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Abstract

Certain approximation techniques for the numerical solution of partial differential
equations result in linear algebraic systems where the coefficient matrix is nonsym-
metric, nonnormal and ill-conditioned. This is the case for the finite difference
discretization of the convection-diffusion equation posed on a Shishkin mesh treated
in this work. We present a convergence analysis of the (algebraic) multiplicative
Schwarz method when it is used to solve linear systems arising from both the upwind
and central finite difference discretization approaches to such problems. For one
and two dimensional problems, we show that the iteration matrix of the method has
low-rank, which allows us to bound its co-norm. These bounds lead to quantitative
error bounds for the iterates of the method that are valid from the first step of the
iteration process. For problems in one-dimension, we prove rapid convergence of the
method for all parameter choices of the problem when the upwind discretization
approach is used, while convergence can only be proven for certain parameter choices
for the central difference approach. Only the upwind discretization is considered
in the case of two-dimensional problems. Furthermore, we consider the method
as a preconditioner to GMRES and prove the convergence of the preconditioned
method in a small number of steps when the local subdomain problems are solved
exactly. Numerical experiments show that, for problems in two-dimensions, the
number of iterations either stays the same or decreases for the case of inexact local
solves, achieving a speed up in computational time. We continue by generalizing
our convergence results to the case where the coefficient matrix of the linear system
possess a special block structure that arises, for example, when a partial differential
equation is posed and discretized on a domain that consists of two subdomains that
overlap. Our analysis does not assume that the system matrices resulting from the
discretization process are symmetric (positive definite) or posses the M- or H-matrix
property. Instead, our results are obtained by generalizing the theory of diagonal
dominant matrices from the scalar to the block case. Based on this generalization
we present bounds on the norms of the inverses of general block tridiagonal matrices
and derive a variant of the Gershgorin Circle Theorem that provides eigenvalue
inclusion regions in the complex plane that are potentially tighter than the usual
sets derived from the classical definition.
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Zusammenfassung

Bestimmte Approximationstechniken fiir die numerische Losung partieller Differentialgle-
ichungen fiihren zu linearen algebraischen Systemen, bei denen die Koeffizientenmatrix
nicht symmetrisch, nicht normal und schlecht konditioniert ist. Dies ist der Fall zum
Beispiel bei der Diskretisierung der Konvektions-Diffusions-Gleichung, die in dieser
Arbeit auf einem Shishkin-gitter aufgestellt wurde. Wir stellen eine Konvergenzanal-
yse der (algebraischen) multiplikativen Schwarz-Methode vor, wenn sie zur Loésung
linearer Systeme verwendet wird, die sich sowohl aus dem Upwind als auch aus dem
zentralen Finite-Differenz-Diskretisierungsansatz fiir solche Probleme ergeben. Fiir ein-
und zweidimensionale Probleme zeigen wir, dass die Iterationsmatrix der Methode einen
niedrigen Rang hat, was uns erlaubt, ihre co-Norm abzuschétzen. Diese Schranken fithren
zu quantitativen Fehlerschranke fiir die Iterationen der Methode, die ab dem ersten
Schritt des Iterationsprozesses giiltig sind. Bei eindimensionalen Problemen beweisen
wir eine schnelle Konvergenz der Methode fiir alle Parameterwahlen des Problems, wenn
der Upwind-Diskretisierungsansatz verwendet wird, wahrend die Konvergenz nur fiir
bestimmte Parameterwahlen fiir den zentralen Differenzansatz nachgewiesen werden
kann. Bei zweidimensionalen Problemen wird nur die Upwind-Diskretisierung beriick-
sichtigt. Dariiber hinaus betrachten wir die Methode als Vorkonditionierer von GMRES
und weisen die Konvergenz der vorkonditionierten Methode in wenigen Schritten nach,
wenn die lokalen Teilbereichsprobleme exakt gelost werden. Numerische Experimente
zeigen, dass bei zweidimensionalen Problemen die Anzahl der Iterationen entweder gleich
bleibt oder bei ungenauen lokalen Losungen abnimmt, wodurch eine Beschleunigung
der Rechenzeit erreicht wird. Wir fahren fort, indem wir unsere Konvergenzergebnisse
auf den Fall verallgemeinern, dass die Koeffizientenmatrix des linearen Systems eine
spezielle Blockstruktur besitzt, die sich z.B. ergibt, wenn eine partielle Differential-
gleichung auf einem Gebiet gestellt und diskretisiert wird, die aus zwei Untergebiete
besteht, die sich tiberlappen. Unsere Analyse geht nicht davon aus, dass die aus dem
Diskretisierungsprozess resultierenden Systemmatrizen symmetrisch (positiv definit) sind
oder die Eigenschaft der M- oder H-Matrix besitzen. Stattdessen erhalten wir unsere
Ergebnisse durch Verallgemeinerung der Theorie der diagonaldominanten Matrizen vom
skalaren zum Blockfall. Basierend auf dieser Verallgemeinerung beschranken wir die
Norm der Inversen von allgemeinen Blocktridiagonalmatrizen und leiten eine Variante
des Satz von Gershgorin her. Die Eigenwert-Einschlussbereiche in der komplexen Ebene
liefert, die potenziell kleiner sind als die klassischen Gershgorin-Kreise.
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1. Introduction

In a wide range of applications in the general field of scientific computing it is
important to solve linear algebraic systems of the form

Au=f, (1.1)

where the matrix A € CV*V in (1.1) is nonnormal, ill-conditioned and possesses
a specific block sparse structure. Very often, matrices of this class arise when
discretizing boundary value problems (BVPs); mathematical models which try to
describe the asymptotic (steady-state) solution of a particular partial differential
equation (PDE) posed on a specific domain. In particular they appear in the
discretization process of BVPs that describe the behavior of fluid flow, like the ones
modelled by the steady-state convection-diffusion BVP:

—eAu+w-Vu+pPu=fin Q, wu=g, on IN. (1.2)

In the PDE of problem (1.2), the scalar-valued function u is commonly interpreted
as the concentration of a transported quantity, w the velocity field or wind where
the concentration is transported, € the scalar diffusion coefficient, and S the scalar
reaction coefficient - both measures of the amount of diffusion and production / de-
struction of the concentration throughout the domain §2.

In most applications and relevant cases of convection-diffusion BVPs, it is impor-
tant to study the convection dominated regime, i.e., the cases when |w| > € >0
n (1.2), leading to what is known in literature as a singularly perturbed boundary
value problem and where € is known as the perturbation parameter. One possible
physical interpretation of this type of problems, as described by Elman, Silvester
and Wathen in [25], may be the following: the unknown function u may represent
the concentration of a pollutant, being transported, or “convected”, along a river
moving at velocity w, while being subject to diffusive and reactive effects. In this
context, the solution to the BVP would describe the final concentration of the
pollutant at each point of the riverbed.

Singularly perturbed convection-diffusion BVPs of type (1.2) often exhibit the
presence of boundary layers, small regions of the domain €2 where the solution
u exhibits a sharp change in its gradient. In turn, the existence of boundary
layers presents a challenge for numerical methods to finding an accurate numerical
representation of u, and usually require special discretization techniques in order
to guarantee the stability of a numerical solution method [60]. A very popular
approach is to use finite difference methods for approximating the derivatives of (1.2)
on a piecewise equidistant mesh, known as a Shihskin mesh, which decomposes the
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domain into subregions with different resolutions; typically allowing to emphasize
computational attention in the region of interest inside of the boundary layers
present in each particular problem; see e.g., [73]. A general overview of these types
of problems, their difficulties and solution approaches can be found, e.g., in the
excellent survey article [74].

The decomposition of the domain into various subregions, caused by the use of
a Shishkin mesh to discretize the domain, is reflected on the resulting discretized
convection-diffusion operators A, by exhibiting a particular block sparse structure.
Consequently, the property of block-sparsity in the entries of the operator suggests
the implementation of iterative solution methods when solving linear systems of
the form (1.1) with such coefficient matrices [69]. In particular, the use of domain
decomposition methods like the multiplicative Schwarz method seems to be a
natural choice of solution approach for these problems and, indeed, its efficiency
is corroborated by numerical experiments (see Figures 3.1-3.5 which show the
convergence of the multiplicative Schwarz method and compare them to Figures 2.8
2.8 which show the convergence of the unpreconditioned GMRES method). Most of
the work presented in this thesis will concern with the analysis of the multiplicative
Schwarz method for solving systems of type (1.1) coming from one- and two-
dimensional finite difference discretizations of problems of type (1.2).

The (algebraic) multiplicative Schwarz method, which is often called the alter-
nating Schwarz method (see [34] for a historical survey), is a stationary iterative
method for solving large and sparse linear algebraic systems of the form (1.1). In
each step of the method, the current iterate is multiplied by an iteration matrix
that is the product of several factors, where each factor corresponds an inversion of
only a restricted part of the matrix. In the context of interest of this thesis, i.e., the
numerical solution of discretized convection-diffusion problems, the restrictions of
the matrix correspond to different parts of the computational domain subdivided by
the Shishkin mesh. This motivates the name “local solve”, which is a popular term
used to describe each of these factors and is also used in a purely algebraic setting.
The method is for the most part used as a preconditioner for a Krylov subspace
method such as GMRES and many of its convergence results have been presented
in that context; see, e.g., the treatment in the books [21, 76|, and many references
therein. When the method is considered from an algebraic point of view, as we
do in this work, it is commonly treated as a s solution method; see, e.g., [5]. The
convergence theory for the multiplicative Schwarz method is well established for
important matrix classes including symmetric positive definite matrices and nonsin-
gular M-matrices [5], symmetric indefinite matrices [32, 33|, and H-matrices [14].
The derivation of convergence results for these matrix classes is usually based on
splittings of A and no systematic convergence theory exists however for general
nonsymmetric matrices.

Several authors have previously applied the alternating (or multiplicative) Schwarz
method to the continuous problem (1.2) based on the partitioning of the domain
into overlapping subdomains, and subsequently discretized by introducing uniform



1.1. Scope and Goals

meshes on each subdomain; see, e.g., [28, 29, 55, 54, 56, 57, 59]. However, as clearly
explained in [57], significant numerical problems including very slow convergence
and accumulation of errors (up to the point of non-convergence of the numerical
solution) can occur when layer-resolving mesh transition points are used in this
setup. These problems are avoided in our approach, since we first discretize and
then apply the multiplicative Schwarz method to the linear algebraic system. To the
best of our knowledge, this approach has not been studied in the literature so far.

For problems in one spacial dimension, studied in Chapter 3, the structure of the
coefficient matrices exhibits a tridiagonal structure and the main mathematical tool
used in our analysis exploits the fact that such discrete operators are diagonally
dominant. For problems in higher spatial dimensions, studied in Chapter 5, the
discretized operator exhibits a block tridiagonal structure. In order to perform
an analysis analogous to the one-dimensional case, we generalize the property of
diagonal dominance from the scalar case to the case where the matrices possess a
block structure and develop a new mathematical theory of block diagonal dominant
matrices. The theory is presented in Chapter 4 and it is general enough that it can
be applied to any matrix with a block structure, however it seems to be particularly
useful for matrices coming from discretizations of PDEs.

As mentioned before, the system matrices we study in this work are nonsymmetric,
nonnormal, ill-conditioned, and in particular not in one of the classes considered
in [5, 14, 32, 33]. Moreover, our derivations are not based on matrix splittings, but
on the off-diagonal decay of the matrix inverses, which in turn is implied by diagonal
dominance. From a broader point of view our results show why a convergence theory
for the multiplicative Schwarz method for “general” matrices will most likely remain
elusive: Even in the simple model problem considered in Chapter 3 and in [23], the
convergence of the method strongly depends on the problem parameters and on
the chosen discretization, and while the method rapidly converges in some cases, it
diverges in others.

1.1. Scope and Goals

The scope of this thesis aims to provide an analysis of the convergence behavior of the
multiplicative Schwarz method when it is used to solve linear systems arising from
special finite difference discretizations of singularly perturbed convection-diffusion
problems posed on a Shishkin mesh. We restrict our attention to the cases where
the domain () is one- or two-dimensional, and we analyze the method both as an
algebraic solution approach as well as a preconditioner for the GMRES method.
The analysis presented in this work brings an understanding on why this solution
technique is so effective for solving problems arising from the Shishkin mesh dis-
cretizations. We do this by providing convergence bounds for the norm of the error
generated by the method at each iteration step. Moreover, the convergence bounds
provided in this thesis, in the paper [22], and in the manuscript [24], shed light on an
apparent contradiction: If the continuous problem becomes more difficult (a smaller
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diffusion coefficient is chosen), then the convergence of the multiplicative Schwarz
method for the discretized problem becomes faster.

The mathematical tools developed in this work to achieve its main goal are,
however, more general. The theory of block diagonal dominance of matrices presented
in Chapter 4, with the bounds and eigenvalue inclusion sets resulting from our
analysis, does not only apply to operators coming from discretizations of BVPs but
is applicable to any matrix A € CV*V with a block structure.

1.2. Outline and Summary of Main Results

We begin by introducing a short review of the theoretical background material needed
to understand the results presented in this thesis in Chapter 2. An experienced reader
in these topics, might use this chapter for reference and directly visit Chapters 3 —
5 which encompass the main findings of this thesis: results for one-dimensional
model problems, results for general matrices, and results for two-dimensional model
problems. Finally, Chapter 6 provides a brief discussion and outlook on possible
continuations of this work. The appendix A provides instructions for obtaining the
computational code in order to perform and reproduce the numerical experiments
presented throughout this thesis. In the following we provide a brief summary of
the results obtained in each of the main chapters of this thesis:

Chapter 3: In this chapter, we analyze the convergence of the multiplicative
Schwarz method applied to nonsymmetric linear algebraic systems obtained from
discretizations of one-dimensional singularly perturbed convection-diffusion equa-
tions by upwind and central finite differences on a Shishkin mesh. Using the algebraic
structure of the Schwarz iteration matrices we derive bounds on the infinity norm
of the error that are valid from the first step of the iteration. Our bounds for
the upwind scheme prove rapid convergence of the multiplicative Schwarz method
for all relevant choices of parameters in the problem. The analysis for the central
difference is more complicated, since the submatrices that occur are nonsymmetric
and sometimes even fail to be M-matrices. Our bounds still prove the convergence
of the method for certain parameter choices.

Chapter 4: Here we generalize the bounds on the inverses of diagonally dominant
matrices obtained in [62] from scalar to block tridiagonal matrices. Our derivations
are based on a generalization of the classical condition of block diagonal dominance
of matrices given by Feingold and Varga in [30]. Based on this generalization, which
was recently presented in [22] and a similar definition appearing first in [4], we also
derive a variant of the Gershgorin Circle Theorem for general block matrices which
can provide tighter spectral inclusion regions than those obtained by Feingold and
Varga.
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Chapter 5: Finally, we analyze the convergence of the multiplicative Schwarz
method applied to linear algebraic systems with matrices having a special block
structure that arises, for example, when a partial differential equation is posed and
discretized on a domain that consists of two subdomains with an overlap. This
is a basic situation in the context of domain decomposition methods. Again, our
analysis is based on the algebraic structure of the Schwarz iteration matrices, and
we derive error bounds that are based on the block diagonal dominance of the given
system matrix. Our analysis does not assume that the system matrix is symmetric
(positive definite), or has the M- or H-matrix property. Our approach in this chapter
significantly generalizes the analysis for a special one-dimensional model problem
treated in Chapter 3.



2. Background Material

“Accurate modelling of the interaction between convective and diffusive processes is
the most ubiquitous and challenging task in numerical approximation of partial
differential equations.”

— K. W. Morton, Numerical Solution of Convection-Diffusion Problems [60]

2.1. Steady-State Convection-Diffusion Problems

Steady-state convection-diffusion problems arise in a wide range of mathematical
models which aim to describe a variety of phenomena appearing in the natural
world. In the area of fluid flow, which is the most attributed area of science where
this equation plays an important role, they often appear in the linearization of
the Navier-Stokes equations as well as the Oseen equations [7] and they typically
aim to describe the transport of a certain concentration over a flow field. However,
the range of application of these type of problems includes many other models of
physical phenomena, like it is the case of the modeling of convective heat transport,
the modeling of the concentrations of chemicals in a chemical reactor [38] as well
as modeling the oil extraction from underground reservoirs [18]. Other physical
phenomena, apparently unrelated to fluid flow, such as the modeling of electronic
transport in semiconductor materials can also be described by such problems [58].

In their most simple form, steady-state convection-diffusion problems are described
mathematically by the one-dimensional boundary value problem:

5% u(x ou(z .
_6081(2) +wx06(x) +ﬁu(:v) Zf(l'), m (071) (2 1)
u(0) = go, and wu(1) = g1,
and more generally by its n-dimensional analogue:
—eAu(x) +w-Vu(x) + pu(x) = f(x), in QeR"” (2.2)
u(x) =g(x). on 0. '

The partial differential equation (PDE) in (2.1) or (2.2) is classified as a linear
second-order elliptic PDE (see Section 2.1.1) where the term w - Vu(x) in (2.2)
models convection and the term —eAwu(x) models diffusion. In most applications
the parameter € > 0 is small, typically in the range O(1072) to O(1078) while the
magnitude of the flow field |w| is typically of O(1), so that very often convection
dominates diffusion. More specifically, in order to have a relative measure of which
term is more dominant than the other it is common to introduce the Peclet number,
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Pe. If L is a length associated with the domain € (length of the interval in 1D,
longest length inside the domain for 2D, etc.), then

L
Pe = ?max{|wx|,\wy|,...,\wd|}, (2.3)

where w;,wy,...wq are the components of w and thus for most practical cases
Pe > 1, constituting what is known as a singularly perturbed PDE.

The region €2 can be any reasonable domain in n-dimensions and the velocity
field w, which throughout this work will be considered as incompressible (i.e., we
assume that V-w = 0), is used as reference to partition the boundary of the domain,
092, as follows:

00, = {x on 9N |w(x) -n(x) >0}, the outflow boundary,
00 = {x on 0N |w(x) -n(x) =0}, the characteristic boundary, (2.4)
00- = {x on 9N |w(x) -n(x) <0}, the inflow boundary,

where n(x) denotes the unit outward pointing normal vector to the boundary at
the point x.

Since a typical value of € in a convection dominated problem is of O(107%), the
influence of the diffusion term is very small and the solution u to (2.2) is usually
very close to the solution # of the equation:

w - Vi(x) + fa(x) = f(x), (2.5)

commonly known as the reduced problem. It is important to note that the highest
order derivative in equation (2.5) is of lower order than that of (2.2), and its solution
4 will most likely not be able to satisfy all the boundary conditions imposed on the
original problem. In order to do so, the solution u to the convection-diffusion BVP
usually presents sharp gradients close to the outflow boundary of the domain and u
is said to have have an exponential boundary layer along the outflow boundary 0€2..
Sharp gradients of the solution may also appear in the interior portion of {2 if any
number of discontinuities are present in the boundary conditions set on 0{2_. The
diffusion term takes care of smoothing such discontinuities into a continuos but steep
characteristic/internal boundary layer. The appearance of both types of boundary
layers represent the main challenge when constructing numerical approximations to
the solutions of (2.1) and (2.2) and constitutes the main reason why most numerical
methods will not work satisfactorily when solving these type of problems; see [60].
Thus, the accurate solution of such problems requires the use of special discretization
techniques and /or the use of specially fitted methods which modify the linear operator
in (2.2) in order to guarantee the stability of a numerical method [73]. A general
overview of accurate solution techniques can be found, e.g., in the survey article [74]
or in the monographs [53, 67]. One widely accepted discretization technique in this
context, and which represents the main focus of this work, is given by using upwind
or central finite difference schemes posed on a Shishkin mesh as described, e.g.,
in [74, § 5] or [28, 47, 52, 59].
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2.1.1. Elliptic Operators

In its most general form, a linear second-order partial differential equation can be
written as

Aa=f (2.6)

Usually the PDE holds on a domain € € R? where the operator A can be written as
@2 82 82 0 0

A= v — +q—+r, (2.7)

8:E8y 8y2 Por Oy

where the coefficients a, b, ¢, p, ¢, usually depend on both space variables x and
y. The behavior of the solutions to (2.6) is usually determined by the highest
order derivatives in the operator A so for the sake of discussion and without loss of
generality we will consider p =g =r =0 and a > 0. There are three alternatives for
classifying such operators (see [25, 27] for a detailed description of the classification
of PDEs), which are

b% - dac > 0, Hyperbolic-type,
b2 —4ac=0,a>0, Parabolic-type, (2.8)
b% - 4ac <0, Elliptic-type.

The convection-diffusion equation in (2.2) defines a linear second order differential
operator of elliptic-type, given by:
2 2
Au——e(gxz g—yg)ﬂ,ux% +wyg—z + Bu (2.9)
where, in general, the coefficients €,w;,w, and 8 represent functions of the space
variables z and y. Very often in practice, and throughout this work, they will
be considered constant unless otherwise specified. In order to have a uniquely
defined solution an appropriate condition must be specified at each point of the
boundary 0€2. By partitioning the boundary into three disjoint sets I';, i =1,2,3
with 02 =T; uT'y UT'3, and n(x) denotes the unit outward normal vector to 02 at
the point x = (x,y) then the boundary conditions are given by

u(x) = g(x), xel'1, Dirichlet,
n(x)-Vu(x) =g(x), xel's, Neumann, (2.10)
y(x)u(x) +0(x)n(x) - Vu(x) = g(x), xel's, Robin,

where ~,d, and g are known functions. More generally, the boundary conditions can
be written in compact form as Bu = g so that the boundary value problem can be
written as @/u = .%#, where

in Q in Q
o = Au in £, , and Z = fomo (2.11)
Bu on 09, g on S

In further sections of this work we will only treat problems with Dirichlet boundary
conditions.
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2.1.2. Finite Difference Methods

The aim of numerical approximation methods for solving PDEs is to construct
accurate numerical solutions to BVPs of the form (2.11) that may or may not have
analytical solutions. Of the available methods, those employing finite differences
or finite elements are more frequently used and more universally applicable than
any other, although finite elements are not considered in this work. For an excellent
treatment of solving BVPs with finite elements please refer to the monograph [25],
for a comprehensive survey on the theory of finite elements see [12].

In short, in a finite difference method a set of mesh of points is introduced within
the domain of definition of the BVP and then any derivatives appearing in the
PDE or boundary conditions are replaced by finite difference approximations at
the mesh points. Thus, finite difference methods are approximate in the sense that
derivatives at a point are approximated by difference quotients over a small interval,
i.e., uy = Ou/Ox is replaced by Au/Az where Az is small and y is constant, but
they are not approximate in the sense of being crude estimates. In the following we
will describe the method for a two-dimensional model problem.

As much as the analytic solution of the BVP is a function u defined on a domain
Q, say [0,1] x [0,1], finite difference methods seek a numerical solution only at a
finite number of grid points:

QD:{(xi,yj):i:O,...,N;j:O,...,M}.

The grid points on the boundary are denoted by 0{2p, and the entire grid by
Qp =QpudQp. We can evaluate the exact solution of the BVP on the introduced
points to obtain the values

w(zo,ynmr) ul(zi,ym) ... u(xn,ym)
u(zo,y1)  w(zr,y1) ... ulen,y1)
u(zo,yo) u(x1,%) ... u(zn,yo).

The finite difference approximation scheme replaces the given BVP with a set of
(N +1) x (M +1) finite difference equations in (N +1) x (M +1) unknowns. The
function «”, commonly referred to as a grid function is only defined on the set of
grid points Qp and its value at the grid point X;,j = (xi,;) is denoted by ug

D D D

Yo,pr Yin oo UNM
D D D
uO’l ULl . e uN,l

D D
Yo Yo - Unp

The solution to the finite difference equations can then be identified with the grid
function u”, whose value uﬂ at a typical point x; ; = (x;,y;) € Qp approximates
the exact solution u; ; = u(x;,y;) at that point. The values of uP at the internal
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grid points are found by solving the system of finite difference equations while the
values of u” at the boundary nodes are known from the Dirichlet conditions. The

premise of the method being that each element from the set u(l)?o, e ,ug, a should
converge to its corresponding element in u(zg,yo), ..., u(znN,yr) as N, M — oco.
slice
) T
0

Figure 2.1.: Generic function of two variables with sufficiently many derivatives.

The interchange of differential equations and their boundary conditions by alge-
braic equations in the finite difference method is accomplished by analyzing the
Taylor series expansions at each point. To exemplify this process we will assume
that the function v(x) = v(x,y) possesses enough continuous derivatives for the
Taylor series expansions to be well defined. An example of such a function is given
in Figure 2.1

Xi-1,j hay  Xij hag, Xitrlj

Figure 2.2.: One-dimensional slice of the function depicted in Figure 2.1. The chords
DE, EF and DF are different possibilities of approximating the slope
of the tangent at the point F.

Figure 2.2 represents a slice of the function pictured in Figure 2.1 for a constant
value of y, the gradient of the function v(x) = v(x,y) at point E (x;; = (z4,y;)) in
the z-direction may be approximated by the gradients of any of the three chords
DE, EF, or DF, each case with its own degree of approximation. The slope of
the backward chord at the point E (x;; = (x;,y;)) can be associated to the the

10
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following one-directional Taylor expansion in two-dimensions:

0 ok Az?
0u@,y) \, , (& y) AzT
ox Ox? 2
for some number £ € ((z,y), (z + Az,y)), we choose the point x;; = (2;,y;) and

rearrange the previous expression to give:

v(x - Az,y) =v(z,y) - (2.12)

Ov(zi,y;) _, _ ha, 0%0(&ir y5)

TJ = hxil(vi,j - Uz‘—l,j) + 7T2j’ & € (o1, m4),
where the subscript i in & reflects its dependence on (x;,y;). We have

ov(x,y; _ _

% = gy (Vi = vie1) + Rij = 1) (vij = vic ) + O(ha,).

The remainder term, commonly referred to as the local truncation error R; ;
(see [64] for a good discussion of error distributions), corresponds to truncating
the Taylor series (2.12). When the local truncation error is neglected, we obtain
the backward difference approxiamtion of % at the point x; j = (z;,y;). The
backward difference operator or upwind finite difference operator in the z-direction,
A7, is defined by

Agvij = Vij = Vi-1,j, (2.13)
and so % ~ hyt Ajv;; with an error O(hy,).

We chose the expansion (2.12), however we can proceed in a similar fashion using

the forward version of the Taylor series instead:

ov(z,y) \ - Pv(&y) Ax?

+A = + 2.14
and by defining the forward finite difference operator in the z-direction, A},
ALVij = Vislj — Vi, (2.15)

we obtain another approximation to the derivative of v at the point x;,
W ~ hy! Alvij now with an error of O(hy,,,).

Finally, by defining the central finite difference operator in the a-direction, A%,
Adv;j = Vi1 — vic1j, (2.16)

we find that % ~ (hy, + hxm)_lAgvm now with an error O ((hch + th)Q). It
is possible to obtain more accurate approximations by including more terms in the
Taylor series (2.12) and (2.14) before truncating it, obtaining higher order methods
(see [20] for a discussion in this direction).

In order to approximate second order derivatives (and most even-order derivatives),
it is common to introduce another “artificial" central approximation

(2.17)

02035 = Visl i~ Vil

11
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which makes use of intermediate points which are not on the grid. This approximation
corresponds to the A approximation with a half-step h;,/2. Nevertheless, by
computing 0,(0,)v; ; we obtain

5x(5xvi7j) = Vitl,j — 21)1'7]' +Vi-1,5- (218)

In the exact fashion as above, by considering both Taylor approximations (2.12) and
(2.14), adding them together adn evaluatng at the point x; ; we obtain a centered
finite difference approximation to the second derivative,

821)(15‘1'7 y])

-2 2 -2¢2
- har (Viv1,j = 2055+ vi-15) = O(hg,) ~ hy 67v; g,

with a remainder term proportional to hii.
This analysis can be repeated for approximating the partial derivative of the
function v in the y-direction to obtain analogous results. Using the notation v, = %,

2 . .
Ugg = %, and where hy_; = hy, + hg,,, we summarize the results in Table 2.19

AZV;j = Vis1,j = Vij = hay, Vg + 1h§ivm + O(him) Forward differences
o _ 2 3 ;

Ayvij =01 = Vijj = by, vy + 5hy vy + O(hym) Forward differences

ALV 5 =0 —Vi1j = ha Vg — lhiivm + (’)(hii) Upwind differences

Aévi,j = Vi j — Vijo1 = hy,vy — 52 vy + O(h3) Upwind differences

ALV = Vig1,j = Vie1j = NagVs + —hicﬂvmx + O(hicﬁ) Central differences

Agvm =V i1 — Vi1 = hyqUy + gh‘zeﬁ,vyyy + O(hieﬂ) Central differences

59231)@]- = Vis1,j — 2055 + Vi1 = By Vs + %hieﬁvmm + (’)(hgeﬁ) Central differences
20—y . Oay. . = P2 14 6 ;

OyVij = Viga1 = 205 + Vi1 = Ry Vyy + 5l qVyyyy + O(hy, ) Central dlﬁ%?(“@m@;’

2.19

2.1.3. Shishkin Mesh in 1D

In order to obtain an accurate numerical solution of BVPs with singularly perturbed
convection-diffusion problems described by equation (2.1), we require special dis-
cretization techniques. As mentioned in Section 2.1, we focus on the approach of
using upwind or central finite difference schemes posed on a Shishkin mesh, an
approach described described, e.g., in [74, § 5] or [28, 47, 52, 59]. In this subsection
we introduce the one-dimensional Shishkin mesh and describe its construction. For a
comprehensive treatment of layer-adapted meshes for convection-diffusion problems
see the monograph [53]. Without loss of generality, we assume that w, > ¢ >0 and
B >0 and that the parameters of the problem (2.1), i.e., €,w,, 3, f, g0, and g1, are
chosen so that the solution u(x) has one boundary layer close to the point x = 1.
In short, Shishkin meshes are formed by an overlapping union of piecewise uniform
meshes, with their respective sizes and mesh transition (or interface) points adapted
to the expected width of the boundary layers in the solution. Suppose that an even

12
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0 1-74 1
| | | | | | | | | | | I
| | | | 1 | | | | | LLRACARERN
To H, Tn, hy TN

Figure 2.3.: Illustration of a one-dimensional Shishkin mesh.

integer N > 4 defining the number of intervals constituting the Shishkin mesh is
given, and suppose that the mesh transition parameter, 7., fulfills

1
=25l N <= (2.20)
w 2
The inequality in (2.20) means that
w
< — 2.21
i (2.21)

which is a natural assumption since w > €, and the number of mesh points usually
is not exponentially large relative to €. The mesh transition point 1 — 1, then will
be close to x = 1, and the boundary layer will be contained in the (small) interval
[1-74,1]. The idea of the Shishkin mesh discretization of the interval [0,1] is to use
the same number of equidistantly distributed mesh points in each of the subintervals
[0,1-7;] and [1 -7, 1] as can bee seen in Figure 2.3. Thus, if we denote

n=—, Hy=—=2and hy=-2, (2.22)
n
then the NV + 1 mesh points of the Shishkin mesh are given by
ri=1H,, 1=0,...,n, x;=1-(N-i)hgy, i=n+1,...,N.

Here zg = 0 and =z =1, so that the mesh consists of N — 1 interior mesh points,
where the mesh point z,, is exactly at the transition point 1 —7,. The ratio between
the mesh sizes in the two subdomains is

= = O(rd)
which is usually much less than 1.

Any Shishkin mesh discretization naturally leads to a decomposition of the given
domain into overlapping subdomains. In our one-dimensional model problem the
domain is the interval [0,1], and the overlapping subdomains are the intervals
[0,1 -7, +hy] and [1 -7, — Hy,1]. The width of the overlap is H, + h, = 2/N, and
the mesh transition point x,, = 1 — 7, is the only mesh point in the overlap. An
illustration of a Shishkin mesh is shown in Figure 2.3, and a plot of the (explicitly
known) analytic solution of the problem (2.1) with e=0.03, w =1, 3=0, f(z) =1,
and go = g1 = 0 is shown in Figure 2.4 cf. [74, Example 3.1]. Choosing, for example,
N = 48 gives the mesh transition point 1 -7, = 0.7677 (these parameters were
chosen for presentation purposes only, if we choose € = 0.01 while keeping the other
parameters constant we obtain 1 — 7, = 0.9226).

13
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0 1-7, 1

Figure 2.4.: Analytic solution of problem (2.1) with e=0.03, w=1, =0, f(z) =1,
and gg = g1 =0. For N =48 the mesh transition point is 1 — 7, = 0.7677.

2.1.4. Shishkin Mesh in 2D

In the case of two spacial dimensions, we can create various types of Shishkin meshes
depending on the number of outflow boundary layers in each coordinate direction
for a given problem. In the case of one boundary layer in one direction and no layer
in the other direction we will use a combination of a regular discretization in the
coordinate direction without a boundary layer with a Shishkin mesh discretization
in the coordinate direction with an outflow boundary layer. In the other case we
will use two Shishkin meshes, one for each coordinate direction.

2.1.4.1. One Outflow Boundary Layer

The simplest generalization of the Shishkin mesh for the case of two spacial di-
mensions is to use a discretization approach that combines a regular mesh in
one coordinate direction (say x) with a Shishkin mesh discretization in the other
coordinate direction (say y).

1 Ym
Qo hy
1- Ty Ym
Q
1 Hy
0 Yo
0 1 Zo H, TN

Figure 2.5.: Division of the domain and Shishkin mesh for equation (2.2) with one
outflow exponential layer.

14
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Given now two even positive integers N >4 and M > 4 that denote the number of
mesh intervals used in each coordinate direction, we let the transition parameter
7, that will be used to specify where the mesh changes from coarse to fine in the
y-direction, be defined by

7, = min{1,2ilnM}. (2.23)
27wy

Since we assume wy, > € (or equivalently that e < CM 1), we will have 7, = ny InM «< 1,

so that in this case the mesh transition point 1-7, will be very close to the boundary

y = 1. By assuming that the parameters of the problem, i.e. €,w, 3, f, and g, are

chosen so that the solution u(x,y) has one boundary layer at y = 1. In particu-

lar, this is achieved by assuming that w = [O,wy]T, and wy > 0. The use of this

Shishkin mesh discretization scheme will divide the domain €2 into two overlapping

subdomains, Q = Q; U Qy, where

01 =[0,1]x[0,1-7,], Q2=[0,1]x[1-7,1].

This subdivision is shown in the left side of Figure 2.5.

Let m = %, if we denote by H, the mesh width in the 2- direction and by h, and
H, the mesh widths inside and outside the boundary layer in the y-direction, i.e.,
1 1-

Hy=—, hy E, and H,= ( Ty), (2.24)
N m m
then the (N + 1) x (M + 1) nodes of the Shishkin mesh are given by

Qp ={(2,y;) €Q:i=0,...,N,j=0,...,M},

where

x;=iH,, for ¢ =0,...,N, and y; L= (N = )b, for j=m+1 M
y = yeooy M.

(2.25)
The mesh is constructed by drawing lines parallel to the coordinate axes through
these mesh points; see the right side of Figure 2.5. Here 29 =0, yo =0 and zy =1,
ym = 1 so that the mesh consists of NV — 1 interior nodes in each direction and
where the node y,, is exactly at the transition point 1 -7, in the y- direction. In
contrast to the one-dimensional case where the overlapping subdomains intersect in
exactly one grid point, in this two-dimensional case we have a whole row of grid
points in common. The N -1 nodes with vertical coordinate equal to y, =1 -7,
are the grid points in the overlap. It is clear that the mesh widths on ; satisfy
1/N < H,, H, <2/M, so the mesh is coarse in this domain. On the other hand, h,
is O(eM11og(M)), so on 2y the mesh is coarse in the 2 direction and fine in the
y direction. The ratio between the different mesh sizes in the y direction is

{ij for j=0,...,m,

hy Ty 2
— = =7,+0 «< 1.
H'y 1-— Ty Ty (Ty)

15
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Example 2.1. We consider the BVP (2.2) defined on Q = (0,1) x (0,1) € R? with
B8=0, f =0 and boundary conditions determined by the function

1- e<2y2>/e)

=T (2.26)

u(z,y) = (22 -1) (
A three-dimensional rendering of the analytic solution to this problem is shown in
Figure 2.6 for the case € = 0.01. In most parts of the domain €2, the values of the
solution u(x,y) closely resemble the ones given by the inflow boundary condition
u(z,0) =2x - 1, except in a vicinity of the outflow boundary where they abruptly
change to the constant values u(x,1) = 0. The boundary conditions at x =0 and
x =1 satisfy u(0,y) » =1 and u(1,y) ~ 1 respectively (see [25, Example 6.1.1] where a
similar problem is presented) and its values also change drastically as they approach
the outflow boundary, where they change from ~ -1 or ~ 1 to 0. The portion of the
domain where these changes occur is proportional to € and it is determined by the
function 6(2_23/)/5, thus, when small enough values of € are chosen, the changes in
the function u occur abruptly enough and in a portion of the domain that is small
enough so that the solution of (2.2) presents an exponential boundary layer in this
particular region of the domain.

Analytic solution Analytic solution

Figure 2.6.: Three-dimensional surface plot of the analytic solution of (2.2) with
n=2,wy,=0and e=10"" for two different viewing angles.

This will be the main example used in future chapters to exemplify the theoretical
results obtained for two-dimensional problems.

2.1.4.2. Two Outflow Boundary Layers

In the case of two outflow boundaries, we can now use a one dimensional Shishkin
mesh in each coordinate direction. Again, given two even positive integers N >4 and
M > 4 that denote the number of mesh intervals used in each coordinate direction,
let the transition parameters 7, and 7,, that will be used to specify where the mesh
changes from coarse to fine, be defined by

1 1
Ty = min{—,Qi lnN} and 7, =min —,2i InM ;. (2.27)
2 wy 20wy

16
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Once again, since we assume wy, wy > €, we will usually have 7, =2-=1In N « 1 and

=2-In M « 1, so that in both spacial directions the mesh tmnsztzon points 1 -1,
and 1 yTy will be located very close to the boundary with z =1 in the z-direction
and very close to the boundary with y = 1 in the y-direction.

In the case of this discretization scheme the domain 2 is divided into four
overlapping subdomains, where Q = Q1 UQy U Q3 U §y. That is, by again letting
n = % and m = %, the mesh division divides €2 into a set of 4 subdomains, each of
them consisting of n x m rectangles giving nm interior nodes in each subdomain.
This subdivision is shown on the left side of Figure 2.7.

HSE hx
1 YM
Q3 Q4 h
1- Ty Ym v
Q, Qs
H,
00 1-7, 1 yoxo Typ TN

Figure 2.7.: Division of the domain and Shishkin mesh for equation (2.2) with two
outflow exponential layers.

If we denote the mesh widths outside and inside the respective boundary layers
by H, h, and Hy, hy, i.e.,
(1-7)

1 X xX
e S M il

H,= v
n n m m

then the four overlapping subdomains are given by

Q= [0,1-74+hy)x[0,1-7y+hy), Qo =(1-7p-Hy, 1] x[0,1 -7y + hy),

Q3= [0,1-74+hg)x(1-7y—Hy,1], O =1 -7 - Hy, 11 x (1 =7y - Hy, 1],
(2.28)

the (N +1) x (M +1) nodes of the two-dimensional Shishkin mesh are now given by

QD:{(xi)yj)eﬁ:izo)"‘vNuj:[)?""M}’

where
1H, for 1=0,...,n
x; = )
T l1-(N-i)h, fori=n+1,...,N,
and
_JJHy for j=0,...,m
TN (M- jhy, for j=m+1,... M.

17
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The mesh is constructed by drawing lines parallel to the coordinate axes through
these mesh points, i.e., the mesh is obtained by a tensor product of two one-
dimensional piecewise uniform meshes; see the right side of Figure 2.7. Here x¢ =0,
yo=0and zx =1, yps = 1 so that the mesh consists of N —1 and M -1 interior
nodes in each respective direction, where the node z,, is exactly at the transition
point 1 -7, and the node y, is exactly at the transition point 1-7,. It is clear that
the mesh widths on € satisfy 1/N < H, <2/N and 1/M < H, <2/M, so the mesh
is coarse in this domain. On the other hand, h, and h, are O(eN'log(N)) and
O(eM1og(M)) respectively, so the mesh is very fine on 4. On Q9 and Q3, the
mesh is coarse in one direction and fine in the other direction. The ratio between
the different mesh sizes in the z-coordinate direction is again

— = =7+ O(72) < 1.

and similarly for the ratio Z—Z

2.1.5. Approximation of BVPs

In the most general setting, in order to find a finite difference representation of a
BVP, both the PDE and the boundary conditions need to be replaced with a suitable
approximation. Here, the approximation process will be illustrated through the
Dirichlet problem of the convection diffusion equation posed on the square domain
Q=(0,1)x(0,1).

We first denote the internal grid points where the equation will be approximated by

Qp ={(zi,y;);i=1,...,N-1; j=1,...,M -1},

and denote the grid points on the boundary by 9Qp and the entire grid by Qp =
Qp udflp. Since boundary conditions of Dirichlet-type are exact in the boundary
nodes, an approximation of the boundary conditions is not needed and we can focus
our attention on the approximation of the PDE. We proceed to evaluate the PDE
of our two-dimensional BVP (2.2) at the internal grid points of the mesh to obtain

—eAu(zi,y;) + w(wi, yj) - Vulxi, y;) + B(xi, yi)u(ws, y5) = f(@i,y;5)- (2.29)

Using the standard finite difference operators (see Table 2.19 or e.g., [74, § 4]) to
represent the first and second derivative terms and using the notation w;; = w(x;,y;),
Bij = B(xi,vy;5), fij = f(2i,y;), etc., leads to the the upwind scheme approximation

—€ (h;féiuw + h;féguw) +wf]h;3A;u2] +wfjh;j1A;uij +ﬁij’u,i]‘ + O(hm ) + O(hyj ) = fU

(2.30)
This equation is satisfied exactly by the solution to the continuous BVP. By neglecting
the higher order terms, equation (2.30) will no longer be satisfied by u but by a
grid function u” which we hope will be close to the solution u. The finite difference

18
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equations that approximate the PDE are obtained by discarding the remainder
terms to yield, for each point (z;,y;) € Qp, an algebraic equation of the form
—€ (h;fdﬁ + h;fé;) Uiz + wf}h;}A;u” + w%h;]lA;u” + Bijuij = f” (2.31)
Since the values of the grid function are known on the boundary 9€)p, then equation
(2.31) gives (N —1) x (M - 1) linear equations to determine the unknown values of
the grid function on Qp.
By repeating this process for each point (z;,v;) € 2p we can obtain a finite
difference approximation, AP, of the differential operator A (defined in (2.9)):
AP = e (Rg207 + b 267) + wihp AL + Wl h LA + By, SN (232)

LA 1Y Ty PR =1,

and we can thus write the (upwind) finite difference discretization of our BVP as:

{ADug = —¢ (h;izég + h;?&g) ufl +wehy Agull + wyh;}A;ug + Bijul) = fij, in QP
BDug = ug. = gij, on 0P,
(2.33)
The (N -1) x (M -1) finite difference equations approximating the BVP (2.11) can
be written compactly as &7 Pu” = . FP where

D, D in Q in Q
o/ PuP = ADUD D and gD - finflp, (2.34)
B~u on 9 p, g on JQp.

2.1.6. The Shishkin Mesh Discretization of Convection-Diffusion BVPs

We can apply the concepts of the previous section to problems where the domain is
n-dimensional. In this work we present the results for n = 1,2, and we direct the
reader to [41, § 6.2] for a detailed description of the case where n = 1.

2.1.6.1. 1D Problems

We first consider the one-dimensional convection-diffusion boundary value problem
with constant coefficients and Dirichlet boundary conditions given by (2.1) and
proceed to apply the finite difference procedure described in Section 2.1.2 on the
one-dimensional Shishkin mesh presented in Section 2.1.3 and shown in Figure 2.3.

Applying the discrete operators given in Table 2.19 on the nodes of the Shishkin
mesh, where h; = H, fori=1,...,nand h; =h, fori=n+1,...,N — 1, we obtain
for the upwind scheme:

(2.35)
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and for the central finite difference scheme we obtain

1 (,D D _
m(ui+1—ui_1) for 2—1,...,7’1,—1,
0,D _ 1 D D _
Apui = 3 (uf, —u?y) for i=n, (2.36)
1 (,D D .
2hz(ui+1—ui_1) for i=n+1,...,N-1.

For the second derivatives, we obtain

1 D D D ;
H_g(“i—l_Qui +Uz’+1) for i=1,...,n-1,
2, D _ 2ul, 2ul 2ul, .
5xu1, - (Ho+hz)H, - Hohy + (Ho+ha)hs for = n, (237)
1 D D D -
@(“1—1_2% +ui+1) for i=n+1,...,N-1.

Thus, by including the boundary conditions and letting w(z) = w, > 0 and
B(x) =B >0 be constant along the domain, the finite difference scheme applied to
the continuous problem (3.2) results in the discrete version of our model problem:

(2.38)

2, D -/0, D D _ :_
—e0”u; +w7;A/ui +Bu; = fi, 1=1,...,N -1,
D D
Uy = 4go, Upn =41,

By collecting all equations for ¢ = 1,..., N—1, both finite difference schemes yield a
linear algebraic system (3.1) with the tridiagonal and nonsymmetric (N-1)x (N -1)
coefficient matrix given by:

[ ay by
Cu
bu
cy ay | by
A= clalb . (2.39)
Ch | an by
Ch
by
| Cn  Qn |
For the upwind scheme, the entries of A are given by
€ Wy 26wy b - €
TR wEgE gt e
2¢ Wy 26 wg 2€
= - — =—+—+ b=——-—— 2.40
Chaen m Cwmtmt? e
€ Wy 26wy €
Ch=—ﬁ—7, ah=ﬁ+7+ﬁ, bh:_ﬁ7
and for the central difference scheme by

€ Wy 2€ + 3 b € . Wy

C = —_— = — Qa = — = —_-— —_—

Tom? 2|’ g2t T g2 o

20



2.1. Steady-State Convection-Diffusion Problems

2 2 2
= — € p— wa; s (]J:_€+B7 b:— € + wﬂ,‘ ) (241)
H(H+h) h+H hH h(H+h) h+H
€ Wy 2e € Wy
Ch:_ﬁ_%a a‘h:ﬁ"'ﬁ: bh=—ﬁ+%-
If u=A"=[uP,...,uf_|]7 is the exact algebraic solution, and u(x) is the

solution of (3.2), then there exist constants cj,c2 > 0 such that

In N

D
- ) — . <
19{1’28]&1 |u(.’1§'2) U; | S C1

for the upwind scheme, and

2
 max  Ju(zi) - ul| < (%)
for the central difference scheme. Thus, the convergence of both schemes is e-uniform,
and the central difference scheme is more accurate than the upwind scheme. As
pointed out by Stynes [74, p. 470], the convergence proof for the central differences
(originally due to Andreyev and Kopteva [1]) is complicated since the scheme does
not satisfy a discrete maximum principle. We meet similar complications in our
analysis in Section 3.2.3 below.

2.1.6.2. 2D Problems

We now consider the two-dimensional convection-diffusion boundary value problem
with constant coefficients and Dirichlet boundary conditions given by (2.2) with
n =2 (see also (5.2)) and proceed to apply the finite difference procedure described
in Section 2.1.2 on the two-dimensional Shishkin mesh presented in Section 2.1.4
and shown in Figure 2.5.

Using the standard upwind finite difference operators and the lexicographical line
ordering of the unknowns of the Shishkin mesh, the finite difference scheme yields a
linear algebraic system Au = f of the form (5.3) with the block-tridiagonal matrix
A given by

[ Ay Bpy
Cu
By
Cy Ap | Bp
2 2
A= C|A|B e RM>M™ 0 (2.42)
Cn | A, By
Ch

. B,

c, A,
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2. Background Material

where M = N — 1. The blocks Cg, A, Bp, etc., each of dimension M x M, in
(2.42) are given by

Q
By
1

diag(dy), Ap =tridiag(cy,ay,by), Bpy =diag(ey),

diag(d), A = tridiag(c, a,b), B = diag(e), (2.43)
C, = diag(d,), Ay =tridiag(c,,an,by), By =diag(e,),

Q
I

where the entries are given by

d € Wy € Wa 2e+2a+wz+wy+18 b €
H="75" 7> CH=——75 "7 aH=_S+t_——o+_—+_— ) H=~—775, €H =

H2 H, HZ H, HZ Hj Hy Hy HZ
(2.44)
:_L_ﬂg =S Yz oo 26, % A T T NSO 2¢

Hy(Hy +hy) H, H2 H, H2  Hyh, H, H, H2
(2.45)

€ Wy € We 2¢ 2e Wy Wy €
, = —— = — ch=——=-—, ap=—+—+—+—+[, by = ——, e
"TThZ h, "TTH2 H, "THZ h2 H, h A " H2 "
(2.46)

That is, our matrix takes the form
AL em ® By
A= el oC A e]®B |, (2.47)
€1®Ch Ah

which has the same structure as (5.3).!

2.1.7. Properties of Discrete Convection-Diffusion Operators

The matrix in a linear algebraic system obtained from a Shishkin mesh discretization
of a singularly perturbed convection-diffusion equation is nonsymmetric, and often
highly nonnormal and ill-conditioned; as it has been shown in [23] and is exemplified
in the table below. Standard iterative solvers like the (unpreconditioned) GMRES
method converge very slowly when applied to such a system; see Figures 2.8-2.9
in this chapter for examples. On the other hand, the Shishkin mesh discretization
naturally leads to a decomposition of the domain, which suggests to solve the
discretized problem by the multiplicative Schwarz method. This is the approach we
explore in this chapter for one-dimensional model problems.

Both schemes lead to highly ill-conditioned matrices A. The main reason is the
large difference between the mesh sizes H and h, which implies large differences
between the moduli of the nonzero entries of A corresponding to each subdomain.
Thus, A is poorly scaled. As shown by Roos [66], a simple diagonal scaling reduces
the order of the condition number for the matrix from the upwind scheme from
O(e1(N/InN)?) to O(N?/InN). Although not shown by Roos, an analogous
diagonal scaling appears to work well also for the central difference scheme. As
it has been shown in [23] even with a proper scaling the solution methods exhibit
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2.2. Iterative Solvers

‘ upwind upwind scaled central central scaled
ra(A) | 4.0500 x 1010 2.9569 x 10°  6.2323 x 1017 2.9514 x 103
ko(Y) | 1.5143 x 1017 1.2297x 10Y  4.1070 x 103 1.8682 x 102

the poor solution behavior. The first row in the following table shows a numerical
illustration for e = 107®, w, =1, 8 =0in (2.1), and N = 198.

The second row of the table shows the condition numbers of the eigenvector matri-
ces from the decomposition A = YDY ! computed by [Y,D]=eig(A) in MATLAB.
We observe that the upwind scheme yields matrices with very ill-conditioned eigen-
vectors, i.e., highly nonnormal matrices. Apparently, the eigenvector conditioning is
not much affected by the diagonal scaling.

2.2. lterative Solvers

As we have shown in previous sections, the numerical approximation of BVPs leads
to linear algebraic systems of the form

Au-="f. (2.48)

In order to find a solution to (2.48), an iterative solver is a mathematical procedure
that uses an initial guess to generate a sequence of approximate solutions, where the
next approximation is obtained from the previous one. In contrast, direct solvers
attempt to solve equation (2.48) by applying a finite sequence of operations and,
in the absence of rounding errors, deliver an exact solution. In the following we
only provide a brief description of the iterative type of solution methods, which are
divided in two general classes: stationary iterative methods and the projection-based
Krylov subspace methods.

Starting with an initial approximate solution vector, u(?), stationary iterative
methods (fixed-point iteration methods) modify individual or groups of components
of the vector at each iteration step until a desired tolerance of approximation is
reached. Although these methods are rarely used by themselves to obtain solutions
to (2.48), when used as preconditioners to Kyrlov subspace methods, they can deliver
fast and efficient results.

Krylov subspace methods are a more sophisticated type of iterative methods,
which fall under the mathematical framework of projection methods, whose general
idea is based on what is known in literature as the Petrov-Galerkin conditions.
If the matrix A in (2.48) is an N x N real matrix, projection methods obtain its
approximate solutions from a subspace of RY, say K, commonly known as the search
space. If K is of dimension n, then in order to obtain an approximate solution, 1, to
(2.48) from this subspace, n constraints must be imposed. Typically, the constrains
consist of n orthogonality conditions on the residual vector, r = f — Au, with respect
to n linearly independent vectors which define another subspace of RY also with

'See (5.29) to see that the matrix A in (2.47) fulfills the conditions of block diagonal dominance.
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2. Background Material

dimension n, say L, known as the constraint space. Thus the Petrov-Galerkin
conditions lead to the general projection method:

Find e u® + K such that f— Aa L L. (2.49)

The approach given by (2.49) is the most general formulation of a projection
method which exploits the knowledge of the initial approximation vector u(o),
however, a detailed explanation of these methods falls outside of the scope of this
thesis.

For a thorough description and treatment of projection methods for solving linear
systems we point to the Ph.D. thesis [37]. For a very complete survey on the general
area of iterative solvers for solving linear systems please see [69] or the very compact
but excellently written [39]. For an in-depth analysis of Krylov subspace methods
as well as their historical development and state of the art see the monograph [51].

2.2.1. Stationary lterative Methods

Most stationary iterative methods (fixed-point iteration methods) begin by decom-
posing the coefficient matrix A in splittings of the form

A=M-N, (2.50)

where M is sometimes called a splitting operator (very often playing the role of a
preconditioner), and N is the associated error matriz. Using this decomposition, we
can equivalently write the linear system (2.48) as

u=M"'Nu+Mf. (2.51)

Given an initial approximation u(®) to the solution u, we can then define a stationary
iterative method that finds successive approximations to u by following the iteration

u® D = MI'Nu® + M'f. (2.52)

A variety of iterative methods is obtained by choosing different matrices M and N
in the iteration (2.52). Consider now the matrix A written as

A=L+D+U,

where L is the lower triangular part of A, U the upper triangular part and D its
diagonal. A short list of resulting iterative methods is given in the following table.

Richardson method, M = al,
Jacobi method, M™' =D
Weighted Jacobi method, M™'=aD™!,

Forward Gauss-Seidel method, M™'=(D+L)™},
Backward Gauss-Seidel method, M~ = (D +U)™,
Symmetric Gauss-Seidel method, M™ = (D +U)'D(D+ L),
Successive Over-Relaxation (SOR), M =a(D +alL)™,
Symmetric SOR, M™ =a(2-a)(D+aU)'D(D +aL)™,
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2.2. Iterative Solvers

Block variants of these methods are also possible, collecting groups of unknowns
and modifying them collectively at each iteration step (instead of individually
treating each entry); see for example [69] for a description and analysis in this
direction. Furthermore, other types of stationary iterative methods can also be
defined in the context of domain decomposition methods and will be treated in
Section 2.2.3). For an in-depth treatment of stationary iterative methods, their
analysis and implementation see [79]. Let us first turn to the issue of convergence
of stationary iterative methods of the form (2.52).

In general we say that a sequence of vectors x(1), x() . in CV converges to the
(m)

vector x € CVV if every component x, "’ satisfies

lim 2§ = ;, for all 0<j < .

k‘—)(X)

We say that an iteration of the form (2.52) is convergent if the iteration converges

to a fixed point as k — oo, i.e., if for each component uj(.k) of the vector u'®), the

limit limg_, oo u§k) exists and its equal to u;. If these conditions are fulfilled, we say

that the iteration converges and thus, at the limit £k — oo, the iterate from equation
(2.52) satisfies (2.51), and therefore solves the linear system (2.48).

We can measure how close our approximate solution is to the exact solution at
step k + 1 by defining the error associated to the approximation,

e®*D) =y —uk+D), (2.53)
and noticing that by subtracting (2.52) from (2.51) we obtain the relation
e - M I'Ne®, (2.54)

commonly referred to as the error equation and where M™'IN is known as the
iteration matriz. We can thus provide conditions on the convergence of iterations
of type (2.52) by studying the convergence of the error equation (2.54) instead; it

is clear that for any component, e§k), of the error vector e®) at step k, the limit

limy 00 e§k) exists if and only if limy_, o u§k) exists and if both of these limits exist,
then limy,_, o ug.k) = u; if and only if limy_, o eg.k) = 0. In other words, in order for the

iteration (2.52) to be convergent, we seek that every component of the error vector
vanishes as k — oo.
A closer look at (2.54) shows that we can use induction to obtain the relation

e® = (M 'N)* e, (2.55)

which shows that the error at step k£ will be related to the powers of the iteration
matrix. Thus, in order to have convergence we seek conditions such that

lim (M™'N)*e(® =0, (2.56)

k—oo
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2. Background Material

is fulfilled for any starting vector e(?). Since (2.56) should be fulfilled for any initial
starting vector (9, an equivalent condition is reached by finding conditions such
that .

lim (M™'N)" =0. 2.57
That is, the error of the iteration vanishes if and only if the iteration matrix M™'N
is convergent?. In a similar way to the case of vectors, we define a similar concept
of convergence for the case of matrix sequences as follows. We say that an infinite

sequence of complex matrices AO AM . each in CVV, converges to the matrix
(m)

A € CVN*N if all components, a; i of the matrix iterate, A(™), converge as we take

the limit m — oo, i.e.,

(m)

lim a; ;

m—0o0

= a5, for all 0 <7,57 < N.

The previous discussion shows that in order to have convergence of the iteration
(2.52), we seek conditions on the iteration matrix to be convergent. Furthermore,
in order to compare or decide whether an iterative method is better than another,
we need to compare their iteration matrices with some precise measure. The most
common measures are the spectral radius and the spectral norm of a matrix which
arise naturally from its eigenvlaues \; and by generalizing the concept of a vector
norm; see for example [44] for a complete treatment of vector norms, matrix norms,
spectral radii and for their connection to iterative methods see e.g. [72]. The spectral
norm of an N x N complex matrix A is defined by

A
|A] = sup LAX]L
g

while the spectral radius, p(-), of an N x N complex matrix A is defined by:

p(A) = max |Al.
On the one hand the spectral radius can be interpreted geometrically as the smallest
circle in the complex plane with center at the origin and which includes all the
eigenvalues of the matrix A. The spectral norm, on the other hand, can be
intuitively understood as the maximum ‘scale’ by which a matrix can ‘stretch’ a
vector. Furthermore, we can relate both quantities; using the sumbultiplicativity
property of the spectral norm it is easy to see that for a general N x N complex
matrix A and any consistent pair of vector and matrix norms, we have that the
condition
|A] 2 p(A),

is always fulfilled, and equality is achieved when A is Hermitian.

2For an N x N matrix A, we say that A is convergent (to zero) if the sequences A, A%, A3 ...,
converges to the zero matrix 0 and is divergent otherwise.
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2.2. Iterative Solvers

In summary, the convergence of the vector sequence ul®), given by the iterative
scheme (2.52), to the vector u, solution to (2.48) is ensured if and only if we have

[e®] = Ju-u®] > 0 as k - oo.

In turn, this is the case if and only if the norm of each powers of the iteration matrix
tend to zero as the iteration progresses. More precisely, we need:

[(MT'N)¥|| > 0 as k - oo,

i.e., we will only achieve convergence to the solution of the linear system if the
iteration matrix is convergent. In the proof of [79, Theorem 1.10] the author uses
the Jordan decomposition of a general matrix A € CV*V to show the following
result, which gives the exact conditions for this to happen:

A ¢ CVN is convergent if and only if p(A) < 1. (2.58)

Thus, an iteration of the form (2.52) is convergent if and only if the iteration matrix
satisfies
p(MIN) < 1. (2.59)

The previous condition is necessary since, in order to show that the mapping
u® — u**D ig indeed a contraction that leads to the fixed-point, the powers of
the iteration matrix need to approach zero as the iteration progresses. In turn, the
only way for this to happen - evident by considering the Jordan decomposition of
M™!N, is when all eigenvalues of the matrix are less than 1. The condition is also
sufficient for convergence since the powers of a matrix with all of its eigenvalues less
than 1 will tend to zero. It is also important to note that given the relation

M IN=-M'!M-A)=1-M'A,
the convergence condition is equivalent to

p(I-M™T1A) <1,
i.e., fast convergence can be expected if the “preconditioned matrix”, M1 A, is “close”
to the identity, or equivalently, if the preconditioner M! is a good approximation
to the inverse matrix A~!.

In the main chapters of this work we will focus on finding expressions that bound
the spectral radius as well as the norm of the powers of the iteration matrix of the
multiplicative Schwarz method, a fixed point iteration method that will be described
in Section 2.2.3.
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2.2.2. Krylov Subspace Methods and GMRES

Krylov subspace methods are projection methods where the search space, K in
(2.49) is a Krylov subspace, i.e., a subspace of the form:

Kn(A,v) =span{v, Av, A’v,... A" v}, (2.60)

The plethora of solution methods that fall under the classification of Krylov
subspace methods arise by choosing different subspaces for the constraint space
L. Moreover, given the construction of the search space IC,,, we can see that the
approximations to the solution of (2.48) will be of the form

u™ =u® 1 p (A)v, (2.61)

where p,,(z) is a polynomial of degree at most n. Thus, all approximate solutions
obtained with Krylov subspace methods will be of polynomial type and, as men-
tioned above, the choice of constraint space will have dramatic changes in how this
polynomial is constructed by each method.

The generalized minimal residual method, introduced by Saad in [68] and known
as the GMRES method in short, is defined by choosing K = C,, with v = r(9) and
L = AK,,. This choice of search and constraint spaces minimizes the residual norm
over all vectors in /C,, [69], i.e., after computing the initial residual r® =f_ Au®,
using the initial guess u(o), the GMRES method computes a sequence of iterates

u® ... u™ such that the n-th residual satisfies
] = pa (A = min [p(A)r ], (262)

where 7, is the set of polynomials of degree at most n which are normalized at 0.
For a very detailed description of this method see [51].

Even though this is the method of choice for solving large and sparse nonsymmetric
linear systems, like the ones arising from the discretization of convection-diffusion
problems studied in this thesis, the method presents a poor convergence behavior
when used to solve such linear systems. In particular the method can exhibit an
initial period of slow convergence followed by a faster decrease of the residual norm,
as noted for example by Ernst in [26].

2.2.2.1. The Stagnation of GMRES for convection-diffusion problems

In the following, Figures 2.8-2.9 illustrate that linear algebraic systems resulting from
discretizations of convection-dominated convection-diffusion problems represent a
challenge for GMRES holds for the Shishkin mesh discretization of the model problem
(2.1). These figures show the relative residual norms of the (unpreconditioned)
GMRES method with zero initial vector applied to Au =f from the Shishkin mesh
discretization of (2.1) withw, =1, =0, f(x) =1, ug =uy =0, N =198, and different
values of e. The GMRES convergence is virtually the same for both discretizations
(upwind and central differences).
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Figure 2.8.: GMRES convergence for ¢ = 1072 and € = 107 [r].
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Figure 2.9.: Preconditioned GMRES convergence for ¢ = 107 and ¢ = 1078 [r].

For the problems studied in this thesis, the eigenvector basis of the coefficient
matrix A is very badly conditioned, making the matrix highly nonnormal. In such
cases, the use of eigenvalues and eigenvectors in an analysis of convergence is not
informative and very poorly descriptive, see for example [40] for an extreme case
where this is true and [26] for an example of a convection-diffusion problem for
which the eigenvalues alone give misleading information about convergence. Such
analysis use the eigendecomposition of the coefficient matrix, A = YDY !, where
D is a diagonal matrix whose elements contain the eigenvalues A, of A, and is given

by
£ = [ Yp,(D)Y P | = min [Yp(D)Y '+ (2.63)
PETY,
<[ Y)Y @) ;g;g max Ip(Ar)]- (2.64)

This result is a worst case bound that does not take into account the fact that
for some initial residuals GMRES may behave very differently than for others. It
simplifies the analysis by separating the study of GMRES convergence behavior
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into optimizing the condition number of the eigenvector matrix Y and a polynomial
minimization problem over the spectrum of A, but it could potentially overestimate
GMRES residuals. This is partly because, as observed by Liesen and Strakos in [50],
possible cancellations of huge components in Y and/or Y~! are artificially ignored
for the sake of the convergence analysis.

The stagantion of GMRES for solving convection-diffusion problems of type (2.1)
and (2.2) shows the need to either find a preconditioning strategy to accelerate the
convergence of the method or the use of a completely different solution approach
to solve these types of problems. In the following we will discuss another type of
solution methods which fall under the category of domain decomposition methods,
which seem to be a natural solution for the types of problems studied in this thesis.

2.2.3. Domain Decomposition and Schwarz Methods

The earliest know domain decomposition method is believed to have been discovered
in 1869 by Hermann Amandus Schwarz in [70]. Schwarz devised the method
for elliptic equations, to establish the existence of harmonic functions on regions
with nonsmooth boundaries. Throughout the 20th century, the area of domain
decomposition methods has grown extensively and a variety of methods have been
introduced, both at the continuous level as well at the algebraic level; see [5] for
the theory of algebraic methods and [71] for a complete monograph of domain
decomposition methods. Our focus in this work will fall in the algebraic case,
commonly known as the multiplicative Schwarz method, however we will describe
Schwarz’ original idea in the following (see [36] for a historical introduction to the
method).

2.2.3.1. The Continuous Case: Schwarz’'s Alternating Procedure

When the alternating Schwarz method is considered at the continuous level, there
are two main variants to be considered. The first one being the original method
invented by Schwarz in [70] at the end of the 19th century as a mathematical tool
for investigating the uniqueness of the solution to the Laplace equation when it is
posed on a general complex domain, and the second one being the parallel Schwarz
method used in the general area of parallel computing, which was introduced by
Lions in the 1980’s. We will briefly describe the first one and direct the reader to
the complete review paper by Gander in [34] which gives a thorough analysis of
Schwarz methods over the course of time.

Even though the scientific agenda at the time sought to find a proof of the
uniqueness and existence of solutions for Laplace’s equation posed on a general
complex domain, Schwarz focused on first finding the solution on a domain that was
composed of two simpler domains for which existence and uniqueness had already
been proven. Figure 2.10 shows the original domain used by Schwarz for his analysis,
which consisted of a disk 7 (labeled T} in the figure) "stitched" together with a
rectangle )y (labeled T3 in the figure). The project was to show that the following
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Figure 2.10.: Original domain used by Schwarz consisting of a disk and a rectangle.

BVP
Au=Au=0, in Q, u=g on d9, (2.65)

holds for an arbitrary choice of Dirichlet boundary conditions. Since the solutions
on each subdomain were known using Fourier series, Schwarz proposed an iterative
solution scheme for the entire domain which only made use of the known solutions
on the disk and the rectangle. Providing an initial guess u% along I'y = 0€21 N, the

iteration computes the approximations u71”1 and ug”l on each subdomain as follows:

Auf™t =01in Qi, Aujt =0 in Qo,

uttt = uf on Ty, uh™ =uP™ on Ty,

(2.66)
where 'y = 9Q2 1€ and both u}*! and ug”l satisfy the given Dirichlet conditions on
the outer boundaries of each subdomain. The convergence of the previous algorithm
to the solution of the problem was proven by Schwarz using a maximum principle and
very loosely consisted in introducing artificial boundaries for each subdomain (given
by the overlap) and using them as Dirichlet conditions for the second subdomain
in order to solve each problem in an alternating fashion. For the specific proof, we
direct the reader to the original paper by Schwarz in [70] or the survey paper [34].
We will next present the algebraic case, which is the main method of analysis in
this thesis.

2.2.3.2. The Discrete (Algebraic) Case: The Multiplicative Schwarz Method

Schwarz methods have also been introduced directly at the algebraic level for solving
the linear system Au =f, and there are several variants. We will now describe one
of them: the multiplicative Schwarz method (see [5]). In short, the method uses
restriction operators for constructing a multiplicative iteration matrix in which each
factor corresponds to a local solve in one of the subdomains.

Just like the continuous domain is partitioned into subdomains, the unknowns in
the vector u need to be subdivided into corresponding subsets, possibly overlapping
each other. Without loss of generality, and referring to Figure 2.11, we consider one
domain, €, subdivided into two contiguous local subdomains, €2y and €2, by one
interface boundary I'y2. The only assumption we make is that in each of the local
subdomains we have the same number of unknowns. This assumption is made for
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Figure 2.11.: Decomposition of a domain 2 into two local subdomains 2; and 9
with interface boundary I'io.

simplicity of the following exposition. Extensions to other block sizes and several
subdomains are certainly possible, but would require even more technicalities. In
this context, the restriction operators can be written as

R1 = [In 0] and R2 = [O In] y

both of size n x (N —1). Therefore the operation Rju yields the unknowns in the
first subset while Rau delivers the unknowns of the second subset (subdomain).
The corresponding unknowns in the matrix A can be obtained using the same
restriction operators and thus, the restrictions of the matrix A in Au =f to the two
subdomains are given by the two n x n matrices

- A, bye ~ a bel
— T _ H H&m _ T _ 1
A1 = RlAR = [ Ce% :| and A2 = RQARz = [ crel A . :| s (267)

where m =n -1, and ey, e,, € R™. In the following, the unit basis vectors e; are
always considered to be of appropriate length, which for simplicity is sometimes not
explicitly stated. Note that A, A, € R™" are tridiagonal Toeplitz matrices. The
matrices corresponding to the solves on the two domains then are given by

P;=RIA7'R;A, i=1,2. (2.68)

It is easy to see that Pf = P;, i.e., that these matrices are projections. Note also
that since P; is not symmetric, we have for the 2-norm, that |[I-P;|s = |P;]2 > 1;
see, e.g., [75]. Using the complimentary projections

Q;=1-P; e RN-DX(M=1) i1 o
we define the multiplicative Schwarz iteration matrices
T12=Q2Q1 and T2 =Q1Q2. (2.69)

Thus, T;; corresponds to first solving on €2;, and then on £2;. Both iteration matrices
will be analyzed below.
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Starting with an initial vector u(® ¢ RN+ the multiplicative Schwarz method
is defined by
uf D = u® sy, k=0,1,2,..., (2.70)

where T;; = Ti2 or T;; = Ty, and the vector v € RN-1 is defined to make the
method consistent. For the iteration matrix T = T;; the consistency condition
u =T;;u+v yields

vV = (I - Tij)u = (Pz + Pj - PjPi)u,

which is (easily) computable since
Pu=R/A'R;Au=R7A;'R;f, i=1,2.
The error of the multiplicative Schwarz iteration (2.70) is given by
e =y — uF*+D) = (Tiju+v) - (Tl-ju(k) +v)= Tije(k), k=0,1,2,..., (2.71)

and hence e(**1) = Tfjﬂe(o) by induction. For any consistent norm |- |, we therefore

have the error bound
7

[V < T ). (2.72)

Our main goal on the following chapters of this work is the derivation of quantitative
convergence bounds for the error of the multiplicative Schwarz method, where we
consider both Tij = T12 and Tz’j = T21.
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3. Convergence of the Multiplicative
Schwarz Method for Shihskin Mesh
Discretizations of One-dimensional
Convection-Diffusion Problems

Parts of this chapter have already been published in:

[23] C. Echeverria, J. Liesen, D. B. Szyld, and P. Tichy, Convergence of the
multiplicative Schwarz method for singularly perturbed convection-
diffusion problems discretized on a Shishkin mesh, Electron. Trans.
Numer. Anal., 48 (2018), pp. 40-62.

3.1. Introduction

In this chapter we study the convergence behavior of the multiplicative Schwarz
method when it is used to solve linear systems of the form

Au=f, (3.1)

where the coefficient matrix is obtained from finite difference discretizations of
the following one-dimensional constant coefficient convection-diffusion BVP with
Dirichlet boundary conditions posed on a Shishkin mesh:

) 4 0, 2 4 Bu(a) = f(x), i (0,1)
u(0) = go. and u(1) = g1,

(3.2)

We assume w;, > € > 0 and § > 0 and that the parameters of the problem, i.e.,
€,wy, 3, f, 90, and g1, are chosen so that the solution u(z) has one boundary layer
close to the point z = 1. We resolve the boundary layer using a finite difference
discretization on a one-dimensional Shishkin mesh with transition point close to x =1
and consider two different schemes on the mesh: upwind and central differences.

After the discretization process, the structure of the coefficient matrix, A in (3.1),
takes the form:

Ay | by
A=| ¢ |al| b |, (3.3)
¢ | Ay
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3.2. Convergence Bounds for the Multiplicative Schwarz Method

where the matrices Ay and A, are given by:
Ay =tridiag(cy,ay,by), and A, = tridiag(c,,an,by), (3.4)

and ¢y, apy,by,ch,a,,b, € R. In turn, the structure of the coefficient matrix (3.3)
induces a very special rank-one structure of the iteration matrices T;;, defined in
(2.69) and used in the multiplicative Schwarz method. Using the resulting algebraic
structure of the iteration matrices, we derive bounds on the infinity norm of the
error produced by the method at each iteration step. Unlike asymptotic convergence
results based on bounding the spectral radius of the iteration matrix, our results
apply to the transient rather than the asymptotic behavior and thus our error
bounds are valid from the first step of the multiplicative Schwarz iterations.

For linear systems obtained from the upwind scheme we prove rapid convergence
of the multiplicative Schwarz iteration for all relevant parameters in the problem.
The analysis of the central difference scheme is more complicated, since some of the
submatrices that occur in this case are not only nonsymmetric, but also fail to be
M-matrices. This reminds of the analysis in [1], which showed that in this case the
difference scheme itself does not satisfy a discrete maximum principle. Nevertheless,
we can prove the convergence of the multiplicative Schwarz method for problems
discretized by central differences on a Shishkin mesh under the assumption that
the number of discretization points in each of the local subdomains is even. If this
assumption is not satisfied, then the method may diverge, which we also explain in
our analysis.

Furthermore, we study the convergence of the preconditioned GMRES method
when the multiplicatvie Schwarz method is used as a preconditioner and show that
the low-rank structure of the iteration matrices T;; is enough to prove convergence of
the preconditioned GMRES method independently of the perturbation parameter e.

The chapter is organized as follows. We immediately begin by presenting the
convergence analysis of the multiplicative Schwarz method in Section 3.2; first
for the upwind scheme and then for the central difference scheme. Background
material including the Shishkin mesh discretization of the one-dimensional model
problem is specified in previous chapters (see Chapter 2). In Section 3.3 we discuss
the performance of GMRES when preconditioned with the multiplicative Schwarz
method. Numerical examples are shown in Section 3.4.

3.2. Convergence Bounds for the Multiplicative Schwarz
Method

As mentioned in Section 2.1.3, in this simple one-dimensional case, the Shishkin
mesh divides the discretized domain into two local subdomains where the solution
presents a different characteristic nature. Therefore, a solution approach based
on domain decomposition methods seemed only natural. For the upwind scheme,
we proved rapid convergence of the multiplicative Schwarz method for all relevant
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3. Convergence of the Multiplicative Schwarz Method for 1D Shihskin Problems

problem parameters. The convergence for the central difference scheme is slower,
but still rapid, when N?e < w, and if N/2 -1 is even.

3.2.1. Structure of the iteration matrices

We start with a closer look at the structure of the iteration matrices T;;. Note that
the matrices P; from (2.68) satisfy

I, | [ 1, | bAT'e, | O ]
_ -1 _ -1 -1 _ 1
P, =RTA;] RlA—- S‘Al [ A] ‘ben‘O]—- 5 0 ”0‘, (3.5)
and
oAl [o7],4 a1 [o] o o
Py =Ry Ay RoA = 1, _A2 [ 0]cer | A3 |= |0 [ cAsTer | T, |’ (3.6)
where eq, e, € R™”. We now denote
(1) (2)
P o T .
|:7'['(1):| = bAllen and |:r)(2):| = CAglel, (37)
where p@ = [p{”,...,p)]" e R™ for i = 1,2, and 7 and 7®* are scalars. Then
L1 0 0 [ p" }
0|-— 0
0 1 0 7™
I_P2: 0 j @ 0 ) I_P1: 0 1 0 )
p(2) 0 0 Im—l
which gives
0 p(l) 0 _p(l)
Tio=(I-P)(I-P1)=| 0]pp)n® [0 |=| o7 [efy.  (38)
0 p(l)p(Z) 0 p7(7ll)p(2)
and ,
py”p®
Ty = (I-P)(I-Py) =| pP7D e, (3.9)
(2)
-P

where €41, €,—1 € RNV71. Thus, both iteration matrices have rank one, and we can
apply to them the following observation.

Proposition 3.1. Let T be a square matriz of rank one, i.e., T =uv’ for some
vectors u,v. Then T2 = pT, with p = v'u, and as a consequence TF = pFT, for
k>0.

Proof. The proof follows by direct computation. O

36



3.2. Convergence Bounds for the Multiplicative Schwarz Method

Corollary 3.2. In the notation established above, let T = T15 or T = Tsy. Then
for any k >0 we have

T = p* T, where p=pPpl?. (3.10)

Proof. Applying Proposition 3.1 to either (3.8) or (3.9) produces the desired result.
O

Equation (3.10) shows, in particular, that | T**| = |p|¥|T|| holds for any matrix
norm | -||. In order to obtain a convergence bound for the multiplicative Schwarz
method we will bound |p| and | T||e. The following lemma will be essential in our
derivations.

Lemma 3.3. In the notation established above,

m 1 a—ch(A;I1

)m,m

@ 1 c
5| =7 _ R
P’ -, A, e a—be, (Agl)

Proof. From (3.7) we know that p®, p®, 7 and 7® solve the systems

Ay ‘ buem p® be a ‘ bel 7@ e
cel, ‘ a 7 " Cr€1 ‘ A, p® g

m

1,1

Hence the expressions for p, p®®, 7, and 7 can be obtained using Schur
complements. O

Combining (3.10) and Lemma 3.3 gives

bby (A;Il)m,m cey (A;l)L1
p=— — T — . (3.11)
a-cby (AH )m,m a-be, (Ah )1’1

In order to bound |p| we thus need to bound certain entries of inverses of the
tridiagonal Toeplitz matrices Ay and A,. The following Lemma shows that this is
straightforward in the case of an M-matrix.

Recall that a nonsingular matrix B = [b; ;] is called an M -matriz when b;; >0
for all 4, b; ; <0 for all i # j, and B™! > 0 (elementwise).

Lemma 3.4. Let B be an £ x £ tridiagonal Toeplitz matriz,

b

o =)
> oo

(o)
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3. Convergence of the Multiplicative Schwarz Method for 1D Shihskin Problems

with &> 0 and b,é < 0. Moreover, let B be diagonally dominant, i.e., a > |lA)\ +1él.
Then B is an M-matriz with B~ >0 (elementwise),

- _ . 1 1
(B l)g,z =(B 1)171 3mm{@v@}» (3.12)

and the entries of B~ decay along the columns away from the diagonal. In particular,

(B™),,>(B™),, for 1<i<,
(B, >(B),, for L1<i<t.

Proof. The matrix B is an M-matrix since its entries satisfy the sign condition and
B is irreducibly diagonally dominant; see, e.g., [11, Theorem 6.2.3, Condition M35]
or [42, Criterion 4.3.10]. The elementwise nonnegativity of the inverse, B~ > 0,
follows since the M-matrix B is irreducible; see, e.g., [11, Theorem 6.2.7] or [42,
Theorem 4.3.11].

Since B is a tridiagonal Toeplitz matrix, its (1,1) and (¢,¢) minors are equal.
Therefore the classical formula B! = (det(B)) 'adj(B) implies that (B_l)L1 =

(Bfl)w, Moreover, since @ > |l3] +¢|, we can apply [62, Lemma 2.1, equation (2.8)]

to obtain 1

6]
are special cases of [62, Theorem 3.11],

| =

(B, < <

) &_|

¢l

j=)

Finally, the bounds on the entries of B~}

where it was shown that

(B_l)i,j <w' (B_l)m for i>j and (B_l)m. < i (B_l)j,j for i<y,

with some 7,w € (0,1). (They can be expressed explicitly using the entries of B.) [

As we will see later in Lemma 3.5 and Lemma 3.8, the matrix A, is an M-matrix
for both the upwind and the central difference scheme. However, while A} is an
M-matrix for the upwind scheme, it is not an M-matrix in the most common
situation for the central difference scheme. We then have to use a different technique
for bounding the entry (A;!)11; see Section 3.2.3. In the next two subsections we
separately treat the upwind and the central difference schemes.

3.2.2. Bounds for the Upwind Difference Scheme

Using Lemma 3.4, which characterizes the inverse entries of a tridiagonal Toeplitz
M-matrix, we can prove the following result for the upwind scheme.

Lemma 3.5. For the upwind scheme both matrices Ay and A, satisfy the assump-
tions of Lemma 3.4, and the related quantities from Lemma 3.3 satisfy

TPI<1, [P oo = Ipi| < 7®@1<1, PP e = Ipi”] < 1.

M
€+w,H
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3.2. Convergence Bounds for the Multiplicative Schwarz Method

Proof. Tt is easy to see from (2.40) that both matrices Ay and A, resulting from
the upwind scheme satisfy the assumptions of Lemma 3.4. Thus, from equation (3.12)

we have
b (A;})mm <1 and |o (A;l)u <1.

Moreover, a >0 and b,c< 0, as well as a+b+c= >0, so that

i 6]
a+c|bH|(A;1)mm Tate”

)=

] ]

@) _
I a+ble,| (A7Y),, ~a+b

Using these inequalities and the fact that the entries of A, decay along a column
away from the diagonal yields

-1
D oo = p5] = |7 [cal (A1), < 1.

Using the decay of the entries of Ay and

I

_ b
bul (A < |22

H )m,m =

Cu
which follows from (3.12), as well as the definitions of the entries in (2.40), we obtain

bal__ € _ ¢
cyl e+w,H

<

1PVl = Ipy = 17| [ba| (A

)m,m
We can now state our main result of this subsection.

Theorem 3.6. For the upwind scheme we have
€

s o (313)
x

and

IT12] 0 < IT21]le0 < 1

€
e+wyH’
Thus, the error of the multiplicative Schwarz method (2.70) satisfies

(k+1) c k+1 .
[V _[(m5m) - # =T,

= k
He(O) HOO (e+osz) 5 Zf T = T21.

Proof. For the bound on |p| we apply Lemma 3.5 to the expression p = p%)p(f) from
(3.10). From (3.8) and (3.9) we respectively see that

(1) (2) (1)

IT12] 0 = (I)W(Q) and [ Ta1 e = pi jﬂ(l)
7(1) ®) 7(2)

o] o0
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3. Convergence of the Multiplicative Schwarz Method for 1D Shihskin Problems

Thus, using Lemma 3.5,

(1)| (1) (2) (1) (2)|} |p(1)

| T2 00 = max {|p{), [P DY

€+ wa ’

I T21 oo = max {[p{Vp), (P77 DL, 151} < [pi?] < 1.
Using these bounds and (3.10) in the first inequality in (2.72) yields the convergence
bound for the multiplicative Schwarz method. O

Suppose that € < w, H, which is a reasonable assumption in our context. Then

2
€ € €
= = + O .
2 €e+w, H wyH ((wIH) )
This expression shows that the convergence of the multiplicative Schwarz method in
case of the upwind scheme and a strong convection-dominance will be very rapid.

Numerical examples are shown in Section 3.4.
Note that since % =H +h<2H, we have % < H, and hence

€ €

< < . 3.14
ol €+wH 6+°"Wz ( )

Using the expression on the right hand of (3.14) in Theorem 3.6 would give (slightly)
weaker convergence bounds for the multiplicative Schwarz method. However, the
right hand side of (3.14) represents a more convenient bound on the convergence
factor which directly depends on the parameters €, w, and N of our problem.

3.2.3. Bounds for the Central Difference Scheme

We will now consider the discretization by the central difference scheme, i.e., the
matrix A with the entries given by (2.41). It turns out that the analysis for this
scheme is more complicated than for the upwind scheme since, as mentioned above,
the matrix Ay need not be an M-matrix. Moreover, as we will see below, the
multiplicative Schwarz method may not converge when the parameter m is odd.

The following result about the entries a, b, and ¢ of A will be frequently used
below.

Lemma 3.7. For the central difference scheme we have

b
a>0, ¢,b<0, —(c+b)=|c/+bl=a-p<a and ’—<1. (3.15)
a

Proof. The inequalities a > 0 and ¢ < 0 are obvious from (2.41). From (2.20)—(2.21)

we have, since N > 4,
2In N

wzh = 2¢ < 2, (3.16)
and therefore
weh — 2¢
=<
h(H +h)
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3.2. Convergence Bounds for the Multiplicative Schwarz Method

Moreover, —(¢+b) = a — 8 < a, which yields

b
a

b
=|— < 1. O
=l
We next consider the matrix A, from the central difference scheme.

Lemma 3.8. The matrix A, from the central difference scheme satisfies the as-
sumptions of Lemma 3.4, and for the corresponding quantities from Lemma 3.3 we
have

7@ <1 and [p?]e = [p{?] < 1.

Proof. The inequalities a;, >0 and ¢, < 0 are obvious from (2.41), and using (3.16)
we obtain

weh — 2¢
b, = ——— <0.
" 2h2
Since also
2¢
|Ch| + |bh| = ﬁ S ah,

the matrix A, satisfies the assumptions of Lemma 3.4. Thus, in particular,
e (A;l)1 , < 1. Using also (3.15) gives

) _ ] el _ el

T = < = <1.

I a+ble,| (A7Y),, “a+b |d+B

Finally, since the entries of A, decay along a column away from the diagonal, we
obtain |[p® e = |p(12) = |7@||c,| (Aﬁl)l <L d

We now concentrate on bounding the quantities from Lemma 3.3 related to the
matrix Ay for the central difference scheme. We will distinguish the three cases
weH < 2¢, wyH = 2¢, and w, H > 2¢ or, equivalently, the cases that the entry

_wyH -2

b
" 2H?2

of Ay is negative, zero, or positive. It is clear from (3.11) that the sign of by is
important for the value |p|.
A simple computation shows that b, < 0 if and only if

Wy

€2 ————— -
N+2In N

If € < w, ~ 1, then this condition means that e(N + 2In N) = O(1), which is an
unrealistic assumption on the discretization parameter V. Nevertheless, we include
the case by <0 for completeness.

We first assume that
wyH < 2e, (3.17)

which means that by < 0.
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3. Convergence of the Multiplicative Schwarz Method for 1D Shihskin Problems

Lemma 3.9. If (3.17) holds, then the matriz Ay from the central difference scheme

satisfies the assumptions of Lemma 3.4, and we have

[rOl< 1 and p] = i) <

e+ %

2|

—

Proof. The inequalities ay; > 0 and ¢y < 0 are obvious from
because of (3.17). Moreover,

w € € w 2¢
lcu| + |br| = -

]

2.41), and by < 0 holds

so that the matrix A satisfies the assumptions of Lemma 3.4. In particular,

bul (AL <1

m,m
Using (3.15) we obtain

i <My

7D = - < <
a+clby| (A% )mm a+c

Moreover, using that the entries of A decay along a column away from the

diagonal as well as
bl (AL < 2l
| Hl( H )m,m |C |

which follows from (3.12), we see that

len|  26-w,H

2¢ —wzH +wzh

ol = 1571 = 1l (A5),.,, < o = S
g 2¢ _ €
2 +w,(H+h) e+

where we used h < H and h+ H = %
Next we consider the (very) special case
weH = 2e,

which means that by = 0.

2¢ + wH +wzh

(3.18)

Lemma 3.10. If (3.18) holds, then the matriz Ay from the central difference

scheme is nonsingular, and we have |t"| <1 and p™* = 0.

Proof. If by =0, then Ay is lower triangular and nonsingular since ay > 0. Using
the definitions of p™" and 7" from Lemma 3.3 and the last inequality in (3.15) we

obtain

bbyAlen b

1 _ _ =0, D =
P a—by (A;,l) c =

m,m

a—cby (A;Il)
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3.2. Convergence Bounds for the Multiplicative Schwarz Method

The third case we consider is
weH > 2, (3.19)

which means that by > 0. This is the most common situation from a practical point
of view, but now A} does not satisfy the assumptions of Lemma 3.4. We therefore
need a different approach for bounding the quantities from Lemma 3.3, and in
particular the entries of the vector A;'e,,. Note that because of (3.19) we have

2€_me _ bH
2¢ + w, H N Cy

-1< <0.

Lemma 3.11. If (3.19) holds, then the matriz Ay from the central difference
scheme is a nonsingular tridiagonal Toeplitz matrixz with the entries ay,by >0 and
cy < 0. Moreover,

-1 -1 1- (I;_z)Z m
0< |(A‘H )Z,m‘ < (AH )m,mW '
- ()
where the second inequality in (3.20) is an equality if 5 =0. If m=N/2-1 is even,
then

bu

Cdi=1,...,m, (3.20)

Cu

b [(A )im| <2, i=1,...,m, (3.21)
and
_|bm|™ 9
-1 CcH me
b (Al Jmm < C_H’ bi‘m ol (3.22)
by cH 2

Proof. The inequalities ay > 0 and ¢ < 0 are obvious from (2.41), and by > 0 holds
because of (3.19).

In order to see that Ay is nonsingular, note that eigenvalues of the tridiagonal
Toeplitz matrix Ay are given by

Ni=ayg+2 bHchos( ), i=1,...,m.

+1

Since bycy < 0, the number /by ¢y is purely imaginary, and hence all eigenvalues
are Nonzero.

Adapting [77, Theorem 2] to our notation (and formulating this result in terms
of columns instead of rows) shows that the entries of the vector & = [£1,...,&m]T =
Ale,, can be written as

- 0,
g’i = (_1)m_lb71?_l 17 = 17 , M,
Om
where
0i = a1 -bycubio, Oo=1, 01 =ay. (3.23)
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Since bycy < 0 and ay > 0, we have 0; > 0 for all 4 > 0, and & # 0. Since by > 0,
¢; changes the sign like (-1)™7%, and &, > 0. Consequently, the first inequality in
(3.20) holds.

If we define the sequence of positive numbers

i1

o = 0 1=1,2,...,
i
then
) . m . m-1
G=CED"T T [Ty =én (1) [ oy, i=1,...,m. (3.24)
j=i j=i
We will prove by induction that
. —b
(6% < —ﬁ (325)

for all ¢ > 1, with equality if 8 =0. For i =1 we have

cy — by 1 1 1
5 5 = = 2_:051,
co—by  —(cu+by) aw-B  ay

with equality if = 0. Using the recurrence (3.23), the inequality ay > —(cy + by ),
which is an equality if 5 =0, and the induction hypothesis, we obtain

1 Al sl Al _pitl
H H H H

—_— = aH_OérL'_]_bHCH 2_(cH+bH)+ . bZ bHcH = - i b'L ,

Q; Chy — Og Chy — 0y

again with equality if g = 0.
Combining (3.24) and (3.25) yields

- ()

. ci _bi bH m—i

| < bm_Z H H = ol — s 326

H

showing the second inequality in (3.20), which is an equality if 5 = 0.
Now let m be even. Using (3.25) we obtain
m _ pym 1- b | b ™
_ Cq — Oy _ CH _|YH

bp&m < bHcZ”l—bZ”l T . b_Hm<1 ol (3.27)

H CH

which contains the first inequality in (3.22). Using (3.26) and (3.27) we obtain

2 _2
bubm by’

m < &m

|§z’ <€m b
1oz
CH
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3.2. Convergence Bounds for the Multiplicative Schwarz Method

which shows (3.21). Let us write
bu

Ch

weH - 2¢ 2¢
= =1- =1-v.
weH + 2¢ €+ wall

Using (3.19) we have 0 < v < 1, and by induction it can be easily shown that
1-(1-v)™ <muv holds for every integer m > 2. Thus,

by |™ 2
bubm <1- |2 =1-(1-v)" <mv = TZEH,
Cy €+ ZT
which proves the second inequality in (3.22). O

Using Lemma 3.11 and the assumption that m is even, we can bound the quantities
from Lemma 3.3 related to the matrix Ay from the central difference scheme as
follows.

Lemma 3.12. If (3.19) holds and if m = N/2 -1 is even, then

2me
we H

2

‘7‘('(1)| <1, ‘p(l)‘ <

m

[P <2-

Proof. From (3.15) we know that ¢ <0, and from Lemma 3.11 we know that by > 0
and (A;l)m ., > 0. Therefore

‘ﬂ_(l)| — ‘b‘ < 9
a+|cby (Ag{l)mm a

<1,

where we have used (3.15). Thus, using also (3.22), we obtain

2me

< .
m,m 6+%

It | = 17 lbw (A7)

Finally, (3.21) implies that |[p®[le = [T by | AL em oo < 2. O

Now we are ready to formulate an analogue of Theorem 3.6 for the central
difference scheme.

Theorem 3.13. For the central difference scheme we have

if we H <2
P if we H < 2e,
ol < ) (3.28)
TGH if weH >2¢ and m=N/2-1 is even.
€+ Lt

2

If w,H < 2e, we have
[Ti2feo <1, [Ta1]ee <1,
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3. Convergence of the Multiplicative Schwarz Method for 1D Shihskin Problems

and if w, H > 2¢, we have
IT12]le0 <2, [ To1eo < 2.

Thus, the error of the multiplicative Schwarz method (2.70) for both iteration matrices
satisfies

k
( ¢ ) if weH < 2e,

etV | \ev%
e 2me : :
2 —7 if weH >2€e and m=N[2-1 is even.
€ + =L—
2

Proof. From (3.10) we know that p = p{Y’p'®, and hence the bounds on |p| follow

from |p{¥| <1 (Lemma 3.8), and Lemmas 3.9-3.10 for the case w, H < 2¢, as well as
Lemma 3.12 for the case w,H > 2e.
For the first iteration matrix we have

(2), (1
Py p()

| T21 o p7m®

_p(2)

max{|p”] [P oo, [P 7D, PP 0}

(e e]

and for the second iteration matrix we have

_p(l)
p7(711)p(2) -
= max{[p oo, [p5) 7], Ipiy | [P oo }-

The bounds on these matrices now follow from the Lemmas 3.8, 3.9, 3.10, 3.12,
and the error bound for the multiplicative Schwarz method follows from (2.72)
and (3.10). O

As in the discussion of Theorem 3.6 we could use % <H and m= % —1, and thus
obtain

ol < 2me . Ne
p_ we H wg ?
€+ =% €+W

where the right hand side again represents a bound on the convergence factor that
directly depends of the parameters of our problem.

Because of the factor 2m ~ N, the error bound for the central differences dis-
cretization can be significantly larger than for the upwind scheme. Thus, we expect
that the multiplicative Schwarz method for the central differences discretization
convergences slower than for the upwind scheme, at least when w,H > 2¢. An
example with ¢ = 107 and N = 198, leading to |p| = 8.3 x 10! and a very slow
convergence of the multiplicative Schwarz method is shown in Section 3.4. In this
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3.3. Shishkin-Schwarz Preconditioning

case, the bound (3.28) is even greater than one. It should be noted, however, that in
a strongly convection-dominated case the situation e N? = O(1) is rather unrealistic.

Finally, let us discuss the situation when (3.19) holds, so that -1 < bg/cy < 0,
but m is odd. For simplicity, let 5 = 0. Then (3.25) yields

b \™ by |
! ~ e L+15r
bH(AH )m,m:ngm:_cH b\ = on by |
E_(G) E|_ Z‘

The essential inequality in (3.27) then fails to hold, and we may have b H(A;Il)mvm > 1,
with significant consequences for the convergence factor |p|; see (3.11). It is then
easy to find parameters for which |p| > 1, and for which the multiplicative Schwarz
method in fact diverges.

Intuitively, the troubles with odd m correspond to the situation when the equation
(3.2) is discretized using central differences on a uniform mesh. Consider for example
the discrete solution of the problem (3.2) with w, =1, 5 =0, f(x) =1, and ug = u; =0,
which can be found in [74, § 4]. If the number of the interior points of the uniform
mesh is even, then the discrete solution oscillates, but with an amplitude bounded
by one, so that some important information about the analytic solution is still
preserved in the discrete solution. If the number of inner points is odd, the discrete
solution is highly oscillating (cf. [74, Figure 4.1]) and does therefore not provide
much useful information about the analytic solution. In our case of the Shishkin
mesh, the multiplicative Schwarz method solves discrete problems on the coarse
mesh and the fine mesh in an alternating way, and combines the solutions of the two
subproblems. If m is odd, then the discrete solution on the coarse mesh is essentially
useless because of high oscillations, and the multiplicative Schwarz method does not
succeed to improve the approximation to the discrete solution.

3.3. Shishkin-Schwarz Preconditioning

As mentioned in the introduction, linear algebraic systems resulting from discretiza-
tions of convection-dominated convection-diffusion problems represent a challenge
for iterative solvers. In particular the unpreconditioned GMRES method performs
very poorly (see Section 2.2.2). In this section we present the results of using the
multiplicative Schwarz method as a preconditioner for GMRES.

Based on (2.70), it is clear that the multiplicative Schwarz method can be seen
as a Richardson iteration for the system

(I - Tz-j)u =V. (329)
Furthermore, the iteration scheme (2.70) can be written in the form
uE*D = ) 4 (1-Ty5) (u - u®),

so that the multiplicative Schwarz method as well as GMRES applied to (3.29) obtain
their approximations from the Krylov subspace Kj(I - T}, r(9). Consequently, in
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3. Convergence of the Multiplicative Schwarz Method for 1D Shihskin Problems

terms of the residual norm, GMRES applied to (3.29) will always converge faster than
the multiplicative Schwarz method. Moreover, if one applies GMRES to (3.29), then
the multiplicative Schwarz method can be seen as a preconditioner for the GMRES
method; see, e.g., [46] where this approach is taken. The preconditioner M such
that M~'Au = M™'f results in (3.29), can formally be written as M = A(I-T;;)™;
see, e.g., [49, Lemma 2.3].

In general, if a matrix T satisfies r = rank(T), with I - T nonsingular, then for
any initial residual r(®) we have

dim (le(I - T,r(o))) <r+1,

so that GMRES applied to the system (3.29) converges to the solution in at most r+1
steps (in exact arithmetic). In the one-dimensional model problem studied in this
chapter we have a matrix T with » = 1. Thus, GMRES applied to (3.29) converges
in (at most) two steps (see Figures 3.6-3.7), even when the multiplicative Schwarz
iteration itself converges slowly or diverges, which may happen for the central
difference scheme and m odd. As it will be shown in Chapter 5, which presents a
generalization of the approach presented in this chapter to two-dimensional problems,
the low-rank structure of the iteration matrix assures the convergence of GMRES
in a small number of steps. Hence, it is expected that for generalizations to three-
dimensional problems more complicated Shishkin meshes with several transition
points, one can possibly exploit a low rank structure of the iteration matrix as well.

It is important to point out that, typically, in practical implementations the local
subdomain problems given by (2.67) will not be solved exactly, and thus, in the case
of inexact local solves the bounds obtained in this work and the exact termination
of GMRES in r + 1 steps will no longer hold. Nevertheless, the theory for the exact
case presented here gives an indication for the behavior in the inexact case. This is a
standard approach in the context of preconditioning. An example of this framework
is given by the saddle point preconditioners for which GMRES terminates in a
few steps; see [10]. In the context of domain decomposition methods, in particular
for Schwarz methods, the concept of inexact subdomain solves was investigated,
e.g., in [5, § 4]. See also [35], where a similar situation is described for algebraic
optimized Schwarz methods. In Chapter 5, we present examples where the local
subdomain problems are solved inexactly for two-dimensional problems. See the
discussion in Section 5.3 and the numerical results in Section 5.4.

3.4. Numerical lllustrations

We exemplify the convergence behavior of the multiplicative Schwarz method applied
to the Shishkin mesh discretization of the problem (3.2) with

wy=1, B=0, f(z)=1, wup=u3=0.

The analytic solution of this problem with ¢ = 0.03 is shown in Figure 2.4. All
numerical experiments were computed on a 13-inch Apple MacBook computer model
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3.4. Numerical Illustrations

Mid 2010 with a 2,4 GHz Intel Core 2 Duo processor equipped with MATLAB version
R2015b.

We first consider N = 198, so that m = N/2 -1 = 98 is even. Recall that
the (unpreconditioned) GMRES method converges very slowly for both types of
discretizations (upwind and central differences); see Figures 2.8-2.8.
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Figure 3.1.: Convergence of multiplicative Schwarz and error bounds for € = 1078,
N =198, and both discretization schemes.
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Figure 3.2.: Convergence of multiplicative Schwarz and error bounds for € = 1075,
N =198, and both discretization schemes.

All numerical results presented in this chapter were performed on a 13-inch
Apple MacBook computer model Mid 2010 with a 2,4 GHz Intel Core 2 Duo
processor. For our experiments we computed u = A™'f using the backslash operator
in MATLAB version R2015b. (Applying iterative refinement in order to improve the
numerical solution obtained in this way yields virtually the same results, so we do
not consider iterative refinement here.) Using the solution obtained by MATLAB’s
backslash, we computed the error norms of the multiplicative Schwarz method by
€)oo = [u* D) —u s with u**1) as in (2.70) and u(®) = 0 (rather than using the
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Figure 3.3.: Convergence of multiplicative Schwarz and error bounds for € = 1074,
N =198, and both discretization schemes.

update formula e = Tije(k_l)). Consequently, the computed error norms stagnate
on the level of the maximal attainable accuracy of the method. On the other hand,
an error bound of the form |p|* for some |p| < 1 becomes arbitrarily small for k& — oo.
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Figure 3.4.: Convergence of multiplicative Schwarz and error bounds for € = 1078,
N =10002 and both discretization schemes.

We start with the upwind discretization. The left parts of Figures 3.1-3.5 show
the error norms
[ oo

E_lo k=0,1,2...,
|e® o

for the iteration matrices T2 (solid) and T9; (dashed) as well as the corresponding
upper bounds from Theorem 3.6, for increasing values of €. We observe that the
bounds are quite close to the actual errors. Moreover, in each case the error norm for
the multiplicative Schwarz method with the iteration matrix T almost stagnates
in the first step, as predicted by the bound in Theorem 3.6.

On the right parts of Figures 3.1-3.5 we show the error norms of the multiplicative
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Figure 3.5.: Convergence of multiplicative Schwarz and error bounds for € = 1074,
N =10002 and both discretization schemes.

Schwarz method and the corresponding convergence bounds from Theorem 3.13 for
the central difference scheme. For our choice of parameters we have w, H > 2¢. Note
that the error norms are virtually the same for both iteration matrices. However, the
bounds are not as tight as for the upwind scheme. For fixed N the bounds become
weaker with increasing e, i.e., decreasing convection- dominance. For our chosen
parameters and € = 1074, giving e N? = O(1), the convergence of the multiplicative
Schwarz method becomes very slow, and the bound (3.28) fails to predict convergence
at all.

We also run the experiments for larger values of N. The values of |p| and the
corresponding bounds from Theorems 3.6 and 3.13 are shown in Table 3.1 for
different values of N. We observe that for all cases the bounds on |p| for the upwind
scheme are tighter than for the central difference scheme.

To further illustrate our results, we also present the results for a larger value of N,
namely N = 10002. We consider the special cases eN? ~ 1 (Figure 3.4) and eN ~ 1
(Figure 3.5) which are mainly of theoretical interest. While the bound (3.13) for
the upwind scheme is still tight and descriptive, the bound (3.28) for the central
difference scheme does not predict convergence well. Note that the parameters used
in Figure 3.5 yield w, H ~ 1.9959 x 10* < 2¢, and hence the right part of Figure 3.5
shows error norms and the convergence bound corresponding to the case w, H < 2¢
in Theorem 3.13.

We continue our numerical experiments by applying GMRES to the linear algebraic
system preconditioned with multiplicative Schwarz, i.e., the linear algebraic system
(3.29), in the case N =198. Using the 2-norm, the (preconditioned) relative residual
norms are shown in Figures 3.6-3.7 and were computed using MATLAB’s command
gmres with a tolerance of 10714, a maximum number of iterations of N —1 and
initial approximation u(®) = 0. In all cases convergence is achieved in two iterations,
which is explained in the previous section. These figures are the counterparts to
Figures 2.8-2.9, where GMRES makes little progress until iteration 198.
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3. Convergence of the Multiplicative Schwarz Method for 1D Shihskin Problems

Table 3.1.: Values of |p| computed using (3.11) and the corresponding bounds (3.13)

52

N =66
108]29%x1077  33x1077 [1.8x107° 42x107°
10 ]129x10°  33x107° | 1.8x107  4.2x1073
10041 29%x103 33x10% | 1.8x107! 4.2x107!
1072 23x107"  26x107" [ 1.3x107t  2.7x10%!
N =130
10°%]6.0x1077  65x1077 [7.7x10° 1.7x107*
10°]6.0x10°  65x107° | 7.7x107%  1.7x1072
10741 6.0x103  65x10 | 59x107"  1.6x10°
1072 3.8x107"  42x107" [ 1.6x107!  5.7x107!
N =258
108]1.2x10% 13x10°% [32x107* 6.6x107*
106]1.2x10%  1.3x10* |32x102  6.6x1072
10041 1.2x1072  1.3x1072 | 87x107'  6.4x10°
1072 | 55x1071 59x107! | 45x1070 7.2x107!
N =514
10%]25x10% 26x10°% [13x10 2.6x107°
106]25%x107%  26x10* | 1.3x107!  2.6x107"
1074 24%x102  25x107%2 | 86x107!  2.5x10%!
102 ] 72x1070  75x107! | 6.8x1070  84x107!
N =1026
108]51%x10% 51x10°% [52x10° 1.1x1072
10%]51x10%  51x10* |4.7x107! 1.0x10°
1074 ] 48x1072 49x1072 | 79x107"  9.5x10*!
1072 84x107"  86x107" |[82x107!  9.1x107!
N =2050
108 1.0x10° 1.0x10™° [21x10%2 4.2x1072
101 1.0x103  1.0x1072 | 95x107"  42x10°
10041 9.2x1072 93x107%2 |6.5x1071  3.5x10%?
102 ]191x107"  92x107! | 91x107"  9.5x107!
N = 4098
108]20%x10° 20x10° [83x102 1.7x107!
106]20%x102  20x10% [98x107! 1.7x10%!
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and (3.28) for different values of € and N.
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Figure 3.6.: Preconditioned GMRES convergence for ¢ = 1072 [l.] and ¢ = 1074 [r.]
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4. The Theory of Block Diagonal
Dominant Matrices

Parts of this chapter have already been published in:

[22] C. Echeverria, J. Liesen, and R. Nabben, Block diagonal dominace of
matrices revisited: Bounds for the norms of inverses and eigenvalue
inclusion sets, Linear Algebra Appl., 553 (2018), pp. 365-383.

4.1. Introduction

The main tool that is used for proving the convergence of the multiplicative Schwarz
method in Theorems 3.6 and 3.13 is Lemma 3.4, which characterizes the decay
away from the diagonal shown by the entries of the inverse of a tridiagonal Toeplitz
matrix whenever it possesses the property of diagonal dominance and its sub- and
super-diagonal entries have opposite signs. With the objective of deriving an equally
powerful tool that can be applied to the matrices that arise in the discretization of
higher dimensional convection-diffusion problems (treated in the Chapter 5), we now
present a generalization of the classical theory of diagonal dominance of matrices
from the scalar to the block case.

Matrices that are characterized by off-diagonal decay, or more generally “local-
ization” of their entries, appear in applications throughout the mathematical and
computational sciences. The presence of such localization can lead to computational
savings, since it allows to approximate a given matrix by only using its significant
entries, and discarding the negligible ones according to a pre-established criterion.
In this context it is then of great practical interest to know a priori how many and
which of these entries can be discarded as insignificant. Many authors have there-
fore studied decay rates for different matrix classes and functions of matrices; see,
e.g., [3, 6, 8,9, 15, 19, 48, 65]. For an excellent survey of the current state-of-the-art
we refer to [2].

An important example in this context is given by the (nonsymmetric) diagonally
dominant matrices, and in particular the diagonally dominant tridiagonal matrices,
which were studied, e.g., in [61, 62]. As shown in these works, the entries of the
inverse decay with an exponential rate along a row or column, depending on whether
the given matrix is row or column diagonally dominant; see [2, § 3.2] for a more
general treatment of decay bounds for the inverse and further references.
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4.2. Bounds on the Inverses of Block Tridiagonal Matrices

Our main goal in this chapter is to generalize results of [62] from scalar to block
tridiagonal matrices. In order to do so, we use a generalization of the classical
definition of block diagonal dominance of Feingold and Varga [30] to derive bounds
and decay rates for the block norms of the inverse of block tridiagonal matrices of
the form

[ A, B
C A B,
A= y where AZ’,BZ‘,CZ‘Emem. (41)

Cn72 Anfl anl
Cn—l An ]

We also show how to improve these bounds iteratively (Section 4.2). Moreover, we
obtain a new variant of the Gershgorin Circle Theorem for general block matrices
of the form

A =[A;;] with blocks A;j e C™™ for i j=1,...,n, (4.2)

which can provide tighter spectral inclusion regions than those obtained by Feingold
and Varga (Section 4.3). Throughout this chapter we assume that || - | is a given
submultiplicative matrix norm.

4.2. Bounds on the Inverses of Block Tridiagonal Matrices
We start with a definition of block diagonally dominant matrices.

Definition 4.1. Consider a matriz of the form (4.2). The matriz A is called row
block diagonally dominant (with respect to the matriz norm | -||) when the diagonal
blocks Ay; are nonsingular, and

n
S 1A A <1, fori=1,...,n. (4.3)
j=1
j#i

If a strict inequality holds in (4.3) then A is called row block strictly diagonally
dominant (with respect to the matriz norm || -|).

Obviously, an analogous definition of column block diagonal dominance is possi-
ble. Most of the results in this chapter can be easily rewritten for that case (see
Definition 4.19 in Appendix 4.A and the discussion thereafter). A similar definition
recently presented in [4] in an application of block diagonal preconditioning where
the authors call a matrix block diagonally dominant when all its diagonal blocks are
nonsingular, and (4.3) or the analogous conditions with A;;A;! replacing A A;;
hold in the 1-norm, i.e., it does not consider both conditions to hold simultaneously
and it is restricted to the 1-norm.
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4. The Theory of Block Diagonal Dominant Matrices

The above definition of row block diagonal dominance generalizes the one of
Feingold and Varga given in [30, Definition 1], who considered a matrix as in (4.2)
block diagonally dominant when the diagonal blocks A;; are nonsingular, and

n

> Al < (JAZ D™, fori=1,....n. (4.4)

i
It is clear that if a matrix satisfies these conditions, then it also satisfies the
conditions given in Definition 4.1. According to Varga [78, p. 156], the definition
of block diagonal dominance given in [30] is one of the earliest, and it was roughly
simultaneously and independently considered also by Ostrowski [63] and Fiedler
and Ptak [31]. Varga calls this a “Zeitgeist” phenomenon.

In the special case m =1, i.e., all the blocks A;; are of size 1 x 1 and || A;;| = |A4jl,

the inequalities (4.3) and (4.4) are equivalent, and they can all be written as

n
ZlAZJ‘S’Au‘? fori=1,...,n,
poe

which is the usual definition of row diagonal dominance.

In the rest of this section we will restrict our attention to block tridiagonal
matrices of the form (4.1). First Capovani for the scalar case in [17, 16] and later
Ikebe for the block case in [45] (see also [62]), have shown that the inverse of a
nonsingular block tridiagonal matrix can be described by four sets of matrices. The
main result can be stated as follows.

Theorem 4.2. Let A be as in (4.1), and suppose that A~ as well as B;' and C;*
fori=1,...,n-1 exist. If we write A" = [Zi;] with Z;j e C™ ™, then there exist
matrices U;, Vi, X;,Y; € C"™™ with U;V; = X, Y; fori=1,...,n, and

i i @
Moreover, the matrices U;, V;, X, Y, 1 =1,...,n, are recursively given by

U, =1, U,=-B{'A Uy, (4.6)
U;=-B74(Ci2U; 0+ A1 U;y), fori=3,...,n, (4.7)
V,=(A,U,+C,.1U,1), V,.1=-V,A,B ', (4.8)
Vi=-(Vis1Ai + VioCi1)B; Y, fori=n-2,...,1. (4.9)
X, =1, X;=-X;A,C7, (4.10)
X; = —(X;oBia + X;.1A;1)C;Y,  fori=3,...,n, (4.11)
Y,=(X,A,+X,1B, 1), Y, 1=-C'AY,, (4.12)
Y =-C; ' (A1 Y1 + B Yio), fori=n-2,...,1. (4.13)

The next result is a generalization of [61, Theorem 3.2].
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4.2. Bounds on the Inverses of Block Tridiagonal Matrices

Lemma 4.3. Let A be a matrixz as in Theorem 4.2. Suppose in addition that A is
row block diagonally dominant, and that

|JAT'B1| <1 and |A;'C,q|<1. (4.14)

Then the sequence {|U;||}7 is strictly increasing, and the sequence {|Y;|}i, is
strictly decreasing.

Proof. First we consider the sequence {|U;|}I;. The definition of Us in (4.6)
implies that U; = —AIlBlUg. Taking norms and using the first inequality in (4.14)
yields

[UL] < |AT'B1[[U2] < [Ua].

Now suppose that |[U;| < |[Usl| < -+ < |U;-1| holds for some i > 3. The equation for
U; in (4.7) can be written as

~A;YB; U =U; 1 + A;1C; oU; 5.
Rearranging terms and taking norms we obtain

U1 ]| < AL Cica| [ Uiza| + AL Bt || U]
< |ATLCica || Ui | + AL B U],

where we have used the induction hypothesis, i.e., |U;—2| < [U;-1], in order to
obtain the strict inequality. Since A is row block diagonally dominant we have

|ATZiBia| + A Cia < 1.
Combining this with the previous inequality gives

Uil _ A Bi| <
U 1-]ALCia] ~ 7

so that indeed |U;_1| < |Uy].

Next we consider the sequence {|Y;|};. The definition of Y,_; in (4.12) implies
that -Y,, = A;'C,,_1Y,_1. Taking norms and using the second inequality in (4.14)
yields

[Vl < 1A Coct 1Yt | < [ Yna-

Now suppose that |Y,| < [Yp-1]| < - < [ Y41 holds for some i < n—2. The
equation for Y; in (4.13) can be written as

_Ai_jlciYi =Y+ A;lei+1Yi+2-
Rearranging terms and taking norms we obtain

[Yiiil < |AZLCill[ Y3l + |AZ Bist || iz
<|ATLCilIYil + AT Bist [ Yl
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4. The Theory of Block Diagonal Dominant Matrices

where we have used the induction hypothesis, i.e., |Yi:2| < |Yis1[, in order to
obtain the strict inequality. Since A is row block diagonally dominant we have

-1 —
|A Gl + HAullBHl” <l

Combining this with the previous inequality gives

[Yisal |AZLCl
1Yl 1- 1A Bl
so that indeed Y1 < [Y5]- O

For the rest of this section we will assume that that A is a matrix as in Lemma 4.3.
Then the inverse is given by A~ = [Z;;] with Z;; = Y;X; for i > j; see Theorem 4.2.
Thus, for each fized j = 1,...,n, the strict decrease of the sequence {|Y;|}7-; suggests
that the sequence {[Z;;]}}"; decreases as well, i.e., that the norms of the blocks of
A~! decay columnwise away from the diagonal. We will now study this decay in
detail.

We set Cp =B, =0, and define

|A7'B;] :
m=——2t——— fori=1,...,n, 4.15
CToATCA] 1)
|A;'Cin .
i = —————, fori=1,...,n. 4.16
C1-JA Bl (419
The row block diagonal dominance of A then implies that 0 <7 <1land 0 < p; < 1.
Also note that, by assumption, 71 = |[A7'B1| < 1, p, = |A,'Cpo1| < 1, and

T = 1 = 0.

In order to obtain bounds on the norms of the block entries A~!, we will first
derive alternative recurrence formulas for the matrices U; and Y; from Lemma 4.3.
To this end, we introduce some intermediate quantities and give bounds on their
norms in the following result.

Lemma 4.4. The following assertions hold:
(a) The matrices Ly =Ty = AIlBl, To=1- AglclTl, and

Li:TZ»_lAi—lBi, fori=2,...,n-1,
T,‘:I—Aglci_lLi_l, fori:3,...,n—1,

are all nonsingular, and ||L;| <7, fori=1,...,n—1.
(b) The matrices M,, = W,, = A;lcn_l, W,_1=1- A;Ean_lwm and

M, =W;'A7'C;y,  fori=n-1,...,2,
W, =I1-A'B;M;,,, fori=n-2,...,2,

are all nonsingular, and |M;| < p;, fori=2,...,n.
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4.2. Bounds on the Inverses of Block Tridiagonal Matrices

Proof. We only prove (a); the proof of (b) is analogous. The matrices L; = T; =
A7'B; are nonsingular since both A; and By are. Moreover, (4.14) gives |L1| =
IT1| = |A;'B1] = 71 < 1. Now suppose that |L;_1| < ;-1 < 1 holds for some i > 2.
Then

|AT CiciLica | < AT Cict ||| Lica | < 1,

where we have also used that |A;!C;q| < 1 - |A7'B;| < 1.  Thus,
T, =1- Ai_lCi,lLi,l is nonsingular, and therefore L; = Tl-_lAi_lBi is nonsingu-
lar. Using the Neumann series gives

I T3 = [(T- A CiciLiot) ™ = || X0 (A7 CinaLica)* | < 30 A7 CinLica |
i=0 k=0
1 1 1
- -1 < -1 < -1 ’
1- A7 CiaLica |~ 1-[A7Cic[[Lia | ~ 1= A7 Cia |
L ITAR [ < IATBA .
and |L;| = |[T;"A; B < T[ATTG, ] =T S 1, which finishes the proof. O

Using Lemma 4.4 we can now derive alternative recurrences for the matrices U;
and Y; from Lemma 4.3.

Lemma 4.5. If A is a matriz as in Lemma 4.3, then the corresponding matrices
U, and Y; are given by

U;=-L;U;;1, fori=1,...n-1, (4.17)
Yi = _MiYi—ly fO’f’ 1= n,... 2, (4.18)

where the matrices L; and M; are defined as in Lemma 4.4.

Proof. We only prove that (4.17) holds; the proof of (4.18) is analogous. From (4.6)
and the definition of T in Lemma 4.3 we obtain

U, =-A;'B,Uy = -L,Us,.
We next write (4.7) for i = 3 as
~A;'BoUs = AS'CL U + Uy = —AS'CIT U + Uy = (I- A5'CLT) Uy = T Uy,

and hence
U, = -T5;'A;'ByUs = -LyUs.

Now suppose that U;_y = —=L;_1U; holds for some 3 <i<n—-1. Then from (4.7) we
obtain

-A;'B;U;,1 = A;'C U 1 +U; = (I- A;'C; 1L 1)U, = T, U;,

and hence
U, =-T;'A;'B,U;y1 = -L;Uj.y,

which completes the proof. O
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4. The Theory of Block Diagonal Dominant Matrices

We are now ready to state and prove our bounds on the norms of the blocks
of A~!, which generalize [62, Theorems 3.1 and 3.2] from the scalar to the block
case.

Theorem 4.6. If A is a matriz as in Lemma 4.3, then A~' = [Z;;] with

7-1

1Zi| < 1Zj;]| TT7ws  foralli<j, (4.19)
k=i

1Zij < 1Zj;]| TT wws for alli>j. (4.20)
k=j+1

for 1. and p given by (4.15) and (4.16) . Moreover, fori=1,...,n,

|| < 1Zu < ||
S |l = )
IAG] + 7ia [Cica | + e [ B JA 7 = 751 |Cica | = pina | B

(4.21)

provided that the denominator of the upper bound is larger than zero, and where we
set Co =B, =0, and 19 = pn+1 = 0.

Proof. From Lemma 4.5 we know that U; = —-L;Uj;,1 holds for i =1,...,(n-1).
Thus, for all i < j,

e e
Zij = UZ'Vj = —LiUZq.le = (—1)j72 (H Lk) UjVj = (—1)j71 (H Lk) ij.
k=i k=i
Taking norms and using Lemma 4.4 yields
j-1 j-1
1251 < 12 TT 1Lkl < 12551 TT 7
k=i k=i

The expression for i > j follows analogously using the two lemmas.
Since AA™! = AZ =T we have

Ci,lzi,u + A,LZ“ + BiZHl,i = I, for i = 1, Lo, n,
where we set Co =Zo1 =By, = Zy41, = 0. Using (4.5) and Lemma 4.5,

Z,1;,=U;1V;=-L;1U;V; = -L;_1Z;;,
Zii1;=YinX;=-MinY;X; = -M;1Z;,

where we set Uy = Lg = Y01 = Mjy1 = 0. Combining this with the previous
equation yields

- Ci_lLi_lzii - BZMHIZu + AlZ” = I, for ¢ = 1, e, Ny (422)
Taking norms and using again Lemma 4.4 now gives

Il = | - Cic1Li—1Zii — BiMy1Zii + A Zy; |
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4.2. Bounds on the Inverses of Block Tridiagonal Matrices

IN

(ICi-1lLi—a | + [AG] + [ Bl [ M1 ])]| Zis |
< (Tic1 [ Cica | + [A] + pisa [Bil) | Zii]|,  fori=1,...,n,

where we set 79 = pip+1 = 0, and which shows the lower bound in (4.21). In order to
show the upper bound we write (4.22) as

I- AZZ“ = —(Ci,lLi,lzii + BiMi+1Zii)7 for i = 1, NN
This yields

|AZy; | - |X]| < [T- AZi; | = ||Cim1Lio1Zi; + BiM, 1 Zy; |
< (Tic1|Cica || + pis1 [Bi]) | Zia -

From |Z| = |A;7 AiZi| < A7 | AiZi| we get [|AiZi| > |Zii|/| A;'], and com-
bining this with the previous inequality yields

(i1 Cica | + pis1 |Bil) 1 Zii| 2 1Z:; || - |T].

1
| A7
When |A;1| ™ ~7_1|Ci-1] -pi+1|Bi| > 0 holds, we get the upper bound in (4.21). [

Note that the positivity assumption on the denominator of the upper bound in
(4.21) is indeed necessary. A simple example for which the denominator is equal to
zero is given by the matrix A = tridiag(-1,2,-1) € R™" with 1 x 1 blocks, which
satisfies all assumptions of Lemma 4.3.

Both the off-diagonal bounds (4.19)—(4.20) and the diagonal bounds (4.21) depend
on the values 7; and p;, which bound ||L;| and |M;]|, respectively. We will now
show that by modifying the proof of Lemma 4.4 the bounds can be improved in an
iterative fashion. This is analogous to the iterative improvement for the case when
the blocks of A are scalars, which was considered in [62].

We have shown in the inductive proof of Lemma 4.4 that

1 1 1
— < —~ < — .
1= [A;"CiLiq| ~ 1- A TCiq[[Liy] ~ 1-|A;1Ciq]

-1
T3] <

This bound can be improved by making use of Lemma 4.4 itself, i.e.,

—11 < 1 - < —11 ;
1= |A7Ci L || ~ 1= |ATCiq ||| Lia | ~ 1~ AT Ciq | 7imn

-1
IT 0 <

and this yields
|A;'B;]

L = |T;'A;'B;| < :
” Z” H 7 (4 l” l_HAglci—lHTi—l

If we denote the expression on the right hand side by 7; 2, then we obtain a modified
version of Lemma 4.4, where |L;| < 72 < 7 < 1. Tteratively we now define, for all
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4. The Theory of Block Diagonal Dominant Matrices

i=1,...,nand t=1,...,n-1,

Ti ift=1,
Tit =4 Tirt-1 if t >, (4.23)
|A;"B:] else.

1-|A7IC 1| 751,01

Analogously we can proceed for the values | M; |, and here we define, foralli=1,...,n
andt=1,...,n—-1,

j2% if t = 1,
Wit = 4 Hit-1 ifn-t+1<i, (4.24)
|A Cia

— " else.
1-|A7IB | pis1,e-1

Using these definitions we can easily prove the following modified version of Theo-
rem 4.6, which refines the bounds (4.19), (4.20) and (4.21) as ¢ increases, and which
generalizes [62, Theorems 3.4 and 3.5] from the scalar to the block case.

Theorem 4.7. If A is a matriz as in Lemma 4.3 with A" = [Z;;], then for each
t=1,....,n-1,

j-1
\Zs;| < |Zj;| []7ee, foralli<yj, (4.25)
k=1
7
1Zi5] <1251 TT pwe, foralli>j (4.26)
k=j+1

with T+ and pu; given by (4.24) and (4.23). Moreover, fori=1,...,n,

|| < 1Zil < ||
—= (2 - —
|Ci1 || + piv1,| B JA ™ = 751, [Coct ]| = prasne

A +Tio1e B[’

provided that the denominator of the upper bound is larger than zero, and where we
set Co =B, =0, and 10t = pins1,t = 0.

Note that the statements of Theorem 4.7 with ¢ = 1 are the same as those in
Theorem 4.6. By construction, the sequences {Ti7t};‘:_11 and {ui,t}f:_ll are decreasing,
and hence the bounds (4.25), (4.26) and (4.27) become tighter as ¢ increases. How-
ever, since we have used the submultiplicativity property of the matrix norm in the
derivation, it is not guaranteed that the bounds in Theorem 4.7 with ¢t =n -1 will
give the exact norms of the blocks of A~!. This is a difference to the scalar case,
where in the last refinement step one obtains the exact inverse; see [62].

Finally, let us define

Pt =MaAX T, [Mog=Max i, fort=1,...,n-1
1 1

Then the off-diagonal bounds (4.25) and (4.26) of Theorem 4.7 immediately give
the following result about the decay of the norms |Z;;; cf. [62, Corollary 3.7]
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4.3. Eigenvalue Inclusion Regions

Corollary 4.8. If A is a matriz as in Theorem 4.7, then
1Zijll < P17 12350, for alli<j,

1Zij| < py}

\Zj;l,  for alli>j,

and for eacht = 1,...,n—1.

4.3. Eigenvalue Inclusion Regions

In this section we generalize a result of Feingold and Varga on eigenvalue inclu-
sion regions of block matrices. We start with the following generalization of [30,
Theorem 1]; also cf. [78, Theorem 6.2].

Lemma 4.9. If a matriz A as in (4.2) is row block strictly diagonally dominant,
then A is nonsingular.

Proof. The proof closely follows the proof of [30, Theorem 1]. Suppose that A is
row block strictly diagonally dominant but singular. Then there exists a nonzero
block vector X, partitioned conformally with respect to the partition of A in (4.2),

such that
X1

This is equivalent to

g

and, since the diagonal blocks A;; are nonsingular,

n

X;=-Y A;'A;X;, 1<i<n,
j=1
J#i

Without loss of generality we can assume that X is normalized such that |X;| < 1
for all 1 <4 <n, with equality for some ¢ = r. For this index we obtain

1= ] = | 2 AT A | < 3 1A A% < 35 1A Al
j=1 Jj= Jj=

J*u JET JET

which contradicts the assumption that A is row block strictly diagonally dominant.
Thus, A must be nonsingular. O

If X is an eigenvalue of A, then A — Al is singular, and hence A — Al cannot be
block strictly diagonally dominant. This immediately gives the following result,
which generalizes [30, Theorem 2]; also cf. [78, Theorem 6.3].
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4. The Theory of Block Diagonal Dominant Matrices

Corollary 4.10. If a matriz A is as in (4.2), and X\ is an eigenvalue of A, then
there exists at least one i € {1,...,n} with

> I(AG = AD) A > 1 (4.27)

Jj=1
J#*i

If all the blocks A;; of A are of size 1 x 1, and |A;;| = |A;j|, then this result
reduces to the classical Gershgorin Circle Theorem.

Corollary 4.10 shows that each eigenvalue A of A must be contained in the union
of the sets

n
G ={zeC: Y |(As - 2D) Ay 21,
poe
for i =1,...,n. Due to the submultiplicativity property of the matrix norm, the
sets GV are potentially smaller than the ones proposed in [30, Definition 3],

GV = {zeC: Y (Au - 2D [ Ay] 2 1),

J#i

i.e., we have G}V ¢ Gf V. We will illustrate this fact with numerical examples.

4.4. Numerical lllustrations

In the following we provide a set of numerical examples that illustrate the main
results presented in this chapter, mainly, the bounds in Theorem 4.7 and the new
eigenvalue inclusion sets, G}V, consequence of Corollary 4.10.

We begin by presenting a set of numerical illustrations of the bounds in Theorem 4.7
for different values of t. We consider different matrices A = [A;;] which are row
block diagonally dominant, and we compute the corresponding matrices Z = [Z;;]
using the recurrences stated in Theorem 4.2. In all experiments we use the matrix
2-norm, |- |2. For each given pair i, j, we denote by w;; the value of a computed
upper bound (i.e., (4.25), (4.26) or (4.27)) on the value |Z;;|2 and for each i we
denote by [; the value of the computed lower bound for the corresponding diagonal

entry (i.e., (4.27)). Then the relative errors in the upper and lower bounds are given
by

NG Zoillo — L
Elu] — Ui ” 1] HZ and Ei — H ”HQ 71’ (428)
U 1Zi: 2
respectively. (Thus, both E}; and E! are between 0 and 1.)
Example 4.11. We start with the symmetric block Toeplitz matrix
A =Tel+I® T ¢ R (4.29)

where T = tridiag(-1,2,-1) e R i.e., A is of the form (4.1) with A; = tridiag(-1,4,-1),
and B; = C; = diag(-1) for all i. We have ka(A1) = 58.4787, i.e., the ma-
triz Ay is quite well conditioned. For the computed matriz Z = [Z;;] we obtain
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4.4. Numerical Illustrations

|ZA 1|3 = 2.7963 x 10719 suggesting that Z is a reasonably accurate approzvimation
of the ezact inverse A~L.

In the top row of Figure 4.1 we show the relative errors Ej; for the refinement
step t =1 (no refinement) and t = 8 (maximal refinement). We observe that the
upper bounds are quite tight already for t = 1, and that for t =8 the mazimal relative
error is on the order 1073, i.e., the value of the upper bound is almost exact. In
the bottom row of Figure 4.1 we show the values |Zi|2 fori=1,...,9, and the
corresponding upper and lower bounds (4.27) for the refinement steps t =1 and t = 8.

We observe that while the upper bounds on |Z;|2 for t =8 almost exactly match
the exact values, the lower bounds do not improve by the iterative refinement. The
mazimal error of the lower bounds for the diagonal block entries of Z in the mazimal
refinement step is on the order 1071, The mazimal relative errors in the upper and
lower bounds and all refinement steps are shown in the following table:

t 1 2 3 4 5 6 7 8
max;; Efy  0.84478  0.63381  0.39537  0.20899  0.09596  0.03780  0.01109  7.141 x 10713
max; Ei 0.91039  0.90877  0.90765 0.90529  0.90529  0.90529  0.90529 0.90529
refinement step t=1 refinement step t=8

block index j 00 block index i block index j 0o block index i
10! refinement step t=1 10! refinement step t=8
===« Upper bound (4.23) ===« Upper bound (4.23)
. norm(Zii) . norm(Zii)
................ lower bound (4.23) lower bound (4.23)
R o — - — — . —— S S —— ——
0 “"’_— ~.~~... 0 ’/ \\
107 [oos” Newd 100 7”7 ]
’ 3 L \\
107! : : ‘ : : : . 107! : . ‘ : : : :
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
block index i block index i

Figure 4.1.: Relative errors Ej; (top row), upper and lower bounds on |Z;; |2 (bottom
row) for the matrix A of Example 4.11.
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4. The Theory of Block Diagonal Dominant Matrices

Example 4.12. Let A be the nonsymmetric block Toeplitz matriz of the form (4.29)
with T = tridiag(-110,209.999, -99.999) e R”? i.e., A again takes the form (4.1)
with A; = tridiag(-110,419.999,-99.999), B; = diag(-110), and C; = diag(-99.999).
The condition number in this case is ko(A) = 57.5725, and for the computed matriz
Z we obtain |ZA -1z =1.5151 x 10710,

The top row of Figure 4.2 shows the relative errors for the refinement steps t =1
and t = 8. We observe that for this nonsymmetric example the upper bounds are
not as accurate as those given in the symmetric case, producing a maximal relative
error at refinement step t = 8 on the order 1073. The bottom row of Figure 4.2
shows the upper and lower bounds (4.27) as well as the values |Zi;|2 fori=1,...,9,
and refinement steps t =1 and t =8. Again we can observe that while we obtain a
reasonable approximation in the upper bounds on ||Z; |2 for t =8, the lower bounds
almost do not improve by the iterative refinement process. The mazximal relative
errors in the upper and lower bounds and all refinement steps is shown in the
following table:

t 1 2 3 4 5 6 7 8
max;; B, 0.88856  0.70640  0.46700  0.25859  0.12442  0.05378  0.02140  0.00824

max; Ei 0.90934 0.90768 0.90652 0.90411 0.90411 0.90411 0.90411 0.90411

refinement step t=1 refinement step t=8

0.01
0.008
0.006

I'”::0.004
0.002

block index j 00 block index i block index j 00 block index i
refinement step t=1 refinement step t=8

107! : ; ; 107 ‘ ‘ ‘
==== upper bound (4.23) ==== upper bound (4.23)
=—=norm(Z;) =—=norm(Z,)
_______________ lower bound (4.23) lower bound (4.23)
RSP L mm——— ."o. —— T ——
102} oo™ Qg 1020 =
v’ N v N
Wy 4 5 6 7 8 9%1 2 3 4 5 6 7 8 9
block index i block index i

Figure 4.2.: Relative errors E}; (top row), and upper and lower bounds on 1Zi; | 2
(bottom row) for the matrix A of Example 4.12.
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4.4. Numerical Illustrations

Example 4.13. We now consider the nonsymmetric block tridiagonal matriz
A =(ReI)(T®I+I® T) ¢ R3S

where T is given as in Example 4.11, and R € R is a random diagonal matriz
with nonzero integer entries between 0 and 10 and constructed in MATLAB with the
command R= diag(ceil(10*rand(9,1))). Thus, A is of the form (4.1) with
random tridiagonal Toeplitz matrices A;, and random constant diagonal matrices
B; and C; for alli. For this matrix we have ko(A) = 489.7595, and the computed
matriz Z yields |ZA 1|5 = 2.8328 x 10710, The relative errors in the bounds are
shown in Figure 4.3 and in the following table:

t 1 2 3 5 6 7 8
max;; E?J 0.84477 0.63381  0.39537 0.20898  0.09595 0.03780 0.01109 9.739 x 10713
max; Eﬁ 0.91039  0.90877 0.90765 0.90529  0.90529 0.90529  0.90529 0.90529
refinement step t=1 refinement step t=8
x1072
1 1
0.8 0.8
0.6 0.6
w4 W4
0.2 0.2
0 0
10 10
10 10
5 5 5 5
block index j 00 block index i block index j 00 block index i
refinement step t=1 refinement step t=8
10° : ‘ : : : 10° : ‘ : : :
==== Upper bound (4.23) ===« Upper bound (4.23)
o= norm(Zi i) . norm(Zi i)
ki lower bound (4.23) lower bound (4.23)
10} SINS 10} / \
N A Rt e \
4 k0 N -~
ST N TNy /N 7N
’ (Y . N / N
e (e A v
T ! - ~
1071 107
102 102

1 2 3 4 5 6 7 8
block index i

1 2 3 4 5 6 7 8 9
block index i

Figure 4.3.: Relative errors Ej; (top row), and upper and lower bounds on |Z; |2
(bottom row) for the matrix A of Example 4.13.
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4. The Theory of Block Diagonal Dominant Matrices

Example 4.14. Finally, we consider the nonsymmetric block tridiagonal matriz
A = (R @) tridiag(tridiag(-0.01, -2, 1), tridiag(-2, 10, -2), tridiag(-0.01, -2, 1)),

with A € R¥8L and where R € R is a random diagonal matriz constructed as
in Example 4.13. In this case A takes the form (4.1) with A;, B; and C; random
tridiagonal Toeplitz matrices with integer entries for all i. For this matrix we have
rk2(A) = 58.478, and |ZA — 1|3 = 2.7962 x 10710, The relative errors in the bounds
are shown in Figure 4.4 and the following table:

t 1 2 3 4 5 6 7 8
max;; Efj 0.84477  0.63381  0.39537  0.20898  0.09595 0.03780 0.01109 7.142x 10713
max; Ei 0.91039 0.90877 0.90765 0.90529 0.90529 0.90529  0.90529 0.90529
refinement step t=1 refinement step t=8

0.8

0.6
Wp4

0.2

0
10
5 5
block index j 0o block index i block index j 0o block index i
10! refinement step t=1 10" refinement step t=8
==== Upper bound (4.23) ==== Upper bound (4.23)
=—=norm(Z;) =—=norm(Z;)

0 - lower bound (4.23) 0 - lower bound (4.23)

10°¢ i 10°¢ ]
..X . . "’. 27 ““ » v’*&
7 ‘\"' S RO // N A" 96” <,
10-1 ,jl \‘ e \‘ ..... ; - J 10-1 L / ‘\‘ ‘;9‘; ‘& =
7 7\ - P \.-" “\'QQ ;/ S Vot
/7 N\ 7 \ /7 N\ Y \

2 -~ -2 7 ~
102y ST R Lk S Yoo~
10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9

block index i block index i

Figure 4.4.: Relative errors Ej; (top row), and upper and lower bounds on |Z; |-
(bottom row) for the matrix A of Example 4.14.
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4.4. Numerical Illustrations

We continue by providing a set of numerical illustrations of of the newly proposed
eigenvalue inclusion sets, G;'°V, which are a consequence of Corollary 4.10. We
consider different matrices A = [A;;], and we compute the boundaries of the sets
G}V and va for all i < n, i.e., the curves for z € C where

n n

2o 1Ay =20 Ay =1, and 3 [(As - 2D) Ayl =1, dge{l,... n}, i,
7o p

respectively.

Example 4.15. We first consider the symmetric matriz

4 -2]-1 1
-2 4] 0 1| [Au|Ap
Al 0 4 ‘[A21A22 ’ (4.30)
1 -1|-2 4

which has the eigenvalues 1.4586, 2.3820, 4.6180, and 7.5414 (computed in MATLAB
and rounded to five significant digits). Figure 4.5 shows the boundaries of the
corresponding sets G'°" and GZFV fori=1,2, i.e., the curves for z € C where

[(Aii - 2D Ay =1, and [(As - 2D Ay =1, i,5e{1,2}, i#j

respectively. Clearly, the sets GI'*" give tighter inclusion regions for the eigenvalues
than the sets GlFV as well as the usual Gershgorin circles for the matriz A, which
are given by the two circles centered at z = 4 of radius 8 and 4.

e eigenvalues — -va ----- G;V e eigenvalues Gy G
2 ‘ ‘ ‘ 2
TN TN
1 ’ N s N 1
© / \ \ —
\g/ 0 i o | i® q \E/ 0 o o . ¢
- 1 \ ./ / - 1
N 7 . /
o —
2 ; E 2
2 0 2 4 6 8 10 2 0 2 4 6 8 10
Re(z) Re(z)

Figure 4.5.: Eigenvalue inclusion regions obtained from the sets G}°% and GiFV for
the matrix (4.30) of Example 4.15.

We next consider the nonsymmetric matrix

4 -2|-05 05
-2 5|-14 -05 A | Ap
-05 0] 4 -2 [ Ay | Ay ]
05 05| -2 4

A:

(4.31)
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e eigenvalues — -va ----- G;V e eigenvalues G GO
2 T 2
PR PSRN

T F R N A !
N 5 . - 3 ~
= 0} Iie e 1 ee: 1 1 = 0 ? e .
E Vo S N | E

1 N , N , 1

~~ - N~
2 i 2t
2 0 2 4 6 8 10 -2 0 2 4 6 8 10
Re(z) Re(z)

Figure 4.6.: Eigenvalue inclusion regions obtained from the sets G}'“" and GiFV for
the matrix (4.31) of Example 4.15.

which has the eigenvalues 1.6851, 2.5959, 6.2263, and 6.4927. As shown in Figure 4.6,
the sets G7'°Y again give tighter inclusion regions than the sets va as well as the
usual Gershgorin circles.

We now present an example of the inclusion sets for the eigenvalues of a matrix

KH e,®By 0
A=| et ®C A eT®B [ e RNEmNCmL) (4.32)
0 (s3] ® Ch Kh

obtained, for example, from a Shishkin mesh discretization of the 2D convection-
diffusion problems of type (5.2) studied in Chapter 5.

Example 4.16. Consider the nonsymmetric block tridiagonal matrix

A B 0
A= Cc A B |eR¥, (4.33)
0 C A

where A = tridiag(-36,108,-36) € R>, B = diag(-16) € R®*® and C = diag(-20) € R>,
i.e., we have a matrix of type (4.32) with N =5, m=1 and A,=A,=A,6 B, =B,

and C, = C. Figure 4.7 shows the 15 eigenvalues computed in MATLAB and rounded

to five significant digits as well as the boundaries of the corresponding sets Gj°Y,

and GlFV fori=1,2,3.

The figure shows that sets G;'° give the same inclusion regions for the eigenvalues
than the sets GZFV (both inclusion regions are tighter than the usual Gershgorin
circles); this is to be expected since the off-diagonal blocks are multiples of the
identity matriz and the sets G;'°" reduce to the sets GZFV. However, by changing the
structure of the off-diagonal blocks (we make the upper right corner of each upper
off-diagonal block and the lower left entry of each lower off-diagonal block equal
to 10), the eigenvalues do not shift much, nevertheless, the sets are no longer equal
and once again the new sets G;'*” present much tighter inclusion regions than the
sets GZFV - see the right side of Figure 4.7
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o eigenvalues — -GFY —==GEY wrer GFY —— GITY o BT - GI

50 T T T T ! T 50

-50 -50

0 50 100 150 200
Re(z)

Figure 4.7.: Eigenvalue inclusion regions obtained from the sets G?*" and G¥V for
the matrix (4.33) of Example 4.16.

Example 4.17. Consider the nonsymmetric block tridiagonal matriz (4.33) from
Example 4.16 where A = tridiag(—36, 108, -36) € R®, but now we choose the off-
diagonal blocks B and C as 5 x5 diagonal matrices with random positive integer
entries between 0 and 9 using the MATLAB command diag(floor (10*rand(5,1))).
Figure 4.8 once again shows the 15 eigenvalues as well as the boundaries of the
correspondina sets G, and GI'V fori=1.2.3.

. FV FV FV new new new
e eigenvalues — =G." —==G," «eem G, Gj G, G,
T T T T T T T T T
20 |- - - - - - A
PlagiainalS o~ o~ ‘~\ P emiaian S ,«' ~s
10 - o > N s 7 N .
— L0 2N N NS NN N 2NN
N 14 ; V4 ; VL :‘ L ; '; \
g O .‘°.§-.,\t-._ﬁ0.‘0..f
= 10l Vi N N AN d N
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Figure 4.8.: Eigenvalue inclusion regions obtained from the sets G7°% and GZ-FV for

the matrix (4.33) of Example 4.17.

Figure 4.8 once again shows that sets G;'°“ present much tighter incusion regions
than the sets GZFV. In the context of convection diffusion equations, a coefficient
matrix with the structure given by this example might correspond to having variable
coefficients in equation (5.2) instead of constant ones, like it is the case for the
matrix in Fxample 4.16.

Example 4.18. Consider the nonsymmetric block tridiagonal matrix arising from
the Shishkin mesh discretization of the convection-diffusion model problem (5.2) with
€ =107, using 16 intervals in the x-direction and 8 intervals in the y-direction (see
next chapter) yielding a matriz of type (4.32) with N =15 and m = 7. Figure 4.9
shows the eigenvalues of the matrix as well as the boundaries of the corresponding
sets G, and GZFV fori=1,...,105. Just like it is the case for Example 4.16,
the sets GV present the same inclusion regions than the sets GEV. As we have
discussed before, this is due to the constant-coefficient nature of the problem. Even
though the eigenvalues appear clustered together in 4 tight clusters, the difference in
magnitude between the eigenvalues, caused by the convection-domitated characteristic
of the problem, makes the inclusion regions cover a much larger part of the complex
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Figure 4.9.: Eigenvalue inclusion regions obtained from the sets G**% and G¥V for
the matrix (4.33) of Example 4.18.

plane than expected (notice the scale in Figure 4.9). Moreover, the regions grow as
the problem becomes more convection dominated, making the inclusion sets not very
informative in the case of real world problems. It is important to note, however,
that a different subdivision of the blocks of (4.32) might lead to tighter inclusion
regions for these type of problems, a task that remains to be explored.

To complete this chapter, we present the definition of column block diagonal
dominance of matrices in the following Appendix.

4.A. Column Block Diagonal Dominance of Matrices

According to Definition 4.1 in Section 4.2, the property of column block diagonal
dominance of matrices is defined as follows:

Definition 4.19. Consider a matriz of the form
A =[A;;] with blocks A;; € C™™ fori,j=1,...,n. (4.34)

The matriz A is called column block diagonally dominant (with respect to the matrix
norm | -||) when the diagonal blocks Aj; are nonsingular, and

n

S AGAG <1, forj=1,...,n. (4.35)

i=1

i%j

If strict inequality holds in (4.35) then A is called column block strictly diagonally
dominant (with respect to the matriz norm || -|).

Now, restricting our attention to block tridiagonal matrices of the form (4.1) and
following the notation of that chapter, in order to obtain analogous bounds for the
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4.A. Column Block Diagonal Dominance of Matrices

norms of the inverses of a column block diagonally dominant matrix we fist need to
set Bg = C, = 0, and define the new quantities

C;A!
7= ”Z—lt fori=1,...,n,
1-[Bi1 A7
B;1A!
Qi = M, fori=1,...,n.
1-|GCA7

The column block diagonal dominance of A then implies that 0 < 7 < 1 and
0 < fi; < 1. Using these quantities we obtain the following result.

Theorem 4.20. Let A be as in (4.1) and suppose that A1 as well as B;' and
C;l fori=1,...,n—1 exist. Suppose in addition that A is column block diagonally
dominant, and that

|IC1ATY [ <1 and |B,_1AY <1 (4.36)
Then A™' =[Z;;] with
j

sz‘j ” < ”Z“H H [Lk, fOT all 1 <j, (4.37)
k=i+1
-1

|Zsj| < |Zis| TT 7% for all i > j, (4.38)
k=j

with g and 1, given by (4.16) and (4.15). Moreover, fori=1,...,n,
1] I < 1]
[ Al + Fica | Bioa || + fiisa [ G T A = A Bioa | = A |Gl
provided that the denominator of the upper bound is larger than zero, and where we
set Bg=C, =0, and Ty = fin+1 = 0.

i <|Z; (4.39)

Proof. The proof of this theorem is completely analogous to the one of Theorem 4.6
for row block diagonally dominant matrices when the necessary adaptations are
made, i.e., by performing the following changes:

e Formulate Lemma 4.3 for the matrices X; and V;, showing that the sequence
{IX;[}7y is strictly increasing while the sequence {||V;|}i"; is strictly decreas-
ing.

. lformulate L~emma 4.4~ for theNmatrices f;l =Ty = ClAfl, T2~: I- T1]§1A§1,
L, = CiAi_lTi_l, and T; =1- Li,lBi,lAgl. Analogously for M; and W;, etc.

e Formulate Lemma 4.5 for the matrices X; and V;, in particular showing that
X;=-X;1L;, and V;=-V,, M,

¢ In the proof of Theorem 4.6 use the the aforementioned results and use equation
ZA =1 instead of AZ =1.

Following these changes and proceeding analogously to the proof of Theorem 4.6
yields the desired result. O
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5. Convergence of the Multiplicative
Schwarz Method for Shihskin Mesh
Discretizations of Two-dimensional
Convection-Diffusion Problems

Parts of this chapter are expected to be published in:

[24] C. Echeverria, J. Liesen, and P. Tichy, Analysis of the multiplicative
Schwarz method for matrices with a special block structure. [Sub-
mitted].

5.1. Introduction

We analyze the convergence behavior of the multiplicative Schwarz method for
solving linear algebraic systems of the form

Au-=f, (5.1)

where the coefficient matrix A is obtained from the upwind finite difference dis-
cretization of the two-dimensional constant coefficient convection-diffusion equation
posed on a domain € with Dirichlet boundary conditions

Oz2

5.2
u(z,y) =g(x,y), on 0. (5:2)

{—e (82“(x’y) - 8215;2’2’)) + Wy au(ga;,y) +wy a“(a?y) +Bu(z,y) = f(z,y), inQ

We assume that the domain of definition of the BVP is the unit square, i.e.,
Q2=(0,1)x(0,1) and further assume that the parameters of the problem are chosen
such that the the problem is convection dominated, i.e., that € < |w||, and that the
solution, u(x,y), presents one boundary layer near y = 1 In particular we assume
that the components of the velocity field fulfill w = [0,w,]T with w, >0, and that
the scalar reaction parameter, 3, is nonnegative, i.e., 8 > 0.

In order to obtain a satisfactory approximation to the solution of (5.2), we
discretize €2 using a Shishkin mesh that is refined inside the layer; a very similar
approach to the one used in the one-dimensional case (see Chapter 3). The mesh
is constructed by using a uniform mesh in the z-direction and a one-dimensional
Shishkin mesh in the y-direction. This technique has been described in detail in
Chapter 2, for external sources see the articles [74, § 5] and [47], as well as the
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5.1. Introduction

book [59]. After the discretization process, the coefficient matrix exhibits the general
structure:

KH €en ® BH O
A=-| el oC A el @B | ¢ RNEm+1)xN@m+l) (5.3)
O el ® Ch Kh

with the blocks A ,;, A, e RN™*Nm A B C,B,,C, ¢ RV*N and the canonical basis
vectors eq, ey, € R™. We will think of A, A, € RV"™*N™ a9 matrices consisting of
m blocks of size N x N.

It is important to note that a structure such as the one given by (5.3) is not
exclusive to the discretization of convection-diffusion problems of type (5.2). The
coefficient matrices of linear algebraic systems with the structure (5.3) arise naturally
when a general second-order partial differential equation is posed and discretized in-
side a domain €2 that is divided by one interface boundary into two local subdomains,
Q1 and €2y such as the one shown in Figure 2.5. In this context the first m block
rows in the matrix A correspond to the unknowns in the domain €2, the last m
block rows correspond to the unknowns in the domain s, and the middle block row
corresponds to the unknowns in the interface boundary. The underlying assumption
here is that in each of the two domains we have the same number of unknowns.
This assumption is made for simplicity of the following exposition. Extensions to
other block sizes are certainly possible, but would require even more technicalities.

In this chapter, after deriving general expressions for the norms of the multi-
plicative Schwarz iteration matrices for systems of the form (5.1)—(5.3), we derive
quantitative error bounds only for the case when the blocks A » and Kh of A are
block tridiagonal. We point out that the model problem studied in Chapter 3 is of
the form (5.1)—(5.3) with N =1. The transition to the higher dimensional cases is
reflected in the block structure exhibited by the coefficient matrices. While results
that exploit the classical property of diagonal dominance of tridiagonal matrices are
the main tools used in Chapter 3 to obtain quantitative convergence results, the
derivation of error bounds in this context relies on recent results on the theory of
block diagonal dominance of block tridiagonal matrices presented in Chapter 4.

The chapter is organized as follows. In Section 5.2 we state the multiplicative
Schwarz method for linear algebraic systems of the form (5.1)—(5.3). We continue by
studying the algebraic structure and the norm of the iteration matrices and present
the main differences to the one-dimensional case in Section 5.2.1. In Section 5.2.2
we present a general expression for the convergence factor of the method when used
to solve systems with matrices of type (5.3). We proceed by deriving quantitative
error bounds for the method when the matrix A is both block tridiagonal and
block diagonally dominant in Sections 5.2.3-5.2.4. Theoretical results specific to the
case of convection-diffusion problems of type (5.2) are given in Section 5.2.5 and
numerical experiments for specific cases are found in Section 5.4. Finally, a summary
of the main results of the chapter and a brief discussion of possible generalizations
and alternative applications of our approach is given in Chapter 6.

75



5. Convergence of the Multiplicative Schwarz Method for 2D Shihskin Problems

5.2. Convergence Bounds for the Multiplicative Schwarz
Method

The multiplicative Schwarz method for solving linear algebraic systems of the form
(5.1)—(5.3) can naturally be based on two local solves using the top and the bottom
N(m+1) x N(m + 1) blocks of A, respectively. More precisely, the restriction
operators of the method are given by

R1 = [IN(m+1) 0] and Rg = [0 IN(m+1)]>

both of size N(m +1) x N(2m +1). The corresponding restrictions of the matrix
A to each local subdomain (commonly refered to as local subdomain problems)are
then given by

_ T _ KH en®By _ T A e1T®B
Ar=RiAR; = e, ®C A » A2=RoAR; = e1®C, A, ’
(5.4)

both of size N(m+1) x N(m+1). Analogous to the one dimensional case we define
the projection matrices

P; = R7A;'R;A ¢ RNGmANC@mel) =y 9 (5.5)

and note that they are now of size N(2m +1) x N(2m + 1). Once again, using the
complimentary projections

Qi E]:_PZ € RN(2m+1)xN(2m+1)’ Z — 1,2’
we define the multiplicative Schwarz iteration matrices
T12=Q2Q1 and Ta = Q1Qo. (5.6)

Using these iteration matrices, the method is then given by (2.70)-(2.72), i.e., the
transition to higher dimensional cases is reflected only by the specific block structure
of the matrices (5.6). Using the theory developed in Chapter 4 allows us to present
an analogous analysis to the one given in Chapter 3 for the one-dimensional case.

5.2.1. Structure of the iteration matrices

We begin by taking a closer look at the structure of the iteration matrices T;; in
(5.6). A direct computation based on (5.5) shows that

Iy (m _ [ Tnims) AT'(ems1 ®B) 0
P1=[ N(0+1)]A11[A1em+1®B0]: N(O+1) 1 (90+1 ) 0]7

and

PQ:[ 0 ]A21[0e1®CA2]:

[0 0 0 ]
In(m+1) ’

| 0 AN (e1®C) Iy(paen
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5.2. Convergence Bounds for the Multiplicative Schwarz Method

where eq, ;41 € R™. We see that both Py and Py have exactly N(m + 1) linearly
independent columns, and hence

rank(P;) = rank(P2) = N(m +1).

Moreover, the complementary projections are

0 -A7l(ens1 ®B) 0 IN(m-1) 0 0
Qi=|0 In 0 ; Qo= 0 Iy 01,
0 0 IN(m—l) 0 —Ail(el ® C) 0

and we have

rank(Q) = rank(Qz) = Nm.

In order to simplify the notation we write

(2

P _ II _
[ oo :IEAll(emH ®B) and [ P® :|EA21(91 ® C), (5.7)

where TI® e RV*N and

PO = [(P(l“)T,...,(P;Q)T]T eRV™N yith PP eRVY, forj=1,...,m.

Then
ONm -p® IN(m-1)
Oy -II Iy
Ql = IN ) Q2 = _II® ON 5
In(m-1) -P® Onm
and these matrices yield
0 -P® 0
To=QQ:1=| 0 TI®PL 0 (5.8)
0 POPL 0
_pPW
=| I®PY ([ “ON(m+1) ‘ Iy ‘ On(m-1) |=Vi(ep, s ® 1),
POPO
m
and
0 POPP 0
Ty =QiQe=| 0 IMOPP 0 (5.9)
0 -P® 0
OOPY [ On(m-1) | I | On(mer) | = Va(ep, ®In),
_P®

where e, €2 € RZ™*1 and Vq, Vy e RN@m+D)xN,
Using these representations of the matrices T;, we can obtain the following result,
which is a generalization of Proposition 3.1 and Corollary 3.2 given in Chapter 3.
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5. Convergence of the Multiplicative Schwarz Method for 2D Shihskin Problems
Lemma 5.1. In the notation established above we have rank(T;;) < N, and
k k
T = Vi (POPY)" (el o ®Iy), Th'=Vo(PYPY) (el ®Iy). (5.10)
for all k> 0.
Proof. We only consider the matrix Tis; the proof for To; is analogous. The
result about the rank is obvious from (5.8). We denote E,,12 = €’ 5, ® Iy, then

T2 = V1E,,42, and it is easy to see that

Tllggl =Vy (Em+2V1)k E,..o, forallk>0.

Now
PO
IOPW
EerQVl = (ez;HQ ® IN) P(lz)P(nll) = P§2)P;rlz)
m
(
Py, P
shows the first equality in (5.10). O

The next result generalizes Lemma 3.3 given in Chapter 3 and gives expressions
for some block entries of the matrices T;;, which will be essential in our derivations
of error bounds in the following sections.

Lemma 5.2. Suppose that the matrices Ay, A, e RN™N™ i (5.3) are nonsingular,

and denote A} = [ZZJH)] and A" = [ZE;)] with ZEJI.{),ZE?) e RV*N ' Then, in the
notation established above,

P® B/ AS 2 — -1

and
]._.[(2) IN _ o .
[P(” ]:[—Z‘l’;;lch]ﬂ‘”’ M - (A-Bz{)C,)” C.

Proof. From (5.7) we know that P®  P® TIM and II® solve the linear algebraic
saddle-point systems

A, e,®By, PO [0 A ef®B n® | | c
el ®C A oo | | B|” | e®C, A, P® [T 0 |

Hence the expressions for P, P® TI®, and II® can be obtained using Schur
complements; see, e.g., [43, § 0.7.3]. O
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5.2. Convergence Bounds for the Multiplicative Schwarz Method

5.2.2. Bounds for General Matrices

In order to bound the norms of the iteration matrices T1o and Ts1, we first have to
decide which matrix norm should be taken. In the following we use a general induced
matrix norm | - || which can be considered for square as well as for rectangular
matrices. Note that an induced matrix norm for square matrices is submultiplicative
and satisfies |I| = 1 where I is the identity matrix.

Lemma 5.3. In the notation established above, for any induced matriz norm we
have

ITH < pf | Ts),  for allk >0, (5.11)

where
p12 = |Z{)CIIPZG0 By | and  pon = |25, B, IIVZTYCII|. (5.12)

Proof. We only consider the matrix Tis; the proof for To; is analogous. Taking
norms in (5.10) yields

k k k . —
ITi ] = [Vi(PPPE) ezl < 1| Vil [Emez| - with pr2 = [P,

and where E,, 2 is defined in the same way as in the proof of Lemma 5.1. Noting
that |Ep2] = [In] =1 and

I'T12]| = max [T12x| = max [V1Ep 2| = max [Vyy| = V1],
[x[=1 [x[=1 lyl=1

yields the bound on | T3] in (5.11).
Finally, the equality |[p{”p®| = |Z{"C,II®ZD B,IIV| in (5.12) follows di-
rectly from Lemma 5.2. O

So far our analysis considered general (nonsingular) blocks A, and A, in the
matrix A in (5.3), and combining (2.72) and (5.11) gives a general error bound for
the multiplicative Schwarz method in terms of certain blocks of A and the inverses
of Ay and A,. Note that using the submultiplicativity of the matrix norm |- |,
which at this point is still a general induced norm, both convergence factors pi2 and
p21 can be bounded by

pij < 1217 Cull 1250, B | [TLV | [TT® . (5.13)

mm

In order to derive a quantitative error bound from the terms on the right hand side,
we have to make additional assumptions on Ay and A,. One possible choice of
such assumptions is considered in the next section.

79



5. Convergence of the Multiplicative Schwarz Method for 2D Shihskin Problems

5.2.3. Bounds for Row Block Diagonally Dominant Block Tridiagonal
Matrices A;; and A,

We are most interested in the analysis of the multiplicative Schwarz method for
linear algebraic systems that arise in certain discretizations of partial differential
equations, in particular the convection-diffusion problem (5.2), and we will therefore
consider the matrices A, and A, be given by

A, = tridiag(Cy, Ay, By) and A, = tridiag(C,, A,, B,). (5.14)
Additionally, we will assume that the matrices
A, B,,Cy,A B,C,A,, B, C, e RV are nonsingular, (5.15)

and that the matrix A is row block diagonally dominant in the sense of Definition 4.1
given in Chapter 4, i.e., that

|AL' By + |AL'Cyl <1,
|IATIB| + |AC| <1, (5.16)
|A'B,|+]A,'C,[ <1.

Note that because of (5.15) each of the norms on the left hand sides of these
inequalities is strictly less than one.

Both A, and A, satisfy all assumptions of Theorem 4.6 given in Chapter 4.
A minor modification of the first equation in the proof of Theorem 4.6 (namely
multiplying both sides of this equation by C, or By before taking norms) shows
that the blocks of the inverses, i.e., A} = [ZEJH)] and A;! = [ZE;‘)], satisfy

1Z0C, < |ZC, | and [Z00By| < |Z80Byl, i=1,...m.  (5.17)

m

Moreover, as shown in the proof of Theorem 4.6, the equations

Z{) = (A, -B,M;,) ' =(I-A,'B,M,) A},
Z;TII-,IH)’L = (AH - (jH:[JH)71 = (I - A;{chLH)ilA;{l

hold for some matrices M,,, Ly € RV with |[M,| <1 and |Ly| < 1; see (4.22) in
Chapter 4. The precise definition of M, and Ly is not important here.
The four matrices that appear on the right hand side of (5.13) are now given by

Z{)C,=(1-A;'B,M;)'A;'C,,
Z By = (I-A,'CyLy) 'AL'By,
n®=(1-A'Bz{Yc,)'A'C,
n®=(I-A"'cz!B,)'A'B.
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5.2. Convergence Bounds for the Multiplicative Schwarz Method

Since |A;'B, M| < |A;!B,| <1, we can use the Neumann series to obtain

H(I—A;lBth)‘lH = (Angth)k
k=0
< i ”Angth =3 1—1 :
k=0 1- ”Ah Bh”
Similarly, |A'CyLy| < |A; Cy| <1 implies that
1
I-A'C,L,) ™" <—
“( H H H) H 1—||A1_qch||
and hence
AlC,|
ZMWe,| < _AVC =, <1 5.18
|| 11 h” 1— HA;lBhH TIh ) ( )
A'By|
ZU By < AT Bal =y < 1. 5.19

Using (5.18) and (5.19) yields
|AT'BZ{YC, | < |AT'B[ <1 and [|AT'CZ{) By| <nu|ATIC| <1,
and another application of the Neumann series shows that

|A'C|
L-n|A'B]

|A~'B|

1 -ng|AIC|

<1 and IV < (5.20)

In summary, we have the following result.

Lemma 5.4. In the notation established above, the convergence factors of the
multiplicative Schwarz method given in (5.12) satisfy

m|ATC| nu|AT'B|
1-np|AIB| 1-ng|A-IC|

i (5.21)

where each of the factors on the right hand side is less than or equal to one.
We now illustrate the bound from Lemma 5.4 with a simple example.
Example 5.5. Let N >2 and m > 1 be given, and consider the matriz
A = tridiag(-L, W, -T) e RN+ D)xN@mal),

where W = tridiag(-1,4,-1) e RVN and Te RNV It is well known that A is the
result of a standard finite difference discretization of the 2D Poisson equation on
the unit square and with Dirichlet boundary conditions. In our notation, A is of the
form (5.3) and (5.14) with

A, = A, = tridiag(-I, W, -I) e RV™Nm
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5. Convergence of the Multiplicative Schwarz Method for 2D Shihskin Problems

B,=B=B,=C,=C=C,=-1, and Ay = A = A, =W. The eigenvalues of the

symmetric positive definite matric W are given by

7k
A =4-2
& COSN+1

For the 2-norm | - |2 we have

1 1
V‘/ -1 = = — <
H I2 A1 4-2cos iy

N | =

and hence A 1is strictly row block diagonally dominant with respect to the 2-norm;
see the conditions (5.16). Note that A is only weakly row diagonally dominant in
the classical (scalar) sense.

Using the definitions (5.18) and (5.19) we obtain

W1
W a1

Nh =1MH =

Now (5.21) yields the following bound on the convergence factor of the multiplicative
Schwarz method:

w-L 1 2

- 1” W~ |l2” ” vV ”2 ( 1 )2

Pij S W-1 = 2 _ _ .
1- 1” I 1” ”VV 1”2 A )\1 1

Thus, the convergence factor of the multiplicative Schwarz method for this problem
is less than one, regardless of the choices of N and m. But note that for N — co we
have A\ — 2 and hence p;j — 1. ]

To bound the norm of the error of the multiplicative Schwarz method, see (2.72),
(5.11), and (5.21), it remains to bound |T;;|. Let us first realize that because of
the equivalence of matrix norms, there exists a constant ¢ such that

1T < | T4 oo,

where ¢ can depend on the size of T;.
Now we bound |Tj;|e. From (5.8) and (5.9) we see that

I T12]00 = max{[P™ oo, [IIZPL) oo, PP oo}, (5.22)
[ T21 00 = max{[P® oo, [TIVP oo, [POP o0}, (5.23)

and Lemma 5.2 yields

PO = -7\ BT, P® - -7 C,I?,
@Qpm _ (2)rz (H) (e)) LHp@ _ (1) (h) (2)
I®PY = ¥z B, 110, oOP® = 11 z C,II

P®P() = Z{" C,II®Z! B, MV, POPY =z BHH“’Z"”C .
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5.2. Convergence Bounds for the Multiplicative Schwarz Method

Therefore, using (5.17) we can bound the co-norms of these matrices as follows:

[P oo = max{|Zi5 BT oo, ..., | 250, BTI® oo}
<125 B oo [ TI oo,

TP, = [T BT
<1245 B o T T,

[POPR o = max{|Z0) CIIVZY0 BTV ... | 28 C, TV 2L, B LTI o}

|Z, B I TI ] 2 C o | TT o,

IN

and

[P oo = max{[|Z{Y C,IT? | o, ..., | Z1 CLIT? | 0 }
< |1 Z5Y Chlloo | TT? | oo,
[TTOPY| = [IDZTY C, 1P o
1Z7 Co oo [T o0 [TI | o,
max{[|Z{"'B,MIVZ{YC, 17 |,..., |2\ B, AVZY C, I o}
< | ZG Bl [TV | | ZT7 C,, HooIIH(”H

IA

PP

The individual terms on the right hand sides of previous inequalities are all
less of equal than one. Therefore, the maximum of the first three bounds is
I1ZSD By |l oo [TI? | o0, and the maximum of the second three bounds is |Z{} C), oo [TI® | o
Hence, using (5.22) and (5.23), and (5.18), (5.19), (5.20) we obtain

N | A7 Bl oo

I T12llo0 < 12570 Bur oo [T oo < =
1= 11,0 | A7 Clloo

and .
Moo | A~ Clloo

L~ 1o | A1 B oo

where 7y, ., and np,.. are defined as in (5.18) and (5.19) using the oco-norm,

IT21 o0 < 1257 Chlloo JTT? o0 <

| AL Chlleo | A% B oo
Nhyeo = T T A1 10 NHyoo = T2 T4 T~ 5.24
T-A;B, - T~ JAZCul- 20
Combining these bounds with Lemma 5.3 and Lemma 5.4 gives the following
convergence result.

Theorem 5.6. Suppose that A as in (5.3) has blocks as in (5.14) that satisfy
(5.15)—(5.16). Then the errors of the multiplicative Schwarz method (2.70) applied
to the linear algebraic system (5.1) satisfy

IIe(’“”)<( m|A'C| nu|AT'B|

k
-~ N HTlna k=0,1,2,...,
[e@] = \1-ny|A-1B| 1-ny|A-1C] ) ’
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5. Convergence of the Multiplicative Schwarz Method for 2D Shihskin Problems

where ny, and g are defined in (5.18)—(5.19). Moreover,

0, | A" B oo
1111, | A1C o0’

e | A7 C o

IT12] <c - ,
1= pe | A1 Bl oo

where n\™ and () are given by (5.24), and c is a constant such that | Ti;| < ¢ [Ty oo

We will now present an analysis for the case of the matrices A » and Kh are not
only row block diagonal dominant but also column block diagonal dominant.

5.2.4. Bounds for Row and Column Block Diagonally Dominant Block
Tridiagonal Matrices A, and A,

In many practical applications, like the one we are interested in, the matrices A,
and A, of the form (5.14) are not only row block diagonally dominant, see (5.16),
but also column block diagonally dominant, i.e., they satisfy the conditions

IBuAL | +[CuAL <1, [BLA+[CiA <1, (5.25)

Suppose now that the conditions (5.25) are satisfied. Then, using a reformulation
of the results of Chapter 4 for column block diagonally dominant matrices (see
Appendix 4.A), the equations
Zﬁ}i) = (Ah - I:hch)_l = AZI(I - thChA.Zl)_l,
Z0) = (Ay -MuBy,) ' = A} (I-M,B AN

hold for some matrices Ly, My ¢ RV*V with |L,| < 1 and |[My]| < 1. Analogously,
using the Neumann series we obtain the bounds

A el
ZM | < [ h ’ 7. | < H ,
H 11 H 1- ||ChA;1H ” mmH 1— ||BHAI__11 H
o that IAZ1C, |AZ]|By]
A7 [IC A IB
Z"We, | < = TR 7z B | < A2t T HT
H 11 hH 1-— ||ChA;l H ” mm-— H H 1— ||BHAI__11 H

Therefore, if A, and A, satisfy both, the conditions (5.16) as well as (5.25), then

= (5.26)

1Z8)C, | Smin{ |A;'C,| A HCl }

1-[A'B, [ 1-]C.AY

and

mm

299 B, < min { |A;'B,| HA;fuuBHu}

, = ) 5.27
T [AICy 1= |BuA )~ " (5.27)

The value of 73} can be much smaller than 7y for example if |By | « [Cg||. Since
we only improved bounds (5.18) and (5.19) on |Z{¥'C,| and |Z{) B, we can

(
mm
formulate a version of Theorem 5.6 where we just replace 7, and ng with o™

and nE™".
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5.2. Convergence Bounds for the Multiplicative Schwarz Method

Theorem 5.7. Suppose that A as in (5.3) has blocks as in (5.14) that satisfy
(5.15)—(5.16), and (5.25). Then the errors of the multiplicative Schwarz method
(2.70) applied to the linear algebraic system (5.1) satisfy

Jet+D) ( | AC| ngn|A'B]

< —— —— |Ts), k=0,1,2,...,
[~ \1-pp=|AB| 1-ng»|AC| )
where Ny and nE" are defined in (5.26) and (5.27). Moreover,

5" | ABw 7 AT C oo
. X = ) ”T21” <c : © = )
1-npn |A-1C) 1-npn |A-1B o

IT2] <c

min min

where N and N are given by (5.26) and (5.27) using the oo-norm, and c is a
constant such that | Ti;| < ¢|Tijoo-

In the next section we will explicitly state convergence results for the case when
the matrices A come from the Shihskin mesh discretization of convection-diffusion
model problems.

5.2.5. Bounds for Convection-Diffusion Problems

In order to obtain quantitative error bounds for the case of matrices arising in the
discretization of BVPs of type (5.2), we need to make further assumptions on the
parameters of the problem. In particular we assume that on  the components of
the velocity field are such that w = [0,1]", leading to the problem:

—e (Tulgn)  Zul) ) 2D 4 g, y) = fla,y), 0 Q= (0,1) % (0,1)
u(z,y) = g(x,y), on ON.

(5.28)

Following the discretization procedure described in Section 2.1.6 leads to a linear

system (5.1), where the matrix A exhibits the structure (5.3) with matrices A and

A, of the form (5.14) which are both row and column block diagonally dominant.

The entries of A are then given by (2.45) by setting w, =0 and w, = 1. We will now

show that for this model problem the assumptions of Theorem 5.7 are satisfied.

Lemma 5.8. All nonzero blocks of the matriz A described above are nonsingular.
Moreover, for the matriz co-norm the matriz A satisfies the conditions (5.16), i.e.,
it is row block diagonally dominant, and the submatrices Ay and A, satisfy the
conditions (5.25), i.e., they are column block diagonally dominant.

Proof. Note that all (nonzero) off-diagonal entries of A are negative, and the diagonal
entries ay, a, ap are positive. Moreover,

ag+bg+cg+dg+eg=a+b+c+d+e=ap+b,+cp+dp+e,=02>0

It is thus easy to see that all nonzero blocks of A are nonsingular.
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To prove (5.16) and (5.25) for the co-norm, we just need to show that
e +dnl| A oo <1, Je+dl|A™ oo <1, len +dnl| A7 oo <1, (5.29)

and hence we need to bound the co-norms of matrices A;', A~!, and A;'.
First note that for any nonsingular matrix M and an induced matrix norm we

M = max M-l( )H !
Iv]=t IMv]| minyj-; [Mv]|
Therefore, if |[Mv| >~ > 0 for any unit norm vector v, then |[M™| <~71.

Second, suppose that M is a strictly dlagonally dominant tridiagonal Toeplitz
matrix M = tridiag(é, @,b), where a >0, b< 0, <0, and a+b+é> 0. We would like
to bound |[Mv|e for any unit norm vector v from below. If |v|o = 1, then there is
an index 7 such that |v;| = 1. Without loss of generality we can assume that v; = 1,
because changing the sign of the vector does not change |Mv|. Defining vy =0
and v,4+1 = 0 we obtain

IMV| 0o > [vi—1&+ & + vi1b] > G+ b+ ¢,

and therefore

1
Moo € ——. (5.30)
a+b+¢

In order to prove (5.29), we now apply the bound (5.30) to matrices Ay, A, and
A, which are strictly diagonally dominant tridiagonal Toeplitz matrices with the
required sign pattern. For A, we get

len +du| e +dn]
ag +by +cy |€H+dH|+ﬂ_

lerr + drl |AG oo <

and the other inequalities in (5.29) follow analogously. O

Lemma 5.8 ensures that the assumptions of Theorem 5.7 are satisfied for matrices
arising from the discretization of the problem (5.28) using upwind differences on
a Shishkin mesh. We therefore obtain the following convergence result for the
multiplicative Schwarz method.

Corollary 5.9. Consider the lienar algebraic system (5.1) obtained from the upwind
discretization of the convection-diffusion boundary value problem (5.28) on a Shishkin
mesh given by (2.25). Then the errors of the multiplicative Schwarz method (2.70)
applied to the linear system satisfy

H (O)H _p 27 1|00y g Ly &y .
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5.3. Shishkin-Schwarz Preconditioning

Proof. To prove the bounds (5.31)—(5.32) we apply Theorem 5.7 with the oo-
norm and bound the factors 1" and o} that correspond to the discretization
scheme (2.45). 7 7

Since |dp| > |en|, we obtain

. dllA oo ldnll A o dp|| A 0
’ L-lenl| A oo™ 1= [dnl| A7 oo ) 1= lenl| AL oo
Similarly, from |dg| > |ey] it follows that
i - LAl JenllAgle ) _lenlAglejen)
"~ 1-ldgl|Az e 1= lenllAZ o) 1-lenl|AG o = Idu

Hence, we obtain an upper bound for the convergence factors pis and po;:

A Clee i AT Bw T eH‘

1-m o [AT Bl 1-m [ATClle dn
Lastly, for the norms | T;;[ we obtain

€H

Tiole s <[54, [ Talosap2 <1,
H

Substituting the values of ey and dy given in (2.45) yields the desired result. [J

Note that the bound (5.31) does not depend on the choice of N, i.e., the size of
the mesh in the z-direction. Moreover, for a fixed choice of M, and hence of H,,
the value of €/(e + H,) decreases with decreasing e. Similar to the one-dimensional
model problem studied in Chapter 3, this indicates a faster convergence of the
multiplicative Schwarz method for smaller €, meaning larger convection-dominance.
In Section 5.4 we will apply these results in the numerical study of the model
problem (5.2), which can be considered a two-dimensional generalization of the
one-dimensional problem (3.2) studied in Chapter 3.

5.3. Shishkin-Schwarz Preconditioning

As we have seen in Chapter 3, the multiplicative Schwarz method as well as GMRES
applied to the preconditioned system

(I - Tij)u =V (533)

obtain their approximations from the Krylov subspace Ky (I - Tij,r(o)). Conse-
quently, if a matrix T satisfies rank(T) = r, with I - T nonsingular, then for any
initial residual r(®) we have that GMRES applied to the system (5.33) converges to
the solution in at most r + 1 steps (in exact arithmetic). For the two-dimensional
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model problem studied in this chapter we have a matrix T with r < N, where N is
the number of gridpoints in the transition layer of the mesh, thus

dim (K (1= Tij,0)) < N+ 1, (5.34)

and, GMRES applied to (5.33) converges in (at most) N + 1 steps. This result is
valid even when the multiplicative Schwarz iteration itself converges slowly or might
even diverge, which may happen for some special cases if the the central difference
scheme is used; as we have shown for the one-dimensional problem.

As mentioned in Chapter 3, in most practical applications one is interested in
the case where the local subdomain problems (5.4) are solved inexactly, and thus,
the bounds obtained in this work and the exact termination of GMRES in r + 1
steps will no longer hold (see the numerical results presented in Table 5.2). For
the theory behind inexact local solves for multiplicative schwarz methods see, for
example, [5] or the monograph [71]. For an example of the use of inexact local solves
for non-overlapping domain decomposition methods see [13].

In order to solve the local subdomain problems inexactly, we have to utilize
two nested iterative processes to reach the solution of the linear system. The first
process consists in applying GMRES to solve the system (5.33) (outer iteration) and
the second being the usage of an iterative method to solve each of the subsystems
(5.4) (inner iterations). In this work we use the GMRES method both as the outer
as well as the inner iteration processes. For each of the outer iteration steps, we
solve the subsystems up to a desired tolerance, referred to as the inexact local solve
tolerance. However, it is also natural to ask about the effect of convergence of the
outer iteration when only a finite number of inner iterations are taken. In this work
we only explore the first approach in the numerical experiments present in the next
section.

It is important to note that the solution of the local subdomain problems is
only needed to construct the projection operators (5.5), whose complementary
projections form the factors of the iteration matrices T;;. In a general case, all
the columns of the matrices Ai‘1 would be needed to construct the projections.
However, for the particular case of the iteration matrices T;; studied in this work,
we have explicitly shown that the projection operators only make use of the last
N columns of the matrix A; and the first N columns of the matrix As, as shown
by the equations (5.8) and (5.9). Thus a specially efficient implementation can be
achieved in this case. In particular, we only use the inner iteration to approximate
the subsystems given by (5.7) and directly construct each of the factors Q; and
Q2 with the computed approximations. Furthermore, the author of this work did
not find a general convention in existent literature regarding the implementation of
inexact local solves in the context of Schwarz methods (for the theory see [5]), and
thus, the results obtained and presented in the next section concerning the inexact
local solves are highly dependent on the particular implementation used and can not
be considered to hold in general. A more efficient implementation might be possible.
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5.4. Numerical lllustrations

In this section, we set forth a set of numerical experiments that showcase the
theoretical results obtained throughout the chapter. We present experiments that
illustrate the obtained error bounds for the case when the multiplicative Schwarz
method is used as a solution method as well as normwise relative residual bounds
for the case where the method is used as a preconditioner to GMRES.

We begin by studying the convergence behavior of the multiplicative Schwarz
method applied to the Shishkin mesh discretization of the model problem (5.2) with

wp=0, wy=1 p=0, f(z)=0,

using upwind finite difference operators and boundary conditions described in
Section 2.1.4. The analytic solution of this problem with ¢ = 0.01 is shown in
Figure 2.6. We use a self implemented version of the multiplicative Schwarz method
which can be found in the Github repository which contains the software developed
for this thesis (see Appendix A) and MATLAB’s implementation of the GMRES
method callable with the command gmres.

We first consider N = 30 and M = 40 intervals in the corresponding xz— and
y—coordinate directions of the mesh, obtaining a linear system with a coefficient
matrix A e RIN-DX(M=1) f gize 1131 x 1131. Figures 5.1-5.2 show the error norms

e oo

E_l® 1-0,1,2,...,
e

for the iteration matrices T12 = Q2Q1 and To; = Q1Q2 (solid lines) as well as
the corresponding error bounds of Corollary 5.9 for increasing values of epsilon
(markers). Once again, for our experiments we compute (an approximation to)
the exact solution u = A™'f using MATLAB’s backslash operator and apply the
multiplicative Schwarz method with initial approximation u(®) = 0. Using the exact
solution, we calculated the error norms of the multiplicative Schwarz method by
€)oo = [u**D) —u| o with u**1) as in (2.70).

We observe that the bounds are extremely close to the actual errors produced by
the method. Just like the bounds for the one-dimensional case, the bounds for this
two-dimensional case also predict the initial stagnation phase of the multiplicative
Schwarz method for the iteration matrix To; = Q1Q2, making the bounds not only
good quantitative measures for the method’s behavior but also provide a very good
qualitative description of it (see Table 5.1). Although the quality of the bounds
decreases as the problems become less convection dominated, the bounds given by
(5.31) and (5.32) are still tight and descriptive for perturbation parameters up to
€ <1072, We also run the experiments for larger values of N and M. The values of
the convergence factor |p| as given in (5.12) with |- | = | - | and the corresponding
bound from Corollary 5.9 are shown in Table 5.1 for different values of e.

We continue our numerical experiments by applying GMRES to the linear algebraic
system preconditioned with multiplicative Schwarz, i.e., the linear algebraic system
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Figure 5.1.: Convergence of multiplicative Schwarz and error bounds for € = 1078 [1],

€=107"% [r], and A e RM31x1131,
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Figure 5.2.: Convergence of multiplicative Schwarz and error bounds for € = 1074 [L],
€=107"2[r.], and A e RM31x1131,
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N =20, M =20, A ¢ R30T<361

5.4. Numerical Illustrations

N =20, M =30, A € RPPP¥501

€ | pizin (5.12) pin (5.32) € | pizin (5.12) pin (5.32)
108 ] 75%x10®  1.0x1077 108 | 1.2x1077 1.5x1077
106 | 7.5x10°6 1.0x 107 106 1.2x107° 1.5x107°
1074 ] 75%x10%  1.0x1073 1074 1.2x10% 1.5x1073
1072 | 70x1072  9.6x1072 1072 | 1.1x107t 1.4x 107!

N =30, M =30, A e R¥Dx31 N =30, M =40, A ¢ RIBIXII31
108 12x1077  1.5x1077 108 1.7x1077  2.0x1077
10| 1.2x10° 15x107° 106 1.7x10°  2.0x107°
107* | 1.2x1073 1.5x1073 1074 | 1.7x103 2.0x1073
1072 1.1x107' 1.4x107! 1072 | 14x107"  1.8x107!

N =40, M = 40, A ¢ RIP21¥1521 N =40, M = 50, A ¢ RIPTIXI0TT
108 1.7x1077  2.0x107" 108 ] 22x1077  25x1077
10 1.7x10°  2.0x107° 106 22x10°  25x107°
107% | 1.7x107  2.0x1073 1074 | 22x10% 25x1073
1072 | 1.4x107! 1.8x 107! 1072 ] 1.8x107Y  2.1x107!

N=50,M=50, Ae [R240T%2401 N =50, M =60, A e R239Tx2891
108 22x1077 2.5x1077 10°%] 26x1077  3.0x1077
106 ] 22x10° 2.5x107° 106 26x10°  3.0x107°
1074 ] 22x107%  2.5x1073 1074 26x10%  3.0x1073
1072 1.8x107'  21x107! 1072 | 21x107"  25x107!

Table 5.1.: Values of |p12| computed using (5.12) with |- | = | - || and the corre-

sponding bound (5.32) for different values of N, M and e.
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(5.33), in the case N = 30 and M = 40. On the right side of Figures 5.3-5.6
the preconditioned relative residual norms are shown for a specific value of € and
incresing values of the iteration step k. Convergence within a tolerance of 10714 is
always achieved in less than N iterations for the preconditioned systems, sometimes
reaching the tolerance in only 2 iterations. This is a dramatic improvement compared
to the behavior of the unpreconditioned GMRES method (shown in the left side of
each figure) which does not converge to the same tolerance in less than 320 iterations
for the chosen set of parameters.

Unpreconditioned GMRES

Preconditioned GMRES

10° : : 0
- 10 T T
= upwind unsealed

-5

, 10°F , 10°

£ E

2 ]

21070 ,51:“310'10

1051 ] 10715}
0 100 200 300 400 500 0 1 2 3 4 5 6 7 8 9 10
k k

Figure 5.3.: Unpreconditioned [l.] and preconditioned [r.] GMRES convergence for
€= 10—8 and A ¢ R1131X1131.

Unpreconditioned GMRES Preconditioned GMRES

10 E— 10° —
— Upwind unscaled
5|

» 10 ® 10
E £
2 2
S 3
2 kel
&1010, §10—10,

10718 L i 10151

0 100 200 300 400 0 1 2 3 4 5 6 7 8 9 10
k k

Figure 5.4.: Unpreconditioned [l.] and preconditioned [r.] GMRES convergence for
€= 10—6 and A ¢ R1131><1131_
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Unpreconditioned GMRES
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o c 10
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0 100 200 300 400 o 1t 2 3 4 5 6 7 8 9 10
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Figure 5.5.: Unpreconditioned [l.] and preconditioned [r.] GMRES convergence for
=10 and A e RI31SL,
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Figure 5.6.: Unpreconditioned [l.] and preconditioned [r.] GMRES convergence for
€=10"2 and A e RI31xI131,
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In the numerical experiments presented so far, the local subdomain problems
(5.4) were assumed to be solved exactly, since the inverses of the matrices A;
were calculated using the backslash operator in MATLAB. Nevertheless, as we have
discussed previously (see Sections 5.3 and 3.3), very often in practice the solutions
to linear systems with the matrices A; are only solved approximately. We conclude
our numerical experiments by presenting results for the preconditioned GMRES
method for the case of inexact local solves. Table 5.2 shows the total number of
iterations needed for the outer iteration to achieve a relative residual norm of 1077
when the local subdomain problems are both solved inexactly as well as exactly for
different values of ¢, local solve tolerance and problem size.

outer iterations [exact/inexact(inner)]
A ¢ RIBIXII3T

. tol | g1 1072 1073 1074 1075 1076
10° | 1/1(2) 1/1(2) 11(2) 112 1/1(2) 1/1(2)
106 | 2/1(2)  2/1(2)  2/1(2)  2/1(2)  2/1(2)  2/2(129)
107 | 2/1(2)  2/1(2)  2/1(2)  2/2(132) 2/2(175)  2/2(195)
1072 | 5/1(2) 5/5(290) 5/5(388) 5/5(534) 5/5(647)  5/5(651)

A€ R2891 x2891
105 [2/1(2) 2/1(2) 2/1(2)  2/1(2)  2/1(2) 2/1(2)
106 | 2/1(2)  2/1(2)  2/1(2)  2/1(2)  2/1(2)  2/1(189)
1074 | 2/1(2)  2/1(2)  2/1(2)  2/2(196) 2/2(282)  2/2(288)
1072 | 6/1(2) 6/5(390) 6/6(573) 6/6(790) 6/6(966) 6/6(1117)

A ¢ R4071><4071

10 [2/1(2) 2/1(2) 2/1(2) 2/1(2)  2/1(2) 2/1(2)

1000 | 2/1(2)  2/1(2)  2/1(2)  2/1(2)  2/1(2)  2/2(219)
1004 | 2/1(2)  2/1(2)  2/1(2)  2/2(231) 2/1(327)  2/2(362)
1072 | 6/1(2) 6/5(435) 6/6(637) 6/6(843) 6/6(1067) 6/6(1240)

Table 5.2.: Total iteration count for solving problem (5.2) using GMRES with exact
and inexact Shishkin-Schwarz preconditioning to reach a relative residual
norm of 107 for different sizes, perturbation parameters and local solve
tolerances.

The results of Table 5.2 show a surprising relation between the level of convection
dominance and the accuracy of solution of the local subdomain problems. When the
perturbation parameter is smaller than the local solve tolerance, the solution to the
preconditioned system is reached in equal or less number of iterations than the case
with exact local solves. When the local solve tolerance is chosen at the same level
or smaller than the perturbation parameter the outer iterations remain less than or
equal to the case with exact local solves, however, the number of inner iterations
needed to solve the system increases greatly. Nevertheless, they may converge in
less computational time if the saving from the inexact local solve is sufficiently
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large to offset the loss in convergence rate (the total computational time needed to
achieve the desired solutions is shown in Table 5.3). Another surprising feature that
can be seen in Table 5.2 is the fact that for all cases, the preconditioned GMRES
method converges in at most 6 steps, when according to (5.34) we would expect it
to converge in the order of N -1 steps. Although, (5.34) is an upper bound, an
exploration of the singular values of the matrix T;; shows that indeed the first N
singular values are comparable in size, however they are all one order of magnitude
smaller than the the order of the perturbation parameter. Further experiments and
analysis are needed to understand this phenomenon. We continue our analysis by
showing the total computational time needed to reach the aforementioned solutions.

time [s.]

A € ]R1131><1131

€ \ unprec  exact 107! 102 1073 1072 107 1076

10781 0.0099 2.5303 0.0251 0.0795 0.0775 0.0668 0.0626 0.0779  0.0683
107 | 0.0110 2.6841 0.0264 0.0602 0.0719 0.0716 0.0561  0.0797  0.3162
1074 [ 0.0107 2.5351  0.0265 0.0718 0.0765 0.0602 0.3244  0.3952  0.4441
1072 | 0.0111 1.1483 0.0371 0.0536 0.6477 0.8750 1.1159  1.3260  1.3568

A ¢ R2891x2891

10781 0.0384 252496 0.3096 0.3108 0.2579 0.2747 0.3008  0.3258  0.2869
1070 | 0.0432 30.6092 0.1846 0.2579 0.2447 0.2833 0.2490  0.2553  1.8440
107 ] 0.0285 25.1235 0.2372 0.2640 0.2680 0.2472 1.5442  2.0936  2.1142
1072 [ 0.0299 5.3121 0.2377 0.2427 2.9197 4.0689 5.5994 6.7012  7.9111

A€ R4071 x407T

107% 1 0.0531 99.6026 0.6738 0.5405 0.5991 0.6309 0.6762  0.6097  0.5066
1075 | 0.0450 92.4812 0.4906 0.4900 0.4881 0.5883 0.4675  0.4564  2.9675
1074 | 0.0554 90.0034 0.4219 0.8435 0.4765 0.5237 3.2154 4.3034 4.7171
1072 | 0.0721 13.2551 0.6031 0.4286 5.5991 7.9189 10.2299 12.9283 15.1270

Table 5.3.: Total CPU time for solving problem (5.2) with MATLAB’s backslash and
GMRES with and without Shishkin-Schwarz preconditioning for different
problem sizes. Timings are reported for GMRES to reach a relative
residual norm of 10~ with exact and inexact preconditioning.

Table 5.3 shows that for all the problem sizes chosen for the experiments, the
backslash solution is obtained very fast while the unpreconditioned GMRES method
is very slow with increasing time as the convection dominance increases. As the
problem size increases, the performance of GMRES deteriorates greatly, showing
that for a much larger number of unknowns (when the backslash solution is no longer
available) and a very small perturbation parameter, the unpreconditioned GMRES
will very likely be innefficient. For the preconditioned system with exact local solves
this is not the case, although still one order of magnitude slower than the backslash
solution, we can see a more or less constant solution time for different values of the
perturbation parameter. The benefits of the inexact local solve approach is shown
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5. Convergence of the Multiplicative Schwarz Method for 2D Shihskin Problems

by comparing the time it takes for the unpreconditioned GMRES method with any
of the inexact local solve times - the speed up is always greater than three orders of
magnitude, even for the case of a very low local solve tolerance.

backslash solution precond. GMRES (exact local solves) precond. GMRES (inexact local solves)

Figure 5.7.: Comparison of obtained solutions for N = 30, M =40, ¢ = 107® and
inexact local solve tolerance of 107!,

For the specific case of € = 1078, N = 30 and M = 40, Figure 5.7 shows a comparison
of the obtained solutions for the exact case (backslash solution of (5.1)), and the
cases of solving the preconditioned system with exact and inexact local solves
(GMRES solution of (5.33)) with a tolerance of 101, The accuracy of the obtained
solutions is presented in Table 5.4, which shows the relative normwise error of the
obtained solutions with respect to the exact solution obtained with the backslash
operator for all the experiments presented in Tables 5.2 and 5.3.

relative error [[u, —w | /[w ]

A ¢ R1131><1131

Uynprec Uezact Uqp-1 Uip-2 Uip-3 Uyg-4 Uip-5

3.5x1077 84x10° 12x1077 1.2x1077 1.2x1077 1.2x1077 12x107 1.2x107"7
28x107 72x107% 12x107° 1.2x107° 1.2x10° 1.2x107° 1.2x107° 28x10710
3.5x107  77x107 1.2x107% 1.2x1073 1.2x107% 2.8x10% 28x10% 23x107°°
35x10713  3.6x107% 88x1072 21x1072 2.7x107% 28x107* 24x107° 2.1x107°

A€ R2891 %2891

1.9x10% 1.0x107™ 1.8x1077 1.8x1077 1.8x1077 1.8x107 1.8x107" 1.8x107"
9.1x10™ 2.8x107* 1.8x107° 1.8x10™° 1.8x10° 1.8x107° 1.8x107° 6.6x10710
85x1071 27x107% 1.8x10% 1.8x102 1.8x102% 6.6x10° 6.6x10% 57x1078
1.1x1072 1.7x10°% 1.3x107' 3.1x1072 34x10°% 40x10* 3.2x10° 4.9x10°

A€ R4071 x407T

3.6x107° 1.0x107™ 21x1077 21x1077 21x1077 21x1077 21x1077 21x107"
1.3x107%  46x107 21x10° 2.1x107° 21x107° 21x10® 2.1x10° 9.1x10710
1.8x10710  41x10® 21x1072 2.1x10% 21x10% 91x10% 9.1x10°% 9.5%x10°8
1.9x1072 42x10% 14x107' 4.0x1072 52x107°% 4.7x10* 5.2x10° 6.1x107°

Table 5.4.: Relative error ||u, —w|/[w [, with |- | = |- |2 for each solution approach
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5.4. Numerical Illustrations

For a fixed level of convection dominance (€), Table 5.4 shows that, on the one
hand, solving the preconditioned system with exact local solves delivers a more
accurate solution than solving the unpreconditioned system using GMRES when
the convection dominance is high (less than 10~%) and the opposite is true for low
convection dominance (comparison of columns 1 & 2). Furthermore, solving the
system with inexact local solves always delivers a less accurate solution (at least one
order of magnitude worse) than using exact local solves, neverthless, the difference
diminishes as the convection dominance is increased (comparison of column 2 with
columns 3-7).
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6. Discussion and Outlook

Motivated by the challenge of understanding and analyzing the convergence of the
multiplicative Schwarz method for solving linear algebraic systems arising from
a “simple” and problem-specific one-dimensional model problem, various results
and contributions presented in this thesis are valid in a much broader and general
context. This concluding section provides a very brief discussion on the consequences
brought forth by the main results found in this work and points out possibilities for
further investigations that naturally arise from the analysis and experiments present
in this thesis.

In the context of Schwarz solution methods, our main contributions include
expressions for the convergence factor of the multiplicative Schwarz method when
used to solve linear algebraic systems with a special block structure arising from
problems in one- and two-dimensions (see Corollary 3.2 and Lemma 5.3). The specific
structure present in the coefficient matrix is brought about when the finite difference
or the finite element method are used to discretize any second-order constant-
coefficient elliptic partial differential equation which is posed on a very broad and
common domain decomposition context: that of a domain being subdivided into two
smaller subdomains with an overlap between them. By making further assumptions
on the system matrix, mainly that it possesses a block-tridiagonal structure, we
provide quantitative convergence bounds for the error of the method in terms of the
norms of the off-diagonal blocks of the original system matrix (see Theorems 5.6
and 5.7). The provided bounds are valid from the first step of the iteration process,
presenting a grand improvement in contrast with the classic convergence theory for
multiplicative Schwarz methods, which is based on asymptotic convergence rates
and is not able to describe the transient phase of the iteration scheme, where most
problems like stagnation of the method might occur. Furthermore, our analysis
does not lean on any of the usual assumptions put on the matrices needed to prove
convergence in the classical domain decomposition convergence theory, such as
symmetry, or the M- or H-matrix properties, making our approach much more
general in its range of applications.

Contributions to the general area of preconditioning are also present in this work.
Results on the convergence theory of the preconditioned GMRES method, given in
the form of bounds on the residual norm of the iterates of the method, are provided
for the case when the multiplicative Schwarz method is used as a preconditioner. The
bounds are given in terms of the rank of the iteration matrix of the multiplicative
Schwarz method, which in the domain decomposition context, we have proven to be
of low-rank (see Lemma 5.1). Moreover this result might be extended to the case
when other fixed point iteration methods are used as preconditioners in particular
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scenarios, since the convergence of the GMRES method in a small number of steps
is only linked to the low rank structure of the iteration matrix of the method. In
the specific case presented in this thesis, bounding the rank of the iteration matrix
of the multiplicative Schwarz method allows us to prove rapid convergence of the
preconditioned GMRES method, an approach that can be useful whenever the
iteration matrices of other fixed point iteration methods posses a low rank structure.

The specific domain decomposition setting used to present our theory, which
mimics the one fist studied by Schwarz at the end of the 19th century and consists of
only two overlapping subdomains, reduces the technicalities present in the analysis
needed to obtain the results, nevertheless, the arguments used to construct the
convergence theory can be applied in a recursive fashion. It is easy to imagine each
of the subdomains being subdivided once again into two smaller subdomains and for
this process to be repeated until a desired finite number of subdivisions is reached
in each of the original subdomains. This, of course, has immediate potential in the
implementation of the method for parallel computing systems when a low memory
storage prevents the modeling of large domains in a single computing station.

In the specific case where the multiplicative Schwarz method is used to solve
systems coming from discretizations of the the convection-diffusion equation we
have shown that the approach of using a one- or two-dimensional Shishkin mesh
together with a finite difference approximation of the derivatives is very effective in
terms of the number of iterations that the method needs to converge to an accurate
solution, since in this context the iteration matrix has low rank. Not only that,
but our analysis clarifies an apparent contradiction in the behavior of the method
when used to solve these type of problems, where we observe that as the problem
becomes harder (we choose a smaller perturbation parameter) the convergence of the
multiplicative Schwarz method becomes faster and more effective (see Theorems 3.6
and 3.13 and Corollary 5.9). The effectivity of the bounds was illustrated numerically
on one- and two-dimensional convection-diffusion model problems, showing that the
bounds are extremely close to the actual errors produced by the method in both
cases, becoming more accurate as the problems become more convection dominated.

The most general results presented in this work fall under the broad study area
of linear algebra and include a generalization of the classical definition of block
diagonal dominance of matrices given by Feingold and Varga in [30] (note that a
very similar definition to the one presented in this thesis appeared on the same
year in [4]), which brings new understanding of the concept of diagonal dominance
when dealing with operators with a block structure (see Definitions 4.1 and 4.19).
In the classical definitions of block diagonal dominance, the blocks are “treated as
scalars”, however in our approach the block diagonal dominance is based on the
influence of the blocks as matrices, i.e., the action of the block is taken into account
not just their norms. This new definition and its consequences have proven to be
useful tools in the analysis of the multiplicative Schwarz method and might very
well be useful in analyzing other iterative methods, specially in the context of fixed
point iteration methods. Moreover, the generalization of block diagonal dominance
provided in this work implies new results in the spectral theory of eigenvalues, for
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6. Discussion and Outlook

example, it infers new eigenvalues inclusion sets for general block matrices which
are potentially tighter that the classical ones given by the previous definitions of
diagonal dominance or the Gershgorin’s Circle Theorem (see Corollary 4.10).

Furthermore, based on our definition we established upper and lower bounds and
decay rates on the block norms of the inverse of block diagonally dominant block
tridiagonal matrices (see Theorems 4.6 and 4.7 and Corollary 4.8), which are a direct
generalization of the bounds presented in [62] for the scalar case. The bounds may
be extremely useful for the creation of preconditioners for large linear systems when
the system matrices are block tridiagonal. The off-diagonal decay of the block norms
of its inverse matrix implied by the bounds allows for the creation of approximate
inverses by neglecting blocks that fall bellow a desired norm threshold.

Although the results provided in this thesis focus on the study and generalization
of simple model problems, natural extensions of our approach to more general
settings are still possible. We will now briefly mention a number of generalizations
and alternative applications to our analysis that may be explored in future research.

Our analysis stems from on a very specific domain decomposition problem setting
which translates into solving linear systems with coefficient matrices exhibiting a
specific block structure. The problem setting which was chosen is the simplest one
possible and the main assumption that guided our analysis was the fact that in
each of the two local subdomains, we use the same number of unknowns. This
assumption was helpful in reducing technicalities present in our analysis, however,
by relaxing this and other different constraints, we can envision the same approach
being applied to matrices A with more general structures.

It would be only natural to apply our approach in a setting where the local
subdomains have a different number of unknowns. This would be reflected in a
coefficient matrix A with blocks A, and A, of variable size in (5.3). An analysis of
the problem in this more general context would be filled with more technicalities,
however it would be certainly possible to carry out, specially when the sizes of the
matrices are multiples of N, i.e. for matrices A, € RN*Ns and A, e RNV Tt ig
also easy to think of applying our analysis to the solution of discretized of PDEs
with variable coefficients. This change would be reflected in the structure of the
matrices A, and A, by exhibiting general tridiagonal blocks of the form

KH = trldlag(cH’” AH,i7 BH,z) and K-h = tridia‘g(ch’“ Ah,i7 Bh,i)) (61)

instead of tridiagonal Toeplitz matrices of the form (5.14). The analysis would still
be possible since the theory of block diagonal dominance presented in Chapter 4
used to obtain the bounds allows for relaxing this constraint. A generalization of 5.7
to A with blocks (6.1) would require that the conditions (5.16) hold in every block
row, and then analogously to (5.18)—(5.19), every block row in A, or A, would
give a parameter 1y ; or 7, respectively. For convection-diffusion problems, the
structure of the matrix would also be affected by the number of boundary layers
present in the problem. We would have more than one overlap region in the domain
and the iteration matrixes would present different more complicated nonzero block
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structures affecting the rank of the iteration matrix. However, preliminary numerical
experiments show that the iteration matrices still possess a low numerical rank (close
to V). Thus, we believe that it is still analyzable along the lines of Section 5.2.1.
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A.

Documentation of the Software

All numerical experiments presented in this thesis can be reproduced with the
freely available software developed by the author specifically for this work. The
IATEX source code used to compile this document as well as the MATLAB m-files to
run the numerical experiments can be obtained from the GitHub repository found

in:

https://github.com/carlos-echeverria/phd-thesis

To reproduce the figures and tables please refer to the following guidelines. All m-files
are individually documented; see the header of each file for in-detail information.
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To reproduce Figures 2.8-2.9 use the script:
MATLAB_CODE/CH3/produce_figures_gmres_without_preconditioning.m

To reproduce Figures 3.1-3.3 use the script:
MATLAB_CODE/CH3/produce_figures_mSm_upwind_and_central.m

To reproduce Figures 3.4-3.5 use the above mentioned script with the param-
eter N changed from N=198 to N=10002.

Table 3.1 can be reproduced by choosing the corresponding value of the
parameter N in the previous script and reading off the values in MATLAB’s
console.

To reproduce Figures 3.6-3.7 use the script:
MATLAB_CODE/CH3/produce_figures_gmres_with_preconditioning.m

To reproduce the images and tables from Examples 4.11-4.14 use the script:
MATLAB_CODE/CH4/SCRIPT.m

The different examples can be computed by choosing the parameter matA from
1 to 4. The tables will be given as output to the console once the parameter
refinement_step is chosen to be 8.

To reproduce the images and tables from Examples 4.15—4.18 use the script:
MATLAB_CODE/CH4/SCRIPT_INCLUSION_SETS.m

The different examples can be computed by choosing the parameters Achoice,
N and M accordingly (see header of m-files).


https://github.com/carlos-echeverria/phd-thesis

o To reproduce Figures 5.1-5.2 use the script:
MATLAB_CODE/CH5/produce_figures_2D_mSm.m

e To reproduce Figures 5.3-5.6 use the script:
MATLAB_CODE/CH5/produce_figures_2D_gmres.m

e To reproduce Table 5.1 use the script:
MATLAB_CODE/CH5/produce_table_2D_rho_upwind.m

The values of the table can then be read off MATALB’s console window.

e To reproduce Tables 5.2 5.3 and 5.4 as well as Figure 5.7 use the script:
MATLAB_CODE/CH5/produce_tables_2D_inexact_upwind.m

The values of each table can then be read off MATALB’s console window.

WARNING: since maintaining code is an ever evolving endeavor, the above guidelines
might be outdated. As stated above, please refer to the header of each individual file
for up-to-date information. If any errors, bugs, or typos are found in the provided
source code, please make a pull request in the Github repository after fixing, or
send an email to: echeverriacarlos@gmail.com describing the error/bug/typo.
Thank you.
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