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Abstract

Brain states during real-word experiences have attracted growing research interest in the past
two decades. Listening to music is one example of an on-going real-world experience that, on
the one hand, relies on structured auditory input, on the other hand, often involves strong
emotional responses. Since, obviously, the brain is the mediator between sound wave and
subjective experience, it is an interesting question whether the comparative analysis of brain
signals and music signals is a way to understand this fascinating process. Electrophysiological
recordings of the brain are particularly suited for this, as they offer a temporal resolution in the
millisecond range, a time scale that potentially gives access to the processing of the fine details
of the rapidly changing musical surface. Deriving, however, interpretable information from
electrophysiological signals recorded during music listening is a challenging task. Extracting
stimulus-related brain activity from the electroencephalogram typically requires averaging
of a high number of stimulus repetitions. If full-length pieces of music are presented, and,
moreover, the unique listening experience is of interest, more sensitive methods for extracting
neural activity from the continuous brain signal are required.

This thesis makes several contributions toward the development of such methods, by address-
ing relevant issues that arise whenever brain signals are analyzed in combination with music
signals.

Taking advantage of the compelling properties of invasive ECoG recordings, the first part of
this thesis presents a simple, but efficient method to derive a detailed reflection of an original
rock song in the brain signal.

A core contribution of this thesis aims at further promoting the more widely applicable record-
ing modality of (scalp) EEG for investigating the relationship between music signal and brain
signal. Utilizing an evoked brain response to low-level constituents of music, i.e., to note
onsets, we propose a multi-variate regression-based method for mapping the continuous EEG
signal back onto the music signal. This so-called stimulus reconstruction approach is highly
suitable for EEG recordings of the presentation of full-length, acoustically very complex music
pieces. The resulting stimulus reconstructions can be used to determine the level of Cortico-
Acoustic Correlation (CACor): the degree of synchronization of the brain signal with the
stimulus. Through CACor, this thesis explores the potential of the stimulus reconstruction
approach in several music-related research scenarios. A simple, repetitive sound stimulus is
used to demonstrate the connection from the extracted brain signatures to canonical ERP
components. Subsequently, the method is applied in a more complex setting that relates
to auditory stream segregation. We first demonstrate that three monophonic semi-musical
stimuli can be reconstructed from the listener’s EEG. Next, we show to what extent such
learned mappings can be utilized to trace a neural correlate of the separate streams that
the listener perceives when the three voices play together forming a polyphonic semi-musical
sound pattern.

Finally, we progress to the most ‘natural’ experimental setting in this context: the analysis of
EEG recordings during listening to ‘real’ music without a specific task. We examine CACor
for a range of naturalistic music and non-music sounds. We show that differences between
stimuli with respect to observed significant CACor can be related to their acoustic/higher-level
musical properties. Finally, with a complementary analysis of behavioral reports of perceived
tension we provide first evidence on the experiential relevance of the observed relationship
between brain signal and music signal.






Zusammenfassung

Das Interesse an der Frage, wie unser Gehirn die komplexen Reize, die in unserer Umwelt auf
uns einstrémen, verarbeitet, ist in den letzten zwei Dekaden stetig gewachsen.

Musikhoren, ein Teil unseres Alltags, beginnt mit solch einem komplex strukturierten audi-
torischen Reiz und fiihrt zu einem subjektiven, oft emotionalen Empfinden. Die vermittelnde
Rolle des Gehirns in diesem Prozess ist offensichtlich. Unklar jedoch ist, inwiefern der Ver-
gleich zwischen Gehirnsignalen und Musiksignalen Aufschluss geben kann iiber den Weg von
der Schallwelle zum personlichen Hoérerlebnis. Elektrophysiologische Messverfahren wie Elek-
troenzephalogramm (EEG) und Elektrokortikogramm (ECoG) sind ideal fiir eine detaillierte
Untersuchung von Musikverarbeitung im Gehirn, da ihre Zeitaufldsung im Millisekundenbere-
ich liegt. Aus den Gehirnstrémen eines musikhérenden Menschen interpretierbare Informa-
tionen zu ziehen, ist jedoch eine datenanalytische Herausforderung. Typischerweise werden
reiz-spezifische Muster im EEG sichtbar gemacht, indem gemittelte Zeitkurven vieler Wieder-
holungen eines Stimulus betrachtet werden. Wenn lange, komplexe Musikstiicke prasentiert
werden sollen, und, dariiber hinaus, das individuelle Horerlebnis von Interesse ist, sind al-
ternative Methoden nétig, um Informationen aus den kontinuierlichen Gehirnsignalen zu ex-
trahieren.

Die vorliegende Dissertation liefert eine Reihe von Beitrédgen, die typische Probleme der kom-
binierten Analyse von Musik- und Gehirnsignalen thematisieren und Losungsansétze vorschla-
gen. Die erste in dieser Arbeit beschriebene Studie nutzt die besondere Datenqualitét des in-
vasiven ECoG und stellt eine einfache, aber effektive Methode vor, um ein hochdifferenziertes
Abbild der mehrdimensionaler Struktur eines Rockmusikstiicks in den Gehirndaten sichtbar
zu machen.

Ein weiterer Beitrag dieser Arbeit zielt darauf ab, durch Fortschritte in der Datenanalyse
das wesentlich universaler anwendbare EEG fiir die vergleichende Analyse von Gehirnsignal
und Musiksignalen auszunutzen. Ausgehend von sogenannten ‘obligatorischen’ evozierten
Potentialen auf einzelne Tone, wird eine multi-variate Analysemethode vorgestellt, die die
neurale Representation der Abfolge von To6nen eines Musikstiicks extrahiert. Diese Methode
zur ‘Stimulusrekonstruktion’ eignet sich fiir die Anwendung auf kontinuierlichen EEG-Daten
und stellt somit eine Alternative zu konventionellen Methoden dar. Mittels dieser neuralen
Reprisentation kann der Cortico-Acoustic Correlation Coefficient (CACor) bestimmt werden,
der als Mafs fiir die Synchronisation von EEG-Signal und Musiksignal dient. Konkrete An-
wendungsbeispiele, die vorgestellt und diskutiert werden, sind (i) ein Vergleich der mit der
vorgeschlagenen Methode extrahierten kortikalen Signaturen mit konventionell ermittelten
ereigniskorrelierten Potentialen, der in Falle eines einfachen repetitiven Stimulus moglich ist.
Des weiteren wird (ii) die Methode auf Daten aus einer komplexeren Hérsituation evaluiert,
namlich anhand einer Musik-Variante des ‘Cocktail-Party-Problems’ mit dem das Phinomen
der auditory stream separation (ASS) erforscht werden kann. Die letzte Studie (iii) evaluiert
die vorgestellte Methode in einer anndhernd alltagsidhnlichen Horsituation: Versuchsperso-
nen horen, unbeschwert von einer Aufgabe, eine Auswahl von Musikstiicken und anderen
naturalistischen Gerduschen wiahrend ihr EEG aufgezeichnet wird. Die Analysen zeigen, dass
unterschiedliche Auspragungen von CACor wahrend verschiedener Horbeispiele durch akustis-
che und musikspezifische Merkmale erklédrt werden kénnen. Eine komplemetére Untersuchung
behavioraler Messungen erlebter Spannung in der Musik gibt erste Hinweise darauf, dass die
durch CACor evidente Synchronisierung des Gehirnsignals mit dem Musiksignal in Verbindung
steht mit dem subjektiven Musikerleben.
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Chapter 1

Introduction

1.1 Investigating music processing

The opportunities modern neuroscience offers for investigating the perception of music
have been seized extensively in the last decades (Peretz and Zatorre, 2005). The cascade
of brain processes that leads from a stream of real-world acoustic data to a personal, often
emotional, listening experience can be considered as the most generic research problem
in this context. Investigating how the brain processes the multiple aspects of a musical
piece is bound to enhance our understanding of this fascinating process.

Brain responses to essential structural components of music have been investigated in an
enormous number of studies addressing the processing of, e.g., pitch (Hyde et al., 2008,
Kumar et al., 2011, Nan and Friederici, 2013, Plack et al., 2014), sensory dissonance
(Daikoku et al., 2012, Perani et al., 2010, Regnault et al., 2001), timbre (Caclin et al.,
2006, 2007, Deike et al., 2004, Goydke et al., 2004), melodic contour (Trainor et al., 2002),
key (Janata et al., 2002), mode (Halpern et al., 2008), scale properties (Brattico et al.,
2006), music-syntactic congruity (Jentschke et al., 2014, Kim et al., 2014, Koelsch and
Mulder, 2002, Sammler et al., 2013, 2011) and rhythmic aspects (Abrams et al., 2011,
Grahn and Rowe, 2009, Jongsma et al., 2004, Schaefer et al., 2011b, Snyder and Large,
2005), to name only a few. This has led to a large corpus of evidence on associations
between practically all aspects of a music stimulus and neurophysiological phenomena.
Typically, related approaches rely on carefully selected or specifically designed stimulus
material that allows to examine one aspect of music in an isolated manner while con-
trolling for other influences. By design, they do not directly address the confluence of
the multitude of musical features and their intrinsic relations and contextual effects in
an actual piece of music. Therefore, there is still a considerable gap to bridge between
today’s knowledge about the processing of isolated (musical) sounds and music listening
in everyday life.

A growing scientific effort has been targeted towards investigating music processing with
more naturalistic stimulus material. Over the last years only have advances in data
analysis turned the study of the processing of so-called ‘natural’ music into a tangible
topic. ‘Natural’ music in the present thesis denotes music that has been created as an
artwork and not for experimental purposes and that is presented without manipulation
and in excerpts long enough to represent the complex musical context.
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There are a number of reasons for advancing from simple controlled stimuli to more
naturalistic listening scenarios. In a general sense, this endeavor aims at deriving an
ecologically valid picture of brain responses to music. More specifically, and viewing
music perception as a special case of auditory scene analysis (ASA), it aims at encom-
passing general principles of auditory perception, such as segmentation, integration, and
segregation (Bregman, 1994) that go beyond isolated acoustic features. Finally, it is only
through ecologically valid setups that experiential and affective aspects of listening to
music can possibly be accessed.

The benefits of the use of natural music have been employed in several ways: one line
of research utilized music as a ‘vehicle’ to create different experimental conditions (e.g.,
mental states) and to subsequently examine how features of the brain signal differ be-
tween these conditions. Early studies delineated generic contrasts between listening to
music and resting state (EEG: Bhattacharya et al. (2001a), Brown et al. (2004), Schmidt
and Trainor (2001), Positron emission tomography: Lin et al. (2014)) and between listen-
ing to music and listening to non-music complex sounds (Abrams et al., 2013, Kaneshiro
et al., 2008, Menon and Levitin, 2005). More specific approaches utilized natural music
to study musical memories (Janata, 2009), musical preferences (Wilkins et al., 2012),
familiarity (Pereira et al., 2011) and expressive performance (Chapin et al., 2010). The
intensively researched field of music and emotions in particular, has used naturalistic
music to distinguish happy versus sad states Brattico et al. (2011), Khalfa et al. (2005),
Mitterschiffthaler et al. (2007), to characterize music-induced ‘chills’ (Blood and Zatorre,
2001) and emotional peak events (Salimpoor et al., 2011). Brain measures that revealed
differences between conditions have been related to activation patterns of the BOLD
response in fMRI, to bandpower features in EEG, and to brain connectivity measures as
well as inter-subject-correlation (ISC) in both modalities. A common feature of all these
approaches is that the to-be-decoded mental states are assumed to be (relatively) static
within one condition.

Over the last five years efforts have been intensified to directly track the dynamics of
music stimuli in the brain signal. In general, this aims at examining how brain dynamics
underlying perceptual and cognitive processes unfold over time in naturalistic conditions
and has also been pursued intensively in the visual (Einh&user and Koénig, 2010, Hamamé
et al., 2014, Hasson, 2004, Hasson and Honey, 2012, Hasson et al., 2010) and audio-visual
domain (Dmochowski et al., 2012, Gaebler et al., 2014, Whittingstall et al., 2010). In
the music domain, several approaches that combined neuroimaging and acoustic feature
extraction directly investigated the relationship between brain signals and the multi-
dimensional structure of full-length pieces of natural natural music (Abrams et al., 2013).
Further fMRI studies examined how continuously measured emotional responses and
neural activity evolved with changes in stimulus parameters. These studies were able
to link reported emotional responses to music to activity in key brain areas of affective
processing (Lehne et al., 2013b) and motor brain areas (Chapin et al., 2010). However,
very few studies used the electroencephalogram (EEG), which, due to its high temporal
resolution, is most suitable for investigating the dynamics of music at the appropriate
fine-grained time scale. Apart from the work by Mikutta et al. (2012, 2013) which related
EEG bandpower fluctuations to behavioral arousal measures, there has been one novel
approach to analyze continuous EEG elicited by natural music stimuli proposed by Cong
et al. (2012) and applied in Thompson (2013). This approach allows the identification
of EEG components that are common within a group of subjects and, subsequently,
relates their time course to music features. One electrocorticographic study (Potes et al.,
2012) demonstrated that the sound envelope of a piece of natural music leaves a marked
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reflection in the high gamma power modulations of the ECoG. Furthermore, numerous
studies used naturalistic but short excerpts (Schaefer et al., 2011a, 2009) to examine
brain responses to several aspects of music.

In summary, finding and interpreting the reflection of natural music in the listener’s
brain signals is an ongoing, timely research endeavor. So far, there neither is a gold
standard solution for analyzing data nor a clear aim of what can be learned from the
results. Very few accounts of how naturalistic music may be presented in the brain
signal exist. Furthermore, they cover only a small sample of musical pieces and are
highly diverse in terms of recording modality, level of specificity and musical aspect of
interest. Particularly scarce are studies that use EEG. In principle, electrophysiological
signals are attractive for investigating music processing, as they present the opportunity
to operate at a far more fine-grained time scale than, e.g., fMRI. However, there exist
data analytical challenges that impede the use of EEG in combination with continuous
complex stimuli. Finally, even though EEG signals seem to share some characteristics
with music waveforms, it is not clear what can be learned from a reflection of music in
an EEG signal. In particular, it is not known whether and how the EEG can inform
about experiential aspects of listening to music.

1.2 Research questions and outline

The purpose of this thesis is to develop methodological approaches for extracting and
interpreting music-related neural activity from electrophysiological signals recorded from
the listening brain, and to combine these with behavioral measurements and with infor-
mation extracted from the music signal. This is accomplished in three steps:

(i) We probe whether the technique of sound envelope-tracking in ECoG high gamma
power can be extended towards integrating a multidimensional description of a natural
music stimulus.

(ii) We introduce a multi-variate method of (scalp) EEG analysis to optimally extract
stimulus-related neural activity with an enhanced signal-to-noise ratio (compared to uni-
variate methods).

(iii) We apply the proposed method in a number of stimulation scenarios in order to
demonstrate the potential of EEG recordings and appropriate analyses in the exploration
of natural music processing.

Chapter 2 deals with the background and basic methods that are necessary for conducting
the single steps of this multi-facetted endeavour. The first section of Chapter 2 focuses
on the motivation for investigating music perception with naturalistic sounds. Next
within the same chapter, the basic facts about the acquisition of the different types
data to be analyzed and their characteristic properties are reviewed. Subsequently, the
mathematical concepts from machine learning and statistics that are of general use are
introduced. The last part of the chapter gives an overview about audio analysis of musical
signals.

Chapters 3 and 4 contain the core methodological contributions of this thesis. Chapter 3
presents a re-analysis of an ECoG study that aims at finding a detailed reflection of
the multi-dimensional structure of an original rock song in ECoG high gamma power.
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Chapter 4 introduces an analysis pipeline for applying Linear Ridge Regression to extract
brain responses to the temporal structure of music from the ongoing EEG. From the Re-
gression models brain signatures are derived that can be interpreted neurophysiologically.
We present a number of applications of this method in Chapter 5. After introducing the
experimental setups and data sets in Section 5.1, in Section 5.2.1 we directly compare the
brain signatures derived by use of the the proposed method to those obtained through
conventionally averaging of ERPs. In Section 5.2.2 we apply our method in the context
of a problem related to Auditory Stream Segregation (ASS). In Section 5.2.3 we advance
towards examining EEG recordings, behavioral measures and music features in a setting
where participants listen to ‘real’ music (full-length naturalistic pieces of music) in a
‘free listening paradigm’ (without a specific task). Finally, this thesis concludes with a
general discussion in Chapter 6.

1.3 List of included published work

The following publications are included in this thesis.

(1) Sturm, I., Blankertz, B., Potes, C., Schalk, G., and Curio, G. ECoG high gamma
activity reveals distinct cortical representations of lyrics passages, harmonic and timbre-
related changes in a rock song. Frontiers in Human Neuroscience, 8(798), 2014.

(2) Sturm, I., Treder, M., Miklody, D., Purwins H., Dihne, S., Blankertz, B., and Curio,
G. Extracting the neural representation of tone onsets for separate voices of ensemble
music using multivariate EEG analysis, in print. Psychomusicology: Music, Mind and
Brain, 2015.

(3) Sturm, I., Déhne, S., Blankertz, B., and Curio, G. Multi-variate EEG analysis
as a novel tool to examine brain responses to naturalistic music stimuli, under review.

PlosOne, 2015.

1.4 List of all published work

(4) Blankertz, B.,Tangermann, M., Vidaurre, C., Fazli, S., Sannelli, C., Haufe, S.,
Maeder, C., Ramsey, L., Sturm, 1., Curio, G., and Miiller, K. R. The Berlin brain—computer
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Chapter 2

Fundamentals

Investigating relations between music, brain data and behavioral measurements is a
multidisciplinary task that integrates methods from different fields. In the following
pages we briefly introduce the basic facts and techniques relevant for the steps of the
typical cycle of experiment design, data acquisition and data analysis in our experimental
scenario.

2.1 Experiment design: Towards ecological valid experi-
mental paradigms

The key argument for progressing from simple stimuli and tightly controlled listening
paradigms towards naturalistic listening situations lies in the increase of ecological va-
lidity which is the extent to which study results can be generalized to real-life settings.
Ecological validity seems to have a value ‘per se’ in the sense that if perceptional pro-
cesses or brain states are investigated this should resemble real-life perceptional processes
as closely as possible (Abrams et al., 2013).

The most obvious way to approach this goal is to present stimulus material in the form
of musical sounds as they are commonly heard in everyday life. Beyond that, the pres-
ence and nature of a task (e.g., passive vs. active listening paradigm) have an impact
on the level of ecological validity of. A third influencing factor is the listening situation
that is determined by the experimental setup (laboratory vs. everyday life setting) and
the presentation mode (e.g., recorded sounds versus live sounds, spatially distributed or
single-source sound). Currently, practically all experiments that involve brain record-
ings take place in a lab setting. However, on-going and future advances in wearable
EEG technology will facilitate out-of-the-lab experiments, including those related to
music processing in the future. Considerable efforts have in fact been made to equip
a concert hall environment with EEG recording facilities for performers and audience
(http://livelab.mcmaster.ca), manifesting the relevance of situational factors to the mu-
sic perception research community.

The pursuit of ecologically valid listening scenarios has been driven by evidence suggest-
ing that brain responses to naturalistic stimulation may differ from those related to con-
trolled stimulation with simplified stimuli. In the visual domain this was demonstrated
by Hasson et al. (2010) who found a greater response reliability of electrophysiological

7
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brain activity for aspects of naturalistic visual stimuli/movies than for comparable ar-
tificial stimuli. Similar findings were obtained by Mechler et al. (1998) and Yao et al.
(2007). In the music domain Abrams et al. (2013) provided direct evidence that the
between-subject synchronization of a large-scale distributed brain network was signifi-
cantly higher when listeners were presented with complex musical stimuli lasting minutes
than when they listened to shorter pseudo-musical contexts.

Furthermore, there are also phenomena that cannot be studied without complex natu-
ralistic stimuli. These relate to user variables, such as affective responses to music (e.g.,
arousal, valence, or aesthetic experience), situational aspects (immersion, engagement or
listening effort) and general aspects of individual listener experience (familiarity, liking,
memories and associations) (Brattico et al., 2013, Janata, 2009, Wilkins et al., 2012).
Naturalistic stimuli of sufficient duration are critical to the examination of the process-
ing of complex structural /perceptual or aspects of music (Large, 2001). Investigating the
listener’s ability to integrate different types of music-related information over time peri-
ods on the order of minutes into one ‘coherent perceptual gestalt’ (Leaver et al., 2009)
obviously creates such a demand (Abrams et al., 2013). Furthermore, investigating socio-
culturally defined properties of musical excerpts such as stylistic or genre-related aspects
is not feasible without naturalistic music stimuli, neither are complex formal properties
of music involving macro-structure, complex patterns or motifs.

Finally, auditory ‘decoding’ approaches that primarily seek to find out how complex au-
ditory stimuli are represented in the brain often depend on naturalistic stimuli. Advances
in this field and in its techniques are the prerequisite for applications in the clinical con-
text, e.g., for diagnostic use, in the development of assistive listening technology or brain
computer interfaces (BCI).

2.2 Data acquisition

Brain processes can be examined using a number of different methodologies. Of these,
electrophysiological recordings are regarded as one of the most direct and immediate
correlates of neural activity (Turner, 2009). With a temporal resolution of milliseconds
electrophysiological measures allow to examine music perception at high level of detail.
Considering that the time scale of conscious music perception reaches a resolution of
approximately 100 ms (‘rhythmic ceiling’ London (2012)) electrophysiological recordings
can be regarded as the ideal modality for a examining the process of listening to music at
a high level of detail. In contrast, recording modalities that rely on metabolic processes,
such as functional magnetic resonance imaging (fMRI), have a time-resolution on the
order of seconds.

A second major advantage of electrophysiological recordings is that they are obtained in
silently. In contrast, in particular the fMRI brings along a scanner noise that may severely
interfere with music listening (Skouras et al., 2013). Electroencephalogram (EEG) and
Electrocorticography (ECoG), the two types of electrophysiological measurements that
are relevant for this thesis are briefly reviewed.

The Magnetoencephalogram (MEG), which is a further electrophysiological recording
modality that is highly relevant in research on auditory perception, is not discussed
here.
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2.2.1 EEG

General introduction to EEG The electroencephalographic signal (EEG) is an elec-
tric potential that is recorded non-invasively from the scalp. Since measured signals rep-
resent synchronous activity of large ensembles of neurons, it offers a macroscopic view on
the brain. EEG signals, as mentioned before, reflect neural activity and can be recorded
with high temporal resolution. However, due to the low conductivity of skull and tis-
sue between the neural generators and sensors their spatial specificity is relatively low.
Moreover, the brain signal is dampened, resulting in a relatively low strength of the brain
signal of interest relative to the level of background noise, such as sensor noise.

The two most widely studied neurophysiological phenomena observed in EEG signals are
event-related potentials (ERPs) and oscillations. ERPs represent synchronized activity
of neurons that is time-locked to distinct external or internal events. In the recorded
EEG these transient events are presented by a series of deflections or ‘components’ that
exhibit a characteristic topographical distribution and occur with a specific latency after
the evoking event. Oscillations or ‘brain rhythms’ represent synchronized periodic ac-
tivity of ensembles of neurons and are typically examined for specific frequency bands.
The power of these oscillations can be taken as an index of spatial synchronization
strength. Typical research scenarios studying neural oscillations would for instance ex-
amine changes in power related to internal or external events, e.g., those preceding motor
action (Pfurtscheller and Lopes da Silva, 1999), stimulus-based modulation of oscillatory
power (Déhne et al., 2014b), or the interaction between brain regions (see Jensen and
Colgin (2007) for an overview).

To increase the signal-to-noise ratio, ERPs and oscillatory responses are usually analysed
not based on single trials, but averaged over a sufficiently large number of repetitions of
the same experimental condition.

EEG in music perception research ERPs have been linked to practically every
aspect of music perception, starting from the basic parameters of music, such as pitch
(Hyde et al., 2008, Kumar et al., 2011, Nan and Friederici, 2013, Plack et al., 2014),
rhythmic aspects (Abrams et al., 2011, Grahn and Rowe, 2009, Jongsma et al., 2004,
Schaefer et al., 2011b, Snyder and Large, 2005), intensity and accentuation (Abecasis
et al., 2005, Peter, 2012), and sensory dissonance (Daikoku et al., 2012, Perani et al., 2010,
Regnault et al., 2001) extending also to more complex aspects, such as, timbre (Caclin
et al., 2006, 2007, Deike et al., 2004, Goydke et al., 2004), melodic contour (Fujioka et al.,
2004, Trainor et al., 2002), harmony (Janata, 1995), key (Janata et al., 2002), mode
(Halpern et al., 2008), scale properties (Brattico et al., 2006), music-syntactic congruity
(Jentschke et al., 2014, Kim et al., 2014, Koelsch and Mulder, 2002, Sammler et al., 2013,
2011) and musical phrase structure (Nan et al., 2006). In addition to their usefulness in
informing about the sensory and cognitive processing of specific features of music, ERPs
have been operationalized to investigate the influence of affective states (Brattico et al.,
2010), musical preferences (Istok et al., 2013), attention (Loui et al., 2005), and memory
effects on the perception of music (Janata et al., 2002). They have provided insights into
developmental and age-related aspects of music perception (Fujioka et al., 2006, 2004),
and are widely used to study the effects of short- and long term learning (Baumann
et al., 2008), (Shahin et al., 2003). Furthermore, an important field of application for
ERP technique is the comparative study of music and language, for an overview see Patel
(2007).
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EEG-measured oscillations have been linked to rhythm perception, e.g., to derive neural
correlates of beat perception (Nozaradan et al., 2011, 2012, 2013) and to identify brain
networks that are specific for listening to music (Bhattacharya et al., 2001b, Wu et al.,
2013). Bandpower modulations have been examined with respect to the relaxing/exciting
effect of music (Holler et al., 2012) and to music-induced emotional arousal (Mikutta
et al., 2012, 2013). Furthermore, oscillatory brain responses have been used in the study
of the processing of musical-syntactic incongruence (Carrus et al., 2011) and musical
complexity (Ruiz et al., 2009, Schaefer et al., 2011a).

2.2.2 ECoG

Electrocorticography (ECoG), or intracranial EEG (IEEG) is the practice of recording
electric potentials directly from the surgically exposed cortical surface. Since the 1950s
(Jasper and W., 1949) it has been developed as a standard procedure for localizing
epileptogenic zones and mapping cortical functions in patients prior to surgical treatment
for intractable epilepsy, brain tumors, or vascular malformations of the brain (Crone
et al., 2009, Roebuck, 2012).

Like scalp EEG, ECoG recordings measure the synchronized activity of ensembles of cor-
tical neurons with excellent temporal resolution. In contrast to scalp EEG, ECoG signals
are only minimally dampened by tissue and not at all by the skull. This leads to higher
signal amplitudes (i.e., 50-1004V maximum compared to 10-20pV Wilson et al. (2006))
and a considerably wider range of frequencies (i.e., 0-200 Hz versus 0-40 Hz Leuthardt
et al. (2004)) that can be examined at an favorable signal-to-noise level. Moreover, the
impact of volume conduction is lower and thus spatial specificity (i.e., at the order of
millimeters versus centimeters Crone et al. (2009)) increased. ECoG, therefore, offers
a ‘mesoscopic’ spatial resolution between the microscopic scale of single and multi-unit
brain recordings and the macroscopic view on brain responses provided by EEG (Crone
et al., 2009).

These substantial benefits have led to a growing interest in ECoG in research on cortical
activation related to perceptual, cognitive and motor tasks. In particular, in the domain
of Brain-Computer-Interfacing (BCI) ECoG is appreciated as a minimally-invasive al-
ternative to scalp EEG. The fact that ECoG signals have been found to contain highly
specific activation patterns for actual and imagined actions, has been utilized in a number
of applications that aim at decoding BCI user’s intent from their brain signals (Brunner
et al., 2011, Leuthardt et al., 2011, 2006, 2004, Miller et al., 2010, Schalk et al., 2008,
Spiiler et al., 2014, van Vansteensel et al., 2010, Wilson et al., 2006). In the field of speech
perception research, ECoG has emerged as a new technique to study the functional cor-
tical organization of speech processing (Kubanek et al., 2013, Leonard and Chang, 2014,
Martin et al., 2014, Pasley et al., 2012).

ECoG offers unprecedented opportunities in challenging analysis conditions, such as those
created by naturalistic listening scenarios (Brunet et al., 2014, Derix et al., 2014, Kubanek
et al., 2013, Majima et al., 2014, Pasley et al., 2012, Potes et al., 2012). Here, the superior
signal-to-noise ratio of ECoG is advantageous for studying the processing of complex
naturalistic stimuli at the level of single stimulus presentations and single subjects, and
thereby enabling a view on the spatial and temporal characteristics of processing that is
detailed enough to differentiate between specific aspects of stimuli.
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In spite of these highly favorable characteristics of ECoG, several obvious constraints
limit the applicability of ECoG for non-clinical research purposes. Firstly, ECoG is
performed on patients whose physical and cognitive conditions are impaired in different
ways and whose brains may not be representative of those of the healthy population
with respect to function and neuroanatomy. Secondly, clinical are the sole determinant
of all ECoG measurements and their settings, i.e., the selection of patients, placement
of electrode grids, measurement protocols and medication. For the investigator who
endeavors to acquire data as a byproduct of the clinical procedures this means that data
that provide a specific field of view onto the brain may have to be aggregated over long
periods of time. Infrequently occurring opportunities to collect data, in turn, prevent to
application of highly specific exclusion/inclusion criteria for an experiment. This means
that subject variables are typically less balanced than in EEG studies and sample sizes
naturally much smaller. However, a number of studies have shown that consistent results
can be obtained despite these difficulties (Kubanek et al., 2013, Potes et al., 2014, 2012).

2.2.3 Behavioral measures of experiencing music

The focus of this thesis is on the relationship between music signals and brain signals. In
order to explore the behavioral relevance of any link between stimulus and brain signal,
however, the concomitant assessment of experiential aspects of music at an appropriately
detailed time scale is considered crucial here and represents another pillar of this work.

Affective responses that are triggered by music are ‘the’ driving force that makes us
listen to music, go to music performances and spend money on buying music (Panksepp,
1995, Sloboda et al., 2001). The relationships between musical content and emotional
responses have been well studied, initially by describing the global affective experience
for entire excerpts, e.g., by assigning linguistic labels (Hevner, 1936) or by using scales
to rate aspects of emotion, e.g. Lane et al. (1997) or Gabrielsson and Lindstrém (2001),
see Juslin and Sloboda (2010) for an overview. However, both, affective processes and
music unfold over time and, therefore, lend themselves exquisitely for a comparison of
their respective dynamics - an idea that has been first introduced by Nielsen (1983) who
recorded subjects’ perceptions of ongoing ‘musical tension’ with specifically designed ten-
sion tongs. Since the 1990s continuous self-report measures of experiencing music have
become an established method in music psychology Schubert (2010). ‘Continuous’ in
this context refers to sequences of observations that are taken sequentially in time with-
out interrupting the stimulus presentation and that describe the perceived magnitude
of a dimension of listening experience at series of points over time. These continuous
measurements avoid the issues of a ‘retrospective story-telling effect’ (Plotnikov et al.,
2012), duration neglect (Fredrickson and Kahneman, 1993) and selective recall (Schubert,
2010) that have been found to affect global post-presentation assessments of music expe-
rience (e.g., Gabrielsson and Lindstrom E. (2010), Goebl et al. (2014)). However, since
continuous ratings can only record one- or maximally two-dimensional data (e.g., with
the Continuous Response Dial Interface Madsen and Fredrickson (1993) or the EMulJoy
system Nagel et al. (2007)), this technique is not integrated easily with common multi-
dimensional models of emotion, e.g., Wundt’s three-dimensional model (Wundt, 1913)
or Russell’s model of valence and arousal (Russell, 1980) (for an overview see Scherer
(2000)). Therefore, it is still a central question how to capture affective responses to
music in an experimentally tractable manner.
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One concept that has often been applied, in particular, to elucidate the relationship
between musical structure and emotion, is that of musical tension. Musical tension
is best described as a continuous build-up and subsiding of excitement that a listener
experiences when listening to a piece of music. As the ‘dynamic ingredient of emotion’
(Lehne and Koelsch, 2015), the concept of tension has its roots in Meyer’s work ‘Emotion
and meaning in music’ (Meyer, 1961). It has been the topic of numerous empirical studies
(Farbood, 2012, Farbood and Schoner, 2009, Farbood and Upham, 2013, Krumhansl,
1996, Madsen and Fredrickson, 1993, Nielsen, 1983), and also in the field of music theory
(Lerdahl and Krumhansl, 2007).

The psychological mechanisms underlying this phenomenon have been examined recently
in Lehne and Koelsch (2015) where musical tension is integrated in a more general frame-
work of tension and suspense in a variety of contexts, including the reception of music,
film, literature and visual arts. Lehne et al. delimit as main contributors to these
processes states of instability or in-certainty that are accompanied by expectation or
anticipation. Both, uncertainty and discrepance between actual state and expected state
create feelings of rising tension, while the reduction of uncertainty typically induces a
feeling of understanding and resolution. The interplay between fulfillment and violation
of expectancies can thus be regarded as important determinants of the appeal of an art-
work. An essential factor in Western tonal music is the ratio (and also the transition)
between moments of dissonance and irregularity and moments of consonance and stabil-
ity. Notably, both, stability and prediction are entertained at several levels of structural
organization of music. Notes in a tonal context for instance are perceived as more or less
stable (Krumhansl and Toiviainen, 2001), and chords can be more or less consonant /dis-
sonant. Music-syntactic structures, such as cadences, create explicit expectations about
their continuation. Furthermore, rhythmic and metric features create expectation about
the timing of future events and in general, the occurrence of patterns at various time
scales, such as rhythmic figures, motifs or formal macro-structure, creating and leading
expectations in the listener at multiple levels (Rohrmeier and Koelsch, 2012). Thus, the
ebb and flow of tension as an overall experience in music listening is associated with a
multitude of aspects of music. Empirical results have further shown that reported tension
can be related to basic acoustic features of music, such as loudness or sensory dissonance
(Farbood, 2012, Pressnitzer et al., 2000), to higher-level ‘top-down’ tonal expectations
(Lerdahl and Krumhansl, 2007), and to formal structure of music (Krumhansl, 1996).

Taken together, musical tension is a (one-dimensional) ‘proxy’ of more complex emo-
tional experiences triggered by music. As an ‘important intermediate step’ between the
recognition of musical structure and related affective responses (Farbood, 2012) musical
tension relates to the interest of the present work in the relationship between brain signal
and music signal. Musical tension seems to be influenced by a range of aspects of music
and therefore, as a concept, can be applied to a large variety of musical sounds. Impor-
tantly, experienced tension has been explained in terms of domain-general psychological
mechanisms that evoke enjoyable or rewarding feelings in the listener. Thus, tension
presents itself as a promising concept for obtaining first insights into the experiential
relevance of a potential link between audio and brain signals.
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2.3 Data analysis

2.3.1 Notation

In the following we denote:

e matrices by italic upper-case letters

e vectors by bold lower-case letters

e scalars by italic lower-case or upper-case letters.
Vectors are understood to be in columnar shape. For a given vector x the i-th entry is
denoted by z; .

In a matrix A a; denotes the i-th column vector and a;; the entry in the i-th row and
j-th column.

In a (multivariate) time series X the value at time point ¢ is represented by the t-th
column of X.

We denote with:

T the number of data points in time.

e N the number of dimensions, e.g., EEG channels.

k the number of components, e.g., neural sources that are extracted from the EEG.

X = [x1x2...x7] a N x T matrix of observed data and x(¢) an observation at a
single time point ¢.

e s(t) a k-dimensional vector of component activity.
e 5(t) a k-dimensional vector of estimated component activity.
e 7)(t) a measurement of noise at time point ¢.

e A = [ajaz...a;] a N x k matrix of patterns (in the columns) that define the
mapping between neural sources and electrodes in the forward model.

o W = [wiwy...wg] a N x k matrix of filters (in the columns) that define the de-
composition of the sensor level measurement into k£ neural sources in the backward
model.

e Cxx = XX the (auto)covariance matrix of the multivariate time series X.

e Cxy = XY the (cross)covariance matrix of two multivariate time series X and

Y.

e 2(t) a scalar target variable, e.g., a feature of the stimulus derived by audio signal
analysis.
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2.3.2 A generative model of EEG

Forward and backward model In the following we introduce a standard model of
EEG generation that underlies numerous techniques of multivariate EEG analysis. The
core idea of this model is that signals recorded from the scalp surface represent a linear
mixture of the activity of neural sources. These neural sources have distinct and specific
spatial and temporal characteristics and can be thought to represent functional brain
units (Dahne, 2015, Parra et al., 2005). In mathematical terms this can be formulated

as

x(t) = As(t) +n(t). (2.1)

where x(t) is the potential of the full set of electrodes measured at time point ¢, s(t)
the activity of k of sources at time point ¢t and A = [ajas...a;] a matrix € RV** that
represents the individual coupling strengths of each source s(¢) to the array of N surface
electrodes. A is called the forward model. The term 7(t) models the contribution activity
that is not explained by the source components and, thus, is treated as ‘noise’ that is
not relevant to the investigation. Since the original neural sources s(t) that led to the
measurements x(t) cannot be observed directly, the task for the use of Machine Learning
here is to derive an estimation §(t) from the data. This process is called backward
modeling and can be formulated as

8(t) = W x(t). (2.2)

where the matrix W = [wi;wa...wy| represents the extraction filters that transform
sensor level observations into estimated source activity (for details see Blankertz et al.
(2011)). The coefficients of W determine the contribution of each recorded sensor to
the estimated source time course. However, in its generic form, the task of finding W
represents a so-called inverse problem that does not have a unique solution (Pascual-
Marqui, 1999). For practical use, the solution has to be constrained in a suitable way.

In general, approaches for deriving extraction filters can be ‘supervised’ or ‘unsuper-
vised’. Supervised methods integrate external information, e.g., label information or an
additional target function, into the optimization process, while unsupervised methods
are based on intrinsic properties of the data without any additional information. The
analysis scenarios in this thesis are typical examples of the supervised type as they aim
at detecting and defining relationships between EEG data and musical stimuli. The
regression technique that is applied in this thesis in order to extract a filter matrix
W while integrating a representation of the stimulus structure is explained in detail in
Section 2.4.1.

Filters and patterns Although the weights of W determine how the sensor level
time courses are integrated to form the time course of the estimated source §(¢), it is
important to be aware of the fact that these weights do not yield information suitable
for neurophysiological or hypothesis-related interpretation (Blankertz et al., 2011, Haufe
et al., 2014). Such information can only be obtained from the patterns of the forward
model. The reason for this is that filters of the backward model are determined so that
the signal-to-noise ratio of a signal of interest is optimal. Therefore, they depend not
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only on the distribution of neural sources, but also on the distribution of noise in the
data. For a detailed explanation and illustration of the difference between pattern and
filter see Blankertz et al. (2011). A forward model A can be obtained from every linear
backward model W using the following equation (Haufe et al., 2014):

A= OXXWOS_VS{ = CX)(W(WTOXXw)_l (2.3)

where Cgg is the covariance matrix of the estimated sources. Further processing steps,
such as source localization techniques, need to be performed on forward model patterns,
not on the backward model filters.

2.4 Machine Learning and Statistics

In the following we briefly introduce the most important analytical tools that are used
within this thesis. This introduction focuses on the intuitive understanding and the
specific application in the present context, rather than rigorousness or completeness.
However, the methods presented here are documented extensively in the literature and
relevant sources referred to in each subsection. The overarching goal of this thesis is to
tackle the relationship between brain signal and music signal in contexts where typical
strategies to enhance the EEG’s signal-to-noise ratio, such as averaging across repetitions,
are not applicable.

In summary the most important questions in this context are:

e How to extract stimulus-related neural activity from the EEG.

e How to extract neural activity from ECoG that is related the processing of specific
aspects of music.

e How to deal with typical problems related to the structure of music stimuli, such
as auto-correlation.

2.4.1 Regression

The generic regression task is that of finding a rule, which assigns an N-dimensional
data vector x(t) to the value of a target variable z(¢). This is done by expressing the
target variable Z = [2(1)z(2) ... 2(T)] as a linear combination of the data matrix X. This
problem can be formulated as

Z=w'X+E. (2.4)

where the vector w contains the weights linearly combining the values of X. A solution
can be derived by way of the mean squared error (MSE) between the estimated target
w ' z(t) and the true target variable z(t). The MSE is given by

MSE (w x(t), 2(t)) = (w'x(t) — 2(t))>. (2.5)

N —

>

Nl
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The weight matrix W that minimizes the MSE is given by

w=(XX""1xzT. (2.6)

This solution is called Ordinary Least Squares (OLS) (for details of the derivation see
Bishop (2006), p.140). Alternatively, an equivalent solution can be derived by approach-
ing the problem in terms of covariance between w'x(t) and z(t) which leads to the
following objective function

max Cov(w' X, Z), subject to Var (w' X) =1. (2.7)

In matrix notation this can be expressed as

max w' XZ', subject to w'Cxxw = 1. (2.8)
w

Equation 2.8 can be cast into the following eigenvalue problem (for details of the deriva-
tion see Borga (1998)) that can be solved efficiently using standard numerical linear
algebra tools, e.g., MATLAB or R.

[C?w CEX} m :A[C)SX (1)] [ui] 2.9)

In the framework of the generative model of EEG (see 2.3.2) the regression approach
can be utilized for finding a backward model w for a set of EEG measurements x(t)
under the assumption that a neural source s(t) exists with activity that co-varies with
an external target function z(¢). In the present context, the target variable z(t) typically
is represented by the time course of an extracted music feature.

2.4.2 Canonical Correlation Analysis

A more general method for investigating relationships between two or more time series
is Canonical Correlation Analysis (CCA), first introduced by Hotelling (1936). The core
assumption of CCA is that two (or more) variables follow a common underlying time
line. CCA finds a subspace for each variable, such that the respective projections, called
canonical components, are maximally correlated. In the simple case of two time series
XnixT and Ynour and one canonical correlation coefficient this task can be formalized
into the following objective function:

max Corr(w, X, w;Y). (2.10)

Wz, Wy

The approach to obtain a single canonical correlation coefficient can be generalized to-
wards finding several pairs of orthogonal subspaces W, and W, and corresponding canon-
ical components. The number of pairs of subspaces that can be found is limited by the
smaller one of the number of dimensions of the variables X and Y. In the case of several
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subspaces the sum of the canonical correlation coefficients is maximized and the objective
function is given by

max trace (W, XY TW,), subject to W, XXTW, =W, YY W, =1.  (2.11)
T vy

The optimal W,, W, can be found by transforming Equation 2.11 into the following
generalized eigenvalue problem (for the complete derivation see Biefmann et al. (2011)):

[ng ng] WV);] =A [C)SX ng} mﬂ (2.12)

An important property of CCA is that resulting canonical correlation coefficients and
components are invariant with respect to affine transformations of the variables. The ba-
sic CCA technique described above can be further extended to the use of more than two
variables (Kettenring, 1971), a technique called Multiway-CCA. One particularly suited
use for Multiway-CCA in neuroscience, is its application in so-called hyperscanning set-
tings, where brain signals of several subjects exposed to the same stimulation in parallel
are integrated into one Multiway-CCA model in order to detect neural activation that is
shared across subjects (Biefmann et al., 2014, Gaebler et al., 2014). Furthermore, CCA
has been demonstrated to be highly effective for multimodal analyses (Biefmann, 2011,
Correa et al., 2010a,b). Importantly, in high-dimensional data settings where calculat-
ing covariance matrices can be problematic, the kernelized variant (tkCCA) (Biefmann
et al., 2010) of CCA is used, in an analogue way to kernelizations of other decomposition
methods (Scholkopf et al., 1998).

From Equations 2.9 and 2.12 it becomes clear that Linear Regression and CCA are closely
related. The essential difference between both is that CCA takes the auto-covariance
Cyy into account, while Linear Regression does not. This difference, however, becomes
relevant only if both time series are multi-variate. A detailed discussion of the relation
between Regression and CCA is contained in Borga et al. (1997) and Borga (1998).

2.4.3 Regularization

Optimization procedures are prone to suffer from the over-fitting problem. Over-fitting
arises if the available amount of data is small relative to the complexity of the model
that is learned. In the spirit of the principle of Occam’s razor (Angluin and Smith,
1983) this effect can be alleviated by constraining the complexity of the solution (Miiller
et al., 2001, Vapnik, 2000), a technique called regularization. In the context of Linear
Regression this problem can arise if, for instance, the weight vector w is determined using
the OLS solution given in Equation 2.6. Often, the matrix X X T has a determinant which
is close to zero, which renders the matrix ‘ill-conditioned’, so the it cannot be inverted
with the necessary precision.

A remedy for this problem is ‘Tikhonov regularization’, also known as ’'Ridge Regression’.
It can be accomplished by introducing a regularization term into the objective function
(here: Equation 2.5) to reduce the complexity of the solution. This can be achieved
for instance with a L2-norm regularization term (also Tikhonov regularization Tikhonov
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and Arsenin (1977)) that ‘penalizes’ the L2 (=euclidean) norm of w and, thus, enforces
solutions with smaller norms. Such a regularization term can be integrated by calculating
a weighted sum of XX and vI where vI is the Identity matrix, multiplied by the
average v of the eigenvalues of XX T). vI represents the ‘ridge’ that is added to the
sample covariance matrix X X ', so that Equation 2.6 is replaced by

w=(1-NXXT +wl)1x2". (2.13)

This approach is motivated by the fact that an unfavorable ratio between number of
available samples and dimensions introduces instability into the estimation of covariance
matrices: small eigenvalues are estimated too small and large eigenvalues too large. The
described regularization (called ‘shrinkage technique’) counteracts this effect and can be
thought of as ‘shrinking’ the eigenvalues towards the average magnitude. The optimal
shrinkage parameter v that determines the contribution of the identity matrix can be
determined analytically (Bartz and Miiller, 2013, Blankertz et al., 2011, Ledoit and Wolf,
2004, Schéifer and Strimmer, 2005).

In CCA regularization can be included in an analogue way by modifying the covariance
matrices on the right hand side of the equation. In this case Equation 2.11 is replaced
by Equation 2.14 where the auto-covariance matrices are expanded by a ‘ridge’.
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2.4.4 Temporal Embedding

Naturally, a cortical brain response tracking auditory stimulus features will not respond
instantaneously, but delayed. Typical cortical responses, such as ERPs, belong to the
family of mid-latency components which, typically, occur with a delay ranging from
tenths to hundreds of milliseconds. Consequently, when one regresses the brain signal
onto a feature extracted from the music stimulus, a time delay has to be factored in. In
the event that a clear a-priori assumption about the lag of the brain response with respect
to the stimulus does not exist, a ‘temporal embedding’ of the brain signal prior to the
optimization procedure can be applied. This technique has been proposed by Bieffmann
et al. (2010) and allows to deal with couplings between signals with an unknown delay
between them.

In order to be able to account for delays from of 1, ...k samples lag, k copies of the
original dataset (here Xyx7, a data matrix with 7' observations in N channels) are
created. Each of these copies is shifted by one of the 1, ...k time lags. Subsequently, the
shifted copies are added as ‘artificial’ channels to the original data set, resulting in data
matrix Xep,p of the dimensionality N - (k+ 1) x (T' — k). The structure of the resulting
matrix is given in Equation 2.15 where the column vectors x(t) denote the observations
on all N electrodes at time point t.
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In practice, the choice of time lags for the embedding is informed by prior knowledge
about the mechanisms expected to play a role in the processing of the studied stimulus
feature. The new, embedded data matrix X,,,, can then be fed into the regression or
CCA procedures described above, yielding filters of the dimension N x (k + 1) that
correspond to k + 1 spatial filters for the time lags 0, ...k samples.

2.4.5 Cross-validation

Cross-validation Geisser (1993) is a model validation technique for evaluating how well
an estimated predictive model generalizes to an independent dataset. This technique
involves partitioning a data set into disjunct subsets, training a model on one subset
(called the training set), applying the trained model on the remaining data (called the
validation set or testing set) and assessing its performance by means of an adequate
measure.

2.4.6 MUltiple Signal Classification (MUSIC)

The multiple signal classification (MUSIC) algorithm is a technique to localize a defined
number of neural dipolar sources that correspond to observations at the sensor level.

The general idea of the algorithm was introduced by Schmidt (1986) as an extension
of Pisarenko’s covariance approach (Pisarenko, 1973) for the estimation of parameters
of complex sinusoids in additive noise. In neuroimaging it has been applied for source
localization in many variants (Mosher et al., 1992, Mosher and Leahy, 1998, Shahbazi
et al., 2012).

The key idea of this approach is to reduce an observed signal of interest (e.g., a set of
spatial ERP patterns) to a lower-dimensional subspace and, to then, by means of a 3D
forward head model, find a set of dipoles that optimally matches this subspace.

This is done by first separating the space of multi-dimensional observations into orthogo-
nal subspaces that represent the signal of interest and noise-only, respectively, by means
of singular value decomposition (SVD) and a threshold. Then, in a scanning approach,
a grid of source points covering the 3D-head model is defined and for each candidate
source point the angle between projection and signal subspace is calculated in order to
find the dipole location and orientation with the best fit. The scanning metric is given
by the cosine of the principal angle # between dipole and signal subspace
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where LeR' ¥ is the forward model (defined by the 3D head model) for a point source
and ¢ the matrix of eigenvectors corresponding to the set of largest eigenvalues of the
covariance matrix that were selected to represent the original EEG data.

This approach can be regarded as a way to obtain a solution for a least squares dipole
fitting problem with a non-convex cost function (Darvas et al., 2004) that is problematic
to solve analytically.

In Chapter 4.2.3 we extend this well-established procedure for application to with spatio-
temporal patterns.

2.4.7 Statistical Problems

In the present analysis scenario where, both, time series data describing naturalistic music
stimuli, and representing brain signals are examined with correlation-based methods, two
issues require special consideration:

1. Correlation of brain signals with a set of interrelated features.

2. Correlation between auto-correlated time series.

2.4.7.1 Correlation of brain signals with a set of interrelated features

Typically, a description of a complex auditory stimulus comprises a multitude of features
that are not independent of each other, but are correlated to different degrees. Only
by accounting for this correlation, one can attribute a particular brain signal to one
particular music feature. The Partial Correlation Coefficient is a simple, but effective
method to assess the relation between two variables while removing the influence of one
ore more of other variables (Kendall et al., 1973). This post-hoc approach is a way to
exert statistical control over variables in a setting where experimental control over the
different aspects that are to be investigated is ruled out or incompatible with the study
design. The partial correlation coefficient between two time series x and y while removing
the influence from z is given by Equation 2.17.

Txy - Tarzryz
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Within the framework of linear regression analysis, the partial correlation coefficient
can be derived as the correlation of the residuals that are produced if the interfering
variable z (that is to be eliminated) is used as a regressor to predict each of the two
variables of interest x and y (Abdi, 2007). The partial correlation coefficient is related
to multiple linear regression analysis (MLR) It was applied in (Schaefer et al., 2009) to
decompose EEG responses into components of evoked response that can be linked to
specific aspects of music stimuli. Importantly, the partial correlation coefficient differs
from the semi-partial correlation/regression coefficient of the multiple linear regression
framework in that: The partial correlation coefficient eliminates the influence of the
interfering factor from both variables of interest, not only from one (in the framework
of MLR: from the regressor). As a consequence, using the partial correlation coefficient,
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shared variance that does not cover a large proportion of the total variance, but may still
reflect specific relations, is also detected. In a different context, partial correlation has
been applied previously in connectivity analysis of EEG recordings: In Marrelec et al.
(2006) it was used to identify connections between brain areas while accounting for the
effects of volume conduction between electrodes.

2.4.7.2 Correlation between auto-correlated time series

It is important to realize that, typically, brain signals as well as time courses of features
extracted from a music audio signal both comprise a high degree of autocorrelation
as successive sampling points are not independent of each other. This fact violates the
assumptions that underlie the standard tests for significance of correlation. This problem
can be accounted for in different ways: Pyper and Peterman (1998) for instance propose
a method that, given two (autocorrelated) time courses v and v of length N, estimates
the effective degrees of freedom d}“ needed to calculate the p-value for r(u,v) based on
the auto-correlation r,, and 7.,

df = ! : (2.18)
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In the music domain this method has been applied in Alluri et al. (2012).

A different strategy can be pursued by applying randomized permutation tests with
surrogate data as proposed in Theiler et al. (1992). If, for instance, the significance
of r(u,v) is assessed, a surrogate target function for v can be generated. This is done
by transforming the time course v into the frequency domain, randomly permuting its
phase spectrum, and reconstructing the time domain signal using the original spectral
amplitudes and the permuted phases. This surrogate function ¥ can be correlated with
the original u. Repeating this process a number of times results in a distribution of
correlation coefficients for the surrogate data. This gives an estimate of how likely a
correlation coefficient of the magnitude of the correlation observed between u and the
original v was if the signals had the same auto-correlation properties, but no relationship
between them, i.e. if the null-hypothesis was true.

2.4.8 Audio analysis

The earlier parts of this chapter introduced the idea to utilize target functions derived
from the music audio signal in order to develop backward models that extract stimulus-
related neural activity from the EEG as one key part of this thesis. Obviously, this
approach relies critically on the selection and extraction of relevant features from the
music signal.

Quantitative (automated) analyses of music signals have a long tradition in the field of
Music Information Retrieval (MIR). They are at the basis of typical MIR tasks, such as
content-based audio tagging, music-related search engines, audio classification and pre-
diction of genre, style, or composer. In music perception research the interest in describ-
ing variables of human perception in terms of musical features has grown substantially in
the last decade. In particular, the relationship between stimulus properties and affective
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responses has been explored in numerous studies (for an overview see Gabrielsson and
Lindstrom E. (2010)). Thus, automated analysis of music signals has become part of the
basic methodological inventory of researchers, a development that has been aided by a
range of freely available tools for audio analysis, such as the MIRtoolbox Lartillot et al.
(2008b), and a number of active communities.

However, the abundance of available features poses the problem of identifying an appro-
priate description of an audio signal. Typically, investigations on the neural processing
of music are primarily interested in basic variables of music, such as loudness, pitch,
rhythm, tempo, timbre, articulation (Deutsch, 2013). These, however, are complex per-
ceptual categories, each of which encompass multiple aspects. Unfortunately, for hardly
any of these perceptually defined aspects of music a ‘gold standard’ exists how to repre-
sent it by features extracted from the audio signal.

In the following the most important general considerations that may guide the design
of an audio analysis in this context are discussed. Then, the most relevant domains of
features are described. The focus lies on automated analysis of music stimuli in the form
of audio waveforms, neither considering symbolic descriptions of music, such as the MIDI
format or score representations, nor representations that include meta-data.

Following Mitrovi¢ et al. (2010) audio features suggested in the literature can be charac-
terized formally with respect to their domain, their time scale, their semantic meaning
and with respect to the presence or nature of an underlying model. The domain of an
audio feature describes the basic property of the data represented by that feature. For
example, a feature in the time domain, such as the Zero Crossing Rate, describes aspects
of the waveform (in the time domain), while a feature in the frequency domain, e.g.,
the spectral centroid, relates to an aspect of the signal’s spectrum. Important domains
are the time domain, the frequency domain, the cepstral domain and the modulation
frequency (Mitrovi¢ et al., 2010).

Furthermore, audio features can be extracted at different time scales. Typically, a dis-
tinction is made between short-term features (also intra-frame features) extracted for
time frames of up to approximately 100 ms (e.g., spectral centroid), long-term features
(also inter-frame features) that describe audio signals over time intervals of up to several
seconds (e.g., fluctuation features) and global features that are present across the entire
audio signal (e.g., key or mode).

An audio feature’s semantic meaning indicates whether it is a physical audio feature or
whether it directly relates to human perception. Physical features, such as, e.g., sound
pressure level, describe the underlying audio data in mathematical or statistical terms.
They are transparent with respect to their extraction process, but in general do not
directly relate to human perception. Perceptual features, naturally, are also derived
via mathematical descriptions of audio data, but typically are combinations of several
physical features that have been established as reflecting perceptual categories. For
instance, pulse clarity, an audio feature that combines several spectral physical features,
has been introduced and evaluated by Lartillot et al. and is regarded to reflect the
salience of the pulse in music Lartillot et al. (2008b). However, even though a number
of perceptual audio features exist in the literature, it is sometimes not clear how far the
perceptual relevance generalizes across a variety of stimuli.

There are three basic strategies for selecting features that describe an audio signal:
(i)The analyses can be based on physical audio features that serve as a technical proxy
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for perceptual categories that, in principle, is based on assumptions or best practice.
(ii) Alternatively, established perceptual features can be used, but then it has to be
considered whether their perceptual relevance generalizes. (iii) The perceptual relevance
of a given feature for a given stimulus set can be utilized, after being proven explicitly
(see for instance Alluri et al. (2012) and Cong et al. (2012)), which, requires considerable
experimental effort.

Finally, features may be further characterized through the presence and nature of an
underlying model. Models may be psychoacoustic, such as Zwicker’s loudness model
(Zwicker and Scharf, 1965) that takes into account the transfer function of the periph-
eral auditory system for transforming sound pressure level in loudness. Audio features
can alternatively also be derived through models from music theory, e.g., to derive a
transcription from audio signal into chords symbols (Mauch and Dixon, 2010).

For a comprehensive overview about feature categorization and a taxonomy of 77 features
with references to the audio retrieval literature see Mitrovié et al. (2010).






Chapter 3

Finding reflections of an original
rock song in ECoG high gamma
activity

3.1 Introduction

In Chapter 1 we have seen that the number of neuroscientific studies that let their
subjects listen to natural music is still small. Out of these, only few used the electroen-
cephalogram (EEG), which, in principle, is a highly attractive modality for investigating
the dynamics of music on a fine-grained time scale, due to its high temporal resolution. In
Chapter 2 we have highlighted the additional benefits of electrocorticographic recordings,
but also pointed out that the availability of this kind of data is limited. To our knowl-
edge there exists only one data set of ECoG recordings where patients were presented
with a full length naturalistic music stimulus. This data set has been subject to several
investigations. A first example how the time course of sound intensity of a naturalistic
music stimulus can be tracked in ECoG features was provided by Potes et al. (2012).
Specifically, this study revealed that high-gamma band (70-170 Hz) ECoG activity in the
superior temporal gyrus as well as on the dorsal precentral gyrus is highly correlated with
the time course of sound intensity in a continuous stream of natural music. A subsequent
study by Kubanek et al. (2013) found that high-gamma ECoG activity also tracks the
temporal envelope of speech and compared it to the activations related to music. This
analysis revealed different levels of specificity in an auditory network constituted by the
auditory belt areas, the superior temporal gyrus (STG) and Broca’s area. Recently, a
new analysis of the same data set identified spatial and causal relationships between al-
pha and gamma ECoG activity related to the processing of sound intensity (Potes et al.,
2014).

Considering that sound intensity (a technical proxy for perceived loudness) was tracked in
ECoG features with significant robustness, the same data set appeared highly promising
for a further investigation that takes into account the variety of features available in
this natural music stimulus, a rock song. Therefore, the goal of the present follow-up
analysis was to explore whether music-related variables other than sound intensity can be
tracked in ECoG and, if so, how respective areas of cortical activation compare to those
associated with the processing of sound intensity in Potes et al. (2012). Furthermore,

25
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ECoG recordings were available where the same subjects listened to natural speech. This
represented an opportunity to compare the processing of audio features in two different
categories of sounds.

Because a naturalistic music stimulus contains different perceptual dimensions that are
intrinsically related, it was a critical challenge to differentiate these in the brain response.
In addition to the feature of sound intensity that was investigated in the previous stud-
ies, we chose four features that relate to different aspects of music. These include the
moment-to-moment distinction vocals on/off, a continuous measure of harmonic change
probability, a measure related to timbral aspects (spectral centroid), and a rhythm-
related measure (pulse clarity).

3.2 Methods

3.2.1 Subjects and data collection

We analyzed data from ten subjects (for patient’s clinical profiles see Sturm et al. (2014)).
These 10 subjects included seven of the eight subjects who were analyzed in Potes et al.
(2012) where patients with epilepsy (4 women, 4 men) were instructed to listen atten-
tively (without any other task) to a single presentation of the rock song “Another Brick
in the Wall - Part 1" (Pink Floyd, Columbia Records, 1979) while ECoG activity was
recorded. In all patients in the present analysis the electrode grid was in the left hemi-
sphere. None of the subjects had a history of hearing impairment. After removal of
channels containing environmental or other artifacts the number of implanted electrodes
left for analysis ranged between 58 and 134 channels. Grid placement and duration of
ECoG monitoring were based solely on the requirements of the clinical evaluation with-
out any consideration of this study. Each subject had postoperative anterior—posterior
and lateral radiographs, as well as computer tomography (CT) scans to verify grid loca-
tions. The song was 3:10 min long, digitized at 44.1 kHz in waveform audio file format,
and binaurally presented to each subject using in-ear monitoring earphones (12 to 23.5
kHz audio bandwidth, 20 dB isolation from environmental noise). ECoG signals were
referenced to an electrocorticographically silent electrode (i.e., a location that was not
identified as eloquent cortex by electrocortical stimulation mapping), digitized at 1200
Hz, synchronized with stimulus presentation, and stored with BCI2000 (Schalk et al.,
2004, Schalk and Mellinger, 2010). In addition, we analyzed data from the same sub-
jects where they listened to the presentation of four narrated stories that are part of the
Boston Aphasia Battery (Goodglass et al., 1983) (for details see Kubanek et al. (2013)).

3.2.2 Extraction of ECoG features

Our analysis focused on the high-gamma band. ECoG activity in the high gamma band
has generally been associated with functional activation of the cortex in different domains
(Crone et al., 2006). We extracted ECoG high-gamma power using the same method
as in (Potes et al., 2012): high-gamma (70-170 Hz) amplitudes were extracted by first
applying a 0.1 Hz high-pass filter and then a common average reference (CAR) spatial
filter to the ECoG signals. For every 50 ms window, we estimated a power spectrum from
the time-series ECoG signal using an autoregressive (AR) model. Spectral magnitudes
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were averaged for all frequency bins between 70 and 115 and between 130 and 170 Hz
(omitting line noise at 120 Hz).

3.2.3 Audio analysis

Audio feature selection From the large number of potential features that charac-
terize a music audio signal, we chose a set of five features that capture salient dynamic
features of the stimulus and cover a broad spectrum of structural categories of music.
Since the results of Potes et al. (2012) revealed a strong correlation of ECoG high-gamma
power fluctuations with the sound intensity of the continuous music stimulus, sound in-
tensity was chosen as first feature. It is a temporal feature that can be extracted directly
from the raw audio signal and can be considered as an approximate measure of loudness.
The second feature was the logarithmic spectral centroid, which is perceptually related
to the complex property of timbre. More specifically, it has been related to perceived
brightness of sound in Schubert et al. (2004) and to perceived pitch level in Coutinho and
Cangelosi (2011). The third feature was probability of harmonic change, which relates
to higher-level musical structure, i.e., to harmonic progression and musical syntax. Pulse
clarity as fourth feature indicates how easily listeners perceive the underlying rhythmic
or metrical pulsation of a piece of music. This feature has been introduced and percep-
tually validated in Lartillot et al. (2008b) and since then has been used in numerous
studies (Alluri et al., 2012, Burger et al., 2013, Eerola et al., 2009, Higuchi et al., 2011,
Zentner, 2010). Since an essential characteristic of the music stimulus is the presence
of song with lyrics, the fifth feature, vocals on/off, captures the change between purely
instrumental passages and passages with vocal lyrics content. In summary, we chose a
description of the audio signal that relates to important basic variables of the perception
of music: loudness, timbre, and rhythm. With harmonic change, it encompasses also
an abstract high-level property related to the rules of Western major-minor harmony.
Finally, with vocals on/off, it allows also to address the impact of vocals with lyrics in
music. For comparison, in a complementary analysis, the identical analysis was applied
to the sound files of the speech stimuli.

Audio feature extraction Sound intensity was calculated in Matlab (The MathWorks
Inc., Natick, Massachusetts). Vocals on/off was determined manually. All other features
were extracted using freely available software (see below). We used the first 125 seconds
of Pink Floyd’s The Wall - part 1 in the analysis since the last minute of the song is an
instrumental afterlude passage with considerably less variation, in particular without any
vocal parts. The five features were calculated as described in the following paragraphs:

Sound intensity The sound intensity of the audio signal was calculated as the average
power derived from 50 ms segments of the audio waveform overlapping by 50%. The
resulting time course was downsampled to match the sampling rate of 20 Hz of the
extracted ECoG high gamma power.

Vocals on/off The presence of vocals was annotated manually in the audio file. This
annotation resulted in a binary function that contained the value 1 for passages with
lyrics and 0 otherwise. In the music stimulus there are seven passages with vocal lyrics
with average duration of 4.22 s (£0.77) that are separated by at least 5 s of purely
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instrumental music. In a complementary analysis, we applied a similar procedure to the
speech stimuli. Here, 0 was assigned to passages of silence within the story that exceeded
the duration of 400 ms, such as pauses between sentences or phrases, while 1 denoted
ongoing speech. In the speech stimulus the duration of speech passages was shorter
(mean duration 1.65 s £0.55) and vocals on/off changes occurred more frequently (30
changes in 100s). In both stimuli the analyzed data start with the first tone of the song or
with the first sentence of the narration, respectively, not including a silent pre-stimulus
period.

Spectral centroid The centroid of the log-scaled frequency spectrum was calculated
for 50% overlapping windows of 50 ms using the implementation in the MIRtoolbox
(Lartillot et al., 2008b). The spectral centroid is the amplitude-weighted mean frequency
in a window of 50 ms. It is an acoustic measure that indicates where the ‘mass’ of the
spectrum is located. The log-scaled centroid was downsampled to match the sampling
rate of 20 Hz of the extracted ECoG high gamma power.

Pulse clarity Pulse clarity was calculated for windows of 3 s with a 33% overlap using
the MIRtoolbox (Lartillot et al., 2008b), then interpolated to match the ECoG sampling
frequency of 20 Hz. Pulse clarity is a measure of how strong rhythmic pulses and their
periodicities can be perceived by the listener. It is based on the relative Shannon entropy
of the fluctuation spectrum (Pampalk et al., 2002) and has been perceptually validated
as being strongly related to listener’s perception of the degree of rhythmicity in a piece
of music in Lartillot et al. (2008a).

Harmonic change The harmonic change function measures the probability of a har-
monic change and detects chord changes. We derived this metric using the Queen Mary
plugin for the sonic visualizer (del Bimbo et al., 2010), which implements an algorithm
that was proposed and validated on a selection of rock songs in Harte et al. (2006). The
algorithm comprises a segmentation of the audio signal into 50 ms windows, spectral
decomposition of each window, assignment of chroma and a tonal centroid to each win-
dow. After that, the tonal distance between consecutive frames is calculated based on a
hypertoroid model of tonal space proposed by Chew (2000).

Figure 3.2 gives a visual representation of each stimulus’ spectrogram, an annotation of
lyrics and chords or text, and the time courses of the five extracted music features for a
12 s-segment of the song.

3.2.4 ECoG data analysis
3.2.4.1 Partial correlation

The five features that we used to describe the music stimulus are not independent of
each other, but are correlated with each other to variable degrees (see Figure 3.1). As
described in Chapter 2.4.7 we calculate the Partial Correlation Coefficient in order to
examine how much each of the five features of music contributes to the sensor-level ECoG
recordings in a manner that is independent from the remaining four features.
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FiGURE 3.1: Correlation between five stimulus features: left: music stimulus, right:
speech stimulus.
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To account for autocorrelation in both, the extracted music features and the ECoG high
gamma time courses, we assessed the significance of the partial correlation coefficients by
applying randomized permutation tests with surrogate data (see Chapter 2.4.7). For each
music feature, we generated a surrogate target function, calculated the partial correlation
coefficient between the ECoG feature and a set of surrogate target functions. We repeated
this process 1000 times, which resulted in a distribution of correlation coefficients for the
surrogate data.

The resulting p-values were corrected for multiple comparisons within all electrodes (false
discovery rate (FDR), q<0.05). We then plotted the negative logarithm of the corrected
p-values for each electrode on each subject’s brain model as an indicator of how much
brain activity at a particular site was related to a specific acoustic feature. Since we did
not observe negative correlation coefficients, there was no need to distinguish between
negative and positive correlation.

3.2.4.2 Latency of brain response

Naturally, one would expect that a cortical brain response that tracks features of an au-
ditory stimulus will not respond instantaneously, but delayed. Accordingly, we examined
the channel-wise partial correlation coefficients with time lags up to 300 ms. However,
this resulted in cross-correlation sequences that varied only on a very small scale over
time and were not conclusive with respect to an optimal time lag, suggesting that a time
lag between stimulus and brain response may be evened out by our sampling rate of 20
Hz. For instance, selecting a biologically plausible time lag of 100 ms, based on Kubanek
et al. (2013) where the optimal (averaged) time lag for tracking the speech envelope
ranged between 86.7 ms and 89.9 ms, had only an marginal effect on the significance of
correlation coefficients, although the magnitude of correlation coefficients varied slightly
(but not systematically). An overview of the group-level results for different time lags
is depicted in Figure 3.8. On these grounds it would have been arbitrary to define a
fixed time lag for the analysis and, moreover, a chosen time lag would not have been
informative. Therefore, we decided to calculate instantaneous correlation coefficients in
the present analysis, using this is a neutral or 'null’ hypothesis given that no significant
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estimate of a biologically plausible time lag was obtainable for this data set. For a de-
tailed analysis of latencies, in particular with respect to differences in the processing of
different aspects of music, as suggested in Schaefer et al. (2011a), our approach is not
appropriate since the dependencies between the five features play a role in calculating the
partial correlation coefficients for one music feature and the ECoG signal. This could be
a topic for a future investigation, for instance applying methods proposed in Biefsmann
et al. (2010) or Power et al. (2012).

3.2.4.3 Calculating group-level results

Since these measures of significance cannot be directly averaged across subjects, to ex-
amine the topographical distribution of significant correlations at the group-level, we
visualized the results as following: for each subject, we determined electrodes with sig-
nificant correlation and projected their positions onto the MNI brain. To detect activated
electrodes in similar regions, each of these electrodes was represented by a round patch of
activation with radius 10 mm (called ‘activation radius’ in the following) centered around
its position. These representations were added up for the 10 subjects, resulting in a map
showing the topographical overlap of the presence of significant correlation within the
group of subjects. Values range from zero (no significant correlation in all ten subjects)
to ten (significant correlation in all ten subjects).

Choosing an activation radius that corresponds to the inter-electrode distance (here: 10
mm) is a common practice for visualizing ECoG activations (Kubanek et al., 2013, Potes
et al., 2014, 2012). The (standard) inter-electrode distance of 10 mm is based on the
estimated spatial resolution of ECoG that takes into account volume conduction within
the cortical tissue (Mullen et al., 2011). Yet, it has to be kept in mind that the activation
radius does not necessarily need to be the same as the inter-electrode distance, but that
it is a parameter that can be adjusted. In general, choosing an activation radius is
a trade-off between spatial specificity and sensitivity with the respect to the detection
of common activation patterns between subjects. This means that, e.g., in a group of
patients with similar coverage of a certain cortical area, a smaller activation radius may be
useful to detect common foci of activation with high spatial specificity. If grid placement
varies more between subjects, a larger activation radius, e.g., corresponding to the inter-
electrode distance, might ensure that shared activations at a larger topographical scale
become visible.

Since grid placement was determined by clinical requirements and, consequently, varied
between patients, we needed to account for the fact that the maximal number of subjects
who can contribute to the group-level overlap of activation also varies between brain re-
gions. Therefore, we determined the group-level overlap of grid coverage on the MNI
brain, referred to as grid coverage index in the following, for all electrodes. Using the
grid coverage index, a normalized group-level overlap in a specific cortical area can be
obtained by dividing the (unnormalized) group-level overlap by the grid coverage index
for each vertex. However, even the normalized group-level overlap values cannot be used
for inferring group-level statistics, for instance to assess differences between brain areas.
Nonetheless, this does not affect the primary goal of the present analysis, which is to
explore potential differences in one location between features and also between the con-
ditions music and pure speech. For distinct foci of high degree of group-level overlap, we
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determined representative coordinates on the MNI brain manually, and derived the cor-
responding Brodmann areas using the Talairach Atlas daemon'. Owing to the variance
introduced by the projection of each subject’s individual brain onto the MNI brain and
to the blurring effect that the above mentioned procedure of determining group-level
overlap may cause, this procedure yields only an approximate localization of cortical
activation. Notwithstanding, on the scale of the Brodman area, this level of exactness
appears appropriate for comparing the present results with the literature.

3.3 Results

3.3.1 Stimulus features

Figure 3.1 shows a confusion matrix. For each element in this matrix, the brightness
gives the correlation between two particular music features. In the music stimulus vocals
on/off is strongly correlated with spectral centroid (r=0.69) and intensity (r= 0.37),
which confirms the necessity for calculating partial correlations. Figure 3.2 gives a visual
representation of each stimulus’ spectrogram, an annotation of lyrics and chords or text
and the time courses of the five extracted music features for a 12s-segment as well as
the time course of ECoG high gamma power, measured at one representative electrode
in one subject.

—— Sound intensity

—— Vocals

—— Spectral centroid

~——— Harmonic change

—— Pulse clarity

—— ECoG high gamma power

[a.u]

22 23 24 25 26 27 28 29 30 31 32 1 2 3 4 56 7 8 9 10 11
[s] [s]

FIGURE 3.2: Spectrogram of a segment (12 seconds) of the music/speech recording,
lyrics/text and chord annotations and time courses of the five analyzed features. For
comparison with the time course of the music features the time course of ECoG high
gamma power, measured at one representative electrode of subject S5 was added below.
The location of the electrode is indicated on the brain model on the right panel.

3.3.2 Grid coverage

Figure 3.3 documents the overlap of grid coverage (grid coverage index) within the group
of patients. The regions covered in all of the ten subjects comprise the posterior part of
the superior temporal gyrus and the ventral parts of the precentral and postcentral gyri.

"http://www.talairach.org/daemon.html
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FI1GURE 3.3: Grid coverage index: Overlap of grid coverage on MNI brain.

3.3.3 Single-subject results

Figure 3.4 shows the significance values of partial correlation of ECoG high-gamma
features with each of the five music features for each individual patient. Significant high-
gamma correlations with vocals on/off are present in 9/10 of the subjects, and exceed in
spatial extent those of all other acoustic features. In all of these nine patients, significant
positive correlations are present in auditory areas around the Sylvian fissure. In addition,
significant correlation in an isolated area at the dorsal precentral cortex is present in three
subjects (S3, S5, and S9). Compared to the effect related to vocals on/off, correlation
with sound intensity (after calculating the partial correlation and thereby rendering it
now independent from fluctuations in the other four acoustic parameters, including vocals
on/off) is low, reaching significance only in subject S4, S5, S7 and S10) and is detected
only in a smaller region on the posterior Superior Temporal Gyrus (pSTG). Correlation
with spectral centroid is significant only in subject S5 and S10 and distributed similarly
to the feature vocals on/off, but spatially less extended. For harmonic change, significant
correlation is present in four subjects (subject S3, S5, S9 and S10) on the posterior STG
and in subject S3 in frontal areas. The correlation with pulse clarity reaches significance
in only one subject (S6) in a small region on the precentral cortex.

Figure 3.5 depicts the cortical distribution of significant partial correlation of ECoG high-
gamma features with each of the five acoustic features for the natural speech stimuli at
the level of each individual patient. Differing from the music condition, the feature that is
reflected most consistently within the group is sound intensity with significant correlation
in 6/10 subjects (S1, S2, S3, S4, S5, S9, and S10). In all of them, the focus of correlation
is located on the pSTG. For the feature spectral centroid, significant correlations are
present only in three subjects on the superior and medial temporal gyrus.
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FIGURE 3.4: Single subjects (individual brain models), music condition: Cortical dis-
tribution of significant correlation with each of the five acoustic features after removing
the influence of the remaining four features by calculating partial correlation coefficients.
A value of 2 corresponds to a p-value of 0.01. Correlation coefficients determined as
significant by permutation tests ranged between r=0.07 and r=0.26.
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FIGURE 3.5: Single subjects (individual brain models), speech condition: Cortical
distribution of significant correlation with each of the five acoustic features after re-
moving the influence of the remaining four features by calculating partial correlation
coefficients. A value of 2 corresponds to a p-value of 0.01. Correlation coefficients
determined as significant by permutation tests ranged between r=0.06 and r=0.16.
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3.3.4 Group-level results

Figure 3.6 directly compares the group-level overlap of significant ‘standard’ correlation
(Pearson’s correlation coefficient, top row) of high-gamma ECoG features with each of
the five music features with that of the partial correlation coefficient (middle row). In
general, at a descriptive level, the similarity between cortical overlap patterns mirrors
the correlation matrix of the music features in so far as they mainly document the inter-
dependence of musical features rather than allowing to differentiate between processing
of specific dimensions of music. The middle row of Figure 3.6 gives the group-level over-
lap of significant correlation of high-gamma ECoG features with each of the five music
features after the influence of the remaining four other features has been removed by cal-
culating partial correlations (see Section 2.4.7). The highest degree of overlap is present
in the feature vocals on/off with significant correlation of high-gamma power with vocals
on/off in more than seven subjects around the Sylvian fissure, covering the posterior
and middle part of the superior temporal gyrus and of the middle temporal gyrus. The
point of most consistently detected activations in the present group of subjects is the
posterior part of the superior temporal gyrus (9/10 subjects). Furthermore, overlap of
significant correlation is present in the precentral gyrus in three subjects. For all other
features, the group-level overlap is considerably less: for sound intensity, there is a com-
mon focus of activation in the anterior peri-Sylvian area in three patients. Locations of
significant correlation for harmonic change vary along the STG, amounting to a number
of three overlapping subjects at maximum. Significant correlation with spectral centroid
is distributed around the Sylvian fissure, however with minimal inter-individual overlap.

The bottom row of Figure 3.6 shows the group-level overlap of significant correlation
for complementary analysis of speech-only stimuli. The overlap of significant correlation
with sound intensity is distributed around the Sylvian fissure with highest values on the
middle part of the STG, corresponding to the respective location in the music condition,
but with five contributing subjects, compared to three subjects in the music condition.
However, for all other features the degree of overlap does not exceed two subjects in any
location. Figure 3.7 shows the group-level overlap depicted in Figure 3.6, normalized
with respect to the grid coverage index depicted in Figure 3.3. We included only cortical
sites with a minimum grid coverage of 2 subjects. This representation demonstrates that
the characteristic patterns of the group-level overlap representation (Figure 3.5) do not
merely reflect the distribution of the grid coverage index, but that the distribution of
significant correlation has features that are consistently present in a large proportion of
the subjects in which grid coverage is given.

Figure 3.8 shows the group-level overlap of significant correlation for delays of 0, 50, 100,
150, 200, 250 and 300 ms of the time course of the ECoG high gamma power and the
music features.
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FIGURE 3.6: Number of participants with effects visualized on the MNI brain. The
color code indicates the degree of group-level overlap. Top: Music, ’standard’ correla-
tion. Middle: Music, partial correlation. Bottom: Speech, partial correlation.
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FIGURE 3.7: Number of participants with effects visualized on the MNI brain, normal-
ized with respect to the grid coverage index. Top: music, ’standard’ correlation.
Middle: music, partial correlation. Bottom: speech, partial correlation.
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FIGURE 3.8: Number of participants with effects visualized on the MNI brain: Partial
correlation coefficient for different time lags between stimulus and time course of ECoG
high gamma power.
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3.4 Summary and Discussion

In this chapter we have presented an approach that exemplarily demonstrates what limits
of differentiation and specificity can be reached in an analysis situation where, on the
one hand, electrocorticographic recordings offer high temporal resolution, a high level
of spatial specificity and exquisite signal-to-noise-ratio, but, on the other hand, only a
very small amount of (single-presentation) data is available to examine the processing
of a complex naturalistic stimulus in detail. With partial correlation we have proposed
a simple, but effective method that helps to delineate the cortical topography of the
processing of aspects that make up a naturalistic music stimulus.

3.4.1 Neuroscientific results

The present study examined the unique relations between ECoG high-gamma band power
and five features of music. Our results demonstrate that in this example of a rock song,
the change between purely instrumental passages and those with vocal lyrics content is
the compositional feature that exerts the most marked effect on the electrocorticographic
brain response in the high-gamma frequency band. Furthermore, distinct cortical pat-
terns of significant correlation with the features sound intensity, spectral centroid and
harmonic change were present in single subjects.

The core region of high group-level overlap of significant correlation was located along
the middle and posterior superior temporal gyrus (including Brodman areas 22, 41 and
42, see Figure 3.6, second row, second column). In three subjects, significant correlation
was also present on the dorsal precentral cortex (BA 4) and in two subjects on the
inferior frontal gyrus near Broca’s area (BA 45). Considering that the partial correlation
approach has removed the influence of the co-fluctuating four other factors, the remaining
significant correlation could be related linguistic-semantic aspects of speech or to the
presence of the human voice that has been found to effect ECoG gamma activity even for
(unintelligible) reversed speech in Brown et al. (2013). The topography of the speech-
related neural activity during listening to music is in line with Merrill et al. (2012),
Brattico et al. (2011) and Sammler et al. (2010). Beyond the impact of vocals on/off,
a specific reflection of the features spectral centroid and harmonic change is present on
the STG, mostly on its posterior part. This particular area has been related to auditory
processing in general, but specifically also to frequency (Liebenthal et al., 2003), pitch
(Patterson et al., 2002), timbre (Alluri et al., 2012) and harmonic tones (Zatorre and
Krumhansl, 2002).

A complementary analysis of ECoG recordings of stimulation with natural speech (with-
out music) showed that the feature vocals on/off was reflected much less than in the music
condition, while, contrastingly, reflections of sound intensity were consistently present on
the middle part of the STG. This finding agrees with the essential role of the sound en-
velope in speech understanding that has been established by clinical results (Drullman
et al., 1994, Lorenzi et al., 2006, Rosen, 1992, Zeng et al., 1999). It also suggests that,
if speech-related content is embedded as song in music, the well-known impact of the
sound envelope may be overruled by the change from instrumental to vocal/lyrics sound.
Regarding the comparison between stimulus conditions (processing pure speech versus
processing sung speech in instrumental music) this result demonstrates a difference in
the relative importance of stimulus features. This is a finding that may be interpreted
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as indicating the presence of different (global) listening modes for music with song and
pure speech. At a more local level (within the music condition) our results seem to point
in a similar direction: The present analysis included a broad range of musical features.
Of all these (and also of those examined in preliminary stages) the feature that is re-
flected strongest in the brain response is the binary feature vocals on/off. This means
that the feature that distinguishes predefined categories ‘instrumental’ and ‘instrumental
plus song’ explains modulations of brain activity better than any direct acoustic prop-
erty of the stimulus, such as, e.g., concomitant spectral contrasts that would have been
captured by the feature Spectral Centroid. In general, this finding agrees with the long
tradition of categorical perception of sound (Sundberg et al., 1991) or of listening modes
(see Tuuri and Eerola (2012) for an overview). The present results provide an important
new insight since they demonstrate that transitions between different listening modes
occur even during one stimulus presentation. Specifically, our results may be interpreted
as demonstrating that even the short vocals passages that are embedded in a rich acous-
tic arrangement suffice to put the brain in a mode that differs from the listening mode
for instrumental music. This (putative) change of mode may be owed to the strong
functional significance of speech-related content. Such an effect may be enhanced by the
effort of understanding sung speech embedded in instrumental music.

The present results differentiate further the pioneering work of Potes et al. (2012) where
ECoG high-gamma features were found to trace sound intensity in the posterior STG and
in the inferior frontal gyrus. The present follow-up analysis helps to attribute this effect
mainly to the presence of vocal speech in the stimulus and, with spectral centroid and
harmonic change, we identified two further aspects specific for music that have an impact
on the high-gamma ECoG response in some subjects. Notwithstanding, in these single
subjects, these effects are highly significant and derived from one presentation of the
stimulus. The present results complement those of Kubanek et al. (2013) where (based
on the same data set and high-gamma ECoG activity) a specificity of STG and IFG for
speech-related processing was suggested. The present results help to further elucidate
the previous results in so far as they demonstrate that not only the sound envelope
is encoded weaker in the music condition than for pure speech content, but that the
alternating presence/absence of vocals is represented predominantly. To the growing
corpus of highly heterogeneous evidence that sheds light on the neural processing of
natural music, the present findings contribute that in addition to the alpha and theta
frequency bands, which have been found to reflect dynamic rhythmic features of music
(Cong et al., 2012), the high-gamma band is a suitable starting point for a differential
analysis of the processing of higher-level auditory features. Furthermore, our findings
emphasize the context-dependence of the processing of aspects of naturalistic auditory
stimuli.

3.4.2 Methodology

In the present analysis, we approach a typical problem that arises when assessing the
relationship between brain recordings and natural auditory stimuli. We address the prob-
lem of non-orthogonal features describing a natural auditory stimulus that complicates
analyzing the relation between brain signals and stimulus features. Given the fact that
this is an intrinsic problem when studying the relationship between brain signals and
the structure of music, surprisingly few approaches in the literature deal with it. While
in the domain of behavioral music psychology correlation coefficients for interrelated
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features of music sometimes are reported ‘as they are’ for descriptive reasons (Farbood
and Upham, 2013) (while acknowledging the problem), in the typically high-dimensional
feature spaces of brain data appropriate measures of statistical significance are indispens-
able. In Alluri et al. (2012) principal component regression modeling has been proposed:
an interrelated multi-dimensional description of a music signal is transformed into a
lower-dimensional space of uncorrelated components. These are subsequently perceptu-
ally evaluated and result in a orthogonal set of music descriptors with perceptual labels.
Although this method was applied successfully in a series of investigations (Alluri et al.,
2012, Toiviainen et al., 2014), it is not clear whether it achieves interpretable results with
other stimuli. Besides that, it requires additional experimental effort for the perceptual
validation.

Here, operating on the original features, we demonstrate that partial correlation as a
simple post-hoc approach provides a sensitive method to identify highly specific indices
of the processing of auditory information. Partial correlation takes advantage of the fact
that in naturalistic music the correlation between different music features varies during
the course of a stimulus. If partial correlation is viewed as correlation between residuals
(see 2.4.7), the present approach can be understood as identifying unique variance of a
music feature in the time course of the stimulus and, then, probing the presence of a
correlated brain response. In the present context, owing to the ECoG’s characteristics
of offering both high temporal and spatial resolution, this achieves an extreme level of
specificity. In contrast to numerous approaches that assume inter-individual consistent
spatial distribution of neural activity, e.g., by averaging the EEG time course across
subjects (Schaefer et al., 2009) or by selecting components that are common to the
majority of subjects (Alluri et al., 2012, Cong et al., 2012) it operates on single-subject
ECoG recordings of single stimulus presentations. Moreover, it differentiates between
single aspects of the music signal. The proposed analysis scheme is efficient and applicable
in scenarios with naturalistic auditory stimulation, and, in principle, also for averaged
data.

3.4.3 Limitations

Obviously, there are limitations of what can be achieved with this approach. First of all,
there are the general limitations of electrocorticography in non-clinical research, such as
the fact that epilepsy patients may not be comparable in brain function and anatomy
to the healthy population. Furthermore, the number of patients analyzed here is small
and their grid coverage differed. Important issues, such as hemispheric specialization for
speech and music, cannot be addressed with the present data set of left-hemispheric
recordings. Furthermore, information about the patients’ music preference, cultural
background and musical training that could give valuable clues for interpreting inter-
personal differences is not available in this follow-up analysis. However, our analysis is
an example of what information can be gained within these limits and contributes to
the growing body of methodological approaches for research on the processing of natural
music.

Partial correlation, proposed here as one solution for inter-dependence of stimulus fea-
tures, has detected specific reflections of music features in the ECoG high-gamma re-
sponse. However, it has to be kept in mind that this method gives a differential picture
of each music feature’s impact on the brain response, not a comprehensive decomposition
of the brain signal. It shows cortical reflections that are unique to this feature beyond
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all others in the feature set. Thus, for a given feature, the portion of independent vari-
ance from the other features is crucial for the detectability of its reflection in the brain
response.

Naturally, when comparing two different stimuli, such as in our case in the speech and
music condition, the individual interdependence of stimulus features is not the same,
nor can the stimulus features themselves be balanced between both stimuli. Our results,
therefore, have to be regarded as highly specific cortical imprints of two different, nat-
urally unbalanced examples of natural auditory stimulation from two sound categories,
not as general findings on the processing of music or speech. Nonetheless, the present
differentiated picture of brain responses at the level of single subjects and a single pre-
sentation is a valuable complement of the recent series of investigations in natural music
processing research.






Chapter 4

From single notes to continuous
music: extracting cortical responses
to note onsets in music from the
continuous EEG

In the previous chapter we have seen that electrocorticography allows to derive an ex-
tremely detailed picture of the cortical processing of aspects of music even in the case of
single presentations of only a short segment of an original rock song. However, the avail-
ability of this kind of data is very limited. A much more widely-used recording modality
is the scalp EEG, that, due to its relative low cost and effort, is a popular multi-purpose
tool in auditory research. As described in Chapter 1, the signal-to-noise-ratio in EEG is
considerably lower. Therefore, extracting stimulus-related activity requires more elabo-
rate methods of data analysis.

In this chapter we present an approach that aims at extracting cortical responses to
note onsets in music from the continuous EEG. We use the extracted continuous brain
responses to assess the brain-stimulus synchronization with a measure we call Cortico-
Acoustic Correlation (CACor).

The core idea of this approach is to (i) select a feature of the audio waveform that is
reflected well by cortical evoked responses, and to (ii) train a spatio-temporal filter that
maximizes the correlation between an extracted EEG projection and this music feature.
This results in a one-dimensional EEG projection that tracks the note onset structure of
music.

In the following chapter we first motivate our focus on onset responses in Section 4.1.
In the same section, we give an overview on the state-of-the-art of related methods, in
particular of methods from the speech processing domain where the reconstruction of
the sound envelope is a popular task. After that, in Section 4.2 we describe the steps of
analysis and provide scenarios for application.

43
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4.1 Brain responses to note onsets

Music has been defined as ‘organizing sound in time’ by modernist composer Edgar
Varése (Varése and Chou, 1966). From a general physiological perspective the strong
timing mechanisms of music have been recognized to critically contribute to music being a
highly ‘mediating stimulus’ that engages human behavior and brain function in multiple
ways (Thaut, 2005). The low-level elements of the rhythmic structure in music are
distinct auditory events, such as note onsets. These serve as acoustic landmarks that
provide auditory cues that underlie the perception of more complex phenomena such as
beat, rhythm, and meter (Jackendoff and Lerdahl F., 2006).

Single sound events with a distinct onset are known to elicit evoked responses in the
brain, such as the P1-N1-P2 complex (N&éténen and Picton, 1987). Thus, music can be
hypothesized to also organize our brain activity in time: a sequence of tone onsets in
music can be assumed to be echoed by a sequence of event-related potentials (ERPs) in
the brain signal.

The P1-N1-P2 complex is a sequence of ‘obligatory’ auditory ERPs that index the de-
tection of sudden changes in the energy or in spectral properties of the auditory input
(Naatdnen and Picton, 1987, Winkler et al., 2009). P1, N1 and P2 are assumed to re-
flect different neural generators and functional processes, but typically occur together
(Crowley and Colrain, 2004). The P1-N1-P2 complex has been found to be susceptible
to changes in a variety of aspects of auditory stimulation and, in general, is a sensi-
tive tool for gaining insights into auditory processes. In the music domain onset-related
ERP responses have been studied in numerous contexts, e.g., to investigate aspects of
timbre perception (Meyer et al., 2006, Shahin et al., 2005) and rhythm (Schaefer et al.,
2009). In the domain of speech processing the P1-N1-P2 has been found to reflect many
of the spectral and temporal cues contained in spoken language Hertrich et al. (2012),
Ostroff et al. (1998), Whiting et al. (1998), Woods and Elmasian (1986). Moreover,
the P1-N1-P2 complex as a central auditory representation of sound has been linked to
behavioral function, as reflected by speech comprehension, lexical ability and auditory
discrimination (Sabisch et al., 2006, Santos et al., 2007, Tremblay et al., 2001, Yoncheva
et al., 2014). Importantly, the P1-N1-P2 complex has been found to be influenced by
subject-individual variables, such as maturation, learning and memory (Baumann et al.,
2008, Fujioka et al., 2006, Shahin et al., 2003, 2008, 2010, Trainor et al., 2002, Tremblay
and Kraus, 2002, Tremblay et al., 2001, 2014), and to situational factors, such as atten-
tion or arousal (Tremblay et al., 2001). These properties have established the P1-N1-P2
complex as a versatile tool in a wide range of applications in clinical and non-clinical
contexts (Billings et al., 2011, Campbell et al., 2011, Martin et al., 2008, 2007).

Taken together, note onsets are basic constituents of the musical surface (Lerdahl and
Jackendoff, 1983) and seem to contribute essentially to the effect of music. They are well
reflected in the EEG and, in general, related ERPs, such as P1-N1-P2 complex, seem
to be sensitive to a range of acoustic, user-related or situational factors. For examining
the relations between stimulus structure, brain signal and experiential aspects of music,
note onsets, thus, can be considered as a good starting point.

The classical way to examine cortical onset responses, such as the P1-N1-P2 complex, is
to present a high number of identical stimuli and subsequently to average across these
presentations, thereby enhancing the signal-to-noise ratio in order to make ERPs visi-
ble. Obviously, this technique puts constraints on the complexity and duration of the
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material that can be presented and is of limited use in the case of full-length pieces of
naturalistic music. Beyond averaging techniques, few attempts have been made to track
the processing of a complex naturalistic music stimulus in the continuous EEG (Cong
et al., 2012, Schaefer et al., 2011a, Thompson, 2013). In general, these approaches iden-
tify stimulus-related components of brain signals by looking for consistently occurring
patterns/discriminating features and, subsequently, relate these to a range of music fea-
tures. They, therefore, can be thought to be ‘unsupervised’ with respect to assumptions
about contributing aspects of music.

In a classification approach Schaefer et al. (2011a) decoded to which of seven 3s-fragments
of original music participants were listening to from their EEG. Using Singular Value
Decomposition (SVD) they identified a N1-like EEG component from the Grand Average
EEG as most discriminative component that was correlated with the sound envelope.
Cong et al. (2012) and Thompson (2013) applied ICA-related techniques to extract a
general mapping between musical audio and the subject’s electrical brain activity. Their
results revealed that EEG components predicting the envelope of the stimulus waveform
are a common feature in a set of EEG recordings of either a group of subjects that listens
to the same piece of music (Cong et al., 2012) or of one subject that listens to a variety
of musical excerpts (Thompson, 2013). These results support the idea that the sound
envelope (that contains information about the onset structure) consistently is reflected
in the EEG.

In the domain of speech processing cortical onset responses that reflect changes in the
waveform envelope (termed Envelope Following Responses, EFRs), have been a target
of interest for a long time (Aiken and Picton, 2006, Kuwada et al., 1986, Purcell et al.,
2004).

Approaches for finding a mapping between brain response and stimulus envelope can
be distinguished into forward mapping approaches and backward mapping approaches.
Common to both is that the mapping between stimulus envelope and brain signal is
‘learnt’ via a least squares solution that corresponds to linear regression (see Chapter 2).
Forward mapping approaches learn the convolution model that transforms the envelope
of the input signal into the measured brain signal by minimizing the error between
estimated EEG signal and true EEG signal. This, usually, is done for single sensor
signals or after reducing the multivariate brain signal to a single source. The resulting
convolution model can be interpreted as an estimation of the impulse response of the
auditory system. Forward mapping approaches have been applied in Aiken and Picton
(2008), Ding and Simon (2012b), Kerlin et al. (2010), Koskinen et al. (2013), Lalor et al.
(2009), Mesgarani and Chang (2012), Power et al. (2012, 2011) and Golumbic et al.
(2013).

Backwards mapping approaches work in the reverse direction and learn a mapping from
the neural data back to the stimulus. The learned model, also termed ‘spatio-temporal
decoder’ (O’Sullivan et al., 2014) represents the transformation of the sensor level mea-
surements to the stimulus’ envelope, i.e., it ‘learns’ how each sensor contributes to the
stimulus reconstruction. Furthermore, there exist techniques to additionally take into
account and optimize a time lag between stimulus and brain response. The simple linear
regression models can be further extended to include (non-linear) models of the audi-
tory system, such as the characteristics of the basilar membrane (Biesmans et al., 2015).
Backwards mapping approaches were first applied to reconstruct the envelope of various
simple and complex sound features from the invasive brain recordings of animals (Mes-
garani et al., 2009, Rieke et al., 1995, Stanley et al., 1999). From human invasive brain
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recordings (ECoG) highly precise reconstructions of natural speech were obtained with
backwards mapping techniques (Golumbic et al., 2013, Mesgarani and Chang, 2012,
Pasley et al., 2012). Using magnetoencephalography (MEG) this approach has been
shown to be highly sensitive to selective attention in a multi-speaker environment (Ding
and Simon, 2012a) and even in single-trial EEG (O’Sullivan et al., 2014).

However, an approach that is specifically dedicated to directly extracting onset responses
to natural music stimuli from the continuous EEG has (to our knowledge) not been
proposed yet. Therefore, it is not known what can be gained from neural accounts of
stimulus processing that are similarly detailed as those derived in the aforementioned
studies from the speech processing domain.

One goal of this thesis is to probe whether the idea of a sequence of onset with a cor-
tical echo holds for complex naturalistic stimuli, such that an EEG component can be
extracted that follows the sequence of onsets that constitutes a piece of music. If so,
in a second step we explore whether this technique is a tool for systematically investi-
gating the physiological /cortical reflection of music in relation to behavioral measures of
conscious experiencing music.

In the following we propose a method to obtain a representation from the ongoing EEG
that reflects brain responses to the sequence of tone onsets that constitutes a natural
piece of music. The core idea is to find a backward model that reduces multi-channel
EEG measurements to that component of the signal that ‘follows’ the stimulus’ sequence
of onsets. This is done by regressing the EEG signal onto a target function extracted
from the audio signal that represents the onsets best. The workflow (summarized in
Figure 4.1) can be divided into four modules for (i) preprocessing EEG and audio data,
(ii) calculating spatio-temporal regression filters for optimally extracting EEG features,
(iii) applying the derived filters to new data in order to extract EEG projections, and
(iv) transforming the spatio-temporal filters into a representation suitable for neuro-
physiological interpretation. The extracted EEG projections in (iii) can be utilized to
examine brain-stimulus synchronization as described in Chapter 4.2.4. A description of
the analysis steps in pseudocode is given in Figure 4.2 at the end of Section 4.2.3.
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FIGURE 4.1: EEG feature extraction. (1) In the first step of the analysis the 61-
channel EEG signal (after generic preprocessing) is temporally embedded and the power
slope of the audio signal is extracted. In the training step (2) the embedded EEG
features are regressed onto the audio power slope (Ridge Regression). After that (3)
the resulting spatio-temporal filter (regression weight matrix) reducing the multichannel
EEG to a one-dimensional projection is applied to a new presentation of the same
stimulus. The regression filter can be transformed (4a) into a spatio-temporal pattern
that indicates the distribution of information which is relevant for the reconstruction of
the audio power slope. This spatio-temporal pattern, in turn, can be (4b) decomposed
into components (derived with the MUSIC-algorithm) which have a scalp topography
and a temporal signature. The EEG projections obtained in (3) subsequently are
examined with respect to Cortico-Acoustic correlation (CACor).
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4.2 Analysis pipeline

4.2.1 Preprocessing
4.2.1.1 EEG

A priori, it is not clear by how much the EEG response we are interested in lags behind
the presented stimulus. Therefore, a temporal embedding of the EEG signal is performed,
as described in Section 2.4.4 before training the regression model. For examining cortical
onset responses, such as P1-N1-P2 which is a so-called ‘midlatency range’ component,
brain responses within a latency of 0 to 300 ms can be considered. For 61-channel
EEG recordings this results in a data matrix Xig91x7 corresponding to 61 - 31 = 1891
‘channels’ and T" observations (sampled in steps of 10 ms).

4.2.1.2 Audio data

For an optimal extraction of onset-related cortical activity it is crucial to identify the
target function that captures note onsets best. In general, note onsets are indicated
by amplitude modulations of the sound envelope, therefore related approaches often
use the sound envelope or its logarithm (Lalor et al., 2009, Power et al., 2012, 2011).
According to our experience, however, the first derivative of the sound envelope (in the
following denoted ‘power slope’) represents best the intensity changes that are expected
to trigger ERP responses. This choice of a target function can be motivated by the
brain’s sensitivity to change and has been supported by the importance of ‘auditory
edges’, both for the perception of ‘attack’ of musical sounds (Gordon, 1987) and also for
speech understanding (Doelling et al., 2014).

For an audio waveform with a typical audio sampling rate of 44.1 kHz the audio power
slope is extracted by segmenting the audio signal into 50% overlapping time windows
of 50 ms width and then calculating the average power of each window. Subsequently,
the resulting time course is smoothed using a Gaussian filter of three samples width and
the first derivative is taken, yielding the power slope. The extracted power slope is then
re-sampled to match the sampling frequency of the EEG.

4.2.2 Training of spatio-temporal filters

To learn the linear relationship between brain signal and stimulus we train a Linear Ridge
Regression model that is described in Chapter 2.4.1 to optimize the correlation between
the temporally embedded EEG and the power slope of the audio signal. To avoid over-
fitting this is done in a cross-validation approach 2.4.5, where training and evaluation of
the model are performed on separate portions of data. Specifically, in the training step
a filter w is learned that optimizes the correlation between the filtered (embedded) EEG
and the audio power slope z. Subsequently, this filter w is applied to the (embedded)
EEG features of the test set, resulting in a one-dimensional EEG projection. This EEG
projection is evaluated with respect to its correlation with the power slope of the test
data. We call the resulting correlation coefficient Cortico-Acoustic Correlation (CACor).
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In general terms this can be described as learning a linear mapping between stimulus
and brain response that is assumed to be relatively stable within the training data. The
training step produces a spatio-temporal weight matrix that indicates how each of the
‘channels’ of the embedded data contributes to predicting the target function optimally
at each time lag. In the evaluation step this weight matrix is applied to new EEG
data. The result is a time course that predicts the target function of the new data.
The goodness-of-fit between the predicted target function and the true target function

indicates whether the assumption of a generalized mapping between EEG and stimulus
holds.

The core question this approach attempts to answer is whether a learned brain signal-
stimulus mapping generalizes to new data. Depending on the design of the leave-one-
out-pattern of cross-validation this question can be posed in different flavors:

e Within-presentation cross-validation (where the stimulus was divided into seg-
ments) indicates the presence of a stimulus-general mapping in face of a (typically)
physically varying sound pattern.

e Between presentation cross-validation (training and testing on several presentations
of the same stimulus) emphasizes a consistent (situation-independent) reflection
across presentations.

e Between-subjects cross-validation (training and testing on presentations of the
same stimulus, but of different subjects) attempts to abstract from subject-individual
differences between mappings.

e Between-stimulus cross-validation (training and testing on presentations of different
stimuli) is interested in very general processing of music, independent of specific
stimulus characteristics.

4.2.3 Visualization of patterns/neural sources: extension of Multiple
Signal Classification (MUSIC)

The spatio-temporal regression filters that result from the training step described in
Section 4.2.2 are matrices of the dimensionality N channels x7T time lags which corre-
spond to a temporal sequence of spatial filter topographies. However, these filters are
not appropriate for neurophysiological interpretation. Instead, the filter maps need to
be transformed into patterns, which specify how the activity of the respective sources
in the brain is projected on the scalp (forward linear model of EEG, see (Chapter 2,
Section 2.3.2)). These patterns allow to examine how the information that is used to
reconstruct the power slope of the stimulus is distributed in space (on the scalp) and
time (relative to the stimulus).

Interpreting the matrix representation of this information is not very intuitive. There-
fore, it would be desirable to distill a representation from the spatio-temporal regression
patterns that is reduced in dimensionality and that has a form that allows for a better
comparison with conventional ERP components, e.g., consisting of one or more ‘compo-
nents’ with a spatial pattern and a time course. A standard method for examining the
characteristics of a matrix is to examine its eigenvectors and -values. Eigenvectors, how-
ever, are orthogonal to each other. It is, however, questionable that neural sources and
their physiological patterns should obey such an orthogonality constraint. Therefore, the
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direct result of such a factorization will hardly yield a good estimate of related ERP-like
components.

In the following we propose an approach that applies and extends the Multiple Signal
Classification (MUSIC) algorithm (Mosher et al., 1992) that is described in Chapter 2.4.6
in more detail in order to derive set of not (necessary) de-correlated spatial and temporal
patterns that represent the regression patterns.

In a nutshell, the MUSIC algorithm factorizes the spatio-temporal pattern matrices using
Singular Value Decomposition (SVD) and reduces them to a subspace covering a prede-
fined portion of the variance. A least-squares-based scanning procedure is performed to
find dipoles that have, according to a multi-shell spherical head model, produced these
patterns. This results in a set of (potentially) non-orthogonal spatial MUSIC components
for a set of orthogonal SVD patterns. Since we are interested not only in spatial patterns,
but also in their temporal evolution within the range of time lags under consideration,
we propose an additional step to the MUSIC algorithm that extracts time signatures
corresponding to the spatial patterns in our specific scenario. This is explained in the
following:

From a regression filter matrix W we derive a spatio-temporal pattern A,.;4 using Equa-
tion 2.3. Our goal is to extract a set of corresponding spatial and temporal components
from the spatio-temporal pattern A,.;, that describes A, in a physiologically inter-
pretable way. The first step of the MUSIC algorithm is to reduce Ayig to A,cq contained
in a lower-dimensional subspace by performing singular value decomposition (SVD). The
reduced version A,.q can be represented in tyical SVD form

Ayeq = USV. (4.1)

where U denotes the matrix of left-singular vectors, S a rectangular diagonal matrix con-
taining the singular values and V' the matrix of right-singular vectors. The left-singular
vectors U can be multiplied by the singular values S and interpreted as (weighted) spa-
tial patterns Ay = U % S of A,.q. The right-singular vectors V can be interpreted as
temporal patterns A;. Accordingly, the factorization of A can also be written as

Apoq = AA,;. (4.2)

The second step of the MUSIC algorithm finds a set of spatial patterns M, that optimally
represent the spatial dimensions of A,.y. Therefore the spatio-temporal A,.q can be
approximated by the product of My with unknown time courses M; (see Equation 4.3).

Aveq ~ MM, (4.3)

The MUSIC algorithm has extracted My by a linear transformation B from A, (4.4),
therefore A,.q can be also be approximated by

Ayeq ~ A;BM,. (4.4)

and
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M, = AB. (4.5)
B can be determined by solving equation 4.5 which yields:
B= (Al A)7tAl M. (4.6)
Now, M, can be calculated by setting equal 4.2 and 4.4 and by multiplying both sides
with B~1(A] A,)71A].
AsA = A;BM, (4.7)

B~ YA, = M,

M; represents the temporal patterns of the non-orthogonal components M derived by
the MUSIC algorithm.
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Algorithm 1 Pseudocode for deriving a CACor coefficient from EEG data

(training and test set) and the respective audio waveforms.

Require: EEG data: X1 € N x T (training data) , Xo € N x Th (test
data), after generic preprocessing as described in Section 4.2.1, Audio
data: wavfiles y1 and ys representing the respective stimuli, sampled at

44.1 kHz and in mono format, maxlag: maximal time lag of EEG with
respect to stimulus in samples, e.g. mazlag = 30 for EEG data sampled
at 100 Hz. 1. Extract audio power slope

1: for i =1to 2 do

2:  segment y; into num_win windows of 50 ms.

3. for w =1 to num_win do

4: psi(w) < power(data in window num_win)

5. end for

6:  smooth ps; with a gausswin of width = 3 samples
7: end for

1. Temporal embedding of EEG: Note that temporal embedding
should only be applied to continuous data. If several epochs of EEG
data are to be concatenated to form the training/test set, then temporal
embedding has to performed on each epoch prior to concatenation.

8 fori=1to2do

9 Xempi = Xi(5,1: end — mazlag)

10:  for m =1 to mazlag do

Xeani

1 Kembi X1(:,m+1: end — mazxlag + m)

12:  end for

13: end for
3. Train Ridge Regression model on training data

14: W < ridge regression (Xemp1,Ps1)
4. Apply Ridge Regression model on test data

15: p8o < WT(XEme)

16: CACor « corr(p3a, ps2)

Algorithm 2 Pseudocode for visualizing patterns and sources with the
extended MUSIC algorithm.
Require: Spatial filter W € N x mazlag + 1 obtained by training a Ridge
Regression model, matrix of EEG data X.
1. Derive pattern from filter.
1 Aorig < CxxW(WTOxx W)™
2. Factorize A,.;; and reduce its dimensionality
2: Agpig <= USV where S contains the eigenvalues on the diagonal
3: Ayeq < USV where S contains a reduced set of eigenvalues.
3. Extract the spatial pattern M of a neural source with the
MUSIC algorithm
4 Mg < MUS[C(ATM)
4. Extract a time course M; for M.
5 B« (AT A,)1AT M,.
6: M; «— B~ A,

FIGURE 4.2: Algorithm 1: Pseudocode for calculation CACor coefficient. Algorithm 2:
Pseudocode for calculating spatial and temporal MUSIC components from a regression
filter.
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4.2.4 Application scenarios: Cortico-Acoustic-Correlation (CACor)

The time course that is obtained by applying a trained regression model to new data is
a projection of the original EEG and, consequently, has the format of a one-dimensional
EEG channel. In the following we briefly introduce three basic analysis techniques that
are based on these projections.

1. Event-related analysis. The extracted EEG projections can be treated in an
analogue way to an ‘ordinary’ EEG channel, e.g., it can be subject to event-related
analysis techniques of single or averaged onset events. Since the onset structure
of the stimulus should be reflected with enhanced signal-to-noise ratio, this will
mitigate the demand for a high number of stimulus repetitions that is typical for
event-related analysis techniques.

2. Global Cortico-Acoustic Correlation. The correlation coefficient between the
extracted EEG projection and the audio power slope of the stimulus, termed
Cortico-Acoustic Correlation (CACor), can be regarded as a measure of brain-
stimulus synchronization. Its significance can be determined in order to assess
whether the onset structure of the stimulus is significantly reflected in the brain
signal. In principle, CACor coefficients can be compared between presentations,
subjects or stimuli.

3. Time-resolved Cortico-Acoustic Correlation. CACor can also be examined
in a time-resolved manner by calculating the correlation between EEG projection
and audio power slope not for the entire length of a stimuli, but for (overlapping)
consecutive time windows. The resulting time course of CACor coefficients informs
about the dynamics of the brain-stimulus synchronization within the presentation
of a stimulus, an aspect that is particularly important in the context of naturalistic
music.

4.2.5 Significance of CACor

When Cortico-Acoustic Correlation coefficients are interpreted, it is important to recog-
nize that both, the EEG signal and the audio power slopes contain serial correlation. In
Chapter 2.4.7 the two most widely used methods to correct for this have been described:
Pyper er al.’s method for estimating the effective degrees of freedom (Pyper and Pe-
terman, 1998) and a permutation testing approach with surrogate data as proposed in
Theiler et al. (1992).

However, in the present context, both methods have their drawbacks. Pyper et al.’s
method ‘punishes’ cross-correlation between two time series in order to avoid inflated
correlation coeflicients - a technique that also reduces the sensitivity. Permutation tests
as proposed in Theiler et al. (1992), in principle, can be regarded as more sensitive,
since they demonstrate that two signals with a given auto-correlation structure need a
particular phase configuration to be correlated with a certain magnitude. However, in our
previous experience permutation tests in combination with temporal embedding can be
problematic: If the spectrum of the target function that is to be permuted is dominated
by frequencies with cycles that are shorter than the time window for the embedding, a
phase-scrambled version of this function can be learned equally well as the original, since
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the temporal embedding allows to adjust for the phase scrambling. If this is the case,
the test is fully insensitive.

The exact nature of the interplay between the window length for the embedding and the
structure of the target function has not yet been investigated systematically. However, in
the following Chapter we have included some first comparisons between both methods.

4.2.6 Discussion and Future Work

The most basic approach for examining the relationship of EEG signals with an external
target variable is to determine the correlation between brain signal and target variable
for each single sensor. The technique we have proposed here alleviates three typical
problems of this basic approach: it enhances the low signal-to-noise ration of single-
sensor measurements, it projects out effects of an uneven distribution of noise between
sensors, and it does not require multiple testing corrections.

However, there exist alternative spatial/spatio-temporal filtering methods for finding
multi-variate components in the EEG signals that reflect stimulus properties. A popular
approach is Independent Component Analysis (ICA) (Ziehe et al., 2003, 2004, Ziehe and
Miiller, 1998, Ziehe et al., 2000) where EEG is decomposed into statistically independent
components. ICA belongs to the family of Blind Source Separation techniques (BSS),
since it decomposes the EEG signal guided only by statistical properties of the data.
This means that a relationship with stimulus features can be established only post-hoc,
as, e.g., in Cong et al. (2012). Therefore, ICA does not represent the first choice in the
endeavour to integrate EEG data analysis and audio analysis.

In the context of decomposition methods for EEG data that integrate external (mul-
timodal) information the technique of Source Power Co-Modulation (SPoC) has to be
mentioned. In the most simple case SPoC derives spatial filters that relate power modu-
lations of neural sources to a target function. SpoC has been demonstrated to be highly
efficient in a number of neuroscientific studies (Dahne et al., 2013, 2015, 2014a,b), and,
in general, would be highly suited for application in the present scenario. In the present,
very specific, task of finding the brain sources that track tone onsets, however, prelimi-
nary analyses did not suggest that oscillatory power is an informative feature. Instead,
the (raw) broadband EEG signal seemed to capture the ‘landscape‘ of onsets that con-
stitute a piece of music best. This suggests that, not power, but phase information is
the neural phenomenon that is critical for following the rhythmic structure with high
temporal precision. Yet, exploring whether SpoC can help to detect power modulations
in the brain signal that relate to different aspects of music would be an interesting task
for the future.

In the proposed method we integrate spatio-temporal EEG features, i.e., data points
representing the full set of electrodes within a time window 300 ms after a given point in
time, to predict the target function the audio power slope at this point. We do this by
vectorizing the temporal dimension (time lag) of this data (see ‘Temporal Embedding’
Chapter 2, Section 2.4.4). Although this is a well-proven technique to extract correlated
components with unknown delay in multi-modal settings (Biefmann et al., 2014), it has
to be kept in mind, that the vectorization may destroy some of the spatio-temporal
dependencies within the data. A better preservation of these structures can be achieved
with a discriminative approach (Tomioka and Miiller, 2010) where in a prediction task
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spatial and temporal EEG filters are (truly) jointly optimized. Importantly, feature
learning, feature selection, and feature combination are addressed through regularization.
Different regularization strategies together with a visualization technique that is related
to that described in Section 4.2.3 provide complementary views on the distribution of
information relevant for the discrimination. A direct comparison of the method proposed
in this thesis with the discriminative approach could give insights into the possible impact
of the vectorization of spatio-temporal features in the future.






Chapter 5

Applications

In the previous chapter we have described a method to extract a neural ‘echo’ of a stim-
ulus’ sequence of note onsets from the continuous EEG. In the following we evaluate
this method in applications that attempt to (i) directly compare how extracted neu-
ral signatures relate to ERPs that are obtained with conventional averaging techniques.
Furthermore, we (ii) apply the proposed method to learn about of auditory stream seg-
regation in the context of a multi-voiced semi-musical stimulus. Finally, we (iii) explore
whether significant CACor can be detected in a naturalistic ‘free listening paradigm’
where participants listen to excerpts of recorded music without a specific task. We
ask how the presence of significant CACor relates to stimulus properties and behavioral
measures of experiencing music.

5.1 Experiments and data sets

This section gives an overview over the data sets used for experimental evaluation.

5.1.1 Dataset 1: The Music BCI

This data set contains EEG recordings from a study that proposed a ‘musical’ brain
computer interface application (Treder et al., 2014) where participants listened to short
clips of a complex semi-naturalistic, ensemble music stimulus. In the music clips of
40 s duration three musical instruments (drums, keyboard, and bass) were presented,
each playing a (different) sequence of a repetitive standard pattern, interspersed by
an infrequent deviant pattern. As an ensemble, the instruments produced a sequence
resembling a minimalistic version of Depeche Mode’s ‘Just can’t get enough’ (1980s
Electro Pop). The experiment consisted of presentations of the ensemble clip in which
the instruments played together and solo clip presentations for each instrument. During
the ensemble presentations participants were instructed to attend to a target instrument
and to silently count the number of deviant patterns in this instrument.

o7
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5.1.1.1 Participants

Eleven participants (7 male, 4 female), aged 21-50 years (mean age 28), all but one right-
handed, were paid to take part in the experiment. Participants gave written consent and
the study was performed in accordance with the Declaration of Helsinki.

5.1.1.2 Apparatus

EEG was recorded at 1000 Hz, using a Brain Products (Munich, Germany) actiCAP
active electrode system with 64 electrodes, placed according to the international 10-20
system. One of the 64 electrodes was used to measure electrooculogram (EOG). Active
electrodes were referenced to left mastoid, using a forehead ground. Music stimuli were

presented using Sennheiser PMX 200 headphones. The audio signal was recorded as an
additional EEG channel.

5.1.1.3 Stimuli

Stimuli consist of 40-seconds music clips in 44.1 kHz mono WAV format, delivered bin-
aurally, i.e., listeners were presented with the identical audio stream at each ear. The
ensemble version of the clip is composed of three overlaid instruments, each repeating
21 times the respective bar-long sound pattern depicted in Figure 5.1, once in a while
interrupted by a deviant bar-long pattern. In the following, the term ‘single trial’ de-
notes a single presentations of one of these 40s-long music clips. Deviants are defined
by a single tone or a whole sequence of tones deviating from the standard pattern. The
stimulus represents a minimalistic adaptation of the chorus of ‘Just can’t get enough’ by
the Synth-Pop band Depeche Mode. It features three instruments: drums consisting of
kick drum, snare and hi-hat; a synthetic bass; and a keyboard equipped with a synthetic
piano sound. The keyboard plays the main melody of the song. The relative loudness of
the instruments has been set by one of the authors such that all instruments are roughly
equally audible. The tempo is 130 beats-per-minute.

In the original experiment two different kinds of musical pieces were tested: in addition
to the ‘Just can’t get enough’ adaptation (music condition SP) a stimulus resembling a
jazz-like minimalistic piece of music (music condition J) was presented. This jazz-like
piece of music was in stereo format, i.e., left ear and right ear were stimulated with dif-
ferent streams. The present analysis focused on utilizing continuous onset-related brain
responses for the investigation of stream segregation.Therefore, the jazz-like stereo stim-
ulus which introduced additional spatial cues for stream segregation was not appropriate.

According to the pattern of standard and deviant, 10 different music clips were created
with variable amounts and different positions of the deviants in each instrument. Addi-
tionally, solo versions with each of the instruments playing in isolation were generated.

5.1.1.4 Procedure

Participants were seated in a comfortable chair at a distance of about 60 cm from the
screen. Instruction was given in both, written and verbal form. They were instructed
to sit still, relax their muscles and try to minimize eye movements during the course of
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FIGURE 5.1: Score of ensemble version stimulus. Drums, although consisting of three
instruments, are treated as one voice in the analysis. One (out of 63) music clips
of 40 s duration consists of 21 repetitions of the depicted one-bar pattern. In addition,
14 solo clips were presented for each instrument.

a trial. Prior to the main experiment, participants were presented the different music
stimuli and it was verified that they can recognize the deviants. The main experiment
was split into 10 blocks and each block consisted of 21 40s-long music clips (containing
21 bars each). All clips in a block featured one music condition: Synth-Pop(SP), Jazz(J),
Synth-Pop solo(SPS), or Jazz solo(JS). The solo clips were identical to the mixed clips
except for featuring only one instrument. Within one block the 21 music clips were
played according to a randomized playlist containing the ten clips that differed with
respect to the position of deviant patterns. Each of the three instruments served as the
cued instrument for 7 clips within a block. The music conditions were presented in an
interleaved order as: SP, J, SPS, JS, SP, J, SPS, JS, SP, J. In other words, there were 3
blocks with ensemble presentations (= 63 clips, 21 for each target instrument) and 2 solo
blocks (= 42 clips, 14 for each instrument) for each music condition; only conditions SP
and SPS are part of the present analysis. Each trial started with a visual cue indicating
the to-be-attended instrument. Then, the standard bar-long pattern and the deviant bar-
long pattern of that particular instrument were played. Subsequently, a fixation cross
was overlaid on the cue and after 2s, the music clip started. The cue and the fixation
cross remained on the screen throughout the playback and participants were instructed to
fixate the cross. To assure that participants deployed attention to the cued instrument,
their task was to count the number of deviants in the cued instrument, ignoring the
other two instruments. After the clip, a cue on the screen prompted participants to
enter the count using the computer keyboard. After each block, they took a break of a
few minutes.
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5.1.1.5 Generic EEG pre-processing

The EEG data was lowpass-filtered using a Chebyshev filter (with passbands and stop-
bands of 42 Hz and 49 Hz, respectively) and then downsampled to 100 Hz. Since elec-
trodes F9 and F10 were not contained in the head model used in the MUSIC algorithm
(see 4.2.3) they were not considered in the analysis. Furthermore, the EOG channel was
discarded. This left 61 channels. In order to remove signal components of non-neural
origin, such as eye artifacts, muscle artifacts or movement artifacts while preserving the
overall temporal structure of clips we separated the 61-channel EEG data into indepen-
dent components using the TDSEP algorithm (Temporal Decorrelation source SEPara-
tion, Ziehe et al. (2003, 2004, 2000)). ICA components that were considered as purely
or predominantly driven by artifacts based on visual inspection of power spectrum, time
course and topography (see also McMenamin et al. (2011, 2010)) were discarded and the
remaining components were projected back into the original sensor space.

5.1.2 Dataset 2: Listening to natural music

In this experiment data related to a set of nine music and non-music sound clips was
obtained in three steps that are summarized in Figure 5.2. First, in a behavioral experi-
ment 14 participants gave continuous ratings of perceived musical tension while listening
to eight of the nine sound clips. Then, in an EEG experiment the brain signals of nine
subjects were recorded while they listened three times to all nine stimuli. Finally, a set
of nine acoustic/musical features was extracted from the waveform of each of the nine
stimuli. The details for each of these procedures are given below.

5.1.2.1 Participants

Participants EEG experiment Nine participants (6 male, 3 female), aged 24-44
years (mean age 30), volunteered to take part in the experiment. All reported having
normal hearing and no history of neurological disorder. The subjects differed with respect
to their musical education and practice: two of them reported intensive musical training
of more than 15 years and on more than one instrument, five of them modest amounts of
musical training (mean: 7 years) and two of them no musical training beyond obligatory
lessons at school. Subjects completed a questionnaire about their musical activities
and preferences. Participants gave written consent and the study was performed in
accordance with the Declaration of Helsinki. The study protocol was approved by the
Ethics Committee of the Charité University Medicine Berlin.

Participants behavioral experiment In a separate experiment 14 new participants
(9 male, 5 female, 12 right-handed, 2 left-handed) volunteered to take part in the be-
havioral experiment. Their musical experience ranged from no musical training beyond
obligatory courses at school to more than 15 years of musical training (mean 6 years).

5.1.2.2 Apparatus

Brain activity was recorded with multi-channel EEG amplifiers (BrainAmp hardware,
BrainProducts, Germany) using 63 Ag/AgCl electrodes (mounted on a Fast'n’Easy cap,



Chapter 5 Applications 61

Continuous tension ratings N
(14 subjects) NV

Behavioral 1 presentation per stimulus

experiment

61-channel EEG
— exp%lrzir%ent (9 subjects)
' 3 presentation per stimulus

9 stimuli
audio analysis 9 music features
Sound Intensity

Sharpness
Spectral Centroid
Spectral Entropy
Spectral Flux
Fluctuation Centroid W\J
Fluctuation Entropy
Pulse Clarity
Key Clarity

FI1GURE 5.2: Overview of experiments and data types. In the present study data related
to the processing of a set of music and non-music sounds was obtained in three steps. In
a behavioral experiment 14 participants gave continuous tension ratings while listening.
This resulted in one time course of tension ratings for each stimulus and subject. In an
EEG experiment the brain signals of nine subjects were recorded while they listened
to the stimuli. Stimuli were repeated three times for each stimulus, resulting in 27
EEG recordings for each stimulus. From the waveform of each stimulus a set of nine
acoustic/musical features was extracted from each stimulus.

Easycap, Germany) in an extended 10-20 system sampled at 1000 Hz with a band-pass
from 0.05 to 200 Hz. All skin-electrode impedances were kept below 20 k2. Additionally,
horizontal and vertical electrooculograms (EOG) were recorded. Signals of scalp elec-
trodes were referenced against a nose electrode. Music stimuli were presented in mono
format using Sennheiser PMX 200 headphones. The audio signal was recorded as an
additional EEG channel for accurate synchronization.

In the behavioral experiment tension ratings were recorded using a custom-made joystick
that was operated with the thumb of the dominant hand. A small spring integrated into
the joystick allowed to indicate the build-up of tension by pushing the joystick upwards
and decreasing tension by releasing the joystick. The joystick position was sampled at
50 Hz.

5.1.2.3 Stimuli

Nine stimuli from different sound categories were presented in the experiment (see Table
5.1 for more detailed information): (1) Badinerie by J.S. Bach, (2) The Four Seasons,
Spring, by A. Vivaldi, (3) The Four Seasons, Summer, by A. Vivaldi , (4) Etude op. 12,
No. 10, by F. Chopin, (5) Prelude op. 32, No. 5, by S. Rachmaninov, (6) Theme of
Schindler’s List, by J. Williams, (7) an isochronous sequence of major triad chords with
root notes on all tones of the chromatic scale (chord duration 350 ms, including rise and
fall times of 17.5 ms, interonset interval (IOI) 420 ms, after 7-11 repetitions of a chord
change to a new chord in random manner), (8) Jungle noise and (9) instrumental noise.
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5.1.2.4 Procedure

EEG experiment The study aimed at approximating listening situations that re-
semble those of everyday life. Consequently, we pursued a ‘free listening paradigm’:
participants were not given any special task and were just asked to listen in a relaxed
manner and with closed eyes during the presentation of the musical stimuli. The main
experiment was split into three blocks. In each block the nine stimuli were presented in
a different order that was designed such that two piano pieces, two violin pieces or two
non-musical stimuli never occurred in direct succession.

Behavioral experiment In the behavioral experiment subjects were given a short
introduction to the concept of tension in music. Then, they were instructed as following:

“In the following you listen to eight excerpts, divided by short breaks. Sixz of them are
musical pieces, two are non-musical. Your task is to indicate continuously with the joy-
stick how you experience the evolution of tension of each piece of music. Please start
each piece with the joystick at zero position. If you experience an increase in tension
in the music, move the joystick up. If you experience a decrease in tension, release the
joystick towards the zero position. You will have the opportunity to practice this before
the beginning of the experiment. These tension ratings reflect your individual experience.
Therefore it is not possible to do this right or wrong.”

After one practice trial with a different music stimulus, each music stimulus was presented
once while joystick movements were recorded. Since the stimulus Chord sequence, due
to its simplicity and repetitiveness, was not assumed to give rise to the perception of
tension in the listeners it was not part of the behavioral experiment.

5.1.2.5 Audio analysis

Power slope For each stimulus the power slope was determined by segmenting the
audio signal into 50% overlapping time frames of 50 ms width and then calculating the
average power of each window. Subsequently, the resulting time course was smoothed
using a Gaussian filter of three samples width and the first derivative was taken. Then,
the extracted power slope was interpolated to match the sampling frequency of the EEG.

Extraction of musical features We chose a set of nine musical features that cover
a broad spectrum of timbral, tonal, and rhythmic categories of music. Sound intensity,
which can be considered as an approximate measure of loudness, is a stimulus feature
that influences a variety of brain responses (Doelling et al., 2014, Mulert et al., 2005,
Néatanen and Picton, 1987). Sharpness, defined as the mean positive first derivative of
the waveform envelope (Doelling et al., 2014), has been found to be an important cue for
cortical tracking of the speech envelope (Ding and Simon, 2014, Doelling et al., 2014).
Furthermore, with Spectral centroid, Spectral entropy and Spectral flux we included a
set of three spectral features that describe pitch- and timbre-related aspects of sounds.
The fluctuation spectrum of an audio signal contains the periodicities contained in a
sound wave’s envelope. For rhythmically regular musical sounds peaks in the fluctuation
spectrum correspond to beat-related frequencies. The fluctuation spectrum can be fur-
ther characterized by the Fluctuation centroid that indicates where the ‘center of mass’
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of the spectrum is and by Fluctuation entropy which is a measure of rhythmic complex-
ity. Pulse clarity is a composite feature that indicates how easily listeners perceive the
underlying rhythmic or metrical pulsation of a piece of music. It has been introduced
and perceptually validated in Lartillot et al. (2008a) and since then has been used in
numerous studies (Alluri et al., 2012, Burger et al., 2013, Eerola et al., 2009, Higuchi
et al., 2011, Sturm et al., 2014, Zentner, 2010). Key clarity is a feature that estimates
the salience of key.

Sound intensity and Sharpness were calculated in Matlab (The MathWorks Inc., Natick,
Massachusetts). All other features were extracted using the MIRToolbox (Lartillot et al.,
2008b). Sound intensity and the three spectral features were calculated for time frames
of 50 ms overlapping by 50%. Sharpness, Fluctuation centroid and Fluctuation entropy,
Pulse clarity and Key clarity were determined for time frames of 3 s with a 33% overlap.
Additionally, for each stimulus a global description was obtained by taking the mean of
each music feature in order to derive a rough estimation of the specific characteristics of
each stimulus.

5.1.2.6 Generic preprocessing of EEG data

The EEG data was lowpass-filtered using a Chebyshev filter (with passbands and stop-
bands of 42 Hz and 49 Hz, respectively) and downsampled to 100 Hz. Since electrodes
A1l and A2 were not contained in the head model used in the MUSIC algorithm (see
Section 4.2.3) they were not considered in the analysis. In order to remove signal com-
ponents of non-neural origin, such as eye, muscle or movement artifacts while preserving
the overall temporal structure of the music-related EEG responses we separated the 61-
channel EEG data into independent components using the TDSEP algorithm (Temporal
Decorrelation source SEParation, Ziehe et al. (2004), with time lags of tau=0, ...990
ms). ICA components that were considered as purely or predominantly driven by ar-
tifacts based on visual inspection of power spectrum, time course and topography (see
also McMenamin et al. (2011, 2010)) were discarded and the remaining components were
projected back into the original sensor space.

5.2 Studies/Analyses

5.2.1 Evaluation: Neural representation of note onsets: Extracted
components versus averaging-derived ERPs

In Chapter 2.4.6 we have shown that an extended variant of the MUSIC algorithm trans-
forms spatio-temporal regression filters into a set of scalp topographies and corresponding
time signatures. It is, however, not clear how such neural representations relate to known
ERPs that are derived by averaging techniques. Before we advance to naturalistic music
scenarios with complex stimuli (where averaging techniques are not feasible) we apply
our method in a case of a simple, repetitive stimulus that offers an opportunity for direct
comparison with the results of conventional ERP analysis.
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5.2.1.1 Methods

For this analysis EEG data from experiment 2 (Section 5.1.2) was used. For each sub-
ject EEG recordings for the three presentations of the stimulus Chord Sequence were
concatenated. The stimulus Chord Sequence is an isochronous sequence of chords (for
details see Section 5.1.2.3) that are equally structured (in terms of music theory) but
have different root notes.

ERPs To obtain an ERP representation for tone onsets the continuous EEG data was
segmented into epochs of 300 ms length, starting at tone onset, a baseline of -50 to 0
ms pre-stimulus was taken and the average was calculated. This technique cannot be
applied to any other of the stimuli, owing to the high variability of onset characteristics
in naturalistic sounds.

Regression/MUSIC components To obtain MUSIC components of the concate-
nated stimulus presentations for each subject, we performed a temporal embedding from
0,...250 ms and trained a Ridge regression model (see Section 4.2.2) to predict the
corresponding power slope. We reduced the spatio-temporal pattern obtained from the
regression filters to a subspace containing 98% of the variance and derived three MUSIC
components with a spatial and a temporal pattern each (see Section 4.2.3).

The resulting brain signatures were compared for single subjects.

5.2.1.2 Results

Panel (a) of Figure 5.3 shows the scalp topography and time course of the ERPs that
were derived by classical averaging techniques from the EEG data of a single subject
(S2) for the stimulus Chord sequence. The upper part shows the scalp topography of the
time interval of 160-180 ms after chord onset. Below, the time course of EEG channel
Fz for the first 300 ms after chord onset is depicted. In panel (b) the spatial (top) and
temporal (bottom) dimension of one of the MUSIC components for the same subject
are shown. Both scalp topographies show a positive fronto-central distribution. In the
time course of the ERP a negative deflection at 100 ms is followed by a peak at 170 ms,
while the temporal dimension of the MUSIC component is represented by a negativity
at 110 ms that is followed by a positive peak at appr 200 ms. Panel (c) shows the
Grand Average ERP scalp topography for the nine subjects along with respective time
courses (grey) and the mean thereof (black). Panel (d) allows to directly compare the
(z-score-transformed) time courses in (a) and (b).

5.2.1.3 Discussion

In this section we have compared averaging-derived ERPs and regression-derived MUSIC
components for a simple stimulus consisting of isochronous chords. The application of the
classical averaging technique produced a N1-P2 complex as a reaction to chord onsets,
which is the expected auditory event-related potential indexing detection of the onset of
auditory stimuli (Crowley and Colrain, 2004, Nddtdnen and Picton, 1987).
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FIGURE 5.3: ERPs and MUSIC components. (a): Scalp topography (top) and time
course (bottom) of ERP (single subject) derived by averaging channel Fz for all tone
onsets of the stimulus Chord sequence. The scalp topography corresponds to the shaded
interval of 160-180 ms in the time course. (b): Spatial (top) and temporal (bottom)
dimension of MUSIC component derived from spatio-temporal patterns for the same
subject. ¢) Top: Grand Average scalp topography obtained with classical ERP analysis.
Individual scalp patterns that are contained in the Grand Average were determined by
taking the mean scalp pattern across a 20 ms window that corresponds to the maximum
amplitude of each subject’s onset ERP at channel Fz. The time windows of maximum
amplitude were determined by visual inspection and ranged between 130 and 250 ms
after tone onset. The bottom part of (c) shows the individual time courses (grey) as well
as the average time course (black). (d): ERP time course (red) and temporal dimension
of MUSIC component (blue) from (a) and (b), z-score-transformed and shown in one
plot for direct comparison.

The derived spatial and temporal MUSIC patterns resembled the N1-P2 signature, sug-
gesting that the latency and the spatial distribution of information utilized in the op-
timization process can be related to the characteristics of typical onset-related event-
related potentials. When interpreting these time courses, one has to recognize that they
differ from averaged ERPs (even though they are on the same time scale), as they rep-
resent the weighting of the corresponding spatial component over time and, thus, rather

resemble a convolution model or FIR filter than an ERP time course.

Nonetheless,
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time lags with large weights in principle can be compared to latencies of canonical ERP
components.

The comparison of the time courses of MUSIC components and ERPs reveals that both
have a similar shape, but also that negative and positive peaks occur approximately 20
ms later in the MUSIC component than in the ERP. If ERPs of tone onsets are averaged,
the time point of the onset has to be defined, either in the experimental protocol or based
on the audio waveform. Estimating with appropriate precision, however, the time point
when the onset of a sound is perceived, is not a trivial task, in particular for natural
sounds. This means that the absolute latency of averaging-derived ERP components
cannot be regarded as very reliable information. In contrast, the latency of a MUSIC
component seems to be more reliable in this context, as it has a fixed reference point.

In summary, our results demonstrate that EEG projections that ‘follow’ the power slope
of the audio signal can be traced back to generic onset-related ERPs and, thus, represent
a physiologically plausible fundament for further applications of this method.

5.2.2 Extracting the neural representation of tone onsets for separate
voices of ensemble music

5.2.2.1 Introduction

Natural ‘soundscapes’ of everyday life, e.g., communication in a noisy environment, chal-
lenge our proficiency in organizing sounds into perceptually meaningful sequences. All
the more music might spark our processing capabilities as it provides acoustic scenes
with a large number of concurring sound sources. Yet, when listening to music we are
able to organize the complex auditory scene into streams, segregate foreground and back-
ground, recognize voices, melodies, patterns, motifs, and switch our attention between
different aspects of a piece of music. Auditory stream segregation (ASS), the percep-
tional process which underlies this capability, has fascinated researchers for many years,
resulting in numerous studies exploring its mechanisms and determinants. In a nutshell
(for a detailed review see Moore and Gockel (2002)), the segregation of a complex audio
signal into streams can occur on the basis of many different acoustic cues (van Noorden,
1975); it is assumed to rely on processes at multiple levels of the auditory system; and it
reflects a number of different processes, some of which are stimulus-driven while others
are of more general cognitive nature, i.e., involving attention and /or knowledge Bregman
(1994). Electrophysiological indices of auditory stream segregation have been detected
in several approaches (Sussman, 2005, Sussman et al., 2007, Winkler et al., 2005, Yabe
et al., 2001); for an overview see Snyder and Alain (2007)). One line of research fo-
cused on the Mismatch Negativity (MMN) as neural index for a distinct perceptional
state of stream segregation by constructing tone sequences such that only a perceptual
segregation into two streams would allow a MMN-generating sound pattern to emerge.
Following a similar principle, neural steady-state responses were found to reflect the for-
mation of separate streams (Chakalov et al., 2013) in MEG. Using EEG an influence of
frequency separation of consecutive tones on the N1-P2 complex amplitudes was reported
(Gutschalk et al., 2005, Snyder et al., 2006). Critically, this trend correlated with the
perception of streaming in individual participants; a similar effect was reported for the
N1 component. This suggests that the amplitude of early auditory ERP components like
the N1-P2 complex can inform about the perceptional state with respect to segregation /-
coherence of complex auditory stimuli. Since the N1-P2 complex as a sensory-obligatory
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auditory-evoked potential can be utilized without imposing a complex structure, e.g., an
oddball paradigm, on the stimulus material, it may be promising for investigating ASS
in more naturalistic listening scenarios.

In the domain of speech processing the ‘human cocktail party problem’ represents a
well-researched instance of ASS. In particular, cortical responses that follow the wave-
form envelope (termed Envelope Following Responses, EFRs) are widely used tool for
investigating the neural representation of speech streams, and its modulation by atten-
tional state (Aiken and Picton, 2008, Ding and Simon, 2012a, Golumbic et al., 2013,
Kerlin et al., 2010, Lalor and Foxe, 2010, Lalor et al., 2009, Mesgarani and Chang, 2012,
O’Sullivan et al., 2014). In the domain of music processing a marked reflection of the
sound envelope has been detected in the EEG signal of short segments of naturalistic
music (Schaefer et al., 2011a). Unsupervised approaches (Cong et al., 2012, Thompson,
2013) have confirmed that note onsets leave a reflection in the listener’s EEG consistently
across subjects and stimuli. However, these cortical reflections have not been investigated
in detail for longer musical contexts and, in particular, an analogue to the‘cocktail party’
problem in speech processing has not been investigated specifically, even though com-
posing music from several ‘voices’ is a common musical practice.

The N1-P2 response as a stimulus-driven sensory component varies as a function of the
physical properties of the sound like its frequency (Dimitrijevic et al., 2008, Pratt et al.,
2009) or spectral complexity (Maiste and Picton, 1989, Shahin et al., 2005). Consider-
ing these general characteristics, it is an interesting question whether in a music-related
scenario where perception of separate streams is highly likely, Envelope Following Re-
sponses can be utilized to extract a neural representation related to these streams from
the brain signal.

In principle, this task combines two so-called inverse problems that do not have a unique
solution: (1) We have a number of sound sources that produce a mixed audio signal.
From the mixed signal it is not possible (without further assumptions) to infer the original
configuration of sources. This audio signal is assumed to result in stimulus-related neural
activity in the listener. (2) What we record in the listener’s EEG is a mixture of stimulus-
related neural activity, unrelated neural activity, and non-cerebral noise. Inferring these
sources from the EEG signal, the so-called inverse problem of EEG generation, is likewise
a problem without unique solution.

In the present analysis we aim in a first step to learn a solution for the second of these
inverse problems, to extract stimulus-related activity from the EEG in the case of a solo
stream. Subsequently, we apply the derived solution in a scenario with mixed sound
sources. We explore in how far the stimulus-related activity related to the solo stream
can be extracted from the EEG of the mixed (ensemble or multi-voiced) presentation.

We re-analyze a data set from a study proposing a ‘musical’ brain computer interface
application (Treder et al., 2014) that is described in Section 5.1.1. The original analysis
showed that P3 ERP components to deviant patterns in the target instrument sufficiently
differ from those in the non-target instruments to allow to decode from the EEG signal
which of the instruments a subject is attending to. These results can be considered as a
proof-of-concept that our capability of shifting attention to one voice in a multi-voiced
stimulus may be exploited in order to create a novel music-affine stimulation approach
for use in a brain-computer interface.
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In contrast to the previous analysis that focused solely on P3 responses to deviations in
the patterns, here, we propose to exploit the fact that all note onsets in a music clip
should evoke ERP responses. Therefore, the sequence of onset events that constitutes
each instrument’s part should elicit a corresponding series of ERP events in the listener’s
EEG. Since onset characteristics critically contribute to an instrument’s specific timbre
(McAdams et al., 1995) and onset-triggered ERPs are known to be responsive to subtle
spectral and temporal changes (Meyer et al., 2006) it can be assumed that the proper-
ties of this ERP response might differ for musical instruments with different tone onset
characteristics. We extract this sequence of ERPs from the single-trial EEG by training
a Linear Ridge Regression model with temporal embedding to optimize the relation be-
tween the power slope of the solo audio signal and the concomitant EEG. We (i) explore
whether such a spatio-temporal filter obtains EEG projections from the solo-instrument
trials that are significantly correlated with the sequence of onsets of the respective solo
music clip; and we (ii) probe (by correlation measures) whether these filters trained on
the solo trials can be used to reconstruct a representation of this solo voice from the
EEG of participants listening to the ensemble version clips. Finally, we (iii) test whether
the reconstruction quality increases if participants focus their attention on the respective
instrument.

5.2.2.2 Methods!

After generic pre-processing (see Section 5.1.1) we performed a temporal embedding from
0,...250 ms on the EEG data and extracted the power slope of all stimulus waveforms
as described above (Section 5.1.2.5).

In the first stage of the analysis, regression filters that maximize the correlation between
EEG and audio power slope were determined for the solo clips of the three instruments
for each subject separately. In a leave-one-clip-out cross-validation approach (to avoid
overfitting, see Section 2.4.5) a one-dimensional EEG projection for each of the 14 music
clips for an instrument was derived. Then, the corresponding CACor coefficient and its
significance were determined. Additionally, the CACor coefficient for the mean EEG
projection and the audio power slope was determined for each subject and instrument,
and also that for the Grand average of all EEG projections. Significance of CACor was
determined with Pyper et al.’s method (see Section 2.4.7). In order to account for the
repetitiveness of the music clips, we considered the cross-correlation for all possible time
lags within a music clip which drastically reduced the effective degrees of freedom. The
original and estimated effective degrees of freedom for the Grand Average correlation
coefficients are given in the bottom line of Table 5.8. The correlation coefficients of the
subject-individual mean EEG projections were corrected for multiple testing for N=11
subjects with a Bonferroni correction. Significance of correlation was determined to the
level of o = 0.05.

In the second stage of the analysis we applied the regression filters derived from the solo
presentations to the EEG responses of the ensemble version stimuli. This was done for
each subject and each instrument separately, resulting in three one-dimensional EEG
projections for each ensemble version clip per subject. These projections were averaged

'In the three analysis scenarios described in Section 5.2.1, Section 5.2.2 and Section 5.2.3 the same
regression method is applied. Therefore, parts of Section 5.2.1.1, Section 5.2.2.2 and Section 5.2.3.2
are very similar. The detailed descriptions of the regression analysis in each scenario were included for
completeness and accuracy.
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across the 63 ensemble version clips for each subject (separately for the instruments) as
well as across all subjects (Grand Average).

To decompose the spatio-temporal regression patterns we concatenated all 14 solo clips
for each instrument and subject, performed a temporal embedding from 0,...250 ms,
and trained a Ridge regression model to predict the corresponding power slope. We
reduced the spatio-temporal pattern obtained from the regression filters to a subspace
containing 98% of the variance and derived three MUSIC components with a spatial and
a temporal pattern each.

5.2.2.3 Results

Solo stimulus presentations Figure 5.4 shows examples of the EEG projections that
reconstruct the audio power slope; for illustration purposes these were collapsed across
11 subjects, 14 clips for each instrument and 21 bars in each clip. A comparison of the
EEG-reconstructed power slope (red line) with the audio power slope (blue line) shows
how the onset events in the audio signal are accompanied by peaks in the brain signal.

Table 5.2 gives the percentage of individual solo clips (14 for each instrument) with sig-
nificant CACor. Note that this measure relates to the significance of single presentations
of clips of 40 s duration and was derived without any averaging of EEG data. Table 5.3
shows the magnitude of correlation of the averaged EEG-projections (for the 14 solo pre-
sentations of each instrument) with the audio power slope for single subjects, revealing
significant correlation in 7/11 subjects for drums, in 9/11 subjects for bass, and in 8/11
subjects for keyboard. The bottom line of Table 5.3 shows that taking the mean of all
subjects’” EEG projections (Table 5.3, bottom line ‘GA’) produces time courses that are
significantly correlated with the original audio power slopes for all three instruments with
magnitude of correlation r=0.60 for drums (p=0.00014, effective degrees of freedom: 34),
r=0.52 for bass(r=0.52, p=0.00011, effective degrees of freedom: 48) and r=0.54 for key-
board (p=0.0000004, effective degrees of freedom: 72). Note that the original number of
degrees of freedom of 3968 was drastically reduced by Pyper et al.’s method (Pyper and
Peterman, 1998) that was applied to account for serial correlation in both time courses.
All power slopes in Figure 5.4 are scaled for illustrative purposes. The absolute values of
the audio power slopes for the three instruments are depicted in Figure 5.5, indicating
differences in amplitudes and rise times.
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FIGURE 5.4: Solo clips: Grand Average (11 subjects) of extracted EEG projection (blue
line) and audio power slope (red line), averaged across bars. The light grey vertical
lines indicate the beats of the four-four time.



subject drums bass keyboard

S1 100 75 67
52 0 36 14
S3 31 100 21
S4 93 64 29
S5 o7 36 64
S6 43 0 7
ST o7 79 21
S8 71 79 21
S9 71 57 50
510 50 64 o7
S11 29 64 7

TABLE 5.2: Solo presentations: Percentage of 14 solo clips that were
reconstructed with significant correlation from the EEG for the three

instruments.

subject drums bass keyboard
S1 0.43 0.34 0.32
S2 0.23 0.26 0.21
S3 0.26 0.49 0.25
S4 0.52 0.39 0.17
S5 0.27 0.28 0.34
S6 0.22 0.13 0.08
ST 0.33 0.42 0.23
S8 0.35 0.45 0.24
S9 0.38 0.40 0.32
S10 0.32 0.33 0.30
S11 0.28 0.38 0.12
GA 0.60, 0.52, 0.54,

p=0.00014 p=0.00011 p=0.0000004
df(corr.) 34 48 72
df(orig.) 3968 3968 3968

TABLE 5.3: Solo clips: Correlation between EEG-reconstructed power

slopes (averaged across 14 music clips) and audio power slope for

single subjects and the three instruments. Significance of correlation

was determined taking into account the effective degrees of freedom

and applying a Bonferroni correction for N=11 subjects. Shaded cells

indicate significant correlation at the level of alpha=0.05. GA: Grand
average over 11 subjects.
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F1cURE 5.5: Audio power slopes of solo stimuli, displayed with identical scale. Am-
plitudes range between -8.8 and 11.2 for drums, between -5.9 and 10.5 for bass and
between -0.7 and 2.8 for keyboard.

Decomposition of regression patterns Figure 5.6 shows the result of decomposing
the spatio-temporal patterns with the MUSIC algorithm for one representative subject
(see Section 4.2.3). In all three instruments a fronto-central scalp topography is present,
resembling the topography of the N1/P2 complex. This scalp pattern is consistent for the
three instruments. Furthermore, it is present in 4/11 subjects for drums, in 6/11 subjects
for bass and in 5/11 subjects for keyboard. Its evolution over time differs, showing a
change from positive to negative weights with extrema at 40 ms and 210 ms time lag for
drums, broadly spread negative weights between 0 ms and 220 ms for bass, and a time
evolution with two distinct positive peaks at 50 ms and 150 ms for keyboard. In contrast
to the spatial patterns, the extracted time courses vary considerably between subjects.

Ensemble stimulus presentations Applying the three regression filters (trained on
the solo stimulus presentations for the three instruments) to the EEG of the ensemble
stimulus presentation extracts an EEG projection that is significantly correlated with the
solo audio power slope of each instrument in 3/11 subjects for drums, in 2/11 subjects
for bass, and in 9/11 subjects for keyboard (Table 5.4). In one of the subjects EEG
projections significantly correlated with all three solo power slopes could be derived in
parallel from the (same) EEG of the ensemble presentation, in 3/11 subjects the audio
power slopes of two instruments in parallel, in 5/11 subjects for one instrument, and for
2/11 subjects for none of them. The EEG Grand Average of the ensemble presentation
(11 subjects, EEG projections of 63 music clips each) is significantly correlated with the
audio power slope of a solo instrument only for keyboard (r=0.45, p=0.001, effective
degrees of freedom 88).
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FIGURE 5.6: Spatio-temporal regression patterns and extracted MUSIC components

for a representative subject. Top: Regression patterns with electrodes on the y-axis

and time lag on the x-axis. Electrodes are arranged from occipital (low y values) to

frontal ()high y-values). Middle: scalp pattern of first extracted MUSIC component.
Bottom: time course of first extracted MUSIC component.

Specificity of reconstruction Since the solo power slopes are correlated with each
other to different degrees as well as with the audio power slope of the ensemble version
stimulus (Table 5.5), there is no straightforward way to estimate whether the EEG pro-
jections extracted by the instrument-specific filters are indeed specific for the instrument.
To learn about the specificity, we put forward the null hypothesis that the instrument-
specific filter extracts a representation of all onsets of the ensemble version stimulus. We
compare Fisher-z-transformed correlation coefficients between EEG projections derived
by the instrument-specific filter and solo audio power slopes to those between the same
EEG projections and ensemble version audio power slopes in a paired Wilcoxon signed
rank test. Figure 5.7 shows that for keyboard in all but one subject the EEG projection
is more highly correlated with the keyboard audio power slope than with the ensemble
version audio power slope, resulting in a significant difference between the distributions
of correlation coefficients at group level (p=0.002). For drums and bass there were no
significant differences.
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subject drums bass keyboard
S1 0.36 0.22 0.38
S2 -0.13 -0.06 0.25
S3 -0.07 -0.14 0.16
S4 0.0 -0.11 0.35
S5 -0.23 -0.06 0.47
S6 0.01 -0.12 0.25
ST -0.01 0.23 0.20
S8 0.09 0.0 0.12
S9 -0.12 -0.09 0.36
S10 0.2 0.08 0.25
S11 0.26 0.09 0.20
GA 0.04 0.01 0.45,

p=0.0001

df(corrected)=69

TABLE 5.4: Polyphonic clips: Correlation between instrument-specific power slopes
reconstructed from the EEG of the polyphonic presentation (averaged across 63 music
clips) and audio power slope of the respective single instrument for all 11 subjects and
the three instruments. Significance of correlation was determined by estimating the
effective degrees of freedom and applying a Bonferroni correction for N=11 subjects.
Shaded cells indicate significance of correlation at the level of alpha=0.05.

r bass keyboard ensemble
drums  -0.15 0.24 0.48
bass -0.05
keyboard  0.06 0.26

TABLE 5.5: Correlation between audio power slopes of solo and ensemble version stim-
uli.

Effect of attention When listening to the 63 ensemble version clips subjects were
instructed to focus on a specific instrument before each clip, resulting in 21 trials of an
‘attended condition’ and 42 trials with an ‘unattended condition’ for each instrument.
We tested whether the correlation between the EEG-reconstructed instrument-specific
audio power slope and the respective audio power slope significantly differed between
these two conditions by performing a random partition test with 1000 iterations. For
single subjects a significant increase in correlation was present for drums in one subject
(S1), for bass in two subjects (S5, S11), and for keyboard in five subjects (S6, S7, S8,
S9, and S10). Within the group of subjects a significant effect of attention was present
for keyboard (p = 0.001).

Behavioral performance The behavioral performance differs for the three instru-
ments (see Table 5.6) with highest counting accuracy for keyboard (Grand Average: 74%
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FIGURE 5.7: The EEG-reconstructed keyboard power slope extracted from the EEG of

the ensemble presentation by applying the keyboard-specific filter is correlated higher

with the solo keyboard audio power slope than with the ensemble version audio power
slope.

correctly counted deviant stimuli), second highest accuracy for drums (71%) and lowest
for bass (63%) (for details see Treder et al. (2014)).
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subject drums bass keyboard

GA 0.71  0.63 0.74

TABLE 5.6: Behavioral performance: Percentage of correctly counted trials (Grand
Average).

5.2.2.4 Discussion

In this chapter we have applied a regression-based stimulus reconstruction method in
order to extract a neural ‘echo’ of the sequence of note onsets that constitutes a musical
stimulus from the listener’s EEG. We have demonstrated that the proposed approach al-
lows to robustly track the onset sequence of three monophonic complex music-like stimuli.
Moreover, if the characteristics of a naturalistic complex sound pattern can be encoded
by such a model, in principle this can be applied to extract an EEG representation of the
respective sound pattern even if it is embedded into an ensemble of musical voices. Thus,
our approach can provide a neural representation that parallels the separate streams a
listener perceives.

Related methods The proposed application of Linear Ridge Regression with the audio
power slope as a target function extends a range of approaches from the domain of
speech processing where Envelope Following Responses (EFRs) have been extracted from
continuous EEG and MEG with a variety of methods (see Section 4.1). The method used
here belongs to the family of regression-based stimulus reconstruction methods.

In particular, the proposed method is related to the reverse correlation approach of
O’Sullivan et al. (2014) since we regress EEG onto a sound envelope-related target func-
tion and operate on single trials. We extend O’Sullivan’s technique by introducing an
analytical way to estimate the shrinkage parameter. Importantly, we provide a way to
transform the regression filters into a format that is neurophysiologically interpretable.

Physiological plausibility The extracted MUSIC components revealed a scalp pat-
tern that was consistent between subjects and instruments. This common scalp pattern
is reminiscent of a N1-P2 complex, as described in Chapter 5.2.1. The temporal dimen-
sion of the extracted components of the three instruments is much more variable. As
such, the range where the extracted time courses peak is in line with the optimal time
lag of cross-correlation between brain signal and sound envelope of 180 ms reported in
Aiken and Picton (2006) and with results of O’Sullivan et al. (2014). In the present
stimuli, however, note onsets occur in quick succession, such that the window of 0 to 250
ms time lag of the regression model potentially covers more than a single onset/ERP
component. This means that the regression model not only might ‘learn’ latency and
spatial distribution of onset-related brain responses, but could be sensitive also to the
rhythmic structure of the stimulus sequence.

Auditory stream segregation The study goal was to approach the two-fold inverse
problem of reconstructing (known) sound sources that create a mixed sound signal from
the EEG signal of an individual who listened to this mixed signal. This enterprise
capitalized on the assumption that the brain performs auditory scene analysis and creates
a representation of these single sources. In the present scenario the listener was presented
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with a sound scene that is stylistically relatively close to real music and, therefore, may
invoke our natural abilities to stream music. The present stimulus provides a whole
range of spectral, timbral and rhythmic cues on several time scales and these occur both,
sequentially and simultaneously, promoting the segregation into streams. In the present
scenario, thus, users were expected to perceive separate streams, and this assumption
was confirmed by the behavioral results.

The present results are a proof-of-concept that a neural representation of such a stream
can be extracted from the EEG, at least for one of the sound sources, here for the melody
instrument keyboard.

This is an encouraging first result. For a continued application of the proposed technique
in this line of research, however, an important issue has to be addressed. One general
strength of multi-variate spatial filtering methods for EEG is that filters are determined
not only to enhance a signal of interest, but also to project out stimulus-unrelated noise
in an optimal way (Blankertz et al., 2011). In the present analysis, however, we first train
the regression filters on solo presentations where no additional auditory input is present.
After that, we apply them in a situation where the solo stream is part of the mixed
stimulus. This means that in the training step the influence of the other instruments
(that is to be projected out later) cannot be ‘learnt’ by the regression model. Therefore,
the current application of the method may not make full use of the benefits of the spatial
filtering technique. For future investigations it might be an interesting topic to probe
whether the EEG representations of auditory streams can be reconstructed better if
training data is used where other sources of sound are present.

Our results represent a link to the great number of studies that investigate the human
‘cocktail party problem’ by examining cortical activity that tracks the sound envelope
of speech (for an overview see Ding and Simon (2014)) in multi-speaker environments.
These have demonstrated that Envelope-Following-Responses (EFRs) can be utilized to
decompose the brain signal into representations of auditory streams. Moreover, selective
attention leads to an enhanced representation in the attended stream while the to-be-
ignored stream is suppressed (Ding and Simon, 2012a,b, Horton et al., 2013, Kerlin
et al., 2010, Kong et al., 2014, O’Sullivan et al., 2014, Power et al., 2012). Our results
demonstrate that such an approach can be (at least partially) successfully applied in
a music-related context where (to our knowledge) neural correlates of auditory stream
separation (ASS) have not yet been investigated for continuous naturalistic stimuli. The
effect of attention on the reconstruction quality for the melody instrument keyboard is
in good accordance with an enhanced representation of an attended auditory stream in
speech processing.

Critically, however, our stimulation scenario differs in some important points. In contrast
to typical ‘cocktail party’ situations, the voices that constitute the present multi-voiced
stimulus are more strongly correlated and do not compete, but are integrated into an
aesthetic entity. Furthermore, subjects were presented the same multi-voiced stream at
both ears, while multi-speaker paradigms typically make use of a spatial separation of
streams. Our results show that in absence of spatial cues and with a high coincidence
of onsets between streams still at least two neural representations of streams could be
extracted in parallel for some subjects. The time signatures that we derived from the
regression filters suggest that such neural representations depend on differences in the
shape of the time course of related ERPs.
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Our results contribute to the domain of auditory ERP-based BCI where ERPs like the
N1 and P2 or P3 have been exploited in order to decode the user’s target of attention
from the EEG (Hill et al., 2012, Hohne et al., 2011, Schreuder et al., 2010, 2011, Treder
and Blankertz, 2010, Treder et al., 2014), to name only a few. In particular, our results
may contribute new insights with respect to so-called ‘streaming’ paradigms (Hill et al.
(2004), Kanoh et al. (2008), for details see Hill et al. (2012)) that do not necessarily
rely on the distinction of target vs. non-target auditory events, but on the attended
stream. Our results confirm that such applications may in principle be designed without
an oddball paradigm and based on more naturalistic stimuli.

We found that the voice of the melody keyboard was the only one that was success-
fully reconstructed from EEG of the ensemble presentation, while all solo voices were
reconstructed similarly well if instruments played alone. First of all, this reveals that
the instrument with the lowest level of sound intensity in the solo part (see Figure 5.5)
is encoded strongest in the brain response. This suggests that sound intensity, the phys-
ical basis of perceived loudness, is not the critical feature for this aspect of processing,
but that other characteristics of the keyboard part lead to its distinct representation in
the EEG of the ensemble presentation. This finding is in line with a high-voice superi-
ority effect for pitch encoding that has been demonstrated by means of the Mismatch
Negativity (MMN) in Fujioka et al. (2005), Marie and Trainor (2012, 2014) and that
can be explained by the two-tone masking effect (for a summary see Trainor (2015)):
when a low-pitched and a high-pitched tone are presented together, the harmonics of
the higher pitched tone tend to mask the harmonics of the lower pitched tone. In the
present stimulus, instruments play their notes mostly simultaneously and, consequently,
the high-pitched keyboard masks the other instruments.The high-voice superiority ef-
fect is consistent with the musical practice of putting the melody line in the highest
voice and has been supported by concomitant behavioral observations of superior pitch
salience in the high voice (Crawley et al., 2002, Palmer and Holleran S., 1994). Our find-
ings demonstrate the physiological reality of this phenomenon in a naturalistic listening
scenario.

Limitations The results presented here show that multivariate methods of EEG anal-
ysis can achieve considerable advances. On the one hand, previous results on the pro-
cessing of tone onsets have been transferred to more complex stimulation scenarios, on
the other hand, complex challenges like the reconstruction of streams can be approached.
Notwithstanding, several issues call for further exploration.

When evaluating correlation-related results in this scenario one has to keep in mind
that the audio power slopes of all instruments and the ensemble version audio power
slope are not independent of each other, but correlated to different degrees. This makes
a comparison of correlation coefficients difficult; the periodic nature of the stimuli adds
further limitations. Consequently, differences in absolute correlation coefficients are hard
to interpret. Therefore, the present analysis was based on significance measures taking
into account differences in the periodicity of the signals (see 2.4.7). One possible concern
is that the differences in reconstruction quality between keyboard and the other two
solo instruments in the ensemble condition might just reflect the relations between the
respective audio power slopes, more specifically, that the higher fidelity of the EEG-
reconstructed keyboard slope is due to its relation to the ensemble version audio power
slope. While such effects are inherent in this context and cannot be ruled out completely,
two points argue in favor of a genuine instrument-specific EEG-based representation of
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the keyboard’s part in the ensemble condition: First, the correlation of the (original)
slope of drums with the ensemble version slope is much higher than that of the (original)
keyboard slope (see Table 5.5), but its reconstruction quality is poor in most subjects.
Second, the EEG-reconstructed keyboard slope in all but one subjects is more similar to
the original keyboard slope than to the ensemble version audio power slope, suggesting
that this reconstruction indeed is specific for the keyboard part.

The stimulus sequence contains infrequently occurring deviant sound patterns in each
instrument’s part. These trigger a P300 component which is the key EEG feature in
the operation of the original ‘musical’ BCI application. The present analysis uses only
time lags between 0 and 250 ms and, consequently, should not make direct use of the
‘strong’ P300 component. Even though P3 to deviants may be picked up by our spatio-
temporal filter, its reflection in the EEG projection will not be in ‘sync’ with the audio
power slope and will rather lead to lower correlation with the power slope. However it
cannot be completely ruled out that the processing of deviants influences also the earlier
components. Since deviants occurred only infrequently, a possible influence would be
‘diluted’ strongly. Still, at this point, no strong claim can be made whether this approach
can be transferred to a truly oddball-free, even more naturalistic paradigm and whether,
in particular, the effect of attention is detectable in this case.

Even though the proposed method produces EEG-projections for single trials (given that
training data of the same stimulus are available), a considerable part of the present effects
was detected in averaged EEG projections. This means that, in a more general sense,
the present approach can be regarded as an effective preprocessing step that exploits
the wealth of the multivariate EEG in order to enhance the signal-to-noise-ratio and,
thus, enables to extract stimulus-related activity from brain signals in far more complex
stimulation scenarios. Moreover, the regression-derived patterns represent a kind of
group average across the set of training data and, thus, cannot be regarded as single-trial
results. In the present analysis the stimuli used for training the regression models were
repetitions of one rhythmic pattern. This is not a prerequisite for applying Linear Ridge
Regression, but most probably was beneficial for the ‘learning processes’ of the regression
model. In principle, however, if an onset sequence has fairly stationary characteristics,
e.g., timbre and attack, the brain response to these onsets should be extractable even in
the absence of a strongly repetitive structure as in the present stimuli. This hypothesis
could be addressed in future experiments.

5.2.2.5 Conclusion

In summary, the proposed regression-based multi-variate method of EEG analysis repre-
sents a promising advance towards solving a musical variant of the human ‘cocktail party
problem’. Because of its versatility and simplicity, we advocate its use for investigating
auditory stream segregation in naturalistic listening scenarios.
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5.2.3 ‘Real’ music, free listening: brain responses to note onsets in
naturalistic music stimuli

In this chapter we take a step further towards a truly ‘free listening scenario’ and apply
the proposed approach in a setting where participants listen to excerpts of commercially
recorded music without a specific task. We examine brain-stimulus synchronization
(measured by CACor) for a range of musical and non-musical sounds at the level of
single subjects and single presentations and explore how the presence of significant CACor
relates to stimulus properties. Finally, we are interested in the behavioral /experiential
relevance of CACor.

5.2.3.1 Introduction

Reflections of the sound envelope in the brain signal seem to delineate a general rela-
tionship between EEG and music stimulus that can be detected at subject-group level
and across a range of music stimuli (Cong et al., 2012, Schaefer et al., 2011a, Thompson,
2013). In the last chapter we have seen that complex semi-naturalistic music stimuli
leave a distinct reflection in the EEG signal. Applying Linear Ridge Regression with the
audio power slope as target function, this reflection can be extracted with high fidelity
from single stimulus presentations. At group level the extracted reflection is detailed
enough to distinguish single streams that are part of a mixed sound signal, and sensitive
enough to reveal an influence of attentional state. Furthermore, we have shown that this
link between brain signal and music relies on N1-P2 ERP responses to note onsets.

Given the susceptibility of the onset-related N1-P2 response to a variety of stimulus-
related, subject-related and situational influences (Baumann et al., 2008, Choi et al.,
2014, Fujioka et al., 2006, Meyer et al., 2006, Nadtdnen and Picton, 1987, Schaefer et al.,
2009, Shahin et al., 2003, 2008, 2005, 2010, Trainor et al., 2002, Tremblay and Kraus,
2002, Tremblay et al., 2001, 2014, Winkler et al., 2009), it is an interesting question
whether such an imprint of the stimulus on the brain signal can be utilized to obtain
valuable information about aspects of music perception. In order to gain a first insight
into this question we explore the relationship between EEG signal and stimulus envelope
for a range of music and non-music stimuli. Subsequently, we relate our findings to
acoustic factors and behavioral measures of experiencing music. A prerequisite for such
an analysis is that envelope-following responses can be derived for single presentations
and single subjects, and that the experimental paradigm approximates a natural listening
situation as far as possible.

We analyze EEG recordings of subjects (N=9) who listened to nine stimuli from different
sound categories (mostly natural music) and examine the resulting Cortico-Acoustic Cor-
relation (CACor), the correlation between a regression-derived EEG projection and an
audio power slope at the level of a single subject and a single presentation. In addition,
we extract EEG projections based on inter-subject-correlation. From the set of stimuli
we derive, both, global and continuous stimulus descriptions obtained by acoustic wave-
form analysis. We record continuous subjective tension ratings in a separate behavioral
experiment.
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Our goal is to (i) probe whether significant CACor is present in EEG recordings where
complex naturalistic (non-repetitive) music stimuli were presented, (ii) how CACor dif-
fers between stimuli, subjects and presentations and whether determinants of these dif-
ferences can be identified, (iii) how CACor relates to behaviorally reported measures of
experiencing music, and (iv) whether CACor can be detected in a ‘less supervised’ way
where EEG projections are not explicitly optimized to match the audio power slope.

5.2.3.2 Methods

This analysis was performed on dataset 2 that is related to a set of nine music and
non-music sound clips. The data set (after generic pre-processing) comprises 61-channel
EEG data (three presentations per stimulus and subject), a set of nine extracted audio
features for each stimulus and continuous tension ratings of 14 subjects. For details of
the data acquisition see Section 5.1.2, for an overview about the different types of data
see Figure 5.2.

Preprocessing of tension ratings The continuous tension ratings for each stimulus
were averaged for the 14 subjects. When examining the relationship between tension
ratings and stimulus parameters it has to be considered that typically ratings lag behind
the stimulus. We utilize the influence of sound intensity on tension ratings that has
been reported in the literature (Farbood, 2006, Farbood and Schoner, 2009, Lehne et al.,
2013b) to determine the optimal time lag between tension ratings and stimulus. We
calculate the cross-correlation between the Grand Average z-score-transformed tension
ratings and sound intensity for time lags from 0 to 3s in steps of 10 ms and identify an
optimal lag for each stimulus. The resulting time lags ranged from 760 to 1110 ms for
the music stimuli, for the non-musical stimuli cross-correlation sequences did not reveal
a clear peak. For these stimuli, in accordance with the literature (see above), we set
the time lag to 1000 ms. All results related to tension ratings in the following were
obtained after correcting for these time lags and re-sampling to the sampling rate of the
time-resolved CACor of 3.33 Hz.

In addition to group averages, collections of tension ratings can also be examined with
respect to the degree of inter-subject coordination a stimulus exerts on the ratings.
Following the framework of activity analysis (Upham et al., 2012) we determined for
each of the 50%-overlapping 1000 ms time frames the percentage of increasing tension
ratings (out of the 14 ratings of all subjects) and that of decreasing ratings (activity
index). Subsequently, we evaluated whether these proportions are significant by applying
a permutation-based testing framework (for details see Farbood and Upham (2013) and
also Section 2.4.7). This resulted in a set of time windows with significantly coordinated
rating activity for each stimulus. This can be used to determine a global Coordination
Score for each stimulus that indicates how much significantly coordinated rating activity
(either increasing or decreasing) occurs in the course of the stimulus. This measure allows
to compare stimuli with respect to their ‘power’ to coordinate behavioral responses.

Analysis of Cortico-Acoustic Correlation After generic pre-processing (see Sec-
tion 5.1.2) we performed a temporal embedding from 0, ...300 ms on the EEG data and
extracted the power slope of all stimulus waveforms as described above (Section 5.1.1).
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We trained a Linear Ridge regression model to optimize the correlation between the
temporally embedded EEG of single subjects and the power slope of the audio signal.
This is done in a leave-one-presentation-out cross-validation approach: for each stimulus
and each subject a spatio-temporal filter was trained on two concatenated presentations
(training set) and applied to the remaining third presentation (test set), so that each
presentation was once the test set. This resulted in a one-dimensional EEG projection
for each stimulus presentation, and, accordingly, in 27 EEG projections for one stimulus
(for nine subjects and three presentations each). This set of EEG projections served
as basis for examining the relation between brain signal and onset structure at several
levels.

Transformation and decomposition of spatio-temporal filters To obtain MU-
SIC components we concatenated the EEG recordings of all three presentations of each
stimulus and subject, performed a temporal embedding from 0, ...300 ms and trained a
Ridge regression model to predict the corresponding power slope. We reduced the spatio-
temporal pattern obtained from the regression filters to a subspace containing 98% of
the variance and derived 2-4 MUSIC components with a spatial and a temporal pattern
per subject and stimulus.

The second column of Figure 5.3 shows an example of one component of such a de-
composition. Comparing these decompositions (containing 2-4 single components each)
between subjects is difficult, since no canonical representation can be derived. Visual in-
spection of this large collection of scalp patterns suggested the presence of a scalp pattern
that was consistent between subjects and stimuli and resembled the scalp topographies of
the onset-related ERPs for Chord sequence. In the decomposition this spatial component
occurred either as a first, second or third component. We extracted a reference pattern
from the onset-related ERPs obtained by classical ERP analysis for the stimulus Chord
sequence (see Section 5.1.2.3) that is shown in Figure 5.3. This was done by averaging
the scalp topography of all subjects within a 20 ms time window that corresponds to
the maximum amplitude of each subject’s onset ERP at channel Fz. The time windows
were determined manually and ranged between 130 ms and 280 ms after tone onset.
Subsequently, the distance between all spatial components and this reference was calcu-
lated and the most similar pattern for each subject and stimulus was selected for further
comparison. In 43% (38%, 18%) of the components the selected pattern occurred in the
first (second, third) MUSIC component.

Cortico-Acoustic Correlation coefficients for single presentations We calcu-
lated the CACor coefficient between EEG projection and the audio power slope for each
single presentation (nine stimuli, nine subjects, three presentations per stimulus and
subject) and assessed its significance (details as described below). This aims at assessing
whether the onset structure of the stimulus is significantly reflected in the brain signal.
In addition, the Grand Average of all 27 EEG projections per stimulus was calculated
and a group level CACor coefficient was derived for each stimulus.

CACor score profiles and music feature profiles Subsequently, the relation be-
tween CACor, behavioral results and stimulus properties was compared between stimuli:
Based on the significance of CACor coeflicients for each single presentation a global
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CACor score was calculated for each stimulus that specifies in how many of the 27 pre-
sentations a significant CACor is present. These scores can be summarized in a CACor
score profile for the nine stimuli. In a similar fashion, a Coordination score profile is
constructed from the Coordination scores derived in the behavioral experiment (see Sec-
tion 5.2.3.2). Additionally, for each of the nine acoustic/musical properties that were
obtained in the audio analysis a profile that describes the magnitude of the respective
stimulus feature for all stimuli was constructed. The pairwise correlation between CACor
score profile, Coordination score profile and music feature profiles was calculated.

Time-resolved CACor The dynamics of the brain-stimulus synchronization within
each stimulus were examined by calculating a group-level CACor in a time-resolved
manner: For each stimulus the Grand Average of all 27 EEG projections (three for each
of the nine subjects) was segmented into 90% overlapping time frames of 3 s duration.
Subsequently, CACor was calculated for each time frame, resulting in a time course
of correlation coefficients that has a sampling rate of 3.33 Hz. Correlation coefficients
between this time course and the time courses of the nine acoustic/higher-level music
features were determined. In order to be able to do this, all music features were re-
sampled to match the sampling rate of 3.3 Hz. In an analogue manner, the relation
between mean tension ratings and music features was determined. Figure 5.2 gives a
complete overview about data types and correlation coefficients that were calculated in
the present analysis.

Significance of correlation In the present analysis we encounter both of the statis-
tical problems we have described in Section 2.4.7:

on the one hand, EEG time courses, tension ratings and extracted audio features have
different degrees of auto-correlation. In order to gain more insight into the advantages/-
drawbacks of the two methods for correction of auto-correlation that we have described
in Chapter 2.4.7, we assessed the significance of CACor at single subject and single pre-
sentation level using both methods. For Pyper et al.’s method the maximal time lag of
autocorrelation that was taken into account was 2 s.

Furthermore, the set of features extracted from the audio waveforms is correlated to
different degrees. For the present selection of stimuli the correlation coefficients ranged
between r=-0.74 and r=0.93. To account for this correlation, the relation between CACor
time courses/tension ratings and music features was determined using the partial cor-
relation coefficient (see Section 3.2). For assessing the significance of partial correlation
coefficients, however, the (most likely more sensitive) permutation testing approach is
not optimal, since it is not possible to generate surrogate data with the same intrinsic re-
lations as the extracted music features. Therefore, Pyper et al.’s method (maximal lag 10
s) is applied to correct for autocorrelation in order to estimate the significance of partial
correlation coefficients. The resulting p-values were corrected for multiple comparisons

(false discovery rate (FDR), ¢ < 0.05).

Multiway CCA After generic pre-processing (see Section 5.1.2) we performed Mul-
tiway CCA (for details see Chapter 2, Section 2.4.2) in order to find EEG components
that are common to all subjects that listen to the same piece of music. In our main
analysis (see above) we performed Ridge Regression with a stimulus-derived target func-
tion and, therefore had to take into account a delay of the brain response with respect
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to the stimulus. Now, we maximize the correlation between EEG components of nine
subjects, and, assuming similar processing times for all subjects, do not need a temporal
embedding step. We train a regularized CCA model on the EEG recordings of all nine
participants such that the sum over all pairwise correlations (for all pairs of subjects)
between the extracted EEG projections (called canonical components) is maximized.
In general, CCA produces as many components as dimensions in the data (here: as
EEG channels). Here, we focused on the first component that is associated with the
highest correlation. As before, we trained and validated the CCA models in a leave-
one-presentation-out cross-validation procedure. Consequently, for each presentation we
obtained one EEG projection (called canonical component) that was derived by a CCA
filter that was trained on a separate portion of data, the filter itself and a corresponding
pattern. From the canonical components we calculated the mean Canonical Inter Subject
Correlation (CISC), the average of all 36 pairwise CISCs for each stimulus presentation
as a measure of similarity within the group of subjects. For details of the calculation
see Algorithm 3, Figure 5.8. We tested the significance of these mean CISCs with a
permutation testing approach with 500 iterations where surrogate versions of all nine
EEG time courses were generated (see Section 2.4.7) and a mean CISC was calculated.
The resulting p-values were corrected with a Bonferroni correction for N=3 repetitions
for each stimulus.

The main goal of this additional step of analysis was to learn whether there is a relation
between the most inter-individually consistent feature of the listeners’ EEG and the
reflection of tone onsets as detected in the previous analysis. Therefore, we calculated
CCA-CACor coefficients between the CCA-derived EEG projection and the audio power
slope. In order to do this, we first examined the cross-correlation sequences between
Grand Average Canonical Components for each stimulus. This resulted in an optimal
time lag of 210 ms. We, then, calculated the CCA-CACor coefficient between the Grand
Average Canonical Components (across all 27 presentations of a stimulus) and the audio
power slope (delayed by 210 ms) in a permutation testing approach with 500 iterations
using surrogate versions of the audio power slope.
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Algorithm 3 Pseudocode for deriving a mean CISC coefficient from a given
set of EEG training and test data of s subjects.

Require: EEG data: s data sets Xi1, ... X35 € N x T} (training data), s

ot

© ® N

11:
12:
13:
14:

. pairwise_corr < zeros(1,
2 count < 0
: for u =1 to s do

data sets Xoi,...X2s € N x Ts (test data), after generic preprocessing
as described in Section 4.2.1
3. Train CCA model on training data

: W/l,u.,Ws «~ CCA (Xll7"'7Xls)

4. Apply CCA model to test data

. fori=1to sdo

comp(:,i) = W," Xo;

: end for

4. Calculate pairwise inter-subject-correlations

: cr « corr(comp)

5. Calculate mean inter-sul?ject—correlations
s(s—1
=)

forv=u+1tosdo
count < count + 1
pairwise_corr(count) = cr(u,v)
end for
end for
mCISC sum (pairwise_corr)

sG—1
2

F1cURE 5.8: Algorithm 3: Pseudocode for calculating mean Canonical Inter Subject

Correlation (mCISc).
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5.2.3.3 Results

Tension ratings Figure 5.9 gives an example of the continuous tension ratings ob-
tained in the behavioral experiment. The top panel shows the audio waveform (blue) of
the entire stimulus (Rachmaninov) and the sound intensity (red). In the middle panel
the individual tension ratings are plotted along with the Grand Average tension ratings.
The bottom panel shows the activity indices (see 5.2.3.2) that indicate how consistently
tension ratings rise/fall within the group of subjects at a given time point. While the
individual tension ratings vary considerable between subjects, the Grand Average shows
clearly that the three-part macro-structure contained in time course of the sound inten-
sity is represented in the tension ratings.

Rachmaninov

y ; e e
£ WWWWWWWWW W
Nel
()]
>
©
2
o
o
5
[¢]
1 |
50 100 150 200
T T T
(%]
oo
[
B
©
c
o
(%]
C
9

activity index

50 100 150 200
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FIGURE 5.9: Example of stimulus waveform, tension ratings and results of the activity
analysis. Top: Audio signal (blue) and sound intensity (red) for the Rachmaninov
(entire stimulus). Middle: Tension ratings of single subjects (grey, N=14), Grand
Average (black, thick line) and standard deviation (black, thin line). Bottom: Activity
index indicating the percentage of rising(blue) or falling(green) tension ratings at a
given time point.

Cortico-Acoustic Correlation
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Cortico-Acoustic Correlation for single presentations Table 5.7 gives CACor co-
efficients for each single subject and each stimulus presentation. The bottom line contains
the CACor coefficients for the Grand Average EEG projection (average of the 27 EEG
projections for each stimulus). Note that correlation coefficients cannot be compared
between stimuli, since duration and autocorrelation properties differ between stimuli.
Shaded cells indicate significant correlation at the level of o = 0.05. Significance was
determined by applying permutation tests and subsequently correcting for the number of
27 presentations per stimulus (see Section 2.4.7). Stimuli were ordered according to the
total number of presentations with significant CACor (called CACor score in the follow-
ing, see Section 4.2.4). Since these were derived in a cross-validation approach significant
correlation coefficients can be regarded as reflecting a genuine influence of the stimulus
on brain responses that generalize across several presentations of a stimulus. To give
an impression of the extracted EEG projections and their relation to the audio power
slope three examples are shown in Figure 5.10. Table 5.8 summarizes the corresponding
CACor scores into a CACor score profile for the set of nine stimuli. For comparison,
both, the CACor score profile that was derived by applying permutation tests (dark blue
bars), and that derived by applying Pyper et al.’s method Pyper and Peterman (1998)
to assess the significance of correlation in signals containing serial autocorrelation (light
blue bars) are given in Figure 5.11. Although there are differences in the absolute CACor
scores for both methods, the ranking of the stimuli does not change. Importantly, the
comparison shows that the zero scores for Orchestra and Jungle (the non-musical stimuli)
indicate an absence of significant CACor for these stimuli and are not introduced by the
permutation test approach. In the following the profile derived by permutation tests is
used for further analysis.

Stimuli differ strongly with respect to the consistent presence of significant CACor for
the 27 presentations with a CACor score ranging between 23 /27 presentations for Chord
sequence and 0/27 presentations for Orchestra and Jungle. In the Grand Average CACor
is significant for Chord sequence and all music pieces, but not for the non-musical stimuli
Orchestra and Jungle. Subjects differed with respect to the total number of presenta-
tions with significant correlation, scoring between 4/27 presentations (S1, S9) and 15/27
presentations (S5). Within the group of stimuli, first, second and third presentation do
not differ significantly with respect to CACor scores.



Chord sequence Chopin Rachmaninov
Pres1 Pres2 Pres3 Pres1 Pres2 Pres3 Pres1 Pres2 Pres3

S1 0.15 0.15 0.21 S1 0.02 0.01 0.04 S1 0.00 0.00 0.00
52 0.48 0.50 0.47 S2 0.02 0.04 0.02 52 0.06 0.09 0.04
S3 0.18 0.23 0.25 S3 0.15 0.13 0.16 S3 0.03 0.07 0.03
S4 0.31 0.27 0.31 S4 0.11 0.05 0.08 S4 0.05 0.06 0.04
S5 0.23 0.18 0.22 S5 0.11 0.16 0.12 S5 0.02 0.07 0.06
S6 0.28 0.28 0.21 S6 0.12 0.08 0.10 S6 0.07 0.02 0.10
ST 0.28 0.32 0.34 S7 0.09 0.11 0.09 S7 0.05 0.08 0.03
S8 0.37 0.42 0.40 S8 0.10 0.13 0.06 S8 0.01 0.04 0.06
S9 0.15 0.14 0.14 S9 0.06 0.00 0.04 59 0.02 0.01 0.05

GA 0.34 GA 0.33 GA 0.16
Vivaldi, Spring Vivaldi, Summer Bach
Pres1 Pres2 Pres3 Pres1 Pres2 Pres3 Pres1 Pres2 Pres3

S1 0.03 0.03 0.04 S1 0.05 0.04 0.0 S1 0.01 0.03 0.02
S2 0.10 0.10 0.09 S2 0.03 0.06 0.03 S2 0.4 0.0 0.01
S3 0.04 0.03 0.07 S3 0.01 0.03 0.01 S3 0.02 0.02 0.10
S4 0.03 0.02 0.01 S4 0.03 0.01 0.02 S4 0.08 0.04 0.00
SH 0.02 0.06 0.10 S5 0.08 0.05 0.05 S5 0.03 0.07 0.12
S6 0.04 0.07 0.02 S6 0.02 0.01 0.01 S6 0.03 0.03 0.01
ST 0.08 0.03 0.07 S7 0.06 0.04 0.05 S7 0.06 0.01 0.08
S8 0.08 0.10 0.02 S8 0.04 0.08 0.03 S8 0.02 0.03 0.01
S9 0.02 0.06 0.04 S9 0.06 0.05 -0.01 S9 0.03 0.05 0.01

GA 0.18 GA 0.23 GA 0.12

Williams Orchestra Jungle

Pres1 Pres2 Pres3 Pres1 Pres2 Pres3 Pres1 Pres2 Pres3
S1 0.0 0.03 0.02 S1 -0.05 -0.01 -0.02 S1 0.0 -0.01 0.02
S2 0.02 0.00 0.01 S2 0.0 0.06 0.05 S2 -0.02 0.0 -0.0

S3 0.03 0.05 0.04 S3 0.05 0.01 0.02 S3 -0.05 0.03 0.0
S4 0.0 0.02 0.01 S4 0.06 0.05 0.04 S4 0.04 0.02 0.04
S5 0.0 0.04 0.05 S5 0.03 0.06 0.0 S5 0.04 0.02 0.0
S6 0.01 0.02 0.01 S6 0.05 0.01 0.02 S6 -0.03  -0.02 0.0
ST 0.03 0.02 0.0 S7 0.05 0.03 0.04 S7 0.04 0.02 -0.02
S8 0.0 0.01 0.01 S8 0.05 0.0 0.02 S8 0.0 -0.03  -0.05
S9 0.0 0.0 0.02 S9 0.02 0.0 0.03 S9 0.02 0.02 -0.01
GA  0.05 GA  0.05 GA  0.04

TABLE 5.7: CACor coefficients for each single subject and each stimulus presentation; GA:

Grand Average (N=27). Pink shading indicates significant positive correlation between

EEG projection and audio power slope. Significance was determined by applying permuta-

tion tests and subsequently performing Bonferroni-correction for N= 27 presentations per
stimulus.
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Chord sequence r=0.70
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FIGURE 5.10: EEG projections. Three examples (from Chord sequence, Chopin and
Jungle) that show 3s-long segments of an extracted EEG projection (blue) for a single
stimulus presentation and a single subject and the respective audio power slope (red).
Note that in the optimization procedure a time lag between stimulus and brain response
is integrated in the spatio-temporal filter, and that, consequently, the EEG projections
shown here are not delayed with respect to the audio power slope. The correlation
coefficients indicate the magnitude of correlation for the shown segment of 3 s duration.
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global music descriptor CACor score Coordination score

Sound intensity 0.24 0
Sharpness 0.71 0.57
Spectral centroid -0.69 -0.57
Spectral entropy -0.52 0.23
Spectral flux 0.28 0.11
Fluctuation centroid 0.09 -0.14
Fluctuation entropy -0.65 -0.19
Pulse clarity -0.32 -0.02
Key clarity 0.58 0.38

Coordination Score 0.90

TABLE 5.8: Spearman’s correlation coefficient (a) between CACor score profile and

music feature profiles for nine acoustic/higher-level music features, (b) between Co-

ordination score profile and music feature profiles. Bottom line: Correlation between

CACor scores and Coordination scores. Significant positive/negative correlation is in-
dicated by pink/blue shading, respectively.

CACor, tension ratings, and stimulus features Figure 5.11 shows CACor score
profiles and the behavioral Coordination score profile for the nine stimuli. Note that the
regular stimulus Chord sequence was not included in the behavioral experiment. How-
ever, in the CACor score profile blank bars for Orchestra and Jungle denote a score of
zero. Table 5.8 gives correlation coefficients (Spearman’s rho) that quantify the corre-
lation of (a) CACor score profile and (b) Coordination score profile with music feature
profiles that relate to nine stimulus features. Music feature profiles are represented by
scores that indicate the average magnitude of a specific acoustic/higher-level musical
property for the nine stimuli. Figure 5.13 gives a detailed overview how stimuli differ
with respect to each of the nine acoustic/higher-level musical properties. The bottom line
of Table 5.8 contains the correlation between CACor score profile and Coordination score
profile. The CACor score profile is significantly positively correlated with the Sharpness
profile and significantly negatively correlated with the Spectral centroid profile. Further-
more, moderate, but non-significant negative correlation of the CACor score profile with
the Fluctuation entropy profile is present. None of the correlation coefficients between
Coordination score profile and music feature profiles reached significance. CACor score
profiles and Coordination score profiles are significantly correlated with r=0.90, p=0.005.
Figure 5.12 illustrates the relationship between CACor scores and Coordination scores.
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CACor score
a) 5 10 15 20 25

Chord sequence
Chopin
Rachmaninov
Vivaldi, Spring
Vivaldi, Summer
Bach
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Orchestra
Jungle

(b) coordination score
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FIGURE 5.11: CACor score profile (blue) and Coordination score profile (green). The

CACor score profile for the set of nine stimuli summarizes in how many of the 27

presentations significant Cortico-Acoustic Correlation was detected. Significance of

correlation was determined (1) in a permutation-testing approach (darkblue bars) and

(2) with Pyper et al.’s method (lightblue bars) to estimate the effective degrees of

freedom (for details see 2.4.7). b) Behavioral Coordination score profile. All profiles
are sorted according to the descending CACor score.
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F1GURE 5.12: The scatter plot of CACor scores versus Coordination scores illustrates
the relationship between both measures.
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FIGURE 5.13: Music feature profiles for nine acoustic/higher-level music features. The
bars indicate the average magnitude of a music feature for the set of nine stimuli. This
illustrates differences in global stimulus characteristics.
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Dynamics of CACor We examined how changes in group-level CACor relate to
changes in stimulus features and in mean tension ratings during the course of a stimulus.
The full set of partial correlation coefficients (see Section 4.2.4 for details of the calcula-
tion) is given in Table 5.9 and Table 5.10. Of these, only a small number of correlation
coefficients were found significant. Note that in this part of the analysis correlation coef-
ficients indicate whether CACor and a particular property of the music stimulus co-vary,
but do not necessarily inform about significance of global CACor. Five out of the nine
music features co-varied significantly at least in one stimulus with time-resolved CACor:
Sound intensity, Sharpness, Spectral Centroid, Fluctuation Centroid and Fluctuation En-
tropy. Of these, only Sharpness (three stimuli, positive correlation) and Spectral Entropy
(two stimuli, negative correlation) in more than one stimulus. Sharpness is the music
feature with most consistent relation to tension ratings (3/8 stimuli), while for Sound
Intensity, Spectral Entropy and Fluctuation Entropy significant correlation is present in
one stimulus. Out of the nine (eight for the tension ratings, respectively) stimuli the
romantic piano pieces (Chopin and Rachmaninov) show the clearest relations between
CACor and music features, followed by both Vivaldi stimuli and, then, by one of the
non-music stimuli. A similar trend is visible for the relation between tension ratings and
music features.



music
feature

Sound intensity
Sharpness
Spectral centroid
Spectral entropy
Spectral flux
Fluctuation centroid
Fluctuation entropy
Pulse clarity
Key clarity

Tension ratings

TABLE 5.9: Partial correlation of time-resolved CACor of Grand Average with
nine music features. Pink shading indicates significant positive partial corre-
lation, blue shading indicates significant negative partial correlation (a=0.05,

music
feature

Sound intensity
Sharpness
Spectral centroid
Spectral entropy
Spectral flux
Fluctuation centroid
Fluctuation entropy
Pulse clarity

Key clarity

TABLE 5.10: Partial correlation of mean tension ratings with nine music fea-
tures. Pink shading indicates significant positive partial correlation, blue shad-
ing indicates significant negative partial correlation («=0.05, Bonferroni correc-

Chord
sequence

0.0
-0.03
-0.03
-0.01
-0.02
-0.02
-0.10
0.05
0.07

Chopin

0.19
0.27
-0.16
0.26
0.01
0.02
-0.20
0.09
-0.02

-0.26

Rach.

0.01
0.20
0.08
-0.02
-0.11
-0.01
-0.07
-0.03
-0.04

-0.04

Vivaldi,
Spring

0.06
0.10
-0.23
0.19
-0.02
-0.18
0.0
-0.15
-0.23

-0.13

Bonferroni correction).

Chord
sequence

Chopin

0.27
0.16
-0.21
0.36
-0.04
-0.12
0.28
0.12
0.10

Rach.

0.22
-0.39
-0.02

0.29

0.01

0.32
-0.03

0.1
-0.06

tion).

Vivaldi,
Spring

0.18
-0.11
-0.1
0.12
0.05
0.17
0.14
-0.06
-0.22

Vivaldi,

Summer
-0.0
0.16

-0.07
0.08
-0.0

-0.04

-0.31

-0.02

-0.11

-0.13

Vivaldi,

Summer
0.13
-0.40
0.17
-0.07
0.06
0.37
-0.27
-0.20
0.23

Bach

-0.01
0.12
0.03
0.02
-0.0
0.20

-0.27

-0.01
0.06

-0.08

Bach

0.05
0.02
-0.05
0.04
0.05
-0.13
0.21
0.02
-0.15

Williams

-0.06
0.18
0.11
-0.04
-0.02
0.04
0.02
0.03
0.04

0.04

Williams

0.03
-0.04
0.18
-0.03
0.05
0.03
0.33
-0.19
-0.02

Orch.

-0.03
0.37
0.09
-0.0.7
-0.10
0.20
-0.18
-0.40
0.30

-0.36

Orch.

0.0
-0.19
0.03
-0.03
-0.03
0.17
-0.17
-0.11
0.11

Jungle

0.0
0.25
-0.02
0.10
-0.05
-0.13
-0.14
-0.21
0.19

Jungle

0.14
-0.56
0.20
-0.24
0.06
-0.08
0.21

-0.11
0.00
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Interpretation of spatio-temporal patterns The upper part of Figure 5.3 (¢) shows
the scalp topography that was used as a reference to select one MUSIC component per
subject and stimulus for comparison (for details see Section 5.2.1). It is represented by
the average ERP scalp pattern across subjects for the Chord sequence in a time interval
of 20 ms around the individually determined point of maximum amplitude within the
range of 150 ms to 230 ms after tone onset.

Figure 5.14 shows the spatial and temporal dimensions of the selected MUSIC component
for the nine stimuli, averaged across subjects. A complete collection of the individual
scalp patterns (one for each stimulus and subject) is contained in Figure 5.15. Note
that these patterns were selected for maximal similarity with a reference pattern as de-
scribed above, and, therefore, necessarily are similar to some extent. The averaged scalp
topographies for all nine stimuli show a positive fronto-central pattern. The temporal
patterns shown in Figure 5.16 are much more variable.
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Chord sequence

Chopin

Rachmaninov

Vivaldi, Spring

Williams

Orchestra

Jungle

FIGURE 5.14: MUSIC components (Grand Average) for all stimuli. Scalp topographies
and time courses (thick line: average of all subjects, thin lines: standard deviation) of
the MUSIC component that was extracted most consistently from the decomposed
spatio-temporal patterns. Single-subject scalp topographies that are included in these
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\

100 200 [ms]

averages are given in Figure 5.15.
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Multiway CCA Table 5.11 gives in the first three columns the mean Canonical Inter
Subject Correlation Coefficient (CISC) for each presentation and each stimulus. Shaded
cells indicate significant correlation at the level of & = 0.05. Significance of correlation
was determined by permutation tests and subsequently correcting for the number of N=3
presentations of each stimulus (see Section 5.2.3.2). In three of the nine stimuli the mean
CISC indicates significant between-subjects-similarity. Significant mean CISCs occur in
those stimuli that rank high in the CACor score ranking (see Figure 5.11). In general,
the magnitude of CISCs is much lower than that of the Regression-CACor coefficients.

The cross-correlation sequence of the Grand Average of CCA-derived EEG projections
with the audio power slope (Figure 5.17) shows a clear peak at 210 ms for the stimuli
with the highest correlation coefficients, for Chord sequence, Chopin and Rachmaninov.

The fourth column of Table 5.11 gives the CCA-CACor coefficient between the Grand
Average of canonical components and the audio power slope (as used in the previous
analysis). This correlation coefficient was calculated taking into account the optimal time
delay of 210 ms (see Figure 5.17) of the EEG projection with respect to the stimulus.
Note that the calculation of the CCA-CACor is a way of post-hoc relating the results of
the CCA analysis (that, in principle, are independent of the audio power slope) to our
previous results to probe in how far the reflection of tone onsets in the EEG may result in
concomitant similarities in the EEGs of several subjects. The CCA-CACor coefficients
in column 4 can be compared directly with those derived in the Regression analysis that
are shown in the rightmost column for comparison. The magnitude of the CCA-CACor
coefficients is (not surprisingly) smaller than of the Regression-CACor coefficients, but
still significant in four stimuli.

Figure 5.18 shows examples of Grand Average EEG projections derived with multiway
CCA for the same three excerpts from Chord sequence, Chopin and Jungle that were
shown in Figure 5.10. The EEG projections (blue) and the respective audio power
slope (red) are considerably less similar than those in Figure 5.10. However, a marked
difference in magnitude of correlation is present between the stimuli Chord sequence
and Chopin with respect to the non-musical stimulus Jungle. The optimal time lag of
210 ms was taken into account for plotting and for calculating correlation.

Figure 5.19 shows scalp patterns derived from the CCA filters for all subjects and three
stimuli. They show a fronto-central scalp pattern that is consistently present in all
subjects and all stimuli with exception of subjects S1 and S2 for Chord sequence. Indi-
vidual differences between subjects (e.g., an occipital contribution in subject S4) occur
consistently across stimuli.
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Mean CISC CCA-CACor Regression-CaCor
Stimulus Pres1 Pres2 Pres3 GA GA
Chord sequence 0.010 0.021 0.012 0.20 0.34
Chopin 0.013 0.012 0.010 0.13 0.33
Rachmaninov 0.010 0.011 0.010 0.09 0.16
Vivaldi, Spring ~ 0.002  0.006  0.003 0.04 0.18
Vivaldi, Summer 0.005  0.000  0.001 0.02 0.23
Bach 0.001 -0.001 - 0.001 0.01 0.12
Williams -0.001  0.000 -0.001 0.01 0.05
Orchestra -0.004  0.006  0.004 0.01 0.05
Jungle 0.001 -0.004 0.004 0.00 0.04

TABLE 5.11: Results of Multiway CCA: Column 1 to 3: Mean Canonical Inter Sub-
ject Correlation Coeflicients (CISCs) for each single presentation. Mean ICSCs were
obtained by averaging all pairwise CISCs. Pink shading indicates significant positive
CISCs. Significance was determined by applying permutation tests and subsequently
performing Bonferroni correction for N=3 presentations. Column 4: CCA-Cortico-
Acoustic Correlation between the Grand Average of canonical components and the
audio power slope (as used in the previous analysis). This correlation coefficient was
calculated taking into account the optimal time lag of 210 ms. Column 5: Regression-
CACor: Cortico-Acoustic Correlation between the Grand Average of regression-derived
EEG projections and audio power slope (see also Table 5.7)

0.25 T T T T T T
optimal time lag: V, Sprlng
02 N 210 ms Jungle i
—— Chopin
0.15 Bach
0.1F — V, Summer -
—— Orchestra
= 0.05F — Rachmaninov |+
—— Williams
0 ——— Chord sequence []
-0.05F .
-0.1F .
-0.15 .

250 300 350 400 450 500
[ms]

0 50 100 150 200

FIGURE 5.17: Cross-correlation sequences for all stimuli for the correlation between
the Grand Average of canonical components and the audio power slope.
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Chord sequence r=0.28

1 1

19 19.5 20 20.5 21 215

Jungle r=0.01
225 23 235 24 245 25
s

F1GURE 5.18: EEG projections derived with multiway CCA. The same three excerpts
from Chord sequence, Chopin and Jungle that were shown in Figure 5.10 showing 3s-
long segments of an extracted EEG projection (blue) and the respective audio power
slope (red). Here, the EEG projection represents the Grand Average of canonical com-
ponents that were derived by optimizing Canonical-Inter-Subject-Correlation (CISC).
In contrast, the time courses in Figure 5.10 were derived by directly optimizing the cor-
relation between EEG and audio power slope. The correlation coefficients indicate the
magnitude of correlation of the extracted EEG projection and the audio power slope
for the shown segment of 3 s duration. Correlation was calculated taking into account
the optimal time lag of 210 ms.
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S1 S2 S3 S4 S5 S6 S7 S8 S9
Chord sequence

Rachmaninov

F1GURE 5.19: Scalp patterns of CCA filters for the stimuli with significant mean
CISCs (single presentation). Each pattern shows to which extent an electrode reflects
the canonical component that maximizes the inter-subject-correlation of EEG.
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5.2.3.4 Discussion

In this chapter we have examined the relation between brain signals and music in a
setting that (relative to typical highly controlled experimental paradigms) resembles
our everyday-life music experiences more closely. Utilizing Cortico-Acoustic Correla-
tion (CACor) we have demonstrated that listeners’ EEG signals indeed can synchronize
significantly with full-length complex music stimuli. This happened reliably when a
rhythmically regular sequence of chords was played, often in romantic piano music and
rarely in sound scenes without regular musical structure. Stimuli that consistently led to
significant CACor had a high level of Sharpness, were rhythmically simple, and/or were
dominated by low-frequency content. The same stimuli produced strongly coordinated
ratings in a group of 14 listeners, a finding that provides a tentative link from CACor to
conscious experience of music. An additional branch of our analysis showed that even
if no stimulus feature is employed to guide the optimization process, but, instead, the
criterion of between-subjects similarity, still a distinct reflection of tone onsets can be
detected in the EEG.

Methods Our results demonstrate that the proposed regression-based method allows
to extract a neural representation of the sequence of note onsets that constitute a complex
naturalistic stimulus at the level of single presentations and single subjects. Our stimulus
set contained six original pieces of music, a simple chord sequence with repetitive struc-
ture, and two non-musical complex stimuli. In all but the non-musical stimuli (Orchestra
and Jungle) the note onset structure of the stimulus was reconstructed from the EEG
with significant correlation at least once at single-presentation level and also from the
Grand Average EEG features (see Table 5.7). Our results help to confirm onset-related
brain responses as one distinct component of the ongoing EEG signal of subjects who
listen to complex music. This insight complements previous approaches that aimed at
decomposing ongoing EEG with respect to stimulus structure (Cong et al., 2012, Schae-
fer et al., 2011a, 2009), and, therefore, adds to the growing body of knowledge about
how a naturalistic complex music signal is represented in the brain.

The present analysis represents (to our knowledge) the first attempt to apply a sound
envelope-related stimulus-reconstruction method in an experimental paradigm where
subjects listen without any task to stimulus material that is comparable to music/non-
musical sounds that we consume in everyday life.

Neurophysiological interpretation For each subject and stimulus we derived a set
of MUSIC components (see 4.2.3 for details) from the spatio-temporal regression patterns
with a temporal and spatial dimension each. We found that each of these sets contained
a scalp topography that resembles that of the typical N1-P2 complex (as shown in Fig-
ure 5.3 for example). We, thus, provide a piece of evidence that the feature that links
EEG signal and music stimulus still relies on the N1-P2 complex even in the case of highly
variable and complex stimuli and, thus, is in line with previous findings (Kaneshiro et al.,
2008, Schaefer et al., 2009). Like in our previous results, the temporal dimension of the
selected MUSIC components is highly variable across stimuli, a finding that may relate
to the sensitivity of the N1-P2 complex to several auditory features (Meyer et al., 2006,
Nééténen and Picton, 1987) and also to attentional state (Choi et al., 2014).
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Between-stimulus comparison of CACor The present approach represents an ex-
ploratory analysis; therefore, it is not known under which circumstances CACor can be
detected. Onset-related brain responses may depend on a multitude of stimulus prop-
erties, most probably on the amplitude, tempo, attack, and regularity of the onsets.
Technically, their detectability may depend on the number of samples (i.e., stimulus
length) and on its stationarity. To gather experience, we applied the proposed method
to a range of stimuli from different sound categories.

To assess a stimulus’ power to influence the brain signal we calculated CACor scores (see
Section 5.2.3.2). The CACor score ranking is led by the semi-musical repetitive Chord
Sequence (CACor score 22/27), followed by the two romantic piano pieces by Chopin and
Rachmaninov. These were followed by both Vivaldi stimuli, then by Bach and Williams.
For the non-music stimuli significant CACor was present in none of the presentations.
Remarkably, in the CACor score ranking (Figure 5.11) stimuli from the same category,
e.g., both pieces by Vivaldi or both romantic piano pieces are adjacent, suggesting that
their acoustic/musical structure influences CACor in similar way.

Descriptions of the stimuli with respect to average magnitudes of nine acoustic/musical
features revealed that the CACor scores are significantly positively correlated with global
measures of Sharpness (see Table 5.8), negatively with Spectral centroid. Sharpness
can be described as a measuring how many ‘auditory edges’ a sound presents (Doelling
et al., 2014) and depends on the number and amplitude of peaks in the power slope.
Spectral Centroid is related to the perception of brightness. Taken together, our results
suggest that significant CACor is detected most reliably in stimuli with high onset density
(containing a high number of note onsets) and with onsets that are characterized by a
high contrast between baseline and peak sound intensity. Furthermore, lower frequencies
(as, e.g., indicated by a relatively low Spectral Centroid) in the stimulus seem to be
more effective in ‘capturing’ the brain. Both, beat density and beat salience have been
reported as strongly promoting the experience of ‘groove’ in songs (Madison et al., 2011).
An influential role of energy in low frequency bands in the induction of movement has
been reported in Burger et al. (2013). The sharpness of ‘auditory edges’ has been linked to
the strength of stimulus-tracking of cortical oscillatory features and speech intelligibility
in Doelling et al. (2014).

Even though the negative correlation of global Fluctuation entropy values and CACor
scores are not significant, the relatively strong negative correlation indicates generally
lower CACor scores for stimuli with complex rhythmic structure which is in line with
results at ERP level reported in Pereira et al. (2014).

As a behavioral counterpart of CACor scores we examined Coordination scores, a measure
of how strongly a stimulus effects similar trends in tension ratings in a group of subjects.
CACor scores and Coordination Scores were significantly correlated, even though none
of the global stimulus descriptions had a significant influence on the Coordination scores.
This means that the consistent experience of tension in a group of listeners depends on
more complex and variable configurations of musical parameters that, nevertheless, may
encompass also those that have been linked to CACor in the present analysis. Thus,
stimuli that leave a marked physiological reflection in the EEG, also lead to congruent
perception of tension in different subjects. Tentatively, this might provide a link between
(low-level) physiological reactions to sounds and the complex concept of musical tension.
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Within-stimulus dynamics of CACor, music features and tension ratings
Considering the variable surface (Lerdahl and Jackendoff, 1983) of a naturalistic stim-
ulus, it can be assumed that stimuli not only differ with respect to global measures
of CACor, but also that the synchronization between brain signal and stimulus varies
during the course of the stimulus. The comparison between the dynamics of different
acoustic/higher-level music features and time-resolved CACor amounted to a small but
distinct set of significant correlation coefficients. In particular, Sharpness, which was one
of the main influences on CACor scores found in the between-stimulus comparison of CA-
Cor (see Section 5.2.3.3), and Spectral Entropy seem to modulate local within-stimulus
CACor. This, again, points to an important role of ‘auditory edges’ and spectral prop-
erties in the cortical processing of note onsets. It demonstrates that even at this fine-
grained time scale a direct relation of these properties to brain-stimulus synchronization
can be detected. Interestingly, Sharpness was the feature that co-varied with tension
ratings most consistently (see Table 5.9), while Sound intensity, Spectral Entropy and
Fluctuation Entropy influenced tension ratings only in one stimulus each. This result
adds new aspects to previous findings that identified loudness (which is closely related
to Sound Intensity) as main factor for the experience of tension several times Farbood
and Upham (2013), Lehne et al. (2013b).

A rather general notion of tension has been associated with conflict, instability, or un-
certainty (Lehne et al., 2013a). Along these lines, a tentative explanation of the present
influence of Sharpness on the experience of musical tension may be formulated: A change
from a high level of Sharpness which is characterized by the presence of distinct salient
‘auditory edges’ to a passage where musical events are less clearly defined can be thought
to produce uncertainty in the listener and may lead to an increase in experienced tension.
This demonstrates how a stimulus property that can be considered as ‘merely’ acoustic
contributes to an emotion-related aspect of experiencing music.

The set of nine stimuli in this exploratory analysis contained a wide range of different
sounds. Of these, two full length romantic piano pieces represented the stimuli for those
influences of stimulus structure, both, on brain-stimulus synchronization and tension
ratings was detected most consistently. Acoustically, this can be related to the fact that
the piano, as a struck string instrument, has a characteristic attack ‘thump’ (Askenfelt,
1993) and therefore is likely to provide salient onsets that are reflected well in the brain
response. Remarkably, the two piano pieces (within our set of stimuli) represent the most
complex musical surfaces as (typically for this period) they contain long, lyrical melodies,
wide skips, chromaticism, strong contrasts, expressive performance and interpretive free-
dom (rubato). These highly complex pieces reveal a relation between stimulus structure
and physiological measures and behavioral measures most clearly. To a lesser extent, this
relation is visible in two movements of a baroque violin concerto, that feature a rhyth-
mic regular pulse and a contrast between ‘solo’ passages of the solo violin and ‘tutti’
passages of the orchestra. Taken together, this suggests that structural variance/rich-
ness and strong contrasts are aspects of music that give rise to a clear physiological and
behavioral reflection of structural elements of music, a finding that represents a strong
argument for experimental paradigms using full-length naturalistic music stimuli.

Multiway CCA In general, our results show that CCA retrieves inter-individually
consistent EEG components from a group of subjects who listen to natural music, at
least for some stimuli and, therefore, contribute to the series of investigations of multi-
subject analyses for naturalistic stimuli (Bieffmann et al., 2014, Bridwell et al., 2015,
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Gaebler et al., 2014, Hasson, 2004, Hasson et al., 2010). Although the significant mean
CISCs seem extremely small, our permutation testing procedures have shown that they
reflect genuine similarities between subjects” EEG recordings and not spurious correla-
tions. The canonical components seem to be dominated by a strong alpha-like rhythm
(see Figure 5.18). Yet, a certain degree of alignment to the stimulus can be observed.
Based on these preliminary observations, it would be interesting to examine the role of
alpha phase information with respect to synchronization with the stimulus. This might
provide complementary aspects to other findings on oscillatory activity in the alpha range
during music listening, e.g., on frontal alpha asymmetry distinguishing musical emotions
(Schmidt and Trainor, 2001, Trochidis and Bigand, 2012).

In the context of this thesis, the most important result of the CCA analysis is the fact
that the canonical components that were obtained using the criterion of inter-subject-
correlation and without imposing any stimulus feature on the optimization process, clearly
seem to be related to tone onsets. This is demonstrated by the significant CACor coef-
ficients of the Grand Average canonical components for the four ‘top-ranking’ stimuli in
our set (see Table 5.11). Since this result relates to the first - and, therefore, predominant
- CCA component, our previous suggestions that brain responses to tone onsets are one
distinct component of the ongoing EEG signal of subjects who listen to complex music
are confirmed strongly.

The scalp topographies that were derived from the CCA filters are consistent across sub-
jects and stimuli, but, with a more frontal distribution differ from the central MUSIC
patterns. However, the MUSIC patterns are the results of an additional source recon-
struction processing step, a procedure that is not necessary in the case of the present
scalp patterns. A relation to the N1-P2 complex is still plausible, in particular, since in
several stimuli the optimal time lag for CACor (210 ms) was in the typical range of the
P2 component.

In summary, the CCA-based extension of our analysis has led to two important conclu-
sions: first, it has (besides other precautions, such as cross-validation and permutation-
testing) proven that the reflection of tone onsets in the listener’s EEG is a genuine phys-
iological reaction. Secondly, it has demonstrated (in an ‘unsupervised’ manner) that the
most reliable common feature of the listener’s (broadband) EEG is the synchronization
to tone onsets.

Limitations The present results are a proof-of-concept that multivariate methods of
EEG analysis can achieve considerable advances in extracting onset-related brain re-
sponses from the ongoing EEG, enabling more naturalistic experimental paradigms.
Notwithstanding, several issues call for further exploration. Our results have demon-
strated that complex stimuli with different characteristics vary with respect to the con-
sistency of the occurrence of CACor in a group of subjects. The present analysis has
identified acoustic properties that are related to these differences. However, the vari-
ance of CACor between presentations within subjects that occurred in artifact-cleaned
data has not been explained yet. Onset-related ERPs are known to be influenced by a
range of subject variables, some of them being situation-dependent, such as attentional
state, vigilance or familiarity (Hillyard et al., 1973, Low et al., 2007). In principle, the
observed differences between presentations might reflect changes in such user variables.
If so, CACor might even be a means of monitoring these mental states. A systematic
investigation is needed to explore this.
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The present analysis revealed that EEG signals may significantly reflect the onset struc-
ture of music, and, that, if this is the case, also the dynamics of tension ratings are
consistent for a group of subjects. At a more detailed level (within stimuli), however, we
found only weak relations between CACor and reported tension. This means that the
onset structure of music can ‘drive’ cortical activity, but that it is not clear whether and
how this impacts on conscious experience of musical tension.

5.2.3.5 Future Work

Beyond the concept perceived tension, further measures related to experience of music
may be required for investigating this aspect in detail. Behaviorally reported qualities
describing listening experience, such as immersion or involvement, could be evaluated
in future experiments. In addition, it would be interesting to probe whether stimuli
effecting significant CACor also synchronize other physiological parameters. In partic-
ular, respiration patterns have been found to modulated by musical tempo Bernardi
et al. (2006), Gomez and Danuser (2004, 2007). Based on these findings, an examination
of between-subject synchronization of respiration or of synchronization of a listener’s
breathing to the stimulus could represent a valuable extension of the present analysis.

5.2.3.6 Conclusion

The present results demonstrate that, in principle, the sequence of note onsets which con-
stitutes an individual presentation of an original complex piece of music, e.g., a piece of
piano music from the romantic repertoire, can be ‘reconstructed’ from the listener’'s EEG
using spatio-temporal regression-derived filters. The distribution of significant Cortico-
Acoustic Correlation coefficients suggests that the presence of a simple salient beat and
percussive elements enhances the synchronization of a listener’s brain signals to mu-
sic. The same acoustic properties led to (relatively) strongly coordinated behavioral
responses. The proposed approach represents a promising first attempt to connect de-
tailed accounts of the cortical processing of natural music with behavioral reports of
experiencing music.



Chapter 6

(General Discussion and Conclusion

In this thesis we present methodological approaches for investigating the perception of
natural music by combining the analysis of electrophysiological signals recorded from the
listening brain with the analysis of music signals and of behavioral reports on the musical
experience.

As we have pointed out in Chapter 1, ecological validity is a highly desirable property
of music-related experimental paradigms for a number of reasons. Yet, our overview
about the state-of-the-art of research shows that the number of studies is small, most
likely due to data-analytical and experimental challenges. In particular, the relationship
between electrophysiological signals recorded from the listener and the music signal has
not received much attention, although these signals clearly share some properties and,
thus, offer opportunities for direct comparison.

Therefore, the main goal of this thesis was to explore what insight can be gained from
electrophysiological signals recorded while listening to music.

6.1 Investigating music processing with ECoG

In the first study we took advantage of invasive electrophysiological recordings (ECoG)
which, by virtue of their properties, are highly favorable for single-trial analysis. We
have expanded the degree of specificity of existing approaches towards examining the
cortical reflection of multidimensional structure of music in individual participants’ brain
signals for the single presentations of a stimulus. Directly addressing the problem of
the typically non-orthogonal structure of multi-dimensional descriptions of music, we
have proposed the partial correlation coefficient as a simple, but effective, method to
differentially examine neural correlates of the processing of multiple features of music.
The results obtained demonstrate this approach’s contribution towards connecting music
signal analysis techniques and brain data analysis.

Our very detailed, individual results suggest an influence of context on the representation
of the features that characterize a complex auditory stimulus - an insight that could only
be obtained using natural music and speech for stimulation.

109
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However, one conceptual problem of this approach has to be acknowledged: the extreme
level of specificity of the results obtained in this analysis naturally makes it hard to gen-
eralize our findings. Therefore, our results only provide a small glimpse on the processing
of one specimen of music and language each. This means that more examples would be
needed to draw more general conclusions, and to confirm the advantages of the proposed
method.

6.2 Investigating music processing with EEG

From the rare example of a electrocorticographic study we have progressed towards the
much more widely applicable recording modality of (scalp) EEG.

6.2.1 Method

Recognizing the susceptibility of EEG to the impulses that carry the temporal structure
of music, we have explored how this stimulus-related information can be extracted from
the EEG and whether it can be employed to investigate several aspects of music per-
ception. To this end, we have proposed Linear Ridge Regression with the audio power
slope as a target function which is a variant of state-of-the-art techniques for stimulus
reconstruction from speech-processing research (see Chapter 4.1). From the perspective
of the generative model of EEG this method can be described as a way of supervised EEG
decomposition that makes use of the stimulus structure and thus fuses EEG analysis and
music signal analysis analysis — one main aim of this thesis. With the complementary
multiway-CCA analysis we have given an example of a ‘less supervised’ related technique
for multi-subject analysis that confirmed our previous findings.

The proposed analysis pipeline is assembled from well-established methods (Miiller et al.,
2003) with relatively simple underlying ideas, such as Ridge Regression, Single Value
Decomposition (SVD) and Least-Squares Optimization. Our results, however, show that
enriching these ‘old’ mechanisms with specific extensions allows obtaining significant
results at single-trial level in a challenging setting. In particular, the combination of
multivariate EEG analysis (that in itself is highly effective for enhancing the signal-to-
noise-ratio) with temporal embedding adds to the strength of the method as it enables
the fine-tuning of spatio-temporal filters to, both, stimulus characteristics and individual
differences in latencies of brain responses. Furthermore, relating brain responses to a
stimulus’ power slope (instead of the sound envelope that numerous approaches focus
on) exploits the brain’s sensitivity to change.

Here, we derived a backward mapping between the brain signal and the sound envelope,
in contrast to several forward mapping approaches that are described in the literature
(see Section 4.1). We would like to point out that in the EEG setting backward modeling
has one key advantage over forward modeling: In backward modeling the full set of elec-
trodes is integrated in order to learn the mapping between EEG and target function, a
technique that is beneficial to the signal-to-noise ratio and provides us with information
about the scalp distribution of relevant information (Parra et al., 2005). In contrast,
when modeling in the reverse direction, either a specific electrode has to be selected or
the multichannel signal has to be reduced to a single source. This step needs further as-
sumptions, while in the backward modeling it is integrated. Typically, forward modeling



Chapter 6 General Discussion 111

derives a convolution model that can be viewed as an estimate of the impulse response of
the auditory system. With the proposed extension of the Multiple Signal Classification
technique for decomposing the regression patterns we have shown that it is possible to
obtain a comparable model in a backward modeling approach and, thus, demonstrated
that the advantages of forward and backward modeling can be combined in this case.

Technically, the application of this method is not restricted to a particular type of audi-
tory stimulus, since the power slope can be derived in a simple procedure from any audio
waveform. In principle, this technique may be useful in a range of scenarios related to
onset-ERPs as it mitigates the demand for a high number of trials that is typical for
EEG averaging techniques. It is applicable at single-subject and single-stimulus presen-
tation level and it is appropriate for complex long stimuli. Since in the extracted EEG
projections the time-resolution of the EEG is preserved, this method allows for subse-
quent investigations at several time scales. It may open up a new avenue for transferring
findings that have been made with respect to simple stimuli and at the group level to
the level of subject-individual analysis and towards more naturalistic stimuli.

6.2.2 Application examples

Progressing from simple tone sequences to natural music we have applied the proposed
method in several typical scenarios. To begin with, we have directly compared neural
signatures derived with the proposed method to (conventionally) averaged ERPs. This
comparison helped to establish a link from the brain response we extracted from the
EEG to the N1-P2 ERP component. In the next study we applied our method in a
music-related variant of the ‘cocktail party problem’ where a simplified music-like stim-
ulus was presented either in solo (single voice) versions or in an ensemble version. Our
results to some extent demonstrated that a listener’s EEG can indeed be decomposed
into identifiable sources that correspond to the voices of a multi-voiced piece of music
(if the single voices are known). They further showed an effect of frequency masking
between the three voices. On the one hand, this shows that non-linear properties of the
auditory system that are well known and included in auditory models can be demon-
strated in naturalistic listening scenarios. On the other hand, it also proves the existence
of imprecisions/shortcomings in the simple linear mapping we assumed.

Using a broad range of musical pieces and other naturalistic sounds we have success-
fully approached a ‘pure’ decoding task at the level of single presentations of complex
music and non-musical sounds. In addition, we have demonstrated that even without
explicit integration of the sound envelope into the optimization process, the most consis-
tently occurring stimulus-related EEG component is related to tone onsets. Using audio
descriptors we have explained to some extent how stimuli differ in their likelihood to
‘capture’ the brain both, at a global and a local level. Finally, we have complemented
our findings on the relation between brain signal and music signal with behavioral data.
A main insight from this exploratory analysis is that stimuli with certain acoustic prop-
erties, such as a high level of Sharpness and a low Spectral Centroid yield not only a tight
synchronization in the EEG with the stimulus, but also coordinate behavioral responses
in a different group of subjects. This finding supports an relevant link between acoustic
properties and, both, behavioral and physiological responses to music.
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6.2.3 Lessons learned

Looking back at our initial research questions we conclude that for one generic aspect
of music processing, responses to tone onsets, we succeeded to advance the analysis of
single-presentation brain signals from isolated sounds towards more ecologically valid,
continuous music excerpts. The proposed method, in principle, is a way to forego con-
ventional averaging techniques. However, a few points need consideration:

Firstly, one could argue that the information we extract at single-trial level (e.g., a single
CACor coefficient) is of limited use and that the main results of this thesis were derived
by looking at distributions of CACor coefficients, such as CACor scores. Thus, in order
to utilize the proposed method as a tool to characterize determinants of experiencing
music we remain to rely on conventional experimental practices of contrasting controlled
listening conditions and populations of subjects. Nevertheless, the advance from simple
sounds to continuous music represents a qualitative change. It opens up new avenues for
researching aspects of experiencing music that cannot possibly be accessed with short,
simplified stimuli, such as affective responses, personal factors, such as familiarity or
liking, as well as aspects related to the processing of musical macro-structure.

Furthermore, the EEG feature we have been focusing on is a sensory trace of the stimulus.
All inferences about listening to and experiencing music are indirect and operate based
on the assumption that this sensory trace is modulated by certain aspects of the listening
experience, such as mental states, user variables or depend on the stimulus. The N1-P2
components to tone onsets have been a promising and useful ‘workhorse’ for our purpose
known to be sensitive to a number of aspects of listening (see Chapter 4.1). At the
same time, this poses a conceptual problem, as effects on N1-P2 responses can be hard
to pinpoint to their specific origin. Rigid experimental control of the listening situation
is required to draw specific conclusions from here. The unexplained variance that we
observed in CACor coefficients in our least controlled listening paradigm in experiment
2, may relate to this.

In summary, our approach enables to approximate ecological validity in terms of stimulus
material. The additional, simultaneous approximation of an ecologically valid listening
situation (unconstrained music listening like in everyday life) adds considerably to the
recognized conceptual problem, as the interpretability of results strongly depends on
clearly defined experimental conditions.

6.2.4 Future Work

An important part of our work was to identify technical problems, e.g., how to deal with
auto-correlation, propose solutions and discuss their specific advantages and drawbacks.
As a result we have assembled a framework of rather robust analysis steps of analysis
that allows examining the relation between music signals, EEG signals and behavioral
data at several time scales. Obviously, there exist a number of variants, extensions and
refinements that could enrich this framework. For instance, for modeling the mapping
between EEG data and music stimulus other (non-linear) methods could be employed,
e.g. including auditory modeling in the extraction of the sound envelope as proposed in
(Aiken and Picton, 2008). Furthermore, there are numerous ways of varying the music
signal analysis. Also, other physiological parameters, such as information on heart rate or
respiration, could be added in order to obtain a comprehensive overview on physiological
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and behavioral responses to music. Finally, tension ratings, as described in Chapter 2.2.3,
are only one way of collecting behavioral responses to music. In summary, this thesis
presents first examples how different perspectives on listening to music can be combined
to learn about music perception in a comprehensive way. Most importantly, with the
Cortico-Acoustic Correlation analysis we have proposed a tool that allows combining
indices of stimulus-brain response strength with other measures at several time scales.

All scalp EEG analyses presented in this thesis were restricted to the broadband EEG
signal and did not consider oscillatory brain activity, e.g., bandpower modulations. One
reason for this is that in the preliminary stages of analysis power modulations of specific
frequency bands (e.g., theta, alpha, beta band) did not reveal any consistent relation to
the music stimulus that encouraged further investigations, a finding that recently has
been confirmed in Jéncke et al. (2015). However, this thesis has revealed one feature
of music that is consistently reflected in the EEG and it has helped to identify a set
of stimuli that were very effective in stimulating the brain and coordinating behavior.
Therefore, from today’s perspective and based on the outcome of this work, an inves-
tigation with respect to oscillatory features could be a tangible topic for the future, in
particular, since highly effective multi-variate methods for the extraction of oscillatory
neural activity have been refined in the meantime (Déhne et al., 2014a). Instead of
trying to relate neural activity directly to the stimulus, it may be here equally insight-
ful to access inter-individually consistent phenomena in the listening process through
multi-subject analyses.

6.2.5 Scenarios for practical application

The effect oft directed attention on neural responses to (concurrent) auditory stimuli
has been put to practical use in a great number of Brain-Computer-Interfacing (BCI)
applications (Choi et al., 2013, Hill et al., 2012, Lopez-Gordo et al., 2012, Treder et al.,
2014). Our method (and applications thereof) can be regarded as step towards a more
‘musical’ BCI that, using the representation of the sound envelope in the EEG, allows
for far more natural stimulus material than that of typical P3-based paradigms or those
based on the Auditory Steady State Response (ASSR). Recently, similar approaches
built on sound envelope-responses have produced promising results in the speech domain
(Kerlin et al., 2010, Lopez-Gordo et al., 2012, O’Sullivan et al., 2014) and also in the
music domain (Choi et al., 2013).

In a similar way, to the ability to read the user’s target of attention, EEG reflections of the
sound envelope could be used in hearing aids to provide selective enhancement of attended
sounds in multi-speaker or multi-stream environments. Moreover, the representation of
the sound envelope in the EEG could be a tool to guide hearing aid fitting. In particular,
such an application might be useful for adjusting hearing aid function for listening to
music or even for particular requirements, as, e.g., those of musicians with hearing loss.
In general, also in clinical settings diagnostics have moved towards more complex sound
paradigms, e.g., to evaluate cochlea implant users (Koelsch et al., 2004, Timm et al.,
2014). In the future, brain responses to complex music might also be of interest in this

field.

Finally, the proposed method might open up novel possibilities for EEG-based assess-
ment of listening experience, such as listener engagement, with potential commercial
applications, e.g., in the field of marketing.
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6.3 Conclusion

Electrophysiological measurements enable to investigate the processing of complex mu-
sic with considerable sensitivity and a fine level of detail. In combination with music
analysis and behavioral techniques they represent a promising tool for bridging the gap
between brain studies that often are concerned with basic aspects of music processing
and behavioral studies that present complex music, but rely on the participants’ (often
retrospective) reports of their listening experience. In this thesis we have provided a
number of methodological advances that may help to utilize the relation between brain
signal and music signal for further understanding of perceptional processes. We have
given a number of examples of how these advances can be employed to study the per-
ception of natural music and have identified relevant conceptual problems that require
consideration. While our findings still remain to be confirmed by a more comprehen-
sive selection of music stimuli, we are confident that they can contribute to a better
understanding of the process leading from soundwave to personal experience.
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