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The Loewner equation and Lipschitz graphs

Steffen Rohde, Huy Tran and Michel Zinsmeister

Abstract. The proofs of continuity of Loewner traces in the stochastic
and in the deterministic settings employ different techniques. In the for-
mer setting of the Schramm–Loewner evolution SLE, Hölder continuity of
the conformal maps is shown by estimating the derivatives, whereas the
latter setting uses the theory of quasiconformal maps. In this note, we
adopt the former method to the deterministic setting and obtain a new
and elementary proof that Hölder-1/2 driving functions with norm less
than 4 generate simple arcs. We also give a sufficient condition for driving
functions to generate curves that are graphs of Lipschitz functions.

1. Introduction and results

The chordal Loewner differential equation

∂tgt(z) =
2

gt(z)− λt
, g0(z) = z,

which will be briefly reviewed in Section 2, provides a one-to-one correspondence
between certain decreasing families of simply connected subdomains H \ Kt of
the upper half plane, and real-valued continuous functions λt. Initially developed
as a tool to study extremal problems in complex analysis [7], it has become an
important tool in probability theory, based on Oded Schramm’s insight [11] that
Brownian motion arises naturally as the driving function λt in various settings of
random sets Kt.

While it is not hard to see that for simple curves γ ⊂ H ∪ {0} with γ0 = 0,
the family Kt = γ[0, t] yields continuous functions λt (see Section 2 for a precise
statement), the converse is not true in general: There are continuous functions λt

for which the associated hulls Kt are not locally connected, and hence not of the
form γ[0, t] for some continuous function γ.

In [8] and [6], the continuity problem was treated by viewing the hulls Kt as
the result of “conformally welding” two intervals of the real line, and by applying
the theory of quasiconformal maps to the welding problem. The main result is:
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Theorem 1.1 ([8], [6]). If the driving function λ has Hölder-1/2 norm less than 4,
then the chordal Loewner equation generates a simple curve γ. Moreover, γ is a
quasiconformal arc that meets the real line non-tangentially.

The constant 4 in the theorem is sharp in the sense that for each c ≥ 4, there
exists a driving function whose Hölder-1/2 norm is c and the Loewner equation
generates a curve that meets the real line other than at the base, see examples
in [3] and [6].

In the stochastic setting of the Schramm–Loewner evolution SLEκ where the
driving term is λt =

√
κBt and Bt is a standard one-dimensional Brownian mo-

tion, the conformal welding approach leads to interesting and difficult problems,
see [12] and [1] for related deep results. In [10], the almost sure continuity of
the SLEκ hulls was proved by different means: Based on estimates of the expecta-
tion E[|(g−1

t )′(z)|p] for suitable exponents p, it was shown that limy→0 g
−1
t (λt+ iy)

exists, is continuous in t, and that this implies continuity of the hulls.
In this note, we will adopt the second method to the deterministic setting,

and obtain a new and elementary proof of Theorem 1.1. The key observation is
the following (see Theorem 3.1 below): under the “upward” flow (2.3), the point
zt = ft(i) − λt will never leave the cone {|x| < cy}, where c depends on the
Hölder-1/2 norm only. Combined with the integral representation of log |f ′

t(z)|
((2.8) below), this easily gives an estimate for |(g−1

t )′(λt + iy)| that, when inte-
grated, implies existence and continuity of limy→0 g

−1
t (λt+iy). Standard conformal

mapping techniques (particularly the Gehring-Hayman inequality) then yield the
additional information that the trace is a quasiconformal arc approaching the real
line non-tangentially. When applied to the integral representation (2.9) of arg f ′

t(z),
our approach also gives a sufficient condition for the driving functions to generate
the graph of a Lipschitz function:

Theorem 1.2. There exists a constant C0 > 0 such that, for every continuous
function λ satisfying

(1.1)

∫ t

0

Nλ
s,t

(t− s)3/2
ds ≤ C0 for all 0 < t < T,

where Nλ
s,t = sup{|λr − λs| : s ≤ r ≤ t}, the Loewner equation generates a graph

of a Lipschitz function.

Theorem 1.2 is sharp, as the example λt = c
√
1− t (0 ≤ t ≤ 1) shows (see [3]).

In this example, the trace is asymptotic to a logarithmic spiral at the tip, hence
it is not the graph of any function, and the integral in Theorem 1.2 diverges. On
the other hand, the straight line of angle πα has driving function λt = c

√
t, where

c = 2(1− 2α)/
√
α(1 − α), so that every Hölder-1/2 norm can arise from a simple

curve. Notice that for λt = c
√
t, the integral has the finite value c

√
2 sinh−1(1).

The organization of the paper is as follows. In Section 2 we briefly review basic
facts and definitions around the Loewner equation. The key points lie in Section 3,
where we state and prove Theorem 3.1 regarding the trajectories zt = ft(it) − λt

of the backward Loewner flow when the Hölder-1/2 norm is less than 4. Finally,
Theorems 1.1 and 1.2 will be proved in Section 4.
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2. Preliminaries

Let γ : [0, T ] → H ∪ {0} be a simple curve in the upper half-plane H except that
γ0 ∈ R. For each t ∈ [0, T ], by the Riemann mapping theorem there exists a unique
conformal map gt : H\γ[0, t] → H satisfying the hydrodynamic normalization:

gt(z) = z +
ct
z
+ · · · when z → ∞.

It can be shown that ct is a nonnegative, strictly increasing, continuous function
and c0 = 0 [4]. Hence one can reparametrize γ so that ct = 2t. Then for each
z ∈ H, the function t 
→ gt(z) satisfies the (downward) chordal Loewner equation:

(2.1) ∂tgt(z) =
2

gt(z)− λt
, g0(z) = z,

where λ is a continuous, real-valued function and gt(γt) = λt, see Chapter 4 in [4].
Conversely, if one starts with a continuous function λt : [0, T ] → R, one can

consider the initial value problem for each z ∈ H:

∂tg(t, z) =
2

g(t, z)− λt
, g(0, z) = z.

For each z ∈ H there is a maximal interval for which a solution g(t, z) exists. Let
Tz = sup{s ∈ [0, T ] : g(t, z) exists on [0, s)}. It is easy to see that, if Tz < T , then

lim
t→Tz

g(t, z) = λTz .

Let Ht = {z ∈ H : Tz > t} and gt(z) = g(t, z). Then one can show that the
set Ht is a simply connected subdomain of H, and gt(z) is the unique conformal
map from Ht onto H with the following normalization near infinity:

gt(z) = z +
2t

z
+O

( 1

z2

)
.

The driving function λ of the Loewner chain (gt) is said to generate a curve if there
exists a curve γ such that Ht is the unbounded component of H\γ[0, t] for each
t ≥ 0. By Theorem 4.1 in [10], this is equivalent to the existence and continuity in
t > 0 of

(2.2) γt := lim
y→0+

g−1
t (λt + iy).

By Proposition 2.19 of [5] and Proposition 3.11 of [2], a very useful and simple
criterion for this existence and continuity is the convergence to zero of

v(t, ε) :=

∫ ε

0

|(g−1
t )′(λt + iy)|dy

as ε → 0, uniformly in t ∈ [0, T ].
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Rather than directly working with the Loewner equation (2.1), it is often easier to
work with the upward Loewner equation:

(2.3) ∂tft(z) =
−2

ft(z)− ξt
, f0(z) = z,

for z ∈ H and real-valued continuous function ξt. Since the imaginary part of ft(z)
is strictly increasing, the solution exists for all time t ≥ 0. If (gt)0≤t≤T is the
solution to (2.1) with driving function λ and if (ft)0≤t≤T is the solution to (2.3)
with ξt = λT−t, then

fT (z) = g−1
T (z).

We will frequently use the following two simple properties of the Loewner equation,
regarding the translation and concatenation of driving functions:

First, if a ∈ R and ξ̃t = ξt + a, then the Loewner chain (f̃t) corresponding to ξ̃
is given by

f̃t(z) = ft(z − a) + a.

Second, let (f
(1)
t )0≤t≤T1 (respectively (f

(2)
t )0≤t≤T2) be the solution to (2.3) with

the driving function ξ(1) defined on [0, T1] (respectively ξ(2) defined on [0, T2]).

Suppose ξ
(1)
T1

= ξ
(2)
0 , and define the concatenation of ξ(1) and ξ(2) by

(2.4) ξt =

{
ξ
(1)
t , t ∈ [0, T1],

ξ
(2)
t−T1

, t ∈ [T1, T1 + T2].

Then the (upward) Loewner solution corresponding to ξ is given by

(2.5) ft =

{
f
(1)
t , t ∈ [0, T1],

f
(2)
t−T1

◦ f (1)
T1

, t ∈ [T1, T1 + T2].

The following notation will be used throughout the rest of the paper: if z ∈ H and
ft(z) is the solution to (2.3), we define xt := xt(z, ξ) and yt := yt(z, ξ) by

xt + iyt := zt := ft(z)− ξt.

It follows that

(2.6) ∂t(xt + ξt) =
−2xt

x2
t + y2t

and

(2.7) ∂tyt =
2yt

x2
t + y2t

.

The following expressions for |f ′
t(z)| and arg f ′

t(z) in terms of xt and yt will be
used to prove Theorems 1.1 and 1.2. Since

f ′
t(z) = elog f ′

t(z) = e
∫

t
0
∂s log f ′

s(z) ds

and

∂s log f
′
s(z) =

∂sf
′
s(z)

f ′
s(z)

=
2

(fs(z)− ξ(s))2
,
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we have

(2.8) |f ′
t(z)| = exp

(
2

∫ t

0

x2
s − y2s

(x2
s + y2s)

2
ds
)
= exp

(∫ t

0

x2
s − y2s

x2
s + y2s

· 2ds

x2
s + y2s

)
and

(2.9) arg f ′
t(z) = −4

∫ t

0

xsys
(x2

s + y2s)
2
ds.

Finally, we will frequently use the following simple estimate for the oscillation
of xt for general driving functions.

Lemma 2.1. Let ξ be an arbitrary continuous function.

a) If xs ≥ 0 for all 0 ≤ s ≤ t, then xt ≤ x0 + ξ0 − ξt.

b) In general, |xt| ≤ |x0|+M ξ
0,t, where M ξ

0,t = sup{|ξr − ξt| : r ∈ [0, t]}.
Proof. Since xs ≥ 0, the sum xt + ξt is nonincreasing by (2.6), and part a) follows.
To prove b), by symmetry we may assume that x0 ≥ 0, and we may also assume
|xt| > x0, else b) is trivial. Let S = sup{0 ≤ s < t : |xs| ≤ x0} so that |xS | = x0.

If xt ≥ 0 then xt > x0 and x0 = xS < xs for S < s ≤ t. Applying a) with z
replaced by xS + iyS and ξ replaced by ξ(·+ S) we get

xt ≤ xS + ξS − ξt = x0 + ξS − ξt.

If xt < 0 then xt < −x0 and xs < xS = −x0 for S < s ≤ t. Now replacing z
by −(xS + iyS) and ξ by −ξ·+S , the claim follows again from a). �

3. Staying in a fixed cone

In this section, we restrict our attention to the upward Loewner equation (2.3)
with driving function ξ whose Hölder-1/2 norm satisfies

σ := ||ξ||1/2 = sup
s�=t

|ξt − ξs|
|t− s|1/2 < 4.

Denote Ac the cone {x + iy : |x| ≤ cy} and Ac(v) = v + Ac for v ∈ R. The main
result of this section is:

Theorem 3.1. There is a constant cσ such that, if z0 = iy, then zt = ft(z0+ξ0)−ξt
stays in the cone Acσ for all t. Moreover,

(3.1)

√
4t

1 + c2σ
+ y2 ≤ yt ≤

√
4t+ y2

for all t ≥ 0, and cσ ≤ σ/
√
4− σ2 for σ < 2.

This theorem easily implies the Hölder continuity of ft, Corollary 3.5 below.
The intuition behind the proof of Theorem 3.1 is as follows. To first order, Δzt =
−2
zt
Δt − Δξ. Therefore, the larger xt/yt, the stronger 2

zt
Δt pushes towards the

middle of the cone, and dominates Δξ if the Hölder-1/2 norm is small.
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We will first show that an upper bound on the growth rate of xt implies a lower
bound on yt that is comparable to the optimal upper bound yt ≤

√
4t+ y20 .

Lemma 3.2. If |xt| < M
√
t for all t ≥ Cy20 with some M < 2 and C > 0, then

(3.2) y2t ≥ Lt

for all t ≥ 0, where L = min(1/C, 4−M2) > 0.

Proof. Since L ≤ 1/C, we have Lt ≤ t/C ≤ y20 < y2t for 0 < t ≤ t0 := Cy20 , where
the last inequality comes from the fact that yt is increasing in t which can be seen
from the equation (2.7). If (3.2) were not true, there would be a minimal s > t0
such that y2s = Ls and y2t ≥ Lt on [0, s]. It follows from (2.7) that

∂t y
2
t =

4y2t
x2
t + y2t

≥ 4Lt

M2t+ Lt
=

4L

M2 + L
≥ L

for all t0 ≤ t ≤ s, which implies y2s − y2t0 ≥ L(s− t0). This contradicts the fact

y2s − y2t0 = Ls− y2t0 < L(s− t0). �

If σ < 2, then the assumption |xt| < M
√
t of the Lemma is satisfied withM = σ

by Lemma 2.1 and arbitrarily small C, and Theorem 3.1 follows easily. The reader
who is only interested in a short proof of Theorem 1.1 for small Hölder-1/2 norm
may thus skip ahead to Corollary 3.5. To deal with the case 2 ≤ σ < 4, we will
show that the trivial bound |xt| ≤ σ

√
t can be improved to an estimate |xt| < M

√
t

for some M < 2 and t large enough, if we assume that zt stays outside a cone. As
a first step, we will show:

Lemma 3.3. Let K and M be finite positive constants. If

Kyt ≤ xt ≤ M
√
t for all t ∈ [t0, T ],

then

xt ≤
(
σ − 4K2

K2 + 1

1

M

)√
t+ C for all t ∈ [t0, T ],

where C = (M + 4K2/(M(K2 + 1)))
√
t0.

Proof. It follows from the differential equation (2.6) for xt + ξt that

xt + ξt − xt0 − ξt0 =

∫ t

t0

−2xs

x2
s + y2s

ds =

∫ t

t0

−2(xs

ys
)2

(xs

ys
)2 + 1

1

xs
ds ≤ −2K2

K2 + 1

∫ t

t0

1

xs
ds,

so that

xt ≤ xt0 −
2K2

K2 + 1

∫ t

t0

1

xs
ds+ σ

√
t ≤ M

√
t0 − 2K2

K2 + 1

∫ t

t0

1

M
√
s
ds+ σ

√
t

=
(
σ − 4K2

(K2 + 1)M

)√
t+

(
M +

4K2

(K2 + 1)M

)√
t0.

�
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Lemma 3.4. For every σ < 4 and σ′ > σ/2 there are K > 0 and C > 0 such that,
if x0 = Ky0 and if xt ≥ Kyt for all t ≥ 0, then |xt| ≤ σ′√t for all t ≥ Cy20 .

Proof. Let M0 = σ, and K = σ/
√
16− σ2. Recursively define

Mn+1 = σ − 4K2

(K2 + 1)Mn

and notice that Mn → σ/2 as n → ∞. Hence there is N such that MN < σ′.
Because xt ≤ x0 + σ

√
t, for every M ′

0 > σ there is C0 such that xt ≤ M ′
0

√
t for all

t ∈ [C0y
2
0 , T ]. It follows from Lemma 3.3 that for every M ′

1 > M1 there is C1 such
that xt ≤ M ′

1

√
t for all t ∈ [C1y

2
0 , T ]. Similarly, by continuity and N applications

of Lemma 3.3, for every M ′
N > MN there is CN such that xt ≤ M ′

N

√
t for all

t ∈ [CNy20 , T ]. The lemma follows by choosing M ′
N = σ′ and setting C = CN . �

We are now ready to give the:

Proof of Theorem 3.1. If σ < 2, we simply apply Lemma 3.2 with arbitrarily
small C and find that

|xt|
yt

≤ σ
√
t

L
√
t
=

σ√
4− σ2

for all t so that we can take cσ = σ/
√
4− σ2. In general, fix σ′ ∈ (σ/2, 2) and

let K and C be the constants of Lemma 3.4. Since x0 = 0, the points zt are in the
cone AK for all small t (see Figure 1). If for some t, the point zt is outside AK ,
then we can find an interval [t1, t2] containing t so that

|xt1 | = Kyt1 and |xs| ≥ Kys for all t1 ≤ s ≤ t2,

and without loss of generality we may assume xs > 0 on [t1, t2]. Replacing ξ by
ξ̃(·) = ξ(·+ t1)− ξ(t1) on [0, t2 − t1], we are now in the situation where x0 = Ky0
and xt ≥ Kyt for all t ∈ [0, T ] (where T = t2 − t1). By Lemma 3.4, we can apply
Lemma 3.2 and obtain

xt

yt
≤ σ′√t

L
√
t
= σ′ max(C, 1/(4− σ′2))

for t ≥ Cy20 , whereas
xt

yt
≤ x0 + σ

√
t

y0
≤ K + σ

√
C

for t ≤ Cy20 . It follows that zt never leaves the cone Ac where c = max(σ′C, σ′/(4−
σ′2),K + σ

√
C).

Finally, the estimate for yt follows from |xt| ≤ cyt and

∂ty
2
t =

4y2t
x2
t + y2t

. �

A simple consequence of Theorem 3.1 is the Hölder continuity in bounded sub-
sets of the upper half plane of the solutions ft to the upward Loewner equation (2.3)
with driving functions satisfying σ = ||ξ||1/2 < 4:
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Figure 1: A trajectory of xt + iyt. It never leaves the cone Ac once outside AK .

Corollary 3.5. If σ = ||ξ||1/2 < 4, then

|f ′
t(ξ0 + iy)| ≤ (4t+ y2)(1−α)/2 yα−1

for every y > 0 and t ∈ [0, T ], where α is a constant in (0, 1] depending on σ only.

Proof. By (2.7) and (2.8), Theorem 3.1 implies that

|f ′
t(ξ0 + iy)| ≤ exp

( ∫ t

0

c2 − 1

c2 + 1

2ds

x2
s + y2s

)
=

(yt
y

) c2−1

c2+1 ≤ (4t+ y2)(1−α)/2 yα−1,

where c = cσ and α = min{1− c2−1
c2+1 , 1} ∈ (0, 1]. �

Remark 3.6. The proof of Theorem 3.1 can easily be modified to give the following
statement: for every 0 < c1 < c2, there is σ0 such that, if z0 ∈ Ac1 and σ ≤ σ0,
then zt ∈ Ac2 for all t. Then (3.1) holds with cσ replaced by c2.

Corollary 3.7. There is a constant σ0 such that the following is true: if ||ξ||1/2 ≤
σ0, if 0 ≤ c ≤ 1 and z is in the cone Ac(ξ0), and if∫ T

0

M ξ
0,s

s3/2
ds < ∞,

then

| arg f ′
T (z)| ≤ 8c+ 4

∫ T

0

M ξ
0,s

s3/2
ds.

Proof. Let σ0 be the constant from Remark 3.6 with c1 = 1 and c2 =
√
3. Then if

z0 ∈ Ac and c ≤ 1, we have zt ∈ Ac2 and yt ≥
√
y20 + t for all t by (3.1). By (2.9)

and Lemma 2.1,

| arg f ′
T (z)| ≤ 4

∫ T

0

|xs|
y3s

ds ≤ 4

∫ T

0

cy0 +M ξ
0,s

(y20 + s)3/2
ds

= 8cy0

( 1

y0
− 1√

y20 + T

)
+ 4

∫ T

0

M ξ
0,s

s3/2
ds ≤ 8c+ 4

∫ T

0

M ξ
0,s

s3/2
ds.

�
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4. The proofs of Theorems 1.1 and 1.2

Throughout this section, we maintain our notation σ = ||λ||1/2, and denote by
α = ασ the constant of Corollary 3.5. As explained in Section 2, in order to show
that the Loewner equation generates a curve it suffices to show that

v(t, ε) :=

∫ ε

0

|(g−1
t )′(λt + iy)| dy

goes to zero as ε → 0, uniformly in t ∈ [0, T ]. In our setting, this follows easily
from Corollary 3.5.

Lemma 4.1. Suppose that λ : [0, T ] → R is Hölder continuous with σ < 4 and (gt)
is the solution to (2.1). Then for every ε > 0 and 0 ≤ t ≤ T ,∫ ε

0

|(g−1
t )′(λt + iy)| dy ≤ (4t+ ε2)(1−α)/2

α
εα.

Proof. Fix 0 ≤ t ≤ T and ε > 0. Let ξs = λt−s for 0 ≤ s ≤ t. Let (fs)0≤s≤t

be the solution to (2.3) with the driving function ξ, so that g−1
t = ft. Hence by

Corollary 3.5,

(4.1) |(g−1
t )′(λt + iy)| = |f ′

t(ξ0 + iy)| ≤ (4t+ y2)(1−α)/2 yα−1,

and the lemma follows by integration. �

Remark 4.2. By Proposition 3.9 of [2], we get a quantitative estimate for the
modulus of continuity of the trace γt := limy→0+ g−1

t (λt + iy), namely γ is Hölder
continuous with exponent α/2.

To complete the proof of Theorem 1.1, it only remains to show that γ is a simple
curve and satisfies the Ahlfors geometric characterization of quasiconformal arcs

(4.2) |γt − γs| ≤ M |γt − γr|
for some constant M = Mγ and all 0 ≤ r ≤ s ≤ t ≤ T. The key idea is to use the
Gehring–Hayman inequality, see page 72 in [9], which says that among all curves
in a simply connected plane domain with two fixed end points, the hyperbolic
geodesic minimizes the euclidean length, up to a universal multiplicative constant.

Lemma 4.3. If σ < 4, then γ is a simple curve that stays inside the cone Acσ (λ0)
and satisfies (4.2).

Proof. Again consider the upward Loewner equation (2.3) with the driving function
ξ(s) = λ(t− s) for s ∈ [0, t], for fixed t ∈ [0, T ]. It follows from Theorem 3.1 that,
for z = ξ0 + iε = λt + iε,

|xt| ≤ cσ yt

and √
4

1 + c2σ
t+ ε2 ≤ y2t ≤

√
4t+ ε2.
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Since γt = limε→0+(g
−1
t )(λt + iε) = limε→0+(xt + iyt + ξt), it follows that

(4.3)
2
√
t√

1 + c2σ
≤ Im γt ≤ 2

√
t,

and

(4.4) |Re γt − λ0| ≤ cσ Im γt ≤ 2cσ
√
t.

This implies that the curve γ is contained in the cone Acσ (λ0) and meets the real
line non-tangentially. It also implies that γ(0, T ] ∩ R = ∅, which easily implies
that γ is simple (Lemma 4.34 in [4]): just notice that, if γt = γt′ for some t < t′,
then gt(γ(t, T ]) intersects the real line at λt, but that the curve gt(γ[t, T ]) has
driving function λ̃t = λt+t′ so that gt(γ(t, T ]) ∩ R = ∅ by the above.

To prove (4.2), fix 0 ≤ r ≤ s ≤ t ≤ T, denote γr, γs, γt by u, v, w, and their
images under gr by u′, v′, w′. We may assume that the line segment (u,w) is con-
tained in Hr = H \ γ[0, r] (else replace u by the point û that is closest to w on
(u,w) ∩ γ[0, r], and replace r by r̂ = γ−1(û)). By (4.3),

Im v′ ≤ 2
√
s− r ≤ 2

√
t− r ≤

√
1 + c2σ Imw′,

so that the hyperbolic geodesic geo
H
(u′, v′) from u′ to v′ in H is within bounded

hyperbolic distance from geo
H
(u′, w′). In particular, there is a point z′ = gr(z)

on geo
H
(u′, w′) of bounded hyperbolic distance from v′ (where all bounds depend

on cσ only). Denoting � the euclidean length, it follows from the Koebe distortion
theorem that

|v − w| ≤ |v − z|+ |z − w| ≤ C dist(z, ∂Hr) + �(geoHr
(z, w)) ≤ C �(geoHr

(u,w)).

Since the line segment (u,w) is contained in Hr, the Gehring-Hayman inequality
implies �(geoHr

(u,w)) ≤ C′|u − w| and (4.2) follows. This finishes the proof of
Lemma 4.3 and of Theorem 1.1. �

Proof of Theorem 1.2. Since we did not assume a priori that λ generates a curve,
we first observe that

(4.5) ||λ||1/2 ≤ 3C0.

Indeed, since |λt2 − λt1 | ≤ 2Nλ
s,t2 for 0 < s ≤ t1 < t2 ≤ T , it is not hard to see

that λ has a finite Hölder-1/2 norm on every interval [t1, t2] inside (0, T ]. Next,
for t1 ≤ s ≤ r ≤ t ≤ t2 we have |λt − λs| ≤ Nλ

r,t + ||λ||1/2
√
r − s. Integrating both

sides of this inequality from s to t with respect to r, dividing by (t − s)3/2 and
estimating the integral involving Nλ by C0, (4.5) easily follows by choosing s and t
appropriately.

If C0 < 4/3, Theorem 1.1 applies and λ generates a curve γ. We will show that,
if C0 is small enough, then for every pair of points γt1 , γt2 on γ with 0 ≤ t1 < t2 ≤ T
we have

(4.6)
∣∣∣ arg(γt2 − γt1)−

π

2

∣∣∣ ≤ C <
π

2
,
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where C depends on C0 and σ = ||λ||1/2 only, and where arg(z) ∈ (−π, π] is the
principal argument of z. This implies that γ grows vertically and is the graph of
a Lipschitz function.

Let γ̃ be the image of γ under the map gt1 . This is the curve generated by the
driving function λ̃t = λt+t1 , t ∈ [0, T − t1], see the figure below.

Figure 2: The curve γ̃ is inside the cone Ac(λt1).

By Lemma 4.3 the curve γ̃ is in the cone Ac(λt1 ), where c = cσ is defined in
Section 3. With w = gt1(γt2)− λt1 we therefore have

∣∣∣ arg(γt2 − γt1)−
π

2

∣∣∣ = ∣∣∣ arg(w ∫ 1

0

(g−1
t1 )′(λt1 + sw)ds) − π

2

∣∣∣
≤ arctan c+ sup

z∈Ac(λt1 )

| arg(g−1
t1 )′(z)|.

Applying Corollary 3.7 to the driving function ξt = λt1−t with t ∈ [0, t1], assum-
ing C0 is small enough such that 3C0 < σ0 and c3C0 ≤ 1, we get

sup
z∈Ac(λt1 )

| arg(g−1
t1 )′(z)| ≤ 8c+ 4

∫ t1

0

M ξ
0,s

s3/2
ds = 8c+ 4

∫ t1

0

Nλ
s,t1

(t1 − s)3/2
ds.

Thus ∣∣∣ arg(γt2 − γt1)−
π

2

∣∣∣ ≤ arctan c+ 8c+ 4C0.

If C0 → 0, then σ → 0 by (4.5) and therefore c → 0 by Theorem 3.1. Thus (4.6)
follows if C0 is sufficiently small, and the theorem is proved. �
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