
Monocular Camera Path Estimation
Cross-linking Images in a Graph Structure

Vorgelegt von

Dipl.-Ing. Cornelius Wefelscheid
aus Essen

Von der Fakultät IV - Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades
Doktor der Ingenieurwissenschaften

− Dr.-Ing. −

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. rer. nat. Manfred Opper
1. Gutachter: Prof. Dr.-Ing. Olaf Hellwich
2. Gutachter: Prof. Dr.-Ing. Jan-Michael Frahm
3. Gutachter: Prof. Dr.-Ing. Helmut Mayer

Tag der wissenschaftlichen Aussprache: 10. Juni 2013

Berlin 2013
D 83

For Maria

ZUSAMMENFASSUNG

Aus den Aufnahmen mehrerer geeigneter Bilder können die 3D Informationen

von einem Gegenstand oder einer Szene im Computer rekonstruiert werden.

Für jedes Bild wird die Position im Raum sowie die Orientierung berechnet.

Im Bereich Computer Vision wird diese Fragestellung seit mehr als zwei

Jahrzehnten erfolgreich bearbeitet. Es entstanden in den letzten Jahren die

ersten kommerziellen Produkte aus dem Bereich Structure from Motion, zu

deutsch Struktur aus Bewegung. Mit vielen Anwendungsmöglichkeiten in den

Gebieten des Reverse Engineering, der Archäologie und dem Erstellen von

digitalen Stadtmodellen bieten diese Verfahren eine kostengünstige Alternative

zu bestehenden Lasermesssystemen.

In dieser Arbeit wird eine Verarbeitungskette zum Erstellen von

3D Rekonstruktionen aus Bildsequenzen präsentiert, welche bestehende

Verfahren robuster, zuverlässiger und schneller macht. Durch die modulare

Herangehensweise, aufbauend auf einer einheitlichen relationalen Datenstruktur,

können viele Neuerungen und Verbesserungen einfach und unabhängig in

die Verarbeitungskette integriert werden. Jedes Modul erhält dabei Zugriff

auf alle Daten. In jedem Bild werden markante Punkte erkannt und

paarweise Punktkorrespondenzen zwischen zwei Bildern hergestellt. Es wurde

ein neues Verfahren entwickelt, welches den nächsten Nachbarn in einem

hoch dimensionalen Raum findet und auf die Beschreibung von markanten

Punkten angewendet wird. Verschiedene neue Verfahren wurden in die

Verarbeitungskette integriert, um effizient Schleifenschlüsse zu erkennen. Die

relative Orientierung zwischen zwei Bildern wird zuverlässig mit Hilfe einer

hierarchischen Clusteranalyse bestimmt. Aus Bilddrillingen, welche die relative

Orientierung von Bildpaaren beinhalten, wird ein Graph erstellt, aus dem

für jedes Bild die Position und Orientierung abgeleitet werden kann. Diese

werden mit Hilfe von nichtlinearen Optimierungsmethoden verbessert, um ein

möglichst genaues Ergebnis zu erzielen. Die Verfahren wurden auf verschiedenen

Datensätzen mit einem besonderen Augenmerk auf die absolute und relative

Genauigkeit evaluiert. Die Ergebnisse übertreffen Verfahren, welche als Stand

der Technik gelten.

v

ABSTRACT

Starting from several suitable images of an object or a scene, the 3D

information can be reconstructed. For each image the pose of the camera is

estimated. The corresponding research field within computer vision is known as

structure from motion. Intensive research for more than two decades resulted in

first commercial applications covering the area of reverse engineering, archaeology

and city modelling. Thus, structure from motion is going to become a low cost

alternative technology to laser based systems.

In this work, a toolchain for 3D reconstruction from an image sequence was

developed. It contains new algorithms to enhance current approaches concerning

robustness, reliability and speed. A modular approach was chosen enabling easy

and independent integration of new algorithms. The underlying relational data

structure is essential to access all data at any stage of the toolchain. As a first

step interest points are detected in each image to establish point correspondences

between two images. A new algorithm is presented to find the nearest neighbor

in a high dimensional space, applicable to the description of interest points.

Different approaches to efficiently detect loop closures are integrated. The relative

orientation between image pairs is computed in a robust manner following a

hierarchical clustering approach. A graph containing image triplets is then

constructed from a set of relative orientations and the pose of each image is

estimated from the graph. Utilizing non-linear optimization techniques, the initial

pose of the images is refined to establish a more accurate solution. The complete

toolchain is evaluated on several datasets with a strong focus on precision and

accuracy. Current state of the art methods could be outperformed.

vii

ACKNOWLEDGEMENTS

First of all I would like to thank my supervisor Professor Hellwich for giving me

the opportunity to work in his group and letting me work on such an interesting

topic. He gave me the freedom to follow my own ideas and at the same time he

always had an open door to discuss any questions. I would like to thank Professor

Frahm for reviewing my work and coming to Berlin for the disputation. I also

want to thank Professor Mayer for reviewing the thesis and the valuable feedback.

I want to thank my colleagues Tilman and Matthias with whom I shared an

office. We had a lot of fruitful discussions, even some of them found their way

into this work. I want to thank Marion for doing my travelling expense report

and saving me some extra time which I could spend more on my thesis. I want to

thank all my other colleagues. This heterogeneous group of people allowed this

place to become something special. So that no working day got ever boring. I

thank my colleague Adam for the after work climbing events especially those at

the Schwedter Nordwand I will never forget. The climbing trips recharged my

batteries even in times where the research was not going as expected.

I want to thank my mother and my sister Ulrike for the final proofreading

and also my entire family for always encouraging and supporting me.

Finally, my biggest thanks go to Maria. Without you the work would not be

what it is.

ix

TABLE OF CONTENTS

ZUSAMMENFASSUNG . v

ABSTRACT . vii

ACKNOWLEDGEMENTS . ix

LIST OF FIGURES . xiii

LIST OF TABLES . xvii

LIST OF ABBREVIATIONS . xviii

CHAPTER

I. Introduction . 1

1.1 Motivation . 2
1.2 Problem Statement and Contribution 3
1.3 Outline . 7

II. Theoretical Background . 9

2.1 Notation . 9
2.2 Camera Model . 11
2.3 Features . 13
2.4 Non-Linear Least Squares Optimization 17

2.4.1 Levenberg-Marquardt 18
2.4.2 Conjugate Gradient 19
2.4.3 Robust Cost Functions 21

2.5 Helmert Transformation 23

III. Data Structures . 25

IV. Matching and Point Identities 33

4.1 Matching . 34
4.1.1 KD-Tree . 35
4.1.2 Tree Based Hashing 36

xi

4.1.3 Evaluation . 38
4.1.4 Filtering . 39

4.2 Point Identities . 42

V. Multi View Geometry . 45

5.1 Relative Orientation . 46
5.1.1 Selecting Distributed Points 47
5.1.2 Five-Point Algorithm 49
5.1.3 Hierarchical Clustering 50

5.2 Camera Triplet . 63
5.2.1 Scale Selection 64
5.2.2 Tile Variance within a Triplet 65

5.3 Graph Generation . 65
5.3.1 Related Approaches 65
5.3.2 Edge Weight . 67

5.4 Path Estimation . 68
5.4.1 Betweenness Centrality 69
5.4.2 Camera Pose . 69
5.4.3 Camera Pose Optimization 71
5.4.4 Merging Reconstructions 79

VI. Loop Closure . 81

6.1 Image Based Loop Closure Detection 82
6.1.1 Vocabulary Trees 82
6.1.2 Variance Descriptor Analysis 83
6.1.3 Evaluation . 84

6.2 Spatial Loop Closure Detection 86
6.3 Closing the Loop . 88

VII. Results . 93

7.1 Faller Train Station . 94
7.1.1 Loop Closure . 94
7.1.2 Accuracy . 98
7.1.3 Precision . 101

7.2 Castle-P30 . 102
7.3 KPM . 104
7.4 Car . 106
7.5 UAV . 107

VIII. Conclusion and Outlook . 111

xii

LIST OF FIGURES

Figure

1.1 Camera mounted on a UAV [94]. 2

2.1 Distorted camera model. 12

2.2 Fish-eye camera model. 13

2.3 DOG for different scales and octaves [52]. 16

2.4 Area for estimating the feature description [52]. 17

2.5 Different cost functions. 22

3.1 A project contains a unique ID, a title, description and an
acquisition date. 26

3.2 The data structure for an image. 27

3.3 Structure containing the calibration of a camera. 28

3.4 Structure of a point based feature. 29

3.5 A match of two features is stored by their unique feature IDs. . 29

3.6 Structure to save the relative orientation between two images as
well as the depth ratio to the 3D points. 30

3.7 The relative orientations and the scales describe an image triplet. 30

3.8 Complete relational data structure containing all information
necessary to compute a path with a SfM approach. 31

4.1 Illustration of two images where sparse feature points are matched. 34

4.2 Histogram of two different dimensions with high and low variance. 36

4.3 Precision and performance of TBH in contrast to BBF. 38

xiii

4.4 Epipolar geometry of two views. 39

4.5 Camera setup illustrating the trifocal tensor with point
correspondences. 41

5.1 Selectable points in blue with the radius representing the weight,
already chosen points in red. 48

5.2 General hierarchical clustering scheme. 51

5.3 Top view of the simulation setup with degenerate points in red. 56

5.4 Distribution of the relative translation. 57

5.5 Comparison between CCHC and RANSAC (5-point algorithm). 59

5.6 Comparison between CCHC and RANSAC (8-point algorithm). 60

5.7 Comparison between CCHC and RANSAC (5-point algorithm)
with outlier and noise=2.0. 61

5.8 Comparison between CCHC and RANSAC (8-point algorithm)
with outlier and noise=2.0. 62

5.9 Camera triplet. 63

5.10 Camera triplet with scale. 64

5.11 Graph representation, with yellow nodes containing triplets and
red nodes representing a single camera position [94]. 66

5.12 Graph with additional sink camera nodes in blue. 70

5.13 Graph with additional group nodes in green. 70

5.14 Inverse point parametrization with source and destination
camera [95]. 73

5.15 Optimization objects interact with different measurement types. 74

5.16 Setup of points (blue) and cameras (red) for the simulated data
[95]. 76

5.17 Applying normally distributed noise on the camera positions (100
cameras) [95]. 77

xiv

5.18 Changing the number of cameras with constant amount of noise
on the camera position (σ = 0.5) [95]. 77

5.19 Three mammoths acquired at the American Museum of Natural
History [95]. 78

5.20 Convergence of the mammoth dataset [95]. 78

6.1 Example scene which might mislead an appearance based loop
closure detection. 81

6.2 Appearance similarity matrix (VDA) of KPM dataset. 84

6.3 Number of matches of the KPM dataset. 85

6.4 ROC for VDA and vocabulary trees (VOC). 86

6.5 Sparse point cloud with camera poses after initial path
computation. 89

6.6 Sparse point cloud with camera poses after loop closure matched. 89

6.7 Spatial similarity matrix for loop closure. 90

6.8 Closure of large gap in loop with 10000 cameras. 91

7.1 Ground truth measurement adjustment (JAG3D [47]). 95

7.2 FTS with marked coordinates of GCP. 95

7.3 Example of a wrongly identified loop closure by VDA and VOC. 96

7.4 Loop closure analysis of the FTS dataset. 97

7.5 Reconstructed camera path with sparse point cloud. 98

7.6 RMSE of the FTS dataset for different BA configurations
corresponding to Tables 7.2 and 7.3. 99

7.7 Precision of the FTS dataset. 102

7.8 Sample image of the Castle-P30 dataset. 103

7.9 Distance and angle error of the Castle-P30 dataset. 103

xv

7.10 Sample images of the KPM dataset. 104

7.11 Top view of the court yard of KPM [25] with an approximate
camera path in black. 104

7.12 Precision of the KPM dataset. 105

7.13 Acquisition setup with two GoPros on a car. 106

7.14 Driven path in blue, reconstructed path in red [25]. 107

7.15 House acquired by a UAV. 108

7.16 Camera path and quasi dense point cloud for the UAV dataset. . 109

8.1 Computational power comparison between GPUs and CPUs [68]. 112

8.2 Quadrifocal camera setup to capture deformable objects. 114

xvi

LIST OF TABLES

Table

2.1 Notation of the variables used in the thesis. 10

2.2 Weight calculation for different cost functions 23

5.1 RMSE of the relative translation difference to ground truth. . . 58

5.2 Evaluation of different edge cost functions. 68

7.1 Speed comparison of VDA and VOC in seconds. 96

7.2 RMSE in mm compared to ground truth with filtered feature
matches (filter from Section 4.1.4.3). The truncation of Huber
T. is applied at twice the threshold. 99

7.3 RMSE in mm compared to ground truth with all feature matches
(only epipolar filter applied). The truncation of Huber T. is
applied at twice the threshold. 100

7.4 MAE and RMSE of Inverse BA, BA and VisualSFM. 103

xvii

LIST OF ABBREVIATIONS

BA Bundle Adjustment

BBF Best Bin First

CCHC Cross Compare Hierarchical Clustering

COO coordinate list

CG Conjugate Gradient

DOG difference-of-Gaussians

EKF extended Kalman filter

FPS frames per second

FTS Faller Train Station

GPS Global Positioning System

GCP ground control points

HC Hierarchical Clustering

KLT Kanade-Lucas-Tomasi

KPM Königliche Porzellan Manufaktur

LIDAR LIght Detection And Ranging

LM Levenberg-Marquardt

NN nearest neighbor

MAE mean absolute error

MSER maximally stable extremal regions

RANSAC RANdom SAmple Consensus

RMSE root mean square error

ROC Receiver Operating Characteristic

xviii

PMVS Patch-based Multi-view Stereo

OpenOF Open Optimization Framework

SBA Sparse Bundle Adjustment

SSBA Simple Sparse Bundle Adjustment

PBA Parallel Bundle Adjustment

SfM Structure from Motion

SIFT Scale Invariant Feature Transform

SLAM Simultaneous Localization and Mapping

SLR single-lens reflex

SVD Singular Value Decomposition

TBH Tree Based Hashing

TF-IDF Term Frequency Inverse Document Frequency

TF Term Frequency

UAV Unmanned Aerial Vehicle

VDA Variance Descriptor Analysis

VD Variance Descriptor

xix

CHAPTER I

Introduction

In the last decades computer vision has been influencing a broad range of

newly arising technologies. With the growing interest and the wide availability of

digital cameras at the beginning of the 21st century, computer vision research has

found its way in many consumer products. Face detection in consumer cameras

or human motion sensing as a gaming control device with a Microsoft Kinect

are only two of many examples. Within computer vision, a major research field

focuses on the 3D reconstruction of a scene from images in a geometric sense.

Measuring in images has a long history and originally belonged to the research

area of photogrammetry. At former times, specifically designed cameras were used

by photogrammetrists. Nowadays, high quality consumer cameras can be used for

the same task leading to astonishing results. With a suitable software, expensive

3D reconstruction techniques can be made available for consumers. Even an

integration into smart phones seems to be possible. A key aspect of generating

a 3D model automatically is the reconstruction of the camera pose, meaning the

estimation of position and orientation of each image. While the camera is moving

in space, the structure of the scene can be inferred. With complete knowledge

of the scene, the computation of the path is simple and vise versa. As both the

path and the 3D scene are unknown in advance, they have to be estimated at

the same time. In robotics, this task is known as Simultaneous Localization and

Mapping (SLAM). The computer vision community refers to this problem as

Structure from Motion (SfM). The key difference between SLAM and SfM are

the related applications and involved constraints. SLAM is most often used in

realtime applications, whereas SfM finds the most accurate solution in an offline

process. Those time constraints are crucial for the choice of algorithms regarding

the solution. Most SLAM approaches rely on motion models and probabilistic

filters, whereas SfM approaches utilize non-linear optimization techniques. This

work presents a modular approach to solve the SfM problem, with the aim to

enhance reliability as well as accuracy.

1

Figure 1.1: Camera mounted on a UAV [94].

1.1 Motivation

Humans acquire 3D information with their two eyes. Similarly, the same

information, up to a scale factor, can also be gathered by one camera which takes

several images of the scene from different positions. In genereal, SfM describes

the process of computing the structure of a scene captured by a moving camera.

Knowing the 3D structure or the positions of the camera provides the basis for

many commercial applications. In the film industry those techniques have been

used in match moving software to render synthetic objects in a real world video.

SfM has been also used for automatic 3D movie generation of 2D films [37].

In both examples the visual appearance of the newly created video material is

important as small errors are easily identified by human eyes and reduce the

enjoyment while watching the film. In contrast to the visual appearance, the

geometric precision is less important in both examples. On the other hand,

applications related to architecture or reverse engineering require above all a

high geometric precision.

SfM approaches are a cheap alternative to expensive laser scanners. While laser

scanners directly produce a 3D point cloud of the scene by measuring the distance

with a laser, image based approaches need computational power to compute

the 3D scene. Nevertheless, SfM has several advantages over laser scanners.

Cameras are light weight and can be mounted e.g. on an Unmanned Aerial

Vehicle (UAV) (see Figure 1.1). For a LIght Detection And Ranging (LIDAR)

system, a much larger aircraft would be needed to create digital terrain models

2

due to the weight of the laser. Even though light weight laser scanners have

recently been introduced and mounted on a UAV [18], the measuring range of

such a light weight system is most often limited to a few meters. Recently, with

the UTM-30LX from Hokuyo, a mobile laser scanner with a range of 30 m has

been introduced with a weight of only 210 g, but a minor precision of± 30 mm. As

this laser scanner is designed for mobile robots, it is well suited to compute a map

wherein the robot can navigate. However, it is not precise enough for measuring

in point clouds. Beyond these technical disadvantages, this laser scanner is quite

expensive with a price of more than 4000 e.

One major advantage of camera based systems is the usability. An inexperienced

user can take images with a low cost consumer camera and can still achieve a

good 3D reconstruction. Only a trained professional is able to operate a LIDAR

system. In applications which aim at creating a 3D reconstruction of an object,

the data acquisition with a camera is done in a few minutes whereas the operation

of a laser scanner takes much longer especially if the laser has to be moved to

capture the object of interest from all sides.

SfM has also been used to reconstruct much bigger areas, such as the San Marco

Square in Venice or the Colosseum in Rome [2, 20]. For those reconstructions

only publicly available images from foto sharing sites such as Flickr.com were

used.

Another use case for SfM is the generation of digital elevation models. For larger

areas, this is done by satellites or aircrafts. A similar approach can be applied

for smaller areas with model airplanes or UAVs [56].

Lately, several commercial applications which solve the SfM task have been

introduced: Autodesk 123D Catch (formerly Photofly), Pix4d and Photosynth are

the most prominent examples. All of them create good results on many different

scenes, but still face challenges on others. One can say that the SfM problem

is well understood but still lacks reliability and efficiency. Further research is

necessary, before the problem can be regarded as solved.

1.2 Problem Statement and Contribution

This thesis describes a solution to the following problem: Given a set of

images the described toolchain computes for each image the exterior orientation

or the camera as well as a sparse 3D point cloud. The focus of this work lies on

image sequences, at least three images shall visually overlap. The scene which

3

is to be reconstructed is assumed to be static, non static parts are detected as

outliers. The toolchain relies on calibrated cameras, meaning that the interior

orientation is known. The resulting 3D reconstruction is a metric reconstruction

up to one scale factor. Restricting the images to be ordered in a sequence, allows

the reconstruction of symmetric objects. Nevertheless, computing unordered

images is possible but may produce errors due to wrong identified image matches.

Computing the exterior orientation of the camera is referred to as computing the

path of the camera. In contrast to most SLAM approaches, arbitrary motions

are allowed and no motion model is assumed.

The SfM problem addresses many different subtopics which need to be solved.

The topics follow the structure in which the data is processed in the pipeline.

Contributions which are later described in the thesis are indicated.

• Massive data handling: The SfM problem cannot be solved without

massive amounts of data. Handling the data efficiently simplifies the

integration of new modules and the access to any data at any time in the

toolchain.

Contribution:

A relational data structure is proposed which enables an efficient

parallel computation of the data.

• Camera calibration: Each camera has an individual focal length. Most

often the principal point is assumed to be at the center of the image. Since

consumer cameras or cameras with wide angle lens often have a radial

distortion, corresponding parameters need to be computed in a calibration

step.

• Feature extraction/description: Points which are easy to identify in

different views from different perspectives are called interest points. These

points shall be found and extracted in all images. A description which is

invariant to geometric as well as radio metric changes within the image is

computed for each feature.

• Matching features: Given two sets of features where each set belongs

to an image, correspondences between features are established. Respecting

the epipolar geometry, wrong matches are eliminated.

4

Contribution:

In this subtopic a new method is developed for matching Scale

Invariant Feature Transform (SIFT) features. The new method,

named Tree Based Hashing (TBH), outperforms Best Bin First

(BBF) regarding speed and precision.

• Relative orientation: With a known internal calibration, the two view

geometry can be solved from five point correspondences. The solution is

influenced by noise and outliers. From a set of multiple solutions the best

one is chosen. Choosing the right solutions is usually done with RANdom

SAmple Consensus (RANSAC).

Contribution:

In this work, a hierarchical clustering approach is presented. This

Cross Compare Hierarchical Clustering (CCHC) can better cope

with quasi-degenerate configurations and is more robust with

respect to noise.

• Solving three view geometry: From two relative orientations and points

identified in all three images, the scale between the second and the third

camera position is computed in relation to the first and second camera.

Contribution:

An empirically evaluated cost function is found, which represents

the reliability of a triplet. This cost is taken as a weight to

generate a graph of image triplets.

• Computing path from triplets: A graph structure is presented which

consists of image triplets. Two triplets share an edge if two of the images

are identical.

Contribution:

Within the graph, a metric reconstruction for each image is found

by selecting an initial triplet which is supposed to be most central.

From this starting triplet a shortest path to each image is selected

according to the edge weight.

5

• Detecting and closing loops: Returning to a place which has been seen

before is common when capturing an object. Most often a circle is closed,

but more complex loops are possible. Those shall be identified and the

accumulated drift is distributed.

Contribution:

The loop closure detection is handled in two ways. First, an

appearance based approach is presented which defines a new

descriptor for each image. This new descriptor is named Variance

Descriptor Analysis (VDA). Second, a spatial voting scheme finds

a loop closure candidate in case an initial camera path and a

sparse 3D point cloud is given.

• Bundle Adjustment: Bundle Adjustment (BA) optimizes the computed

results with a non-linear least squares optimization procedure.

Contribution:

Within this work, a new BA parametrization is introduced which

reduces the number of parameters. A 3D point is not any

longer free in space, but it is attached to the image where it

first appeared. The only unknown parameter which needs to

be estimated is the inverse depth. A non-linear least squares

optimization framework, named Open Optimization Framework

(OpenOF) is presented to handle large optimizations efficiently.

The toolchain should be as generic as possible meaning that the reconstruction

is not limited to a special scene type. The following scenes are used for

demonstration purposes in this work:

• Model house to analyse the accuracy.

• House with images acquired by a UAV.

• Skeletons at the American Museum of Natural History.

• Street scene, captured with cameras mounted on a car.

• Courtyard acquired with a camera mounted on a Segway.

• Publicly available ground truth dataset.

6

Parts of the thesis have been published:

Cornelius Wefelscheid, Ronny Hänsch, and Olaf Hellwich.

Three-dimensional building reconstruction using images obtained

by unmanned aerial vehicles. In Proceedings of the International

Conference on Unmanned Aerial Vehicle in Geomatics (UAV-g),

Zurich, Suisse, Sep 2011

Cornelius Wefelscheid and Olaf Hellwich. OpenOF: Framework

for sparse non-linear least squares optimization on a GPU. In

VISAPP. SciTePress, 2013

Furthermore, the open source library, OpenOF, which has been developed within

this work, has been used for geocoding SAR and optical satellite images:

Olaf Hellwich, Cornelius Wefelscheid, Jakub Lukaszewicz, Ronny

Hänsch, Adnan M. Siddique, and Adam Stanski. Integrated matching

and geocoding of SAR and optical satellite images. In IBPRIA 2013.

Springer, June 2013

1.3 Outline

The structure of the thesis mainly follows the presented pipeline. Chapter II

covers the theoretical background. The notation which is used within this work

is stated in Section 2.1. Section 2.2 describes two camera models (pinhole and

spherical camera model), followed by a detailed description of the incorporated

feature detector and descriptor (Section 2.3). The mathematical basis of the

non-linear optimization framework, OpenOF, is given in Section 2.4. The chapter

concludes with the description of a Helmert transformation. Chapter III presents

the underlying relational data structure. The chosen database model supports the

development of a modular approach. Feature matching between two images, as

well as detecting outliers is presented in Chapter IV. From all computed matches,

a reliable camera path is estimated in Chapter V where a graph of image triplets

is generated to find the best initial estimate which is then optimized with a

non-linear least squares method. Chapter VI investigates loop closures, which

can either be detected by the visual appearance of the images or by the path

which has been reconstructed by the methods presented in Chapter V. The thesis

7

concludes with the results in Chapter VII and the conclusion and an outlook to

future work in Chapter VIII.

8

CHAPTER II

Theoretical Background

The work is based on theoretical background described in this chapter. After

a brief introduction of the mathematical notation, which is used throughout the

work, two different camera models are described as those are used for different

datasets. Within Section 2.3, the visual feature as well as the corresponding

feature description is presented in detail. The new matching scheme of TBH as

presented in Section 4.1.2 goes hand in hand with the description of a feature.

Many stages of the toolchain incorporate non-linear least squares optimizations.

Most often the Levenberg-Marquardt (LM) algorithm in conjunction with a

Conjugate Gradient (CG) approach is used to handle large scale optimizations

with thousands of parameters. Different robust cost functions are stated in

Section 2.4.3 which are used in order to suppress outliers.

2.1 Notation

Throughout this work the following notation is used, if not stated otherwise:

Bold letters are used for matrices and vectors. Commonly, capital letters are used

for matrices, but not exclusively. Bold capital letters are used for 3D points as

well, most often X in homogeneous coordinates. A small bold letter is used as

projection into the image x as well in homogeneous coordinates. A 3D point in

non homogeneous representation is denoted by X̂. The same holds for 2D points.

Small non bold variables are used for scalars such as s or u0. Capital non-bold

variables are used as single coordinate in 3D space such as X, Y, Z. A quaternion

is denoted by q. A certain element of a vector, a matrix or a quaternion is selected

by square brackets q[0] for the first element as common in programming languages

or by a lower index, respecting the mathematical formulation q1. In case a lower

index is already used, to denote different variables, the squared bracket notation

is used. The first element of a matrix is denoted as A11. A subpart of a vector

or a quaternion is selected, e.g. q[1 : 4] containing the element second to fourth,

9

Name Symbols Description

Scalar s,fy,fx scalar variable, small non-bold
Vector n vector variable, small bold

Vector element n1 1st element, mathematical notation
Vector element n[0] 1st element, programming notation

Subvector n[1 : 4] 2nd to 4th element, numpy notation
Matrix A matrix variable, capital bold

Serialized Matrix Ã capital bold with tilde
Matrix element A11 first row, first column
Matrix element A[0, 0] first row, first column

Submatrix A[1 : 4, 1 : 4] see description subvector
2D point x̂ small bold with hat

Homogeneous 2D point x small bold

3D point X̂ capital bold with hat
Homogeneous 3D point X capital bold

3D coordinate X, Y, Z capital non-bold

Quaternion 3D point X̃ capital bold with tilde
Quaternion q small bold
Place holder C camera parameters

Table 2.1: Notation of the variables used in the thesis.

considering that counting is started at zero as it is common in numpy [69]. The

quaternion representation of a 3D coordinate is denoted by a tilde, for compact

writing of a spatial rotation using quaternions e.g. qX̃q−1. In some formulas

a different representation of a 3D point is needed. In this case X, X̂ and X̃

represent the same point in corresponding form.

X̃ =


0

X

Y

Z

 (2.1)

In case a tilde is above a matrix, the matrix is serialized to a vector.

Ã = [A11,A12,A13,A21,A22,A23,A31,A32,A33]
T (2.2)

The notation, which is used throughout the work is summarized in Table 2.1.

10

2.2 Camera Model

Throughout this work, a pin hole camera model is assumed. In conjunction

with BA (Section 5.4.3.1), additional distortion parameters are used, everywhere

else undistorted images are assumed. A camera model describes the projection

of a 3D point to a 2D image coordinate (see Figure 2.1). The 3D point X in

homogeneous coordinates is projected by a function f(X, C) to a 2D image point

x. C combines all internal and external camera parameters such as [X, Y, Z]T

being the camera center and q the quaternion representing the rotation of the

camera.

x = f(X, C) (2.3)

The internal camera parameters are denoted by fx, fy being each the focal length

in pixels. In case of square pixels, fx and fy are equal. The skew parameter is

represented by s. [u0, v0]
T is the principal point. All those parameters are found

in the calibration matrix K.

K =

 fx s u0

0 fy v0

0 0 1

 (2.4)

Commonly, the projection is described by matrix multiplication (Equation 2.5),

with Ĉ = [X, Y, Z]T combining the parameters of the camera center and R being

the rotation from world to camera coordinate system and I is the 3× 3 identity

matrix. K, R and Ĉ can be combined to the projection matrix P.

x = PXw = KR[I|-Ĉ]Xw (2.5)

The projection can also be described as a quaternion multiplication, transforming

a point Xw from world coordinate system into a 3D point in camera coordinate

system Xc.

X̃c = q(X̃w − C̃)q−1 (2.6)

The calibration matrix projects the point into the image plane resulting in sensor

coordinates.

x = KX̂c (2.7)

In case of a radially distorted camera, Equation 2.7 is extended by k1, k2, k3 being

the coefficients of a polynomial equation. Assuming xd = x is the distorted image

11

Figure 2.1: Distorted camera model.

point from Equation 2.7, the distance to the distortion center is computed as

r =
√

(x̂d − x̂c)T (x̂d − x̂c) . (2.8)

Usually, it is assumed that the distortion center is the principal point:

xc = [u0, v0, 1]T (2.9)

The undistorted image point xu can be computed as

xu = xd + (xd − xc)(k1r
2 + k2r

4 + k3r
6) . (2.10)

If necessary, the radial distortion model can be combined with a tangential

distortion model [28]. An undistorted image is rendered by formulating the

distortion model in respect of the undistorted image point. The color information

of each pixel of the new image is taken from the distorted image. The new color

value of the undistorted image is computed by transferring the point with the

distortion model to the original image. As the point has a subpixel accuracy, the

color information is interpolated between the surrounding pixels.

Recently, wide-angle fisheye lenses have gathered much attention as they are

part of low cost sports cameras such as the GoPro HD HERO 2 camera. Their

spherical lens produces a strong distortion, which cannot be modeled with

Equation 2.10. Such a fish-eye camera needs a different distortion model (see

12

Figure 2.2: Fish-eye camera model.

Figure 2.2) [35]. The corresponding formula is given in the following equation.

xd =
1

r
(θ + k1θ

3 + k2θ
5)

 fx

fy

1

 (xu − xc) + xc (2.11)

In this case the radius r and the angle θ are defined as

r =
√

(xu − xc)T (xu − xc) (2.12)

and

θ = arctan

(
2r

fx + fy

)
. (2.13)

The parameters k1, k2 for the spherical distortion model and the parameters

k1, k2, k3 for the radial distortion model are estimated in a calibration procedure.

2.3 Features

Identifying features in images is an essential task in many computer vision

applications. Features, as a review of the image processing literature shows, can

13

be divided in global and local features. Local features can be further divided in

point, shape or region based features [6, 19, 39, 52, 55, 58, 59, 60, 75]. This work

focuses on point based features, also known as distinct interest points, which have

been proven in the past to be most successful for camera path estimation. Most

of the geometric relations used in SfM are based on the projection of a 3D point

into an image. Region based approaches, like maximally stable extremal regions

(MSER), suffer from the lack of a stable center point. Perspective distortions

move the center point when changing the viewing angle, thus knowledge of the

orientation of the region has to be incorporated to compute a stable center point.

Knowing that a region is a rectangle can solve the orientation problem [96]. In

case of a rectangle, the center point is estimated by intersecting the two diagonals.

Feature extraction can be subdivided into two parts, the detection and the

description. In [57] a point based feature is defined to be invariant, stable,

interpretable, distinct and seldom. The detection has to be precise in its position

(stability) and a high recognition rate is essential (invariance). Furthermore, a

feature needs a proper description which allows to reidentify the same feature

in different images (distinctness and seldomness). The property that a feature

should be interpretable is of minor importance for a SfM toolchain.

This work incorporates point based features such as SIFT, as they have proven

to fulfill the task of SfM. Other features (GLOH [58], PCA-SIFT [36], SURF [6])

have been described, but none of them is superior compared to SIFT. Another

feature operator with a high popularity is SURF, which is often used for realtime

applications. It outperforms SIFT in respect of speed but at the expense of

reliability [33]. SURF was early integrated into the well known computer vision

library, OpenCV, and therefore spread in the community.

Detector and Descriptor

A good feature for a 3D reconstruction task needs to have several properties.

It has to be highly distinctive to match one feature against a large set of other

features correctly. On the other hand, it has to be invariant to changes of the

following properties:

• Scale: As the user moves around the object of interest, the distance between

the camera position and the object varies, so it is required to match images

taken at different scales. Also close up images shall be matched with images

taken from far away.

14

• Translation/Rotation: As features appear in different positions in an

image, the translational change should have no impact on either the detector

or the descriptor. Images which are rotated around the viewing ray should

still have the same description.

• Illumination: A controllable illumination of an object, as it is possible

under laboratory conditions, is unlikely in real world applications. When

taking images e.g. with a UAV the illumination changes from one side of

the object to the other side or specular highlights illuminated by the sun

may occur. Therefore, the feature has to be invariant to such circumstances

to a certain degree.

• Viewpoint: When capturing an object from different perspectives, the

appearance of an interest point changes, e.g a corner can look completely

different from the other side. Invariance for large viewpoint changes can be

achieved for planar scenes, but only a small angle between two viewpoints

can be handled considering images of vegetation. Different studies have

addressed the challenge of handling view point changes [38, 62, 99]. It is

assumed to be the hardest invariance.

SIFT is invariant to a certain range of variations. It has been well studied in

literature and proven to be reliable. It outperforms other feature extractors and

descriptors [58].

SIFT

SIFT was first described by Lowe in [51] and later in more detail in [52]. The

method itself can be separated into two parts, the key point detection and the

key point description.

The keypoint detection is based on finding local maxima and minima in

scale-space. The scale-space represents the image structure at different levels

of detail. This can be achieved by blurring the image with a Gaussian kernel.

The definition of the scale-space is given in Equation 2.14 as the convolution of

the kernel with the image [45].

L(x, y, σ) = G(x, y, σ) ? I(x, y) (2.14)

15

Figure 2.3: DOG for different scales and octaves [52].

Further, the Gaussian kernel is defined by

G(x, y, σ) =
1

2πσ2
e−(x

2+y2)/2σ2

. (2.15)

For efficiency, the extrema are not detected in a linear scale-space but rather with

the difference-of-Gaussians (DOG) from nearby scales using a constant factor k.

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ? I(x, y) (2.16)

Equation 2.16 can be simplified to the substraction of two scale-space levels.

D(x, y, σ) = L(x, y, kσ)− L(x, y, σ) (2.17)

The scale-space can be further split up into different octaves to compute a bigger

field of scales even more efficiently (see Figure 2.3). A maximum or minimum

is found if all neighboring values for a voxel in the scale space grid are lower

or higher, respectively. The cornerness and the contrast of each keypoint is

computed to reject features with low contrast or keypoints which lie on an edge

(see [52] for details).

The invariance w.r.t. scale and orientation is achieved by using the scale-space

level in which the keypoint is detected as the scale. The dominant gradient

16

Figure 2.4: Area for estimating the feature description [52].

within a circular region around the keypoint with a radius of 1.5σ is computed,

in order to achieve rotation invariance. Therefore, a gradient histogram of 36

bins containing the gradient direction is generated. The bins are filled with the

magnitudes of the corresponding direction, computed from the blurred image at

the underlying scale (see Equations 2.18 and 2.19). The bin with the highest score

represents the orientation of the keypoint. In case of a strong second orientation

reaching a score of at least 80 % of the highest score, a second keypoint with the

corresponding orientation is created.

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2 (2.18)

θ(x, y) = tan−1
L(x, y + 1)− L(x, y − 1)

L(x+ 1, y)− L(x− 1, y)
(2.19)

The description of a keypoint additionally relies on generating histograms of

gradients. To describe each keypoint, the same circular area around the keypoint

is examined as it was used previously. The area is partitioned in a 4 × 4 grid.

Figure 2.4 shows an illustration of a 2×2 grid. For each tile a gradient histogram

with 8 bins is computed, leading to a descriptor size of 4× 4× 8 = 128. Rotation

invariance is achieved by rotating the coordinates of the area used to compute

the descriptor by the main orientation of the keypoint. Illumination changes are

handled by normalizing the descriptor [52].

2.4 Non-Linear Least Squares Optimization

Within a SfM approach many different algorithms are computed with a direct

linear transformation, e.g. the 8-point algorithm for computing the fundamental

17

matrix. For the latter, the solution minimizes the algebraic error. Usually, the

user is interested in an optimal solution regarding a geometric cost function.

Non-linear optimization techniques are necessary to minimize the geometric error.

In the last years, the LM algorithm has been most commonly used especially in

combination with BA. BA is one of the main algorithms in most SfM approaches,

and is used as a final optimization step. In Section 5.4.3.3 a general framework

for non-linear least squares optimization is presented which is based on theory

described in Sections 2.4.1 and 2.4.2 which has been published in [95].

2.4.1 Levenberg-Marquardt

LM is regarded as standard for solving non-linear least squares optimization.

It is an iterative approach which was first developed by Levenberg in 1944 and

rediscovered by Marquardt in 1963. The algorithm determines the local minimum

of the sum of least squares of a multivariant function. An overview of the family

of non-linear least squares optimization techniques can be found in [54]. LM

combines a Gauss-Newton method with a steepest descent approach. Given a

parameter vector x, the task is to find a vector xmin that minimizes the function

f(x) which is defined as the sum of squares of the vector function r(x).

xmin = arg min
x

f(x) = arg min
x

1

2

m∑
i=0

ri(x)2 (2.20)

As the function is usually not convex, a suitable initial solution x0 needs to be

provided. Otherwise, LM will not converge to the global optimum, but gets stuck

in a local minimum, which might be far away from the optimal solution. In each

iteration i, f(x) is approximated by a second order Tailor series expansion.

f̃(x) = f(xi) + f(xi)
′(x− xi) +

1

2
f(xi)

′′(x− xi)
2 (2.21)

To find the minimum, the first derivative of Equation 2.21 is set to zero, resulting

in
∂f̃(x)

∂x
= f(xi)

′ + f(xi)
′′(x− xi) = 0 . (2.22)

The first order derivative at the point xi can be replaced by the transposed

Jacobian JT multiplied with the residual. The second order derivative is

approximated by the Hessian matrix given as JTJ. The parameter update

18

h = x− xi in each iteration is conducted by solving the normal equation.

JTJh = −JT r(xi) (2.23)

To include the gradient descent approach, Equation 2.23 is extended by a damping

factor µ.

(JTJ + µI)h = −JT r(xi) (2.24)

For µ → 0 LM applies the Gauss-Newton method and for µ → ∞ a gradient

descent step is executed. If the update step does not result in a smaller error, the

damping factor is increased pushing the parameters further towards the steepest

descent. Else, the update is performed and the damping factor is reduced. In cases

with a known covariance of the measurements, Equation 2.24 can be extended to

(JTΣ−1J + µI)h = −JTΣ−1r(xi) . (2.25)

Instead of the Euclidean norm the Mahalanobis distance is minimized. Solving

the normal equation is often the most demanding part of the algorithm. The

computation of the Jacobian matrix can be also time consuming, but fortunately

each element can be computed in parallel. If the normal matrix has a defined

structure,

N =

[
A B

C D

]
(2.26)

with D being invertible, approaches such as the Schur complement can be

applied [91]. In general the normal equation can be solved with a Cholesky

decomposition. Another possibility is an iterative approach such as CG, which

will be described in the next section.

2.4.2 Conjugate Gradient

The CG method is a numerical algorithm for solving a linear equation system

Ax = b with A being symmetric positive definite and x,b ∈ Rn. As CG is an

iterative algorithm, there exists a residual vector rk in each step k defined as:

rk = Axk − b . (2.27)

19

CG belongs to the Krylov subspace methods [67]. Krylov subspace is described

by

Kk(A, r0) = span{r0,Ar0,A
2r0, . . . ,A

k−1r0} (2.28)

and is taken as the basis for many iterative algorithms. It has been proven that

those methods terminate in at most n steps [67]. CG is a highly economical

method which does not require much memory or time demanding matrix-matrix

multiplication. While applying CG, a set of conjugate vectors (p0,p1, ..,pk−1,pk)

is computed belonging to the Krylov subspace. In each step the algorithm

computes a vector pk being conjugate to all previous vectors. Only the previous

vector pk−1 is needed and every other vector can be omitted, thereby saving

memory. The algorithm is based on the principle that pk minimizes the

residual over one spanning direction in every iteration. CG is initialized with

r0 = Ax0 − b,p0 = −r0, k = 0. In each iteration a step length α is computed,

which minimizes the residual over the current spanning vector pk.

αk = − rTk rk
pTkApk

(2.29)

The update of the current approximate solution is given by

xk+1 = xk + αkpk (2.30)

which results in a new residual

rk+1 = rk + αkApk . (2.31)

The new conjugate direction is computed from Equations 2.32 and 2.33.

βk+1 = −rTk+1rk+1

rTk rk
(2.32)

pk+1 = rk+1 + βk+1pk (2.33)

Finally k is increased. This procedure is repeated as long as ||rk|| > ε and

k < kmax. Theoretically n iterations could be necessary to solve the linear

equation system, but in most cases, only a few iterations are needed to find

a good approximation. Prove of convergence and a full derivation are given by

[67].

For practical considerations the explicit computation of the matrix A = JTJ can

20

be omitted. Concatenating matrix-vector multiplications for JT and J is faster

and the numerical precision is higher. Such an approach is known as least squares

CG.

2.4.3 Robust Cost Functions

When applying non-linear least squares optimization, the input data has to

be free of outliers. As not all outliers can be excluded, introducing robust cost

functions can avoid gross failures caused by outliers. Instead of optimizing ri(x)2

(see Equation 2.20), g(ri(x)) is optimized. In the standard least squares approach,

which is based on a Gaussian noise assumption, the cost function is

g(y) = y2 (2.34)

with y = ri(x) being the result of the function of interest. As the Gaussian

noise assumption does not hold for outliers, many different cost functions are

proposed in literature [28]. The most common cost functions will be evaluated in

Section 5.4.3.1 regarding BA. The simplest robust cost function is the truncated

L2 function which is quadratic within an inlier range and constant otherwise.

g(y) =

{
y2 : |y| < α

α2 : |y| ≥ α

}
(2.35)

Outliers influence the optimization only with a constant cost, but it is not

differentiable at |y| = α. Another popular cost function is the L1-norm.

g(y) = |y| (2.36)

This cost function is differentiable except for the origin. A combination of a

quadratic and a linear cost has been introduced and named by Huber [30].

g(y) =

{
y2 : |y| < α

2α|y| − α2 : |y| ≥ α

}
(2.37)

The cost is quadratic within an inlier range and linear otherwise.

Integrating a robust cost function in the LM algorithm is achieved by computing

an individual weight which scales the squared cost function to the desired

function. This enables the integration of arbitrary cost functions in the presented

21

4 2 0 2 4
y

0

1

2

3

4

5

6

7

8

g(
y)

(a) L1

4 2 0 2 4
y

0

1

2

3

4

5

6

7

8

g(
y)

(b) L1 truncated

4 2 0 2 4
y

0

1

2

3

4

5

6

7

8

g(
y)

(c) L2

4 2 0 2 4
y

0

1

2

3

4

5

6

7

8

g(
y)

(d) L2 truncated

4 2 0 2 4
y

0

1

2

3

4

5

6

7

8

g(
y)

(e) Huber

4 2 0 2 4
y

0

1

2

3

4

5

6

7

8

g(
y)

(f) Huber truncated

Figure 2.5: Different cost functions.

22

name 0 < |y| ≤ α α < |y| ≤ β β < |y|
L1 1/

√
|y|

L1 truncated 1/
√
|y| √

α/|y|
L2 1
L2 truncated 1 α/|y|
Huber 1

√
2α|y| − α2/|y|

Huber truncated 1
√

2α|y| − α2/|y|
√
α2 + 2α(β − α)/|y|

Table 2.2: Weight calculation for different cost functions

LM algorithm.

w =
√
g(y)/|y| (2.38)

Near the optimum for the L1 and L1 truncated case, special attention regarding

divisions by zero is needed for the implementation. In Table 2.2 the explicit

computation of the weight is shown for different cost functions with respect to

their threshold parameters, α and β. It is assumed that 0 < α < β holds. In

case a model has no parameters α and β are set to infinity. The same holds for β

if only α is needed. A visual reprensentation of different cost functions is given

in Figure 2.5.

2.5 Helmert Transformation

When acquiring a 3D reconstruction with a monocular camera, the resulting

reconstruction is unique up to seven parameters. These parameters contain a

translation, rotation, and a scale. The corresponding transformation is known as

Helmert transformation or 3D similarity transformation. As the reconstruction

is metric, two reconstructions of the same object only differ by one Helmert

transformation. Given a set of n points {X1,X2, . . . ,Xn−1,Xn} and their

correspondences {X′1,X′2, . . . ,X′n−1,X′n}, there is a transformation

X̃′i ≈ f(X̃i) = t̃ + sqX̃iq
−1 (2.39)

with t being a translation, q a quaternion representing a rotation and s is a

scaling factor. The solution for t,q, s can be found by solving the following least

23

squares optimization problem.

arg min
t,q,s

1

2

m∑
i=0

(X̃′i − f(X̃i))
2 (2.40)

This is achieved using the LM algorithm described in Section 2.4.1. LM

usually needs a good initial solution, otherwise the initialization can cause the

optimization to get stuck in a local minimum. This is the case especially when

the two point clouds are rotated by 180 degree against each other. Since the

optimization is unconstrained, the scale can become negative. In case of a

negative scale, the transformation causes the transformed point cloud to be

mirrored at the origin. Such a situation can be avoided by setting an approximate

initial rotation which is then refined in the optimization.

24

CHAPTER III

Data Structures

The generation of a 3D model requires handling massive amounts of data.

Former approaches stored temporary results in several files [81]. This complicates

the integration of new ideas. An easy and fast access to all data is needed at any

point in the toolchain. As other research areas face the same challenge, extensive

research has been done by database specialists. Sophisticated approaches are

described in the literature to handle massive amounts of data [14]. Especially,

a deliberate design of the data structure is important to handle efficient reading

and writing of the data. Most popular are relational databases such as MySQL,

MSSQL or SQLite. Lately, also NoSQL (not only SQL) databases have gathered

much attention due to their use by prominent companies such as Google and

Facebook. In contrast to relational database models, NoSQL databases have

no fixed scheme and are optimized to run on clusters to handle queries from

thousands of users at the same time. They are not designed to combine entries

from multiple tables in one query by using joins.

In this work a relational data model, which is capable of handling all

information and gives easy access to prior computed results, is used. Thus,

the 3D reconstruction can be modularized without keeping every information

in memory or the need to handle massive reads and writes on the harddrive. The

storage and compression of data is managed by the database server. All prior

computed results are stored in an organized way. A fast access to the data is

possible by inserting database indexes on certain values. The database generates

hashtables for a direct access to the data. This increase in memory accelerates

a database query as a complete search through the database is not necessary.

Managing the data within a database speeds up the development cycles and makes

improvements of any part of the toolchain easier. The database can also be used

as common storage place to handle the data access by different computers at the

same time. Since a further increase in frequency of one processor has physical

limitations, multiprocessors are the way of choice to make processing faster. By

25

using an efficient data structure several cores can work at the same time on one

3D reconstruction. The principle can be further extended to the cloud, enabling

the reconstruction of bigger areas in days or hours for which one computer would

need several years.

Relational Model

The relational model used in this work, describes the complete database for

monocular camera path estimation. The database is designed not only to handle

images from one, but from multiple cameras. The images of a stereo camera

system or any arbitrary camera setup mounted on a rig can be managed. Also

different 3D reconstructions can be handled at the same time in one database.

The main idea is the separation of different reconstructions into projects. Two

projects can be merged if they contain overlapping areas. A project consists of

an ID, a title naming the object of interest, a detailed description of the

project and a date when it was acquired (see Figure 3.1). Each project consists

Project

ID
title
description
date

Figure 3.1: A project contains a unique ID, a title, description and an
acquisition date.

of several images. One image is referenced by a unique ID. The database entry

of an image consists of a timestamp, the filename of the actual image, a project

ID referencing to the project, a calibration ID and an ID to a position in case the

spatial position of the images is already known. Otherwise the position ID will be

-1, indicating that the position is not yet known. Most often a limited number of

cameras is involved in one project e.g. three cameras when using a trifocal camera

setup. Each camera used in a project is designated an ID starting from 0. The set

of images taken by one camera is enumerated starting from a frame ID of 0. The

frame ID and the camera ID are integrated to improve manual investigations by

the user. Only working with an image ID and a calibration ID can be confusing for

the user, especially in combination with several projects and multiple cameras. In

case of synchronous image acquisition, e.g. with a stereo system or a quadrifocal

26

camera setup (see Figure 8.2), each camera gets its own cam ID. Images that

differ in their cam ID but have the same frame ID are taken at the same time.

Finally the status of an image is stored in feature status, containing the current

state of the feature computation (0: not computed, 1: computing, 2: done). If

several computers are working on the same project, each computer will pick

an image where the features have not yet been computed. Before each machine

begins detecting features and computing the feature description the corresponding

feature computation status is set to computing. Once a feature list is computed

and stored in the database, the status is changed to done. The complete data

structure for an image is visualized in Figure 3.2. Each image is additionally

Image

ID
timestamp
filename
ID_project
ID_calibration
ID_position
cam_ID
frame_ID
feature_status

Figure 3.2: The data structure for an image.

linked to a calibration structure (see Figure 3.3) containing the camera name, a

timestamp and a description to store additional information such as aperture

and exposure of the camera. Furthermore, the structure contains the parameters

belonging to the camera model which were presented in Section 2.2. Knowing

from the relational database that several images share the same calibration,

enables a restriction in the optimization (Section 5.4.3.1) as the internal camera

parameters have to be identical for this set of images.

A feature based approach is used throughout this work (Section 2.3). The

underlying data structure is not specified for the exclusive use of SIFT features

but a rather general approach for point based features. One feature belongs to

an image and is a projection of a 3D point. The latter is modeled even if it is

not available yet. All point based feature have an image coordinate (x,y). Color,

scale and orientation can be useful when matching two features. An entry

to store the type of description is available, as different types of features use

different structures to describe a keypoint. They can be used at the same time,

27

but only features of the same type can be matched against each other. Being

able to work with different kinds of features can make the pipeline much more

stable. It is more likely that two different types of features will be invented which

work successfully in different scenes than, a single one that solves all problems

simultaneously. The database structure of a feature is shown in Figure 3.4. If

different features were successfully matched, they are mapped to an identical

3D point. They are referenced in a later step to have the same global id. All

feature matches are stored in one table. For faster data access not only the

feature ID of the correspondences is stored but also the image ID that the feature

belongs to. This information might be redundant, but it improves the data access

performance significantly at the cost of more memory usage. Inspired by [10], not

only the distance of the nearest neighbor (NN) in descriptor space is saved but

also the ratio between the first and the second NN. The second NN has been

introduced as the outlier distance [52]. Furthermore, different matching types

can be stored as some are more reliable than others (see Figure 3.5). All matches

go through different filter steps and the results are stored. By using this strategy

it is possible to get back to less reliable matches before running out of matched

features.

An important information in all SfM approaches is the relative orientation

between two images. This information is computed from a set of matches of two

images (Section 5.1). The stored information contains the relative translation as

well as the relative rotation. The translation vector t = [tx, ty, tz]T is of unit

length. The rotation is represented by a unit quaternion q = [q1, q2, q3, q4]T .

Calibration

ID
camera_name
description
timestamp
fx
fy
s
u0
v0
k1
k3
k5

Figure 3.3: Structure containing the calibration of a camera.

28

Features

ID
ID_image
ID_point3d
x
y
color
scale
orientation
descriptor
type

Figure 3.4: Structure of a point based feature.

Match

ID
ID_image1
ID_image2
ID_feature1
ID_feature2
distance
ratio
type
filtered

Figure 3.5: A match of two features is stored by their unique feature IDs.

When computing the path of images, redundant information exists as the relative

orientation can be computed between all images where at least 5 points are

matched. To have an indication which relative orientation is more stable, the

depth ratio of the tracked points is stored as well. Since the length of the

translation is fixed to 1.0, the mean depth of the triangulated points represents

this ratio. The relative orientation is stored in the database as shown in Figure

3.6. At that stage of the processing chain the scaling between two images is not

integrated yet. It can be included only when dealing with more than two images.

Three images having corresponding features are handled as image triplet. The

triplets are extracted from the match table with one SQL query. An image

triplet is described by the relative orientation between image 1-2 and image 2-3.

Although it is redundant, the relative orientation between image 3-1 is computed

as well. If the distance between camera position 1-2 is set to 1.0, the length

(base scale 1-2-3) between 2-3 will be computed if common feature points

exist. Under the assumption that the relative orientations as well as the scales

29

Relative_Orientation

ID
ID_image1
ID_image2
tx
ty
tz
q1
q2
q3
q4
depth_ratio

Figure 3.6: Structure to save the relative orientation between two images as well
as the depth ratio to the 3D points.

Triplet

ID
ID_image1
ID_image2
ID_image3
ID_relative_orientation_1-2
ID_relative_orientation_2-3
ID_relative_orientation_3-1
base_scale_1-2-3
base_scale_2-3-1
base_scale_3-1-2
bundle_error_1-2-3
bundle_error_2-3-1
bundle_error_3-1-2
nr_matches

Figure 3.7: The relative orientations and the scales describe an image triplet.

are perfectly computed, the base scale 1-2-3 represents the same information

as the base scale 2-3-1. Yet, this is not the case in practice. In the second

case the relative orientations 2-3 and 3-1 are used to compute the scale. If the

computation of one relative orientation fails due to outliers, the system is still

able to compute reliable results. Each triplet is optimized with BA as described

in Section 5.4.3.1. The resulting reprojection error as well as the number of

points are stored enabling a comparison between different triplets regarding their

reliability (see Figure 3.7 for the triplet data structure). The complete relational

data structure is shown in Figure 3.8.

30

P
ro
je
c
t

I
D
t
i
t
l
e

d
e
s
c
r
i
p
t
i
o
n

d
a
t
e

Im
a
g
e

I
D
t
i
m
e
s
t
a
m
p

f
i
l
e
n
a
m
e

I
D
_
p
r
o
j
e
c
t

I
D
_
c
a
l
i
b
r
a
t
i
o
n

I
D
_
p
o
s
i
t
i
o
n

c
a
m
_
I
D

f
r
a
m
e
_
I
D

f
e
a
t
u
r
e
_
s
t
a
t
u
s

F
e
a
tu
re
s

I
D
I
D
_
i
m
a
g
e

I
D
_
p
o
i
n
t
3
d

x y c
o
l
o
r

s
c
a
l
e

o
r
i
e
n
t
a
t
i
o
n

d
e
s
c
r
i
p
t
o
r

t
y
p
e

M
a
tc
h

I
D
I
D
_
i
m
a
g
e
1

I
D
_
i
m
a
g
e
2

I
D
_
f
e
a
t
u
r
e
1

I
D
_
f
e
a
t
u
r
e
2

d
i
s
t
a
n
c
e

r
a
t
i
o

t
y
p
e

f
i
l
t
e
r
e
d

C
a
li
b
ra
ti
o
n

I
D
c
a
m
e
r
a
_
n
a
m
e

d
e
s
c
r
i
p
t
i
o
n

t
i
m
e
s
t
a
m
p

f
x
f
y
s u
0
v
0
k
1
k
3
k
5

R
e
la
ti
v
e
_O

ri
e
n
ta
ti
o
n

I
D
I
D
_
i
m
a
g
e
1

I
D
_
i
m
a
g
e
2

t
x
t
y
t
z
q
1
q
2
q
3
q
4
d
e
p
t
h
_
r
a
t
i
o

P
o
s
it
io
n

I
D
x y z q
1
q
2
q
3
q
4
t
y
p
e

P
o
in
t3
d

I
D
I
D
_
p
o
s
i
t
i
o
n

Tr
ip
le
t

I
D
I
D
_
i
m
a
g
e
1

I
D
_
i
m
a
g
e
2

I
D
_
i
m
a
g
e
3

I
D
_
r
e
l
a
t
i
v
e
_
o
r
i
e
n
t
a
t
i
o
n
_
1
-
2

I
D
_
r
e
l
a
t
i
v
e
_
o
r
i
e
n
t
a
t
i
o
n
_
2
-
3

I
D
_
r
e
l
a
t
i
v
e
_
o
r
i
e
n
t
a
t
i
o
n
_
3
-
1

b
a
s
e
_
s
c
a
l
e
_
1
-
2
-
3

b
a
s
e
_
s
c
a
l
e
_
2
-
3
-
1

b
a
s
e
_
s
c
a
l
e
_
3
-
1
-
2

b
u
n
d
l
e
_
e
r
r
o
r
_
1
-
2
-
3

b
u
n
d
l
e
_
e
r
r
o
r
_
2
-
3
-
1

b
u
n
d
l
e
_
e
r
r
o
r
_
3
-
1
-
2

n
r
_
m
a
t
c
h
e
s

E
d
g
e

I
D
I
D
_
t
r
i
p
l
e
t
_
s
r
c

I
D
_
t
r
i
p
l
e
t
_
s
i
n
k

w
e
i
g
h
t

F
ig

u
re

3.
8:

C
om

p
le

te
re

la
ti

on
al

d
at

a
st

ru
ct

u
re

co
n
ta

in
in

g
al

l
in

fo
rm

at
io

n
n
ec

es
sa

ry
to

co
m

p
u
te

a
p
at

h
w

it
h

a
S
fM

ap
p
ro

ac
h
.

31

CHAPTER IV

Matching and Point Identities

Finding correspondences between images can be separated into two domains:

matching points and tracking points. Matching points is the general case in which

two images show the same content from different perspective but no restrictions

are made on the viewpoint difference.

Feature trackers, for instance the Kanade-Lucas-Tomasi (KLT) tracker, rely

on an image sequence with a high frame rate e.g. a video [53, 89]. Only small

changes between two frames are supposed to exist. Such procedures perform

reliably and can be applied in realtime. The major drawback is the drift of

points within a video sequence. The point in the initial frame might not be

the same as the point in the last frame before the interest point is lost. This

drift effect appears in particular in long image sequences. In SfM approaches

the balance between a wide and narrow baseline has to be considered. A wide

baseline produces in general an accurate 3D point since the intersection angle is

larger than for a narrow baseline. In contrast, a narrow baseline simplifies the

matching of two images. When a high accuracy is desired, images with a high

resolution and a low frame rate are preferred over a video with a high frame rate

but low resolution [26].

This work relies on matching images instead of tracking points over a video

sequence. The acquired image sequence is sparse in comparison to a video, which

makes tracking of feature points infeasible. When considering strong rotations

a point can easily move hundreds of pixels between two frames. Nevertheless,

a global id has to be assigned to a group of 2D points from several images

belonging to an identical 3D point. From a set of pairwise images matches, a

global id is propagated from one image point to another (see Section 4.2). These

correspondences are used within the optimization described in Section 5.4.3.1.

Mismatches can cause inconsistencies, which occur if feature points in one image

share an identical global id. The next section describes the classical matching

procedure as well as a novel method that allows fast matching. Different filtering

33

0 500 1000 1500 2000 2500 3000 3500 4000

0

500

1000

1500

2000

2500

3000

Figure 4.1: Illustration of two images where sparse feature points are matched.

procedures are discussed in Section 4.1.4 to produce a set of outlier free matches.

4.1 Matching

The matching problem can be defined as follows: Given two sets of features

the aim is to find a set of tuples where two features of one tuple belong to the

same 3D point. As the matching is only based on images, mismatches can occur

particularly if repetitive structures are present. Those are often found in man

made environments e.g. on facades. Figure 4.1 gives an illustration where two

images have been matched to each other. The challenge is to find a large set of true

matches while keeping the number of mismatches low, which can mathematically

be described as finding the NN in a high dimensional descriptor space. As each

feature has a description in R128, finding the NN is time consuming. The naive

way of finding the NN is achieved by computing the distance of a descriptor Di
f ,

which is the f descriptor of image i, to all descriptors Dj of image j. A match

will be found if the Euclidean distance of the NN is less than a threshold t and

the ratio between the best match m1 and the second best match m2 is less than

r. Comparing against the second best match has been introduced as comparing

against the outlier distance [10]. Expressed in formulas:

||Di
f −Dj

m1
||2 < t (4.1)

34

||Di
f −Dj

m1
||2

||Di
f −Dj

m2||2
< r (4.2)

with

Dj
m1

= argmin
Dj

g∈Dj

(
||Di

f −Dj
g||2
)

(4.3)

Dj
m2

= argmin
Dj

g∈Dj\Dj
m1

(
||Di

f −Dj
g||2
)
. (4.4)

Finding the NN for each point by a linear search has a complexity of O(n2) if

in both images n points exist. In practice a linear search is too time consuming.

Nevertheless, it is still of interest as it is taken as ground truth to evaluate the

recognition rate of approximate methods. Many approximate NN approaches

have been presented in the past to accelerate the matching [31, 63, 78]. In

the next section, the BBF KD-tree matching approach is presented, which is

the originally proposed matching scheme by Lowe [52]. A novel more efficient

matching procedure, which is named TBH [42], combines the advantages of

KD-trees and hash tables.

4.1.1 KD-Tree

NN search in high dimensions has been an ongoing research field. The

most common approach is the KD-tree [8], which uses space partitioning in a

k-dimensional space to divide the data in equal parts. This binary tree divides

the space at each node into halfs. At first, the tree is constructed from the set of

all features from one image. Once the tree is created, a query can be applied to

find the NN. In case a query point is closer to a hyperplane than to the temporary

NN, a backtracking is performed, to find the NN with a high probability. For

the original KD-tree, a data point is stored in each node of the tree. It has

been shown by [23] that KD-trees provide no speed up for higher dimensions

(e.g. k > 10). By now several modifications have been developed to increase the

speed of KD-trees, which at the end results in an approximate NN approach. [7]

describes a modification, named BBF, which was also applied in [52] for the data

used in this work. BBF increases the probability that the NN is in a certain bin

which is processed before others. This is achieved by storing all backtrackings in

a heap sorted by the distance that a query point has to the bin. An approximate

NN is found by early cutting off the priority queue. Specially adapted to the data,

the next section describes an approach which extends the basic idea of BBF.

35

0 50 100 150 200
Value

0

50

100

150

200

250

300

Fr
eq

ue
nc

y

µh with high σh
µl with low σl

histogram dimension h
histogram dimension l

Figure 4.2: Histogram of two different dimensions with high and low variance.

4.1.2 Tree Based Hashing

TBH combines the advantages of a dynamic tree structure with fast direct

access of hash tables [42]. Furthermore, TBH is an approach especially developed

for the matching scheme described in Equations 4.1 and 4.2. In contrast to the

general NN, the search space is restricted to points within a certain radius t of the

query point. Since a quadratic distance is used, only points within a maximum

distance in one dimension of
√
t are of interest. As

√
t can still be large in

comparison to the value range 0 to 255 of one dimension, it is assumed that

for a true match the difference of two descriptor vectors is spread over several

dimensions and not concentrated in one dimension. A strong change in one

dimension implies a significant gradient difference in one bin which is not likely

for a true match.

Experiments have shown that the error in one dimension is in most cases less

than 0.1
√
t for a valid match. Similar to randomized KD-trees [79], the variance

of each dimension is evaluated. TBH splits the data in two sets at the mean

of the dimension. Using only the dimensions with the highest variance has the

advantage that the amount of points within a radius around the mean value is

smaller than for a low variance (see Figure 4.2). In case a query point is near the

mean value, both left and right child node need to be examined. This procedure is

known as backtracking. The amount of points for which backtracking needs to be

applied should be minimized, as it degrades the performance. Taking an amount

36

of k dimensions in a decreasing order of their variance, a tree with a maximum

of 2k leaf nodes is generated. In contrast to general KD-trees, all data points are

stored in the leaf nodes, so the tree can be converted to a hash table for fast bin

access. KD-trees store the data in each node. TBH uses the tree to divide the

data in bins. In each bin a linear search is performed. This combination of a

search tree and a linear search results in a high precision and great performance.

For all features from the search set, a hash vector is computed. Each entry

of the vector contains {0, 1}. If the index value xi is less or equal than the mean

value of the dimension µi, then the hash value hi is 0, otherwise it is 1.

hi =

{
0 : xi ≤ µi

1 : xi > µi
, i ∈ [1, k] (4.5)

If the value xi is within a backtracking radius Wi of the mean value µi, two hash

vectors will be generated. In a tree structure this is referred to as backtracking.

A hash value is computed for the first n dimensions, which are sorted by their

variance in descending order. For one feature several binary hash vectors will

be generated. Each hash vector can be transformed to a decimal value which

represents the bin which stores the feature. A maximum amount of 2k hash

vectors will be generated if a backtracking in every dimension is necessary. Filling

the hash table is fast, since only k comparisons need to be applied. In contrast to

KD-trees, not every subspace is evaluated to select the best dimension to split the

data, but each dimensions is evaluated separately. This increases the performance

significantly and allows a complete parallel computation of the hash vectors.

The backtracking radius Wi is computed from two parameters. The first

parameter τ represents the percentage of features which are allowed to lie within

the backtracking radius. With this parameter a high amount of backtrackings

can be avoided. Also an upper boundary of a maximum number of backtrackings

can be computed, which is important for realtime usage with a deterministic time

behavior. The second parameter relates to the threshold
√
t and is called Wmax.

Wmax remains for every dimension the same. It is expected that the maximum

error is less than 10% of the overall allowed error.

Wmax = 0.1 ∗
√
t (4.6)

Wi represents the minimum of Wmax and W (τ, i), with W (τ, i) computing a

backtracking radius with a constant amount of points for which backtracking is

37

0 2000 4000 6000 8000 10000
nr. features

0.60

0.65

0.70

0.75

0.80

0.85

0.90

p
e
rc

e
n
ta

g
e

TBH
BBF

(a) Precision

0 2000 4000 6000 8000 10000
nr. features

0

1

2

3

4

5

se
co

n
d
s

TBH
BBF
Linear Search

(b) Performance

Figure 4.3: Precision and performance of TBH in contrast to BBF.

necessary.

Wi = min(W (τ, i),Wmax) (4.7)

Once all features have been inserted into the hash table, the query set is inserted

as well. No backtracking is necessary for the query set, because it has been

already performed in the search set. It can be also applied the other way around

but the described order of the tasks has the advantage that the correspondences

of a query feature need only be searched in one bucket. In each bucket a linear

search is performed to find the best and the second best match.

4.1.3 Evaluation

For evaluation the speed of TBH is compared to BBF and linear search.

Furthermore, the percentage of matches which overlap with the matches produced

by a linear search is evaluated. For both evaluations two images were captured

with a small difference in perspective and the correspondence search is performed.

The feature lists of both images are truncated to plot the performance and

precision over the number of features. Figure 4.3(a) shows the hit rate of TBH and

BBF in comparison to a linear search. While the recognition of TBH improves

with more features, BBF drops below 65 %. Figure 4.3(b) shows performance of

TBH, BBF and linear search. As the matching time of linear search increases

quadratically with the number of feature, it is not suitable for real applications.

The execution time of TBH is twice as fast as BBF with a better precision.

Adjusting the hit rate of BBF by adding more dimensions results in an increased

execution time. The hit rate of TBH is remarkably high with up to 90 %. By

increasing the amount of backtrackings, even a hit rate of 95 % can be achieved

38

e'e

x

X

x'

C C'

l'x

Figure 4.4: Epipolar geometry of two views.

but at the expense of speed.

4.1.4 Filtering

Filtering mismatches is an essential part for robust 3D reconstruction. As

outliers are hard to model, a set of matches containing almost no outliers is

necessary for a robust 3D reconstruction toolchain. In this section, three outlier

filters are presented. The first filter is based on the epipolar geometry of two

images, while the second approach filters using a trifocal tensor. The third filter

uses the reprojection error after a BA step.

4.1.4.1 Epipolar Filter

The epipolar geometry generally describes the setup between two perspective

views and a point in space. Figure 4.4 gives an illustration of two image planes

and a 3D point. The point X is projected into a camera C as point x and in

a second camera C ′ as point x′. Knowing the relations between the two image

planes, a line l
′
x can be computed where the corresponding point x′ must lie on

and vice versa. This relation can be computed by knowing a set of at least 7

correspondences and is described by the fundamental matrix F. The following

constraint has to hold for each valid image correspondence x and x′ also known

as the epipolar equation.

x′TFx = 0 (4.8)

39

The rank of F is 2, which means det(F) = 0. Given F, the line in the second

view can be computed by l
′
x = Fx. As the second point is fixed to a line, this

relation is used to detect outliers.

Before being able to reject outliers, the fundamental matrix is computed

with the well known normalized 8 point algorithm [28]. As the initial set of

correspondences computed in Section 4.1.2 still contains outliers, a RANSAC

approach is used for a robust estimation. Once the fundamental matrix has

been determined, all matches are evaluated using the Sampson distance. The

Sampson distance is the first-order approximation of the geometric error [27]. The

geometric error is important for real world applications, as the algebraic error is

only a mathematical construct. The error can be computed by triangulating x

and x′ and back projecting the resulting 3D point X in the two images. The

difference between the back projected 2D point and the actual measurement is

the geometric error. Since this procedure is time consuming, the Sampson error

is used in practice. In case of the fundamental matrix, the error ε of a point i is

given by

ε =
x′Ti Fxi

(Fxi)21 + (Fxi)22 + (FTx′i)
2
1 + (FTx′i)

2
2

. (4.9)

The subindex j of the bracket (..)2j refers to the jth entry of the containing vector.

In case ε is higher than a predefined threshold, the match is rejected. Otherwise

the matches are stored in the database with the structure presented in Figure 3.5.

4.1.4.2 Trifocal Filter

As outliers can still pass the epipolar filter if the selected point lies on the

epipolar line, an additional filter step can be applied for image triplets. The

trifocal tensor is utilized to estimate the projective relation between three views.

With the underlying data structure, one can efficiently acquire matches which

coincide with three images. When a feature from image one is matched with

image two and three, the corresponding features from image two and three have to

match as well. Having a list of triplet matches, the trifocal tensor T is computed

in a robust manner following the approach presented in [90]. The trifocal tensor is

a 3×3×3 tensor describing the trilinear relations. Knowing three corresponding

points (x,x′,x′′), they must fulfill

[x′]×

(∑
i

xiTi

)
[x′′]× = 03×3 . (4.10)

40

x

X

x'

C C'

C''

x''

Figure 4.5: Camera setup illustrating the trifocal tensor with point
correspondences.

From T, three projection matrices P0,P1,P2 are created. A 3D point X is

computed for each triplet (x,x′,x′′) (see Figure 4.5). The maximum reprojection

error of each triplet decides whether the triplet passes the filter or is rejected in

further computational steps.

4.1.4.3 Filter after Bundle Adjustment

In contrast to the trifocal filter, a metric triplet is computed in the processing

chain. A metric triplet consists of two relative orientations and one scaling

factor. Each triplet is optimized by a BA. The optimization refines the

camera parameters as well as the 3D points. As presented in Section 2.4.3, the

optimization has a robust cost function to reduce the influence of outliers. After

the optimization, each point Xi is projected in each camera j. If the reprojection

error in one camera is higher than a threshold ε, the corresponding matches will

not pass the filter.

max
j
||PjXi − xi,j|| < ε (4.11)

There are many triplets with overlapping matches, since one image pair can

belong to many different triplets. A filter strategy is applied in which each triplet

can verify but not reject a match. Otherwise matches could be rejected by wrong

computed triplets. The filter is only applied to triplets which could be successfully

bundled. A triplet is accepted if the mean reprojection error is low (less than 2

pixel) and the optimized scale and relative orientation is within a certain range

of the initial input. Otherwise, it is assumed that the BA solution is only a local

minimum. If the maximum error of the reprojection of point i is less than ε, the

41

entries in the database which form the matches are marked as passing the filter

(see Figure 3.5). Thus, a match can still be marked as passing the filter when it

is part in other triplets.

4.2 Point Identities

Tracking describes the procedure of following a feature over an image sequence.

It is essential that the feature always belongs to the same point in space and does

not drift away over time. The most popular tracking approach is the KLT-Tracker

[53, 89, 77], which has been shown to work well with video sequences. In this work

local features are more suitable, because consecutive frames can look significantly

different. Nevertheless, pairwise matches between features have to be grouped to

assign a unique id to corresponding features. This is necessary for the final

optimization step described in Section 5.4.3.1. As this optimization can only

handle outliers to a certain degree, a correct id propagation is essential.

A set of feature pairs of several image combinations serve as the input to id

propagation. The set follows the structure presented in Figure 3.5. At first the

global ids of all features belonging to the project are set to 0. For each image,

iterating over all images according to the order of the frame id, a set of features

is selected which has predecessor matches which passed the filter. This procedure

results in features which exhibit matches to images with a lower frame id. To

avoid mislabeling, only the features, where the corresponding match is marked

as filtered, are selected. If different filtering approaches are available, it will be

recommended to start with matches which passed the most reliable filter. In

case no more matches are found, going back to less reliable filter approaches or

even assigning ids to matches which did only pass the epipolar filter is possible.

As most features have more than one predecessor, it can occur, that ids of the

predecessors are different. There are two possibilities to solve this situation. The

first method merges the different ids to a unique id, which can result in gross

errors in case of mismatches. The second more reliable method computes the id

which is most probable. The id is assigned following a decision by majority to

keep the computation time low. In case there is no predecessor with a global id

different to zero, a new id is generated and assigned to all predecessors as well as

to the current feature. If an inconsistency is detected, e.g. two features in one

image share an identical global id, the global id of all corresponding features is

reset to 0. For a more programming oriented description see Algorithm 1.

42

Algorithm 1 Assign global ids to features.

for all im in images do
for all feature in im do

if feature has filtered predecessors then
preFeatures = getPredecessors(feature)
id=getIdWithHighestProb(preFeatures)
if id > 0 then

assign id to feature
else

assign new id to feature and all preFeatures
end if

end if
end for
checkAndCorrectInconsistency(im)

end for

43

CHAPTER V

Multi View Geometry

This part of the thesis describes the computation of the pose (translation

and rotation) of each image which will be computed relative to a reference

coordinate system. In computer vision this task is known as SfM. In robotics

the same problem is addressed under the term SLAM [12]. In SfM approaches

the problem can be divided in computing the relative orientation between two

images and selecting the scale between their camera positions. For two images

the scale is ambiguous. For three images a scale can be computed e.g. in a

triplet between image two and three. This scale is relative to the scale which was

arbitrarily chosen between camera position one and two. The first two camera

poses commonly define the reference coordinate system. The first camera is

placed at the origin. If no prior knowledge is given (through markers or ground

control points (GCP)) the distance between the first and second camera position

will be set to a known metric distance or simply to 1.0. While moving through

the scene, the errors that occur when concatenating the relative orientations and

propagating the scale will accumulate with every new image. An essential task

is the reduction of the accumulated error in an optimization step. If the initial

computation of the path is unspecific due to the accumulation of large errors, it

is likely that the non-linear optimization will only find a local minimum. A good

initial estimate is needed in order to find the satisfying solution. A graph-based

method to estimate a reliable initial path by propagating the scale over image

pairs and triplets, for which parameters are estimated with a high accuracy, is

presented in the following sections. As it is not possible to select a scale separately

for an image pair without prior knowledge, the presented algorithm is based on

image/camera triplets. A score is assigned to each triplet based on an empirically

evaluated cost function.

45

5.1 Relative Orientation

The relative pose of two images can be described by the essential matrix. It

holds the following condition based on the epipolar geometry where q and q′ are

normalized image coordinates of a homogeneous point p from one view and p′

the corresponding point in a second view. The definition of normalized image

coordinates is given by

q = K−1p . (5.1)

The essential matrix is analogous to the fundamental matrix, but for the

calibrated case, which is directly computed from normalized image coordinates.

(q′)TK′
T
FKq = 0 (5.2)

(q′)TEq = 0 (5.3)

Various algorithms have been described previously to compute the essential

matrix from a list of point pairs. In all cases the internal calibration of the

cameras has to be known and a minimum of 5 point pairs is needed to compute

the essential matrix [65]. The essential matrix is a 3× 3 matrix, which holds the

following conditions:

E = R[t]× (5.4)

where [t]× is the skew-symmetric matrix of the translation vector t and R is

the rotation between the first and second camera. The decomposition of E is

calculated using Singular Value Decomposition (SVD)[28]

E = UDVT (5.5)

with U and V being orthogonal matrices and D is a diagonal matrix.

D =

 s 0 0

0 s 0

0 0 0

 (5.6)

Since the skew-symmetric matrix in Equation 5.4 has rank 2, the essential matrix

has as well a rank of 2, so the last diagonal element of D is zero. Additionally, the

two nonzero eigenvalues have to be equal. The rotation R has two algebraically

46

valid solutions which can be composed by

R1 = UWVT (5.7)

and

R2 = UWTVT (5.8)

with

W =

 0 −1 0

1 0 0

0 0 1

 . (5.9)

The translation vector t is the eigenvector belonging to the eigenvalue zero in

D, which is the last/third column of U. The scale of t is ambiguous. Usually the

vector is normalized to a length of 1.0.

t ∼ U[:,2] (5.10)

With t, −t and two rotation matrices, four possible solutions exist, but only

one solution is valid regarding the underlying camera geometry. The cheirality

constraint enforces the triangulated point to be in front of both cameras, so the

right solution can be easily identified [28].

Different algorithms to estimate the essential matrix have been presented in

literature [46, 65, 71, 28]. Many algorithms have problems with critical motions

or degenerate point configurations. A detailed analysis of those algorithms can

be found in [72, 74]. The five-point pose estimator [65] has been proven to

produce reliable results even under certain critical configurations. A minimal

parametrization is always preferable. The section proceeds as follows. A method

to select well distributed points is described before reviewing the five-point

algorithm. The outcome of this algorithm serves as input for the newly developed

CCHC approach which replaces RANSAC in the toolchain presented in this thesis.

5.1.1 Selecting Distributed Points

To compute a reliable relative orientation it is essential to select well

distributed points, otherwise the result can be wrong or unstable. Since five

points are needed to compute the essential matrix, a well distributed set of five

point pairs should to be selected to compute a precise relative orientation. The

first point is selected randomly with a uniform distribution. After the first point

47

0 100 200 300 400 500 600
0

100

200

300

400

Figure 5.1: Selectable points in blue with the radius representing the weight,
already chosen points in red.

was added to the set of chosen points, all other points are weighted according to

their squared summed distance to already chosen points. In each iteration a new

point is selected randomly from a distribution which is generated considering all

weights. Assuming a number of n points and m selected points, the weight for

each point is computed by

wi =
m∑
j=1

||pi − qj||2 (5.11)

for m > 0 where qj is an already selected point and pi is a candidate. To select

a new point according to the weights, an accumulated weight is computed:

ci =
i∑

j=1

wj
n∑
k=1

wk

(5.12)

A random number r ∈ [0, 1) is taken to select the index of a new point.

index = min i |ci − r > 0 (5.13)

This point is removed from the list of candidates and inserted in the list of selected

points. This procedure is repeated until the amount of five selected points has

been reached. An intermediate result, in which three points were chosen (red)

and two points need to be selected, is shown in Figure 5.1. Additionally, the

48

weights of the candidates (blue) represented by their radius are displayed.

5.1.2 Five-Point Algorithm

This section follows the approach presented in [65, 83]. As already shown by

Kruppa in 1913 [40], the relative orientation between two calibrated images can

be computed by a minimum of 5 point pairs [86]. To solve the relative orientation,

the roots of a tenth degree polynomial need to be computed [65]. This special

case can be solved in closed form with the help of Gröbner basis [83]. Since the

essential matrix has rank two the following equation holds:

det(E) = 0 . (5.14)

Starting from Equation 5.6 the following cubic constraint is formulated since the

two non-zero eigenvalues are equal:

EETE− 1

2
trace(EET)E = 0 . (5.15)

At first Equation 5.3 can be rewritten as a scalar product.

q̃T Ẽ = 0 (5.16)

with

q̃ = [q1q
′
1,q2q

′
1,q3q

′
1,q1q

′
2,q2q

′
2,q3q

′
2,q1q

′
3,q2q

′
3,q3q

′
3]
T (5.17)

A vector q̃ exists for each point pair, resulting in a total number of five vectors.

The scalar product of each vector is combined in a design matrix A with a size

of 5× 9.

AẼ = 0 (5.18)

Since A has not full rank, applying a SVD to ATA results in four eigenvalues

equal to zero. Defining the vectors forming the null space as X̃, Ỹ, Z̃,W̃, the

essential matrix is given by

E = xX + yY + zZ + wW (5.19)

with x, y, z, w being unknown scalars. As the essential matrix can be multiplied

by an arbitrary scalar and still represents the same camera configuration, one

49

parameter can be chosen arbitrarily e.g. w = 1. From Equations 5.14 and 5.15

it is possible to formulate ten third-order polynomial equations with unknowns

x, y, z. The equation system can be either solved by Gauss-Jordan elimination

[65] or with the help of Gröbner basis [16, 83]. A maximum of ten real solutions

can exist. The geometrically correct solution can be selected by taking at least

one additional point into account. Both [65, 83] suggest to use RANSAC in an

additional step to select the solution which is supported by most of the other

point pairs. Especially in the case of critical configurations, RANSAC often

selects a degenerate configuration [21]. The next section presents a Hierarchical

Clustering (HC) approach as a better alternative to RANSAC for computing the

relative orientation.

5.1.3 Hierarchical Clustering

In man made environments, the majority of points may lie on a plane, which

is a critical configuration for many algorithms such as the 8-point algorithm

[72]. In contrast, the 5-point algorithm is stable to planar configurations [65].

In general, a configuration of two cameras and 3D points is critical if all points

and the camera centers lie on a ruled quadric [34]. In practice, quasi-degenerate

configurations appear. In this case most of the points lie on a critical surface and

only a small subset of points is not in a critical position. It is most important to

include these points in the computation of a correct relative orientation. Often

these points are mistakenly identified as outliers. A standard RANSAC approach

seems to prefer such degenerate configurations [21]. RANSAC assumes that a

potential true solution was found because of a high number of inliers which all

belong to a degenerate surface. But even if a correct solution was in the set of

drawn samples, RANSAC often selects a degenerate solution. The degenerate

solution better fits the data, resulting in a higher number of inliers. For the true

solution many inliers could possibly be marked as outliers due to noise. Defining

an outlier threshold can be complicated as the statistics of the data is not known.

Degenerate configurations appear quite often in real world data. Images of houses,

where most of the interest points lie on a flat surface, are a prominent example.

A modified HC approach is presented here which is able to handle

quasi-degenerate configurations robustly and efficiently. In comparison to

RANSAC, which finds the consensus in the input space, the here presented HC

approach additionally establishes the consensus in solution space. A distance

measurement in the underlying space has to be defined to be able to apply HC.

50

3 7 18 6 17 13 15 16 2 9 5 14 0 8 19 12 11 1 4 10
Samples

0.0

0.1

0.2

0.3

0.4

0.5

D
is

ta
n
ce

Hierarchical Clustering

Figure 5.2: General hierarchical clustering scheme.

In case of the relative orientation, the motion belongs to a Lie Group. With the

corresponding Lie Algebra, the distance measurement is taken from the associated

vector space. Similarly, Subbarao et al. [87] applied a mean shift approach to

reliably find the relative pose of two cameras. In their case, they assume that

the relative pose between consecutive frames only changes by a small amount. A

prior solution is taken as a starting point for mean shift clustering.

The presented approach handles the general case, where only two images

with putative point correspondences are given. HC belongs to the group of

agglomerative clustering methods which build the clusters bottom up. At the

beginning each data point (here the relative orientation) forms a single cluster.

In each iteration the two closest clusters are merged until only one cluster is left

or the cost of merging two clusters is too high. Figure 5.2 shows a general HC

scheme.

Within HC, a linkage criterion between two clusters is needed. The criterion

is based on a certain distance between the entries of two clusters. Considering

rotations and translations, several distance measurements are possible. A rotation

in 3D space belongs to the special orthogonal group SO(3) which is a subgroup

of a general linear group GL(3) with the following properties:

SO(3) = {R ∈ GL(3) | RRT = I , det(R) = 1} (5.20)

51

An invertible transformation of homogeneous coordinates in 3D belongs to the

group GL(4). Since a relative orientation is a special form of the GL(4) it is

represented by the subgroup SE(3).

SE(3) =

{(
R t

0 1

)
∈ GL(4) | R ∈ SO(3) , t ∈ R3

}
(5.21)

The Lie group SE(3) has a corresponding algebra se(3) which is the tangent

space. As the special Euclidean group SE(3) is not a vector space and has no

distance measurement, the correspondence between the Lie group SE(3) and the

Lie algebra se(3) is established by an exponential mapping

exp : se(3)→ SE(3) (5.22)

and vice-versa

log : SE(3)→ se(3) . (5.23)

In the tangent space the distance measurement is defined. A more detailed

description how to present an Euclidean motion as a lie algebra can be found

in [3].

In the presented approach the distance measurement is simplified to the relative

translation. In many cases the relative rotation is well established but when only

a small parallax exists, the relative translation can be wrong. This results in a

much faster solution with only a small loss of accuracy.

5.1.3.1 Cross Compare Hierarchical Clustering

Given a set of n relative orientations and their corresponding five point

pairs from which each relative orientation was computed, a new HC approach is

proposed. This modified HC is named CCHC. First, a distance matrix containing

the distances between each relative orientation is computed. In the conventional

HC approach, the two clusters which have the closest distance are selected and

merged to a bigger cluster. The distance matrix is updated according to the new

cluster. Recomputing the distance of the new cluster to all other clusters can be

time consuming.

This work proposes a winner-takes-it-all merging procedure. In each merging

step one cluster (sample) survives. No new distances need to be computed. The

cluster which survives is defined by a strategy termed cross compare. A cross

52

similarity between two relative orientations is computed to define which relative

orientation is superior. The cross compare is twofold. In a first step the number

of inliers are counted in a cross compare manner.

The inlier count of an essential matrix EA, computed from points pi,p
′
i, is

evaluated with the points from which EB (qi,q
′
i) is computed and vice versa. In

a second step, the Sampson error is computed also in the cross compare manner,

if both relative orientation have the same amount of inliers.

εA =
∑
∀i

q′Ti EAqi
(EAqi)21 + (EAqi)22 + (ET

Aq′i)
2
1 + (ET

Aq′i)
2
2

(5.24)

εB =
∑
∀i

p′Ti EBpi
(EBpi)21 + (EBpi)22 + (ET

Bp′i)
2
1 + (ET

Bp′i)
2
2

(5.25)

Assuming EA is the correct solution and the points q belong to a degenerate

configuration, the points q nevertheless support the correct solution, whereas not

all points p will support the degenerate solution. In this case A has more inliers

than B, the relative orientation A is superior to B and wins the merge. If there

are outliers within the point samples q, only a partial amount of the samples

will support EA but hardly any points p will support EB, as it represents a false

estimate produced by outliers. Again A has more inliers than B and the relative

orientation A wins the merge. In case the number of inliers are the same, εA and

εB decide which relative orientation is superior. When only one cluster is left, the

relative orientation which survived most merges is selected as solution. In most

cases, this cluster is identical with the final cluster. A programming oriented

description is given in Algorithm 2.

5.1.3.2 Good Sample Probability

The main parameter within CCHC is the number of relative orientations that

are computed. In RANSAC, the probability to draw no outliers is

pno = (1− εo)s (5.26)

with s being the number of points which are necessary to compute the model and

εo is the percentage of outliers. The probability that a set of n models contains

at least one model which is computed from a good point set is

p = 1− (1− pno)n . (5.27)

53

Algorithm 2 Choosing a relative orientation from multiple samples

reloriVector=computeMultipleRelativeOrientations()
nrValid=reloriVector.size() //number of remaining clusters
C = computeCostMatrix(reloriVector)
while nrValid>1 do

i,j=getMinInd(C)
in1,in2=crossInlier(reloriVector[i],reloriVector[j])
if in1 == in2 then
ε1,ε2=crossSimilarity(reloriVector[i],reloriVector[j])

else
ε1=in2

ε2=in1

end if
if ε1 < ε2 then

C[j,:]=∞
C[:,j]=∞
incSurvivedMerges(reloriVector[i])

else
C[i,:]=∞
C[:,i]=∞
incSurvivedMerges(reloriVector[j])

end if
nrValid=nrValid-1

end while
winInd=getIndexMaxSurvived(reloriVector)
return reloriVector[winInd]

54

For CCHC, Equation 5.27 needs to be changed to the probability mass function

of the binomial distribution to ensure a cluster size of at least c.

p = 1−
c−1∑
k=0

(
n

k

)
pkno(1− pno)n−k (5.28)

Generalizing Equation 5.28, with a probability to draw a good sample pgs, leads

to

p = 1−
c−1∑
k=0

(
n

k

)
pkgs(1− pgs)n−k . (5.29)

Under the circumstances of outliers and points on a degenerate surface, the

probability to draw a good sample is the product of pno and pnd.

pgs = pnopnd (5.30)

If at least m points need to be drawn from the non-degenerate set of points to

computed a valid model, the probability pnd is computed as

pnd =
s−m∑
i=0

(
s

i

)
εid(1− εd)s−i (5.31)

with εd being the percentage of degenerate points.

5.1.3.3 Evaluation CCHC vs. RANSAC

This section compares CCHC with RANSAC for the 5- and 8-point algorithm.

A simulation, in which most 3D points lie on a plane and only a small percentage

is spread arbitrarily in space, is used to compare these two approaches. Since

a plane is not a degenerate configuration for the 5-point algorithm [83], the

8-point algorithm is used for the evaluation also. Two virtual cameras are placed

randomly in a box of size 1 × 1 × 1 and with an offset of -2 in z-direction,

looking towards the center (see red box in Figure 5.3). For each pair of virtual

cameras, the projection of the 3D points is used to calculate a set of 1000

relative orientations with the 5-point algorithm presented in Section 5.1.2 with

well distributed points as presented in Section 5.1.1. As this planar configuration

is not critical for the 5-point algorithm, the simulation is repeated with relative

orientations computed from the 8-point algorithm. The probability to compute

at least 20 good samples is higher than 99 % for each evaluated configuration.

55

0.4 0.2 0.0 0.2 0.4
0.4
0.2
0.0
0.2
0.4

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Figure 5.3: Top view of the simulation setup with degenerate points in red.

The probabilities are computed as discussed in Section 5.1.3.2. From this set of

relative orientations the one which is closest to the true camera configuration is

to be chosen. The accuracy of CCHC and RANSAC is computed for different

amounts of Gaussian noise which is added to the projection of the 3D points. The

accuracy is also evaluated with different percentages of outliers. For evaluating

the outlier behavior the amount of Gaussian noise is fixed to σ = 2.0. The

number of points (blue) which does not lie on the degenerate surface is varied

from 10 - 80 points, while 100 points lie on a plane. For each combination (noise /

outlier and number of points) the simulation is repeated 1000 times. The outlier

threshold within RANSAC and CCHC is set to 3∗2 pixel. The error is measured

as the minimum angle between the true translation vector and the estimated one.

The mean absolute error (MAE) as well as the root mean square error (RMSE)

between the estimated and the true solution are shown in Figures 5.5 and 5.6

with no outliers. The performance of both approaches decreases with increasing

amount of noise.

For the 5-point algorithm, the slope of RANSAC is much larger than the

slope of CCHC. The performance of RANSAC is similar for different number

of points in front of the plane. CCHC is more precise for the quasi-planar case.

The influence of noise decreases for CCHC for more than 60 point in front of the

plane (see Figure 5.5).

56

1.0 0.5 0.0 0.5 1.0
X-axis

1.0

0.5

0.0

0.5

1.0

Z
-a

x
is

RANSAC
CCHC
GT

Figure 5.4: Distribution of the relative translation.

For the 8-point algorithm, the behavior is different. CCHC performs much

better than RANSAC if only 10 points are in front of the plane. CCHC

shows to be more stable to quasi-degenerate configurations. The performance of

RANSAC and CCHC increases as more points are in front of the plane. For the

non-degenerate configuration both approaches perform similar (see Figure 5.6).

Figures 5.7 and 5.8 show the performance under the influence of outlier. The

results produced by CCHC are at least as good as the results from RANSAC.

Most of the time the results are better. The density of the cluster center has a

big influence about the results of CCHC. For this reason the improvement with

CCHC is much larger for the 5-point algorithm than for the 8-point algorithm.

Please note that the range of the y-axis differs for the 5-point algorithm and the

8-point algorithm

In addition to simulated data, CCHC and RANSAC are evaluated on real

world data. The stereo setup from the car dataset (see Section 7.4) is chosen to

evaluate the relative orientation. In this setup, the orientation of the camera pair

remains constant whereas the scene changes while driving around. Due to the

spherical lense of the GoPro HD HERO 2 camera the appearance of the object in

both images changes a lot, especially at the margin of the images. In total 5000

images from a video sequence were extracted, each stereo pair is matched, and the

relative orientation is computed. For 4954 out of 5000 images the computation of

57

CCHC RANSAC

0.37 0.77

Table 5.1: RMSE of the relative translation difference to ground truth.

the relative orientation was successful. The computation failed for the remaining

pairs due to an insufficient number of correct matches. Once again, for each pair

1000 relative orientations were computed, which served as input for CCHC and

RANSAC. The results were compared to ground truth, which has been computed

from manually selected image pairs which were free of outliers and optimized by

BA. Figure 5.4 shows the distribution of the relative orientation projected onto

the X-Z plane. The samples produced by RANSAC show a wide spread over the

complete area, whereas most samples of CCHC are concentrated near the ground

truth. The visual impression is also confirmed by the calculation of the RMSE

(see Table 5.1). The results of CCHC outranks those of RANSAC by a factor

of 2.

58

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

noise [px]
0

2

4

6

8

10

12

14
an

gl
e

er
ro

r[
◦]

CCHC MAE
CCHC RMSE
RANSAC MAE
RANSAC RMSE

(a) 10 points in front of plane.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

noise [px]
0

2

4

6

8

10

12

14

an
gl

e
er

ro
r[
◦]

CCHC MAE
CCHC RMSE
RANSAC MAE
RANSAC RMSE

(b) 20 points in front of plane.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

noise [px]
0

2

4

6

8

10

12

14

an
gl

e
er

ro
r[
◦]

CCHC MAE
CCHC RMSE
RANSAC MAE
RANSAC RMSE

(c) 30 points in front of plane.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

noise [px]
0

2

4

6

8

10

12

14

an
gl

e
er

ro
r[
◦]

CCHC MAE
CCHC RMSE
RANSAC MAE
RANSAC RMSE

(d) 40 points in front of plane.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

noise [px]
0

2

4

6

8

10

12

14

an
gl

e
er

ro
r[
◦]

CCHC MAE
CCHC RMSE
RANSAC MAE
RANSAC RMSE

(e) 50 points in front of plane.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

noise [px]
0

2

4

6

8

10

12

14

an
gl

e
er

ro
r[
◦]

CCHC MAE
CCHC RMSE
RANSAC MAE
RANSAC RMSE

(f) 60 points in front of plane.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

noise [px]
0

2

4

6

8

10

12

14

an
gl

e
er

ro
r[
◦]

CCHC MAE
CCHC RMSE
RANSAC MAE
RANSAC RMSE

(g) 70 points in front of plane.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

noise [px]
0

2

4

6

8

10

12

14

an
gl

e
er

ro
r[
◦]

CCHC MAE
CCHC RMSE
RANSAC MAE
RANSAC RMSE

(h) 80 points in front of plane.

Figure 5.5: Comparison between CCHC and RANSAC (5-point algorithm).

59

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

noise [px]
0

10

20

30

40

50

60

an
gl

e
er

ro
r[
◦]

CCHC MAE
CCHC RMSE
RANSAC MAE
RANSAC RMSE

(a) 10 points in front of plane.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

noise [px]
0

10

20

30

40

50

60

an
gl

e
er

ro
r[
◦]

CCHC MAE
CCHC RMSE
RANSAC MAE
RANSAC RMSE

(b) 20 points in front of plane.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

noise [px]
0

10

20

30

40

50

60

an
gl

e
er

ro
r[
◦]

CCHC MAE
CCHC RMSE
RANSAC MAE
RANSAC RMSE

(c) 30 points in front of plane.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

noise [px]
0

10

20

30

40

50

60

an
gl

e
er

ro
r[
◦]

CCHC MAE
CCHC RMSE
RANSAC MAE
RANSAC RMSE

(d) 40 points in front of plane.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

noise [px]
0

10

20

30

40

50

60

an
gl

e
er

ro
r[
◦]

CCHC MAE
CCHC RMSE
RANSAC MAE
RANSAC RMSE

(e) 50 points in front of plane.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

noise [px]
0

10

20

30

40

50

60

an
gl

e
er

ro
r[
◦]

CCHC MAE
CCHC RMSE
RANSAC MAE
RANSAC RMSE

(f) 60 points in front of plane.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

noise [px]
0

10

20

30

40

50

60

an
gl

e
er

ro
r[
◦]

CCHC MAE
CCHC RMSE
RANSAC MAE
RANSAC RMSE

(g) 70 points in front of plane.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

noise [px]
0

10

20

30

40

50

60

an
gl

e
er

ro
r[
◦]

CCHC MAE
CCHC RMSE
RANSAC MAE
RANSAC RMSE

(h) 80 points in front of plane.

Figure 5.6: Comparison between CCHC and RANSAC (8-point algorithm).

60

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

outlier [%]
0

2

4

6

8

10

12

14

an
gl

e
er

ro
r[
◦]

CCHC MAE
CCHC RMSE
RANSAC MAE
RANSAC RMSE

(a) 10 points in front of plane.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

outlier [%]
0

2

4

6

8

10

12

14

an
gl

e
er

ro
r[
◦]

CCHC MAE
CCHC RMSE
RANSAC MAE
RANSAC RMSE

(b) 20 points in front of plane.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

outlier [%]
0

2

4

6

8

10

12

14

an
gl

e
er

ro
r[
◦]

CCHC MAE
CCHC RMSE
RANSAC MAE
RANSAC RMSE

(c) 30 points in front of plane.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

outlier [%]
0

2

4

6

8

10

12

14

an
gl

e
er

ro
r[
◦]

CCHC MAE
CCHC RMSE
RANSAC MAE
RANSAC RMSE

(d) 40 points in front of plane.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

outlier [%]
0

2

4

6

8

10

12

14

an
gl

e
er

ro
r[
◦]

CCHC MAE
CCHC RMSE
RANSAC MAE
RANSAC RMSE

(e) 50 points in front of plane.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

outlier [%]
0

2

4

6

8

10

12

14

an
gl

e
er

ro
r[
◦]

CCHC MAE
CCHC RMSE
RANSAC MAE
RANSAC RMSE

(f) 60 points in front of plane.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

outlier [%]
0

2

4

6

8

10

12

14

an
gl

e
er

ro
r[
◦]

CCHC MAE
CCHC RMSE
RANSAC MAE
RANSAC RMSE

(g) 70 points in front of plane.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

outlier [%]
0

2

4

6

8

10

12

14

an
gl

e
er

ro
r[
◦]

CCHC MAE
CCHC RMSE
RANSAC MAE
RANSAC RMSE

(h) 80 points in front of plane.

Figure 5.7: Comparison between CCHC and RANSAC (5-point algorithm) with
outlier and noise=2.0.

61

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

outlier [%]
0

10

20

30

40

50

60

an
gl

e
er

ro
r[
◦]

CCHC MAE
CCHC RMSE
RANSAC MAE
RANSAC RMSE

(a) 10 points in front of plane.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

outlier [%]
0

10

20

30

40

50

60

an
gl

e
er

ro
r[
◦]

CCHC MAE
CCHC RMSE
RANSAC MAE
RANSAC RMSE

(b) 20 points in front of plane.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

outlier [%]
0

10

20

30

40

50

60

an
gl

e
er

ro
r[
◦]

CCHC MAE
CCHC RMSE
RANSAC MAE
RANSAC RMSE

(c) 30 points in front of plane.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

outlier [%]
0

10

20

30

40

50

60

an
gl

e
er

ro
r[
◦]

CCHC MAE
CCHC RMSE
RANSAC MAE
RANSAC RMSE

(d) 40 points in front of plane.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

outlier [%]
0

10

20

30

40

50

60

an
gl

e
er

ro
r[
◦]

CCHC MAE
CCHC RMSE
RANSAC MAE
RANSAC RMSE

(e) 50 points in front of plane.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

outlier [%]
0

10

20

30

40

50

60

an
gl

e
er

ro
r[
◦]

CCHC MAE
CCHC RMSE
RANSAC MAE
RANSAC RMSE

(f) 60 points in front of plane.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

outlier [%]
0

10

20

30

40

50

60

an
gl

e
er

ro
r[
◦]

CCHC MAE
CCHC RMSE
RANSAC MAE
RANSAC RMSE

(g) 70 points in front of plane.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

outlier [%]
0

10

20

30

40

50

60

an
gl

e
er

ro
r[
◦]

CCHC MAE
CCHC RMSE
RANSAC MAE
RANSAC RMSE

(h) 80 points in front of plane.

Figure 5.8: Comparison between CCHC and RANSAC (8-point algorithm) with
outlier and noise=2.0.

62

A B
C

s
1

Figure 5.9: Camera triplet.

5.2 Camera Triplet

Once the relative orientation has been computed for all matched image pairs,

camera triplets which have common matches can be defined. These triplets can

be efficiently found by accessing the underlying data structure. For two cameras

the scale is arbitrary and can only be defined by prior knowledge. The presented

approach is based on camera triplets where a relative scale between camera B and

C exists. It is called relative scale, as it is relative to the first camera pair (A-B)

(see Figure 5.9). The complete path estimation task is reduced to the problem

of iteratively concatenating triplets to generate a metric map. It is essential

for concatenating triplets, that two triplets share two cameras, because a metric

transformation between the overlapping cameras exists.

Each triplet is associated with a certain error. By concatenating triplets,

the error increases with every triplet. It is necessary to select triplets which

are considered to be most precise. The quality of a triplet depends on several

parameters: Number of matches, BA error, relative scale, relative depth and

distribution of matches. It can be traced back to the quality of two relative

orientations and the accuracy of the relative scale. As in practice the covariance

of a relative orientation is time consuming to compute, two triplets are compared

using the presented parameters. A high number of matches stabilizes the

configuration. The reprojection error after BA is also a valuable indicator. In the

photogrammetric sense, the camera configuration is more accurate if the baseline

to depth ratio his high, here denoted as the inverse, the relative depth. If both

pairs (A-B,B-C) have similar relative depth, the relative scale will be close to

1.0. Additionally, the distribution of points within each image of the triplet is

considered. All these attributes are concatenated in an edge cost function (Section

5.3.2).

63

A B
C

Figure 5.10: Camera triplet with scale.

5.2.1 Scale Selection

For scale selection, two relative orientations (tAB,qAB) and (tBC ,qBC) are

given, parametrized by the translation vector tAB from camera A to camera B

and a quaternion qAB describing the rotation between A and B. The same applies

for the tuple BC. Placing camera B in the origin as a canonical camera with the

projection matrix PB, the projection matrix of camera A is defined as

PA = KART
AB[I|tAB] (5.32)

and

PC = KCRBC [I| − stBC] (5.33)

for camera C, with RAB and RBC being the rotation corresponding to the

quaternion qAB and qBC , respectively. s remains the only unknown parameter.

Everything else is computed as described in Section 5.1. With s = 1.0 the camera

centers of B and C have a distance of ||CB − CC || = 1.0. The same holds for

camera A and B. From the projection matrix PA and PB as well as PB and PC ,

two point clouds are computed with the elements denoted as Xi
AB and Xi

BC (see

Figure 5.10). To compute the scale between the three cameras, the interception

theorem can be applied.

si
||CB −CC ||

=
||CB −Xi

AB||
||CB −Xi

BC ||
(5.34)

64

As the distance between camera B and C is set to 1.0, Equation 5.34 simplifies

to Equation 5.35.

si =
||CB −Xi

AB||
||CB −Xi

BC ||
(5.35)

Each 3D point votes for one scale. For robustness the scale is selected as the

quantile mean over the complete set of all computed scales.

5.2.2 Tile Variance within a Triplet

Well distributed points are essential to calculate the geometric information of

a triplet. The distribution of the points can be expressed as the variance of a 2D

histogram. For each image the variance of the points is computed separately. By

discretizing the image in a grid of n×n, the number of matched features per bin

is computed. The 2D histogram M is normalized. All entries add up to 1.0.

σ2 =
1

n2

n∑
i=1

n∑
j=1

(Mi,j −
1

n2
)2 (5.36)

The final variance of a triplet is represented by the mean of three variances.

5.3 Graph Generation

The triplets, which are computed according to Section 5.2, are used to form

a graph. The graph structure contains two different node types. The first type

represents a triplet (yellow) with its image ids, whereas the second node type (red)

represents a single image (see Figure 5.11). The graph is a directed weighted

graph in which two nodes of type 1 will share an edge if two images of the

triplet are identical. A connection between node type 1 and node type 2 will

be established if they share the same image. The weight of each incoming edge

depends on the quality of the triplet. The cost of an edge between node type 1

and 2 is 0.0. Before discussing the generation of the path, other SfM approaches

which rely on a graph structure are reviewed briefly.

5.3.1 Related Approaches

Most approaches which work with a graph structure aim at handling

thousands of images of online foto collections such as Flickr. They focus on

the problem of finding a set of images which covers the general structure of the

65

0 1 2

0

1

2

0 1 3

0 2 3

1 2 3

3

Figure 5.11: Graph representation, with yellow nodes containing triplets and red
nodes representing a single camera position [94].

scene. All other images can then be included in the scene by spatial resectioning.

Snavely et al. [82] generate a skeletal graph of images. Two images share an edge

if the relative orientation has been successfully computed. To find the skeletal

graph, they first create a maximum leaf spanning tree. This tree is transformed

into a t-spanner by adding additional edges. Each edge in the graph is associated

with a covariance computed in a BA step. Associating the covariance with

the Hessian matrix from a non-linear optimization may not work for strongly

non-linear systems. As the Hessian is the linear approximation of the current

estimate, it even may not belong to the linearization of the optimal solution. In

case the BA gets stuck in a local minimum, the computed covariance can mislead

the algorithm. For this reason, the presented approach uses a cost function which

combines measured parameters rather than using an approximated covariance

whose computation is time consuming. Li et al. [43] use an even simpler method

and weight the edges in the graph with the number of inliers supporting the

estimated relative orientation model. Similarly, Bartelson et al. [5] construct a

two view matching graph from wide baseline image sets where the number of

correspondences is used as similarity value between two images. This matching

graph is transformed to a maximum spanning tree. A set of triplets which

meet certain criteria are derived from the graph and are used to calculate the

orientation of the images. This work defines the goodness of a triplet as described

in the next section.

66

5.3.2 Edge Weight

A graph, as described in the previous section, may contain thousands of nodes,

but only a small number is considered for computing the positions of the cameras.

The quality of the camera positions depends on the selected triplets. The triplets

are selected according to the edge weight within the graph. A minimal cost is

desirable. The definition of the edge weight has a strong influence on the camera

path. Several different parameters can be taken into account to define the quality

of a triplet:

• n: Number of points supporting the triplet

• ε: Reprojection error in pixel from the BA step

• s: Relative scale within the triplet (A,B,C)

• d1: Relative mean depth between A and B

• d2: Relative mean depth between B and C

• κ: Tile variance of a triplet

From these parameters an edge weight is empirically derived to select the most

precise triplets. This cost function consists of five parts in which each part is

related to the quality of the triplet. A small reprojection error ε within BA is

desirable. To achieve a similar parallax between camera pair A,B and B,C, the

distance between camera A and B should be close to the distance between camera

B and C. This configuration is assumed to be more stable than one, where camera

B and C almost overlap. A similar parallax is incorporated in the cost function as

(1−s)2, which holds for motions parallel to the object of interest. This formulation

can also result in a small cost if the parallax is almost zero, as it will be the case

if the camera moves in the viewing direction by a distance of 1.0. Since this is an

unstable configuration, a second cost is included. The relative depths between

camera pair A,B and B,C are compared to each other. Configurations, in which

the relative depths of both pairs are similar, are preferred. It is formulated as

δ =

{
(1− d1

d2
)2 : d1 ≤ d2

(1− d2
d1

)2 : d2 < d1

}
. (5.37)

Additionally, the tile variance as described in Section 5.2.2 is included in the

complete cost function. Two different edge cost functions have shown to produce

67

Edge cost function Mean camera difference to ground truth

1/n 5.59
δ 5.93
ε 7.88

||1− s|| 8.25
κ 10.61

(1− s)2 12.03
δ/n 9.27
εδ/n 8.99

||1− s||εδ/n 9.78
κεδ/n 2.96

κ||1− s||εδ/n 8.56
κ(1− s)2εδ/n 4.45

Table 5.2: Evaluation of different edge cost functions.

reliable initial estimates, first
κ(1− s)2εδ

n
(5.38)

and second
κεδ

n
. (5.39)

Each edge is weighted by this formula. The incoming edge is the edge

corresponding to the triplet, as transitioning to a new camera will always produce

a cost. This cost function is evaluated empirically on the benchmark dataset

Castle-P30 (Section 7.2). Several different cost functions have been evaluated and

the initial path was compared to ground truth. Table 5.2 shows how good the

initial path is estimated in comparison to ground truth. Many more combinations

have been evaluated but only a comprehensive collection is presented here.

Considering each parameter separately, Table 5.2 shows that the most important

parameter is the number of matches as used in [43]. Simply combining separate

parameters does not necessarily lead to a good initialisation. As the numbers

are only produced on one dataset with given ground truth, the behavior may be

different for other datasets. Nevertheless, reliable results have been computed

with both presented cost functions.

5.4 Path Estimation

Based on the graph structure described in Section 5.3, various camera paths

can be created by selecting different triplets. To compute a promising path, a

68

stable initial node is important. The betweenness centrality is computed for each

node, to select a node which is most central.

5.4.1 Betweenness Centrality

The betweenness centrality is based on the measurements of all shortest paths

that exist in a graph. The general idea is that a node will have a higher centrality

if it is part of many shortest paths. Assuming a set of nodes V with u ∈ V and

t ∈ V , the betweenness centrality of a node v ∈ V is defined as

CB(v) =
2

(n− 1)(n− 2)

∑
v 6=u6=t

σut(v)

σut
|σut > 0 (5.40)

with σut being the number of all shortest paths from u to t and σut(v) being the

number of all shortest path from u to t passing through v. It is assumed that at

least one shortest path between u and t exists [70, 22].

Since the scope of this work lies on connecting cameras and not triplets, a

betweenness centrality is computed only from paths that connect nodes of type 2.

As the graph in Figure 5.11 is a directed graph with the camera nodes being

sinks, the sink camera nodes are duplicated (red nodes) and inserted as source

nodes (blue nodes) as shown in Figure 5.12. Now the shortest paths from each

source node to all sink nodes are computed. The triplet node with the highest

betweenness centrality is selected as starting node.

This algorithm has a complexity of O(n2) in the number of cameras when the

number of triplets is not considered. The number of triplets influences the

complexity of finding the shortest path. The computation of the shortest paths

can be time consuming for many cameras. An approximate solution can be found

by generating groups of cameras. Since the images are supposed to be taken as

a sequence, they follow a spatial order. A set of consecutive images, which will

be close in space, can be grouped together. In the graph representation extra

group nodes are included, which are either connected to source or to sink camera

nodes (see Figure 5.13). The approximate solution is established by computing

the betweenness centrality between the groups instead of single cameras.

5.4.2 Camera Pose

Once the initial node is selected, the pose of each image is computed by

propagating the pose over a list of image triplets. The triplets are selected by

69

0 1 2

0 1 3

1 2 3

0 2 3

0

1
2

3

0

1

2
3

Figure 5.12: Graph with additional sink camera nodes in blue.

0 1 2

0 1 3

1 2 3

0 2 3

0

1

2

3

0

1

2

3

0-1

2-3

0-1

2-3

Figure 5.13: Graph with additional group nodes in green.

70

computing the shortest path to each image from the most central node. Each

triplet defines a local coordinate system between three images which differs only in

one similarity transformation to the global coordinate system. Since two triplets

which are connected within the graph always share two identical images the

overall scale can be propagated from one triplet to the other. For the initial

node the first image A is set to the origin looking in z-direction. The second

image B is placed at CB = tAB with a rotation qB = qAB. ||tAB|| defines the

scale of the global coordinate system. The camera parameters of the third image

C is defined as

C̃C = sABsABCq−1B t̃BCqB + C̃B (5.41)

qC = qBCqB (5.42)

with sAB being the global scale between images A and B and sABC being

the relative scale of the triplet between image A, B, and C. Following this

procedure, the next triplet is selected. Two images of the new triplet are

already reconstructed with a known position. These two images are inserted

into Equations 5.41 and 5.42 as image A and B to compute the parameters of the

third image and insert it into the global coordinate system.

5.4.3 Camera Pose Optimization

In all SfM approaches, BA is the most important part. The non-linear least

squares optimization is added as a final refinement step. Snavely et al. [81] used

BA in each step an image is added to the path. Applying BA in each step

results in a high computational cost. However, it stabilizes the result. Bundler

has become a popular piece of software which is used in many different areas for

reconstructing 3D scenes, e.g. archeology and geodesy.

BA can be time consuming especially when dealing with large scenes. Agarwal et

al. [1] investigated the scaling of different BA methods for large scenes. Recently

different approaches have been presented to accelerate BA [11, 32, 98].

The next section reviews the classical BA method before presenting a novel

optimization scheme inspired by the parametrization of [12] originally developed

for extended Kalman filter (EKF). Further, a general optimization framework,

OpenOF, is presented which is successfully used for arbitrary least squares

optimizations [95]. The framework was developed during this work and made

publically available under GNU GPL v3 license. OpenOF has the advantage over

other BA implementations e.g. Sparse Bundle Adjustment (SBA) [49], Simple

71

Sparse Bundle Adjustment (SSBA) [100] and Parallel Bundle Adjustment (PBA)

[98] that not only the reprojection error but rather arbitrary cost functions can

be minimized. All known implementations have some kind of limitations. Most

often, the open source implementations assume that all images are either taken

by the same camera (all internal parameters are identical) or all images are from

arbitrary cameras [98, 100]. OpenOF can also handle special setups, such as

several cameras are mounted on a rig.

5.4.3.1 Bundle Adjustment

The name bundle adjustment refers to the rays of light beginning at 3D points

and projecting into different cameras. This bundle of rays between 3D points

and images is optimized with a non-linear optimization algorithm as described in

Section 2.4.1. The parameters which are optimized belong to a set of n 3D points

{X1,X2, . . . ,Xn−1,Xn} and m images {C1, C2, . . . , Cm−1, Cm}. Additionally,

measurements xij represent the projection of a point i in image j. The function

that is optimized is defined in Equation 5.43, where f is the projection of a 3D

point to image coordinates, defined in Equation 2.3.

argmin
∀X,∀C

∑
∀xij

(xij − f(Xi, Cj))
2 (5.43)

Usually, one 3D point is only present in a limited number of images. This results

in a sparse structure of JTJ (see Equation 2.23). Modelling the sparse structure,

as described in Section 2.4.1, avoids tremendous computation time, as even a

middle-sized problem consists of thousands of 3D points and hundreds of images.

Popular approaches, such as SBA [49], utilize the Schur complement for efficiently

solving the normal equation within the Levenberg-Marquardt algorithm. This

works well due to the special sparse structure of standard BA. Yet, with

increasing complexity of the structure the Schur complement has its limitations.

If the images are all taken with the same camera, the internal calibration is

constrained to be the same for all images. In OpenOF it is also possible to define

groups of images which have the same internal calibration. Further constraints

can be easily integrated e.g. several cameras mounted on a car having a fixed

distance and orientation to each other.

72

Figure 5.14: Inverse point parametrization with source and destination camera
[95].

5.4.3.2 Inverse Bundle Adjustment

The inverse BA [95] is a ray based parametrization. In contrast to BA, a

3D point is not free in space, but it is attached to the image in which it first

appeared in the processing chain. A 3D point is parametrized by a source camera

Csrc, a unit vector n and the inverse distance d (see Figure 5.14). More formally

speaking, the 3D point X is defined in quaternion notation as

X̃ =
1

d
q−1ñq + C̃ (5.44)

with q being the quaternion representing the rotation and C denoting the camera

center of the source camera. The optimization function changes from Equation

5.43 to Equation 5.45. The derivative of this function is more complex than before

since X is a function itself.

argmin
∀X,∀C

∑
∀xij

(xij − f(Xi(Csrc(i),n, d), Cj))
2 (5.45)

The big advantage of this approach is the reduction of parameters by 2n.

Additionally, the number of measurements is reduced because no projection for

the source camera is necessary. The ratio between parameters and measurements

is most important for the convergence. Assuming a fixed intrinsic calibration,

the ratio of the inverse parametrization is smaller than the ratio of the standard

parametrization, for n > 7, m > 3.

7m+ n

2n(m− 1)
<

7m+ 3n

2nm
(5.46)

73

Optimization Object Type 1

Measurement Type 1 Measurement Type 2

Optimization Object Type 2 Optimization Object Type 3

Figure 5.15: Optimization objects interact with different measurement types.

The reduction of the parameter space also leads to a disadvantage. A 3D point

cannot acquire arbitrary positions in space. Since the point is fixed to the viewing

ray of the source camera, the only free parameter is the depth. The image

orientation has to change, to take in an arbitrary position. Since all points

enforce a certain orientation of the image, arbitrary 3D point positions are not

possible.

The adjusted parameters, which are more likely to be closer to the optimal

solution than the initial parameters, can be further optimized with a standard

BA parametrization to overcome this disadvantage.

5.4.3.3 OpenOF

OpenOF [95] is a general framework for least squares optimization which was

developed within this work. It is build in order to efficiently combine general

cost functions. The sparse structure of BA is incorporated by using a coordinate

list (COO) matrix format. Each value is stored by its row and column. To solve

the non-linear least squares system, OpenOF follows the algorithms presented

in Section 2.4. With sparseLM [48] and g2o [41] two alternative libraries are

available to solve this general problem. Due to the modular structure, OpenOF

can incorporate any kind of robust cost function. Similar to g2o, where only

the Huber cost function can be used, OpenOF can define for any measurement a

different robust cost function. Currently, the robust cost functions presented in

Section 2.4.3 are integrated.

In contrast to other approaches, OpenOF allows for an easy integration of

new models. The optimization scheme follows the layout shown in Figure 5.15.

The parameters to be optimized are grouped into so called optimization

objects. In case of BA, there are four optimization objects: 3D point, 2D

measurement, internal camera parameters, external camera parameters. Two

74

types of parameters exist for each object: On the one hand parameters that can

be modified by the optimization and on the other hand constant parameters. In

case of sensor data, all parameters belong to the second type and are constant.

For some models it might be useful to include the parameters as variable and

constant e.g. a position of a vehicle is given by different onboard sensors. The

position is further adjusted respecting the variance of the different sensors.

These optimization objects serve as input to measurement types which

represent a cost function. Each measurement type defines one cost function, e.g.

the reprojection error. To have a wide diversity in the design of an optimization,

it is possible to hold an optimization object constant in one measurement type

and refine it in a different measurement type. While in other approaches the

Jacobi matrix of the cost function needs to be provided, OpenOF generates

a sparse Jacobi matrix by symbolic differentiation. The objective function is

defined in the high level scripting language python. The python module sympy

[88], which is an open source library for symbolic mathematics, makes it possible

to define complex cost functions in an abstract and readable manner. High level

libraries often come at the expense of speed. Since least squares optimization is

highly demanding regarding computational cost, this problem is overcome by fast

c++ code which runs on NVIDIA graphics cards and is automatically generated

from the scripting language. OpenOF is successfully used in ongoing projects for

refining drift and position parameters of satellites [29] as well as a project for

dense 3D reconstruction [92]. In the latter case, algebraic as well as numerical

differentiations are mixed.

5.4.3.4 Evaluation

For evaluation, inverse BA is compared against BA, both computed with

OpenOF. Both methods are evaluated against simulated data as well as a

real world dataset. The performance is compared with two open source BA

implementations, SSBA [100] and PBA [98]. The latter is implemented for

the GPU and CPU, respectively. In contrast to SSBA, PBA uses CG similar

to OpenOF. The performance of OpenOF is shown to be comparable to the

specially optimized PBA. All evaluations are performed on an Intel i7 with

3.07 GHz, 24 GB RAM and a NVIDIA GTX 570 graphics card with 2.5 GB

memory. Synthetic data shown in Figure 5.16 is used for evaluation. The 3D

points are randomly generated and placed on the walls of a cube. The points are

only projected into cameras for which the points are directly visible in reality,

75

10
5

0
510

10 5 0 5 10

10

5

0

5

10
10
5

0
510

10 5 0 5 10

10

5

0

5

10

Figure 5.16: Setup of points (blue) and cameras (red) for the simulated data [95].

assuming the cube is not transparent. The cube has a size of 10 × 10 × 10.

The cameras are positioned on a circle with a radius of 8, facing the center of

the cube. The points are projected into a virtual camera with an image size of

640 × 480 and a focal length of 1000 measured in pixel. The principal point is

defined to lie in the center of the image. To simulate SfM approaches where

the initial camera position is rather a rough estimate, Gaussian noise is added

to the camera position. Normally distributed noise of 0.5 pixels is applied to

the measurements. Furthermore, new points are triangulated from the noisy

projections instead of using the original 3D point, resulting in a more realistic

setup. With known positions of the cameras, the convergence of the five BA

implementations introduced above is investigated by continuously increasing

the noise of the camera position. Within the simulation 100 cameras and 1000

points are used. The overall estimate of each method is transformed to the

original cameras with a Helmert transformation. The distance error between

the estimated and true camera position is shown in Figure 5.17(a) for different

amounts of noise. For each noise level on the camera position the mean of 5

iterations is plotted. Within our test the GPU implementation of PBA did not

converge in most cases, as shown in Figure 5.17(a). Every other method shows a

similar precision for σ < 0.6. For σ > 0.6, inverse BA shows a better convergence

than the other methods due to fewer degrees of freedom. Especially the CPU

version of PBA most rarely converged for noise σ > 1.2. The convergence

problem of PBA results in increased computation time (Figure 5.17(b)), while

the other approaches stay constant in time. To evaluate the speed of the

algorithms, each method runs with a constant amount of Gaussian noise while

concomitantly increasing the number of cameras. This reduces the distance

76

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
noise sigma

0

2

4

6

8

10

12

14
d
is

ta
n
ce

 e
rr

o
r

OpenOF (gpu)
OpenOF (gpu, inv.)
SSBA (cpu)
PBA (cpu)
PBA (gpu)

(a) Precision

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
noise sigma

0.0

0.5

1.0

1.5

2.0

2.5

3.0

se
co

n
d
s

OpenOF (gpu)
OpenOF (gpu, inv.)
SSBA (cpu)
PBA (cpu)
PBA (gpu)

(b) Performance

Figure 5.17: Applying normally distributed noise on the camera positions (100
cameras) [95].

100 200 300 400 500 600 700 800 900
nr cams

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

d
is

ta
n
ce

 e
rr

o
r

OpenOF (gpu)
OpenOF (gpu, inv.)
SSBA (cpu)
PBA (cpu)
PBA (gpu)

(a) Precision

100 200 300 400 500 600 700 800 900
nr cams

0

5

10

15

20

se
co

n
d
s

OpenOF (gpu)
OpenOF (gpu, inv.)
SSBA (cpu)
PBA (cpu)
PBA (gpu)

(b) Performance

Figure 5.18: Changing the number of cameras with constant amount of noise on
the camera position (σ = 0.5) [95].

between two cameras and increases the number of projections of one 3D point.

As expected, SSBA, using a direct solver implemented on a CPU, shows the

lowest performance. Regarding the described example, the approaches using CG

(OpenOF and PBA) operate much faster than the one with a direct solver (see

Figures 5.18(a) and 5.18(b)). The GPU version of PBA cannot be taken into

account because it did not converge.

The real world data evaluation is performed on a dataset with 390 images

taken with a Canon EOS 7D camera (see Figure 5.19(b)). The pictures were

taken in the American Museum of Natural History in New York within the scope

of a project aiming at the reconstruction of extinct animals. Figure 5.19(a) shows

the final reconstruction computed with PMVS2 [24]. The path computed with

77

(a) Quasi-dense point cloud

(b) Sample image (c) Camera path

Figure 5.19: Three mammoths acquired at the American Museum of Natural
History [95].

0 10 20 30 40 50
iterations

0

2

4

6

8

10

12

re
si

d
u
a
l

OpenOF (gpu)
OpenOF (gpu, inv.)
SSBA (cpu)

(a) Iterations

0 1 2 3 4 5 6
seconds

0

2

4

6

8

10

12

re
si

d
u
a
l

OpenOF (gpu)
OpenOF (gpu, inv.)
SSBA (cpu)

(b) Time

Figure 5.20: Convergence of the mammoth dataset [95].

78

OpenOF is illustrated in Figure 5.19(c). The convergence rates of SSBA and

OpenOF are compared against each other. PBA is not included in this part of

the evaluation due to a different metric system for the residuals which could not

be adapted. As shown in Figure 5.20(a), the convergence of SSBA and OpenOF

is similar for BA with respect to the number of iterations. Regarding the number

of iterations relative to the overall time, the CG approach outperforms the direct

solver. This speedup is even larger for datasets where the amount of overlapping

images is higher, as shown in the synthetic evaluation. The convergence rate of

inverse BA is better than of BA.

5.4.4 Merging Reconstructions

A single object of interest is frequently acquired multiple times. There are

different reasons for capturing multiple datasets of the same object: Either

parts of the objects which were missed in the first round are captured in

a second iteration or the images are acquired with different distances to the

object. The precision of a reconstruction can be computed by merging multiple

reconstructions and estimating discrepancy between those.

It is assumed that each project contains a list of 3D points and their 2D

correspondences (see Figure 3.8 for a complete overview of the given data

structure.). From two sets of 3D points the subset of points which is identical

in both projects is identified and the correspondences between those points is

established. The SIFT descriptor is used to establish the correspondences. Since

each 3D point is constructed from multiple 2D points, a 3D point can be described

by multiple SIFT descriptors. For simplicity only one descriptor is chosen for each

point. Li et al. [44] proposed to either take the average of the descriptors or to

take all descriptors. In this work a 3D point is represented by the descriptor which

is closest to all other descriptors. The task of merging two reconstructions is

reduced to matching two sets of descriptors as described in Section 4.1. Once the

correspondences are established, the transformation between the two projects is

computed with a Helmert transformation. Since the correspondences may contain

outliers, the Helmert transformation is computed with a robust L2 truncated

function. This method is repeated until all reconstructions are merged.

79

CHAPTER VI

Loop Closure

When acquiring an image sequence, it is common to move in a circle around

the object and return to the starting point. Identifying such a situation is known

in literature as ’loop closure detection’ [4]. Revisiting a location can be identified

with two different approaches, whereby both approaches have advantages and

disadvantages. Combining both approaches can help to achieve a stable and

reliable solution. The first approach is based on the visual appearance of the

scene while the second makes use of the pose of the camera (spatial loop closure).

Identifying the loop closure only by visual appearance may cause errors, especially

if repetitive structures are present in the scene. Due to symmetric structures,

opposite walls of a room may look similar. Humans are able to differentiate

between two scenes by identifying small objects that are missing in the other

image (see Figure 6.1) but many examples exist where even those small differences

are missing. In such a case only spatial loop closure detection can be applied.

The drawbacks of spatial loop closure detection become visible in long image

sequences such as the car sequence presented in Section 7.4. The position error

increases with every image. At the end the error may have become too large

to detect a spatial loop closure. Combining both approaches leads to a robust

solution.

Figure 6.1: Example scene which might mislead an appearance based loop closure
detection.

81

6.1 Image Based Loop Closure Detection

Humans are able to recognize previously visited places by their visual

appearance. For loop closure detection, the content of the image plays an

important role as well. The most straight-forward approach is a linear search

in all previously captured images: A new image is matched with all previous

images. If the number of matches exceeds a certain threshold, it will be most

likely that a loop closure is detected. Since image matching is time consuming,

the amount of image pairs that are matched needs to be limited. The image

based loop closure detection degrades to the problem of finding images which are

likely to match. It does not necessarily mean that a loop closure exists, if two

images match.

A common approach defines for each image a bag of visual words [66] by

inserting the descriptors in a vocabulary tree. Each leaf node of the tree represents

a visual word. In this thesis, a new approach is proposed which describes one

image only by one descriptor. All features which describe an image are merged

by feature pooling [9]. In contrast to other feature pooling methods, the variance

which appears in each dimension of the SIFT descriptors is used to form the

new descriptor. Two images are assigned as matching candidate if the cosine

similarity between the descriptors is below a certain threshold. In the next

section vocabulary trees are described in detail, followed by a novel more effective

method, the VDA.

6.1.1 Vocabulary Trees

Vocabulary trees are by now the most common way to detect loop closures

using only images. The basic idea was first presented in [80]. Nevertheless, it

was not spread until [66] in the SLAM community. Vocabulary trees rely on so

called ‘visual words‘. Based on millions of SIFT descriptors of different objects

a hierarchical k-means clustering is constructed in feature space. Each cluster

center represents a visual word. From the hierarchical clustering a vocabulary tree

is generated. The leaf nodes are identical with the visual words. Generating the

clusters is time consuming. However, the resulting tree is not only discriminative

for specific training data, but can produce reliable results for rather general

images.

Two sets of images exist: The database and the query images. All features of the

database images are inserted in the vocabulary tree. Each leaf node consists of a

82

list containing the image indices of the inserted features (inverted files).

For each visual word the Term Frequency Inverse Document Frequency (TF-IDF)

is applied, originally invented for text mining, to calculate the relevance of each

visual word regarding an image. The TF-IDF consists of two parts which are

multiplied with each other. The first part is the Term Frequency (TF) defined

as the quotient of the frequency of a visual word ni,w in an image i and the total

number of visual words ni in the image. The complete TF-IDF is defined as

tfidf(i, w) =
ni,w
ni

log
N

Nw

(6.1)

where N is the total number of images and Nw is the total number of images where

the word w appears. A sparse descriptor with a length equal to the number of leaf

nodes of the tree is created for each image. This descriptor contains the scores

of the TF-IDF for the visual words occurring in this image. The descriptor is

normalized afterwards.

For querying an image, the normalized difference between the query descriptor

and the database descriptors can be efficiently computed. The best n matches

from the database are selected as loop closure candidates.

6.1.2 Variance Descriptor Analysis

VDA is a new method proposed in this thesis which describes an image

with a single vector and computes an appearance based similarity value between

images. This descriptor has only a size 128 and can be computed in a complete

parallel manner. Detecting loop closures with vocabulary trees is a reliable,

well established method, but is computationally costly. For devices with less

computational power such as mobile robots or smart phones efficient methods

like VDA are important.

Similar to vocabulary trees, VDA produces a set of matching candidates which is

only a small percentage of all possible candidates. Considering m images, the aim

is to build a similarity matrix M containing the results of a cost function sim(i, j)

for image i and image j. To compute sim(i, j), a new descriptor, called Variance

Descriptor (VD), is created for each image. Since two images will match if many

of the SIFT features of one image have a correspondence in the second image, a

new descriptor is computed out of all features of one image. The challenge is to

achieve an efficient data reduction while remaining discriminative. As shown by

TBH, data can be distinctively divided in a 128 dimensional space according to

83

0 50 100 150 200 250

0

50

100

150

200

250

0.9800

0.9825

0.9850

0.9875

0.9900

0.9925

0.9950

0.9975

1.0000

Figure 6.2: Appearance similarity matrix (VDA) of KPM dataset.

its variance. Thus, the new descriptor contains the variance over each dimension.

More formally speaking, given a descriptor Di
f of a feature f from image i, the

VD Vi is computed as in [94] with n being the number of features of image i.

Vi =
1

n− 1

n∑
f=1

(
Di
f −D

i
)2

(6.2)

The similarity sim(i, j) is computed as the cosine similarity, the inner product of

the normalized vectors.

Mi,j = sim(i, j) =
ViTVj

||Vi||||Vj|| (6.3)

The angle between Vi and Vj remains smaller than 90 degree, because each value

in V is positive as the variance is always positive, resulting in a similarity value in

the range 0.0 to 1.0. Figure 6.2 shows a similarity matrix for a path surrounding

an object twice. The path belongs to the Königliche Porzellan Manufaktur (KPM)

dataset in Section 7.3.

6.1.3 Evaluation

The following section compares the results achieved by VDA with those

generated by the use of vocabulary trees. The chosen dataset belongs to the

court yard of the KPM. The court yard was circled two times. The ground truth

for a binary similarity matrix is generated by matching each image with all other

84

0 50 100 150 200 250

0

50

100

150

200

250

Number of matches

0

800

1600

2400

3200

4000

4800

5600

6400

7200

8000

Figure 6.3: Number of matches of the KPM dataset.

images. In Figure 6.3, the maximal number of matches is set to 8000 for better

visual appearance. VDA and vocabulary trees are evaluated with a Receiver

Operating Characteristic (ROC) curve in Figure 6.4 considering different number

of matches as ground truth. A true positive count will be achieved if a similarity

is detected and the ground truth in Figure 6.3 has more than t matches. A

false positive event will be counted if a similarity is detected, but the two images

have less than t corresponding matches. Applying a threshold to the similarity

matrix in Figure 6.2 transforms the score into a binary decision. By changing

the threshold, the ROC curve is computed. The chosen dataset does not contain

any misleading symmetric structures. Otherwise, the automatic ground truth

generation, which is used in this example, would not be valid. Further evaluations

on a dataset with symmetric structures are presented in Section 7.1.1 on the Faller

Train Station (FTS) dataset. The results in Figure 6.4 show a remarkably high

recognition rate for vocabulary trees with a true positive rate of 95 % with less

than 10 % false positives for t > 500. Nevertheless, VDA achieves also a high

recognition rate considering the substantial data reduction, which was applied.

A vocabulary tree with 1 million visual words were used, resulting in a descriptor

size of 1 million. In contrast, the descriptor size of VDA is only 128. VDA

is superior to vocabulary trees concerning resources. On the FTS dataset in

85

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

ROC

VDA
VOC

(a) t = 100

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

ROC

VDA
VOC

(b) t = 500

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

ROC

VDA
VOC

(c) t = 1000

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

ROC

VDA
VOC

(d) t = 5000

Figure 6.4: ROC for VDA and vocabulary trees (VOC).

Section 7.1 a speedup of a factor of 350 was achieved. As a conclusion, VDA

should be applied if speed and limited resources have to be considered. If speed

is of second rank, vocabulary trees will usually yield a better recognition rate.

6.2 Spatial Loop Closure Detection

After successfully creating an initial path, a spatial loop closure detection

can be applied to refine the results. Usually, the user returns to a position

near the point where he started taking the images of the object. However, to

discriminate this common scenario from exceptions, a fast and reliable approach

is essential. The algorithm presented here uses a set of camera positions and a

sparse point cloud. Usually, one 3D point is captured by several cameras. At

first, the mean viewing direction ni of each point to all corresponding cameras

which triangulated this point is computed. This approximates the direction to

the images corresponding to the point. A similar direction of a query image might

86

lead to a loop closure detection.

ni =
1

m

m∑
j=1

Ĉj − X̂i

||Ĉj − X̂i||
(6.4)

A list of cameras, which were part in the triangulation process, is associated

with the respective 3D point. For each point the angle between the viewing ray

computed in Equation 6.4 and the ray which goes from the camera center to the

point is calculated and a threshold α is applied

arccos

(
nTi (Ĉ− X̂)

||ni||||(Ĉ− X̂)||

)
< α (6.5)

with X being the location of the 3D point and C being the camera center. In

cases where the angle is smaller than the threshold α the image lies in the same

direction as the images which triangulated the point. In this case the point votes

for a loop closure regarding the respective image. Else, a negative vote is applied.

Equation 6.5 is applied for all points and all cameras leading to a complexity of

O(nm). If the angle difference is larger than α the camera may still be able to see

the point, but the feature matcher will not be able to match the corresponding

features within the images as the viewpoint difference is too large. All votes

are stored in a similarity matrix. A loop closure is detected for each positive

entry in the similarity matrix. This voting scheme has the advantage that no

fixed threshold on the similarity matrix needs to be applied. A loop closure

candidate is accepted if half of the sparse points correspond to an image vote for

a loop closure, meaning a positive entry in the similarity matrix. The algorithm

is outlined in Algorithm 3 with n points and m images.

Evaluation

In the KPM dataset loops need to be closed. The initially estimated path,

shown in Figure 6.5, produced duplicated walls due to accumulated errors. Only

after matching the images forming a loop, a correct result was achieved (see Figure

6.6). Since the camera positions of the second circle around the courtyard is still in

a short range to the correct position, the presented spatial loop closure procedure

works well. The accumulated votes as well as a binary image of the spatial

similarity matrix are shown in Figure 6.7. This binary image is used to match

image pairs that have not been matched before. From the new matches, potential

87

Algorithm 3 Generating spatial similarity matrix

for i = 1 to n do
for j = 1 to m do

if ∠(Cj −Xi,ni) < α then
for all id in getIds(Xi) do

Mj,id = Mj,id + 1
Mid,j = Mid,j + 1

end for
else

for all id in getIds(Xi) do
Mj,id = Mj,id − 1
Mid,j = Mid,j − 1

end for
end if

end for
end for

new triplets arise. These triplets are computed and the respective matches are

marked as filtered if they pass the filter step described in Section 4.1.4.3. Once

the global ids are regenerated, the path is computed once again and BA is able

to close the loop with the new correspondences. The resulting sparse point cloud

is shown in Figure 6.6. The duplicated walls have vanished and the images of

the two circles are close together, as the driver took the same path for the long

straights.

6.3 Closing the Loop

In case of a long camera path with more than 1000 images, the gap between

the cameras forming the loop can be large. If only the point correspondences are

given, BA might not be able to close the loop. Especially when using a robust

optimization method, these measurements are handled as outliers. In such a

case it proved to be useful to distribute the errors equally between the cameras

which are in the triplet propagation chain between the cameras which form the

loop. Considering a begin image with a frame number fB and an end image

with the number fE, all images for which f < fB hold are supposed to be in the

propagation chain situated before the begin of the loop. Images for which f > fE

holds are after the loop. All other images are in consecutive order by their frame

id within the loop. In the following formulas it is assumed that cameras fB and

fE are identical in position and rotation. This is valid if the image is included

88

Figure 6.5: Sparse point cloud with camera poses after initial path computation.

Figure 6.6: Sparse point cloud with camera poses after loop closure matched.

89

0 50 100 150 200 250

0

50

100

150

200

250

(a) Spatial similarity matrix

0 50 100 150 200 250

0

50

100

150

200

250

(b) Spatial binary similarity matrix

Figure 6.7: Spatial similarity matrix for loop closure.

in the graph two times with different frame ids. First, an image is included by

a triplet at the beginning of the loop and a second time at the end of the loop.

A factor is computed which describes the impact that the closing transformation

has on a certain image.

sf =


0 : f ≤ fB
f−fB
fE−fB

: fB < f < fE

1 : fE ≤ f

(6.6)

The closing transformation transforms camera fE onto camera fB by means of

position and orientation. The closing transformation consists of a rotation qEB

and a translation tEB.

qEB = q−1B qE (6.7)

tEB = tB − tE (6.8)

This transformation needs to be interpolated by the factor sf computed in

Equation 6.6. Several approaches to interpolate a rotation have been discussed in

[17]. The one applied in this work uses a linear approximation over the rotation

angle α, which results in a constant angular velocity. From qEB the angle α as

well as the rotation axis v can be extracted.

α = 2 cos−1(qEB[0]) (6.9)

90

(a) Initial Path (b) Closed Path

Figure 6.8: Closure of large gap in loop with 10000 cameras.

v =
qEB[1 : 4]

||qEB[1 : 4]|| (6.10)

A new quaternion is defined for each camera which rotates the camera into the

new coordinate system.

q = [cos(αsf/2),vT sin(αsf/2)]T (6.11)

The new position and orientation of each camera is defined as follows:

t̃′f = q(t̃f − t̃E)q−1 + t̃E + st̃EB (6.12)

q′f = q−1qf (6.13)

This procedure can be repeated if several loop closures within the dataset are

detected. The newly defined solution is further optimized in a BA step. This

time, the point correspondences in the loop will fit together and are not identified

as outliers. The final BA is also necessary to adjust displacements which were

erroneously included in the closing procedure since the gap of the loop was initially

not linearly distributed on all cameras between camera fB and camera fE. An

example in which the initial path had a large error which could be closed is given

in Figure 6.8.

91

CHAPTER VII

Results

This thesis describes a novel SfM toolchain with the aim to increase robustness

and accuracy. The following chapter evaluates the performance of the newly

presented approach. The evaluation is done on different datasets to show the

universality of the pipeline. Special attention is paid to the accuracy and

precision. If the ground truth is given, such as for the FTS and the Castle-P30

dataset, the global accuracy will be analysed by mapping the reconstruction to

the ground truth with a Helmert transformation. Else, the precision of the

dataset is evaluated by comparing multiple measurements. For each dataset,

different aspects are selected which are analysed in detail. Different remarks

are given concerning what is necessary for an accurate reconstruction such as

reliable feature matches. It will be shown that the newly presented inverse BA

is often able to converge even in cases where BA does not. Visual evaluation of

the resulting sparse point cloud can give a qualitative assessment, but does not

provide an objective and measurable performance criterion. The reprojection

error is a measurable indicator for the quality of a reconstruction, but as it

depends on the individual judgment of outliers, it is not an objective and unbiased

performance criteria. The only mostly unbiased way to evaluate the performance

of a reconstruction is the comparison to ground truth. If this is not possible,

comparing multiple reconstructions against each other is the next best possibility.

The datasets used for evaluation are chosen from different scenarios.

1. The FTS dataset is acquired in the lab with constant light conditions. The

object of interest has a small size of 96 cm. It is used to evaluate the

accuracy of the system in comparison to GCP. This dataset is taken also for

evaluating the precision by comparing the results of multiple reconstructions

of the same object.

2. The Castle-P30 dataset is publically available with a given ground truth

[85]. It shows a courtyard with a medium size of approximately 50-60 m.

93

3. The KPM dataset is aquired with a camera mounted on a Segway. The

captured area has a size of approximately 2400 m2. The captured area

is surrounded two times to have enough data to evaluate the precision by

merging two reconstructions as well as evaluating the loop closure approach.

4. The Car dataset shows that the toolchain is able to handle even a dataset

with 104 images. The images are extracted from a video sequence acquired

with a low cost outdoor camera mounted on a car.

5. The UAV dataset shows a house which was reconstructed from only 145

images.

Many more datasets have been successfully reconstructed but, only a

representative set is seleceted to show the generality of the algorithms.

7.1 Faller Train Station

The FTS dataset was acquired under lab conditions. The object of interest

is a model house made by Faller R© representing the train station Reichenbach.

It has an overall size of 960 × 400 × 665 mm. For evaluation, 90 points on the

object are measured with a Leica TCRA 1103 tachymeter. The coordinates of

the measured 3D points are optimized in a network adjustment [47] as shown in

Figure 7.1. Each 3D point is connected to manually assigned image coordinates.

According to the network adjustment, the GCP are measured with an average

accuracy of approximate σ = 0.7 mm. 200 images are taken around the object

with a Panasonic GF1, 20 mm prime lens, in full resolution (4000 × 3000). The

indexed points are marked within 15 images well distributed over the dataset. An

id is assigned to each point as visible in Figure 7.2 starting from id 100. As not

all points could be computed with a high precision during a least squares network

adjustment, the ids exceed the total number of points. The reconstructed camera

path together with the sparse point cloud is visualized in Figure 7.5.

7.1.1 Loop Closure

When capturing the FTS images, the object was surrounded two times. The

first circle captured the lower part of the object whereas the second captured the

roof. Each circle produces one loop closure as visualized by the red pyramids in

Figure 7.5. The first loop closure appears after the first full circle around the

94

Figure 7.1: Ground truth measurement adjustment (JAG3D [47]).

181

180

185

186

187 188

192

193 194

195
196

189
190

191

154

124

171 172 173

175 178

176 177

170

169

179

166

167 168

182

183

184

198

199 200

201 202

203

Figure 7.2: FTS with marked coordinates of GCP.

95

VDA VOC

0.2 69.6

Table 7.1: Speed comparison of VDA and VOC in seconds.

(a) Image 20 (b) Image 65

Figure 7.3: Example of a wrongly identified loop closure by VDA and VOC.

lower part of the object is closed, approximately between image 0 and image

85. The second loop closure is located at image 95, which has a strong overlap

with image 198. It closes the loop which captured the roof of the train station.

The symmetric structure of the train station is challenging for image based loop

closure procedures. The two loop closures were successfully detected by VDA and

the spatial loop closure strategy, as shown in Figure 7.4. The similarity matrices

of the image based methods (Figures 7.4(a) and 7.4(e)) show a false loop closure

between image 20 (Figure 7.3(a)) and image 65 (Figure 7.3(a)). This failure does

not occur in the spatial loop closure method, but there is a wrongly identified

closure between image 105 and image 160. The viewing angle between these

two images is in the accepted range which was set empirically to 21.5 degrees,

but the surface of the roof is not visible in the other image. Intersecting the

binary appearance and spatial similarity matrix leads to the decision matrix in

Figure 7.4(f). The newly presented VDA approach finds the same loop closures

as estimated with the vocabulary tree, but with a smaller computational effort.

The time comparison shown in Table 7.1 was computed on an Intel i7 with 3.07

GHz. Only one CPU was used to make a fair comparison. All loops were found

with no false positive detection by intersecting the spatial and visual loop closure

detection.

96

0 50 100 150

0

50

100

150

(a) Appearance similarity matrix (VDA)

0 50 100 150

0

50

100

150

(b) Binary similarity matrix (VDA)

0 50 100 150

0

50

100

150

(c) Spatial similarity matrix

0 50 100 150

0

50

100

150

(d) Spatial binary similarity matrix

0 50 100 150

0

50

100

150

(e) Appearance similarity matrix (VOC)

0 50 100 150

0

50

100

150

(f) Intersection of Figs. 7.4(b) and 7.4(d)

Figure 7.4: Loop closure analysis of the FTS dataset.

97

Figure 7.5: Reconstructed camera path with sparse point cloud.

7.1.2 Accuracy

From the reconstructed path, the manually marked correspondences are

triangulated. Since the reconstruction is unique up to seven parameters, a

Helmert transformation is computed which transforms the reconstruction to the

GCP. As BA is an important aspect of the reconstruction, the initial path,

which was generated as described in Section 5.4.2, is subsequently optimized

with different robust cost functions, which is parametrized by the threshold in

Tables 7.2 and 7.3 (see Figure 2.5 for different cost functions). Each bundled path

is used to triangulate the manually assigned image coordinates which correspond

to the measured GCP. The sparse set of points is then transformed to the ground

truth as described in Section 2.5, and the resulting differences are listed in Table

7.2 and summarized in Figure 7.6(a). The same evaluation is repeated (Table

7.3 and Figure 7.6(b)), but this time the global ids are generated from all feature

matches (only epipolar filter applied) and not only the matches which were filtered

by a camera triplet. This time the global ids contain much more outliers, which

strongly influences the standard BA parametrization.

The choice of a robust cost function with its parameters is in practice not an

easy task. The threshold in pixel is chosen in a wide range to present the impact

the parameter has on the convergence of the different methods. For the optimal

98

0 2 4 6 8 10
threshold

1.0

1.2

1.4

1.6

1.8

2.0

R
M

S
E
 [

m
m

]

SSBA
L2 T.
Huber T.
Huber
Inverse L2 T.
Inverse Huber T.
Inverse Huber

(a) Filtered feature matches

0 2 4 6 8 10
threshold

1.0

1.5

2.0

2.5

3.0

3.5

4.0

R
M

S
E
 [

m
m

]

L2 T.
Huber T.
Huber
Inverse L2 T.
Inverse Huber T.
Inverse Huber

(b) All feature matches

Figure 7.6: RMSE of the FTS dataset for different BA configurations
corresponding to Tables 7.2 and 7.3.

OpenOF OpenOF Inverse
Thresh. SSBA L2 T. Huber T. Huber L2 T. Huber T. Huber
in Pixel

0.5 1.149 32.232 1.354 1.110 36.738 19.552 1.225
1.0 1.115 1.108 1.132 1.117 25.824 1.120 1.172
1.5 1.116 1.111 1.129 1.121 1.517 1.208 1.168
2.0 1.135 1.164 1.159 1.110 1.129 1.172 1.187
2.5 1.140 1.222 1.150 1.145 1.189 1.176 1.171
3.0 1.139 1.143 1.144 1.115 1.176 1.177 1.174
3.5 1.144 1.172 1.143 1.112 1.171 1.190 1.168
4.0 1.145 1.165 1.142 1.111 1.203 1.175 1.172
4.5 1.149 1.156 1.140 1.109 1.198 1.172 1.172
5.0 1.145 1.146 1.138 1.125 1.183 1.170 1.171
5.5 1.143 1.141 1.137 1.130 1.181 1.175 1.170
6.0 1.143 1.140 1.137 1.117 1.181 1.180 1.667
6.5 1.143 1.139 1.141 1.128 1.175 1.227 1.169
7.0 1.143 1.140 1.139 1.143 1.175 1.169 1.168
7.5 1.143 1.140 1.139 1.108 1.175 1.169 1.168
8.0 1.143 1.139 1.137 1.108 1.175 1.169 1.168
8.5 1.143 1.137 1.138 1.108 1.172 1.168 1.168
9.0 1.143 1.137 1.137 1.108 1.171 1.168 1.210
9.5 1.143 1.137 1.128 1.253 1.171 2.167 1.202
10.0 1.143 1.143 1.126 1.143 1.169 1.167 1.167

Table 7.2: RMSE in mm compared to ground truth with filtered feature matches
(filter from Section 4.1.4.3). The truncation of Huber T. is applied at
twice the threshold.

99

OpenOF OpenOF Inverse
Thresh. SSBA L2 T. Huber T. Huber L2 T. Huber T. Huber
in Pixel

0.5 2.043 14.095 1.089 2.318 1.120 1.095 2.309
1.0 472.328 1.089 1.088 2.676 1.098 1.103 2.536
1.5 469.797 1.135 1.122 3.050 1.125 1.280 2.767
2.0 378.866 1.091 1.177 3.438 1.178 1.090 3.018
2.5 386.183 1.115 1.217 3.745 1.236 1.115 3.261
3.0 377.273 1.154 1.253 4.105 1.085 1.140 3.485
3.5 377.223 1.177 1.305 4.465 1.090 1.193 3.679
4.0 380.081 1.200 1.364 4.905 1.101 1.192 3.903
4.5 377.184 1.224 1.426 5.217 1.118 1.217 4.132
5.0 377.195 1.248 1.533 5.542 1.134 1.279 4.339
5.5 377.226 1.265 1.728 5.922 1.146 1.307 4.550
6.0 3.738 1.299 1.794 6.233 1.190 1.344 4.804
6.5 377.767 1.335 1.871 6.538 1.179 1.386 4.975
7.0 4.118 1.371 1.930 6.816 1.197 1.440 5.171
7.5 377.370 1.401 1.996 7.126 1.217 1.379 5.360
8.0 4.441 1.437 2.053 7.392 1.231 1.418 5.571
8.5 4.663 1.521 2.118 7.655 1.245 1.511 5.715
9.0 4.760 1.622 2.176 7.892 1.302 1.561 5.914
9.5 4.931 1.698 2.227 8.067 1.312 1.624 6.046
10.0 5.088 1.768 2.234 7.176 1.334 1.679 6.213

Table 7.3: RMSE in mm compared to ground truth with all feature matches (only
epipolar filter applied). The truncation of Huber T. is applied at twice
the threshold.

100

solution the outlier threshold might be small (less than a pixel) but setting the

threshold initially to a small value can cause the optimization not to close a loop

as the measurements of the images forming the loop are treated as outliers.

The SSBA implementation does not converge for many different thresholds

as shown in Table 7.3 by the high RMSE. While all BA approaches worked

reasonably well for the filtered case, the novel inverse depth BA mostly

outperforms the other approaches for the unfiltered case.

Outliers have less impact on the overall solution, due to the smaller degrees

of freedom of inverse BA over standard BA. OpenOF L2 T. should be compared

to OpenOF Inverse L2 T. etc. As shown in Figure 7.6 the truncated robust cost

functions perform better in case of outliers, where the Huber norm performance

better on the filtered feature matches. Applying strict outlier filters is mostly

a good choice, but also correct feature matches are sometimes filtered out.

Comparing Tables 7.2 and 7.3 shows that on average the filtered feature matches

perform better, but the most accurate result was found with all feature matches.

The reconstructed path shows a high accuracy with a RMSE of 1.085 mm for the

GCP. The accuracy is close to the accuracy of the ground truth. It will be more

and more complicated to generate a ground truth which has to be a magnitude

better than the system which should be evaluated.

7.1.3 Precision

In case no ground truth is given, the quality of a reconstruction can be

evaluated by reconstructing the object of interest from two datasets. These two

reconstructions are merged as described in Section 5.4.4. Each reconstruction

contains approximately 25000 sparse points. A correspondence was found for

1100 points with a SIFT matching ratio of 0.6. It is assumed that many of these

correspondences are outliers, due to the symmetric structure of the object. The

Helmert transformation is computed in two steps: First, all 1100 correspondences

are used to compute the transformation with a robust L2 truncated cost function.

The threshold, which is applied for the difference in one dimension, is decreased

in 3 steps to 0.005 m. Second, only the points which have an error of less than

5 mm (ca. 62 %) are used to refine the calculated transformation. The error of

the points are sorted in increasing order. Figure 7.7 shows the results for all 1100

points. The best 40 % of the points have an error of less than 1.68 mm. This

value coincides with the accuracy computed in the last section. The last 30 %

can be interpreted as outliers.

101

0 20 40 60 80 100
percentage

10-5

10-4

10-3

10-2

10-1

100

101

d
is

ta
n
ce

 [
m

]

Figure 7.7: Precision of the FTS dataset.

7.2 Castle-P30

The Castle-P30 dataset from [85] comes with 30 images at a resolution of

3072× 2048 (see Figure 7.8). It captures the court yard of the Ettlingen-Castle.

The dataset comes along with the internal as well as the external camera

parameter. The ground truth is established with a LIDAR system by measuring

targets which are also visible within the images. [85] states a position accuracy

of the ground truth for the Herz-Jesu-R23 dataset of 1-2 cm. A similar accuracy

for the Castle-P30 dataset is assumed, even though the covered area of the

Castle-P30 dataset is much larger in comparison to the Herz-Jesu-R23. The

maximum distance of two cameras in the dataset is 44.97 meters. With only 30

images of the court yard, the dataset is relative sparse. In most cases only three

images overlap. The dataset is reconstructed with the presented pipeline, as well

as with VisualSFM [97]. Both pipelines successfully reconstructed the dataset.

The computed camera positions are transformed with a Helmert transformation

to ground truth. The position error and the orientation error of the cameras are

plotted in Figure 7.9. The corresponding MAE and RMSE are shown in Table 7.4.

The new developed inverse BA approach performs significantly better than BA

and VisualSFM.

102

Figure 7.8: Sample image of the Castle-P30 dataset.

0 5 10 15 20 25 30
camera index

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

d
is

ta
n
ce

 [
m

]

Inverse BA
BA
VSFM

0 5 10 15 20 25 30
camera index

0.00

0.05

0.10

0.15

0.20

0.25

a
n
g
le

 [
d
e
g
re

e
]

Inverse BA
BA
VSFM

Figure 7.9: Distance and angle error of the Castle-P30 dataset.

Inverse BA BA VSFM

Position MAE [m] 0.0231 0.0272 0.0328
Position RMSE [m] 0.0273 0.0348 0.0416
Orientation MAE [◦] 0.0457 0.0619 0.0510
Orientation RMSE [◦] 0.0496 0.0695 0.0661

Table 7.4: MAE and RMSE of Inverse BA, BA and VisualSFM.

103

Figure 7.10: Sample images of the KPM dataset.

Figure 7.11: Top view of the court yard of KPM [25] with an approximate camera
path in black.

7.3 KPM

The KPM dataset was acquired at the factory of Köngliche

Porzellan-Manufaktur in Berlin. The dataset consists of 280 images taken

with a Panasonic GF1, 20 mm prime lens. In contrast to the FTS dataset, the

image resolution is reduced to 2815 × 2112 pixels. This reduction is necessary

to acquire images with 3 frames per second (FPS) in the continuous shooting

mode of the camera, otherwise the data transfer within the camera would not

be capable of handling all incoming data and writing the images onto a memory

card. The camera was mounted on a Segway. The captured area has a size of

approximately 60 × 40 meters. Sample images as well as a top view of the area

104

0 20 40 60 80 100
percentage

10-3

10-2

10-1

100

101

102

103

104

d
is

ta
n
ce

 [
m

]

Figure 7.12: Precision of the KPM dataset.

are shown in Figures 7.10 and 7.11. The images were acquired by driving with

a constant speed two times around the square to produce a high overlap for the

loop closure procedure. The camera was mounted perpendicularly to the driving

direction, capturing the buildings on the opposite side of the square. The loop is

closed for the first time at frame 150 and for the second time at 270 as discussed

in Chapter VI. As no ground truth of the dataset exists only the precision

is evaluated by splitting the dataset into two equal sets of images. Therefore,

the frames were assigned alternating to the first and the second dataset. The

datasets were reconstructed individually. The resulting reconstructions are

merged and the error of the merging procedure is used as evaluation measure

indicating the precision of the two reconstructions. The distance of the best 40 %

of the points is less than 13.6 cm (see Figure 7.12). Considering the covered size,

the dataset is around 60 times larger than the FTS dataset. Multiplying the

precision of the FTS dataset with the size results in 10.08 cm = 60 × 0.168 cm.

The obtained precision is lower due to the lower image resolution. Nevertheless,

the result is more than satisfying considering the size of the object.

105

Figure 7.13: Acquisition setup with two GoPros on a car.

7.4 Car

This dataset was acquired with two GoPro HD HERO2 cameras mounted on

a car as shown in Figure 7.13. Videos with a resolution of 1920× 1080 pixels and

30 FPS were captured and converted to individual images. The cameras have a

field of view of 170◦ and a strong radial distortion. The fish-eye camera model is

used to undistort the images. A total of 8100 images were extracted from each

video, but only a subset of 5000 images was selected for reconstruction. Areas

where many similar or identical images exist, e.g. when the car stopped at a red

traffic light, were thinned out. The path has a total length of about 1.9 km

with an overlap of 200 m. The video streams were synchronized manually up to

1/60 sec. For the reconstruction, the streams are assumed to be independent.

The GPU based inverse BA implementation is limited by the amount of memory

of the graphics card. For this reason, the graph was separated in overlapping

chunks of 400 cameras. The camera path is reconstructed for each chunk and

optimized by inverse BA. For each chunk, the mean distance of all synchronized

image pairs is scaled to an absolute scale which was measured manually. The

accumulated drift of the path is shown in Figure 6.8. The loop was closed with

the approach presented in Section 6.3. Both, the driven and the reconstructed

path are shown in Figure 7.14. This figure was created by manually overlaying

the reconstructed path on the image from Google maps adjusting the scale and

106

Figure 7.14: Driven path in blue, reconstructed path in red [25].

rotation. The overlay of the calculated path and the map fit accurately. In

summary, the presented approach works even for large scale reconstructions with

several thousand images. Incorporating further information such as a true stereo

constraint or additional sensors, e.g. Global Positioning System (GPS), could

make the results even better.

7.5 UAV

In contrast to the Segway and the car, where the movement is restricted

to a near planar surface, the UAV has the ability to capture images with full

degrees of freedom. This dataset consists of 145 images. The camera (Panasonic

GF1) is mounted on a Falcon 8 (see Figure 1.1) from Ascending Technologies.

Because the payload is specified with 500 g, it is impossible for the UAV to carry

a suitable laserscanner, but it can carry a high quality compact system camera.

Sample images of the dataset are given in Figure 7.15. Figure 7.16(a) shows

the calculated camera path according to the workflow developed in this thesis.

The path is not regular, reflecting the windy conditions during the flight. Other

approaches, which are based on motion models, would probably fail under such

107

Figure 7.15: House acquired by a UAV.

circumstances. From the camera path a quasi dense point cloud is computed

utilizing Patch-based Multi-view Stereo (PMVS) [24]. The point cloud in Figure

7.16(b) shows many details even in areas which do not belong to the house such

as a street light. The amount of details indicate a well reconstructed camera path.

In summary, it could be shown, that the approach which is proposed in

this thesis gives good results for a variety of different examples. The datasets

were chosen from different scenarios with completely different scales. Camera

paths with a length of a few meters up to 1.9 km have been reconstructed. The

presented approaches outperform state of the art methods in either robustness,

speed or accuracy.

108

(a) Camera Path

(b) Quasi Dense Point Cloud

Figure 7.16: Camera path and quasi dense point cloud for the UAV dataset.

109

CHAPTER VIII

Conclusion and Outlook

Within this thesis a modular approach for solving the SfM problem has

been presented. The SfM problem can be subdivided into different modules.

Improvements in either robustness or computational speed have been introduced

at different stages of the toolchain. Data handling, feature estimation, geometry

computation and non-linear optimization are the most important modules, which

are needed for a robust 3D reconstruction system. The center of the approach is

a well designed data structure, which every module of the toolchain can access

and update, thus simplifying the integration of new modules or the exchange of

existing modules. The relational data model is suitable for the data, which is

computed in each step of the toolchain. Currently, the main limitation when

computing a 3D reconstruction by several clients lies in the performance of

the MySQL database. Performance might be further improved by choosing a

distributed database system optimized for serving massive amounts of data to

different clients. Each client can process different sets of images, which makes

the approach capable of being used in a cloud.

The second important part of the toolchain is the feature extraction.

It includes the detection of interest points with a high repeatability rate.

Furthermore, a distinctive description is assigned to a feature to find a match

in a set of thousands of other features. With TBH a new matching method is

presented, which was demonstrated to be superior to KD-trees and BBF. The

main challenges in 3D reconstructions occur if the images taken by the users are

either too sparse, resulting in a small overlap, or the viewing angle between two

views changes too much. A perfect feature detector and descriptor is not invented

yet. Great improvements can be expected if it is possible to match images with a

large view point difference. Currently, the best available solution is SIFT which

is incorporated in the presented toolchain.

Current research in SfM assumes static scenes. Dynamic parts are detected as

outliers and filtered out. In case a moving object covers large parts of the image,

111

Figure 8.1: Computational power comparison between GPUs and CPUs [68].

potentially the surrounding scene is filtered out. When acquiring images with a

car, similar challenges occur, e.g. when a bus drives in front of the car and the

back of the bus may cover more than 50 % of the image.

So far, all SfM approaches are based on distinct interest points, but lately a

new approach which considers every pixel in an image has been presented in the

SLAM community [50, 64]. This is possible due to the high processing power of

GPUs (see Figure 8.1 for a comparison). Incorporating every pixel of an image in a

BA step can increase the precision by an order of a magnitude and directly results

in a dense reconstruction. The dense point cloud and the camera positions are

optimized at the same time. The relatively small amount of memory of consumer

graphics cards is the main limitation.

A lack of experience in image acquisition or bad conditions can lead to missing

or noisy data. In case of offline processing systems, these errors are not detected

before processing the images. At that point in time, it might be costly or even

impossible to return to the object and capture the missing parts. Computing a

rough estimate of the object in realtime to detect if parts are missing, could avoid

this problem. But the dependence between accuracy and time is not linear, it

rather follows a step function. The number of iterations within RANSAC is the

main parameter to adjust the runtime. In case the number of iterations is too

112

low, the results will be completely wrong not following a normal distribution.

Instead of enabling the system to process bad data, improving the image

acquisition is another approach. Simplifying the process of image acquisition

can have a great impact when getting the technology in the consumer market.

Instead of acquiring images, high resolution videos could prevent the following

typical errors:

• Large viewpoint change.

• Only two images overlap instead of three.

• Capturing the scene as panorama with no baseline.

Most of these errors occur easily when taking images, because often the user

moves to a position, makes several photos of the surrounding scene and then

moves to a different position, mostly far away from other positions and repeats

the process. However, when making a video, the user moves slowly around the

object and intuitively performs the correct movement. With the video mode of

digital single-lens reflex (SLR) cameras, high quality videos for 3D reconstructions

can be made due to high quality lenses of the cameras. But, as shown by Strasdat

et al. [84], a high number of features in contrast to a high framerate results in

better accuracy. So it might be necessary to select an optimal set of key frames

from the video.

Other research areas handle tracking of cars for video surveillance systems

[13] or detecting and analysing people movements [93]. In both examples the

camera is assumed to be static. Merging SfM with those areas could lead

to interesting new applications, e.g. video surveillance with UAVs or driver

assistance systems [73]. In this case both the camera as well as the objects

of interest move. Reconstructing surrounding cars and predicting their pathways

could be a promising application [76].

A logical extension handles not only moving but deformable objects [15].

Analysing the deformation of animals takes already part in current research. A

camera system such as the quadrifocal camera setup in Figure 8.2 can be used to

capture synchronous images of non-rigid objects such as animals. Each quadruple

is reconstructed and the motion is analysed between multiple reconstructions.

Once the surface of the object is reconstructed, a template is generated and the

surface can be tracked by only one camera [61]. Considering multiple templates

and multiple cameras, a complete non-rigid object can be modeled.

113

Figure 8.2: Quadrifocal camera setup to capture deformable objects.

Within this work complete SfM toolchain was developed, many challenging

problems have been solved and new ideas have been presented. Especially,

OpenOF can be a cornerstone for further research topics as it not only covers

the interest of the computer vision community but can be used by everybody

who has a non-linear least squares optimization problem.

114

Bibliography

[1] Sameer Agarwal, Noah Snavely, and Steven Seitz. Bundle adjustment in
the large. In ECCV, pages 29–42. Springer, 2010.

[2] Sameer Agarwal, Noah Snavely, Ian Simon, Steven Seitz, and Richard
Szeliski. Building Rome in a day. In ICCV, pages 72–79. IEEE, September
2009.

[3] Motilal Agrawal. A Lie algebraic approach for consistent pose registration
for general Euclidean motion. In Intelligent Robots and Systems, 2006
IEEE/RSJ International Conference on, pages 1891–1897. IEEE, 2006.

[4] Adrien Angeli, David Filliat, Stephane Doncieux, and Jean-arcady Meyer.
A fast and incremental method for loop-closure detection using bags of
visual words. IEEE Transactions On Robotics, Special Issue on Visual
SLAM, 24(5):1027–1037, 2008.

[5] Jan Bartelsen, Helmut Mayer, Heiko Hirschmüller, Andreas Kuhn, and
Mario Michelini. Orientation and dense reconstruction from unordered
wide baseline image sets. PFG Photogrammetrie, Fernerkundung,
Geoinformation, 2012(4):421–432, 08 2012.

[6] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool.
Speeded-Up Robust Features (SURF). CVIU, 110(3):346–359, 2008.

[7] Jeffrey Beis and David G. Lowe. Shape Indexing Using Approximate
Nearest-Neighbour Search in High-Dimensional Spaces. In CVPR, pages
1000–1006. IEEE, 1997.

[8] Jon Louis Bentley. Multidimensional binary search trees used for associative
searching. Communications of the ACM, 18(9):509–517, September 1975.

[9] Y-Lan Boureau, Jean Ponce, and Yann LeCun. A theoretical analysis of
feature pooling in visual recognition. In ICML, pages 111–118. Omnipress,
2010.

[10] Matthew Brown, Richard Szeliski, and Simon Winder. Multi-image
matching using multi-scale oriented patches. In CVPR, volume 1, pages
510–517. IEEE, 2005.

115

[11] Martin Byröd and Kalle Åström. Conjugate gradient bundle adjustment.
In ECCV, pages 114–127, 2010.

[12] Javier Civera, Andrew Davison, and Martinez Montiel. Inverse Depth
Parametrization for Monocular SLAM. IEEE Transactions on Robotics,
24(5):932–945, October 2008.

[13] Benjamin Coifman, David Beymer, Philip McLauchlan, and Jitendra
Malik. A real-time computer vision system for vehicle tracking and traffic
surveillance. Transportation Research Part C: Emerging Technologies,
6(4):271–288, 1998.

[14] Thomas Connolly and Carolyn Begg. Database Systems, A Practical
Approach to Design, Implementation, and Management. Addison-Wesley,
2002.

[15] Tim Cootes. Deformable Object Modelling and Matching. In ACCV, pages
1–10. Springer, 2011.

[16] David Cox, John Little, and Donal O’Shea. Ideals, Varieties and
Algorithms, volume 46. Springer, 2007.

[17] Erik B. Dam, Martin Koch, and Martin Lillholm. Quaternions,
interpolation and animation. Technical report, 1998.

[18] Ivan Dryanovski, William Morris, and Jizhong Xiao. An open-source pose
estimation system for micro-air vehicles. In ICRA, pages 4449–4454. IEEE,
2011.

[19] Wolfgang Förstner. A Framework for Low Level Feature Extraction. In
ECCV, volume 802, pages 383–394. Springer, 1994.

[20] Jan-Michael Frahm, Pierre Fite-Georgel, David Gallup, Tim Johnson,
Rahul Raguram, Changchang Wu, Yi-Hung Jen, Enrique Dunn, Brian
Clipp, Svetlana Lazebnik, and Marc Pollefeys. Building Rome on a cloudless
day. In ECCV. Springer, 2010.

[21] Jan-Michael Frahm and Marc Pollefeys. RANSAC for (Quasi-)Degenerate
data (QDEGSAC). In CVPR, pages 453–460. IEEE, 2006.

[22] Linton C. Freeman. A set of measures of centrality based on betweenness.
Sociometry, 40(1):35–41, 1977.

[23] Jerome H. Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An
Algorithm for Finding Best Matches in Logarithmic Expected Time. ACM
Transactions on Mathematical Software, 3(3):209–226, September 1977.

[24] Yasutaka Furukawa and Jean Ponce. Accurate, dense, and robust multiview
stereopsis. TPAMI, 32(8):1362–76, August 2010.

116

[25] Google. Berlin - google maps, March 2012. http://maps.google.com.

[26] Ankur Handa, Richard A. Newcombe, Adrien Angeli, and Andrew J.
Davison. Real-time camera tracking: When is high frame-rate best? In
ECCV, pages 222–235, 2012.

[27] Matthew Harker and Paul O. Leary. First Order Geometric Distance (The
Myth of Sampsonus). In BMVC, volume 1, pages 1–10. British Machine
Vision Association, 2006.

[28] Richard Hartley and Andrew Zisserman. Multiple View Geometry in
computer vision. Cambridge University Press, 2003.

[29] Olaf Hellwich, Cornelius Wefelscheid, Jakub Lukaszewicz, Ronny Hänsch,
Adnan M. Siddique, and Adam Stanski. Integrated matching and geocoding
of SAR and optical satellite images. In IBPRIA 2013. Springer, June 2013.

[30] Peter Huber. Robust Statistics, volume 1 of Wiley Series in Probability and
Statistics. Wiley, 1981.

[31] Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization
for nearest neighbor search. TPAMI, 33(1):117–128, January 2011.

[32] Yekeun Jeong, David Nister, Drew Steedly, Richard Szeliski, and In-so
Kweon. Pushing the Envelope of Modern Methods for Bundle Adjustment.
In CVPR, pages 1474–1481. IEEE, 2010.

[33] Luo Juan and Oubong Gwun. A comparison of sift, pca-sift and surf.
International Journal of Image Processing, 3(4):143–152, 2009.

[34] Fredrik Kahl and Richard Hartley. Critical Curves and Surfaces for
Euclidean Reconstruction. In ECCV, pages 447–462. Springer, 2002.

[35] Juho Kannala and Sami S. Brandt. A generic camera model and calibration
method for conventional, wide-angle, and fish-eye lenses. TPAMI,
28(8):1335–1340, 2006.

[36] Yan Ke and Rahul Sukthankar. PCA-SIFT : A More Distinctive
Representation for Local Image Descriptors. Review Literature And Arts
Of The Americas, 2003.

[37] Sebastian Knorr, Matthias Kunter, and Thomas Sikora. Super-resolution
stereo- and multi-view synthesis from monocular video sequences. In 3-D
Digital Imaging and Modeling (3DIM 2007), Montral, Qubec, Canada,
August 2007.

[38] Kevin Köser and Reinhard Koch. Perspectively invariant normal features.
In ICCV, pages 14–21. IEEE, 2007.

117

[39] Ullrich Köthe and Michael Felsberg. Riesz-Transforms Versus Derivatives:
On the Relationship Between the Boundary Tensor and the Energy Tensor.
In Scale Space and PDE Methods in Computer Vision, volume 3459, pages
179–191. Springer, 2005.

[40] Erwin Kruppa. Zur Ermittlung eines Objektes aus zwei Perspektiven mit
innerer Orientierung. Sitz.-Ber. Akad. Wiss., Wien, Math. Naturw. Kl.,
Abt. Ila, 122(122):1939–1948, 1913.

[41] Rainer Kummerle, Giorgio Grisetti, Hauke Strasdat, Kurt Konolige, and
Wolfram Burgard. g2o: A general framework for graph optimization. In
ICRA, pages 3607–3613. IEEE, 2011.

[42] Matthias Leuthäuser. Effizientes Matching von Feature-Deskriptoren in
Echtzeit. Diplomarbeit, Technische Universität Berlin, 2010.

[43] Xiaowei Li, Changchang Wu, Christopher Zach, Svetlana Lazebnik, and
J.M. Frahm. Modeling and recognition of landmark image collections using
iconic scene graphs. In ECCV, volume 8. Springer, 2008.

[44] Yunpeng Li, Noah Snavely, Dan Huttenlocher, and Pascal Fua. Worldwide
pose estimation using 3d point clouds. In ECCV, volume 7572, pages 15–29.
Springer, 2012.

[45] Tony Lindeberg. Scale-space theory: A basic tool for analysing structures
at different scales. Journal of Applied Statistics, pages 224–270, 1994.

[46] Hugh C. Longuet-Higgins. A computer algorithm for reconstructing a scene
from two projections. Nature, 293(5828):133–135, 1981.

[47] Michael Lösler. JAG3D - Java Graticule 3D (OpenAdjustment)
- The OpenSource Geodetic Network Adjustment Program, 2013.
http://javagraticule3d.sourceforge.net/.

[48] Manolis I. A. Lourakis. Sparse non-linear least squares optimization for
geometric vision. In ECCV, pages 43–56. Springer, 2010.

[49] Manolis I. A. Lourakis and Antonis A. Argyros. SBA: A software package
for generic sparse bundle adjustment. ACM Transactions on Mathematical
Software, 36(1):1–30, 2009.

[50] Steven Lovegrove and Andrew J. Davison. Real-time spherical mosaicing
using whole image alignment. In ECCV, pages 73–86. Springer, 2010.

[51] David G. Lowe. Object recognition from local scale-invariant features. In
ICCV, volume 2, pages 1150–1157. IEEE, 1999.

[52] David G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints.
IJCV, 60(2):91–110, November 2004.

118

[53] Bruce Lucas and Takeo Kanade. An iterative image registration technique
with an application to stereo vision. In International joint conference
on artificial intelligence, volume 3, pages 674–679. Morgan Kaufmann
Publishers Inc., 1981.

[54] Kaj Madsen, Hans Nielsen, and Ole Tingleff. Methods for Non-Linear Least
Squares Problems (2nd ed.), 2004.

[55] Jiri Matas, Ondrej Chum, Martin Urban, and Tomás Pajdla. Robust
wide-baseline stereo from maximally stable extremal regions. Image and
Vision Computing, 22(10):761–767, 2004.

[56] Helmut Mayer, Jan Bartelsen, Heiko Hirschmüller, and Andreas Kuhn.
Dense 3d reconstruction from wide baseline image sets. In Proceedings of
the 15th international conference on Theoretical Foundations of Computer
Vision: outdoor and large-scale real-world scene analysis, pages 285–304.
Springer, 2012.

[57] J. Chris McGlone, Edward M. Mikhail, James Bethel, and Roy Mullen.
Manual of photogrammetry. American Society for Photogrammetry and
Remote Sensing, 2004.

[58] Krystian Mikolajczyk and Cordelia Schmid. A performance evaluation of
local descriptors. TPAMI, 27(10):1615–1630, 2005.

[59] Krystian Mikolajczyk, Tinne Tuytelaars, Cordelia Schmid, Andrew
Zisserman, Jiri Matas, Frederik Schaffalitzky, Timor Kadir, and Luc Van
Gool. A comparison of affine region detectors. IJCV, 65(1-2):43–72, 2005.

[60] Yang Mingqiang, Kpalma Kidiyo, and Ronsin Joseph. A survey of shape
feature extraction techniques. Pattern Recognition, 2008(November):43–90,
2008.

[61] Markus Moll and Luc Van Gool. Optimal templates for nonrigid surface
reconstruction. In ECCV, volume 7572, pages 696–709. Springer, 2012.

[62] Jean-Michel Morel and Guoshen Yu. ASIFT: A New Framework for Fully
Affine Invariant Image Comparison. SIAM Journal on Imaging Sciences,
2(2):438, 2009.

[63] Marius Muja and David G. Lowe. Fast approximate nearest neighbors with
automatic algorithm configuration. Science, 340(3):331–340, 2009.

[64] Richard A. Newcombe, Steven J. Lovegrove, and Andrew J. Davison.
DTAM: Dense tracking and mapping in real-time. In ICCV, volume 1,
pages 2320–2327. IEEE, 2011.

[65] David Nistér. An efficient solution to the five-point relative pose problem.
TPAMI, 26(6), 2004.

119

[66] David Nistér and Henrik Stewenius. Scalable recognition with a vocabulary
tree. In CVPR, volume 2, pages 2161–2168. IEEE, 2006.

[67] Jorge Nocedal and Stephen J. Wright. Numerical Optimization, volume 43
of Springer Series in Operations Research. Springer, 1999.

[68] NVIDIA. CUDA C Programming Guide :: CUDA Toolkit Documentation,
November 2012.

[69] Travis E. Oliphant. Guide to NumPy. Provo, UT, March 2006.

[70] Tore Opsahl, Filip Agneessens, and John Skvoretz. Node centrality
in weighted networks: Generalizing degree and shortest paths. Social
Networks, 32(3):245–251, July 2010.

[71] Johan Philip. A non-iterative algorithm for determining all essential
matrices corresponding to five point pairs. Photogrammetric Record,
15(88):589–599, 1996.

[72] Johan Philip. Critical point configurations of the 5-, 6-, 7-, and 8-point
algorithms for relative orientation. Technical report, KTH Royal Institute
of Technology, 1998.

[73] Clemens Rabe. Detection of Moving Objects by Spatio-Temporal
Motion Analysis: Real-time Motion Estimation for Driver Assistance
Systems. Südwestdeutscher Verlag für Hochschulschriften, 2012. ISBN
978-3-8381-3219-8.

[74] Volker Rodehorst, Matthias Heinrichs, and Olaf Hellwich. Evaluation of
relative pose estimation methods for multi-camera setups. In Proceedings
of International Society for Photogrammetry and Remote Sensing, 2008.

[75] Edward Rosten, Reid Porter, and Tom Drummond. Faster and better: a
machine learning approach to corner detection. TPAMI, 32(1):105–119,
2010.

[76] Konrad Schindler, Andreas Ess, Bastian Leibe, and Luc Van Gool.
Automatic detection and tracking of pedestrians from a moving stereo rig.
ISPRS Journal of Photogrammetry and Remote Sensing, 65(6):523 – 537,
2010.

[77] Jianbo Shi and Carlo Tomasi. Good features to track. In CVPR, volume 94,
pages 593–600. IEEE, 1994.

[78] Chanop Silpa-Anan and Richard Hartley. Optimised kd-trees for fast image
descriptor matching. In CVPR. IEEE, 2008.

[79] Chanop Silpa-anan and Richard Hartley. Optimised KD-trees for fast image
descriptor matching. In CVPR, pages 1–8. IEEE, 2008.

120

[80] Josef Sivic and Andrew Zisserman. Video Google: a text retrieval approach
to object matching in videos. In ICCV, pages 1470–1477. IEEE, 2003.

[81] Noah Snavely, Steven Seitz, and Richard Szeliski. Photo tourism: exploring
photo collections in 3D. In ACM Transactions on Graphics (TOG),
volume 25, pages 835–846. ACM, 2006.

[82] Noah Snavely, Steven M. Seitz, and Richard Szeliski. Skeletal graphs for
efficient structure from motion. In CVPR, pages 1–8. IEEE, June 2008.

[83] Henrik Stewenius, Christopher Engels, and David Nistér. Recent
developments on direct relative orientation. ISPRS Journal of
Photogrammetry and Remote Sensing, 60(4):284 – 294, 2006.

[84] Hauke Strasdat, José M. M. Montiel, and Andrew J. Davison. Visual slam:
Why filter? Image Vision Computing, 30(2):65–77, February 2012.

[85] Christoph Strecha, Wolfgang von Hansen, Luc Van Gool, Pascal Fua, and
Ulrich Thoennessen. On benchmarking camera calibration and multi-view
stereo for high resolution imagery. In CVPR, pages 1–8. IEEE, June 2008.

[86] Peter Sturm. A historical survey of geometric computer vision. In CAIP,
pages 1–8. Springer, 2011.

[87] Raghav Subbarao, Yakup Genc, and Peter Meer. Nonlinear Mean Shift for
Robust Pose Estimation. In Proceedings of the Eighth IEEE Workshop on
Applications of Computer Vision, pages 6–6. IEEE, February 2007.

[88] SymPy Development Team. SymPy: Python library for symbolic
mathematics, 2012.

[89] Carlo Tomasi. Detection and Tracking of Point Features Technical Report
CMU-CS-91-132. Image (Rochester, N.Y.), (April), 1991.

[90] Philip Torr and Andrew Zisserman. Robust parameterization and
computation of the trifocal tensor. Image and Vision Computing,
15(8):591–605, 1997.

[91] Bill Triggs, Philip F. McLauchlan, Richard I. Hartley, and Andrew W.
Fitzgibbon. Bundle adjustment - a modern synthesis. In Proceedings of
the International Workshop on Vision Algorithms: Theory and Practice,
ICCV, pages 298–372. Springer, 2000.

[92] Christian Unger. Dense 3d reconstruction from multiple views using
non-linear least squares optimizations. Masterthesis, Technische Universität
Berlin, 2013.

[93] Raquel Urtasun, David Fleet, and Pascal Fua. 3D People Tracking with
Gaussian Process Dynamical Models. In CVPR, volume 1, pages 238–245.
Citeseer, IEEE, 2006.

121

[94] Cornelius Wefelscheid, Ronny Hänsch, and Olaf Hellwich.
Three-dimensional building reconstruction using images obtained by
unmanned aerial vehicles. In Proceedings of the International Conference
on Unmanned Aerial Vehicle in Geomatics (UAV-g), Zurich, Suisse, Sep
2011.

[95] Cornelius Wefelscheid and Olaf Hellwich. OpenOF: Framework for sparse
non-linear least squares optimization on a GPU. In VISAPP. SciTePress,
2013.

[96] Cornelius Wefelscheid, Tilman Wekel, and Olaf Hellwich. Monocular
rectangle reconstruction - based on direct linear transformation. In
VISAPP, pages 271–276. SciTePress, 2011.

[97] Changchang Wu. VisualSFM: A Visual Structure from Motion System,
December 2012. http://homes.cs.washington.edu/ ccwu/vsfm/.

[98] Changchang Wu, Sameer Agarwal, Brian Curless, and Steven Seitz.
Multicore bundle adjustment. In CVPR, pages 3057–3064. IEEE, 2011.

[99] Changchang Wu, Brian Clipp, Xiaowei Li, Jan-Michael Frahm, and Marc
Pollefeys. 3d model matching with viewpoint-invariant patches (vip). In
CVPR. IEEE, 2008.

[100] Christopher Zach. Sources, February 2012.
http://www.inf.ethz.ch/personal/chzach/opensource.

122

