ON THE CONFIGURATION-LP FOR SCHEDULING ON
UNRELATED MACHINES

JOSE VERSCHAE AND ANDREAS WIESE

ABSTRACT. One of the most important open problems in machine scheduling
is the problem of scheduling a set of jobs on unrelated machines to minimize
the makespan. The best known approximation algorithm for this problem
guarantees an approximation factor of 2. It is known to be N P-hard to ap-
proximate with a better ratio than 3/2. Closing this gap has been open for
over 20 years.

The best known approximation factors are achieved by LP-based algo-
rithms. The strongest known linear program formulation for the problem is
the configuration-LP. We show that the configuration-LP has an integrality
gap of 2 even for the special case of unrelated graph balancing, where each job
can be assigned to at most two machines. In particular, our result implies
that a large family of cuts does not help to diminish the integrality gap of the
canonical assignment-LP. Also, we present cases of the problem which can be
approximated with a better factor than 2. They constitute valuable insights
for constructing an N P-hardness reduction which improves the known lower
bound.

Very recently Svensson [22] studied the restricted assignment case, where
each job can only be assigned to a given set of machines on which it has
the same processing time. He shows that in this setting the configuration-
LP has an integrality gap of 33/17 ~ 1.94. Hence, our result imply that
the unrelated graph balancing case is significantly more complex than the
restricted assignment case.

Then we turn to another objective function: maximizing the minimum
machine load. For the case that every job can be assigned to at most two
machines we give a purely combinatorial 2-approximation which is best possi-
ble, unless P = NP. This improves on the computationally costly LP-based
(2 + e)-approximation algorithm by Chakrabarty et al. [7].

1. INTRODUCTION

The problem of minimizing makespan on unrelated machines, usually denoted
R||Chax, is one of the most prominent and important problems in the area of
machine scheduling. In this setting we are given a set of n jobs and a set of m
unrelated machines to process the jobs. Each job j requires p; ; € N* U {co}
time units of processing if it is assigned to machine ¢. The scheduler must find an
assignment of all jobs to machines with the objective of minimizing the makespan,
i.e., the largest completion time of a job.

In a pioneering work, Lenstra, Shmoys, and Tardos [15] give a 2-approximation
algorithm based on a natural LP-relaxation. On the other hand, they show that the
problem is NP-hard to approximate within a factor better than 3/2, unless P = N P.
Reducing this gap is considered one of the most important open questions in the
area of machine scheduling [19] and it has been opened for more than 20 years.

1

ON THE CONFIGURATION-LP FOR SCHEDULING ON UNRELATED MACHINES 2

Ebenlendr, Krcal, and Sgall [8] introduce a special case called the graph balancing
problem. In this problem each job has finite processing time in only two given
machines, and the processing times on both machines are the same. They give a
1.75-approximation algorithm based on an tighter version of the LP-relaxation by
Lenstra etal. [15]. They strengthen this LP by adding inequalities that prohibit
two large jobs to be simultaneously assigned to a machine.

In this paper we study several approaches to reduce the approximation gap. In
particular we try to explain why it is so difficult to improve the 2-approximation
factor for the general case. In the same line as in the work by Ebenlendr et al. [§],
considerable effort has been given to add meaningful cuts to the LP-relaxation of
Lenstra et al. [15], with the objective of reducing its integrality gap. We show that
a large class of cuts, namely every family of cuts that involves only one machine
per inequality, cannot improve the gap of 2. We show this by proving that the
integrality gap of the so called configuration-LP is 2. Our construction works on the
very restricted setting of the unrelated graph balancing problem, where each job can
only be assigned to two different machines. Let us remark that, in contrast to the
graph balancing setting, in the unrelated graph balancing problem the processing
times of a job may be different in the two machines that a job has available.

In the second part of this paper we consider another related problem that has
been in the eyes of the scheduling community in recent years. In the Min-Max
allocation problem we are also given a set of jobs, a set of unrelated machines and
processing times p; ; as before. The load of a machine 4, denoted ¢;, is the sum
of the processing times assigned to machine i. The objective is to maximize the
minimum load of the machines, i.e., to maximize min; £;. The idea behind this
objective function is a fairness property: Consider that jobs represent resources
that must be assigned to machines. Each machine ¢ has a personal valuation of job
(resource) j, namely p; ;. The objective of maximizing the minimum machine load
is equivalent to maximize the total valuation of the machine that receives the less
resources.

1.1. The minimum makespan problem.

Unrelated machines. Besides the paper by Lenstra et al. [15] that we have already
mentioned, there has not been much progress on how to diminish the approximation
gap for R||Cpax. Shchepin and Vakhania [20] give a more sophisticated rounding
for the LP by Lenstra et al. and improved the approximation guarantee to 2—1/m,
which is best possible among all rounding algorithms for this LP. On the other
hand, Gairing, Monien, and Woclaw [10] propose a more efficient combinatorial
2-approximate algorithm based on unsplittable flows techniques.

Restricted assignment. A special case that has also been studied in the past is
the restricted assignment problem. In this setting each job can only be assigned
to a subset of machines, and has the same processing time in all its available
machines. That is, the processing times of a job p; ; equals either a processing time
independent of the machine p; € N, or p; ; = co. Although this problem seems
to be much simpler that the unrelated machine problem, the best approximation
factor known so far is 2—1/m that follows from the more general problem. In a very
recent result Svensson [22] shows how to obtain in polynomial time and estimate of
the optimal makespan that is within a factor 33/17 4 € to the optimal makespan.
This is done by showing that the configuration-LP has an integrality gap of at most
33/17. However no polynomial time rounding procedure is known.

ON THE CONFIGURATION-LP FOR SCHEDULING ON UNRELATED MACHINES 3

People have also studied several special cases depending on the structure of the

set of machines that the jobs can be assigned to, see [16] for a survey. Also, special
cases concerning the processing times have been studied. In particular, Lin and Li
[17] prove that if all processing times are equal the restricted assignment problem
is solvable in polynomial time.
Graph balancing. The graph balancing problem can also be interpreted as a
problem on an undirected graph. The nodes of the graph correspond to machines
and edges correspond to jobs. The endpoints of an edge associated to job j are
the machines on which j has finite processing time. The objective is to find an
orientation of the edges so as to minimize the maximum load of all nodes, where
the load of a node is defined as the sum of processing time of its incoming edges
(jobs). Notice that the graph may have loops and in that case the corresponding
job must be assigned to one particular machine.

Additionally to the 1.75-approximation algorithm for graph balancing presented
by Ebenlendr etal. [8], they also show that it is NP-hard to approximate this
problem within a factor better than 3/2, matching the lower bound for the more
general problem R||Cihax. On the other hand, some special cases have been studied.
For example, it has been shown that if the underlying graph is a tree the problem
admits a PTAS and if the processing times are either 1 or 2 the problem admits
a 3/2-approximation algorithm, which is tight. For these and more related results
see [14] and the references therein.

1.2. The MaxMin-allocation problem.

Unrelated machines. The MaxMin-allocation problem has drawn a lot of atten-
tion recently. For the general setting of unrelated machines Bansal et al. [5] show
that the configuration-LP has an integrality gap of Q (y/m). On the other hand,
Asadpour [3] show constructively that this is tight up to logarithmic factors and
provide an algorithm with approximation ratio O (\/m log® m). Relaxing the bound
on the running time Chakrabarty et al. [7] present a poly-logarithmic approxima-
tion algorithm that runs in quasi-polynomial time. The best known N P-hardness
result — even for the general case — shows that it is N P-hard to approximate the
problem with a factor of 2 — € for any € > 0 [6, 7]. For the special case that there
are only two processing times arising in an instance (apart from zero), Golovin [11]
gives a O(y/n)-approximation algorithm. He also provides an algorithm that gives
at least a (1 —) fraction of the machines a load of at least OPT/k.

Restricted assignment. Bansal et al. [5] study the case that every job has the
same processing time on every machine that it can be assigned to (restricted as-
signment case). They show that the configuration-LP has an integrality gap of
O(loglogm/logloglogm) in this setting. Based on this they provide an algorithm
with the same approximation ratio. The bound on the integrality gap was improved
to O(1) by Feige [9] and to 5 and subsequently to 4 by Asadpour et al. [2, 1]. The
former proof is non-constructive using the Lovasz Local Lemma, the latter two are
given by an (possibly exponential time) local search algorithm. However, Haeupler
et al. [12] make the proof by Feige [9] constructive, yielding a polynomial time
constant factor approximation algorithm.

Graph balancing. For the special case that every job can be assigned to at most
two machines (but still with possibly different execution times on them) Bateni
et al. [6] give a 4-approximation algorithm. Chakrabarty etal. [7] improve this by

ON THE CONFIGURATION-LP FOR SCHEDULING ON UNRELATED MACHINES 4

showing that the configuration-LP has an integrality gap of 2, yielding a (2 + €)-
approximation algorithm. Moreover, it is N P-hard to approximate even this special
case with a better ratio than 2 [6, 7]. Interestingly, the case that every job can be
assigned to at most three machines is essentially equivalent to the general case [6].

1.3. Our contribution. As mentioned before, our main result for the minimum
makespan problem is that the configuration-LP has an integrality gap of 2, even
in the case of unrelated graph balancing. This implies that a set of cuts that
involve only one machine per inequality cannot help to improve the integrality gap
of the LP-relaxation of Lenstra, etal. [15]. Considering that the configuration-LP
has a gap of 33/17 < 2 [22], our result gives an indication that the real difficult
instances of R||Chax corresponds to the the unrelated graph balancing and not
the restricted assignment case. Additionally, we study special cases for which we
obtain better approximation factors than 2. In particular we obtain a 1 + 5/6
approximation guarantee for the special case of R||Ciax when the processing times
belong to the set [y, 3] U{oo} for some v > 0. Moreover, we show that there exists
a (2 — g/Pmax + €)-approximation algorithm, where g denotes the greatest common
divisor of the processing times, and pyax the largest processing time. We also give
a 5/3-approximation algorithm for the case in which an optimal solution contains
only a constant number of jobs that are larger than 2/3 times the makespan. These
results give necessary properties that an NP-hardness reduction must have to obtain
an inapproximability factor 2.

We also consider restricted cases of the MaxMin-allocation problem. Our main
result for this problem is in the unrelated graph balancing setting, for which we
present a simple combinatorial algorithm that has a performance guarantee of 2
and quadratic running time. This improves on the LP-based (2 + €)-approximation
algorithm by Chakrabarty et al. [7], which must use the ellipsoid method to approx-
imately solve an LP with exponentially many variables and where the separation
problem of the dual is a KNAPSACK problem and can only be solved approximately.
Moreover, our algorithm exactly matches the lower bound of 2. Finally, we study
what is achievable by allowing half-integral solutions, that is, solutions where we
allow each job to be split in two halves. We give a polynomial time algorithm that
computes solutions whose values are within a factor of 2 to the optimal integral
solution. Moreover, by loosing an extra factor of 2 in the cost we can transform
this solution to a solution with at most m/2 fractional jobs. This result contrasts
the integral version of the problem for which only an O(y/m log® m)-approximation
algorithm is known.

2. LP-BASED APPROACHES

In this section we revise the classical rounding procedure by Lenstra etal. [15]
and elaborate on the implications of our results. In what follows we denote by J
the set of jobs and M the set of machines of a given instance.

The natural LP relaxation. The natural IP-formulation used by Lenstra et al.
[15] uses assignment variables x; ; € {0,1} that denote whether job j is assigned to
machine . This formulation, which we denote LST-IP, takes a target value for the
makespan T (which will be determined later by binary search) and does not have

ON THE CONFIGURATION-LP FOR SCHEDULING ON UNRELATED MACHINES 5

any objective function.

> mi =1 for all j € J,
iEM
Zpi,jxi,j <T for all i € M,
jed
255 =0 for all 4,5 : p;; > T,
v €{0,1} for all i € M, j € J.

It is not hard to see that this is indeed a formulation for R||Ciax. Indeed, the
first equality ensures that all jobs must be completely assigned and the second
guarantees that no machine has a load larger than 7. The third equality is valid
since no job can be assigned to a machine where its processing time is larger than
T.

The corresponding LP-relaxation of this IP, which we denote LST-LP, can be

obtained by replacing the integrality condition by z; ; > 0. For a given value of T,
this LP feasibility problem can be solved efficiently with the ellipsoid method.
Dual approximation. To obtain an approximation algorithm based on LST-LP,
we need to guess the value of T by using a so called dual approzimation technique,
first introduced by Hochbaum and Shmoys [13]. Let Cpp be the smallest integer
value of T' so that LST-LP is feasible, and let C* be the optimal value for the
integral version of the LP (i.e., the optimal makespan of our instance). Note that
since p;; € NT U {oco}, then Cpp is a lower bound on C*, and thus we can use
it to design approximation algorithms. We can compute Cpp with the following
procedure. If C), is an upper bound and C; is a lower bound of C*, by using a binary
search procedure is easy to find Cp by solving log,(C,, — C¢) many times LST-LP.
Indeed, we check at each iteration whether LST-LP is feasible for T' = (C,, + C;)/2.
If this holds then we redefine C,, := (C,, + C¢)/2, and otherwise C; := (C,, + Cy)/2.
We iterate this until C,, — Cy < 1, and then notice that Crp = [C/]. By taking
Cy = maX;eps Zjerw- and Cy = 1, we conclude that C'p can be computed in
polynomial time.
Rounding procedure. We now briefly present the 2-approximation of Lenstra
etal. [15]. This procedure, which we call LST-rounding, takes a feasible solution of
LST-LP with target makespan T and returns an integral solution with makespan
at most 27. By taking T' = Cpp < C* this yields a 2-approximation algorithm.
The rounding procedure we present is a refinement of the original one, derived by
Shmoys and Tardos [21] for the generalized assignment problem.

Let (x;;) be a fractional solution of LST-LP. We interpret such a solution as
a fractional matching in an appropriate bipartite graph. For this we construct
a bipartite graph (A U B, E), where the vertices in A, also called the job nodes,
corresponds to jobs. For each machine i, we construct k; = [Z jed mi’j—‘ nodes in
set B, and call them {v{,...,v} }. We refer to the nodes in B as the machine
nodes.

We construct a fractional assignment of job nodes to machine nodes based on
the assignment given by the z; ; variables. For this, fix a machine ¢ and relabel
the jobs so that {1,...,n;} is the set of jobs that has some fraction assigned to 4,
ie, 1 <j < n;if and only if x; ; > 0. Moreover, we assume w.l.o.g. that the jobs
are in non-increasing order of processing times, p; 1 > ... > p;n,. The fractional

ON THE CONFIGURATION-LP FOR SCHEDULING ON UNRELATED MACHINES 6

assignment of jobs to the nodes of 7 is performed in a greedy fashion so that the
larger jobs are assigned to the nodes of i of lower indexes. More precisely:
(1) Initialize s = 0.
(2) Foreach j=1,...,n;
o If 3 Yi gy + xiy < 1, then define y(i j) := 2, and y
for all other nodes v;
e Otherwise

0

v,j) T

Vi) = 1= D Ywign,
jled

Ywi) = Tid — Ywig)s
Yui,) = 0 for all s’ & {s,s+ 1}, and redefine s := s + 1.

Note that with this definition all job nodes are completely assigned to the ma-
chine nodes by the y(,, ;) variables, i.e., > .5y, j) = 1 forall j € J. Moreover, each
node in B has at most one unit of job assigned to it, EjeJ Y,y < 1forallv e B.
In other words, the variables y(, ;) defines a fractional matching that matches all
job nodes. To obtain an integral assignment of jobs to machines, we simply define
the set of edges I in our bipartite graph as the set {(j,v) € A x B : y(, ;) > 0}.
The rounding consists in finding a maximum matching in the constructed bipar-
tite graph (A U B, E), that matches each job node to some machine node. Such a
matching exists since the existence of a fractional matching that matches all job
nodes implies the existence of a matching satisfying the same property (see, e.g.,
[18, Vol A]). Each job j will be matched to some node v%, and in this case we define
the assignment variable g,i ;) = 1 and otherwise zero. Moreover, we define an

assignment of jobs to machines as z;; = Zle Y(vi 5 for all j and 1.

Theorem 1 ([21]). Let (z; ;) etiem be a feasible solution of LST-LP with target
makespan T. Then, there exists a polynomial time rounding procedure that computes
a binary solution {Z; ;}jesicm satisfying

Z Zij =1 forall j € J,
€M
Zii’jpi’j § Terax{pl-,j j c J, Tg,5 > 0} fOT all i e M.
jed

Proof. We show that the previous rounding satisfies the properties of the lemma.
Consider a machine i and a particular node v for s € {2,...,k;}. In the rest of the
proof we omit the super-index i to shorten notation. Note that the job assigned to
node vg by the matching 3 has processing time smaller or equal than all jobs that
are fractionally assigned to vs_1. Hence,

Zg(vs,j) “Dij < Zy(us,l,j) “Dij-
JjE€J j€J
Summing over all s € {2,...,k;} we get that
ki

ki
Z Z Y(ve,j) " Pig = Z Z Y(we-1.5) " Pisj-

s=2jeJ s=2jeJ

ON THE CONFIGURATION-LP FOR SCHEDULING ON UNRELATED MACHINES 7

Upper bounding ZJEJ U(vy.j) * Pi,j by max{p;j : j € J,x;; > 0} we conclude that

ki
D TP =YY Ylwe) Pii
jeJ s=1jeJ
k;i—1
<D Yony) - piy +max{pi ;i j € J,ai; >0}
s=1 jeJ

< Zwi,jpi,j —l—max{pm j c J, T > 0}
jeJ

O

By noting that max{p;; : j € J,@;; > 0} < T, the previous lemma yields
that the rounding procedure embedded in a dual approximation framework is a
2-approximation algorithm for the makespan problem in unrelated machines.
Integrality gaps and the configuration-LP. Lenstra etal. [15] show that the
rounding just given is best possible by means of the integrality gap of LST-LP. For
an instance I of R||Cax, let Crp(I) be the smallest integer value of T so that
LST-LP is feasible, and let C*(I) the minimum makespan of this instance. Then
the integrality gap of this LP is defined as

C*(I)
e (D

It is easy to see that if Cpp is used as a lower bound for deriving an approximation
algorithm then the integrality is the best possible approximation guarantee that
we can show. Lenstra etal. [15] give an example showing that the the integrality
gap of LST-LP is as arbitrarily close to 2, and thus the rounding procedure is best
possible.

It is natural to ask whether adding a family of cuts can help obtaining a for-
mulation with smaller integrality gap. Indeed, it has been shown that for special
cases of our problem adding inequalities reduces the integrality gap. In particular,
Ebenlendr etal. [8] show that adding the following inequalities to LST-LP yields
an integrality gap of at most 1.75 in the graph balancing setting,

Z 25 <1 for all : € M.
JjET:pi i >T/2

In this paper we study whether it is possible to add similar cuts to strengthen
the LP for the unrelated graph balancing problem or for the more general case of
R||Cax. For this we consider the so called configuration-LP, defined as follows.
Let T be a target makespan, and define S;(T) as the collection of all subsets of jobs
with total processing time at most 7', i.e.,

CZ(T) = OgJ:Zpi,jST
jeC

ON THE CONFIGURATION-LP FOR SCHEDULING ON UNRELATED MACHINES 8

We introduce a binary variable y; ¢ for all ¢ € M and C € C;(T), representing
whether the subset C of jobs is assigned to machine i. The LP is as follows:

Z yic =1 for all i € M,
CecC;(T)

Z Z yic =1 for all 5 € J,

1€M CeCy(T):Coj
Yyi,c =0 foralli e M,C € C;(T).

It is not hard to see that an integral version of this LP is a formulation for R||C\pax-
Also notice that the configuration-LP suffers from an exponential number of vari-
ables, and thus it is not possible to directly solve it in polynomial time. Moreover,
using similar techniques as in [5], it is easy to show that the separation problem
of the dual is equivalent to the KNAPSACK problem and thus we can solve the LP-
approximately in polynomial time. More precisely, given a target makespan T for
which the configuration-LP is feasible, it is possible to compute in polynomial time
a solution of the configuration-LP with target makespan T(1+¢), for any constant
g > 0 (see [22] for more details). The following result, which will be proven in the
next section, shows that the integrality gap of this formulation is as large as the
integrality gap of LST-IP even for the unrelated graph balancing case.

Theorem 2. The integrality gap of the configuration-LP is 2 even in the unrelated
graph balancing setting.

Notice that a solution (y;) of the configuration-LP can in interpreted in the
x;,; variables of the LST-LP relaxation as follows,

(2.1) Tij = Z Yi,C forallie M,j € J.
CeCi(T):C3j

The converse is not true, since there are solutions to LST-LP that may not yield
feasible solutions to the configuration-LP. For example, consider an instance with
three jobs and two machines, where p; ; = 1 for all jobs j and machines i. If we
have a target makespan T = 3/2 is easy to see that LST-LP is feasible, but the
solution space of the configuration-LP is empty for any 7' < 2. In what follows we
make clear what is the relation of the two LPs, by giving a formulation in the space
with x; ; variables that is equivalent to the configuration-LP.

Proposition 3. Let ¢ € {0,1}/ be the characteristic vector of a configuration

C € Ci(T), ie., x? is one if j € C and zero otherwise. There exists a feasible
solution to the configuration-LP if and only if the following linear system admits a

solution:

(2.2) > omi=1 for all j € J,
ieM
(2.3) (i) jes € conv{z® : C € C;(T)} for alli e M,

where conv{S} denotes the convex closure of set S € R™.

Proof. Let (z; j)iem,jes be a solution satisfying (2.2) and (2.3) for a given T'. We
show that the configuration-LP is feasible for the same value of T'. Indeed, (z; ;) e

ON THE CONFIGURATION-LP FOR SCHEDULING ON UNRELATED MACHINES 9

is a convex combination of vectors in {z¢ : C € C;(T)}, and thus

(@ig)jes = Y. wic 2%,

CeCy(T)

for some values y; ¢ > 0 such that ZCeci(T) ¥i,c = 1. Moreover, for each j € J,

1:in,j:2 Z yi,cmf:Z Z Yi.c-

iEM €M CeCi(T) 1€EM CeCy(T):C3j

This shows that (y; ¢) is a solution to the configuration-LP. The converse implica-
tion follows from reversing the argument just given. (]

The last lemma implies that adding to LST-LP any family of cuts that does not
remove any vector of the form (21, ..., x¢) € R"™ where C; € C;(T) cannot help
reduce the integrality gap of the linear relaxation.

3. THE CONFIGURATION-LP

We have seen in the previous section that the configuration-LP implicitly con-
tains a vast class of linear cuts. Hence, it is at least as strong (in terms of its
integrality gap) as any linear program that contains any subset of these cuts. How-
ever, in this section we prove that the configuration-LP has an integrality gap of 2.
This implies that even all the cuts that are contained in the configuration-LLP are
not enough to construct an algorithm with a better approximation factor than 2.

Then we show that even for the special case of unrelated graph balancing the
configuration-LP has an integrality gap of 2. This is somewhat surprising: if one
additionally requires that each job has the same processing time on its two machines
then Sgall et al. [8] implicitely proved that the configuration-LP has an integral-
ity gap between 1.5 and 1.75. Hence, we demonstrate that the property that a
job can have different processing times on different machines makes the problem
significantly harder.

3.1. Integrality gap of the configuration-LP. We describe a family of instances
I for the general R||Cipqz-problem such that the configuration-LP has an integral-
ity gap of 2 — % for each instance I. Since we can choose k arbitrarily large this
proves an integrality gap of 2 of the configuration-LP. The construction we present
here is significantly simpler than the construction for unrelated graph balancing
which we will present in Section 3.2.

Let k be an integer. The instance Iy has 2k machines mq, m}, ma, ms, ..., my, m}.
For every pair of machines m;, m/ there are k jobs j}, j2, ..., 7¥ which have processing
time % on m;, processing time 1 on m}, and processing time oo on any other
machine. There is one job jy;4 which has processing time 1 on any machine m; and
oo on any machine m/}.

Lemma 4. FEvery integral solution for I has a makespan of at least 2 — %

Proof. Consider an integral solution for I and assume its makespan is less than 2.
Let m; be the machine that jy;, is assigned to. At most one of the jobs j}, jZ, ..., j¥
is assigned to m} and the other k — 1 jobs are assigned to m;. Hence, machine m;
has a makespan of 1 + (k—1) -+ =2 — 1. O

ON THE CONFIGURATION-LP FOR SCHEDULING ON UNRELATED MACHINES 10

Now let us study the configurations for the different machines. Since we want to
show an integrality gap of 2 — % we consider only configurations with makespan at
most 1. Also, we consider only maximal configurations, i.e., configurations whose
jobs are not all contained in another configuration on the respective machine. For
each machine m; there are two maximal configurations: all jobs jf or only fjpig-
We call the former configuration the small configuration and the latter the big
configuration. For each machine m/ there are & maximal configurations: each job
gl for 1 < ¢ <k.

Lemma 5. There is a solution of the configuration-LP for Iy, that uses only con-
figurations with makespan 1.

Proof. Every machine m; is assigned a ratio of % of the big configuration and a ratio
of 1—% of the small configuration. Note that this assigns the job j3;4 completely and
every job j! is assigned to an extend of 1 — % Every machine m/ is assigned a ratio
of % of each of its k configurations. Hence, every job j¢ is now fully assigned. [

Theorem 6. The configuration-LP for the R||Cpax-problem has an integrality gap
of at least 2 — % for instances such that p; ; € {%, 1,00} for all machines i and all
jobs j.

The bound of 2 — % is actually tight for instance where all p; ; € { %, 1,00} as
the following proposition shows.

Proposition 7. The integrality gap of the configuration-LP for the R||Ciax-problem
for instances with p; j € {%, 1,00} is bounded by 2 — %

Proof. Let I be an instances of R||Cpnax such that p; ; € {4, 1,00} for all machines
1 and all jobs j. Assume that there is a feasible solution for the configuration-LP
for I using only configurations with a makespan of at most 7. If T" < 1 then the
LST-rounding procedure will yield a solution with makespan at most 7"+ % So
now assume that 7 = 1+ {1 for some integer ¢ (other values for the makespan
cannot arise). We perform the LST-rounding and analyze the resulting makespan.
Consider a fixed machine i. We call a job j big if p; ; = 1 and small if p; ; = }.
We call a configuration big if it contains a big job and small otherwise. We can
assume that the configuration-LP assigned ¥4 units of big configurations to ¢ and
Ysmayr UnNits of small configurations. W.l.o.g. we assume that each assigned big
configuration contains one big job and ¢ small jobs. In the rounding procedure
Ybig - (€ + 1) + Ysmau - (¢ + k) vertices are introduced for i. After the rounding at
most one of them can have a big job assigned to it. Hence, the total makespan of
1 is bounded by

1 +1 (+k 1
1+%(ybig'(€+l)+ysmall'(€+k)_1) = 1+ybig'T+ysmall'T _%
1
< 1+7T-—-.
< + 2
The integrality gap becomes maximal for 7' = 1. O

3.2. Integrality gap for unrelated graph balancing. Now we improve the
result from the previous section and show that even for unrestricted graph balancing
the integrality gap of the configuration-LP is 2. We construct a family of instances
I}, such that p; ; € {%, 1,00} for each machine ¢ and each job j for some integer k.

ON THE CONFIGURATION-LP FOR SCHEDULING ON UNRELATED MACHINES 11

FIGURE 3.1. A sketch of the construction for the instance of un-
related graph balancing with an integrality gap of 2 — O(%) The
jobs on the machines correspond to the fractional solution of the
configuration-LP for this instances with T'=1 + %

We will show that for Ij there is a solution of the configuration-LP which uses only
configurations with makespan 1 + % However, every integral solution for I has a
makespan of at least 2 — %

N
Let £ € N and let N be the minimum integer such that (%) ﬁ > %

Consider two k-ary trees of height N — 1, i.e., two trees of height N — 1 in which
apart from the leaves every vertex has k children. For every leaf v, we introduce
another vertex v’ and k edges between v and v'. (Hence, v is no longer a leaf.)
Hence, the resulting “tree” has height N.

Based on this, we describe our instance of unrelated graph balancing. For each
vertex v we introduce a machine m,,. For each edge e = {u,v} we introduce a job
je- Assume that u is closer to the root than v. We define that j. has processing

time + on machine m,,, processing time 1 on machine m,, and that it cannot be

k
scheduled on any other machine. Finally, let mi” and m$-2) denote the two machines

corresponding to the two root vertices. We introduce a job ji;, which has processing
time 1 on mS-l) and m$-2). Denote by Ij, the resulting instance. See Figure 3.1 for a
sketch.

As mentioned before, we claim that any integral solution for I has a makespan

of at least 2 — % We prove this in the following lemma.
Lemma 8. Any integral solution for I, has a makespan of at least 2 — %

Proof. Assume that we are given an integral solution for I which has a strictly

smaller makespan than 2. W.l.o.g. assume that ju;4 is assigned to machine mgl).

Since the makespan of our solution is strictly less than 2 at most & — 1 jobs with

processing time % can be assigned to mp). Hence, there is an edge e adjacent to the

root r of the first tree such that j. is not assigned to r. Thus, j. must be assigned

ON THE CONFIGURATION-LP FOR SCHEDULING ON UNRELATED MACHINES 12

to the machine corresponding to the other vertex that e is adjacent to. We iterate
the argument. Eventually, we have that there must be a vertex v of height 1 and
a corresponding machine m, which has a job j with processing time 1 assigned to
it. Recall that our solution has a makespan strictly less than 2. Hence, at most
one job can be assigned to machine m, where v’ is the child vertex of v. Thus,
k — 1 jobs with processing time % are assigned to m,. Together with j this gives a
makespan of 1+ (k — 1)1 =2 — + on machine m,. O

Now we want to show that there is a feasible solution for the configuration-LP for
I, which uses only configurations with makespan 1 + % To this end, we introduce
the concept of j-a-solution for the configuration-LP. We call j-a-solution a solution
for the configuration-LP whose right hand side is modified as follows: the job j does
not need to be fully assigned but only to an extend of o < 1. I.e., instead of the
equality

Z Z Yi,c =1

€M CeC;(T):Coj

Z Z Yi,c 2 a.

€M CeC;(T):Coj

we have the inequality

For any h € N denote by I ,Eh) a subinstance of I defined as follows: Take a
vertex v of height h and consider the subtree T'(v) rooted at v. For the subinstance
I ,gh) we take all machines and jobs which correspond to vertices and edges in T'(v).
(Note that since our construction is symmetric it does not matter which vertex of
height h we take.) Additionally, we take the job which has processing time 1 on
m,. We denote the latter by ;).

We prove inductively that there are j-a("-solutions for the subinstances I ,gh)
values o™ which depend only on h. These values o) increase for increasing h. The
important point is that a(™) > % Hence there are solutions for the configuration-
LP which distribute ji;; on the two machines mgl) and m7(~2) (which correspond to
the two root vertices).

The following lemma gives the base case of the induction.

for

Lemma 9. There is a j(l)—ﬁ—solution for the configuration-LP for I,gl) which
uses only configurations with makespan at most 1 + %

Proof. Let m,, be the machine in []il) which corresponds to the root of I ,gl). Simi-
larly, let m,, denote the machine which corresponds to the leaf v’. For £ € {1, ..., k}
let jéo) be the jobs which have processing time 1 on m,s and processing time % on
My

For m, the configurations with makespan at most 1 + % are Cp := {jlgo)} for

each ¢ € {1,...,k}. We define y,, , c, := % for each £. Hence, for each job leO)

a fraction of % remains unassigned. For machine m, there are the following

(maximal) configurations: Cgan = {j§0),...,j,(€0)} and leig = {j(l),jéo)} for

each £ € {1,....k}. We define y,, o = ﬁ for each ¢ and yn,,.c
Ctig

small

ON THE CONFIGURATION-LP FOR SCHEDULING ON UNRELATED MACHINES 13

1- ﬁ This assigns each job jéo) completely and the job ;) to an extend of
1 1
k- E(k—1) — k—1° O

After having proven the base case, the following lemma yields the inductive step.

n
Lemma 10. Assume that there is aj(”)—(ﬁ (k—fl))—solution for the configuration-

LP for I}gn) which uses only configurations with makespan at most 1—1—%. Then, there
n+1

s a j("“)—(kil (%))—solution for the configuration-LP for I,Enﬂ) which

uses only configurations with makespan at most 1 + %

Proof. Note that I lgn+1) consists of k copies of I,En), one additional machine and
one additional job. Denote by m, the additional machine (which forms the “root”

of IIE"H)). Recall that j(**1) is the (additional) job that can be assigned to m,

but to no other machine in IIE"H). For ¢ € {1,...,k} let jzn) be the jobs which have
processing time % on My.
Inside of the copies of T ,in) we use the solution defined in the induction hypothesis.

n
Hence, each job j én) is already assigned to an extend of ﬁ (%) . Like in Lemma

9 the (maximal) configurations for m, are Csman = {jg”),...,j,i")} and leig =

{j(”H),jtg”)} for each ¢ € {1,...,k}. We define y,, cr = 35 (%) 7 for
iy

(n)

each ¢ and y,,, ¢ =1- % %) ﬁ This assigns each job j, completely

small

n n+1
and the job j™*1) to an extend of k- 15 (%) == (%)) O

After this preparation we are ready to prove that there is a feasible solution for
the configuration-LP for [j.

Lemma 11. There is a solution for the configuration-LP for I which uses only
configurations with a makespan of at most 1 + %

Proof. Recall that the two k-ary trees from the construction of I} — together with

N
the additional vertices — have height N such that (%) ﬁ > % Hence, there

are jbig—%—solutions for each of the two subinstances I IEN) which use only configura-
tions with a makespan of at most 1 + % This proves the claim. O

Now our main theorem follows from the previous lemmas.

Theorem 12. The integrality gap of the configuration-LP for unrelated graph bal-
ancing s at least 2.

Proof. Lemmas 8 and 11 imply that for the instance Ij the integrality gap of the
configuration-LP is at least (2— +)/(14). The claim follows since we can choose
k arbitrarily large. (I

4. CASES WITH BETTER APPROXIMATION FACTORS THAN 2

It has been open for a long time whether the approximation factor of 2 [15] for
R||Chax can be improved. Our results from Section 3 can be seen as an indicator
that this is not possible unless P = NP. In this section we identify classes of

ON THE CONFIGURATION-LP FOR SCHEDULING ON UNRELATED MACHINES 14

instance for which a better approximation factor than 2 is possible. This can be
understood as a guideline of properties that a N P-hardness reduction must fulfill
to rule out a better approximation factor than 2.

4.1. Instance with p;; € [y,37] U {oo}. The NP-hardness proofs for R||Cpax
given in [8, 15] use only jobs such that p; ; € {1,2,3,00}. In this section we show
that if the execution times of the jobs differ by at most a factor of 3 then the
configuration-LP has an integrality gap of at most 1+% ~ 1.83. Recall that we can
approximate the smallest value T for which the configuration-LP is feasible with an
approximation factor of 1 + e. Hence, there is a (4 + €)-approximation algorithm
for R||Cmax in this setting. In particular, if one want to rule the existence of an
(2 — €)-approximation algorithm one has to use instances with a larger discrepancy
of the processing times.

We assume that there is a value vy such that p; ; € [y, 3v]U{oo} for all machines i
and all jobs j.

Theorem 13. Consider an instance of R||Cmax with a value y such that p;; €
[, 37]U{oc} for all machines i and all jobs j. Then for this instance the configuration-
LP has an integrality gap of at most 1 + % ~ 1.83.

Proof. Assume we are given a value T such that there is a solution for the configuration-
LP that uses only configurations with a makespan of at most 7. We perform
LST-rounding.

Consider a machine i. We want to bound the makespan of i. Note that if
T > 15—87 then the makespan of i is bounded by %fy + 3y < (1 + %) T since the
makespan of each machine can increase by at most 3 during the rounding process.
So now assume that T < 15—87. We define x; ; to be the fraction of job j that the
configuration-LP assigned to i (see Equality 2.1).

Recall that the configuration-LP contains all linear cuts which are valid for
all integral solutions. In particular, this implies that Zj:pm> T T < 1 and
Zj:p,;,p% x;j < 2 (see Proposition 3).

Since T < 18~y < 4 and p;; € [7,37] U {oo} for all i, we conclude that each
configuration assigned to ¢ can contain at most three jobs. Hence, in the LST-
rounding procedure there are at most three vertices for i. Furthermore, for all
jobs j connected to the ¢-th vertex of i we have that p; ; < % for ¢ € {1,2,3}. This

yields a bound T+ £ + £ =T(1 + 2) for the makespan of 4. O

4.2. Instances with bounded gcd; ;{p; ;}/ max; ;{p;;}. Inthe known NP-hardness
reductions for R||Cpax [8, 15] only a fixed set of execution times arise (namely

£,4,1} or even only {3,1}). In this section we give a result for classes of in-
stances where only a finite set P of processing times arise. We prove that for such
classes the configuration-LP has an integrality gap of at most 2 — « for a value «
which depends only on the processing times in P. Hence, if one wants to prove that
R||Ciax cannot be approximated with a better factor than 2, it is crucial to give a
family of reduction with an infinite set of arising processing times.

W.l.o.g. we assume that all p; ; are always integers.

Theorem 14. There exists a (2 — a)-approximation algorithm for the problem of
minimizing makespan on unrelated machines, where o = ged; j., oo {Pi i}/ Max jip, ;<co{Piyj}-

ON THE CONFIGURATION-LP FOR SCHEDULING ON UNRELATED MACHINES 15

Proof. We follow similar lines as the 2-approximation algorithm by Lenstra et al. [15].
Let g := ged, o, <ooiPij} and M := max; j.p, ;<co{pi,j}. Note that the optimal
makespan of our instance is a multiple of g, and therefore we can restrict our target
makespan 7' to be of the form k- g with &k € N. Let T* be the target makespan
defined as the smallest multiple of ¢ that yields a feasible solution to LST-LP. Note
that T can be found by a binary search procedure. Assume we have computed a
fractional solution for LST-LP with target makespan 7. We apply LST-rounding
to this fractional solution, obtaining a schedule with load ¢; on each machine q.
With basically the same argument as in the proof of Theorem 1, it is easy to see
that ¢; < T* + M. Since ¢;, M and T* are multiples of g, we conclude that
b <T*+M—g.
This proves that the makespan of machine ¢ after LST-rounding is bounded by

T*+M—g < T*@ (B+U)

_ @ ﬁ+1)
- M+8-g
2- >

= T (2-

IN

]

In particular, the above theorem applies to families of instances which use only a
finite set of processing times. Such families often arise in N P-hardness reductions.
Hence, if one wants to prove that R||Cpax cannot be approximated with a better
factor than 2 then one has to construct reductions which use an infinite number of
processing times. We formalize this observation in the following corollary.

Corollary 15. Let T be a family of instances of R||Cimax- Let P be a finite set of
integers. Assume that for each instance I € T and each in I arising processing time
pi,j it holds that p; ; € P U {co}. Then for I there is an approxzimation algorithm
with performance guarantee 2 — o with o = ged{p|p € P}/ max{p|p € P}.

4.3. Bounded number of big jobs. In this section we study the special case
that in an optimal solution there are at most ¢ big jobs, for some constant c. For
this case we give a 5/3-approximation algorithm. Our method also yields a 5/3-
approximation for the case that for at least m — ¢ machines it is known whether or
not in an optimal solution they execute a big job which is big on that machine.

We call a job j big on machine i if p; ; > %OPT. First, we present an algorithm
that assumes that for each machine it is known in advance whether it executes a big
job. Let ¢ € N be a fixed constant. Let I be an instance of R||Cpax. Assume that
the set of machines is partitioned into two sets Mpy;q and My, such that we know
that in some optimal solution each machine 7 € My;, executes a big job and each
machine i’ € M,,,q;; does not execute a big job. We use a binary search framework
to “guess” the optimal makespan 7. In the sequel, we describe one iteration of the
binary search for a fixed value T'.

For each machine i € M denote by Ji;, C J all jobs j with 2T/3 < p; ; < T,
by J¢ ., C J all jobs j with 7/3 < p; ; < 27/3 and by J! C J all jobs j with
pi,; < T/3. We solve the following linear program LP:

mall

ON THE CONFIGURATION-LP FOR SCHEDULING ON UNRELATED MACHINES 16

Z zij <1 Vi € Mg
jEJ;f,gUJ;ed
Z zij-pij <T/3 Vi € Mg
JEIL L an
Z zijpi; <T Vi € Mgmaii
je‘]:‘nedu‘]im,all
Z zij =0 Vi € Msmaul
je‘];iig
Yo wi=1 vied
ieM

:z:iijO ViEM,jGJ
Note that despite the separation of the jobs into the three classes for all T > OPT
the integral optimum satisfies LP,; and hence L P, is feasible. Now assume that

LPy is feasible for the guessed makespan T and let x be a solution. We perform
LST-rounding.

Lemma 16. Let I be an instance of R||Cmax, let T be an integer and assume we are
given a partition of the machines into big and small machines. If LPys is feasible
then the makespan after LST-rounding is bounded by 5T'/3.

Proof. Let i € Mgpqu. Only jobs j with p; ; < 2T/3 were (fractionally) assigned
to i by LP,s. Hence, during the LST-rounding the makespan of i can increase
to at most T'+ 27'/3 = 5T/3. Now let i’ € My;,. The total processing time of
small jobs on i’ (bounded by T'/3 in the LP-solution) can increase by at most T'/3
(since py j < T/3 for all j € J%). There is at most one big job assigned to 7.

Hence, the makespan of i’ is bounded by T'/3+T/3+T = 5T/3. Hence, the overall
makespan of the solution is bounded by 57/3.]

For instances with at most ¢ jobs which are big on some machine (for a fixed
constant ¢) we can enumerate in polynomial time the at most O(m?¢) sets of ma-
chines which execute big jobs. For each of the sets we run the above algorithm
together with a binary search framework. This yields the following theorem.

Theorem 17. Let ¢ be a fixed integer. There is a 5/3-approzimation algorithm for
instances of R||Cmax with at most ¢ jobs which are big on some machine.

Moreover, for some instances it might be possible to determine for at least
m — O(logn) machines whether they execute a big job or not (e.g., by some pre-
processing). For such instances, our method also yields a 5/3-approximation.

Theorem 18. Let ¢ be a fized integer. Let I be an instance of R||Cmax. Assume
we know for at least m — O(logn) machines whether they execute big jobs. There
is a polynomial time algorithm that computes a solution for I whose makespan is

bounded by %OPT,

Proof. For m — O(logn) machines we already know whether they are in Mj;, or
Mgman- For the remaining machines we enumerate whether they are big or small
and use the above technique. [

ON THE CONFIGURATION-LP FOR SCHEDULING ON UNRELATED MACHINES 17

The latter theorem is particularly important if one wants prove that there can be
no approximation algorithm for R||Ciax with a better factor than « for some a €
(%, 2]: it shows that such a reduction must use instances for which no polynomial
time algorithm can determine for almost all machines whether they execute a big
job in an optimal solution.

5. MAXMIN ON UNRELATED MACHINES

In this section we study the MaxMin-allocation problem on unrelated machines.
First, we investigate the special case that every job can be assigned to at most two
machines (MaxMin-balancing). For this case it is known that the configuration-LP
has an integrality gap of 2. However, when allowing only polynomial running time
it can only be solved approximately which yields a (2 + ¢)-approximation algorithm
for the overall problem. Also, it requires to solve a linear program with a PTAS
for KNAPSACK as a separation oracle. In particular for small e this algorithm
requires a lot of running time and it is highly non-trivial to implement. Instead,
we present here a purely combinatorial 2-approximation algorithm with a running
time of O(n?) which is quite easy to implement.

After that we present approximation algorithms which compute 2- and 4-approximative
half-integral solutions for the general MaxMin-allocation problem. Recall that for
this setting the best known approximation algorithm (which computes integral so-
lutions) has a performance guarantee of O (\/ﬁlog3 m).

5.1. 2-approximation for MaxMin-balancing. We present our purely combi-
natorial 2-approximation algorithm for MaxMin-balancing. Let I be an instance of
the problem and let T" be a positive integer. Our algorithm either finds a solution
with value T'/2 or asserts that there is no solution with value 7' or larger. With an
additional binary search this yields a 2-approximation algorithm. For each machine
i denote by J; = {Ji1,7i,2,..-} the list of all jobs which can be assigned to i. We
partition this set into the sets A;UB; where A; = {a;1,a;2,...} denotes the jobs
in J; which can be assigned to two machines (machine ¢ and some other machine)
and B; denotes the jobs in J; which can only be assigned to i. We define A} to be
the set A; without the job with largest processing time. For any set of jobs J' we
define p(J') == 3_,c ;s pij-

Denote by p; the processing time of job a;, on machine ;. We assume that
the a;¢ are ordered non-increasingly by processing time, i.e., p; ¢ > p; 41 for all
respective values of £. If there is a machine ¢ such that p(A;)+p(B;) < T we output
that there is no solution with value T" or larger. So now assume that p(A;)+p(B;) >
T for all machines . If there is a machine ¢ such that p(A}) + p(B;) < T (but
p(A;) + p(B;) > T) then any solution with value at least T has to assign a;1 to
i. Hence, we assign a;; to ¢. This can be understood as moving a;; from A; to
B;. We rename the remaining jobs in A; accordingly and update the values p(A;),
p(A}), and p(B;). We do this procedure until either

e there is one machine ¢ such that p(4;) + p(B;) < T, in this case we output
that there is no solution with value T or larger, or
e for all machines ¢ we have that p(4}) + p(B;) > T.

We call this phase the preassignment phase.

Lemma 19. If during the preassignment phase the algorithm outputs that that no
solution with value T or larger exists, then there can be no such solution.

ON THE CONFIGURATION-LP FOR SCHEDULING ON UNRELATED MACHINES 18

Proof. If the algorithm moves a job a; ¢ from A; to B; then any solution with value
T or larger has to assign a;, to B;. Hence, if at some point there is a machine
i such that p(A;) + p(B;) < T then there can be no solution with value at least
T. O

Now we construct a graph G as follows: For each machine ¢ and each job a; , € A;
we introduce a vertex (a;¢). We connect two vertices (a; ¢) , {(ai o) if a; ¢ and a; ¢
represent the same job (but on different machines). Also, for each machine i we
introduce an edge between the vertices (a; ox+1) and (a; 2k+2) for each respective
value k£ > 0.

Lemma 20. The graph G is bipartite.

Proof. Since every vertex in G has degree two or less the graph splits into cycles
and paths. It remains to show that all cycles have even length. There are two types
of edges: edges which connect two vertices (a;¢) , (@i’ ¢) such that ¢ =i’ and edges
connecting two vertices which correspond to the same job on two different machines.
The edges of these two types alternate and hence the graph is bipartite. O

Due to Lemma 20 we can color G with two colors, black and white. Let ¢ be a
machine. We assign each the job a;, to ¢ if and only if (a;,) is black. Also, we
assign each job in B; to 1.

Lemma 21. The algorithm outputs a solution whose value is at least T/2.

Proof. Let i be a machine. We show that the total weight of the jobs assigned to ¢ is
at least p(A})/2 + p(B;). For each connected pair of vertices (a; 2x+1) , (@i 2k+2) We
have that either a; ox11 Or a; 252 is assigned to . We calculate that ZkeN Di2k42 =
p(A})/2. Since p; op+1 > pikre (for all respective values k) we conclude that the
total weight of the jobs assigned to i is at least p(A})/2+p(B;). Since p(A})+p(B;) >
T the claim follows. O

In order to turn the above algorithm into a 2-approximation algorithm a binary
search is additionally necessary. Now we discuss how to implement the overall
algorithm efficiently.

First, we test whether n < m. If this is the case then the optimal solution has
value 0. So now assume that n > m. In order to initialize the ordered sets A; and
B; we need to sort the jobs by execution time (in the list that we sort we have two
entries for every job, each corresponding to one of its possible execution times). We
sort this list in O(nlogn) steps. Note that the sorting needs to be done only once,
no matter how many values T we try. Starting with an ordered list of the jobs, we
can build the ordered lists A; and the sets B; in linear time. The preassignment
phase can be implemented in linear time: For each machine ¢ we need to check
whether p(A})+p(B;) < T. We call this a first-check. If we move a job a; ¢ from A;
to B; then the other machine on which one could possibly assign a; ¢ needs to be
checked again. We call this a second-check. There are m first-checks and at most n
second-checks necessary. Hence, this procedure can be implemented in linear time.
Coloring the graph G with two colors can also be implemented in linear time.

For the binary search we need to try at most log D values, with D := Z” Dij-
We have that log D < |I| where |I| denotes the length of the overall input in binary
encoding. The sorting needs to be done only once and this takes in O(|I|log |I|)

ON THE CONFIGURATION-LP FOR SCHEDULING ON UNRELATED MACHINES 19

time. For every value T that we try O(|I|) steps are necessary. This yields an
overall running time of O (|I]?).

Theorem 22. There is a 2-approzimation algorithm for the Maz-Min-balancing
problem with running time O (|I]?).

5.2. Half-integral solutions. For the general MaxMin-allocation problem the
best known polynomial time approximation algorithm achieves an approximation
factor of O(y/mlog®m) [4]. A constant factor approximation algorithm seems dif-
ficult to achieve, in particular since the configuration-LP has an integrality gap of
Q(y/m) [5]. However, we present a polynomial time algorithm that computes a
half-integral solution whose value is at most by a factor 2 smaller than the best
integral solution. Moreover, we show that at the cost of at most a factor of 2 this
solution can be transformed to a half-integral solution in which at most m/2 jobs
are fractionally assigned.

Let I be an instance of the MaxMin allocation problem. Let T be a guessed
optimal value (later determined by a binary search). As a first step we redefine I to
an instance I’ by changing the execution times of the jobs to p;; = min{p; ;, T}.
Clearly, if there is a solution with value T" for I then there is also a solution with
value T for I’. With the instance I’ we solve the following linear program LP,:

Zfi,j pi; =T

J
> wiy=1
i
Tij 20

If LP,, is infeasible there can be no integral solution with value T" or larger. Now
assume that L P, is feasible. We perform a slightly modified LST-rounding: instead
of assigning one unit of jobs to each vertex for a machine i, we assign 1/2 units
of jobs to every vertex (and hence we need more vertices). After the rounding we
obtain a half-integral solution HALF(I).

Theorem 23. Let I be an instance of the MaxMin-allocation problem. There is
a polynomial time algorithm that computes a half-integral solution HALF (I) such
that HALF(I) > %OPT(I).

Proof. Let i be a machine. Similarly to the analysis of LST-rounding for R||Cax,
during the rounding we lose at most the volume of the jobs assigned to the first
vertex of i. Since at most 1/2 units of jobs can be assigned to this vertex and all
pa ; < T, machine i keeps a makespan of at least T/2. Since LP,; was feasible for
T we conclude that T is an upper bound for OPTjq (1) and OPT(I). O

Now we show how to modify HALF(I) to get another half-integral solution in
which at most m/2 jobs are fractionally assigned. This modification comes at a
cost of at most a factor 2 and hence still yields a constant factor approximation.

Let I be an instance of the MaxMin-allocation problem and let HALF(I) be any
half-integral solution for I. We do not change the assignment of jobs which were
assigned integrally in HALF(I). For each machine ¢ let J; = {ji1,Ji2,...} denote
the jobs which are fractionally assigned to i. Let p; , denote the processing time
of j;o. We assume that the jobs are ordered non-increasingly by processing time,

ON THE CONFIGURATION-LP FOR SCHEDULING ON UNRELATED MACHINES 20

i.e., pi¢ > pie+1 for all respective values of £. We define a graph G as follows: For
each job j; ¢ we introduce a vertex (j; ¢). We connect two vertices (j; ¢), (jir.er) by
an edge if j; ¢ and j; ¢ represent the same job (but on different machines). We call
such edges the outer edges. Also, for each machine i we introduce an edge between
the vertices (j; o) and (j; 2x+1) for each respective value k > 1 (inner edges).

Lemma 24. The graph G is bipartite.

Proof. Can be proven similarly as Lemma 20. O

Now we color G (greedily) with two colors, black and white. From the coloring
we compute a new solution as follows: we take each the black vertex (j;,) and
assign the job j; o completely to machine ¢. Note that this is well-defined since if
(Ji,e) then the other vertex that represents the job is white.

Now there are two cases that we treat separately. For each machine ¢ we call
the vertex (j; 1) the head vertex. Let P be a path in G. If one of the end vertices
of P is a head vertex and the other one is not a head vertex, then we (re-)color P
such that the head vertex is black and do the job assignment as above. If both end
vertices of P are head vertices then we take the head vertex (j; 1) that was colored
in white and assign one half of the job j; 1 to machine ¢ and the other half to the
respective other machine. Denote by HALF'(I) the resulting solution.

Lemma 25. The solution HALF'(I) is half-integral and at most m/2 jobs are
fractionally assigned. Moreover, HALF'(I) > % - HALF(I).

Proof. From the definition of the algorithm we conclude that for each machine 4
the job j; 1 corresponding to the head vertex (j; 1) of 7 is at least half assigned to i.
For each pair of jobs j; ok, ji,2k+1 (for & > 1) one of them is at least half assigned
to i. Denote by B(i) the jobs which were integrally assigned to i in HALF(I). In
HALF'(I) the machine ¢ has a makespan of at least ZjeB(i) Dij+ % Zk20p¢72k+1.
Since p; 2r > pi2k+1 for all machines ¢ an all values k£ we conclude that

>)pi,j + % D pioknn = D pig i > ik

jEB(i k>0 JEB(D) k>1
5 1 3 _.+EZ .
= 9 4 4 pl,j 2 Di.k
JEB(i) k>1
1
= SHALF(I)

where HALF;(I) denotes the makespan of i in HALF(I).
The only case in which a job is fractionally assigned is when both end vertices
of a path P are head vertices. Since every machine has only one head vertex, there

can be at most m/2 such paths. Hence, the number of fractionally assigned jobs is
bounded by m/2. O

Theorem 26. Let I be an instance of the MaxMin-allocation problem. There
is a polynomial time algorithm that computes a half-integral solution HALF'(I)
such that HALF (I) > OPT(I). Moreover, HALF'(I) assigns at most m/2 jobs
fractionally.

ON THE CONFIGURATION-LP FOR SCHEDULING ON UNRELATED MACHINES 21

We note that with similar techniques as above we can compute half-integral
solutions for R||Cpax which are by at most a factor of 3/2 larger than the best
integral solutions.

5.3. Tractable cases. Similarly as for R||Ciax if the number of big jobs is bounded
by a constant c or if we knew what machines execute a big job in an optimal solution
we can guarantee better approximation factors. Here, we define a job j to be big
on machine i if p; ; > %OPT. With similar techniques as in Section 4.3 we can
prove the following theorems.

Theorem 27. Let ¢ be a fized integer. There is a 2-approximation algorithm for
instances of the MaxMin-allocation problem with at most ¢ big jobs.

Theorem 28. Let ¢ be a fized integer. Let I be an instance of the MaxMin-
allocation problem. Assume we know for at least m — ¢ machines whether they
execute a big job in an optimal solution. There is a polynomial time algorithm that
computes a solution for I whose value is at least %OPT.

REFERENCES

[1] A. Asadpour, U. Feige, and A. Saberi. Santa claus meets hypergraph matchings. In Ap-
proximation, Randomization and Combinatorial Optimization. Algorithms and Techniques
(APPROX and RANDOM 2008), volume 5171 of Lecture Notes in Computer Science, pages
10-20. Springer, 2008.

[2] A. Asadpour, U. Feige, and A. Saberi. Santa claus meets hypergraph matchings. Technical
report, Standford University, 2009. Available for download at http://www.stanford.edu/
~asadpour/publication.htm.

[3] A. Asadpour and A. Saberi. An approximation algorithm for max-min fair allocation of
indivisible goods. In Proceedings of the 39th annual ACM symposium on Theory of computing
(STOC 2007), pages 114-121, 2007.

[4] A. Asadpour and A. Saberi. An approximation algorithm for max-min fair allocation of
indivisible goods. In Proceedings of the 39th annual ACM symposium on Theory of computing
(STOC 2007), pages 114-121, 2007.

[5] N. Bansal and M. Sviridenko. The santa claus problem. In Proceedings of the 38th annual
ACM symposium on Theory of computing (STOC 2006), pages 31-40, 2006.

[6] M. Bateni, M. Charikar, and V. Guruswami. Maxmin allocation via degree lower-bounded
arborescences. In Proceedings of the 41st annual ACM symposium on Theory of computing
(STOC 2009), pages 543-552, 2009.

[7] D. Chakrabarty, J. Chuzhoy, and S. Khanna. On allocating goods to maximize fairness. In
Proceedings of the 50th Annual Symposium on Foundations of Computer Science (FOCS
2009), pages 107-116, 2009.

[8] T. Ebenlendr, M. Kr&al, and J. Sgall. Graph balancing: a special case of scheduling unrelated
parallel machines. In Proceedings of the 19th annual ACM-SIAM symposium on Discrete
algorithms (SODA 2008), pages 483-490, 2008.

[9] U. Feige. On allocations that maximize fairness. In Proceedings of the 19th Fannual ACM-
SIAM symposium on Discrete algorithms (SODA 2008), pages 287293, 2008.

[10] M. Gairing, B. Monien, and A. Woclaw. A faster combinatorial approximation algorithm for
scheduling unrelated parallel machines. Theoretical Computer Science, 380:87-99, 2007.

[11] D. Golovin. Max-min fair allocation of indivisible goods. Technical report, Carnegie Mellon
University, June 2005.

[12] B. Haeupler, B. Saha, and A. Srinivasan. New Constructive Aspects of the Lovasz Local
Lemma. ArXiv e-prints, January 2010.

[13] Dorit S. Hochbaum and David B. Shmoys. Using dual approximation algorithms for sched-
uling problems theoretical and practical results. Journal of the ACM, 34:144-162, 1987.

[14] K. Lee, J. Y.-T. Leung, and M. L. Pinedo. A note on graph balancing problems with restric-
tions. Information Processing Letters, 110:24-29, 2009.

[15]
[16]
(17]

(18]
[19]

20]
[21]

22]

ON THE CONFIGURATION-LP FOR SCHEDULING ON UNRELATED MACHINES 22

J. K. Lenstra, D. B. Shmoys, and E. Tardos. Approximation algorithms for scheduling unre-
lated parallel machines. Mathematical Programming, 46:259-271, 1990.

J. Y.-T. Leung and C.-L. Li. Scheduling with processing set restrictions: A survey. Interna-
tional Journal of Production Economics, 116:251-262, 2008.

Y. Lin and W. Li. Parallel machine scheduling of machine-dependent jobs with unit-length.
European Journal of Operational Research, 156:261-266, 2004.

A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer, Berlin, 2003.
P. Schuurman and G. J. Woeginger. Polynomial time approximation algorithms for machine
scheduling: Ten open problems. Journal of Scheduling, 2:203-213, 1999.

E. V. Shchepin and N. Vakhania. An optimal rounding gives a better approximation for
scheduling unrelated machines. Operations Research Letters, 33:127-133, 2005.

D. B. Shmoys and E. Tardos. An approximation algorithm for the generalized assignment
problem. Mathematical Programming, 62:461-474, 1993.

O. Svensson. Santa Claus Schedules Jobs on Unrelated Machines. ArXiv e-prints, November
2010.

