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Zusammenfassung 

Die vorliegende Dissertation hatte zum Ziel, das Wissen über den Einfluss von 

Automation auf die Gesamtsystemleistung als auch die kognitiven Anforderungen des 

menschlichen Operateurs weiter zu vertiefen. Die bisherige Forschung hat 

diesbezüglich zwei Automationscharakteristika hervorgebracht, welche maßgeblich 

bestimmen, ob die Unterstützung durch Automation einen positiven oder aber negativen 

Einfluss auf die Gesamtleistung darstellt: die Funktionsallokation (FA) zwischen 

Mensch und Automation und die Reliabilität der Automation. Mit Bezug auf diese zwei 

Aspekte haben Parasuraman, Sheridan und Wickens (2000) ein flow chart Modell 

publiziert, welches Entwicklern von automatisierten Systemen bei einer angemessenen 

Wahl der FA helfen soll. Dem Modell entsprechend sollte ein anfänglicher 

Automationsvorschlag durch sogenannte primäre Kriterien evaluiert werden. Diese 

umfassen mögliche Konsequenzen einer bestimmten FA auf der Leistungsebene, als 

auch in Bezug zu kognitiven Anforderungen an den Operateur. Sollte die initiale FA 

zwischen Mensch und Automation dieser Prüfung standgehalten haben, werden, dem 

flow chart Modell entsprechend, sekundäre Evaluationskriterien angelegt. Eine zentrale 

Rolle spielt hierbei die Reliabilität der Automation. 

In Anlehnung an die konsekutive Struktur des flow chart Modells wurden im Rahmen 

der Dissertation drei Studien durchgeführt. Die erste Studie stellt eine Meta-Analyse dar 

(Studie I), welche den Einfluss von FA auf primäre Evaluationskriterien, 

Operateursleistung und kognitiven Aufwand, untersuchte. Die Ergebnisse zeigen, dass 

unter einwandfreier Funktionsweise der Automation mit steigendem Automationsgrad 

auch die Vorteile dieser Unterstützung in Bezug auf Leistung und operateursseitige 

Beanspruchung zunehmen. Falls es jedoch zu einem Automationsausfall kommt, steigt 

das Risiko negativer Konsequenzen in Bezug zur manuellen Aufgabenübernahme sowie 

dem Situationsbewusstsein des Operateurs mit steigendem Automationsgrad. Negative 

Konsequenzen eines zunehmenden Automationsgrads werden insbesondere dann sehr 

wahrscheinlich, wenn eine kritische Grenze überschritten wird und eine Automation 

nicht nur informationsanalytische Prozesse übernimmt, sondern auch die aktive 

Entscheidungsfindung. In Bezug zum flow chart Modell (Parasuraman et al., 2000) 

ermöglichen die Ergebnisse eine Spezifizierung. Der gefundene trade-off bei 

zunehmendem Automationsgrad zwischen Automationsnutzen auf der einen und -kosten 

auf der anderen Seite verdeutlicht die Relevanz eines klar formulierten 

Automatisierungsziels. Nur mit klarem Ziel kann eine Gewichtung der positiven als 

auch negativen Konsequenzen einer Automatisierung vorgenommen werden. Darüber 

hinaus ermöglichen die Ergebnisse die Ableitung eines konkreten Leitfadens: Falls die 
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Aufrechterhaltung manueller Fähigkeiten und des Situationsbewusstseins von 

besonderer Bedeutung sind, sollten Automationsbestrebungen nicht die 

Informationsanalyse überschreiten. Falls eine reduzierte Beanspruchung des Operateurs, 

sowie eine Steigerung der Gesamtleistung wichtiger sind, sollte eine Automation auch 

Prozesse der Entscheidungsfindung und Handlungsausführung übernehmen. 

Um das flow chart Modell weiter spezifizieren zu können, fokussierte die darauf 

folgende Studie (Studie II) das sekundäre Evaluationskriterium der 

Automationsreliabilität anhand eines Laborexperiments. Ziel der Studie war die 

Generierung weiterer Erkenntnisse zum Einfluss verschiedener Reliabilitätsniveaus auf 

die Gesamtsystemleistung, als auch die kognitiven Anforderungen des menschlichen 

Operateurs. Im Rahmen einer Mehrfachaufgaben-Simulation wurden Probanden durch 

ein Alarmsystem unterstützt, dessen Reliabilität von 68,75% bis 93,75% variiert wurde. 

Im Vergleich zu einer rein manuellen Bearbeitung der Simulation profitierten Probanden 

von der Automationsunterstützung. Die beste Gesamtleistung von Mensch und 

Automation zeigte sich in Interaktion mit einem Alarmsystem höchster Reliabilität. 

Wenn die Reliabilität allerdings unterhalb von 70% realisiert wurde, war der zuvor 

genannte Leistungsvorteil im Vergleich zu den anderen alarmunterstützten Gruppen mit 

einem stark erhöhten Aufmerksamkeitsaufwand und einer verschlechterten relativen 

Leistung in einer Parallelaufgabe verbunden. In Anbetracht dieses Gesamtbildes, kann 

Automation unterhalb einer Reliabilitätsgrenze von 70% nicht als nutzenbringend 

erachtet werden. 

Basierend auf den Ergebnissen der ersten und zweiten Studie, bestand das Hauptziel des 

letzten Experiments (Studie III) in der Untersuchung möglicher Interaktionseffekte 

zwischen FA und Automationsreliabilität. Unter Verwendung der gleichen 

Versuchsumgebung wie in der zweiten Studie, arbeiteten Probanden zusammen mit 

Automationsunterstützung, welche sowohl in Bezug auf die FA als auch das 

Reliabilitätsniveau über die jeweilig kritischen Grenzen variiert wurde. Die Ergebnisse 

zeigten erneut einen starken Einfluss der Automationsreliabilität auf die 

Aufmerksamkeitsstrategien und Leistung der Probanden. Während relativ zuverlässig 

arbeitende Automation (Reliabilität über 70%) die Aufmerksamkeitsanforderungen der 

Probanden verringerte, führte eine Automationsunterstützung welche die 

Reliabilitätsgrenze verletzte zu keinerlei Vorteilen, weder bezüglich 

Aufmerksamkeitsanforderungen, noch bezüglich der Leistung. Aufgrund dieser 

Ergebnisse zum Faktor Reliabilität, kann das sekundäre Evaluationskriterium des flow 

chart Models durch einen konkreten Leitsatz ergänzt werden: Falls eine 



 Zusammenfassung 

 IV 

Automationsreliabilität über 70% nicht garantiert werden kann, sollte die entsprechende 

Funktion nicht automatisiert werden! 

Allerdings konnte die dritte Studie keinerlei Einfluss der FA auf die 

Aufmerksamkeitsanforderung und die Leistung der Operateure nachweisen. Eine 

mögliche Erklärung bezieht sich auf die Realisierung der FA-Faktorausprägung, welche 

die kritische FA-Grenze in Richtung eines hohen Automationsgrads überschreitet. 

Während vorherige Studien Automationen miteinander verglichen, die entweder die 

Informationsanalyse übernahmen (niedriger Automationsgrad) oder die aktive 

Entscheidungsfindung (hoher Automationsgrad), wurde in dieser Studie als hohe 

Faktorausprägung eine Automation implementiert, die nicht nur die Entscheidung 

übernimmt, sondern auch noch die Handlungsausführung. Diese abweichende 

Operationalisierung verändert die Rolle des Operateurs hin zu einem Supervisor. Als 

solche, könnten sich Operateure für die Gesamtaufgabe stärker verantwortlich fühlen als 

Operateure, welche noch immer für die Handlungsausführung entsprechend der 

Direktiven einer Automation zuständig sind. In diesem Sinne weisen die Ergebnisse 

darauf hin, dass die Automatisierung einer Gesamtaufgabe eine angemessenere FA 

darstellen könnte als eine Automatisierung, welche nur die Entscheidungskomponente 

einschließt. Dieser Argumentation folgend, wird die Berücksichtigung möglicher 

Interaktionseffekte zwischen FA und Reliabilität bei der Entwicklung automatisierter 

Systeme im flow chart Model ergänzt.  

Zusammenfassend bietet die vorliegende Dissertation nicht nur aus theoretischer Sicht 

neue Erkenntnisse bezüglich des Einflusses von Automationscharakteristika auf die 

Gesamtsystemleistung und die kognitiven Anforderungen des Operateurs, sondern 

ermöglicht auch detaillierte Leitlinien, welche in der praktischen Anwendung zu einer 

effektiveren und effizienteren Automationsentwicklung beitragen können. 
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Abstract 

The objective of this thesis was to gain further insight into impacts of automation on 

overall system performance and cognitive demands of the human operator. Past research 

has revealed two important automation characteristics that are crucial to determine if 

automation support is beneficial or rather deteriorates performance compared with no 

automation support. One characteristic concerns the function allocation (FA) between 

human and automation. The second characteristic is the reliability of automation that 

determines to what extent the operator can rely on the proper functioning of the 

automated system. With regard to these two aspects, Parasuraman, Sheridan and 

Wickens (2000) have proposed a flow chart model that attempts to help developers with 

automation design in terms of an appropriate function allocation between human and 

automation. After a first consideration of what should be automated, the model suggests 

primary criteria to evaluate possible consequences of a proposed FA in terms of human 

performance consequences and imposed cognitive demands. When the initial FA has 

held out against this primary evaluation, the secondary evaluative criterion of reliability 

has to be considered for an appropriate FA-decision. 

In line with the model’s consecutive structure three studies were conducted. The first 

study is a meta-analysis, which addressed impacts of different FA on Parasuraman et 

al.’s primary evaluative criteria: operator performance and cognitive demands 

(Parasuraman et al., 2000). When automation functions properly, results reveal a clear 

automation benefit for performance and operators’ workload with increasing degree of 

automation (DOA). However, under conditions of automation breakdown increasing the 

DOA increases the risk of negative consequences in terms of lacking manual 

performance and situation awareness. Therefore, findings propose that an appropriate 

function allocation can only serve two of the four aspects. More specifically, negative 

consequences of automation seem to be most likely when DOA moves across a critical 

boundary between automation supporting information analysis and automation 

supporting decision-making. In the context of the flow chart model (Parasuraman et al, 

2000) these results provide an opportunity to specify the model. The finding of a direct 

trade-off between costs and benefits of automation illustrates the importance to consider 

the objective of automation implementation. Moreover, a concrete guideline for 

identifying an appropriate FA can be derived from results: If maintenance of skills and 

situation awareness are crucial, automation should not exceed information analysis. If 

reduced operator workload and performance benefits are more important, automation 

should include decision-making functions and action implementation, respectively. 
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To further specify the flow chart model, the subsequent study focussed on the secondary 

evaluative criterion, automation’s reliability, in an experimental setting. The study’s 

objective was to provide further insight into effects of different levels of reliability on 

overall system performance, as well as operators’ cognitive demands. Within a 

multi-task simulation, an alarm system differing in reliability from 68.75% to 93.75% 

supported participants in one of the tasks. In contrast to performing all tasks manually, 

participants benefited from the alarm support with best performance for the highest 

reliability condition. However, when reliability was realised below 70% this 

performance benefit was associated with an increased attentional effort, and a declined 

relative performance in a concurrent task compared to the other alarm-supported 

groups. Hence, regarding the overall picture of results, automation below a reliability 

boundary of 70% cannot be considered as beneficial. 

Based on findings of the first and second study, the main objective of the last 

experiment was to investigate the interaction of FA with the level of reliability. Within 

the same multi-task simulation as in the second study, automation support differed with 

respect to FA and reliability, both factors varying across the proposed critical 

boundaries. Results again revealed a strong impact of automation reliability on 

participants’ attentional strategies and performance. Whereas a fairly reliable 

automation (above 70%) relieved participants’ attentional demands, an automation that 

violated the reliability boundary was not beneficial, neither in terms of attention nor in 

relation to performance. Based on these findings regarding reliability, the secondary 

evaluative criterion of the flow chart model could be specified by a concrete guideline 

for automation designers: If reliability above 70% cannot be guaranteed, do not 

automate the function!  

However, the third study did not reveal any impact of FA on the reported effects. A 

possible explanation for this non-finding relates to the realisation of the high-stage 

automation. Whereas prior studies have compared information automation (low-stage 

automation) with decision-making automation (high-stage automation), this study 

implemented high-stage automation by automating the entire task. This changes the 

operators’ role to that of a supervisor. As such, they might feel more responsible for the 

entire task compared to operators who are still in charge of implementing automation’s 

directives. Therefore, a full automation of a task might represent a more appropriate 

function allocation, if a high reliability cannot be assured, instead of only automating up 

to decision-making functions. Accordingly, the flow chart model of automation design 

was extended with regard to possible interaction effects of FA and reliability.  
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In sum, this thesis provided not only new theoretical insight into impacts of automation 

characteristics on overall system performance and cognitive demands of the human 

operator, but also detailed guidelines that may support practitioners in effective and 

efficient automation design. 
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General Comments 

All publications used in this thesis are published (study I and study II) or under review 

(study III) in peer-reviewed journals. Due to differences in journal guidelines the 

citation styles and reference lists differ between manuscripts. Furthermore, the complete 

work was written in British English, except study I, which was published in American 

English due to the journal’s guidelines. The thesis is formed by three manuscripts’ 

respective studies. 
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Abbreviations 

AI   action implementation 

ANOVA  analysis of variance 

AOI   area of interest 

AS   action selection 

ATC   air traffic control 

B   block 

DA   decision automation 

DOA   degree of automation 

e.g.   for example (Latin: exempli gratia) 

et al.   and others (Latin: et alii) 

FA   function allocation (English) / Funktionsallokation (German) 

Hz   Hertz 

IA   information automation 

IAc   information acquisition 

IAn   information analysis 

i.e.   that means (Latin: id est) 

LSA   loss of situation awareness 

M   mean 

MABA-MABA men are better at-machines are better at 

MATB   Multi Attribute Task Battery 

ms   milliseconds 

MTBF   mean time between fixations 

NASA-TLX  National Aeronautics and Space Administration-Task Load Index 

OOTLUF  out of the loop unfamiliarity 

p.   page 

RED system  remote eye tracking system 

RMSE/ RMS error root mean squared error 
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SA   situation awareness 

SAGAT  situation awareness global assessment technique 

SART   situation awareness rating technique 

SD   standard deviation 

TCAS   traffic collision avoidance system 

TU   Technische Universität 

UAV   unmanned aerial vehicle/ unmanned air vehicle 

vs.   versus
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1. Introduction 

1.1 General Introduction 

Automation is all around us. Modern life is not imaginable without highly capable 

computer systems. No matter if we are driving to a friend in our car with automatic 

cruise control, if we are going on vacation by plane, or if we are at work interacting 

with an industrial robot arm: computer-based automation has changed the way we live 

and work.  

The invention of the microprocessor chip in the 1960s enabled the development of 

highly elaborated automation and still we are not at the top end of this exponentially 

progressing trend. Today, automation does not remain limited to automated provision of 

information (e.g. alarm systems) or execution of actions (e.g. tele-robots) but also 

involves computer-based support of analysing information (e.g. diagnostic assistance in 

mammography) or choosing appropriate actions (e.g. satnav in cars). 

Benefits of increasing automation are manifold. Economic reasons for automation are 

increased productivity along with cost reduction, but also safety related gains (Satchell, 

1998). For example, aviation industry benefited from the implementation of cockpit 

automation in terms of reduced flight times, increased fuel efficiency, and a more 

efficient navigation (Billings, 1997; Wickens, Hollands, Banbury, & Parasuraman, 

2013; Wiener, 1988). The user of automation, the human operator, has also benefited in 

terms of more flexibility by relieving operators from several tasks and thereby reducing 

their workload. 

Besides the technological progress and according benefits, there are however still 

aspects of human-automation interaction that are not very well understood and probably 

lead to unintended consequences. With the enthusiasm of technological possibilities, 

automation was seen as the solution to overcome human error and was implemented 

whenever feasible. However, this technology-centred approach (Sarter, Woods, & 

Billings, 1997) could not keep up to its promises, which was dramatically shown by 

numerous (near-)accidents related to problems in human operator’s interaction with 

automated systems in industrial/ professional settings (e.g. partial nuclear meltdown at 

Three Mile Island in 1979, Bophal gas tragedy in 1984, grounding of the cruise ship 

Royal Majesty in 1995) or daily life (e.g. numerous anecdotal reports of drivers who 

followed their navigation system and entered wrong streets or drove into rivers that 

were clearly identifiable as rivers). 
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Automation designers had and still have to recognise that automation should not be 

implemented just because it is possible. As Sheridan and Parasuraman (2005) state: 

“[…] to engineer the automation and expect the human to accommodate to it can be a 

recipe for disaster.” (p. 94). Therefore, a human-centred approach (Billings, 1991) that 

focuses on the interaction of humans with automation is mandatory to ensure an 

appropriate use and in consequence a safe operation of system (Wickens, Mavor, 

Parasuraman, & McGee, 1998). This focus is leading in human factors research and the 

underlying notion of the current work. It is important to gain insight into which factors 

affect human-automation interaction. A large body of research suggests that two aspects 

of automation are particularly crucial in affecting overall performance and human 

operators’ cognitive demands: function allocation between human and automation, as 

well as automation’s reliability (Cummings & Mitchell, 2007; Endsley & Kiris, 1995; 

Goddard, Roudsari, & Wyatt, 2012; Kaber, Onal, & Endsley, 2000; Layton, Smith, & 

McCoy, 1994; Lorenz, Di Nocera, Röttger, & Parasuraman, 2002; Manzey, 

Reichenbach, & Onnasch, 2012; Parasuraman, Molloy, & Singh, 1993; Wickens, Dixon, 

Goh, & Hammer, 2005; Wickens, 2000).  

With regard to the two aspects, Parasuraman, Sheridan and Wickens (2000) have 

proposed a flow chart model that serves as an orientation for automation decisions. 

Impacts of function allocation on human/ overall system performance as well as on 

operators’ cognitive demands are defined as primary evaluative criteria for automation. 

Reliability is considered as a secondary evaluative criterion. The consecutive structure 

of the model accounts for the fact, that (un-)reliability may have differential effects as a 

function of more or less automation. First of all, function allocation between human and 

automation has to be determined in order to be able to evaluate effects of reliability of 

the chosen form of automation. 

The current work comprises three studies dealing with the impact of function allocation 

and automation’s reliability on human-automation interaction. The levels and stages 

taxonomy as well as the flow chart model by Parasuraman et al. (2000) serve as 

theoretical framework. The models will be described in detail in chapter 1.3.  

The first study addresses effects of function allocation on operator performance and 

cognitive demands in form of a meta-analysis. The second study was conducted as a 

laboratory experiment and focusses on human adaptation to automation’s reliability in 

terms of attention allocation, an indicator for cognitive demands, and performance. The 

third study combines findings of the latter two and varied both factors, function 

allocation and reliability, at the same time in an experimental setting to gain insight into 

differential effects on performance and attention allocation.  



 Introduction 

 3 

Introducing the three studies, the following sections provide basic notions concerning 

automation and human-automation interaction. Subsequently, concepts of function 

allocation and automation reliability as well as possible interaction effects of both 

factors are discussed as aspects directly related to automation. The two concepts 

constitute the main influence on human-automation interaction that have to be 

considered regarding an appropriate interaction with automated systems.  

 

1.2 Automation – a Definition 

Wiener and Curry (1980) draw two extreme pictures that underline wishes and fear, 

which are associated with automation. When talking about automation one may 

consider it as the technological savior of society relieving humans from unpleasant 

work and eliminating human error. At the contrary, automation may be seen as a 

“collection of tyrannical, self-serving machines, degrading humans, reducing the work 

force, bringing wholesale unemployment, and perhaps even worse, offering an 

invitation to a technological dictator to seize power and build a society run by Dr. 

Strangeloves, aided by opportunistic, cold-hearted computer geniuses.” (Wiener & 

Curry, 1980, p. 995). Both ideas are clearly exaggerated and 34 years later automation 

has neither enslaved us, nor has it freed us from all discomfort. Nevertheless, 

automation has simplified work in many domains by taking over so-called 3-D tasks - 

dull, dirty, and dangerous tasks that are very monotonous, are physically hard work, or 

cause high amounts of mental workload (Nof, 2009). 

The advance of automation first started in the manufacturing domain. In the 1950s D.S. 

Harder (vice-president of the Ford Motor Company) described automation as a 

philosophy of manufacturing in which mechanical, hydraulic, or electronic devices 

should replace human work (Salvendy, 1997). This understanding of automation was 

however mainly related to physical human work. With the development of more 

powerful computers the application of automation not only resumes simple action 

implementation but also comprises cognitive processes like information analysis and 

complex decision-making. Accordingly, automation can be described as delegation of 

various functions from a human to a machine agent (Billings, 1991; Parasuraman & 

Riley, 1997; Raouf, 1988). When the reallocation of functions is irreversible, i.e. a 

human operator cannot fulfil the task anymore if desired or wanted, this technical 

system is rather understood as a technical machine than an automation. This dynamic 

definition of automation is summed up by Parasuraman and Riley (1997): “Today’s 
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automation could well be tomorrow’s machine.” (p. 231). Starter motors for cars are an 

example for a technical system in which the reallocation of functions is complete and 

permanent; a redistribution of the task is not possible anymore. 

Taking these aspects into account Moray, Inagaki, and Itoh (2000) present a more 

precise definition of automation, which is adopted in this work. The allocation of 

functions from the human to automation is differentiated according to the (simplified) 

human information processing model (Wickens et al., 2013). In this respect, automation 

is “any sensing, detection, information-processing, decision-making, or control action 

that could be performed by humans but is actually performed by machine.” (Moray et 

al., 2000, p. 44). Based on this definition, automation can refer to  

 the mechanised sensing of environmental variables by artificial sensors, 

 data processing and decision-making by computers, 

 any mechanical action by devices that apply forces on the environment like 

motors, 

 or communicate processed information to a human operator 

(Sheridan & Parasuraman, 2005). 

An alternative description categorises automation due to its purpose (Wickens et al., 

2013). According to Wickens et al. (2013) the first category contains automation of 

tasks that humans should not perform because of high risk. In domains like nuclear 

power, for example, complex mathematical operations have to be performed to control 

certain processes that are too complex for a human operator to do online. Therefore, 

those tasks are delegated to automated systems. Other examples concern work in 

hazardous or dangerous environments, like the use of reconnaissance and defusing 

robots in bomb squads. 

The second category deals with automation that overcomes human performance 

limitations. In this case, humans could do the tasks yet poorly or at the expense of high 

cognitive/ physical demands. A most recent example for this category is the 

development of complex unmanned aerial vehicle (UAV) networks in the military 

domain. Human operators could not sufficiently monitor and delegate multiple UAVs. 

Therefore, expert systems take over large parts of the monitoring and alert operators 

when to shift attention to certain tasks or UAVs. 

The third category describes automation as an augmentation or assistance of human 

performance. At first sight, similar to the aforementioned category, the emphasis is on 

assisting in contrast to resuming parts of the main task. Examples from everyday life are 

satnav or brake booster support in automobiles. 
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The fourth and last category focusses on the purpose of automation to increase 

productivity and decrease costs at the same time.  

Automation that serves purposes of category two and three, i.e. automation that assists 

human operators, is of particular interest for the current work. While these kinds of 

automation support the human by resuming certain functions of task fulfilment, they 

also create new challenges that relate to the human-automation interaction. First, the 

interaction with an automated system represents a new task to the human operator that 

has to be coordinated in order to be able to benefit from support. Second, with the 

implementation of automation the human operator is (partly) taken out-of-the-loop from 

active task fulfilment and rather serves as a supervisor of automation. These new 

management tasks produce new attentional demands, which, in the worst case, can even 

exceed the original cognitive demands that were intended to be reduced by automation 

(Wiener, 1989). 

Therefore, human-automation interaction is of special interest in automation research, 

as an inappropriate interaction may counteract the proposed benefits. In consequence, 

an elaborated examination should not focus exclusively on automation but on the joint 

human-automation system as a cooperative team. This approach will be followed in the 

rest of this work. 

1.3 Human-Automation Interaction 

The current work’s objective is to gain further insight into how automation 

characteristics impact overall system performance (human and automation) and 

cognitive demands of the human operator. For that purpose, it is necessary to provide 

the basic concept of human-automation interaction as a framework in order to 

understand more specific aspects of this collaboration. 

Introducing automation into a complex system does not simply supplant human activity, 

but rather changes the role of the human operator. In most circumstances, automation 

changes the role of the human operator from active involvement to passive control. 

Specific (if not all) tasks are resumed by the automated agent. The human operator 

serves as automation’s supervisor who only intervenes, if the automated system does not 

function properly (Sheridan & Verplank, 1978). 

The concept of supervisory control derived from the characteristics of a supervisor 

interacting with subordinate human staff members. A supervisor provides general 

directives that are translated into detailed actions by staff members. The supervisor in 
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turn receives summarised information about process results that are important for 

further steps from the subordinates. This form of interaction is transferable to 

human-automation interaction. In particular, Sheridan and Verplank (1978) describe five 

functions of the human supervisor that have to be performed in consecutive order for 

optimal interaction with the subordinate automation.  

Planning: The operator has to plan the task off-line. This first step normally does not 

constitute an interaction. However, an initial appropriate mental model of the task and 

of the accordant automation is necessary to plan which tasks should be performed by 

automation.  

Teaching: Secondly, the task strategy has to be taught to the automation by input and 

control actions.  

Monitoring: Thirdly, the operator has to monitor the automated execution of task 

fulfilment. Monitoring means allocating attention to different information displays or 

alternative information sources to verify the desired outcome.  

Intervening: In case of deviating outcomes, the operator must intervene to regain control 

over the process and thus to prevent unintended consequences.  

Learning: Sheridan and Verplank (1978) further describe learning from experience in 

interaction with automation as the fifth human function that constitutes an 

out-of-the-loop human task that feeds back into the first step: a new planning of task 

fulfilment.  

The third and the fourth function (monitoring, intervening) are of special interest 

because monitoring automation captures the greatest part of operator work and both, 

monitoring and intervening, are seen as the most critical parts in direct interaction with 

automation (Bainbridge, 1983). The main concern with these two operator tasks is that 

they imply some inconsistences that were first described in Bainbridge’s ironies of 

automation (1983). Concerning monitoring, the human’s task is to supervise functions 

that were quite often automated to prevent human error. However, instead of preventing, 

human error is just shifted by automation to another position, from the operator to the 

designer of automation (Parasuraman & Riley, 1997). In addition, the operators’ task to 

intervene and to regain manual control in automated systems is only required in 

situations that are extremely critical. After a prolonged time of being passive and 

out-of-the-loop (monitoring task), the human shall resume manual control in situations 

that automation cannot manage and that are in most circumstances time critical and very 

complex (Bainbridge, 1983). Bainbridge pinpoints this notion: “By taking away the 
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easy parts […], automation can make the difficult parts of the human operator's task 

more difficult.” (p. 777). 

These ironies of automation are strongly related to the function allocation between 

human and automation; i.e. to what extent the human is kept in-the-loop of the overall 

task. Accordingly, costs and benefits of automation have to be considered as a function 

of more or less automation. Therefore, function allocation presents a central and 

primary issue in describing human-automation interaction. Consequently, consequences 

of function allocation on performance and operators cognitive demands are one of the 

research objectives of the current work, which will be discussed in the subsequent 

subsection. 

1.3.1 Function Allocation between Human and Automation 

The question, which functions should be automated, and which should remain with the 

human operator, emerged since automation has conquered the work place. In the 

beginning this problem seemed to be easy to answer: Automate everything that is 

technically feasible; negative consequences of this approach (e.g. skill degradation, loss 

of situation awareness) have shown that there is no simple answer (Dekker & Woods, 

2002). 

As one of the first, Fitts (1951, as cited in Sheridan, 2000) suggested a differentiated 

answer to the question of function allocation. He proposed a list comparing “what men 

are better at” and “what machines are better at” (MABA-MABA) to underline the 

strengths and weaknesses of humans and machines as a guideline for assigning 

functions to one or another. However, there are several concerns with this approach. 

First: it is doubted that men and machine are comparable. Comparability would imply 

that humans are equivalent to and completely exchangeable with machines (Jordan, 

1963). Second: as technological feasibility has evolved, the Fitts’ list is not very useful 

today. If we decided on function allocation comparing what men are better at and what 

machines are better at today, only few tasks would remain with the human operator. 

However, following this left-over principle (Hollnagel & Bye, 2000) does not consider 

the human role in the resulting automated system. Third: the competitive idea behind 

this comparison is not constructive in promoting a collaborative human-automation 

interaction to designers or engineers (Billings, 1991). And fourth: because of the 

manifold contexts of automation a list as a guideline is too simplistic for automation 

development as the context is always important and may change certain decisions which 

functions to automate. For example, design of automation should differ depending on 
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whether it is implemented in a nuclear power plant or a manufacturing site producing 

toothbrushes.  

Therefore, function allocation models developed later than the Fitts’ list went one step 

back in the attempt to find a standardised categorisation of automated systems with 

respect to function distribution instead of giving instant guidelines (e.g. Endsley & 

Kaber, 1999; Endsley & Kiris, 1995; Milgram, Rastogi, & Grodski, 1995; Parasuraman 

et al., 2000; Riley, 1989; Sheridan, 2000; Wickens et al., 1998).  

Common to all these function allocation models is the assumption that automation does 

not exist in an all-or-none fashion, but rather constitutes a continuum from no support to 

full automation of all functions. Unfortunately, the fragmentation of this continuum 

seems to be the crux, as all models suggest different gradations. Whereas some 

taxonomies suggest five subsequent stages of more or less automation (Endsley & Kiris, 

1995; Endsley, 1987), others propose seven (Billings, 1991), ten (Endsley & Kaber, 

1999; Sheridan & Verplank, 1978), twelve (Riley, 1989), or even 17 gradations (Bright, 

1958). Furthermore, not all taxonomies take into account all possible kinds of 

automation. Whereas Endsley’s and Kaber’s ten-stage solution describes tasks that 

incorporate cognitive as well as action implementing functions (Endsley and Kaber, 

1999), Sheridan and Verplank apply their ten stages to higher-level cognitive functions 

only, therefore reaching a finer grained differentiation (Sheridan and Verplank, 1978). 

The problem is the differing viewpoints of researchers. Models developed for cognitive 

tasks, for example, do not apply for information acquisition functions and vice versa. 

Therefore, the objective to find a standardised categorisation of automation is not yet 

fulfilled by these models.  

A two-dimensional taxonomy introduced by Parasuraman et al. (2000) adopts the idea 

of different levels of automation and further provides a stage component that allows for 

integrating different functions automation can apply to. The first dimension of this 

framework adopts Sheridan’s and Verplank’s ten-level scale of higher cognitive 

functions (1978). The dimension ranges from level 1: the computer offers no assistance, 

the human is in full responsibility of the task; to level 10, in which the computer decides 

everything and acts autonomously without a possibility of the human to intervene 

(Sheridan & Verplank, 1978). Between these two extremes eight consecutive levels are 

defined referring to more or less human involvement. The ten-level scale is applicable 

to output functions, i.e. automation of decision selection and action implementation.  

However, there are more functions that can be automated, like input functions, in which 

information is sampled. This functional component of automation is covered with the 

second dimension: stages of automation (Parasuraman et al., 2000). The stage 
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dimension is adopted from Wickens’ model of human information processing (Wickens 

et al., 2013). This simplification of human information processing provides a useful 

structure for describing certain principles that are important to human-automation 

interaction. In order to comprehend the transfer of this model to the stage component of 

automation, the human information processing model is described first, followed by a 

description of the transfer to Parasuraman et al.’s (2000) stage component. 

The human information processing model contains four stages. At stage 1; information 

acquisition; information is gathered from the environment. This stage incorporates 

processes on a sensing level that can be described as a pre-processing of information 

prior to conscious perception. At stage 2; information analysis; the retrieved data is 

actually perceived and further manipulated in the working memory. This also implies 

certain cognitive operations like rehearsal, integration, inference. At stage 3; decision 

and action selection; decisions are made based on previous processing of the retrieved 

information. At stage 4; action implementation; an action is initiated that transfers the 

decision to actual behaviour (Wickens et al., 2013).  

Parasuraman et al. (2000) adopt these four stages to describe automation of different 

human information processing functions. Table 1 provides a comparison of the stages of 

human information processing and the equivalent automation stage. 
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Table 1. Comparison of stages of human information processing (Wickens et al., 2013) and the equivalent 
automation stage according to Parasuraman et al. (2000) 

 

 

As stages 1 and 2 represent automation that is related to input functions, both stages can 

be summarised as information automation. Stages 3 and 4 refer to output functions and 

can be summarised as decision automation (Parasuraman et al., 2000). 

Due to the two-dimensionality of the framework, a system can be characterised 

according to the functions that are automated (stage dimension) and the level of 

automation on each stage (level dimension). With this approach every kind of 

automation can be described and compared in a standardised manner, including all kinds 

of functions. This outmatches other models that are only applicable to a certain kind of 
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automation (e.g. Endsley & Kiris, 1995; Milgram, et al., 1995; Riley, 1989; Sheridan, 

2000). 

A limitation of Parasuraman et al.’s model (2000) relates to the level-dimension, which 

is adopted from Sheridan’s and Verplank’s ten-level taxonomy of automation (1978). 

This taxonomy can be easily applied to stage 3; decision and action selection; but is not 

transferable to the other stages of automation. Nevertheless, the idea that different 

stages can be automated to different levels is highlighted by this framework and useful 

to describe automation in detail. 

As an example, consider two health care automated systems, which are characterised 

and compared regarding the amount of automation. System A may (1) alert abnormal 

patient symptoms, and (2) integrate these symptoms to form an intelligent diagnosis of 

the patient condition. System B may further (3) recommend a treatment based upon the 

diagnosis as well as (4) carry out the action when approved by the human. Both systems 

are illustrated in figure 1. 

 

 
Figure 1. Characterisation of automated systems A and B, applying the stages and levels taxonomy 
proposed by Parasuraman et al. (2000). A detailed description of the systems is provided in the text. Note 
that for Information Acquisition and Information Analysis both systems have the same characteristics. For 
clarity the lines are organised one below the other. 

 

By applying the stages and levels model (Parasuraman et al., 2000), it is possible to 

directly compare systems and highlight the commonalities and differences of systems. 

Furthermore, possible costs and benefits of automation can be directly related to 

specific levels or stages and not only to more or less automation. Therefore, causes for 
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specific consequences can be identified. For example, the automation of 

decision-making, stage 3, may result in a loss of situation awareness (Endsley, 1995, 

1996), whereas stage 2 automation may not negatively affect situation awareness. 

Based on the levels and stages model, Parasuraman et al. (2000) further developed a 

flow chart model that attempts to help developers with automation design in terms of an 

appropriate function allocation between human and automation. The flow chart model 

builds the structural framework of this thesis and is depicted in figure 2. 

 

 
Figure 2. Flow chart model of automation design (Parasuraman et al., 2000) 
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After a first consideration of what should be automated according to stages and levels, 

the primary criteria evaluate possible consequences of a proposed function allocation in 

terms of human performance consequences and imposed cognitive demands.  

Primary evaluative criteria (upper bold box, figure 2): For this evaluation, two 

conditions have to be differentiated: automation under normal-operating conditions and 

under conditions of automation breakdown. 

Under normal-operating conditions human operators mostly benefit from automation. 

Considering the progress of technology, human operators are confronted with increasing 

task demands. Automation can considerably reduce those task requirements by taking 

over certain parts, thus reducing operators’ workload (e.g. Breton & Bossé, 2003; 

Sheridan & Parasuraman, 2005; Sheridan, 2002). This is particularly true for 

higher-stage automation that does not only resume input functions but also cognitive 

tasks related to decision-making and action selection. Furthermore, performance of the 

joint human-automation system normally exceeds unaided performance. This is also 

true for concurrent task performance as automating certain functions reduces operators’ 

attentional demands to the automated task. Consequently, freed cognitive resources can 

be reallocated to concurrent tasks that additionally benefit from automation (Breton & 

Bossé, 2003; Pritchett, 2001).  

Under conditions of automation breakdown, however, negative consequences of 

automation are likely, which may result in catastrophic failures. Negative effects are 

directly related to the operator’s out-of-loop performance problem (Wickens, 2000), 

which is more likely in interaction with a higher-stage automation compared to less 

capable automation. When human operators are not anymore actively involved in task 

completion but serve as passive monitors, they are frequently slow in detecting 

problems that need a manual intervention. Once the failure is detected, additional time 

is needed to determine the system state and to understand why the automation failed. 

These problems are associated with an automation-induced loss of situation awareness. 

Situation awareness (SA) is defined as “the perception of elements in the environment 

within a volume of time and space, the comprehension of their meaning, and the 

projection of their status in the near future (Endsley, 1988, p. 97). Endsley further 

decomposes the concept of SA into three hierarchical levels (Endsley, 1995). On level 1, 

SA is equitable with the first part of the definition, the perception of elements in the 

environment including their status, attributes, and dynamics. For example, when driving 

a car, one needs to know where other vehicles and obstacles are that are relevant to 

one’s own vehicle.  
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Level 2 describes the comprehension of the current situation and is based on 

information obtained at level 1 SA. Comprehension goes beyond simply being aware of 

the information obtained but rather includes an understanding of the relevance of 

information to gain an overall picture of the situation. For example, a driver needs to put 

together information of decelerating vehicles around him/ her and traffic lights that are 

in near distance to understand the behaviour of other road users. 

Level 3 SA focuses on the ability to project near future actions of the elements in the 

environment. This last step is only accomplishable on the basis of level 1 and level 2 

SA. Referring to the example, based on the driver’s understanding that other road users 

are decelerating because the traffic light has switched from green to orange the driver is 

able to infer that the other vehicles attempt to stop at the traffic light.  

SA therefore plays an important role in interacting with the environment, which also 

includes the interaction with automation. SA is critical to effective decision-making 

resulting from an appropriate monitoring and understanding of the environment 

(Endsley, 1996).  

Another major concern introducing automation is the potential loss of manual skills. 

When task execution is completely delegated to automation under normal-operating 

conditions, manual skills are likely to deteriorate with lack of use (Endsley & Kiris, 

1995; Wiener, 1989). However, these skills are not only crucial in operating a system 

manually in cases of automation breakdown, but also for detecting an automation 

malfunction and consequently the need to intervene manually (Endsley & Kiris, 1995). 

Furthermore, automation under conditions of breakdown may also negatively affect 

operators’ workload. While workload should be reduced by automation under normal 

operating conditions it can be even intensified under abnormal system state by 

automation. Wiener subsumes this imbalance in which automation reduces workload in 

routine, low-workload situations, but exacerbates even more workload during busy, 

high-criticality, event-driven operations as clumsy automation (Wiener, 1988). Clumsy 

automation is a form of poor coordination between human and machine. The reason for 

clumsiness is a lacking adaptation of automation to the activity phases of the human 

operator that normally differ depending on context factors like process state. For pilots 

workload differs in dependence of flight phase, for example. 

Considering these costs but also the benefits of automation in the design process should 

lead to a more deliberated function allocation decision. However, every implementation 

of automation is still a single-case decision. Even with a large body of research 

regarding effects of function allocation on operator performance and cognitive 

demands, findings are still mixed thereby making a deduction of more general 
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principles not possible (e.g. Endsley & Kiris, 1995; Kaber et al., 2000; Layton et al., 

1994; Lorenz et al., 2002; Manzey et al., 2012; Sarter & Schroeder, 2001). One reason 

for this lack of generalisation is due to the fact, that experimental research does not 

always follow the taxonomy proposed by Parasuraman et al. (2000) and has evaluated 

numerous forms of automation in diverse contexts. Furthermore, results of single 

studies are inconclusive and suffer from a limited statistical power (e.g. Kaber et al., 

2000; Lorenz et al., 2002; Sarter & Schroeder, 2001). Thus, a more valid overall picture 

to allow conclusions about which level or stage of automation comes with certain 

benefits or costs is needed.  

 

Therefore, the objective of the first study in this work is to provide an overall picture by 

quantitatively combining single studies of function allocation in a meta-analysis. The 

study examines effects of function allocation on performance, as well as cognitive 

demands under routine and automation breakdown conditions. 

 

1.3.2 Automation Reliability 

Besides the primary evaluative criteria, consequences of function allocation, other 

aspects have to be further considered that may relativise decisions that are based on the 

primary evaluation (consequences of function allocation). In the flow chart model, these 

are summarised as the next hierarchical step, the secondary evaluative criteria (lower 

bold box in figure 2). One secondary criterion is concerned with the economic 

consequences of automation breakdown, which is not addressed in this work (see 

Parasuraman et al., 2000). Another criterion is directly related to automation design and 

is discussed in detail in this chapter: the reliability of automation. 

In contrast to automation breakdown, in which automation does not function at all and 

cannot be used anymore, reliability describes the performance of automation. Because 

of imperfect sensors, algorithms, as well as the challenge to interpret a noisy and 

uncertain world, automation may not always be right in terms of a given alarm, a 

proposed diagnose or an executed action. Furthermore, automation may not function 

properly because certain events are missed, i.e. automation may fail to give an alarm, 

fail to provide a diagnosis, or miss to implement a required action (Parasuraman et al., 

2000). Depending on the realised stage of automation, reliability can therefore be 

defined as the proportion of correctly indicated critical events (information automation), 

correctly given diagnoses, suggested decisions, or correctly executed actions (decision 

automation) divided by the total number of operations in the automated task. 
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Reliability is one of the most important perceivable characteristics, as it affects human 

monitoring of an automated system as well as monitoring of alternative information 

(Lee & See, 2004; Lee & Moray, 1992; Muir, 1987). When reliability is high, operators 

are relieved from continuous monitoring, as they can depend on the proper functioning 

of automation. For example, if we trust our satnav we might not screen all road signs 

when driving on the freeway, because we depend on the proper functioning of it, and 

that it will lead us to our desired destination. However, when reliability is not sufficient, 

more cognitive resources have to be allocated to the automated task in order to 

compensate for automation’s imperfection. For the driving example this would imply 

that we had to screen all road signs to verify proposed routes of the satnav. 

Thus, to what extent operators depend on automation is a function of automation’s 

reliability, i.e. the higher the reliability, the more operators depend on it and vice versa. 

However, this association of reliability and dependency is not always appropriate. When 

reliability is high, humans tend to go the way of least cognitive effort and monitor 

automation even less than would be required. This misuse of automation (Parasuraman 

& Riley, 1997) has been the objective of a large body of research (e.g. Bagheri & 

Jamieson, 2004; Bahner, Hüper, & Manzey, 2008; Bailey & Scerbo, 2007; Endsley & 

Kiris, 1995; Goddard et al., 2012; Kaber & Endsley, 1997; Manzey et al., 2012; Singh, 

Tiwari, & Singh, 2009).  

When interacting with automation in the context of supervisory control, i.e. automation 

that has to be monitored continuously by operators, the tendency to overly rely on and 

subsequently not monitor automation is subsumed under the concept of complacency 

(Parasuraman & Manzey, 2010). Whereas there is still no consensus on the definition of 

complacency, Parasuraman and Manzey (2010) point out three core features that 

underlie different definitions (e.g. Billings, Lauber, Funkhouser, Lyman, & Huff, 1976; 

Wiener, 1981), as well as the operationalisation of complacency in most of the 

experimental studies (e.g. Bahner, Hüper, & Manzey, 2008; Bailey & Scerbo, 2007; 

Manzey et al., 2012; Parasuraman et al., 1993). The first feature relates to the fact that 

operator monitoring of automation, like in supervisory control, has to be involved in the 

task setting. Secondly, the frequency of operator monitoring has to be lower than some 

predefined optimal value. The third feature requires that there has to be some direct 

observable negative effect on system performance due to the suboptimal monitoring of 

automation (Parasuraman & Manzey, 2010). If these features apply, an operator’s 

monitoring can be classified as not sufficient and therefore the operator’s adaptation to 

automation is disproportionate. The association between automation’s reliability and the 

operator’s dependency on automation is biased. In the worst case, this under-monitoring 
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of automation may have dramatic consequences, when the human operator does not 

detect automation failures (or detects them too late). 

In interaction with decision support or diagnostic automation, two distinct forms of 

operators’ dependency on automation can further be differentiated: Compliance refers to 

an operator’s response, when automation indicates that an action is needed. In contrast, 

reliance describes an operator’s tendency to rely on automation, when it indicates that 

the monitored process runs properly and the operator accordingly does not have to take 

any action (Meyer, 2001, 2004). Pilots, for example, may always comply with the traffic 

collision avoidance system (TCAS) and directly take evasive actions without 

cross-checking when TCAS indicates a possible hazard. However, pilots’ reliance may 

not be that strong, so that they monitor the airspace for possible hazardous traffic 

concurrently to detect any possible miss by TCAS. 

When operators overly rely on or comply with decision support or diagnostic 

automation, Mosier and Skitka (1996) describe this misuse of automation as automation 

bias, a term explicitly related to other cognitive biases like the availability heuristic 

(Tversky & Kahneman, 1973). Referring to other cognitive biases, Mosier and Skitka 

(1996) define automation bias as “the tendency to use automated cues as a heuristic 

replacement for operators’ vigilant information seeking and processing […]” (p. 205). If 

automation functions properly, this cognitive shortcut is very efficient in terms of 

reduced cognitive workload. However, if automation does not function perfectly, an 

overreliance may lead to omission errors: errors that are related to misses of the 

automation and result if human operators do not take evasive action because they were 

not informed by automation. Another possibility for failure results from overcompliance 

with automation. In this respect, commission errors result, when automation produces a 

false alarm or diagnosis and operators inappropriately follow information or directives 

provided by automation. This tendency is observable even if alternative information 

clearly contradicts the automated advice (Mosier, Skitka, Heers, & Burdick, 1998; 

Mosier & Skitka, 1996). 

Contrary to operators’ adaptation problems in interaction with highly reliable 

automation, there is also evidence that operators are particularly worse in adapting to 

automation with low reliability (e.g. Dixon, Wickens, & Chang, 2004; Dixon & 

Wickens, 2006; Wickens et al., 2005; Wickens & Dixon, 2007). In a review article, Lee 

and See (2004) describe experimental findings from trust research regarding 

human-automation interaction. Below a certain reliability level trust declines quite 

rapidly and is not associated with an actual reliability level anymore (Lee & See, 2004). 

Estimates of this reliability level range from 90% (Moray et al., 2000) to 60% (Fox, 
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1996). Furthermore, a more recent quantitative literature review conducted by Wickens 

and Dixon (2007) relates automation’s reliability to the joint human-automation 

performance. This review suggests a reliability boundary around 70%. Whereas 

reliability above this level means better joint human-automation performance, 

automation less reliable than 70% even yields worse performance compared to working 

with no automation. Thus, effective compensation for unreliability seems to be possible 

to a certain level only. 

Because of the behavioural consequences that reliability imposes, it is important to 

further understand its impact and how people adapt to differing reliability levels. In 

sum, studies conducted thus far show an inconsistent pattern of results (e.g. Bagheri & 

Jamieson, 2004; Bahner, Hüper, & Manzey, 2008; Bailey & Scerbo, 2007; Dixon, 

Wickens, & Chang, 2004; Dixon & Wickens, 2006; Singh, Tiwari, & Singh, 2009). 

However, most of these studies only compared relatively extreme reliability levels and 

missed to describe the characteristics of operators’ adaptation to automation across a 

more complete range of reliability. The assumption of a reliability boundary is therefore 

only an estimated cut-off value, but what we do not know is how this change from 

supportive automation to useless automation develops, i.e. how humans adapt to 

reliability values around the proposed boundary by Wickens and Dixon (2007). 

Furthermore, most studies conducted thus far, evaluated effects of automation reliability 

only via performance measures. Effects of reliability however are already likely at a 

preceding level: the operators` cognitive demands like attention allocation. As was 

already proposed by Parasuraman and Manzey (2010) in the context of complacency, 

consequences of reliability should not only be evaluated by performance measures but 

also via cognitive variables.  

 

Therefore, the objective of the second study is to provide further insight into effects of 

different levels of reliability on operators’ adaptation strategies with respect to overall 

system performance and operators’ cognitive demands. 

 

1.3.3 Function Allocation and Automation Reliability 

Referring to Parasuraman et al.’s (2000) flow chart model of automation design (see 

Figure 2), reliability represents the second evaluative criterion, i.e. the evaluation of 

reliability always depends on a foregoing decision of function allocation. This structure 

implies that (un-)reliability may have different consequences for different stages or 

levels of automation. Even with an elaborated understanding of impacts of function 
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allocation or reliability, the combination of both factors may lead to not foreseen effects. 

Therefore, Parasuraman et al. (2000) demand that experimental studies evaluating 

effects of different function allocations for operator performance and cognitive demands 

should vary function allocation and reliability concurrently. However, only a limited 

number of studies have become available that collected empirical data on possible 

interaction effects of both factors and results are inconsistent (Crocoll & Coury, 1990; 

Galster & Parasuraman, 2004; Galster, 2003; Rovira, McGarry, & Parasuraman, 2007; 

Rovira, Zinni, & Parasuraman, 2002; Sarter & Schroeder, 2001). Some of these studies 

suggest an interaction effect between function allocation and reliability. In particular, it 

was found that same levels of unreliability led to worse effects on human performance 

in case of decision versus information automation (e.g. Crocoll & Coury, 1990; Rovira 

et al., 2007; Sarter & Schroeder, 2001). However, other studies report detrimental 

effects of unreliable automation already for information automation or even worse 

performance for information compared to decision automation (Galster & Parasuraman, 

2004; Galster, 2003). Furthermore, most of these studies are afflicted with some 

limitations concerning aspects of experimental design. Firstly, most of the studies only 

compared perfectly reliable automation trials with trials of automation breakdown 

(Crocoll & Coury, 1990; Rovira et al., 2002; Sarter & Schroeder, 2001). However, such 

a comparison of extremes, perfect reliability vs. automation breakdown, does not allow 

conclusions about effects of different levels of reliability in interaction with varying 

function allocation.  

Secondly, most of the previous research missed to consider effects on operators’ 

cognitive demands induced by different sorts of automation. However, benefits of 

automation as well as unintended costs are often related to operators’ cognitive 

demands. As Moray and Inagaki (2000) have pointed out, an exclusive consideration of 

performance data may result in biased interpretations. For example, when the detection 

rate of automation failures by participants is low, it is often claimed that participants are 

complacent (e.g. Parasuraman et al., 1993). However, as long as attention allocation was 

not additionally measured, this interpretation is questionable because nothing is known 

about the frequency with which participants actually monitored the task (Moray & 

Inagaki, 2000). The reason for not-detecting or not reacting to automation failures is 

therefore not known. 

Consequently, the last study of this thesis attempts to overcome those limitations and 

combines primary evaluative criteria of function allocation with the secondary 

evaluative criterion of reliability to investigate their impacts on performance variables 

as well as cognitive demands in terms of attention allocation. Of special interest is the 
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question, if interaction effects of function allocation and reliability occur that differ 

from findings regarding only one of the two factors. 

 

Therefore, the last study’s objective is to evaluate effects of specific combinations of 
function allocation and reliability on performance and cognitive demands. 

 

1.4 Structure of the Current Research 

In the following, the three studies will be presented according to the research objectives 

outlined in the previous chapters. The meta-analysis is described in chapter 2. The first 

laboratory experiment, which deals with the impact of reliability on participants’ 
performance and cognitive demands, is presented in chapter 3. Chapter 4 introduces the 

experimental study evaluating differential effects of specific combinations of function 

allocation and reliability. Figure 3 provides a graphical overview of the three studies 

including research objectives, the theoretical framework, and a short description of 

methods. 

 

 
Figure 3. Graphical overview of the three studies conducted within the thesis 

 

The studies constituting chapters 2 and 3 were published in peer reviewed international 

journals. The meta-analysis was published in Human Factors (Onnasch, Wickens, Li, & 
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Manzey, 2014), the first experimental study in the International Journal of 

Human-Computer Studies (Onnasch, Ruff, & Manzey, 2014), in which also the last 

experiment has been submitted for publication (under review).  

A general discussion will close this work (chapter 5) containing a recapitulation of 

results, which are then related to the flow chart model proposed by Parasuraman et al. 

(2000). Furthermore, the three studies will be subject to a critical reconsideration of the 

applied methodical approaches. The thesis concludes with an outlook regarding future 

research opportunities. 
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2.1 Abstract 

Objective: We investigated how automation-induced human performance consequences 

depended on the degree of automation (DOA). Background: Function allocation 

between human and automation can be represented in terms of the stages & levels 

taxonomy proposed by Parasuraman, Sheridan & Wickens (2000). Higher DOAs are 

achieved both by later stages and higher levels within stages. Method: A meta-analysis 

based on data of 18 experiments examines the mediating effects of DOA on routine 

system performance, performance when the automation fails, workload, and situation 

awareness (SA). The effects of DOA on these measures are summarized by level of 

statistical significance. Results: We found: (1) a clear automation benefit for routine 

system performance with increasing DOA, (2) a similar but weaker pattern for workload 

when automation functioned properly, (3) a negative impact of higher DOA on failure 

system performance and SA. Most interesting was the finding that negative 

consequences of automation seem to be most likely when DOA moved across a critical 

boundary which was identified between automation supporting information analysis and 

automation supporting action selection. Conclusions: Results support the proposed 

cost-benefit trade-off with regard to DOA. It seems that routine performance and 

workload on the one hand, and the potential loss of SA and manual skills on the other 

hand, directly trade-off and that appropriate function allocation can only serve one of 

the two aspects. Application: Findings contribute to the body of research on adequate 

function allocation by providing an overall picture through quantitatively combining 

data from a variety of studies across varying domains. 

 

Keywords: degree of automation, operator performance, workload, situation awareness, 

human-automation interaction, function allocation 

 

2.2 Introduction 

It has been long known that automation can both hurt and benefit human performance 

(e.g., Bainbridge, 1983; Wiener & Curry, 1980; Sheridan, 2002; Wickens, Mavor, 

Parasuraman & McGee, 1998; Ephrath & Young, 1981; Kessel & Wickens, 1982; 

Wickens & Kessel, 1979, 1981; Rasmussen & Rouse, 1981). This cost-benefit trade-off 

is particularly prominent when automation is imperfectly reliable. Automation 

infrequently fails, either due to hardware or software failures, or it fails to achieve 
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desired outcomes simply because a functionality is used in circumstances for which it 

was not intended. For fielded automation, it is almost always the case that routine or 

“non-failure” performance substantially exceeds unaided human performance and/or the 

automation assistance lowers workload. If it did not, the system would not be fielded or 

considered useful.  

However, on those infrequent occasions when automation does fail, the effects on joint 

human-machine system performance may be catastrophic. These catastrophic effects 

may result from human’s reduced monitoring of highly reliable automation at the time it 

fails, trusting it too much (Parasuraman & Riley, 1997), and losing situation awareness 

(Endsley & Kiris, 1995). This is sometimes described as a form of complacency 

(Parasuraman, Molloy & Singh, 1993) or an automation-induced decision bias (Mosier 

& Skitka, 1996). Indeed, operators occasionally over-rely on automation and exhibit 

complacency because the highly (but not perfectly) reliable automation functioned 

properly for an extended period of time prior to this first failure (Parasuraman et 

al.1993; Parasuraman & Manzey, 2010; Yeh, Merlo, Wickens & Brandenburg, 2003). 

Going beyond the issues of highly reliable automation, Endsley and Kiris (1995) and 

Miller and Parasuraman (2007) have pointed out, that also the “competence” of the 

automation must be considered. The more support an automated system provides, the 

higher the risk of adverse effects on human performance (e.g., complacency, loss of 

situation awareness, skill degradation), and the greater the likelihood of catastrophic 

consequences when it fails. This trade-off, in which more automation yields better 

human-system performance when all is well but induces increased dependence which 

may produce more problematic performance when things fail, will be of critical 

importance to this review of the performance effects of different degrees of automation. 

We might refer to this conventional wisdom about automation as the “lumber jack 

effect”; as applied to trees in the forest: “the higher they are, the farther they fall”. 

Importantly, the choice of whether or not, and to what degree, to automate a particular 

function should involve a trade-off between the benefits of reliable automation and the 

expected costs (true costs x probability of failure) of automation failures (Sheridan & 

Parasuraman, 2000).  

The “routine-failure” trade-off is complicated by the fact that “automation” is not an all-

or-none concept, as it was often assumed to be in the classic human-machine task 

allocation analyses (e.g., the “Fitts List”; for a critique of those analyses, see Dekker 

&Woods, 2002; Parasuraman, Sheridan, & Wickens, 2008). Instead, one can think of 

varying levels of automation as first put forth by Sheridan & Verplank, (1978; see also 

Endsley & Kiris, 1995). This continuum can be jointly defined by the amount of 
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automation autonomy and responsibility (highest at the highest level) and the amount of 

human physical and cognitive activity (highest at the lowest level). For example, at the 

highest level, the automation can perform a decision task completely autonomously; at a 

lower level, it can choose (and possibly execute) an option unless the human vetoes; and 

at an even lower level, it may simply offer the human a selection of options.  

More recently, Kaber & Endsley (1997), and Wickens et al, (1998), put forth the idea 

that automation could also be categorized according to the stage of information 

processing that it accomplished. Elaborating upon this concept, Parasuraman, Sheridan, 

and Wickens (2000), and Wickens et al. (1998) proposed a concept in which automation 

could filter information from the environment (stage 1: information acquisition), 

integrate this information, as when forming an assessment based on several sources of 

information (stage 2: information analysis), choose or decide upon an action based on 

the assessment (stage 3: decision and action selection) and implement the action via a 

typically manual activity (stage 4: action implementation). Within each stage, varying 

levels could be defined. For example, as described above, Sheridan & Verplank (1978) 

define multiple levels at stage 3. In so doing, automation can be said to offload, assist or 

replace human performance at corresponding stages of human information processing 

(e.g., automation filtering at stage 1, can assist human selective attention). 

As an example, health care automation may (1) alert (call attention to) abnormal patient 

symptoms, (2) integrate these symptoms to form an intelligent diagnosis of the patient 

condition, (3) recommend a treatment or course of action based upon the diagnosis, and 

(4) carry out the action as, for example, with an automated infusion pump. In applying 

this taxonomy, where any given stage can function at various levels, it is important to 

note the quasi-independence of levels across the various stages. Thus, for example, a 

totally automated diagnosis, may be followed by a fully manual (physician chosen) 

course of action; just as a fully manual diagnosis may trigger an automated choice of 

treatment.  

Considering that “more automation” can be represented both by higher levels within a 

stage, and, typically, later stages (which, in literature, are typically preceded by 

automation at earlier stages), we assume, in the analysis below, that these two 

dimensions (higher levels and later stages) increase the degree of automation (DOA; 

e.g., Manzey, Reichenbach & Onnasch, 2012). More specifically, it is assumed that 

differences between automated (support) systems representing automation of different 

stages and levels can be described on an ordinal scale reflecting the amount of 

automated support which is provided. The main assumption underlying this concept as 

we define it, asserts that assessment of “more vs. less automation” can be based on 
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dominance relationships, as long as the following three postulates are agreed upon. That 

is, all other factors held equivalent (1) a higher level of automation constitutes “more 
automation”, (2) a later stage of automation constitutes “more automation”, and (3) as a 
consequence, a combination of higher levels and a greater number of stages at which 

automation is implemented constitutes “more automation”. As will be shown below, 
applying this reasoning enables an unambiguous rank ordering of automated systems 

which have been analyzed and compared in different studies and domains. It furthers 

seems to reflect the implicit or explicit assumptions which researchers in the field 

whose data are employed in the current analysis usually apply when comparing their 

systems in terms of some concept of “more or less automation”. 

We illustrate this within Figure 1 which, for simplicity, presents examples of the four 

stage model of Parasuraman et al. (2000) with only three levels per stage. Each of the 

four cases contains two automation systems, A and B, which are compared within one 

experiment. The automation characteristic of each of these systems is characterized by a 

profile of levels across the stages. The first three cases also represent the three 

postulates above. Case #1 (“Pure Levels”): different levels within a stage. Case #2 
(“Pure Stages”): different stages at the same level. Case #3 (“Aggregation”): an earlier 
stage and lower level vs. a later stage and higher level. Case 4 (“Confound”): an earlier 
stage and higher level vs a later stage and lower level (i.e., a “tradeoff” between stages 

and levels). 

 

 
Figure 1. Four cases comparing DOA across Stages, i.e. Information Acquisition (IAc), Information 
Analysis (IAn), Action Selection (AS) and Action Implementation (AI), and Levels, i.e. high, low and 
manual. Two systems compared are represented by dashed (System A) and solid lines (System B). For 
cases 1 – 3, System B always represents “more automation” in a distinct way (e.g., 1. by higher levels, or 
2. by higher stages). Case 4 represents a confound where “what is more automation” cannot be defined. 

 

We argue that, to the extent that the three postulates above are agreed upon, all of the 

comparisons 1-3 clearly represent contrasts between systems with more (system B) vs. 

less (system A) automation, as defined on an ordinal scale. These relationships 
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characterize all of the studies we have reviewed in which authors have invoked a phrase 

like “more automation”. 

Case 4 is an important exception. Here, there is a trade-off between later stages and 

higher levels. It is impossible to assess a relative DOA unless both stages and levels are 

expressed on an interval or ratio scale, and we have no confidence that this has or even 

can be done. But none of the studies analyzed below involved such a comparison.  

Thus, in our analysis, DOA is a useful ordinal metric explicitly available and used to 

compare two or more systems (or experimental conditions), specifically for the purpose 

of examining the trade-offs inherent in the lumberjack analogy. 

Within this DOA concept, the discrete trade-off described above (i.e., automation 

supports better performance in routine situations but is problematic when automation 

breaks down) can be expressed as a more continuous trade-off, as illustrated in Figure 2. 

The two primary performance functions in this figure (heavy lines) indicate that, as the 

degree of automation increases, routine performance will improve but performance 

under failure will decline. This relationship is expressed intuitively by the lumberjack 

analogy. Prior research has found that the lumberjack analogy appears to apply to the 

continuum of automation reliability of alerting systems (Wickens & Dixon, 2007). We 

examine here the extent to which this may also apply to DOA. Furthermore, our interest 

lies in whether DOA also has a systematic impact on workload and situation awareness 

(Endsley & Kiris, 1995). Indeed, as discussed below, to the extent that loss of situation 

awareness may be due to both - an increase in automation reliability, and an increased 

degree of automation- it is plausible to assume that the lumberjack analogy may apply 

to the latter case (see also Wickens, 2008a). 

Thus, Figure 2 also depicts the hypothetical trade-off between the two secondary 

variables, workload and loss of situation awareness (the two lighter lines). With a higher 

degree of automation, the workload imposed by the automated task is progressively 

reduced, almost by definition, since if the automation is doing more cognitive/ physical 

work, the human is doing less. This holds at least if the automation is properly designed 

and does not provide new effortful challenges and tasks related to its engagement and 

monitoring (e.g., Kirlik, 1993; Wiener, 1988). If this is granted, the automation enables 

the human to allocate more attention to other concurrent tasks (Wickens, 2008b); but if 

the human does so (i.e., exploits the lower workload to enhance overall productivity), 

the resulting reduction of attention to the tasks served by automation could have 

consequences expressed in the loss of situation awareness (LSA); that is, loss of 

awareness of the state of the system supported by automation (e.g., lack of altitude 
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awareness in the autopilot-controlled cockpit), or the state of the automation itself (i.e., 

poor mode awareness of the flight management system; e.g.,Sarter, 2008). 

 

 
Figure 2. Trade-off of variables, with degree of automation

 

Even though there is broad consensus in the understanding of the concept of situation 

awareness (SA) as it has been defined by Endsley’s three levels model (1988), the 
operational definitions used to assess SA in different studies are considerably diverse. In 

the context of the present research we consider both direct as well as indirect measures 

as indicators of SA. Direct indicators are derived from conventional methods to assess 

SA, like the Situation Awareness Global Assessment Technique (SAGAT, Endsley, 

2000). Indirect measures of (a loss of) SA include any performance consequences in 

interaction with automation that point to a lack of information sampling, a lack of 

understanding or a lack of correctly anticipating the behavior of the automation 

(e.g.,errors of omission or commission, Mosier & Skitka, 1996).  

The hypothetical trade-offs depicted in Figure 2 are critical for task allocation because 

these trade-offs may not be linear, and in some cases, a “flat” function may allow strong 
recommendations for the optimal task allocation (Wickens, 2008). For example, if the 

costs of imperfect automation (mediated by LSA) remain flat up to a high degree of 

automation (as shown in Figure 2), then the recommended degree of automation would 

be at point (a) in the Figure: maximum routine performance and lowest workload, 

without sacrificing failure performance.  
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Earlier research contrasting human performance with and without automation support 

only have focused on what has been referred to as “out-of the-loop unfamiliarity” 

effects without varying the levels or stages of automation (e.g.,Crossman, 1974; Eprath 

& Young, 1981; Kessel & Wickens, 1982; Wickens & Kessel, 1979; 1980, 1981). These 

studies provide evidence for automation-induced performance consequences but do not 

allow for any conclusion about the relationship to different degrees of automation. The 

latter issue attracted little research until the early 1990s (see for early examples, e.g., 

Crocoll & Coury, 1990; Layton, Smith & McGoy, 1994). Yet, since then at least a 

limited number of studies have become available that have collected empirical data on 

effects of two or more different DOAs on workload and/or SA (e.g., Endsley & Kiris, 

1995; Kaber, Onal & Endsley, 2000; Lorenz, Di Nocera, Röttger & Parasuraman, 

2002a; Sarter & Schroeder, 2001). The pattern of results of these single studies provides 

a somewhat mixed picture. Whereas some studies support the existence of the above 

trade-off as defined by better routine performance but worse performance when 

automation fails (e.g.,Sarter & Schroeder, 2001) others do not find this effect (Lorenz et 

al., 2002a) and still others suggest that medium levels of automation provide the best 

choice in terms of maintaining SA and return-to-manual performance (Endsley & Kiris, 

1995) or provide an even more complex pattern of effects (Endsley & Kaber, 1999). 

However, due to differences in DOA levels considered, and a generally limited 

statistical power, the effects of single studies are inconclusive. A more valid overall 

picture might be revealed by quantitatively combining data from a variety of studies 

across varying domains (e.g., process control, aviation), an approach analogous to a 

classic meta-analysis (Rosenthal 1991; Fadden, Ververs, & Wickens, 1998; Horrey & 

Wickens, 2006; Wickens, Hutchinson, Carolan & Cumming, 2013). The purpose of the 

current investigation is to provide such meta-analysis by (a) aggregating data from 

studies that compared different degrees of automation, (b) examining the extent to 

which they show the postulated trade-off between normal operations and failure 

conditions as the degree of automation (DOA) was manipulated and (c) if possible, by 

identifying factors that may mitigate or moderate this trade-off. 

 

2.3 Methods 

In a first step we looked for relevant studies to be included in this analysis. Sources used 

for this purpose included databank searches (e.g.,PsychInfo), analyses of tables of 

content of relevant journals (e.g.,Human Factors, Ergonomics, International Journal of 
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Human-Computer Interaction), conference proceedings for the years 1990ff , and direct 

contact of colleagues in order to identify relevant technical reports or other examples of 

references that were not available through publishers. Only studies which compared at 

least two different degrees of automation defined by the postulates above, e.g., either by 

varying the stage of automation, the number of stages or by varying the level of 

automation within a stage, with respect to at least one relevant performance measure 

were included. Consequently, a total of 18 studies was identified and integrated in the 

analysis (see Table 1). 

The second step included a proper quantification of the independent variable (i.e. DOA) 

and dependent variables (i.e. performance, workload, and SA data) as a basis for our 

meta-analysis approach. For each single study, the DOAs analyzed were converted into 

rank data with an increasing rank (beginning by rank= 1) reflecting an increasing DOA 

via either stages or levels corresponding to the logic described above. We note that none 

of the studies contrasted conditions with higher level/ earlier stage with lower level/ 

later stage (or vice versa) which would not be easy to rank due to lacking unambiguous 

a priori criteria for cross-stage comparisons of levels. Manual performance conditions 

were always assigned rank = 0. Rankings were provided by one of the authors (LO) and 

double-checked by two of the co-authors (CW, DM).  

To bring the variety of dependent measures and definitions used in the studies to a 

comparable level we defined ‘meta-variables’ which were broad enough to group the 

data while still representing a clear definition of the concept in question (e.g.,situation 

awareness). As our main focus of the present study was on performance costs and 

benefits of automation support we differentiated between primary task performance 

when the automation functioned properly (meta-variable routine primary task 

performance, reflecting joint performance of operator and system together) and 

performance when there was a complete automation breakdown, i.e. when operators had 

to resume the automated task and perform it manually again after some time of reliable 

automation support (meta-variable return-to-manual primary task performance). The 

meta-variable routine primary task performance, for example, could be realized within 

the single studies as fault identification time in a monitoring task (e.g., Lorenz, 

DiNocera, Röttger & Parasuraman, 2002b), the decision accuracy in interaction with an 

automated decision aid (e.g., Rovira, McGarry & Parasuraman, 2007) or the out-of-

target error when the main task was to maintain certain values in a dynamic task (e.g., 

Manzey et al., 2012). Nevertheless, all these measures represented operators’ 

performance when working together with a reliable automation support and were 

therefore subsumed under the same meta-variable. For defining the meta-variable 
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return-to-manual primary task performance the same measures as for routine 

performance were considered for a given study but for a situation, where the operator 

needed to perform the primary task manually after a complete automation breakdown of 

the automation. 

Workload measures were assessed in two different ways: As a performance variable we 

defined the meta-variable secondary task performance (if the study used a multi-task 

environment) again for routine and return-to-manual performance, respectively. A 

second meta-variable was operators’ subjective workload, typically quantified by the 

NASA-TLX (Hart & Staveland, 1988) as used for example by Endsley & Kaber (1999). 

The meta-variable situation awareness merged any direct and indirect indicators that 

pointed to a loss of situation awareness when working together with automation. As 

direct indicators we considered the outcome of techniques that are designed to directly 

ask for SA like the SAGAT (Endsley, 1988; 2000) or questionnaires as SART (Taylor, 

1990). As indirect evidence for a possible loss of SA we considered all sorts of 

operators’ errors which might be attributed to a loss of SA due to an overtrust in 

automation or a lack of proper understanding. Such errors can include, e.g., mode errors 

(Sarter, 2008), or errors of omission or commission (Mosier & Skitka, 1996), i.e. errors 

where operators failed to respond to a critical situation if the automation failed to alert 

them properly or where operators followed wrong advice of automation without 

detecting this failure. When participants committed these kinds of error we interpreted 

this as evidence for deficient situation awareness as they did not realize that the 

automation had made a mistake. 

Departing from the classic meta-analysis approach we assigned rankings for every 

meta-variable within a single study according to significant effects found with regard to 

DOA (a priori, a posteriori). This was done as effect sizes (e.g., Hedges g) were only 

rarely reported in the original studies and therefore could not be used for analysis, 

without eliminating many studies from consideration. Furthermore, any other estimates 

of effect sizes based on the F ratios for multiple conditions reported in the studies would 

not be able to capture the ordinal aspect of data which is of particular relevance for our 

question. Although unconventional, this approach of data aggregation is in line with the 

basic idea of meta-analysis (e.g., Rosenthal, 1991) where no particular statistical 

method is defined for this “analysis of analyses”. It is also in line with other authors 

who also departed from the classic approach for similar reasons (e.g., Wickens & 

Dixon, 2007; Wickens, Hooey, Gore, Sebok, & Koenicke, 2009; Wickens, Hutchins, 

Carolan, & Cumming, 2013; Hutchins, Wickens, Carolan, & Cumming, 2013). 
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Different rankings were assigned when there was a significant effect between two DOA 

conditions (p < .05). In case of non-significant effects between different degrees of 

automation we assigned tied ranks. For example, in case a study comparing the impact 

of three different DOAs on routine primary task performance revealed all pairwise 

comparisons between the DOA conditions as significant, the condition showing the 

worst performance was assigned rank 1, the condition with the second-best performance 

rank 2 and rank 3 was assigned to the condition with best performance. However, when 

only one condition differed in terms of superior performance compared to the other two 

conditions, the best condition was assigned rank 3 and the other two conditions were 

assigned tied ranks, in this case rank 1.5. 

When a meta-variable was measured by more than one dependent variable within a 

study (e.g., error of omission and SAGAT for situation awareness) the rankings of the 

single variables were integrated into one ‘overall-ranking’. With this approach we were 

able to integrate data from various studies assessed in numerous ways to examine the 

trade-off when automation degree increased and to identify trends on a descriptive level. 

In a third step we described the relationship between the DOAs and the different meta-

variables by computing Kendall’s tau (correlation between rank orderings) to see if the 

DOA had an impact on a certain class of meta-variable. Kendall’s tau was used as an 

alternative analysis to product moment correlations as we only had rank orderings as 

data bases. With this analysis it was possible to determine and test for a monotonic 

relation between two dependent variables (e.g., DOA and workload). Furthermore, 

Kendall’s tau does not make the implicit assumption of equidistance between different 

rankings which would not have been the case for our data. 

To further abstract the gained results we computed an overall Kendall’s tau for every 

meta-variable across studies and tested with one-tailed t-tests if this correlation was 

different from zero in the hypothesized direction. In doing so, we defined each 

Kendall’s tau, computed for every study, as a certain manifestation of the variable in 

question (e.g., routine primary task performance). With this last step, we could also 

examine various instances of the trade-off: For example, do the routine and failure 

aspects of performance trade off? How strongly is decreased failure response coupled 

with LSA? Do workload and LSA trade off? 

 



 Study I 

 39 

2.4 Results 

Table 1 shows the correlations of DOA on the six meta-variables for the single studies 

(Kendall's tau) and the computed overall Kendall’s tau for every meta-variable 

including statistics of one-tailed t-tests. 

 

Table 1. Kendall’s tau for the single studies on the six meta-variables with resulting overall Kendall's tau 
and statistics of one-tailed t-tests. 

 

 

Primary Task Performance  

16 studies provided data for the meta-variable routine primary task performance. In 

terms of Kendall’s tau, a vast majority of these studies indicated a strong positive 

correlation of DOA and routine performance. This is in accordance with the anticipated 

benefit of automation support with increasing DOA when automation functioned 

properly. Data of one study only resulted in a negative correlation and additional three 

studies revealed no evidence for a relation of DOA and routine primary task 

performance. Looking at the amount of studies with positive taus and the strength of 

these correlations supports the hypothesized benefit of automation support with 

increasing DOA. This interpretation is also backed up by a significant overall rank 

correlation across studies of tau=0.51, p < .001. 

For an assessment of the impact of DOA on return-to-manual primary task performance 

data of nine studies were available. Five of these studies reported effects that resulted in 

a negative Kendall’s tau whereas only three others showed no evidence for the 

hypothesized negative impact of DOA when participants had to resume the formerly 
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automated task because of an automation breakdown. This general trend was reinforced 

by a negative overall Kendall’s tau averaged across the nine studies that was 

significantly different from zero, tau=-0.34, p = .03. 

Taken together results for primary task performance support the hypothesized 

lumberjack effect as the routine and failure aspects of performance trade off with 

increasing automation complexity. Further in line with the hypothesized trade-off 

(Figure 2) is the fact that eight out of the nine studies that assessed both aspects of 

performance (routine and return-to-manual) showed a higher (more positive) correlation 

of DOA with routine than with failure performance, and the single exception (Metzger 

and Parasuraman, 2005) showed a zero correlation in both cases. 

 

Workload 

Workload was evaluated on a performance level and on a subjective level. Eight studies 

provided data for the meta-variable routine secondary task performance. Three out of 

these eight studies revealed a strong positive correlation of DOA and performance, i.e. 

operators showed better results when supported by higher degrees of reliable 

automation. This was also supported by a significant overall Kendall’s tau = +.03; p = 

.04. However, this interpretation is challenged by the fact that five out of the eight 

studies revealed no connection between DOA and performance in terms of zero 

correlations. Therefore, results have to be interpreted with caution. 

In contrast to primary task performance, secondary task performance did not seem to be 

affected by surprising automation breakdowns, as there was no evidence for an impact 

of DOA on return-to-manual secondary task performance. However, only three studies 

reported data for this variable so that the explanatory power of this result is rather low. 

Concerning the impact of DOA on subjective workload, the 12 studies which reported 

data for this meta-variable provided a quite complex pattern of results. Two out of these 

studies (Endsley & Kaber, 1999; Wright & Kaber, 2005) reported data that revealed 

strong positive relations between DOA and subjective workload (tau = +.08, tau = 

+.913). In contrast, six studies provided a reversed pattern with strong negative 

Kendall’s taus, and the remaining four studies showed no correlation at all.  

However, because the majority of data provided negative correlations, overall Kendall’s 

tau also showed a negative, albeit weak trend (tau = -.24, p=.05) that supports the often 

stated argument that higher degrees of automation reduce operators’ workload. 

Nevertheless, because of the different results of the single studies further research is 

needed to assure the proposed interpretation.  
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Situation Awareness 

We hypothesized that one of the costs concerned with higher degrees of automation 

would be associated with a loss of situation awareness. 11 studies reported data for this 

meta-variable. Whereas five studies, like Endsley & Kiris (1995) or Manzey et al. 

(2012), did report a potential loss of SA with increasing automation, four other studies 

did not find an impact of DOA (Calhoun et al., 2009; Cummings & Mitchell, 2007; 

Reichenbach et al., 2011; Metzger & Parasuraman, 2005), and the data of the two 

remaining studies even resulted in positive correlations of DOA on situation awareness. 

Due to this, the hypothesized negative trend was not as strong as expected, with an 

overall Kendall’s tau =-.29, but still significantly different from zero (p=.04). 

 

Taking a closer look on the single studies, it is striking that the two studies with the 

highest lumberjack trade-off (routine vs. return-to-manual primary task performance; 

Manzey et al., 2012; Kaber, Onal & Endsley, 2000) were also two of the four studies 

that yielded comparatively strong negative correlations between DOA and situation 

awareness (values of -0.71 and -0.63, respectively). This is in accordance with the 

assumption that higher DOAs increase the risk of out-of-the-loop unfamiliarity issues 

reflected in a loss of SA as well as with negative performance consequences in case an 

operator unexpectedly needs to resume manual control of an automated task (Endsley & 

Kiris, 1995). Similarly, the strongest negative correlation between DOA on SA was 

found in the study conducted by Li et al. (in preparation) which at the same time 

showed the greatest automation benefits for routine primary task performance as well as 

the greatest decrease in subjective workload of all studies. Therefore, it seems that 

routine primary task performance and workload on the one hand, and the potential loss 

of SA, on the other hand, directly trade off and that appropriate function allocation can 

only serve one of the two aspects.  

 

Moderating Factors 

In a next step we tried to identify possible factors that might moderate potential 

trade-offs between the different measures. We looked for aspects that some studies had 

in common, especially those that strongly supported the trade-off hypothesis, but also 

differentiated them from other studies. As one such variable, we focused on the critical 

distinction between automation that supported situation assessment by providing 

automated information acquisition and analysis (stages 1 or 2) versus that which 

supported the selection and execution of action (stages 3 and 4). This distinction of 
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assessment versus action is a ubiquitous one that underlies many facets of human 

performance (Wickens, Hollands, Banbury & Parasuraman, 2012). For this analysis 

only those studies were included which varied the DOA across the assumed critical 

boundary from information analysis support to action selection support (i.e. Crocoll & 

Coury, 1990; Cummings & Mitchell, 2007; Reichenbach, Onnasch & Manzey, 2011; 

Manzey et al., 2012; Rovira, McGarry & Parasuraman, 2007; Sarter & Schroeder, 

2001). Examining these studies exclusively, we found that when DOA was varied across 

this boundary, the pattern of the lumberjack analogy trade-off was substantially 

amplified. Calculated for these six studies separately, the overall Kendall’s tau 

correlation of DOA with routine performance was +0.68, higher than the overall 

correlation of 0.51 for all studies (see Table 1); and the overall correlation with return-

to-manual performance was -0.90, much more negative than the overall correlation of 

all studies, a value of -0.34. 

We also examined how other variables such as prior experience with failures, or subject 

experience might have modulated the trade-off. Concerning the training participants 

received, we looked especially for the possible impact of ‘first failure automation 

training’ which has been found to impact human performance with automation (Bahner, 

Hueper & Manzey, 2008). Yet, none of the integrated studies applied to such kind of 

training. The only systematic differences in training were related to practice time before 

the experiment started. However, this difference is hard to evaluate since training time 

usually depends on the complexity of the experimental task.  

In all but four studies students served as participants. In one study participants were 

recruited from Air Force personnel but still were novices for the experimental task 

(Calhoun, Draper & Ruff, 2009). Three studies were conducted with experts as the 

experimental simulation was very realistic (Control of UAVs, ATC, Pilots). 

Nevertheless, these differences did not moderate the reported lumberjack trade-off 

effects of DOA. 

Also, most studies used multi-task settings but differed in the number of concurrent 

tasks (2 or 3). Yet, four studies represented single-task studies (Crocoll & Coury, 1990; 

Endsley & Kiris, 1995; Endsley & Kaber, 1999; Kaber et al., 2000). One could assume 

that this differentiation might be important, especially for variables like workload or 

SA. However, the amount of secondary tasks did not seem to make a difference. 

Another variable that was examined in detail was the nature of the display of the 

automated process. The rationale for this focus was twofold. (1) The emerging literature 

that clear, intuitive or “ecological” displays of the state of automated processes can 

support a proper response to automation failures (Bennett & Flach, 2011; Burns, 
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Skraaning, Jamieson, Lau, Kwok, Welch et al., 2008; Seppelt & Lee, 2007). (2) The 

linkage between displays and SA support on the one hand, and our finding which 

suggests that LSA might be related to return-to-manual performance issues. While this 

relation too did not emerge from our post-hoc analysis of the data, we are certainly 

reluctant to conclude that effective displays do not support off-nominal response via the 

mediating role of SA, because of the relatively low power of our assessment. 

 

2.5 Discussion 

Overall, the results fairly conclusively confirm the lumberjack hypothesis with regard to 

the degree of automation. “Conventional wisdom” has now been transformed into 

“statistical wisdom”. Thus, the pattern underlying the degree of automation confirms the 

general pattern that had previously been observed regarding the presence or absence of 

automation. Automation helps when all goes well, but leaving the user out-of-the-loop 

can be problematic because it leads to considerable performance impairment if the 

automation suddenly fails. And this risk appears to increase with increasing DOA. The 

data presented in Table 1 further suggest that this effect is linked to raised issues of LSA 

with increasing DOA. However, due to a lack of statistical power this latter conclusion 

needs to be treated with caution. 

The most promising account is suggested by the final post hoc analysis reported above. 

When DOA moves across the critical boundary from information acquisition and 

information analysis to action selection, the latter alleviating the human from some or 

all aspects of choosing an action, then the human is much more vulnerable to 

automation “failures”. Actively choosing actions manually (the generation effect, 

Slamecka & Graf, 1978) supports SA in a way that supports the manual performance in 

case of automation breakdown. When that choice is removed, the automation failure 

response suffers. Thus, the distinction between situation assessment and action support 

is critically important in automation, just as the simple dichotomy is in other aspects of 

human factors and cognitive engineering, such as cognitive task analysis (Hoffman, 

Crandall & Shadbolt, 1998), predicting multi-task performance (Wickens, 2008), and 

predicting transfer of training (Osgood, 1949).  

This finding also qualifies and specifies earlier claims that medium levels of automation 

would represent an optimum choice with respect to primary performance improvements 

and workload reductions by, at the same time, reducing unwanted performance 

consequences in terms of LSA and difficulties of return-to-manual performance 
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(Endsley & Kiris, 1995). The direct trade-off between DOA-related consequences on 

primary task performance and return-to-manual performance, respectively, suggest that 

there is no clear optimum of automation support. Each step of increase of DOA seems 

to be associated with an increase of the risk of return-to-manual performance 

decrements, meaning that there is no specific DOA below which automation-induced 

performance benefits can be increased without any performance costs. This renders 

doubts in any simple design-recipes like “medium DOAs are best”. However, the 

strength of the trade-off is important particularly if the border between information and 

action support is crossed. That is, the general recommendation of preferring “medium 

levels of automation” where the human is kept somehow “in-the-loop” can now be 

turned into a more specific one: if return-to-manual performance issues are of serious 

concern, human operators should be kept involved at least to some extent in decision 

and action selection as well as action implementation. Although, even if in this case 

risks of return-to-manual might not be fully excluded they can probably be kept on a 

comparably low level.  

One limitation of the present research is the comparably low number of studies 

available for this analysis and the need to just consider rank data with respect to scaling 

DOA and performance effects. Our approach of using rank orders based on dominance 

orderings of three features, i.e. stages, levels, and number of stages neither allowed for 

quantifying the DOA on a ratio or interval scale, nor for resolving trade-offs between 

stages and levels. This made it difficult to yield clear statistical conclusions for all of the 

findings and limits the conclusiveness of results with respect to the formal 

characteristics of the observed trade-offs (to what extent are they linear?). However, 

based on the limited current knowledge and available data, the rank order approach 

applied to represent DOA seemed to be the only way to yield a quantitative input for our 

meta-analysis. Clearly, much more psychophysical and controlled experimental research 

is needed before more distinct metric DOA scales may be developed. A second 

limitation is the possibility that we might have underestimated the trends within any 

particular study, by the relatively course dichotomous “grain size” by which effects 

were coded (significant vs. non-significant). In doing so, we collapsed across 

quantitative measures of the size of an effect that might have added precision to the 

coding. Taking these limitations in mind, the overall pattern of raw effects and statistical 

results provides a first quantitative summary of the state of knowledge about 

performance consequences of stages and levels of automation which, together with the 

remaining questions concerning possible moderating factors, certainly offers an 

invitation for future research. 
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2.7 Key Points 

 Increasing DOA supports routine system performance and workload 

 Increasing DOA negatively impacts failure system performance and SA 

 Negative consequences of automation most likely when DOA moves from 

stage 2 to stage 3 automation 
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3.1 Abstract 

Operators in complex environments are often supported by alarm systems that indicate 

when to shift attention to certain tasks. As alarms are not perfectly reliable, operators 

have to select appropriate strategies of attention allocation to compensate for 

unreliability and to maintain overall performance. This study explores how humans 

adapt to differing alarm reliabilities. Within a multi-task simulation consisting of a 

monitoring task and two other concurrent tasks, participants were assigned to one of 

five groups. In the manual control group none of the tasks was supported by an alarm 

system, whereas the four experimental groups were supported in the monitoring task by 

a miss-prone alarm system differing in reliability, i.e. 68.75%, 75%, 87.5%, 93.75%. 

Compared to the manual control group, all experimental groups benefited from the 

support by alarms, with best performance for the highest reliability condition. However, 

for the lowest reliability group the benefit was associated with an increased attentional 

effort, a more demanding attention allocation strategy, and a declined relative 

performance in a concurrent task. Results are discussed in the context of recent 

automation research. 

 

Keywords: alarm systems, reliability, miss-prone automation, attention allocation, 

adaptive behaviour 

 

3.2 Introduction 

3.2.1 Alarm Systems 

Alarm systems represent a very basic form of automation, typically implemented to 

gather and analyse information on a certain task in order to inform a human operator 

about critical states or events, and to support the operator’s attention allocation and 

decision-making. According to Parasuraman et al. (2000), this kind of automation 

represents the first two stages of their framework model, i.e. automation of information 

acquisition and information analysis. Information acquisition is automated when an 

alarm system monitors a single parameter and alerts the operator when critical 

thresholds are exceeded. If the alarm system is more complex, i.e. if it integrates 

different variables to detect a possible hazard, it involves both, automation of 

information acquisition and analysis (Pritchett, 2001). The common characteristic of 
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these two types of information automation is that only cognitive functions related to the 

sensory perception and evaluation of environmental information are delegated to the 

automation whereas processes of decision-making and response selection as well as 

response execution are still left to the human (stages 3 and 4, Parasuraman et al., 2000). 

Binary alarm systems are a stereotypical realisation of this widespread technology. The 

objective of these alarm systems is to support complex supervisory control tasks of 

operators. Typically, they are implemented in domains like aviation or the process 

industry where the monitoring of underlying system states and process information 

constitutes just one of several tasks that have to be performed by operators at the same 

time. The support provided by alarm systems is mainly enabled by the 

attention-grabbing properties of alarms which relieve operators from continuous 

monitoring of a given process while still staying in the loop as alerts inform them when 

to shift attention to a critical system state (Pritchett, 2001). 

Benefits of this type of automation can be described in terms of more efficient task 

management and prioritisation, as well as reduced operator workload. This in turn leads 

to a better performance in the task and improved performance in concurrent tasks as 

operators gain more spare capacities, which can be re-allocated (e.g. Bustamante et al., 

2004; Meyer and Bitan, 2002). 

However, the proposed benefit of this kind of automation can be off-set when alarm 

systems do not function properly. The reason for such alarm failures can be found in 

imperfect sensors and algorithms as well as in a noisy and uncertain world that cannot 

be interpreted distinctively by the alarm system. Generally, the performance of alarm 

systems can be described in the framework of signal detection theory (Green and Swets, 

1966; Swets, 1964). Following this framework, there are two different errors that can 

occur and have to be differentiated dependent on the response criterion of the system. 

First, an alarm system can be miss-prone, i.e. the alarm system can fail to alert the 

operator by missing critical events. Second, an alarm system can be false-alarm prone. 

This is the case if it alerts an operator too often as not every alert corresponds to a 

critical event (Green and Swets, 1966; Swets, 1964). Given these possible failures, 

operators’ responses to alarms always imply a decision under uncertainty. This decision 

reflects their assessment of how much they can rely on the alarm function. 

 

3.2.2 Reliance vs. Compliance 

According to Meyer (2001, 2004), the explicit distinction between the two kinds of 

unreliability in human-alarm interaction is important because of their exclusive 
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behavioural consequences on the human part. False alarms may lead to delayed 

responses towards an alarm as operators know from experience that many of the alarms 

provided by the system do not correspond to actual malfunction (Getty et al., 1995). In 

extreme cases, i.e. in cases of high frequencies of false alarms, operators even refuse to 

respond to an alarm at all (Breznitz, 1984). Misses on the other hand affect operators’ 

monitoring strategies in non-alarm periods. The more critical events are missed by the 

alarm system, the more operators must shift attention to the alarm-supported task and 

the raw data to compensate for this unreliability. 

Meyer (2001, 2004) therefore characterises operators’ behaviour as dependent on the 

alarm systems’ state, i.e. if an alarm is present or not. In this context, compliance refers 

to operators’ response to an alert that indicates a malfunction of the system and is 

mainly affected by the number of false-alarms emitted by a system. In contrast, reliance 

describes operators’ tendency to rely on the alarm system when it indicates that the 

monitored process runs properly and the operators accordingly do not have to take 

evasive action. This latter behavioural tendency represents the major focus of the 

present paper and shall be addressed in some more detail in the following. 

 

3.2.3 Operators’ Adaptation to Imperfect Alarm Systems 

According to Lee and See (2004), one of the most important perceivable characteristics 

for the calibration of reliance on automation (like alarm systems) is the system’s 

reliability. With respect to miss-prone alarm systems, reliability can be described as the 

percentage of critical events that are correctly indicated by the alarm system. The higher 

the alarm system’s reliability in this respect, the more operators can rely on the alarm 

and the less they are required to monitor the underlying data by themselves. In contrast, 

when reliability is low and the occurrence of misses cannot be excluded, operators have 

to monitor relevant process data more frequently in order to compensate for the alarm 

system’s imperfection and to keep overall monitoring performance high.  

Calibration of reliance and compliance therefore can be considered as the result of an 

adaptive process which develops over time in interaction with an automated system, 

dependent on the user’s experience with the automation’s reliability (Lee and See, 2004; 

Parasuraman and Manzey, 2010).  

How and to what extent operators adjust their own monitoring behaviour in case of the 

availability of (imperfect) alarm systems or other decision support has been addressed 

in several studies (e.g. Parasuraman et al., 1993; Wickens and Dixon, 2007). However, 

the results are mixed and provide a somewhat inconsistent pattern of effects. For 
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example, Bailey and Scerbo (2007) examined operators’ adaptation to a highly reliable 

support system. In three sessions, each lasting approximately 100 minutes, participants 

had to work on a manually controlled flight task while monitoring several simulated 

aircraft displays for failures. The monitoring tasks were supported by an alarm system 

that automatically indicated and resolved critical system states. Results indicated that 

participants’ monitoring of the supported task decreased as a function of increasing 

system reliability, which was set to 87%, 98% and 99.7%, respectively. Participants who 

were supported by a highly reliable but still not perfect alarm system did detect fewer 

automation misses and showed increased response latencies to critical events when not 

alerted by the system, compared to participants who worked with an alarm system with 

lower reliability. Time-on-task had no effect on these results, i.e. even participants with 

more system experience and supported by a highly reliable alarm system could not 

appropriately adapt to automation’s imperfection. These findings supported earlier 

results by Molloy and Parasuraman (1996) who also reported degraded monitoring 

performance in terms of less miss detection when participants interacted with a highly 

reliable alarm system. However, they are in contrast to a number of other studies which 

suggest that operators indeed are very well capable of adapting their own monitoring 

behaviour to changing reliability levels, suggesting nearly optimum calibration of their 

reliance on automation reliability (e.g. Parasuraman et al., 1993; Sharma, 1999; Singh et 

al., 2005; Singh et al., 1997; Wiegmann et al., 2001). 

In most of these studies however, the evaluation of monitoring performance was solely 

based on operator’s performance (Bailey and Scerbo, 2007; Parasuraman et al., 1993; 

Wiegmann et al., 2001). This does not seem to be appropriate as the concept of an 

automated assistance or alarm system is to support the operator and to resume parts of 

the task; i.e. the task is performed jointly. As a consequence it is considered important to 

always respect the joint human-automation performance while evaluating overall 

performance benefits or costs associated with this sort of automated support. 

In accordance with this approach, Wickens and Dixon (2007) conducted a meta-analysis 

consisting of 22 studies with varying reliabilities. In contrast to most interpretations of 

the aforementioned research, they found a positive linear relation between automation’s 

reliability and the joint human-automation performance. That is, even though operators 

may have tended to miss more critical events when working with alarm systems of high 

reliability compared to systems with lower reliability, the overall number of jointly 

detected critical events was still higher with highly reliable systems than with lower 

ones. However, below an alarm system’s reliability of 70%, accompanied by a 95% 

confidence interval, which brackets 65% and 75%, this compensation was associated 
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with disproportional effort, and joint performance even got worse than working with no 

automation at all. Thus, compensation for unreliability seems to be possible to a certain 

level only. 

This finding is supported by several other studies like, for example, a series of studies 

conducted by Dixon et al. (e. g. Dixon et al., 2004; Dixon et al., 2007; Dixon and 

Wickens, 2006). In these studies, Dixon et al. (e. g. Dixon et al., 2004; Dixon et al., 

2007; Dixon and Wickens, 2006) compared different levels of reliability of an alarm 

system supporting monitoring performance in a multi-task environment. They also 

found certain cost effects on concurrent task performance for alarm system reliabilities 

at least below 70%. When imperfect alarm reliability was realised by an increased 

number of misses, operators re-allocated their attention to the alarm-supported task to 

such extent that a high performance level in the alarm-supported task was maintained. 

However, concurrent task performance even dropped below the performance of a 

manual control group without automation support. This drop of performance was 

explained by a sort of overcompensation effect. The low reliability of the alarm system 

led to such a decrease in reliance on alarms that participants started to shift more 

attention than necessary to the alarm-supported task in order to compensate for the 

imperfection of their system.  

Finally, the assumption that operator’s adaptation to imperfect alarm systems might not 

be perfect - particularly for low reliability systems - is also supported by a study 

conducted by Wickens et al. (2005). In contrast to the aforementioned studies, Wickens 

et al. (2005) did not just evaluate possible costs of imperfect reliability on the 

performance level but also used eye-tracking data to directly evaluate the impact of 

different reliabilities on visual attention allocation. This additional evaluation level, i.e. 

eye-tracking data for attention allocation, complies with Moray’s and Inagaki’s (2000) 

assertion to evaluate operators’ performance not only by fault detection but first and 

foremost by an analysis of their attention allocation strategies. Participants were 

required to work on a multi-task scenario based on demands of unmanned air vehicle 

(UAV) control and several UAV-mission-related tasks that had to be performed 

concurrently. One of these latter tasks was supported by a binary auditory alarm system 

that was either perfectly reliable, 60% reliable in terms of misses (miss-prone) or 60% 

reliable in terms of false alarms (false-alarm prone). Additionally, these groups were 

compared to a baseline condition in which no automation support for any task was 

available. Most interesting to the current study was the result that working with the 

miss-prone automation removed visual attention from the concurrent tasks to the 

alarm-supported task. In the attempt to maintain adequate performance, participants 
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drew even more attention to the alarm-supported task than in the baseline condition 

without automation support. Yet, even with this strategy, performance in the 

alarm-supported task dropped below the baseline condition level. 

Summarizing the scope of this research it can be assumed that human operators adapt 

their behaviour to the characteristics of the automation they are working with. However, 

there is evidence that this adaptation might not always be appropriate. Studies focussing 

on human monitoring performance alone suggest that particularly highly reliable alarm 

systems might lead to miscalibrations of behaviour in terms of an inappropriate 

withdrawal of attention from the alarm-supported tasks, and an elevated risk of missing 

critical events. Studies focussing on joint human-system performance specifically point 

to issues related to low reliable systems (i.e. reliability < .70) which might reduce 

reliance levels to an extent that it becomes even more detrimental for concurrent task 

performance than working without any automation support.  

However, there are two common drawbacks of most of the studies conducted thus far. 

The first one concerns the relatively extreme levels of automation reliability that were 

usually compared in those studies, and thus failed to describe the characteristics of 

adaptation across a whole range of reliability levels. Second, most studies that explicitly 

varied reliability only concentrated on the state manifestation of reliability effects on 

human performance, hence excluding the adaptation process itself (some exceptions are 

Parasuraman et al.,1993 or Bailey and Scerbo, 2007). Although, researchers in the early 

90s already argued that system experience has substantial impact on how operators 

interact with and monitor automation (e.g. Lee and Moray, 1992; Muir, 1987, 1994), 

only few studies have picked up this claim and focused on reliance development since 

then. What is known to date is that the adaptation to automation’s characteristics seems 

to proceed fast, and that already single automation failures can have a detrimental 

impact on users’ trust and behaviour (e.g. Bahner, Hüper, Manzey, 2008; Lee and See, 

2004; Parasuraman and Manzey, 2010; Manzey, Reichenbach, Onnasch, 2012). Beyond 

that, only little is known about how these effects develop dependent on different 

reliability levels, to what extent they are reflected in changes of monitoring strategies, 

and what the performance consequences are in multi-task environments. 

Based on these findings, the goal of the current study was to gain further insight into 

possible adaptation strategies to alarm systems with respect to different levels of alarm 

reliability. In contrast to numerous other studies that have concentrated on false 

alarm-prone automation (e.g. Bliss and Dunn, 2000; Bliss et al., 1995; Lees and Lee, 

2007; Wickens et al., 2009), the focus of our study was on miss-prone alarm systems. 

Even though this kind of error seems to occur less often because designers tend to set 
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sensor thresholds at a very low level (engineering fail safe approach; Swets, 1992), the 

consequences of missing critical events in safety-related domains are usually more 

severe than consequences of false alarms. For this reason, it was of special interest if 

and how operators would compensate for this kind of diagnostic failure. 

The task used for the experiment was a multi-task simulation, including three different 

subtasks. One of these tasks involved a system monitoring task where participants had 

to monitor different engine gauges for possible failures with or without support of a 

binary visual alarm system of different reliability. To evaluate participants’ monitoring 

effectiveness, we considered the joint human-automation performance as well as 

participants’ performance in concurrent tasks. In addition, eye-tracking analyses were 

performed in order to directly assess the impact of alarm system’s reliability on 

participants’ attention allocation. By separate analyses of eye-tracking data for periods 

where alarms were emitted vs. non-alarm periods it was further possible to distinguish 

between effects of alarm reliability on the level of participant’s reliance and compliance.  

 

For the impact of alarm reliability on performance we hypothesised:  

(1) There is an automation benefit in the alarm-supported task in terms of a superior 

joint performance of human and alarm system compared to no automation support at all.  

(2) Automation benefits in terms of a superior joint performance of human and alarm 

system compared to no automation support at all are positively related to the alarm 

system’s reliability (Wickens and Dixon, 2007).  

(3) Concurrent task performance benefits from highly reliable automation support 

compared to the manual control condition. However, these benefits decrease with 

decreasing alarm reliability over time because participants start to reallocate attention to 

the alarm-supported task to compensate for automation’s imperfection.  

In extreme cases, i.e. interacting with an automation with a reliability below the critical 

cut-off of 70%, this adaptation of attentional reallocation should even lead to cost 

effects in terms of a degraded performance compared to working with no automation 

support at all (Dixon et al., 2007; Dixon and Wickens; 2006; Rovira et al., 2007; 

Wickens and Dixon, 2007; Wickens et al., 2005).  
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For participants’ visual attention allocation, operationalised by eye-tracking measures, 

we expected:  

(4) Participants supported by an alarm system of sufficient reliability invest less 

attentional resources in system monitoring compared to working with no automation 

support.  

(5) Participants adapt their own monitoring of engine gauges to the alarm systems’ 

reliability over time.  

Participants working together with relatively reliable automation support should 

decrease their own monitoring with growing system experience whereas participants 

supported by an unreliable automation should increase monitoring of the underlying 

data (engine gauges).  

(6) In interaction with alarm reliability below 70% participants’ attention allocation is 

not distinguishable from attention allocation when working manually on this task as 

compensation for unreliability becomes inefficient (Wickens et al., 2005).  

(7) Because we operationalised reliability only by misses of the alarm system, 

differences in participants’ attention allocation primarily emerge during non-alarm 

periods, reflecting effects on participants’ reliance.  

No or only little differences were expected for visual attention effects in direct response 

to alarms, which would reflect the level of compliance and which was expected to be 

high for systems that did not commit false alarms. 

 

3.3 Method 

3.3.1 Participants 

The number of participants was defined based on a power analysis (GPower 3.1, for 

details see e.g. Buchner et al., 1997). A total of 65 students from the faculty of 

mechanical engineering and transport systems (18 female, 47 male) ranging in age from 

19 to 32 (M = 23.6, SD = 2.3) participated in partial fulfilment of course requirements. 

None of the participants had prior experience with the flight simulation task used in the 

study. Participation was voluntary (other alternatives for fulfilment of course 

requirements were available) and could be cancelled anytime. 
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3.3.2 Task and Apparatus 

As experimental task the most recent version of the Multi-Attribute Task Battery 

(MATB; Miller, 2010) was used. It was directly based on the original version developed 

by Comstock and Arnegard (1992) which was used in previous research (e.g. 

Parasuraman et al., 1993). All main functionalities including the interface corresponded 

to the original version. Only the programming environment has been changed (MatLab 

instead of QBasic) which made it easier to implement experimental modifications.  

The MATB is a multi-task flight simulation consisting of a two dimensional 

compensatory tracking, engine-system monitoring, fuel resource management, 

communications, and scheduling. In the present study, only the compensatory tracking, 

the resource management, and the system monitoring were implemented and had to be 

performed concurrently. The user interface of the MATB used in the present study is 

shown in Figure 1. 

 

 

Figure 1. MATB as used in the current study with the compensatory tracking in the upper middle 

position, the resource management beneath and the system monitoring in the upper left display corner. 

 

In the two-dimensional compensatory tracking task participants are required to keep a 

randomly moving cursor in the centre target position by applying appropriate control 
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inputs via joystick. In the resource management task participants must compensate for 

fuel depletion by pumping fuel from four supply tanks into two main tanks.  

The system monitoring task was most important for the current research. It consists of 

four vertical engine gauges with moving pointers that participants must monitor for 

abnormal values that occur randomly. As long as all engines function properly, the 

pointers fluctuate by chance within a fixed range around the centre value of the gauges. 

However, in case of a malfunction the pointer of the gauge for the affected engine 

suddenly shifts upwards or downwards by two gauge units and starts to fluctuate around 

this new position. These deviations must be detected by participants and reset by a 

corresponding key press. If a malfunction is not detected within 10 seconds the gauge 

resets automatically and the event is logged as an event missed by the participant. 

Dependent on the task configuration, this system monitoring task has to be performed 

manually or with support of a binary master alarm system. In the latter case, a visual red 

alert appears above the gauges whenever the alarm system detects a parameter deviating 

from its nominal value. Nevertheless, the identification of the affected gauge and the 

corresponding reset of the parameter still have to be performed manually by participant. 

According to the stages and levels framework of automation proposed by Parasuraman 

et al. (2000), this type of alarm system can be classified as a stage 1 automation 

(information acquisition).  

The MATB was presented in front of the participant on a 20 inch monitor that was 

equipped with a remote eye-tracking system (RED system, SensoryMotoric 

Instruments, Germany). This latter system enabled to sample gaze movements during 

task performance with a sampling rate of 120 Hz. Based on these data, gaze fixations in 

different areas of interest (AOI, see definition below) were automatically recorded. 

 

3.3.3 Design 

The study used a two factorial design. The first factor (Group) was defined as a 

between-subject factor and consisted of four experimental groups and one manual 

control group. The four experimental groups differed with respect to the reliability of 

the alarm system participants worked with in the monitoring task. The alarm reliabilities 

were set to 68.75%, 75%, 87.5%, and 93.75% by varying the number of critical signals 

that were missed by the alarm system. The two lowest reliability levels (68.75% and 

75%) were chosen in reference to the result of the meta-analysis of Wickens and Dixon 

(2007) which suggests that a reliability level around .70 represents an important cut-off 

value which needs to be exceeded before automation support might become beneficial 
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for joint human-system performance compared to conditions without automation 

support. The two highest reliability levels were realised to compare the results to 

findings from previous studies and to include reliability levels quite close to realistic 

scenarios (Bagheri and Jamieson, 2004; Parasuraman et al., 1993). In the manual 

control group there was no automation support at all, i.e. participants had to detect all 

malfunctions reflected by parameter deviations in one of the four gauges without the 

support of an alarm system.  

The second factor (Block) was defined as a within-subject factor and was included to 

gain further insight on how participants’ adapt their attention and performance over time 
in response to the alarm system’s reliability they were working with. Every participant 
had to perform the three concurrent tasks of the MATB for three 10-minute blocks. A 

total of 16 critical events occurred in the monitoring task during each block which had 

to be detected by the alarm system or the participant, respectively. The resulting 5 

(Group) x 3 (Block) design is shown in Figure 2. 

 

 
Figure 2. 5 (Group) x 3 (Block) study design 

 

A somewhat more complex design was used for supplementary analyses of effects of 

reliability on visual attention allocation in phases where alarms were present vs. phases 

where alarms were not present. The beginning of alarm phases could be identified by 

the visual red alert that appeared to inform participants about an abnormal system state. 

The end of these phases was defined by participants’ appropriate reaction to the alarm 
or, if participants did not react, the maximum time the failure was present, i.e. 10 

seconds. These supplementary analyses involved the four alarm-supported groups as 

between-subjects factor, the block factor (within-subject) and a third factor representing 

alarm vs. non-alarm periods (within-subject). The resulting 4 (Group) x 3 (Block) x 2 

(Alarm State) design allowed a test of the hypothesis that differences in reliability of the 
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alarm system would affect attention reallocation during non-alarm periods only, 

reflecting effects on reliance on the automation but not compliance (Hypothesis 7). 

 

3.3.4 Dependent Measures 

To investigate the impact of the experimental factors on the perceived alarm reliability 

(manipulation check) as well as on performance and visual attention allocation, three 

different categories of dependent measures were sampled and analysed. 

A visual-analogue scale assessed the perceived reliability. Participants provided ratings 

to the question “How reliable was the system you worked with on a scale ranging from 

0% to 100%.  

Performance measures were defined for all three tasks of the MATB participants had to 

perform concurrently and collected for each 10 minute block separately. For the system 

monitoring task, percentage of detected system failures was defined as the percentage of 

all engine failures detected correctly by the human operator (control condition) or the 

human and alarm system together (joint performance in the alarm conditions).  

For the tracking task as well as the resource management task the root mean squared 

errors (RMSE; Parasuraman et al., 1993; Prinzel et al., 2001; Singh et al., 1997) were 

calculated. The RMSE for the tracking task was calculated as a measure of mean 

deviation from the central target position, based on deviation data sampled at an interval 

of 5 seconds. The RMSE for the resource management task was calculated in relation to 

an optimal tank level, which had to be maintained in both main tanks. Fuel levels were 

sampled and RMS errors computed for each 5-second period. 

Visual attention allocation was measured by means of eye-tracking. Specifically, the 

relative fixation time for different pre-defined areas of interest (AOI) was assessed. For 

this purpose, three different AOIs (specified by pixel areas) were defined before the 

experiment started. These AOIs corresponded to the three different tasks participants 

had to perform: compensatory tracking, resource management, and system monitoring 

(see Figure 1). Fixations were defined by a minimum duration of 80 ms and a maximum 

dispersion in this time of 100 pixel. Relative fixation time was defined as the time 

participants fixated an AOI relative to the overall fixation time, i.e. sum of times any 

one of the AOIs was fixated. 
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3.3.5 Procedure 

Following a demographic questionnaire, an instruction on the MATB, and an initial 

calibration of the eye-tracking system, participants were familiarised with performing 

the three different tasks in a 10 minute practice block. They were instructed that all 

three tasks would be of equal importance, and that they should work on all tasks 

concurrently with equal priority. Afterwards, they were randomly assigned to one of the 

five groups. Participants in the four experimental groups were introduced to the function 

of the alarm system. Specifically, they were told that the alarm system would not be 

perfectly reliable and that therefore, they may not fully rely on it. However, no concrete 

reliability information was provided. Then, the experiment started consisting of three 10 

minute blocks. Prior to each block the eye tracker was re-calibrated. The perceived 

reliability of the alarm system was assessed in the experimental groups after the second 

block. The experiment ended with the debriefing of participants. 

 

3.4 Results 

In the following, the results are presented separately for subjective measures, 

performance, and eye-tracking data. The description of results focusses on effects of 

reliability (factor Group) and/ or possible interactions with time-on-task (factor Block), 

indicating adaptive processes. 

 

3.4.1 Perceived Reliability 

A univariate between-subjects ANOVA contrasting the four experimental conditions 

with automation support of different reliability revealed that mean ratings of perceived 

reliability differed between these experimental groups in a meaningful manner (M68.75% 

= 66.77%, M75% = 72.38%, M87.5% = 80.08%, M93.75% = 87.08%), F(3, 51) = 6.11, p < 

.002.  

Further t-tests were performed in order to analyse whether perceived ratings differed 

from the actual reliability. Because no differences were expected, α was adapted to a 

20% level for these analyses (null-hypothesis testing). Results showed that participants 

in the two highest reliability conditions systematically underestimated the actual 

reliability (87.5%: t(12) = -3.29, p < .007; 93.75%: t(12) = -3.09, p < .01). No 

differences between actual and perceived reliability were found for the 68.75% and 75% 
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reliability condition (68.75%: t(12) = -.48, p = .63; 75%: t(12) = -.52, p = .61). This 

finding is in line with previous research (Wiczorek and Manzey, 2010; Wiegmann et al., 

2001; Wiegmann and Cristina, 2000) indicating a systematic bias of under- and 

overestimation, respectively, for extreme levels of reliability. Nevertheless, the overall 

pattern of results confirms that our manipulation had worked successfully as the 

perceived reliabilities were systematically related to the actual ones and significantly 

differed between the experimental conditions. 

 

3.4.2 Performance Measures 

3.4.2.1 Monitoring Task 

Performance measures were analysed in two steps according to the different hypotheses. 

The first step addressed the testing of our hypothesis which postulated an alarm-support 

benefit in the monitoring task compared to no alarm-support at all (Hypothesis 1).  

For this purpose, the percentage of detected system failures was analysed with a 5 

(Group) x 3 (Block) ANOVA. The corresponding data, i.e. detection rates for all 

experimental groups and the manual control group across blocks, are shown in Figure 3. 

As expected, there was a clear alarm-support advantage reflected in a higher percentage 

of detected system failures by human and automation together in all alarm-supported 

groups, compared to the manual control group (F(4, 60) = 10.36, p < .001, 
2
 = .40). 

Averaged across blocks, participants of the control group only detected 73.23% of all 

failures. In contrast, participants in the experimental group with the least reliable alarm 

system already detected 90.70% of all failures, and this number increased systematically 

with increasing reliability of alarms (M75% = 92.46, M87.5% = 93.26, M93.75% = 95.83). 

This difference between automation-supported groups and the manual control group 

was statistically supported by post hoc analyses using Scheffe' tests. Analyses revealed 

that the manual control group detected significantly less system malfunctions compared 

to any of the alarm-supported groups (pmanual-68.75%< .003; pmanual-75%< .001; pmanual-87.5%< 

.001; pmanual-93.75%< .001). No differences occurred between the alarm-supported groups 

(all p > .05). Additionally, an interaction of reliability with participants’ time-on-task 

was found, Group x Block interaction effect, F(8, 120) = 2.37, p < .03, 
2
 = .13. 

Whereas all conditions showed an improved performance across blocks, the extent of 

this performance increase was different for the five groups. The largest increase in 

detected system failures over time was observed for the manual control group. In this 

condition, no alarm system support was available. Still, participants had to adapt to the 
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underlying system characteristics and get familiar with the error rate in the monitoring 

task to perform adequately. As becomes evident from Figure 3, this form of adaptation 

was comparable to a similar, albeit weaker trend of participants’ behaviour in the group 

working with the least reliable alarm system. Compared to the other conditions with 

alarm support, this group showed the worst performance at the beginning, but 

participants adapted their behaviour to the characteristics of the alarm system over time 

and were able to compensate effectively for its unreliability. However, this latter 

difference between the alarm-supported groups did not become significant in an 

additional 4(Group) x 3(Block) ANOVA, comparing the alarm-supported groups only. 

For this analysis neither the expected effect of Group (F = 1.69), nor a Group x Block 

interaction effect (F = 1.16) emerged (contradicting Hypothesis 2). 

 

 

Figure 3. Effect of alarm reliability on detected system failures - human + alarm system. 

 

3.4.2.2 Concurrent Tasks 

Following the same statistical approach as for the monitoring task, performance in the 

concurrent tasks was analysed in two steps. We expected that compared to higher 

reliability levels, working with the least reliable alarm system would negatively affect 

concurrent task performance because participants would rely to a lesser extent on the 

proper functioning of the alarm support (Hypothesis 3). More specifically, it was 

expected that concurrent task performance of the 68.75% reliability group would not be 

better than performance in the manual control group, i.e. a condition with no automation 

support at all. 
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For concurrent tracking task performance the 5 (Group) x 3 (Block) ANOVA revealed a 

significant Group x Block interaction, F(8, 120) = 3.59, p < .002, 
2
 = .19. Essentially 

the same pattern of effects was also observed when comparing the alarm-supported 

groups only by a 4 (Group) x 3 (Block) ANOVA, with a significant interaction effect of 

Group x Block, F(6, 96) = 4.98, p < .001, 
2
 = .23.  

As can be seen in Figure 4, contrary to our expectations, participants in the 68.75% 

reliability group started at a very high performance level reflected in a smaller mean 

tracking error than in all other groups (Mmanual = 131.78, M68.75% = 117.58, M75% = 

136.05, M87.5% = 144.57, M93.75% = 137.76). However, whereas participants of the other 

groups showed a considerable performance improvement over time, mean performance 

of participants in the 68.75% reliability condition declined across the three blocks. This 

eventually led to comparable performance levels for all groups in block #3 (Mmanual = 

124.62, M68.75% = 126.94, M75% = 126.78, M87.5% = 127.58, M93.75% = 129.55). This 

finding provides some indirect support for our hypothesis. In contrast to all other 

alarm-supported groups, participants working with the lowest reliable alarm system 

were only able to protect their performance in the monitoring task across time at the 

expense of compensatory decrements in concurrent task performance. 

 

 

Figure 4. Effect of alarm reliability on performance in the concurrent tracking task             

(higher values represent greater deviations). 

 

For the resource management task neither a main effect of Group nor a Group x Block 

interaction emerged (all F<1.0). Only a Block effect became significant independent of 

whether all groups were considered in a 5(Group) x 3(Block) ANOVA, F(1.2, 75.69) = 

5.02, p < .03, 
2
 = .07, or the analysis was only conducted for the four experimental 
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groups with alarm support, F(1.5, 73.47) = 4.31, p < .03, 
2
 = .08. With increasing 

time-on-task all groups achieved better results reflected in a decreased mean RMSE. 

 

3.4.3 Visual Attention Allocation 

3.4.3.1 Overall Monitoring Effects for the different AOIs 

Figure 5 illustrates the results for the mean relative fixation times on the three different 

AOIs, i.e. monitoring task (left panel), tracking task (middle panel) and resource 

management task (right panel).  

For the monitoring task, participants in the two highest groups (93.75% & 87.5%) 

showed relatively short but stable mean fixation times across blocks. This effect was 

expected because these participants could rely to a high degree on the alarm system. 

Stable mean fixation times across blocks also were found for the 75% reliability group, 

albeit on a somewhat higher level. In clear contrast to these three groups, a considerable 

increase of mean fixation time through blocks was found for both, the manual control 

group as well as the group working with the lowest reliable alarm system (Figure 5, left 

panel). Analysed by a 5 (Group) x 3 (Block) ANOVA these findings were statistically 

supported by a significant Group x Block interaction, F(7.14, 107.13) = 2.46, p < .03, 
2
 

= .14. 

 

 

Figure 5. Effect of alarm reliability on the relative fixation time; AOI from left to right: monitoring, 

tracking and resource management. 

 

Results for the monitoring task were mirrored in the relative fixation times for the 

tracking task (Figure 5, middle panel). Directly inverse to the findings for the 

monitoring task, the 93.75% and the 87.5% reliability groups had the longest fixation 

times on tracking which only marginally changed over time. For the other groups, a 
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considerable decrease of fixation times across blocks was found which was most 

substantial for the 68.75% reliability condition and indicated a successive re-allocation 

of visual attention away from the tracking task over time. The 5(Group) x 3 (Block) 

ANOVA revealed a significant main effect of Group (F(4, 60) = 2.64, p < .05, 
2
 = .15), 

moderated by a Group x Block interaction effect, F(6.75, 101.29) = 3.62, p < .003, 
2
 = 

.19.  

Finally, mean relative times of fixation for the resource management task did not show 

a clear pattern of effects. The 5 (Group) x 3 (Block) ANOVA did not reveal a main 

effect of Group (F= 1.55), however, the Group x Block interaction became significant, 

F(7.16, 107.39) = 2.14, p < .05, 
2
 = .12. As becomes evident from Figure 5 (right 

panel), relative fixation times showed a slight increase across blocks for the two 

conditions with the lowest reliable alarm systems, and a reverse trend for the other three 

groups.   

In summary, the pattern of effects for relative fixation times on the three different tasks 

is in accordance with our hypothesis that alarm reliabilities affected the allocation of 

visual attention. Specifically, the results point to a successive re-allocation of attention 

over time, away from the tracking task to the monitoring task. Re-allocation emerged in 

a very similar way in both, the control condition without automation support and the 

condition with support of the lowest reliable alarm system. 

 

3.4.3.2 Specific Effects for Alarm and Non-Alarm Periods 

As our alarm systems were miss-prone it was expected that they would primarily affect 

the reliance of participants in the alarm systems’ function but not their compliance. 

Accordingly, it was expected that possible effects of alarm reliability on visual attention 

allocation would only emerge during periods when no alarm was present (non-alarm 

periods). During these non-alarm periods participants should allocate more attention to 

the monitoring task, the less they relied on the proper functioning of the alarm system. 

I.e. if participants expected that the alarm system could miss critical system states they 

should reallocate their attention from the other two concurrent tasks to the 

alarm-supported monitoring task. In contrast, no differences were expected for visual 

attention allocation in direct response to alarms which never represented false alarms. 

For the analysis of this presumed effect only the alarm-supported groups were 

considered, as a differentiation of these periods was not possible for the manual control 

group who worked without alarm system. 
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Figure 6 shows mean relative fixation times for all groups across blocks, separated for 

the three tasks (from left to right), and periods with and without alarm (upper vs. lower 

panel).  

Results for the monitoring task revealed that the pattern of effect found in the overall 

analysis reported above, i.e. an increase in relative fixation time across blocks only in 

the control group and the group working with the lowest reliable alarm system, was 

exclusively related to non-alarm periods (Figure 6, upper left panel). In contrast, a 

decrease of mean fixation times across blocks emerged in all groups during alarm 

periods (Figure 6, lower left panel). In the analysis of these data by a 4(Group) x 

3(Block) x 2(Alarm State) ANOVA this was reflected in a significant main effect of 

Alarm State, F(1, 48) = 52.44, p < .001, 
2
 = .52 , which was moderated by a significant 

Alarm State x Block interaction, F(1.74, 83.81) = 27.86, p < .001, 
2
 = .36. 

Furthermore, the significant main effect of Alarm State indicated that mean relative 

fixation times for the monitoring task were higher during alarm vs. non-alarm periods, 

i.e. higher when an alarm prompted the participants to visually analyse which of the 

four gauges indicated a failure. 

 

 

Figure 6. Effect of alarm reliability and alarm state (upper panels non-alarm periods, lower panels alarm 

periods) on the relative fixation time; AOI from left to right: monitoring, tracking and resource 

management. 
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The results for the tracking task, separated for alarm and non-alarm periods, are 

illustrated in the middle panel of Figure 6. Again the effects for non-alarm periods 

equalled the effects reported above for the overall analysis. In these periods the 

participants of the two groups with highest alarm reliability had the longest mean 

fixation times and showed a constant monitoring pattern. In contrast, a continuous 

decrease of relative fixation times was found for participants in the two lower reliability 

conditions (see upper panel). This separation of groups became also evident in alarm 

periods, although in a slightly different pattern (see lower panel). All groups spent 

comparable time looking at the tracking task in block #1. However, with on-going 

adaptation to the reliability of the alarm system, the 93.75% and the 87.5% groups spent 

more time on this task even when a failure in the monitoring task was present. The two 

groups working with the less reliable alarm systems slightly decreased their monitoring 

time on tracking in alarm periods. The statistical equivalents to these findings are 

presented in Table 1. 

 

Table 1. Results of the three-factorial ANOVA for the AOI Tracking Task. 

 F-Statistic p-value 
Partial 

Eta-Squared 

Group x Block F(4.76, 76.30) = 4.21 p < .003 
2
 = .20 

Alarm-State F(1, 48) = 62.30 p < .001 
2
 = .56 

Group x Alarm-State F(3, 48) = 3.66 p < .02 
2
 = .18 

Alarm-State x Block F(1.76, 84.78) = 15.10 p < .001 
2
 = .23

Group x Alarm-State x Block F(5.29, 84.78) = 2.58 p < .03 
2
 = .13 

 

Results for the resource management task again revealed that the pattern of effects 

found in the overall analysis, i.e. an increase in fixation time across blocks for the two 

lowest reliability conditions, and a reverse effect for the other two conditions, was 

exclusively related to non-alarm periods, F(4.70, 75.28) = 2.77, p < .03, 
2
 = .14 (Figure 

6, upper right panel). Moreover, when an alarm was present, the resource management 

was less fixated than in non-alarm periods, F(1, 48) = 4.39, p < .05, 
2
 = .08; Malarm= 

0.205, Mno alarm= 0.222. This separation was enforced with ongoing time-on-task, F(2, 

96) = 6.48, p < .003, 
2
 = .11 (Figure 6, right panel). 

In summary, results from the monitoring AOI supported the assumption that the 

attention re-allocation, related to different reliability levels, was only observable in 

non-alarm periods (hypothesis 7). However, for the tracking task the alarm system’s 

reliability not only affected attention allocation in non-alarm periods but also in alarm 
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periods. Eye-tracking data from the AOI resource management revealed a difference 

between participants’ attention allocation in non-alarm and alarm periods but no 

interaction of Alarm State and Group. Therefore, results did not fully support 

Hypothesis 7. 

 

3.5 Discussion 

The main objective of this study was to investigate to what extent human operators 

adapted their visual attention allocation and multi-task performance to different 

reliability levels of miss-prone alarm systems.  

First hypotheses (1-3) were stated with regard to effects of different alarm reliabilities 

on performance in both, the alarm-supported task as well as other concurrent tasks. 

Based on previous studies we specifically assumed that participants’ performance as 

well as attentional demands would benefit from an automation support that is fairly 

reliable, i.e. at least 70% (e.g. Dixon et al., 2007; Rovira et al., 2007; Wickens et al., 

2005). Below this reliability, automation support is not expected to be helpful as there is 

some evidence that a reliability of approximately 70% (accompanied by a 95% 

confidence interval) represents a critical boundary below which manual compensation 

strategies would not be effective any more (e.g. Wickens and Dixon, 2007). In this case, 

we supposed at least performance in concurrent tasks to suffer because participants 

would start to re-allocate attention to the automation-supported task and monitor the 

underlying data by themselves to compensate for unreliability. The results of the present 

study support most of these assumptions. 

Considering the results for the performance data first, we found a clear automation 

benefit in the alarm-supported task in terms of joint human-automation performance 

compared to working with no automation support at all supporting Hypothesis 1. This 

was true for all groups that worked with alarm system support. Whereas the manual 

control group only detected around 70% of engine malfunctions, detection rates 

increased with alarm-support even in the lowest reliability condition up to 90%. This 

effect seemed to be an overall automation benefit as differences between the 

alarm-supported groups did not become significant (contradicting Hypothesis 2). 

Therefore, the automation benefit was only attributable to the difference between 

alarm-supported groups on the one hand and the manual control group on the other. This 

result revealed that all participants in the alarm-supported groups adapted to differing 

reliability levels in a very effective way. This (non-)finding indicated that participants’ 
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adaptation was even more successful than we would have assumed based on findings by 

Wickens and Dixon (2007) which showed that higher reliability levels still led to 

significantly improved performance compared to lower reliability levels in the 

automation-supported task. One reason for these deviant findings might be due to the 

operational definition of reliability in our study. Whereas Wickens and Dixon (2007) 

included studies to the meta-analysis that operationalised (un-)reliability by misses and/ 

or false alarms, we defined reliability by misses only. According to Meyer (2001, 2004) 

false alarms mainly impact participants’ compliance with the automation. As a 

consequence, false alarms lead to a degraded performance in the automation-supported 

task as participants start to ignore alarms (Meyer, 2001, 2004). This could explain why 

Wickens and Dixon (2007) found performance decrements in the automation-supported 

task when reliability was low. Misses, on the other hand, affect participants’ reliance on 

the alarm system. Because of the frequently missed critical states participants start to 

monitor the underlying data to compensate for the alarm system’s unreliability. This 

adaptation should not and in fact did not affect performance in the alarm-supported task. 

However, following Meyer (2001, 2004), concurrent task performance should be 

negatively affected by this change of attentional focus to the aided task. Therefore, 

participants’ adaptation of monitoring strategies to compensate for the unreliability of 

the alarm systems was expected to lead to differences in concurrent task performance 

between the different groups.  

This was addressed by our third hypothesis. According to previous studies (e.g. Dixon 

et al., 2007; Dixon and Wickens; 2006; Rovira et al., 2007; Wickens and Dixon, 2007; 

Wickens et al., 2005) we expected that, compared to higher reliability levels, lower 

alarm reliabilities should result in significant performance decrements in the concurrent 

tasks because participants’ reliance on the alarms would decline and induce a 

re-allocation of attention. Following Wickens and Dixon (2007), we especially assumed 

that working with an alarm system with a reliability of less than 70% might be even 

more detrimental to performance than working with no automation support at all. This 

assumption was at least indirectly supported by our findings.  

Although concurrent tracking task performance in the 68.75% group was better than the 

one of all other groups in the first block, participants in this group were the only ones 

who could not protect their performance over time but showed a considerable decline 

across blocks. As we only told participants that the alarm system would not be perfectly 

reliable, but gave no precise information, the first block was especially important to 

participants to gain experience with the system and to start to adapt their behaviour to 

the alarm system’s (un-)proper functioning. It seems that participants working with the 
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least reliable alarm system initially spent more time on the concurrent tracking task than 

on the alarm-supported monitoring task, which resulted in superior results compared to 

the other conditions. However, with increasing experience they started to realise the 

limitation of their alarm system and changed their behaviour accordingly by 

re-allocating their attention away from the tracking task. The other aided groups also 

started to adapt to the alarm system’s characteristics. Because these alarm systems were 

more reliable, adaptation proceeded the other way, i.e. in favour of the concurrent 

tracking task, as these groups recognised that they could rely more on their automation 

support. These diverging adaptation characteristics of the lowest alarm-supported group 

and conditions with a more reliable alarm-support eventually led to comparable 

performance levels in the last block. 

However, our far-reaching hypothesis that working with the least reliable alarm system 

would impair concurrent task performance even more than working without automation 

support was not supported by the data. This might be related to the fact that, contrary to 

our expectations, the provision of alarm support did not lead to obvious benefits in 

concurrent task performance in any of the alarm-supported groups. That is, even in the 

groups with highly reliable alarm systems, the participants were not able to make use of 

this support in terms of improved concurrent task performance.  

One reason for this finding could be the overall high task load involved in performing 

the MATB. In contrast to, for example, Dixon et al. (2007) or Rovira et al. (2007) who 

have reported automation benefits for concurrent task performance, participants had to 

work on three instead of two concurrent tasks. Additionally, the MATB compensatory 

tracking has high visual attentional demands as it needs continuous control inputs since 

even short interruptions of control lead to great deviations from the centre target 

position. Given this, it might not be too surprising that even a reliable alarm support for 

the monitoring task has not led to better concurrent task performance in our study 

because participants already performed at their maximum; the tasks were not sensitive 

to changes in attention allocation. Yet, this is a post-hoc explanation and cannot be fully 

proved by the present data.  

The most direct insights in the nature of adaptation to alarm systems of different 

reliability are provided by the effect of alarm reliabilities on participants’ attention 

allocation strategies reflected in the eye-tracking data. These data were collected in 

order to directly capture possible effects of the experimental conditions on allocation of 

visual attention which might help understanding effects on performance. Indeed the 

analyses of eye-tracking data suggest that the effects of alarm support first and foremost 

become evident in their effects on attention allocation (supporting Hypothesis 4).  
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As expected, participants in the groups with the highest reliable alarms allocated least 

attention to the monitoring task, followed by the two groups with the less reliable alarm 

systems and the manual control group (supporting Hypothesis 5).  

A comparison of the eye-tracking pattern between the alarm-supported groups and the 

manual control group further revealed, that the participants of the 68.75% group 

allocated as much visual attention to the supported task as the manual control group, i.e. 

behaved as if no automation support were available (supporting Hypothesis 6). It 

reveals that participants working with the least reliable alarm system were able to 

compensate for the imperfection of their alarm system on a performance level but only 

at the expense of a highly demanding attention allocation strategy and a reallocation of 

attention away from the concurrent tasks which eventually led to the relative 

performance decline for the tracking. These results are in line with previous findings by 

Wickens et al. (2005) who also showed that miss-prone automation led to a reallocation 

of visual attention away from other tasks to the raw data in order to compensate for 

unreliability. Furthermore, our findings provide some more support for the assumption 

of a critical reliability cut-off around 70% below which automation support cannot be 

considered as helpful anymore (Wickens and Dixon, 2007). Albeit we could not entirely 

confirm a detrimental effect of reliability below 70% on the performance level, the costs 

for compensation became directly evident when considering the distribution of visual 

attention. Although the least reliable alarm system still detected 68.75% of all system 

malfunctions it obviously was not considered to be of much help and did not reduce 

participants’ attentional demands of this task compared to performing it with no 

automation support at all. 

Our last hypothesis (Hypothesis 7) was based on Meyer’s assumption (2001, 2004), that 

misses of an alarm system mainly affect participants’ attention allocation in non-alarm 

periods and have no effect on their visual attention in alarm periods. Regarding the 

non-alarm periods, this assumption was completely confirmed. The effects found in the 

overall analysis exactly mirrored participants’ attention allocation in non-alarm periods, 

i.e. the overall effects were mainly due to these periods. This was true for attention 

allocation on all three concurrent tasks. We could confirm that working with the least 

reliable aid in terms of misses led to a reallocation of attention away from the tracking 

and resource management to the alarm-supported monitoring task in the attempt to 

compensate for unreliability and to maintain performance on this task. In contrast, 

groups working with more reliable alarm systems maintained the initial level of 

attention to the supported task and overall focused more on the resource management 

and tracking. 
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In alarm periods attention allocation to the supported monitoring task did not seem to be 

much affected by reliability of the alarm systems. All groups slightly reduced their 

attention to this task over time but no impact of different reliability levels became 

evident. This was in line with our assumption, which assumed that only reliance on 

automation would be affected by a miss-prone alarm system and not compliance 

(Meyer, 2004). 

In conclusion, the current study provides further insight in the adaptation strategies of 

humans in relation to automation’s reliability, one of the most important perceivable 

characteristics of automation (Lee and See, 2004). The additional value compared to 

previous studies originates from the level of detail in design and analysis as most of the 

previous studies only compared two very extreme reliability levels (e.g. Dixon et al., 

2007, 2006; Rovira et al., 2007). Furthermore, the analysis of eye-tracking data 

provided more detailed insight into the impact of alarm systems on attention allocation 

as compared to the consideration of just performance measures in previous studies. 

With regard to practical implications, results are certainly not applicable to high risk 

work domains like aviation where only alarm systems are used that are optimized in 

reliability with respect to avoidance of misses and, thus, if ever typically are false-alarm 

prone. But in other domains like quality control inspection in the manufacturing 

industry comparable reliability levels even in terms of miss-prone alerting systems, can 

be found. In this case the finding of a critical reliability cut-off should be taken into 

account when considering the implementation of such systems. Even though 

consequences might not be apparent in the beginning, the cognitive effort of operators 

needed to compensate for the imperfect reliability of such systems could lead to severe 

problems in the long term, like complete performance breakdowns in the 

automation-supported task or an overall performance decrease when operators are 

responsible for multiple concurrent tasks. 

 

3.6 Limitations 

Regarding possible limitations of the current study, two aspects should be discussed 

which might limit the generalisation of results. First, given the fact that participants in 

the current study only had to work for 30 minutes on the tasks, the results could 

possibly underestimate some of the observed effects. Especially, the compensation 

strategies for the alarm’s unreliability in order to maintain a high monitoring 

performance may be difficult to maintain over prolonged periods of time. Ultimately, in 
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terms of cognitive exhaustion, this overexertion might even lead to a complete 

performance breakdown (Hockey, 1997). Therefore, more research, especially 

longitudinal studies addressing long-term effects of imperfect alarm-support on 

operators’ behavioural adaptation, is needed.  

A second possible limitation concerns the lack of feedback when participants failed to 

detect a critical event they were not alerted for by the alarm system. In the present study, 

critical events were reset automatically if a malfunction remained undiscovered for 10 

seconds; no consequences became apparent in this case. However, feedback is critically 

important for operators to get a clear picture of the level of reliability of a system and to 

adapt their behaviour accordingly. In a lot of systems, when feedback is not provided or 

evident, the operator does not know that s/he has failed to detect an alarm system’s 

failure. In real life, misses committed by alarm systems often are linked to severe 

consequences, albeit these might be delayed somewhat in time (e.g. an overheating of 

an engine that only after some time leads to a breakdown or engine fire). Nonetheless, 

in the current study participants still adapted to the alarm systems’ reliabilities even 

without feedback as became evident in the increasing performance in the monitoring 

task. 
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4.1 Abstract 

Two important automation characteristics are crucial when considering human 

performance consequences of automation support. One characteristic concerns the 

function allocation (FA) between human and automation. Adverse effects of automation 

seem to be most likely when the human operator is taken out-of-the-loop from active 

decision-making, excessing a boundary from information automation to decision 

automation. The second characteristic is the reliability of automation. Previous research 

suggests a critical reliability boundary around 70% below which automation support 

cannot be considered as helpful. This study explored differential effects of crossing both 

boundaries at the same time. Within a multi-task simulation consisting of a monitoring 

task and two concurrent tasks, participants were assigned to one of six groups, two 

manual control groups and four automation-supported groups. Automation support 

differed with respect to FA (stage 1 vs stage 4 automation) and reliability (68.75% vs 

87.5%), both factors varied across the critical boundaries. Results suggest that reliability 

determines human operators’ attention allocation and performance. When reliability was 

below the boundary, participants showed an increased attentional effort and a worse 

performance compared to fairly reliable support. Against the stated assumptions, FA did 

not reveal any impact. In combination with previous research this result might indicate 

that the FA boundary might rather be some kind of “function allocation valley” 

concerning decision-making automation (stage 3) in which negative consequences for 

human operators are most likely. Results are discussed in the context of recent 

automation research. 

 

Keywords: function allocation, stages of automation, reliability, human-automation 

performance, attention allocation 

 

4.2 Introduction 

When considering human-automation interaction, two important automation 

characteristics are crucial to determine if automation support is beneficial or rather 

deteriorates performance compared with no automation support. One characteristic 

concerns the function allocation (FA) between human and automation, i.e. the tasks and 

functions that are assigned to and consequently carried out by automation. The second 

characteristic is the reliability of automation that determines to what extent the operator 
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can rely on the proper functioning of the automated system. In recent years, two 

boundaries have been proposed regarding these two automation characteristics, which 

are assumed to be critical with respect to human performance consequences. For FA, a 

number of experimental results comprised in a meta-analysis by Onnasch et al. (2014b) 

revealed that negative consequences of automation, like loss of situation awareness and 

manual skills, are most likely when FA moves across a critical boundary from 

information automation to decision automation (Parasuraman et al., 2000). A second 

boundary was proposed by Wickens and Dixon (2007) and addresses a critical 

reliability level of an automated system below which the system cannot be considered 

beneficial anymore for human performance. Based on a thorough quantitative literature 

review they provided strong empirical evidence that automation only entails positive 

effects on joint human-automation performance if the automation’s reliability is higher 

than 0.7 (70%). In case the reliability is lower, working with automation support was 

found to lead to even worse performance than working without automation support.  

The current study builds up on these findings and aims to gain further insight on 

differential effects when the two previously identified boundaries are both crossed. 

 

4.2.1 Function Allocation between Human and Automation 

Different framework models have been proposed to allow a standardised 

characterisation of automated systems with respect to the distribution of functions 

between human and automation (Endsley and Kaber, 1999; Endsley and Kiris, 1995; 

Milgram, et al., 1995; Parasuraman et al., 2000; Riley, 1989; Sheridan, 2000). Common 

to all these models is the assumption that automation does not exist in an all-or-none 

fashion, but rather constitutes a continuum from no support to full automation of all 

functions. Accordingly, potential costs and benefits have to be considered as a function 

of more or less automation. 

A well accepted framework model has been introduced by Parasuraman et al. (2000). 

They suggest a taxonomy, which characterises automation on two different dimensions: 

stages and levels. The stage component refers to the human information processing 

model (Wickens et al., 2013) and differentiates four different functions that can be 

reallocated to automation: information acquisition (stage 1), information analysis (stage 

2), decision-making (stage 3), and action implementation (stage 4). The first two stages 

are often referred to as information automation (IA), whereas the latter two stages can 

be summarised by the term decision automation (DA). Additionally, defining the level 

of automation on each stage further specifies automation. Due to the two-dimensionality 
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of the model, a system can be characterised according to the functions that are 

automated (stage dimension) and the level of automation on each stage (level 

dimension). This approach allows comparing various types of automation in a 

standardised manner and therefore outmatches other models that are only applicable to a 

certain kind of automation (e.g. Endsley and Kiris, 1995; Milgram, et al., 1995; Riley, 

1989; Sheridan, 2000). 

Driven by the idea of potential costs and benefits in terms of human performance 

consequences as a function of more or less automation, the examination of the impact of 

FA on human-automation interaction has become one of the major interests in 

automation research. In particular, consequences of different stages of automation on 

human performance were examined (e.g. Endsley and Kiris, 1995; Kaber et al., 2000; 

Layton et al., 1994; Lorenz et al., 2002; Manzey et al., 2012). Results suggest that 

higher stages support human performance optimally by taking over certain parts of the 

task and thus reducing operators’ workload. However, when automation is not perfectly 

reliable, a higher-stage automation has been shown to adversely affect operators’ 

situation awareness and may also increase the risk of catastrophic failures due to 

operators’ skill loss after a prolonged use of automation. As a consequence, it has been 

suggested that medium automation would represent the best compromise to maximise 

performance benefits of automation, and minimise possible new risks at the same time 

(e.g. Cummings and Mitchell, 2007; Endsley and Kiris, 1995; Kaber et al., 1999; Kaber 

and Endsley, 1997; Manzey et al., 2012). Applying these results to the automation 

taxonomy proposed by Parasuraman et al. (2000) the often stated recommendation to 

implement a mostly not further defined medium automation (Endsley and Kaber, 1999; 

Endsley and Kiris, 1995; Kaber et al., 1999; Manzey et al., 2012) can be specified. 

Comparing medium and high amounts of automation in those studies, the most critical 

difference of these gradations with respect to human performance consequences seems 

to be whether only information input functions are automated (information automation, 

stage 1 and 2) or additional output functions like decision-making or action 

implementation (decision automation, stage 3 and 4).  

Direct empirical evidence for this assumption has been provided in a recent 

meta-analysis by Onnasch et al. (2014b). The meta-analysis was based on 18 

experiments and examined the effects of human-automation FA on routine system 

performance, performance when the automation fails, workload, and situation 

awareness. Results indicated a clear automation benefit for routine system performance 

with increasing automation, as well as benefits for workload when automation functions 

properly. However, when automation does not function properly, i.e. when there is an 
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automation breakdown, a negative impact of more complex automation on failure 

system performance and situation awareness was reported. This 

out-of-the-loop-unfamiliarity performance problem (OOTLUF; Wickens, 2000) seems 

to arise when cognitive functions related to active decision-making are resumed by 

automation in particular. Accordingly, Onnasch et al. (2014b) found negative 

consequences to be most likely when automation moves across a critical boundary 

between stage 2 and stage 3; the latter alleviating the human from active 

decision-making. When this boundary is crossed the risk of adverse effects on human 

performance is more likely, as well as potential catastrophic consequences when 

automation is unreliable or should suddenly fail (Wickens and Hollands, 2000). 

 

4.2.2 Reliability of Automation 

The second aspect that is of crucial importance regarding effects of automation on 

human performance is its reliability (Lee and See, 2004). Depending on the realised 

stage of automation, reliability can be defined as the proportion of correctly indicated 

critical events (information automation), correctly given diagnoses, suggested decisions, 

or correctly executed actions (decision automation).  

Several studies have addressed the impact of automation reliability on human 

performance in terms of complacency (e.g. Parasuraman, et al., 1993), automation bias 

(for a systematic review see Goddard et al., 2012), situation awareness (e.g. Wickens, 

2000), or attention allocation (Wickens et al., 2005). Comprising results of single 

studies, an overall picture of the impact of automation reliability on human performance 

was provided by a quantitative literature review conducted by Wickens and Dixon 

(2007). The analysis included data points from 20 different studies, which explicitly 

varied the reliability of diagnostic automation. They found a positive linear relation 

between automation’s reliability and the joint human-automation performance. That is, 

even though operators may have tended to miss more critical events when working with 

highly reliable automation the overall number of jointly detected critical events was still 

higher compared to working with less reliable automation. However, when automation 

reliability was below approximately 70%, automation support yielded even worse 

performance compared to working with no automation. Thus, effective compensation 

for unreliability seems to be possible to a certain level only. 

However, a drawback of most of the studies reported thus far and that were integrated in 

Wickens and Dixon’s analysis (2007) is that they only compared relatively extreme 

reliability levels and missed to describe the characteristics of operators’ adaptation to 
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automation across a more complete range of reliability. To gain more insights into the 

proposed change from supportive automation to useless automation Onnasch et al., 

(2014a) examined the impact of five different reliability levels of alarm systems (the 

simplest form of information automation) on joint human-automation performance and 

visual attention allocation in a multi-task simulation. Alarm reliability was set to 

68.75%, 75%, 87.5%, or 93.75% by varying the number of critical events that were 

missed by the alarm system. In comparison with a manual control group they found a 

clear automation benefit concerning human-automation performance that was 

independent of the level of automation reliability. Whereas the manual control group 

only detected around 70% of engine malfunctions, detection rates increased with 

alarm-support, even in the lowest reliability condition, up to 90%. This result revealed 

that all participants in the alarm-supported groups adapted to differing reliability levels 

in a very effective way. However, when reliability was below 70% the performance 

benefit was associated with an increased attentional effort, and a declined relative 

performance in a concurrent task compared to the other alarm-supported groups. In fact, 

when working with the least reliable alarm system, participants allocated as much visual 

attention to the supported task as the manual control group, i.e. behaved as if no 

automation support was available. Hence, automation below a reliability of 70% was 

not beneficial anymore. Similar findings were reported by Wickens et al. (2005) who 

also found negative consequences for attention allocation strategies and performance 

when automation reliability was below 70%. 

 

4.2.3 Function Allocation and Automation Reliability 

Summarising the scope of research, both, function allocation between human and 

automation and automation’s reliability, seem to be of critical importance in terms of 

human performance consequences and adequate, safe human-automation interaction. In 

particular, when the human operator is taken out-of-the-loop from active 

decision-making, excessing the boundary from stage 2 to stage 3 automation (Onnasch 

et al., 2014b), the risk of adverse effects on human performance is most likely. 

Moreover, research has revealed a critical reliability boundary around 70% below which 

automation support cannot be considered as helpful anymore (Dixon and Wickens, 

2006; Onnasch et al., 2014a; Wickens and Dixon, 2007; Wickens et al., 2005). 

However, only few studies have explicitly varied both aspects at the same time (Crocoll 

and Coury, 1990; Galster and Parasuraman, 2004; Galster, 2003; Rovira et al., 2007; 

2002; Sarter and Schroeder, 2001). Some of these studies suggest a sort of interaction 
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effect between FA and reliability. In particular, it was found that same levels of 

unreliability led to worse effects on human performance in case of decision versus 

information automation (e.g. Crocoll and Coury, 1990; Rovira et al., 2007; Sarter and 

Schroeder, 2001). However, other studies report detrimental effects of unreliable 

automation already for information automation or even worse performance for 

information compared to decision automation (Galster and Parasuraman, 2004; Galster, 

2003).  

In the aforementioned studies, the comparison of different reliabilities was often 

realised with perfect reliability trials compared to completely unreliable trials, in which 

automation gave only false alarms or missed all events (Crocoll and Coury, 1990; 

Rovira et al., 2002; Sarter and Schroeder, 2001). Consequently, even fewer studies 

deliver possible insight into the question of how the critical boundaries related to FA 

and reliability interact, and still, results are mixed (e.g. Galster and Parasuraman, 2004; 

Galster, 2003; Rovira et al., 2007). Furthermore, most of the previous research has 

missed to consider effects of attention allocation induced by different sorts of 

automation, as well as the joint performance of human and automation. 

Therefore, the goal of the current study was to gain further insight into the interaction of 

FA with the level of reliability and the impact of these automation characteristics on the 

joint human-automation performance and attention allocation. 

The task used for the experiment was a multi-task flight simulation, including three 

different subtasks. One of these tasks had to be performed with or without automation 

support. Automation support differed with respect to FA (IA and DA support) and 

reliability (high and low), with both factors varying across the critical boundaries. The 

impact of automation on participants’ attention allocation was measured via 

eye-tracking. In addition, performance was assessed for all three tasks. The following 

hypotheses guided the research. 

Attention allocation: Based on the aforementioned results from Onnasch et al. (2014a) 

and Wickens et al. (2005), it was first of all stated that support of a fairly reliable 

automation should relieve participants’ attentional demands to the supported task. 

Compared to a manual control group, participants should reallocate attention away from 

the supported task to concurrent tasks. This reallocation induced by reliability should be 

different for IA and DA support. It was hypothesised that the attentional relieve should 

be more substantial for DA support compared to IA as the complete task is resumed by 

automation. For unreliable automation support (below 70%) it was expected that 

participants supported by IA would more or less behave as if the automation support 

were not available, i.e. would invest as much attention to the automation-supported task 
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as the manual control group (Onnasch et al., 2014a). This should reflect their effort to 

completely compensate for the automation’s imperfection. However, for DA with a low 

reliability this effect should be less pronounced. Working with DA support should lower 

participants’ willingness to compensate for unreliability because they are taken much 

more out-of-the loop of task control than with IA support. As a consequence, they may 

not feel as responsible for the task as with IA because the task is normally almost fully 

carried out automatically (Dzindolet et al., 2001; Lewandowsky et al., 2000; Mosier et 

al., 1998; Mosier and Skitka, 1996). Therefore, it was hypothesised that when reliability 

undershoots the reliability boundary (70%), effects on attention allocation should be 

worse for IA than for DA.  

Performance in the automation-supported task: According to results by Onnasch et al. 

(2014a) it was hypothesised that independent of reliability, working with IA should 

result in superior joint human-automation performance compared to no automation 

support. Even for the less reliable group, a better overall performance than in the 

manual control group was expected. This was based on the assumption that participants 

should realise automation’s imperfection and accordingly reallocate their attention to 

this task. Therefore, besides benefiting from IA support when it correctly indicates 

malfunctions they should also detect misses of automation which eventually leads to the 

hypothesised superior performance compared to working manually. For DA, reliable 

support should lead to the best joint human-automation performance compared to all 

other groups. However, when reliability falls below the critical boundary, there should 

be no automation benefit anymore as operators are out-of-the-loop (Wickens and 

Hollands, 2000) and do not compensate for automation. This finding would be in 

accordance to results reported earlier (Crocoll and Coury, 1990; Onnasch et al., 2014a; 

Rovira et al., 2007; Sarter and Schroeder, 2001).  

Performance in concurrent tasks: Based on the finding that more automation is always 

better when support is reliable (Onnasch et al., 2014b), the best performance was 

expected for the group working with a high stage of automation (DA) that does not fall 

below the critical reliability boundary. The same results, albeit to a weaker extent, were 

expected for sufficiently reliable IA support and for the group working with DA, even if 

the reliability of the latter falls below the critical boundary. The latter assumption is 

related to the aforementioned hypotheses that participants of this group would not 

change their attention and performance strategies, even if they realise automation’s 

unreliability. Therefore, they should still maintain a superior performance in concurrent 

tasks compared to the low reliability IA group, and compared to the manual control 

group. Worst concurrent task performance was expected for the low reliability IA group, 
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as the hypothesised compensation for unreliability should only be possible at the 

expense of performance in concurrent tasks. 

For a better understanding, the three sets of hypotheses are summarised in Figure 1. 

 

 
Figure 1. Hypotheses related to (1) attention allocation to the automation-supported task (top 
panel), (2) performance in the automation-supported task (middle panel), and (3) performance in 
concurrent tasks (lower panel). Symbol meanings are as follows: 0 = no difference compared to 
the manual control group; - = less attention or worse performance compared to the manual 
control group; + = more attention or superior performance compared to the manual control 
group. Two or more symbols (+++) illustrate the strength of the supposed effect compared to the 
other groups. 

 

Additionally to the scrutinized factors FA and reliability, a time-on-task factor was 

included in the experimental design as there is evidence that experience with 

automation may foster or change some of the assumed effects (e.g. adaptation to 

imperfect automation; Onnasch et al., 2014a). 

 

4.3 Method 

4.3.1 Participants 

The number of participants was defined based on a power analysis with the assumption 

of a medium effect size (GPower3.1, for details see e.g. Buchner et al., 1997). This 
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revealed a required sample size of 78 participants. Accordingly, 78 students participated 

in the experiment. Participants were recruited using a web-based data bank provided by 

the Institute of Psychology and Ergonomics at the TU Berlin. This tool allows setting 

certain criteria describing the required sample. Participants for the current study had to 

be students, aged between 18 and 38, should have German as native language or equal 

language abilities, had to be frequent computer users, and right hander. These criteria 

were defined to ensure that participants understood the instructions, and that other 

factors despite the experimental independent variables did not cause much variance (e.g. 

educational background).  

None of the participants had prior experience with the flight simulation task used in the 

study. Participation was voluntary and could be cancelled anytime. Participants signed 

consent forms at the beginning of the experiment and were paid 7€ for completing the 

study. 

Two participants had to be excluded because of problems with the eye-tracker 

calibration, and four participants because they obviously did not understand the task. 

Two more students were post-hoc excluded from analyses as their eye-tracking data 

deviated extremely from those of all other participants
1
. Therefore, data from 70 

students (36 female, 34 male) ranging in age from 19 to 36 (M = 25.26, SD = 3.74) 

were taken into account for the following analyses. Due to the reduced sample size the 

post-hoc calculated Power for analyses was (1-ß) = .40. 

 

4.3.2 Task and Apparatus 

As experimental task the most recent version of the Multi-Attribute Task Battery 

(MATB; Miller, 2010) was used. It was directly based on the original version developed 

by Comstock and Arnegard (1992) which was used in previous research (e.g. 

Parasuraman et al., 1993). All main functionalities including the interface corresponded 

to the original version. Only the programming environment has been changed (MatLab 

instead of QBasic), which made it easier to implement experimental modifications.  

                                                

 
1 The two participants belonged to the group which had a 87% reliable DA support. They were excluded 

based on an analysis of the dependent variable "mean time between fixations” (MTBF) in the 

monitoring task. Both participants deviated more than two standard deviations from the mean value, 

however, in the hypothesised direction. In terms of a conservative testing, both participants were 

excluded from the entire analyses as the MTBF could also affect other variables like performance in this 

task or the performance in concurrent tasks. 
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The MATB is a multi-task flight simulation consisting of a two dimensional 

compensatory tracking, engine-system monitoring, fuel resource management, 

communications, and scheduling. In the present study, only the compensatory tracking, 

the resource management, and the system monitoring were implemented and had to be 

performed concurrently. The user interface of the MATB used in the present study is 

shown in Figure 2. 

 

 

Figure 2. MATB as used in the current study with the compensatory tracking in the upper middle 

position, the resource management beneath and the system monitoring in the upper left display corner. 

 

In the two-dimensional compensatory tracking task participants are required to keep a 

randomly moving cursor in the centre target position by applying appropriate control 

inputs via joystick. In the resource management task participants must compensate for 

fuel depletion by pumping fuel from four supply-tanks into two main tanks.  

The system monitoring task was most important for the current research. It consists of 

four vertical engine gauges with moving pointers that participants must monitor for 

abnormal values that occur randomly. As long as all engines function properly, the 

pointers fluctuate by chance within a fixed range around the centre value of the gauges. 

However, in case of a malfunction the pointer of the gauge for the affected engine 

suddenly shifts upwards or downwards by two gauge units and starts to fluctuate around 

this new position. These deviations must be detected by participants and reset by a 
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corresponding key press. If a malfunction is not detected within ten seconds the gauge 

resets automatically and the event is logged as missed event. 

Dependent on task configuration, system monitoring has to be performed manually or 

with automation support. The first alternative represents a simple binary alarm system 

(IA support). When working with this system a visual red alert appears above the 

gauges whenever the automation detects a parameter deviating from its nominal value. 

Nevertheless, the identification of the affected gauge and the corresponding reset of the 

parameter still have to be performed manually by the operator. The second alternative 

consists of DA support. In this case, the visual red alert appears to inform the operator 

that the automation has detected a deviation on one of the four gauges. Moreover, DA 

identifies and automatically resets the affected gauge within four seconds. As long as 

this automation functions properly, the operator does not have to take any evasive action 

concerning the system monitoring task. 

The MATB was presented in front of the participant on a 20 inch monitor that was 

equipped with a remote eye-tracking system (RED system, SensoryMotoric 

Instruments, Germany). This system enabled to sample gaze movements during task 

performance with a sampling rate of 120 Hz. Based on these data, gaze fixations in 

different areas of interest (AOI, see definition below) were automatically recorded. 

 

4.3.3 Design 

The study used a three factorial design with two between-subjects factors (FA and 

Reliability) and one within-subject factor (Block). The first factor (FA) consisted of two 

experimental groups. One group was supported in the monitoring task by IA 

(operationally defined as a binary alarm system), i.e. an automated support clearly 

below the FA boundary. The other group was supported by DA that resumed the entire 

task and therefore clearly crossed the FA boundary. The second factor (Reliability) 

differentiated between two levels of reliability that were chosen with regard to the 

reliability boundary (Wickens and Dixon, 2007). These reliability levels were already 

part of a prior experiment and were again chosen in order to allow for a comparison of 

results (Onnasch et al., 2014a). Furthermore, choosing these specific reliability levels 

should ensure that groups significantly differed in terms of performance and cognitive 

demands induced by automation reliability. An impact of reliability was crucial to look 

for interaction effects of FA and reliability. This implied clearly distinctive reliability 

levels. Based on these considerations reliability was set to the lowest level that was 

examined in the prior experiment, 68.75%, and a clearly distinctive level of 87.5% that 
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represented one of the fairly reliable automation conditions in the preceding experiment 

(Onnasch et al., 2014a). Reliability was realised by varying the number of critical 

events that were missed by the automation. Additionally, a manual control group was 

implemented, synonymous with a 0% reliable automation. The third factor (Block) 

constitutes a within-subject factor and was included to control time-on-task effects that 

possibly moderate effects of reliability and function allocation. Every participant had to 

perform the three concurrent tasks of the MATB for three 10-minute blocks. A total of 

16 critical events occurred in the monitoring task during each block, which had to be 

detected by automation or the participant, respectively. 

 

4.3.4 Dependent Measures 

To investigate the impact of the experimental factors on the perceived automation’s 

reliability (manipulation check), visual attention allocation and performance, three 

different categories of dependent measures were sampled and analysed. 

Manipulation Check: To assure that participants noticed that the automation did not 

work perfectly and missed events, participants were asked to rate the perceived 

reliability after they had worked with the automation for a prolonged time. Participants 

provided ratings to the question “How reliable was the system you worked with” on a 

visual-analogue scale ranging from 0% to 100%. 

Visual attention allocation was measured by means of eye-tracking. Specifically, the 

relative fixation time for different pre-defined areas of interest (AOI) was assessed. For 

this purpose, three different AOIs (specified by pixel areas) were defined before the 

experiment started. These AOIs corresponded to the three different tasks participants 

had to perform: compensatory tracking, resource management, and system monitoring 

(see Figure 1). Relative fixation time was defined as the time participants fixated an 

AOI relative to the overall fixation time, i.e. sum of times any one of the AOIs was 

fixated. 

Furthermore, the mean time between fixations (MTBF) for the system monitoring AOI 

was calculated. This variable was defined as the time between the last fixation to the 

system monitoring AOI and the moment when the AOI was re-entered by a fixation. 

Therefore, this variable evaluated how much time participants spent on other tasks 

before they reallocated their attention again to the system monitoring, i.e. how much 

they relied on the automation to inform them if a system malfunction appears. 
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Fixations were defined by a minimum duration of 80 ms and a maximum dispersion 

within this time interval of 100 pixels.  

Performance measures were defined for all three tasks of the MATB participants had to 

perform concurrently and collected for each 10 minute block separately. For the system 

monitoring task, percentage of detected system failures was defined as the percentage of 

all engine failures detected correctly by the human operator (control condition) or the 

human and automation together (joint performance in the automation support 

conditions).  

For the tracking task as well as the resource management task the root mean squared 

errors (RMSE) were calculated. The RMSE for the tracking task was calculated as a 

measure of mean deviation from the central target position, based on deviation data 

sampled at an interval of 5 seconds. The RMSE for the resource management task was 

calculated in relation to an optimal tank level, which had to be maintained in both main 

tanks. Fuel levels were sampled and RMS errors computed for each 5-second period. 

 

4.3.5 Procedure 

Following a demographic questionnaire, an instruction on the MATB, and an initial 

calibration of the eye-tracking system, participants were familiarised with performing 

the three different tasks manually in a 10 minute practice block. They were instructed 

that all three tasks would be of equal importance, and that they should work on all tasks 

concurrently with equal priority. Afterwards, they were randomly assigned to one of the 

six groups. Participants in the four experimental groups were introduced to the 

automation they were subsequently working with. Specifically, they were told which 

functions were resumed by automation. Furthermore, they were informed, that the 

automation would not be perfectly reliable so that participants may not fully rely on it. 

However, no concrete reliability information was provided. Then, the experiment started 

consisting of three 10 minute blocks. Prior to each block the eye tracker was 

re-calibrated. The perceived reliability of the alarm system was assessed in the 

experimental groups after the second block. The experiment ended with the debriefing 

of participants. 

 



 Study III 

 96 

4.4 Results 

In a first step, eye-tracking and performance measures of the manual control groups 

were analysed to make sure that the two groups did not differ and could serve as 

comparable baselines for the experimental groups. Because no differences were 

expected, α was adapted to a 20% level for these analyses (null-hypothesis testing). The 

2 (Control Groups) x 3 (Block) ANOVA’s did not reveal any significant differences 

between the two control groups. 

 

4.4.1 Perceived Reliability 

A two-factorial 2 (FA) x 2 (Reliability) between-subjects ANOVA contrasted the four 

experimental groups with automation support that were considered for this analysis. 

Results revealed a significant difference in the perceived reliability ratings contrasting 

the groups with 68.75% and 87.5% reliable automation support, F(1, 42) = 13.11, p < 

.002, 
2
 = .23. The low reliability group rated their automation support to be 68.20% 

dependable whereas the high reliability group estimated the reliability of their 

automation support to be 81.97%. No differences were found for the factor FA or an 

interaction of the two factors (both F < 1.0). Results confirm that the manipulation was 

successful, as perceived reliabilities were systematically related to the actual ones and 

significantly differed between experimental reliability conditions. 

 

4.4.2 Attention Allocation 

Figure 3 illustrates the results for the relative fixation time on the three different AOIs, 

i.e. monitoring task (left panel), tracking task (middle panel) and resource management 

task (right panel). The upper part of the Figure represents participants’ results working 

with information automation (IA), the lower part shows results for the decision 

automation groups (DA). 
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Figure 3. Effects of reliability and function allocation (upper panels IA support, lower panels DA 

support) on the relative fixation time; AOI from left to right: monitoring, tracking and resource 

management. 

 

For the monitoring task, increments of reliability led participants to spend less visual 

attention on the monitoring task. As expected, participants in the manual control groups 

had the longest relative fixation time to this AOI (Mmanual = 38.95%), followed by 

groups working with automation that violated the critical reliability boundary (M68.75% = 

32.40%). Participants working with 87.5% reliable automation fixated this AOI less 

often (M87.5% = 26.75%) and reallocated their visual attention more to the concurrent 

tasks. Furthermore, with ongoing time-on-task, there was a tendency in all groups to 

allocate more attention to the monitoring AOI. A 2 (FA) x 3 (Reliability) x 3 (Block) 

ANOVA supported this pattern of results statistically with a main effect of Reliability, 

F(2, 64) = 6.34, p < .004, 
2
 = .16, and a main effect of Block, F(1.65, 105.74) = 29.3,  

p < .001, 
2
 = .31. Interestingly, post-hoc analyses revealed that the pattern of visual 

attention allocation of participants with the 68.75% automation support was comparable 

to working without automation (pmanual-68.75% = .15). In contrast, automation that was 

fairly reliable led to a reallocation of attention away from the automation-supported task 

(pmanual-87.5% < .004). All effects were independent of Function Allocation (F < 1). 

For visual attention allocation to the tracking task, only a main effect of Block reached 

significance as all participants reduced fixation times to this AOI through blocks, F(2, 

128) = 7.10, p < .002, 
2
 = .10. 
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As can be seen in Figure 3 (right panel) attention allocation strategies to the resource 

management differed with respect to reliability. The groups working with the 87.5% 

reliable support had the longest fixation times, followed by participants working with 

68.75% reliable support and manual control groups. This was statistically supported by 

a main effect of Reliability, F(2, 64) = 3.21, p < .05, 
2
 = .09. Furthermore, all groups 

spent more time on this AOI in the first block than in the second or third, F(2, 128) = 

9.55, p < .001, 
2
 = .13. 

Post-hoc tests revealed that only the support of automation that exceeded the reliability 

boundary led to an attentional reallocation to this concurrent task that was (marginally) 

different from working completely manually (pmanual-87.5% = .05). No differences to the 

manual control group were found for groups working with automation support that was 

less reliable than 70% (pmanual-68.75% = .68). 

The MTBF was calculated for the system monitoring AOI. As can be seen in Figure 4 

the MTBF was highly dependent on automation’s reliability. Participants working with 

the 87.5% reliable automation had the longest interim time not looking to the 

automation-supported task, followed by participants supported by a less reliable 

automation and the manual control groups. On a descriptive level, it seems that also the 

FA has a certain impact on MTBF as the DA experimental groups differ from their 

counterparts in the IA groups by having longer MTBF. However, analyses only revealed 

a main effect of Reliability, F(2, 64) = 5.05, p < .01, 
2
 = .13, but no interaction of 

Reliability and FA (F< 1). As for the relative fixation time, post-hoc tests revealed that 

only the MTBF of the 87.5% condition significantly differed from the manual control 

group (p = .01) but not the MTBF of the 68.75% condition (p = .29). Furthermore, there 

was a main effect of Block, F(2, 128) = 22.17, p < .001, 
2
 = .25, as MTBF decreased 

with time-on-task (B1 = 3.80s, B2 = 3.53s, B3 = 2.83s). 
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Figure 4. Effects of reliability and function allocation (left panel IA support, right panel DA support) on 

the MTBF for the monitoring AOI. 

 

4.4.3 Performance Measures 

4.4.3.1 Monitoring Task 

Results for the percentage of detected system failures are illustrated in Figure 5. 

Performance improved for all groups with time-on-task. Best results were reached by 

groups that were supported by automation with a reliability above the critical boundary 

(M87.5% = 94.53%), followed by participants supported by automation undershooting the 

critical reliability boundary (M68.75% = 88.19%) and participants with no automation 

support (Mmanual = 81.42%). Statistically, this pattern of results was mirrored in a 

significant main effect of Block, F(2, 128) = 12.83, p < .001, 
2
 = .16, and a main effect 

of Reliability, F(2, 64) = 9.25, p < .001, 
2
 = .22. Post-hoc tests revealed that only 

groups supported by a 87.5% reliable automation benefited from their support as they 

showed superior performance compared to the manual control group (pmanual-87.5%< 

.001). Performance of participants working with a 68.5% reliable automation support 

did not significantly differ from performance of the control group which had to detect 

all system malfunctions manually (pmanual-68.75% = .08). No effects were found for 

Function Allocation (F < 1). 
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Figure 5. Effects of reliability and function allocation (left panel IA support, right panel DA support) on 

the overall percentage of detected system failures. 

 

4.4.3.2 Concurrent Tasks 

Analyses of RMSE in concurrent tasks only revealed time-on-task effects, FTracking (1.58, 

101.14) = 4.40, p < .06, 
2
 = .06; FResource Management (1.50, 96.46) = 16.83, p < .001, 

2
 = 

.20. Independent of experimental condition, all groups showed reduced deviations from 

a given optimal level with increasing experience in the tracking task (B1 = 147.60, B2 = 

143.33, B3 = 140.78) as well as in the management of fuel resources (B1 = 152.33, B2 = 

131.01, B3 = 121.23). 

 

4.5 Discussion 

The study’s main objective was to investigate the interaction of FA with the level of 

reliability and its impact on human operators’ attention allocation and the joint 

human-automation performance. 

Therefore, three sets of hypotheses were stated, which related to participants’ attention 

allocation, the joint human-automation performance in the supported task as well as 

participants’ performance in concurrent tasks. An overall contrast of hypotheses and 

results is presented in Figure 6, which points out that the hypotheses were only partially 

supported by the data. 
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Figure 6. Hypotheses (left side) and actual results (right side) related to (1) attention allocation to the 
automation-supported task (top panel), (2) performance in the automation-supported task (middle panel), 
and (3) performance in concurrent tasks (lower panel). Symbol meanings are as follows: 0 = no difference 
compared to the manual control group; - = less attention or worse performance compared to the manual 
control group; + = more attention or superior performance compared to the manual control group. Two or 
more symbols (+++) illustrate the strength of the supposed effect compared to the other groups. 

Results for attention allocation revealed a strong impact of automation reliability on 

participants’ attentional strategies. As expected, participants who were supported by 
87.5% reliable automation reallocated attention away from the supported task to 

concurrent tasks. Therefore, fairly reliable automation relieved participants’ attentional 
demands to this task. In contrast, automation that was less reliable (68.75%) was not 

beneficial as participants invested as much attention to the automation-supported task as 

participants working manually. However, function allocation did not seem to have an 

impact on this effect, as no differences could be found between groups that were 

supported by IA and groups with DA. Crossing both boundaries did not reveal 

differential effects compared to crossing just the reliability boundary (Wickens and 

Dixon, 2007). Benefits of fairly reliable support and costs for unreliable automation 

were the same for IA and DA. Therefore, “more automation” was not “always better” 
(see also Onnasch et al., 2014b) but fairly reliable automation was indeed always better 

than unreliable automation.  

Effects for performance measures mirrored the effects found for attention allocation. 

Performance in the automation-supported task revealed clear benefits of automation 

above the critical reliability boundary compared to working without automation. 
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However, when supported by automation less reliable than 70%, no automation benefit 

in terms of a superior performance could be observed. In combination with results for 

attention allocation, this finding is of special interest as it underlines the severity of 

undershooting the reliability boundary. Even though participants showed more 

attentional effort to the automation-supported task than the 87.5% reliability groups, 

they could not compensate for automation’s unreliability. Furthermore, even with a 

detection rate of 68.75% by automation, the joint human-automation performance did 

not exceed performance of completely unsupported performance on this task. In short, 

automation support with reliability below the boundary was not supportive at all! This 

finding emerged completely independent of the function allocation between human and 

automation. Highly reliable DA support did not facilitate a superior performance 

compared to the IA counterpart and low reliable DA support did not reveal worse 

consequences compared to the IA 68.75% condition.  

The overall pattern of results did not change when performance in concurrent tasks was 

additionally considered. Regardless of the concurrent task, results did not further 

differentiate findings as only time-on-task effects emerged but no effects of function 

allocation or automation’s reliability. 

 

In summary, the current study revealed two important findings. First, automation 

reliability determines human operators’ attention allocation and performance. When 

reliability is relatively low, particularly below 70% as stated by Wickens and Dixon 

(2007), operators invest as much visual attention to the supported task as operators 

working completely manually and performance does not benefit either. These results are 

even stronger than expected based on a prior study that showed detrimental effects only 

on the attentional level (Onnasch et al., 2014a). The attentional effort participants 

invested when supported by 68.75% reliable automation is comparable in both studies. 

However, whereas in the first experiment (Onnasch et al., 2014a), more attentional 

effort enabled participants to protect performance in the supported task, the attentional 

compensation for automation’s imperfection did not prove successful in the current 

study.  

The second important finding is related to the joint impact of reliability and function 

allocation. Contrary to the assumptions, FA did not reveal any impact on attention 

allocation or performance. This finding is in contrast to our prior meta-analysis that has 

provided clear evidence for impacts of function allocation on human performance 

(Onnasch et al., 2014b). It is also in contrast to the few studies that could provide 

evidence for a more severe effect of unreliability in interaction with higher-stage than 
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lower-stage automation (Crocoll and Coury, 1990; Rovira et al., 2007; Sarter and 

Schroeder, 2001) 

In those studies higher-stage automation was realised as stage 3 automation (decision 

support). The current experiment implemented automation that not only resumed 

decision-making but also the action implementation component of the monitoring task 

(stage 4). This difference could be crucial for operators perceiving their role and 

accountability in interaction with automation. When a task is completely automated, the 

operator’s role is that of a supervisor, i.e. he has to monitor the proper functioning of the 

automation and ensure that everything is as expected. The human operator as a 

supervisor is accountable for the overall task. In contrast to that, the role definition of an 

operator in interaction with stage 3 automation might not be that clear-cut. Whereas the 

human operator is taken out-of-the-loop from cognitive processes of a task, he is still 

responsible for the implementation of an action that was supposed by automation. 

Therefore, an operator who is still in charge of action implementation may define his 

role more or less limited to this subtask instead of feeling responsible for the entire task.  

These differently perceived role images might explain the deviant findings between 

prior research and the current results. Based on the foregoing reasoning it seems 

plausible that operators supported by stage 3 automation stay mainly focussed on 

executing what the automation recommends. This might reduce their probability to 

detect an automation’s malfunction and make them more prone to adverse performance 

effects resulting from unreliability of automation. This fits to the findings of previous 

research. In contrast, operators who are supported by automation that resumes the 

complete task, as in the current experiment, are focussed on monitoring the 

automation’s proper functioning, and therefore should be able to compensate for it at 

least partially if a malfunction occurs. This role perception as a supervisor of 

automation therefore resulted in comparable attention allocation strategies to the 

IA-supported group which had to allocate attention to the automation-supported task 

because those participants were still accountable for the concrete task fulfilment. 

Therefore, although the role images behind the expressed behaviour of IA- and 

DA-supported groups might differ, both role perceptions resulted in the same 

behavioural outcome. 

Support for this interpretation is provided by Lorenz et al. (2002). They compared 

participants’ information sampling and performance when working in a multi-task 

simulation. In one out of three tasks participants were either supported by automation 

that helped them with information acquisition (stage 1), with decision-making by 

providing diagnoses of system state and according actions (stage 3) or they were 
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supported by automation that resumed the complete task (stage 4). Results indicated that 

the group supported by stage 3 automation significantly reduced automation monitoring 

and showed worse performance when resuming the task from automation compared to 

the other two groups. Lorenz et al. (2002) suppose that participants with 

decision-making support may have taken “the displayed advisory [of automation] more 

as a directive and subsequently focused on its implementation” (p. 895). In contrast to 

that, the monitoring behaviour and performance of participants supported by full 

automation (stage 4) did not differ from participants that were only supported by 

information acquisition automation (stage 1). Lorenz et al. (2002) assert that by 

verifying automation’s proper functioning participants supported by full automation 

(stage 4) developed better system knowledge compared to participants with 

decision-making automation (stage 3), and therefore could appropriately resume tasks 

from automation under conditions of automation breakdown.  

In the current study, the tendency to verify automation’s proper functioning could have 

been additionally boosted by the fact, that the verification was easily possible. 

Participants had direct access to relevant data as the monitoring window was visible at 

all times. There was no extra effort that had to be invested to access raw data. However, 

accessibility of information has an impact on participants’ verification behaviour of 

automation. When verification is easy, operators tend to cross-check diagnoses more 

often than if accessibility of information is more costly, e.g. time consuming. This 

tendency is still observable even if this behaviour does not represent the best strategy, 

e.g. in terms of possible gains (Manzey et al., 2014). 

With regard to practical implications, results first suggest that automation that hurts the 

reliability boundary proposed by Wickens and Dixon (2007) should not be 

implemented, as operators do not benefit from this support. Even though participants 

tried to adapt to unreliability, the higher attentional effort compared with operators of 

higher reliable systems did not lead to a superior performance compared to working 

manually on the task. Concerning the impact of function allocation prior research has 

suggested that automation support of decision-making functions and beyond (stage 3 

and higher) might be particularly critical as negative consequences for human operators 

were observed with stage 3 automation which did not occur with lower-stage 

automation. The results of the present study qualify this conclusion by showing that this 

might be a specific effect of stage 3 automation but may not be true for automation that 

goes beyond. If the entire task is automated, including action implementation, operators 

might perceive their role more as a supervisor of automation. Although they are 

completely taken out-of-the-loop in terms of task completion, they are to a lesser extent 
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out-of-the-loop in terms of task understanding. Therefore, the boundary of function 

allocation might not be a real boundary but rather some kind of “function allocation 

valley” concerning stage 3 automation in which negative consequences for human 

operators are most likely. 
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5. General Discussion 

The objective of this thesis was to gain further insight into the effects of function 

allocation and automation reliability on human operators’ performance and cognitive 

demands. For this purpose, Parasuraman, Sheridan and Wickens’ flow chart model for 

automation design (2000) served as a guiding framework. The model attempts to help 

developers to choose an appropriate function allocation between human and automation. 

For that reason, the model’s consecutive structure serialises relevant aspects that have to 

be considered in design. After a first consideration of what should be automated the 

model suggests primary criteria to evaluate possible consequences of a proposed 

function allocation in terms of human performance consequences and imposed 

cognitive demands. When the initial function allocation has held out against this 

primary evaluation, the secondary evaluative criterion of reliability has to be considered 

to assure an appropriate decision regarding the final function allocation. In line with the 

model’s consecutive structure three studies were conducted. The results of the single 

studies have already been discussed in the according chapters. Therefore, this chapter 

provides a recapitulation of results (chapter 5.1) to introduce the main objective of the 

general discussion: the relation of findings to the flow chart model proposed by 

Parasuraman et al. (2000; chapter 5.2). Furthermore, the three conducted studies are 

subject to some critical considerations concerning the applied methodical approaches in 

the single studies in particular (chapter 5.3). The thesis concludes with an outlook, in 

which future research opportunities are discussed and results are related to trends in 

human-automation interaction like adaptive automation (chapter 5.4). 

 

5.1 Summary of Results 

The first study presented in this thesis is a meta-analysis, which addressed impacts of 

different function allocations on Parasuraman et al.’s primary evaluative criteria: 

operators’ performance and cognitive demands (Parasuraman et al., 2000). The 

meta-analysis included 18 experiments that allowed examining effects of function 

allocation on routine system performance, performance when the automation failed 

(automation breakdown), workload, and situation awareness.  

Results of this meta-analysis revealed a cost-benefit trade-off with regard to function 

allocation. Under normal operating conditions automation supports users in terms of 

performance in the automation-supported task. This benefit is positively related to the 

degree of automation, i.e. the higher the degree of automation, the higher the joint 
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human-automation performance. However, under conditions of automation breakdown, 

this relation is inversed, i.e. an increasing degree of automation leads to worse 

performance when the operator has to resume the task. Therefore, routine and failure 

aspects of performance have contrary effects with increasing automation. This trade-off 

was also found for workload and situation awareness. Whereas higher degrees of 

automation reduce operators’ workload, the risk of a loss of situation awareness 

increases. Consequently, an appropriate function allocation can only serve two of the 

four examined aspects: performance under routine conditions and workload on the one 

hand, or performance under conditions of automation breakdown and situation 

awareness on the other hand.  

A post-hoc analysis specified this finding as benefits and costs of more or less 

automation were related to the stages dimension of automation, i.e. what stages of 

human information processing are supported by an automated system (Parasuraman et 

al., 2000). In this regard, the differentiation of information automation and decision 

automation is crucial in determining costs and benefits of automation support. Raising 

automation from information acquisition and analysis to a support of decision-making 

makes the human operator much more vulnerable to a loss of situation awareness and 

manual skills. At the same time, performance under routine conditions, as well as 

operators’ workload, considerably benefit from this extension of automated functions.  

In the context of the flow chart model (Parasuraman et al, 2000) these results provide 

specific insight into effects of function allocation on the primary evaluative criteria that 

has not been provided before. This specifies the model as the findings of the 

meta-analysis allow not only stating which aspects should be considered in automation 

design but also providing concrete advices in relation to the stage component of 

automation.  

 

To further specify the flow chart model, the second study presented in this thesis 

focussed on an experimental investigation of the impact of the most important 

secondary evaluative criterion, i.e. an automation’s reliability, on human performance 

consequences. More specifically, the objective of this study was to provide further 

insight into effects of different levels of reliability on operators’ adaptation in terms of 

overall system performance as well as operators’ cognitive demands. Within a 

multi-task simulation consisting of a monitoring task and two concurrent tasks, 

participants were assigned to one of five groups. In the manual control group none of 

the tasks were supported by automation, whereas the four experimental groups were 

supported in the monitoring task by a miss-prone alarm system (information 
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automation) differing in reliability: 68.75%, 75%, 87.5%, and 93.75%, respectively. 

These reliability levels were chosen to allow a comparison of operators’ adaptation to a 

fine grained range of reliability levels instead of comparing only two extreme 

reliabilities as was done in most past research (e.g. Dixon & Wickens, 2006; Dixon, 

Wickens, & Chang, 2004; Dixon, Wickens, & McCarley, 2007; Parasuraman, Molloy, & 

Singh, 1993; Wickens, Dixon, Goh, & Hammer, 2005). Moreover, particularly the lower 

reliability levels were realised to further investigate a proposed reliability boundary 

around 70%. This boundary was first stated by Wickens and Dixon (2007) based on 

findings of a meta-analysis regarding benefits of imperfect automation. The reliability 

boundary states that the joint human-automation performance becomes even worse than 

when working manually on a task when automation support is less reliable than 70%. In 

other words, automation undershooting this boundary does in fact not support task 

performance but rather deteriorates it.  

The study revealed clear automation benefits in the automation-supported task 

compared to working manually on the task. No differences emerged between groups 

working with different reliability levels. Therefore, results suggest that participants 

adapted to differing reliability levels in a very effective way. Costs of unreliable 

support, particularly automation undershooting the proposed reliability boundary of 

70% (Wickens & Dixon, 2007), became evident in concurrent task performance and in 

attention allocation strategies. With increasing experience, participants supported by 

automation less reliable than 70% started to change their behaviour according to 

automation’s imperfection by re-allocating their attention away from one of the 

concurrent tasks. The attentional shift was so pronounced that the adapted attention 

strategy was comparable to the group working with no automation support. By applying 

this strategy, operators could compensate for the improper functioning of automation, 

even for this level of unreliability. Yet compensation was only feasible at the expense of 

a highly demanding attention allocation strategy, which eventually led to a relative 

performance decline in concurrent task performance. 

When reliability was above 70% participants benefited from automation not only in 

terms of task performance but also by relieving participants’ cognitive demands to the 

automation-supported task. This was particularly true for highly reliable automation, i.e. 

cognitive demands decreased with increasing reliability. 

 

Based on findings of the first and second study, the main objective of the lastly 

presented experiment was to investigate the interaction of function allocation with the 

level of reliability and its impact on human operators’ cognitive demands in terms of 
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attention allocation, and overall system performance. Within the same multi-task 

simulation as in the second study participants were assigned to one of six groups, two 

manual control groups and four automation-supported groups. Automation support 

differed with respect to function allocation and reliability. Both factors were varied 

across the proposed critical boundaries: regarding function allocation, automation was 

either realised as information automation or decision automation, thus crossing the 

boundary between stage 2 and stage 3 (Onnasch, Wickens, Li, & Manzey, 2014). 

Reliability was set to 68.75% and 87.00%, respectively, thus crossing the boundary of 

70% (Onnasch, Ruff, & Manzey, 2014; Wickens et al., 2005; Wickens & Dixon, 2007). 

Results for attention allocation again revealed a strong impact of automation reliability 

on participants’ attentional strategies. A fairly reliable automation (above 70%) relieved 

participants’ attentional demands. In contrast, an automation that violated the reliability 

boundary was not beneficial, as participants invested as much attention to the 

automation-supported task as participants working manually. Furthermore, the joint 

human-automation performance in the supported task did not exceed completely 

unsupported performance although participants showed more attentional effort to the 

supported task than groups working with a more reliable automation. This pattern of 

results underlines the severity of undershooting the reliability boundary. In short, 

automation support that is less reliabel than 70% is not supportive at all! 

However, function allocation did not seem to have any impact on the reported effect. 

Crossing both boundaries (70% reliability boundary and boundary between stage 2 and 

stage 3 automation) did not reveal differential effects compared with crossing just the 

reliability boundary. As described in the discussion of this experiment in some more 

detail (chapter 4.5), a possible explanation for this non-finding relates to the realisation 

of the high-stage automation which was different to that used in other research. Whereas 

prior studies have compared information automation with decision-making automation 

(e.g. Rovira, McGarry, & Parasuraman, 2007) this study implemented high-stage 

automation by automating the entire task. This changed the operators’ role to that of a 

supervisor by taking the human completely out-of-the-loop. However, instead of 

increasing risks that are associated with increasing automation this might have taken the 

human in-the-loop again in terms of task understanding. As a supervisor participants 

could have felt responsible for the entire task, which also incorporated monitoring the 

automation’s proper functioning. Accordingly, results revealed that participants 

monitored the automated task as frequent as participants who were supported only by a 

basic automation (IA).  
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These results, as well as the findings of the latter two studies, revealed important 

implications for automation design. Therefore, the next chapter aims at relating those 

findings to the flow chart model (Parasuraman et al., 2000) to specify the evaluation 

process of automation and to support designers with concrete guidelines. 

 

5.2 Specification of the Flow Chart Model 

The claim of the flow chart model by Parasuraman et al. (2000) is to provide a simple 

guideline for decisions of function allocation. The model can be used by designers as a 

starting point for considering what functions should be automated to what extent. 

Moreover, the model can be understood as a framework for research in the automation 

domain as it raises (hypothesised) relevant issues that might impact intended benefits of 

automation implementation. Furthermore, the integration of the two-dimensional model 

of automation characteristics (stages and levels) allows an attribution of benefits and 

costs of automation to a very detailed level. Additionally, the structuring of the model as 

a flow chart supports developers of automation as this defines which aspects should be 

considered first in evaluating an initial function allocation and which factors should be 

focussed on in later steps. This outmatches other models that are rather descriptive and 

often only provide a tangled mass of aspects that should be somehow considered instead 

of providing guidance in function allocation (e.g. Endsley & Kiris, 1995; Milgram, 

Rastogi, & Grodski, 1995; Riley, 1989, 1996; Sheridan, 2000).  

However, the model’s promising structure is not further explicated with regard to 

concrete contents. Besides the notion of which aspects should be overall considered in 

automation design, the model in the original form only provides a hypothetical example 

of function allocation but no tangible guidelines. Therefore, results of the three reported 

studies are associated to the flow chart model to specify the evaluation process of 

automation and to support designers with concrete guidelines. Specifications as well as 

extensions of the model are shown in figure 1 (highlighted in blue). These are described 

in detail in the following, beginning from the top (guiding questions) to the bottom 

(final automation) of the model with respect to the conducted studies. 
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Figure 1. Flow chart model of automation design proposed by Parasuraman et al. (2000), extended based 
on results of this thesis. Specifications as well as extensions are highlighted in blue.  
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5.2.1 Specifications based on Study I – the Meta-Analysis 

The meta-analysis revealed that an appropriate function allocation can only serve 

routine system performance and workload on the one hand, or maintenance of 

operators’ manual skills and situation awareness on the other hand. This finding of a 

direct cost-benefit trade-off can be used to specify the first part of the flow chart model 

up to the primary evaluative criteria. As costs and benefits of automation trade-off 

directly, the consideration of the objective of automation implementation is crucial. 

Whereas under some circumstances an increase of productivity is aimed at, other main 

objectives may consider overall safety issues like a reduction of complexity for the 

operator. If the main objective is explicated, a weighting of possible costs and benefits 

of a certain function allocation, can be conducted that helps in deciding for an 

appropriate function allocation. 

Therefore, the first question posed in the flow chart model should not ask what to 

automate, but why, i.e. with which objective: 

What is the objective of automation implementation?             (see figure 1, box 1.1) 

With the objective of automation in mind, the question of what to automate can be 

posed (figure 1, box 1.2). Concerning the stage component of the levels and stages 

taxonomy, which is integrated in the flow chart model, results of the meta-analysis 

suggest the following: If operators’ skill loss and the maintenance of situation awareness 

are of serious concern, for example, when an immediate manual take-over of automated 

functions under conditions of automation breakdown is relevant to safety, they should 

be kept involved at least to some extent in decision-making (stage 3), as well as action 

implementation (stage 4). Although, risks of skill degradation might not be fully 

excluded, they can probably be kept on a lower level. If however, skill degradation is 

not of major concern, for example, if fast manual interventions in case of automation 

breakdown might not be crucial, then automation exceeding stage 2 is preferable. 

Benefits like reduced workload and an enhanced overall performance under normal 

operating conditions are more likely compared with lower stage automation. Therefore, 

based on findings of the meta-analysis a first guideline referring to the stages of 

automation can be explicated. The guideline is integrated in the third step of the flow 

chart model, the identification of types of automation: 

If maintenance of skills and situation awareness are crucial, automation should not 

exceed stage 2. If reduced operator workload and performance benefits are more 

important, automation should include stage 3/ stage 4.             (see figure 1, box 1.3) 
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If the stages and levels of automation are initially defined, consequences of this 

combination have to be evaluated in detail. In the original model, the primary evaluative 

criteria are composed of a collection of concepts (mental workload, situation awareness, 

complacency, skill degradation) that are not further specified in relation to function 

allocation or system state. However, the consequences of automation should be 

explicitly differentiated for normal operating conditions and conditions under 

automation breakdown as this sub-division particularly contrasts costs and benefits (see 

figure 1, box 1.5).  

Under normal operating conditions more automation leads to better performance, lower 

operator workload but also to reduced situation awareness. In terms of automation 

breakdown performance is negatively related to the degree of automation pointing to 

possible operators’ skill degradations. Workload does not seem to be strongly affected 

by automation breakdown. However the latter finding needs further research as the 

power of this analysis was quite low (see chapter 2.4). 

The conflicting effects of automation reveal that there is no specific configuration in 

which automation-induced performance benefits can be increased without any 

performance costs. Nevertheless, the specification of the flow chart model should 

support designers of automation to be aware of these trade-offs and decide for a more 

appropriate function allocation with regard to overall objectives and consequences for 

automation users. 

When initial types and levels of automation have been identified and held out against 

the primary evaluation (figure 1, box 1.6), the secondary evaluative criteria have to be 

considered. However, Parasuraman et al. (2000) only mention aspects that have to be 

taken into account for this second evaluation instead of giving concrete advice for an 

appropriate function allocation. Therefore, findings of studies II and III supplement this 

part of the model. 

 

5.2.2 Specifications based on Study II and Study III – the Laboratory 

Experiments 

Concerning automation reliability, findings in both experimental studies show a clear 

boundary of reliability below which automation support is in fact not supportive. When 

reliability was realised below 70% participants behaved as if no automation support was 

available (study II and III). Attention allocation seemed to be completely unrelated to 

the automation’s support whether this signalled a parameter deviation or not. In 

comparison to groups working with fairly reliabel automation (above 70%) these 
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participants always spent most time on the automation-supported task (study II, 

differentiation of alarm and non-alarm periods). Therefore, automation less reliable than 

70% did not reduce participants’ cognitive effort to fulfil the task. Moreover, 

performance was also negatively affected by automation undershooting this boundary. 

The second study revealed negative effects of unreliability in concurrent task 

performance because participants reallocated attention to the automation-supported task. 

The third study revealed negative effects for performance in the automation-supported 

task. Although participants allocated as much attention to this task as participants 

without automation support, they could not reach superior performance with automation 

that still detected 68.75% of all deviations for them. Based on these findings which 

provide clear evidence for the reliability boundary first stated by Wickens and Dixon 

(2007), the second evaluative criterion of reliability can be supplemented by a concrete 

guideline: 

If reliability above 70% cannot be guaranteed, do not automate the function!   

                (see figure 1, box 1.7.1) 

Furthermore, the third study raised another aspect related to consequences of reliability 

in combination with different stages of automation. Function allocation in this study did 

not affect performance or attention allocation. However, prior research has provided 

evidence for a more severe effect of unreliability in interaction with higher-stage 

automation than with lower-stage automation (Crocoll & Coury, 1990; Rovira, 

McGarry, & Parasuraman, 2007; Sarter & Schroeder, 2001). As was already described 

in the discussion of this experiment in detail, these deviant findings could be due to the 

operationalisation of the higher-stage automation condition that differed from previous 

research. Whereas those studies realised higher-stage automation as decision-making 

automation (stage 3), the third experiment implemented automation that resumed 

decision-making but also the action implementation component of the task (stage 4), 

therefore representing an automation of the entire task. When a task is completely 

automated the operator’s role is that of a supervisor, i.e. he has to monitor the proper 

functioning of the automation and is accountable for the overall task. In contrast to that, 

the role definition of an operator in interaction with stage 3 automation might not be 

that clear-cut. Whereas the information analysis, interpretation and decision-making 

components are resumed by automation the human operator is still responsible for the 

implementation of an action that was suggested by automation. Therefore, an operator 

who is still in charge of action implementation may define his role more or less limited 

to this subtask and interpret the automation’s advices as a directive that has to be 

executed. When the automation is not perfectly reliable, this role understanding might 
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lead to negative consequences as the human operator does not supervise the 

automation’s proper functioning; incorrect advices by automation are not detected and 

accordingly end in inappropriate actions carried out by the human. Therefore, when an 

automation of the decision-making component is sought, the automation has to be 

sufficiently reliable. If this cannot be guaranteed, designers should redefine the 

operators’ role to that of a supervisor by increasing the stage of automation. A 

corresponding guideline extends the secondary evaluative criteria of the flow chart 

model: 

If a high (near to perfect) reliability cannot be guaranteed and automation is supposed 

to resume decision-making aspects from the human (stage 3), consider to also automate 

action implementation (stage 4)!            (see figure 1, box 1.7.2) 

 

5.2.3 Benefits of the Flow Chart Specifications for Automation Designers 

Regarding the overall structure of the flow chart model, Parasuraman et al. (2000) 

propose the application of their model to decisions of function allocation between 

human and automation as an iterative process. This is illustrated by the recursive loops 

that are integrated in the flow chart (figure 1). The three studies of this thesis provide 

new insight that may help to minimise these feedback steps based on more precise 

guidelines that help with decisions in the first place. For example, the guideline 

referring to the identification of types of automation may help designers to make a more 

appropriate initial decision on what stages of automation should be implemented. By 

doing so, the design process gets more efficient as less feedback loops are needed. If a 

reconsideration of an initial automation is however advisable, e.g. because a sufficient 

reliability cannot be guaranteed, the guidelines that are directly integrated in the 

secondary evaluation process provide designers with concrete suggestions how function 

allocation should be changed (e.g. automating the complete task instead of only 

automating up to the decision-making component). 

Furthermore, the introduction of the fundamental question of the objective of 

automation helps designers to understand how automation may be used when 

implemented. This involves designers of automation not only on the executive level, 

developing the automation, but provides them with a broader context and understanding 

of the desired outcome of automating certain functions (Parasuraman & Riley, 1997). 

Moreover, the differentiation of primary evaluative criteria to normal-operating 

conditions and conditions of automation breakdown can be considered as an implicit 
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guideline to evaluation studies of prototypes. The differentiation underlines the need to 

always consider and examine both conditions when applying those criteria. 

In sum, the proposed extensions of the flow chart model not only improve the outcome 

of the design process, the function allocation between human and automation, but also 

the process itself by supporting an efficient application of the model. 

 

5.3 Critical Considerations 

The current thesis comprised two different methodical approaches. Regarding function 

allocation, the study’s objective was to derive an overall picture of human performance 

consequences induced by automation based on results of available single studies to this 

topic. Therefore, a meta-analytic approach was chosen for study I. The objectives of 

studies II and III were to gain further insight into effects of different levels of reliability 

and combinations of reliability and function allocation. As prior research has rarely 

varied reliability over a whole range of levels and also rarely considered differential 

effects of function allocation and reliability at all, both studies were conducted as 

laboratory experiments. In the following, strengths and limitations of both methodical 

approaches shall be discussed separately. 

 

5.3.1 Critical Considerations Concerning the Meta-Analysis 

The objective of meta-analyses is to use data from different studies to obtain 

information about the effect size for a certain treatment on various constructs. In a 

classic meta-analytic approach estimates of effect sizes from the single studies are 

pooled to obtain an estimate of the averaged effect size across studies (Hedges, 1982). 

According to Rosenthal (1995) the two most common types of effect sizes are r and d. 

Examples for the r family are Pearson’s product-moment correlations (r) or Fisher’s 

r-to-z transformation. The most important d effect sizes are Cohen’s d, Hedges’ g, and 

Glass’s ∆. 

The meta-analysis conducted within the thesis had to deviate from the classic approach. 

This was done because effect sizes were only rarely reported in the original studies and 

other estimates of effect size like the F ratios for multiple conditions would not have 

been able to capture the correlational aspect of data. However, this was of particular 
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relevance for the research question (the “lumber jack effect”). Therefore, an alternative 

coding of effects was applied which is discussed in the following. 

The first challenge was to find a way to standardise the various forms of automation 

examined in the single studies. Considering that “more automation” can be achieved 

both by higher levels within a stage and/ or later stages (which, in the literature, are 

typically preceded by automation at earlier stages), it was assumed that increasing the 

two dimensions of Parasuraman et al.`s taxonomy (2000) increases the degree of 

automation (DOA). Accordingly, a clear-cut dominance rule was applied (for details see 

chapter 2.2) to convert combinations of stages and levels into rank data with an 

increasing rank reflecting an increasing DOA. 

In a further step, effects of DOA on the meta-variables had to be classified as common 

effect sizes were not available. As an alternative solution, effects of DOA were coded 

dichotomous as significant or non-significant within the single studies. By doing so, the 

impact of DOA on those variables was expressed using rank orderings. Different 

rankings were assigned when there was a significant effect between two DOA 

conditions (p < .05). In case of non-significant effects between different degrees of 

automation tied ranks were assigned. A limitation of this relatively coarse-grained 

approach is that trends might have been underestimated. However, the data base did not 

allow for a more detailed coding. 

The resulting ordinal scaling level made it necessary to use Kendall’s tau as an 

alternative analysis to Pearson’s product-moment correlations in the following analyses. 

With this non-parametric measure it was possible to determine and test for a monotonic 

relation between two dependent variables (e.g. DOA and workload). Furthermore, 

Kendall’s tau does not make the implicit assumption of equidistance between different 

rankings which would not have been the case for the data. 

Although this is an unconventional approach, the chosen form of data aggregation is 

still in line with the basic idea of meta-analyses (Rosenthal, 1995). It is also in line with 

other authors who also departed from the classic approach for similar reasons (e.g. 

Hutchins, Wickens, Carolan, & Cumming, 2013; Wickens & Dixon, 2007; Wickens, 

Hooey, Gore, Sebok, & Koenicke, 2009; Wickens, Hutchins, Carolan, & Cumming, 

2013). 

However, a consequence that has to be kept in mind is that rank orders based on 

dominance orderings neither allowed for quantifying DOA on a ratio nor interval scale. 

Particularly, the observed trade-off, i.e. increasing automation leads to increased routine 

performance and reduced workload but also to an increased risk of skill degradation and 

loss of situation awareness, could not be related to specific levels or stages of 
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automation in this first analysis step. As DOA was always defined relatively within a 

single study, the same ranking did not necessarily describe the same form of 

automation. For example, a higher DOA ranking within a study could be represented 

both by higher levels within a stage, or later stages. However, additionally conducting 

post-hoc analyses including studies that explicitly varied the stage component of 

automation yet allowed for a reference of results at least to this automation 

characteristic. 

Certainly a superior approach would have assigned specific values to each type of 

automation thereby enabling a quantification of automation. Unfortunately, such a 

universal metric is not available yet, and it is doubted that it will be available in the near 

future given the countless instances of automation in miscellaneous contexts. 

Besides the discussed limitations, a strength of the study is the definition of dependent 

variables. These were chosen with regard to the main aspects that are typically affected 

by automation implementation in terms of possible benefits and costs. Dependent 

variables were defined broad enough to group the data of single studies while still 

representing a clear definition of the concept in question. With this approach, various 

measures were merged into a single variable, which also implied an aggregation of 

different evaluation levels. Particularly, the meta-variables for workload and situation 

awareness not only included subjective measures typically quantified by the 

NASA-TLX (Hart & Staveland, 1988) or the SAGAT (Endsley, 1988; Endsley & 

Garland, 2000) but also included objective measures like secondary task performance 

for workload or any operators’ errors like mode errors (Sarter, 2008), omission or 

commission errors (Mosier & Skitka, 1996) for situation awareness. Thus, the 

generalisability and external validity of results increased. 

In sum, the realised approach was considered as an appropriate analysis to provide a 

first access to an overall picture of impacts of function allocation. Particularly with 

regard to the data base which made a classic meta-analysis impractical, the overall 

pattern of raw effects and statistical results revealed a quantitative summary that has not 

been presented before in this detail and certainly offers an invitation for future research. 

 

5.3.2 Critical Considerations Concerning the Laboratory Experiments 

To evaluate impacts of reliability and function allocation on operator performance and 

cognitive demands the experimental task had to meet certain criteria. First, it had to be 

ensured that findings of the experiments can be generalised at least in main features to 

real world settings. Therefore, the experimental task should represent the complexity of 
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real world settings while controlling for confounding factors. A typical working 

condition in complex human-machine systems is the requirement to work on several 

tasks concurrently. In this regard, laboratory experiments should provide a setting in 

which task fulfilment contains working on several tasks at the same time. Task 

fulfilment should be possible when working manually on all tasks; however, it should 

induce a high amount of cognitive effort. In this context, an implementation and use of 

automation in at least one of those tasks provides a coherent, realistic, and beneficial 

support.  

Another important criterion that had to be met is the possibility to manipulate 

automation reliability and function allocation as independent variables within the 

experimental setting. Additionally the experimental setting should allow for an 

evaluation of dependent measures according to the single tasks that have to be 

performed. To evaluate cognitive demands in terms of attention allocation, eye-tracking 

measures had to be applicable to the experimental setting. 

Last but not least, while fulfilling all the aforementioned criteria the experimental task 

had to be feasible for novices, i.e. for participants that have no prior experience with the 

task. Regarding economic aspects, this also implies that the experimental task further 

had to be easy to learn in a short period. 

The Multi Attribute Task Battery (MATB; Comstock & Arnegard, 1992; Miller, 2010) 

meets all these criteria. The version which was used for the two experiments is a 

multi-task flight simulation, which consists of a two-dimensional compensatory 

tracking, engine-system monitoring, and fuel resource management that have to be 

performed concurrently. While the tasks of the MATB are easy to learn they still 

provide a challenging job that mirrors the cognitive demands of real world settings. 

Automation reliability could be manipulated to any level by implementing misses of the 

system in the monitoring task. Furthermore, function allocation could be varied. In this 

respect, automation could refer to only information acquisition in terms of alerting 

participants when a deviation in one of the parameters occurred or automation could 

resume the whole monitoring task by detecting malfunctions and resetting the affected 

parameter automatically. 

A drawback of the MATB is the fact that it is not possible to determine a normative 

model for performance and attention allocation (Moray & Inagaki, 2000). The 

evaluation of dependent variables did not allow for conclusions of good or bad 

performance, nor did it allow interpretations if observed attention allocation strategies 

were appropriate or not. To overcome this deficiency, manual control groups were 

added to the experimental designs. These allowed evaluating dependent measures in 
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relation to performance and attention allocation when no automation support was 

available. Therefore, (the extent of) benefits and costs of automation could be 

unambiguously determined.  

A possible limitation of the conducted studies concerns the sample of participants. 

These were exclusively students from one of the three universities of Berlin, mainly 

from the TU Berlin. The acquisition of participants from a student population is a 

common approach in research domains like psychology or human factors. However, this 

fact might limit the representativeness of results to real world settings as differences in 

the population of students and real operators in terms of skills or attitudes cannot be 

excluded (Brewer & Crano, 2014). 

Concerning study II, the generalisability of results may further be limited to a certain 

type of automation: information automation (stage 1 and 2, respectively). The 

automation implemented in this study represented a binary alarm system. Therefore, it 

could not be clarified to what extent results were transferable to more complex 

automation like decision automation. Correction of this flaw was objective of the third 

study. Results successfully supported findings of study II. However, only two very 

extreme forms of automation were compared: automation that supports the subtask of 

information acquisition (again a binary alarm system) and automation that resumes the 

whole task. This was done to ensure that they were discriminative enough to induce 

differences in terms of operators’ performance and cognitive demands to be able to 

examine interaction effects in combination with reliability. However, as has already 

been discussed in detail in chapter 4.5, this realisation of automation support just might 

have accounted for non-findings on the impact of function allocation on performance 

and attention. Because the interaction with automation that resumes an entire task 

represents a special form of interaction, i.e. that of a supervisor with a subordinate, it 

might not be representative for all kinds of decision automation (particularly stage 3 

automation). Therefore, results have to be interpreted with caution. Further research 

should investigate not only if reliability has differential effects for different stages of 

automation but more precisely should systematically vary automation stage by stage to 

gain detailed insight into effects on operators’ performance and cognitive demands. 

With reference to experimental design, both studies were conducted with a 

between-subjects design. For study II this resulted in five independent groups, four 

experimental conditions (different reliability levels) and one manual control group. 

Study III included four experimental groups (combinations of function allocation and 

reliability levels) and two manual control groups. Although a within-subjects design 

could have revealed even stronger evidence concerning participants’ adaptation to 
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different reliability levels, this design alternative was rejected. Research has shown that 

the experience of a certain automation reliability is likely to influence subsequent 

behaviour (e.g. Bahner, Hüper, & Manzey, 2008; Manzey et al., 2012; Parasuraman & 

Manzey, 2010). Therefore, participants could have been affected by foregoing 

adaptation processes in subsequent reliability trials. Furthermore, a within-subjects 

design could have the unintended effect that participants do not perceive different 

reliability levels of automation but rather average over the trials they have done so far. 

Therefore, a between-subjects design was seen as the appropriate methodical decision to 

avoid possible confounding influences and to assure that participants perceived the 

reliability of “their” automation appropriately. This was also assured by a manipulation 

check. In both studies findings confirmed that the manipulation of reliability had 

worked successfully as the perceived reliabilities were systematically related to the 

actual reliability levels and significantly differed between the experimental conditions. 

This was a precondition for all further analyses. 

To evaluate the impact of reliability (and function allocation) on operator performance 

and cognitive demands dependent variables had to be defined. These were chosen in 

relation to the established hypotheses. Performance measures were evaluated separately 

for the three tasks participants had to work on. For the automation-supported monitoring 

task the dependent variable was defined as the joint performance of human and 

automation. This is in contrast to most studies that evaluated impacts of reliability on 

operator performance (e.g. Bailey & Scerbo, 2007; Parasuraman, Molloy, & Singh, 

1993; Wiegmann, Rich, & Zhang, 2001). These studies evaluated performance in an 

automation-supported task solely by operator performance. This does not seem to be 

appropriate as the concept of an automated assistance is to support the operator and to 

resume parts of the task; i.e. the task is performed jointly. As a consequence it was 

considered important to respect the joint human-automation performance while 

evaluating overall performance benefits or costs associated with this sort of automated 

support. 

The additional introduction of eye-tracking measures as dependent variables is a further 

strength of the current studies. This supplementary evaluation level, i.e. eye-tracking 

data for visual attention allocation, complies with Moray’s and Inagaki’s (2000; Moray, 

2003) assertion to evaluate operators’ performance not only by fault detection but first 

and foremost by an analysis of their attention allocation strategies. These variables were 

important because they could explain findings on the performance level as they 

provided an insight into the strategies participants applied when working on the 

concurrent tasks.  
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In sum, the methodical approaches in all three studies were considered to be appropriate 

to examine the research questions. Moreover, the chosen approaches resolved some 

critical problems of prior research (e.g. provision of a more consistent result pattern by 

applying a meta-analytic approach in study I, applying eye-tracking measures in studies 

II and III) and therefore provided a sound basis for an interpretation of results. In this 

regard, the knowledge gained from the reported studies offers an invitation to future 

research, which is addressed in the last part of this work. 

 

5.4 Outlook 

This thesis provides a first step towards a specification of the flow chart model 

regarding decisions of function allocation in automation design (Parasuraman et al., 

2000). Going beyond, findings also constitute a foundation for further research on 

human-automation interaction. This last chapter will relate the most important findings 

of this thesis to new research topics starting with aspects of function allocation. 

The finding that benefits and costs of automation directly trade off provides a sound 

basis for future research. Particularly, research on adaptive automation should take the 

proposed boundary between information automation and decision automation into 

account. Adaptive automation is defined as the “… rational assignment of system 

functions to human and machine on a real-time basis for workload management and 

performance optimization.” (Hancock et al., 2013, p. 9). Most studies available so far, 

operationalise modes of adaptive automation as either a complete automation of the task 

or the complete adoption of the task by the human operator (e.g. Bailey, Scerbo, 

Freeman, Mikulka, & Scott, 2006; Kaber, Wright, Prinzel, & Clamann, 2005; Prinzel, 

Freeman, Scerbo, Mikulka, & Pope, 2003). This would reflect the extremes in every 

function allocation framework (e.g. Sheridan & Verplank, 1978) and does not 

accommodate the notion that automation is not an all-or-none decision. Findings of the 

meta-analysis suggest that a variation between information automation (stage 1 and 2) 

and decision automation (stage 3 and 4) could be of special interest regarding an 

optimal exploitation of automation benefits while reducing costs to an acceptable level. 

Another major finding of the current thesis concerns a second boundary: the reliability 

cut-off around 70% below which automation cannot be considered as supportive for 

overall system performance and operator cognitive demands. In the studies revealing 
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this finding, reliability was exclusively defined by automation misses. However, 

particularly in interaction with information automation like alarm systems, false alarms 

are of serious concern (Breznitz, 1984; Dixon et al., 2007; Meyer, Wiczorek, & Günzler, 

2014). This kind of automation error was not regarded in the current thesis. 

Nevertheless, there is evidence that the proposed reliability boundary also seems to 

apply to unreliability in terms of false alarms (e.g. Dixon & Wickens, 2006; Dixon et 

al., 2004, 2007; Wickens et al., 2005; Wickens & Dixon, 2007). Therefore, the critical 

boundary seems to be a robust effect. Further research should examine why operators 

seem to perceive automation not useful when it is less reliable than 70%. From an 

objective viewpoint, an automation support that detects up to 70% of malfunctions still 

increases overall performance and has the potential to unload users’ mental demands of 

the supported task. However, participants in the second and third study did not take 

advantage of this potential workload reduction. If the rationale underlying the expressed 

behaviour is known this might provide insight into what is missing for operators to be 

able to benefit from automation.  

Moreover, future studies could focus on the relation between operators’ adaptation to 

automation reliability above 70%. This could provide further information on operators’ 

sensitivity to reliability changes. A high sensitivity could be assumed when the relation 

of behaviour/ attention and reliability follows a linear function, i.e. the higher 

automation’s reliability the less attention is allocated to automation. An alternative 

relation could reveal a stepwise adaptation process, which would imply further 

reliability boundaries. These boundaries would mark a range of reliability levels to 

which operators behave indifferently. A more elaborated knowledge about operators’ 

adaptation to automation’s characteristics could help in designing reliability research. 

For example, if a stepwise adaptation was revealed, future studies could use this 

information to define distinct reliability levels that affect participants’ behaviour 

(definition of high, medium, low reliability that is perceived as such). Moreover a 

stepwise adaptation process could be relevant for automation designers. Nowadays, one 

main challenge in interaction with alarm systems is concerned with the reduction of 

false alarms. If studies revealed that operators adapt stepwise, i.e. behave indifferent 

towards a range of reliabilities, then benchmarks could be defined that have to be 

undershot to prevent, for example, an ignorance of alarms. On the other hand, reliability 

ranges could be used to define the minimum reduction of false alarms that is needed to 

imply a change in operators’ behaviour.  

The third main aspect of this thesis focussed on possible interaction effects of function 

allocation and automation reliability (Study III). As neither main effects of function 
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allocation nor differential effects were revealed, further research is needed. As 

numerous studies have revealed at least an impact of function allocation on operator 

performance (e.g. Cummings & Mitchell, 2007; Manzey et al., 2012; Onnasch, 

Wickens, et al., 2014; Rovira et al., 2007), possible interaction effects with reliability 

cannot be excluded based on non-findings of the last study. Future research should 

examine impacts of reliability by systematically varying automation stage by stage to 

gain detailed insight into effects on operators’ performance and cognitive demands. In 

combination with prior research, findings of this thesis point to differential effects not 

only regarding information and decision automation, but also to differences between 

automation resuming functions up to decision-making and an automation of an entire 

task. The automation of cognitive task components might be even more critical for 

human operators than automating the complete task. Therefore, following studies should 

investigate if the boundary of function allocation is a real boundary or rather constitutes 

some kind of “function allocation valley” concerning stage 3 automation in which 

negative consequences for human operators are most likely. 

In conclusion, this thesis contributed to a sound understanding of human-automation 

interaction. Findings of single studies were combined to reveal more valid and 

representative results, thus providing an overall picture of impacts of function allocation 

on performance and cognitive demands. Concerning reliability, existing research was 

broadened in two ways: First, impacts of a fine grained range of reliability levels were 

examined, and second, not only impacts on operators’ performance but also on 

attentional strategies, which shed light on underlying processes of performance 

outcomes. Moreover, the lastly presented study combined both automation 

characteristics to look for differential effects that are not predictable when considering 

just one factor, either function allocation or automation reliability.  

Beyond that, results of the single studies were integrated in the flow chart model for 

automation design (Parasuraman et al., 2000) to specify the evaluation processes when 

looking for an appropriate function allocation between human and automation. 

Therefore, this thesis provided not only new theoretical insight and an incitation for 

future research, but also detailed guidelines that may support practitioners in effective 

and efficient automation design. 
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