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We propose two models of the evolution of a pair of competing
populations. Both are lattice based. The first is a compromise be-
tween fully spatial models, which do not appear amenable to ana-
lytic results, and interacting particle system models, which don’t, at
present, incorporate all the competitive strategies that a population
might adopt. The second is a simplification of the first in which com-
petition is only supposed to act within lattice sites and the total
population size within each lattice point is a constant. In a special
case, this second model is dual to a branching-annihilating random
walk. For each model, using a comparison with oriented percolation,
we show that for certain parameter values both populations will co-
exist for all time with positive probability. As a corollary we deduce
survival for all time of branching annihilating random walk for suffi-
ciently large branching rates.

We also present a number of conjectures relating to the rôle of
space in the survival probabilities for the two populations.
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1. Introduction. Natural populations interact with one another and
with their environment in complex ways. No mathematical model can pos-
sibly incorporate all such interactions and yet remain analytically tractable.
As a result, in order to understand the effects of a feature of a population’s
dynamics, it is often useful to study ‘toy models’. In this paper we investigate
two such toy models that aim to parody the evolution of two populations
that are distributed in space and competing for the same resource. Both our
models can be viewed as a compromise between fully spatial models which
don’t appear to be amenable to a rigorous mathematical analysis and inter-
acting particle system models which don’t, at present, incorporate all the
competitive strategies that a population of, say, plants might adopt.

Although lattice based, our first model is highly reminiscent of the models
in continuous space studied by Bolker and Pacala (1999) and Murrell and
Law (2003), while admitting a rigorous mathematical analysis. It comprises
a system of interacting diffusions, indexed by Z

d, driven by independent
Feller noises and coupled through a drift term that reflects migration and
competition (both within and between species). Our second model is much
simpler: first we suppose that the parameters governing migration of individ-
uals within the two populations are the same and that competition between
the populations acts only within individual lattice sites; second we suppose
that the total population size within each lattice site is a fixed constant.
When we further restrict to the symmetric case, in which the parameters
governing the evolution of the two populations are the same, we shall exhibit
a duality between this second process and a branching annihilating random
walk. The latter is a process that has received considerable attention in the
physics literature and we believe this duality to be of some interest in its
own right.

A natural starting point for modelling two competing populations is the
classical Lotka-Volterra model. This is a deterministic model for the evolu-
tion of the total sizes of the two populations, denoted N1(t), N2(t). They are
assumed to follow the following system of differential equations:

dN1

dt
= r1N1

(
1 − N1

K1
− α12

N2

K1

)
, (1)

dN2

dt
= r2N2

(
1 − N2

K2
− α21

N1

K2

)
, (2)

where ri, Ki are respectively the intrinsic growth rates and carrying capac-
ities of the two species and the αij measure the interspecific competition. It
is easy to check that longtime coexistence of the two populations is possible
if K1 > α12K2 and K2 > α21K1. A number of models have been proposed
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that extend this in two different ways. First they incorporate spatial struc-
ture into the populations and second they assume that the evolution of the
populations is stochastic.

It is far from clear how spatial structure affects the chances of longterm
coexistence for two competing populations. Traditionally ecologists have
believed that the local nature of interactions between populations that
are dispersed in space promotes coexistence. One reason is the so-called
competition-colonization tradeoff: a weaker competitor that is good at colo-
nization may be able to survive by exploiting ‘gaps’ between its competitors.
It has also been claimed that because in spatial models the population tends
to become segregated into clusters of a single type, the intraspecific com-
petition will be more important than the interspecific competition. Pacala
and Levin (1997) make an attempt to quantify this effect. On the other
hand Neuhauser and Pacala (1999) propose and analyse a spatial stochas-
tic model for competing species in which space actually makes coexistence
harder. This suggests then that in their model it is actually the interactions
at the cluster boundaries that dominate.

In order to obtain analytic results about spatial stochastic models, sim-
plifying assumptions must be made. Murrell and Law (2003) point out that
common assumptions are that the parameters of neighbourhoods over which
individuals compete are the same, irrespective of species, or that dispersal
and competition neighbourhoods are of the same size, but that dropping
such symmetries can have profound consequences. They argue, using a sim-
ulation study and the method of moment closure for a specific stochastic
model in two space dimensions, that spatial structure can promote coexis-
tence, by showing that in the spatial setting two populations in which the
overall strength of interspecific and intraspecific competition is the same can
coexist, but only if the distance over which individuals sense their heterospe-
cific neighbours (i.e. their competitors) is shorter than that over which they
sense their conspecific neighbours. They coin the term heteromyopia for pop-
ulations that are ‘shortsighted’ in this way. We explain this concept in a little
more detail in the context of our first model in Section 2 below. Although
this model admits such differences in neighbourhood size, our methods are
not strong enough to confirm the numerical findings of Murrell and Law
in this context. Indeed, even when the populations migrate in a symmetric
way and intraspecific and interspecific competition neighbourhoods are of
the same size, although we conjecture (in Section 2) that space does not
make coexistence harder for our model, our methods are not strong enough
to provide a rigorous proof of this claim.
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Model I
Let us describe the first model that we have in mind. Following Bolker

and Pacala (1999) we assume that the strategies for survival that individuals
in our model can employ are: (i) to colonise relatively unpopulated areas
quickly, (ii) to quickly exploit resources in those areas and (iii) to tolerate
local competition. We take two different populations (species) and each can
adopt a different combination of strategies for survival. In order to simplify
the proofs of our results, we suppose our populations to be living on Z

d

(the biologically relevant case is d = 2). The dynamics of the model are
entirely analogous to those considered by Bolker and Pacala (1999) and
by Murrell and Law (2003). We write {X(t)}t≥0 = {Xi(t), i ∈ Z

d}t≥0 and
{Y (t)}t≥0 = {Yi(t), i ∈ Z

d}t≥0 for our two populations. We shall suppose
that the pair of processes {X(t)}t≥0, {Y (t)}t≥0 solves the following system
of stochastic differential equations:

dXi(t) =
∑

j∈Zd

mij (Xj(t) − Xi(t)) dt

+ α
(
M −

∑

j∈Zd

λijXj(t) −
∑

j∈Zd

γijYj(t)
)
Xi(t)dt +

√
σXi(t)dBi(t),

(3)

dYi(t) =
∑

j∈Zd

m′
ij (Yj(t) − Yi(t)) dt

+ α′
(
M ′ −

∑

j∈Zd

λ′
ijYj(t) −

∑

j∈Zd

γ′
ijXj(t)

)
Yi(t)dt +

√
σYi(t)dB′

i(t),

(4)

where {{Bi(t)}t≥0, {B′
i(t)}t≥0, i ∈ Z

d} is a family of independent standard
Brownian motions. The (bounded non-negative) parameters mij , m′

ij , λij ,
λ′

ij , γij , and γ′
ij are all supposed to be functions of ||i − j|| alone and to

vanish for ||i − j|| > R for some R < ∞. In other words the range of both
migration and interaction for the two populations will be taken to be finite.

Here, || · || can either denote the lattice distance (so that simple random
walk is included) or the maximum norm on Z

d, but it will be convenient to
take the maximum norm. Moreover, notice that by a change of units there
is no loss of generality in taking the same σ for both populations and indeed
we may set σ = 1.

Assumption: for the rest of this work, σ = 1.
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Remark (Existence and uniqueness for Model I). Note that existence
of a solution for Model I under the assumptions above is not covered by the
now standard results in Shiga and Shimizu (1980). However, an extension
of their results using a comparison theorem of Geiß and Manthey (1994)
yields, for each p ≥ 1, (weak) existence of a continuous, positive solution
{Xt}t≥0, {Yt}t≥0, such that a.s. for all t ≥ 0, Xt and Yt live in the space

ℓ4p
Γ = {x ∈ R

Z
d

: ||x||Γ,4p < ∞}. (5)

Here the weighted ℓ4p
Γ -norm, || · ||Γ,4p, is defined by

||x||Γ,4p =




∑

i∈Zd

Γi|xi|4p




1

4p

,

where the sequence {Γi}i∈Zd is such that Γi > 0 for i ∈ Z
d,

∑
i Γi < ∞

and Γi/Γj < f(||i − j||) for a continuous function f : [0,∞) → [0,∞). Note
that, for example, Γi = e−||i|| satisfies this condition. We prove existence
of a solution to this system in the Appendix. Uniqueness remains open,
after considerable efforts including those of several experts whom we have
consulted. At first sight one expects to be able to prove uniqueness in a
suitable weighted lp space by an application of the (infinite-dimensional)
Yamada-Watanabe Theorem. This works only in the special case when
λij and γij both vanish for i 6= j. The non-local nature of the interaction
destroys the vestiges of monotonicity available in this special case. 2

For the X-population, the first two strategies for survival listed above
correspond to taking large mij and large αM , while the third corresponds
to taking small λij (conspecific competition) and γij (interspecific competi-
tion). By varying M we can also model how efficiently the species uses the
available resources: a species that can tolerate lower resource levels will have
a higher value of M .

We now need to introduce some terminology to describe the long-term
behaviour of the system.

Definition 1.1 (Notions of survival) Let p ∈ [0, 1). We shall say that
the X population survives for all time with probability greater than p, if
there exists κ > 0 such that

lim inf
t→∞

P [X0(t) > κ] > p.
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We shall say that both populations persist for all time with probability
greater than p, if there exists κ > 0 such that

P

[
∀t > 0, ∃i, j ∈ Z

d : Xi(t), Yj(t) > κ
]

> p.

Finally, we shall say that the populations exhibit longterm coexistence with
probability greater than p, if there exists κ > 0 such that

lim inf
t→∞

P [X0(t), Y0(t) > κ] > p.

Observe that the third notion is much stronger than the second one. No-
tice also that if γij = γ′

ij is zero for all i, j ∈ Z
d, then each population

follows an independent copy of the so-called stepping-stone version of the
Bolker-Pacala model introduced in Etheridge (2004). There it is proved that
if the range of migration is at least as great as the range over which the
population interacts with itself (here determined by the {λij}), then pro-
vided that αM is sufficiently large the population will survive. A partial
converse of this, proved there only in the context of a continuous space
analogue of this model, suggests that this condition is actually necessary, a
conclusion reached independently by Law, Murrell and Dieckmann (2003).
We therefore assume from the outset that there is a constant c > 0 so that
for all i, j ∈ Z

d we have that mij > cλij and m′
ij > cλ′

ij whenever λij resp.
λ′

ij is strictly positive. Indeed, Theorem 1.5 in Etheridge (2004) then tells
us that if αM >

∑
j mij is sufficiently large (depending on c), the single

species model for X started from any non-trivial translation invariant ini-
tial condition survives with positive probability, i.e. there exists a κ > 0,
such that

lim inf
t→∞

P [X0(t) > κ] > 0.

Clearly, the corresponding result holds also for the Y -population in the ab-
sence of its competitor.

For the competing species model we will have to make similar and
additional assumptions. In particular, we shall choose initial conditions for
our processes in such a way that we can find a box where both populations
are present, but not so prevalent that the competitive interaction between
them is too large.

Notation and assumptions for Theorem 1.2

• The parameters mij, m′
ij , λij , λ′

ij , γij , and γ′
ij are non-negative func-

tions of ||i − j|| alone and vanish for ||i − j|| > R for some R < ∞.
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• {mij}, {m′
ij}, {λij} and {λ′

ij} are fixed in such a way that there exists
a constant c > 0 such that, for all mij , m

′
ij 6= 0,

1

c
λij < mij < cλij , and

1

c
λ′

ij < m′
ij < cλ′

ij . (6)

For all i, j such that mij = 0 resp. m′
ij = 0 we require λij = 0

resp. λ′
ij = 0. Assume that {mij} and {m′

ij} are non-diagonal and

of the same range and that λii, λ
′
ii > 0 for all i ∈ Z

d.
• Let L = max

{
‖j − i‖ : mij , m

′
ij 6= 0

}
≤ R <∞.

• Assume that αM >
∑

j∈Zd mij and α′M ′ >
∑

j∈Zd m′
ij.

• Let b ∈ Z such that max{‖j − i‖ : γij or γ′
ij 6= 0} < (b − 1)L. Note

that this bounds the range over which the two populations interact
competitively.

• For m ∈ N ∪ {∞} and 0 < κ1 < κ2 < ∞, 0 < κ′
1 < κ′

2 < ∞, we write

(X(0), Y (0)) ∈ H(κ1, κ2; κ′
1, κ

′
2; m)

if X(0), Y (0) ∈ ℓ4p
Γ and there exists a box J = {[−m, m]d ∩Z

d} ⊂ Z
d,

such that for all i ∈ J ,

X0(i) ∈ [κ1, κ2) and Y0(i) ∈ [κ′
1, κ

′
2). (7)

Remark. One can drop the assumption that the range of {mij} and {m′
ij}

are the same, but this will make the proof much messier. 2

Theorem 1.2 Under the above assumptions, there exist finite constants
M0 > 0, M ′

0 > 0, such that
1) For each M > M0 and M ′ > 0 there is a constant γ = γ(M, M ′) > 0

and constants 0 < κ1 < ∞, 0 < κ′
2 < ∞, such that if

∑
j γij < γ and

(X(0), Y (0)) ∈ H(κ1,∞; 0, κ′
2; (b + 1/2)L),

the X-population survives for all time with probability greater than one half.
2) Similarly, for each M ′ > M ′

0 and M > 0 there is a constant γ′ =
γ′(M, M ′) > 0 and constants 0 < κ2 < ∞, 0 < κ′

1 < ∞, such that if∑
j γ′

ij < γ′ and

(X(0), Y (0)) ∈ H(0, κ2; κ′
1,∞; (b + 1/2)L),

the Y -population survives for all time with probability greater than one half.
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Corollary 1.3 Under the conditions of Theorem 1.2, for each pair (M, M ′)
with M > M0 and M ′ > M ′

0, there is a pair (γ, γ′) with γ > 0, γ′ > 0 and
constants

0 < κ1 < κ2 < ∞, 0 < κ′
1 < κ′

2 < ∞,

such that if
∑

j γij < γ,
∑

j γ′
ij < γ′ and

(X(0), Y (0)) ∈ H(κ1, κ2; κ′
1, κ

′
2; (b + 1/2)L),

then the X and Y populations both persist for all time with positive proba-
bility.

Moreover, for each such pair if H(κ1, κ2; κ
′
1, κ

′
2; (b+1/2)L) is replaced by

H(κ1, κ2; κ′
1, κ

′
2; ∞), then there is longterm coexistence with positive proba-

bility, i.e. there exists κ > 0 such that

lim inf
t→∞

P [X0(t), Y0(t) > κ] > 0.

As we explain in Section 2, we would conjecture a very much stronger re-
sult than Theorem 1.2 (or Corollary 1.3). In particular, we provide evidence
to support the claim that in the biologically relevant case of two dimen-
sions, if we take the special case of our model in which α = α′, M = M ′ and
mij = m′

ij , then provided that γ′
ij ≤ λij and γij ≤ λ′

ij with strict inequality
whenever λij resp. λ′

ij 6= 0, and the parameters are such that if γij and γ′
ij

were zero then the single species models would survive, then with positive
probability the competing species model will coexist for all time. This would
be precisely the prediction of the corresponding Lotka-Volterra model. If we
drop the assumptions α = α′ and M = M ′ then this conjecture must be
modified to reflect competition-colonisation tradeoff. We formulate this and
other conjectures more carefully in Section 2. In the process we are led to
consider our second model of two competing species.

Model II
Suppose now that the neighbourhood over which each individual competes

is just the site in which it lives so that the only interaction between different
points in Z

d is through migration. In addition we suppose that the migration
mechanism for the two populations is the same and that the total population
size in each site is constant (that is Xi(t) + Yi(t) ≡ N > 0 for all i ∈ Z

d

and all t ≥ 0). Let us write pi(t) = Xi(t)/N for the proportion of the total
population in i at time t that belongs to the X-population. Then, as we see
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in Section 2, we arrive at the much simpler model

dpi(t) =
∑

j∈Zd

mij (pj(t) − pi(t)) dt + spi(t) (1 − pi(t)) (1 − µpi(t)) dt

+

√
1

N
pi(t) (1 − pi(t)) dWi(t), (8)

where
s = αM − α′M ′ +

(
α′λ′

ii − αγii

)
N,

and

µ =
(α′λ′

ii − αγii)N + (αλii − α′γ′
ii)N

αM − α′M ′ + (α′λ′
ii − αγii)N

and finally {Wi(t), i ∈ Z
d}t≥0 is a family of independent Brownian motions.

This model is a system of interacting Fisher-Wright diffusions for gene fre-
quencies in a spatially structured population. From the results in Shiga and
Shimizu (1980) it follows that if pi(0) ∈ [0, 1] for all i ∈ Z

d, then this sys-

tem has a continuous, pathwise unique [0, 1]Z
d

-valued strong solution for all
times t ≥ 0.

If µ < 1, then in each site i there is selection in favour of either the X-type
or the Y -type according to whether s > 0 or s < 0. If µ > 1, in each site i we
have selection in favour of heterozygosity if s > 0 and selection in favour of
homozygosity if s < 0. In the ‘neutral’ case (s = 0), the process has a moment
dual, the so-called structured coalescent, (see, for example, Shiga 1982) and
it is easy to show that if d ≥ 3 then with positive probability there will
be longterm coexistence of our two populations, whereas if d ≤ 2, with
probability one, eventually only one population will be present.

Notice that we have selection in favour of heterozygosity precisely when
(
αλii − α′γ′

ii

)
N > αM − α′M ′, and

(
α′λ′

ii − αγii

)
N > α′M ′ − αM.

We sketch a proof of the following result and present a more detailed analysis
in a forthcoming work.

Theorem 1.4 Let {pi(t), i ∈ Z
d}t≥0 evolve according to Model II. Suppose

that µ > 1 and let ε ∈ (0, 1/4]. Then, if pi(0) ∈ (ε, 1 − ε) for some i ∈ Z
d,

there exists an s0 ∈ [0,∞) such that for all s > s0, we have

P

[
∀t > 0, ∃i ∈ Z

d : ε < pi(t) < 1 − ε
]

> 0.

Moreover, if pi(0) ∈ (ε, 1 − ε) for all i ∈ Z
d, then

lim inf
t→∞

P
[
ε < p0(t) < 1 − ε

]
> 0.
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In the case when the two populations evolve symmetrically, i.e. µ = 2, Model
II reduces to

dpi(t) =
∑

j

mij (pj(t) − pi(t)) dt + spi(t) (1 − pi(t)) (1 − 2pi(t)) dt

+

√
1

N
pi(t) (1 − pi(t)) dWi(t). (9)

For general s there is no convenient moment dual, but in Lemma 2.1 we
find an alternative duality with a system of branching annihilating random
walks.

Definition 1.5 (Branching annihilating random walk) The Markov
process {ni(t), i ∈ Z

d}t≥0 with values ni(t) ∈ Z+ and dynamics described
by {

ni 7→ ni − 1,
nj 7→ nj + 1

at rate nimij (migration)

ni 7→ ni + m at rate sni (branching)
ni 7→ ni − 2 at rate 1

2ni(ni − 1) (annihilation)

is called a branching annihilating random walk with offspring number m and
branching rate s.

Corollary 1.6 There exists s0 ≥ 0 such that if s > s0 the branching annihi-
lating random walk with offspring number two, started from an even number
of particles at time zero, will survive for all time with positive probability.

Remark. Notice that in a branching annihilating random walk with
offspring number two, a birth event results in one individual splitting into
three, a net increase of two, whereas an annihilation event results in the loss
of two particles. As a result, we have parity preservation: if we start from
an odd number of particles in the system, then there will always be an odd
number of particles in the system (so, in particular, at least one). This is
why we restrict the initial number of particles in Corollary 1.6 to be even.
2

Branching annihilating random walk has received considerable attention
from physicists (see Täuber (2003) for a review). Much of the work relates
to the analogous process with instant annihilation of any two particles in the
same site (and offspring therefore thrown onto neighbouring sites) which is
easier to simulate numerically but, for example, Cardy and Täuber (1996),
(1998) consider precisely the process described above. Our conjecture for
Model II, stated in Section 2, is based on their results, which in turn are
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based on perturbation theory and renormalisation group calculations.

We remark that Neuhauser and Pacala (1999) exploit a so-called annihi-
lating duality between their interacting particle system and BARW with
instant annihilation.

The rest of the paper is laid out as follows. In Section 2, we explain the
relationship between our two models and the duality between the symmetric
form of Model II and branching annihilating random walk. We also make
some conjectures about the longtime behaviour of our two models that are
then placed in context by discussing in more detail the relationship with
results and conjectures for other toy models. The proof of our main result
will rely upon a comparison with oriented 2N -dependent percolation and
so in Section 3, we recall the definition of 2N -dependent percolation and
state a suitable comparison result. The proofs of Theorem 1.2 and Corol-
lary 1.3 are in Section 4 and a sketch of the proof of Theorem 1.4 is in Sec-
tion 4.2.3. Corollary 1.6 will then be immediate from the duality of Model
II and branching annihilating random walk.

2. Heuristics and comparison to existing models. In this section
we provide heuristic arguments that explain the connection between our two
models, justify our results and also suggest that much stronger statements
should be true. En route we exhibit the duality between the symmetric ver-
sion of Model II and branching annihilating random walk. We then briefly
review results and conjectures for some of the related models in the litera-
ture.

2.1. Relationship between the two models. Suppose that the evolution of
our population follows Model I, i.e. is determined by equations (3) and (4).
We now derive the system of equations governing the proportion of the total
population at time t at site i that belongs to the X-subpopulation. We need
some notation. Write

Ni(t) = Xi(t) + Yi(t), and pi(t) =
Xi(t)

Ni(t)
.
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Then an application of Itô’s formula (and some rearrangement) gives

dpi(t) =
∑

j∈Zd

mij
Nj(t)

Ni(t)
(pj(t) − pi(t)) dt

+
∑

j∈Zd

(
mij − m′

ij

) Nj(t)

Ni(t)
pi(t)(1 − pj(t)) dt

−
∑

j∈Zd

(mij − m′
ij)pi(t)(1 − pi(t)) dt

+

[
αM − α′M ′ +

∑

j∈Zd

(
α′λ′

ij − αγij

)
Nj(t)

+
∑

j∈Zd

(
αγij +α′γ′

ij −α′λ′
ij −αλij

)
Nj(t)pj(t)

]
pi(t)(1 − pi(t)) dt

+

√
1

Ni(t)
pi(t) (1 − pi(t)) dWi(t), (10)

where {Wi(t), i ∈ Z
d}t≥0 is a family of independent Brownian motions.

We concentrate on the case when mij = m′
ij . Notice that if we also assume

that λij , λ
′
ij and γij , γ

′
ij are zero for i 6= j and that the population sizes Ni(t)

are in fact a fixed constant then we arrive at Model II:

dpi(t) =
∑

j

mij (pj(t) − pi(t)) dt + spi(t) (1 − pi(t)) (1 − µpi(t)) dt

+

√
1

N
pi(t) (1 − pi(t)) dWi(t),

where
s = αM − α′M ′ + N

(
α′λ′

ii − αγii

)

and

µ =
(α′λ′

ii − αγii)N + (αλii − α′γ′
ii)N

αM − α′M ′ + (α′λ′
ii − αγii)N

.

2.2. Conjectures for Model II. Our conjectures for Model II are based
on the symmetric case, implying µ = 2. The model then reduces to the
system (9). In this case we are able to find a convenient dual process. First
we transform the equations. Let xi(t) = 1 − 2pi(t). Then

dxi(t) =
∑

j

mij (xj(t)−xi(t)) dt +
1

2
s
(
x3

i (t)−xi(t)
)
dt−

√(
1−x2

i (t)
)
dWi(t).

(11)
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Lemma 2.1 The system (11) is dual to branching annihilating random
walk with branching rate s/2 and offspring number two, denoted {ni(t), i ∈
Z

d}t≥0, through the duality relationship

E

[
x(t)n(0)

]
= E

[
x(0)n(t)

]
,

where
xn ≡

∏

i∈Zd

xni

i .

The proof is completely standard, see, e.g. Shiga (1980), and is omitted.

Cardy and Täuber (1996), (1998) consider the branching annihilating
random walk model of Definition 1.5. In particular, their results suggest that
when the offspring number is two, although in one dimension the optimal
value for s0 in Corollary 1.6 is strictly positive, in two dimensions one can
take s0 = 0. Based on this we make the following conjecture with some
confidence.

Conjecture 2.2 For Model II with µ = 2 and d = 1, there is a critical value
s0 > 0 such that the populations described by system (9) will both persist for
all time with positive probability if and only if s > s0. In d = 2, there is
positive probability that both populations will persist for all time if and only
if s > 0. For d ≥ 3 this probability is positive if and only if s ≥ 0.

Roughly speaking, for d ≥ 2, if there is a homozygous advantage, then
the population will initially form homogenic clusters, but ultimately it will
be the interactions at the cluster boundaries that dominate and one type
will go extinct. In the heterozygous advantage case, there will be long term
coexistence of species. In one dimension, the heterozygous advantage must
be ‘sufficiently strong’ if we are to see coexistence.

In fact we would go further. In view of the genetic interpretation of Model
II, it would be odd if the case µ = 2 were pathological and so we expect
that in d ≥ 2 we will have positive probability of coexistence for any s > 0,
µ > 1. With slightly less confidence we therefore extend our conjecture.

Conjecture 2.3 Conjecture 2.2 holds true for any µ > 1, where in one
dimension s0 will now also depend on µ.

If this conjecture is true, then in dimensions greater than one, for
(
α′λ′

ii − αγii

)
N > α′M ′ − αM and

(
αλii − α′γ′

ii

)
N > αM − α′M ′

we have positive probability that both populations survive. Comparing the
quantities α′λ′

ii−αγii and αλii−α′γ′
ii tells us about the relative effectiveness
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of the X and Y populations as competitors. If the first is smaller, then the
X-population is a less effective competitor. However, provided that αM >
α′M ′, we can even allow it to be negative and have positive probability
of survival for the X-population. This reflects a competition-colonisation
tradeoff.

2.3. Conjectures for Model I. We now turn to Model I. We assume that
the migration mechanisms governing the two populations are the same. Sup-
pose first that α = α′, M = M ′, λij = γ′

ij and λ′
ij = γij . We then see that

the system of equations (10) looks like a selectively neutral stepping stone
model with variable population sizes in each lattice site. If we condition
on the trajectories of those population sizes, then this process will have a
dual process: a system of coalescing random walks in a space-and-time vary-
ing environment. Showing that there is no long term coexistence of types
amounts to showing that two independent random walks evolving in this
environment will, with probability one, eventually meet and coalesce. If the
environment is sufficiently well-behaved then one might expect this to be
true. Problems will arise if the environment develops large ‘holes’, so that
the walkers never meet, or very dense clumps so that when the walkers do
meet, they do so in such a heavily populated site that they don’t coalesce
before moving apart again. Much of our proof of Theorem 1.2 is devoted
to showing that the environment does not clump and a special case of that
result says that, provided that initially both populations are present in suf-
ficient numbers in all sites, the probability that any given site is in a ‘hole’
at time t is uniformly bounded below. We therefore conjecture that in the
neutral case, Model I will behave qualitatively in the same way as Model
II. In the biologically relevant case of two spatial dimensions we have been
unable to produce a proof.

More generally we believe, still assuming that mij = m′
ij and α = α′,

M = M ′, provided that at least one population persists, the question of
longtime coexistence of the populations described by Model I will not be
changed by assuming that competition only acts within individual lattice
sites and moreover in that case the question of coexistence will be the same
as for the populations described by Model II. Namely we make the following
conjecture.

Conjecture 2.4 Let mij = m′
ij, α = α′, M = M ′ be fixed. Suppose that

both X and Y populations start from non-trivial translation invariant initial
conditions and that the parameters are such that each population has positive
chance of survival in the absence of the other. Further let λij = λ′

ij , γij = γ′
ij.

1. If λij < γij for all j, then eventually only one population will be
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present.
2. If λij > γij for all j, then if d ≥ 2, with positive probability the popu-

lations will exhibit longterm coexistence.
In one dimension the same result will hold true provided that λij − γij

is sufficiently large.
3. If λij = γij and d ≥ 3 then with positive probability both populations

will exhibit longterm coexistence.
If d ≤ 2 then with probability one, eventually one of the populations
will die out.

When αM 6= α′M ′, we would expect once again to see a competition-
colonisation tradeoff, but we do not have a precise formulation of a con-
jecture in this context.

2.4. Heteromyopia. In view of equation (10), it is easy to see that Mur-
rell and Law’s heteromyopia might lead to coexistence. They work in a
continuous space with the strength of competition between individuals de-
caying with their distance apart according to a Gaussian kernel. The ana-
logue of their model in our setting is the symmetric version of Model I with
λij = λ (‖i − j‖), γij = γ (‖i − j‖), where the functions λ and γ are mono-
tone decreasing and

∑
j λij =

∑
j γij , but the range of λij is greater than

that of γij . We can think of the effect of this as follows. Over small scales
we have homozygous advantage, over larger scales heterozygous advantage.
Again we expect to see the population forming homogenic clusters, but now
the cluster boundaries will be maintained because the heterogeneity there
confers an advantage to individuals within the clusters which counteracts
the disadvantage to the individuals actually on the boundary. Reversing the
sign to give populations with ‘heterohyperopia’ gives the opposite effect.
This is not stable as an individual’s own offspring, which are necessarily
born at the same location as their parent and are of the parental type, will
act to destroy clusters. Murrell and Law observe founder control in this case,
which means that the outcome of the competition is entirely determined by
the initial conditions. We make the following conjecture.

Conjecture 2.5 Suppose that the parameters of Model I are chosen to be
symmetric and are such that in the absence of the other type, each popula-
tion would survive for all time with positive probability and that the initial
condition for each population is non-trivial and translation invariant.

In dimensions d ≥ 2, if the populations are heteromyopic, then with pos-
itive probability we will see longterm coexistence, whereas in d = 1, the
populations must be strongly heteromyopic for there to be positive probability
of longtime coexistence of types.
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2.5. Relation to existing models. The Murrell-Law model
Our conjectures for Model I are entirely in agreement with the numerical
results of Murrell and Law (2003). They analyse a stochastic version of a
spatial Lotka-Volterra system, very similar to ours. Their model differs from
ours in that the populations are distributed in a continuous two-dimensional
space, not on a lattice. The evolution is characterised in terms of moment
equations. These moment equations were derived from a stochastic individ-
ual based model by Dieckmann and Law (2000). Although the assumption
of a spatially continuous environment is clearly desirable, the price that they
pay is that there are very few analytic tools available for the study of the
resulting population models and so they use moment closure, assuming in
this case a ‘power-1’ closure. In particular they ignore dynamics of all spa-
tial moments beyond order two. In view of the clustering behaviour that is
characteristic of populations evolving according to spatial branching models
in two dimensions, this method has potential pitfalls. In fact the control of
the clumping of the populations that forms an essential part of our proof of
Theorem 1.2 also adds considerable credibility to the moment closure tech-
nique for these models and hence to the numerical predictions of Murrell
and Law.

The Neuhauser-Pacala model
In order to place these results and conjectures in a slightly broader context,
let us now describe the model of Neuhauser and Pacala (1999). They too
consider an explicitly spatial stochastic version of the Lotka-Volterra model.
Their model is lattice based but in contrast to ours allows only a single
individual to live at each lattice site. Moreover, there is instant recolonisation
so that there will always be exactly one individual at each site in Z

d. This
fixed population size makes it more analogous to Model II than to Model I.

Definition 2.6 (Neuhauser-Pacala model) The Markov process
{ηi(t), i ∈ Z

d}t≥0 in which ηi(t) ∈ {1, 2} and with dynamics

1. If ηi(t) = 1, it becomes 2 at rate

λf2

λf2 + f1
(f1 + α12f2) ,

2. If ηi(t) = 2, it becomes 1 at rate

f1

λf2 + f1
(f2 + α21f1) ,

where

fk(i) =
|{j : ηj(t) = k : j ∈ Ni}|

|Ni|
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and Ni = i + {j : 0 < ‖j‖ ≤ R} will be said to follow the Neuhauser-Pacala
(stochastic spatial Lotka-Volterra) model.

The idea is that an individual of type k will die at a rate determined by
the proportion of its neighbours that are conspecific plus some constant
multiple of the proportion of heterospecific neighbours. Thus, for example,
if in Model I we took λij and γij to have the same range and to be constant
on that range, then a small value of α12 would correspond to the ratio γij/λij

being small. The dead individual is immediately replaced by an offspring of
one of its neighbours chosen according to a weight that reflects the relative
fecundity of the two types. Thus, for example, λ > 1 would reflect type 2
being more fecund than type 1. In Model I this would be modelled by taking
α′M ′ > αM .

Let us recall some results for this model.

Theorem 2.7 (Neuhauser and Pacala (1999), Theorem 1) Sup-
pose that λ = 1, d = 1 or 2 and α12 = α21 = α.

1. When α = 0, then, except for the one-dimensional nearest neigh-
bour case, product measure with density 1/2 is the limiting distribution
starting from any nontrivial initial distribution.

2. If α is sufficiently small (depending on R), then coexistence is possible
except for the one-dimensional nearest neighbour case.

For Model I, a result entirely analogous to part (2) is a special case of
Theorem 1.2. For Model II, the analogue is Theorem 1.4. If we believe Con-
jecture 2.2 then although in d = 1 we require the condition ‘α sufficiently
small’, in d = 2 the corresponding result is true for all α < 1. This corre-
sponds to Conjecture 1 of Neuhauser and Pacala (1999).

Theorem 2.8 (Neuhauser and Pacala (1999), Corollary 1)
Suppose that λ = 1. Write n = |N | for the number of lattice sites in a
neighbourhood. Species 1 competitively excludes species 2 if

α12 <

{
nα21 − n + 1, for α21 ∈

(
1 − 1

n , 1
]
,

1
nα21 + 1 − 1

n , for α21 > 1.

Species 2 competitively excludes species 1 if

α12 >

{
1
nα21 + 1 − 1

n , for α21 ∈ (0, 1],
nα21 − n + 1, for α21 > 1.

In particular, this result shows that the values of (α12, α21) for which both
populations persist for all time are contained in the shaded region in Figure
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Fig 1. The region of the (α12, α21)-plane for which both populations can persist for all
time in the Neuhauser-Pacala model is contained in the shaded region.

1. This is a reduction from the range of values predicted by the mean field
model. The case λ = 1 corresponds in our setting to taking mij = m′

ij ,
α = α′ and M = M ′, so in view of Conjecture 2.3, we expect that the
coexistence region for Model II in two dimensions corresponds to the whole
region [0, 1) × [0, 1) in the (α12, α21)-plane, i.e. the region predicted by the
mean field model.

Cox and Perkins (2005) show that a sequence of processes following the
Neuhauser-Pacala model, when suitably rescaled in space and time, con-
verges to a superBrownian motion with a non-trivial drift. In low dimen-
sions they restrict to long-range models whereas in dimensions d ≥ 3 they
can also consider the nearest neighbour case. SuperBrownian motion has
emerged as a universal limit of critical spatial systems above the critical
dimension and these results can be seen as special cases of a general con-
vergence theorem for perturbations of the voter model. In a recent preprint
(Cox and Perkins 2006) they show that in dimensions d ≥ 3 the drift in
the superBrownian motion is connected to questions of coexistence in the
Neuhauser-Pacala model. Using this connection, they obtain additional in-
formation about the parameter regions in which survival of one type resp.
coexistence holds. The biologically relevant case d = 2 is a topic of their
current research.

3. 2N -dependent oriented percolation. We now turn to proving
our results. Since our proofs will rely upon comparison with 2N -dependent
oriented percolation we first briefly recall some well known facts which can



COEXISTENCE IN COMPETING POPULATIONS AND BARW 19

be found, for example, in Durrett (1995). The insistence on 2N - instead of
N -dependent percolation will be explained in the remark below Theorem 3.5.

Oriented percolation will be defined on the lattice

L := {(x, n) ∈ Z
2 : x + n is even, n ≥ 0}.

This set is made into a graph by inserting edges from (x, n) to (x+1, n+1)
and to (x − 1, n + 1). It is convenient to think of n as time. We introduce
a family of {0, 1}-valued random variables ω(x, n) at sites (x, n) ∈ L. A
site (x, n) is called open if ω(x, n) = 1 and closed if ω(x, n) = 0. Given
such a family of random variables and integers 0 ≤ m < n, we say that
(y, n) ∈ L can be reached from (x, m) if there is a sequence of points x =
xm, xm+1, . . . , xn = y so that |xk − xk−1| = 1 and ω(xk, k) = 1 for m ≤
k ≤ n. We write this as (x, m) → (y, n). Finally, given an initial condition
W0 ⊆ 2Z = {x : (x, 0) ∈ L}, we may define a percolation process {Wn}n≥0

by setting, for each n > 0, Wn = {y : (x, 0) → (y, n) for some x ∈ W0}.
Definition 3.1 Let θ ∈ (0, 1) and N ∈ N. We say that an oriented perco-
lation process {Wn}n≥0, determined by {ω(x, n)}(x,n)∈L, is 2N -dependent
with density at least 1 − θ, if, for any finite set of indices I such that
||(xk, nk) − (xl, nl)|| > 2N for all k 6= l ∈ I, we have

P [ω(xk, nk) = 0, k ∈ I] ≤ θ|I|.

Define C0 = {(y, n) ∈ L : (0, 0) → (y, n)} as the open cluster containing
the origin. We say that percolation occurs, if |C0| = ∞. We first cite a result
which gives us a lower bound for the probability of percolation depending
on θ and N . A proof can be found in Durrett (1995).

Theorem 3.2 If θ ≤ 6−4(4N+1)2, then

P [|C0| < ∞] ≤ 55θ1/(4N+1)2 ≤ 1

20
.

For particle system models of evolving populations, a standard strategy for
showing survival of the population for all times with positive probability is
to construct a suitable coupling with oriented percolation. Our approach
amounts to a discretisation of our process and a modification of this
strategy to cope with the interactions between the two populations and
so we now describe the relevant comparison theorems. Once again we are
citing Durrett (1995), but we also present a slightly modified version of the
results which are more adequate for our purposes.
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We first consider the classical setting. Adopting the slightly unconven-
tional terminology of Durrett (1995), let {ξi(n), i ∈ Z

d}n≥0 denote a trans-
lation invariant time-homogeneous finite range flip process (spin system)

with state space Ω = {0, 1}Z
d

, constructed from the usual graphical repre-
sentation. Let L ∈ N be fixed. We write

H =
{
ξ ∈ {0, 1}Z

d

: ξi = 1 ∀i ∈ [−L/2, L/2]d ∩ Z
d
}

, (12)

and m · H for the translation of H by some integer m with respect to the
first component, i.e.

m · H =
{
ξ ∈ {0, 1}Z

d

: ξi = 1 ∀i ∈ mLe1 + [−L/2, L/2]d ∩ Z
d
}

, (13)

where e1 is the unit vector in the direction of the first component.

Definition 3.3 Fix N ∈ N and θ ∈ (0, 1). We shall say that the process
{ξ(n)}n≥0 fulfils the classical comparison assumptions for N and θ, if for
each configuration ξ ∈ H there exists a “good event” Gξ which is measur-
able with respect to the graphical representation of the flip process inside
[−NL, NL]d × [0, 1] and with P[Gξ] > 1− θ, so that if ξ(0) = ξ, then on Gξ,

ξ(1) ∈ (+1) · H ∩ (−1) · H.

This framework turns out to be slightly too narrow for our purposes,
as the flip processes we are going to consider in the next section are
functionals of more general underlying stochastic processes driven by
independent Brownian motions and hence cannot be obtained from a
graphical representation. However, a similar comparison result holds, if
the flip process fulfils our modified comparison assumptions based on the
behaviour of the Brownian increments.

More explicitly, we are going to construct our flip process in terms of
the system of stochastic differential equations X, Y from Model I. Define
{ξ̄i(n), i ∈ Z

d}n∈N by

ξ̄i(n) =

{
1, if Xi(2n) > c1 and Yj(2n) < c2 ∀j ∈ i + [−bL, bL]d ∩ Z

d,

0, otherwise,

(14)
where c1, c2 are positive finite numbers and b and L satisfy the assumption
of Theorem 1.2. Note the different time scales for ξ̄ and X, Y (the usefulness
of this time-change will become clear in the next section), and observe that
X, Y are time-homogeneous and the underlying system of driving Brownian
motions is translation invariant.
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Definition 3.4 Assume N := (b + 2) and θ ∈ (0, 1). Define the events H
and m · H for some integer m ∈ Z in terms of the the process {ξ̄(n)}n≥0 in
the same way as in (12) and (13). Consider the σ-algebra

F∗(NL, [0, 2]) := σ
{
Bi(s), B

′
j(t) : 0 ≤ s, t ≤ 2 ; i, j ∈ [−NL, NL]d ∩ Z

d
}

,

(15)

where {{Bi(s)}s≥0, {B′
j(t)}t≥0, i, j ∈ Z

d} is the family of independent stan-
dard Brownian motions as in Model I, see (3)and (4).

We shall say that the process {ξ̄(n)}n≥0 fulfils the modified comparison
assumptions for NL and θ, if for each configuration ξ̄ ∈ H, there exists a
“good event”

Gξ̄ ∈ F∗(NL, [0, 2]),

with P[Gξ̄] > 1 − θ, such that if ξ̄(0) = ξ̄, then on Gξ̄,

ξ̄(1) ∈ (+1) · H ∩ (−1) · H. (16)

In other words, if ξ̄ has all 1’s in the box of side length L about the
origin at time 0, then at time 1 (measured in time units for the ξ̄ process),
with probability at least 1 − θ, it has successfully ‘invaded’ the boxes of
side length L translated by −Le1 and Le1 in a way that is measurable with
respect to the Brownian increments inside the box around the origin of side
2NL and up to time [0, 2] (measured in time units for X, Y ).

The following classical theorem, which can, e.g., be found in Dur-
rett (1995), applies to both of the above settings.

Theorem 3.5 If the classical resp. modified comparison assumptions hold
for ξ resp. ξ̄ for some N ∈ N and θ ∈ (0, 1), we may define random variables
ω(x, n), such that Xn := {(m, n) ∈ L : ξ(n) ∈ m · H} resp. X̄n := {(m, n) ∈
L : ξ̄(n) ∈ m · H} dominates a 2N -dependent oriented percolation process
{Wn}, defined on L, with initial configuration W0 = X0 resp. X̄0, and density
parameter at least 1 − θ, i.e.

Wn ⊆ Xn resp. X̄n for all n ∈ N,

where Wn = {y : (x, 0) → (y, n) for some x ∈ W0}.
Remarks.
1. Notice that irrespective of the dimension d of the lattice Z

d on which our
flip process lives, we are establishing a comparison with a 1+1-dimensional
oriented percolation.
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2. Why ‘2N -dependent’? For (m, n) ∈ L define (in time units measured for
the ξ̄ process),

Rm,n = (mLe1, n) +
{
[−NL, NL]d × [0, 1]

}
.

If ξ̄n ∈ m · H, then, under the modified comparison assumptions for
{ξ̄n}n≥0, the probability of invasion of (m + 1) · H ∩ (m − 1) · H by time
n + 1 will be bounded below by 1− θ, irrespective of the behaviour outside
Rm,n and before time n + 1. If we take points (m, n) and (m′, n′) in L with
‖(m, n) − (m′, n′)‖ > 2N , then the space-time regions Rm,n and Rm′,n′ are
disjoint. 2

The following result is Theorem 4.2 in Durrett (1995).

Theorem 3.6 Suppose that {Wn}n≥0 is a 2N -dependent oriented percola-
tion process, started from the trivial initial state W0(x) = 1 for all x. If
θ ≤ 6−4(4N+1)2, then

lim inf
n→∞

P[0 ∈ W2n] ≥ 19

20
.

Eventually, this theorem will be the key in proving the coexistence (with
positive probability) of (X, Y ) in Model I and Model II.

4. Proofs. We are now in a position to prove our main results. The
key to the proof of Theorem 1.2 is to consider the Y -population as provid-
ing a random environment in which the X-population evolves. Of course
the environment itself depends on the X-population, but we obtain some
control of the behaviour of the environment that is independent of the evo-
lution of the X-population. This ‘decoupling’ (and a symmetric argument
for Y ) then reduces the coexistence problem to that of survival of a single
population: if the X and Y populations can each be shown to survive for
all times with probability greater than one half, then longterm coexistence
(with positive probability) will follow. We attack the question of survival
of the X-population (resp. Y -population) by comparison with an oriented
2N -dependent percolation process using the results of the last section. To
this end, we establish the existence of the corresponding “good events” as
required in Definition 3.4.

We prepare the necessary notation and technical estimates for this in the
following subsection. Our results will rely heavily on comparisons to finite
lattices of certain one-dimensional diffusions.

4.1. A spin system and estimation of related flip probabilities. The
main step is to construct two spin systems, one for each of the X and Y
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populations, that play the role of {ξ̄i(n), i ∈ Z
d}n≥0 of the last section for

some suitable constants c1, c2.

Indeed, we consider the spin system {ζi(n), ηi(n), i ∈ Z
d}n≥0, where the

process {ζi(n), i ∈ Z
d}n≥0 is defined by

ζi(n)=

{
1, if Xi(2n) > M

K and Yj(2n) < a′M ′ ∀j ∈ i + [−bL, bL]d ∩ Z
d,

0, otherwise,

(17)
and symmetrically,

ηi(n)=

{
1, if Yi(2n) > M ′

K′ and Xj(2n) < aM ∀j ∈ i + [−bL, bL]d ∩ Z
d,

0, otherwise,

(18)
where K := 2αMc + 1, K ′ := 2α′M ′c + 1 and a, a′ are positive finite con-
stants to be determined later (see (59) in the proof of Lemma 4.7 resp. the
symmetric result for a). Recall that L denotes the range of the intra-species
interaction and b denotes the smallest positive integer such that the range
of {γij} resp. {γ′

ij} is less than (b − 1) · L.
With these definitions, one expects that if the system {ζ(n), η(n)}n≥0 ex-

hibits longterm coexistence in discrete time, then the system {X(t), Y (t)}t≥0

exhibits coexistence in continuous time, and in fact this will follow from our
proof.

The convenience of the time change n 7→ 2n in (17) and (18) will become
clear when carrying out the comparison arguments in Section 4.2.1.

Outline of this subsection. In the rather technical Paragraph 4.1.1 we
introduce the notation necessary to define special events that are based only
on the behaviour of certain one-dimensional diffusions on finite lattices. This
will later help to construct the suitably measurable “good events” Gζ , Gη.
Moreover, we prove two technical lemmas which provide estimates on the
growth behaviour of these one-dimensional diffusions. These will eventually
ensure that the good events can be made sufficiently likely.

Note that the technical results in this paragraph are obtained in an en-
tirely standard way. The next two paragraphs contain the key arguments in
the proof of the main coexistence results.

Indeed, Paragraph 4.1.2 provides “flip probabilities” related to the spin
system ζ via comparisons in terms of the above-mentioned behaviour of the
one-dimensional diffusions, under the additional condition that the system
X evolves in a “safe environment”, i.e. given some bounds on the local Y -
population.
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Finally, in Paragraph 4.1.3, we will find conditions so that the “safe envi-
ronment” assumption holds for the Y -population in a way that is indepen-
dent of the evolution of the X-population, again by making use of compar-
isons to one-dimensional diffusions.

4.1.1. Some notation and technical results for lattices of one-dimensional
diffusions.

Definition 4.1 Let {{Bi(s)}s≥0, {B′
j(t)}t≥0, i, j ∈ Z

d} be the family of in-

dependent standard Brownian motions driving Model I. Fix i ∈ Z
d. For

n ∈ N, u > 0 define the σ-algebras generated by the local Brownian incre-
ments

F(i, n, u) := σ
{
Bi(n + s) − Bi(n) : s ∈ [0, u]

}
,

and
F ′(i, n, u) := σ

{
B′

i(n + s) − B′
i(n) : s ∈ [0, u]

}
.

Moreover, let

F(i, NL, n, u) := σ
{
Bj(n+s)−Bj(n) : s ∈ [0, u], j ∈ i+[−NL, NL]d∩Z

d
}
,

and, similarly,

F ′(i, NL, n, u) := σ
{
B′

j(n+s)−B′
j(n) : s ∈ [0, u], j ∈ i+[−NL, NL]d∩Z

d
}
.

These σ-algebras will be used to construct a suitably measurable events
Gζ̄ , Gη̄. Recall from Definition 3.4, that

F∗(NL, [0, 2]) = F(0, NL, 0, 2) ∨ F ′(0, NL, 0, 2).

The next objects of interest are certain finite systems of one-dimensional
diffusions, which, via suitable comparisons, eventually lead to the estimates
required for the comparison theorem.

Definition 4.2 Let i ∈ Z
d and assume that the constants α′, M̄ , λ, Ū > 0

are chosen such that λŪ > 2M̄ . Moreover, let D1, D2 > 0. Then, for
each j ∈ i + [−NL, NL]d ∩ Z

d, define the one-dimensional diffusions
{Zj(t)}t≥0, {Z̄j(t)}t≥0, {Ẑj(t)}t≥0 and {Z̃j(t)}t≥0, driven by independent
standard Brownian motions {Wj(t)}t≥0, by

dZj(t) = α′
(
M̄ − λZj(t)

)
Zj(t) dt +

√
Zj(t) dWj(t) (19)

(logistic Feller diffusion),

dZ̃j(t) = D1Z̃j(t) dt +

√
Z̃j(t) dWj(t) (20)
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(supercritical Feller diffusion),

dẐj(t) = D2 dt + D1Ẑj(t) dt +

√
Ẑj(t) dWj(t) (21)

(supercritical Feller diffusion with constant positive immigration),

dZ̄j(t) = α′
(
M̄ − λŪ

)
Z̄j(t) dt +

√
Z̄j(t) dWj(t) (22)

(subcritical Feller diffusion).

Since each of the four diffusions admits a (continuous) unique strong
solution, we may assume them to be driven by some given family of
independent Brownian motions, in particular those obtained either from
(3) or from (4).

The next two technical lemmas collect some useful properties of the dif-
fusions {Z(t)}t≥0, {Z̃(t)}t≥0 and {Z̄(t)}t≥0, derived by entirely standard
techniques.

Lemma 4.3 Let α′, λ, M̄ > 0. Consider the logistic Feller diffusion

dZ(t) = α′
(
M̄ − λZ(t)

)
Z(t) dt +

√
Z(t) dW (t), (23)

where {W (t)}t≥0 is a Brownian motion. Let, for w > 0 and Z(0) ≥ w,

τZ
w := inf

{
t > 0 : Z(t) ≤ w

}
.

Then, provided that w ≥ 2M̄/λ large enough, we have

P

[
τZ
w >

1

2

∣∣∣Z(0) ∈ [w,∞)
]

<
2

α′λ(w − M̄/λ)
. (24)

Remarks.
1. The key fact in the lemma is that given w, the bound that we obtain is
uniform in the value of Z(0) ∈ [w,∞). This is not surprising, given that
the downward drift for large values of Z(t) is quadratic.
2. Observe that by choosing w large we can make the right hand side of
equation (24) arbitrarily small. 2

Proof. We estimate the expected value of τZ
w and apply Markov’s in-

equality. First, we determine the scale function, s(x), for the diffusion Z(t).

s(x) =

∫ x

β
exp

(
− 2

∫ z

β
α′(M̄ − λξ) dξ

)
dz

=

∫ x

β
Γ(β) exp

(
− 2α′M̄z + α′λz2

)
dz
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for some constants β, Γ(β) ∈ [0,∞). The speed measure is given by

m(dy) =
2

ys′(y)
dy

The expected value of the exit time from the interval (w, A), denoted by
τZ
(w,A), when being started in x ∈ (w, A), is then

E
[
τZ
(w,A)

]
=

s(x) − s(w)

s(A) − s(w)

∫ A

x

s(A) − s(y)

ys′(y)
dy

+
s(A) − s(x)

s(A) − s(w)

∫ x

w

s(y) − s(w)

ys′(y)
dy,

see, for example, Revuz and Yor (1999) Chapter VII, Corollary 3.8. Substi-
tuting for s(x) we have

E
[
τZ
(w,A)

]
=

∫ x
w exp(−2α′M̄z + α′λz2) dz

∫ A
w exp(−2α′M̄z + α′λz2) dz

∫ A

x

∫ A
y exp(−2α′M̄z + α′λz2) dz

y exp(−2α′M̄y + α′λy2)
dy

+

∫ A
x exp(−2α′M̄z + α′λz2) dz

∫ A
w exp(−2α′M̄z + α′λz2) dz

∫ x

w

∫ y
w exp(−2α′M̄z + α′λz2) dz

y exp(−2α′M̄y + α′λy2)
dy

≤
∫ x

w
exp(−2α′M̄z + α′λz2) dz

∫ A

x

1

y
exp(2α′M̄y − α′λy2) dy

+

∫ x

w

∫ y
w exp(−2α′M̄z + α′λz2) dz

y exp(−2α′M̄y + α′λy2)
dy

=

∫ x

w
exp(α′λ(z − M̄/λ)2) dz

∫ A

x

1

y
exp

(
−α′λ(y − M̄/λ)2

)
dy

+

∫ x

w

∫ y
w exp(α′λ(z − M̄/λ)2 dz

y exp
(
(α′λ(y − M̄/λ)2

) dy

Integrating by parts we have that
∫ x

w
exp(α′λ(z − M̄/λ)2) dz

≤
[

1

2α′λ(z − M̄/λ)
exp(α′λ(z − M̄/λ)2)

]x

w

+

∫ x

w

1

2α′λ(w − M̄/λ)2
exp(α′λ(z − M̄/λ)2) dz,
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from which it follows that∫ x

w
exp(α′λ(z − M̄/λ)2) dz

≤ 1

1 − 1
2α′λ(w−M̄/λ)2

1

2α′λ(w − M̄/λ)
exp(α′λ(x − M̄/λ)2). (25)

We may treat the second factor in a similar way:
∫ A

x

1

y
exp(−α′λ(y − M̄/λ)2) dy

=

[
− 1

2α′λy(y − M̄/λ)
exp(−α′λ(y − M̄/λ)2)

]A

x

−
∫ A

x

(
1

2α′λ(y − M̄/λ)2y
+

1

2α′λ(y − M̄/λ)y2

)
exp(−α′λ(y − M̄/λ)2) dy,

from which it follows that, since w < x,
∫ A

x

1

y
exp(−α′λ(y − M̄/λ)2) dy

≤ 1

1 +
(

1
2α′λ(w−M̄/λ)(w)2

+ 1
2α′λ(w−M̄/λ)2w

)

× 1

2α′λ(w − M̄/λ)
exp(−α′λ(x − M̄/λ)2).

The final integral can also be approximated via an integration by parts.
First observe that from equation (25)

∫ y

w
exp

(
α′λ(z − M̄/λ)2

)
dz

≤ 1

1 − 1
2α′λ(w−M̄/λ)2

1

2α′λ(y − M̄/λ)
exp

(
α′λ(y − M̄/λ)2

)
,

and substitute to obtain
∫ x

w

∫ y
w exp(α′λ(z − M̄/λ)2 dz

y exp
(
(α′λ(y − M̄/λ)2

) dy

≤
∫ x

w

1

1 − 1
2α′λ(w−M̄/λ)2

1

2α′λ(y − M̄/λ)

1

y
dy

≤ 1

1 − 1
2α′λ(w−M̄/λ)2

1

2α′λ

∫ ∞

w−M̄/λ

1

y2
dy

=
1

1 − 1
2α′λ(w−M̄/λ)2

1

2α′λ

1

w − M̄/λ
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Combining the estimates above, we obtain

E
[
τZ
(w,A)

]
≤ 1

1 + K(w)

1

1 − 2α′λL2(w)
L2(w) +

L(w)

1 − 2α′λL2(w)

=
1

2α′λ(w − M̄/λ)

[ 1

1 + K(w)

L(w)

1 − 2α′λL2(w)
+

1

1 − 2α′λL2(w)

]
,

(26)

where

L(w) =
1

2α′λ(w − M̄/λ)
→ 0,

K(w) =
1

2α′λ(w − M̄/λ)w2
+

1

2α′λ(w − M̄/λ)2w
→ 0,

as w → ∞. The result now follows. 2

The second technical lemma is in the same spirit, but simpler.

Lemma 4.4 Let α′, λ, M̄ , D1 > 0 and assume Ū ≥ 2M̄/λ. Consider the
subcritical Feller diffusion

dZ̄(t) = α′
(
M̄ − λŪ

)
Z̄(t) dt +

√
Z̄(t) dW (t), (27)

and the supercritical Feller branching diffusion

dZ̃(t) = D1Z̃(t) dt +

√
Z̃(t) dW (t), (28)

where {W (t)}t≥0 denotes a standard Brownian motion. Suppose that

Z̄(0) =
3

2
Ū , Z̃(0) =

3

2
Ũ .

Define the first exit time of Z̄ from the interval (Ū , 2Ū) by

τ Z̄
(Ū ,2Ū) := inf

{
t > 0 : Z̄(t) ≤ Ū or Z̄(t) ≥ 2Ū

}
,

and denote by τ Z̃
(Ũ ,2Ũ)

the corresponding exit time for Z̃ from the interval

(Ũ , 2Ũ). Let τ Z̄
Ū

be the first hitting time of level Ū ,

τ Z̄
Ū := inf

{
t > 0 : Z̄(t) = Ū

}
,
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and similarly define τ Z̃
Ũ

, τ Z̄
2Ū

and τ Z̃
2Ũ

. Then, for the probability that Z̄ exits

from the interval (Ū , 2Ū) through the upper bound, we have

P

[
τ Z̄
2Ū < τ Z̄

Ū

]
≤ exp(−ᾱ′M̄Ū), (29)

and similarly, that Z̃ exits from the interval (Ũ , 2Ũ) through the lower bound

P

[
τ Z̃
Ũ

< τ Z̃
2Ũ

]
≤ exp(−D1Ũ), (30)

for all D1 sufficiently large. Moreover, for the expected time to leave the
interval (Ū , 2Ū) resp. (Ũ , 2Ũ), we have the bounds

E
[
τ Z̄
(Ū ,2Ū)

]
>

1

24α′λŪ
, E

[
τ Z̃
(Ũ ,2Ũ)

]
>

1

32D1
, (31)

for all D1 sufficiently large.

Proof. We first derive the results for the process {Z̄(t)}t≥0. Let c̄ :=
−α′(M̄ − λŪ) > 0. Working with the same tools as in the proof of the
preceding lemma, first note that the scale function s for the diffusion (27)
is given by

s(x) =

∫ x

Ū
exp

(
−2

∫ y

Ū

−c̄r

r
dr

)
dy

=

∫ x

Ū
exp(2c̄y − 2c̄Ū) dy

=
1

2c̄

[
exp(2c̄(x − Ū)) − 1

]
.

Hence, recalling Z̄(0) = 3
2 Ū and so setting x = 3

2 Ū , we have

P
[
τ Z̄
2Ū < τ Z̄

Ū

]
=

s(3
2 Ū) − s(Ū)

s(2Ū) − s(Ū)

=
exp(3c̄Ū) − exp(2c̄Ū)

exp(4c̄Ū) − exp(2c̄Ū)

= exp(−c̄Ū)
1 − exp(−c̄Ū)

1 − exp(−2c̄Ū)

≤ exp(α′M̄Ū),

which is bound (29). For the expected exit time from the interval (Ū , 2Ū),
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we have

E
[
τ(Ū ,2Ū)

]
≥ s(2Ū) − s(3

2 Ū)

s(2Ū) − s(Ū)

∫ 3

2
Ū

Ū

s(y) − s(Ū)

ys′(y)
dy

=
exp(4c̄Ū) − exp(3c̄Ū)

exp(4c̄Ū) − exp(2c̄Ū)

∫ 3

2
Ū

Ū

1

2c̄y

(
1 − exp(2c̄Ū − 2c̄y)

)
dy

≥ 1 − exp(−c̄Ū)

1 − exp(−2c̄Ū)

1

3c̄Ū

∫ 3

2
Ū

5

4
Ū

(
1 − exp(−c̄Ū/2)

)
dy

≥ 1

12c̄

[ 1 − exp(−c̄Ū)

1 − exp(−2c̄Ū)

(
1 − exp(−c̄Ū/2)

)]

≥ 1

12α′λŪ

[ 1 − exp(−c̄Ū)

1 − exp(−2c̄Ū)

(
1 − exp(−c̄Ū/2)

)]
,

by the definition of c̄ and the fact that Ū ≥ 2M̄/λ. The result follows
observing that the expression inside the brackets converges to 1.

For {Z̃(t)}t≥0, note that the scale function s̃ is given by

s̃(x) =

∫ x

Ũ
exp

(
−2

∫ y

Ũ
D1 dr

)
dy

=

∫ x

Ũ
exp(2D1(Ũ − y)) dy

=
1

−2D1

[
exp(2D1(Ũ − x)) − 1

]
.

Hence, recalling Z̃(0) = 3
2 Ũ and so setting x = 3

2 Ũ , we have

P
[
τŨ < τ2Ũ

]
=

s̃(2Ũ) − s̃(3
2 Ũ)

s̃(2Ũ) − s̃(Ũ)

=
exp(−2D1Ũ) − exp(−D1Ũ)

exp(−2D1Ũ) − 1

≤ exp(−D1Ũ). (32)
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This is (30). For the expected exit time from the interval (Ũ , 2Ũ), we have

E
[
τ Z̃
(Ũ ,2Ũ)

]
≥ s̃((3/2)Ũ) − s̃(Ũ)

s̃(2Ũ) − s̃(Ũ)

∫ 2Ũ

(3/2)Ũ

s̃(2Ũ) − s̃(y)

ys̃′(y)
dy

=
s̃((3/2)Ũ) − s̃(Ũ)

s̃(2Ũ) − s̃(Ũ)

∫ 2Ũ

(3/2)Ũ

exp(−2D1Ũ) − exp(2D1(Ũ − y))

−2D1y exp(2D1(Ũ − y))
dy

≥ s̃((3/2)Ũ) − s̃(Ũ)

s̃(2Ũ) − s̃(Ũ)

∫ (7/4)Ũ

(3/2)Ũ

1

−4D1Ũ

(
exp(−2D1(2Ũ − y)) − 1

)
dy

≥ 1

16D1

s̃((3/2)Ũ) − s̃(Ũ)

s̃(2Ũ) − s̃(Ũ)

(
1 − exp(−D1Ũ/2)

)
.

Since the second term (by 32) and the last term on the right-hand side
converge to 1 as D1 → ∞, the result follows. 2

4.1.2. Infection and recovery probabilities for the X-population. Suppose
that we are interested in the behaviour of the X-population within the time
interval [n, n + 1] at site i and that we already know (recall (17)) that

max
t∈[n,n+1]

Yj(t) < 2a′M ′ ∀j ∈ i + [−bL, bL]d ∩ Z
d. (33)

Assume that the inter-species competition {γij} is chosen in such a way that
(33) implies

max
t∈[n,n+1]

∑

l∈Zd

γjlYl(t) < 1 ∀j ∈ i + [−L/2, L/2]d ∩ Z
d. (34)

This is possible since the range of {γjl} is by assumption less than (b− 1)L
(choose, e.g.

∑
j γij < (2a′M ′)−1). We will later (in Paragraph 4.1.3) con-

struct events that are measurable with respect to either F ′(i, NL, n, 2) or
F ′(i, NL, n− 1, 2), which imply (33) and are of sufficiently high probability,
cf. (54) and (55). For the moment, to aid intuition and to simplify notation,
we will say that, in either case, a suitably measurable “safe environment
condition G′

sec(i, n) holds at site i and time n”, which implies that (33)
(and for γij small enough also (34)) holds, and which will be explicitly
determined later.

We now consider ‘flip probabilities’ for the X-population that are closely
linked to the flip probabilities of the ζ-population, introduced in (17) and
(18), under the “safe environment condition” G′

sec(i, n) at site i and at time
n ∈ N.
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Lemma 4.5 (Infection and non-recovery) Let n ∈ N and i ∈ Z
d. Let

α, {mij}, {λij} be fixed. Given the parameters for the Y -population and some
a′ > 0, choose {γij} such that (33) implies (34). Then, for any ε ∈ (0, 1),
there exists a finite constant M0 > 0, such that if M > M0 and K :=
2αMc + 1, for each j ∈ i + [−L/2, L/2]d ∩ Z

d, there exist events

Gnon−rec(i, n) ∈ F(i, n, 1) and Ginfec(i, j, n) ∈ F(i, L/2, n, 1), (35)

both measurable w.r.t. F(i, NL, n, 1), such that the following holds:
i) We have
{
{Xi(n) > M/K} ∩ G′

sec(i, n) ∩ Gnon−rec(i, n)
}
⊂ {Xi(n + 1) > M/K}

(“non-recovery”). For the ‘non-recovery probability’ pnon−rec(i, n), we have
the bound

pnon−rec(i, n) := P
[
Gnon−rec(i, n)

]
> 1 − ε. (36)

ii) Moreover,
{
{Xi(n) ≤ M/K} ∩ {∃j : mij > 0, Xj(n) >M/K} ∩ G′

sec(i, n)
}

⊂ {Xi(n + 1) > M/K}

(“infection by an occupied neighbour”). For the ‘infection probability’
pinfec(i, j, n), we have the bound

pinfec(i, j, n) := P
[
Ginfec(i, j, n)

]
> 1 − ε. (37)

Proof. i) We distinguish the two cases Xi(n) ∈ (M/K, (3/2)M/K) and
Xi(n) ≥ (3/2)M/K.

Case 1. Suppose that Xi(n) ≥ (3/2)M/K and introduce the first hitting
time of level M/K from above after time n:

τXi

M/K(n) := inf
{
t > n : Xi(t) =

M

K

}
. (38)

Our goal is to establish the existence of a suitably measurable event
Gnon−rec(i, n) ∈ F(i, n, 1), so that Gnon−rec(i, n) implies, under the above
conditions, that τXi

M/K
(n) > 1. To this end, we set up a suitable comparison

to a one-dimensional diffusion.
Indeed, rearranging the drift in equation (3), as long as Yj(t) < a′M ′ for

all j ∈ i + [−bL, bL]d ∩ Z
d, and hence

∑

l

γjlYl(t) < 1 for all j ∈ i + [−L/2, L/2]d ∩ Z
d,
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holds, and as long as Xi ≤ 2M/K, we have

dXi(t) ≥
∑

j∈Zd

(
mij − α

2M

K
λij

)
Xj(t) dt

+
(
αM −

∑

j∈Zd

mij − α
)
Xi(t) dt +

√
Xi(t) dBi(t). (39)

Now we check that the first component of the drift on the right-hand side is
positive. Indeed, from the assumption (6), we obtain

mij − α
2M

K
λij > mij − α

2M

K
cmij , (40)

which is positive by our choice of K = 2αMc + 1, for all j ∈ Z
d. Moreover,

we have, for each M > 1,

M

K
=

M

2αMc + 1
∈

( 1

2αc + 1
,

1

2αc

)
.

Under these conditions (39) implies

dXi(t) ≥
(
αM −

∑

j∈Zd

mij − α
)
Xi(t)dt +

√
Xi(t)dBi(t) (41)

and so while Xi ∈ [0, 2M/K], using Corollary 5.3 to the Ikeda-Watanabe
Comparison Theorem 5.2, both to be found in the Appendix, we may com-
pare Xi to a dominated supercritical Feller diffusion Z̃i defined in (20), with
initial value Z̃i(n) := (3/2)M/K and

D1 = D1(M) =
(
αM −

∑

j∈Zd

mij − α
)
,

and driven by the same Brownian motion, i.e. {Wi(t)}t≥0 := {Bi(t)}t≥0. It
is an important observation in Corollary 5.3 that actually more is true: our
domination argument does not only hold up to the time when Xi leaves the
interval [0, 2M/K] for the first time, but in fact as long as Z̃i takes values

inside this interval, i.e. up to the first exit time τ Z̃i

2M/K (defined as in 38).

Note that, for M >
∑

j mij/α, the ‘supercriticality’ (i.e. positive drift)
D1 = (αM −∑

mij − α) in (41) tends to ∞ as M → ∞, while maintaining
the condition Xi(n) ≥ 1/(2αc).

Now we make use of the comparison. Indeed, for t ≥ n, as long as Z̃i(t)
stays inside the interval [0, 2M/K] and given that initially Xi(n) ≥ Z̃i(n) :=
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(3/2)M/K, we have that Xi dominates Z̃i. To obtain a comparison that is
valid throughout the whole time interval [n, n + 1], we go one step further
and modify Z̃i so that whenever Z̃i hits level 2M/K (and thus is about to
leave the area in which the comparison holds true), we restart the process Z̃i

at level (3/2)M/K and repeat this procedure as often as necessary, so that
the comparison holds for all times t ∈ [n, n + 1]. More precisely, we define a
sequence of stopping times, beginning with

νZ̃i

2M/K(n, 1) := τ Z̃i

2M/K(n),

restart the Z̃i process at this time, setting Z̃i

(
νZ̃i

2M/K(n, 1)
)

:= (3/2)M/K,
and then iterate this procedure, considering, for m ∈ N,

νZ̃i

2M/K(n, m + 1) := inf
{
t > νZ̃i

2M/K(n, m) : Z̃i(t) =
2M

K

}
, (42)

and again restarting the Z̃i process accordingly, i.e. setting

Z̃i

(
νZ̃i

2M/K(n, m + 1)
)

=
3

2

M

K
.

Note that νZ̃i

2M/K(n, m) ↑ ∞ a.s. as m → ∞. For definiteness, set

νZ̃i

2M/K(n, 0) := n. We define the i.i.d. positive lengths of the correspond-

ing upcrossing intervals from (3/2)M/K to 2M/K for m ≥ 1 by

T̃m := νZ̃i

2M/K(n, m) − νZ̃i

2M/K(n, m − 1). (43)

Now observe that there is an event G1
non−rec(i, n), defined only in terms of

the Brownian increments {Bi(n+s)−Bi(n) : s ∈ [0, 1]}, and hence being an
element of F(i, n, 1), so that if we start our modified diffusion Z̃i in Z̃i(n) =

(3/2)M/K, this event G1
non−rec(i, n) actually equals {τ Z̃i

M/K(n) > n + 1}.
(The set G1

non−rec(i, n) contains all such ω, such that the corresponding
Brownian increments lead to the desired behaviour if they drive the modified
diffusion Z̃i started at time n in (3/2)M/K). Moreover, by our comparison,

the event {τ Z̃i

M/K(n) > n + 1} implies that {τX
M/K(n) > n + 1} which in turn

implies that Xi(n + 1) > M/K.
It remains to show that the event G1

non−rec(i, n) has sufficiently high prob-
ability. To this end, note that the number of upcrossings of the modified and
suitably restarted process Z̃i from level (3/2)M/K to level 2M/K before the
first downcrossing from (3/2)M/K to M/K is a geometric random variable
with positive parameter

q̃M,K := P
[
τ Z̃
M/K(n) < τ Z̃

2M/K(n)
]
.
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Note that by (30), applied with Ũ := M/K, for D1 and hence M sufficiently
large,

q̃M,K ≤ exp(−D1Ũ), (44)

and this approaches 0 exponentially fast (recall that M/K remains
bounded). Moreover, by (31), the expected time for Z̃i to exit from the
interval (M/K, 2M/K) when being started in (3/2)M/K, is bounded below
by 1

32D1
for D1 large enough. Hence, for such D1,

E
[
T1

]
≥ E

[
τ Z̃i

(M/K,2M/K)

]
≥ 1

32D1
. (45)

Now let D̃ denote the number of upcrossings before the first “success”, i.e. a
downcrossing from (3/2)M/K to M/K. For each Ñ ∈ N, we may then write

P
[
τ Z̃i

M/K
(n) ≤ n + 1

]

= P
[
τ Z̃i

M/K(n) ≤ n + 1 ; D̃ < Ñ
]
+ P

[
τ Z̃i

M/K(n) ≤ n + 1 ; D̃ ≥ Ñ
]

≤ P
[
D̃ < Ñ

]
+ P

[ D̃∑

i=1

T̃i < 1 ; D̃ ≥ Ñ
]

≤ 1 − (1 − q̃M,K)Ñ + P

[ Ñ∑

i=1

T̃i < 1
]

≤ Ñ ˜exp
(
− D̃1Ũ

)
+ P

[ Ñ∑

i=1

Ti < 1
]

where, in the last step, we applied (44) and Bernoulli’s inequality. Since by
(45), for large D1, the expectation of the length of the of the i.i.d. upcrossing
intervals {T̃i} of the modified and suitably restarted process is bounded
below by 1

32D1
, the number of such upcrossing intervals up to time 1 is

at most of order D1. Hence by the Law of Large Numbers we can find a
constant d̃, so that for Ñ := d̃ ·D1 and all D1 large enough, the last term on
the right-hand side is bounded by ε/4. Since the first term on the right-hand
side still decreases exponentially in D1 once d̃ is fixed (the linearly increasing
pre-factor being squashed), for D1 and hence M large enough, this bound
holds simultaneously for the first and the last term, and we arrive at the
desired result: Under the above conditions, with Z̃i(n) = (3/2)M/K,

P
[
τ Z̃i

M/K
(n) ≤ n + 1

]
≤ ε

2
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for D1 and hence M large enough, which in turn implies

P
[
G1

non−rec(i, n)] > 1 − ε

2
,

so that Case 1 of Part i) follows.

Case 2. Now suppose that M/K < Xi(n) < (3/2)M/K. In this case,
we cannot find a uniform lower bound on the probability of the previ-

ously considered event {τ Z̃i

M/K(n) > n + 1}, and hence of the probability

of {τXi

M/K(n) > n + 1}, that is sufficiently large.
However, we may still use the same comparison as above to a dominated

supercritical Feller diffusion Z̃i, so that the comparison works as long as Z̃i

stays below 2M/K. This time, set Z̃i(n) = M/K < Xi(n) and observe that
there is a constant M2

0 > 0, so that for all M > M2
0 , the deterministic drift

in the supercritical Feller diffusion Z̃i will achieve two goals with sufficiently
high probability: firstly, make Z̃i hit level (3/2)M/K within the time-interval
[n, n+1/2] with sufficiently high probability, and secondly, after hitting level
(3/2)M/K, arguing just as in the first part of the lemma, ensure that there
will be no further downcrossing from (3/2)M/K to M/K up to time [n+1].
Thus, once again we can find a measurable event G2

non−rec(i, n) ∈ F(i, n, 1),
depending only on the corresponding Brownian increments, so that given
Z̃i(n) = M/K, by comparison, G2

non−rec(i, n) implies Xi(n + 1) > M/K,
and moreover

P
[
G2

non−rec(i, n)] > 1 − ε

2
.

Hence the result holds also in Case 2. Finally, in the view of both cases,
choose

Gnon−rec(i, n) := G1
non−rec(i, n)∩G2

non−rec(i, n) ∈ F(i, n, 1) ⊂ F(i, NL, n, 1)

and Part i) follows.

To prove Part ii), we begin with some preliminary considerations. Note
that, by using the same comparison and similar arguments as before, again
considering suitable up- and downcrossings, this time from M/K down to
M/(2K), we can actually go one step further and find a finite constant M3

0 ,
so that if M > M3

0 , and for j ∈ Z
d so that mij > 0, there exists an event

Gper−occ(i, j, n) ∈ F(i, NL, n, 1),

so that given Xj(n) > M
K and G′

sec(i, n), the event Gper−occ(i, j, n) implies

Xj(n + 1) >
M

K
and τ

Xj

M/(2K)
(n) > n + 1,
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and moreover, we have

P
[
Gper−occ(i, j, n)

]
> 1 − ε

2
. (46)

Note that once again we use the assumption that the range of the {γij} is
less than (b − 1)L so that the “safe environment condition”, in particular
(34), allows comparisons of the above type also for site j.

We are now prepared to consider the infection probability at a site i in
the presence of at least one occupied neighbour, say, at j∗. Again, assuming
(6), we use a comparison based on the Corollary 5.3 to the Ikeda-Watanabe
Theorem from the Appendix. This time we rearrange the drift so as to
highlight the rôle of immigration of mass to an unoccupied site from occupied
neighbours. Once immigrated we can then compare the evolution of the
mass to a supercritical continuous state branching process, as before. Indeed,
considering the drift in equation (3), observe that as long as Xi(t) ≤ 2M/K
and given the existence of at least one neighbour at some site j∗ ∈ Z

d with
mij∗ > 0 and Xj∗(n) > M/K (noting that mij∗ is bounded below by some
δ > 0 since the family {mij} is of finite range), then we have that, as long
as t satisfies

n ≤ t < τ
Xj∗

M/(2K)
(n), (47)

by our choice K = 2αMc + 1,

dXi(t) ≥
∑

j∈Zd

(
mij − 2α

M

K
λij

)
Xj(t) dt

+
(
αM−

∑

j∈Zd

mij−α
)
Xi(t) dt+

√
Xi(t) dBi(t)

≥
(
mij∗ − 2α

M

K
λij∗

) M

2K
dt

+
(
αM−

∑

j∈Zd

mij−α
)
Xi(t) dt+

√
Xi(t) dBi(t)

≥
(
mij∗−

1

c
λij∗

) 1

4αc + 2
dt

+
(
αM−

∑

j∈Zd

mij−α
)
Xi(t) dt+

√
Xi(t) dBi(t), (48)

assuming M > max{1,
∑

j mij/α}. Thus at the uninfected site i, after
time n, as long as (47) holds, we may compare the evolution of the pro-
cess Xi to a dominated supercritical branching process Ẑi with immi-
gration, as defined in (21), and driven by the same Brownian motion,
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i.e. {Wi(t)}t≥0 := {Bi(t)}t≥0, with constant strictly positive immigration,
where

D2 =
(
mij∗−

1

c
λij∗

) 1

4αc + 2
> 0, D1 =

(
αM −

∑

j∈Zd

mij − α
)

> 0.

Note that here we use the fact that we assumed the strict inequality
1
cλij∗ < mij∗ from (6) to obtain a strictly positive immigration rate. Note
also that the rate of immigration is bounded below independently of M .
Again, the ‘supercriticality’ (αM − ∑

j mij − α) tends to ∞ as M tends to
∞. Hence, arguing as before in Part i), this time starting the dominated
process in Ẑi(n) = 0 ≤ Xi(n), stopping Ẑi once it reaches level 2M/K and
then restarting at (3/2)M/K if necessary, we may find a constant M4

0 > 0,
so that if M > M4

0 , under the above conditions, the event

Ẑi(n + 1) >
M

K
implies Xi(n + 1) >

M

K

and has probability greater than ε/2. As before, there is an event
G∗

infec(i, j
∗, n) ∈ F(i, n, 1), depending solely on the Brownian increments at

i within the time-interval [n, n+1], so that if we start our modified diffusion
at time n in Ẑi(n) = 0, driven by the corresponding Brownian increments,
we have G∗

infec(i, j
∗, n) = {Ẑi(n + 1) > M/K}. Moreover,

P
[
G∗

infec(i, j
∗, n)

]
> 1 − ε

2
.

Now observe that, due to our preparations, (47) is actually being guaranteed
by Gper−occ(i, j

∗, n) up to time n + 1. Combining both events (which are
actually independent), we define

Ginfec(i, j
∗, n) := G∗

infec(i, j
∗, n) ∩ Gper−occ(i, j

∗, n) ∈ F(i, L/2, n, 1)

and finally see that
P
[
Ginfec(i, j

∗, n)
]

> 1 − ε.

Together with the fact that given Xj∗(n) > M/K, our event Ginfec(i, j, n)
implies Xi(n + 1) > M/K, defining

M0 = max{M1
0 , M2

0 , M3
0 , M4

0 }

finishes the proof of Lemma 4.5. 2
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4.1.3. Control of the environment. We now find estimates for suitably
measurable events, a combination of which will later provide the “safe
environment condition” G′

sec(i, n) at some site i ∈ Z
d and time n ∈ N ,

which will in turn imply (33). Again, this is done via suitable comparisons
to one-dimensional diffusions.

Lemma 4.6 (Control of the environment) Let n ∈ N and i ∈ Z
d. Let

α′, {m′
ij}, {λij} be fixed. Then, for any ε ∈ (0, 1), there is a finite constant

v′0 > 0, such that for all v′ > v′0 there exists an event E′(i, n)[v′] ∈ F ′(i, n, 2),
so that for all α′M ′ >

∑
j m′

ij,

P
[
E′(i, n)[v′]

]
> 1 − ε.

Moreover,

E′(i, n)[v′] ⊂
{

sup
0≤s≤1

Yi(n + 1 + s) < 2v′M ′
}
, (49)

and
{

E′(i, n)[v′] ∩
{
Yi(n) ∈ [0, v′M ′]

}}
⊂

{
sup

0≤s≤2
Yi(n + s) < 2v′M ′

}
. (50)

These results hold true for any choice of {γ′
ij} and any parameter values for

the X-population in Model I.

Remarks.
1. In the proof of this lemma we use the assumption that there is a constant
c > 0 such that m′

ij < cλ′
ij . We do not believe that this is necessary.

2. That the result should be true is again due to the fact that the downward
drift resulting from overcrowding in a site is quadratic whereas the upward
drift due to reproduction in the population is only linear. Moreover, for
sufficiently crowded sites, immigration from neighbouring sites is being
compensated by intra-species competition.
3. The independence of the X-parameters stems from the fact that compe-
tition by X actually facilitates a controlled environment. 2

Proof. We begin by setting up a suitable comparison, this time in a way
such that Yi is being dominated by a one-dimensional diffusion. Indeed,
notice that, for t ≥ n, as long as

Yi(t) > m′
ij/(α′λ′

ij) ∀ j 6= i,
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an informal calculation shows

dYi(t) =
∑

j∈Zd

m′
ij

(
Yj(t) − Yi(t)

)
dt

+ α′
(
M ′ −

∑

j∈Zd

λ′
ijYj(t) −

∑

j∈Zd

γ′
ijXj(t)

)
Yi(t) dt +

√
Yi(t)dB′

i(t)

≤
∑

j 6=i,j∈Zd

[(
m′

ij − α′λ′
ijYi(t)

)
Yj(t)

]
dt

+
(
α′M ′ −

∑

j 6=i,j∈Zd

m′
ij

)
Yi(t)dt − α′λ′

iiY
2
i (t) dt +

√
Yi(t)dB′

i(t)

≤ α′
(
M ′ − 1

α′

∑

j 6=i,j∈Zd

m′
ij − λ′

iiYi(t)
)
Yi(t) dt +

√
Yi(t)dB′

i(t). (51)

Hence the immigration of mass from site j is compensated for by the down-
ward drift due to crowding at site j, and we may compare the evolution
of Yi (again applying the Corollary 5.3 to the Ikeda-Watanabe Comparison
Theorem) to that of the solution Zi of the logistic Feller diffusion (19), this
time with driving Brownian motion given by {Wi(t)}t≥0 := {B′

i(t)}t≥0. More
precisely, we choose a constant v′ > 0 so that

v′M ′ >
m′

ij

α′λ′
ij

for all j,

and then set

λ = λ′
ii > 0, and M̄ = M ′ −

∑

j 6=i

m′
ij/α′ > 0 (52)

in the comparison. Recall that M̄ is positive follows from our initial assump-
tions on Model I just after (6).

As before in the proof Lemma 4.5, a useful observation is the following.
The comparison between Yi and Zi holds not only as long as Yi and Zi are
both inside [m′

ij/(α′λ′
ij),∞), but in fact as long as Zi is above m′

ij/(α′λ′
ij).

We now make use of the comparison. Let Zi(n) := max{Yi(n), (3/2)v′M ′}
and consider the stopping time

τZi

v′M ′(n) := inf{t > n : Zi(t) = v′M ′}.

By the domination of Yi by Zi, at least up to time τZ
v′M ′(n), due to our

comparison, the event

{τZi

v′M ′(n) < n + 1/2} ∈ F ′(i, n, 1/2)



COEXISTENCE IN COMPETING POPULATIONS AND BARW 41

implies

{τYi

v′M ′(n) < n + 1/2}.
By Lemma 4.3, Equation (24), we may find a finite constant v0 > 0 so that
for all v′ > v0

P
[
τZi

v′M ′(n) ≤ 1/2
]

> 1 − ε/4 (53)

thanks to our quadratic downward drift.

We now argue in a similar fashion as in the proof of Part i) in Lemma 4.5
and suitably restart Zi once it hits level v′M ′ at time τZi

v′M ′(n) by then setting

Zi(τ
Zi

v′M ′(n)) := (3/2)v′M ′. As before in (42), we may define inductively stop-

ping times νZi

v′M ′(n, m) for each m ∈ N and corresponding interval-lengths
{Ti} as in (43). This modified and suitably restarted process remains inside
[v′M ′,∞) for all times and hence the comparison to Yi holds during the
whole time interval [n, n + 2].

To prove the result, we now need to make sure that given {τZi

v′M ′(n) <
n + 1/2}, both processes do not grow from level v′M ′ too quickly, so that
they do not hit level 2v′M ′ within [τZi

v′M ′(n), n + 2] with sufficiently high

probability. To simplify calculations, after time τZi

v′M ′(n), we apply the even
cruder comparison of Zi to the subcritical Feller diffusion Z̄i as defined in
(22), driven by the same Brownian motion {B′

i(t)}t≥0. Indeed, note that
(51) also shows that

dYi(t) ≤ α′
(
M̄ − λŪ

)
Yi(t) dt +

√
Yi(t)dB′

i(t),

where we choose λ, M̄ as in (52) and let Ū = v′M ′. Then, the comparison
applies for v′ > 2/λ, noting that, by (52), we uniformly have v′ > 2M̄/(λM ′)
for all M ′ >

∑
j m′

ij/α′, and we may use the results obtained in Lemma 4.4.

Following our by now standard procedure, we stop Z̄i at level v′M ′

and and restart the diffusion at level (3/2)v′M ′ in order to make the
comparison work throughout the whole time-interval [n, n + 2]. Thus, if the
suitably restarted process Z̄i does not rebound to level 2v′M ′ within the
time-interval [τZi

v′M ′(n), n + 2], then Yi does not, either.

We finally need to ensure that the desired behaviour becomes sufficiently
likely. We proceed in a way that is analogous to arguments in the proof of
Part i) of Lemma 4.5. Indeed, note that, by Lemma 4.4, for the probability
of Z̄i to leave the interval (v′M ′, 2v′M ′) through its upper boundary, when
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being started in (3/2)v′M ′, we have, for v′ large enough,

q̄2v′M ′ := P
[
τ Z̄i

2v′M ′ < τ Z̄i

v′M ′

]
≤ exp(−ᾱ′M̄v′M ′),

which rapidly approaches 0 as v′ → ∞. The number of downcrossings of the
modified process Z̄ from (3/2)v′M ′ to v′M ′ before the first time of hitting
2v′M ′ is geometric with parameter q̄2v′M ′ .

Again, as in (45), the expected time of the interval-lengths {T̄i} can be
bounded from below by 1/(24α′λv′M ′) using (31), once the product v′M ′

is greater than 2M̄/λ and since M ′ >
∑

j m′
ij/α′ this holds once v′ is suffi-

ciently large.
Finally, let D̄ denote the number of such downcrossings before the first

“success”, i.e. an upcrossing from (3/2)v′M ′ to 2v′M ′. Then, for each N̄ ∈ N,
we may write, using the strong Markov property and continuity for Z̄i,

P

[
τ Z̄i

2v′M ′(τ
Z̄i

v′M ′(n)) ≤ n + 2
∣∣∣ τ Z̄i

v′M ′(n) ≤ n +
1

2

]

≤ P

[
τ Z̄
2v′M ′(0) ≤ 2 ; D̄ < N̄

∣∣∣ Z̄i(0) =
3

2
v′M ′

]

+ P

[
τ Z̄
2v′M ′(0) ≤ 2 ; D̄ ≥ N̄

∣∣∣ Z̄i(0) =
3

2
v′M ′

]

≤ P

[
D̄ < N̄

∣∣∣ Z̄i(n) =
3

2
v′M ′

]

+ P

[ D̄∑

i=1

T̄i < 2 ; D̄ ≥ N̄
∣∣∣ Z̄i(0) =

3

2
v′M ′

]

≤ 1 − (1 − q2v′M ′)N̄ + P

[ N̄∑

i=1

T̄i < 2
]

≤ N̄ exp
(
− α′M̄v′M ′

)
+ P

[ N̄∑

i=1

T̄i < 2
]
,

by Bernoulli’s inequality. Since for large v′, the expectation of T̄1 is bounded
below by 1/(24α′λv′M ′), the number of downcrossing intervals up to time
2 is a most of order v′M ′. Hence by the Law of Large Numbers we can find
a constant d̄, so that for N̄ := d̄ · v′M ′, the last term on the right-hand side
is bounded by ε/4. Since the first term on the right-hand side still decreases
exponentially in v′M ′ once d̄ is fixed (the linearly increasing pre-factor
being squashed), for v′ large enough, this bound holds simultaneously for
the first and the last term, and we arrive at the desired result.
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Altogether, in a similar fashion as before, we may find a set E′
1(i, n)[v′] ∈

F ′(i, n, 2) which is determined by precisely those Brownian increments
{B′

i(n + s) − B′
i(n) : s ∈ [0, 2]}, so that for all initial values Zi(n) ∈

[(3/2)M/K,∞), if the diffusion Zi is being driven by the above increments,
then {

τZ
v′M ′(n) ≤ n + 1/2 ; τZ

2v′M ′(τZ
v′M ′(n)) > n + 2

}

holds. Note that, by the above calculation and (53),

P
[
E′

1(i, n)[v′]
]

= P

[
τ Z̄
2v′M ′(τ Z̄

v′M ′(n)) ≤ n + 2
∣∣∣ τ Z̄

v′M ′(n) ≤ n +
1

2

]

× P

[
τZ
v′M ′(n) ≤ 1/2

]

> 1 − ε

2
.

Finally, thanks to our comparison,

E′
1(i, n)[v′] ⊂

{
sup

0≤s≤1
Yi(n + 1 + s) < 2v′M ′

}
.

For the second implication, in a similar and actually simpler way, construct
an event E′

2(i, n)[v′] ∈ F ′(i, n, 2), so that it has the required properties, using
the same comparisons as above and setting Z̄i(n) := (3/2)v′M ′. Finally
consider the event

E′(i, n)[v′] := E′
1(i, n)[v′] ∩ E′

2(i, n)[v′] ∈ F ′(i, n, 2),

so that
P
[
E′(i, n)[v′]

]
> 1 − ε,

and (49) and (50) hold. 2

Remark.
Note that for a′ > v′0 in Lemma 4.6 (and of course also for the stronger
condition a′/2 > v′0), at time n ∈ N, recalling N = b + 2,

⋂

j∈i+[−bL,bL]d∩Zd

E′(j, n−1)[a′] ∈ F ′(i, bL, n−1, 2) ⊂ F ′(i, NL, n−1, 2) (54)

implies (33). Moreover, together with the additional condition Yj(n) ≤ a′M ′

for all j ∈ i + [−bL, bL]d ∩ Z
d, both

⋂

j∈i+[−bL,bL]d∩Zd

E′(j, n−1)[a′] ∈ F ′(i, bL, n−1, 2) ⊂ F ′(i, NL, n−1, 2) (55)
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and
⋂

j∈i+[−bL,bL]d∩Zd

E′(j, n)[a′] ∈ F ′(i, bL, n, 2) ⊂ F ′(i, NL, n, 2) (56)

imply (33), too. Thus, all three events can be considered as instances of the
“safe environment condition” G′

sec(i, n) in the sense of Lemma 4.5. 2

4.2. Comparison arguments.

4.2.1. Comparison of ζ resp. η to 2N = 2(b+2)-dependent oriented perco-
lation. We first focus on the X resp. ζ population and construct a suitable
“good event” Gζ . Recall that, by our technical assumption, L denotes the
maximum range of both migration matrices {mij}, {m′

ij}, that is

L = max
{
‖j − i‖ : mij , m

′
ij 6= 0

}
,

and b is the smallest positive integer such that the range of {γij} and {γ′
ij}

is less than (b − 1) · L. Recall also from (17) the definition

ζi(n)=

{
1, if Xi(2n) > M

K and Yj(2n) < a′M ′ ∀j ∈ i + [−bL, bL]d ∩ Z
d,

0, otherwise,

(57)
and from the comparison assumptions (12) the notation

ζ(n) ∈ H if ζi(n) = 1 for all i ∈ [−L/2, L/2]d ∩ Z
d,

and finally recall from (13) the notion of translation of H by mL, for some
m ∈ Z, denoted by m · H.

Lemma 4.7 (Comparison) Let θ ∈ (0, 1). Suppose we are given fixed pa-
rameters α, α′, {mij}, {m′

ij}, {λij}, {λ′
ij}.

Then, under the assumptions on Model I for Theorem 1.2, there exist
finite constants M0 > 0 and a′ > 0, such that if M > M0, K := 2αMc + 1,
M ′ >

∑
j m′

ij/α′, then there is a finite γ = γ(a′M ′) > 0, so that if
∑

j γij <
γ, and for all {γ′

ij}, the process {ζ(n)}n≥0 fulfils the modified comparison
assumptions (16) for NL and θ. In particular, for each configuration ζ ∈ H,
there exists a “good event”

Gζ ∈ F∗(NL, [0, 2]),

where N = b + 2, with P[Gζ ] > 1 − θ, such that if ζ(0) = ζ, then on Gζ ,

ζ(1) ∈ (+1)H ∩ (−1)H.
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Consequently, using Theorem 3.5, the process

Xn := {(m, n) ∈ L : ζ(n) ∈ m · H}

dominates a 2N -dependent oriented percolation process {Wn}n≥0 on L with
density at least 1 − θ and initial condition W0 = X0.

Remarks.
1. A similar result is true for the Y - resp. η-population, which, given θ > 0,
produces a similar threshold M ′

0 and parameters M ′, a, γ′, which allow a
comparison to a 2N = 2(b + 2)-dependent oriented percolation process of
density at least 1 − θ via a similar “good event” Gη.
2. The available degree of freedom in the choice of {γ′

ij} in this result is
crucial for the simultaneous comparison of {ζ(n)}n≥0 and {η(n)}n≥0 which
we will need to consider later. It is due to the fact the our results for the
“control of the environment” in Lemma 4.6 are entirely independent of
these {γ′

ij}, since competition by X only facilitates the “good environment
condition” determined in terms of Y . 2

Proof. Fix θ > 0 and let

ε =
1

2

θ

(4(b + 2)L)d
. (58)

We begin with the specification of consistent parameter values for our model
that will lead to the required comparison. First note that all of the constants
α, α′, {mij}, {m′

ij}, {λij}, {λ′
ij}, b, N, L will remain fixed throughout what

follows. The only values we need to adjust suitably in order to produce
the proof are M, M ′, a′, {γij}. The proof is entirely independent of the
choice of {γ′

ij} (as long as all parameter values remain compatible with the
assumptions of Theorem 1.2).

First, we choose a′ large enough, so that for any M ′ >
∑

j m′
ij/α′,

a′ >
1

2α′M ′c + 1
, (59)

and moreover such that a′/2 > v′0 in Lemma 4.6 with the above ε. Then, for
each i and n, we have the bound

P
[
E′(i, n)[a′/2]

]
> 1 − ε. (60)

Note that this bound does not depend on {γ′
ij} (and obviously not on {γij}).

From now on, a′ remains fixed. Define, for any M ′ >
∑

j m′
ij/α′ the constant
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γ = γ(a′, M ′) := (2a′M ′)−1, so that, for each i,

∑

j∈Zd

γij2a′M ′ < 1.

Finally, we can find M0 > 0, such that for all M > M0, the bounds of
Lemma 4.5 for the “infection” and “non-recovery probabilities” hold with
our choice of ε.

We now check that with these parameter values for M0, a
′, γ, and for all

M > M0, assuming ζ(0) ∈ H, there is a “good event” Gζ ∈ F∗(NL, [0, 2]),
which implies

ζ(1) ∈ (+1)H ∩ (−1)H, (61)

and has probability at least 1 − θ. Recall that ζ(0) ∈ H means

• Xi(0) > M/K, where K = 2αMc + 1 as in Section 4.1, for all i ∈
[−L/2, L/2]d ∩ Z

d,
• Yj(0) < a′M ′, for all j ∈ i + [−bL, bL]d ∩ Z

d, i ∈ [−L/2, L/2]d ∩ Z
d.

To construct Gζ , recall first that one time step for ζ corresponds to two
time units for X and Y . We consider the corresponding time interval [0, 2]
in two parts [0, 1] and [1, 2].

In view of Lemma 4.6, applied with v′ = a′ > v′0, we see that

P

[ ⋂

i

E′(i, 0)[a′] : i ∈ [−(b + 1/2)L,(b + 1/2)L]d ∩ Z
d
]

> 1 − (2(b + 1/2)L)dε,

and recall that this event, denoted for short by

E′(0, (b + 1/2)L, 0, 2)[a′] ∈ F ′(0, (b + 1/2)L, 0, 2),

implies, since ζ(0) ∈ H, by Lemma 4.6,

sup
0≤s≤2

{
Yi(s) : i ∈ [−(b + 1/2)L, (b + 1/2)L]d ∩ Z

d
}

< 2a′M ′.

Next, Lemma 4.5 tells us that (recalling that, for n = 0, each Gnon−rec(i, 0) ∈
F(i, 0, 1)),

P

[ ⋂

i

Gnon−rec(i, 0) : i ∈ [−L/2, L/2]d ∩ Z
d
]

> 1 − Ldε,
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and note that this event, denoted by

Gnon−rec(0, L/2, 0, 1) ∈ F(0, L/2, 0, 1),

implies that

Xi(1) >
M

2αMc + 1
for all i ∈ [−L/2, L/2]d ∩ Z

d.

Now, applying Lemma 4.6 once again, this time with v′ = a′/2, we see that

P

[ ⋂

i

E′(i, 0)[a′/2] : i ∈ [−NL, NL]d ∩ Z
d
]

> 1 − ε(2NL)d,

and this event, again denoted shorthand by

E′(0, NL, 0, 2)[a′/2] ∈ F ′(0, NL, 0, 2),

ensures that

sup
s∈[1,2]

{
Yi(s) : i ∈ [−NL, NL]d ∩ Z

d
}

< a′M ′.

Combining all these events, so far then we have guaranteed that with prob-
ability at least

1 − (2NL)dε − Ldε − (2(b + 1/2)L)dε,

we have that

Xi(1) >
M

K
=

M

2αMc + 1
for all i ∈ [−L/2, L/2]d ∩ Z

d (62)

and
sup

1≤t≤2

{
Yj(t) : j ∈ [−NL, NL]d ∩ Z

d
}

< a′M ′, (63)

where N = b + 2. Thus, throughout the time interval [1, 2], a “safe envi-
ronment condition” G′

sec(i, 1) ∈ F ′(i, NL, 1, 1) holds at time n = 1 for all
i ∈ [−(3/2)L, (3/2)L]d ∩ Z

d, and hence the local Y -population is not ‘too
big’, that is, for all j ∈ [−(3/2)L, (3/2)L]d ∩ Z

d,

max
t∈[1,2]

∑

l∈Zd

γjlYl(t) < 1.

Thus, the ζ-process can safely invade the neighbouring boxes, i.e., condi-
tional on (62) and given the above instance of the “safe environment condi-
tion”, for each site

i ∈
{{

Le1 + [−L/2, L/2]d
}

∪
{
− Le1 + [−L/2, L/2]d

}}
∩ Z

d, (64)
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where e1 denotes the first unit vector in Z
d, the ‘infection event’

Ginfec(i, j, 1) at i has probability greater than 1− ε, by Lemma 4.5 (noting
that by our choice of L, and the fact that mij is a function of ||i− j|| alone,
each such site i has at least one occupied neighbour j ∈ [−L/2, L/2]). Hence,
after all these prerequisites, the probability that simultaneously for all such
sites i taken from the set in (64), at time 1, the event

Ginfec(i, j, 1) ∈ F(i, NL, 1, 1) holds for some j ∈ [−L/2, L/2]d ∩ Z
d,

implying, under the above conditions, that

Xi(2) >
M

K
=

M

2αMc + 1
,

is at least 1 − 2Ldε. We denote this simultaneous event by

Ginfec(L ↑ L/2, 1, 1) ∈ F(0, NL, 0, 2).

Thus, we may define the F∗(NL, [0, 2])-measurable “good event”

Gζ := E′(0, (b + 1/2)L, 0, 2)[a′] ∩ Gnon−rec(i, L/2, 0, 1)

∩ E′(i, NL, 0, 2)[a′/2] ∩ Ginfec(i, L ↑ L/2, 1, 1), (65)

which implies, given ζ = ζ(0) ∈ H,

ζ(1) ∈ (+1)H ∩ (−1)H,

and gladly observe

P
[
Gζ

]
> 1 − (2(b + 1/2)L)dε − Ldε − (2NL)dε − 2Ldε

> 1 − 4(2NL)dε

= 1 − θ,

which completes the comparison.

4.2.2. Simultaneous comparison and Proof of Theorem 1.2 and Corol-
lary 1.3. Assume that

θ ≤ 6−4(4(b+2)+1)2.

Then we may choose a, a′, so that for all M >
∑

j mij/α and M ′ >∑
j m′

ij/α′, (60) holds for both populations X and Y with ε = 1
4

θ
(2NL)d .

The point is that this can be done simultaneously, since the bounds for the
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control of the environment do not depend on the behaviour of the competi-
tor.

Then, we may pick M, M ′ and simultaneously γ, γ′ such that Lemma 4.5
holds with ε = 1

4
θ

(2NL)d for both the X- and the Y -population. Condition

(60) is unaffected by this, since the bounds on the environment do not
depend on {γij} and {γ′

ij} and hold for all M >
∑

j mij/α and M ′ >∑
j m′

ij/α′.
Assuming then that ζ(0) and η(0) ∈ H, observing that condition (59) on

a′ ensures that

κ′
1 :=

M ′

2α′M ′c + 1
< a′M ′ =: κ′

2

(with a similar inequality for κ1, κ2), leads to the initial condition

(X(0), Y (0)) ∈ H(κ1, κ2; κ′
1, κ

′
2; (b + 1/2)L)

specified in Theorem 1.2 with

κ1 =
M

2αMc + 1
, κ2 = aM, κ′

1 =
M ′

2α′M ′c + 1
, κ′

2 = a′M ′.

Hence we can simultaneously construct the corresponding good events Gζ

and Gη and infer from Theorem 3.2 that both the X and Y population
survive each with probability greater than 19

20 , which yields persistence of
{X, Y } with positive probability.

Moreover, if we make the stronger assumption that the initial configura-
tions of the X and Y populations satisfy

(X(0), Y (0)) ∈ H(κ1, κ2; κ′
1, κ

′
2; ∞),

hence assuming

ζi(0) = 1, ηi(0) = 1, for all i ∈ Z
d,

then, according to Theorem 3.6,

lim inf
n→∞

P[ζ2n(0) = 1] ≥ 19

20
.

The same result holds for η. Thus,

lim inf
n→∞

P[ζ2n(0) = 1, η2n(0) = 1] ≥ 9

10
.

By the definition of {ζn, ηn}n≥0 and our bounds from the last section, ap-
plied in a similar fashion, this implies that there is a uniform positive lower
bound on P[X0(t) ≥ M/(2K), Y0(t) ≥ M/(2K) ∀t ∈ [0, 4] given ζ2n(0) =
1, η2n(0) = 1], and the proof is finished. 2
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4.2.3. Sketch of the comparison proof of Theorem 1.4. Model II will be
treated more thoroughly in future work. Here we simply sketch the proof of
Theorem 1.4. Once again we proceed by comparison to oriented percolation.

This time we make two (symmetric) comparisons. In the first case, a site i
is deemed to be infected at time n if pi(n) > ε for some fixed ε ∈ (0, 1/4] and
recovered otherwise. For simplicity, we assume N ≡ 1 and µ = 2 (‘symmetric
case’). Bounds on infection and non-recovery rates in terms of s for an
associated discrete time flip process based on suitably measurable events
that will later constitute the necessary “good event” are entirely analogous
to those in the proof of Theorem 1.2 (although now things are much simpler
as we do not have to worry about a potentially big random environment and
the number of parameters involved is much smaller).

We proceed exactly as in Section 4.1.2 noting that while 0 ≤ pi(t) ≤ 2ε,
we can use Corollary 5.3 to compare pi(t) to a suitable one-dimensional
diffusion. This time, in place of the Feller branching diffusion, we have a
Fisher-Wright diffusion. Indeed, as long as 0 ≤ pi(t) ≤ 2ε we have

dpi(t) =
∑

j∈Zd

mij (pj(t) − pi(t)) dt

+ spi(t) (1 − pi(t)) (1 − 2pi(t)) dt +
√

pi(t) (1 − pi(t)) dWi(t),

≥
[
s(1 − 2ε)(1 − 4ε) −

∑

j∈Zd

mij

]
pi(t) dt +

√
pi(t)(1 − pi(t))dWi(t).

(66)

For a site j with pj(n) > ε (we call such a site ‘occupied’), we introduce

the stopping time Sj
n(ε) := inf{t ≥ n : pj(t) < ε/2}. By (66) we see

that by increasing the value of s, we can arrange that the probability that
Sj

n(ε) > n + 1 for such a site j is sufficiently close to 1.
Again following the arguments in Section 4.1.2, for a site i ∈ Z

d, given
the existence of an occupied neighbour (that means there is a j ∈ Z

d with
mij > 0 and pj(t) > ε), as long as t < Sj

n(ε) and pi(t) < ε, we can compare
pi(t) to a Fisher-Wright diffusion with immigration and positive drift using
the observation

dpi(t) ≥
ε

2
mij dt + spi(t)(1 − pi(t))(1 − 2pi(t)) dt

−
∑

j∈Zd

mijpi(t) dt +
√

pi(t)(1 − pi(t))dWi(t).

Now it is easy to provide bounds on the infection probability (in the presence
of an occupied neighbour) and the recovery probability in a similar fashion
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to Lemma 4.5. Such bounds then establish the required lower bound on the
probability of the corresponding “good event”, and hence allow a comparison
to oriented percolation whenever there exists at least one i ∈ Z

d with pi(0) >
ε. Moreover, if pi(0) > ε for all i ∈ Z

d, using Theorem 3.6, we have, for s
large enough,

lim inf
n→∞

P [p0(n) > ε] >
19

20
.

Since 1 − pi(t) satisfies the same equations as pi(t) the result follows. 2

5. Appendix.

5.1. Existence for Model I. Although existence and uniqueness of solu-
tions to Model II is classical (see Shiga and Shimizu 1980), existence of
solutions to Model I is not covered by standard results and so we outline it
here.

For the state space of Model I, recall the notation from (5), i.e., for p ≥
1, p ∈ N, let

ℓp
Γ = {x ∈ R

Z
d

: ||x||Γ,p < ∞}, (67)

where the weighted ℓp-norm || · ||Γ,p is defined, for Γ = {Γi}Zd ∈ l1((0,∞)Z
d

)
by

||x||Γ,p =
( ∑

i∈Zd

Γi|xi|p
) 1

p
.

We assume Γi/Γj < f(||i − j||) for some continuous function f : [0,∞) →
[0,∞), where || · || either denotes the lattice distance or the maximum norm
on Z

d. For example, we can take Γi = e−||i|| for i ∈ Z
d.

Theorem 5.1 (Existence for Model I) Fix p ≥ 1, p ∈ N. Suppose
X(0) ∈ ℓ4p

Γ non-negative. Let α, M ∈ (0,∞) and assume that λij , mij are
positive, bounded and of finite range for all i, j ∈ Z

d. Let {Bi(t), i ∈ Z
d}t≥0

be a family of independent Brownian motions. Then, almost surely, there
exists a weak non-negative solution to

dXi(t) =
∑

j∈Zd

mij

(
Xj(t) − Xi(t)

)
dt

+ α
(
M −

∑

j∈Zd

λijXj(t)
)
Xi(t) dt +

√
Xi(t)dBi(t), (68)

taking values in ℓ4p
Γ , which is continuous in each component.



52 BLATH, ETHERIDGE, MEREDITH

Remark. The above theorem also covers the competing species case by re-
indexing and an appropriate relabelling of the parameters. Moreover, the
initial condition in (7) guarantees that X(0) ∈ ℓ4p

Γ for all p ≥ 1, p ∈ N 2

Proof. We construct a sequence of approximating (finite dimensional) sys-
tems of stochastic differential equations converging weakly to a component-
wise continuous limit in ℓ4p

Γ , which solves (68). For n ∈ N, let

In = [−n, n]d ∩ Z
d (69)

with In ↑ Z
d as n → ∞. Define Xn to be the solution of the system of

interacting stochastic differential equations given by

dXn
i (t) =

∑

j∈Zd

mij

(
Xn

j (t) − Xn
i (t)

)
dt

+ α
(
M −

∑

j∈Zd

λijX
n
j (t)

)
Xn

i (t)ds +
√

Xn
i (t)dBi(t) (70)

and Xn
i (0) = Xi(0) if i ∈ In, and Xn

i (t) = 0 for all t ≥ 0 if i /∈ In, assuming
the initial condition Xn(0) ∈ ℓ4p

Γ . Note that the above system is essentially
finite-dimensional with locally Lipschitz coefficients for each n and hence
we can apply standard results to obtain existence and uniqueness up to a
random explosion time which we denote by ϑXn . Now, for ε > 0, consider
the dominating system

dX̃n
i (t) =

∑

j∈Zd

mij

(
X̃n

j (t) − X̃n
i (t)

)
dt

+ αMX̃n
i (t) dt + ε dt +

√
X̃n

i (t)dBi(t) (71)

with X̃n
i (0) = Xn

i (0) for i ∈ In and X̃n
i (t) = 0 for i /∈ In. Denote its explosion

time by ϑX̃n . Applying the comparison theorem of Geiß and Manthey (1994)
for finite-dimensional stochastic differential equations, we have that

P

[
Xn

i (t) ≤ X̃n
i (t), t ∈

[
0, ϑXn ∧ ϑX̃n

)]
= 1. (72)

As the drift in the system (71) fulfils a linear growth condition and is Lips-
chitz, using Gronwall’s inequality (arguing exactly as in the proof of Theo-
rem 5.2.1 in Sturm (2002)), we have that if Xn(0) = X̃n(0) ∈ ℓ4p

Γ , then

E

[
sup

0≤t≤T
||Xn(t)||4p

Γ,4p

]
≤ E

[
sup

0≤t≤T
||X̃n(t)||4p

Γ,4p

]
< C̃(4p, T ) < ∞, (73)
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where the bound is independent of n, showing that both explosion times
are a.s. infinite. Moreover, note that Xn(t) is also in ℓ2p

Γ for all t a.s.

A crucial step in the existence proof will be to establish a suitable growth
condition on the drift coefficients of the infinite dimensional system. Usually,
one needs to assume a linear growth condition, but the fact that we have
a non-exploding dominating system allows us to work with a more general
quadratic growth condition instead. As a consequence we must assume that
our initial conditions lie in ℓ4p

Γ instead of ℓ2p
Γ (which is the situation of Theo-

rem 2.3 in Sturm (2003), see also the proof of Theorem 5.2.1 in Sturm (2002)
for more details). To establish the quadratic growth condition, we compute

∣∣∣
∣∣∣α

(
M−

∑

j∈Zd

λijX
n
j (t)

)
Xn

i (t)
∣∣∣
∣∣∣
2p

Γ,2p

=
∑

i∈In

Γi

(
α(M −

∑

j∈Zd

λijX
n
j (t))Xn

i (t)
)2p

≤ c′
∑

i∈In

Γi

(
αMXn

i (t)
)2p

+ c′
∑

i∈In

Γi

(
αXn

i (t)
∑

j∈Zd

λijX
n
j (t)

)2p

for some finite c′ > 0, where in the first equality we have used the fact that
Xn

i (t) = 0 for all t > 0 if i /∈ In. So, modifying the value of c′ from line to
line as necessary, we conclude that

∣∣∣
∣∣∣α

(
M−

∑

j∈Zd

λijX
n
j (t)

)
Xn

i (t)
∣∣∣
∣∣∣
2p

Γ,2p

≤ c′
∑

i∈In

Γi(X
n
i (t))2p + c′

∑

i∈In

Γi

∑

j∈Zd

(
λijX

n
i (t)Xn

j (t)
)2p

≤ c′
∑

i∈In

Γi(X
n
i (t))2p + c′

∑

i∈In

Γi(λiiX
n
i (t))4p

+ c′
∑

i∈In

Γi

∑

i6=j∈Zd

(
λijX

n
i (t)Xn

j (t)
)2p

.

Observe that since λij is of finite range, under our assumptions on Γ, Γi/Γj

is bounded for all i, j within this range, and so, replacing the mixed terms
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by the square of the diagonal terms ensures that

∣∣∣
∣∣∣α

(
M −

∑

j∈Zd

λijX
n
j (t)

)
Xn

i (t)
∣∣∣
∣∣∣
2p

Γ,2p

≤ c′
∑

i∈In

Γi(X
n
i (t))2p + c′

∑

i∈In

Γi(X
n
i (t))4p

= c′
(
||Xn(t)||2p

Γ,2p + ||Xn(t)||4p
Γ,4p

)
.

Note that although we have not considered the migration term in the above
computations, it is easy to see that it satisfies a linear growth condition.
Hence, using (73) we have for 0 ≤ t ≤ T

E

[∣∣∣
∣∣∣
∑

j∈Zd

mij(X
n
j (t) − Xn

i (t)) + α
(
M−

∑

j∈Zd

λijX
n
j (t)

)
Xn

i (t)
∣∣∣
∣∣∣
2p

Γ,2p

]

≤ C + C̃(4p, T ) < ∞ (74)

After these preparations, we now prove tightness of the approximating sys-
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tem. For 0 ≤ s ≤ t ≤ T with |t − s| ≤ δ < 1, consider

E

[
||Xn(t) − Xn(s)||2p

Γ,2p

]

= E

[ ∑

i∈In

Γi

( ∫ t

s

( ∑

j∈Zd

mij(X
n
j (u) − Xn

i (u))

+ α[M −
∑

j∈Zd

λijX
n
j (u)]Xn

i (u)
)
du +

∫ t

s

√
Xn

i (u)dBi(u)
)2p

]

≤ CpE

[ ∑

i∈In

Γi

( ∫ t

s

∑

j∈Zd

mij(X
n
j (u) − Xn

i (u))

+
∑

i∈In

α
[
M −

∑

j∈Zd

λijX
n
j (u)

]
Xn

i (u)du
)2p

]

+ CpE

[ ∑

i∈In

( ∫ t

s

√
Xn

i (u)dBi(u)
)2p

]

≤ Cpδ
2p−1

E

[ ∫ t

s

∣∣∣
∣∣∣
∑

j∈Zd

mij(X
n
j (u) − Xn

i (u)

+ α
[
M −

∑

j∈Zd

λijX
n
j (u)

]
Xn

i (u)
∣∣∣
∣∣∣
2p

Γ,2p
du

]

+ Cpδ
p−1

∑

i∈In

Γi

∫ t

s
E[(Xn

i (u))p]du

≤ Cp,δ,T < ∞,

where we applied Jensen’s Inequality to the drift terms, Burkholder’s In-
equality followed by Jensen’s Inequality to the diffusion term and finally
used the quadratic growth condition (74). Since Γi > 0 for each i ∈ I we
have by Markov’s inequality for ai ≥ 0, using (73) again,

sup
n

P

[
sup

0≤t≤T
|Xn

i (t)| > ai

]
<

C̃(4p, T )

a4p
i Γi

(75)

and

sup
n

sup
|t−s|≤δ

sup
0≤t≤T

P

[
|Xn

i (t) − Xn
i (s)| > ai

]
<

Cp,δ,T

a2p
i Γi

(76)

and so combining (75) and (76) with Theorem 3.8.6 of Ethier and Kurtz
(1986), we have that Xn

i are tight in the space of càdlàg paths D([0,∞), R)
equipped with the usual Skorohod topology. Moreover, since C([0,∞), R) is
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a closed subspace with respect to the induced topology we also have that Xn
i

are tight in the space C([0,∞), R) for each i ∈ Z
d. By Cantor diagonalisation

we can find a weakly convergent subsequence in C([0,∞), RZ
d

) denoted by
Xn′

, converging to a limit which is continuous in each component.
It is easy to show that every limit indeed solves (68). Using arguments

from Shiga and Shimizu (1980), one can also show positivity of the limit.
Finally, we need to show that the limit lives in ℓ4p

Γ . Since we have that

X̃n
i (t) = 0 for all t ≥ 0 for all i /∈ In, the dominating system, representing

a supercritical branching process, is monotone as In ↑ Z
d and so by the

Monotone Convergence Theorem we have that

E

[
sup

0≤t≤T
||X̃n(t)||4p

Γ,4p

]
↑ E

[
sup

0≤t≤T
||X̃(t)||4p

Γ,4p

]
< ∞,

and we note that the same arguments as above give a limit for the X̃n

processes.
Then using the comparison theorem from Geiß and Manthey (1994)

and Dominated Convergence we have that E[sup0≤t≤T ||Xn||4p
Γ,4p] remains

bounded as n → ∞, showing that the limiting system lives in ℓ4p
Γ for all

t ≥ 0 almost surely.

5.2. A comparison theorem. The following Ikeda-Watanabe (1981) Com-
parison Theorem for one-dimensional diffusions, and in particular its subse-
quent simple corollary, are tailored for our purposes in Section 4.

Theorem 5.2 (Ikeda-Watanabe, 1981) Let (Ω,F , {Ft}, P) be a filtered
probability space and let x1(t, ω), x2(t, ω) be two real {Ft}-adapted processes.
Let B(t, ω) be a one-dimensional {Ft}-Brownian motion such that B(0) =
0 a.s. and let β1(t, ω), β2(t, ω) be two real {Ft}-adapted previsible drifts.
Assume that with probability one,

xi(t) − xi(0) =

∫ t

0

√
xi(t) dB(s) +

∫ t

0
βi(s) ds, i = 1, 2,

and that pathwise uniqueness of solutions holds for at least one of the equa-
tions. Moreover, assume that with probability one,

• x1(0) ≤ x2(0),
• β1(t) ≤ b1(t, x1) for every t ≥ 0,
• β2(t) ≥ b2(t, x2) for every t ≥ 0,
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for two real continuous functions b1(t, x), b2(t, x) defined on [0,∞)×R such
that

b1(t, x) ≤ b2(t, x) (77)

for all t ≥ 0 and x ∈ R. Then,

x1(t) ≤ x2(t) for every t ≥ 0.

The proof is standard and can be found in Ikeda and Watanbe (1981).

Note that, for example, the theorem holds if one of the processes is a
positive one-dimensional non-exploding diffusion with locally Lipschitz drift,
so that a unique strong solution exists. The following corollaries allow a
comparison even if (77) holds for intervals only.

Corollary 5.3 In the framework of Theorem 5.2, assume that x1 and x2

are positive and non-exploding. Let δ > 0.

a) Suppose that assumption (77) on the functions b1, b2 is required only
for all x ∈ [δ,∞). Assume x1(0) ≤ x2(0). Define

τx2

δ := inf{t ≥ 0 : x2(t) ≤ δ}.

Then, with probability one,

x1(t ∧ τx2

δ ) ≤ x2(t ∧ τx2

δ ) for all t ≥ 0.

b) Suppose that assumption (77) on the functions b1, b2 is required only
for all x ∈ [0, δ]. Assume x1(0) ≤ x2(0). Define

τx1

δ := inf{t ≥ 0 : x1(t) ≥ δ}.

Then, with probability one,

x1(t ∧ τx1

δ ) ≤ x2(t ∧ τx1

δ ) for all t ≥ 0.

Proof. This follows directly from the arguments (due to Le Gall) in the
proof in Rogers and Williams (1987), 43.1. By the usual localisation, we
may assume that b1, b2 are Lipschitz with some finite Lipschitz constant
K > 0. For a), observe that, abbreviating τ = τx2

δ ,

(
x1(t ∧ τ) − x2(t ∧ τ)

)+

=

∫ t∧τ

0
1{x1(s)−x2(s)>0}

(√
x1(s) −

√
x2(s)

)
dBi(s)

+

∫ t∧τ

0
1{x1(s)−x2(s)>0}

(
β1(s) − β2(s)

)
ds.
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The diffusion coefficients
√· satisfy the Yamada-Watanabe condition (see

Rogers and Williams (1987), V 40.1), and therefore the local time of x1(t)−
x2(t) in level 0 is identically equal to 0. Hence

0 ≤ E

[
(x1(t) − x2(t)

+; t ≤ τ
]

= E

[
(x1(t ∧ τ) − x2(t ∧ τ))+

]

≤ E

∫ t∧τ

0
1{x1(s)−x2(s)>0}

(
b1(x1(s)) − b2(x2(s))

)
ds

≤ E

∫ t∧τ

0
1{x1(s)−x2(s)>0}

(
b1(x1(s)) − b1(x2(s))

)
ds

≤ KE

∫ t∧τ

0
(x1(s) − x2(s))

+ ds,

≤ K
∫ t

0
E

[
(x1(s) − x2(s))

+; s ≤ τ
]
ds,

from which we infer that

P
[
{t ≤ τ : x2(t) > x1(t)}

]
= 0,

by Gronwall’s inequality. The second statement b) follows in a similar
fashion. 2
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