

Dynamic Upgrade of Distributed Software

Components

vorgelegt von

Dipl.-Ing.

Marcin Solarski

aus Kraków

von der Fakultät IV –Elektronik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
– Dr.-Ing. –

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr.-Ing. Stefan Jähnichen
Berichter: Prof. Dr. Dr. h.c. Radu Popescu-Zeletin
Berichter: Prof. Dr. Miroslaw Malek

Tag der wissenschaftlichen Aussprache: 26. Januar 2004

Berlin 2004
D 83

 i

Zusammenfassung

Die Aktualisierung von komplexen Telekommunikationssystemen, die sich durch die ihnen
eigene Verteiltheit und hohe Kosten bei System-Nichtverfügbarkeit auszeichnen, ist ein
komplizierter und fehleranfälliger Wartungsprozess. Noch stärkere Herausforderungen bergen
solche Software-Aktualisierungen, die die Systemverfügbarkeit nicht beeinträchtigen sollen.
Dynamic Upgrade ist eine Wartungstechnik, die das Verwalten und die Durchführung von
Software-Aktualisierung automatisiert und damit den Betrieb des Systems während der
Wartungszeit nicht unterbricht.
In dieser Arbeit wird das Dynamic Upgrade als ein Sonderfall der Bereitstellung und
Inbetriebnahme (Deployment) von Software betrachtet, in dem Teile der einen Dienst
repräsentierenden Software durch neue Versionen im laufenden Betrieb ersetzt werden. Die
Problemstellung des Dynamic Upgrade wird anhand einer vom Autor erarbeiteten Taxonomie
erläutert, die die Entwurfsmöglichkeiten für ein System zur Unterstützung von Dynamic
Upgrade hinsichtlich dreier Systemaspekte klassifiziert: Deployment, Evolution und
Zuverlässigkeit (Dependability). Mit Hilfe dieser Taxonomie lassen sich auch andere Systeme
zur Unterstützung von Dynamic Upgrade miteinander vergleichen. Aufbauend auf einem
ausführlichen Vergleich über existierende Ansätze zur Unterstützung von Dynamic Upgrade,
wird in der vorliegenden Arbeit eine Lösung entwickelt und dargestellt, die Dynamic Upgrade
in verteilten komponentenbasierten Software-Systemen ermöglicht.
Ausgehend von der Problemanalyse wird mit Hilfe des Unified Process ein als Deployment
and Upgrade Facility bezeichnetes Modell entwickelt, das sowohl die benötigten
Leistungsfähigkeiten eines Dynamic Upgrade unterstützenden Systems als auch
Eigenschaften von aktualisierbaren Software-Komponenten beschreibt. Dieses Modell ist
Plattform-unabhängig und einsetzbar für mehrere unterliegende Middleware-Technologien.
Das Modell wird in einem Java-basierten prototypischen Rahmenwerk programmiert und um
plattformspezifische Mechanismen auf der Jgroup/ARM Middleware erweitert. Das
Rahmenwerk umfasst allgemeine Entwurfslösungen und –muster, die sich für die
Konstruktion einer Unterstützung für Dynamic Upgrade eignen. Es erlaubt die Kontrolle der
Lebenszyklen von Aktualisierungsprozessen und ihre Koordination im Zielsystem. Darüber
hinaus definiert es eine Reihe von Unterstützungsmechanismen und Algorithmen für den
dynamischen Aktualisierungsprozess, der gegebenenfalls mit unterschiedlichen Zielsetzungen
und unter verschiedenen Randbedingungen erfolgen soll. Insbesondere wird ein
Aktualisierungsalgorithmus für replizierte Software-Komponenten dargestellt.
Das entwickelte Rahmenwerk wird zwecks Plausibilitätsprüfung der dargestellten Ansätze
und zur Auswertung der Auswirkungen der Dynamic Upgrade unterstützenden Mechanismen
im Hinblick auf Systemperformanz in mehreren Experimenten eingesetzt. Diese quantitative
Evaluierung der Experimente führt zu einer Spezifikationen eines einfachen
Bewertungsmaßstabs (Benchmark), der sich zum Vergleich von Dynamic Upgrade
unterstützenden Systemen eignet.

Stichwörter: dynamic (online) upgrade, Dienstbereitstellung, Verwaltung von
Systemänderungen zur Laufzeit, Hochverfügbarkeit, Komponenten-Technologie, verteilte
objektorientierte Systeme, middleware

 iii

Abstract

Upgrading complex telecommunication software systems, characterized by their inherent
distribution and a very high cost of system unavailability, is a difficult and error-prone
maintenance activity. Even more challenging are such software upgrades that do not
compromise the system availability. Dynamic upgrades is a technique, which automates
performing and managing upgrades so that the software system remains operational during the
upgrade time.
In this thesis, the dynamic upgrade is considered as a special case of software deployment, in
which a running service has to be replaced with its new version. The problems of dynamic
upgrades are introduced using a novel taxonomy that classifies the design issues to be solved
when building support for dynamic upgrade with regard to three system aspects: deployment,
evolution and dependability and provides a reference to comparing other systems supporting
dynamic upgrades. An extensive and thorough survey of existing approaches to dynamic
upgrades follows and, furthermore, is as a starting point to designing a solution supporting
dynamic upgrades in distributed component-based software systems.
Derived from the problem analysis, a model called Deployment and Upgrade Facility
describing the capabilities needed for managing and performing dynamic upgrades as well as
properties of upgradable software components is developed using the Unified Process
approach. The model is platform independent and can be used with a range of underlying
middleware technologies. The model is implemented in a Java-based prototypical framework
and extended with platform specific mechanisms on top of the JGroup/ARM middleware. The
framework captures common design solutions and patterns for building a support for dynamic
upgrade. The framework allows for controlling life-cycle and coordination of upgrade
processes in the system. It also defines a number of supporting mechanisms and algorithms for
the upgrade process. A special attention is drawn to an upgrade algorithm for replicated
software components for achieving a synergy of replication techniques and dynamic upgrade .
The developed framework is used to validate the feasibility of the approach and to measure
the overhead of the mechanisms supporting dynamic upgrade with regard to the performance
of the system being upgraded in a number of practical experiments. This quantitative
evaluation of the experiments leads to a specification of a simple benchmark for systems
supporting dynamic upgrades.

Keywords: dynamic (online) upgrading, service deployment, runtime change management,
high availability, component based technology, distributed object systems, middleware

 v

Acknowledgements

Hereafter I would like to express my great thanks to Prof. Radu Popescu-Zeletin (Technical
University of Berlin) who has supervised my thesis and helped me with his comments and
hints on improvements of the thesis text. I appreciate the support of Prof. Miroslaw Malek
from the Humboldt University Berlin who has contributed with his reviews and discussions
especially on the evaluation of the experimental part of the work.
At this point, I would like to mention my colleagues at Fraunhofer FOKUS that has been my
office for the time of writing the dissertation. Many of them supported me with their expertise
and the practical know-how that was of a great value to me. Dr. Eckhard Möller, the Head of
the PLATIN Competence Center, as well as Gerd Schürmann were the ones encouraging me
to progress, Dr. Klaus-Dieter Engel and Dr. Klaus-Peter Eckert were investigating my
attempts thoroughly and giving their feedback. I also appreciate the support of Thomas Becker
who served me with his Java expertise and Robert Joop who friendly assisted me with
configuring and tuning the Linux-based testbed for my experiments. Prof. Emanuell Mendes
from University of Sao Paulo in Brazil visiting the FOKUS institute gave me a hand
expressing his critics in the early stages of writing this thesis. Last but not least, Jürgen
Dittrich and Oliver Fox would always express their enthusiasm about the intermediate results
and give me lots of pragmatic advice.
This work would not be what it is now without the support of Prof. Bjarne Helvik from
NTNU. Hein Meling has supported me with his expertise in the Jgroup toolkit that I used to
implement a part of the software solution resulting from this thesis. At the same time, I am
grateful to Prof. Oddvar Risnes, the director of the Telenor R&D Department in Telenor,
Norway for providing me with his support during my scholarship at Telenor. Sune Jackobson
and Erik Berg had a few fruitful discussions at that time as well.
Finally, I owe great thanks to my family: my dad and mum who have been always
encouraging me to carry on with my education and who enabled many of my previous
achievements that led me to successful finalization of my doctorate; my sister Justyna who
mobilized me to be an example to her. Last but not least, a big beso for my lovely wife Iliana
for her patience during all that time I had to be away on conferences and other events related
to my work and a nice ambiente that she created at home.

 vii

TA B L E O F C O N T E N T S

1 INTRODUCTION 3
1.1 MOTIVATION... 3
1.2 GOALS ... 4
1.3 SCOPE .. 5
1.4 APPROACH .. 5
1.5 THESIS STRUCTURE .. 6

2 DISTRIBUTED COMPONENT TECHNOLOGY 9
2.1 CHARACTERISTICS OF DISTRIBUTED SYSTEMS ... 9
2.1.1 Distribution Complexity.. 9
2.1.2 Dependability .. 10
2.2 DISTRIBUTED OBJECTS... 10
2.3 SOFTWARE COMPONENTS .. 11
2.4 MIDDLEWARE ... 14
2.4.1 Middleware Features ... 14
2.4.2 Taxonomy Of Middleware .. 15
2.4.3 Middleware-based Distributed System Architecture .. 17
2.5 SUMMARY.. 18

3 DYNAMIC UPGRADES 19
3.1 BASIC DEFINITIONS .. 19
3.2 COMPONENT AS UNIT OF UPGRADE ... 22
3.3 ASPECTS OF DYNAMIC UPGRADES .. 22
3.3.1 Evolution ... 23
3.3.2 Dependability .. 23
3.3.3 Deployment ... 24
3.4 PROBLEM TAXONOMY .. 25
3.4.1 Evolution ... 26
3.4.2 Dependability .. 28
3.4.3 Deployment ... 29
3.5 UPGRADE SUPPORT LOCATION ... 31
3.6 RELATED TOPICS .. 33
3.6.1 Fault tolerance... 33
3.6.2 Code Mobility and Mobile Agents.. 34
3.7 SUMMARY.. 35

 viii

4 STATE OF THE ART 37
4.1 INTRODUCTION ... 37
4.2 INVESTIGATED SYSTEMS .. 38
4.2.1 CORBA ... 38
4.2.2 Java.. 39
4.2.3 C2 .. 42
4.2.4 CONIC... 42
4.2.5 DRASTIC.. 44
4.2.6 Eternal ... 46
4.2.7 PODUS.. 47
4.2.8 POLYLITH ... 48
4.2.9 SOFA/DCUP... 50
4.2.10 STL.. 51
4.2.11 CHORUS extensions... 51
4.2.12 Other approaches... 52
4.3 EVALUATION OF PREVIOUS WORK ... 52
4.3.1 Comparison criteria ... 52
4.3.2 Comparison ... 55
4.3.3 Conclusions ... 58

5 MODEL FOR SERVICE DEPLOYMENT AND UPGRADE 63
5.1 REQUIREMENT ANALYSIS... 64
5.1.1 General functional requirements ... 64
5.1.2 Non-functional requirements... 65
5.1.3 Functional requirements on dynamic upgrade process ... 65
5.1.4 Non-functional requirements on dynamic upgrade process .. 65
5.1.5 Upgrade Management ... 65
5.1.6 Upgradable Components ... 66
5.2 USE CASE MODEL .. 66
5.2.1 Capabilities.. 67
5.2.2 Actors .. 67
5.2.3 Use Cases .. 68
5.3 COMPONENT MODEL .. 77
5.3.1 Implementation Phase Concepts ... 78
5.3.2 Deployment phase concepts .. 78
5.3.3 Runtime phase concepts .. 83
5.3.4 Phase Transitions .. 83
5.4 DESIGN AND IMPLEMENTATION ... 85
5.4.1 Approach Summary... 85

 ix

5.4.2 Realization overview... 86
5.4.3 Discussion ... 96
5.5 SUMMARY.. 97

6 MANAGING DYNAMIC UPGRADES 99
6.1 DOMAIN MODEL ... 99
6.1.1 Overview ... 99
6.1.2 Conceptual Classes.. 101
6.1.3 Upgrade Management Dimensions ... 102
6.2 DUF DESIGN MODEL.. 104
6.2.1 Package Overview... 104
6.2.2 ComponentModel package.. 105
6.2.3 DUMF package ... 105
6.2.4 UpgradeAlgorithms package ... 110
6.2.5 Infrastructure package ... 111
6.2.6 TargetSystem package... 113
6.2.7 Policies package .. 116
6.3 IMPLEMENTATION .. 120
6.3.1 Methodology and Tools .. 120
6.3.2 Code structure ... 120
6.3.3 Component deployment .. 121
6.4 SUMMARY.. 123

7 PERFORMING UPGRADES: THE ALGORITHMS 125
7.1 NON REPLICATED COMPONENT .. 125
7.1.1 System Assumptions ... 125
7.1.2 Algorithm Overview.. 125
7.1.3 Algorithm Design .. 126
7.1.4 Discussion ... 127
7.2 UPGRADING AN ACTIVELY REPLICATED OBJECT ... 128
7.2.1 System Model.. 128
7.2.2 System Assumptions ... 129
7.2.3 Algorithm Overview.. 130
7.2.4 Algorithm Design .. 130
7.2.5 Discussion ... 132
7.3 UPGRADING A PASSIVELY REPLICATED OBJECT .. 133
7.3.1 System Model.. 133
7.3.2 Algorithm Assumptions .. 134
7.3.3 Algorithm Overview.. 134
7.3.4 Discussion ... 135
7.4 IMPLEMENTATION .. 135
7.4.1 Underlying middleware platform.. 135
7.4.2 Jgroup/ARM Architecture... 136

 x

7.4.3 Layers .. 137
7.4.4 Group Manager ... 137
7.4.5 Upgrade Layer... 138
7.4.6 Upgrade Manager .. 139
7.4.7 Conclusions ... 140
7.5 SUMMARY.. 140

8 SOLUTION EVALUATION 142
8.1 AIM.. 142
8.2 EXPERIMENT DESCRIPTION.. 143
8.2.1 Experiment Configuration and Scenario ... 143
8.2.2 Testbed and experiment constraints .. 145
8.2.3 Benchmark metrics and Methodology .. 147
8.3 RESULTS .. 148
8.3.1 Server Responsiveness Analysis ... 148
8.3.2 Upgrade Time Analysis... 153
8.4 CONCLUSION ... 154

9 CONCLUSIONS 157
9.1 CONTRIBUTIONS ... 157
9.2 NOVELTY... 158
9.3 GOAL FULFILLMENT ... 159
9.3.1 General Functional Requirements... 159
9.3.2 General Nonfunctional Requirements... 159
9.3.3 Requirements on Upgradable Components... 160
9.4 OPEN ISSUES AND FUTURE WORK.. 160

ACRONYMS 163

GLOSSARY 165

BIBLIOGRAPHY 169

INDEX 177

 xi

TA B L E O F F I G U R E S

Figure 1. Middleware: Layer Model ... 14
Figure 2. Reference Model for Component-based Middleware. .. 18
Figure 3. The phase model of software lifecycle. ... 25
Figure 4. The taxonomy of the dynamic upgrade problems. .. 26
Figure 5. Component upgrade issues. ... 27
Figure 6. The infrastructure to support dynamic upgrading. .. 32
Figure 7. Classification of different approaches with respect to the granularity of the units of

upgrade. ... 38
Figure 8. Sequence diagrams showing a two-phase dynamic upgrade algorithm in the

proposed J2EE solution. .. 42
Figure 9. Configuration management in CONIC.. 44
Figure 10. State transition diagram of a CONIC application.. 44
Figure 11. A Contract between Zone A and Zone B .. 46
Figure 12. Polylith MIL definitions for a simple application. .. 49
Figure 13. Transferring stack frames. ... 50
Figure 14. Main Use Case Diagram of the DUF. ... 69
Figure 15. Activity diagram for a service processed by the DUF... 70
Figure 16. Activity diagram for use case “release service”. ... 71
Figure 17. Activity diagram for use case “deploy service”... 72
Figure 18. Process of matching service deployment requirements against capabilities of

a distributed system. .. 73
Figure 19. Activity diagram for use case “upgrade service”... 75
Figure 20. Activity diagram for use case “remove service”. .. 77
Figure 21. The implementation phase concepts of the component model.............................. 78
Figure 22. An example component-based service compliant to the component model. 79
Figure 23. The deployment phase concepts of the component model. 80
Figure 24. The deployment-phase relations between the component and its target

environment... 82
Figure 25. Basic runtime interfaces of component runtime images. 83
Figure 26. The service component Life-cycle phases. .. 84
Figure 27. The life cycle phases of the code module.. 85
Figure 28. Design classes of the ASP system. .. 87
Figure 29. Data structure with the code module information in the Code Manager............... 89
Figure 30. Collaboration Diagram: Releasing a service ... 89
Figure 31. Collaboration Diagram: Deploying a service . .. 90
Figure 32. Collaboration Diagram: Upgrading a service.. 92
Figure 33. Collaboration Diagram: Removing a service .. 93
Figure 34. Collaboration Diagram: Withdrawing a service.. 94
Figure 35. The architecture of the DUF and its distributed system with highlighted

components related to the upgrade. ... 100
Figure 36. The conceptual classes of the DUF system. .. 102
Figure 37. The DUF package structure and package interdependencies. 105
Figure 38. The state diagram for an upgrade algorithm.. 106
Figure 39. Class diagram for the DUMF package. ... 108
Figure 40. An activity diagram for the UpgradeInititorImpl. 109
Figure 41. Handling an upgrade request(sequence diagram).. 110

 xii

Figure 42. Class diagram for UpgradeAlgorithms package. 111
Figure 43. Main definitions of package DUF.DUFInfrastructure............................. 113
Figure 44. Main classes and interfaces in package DUF.TargetSystem. 114
Figure 45. Reaching an upgrade point and a state transfer. .. 115
Figure 46. The upgrade management policy model.. 117
Figure 47. Deployment diagram for the DUF components. ... 121
Figure 48. An example deployment of the dynamic DUF components................................ 122
Figure 49. Upgrade process of a non-replicated component .. 126
Figure 50. Coordinating an upgrade process. ... 126
Figure 51. The state machine system model. .. 129
Figure 52. The upgrade algorithm from the viewpoint of a replica. 131
Figure 53. The upgrade algorithm at work: scenario with 2 replicas and no crashes. 132
Figure 54. The primary-backup system model. .. 134
Figure 55. Upgrade process of a passively replicated component .. 135
Figure 56. The architecture of Jgroup/ARM... 137
Figure 57. Upgrade layer stack ... 138
Figure 58. Interactions involved in an upgrade... 139
Figure 59. The experiment configuration. .. 143
Figure 60. The difference in processing multicast and anycast requests by an actively

replicated server... 144
Figure 61. Processing of client requests during the upgrade process. 145
Figure 62. The measurement method for the upgrade process time. 148
Figure 63. Average Response Times in experiment R2 m1 rX .. 149
Figure 64. Average Response Times in experiment R2 m3 r20 ... 150
Figure 65. Average Response Times in experiment Rx m1 r20:.. 150
Figure 66. Average Response Times in experiment R3 m2 rX. ... 152
Figure 67. Average upgrade times for experiments with method 1...................................... 153
Figure 68. Average upgrade times for experiments with method 2...................................... 154

 TA B L E O F TA B L E S

Table 1. Comparison of DU systems with a unit of upgrade which is a component. 57
Table 2. Comparison of DU systems with a unit of upgrade which is not a component. 58
Table 3. Interactions during releasing a service. .. 89
Table 4. Interactions during deploying a service.. 91
Table 5. Interactions during upgrading a service. .. 92
Table 6. Interactions during removing a service. ... 93
Table 7. Interactions during withdrawing a service. .. 94
Table 8. Reaching an upgrade point with support of UpgradableStub. 116
Table 9. Class Interactions during the NRSUA algorithm. .. 127
Table 10. Experiment independent parameters. ... 147
Table 11. Average response times during and after the upgrade process for test method 1. 151
Table 12. Average response times during and after the upgrade process for test method 2. 152

 1

The Basics

 2

 3

1 Introduction
Change management is indispensable in most distributed software systems which are
continually being modified throughout their life cycle. Managing the changes at runtime in
distributed systems is a complex task that requires much expertise. In highly-available
systems, performing software upgrades is even more challenging because of strong
requirements on upgrade process dependability and hard constraints on the system downtime.
Dynamic upgrades, a technique that allows for introducing changes to a running software
system, deals with these challenges. Generally speaking, it allows for replacing pieces of
software in a running system with new ones.
Dynamic upgrades is the central topic of this thesis. It is investigated in the context of
distributed systems and component-based middleware technology. The rest of this chapter is
structured as follows: in section 1.1 the motivation for investigating these technique is given.
the goals, scope and approach of this thesis are described in sections 1.2, 1.3 and 1.4
correspondingly. The structure of the rest of the thesis is given in section 1.5.

1.1 Motivation
This thesis is motivated by three well-known facts about the software systems:

• Evolution of software systems is inevitable. Software systems change constantly and
need to be upgraded a couple of times in their life time. The spectrum of software
change is wide and ranges from introducing program corrections or performance
improvements of existing system components to complex changes of the overall
functionality and/or structure of the system necessary to adapt the system to new user
requirements.

• High availability and evolution mismatch. Conventional software upgrade mechanisms
are not good enough for high available systems as they introduce maintenance breaks
which reduces the system availability. In a conventional approach, the system runtime
has to be interleaved with maintenance breaks in which the necessary changes are
manually applied to the system. This approach, however, is not suitable in distributed
systems that have to be high available.

• Software upgrades are critical to the operation of the system. In many existing systems,
human interaction is required to upgrade a system. However, upgrading a software
system introduces a high risk of an error during the upgrade or potentially after the
upgrade is complete. Moreover, managing changes to a running system in systems may
require high skills that makes the upgrade process expensive.

The technology of dynamic upgrades is not application domain specific. There are many
application domains, in which dynamic upgrades can be profitable. In most cases, these
applications belong to a wider class of software systems having strong requirements on high
availability and reliability. Typical application domains include:

• Infrastructure: Telecommunications, electricity supply.
• Electronic Business and Government: Online shopping systems serving several time-

zones, mission-critical nation-wide governmental facilities (e.g. tele-voting system).
• Banking: ATMs, online banking.
• Industrial process control: Furnaces or oil refineries operating around the clock.
• Medical applications: Life support systems.

 4

Moreover, many researchers and domain experts are aware of the need of investigating
techniques enabling upgrading systems on the fly. For instance, in the telecommunication
domain, Schulzrinne states in a workshop on the IP telephony [100]: “Probably the major
challenge faced by Internet telephony is moving from the current Internet reliability of about
99% or 99,5% to 99,999, i.e. no more than five minutes of unavailability per year. This
requires a different mindset, not just protocol and technology fixes, as upgrades have to be
done while the system is running and every component has to engineered to have a hot stand-
by”.
Many applications from various industry domains require some support for dynamic upgrades.
This support is, thus, not application domain specific and should be provided as a generic
service to the domain specific applications. In the distributed systems, generic services are part
of a middleware platform. That is why, dynamic upgrades are investigated in the context of
middleware technologies in this thesis.
Furthermore, the thesis is motivated by the arguments resulting from the survey of the state of
the art:

• Weak support for dynamic upgrades for standard distributed software technologies. The
standard middleware has only recently identified the problem of dynamic upgrades
and started related initiatives. The ongoing or first versions of the standards provide
solutions that are focused on one specific way of performing upgrades.

• A more general approach is required. The existing solutions are proprietary and the
standard solutions to come are specific to the underlying software technology. There
is a need to handle the dynamic upgrades at a higher level of abstraction for the sake
of the solution’s reusability and adaptability to the underlying technologies.

1.2 Goals
The primary goal of this thesis is to develop a technology-independent model describing
functionalities and capabilities supporting upgrades of distributed systems at runtime. The
model should:

P1. describe the capabilities needed to support dynamic upgrades in distributed software
systems,

P2. define the properties of distributed software components enabling their upgradability,
P3. be general enough to abstract the specifics of the component application domain and

possibly the idiosyncrasies of a certain programming environment,
P4. be applicable to the currently available middleware technologies,
P5. be expressed in a well-known notation to be easily understandable and reusable.

The second goal of this thesis is to develop a system compliant to the model above. The
solution should:

P6. support performing and managing dynamic upgrades of distributed software
components in compliance with the model defined above,

P7. be practically validated as a proof of concept using, and extending if necessary, one
of the existing middleware technologies providing the runtime environment and
deployment support for distributed software systems,

P8. be extendable by various supporting mechanisms for performing and managing
dynamic upgrades,

P9. be as much reusable and portable as possible.

 5

P10. be evaluated with regard to the promised increase in system availability using
quantitative tests.

1.3 Scope
This work addresses miscellaneous issues relevant to building distributed software systems
capable of being upgraded on the fly. The scope of investigation is primarily targeted at
systems built with distributed object approach, distributed component technology extensions
and its existing middleware realizations. The investigation scope is limited to issues regarding
the application and the middleware platform that the distributed applications are running on.
The questions that are to be answered in this thesis are:

• What deployment and runtime mechanisms does a platform, on which distributed
application run, need so that applications can be dynamically upgraded?

• What deployment techniques are required for such applications?
• In how far is it possible to upgrade software on the fly without any breaks in its

operation?
• When and under what conditions is software upgrade possible on the fly?
• How to perform an application upgrade so that it is transparent to the users? What kind

of transparency issues have to be addressed?
• How does software replication and other high availability techniques relate to dynamic

upgrade?
• Is it possible to develop applications without regarding the dynamic upgrade

capability? If not, how does the software have to be extended for this reason? What
consequences does it have on the application development?

• What is the overhead of introducing the dynamic upgrade capability to the original
software system?

On the other hand, other aspects of distributed systems are not taken into consideration,
including:

• Specific hardware support needed to upgrade applications on the fly. It is one of the
requirements that the upgrade support should be realized in software and run on
general purpose hardware. Moreover, the software solution should be easily portable.

• Features needed by existing analysis and design processes, notations and programming
languages to support building upgradable software. Even though the software
engineering aspects are investigated in this thesis, it is assumed that the upgradable
component-based software is developed using existing and main-stream object-related
and related development methodologies and tools.

• Mechanisms allowing for validating component implementations and their
substitutability in particular. Validation and other issues related to software evolution
are not investigated in this thesis. The solution presented is mainly concerned with
deployment and partly dependability related issues when performing dynamic
upgrades. These mechanisms, however, impact the freedom of changes supported by
the dynamic upgrades and therefore evolutionary aspects are mentioned wherever it is
necessary.

1.4 Approach
In this work, the problem of dynamic upgrades is investigated from the deployment

 6

perspective in that upgrade is a special case of software deployment. As a result, the starting
point of constructing a model for dynamic upgrades is a broader in scope deployment model
for distributed software. The model for service deployment and upgrades is then constructed
and validated in the projects the author has been participating. An important part of this model
is a component based service model that describes the life cycle of the service and the way the
service is structured.
The deployment model is then elaborated and focused with regard to dynamic upgrades. It
forms a framework that captures design solutions and patterns for building a dynamic upgrade
support.
The model is complemented by the dynamic upgrade support mechanisms. Selected
mechanisms supporting dynamic upgrade are designed and implemented. As a support for
dynamic upgrades is a generic service, the middleware platform is found suitable for placing
this support. In the thesis, the model and the supporting mechanisms are proposed to extend
available middleware platforms. The extensions are called Deployment and Upgrade Facility
and are implemented as a series of prototypes as a proof of concept.
On the other hand, this work does not intend to extend other elements of the development and
runtime environment for the distributed software systems. In particular, the programming
languages and corresponding development tools, like compilers, linkers or interpreters.
Neither are extensions of the operating systems underlying the middleware layer investigated.
Moreover, the approach presented in this thesis assumes using standard hardware platforms
and typical programming environments to provide a solution that has a potential to be used by
in the main-stream and commodity distributed applications

1.5 Thesis Structure
In this chapter, the introduction to the topic of dynamic upgrades was given. After the
motivation leading to this research including some real world applications was presented, the
thesis goals and the approach was put forward. The rest of the chapter was dedicated to a brief
but wide-angled survey of research topic related to dynamic upgrades.
In the subsequent chapters of this thesis, the technology of dynamic upgrades is mostly
investigated from the deployment perspective. An upgrade is shown as a deployment step in
the software life cycle.
The thesis is divided into two parts. The Basics and The Solutions. The first part presents some
introductory and background information needed to comprehend the rest of the thesis. It also
includes a comprehensive survey of the previous work on dynamic upgrades as well as
presents dynamic upgrade support of some mainstream middleware technologies. Part
Solutions describes my proposal of an approach to dealing with dynamic upgrades.
The remaining chapters of the introductory part of this thesis are structured as follows:
Chapter 2 gives the background information on the context of this thesis: distributed systems
and the component-oriented software engineering paradigm. Chapter 3 introduces the basic
concepts and problems related to dynamic upgrades.
Chapter 4 presents the support for dynamic upgrades in the mainstream middleware platforms
and discusses the needed extensions. It also investigates a range of dynamic upgrade support
systems, DUSS for short, and concludes with a feature comparison between them. It is also
a starting point to define the requirements for the solution presented in the next part of this
thesis.
Part The Solution contains the following chapters. Chapter 5 specifies a model for deployment
and dynamic upgrades for distributed component-based software systems. The model is

 7

determined by a list of requirements for a solution supporting service deployment and
dynamic upgrade, in particular. This model includes two parts: (1) a use case model which
defines the capabilities needed for service deployment and upgrades in component-based
distributed software systems constructed and (2) a component model, which defines how
component-based distributed system is structured. Chapter 5 also contains some
implementation details of the model.
The remaining chapters investigate the key aspects of the DUSS fundamental to this thesis:
dynamic upgrade management and algorithms. Whereas upgrade management is covered in
chapter 6, a variation of upgrade algorithms as well as a number of dynamic upgrade support
mechanisms are presented in chapter 7. A practical evaluation of the implementation of the
presented solution is the topic of chapter 8. Chapter 9 concludes the main part of the thesis
and gives a summary of the thesis contributions as well as some proposals for future work.
Attached to the thesis is the list of acronyms, a glossary of terms and a list of references.

 9

2 Distributed Component Technology
This chapter introduces the context of this thesis, namely distributed systems and the
component oriented software technology. In section 2.1 the key characteristics of distributed
systems in general are briefly presented. The focus of description is put on dependable
distributed systems, in which dynamic upgrades is of particular importance. Then, a brief
overview of object oriented and component oriented paradigm and its application to
distributed systems is given. A number of concepts and terms related to these technologies,
like object, type, component or container, are introduced that are used throughout the thesis.

2.1 Characteristics of Distributed Systems
In this section provides some background information on distributed systems. The basic
characteristics of distribution systems in general is given first. Then, some introductory
information concerning the dependability of computer systems is presented. This information
is required to understand the challenges of supporting dependable dynamic upgrades in
a distributed environment.

2.1.1 Distribution Complexity
Design and development of distributed system is quite an intricate task that involves
understanding many aspects of system complexity introduced by their distribution. Some of
the problems that have to be considered when developing dependable distributed systems are
listed below [67].
• Interconnection. In distributed systems, different components have to communicate and

interoperate with each other in a consistent, reliable and efficient way. These components
are often developed independently from each other in various isolated environments. This
heterogeneity of components makes system integration and reliable component
interworking at system runtime difficult.

• Interference. System components, developed in isolation and having functionality as
designed may yield unwanted effects when combined in a system. Developing a reliable
system involves considering explicit and implicit dependencies between components and
potential interference of their behavior in the system.

• Partial Failures. Components of distributed systems usually run in different runtime
environments that are independent from each other in terms of occurring failures.
Consequently, it may happen that one part of a distributed system fails whereas the rest of
the system is capable of providing its services. This characteristics of distributed systems,
on one hand, requires applying mechanisms that allow the system to properly work in spite
of the system’s partial failures. On the other, the fact that only part of the system has failed
allows applying mechanisms that would adapt the system to the new execution conditions
and make use of the currently available system resources.

• Propagation of effect. In contrast to faults in centralized systems, faults in distributed
systems cannot be always easily localized, i.e. assigned to one specific component. Effects
of such faults, failures, usually propagate and are detected in some other system
component. This characteristics of failures is typical for software bugs, also called
Heisenbugs in bibliography [6], which are the most common sources of system crashes in
current complex distributed systems. Generally, their occurrence is neither repeatable nor
deterministic (does not depend on the system inputs) what makes their tracking down and
elimination even more difficult.

 10

2.1.2 Dependability
This section describes the dependability and related concepts as it is understood in this thesis.
The definitions are then used when discussing the characteristics of upgrade algorithms.
Some information processing system are mission-critical in terms that the user depends on the
services offered by the system. A system failure may be very costly with regard to [32]:

• Loss of production (e.g. manufacturing applications),
• Loss of clients (due to lack of user confidence),
• Loss of human life (life-critical applications).

Because all applications are susceptible to hardware and software faults, both accidental and
intentional, some mechanisms have to be provided to support system dependency.
In the context of distributed systems, dependability is a collective term to describe availability
and reliability. The aspects are not totally independent from each other and their definitions
and interdependencies will be discussed below.

• Reliability is the likelihood that a middleware platform provides the middleware
services in a well specified way, even in the case of middleware or application failures.
Reliability services should be offered without unacceptable performance loss.

• Availability is the fraction of time a middleware platform is operational (e.g. 7x24)
without unacceptable loss of performance due to non-functioning parts of the
middleware platform. Non-functioning may have different reasons: e.g. failures,
system overload or management breaks The availability of an platform with (real-)
time constraints may be described as follows: a component is available if a certain
percentage (e.g. 95%) of requests are serviced within an required timing constraint.
This must be measured over a period of time significantly longer than the timing
constraint

2.2 Distributed Objects
The object-oriented approaches in software technology is dated as long as Simula`67. Initially,
they have spread in the area of programming languages, like Smalltalk, C++, Java and C#.
Later they have been used in a wider scope in computer science: operating systems, databases,
distributed processing and object-oriented analysis and design. The idea of representing
system parts distributed on a number of computer nodes as objects, and their interactions as
exchanging messages between the objects has been appealing to the designer of distributed
systems due to:

• ability to deal with distribution complexities described in section 2.1.1. One of the
fundamental ideas of the object-oriented paradigm is encapsulation. It makes it
possible to abstract from certain aspects of modeled reality and to hide it in the internal
implementation of an object. The aspects of distribution, including location and
failures can be encapsulated to certain degree. This idea has yielded the so called
distribution transparencies introduced in the Open Distributed Processing[46].

enabling a more flexible design. The first distributed system were designed in the client-
server paradigm. To overcome certain limitation of this paradigm, multi-tier
architecture had to be developed. The idea of decomposing a modeled system of
distributed nature into logical entities interacting with each other in a mesh-like
topology enabled a new dimension of design flexibility in distributed systems. The
object-oriented paradigm was ideally suited to support this kind of architecture.

straightforwardness of mapping from modeling domain to the design concepts and

 11

implementation artifacts. Building distributed systems in the same paradigm in all the
phases of software development process, including system analysis, design and
implementation, allowed for defining straightforward stage transitions between these
phases and mappings between the results achieved in each of the phase.

In last two decades, object-orientation is the underlying paradigm of many conceptual
architectures for distributed object systems, like ISO Open Distributed Processing[45][46],
OMG`s Object Management Architecture or TINA[126] specified by TINA Consortium, as
well as frameworks and platforms implementing these architectures, including OpenDoc[84],
OMG’s CORBA[72][73] and Java RMI, which is part of J2EE[119] now.
In spite of the advantages identified above, the object-oriented paradigm did not handle many
issues of distributed system suitably. Some of these problems, related to software deployment
and upgrades in particular are listed below[123]:

Objects are not deployable. The notion of objects is very appropriate for software design
and implementation. It provides a life-cycle model of any entity and a simple and
expressive interaction model. However, this is not enough to cope with software
during the deployment phase. The object-oriented paradigm does not define any means
to structure and package parts of the software system so that it can be deployed in
a destination infrastructure.

No implicit notion of composition. The definition of an object does not deal with
composition. Its definition focus on other aspects: abstraction, encapsulation of state
and behavior, as well as polymorphism. This fundamental characteristics of objects
does not permit to use objects as units of software composition in a straightforward
way. Furthermore, the object technology does not introduce any gluing concepts to
combine objects together in a simple and easy way. This led to building object-
oriented software systems and frameworks that were of monolithic character and made
assembling and combining objects into distributed applications difficult.

Reuse difficulties in evolving systems. The basic mechanism for reuse in object-oriented
systems is class inheritance. However, this approach does not work well in evolving
systems. If a class and its subclasses evolve independently, this may lead to problems
when using implementation inheritance, a phenomenon called fragile base class
problem in the literature.

Economical Immaturity. Except for technical issues concerning object-orientation,
a problem of economical immaturity is pointed out. The promoters of object
technology are argued to have underestimated the non-technical market-oriented
aspects of their solutions in the destination inter-enterprise markets. The software
markets, where individual objects, classes, class libraries and frameworks could be
purchased off the shelf, did not happen as some supporters of object-oriented solutions
had promised.

All these problems have undermined the meaning of the object oriented paradigm in the
developments of software engineering. Software researchers and practitioners have been
steadily investigating solutions to the drawbacks mentioned and came up with the concepts of
components.

2.3 Software Components
Component-oriented systems has received increasing research and industrial interest in recent
years[128][123]. It promotes software reuse according to the black-box model. Components
are independently developed pieces of application code that encapsulate their internal

 12

implementation and whose functionality can be accessed only through well-defined interfaces
like objects. The key point that distinguishes them from objects is that context dependencies
of components are explicitly expressed. Thus, component developers may avoid some
maintenance problems known from object-oriented systems, where undisciplined use of
inheritance may reduce the encapsulation degree required for independent maintenance and
modifiability (cf. fragile base class problem as described in [123]).
A component model defines the basic architecture of a component, specifying the structure of
its interfaces and the mechanisms by which it interacts with its container and with other
components. The component model provides guidelines to create and implement components
that can work together to form a larger application. Application builders can combine
components from different developers or different vendors to construct an application. One of
the promises of component technology is a world in which customized business solutions can
be assembled from a set of off-the-shelf business objects. Software vendors could produce
numerous specialized business components, and organizations could select the appropriate
components to match their business needs.
The behavior of components is specified in terms of interfaces, like it is done for objects. One
way of specifying component interfaces is called contractual specification. The interfaces are
specified as contracts. Such contract describes what the client needs to do in order to use the
capabilities provided by a component. It also states the service or capability provided by the
component. A contract captures two parties: the component offering some service, playing the
role of a provider, and its environment, which plays the role of a client. The client has to meet
the precondition before interacting with the component to comply to the contract. The
provider can then rely on that precondition. On the other hand, the provider has to fulfill
certain postcondition so that the interaction can be correctly completed. Finally, contracts can
describe both the functional and non-functional requirements
Additionally, software components are also defined by their properties. The list of component
properties as understood in this thesis is presented below:

• Unit of Abstraction. A component provides some functionality that can be accessed by
means of a contract which consists of interfaces providing some services and
interfaces that a component requires to provide its interfaces. A component usually
hides its implementation, state and resources, which are needed to perform its tasks,
from the component clients.

• Unit of Composibility. A component is a reusable software building block: a pre-built
piece of encapsulated application code that can be combined with other components
and with hand written code to rapidly produce a custom application.

• Unit of Deployment. A component can be deployed independently of other
components with which it will be assembled in a system. It means that it can be
packaged and delivered independently from other software components. Furthermore,
it can be installed onto the nodes of the target infrastructure and it can be loaded into
and prepared to execution in its execution environment (container).

• Unit of System Management. Each of the components can be individually managed
and configured in terms of their quality of service, such as its service performance,
provided security or fault tolerance.

The statements above are summed up in the following definition of the software component,
which is then used throughout the text of this thesis:

 13

Definition 1.
A software component is a piece of software with contractually specified interfaces and
explicit context dependencies only. Context dependencies are specified by stating the
required interfaces and the acceptable execution platform(s). Additionally, the
component has the following properties: it is a unit of abstraction, composition,
deployment and management.

Software components are deployed in a execution environment to provide their functionalities
specified using the interfaces. An execution environment of a software component is called
container and typically is a single addressed space, where the components code is installed
and executed.

Definition 2.
A container is an execution environment in which software components may be deployed
and their code can be executed according to the underlying execution model.

A containers is located on host that provides with computational resources, including the
processing power and the memory as well communicational resources. The later are needed
for components deployed in multiple containers to interact. In a distributed environment, a
host is connected to other hosts through a data network, which allows for inter-host
communication.
Once deployed, the code of software components is executed in a container. A software
component being executed is also called to be instantiated and its runtime appearance, the
result of instantiation, is called runtime instance. When referring to runtime instances of a
software components in the context of runtime phase of a software system, the term
component or component instance is used.
Runtime instances of components communicate with each other during the runtime. In case of
components deployed in different containers, some remote communication means is used.
Such (runtime instances of) software components are said to be distributed.

Definition 3.
Distributed software components are components that are deployed in containers located
on multiple hosts, interconnected with a data network. Runtime instances of distributed
components communicate with each other using a given remote communication
paradigm.

There are multiple communication paradigms that are supported by the existing distributed
and networking operating systems as well as the middleware technologies. The
communication paradigms and the technologies that support them are a topic of the next
section. This kind of components is of primary interest of this thesis.
In this work, distributed components are implemented using object-oriented technology. From
the implementation point of view, component runtime instances are then sets of co-located
objects intercommunicating with each other and providing the contracted component services
as described by the component contract. The technology supporting deploying and executing
of such components is called middleware and is briefly described in the next section.
In the context of this thesis, a service is seen as a number of related software components and
interacting with each other provide a value-added functionality to the users. This set of
software components providing a well-defined functionality to a given user is called a service.
Services will be considered mainly from the deployment point of view. When referring to a
service deployment, it will be understood as deployment of all software components that form

 14

a service.

2.4 Middleware
Middleware has been defined in many way in the literature [5][17][24][84]. From the
communication perspective, the middleware can be seen a set of services that facilitate parts
of a software system to communicate in a distributed environment. The middleware services
are traditionally considered to reside in the middle above the operating system (OS) and
networking software and below the distributed applications[5]. On the upper level, the
middleware provides its services through a set of APIs to the applications. The applications
can access the middleware services in a uniform way so that the distribution of applications
and its parts is encapsulated. On the bottom layer, the middleware makes use of APIs offered
by the underlying instances of the operating system residing on the nodes of the distributed
system. A model of middleware from this perspective is given in Figure 1.

Figure 1. Middleware: Layer Model

2.4.1 Middleware Features
Middleware facilitates deploying and running applications in a distributed environment
covering the following aspects of the complexities of distributed systems identified in section
2.1.1:

• Generic Services. Middleware can be used in the context of many various application.
It offers so called horizontal services that are common to various application domains
and independent of the specifics of a concrete application. The generic services
include:

o advanced communication services, like RPC, event-oriented communications,
or group communication,

o service for discovering services, like directory/naming or trading, and
o coordinating interactions of services: transaction-processing support,

• Heterogeneity support. Middleware typically works on a number of hardware platforms
and operating systems.

• Distribution transparency. Middleware allows for an exchange of information among
distributed application parts without the application programmer having to handle
intricate details of

• Interoperability, the ability of two or more systems or components to exchange
information and to use the information that has been exchanged[44].

 15

• Portability, which is the ability of two or more systems or components to exchange
information and to use the information that has been exchanged[44].

• Flexibility, which is the ease with which a system or component can be modified for
use in applications or environments other than those for which it was specifically
designed[44].

The aforementioned features of middleware make it easily distinguishable from applications.
The latter are designed to be specific to some domain and solving a concrete domain problem
at hand. On the other hand, middleware can be distinguished from the operating system in that
it does not provide any technology-specific services. The middleware API is supposed to
encapsulate the idiosyncrasies of the underlying hardware and low-level software as well as
provide a unified way of accessing communicational and computational resources in
a heterogeneous environment.

2.4.2 Taxonomy Of Middleware
There is a range of different middleware systems that have been developed throughout the last
decades. The approaches have been classified below according to the underlying
computational and communicational model in [10]. The classification has been extended here
by adding the class of component-oriented middleware and mobile agent middleware.
The following classes of middleware can be distinguished:

• Message-oriented middleware, MOM for short, is a middleware that typically supports
asynchronous calls in the client and server architecture. Message queues provide
temporary storage when the destination program is busy or not connected. MOM
reduces the involvement of application developers with the complexity of the master-
slave nature of the client/server mechanism. MOM. The messages can contain
formatted data, requests for action, or both.

• RPC-based middleware is a middleware using the procedure-oriented paradigm. It
allows for invoking procedures or functions on remote objects in the same way it is
done in the local environment. This middleware is used seldom nowadays and most of
solutions converted to object-oriented approaches. The most famous RPC-base
middleware products are Distributed Computing Environment, DCE[95] standardized
by Open Group and SunRPC[8], a proprietary solution from Sun Microsystems.

• Distributed transaction processing, DTP for short, is a middleware environment
oriented toward handling transaction semantics over a network. It extends the MOM or
RPC-oriented middleware by adding some transaction support. Some known products
include Tuxedo or Encina.

• Database access middleware is a class of middleware that is specialized to support
interoperable access to the data base products. An example of this kind of middleware
is the Open Data Base Connectivity, ODBC standard defined by the Open Group
(previously known as X/Open). It defines a programming-language and data base
vendor independent API for accessing and processing data stored in the data base.
Many of the data base vendors, including Oracle and Sybase, provide an
implementation of this standard for their products.

• Object-oriented middleware. This class of middleware can be seen as an extension of
the RPC-middleware. It allows for distributed parts of the application , which are
modeled as distributed objects (cf. section 2.2) to exchange information in terms of
object messages. The mainstream middleware technologies available on the market

 16

currently are:

o Common Object Request Broker Architecture, version 1.0 to 2.4.3 [73]
specified by the Object Management Group, an industry forum gathering
companies and research organizations from the whole world. The CORBA is
an open standard with many commercial, e.g. Borland’s Visibroker[130], or
open-source implementations, like OpenORB[82].

o Java technology defined and implemented originally by Sun Microsystems Inc.
and further standardized by “an open, inclusive organization of active members
and non-member public input” in the Java Community Process[120]. The
specification includes among others, the Java language[118], Java Virtual
Machine as a runtime environment, Java RMI[122] as the communication
platform.

o Component Object Model and its most recent successor .NET platform
provided by Microsoft Corp. COM[84] and its subsequent versions, DCOM
and COM+, has been offered as part of the Microsoft Windows operating
system since 1993. This technology mentioned for completeness but is only
very roughly investigated in the thesis because of space and time limitation.

• Component-oriented middleware. This class of middleware has appeared relatively
recently as the main stream of middleware products. Compared to object-oriented
middleware, the basic unit of distribution, management and deployment is component
whose semantics is explicitly defined in all these aspects of component life cycle.
Component-oriented middleware supports, in particular, component assembling, i.e.
combining 3rd party software components together at deployment time. The
mainstream middleware technologies available on the market currently are:

o Enterprise Java Beans[119] defines a component model for the Java
technology. The model is based on Java Beans[117] published in 1996 and
extended by support for different classes of components.

o CORBA 3.0 [73] is a component extension of the object-oriented CORBA 2.X
middleware. It defines a fully-fledged component model based on the EJB
approach and extended to the requirements of the heterogeneous multi-
programming language interoperable distributed CORBA environment.

• Mobile-Agent Technologies. Mobile objects [50] and mobile agents are concepts that
evolved from the object oriented approaches combined with work on mobility aspects
of information systems. They support migration of running instances of programs
including its computational state from one execution environment to another one so
that the computations can be seamlessly continued at another location. The
standardization forums concerned with mobile agents include FIPA[26]. A few
examples of mobile agent platforms include Aglets[51], Voyager[71] and
Grasshoper[3].

In the remaining chapters of this thesis, the term of middleware is equivalent to the object-
oriented middleware and its component-oriented extensions, if appropriate.

 17

2.4.3 Middleware-based Distributed System Architecture
The distributed system using object oriented middleware consists of the following elements:

• Platform, is the part of middleware which supports interactions between runtime
representations of software components in a distributed system. The execution
supports the ODP distribution transparency[46]. Because of the way the object-
oriented middleware evolved towards the component-oriented middleware, the
platform is further subdivided by some authors in the literature [18][48] into:

o Distributed Processing Environment[126] supports interactions between
software components using mechanisms to provide the ODP distribution
transparency[46]. Examples of a DPE include OMG’s CORBA-compliant
Object Request Brokers or Remote Method Invocation implementation of the
Java platform.

o Component-Support Platform, which makes use of the Distributed Processing
Environment and provides additional support for component deployment and
execution. With respect to deployment support, it offers mechanisms to
assemble components, install and configure them, whereas the execution
support includes explicit factory component life cycle Some real world
examples of a Component-Support Platform include Enterprise Java
Beans[119] and CORBA 3.0[73].

• Container is an execution environment in which components are deployed and run
providing their services to the service users.

• Horizontal Support Services are generic services used by the application components
to access application domain independent functionality. Some example of these
generic services have been listed in section 2.4.1. These services in the CORBA
specification are called CORBA Object Services, COS, in Java they belong to the
packages of the standard runtime environment.

• Components is software which provide some functionality specific to some problem
domain. To provide the functionality, they use the capabilities of the platform
described above. The components can be further classified with respect to the degree
of their applicability. Two classes can be distinguished:

o Vertical Support Components, called also Service Platform Components, are
components that provide common capabilities and useful functions for a given
problem domain. Some examples of such components are:

� TINA Service Architecture[126] specified by the TINA Consortium
which defines a set of generic services useful when developing of
telecommunication services.

� IBM’s San Francisco[43] which provides a number of components for
building E-Commerce applications.

o Application Components. These are software components which encapsulate
application-specific functions. They make use of the Vertical Support
Components for the generic application domain functions, the Horizontal
Support Services for the generic distributed system support services and the
DPE for interactions with other system components.

The architecture of a distributed system based on component-oriented middleware is depicted
in Figure 2. The sample distributed system contains two hosts running different operating
system, shown as columns below the platform. The platform is presented as a even surface

 18

hiding the heterogeneity of the underlying operating systems and hardware architectures. It
provides a unified access to the communication and computational capabilities of the hosts.
Containers with components running in them are located above the platform symbolizing their
client role with respect to the platform. The components presented in the figure comprise both
vertical support components and application components. The components can interact with
each other by exchanging information in terms of operation calls, asynchronous messages
(events) and data streams. These interactions are supported by the platform.

Figure 2. Reference Model for Component-based Middleware.

2.5 Summary
This chapter includes background information needed to understand the context of the core
investigations of this thesis. The text refers to the fundamental properties of distributed
systems and, in particular, dependable distributed systems and gives a very short concept
overview of object-oriented and component-oriented software modeling and development
paradigms. The chapter also presents introductory information on the middleware technology
and its classification. The focus of this middleware presentation is put on object-oriented and
component-oriented middleware platforms, which are technological target of investigations
and are used as software development tools when building the prototype.

 19

3 Dynamic Upgrades
This chapter introduces the terminology, basic concepts and problems related to upgrading
component-oriented software and building systems supporting dynamic upgrades . First, a set
of definitions of basic concepts, including the dynamic upgrade, are introduced in section 3.1.
Some of these definitions are elaborated and concretized in the next chapters of the thesis. In
section 3.2, it is argued that software components are a natural unit of upgrade. Section 3.3
follows with description of three key aspects of the problems related to performing dynamic
upgrades in an distributed environment. The aspects include: system evolution, high
availability and deployment and are a basis for defining a problem taxonomy for the dynamic
upgrade presented in section 3.4. Section 3.5 motivates implementing the dynamic upgrade
support functionality as part of a middleware platform. Finally, an overview of related
research topics is given in section 3.5.

3.1 Basic Definitions
This software life cycle can be seen as is a software transition from a state that it is
implemented and tested by the software provider to a state, in which it is usable in a given
environment. This transition is enabled by releasing the software so that is available in a given
environment or infrastructure and followed by a deployment process.

Definition 4.
Releasing software is a process of making a piece of software available for deployment
in the given target infrastructure.

As the context of the thesis is distributed systems, the infrastructure is distributed per se. In
a distributed environment, the infrastructure consists of multiple interconnected hosts, each of
which is capable of providing computational and communicational resources to the
components. The hosts may be heterogeneous in that they provide the software with different
computational platform determined by the execution model and the access means to the host
resources.

Definition 5.
Target infrastructure is a infrastructure where the given software is released. In
a distributed environment, it consists of a set of hosts, each of which is capable of
providing computational and communicational resources to the deployed software.

In general, software deployment is the a process in which software released are placed into the
target execution environment and made ready for execution. The deployment process involves
various activities, including code distribution, installation, configuration. Thus, the following
definition of deployment process is coined for the purpose of this thesis:

Definition 6.
Deployment process is a process involving actions aimed at making a released piece of
software ready for execution in a given target execution environment.

Whenever a piece of software is released it a target environment, it is available for
deployment. This particular software released is called a software version or a software release
and is identified by a version number, called also a release identifier, which differentiates one
software version from another software version offered under the same software name
provided by the same software provider.

 20

Definition 7.
A software version is a piece of software available for deployment after it is released in
the given target infrastructure.

Conventionally, a software version is called newer if it is released after another software
version called older. Thus, newer or older attributes of a software version are related to the
order of their release times. In the context of this thesis, a software version may additionally
be new or old with respect to the upgrade process. The definition of these attributes are given
below:

Definition 8.
A new software version refers to the software that is going to replace another software
version during a given upgrade process. The other software version refers to a version
deployed in the target infrastructure and is called an old software version.

In the process of software upgrade, a new software version is deployed into a target system
and replaces the older version of the software code in the given target nodes belonging to the
target infrastructure. The replacement or exchange of software versions is one of the key
differences when compared to a deployment process as defined in Definition 6. Upgrading
a software version means not only distributing, installing and configuring it in the target
infrastructure but also configuring the runtime environment so that the new software is used
instead of the old software version. In particular, whenever the code of the old software
version is to be used, the new software version should be used if possible. Additionally, the
upgrade process may optionally leave the old software version in some subset of the
infrastructure intact, if there is a need for having multiple software versions deployed in the
target infrastructure.

Definition 9.
A software upgrade, called further upgrade, is a process aimed at deploying a (new)
software version so that it replaces another (old) software version which is deployed in a
given subset of the target infrastructure.

Furthermore, some constraints are imposed on the differences between versions of the code.
These constraints define the substitutability relation which determines the degree to which the
new code can differ from the old code. Software is upgraded to improve the quality of service
of a system or to adapt its functionality to the changing requirements. The substitutability
constraints can be defined in a range of ways to cover the spectrum of allowed system
changes. At this point, the definition of substitutability constraints is left open for further
refinement as its definition strongly depends on the evolution model of the system, which is
not in the focus of this thesis. Consequently, a skeleton definition of the substitutability
constraints is stated below:

Definition 10.
Substitutability constraints define the allowed differences between the old an new
software versions involved in an upgrade process.

To sum up, an upgrade process can be defined as a deployment process focused on exchange
of software code so that the substitutability constraints on the code difference hold; this core
idea is expressed symbolically in Definition 11.

 21

Definition 11.
An upgrade process is valid if the new and the old software versions involved fulfill the
substitutability constraints.

The dynamic upgrade is an upgrade process that additionally has a direct influence on the
runtime behavior of a running software being upgraded. Not only does it deal with exchanging
a software version deployed in the target infrastructure but also with exchanging running
software pieces, called further runtime artifacts. Each runtime artifact is an instance of one
software version deployed. An example of a runtime artifact is a component runtime instance
as defined in section 2.3.

Definition 12.
A runtime (software) artifact is an abstraction of a piece of software being executed at
runtime.

To exchange a runtime software artifact running one (old) software version means to replace it
with another runtime artifact that is an instance of another (new) software version released in
the target infrastructure. Like in an upgrade process, the old and new software versions of the
involved runtime software artifacts have to fulfill the substitutability constraints for an
dynamic upgrade to be valid.
Furthermore, the dynamic upgrade process has to ensure that the software system as a whole is
operational during the upgrade so that the system user can access system functionality without
breaks. These additional constraints set on the upgrade process are called runtime constraints.
One example of the runtime constraints is dynamic upgrade transparency, which guarantees
that the dynamic upgrade process does not influence the behavior of the runtime artifacts
being upgraded software which is seen by other runtime software artifacts in the target
infrastructure. Another example of runtime constraints is a requirements on the dynamic
upgrade algorithm not to compromise the dependability of the distributed system, whose part
is being upgraded. Taking into account these runtime constraints influences the design and the
complexity of the algorithms to perform dynamic upgrades.
As the process of a dynamic upgrade deals with exchanging runtime artifacts and has an
impact on the runtime behavior of the system both during and after the upgrade, it is of much
more dynamic nature compared to the upgrade process. To stress this upgrade aspect, it is
called dynamic upgrade. Definition 13 sums up the core idea of the dynamic upgrade.

Definition 13.
A dynamic upgrade is an upgrade process aimed at replacing given runtime software
artifacts with ones running a new software version so that certain runtime constraints
hold during the dynamic upgrade process.

Both the upgrade and dynamic upgrade process are performed to exchange some software
artifacts (and their runtime instances in case of the dynamic upgrade). These software artifacts
consist a part of the distributed system which the process is applied to and are called hereafter
upgrade target.

Definition 14.
An upgrade target is the object of the given upgrade process. For a upgrade process it
contains a set of deployed software artifacts to be replaced in the distributed system. For
a dynamic upgrade process, it contains additionally a specification of runtime instances
to be replaced in the distributed system.

 22

The upgrade target may be compound, in general, as it may consist of a number of software
artifacts. The smallest piece of a distributed system that can be an upgrade target is called
a unit of upgrade.

Definition 15.
A unit of upgrade is the smallest software artifact that can be upgraded independently.

3.2 Component as Unit of Upgrade
In section 2.3, the component was defined by its properties. A component that has been
developed independently from other components, may be then independently deployed and
managed . As the application evolve and the components are modified by their developers,
working possibly independently for multiple software houses, and deployed into the target
system, the system is upgraded. If additionally, this upgrade process is required to by dynamic
in the sense of Definition 13 in section 3.1, the component appears to be suitable as a unit of
dynamic upgrade. In other words, its properties predispose a component to be a natural unit of
upgrade. Therefore, it is argued that a component can have another property derived from its
properties listed in section 2.3:
• Unit of Dynamic Upgrade. A software component is the smallest software artifact in

a component-based distributed software system which can be an object of a dynamic
upgrade process.

It is worth of noting that dynamic upgrade is not an orthogonal property compared to the
previous ones. The activity of dynamic upgrading is a related to component deployment and
(life-cycle) management. A dynamic upgrade is a special case of deployment as defined in
section 3.1 and a special case of software life-cycle management, in which the deployed code
of the component is replaced with a new version and, consequently, runtime instances of this
software component are replaced with instances running this new code. Lastly, an upgrade is a
result of component maintenance activity that deals with code changing due to debugging and
adopting component code to new system requirements.
In the further investigation of this thesis, the component is considered as a unit of upgrade. All
the definitions in section 3.1 related to dynamic upgrades abstracted from a concrete software
artifact. From now on, the definitions are treated as if the abstraction of “software artifact” is
replaced with a “software component“ and “runtime software artifact” with runtime instance
of a component.
Note that this property postulates a component to be the smallest software artifact that can be
independently upgraded in the system. This definition does not allow system upgrades of
software artifacts of a finer level of granularity, such as a single programming language
statement, a single class or a function being just a part of a software component.
On the other hand, this component property allows for dynamic upgrades having multiple
software components as an upgrade target. These upgrades are called compound upgrades.

Definition 16.
A compound (dynamic) upgrade is a (dynamic) upgrade process with an upgrade target
consisting of multiple software components.

3.3 Aspects of dynamic upgrades
The technology of dynamic upgrades can be considered from three viewpoints:

 23

• System Evolution. Dynamic upgrades can be considered as a method to handle change
management in evolving software systems at runtime.

High availability. Dynamic upgrades can be seen as a means to increase system availability
by shortening the downtime during the maintenance breaks.

• Software Deployment. Dynamic upgrades can be viewed as a special case of service
deployment, in that new version of some software has to be deployed replacing some
other software already deployed in a system.

The subsequent subsections discuss each of the aspects.

3.3.1 Evolution
Dynamic Upgrades can be considered as an enabler technology for managing runtime changes
in evolving software systems. Runtime change, in the context of distributed applications,
includes the following aspects [42]:
• Replacing or upgrading the application components that define the system functionality.

The change is further referred to as component upgrade and involves replacing one
implementation of a system component with a new one. This aspect of the runtime change
is elaborated in the rest of the paper.

• Modifying the logical structure (topology) of the system, which defines which
components are in the system and how they are interconnected at runtime. Configuration
changes are in terms of both adding and removing the system components and the
connections between them.

• Altering the physical structure of the system, which defines how the system components
are mapped onto the system underlying physical resources, like assignment of components
to network nodes.

Dynamic upgrades can be considered as a special case of general change management support
systems, in which:
• the logical structure of a software system is much more stable then the internals of the

components,
• the scope of allowed changes is limited to replacing a number of software components so

that each software component is replaced with a new version of the software component.

3.3.2 Dependability
Dynamic Upgrade can be considered a method to improve system availability [35], which is
one of the characteristics of the system dependability[32]. Traditionally, the techniques for
increasing availability have been based on masking hardware failures [32][115]. Software
failures which are found to be more often sources of system unavailability have been
addressed only recently. The formula characterizing system availability is often expressed as
follows:

MTTF

MTTF+MTTR

Thus, availability can be enhanced by increasing the Mean Time To Failure, MTTF, or
decreasing the Mean Time To Repair, MTTR. Dynamic Upgrade increases software
availability by reducing the MTTR parameter of the system. A component that is
malfunctioning can be replaced on the fly. Component is replaced without stopping the system

 24

so the time to repair is much shorter then time to repair required to traditionally reinstall a part
of the system. In this reasoning, it is assumed that the MTTF is not diminished hereby, that is,
the system failures occur at most with the same frequency as before the upgrade. On the other
hand, if upgrade contributes to improved system reliability as a new better and less buggy
component replaces its older version, the system availability is enhanced even more.
Additionally, dynamic upgrade is a complementary mechanism to commonly used cost
effective fault tolerant techniques applied to highly available systems. These techniques are
based on software or temporal redundancy. The first ones comprise active replication, whereas
the latter – a variety of passive replication schemes or rollback and restart. Since these
methods mask only failures and do not deal with the origin of the failures, i.e. the faults, the
faults remain in the system and will probably cause other failures in the future. In worst case,
if the failure is not transient, the system will not successfully recover and these fault tolerant
techniques will fail. Dynamic Upgrade alleviates this drawback by giving a support for
removing faulty components.

3.3.3 Deployment
Software upgrades are part of the software life cycle. Dynamic upgrades, that is upgrades of
running parts of a software system, are a special case of upgrades at runtime. This section
explains the relationship of upgrades, and in particular dynamic upgrades, to other phases of
software system life cycle.
In Figure 3, the full lifecycle of a software system is presented in a form of a graph. It
comprises four main phases the specification, development, deployment and runtime. After
a software system is specified according to the user requirements and with regard to results of
the functional analysis, the software system is designed, validated and adapted to the specifics
of a concrete middleware platform.
As a result of the development phase, the software is formed out of programming language
constructs, called artifacts, like functions or classes and the so called resources containing
required information to configure and initialize the programming constructs in the deployment
phase. The programming constructs are divided into groups and packaged together in software
components.
Then software component can be deployed into a target environment by delivering (or
distributing) them and installing at their destination. If needed, the component is configured
according to the deployment criteria of the local runtime environment and the preferences of
the local system users. After that, the component is ready to activate. In conventional
component lifecycle, the components have to be deactivated to be upgraded. Finally, if the old
version of a component is not needed any more, it is withdrawn from the system.
Dynamic upgrade can also be considered as a special case of deployment. Upgrading software
comprises deploying a new version of some service and optionally removing the old version if
it is not needed any more. A dynamic upgrade support system can be then seen as an extension
of a deployment system. To support software upgrades it uses the capabilities provided by the
deployment system, like releasing new version of software in the distributed system,
delivering software components to their destinations, allow for installation and uninstallation
of software components. Additionally, some additional mechanisms are needed compared to
a deployment system that does not support upgrades. These mechanisms include storing the
state of the old version components and transferring it to the new ones. Even more challenging
are dynamic upgrades that involve ensuring upgrade transparency.

 25

 specification

Requirement
consolidation

Functional
analysis

development

Design

platform targeting

Validation /
Simulation

deployment

Packaging

Delivery

Installation

Configuration

runtime

Withdrawal

Upgrade

Deactivation

Activation

Figure 3. The phase model of software lifecycle.

In each phase, different methods, tools and technologies can be utilized in order to
successfully and efficiently produce the desired output. For distributed systems, such
technologies, methods and tools have been surveyed, explored or introduced by relevant
research and development projects. It is not within the scope of this work to delve in all these
phases and provide explicit descriptions for the applicable actions. Instead, the thesis focuses
mostly on the component upgrade, particularly on its dynamic version, which belongs to the
component runtime phase. It is worth noting, however, that investigating dynamic upgrade
requirements on software technology, requirements may be expressed concerning other phases
of the component lifecycle, like component development or deployment.
From the component developer perspective, the component’s capability of transparent
dynamic upgrade can be seen as a quality of service parameter of this component. This extra
feature of the component has to be added to the component functionality. The upgrade
transparency requires that the component developer be not burdened with caring about this
component feature when developing their component. It means, however, that some
development support tools have to be provided that automatically enhance the component
implementation with some dynamic upgrade mechanisms. The component runtime
environment, i.e. middleware platform may also be required to enhance.

3.4 Problem Taxonomy
This section describes the major issues that have to be addressed while dealing with upgrading
software components systems on the fly. These issues are proposed to be classified in
a hierarchical taxonomy. The taxonomy is based on the aspects of the dynamic upgrades
introduced in section 3.3.
Figure 4 shows the proposed taxonomy. It consists of three trees, each of which classifying
problems related to one of the dynamic upgrade aspects, including: evolution. dependability
and deployment. The following subsections present the problems related to each of the
aspects. Some of the problems are also symbolically illustrated in Figure 5.

 26

Dependability

Availability

Upgrade
Transparency

Reference
Management

Unavailability
Reduction

Upgrade Reliabilty
and Safety

Upgrade
Security

Deployment Evolution

Compatibility

Syntax

Semantics

Validation

Online

Offline

State Transfer

State Definition

State Serialization

State Versioning

Code Packaging
and Versioning

Code Release,
Upgrade Target
Discovery and

Code Distribution

Performing
Upgrades

Upgrade
Coordination

Upgrade
Management

Dynaminc
Installation,

Loading, Linking
and Replacement

Upgrade Time

Figure 4. The taxonomy of the dynamic upgrade problems.

3.4.1 Evolution
The first tree of the taxonomy depicted in Figure 4 includes problems related to the aspect of
system evolution, which was introduced in section 3.3.1. The related issues include system
compatibility and its validation as well as state transfer.

3.4.1.1 Compatibility

One of the most important goals to meet when upgrading some running software is to preserve
its consistency. Although the system consistency is described in terms specific to the
functional model of the system, there are also some general issues on consistency preservation
that are to be addressed in every component-based system.
Consistency preservation is a multi aspect issue. From the system evolution perspective, it can
be investigated with respect to compatibility specification and upgrade validation. The first
issue is concerned with specifying to what extent the versions of a component can differ from
each other, i.e. what is the component substitutability [105]. Regarding a component as an
entity with a number of well-defined interfaces that allow for accessing the component
functionality and with some code implementing the functionality, the compatibility of
implementations as well as interfaces is to be considered. Both of the concepts are related
with the notion of subtyping [55].

 27

3.4.1.2 Upgrade validation

Upgrade validation is concerned with checking that the upgrade is valid in the sense of
Definition 11 and has terminated successfully so that the system consistency is preserved after
the system is upgraded. This includes checks that the system upgraded behaves according to
the expectations, that is the changes introduced do not make the system incompatible to its old
version.
Two upgrade validation types can be distinguished:

• Online validation is performed during the upgrade process and immediately after the
upgrade is done for some limited period of time. During this time, the new system
version may be run in a testing mode in which it performs a possibly constrained set of
its functions and the results of its computations are compared against the old version’s
results. If the checks are positive, the new version may be fully replace the old version
which can be then deactivated. Otherwise, the upgrade is not valid and has to be rolled
back so that the old version of the system can be resumed.

• Offline validation is done before the actual upgrade is carried out in a real system. The
new version of the code is validated and tested in an environment simulating the real
system. On a successful validation, the new version is considered compatible to the old
version and the test upgrade is valid. The new version can be used to upgrade the
target system.

Figure 5. Component upgrade issues.

3.4.1.3 State transfer

Another problem that has to be solved regards component state transformation between the
old and the new version of the component to upgrade. In order to preserve consistency of the
system, the current state of the component to upgrade, i.e. its computation results and the
whole context of the computations, have to be transferred to the new version of the
component (see Figure 5). This means that the computational state of a component has to be
stored somewhere temporarily and subsequently restored by the new component. In this way,
the new version of the component can correctly carry on the computations from the point they
were stopped for the upgrade break. A well-defined protocol is required for transferring the
state at least from the old version of a component to the new one. Optionally, the protocol

 28

may allow for transferring the component state from a newer version of the component back
to the old one in case the old version has to be restored in the target system. An example of
such a standardized protocol is GIOP[73] or the one supported by Java serialization
mechanism[118].
Except for transferring the state between the component versions, an additional mechanism is
needed that maps the state of the old component version to the new one. In other words, the
destination version has to correctly interpret the state transferred and set itself into an
equivalent state to the one transferred. In general this mapping cannot be performed
automatically. Manual and semi-automatic mechanisms have been proposed in proprietary
solutions [42] and [132]; no standardized mechanisms are available.

3.4.2 Dependability
The second tree found in the proposed taxonomy comprises problems related to the aspect of
system dependability introduced in section 3.3.2. The problems identified are presented in the
following subsections.

3.4.2.1 Availability

System availability is one of the characteristics of system dependability. It is defined by the
time fraction in which the system is operational in a given period of time. The problems in
this category are then related to minimizing the system unavailability during a dynamic
upgrade process.

3.4.2.1.1 Upgrade transparency
Usually only some part of the whole distributed system has to be upgraded. To make the
system operational during the upgrade process, this process in terms of unavailability of parts
being upgraded should not be visible to the rest of the system. This property is called upgrade
transparency and is related to issues of reference management and unavailability reduction
explained in the subsequent sections. Some work that attempted to address this problem
include [33] and [114].

3.4.2.1.1.1 Reference Management

A closely related issue is reference management. In our model, a system is made up of
components interoperating with each other by means of connectors. The connectors are
abstractions of lower-level constructs called bindings or references. To preserve the
consistency of the whole system, an upgrade process is required not to affect the integrity of
the component connections. On a lower abstraction level, it means that references that
components use to send requests to other components must be upgraded respectively, as well.
It is the upgrading policy that is decisive in how the references are managed. Assuming the
upgrading policy permits only one (the newest) version of a component to exist in the
upgrading zone, all the distributed references to the component to upgrade have to be rebound
from the old to the new version of the component. Thus, after a component has been
upgraded, all the references to the old version are now pointing at the newest component
version so that the replacement of the component is transparent to the component clients.
Other upgrading policies may require different reference management to keep the references
between the system components consistent.

 29

3.4.2.1.2 Unavailability reduction
One of the main reasons for dynamically upgrading systems is to reduce the unavailability of
the system that would result from traditional maintenance breaks. During dynamic upgrades,
special take care is taken to minimize the breaks in operation of the system component
upgraded. One solution to this in systems without replication is to coordinate the upgrade
process so that the upgraded parts of the system are as small as possible. In this way, at any
time during the upgrade only a small part of the system is unavailable while others are
operational. In distributed systems with replication support, the solution to this problem is
based on using replication mechanisms to run both the old and the new versions during the
upgrade in parallel and to perform the version switch instantaneously.

3.4.2.2 Upgrade Reliability and Safety

Distributed systems are characterized by inherent partial failures as described in section 2.1.
For this a system supporting upgrades should be designed in a reliable and safe way. The
safety of the upgrade process means the system ability of tolerating failures occurring in
distributed systems (without running upgrade processes) as well as of recovering from new
types of failures introduced by the upgrade itself. The latter ones may be caused by running
new code that behaves in a different though compatible way. Some solutions to the upgrade
reliability problem include self-stabilizing upgrade algorithms and a recovery support that
enables a system to fall back to the state before the upgrade took place. As a consequence, the
upgrade algorithm should be designed according to the fault tolerance principles ([6],[12] and
[90]).

3.4.2.3 Upgrade Security

Upgrading of software at runtime is a critical activity. Malicious or wicked attempts to
upgrade a running part of a system may have a disastrous consequences to the system. The
upgrade support system should permit to perform upgrades to only authorized persons,
playing the role of the system (upgrade) manager. Activities related to performing upgrades
should be dealt with in a similar way like other deployment or maintenance activities. A
special case is one a software component autonomously determines a need for an upgrade.
The dynamic upgrade support system may have to determine whether the upgrade is
permitted. The decision process can be determined by a rule engine prescribing which
components and possibly under what additional conditions are allowed to instantiate an
upgrade process.

3.4.3 Deployment

The last problem tree in the taxonomy presented in Figure 4 is concerned with problems of
deploying the code in the distributed system. An overview of the related problems is the
contents of the sections below.

3.4.3.1 Code Packaging and Versioning

The software components that are to be deployed have to be packaged prior to transfer and
delivery to the target nodes. The package must contain the software components in terms of
the code and a meta-data description of the system including its requirements and
dependencies.

 30

Packaging scheme depends on the component model. An example of packaging is that used
for software downloaded via the Internet Explorer. The package consists of a compressed file
(file.cab) which includes installation and registering instructions in an information file and an
open software description file [129] specifying dependency data (e.g. DLL files) and the
software component(s). A proposal of the new CORBA Deployment and Packaging Model,
a part of the OMG’s CCM specification[73], and its proposed extensions [20] defines another
packaging scheme. The CORBA component model provides the concept of the 'descriptor'
that is based on extended XML elements to describe a packaged software system. Yet another
packaging method is described in the FAIN documentation on the Active Service
Provisioning[23]. The descriptor is defined using a XML schema and describes the
characteristics, including dependencies, of the associated service component.
Additionally, versions of the component implementation have to be distinguishable in order to
perform a system upgrade. The mechanisms supporting this is called versioning. Versioning
of components is usually done assigning a version number to each component version
released by the software provider. There are a number of versioning schemes applied in
different development and deployment environments. The version numbering schemes can be
as simple as monotonously increasing integer numbers whenever a new component version is
released[74]. A component version number can also be defined as a n-tuple of integer
numbers, each of which is increased with regard to a different aspect of the system that has
been changed in the new software version[94]. More complex versioning schemes are based
on description of component set-valued features to model relationships between component
versions sets[133]. In any case, version numbering is related to the software release and
should be orthogonal to other aspects of component, like naming of runtime instances of the
component or naming scheme for the internal software artifacts comprising the component
implementation. Additionally, because the interface and code of a component implementation
can evolve independently of each other, these two versioning mechanisms are frequently
separated.

3.4.3.2 Code Release, Upgrade Target Discovery and Code Distribution

A system upgrade is possible as soon as the new upgraded code is available. The process of
making the code available to the system is called code release. The code release may be as
simple as notifying the system manager, or the software running on behalf of him, of the
available code and providing the information on how to access the code. Code release may
also be followed by an automatic code download so that it is available locally on the nodes
belonging to the distributed system. For the downloading system to work efficiently, it is
necessary to discover where to download the code to. This requires discovering of the so
called upgrade target, which consists of running instances of the code to be upgraded.

3.4.3.3 Performing Upgrades

The very core of deploying upgraded code in the target system are the issues related to
performing the upgrade process. These issues are presented in the following subsections.

3.4.3.3.1 Dynamic Installation, Loading, Linking and Replacement
To be able to upgrade a piece of running code in a software system, the execution platform
(for instance an operating system or a runtime environment like Java Virtual Machine) has to
support installation of new code at runtime. The installation comprises system management
actions at the nodes of the distributed system aiming at preparing the code to be executable in

 31

its target instance of the execution platform (typically an operating system process). Example
installation steps may include unpacking the component packages, copying the code into the
suitable directories, updating the appropriate system variable and registry services to make the
execution platform aware of the newly installed code modules. Not only has the code to be
installed but it has to be loaded into a running instance of an execution environment (dynamic
loading) and linked with other code already running on the platform. Finally, the runtime
artifacts running the old version of code to be upgraded have to be replaced with
corresponding artifacts running new code.

3.4.3.3.2 Upgrade Coordination
Performing an upgrade depends much on what to is be upgraded, that is what is the upgrade
target is. Some examples of upgrade targets include a single running instance of a component,
a set of runtime instances implementing a component, like an actively-replicated server, or all
runtime instances of a set of components. Obviously, the running code instances may be
interacting with each other and upgrading all of them at once may reduce the system
availability. For handling upgrades of multiple targets, which are potentially running on
a number of hosts in the system, the upgrades have to be coordinated. The coordination
mechanism computes a sequence in which the runtime artifacts are to be upgraded, enforces
this sequence and takes care of additional requirements on the upgrade process, including
transactional property.

3.4.3.3.3 Upgrade Time
Another germane matter that needs investigating is focused on when a component can be
upgraded. An ideal case would be if a component could be upgraded directly after an upgrade
request is sent. However, this is not always the case. Let us imagine a component running
a method’s code as a consequence of a client request. Intuitively, the component should not be
stopped at any moment of the request execution but the upgrade should be postponed to the
time when the component is ready, e.g. when the request has exited and the component is
inactive again. One approach to the problem has been proposed in [49]. A component is only
allowed to be upgraded when it is in a quiescent state, i.e. the component is passive and has no
outstanding transactions which it must accept and service.

3.4.3.4 Upgrade Management

In a large distributed system, the complexity of software including the dependencies between
components, the distribution scheme for software deployment is fairly high. Furthermore, the
system management and supervision may be also done in a distributed way, possibly by
multiple system administrators. To correctly and reliably upgrade such a system, a automated
support is needed. The main issues in the upgrade management concern:

• coordination of multiple upgrade processes and resolution of conflicts that may occur
if upgrades are triggered independently.

• support for upgrade planning and enforcing these plans so that the upgrades are
performed efficiently from the perspective of the whole distributed system.

3.5 Upgrade support location
Considering the issues that have to be dealt with when supporting dynamic upgrades of
distributed applications, on one hand, and the capabilities that the different elements of the
distributed systems as presented in section 2.4.3 on the other hand, this thesis argues that the

 32

platform is the most suitable element in the middleware-based distributed system architecture
for localizing the functionalities supporting dynamic upgrades. The following rationale
supports this claim:
• Dynamic upgrade is a horizontal support mechanism. As dynamic upgrades are special

case of deployment mechanism, which is then one of the generic domain-independent
services, it is straightforward to design a facility for supporting dynamic upgrades of
distributed applications in the platform. As a dynamic upgrade support facility has to
cover a number of issues described in section 3.4, which are related to many aspects of the
platform, the facility may have to extend both the DPE as well as the component support
platform.

• Dynamic Upgrade transparency. Upgrading a component on the fly is required to occur
transparently to other application components. This transparency may be considered as
another distribution transparency as defined in the ODP terminology. It is a inherent
feature of middleware platforms to implement these transparencies.

The middleware support for dynamic upgrades is further called Deployment and Upgrade
Facility. The Facility, the platform and a set of tools supporting development of dynamically
upgradable software components will be further called a dynamic upgrade infrastructure.
Figure 6 shows a middleware-based architecture of a distributed system extended by the
support for dynamic upgrades. It focuses on the elements of the dynamic upgrade
infrastructure.

Figure 6. The infrastructure to support dynamic upgrading.

The infrastructure elements are described as follows:
• Deployment and Upgrade Facility (DUF) provides basic mechanisms enabling

component replacement at system runtime. The mechanisms are embedded in a
concrete platform and use other services of the platform, like dynamic loading of
components, component state storing/restoring or inter-component reference
management.

• Platform is based on the existing middleware platforms for distributed systems, like
Microsoft DCOM[85], Java RMI[122], OMG ORB[73] or TINA DPE[126]. Extended

 33

with the DUF facility as one of the horizontal services, the platform forms a complete
execution environment for distributed software components capable of being
dynamically upgraded. The platform is the key dependency of the implementation of
the model developed in this thesis but is not part of the result of this thesis.

• Deployment and Upgrade Tools (DUT) form a development support environment for
the software developers and providers. The tools support the programmer in
developing deployable and dynamically upgradable components. Their aim is to
minimize the effort of programming software components with dynamic upgrade
capability by semi-automatic generation of code related to deployment and dynamic
upgrade. Development of the tools, though, is not part of this thesis.

3.6 Related topics
Dynamic upgrade has been a research topic for a long time now. It was most frequently
discussed in the context of runtime change management systems, such as CONIC[49] or
POLYTH[41][42]. Upgrading a system without stopping it was also an relevant issue in the
context of high available and dependable systems [32] in investigation of methods to reduce
the planned system downtime [66]. Some aspects of dynamic upgrade problem was addressed
in the research on migration and mobile code. In the next subsections, the problem of dynamic
upgrade from the viewpoint of the related research areas is briefly presented.

3.6.1 Fault tolerance
Dynamic Upgrade binds two aspects of software systems: evolution and availability [32]. The
latter is also a goal of fault tolerant systems. Because of some similarities in concepts and
their realization techniques, the techniques can be used complementary in many critical
systems. This section relates the notions of dynamic upgradability and fault tolerance and
focuses on the points distinguishing the techniques.
The principle objective of the dynamic upgrade is to support the evolution of software systems
with a requirement that the system’s availability is maximized. Systems made up of
components can be modified by replacing the components with their new versions. Instead of
applying the changes to the system by shutting the system down, the components are replaced
on-line, so that the maximal availability of the system’s functionality is reached. The changes
are applied so that both the scope of the system that has to be stopped and the time of the
system maintenance are minimized.
Dynamic upgrades as a method to cope with software evolution running fault-tolerant
middleware have been considered in our work [109][110] and [17]. Below the main
differences between Dynamic Upgrade Support Systems and Fault Tolerance Systems are
sketched.
Fault tolerant systems are designed with the objective to cope with, and recover from,
different sorts of failures of the system and its environment, and additionally, to ensure
system’s high availability. The failures in the context of fault tolerant systems [115]
traditionally refer to a loss of processing resources or a loss of logical and physical
communication paths. However, if component upgrades are also considered as system
failures, then software systems that are dynamically upgradable can be regarded as a special
case of fault tolerant systems. A temporary loss of processing resources is inherent to an
upgrade of a component since a component has to be stopped and their new version started
after the upgrade. Additionally, the new version of the component has to be consistently
initialized with the current state of the whole system in that the stored state of the old version

 34

of the component is used to compute the initial state of the new version of the component.
Analogously, if a failure of a processing resource, such as an operating system process,
happens in a fault tolerant system, it is handled by restarting another instance of the process
and initializing it with the state of the old instance of the process that has recently been
checkpointed This comparison allows for finding further analogous like upgrade request –
failure, upgrade – recovery, dynamic upgrade facility – recovery mechanism, component state
saving – checkpointing.
Two significant differences between dynamic upgrading and fault tolerance have to be
mentioned, however. Firstly, the initialization time of an upgrade can be controlled, whereas
real failures occur unexpectedly and have to be handled immediately in most cases. In spite of
the asynchronous nature of the upgrade requests, the start of the upgrade execution can be put
off until the system is ready to handle the upgrade since a relatively short postponement of the
upgrade is usually acceptable. On the other hand, critical failures have to be dealt with
immediately in fault tolerant systems. Secondly, component upgrades always involve two
versions of the component: the one to be upgraded and the one that will replace the running
version. In fault tolerant systems, on the other hand, the recovery mechanisms deal with only
one version of the component affected by the failure. Thus, recovering from a system failure
typically requires restarting the same version of the component that has crashed for whatever
reasons. Upgrades have an additional dimension when compared to conventional component
recovery in fault-tolerant systems: the component evolves during the upgrade. This needs an
upgrade facility to have appropriate mechanisms that will correctly insert the new type of the
component into the slot in the system where the old version of the component has been
executing. This can comprise: validating the conformity of the new version of the component
with the old one, transferring and mapping the component state from the old to the new
version.
In [134], the maintenance events have been classified with regard to their impact on the
system availability. Class 1 describes Non-recoverable Maintenance events, that is events
requiring the system to be unavailable for the entire duration of the maintenance activity;
Class 2 is thought to be for Recoverable Maintenance events, which need the system to be
unavailable during part of the maintenance activity; Class 3 is concerned with Transparent
Maintenance, meaning events that do not require a system outrage. The technique of dynamic
upgrades can be then viewed as a method to eliminate events of class 1 and 2 from the system
life cycle.

3.6.2 Code Mobility and Mobile Agents
Systems supporting code mobility that has been investigated and developed in the last years
address similar issues that are dealt with when upgrading software on the fly. This section
describes the similarities and the differences in the dynamic upgrade and mobile code
problematic.
Migration has been a research topic heavily investigated since the late 1970s in computer
science. Process migration systems, like Condor[9], Sprite[13] or TUI[106], and object
migration systems like Emerald[116] enable process or objects, correspondingly, to move
between different execution environments at runtime. Execution environments are usually
located on different hosts connected by a network. The key problem that has to be solved to
allow for code migration at runtime is to transfer the current state of a process or an object
from the original machine to the destination. Whereas the process state consists of all the
variables within the process, the object state means a set of internal variables encapsulated by
the object implementation forming just a part of the runtime execution environment or

 35

process. The problem of state transferal is also central to upgrade systems; e.g. a new version
of a component has to continue the component’s computation from the state the old version of
the component had just before the upgrade. In both classes of systems the common point is
that a component state has to be prepared for transfer somehow, and translated back to a form
that can be used for component for further component computations after an upgrade or
migration process is over.
The details of the transfer process are however different. State transfer in migration systems is
concerned with the remoteness of the original and destination execution environments,
whereas state transfer in dynamic upgrade systems is a means to deal with different versions
of the component implementation and its state definitions. In a migration system, the state is
prepared for transfer by being marshaled so that it can be sent on the wire to a remote
destination address space. After the state has been transported to the destination it can then be
demarshaled. If a heterogeneous distributed system is involved, a migration system has to
define a well-defined state exchange format that is independent of the hardware and
underlying operating system so that the object state running in the original execution
environment can be correctly interpreted in the destination execution environment. On the
other hand, in an upgrade system, the state transfer involves mapping the state of the old
version of the component to an equivalent state of the new version of the component. To sum
up, the state transfer in upgrade systems deals primarily with differences in the component
architecture itself, whereas the state transfer in migration systems deals with differences in
component execution environment.
The mobile code concepts have been further elaborated in the mobile agents systems, like
KQML[25], General Magic's Odyssey [29], Open Space’s Voyager [71] or IKV++
Grasshopper [3]. To sum up the concept of a mobile agent, a short description of mobile agent
technology after [93] is cited hereafter: “mobile agents are agents that can physically travel
across a network, and perform tasks on machines, called agencies, that provide agent hosting
capability. This makes processes possible to migrate from computer to computer, for processes to
split into multiple instances that execute on different machines, and to return to their point of
origin. Unlike remote procedure calls, where a process invokes procedures of a remote host,
process migration allows executable code to travel and interact with databases, file systems,
information services and other agents”.
Despite many similarities of dynamic upgrade and mobility support in agent systems, the
application areas of these two approaches differ. On one hand, applications that need to be
upgraded on the fly have typically strong availability requirements, i.e. even a short planned
maintenance break would unacceptably decrease the system availability. Such systems are
usually designed in a way that does not permit changes of the system architecture but enables
for predicting the time characteristics of the mission critical system components. On the other
hand, typical application areas for mobile agent technology do not have such high availability
requirements but allow for building flexible systems that can be reconfigured and extended.
To upgrade such an agent-based system, it is enough to send the new version of the agent
software to a corresponding agency and upgrade the agent off-line.

3.7 Summary
This chapter presented an introduction to the dynamic upgrade topic. After the basic concepts
are concisely defined in section 3.1, three aspects of the dynamic upgrade problem are
presented in section 3.3: system evolution, high availability and a software deployment. These
aspects serve as a starting point when classifying problems related to dynamic upgrade in the
problem taxonomy 3.4. The problems identified in the taxonomy are further analyzed and

 36

serve as input to form a set criteria for the comparative study of the state-of-the-art Dynamic
Upgrade Support Systems (chapter 4), or DUSS for short. The deployment aspect is stressed
in the further chapters of this thesis and the dynamic upgrade is seen as a special case of the
deployment process.
In this chapter, it is claimed that the most suitable element of the distributed system
architecture for localizing the dynamic upgrade support is the middleware platform (section
3.5). Consequently, in the subsequent chapters of this thesis, middleware platforms are
investigated with regard to the support for dynamic upgrades and extensions of these
Additionally, the software component is proposed to be the basic unit of dynamic upgrade in
the component-based distributed systems. It is suitable to be a unit of upgrade because of its
other properties as pointed out in section 3.2.
Chapter completes with a short discussion with related research topics in section 3.5

 37

4 State of the art
This chapter describes the state of the art in support for dynamic upgrades both in the main
stream middleware products and in research prototypes extending the standard programming
environments for distributed systems. These systems are analyzed and evaluated in terms of
a set of comparison criteria. The analysis and evaluation of the state-of-the-art systems help to
identify their drawbacks and missing features.

4.1 Introduction
The problematic of managing runtime changes in distributed systems has been heavily
investigated. One trend of this research is focused on formal describing software architectures
which has resulted in plethora of Architecture Description Languages, ADL. The system
architectures are often described in terms of system components, connectors and their
designed configurations (e.g. Darwin [57]) or planned configuration changes (e.g.
Rapide [56]). A newer class of these formalisms are Architecture Modification Languages,
which are extensions to ADLs and provide means to describe unplanned changes to
architecture of a system, see C2’s AML [83].
Much work that has been done combines the problem of describing the changes of the
software architecture with the dynamic upgrade of architectural components. The theoretical
foundations of a distributed component system capable of being dynamically changed have
been developed during work on Regis/CONIC project [49]. Some more technical results have
been presented in papers on POLYLITH [41], a framework for dynamic reconfiguration of
distributed systems. This approach is based on the formalisms elaborated in the CONIC
project and focuses on introducing runtime change at the granularity of an operating system
process. Research on CONIC and related projects concerns upgrading only the so-called
quiescent (not active) components, i.e., informally, which are being not involved in any
communication with either other components or their environment.
Other category of research done on upgrades is focused on the low-level details of the
development environment including the programming language and the operating system that
the solution is developed for. These approaches propose reengineering the development tools,
including compilers and assemblers and tackle issues regarding techniques for dynamic code
loading and linking [53][87][39], defining the state of upgraded software, transferring it to the
new version [2][7][21][31][39][51][132] and reference management [33].
Some research that is focused only on dynamic upgrade aspects of runtime change
management can also be found in literature. Different design and programming artifacts at
various levels of abstraction and of different granularity have been investigated to be a unit of
system upgrade, see Figure 7. As an example, Gupta et. al [34][35][36] consider introducing
changes to software systems at the level of an imperative language statement. A procedure
implementation as an upgrade unit is used in DAS [31] and PODUS [102]. Fabry [21] and
Bloom [7] (in his work on ARGUS extensions) investigates software replacement on the level
of program modules. Other systems, like C2 [83], DCUP [89] support dynamic upgrading of
components at the architectural level. Still another approach is represented by the
DRASTIC [16] project in which upgrading software is examined on the level of autonomous
sub-domains, called zones, which form a distributed system. A comparative survey of some of
the systems supporting dynamic upgrade can be found in [103].

 38

Gupta

ETERNAL
CORBA online upgrdes
Java Cont. Availability

Fabry

C2

CONIC

Language
instruction

Procedure

ADT/object

Fine-grained
component

Coarse-grained
component
(program process)

Upgrade zone

DRASTIC

POLYLITH

Unit of
Upgrade

DCUP

PODUS

Figure 7. Classification of different approaches with respect to the granularity of the units of
upgrade.

4.2 Investigated Systems
The investigated systems include both standard middleware platforms and their propriety
extensions specialized to provide support for dynamic upgrades.
Two standard middleware are investigated in this chapter: CORBA (sec. 4.2.1) and Java (sec.
4.2.2) technology. These are the main stream technologies used both in the industry and
research community. Additionally, this work on this thesis has been carried out in the context
of projects aiming at developing distributed systems for purposes of telecommunication
applications, which these two technologies have been mostly applied in.
 A number of systems enabling dynamic upgrade is presented in more detail, to provide the
reader with better understanding of the dynamic upgrade issues better. Because of the focus of
this thesis, the survey is limited to systems that :

provide a pure software solution, i.e. do not require on special hardware support,
support dynamic upgrade of distributed applications.

The subsequent sections describe the proprietary dynamic upgrade support systems. They
include: C2 (sec. 4.2.3), CONIC (sec. 4.2.4), DRASTIC (sec. 4.2.5), Eternal (sec.4.2.6),
PODUS (sec.4.2.7), POLYLITH (sec. 4.2.8), SOFA/DCUP(sec. 4.2.9), STL (sec. 4.2.10) and
CHORUS (sec. 4.2.11).

4.2.1 CORBA
Common Object Request Broker Architecture is an open standard for distributed object
computing, defined by the Object Management Group, OMG. The current version of the
CORBA specification at the time of writing this text is 3.0 adopted by OMG and published in
a formal document [73]. Further references to CORBA include: [72][84][85][97].
The Object Management Group has been active in the area of upgrading CORBA systems at
runtime for some time.[77][76]. The standard defines a first portable and interoperable
framework to facilitate upgrading of CORBA objects. The framework:

• allows for upgrading of implementations of individual CORBA objects only, i.e.,
external object interfaces cannot be upgraded.

• provides a means to ensure objects-to-be-upgraded to reach a quiescent state, whereas
a quiescent state is defined as not executing any methods.

• defines interfaces to enable state transfer of CORBA objects.

 39

• ensures upgrade transparency in terms of:
o consistent message delivery during the upgrade process, i.e. the messages are

not lost, disordered or processed twice,
o referential integrity in that clients continue using the same object reference after

the upgrade they used before the object has been upgraded.
• provides a capability to roll back an upgrade before the new implementation becomes

operational.
• allows for reverting from the upgrade in a given period of time.
• provides some basic transactional support for upgrades of object collections.
• supports upgrades of both replicated and non-replicated CORBA objects can be

upgraded.
To sum up, the current release of the CORBA standard does not support dynamic upgrades.
The OMG is currently working on a future CORBA extension adding rudimentary support for
dynamic upgrades. The main drawbacks of this future extensions are:

• Limitations in the dynamics of change, i.e. in how far the new version of code can
change from the old version. Only implementation changes are supported.

• Support for upgrades of simple upgrade targets. The specification does not enable to
upgrade a number of CORBA objects during one upgrade process.

• Weak upgrade management. Even though the specification supports two kinds of
predefined upgrade initiation schemes, the push and pull upgrades1, no other upgrade
management schemes are considered.

• Inflexibility of specification. The specification proposes one upgrade algorithm and
defines interfaces and an interaction protocol to support this algorithm. Other
algorithms are not supported and the specification does not address framework
extensibility, such as a possibility to add new upgrade algorithms.

• The specification deals basically only with runtime aspects of upgrades. It does not
addresses issues of deploying new versions including managing the code, such as
installation of new code, uninstallation and discarding the old one. It assumes that
a new version is available at a given node and is deployed so that instances of the
implementation can be created on demand.

• Weak support for versioning and evolution tracking. The specification does not
address how to relate different versions of a object implementation. There are no
mechanisms that support storing the information about the old and upgraded code.

4.2.2 Java
Java [1] is one of the most frequently used object oriented programming languages. It was
released by Sun in 1995 and quickly has become very popular in the area of Internet
applications thanks to its applets, i.e. Java programs that can be dynamically downloaded in
the compiled form (as byte code) either from a local file system or through a network e.g.
from a web page, allowing code mobility. The code mobility offered by Java is limited to one
hop, i.e. sending the code from a web server to the clients. The code is executed in the Java
Virtual Machine, JVM, in the so called sand-box model to minimize security problems of the

1 The push upgrade is initiated by a client of the upgrade framework who triggers an upgrade request. The pull upgrade is initiated by

one of the application objects to upgrade.

 40

foreign code running at the client side.
Java platform supports distributed computing by the remote method invocation (RMI) service
an the serialization service. The first allows for sending and processing requests by remote
objects. The latter allows for serializing a graph of Java objects into byte stream and
deserializing objects from a byte stream.
Another important service that Java offers it reflection. This service allows for inspection of
programming artifacts, like classes or packages for their features (class methods or package
classes), instantiating objects, accessing or modifying the values of fields of objects or classes,
and invocation of methods on objects and classes.
Java Beans is a component architecture for the Java platform. The architecture allows for
defining beans, which a components consisting of a set of Java classes and resources. The
specification distinguishes two phases of a component life cycle.

• Design time, when beans are customized by modifying their attributes, connected to
other beans and assembled into compound beans.

• Runtime, when the beans can be used, i.e. when Java programs or other beans invoke
operations on the beans, the beans send or receive events.

Depending on the phase of the bean lifecycle, the behavior or appearance of a bean may be
different.
Java with its JVM, distributed object model (RMI) and a component model Enterprise Java
Beans can be considered as a middleware technology. It offers a similar functionality as
CORBA or DCOM but is limited to only one programming language, Java. Because of JVM
availability for most mainstream platforms, the Java middleware can be used in heterogeneous
systems.
In the context of the support for dynamic upgrade of software components, the following
features of the Java language and its environment are relevant:

• Java serialization. With this technology, a Java component can save their state and
send it to a new version of the component.

• Class loading [53]. Java allows for loading new classes to be loaded into the JVM at
runtime. This functionality is similar to dynamic libraries known from DLLs in
Microsoft Windows or Unix shared libraries and supports the following features:

o lazy loading, i.e. classes can be loaded on demand at run time. class loading is
delayed till the class is to be used.

o type-safe linkage, i.e. both link-time and runtime type checks are applied to the
loaded code to guarantee type safety.

o user-defined class loading policy, code is loaded by the so-called class loaders
so that the loading process may be fully controlled by the programmer.

o multiple namespaces, i.e. class loaders provide separate namespaces for
different software components, and thus class of the same name may be treated
as separate types in the same JVM.

This feature can be used to load new version of software during runtime to upgrade
components in the system.

Product Versioning. To cope with evolving software, Java allows for versioning of
specification and implementations. In Java, the following entities have their versions:
the Java Virtual Machine both in terms of the language specification as well as of the
implementation , Java Runtime and the core classes, and Java packages. Java provides

 41

reflection mechanisms that allow to query Java programming artifacts, like packages
or classes for their characteristics. Among others, the Java reflection API provides
information about Java entities versioning.

Java Packages are the basic unit of Java software in terms of independent development,
packaging, verification, upgrade and distribution.

The Java Language[118] specifies the notion of binary compatibility that corresponds to
the general notion of component substitutability. The specification states that a change
to a type is binary compatible with (equivalently, does not break binary compatibility
with) preexisting binaries if preexisting binaries that previously linked without error
will continue to link without error. Binaries are compiled to rely on the accessible
members and constructors of other classes and interfaces. To preserve binary
compatibility, a class or interface should treat its accessible members and constructors,
their existence and behavior, as a contract with its users. A list of some important
binary compatible changes that the Java programming language supports is presented
below:

Reimplementing existing methods, constructors, and initializers to improve performance.
Changing methods or constructors to return values on inputs for which they previously

either threw exceptions that normally should not
occur or failed by going into an infinite loop or causing a deadlock.
Adding new fields, methods, or constructors to an existing class or interface.
Deleting private fields, methods, or constructors of a class.
When an entire package is upgraded, deleting default (package-only) access fields,

methods, or constructors of classes and interfaces in the package.
Reordering the fields, methods, or constructors in an existing type declaration.
Moving a method upward in the class hierarchy.
Reordering the list of direct superinterfaces of a class or interface.
Inserting new class or interface types in the type hierarchy.
The Java programming language is designed to prevent additions to contracts and

accidental name collisions from breaking binary compatibility.
In the JCP community there is ongoing activity on continuous availability support for Java
applications running on top of the J2EE platform[121][65]. The work is aimed at defining
standard APIs for availability-related support transparent to application components and
includes online upgrades as one of the mechanism considered in addition to support for Field-
Replaceable Units (FRU). The focus of the online upgrade work is put on collaboration
between the J2EE platform and the application during the online upgrade process. The authors
propose an EJB, Enterprise Java Bean to be an upgrade unit and define a two-phase-commit
upgrade algorithm with a rollback support. A rollback of an upgrade process may be triggered
by the operator before an upgrade is committing. The specification defines an interface that
upgradable objects have to implement for starting and committing an upgrade process on
a bean class. The interface is used by the J2EE server, which provides an execution
environment for beans, to control the upgrade run. Upgrades are triggered by the Operator or
other components of the J2EE Platform. State transfer is controlled by an auxiliary platform
component, the Resource Manager, and is based on the Java serialization mechanism. The old
version of software modules, the EJB classes, are removed (unloaded) from the execution
environment after an upgrade terminates successfully.

 42

Figure 8. Sequence diagrams showing a two-phase dynamic upgrade algorithm in the proposed
J2EE solution.

4.2.3 C2
Oreizy et al. [83] presents an approach to runtime software evolution on the architectural
level. They investigate software systems having the so called C2 architecture. Such systems
consist of components and connectors that are explicit architectural entities. Components
communicate via connectors so that component interdependencies are minimized and
computation is separated from communication. The key benefit of such an approach is:

• high abstraction level of runtime change handling, making it possible to make
decisions based on an understanding of application requirements and its semantics;

• separation of decisions concerning change from application-specific behavior.
They distinguish four aspects of change management:

• application policy defines how the change is applied, such as instant or gradual
component replacement,

• scope is the extent to which the system is affected by the change,
• separation of concerns regarding system functional behavior and runtime change
• level of abstraction at which changes are described.

It is investigated how dynamic changes to system at run time, like adding, replacing or
removing system components, and reconfiguring connectors binding can be managed so that
the system integrity is preserved.
The authors also discuss what requirements components and connectors should fulfill to
support runtime change. Components must be dynamically loadable and able to rebind to
connectors. Connectors which encapsulate components interactions and localize decisions
regarding communication policy and mechanism, must be implemented as discrete entities so
that component binding reconfiguration is possible. They support different aspects of change
management: they can provide various change policies, facilitate to localize change

4.2.4 CONIC
Kramer’s and Magee’s [49][57] work on dynamic change management is focused on
distributed application structure changes like component addition, deletion and
reconfiguration of component connections. Their approach, which is based on a separation of
issues regarding the application’s architecture from those regarding application components’
functionality, allows specifying and introducing structural changes so that the application state

 43

does not need to be considered to preserve the consistency of the application during and after
the system upgrade.
Their results regard a model of a distributed system presented in their paper. A distributed
system is a directed graph of processing nodes bound with each other by means of directed
communication paths starting in the connection initiator. Each node can initiate and service
transactions that model an exchange of information between nodes. The transactions concern
always only two nodes and consist of one or more message exchanges between the connected
nodes. The model assumes that the transactions complete in bounded time and their initiators
are aware of the transaction completion. The consistency of the system is determined on the
global and local levels. On the global level, some constrains in terms of system node states
have to be preserved. Nodes are said to be locally consistent if there are no partially complete
transactions at the node.
The central property an application node must have so that the system consistency could be
preserved during change, is identified and defined as quiescence. A node is quiescent if:

• It is not currently engaged in a transaction that it initiated,
• It will not initiate new transactions,
• It is not currently engaged in servicing a transaction, and
• No transactions have been or will be initiated by other nodes which require service

from this node,
This property ensures that the node’s state is consistent (does not contain the results of
partially completed transactions) and frozen (the application state will not change as a result
of new transactions.
A model for dynamic change management has been prototyped in CONIC. It is based on
general structural rules for making alterations at the configuration level without the need to
consider the application state nor the specification of component actions. The changes can be
applied in a way as to leave the modified system in a consistent state and without disturbing
the unaffected part of the operational system (Figure 9).
The model tries to meet the following objectives:
1) Changes should be specified in terms of the system structure.
2) Change specifications should be declarative. That means that the needed changes are

separated from how they are carried out.
3) Change specifications should be independent of the algorithms, protocols and states of the

application.
4) Changes should leave the system in a consistent state.
5) Changes should minimize the disruption to the application system. This refers to the fact

that the management system should, from the change specification, be able to determine
a minimal set of nodes which will be affected by the change, leaving the rest of the system
to continue its execution normally.

 44

System A

N1

N2 N3

N1

N2 N3

System A'

N4

Configuration
Management

configuration
changes

configuration
specification A

configuration
specification A'

Figure 9. Configuration management in CONIC

In order to maintain a consistent application state during dynamic changes, the management
system should interface with the application in order to direct it towards the appropriate state
of reconfiguration. Furthermore, the management system must be able to confirm that the
application has reached this state. The configuration states along with their transitions are
outlined in Figure 10.

PASSIVE ACTIVE

create

remove

link

unlink

activate

passivate

Figure 10. State transition diagram of a CONIC application

A component in a passive state can continue to accept and service transactions but it must not
initiate any new transactions except as a result of accepting or serving transactions. The
precondition for either linking or unlinking is that the component in question must be in
quiescent state which signifies that all components that can initiate transaction on the target
component are passive.

4.2.5 DRASTIC
The DRASTIC [15] project is aimed to build an architecture which explicitly addresses run-
time change evolution of heterogeneous distributed systems. The architecture should allow
distributed systems for changing component types and their implementations, as well as the
system configuration. DRASTIC systems are organized in a number of disjoint autonomous
zones that are logical collections of processes distributed over a network. The processes

 45

consist of interoperating objects. A zone is the finest unit of evolution in that all the objects
within a zone are considered to evolve as a single unit. A zone is also a unit of change
encapsulation i.e. it provides some means to constrain propagation of the change so that other
parts of the system that have been not directly affected by the change do not have to be
adapted to the new system configuration. These constrains are explicitly expressed with
contracts that are defined as pair-wise agreements between zones. The contracts describe
which types can be transferred between the zones and the necessary transformation of the
types. In the DRASTIC architecture contracts have to be provided by the software developer.
As a proof-of-concept of the DRASTIC concepts, a series of prototype systems is built in
various environments. The CORBA specification is investigated as one environment. The
project research results in an observation that the CORBA specification lacks support for
system evolution. Firstly, CORBA does not provide for tracking type changes. An CORBA
object is accessed by its clients through its interface. Interface definitions are kept in interface
repositories. Every object interface is given a unique identifier, so called repository id, which
is used to look up the interface in an interface repository. When passing an object (reference)
from one ORB to another, it is required in CORBA that the repository id be the same in both
ORBs. However, every new version of an interface is considered to be other interface and
there is no explicit support in CORBA to relate the different versions of an interface.
DRASTIC comes up with a contract concept to solve the problem. Secondly, the CORBA
specification does not provide a means of constraining the effects of evolution. Operations on
an interface repository, like adding a new version of an interface definition, are visible
throughout the whole system, permitting other parts of the system to see an incoherent
repository. Thus, a means of localizing the system change is needed so that the evolution will
be made transparent and changes will not propagated to other parts of the system. To constrain
the effects of the evolution, DRASTIC provides zones that are the units of decomposition and
evolution. The software in each zone is evolved as a coherent whole, largely autonomously
from software in other zones, even though the source code may originally have been shared by
components in many zones.
Contracts specify which program types can be exchanged between zones and the
transformations that are required should an object move from one zone to another or if
a method invocation is made that crosses a zone boundary. Zone autonomy is supported by
inserting code supplied by the software engineer at the zone boundary. These software
fragments, called change absorbers, handle the transformations indicated above and enforce
the zone contract.
The zone contract is a pair-wise argument between two distinct zones. A contract between any
two zones, for example, A and B is described in two sub-contracts which consist of three
descriptions each (Figure 11). Sub-contracts are seen from the perspective of the exporting
zone. Zone A 's sub-contract specifies: which types it will export to zone B; which types zone
B will import from zone A; and the transformations required to transform objects from one
type to another. The second sub-contract describes the same information from zone B's point
of view, although it is not necessarily the inverse of zone A's.

 46

Transformation Rules
X X'
Y Y'

Transformation Rules
X X'
Z Z

Exported Types
from A to B

X
Y

A's sub-contract

Imported Types
from B to A

X
Z

Imported Types
from A to B

X'
Y'

Exported Types
from B to A

X'
Z

B's sub-contract

X
Y

X'
Y'

X
Z

X'
Z

Zone A Zone B

Figure 11. A Contract between Zone A and Zone B

Zone B exports objects of type X' which zone A imports as objects of type X. Only the
software that performs the transformation from objects of type X to objects of type X' needs to
be aware of this relationship. As type transformation rules can be specified between any two
zones, it is possible for one zone to export a type that another is not prepared to directly
import, for example, X' and X above. This is the reason why one zone's export and import
sub-contracts may not necessarily be the inverse of the other zone's.
DRASTIC allows processes in one zone for their evolution while other processes in other
zones can continue their execution, even when these processes hold references to each other.
This is done by intercepting application-level object references and placing change absorbers
along the reference chain between the invoking object and the object being invoked. In the
current DRASTIC design, all software and data in a zone must be evolved at the same time.
The objects have a unique identity within the entire system and they can migrate. Persistency
is supported using the concept of orthogonal persistence, i.e. the object persistency is added
independent of the implementation of the object.
To sum up the DRASTIC approach to system upgrading:

• It does not support a fine granularity evolution. All the components in a whole zone
have to be frozen at evolution time.

• Freezing a zone means terminating all the processes in the zone and storing their state
on a disk. This is inefficient and cannot be applied to mission-critical systems with
real-time constrains.

• The problem of upgrading continuously active components within a zone is not
addressed in the project. The programmer is compelled to solve the problem in ad hoc
way.

4.2.6 Eternal
Eternal [68][69] extends CORBA with capabilities for fault tolerance based on object
replication. It supports both active and passive replication schemes of CORBA objects both
playing the role of clients and/or servers.
The more recent work on Eternal extensions [66][124] provides the CORBA application
developers with support for life upgrades, i.e. software and hardware upgrades on the fly. The
target of upgrade is a replicated CORBA object. The upgrade process is incremental so that

 47

the replicas are upgrades one by one while the application is operational. The upgrade process
is divided into the following steps:

• Preparation phase, in which the new version of the source code is analyzed and
compared against its old version. The preparation is aimed to automate the process of
upgrading the system. The system with the assistance from the programmer, generates
some code to facilitate the upgrade. The code is then compiled and deposited in the
CORBA implementation repository.

• Upgrade phase, in which the old executable code running is indeed upgraded with it
new version. Whereas the upgrade is seen from the application level as a single atomic
action, it consists of multiple upgrades of single replicas being upgraded. The upgrade
supporting system ensures that at least one replica of an object is operational
throughout the upgrade.

The system does not automate upgrading distributed systems fully. Assistance from the
application programmer is needed to support state mapping between the old and new code, for
instance, when new attributes consisting the object implementation are added.

4.2.7 PODUS
The PODUS [102][103] system, developed by Frieder and Segal at University of Michigan
and at Bellcore, represents a procedure-oriented approach, as classified in [103], to dynamic
program upgrading.
Programs in PODUS system are distributed programs written in a procedural languages, like
C or Pascal, that use remote procedure calls for interprocess communications. An upgrade of
a program is done by replacing each procedure of the program with its new version. Replacing
a procedure involves changing the binding form the procedure’s old version to the new one.
The key features of the PODUS upgrading system are:

• The upgrade policy allows replacing many procedures as an atomic program upgrade.
The order of the individual procedure upgrades, as well as the time of the upgrade is
automatically computed so that the correctness of the program can be preserved during
the upgrade.

• The upgrading systems determines automatically time when each procedure may be
upgraded by analyzing syntactic2 and semantic3 dependencies between procedures and
inspecting the program runtime state to check weather the procedure is active. Only
inactive procedures can be upgraded.

• The PODUS imposes two constrains on programs to be upgraded: they must be
structured in a top-down manner and all data must be accessed by means of abstract
data types.

• It supports changes to procedure signature (interface), internal data structures and
implementation code. The procedure interface change is possible by introducing a
level of indirection: the user defines so called interprocedures, subroutines converting
the procedure calls between different versions and mapper procedures converting data
formats between procedure versions.

• It supports upgrading of distributed programs. The programs are limited, though.

2 A procedure P depends syntactically of another procedure if P can be called from the other procedure.
3 Procedures P and Q are semantically dependent if they interact but their dependency cannot be determined on the basis of program

code syntax.

 48

• Program components communicate by means of RPC and are single-threaded
processes,

• semantically dependent procedures are collocated. This constrain enables to avoid
considering the dependencies between distributed procedures during the upgrade.

• It supports existence of multiple versions of the same procedure in a program.

4.2.8 POLYLITH
Hofmeister and Purtilo [41][42] presents an extension to POLYLITH, a software
interconnection system, that allows management of runtime change in distributed programs
without lost of overall system service. Their research is based on results of Kramer and Magee
[49] work on Conic with regard to when a distributed program can be reconfigured and in
what way. The concerns investigated by Hofmeister focus mainly on externalization,
internalization and possible transmission of the process state. Their method can also support
process migration and fault tolerance.
Applications in the POLYLITH environment are composed of interoperating components that
are system processes. Each process is implemented by a module that includes individual data
and program units. Components communicate with each other by binding to module interfaces
of other components and thus building communication channels. The structure of the
application is determined by its modules and channels binding them.
The following forms of runtime change are distinguished:

• module implementation, replacing an individual module,
• system structure, like adding or removing a process, and
• geometry that defines mapping system parts to physical hosts.

The approach to reconfigure a system is characterized by:
• A component is defined to be a system process that is capable to externalize and

internalize its state in terms of abstract data types (ADTs). This capability is
application dependent and adequate functions supporting the capability must be
supported for each component by the programmer. The components are responsible for
capturing and externalizing the whole their state, including the piece of state cached by
the underlying operating system, like table of open file descriptors.

• The components have to communicate with each other by means of the POLYLITH
bus so that all the communication can be controlled during the reconfiguration process.

• Component upgrade involves atomic rebinding that does not cause the messages in
transit sent to the upgraded component to be lost. The neighbor components (that
communicate with the components) do not have to be halted during most of the
upgrade period because communications channels can buffer messages.

• Component addition, a special kind of structure reconfiguration, requires the
component to be resynchronized with the current state of application so that
application consistency is preserved. This resynchronization is application dependent.
Changing a system part requires freezing the contiguous system elements.

POLYLITH (see [41] and [42]) is a component architecture enabling components implemented in
different languages executing on different platforms to communicate across a network.
Components (called nodes in POLYLITH) may communicate using asynchronous messages or
RPC. Both clients and servers must explicitly declare interfaces (modules in POLYLITH) with
the operations (interfaces in POLYLITH) to use for communication.

 49

Figure 12 shows the POLYLITH MIL (Module Interconnect Language) definitions for a simple
application with a server performing integer additions for a client. Observe that the client and
server interfaces are bound statically.

service “math_server” : {
 implementation: { binary : “/user/x/maths.exe”
 machine : “apollo.widgets.com”}
 function “add” : {integer, integer} returns {integer}
}

service “math_client” : {
 implementation: { binary : “/user/x/mathc.exe”
 machine : “zeus.widgets.com”}
 client “add” : {integer, integer} accepts {integer}
}

orchestrate “math_program”{
 tool “math_server”
 tool “math_client”
 bind “math_client add” “math_server add”
}

Figure 12. Polylith MIL definitions for a simple application.

To allow dynamic upgrade of POLYLITH nodes, mechanisms for rerouting communication and
transferring node state has been added (cf. reference management in section 3.4.2.1.1.1).
For a stateless node, the upgrade process would be to rebind all (external) interfaces bound to
the old module to the new module. POLYLITH reconfiguration primitives permits this change to
be applied atomically, and in such a way that no messages in transit are lost.
Transferring the state to the new node involves transferring node data and the stack of
program counters. Node data is serialized and deserialized by code supplied by the
programmer. The programmer must also supply a set of reconfiguration points (equivalent to
the upgrade points as defined in section 3.1 of this thesis). When a state transfer is requested,
execution continues until a reconfiguration point is reached. At that point, local variables (i.e.
data in the current stack activation frame) are serialized and sent to the new node along with
the identity of the reconfiguration point, and then the function returns. This process continues
until all stack frames have been unwound. After restoring global data, the new node will call
each function that should be on the stack in the right order, restore the local data and jump to
the point where execution was suspended. The state of the old node has then been
reconstructed, and execution resumes.

 50

reconfiguration point

State transfer
requested

Local data and PC

Local data and PC

main()

foo()

main()

foo()

Restore local data

Jump to right PC

Restore local data

Jump to right PC

Normal execution resumed

Old node New node

Execution terminates

reconfiguration point

Figure 13. Transferring stack frames.

Figure 13 illustrates how the stack is transferred to the new node. The PC is not a physical
program counter (memory address), but rather the identity of a label to which the new code
does a jump.
The process for unwinding and rebuilding the stack is aided by a special pre-processor (as of
yet only available for C), which inserts code that handles everything but the serialization and
deserialization of data. Since the stack management is written in high level language and
manipulates the stack using normal function calls and returns, it is portable.

4.2.9 SOFA/DCUP
SOFA (Software Appliances)[88][89] is a platform, developed at the Charles University in
Czech Republic, which supports off-the-shelf software components to be provided over
a network and run applications made of these components. It provides a set of abstractions to
model trading with software components over a computer network including the SOFA
component model. In particular, the platform addresses issues related to component searching,
downloading, upgrading, licensing and billing.
Software components are distributed to clients by means of the network of SOFA nodes. The
SOFA network supports a secure and reliable component propagation medium that is
independent of the underlying component provider’s or client’s network.
DCUP, Dynamic Component Upgrading, is an extension to SOFA that allows safe upgrading
of software components at runtime. The architecture is implemented in Java environment. An
application in DCUP consists of components that form a tree-like structure. A component,
which is a group of objects, is composed of a permanent and a replaceable part. The
permanent part exists in the application across the versions of a component and provides a
indirection layer encapsulating the replaceable part of a component. The replaceable part is
changed each time a component upgrade takes place and contains the objects that define the
functionality of the component. The permanent part is responsible for component building,
upgrading and terminating, as well as for transition of references crossing component
boundaries. Wrappers, that belong to the permanent part of the component, mediate access to
the target objects exported by a component and prevent from accessing the component during
an upgrade. Thus, the upgrade of a component is transparent to other components. The

 51

wrappers also check activity of a component allowing only for an upgrade of inactive
components. The DCUP addresses also transition of state from the old to the new version of
a component in that every component must be serializable.
To sum up, DCUP does not support upgrade transparency to component developers. Every
component has to implement certain interfaces that are needed for the upgrade support system.
The current implementation is available for the Java environment and a CORBA port is
planned. The approach taken in DCUP is limited as it allows for upgrading components that
are inactive only.

4.2.10 STL
STL [132] is a tool supporting state transfer during an online software upgrade in a distributed
environment. The tool is able to checkpoint an application state and transfer this state between
two versions of the application processes even though the state format is different. The
application’s state is defined in terms of data structures and can be transferred so that the
definitions of data structures in the new version of the application process are different from
the definitions used in the old version of the application process.
The proposed mechanism is claimed to be portable and machine independent as the tool uses
a data format based on the External Data Representation, XDR, for transferring the state. The
format is a standard data representation in remote-procedure call, RPC, mechanism to transfer
data between different hardware architectures. XDR is enhanced to transfer complex data
structures, like double links, cyclic graphs and other cross referenced data structures.
The following changes in the data structure are allowed by STL:

• Removal of fields, when the new version removes some data fields from the old
version.

• Addition of fields, when the new version adds a few data fields to the old version.
• Field size change, when the new version changes the size of existing fields like arrays.

The application state has to be explicitly determined by the application developer by
identifying the data structures contained in the state. The identified data structures and their
modified versions are collected in a file. The modifications are manually marked by the
programmer. Once the specification of the application state for two versions of the software is
given, a corresponding procedures for marshalling and demarshalling are generated by the
STL tools. Instances of data structures are stored independently from each other. In more
complex cases, where the data structures include cross-references, some support from the
application programmer is needed to determine which instance of data structures should be
stored together.

4.2.11 CHORUS extensions
Hauptmann et al. describes in their article [37] an extension to the Chorus operating system
allowing for dynamic upgrade of applications. Their approach does not require modifications
to development tools but focuses on adjusting the application code to make it replaceable. The
authors provide recommendations so that this adjustment can be supported by development
tools. Their results are not general enough and apply to only one operating system, namely
Chorus, and one programming language, C++ because dynamic upgrading, or on-the-fly
software replacement in their terms, cannot be realized in an operating system- and language-
independent way.

 52

4.2.12 Other approaches
Peterson et al. [87] presents a method for dynamically upgrading running code in higher-
ordered and typed (“HOT”) programming languages. In their work on an Haskell compiler
implementation, called Hugs, they mainly investigate issues that are relevant to dynamic
upgrade from the language perspective. The first-class entity and the basic unit of upgrade is
a higher-ordered function. Functions are defined in program modules which permit control
over namespaces, facilitate separate compilation and can be loaded on demand into a running
program. In the paper, a strategy of principled dynamic code improvement is investigated
which permits to constrain the options to dynamically upgrade the program code. Only the
pieces of code that are chosen by the programmer in advance (before the compile time) may
be upgraded. The authors do not discuss what compatibility of components means and when
one component is substitutable for another one in terms of semantics. The validation of the
component substitutability is limited to type checking. In their approach, components, may
have their state. The state transfer between the old and the new version of the component is
mentioned and an outline of saving and restoring the state is given, however, the definition of
the component is not presented.

4.3 Evaluation of previous work
This section presents an analysis of the approaches to upgrading systems on the fly, as
described in the previous section. The approaches are compared in terms of system features
describing various aspects of the dynamic upgrade identified in section 3.4.
The following paragraphs describe the comparison features in details. The comparison is then
summarized in a table. The analysis concludes with a list of the dynamic upgrade
requirements that are not suitably met by the systems presented here.

4.3.1 Comparison criteria
The comparison criteria describe various aspects of system support for dynamic upgrade. The
set of criteria is based on features originally proposed in [103]. In this thesis, the comparison
is adapted to the list of problems and issues of dynamic upgrades that were identified in
section 3.4. The list of criteria is also extended by some new features that described more
details of the upgrade process. Additionally, the criteria refer only to a software support for
dynamic upgrades.
The chosen comparison criteria include:
• Unit of upgrade (granularity) is the basic unit that the system allows upgrading. It can be:

o Zone is a logical collection of processes, or containers in a component-related
terminology, which are distributed over a number of hosts.

o Component is a piece of software running within a address space that can offer its
functionality through its contract to other components, either co-located or placed
somewhere.

o Module is a syntactic programming language artifact that comprises a set of
procedures related to each other. It is an artifact that may have some state and is
a singleton. In object-oriented languages, this concept has be elaborated and
comprises to a set of related classes.

o Procedure is a syntactic programming language artifact that offers some
functionality available through procedure invocations to other program entities
within the program.

 53

o Code instruction is the smallest syntactic programming language construct which
sequences form a procedure.

The finer the granularity of the unit, the more easily and quickly the system can upgrade
program with small, localized changes. On the other hand, the finer the unit, the finer and
more complex deployment and dynamic upgrade support have to be.
Programming language concepts, like statements, functions or classes are very fine-
grained units of upgrade. Considering dynamic upgrades on this level of abstraction allow
for defining precise upgrade validity rules and adequate upgrade validation tools,
designing an optimal state transfer mechanism in the given programming environment.
The disadvantage of these approaches is that the solution is programming environment
dependent and in most cases, it is not generic enough to be applied to other development
environments.
A process is an engineering term from the multi-tasking operating systems. A process is
a runtime entity, a unit of execution that provides a virtual runtime environment for code
execution. Usually, the code running in a process is a self-contained application program
or a service offering its functionality to other programs running in the system. A process is
also a unit of system resource management, i.e. some resources can be allocated to the
process and their usage is controlled by the operating system on the process level. Since
the process is a unit of independent execution and resource management it is a tempting
candidate for a unit of upgrade. However, a process is a runtime entity and has a different
life cycle from software that is the target of the upgrade. It is also one possible engineering
realization of software runtime environment. The characteristics of the process are also
operating system specific and reduce the application scope of such a unit of upgrade.
It is believed that component oriented paradigm of software development gives a much
better way of dealing with software upgrades. A software component is view here as a
natural unit of upgrade that allows coping with upgrades throughout the life cycle of
software. The component is a single abstraction common in all software life cycle phases
starting from design, through deployment and runtime to maintenance. Thus, considering
components as a unit of upgrade enables overcoming the scope limitation of the
approaches presented above and giving the reader a more complete view of issues related
to dynamic upgrade that need addressing in different software life cycles.

• System-support requirements. It concerns the development and underlying runtime
environment support for upgrading systems on the fly. Some example include: choice of
the underlying platform technology, like middleware or the operating system.

• Language Requirements describe the programming language supported if the solution
depends on some features of the language in which the units of upgrades are programmed.

• Distributed interprocess communication describes the sort of and the technology used for
interaction of the distributed software parts. This affects the kinds of programs that can be
upgraded.

• Dynamics of change. This describes the type and scope of the changes supported and
permitted by the substitutability constraints of the dynamic upgrade (cf. section 3.4.1.1).
Depending on the granularity of the upgrade different levels of changes are possible: for
instance, when upgrading a procedure, the signature of the procedure, i.e. its interface does
not change, whereas when upgrading a module, new procedures may be added and the
existing ones cannot change signatures. The change types can be classified into two main
groups with regard to the target of the changes.

o Interface changes, which can be further grouped into:

 54

� No interface change. Only the encapsulated aspects of the unit of upgrade
may change.

� Monolithically increasing change of the interface. An example of this kind of
change would be inheritance in object-oriented programming languages.

� Arbitrary interface changes.
o Implementation changes, which can be further grouped into:

� Functional changes such as:
• monolithically increasing (adding new functionality while the old

one is unchanged),
• replacing functionality (superset of states transitions plus new

states), arbitrary changes (a totally different finite state machine)
� Non-functional changes (performance, security, etc)

• State transfer. It describe the extent of the support for state transfer (cf. section 3.4.1.3).
• Execution Model. It describes the supported execution model of upgradable components.

The model is either single threaded or multiple-threaded.
• Upgrade process. The criterion describes the features of the upgrade algorithm controlling

the upgrade process. The algorithm’s atomicity is described here in terms of number of
phases the algorithm performs to terminate. An algorithm may be one-phased if the
algorithm supports upgrades that can be made available immediately after the upgrade
terminates. Two-phased and many-phases algorithms handle upgrades with higher
dynamic of change, in which the additional or changed features of the new software
version can be made available only with a delay related to a need of upgrading other
software artifacts.

• Active Target of Upgrade. This criterion describes whether an upgrade of active runtime
instance of software artifact is supported, whereas active means that the software artifact is
being used by an running execution thread. In more technical terms, it that an active
thread has invoked some code which belongs to the implementation of the software
artifact and has not returned from this invocation. In case of an object being a runtime
instance of a class, an object is active if a thread has entered one of the member functions
(or a method) of the class associated with the object and has not returned from this
function. The thread may be executing either the body of this method or other code
invoked from the body of this method so that the invocation of this method is stored in the
execution stack.

• Type of Upgrade Target. It describes the complexity of the upgrade target that can be
handled in one dynamic upgrade process. The possible upgrade targets can be: simple or
compound. A simple upgrade targets is a single software artifact, whereas a compound
upgrade target is one consisting of many software artifacts that are potentially distributed.
The compound upgrade target may be further divided into actively and passively
replicated software artifact in case of replicated software or interworking if it consists of
many artifacts using each other. Upgrading a compound upgrade target during one upgrade
process is more difficult to deal with because it requires dealing with passivation of a
group of possibly interacting runtime instances and more complex failure scenarios.

• Upgrade management. The feature shows in how far an upgrade process can be managed
in the system. The upgrade management may be include handling a single upgrade process
at a time or multiple upgrade processes. Additionally, it may handle automatic
initialization of upgrade processes and recovery from non-trivial failures during the

 55

upgrade process, including conflicts between dynamic upgrade processes.
• Multiple Versions. The criterion determines the support of multiple versions of a software

entity running in a system at a time. Multiple software versions may be supported on the
container/process level (if different version may run in the same container/processes) or
system level (if multiple version cannot run in one process but may run in parallel in
different containers comprising the distributed system).

• Deployment support. This feature describes the system support for deploying the new
software. It includes handling software package versioning, dynamic loading and linking
new code during the system runtime, unloading (removing from the process or container)
the old code, etc.

• Main limitations. The main limitations of the system supporting the dynamic upgrades.

4.3.2 Comparison
The solutions supporting dynamic upgrades described in section 4.2 have been divided into
two groups for better presentation:

• Systems with the software component as a unit of upgrade. These systems are
presented in Table 1. The table includes also features of DUF, the solution developed
and presented in the next chapters of this work.

• Systems with other software artifacts a unit of upgrade. These systems are presented in
Table 2.

 System

Feature

C2 Future CORBA
with Online
Upgrades

Future Java
with Continuous

Availability
Spec.

SOFA/DCUP DUF

Unit of upgrade
(granularity)

Architecture-
level component

CORBA
component

Java Bean DCUP
component
(framework of
Java objects).
Component may
contain
subcomponents.

DUF component

System-support
requirements

C2 framework
(Java
implementation)

CORBA 3.0 JVM DCUP
architecture

Component-
oriented
middleware

Programming
Language
Requirements

Supports
dynamic loading

IDL-2-languague
mapping must be
defined
(available for
Java or C++)

Java Java Object-oriented

Distributed
interprocess
communication

Arbitrary
connector based

CORBA RMI Java RMI
(planned be
extended to
CORBA)

Remote object
communication
(e.g. CORBA,
RMI)

Dynamics of change Arbitrary
application
architecture
reconfiguration
and component
replacement

Possible
component
implementation
changes. Not
determined in the
specification. No
interface
versioning.
Evolving
versions of a

Binary
compatibility.
JVM, JRE and
package
versioning

Component
implementation

Open to the
upgrade
algorithm
assumptions.
Currently
implemented
algorithms
permit changes
of
implementation.

 56

interface are not
related to each
other. Runtime
environment and
component
implementation
versioning is not
specified.

and simple
interface
changes.

Degree of human
intervention

Low (change
specification on
the architectural
level; change
validation)

Low(preparation
of upgradable
component
implementations)

Low Low Very low
(automated
upgrade
management)

State transfer Not discussed in
the work;
component
specific.

User has to
define the
component state
and use the
Externalization
service for
storing/restoring.

User has to
define the
component state
and use the Java
serialization for
storing/restoring.

Java serialization
applied to chosen
“important”
objects in the
component
implementation.

Serialization
supported by the
underlying
middleware
platform.

Execution Model Single threaded Single- or mutli-
threaded.

Mutli-threaded. Multi threaded Single- or mutli-
threaded.

Upgrade process One-phase One-phase One-phase Simple
component
replacement.
Upgrades
initiated by
component
provider or the
upgrade
infrastructure.

Thanks to
extendable
framework any
algorithms can
be added.
Possible n.phase
algorithms.

Active Target of
Upgrade

Yes Yes ? No Yes

Type of Upgrade
Target.

Interworking actively or
passively
replicated
CORBA objects

Simple Simple Simple,
replicated and
coumpound.

Upgrade
management

Changes
specified in C2’s
AML

No Out of scope On demand
policy.

Policy-based.
New policies can
be added.

Multiple versions No System-level Container-level Container-level Container-level

Deployment
support

Out of scope CORBA
deployment
infrastructure

JAR packaging,
beans assembling
class loading.

Upgrade
infrastructure
allows for
downloading the
new software
into the
application
premises (push
or pull model).

Yes.

Main limitations C2-architectures;
Java; Simple
component
replacement

Limited
dynamics of
change,
inflexible
specification,
weak upgrade
management.

Java only, not
extendable, no
upgrade
management.

Only inactive
components can
be upgraded.
Homogeneous
components.

 57

Table 1. Comparison of DU systems with a unit of upgrade which is a component.

 System

Feature

CONIC/
POLYLITH

Chorus Eternal DRASTIC PODUS STL

Unit of
upgrade
(granularity)

Process Process CORBA
object

Zone Procedure CORBA
object

System-
support
requirements

Conic runtime
environment

Operating
system
support for
multi-
threading and
dynamic
process
loading

Fault Tolerant
CORBA
(Eternal)

 None XDR
checkpointing
libraries

Programming
Language
Requirements

Conic as ADL, C
as programming
lang.

C/C++ C++ Supported by
CORBA

Procedural
(C)

CORBA IDL
or C++

Distributed
interprocess
communicatio
n

RPC/asynchronous
messages

Message
passing

CORBA CORBA RPC CORBA

(Dynamics of
change

Architectural
changes;
replacement of
Guardians (service
module)
implementations

Code, date,
interfaces

Object
interfaces and
implementatio
ns

Objects may
change their
type
arbitrarily.

Procedure
signatures,
internal data
structures,
procedure
implementatio
n

Addition/rem
oval of fields,
changing sizes
of fields

Degree of
human
intervention

Moderate Low Low (state
mapping
between
different
object
implementatio
n versions

Change
absorbers
needed to be
written to
transform the
inter-zone
interactions

Low to
moderate

Moderate

State transfer Strong mobility:
data
(de)serialization
and execution stack
(un)winding in C

 Object state
has to be
expressed as
value object.

Orthogonal
persistency

 Storing and
restoring data
structures in a
language
independent
extension to
XDR;
complex
(circular) data
structures
supported;
user-defined
mapping
between the
state format
versions

Execution Single threaded Multi Single- or
mutli-

Single Single Single

 58

Model threaded threaded. threaded threaded threaded

Upgrade
process

One-phase One-phase 2 phase
(prepare,
change)

A zone is
frozen; the list
of change
absorbers is
upgraded;
objects evolve
and the zone
is thawed.

One-phase One-phase

Active Target
of Upgrade

No No Yes No Yes No

Type of
Upgrade
Target.

Simple Simple actively or
passively
replicated
CORBA
objects

Interworking
(within an
upgrade zone)

Interworking Simple

Upgrade
management

 No No Out of scope Out of scope On demand
policy.

Multiple
versions

System-level System-level Container-
level

System-level Container-
level

System-level

Deployment
support

Out of scope Out of scope No No Out of scope No

Main
limitations

Special-purpose
language;
interprocess
communication
requires explicit
intermodule links

Chorus
specific
solution: non-
standard
solutionm

FT support
necessary, no
upgrade
management,
no
deployment

 Requires top-
down
structured
programs; all
data as ADTs

Simple
component
replacement.
No support
for multiple
types of
upgrade
targetss. Not
easily
extendable.

Table 2. Comparison of DU systems with a unit of upgrade which is not a component.

4.3.3 Conclusions
The presented solutions provide a support for dynamic upgrades to a different degree and for
different technologies. Below are some statements summarizing the state of the art.

• Specialized and main-stream solutions. The presented solutions are grouped into
proprietary and standardized solutions. Many proprietary solutions provide support for
a specialized development and runtime execution environment and are not easy to port
to other platforms. The support for dynamic upgrades has been only recently
considered in the standardization activities of the main-stream middleware platforms
(the CORBA online upgrade) or are being worked on (Java Continuous Availability).
They (will) provide rudimentary support for dynamic upgrades that can be used by
wider spectrum of users.

• Weak flexibility and extendibility. Event though the solutions deal with supporting
evolution and extendibility of the software systems under upgrade, their own design is
not flexible. They provide different degree for dynamic upgrades and do not allow for
extending this support. Many solutions are rather monolithic and close in that they
provide the dynamic upgrade support in form of a library or a self-contained toolkit. It
is not easy to extend the specifications and add new upgrade mechanisms that would

 59

overcome the existing limitations of the solutions. To gain a better reusability and
portability, a more modular structuring, such as an open object-oriented framework or
a composed-based approach, is needed.

• No relation to deployment support. The existing specifications focus on the runtime
aspects of the dynamic upgrade process itself. However, the support for dynamic
Upgrades should not only address issues related to runtime configuration, i.e.
exchanging runtime artifacts in a software system. Additionally, support for deploying
new versions of the code, including code distribution, code packaging and versioning
as well as discovery of service instances deployed in the system needs to be given.
Therefore, the dynamic upgrade support should be integrated with deployment facility
provided by the middleware. In particular, dynamic upgrades could be seen a special
case of service deployment, in which a new version of a running service is redeployed
in lieu of its old version.

• No management of dynamic upgrades. Dynamic upgrades belong to maintenance
activities that are performed during the system runtime in parallel to usual system
operations. The dynamic upgrade process should be managed in the same way other
maintenance activities are. In the existing solutions for dynamic upgrades,
management support is missing which should include automated initialization and
progress control of the dynamic upgrade processes, handling parallel upgrades, support
for security of upgrades.

• Full support for distributed systems. An upgrade is a deployment or maintenance
process that may involves communication and coordination of distributed objects in
a system and may take some time to terminate. As the distribution inherently imposes
a risk of failures, the process of upgrade should tolerate failures typically occurring in
distributed systems. Additionally, running new code during an upgrade may cause
some failures that could not happen before the system is upgraded. Consequently, a
solution supporting dynamic upgrades should provide upgrade safety and reliability.

This short analysis identifies the main drawbacks of the investigated systems supporting
dynamic upgrades in a distributed environment. It is a starting point for specification of the
requirements on our solution which enables distributed software components to be upgraded..

 61

The Solution

 63

5 Model for Service Deployment and Upgrade
Software upgrades can be considered as a special case of software deployment in which the
software components to upgrade have been already deployed and they have to be replaced
with another component implementation as argued in chapter 3. This chapter specifies
a model covering deployment of component-based distributed software and defines the
dynamic upgrade as one use case. Having in mind a wider picture of activities related to
dynamic upgrades, it is easier to:

• identify the mechanisms common for deployment and dynamic upgrade and the ones
specialized to dynamic upgrade so that the further work can be better focused on the
specialized mechanisms, and

• achieve a better degree of reuse of design and implementation of the available
mechanisms in the current middleware platforms when prototyping a solution
compliant to the model as requested by property P4.

The model for service deployment and upgrade consists of the following parts:
• Use case model, which defines the main actors involved in deploying services in

a distributed system as well as the main capabilities to be provided by a system
supporting deployment and upgrades, in particular. The model also identifies the main
activities involved in providing the system capabilities. This part of the model fulfills
the request model property P1 stated in section 1.2 and is presented in section 5.2.

• Component model, which specifies the basic notions related to service deployment and
upgrade. It is defined in the form of classes and their interrelations. It addresses model
property P2 and is presented in section 5.3.

The presentation of this model is preceded with the results of the requirements analysis in
section 5.1. The demanded properties of the target system supporting dynamic upgrades is
specified with a list of requirements defined when analyzing the drawbacks of the state of the
art dynamic upgrade support systems presented in section 4.3. The list of requirements
includes both functional and non-functional requirements and is structured into requirement
sublists grouping requirements with regard to the central object they refer to, i.e. the dynamic
upgrade support system as a whole, the upgrade process, and finally the upgrade management.
The approach taken to specifying the model for service deployment and upgrade is based on
the Unified Process as described and interpreted in [52]. This development process involves
top-down specification of the system, starting from system capabilities specified using the use
cases, through a class-based domain model, design model until the implementation model
which includes considerations specific to a specific implementation technology to be used to
develop the software based on the model. The process is iterative and allows for coming back
the previous phases of the specification and their revising In this chapter except for section
5.4, the model for deployment and dynamic upgrades is presented in a technology independent
way and therefore meets model property P3 requested in section 1.2.
With a few justified exceptions, the graphical notation used to describe the model is Unified
Modeling Language, version 1.4, a modeling language that is commonly used with the Unified
Process and has been standardized by the OMG, following the object-oriented modeling
paradigm. This language has been selected to meet the model property P5 stated in section
requesting expressing the model using a well-.known notation.
The model presented in this chapter is then used as an underlying model for services to deploy
and to upgrade in the next chapters. In section 5.4, more details of the design and

 64

implementation model are given. The model has been developed and validated in the context
of the IST FAIN project[23].

5.1 Requirement Analysis
In this section, a list of requirements on a dynamic upgrade support system is presented. The
starting point of the requirement analysis process was the result of the survey of the state of
the art systems supporting dynamic upgrades presented in chapter 4. The requirements for
a system supporting dynamic upgrades presented in this section are stated so that:

• they elaborate and precise the goals of this work presented in section 1.2,
• the deployment aspects of the dynamic upgrade are explicitly taken into consideration,
• they allow for building a more general and extendable solution compared to the

existing systems supporting dynamic upgrade.
Furthermore, an explicit requirement is added on the component-based model for the
distributed services to convey our belief that components is natural unit of upgrade as argued
in section 3.2. This requirement analysis also attempts to handle the complexities of
distributed systems presented in section 2.1.1, by stating some non-functional requirements on
the DUSS and the support mechanisms, including dependability, heterogeneity and portability.
The requirements are divided into six categories for the sake of better readability. Section
5.1.1 specifies general functional requirements and section 5.1.2 non-functional requirements
on our solution. Because the algorithms for actual performing dynamic upgrades are a central
point of interest to this thesis, requirements concerned with mechanism and algorithms for
dynamic upgrades have been stated in a separate group of requirements: the functional
requirements on dynamic upgrade process itself are stated in section 5.1.3 and the non-
functional ones in section 5.1.4. Another requirement group are related to the management
support for dynamic upgrades in a distributed environment and are enumerated in section
5.1.5. Finally, a list of requirements on the component upgradability to be supported by the
solution complete the list in section 5.1.6.

5.1.1 General functional requirements
These requirements define the general functional properties of the system to be modeled,
designed and developed in this work. When referring to a class of system fulfilling these
requirements, a term Dynamic Upgrade Support System, or DUSS for short, is used. This
group of requirements include:
R1. Basic Deployment Capabilities. A DUSS, as a deployment system should provide the

basic deployment capabilities. In particular, it should be possible to make a service
available in a system, to deploy the service to a suitable target environment, to remove it
from this environment, and finally to withdraw a service from the system.

R2. Support for distributed services. A DUSS should handle distributed nature of
components which may have been deployed in a number of containers and hosts of
a distributed system. In case of the upgrade of a distributed service, a DUSS should
identify and localize all the targeted service components installations in the distributed
system and then coordinate an upgrade of these components.

R3. Support for co-existence of multiple versions. It is required that multiple version of
system components may coexist in a system. Different versions of a service component
may be released in a system, may be deployed in a target environment and may be
running in the system at the same time.

 65

5.1.2 Non-functional requirements
This list of requirements define non-functional requirements on the DUSS. They are as
follows:
R4. Extensibility. An dynamic upgrade support system is required to be easily extensible. It

should be possible to add both policies to manage dynamic upgrades in the system and
mechanisms supporting these policies.

R5. Portability. An dynamic upgrade support system has to be so realized that it is easy to
port the system to other middleware platform, by means of some middleware or its
extension so that the solution is portable across hardware architectures and operating
systems.

5.1.3 Functional requirements on dynamic upgrade process
These requirements are concerned with the functional properties of the algorithms for dynamic
upgrades. They are:
R6. Automated Upgrade Process. The component deployment and upgrade, in particular,

must be carried out as much automatically as possible. However, some human
intervention may be allowed or sometimes necessitated, e.g., enabling the system
deployer to support the system to recover from deployment/upgrade failures.

R7. System consistency preserved during the upgrade. An upgrade of a system must not
transform the system into a inconsistent state so that the further processing will result in
a system failure. What the system consistency means is inherent to the concrete
application.

5.1.4 Non-functional requirements on dynamic upgrade process
The requirements presented here state non-functional characteristics of the algorithms
controlling dynamic upgrades of distributed software components.
R8. Minimizing the loss of the system functionality during the upgrade process. The

change has to be localized so that the functionality of the minimal part of the system
affected by the change is degraded.

R9. Minimizing the unavailability periods in which the upgraded parts of the system are
not able to provide their functionality

R10. Dependability of the upgrade. An upgrade should be an atomic action. Either the
system is upgraded successfully and new version replaces the old one, or the system
should fallback to the state before change. For all actions triggered by the component
upgrade mechanisms there must exist reliable counter-actions that may cancel and bring
to their backward state all impacted areas.

R11. Upgrade transparency. System components that have not been directly influenced by
the system runtime change should not be aware of the changes during the system
reconfiguration.

5.1.5 Upgrade Management
The management and coordination of dynamic upgrade processes in distributed systems is the
central issue to the following requirements:

 66

R12. Automated Upgrade Management. It should be possible to determine when the
upgrade is to take place. Possible scenarios are: immediately after the upgrade request is
delivered; when a component to upgrade is idle, or at a given time. An upgrade can
either concern an instance of a component’s type, some well-defined group of
components (e.g. a management zone) or all the instances of the evolving type.

R13. Support for multiple simultaneous upgrades. Since delays in realizing services are
inevitable in distributed systems, an upgrade may take some time to complete. In large
scale distributed systems, where management is decentralized, there may be several
sources of upgrade request. Thus, upgrades are often performed simultaneously and
some upgrade synchronization is needed.

5.1.6 Upgradable Components
Upgradability can be seen as an attribute of a component implementation, similar to
persistency or multi-threaded-ness. This section describes requirements on the DUSS
concerning its impact on the way the software system as a whole, and a software component,
in particular, has to be designed and implemented if a component is supposed to be capable of
dynamic upgrades, i.e. upgradable.
R14. Orthogonal Upgradability. The upgrade capabilities of a component, which belong to

the system management issues, should be separated from other aspects of the component,
especially the component’s business logic.

R15. Simplicity of development of upgradable components. The component developer
should put as little as possible additional effort to provide components with dynamic
upgrade capability. Thus, any programming artifacts that are needed by an upgradable
component should be automatically generated by the development tools and
transparently used by the system components.

R16. Minimizing the set of constraints on the system that an infrastructure supporting the
dynamic upgrade should impose on the development process and the system itself. In
particular the infrastructure should not constrain the system’s architecture, nor
programming style.

R17. Heterogeneous service support. A DUSS should support upgrades of heterogeneous
services, i.e. services that may consist of components requiring various software
technologies, i.e. programming languages and execution models. The component
deployment mechanisms must be able to successfully install and activate a component,
as well as upgrade a running component with a new version of the component. A new
version of a component implementation may use another software technology and may
need to be installed in a different container.

5.2 Use case model
This section presents the use case model for deployment of services in distributed systems.
The modeled system is called hereafter Deployment and Upgrade Facility, or DUF for short.
The system under discussion is briefly analyzed with regard to its required capabilities and its
boundaries in section 5.2.1. In the subsequent sections, the system is described using the UML
concept of actors and identified functionalities of the system with the help of use cases.
Thus, the use case model defines:

 67

• main actors interacting with the system, whereas an actor is anything with behavior,
including the system under discussion when it calls upon the services of other systems
[92]. The actors are introduced in section 5.2.2.

• use cases which represent the set of all functionalities a system supporting deployment
should offer. These functionalities can be considered as detailed specification of
requirement R1 stated in section 5.1.1. Furthermore, the use case model identifies the
main activities needed to realize the specified functionality as well as presents the
interrelations between specified functionalities. The use cases are presented according
to a use case description template defined in [92] section 5.2.3.

5.2.1 Capabilities
Deployment and Upgrade Facility should provide the basic deployment capabilities as stated
in requirement R1 in section 5.1.1. At a greater detail, it means that the following capabilities
have to be provided:

1. Releasing and withdrawing services in the system. The Service Deployers are provided
with a capability to release their services in the distributed system. The service is
released by registering its name and some deployment information (a list of required
service component descriptors) with the network service registry, and uploading the
service code including all the dependent code into the network-wide service
repository. A service may also be withdrawn from the network when a service provider
does not want to offer it to its customers.

2. Deploying and removing services. After the service is released in the network, the
Service Deployer may want to deploy his service to a specific target environment,
which is most suitable for the given user requesting access to the service. Because of
the distributed nature of services, as stated in requirement R2, a target environment is
formed by a set of active nodes on which the code modules of the active service are
deployed. The Service Deployer may also remove the installation of the service from
the given target environment if it is needed, e.g. if the service should not be offered in
the system any more.

3. Redeployment or an upgrade of service is a specific case of deployment in which
a service already deployed in the service is replaced with a given service. Additionally,
it is required as stated in requirement R3 that a number of versions of a service may
coexist in the system.

4. Dynamic Upgrade of a service. It is considered a special case of a service upgrade in
which a runtime instance (or a group of them) of a service are replaced by another
version of the service so that a number of constraints hold as defined in section 3.1.

5.2.2 Actors
The main actors communicating with the DUF system are:

• Service Provider is an entity who makes the service available to the target system. It is
also the Service Provider that decides to withdraw his service from the system so that
the service cannot be deployed in the system any more.

• Service Deployer is an entity who possibly initiates and coordinates the process of
service deployment and in particular service upgrade. Traditionally, the Service
Deployer’s role is taken by the human system administrator. However, this role can be
taken by a software system in order to automate the deployment and upgrade

 68

processes. In the solution proposed in chapter 6, it is a specialized dynamic upgrade
management framework that will play the role.

• Target System, which represents the distributed system which is the target of the
deployment operations. The target system includes both physical infrastructure and the
software running on top of it. The new services to be deployed or new versions of the
running services become part of the Target System itself after the deployment or
upgrade process, correspondingly, succeeds.

5.2.3 Use Cases
All above capabilities have been modeled as UML use cases and are depicted in Figure 14.
This use case diagram presents the actors interacting with the use cases as well as the use case
relationships. The following use cases of the model can be identified:
• Release service. It describes the capability of the DUF system to make a service available

for deployment in the target system. The details of this use case are presented in section
5.2.3.1.

• Deploy service. It describes the capability of the DUF to deploy a released service in
a target environment in the target system. The details of this use case are presented in
section 5.2.3.2.

• Upgrade service. It describes the capability of the DUF to upgrade a deployed service in
the target system. Service upgrade is considered as a special case of service deployment as
argued in section 3.1. Additionally, service upgrade may include activities that a part of
the service removal process. The details of this use case are presented in section 5.2.3.3.

• Dynamically upgrade service. It describes the capability of the DUF to dynamically
upgrade a deployed service in a target system. It is modeled as a special case of a service
upgrade. Except for the activities needed to perform an upgrade, additional means have to
be taken to ensure that the dynamic upgrade process is performed with the given real time
constraints. The details of this use case are presented in section 5.2.3.5.

• Remove service. It describes the capability of the DUF system to remove a service from
a target system. The details of this use case are presented in section 5.2.3.6.

• Withdraw service. It represents the capability of the DUF system to withdraw a service
from a list of available services in the target system. The details of this use case are
presented in section 5.2.3.7.

 69

dynamically upgrade service

withdraw service upgrade serviceremove service

release service deploy service

ServiceDeployerServiceProvider TargetSystem

<<include>>

Figure 14. Main Use Case Diagram of the DUF.

The DUF system capabilities represented by the main use cases are related to each other in
that there is a valid sequence in which they occur for a given service. The activity diagram in
Figure 15 depicts this sequence of activities.

• First, a service is released by the Service Provider in the target system. This means
that the Service Provider makes the service available to the users by announcing or
registering the service in the target service. The information about the service are
storied in the system and available for the deployment purposes.

• After having been released, a service may be deployed in the target system. It is the
Service Deployer that initiates this process by interacting with the DUF and provides
some additional information determining the preferred target environment for the
service. The deployment process considers this information as well as the deployment
requirements of the service itself related to its design. On a successful service
deployment, the service is ready to use by its users. It is the responsibility of the
Service Deployer to grant service access to the users.

• Once a service is deployed, the service may need to be upgraded. It is the Service
Deployer (which may be also the service itself) to trigger the upgrade process. The
target of the upgrade process is a deployed service. There are no requirements on the
availability of the service so the old running version of the service may be shutdown
and a new one started instead. If there are some additional requirements on the
availability of the service during the upgrade, the process is called dynamic upgrade.

• A deployed service, i.e. a service installation, may be removed from the target
environment it has been deployed to, if needed.

• Finally, the Service Provider may withdraw a service from the target system. From this
moment, the service is not available for deployment anymore.

 70

service
registered

 service installation
deployed

service installation
removed

service
withdrawn

register service

deploy service

remove service

withdraw service

Figure 15. Activity diagram for a service processed by the DUF.

The following subsections explain the use cases identified above.

5.2.3.1 release service

The Service Provider who decides to offer his service in the target system has to release it The
service is released by registering its name, its meta-information (a list of required service
component descriptors) and a number of the service code modules with DUF.
Releasing service is part of the deployment cycle encompassing all operations that are
required to prepare the service to be available for deployment after the development of the
service has been complete. This phase include service packaging and announcement as
described below:

Packaging
The software components that are to be deployed have to be packaged prior to transfer and
delivery to the target nodes. The package must contain the software components in terms of
the code and a meta-data description of the system including its requirements and
dependencies.

Advertising
This phase caters for the dissemination of appropriate information to interested parties about
the characteristics and requirements of the software system to be deployed. This can be
achieved either automatically (a part of the deployment architecture discovers a service
offered by the Service Provider) or with human interface (Service Provider interacting with
the deployment architecture). The end objective is that the Service Deployer be notified of the
availability of the service.

 71

5.2.3.1.1 Actors
The following actors participate in this use case:

Service Provider, who wants to release his service and triggers the process.
• Service Deployer, who registers the information about the service released and

maintains it for future service deployments.

5.2.3.1.2 Preconditions
1) The service is prepared for packaging.

5.2.3.1.3 Postconditions
1) The service is released, i.e. the service packages are available to the Service Deployer.

5.2.3.1.4 Description
1) Service Provider prepares his service components to release. This includes creating

packages for the service components, which include service description and the service
code.

2) Service Provider contacts the DUF in the given Target Service and provides him with
information about the service to release. DUF records this information . It may involve
downloading service packages to the Service Deployer infrastructure or just recording the
details needed to download the service packages on demand.

advertise service

package service

Figure 16. Activity diagram for use case “release service”.

5.2.3.1.5 Extensions
2a) The service data is consistent or complete; the service is not properly packaged.

1) Service Deployer breaks processing the release request and signals an error.

5.2.3.2 deploy service

After a service is released in the target system, the Service Deployer may want to deploy his
service to a specific target environment, which is most suitable for the given Service User
requesting access to the service.

5.2.3.2.1 Actors
Service Provider, who triggers deploying a given service.
Target System, which is a distributed system in which the service is to be deployed.

5.2.3.2.2 Preconditions
1) A given service is released in the target system.

 72

2) The service is deployable in the target system, that is:

a. there exists at least one target environment within the target system suitable to
deploy the given service,

b. there exists a mapping that assigns a container capable of running a service
component for each service component comprising the service.

5.2.3.2.3 Postconditions
1) The service is deployed in a suitable target environment.

5.2.3.2.4 Description
1) Service Provider requests deploying a given service.

2) Service Deployer identifies the target environment by matching the service requirements
against the target system capabilities.

3) Service Deployer delivers the required service code to the target environment.

4) Service Deployer installs the service in the target environment.

5) Service Deployer configures the service.

6) Service Deployer activates the service.

5.2.3.2.5 Details
Figure 17 shows an activity diagram of the deploy service use case. The sections below
provide more details on the steps of the deployment process.

component installation

matching process

code delivery

configuration

activation

Figure 17. Activity diagram for use case “deploy service”.

Matching process
The activity is aimed at determining an optimal placement of the service components onto
a set of nodes available for service deployment. The process is based on matching the service
requirements expressed in the service descriptor against the capabilities of the available nodes.
In case, the service components are not predetermined before this process starts, the matching
process also involves determining the components to be deployed for a given service.

 73

The activity diagram giving more insight into a design of the matching process is shown in
Figure 18. It shows a variation of a matching process in which the service components are not
predetermined before the activity starts. The activity identifies the components required for a
service by parsing the information on the service composition from the deployment descriptor.
Then, two activities may be performed in parallel: getting information on the available
capabilities of the distributed system and parsing the component requirements on the
capabilities it needs to be deployed. The capabilities include the underlying technologies
(programming environment and a specific hardware platform) as well certain system resources
the service needs to fulfill its contract, including computational and communication resources.
The information gathered during these two activities provide the input to the actual matching
process that determines the assignment of each of the service components to a containers on a
node belonging to the distributed system. The activity ends if the found assignment is feasible
and the matching process is complete as it may be recursive. Otherwise, another iteration of
the matching process occurs.

identify required
se rvice com ponent s

get info on distributed system
capabi lity availability

parse service component
deployment requirements

is matching feas ible
and complete?

match requirements
against capabilit ies

[yes]

[no]

Figure 18. Process of matching service deployment requirements against capabilities of a distributed
system.

Delivery
The delivery phase of the component package is done through the available transport
channels, including the Internet. This involves considerations on the package size, target node
quantity and transport quality. The delivery can follow either a "pull" or a "push" approach
and can use wide-used protocols such as http and ftp.

 74

Component Installation
The installation activity covers the actual placement and "tuning" of a software system into
a suitable container on a suitable node. Given a released software component, this process
combines the metainformation about the service encoded in the service component (e.g.
descriptor) with the information at the target node in order to determine how to properly
configure the software system. In the case that dependencies are specified, the process
becomes more complex since it may involve fetching and deployment of necessary
prerequisite components. The installation process may also involve the following activities:

• associating the names to the corresponding run-time code (e.g. upgrade registries,
registering to the implementation repository)

• publishing the component references (e.g. registering to a naming service)

Configuration
This activity involves tuning of the components installed in their target environment. The
service component may have certain parameters that have to be set with some values to be
useable to the user. These values may be either default and can be stored in some meta data
describing the initial (pre-set) configuration or may be computed in some specific algorithm
using the system information.

Activation
Finally, the service may be activated, that is made available to the user access. This activity
usually involves executing some initial code of the component, for instance calling external
static functions in a C-based implementation of a component or instantiating a main class in a
Java environment.

5.2.3.3 upgrade service

This use case describes service upgrades, which is considered as a special case of deployment
in the context of this thesis (cf. section 3.3.3). That is why it is defined as a use case inherited
from use case “deploy service”.

5.2.3.3.1 Actors
Service Deployer, who may trigger upgrading the given service.
Target System, which is a distributed system in which the service is to be upgraded.

5.2.3.3.2 Preconditions
1) The given service is deployed in the target system.

2) A new version of the service is released in the target system.

3) The service is designed to be upgradable and the state in which service upgrade is feasible
can be reached within a time bound from the moment of planned upgrade time.

5.2.3.3.3 Postconditions
1) The service is successfully upgraded.

5.2.3.3.4 Description

 75

1) Service Deployer requests upgrading a service and provides the details of the upgrade
process.

2) DUF identifies the location of the upgrade target.

3) DUF delivers the required service code to the target environment.

4) DUF installs the service in the target environment.

5) DUF exchanges the old version of the service components with the new one.

6) DUF uninstalls the old version of the service components, if needed.

7) DUF removes the code of the old version of the service, if needed.

component uninstallation

component installation

target exchange

target discovery

code removal

code delivery

Figure 19. Activity diagram for use case “upgrade service”.

5.2.3.3.5 Extensions
2a) The upgrade target cannot be located.
4a) The installation fails.
5a) The exchange of service version fails

5.2.3.4 Details

The process of upgrade is based on a number activities that are described in other use cases.
Code delivery, component installation are described in section 5.2.3.2; target discovery,
component uninstallation and code removal are described in section 5.2.3.6.
A new activity to this use case is target exchange.

Target exchange
In service upgrade, the old version of the service has to be replaced with a newer one. In
a simple upgrade process, there are no requirements on the service availability. For this, the
process of exchange may be as simple deactivating all service components to upgrade and

 76

starting a new version of these components. For stateful services, the state can be transferred
off-line.

5.2.3.5 dynamically upgrade service

The process of the dynamic upgrade is similar to the process of upgrade. It includes the same
activities and could be represented with the same activity diagram as the one depicted in
Figure 19.

Target exchange
The main difference is the process of exchanging the target. In case of dynamic upgrades,
specialized mechanisms and upgrade algorithms are needed to match additional, mainly
nonfunctional requirements on this part of the dynamic upgrade process including R8-R11
specified in section 5.1.4. Compared to the target exchange in the (static) upgrade process, the
target exchange is an activity that:

• is performed during and in parallel to the normal operation of the system as an
additional activity in the system,

• has to minimize the unavailability period of the upgrade target,
• has to guarantee that the system operates consistently during the exchange, e.g. no

messages can be lost, the old references to the target component runtime instances
have to stay valid,

• the state has to be transferred on the fly from runtime instances of the old version of
component to the newly created instances of the new component version.

 Example of mechanisms implementing this activity are described in chapter 7 of the thesis.

5.2.3.6 remove service

The Service Deployer may request to remove a given service installation, that is the deployed
service, from its target environment it was deployed in. The DUF identifies all service
component deployed for the given service installation and removes each of them from the
containers comprising the target environment. The removal process includes the following
activities depicted in the activity diagram in Figure 20:

Target discovery
In this activity, the target installations of the given service are discovered in the target system.
This consists in finding the hosts and containers belonging to the target environment in which
the service has been deployed.

Component uninstallation
This activity is concerned with uninstalling the service components from the containers found
in the step above. This includes resetting the container to the state before the service
component installation and potentially setting the container resources allocated during the
code module installation.

Code removal
This activity results in making the code modules unavailable from the containers of the target
environment discovered before.

 77

component uninstallation

target discovery

code removal

Figure 20. Activity diagram for use case “remove service”.

5.2.3.6.1 Actors
Service Provider, who triggers removing the given service.
Target System, which is a distributed system in which the service has been deployed.

5.2.3.6.2 Preconditions
1) The given service is deployed in the target system.

2) The given service installation has not been removed.

5.2.3.6.3 Postconditions
1) The service installation is removed from the given target environment.

5.2.3.7 withdraw service

The Service Provider who has released his service in the target system, may also want to
withdraw the service so that is it not available to Service Deployers. The withdraw
service use case describes the capability of the DUF. To withdraw a service, the Service
Provider has to remove both the service metainformation and the service code modules from
the DUF.

5.2.3.7.1 Actors
The following actors participate in this use case:

Service Provider, who triggers withdrawing the given service by contacting the Service
Deployer.

• Service Deployer, who discards the information about the service to withdraw and so
that the service is not available to be deployed in the target system any more.

5.2.3.7.2 Preconditions
1) The service has been released in the target system.

5.2.3.7.3 Postconditions
1) The service is withdrawn from the target system and the service cannot be deployed by the

Service Deployer any more.

5.3 Component Model
This section presents a component model that is considered further as the underlying service

 78

model. The basic concepts of the model are defined and their relations explained.
The concepts are classified according to the software component life cycle phase. The
implementation phase concepts are presented in section 5.3.1, and the deployment phase
concepts in section 5.3.2. The runtime concepts are the contents of section 5.3.3.

5.3.1 Implementation Phase Concepts
The component implementation is specific to the software technology it is developed with. In
this component model, the technological specifics are abstracted from and the component is
defined as an aggregation of programming language constructs, called Artifacts, which are
developed during the implementation phase. An sample realization of the artifact in a object-
oriented programming language[131], like Java[118] is a class and in a function-oriented
imperative language like C is a function. Apart from artifacts, a component implementation
may include a number of ConfigurationData instances. This data expresses a persistently
stored information used at the component’s configuration time to initialize the component
runtime image to reach a pre-configured state. ConfigurationData is modeled using the
very flexible and dynamical modeling construct of a set of Properties objects, whereas
each Properties object has a name and a value that may have values of any type,
including other Properties. This construct is very expressive and allows for storing quite
complex data structures.
The introduced concepts and their interrelations are depicted in a class diagram in Figure 21.
A ComponentImplementation is identified by its name. The name is unique among all
implementations of the given component. The name may, for instance, include a string
codifying the name of the component implementation provider.

ComponentImplementation

-name : String

ConfigurationData

+getProperty() : Properties

Artifact

-fullName : String
-signature : String

Properties

-name : string
-value : any

OOPClass Function

1

-artifacts1..*

has

1

-data 0..*

has

programmingModel
-owner

Figure 21. The implementation phase concepts of the component model.

5.3.2 Deployment phase concepts
In this model, service is defined from the deployment perspective. Service is a unit of

 79

functionality that a Service Provider wants to offer to the customers by releasing it as
described in the use case model in section 5.2.3.1. In terms of deployment, a service consists
of a number of interconnected service components The service can be seen as a graph , where
the nodes are service components and edges are links describing the communications between
connected components.

JavaMediaFramework : Component

abstract_prop = false
compound_prop = false
name = JavaMediaFramework
serviceProvider = providerAAA
description = ""
version = 1.1

TranscoderEngine : Component

abstract_prop = false
compound_prop = false
name = TranscoderEngine
serviceProvider = providerAAA
description
version = 2.0

Duplicator : Component

abstract_prop = false
compound_prop = false
name = Duplicator
serviceProvider = providerBBB
description = ""
version = 1.1

Transcoder : Component

abstract_prop = true
compound_prop = true
name = Transcoder
serviceProvider = providerAAA
description = ""
version = 1.2

TranscoderService : Service

name = TranscoderService
version = 2.1

Figure 22. An example component-based service compliant to the component model.

Figure 22 depicts an example service. The service is called TranscoderService and
consists of two top components: Transcoder and Duplicator. Whereas the latter is
a simple service component, component Transcoder contains further subcomponents:
JavaMediaFramework and TranscoderEngine.
One key characteristics of the software component as described in section 2.3, is its
composibility. A component may be composed of a number components. In terms of
deployment, it means that a component may need to access some other components. This idea
is expressed by component dependencies. In the model, class Component has access zero of
more dependent Component objects.
There are three classes of service components that differ in the terms of whether they consist
of some service subcomponents and whether they directly refer to a code module.

• Simple Component is a service component without any dependencies. It contains just
a reference to a code module.

• Compound Component is a service component consisting of subcomponents and having
a reference to a code module.

• Abstract Component is a service component consisting of subcomponents and having
no reference to a code module.

The relations between the classes modeling the concepts defined above are depicted in a class
diagram in Figure 23.

 80

Service

-name : string

+getComponentInstanceList() : string[]
+getDeploymanetRequirement(componentID : string) : DeploymentRequirements

ComponentRequirements

+getComputationalResources() : ComputationalResources
+getContainerType() : string

TopologicalRequirements

+getConnectedComponents()
+getHostRequirements() : HostRequirements
+getLinkRequirements() : LinkRequirements

Version

+identical(aVersion : Version) : boolean
+major_newer(aVersion : Version) : boolean
+minor_newer(aVersion : Version) : boolean

LinkRequirements

-communicationType : string
-linkQoS : LinkQoS

Component

+abstract_prop : boolean
+compound_prop : boolean
-description : string
-name : string
-serviceProvider : string

ComputationalResources

-cpuCapacity : string
-memoryCapacity : int
-persistentStore : int

CodeModule

+name : string

HostRequirements

-hostNetworkRole : string
-hostType : string
-networkLocation : string

-components

1..*

-module

0..1
-parent

1

-children 0..*

depends

-version

Figure 23. The deployment phase concepts of the component model.

This graph has some additional attributes described as service deployment requirements.
There two types of requirements:

• Topological requirements represented by class TopologicalRequirements in the
model. These requirements describe the needed characteristics of the environment
where the service will be deployed. The characteristics concern both the hosts and
network links between them. Typical host requirements include: the type of host, its
role in the network (e.g. whether it is a intermediate egress router or an end node) or
network location (e.g. the absolute IP address or relative to hosts where other service
components are to be deployed) These requirements are modeled by class
HostRequirements. Typical link requirements describe the type of communication
between two components and the needed quality of the underlying network link (e.g.
bandwidth, jitter, round-trip time, etc). The latter are abstracted in the model by class
LinkRequirements.

• Component requirements (represented by class ComponentRequirements in the
model) determine the needs of the service components with regard to the availability
of computational resources in the target environment .Typical computational resources
needed are the CPU processing power, the amount of the main memory and persistent
store memory.

Class Service in the model has a name which determines the service template.
Additionally, it provides methods to:

• Retrieve the names of all service components names
• Get the topological requirements of each service component.

Component, or Service Component is a basic unit of deployment in the model. It is described by
a number of attributes to identify the component and are usually stored in the service
descriptor. Optionally, the service has a reference to a code module which represents a file the
component implementation is packaged.

 81

Additionally, the Component has a version to distinguish various component releases of
a Component. Whenever a new component is released, it is assigned a version that is unique.
The version is determined by the Service Provider. For the purposes of this work, it is enough
to apply a simple versioning scheme. In this scheme, the following rules apply:

Component version VC is a pair of integer numbers (m, n):where m is called major version
number and n is called minor version number. It will be noted as VC(m, n).

Version equivalence is defined as follows:

VC(m, n) = VC (p, q) ⇔ m=p ∧ n=q

There is an partial order relation defined on the versions as follows:

VC(m, n) > VC(p, q) ⇔ m>p ∨ (m=p ∧ n>q)

For any two component releases R1 and R2 that occurred at time tR1 and tR2 it is required:

tR2 > tR1 � VC(m, n) > VC(p, q)

Additionally, if any major change occurs in this release then additionally the major version
number should be increased so that m>p and n reset to 0.
In case of a minor changes, it is required that n>q.

The definition of the major and minor change is related to the evolution model of the
target system that specifies the possible changes in evolving components. This topic is
not considered in this thesis. Hereafter, it will be assumed that:

a major change is a non-compliant change in the component interface and semantics
a minor change is a compliant change in the code module or in the component

dependencies.
Whereas, a compliant change is a change that does not break the component contract that

is defined by its interfaces.
To explain these rules using the example service depicted in Figure 22, assume a new version
of service TranscoderService is released. Provided that a minor change was done in
component Duplicator by Provider BBB, the component has to be released with version
1.2 and the service gets version 2.2. No other components have to change their version, since
this modification does not impact them. After some time, JavaMediaFramework has
undergone some major redesign (including some changes to its exported interfaces) and now
Provider AAA is released again. Because of these major changes, the component version has to
change to 2.0. Moreover, the major version number of all the components and services that
depend on this component have to be increased after they are adopted to the changes and
released. Thus, new release of component Transcoder appears in version 2.0 and service
TranscoderService in version 3.0.
Service Deployment is a process of mapping the service components onto the target
environment. It involves determining the target environment, identifying needed service
components, fetching, installing and loading the appropriate code modules into the target
environment.

 82

Container

-id : string
-reources : ComputationalResources
-type : string

Component

+abstract_prop : boolean
+compound_prop : boolean
-description : string
-name : string
-serviceProvider : string
-version : string

Host

-address : Address
-supportedContainerTypes

VirtualLink

-id : string
-reservedQoS : LinkQoS

PhysicalInfrastructureTargetEnvironment

Link

-end : Host
-qos : LinkQoS
-start : Host

1

1..*1..*

0..* 1

0..* 1
1..*

1..*1..*

Figure 24. The deployment-phase relations between the component and its target environment.

The physical infrastructure provides the set of computational and communicational resources
available to be used during the execution of a service. Physical Infrastructure consists of
a number of computers, called further hosts, and a number of links connecting these hosts.
Each link offers some communicational resources, that is connectivity with a given quality of
service. Each host is identified with an network address and offers some computational
resources.
To deploy a service, its requirements have to be fulfilled by the available computational and
communicational resources. These resources are a subset of all resources provided by the
Physical Infrastructure. They include a subset of host resources and a subset of link resources.
The computational resources are managed using the term of Container.
A Container provides an execution environment with certain amount of computational
resources that belong to a given host. The resources include memory, processing power and
persistent storage. Each Container has its type that is determined by the execution model. This
model is then defined by the development and programming environment, like Java or C++ as
well as the basic services it offers.
The communicational resources are managed in terms of virtual links. A virtual link provides
connectivity between two hosts with certain quality of service. Each link may have a number
of virtual links provided that the sum of resources taken by them is smaller then the total
amount of communicational resources of the link.
With regard to service deployment, the deployment process has to match the deployment
requirements against the resources provided by the physical infrastructure and chose a subset
of the physical infrastructure. This subset is called a Target Environment. In other words,
Target environment is computed during the process of matching service deployment
requirements against the resources available in the physical Infrastructure and will be
a runtime environment for the service to deploy. The target environment consists of a number
of containers in which the given service component is to be deployed and a number of virtual
links that will be used by the service components to interact. It is the matching process (part of
the deployment process) that assigns every service component to a container of the Target
Environment .
The presented concepts are modeled in the corresponding classes presented in the class
diagram in Figure 24.

 83

5.3.3 Runtime phase concepts
Component Runtime Image is a runtime entity that comes into being when a deployed software
component is loaded into a container. In a given container, only one component runtime image
can be loaded at a time. However, a component runtime image may create many instances of
its interfaces if needed.
The runtime part of this component model is defined in a very light-weighted aspect-oriented
and low-coupled way. A set of interfaces is defined that can be provided by the component
instances. This approach enables reuse of other existing component models and facilitates
high portability. These interfaces are depicted in Figure 25.
It defines only a few interfaces that a component implementation may provide. Only one of
these interfaces is mandatory. It is the Reflective interface which defines operations
supporting a component with multiple interfaces. It provides operations for retrieving all
interfaces provided by a component instance and getting a reference to any of the interfaces
provided by the component instance.
Another interface is InstanceFactory which supports a universal way of creating
instances of components. This interface should be implemented by each the component
runtime image.
Yet another interfaces ActivationListener defines a way to notify the component
runtime image or component instances of the fact being activated or deactivated.
The interface especially relevant to performing dynamic upgrades of software component is
called Upgradable and is described in detail in section 6.2.6.1.

Upgradable

+get_state() : State
+reach_upgrade_point(callback : UMFCallback) : void
+reach_upgrade_point() : long
+set_state(theState : State, upgrade_point : long)

Reflective

+getInterface(name : string) : any
+getInterfaceList() : string[]

ActivationListener

+activated() : void
+deactivated() : void

InstanceFactory

+create() : any

Figure 25. Basic runtime interfaces of component runtime images.

A runtime instance of a container is a instance of an execution environment for components
runtime images. It provides component runtime instances with the basic services needed for
their execution. In general, these services include access to the computational and
communicational resources that are available to the component instances deployed in this
container.

5.3.4 Phase Transitions
This section describes the interrelations of concepts defined in different phases of the software
life cycle.
A service component has the following life cycle presented in Figure 26:

• First, a service component is released. This means that the service component makes
the service available to be deployed in the distributed system.

• A released service component may be deployed to a target environment in the
distributed system. As a result, the service component is installed in a container and is
ready to its executable code may run.

• A service component may be activated in the container to be able to process the clients
requests, if it plays the server role. The activation process may include instantiation of

 84

certain runtime artifacts in case of the object-oriented execution model or invoking
some initial functions in case of the function-oriented execution model.

• Once a service component is deployed, it may need to be upgraded, that is, a new
version of the service component code has to replace the old version. In case, the
service component has been activated, the upgrade process is called dynamic.

• A service component may be deactivated in the container. It makes the runtime
artifacts of the service component be: (1) passive in that no external activity will result
in execution of the runtime artifacts from the moment of deactivation, and (2) all
running activities in the service component are possibly made frozen in a bounded
time period after activation is requested.

• A deployed service component, may also be removed from the target environment it
has been deployed to, if needed.

• Finally, a service component may be withdrawn from the distributed system. This
makes the component unavailable to any activities in the distributed system.

deployed

released

activate

actvate

withdrawn

dynamic
upgrading

deactivate

upgrade

upgrade done

Figure 26. The service component Life-cycle phases.

Code Module is a file with the executable code of the given service component. The contents
of the file is implementation technology specific. Given a reference to this file, the container
infrastructure knows how to install and load the code module. A code module has the
following phases of life cycle (also depicted in Figure 27):

• Initially, it is released to the system during the release time of the service.
• It is fetched onto a system node from the service repository and may be kept in the

local service repository for some time.
• It is installed in a container instance, which means it is made available to the container

infrastructure to load it if needed.
• It is loaded into a container. The module is either dynamically loaded into the running

container instance or loaded by a new container instance when it started.
• It is unloaded from the container instance. The module may be unloaded and unlinked

from the running container instance.
• It may be uninstalled from the container if it was previously installed in that container.
• Finally, it may be removed from the node.

When a service component is deployed, the code modules associated with it are usually
fetched to the appropriate nodes of the target environment, installed and loaded into the target
containers. In case, a service component is to be upgraded, the new version of the code

 85

modules have to be fetched, installed and loaded, and afterwards the old version may be
unloaded and uninstalled.

released

fetched

fetch

installed

install

uninstall

loaded

load

unload

removed

remove

Figure 27. The life cycle phases of the code module.

5.4 Design and Implementation
The presented concepts of the use case and component model presented in the previous
sections of this thesis have been realized by the author of this thesis and contributed to the IST
FAIN (Future Active IP Networks) project. The functionalities designed in detail and
implemented within this project are related to service release and withdrawal, service
deployment and removal.
The Active Service Provisioning system is a subsystem of the FAIN system architecture[27]
aimed at defining a generic architecture for IP-based active networks. It supports deployment
of distributed heterogeneous services onto a network of active nodes, which are computing
nodes which can be located as intermediate nodes in the network infrastructure, like
traditional network routers and switches in the communication network, and are capable of
running programs processing data traffic flowing through them. (see [125] for an introduction
to active networks). Nevertheless, the approach is not limited to active networks and it be can
applied to distributed systems including a typical enterprise distributed system Further details
of the system design and implementation can be found in [112],[58],[23] and [22].

5.4.1 Approach Summary
The Active Service Provisioning System provides an example implementation of the
fundamental capabilities for service deployment. These include releasing a service in
a system, deploying it with a given set of deployment requirements as well as removing such
a deployed service and withdrawing a service from a system.
The approach of the FAIN ASP system is summarized be the following list of features:

• Two-layered architecture: The rationale for choosing this architecture was a separation
of concerns in the service deployment problem space. Whereas the network-level ASP
deals with network issues including identifying nodes of the target environment for a
given service with regard to the topological service requirements and network Quality
of Service requirements, the node-level ASP is concerned with node specific
requirements, including technology and other service dependencies.

• Heterogeneous active service support: The ASP enables deployment of active services

 86

independently of the implementation technology they are based on. As long as a
service is structured in terms of components and described using universal service
descriptors defined in XML, it can be deployed using the ASP in the same way.

• Multi-EE node support: The ASP allows for deployment of active services on top of
multi execution environment nodes. A service may consist of components to be
deployed in different execution environment on a node. The decision as to which EE
should be chosen depends on the execution capability and the availability of the
suitable component implementation.

• Deployment support for service components in different planes: ASP is designed for
deploying service code independent of the purpose. In the same way, it is possible to
deploy components to run in management, control and data plane.

• Hybrid two-phase process for the selection of a target environment: The selection of
active nodes suitable for a deployment of active services is designed as a hybrid of a
centralized pre-section of the candidate nodes to be used for service deployment and a
decentralized checking that the actual node capabilities on the candidate nodes suffice
the service needs.

• Universal service meta-information description: The service descriptors are expressed in
XML, a commonly-used SGML-based language standardized by W3C. By applying
this language, the descriptors are easy to write for the service providers, easy to
process by the programs (e.g. to generate it automatically by developing a service or to
parse it) and, last but not least, as easy to extend. The common availability of the
parsers also makes the software processing XML-based service descriptors easy to port
to other platforms.

• Binding of service components: The FAIN ASP also supports binding service
components forming a service. A service descriptor enables describing the way the
components should be connected with each other and the node level ASP can interpret
this information and perform the necessary actions.

Additionally, the service model supported by the ASP system is based on the one presented in
section 5.3. The one presented in this thesis has been extended by adding the implementation
phase and some runtime phase concepts to the model. The definition of some of the concepts
in our model have been elaborated from the ASP Component Model and extended by the
necessary definitions relevant to dynamic upgrades.

5.4.2 Realization overview
The design of the ASP system follows a two-level type architecture, where the network and
the node level can be distinguished. This architecture is depicted in Figure 31.
On the network level the ASP consists of the Network Manager working as the central access
point of the ASP to other Non-ASP sub-systems. The Network Service Registry and the
Network Service Repository are dedicated to service information storage and delivery:
On the element level the ASP consists of the Node Manager, which is the central access point
for the ASP on the element level. The Node Manager on the candidate nodes selected for
deployment of service components is contacted by the network manager . In addition the Code
Manager, the Service Creation Engine, the Local Service Registry, the Local Service
Repository and the Reconfiguration Manager make up the node level ASP:
The following section describes the main entities of the Active Service Provisioning system.

 87

Service Registry is used to manage the meta information about the services in a form of
service descriptors. Service descriptors XML documents containing the information on
the service attributes, like the service name, version, the provider, as well as service
requirements in terms of container (execution environment) and network capabilities,
and service dependencies. The descriptors are stored in the Service Repository, when a
service component is released in the network. Network Manager and the Service
Creation Engine may contact the Service Registry to fetch service descriptors. Finally,
service descriptors are deleted from the Service Registry, if a service is withdrawn
from the network.

• Service Repository is a data base for code modules. A code module is stored in the
Service Repository, when a service descriptor referencing the particular code module
is released in the network. The Code Manager, which is part of the node level ASP
system and is described below, may fetch code modules from the Service Repository.
A code module is deleted, if a service descriptor referencing the particular code
module is withdrawn. As is the case for the Service Registry, several Service
Repositories may coexist in a big network.

NodeASP

NodeManager

+createServiceInstance()
+deployServiceComponent()
+removeServiceInstance()

LocalServiceRegisty

+fetchDescriptor()

LocalServiceRepository

+getCodeModule()

CodeManager

+download()
+install()
+load()
+uninstall()
+unload()

SCE

+checkService()
+installServiceComponent()

NetworkASP

NetworkManager

+createServiceInstance()
+deployServiceComponent()
+removeServiceInstance()

ServiceRegistry

+fetchService()
+getServiceList()
+registerService()
+unregisterService()

ServiceRepository

+deleteCodeModule()
+getCodeModule()
+storeCodeModule()

1..*1..*

-cm

-lsrp

-sce

-lsr

1..*

Figure 28. Design classes of the ASP system.

• Network Manager serves as an access component to the ASP system. In order to initiate
the deployment of an particular service, a Service Provider contacts the Network Manager
and requests a service to be deployed as specified by the service descriptor. It is also
responsible for processing the network level service deployment requirements and
matching them against the actual network capabilities. Deployment requirements include
the service topology, which is determined by a number of service components to be
located on nodes with given characteristics. The node characteristics include their node

 88

roles in the network, like egress, ingress, end node, position absolute in terms of the
network address or relative to nodes requested by other service components. Other
deployment requirements are handled at the node level. This component has access to the
information on how to access component installations and runtime component instances.

• Node Manager is the peer component to the network manager on the node level. The
network manager communicates with the node ASP manager in order to request the
deployment, upgrading and removal of service components.

• Service Creation Engine is a component that resolves the dependencies of a service. It
does so by parsing the service metainformation contained in the service deployment
descriptor. The dependency resolution is a recursive process which involves resolving
dependencies of service components that the given service depends on. The
dependency resolution process is not relevant to this thesis and it is not described here.
An example of such a resolution and a detailed design of this component can be found
in [23]

• Code Manager is a component which maintains the information about the code
modules installed on the node. This component is contacted after the Service Creation
Engine has resolved the dependencies of the service component requested to be
deployed. The service component information comprises:
• Service Component dependencies:

o Resolved inter-component dependencies, in the form of a list of all the
service components that the given service component depends on.

o Environment dependencies, i.e. the dependencies on the execution
environment that the code module associated to a service component is
supposed to run in.

• Service Component local installations:
o Expiration date,
o VE identifier and EE identifier, where the code modules are installed.

The Code Manager holds the information about the installed service components in a
data structure forming a directed acyclic graph (DAG). The nodes in the data structure
represent the service components installed onto the node, whereas the edges represent
the dependencies between these components. The data structure used to keep this
information is depicted in Figure 29. The DAG has two levels: the first level consists
of nodes representing service components that were requested to install by the SCE.
Nodes on the second level represent the service components that the service
components from the first level directly or indirectly depend on.

The information maintained by the Code Manager is upgraded by:

• SCE in case it requests fetching and installing a service component,

• SCE in case it requests upgrading a deployed service component,

• Code Manager itself whenever a service component expires and needs to be
uninstalled from a given target environment.

 89

SC00
VE1

SC01
EE1

SC02
EE2

SC10
VE1

SC11
EE1

SC12
EE2

SC13
EE3

SC10
VE2

SC21
EE10

SC22
EE11

Figure 29. Data structure with the code module information in the Code Manager.

5.4.2.1 Releasing a service

The realization of use case release service described in section 5.2.3.1 is straightforward. The
needed interactions are depicted in a collaboration diagram in Figure 30. Table 3 explains the
interactions depicted.

: NetworkManager

: ServiceProvider

: ServiceRepository

: ServiceRegistry

storeCodeModule()1.2:

registerService()1.1:
releaseService()1:

Figure 30. Collaboration Diagram: Releasing a service

Seq. No. Interaction description
1. Service Provider requests releasing his service. He accesses the network manager

and provides the necessary information, including the service name, service meta-
description as well as the references to the service’s code modules.

1.1 Network Manager contacts then the service registry where it uploads the service
descriptor(s).

1.2 It also uploads the code modules of the service onto the Service Repository.

Table 3. Interactions during releasing a service.

5.4.2.2 Deploying a service

Deployment of component-based services is a key functionality of the Active Service
Provisioning system. In section 5.2.3.2, the use case description presents the main activities of
the deployment process. These activities are now presented by adding the details of the ASP
system. Figure 31 depicts a collaboration diagram with all the interactions within the ASP
system and Table 4 describes the details of these interactions.

 90

: LocalServiceRepository

: LocalServiceRegisty

: ServiceDeployer : ServiceRepository: NetworkManager : ServiceRegistry

: CodeManager

: NodeManager

Network level

Node level

: SCE

getCodeModule()1.3.2.2: fetchAndInstall()1.3.2:

fetchDescriptor()1.3.1.1:

getCodeModule()1.3.2.2.1:

fetchService()1.1:

deployComponent()1.3:

parseServiceComponent()1.3.1:

deployServiceComponent()1:

fetchService()1.3.1.1.1:

findDeploymentMapping()1.2:
updateServiceDB()1.4:

download(CodeModule)1.3.2.1:
install(localRef, aContainer)1.3.2.3:

Figure 31. Collaboration Diagram: Deploying a service .

Seq. No. Interaction description
1. Service Deployer initiates the deployment procedure by requesting the network

manager to download the service code and install it accordingly.
1.1 Network Manager fetches the network level service descriptor from the Service

Registry to identify the service’s deployment requirements with regard to the
network topology.

1.2 It matches these requirements against the actual capabilities of the underlying
network and finds out a number of candidate target environment, each of which
consists a number of nodes. Each of these environments suits the topological
requirements of the service. As a result of this operation, a number of mappings
between each service component of the service and a candidate node is defined. It
is however not sure whether the candidate nodes provide adequate computational
resources to the service components.

1.3 To determine one target environment, Network Manager tries out each of these
mapping one by one. Each sends the deployment request to each of the active
nodes of the target environment.

1.3.1 Node manager supports the network level ASP with a selection of nodes of the
target environment by checking whether the service component proposed in the
mapping is deployable on the give node. In this simple scenario, it just passes the
deployment request with its description to the Service Creation Engine, or SCE for
short The latter resolves recursive dependencies of the service to deploy. It does so
by parsing and processing further the service's deployment descriptor. When
resolving dependencies, SCE has to decide which service component to chose
from the set fulfilling the service component requirements. It does this by
matching the service components requirements and the local capabilities of the
node, like available container (execution environment) types or other resources
that may be allocated by the Service Provider. The result of the dependency
resolution process, is the so-called service tree. It is a data structure containing the

 91

information on the code modules needed to be fetched and installed in the suitable
execution environments.

1.3.1.1 SCE fetches the node-level metainformation about the service to deploy from the
Local Service Registry

1.3.1.1.1 If the Local Service Registry does not contain the needed information, it contacts
the Service Registry and downloads the needed deployment descriptors

1.3.2 After the dependencies of the service components are resolved, Node Manager
may fetch all missing code components onto the node. For this, it requests the
Code Manager to coordinate further steps of the service deployment process and
passes the service tree to it.

1.3.2.1 Upon this request, the Code Manager checks with its internal data base whether
each of the service components in the service tree is available on the node, i.e. its
code module has not been downloaded and installed, and its code modules are
stored in the local service repository. If the code module is in the local cache of the
Local Service Repository, a local reference to the code module is returned.

1.3.2.1.1 Otherwise, the Local Service Repository contacts the Service Repository and
downloads the file.

1.3.3 Now the actual installation process is started. Node Manager requests the Code
Manager to install the downloaded code module. Optionally, the component
installation for activatable components may be then instantiated.

1.4 Network Manager updates the internal data base where the information about
component installation are kept.

Table 4. Interactions during deploying a service.

5.4.2.3 Upgrading a service

Upgrading of a service starts with searching the installation of the service component in the
target system. This information is kept by the Network Manager in its internal data base. Then
the Network Manager request the upgrade in each of identified container, in which the
components of the given service are deployed. More details are given in Table 5 describing
the interactions in the ASP system depicted in a collaboration diagram in Figure 32.

 92

: ServiceDeployer : NetworkManager

: NodeManager

: CodeManager

Network level

Node level

: SCE

upgradeComponent()1.2.2:

upgradeComponent()1.2:

parseServiceComponent()1.2.1:

upgradeService()1:

findComponentInstallations()1.1:
updateServiceDB()1.3:

Figure 32. Collaboration Diagram: Upgrading a service

Seq. No. Interaction description
1. Service Deployer requests upgrading a deployed service. For that, he contacts the

Network Manager.
1.1 Network Manager finds out where the given service type is deployed by searching

its internal data base where component installations are stored whenever a service
is deployed.

1.2 Network Manager iterates through all nodes where the service components are
deployed and requests upgrading these components one by one.

1.2.1. Node Manager identifies all the components that belong to the service by
contacting the SCE that parses the service component dependencies. The
dependencies may be already stored by the SCE so there is no need to parse the
service descriptor.

1.2.2 Node Manager requests CodeManager upgrading each component that has to be
upgraded.

1.3 Network Manager updates the internal data base where the information about
service component installation are kept.

Table 5. Interactions during upgrading a service.

5.4.2.4 Removing a service

Removing of a service starts with searching the installation of the service components in the
target system. This information is kept by the Network Manager in its internal data base. Then
the Network Manager request the component removal in each of containers, in which the
components of the given service are deployed.
The design of use case remove service described in section 5.2.3.6 is depicted in Figure 34.
Table 6 below explains the interactions depicted.

 93

: ServiceDeployer : NetworkManager

: CodeManager

: NodeManager

Network level

Node level

: SCE

uninstall(aContainer, aCInstallation)1.2.2:

removeComponent()1.2:

parseServiceComponent()1.2.1:

removeServiceComponent()1:

findComponentInstallations()1.1:
updateServiceDB()1.3:

Figure 33. Collaboration Diagram: Removing a service

Seq. No. Interaction description
1. Service Deployer requests removing a service deployed before. For that, he

contacts the Network Manager.
1.1 Network Manager finds out where the given service type is deployed by searching

its internal data base where component installations are stored whenever a service
is deployed.

1.2 It can iterate through the nodes where the service components have been deployed
and request removing the components that belong to the given service.

1.2.1 Node manager coordinates the removal process on its node. It iterates all the
components to remove and requests all dependent components from the SCE.

1.2.2. Code Manager removes then all dependent components unless they are not used by
component installations.

1.4 Network Manager updates the internal data base where the information about
component are kept.

Table 6. Interactions during removing a service.

5.4.2.5 Withdrawing a service

The design of use case withdraw service described in section 5.2.3.7 is depicted in Figure 34.
Table 7 explains the interactions depicted.

 94

: ServiceProvider

: NetworkManager

: ServiceRepository

: ServiceRegistry

deleteCodeModule()1.3:

unregisterService()1.2:
fetchService()1.1:

withdrawService()1:

Figure 34. Collaboration Diagram: Withdrawing a service

Seq. No. Interaction description
1. Service Provider requests withdrawing his service. The service is referred by its

name.
1.1 Network Manager access the service registry to fetch the meta-information on the

given service. It parses the information to identify the code modules related to the
service.

1.2 Network Manager removes the metainformation related to the service.
1.3 It also removes the identified code modules from the Service Repository.

Table 7. Interactions during withdrawing a service.

5.4.2.6 Service Description

Service composition and their deployment requirements are expressed in terms of service
descriptors.
The process of deployment is split into two phases for the sake of separation of concerns, the
service description has been split into two types of service descriptors. Network and node
level descriptors. Whereas the network-level descriptor describes network issues including
identifying nodes of the target environment for a given service with regard to the topological
service requirements and network Quality of Service requirements, the node-level ASP is
concerned with node specific requirements, including underlying technology and
dependencies of other service components.
Network–level service descriptor. It provides the generic descriptive information about the
service, lists the top components of the services and describes the topological requirements on
the target environment. The network-level service descriptors are processed by the network
ASP subsystem. A network-service descriptor for the example service
TranscoderService depicted in Figure 22 is presented in Listing 1.

Listing 1 TranscoderService.xml:
<?xml version="1.0" encoding="UTF-8"?>
<NETWORK_SERVICE xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="FAIN_NETWORK_LEVEL_DESCRIPTOR.xsd"
xsi:type="NETWORK_SERVICE">

 <DESCRIPTION>
 <SERVICE_NAME>TranscoderService</SERVICE_NAME>
 <SERVICE_ID>extended_transcoder_pure_java</SERVICE_ID>
 <PROVIDER>AAA</PROVIDER>

 95

 <VERSION>2.1</VERSION>
 <SIGNATURE>0x1234ab006f8b11fa8c</SIGNATURE>
 <CLASS>economy</CLASS>
 <LICENSE>0.2</LICENSE>
 </DESCRIPTION>
 <SERVICE_COMPONENT>
 <NAME>Duplicator</NAME>
 <INSTANCE_NAME>d1</INSTANCE_NAME>
 <LOCATION>
 <RELATIVE>
 <NODE_ROLE>ingress
 </NODE_ROLE>
 </RELATIVE>
 </LOCATION>
 </SERVICE_COMPONENT>
 <SERVICE_COMPONENT>
 <NAME>TXengine</NAME>
 <INSTANCE_NAME>tx1</INSTANCE_NAME>
 <LOCATION>
 <RELATIVE>
 <NODE_ROLE>egress
 </NODE_ROLE>
 </RELATIVE>
 </LOCATION>
 </SERVICE_COMPONENT>

</NETWORK_SERVICE>

Node-level service descriptor. It describes a service component and its requirements. Like the
network-level descriptor, it also provides generic descriptive information about the component
including the component name, provider and its release version. The second part describes the
configuration data needed to configure and activate the component. The data is as properties
in a similar way as defined in the component model.
The last part of the service descriptor is dependent on the class of service component
described. For a simple implementation component. this part contains a reference to a code
module and identifies the target environment where the code module is to be installed. It also
contains EE-specific information, which is used to perform EE-specific part of deployment
process. It may also specify the computational resource needed by the component.
The service descriptor of an abstract component holds information about required sub-
components and how they are to be bound to each other in order to perform the expected
functionality. Finally, a compound implementation is a mixture of the two classes above, and
hence contains both sets of information. Listing 2 presents the node-level descriptor for the
example component TranscoderEngine.

Listing 2 TranscoderEngine.xml:
<?xml version="1.0" encoding="UTF-8"?>
<SERVICE xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="FAIN_NODE_DESCRIPTOR.xsd" xsi:type="COMPONENT">
 <DESCRIPTION>
 <SERVICE_NAME>TranscoderEngine</SERVICE_NAME>
 <SERVICE_ID/>
 <PROVIDER>AAA</PROVIDER>
 <VERSION>1.1</VERSION>
 </DESCRIPTION>
 <PROPERTIES>
 <PROPERTY>
 <KEY>mainClassName</KEY>

 <VALUE>org.ist_fain.services.transcoder1.TranscoderManager</VALUE>
 </PROPERTY>
 <PROPERTY>
 <KEY>mainCodePath</KEY>
 <VALUE>/usr/local/jmf-2.1.1/lib/jmf.jar:/usr/local/jmf-

2.1.1/lib/sound.jar:/usr/local/jmf-2.1.1/lib:code/demux.jar</VALUE>
 </PROPERTY>
 <PROPERTY>
 <KEY>AdmissionTimeOut</KEY>

 96

 <VALUE>30000</VALUE>
 </PROPERTY>
 </PROPERTIES>
 <ENVIRONMENT>
 <EE_NAME>JVM</EE_NAME>
 <EE_VERSION>1.3.1</EE_VERSION>
 </ENVIRONMENT>
 <CODE xsi:type="CODE_LOCATION">
 <CODEBASE>jvm.TranscoderService.AAA.TranscoderEngine.jar</CODEBASE>
 </CODE>

</SERVICE>

The service descriptor is specified as XML schema. This technology has been chosen because
of the platform-independent character of the language XML and its simplicity to specify,
validate and process in automatic way because of huge availability of XML development
support tools, including editors and parsers.

5.4.3 Discussion
The Active Service Provisioning system provides the advanced deployment support but only
rudimentary support for upgrading services for distributed services. Namely, it provides the
support for service release and withdrawal as well as service deployment and its removal. The
most recent design of the ASP system [23] also provides capabilities for service
reconfiguration in terms of adding or removing components to an existing running service as
well as modification of connections between components at runtime. This reconfiguration can
be initiated directly by the Service Deployer or by the service itself (the so called auto
reconfiguration).
However, this system does not support all the features needed to upgrade services in a fully
dynamic way. The following features still have to be provided:

• Upgrade Process Management. The ASP system follows the client-server paradigm, in
which the ASP provides the deployment-related functionalities when requested. It
itself is however not proactive and needs an external trigger to work, either from the
Service Provider (Service Deployer and Provider are not distinguished in the FAIN
business model) directly requesting a deployment-related action from the Policy-Based
Management System that acts on behave of the Service Provider. Even though the
Management System framework is very generic and extensible, no specialized policies
and their enforcement modules are defined to cope with dynamic upgrades.
Furthermore, defining such policies and implementing their logic in form of Policy
Decision Points and Policy Enforcement Points is not trivial and their deployment
requires running a heavy-weighted policy framework.

• Specialized Upgrade Mechanisms. The ASP does not provide all the mechanisms
needed to perform dynamic upgrades. In particular, upgrade algorithms have to be
defined for different types of upgrade targets.

• Non-functional aspects of dynamic upgrades. The ASP does not address the non-
functional requirements R8 -R11 defined in section 5.1.4. In particular, the following
aspects are not covered:

o Real time aspects. The mechanisms should be concerned with the real-time
aspects The target system availability should not be reduced

o Dependability aspects. Upgrading of a system should not make it more
susceptible to outrages.

o Upgrade Transparency. No mechanisms are defined to make a dynamic upgrade
transparent to the rest of the system.

 97

Consequently, in the next chapters of this thesis, it is assumed that the middleware platform
provides the functionalities as realized by the Active Service Provisioning system. In
particular, it is assumed that the Infrastructure enables functionalities as defined in the use
case model described in section 5.2 and that the services to be upgraded are compliant to the
component model described in section 5.3:
In the subsequent chapters of this thesis, the features identified above needed to fully support
dynamic upgrades of distributed component-oriented services will be investigated. The
following features characteristics summarizes the approach presented:

• A light-weighted framework for dynamic upgrade management. This framework is
presented in chapter 6.

• Specialized Upgrade mechanisms. The upgrade algorithms are presented in chapter 7.

5.5 Summary
In this chapter, a model for deployment and upgrade has been presented. The model is defined
using the UML use cases. The model identifies the main actors involved in the deployment
process, and the upgrade process in particular, and describes the key capabilities that the
support system has to provide. The system upgrade is considered as a special case of software
deployment, in which a service in redeployed so that the same service that has been previously
deployed is replaced. A dynamic upgrade is then a special case of service upgrade, in which
additional constraints have to be taken into account during the process.
The chapter also introduces a component model defining basic concepts describing software
in subsequent phases of its life cycle including: implementation, deployment and runtime. The
focus of the component model is set on the deployment phase.
Finally, one realization of the introduced concepts in the presented model is briefly described.
This realization is based on a prototypical implementation of the FAIN Active Service
Provisioning system that the author of the thesis has contributed to. The realization
description concludes with a summary of the capabilities missing in the ASP system to fully
support dynamic upgrades. These capabilities include a specialized upgrade management and
specialized dynamic upgrade mechanisms. These mechanisms are the main topic of the next
chapters of this thesis.

 99

6 Managing Dynamic Upgrades
The management of highly available distributed systems involves activities to adapt and
customize the system to the current requirements of its users. Dynamic upgrades allow to
introduce the necessary changes to a running system without compromising its availability. As
the process of upgrading may itself be a complex task that has to be done multiple times
throughout the system’s life span, an automatic support for its management could facilitate it
and make it less error-prone. A support for well-balanced design of a management support for
dynamic upgrades in a distributed environment is one of the research challenges for the
designers of dynamically upgradable systems as mentioned in section 3.4. In section 5.1.5 a set
of requirements on a dynamic upgrade support system were formulated.
In this chapter, the domain of dynamic upgrade management is presented in section 6.1. In
section 6.2, a design model for the Dynamic Upgrade Management Framework is described. It
describes the main subsystems and their design classes and documents the key design
decisions. The presentation of the solution design uses the UML notation [96][81] and the
design process is based on the Unified Process. The implementation related issues are
described in section 6.3. Finally, section 6.4 summarizes the whole chapter.

6.1 Domain Model
The Dynamic Upgrade Management Facility represents the entity, external to the system to be
upgraded, that is responsible for managing the upgrade process. Its task is to:

• Manage the service code provisioning and in particular deployment.
• Initiate the upgrade process if the upgrade is to be triggered externally.
• Coordinate the upgrade process which includes:

o enforcing the upgrade management policies,
o selecting the upgrade targets in case of multiple upgrade needed,
o recovering the system from upgrade failures.

While designing our solution the following assumptions were considered.
• The application target of the Deployment and Upgrade Facility are large distributed

systems in which management decisions would be too difficult and their enforcement
rather intricate for a human administrator to make them. In particular, the complexity
of the distributed software, like the dependencies between components, the
distribution of the software components deployed in the system is fairly high.

• The system management and supervision may be done in a distributed way, possibly
by multiple system administrators in parallel. There is a need to coordinate their
actions and resolve potential conflicts in the management decisions.

• The management decisions and the mechanisms used to enforce these decisions can
easily be separated from each other. The mechanism to perform upgrades can be
located in the middleware platform whereas the policies may be defined based on the
expertise of system administrators and interpreted by the management framework.

Thus, an automatic or semi-automatic support for management of dynamic upgrades is
beneficial. Furthermore, a policy-based approach is suitable in this context.

6.1.1 Overview
This overall architecture of the DUF is depicted in Figure 35. It consists of the following

 100

logical subsystems:
• DU Management Framework which is an extendable object-oriented policy-based

framework providing support for upgrade management and coordination in
a distributed system. The framework defines basic support for policy-based way of
managing maintenance events in the system and dynamic upgrades in particular as
well as a number of needed classes for controlling upgrade processes in a unified way.
The concrete upgrade management policies and upgrade algorithms are defined in the
following subsystems :

o Upgrade Management Policies contains a set of predefined policies defining
typical management schemes for dynamic upgrades.

o Upgrade Algorithms contains a collection of different variants of upgrade
algorithms. New algorithm implementations may be added to this collection.

• DUF Infrastructure is a part of the solution that is located in the middleware platform.
This infrastructure is needed by the Management Framework and Upgrade Algorithms
to control the communication in the system parts being upgraded as well as certain
service life-cycle management, including component implementation loading, or
activation.

• Upgrade Target is a part of the distributed Target System which is to be upgraded
within an upgrade procedure. An upgrade target may consist of a component, which is
the minimal unit of upgrade, or a set of components distributed in the system.

RP3

Upgrade
Algorithms

Target System

UpgradeTarget
DU Management

Framework

Middleware Platform

DUF Infrastructure
Service

Deployer

RP1

Upgrade
Management

Polices

RP2

Figure 35. The architecture of the DUF and its distributed system with highlighted components
related to the upgrade.

Three reference points, RP for short, are defined to allow for communication between the
framework and other components of the system. The reference points are defined by a number
of public interfaces of the logical components between which the reference point is defined:

• RP1 which is offered to the Service Provider and allows for configuring the DU
Management Framework. The Service Deployer may set up the framework to manage
and coordinate upgrades in the system using the existing upgrade management policies
and upgrade mechanisms.

• RP2 is an interface defined for communication between the DU Management
Framework and the Target System. It is used for coordinating and controlling a part of

 101

the middleware platform relevant to the upgrades, called DUF Infrastructure. The
interface is also use for retrieving information about the system for evaluating the
upgrade management policies.

• RP3 is an interface which enables extending the DU Management Framework by
plugging in new management policies or upgrade mechanisms. In order for the policies
and upgrade mechanisms to be plugged in, they have to implement certain interfaces
and make use of the interfaces provided by the framework as defined in RP3.

6.1.2 Conceptual Classes
Figure 36 depicts more details of the DUF architecture. The architecture comprises the
following conceptual classes:

• UMFServer is the entry point class of the DUMF. Its role is to accept upgrade
requests from the service deployer, check their correctness and transform them into
upgrade management policies.

• UpgradeInitiator is a class in the DUMF responsible for triggering upgrade
processes. It does so by either regular evaluation of the triggering conditions of a set of
upgrade initialization policies which are passive or by letting active policies to initiate
corresponding upgrade processes by themselves.

SystemMonitor is a subsystem that monitors the state of the distributed system and
reports it to the upgrade initiator. This information is needed to check whether the
triggering conditions of the policies are fulfilled and the corresponding policy action
can be started. The functionality of this class is directly related to the upgrade support
and is rather of general character. As such, it is skipped in further design of the system
elaborated in this thesis.

• UpgradeProcess is an instance of a deployment and management process that deals
with exchanging programming artifacts comprising a target system. An upgrade
process is determined by a concrete Upgrade Target and an Upgrade Algorithm.

• UpgradeAlgorithm is an algorithm that defines the steps to follow during a system
upgrade process. Upgrade algorithms belong to upgrade mechanisms and are
controlled by the DU Management Framework described above. There are a number of
algorithms possible and each of them may be applied only in a specific context. An
upgrade algorithm depends on the upgrade target and the parameters of the upgrade
process, such as allowed dynamics of change. A number of algorithms are predefined
in this thesis and new ones can be smoothly added to the framework.

• UpgradeTarget represents a set of component runtime instances that are to be
upgraded in the given upgrade process. An upgrade target is one of the attributes
determining an UpgradeProcess.

ComponentRuntimeImageInstance represents a single runtime instance of
a component. Each instance is part of a runtime image of the distributed system; it runs
in a container which is deployed in a host that belongs to the target system. Each
runtime instance implements one ComponentImplementation.

ComponentImplementation abstracts an implementation of a component.
A component implementation is determined by its code which contains a number of
software artifacts specific to the programming language of the implementation.

UpgradePoint abstracts an upgrade point, which is defined as a point in the component

 102

implementation code, which when reached enables to freeze the execution of the
component runtime instance. Upgrades points are candidates when an upgrade process
on runtime instances of this component implementation can start.

ComponentRuntimeImageInstance

ComponentImplementation

UpgradeAlgorithmUpgradeProcess

UpgradeInitiator

SystemMonitor UpgradeTarget

UpgradePolicy

UpgradePoint

UMFServer

defines

1..* 1
requests

1

0..*

triggers

1

0..*

notifies

1..* 1

manages

1

1

upgrades

1..*

includes

1..* 0..*

follows

1..*

1
implements

Figure 36. The conceptual classes of the DUF system.

6.1.3 Upgrade Management Dimensions
The process upgrade is a complex task and the way it is done may vary in many aspects. The
objective of the upgrade management is to provide a means to control how and when the
upgrade is performed within the permissible limits. The following dimensions of the upgrade
process are distinguished:

• Initiation Source, meaning who or what initiates the upgrade process.
• Time, meaning when the upgrade process is initiated.
• Range, meaning a part of the system that the upgrade may influence.
• Atomicity, meaning the atomicity of the upgrade process.

Below these dimensions are described in more detail.

6.1.3.1 Initiation Source

This dimension concerns the way the upgrade process is triggered. Two main initiation
sources of the upgrade may be distinguished:

• Externally. In this case, an entity external to the system to upgrade is responsible to
start the upgrade process. The initiation may be started as a consequence of
deployment of new software to the system or as a reconfiguration request of the system
manager.

• Internally. The system itself checks the condition triggering the upgrade and starts the
upgrade process. The upgrade is then a consequence of a state change of the system.

 103

6.1.3.2 Time

Section 3.4.3.3.3 introduces the problem of finding an appropriate time when the upgrade can
be carried out. On the other hand, the system handling upgrades may propose starting an
upgrade process for some management related reasons at a given point in time. Because of the
potential mismatch between a necessity and a feasibility to perform an upgrade in the target
system, this thesis differentiate the planned upgrade time and the real upgrade time, when the
upgrade process actually is started . Even though, the planned upgrade time may be equivalent
to the real upgrade time, in general, the real upgrade time follows the planned upgrade time.
This delay is related with the need to prepare the upgrade target for an upgrade.
There are some a number of possible predicates that may describe when to initiate the process
of upgrading a system on the fly. With regard to the upgrade time of a component, an upgrade
process may commence for instance:

• On new code availability. Whenever a new code implementing the object to be
upgraded is available to the upgrade system, the upgrade may commence.

• On time trap: The upgrade may be scheduled at a given time point.
• On certain system state. The system state may be related to:

o The system load. An upgrade may recommended only when the upgrade target
is not actively processing any requests or is loaded to a certain extend.

o Malfunctioning detection. The upgrade be triggered by a monitoring subsystem
that discovers malfunctioning of the given software component expressed, for
instance, by frequent crashes of the component.

6.1.3.3 Range

This dimension describes the part of the system that the upgrade process is to be applied. This
unit of upgrade range is called an upgrade zone. In the distributed component systems, the
upgrade zone can be:

• container,
• node, or
• domain consisting of a set of nodes.

Upgrade target multiplicity is another parameter related to the upgrade range. As the upgrade
concerns the change of the component type, which may be instantiated in a running system,
the runtime instances impacted by this change have to be described. The runtime entities may
be:

• a certain instance of a component type,
• all instances in the upgrade zone (e.g. all the instances running on a specific node)

6.1.3.4 Atomicity

Another issue of upgrade management concerns the way the component is to be upgraded.
The upgrade may be seen as:

• an atomic process, in which the component is upgraded as if it was performed in an
instance, i.e. other components use either the old version of the component or the new
one at a time. This strategy may be used when two versions of a component running in
parallel and processing requests are not wished in the system.

• not atomic process, in which some components use still the old version while some

 104

others use the new version of the component. This strategy may be used when
invocations started before the real upgrade time are to be completed using the old
version of the component, whereas the requests that came after the new version of the
component is up and running, may be processed by the new component [87].

6.2 DUF Design Model
This section presents the details of the design model for the Deployment and Upgrade Facility.
The model is composed of design classes that are contained in a number of packages. Section
6.2.1 gives an overview of the packages and the subsequent sections give more details of the
classes, their relationships and interactions.

6.2.1 Package Overview
The DUF facility is comprised in the following packages:

• DUF.ComponentModel that contains rudimentary definitions of the component
model. These definitions underlie the definitions in package TargetSystem and
Infrastructure.

• DUF.DUMF is the core package of the DUMF framework. It contains definitions
related to managing upgrade processes in the system as well as external interfaces to
other subsystems including the Service Deployer and the Upgrade Algorithms.

• DUF.DUMF.Policies defines the modeling artifacts related to the policies for
managing the upgrade processes.

• DUF.Infrastructure defines interfaces abstracting the functionality of the
middleware platform needed to control and coordinate upgrades in the system.

• DUF.TargetSystem defines interfaces for communication with the target
components that should be upgraded in the system.

• DUF.UpgradeAlgorithms includes definitions related to upgrade algorithms.
The concrete algorithm implementations may be inserted in this package or in
specialized packages.

The package structure is shown in Figure 37. The diagram shows the packages listed above,
their main interfaces and abstract classes explained later as well as package interdependencies.
ComponentModel provides basic meta-definitions that are used in all other packages and in
particular in the TargetSystem that contains definitions related to upgradability in the
target software systems. As DUMF provides basic interfaces and mechanisms supporting
upgrade management, these definitions are used in package UpgradeAlgorithms
comprising the implementations of upgrade algorithms. Both packages
UpgradeAlgorithms and DUMF depend on package Infrastructure with definitions for
underlying mechanisms offered by the middleware platform. The model elements related to
policy management are encapsulated in a package DUMF.Policies internal to DUMF. The
policy-based management is thus not visible outside DUMF. This allows for changing the
paradigm to handling upgrade management in future design and prototypes.

 105

<<framework>>

DUMF

UMFExternal

UpgradeAlgorithm UpgradeAlgorithmDescription

AlgorithmPool

Policies

PolicyManager

PolicyCondition

PolicyRule

UpgradeCoordinator

UpgradeInitiator

<<metamodel>>

ComponentModel
Component

CodeModule

Container

DistributedSystem

Infrastructure

ComponentActivator

CodeManager ComponentManager

UpgradeAlgorithms

ActReplServUA

PassReplServUA

NonReplServUA

TargetSystem

Upgradable UMFCallback

State UpgradablePoint

Figure 37. The DUF package structure and package interdependencies.

6.2.2 ComponentModel package
This package comprises basic notions of the underlying component model, including
component, container or code module. These definitions are described in section 5.3.

6.2.3 DUMF package
This package comprises model elements that are related with Dynamic Upgrade Management.
The classes in the package allow for requesting upgrades in the system, managing a number of
upgrades processes independently requested and extending the framework by both new
upgrade management policies and upgrade algorithms.

6.2.3.1 Public Definitions

The following interfaces are defined in package DUF.DUMF:

• DUFExternal is an interface that is the DUF access interface for the external
Service Deployer. It allows the Service Deployer to configure the DUF so that it can
automatically perform the upgrade requested. The DUF configuration is defined as
a sequence of configuration policies. This interface defines operations to:

o request_upgrade() for requesting the DUMF facility to take control over
a given upgrade process according to the given parameters.

o cancel_upgrade() for cancelling on demand an upgrade process that has
already started or has been scheduled to start in as previously requested by the
Service Deployer.

 106

• UpgradeCoordinator is an interface that defines operations related to
coordinating an upgrade process. In particular, it provides the following operations:

o initiate_upgrade() supports triggering an upgrade process. It is usually
used by the UpgradeInitiatorImpl when the latter positively evaluates
the triggering conditions of the associated upgrade initiation policy.

o register_upgrade_algorithm() allows for associating an
UpgradeAlgorithm with the UpgradeCoordinator.

• UpgradeAlgorithm is an interface which has to be implemented by every upgrade
algorithm. The operations offered by this interface allow for:

o performing the subsequent steps of the algorithm whereas an algorithm is a N-
phase transaction, where N>=1. Each phase of the algorithm is atomic from the
perspective of the whole upgrade algorithm. It starts when executing operation
prepare() and its effects can be made permanent by calling commit()or
undone if needed by calling rollback(). The state diagram of an upgrade
algorithm is shown in Figure 38.

o algorithm configuring by providing parameters customizing the algorithm to
the needs of the upgrade process (operation configure()).

o retrieving some general characteristics of a concrete upgrade algorithm
supporting this interface, including the number of phases (operation
phases()).

phaseComplete

configured

recoveringinPhase

recovercommit

fail

configure

prepare

commitLastPhase

succeed

Figure 38. The state diagram for an upgrade algorithm.

• UpgradeAlgorithmDescription represents a meta description of an
algorithm. The description contains information on the upgrade target type (operation
getAlgorithmName()) that the algorithm is applicable and some attributes
allowing to describe the properties of the algorithm, including (operation
getUpgradeTargetType()).

• AlgorithmPool is an interface that abstracts a searchable container of upgrade
algorithms. Upgrade algorithms may be registered and unregistered at runtime. The
algorithms have different characteristics and applicability and there is a need to choose
one that is most suitable for the given UpgradeProcess. The algorithms are
searched after some criteria that are matched against the algorithm description.

 107

6.2.3.2 Main Classes

The main model elements of the DUMF package are depicted in Figure 39. It also depicts
classes and interfaces from other packages (Policies and ComponentModel) that are used by
the DUMF model elements. The classes are filled with white color.
Many classes of the DUMF package implement the public interfaces defined above. The
example of these classes include: UpgradeProcess, UpgradeIntitatorImpl,
AlgorithmUpgradePoolSimpleImpl that implement the corresponding interfaces:
UpgradeCoordinator, UpgradeIntitator and AlgorithmUpgradePool. The
classes add some protected and private methods and attributes which define the logic of the
operations contained in the interfaces. The following paragraph give more details on some of
the classes defined.

• AlgorithmPoolSimpleImpl implements a searchable container keeping
upgrade algorithm types. The container actually keeps a list of object instances of
UpgradeAlgorithmDescriptionImpl. The list has typically a few element
objects. The searching is based on simple iterating through the list and comparing the
algorithm characteristics stored in the algorithm attributes against the constraints in the
lookup criteria. The list is open-ended.

• UpgradeAlgorithmDescriptionImpl implements interface Upgrade-
AlgorithmDescription. It is designed as an abstract factory[28] and the method
create() has to be overwritten by a factory class of a concrete upgrade algorithm.

• UpgradeProcess is a class representing a concrete upgrade process determined by
the upgrade target. Upgrade process are triggered by the UpgradeInitiator and
coordinate the activities related to the upgrade by following the
UpgradeAlgorithm associated with the process. The class implements thus
interface UpgradeCoordintator. An UpgradeProcess follows exactly one
UpgradeAlgorithm. It is designed to start the consequent phases of the associated
upgrade algorithm and handle the phase failures reported by the algorithm by repeating
the failure. A more complex coordination schemes can be added to the framework by
inheriting this class.

• UpgradeAlgorithmDescriptionImpl is an abstract class that implements
interface UpgradeAlgorithmDescription. It is designed as an abstract
factory[28] and method create() has to be overwritten by a factory class of
a concrete upgrade algorithm.

• UMFServer is a class that provides access logic to the DUMF framework for the
Service Deployer. It allows the latter to request the facility to perform upgrades of
given parts of the target system, the UpgradeTarget on the given conditions.
Whenever the server deployer has requested an upgrade, the facility takes
responsibility of detecting whether and when the given condition occurs and triggering
the corresponding actions leading to the upgrade. The class is responsible for accepting
the service deployer’s request, checking its validity and translating the request into
a form for easy further processing with the DUF facility.

 108

<<framework>>

DUMF

UpgradeAlgorithm

+commit()
+configure()
+phases()
+prepare()
+rollback()

AlgorithmPool

+register_upgrade_algorithm()
+search_matching_algorithm()
+unregister_upgrade_alogrithm()

UpgradeInitiatorImpl

#check_policy_set()
+insert_policy()
+remove_policy()
~run()
+UpgradeInitiator()
#validate_policy()

Policies

PolicyManager

+insert_policy()
+remove_policy()

TimeEvent

-computePeriodBetweenEvents()
+TimeEvent()

UpgradeProcess

+initatiate_upgrade()
+register_upgrade_algorithm()
+UpgradeProcess()
#upgrade_process_phase_terminated()

UpgradeAlgorithmDescription

+create()
+getAlgorithmName()
+getUpgradeTargetType()

UpgradeAlgorithmDescritptionImpl

AlgorithmPoolSimpleImpl

+AlgorithmPoolSimpleImpl()
+register_upgrade_algorithm()
+search_matching_algorithm()
+unregister_upgrade_alogrithm()

UpgradeRequestInfo

+getPlannedUpgradeTime()
+getTarget()

UpgradeTarget

-@localTargets : LocalUpgradeTarget

UpgradeCoordinator

+initatiate_upgrade()
+register_upgrade_algorithm()

UMFExternal

+cancel_upgrade()
+request_upgrade()

UMFServer

+cancel_upgrade()
+request_upgrade()

1

1

upgrades

1
1

follows

0..1
0..*

1 1..*

Figure 39. Class diagram for the DUMF package.

• UpgradeInitiatorImpl implements the process of continuously evaluating the
upgrade initiation policies and determining the start time of the upgrade processes
managed by the DUF facility. The activity diagram for the UpgradeInititor
object is depicted in Figure 40.

• UpgradeRequestInfo is a simple data set class. It represents an upgrade request
that is ordered by the Service Deployer. The request is created and filled in with the
upgrade parameters including the upgrade target and the event that should trigger the
upgraded, by the latter and sent to the DUMF framework for execution.

 109

evaluate next
upgrade initiation policy

is triggering condition true?

initiate upgrade

no

yes

Figure 40. An activity diagram for the UpgradeInititorImpl.

6.2.3.3 Interactions

This section describes the interaction between the key components of the DUMF framework.

6.2.3.3.1 Handling an upgrade request
When a Service Deployer wants to request an upgrade in the target system, he has to contact
the DUF facility. It is realized by accessing object UMFServer implementing interface
DUFExternal as shown in Figure 41. ServiceDeployer creates and sends an upgrade
request describing the details of the upgrade (steps 1-3). Such an upgrade request includes
information on the upgrade target and the planned upgrade time. The planned upgrade time
may depend on the system state. Internally, such a request is translated into an upgrade
initialization policy validated (step 5) and stored with the UpgradeInitiator. The latter
object is responsible for evaluating all upgrade initiation policies registered (step 8) and
triggering upgrade processes when the corresponding triggering condition is fulfilled. In this
case, object UpgradeCoordinator is created and configured according to the specifics of
the initial upgrade request so that a corresponding upgrade process can start (step 9-10).

 110

: UpgradeCoordinatorImpl

: UpgradeRequestInfo

: ServiceDeployer : UpgradeInitiator: UMFServer

while(true) do
 { ... }

new()9:

initatiate_upgrade()10:

new()1:

return 7:

return 2:

insert_policy(upg_init_policy)4:

validate_policy()5:

check_policy_set()8:

upgrade_service(upgrade_info)3:

return 6:

Figure 41. Handling an upgrade request(sequence diagram).

6.2.4 UpgradeAlgorithms package
This package contains definitions related to upgrade algorithm. It provides some abstract
classes and interfaces that has to be implemented by concrete upgrade algorithm classes. The
classes defined currently in this package define some simple classes that help with the upgrade
algorithm classification. The concrete implementations of the upgrade algorithm may also
have some implementation parts that is platform specific. This package is thought for the
platform independent parts of the algorithm implementation. The other part of the algorithm is
placed in the platform-related packages. These packages are named:
DUF.UpgradeAlgorithms.Jgroup for the Jgroup/ARM[63] middleware platform or
DUF.UpgradeAlgorithms.CORBA for the CORBA[73] middleware platform.

6.2.4.1 Public Definitions

The following abstract classes are defined in package DUF.UpgradeAlgorithms :

• ActReplServUA defines an abstract class for upgrade algorithms suitable for
upgrading actively replicated servers. Concrete implementations, like the one
presented in section 7.2.4, of such algorithms should be derived from this class
according to the Strategy[28] design pattern.

• PassReplServUA defines an abstract class for upgrade algorithms suitable for
upgrading passively replicated servers. Concrete implementations of such algorithms
should be derived from this class according to the Strategy[28] design pattern.

• NonReplUA defines an abstract class for upgrade algorithms suitable for upgrading
non replicated servers. Concrete implementations of such algorithms should be derived
from this class according to the Strategy[28] design pattern.

 111

6.2.4.2 Main Classes

The following classes are defined in package DUF.UpgradeAlgorithms :

• NRSUA defines a concrete class implementing a upgrade algorithms suitable for
upgrading non-replicated component instances. The details of the algorithm design and
implementation is described in section 7.1.

• ARSUA defines a concrete class implementing a upgrade algorithms suitable for
upgrading actively replicated servers in Jgroup. The details of the algorithm design and
implementation is described in section 7.2.

• PRSUA defines a concrete class implementing a upgrade algorithms suitable for
upgrading passively replicated servers in Jgroup. The details of the algorithm design
and implementation is described in section 7.3.

UpgradeAlgorithms

NonReplServUAPassReplServUA

NRSUAPRSUA

UMFCallback

+upgrade_point_reached(target : Upgradable) : void

UpgradeAlgorithm

+commit()
+configure()
+phases()
+prepare()
+rollback()

ActReplServUA

ARSUA

Figure 42. Class diagram for UpgradeAlgorithms package.

6.2.4.3 Interactions

The package contains definitions of the abstract classes and interfaces that are then extended
by concrete implementation of the upgrade algorithms. The upgrade algorithms are usually
independent from other algorithms and therefore there is no inter-algorithm interactions. The
details of the class interactions specific to an upgrade algorithm are described in sections on
the implementation of this algorithm.

6.2.5 Infrastructure package
This package describes classes and interfaces to be implemented by a traditional component-
based middleware platform that the DUF needs.

 112

6.2.5.1 Public Definitions

The following interfaces are defined in package DUF.DUFInfrastructure:

• CodeManager provides methods for managing the code modules. It allows for:
o Downloading the code modules from the service code repository.
o Installing the downloaded code into a given container (execution environment)

as well as uninstall it from the container.
o Loading and unloading the installed code into a given instance of a container.

• ComponentActivator defines methods for managing life cycle of the
components. It offers the following functions:

o Component activation, which makes the component runtime image active in
that its operations can be accessed and instances of the component runtime
image can be created in the container.

o Component deactivation, which makes the component runtime image inactive
in that no operations on it and its instances in the container, including instance
creation, can be performed.

o Blocking the invocation dispatching, which makes the container stop
dispatching incoming requests and messages to a given component runtime
instance. This method is used for making the component instance quiescent to
perform the upgrade.

o Continuing the invocation dispatching, which makes the container (re)start
dispatching requests to a given component runtime instance

o Creation of a component interface reference that can be used for accessing the
component from remote software.

o Assigning a reference to a component runtime instance.
• Discovery describes operations for discovering component runtime instances

running in the system as well for advertising components so that they can be accessed
by other entities in the system.

6.2.5.2 Main Definitions

The following classes are defined in this package:
DiscoveryPattern is a class that includes some selected information on the

component runtime instance. It is used to advertise the component runtime instance in
the system and for its later discovery, where the DiscoveryCriteria are matched
against.

• DiscoveryCriteria is a class that abstracts criteria defining a set of component
runtime. It offers a method that evaluates a given piece of information on a component
runtime instance.

 113

Discovery

+advertise(aComponentInstance : ComponentRuntimeImageInstance [DUF::ComponentModel], discoveryInfo : DiscoveryPattern) : void
+@discover(theDiscoveryCriter ia : DiscoveryCrieria) : ComponentRuntimeImageInstance [DUF::ComponentModel][]

CodeManager

+download(CodeModule) : LocalRef
+install(localRef : LocalRef, aContainer : Container) : void
+load(aCInstallation : ComponentInstallation, aContainer : Container) : ComponentRuntimeImage
+uninstall(aContainer : Container, aCInstallation : ComponentInstallation) : void
+unload(aCInstallation : ComponentInstallation, aContainer : Container)

ComponentActivator

+activate(object : ServerObject) : void
+block_invocations(object : ServerObject)
+createRef() : ServerObject
+deactivate(component : Component) : void
+map(objectRef : ServerObject, servant : ComponentRuntimeImage) : void
+unblock_invocations() : void

DiscoveryPattern

-@aService : ComponentRuntimeImageInstance [DUF::ComponentModel]
-properties : Properties

DiscoveryCriteria

+evaluate(value : DiscoveryPattern) : boolean

Figure 43. Main definitions of package DUF.DUFInfrastructure

6.2.5.3 Interactions

The class interactions within this package are not described here. The interfaces and abstract
classes describe typical functionalities of traditional middleware or operating system and thus
should be implemented by the underlying middleware platform.

6.2.6 TargetSystem package
This package defines interfaces and classes for communicating with upgradable components.
Whereas some interfaces have to be implemented by the upgradable components
(Upgradable), other are used for the upgradable components when accessing the DUF. The
implementation of the interfaces provided by the upgradable components has to be currently
provided by the component developer. In future, some automation may be supported by the
DUF.

6.2.6.1 Public Interfaces

The following interfaces are defined in package DUF.TargetSystem:

• UpgradeTarget describes the target of an upgrade. It is a list of tuples (host,
container, a list of component instances), where the list contains component instances
running in a give container on a host that shall be upgraded.

• Upgradable describes the key interface that an upgradable has to provide. This
interface defines methods used for making a component quiescent and then transfering
the state of the component runtime image instance.

• UMFCallback describes an interface to be implemented by the upgrad algorithm. It
defines methods for being notified of reaching an upgrade state by the target
component.

 114

TargetSystemUpgradeTarget

+getNextUpgradable() : Upgradable

Upgradable

+get_state() : State
+reach_upgrade_point(callback : UMFCallback) : void
+reach_upgrade_point() : long
+set_state(theState : State, upgrade_point : long)

State
UpgradePoint

-id : long

+UpgradablePoint(theId : long)

UpgradableStub

+create()
+get_state() : State
+reach_upgrade_point() : long
+reach_upgrade_point(callback : UMFCallback) : void
+set_state(theState : State, upgrade_point : long)
+UpgradableStub(upgradable : Upgradable)
+upgrade_point_reached(up : long) : boolean

UMFCallback

+upgrade_point_reached(target : Upgradable) : boolean

1..*

0..1

Figure 44. Main classes and interfaces in package DUF.TargetSystem.

6.2.6.2 Main Classes

Figure 44 shows the main classes of package DUF.TargetSystem. Their details are
described below:

• State of a component represents the history of component computations. In
practice, it is usually expressed by a set of internal variables that describe the results of
the computations and by the system variables that describe that execution state. Most
of the variables describe or point to the objects co-located with the component. Some
other internal variables can be pointers referring to remote components. Managing
a transfer of this part of the state is considered a special case of state transfer.

• UpgradePoint describes the point in the execution of a component instance in
which it is possible to perform a replacement. The points can be determined manually
or in a semi-automated way. Potential candidates for upgrade points:

• Places where threads block (see [37]). Requirements discussed in [37] have to
be fulfilled; this approach depends on the language and the OS calls threading
characteristics.

• Places where the control enters/exists programming entities, like procedures,
object/classes. Approach depends on the programming language structuring
concepts.

• UpgradableStub describes a default implementation of the Upgradable
interface for one-threaded component implementations. The implementation of
method reach_upgrade_point() saves the request and the callback reference.
As soon as it is notified by the component instance of reaching an upgrade point or
only a given one by calling method upgrade_point_notify(), it forwards this
information to the callback. The component instance is blocked in at this upgrade
point waiting for the return of the upgrade_point_notify() method. See

 115

section 6.2.6.3 for the sequence diagram visualizing these interactions.

6.2.6.3 Interactions

The algorithm allowing for reaching an upgrade point is component specific. In general, it
may be a non-instantaneous process that needs completing a certain amount of computations
performed by the component implementation. For certain class of component
implementations, the framework defines a default mechanism that facilitates decoupling the
point in time when a request to reach an upgrade point is issued from the time in point an
upgrade point is actually reached. The component implementations have to fulfill the
following constraints:

The component implementation is one-threaded.
• The implementation notifies the framework, that is its associated UpgradableStub,

of reaching subsequent upgrade points as they occur during the component execution.
The time gap between two subsequent upgrade points is bound.

oldVersion : TestServer1 newVersion : TestServer1: UpgradableStub: NRSUA

return false 2:

get_state()6:

return true 10:

set_state(theState, upgrade_point)8:

reach_upgrade_point(callback)3:

upgrade_point_reached()4:

upgrade_point_reached()1:

return 7:

return 9:

upgrade_point_reached(target)5:

Figure 45. Reaching an upgrade point and a state transfer.

Figure 45 depicts example interactions occurring during the process of reaching an upgrade
point as supported by the UpgradeStub. The interactions involve the DUF facility
represented here by the NRSUA upgrade algorithm, the UpgradeStub and two versions of
an upgradable component occur in the sequence presented in Table 8:

Seq. No. Interaction description
1. The old instance of the upgradable component notifies its upgradable stub of

reaching an upgrade points whenever it reaches one.

 116

2. After checking that there are no pending upgrade requests, the
UpgradableStub returns immediately control to the old instance.

3. The upgrade algorithm decides the upgrade the component instance and issues an
asynchronous request to the component, that is, its UpgradableStub. The
callback reference is passed at this call.

4. Whenever a next upgrade point is reached by the old instance of the component, it
the UpgradeStub is notified calling upgrade_point_reached().

5. This time the UpgradeStub does not return control back to the old instance and
instead forwards the notification of reaching an upgrade point to the upgrade
algorithm.

6. Now, the actual state transfer may start. The upgrade algorithm gets the state of the
old component instance, which execution is now blocked waiting for the return
from invocation 4.

7. The component state is returned to the algorithm.
8. The algorithm may transfer this state to the new instance of the component that has

been already instantiated. The upgrade point is also passed to bring the component
instance to an execution state equivalent to that one returned by the old component
instance in interaction 4.

9. After the new component is set with the state transferred, the state transfer
successfully terminates

10. The execution control is returned the old component instance. The old component
is notified of a state transfer and may be deactivated.

Table 8. Reaching an upgrade point with support of UpgradableStub.

6.2.7 Policies package
The complexity and variety of parameters determining the way that the process can be
performed needs to be expressed in a simple an consistent way. Policy-oriented management
provides a good approach to express the multifold aspects of management process, i.e. the
policies.

6.2.7.1 Policy Information Model

Upgrade management policies are used to manage the initiation of the upgrade process. They
allow to specify or declare a condition under which certain management action related to
dynamic upgrade should be carried out.
The policy model used in our solution is based on some of the concepts introduced in the
Policy Core Information Model defined by the IETF community[64]. The model is based on
the declarative approach in that it does not define either the algorithm to produce a result
using the attributes or an explicit sequence of steps to produce a result.
Figure 46 depicts a class diagram with the core classes of the policy information model. The
classes represent a simplified policy information model that is suitable for managing dynamic
upgrade processes in a distributed system.
A PolicyRule is defined by a number of policy conditions, each represented by class
PolicyCondition and a number of policy action, represented by class PolicyAction.

 117

The basic idea of a policy is that a policy rule checks its policy conditions and if any one or all
of them, depending whether it is a ORed or ANDed policy rule, is fulfilled, the policy action
is triggered by calling its start operation.
Policy condition evaluation can be:

• passive if it is the external entity to the policy condition that regularly calls
fulfills operation on the policy condition. This type of policy conditions is
abstracted with abstract class PassivePolicyCondition.

• active if it is the policy condition object itself that notifies the policy manager of the
condition being fulfilled. This type of policy conditions is abstracted with abstract
class ActivePolicyCondition.

Policy rules can be put together in a container PolicyGroup. Policies can be added,
removed or retrieved from a PolicyGroup. Policy groups are used to manage sets of
related policy rules.

PolicyTimePeriodCondition

...

-delayed_reset() : void
~set_true() : void
...

PolicyGroup

+add() : long
+add(policy : PolicyRule) : long
+get_policies() : PolicyRule[]
+remove() : void
+remove(policy_tag : long) : void

PolicyRule

+enforce() : void
...

ActivePolicyCondition

+checkCondition() : void

PassivePolicyCondition

PolicyCondition

+fullfills() : boolean

PolicyAction

+start() : void

0..1

-rules 1..*

-condition
1

-rule1

-action

Figure 46. The upgrade management policy model.

6.2.7.2 Policy Types

In the DUMF framework, a few upgrade management policy types are pre-defined. These
policies include:

Upgrade Initiation Policy, which defines when an upgrade process should be started. The
policy allows defining a set of calendar events, potentially reoccurring, that determine
the start of an upgrade process.

Upgrade Completion Policy, which defines when an upgrade process should terminate. If
an upgrade is still being carried out, the upgrade process is stopped and cancelled.

• Some other types of policies may include:
Upgrade Failure Policy, which defines how to proceed with the upgrade process that has

failed for some reason that cannot be coped with by the upgrade algorithm.
Upgrade Process related Policies. parameter of the upgrade process (e.g. the minimum

replication level).

 118

Upgrade Validation, which enables managing the upgrade validation process. Policies of
this type define under what condition and how to validate an upgrade process that has
successfully terminated.

6.2.7.3 Policy Condition Determinants

The Policy Condition can be determined by evaluation logical expressions applied to the
following factors:

• State of the Target System. The system state includes the current or predicted
availability of system’s computational and communicational resources. Typical
examples of such state constraints are system load threshold, request queue length
threshold in a server to be upgraded or simply an calendar event. The constraints may
be also defined on the system state history.

• External factors. These factors do not depend on the state of the target system and can
be evaluated only using some input from external entities. Typical examples of such
factors include code availability of software deployed in the target system or an
immediate upgrade request issued explicitly by the service deployer.

6.2.7.4 Policy Specification

Various specification methods and formats exist in the literature. In our approach, the
following were considered:

• Type-based Declaration. It allows expressing the type of the policy and some
parameter values determining a specific policy instance of that type. The approach
requires that policy types and their parameters be defined. Additionally, some generic
code for each policy type is needed which defines the semantics of the policy type
and is used to enforce policy instances of the type. XML is a commonly used markup
language for policy declaration due to its easy parsing and programming platform
independence.

• Constraint-based format. The policy rules are specified in a constraint language as
a logical expression. If a rule condition is evaluated positively the corresponding
policy action is triggered. The actions are specified usually only as names that have to
be mapped to program invocation.

• Manual policy coding in a programming language. Both the policy condition and the
policy action are coded directly in a programming language. The policies are defined
according to a implementation mapping of a policy information model are integrated
into the policy-based management framework.

In the prototypical implementation of the DUMF framework, the latter policy specification
approach was chosen and both policy conditions and actions are coded in the Java
programming language. Upgrade management policies implement interfaces and extend some
predefined classes that are a result of a Java mapping of the Policy Information Model
presented in section 6.2.7.1. The decision was a trade-off between the effort to implement
a fully-fledged policy specification mechanism and the time allocated for this task. However,
the approach can be easily extended either to the constraint-based or type-based format, if
needed.

6.2.7.5 Example upgrade initiation policy

This example shows a concrete example of an upgrade initiation policy. It is assumed that the

 119

Service Deployer wants to perform to check the availability of new version of the component
X code on Fridays at 21 hours every week and perform an upgrade of all instances of the
component provided that the average system load does not exceed the threshold of 50%.
The example policy can be expressed either using a single policy condition or defining a
ANDed policy rule with the following subconditions. Below, the example policy is expressed
as a single condition and presented in a simplified Java-like notation4:

Listing 3 An example upgrade initiation policy.

class ExamplePolicyCondition implements PolicyCondition{

 ExamplePolicyCondition() { … };

 Boolean fullfils() {

return (today.dayOfWeek() == Calendar.FRIDAY) &&
(today.time().IsAround(Time(21,00))) && (CodeRepository.hasComponent(X)) &&
(SystemMonitor.averageSystemLoad() < 0.50);

 }
}

6.2.7.6 Policy Management

Policies can themselves be seen as services as they need to be deployed and managed. The
policy information model describes their properties. Each policy is identified by its unique
name. Additionally, policies are categorized by their type.
Policies are maintained in the DUMF framework in the Policy Registry in a similar way the
FAIN ASP maintains active services. Whenever a policy is to be used by the DUMF
framework, it needs to be registered with the Policy Repository. DUMF defines a number of
predefined policies and they are registered with the Policy Repository at the DUMF bootstrap.
Except for the predefined policies, the DUMF framework enables to install new policies. New
policies also need to be registered with the Policy Repository in order to make them visible to
the DUMF framework

6.2.7.6.1 Registering a new policy

Whenever a new policy is introduced into the DUMF framework, it has to be registered with
the PolicyRepository. In case of the upgrade initiation policy, such a policy is registered using
UpgradeInitiator interface presented in section 6.2.3.

6.2.7.6.2 Enforcing a policy

As soon as the upgrade initiation policy is registered with the PolicyRepository, the
latter is responsible for evaluating the triggering condition of the policy. Depending on
whether the policy is active or not, it may evaluate the value of the condition expression in
regular time gaps, in case of passive policies, or let the policy check the triggering condition
by itself in case of active policies. On positive evaluating the policy condition, the upgrade
initiation policy is enforced and a corresponding upgrade process started as a result of the
policy action being triggered. This situation is described in steps 8-10 in Figure 41.

4 Note that this notation is only close to implementation of the example policy condition. The framework provides a lot of facility classes

that would make the condition coding easier through reuse of paramterized classes.

 120

6.2.7.6.3 Removing a policy

There are two possible ways of removing a policy from the PolicyRepository:

• Removal by Policy Expiry. One of the policy attributes is its Time To Live. This
parameter describes the time validity of the policy. Each evaluation of a policy
triggering condition is preceded with a policy time validity check. If the policy is not
valid any more, it is removed from the Policy Repository. Otherwise, the evaluation of
the policy triggered condition follows.

• Explicit Removal. A policy also may be requested to be removed from the Policy
Repository. This is done by invoking remove_init_policy() on
UpgradeInitiator interface. In case of a policy that has been enforced, the policy
action is stopped and recovered if needed.

6.3 Implementation
This section gives some implementation details. The methodology as well as the selected
implementation technology and the developing tools are presented in section 6.3.1. The issues
related to coding are the topic of section 6.3.2.The deployment of the DUF component is
described n section 6.3.3.

6.3.1 Methodology and Tools
The development process of the Deployment and Upgrade Facility is based on the Unified
Process[52] as mentioned in the previous sections of the thesis. Thus, the platform-
independent part of the Deployment and Upgrade Facility has been prototyped in parallel to
developing the design model in an iterative process. After the design classes are initially
conceived , they are used to define the corresponding implementation classes.
In our approach, the Unified Process was supported by the capabilities of the Magic Draw[70]
modeling tool. The tool allows building UML models that are used to generate code skeletons
in a number of programming classes. We used the Java generator to produce Java
implementation classes.
These classes have been then extended by the functionalities described in the model by
manual coding. Eclipse[14], an open source Integrated Development Environment, has been
used to write and later debug the code. This tool is integrated with Magic Draw so that
changes in the class definitions have been reflected back in the design model. In this way, it is
possible to update the design model with the changes done in the implementation code and to
close the feedback loop as prescribed in the Unified Process.
For the code testing, Junit[47], a testing framework has been used in our developments. The
usage of this framework supports writing unit tests of the code both that is to developed and
that has been developed. The tests have to be defined manually to check the basic semantics of
the classes and subsystems as described in the design model.

6.3.2 Code structure
The DUF framework has been prototypically developed in Java. For the sake of better
portability as requested in requirement R5 (see section 5.1.2), the code is divided into two
parts:

• Platform-independent part. This pat of the DUF code does not depend on any specific
middleware platform, in terms of using any interfaces and classes provided by

 121

a concrete middleware platform. Thanks to no dependencies of any platform specifics,
it can be ported easily.

• Platform-specific part. This part of the DUF code is written for a give middleware
platform. It uses the platform specifics and is not easily portable to another
middleware platform.

The platform independent code is structured in the Java packages corresponding to the UML
packages in the design model presented in section 6.2.1. These packages include:
DUF.ComponentModel, DUF.DUMF, DUF.DUMF.Policies, DUF.Infrastructure,
DUF.TargetSystem and DUF.UpgradeAlgorithms.
The implementation classes specific to middleware platforms are defined in separate
packages. Currently, the prototype includes implementation classes for the Jgroup platform.
The functionality related to this platform is collected in package
DUF.Infrastructure.jgroup and DUF.TargetSystem.jgroup.

6.3.3 Component deployment
The design model presented in section assumes that some functionalities have to be located on
each system host where upgradable components run and some functionalities may be deployed
only node. The functionalities of the first category include packages
DUF.Infrastructure and DUF.TargetSystem. Package DUF.DUMF belongs to the
latter category. Package DUF.Algorithms and the derived ones may be of either category
depending whether they are implemented in a centralized or decentralized manner and
whether they use remote communication for accessing the infrastructure capabilities or not.
As a result, two types nodes have been identified for the deployment purposes:

• Management node, on which components are deployed, which are singletons in the
system.

• System node, which abstracts a regular node used for deploying components of the
target system.

The identified node types and the DUF components assigned to them are depicted in Figure
47. In a typical distributed system, there is one management node and a number of system
nodes.

system node

TargetSystem

Infrastructure NodePartUpgradeAlgorithm

management node

CenttralPartUpgradeAlgorithm

DUMF

1 1..*

Figure 47. Deployment diagram for the DUF components.

For deployment purposes, the package functionalities are distributed into corresponding
physical components. The following components are identified: DUMF, TargetSystem,
Infrastructure, CentralPartUpgradeAlgorithm and NodePartUpgrade-
Algorithm. Two latter components comprise the functionalities of package

 122

DUF.Algorithms and divide the implementation artifacts of these functionalities into the
ones to be deployed once in the system and the ones to be deployed on each node of the target
system.
It is important to note that whereas component DUMF is design and implemented independent
of the underlying middleware platform, the other components include some platform specifics.
These platform specific implementation artifacts are defined in the separate model
subpackages of the corresponding DUF packages. Thus, components TargetSystem and
Infrastructure contain implementation classes from these subpackages, as well.
Furthermore, for the sake of framework extensibility, both each of the upgrade management
policies and upgrade algorithms is proposed to be packaged in a different component. In this
way, it is possible to deploy an upgrade algorithm or a policy independently and on-demand
provided that the DUMF and Infrastructure components are available in the system.
Whereas management policies are deployed always onto the management node, the upgrade
algorithms may be deployed both onto some system nodes and the management node. Hence,
it is enough to package a policy into only one component whereas an upgrade algorithm may
need two components.
An example deployment of DUF components is shown in Figure 48. The deployment diagram
depicts only the dynamic components of the DUF facility, that is the component that may be
deployed on demand. One upgrade initiation policy is deployed in the management node and
its runtime instance in running as part of the DUF. An upgrade algorithm is also deployed in
the system. Whereas one part is running in the management node, the other algorithm
components are deployed in all the system nodes named brunali, devore and
dividices. Though basic components of the DUF are not shown in the diagram for the
sake of simplicity, they are deployed on the corresponding nodes as depicted in Figure 47.
This example deployment configuration has been used in the practical experiments described
in chapter 8.
.

akrit : management node

UIP1 : UpgradeInitiationPolicy

CPARSUA1 : CentralPartARSUA

devore : system node

NPARSUA2 : NodePartARSUA

brunali : system node

NPARSUA1 : NodePartARSUA

dividices: system node

NPARSUA3 : NodePartARSUA

Figure 48. An example deployment of the dynamic DUF components.

 123

6.4 Summary
In this chapter a framework for managing dynamic upgrades in distributed systems was
presented. This framework allows for policy-based management of upgrade process in
a distributed system. In particular, it enables:

• Defining upgrade management policies determining the parameters of upgrades
including the upgrade triggering condition.

• Managing these policies so that they can be added or removed on demand.
• Evaluating policy conditions at system’s run time.
• Enforcing upgrade management policies by triggering corresponding policy actions.

With regard to the requirements stated in chapter 5.1, the following of them are fulfilled by
this part of the Dynamic Upgrade Facility:

• Automated Upgrade Management (R12) is realized by inserting management
policies by the service deployer. The dynamic upgrade management framework
automatically evaluates the policy conditions and autonomously takes management
actions related to upgrades. The upgrade process is automated in that system
determines which upgrade algorithm is to be applied to the given upgrade target and
may perform corrective actions to recover from failures to a certain degree without
human interventions.

• Support for multiple simultaneous upgrades (R13). The system supports running
multiple upgrade process and their coordination if needed. To achieve that a number of
upgrade management policies have to be defined, each of which may be concerned
with one upgrade process. These policies may describe when to start an upgrade
process

 125

7 Performing Upgrades: The Algorithms
This section is concerned with the algorithm allowing for replacing an instance of
a component at runtime. Several variants of the algorithm are briefly presented that are
applied to components with different replication characteristics. The variants comprise an
upgrade of:

• Non-replicated component,
• Actively replicated component, and
• Passively replicated component.

The following subsections describe the design details of these algorithm variants.

7.1 Non replicated component
In this variant, the component to upgrade is not replicated, i.e. there is only one copy of a
component instance. Performing upgrade of the component requires some break in the
component activity so that a part of the system functionality is not available for some time.

7.1.1 System Assumptions
Concerning the system model, it is assumed that:

A1. The code modules of the target component are available and can be downloaded and
installed in the environment where the old runtime instance of the component is running.

A2. The component state is transferable and the execution state can be described using the
concept of upgrade points (see section 6.2.6.2).

A3. The component reaches an upgrade point in a acceptable period of time.

7.1.2 Algorithm Overview
The basic idea of the algorithm is intuitive: the running instance of the old component version
is replaced with a instance implementing the new code so that the component state is
transferred from the old instance to the new one. The process is instantaneous from the point
of view of the rest of the system that depends on the target component.
This algorithm variant has the following steps:
1) Install the new version of the component in the same runtime environment.
2) Deactivate the old component, transfer the state, rebind the connections.
3) Activate the new version of a component.
4) Uninstall the old version of the component.
The component is unavailable during step 2. This break may be short but exists always in this
variant. Two instances of the component, the old and new version cannot be running at the
same time since (Figure 49):

• the state of the old component cannot be changed after the state is sent to the new
component

• the new component cannot be activated and process incoming requests before it is
synchronized with the state of the old component.

 126

Update Point

New Component
Activation

State serialisation

State deserialisation

New version

Old version

Unavailability Time

Update Request

Figure 49. Upgrade process of a non-replicated component

7.1.3 Algorithm Design
The design of the upgrade algorithm integrated in the facility is presented in Figure 50. The
algorithm logic is represented in class NRUA (a short for Non-Replicated Server Upgrade
Algorithm) which implements interface UpgradeAlgorithm described in section 6.2.4.
The definition of the algorithm is kept in the algorithm repository and is used by an object of
class UpgradeProcess when the latter is initiated. A concrete instance of the upgrade
algorithm is associated with an instance of class UpgradeProcess.

/newComponentRuntimeInstance : Upgradable/oldComponentRuntimeInstance : Upgradable

/algoorithmRepository : AlgorithmPool

/process1: UpgradeProcess

: ComponentActivator

/ua : NRSUA

: UpgradeInitiatorImpl

: CodeManager: Discovery

UpgradeAlgoritms

TargetSystem

Infrastructure

DUMF

reach_upgrade_point(callback)1.3.5:

upgrade_point_reached()1.3.5.1:

get_state()1.3.7:
create1.3.6:

set_state(theState, upgrade_point)1.3.8:

discover(theDiscoveryCriteria)1.3.1: deactivate(oldComponentRI)1.3.9:
map(objectRef, servant)1.3.10:

search_matching_algorithm(criteria)1.1:

new()1:

download(CodeModule)1.3.2:
install(localRef, aContainer)1.3.3:
load(aCInstallation, aContainer)1.3.4:

configure(2)1.2:
prepare(0)1.3:

commit()1.5:
prepare(1)1.4:

Figure 50. Coordinating an upgrade process.

Figure 50 describes the algorithm logic in terms of interactions between the classes involved
defined in packages DUMF, DUFInfrastructure and UpgradeAlgorithms. The class
interactions are numbered as in the collaboration diagram depicted in Figure 50.

 127

Seq. No. Interaction Description
1. As soon as the triggering condition of an upgrade initiation policy is positively

evaluated by the UpgradeInitiatorImpl , a corresponding upgrade process
is triggered. The upgrade process is represented by a class UpgradeProcess
and such an object is created.

1.1. The upgrade process searches for a suitable upgrade algorithm for its upgrade
target. It contacts the algorithm repository implementing interface
AlgorithmPool and requests an algorithm matching the given criteria. The
search criteria include information on the upgrade target type. In this case, it is an
algorithm of class NRUA that is returned from the repository.

1.2. The process configures the returned instance of the NRUA algorithm providing
the necessary details on the upgrade target.

1.3. The algorithm is started by triggering its first phase.
1.3.1 In this phase, the algorithm discovers the location and access details of the

upgrade target contacting Discovery service offered by the Infrastructure.
1.3.2 The algorithm requests the old runtime instance of the component to upgrade to

reach an upgrade point and get a notification on that.
1.3.3 The new code of the component is downloaded to the location where it is going

to be instantiated. It means typically the same location where the old code has
been running.

1.3.4 The code downloaded is installed in the target container, the execution
environment using Infrastructure’s CodeManager.

1.3.5 Additionally, the fetched code is loaded into a running instance of the target
container.

1.3.2.1 As soon as the old component instance reaches an upgrade point, a notification is
sent to the upgrade algorithm through interface UMFCallback.

1.3.6 Now the algorithm may create an instance using the new component code.
1.3.7 It may perform the state transfer accessing the state of the old runtime instance of

the component.
1.3.8 The state is passed then to the newly created instance of the new version of the

component.
1.3.9 The old component may be deactivated, removed so that the resources it

consumed are returned to the container and the old code unloaded and
uninstalled.

1.3.10 The algorithm finally updates the dispatching information in the container so that
the client requests aimed at the old component instance are directed to the new
component instance.

1.4. After the last (and the first one) phase terminates successfully, the upgrade
process can signal a commit. No rollback is possible from that point in time on.
The upgrade target has been successfully upgraded and the new component
runtime instance processes client requests instead of the old one.

Table 9. Class Interactions during the NRSUA algorithm.

 128

7.1.4 Discussion
The presented algorithm allows for upgrading a single instance of a component. The algorithm
is based on a simple replacement of an old component instance with a new one using the
support mechanisms provided by the Infrastructure. The algorithm does not support fault
tolerance as the component instances are assumed to be co-located in the same container,
which is considered the smallest unit of failure. This algorithm reduces the system availability
by making the component unavailable during the replacement phase.
To overcome this drawback, the system needs some kind of redundancy. A common form of
redundancy in distributed object-based software is the technique of object replication. The
following sections describe upgrade algorithms for replicated upgrade algorithms.

7.2 Upgrading an actively replicated object
A different variant of the upgrade algorithm can be applied in an environment in which a
component to upgrade is replicated in the active scheme. In this case, a number of component
replica are running in parallel and processing incoming requests at the same time upgrading its
state.
A straight-forward solution would be to could block processing requests by all the replicas,
replace all the replicas at the same time and reactivate the upgraded replicas. The big
advantage of this algorithm is that is reduces unavailability of the system, as the component is
not available during an upgrade of all its replicas. A better algorithm that reduces the
unavailability of the component is outlined. The presented algorithm assumes that the state
transfer process during the upgrade is much longer than the time needed to resynchronize the
upgraded replicas as well as the one that was used to serialize its state, with the active ones
after a time in which an upgrade is performed. The rationale is here that a state transfer
between different versions of the component is a time consuming operation, whereas
a synchronization of replicas can be achieved by processing the requests that were received
during the state transfer.
The sections below present the details of the upgrade algorithm for actively-replicated objects
[113]. Section 7.2.1 gives a brief overview of the system model for the upgrade target. Section
7.2.2 presents the assumption on the system, section 7.2.3 gives the basic idea of the
algorithm. Section 7.2.4 presents the details of the algorithm design and finally section 7.2.5
concludes with a brief analysis of the algorithm.

7.2.1 System Model
In the context of this paper, the software system is modeled as an actively replicated server
[99], processing requests from multiple clients, see Figure 51. The clients send their requests
by means of a group communication system which guarantees reliable broadcast of their
requests to all the replicas of the server, collectively called a group. After the client requests
are delivered by the GCS in a total order, each replica processes them in a deterministic way.
The GCS collects the replica responses, agrees on the final response and sends it back to the
corresponding client.

 129

replica

client
replica

replica

client

client

GCS

Figure 51. The state machine system model.

7.2.2 System Assumptions
The system model presented above is used for further investigations. In this section the
assumptions of the model are explicitly described and extended with additional assumptions
made on the upgrade algorithm.
Concerning the system model, it is assumed that:

A4. server computations are deterministic.

A5. server has a state that is transferable.

A6. server is actively replicated with level n.

A7. clients access the server functionality sending requests and receiving responses.

A8. replication transparency to the clients is provided by the Group Communication System.

A9. GCS is capable of detecting crash of replicas.

A10. GCS supports state transfer between the replicas in the server group.

Additionally, the following assumptions on the replication management are stated:

A11. GCS is extended so that it can recover from crashes by starting a replica on an
available host and making it join the server group.

A12. Recovery policy is defined and enforced by the extended GCS.

Finally, the assumptions on the upgrade algorithm itself are proposed:

A13. Server upgrades are atomic with respect to each other, i.e. two upgrade processes
cannot interleave.

A14. Replica replacement makes the replica temporarily unavailable.

A15. Replica code is replaceable while it is not processing a user request, i.e. an upgrade is
possible before a replica starts, and after it finishes processing a client request.

A16. The algorithm has to tolerate replica crashes during the upgrade.

A17. The system resources are limited. In particular, it is not feasible to substantially
increase the original replication level while upgrading the system.

 130

With respect to upgraded software, a new version of the software is supposed to be
substitutable with the old one. In particular, it is required that:

A18. the new software accepts the input acceptable by the old version. In particular, the new
software offers a compatible interface to the old one;

A19. for any input acceptable by the old software, the new one responds with the same
output as the old software would do.

7.2.3 Algorithm Overview
The following section describes the basic idea of the algorithm allowing to upgrade an
actively replicated server.
The algorithm is based on the idea that to upgrade an actively replicated object it is enough to
upgrade each of its replicas in a sequence. The number of replicas that can be upgraded in
parallel depends on the availability requirements, i.e. the minimum replication level.
The steps of such an algorithm could look like this:

1) An upgrade request is reliably multicast to all the replicas of a server to upgrade. A set
of replicas to upgrade consists of all the replicas of the server to upgrade.

2) A candidate to be upgraded first is chosen.
3) An algorithm checks whether the actual replacement is possible.

a) If so, the candidate replica is (stopped and) replaced with its new version.
Otherwise, the replica processes client requests and its replacing is postponed until
it is possible. At the same time, the rest of the replicas are available to process the
client’s requests.

b) After an upgrade of the replica, the state of the new replica state is updated with
the state of the active replicas.

4) The upgraded replica is removed from the set of replicas to upgrade.
5) Steps 2-4 are repeated until all the replicas are upgraded.

7.2.4 Algorithm Design
Following the basic idea of the algorithm, a more elaborate design of the algorithm is
presented.

7.2.4.1 Algorithm Core

The algorithm is designed in a distributed way i.e. without a global coordinator. All the server
replicas perform the same algorithm and are symmetrical in this sense. Figure 52 illustrates the
steps of the elaborated design of the algorithm from the view point of a single replica. For the
sake of better readability, the upgrade algorithm is depicted in state-oriented way using a SDL
notation. This is one of exceptions of not using the UML notation done in this thesis.
After the replica is initiated, it enters its idle state, i.e. it is neither processing a client request
nor being upgraded. If it receives a client request, it enters processing state and after it is
done it returns to the idle state. If it receives an upgrade request, the upgrade process starts.
The replica sets the triggered flag to true and enters idle_upgrade state. While in this
state, the replica may switch temporarily to the processing state whenever
a client_request is received. Alternatively, the replica may leave this state when
a condition enabling_upgrade holds.

 131

This condition is a conjunction of two basic checks:
• is it this replica’s turn to start the actual upgrade? This check can be reduced to a

selection of a different replica at each check only once so that any resulting sequence
of selections is permutation of replicas in the group. This can be realized through a
voting process, in which each replica returns an element of a ordered set, like integer
numbers. The selection criterion can be based on the order relation so that the replica
with a smallest/greatest number wins. An example of a set matching the requirements
above is the set of replica identifiers which are unique and typically realized as integer
umbers.

• can the upgrade of this replica can be performed at the moment? Hereafter, this
condition is expressed in more accurate form by checking whether the current
replication level is greater than a given number r, r>1.

The enabling condition is evaluated regularly and as soon as it becomes fulfilled, the replica
continues with the upgrade procedure.

Figure 52. The upgrade algorithm from the viewpoint of a replica.

The replica initiates (asynchronously) a process of starting a replica that replaces this one and
enters the upgrading state waiting for the success of the operation.
Operation start_replica() cooperates with the underlying layers of the system,
including GCS, to start a replica with the new version of the code. The operation terminates
before the new replica is started. However, it has to guarantee that the replica is started and
joins the server group. Otherwise, the upgrade algorithm does not terminate. The GCS is also
responsible for transferring the current state of the server group (determined by the rest of
active replicas) to the new replica. Now the old replica can leave the group and terminate.

7.2.4.2 Algorithm Integration into DUMF

Figure 53 shows a scenario in which an actively replicated server with two replicas is being
upgraded. Hereafter. it is assumed that:

 132

• Minimum replication level is one.
• No crashes occur during the upgrade process.

The figure shows a sequence diagram with invocation calls between the objects involved in
performing steps of the upgrade algorithm. The upgrade algorithm, which has been triggered
by the DUMF in a suitable point of time, consists of a central object Algorithm1 registered
with the DUMF and a number of local algorithm proxy objects, LocalARSUA, running on
each of the nodes on which the replicas of the upgrade target are running. These objects
perform the steps of the algorithm presented in Figure 52. Additionally, the diagram shows the
algorithm interactions with the DUFInfrastructure, representing the middleware
platform. In the scenario, the algorithm makes use of the middleware service to block
incoming requests to the objects being upgraded as well as to activate a new replica and bind
it to the address of the replica to replace.

Algorithm1 : ARSUA Node1 : DUFInfrastructure Node2 : DUFInfrastructureReplica1 : Upgradable Replica2 : UpgradableNode2 : LocalARSUANode1 : LocalARSUA

: Upgradable

: Upgradable

block_invocations(object)5:

map(objectRef, servant)10:

block_invocations(object)12:

map(objectRef, servant)17:

reach_upgrade_point(callback)7:

11:

reach_upgrade_point(callback)14:

18:

upgrade()2:
wait_until_upgrade_enabled()4:

upgrade_point_reached(target)15:

upgrade()1:

wait_until_upgrade_enabled()3:

upgrade_point_reached(target)8:

6:

set_state(theState, upgrade_point)9:

13:

set_state(theState, upgrade_point)16:

Figure 53. The upgrade algorithm at work: scenario with 2 replicas and no crashes.

7.2.5 Discussion
An upgrade algorithm for an actively replicated server has been presented above. It is to be noted
that the algorithm requirements listed in section 5.1.2 are met by the algorithm design as follows:

Regarding Automating the Upgrade Process as requested in R6, the algorithm is triggered on
demand by a sending an upgrade message using the basic system communication mechanism.
The algorithm is triggered by a single upgrade request that is reliably distributed to all replicas
of the server. This way of starting the algorithm allows for adding some automated upgrade
management facility as requested in R12 in section 5.1.5.
The algorithm preserves the system consistency during the upgrade, as requested in R7, in that
it allows for state transfers that are handled by the underlying GCS services. One of the GCS
services is the state merging service whose task is to transfer the group state to the replicas
joining the group. As the replicas with the new component implementation join the group

 133

according to the algorithm, their state is automatically upgraded to the current group state.
Regarding the minimizing of the loss of the system functionality, as requested in R8, the
granularity of upgrade is on the level of service components. As the upgrade target is
operational at upgrade time, the system functionality is not lost. The upgrade may impact the
performance of the system but it does not cause some part of the system to be not operational.
Regarding the minimizing the unavailability periods, as requested in R9, the algorithm keeps
a number of replicas of the upgrade target operational all the time during the upgrade. Thus,
the upgrade process does not cause parts of the system to be unavailable.
Regarding dependability of the upgrade as requested in R10, the algorithm has been designed
to be self-stabilizing[12], i.e. can automatically recover following the occurrence of failures.
The algorithm is self-stabilizing in that it is decentralized and tolerates replica crashes. As
there is no single entity that controls the process of the algorithm, the algorithm continues in
presence of transient crashes of replicas being upgraded. Additionally, other crashes are
tolerated by the extended GCS enforcing a recovery policy.
The algorithm supports the upgrade transparency, as requested in R11. At upgrade time, the
parts of the system that are not upgraded, may access the functionality of the software
component being upgraded and after the upgrade is completed in the same way it was before
the upgrade. This is due to the fact that the new replicas join the same replica group and can
be accessed using the same group identifiers.

The presented version of the algorithm by itself does not guarantee that the replication level is
hold after the upgrade. There must be an additional supervising mechanisms that takes care of
this.

7.3 Upgrading a passively replicated object
This section presents the initial design of the upgrade algorithm for passively-replicated
objects. The basic idea of the upgrade algorithm for a passively-replicated server is quite
similar to the upgrade algorithm presented in section 7.1.1. For this the description is focused
on the differences.
Section 7.3.1 gives a brief overview of the system model for the upgrade target. Section 7.3.2
presents the assumption on the upgrade target and the upgrade algorithm, whereas section
7.3.3 gives the basic idea of the algorithm. Finally, section 7.3.4 concludes with a brief
analysis of the algorithm properties.

7.3.1 System Model
In this section, the software system is modeled as a passively replicated server, processing
requests from multiple clients, see Figure 54. A server is represented by a group which is a set
of replicas running on different nodes. The group comprises:

• The primary replica. This replica receives the requests sent by the clients, processes
them and sends the response back. Whenever a request is processed, the primary
distributes its current state (or a difference compared to the one it had before the last
request arrived) to all the backup replicas.

• A number of backup replicas, which do not process the client requests. They upgrade
their state with the intra-group messages sent by the primary.

The clients send their requests by means of a group communication system (GCS) which
guarantees reliable transport of their requests to and the corresponding responses from the
primary replica of the server. In contrast to the active replication scheme, GCS does not have

 134

to guarantee a total order delivery. Neither has the replica to process the requests in
a deterministic way.

backup

client
primary

backup

client

client

GCS

Figure 54. The primary-backup system model.

7.3.2 Algorithm Assumptions
The objective of the upgrade algorithm is to upgrade an actively replicated server, i.e.
substitute the executable code of the running processes of server replicas with another version
of the executable code.
Having in mind the general objectives of our framework enabling dynamic upgrades from
chapter 1 , more detailed requirements on the upgrade algorithm are stated:

R1. The algorithm is triggered on demand by a sending an upgrade message using the basic
system communication mechanism.

R2. The algorithm is self-stabilizing [12], i.e. can automatically recover following the
occurrence of failures.

R3. The algorithm preserves the system consistency by enabling state transfer from the old
version to the new one in case of stateful servers.

7.3.3 Algorithm Overview
In the environment with passive replication, a component is represented by its primary replica
processing the requests and the backup replicas regularly upgraded by the primary. An
upgrade of a replicated server may include the following steps:

1) Start a replica with the new code in the backup mode Bn+1.

2) For all the backup replicas, perform an upgrade of each replica Bi, where 0<i<n

o Start B’i replica with the new code and make it join the group in passive
mode

o Remove the old replica Bi.

3) Force a fail-over to activate one of the backup replicas and shut down the old primary.

 135

Figure 55 shows this version of the upgrade algorithm. The blue rectangles in the picture
represent an exchange a replica with its new version. This exchange can be realised as it is
described in section 7.1.

Primary

Other backup
replicas

demanded
Fail-over

New primary

Backup 1

Update Request

Figure 55. Upgrade process of a passively replicated component

7.3.4 Discussion
An upgrade algorithm for a passively replicated server has been presented. It is to be noted
that the algorithm requirements listed in Section 7.3.2 are met by the algorithm design as
follows:

R1. The algorithm is triggered by a single upgrade request that is reliably distributed to all
replicas of the server.

R2. The algorithm is self-stabilizing in that it is decentralized and tolerates replica crashes.
As there is no single entity that controls the process of the algorithm, the algorithm
continues in presence of transient crashes of replicas being upgraded. Additionally, other
crashes are tolerated by the extended GCS enforcing a recovery policy.

R3. The algorithm allows for state transfers that are handled by the underlying GCS.

7.4 Implementation
One variation of the dynamic upgrade algorithm, suitable for upgrading actively-replicated
servers as described in section 7.1.1, has been implemented in the context of Jgroup/ARM. an
object-oriented middleware platform. Sections 7.4.1, 7.4.2 and 7.4.4 give an overview of the
Jgroup/ARM platform. Section 7.4.3 describes the key concept of the layer which allows for
the platform extensions. The Upgrade Layer is described in section 7.4.5 and is the core of the
algorithm implementation. The Upgrade Manager is briefly sketched in section 7.4.6. The
conclusions on the algorithm implementation are presented in section 7.4.7.

7.4.1 Underlying middleware platform
Jgroup[63] is an extension of the Java distributed object model supporting the group
communication paradigm. This middleware platform is aimed at supporting the development
of reliable and high-available distributed applications in partitionable environments. Jgroup
enables the creation of groups of remote objects that cooperate towards some common goal
using a partitionable group communication service. Remote object groups simulate the
behavior of standard remote objects by implementing a set of remote interfaces and by
enabling clients to remotely invoke the methods defined in these interfaces through the

 136

standard Java RMI mechanism. From the implementation view point, Jgroup is an extendable
object-oriented framework that can be extended through adding so called layers to the Jgroup
protocol stack.
ARM[59] is a replication management facility built on top of Jgroup to simplify
implementation. It handles both replica distribution, according to an extensible distribution
scheme, as well as replica recovery, based on a group-specific policy in an autonomous way,
i.e. without a need for the manual interaction of the system manager. Additionally, ARM offer
a correlation mechanism to collect and interpret failure notifications from the underlying
group communication system.
The implementation of the upgrade algorithm extends the ARM framework with the capability
of upgrading actively replicated server objects.

7.4.2 Jgroup/ARM Architecture
Figure 56 shows the core components of the Jgroup/ARM framework and its extensions to
support dynamic upgrade. A brief description of the core components are given below.

• Execution Daemon, ED for short, must be running on all hosts in the system that should
be able to host application replicas. The execution daemon is used by the replication
manager to create and remove replicas on remote hosts.

• Replication Manager, RM for short, is the main component of the ARM framework
and its tasks include, replica distribution, failure recovery and interaction with client
management applications through the replication manager interface. This component is
replicated for fault tolerance, as shown in Figure 56.

• Upgrade Manager, UM for short, effectuates upgrade group requests, communicated to
it by an upgrade management client. It is naturally co-located with the RM to exploit
its database of available groups.

• Dependable Registry, DR for short, is a replicated naming service. It enables a dynamic
set of replicated remote objects to register themselves under the same name, forming
an object group, which can later be retrieved by clients. This enables clients to
communicate with the whole group as a single entity. Also the DR is co-located with
the RM, since the RM depends on DR for bootstrapping.

• Application Replica, R for short, provides the actual service functionality that may be
upgraded. The application replica may make use of various services provided by
Jgroup by specifying a layer stack, as presented in the next section.

 137

Figure 56. The architecture of Jgroup/ARM

7.4.3 Layers
The Jgroup is designed using a layered architecture. A Layer in Jgroup is a basic building
block that interacts with other layers of the system tin the following way:

• It gets the data input from the lower layer, processes the data and forwards it to the
upper layer(s) (Member interface), and

• It gets the control data from higher layers and forward it to the lower layers
(GroupManager interface)

A Jgroup Layer in not a software component as it is understood in this thesis (see section 2.3)
as it is not a unit of deployment and management. The definition of the layer is concerned
with its interaction paradigm only.

7.4.4 Group Manager
Jgroup Group Manager, GM for short, supports dynamic creation of group communication
layer stacks, based on a layer stack ordering string associated with each application. The
configuration of the layer stack can be expressed in XML, as shown in Listing 4, allowing
each application to be configured according to its needs for various Jgroup services, such as
recovery, upgrade, group membership and group method invocation services. Each GM layer
may interact with any other GM layer, through an interface that each layer exports within the
stack.
The Jgroup Daemon, JD for short, implements the basic group communication facilities such
as failure detection, group membership and multicast, and each application specific GM layer
may also communicate with the JD component to perform its tasks.

Listing 4 Example application specification for Jgroup/ARM
<Application name="UpgradableServer" group="103">
<Class name="test.upgrade.UpgradableServer" args=""/>
<LayerStack order="PGMS:EGMI:Recovery:Upgrade"/>
<RecoveryStrategy name="KeepMinimalInPartition">
<Redundancy initial="3" minimal="1"/>
</RecoveryStrategy>

</Application>

 138

As shown in Listing 4, the UpgradableServer application use the PGMS, EGMI,
Recovery and Upgrade layers. The PGMS is the group membership service provided with
Jgroup; it supplies application replicas with information about the current view of the object
group. The EGMI layer is an external group method invocation service, enabling clients to
communicate with the entire object group as if it was a single entity. This means that the
UpgradableServer will export an interface to its clients, enabling them to invoke the
server group with what the client sees as a single method invocation. The RecoveryLayer
also used in the example is a group manager layer that is part of the ARM framework. It is
used in conjunction with the RM to ensure that all applications maintain a minimal
redundancy level, as specified in Listing 4.

Figure 57. Upgrade layer stack

7.4.5 Upgrade Layer
The upgrade algorithm, as described in section 7.2.4, has been implemented in Jgroup as
a layer, called UpgradeLayer. Figure 57 illustrates the layer composition and interfaces
supported by each of the layer. In the stack protocol configuration, the UpgradeLayer is the
last component in the stack and interacts with the application components directly. For an
application replica to be upgraded, it must implement the UpgradeListener interface (the
upgraded() method.) The upgraded() method is used by the upgrade layer to notify the
replica that a new version has been installed, and that the replica may now gracefully
shutdown.
Prior to upgrading a particular application, it must first have been installed through the
Replication Manager. Figure 58 illustrates the main interactions of an upgrade. The actual
upgrade is initiated by the Upgrade Management Client, UMC for short, by performing an

 139

upgradeGroup() invocation on the UM (step 1), which in turn leads to
a upgradeRequest() (step 2) multicast invocation on the respective upgrade layers of the
group to be upgraded. Next, the upgrade layers of the replicas decide if its their turn to be
upgraded; in this case, R1 is selected for upgrade and the UL performs a createReplica()
(step 3 and 4) invocation on the local execution daemon. This in turn causes the newly created
replica (new software version) to join the group, and thus all replicas (both new and old)
install a new view (step 5). Once the UL representing the upgraded replica detect the new
version (R1

u), it will make the old replica leave the group; once it has left, the upgraded()
method is invoked on R1.

Figure 58. Interactions involved in an upgrade.

One of the main tasks of the upgrade layer is to determine which of the application replicas
needs to be upgraded next, following the generic algorithm in section 7.1.1. As shown in
Figure 58, the upgrade layer will wait for viewChange() events from the PGMS (see also
step 5 in Figure 58). The replica to be upgraded next is determined on the basis of the replica
positions in the view, e.g. the first member of the group will be upgraded first and so on.
The actual upgrade occurs by invoking the createReplica() method on the local
execution daemon, and once the new version of the replica has joined the group, the old
replica can leave the group. All of this is seamlessly handled by the upgrade layer.
The view originated from the PGMS provides a list of the current group member identifiers.
In order to implement the upgrade layer, the member identifier has been extended with
a software version number. This is used by the upgrade layer to distinguish between replicas
running the old software from replicas running the new software, within the same view.
To prevent client requests from being processed by the replica during an upgrade, the upgrade
layer interacts with the EGMI layer, as indicated by the stopRequests() method. This is
required to prevent returning results to clients while being upgraded.
Assuming that the application is stateful, the new version of the replica must ensure that its
state is synchronized with the remaining members of the group, before it can start processing
client requests. State synchronization is provided by a separate layer in Jgroup, the State
Merging Service, thus the upgrade layer does not need to deal with these issues.

7.4.6 Upgrade Manager
As shown in Figure 56, the upgrade manager object is co-located with the replication manager.

 140

This is to simplify the interaction among the two components, yet making it easy to configure
the system without the upgrade mechanism. The upgrade manager coordinates the upgrades. It
provides an interface for a management client, to initiate upgrade request for a specific
application that was previously installed through the replication manager. The AppInfo
object supplied to the upgradeGroup() method encapsulates version information and class
location for the new version of the application replica.

7.4.7 Conclusions
This section described one version of dynamic upgrade algorithm that is applicable to actively
replicated servers implemented as a proof of concept. The algorithm implementation is based
on Jgroup/ARM, which belongs to the class of object-oriented middleware and supports group
communication.
The upgrade algorithm is an extension of Jgroup/ARM platform. The extension is enabled
through the layer architecture and framework-oriented design of the middleware. ARM
provides a possibility of inserting object-oriented entities, called layers into the protocol stack
of the middleware platform. The implementation of the dynamic upgrade algorithm is
contained in the Dynamic Upgrade Layer.
The implementation of the algorithm is object-oriented using the Jgroup layer concept.
A Layer could be considered as a software component as it is interpreted in this thesis 2.3 if it
were packaged and deployed in the Jgroup/ARM middleware platform if needed. The
application specification could be considered as a simple component deployment language,
which allows for describing the system configuration in terms of its components, its initial
connections.

7.5 Summary
In this chapter, some upgrade algorithms were presented as the core mechanism to be
provided by a dynamic upgrade system. Each of the algorithms addresses upgrades of different
upgrade target and differs in the underlying system model. Some additional assumptions and
requirements were needed to be added to general requirements on upgrade algorithms
presented in section 5.1.2. One of the algorithm variations, i.e. supporting dynamic upgrades
of actively replicated components was implemented using the Jgroup/ARM middleware as
a proof of concept. The algorithm could be easily added to the middleware used due to its
extendable layered architecture Jgroup/ARM .was designed.

 142

8 Solution Evaluation
This section describes the evaluation of a part of the Dynamic Upgrade Framework presented
in the previous sections of this thesis. The evaluation is based on a number of practical
experiments in which a running Java RMI-based server is dynamically upgraded while
processing a stream of client requests. The upgrade target in these experiments is a test server
which is actively replicated with the Jgroup2 and upgraded using the algorithm presented in
section 7.1.1. During the upgrade, the server is operational and processing a constant flow of
client requests. The evaluation shows the upgrade algorithm working in practice and
investigates the cost of applying the algorithm in terms of system performance overhead, like
decrease in the server response time .

8.1 Aim
The aim of this experiment is to measure the performance of the dynamic upgrade algorithm
described in section 7.1.1 applied to an actively replicated server. In the experiment scenario,
while the target server is busy processing client’s requests sent at regular intervals, it is being
upgraded at the same time. With regard to fault workload, the server upgrade is carried out in
ideal conditions, that is no server crashes during the upgrade (a fault-free environment).
To express our expectations, the following hypothesis are put forward:

Hypothesis H1.
The response time of a server is compromised by the upgrade algorithm. The
performance overhead of the upgrade process does not depend on the server
characteristics.

This hypothesis is based on the fact that the upgrade process involves activities consuming the
resources of the nodes where the server replicas are running. Thus, performing additional
actions decrease the responsiveness of the server as the upgrade process and the execution of
the server code triggered by the client requests must compete now for the same resources.
However, the performance penalty for the upgrade does not depend on the server
characteristics in terms of its response time, replication level or the workload it has.

Hypothesis H2.
The server workload caused by the clients has an impact on the upgrade process
time. The bigger it is, the longer an upgrade takes.

The hypothesis above is based on the fact that the upgrade process shares the resources of the
hosts with the server replicas runs and that both the upgrade activities and the request
processing by the server are performed with the same priority. In this case, the heavier the
server workload is, the longer it takes to access the resources needed to complete the upgrade.

Hypothesis H3.
The time of the upgrade process is proportional to the replication level of the server
to be upgraded.

As the algorithm implementation allows replacing one replica at a time and each replacement
is performed in the same way (and presumably takes similar amount of time), the upgrade
time of the whole server consisting of n replicas should be exactly proportional to n.

 143

8.2 Experiment Description
This section describes the details of the experiments performed. The experiment configuration
and scenario is sketched in section 8.2.1.Section 8.2.2 presents the experiment testbed, section
8.2.3 describes the benchmarking metrics and the methodology followed when conducting the
experiments.

8.2.1 Experiment Configuration and Scenario
In the experiments the following logical subsystems are involved:

• Test Client that generate a stream of requests sent to the test server. The test client is
implemented as a multi-threaded Java process that can send server requests with a
given frequency.

• Test Server that is the upgrade target in the experiments. It is an actively replicated
server with replication level determined by the experiment parameters. The server runs
on top of the JGroup toolkit which is extended by UpgradeLayer as described in
section 7.4.

• Upgrade Manager that is a piece of software that triggers the upgrade process. In the
experiment configuration, it is a simple client that sends an upgrade request to the
UpgradeLayer of each of the server replicas.

The logical configuration of the conducted experiments is depicted in Figure 59.

Clients sending
requests to the

server.

Replicated
Test

Server

Upgrade
Manager

Figure 59. The experiment configuration.

Each experiment is performed according to the following scenario steps:
1. The actively replicated server is started with a initial replication level R on a subset of

the testbed nodes N. The server is stateless and offers one function without side-
effects. The return value of that function depends only on the value of its input
parameter. The function always terminates deterministically and takes a constant time
TF to compute the function value.

2. A number of clients are started and send their request to the server, which is also the
upgrade target.

 144

3. After the situation is stabilized after time T, the server upgrade may begin. An upgrade
request is sent by the Upgrade Manager to all the replicas and the upgrade process
commences. While the upgrade is being performed according to the upgrade
algorithm, the clients are still sending the user requests. Some server replicas process
the requests using the old code, while other are running already the new code.

4. After some later time T+UT, the last replica in the server group is upgraded the thus
the upgrade algorithm terminates. From now on, the server is processing the user
requests using only the new version of the code.

The actively replicated server can process two kinds of method invocations[63]:

• Anycast invocations. The semantics of the anycast invocation guarantees that at least
one server replica performs such a method. (see the lower diagram in Figure 60
showing a time run of a sequence of consecutive anycast invocations).

• Mulitcast invocations. The semantics of the multicast invocation guarantees that such
a method is performed by all server replicas. The responses from the replica are then
collected and sent back to the client. (see the upper diagram in Figure 60 showing
a time run of a sequence of consecutive multicast invocations).

processing a sequence of mulitcast method invocations

processing a sequence of anycast method invocations

R3

R2

R1

R3

R2

R1

client

client

Figure 60. The difference in processing multicast and anycast requests by an actively replicated
server.

During the upgrade process not all replicas are active, that is processing client requests. In the
current implementation of the algorithm, one is being replaced at a time and, therefore, it is
not able to process client requests. The other replicas still may process client requests and
make the whole server available. Figure 61 shows a sequence of client requests being
processed during an upgrade process performed according to the algorithm proposed in
previous chapter. For the sake of simplicity, new replicas has the same time lines as the
corresponding replicas that they replace. To differentiate a new and an old replicas, the
rectangular boxes on the old replica’s time line are filled with different filling patterns:
a checked pattern for the requests processed by the old replica and a pattern with diagonally-

 145

stroked lines for the new replica. Additionally, the solid rectangular boxes represent the time
periods that the replacement process is performed by the corresponding replica.

processing a sequence of multicast method invocations during an upgrade process

R3

R2

R1

R3

R2

R1

client

client

Upgrade manager

processing a sequence of anycast method invocations during an upgrade process

Upgrade manager

Client request
processing time:
old replica

Replica
replacement time
(inactivity period)

Client request
processing time:
new replica

Figure 61. Processing of client requests during the upgrade process.

The following parameter are changed in the experiment series:

• Server Replication Level. The value of this parameter describes the number of replicas
of the test server. It can be always greater than two.

• Workload of the test server. As mentioned in the experiment scenario, the server
workload is simulated by sending a continuous stream of client requests to the server
at regular time intervals. Such a request send events distribution allows observing the
behavior of the systems under constant load and analyze the correlation of the server
workload and the system availability characteristics during the upgrade process. In
future experiments, more advanced models for request sending may be investigated.
The sample values of the request sending frequency are set so that: (1) the maximal
frequency fmax of request processing is found out (server saturation); (2) the minimal
frequency, and the first sample at the same time, is set to some value fmin; (3) the other
values are distributed in the range [fmin , fmax).

8.2.2 Testbed and experiment constraints
The logical experiment configuration runs on top of the middleware, system software and
hardware configuration. The hardware in the experiment testbed consists of:

• 3 PCs, Pentium II 333Mhz,
• 1 PCs Pentium IV 2Ghz,
• 100Mbps Ethernet-based LAN.

Whereas the slower machines are used for test server replicas and the Jgroup/ARM

 146

infrastructure processes, including ExecDaemons and ReplicaManager (see section
7.4.2), the latter machine is used to run the test client, a test server replica if replication level
is equal to four and the scripts automating running a series of experiments (see below).
The following software packages are used to run the experiments:

• Debian 3.0[11], standard Linux 2.4.X kernel[54],
• Sun JDK 1.3.1 for Linux[119],
• ARM/Jgroup 2 extended with the DUF implementation as described in section 7.4,
• Test server replicated with ARM/Jgroup2. The test server is an echo server in that it

replies simple responses based on the input parameters with certain delay. The server
provides three test methods:

o m1 is a anycast void method. The implementation of method m1 just updates
internal variables, like invocation counters and returns control. The method is
also void in the sense that it does not return any return value. The response
time of this method is used as a reference for the minimal response time of a
anycast method possible in the experiment testbed.

o m2 is a multlicast void method. The method is also void in the sense that it
does not return any return value. The response time of this method is used as
a reference for the minial response time of a mulitcast method possible in the
experiment testbed.

o m3 is a sample anycast method with an input parameter and returning some
value. The input parameter is a byte array with a constant size (10k bytes). The
method performs computations (with a constant time bound) to simulate
workload by a typical server implementation.

o m4 is a sample multicast method with some input parameters and a return
value. It performs some computations (with a constant time bound) to simulate
workload by a typical server implementation.

• Set of shell scripts that control and automate the experiment runs. The scripts are
responsible for starting the experiment in the initial configuration, collecting the logs
with the experiment raw data from the testbed nodes. processing and storing them in
the format needed for further analysis and presentation (e.g. gnuplot diagrams or excel
spreadsheets).

The experiment testbed has the following constraints:
• Four nodes. The testbed has only four Linux machines. Running a replicated server

with a replication level of greater than four would mean that multiple replicas would
be running on the same node. The replicas would be competing for node’s resources
and this could contribute to noise with regard to to the performance measurements.
Consequently, it was decided to perform experiments with server replicated with
a replication level of four or less.

• No total isolation. However the testbed network is not completely isolated from the
environment external to the experiment, i.e. traffic from other machines in the
network, the network traffic is much reduced by applying switch filtering the incoming
traffic. In this way, the noise coming from non-experiment related sources is rather
low. Another issue is the noise coming from other processes running on the testbed
machines. To handle that, the number of non-experiment processes on the Linux
machines was reduced to minimum. Additionally, the testbed nodes share experiment
files through NFS, which may have impact on certain system performance
characteristics. Therefore, the experiment results should not be considered as absolute

 147

values. Instead, the experiments are set up to show some relative system
characteristics.

Considering the experiment testbed constraints above and the method for generating sample
values for the experiment parameters, the following experiment parameter values depicted in
Table 10 are assigned for the series of experiments carried out.:

Parameter Sample values
R – level of replication of the target
server

2,3,4

X – workload of the test server (req/sec) 1, 4, 8 for experiments with test method
m1 and m3
20, 40, 80 experiments with test method
m2 and m4

Table 10. Experiment independent parameters.

8.2.3 Benchmark metrics and Methodology
The following are the basic metrics that are helpful to measure the performance of the
algorithm.

• RTx(t) – Response Time of test method request x=m1, m4 sent at time slot [t, t+dt),
where dt is called cycle time. The response time is measured throughout the experiment
time: before the upgrade process commences, while the upgrading takes place and
after the upgrade is complete.

• UT(R, X) – Upgrade Time is the time period from the moment an upgrade request is
sent to the upgrade target to the moment target's upgrade process completes.

The algorithm evaluation is based on the measuring the benchmarking metrics identified in
section 8.2.3 for a number of experiments performed according to the scenario described in
section 8.2.1. Each experiment is carried out with different combination of the independent
parameters listed in section 8.2.1. Each such experiment is repeated 10 times to reduce the
significance of the influence of external factors, including other traffic in the network and
other processes accessing the computing resources of the testbed nodes.
The time measurements are done using the standard Java library calls
(System.currentTimeMillis()) . To reduce the time measurement imprecision, the
server response times that are in range of a few milliseconds for method m1, a few ms teens
for method m3 and a ms few tens for method m2 and m4, the average response times are
computed for a number of invocations on the server within a time period called cycle time. In
the experiments done, the cycle time was set to one second.
The upgrade times are measured using the same Java library call. The time is determined by
the time point at which the upgrade response arrives a replica of the test server and the time
point at which a replica leaves the group of the test server. The upgrade process time is
considered the longest5 upgrade time of a single replica. The measurement method is
visualized in Figure 62. The vertical lines symbol the time lines of server replicas. The arrows
point the times on which certain events occur to replicas. The yellow rectangular boxes
indicate replicas processing the active steps of the upgrade algorithm, whereas dashed lines

5 Even though that the actual upgrade process time may be longer than the longest upgrade time of a single replica because of

different times of an upgrade request arrivals at different replicas, we abstract from this in the experiment measurements. The time
difference is an insignicant fraction of the whole upgrade process time.

 148

show passive steps of the algorithm, that is replica waiting periods.
A derived benchmark metrics, Average Upgrade Time, AUT for short, is then an average
upgrade time taken for a number of repeated experiments with a given set of parameters. This
metrics is used for further investigation for better precision’s sake.

Upgrade Time

Replica 1

Update Request sent by
the Upgrade Manager

Replica 2

Replica 3

Update Request received
by a test server replicas

Replica leaves the test
server group.

Figure 62. The measurement method for the upgrade process time.

8.3 Results
The results of the experiments are graphically presented in this section as diagrams. First the
server response time is presented as it changes in time during the experiment. After the
upgrade process times are presented for experiments in different configurations.

8.3.1 Server Responsiveness Analysis
The section presents the results of the server responsiveness analysis. The analysis has been
performed separately for the anycast methods in section 8.3.1.1 and for the multicast methods
presented in section 8.3.1.2.

8.3.1.1 Anycast methods

In Figure 636, the average server response times are shown for an experiment with replication
level 2, testing method 1 and request rate 20, 40 and 80 requests per sec. The average response
times are computed for a number of 10 repetitions of the same experiment.
The diagram shows that the response times increase during the upgrade process starting at 3s
and terminating on average after 15s, that is 18s of the whole experiment time. The response
times are especially large at the beginning of the upgrade process (peak around 3s exceeds
12ms) and at the end of the upgrade process (peak around 15s exceeds 8ms). This can be
explained by:

• additional activity needed to process the upgrade request including starting a replica
with a new code on the same host which the replica to replace runs on, and

• additional communications needed to install a new membership view in the server

6 Each experiment is named acorrding to the following naming scheme: Ra mb rc, where Ra means Replication level and a can be

equal to 2, 3, 4; mb means test method b and b can be equal to 1,2,3 or 4; rc means workload in request sent to the test server
per seconds, where c can be 20, 40, 80 for anycast test method and 4, 8, 16 for multicast methods. Additionally, each symbolical
variable in this scheme a, b and c can be set to X meaning any value from the allowed range.

 149

group.
Moreover, the diagram shows that the overhead peaks occur at the same points in time in each
experiment independent of the traffic generated by the test clients. This phenomenon can be
explained by that fact that the time that 1st replacement is started without waiting until the
previous client request is fully processed. The implementation of the UpgradeLayer of the
selected replica for the 1st replacement immediately starts a new replica on the same host and
switches the replica state to upgrading (see section 7.2.4). The processor on which the
selected replica is running is busy with starting a JVM and loading the needed classes. This
decreases the response time of the whole server. As soon as the new replica is started and
joins the server group, another replica can be chosen to be replaced. The time the next
replacement takes place depends mainly on the speed a replica can start and join the group.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

0.0 18.2 36.3 54.4 72.4 90.4 108.5

experiment time [sec]

re
sp

on
se

 ti
m

e
[m

se
c]

R2 m1 r20 R2 m1 r40 R2 m1 r80

Figure 63. Average Response Times in experiment R2 m1 rX

Figure 64 shows a time dependency of response times of the server’s test method 3 to
compare. The diagram looks very similar to the previous one in terms of response time
variations throughout the experiment. On average, test method m3 has a bigger response time
than method 1. At the same time, the overhead introduced by the upgrade process is similar to
that of method 1 both in terms of the time dependency (response time peak number and their
time points).

 150

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

0.0 19.2 37.7 56.2 74.5 92.7 111.

experiment time [sec]

re
sp

on
se

 ti
m

e
[m

se
c]

R2 m3 r80 R2 m3 r40 R2 m3 r20

Figure 64. Average Response Times in experiment R2 m3 r20

Figure 65 presents the average response times for test method m1 changing during the upgrade
process for a server replicated with a replication level equal to 2, 3 and 4. In this diagram, the
rest of the experiment parameters are the same. A significant increase in the response times
occurs coherently at the beginning of the upgrade process. The biggest response time at this
time point overhead seems to be for the server with replication level of 2. The response time
curves also have other peaks at 6s, 11s and 14s but they seem not be coherent. It is related to
the fact that the different number of replicas have to be replaced during the upgrade process.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

0.0 18.2 36.3 54.4 72.4 90.4 108.5

experiment time [sec]

re
sp

on
se

 ti
m

e
[m

se
c]

R2 m1 r20 R3 m1 r20 R4 m1 r20

Figure 65. Average Response Times in experiment Rx m1 r20:

 151

Table 11 shows average response times during the upgrade process and after it for the
experiments with test method 1 used. The experiments vary in the replication level and the
traffic load on the server. The table contains a ratio of the during-upgrade and after-upgrade
average times. On average, the response times during the upgrade process are greater by 25%
than the response time taken before or after the upgrade process. This can be considered as the
overhead of the dynamic upgrade algorithm that is manifested by its negative impact on the
test servers responsiveness.

During upgrade Before/After upgrade

Experiment Average
Response Time

Standard
Error

Average
Response Time

Standard
Error

Ratio

R2 m1 r20
R2 m1 r40
R2 m1 r80
R3 m1 r20
R3 m1 r40
R3 m1 r80
R4 m1 r20
R4 m1 r40
R4 m1 r80

6.96
6.63
5.99
5.72
5.41
5.03
6.04
5.74
5.09

1.77
1.58
0.92
1.07
0.84
0.51
1.21
0.93
0.67

5.54
5.16
4.19
4.61
4.32
4.04
5.14
5.01
4.08

0.38
0.39
0.58
0.27
0.36
0.22
0.29
0.22
0.27

1.26
1.29
1.43
1.24
1.25
1.25
1.18
1.15
1.25

Table 11. Average response times during and after the upgrade process

for test method 1.

Additionally, Table 11 includes the standard errors of the response times. The greater values
of the standard variation for the response times during the upgrade process confirm the
observation of strongly varying server responsiveness.

To conclude, the upgrade process adds some overhead onto the server responsiveness. This
overhead is of quickly changing intensity and oscillates between 0 to its peak value of over
200%. However, its effective overhead is on average around 25% when measured throughout
the overall time of the upgrade process. Additionally, it seems that there is a relation between
the number of peaks and the replication level. It can be explained by the fact that the peaks are
to be contributed to the resource consuming activity of starting an operating process that each
new replica joining in causes.

8.3.1.2 Multicast methods

Figure 66 depicts an equivalent diagram with server response times during a set of repeated
experiments where test method m2 is used. Method m2 is a multicast method The
experiments shown in the diagram differ in the workload generated. The response times in
these experiments are quite correlated and follow the same pattern: the response time of the
test server grows reaching its maximum peak of around 100 msec, which exceeds the average
response time before and after the upgrade process by a factor of 500%. In this experiment,
the number of peaks during the upgrade process is equal to three.

 152

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0.0 15.1 30.4 45.4 60.3 75.2 90.1

experiment time [sec]

re
sp

on
se

 ti
m

e
[m

se
c]

R3 m2 r4 R3 m2 r8 R3 m2 r16

Figure 66. Average Response Times in experiment R3 m2 rX.

Table 12 shows average response times of method 2 both during the upgrade process and
before/after it. The last column includes a ratio between these times for each experiment. The
average ratio for all experiments amounts to 1.66. Compared to the analogous results for
method 1, the ratio is much higher (66% against 25% overhead) and indicates a higher
performance overhead of the upgrade process for this test method. Furthermore, considering
that fact (see sections below) that the upgrade time for method 2 is also much longer than for
method 1 and 3, it can be stated that the overall performance overhead of the upgrade
algorithm with regard to servers processing multicast methods is significantly higher than the
one regarding servers processing unicast methods.

During upgrade Before/After upgrade
Experiment Average

Response Time
Standard

Error
Average

Response Time
Standard

Error
Ratio

R2 m2 r4 37.46 22.66 20.08 4.99 1.87

R2 m2 r8 31.20 13.40 18.96 5.52 1.65

R2 m2 r16 27.36 12.54 17.79 2.75 1.54

R3 m2 r4 35.80 25.79 19.06 3.75 1.88

R3 m2 r8 32.31 15.54 19.09 3.29 1.69

R3 m2 r16 29.36 12.32 18.26 1.44 1.61

R4 m2 r4 78.03 21.65 47.85 5.78 1.63

R4 m2 r8 59.76 11.73 38.42 3.34 1.56

R4 m2 r16 60.52 11.00 38.92 1.93 1.55

Table 12. Average response times during and after the upgrade process
for test method 2.

 153

8.3.2 Upgrade Time Analysis

Another system parameter measured in the experiments is the upgrade time. Its value should
be as small as possible in order to limit the performance overhead added by the upgrade
process as well as to reduce the risk of failures during the upgrade. The following sections
present the average values of the upgrade time, AUT, measured in the experiments.
Figure 67 shows the average upgrade times [in ms] for the experiments with clients sending
test method 1 to the server. The times have been presented for upgrade processes with
different server replication levels (bars painted with different shades) and for different rates of
client requests sent to the server (depicted on the x axe).

20
40

80

R2 R3 R4
12000

17000

22000

27000

32000

37000

42000

47000

A
ve

ra
ge

 U
pg

ra
de

 T
im

e
[m

s]
Work
load

[req/s]

Replication level

Figure 67. Average upgrade times for experiments with method 1.

Figure 68 presents average upgrade times for experiments with test method 2. The vertical axe
represents the upgrade times in milliseconds, whereas the horizontal axe represents the server
load in the number of requests processes per second. Different shades of the diagram columns
represent different replication level of the test server, with the left-hand blue column meaning
replication level of two, the central column – replication level of three and the right-hand
column – replication level of four.
The diagram presents suggests a correlation between the upgrade time and the load of the
server during the upgrade. Namely, the heavier the load is, the longer it takes to complete the
upgrade process. Another dependency that can be seen in the diagram is a positive correlation
between the upgrade time and the replication level: the higher the replication level is, the
longer the upgrade process takes. This observation seems to support hypothesis H1 put
forward in section 8.1

 154

4
8

16

R2 R3 R4
12000

17000

22000

27000

32000

37000

42000

47000

A
ve

ra
ge

 U
pg

ra
de

 T
im

e
[m

s]

Work
load

[req/s]

Replication level

Figure 68. Average upgrade times for experiments with method 2.

8.4 Conclusion
To estimate the performance overhead of the upgrade algorithm introduced in previous
chapter of this thesis, a number of practical experiments with the algorithm prototype were
performed as described in this chapter.
The results of these experiments confirm the hypothesis formulated at the beginning of the
chapter as follows:
With regard to Hypothesis H1, the upgrade process has a negative impact on the server
responsiveness during the upgrade process. Depending on the method invocation semantics,
this overhead differs from 25% for the anycast invocations to 66% for the multicast
invocations.
Therefore, it may be worth of changing the multicast type of traffic to anycast one for the time
the dynamic upgrade is to be performed if it is feasible. Using the existing JGroup middleware
platform it is possible if both invocation types are foreseen for the server method at compiling
time of the server code because the method signatures differ for these method invocation
styles. Using the Java reflection support and java byte code analysis and manipulation
mechanism provided by the Byte Code Engineering Library [4] it could be possible to develop
tools for generating the corresponding method syntax definitions. The difficulty would lie in
the automated detection of side-effects and their resolution when transforming an anycast to
multicast method or vice versa.
Secondly, Hypothesis H2, which states that the time taken by the upgrade process applied to
a replicated server depends on the replication level, can be confirmed. On average, it takes
approximately double as long to upgrade an actively replicated server with replication level of
4 compared to a server with only two replicas.

 155

The upgrade time for the sample replicated server used in the experiment was in range
between 13 and 42 seconds. During this upgrade time, the server reliability is decreased and
the system more susceptible to crashes as the replication level is smaller than out of that time.
To reduce the crash risk, this upgrade time may be shortened by defining an upgrade enabling
condition so that more replicas are upgraded in parallel. On the other hand, when the more
replicas are being upgraded at a time, the less replicas are available and the server reliability is
reduced. This trade-off may be solved by starting additional replicas with new code before
replacing the old ones. However, the server responsiveness is then compromised as the
increased replication level causes additional penalty as even more replicas have to compete for
the same hardware resources if provided additionally. The rule of the thumb is to perform
upgrades with at least two replicas not being upgraded. Additionally, the upgrade should be
then performed during the time that the crash probability is smallest, for instance when the
server workload is low.
In the experiments carried out, it was not possible to fully verify , that is the server workload
caused by the clients has an impact on the upgrade process time. The server is loaded from
small to mean load and the host resources are ample to handle the additional activity of
upgrading the server. Only in case of a test server with four replicas, the upgrade time depends
on the workload. Some more experiments with heavy load on the server are needed to confirm
the presumed correlation between the upgrade time and workload.

 157

9 Conclusions
This thesis has investigated the problem of upgrading distributed software components on the
fly. Software upgrades have been considered from several perspectives: as a special case of
deployment, as an approach to runtime management and as a mechanism to increase
availability of time-critical systems.
In this work, the topic of dynamic upgrades of distributed software was tackled by identifying
the range of aspects of the core problem, such as defining the upgrade process, coordination
and management of dynamic upgrades, upgrade validation. The problem analysis was initially
based on the investigation of the existing approaches described in the research literature. This
resulted in a comprehensive comparative study of the state-of-the-art systems supporting
dynamic upgrades. The study allowed to define in a set of general requirement on the platform
and the software systems to upgrade.
The set of requirements was then taken as the input to develop a more generic model for
middleware platforms aimed at supporting upgrades on the fly. The model was called
Deployment and Upgrade Facility and formulated using the UML notation. It is modeled
following the Unified Process with help of different models. In use case model, the main
functionalities of a middleware platform to support dynamic upgrades are specified using the
use case notation. In design model, the architecture that is derived out of the model is
presented in term of the objects and their relationships and dynamic interactions. The
applicability of the model was verified by deriving a concrete design of an object oriented
framework supporting deployments and upgrades, The framework was implemented in
a series of prototypes extending the mainstream middleware platforms, including OMG’s
CORBA and JAVA RMI (Jgroup).

9.1 Contributions
The major contributions of this thesis are:

• A model of a system supporting deployment of distributed applications and in
particular, dynamic upgrades of distributed components. The model results from a
comprehensive analysis of issues to be addressed when building software capable
of being upgraded on the fly. The model is described in chapter 5 and contains the
following parts:

o Use case model describing the actors relevant to deploying and upgrading
a distributed system, as well as, the core capabilities a system has to
provide to enable deploying, and in particular upgrading distributed
components.

o Component Model, which defines the component and its features with
regard to the implementation, deployment and runtime phases.

• The Deployment and Upgrade Facility which is an object-oriented framework
capturing design solutions and patterns to construct dynamic upgrade support
systems. The framework is based on the model above and extends the model with a
design of interactions . It has been described in chapters 6-8 of this thesis. The
major features of DUF are:

o Support for dynamic upgrades of distributed applications. The framework
enables software upgrades by replacing software component on the fly. The
software components may be distributed in multiple containers running on

 158

various hosts.
o Solution extensibility. The DUF is designed as an object oriented

framework with extendibility in mind . The extensibility is expressed in the
following aspects:

� it is possible to extend the facility with new upgrade algorithms,
some of which have been presented in this thesis. In particular,
upgrade of non-replicated and replicated services is enabled.

� it is possible to introduce new upgrade management schemes by
inserting new management policies.

o Advanced Upgrade Management. The DUF allows for managing upgrades
in complex distributed systems. The management subsystem enables setting
up the upgrades in the identified dimensions.

o Technology-independence. The framework does not depend on the
technology-specific realization of the supporting mechanism.

The DUF has been extended by implementation of the supporting mechanisms
that were implemented in a series of prototypes using a concrete middleware
technology, including CORBA and Jgroup, a Java RMI extension.

• Dynamic upgrade problem taxonomy and a state-of-the-art solution survey. The
thesis identifies and classifies problems related to building dynamically upgradable
distributed systems and the dynamic upgrade support systems. The proposed
taxonomy is a result of comprehensive comparative analysis of existing systems
and ones under development/specification , which support dynamic upgrades in
distributed systems.

The results of the thesis have been published in international conferences and discussed with
world experts in the area [109][110][112][113]. The solutions presented in the thesis were
submitted as contributions to the international research projects, in which the author of this
thesis actively participated, including Eurescom P910[17][18], Eurescom P924[111][20] and
IST FAIN[22][23].

9.2 Novelty
The approach to designing a dynamic upgrade support system presented in this thesis is novel
in many ways:

• Consideration of dynamic upgrades from the deployment perspective. The thesis
provides a comprehensive view on dynamic upgrades in distributed applications, as
a special case of the software deployment process. The view encompasses the
deployment aspects and runtime issues related to software upgrades and extends
the scope of most of the previous work on dynamic upgrades.

• Separation of the technology independent part and technology specific part. The
approach of this thesis is to divide the solution for dynamic upgrades into three
parts: the model, the framework for Deployment and Upgrade Facility and the
supporting mechanisms. Whereas the model and framework are technology
independent, the realization of supporting mechanisms is specific to the underlying
technology.

• Heterogeneity Support. The DUF supports dynamic upgrades of distributed,
heterogeneous services. The services may consists of multiple components
implemented using different technologies spread across a number of containers and
hosts. Thanks to the platform-independent model proposed in this thesis and the

 159

openness of the COBRA middleware technology chosen for the prototypical
implementation (open interfaces, interoperability and portability), it was easy to
provide an implementation of the DUF which supports upgrades of heterogeneous
services.

9.3 Goal fulfillment
The first goal of the thesis has been to construct a model that describes capabilities needed to
support dynamic upgrades in distributed software systems. To meet this goal (P1 in section
1.2), the use case model has been specified in chapter 5. The model includes an underlying
component model defining how to construct distributed software out of components (goal P2).
The model defines the core capabilities of the system and actors interacting with the system
and is completely independent from the implementation technology (goal P3) The model has
been validated by building a set of prototypes described in section 5.4 and chapters 6-7. using
existing middleware platforms (goal P4). Finally, to meet goal P5, the model is specified and
presented using the Unified Modeling Language, a standardized notation, which is widely
used by the industry and research community working on the object-oriented and distributed
systems.
The solution developed in this thesis fulfills all the goals set in section 1.2. It provides a
support for performing and managing dynamic upgrades of distributed software components
and is compliant to the model presented in chapter 5 (goal P6). The degree to which the
support is provided is discussed in the following subsection when presenting the fulfillment of
the more detailed requirements on the solution specified in section 5.1.
Furthermore, to meet goal P7, the solution has been practically validated by implementing a
series of prototypes using the CORBA and RMI main-stream middleware technologies. It is
designed and implemented as a framework that allows for its extensions by both by adding
new support mechanisms and management policies for dynamic upgrades (goal P8). The
implementation of the solution is divided into the platform independent part and platform
specific part (for Jgroup). Thus, its reusability is increased (goal P9). When porting it to
another middleware technology, only the platform specific part needs to be implemented.
Finally, the performance of the DUF system has been tested in a series of experiments as
presented in chapter 8 to meet goal P10.

9.3.1 General Functional Requirements
With regard to the requirement on Basic Deployment Capabilities as express in R1. The DUF
provides the basic deployment capabilities as described in chapter 5. In particular, it is
possible to release, deploy, remove and withdraw a service from the system. The design and
implementation of the system demonstrating these deployment capabilities was described in
section. 5.4.
With regard to the requirement on Support for distributed services, as stated in R2, the DUF
supports deployment and upgrades of distributed component-based services. The underlying
component model defined in section 5.3 enables a service to comprise a number of software
components distributed on multiple containers and hosts.
Concerning requirement R3 on Support for co-existence of multiple versions, it is possible to
release and deploy multiple versions of a service component in a distributed system on each
node, i.e. two or more version of a service component may be deployed on a node.

9.3.2 General Nonfunctional Requirements
Solution extendibility has a high priority in the approach presented in this thesis as requested

 160

in R4. The solution is designed as a extensible framework which enables using a number of
available upgrade management strategies and upgrade algorithms for various types of upgrade
targets, as well as, inserting new dynamic upgrade management policies and supporting
mechanisms.
Referring to R5, DUSS Portability, a significant part of the Deployment and Upgrade Facility
has been developed in a platform independent way so that the underlying capabilities of the
middleware platform are abstracted. Additional, the requirement has been addressed by
selecting Java as the programming language. This part of this solution can be easily ported to
any middleware technology and other hardware platforms, for which an implementation of the
Java Virtual Machine is available. Only small part of the implementation code of the support
mechanisms is platform dependent and needs to be adapted to different middleware platforms.

9.3.3 Requirements on Upgradable Components
As far as Orthogonal Upgradability is concerned, requested in R14, the upgrade capabilities of
a component, which belong to the system management issues is separated from the component
functionality (business logic) in that another interface is added to the sets of the component’s
main interfaces related to the business logic of the component. The implementation of the this
interface may have to be integrated with the implementation of the component’s business
logic to insert the so called upgrade points.
Simplicity of development of upgradable components was requested in R15. The component
developer has to put some effort to add an implementation of the Upgradable interface. For
the stateful components, the implementation has to support the state transfer mechanism in
that the get_state() and set_state() method implementation has to be provided.
These methods can be partly automated as shown in the work on persistent system, eg.
Orthogonal persistence approach. In general, a automatic support for state transfer is not
feasible. The DUF handles this requirements by following a framework-like approach
providing a number of interface definitions that has to be then implemented by the component
developer or generated by the state transfer support tools left out of this thesis.
According to requirement R16, the set of constraints on the system imposed by a DUSS should
be minimized. The approach taken in this thesis does not impose any constraints on the
development process. Neither the system architecture nor programming style is constrained.
The design flexibility is supported as much as the component-oriented paradigm allows for
that. The DUF facility is a design framework that has some impact on the design of a
component. (new interfaces that has to be supported by the upgradable components).
Although the framework provides a number of support mechanism implementations, like
upgrade algorithms specialized to handle upgrades of various upgrade targets, it is extendable
and other supporting mechanisms can be added.
With respect to requirement R17, dynamic upgrades of heterogeneous services should be
supported. Deployment and Upgrade Facility is defined on the conceptual level and specified
using UML. It has been implemented in the CORBA environment that supports heterogeneity
of software components in a system. Thus, it supports interoperability.

9.4 Open issues and Future Work
The following topics have not been investigated at full length in this thesis and are proposed
further research:

• Higher dynamics of change. As the upgrade algorithms presented in this thesis
provide some constraints on the allowed differences between versions of the
component to upgrade, some investigation of upgrade algorithms should be carried out

 161

that allow for higher dynamics of change during upgrades.
• Tool support for automating the preparation of upgradable components. Some

research should be done to investigate in how far it is possible to automate adding the
upgradability to a component that has been designed without this goal.

• Solution Scalability. The solutions presented in this thesis have been applied to
relatively small distributed systems. Further research is needed to check the scalability
of the solutions to a large-scale highly-distributed system, running perhaps on hosts
connected with a links of significant communication delays.

• Applicability to other software architectures. The solution has been used in the multi-
tier architecture based on the RPC communication paradigm. The recent tendency in
software system development is to design systems in a decentralized and loosely-
coupled way that are more suitable for ubiquitous computing paradigm. It would be
worth of investigating how the solution presented in the thesis can be applied to
software systems built in these architectures.

• Safe Online Upgrades. Safety of software system upgrades is a critical issue. The
solution presented in this thesis assumes that the service deployer, who is a trusted
entity for the target system, may also trust the service code providers with regard to the
suitability and correctness of the code. If this assumption is weakened, some additional
mechanisms supporting security of the upgrades need to be made available.

 163

Acronyms
This section contains a list of acronyms used throughout the text of this thesis.

ADT Abstract Data Type
AML Architecture Modification Language
API Application Programming Interface
ARM Autonomous Replication Management
AUT Average Upgrade Time
COM Component Object Model
COS CORBA Object Services
CORBA Common Object Request Broker Architecture
DCOM Distributed Component Object Model
DU Dynamic Upgrade
DUF Deployment and Upgrade Facility
DUMF Dynamic Upgrade Management Framework
DUSS Dynamic Upgrade Support System
DUT Deployment and Upgrade Tools
EE Execution Environment
EJB Enterprise Java Beans
GCS Group Communication System
IDL Interface Definition Language
ISO International Standardization Organization
JVM Java Virtual Machine
MOM Message-Oriented Middleware
ODP-RM Open Distributed Processing – Reference Model
OMG Object Management Group
OSD Open Software Description
POA Portable Object Adaptor
RMI Remote Method Invocation
RP Reference Point
RPC Remote Procedure Call
RT Response Time
SDL Specification and Description Language
SDR Service Dependency Resolver
SP Service Provider
UML Unified Modeling Language
VE Virtual Environment
XML Extendable Markup Language

 165

Glossary
This is a list of terms adopted from the literature or introduced in this thesis. Each entry in the
glossary contains the term, its explanation and the literature source it stems from.

Term Explanation Source

Actively-replicated
Server

A server replicated with a number of replica, each of
which is running in parallel and ready to process incoming
client requests.

Anycast Method
Invocation

The semantics of an anycast invocation guarantees that the
invocation on a replicated server will be executed by
invoking the same method on at least one of the server
replicas [unless client is completely partitioned from the
server in case of partionable environment].

[63]

Architecture Overall design of a system. An architecture integrates
separate but interfering issues of a system, such a
provisions for independent evolution and openness
combines with overall reliability and performance
requirements.

[123]

Component A component is a unit of composition with contractually
specified interfaces and explicit context dependencies
only. Context dependencies are specified by stating the
required interfaces and the acceptable execution
platform(s). Component has the following properties: it is
a unit of abbstration, deployment and management. In the
context of this thesis, the component is mainly considered
as a unit of dynamic upgrade.

[123]

Compound Upgrade A dynamic upgrade that involves multiple upgrade targets.

Critical Systems Software systems that are critical to the operation of the
organization or its mission.

[30]

Dynamic upgrade
(process)

A upgrade process that performs changing a given target
system on-line while the system is operating, as compare to
a static upgrade in which the system is taken off-line during
reconfiguration.

[30]

Multicast Method
Invocation

The semantics of a multicast invocation guarantees that
the invocation on a replicated server will be executed by
invoking the same method on every server replica
[contained in the client’ partition in case of partitionable
environment].

[63]

Object A model of an entity, which represents either a real or
abstract phenomenon. An object can be distinguished
from any other object and is characterized by its behavior
and state.

[45][46]

OO-Framework A partial system implementation in object-oriented way
formed by a set of interacting classes expressing the
behavioral and structural patterns typical for a certain

 166

problem domain. The framework is extendable by adding
new, specialized classes to turn the framework into a
concrete implementation for a system.

Package [in UML sense] A collection of arbitrary model elements
used to structure the entire model into smaller, clearly
visible units. A package also defines a namespace for
these model elements.

[81]

Passively-replicated
Server

A server replicated with a number of replica, one of which
(called the primary replica) is processing the incoming
client requests and sending updates to the rest of the other
replicas (called backup replicas).

Platform A basic technology enabling inter-process and intra-
process interactions of software components in the
distributed system. Examples of commercial middleware
platforms include Sun’s EJB[119] and OMG’s
CORBA[73].
Synonyms: Middleware Platform, Distributed Execution
Environment[126]

Policy Policy allows for specifying or declaring a condition under
which a given management process, in particular a
dynamic upgrade, should be carried out.

Recovery (1) Recovery is a process of leading to resuming the
system operation after an outage. (2) Recovery is the
speed with which a system returns to operation following
an outage.

[134]

Reference Point A reference point is the specification of a particular set of
conformance requirements. It comprises the set of
interfaces that describe the interactions that take place
between entities.

[126]

Referential Integrity Rule which describes the integrity of object or component
relations. In the context of an dynamic upgrade if one
component is upgraded, that is replaced with another one,
the relation realizations (e.g. references) that other
components use to access the component upgraded have
to be updated correspondingly.

[81]

Runtime Constraints
(of a dynamic
upgrade process)

Constraints on the quality of dynamic upgrades. They can
range from the basic need to have a quality upgrade to a
requirements for safe uninterrupted service of an online
system, even in the event of an error in the upgraded
software, hardware, or process.

[30]

Service Deployment
(process)

The process involving actions aimed at making a piece of
software representing the service functionality available
for using in a given target infrastructure Deployment
process involves requirements a number of activities
including: deployment requirement matching, code
distribution, installation, configuration and activation.

Service Release The process of making a service available to be deployed

 167

in a given physical infrastructure.
Service Withdrawal The process of making a service unavailable to be

deployed in a given physical infrastructure

Static upgrade
(process)

A upgrade process that performs changing a given target
system off-line. The system is not operational during the
upgrade time.

Upgrade Algorithm An algorithm describing the steps to upgrade a given
upgrade target.

Upgrade Process Upgrade process is a management process that deals with
exchanging programming artifacts comprising a target
system. In the context of this thesis, the target system is
component-based distributed system.

Upgrade Time One of the management dimensions of the upgrade
process. Planned Upgrade Time is a point in time, in
which the upgrade process for the given upgrade target
should start, whereas Real Upgrade Time is the point of
time when the upgrade process for the given target starts.

Upgrade Target The object of a upgrade process. In context of dynamic
upgrades of distributed system, it is defined as as set of
runtime artifacts (component instances), possibly
distributed on various nodes.

Upgrade
Transparency

A feature of a DUSS. It masks, from an object, an upgrade
being performed on other object(s) in the so called
upgrade zone. The upgrade transparency can be
considered as another ODP distribution transparency [46].

Upgrade zone A set of containers, which may be located on various
container servers, in which the deployed components are
to be upgraded.

 169

Bibliography
[1] Arnold K., Gossling J.: The JavaTM Programming Language, Third Edition, Addison-

Wesley Pub Co; ISBN: 0201704331, June 2000.
[2] Bank, D. Shub Ch., Sebesta R.: A unified Model of Pointwise Equivalence of

Procedural Computations, ACM Transactions on Programming Languages and Systems,
Vol. 16, No. 6, November 1994, pp. 1842-1874.

[3] Bäumer, C. ; Breugst, M. ; Choy, S. ; Magedanz, T.: Grasshopper - A Universal Agent
Platform based on OMG MASIF and FIPA Standards, MATA ´99 First International
Workshop on Mobile Agents for Telecommunication Applications, Karmouch,
A.[Hrsg.]), 1999

[4] BCEL, Byte Code Engineering Library, http://jakarta.apache.org/bcel/
[5] Bernstein, P.: Middleware: A Model for Distributed Systems Services, Communications

of ACM, Vol. 39, No. 2, 1996, pp. 86 - 98.
[6] Birman K.: Building Secure and Reliable Network Applications, Manning Publications

Co., 1996.
[7] Bloom T.: Dynamic Module Replacement in a Distributed Programming System, Ph.D.

dissertation, MIT/LCS/TR-303, Laboratory for Computer Science, Massachusetts
Institute of Technology, March 1983.

[8] Bloomer J., Power Programming with RPC, O’Reilly & Associates Inc., February 1992.
[9] Bricker A., Litzkow M., Livny M.: Condor Technical Summary. Technical report,

Computer Sciences Department, University of Wisconsin-Madison, January 1992.
[10] Carnegie Mellon, Software Engineering Institute: Software Technology Review,

http://www.sei.cmu.edu/str
[11] Debian homepage, http://www.debian.org
[12] Dolev S., Self-Stabilization, The MIT Press, Cambridge, MA, 2000.
[13] Douglis F.: Transparent Process Migration: Design Alternatives and the Sprite

Implementation, Software Practice and Experience, 21 (8), 757-785, August 1991.
[14] Eclipse: http:http://www.eclipse.org
[15] Evans H., Dickman P.: DRASTIC: A Run-Time Architecture for Evolving, Distributed,

Persistent Systems. ECOOP’97.
[16] Evans H., Dickman P.: Supporting Software Evolution in a Distributed, Persistent

System, ERSADS’97, Switzerland, March 1997.
[17] Eurescom Project P910 “Technology Assessment of Middleware for

Telecommunications”, Deliverable 5: Report on Dependability and Scalability of
Middleware Platforms, March 2001, http://www.eurescom.de/public/projects/P900-
series/p910/P910.

[18] Eurescom Project P910 “Technology Assessment of Middleware for
Telecommunications”, Deliverable 7: Report on Telecommunication Application
Domains, March 2001, http://www.eurescom.de/public/projects/P900-series/p924/P924.

[19] Eurescom Project P924-PF “Distribution and Configuration Support for Distributed
PNO Applications”, Deliverable 1: Requirements, Terminology, and Concepts, June
2000, http://www.eurescom.de/public/projects/P900-series/p924/P924.

[20] Eurescom Project P924-PF “Distribution and Configuration Support for Distributed

 170

PNO Applications”, Deliverable 2: Notation and semantics for deployment and
configuration, July 2001, http://www.eurescom.de/public/projects/P900-series/p924/P924 .

[21] Fabry R.S.: How to design a system in which modules can be changes on the fly?, Proc.
Int’l Conf. Software Eng., IEEE-CS Press, Los Alamitos, Calif., 1976, pp. 470-476.

[22] FAIN Consortium: Deliverable D4, Revised Active Node Architecture and Design, May
2002, http://www.ist-fain.org.

[23] FAIN Consortium: Deliverable D8, Final Specification of Case Study Systems, May
2003, http://www.ist-fain.org.

[24] Fatoohi R., McNab D., and Tweten D.: Middleware for Building Distributed Applications
Infrastructure: A State-of-the-art Report on Middleware, Nasa Ames Research Center,
Technical Report NAS-97-026, December 1997.
http://www.nas.nasa.gov/Research/Reports/Techreports/1997/nas-97-026-abstract.html

[25] Finin T., Labrou Y., Mayfield J.: KQML as an agent communication language, invited
chapter in Jeff Bradshaw (Ed.), ``Software Agents'', MIT Press, Cambridge, 1995.

[26] FIPA, The Foundation for Intelligent Physical Agents, http://www.fipa.org
[27] Galis A., Plattner B, Smith J., Denazis S., Moeller E., Guo H., Klein C., Serrat J.,

Laarhuis J, Karetsos G. and Todd Ch.: A Flexible IP Active Networks Architecture,
IWAN’2000, Tokyo, Proceedings in Lecture Notes in Computer Science 1942 Springer
2000, ISBN 3-540-41179-8, October 2000.

[28] Gamma E., Helm R., Johnson R., Vlissides J.: Design Patterns: Elements of Reuseable
Object-Oriented Softawre, Addison Wesley, Reading, 1995.

[29] General Magic's Odyssey, http://www.genmagic.com/technology/odyssey.html.
[30] Gluch D., Weinstock Ch. (ed.): Workshop on the State Of the Practice in Dependably

Upgrading Critical Systems, Special Report CMU/SEI-97-SR-014, April 1997.
[31] Goullon H., Isle R., Löhr K.: Dynamic Restructuring in an Experimental Operating

System, IEEE Trans. Software Eng., July 1978, pp. 298-307.
[32] Gray J., Siewiorek D.P.: High-Availability Computer Systems, IEEE Computer,

September 1991, pp. 39-48.
[33] Grisby D.: ORB Support for the CORBA LifeCycle Service, March 1998.
[34] Gupta D.: On-line Software Version Change, PhD Thesis, Department of Computer

Science and Engineering, Indian Institute of Technology, Kanpur, November 1994.
[35] Gupta D., Jalote P., Barua G.: A Formal Framework for On-line Software Version

Change, IEEE Transactions on Software Engineering, Vol. 22, No. 2, February 1996,
pp.120-131

[36] Gupta D., Jalote P.: A Formal Framework for On-line Software Version Change, IEEE
Transactions on Software Engineering, Vol. 22, No. 2, February 1996, pp.120-131.

[37] Hauptmann S., Wasel J.: On-line Maintenance with On-the-fly Software Replacement,
Proc. Of the 3rd Intern’l. Conf. On configurable distributed systems, ICCDS, May 1996.

[38] Haas R., Droz P., Stiller B.: Distributed Service Deployment over Programmable
Networks, DSOM01, Nancy, France, 2001.

[39] Heiks M.: Dynamic Software Updating, Dissertation in Computer and Information
Science, University of Pennsylvania, 2001.

[40] Hoff, van A., Partovi H., Thai T.: W3C Document: The Open Software Description
Format (OSD), http://www.w3.org/TR/NOTE-OSD.html, August 1997.

[41] Hofmeister Ch.R., Dynamic Reconfiguration of Distributed Applications, Ph.D.
dissertation, UMIACS-TR-94-8, Department of Computer Science, University of

 171

Maryland. 1994.
[42] Hofmeister Ch.R., Purtilo J.M.: A Framework for Dynamic Reconfiguration of

Distributed Systems, UMIACS-TR-93-78, Department of Computer Science University
of Maryland, 1993.

[43] IBM Corp.: IBM San Francisco Business Process Components for Java, 1998.
[44] Institute of Electrical and Electronics Engineers: IEEE Standard Computer Dictionary:

A Compilation of IEEE Standard Computer Glossaries. New York, NY, 1990.
[45] ITU-T Recommendation X.902 | ISO/IEC 10746-2: “Open Distributed Processing –

Reference Model Part 2“, ITU-T/ISO, 1995.
[46] ITU-T Recommendation X.903 | ISO/IEC 10746-3: “Open Distributed Processing –

Reference Model Part 3“, ITU-T/ISO, 1995.
[47] Junit: http://www.junit.org
[48] Kath O.: CORE - Komponentenorientierte Entwicklung offener verteilter

Softwaresysteme im Telekommunikationskontext, Band III – Platformunterstützung und
Abteilungsregeln für Softwarekomponenten, Humboldt Universität zu Berlin, Institut
für Informatik, July 2001.

[49] Kramer J., Magee J.: The Evolving Philosophers Problem: Dynamic Change
Management, IEEE Transactions on Software Engineering, vol. 16, no. 11, pp. 1293-
1306, 1990.

[50] Lange D.: Mobile Objects and Mobile Agents: The Future of Distributed Computing?,
In Proceedings of The European Conference on Object-Oriented Programming '98, June
1998.

[51] Lange D., Oshima M.: Programming and Deploying Java™ Mobile Agents with
Aglets™, Addison-Wesley, 1998.

[52] Larman C.: Applying UML and Patterns, 2nd Ed., Prentice Hall, ISBN 0-13-092569-1,
2002.

[53] Liang S., Bracha G.: Dynamic Class Loading in the Java Virtual Machine, ACM
SIGPLAN Conference on Object-Oriented Programming Systems, Languages and
Applications, OOPSLA’98, Vancouver, Canada, October 1998.

[54] Linux kernel homepage, http://www.kernel.org
[55] Liskov B., Wing J.: A Behavioral Notion of Subtyping, ACM Transactions on

Programming Languages and Systems, Vol. 16, No. 6, pp. 1811-1841, November 1994.
[56] Luckham D., Vera J.: An event-based architectural definition language, IEEE

Transactions on Software Engineering, pp. 717-734, September 1995.
[57] Magee J., Kramer J.: Dynamic structure in software architectures, Fourth SIGSOFT

Symposium on the Foundations of Software Engineering, San Francisco, October 1996.
[58] Mattieu B., Carlet Y., Solarski M. et.: Deployment of active services, World

Telecommunications Congress 2002, Paris, France, September 2002.
[59] Meling H. and Helvik B.E.: ARM: Autonomous Replication Management in Jgroup, In

Proc. of the 4th European Research Seminar on Advances in Distributed Systems,
Bertinoro, Italy, May 2001.

[60] Mishra S., Schlichting R.: Abstractions for Constructing Dependable Distributed
Systems, Dept. of Computer Science, Univ. of Arizona, TR-92-19, 1992.

[61] Moeller E., Solarski M.: “Challenges in Active Service Deployment”, ANTA’2002 (The
First International Workshop on Active Network Technologies and Applications),
Tokyo, Japan, March 2002.

 172

[62] Morgan G., Shrivastava S.K., Ezhilchelvan P. D., Little M. C.: Design and
Implementation of a CORBA Fault-Tolerant Object Group Service, Proceedings of the
Second IFIP WG 6.1 International Working Conference on Distributed Applications and
Interoperable Systems, DAIS'99, Helsinki, June 1999.

[63] Montresor A.: System Support for Programming Object-Oriented Dependable
Applications in Partitionable Systems, PhD thesis, Dept. of Computer Science,
University of Bologna, Feb. 2000.

[64] Moore B., Ellesson E., Strassner J., Westerinen A.: Policy Core Information Model --
Version 1 Specification, Request for Comments: 3060, IETF, Network Working Group,
February 2001.

[65] Mortazavi M., Lange U.: Design and Implementation of Mobile Communications
Services as Applications for the J2EE platform, Java One, Sun’s 2001 WorldWide Java
Developers Conference, Session 1020.

[66] Moser L.E, Melliar-Smith P.M., Narasimhan P., Tewksbury L. and Kalogeraki V.:
Eternal: Fault Tolerance and Live Upgrades for Distributed Object Systems,
Proceedings of the IEEE Information Survivability Conference, Hilton Head, SC,
January 2000.

[67] Mullender S (ed.).: Distributed Systems, Frontier Series. Addison-Wesley, first edition,
ACM Press, 1989.

[68] Narasimhanm P., Moser L. E. and Melliar-Smith P. M.: Exploiting the Internet
Inter-ORB protocol interface to provide CORBA with fault tolerance, Proceedings of the
Third USENIX Conference on Object-Oriented Technologies and Systems, Portland,
OR, June 1997, pp. 81-90.

[69] Narasimhan P., Moser L. E. and Melliar-Smith P. M.: Replica consistency of CORBA
objects in partitionable distributed systems, Distributed Systems Engineering, vol. 4, no.
3 September 1997, pp. 139-150.

[70] No Magic: Magic Draw, http://www.magicdraw.com
[71] Object Space: Voyager, http://www.objectspace.com/products/voyager/
[72] Object Management Group: CORBA Basics,

http://www.omg.org/gettingstarted/corbafaq.htm
[73] OMG Document. formal/02-06-01: The Common Object Request Broker: Architecture

and Specification, Revision 3.0, July 2002.
[74] OMG TC Document: ORB Interface Type Versioning Management, Request for

Proposal, 1996.
[75] OMG TC Document: orbos/99-10-05: Fault Tolerant CORBA, Joint Revised

Submission, 1999.
[76] OMG TC Document: orbos/01-08-08: Online Upgrades, Request for Proposal, Version

1.0, August 2001.
[77] OMG TC Document: orbos/00-09-15: Online Upgrades, Request for Information, Sept.

2000.
[78] OMG TC Document: ptc/00-04-0: Fault Tolerant CORBA, April 2000.
[79] OMG TC Document: orbos/02-01-01: Online Upgrades, Initial Submission, January

2002.
[80] OMG TC Document: mars/02-05-01: Online Upgrades, Revised Joint Proposed

Specification, May 2002.
[81] Oestereich B.: Developing Software with UML, Object-Oriented Analysis and Design in

 173

Practice, Addison Wesley, Addison Wesley Professional, ISBN: 020175603X; 2nd
edition July 2002.

[82] OpenORB, http://www.openorb.org.
[83] Oreizy P., Medvidovic N., Taylor R.: Architecture-Based Runtime Software Evolution,

Intl. Conf. On Software Engineering 1998 (ICSE’98), Kyoto, Japan, April 1998.
[84] Orfali R., Harkey D., Edwards J., Harkey D.: The Essential Distributed Objects Survival

Guide, John Wiley & Sons; ISBN: 0471129933, Sept. 1996.
[85] Orfali R., Harkey D., Edwards J., Harkey D.: Instant CORBA, John Wiley & Sons;

ISBN: 0471183334, March 1997.
[86] Palsber J., Schwartzbach M.: Three Discussions on Object-Oriented Typing, Report on

ECOOP’91 Workshop W5 on “Types, Inheritance, and Assignments”, Geneva,
Switzerland, July 1991.

[87] Peterson J., Hudak P., Ling G.: Principled Dynamic Code Improvement, Yale
University, Research Report YALEU/DCS/RR-1135, July 15, 1997.

[88] Plasil F., Balek D., Janecek R.: Dynamic Component Upgrading in Java/CORBA
Environment, Tech. Report No. 97/10, Dep. of SW Engineering, Charles University,
Prague.

[89] Plasil F., Balek D., Janecek R.: SOFA/DCUP: An Architecture for Component Trading
and Dynamic Upgrading. ICCDS'98, May 4-6, 1998, Annapolis, Maryland, USA.

[90] Powell D. (ed.).: Delta-4: A Generic Architecture for Dependable Distributed
Computing, Vol. 1, Springer-Verlag, Berlin, 1991

[91] Pyarali I., Schmidt D.: An Overview of the CORBA Portable Object Adaptor, ACM
StandardView, 1998.

[92] Rational Rose: Rational Unified Process, http://www.rational.com
[93] Reilly D.: Mobile Agents –Process Migration and its Implications, November 1998,

http://www.davidreilly.com/topics/software_agents/mobile_agents/
[94] Riggs R.: Java Product Versioning Specification, part of the Sun’s JDK 1.2

specification, Sun, Dec. 1997.
[95] Rosenberry, W., Kenney, D., and Fisher, G.: Understanding DCE, O'Reilly & Associates,

Inc., 1992.
[96] Rumbaugh J., Jacobson I., Booch G.: The Unified Modeling Language, Reference

Manual, Addison Wesley, ISBN: 0201571684; 1st edition, October 1998.
[97] Sayegh A.: CORBA: Standard, Spezifikation, Entwicklung, 2nd Ed., O’Reilly, Köln,

ISBN: 3-89721-156-4, 1999.
[98] Schmidt D., Vinoski S.: Object Adaptors: Concepts and Terminology, SIGS C++

Report, October 1997.
[99] Schneider F.B.: Implementing Fault-tolerant Services using the State Machine

Approach: A Tutorial, ACM Computing Surveys, Vol. 22, No 4, Dec 1999, pp. 299-
319.

[100] Schulzrinne H.: Internet Telephony: A Second Chance, in Butscher B., Carle G., Kuthan
J., Smirnov M., Stüttgen H., Wolf L. (Eds): Proceedings of the 1st IP-Telephony
Workshop (IPTel 2000), Berlin, April 2000, pp. 9-12.

[101] Segal M., Frieder O.: Dynamically Upgrading Distributed Software: Supporting Change
in Uncertain and Mistrustful Environments, IEEE Conference on Software Maintenance,
Miami, Florida, October 1998.

[102] Segal M., Frieder O.: On Dynamically Upgrading a Computer Program From Concept to

 174

Prototype, Journal of Systems Software, 1991, 14, pp.111-128.
[103] Segal M., Frieder O.: On-the-fly Program Modification: Systems for Dynamic

Upgrading, IEEE Software, March 1993, pp. 53-65.
[104] Sethi R., Programming Languages – Concepts and Constructs, Addison Wesley, 1989.
[105] Sinnott R.: An Architecture Based Approach to Specifying Distributed Systems in

LOTOS and Z, University of Stirling, Department of Computer Science and
Mathematics, April, 1997.

[106] Smith P.: The possibilities and Limitations of Heterogeneous Process Migration, Ph.D.,
The Faculty of Graduate Studies, University of British Columbia, October 1997.

[107] Solaris man pages, Sun Microsystems.
[108] Solarski M.: Dynamic Upgrading of Software Components in TINA-based Systems,

ERCIM News No.35, October 1998.
[109] Solarski M.: „Dynamic Upgrade: a method to increase system availability “, Eurescom

WS: „Middleware in Telecommunication: Facilitating the Open Services Marketplace“,
Kjeller, Norway, March 2001.

[110] Solarski M.: “Upgrading actively replicated objects on the fly”, IEEE CQR’2001
(Workshop of Technical Committee on Communications Quality & Reliability),
Tucson, AZ, April 2001.

[111] Solarski M.: “Updating Distributed Components on the fly”, Eurescom P924 WS,
Berlin, Nov. 2000.

[112] Solarski M., Bossardt M., Becker T.: Component-based Deployment and Management
of Services in Active Networks, IWAN 2002, Zürich, CH, Dec. 2002.

[113] Solarski M., Meling H.: Towards Upgrading Actively Replicated Servers on-the-fly,
COMPSAC’02, Workshop on Dependable On-line Upgrading of Distributed Systems,
Oxford, UK, August, 2002.

[114] Solarski M., Sinnott R., Durmosch K. and Hafezi A.: Reference Integrity in Dynamic
CORBA Components, SRDS’99: WREMI'99 Workshop on Reliable Middleware
Systems, October 1999.

[115] Somani A., Vaidya N.: Understanding Fault Tolerance and Reliability, Computer, April
1997, pp. 45-50.

[116] Steensgaard B., Jul E.: Object and Native Code Thread Mobility Among Heterogeneous
Computers, In Symposium on Operating System Principles, 1995.

[117] Sun Microsystems, Inc.: Java Beans, Version 1.00, October 1996,
http://java.sun.com/products/beans

[118] Sun Microsystems, Inc.: Java Language Specification, Second Edition, April 2000.
[119] Sun Microsystems, Inc.: Java 2 Enterprise Edition: Enterprise Java Beans,

http://java.sun.com/products/ejb
[120] Sun Microsystems, Inc.: Java Community Process, http://jcp.org
[121] Sun Microsystems, Inc.: Java Specification Request, JSR 117, J2EE APIs for

Continuous Availability, April 2001, http://www.jcp.org/en/jsr/detail?id=117
[122] Sun Microsystems, Inc.: Java 2 Standard Edition: Remote Method Invocation,

http://java.sun.com/products/jdk/rmi/
[123] Szyperski C.: Component Software - Beyond Object-Oriented Programming, ACM

Press, New York, 1998.
[124] Tewksbury L. , Moser L., Melliar-Smith P.: Live Upgrade Techniques for CORBA

 175

Applications, DAIS’2001, Krakow, September, 2001.
[125] Tennenhouse D.L., Wetherall D.J.: Towards an Active Network Architecture,

Multimedia Computing and Networking, San Jose, CA, January 1996.
[126] TINA-C, Overall Concepts and Principles of TINA, February 1995.
[127] Tivoli Application Management Specification, 1998,

http://www.tivoli.com/o_partners/html/body_ams_spec.html
[128] Udell J.: ComponentWare, Byte Magazine, 19(5), 1994, pp. 45-56.
[129] Van Hoff A. et al, The Open Software Description Format (OSD),

http://www.w3c.org/TR?NOTE-OSD.html
[130] Visigenic Visibroker for Java, Programmer’s Guide, Version 3.0, September 1997.
[131] Wegner P.: Dimensions of object-oriented language design, Proceedings of

OOPSLA’87, ACM SIGPLAN Notices, 22(12), pp. 168-182, October 1987.
[132] Yajnik S., Huang Y.: STL: A toolkit for On-line software upgrade and Rejuvenation,''

presented at the Industrial Track session in International Symposium on Software
Reliability Engineering Nov 1997.

[133] Zeller A.: Versioning Software Systems through Concept Descriptions, Technical
Report 97-01, Universität Braunschweig, Jan 1997.

[134] Zhu J., Mauro J., Pramanick I.: R-Cubed R3: Rate, Robustness and Recovery – An
Availability Benchmark Framework, Sun Microssystems, Technical Report SMLI TR-
2002-109, July 2002.

 177

Index
A

Availability..10

C

Component
Unit of Dynamic Upgrade22

components
active ...31

Components...11
Composibility ..12
Container...17

D

Dynamic Upgrade Systems
C2 ..42
CHORUS...51
CONIC...43
DRASTIC..45
Eternal ...47
PODUS..47
POLYLITH..48
SOFA...50
STL..51

Dynamic Upgrade transparency32
Dynamic upgrades...................................21

L

life cycle ..24
logical structure23

M

middleware

CORBA... 38
Java ... 40
Jgroup ... 133

Middleware ... 13
Platform .. 16

mobile
agents .. 34
Code.. 34

P

Platform .. 32

R

Runtime change 23

S

Substitutability.. 20

U

upgrade
atomicity ... 101
planned upgrade time........................ 101
range.. 101
real upgrade time 101
validation .. 27

upgrade algorithm
actively replicated object 126
Non replicated component 123
passively replicated object 131

Upgrade Support Mechanisms
Reference management....................... 28
State transfer 27

