In Fig. 5.1 the simulated C-V characteristic of the diode, as well
as the mean number of electrons per QD, and the differential QD

sheet charge (QD capacitance) dσQD/dU are plotted.
First, the results as obtained from model B which neglects the de-

pendence of the capacitance matrix on the QD sheet charge density
which is a good approximation for low QD sheet charge densities are
discussed. At zero bias the QDs are filled with six electrons each.

Applying a reverse bias and enlarging the depletion layer width of
the diode reduces the QD occupation to five, four, three, two, one

and zero electrons per QD. Each change in the QD occupation leads
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Figure 5.1: the depletion layer capacitance-voltage characteristics

of a pn diode withNQD=1010 cm−2 at T=70 K (model A:
black line; model B: orange line), the corresponding QD

capacitance (model A: red line; model B: green line) and
the mean number of electrons per QD as a function of

the bias (model A: blue line; model B: magenta line)

to a corresponding peak in the C-V characteristic. The peaks can
be attributed - with increasing reverse bias - to the spin degenerate

QD states (010), (100) and (000). Clearly a splitting of the spin
degenerate states by Coulomb charging effects, i.e., the repulsion of

two electrons in the same QD, and a broadening of the peaks can
be observed. The broadening of the first peak is strongly reduced.

Model A which includes the QD sheet density dependence of the

capacitance matrix results mainly in the same C-V characteristic,
but it shows a clear deviation from model B for a QD occupation

larger than four electrons in each QD which reflects exactly the addi-
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5.2 Screening

tional approximation made for model B. The QDs are occupied with
less than six electron at zero bias since the occupation dependent

Coulomb repulsion strength in model A is larger than in model B,
since the Coulomb repulsion between the QD sheet charge and the
screening bulk electrons is neglected in model B. Additionally, the

peak at U=-2.1 V is broadened and shifted to a lower reverse bias,
compared to model B.

As can be observed in Fig. 5.1, the total depletion layer capaci-
tance is not just given by the sum of a background depletion layer

capacitance and the QD capacitance, but the QD capacitance shows
the identical peak shape as observed in the total capacitance. Typ-

ically, the QD capacitance is much larger than the contribution of
the QDs to the total capacitance.

To obtain a deeper understanding of the mechanisms determining

the Coulomb charging effects and broadening mechanisms, a closer
look at the electronic details of the device is necessary.

5.2 Screening

For biases U=0.0 V, -2.0 V and -4.0 V Fig. 5.2 shows the bulk
electron and hole densities as well as the QD electron volume den-
sity −σQD/(eh) as a function of the vertical position (left column)

and the corresponding Green’s function G(z, zQD, r) as a contour
plot (right column) for the calculations made with model A. The

Green’s function has been normalized to the unscreened Green’s
function (λ3D=0) for more clarity. With rising reverse bias not only

the QDs are emptied, but also the bulk electron density surround-
ing the QDs is more and more depleted. At zero bias, the QDs

are fully embedded within a spatial bulk electron density distri-
bution. The Green’s function which represents the potential of a
point-like unit charge is therefore strongly screened. With the de-

pletion of the bulk electrons with rising reverse bias the Green’s
function starts to extend in vertical and lateral directions within

the depletion layer. The shape of the Green’s function determines
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5 Charging effects

the Coulomb repulsion between electrons trapped in neighbor QDs
and electrons within the same QD. From the shape of the Green’s

function and considering the QD-QD distance of 100 nm one can
already estimate that at U=0.0 V Coulomb repulsion should be
smaller than for U=-4.0 V, where especially Coulomb interaction

between QDs will play an important role.

5.3 Charging energies

Since the Green’s function changes its shape with the applied bias,

the charging energies will also be bias dependent. Holding the QD
charge fixed at one electron per QD, the matrix elements of the

inverse capacitance matrix contain the charging energies between
the electrons in the QD layer. Figure 5.3 shows the matrix ele-

ments for U=0.0 V, -2.0 V, -3.0 V and -4.0 V. The diagonal matrix
elements, i.e., the charging energy resulting from the repulsion of
two electrons in the same QD, hardly depend on the bias. With

rising reverse bias and reduced screening effects, the strength of
Coulomb interaction between neighboring QDs rises. For this par-

ticular structure a charging energy between nearest neighbor QDs
of up to the order of 1 meV is obtained.

But an electron confined at a QD “sees” the sum of all other

electrons in the QD layer, and therefore the total charging ener-
gies are of special interest. It is useful to distinguish between the

intra-QD charging energy resulting from mean value of the diago-
nal elements of the inverse capacitance matrix, and the inter-QD

charging energy as resulting from the mean value of the sum of all
non-diagonal elements of a row (or a column due to symmetry) of

the inverse capacitance matrix. In other words, the occupation is
kept fixed at one electron per QD. Figure 5.3 displays the intra-QD
and inter-QD charging energy as a function of the bias for both

model A and B. The intra-QD charging energy is reduced due to
screening at U=0.0 V where it is almost bias independent and then

changes rather rapidly at U=-2.0 V from a value of about 17 meV
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Figure 5.2: vertical bulk electron and hole and QD electron density
distribution (left) and the Green’s function normalized

to the unscreened Green’s function (right) for U=0.0 V,
-2.0 V, and -4.0 V (model A)
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5 Charging effects

(model A) to a value of about 18 meV. The effect of screening on the
inter-QD charging is more significant. Here, the inter-QD charging

is almost completely suppressed for U ≤-2.0 V, since the distance
between the QDs is larger than the extension of the Green’s func-
tion in the lateral directions. For larger reverse biases, the repulsion

between the electrons in the QD layer rises continuously due to the
reduction of the amount of screening which depends on the bias de-

pendent depletion layer width. The inter-QD Coulomb repulsion of
the two models deviates in the bias region where the QDs are occu-

pied. Since the bulk electrons which do the screening are repelled
by the QD electrons themselves which is not taken into account in

model B, the inter-QD Coulomb charging is larger in model A.

So far, the actual occupation of the QDs which changes with the
bias has not been considered. The resulting average charging ener-

gies per QD electron for both models are shown in Fig. 5.4 together
with the one-dimensional potential barrier eΦ̂1D(zQD) as obtained
from the one-dimensional Poisson equation (3.21). The latter can be

conceived as a one-dimensional charging energy. The charging en-
ergy exhibits a nonlinear behavior. It rises with the reverse bias due

to reduced screening effects, and drops when energetically higher
lying QD levels are successively emptied. Figure 5.4 shows that a

one-dimensional model underestimates charging effects by far for a
QD occupation of more than two electrons per QD, but may also

lead to a small overestimation, as shown here for an occupation
of less than two. One also observes that the two models result in
charging energies with a major difference for bias values where the

QDs are occupied with more than four electrons.

5.4 Inhomogeneous QD charge

The statistical character and the dependence on the three-dimensio-

nal potential distribution of the microscopic capture and emission
processes lead to fluctuations and an inhomogeneous charge dis-

tribution in the QD layer. Especially for biases when it comes to
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discharging processes, i.e., the difference between QD levels and the
quasi-Fermi energy is of the order of kBT , fluctuations in the QD

charge will occur.

In the simulations, the QD levels are occupied statistically accord-

ing to the Fermi distribution function (see Eqn. 3.34). Figure 5.5
shows a typical realization of the charge distribution in the QD
layer for the bias range where the two QD ground state electrons

are emitted. For the bias values, where the peaks are observed in
the C-V characteristic (U=-3.73 V and U=-3.88 V) the degree of

inhomogeneity is large, while the charge distribution is (almost) ho-
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Figure 5.5: QD charge distribution for different bias values at
T=70 K. The number of electrons per QD is represented
by the color code.

mogeneous for biases outside the peaks (U=-3.65 V and U=-3.81 V).

The charge inhomogeneity in the QD layer together with the

Coulomb repulsion between the QDs can lead to a broadening of
the QD level energies as will be discussed in the following section.

5.5 Level energies

The charging effects determine the QD level energies during a bias
sweep. Figure 5.6 shows the occupation and the energy of the (000)

ground state level below the conduction band edge. The number
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5 Charging effects

of electrons per QD is hereby indicated by colors. Rising inter-QD
charging due to the change in the bulk charge distribution raises

the QD level energies, shifting them towards the conduction band
edge. Discharging processes of energetically higher electron levels
on the other hand reduce the charging energy, leading to lower lying

QD levels. This nonlinear dependence on the bias is indicated in
Fig. 5.6 by a line which follows this zig-zag behavior of the level

energy during a reverse bias sweep. Side peaks or two peaks occur
if the QDs are not homogeneously charged. Additionally, the energy

levels are broadened with rising bias, since the range of Coulomb
forces rises with the bias. The individual charge distribution of the

neighbor QDs leads to an individual change of the level energy of
a depicted QD, and therefore to an overall broadening of the QD
energies of the ensemble. Similar Coulomb mediated broadening

effects have been found in the current-voltage characteristics of QD
arrays embedded in a p-i-n diode [Kie03c, Kie02].

5.6 High QD sheet density

The Coulomb interaction between electrons trapped in different
QDs of course strongly depends on the distance between the QDs.

So far, a QD sheet density of NQD=1010 cm−2 has been used with
a corresponding QD-QD distance of 100 nm. This is a rather typ-

ical QD sheet density for self-organized InAs QDs, but also higher
densities can be grown, depending on the growth conditions. Now a
QD sheet density of NQD=1011 cm−2 will be used which corresponds

to a QD-QD distance of 31.6 nm, while using identical parameters
as in the sections before.

The C-V characteristics for 70 K as obtained from model A and
B are shown in Fig. 5.7. For biases where the two QD ground
states (000) are discharged (U ≤-3.0 V) both models result in about

the same characteristics. For biases where the QD sheet charge
density is larger (U ≥-2.5 V) there is a major difference between

both models.
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Figure 5.6: occupation (a.u.) of the (000) QD level for depicted

reverse bias values in units of volts; the number of elec-
trons per QD is indicated by colors

The curve calculated with model B shows a rather sharp peak

structure for the discharging of the excited states (100) and (010).
Especially, when changing the occupation from five to four electrons

per QD a peak splitting occurs when the QDs are occupied with a
fractional mean number of electrons. This result shows that the QD

levels which have all four nearest neighbor QDs charged with five
electrons have a different energy than QD levels which have their
nearest neighbor QD charged with four electrons, and are therefore

discharged at different biases. This splitting vanishes for the ground
state electrons which show up a larger broadening in the C-V curve.

This has to do with the range of the inter-QD charging. Where for
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the excited states the inter-QD range is rather short and mostly only
the interaction between nearest neighbor QDs occurs, the ground

state electrons are discharged where the inter-QD interactions range
over a large number of neighbor QDs, leading to an averaging, and
therefore broadening effect.

Obviously, the dependence of the capacitance matrix on the QD
sheet charge density which is neglected in model B leads to an addi-

tional broadening effect of the sharp peaks as obtained by model B
and to a shift towards a lower reverse bias. The latter can be ex-

plained by the fact that the screening effects are less in model A,
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-6 -5 -4 -3 -2 -1 0
bias [V]

0

20

40

60

80

100

120

ch
ar

gi
ng

 e
ne

rg
y 

[m
eV

]

inter-QD

intra-QD

model A
model B

Figure 5.8: intra-QD (black) and inter-QD (red) charging energy
as a function of the applied bias assuming one electron

per QD for NQD=1011 cm−2 at 70 K ; model A: solid
lines; model B: dashed lines

since the surrounding bulk electrons are repelled by the QD sheet
charge itself. The broadening also occurs from the inter-QD charg-
ing which has a longer range in model A. As mentioned earlier, the

repulsion between a QD electron and its neighbor QDs can lead to
a QD level broadening. Since the number of neighbor QDs is larger

within the range of inter-QD Coulomb forces for a larger QD sheet
charge density, this leads to an additional broadening.

For the two ground state levels both models result in a larger

broadening, compared to the characteristics for NQD=1010 cm−2

due to the larger inter-QD Coulomb charging.

The Coulomb charging as a function of the bias is plotted in
Fig. 5.8. Compared to the calculations for NQD=1010 cm−2, the
intra-QD charging energy has similar values, and also the two mod-

els result values which differ only marginal. As expected, the higher
QD sheet density has a huge effect on the inter-QD charging energy.

It rises with the reverse bias, and becomes even much larger than
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the intra-QD charging. For such a large QD density per unit area,
model B obviously looses validity, since it strongly underestimates

the true Coulomb interaction between the QDs.

Taking into account the actual occupation of the QDs leads to

the mean charging energy per QD electron as shown in Fig. 5.9.
The results from model B deviate strongly from the more accu-
rate model A. Model B typically over-estimates the one-dimensional

charging energy eΦ̂1D(zQD) (red dashed line in Fig. 5.9), where it
underestimates the mean three-dimensional charging energy per QD

electron (black dashed line in Fig. 5.9). Comparing the 1D and 3D
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5.7 p-i-n diode structure

charging energies as obtained with model A (solid lines in Fig. 5.9),
one observes that the 1D charging energy is even larger than the 3D

values, just vice versa as for the case NQD=1010 cm−2. For the large
QD sheet density, the localization of the electrons in QDs reduces
the over-all Coulomb repulsion. In other words, the localization

“costs” less charging energy, than if the electrons were delocalized
in the lateral directions.

5.7 p-i-n diode structure

As an alternative to the pn structures investigated so far, the QDs
can for example also be embedded in a p-i-n device to do C-V
spectroscopy. The QDs are located within the intrinsic, undoped

region, between the highly doped contact regions. A sketch of the
conduction band for this device in shown in Fig. 5.10. In contrast

to the pn diode, the QDs are uncharged in equilibrium. A forward
bias is applied to charge the QDs successively. The bulk charge

in the vicinity of the QDs is negligible, and the inter-QD charging
energies are mainly defined by the distance of the QDs to the doped
contact layers.

Due to the linear field distribution in the charge neutral layer,

the capture and emission processes in such structures are based on
the tunneling of the electrons between the conduction band and

the QDs. The temperature independence of these emission and
capture processes makes in contrast to the pn diodes stationary
C-V spectroscopy possible even for very low temperatures [Mil97].

Here, two samples are investigated, where the QD layer is po-

sitioned 600 nm and 150 nm from the p-contact and 200 nm and
50 nm from the n-contact to which will be referred to as sample A

and sample B, respectively. Arrays of QDs as in the previous sec-
tions are simulated with NQD=1010 cm−2 at T=70 K.

Figure 5.11 shows the resulting C-V characteristics of both struc-
tures. Since the electric field in the intrinsic region is proportional

to the applied bias, the background capacitance of the diode mainly
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Figure 5.10: band sketch of a p-i-n diode with an embedded array
of QDs

appears as a constant background. In addition to this background,
peaks originating from the charging of the two ground state elec-

trons and the excited electrons appear.

A comparison between the C-V curves of the two samples demon-
strates once again the role of the surrounding bulk charge density.

For sample A, the peaks appear broader than for sample B, since
the distance between the n+ contact and the QDs is larger than in
sample B.

5.8 Summing-up

At this point a short summary is made of what has been found out
about self-consistent Coulomb effects in QD arrays.

The intra-QD charging energy, i.e., the Coulomb energy which is

necessary to put an additional electron on a QD is typically about
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Figure 5.11: C-V characteristics of p-i-n diodes as displayed in
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sample B (50 nm).

20 meV for InAs QDs with a size of 15 nm. It is almost independent
of the surrounding bulk charge distribution, and therefore of the
applied bias.

The Coulomb charging between different QDs in the QD layer has
a huge impact on the level energies of the QD ensemble. It strongly

depends on the surrounding bulk charge distribution which is given
by the material properties in the vicinity of the QDs, and it can be

manipulated, e.g., by applying a bias.

The impact of the strength of inter-QD Coulomb charging on

the QD level energies and the C-V characteristics can be classified
into three regimes. First, the bulk charge distribution surrounding

the QDs is closer than the distance between the QDs so that the

45



5 Charging effects

Coulomb interaction between the QDs is negligible. Then QDs are
electrically independent from each other, and the level energies are

only given by the charge on the QDs themselves. The discrete
density of states of the QDs is preserved.

If the range of inter-QD Coulomb interaction is about of the range

of the QD-QD distance, the repulsion between nearest neighbor QDs
leads to different level energies for inhomogeneously occupied QD

arrays. This nearest neighbor charging leads to a splitting of the
peaks in the C-V characteristics for large QD sheet densities.

A long range Coulomb interaction which ranges over a larger num-
ber of inhomogeneously charged neighbor QDs leads to a broadening

of the QD levels. The broadening of the QD levels also leads to a
broadening in the C-V curves.
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6 Fluctuations

It has been shown in the previous chapter that the inhomogeneous

QD charge distribution together with the inter-QD charging leads
to a broadening of the QD levels, and to a broadening in C-V char-
acteristics. So far, a temperature dependent broadening has not

been discussed explicitly. In addition, the QDs have been idealized
by assuming that they are all of identical size and are periodically

ordered. The latter is a strong approximation, since the QDs in-
vestigated here are “naturally” grown by self-organization. Such

growth processes are always subject to fluctuations, and QDs are
not equi-sized and deviate from a periodic ordering.

6.1 Temperature fluctuations

By changing the temperature, the statistics of the QD level occupa-
tion is modified. The crucial point which determines the inhomo-
geneity of the self-consistent QD charge distribution is the relation

between the thermal energy kBT and the QD level- and charging
energies. Additionally, the amount of screening by bulk electrons

changes with temperature. With lower temperature the amount of
screening is stronger, since the electrons follow potential fluctua-

tions in a more pronounced way than for higher temperatures.
The simulated C-V characteristics for T=4 K, 70 K, and 300 K for

NQD=1010 cm−2 and NQD=1011 cm−2 as well as the mean number of
electrons per QD are plotted in Fig. 6.1. The C-V characteristics for
4 K and NQD=1010 cm−2 shows up six sharp peaks, corresponding

to the discharging of the QDs initially occupied with six electrons.
The width of the peaks at a low temperature is mainly given by

the Coulomb interaction with the nearest neighbor QDs. QDs with
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Figure 6.1: C-V characteristics (solid lines) at T=4 K (blue), 70 K
(orange), and 300 K (red), for NQD=1010 cm−2 and

NQD=1011 cm−2, and the corresponding occupation of
the QDs (dashed lines); C-V curves are offset for clarity,

except the curve for 300 K and NQD=1010 cm−2.

all four neighbor QDs occupied with electrons are discharged at a
different bias than QDs where all four neighbors are already dis-

charged. For T=70 K the peaks are thermally broadened, but can
still be observed as peaks. At room temperature the peak structure

is totally gone. Instead, the discharging of the QD electrons appears
as a broad plateau. Here, the thermal energy kBT is larger than the

intra-QD as well as the inter-QD charging energy. Additionally, the
QDs are only occupied with about three electrons at zero bias, since

for high temperatures the degree of degeneracy is lower, thus the
quasi-Fermi level is lying lower relatively to the conduction band
edge.

With rising temperature, the peaks are shifted towards lower re-

verse biases. As mentioned above, the amount of screening by
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6.2 Structural Fluctuations

the surrounding bulk electrons is reduced with rising temperature,
which leads to higher QD level energies, and the discharging of the-

ses levels appears then at a lower reverse bias.

ForNQD=1011 cm−2 the peaks in the C-V characteristics are much
broader compared to NQD=1010 cm−2. Obviously, the increasing

inter-QD Coulomb charging effects due to the reduced distance be-
tween the QDs lead to the broadening. But still, each of the four lev-

els which are initially occupied can be identified. Interestingly, the
splitting between QD levels with an occupation larger and smaller
than 3.5 can be clearly observed. For T=70 K this spitting vanishes,

but the discharging of the four electron levels is still observable by
broadened peaks. Again, at 300 K thermal broadening lets the peak

structure disappear.

6.2 Structural Fluctuations

For most applications involving QDs, it is a key importance to have

equally sized QDs to achieve a well defined response to optical or
electronic signals, keeping losses as small as possible. Also a high de-

gree of ordering is often desired to achieve high QD sheet densities.
Unfortunately, the self-organized growth process of QDs is always
subject to fluctuations. The positions of the QDs deviate from a

periodic ordering, and the QDs are to some extend of different size.
Principally it should be possible to obtain information about growth

conditioned fluctuations by an analysis of C-V characteristics. Typ-
ically such fluctuations should lead to additional broadening effects

in the C-V characteristics, which makes a clear distinction from
Coulomb charging effects or thermal fluctuations necessary. The

simulations performed with the one-dimensional model in chapter 4
already provided a method to obtain the broadening of the QD
levels, but a differentiation between a broadening due to Coulomb

charging and the residual broadening due to structural fluctuations
was not possible. Therefore, an ensemble of uni-sized QDs but with

a random QD position in the QD layer is simulated first, before ad-
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ations.

ditional random QD size fluctuations are considered. Finally, also
samples from Kinetic Monte-Carlo (KMC) simulations are investi-

gated.

6.2.1 Random Position

Figure 6.2 shows the C-V characteristics for the pn diode as in the

previous chapter, but where the QDs have random positions in the
lateral directions. The positions have been chosen such that two

QDs never have the same position or overlap. As can be seen for
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the curve for 4 K, position fluctuations mainly have a broadening ef-
fect on the excited states. Obviously, with rising bias, and therefore

with rising inter-QD charging the position fluctuations are evened
out. When the excited states are discharged, the nearest neighbor
charging plays the major role which suffers from the position fluctu-

ation. With a long range inter-QD Coulomb charging it comes to an
averaging of the Coulomb repulsion of many neighbor QDs, leading

to more similar energies for all QD levels. With rising temperature,
thermal fluctuations dominate the shape of the C-V curve.

6.2.2 Random Size

Fluctuations in the QD size is investigated next. A shape depen-
dence of the QD level energies is hereby neglected, thus all QDs are

uniform. In addition to the random position fluctuations, a uni-
form random distribution of the QD size between a QD diameter of

13 nm and 17 nm is chosen. This corresponds to a relative width of
the fluctuation of ±13 %. The C-V characteristics of this ensemble

is shown in Figure 6.2. The size fluctuations lead to a broad plateau
for the excited states, but the two ground state electrons still appear
as a single broadened peak. This reflects the fact that the intrinsic

QD level energies of the excited states are more sensitive to size
fluctuations than the ground state electrons (see Fig. 3.2).

Using a random size distribution between 11 nm and 19 nm, which

corresponds to a fluctuation of ±27 %, leads to the formation of
plateaus even for the ground state. A qualitative comparison of the

C-V characteristics with experimental data which show up plateaus
for all QD levels (e.g. Ref. [Kap00a]) indicates that the typical size

fluctuations of InAs QDs is about ±30%.

Fig. 3.2 indicates that such a size fluctuation corresponds to an
energy fluctuation of about 70 meV (full width). In contrast, the
one-dimensional calculations in chapter 4 resulted in a broadening

of the spin-degenerate ground state level about twice as large than
obtained here. This indicates, that a significant part of the total

broadening of the QD levels originates from Coulomb charging. A
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6 Fluctuations

value of ±30 % for the size distribution as obtained for random
fluctuation in this section also agrees well with the typical size dis-

tribution as obtained from Kinetic Monte-Carlo growth simulations
[Mei02a].

6.2.3 Samples from KMC simulations

So far, C-V spectroscopy has been used to learn about the detailed
potential distribution, and to obtain information about the size dis-

tribution in QD arrays by a quantitative and qualitative compar-
ison of the simulations to experimental data. Within the three-
dimensional simulations, position fluctuations or fluctuations in the

size have been chosen randomly. Now for the first time QDs ensem-
bles taken from Kinetic Monte-Carlo (KMC) growth simulations as

performed in the group of Prof. Schöll at the TU Berlin are used.
Thus a full, consistent description of self-organized QDs including

growth and electronic properties has been achieved. This elucidates
the physics of self-assembled QDs.

These KMC simulations are limited to the initial, two dimensional

phase of growth, where the first layer is formed after the wetting
layer has been established. Hereby the strain field induces the size
ordering but it is related to the spatial ordering as well. Most im-

portant growth parameters are, as in the real fabrication, growth
temperature, the flux of the deposited material, and the total cover-

age given in units of monolayers (ML) of the substrate. A detailed
description of KMC can be found in Ref. [Mei02a].

The following context refers to sample A which has a coverage of

0.2 ML (or 20 % ), and sample B with a coverage of 0.25 ML (or
25 % ). Both samples were simulated for a growth temperature of

700 K and a flux of 0.01 ML/s. Figure 6.3 displays a topview of
the two 200 nm×200 nm samples, where the wetting layer and the
QDs are colored in blue and red, respectively. The size distribution

histograms are also shown. It should be noted that both samples
originate from the identical simulation, what explains the similarity

of the two structures. An estimate of the full width at half max-
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Figure 6.3: Two 200 nm×200 nm samples of QDs grown by
KMC simulations: left: coverage of 20 % (sample

A); right:coverage of 25 % (sample B) (by courtesy of
Roland Kunert, TU Berlin); For both samples a growth

temperature of 700 K, a deposition rate of 0.01 ML/s,
and a simulation time of 50 s have been used.

imum of these distributions is in agreement with the fluctuations
of 30% as found with the random fluctuations. Both samples have
a QD sheet density of 1.125×1011 cm−2. The shape fluctuations

of the QDs is neglected, thus the simulated QDs are approximately
replaced by cylinder shaped QDs matching the size of each QD lead-

ing to average QD diameters of 14.8 nm in sample A and 16.6 nm
in sample B. A QD height of 3 nm is used for all QDs.

Figure 6.4 shows the C-V characteristics of sample A and B at

T=70 K and the corresponding occupation of the QDs with elec-
trons. Both simulated C-V curves are rather similar, but sample B
tends to have a higher QD occupations since the QDs are in average

little larger than in sample A. The discharging of the (000) ground
state appears as a modulation of the C-V characteristic, providing

interesting information about the QD ensemble. The discharging
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Figure 6.4: C-V characteristics at T=70 K for the samples A and
B as shown in Fig. 6.3 and the corresponding mean oc-

cupation of the QDs

of the second last electron is ruled by the inter-QD charging. The
fractional occupation in fractions of one quarter is observable very
clearly from the C-V curve, and the inter-QD charging with the

four nearest neighbor QDs as explained in the previous chapter has
been identified as the responsible mechanism. As a consequence,

the positions of the QDs must be correlated such that each QD has
effectively four nearest neighbors. This is manifested by a look at

the samples as shown in Fig. 6.3.
When discharging the last QD electron, this inter-QD charging is

not resolved anymore, due to the reduced screening and the long

range of the inter-QD charging.
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7 Remote Coulomb scattering

The free bulk carrier distribution in the vicinity of QDs not only in-

fluences their energy levels by charging effects as shown in chapters
5 to 6. Coulomb scattering between QD electrons and continuum

electrons over some distance from the QDs can lead to an energy
relaxation or excitation in QDs. The energy difference between two

QD levels i and j is hereby transferred to the remote continuum
states. Similar investigations of energy relaxation have been made
on He+ ions near metal surfaces [Ech85, Fon93, Mon95, Caz98].

Here, continuum states can originate from the wetting layer, a quan-
tum well (2DEG), a doped bulk region, or a metal contact (3DEG).

Figure 7.1 shows the sketched band profile of a QD with the energy
levels Ei and Ej, a quantum well and doped bulk region with the

continuum states k and k′ and a distance d to the QD.

This chapter proposes a theoretical description of the remote Cou-
lomb scattering [Wet03a]. First, the scattering probabilities be-
tween an occupied QD state and an occupied continuum state into

an empty QD state and an empty continuum state are calculated.
The effective Coulomb potential is considered as a time-dependent

perturbation and includes static screening effects within the De-
bye screening approach, taking into account the three-dimensional

Poisson equation. The total probability is then obtained by a multi-
dimensional numerical integration over the continuum k-space.

7.1 General

The transition probability per unit time between the QD states i

and j, and the continuum states k and k′ is calculated by Fermi’s
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7 Remote Coulomb scattering

E i

E j

k’

k

 d 

∞ ∞

2DEG

3DEG

quantum dot

Figure 7.1: sketched band profile of a QD with the two energy lev-

els Ei and Ej, a remote quantum well confined by in-
finite barriers (2DEG) and a remote bulk region, semi-

confined by an infinite barrier (3DEG) with the distance
d to the QD; The arrows indicate the remote Coulomb
scattering process leading to an energy relaxation in the

QD (Auger-process) [Wet03a].

Golden Rule

Wik→jk′ =
2π

~
|Mik→jk′|2δ(Eini − Efin), (7.1)

where Eini = Ei + Ek and Efin = Ej + Ek
′ are the initial and final

energies. The matrix element is given by

Mik→jk′ =

∫∫

d3rd3r′ψ∗
k

′(r)ψ∗
j (r

′)U(r, r′)ψi(r
′)ψk(r), (7.2)

where ψi, ψj , ψk and ψk
′ symbolize the respective wave functions

[Lan91]. U represents the effective Coulomb potential which can be

written in a Fourier representation as

U(r, r′) =
1

A

∑

q′

U(q′, z, z′)eiq′(rq−r′

q
), (7.3)
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7.2 Effective Coulomb potential

with

U(q′, z, z′) =
e2e−q′(z−z′)

2q′ε0εrεe(q′, z, z′)
. (7.4)

Here, εr and ε0 are the relative and absolute permittivities, e > 0
is the elementary charge, A is the normalization area, and q ′ is a
two-dimensional wave vector with |q ′| = q′. rq denotes the lateral

position, and z is the vertical position. The dielectric function εe
accounts for static screening effects of free electron charges which

is calculated in the following section. The evaluation of the ma-
trix elements (7.2) depends on the QD wave functions which de-

pend crucially on their shape. Since the wave functions ψi(r) and
ψj(r) are orthogonal, the lowest order contribution of the integral
results from the dipole moment −ea of the effective charge density

−eψ∗
j (r)ψi(r). This transition dipole moment is approximated by

two localized charges of opposite sign
∫

d3r′ψ∗
i (r

′)U(r, r′)ψi(r
′) ≈ U(r,

a

2
) − U(r,−a

2
) , (7.5)

where the center position of the QD is chosen as r ′ = 0. The total

transition probability is then obtained from an integration over the
continuum states

Wi→j =

(

2Ω

(2π)n

)2 ∫∫

dnkdnk′Wik→jk′fk[1 − fk′], (7.6)

where fk and fk′ are the Fermi-distribution functions of the initial
and final continuum states. Here, n symbolizes the dimension of the

continuum electron gas and Ω is a volume of dimension n (n = 2 and
Ω = A for a two-dimensional electron gas and n = 3 and Ω = AL

for a three-dimensional electron gas).

7.2 Effective Coulomb potential

Before the formulas for the remote Coulomb scattering matrix ele-
ments can be derived, expressions for the dielectric function εe are

needed. Therefore, the three-dimensional potential distribution for
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7 Remote Coulomb scattering

a point-like charge in the presence of a 2DEG and a semi-confined
3DEG is calculated.

7.2.1 2DEG

Since the dielectric function will be a function of the vertical position
and the two-dimensional Fourier component, the three-dimensional

Poisson equation is solved in the two-dimensional Fourier space.
The Fourier components of the Poisson equation for the potential
Uind induced by the charge e positioned at z = 0 read as

−q2Uind(q, z) + ∂2
zUind(q, z) = −e

2δn2D(q)

ε0εr
δ(z − d). (7.7)

Here, δn2D denotes the corresponding induced charge in the 2DEG

layer positioned at z = d. The continuous solution of Eqn. (7.7)
is given by

Uind(q, z) =
e2

2ε0εr
δn2D(q)e−q|z−d|. (7.8)

Within the Debye screening approach, the induced sheet charge can

be expressed as

δn2D(q) =
∂n2D

∂EF
[Uind(q, d) + Uext(q, d)] , (7.9)

with the external potential originating from the charge e at z = 0

Uext(q, d) =
e2e−qd

2qε0εr
. (7.10)

EF denotes the Fermi level. Assuming a narrow quantum well with
a single quantization energy E2D, the 2DEG electron density can be

expressed as [Sch01]

n2D =
m∗kBT

π~2
ln

(

1 + exp

(

EF − E2D

kBT

))

. (7.11)

Inserting Eqn. (7.11) into Eqn. (7.9) now leads to the dielectric

function for a 2DEG as

ε−1
e (q, 0, d) =

Uext(q, d) + Uind(q, d)

Uext(q, d)
=

[

1 +
λ2D

q

]−1

, (7.12)
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7.2 Effective Coulomb potential

where the Debye screening wave number for a 2DEG is given by
[And82]

λ2D =
e2m∗

2πε0εr~2

[

1 + exp

(

E2D − EF

kBT

)]−1

. (7.13)

7.2.2 3DEG

Analogously to the 2DEG the Fourier components of the Poisson
equation are

−q2Uind(q, z) + ∂2
zUind(q, z) = −e

2δn3D(q, z)

ε0εr
Θ(z − d), (7.14)

where a constant electron density n3D for z > d and zero electron
density for z < d has been assumed. For z > d the induced electron

density is given within the Debye approximation as

δn3D(q, z) =
∂n3D

∂EF
[Uind(q, z) + Uext(q, z)] . (7.15)

Using the formula for the bulk electron density (see Eqn. 3.5)

n3D = 2

(

m∗kBT

2π~

)3/2

F1/2

(

EF −Ec

kBT

)

(7.16)

the bulk Debye screening wave number can be written as [Lan91]

λ3D =

√

e2

ε0εr

∂n3D

∂EF
=

√

√

√

√

√

e2 n3D

ε0εr

F−1/2

(

EF−Ec

kBT

)

F1/2

(

EF−Ec

kBT

) . (7.17)

Solving Eqn. (7.14) using Eqn. 7.15 and Eqn. 7.10 leads to

Uind(q, 0 < z < d) =
e2eq(z−2d)

2qε0εr

[

2q

q +
√

λ2
3D + q2

− 1

]

Uind(q, z > d) =
−e2e−qz

2qε0εr
+

e2e−qd+
√

λ2
3D+q2(d−z)

ε0εr

[

q +
√

λ2
3D + q2

] . (7.18)
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7 Remote Coulomb scattering

Note that Uind is continuously differentiable at z = d. Equation
(7.18) results exactly in the potential distribution as obtained from

the mirror charge method for λ3D → ∞ (ideal lead). With the
external potential

Uext(q, z) =
e2e−q|z|

2qε0εr
, (7.19)

the relevant dielectric function for z > d can be expressed as

ε−1
e (q, 0, z > d) =

2qe−(z−d)(
√

λ2
3D+q2−q)

q +
√

λ3D + q2
. (7.20)

7.3 Remote quantum well

Inserting the static dielectric function (7.12) for a 2DEG into Eqn.
(7.2) and using plane waves for the initial and final quantum well
wave functions leads to the matrix element for the remote Coulomb

scattering with a 2DEG

∣

∣

∣
M2DEG

ik→jk′

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∣

∫

A

e−ik′
rq

√
A

∑

q′

e2e−q′d+iq′rq

2ε0εrA(q′ + λ2D)

×
[

eq′ az
2

+iq′
a

q

2 − e−q′ az
2
−iq′

a
q

2

] eikrq

√
A
d2rq

∣

∣

∣

∣

2

.

(7.21)

Integration in real space (see appendix A.1) gives the final form of

the matrix element

∣

∣

∣
M2DEG

ik→jk′

∣

∣

∣

2

=
e4e−2qd [cosh(qaz) − cos(qaq)]

2A2(ε0εr)2(q + λ2D)2
, (7.22)

with the momentum transfer q = |q| = |k − k′| and the lateral and
vertical part of the dipole moment aq and az, respectively.

Note that the matrix element decreases exponentially with the
distance and the momentum transfer which is determined by the

energy transfer and the parabolic band dispersion in the well.

60



7.4 Remote bulk carriers

7.4 Remote bulk carriers

Using plane waves for the bulk electron wave functions, and as-
suming an infinitely high barrier at z = d (Fig. 7.1) leads to the
boundary conditions ψk(d) = 0 and ψk

′(d) = 0. Inserting the static

dielectric function for z > d (7.20) into Eqn. (7.2) leads to

∣

∣

∣
M3DEG

ik→jk′

∣

∣

∣

2

=
1

A2

∣

∣

∣

∣

∣

∣

∞
∫

d

dz

√

2

L
sin(k′z(z − d))

e2

2ε0εrq

2qe−qd+
√

λ2
3D+q2(d−z)

q +
√

λ2
3D + q2

[

eq az
2

+iq
a

q

2 − e−q az
2
−iq

a
q

2

]

√

2

L
sin(kz(z − d))

∣

∣

∣

∣

∣

2

,

(7.23)

where the integration in the lateral directions has already been per-
formed. An integration in the z-direction (see appendix A.2) results

an expression for the matrix element

∣

∣

∣
M3DEG

ik→jk′

∣

∣

∣

2

=
2e4e−2qd [cosh(qaz) − cos(qaq)]

(AL)2(ε0εr)2

λ2
3D + q2

(
√

λ2
3D + q2 + q)2

[

1

p2
z + λ2

3D + q2
− 1

q2
z + λ2

3D + q2

]2

,

(7.24)

with qz = k′z − kz and pz = k′z + kz and the momentum change in

lateral direction q.
Now all expressions are ready for a numerical evaluation of the

remote Coulomb scattering probabilities for different device geome-
tries.
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8 The role of Coulomb scattering

The issue of carrier relaxation in semiconductor QD states has at-
tracted much attention during the last decade since it is of particu-

lar scientific interest and of central importance for the development
of fast optoelectronic devices such as QD laser diodes (see Ref.

[Gru00b] and references therein), memory devices [Yus97, Fin98,
Koi00] and photoelectronic devices [Böd99, Shi99, Kro03]. Time-

resolved photoluminescence spectroscopy with picosecond [Ohn96,
Adl96, Gro97] and subpicosecond resolution [San97, Mor99b, Zha00]
as well as picosecond and subpicosecond optical pump-probe ex-

periments [Fel01, Sos98] have been applied to obtain information
about the carrier relaxation in various III-V QD systems. At high

excitation densities, carrier-carrier Coulomb scattering (Auger ef-
fect) leads to fast and efficient filling of the QD states, whereas the

carrier-phonon scattering is thought to be the dominant relaxation
path at low densities [Ver00, Fer99, Mag02b, Mag02a]. The mea-
sured time-constant for low-density excitonic carrier relaxation has

been reported to vary from about 40 ps [Mal01] to about 150 ps
[Hei00].

It has been predicted that an electron-phonon scattering process

or multi-phonon process [Mag02c] should suffer from phonon bottle-
neck effect [Boc90] due to the discrete energy dispersion of QDs and

optical phonon modes. A strict bottleneck has never been observed,
but depending on the detailed shape of the QDs, the relaxation can
be quenched to a ns time scale [Hei01]. Such a bottleneck effect

can be overcome by a Coulomb scattering process with continuum
states where energy conservation can easily be fulfilled.

The Coulomb scattering with electrons located in the wetting

layer has been subject of intense experimental [Ray00, Mor99a],
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8 The role of Coulomb scattering

wetting layer

doped bulk

GaAs

AlGaAs

2DEG

metal

DC

BA

Figure 8.1: sketched band diagrams, showing the Coulomb scatter-
ing with the wetting layer (A), a remote two-dimensional
electron gas (B), a remote doped bulk region (C) and a

metal contact (D)

as well as theoretical [Usk97, Usk98] research, and the dependence
of the capture and emission rates on the local electron density is

well known. For example, the hysteresis and the dynamical bista-
bility of the memory structure as reported in Ref. [Yus97] can be
explained by Auger-type electron capture and emission [Rac02b],

using the Auger coefficients found in the literature [Ray00, Usk98],
but a phonon process could not be precluded. For such nonvolatile

memory structures a very slow electron kinetics is essential, to pre-
serve the occupation of the QDs over a long time range.

In some devices it can occur that due to the depletion of the local

electron density at the position of the QDs by local electric fields
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8.1 The wetting layer

[Fry00, Kap00b], Coulomb scattering with the local wetting layer
can be excluded. Electrons at some distance from the QDs may

then be the next potential scattering partners for the QD electrons.
In addition, Ref. [San02] reports of an increase of the electron
relaxation with increasing photo-generated carrier injection for QDs

without the existence of a wetting layer. This indicates that the
dimension of the continuum electrons is not relevant, and scattering

with bulk electrons can come into play.

Therefore, the role of Coulomb scattering with continuum elec-

trons located not only in the wetting layer (Fig. 8.1: A), but
also with remote electrons [Wet03a, Wet04] is investigated. These

electron densities can be defined by a two-dimensional electron gas
(2DEG) at some distance from the QDs (B), a doped region (C) or
a metal contact (D) (3DEG). With the numerical evaluations of the

scattering probabilities as derived in chapter 7, the role of Coulomb
scattering in QD devices is discussed for different device configura-

tions. According to the geometry and the size of InAs QDs which
have a typical base length of about 10 nm and a strong quantization

in z-direction, a transition dipole moment of ax=5 nm, ay=0 nm,
and az=0 nm is used.

In the following context an electron relaxation in the QD due to

Coulomb scattering is called “Auger effect”, where an energy ab-
sorption in the QD is called “impact excitation”. One may also

call the latter process impact ionization which is less accurate since
the QD does not change its total charge. The nomenclature is his-

torically motivated from the Auger effect and impact ionization of
semiconductor impurity atoms [Sch87, Lan91].

8.1 The wetting layer

First, calculations of the Auger and impact excitation probabilities

as a function of the electron density per unit area in the wetting
layer are performed, where the electrons confined in the wetting

layer are approximated as a two-dimensional electron gas with a
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Figure 8.2: Auger (blue) and impact excitation (red) probabilities
as a function of the 2DEG density at d=0 nm (wetting

layer): solid lines: ∆E=30 meV, 77 K; dashed lines:
∆E=30 meV, 300 K; dash-dotted lines: ∆E=80 meV,

77 K; dash-dotted lines: ∆E=80 meV, 300 K; dash-
double-dotted lines: ∆E=80 meV, 77 K, without screen-

ing [Wet03a]

vanishing distance d=0 nm from the QDs. The effective mass of

the wetting layer material is m∗
InAs=0.023 m0. Different QD level

spacings ∆E = |Ej − Ei| are used. Figure 8.2 shows the resulting

probabilities for ∆E=30 meV and 80 meV at 77 K and 300 K. The
Auger probabilities hardly depend on ∆E and the temperature.
For densities less than 1010 cm−2 the Auger probability is a linear

function of the density. A fit Wi→j = T 2D
Augn2D for low densities leads

to an Auger relaxation coefficient of T 2D
Aug =60 cm2s−1. This value is

about one order of magnitude larger than the corresponding value
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8.2 Remote 2DEG

reported in Ref. [Usk98] (1 cm2s−1). This deviation can be explained
by the different values for the transition dipole moment and the

effective mass used in this work. Note that the experimental Auger
capture coefficients of Ref. [Ray00] (10−8 cm4s−1) are also much
larger than in Ref. [Usk98] (2×10−12 cm4s−1). For large densities,

i.e., when the 2DEG becomes degenerate, the density dependence
becomes nonlinear, and the probabilities are even reduced. Due to

the parabolic bands in the 2DEG the momentum change q is reduced
for high densities and for a fixed energy transfer ∆E, leading to

smaller values for the matrix element (7.22) for d=0 nm. A similar
behavior is found in Ref. [Boc92], where screening for the wetting

layer has been described dynamically.

The corresponding impact excitation probabilities are also dis-

played in Fig. 8.2. They depend strongly on ∆E and T . The ratio
between the impact excitation and Auger probabilities is given by

the Boltzmann factor exp(−∆E/(kBT )). Latter is in agreement
with a detailed balance consideration on the transition probabili-

ties between equilibrium distributed QD states.

The Auger probability for ∆E=80 meV and T=77 K but neglect-

ing screening effects is also plotted in Fig. 8.2. Obviously, screening
effects play only a role for densities typically larger than 1010 cm−2.

Attributing to phonon-assisted relaxation mechanism a time con-
stant of about 150 ps [Hei00], Coulomb scattering with wetting layer

electrons gains relevance if the electron density injected in the wet-
ting layer is larger than about 109 cm−2.

8.2 Remote 2DEG

A remote two-dimensional electron gas at some distance d from the
QDs is considered next. Such a setup occurs for example in appli-
cations as QD-based transistors where the conductance of a 2DEG

channel in the vicinity of the QDs is determined by the occupation
of the QDs [Yus97, Shi99]. High Coulomb scattering rates between

the QDs and the 2DEG would lead to a reduction of the lifetime
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Figure 8.3: Remote Auger probabilities as a function of the dis-

tance of the 2DEG from the QDs for n2D =1011 cm−2,
∆E =30 meV (solid line), ∆E =50 meV (dashed line)

and ∆E =80 meV (dotted line) at 77 K

of charged QD states, and therefore would influence the quality of
such a device.

Figure 8.3 shows the remote Auger probabilities as a function of
the distance d between the QDs and the 2DEG, for n2D = 1011 cm−2,
m∗

GaAs=0.06 m0, T=77 K and ∆E=30 meV, ∆E=50 meV and

∆E=80 meV. The Auger probabilities decrease exponentially with
d, depending on the energy transfer and the corresponding momen-

tum change q. Coulomb scattering is already reduced by about three
to five orders of magnitude for d=20 nm. Compared to the size of

the QDs, the Coulomb scattering with a 2DEG can be attributed a
rather local character.

For example, in structures as reported in Ref. [Shi99], where the

distance between the QDs and the 2DEG is rather small (d=10 nm)
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Figure 8.4: Remote Auger probabilities for n2D =1011 cm−2 as a

function of the temperature for d=0 nm, 10 nm, and
20 nm and for ∆E=80 meV and m∗

GaAs=0.06 m0

the results indicate a strong Coulomb scattering. On the other
hand, a life time limitation of charge QD states due to scattering

with the 2DEG can be excluded for structures as in Ref. [Yus97],
where the distance d=200 nm is rather large.

The temperature dependence of the Auger relaxation probabili-

ties is often neglected [Fel01], but its theoretical knowledge can help
to clarify capture and relaxation mechanisms in QDs. With the de-

tailed calculations performed in this work also this aspect can be
included. Figure 8.4 shows the Auger probabilities as a function
of T for d=0 nm, 10 nm, and 20 nm with m∗

GaAs = 0.06 m0. In-

terestingly, the probabilities depend on the temperature and the
dependence rises with d, which can be explained by the different

momentum change of the thermally occupied continuum states. A
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similar temperature behavior has been found for example by time-

resolved photoluminescence spectroscopy in Ref. [Ohn96].

8.3 Remote 3DEG

Next, the scattering with bulk electrons at some distance from

the QDs is considered. These can be electrons of an n-doped re-
gion of a diode structure or a metal contact. Figure 8.5 shows
the Auger probability as a function of the bulk electron density

n3D for ∆E=30 meV (solid line), ∆E=50 meV (dashed line) and
∆E=80 meV (dotted line) with d=0 nm at 77 K. As for the 2DEG,

the Auger probabilities are linear in n3D for low densities. Here, the
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Figure 8.6: The Auger probabilities (blue) for n3D=1016 cm−3,
m∗=0.06 m0) and the impact excitation probabilities

(red) for n3D=1023 cm−3, m∗=m0) as a function of d for
∆E=30 meV (solid line), ∆E=50 meV (dashed line),

and ∆E=80 meV (dotted line) at 77 K

fitted Auger coefficients T 3D
Aug = Wi→j/n3D depend on the QD level

spacing. The values T 3D
Aug=4.7×10−8 cm3s−1, 1.9×10−8 cm3s−1 and

1.0×10−8 cm3s−1 are obtained for ∆E=30 meV, ∆E=50 meV, and
∆E=80 meV, respectively. For high electron densities a deviation

from this linear behaviour occurs, since pairs of occupied and unoc-
cupied continuum states can only be found near the Fermi level. The

resulting Auger probability neglecting screening effects is also plot-
ted for ∆E=80 meV, showing that screening is only important for
densities above 1017 cm−3. Therefore, if QDs are embedded within

doped buffer layers with doping concentrations above 1016 cm−3,
scattering times of about 100 ps or even less are expected, and

Coulomb scattering gains relevance for such concentrations. Exper-
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imentally for example, a relaxation time of 17 ps has been found for

an optically generated electron excitation density of 2.3×1016 cm−3

[San97].

The dependence of the Auger probabilities on the distance d be-

tween the QD and the bulk electrons is investigated next. The dis-
tance can be defined for example by the bias dependent depletion
layer width in a pn diode. The resulting curves for n3D=1016 cm−3,

m∗
GaAs =0.06 m0, ∆E =30 meV (solid line), ∆E =50 meV (dashed

line), and ∆E =80 meV (dotted line) at 77 K are shown in Fig. 8.6.

Compared to the remote 2DEG scattering, momentum in the 3DEG
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can additionally be changed in the third dimension. For low d, the
distance dependence is high, similar to the 2DEG, but for large
distances the dependence becomes weaker on a low level.

QDs embedded in a pn diode, where the QDs are positioned within
3×1016 cm−3 n-doped GaAs layers similar to the device investigated

in the chapters 3 to 5 shall be another example. Such a device
has been investigated in DLTS experiments, and a level spacing

between the ground and excited states of ∆E =82 meV with an
emission time of 62 ms at T=40 K has been observed [Kap00a].
The emission from the QD ground state level is hereby dominated

by an excitation into the excited state, from which the electron
escapes into the continuum by a fast tunneling process. Taking

into account the Boltzmann factor between excitation and relax-
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ation processes a time scale for the relaxation process from the
excited state into the ground state of about 3 ps can be estimated.

Scattering with wetting layer electrons can be excluded since the
wetting layer is not occupied due to the electric field in the deple-
tion layer. From Fig. 8.2 one can see that a wetting layer density

of about n2D =1010 cm−2 would be necessary to obtain a ps time
scale. From the parabolic band bending and a QD ground state

energy of 200 meV below the conduction band edge an extension
of the depletion layer of d=90 nm measured from the QD layer can

be estimated. The results obtained so far supply an electron relax-
ation time scale of milliseconds or above for a Coulomb scattering

in this device. This is much too slow to explain the observations
made in the experiments, indicating a phonon mediated emission
process. Neglecting the strong electric field in growth direction in

the depletion layer (about several tens of kV/cm) and the simpli-
fications made for the QD band structure in the model used here,

should also be notified.

Another interesting point is how a metal contact with its high

electron density limits the lifetime of charged QDs. Therefore, the
impact excitation probabilities are also displayed in Fig. 8.6 for

n3D=1023 cm−3 which is a typical electron density in metal con-
tacts, and m∗=m0. Transition times of the order of an hour for

∆E=80 meV and d=400 nm are obtained. This goes well with the
observation of bistable behavior in QD structures on this time scale
[Yus97, Rac02b, Rac03], where it is necessary that scattering pro-

cesses with the metal back contact do not lead to a fast electron
kinetics.

So far all calculations have been made for a fixed lateral transition

dipole moment, but the results can easily be rescaled for other QDs
with other corresponding transition dipole moments. Figure 8.7
shows the dependence of the Auger probability on the transition

dipole moment −ea which can be well approximated by a quadratic
law resulting from the Taylor expansion of Eqn. (7.24). The Taylor

expansion also explains that the transition probabilities are enlarged
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by a factor of 2 for vertical dipole moments (in growth direction)
compared to the lateral dipole moments studied throughout this

work.
Figure 8.8 shows the temperature dependence of the Auger prob-

abilities for n3D=1016 cm−3, m∗=0.06 m0, d=0 nm, 30 nm, 60 nm,

and 90 nm. In contrast to the 2DEG (Fig. 8.4), where the tem-
perature dependence increases with the distance to the continuum

electrons, the temperature dependence is similar for all distances
for a 3DEG. The values for the Auger probabilities are reduced to

about one order of magnitude for very low temperatures, compared
to room temperature. The temperature dependence of the Auger

probabilities clearly depends on the dimension of the continuum
electrons.
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Summary

In summary, Coulomb charging and Coulomb scattering in quantum
dot (QD) devices has been studied.

In order to investigate self-organized QDs by capacitance-voltage
(C-V) spectroscopy, a deep knowledge of the charge and potential

distributions is necessary. Here, feasible models have been proposed
to perform numerical self-consistent simulations of the charge and

potential distribution in QD arrays, resulting in theoretical C-V
characteristics.

A self-consistent one-dimensional model has been proposed in

chapter 3 where the QDs have been modeled by a homogeneously
broadened density of states. With this model is was possible to
obtain values for the electronic level energies of self-organized InAs

QDs and their broadenings by a fit to experimental data in chap-
ter 4. An energy of 211 meV and a broadening of 141 meV has been

found for the spin-degenerate QD ground state of InAs QDs on a
GaAs substrate.

The sophisticated three-dimensional model also proposed in chap-

ter 3 allows for a three-dimensional calculation of the potential and
charge distribution in a QD device. To make a three-dimensional
self-consistent simulation numerically feasible, the QDs have been

treated as a linear perturbation of a one-dimensional approxima-
tion, where the QDs appear as a sheet charge in the semiconductor

equations. Despite this crude approximation, this model allows for
accurate three-dimensional simulations of QD devices with large QD

arrays.

The simulations performed in chapter 5 demonstrated the detailed
Coulomb charging effects that occur in a pn device with embedded

QDs. Where the charging energy resulting from two electrons in the
same QD is rather independent from the bulk charge distribution
in the vicinity of the QDs, the latter has a strong impact on the

Coulomb repulsion between adjacent QDs. The interplay between
depletion of the surrounding bulk material and the discharging of

the QDs leads to a complicated non-linear behavior of the QD en-
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ergy levels during a bias sweep. Additionally, the inter-QD Coulomb
charging together with the inhomogeneous QD charge distribution

can lead to a broadening of the discrete single QD density of states.

A comparison between the three-dimensional and one-dimensional
charging energies has shown that for QD sheet densities of 1010 cm−2

and an occupation of two or less electrons per QD one dimensional
models can be applied. For larger QD occupations, or large QD

sheet densities, one-dimensional models fail.

Thermal broadening and structural fluctuations have been inves-
tigated in chapter 6. The three-dimensional simulations allow to

investigate Coulomb mediated broadenings and position or size fluc-
tuations independently. It has been shown that the size fluctuations

are about 30 % in self-organized InAs QDs. According to the results
of 8-band k · p calculations, this size fluctuations correspond to an

intrinsic energy level broadening of the QD ground state of 70 meV.
This value is just half the value found with the one-dimensional

model for the spin-degenerate ground state electrons.

Samples obtained from Kinetic Monte-Carlo simulations have ad-
ditionally been investigated. Even marginal differences in the size

distribution can be resolved by C-V spectroscopy. It has been shown
that the Coulomb forces between the QDs can lead to information

about the position correlations in a QD sample.

The nature of the electron kinetics in QDs is one of the main
topics of recent research. Energy relaxation and excitation can be

mediated by phonon assisted processes or electron-electron scatter-
ing, and a distinction between these two mechanisms is often not

easy. So far, only Coulomb scattering with the continuum electrons
of the local wetting layer has been investigated. Depending on the

device structure also scattering with other electrons surrounding the
QDs can come into play.

Therefore, Coulomb scattering between QD electrons and remote

two- and three-dimensional continuum states has been described
theoretically in chapter 7. The dependence on the electron density,

the distance between the electron systems and the temperature de-
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pendence has been investigated numerically in chapter 8. The re-
sults show a good agreement with several experiments. Typically,

Coulomb scattering in QD devices has a range of tens of nanome-
ters.

Outlook

When introducing new computational methods as has been done

in this work, there will naturally be residual aspects for further
investigations. Some of them are briefly outlined here.

Similar to the fit to experiments which has been performed in this

work with the one-dimensional model to find values for the QD en-
ergy levels and their broadenings, a fit with the three-dimensional

model as proposed in this work should be made to investigate struc-
tural fluctuations in different QD devices even more quantitatively.

Such fits are of course rather expensive, but should be possible with
sophisticated parallelized computer codes.

Conceivable are also other QD materials which can be charged
with more carriers than InAs/GaAs QDs such as Si/Ge QDs. For
such QDs materials many-particle charging effects have already

been observed experimentally [Kap00b] which are covered by the
model proposed in this work.

Introducing a time scale for the microscopic statistical capture
and emission processes, e.g., using probabilities from literature, the

effort for time-resolved simulations should be manageable compared
to the stationary calculations performed here.

Additionally, optical non-resonant and resonant excitations in
combination with capacitance spectroscopy should be considered.
This would open the possibility to charge QDs selectively, and to

quantify size distributions within QD ensembles in much more de-
tail.

With the theoretical description of Coulomb scattering of QDs
with the surrounding electron density as has been done in this work,

a clear separation of phonon and Coulomb mediated energy relax-
ation in QDs is possible. This can help to gather insight into the
phonon modes in QDs and their coupling to electrons.
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A Coulomb matrix elements

A.1 QD-2DEG

Integration of Eqn. (7.21)
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in the lateral two-dimensional variables, using the relation [Lan91]
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Equation (A.4) results directly into Eqn. (7.22)
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A.2 QD-3DEG

To obtain the final expression for the matrix element for the QD-
3DEG Coulomb scattering an integration in z-direction has to be

carried out additionally. Rewriting Eqn. (7.23)

∣

∣

∣
M3DEG

ik→jk′

∣

∣

∣

2

=
1

A2

∣

∣

∣

∣

∣

∣

∞
∫

d

dz

√

2

L
sin(k′z(z − d))

e2

2ε0εrq

2qe−qd+
√

λ2
3D+q2(d−z)

q +
√

λ2
3D + q2

[

eq az
2

+iq
a

q

2 − e−q az
2
−iq

a
q

2

]

√

2

L
sin(kz(z − d))

∣

∣

∣

∣

∣

2

,

(A.6)

and introducing the variable y = z − d leads to
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The integral is given by
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Substituting Eqn. (A.8) into Eqn. (A.7), with Eqn. (A.3), and in-
troducing

qz = k′z − kz and pz = k′z + kz, (A.9)

leads to Eqn. (7.24)
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Physical Constants

Symbol Description Value

~ Planck constant 1.05458×10−34 Js

kB Boltzmann constant 1.38006×10−23 J/K

e Elementary charge 1.60219×10−19 C

m0 Electron rest mass 9.109381×10−31 kg

ε0 Vacuum permittivity 8.85418×10−12 F/m

Material properties

Symbol Description Value

εGaAs Relative permittivity of GaAs 13.18

m∗
n,GaAs Electron effective mass in GaAs 0.063 m0

m∗
l,GaAs Light hole effective mass in GaAs 0.076 m0

m∗
h,GaAs Heavy hole effective mass in GaAs 0.5 m0

Eg,GaAs Band gap in GaAs 1.424 eV

µn,GaAs Electron mobility in GaAs 7900 cm2/Vs

µp,GaAs Hole mobility in GaAs 450 cm2/Vs

εInAs Relative permittivity of InAs 15.15

m∗
n,InAs Electron effective mass in InAs 0.0239 m0

m∗
l,InAs Light hole effective mass in InAs 0.026 m0

m∗
h,InAs Heavy hole effective mass in InAs 0.35 m0

Eg,InAs Band gap in InAs 0.354 eV

(Source: [Hel82]. all values for room temperature)
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G. Böhm and G. Abstreiter. Electrical detection of opti-
cally induced charge storage in self-assembled InAs quan-
tum dots. Appl. Phys. Lett. 73, 2618 (1998).

[Fon93] T. Fondén and A. Zwartkruis. Analysis of Auger spectra

from a He+ ion near a metal surface. Phys. Rev. B 48,
15603 (1993).

[Fry00] P. W. Fry, J. J. Finley, L. R. Wilson, A. Lemaitre, D. J.
Mowbray, M. S. Skolnick, M. Hopkinson, G. Hill and J. C.

Clark. Electric-field-dependent capture and escape in self-
assembled InAs/GaAs quantum dots. Appl. Phys. Lett.

77, 4344 (2000).

[Gro97] S. Grosse, J. H. H. Sandmann, G. von Plessen,

J. Feldmann, H. Lipsanen, M. Sopanen, J. Tulkki and

91



J. Ahopelto. Carrier relaxation dynamics in quantum
dots: Scattering mechanisms and state-filling effects.

Phys. Rev. B 55, 4473 (1997).

[Gru97] M. Grundmann and D. Bimberg. Theory of random pop-

ulation for quantum dots. Phys. Rev. B 55, 9740 (1997).

[Gru00a] M. Grundmann. Feasibility of 5 Gbit/s wave-

length division multiplexing using quantum dot lasers.
Appl. Phys. Lett. 77, 4265 (2000).

[Gru00b] M. Grundmann. The present status of quantum dot lasers.
Physica E 5, 167 (2000).

[Hei00] R. Heitz, H. Born, A. Hoffmann, D. Bimberg,

I. Mukhametzhanov and A. Madhukar. Resonant Raman
scattering in self-organized InAs/GaAs quantum dots.

Appl. Phys. Lett. 77, 3746 (2000).

[Hei01] R. Heitz, H. Born, F. Guffarth, O. Stier, A. Schliwa,

A. Hoffmann and D. Bimberg. Existence of a phonon
bottleneck for excitons in quantum dots. Phys. Rev. B

64, 241305(R) (2001).

[Hel82] K.H. Hellwege and O. Madelung, editors. Landolt-Börn-

stein: Numerical Data and Functional Relationships in
Science and Technology, volume III/17a. (Springer,

Berlin, Heidelberg, New York, 1982).

[Kap98] C. M. A. Kapteyn, F. Heinrichsdorff, O. Stier, M. Grund-

mann and D. Bimberg. Electron emission from InAs
quantum dots. In D. Gershoni, editor, Proc. 24th In-

ternational Conference on the Physics of Semiconductors
(ICPS-24), Jerusalem 1998, page 1339, World Scientific,

1998.

[Kap99] C. M. A. Kapteyn, F. Heinrichsdorff, O. Stier, R. Heitz,

M. Grundmann, N. D. Zakharov, D. Bimberg and

92



P. Werner. Electron escape from InAs quantum dots.
Phys. Rev. B 60, 14265 (1999).

[Kap00a] C. M. A. Kapteyn, M. Lion, R. Heitz, D. Bimberg, P.N.
Brunkov, B.V. Volovik, S.G. Konnikov, A.R. Kovsh and

V.M. Ustinov. Hole and electron emission from InAs
quantum dots. Appl. Phys. Lett. 76, 1573 (2000).

[Kap00b] C. M. A. Kapteyn, M. Lion, R. Heitz, D. Bimberg,
C. Miesner, T. Asperger, K. Brunner and G. Abstreiter.

Many-particle effects in Ge quantum dots investigated by
time-resolved capacitance spectroscopy. Appl. Phys. Lett.
77, 4169 (2000).

[Kie02] G. Kießlich, A. Wacker and E. Schöll. Many-particle
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Shchukin, D. Bimberg, E. Penev and P. Kratzer. Monte
Carlo simulation of the self-organized growth of quantum

dots with anisotropic surface diffusion. In N. Miura and
T. Ando, editors, Proc. 25th International Conference on

the Physics of Semiconductors (ICPS-25), Osaka 2000,
page 381, Springer, Berlin, 2001.
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Non-local Auger effect in quantum dot devices.

Semicond. Sci. Technol. submitted (2004)

• A.Rack, R. Wetzler, A. Wacker and E. Schöll.
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