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Abstract

Considering the high relevance of electronics in the industrial, technological
and business communities, monocrystalline silicon is one of the most impor-
tant technical materials today and in the near future. To grow the monocrys-
talline silicon industrially with the required quality, the Czochralski and the
crucible-free Floating Zone methods are generally used. The thesis is focused
on the model-based automation of the crystal growth of silicon using Float-
ing Zone technique. Automatic growth control is a key issue in production
of silicon with respect to yield, quality, and reproducibility. Also, reliability
and comparability are enhanced by growth control. In an industrial setting,
it is essential to produce crystals with equal properties by keeping identical
processing conditions.

In today’s industrial production, standard PI or PID controllers are applied to
regulate the Floating Zone process. Due to the changing dynamics during the
process, the controller parameters are set up separately for every phase of the
process. In contrast, a model-based controller gives a widely flexible handling
of different machine components, different inductor types and different target
diameters. Therefore, a model-based automation concept was developed to
regulate the Floating Zone process including the following phases: forming
the feed tip, creating the thin neck, making the cone and growing the cylin-
der. A measurement system was created to obtain the geometrical quantities
based on visual image processing. Digital cameras were applied to capture the
process. The acquired images were analyzed by gradient-based methods. A
model-based state estimation technique, the Extended Kalman filter, and a
model predictive controller were implemented to regulate the process without
using additional controller components such as a PID controller. To use those
methods, a nonlinear low-order model was developed including geometrical and
thermodynamical aspects of the process. The mathematical model is based on
a system of coupled differential equations and allows the prediction of radii
and angles of feed and crystal, upper and lower zone heights, the melt volume,
the melt neck, and the rates of melting and growing. A prediction horizon of
several minutes is achieved with high accuracy and a calculation time less than
one second.

An automation was developed for forming the feed tip to provide reproducible
start conditions for the growth of the thin neck. Two regulation strategies
were successfully applied for creating the thin neck. The first one used heater
power and crystal pull rate, the second one heater power and feed pull rate.
The regulated growth beginning from the cone and swinging into the cylindrical
phase was realized using references of zone height, diameter and angle of the
crystal. Experiments showed a high control precision. With this automation
concept, dislocation-free crystals with different diameters were grown on two
Floating Zone machines without a renewed parameter identification.
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Abstract (in German language)

Angesichts der großen Bedeutung von Elektronik in Industrie-, Technologie-
und Wirtschaftsunternehmen, ist einkristallines Silicium eines der wichtig-
sten technischen Materialien heute und in der nahen Zukunft. In der Regel
werden für die industrielle Züchtung von Silicium-Einkristallen zwei Meth-
oden eingesetzt, die Czochralski-Methode und die tiegelfreie Floating-Zone-
Methode. Diese Arbeit beschäftigt sich mit der modellbasierten Regelung
des Floating-Zone-Verfahrens zur Züchtung von Silicium-Einkristallen. Die
geregelte Kristallzüchtung ist ein zentrales Thema in der industriellen Pro-
duktion von Silicium in Bezug auf Ertrag, Qualität, Reproduzierbarkeit und
Zuverlässigkeit. In der Industrie ist die Gewährleistung von identischen Züch-
tungsbedingungen endscheidend für die Erzeugung von Kristallen mit gleichen
Eigenschaften.

Heutzutage werden in der industriellen Produktion Standard PI- oder PID-
Regler eingesetzt, um das Floating-Zone-Verfahren zu regeln. Aufgrund der
sich ändernden Dynamik während des Prozesses werden die Reglerparameter
für jede Phase separat eingestellt. Eine modellbasierte Regelung ermöglicht
u.a. eine weit flexiblere Handhabung der Prozessphasen sowie von unter-
schiedlichen Maschinenkomponenten und Zieldurchmessern. Daher wurde ein
modellbasiertes Regelungskonzept für das Floating-Zone-Verfahren entwick-
elt. Folgende Phasen wurden dabei berücksichtigt: Formen des Vorlaufs,
Ziehen des Dünnhalses, Ausbauen des Kristallkonuses und Ziehen des Zylin-
ders. Ein Messwerterfassungssystem basierend auf einer optischen Bildverar-
beitung wurde geschaffen, um die geometrischen Prozessgrößen zu ermitteln.
Die von digitalen Kameras bereitgestellten Bilder wurden mittels Gradienten-
Methoden ausgewertet. Ein modellbasiertes Verfahren zur Schätzung des Zu-
stands (Extended Kalman-Filter) und eine modell-prädiktive Regelung wur-
den implementiert. Dabei konnte auf zusätzliche Regelungskomponenten wie
beispielsweise PID-Regler verzichtet werden. Um diese Methoden nutzen zu
können, war die Entwicklung eines nichtlinearen Modells niedriger Ordnung
notwendig, welches die wesentlichen geometrischen und thermodynamischen
Aspekte des Prozesses beinhaltet. Das mathematische Modell besteht aus
einem System von gekoppelten Differentialgleichungen erster Ordnung und er-
möglicht die Vorhersage der Radien und Winkel vom Vorratsstab sowie vom
Kristall, der oberen und unteren Zonenhöhen, des Schmelzhalsdurchmessers,
des Schmelzvolumens, der Abschmelzrate und der Wachstumsgeschwindigkeit.
Ein Prädiktionshorizont von mehreren Minuten mit hoher Genauigkeit konnte
erreicht werden mit einer Berechnungszeit von weniger als einer Sekunde.

Eine Regelung zur Erzeugung des Vorlaufs wurde entwickelt. Dadurch könnnen
reproduzierbare Startbedingungen für das Ziehen des Dünnhalses realisiert
werden. Für die geregelte Züchtung des Dünnhalses wurden zwei Strate-
gien entwickelt und erfolgreich angewendet. Die erste Strategie verwendet
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als Stellgrößen die Heizleistung und die Ziehgeschwindigkeit des Kristalls, die
zweite, Heizleistung und Ziehgeschwindigkeit des Vorratsstabes. Die geregelte
Züchtung des Kristallkonuses und des Einschwingens in die zylindrische Phase
wurde durch Vorgaben an Zonenhöhe, Kristallwinkel und -durchmesser re-
alisiert. Durchgeführte Experimente zeigten eine hohe Regelgenauigkeit. Mit
dem modellbasierten Regelungskonzept wurden versetzungsfreien Kristalle mit
unterschiedlichen Zieldurchmessern auf zwei unterschiedlichen Floating-Zone-
Maschinen gezüchtet, ohne erneute Parameteridentifikation.
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Nomenclature

List of Symbols - Floating Zone

Symbol Description

c Distance between camera and cylinder

DC Crystal diameter

Dcam Diameter observed by the camera

DF Feed rod diameter

DN Melt neck diameter

Dreal Real diameter of the cylinder

g Gravitational acceleration

Fn Electromagnetic pressure (Laplace-Young equation)

hm Melt height

hC Lower zone height

hF Upper zone height

hG Full zone height

hI Height of the inductor

Hbo Height of the melt bowl (covered by the crystal surface)

HC Distance crystal holder to inductor bottom

HF Distance feed holder to inductor top

K Curvature (Laplace-Young equation)

LC Crystal length

LF Feed rod length

Lmax Maximum zone height

ṁF Mass change of feed rod with respect to time

ṁC Mass change of crystal with respect to time

mbo Mass of the melt bowl (covered by the crystal surface)

mfr Mass of the visible feed residual

mmelt Mass of the complete melt

mvi Mass of the visible melt

P0 Pressure difference (Laplace-Young equation)

PC Power introduced in crystal

PC,loss Power dissipation of crystal due to conduction and radiation

PC,crystallize Released power because of crystallization mass flow

PF Power introduced in feed rod

PF,loss Power dissipation of feed rod due to conduction and radiation

PF,melting Needed power for melting a feed mass flow

Pgen Generator power
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List of Symbols - Floating Zone

Symbol Description

Pind Inductor power

Pind,C Inductor power acting on the crystal

Pind,F Inductor power acting on the feed

Ploss Power loss of a solid cylinder due to conduction and radiation

q0 Latent heat

QC,crystallize Released heat because of crystallization

QF,melting Needed heat for melting feed material

RC Crystal radius

Rcam Radius observed by the camera

RF Feed rod radius

RN Melt neck radius

Rreal Real radius of the cylinder

Tm Melting temperature

Ugen Generator voltage

vC Crystal pull rate

vCr Crystallization rate

vC,max Theoretically maximum of the crystal pull rate

vF Feed rod pull rate

vMe Melting rate

Vbo Volume of the melt bowl (covered by the crystal surface)

Vfr Volume of the visible feed residual

Vmelt Volume of the complete melt

Vvi Volume of the visible melt

α Capillary constant

αF Feed rod angle

αSi Capillary constant of silicon

ǫ Surface emissivity

κC Reference offset of a diameter

λm Thermal conductivity in the solid at melting temperature

ϕC Crystal angle

ϕG Growth angle

ϕM Melt angle

γ Surface tension

Ω Rate of rotation (Laplace-Young equation)
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List of Symbols - Floating Zone

Symbol Description

ρM Melt density

ρS Density of solid material

σ Stefan-Boltzmann constant

ζlost Power loss constant

List of Symbols - Parameter of Floating Zone Model

Symbol Description

a0 Polynomial coefficient (Vbo)

a1 Polynomial coefficient (Vbo)

a2 Polynomial coefficient (Vbo)

a3 Polynomial coefficient (Vbo)

abo Fitting factor of V̇bo in derivative of Vvi

afr Fitting factor of V̇fr in derivative of Vvi

aV Fitting factor in derivative of melt angle ϕ̇M

aR Fitting factor in derivative of melt angle ϕ̇M

ah Fitting factor in derivative of melt angle ϕ̇M

aN Fitting factor in derivative of melt angle ϕ̇M

b0 Polynomial coefficient (Hbo)

b1 Polynomial coefficient (Hbo)

c0 Fitting factor for the power PC

c1 Fitting factor for the power PC

d0 Polynomial coefficient (Vfr)

d1 Polynomial coefficient (Vfr)

d2 Polynomial coefficient (Vfr)

d3 Polynomial coefficient (Vfr)

eF Fitting factor of the power PF

eC Fitting factor of the power PC

f0 Fitting factor of the power PF

f1 Fitting factor of the power PF

KP Gain factor of the inductor power Pind

nh Fitting factor in derivative of melt neck ṘN

pF Fitting factor of the power PF

pC Fitting factor of the power PC

rF Fitting factor of the power PF

rC Fitting factor of the power PC

τP Time constant of the inductor power Pind
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List of Symbols - Control Techniques

Symbol Description Dimension

e Control error scalar

ep Prediction error scalar

f Model function (State Space Model) n

gi Inequality constraint (Optimization) scalar

hi Equality constraint (Optimization) scalar

h Model output function (State Space Model) q

Hp Prediction horizon (NMPC) scalar

Hu Control horizon (NMPC) scalar

J Objective function (Optimization and NMPC) scalar

JQR Objective function (Kalman parameter identification) scalar

JΘ Objective function (model parameter identification) scalar

k Sample time point scalar

Kd Derivative gain (PID) scalar

Ki Integral gain (PID) scalar

Kp Proportional (PID) scalar

n Number of system states scalar

nmp Number of model parameter scalar

nφ Number of design variables (Optimization) scalar

p Number of control inputs scalar

q Number of system measurements scalar

t Time scalar

tc Control point (NMPC) scalar

u System input vector p

Wb Weight state boundaries (NMPC) n × n

Ws Weight final control error (NMPC) n × n

Wu Weight control input (NMPC) p × p

WQR Weight (Kalman parameter identification) q × q

Wx Weight control error (NMPC) n × n

WΘ Weight (model parameter identification) q × q

x System state vector n

y System measurement vector q

Θ Model parameter vector nmp

φ Design vector (Optimization) nφ

φ
lb

Lower bound of the design vector (Optimization) nφ

φ
ub

Upper bound of the design vector (Optimization) nφ

φ
opt

Optimal design vector (Optimization) nφ
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List of Abbreviations

Abbreviation Description

CZ Czochralski

EKF Extended Kalman filter

EM Electromagnetic

FZ Floating Zone

IGBT Insulated-Gate Bipolar Transistors

LPS Lateral-Photovoltage-Scannings

MEMS Micro Electromechanical Systems

MIMO Multiple Input Multiple Output

MOSFET Metal Oxide Semiconductor Field-Effect Transistor

MPC Model Predictive Control

NMPC Nonlinear Model Predictive Control

PERL Passivated Emitter, Rear Locally diffused

PI Proportional-Integral

PID Proportional-Integral-Derivative

RF Radio frequency

SISO Single Input Single Output

WLS Weighted-Least-Squares
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1. Introduction

Electronic devices such as computers, notebooks and smart phones are inte-
gral components of every day life, and a world without electronics is nearly
unimaginable. Considering the high relevance of electronics in the industrial,
technological and business communities, monocrystalline silicon is one of the
most important technical materials today and in the near future. Approxi-
mately 99% of all semiconductor devices are made from monocrystalline silicon
(see Zulehner [Zul00]).

For the growth of monocrystalline silicon, the polycrystalline raw material is
melted first and then crystallized in a monocrystalline structure afterwards.
The crystal orientation is determined by the seed monocrystal1. To grow the
monocrystalline silicon industrially with the required quality, the Czochralski
(CZ) and the Floating Zone (FZ) methods are generally used.

Approximately 95% of the monocrystalline silicon manufactured today is ob-
tained using the CZ method (see Zulehner [Zul00]). The crystals are used for
manufacturing highly integrated low-power devices in the field of microelec-
tronics such as computer components. For the CZ method, polycrystalline
silicon is molten in a crucible. The monocrystalline seed is dipped into the
melt and slowly pulled upwards while simultaneously being rotated. The crys-
tallizing material grows in the same structural orientation as preset by the seed
crystal. To avoid dislocations (disorders in the monocrystalline structure) the
crystal needs to be started with a thin neck in the range of 2-3 millimeters
in diameter, where all dislocations generated when dipping the seed into the
melt grow out (see Dash [Das59]). After the thin neck is dislocation-free, the
crystal can be increased in diameter. The process is primarily controlled by
heater power, crystal pull velocity, crucible rotation and crystal rotation. The
high melting temperature of silicon (1687 Kelvin) requires a crucible made of
an appropriate temperature-resistant material. Usually the crucible is made
of silicon dioxide, the so-called quartz. But, because of the high melting tem-
perature, the melt is contaminated by the crucible material, for instance by
oxygen. This affects the purity of the crystals (see Duffar [Duf10], chap. 3).

High-power electronics require a high level of material purity, which cannot
be obtained by CZ crystals. The crucible-free FZ method was invented to
avoid the contamination of the melt. Therefore, the highest purity of silicon
crystals grown from the melt can be achieved by the FZ technique. Here, a
solid polycrystalline silicon feed rod is the material source which is gradually
molten and then crystallized as a monocrystal. The liquid region between
the polycrystalline and the monocrystalline part is called the molten zone
generated by a contactless heating. In practice, the polycrystalline feed rod

1 The seed is an approximately 4-7 mm thick and 5-10 cm long monocrystal manufactured
from a larger crystal in the desired orientation.
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1. Introduction

is pulled down and molten by the heater. In industrial production, a radio
frequency coil is used for heating and melting the feed material. The FZ
process is initiated by forming a molten drop of silicon at the tip of the feed
rod. A monocrystalline seed is slowly moved upwards to the drop and dipped
into it. As for CZ also in FZ, a thin neck is grown for eliminating dislocations.
Below the heater, the melt crystallizes, always having the molten zone on top.
A detailed description of the FZ process is found in section 3.1 of this thesis.

FZ silicon is used to produce power devices, photo detectors, digital signal pro-
cessors, memory chips and solar cells. Examples are Power MOSFETs (Metal
Oxide Semiconductor Field-Effect Transistors), IGBTs (Insulated-Gate Bipo-
lar Transistors) in variable frequency drives, MEMS (Micro Electromechanical
Systems) and high power thyristors. For solar cells based on monocrystalline
silicon, the current record of 24.7% efficiency is held by the PERL (Passivated
Emitter, Rear Locally diffused) solar cell, which is made out of FZ wafers. The
PERL solar cell was developed at the University of New South Wales (see Zhao
et al. [Zha01a] and [Zha01b]). Today, research projects investigate the growth
of FZ silicon with quadratic shape, to reduce costs and waste of material while
producing solar cells (see Rost et al. [Ros12], Riemann and Lüdge [Rie09]).

Here, a short overview of the advantages and disadvantages of the FZ method
is given. The FZ process offers the following advantages over the CZ method:

• FZ crystals have the highest purity. The oxygen concentration of FZ
silicon crystals (approximately 1016 cm−3) is two orders of magnitude
smaller compared to that of CZ material. The content of carbon, heavy
metals, alkali and alkaline earth metals is also lower.

• FZ silicon has a better axial homogeneity of the specific resistivity.

• The FZ process has the potential for higher growth rates than CZ due
to the relatively high temperature gradient at the crystallization front
(typically 2-4 mm/min for FZ, 1-2 mm/min for CZ).

Disadvantages of the FZ process are:

• The maximal achievable crystal diameter in the production is lower (to-
day 200 mm for FZ, 300 mm for CZ).

• The feed material has to be in a cylindrical shape.

• The FZ machine is mechanically sophisticated. To operate it, more ex-
perience and skills are needed. Therefore, growing FZ crystals is more
expensive compared to growing crystals from a crucible such as for the
CZ process.

The FZ process is attempted to be made automatic to reduce the operating
requirements and to increase the yield in the industrial production. This fi-
nally results in lower production costs for FZ crystals. Standard linear PI
(Proportional-Integral) or PID (Proportional-Integral-Derivative) controllers

14



1.1. Motivation of Process Automation

are applied to regulate the FZ process. However, the linear concept is limited
when it is applied to the nonlinear dynamics of the FZ process. To overcome
these limits, a nonlinear model can be used to control the process. The devel-
opment and the implementation of an automation concept based on a nonlinear
model is the focus of this thesis.

1.1. Motivation of Process Automation

The main target of the automation is to increase the yield of dislocation-free
monocrystals. Nowadays, silicon crystals of up to 200 mm in diameter are
grown in the modern industrial FZ production. Growing these crystals is a
complex process. Even for experienced operators, it is difficult to keep the
small window of suitable growth conditions by manual growth. To obtain the
desired crystal properties, the operator has to be supported by automation. It
allows for faster and more accurate reaction on changing processing conditions
and occurring disturbances, respectively. Automatic growth control is a key is-
sue in production of monocrystalline silicon with respect to yield, quality, and
reproducibility. Also, reliability and comparability are enhanced by growth
control. In an industrial setting, it is essential to produce crystals with equal
properties by keeping identical processing conditions. For research issues, it is
necessary to compare growth experiments with different setups (for instance
different inductors or reflectors). The automation creates identical process con-
ditions, so that the observed behavior of the modified setup is more precise. A
further advantage of an automated process, especially in industrial production,
is the possibility of a parallel handling of several FZ-machines by one operator.

In today’s industrial production, standard PI or PID controllers are applied to
regulate the FZ process. The controller parameters are set up based on empir-
ical data. This has to be done separately for each setup in every phase of the
process due to the changing dynamics during the process. Such an automation
achieves good results according to the identical processing environment. If the
environment of the process is modified (new machine components, new crystal
diameter), then the PID controller has to be set up again. This is expensive,
especially in research issues, where the environment often changes. To handle
these requirements, an automation concept based on a mathematical model
yields better results. A model-based controller gives a widely flexible handling
of different machine components, different inductor types and different target
diameters. Also, the changing dynamics of the process can be directly handled
by model-based automation on condition that a suitable mathematical model
is available.

1.2. Objective of the Thesis

The main objective of the current work is the development of a model-based
automation for the FZ process including the phases - forming the feed tip,
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creating the thin neck, making the cone and growing the cylinder (see figure
3.1, page 34). The top priority is the growth of dislocation-free monocrys-
talline silicon. The regulation concept has to be applicable for different crystal
diameters and different FZ machines. The thesis is focused on dynamic pro-
cess modeling and the identification of suitable trajectories for a stable process
control. A model of the complete process is required, that is suitable for con-
trolling in real-time (during the entire growth process). For implementing the
control methods, corresponding computer programs were created.

The objectives of the current work include:

• Measurement system:

It is obvious that measurements are needed for a control system. These
measurements are the base for all calculations of the controller. A goal of
this thesis is the development of a measurement system based on visual
image processing.

• Mathematical model:

Modeling the process dynamics includes the identification of the rele-
vant process variables, equation formulation and parameter identifica-
tion. This non-stationary model is the basis for the model-based feedback
control and valid for all phases of the process.

• Trajectory planning:

The detection of reference values is an important task to stabilize the
process. Therefore, the processing phases are analyzed with a focus on
suitable trajectories and the process limitations.

• Model-based control:

The implementation of a model-based feedback control requires a state
observer, because not all model variables are directly measureable. In this
thesis a Kalman filter is used to estimate these variables. The control
system - including measurement system, state observer and feedback
controller - is installed in different FZ machines and applied for different
crystal diameters.

1.3. Related Work

The work of Zulehner [Zul00] gives a historical overview of the evolution of the
modern growth techniques for silicon monocrystals, starting from the growth of
small germanium crystals in the 1950s to large-diameter silicon crystals today.
A detailed description of the inductively heated FZ process can be found in
the review by Lüdge et al. [Lüd10].

The first investigations for controlled growth of silicon started at the end of
the 1950s for the CZ process. Levinson used a weight measurement of the cru-
cible or the growing crystal to control the heater power (see Levinson [Lev59]).
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1.3. Related Work

Current works approach the control task by modern model-based feedback
control of the CZ process. A detailed investigation is presented in the works
of Winkler and Neubert in the review ”Nonlinear Model-Based Control of the
Czochralski” (see Winkler et al. [Win10a], [Win10b] and [Neu12]). The idea
of that approach is to use a combination of model-based feedforward calcu-
lation and conventional linear PI controllers for controlling crystal diameter
and growth rate. That method measures the weight of the growing crystal and
uses a nonlinear state observer for the reconstruction of crystal diameter, slope
angle, and growth rate from the weighing signal.

At the end of the 1980s, Shin-Etu Handotai published patents to grow FZ
crystals by standard PI or PID control or a variation of them (see Ikeda et al.
[Ike87], Watanabe et al. [Wat88], Taguchi and Watanabe [Tag88]). Reference
values are the crystal diameter and the axial height of the molten zone. The
process is monitored with an imaging device (for instance a video camera),
and geometric quantities (diameter and zone height) are measured from the
obtained images.

In the year 1996, the German company Wacker Siltronic AG published an idea
to control growth processes, for instance CZ and FZ, by a prediction control
method (see Dornberger et al. [Dor96] and [Dor97]). The patents include
establishing an on-line simulation software working with a reduced number of
variables and the reduction of variables being performed by using a projection
algorithm. To speed up the time-consuming on-line simulation, a data bank
should be generated, in which values of precalculated variables were stored.
A control loop should be established to control the process in real time using
the accelerated on-line simulation software as an on-line observer. The patents
do not provide a model description, they include only the idea of predictive
control by using on-line and off-line simulation.

Satunkin gives an approach to model the CZ and FZ process dynamics in his
review [Sat10]. For the CZ process, problems of digital filtering of the mea-
surement noise based on Kalman filters and the determination of mechanical
stability limits are considered briefly. The given linear FZ model is devel-
oped for growing small-diameter crystals. Due to the complex dynamics, it
is necessary to use a nonlinear model for controlling the crystal growth of
large-diameter crystals according to industrial-scale production.
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2. Control Theory

This chapter gives an overview of methods and techniques applied to control
the FZ process. The principle of an important tool, the mathematical opti-
mization, is introduced. Furthermore, the components of a modern feedback
control loop such as state estimator and feedback controller are discussed. The
components are described according to their general tasks on the one hand and
their functionality on the other hand. Descriptions of the primary loop com-
ponents, the model predictive controller and the Kalman filter are given at the
end of this chapter.

2.1. Mathematical Optimization

The mathematical optimization plays a fundamental role in this thesis. It is
essential in the calculations within the model predictive controller and it is
applied in many fields such as processing of measured data, identification of
the model parameters, and the automatic setting of the Kalman filter. It is
needed to use numerical optimization algorithms due to the nonlinear structure
of the problems.

An optimization problem consists of maximizing or minimizing a criterion by
varying values of the input variables based on a mathematical strategy. In other
words, optimization is a selection of the ”best available”values with regards to a
criterion. The criterion is called objective function J which is a scalar function
depending on the design vector φ consisting of nφ components, the so-called
design variables. The design variables can be directly limited concerning up-
per and lower bounds. Sophisticated optimization algorithm consider further
limitations such as additional equality and inequality constraints involving, for
example, the states of the system as well.

The standard form of a (continuous) optimization problem is

φ
opt

= arg min
φ

J(φ) subject to

φ
lb

≤ φ ≤ φ
ub

gi(φ) ≤ 0, i = 1, . . . , number of additional inequality constraints

hi(φ) = 0, i = 1, . . . , number of equality constraints

where φ
opt

is the optimal design vector, J the scalar objective function, φ
lb
the

lower bound of the design vector, φ
ub

the upper bound of the design vector, gi

an inequality constraint, and hi an equality constraint. The minimal value of
the objective function is Jopt = J(φ

opt
).

Figure 2.1 shows the principle of an iterative optimization method. The iter-
ation starts with an initial value of the design vector φ

0
and the calculation
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2.2. Components of the Control System

of the objective value J(φ
0
). If the termination criterion is not fulfilled, the

current design vector φ is adjusted by a mathematical strategy, and a new
iteration step starts by calculating the corresponding objective value J . The
optimization terminates if the convergence criterion is fulfilled.

Within the model predictive controller, the C++ open source package Ipopt
(Interior Point OPTimizer) Ver 7 is applied in the control software of the FZ
process. Ipopt is usable for large-scale1 nonlinear optimization and implements
an interior-point2 line-search filter method. The algorithm code was written
by Wächter and Biegler and mathematical details can be found in the reviews
[Wäc02] and [Wäc06].

initializing of φ
0

fail

pass

done

adjust

calculate J with
current

design variables φ

design variables φ

convergence

Figure 2.1.: Principle of an iterative optimization method

2.2. Components of the Control System

Figure 2.2 shows a sketch of a modern control system consisting of a gener-
ator for reference trajectories, the feedforward and feedback controllers, the
regulated plant and the state estimator. The reference values (such as crystal
diameter and zone height) are calculated by the trajectory generator depending
on time, crystal length and/or estimated process values (such as crystal diam-
eter). The reference trajectories can be constant set points or permanently
changing.

In general, the process values consist of measurable and not directly measurable
quantities. The state estimator provides a reconstruction of the process values:
the estimated system state vector x̂. That is possible if a suitable system model

1 large-scale means that the numbers of design variables and/or equality and inequality
constraints are large.

2 interior-point is a method to handle inequality constraints. It is an alternative to active
set strategies. A detailed description is given in the review of Wächter and Biegler
[Wäc06].
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Reference
trajectories

Feedforward

Feedback
controller

controller

Plant

State estimator

Reference values

Manipulated

values
values

Process values

Measured

Disturbances

Figure 2.2.: Sketch of a modern feedback control loop consisting of a genera-
tor for reference trajectories, feedforward and feedback controllers,
regulated plant and state estimator for reconstructing of the pro-
cess values.

is available and observable3. The estimator uses a model-based estimation
scheme such as Luenberger observer or Kalman filter technique. In the FZ
process the melting rate vMe and the crystallization rate vCr are not directly
measurable, but observable due to a mathematical model describing the system
behavior.

The feedforward controller calculates the manipulated values from the reference
values provided by the trajectory generator. This can be done empirically
(from experience of growth experiments) or by means of a mathematical model
(for instance using the equation of the stationary mass balance). Disturbances,
acting on the plant, are not considered by the feedforward control. For a
stable system and small disturbances, it is possible to steer the system along
its reference trajectory by a feedforward control only if the model is accurate
enough. Feedforward controlling can include other input quantities (such as
rotation and pull rate of the crystal) compared to the feedback controller.

The feedback controller compensates for the control error e, which is the dif-
ference between the measured values (or observed process values) and the
reference values. This is achieved by a feedback loop of the observed process
values. Despite using a feedforward controller, a control difference arises be-
cause of model inaccuracies and disturbances. Unstable systems are stabilized
by the feedback controller.

Simple systems are often successfully controlled by standard PID controllers.
Systems with complex dynamic characteristics, for instance large time delays
and high-order dynamics, are difficult to control by PID controllers.

3 Details of validating the observability of system states are given in the reviews of
Simon [Sim06] and Heine [Hei04]

20



2.3. Feedback Controller: PID

2.3. Feedback Controller: PID

Figure 2.3 shows a sketch of the control loop using a PID controller as feed-
back component. A PID is the most commonly used feedback controller in
industrial control systems. The controller attempts to reduce the control error
e by adjusting the manipulated value. The error e is the difference between a
measured value (or observed process value) and a desired reference value. The
PID controller involves three terms which can be interpreted in terms of time:

• the proportional term (p) depends on the present error,

• the integral term (i) is an accumulation of past errors,

• the derivative term (d) is a prediction of future errors based on the cur-
rent rate of change.

The weighted sum of these three terms is used to adjust the process. Gener-
ally, the sum of feedforward and PID controller is sent out into the plant. A
formulation of a PID controller is given by equation 2.1,

u(t) = Kpe(t)
︸ ︷︷ ︸

p

+ Ki

t∫

0

e(τ) dτ

︸ ︷︷ ︸

i

+ Kd

d

dt
e(t)

︸ ︷︷ ︸

d

(2.1)

with the manipulated variable u(t), the control error e(t) and the gain factors
Kp, Ki and Kd.

Reference
trajectories

Feedforward

controller

controller

Plant

State estimator

PID

Reference value

Control

error

Manipulated

values
values

Process value

Measured

Disturbances

Figure 2.3.: Sketch of a feedback control loop using a PID controller as feedback
component

The PID controller is linear and has to be adjusted for a certain operating
point of the process. The implementation is easy and can be adjusted using
simple rules. For changing operating points (as it is the case for the generator
power considering all phases of the FZ process), the parameters may have to
be scheduled by tuning rules (for instance empirical methods). Thus, a poor
control performance could result from this method.
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2. Control Theory

2.4. Feedback Controller: Model-Based Control

In this thesis, a model-based controller is applied as the feedback component
(see figure 2.2, page 20). The controller uses a mathematical model and can
reflect the nonlinear system characteristics. Therefore, the controller is suitable
for a wide range of operating points and the parametrization effort is reduced
compared to PID parameter scheduling.

To regulate the FZ process, the model-based controller uses the observed pro-
cess values as well as the manipulated values calculated by the feedforward
control.

2.4.1. System Model

A model is a representation of fundamental aspects of a system in a mathe-
matical form. Modeling of a system consists of two parts - the identification of
the structure and the identification of the unknown parameters. A high model
quality is reached if the model is built from physical, chemical or biological
fundamental equations, for instance, the balance equations and the conserva-
tions laws. If this is too sophisticated or time-consuming, the behavior can
be described as a black-box without the knowledge of the physical relations
therein. It is necessary to keep the model as simple as possible to be able to
use common computer hardware and to ensure robust applicability for multiple
plants without recurring parameter identification.

In the model-based control of dynamic systems, a state space model can be
used (see figure 2.4). The inputs, outputs and states are expressed as vectors.
The system state vector x(t) represents the entire state of the system at any
given time point. The system output y(t) includes the measurable quantities.
For a given initial state x0 and a given sequence of inputs u(t), the future
development of the state vector x(t) and output vector y(t) can be calculated
based on the model equations.

inputs u(t) system state x(t)

system output y(t)initial state x0

state space
model

Figure 2.4.: Sketch of a state space model

In this thesis, a nonlinear state space model

ẋ(t) = f(t, x(t), u(t), Θ) with x(0) = x0, (2.2)

y(t) = h(t, x(t), u(t), Θ) (2.3)
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2.4. Feedback Controller: Model-Based Control

is used. The model is a system of coupled differential equations of first order.
The time derivative ẋ(t) of the state vector is given by the model function f .
The output function h provides equations to calculate the system output y(t).
The model function f and the output function h can depend on time t, state
vector x(t), input vector u(t) and model parameter vector Θ. The future
development of the state vector x(t) can be calculated by using a numerical
integration method (for instance Runge-Kutta of 4th order).

2.4.2. Designing a Model-Based Feedback Controller

Figure 2.5 shows the working steps to implement a model-based feedback con-
troller. A full model consists of the model structure (a set of equations) and
the model parameters (factors included in the model structure). At first the
model structure has to be derived to generate a process description in a mathe-
matical way. Algebraic and differential equations can be used for time-discrete
or time-continuous systems in linear or nonlinear form. The model parameters
have to be obtained in a second step. Therefore, available measurements of
several experiments are divided into training data and test data. The train-
ing data is used for the direct identification, while the test data allows for a
cross-validation of the full model. The number of model parameters defines
the degree of freedom for fitting the model to the real process.

model structure design

model parameter identification

setup of state estimator

validation

validation

setup of controller parameter

control experiment

pass

fail

fail

Figure 2.5.: Task sequence to design and apply a model-based feedback con-
troller on a plant
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If one or more process values are not directly measurable, a state estimation
technique (such as Luenberger observer or Kalman filter) has to be used. The
state estimator is configured in the step setup of state estimator. In validation,
the result of the previous steps are experimentally verified by using already
recorded measurements. This step is needed to ensure the quality of the full
model (including structure and parameters) and the state estimation. After
a successful validation, the controller can be configured (setup of controller
parameter) to run a control experiment afterwards. The experimental data is
used to re-design the model or controller to improve the control quality.

2.4.3. Parameter Identification

In issues of model-based automation, the control quality is directly coupled
to the model quality, especially to the prediction accuracy. To achieve pre-
dictions, as precise as possible, complex system descriptions can be used in-
volving complex parameter settings. If a number of model parameter cannot
be estimated explicitly using physical laws or relations, a technique based on
comparing measurements with model simulation can be used to identify these
parameters.

The task of the parameter identification is the estimation of the model pa-
rameter Θ to achieve a high conformity between measurements and model
predictions. First, it is essential to involve different experiments simultane-
ously (training data) to get a representative prediction of the process. Second,
the conformity has to be validated using experiments (test data) which are not
involved in the identification process.

The weighted-least-squares (WLS) technique is commonly used for parameter
identification. The objective function JΘ

JΘ(Θ) =
N∑

k=1

[ymeas

k
− y(x0, uk, Θ, tk)]T WΘ [ymeas

k
− y(x0, uk, Θ, tk)] (2.4)

is used, where y(x0, uk, Θ, tk) is the calculated model prediction of the system
output at time point t = tk. The prediction is characterized by the initial state
x0 at t = t0, the input values uk, and the model parameter Θ. The vector ymeas

k

is the measurement vector at t = tk and N the number of sample points of
measurement. WΘ is used to weight the influence of the corresponding terms
(such as zone height or crystal angle) and to handle the magnitudes due to the
different physical units.

An optimization algorithm varies the model parameter Θ starting from the
initial value Θ0 to minimize the objective function JΘ. Section A.4.2 in the
appendix gives the used weight matrix WΘ for the FZ process and section
A.6.1 and A.6.2 the obtained model parameter Θ.
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2.4. Feedback Controller: Model-Based Control

2.4.4. Nonlinear Model Predictive Control

Nonlinear Model Predictive Control (NMPC) is a modern method of process
control that has been used in industry since the 1980s. The practical interest is
driven by increasing requirements of process conditions and performance. At
the same time more and more constraints need to be satisfied (see Findeisen
and Allgöwer [Fin02]). Today, efficient algorithms and performant computers
are available to solve the computational tasks to regulate linear or nonlinear
systems by predictive control.

Figure 2.6 shows a scheme of the NMPC. Based on the model the controller
predicts the development of the future system state and output involving the
control inputs of the future. This sequence of control inputs is calculated to
bring or keep system state x(t) and/or output y(t) close to the references while
honoring constraints on system state x(t), system output y(t), and control
inputs u(t). Therefore, a numerical method minimizes the scalar objective
function J (sometimes called cost function) taking into account constraints on
x, y, and u. The sequence of control inputs resulting in a minimal objective
function represents the optimal solution. The system state at the current time
point, the reference trajectories, the process limitations, and the system model
are required to calculate the optimal control input.

Hp

Hu

t

k = 0
1 2

past future

prediction horizon

control horizon

predicted system state x

past system state x

past control inputs u

future control inputs u

reference trajectory r

Figure 2.6.: Sketch of Nonlinear Model Predictive Control (NMPC)

The numerical minimizer varies the sequence of control inputs u at given sam-
ple points within the control horizon Hu. The development between the sam-
ple points (also denoted as control points) can be parametrized as piecewise
constant (zero-order-hold), piecewise linear (first-order-hold, as shown in fig-
ure 2.6) or of higher order (for instance splines). The NMPC, typically, sends
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out only the first control input into the plant and repeats the calculation when
the next control input is required. The repetition time depends on the cal-
culation time of the optimization. A more detailed description of predictive
control working with nonlinear systems is given in the review by Findeisen and
Allgöwer [Fin02] and Mahadevan and Doyle [Mah03].

Most of the numerical minimization algorithms handle lower and upper bounds
for the input sequence explicitly. Also limitations for the system state can be
explicitly considered, in form of inequality constraints. Inequality constraints
are hard constraints which set conditions for the future development of the
system state that are required to be satisfied. If the minimization algorithm
does not support inequality constraints, soft constraints can be included in the
objective function J in form of penalty functions fp. Soft constrains can be
also used if the minimization algorithm failed if a part of the prediction (for
instance the beginning) always violates the constrains. In this case, a feasible
solution does not exist according to hard constraints. In this thesis, equation
2.5 is used as objective function

J =
1

Hp − 2

Hp−1
∑

k=2

eT (k) · Wx · e(k)

+ eT (Hp) · Ws · e(Hp)

+
1

Hu − 1

Hu∑

k=2

∆uT (k) · Wu · ∆u(k)

+
1

Hp − 1

Hp∑

k=2

fT

p
(x(k)) · Wb · f

p
(x(k))

(2.5)

to consider the regulation specification:

• control error e(k) = r(k) − x(k):
Consideration of the difference between the predicted system state x
and the reference trajectory r within the prediction horizon Hp. In the
implemented automation of the FZ process, not all states have reference
values. Here, the elements of the weight matrix Wx can be set to zero.

• final control error e(Hp):
Consideration of the control error e at the end of the prediction hori-
zon Hp to stabilize the process.

• change of input variables ∆u(k) = u(k) − u(k − 1):
Consideration of the difference between the current control input u(k)
and the previous control input u(k − 1) within the control horizon Hu.
An alternative is the consideration of the absolute value of the control
input using the term uT (k) · Wu · u(k).

• limitations for the system state:
Consideration of process constraints, especially upper xub and lower limit
xlb of the system state. A penalty function f

p
is used to take into account
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limits for one or more system variables. Figure 2.7 shows the form of the
penalty function (presented by Heine [Hei04])

fp(x) = (
π

2
+ arctan(k2(x − xub)))

k1

+ (
π

2
− arctan(k2(x − xlb)))

k1

(2.6)

using xlb=-5, xub=5, k1=7, and k2=8.

The matrices Wx, Ws, Wu and Wb are used in equation 2.5 to weight the
influence of the corresponding terms and to handle the magnitudes of the
system states due to the different physical units. The summation starts at
k=2, because the slope to the input value u(k = 1) is already sent out into the
plant.
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Figure 2.7.: Penalty function for a soft constraint using equation 2.6 with
xlb = -5, xub = 5, k1 = 7, and k2 = 8

2.5. State Estimation

2.5.1. Introduction

In control theory, a state observation is a method that produces estimates x̂k

of the full state vector xk of a system, generally based on measurements y
k
and

control inputs uk. In the following equations, the estimated values are denoted
with ˆ on top. The time point of the k-th sample point of measurement is
denoted with the index k. An estimation is needed if one or more state variables
are not directly measurable. For control tasks, for instance stabilizing a system
using state feedback, the full state has to be available. A state estimation also
reduces the noise of the measurements. Commonly used estimation techniques
are the Luenberger observation [Lue64] and the Kalman filter [Kal60].

In this thesis, the well-known and widely applied Kalman filter technique is
used. It was developed around the 1960s and named after its inventor Rudolf
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E. Kalman. Originally, it was applied for guidance, navigation and control
of vehicles, particularly aircraft and spacecrafts. Today the Kalman filter is
established in many other fields of technology. The algorithm consists of two
steps: prediction and correction. In the prediction step, the Kalman filter
produces estimations x̂ of the system state based on model equations, current
state and control inputs. Once a new measured value is available (including
random noise), the system state is updated using a weighted difference be-
tween the measurements and the predicted system output. The calculation is
formulated in a recursive form using the present measurements, the present
manipulated values and the previously estimated state. No additional infor-
mation is required from the past. Currently, the Kalman filter is applicable in
many different variations.

2.5.2. Continuous-Discrete Extended Kalman Filter

In this thesis, the continuous-discrete extended Kalman filter (EKF) is imple-
mented, which works with nonlinear systems. Details are given in the reviews
of Simon [Sim06], Heine [Hei04], and Welch and Bishop [Wel97]. The EKF
is based on a continuous model and discrete measurements. The continuous
model considers random disturbances of system and measurements. The state
space model in section 2.4.1 is extended with these disturbances. The system
model of the EKF is defined as

ẋ(t) = f(t, x(t), u(t), Θ) + ξ(t) , (2.7)

y(t) = h(t, x(t), u(t), Θ) + η(t) , (2.8)

where ξ(t) is the random noise of the system and η(t) that of the measurements.
It is assumed that the random state x of the system can be approximated by
a normal distribution. That means that the probability p of the state xk is
defined by the first moment x̂k (the mean value) and the second moment P k

(the covariance matrix) at the time point t = tk

p(xk) ∼ N (x̂k, P k) . (2.9)

Furthermore, the system and the measurement disturbances are assumed to
be Gaussian white noise. That means, the disturbances are uncorrelated ran-
dom signals with zero mean and normal distribution. The disturbances of the
system ξ

k
and the measurements η

k
are defined as

p(ξ
k
) ∼ N (0, Q) , (2.10)

p(η
k
) ∼ N (0, Rk) , (2.11)

where Q is the spectral density of the system noise and Rk the covariance of
the measurement noise at the time point t = tk.

The EKF adjusts the estimated state x̂k and the covariance matrix P k in each
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iteration step (measurement and time update). The following quantities have
to be determined for applying the EKF:

• the initial value of the estimated state x̂0,

• the initial value of the covariance matrix P 0,

• the spectral density Q of the system noise,

• the covariance matrix Rk of the measurement noise.

The values before the measurement update have the index (−) and after it
(+). The known values and the ones to be calculated at the measurement and
the time update are listed in table 2.1 and 2.2.

Measurement Update

The goal is to find the state x̂
(+)
k with the highest probability p(x̂k|y

k
) consid-

ering the current estimation of the state x̂
(−)
k and the available measurement

y
k
,

x̂
(+)
k = arg max

x̂k

(p(x̂k|y
k
)) . (2.12)

The maximization problem can be transformed into a minimization problem

x̂
(+)
k =arg min

x̂k

(J(x̂k)) with

J(x̂k) =
1

2
(x̂k − x̂

(−)
k )T (P

(−)
k )−1(x̂k − x̂

(−)
k )

+
1

2
(ŷ

k
− y

k
)T (Rk)−1(ŷ

k
− y

k
)

(2.13)

using the Bayes’ law and the formula of the multivariate normal distribution4.
The new covariance P

(+)
k after the measurement update is the inverse of the

second derivative of the objective function J ,

P
(+)
k =

(

d2J

d(x̂k)2

∣
∣
∣
∣
∣
x̂

(+)
k

)
−1

. (2.14)

The equation 2.13 can be solved by an optimization algorithm. That is only
useful, if the process permits enough calculation time. An analytic solution is
found with the minimum condition of the gradient of the objective function J
to be zero. Explicit formulas for calculating the estimated state x̂

(+)
k and the

4 the multivariate normal distribution is a generalization of the one-dimensional normal
distribution for higher dimensions
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covariance matrix P
(+)
k are

x̂
(+)
k = x̂

(−)
k + Kk(y

k
− ŷ(−)

k
) , (2.15)

P
(+)
k = (I − KkCk)P

(−)
k , (2.16)

Kk = P
(−)
k CT

k (Rk + CkP
(−)
k CT

k )−1 , (2.17)

where Kk is the Kalman gain and Ck

Ck =
∂h

∂x

∣
∣
∣
∣
∣
x̂

(−)
k

(2.18)

the linearization of the output function h using a first-order Taylor approxi-
mation.

Time Update

During the time update, only model information is used to adjust the estimated
state x̂

(−)
k+1 and covariance matrix P

(−)
k+1

x̂
(−)
k+1 := E{xk+1|yk

} , (2.19)

P
(−)
k+1 := cov{xk+1|yk

} . (2.20)

The model function f (equation 2.7) is used to deduct the following integrals
to calculate the needed quantities

x̂
(−)
k+1 =

tk+1∫

tk

f(τ, x(τ), u(τ), Θ) dτ with x(tk) = x̂
(+)
k , (2.21)

P
(−)
k+1 =

tk+1∫

tk

(

Aτ P (τ) + P (τ)AT
τ + Q

)

dτ with P (tk) = P
(+)
k . (2.22)

Here, the matrix Aτ

Aτ =
∂f

∂x

∣
∣
∣
∣
∣
x̂τ

(2.23)

is the linearization of the model function f at time point τ using a first-order
Taylor approximation. The linearization is realized at every time step of the
integration to account for a nonlinear model.

Parameter Identification of the Kalman filter

The spectral density Q of the system noise, the covariance matrix R of the
measurement noise, and the covariance matrix P 0 of the initial state have
to be determined for applying the Kalman filter. In this thesis, the matrix
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2.5. State Estimation

symbol description

known values at time point t = tk

y
k

measurement of the system output

x̂
(−)
k estimated state before the evaluation of y

k

P
(−)
k covariance matrix of the estimated state x̂

(−)
k

before the evaluation of y
k

Rk covariance matrix of the random

measurement noise

ŷ
k

= h(tk, x̂k, uk, Θ) estimation of the system output

calculated values within the measurement update

x̂
(+)
k estimated state after the evaluation

of the measurement y
k

P
(+)
k covariance matrix of the estimated state x̂

(+)
k

after the evaluation of y
k

Table 2.1.: Known values and those to be calculated at the measurement
update

symbol description

known values from measurement update at time point t = tk

x̂
(+)
k estimated state after the evaluation of the measurement y

k

P
(+)
k covariance matrix of the estimated state x̂

(+)
k

after the evaluation of y
k

Q spectral density of the system noise

calculated values within the time update

x̂
(−)
k+1 estimated state after the time update at time point t = tk+1

P
(−)
k+1 covariance matrix of the estimated state x̂

(−)
k+1

after time update

Table 2.2.: Known values and those to be calculated at the time update
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2. Control Theory

P 0 is determined manually, based on experience. The matrices Q and R are
obtained using numerical optimization. The objective function JQR

JQR(Q, R) =
N∑

k=1

[xmeas
k − x̂k]T WQR [xmeas

k − x̂k] (2.24)

is used, where x̂k is the estimated state using Kalman filter and xmeas
k the

offline calculated state based on measurements. xmeas
k is the representation of

the true state. Fitting the measurements by a piece-wise cubic spline filter can
be applied to approximate the true values of the system state. Filtering by
splines allows the reduction of measurement noise without introducing time
delay (compared to low-pass filtering).

An optimization algorithm varies Q and R starting from the initial values Q0

and R0 to minimize the objective function JQR. WQR is used to weight the
states (such as zone height or crystal angle) and to handle the magnitudes due
to the different physical units. Section A.4.1 in the appendix gives the used
values of the weight matrix WQR for the FZ process and section A.5.1 and
A.5.2 the obtained filter parameters.
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3. Process Analysis

3.1. Floating Zone Process with RF Heating

The crucible-free FZ method developed by Theuerer (1952), Keck (1953), Go-
lay (1953) and Emeis (1954) aims for growing pure silicon monocrystals. The
main principle is based on the prevention of the incorporation of crucible ma-
terial into the crystal by avoiding any contact of the melt with the crucible.
In the FZ method, in contrast to CZ, only a small fraction of the feed rod
is molten and than crystallized as a monocrystal. The molten zone between
feed rod and growing crystal is established by a contactless heating. Possible
methods of contactless heating are: electromagnetic (EM) fields, laser beams,
focused lamp radiation, electron bombardment, electric arcs and plasma dis-
charge (see Lüdge et al. [Lüd10]). For silicon crystals an inductive heating by
a radio frequency (RF) EM field with a frequency of 2.5-3 MHz is used. The
melting temperature of silicon is 1683 K. Today, FZ silicon crystals are grown
with a maximum diameter of 200 mm. This is possible with the needle-eye
technique, where the molten feed material flows through the inductor hole and
crystallizes below in full diameter. The inductor hole is much smaller than the
diameters of feed rod and crystal.

FZ is a batch process and consists of six phases - (1) producing the melt drop,
(2) forming the feed tip, (3) creating the thin neck, (4) making the cone, (5)
growing the cylinder and (6) closing the crystal. All phases are shown in
figure 3.1. This process is realized in a growth chamber filled with a protective
gas, for instance argon. The seed and the feed rod are attached to vertical
spindles, which allow rotation, vertical motions and horizontal displacement.

Silicon as a semiconductor has an insufficient electrical conductivity at room
temperature, hence, it is necessary to preheat the feed rod to more than 500
K to enable the coupling with the EM field of the inductor. In the first phase,
the preheated feed rod is moved to the inductor and the lower end is molten
inductively until a melt drop of liquid material hangs above the inductor hole.
Figure 3.2 shows a RF induction coil with hole applicable to grow silicon
crystals of 100 mm in diameter by the needle-eye FZ technique. The liquid
drop of a proper size does not fall down due to the surface tension of the melt
acting against gravity. As shown in figure 3.4 (a), the feed rod is shaped at
the lower end using one or more segments with different angles.

The monocrystalline seed (of about 4-7 mm in diameter and approximately
50-100 mm in length) is slowly moved upwards to the drop and dipped into
it. The solid seed is heated up to melting temperature and its top begins
to melt after some minutes. After melting together, the feed rod and the
seed are moved upwards to build the solid feed tip. Dislocations (disorders in
the monocrystalline structure) are generated due to the thermal shock during
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1 2 3

4 5 6

feed tip

thin neck

cylindercone

seed

feed rod

feed residual

ingot

inductor

melt drop

melt

Figure 3.1.: Phases of the Floating Zone process. Producing the melt drop
(1), forming the feed tip (2), creating the thin neck (3), making
the cone (4), growing the cylinder (5) and closing the crystal (6).
Solid material in white, melt in gray.

dipping a relatively cold seed into the melt.

To eliminate these dislocations, the crystal needs to be started with a thin neck.
For this, seed and feed rod are moved downwards with increased pull rates.
That results in a shrinking diameter down to about 2-3 mm. Depending on the
orientation of the seed, the dislocations glide on planes which are tilted against
the growth direction of the crystal. Existing dislocations grow off when they
reach the surface of the thin neck (see Dash [Das59]). New dislocations are
not generated because the thermomechanical stress is small at these diameters.
After a few centimeters of pull length, all dislocations are grown off the thin
neck.

Figure 3.3 shows the X-ray topogram of a silicon thin neck with outgrowing
dislocations. The white lines are the dislocations. In the seed, many of them
are visible but after a length of about 15 mm the thin neck is dislocation-free.
The thin neck has a typical length of 30-50 mm, to make sure that there are no
more dislocations. While creating the thin neck, the feed rod and the crystal
are horizontally displaced from an axisymmetrical setup closer to the inductor
main slit. The higher heater power at this place improves the melting behavior
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3.1. Floating Zone Process with RF Heating

Figure 3.2.: The RF induction coil with a hole diameter of 28 mm applicable
to grow silicon crystals of 100 mm in diameter by the needle-eye
FZ technique

of the feed material. In the next phases of the process, the axes of feed rod,
crystal, and center of the inductor hole are the same.

The cone phase begins when the thin neck has a sufficient length of 30-50 mm.
Here, the crystal diameter is increased by creating a melt overhang. This
is done by adjusting heater power and feed rod pull rate. The crystal pull
rate is constant within a typical range of 2-5 mm/min. Feed rod and crystal
are rotated contrarily to stabilize the melt flow and to reduce thermal inho-
mogeneities caused by induction heating. This results in an approximately
circular crystal. The feed rod is moved downwards, molten and the melt flows
through the inductor hole. Here, a thin film of melt flows down along the solid
feed residual into the melt. The cone is enlarged until the final diameter of the
crystal is reached.

In the cylinder phase the crystal diameter is held constant. This is managed
by constant power, constant rotation and constant pull rates of feed rod and
crystal. The process is in a stable state within the cylinder phase. Today,
crystals with a diameter of up to 200 mm and a length of several meters can
be produced. The cylindrical part with constant diameter is called ingot. In
the industrial application, the ingots are sliced into wafers being the substrates
for the high-power electronic components.

At the end of the batch process, the crystal has to be separated from the
feed rod. This is called closing the crystal and managed by moving the feed
rod upwards until it divides from the molten zone. Then, the heater power is
decreased slowly to control the crystallization of the melt. This has to be done
carefully, because the melt volume expands by about 8% while crystallizing.
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Figure 3.3.: X-ray topogram of a silicon thin neck with dislocations (white
lines) at the beginning of the neck (left) and without them at the
end (right). The dislocations grow out after 15 mm length of the
neck. The image was taken by Alex [Ale75] at the Institute of
Crystal Growth.

Therefore, the crystal would break apart if melt was surrounded by already
crystallized material. Another important point is that during the separation,
dislocations are introduced into the crystal by plastic deformation. The depth
of the plastic deformation is directly proportional to the crystal diameter.

Figure 3.4 (a) shows an image of a polycrystalline feed rod with 110 mm
diameter. The feed rod has one shaped segment at the lower end and its
surface is ground. In an industrial setting, it is common to omit the surface
grinding and feed rods with natural surface are used. Feed rods are produced
by the Siemens process using the chemical vapor deposition (see Zulehner
[Zul00]). Figure 3.4 (b) shows the cone of a crystal in the growth chamber.
The crystal has a diameter of 125 mm. The seed is fixed in the crystal holder
and a support device is used to stabilize the crystal against shaking.

Further details and descriptions of the FZ process are given in the works of
Wilke [Wil88], Hurle [Hur94] and Lüdge et al. [Lüd10].
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3.1. Floating Zone Process with RF Heating

(a) Polycrystalline feed rod (b) Monocrystalline cone of a grown crystal

Figure 3.4.: Images of feed rod (a) and cone of a grown crystal (b). The feed
rod is 110 mm and the crystal 125 mm in diameter. The feed rod
is shaped before the process and the surface is ground.
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3. Process Analysis

3.2. Measurement System

3.2.1. Description of the Measurement System

Obviously measurements are needed for the control system, because they are
the basis for all calculations of the controller. The growth chamber has an op-
tical access to the FZ process through a quartz window so that the geometrical
quantities of feed rod, molten zone and crystal can be obtained by visual image
processing. In this thesis, the following camera system is used to measure the
geometrical quantities. Two cameras capture the process: the first one ob-
serves the upper part (above the inductor) and the second one the lower part
(below the inductor). Digital monochrome cameras, Sony XCG-U100E with
C-Mount lenses C2514-M(KP) of 25 mm focal length are applied. A quick
overview of the camera properties is given in table 3.1.

Rate Picture Size Image device Digital interface Lens mount

15 fps 1600 x 1200 pixel 1/1.8 type GigE Vision C mount

Table 3.1.: Properties of the digital camera Sony XCG-U100E.

The cameras have gigabit Ethernet interface (GigE Vision), which is used to
connect them to the image processing computer. The Ethernet connection
provides the process images and allows the configuration of the camera. The
cameras are positioned so that an image resolution of approximately 9 - 11 pixel
per millimeter is provided. Thus, an accurate detection of the geometrical data
of small crystals and those of up to 150 mm in diameter by using the same
camera is possible. The accuracy of the measurements is investigated in section
3.2.7. During the process, the cameras are operated with a constant exposure
time of 100 - 300 µs and a rate of 10 frames per second.

The inductor covers a part of feed residual and molten zone and reduces the
visibility of these regions. The cameras have a slight angle of approximately
3 ◦, downwards and upwards, respectively, to capture the corresponding zone
as soon as possible (see figure 3.5 (a)). In the thin neck phase, the height of
the molten zone is in a range of 4 - 12 mm. Inductors, capable of growing
crystals with more than 150 mm in diameter have heights of approximately
15 - 20 mm. Here, a larger angle is necessary for both cameras to capture the
desired parts (see the outer cameras in figure 3.5 (b)).

3.2.2. Visual Image Processing

The images provided by the camera system are analyzed to obtain the geo-
metrical quantities of the process. This is done by a software running on a
standard PC with a Windows operating system. The model-based controller
and the observer run in parallel on the same computer. The PC has an Intel
Core i5 processor (dual core, 4 threads) and 4 GB RAM. A rate of 10 analyzed
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3.2. Measurement System

(a) Two camera system usable for cone
and cylinder phases

(b) Four camera system: the outer cam-
eras are used during the thin neck phase
and the center cameras during cone and
cylinder phases

Figure 3.5.: Digital camera systems capture the FZ process

images per second is desired. The computational effort can be reduced by
defining the region of interest. Then, only that region is analyzed to estimate
the needed quantities. Furthermore, the image processing of the two cameras
can be done simultaneously by distributing two separate threads. Table 3.2
gives an overview of the geometrical quantities. The camera from which the
quantities are estimated is indicated.

Geometrical quantity Lower Upper

camera camera

Visible melt volume Vvi x

Crystal radius RC x

Crystal angle ϕC x

Feed radius RF x

Feed angle αF x

Height of the inductor hI x

Height of the upper zone hF x

Height of the lower zone hC x

Radius of the melt neck RN x

Table 3.2.: Geometrical quantities estimated by the measurement system

Figure 3.6 (a) shows a sketch of the geometrical quantities calculated from
measurements in the cone phase. These quantities are obtained by detecting
edges in the camera image. An edge is a sharp change in the image brightness
and can be found by analyzing the brightness gradient (more details are given
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in section 3.2.4). The crystal radius RC is directly measured at the solid-
liquid interface (line of crystallization) as half the distance between the left
and right outer contour. The lower zone height hC is measured as the distance
between the lower edge of the inductor and the solid-liquid interface. The
line of crystallization can be clearly detected by the sharp contour due to the
different emissivities of solid and liquid silicon. The visible melt volume Vvi

is calculated from the outer contour of the molten zone assuming rotational
symmetry according to the vertical axis. Instead of the real melt neck, which
is covered by the inductor, an approximated RN is measured directly below
the inductor. Two approaches are available to obtain the height of the upper
zone hF . First, finding the line of melting and second, identifying the melting
edges. The line of melting is difficult to identify because it does not have a
comparably sharp contour as the outer solid-liquid interface of the crystal does.
The distance between the melting edge and the inductor provides more robust
measurements and is used as upper zone height hF . The feed rod is shaped
at the lower end using one or more segments with different angles. So, it is
required to measure radius RF and angle αF of the feed rod. The height of the
inductor hI is known before the growth process, but it is measured to avoid
configuration errors.

Figure 3.6 (b) shows a sketch of the geometrical quantities in feed tip and thin
neck phase. As already showed in figure 3.5 (b), the outer cameras are aligned
to capture the full molten zone.

3.2.3. Correction of the Brightness

The used digital cameras provide a monochrome image with a grayscale range
per pixel from 0 (black) to 255 (white). During the process, the brightness
of the images changes, because crystals with small diameters produce a lower
brightness level as larger ones. Especially in the thin neck phase, the brightness
is very low due to the small diameter and the low zone height. To reduce the
brightness problem during the process, the brightness can be normalized pixel-
wise according to the linear formula

Inew = (I − min)
(maxnew − minnew

max − min

)

+ minnew , (3.1)

where Inew is the new image, I the camera image, [min, max] the grayscale
range of the camera image and [minnew, maxnew] the desired range of the
new image. It makes sense to normalize the new image to the range between
[0, 255] to produce a maximum contrast. The range of the camera image can be
determined by time-consuming estimations. Alternatively, constant minimal
and maximal gray values can be used. Pixels with gray values outside of the
limitations are adjusted to the limitations.

Figure 3.7 shows the original image from the upper camera (a), the applied
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solid feed residual
inductor

melting edge

crystal

feed rod

melt

line of melting

line of crystallization

Vvi

RC

ϕC

RFαF

hF

hC

hI

RN

(a) Cone phase

Vvi
hF

hC

(b) Feed tip phase and thin neck phase

Figure 3.6.: Geometrical quantities calculated from measurements: visible melt
volume Vvi, crystal radius RC , crystal angle ϕC , feed radius RF ,
feed angle αF , upper zone height hF , lower zone height hC , height
of the inductor hI , radius of the melt neck RN .
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(a) Image of the upper camera: Original (b) Image of the upper camera: After
brightness correction.

(c) Image of the lower camera: Original (d) Image of the lower camera: After
brightness correction.

Figure 3.7.: Original camera images (a), (c) and correction of the brightness
(b), (d) using equation 3.1. Gray values between [min, max] =
[50, 230] are normalized to [0, 255]. The white rectangle is the
region of interest.

correction of brightness (b), the original image from the lower camera (c), and
the corresponding correction (d). Upper and lower limitations of 50 and 230
are applied. As shown in figure 3.7 (b) and (d), the full image is corrected.
In the running measurement system only the region of interest (marked as
white rectangle) is considered in order to reduce, among other things, the
computational effort.

3.2.4. Finding the Geometrical Quantities by Edge Detection

This paragraph provides details concerning the applied algorithm to find the
geometrical quantities such as diameter and zone height. The algorithm is
based on the idea of edge detection, a mathematical methods to identify points
in a digital image. The points are characterized by a sharp change of the
image brightness. Most of the edge detection methods can be assigned into
two categories, the search-based and the zero-crossing based approach. The
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3.2. Measurement System

search-based method calculates a measure of edge strength first, usually a first-
order derivative such as a gradient, and then searches a local maximum value
of the gradient. The zero-crossing based method uses a second-order derivative
in order to find edges as zero crossings. Common second-order derivatives are
Laplacian or non-linear differential expressions. A survey of different edge
detection methods can be found in the review by Ziou and Tabbone [Zio98].

In this thesis the search-based method is applied. The magnitude of the gra-
dient

|grad| =

√
( ∂

∂x

)2
+
( ∂

∂y

)2
(3.2)

is estimated using two 3×3 filter masks, which are convolved with the original
image - one for horizontal changes Sx, and one for vertical ones Sy. The
magnitude of the gradient at (x,y) of the image I is calculated using

|grad(x, y)| =

√
(

Gx(x, y)
)2

+
(

Gy(x, y)
)2

, (3.3)

where Gx and Gy are the result of the convolution operation

Gx(x, y) = Sx ∗ I(x, y) and (3.4)

Gy(x, y) = Sy ∗ I(x, y) . (3.5)

The terms Sx and Sy are the convolution masks and the operator ∗ denotes
the 2-dimensional convolution operation

Sx ∗ I(x, y) =
2∑

i=0

2∑

j=0

Sx(i, j) · I(x + i − 1, y + j − 1) and (3.6)

Sy ∗ I(x, y) =
2∑

i=0

2∑

j=0

Sy(i, j) · I(x + i − 1, y + j − 1) . (3.7)

The direction of the gradient can be calculated in terms of the angle α

α(x, y) = arctan
(Gy(x, y)

Gx(x, y)

)

, (3.8)

but it is not relevant in the identification method of this work.

The search-based methods rely on the computation of image gradients, but
they differ in the types of filter masks used for the x- and y-directions of the
gradient. Figure 3.8 (a) gives the result of the calculated gradient of the lower
camera image already considered in figure 3.7 (d). The image has a resolution
of 9.21 pixel per millimeter and a pixel resolution of 1600 × 1200 pixel. The
figure shows the calculated gradients for a wide range. In online use, only the
gradients are calculated according to the region of interest.
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The gradient calculation uses the filter masks

Sx =
1

8






−1 0 1
−2 0 2
−1 0 1




 and Sy =

1

8






−1 −2 −1
0 0 0
1 2 1






and equation 3.3. The geometrical quantities such as shape of crystal and melt
are visualized by bright lines and have to be identified separately. This can be
done by searching local maximum values of the gradient, the so-called peaks.
Figure 3.8 (b) shows the gradient at the vertical axis x = 850 px to provide
an example for the identification of the lower zone height. Three peaks are
clearly visible in figure 3.8 (b). The left peak at y = 530 px represents the
upper edge of the inductor, the middle one at y = 670 px is the lower edge
of the inductor, and the right one at y = 795 px the solid-liquid interface.
The distance between middle and right peak is the height of the lower zone.
The peaks are local maximum values of the gradient. A limit (for instance
25 in figure 3.8 (b)) can be defined to identify the local regions. The values
above the limit identify the local regions and the peaks can be located at the
maximum gradient within that regions.

Figure 3.9 (a) shows the gradient of the upper camera image. The image has
a resolution of 9.17 pixel per millimeter. The line of melting does not have a
comparably sharp contour as the solid-liquid interface of the crystal. Figure
3.9 (b) shows the vertical curve of the gradient at x = 800 px. The left peak
at y = 285 px is the line of melting, the peak at y = 325 px is the upper edge
of the inductor, the peak at y = 460 px is the lower edge of the inductor, and
the right one at y = 550 px is the solid-liquid interface of the crystal.

3.2.5. Correction of the Obtained Diameter

For larger diameters, the observed diameter of the cylinder (crystal or feed
rod) differs from the real diameter. The difference depends on the distance c
between the camera and the center of the cylinder. Figure 3.10 shows the top
view of the cylinder observed by the camera. The distance between the camera
and the center of the cylinder is denoted by c. The radius observed by the
camera is Rcam and the real radius of the cylinder is Rreal. Thales’ theorem can
be used to construct the tangent to the cylinder passing the camera position.
The right-angled triangles shown in figure 3.10 give the formulations

( c

2

)2
= R2

cam + q2 and (3.9)

R2
real = R2

cam + p2 (3.10)

including the auxilary quantities p, q, and their relation c
2

= p + q. Based
on these equations it is possible to formulate an explicit equation for the real
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(a) Calculated gradient of the image of the lower camera. The
image in figure 3.7 (d) is used after brightness correction. The
pixel resolution of the full image is 1600 × 1200 pixel. In online
use, only the gradients are calculated according to the region of
interest.
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(b) Plot of the gradient at the vertical axis x = 800 px. The left
peak at y = 530 px is the upper edge of the inductor, the middle
one at y = 670 px is the lower edge of the inductor, and the right
one at y = 795 px the solid-liquid interface. The distance between
middle and right peak is the height of the lower zone.

Figure 3.8.: Example of the gradient of the image of the lower camera. The
camera image has a resolution of 9.21 pixel per millimeter. The
2-dimensional gradient field in (a) and the vertical curve (b) of the
gradient at x = 800 px are shown.
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(a) Calculated gradient of the image of the upper camera.
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(b) Plot of the gradient at the vertical axis x = 800 px. The left
peak at y = 285 px is the line of melting, the peak at y = 325 px
is the upper edge of the inductor, the peak at y = 460 px is the
lower edge of the inductor, and the right one at y = 550 px is the
solid-liquid interface of the crystal.

Figure 3.9.: Example of the gradient of the image of the upper camera. The
camera image has a resolution of 9.17 pixel per millimeter. The
2-dimensional gradient field in (a) and the vertical curve (b) of the
gradient at x = 800 px are shown.
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Figure 3.10.: Top view of the cylinder (crystal or feed rod) observed by the
camera. Where c is the distance between cylinder and camera,
Rcam the observed radius and Rreal the real radius. The auxiliary
quantities p and q are involved in the deduction of the correction
formula given in equation 3.14.

radius Rreal:

R2
real = R2

cam + (
c

2
− q)2 (3.11)

= R2
cam +

(

c

2
−
√
( c

2

)2 − R2
cam

)2

(3.12)

=
c2

2
− c

√
( c

2

)2 − R2
cam . (3.13)

Using diameters (Dreal = 2Rreal and Dcam = 2Rcam) instead of radii results in
the formulation

Dreal =

√

2c2 − 2c
√

c2 − D2
cam (3.14)

to calculate the real diameter Dreal based on the observed diameter Dcam

and the camera distance c. Figure 3.11 shows the difference between the real
diameter Dreal and the observed diameter Dcam for three camera distances
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Figure 3.11.: Plot of the difference between the the real diameter Dreal and the
observed diameter Dcam for three camera distances c = 750 mm,
c = 1000 mm, and c = 1250 mm. The values are calculated
by using equation 3.14.

c = 750 mm, c = 1000 mm, and c = 1250 mm. The values are calculated by
using equation 3.14. The diameter difference of a cylinder of 150 mm diameter
is approximately 0.4 mm using a typical camera distance of 1000 mm.

3.2.6. Improvement of the Accuracy by Sub-Pixel Interpolation

Sub-pixel interpolation is a technique to increase the limited resolution of dis-
crete signals such as digital audio and image signals. The technique provides
data of positions between sample points (see figure 3.12). Examples for in-
terpolation methods are bi-linear and bi-cubic interpolation. Applying these
methods, artifacts can be created in the signal. Fast Fourier interpolation
is commonly used in up-sampling of audio data and digital images to avoid
artifacts.

In this work, sub-pixel interpolation based on the Fourier transformation is
applied to achieve efficient and high-quality interpolations. A detailed descrip-
tion of the Fourier transformation and its application in image processing is
given in the book of Shih [Shi10].

3.2.7. Calibration of the Camera System

This section presents the calibration technique for the digital cameras. The
geometrical quantities are initially available as pixel values due to the analysis
of digital images. It is needed to convert the pixel information into length
values. In other words, it is required to translate what the camera sees in
sensor coordinates (pixels) to length units (millimeters). The converting rate
is the pixel density PPMM with the unit pixel per millimeter.
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Figure 3.12.: Sketch of sub-pixel interpolation to increase the accuracy of the
maximum identification

The diameter Dmm in millimeter is calculated by the linear calibration function

Dmm = Dpx/PPMM (3.15)

involving the diameter Dpx in pixel. The pixel density, generally, depends on
distance and angle of the camera, the used lens and the focus setting. Hence,
each camera has to be calibrated separately.

Discs with different diameters (∅ = 25, 50, 75, 100, 125, 150 mm) are used to
obtain the pixel density of the digital camera. First, the disc diameter Dpx in
pixel is measured for each disc by using the identification method (see sections
3.2.4, 3.2.6, and 3.2.5). The discs are rotated with a rate of 6 rotations per
minute and the mean value of the diameter Dpx (according to a measuring
time of 2 minutes) is calculated. Then, the pixel density PPMM is estimated
by least squares minimization of the disc diameter and the calculated diameter
Dmm using equation 3.15.

Table 3.3 shows the data of a calibration process including mean value and
standard deviation of the measured diameter Dpx in pixel for each disc (column
2 and 3) and the corresponding values of the PPMM-function (column 3 and
4). The standard deviation of the measured pixel diameter Dpx is less than
0.1 %. The measurement error of the diameter Dm is between -0.44 mm and
+0.53 mm. For crystals of 100 - 125 mm diameter, a measurement precision
of ±0.29 mm can be expected. To reduce the measurement error for a larger
range, the calibration function can be extended by additional terms.
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3. Process Analysis

disc meas Dpx calibration func.

diameter mean std Dmm error

[mm] [px] [px] [mm] [mm]

25 225.76 ±0.14 24.65 -0.35

50 453.95 ±0.17 49.56 -0.44

75 683.40 ±0.14 74.61 -0.39

100 913.32 ±0.12 99.71 -0.29

125 1145.56 ±0.15 125.06 +0.06

150 1378.81 ±0.18 150.53 +0.53

Table 3.3.: Data of a calibration process including mean value and standard de-
viation of the measured diameter Dpx in pixels for each disc (column
2 and 3) and the corresponding values of the calibration function
(column 3 and 4). The estimated pixel density PPMM is 9.1596
px/mm. The linear calibration function is given in equation 3.15.

3.3. Deflection of the Solid-Liquid Interface

This section gives an approximation of the melt volume Vbo that arises due to
the deflection of the solid-liquid interface (also known as crystallization inter-
face) in the growing crystal. This approximation is used to model the melt
volume in section 4.1.5. An interface deflection occurs because of the radial
temperature gradient in the crystal. The temperature at the longitudinal axis
is higher than the temperature at the crystal surface. The volume Vbo of the
melt bowl is not measurable during the experiment, because it is covered by
the crystal surface. The method Lateral-Photovoltage-Scanning (LPS) visual-
izes the solid-liquid interface a posteriori. First, a longitudinal section of the
crystal is produced. Laser light is focused on this section and generates free
electron/hole pairs, which diffuse into the bulk of the crystal. This leads to
a small potential difference, which can be measured by phase-sensitive signal
processing. The magnitude of this voltage depends on the lateral resistivity
gradient. An interface, solidified at the same time, results in the same voltage
measurement. In the end, the voltage measurement is converted into a gray
value and arranged in a pixel image. To get a better visualization of the solid-
liquid interface, the resistivity gradient has to be increased by doping the melt
during the growth experiment. A detailed description of the LPS method is
given in the publications by Lüdge and Riemann [Lüd97] and Abrosimov et al.
[Abr02].

Figure 3.13 (a) shows an image of a silicon crystal cone by LPS visualization,
which is used to identify the solid-liquid interface. As shown in figure 3.13
(b), the deflection height z(r) is obtained for the sample points at r = 0,
r = 0.25RC , r = 0.5RC and r = 0.75RC . A third-order polynomial is fitted to
the sample points. This cubic function is a continuous representation of the
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(a) Visualization of the solid-liquid inter-
face on an axial cut of a silicon crystal
cone

r

z(r)

0 0.25RC 0.5RC 0.75RC RC

(b) Identification of the solid-liquid inter-
face by using four sample points and fitting
with a third-order polynomial

Figure 3.13.: Visualization (a) and identification (b) of the solid-liquid interface
by using the Lateral-Photovoltage-Scanning (LPS) method

deflection line. That is done for several crystal radii RC . It is assumed that
the deflection is rotationally symmetric to the longitudinal axis z. The bowl
volume Vbo is calculated from the equation

Vbo(RC) = 2π

RC∫

0

rz(r) dr . (3.16)

Figure 3.14 shows the bowl height (a) and the bowl volume (b) for three
experiments. The experiments are made with the same inductor at the same
FZ machine. In both figures, the evolution of the variables has the same trend,
but differs in the absolute values. The reason is that the shape of the solid-
liquid interface depends on other parameters such as the lower zone height,
which is the distance between the interface and the heater source. Especially,
the bowl height shows a large variation between the experiments. The review
by Lüdge et al. [Lüd02] shows that the crystal pull rate influences the deflection
of the solid-liquid interface as well.

An alternative approach to calculate the solid-liquid interface is a simulation of
the temperature field based on heat transfer. The solid-liquid interface is the
melting point isotherm. For this purpose, a transient model based on partial
differential equations would have to be solved to get representative results for
the cone phase. The calculation would be too slow for real-time use during
an experiment. A priori calculations and a usage of lookup tables for many
machine setups would be too expensive.
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Figure 3.14.: Height Hbo (a) and volume Vbo (b) of the melt bowl over crystal ra-
dius RC for three experiments obtained by Lateral-Photovoltage-
Scanning (LPS). Functions Hbo(RC) and Vbo(RC) are plotted to
interpolate the values (see equation 3.17 and 3.18).

An interpolating function depending on the crystal radius RC is used to get a
usable equation for the height Hbo and the volume Vbo of the bowl without time-
consuming calculations. The equation for calculating the melt bowl height Hbo

in mm

Hbo(RC) =







0 for RC ≤ b0

b1(RC − b0) for RC > b0

(3.17)

includes the crystal radius RC and the model parameters b0 = 16 mm and
b1 = 0.5143. The equation for calculating the melt bowl volume Vbo in mm3

Vbo(RC) =







0 for RC ≤ a0 and a0 = b0
3∑

i=1
ai(RC − a0)

i for RC > a0

(3.18)

and the time derivative V̇bo

V̇bo(RC , ṘC) =







0 for RC ≤ a0 and a0 = b0

ṘC

3∑

i=1
i · ai(RC − a0)

i−1 for RC > a0

(3.19)

include the crystal radius RC in mm, the derivative ṘC in mm/s and the model
parameters a0 = 16 mm, a1 = 0 mm2, a2 = 32.48 mm and a3 = 1.2. The time
derivative of the bowl volume V̇bo is used in the volume model to describe the
FZ process. A characteristic line in form of a third-order polynomial without

52
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a zero and first order term is used due to:

• the volume of a sphere expands by the third power of the radius,

• deflection and volume of the bowl for radius RC < 16 mm are close to
zero and can be neglected (a0 = b0 = 16 mm),

• the characteristic line for the volume has to be continuous and differen-
tiable at the point RC = a0.

3.4. Residual of the Feed Rod

In section 4.1.5 the mass balance is used to obtain a model equation for the
melt volume. Therefore, it is necessary to identify the mass of the solid feed
material. As shown in figure 3.15, the solid feed material consist of two solid
parts one above and another below the line of melting. Above this line, the
feed is unaffected by the induction heater and directly below, a thin film of
melt flows down along the solid front into the molten zone. In this thesis, the
solid part below the line of melting is denoted as feed residual and its surface
as open melting front. Menzel [Men12] and Ratnieks [Rat07] calculated the
thickness of the melt film depending on diameter, pull rate and rotation rate
of the feed rod. They showed that for typical FZ process parameters the melt
film has a thickness smaller then 0.2 mm. Therefore, the melt film is neglected
during the investigation of the feed residual. The feed residual consist of a
visible and a hidden part covered by the inductor. For a diameter of the feed
rod smaller than approximately 20 mm, the feed residual is completely covered
by the inductor. This depends on the angle of the upper camera. The reflection
at the inductor surface, shown in figure 3.15, results from the inclination angle
of the camera. The white dashed line indicates the complete feed residual
consisting of the visible and the hidden part.

Rough approximations of the volume Vfr of the visible part of the feed residual
are given in this section. The volume will be described by a function of the
feed radius RF to obtain a simple expression for Vfr and V̇fr. Images of the
upper camera (such as shown in figure 3.15) are analyzed offline to obtain
the geometry of the feed residual. The volume Vfr of the visible feed residual
is calculated based on the manually identified shape and assuming rotational
symmetry. It has to be pointed out that this is only a rough approximation
due to the following reasons. First, the shape of the feed residual depends on
the inductor design and the height of the upper zone. Second, it is difficult
to identify the line of melting because it does not have a comparably sharp
contour as the outer solid-liquid interface of the crystal. The line connecting
the molten edges of both sides is used to determine the melting line. Third,
the lower part of the feed residual is covered by the inductor.

Figure 3.16 shows the obtained volume Vfr plotted over the feed radius RF .
The images of three experiments are analyzed. The experiments were made
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feed residual

inductor

line of meltingmolten edge

reflection

molten zone
10 mm

Figure 3.15.: Camera image of the feed material. Above the line of melting the
feed rod is unaffected by the induction heater and directly below,
a thin film of melt flows down along the solid feed residual into
the molten zone. The white dashed line indicates the complete
feed residual consisting of visible and hidden part.

with the same inductor at the same FZ machine and identical feed rods. An
interpolating function Vfr(RF )

Vfr(RF ) =







0 for RF ≤ d0
3∑

i=1
di(RF − d0)

i for RF > d0

(3.20)

(model parameters d0 = 5 mm, d1 = 0, d2 = 18.07 mm and d3 = -0.087) based
on the average of three experiments is given.

For modeling the melt volume, the derivative V̇fr

V̇fr(RF , ṘF ) =







0 for RF ≤ d0

ṘF

3∑

i=1
i · di · (RF − d0)

i−1 for RF > d0

(3.21)

is applied.

3.5. Limitations of the FZ Process

This section considers the trajectory limitations of the FZ process. A trajectory
is a time-dependent set of process variables of a dynamic system, for instance
the curve of the crystal angle or the melt neck. FZ limitations are important
for the stability of the process and for growing dislocation-free crystals.

For a dislocation-free growth of a crystal, an upper limit exists for the crystal
pull rate. Based on the heat balance, Billig [Bil55] determined the theoretical
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Figure 3.16.: Volume Vfr of the feed residual over feed radius RF for three
experiments. A function Vfr(RF ) is plotted to interpolate the
values (see equation 3.20).

maximum of the crystal pull rate

vC,max =
1

q0ρS

√

2ǫσλmT 5
m

3RC

(3.22)

where q0 is the latent heat, ρS the density of the solid, ǫ the emissivity, σ
the Stefan-Boltzmann constant, Tm the melting temperature, RC the crystal
radius, and λm the thermal conductivity in the solid at melting temperature.
In the stationary case, the crystal pull rate vC and the crystallization rate
vCr are equal. Billig assumed a flat crystallization interface, only radiative
heat loss, cold surroundings, and a temperature-independent surface emissivity.
The theoretical maximum was validated with experimental investigations for
different diameters by Lüdge et al. [Lüd02]. The investigations suggest that
for crystals up to 125 mm in diameter, maximum growth rates of 80 % of the
theoretical values are realistic. Table 3.4 shows the obtained maximum of the
growth rates. The review by Lüdge et al. shows that the crystal pull rate
influences the deflection of the crystallization interface.

The upper limitation for the melt neck is the inductor hole, especially in the
needle-eye FZ techniques. If the melt touches the inductor, a short-circuit
fault arises and the FZ machine could be damaged. Furthermore, vibrations
and pulsations could appear in the melt for a larger melt neck, which disturbs
the dislocation-free growth of the crystal. A lower limitation of the melt neck
is the higher probability of disturbed feed melting for a thinner melt neck.
Here, solid rings could arise, retaining the produced melt at the feed rod.
These liquid reservoirs release melt stepwise when the solid rings are melted
off. That results in a pulsating melt and could have a negative effect on the
dislocation-free growth. In the worst case, a pulsating melt could lead to a
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crystal max crystal pull rates vC,max

diameter (experiment) (Billig)

[mm] [mm/min] [mm/min]

7 16.0 18.9

11 12.0 15.1

25 9.0 10.1

50 6.0 7.1

67 5.0 6.1

100 4.1 5.0

125 3.8 4.5

147 2.8 4.1

150 2.7 4.1

Table 3.4.: Maximum crystal pull rates vC,max of growing dislocation-free sil-
icon crystals obtained by experiments (see Lüdge et al. [Lüd02])
and the theoretical values after Billig [Bil55].

melt detachment from the feed rod, too. Figure 3.17 shows a solid ring at the
melt neck.

Cone contour (defined by crystal angle) and height of the molten zone have
to be chosen carefully. Forcing unfavorable quantities could create negative
growth condition. Worst case are the creation of dislocations or bulge forma-
tion at the crystal with a high risk of melt leakage (as shown in figure 3.18).

The possible size of the molten zone is a further limiting factor of the process.
It is determined by the equilibrium between the capillary forces of surface
tension and the hydrostatic pressure of the melt. The maximum height of
the melt shape is calculated by Heywang [Hey56] under the condition that
only surface tension and gravity are acting. The crystal diameter becomes
independent of the maximum zone height Lmax for diameters approximately
twice the maximum zone height or more:

Lmax = 2.84

√

γ

ρMg
(3.23)

≈ 2α with α =

√

2γ

ρMg
(3.24)

where γ is the surface tension of the melt, ρ the density of the melt, g the
gravity acceleration, and α the capillary constant. The factor 2.84 in equation
3.23 may slightly vary between 2.62 and 3.18 according to other theoretical
approaches (see Bohm et al. [Boh94], p. 219). Silicon has a capillary constant
of αSi = 7.94 mm. According to Heywang, a molten zone of silicon has a Lmax

of approximately 16 mm for crystals with diameters larger than 32 mm.
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melt neck

inductor hole

(a)

solid ring

(b)

Figure 3.17.: Images of melt neck and inductor hole. On the left side (a), the
melt neck with suitable diameter. On the right side (b), the small
melt neck with solid ring. The solid ring retains the melt flow
and a liquid reservoir appears above the ring.

(a) Image of the growing crystal captured
by the lower camera of the measurement
system

(b) Image of the crystal

Figure 3.18.: Crystal with bulge formation resulting in a high risk of melt leak-
age. Growing crystal during the process (a) and image of the
crystal after process stop (b).
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This chapter presents the mathematical model of the FZ process based on
physical conservation laws. The goal is to get a set of nonlinear differential
equations of first order with respect to time, which predicts the fundamen-
tal behavior of the process dynamics without expensive and time-consuming
calculations. Such a mathematical model would be applicable, among other
things, for process analysis, model-based observation and applications of mod-
ern automatic control.

The deductions of all differential equations are given and compared with ex-
perimental data. The equations are coupled with other model equations and
model parameters are introduced to fit the experimental data. If possible,
these model parameters are separately identified by using just the correspond-
ing equation. Figures are given to compare the measurements with the results
from solving the differential equations. In addition, examples of predictions
obtained by numerical integration are shown to verify the model. Derivatives
of the measurements are numerically calculated.

The measurements are disturbed by noise and measuring problems. Numerical
differentiation of noisy signals could provide inaccurate values. A piece-wise
cubic spline filter can be applied to reduce the noise of the measurements
without introducing time delay (compared to low-pass filtering). These filtered
measurements are to be considered as approximations of the true values of the
process variables.

4.1. Low-Order Model of the Floating Zone Process

In this section a nonlinear equation set is evolved, which describes the dynam-
ical behavior of the FZ process considering the fundamental physical aspects
in the mathematical form

ẋ(t) = f(t, x(t), u(t), Θ) with x(0) = x0 . (4.1)

For a given initial state x0 and a given sequence of inputs u(t), the future run
of the state vector x(t) can be calculated by using a numerical integration (for
instance Runge-Kutta 4th order) of the state derivatives ẋ(t). The elements of
the parameter vector Θ represent the model parameters. Figure 4.1 shows a
sketch of the FZ process in the cone phase. The solid feed rod and the growing
crystal are held by respective holders. The position of the inductor is fixed
and the pull rates of the feed holder vF and the crystal holder vC

vF = − d

dt
(HF ) , (4.2)

vC =
d

dt
(HC) (4.3)
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feed holder

crystal holder

line of melting

line of crystallization

inductor

ϕC

αF

hF

hC

hG

LF

LC

HF

HC
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RC

RN Vvi

Vbo
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vF
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Figure 4.1.: Sketch of the floating zone process in the cone phase. Input vari-
ables: generator power Pgen, pull rates of the feed vF and the
crystal vC . State variables: feed radius RF , angle αF at the feed
rod, height hF of the upper zone, melting rate vMe, crystal ra-
dius RC , crystal angle ϕC , height hC of the lower zone, crystalliza-
tion rate vCr, volume Vvi of the visible melt, radius RN of the melt
neck. Auxiliary variables: volume Vbo of the melt bowl, height hG

of the full zone, feed length LF , distance HF from feed holder to
inductor top, crystal length LC , distance HC from crystal holder
to inductor bottom.
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are adjustable by the operator. The melt volume Vmelt, established by the
generator power Pgen, rests between feed rod and crystal. It consists of two
parts: the visible melt volume Vvi and the volume Vbo of the melt bowl, which
is covered by the crystal surface. The inductor covers a region at the upper
part of the molten zone. This small part is hidden for the measurement system,
but it can be assumed to be constant. Therefore, it is neglected concerning
the dynamic process model. The line of melting is the horizontal line dividing
the solid feed rod from the open melting front. Below the line of melting, it is
assumed that a thin film of melt flows along the open melting front down into
the melt. The temporal change of the feed length LF is the melting rate vMe

vMe = − d

dt
(LF ) . (4.4)

In other words, the melting rate vMe is the velocity of the line of melting with
respect to the feed holder. A positive melting rate vMe means a decreasing
feed length. The angle at the feed shape according to the vertical axis, directly
measured above the line of melting, is the feed angle αF . The upper zone height
hF is the distance between the top of the inductor and the line of melting. The
distance between the inductor bottom and the line of crystallization is defined
as the lower zone height hC . The distance between the lines of melting and
crystallization is the height of the full zone hG. The crystallization rate vCr

vCr =
d

dt
(LC) (4.5)

is the temporal change of the crystal length LC on one hand and the velocity
of the line of crystallization with respect to the crystal holder on the other
hand. In the literature, the crystallization rate is also denoted as the growth
rate. The melting and the crystallization rates have the physical unit length
per time. In the FZ language the rates are often expressed in mm per minute.
In this thesis, the melting rate vMe and crystallization rate vCr are considered
to be state variables. In section 4.1.7 equations are given to model the rates
as functions of other states and input variables.

The visible shape of the melt is called the free melt surface. The angle at the
crystal shape according to the vertical axis, directly measured at the line of
crystallization, is the crystal angle ϕC . The modeled FZ process is adjustable
by the generator power Pgen and the pull rates of feed vF and crystal vC . The
rotation of feed rod and crystal is not included in the model. Some figures
with experimental data show the feed rod diameter DF = 2RF and the crystal
diameter DC = 2RC instead of the corresponding radii.

For the dynamic model, differential equations with respect to time are needed
for the state vector x with its components:

• radius of the feed rod RF ,
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• radius of the crystal RC ,

• height of the upper zone hF ,

• height of the lower zone hC ,

• angle at the feed αF ,

• angle at the crystal ϕC ,

• volume of the visible melt Vvi,

• radius of the melt neck RN ,

• crystallization rate vCr,

• melting rate vMe,

• inductor power Pind.

The state equations include one or more components of the state vector x
and/or the input vector u:

• generator power Pgen,

• pull rate of the feed vF ,

• pull rate of the crystal vC .

The low-order model is summarized in section 4.2 on page 84.

4.1.1. Modeling the Heights of Upper and Lower Zone

To get a relation between the zone height and other states or input variables,
a different expression of the height is used. As shown in figure 4.1, the upper
zone height hF

hF = HF − LF (4.6)

is the difference between HF (distance from feed holder to inductor top) and
LF (length of the feed). The derivative of the equation hF = HF − LF gives
the differential equation of the upper zone height hF

d

dt
(hF ) =

d

dt
(HF )

︸ ︷︷ ︸

=−vF

− d

dt
(LF )

︸ ︷︷ ︸

=−vMe

= vMe − vF (4.7)

involving the melting rate vMe and the pull rate of the feed vF . This equation
means, the change of the upper zone height hF depends on the input variable
vF and the state vMe. Among others, the melting rate vMe can be influenced by
the generator power Pgen. This analogously applies to the height hC = HC −LC

of the lower zone. The derivative provides the equation

d

dt
(hC) =

d

dt
(HC)

︸ ︷︷ ︸

=vC

− d

dt
(LC)

︸ ︷︷ ︸

=vCr

= vC − vCr . (4.8)
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Here hC is the lower zone height, vCr the crystallization rate, vC the pull rate
of the crystal, LC the length of the crystal and HC the distance between crystal
holder and inductor bottom.

In the stationary case, where the zone heights are constant, the values for
melting rate vMe and pull rate vF of the feed are equal. The crystallization
rate vCr equals the pull rate vC , too.

4.1.2. Modeling the Radii of Feed and Crystal

In this section, two differential equations are developed to describe the dy-
namics of feed radius RF and crystal radius RC . According to the triangle in
figure 4.2 (a), the relationships dRF /dLF = −tan(αF ) and dLF = −vMe · dt
(see equation 4.4) lead to the following differential equation

d

dt
(RF ) = vMe · tan(αF ) , (4.9)

where RF is the feed radius, vMe the melting rate, and αF the feed angle.

Considering the triangle in figure 4.2 (b), the relationships dRC = dLC ·tan(ϕC)
and dLC = vCr · dt (see equation 4.5) provide the well known differential
equation

d

dt
(RC) = vCr · tan(ϕC) (4.10)

including the crystal radius RC , the crystallization rate vCr, and the crystal
angle ϕC . The angles ϕF and ϕC in the triangles in figure 4.2 can be assumed
as constant in terms of an infinitesimal consideration.

The growth angle ϕG is defined by

ϕG = ϕM − ϕC (4.11)

with ϕM being the melt angle and ϕC the crystal angle. Theoretically, the
melt angle ϕM equals a non-zero growth angle ϕG for the cylindrical growth
(ṘC = 0 and ϕC = 0) (see Wünscher [Wün11c]).

Practically, the measurement system captures a melt angle of ϕM = 0 in the
cylinder phase. Therefore, the growth angle ϕG is neglected for control issues
in this thesis, and it is assumed that the melt angle ϕM equals the crystal angle
ϕC ,

ϕM = ϕC . (4.12)
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Figure 4.2.: (a) - Sketch of the feed angle in the cone phase. (b) - Sketch of
melt, crystal and growth angle in the cone phase. Crystal radius
RC , feed radius RF , crystal angle ϕC , melt angle ϕM , growth angle
ϕG, feed angle αF , crystal length LC , feed length LF .

Comparison to Experimental Data

Figure 4.3 compares the model equation 4.9, ṘF = vMe · tan(αF ) (thin line),
with experimental data (thick line). This is done for the thin neck phase (a)
and the cone phase (b) to verify that the dynamics of the radius model fits the
experiment. The derivative ṘF (above) and the prediction of the feed radius
RF (below) are shown having been obtained by numerical integration of the
differential equation 4.9. The measured radius RF at the time point t = 0
is the initial value for the numerical integration. The values for the melting
rate vMe and the feed rod angle αF are received from measurements. The
feed angle αF is directly measured and the melting rate vMe is obtained by
the model equation 4.7, vMe = vF + ḣF , using the input values of the feed
pull rate vF and the numerical differentiation ḣF of the measured zone height.
As shown in figure 4.3 (a) and (b), the model of the feed radius reflects the
experimental dynamics in the thin neck phase and in the cone phase. The
difference of approximately 4 mm between the model prediction for a process
duration of 45 minutes and the measurements in the cone phase is acceptable.
For the model predictive control, a prediction horizon of 2-10 minutes is used.
Analogously, in figure 4.4, a comparison is shown between the model of the
crystal radius RC as well as its numerical differentiation ṘC (dashed line) and
experimental data (solid line). The differences in the thin neck phase primarily
results from measuring problems of the crystal angle ϕC due to the small crystal
diameter and the reduced brightness (see section 3.2). Another reason is an
observed asymmetry of the crystal concerning the inductor hole. In that phase
the camera system measures different angles at the left and the right side of
the crystal being the result of the horizontal displacement between the axis of
the crystal and the center of the inductor hole (see section 3.1). However, the
curve of ṘC correctly reflects the dynamics of the experiment in the thin neck
and in the cone phase.
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Figure 4.3.: Comparison between the feed radius RF and its numerical differen-
tiation ṘF of two experiments (thin line) and the prediction based
on the model equation 4.9 (thick line). The melting rate vMe and
the feed rod angle αF are experimental data.
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Figure 4.4.: Comparison between the crystal radius RC and its numerical dif-
ferentiation ṘC of two experiments (thin line) and the prediction
based on the model equation 4.10 (thick line). The crystallization
rate vCr and the crystal angle ϕC are experimental data.
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4.1. Low-Order Model of the Floating Zone Process

4.1.3. Modeling the Feed Angle

The angle αF at the feed rod is independent of other state and input variables.
The angle only depends on the shape of the feed rod. Assuming a constant
feed angle αF , the following differential equation can be used:

d

dt
(αF ) = 0 . (4.13)

The angle αF is considered as a system state, because it is an estimated value
in the Kalman filter to reduce the measurement noise.

4.1.4. Modeling the Melt Neck

The coupling of the melt neck RN to other states is analyzed in this section.
Based on experimental experiences, the melt neck RN is influenced by the
inductor power. The following experiment was performed to find a relationship.
The inductor power is increased in a continuous way in the cylinder phase of
a crystal of 100 mm in diameter. As shown in figure 4.5, the relationship
between the melt neck RN and the height hG of the full zone is approximately
linear. This linear behavior is obtained in the cylinder phase. Experimental
data has shown that this relationship is also valid in the cone phase for a
crystal radius RC with more than approximately 20 mm. According to the
model-based control of the FZ process, the melt neck RN plays a roll only for
crystals with a radius larger than 20 mm. The following equation

d

dt
(RN) =







0 for RC ≤ 20 mm

nh(ḣF + ḣC) for RC > 20 mm
(4.14)

is applied with the model parameter nh = −0.9. The behavior is not modeled
for RC smaller than 20 mm. Modeling of the dynamics for smaller radii could
be a task for future works.
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Figure 4.5.: Measured relationship between the changes of the height ∆hG of
the full zone and the melt neck ∆RN in the cylinder phase of a
crystal of 100 mm in diameter.
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4. Modeling of the Floating Zone Process

4.1.5. Modeling the Melt Volume

This section provides an approach to describe the dynamics of the melt mass
and the melt volume. Figure 4.6 shows a sketch of the molten zone. A thin
film of melt flows along the surface of the solid feed residual (open melting
front) into the molten zone and increases the melt mass. The melt mass mmelt

mmelt = mvi + mbo (4.15)

consists of the visible melt mass mvi and the melt bowl mbo. The derivative of
the melt mass

d

dt
(mmelt) =

d

dt
(mvi) +

d

dt
(mbo) (4.16)

can be alternatively expressed by the incoming and outgoing flow terms

d

dt
(mmelt) = −ṁF − ṁC , (4.17)

where ṁF is the change of the feed mass (because of melting) and ṁC the
change of the crystal mass (because of crystallization). It has to be considered
that a negative change of the feed mass mF increases the melt mass mmelt.
Therefore, the minus sign before ṁF is necessary. In other words, −ṁF de-
scribes the flow of the melting mass from the feed rod into the molten zone
and ṁC that of the solidified mass into the crystal.

The derivative of the visible melt mass follows from equation 4.16 and 4.17

d

dt
(mvi)

︸ ︷︷ ︸

ρM V̇vi

= −ṁF − ṁC − d

dt
(mbo)

︸ ︷︷ ︸

ρM V̇bo

(4.18)

and the derivative V̇vi of the visible melt volume is

ρM V̇vi = −ṁF − ṁC − ρM V̇bo , (4.19)

where ρM is the density of the melt, ṁF the change of the feed mass, ṁC the
change of the crystal mass and V̇bo the derivative of the melt bowl volume.

Considering the infinitesimal change of the mass, provides equations for the
calculation of ṁF and ṁC . In a first approach, the influences on the mass bal-
ance of feed residual and melt bowl are neglected. This can be assumed in the
thin neck phase. Afterwards, the equations are extended with corresponding
terms to achieve suitable formulations for the cone phase.

As shown in figure 4.7, the infinitesimal change of the solid feed mass dmF,1

above the line of melting can be calculated using the volume calculation of a
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4.1. Low-Order Model of the Floating Zone Process

cone frustum (see equation A.33):

dmF,1 = ρS

π dLF

3

(

R2
F + RF (RF + dRF ) + (RF + dRF )2

)

(4.20)

= ρSπR2
F dLF . (4.21)

Terms of higher order such as dR2
F are assumed to be zero. The term dmF,1 de-

scribes only the change of the feed mass above the line of melting. Additionally
considering the influence of the feed residual provides the formula

dmF = ρS(πR2
F dLF + dVfr) , (4.22)

where dLF is the change of the feed length, dVfr the change of the solid feed
residual, ρS the solid density and RF the feed radius at the line of melting.

The derivative ṁF of the feed material follows from equations 4.22 and 4.4
(dLF = −vMe dt):

ṁF = ρS(V̇fr − πR2
F vMe) . (4.23)

Analogously, the infinitesimal change of the crystal mass can be formulated as

dmC = ρS(πR2
CdLC − dVbo) , (4.24)

where dLC is the change of the crystal length, dVbo the change of the melt bowl
volume, ρS the solid density and RC the crystal radius.

The derivative ṁC of the crystallizing material follows from equations 4.24 and
4.5 (dLC = vCr · dt)

ṁC = ρS(πR2
CvCr − V̇bo) . (4.25)

Considering equations 4.19, 4.23, and 4.25, the differential equation for mod-
eling the visible melt volume Vvi is obtained

ρM

d

dt
(Vvi) = ρS(πR2

F vMe − V̇fr) − ρSπR2
CvCr − (ρM − ρS)V̇bo . (4.26)

Approximations for the derivatives of feed residual and melt bowl, V̇fr =
f(RF , ṘF ) and V̇bo = f(RC , ṘC) are developed in sections 3.3 and 3.4. It is
worth to introduce the model parameters afr and abo

ρM

d

dt
(Vvi) = ρS(πR2

F vMe − afrV̇fr) − ρSπR2
CvCr − (ρM − ρS)aboV̇bo (4.27)

to overcome approximation inaccuracies and to fit the derivative of the visible
melt volume Vvi to experimental data. Within the thin neck phase, the volume

67



4. Modeling of the Floating Zone Process

derivatives of feed residual Vfr and melt bowl Vbo are zero.

The relation

R2
F vF = R2

CvC (4.28)

holds for stationary growth conditions (V̇vi = 0, V̇fr = 0, V̇bo = 0, vMe = vF

and vCr = vC). That means, the stationary crystal radius RC only depends on
the stationary feed radius RF , the feed pull rate vF , and the crystal pull rate
vC .

crystal

feed rod

feed residual

melt bowl

visible melt

open melting front

line of melting

line of crystallization

RF

RC

mvi,

mbo,

Vvi

Vbo

Vfr

vMe

vCr

mF

mC

Figure 4.6.: Sketch of the molten zone (radius of the feed RF , melting rate vMe,
radius of the crystal RC , crystallization rate vCr, mass of the vis-
ible melt mvi, mass of melt bowl mbo, volume of the feed resid-
ual Vfr, volume of the visible melt Vvi, volume of melt bowl Vbo,
feed mass mF , crystal mass mC).

dLF

RF

RF + dRF

(a) Feed rod

dLC

RC

RC + dRC

(b) Crystal

Figure 4.7.: Sketch of mass balance for feed rod (a) and crystal (b). The
influence of feed residual and melt bowl is neglected. RF is the
feed radius, RC the crystal radius, dLF and dLC the infinitesimal
change of the length of feed rod and crystal.
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Comparison to Experimental Data

Figure 4.8 shows the comparison between the model prediction and two experi-
ments. The visible volume Vvi is obtained by numerical integration of equation
4.27 by using experimental data of the radii RF and RC of feed and crystal,
and the rates vMe and vCr of melting and crystallizing. Equations 3.19 and
3.21 are applied to calculate the volume derivatives of melt bowl V̇bo and feed
residual V̇fr. Two model predictions are shown to demonstrate the essential
influence of V̇fr and V̇bo. The parameters afr and abo in model 1 are adjusted
to fit the measurements. The two parameter are assumed to be identical to
keep the parameters simple. A value of afr = abo = 1.35 is obtained. Model 2
neglects the volumes of feed residual and melt bowl (afr = abo = 0). As shown
in figure 4.8, the model reflects the dynamics of the experiments in the thin
neck phase and in the cone phase.

 

 

0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 

 

0 1 2 3 4 5 6
0

3

6

9

12

15

model 1

experiment

t [min]

D
[m

m
]

V
v
i
[c
m

3
]

DF

DC

(a) Experiment 1: thin neck phase

 

 

0 5 10 15 20 25
0

20

40

60

80

100

120

 

 

0 5 10 15 20 25
0

20

40

60

80

100

120

model 1

model 2

experiment

t [min]

DF

DC

(b) Experiment 2: cone phase

Figure 4.8.: Model validation of the visible melt volume Vvi by using equation
4.27. Crystal diameter DC , feed diameter DF , melting rate vMe

and crystallization rate vCr are experimental data. The parame-
ters afr = abo = 1.35 are used in model 1 to fit the data. The
influences of feed residual and melt bowl (afr = 0, abo = 0) are
neglected in model 2.
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4.1.6. Modeling the Melt Angle

Modeling the dynamics of the melt angle ϕM is a complex issue. Nevertheless,
a model equation is required because the melt angle ϕM = ϕC is included
in the differential equation 4.10 of the derivative ṘC of the crystal radius.
The melt angle ϕM is defined as the angle of the melt shape at the solid-
liquid interface with respect to the vertical axis (see figure 4.2 (b), page 63).
The melt shape can be calculated by solving the Laplace-Young equation (see
Coriell and Cordes [Cor77]), which describes the force equilibrium of a point
on a melt drop

P0
︸︷︷︸

pressure
difference

− ρMgz
︸ ︷︷ ︸

hydrostatic
pressure

+
1

2
ρMr2Ω2

︸ ︷︷ ︸

centrifugal
pressure

+ Fn
︸︷︷︸

electro-
magnetic
pressure

= γ · K
︸ ︷︷ ︸

capillary
pressure

(4.29)

including the pressure difference P0 between a reference point in the melt and
the ambient pressure, the melt density ρM , the gravitational acceleration g,
the radial coordinate r, the vertical coordinate z, the rate of rotation Ω, the
electromagnetic pressure Fn, the surface tension γ, and the curvature K.

Assuming rotational symmetry, equation 4.29 can be transformed into a system
of three differential equations (see section A.2). The numerical integration of
these differential equations gives the shape of the melt according to a start and
a stop condition. The pressure difference P0 is used to fit the calculated melt
shape to a given reference point. This can be done by varying the pressure dif-
ference P0 so that the melt shape hits the reference point. Wünscher uses that
method to investigate the growth angle by comparing shape calculations with
data from high-resolution images from experiments (see Wünscher [Wün11a]
and [Wün11b]). Wünscher neglects the effect of rotation due to small influence
on the solution, but he considers the electromagnetic pressure Fn calculated by
the approximation of surface ring currents. The inductor geometry is required
to calculate the electromagnetic pressure Fn, therefore, Fn is neglected in this
investigations to keep the obtained dynamics simple. Due to Wünscher, this
approximation is appropriate because of the low influence of Fn on the melt
shape.

The following assumptions and conditions were made to calculate the shape of
the melt:

• the melt shape has rotational symmetry and is stationary,

• the centrifugal and electromagnetic pressure Fn are neglected, to keep
the calculation simple,

• the start condition si of the melt shape solution is defined by the melt
angle ϕM and the crystal radius RC ,
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4.1. Low-Order Model of the Floating Zone Process

• the stop condition st is defined by the vertical hm and radial component
rm of a reference point.

Figure 4.9 shows a sketch of the shape of the molten zone including start si and
stop condition st. Considering thin neck and cone phase, the stop condition
st = [rm, hm] is determined by different geometrical quantities. In the cone
phase, st is equal to the position of the melt neck (rm = RN and hm = hC). In
the thin neck phase, no melt neck exists due to the small diameter of the feed
rod and the non-existing feed residual. Here, st is equal to the position of the
lower end of the feed rod (rm = RF and hm = hG).

ϕM

z

r

st = [rm, hm]

si = [RC , ϕM ]

rm

hm

RC

Figure 4.9.: Sketch of the shape of the molten zone including start si and stop
condition st.

Based on the radial and vertical coordinates rk and zk of the melt shape, the
visible melt volume Vvi can be approximated by the Riemann sum

Vvi ≈
∑

k

πr2
k · (zk+1 − zk) . (4.30)

Figure 4.10 shows two melt shapes obtained by numerically solving the Laplace-
Young equation using reference points from experiments: (a) thin neck phase
and (b) cone phase. In (a) the melt shape starts with a negative melt angle
ϕM = -4.49◦ at crystal radius RC of 2.21 mm. This will lead in a decreasing
diameter. The molten zone has a height of hG = 6.9 mm and ends at the
feed rod with a radius RF of 3.68 mm. In (b) the melt shape starts with a
positive melt angle ϕM = 20.63◦ at crystal radius RC of 34.94 mm. The stop
condition of the shape is at hC = 13.95 mm (height of the lower zone) and
RN = 10.68 mm (melt neck). A corresponding melt shape for the cylinder
phase is similar to (b), only having a melt angle ϕM of zero.

Starting from the Laplace-Young equation, Landau derives an explicit formu-
lation of the melt angle ϕM depending on the melt height hm. His deduction
is published in the book of Landau and Lifshitz [Lan87]. A half-plane with a
constant melt height hm at infinity is assumed (see figure A.4) and the relation
between melt angle ϕM and melt height hm is given by

ϕM = arcsin(
h2

m

α2
Si

− 1) (4.31)
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(a) Decreasing crystal radius
in the thin neck phase. Crys-
tal radius RC = 2.2 mm, melt
angle ϕM = −4.5◦, height of
the full zone hG = 6.9 mm,
and feed radius RF = 3.7 mm.
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(b) Increasing crystal radius in the cone phase. Radius
of the crystal RC = 34.94 mm, melt angle ϕM = 20.63◦,
height of the lower zone hC = 13.95 mm, and radius of
the melt neck RN = 10.68 mm.

Figure 4.10.: Calculated melt shapes by numerically solving the Laplace-Young
equation. The centrifugal and electromagnetic pressures are ne-
glected. Melt shape in thin neck phase (a) and cone phase (b)
using reference points based on experimental data.

with the melt angle ϕM , the melt height hm and the capillary constant1 of
silicon αSi = 7.94 mm. For large diameters, the melt height hm can be ap-
proximately calculated by

hm =
Vvi

πR2
C

(4.32)

from the visible melt volume Vvi and the crystal radius RC . This equation is an
approximation and usable for large diameters, but its accuracy is insufficient
in the thin neck and at the beginning of the cone phase. A new approach is
needed.

Total Derivative

It is obvious that the melt angle ϕM is coupled to the shape of the melt.
Considering figure 4.10, the melt shape primarily depends on the melt volume,
the melt height and the radii of bottom and top. Within the thin neck phase,
it is assumed that the melt angle ϕM

ϕM = f(Vvi, RC , hG, RF ) (4.33)

1 The capillary constant is defined as α =
√

2γ
gρM

, where γ is the surface tension of the

melt, ρM the density of the melt, g the gravity acceleration
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is a function of the visible melt volume Vvi, the crystal radius RC , the full zone
height hG and the feed radius RF . For the cone phase, it is assumed that the
melt angle ϕM is a function of the visible melt volume Vvi, the crystal radius
RC , the height hC of the lower zone and the radius RN of the melt neck:

ϕM = f(Vvi, RC , hC , RN) . (4.34)

First, equation 4.34 is considered to describe the derivative ϕ̇M of the melt
angle during the cone phase. The reference values ϕM , RC , hC and RN are
known and available from several experiments. Based on these values, the melt
shape is calculated by numerically solving the Laplace-Young equation with
respect to the reference values.

The total derivative of equation 4.34

dϕM(Vvi, RC , hC , RN) =
∂ϕM

∂Vvi

∣
∣
∣
∣
∣
RC ,hC ,RN

· dVvi +
∂ϕM

∂RC

∣
∣
∣
∣
∣
Vvi,hC ,RN

· dRC

+
∂ϕM

∂hC

∣
∣
∣
∣
∣
Vvi,RC ,RN

· dhC +
∂ϕM

∂RN

∣
∣
∣
∣
∣
Vvi,RC ,hC

· dRN

(4.35)

being divided by dt

d

dt
(ϕM) =

∂ϕM

∂Vvi

∣
∣
∣
∣
∣
RC ,hC ,RN

· V̇vi +
∂ϕM

∂RC

∣
∣
∣
∣
∣
Vvi,hC ,RN

· ṘC

+
∂ϕM

∂hC

∣
∣
∣
∣
∣
Vvi,RC ,RN

· ḣC +
∂ϕM

∂RN

∣
∣
∣
∣
∣
Vvi,RC ,hC

· ṘN

(4.36)

is used to describe the dynamic behavior of the melt angle ϕM as a super-
position of four terms. The variables V̇vi, ṘC , ḣC and ṘN can be calculated
by the differential equations 4.27, 4.10, 4.8, and 4.14. The numerical approx-
imation by difference quotients will be used below to calculate the unknown
partial derivatives. Each partial derivative depends on the combination of the
variables Vvi, RC , hC , RN , and ϕM .

The calculation of the complete five-dimensional field is complex and not all
combinations are physically possible. It is obvious to choose reference points
close to real measurements to get significant data and to ensure feasibility of
the calculated melt shape. As shown in figure 4.11, the development of the
quantities Vvi, hC , RN , and ϕM in a growth experiments can be approximated
as functions of the crystal radius RC . That means, for a specific value of
crystal radius RC , similar values of Vvi, hC , RN , and ϕM are obtained within
different experiments. Therefore, it is assumed that the needed values of the
partial derivatives are functions of the crystal radius RC . Four correction
factors aV , aR, ah and aN are introduced to handle the simplifications and to
fit experimental data.
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Figure 4.11.: Development of the quantities Vvi, hC , RN , and ϕM for two 6-inch
experiments plotted over crystal radius RC

Based on the approximation by difference quotients, the following relations

∂ϕM

∂Vvi

∣
∣
∣
∣
∣
RC ,hC ,RN

(ϕM , RC , Vvi, hC , RN) ≈ aV

∆ϕM

∆Vvi

∣
∣
∣
∣
∣
RC ,hC ,RN

(RC), (4.37)

∂ϕM

∂RC

∣
∣
∣
∣
∣
Vvi,hC ,RN

(ϕM , RC , Vvi, hC , RN) ≈ aR

∆ϕM

∆RC

∣
∣
∣
∣
∣
Vvi,hC ,RN

(RC), (4.38)

∂ϕM

∂hC

∣
∣
∣
∣
∣
Vvi,RC ,RN

(ϕM , RC , Vvi, hC , RN) ≈ ah

∆ϕM

∆hC

∣
∣
∣
∣
∣
Vvi,RC ,RN

(RC), (4.39)

∂ϕM

∂RN

∣
∣
∣
∣
∣
Vvi,RC ,hC

(ϕM , RC , Vvi, hC , RN) ≈ aN

∆ϕM

∆RN

∣
∣
∣
∣
∣
Vvi,RC ,hC

(RC) (4.40)

are used to obtain the partial derivatives. The following equation can be used
to calculate the derivative of the melt angle ϕM

d

dt
(ϕM) = aV

∆ϕM

∆Vvi

· V̇vi + aR

∆ϕM

∆RC

· ṘC

+ah

∆ϕM

∆hC

· ḣC + aN

∆ϕM

∆RN

· ṘN

(4.41)

in the cone phase. As mentioned in section 4.1.2, the melt angle ϕM and the
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crystal angle ϕC can be assumed as being equal.

Calculation of ∆ϕM/∆Vvi:

The difference quotient is estimated comparing two melt shapes having been
obtained by solving the Laplace-Young equation. As shown in figure 4.12, the
two shapes - the first one with the start point si = (RC , ϕM) and the second
one with si = (RC , ϕM + ∆ϕM) - are used to obtain the value of ∆Vvi. Both
shapes use the same stop point st = (RN , hC) as reference. The melt volumes
Vvi,1 and Vvi,2 of the shapes are calculated by the Riemann sum (equation
4.30) under the assumption of rotational symmetry. The differential quotient
is calculated by the formula:

∆ϕM

∆Vvi

=
ϕM,2 − ϕM,1

Vvi,2 − Vvi,1

. (4.42)
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Figure 4.12.: Two melt shapes with different ref angles ϕM for calculating the
difference quotient ∆ϕM/∆Vvi (∆ϕM = ϕM,2 − ϕM,1 and ∆Vvi =
Vvi,2 − Vvi,1).

Calculation of ∆ϕM/∆RC:

Here, the calculation of the difference quotient is more sophisticated due to
the condition of constant melt volume Vvi.

The first shape starts with the condition si = (RC , ϕM) and the second one
with si = (RC +∆RC , ϕM +∆ϕM). Both shapes have the same stop condition
st = (RN , hC). ∆RC is determined manually and ∆ϕM is varied by a numerical
optimization algorithm so, that the melt volume Vvi of both shapes are equal.
A least-squared objective function is used. The definition of the optimization
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4. Modeling of the Floating Zone Process

problem is

∆ϕM,opt = arg min
∆ϕM

(

Vvi(RC , ϕM) − Vvi(RC + ∆RC , ϕM + ∆ϕM)
)2

(4.43)

where Vvi(RC , ϕM) is the corresponding volume of the shape based on the
condition RC and ϕM . The differential quotient is calculated by the formula:

∆ϕM

∆RC

=
∆ϕM,opt

∆RC

. (4.44)

Calculation of ∆ϕM/∆hC:

Analogously, ∆hC is determined manually and ∆ϕM is obtained by solving the
optimization problem:

arg min
∆ϕM

(

Vvi(hC , ϕM) − Vvi(hC + ∆hC , ϕM + ∆ϕM)
)2

. (4.45)

Calculation of ∆ϕM/∆RN :

Analogously, ∆RN is determined manually and ∆ϕM is obtained by solving
the optimization problem:

arg min
∆ϕM

(

Vvi(RN , ϕM) − Vvi(RN + ∆RN , ϕM + ∆ϕM)
)2

. (4.46)

Figure 4.13 shows the obtained difference quotients for three different experi-
ments. The mean average of the three experiments as function of the crystal
radius RC is drawn in gray and the corresponding values are listed in table
4.1. As expected, the dynamics of the melt angle ϕM is strongly coupled to the
crystal radius RC . All curves show a decreasing nonlinear influence in absolute
terms for increasing crystal radius. The differential quotients obtained from
the three experiments revealed a higher variance for smaller radii. Here, the
approximation with a numerical calculation of the differential quotients results
in a high variance.

Derivative of the melt angle in the thin neck phase:

Considering equation 4.33 and

d

dt
(ϕM) = aV

∆ϕM

∆Vvi

· V̇vi + aR

∆ϕM

∆RC

· ṘC

+ah

∆ϕM

∆hG

· ḣG + aN

∆ϕM

∆RF

· ṘF

(4.47)

suitable for the thin neck phase, it is difficult to get an approximation of the
difference quotients as function of RC (such as shown in figure 4.13) with re-
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Figure 4.13.: Difference quotients obtained from three experiments in the range
of 10 ≤ RC ≤ 70, where ϕM is the melt angle, Vvi the visible melt
volume, RC the crystal radius, hC the height of the lower zone,
and RN the radius of the melt neck. Mean average is drawn in
gray and listed in table 4.1.
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RC ∆ϕM/∆Vvi ∆ϕM/∆RC ∆ϕM/∆hC ∆ϕM/∆RN

[mm] [◦/cm3] [◦/mm] [◦/mm] [◦/mm]

10 72.27 -27.52 -23.65 -6.77

15 29.06 -20.47 -14.03 -3.91

20 15.45 -15.85 -8.56 -2.38

25 9.26 -12.34 -5.44 -1.59

30 6.22 -9.95 -3.83 -1.16

35 4.54 -8.69 -2.98 -0.87

40 3.43 -7.50 -2.33 -0.71

45 2.73 -6.81 -1.91 -0.55

50 2.15 -5.87 -1.60 -0.45

55 1.73 -4.99 -1.36 -0.34

60 1.43 -4.58 -0.87 -0.31

65 1.23 -4.31 -0.75 -0.27

70 1.06 -4.02 -0.71 -0.24

Table 4.1.: Calculated difference quotients by using the numerical solution of
the Laplace-Young equation averaged over three experiments.

spect to ∆Vvi, ∆RC , ∆hG, and ∆RF . The quotients are not primarily coupled
to the crystal radius RC , instead, all variables (melt volume Vvi, full zone
height hG, crystal RC and feed radius RF ) seem to be effecting the quotients.
Hence, a kind of hypersurface would be needed for every partial derivative.
Furthermore, an approximation function depending on the crystal radius RC

is unsuitable because the goal of the thin neck is to keep a constant crystal
radius of 2-3 mm over the pull length of 30-50 mm. To keep the calculations
simple, a mean average of the complete thin neck phase of several experiments
is used to obtain values for the differential quotients. The estimated values are
given in table 4.2.

RC ∆ϕM/∆Vvi ∆ϕM/∆RC ∆ϕM/∆hG ∆ϕM/∆RF

[mm] [◦/cm3] [◦/mm] [◦/mm] [◦/mm]

≤5 443.87 -18.66 -8.27 -11.89

Table 4.2.: Difference quotients obtained for the thin neck phase.

Comparison to experimental data

Figure 4.14 (a) compares the prediction based on the model equation 4.47
(thick line), with experimental data (thin line) of the thin neck phase. The
differential quotients from table 4.2 and numerical differentiations of V̇vi, ṘC ,
ḣG, and ṘF are used. The correction factor of the melt neck aN is set to zero
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4.1. Low-Order Model of the Floating Zone Process

to avoid a negative effect in control and state estimation quality due to the
measuring and modeling problems of the melt neck. In the cone phase, the
value of ah is set manually to 1.3 to fit the experimental data. Figure 4.14 (b)
and (c) shows analog prediction for the cone phase and the comparison with
two experiments. The plots in figure 4.14 show, that the model of the crystal
angle ϕC reflects the dynamics of the experiments in the thin neck phase and
in the cone phase.

4.1.7. Modeling the Rates of Melting and Crystallization

Finding a mathematical description for the melting rate vMe and the crystal-
lization rate vCr is more difficult due to the thermodynamical influence of the
generator power Pgen. At first, a relation between the generator power Pgen

and the power of the inductor Pind is needed. The description of the elec-
trotechnical behavior needs a detailed knowledge of a generator. A first order
element

d

dt
(Pind) =

1

τP

(KP · Pgen − Pind) (4.48)

is inserted to avoid time-consuming analysis of the electrotechnical compo-
nents. The two model parameters in equation (4.48), time constant τP and
gain factor KP , characterize the relation between the generator power Pgen

and the inductor power Pind. The values of these parameters depend on the
generator and its configuration. In this work, the power loss is neglected
(KP = 1).

The required heat Q to melt a mass m is calculated by the following equation

Qmelting = q0 · m (4.49)

including the latent heat q0. The latent heat q0 is the specific heat to change
a mass from a solid to a liquid state. It also describes the released heat if the
state changes from melt to solid

Qcrystallize = q0 · m . (4.50)

The latent heat q0 for silicon is 1803 kJ
kg
. The relevant power to establish a

mass flow for melting or crystallization is calculated by the following equations

ṁF = −PF,melting

q0

, (4.51)

ṁC =
PC,crystallize

q0

. (4.52)

Here, ṁF is the derivative of the feed mass, ṁC the derivative of the crystal
mass, PF,melting the power used for melting, PC,crystallize the released power due
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Figure 4.14.: Comparison between the crystal angle ϕC from experiment (thin
line) and the calculation based on the model equation (thick line).
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to crystallization, and q0 the latent heat. In section 4.1.5, the formulations for
ṁF and ṁC

ṁF = ρS(V̇fr − πR2
F vMe) , (4.23)

ṁC = ρS(πR2
CvCr − V̇bo) (4.25)

are deducted including the volume derivatives of feed residual V̇fr and melt
bowl V̇bo.

A quasi-steady balance equation for the power concerning the feed rod is:

0 = PF − PF,loss − PF,melting , (4.53)

where PF is the power introduced into the feed rod, PF,loss the power loss due
to radiation, and PF,melting the power used for melting the feed material.

Based on Billig [Bil55], the power loss can be approximated as function of the
radius R

Ploss(R) = ζlostR
3
2 , (4.54)

where ζlost is the power loss constant (for silicon ζSi,lost = 335.59 kW · m−
3
2 ).

A deduction of the equation is given in appendix A.1.

Analogously for the crystal, the quasi-steady balance equation for the power
is

0 = PC − PC,lost + PC,crystallize , (4.55)

where PC is the power introduced into the crystal, PC,loss the power loss due
to radiation, and PC,crystallize the power released due to crystallization.

Using equation 4.51, 4.23, and 4.53, the following equation for the melting rate
vMe

vMe =
PF − PF,loss

q0ρSπR2
F

+
V̇fr

πR2
F

(4.56)

is obtained. The derivative v̇Me of the melting rate follows from

v̇Me =
1

q0ρSπR2
F

·
(

ṖF − ṖF,loss − 2
ṘF

RF

(PF − PF,loss)

)

+
1

πR2
F

·
(

V̈fr − 2
ṘF

RF

V̇fr

)

.

(4.57)

Analogously for the crystal, using equation 4.52, 4.25, and 4.55, the following

81



4. Modeling of the Floating Zone Process

equation for the crystallization rate vCr

vCr =
PC,loss − PC

q0ρSπR2
C

+
V̇bo

πR2
C

(4.58)

is obtained. The derivative v̇Cr of the crystallization rate follows from

v̇Cr =
1

q0ρSπR2
C

·
(

ṖC,loss − ṖC − 2
ṘC

RC

(PC,loss − PC)

)

+
1

πR2
C

·
(

V̈bo − 2
ṘC

RC

V̇bo

)

.

(4.59)

Modeling the variables PF (power introduced into the feed rod) and PC (power
introduced into the crystal) is a complex task. Building a physical model is very
time-consuming and leads to complex equations. To keep the equation simple,
a heuristic approach is applied. The introduced power depends primarily on
the inductor power, the radius of feed/crystal, and the corresponding zone
height. The model equations have to reflect the following effects:

• the introduced power is gained if the inductor power increases due to the
higher heater power

• the introduced power is gained if the radius of the corresponding rod
(feed or crystal) increases due to the higher cross section

• the introduced power decreases if the corresponding zone height (lower
or upper) increases due to the higher distance between heater source and
corresponding rod (feed or crystal)

The following approach is used to fulfill these requirements:

PF = Pind,F · (RF )rF · (1 − f0hF )f1 , (4.60)

PC = Pind,C · (RC)rC · (1 − c0hC)c1 , (4.61)

where Pind,F is the part of the inductor power acting on the feed rod and
Pind,C that for the crystal. The variables rF , f0, f1, rC , c0, and c1 are model
parameters to fit experimental data. The equations include the heater power,
the influence of the radii of feed (RF )rF and crystal (RC)rC , and the upper hF

and lower hC zone height. Effects of hole and slits of the inductor are neglected
in this approach. The equations 4.60 and 4.61 are used in a suitable range of
radii and zone heights. The parameters f0 and c0 have to be set that the terms
(1 − f0hF ) and (1 − c0hC) are positive for the appearing zone heights. The
used parameters are listed in table 4.3.

The generator power Pgen could not directly be adjusted on the used FZ ma-
chines. Instead, the value of the DC voltage Ugen of the generator can be
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adjusted to manipulate the heater power. The following relations are used

d

dt
(Uind) =

1

τP

(KP · Ugen − Uind) (4.62)

and

Pind,F = pF

(

Uind

)eF

, (4.63)

Pind,C = pC

(

Uind

)eC

. (4.64)

to describe the power values Pind,F and Pind,C involving the model parameters
pF , pC , eF , and eC . Table 4.3 gives the values of the used parameters of the
thermodynamical model for the thin neck and the cone phase. The parameters
are specified concerning a generator voltage in the unit kV and zone heights and
radii in mm. The listed parameters are manually adjusted. The identification
of pF and pC using numerical optimization is part of the section 4.4.

Parameter thin neck cone

KP 1 1

τP 2 s 20 s

eF 2 2

rF 2 1

f0 0.1 0.05

f1 1 1

eC 2 2

rC 2 1.5

c0 0.1 0.05

c1 2 2

Table 4.3.: Parameters of the thermodynamical model. The parameters are
specified concerning a generator voltage in the unit kV and zone
heights and radii in mm.
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4.2. Overview of the Low-Order Model

Table 4.4 gives an overview of the low-order model of the FZ process. The
states of the model are listed with the corresponding number of the differential
equation. Additionally, the states and the input variables involved in the
differential equations are given.

state equat. involving states involving inputs

radius RF of the feed 4.9 melting rate vMe

feed angle αF

radius RC of the crystal 4.10 crystalliz. rate vCr

crystal angle ϕC

upper zone height hF 4.7 melting rate vMe pull rate vF

lower zone height hC 4.8 crystalliz. rate vCr pull rate vC

visible melt volume Vvi 4.27 feed radius RF

crystal radius RC

melting rate vMe

crystalliz. rate vCr

melting rate vMe 4.57 inductor power Pind

feed radius RF

upper zone height hF

crystalliz. rate vCr 4.59 inductor power Pind

crystal radius RC

lower zone height hC

crystal angle ϕC 4.41 vis. melt volume Vvi

crystal radius RC

lower zone height hC

radius melt neck RN

radius melt neck RN 4.14 upper zone height hF

lower zone height hC

inductor power Pind 4.48 inductor power Pind gen. power Pgen

feed angle αF 4.13

Table 4.4.: Overview of the model equations.

4.3. Simulation Studies of the Low-Order Model

Figure 4.15 (a) shows the step response of the system according to a step of
the heater power (in this case the generator voltage Ugen). The increment of
the penetrated heater power produces a temporary melt overhang resulting in
an increasing angle and diameter. Both, crystal angle and diameter, return to
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its initial values after approximately 20 minutes. This is due to the station-
ary mass balance given in equation 4.28. The step of the heater power has a
stationary effect on the zone heights, but not on the crystal diameter. An un-
dershooting of the diameter during the settling response is observable. Figure
4.15 (b) shows the step response of the feed pull rate vF . Stationary effects
are observable in the values of zone heights and crystal diameters. The crystal
diameter shows a slight overshooting during the settling response. This is ob-
servable in the experimental data of the landing phase also, where the crystal
cone is swinging into the cylindrical part. The transient response of the quan-
tities can be fitted to experimental data by adjusting the model parameters.
This procedure is denoted as parameter identification.

4.4. Comparison with Experimental Data

This section presents the result of the parameter identification of the model
and Kalman filter. Most of the model parameters, except for pF and pC , are
obtained in separate identifications. Only the two parameters pF and pC are
used to fit experimental data. This is done separately for the thin neck phase
and the cone phase using numerical optimization (see sections 2.4.3). The used
weight matrix WΘ is given in the section A.4.2 in the appendix. A list of all
model parameters is given in sections A.6.1 and A.6.2.

For the cone phase, two growth experiments of crystals with 100 mm in di-
ameter on FZ machine 1 using an inductor (applicable for 100 mm crystals)
are used to identify the parameters pF and pC . Figure 4.16 shows the com-
parison between model prediction and experimental data which are involved
in the identification. As expected, a high prediction quality is achieved. Two
examples of a conformity validation are shown in figure 4.17 and 4.18 using
experiments which are not involved in the identification process. The growth
experiment, shown in figure 4.17, was made on FZ machine 1 using an in-
ductor applicable for 150 mm crystals. The experiment, shown in figure 4.18,
was made on FZ machine 2 using an inductor applicable for 100 mm crystals.
The model predictions reproduce the dynamics of the process. The application
of the model at different machines and for different crystal diameters can be
expected valid without a renewed parameter identification.

Figure 4.19 shows the result of the state estimation using Kalman filter. The
Kalman filter uses the full model and estimates the process states such as
melting vMe and crystallization rate vCr. These both quantities are not directly
measurable, but needed during the model-based automation. In addition, the
Kalman filter reduces the measurement noise of all quantities. As mentioned
in section 2.5.2, the parameters Q and R of the Kalman filter are obtained
using numerical optimization. The used weight matrix WQR is given in the
section A.4.1. Lists of the identified parameters are given in sections A.5.1 and
A.5.2.
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Figure 4.16.: Comparison between model prediction (black) and experimental
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Figure 4.19.: Result of state estimation using Kalman filter. The Kalman filter
is applied to estimate melting vMe and crystallization rate vCr

and to reduce measurement noise. vMe and vCr are not directly
measurable, but needed during the model-based automation. vF

is the pull rate of the feed rod and vC the pull rate of the crystal.
Estimated states are shown in black and measurements in gray.
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5. Automation

This section presents the automation concept of the FZ process developed in
this thesis. The different phases of the process are analyzed with respect to
the tasks of control engineering. The applicability of the low-order model is
investigated using a predictive controller. Functional details of the controller
are given in section 2.4.4.

5.1. FZ Control Approaches

5.1.1. Control Phases

With respect to control engineering, the FZ process can be divided into the
following phases:

• Forming the feed tip:

This is the preparation step to produce suitable conditions for creating
the thin neck. Feed and seed crystal are moved upwards to form the feed
tip. This is regulated by a PI-controller due to the low dynamics and
the approximately constant working point. In the following phases, the
model predictive controller is used to regulate the process.

• Creating the thin neck :

This is the begin of growing the crystal. Feed and crystal are moved
downwards to create the thin neck. The crystal diameter of 5-6 mm,
resulting from the diameter of the seed, has to be reduced down to 2-3
mm and kept constant until the end of that phase.

• Establishing the molten zone:

Here, the molten zone is filled with melt to produce a melt overhang
needed to increase the crystal diameter. The pull rates of the feed and
the crystal are set to approximately constant values and the heater power
is adjusted to stabilize the melt overhang.

• Growing the crystal cone:

The crystal diameter has to be increased by keeping the melt overhang.
This is done by adjusting heater power and pull rate of the feed. Then,
the melt overhang is slowly decreased to avoid a leakage of the melt.
In addition, the melt neck has to be kept in its constraints due to the
inductor hole. This phase can be divided into two parts: the first part,
where the diameter of the feed is changing due to its tapered shape and
the second phase, where the tapered feed rod is melted off and the feed
retains a constant diameter. In the first part, the dynamics are more
complex as in the second one because of the changing size. In this and
the next phases, it is common to use a constant or very slow changing
pull rate of the crystal to ensure a dislocation-free crystal growth (see

91



5. Automation

section 3.5). A slowly decreasing pull rate of the crystal pull rate is used
for crystals with diameters of more the 125 mm.

• Swinging into the cylindrical part (landing):

The melt overhang is decreased to zero, so that the crystal diameter
hits the desired value. The corresponding pull rate of the feed can be
calculated based on the stationary mass balance (see section 4.1.5)

D2
F vF = D2

CvC , (5.1)

where DF is the diameter of the feed, DC the desired diameter of the
crystal, vF the pull rate of the feed, and vC that of the crystal.

• Growing the cylinder :

Here, the crystal diameter is held constant. This is managed by constant
heater power and constant pull rates of feed and crystal. The process is
self-regulating and in a stable state during this phase. At the end of the
process, the heater power has to be adjusted slightly to keep the height
of the molten zone. Here, the heat transport of the feed rod is effected
due to length reduction.

5.1.2. Choice of Reference and Manipulated Variables

It is essential to set up suitable reference and control variables to fulfill the
requirements of the respective phases. The control variables of the FZ process
are the heater power of the inductor and the pull rates of feed and crystal.
The reference values can be defined as functions of time, crystal diameter or
crystal length.

The automation of the feed tip has to ensure suitable start conditions for the
thin neck phase. These conditions are defined as shape of the feed tip (diameter
DF across the length), zone height hG, and the melt volume Vvi. For creating
the thin neck, the references are the zone height and the crystal diameter as
functions of time. Two strategies are investigated: the first one uses heater
power and pull rate of the crystal for satisfying the references, the second one
uses heater power and feed pull rate (see table 5.1).

To establish the molten zone, the heater power is adjusted to satisfy the desired
zone height, which is defined as a function of the crystal diameter. Here, the
pull rates are set to constant values. The automation of this phase is not
included in the thesis and could be a task of future works. However, pretrial
experiments have shown that this could produce sufficient results. If a given
crystal diameter is reached (approximately 15-20 mm), then the cone phase
starts.

Two approaches are investigated to automate the crystal growth of the cone
into the cylindrical part.
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Phase Reference Variables Control Variables

feed tip zone height, feed diameter, heater power, pull rate of
melt volume feed or crystal

thin neck zone height, crystal diameter, heater power, pull rate of
melt volume feed or crystal

Table 5.1.: Reference and control variables for regulating feed tip and thin neck

Cone Regulation (Approach 1):

In the first approach, the process is stabilized by controlling crystal angle
ϕC and full zone height hG as function of crystal diameter. This is done by
adjusting the control variables heater power and feed pull rate. The observation
of the melt neck is important to satisfy the limits due to the inductor hole (see
section 3.5). To overcome measuring problems of the melt neck, the zone height
hG is applied as an auxiliary quantity within the automation. The reference
of the zone height can be designed so that a suitable melt neck appears. To
ensure this, a constraint for the melt neck can be set. The reference values are
defined as functions of the crystal diameter. This results in a kind of smooth
regulation of the cone.

In the landing phase, references for the zone height hG and crystal diameter
DC are used. Equation 5.1 determines the needed pull rate of the feed to
satisfy the desired diameter of the crystal. The current pull rate is increased
slowly up to the needed pull rate and the heater power is used to keep the
zone height. When the cylinder is grown, constant references are used of zone
height and crystal diameter. Here, only small changes of heater power and
feed pull rate are necessary to satisfy the reference values. An overview of the
variables used in this approach is shown in figure 5.1 and listed in table 5.2.

time

timetime crystal diameter

re
fe
re
n
ce

va
lu
e

thin neck
molten
zone cone landing cylinder

hG

DC

DC

diameter

diameter

zone height

constraints on the melt neck

crystal angle ϕC

Figure 5.1.: Sketch of the reference variables applied to automate the FZ pro-
cess (Approach 1)
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Phase Reference Variables Control Variables
cone crystal angle and heater power and

zone height pull rate of the feed
landing crystal diameter and heater power and

zone height pull rate of the feed
cylinder crystal diameter and heater power and

zone height pull rate of the feed

Table 5.2.: Reference and control variables for the regulation of the FZ process
(Approach 1)

Cone Regulation (Approach 2):

This approach achieves a reproducible shape of the crystal by using the crystal
diameter (instead of the crystal angle) as reference. The complete crystal,
starting from the cone, is defined as function of the crystal length LC . Here,
the separation of the phases concerning different reference values is omitted.
Different cone shapes for such as crystals with 100 mm, 125 mm, 150 mm in
diameter can be defined and adjusted easily. A sketch of the references used
in this approach is shown in figure 5.2. It must be noted that the definition of
the cone contour has to be done carefully based on experimental experiences.
Forcing unfavorable quantities could create negative growth condition. This
can lead to creation of bulge formation at the crystal (as shown in figure 3.18
in section 3.5), creation of dislocations, or leakage of melt.

time
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thin neck
molten
zone cone landing cylinder
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diameter

zone height

constraints on the melt neck

crystal length LC

Figure 5.2.: Sketch of the references applied to automate the FZ process (Ap-
proach 2)
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5.2. Automatic Forming of the Feed Tip

This section presents an approach for the regulated forming of the feed tip to
produce specified start conditions for the growth of the thin neck. The principle
quantities which define the start conditions are the shape of the feed tip, the
zone height, and the melt volume. The shape of the feed tip is determined by
the diameter across the length. Before the regulation starts, the seed crystal
was manually dipped into the melt drop. After melting together, the feed rod
and the seed starts to move upwards to build the solid feed tip. The automatic
forming of the feed tip consists of two sequential steps: the first forms the
diameter of the feed tip and second generates the desired volume and height
of the molten zone. The regulation is sufficiently achieved by standard PI
controller due to the low dynamics and a nearly fixed working point. In the
figures of the experiments, negative pull rates mean an upward movement of
feed or crystal.

5.2.1. Regulation of the Feed Tip Diameter

The goal of the regulation is reducing the feed diameter DF to its final target
(approximately 6-8 mm). To stabilize the process, the full zone height hG has
to be controlled as well. The final target of hG is the desired value for the start
of thin neck phase. The generator voltage Ugen is adjusted by a PI controller
(see equation 2.1) to control the zone height hG. The parameter Kp and Ki are
obtained using the root locus method. The conditions of a maximum overshoot
of 1 % and a settling time of 60 seconds are considered in the control design.
The parameter are given in the section A.7.1.

The pull rate vF of the feed is calculated by the equation

vF = vC

(

DC

DF

)2

, (5.2)

where DC is the measured diameter of the crystal, DF the desired diameter of
the feed, and vC is the pull rate of the crystal. Experiments showed that at the
beginning of the regulation, where the feed has a diameter DF of 12-14 mm, the
molten zone was moved upwards due to a too high pull rate vC . The zone was
covered by the inductor and could not be captured by the measuring system.
Figure 5.3 (a) shows the applied reference trajectory of the pull rate vC . The
rate is determined as function of the feed diameter DF . The pull rate vC has to
be lower at the beginning of the regulation compared to the end. This ensure
the visibility of the molten zone for the measurement system. In the control
loop, vC is set automatically depending on the measured feed diameter DF .
As shown in figure 5.3 (b), the reference of the zone height hG is determined
as function of DF as well. This is done to avoid an aggressive acting of the
controller and to reduce the risk of undershooting of the zone height.
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Figure 5.3.: Reference trajectories of crystal pull rate vC and zone height hG

Figure 5.4 shows a regulation experiment. The feed tip is formed by automatic
control using the targets of feed diameter DF = 7.5 mm and zone height hG

= 6 mm. The reference trajectories, given in figure 5.3, are used within the
regulation. The regulation of the feed diameter finishes at t = 12 minutes,
where the desired length of the feed tip is reached. The oscillating pull rate vF is
due to the rotation of the crystal and resulting oscillations of the measurement.
In the next step, the desired melt volume and zone height have to be generated.
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Figure 5.4.: Time plot of an automatic forming of the feed tip with final targets
of 7.5 mm in diameter and a zone height hG of 6 mm.
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5.2.2. Regulation of Volume and Height of the Molten Zone

Figure 5.5 shows the regulation technique for reducing the volume of the molten
zone. The feed is moved upwards and the crystal downwards by constantly
keeping the height of the molten zone. The pull rates of crystal vC and feed
vF are adjusted by a P controller using the equation

vF = −Kp · (Vvi,meas − Vvi,ref ) , (5.3)

vC = Kp · (Vvi,meas − Vvi,ref ) , (5.4)

where Kp is the proportional factor of the P controller, Vvi,meas the measured
volume, and Vvi,ref the desired volume. Kp is given in the section A.7.1. Lim-
itations of the pull rates of ±0.3 mm/min are applied to avoid an aggressive
control response. The generator voltage Ugen is adjusted by a PI controller to
control the zone height hG.

feed tip

molten zone

inductor

crystal

zone height hG

Figure 5.5.: Sketch of the regulation technique for reducing the volume of the
molten zone. The feed is moved upwards and the crystal down-
wards by constantly keeping the height of the molten zone.

Figure 5.6 shows a regulation experiment. The volume of the molten zone is
reduced from 280 mm3 down to 180 mm3 and the zone height hG is kept at
6 mm. The regulation takes 8 minutes to satisfy the reference of the volume.

The regulation of the feed tip including diameter and volume, takes twice as
much time compared to the manual growth. There are two reasons. On the
one hand, the regulation is limited due to the visibility of the measurement
system. On the other hand, the operator forms simultaneously the feed tip and
the melt volume. Nevertheless, the higher regulation time is negligible with
respect to the growth time of several hours and the generation of reproducible
start conditions for the thin neck phase.
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Figure 5.6.: Regulated reducing of the volume Vvi of the molten zone from
280 mm3 down to 180 mm3 by moving the pull rates in the opposite
direction and constantly keeping the zone height hG at 6 mm. Lim-
itation of the maximum pull rates of ±0.3 mm/min are applied.

5.3. Regulated Growth of the Thin Neck

In this section, two strategies are presented to stabilize the thin neck phase
referencing of crystal diameter DC and zone height hG. The first strategy uses
the heater power and the pull rate of the crystal to satisfy the references, the
second one heater power and feed pull rate.

Before growing the thin neck, the feed tip is formed and the pull rates are
switched off (vF=vC=0). To achieve a fast reduction of the crystal diameter
after activating the pull rates, it is recommended to keep a small zone height hG

first. Afterward, the zone height has to be increased by using steps or ramps.
As shown in figure 5.7 (a), the height hG of the molten zone has to be kept
in a suitable range, otherwise, the crystal and the feed could freeze together
(b) or the feed could be divided from the molten zone (c). Additionally, it is
useful to start with a smaller diameter reference as the final target of 2-3 mm
to achieve a fast diameter reduction.

It can be observed that the molten zone moves slowly upwards during the
growth of the thin neck. That results in measuring problems of the lower
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zone height on the one hand and in a disturbed molten zone on the other
hand. Here, disturbed means that the heater power can not penetrate into the
crystal. In that case the regulation failed. To avoid a moving zone, a lower
limitation of the lower zone height hC of 1-3 mm is implemented within the
controller.

feed tip

molten zone

inductor

crystal

(a) Stable molten zone (b) Small zone

constriction

(c) Large zone

Figure 5.7.: Sketch of the molten zone during the thin neck phase. Stable
molten zone with the shape of a trapeze (a). Small zone with a
high risk of freezing (b). Large zone with a constriction and a high
risk of separation of the feed from the molten zone (c).

5.3.1. Using Heater Power and Crystal Pull Rate (Approach 1)

The generator voltage Ugen is adjusted by the model predictive controller to
satisfy the reference for the zone height hG and to fulfill the lower limitation
of the lower zone height hC . The pull rate vF of the feed is constant and that
of the crystal vC

vC = vF

(

DF

DC

)2

, (5.5)

is calculated based on the stationary mass balance (see equation 5.1), where
DF is the measured diameter of the feed tip and DC the desired diameter of
the thin neck.

Figure 5.8 shows the result of a control experiment. The parameters of the
model predictive controller are given in section A.7.2. The target diameter of
the thin neck is 2.5 mm. The regulation starts at t=0 by activating the pull
rates with initial values of vC=15 mm/min and vF=2.3 mm/min. First, the
controller reduces the heater power to retain the increasing zone height hG. At
t=45 seconds, the reference of hG is set from 8 mm up to 10 mm to stabilize
the strongly reducing zone. Additionally, the lower limitation of the lower zone
height hC ≥ 2.5 mm supports the stabilization. After 2 minutes, the desired
crystal diameter of 2.5 mm is reached and kept.
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5.3.2. Using Heater Power and Feed Pull Rate (Approach 2)

Another strategy growing the thin neck is the usage of the feed pull rate vF and
the heater power as control variables. Here, the pull rate vC of the crystal is
constant. At first, the calculation of vF = vC ·(DC/DF )2 based on equation 5.1
can be tried. It is obvious that the pull rate of the feed decreases vF ↓ during
the thin neck phase due to the increasing diameter DF ↑ of the feed tip. In
experiments, it could be observed that this leads to an unstable molten zone.
The molten zone suddenly shrinks and the heater power strongly increases to
stabilize the zone. Therefore, the desired diameter of the thin neck of 2-3 mm
could not be reached.

An advanced approach is the consideration of the stability of the molten zone.
The shape of a stable zone could by approximated as the shape of a trapeze or
a frustum. The sketch of the circular cone frustum is given in appendix A.3.
For a stable zone, the reference of the melt volume Vvi

Vvi =
π

12
· hG · (D2

C + DCDF + D2
F ) (5.6)

can be formulated based on the frustum volume, where DC is the desired
diameter of the thin neck, DF the measured diameter of the feed tip, and hG

the reference of the full zone height.

Figure 5.9 shows the result of a control experiment with a target diameter of
3 mm. The predictive controller adjusts the generator voltage Ugen and the pull
rate vF of the feed to satisfy the references of the zone height hG and the melt
volume Vvi. The volume reference is calculated by equation 5.6. The predictive
controller uses a piecewise linear development of the generator voltage Ugen and
a piecewise constant development of the pull rate vF to permit a fast reaction
of the control error with respect to the limitations 0.8 ≤ vF ≤ 3.5 mm/min.
The crystal pull rate vC is constant at 8 mm/min. The parameters of the
model predictive controller are given in section A.7.3. After 2 minutes, the
desired crystal diameter of 3 mm is reached. The reference of the zone height
hG is implemented as positive ramp starting from 60 seconds. The risk of an
up-moving molten zone is low, the boundary of the lower zone height hC ≥
1.5 is fulfilled at any point during the experiment. The regulation shows an
oscillating evolution in the generator voltage Ugen. This could be improved by
adjusting the controller parameter.

However, both control strategies (figure 5.8 and 5.9) are usable for the regulated
growth of a thin neck. A behavior comparable to the manual growth can be
achieved.
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Figure 5.8.: Regulated growth of a thin neck with a reference of 2.5 mm in
diameter. The control variables is the generator voltage Ugen to
fulfill the reference at the zone height hG and the lower limitation
for the lower zone height hC . The pull rate vC of the crystal is
calculated by using equation 5.5. The feed pull rate vF is constant
at 2.3 mm/min. Before starting the regulation at t=0, the pull
rates are off.
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Figure 5.9.: Regulated growth of a thin neck with a reference of 3 mm in diame-
ter. Volume reference is calculated based on the trapeze condition
involving measured feed diameter, desired crystal diameter, and
reference of the full zone height. The control variables are the
generator voltage Ugen and the pull rate vF of the feed. The rate
vF has to be in its limitations 0.8 ≤ vF ≤ 3.5 mm/min. The
crystal pull rate vC is constant at 8 mm/min. Before starting the
regulation at t=0, the pull rates are off.
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5.4. Regulated Growth of the Crystal Cone (Approach 1)

This section presents two variations to regulate the growth of the crystal cone.
In the first one (section 5.4.1),

• generator voltage Ugen is adjusted by the model predictive controller to
fulfill the reference of the crystal angle ϕC ,

• feed pull rate vF is calculated by a feedforward strategy based on the
stationary mass balance.

In the second one (section 5.4.2),

• generator voltage Ugen and feed pull rate vF are adjusted by the model
predictive controller using references of full zone height hG and crystal
angle ϕC .

5.4.1. Regulation using the Stationary Mass Balance as Feedforward
Component

In this approach, the generator voltage Ugen is adjusted by the model predictive
controller to satisfy the reference of the crystal angle ϕC . The controller uses
a piecewise linear evolution (see section 2.4.4). In other words, a ramp of the
heater power is calculated to fulfill the references of the crystal angle ϕC . These
ramps generate smooth control actions, which is beneficial for the growth of
dislocation-free crystals. The feed pull rate vF is calculated using the stationary
mass balance (see equation 5.1)

vF = vC

(

DC + κC

DF

)2

(5.7)

as feedforward component, where DF and DC are the measured diameters of
feed and crystal, κC a diameter offset, and vC the pull rate of the crystal.
The analysis of manually controlled experiments has shown, that the values
of the feed pull rate vF can be reproduced using equation 5.7 and a suitable
κC . The pull rate vF is involved in the model prediction as piecewise linear
evolution from the current value to the calculated one in a defined time horizon
considering the upper and lower limits of the slope. The parameters of the
model predictive controller are given in section A.7.4.

A regulated growth experiment of the crystal cone is given in figure 5.10. The
regulation begins at the crystal diameter of 30 mm at time point t = 0. Here,
the current crystal angle ϕC is 15◦ and its reference 30◦. The controller shows,
first, an oscillating reaction. After 7 minutes the process is stabilized and a
stationary control error of approximately 5◦ is observed. The control error
could be reduced by adjusting the diameter offset κC within the feedforward
part. During the regulation phase, the melt neck DN increases and reaches
a critical value at the end. It must be noted that the measured value of
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Figure 5.10.: Regulated growth of a cone beginning from time point t = 0.
Feedforward control of the feed pull rate vF and model predictive
control of the crystal angle ϕC adjusting the generator voltage
Ugen. Dislocations appeared at time point t = 25 min because of
arcing.
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DN is only an approximation due to the visibility problems produced by the
inductor. Therefore, it is not recommended to use the measurement of the melt
neck DN within the controller. But its possible to achieve sufficient values of
melt neck DN and crystal angle ϕC by finding suitable angle references and
suitable values of κC . Furthermore, figure 5.10 shows the control reaction
to a strong disturbance. At time point t = 25 min, the crystal looses its
dislocation-free structure due to arcing. Arcing is a corona discharge at the
inductor and occurs at high voltages. The reason for arcing is not known in
this experiment, but it can be assumed to be independent of the regulation.
However, the regulation stabilized the process having been disturbed by arcing,
so that the process could be terminated in stable conditions without leakage
of the melt or cracking of the crystal. To examine the reproducibility of the
regulation, two further experiments were conducted. Figure 5.11 shows two
dislocation-free crystals of silicon grown by the regulation. In the cylindrical
part of the second crystal (b), step attempts of heater power and pull rates
were made to investigate the dynamics.

regulation

10
4
m
m

(a)

regulation step responses

10
4
m
m

(b)

Figure 5.11.: Dislocation-free crystals of silicon grown by the regulation. Feed-
forward control of the feed pull rate vF and model predictive con-
trol of the crystal angle ϕC adjusting the generator voltage Ugen.
In the cylindrical part of crystal (b), several step responses were
measured to investigate the dynamics.

5.4.2. Full Regulation by Predictive Control

To benefit from the advantages of the FZ modeling, it is obvious to calculate
both, the heater power and the feed pull rate by the predictive controller.
The coupled process quantities of feed rod, crystal, and molten zone can be
directly considered within the regulation. References of the zone height hG and
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the crystal angle ϕC are used to ensure stable growth conditions. The model
of the melt neck DN (see section 4.1.4) shows a proportional relation to the
zone height. For a suitable reference of the zone height, a proper melt neck
can be expected. The parameters of the model predictive controller are given
in section A.7.5.

Figure 5.12 shows a regulation experiment starting at t = 0. The predictive
controller calculates ramps of feed pull rate vF and generator voltage Ugen to
satisfy the references. These ramps generate smooth evolutions of the control
variables, which is beneficial for the growth of dislocation-free crystals. The
controller uses a prediction horizon of 5 minutes and shows a high control
precision. At time point t = 11 minutes, the feed rod is changed form the
tapered shape to the constant diameter. The change of the geometrical and
thermodynamical conditions is considered within the prediction. A temporary
error of the crystal angle of 3◦ is observable. In this experiment, the peak in
the measurements of the zone height hG at 11 minutes results from measuring
problems due to the changing shape of the feed rod. But this effect is negligible
within the control due to the short time of appearance. The diameter DN of
the melt neck is in a proper range during the growth process. The regulation
starts at a crystal diameter of 46 mm.

5.4.3. Regulation of the Landing Phase

This section presents the regulation of the landing phase, where the crystal
cone is swinging into the cylindrical part. The controller references are the
crystal diameter and the zone height. The predictive controller calculates the
heater power to satisfy the desired zone height hG. The feed pull rate vF is
determined by the stationary mass balance

vF = vC

(

DC

DF

)2

(5.8)

where vC is the pull rate of the crystal, DC the final diameter of the crystal, and
DF the measured diameter of the feed rod. The pull rate vF is not directly set
to the calculated value. To achieve a smooth change, a linear evolution to the
calculated one is used considering the upper limit of ∆vF,ub = +0.1 mm/min2.
The parameters of the model predictive controller are given in section A.7.6.

Figure 5.13 shows the time plot of an experiment. The crystal diameter shows
an overshooting which is observable by manual growth as well. It can be
reduced by adjusting the reference values, or reducing the maximum slope of
the rate vF , or considering the crystal angle within the regulation. The crystal
diameter shows a steady-state control error of 0.7 mm. The measurements can
be expected as exact, because the control error was confirmed by re-measuring
the crystal afterward. A cause of the control error could be the implementation
of the pull rates. The technical and mechanical requirements to the pull rates
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5.4. Regulated Growth of the Crystal Cone (Approach 1)

are very high and a realization with a high precision is sophisticated. To
eliminate the control error, appropriate methods can be used such as offset-free
tracking presented in the book by Maciejowski [Mac02]. The idea of the offset-
free tracking is to estimate the prediction error between model and process
first and then to consider it in the calculations of the controller.
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Figure 5.12.: Regulated growth of the crystal cone with a finale diameter of
104 mm. The feed pull rate vF and the generator voltage Ugen

are adjusted by the predictive controller to satisfy references of
the zone height hG and the crystal angle ϕC .
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5.5. Regulated Growth of the Crystal Cone (Approach 2)

In this approach, the complete crystal shape, starting from the cone, is defined
as function of the crystal length LC . The separation of phases concerning dif-
ferent reference values is omitted. References are the crystal diameter DC and
the full zone height hG. In the next sections, two regulated growth experi-
ments are presented. First, the growth of a crystal with 150 mm in diameter.
Second, the growth of a crystal with a special shape, the so-called Avogadro
crystal. In the experiments, different inductors are applied, but the controller
uses the model parameters identified in section 4.4. A renewed parameter iden-
tification was not executed. In both experiments, the regulation starts at a
crystal diameter of approximately 40 mm. Before, the growth has been done
manually.

5.5.1. Crystal with 150 mm in Diameter

Figure 5.14 shows the used reference to grow a crystal with a diameter of
150 mm. Shown is the desired crystal diameter DC as function of the crystal
length LC . The predictive controller uses a piecewise linear development of
generator voltage Ugen and pull rate vF . Upper and lower limits of the slope
of the input variables ∆Ugen and ∆vF are shown in figure 5.14 as well. For
diameter smaller then 135 mm, it is not allowed to reduce the heater power
to avoid the risk of dislocation creation. Afterwards the controller is able to
reduce slightly the power to fulfill the references. Also here, the upper limit of
the power is decreased to avoid an aggressive controlling of the power. Only
a slight adjustment of the feed pull rate vF at diameter smaller then 50 mm
is allowed to ensure a smooth development of the pull rate. The references of
the crystal diameter and limits of the input variables are defined by sample
points (marked with circles in figure 5.14). Between these sample points a
linear interpolation is used. The parameters of the model predictive controller
are given in section A.7.7.

Figure 5.15 shows the development of the main measurements over time. The
automation starts at crystal diameter DC of 40 mm using a constant reference
of the zone height hG of 36.1 mm. After activating the regulation, the controller
adjust feed pull rate vF and generator voltage Ugen to fulfill references of crystal
diameter DC and full zone height hG. As mentioned in section 3.5, an upper
limit for the crystal pull rate vC exists to ensure dislocation-free growth. A
high crystal pull rate vC may result in a high thermal stress in the crystal. If a
critical stress is reached, than dislocations can appear or the crystal can crack.
Therefore, vC is slowly reduced from 3.4 mm/min to 2.6 mm/min during the
cone phase. This is manually done and orientated at the crystal diameter DC .

Figure 5.16 (a) gives the control error (the difference between reference and
measurement) of crystal diameter DC and full zone height hG over crystal
length LC . The regulation starts with a control error (error = meas - ref)

109



5. Automation

of -1.5 mm of crystal diameter and -1.0 mm of zone height. The controller
overcomes these differences in approximately 17 minutes (∆LC ≈ 60 mm).
Then, the regulation shows a precise performance. Both, crystal diameter
DC and zone height hG have a control error in the range of ±0.5 mm. In
the cylinder phase, the crystal diameter shows a steady-state control error
of 0.3 mm. The regulation does not produce an overshooting of the crystal
diameter, such as in section 5.4.3.
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Figure 5.16.: Grown crystal with 150 mm in diameter using regulation
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5.5.2. Avogadro Crystal

This section presents the regulated growth of a crystal with a special shape, the
so-called Avogadro crystal. The crystal is used in an approach to determine the
Avogadro constant by “counting“ the atoms of a 1 kg monocrystalline sphere
of 28Si isotope. Details of the physical background are given in the reviews of
Broys et al. [Bor07], Becker et al. [Bec09], and Becker and Schiel [Bec13].

Two silicon spheres have to be obtainable from one grown crystal. Due to the
high cost of the material, a regulation is applied to grow a crystal with an
economical wastage of the material. Figure 5.17 shows the determined shape
of the crystal including the two spheres. In this crystal shape no cylindrical
part with a constant diameter existed. The diameter has to be decreased after
finishing the cone and increased again up to the full diameter. A regulation
is needed to fulfill this reference of the shape. In the scope of this thesis, the
model-based regulation technique has been used to prove a possible applica-
tion. Here, a common feed rod of polycrystalline silicon is used instead of the
expensive 28Si material.
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Figure 5.17.: Shape of the Avogadro crystal including the two spheres

Figure 5.18 shows the development of the main measurements over time. The
parameters of the model predictive controller are given in section A.7.8. The
automation starts at crystal diameter DC of 42 mm using a constant reference
of the zone height hG of 31.6 mm. Figure 5.19 presents the control error of
crystal diameter DC and full zone height hG as function of crystal length LC .
In the cone phase, the regulation shows a precise performance comparable to
the regulated growth of the 150 mm crystal. Both, crystal diameter DC and
zone height hG have a control error in the range of ±0.5 mm. An error of
approximately -1 mm in diameter can be seen during the phases of decreasing
the crystal diameter. A reason is the modeling, for instance of the crystal angle.
Here, the focus was putted on the cone phase where only increasing diameters
and positive angles are notable. Two Avogadro crystals are successfully grown
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using the regulation. Figure 5.20 shows an image of an Avogadro crystal.
Two experiments of growing the first part of the Avogadro crystal running at
another FZ machine are successfully done too. A comparable control error has
been reached.

The conclusion is that the model predictive controller is useable for growing
several crystals (such as 150 mm and Avogadro crystals) using different FZ
machines without renewed parameter identification.
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Figure 5.19.: Regulated growth of the Avogadro crystal of silicon. Control
error of crystal diameter DC and full zone height hG.
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Figure 5.20.: Image of the grown Avogadro crystal using regulation. The im-
age was taken by Turschner at the Leibniz Institute for Crystal
Growth (IKZ).
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6. Conclusion

In this thesis, a model-based automation concept was developed to regulate
the FZ process including the following phases: forming the feed tip, creating
the thin neck, making the cone and growing the cylinder. The focus was on
modeling the process dynamics and identifying suitable trajectories for a stable
process control.

A measurement system was created to obtain the geometrical quantities based
on visual image processing. Digital cameras were applied to capture the pro-
cess. The acquired images were analyzed by gradient-based methods. A fre-
quency of 10 analyzed frames per second was realized on a standard PC. Cam-
era images of the feed rod are used, among other things, to determine an
approximation of the feed residual. Furthermore, the deflection of the solid-
liquid interface was analyzed and a formula was determined to approximate
height and volume of the bowl of molten silicon being invisible during the pro-
cess. The interfaces were visualized by the LPS method. The modeling of the
melt volume has shown that both volumes, the one of the feed residual and
that of the melt bowl, are not negligible because of their significant effect on
the melt dynamics. A model-based state estimation technique, the Kalman
filter, and a model predictive controller were implemented to regulate the pro-
cess. To use those methods, a nonlinear low-order model had to be developed
including the geometrical and thermodynamical aspects.

The presented model in this thesis is the main contribution for the intended
automation of the complete FZ process and has not being developed before.
The deduction of the differential equations is given and the validity was exam-
ined by comparison with experimental data. The model allows the prediction
of the radii and angles of feed and crystal, the upper and lower zone heights,
the melt volume, the melt neck, and the rates of melting and growing. The
control variables of the model are the heater power and the pull rates of feed
and crystal. The computation time is less than a second to predict the pro-
cess behavior for up to 5 minutes. Surprisingly, the model is suitable for the
main phases: the thin neck, the cone, and the cylindrical phase. A prediction
horizon of several minutes can be provided with sufficient accuracy.

An automation was developed for forming the feed tip using a PI controller.
This provides reproducible start conditions for the growth of the thin neck
Two regulation strategies were successfully applied for creating the thin neck
using the model-based concept. The first one used heater power and crystal
pull rate to stabilize the process, the second one heater power and feed pull
rate.

The regulated growth beginning from the cone and swinging into the cylindri-
cal phase was realized using references of zone height, diameter and angle of the
crystal. The model accuracy allows a predictive control without additional con-
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troller components such as a PID controller. The model predictive controller
calculated ramps of the heater power and the feed pull rate to satisfy these
references. The ramps generated smooth evolutions of the control variables,
which was beneficial for the growth of dislocation-free crystals. Experiments
showed a high control precision. With this automation concept, dislocation-
free crystals with different diameters were grown on two FZ machines without
a renewed parameter identification. Because of the reproducibility of the pro-
cess conditions, it can be expected that dislocations would be generated less
often than with a manual control, where the operator is not able to re-run the
process as precise as this control concept does.
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7. Outlook

The automation of the following two phases of the FZ process have not been
regarded during this work: finishing the crystal and growing the crystal cone
up to a diameter of 15-20 mm after finishing the thin neck (this phase is
denoted as establishing the molten zone). To realize a complete automation of
the crystal growth by FZ technique, these phases have to be investigated with
respect to control engineering. It is highly probable that the concept of the
model predictive control can also be used here.

In an industrial setting, additional components such as reflector rings are used
to improve the melting behavior of the feed material. These components
mounted on top of the inductor reduce the visibility of the upper zone. In
this case, not all quantities (for instance the diameter of the feed rod) are di-
rectly available. Therefore, these quantities have to be calculated or estimated
by the observer.

Better results for the control accuracy of crystal angle and zone height are
expected with the improvement of the model. The influence of hole and slits of
the inductor could be modeled. Especially in the beginning of the cone phase,
improved control accuracy could be reached. The strength of the predictive
control could be more intensively exploited by considering constraints such as
limitations of the melt neck. Adaptive control approaches could be investigated
to improve the flexibility according different FZ setups.

The automation could be applied to investigate required process conditions
for dislocation-free growth. Especially, the swing from the cone into the cylin-
drical part is very sensitive. Here, the automation could help to find suitable
trajectories. The growth rate and the pull rate of the crystal could be used
within the regulation to satisfy the trajectories.
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A. Appendix

A.1. Heat Dissipation from a Solid Cylinder in Contact with
Melt

In this section, an equation for the power loss of a heated cylinder is con-
structed. As shown in figure A.1, the cylinder bottom is heated to the melting
temperature Tm and a flat crystallization interface, an infinity length, cold
surroundings (T=0 K) and a temperature-independent surface emissivity are
assumed. The calculation bases on the analytical equation of the surface tem-
perature profile determined by Billig [Bil55].
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x
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heat source
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Figure A.1.: Model for the calculation of the temperature profile T (x) by Billig.
The bottom of a semi-infinite cylinder with a flat crystallization
interface is heated up to melting temperature Tm. The cylinder
has a constant radius R.

Billig uses the equation of the heat conduction W

W = −AλT

dT

dx
(A.1)

along the cylinder and the heat radiation from an infinitesimal element dx of
its surface

dW = −ǫσT 4Udx (A.2)

to determine a second-order differential equation of the temperature T

d2T

dx2
=

2ǫσ

λmTmR
T 5 . (A.3)

Here, x is the distance to the heater, R the cylinder radius, A the cylinder
cross-section, U the cylinder circumference, ǫ the surface emissivity, λT the
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thermal conductivity depending on temperature T, λm the thermal conductiv-
ity at melting temperature Tm, and σ=5.67 · 10−8 W

m2K4 the Stefan-Boltzmann
constant. Billig approximates the thermal conductivity λT

λT = λm

Tm

T
(A.4)

inverse proportional with the temperature T . The differential equation A.3 can
be analytical solved by the Emden-Fowler equation. The temperature profile
as function of x is determined by the equation

T (x) = a0(x + a1)
−

1
2 , (A.5)

a0 =
(3λmTmR

8ǫσ

) 1
4 , (A.6)

a1 =
a2

0

T 2
m

. (A.7)

The temperature gradient at the solid-liquid interface is

dT

dx

∣
∣
∣
∣
∣
x=0

= −
(2ǫσT 5

m

3λmR

) 1
2 . (A.8)

To obtain the power loss of the complete cylinder, the loss of a infinitesimal
element dx has to be integrated over the infinity length of the cylinder. The
temperature profile T (x) by Billig is used within the integration. The power
loss Ploss(R) is calculated by

Ploss(R) = 2πRǫσ

∞∫

0

T 4(x) dx , (A.9)

= 2πRǫσ
a4

0

a1

, (A.10)

=
(3π2λmT 5

mǫσ

2

) 1
2

︸ ︷︷ ︸

ζlost

R
3
2 . (A.11)

Unit Description Silicon Germanium

Tm [K] melting temperature 1683 1211

λm [ W
m·K

] thermal conductivity 21.6 17.3

at melting point

ǫ [-] surface emissivity (solid) 0.46 0.55

ζlost [kW · m−
3
2 ] power loss constant 335.59 161.16

Table A.1.: Material parameters of silicon and germanium to calculate the tem-
perature profile and the power loss of a heated cylinder
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Figure A.2.: Temperature profiles T (x) and power loss Ploss of silicon cylinder
based on the calculations by Billig

A.2. Laplace-Young Problem

The Laplace-Young equation (see Coriell and Cordes [Cor77])

P0
︸︷︷︸

pressure
difference

− ρMgz
︸ ︷︷ ︸

hydrostatic
pressure

+
1

2
ρMr2Ω2

︸ ︷︷ ︸

centrifugal
pressure

+ Fn
︸︷︷︸

electro-
magnetic
pressure

= γ · K
︸ ︷︷ ︸

capillary
pressure

(A.12)

describes the capillary pressure difference at the interface between melt and
vapor. Here, the involving variables are the pressure difference P0 between a
reference point in the melt and the ambient pressure, the melt density ρM , the
gravitational acceleration g, the radial coordinate r, the vertical coordinate z,
the rate of rotation Ω, the electromagnetic pressure Fn, the surface tension γ
and the curvature K. Assuming rotational symmetry, the curvature K can be
calculated by

K =
dϕ′

ds
+

sin(ϕ′)

r
(A.13)

or

K = −dϕ

ds
+

cos(ϕ)

r
(A.14)

using ϕ′ = 90◦ − ϕ. Here, s is the arc length. A sketch of the angles ϕ and ϕ’
is given in figure A.3. The Laplace-Young equation A.12 can be transformed
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into a system of three nonlinear differential equations

dr(s)

ds
= sin(ϕ) (A.15)

dz(s)

ds
= cos(ϕ) (A.16)

dϕ(s)

ds
=

cos(ϕ)

r
+

ρMgz

γ
− ρMr2Ω2

2γ
− Fn(s)

γ
− P0

γ
, (A.17)

involving the initial values r(0) = RC , z(0) = 0 and ϕ(0) = ϕM . The solution
of the differential equations delivers the shape of the molten zone. The pressure
difference P0 is used to fit the shape to experimental data such as melt volume
Vvi and melt neck RN .

ϕ
ϕ′

z

r

dr

dz

ds

Figure A.3.: Sketch of the shape of the molten zone

Explicit Formulation of the half-plane Shape

Landau and Lifshitz derive in [Lan87] an explicit equation for an up-pulling
liquid shape by the contact with a solid body. Analog to Landau and Lifshitz,
this section gives an explicit equation for the melt shape x = x(z) under the
assumption of a constant melt height hm for x → −∞. As shown in figure
A.4, the melt shape has a horizontal evolution of the melt height at infinity.
Please consider that the rotational direction of the melt angle ϕM is opposite
to the mathematical positive direction.

In the following equations the capillary constant

α =

√

2γ

ρMg
, (A.18)

appears, which has the dimension of length and is calculated from surface
tension γ, gravitational acceleration g, and melt density ρM . Silicon has a
capillary constant of αSi = 7.94 mm.
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ϕM
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x

Figure A.4.: Sketch of the melt shape in a half-plane.

Neglecting the centrifugal and the electromagnetic pressure within the Laplace-
Young equation leads to the equation

P0 − ρMgz = γK . (A.19)

The two-dimensional curvature K is defined as

K =
1

R1

+
1

R2

(A.20)

and in the half-plane, the radii are R1 = ∞ and R2 = − (1+z
′ 2

)
3
2

z
′′ . Therefore,

the Laplace-Young equation in the half-plane is given by

P0

γ
− ρMgz

γ
= − z

′′

(1 + z′ 2)
3
2

. (A.21)

As shown in figure A.4, the vertical coordinate z(x) and its first z
′

(x) and
second z

′′

(x) derivatives are zero for x → −∞. Which means that P0 has to
be zero too, to fulfill equation A.21. That leads to the equation

2z

α2
=

z
′′

(1 + z′ 2)
3
2

. (A.22)

The indefinite integration of both sides (
∫

. . . dz) gives the following equation

z2

α2
= − 1

√

1 + z′ 2
+ c1 (A.23)

with the constant of integration c1. The constant c1 = 1 can be obtained using
the conditions z(x) = 0 and z

′

(x) = 0 for x → −∞. Rearranging equation
A.23 gives

z
′

=

√

2 − z2

α2

α
z

− z
α

. (A.24)
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The relations z
′

= dz/dx and 1/z
′

= dx/dz = x′ lead to the formula

x
′

(z) =
α
z

− z
α

√

2 − z2

α2

. (A.25)

The integration
∫

x
′

(z)dz using equation A.25 gives an explicit formula for the
calculation of x(z)

x(z) = − α√
2

· arcosh(
√

2
α

z
) + a

√

2 − z2

α2
. (A.26)

As shown in figure A.4, the angle ϕ is defined by x′(z) = tan(−ϕ). This leads
to

z′(x) =
1

tan(−ϕ)
=

cos(−ϕ)

sin(−ϕ)
(A.27)

Inserting in equation A.23 gives

z2

α2
= 1 − 1

√

1 + cos2(−ϕ)
sin2(−ϕ)

(A.28)

= 1 − sin(−ϕ) (A.29)

= 1 + sin(ϕ) . (A.30)

This leads to an explicit formula to describe the angle ϕ

sin(ϕ) =
z2

α2
− 1 . (A.31)

The melt angle ϕM = ϕ(z = −hm) can be calculated by

sin(ϕM) =
h2

m

α2
− 1 . (A.32)

A.3. Circular Cone Frustum

A circular cone frustum is a cone with a circular base by cutting off the tip of
the cone. The top and button of the conical frustum are parallel.

Volume of the frustum V and frustum angle φ are calculated by

V =
πh

3
(R2

1 + R1R2 + R2
2) , (A.33)

tan(φ) =
R2 − R1

h
, (A.34)

where R1 is the radius of the bottom base, R2 the radius of the top base, and
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h the frustum height.

R1

R2

hφ

Figure A.5.: Sketch of the circular cone frustum
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A.4. Weights: Parameter Identification

A.4.1. Identification of the Kalman Parameter

State Unit diagonal

element

of WQR

Feed rod radius RF mm 2

Crystal radius RC mm 2

Upper zone height hF mm 3

Lower zone height hC mm 3

Visible melt volume Vvi cm3 0.5

Melting rate vMe mm/min 4

Crystallization rate vCr mm/min 4

Crystal angle ϕC
◦ 2

Inductor power Pind kV 0.5

Melt neck radius RN mm 0.5

Feed angle αF
◦ 2

Table A.2.: Diagonal elements of the weight matrix WQR used for the param-
eter identification of the Kalman filter (thin neck and cone phase)

A.4.2. Identification of the Model Parameter

Measurement Unit diagonal

element

of WΘ

Feed rod radius RF mm 0

Crystal radius RC mm 1

Upper zone height hF mm 2

Lower zone height hC mm 2

Visible melt volume Vvi cm3 0

Crystal angle ϕC
◦ 0

Melt neck radius RN mm 0

Feed angle αF
◦ 0

Table A.3.: Diagonal elements of the weight matrix WΘ used for the model
parameter identification (thin neck and cone phase)
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A.5. Parameter: Kalman Filter

A.5.1. Thin Neck

State square root Unit square root Unit

of the of the

diagonal diagonal

element element

of P 0 of Q

Feed rod radius RF 0.02 mm 0.014824 mm/s

Crystal radius RC 0.02 mm 0.0030071 mm/s

Upper zone height hF 0.05 mm 0.015144 mm/s

Lower zone height hC 0.05 mm 0.00021597 mm/s

Visible melt volume Vvi 0.01 cm3 4.4259e-009 cm3/s

Melting rate vMe 0.2 mm/min 0.072693 mm/min/s

Crystallization rate vCr 0.2 mm/min 0.11629 mm/min/s

Crystal angle ϕC 2 ◦ 0.10397 ◦/s

Inductor power Pind 0.0001 kV 0.0001 kV/s

Melt neck radius RN 0.5 mm 0.01 mm/s

Feed angle αF 2 ◦ 0.24383 ◦/s

Table A.4.: Thin neck phase: square roots of the diagonal elements of covari-
ance matrix P 0 and spectral density matrix Q

Measurement square root Unit

of the

diagonal

element

of R

Feed rod radius RF 0.05564 mm

Crystal radius RC 0.03124 mm

Upper zone height hF 0.03788 mm

Lower zone height hC 0.05162 mm

Visible melt volume Vvi 0.00232 cm3

Crystal angle ϕC 0.26781 ◦

Melt neck radius RN 0.00234 mm

Feed angle αF 0.19877 ◦

Table A.5.: Thin neck phase: square roots of the diagonal elements of the
covariance matrix R
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A.5.2. Cone

State square root Unit square root Unit

of the of the

diagonal diagonal

element element

of P 0 of Q

Feed rod radius RF 0.02 mm 0.015289 mm/s

Crystal radius RC 0.02 mm 0.056313 mm/s

Upper zone height hF 0.05 mm 0.0078478 mm/s

Lower zone height hC 0.05 mm 0.0033683 mm/s

Visible melt volume Vvi 0.01 cm3 0.040479 cm3/s

Melting rate vMe 0.2 mm/min 0.0096804 mm/min/s

Crystallization rate vCr 0.2 mm/min 0.016047 mm/min/s

Crystal angle ϕC 2 ◦ 0.45075 ◦/s

Inductor power Pind 0.0001 kV 0.00001 kV/s

Melt neck radius RN 0.5 mm 0.03846 mm/s

Feed angle αF 2 ◦ 0.025 ◦/s

Table A.6.: Cone phase: square roots of the diagonal elements of covariance
matrix P 0 and spectral density matrix Q

Measurement square root Unit

of the

diagonal

element

of R

Feed rod radius RF 1.00341 mm

Crystal radius RC 0.99772 mm

Upper zone height hF 0.46025 mm

Lower zone height hC 0.28278 mm

Visible melt volume Vvi 2.19553 cm3

Crystal angle ϕC 5.94744 ◦

Melt neck radius RN 0.498563 mm

Feed angle αF 0.60321 ◦

Table A.7.: Cone phase: square roots of the diagonal elements of the covariance
matrix R
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A.6. Parameter: Low-Order Model

A.6.1. Thin Neck

Parameter Values Unit

Density of liquid silicon ρM 2.53 kg/cm3

Density of solid silicon ρS 2.34 kg/cm3

Latent heat of silicon q0 1803 kJ/kg

Fitting factor aV (derivative of melt angle) 1 -

Fitting factor aR (derivative of melt angle) 1 -

Fitting factor ah (derivative of melt angle) 1 -

Fitting factor aN (derivative of melt angle) 0 -

Fitting factor nh (derivative of melt neck) 0 -

Gain factor KP of the inductor power 1 -

Time constant τP of the inductor power 2 s

Power loss constant ζlost of silicon 335.59 kWm−
3
2

Fitting factor abo (derivative of melt volume) 0 -

Fitting factor afr (derivative of melt volume) 0 -

Polynomial coefficient a0 of melt bowl volume 0 mm

Polynomial coefficient a1 of melt bowl volume 0 mm2

Polynomial coefficient a2 of melt bowl volume 0 mm

Polynomial coefficient a3 of melt bowl volume 0 -

Polynomial coefficient d0 of feed residual volume 0 mm

Polynomial coefficient d1 of feed residual volume 0 mm2

Polynomial coefficient d2 of feed residual volume 0 mm

Polynomial coefficient d3 of feed residual volume 0 -

Fitting factor pF of the power PF 0.95368 -

Fitting factor eF of the power PF 2 -

Fitting factor rF of the power PF 2 -

Fitting factor f0 of the power PF 0.1 -

Fitting factor f1 of the power PF 1 -

Fitting factor pC of the power PC 0.277888 -

Fitting factor eC of the power PC 2 -

Fitting factor rC of the power PC 2 -

Fitting factor c0 of the power PC 0.1 -

Fitting factor c1 of the power PC 2 -

Difference quotients ∆ϕM/∆xi (melt angle) Table 4.2 -

Table A.8.: Thin neck phase: parameters of the low-order model
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A.6.2. Cone

Parameter Values Unit

Density of liquid silicon ρM 2.53 kg/cm3

Density of solid silicon ρS 2.34 kg/cm3

Latent heat of silicon q0 1803 kJ/kg

Fitting factor aV (derivative of melt angle) 1 -

Fitting factor aR (derivative of melt angle) 1 -

Fitting factor ah (derivative of melt angle) 1.3 -

Fitting factor aN (derivative of melt angle) 0 -

Fitting factor nh (derivative of melt neck) -0.9 -

Gain factor KP of the inductor power 1 -

Time constant τP of the inductor power 20 s

Power loss constant ζlost of silicon 335.59 kWm−
3
2

Fitting factor abo (derivative of melt volume) 1.3 -

Fitting factor afr (derivative of melt volume) 1.3 -

Polynomial coefficient a0 of melt bowl volume 16 mm

Polynomial coefficient a1 of melt bowl volume 0 mm2

Polynomial coefficient a2 of melt bowl volume 32.48 mm

Polynomial coefficient a3 of melt bowl volume 1.2 -

Polynomial coefficient d0 of feed residual volume 5 mm

Polynomial coefficient d1 of feed residual volume 0 mm2

Polynomial coefficient d2 of feed residual volume 18.07 mm

Polynomial coefficient d3 of feed residual volume -0.087 -

Fitting factor pF of the power PF 3.1504 -

Fitting factor eF of the power PF 2 -

Fitting factor rF of the power PF 1 -

Fitting factor f0 of the power PF 0.05 -

Fitting factor f1 of the power PF 1 -

Fitting factor pC of the power PC 0.127784 -

Fitting factor eC of the power PC 2 -

Fitting factor rC of the power PC 1.5 -

Fitting factor c0 of the power PC 0.05 -

Fitting factor c1 of the power PC 2 -

Difference quotients ∆ϕM/∆xi (melt angle) Table 4.1 -

Table A.9.: Cone phase: parameters of the low-order model
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A.7. Controller Parameter

A.7.1. Feed Tip

Parameter Values Unit

Kp 0.022115 kV/mm

Ki 0.0012286 kV/mms

Kd 0 kVs/mm

Table A.10.: Parameters of the PI controller for regulating the zone height hG

(automatic forming of the feed tip)

Parameter Values Unit

Kp 0.006 1/mm2min

Table A.11.: Parameters of the P controller for regulating the melt volume Vvi

(automatic forming of the feed tip)

A.7.2. Thin Neck (Approach 1)

Parameter Values Unit

Loop time 1 s

Hp 36 s

Hu 36 s

∆Ugen,lb −0.8 kV/min

∆Ugen,ub +0.8 kV/min

W u(Ugen) 0 -

W x(hG) 1 (1/mm)2

W s(hG) 0 (1/mm)2

Table A.12.: NMPC parameters for regulating the thin neck (approach 1)

segment Ugen

1 0 - 18 s piecewise linear

2 18 - 36 s piecewise linear

Table A.13.: Control points for regulating the thin neck (approach 1)
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A.7.3. Thin Neck (Approach 2)

Parameter Values Unit

Loop time 1 s

Hp 30 s

Hu 30 s

∆Ugen,lb −0.7 kV/min

∆Ugen,ub +0.7 kV/min

vF,lb 0.8 mm/min

vF,ub 3.5 mm/min

W u(Ugen) 0 -

W u(vF ) 0 -

W x(hG) 1 (1/mm)2

W x(Vvi) 0.1 (1/mm3)2

W s(hG) 0 (1/mm)2

W s(Vvi) 0 (1/mm3)2

Table A.14.: NMPC parameters for regulating the thin neck (approach 2)

segment Ugen vF

1 0 - 15 s piecewise linear 0 - 30 s piecewise constant

2 15 - 30 s piecewise linear

Table A.15.: Control points for regulating the thin neck (approach 2)

A.7.4. Cone Growth (Using Feedforward Component)

Parameter Values Unit

Loop time 2 s

Hp 50 s

Hu 50 s

∆Ugen,lb 0 kV/min

∆Ugen,ub +0.2 kV/min

∆vF,lb −0.3 mm/min2

∆vF,ub +0.3 mm/min2

W u(Ugen) 1000 (1/kV)2

W u(vF ) 500 (min/mm)2

W x(ϕC) 0.001 (1/◦)2

W s(ϕC) 0 (1/◦)2

Table A.16.: NMPC parameters for regulating the crystal cone
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segment Ugen vF

1 0 - 25 s piecewise linear 0 - 15 s piecewise linear

2 25 - 50 s piecewise linear

Table A.17.: Control points for regulating the crystal cone. vF is calculated
based on the stationary mass balance. It is involved in the model
prediction as piecewise linear evolution from the current value
to the calculated one considering the lower (lb) and upper (ub)
limits of the slope.

A.7.5. Cone Growth (Full Regulation)

Parameter Values Unit

Loop time 5 s

Hp 240 s

Hu 240 s

∆Ugen,lb 0 kV/min

∆Ugen,ub +0.14 kV/min

∆vF,lb −0.05 mm/min2

∆vF,ub +0.1 mm/min2

W u(Ugen) 0 (1/kV)2

W u(vF ) 0 (min/mm)2

W x(ϕC) 1 (1/◦)2

W x(hG) 2 (1/mm)2

W s(ϕC) 0 (1/◦)2

W s(hG) 0.5 (1/mm)2

Table A.18.: NMPC parameters for regulating the crystal cone

segment Ugen vF

1 0 - 240 s piecewise linear 0 - 240 s piecewise linear

Table A.19.: Control points for regulating the crystal cone
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A.7.6. Landing

Parameter Values Unit

Loop time 5 s

Hp 240 s

Hu 240 s

∆Ugen,lb −0.06 kV/min

∆Ugen,ub +0.06 kV/min

∆vF,lb −0.1 mm/min2

∆vF,ub +0.1 mm/min2

W u(Ugen) 0 (1/kV)2

W u(vF ) 0 (min/mm)2

W x(hG) 2 (1/mm)2

W s(hG) 0.5 (1/mm)2

Table A.20.: NMPC parameters for regulating the crystal cone

segment Ugen vF

1 0 - 240 s piecewise linear 0 - 60 s piecewise linear

Table A.21.: Control points for regulating the crystal cone. vF is calculated
based on the stationary mass balance. It is involved in the model
prediction as piecewise linear evolution from the current value
to the calculated one considering the lower (lb) and upper (ub)
limits of the slope.
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A.7.7. Crystal with 150 mm in Diameter

Parameter Values Unit

Loop time 4 s

Hp 240 s

Hu 240 s

W u(Ugen) 0 -

W u(vF ) 0 -

W x(DC) 1 (1/mm)2

W x(hG) 1 (1/mm)2

W s(DC) 0.2 (1/mm)2

W s(hG) 0.2 (1/mm)2

Table A.22.: NMPC parameters for regulating the crystal with 150 mm in
diameter

segment Ugen vF

1 0 - 90 s piecewise linear 0 - 90 s piecewise linear

2 90 - 240 s piecewise linear 90 - 240 s piecewise linear

Table A.23.: Control points for regulating the crystal with 150 mm in diameter

A.7.8. Avogadro Crystal

Parameter Values Unit

Loop time 4 s

Hp 240 s

Hu 240 s

W u(Ugen) 0 -

W u(vF ) 0 -

W x(DC) 1 (1/mm)2

W x(hG) 1 (1/mm)2

W s(DC) 0.2 (1/mm)2

W s(hG) 0.2 (1/mm)2

Table A.24.: NMPC parameters for regulating the Avogadro crystal

segment Ugen vF

1 0 - 150 s piecewise linear 0 - 150 s piecewise linear

2 150 - 240 s piecewise linear 150 - 240 s piecewise linear

Table A.25.: Control points for regulating the Avogadro crystal
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