DIRK KLEEBLATT

On a Strongly Normalizing STG Machine
With an Application to Dependent Type Checking

DIRK KLEEBLATT

Von der Fakultét IV — Elektrotechnik und Informatik —
der Technischen Universitédt Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften — Dr.-Ing. —
genehmigte Dissertation

vorgelegt von
Diplom-Ingenieur Dirk Kleeblatt aus Berlin

Promotionsausschuss:

Prof. Dr. rer. nat. Sabine Glesner (Vorsitzende)

Prof. Dr. rer. nat. Peter Pepper (Erster Gutachter)
Prof. Dr. rer. nat. Petra Hofstedt (Zweite Gutachterin)

Tag der wissenschaftlichen Aussprache: 16. Mérz 2011
Berlin, 2011

D83

On a Strongly Normalizing STG Machine
With an Application to Dependent Type Checking

CONTENTS

I INTRODUCTION 9

1 MOTIVATION 11
1.1 Dependent Types 11
1.2 Normalization 13

1.3 Normalization for Dependent Type Checking

1.3.1 Dependently typed languages

1.4 Laziness 18
1.5 Goal of This Thesis 19
1.6 Outline 20
2 STATE OF THE ART 23
2.1 The Strongly Normalizing zam 23
2.2 The Strongly Normalizing Machine
2.3 The -Red System 24
2.4 Normalization by Evaluation 25

15
1.3.2 Proof Assistants Based on Dependent Types

23

2.4.1 Typed Normalization by Evaluation
2.4.2 Untyped Normalization by Evaluation

II NORMALIZATION USING COMPILED CODE
3 DEFINITION OF THE SEMANTICS: S4 31
3.1 Language Syntax 32
3.2 Normal Forms 33
3.3 Heaps and Accumulators 35
3.4 Normalizing FUN expressions 36
3.5 Evaluation to wHNF 37
3.6 Read Back 40
3.7 Example 41
3.8 Well-formedness 43
4 LINEARIZATION: SSTGI 45
4.1 Stacks and Heaps 45
4.2 Weak Evaluation 46
4.3 Normalization and Read Back 48
4.4 Heap Correspondence 50
4.5 Equivalence of s4 and sstG1 51
4.5.1 Completeness 51
4.5.2 Soundness 52
4.5.3 Correctness 53
5 INTRODUCTION OF CLOSURES: SSTG2 55
5.1 Modifications of the Syntax 55
5.2 Environments 57
5.3 Normalization 57
5.4 Equivalence of ssTG1 and ss1G2 59

29

16

Contents

6 COMPILING TO MACHINE CODE: ISSTG 63

6.1 An Execution Environment for 1ssTG 63

6.2 Compilation and Weak Evaluation 65
6.2.1 Compilation of Applications 67
6.2.2 Compilation of Local Bindings 67
6.2.3 Compilation of Case Discriminations 69
6.2.4 Preallocated Code Sequences 70

6.3 Strong Normalization and Read Back 71

6.4 Correspondence Between sstG2 and 1ssTG 71

6.5 Equivalence of sstG2 and 1SSTG 75

6.6 Correctness of Compiled Normalization 77

III DEPENDENT TYPE CHECKING 79
7 PURE TYPE SYSTEMS 81
7.1 Basic Typing Rules 81
7.1.1 Syntax 82
7.1.2 Typing 83
7.1.3 Example: The Calculus of Constructions 85
7.2 Inductive Data Types 86
7.2.1 Syntax 87
7.22 Typing 8y
7.2.3 Examples 88
7.3 Case Analyses 9o
7.3.1 Syntax 91
7.3.2 Typing 91
7.3.3 Examples 92
7.4 Definitions by Fixed Points 93
7.4.1 Syntax 93
742 Typing 93
7.4.3 Examples 94
8 NOTES ON THE IMPLEMENTATION 95
8.1 Features of our Implementation 95
8.2 Fixed Points 97
8.2.1 New Syntax for FUN 98
8.2.2 Compilation to 1SSTG 99
8.2.3 Read Back 100
8.3 Translation from pTs to FUN 101
8.3.1 Type Annotations 101
8.3.2 Constructor Saturation 102
8.4 Translation from 1ssTG to x86 Machine Code 103
8.4.1 Memory Model 103
8.4.2 Translation of Instructions 104
8.5 Design Alternatives 106
9 PERFORMANCE EVALUATION 109
9.1 Benchmark Setting 109
9.2 Peano Numbers 110
9.3 Church Numbers 111

Contents

9.4 Interpretation of the Results 112

10 CONCLUSION 115

v

10.1 Future Work 115

APPENDIX 117
EQUIVALENCE OF S4 AND SSTGI 119
A.1 Completeness of Weak Evaluation 119
A.2 Completeness of Read Back and Normalization = 121
A.3 Soundness of Weak Evaluation 123
A.4 Soundness of Read Back and Normalization 128
PARTITIONING OF SSTG2 AND ISSTG REDUCTIONS 131
B.1 List of Segments 131
SOURCE CODE OF BENCHMARKS 137
c.1 Peano Numbers 137

C.1.1 PTS 137

ci12 Coq 138

c.1.3 Haskell 139
c.2 Church Numbers 139

C.2.1 PTS 139

c22 Coq 140

c.2.3 Haskell 142

Part 1

INTRODUCTION

MOTIVATION

This thesis presents a new system for normalization of terms in
functional languages. While many systems for normalization
exist, our system, the strongly normalizing spineless tagless
graph machine, or ss1G for short, has been designed with an
emphasis on a special application area: checking of dependent
types.

While several dependently typed systems have been imple-
mented and published (see below for some references), one as-
pect of the type checking process has often been neglected: while
there is consensus that a normalization procedure is needed for
dependent type checking, in our opinion the implementation of
such a procedure has not yet attracted the attention it deserves.
As a consequence, most published dependent type checkers use
interpreters for the normalization of terms. On the one hand,
this is comprehensible, since the requirements posed by the type
checker are admittedly demanding, and more easily fulfilled
using an interpreted system. On the other hand, compiler con-
struction is an established branch of computer science for quite a
while now, and the widespread use of compiled languages shows
that there is a need for more efficient techniques than simple
interpretation of source terms.

This thesis wants to bring forward the connection between the
two fields of dependent type checking and compiler construction,
hopefully aiding further collaboration.

In this introductory chapter, we set the scene to motivate the
goal of this thesis, and to give an informal impression why the
application of compiled code is problematic during dependent
type checking. Later chapters will detail our approach to normal-
ization during dependent type checking, using a more formal
style than this introduction.

Parts of this thesis were previously published [18, 22, 23, 24].

1.1 DEPENDENT TYPES

There is a very active research community around the theory,
application and implementation of dependent types. To give an
intuitive feeling, definition 1.1 captures this notion informally
but sufficiently for the sake of this introduction.

DEFINITION 1.1 (Dependent Type) A dependent type is a type that
depends on a value.

11

© ® N e U A W N e

—
=)

© ® N o U A W N e

=
=)

-
-

MOTIVATION

program Arraysl;
var

i : Integer;

A, B : Array [1 .. 10] of Integer;
begin

for i := 1 to 10 do

Ali] := 1i;

B :=A;

writeln(B[4]);
end.

Listing 1.1: An Example for Arrays in Pascal

program Arrays2;

var
i : Integer;
A : Array [1 .. 10] of Integer;
B : Array [1 .. 20] of Integer;
begin
for i := 1 to 10 do
A[i] := 1i;
B := A;
writeln(B[4]);
end.

Listing 1.2: An Erroneous Example of Arrays in Pascal

As a simple case of dependent types consider the array types
of Pascal, introduced by Wirth in [34]. The example program in
listing 1.1 declares two arrays A and B (line 4). In the declaration,
not only the content type is defined, but also the array domain is
tixed as the interval from 1 to 10. The type of A depends on the
values 1 and 10.

The remainder of the program should be self explanatory, after
compilation this program outputs “4” as expected.

Listing 1.2 differs only in the declaration of the second array
B. This time, the array indices range from 1 to 20. As the array
domain is part of the type, the arrays A and B have different types
in this example. Thus, the assignment to B (line 9) is ill-typed
and a Pascal compiler rejects this program.

The Java standard, published by Gosling et al. in [17], takes
another approach. Listing 1.3 gives an equivalent Java program.
The types given for A and B (lines 3 and 4) are int[] in both
cases, even though they are initialized with arrays of different
lengths. The array length is not part of the type according to
the Java specification. Since A and B have the same type, the
assignment (line 8) is well-typed and the program outputs “4”
after compilation.

12

1.2 NORMALIZATION

class Arrays {
public static void main(String[] args) {
int[] A = new int[10];
int[] B = new int[20];

for (int i = 0; 1 < A.length; i++)
A[i] = i;

B =A;

System.out.println(B[4]);

Listing 1.3: An Example for Arrays in Java

This shows an important property of dependent type systems:
typically, more programs are rejected than in languages without
dependent types. Another important consequence can be seen
when the output statements in listings 1.1 and 1.3 (line 9 in both
programs) are mistakenly changed to print B[40] instead of B[4].
A Pascal compiler rejects the changed program, since the array
boundaries are violated. A standard-conforming Java compiler
accepts the changed program, which results in a run-time error
after compilation. In general, dependent type systems can ensure
invariants at compile-time that can only be tested at run-time in
languages without dependent types.

Dependent types are not only found in programming lan-
guages, but also play an important role in proof theory via the
Curry-Howard-correspondence that relates types and proposi-
tions as well as terms and proofs. Thus, dependent type checkers
can be found in proof assistants, too. We show an example in
section 1.3.

1.2 NORMALIZATION

Again, we introduce the notion of normalization informally, post-
poning a formal treatment to later chapters.

DEFINITION 1.2 (reduction system, normal form, normalization)
A reduction system is defined as a set of states and a relation describing
state transitions. A normal form is a state that cannot do a transition
to a next state. The process of finding such a normal form is called
normalization.

The semantics of functional programming languages is often
given as a variant of the A-calculus extended with more advanced
language constructs as e.g. pattern matching and local bind-
ings. Running a functional program, i. e. evaluating a functional
expression, then means to normalize an expression.

13

MOTIVATION

There are two different approaches to this normalization pro-
cess.

INTERPRETERS analyze the expression and recognize patterns
that allow a state transition. If a pattern is recognized and
matches some subexpression in the state, this subexpression
is often called redex, short for reducible expression. Then,
this transition is performed, and the analysis is repeated
until no transitions are possible anymore.

COMPILERS translate the expression to code that can be executed
by some machine, either a physical processor or a virtual
machine. Executing this generated code gives the normal
form of the translated expression.

On the one hand, the execution of the code created by a compiler
is typically way more efficient than the interpretation of the
source program, especially when code for physical processors is
generated. On the other hand, interpreters allow quite flexible
language designs that cannot easily be dealt with in compiler
systems.

Reduction systems can be divided into two classes.

STRONG REDUCTION allows state transitions regardless of the
context of a redex.

WEAK REDUCTION performs state transitions only in restricted
contexts.

A typical example to clarify the difference is the handling of
unsaturated functions, i.e. functions not applied to all expected
arguments. Consider the following A-expression e.

e:=(Af.Ax.fx)(Ay.y)
This expression can do a 3-reduction to expression e’.
e/ :==Ax.Ay.y) x

A typical weak reduction system would stop with this expres-
sion and would not perform any further state transitions. The
syntactical criterion for stopping the evaluation at this stage is
the presence of an unsaturated function: no value for the formal
parameter x is given. Put in other words, weak reduction does
not perform B-reduction under A-abstractions. A normal form in
a weak reduction system is often called weak head normal form or
WHNF for short.

With a strong reduction system, e’ can do a second transition
toe”.

e =Ax.x

14

1

1.3 NORMALIZATION FOR DEPENDENT TYPE CHECKING

append :: (a :: #) -> (n :: Nat) -> Vector a n
-> (m :: Nat) -> Vector a m
-> Vector a (n + m)

Listing 1.4: Appending Lists With Fixed Length in Cayenne

Regardless of evaluation contexts, e’ does not give any opportu-
nities for further state transitions, so e’ is a normal form, some-
times also called strong normal form to emphasize the difference
to WHNFS.

Typically, compiled systems only perform reduction to WHNFs,
which is appropriate in the most common case where normal-
ization is needed: running functional programs. Dealing with
e.g. reduction under A-abstractions is one of the features more
easily implemented in interpreters. The reason is that in the last
transition, x has to be substituted for y, while x is not a value,
but a free variable in the reduced subexpression, and therefore is
not bound to a concrete value at run time.

1.3 NORMALIZATION FOR DEPENDENT TYPE CHECKING

At first sight, the problems of dependent type checking and
normalization are not related. However, the following examples
show that a normalization procedure is a required ingredient of
most type checkers for dependently typed languages.

1.3.1 Dependently typed languages

Many languages with dependent type systems allow user-defined
functions from values to types that capture the dependencies. The
values a type depends on may be given using arbitrary functions,
even user defined ones. For example, in Cayenne, introduced by
Augustsson in [4], it is possible to define a function Vector with
type # -> Nat -> #, where # denotes the type of all types. Thus,
Vector takes a type and a number as parameters and returns a
new type, which represents lists of fixed length with a given
content type. Thus, Vector defines a new dependent type that
depends on a natural number interpreted as the length of a list.
Using this definition, a function append to concatenate two vectors
can be declared as in listing 1.4.

The type of append can be read as follows: for any type a, given
a natural number n, and a vector containing n elements of type
a, and furthermore a second natural number m together with a
vector of size m, return a vector containing n plus m elements. This
type gives quite a good specification of the append function. In
the function definition (not shown here), we have to deal with

15

MOTIVATION

arbitrary vectors of arbitrary lengths. That means n and m occur
as free variables in the types of the body. Moreover, the definition
of the addition operator has to be applied to check the body, i. e.
a normalization procedure is needed. And since this operator
is applied to free variables here, this procedure has to be able
to deal with free variables for the type checker of Cayenne. For
other reasons that will be made explicit in later chapters this
normalization procedure has to be strong and must not stop at
WHNFS.

Thus, in a dependently typed language, expressions may be
evaluated at two separate stages: during type checking, and
when running the user’s program proper. Care has to be taken
to ensure that the same semantics is applied in both stages,
otherwise type safety might be violated. On the one hand, from
a software engineering standpoint it is best to use the same
normalization mechanism in both stages, i. e. the same compiler
or interpreter, since in this case there cannot be two deviating
implementations. But on the other hand, the most widespread
and efficient compilation techniques lead to weak normalization
only and are thus not adequate for the type checking stage. This
severely limits the number of candidates for possible evaluation
implementations for dependently typed languages.

1.3.2 Proof Assistants Based on Dependent Types

An example of a proof assistant making use of dependent types
is Coq [28]. It is based on Coquand’s and Huet’s calculus of
constructions [10], the most complete system of Barendregt’s
A-cube [6]. In Coq the Curry-Howard-correspondence is fully
exploited: to define a proposition, one has to write down a
type, and to prove a proposition, a term with this type has to
be constructed. This construction may be made explicitly by
giving a term of the correct type, or implicitly by constructing
the term using so-called tactics. In the latter case, the term may
be retrieved from the sequence of tactics after the construction is
complete.

Figure 1.5 shows a session with the interactive interface of Coq.
In line 1 we state (after Coq’s prompt “Coq <”) that we want to
prove a lemma that we call add_zero, stating that x + 0 = x for all
natural numbers x. Coq responds with repeating the goal of our
proof, giving all hypotheses and assumptions we may use above
a vertical line. Since we do not have any hypotheses yet, there is
nothing to see.

In line 6 (the prompt having changed to “add_zero <” to make
clear which lemma we are about to prove), we make use of
the tactic intro x, corresponding to the natural language proof
phrase “Assume x is a natural number”. This results in x : nat

16

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

1.3 NORMALIZATION FOR DEPENDENT TYPE CHECKING

Coq < Lemma add_zero : forall (x : nat), x + 0

forall x : nat, x + 0 = x

add_zero < intro x.

add_zero < induction x.

0+0=20

subgoal 2 is:
SXx+0=5S5x

add_zero < simpl.

subgoal 2 is:
SXx+0=5SX

add_zero < apply refl_equal.

X : nat
IHx : x + 0 = x

SX+0=S5Xx
add_zero < simpl.

X : nat
IHx : x + 0 = x

S (x+0)=Sx

add_zero < rewrite IHx.

X : nat
IHXx : x + 0 = X

add_zero < apply refl_equal.
Proof completed.

X.

Listing 1.5: A proof of x +0 =x

17

MOTIVATION

being added to our list of assumptions. Next we perform an
induction on x in line 12. The base case now is our main goal, we
have to show that 0 + 0 = 0. Before returning to the prompt, Coq
informs us in Line 18, that there is a second subgoal waiting for
us, namely the inductive step, that we will prove after the base
case.

In line 20 we advise Coq to simplify the goal. The natural
numbers are no built-in structure in the implementation of Coq,
but defined in a library as a data structure with constructors
for zero and successor. Consequently, the addition operation
has the expected definition in the library as a recursive function,
performing case analysis on the first argument. This definition
is used, normalizing 0 4 0 to 0. While this is a first example of
the evaluation of a user defined function, it is quite uninteresting,
since there are no free variables in the goal, and computing 0+ 0
poses no special problems for existing compilers. Nevertheless,
the simplification allows us to apply the reflexivity of equality in
line 28, leaving us with the second subgoal, our inductive step,
to be proved.

In the inductive step, we find the induction hypothesis IHx
among our assumptions that we may use in our proof. However,
the goal has not yet the right shape to apply the hypothesis, so
we perform a second simplification in line 35. Again, Coq uses
the definition of the addition function to perform a normalization.
But observe that this time the arguments are S x and 0, so now
a computation containing a free variable has to be performed.
While for this particular computation the complexity is extraordi-
narily low, such that using an interpreter does not lead to severe
performance problems, it is easy to imagine that we might find
very complicated functions in a similar situation in other proofs.
It is this constellation that is the target of our compilation system
introduced in the main part of this thesis.

Using the equality IHx to rewrite the goal in line 42, we can
finish the proof using reflexivity of equality a second time in line

49.
1.4 LAZINESS

From the A-calculus, different evaluation strategies are known.
A collection of a number of strategies has been assembled by
Barendregt in [5]. They vary in the order in which function
applications are reduced, and these variations are reflected in
implementations of different functional programming languages.

Probably the most widespread evaluation strategy in program-
ming languages is related to the applicative order reduction. Here,
all function arguments are normalized before the function appli-

18

1.5 GOAL OF THIS THESIS

cation is evaluated. This is also called eager evaluation and usually
permits the most efficient implementations.

Nevertheless, another evaluation strategy from A-calculus can
be found in some language implementations, namely normal order
reduction. In this strategy, function applications are considered
before normalizing the arguments, thus the function bodies work
with unevaluated arguments. These unevaluated subexpressions
get only evaluated when actually needed. A variant of this strat-
egy avoids duplicated evaluations when arguments are used
more than once by building indirections via pointers and over-
writing subexpressions with their normal form. The details of
this strategy called lazy evaluation are shown in later chapters.

While eager evaluation is more efficient in many cases, lazy
evaluation has its advantages.

* Lazy evaluation allows certain programming styles that
can ease the implementation of some algorithms, most
prominently by infinite data structures, e. g. infinite lists. In
proof assistants, this corresponds to coinductive definitions.

* Whenever a normal form exists, it can be found by lazy
evaluation. This is not the case for eager evaluation, so
when we are working e. g. with pure type systems, as de-
scribed by Barendregt in [6], where not necessarily all terms
are normalizing, we might face typings that can be checked
using lazy evaluation but not using eager evaluation.

These advantages make lazy evaluation the standard evaluation
strategy for some languages, as for example Haskell.

1.5 GOAL OF THIS THESIS

The exposition above makes it possible to state the goal of this
thesis as follows.

GOAL OF THIS THESIS is to present a normalization system
that is suitable for dependent type checking and employs com-
piled code using lazy evaluation.

THIS GOAL IS WORTHWHILE because dependently typed sys-
tems find useful applications in programming languages and
proof assistants, checking dependent types needs normalization
systems, compiled code is much faster than interpreted code, and
the advantages of lazy evaluation are relevant to programming
languages as well as proof assistants. To the best of our knowl-
edge, this goal has not yet been reached by existing systems.

19

MOTIVATION
1.6 OUTLINE

In the following chapters, we will show how this goal can be
reached. We start with an overview of former work on strongly
normalizing systems (chapter 2). These systems are very well
suited for their intended use cases, but do not fulfill our goal,
e.g. because they employ eager evaluation instead of laziness, or
their results have n-long normal forms, sometimes unsuitable for
proof assistants, or they have a broader scope of application, thus
introducing unnecessary administrative structures at run time,
leading to systems more complex than required for dependent
type checking.

We continue with a presentation of our new normalization
system. We give a definition of a simple functional language
called FuN (chapter 3), that can be thought of as an intermediate
language between a full-fledged language intended for the pro-
grammer of a dependently typed language or the user of a proof
assistant on the one hand, and on the other hand the machine
instructions of the processor architecture that are executed after
compilation. However, FUN is fairly close to the programmer’s
point of view, abstracting away the intricacies of individual in-
structions at the machine level. We give a weakly normalizing
big-step semantics for FUN, building on the work of Encina and
Pefia [15], and an extension to strong normalization taking some
ideas from Leroy and Grégoire [19, 20].

While a checker for dependent types can be implemented
directly using these definitions, such an implementation would
lead to an interpreter, not providing the efficiency we aim for.
Thus we give stepwise refinements to small-step operational
semantics (chapters 4 and 5), that cover more and more aspects
of compiled languages. We show how these modified systems
preserve normal forms.

A further step takes us to a compilation system, generating
pseudo machine instructions from FUN expressions, and still
allowing the reduction to strong normal forms (chapter 6). While
we still abstract from hardware-dependent details as e. g. register
allocation and some aspects of the memory model, generating
machine code for physical processors out of these instructions is
simple. This system still captures the normalization semantics
defined in chapter 3.

We close this thesis with a case study, giving evidence that our
goal of an efficient strongly normalizing system has been reached,
and that it is indeed suitable for dependent type checking. We
present a definition of syntax and typing rules of a prototype im-
plementation of pure type systems, enriched with data types, case
expressions and fixed points (chapter 7). The implementation is
powerful enough to be used for theorem proving, but lacks the

20

1.6 OUTLINE

bells and whistles that are essential for a proof assistant proper,
as e.g. support for proof libraries, support for automatically
searching for proofs, and an extensible tactic language. Our type
checker is able to interpret the pseudo machine instructions from
chapter 6, but can also translate them to machine code for x86
processors before execution. We give an overview over our imple-
mentation (chapter 8), before we finally show some performance
numbers that support our claim of an efficient implementation
(chapter 9).

21

STATE OF THE ART

This chapter presents former approaches of strongly normalizing
systems that either have been used for dependent type checking
or at least appear to be suitable for such usage. We show, why
these approaches do not fulfill the goals of this thesis.

2.1 THE STRONGLY NORMALIZING ZAM

Grégoire and Leroy [19, 20] describe an implementation of strong
normalization using compiled code. Their system was integrated
into the proof assistant Coq that is based on a dependent type
theory. This integration significantly increased the efficiency of
the type checker.

This normalization system is based on the Zinc abstract ma-
chine (zaM, proposed by Leroy in [27]), an abstract machine
originally used to implement weak reduction for ML compilers.
With a few modifications, this machine was extended with a
so-called read back phase. Strong normalization then starts with
a weak normalization, followed by read back that detects further
redices and restarts their weak normalization, until no redices
remain.

This system performs eager evaluation, since it is based on the
zaM that was intended for the strict language Mr. For an integra-
tion into Cogq, this is an appropriate choice, since strict evaluation
is fairly efficient in most cases, and all reduction sequences of
well typed Coq terms are finite, avoiding any problems with
non-termination.

However, as explained in the introduction, lazy languages have
their applications, therefore we present in this thesis a similar
though lazy system.

2.2 THE STRONGLY NORMALIZING MACHINE K

In [11], Crégut presents two extensions of Krivine’s machine
[26], called kN and kNP, that perform strong normalization.

The first variant KN uses a call-by-name semantics, thus no
sharing of reductions for duplicated arguments is implemented.
The machine definition is given in a style that combines small
step reduction rules with big step semantical rules. To be able to
implement such a heterogeneous semantics, a collection of stack
marks is invented, that together with output produced as side
effect of reduction allows to construct strong normal forms. An

23

STATE OF THE ART

alternative formulation uses a meta-level controller that is close
to Grégoir’s and Leroy’s read back phase.

The second machine kNP does share reduction sequences, but
requires run-time code generation to do so. This makes the
amount of code produced for strong normalization unbounded.

Since an efficient implementation of sharing is crucial for a
nonstrict language, XN and knr do not fulfill our needs. The code
management problems with KNP complicate matters to an extent
that Crégut in [11] comes to the conclusion that compiled code
for kNP is probably not the right solution.

In a more recent publication [12], Crégut defines further vari-
ants of KN and kNP with very similar properties.

None of these abstract machines supports algebraic data types
with constructors and case discrimination, important features for
functional languages and supported by our machines.

2.3 THE TtI-RED SYSTEM

The m-Red system of Gartner and Kluge [21] was developed as an
aid for teaching functional languages as well as a tool for program
development and debugging. It allows to reduce functional
expressions stepwise, and prints the resulting expression after a
user defined number of steps. The reductions are carried out even
under A-abstractions, so a strong normalization can be obtained
by providing a sufficiently large number of reductions. When no
normal form is reached in the specified number of steps, m-Red
computes a term containing residual redices.

All reductions are performed using compiled code. Since
the compiled code cannot execute the bodies of A-abstractions
when their arguments are not present, 7-Red contains a so-called
n-extension unit that generates pseudo arguments and is inter-
leaved with code execution the same way as weak evaluation and
read back of the zaM normalizer.

While the original presentation of 7-Red deals only with strict
evaluation, Kluge presents in [25, chapter 10] a lazy variant of
the 7-Red system.

The broad focus of m-Red comes at a cost. To be able to
stop computations after arbitrary numbers of reductions, and to
reconstruct source code for unevaluated closures, instructions
of the m-Red abstract machine operate in one of two possible
modes. Before the number of reductions is exceeded, operation
is similar to other abstract machines for functional languages.
But thereafter, the machine switches to a second mode, where
some instructions behave differently. E.g. the instruction for
function application does not call the applied function anymore,
but merely collects arguments from a stack and saves them into a
graph structure. To reconstruct source code expressions from this

24

2.4 NORMALIZATION BY EVALUATION

graph structure, all function pointers are referenced indirectly
via descriptors during computations.

Since evaluation for dependent type checking has no need
to stop evaluation after arbitrary numbers of reductions, we
strive for a simpler approach without several operation modes
and without the overhead of additional indirections for function
pointers.

2.4 NORMALIZATION BY EVALUATION

The normalization by evaluation approach translates in a first step
a syntactical term into a semantical object. That is, for example,
a A-abstraction is translated into a mathematical function, and a
function application into the value of the (semantical meaning
of the) operator expression at the (semantical meaning of the)
operand expression.

In a second step, the semantical object is reified, i.e. a term
representation is obtained. The reification procedure ensures to
yield normal forms, and since this normal form has the same
semantical meaning as the original syntactical term, this method
is sound.

Normalization by evaluation can be applied in typed and in
untyped settings.

2.4.1 Typed Normalization by Evaluation

For the simply typed A-calculus, Berger and Schwichtenberg give
a definition of normalization by evaluation [7]. It was extended
to type-directed partial evaluation (TprEe) by Danvy in [14] for
richer functional languages that include for instance some base
types and conditionals. Later, an extension from simple types to
Martin-Lof type theory was found by Abel et al. [1].

In an implementation of normalization by evaluation, the trans-
lation into semantical objects maps e. g. a A-abstraction term into
an abstraction, i.e. function, of the implementation language.
When the original abstraction term has a simple type, it corre-
sponds to a polymorphic function. This function can now be
called with some textual representation of a free variable.

As an example, consider the A-term (Ax.x)(Ay.y) with the
simple type o — o. If we take Haskell as an implementation
language, we can translate this term into a Haskell function
defined as f = (\ x -> x)(\ y -> y) with f :: alpha -> alpha.
Suppose, we now want to obtain a normal form represented
with the type data NF = Var String | App NF NF | Lam String NF.
Then, we can evaluate Lam "z" (f (Var "z")) according to the
Haskell semantics and wusing an existing Haskell compiler to the
value Lam "z" (Var "z"). The decision, which Haskell term has

25

STATE OF THE ART

to be evaluated to obtain a normal form by reification is based
solely on the type of the expression to be normalized.

While relying on the type of an expression in this way allows a
quite efficient implementation, it has some drawbacks, too. First,
it can be shown that it produces n-long normal forms, which
may be not what is needed, as e. g. the calculus of constructions
underlying Coq does not allow n-expansions, i.e. there is no
proof of f =Ax.fx in Coq without additional axioms.

A second drawback gets obvious when we consider structured
base types, e. g. boolean truth values or natural numbers. If we
need a normal form of some function g :: Bool -> Nat, TDPE
suggests to take Ab.if b then g True else g False. The idea
is simple: we evaluate g at both elements of its domain, and
put both values into a conditional. While this looks good at
the first moment, a closer look reveals a problem. Consider
the constant Haskell function g = \ b -> 42, where TDPE gives
Ab.if b then 42 else 42. Here, TDPE assigns a strict normal
form to a non-strict function, which is quite unsatisfactory.

The situation gets even worse when we consider some function
h :: Nat -> Bool. In this case, TDPE cannot deliver a normal form,
since it is not possible to evaluate h on all elements of its infinite
domain.

The system presented in this thesis does not suffer from these
problems: it does not perform n-expansions, does not change the
strictness properties of normalized function terms, and allows to
deal with infinite function domains.

Another disadvantage of TDPE when used for dependent type
checking is the software engineering problem mentioned in sec-
tion 1.3. While it seems easy to use TDPE during the type checking
stage for normalization, it is an uncommon approach for the final
execution stage of programs. In fact, we are not aware of a pro-
gramming language implementation that uses TDPE for program
execution. To use TDPE at this stage, a great deal of compiler con-
struction knowledge has to be abandoned, and lots of techniques
have to be developed to reach the state of the art in areas of, for
example, separate compilation, modularization, optimization, or
generation of standalone executables.

2.4.2 Untyped Normalization by Evaluation

Normalization by evaluation can be applied even when no type
information is available. Implementations can be found by de-
notational approaches, as shown by Filinski and Rohde in [16],
and operational approaches, as demonstrated by Aehlig and
Joachimski in [2]. To improve efficiency, a compiled version was
published by Aehlig et al. in [3], translating source terms to ML
programs that compute normal forms upon execution.

26

2.4 NORMALIZATION BY EVALUATION

Again, terms are translated to semantical objects that get reified
in a second step. But since no type information can be consulted,
additional administrative layers are needed to implement closures
or to discriminate between functions and free variable. These
layers of the normalization by evaluation implementation add
to the administrative layers already inevitably introduced by the
implementation language. Such additional layers are avoided by
our approach.

27

Part II

NORMALIZATION USING COMPILED
CODE

DEFINITION OF THE SEMANTICS: S4

In this chapter, we present FUN, a simple lazy functional language,
and a strong normalization system for FUN. While FUN is an
extension of pure A-terms with local bindings, constructors and
pattern matching, it is intended as a intermediate language due
to its restrictions. Translation of functional programs to FUN is
straightforward.

The strong normalization of FUN expressions is defined via two
stages: weak evaluation and read back. Every strong normaliza-
tion starts with a weak evaluation, reaching a wHNF. This WHNF
is then read back, thereby extracting all redices still contained in
the wHNF and reducing them in a subsequent iteration.

The original definition of FUN and its evaluation to WHNF is due
to Encina and Pefa [15]. They give a big-step weak evaluation
semantics called s3. Reflecting the basement on their work, we
call our big-step semantics s4.

The extension of this semantics to strong normalization is new.
For this extension we make use of accumulators, a representation
of free variables and other stuck redices, originally introduced by
Grégoire and Leroy [19, 20] for their strict normalization system.
The division of strong reduction into weak evaluation and read
back is analogous to their work, too. We adopt their work to the
needs of lazy evaluation with a variant of the spineless tagless
graph machine, stG for short, originally introduced by Peyton
Jones and Salkid [31]. While the original accumulators were
merely data structures, scrutinized by the normalization routines,
our accumulators play a more active role.

In this presentation, we do not deal with two issues that have
to be addressed in product quality implementations. Both are
orthogonal to the problem of strong normalization and thus can
be easily added.

* We present an untyped system, but will ignore any run time
errors like case discrimination on A-expressions. In practice,
either a type checker has to be used that can statically
guarantee the absence of such errors, or some run time type
checking has to be implemented.

Our case study in part 111 performs type checks before

normalization.

¢ Evaluating expressions may lead to non-termination. While
we integrate the use of blackholing that can detect simple
loops, a complete termination check is not possible, of

31

DEFINITION OF THE SEMANTICS: S4

course. Practical implementations have several options
regarding infinite computations: the simplest solution is
to ignore this problem, leaving the possibility of a non-
terminating type check, which might be unsatisfactory for
our users. Another approach is to introduce some kind
of counter or timer that aborts normalization after some
number of reduction steps or a after certain time span
elapsed. Finally, it is possible to enforce termination by
a type system: some variants of pure type systems are
strongly normalizing, thus every well-typed term has a
normal form. Coq is based on the calculus of constructions,
an instance of a strongly normalizing pure type system,
and hence avoids this problem. However, we lose Turing
completeness when choosing this route.

Our case study in part 111 can be configured to check arbi-
trary pure type systems, depending on this configuration
infinite computations are either ruled out be the type sys-
tem or ignored by the implementation otherwise.

3.1 LANGUAGE SYNTAX

The syntax of FUN is given in figure 3.1. We make use of unspeci-
fied syntactical categories of variables, pointers and constructors.
Variables are denoted by the meta variables x and y, pointers by
P, q and 7, and constructors by C.

Here and in the following boldface font signifies sequences of
objects, i.e. while x is a variable, x is a sequence of variables.
Indexing of sequences starts with 1, so p7 is the first pointer of
the sequence p. The length of sequence p is written [p|.

In the simplest case a FUN expression is a reference, i.e. either
a variable x or a pointer p to the heap. A description of heaps is
given below.

Function application is restricted to references in argument
position, but more than one may be given as argument. Thus,
eref abbreviates (... (erefq)...)ref,.

Variables can be bound to so-called A-forms If with let, where
the right hand side might be another expression, a constructor
application that has to be saturated (i. e. all arguments must be
given), or a A-abstraction that may abstract over several variables
at once, such that Ax.e abbreviates Ax7. ... Axy, .e. Construc-
tors and abstractions may only occur in local bindings.

Definition by cases can be done for arbitrary expressions. A
sequence of alternatives alt relates constructors to expressions,
binding the constructor arguments to variables (if any).

We use the notions of free variables, open and closed terms
and substitutions as it is usual in language descriptions, without
giving explicit definitions here. A substitution of the variables

32

3.2 NORMAL FORMS

ref

eref
letx=1fine
case e of alt

ref

x|p

Lf e
Cref

AXx.e where |x| >0

alt == Cx->e

Figure 3.1: Syntax of FUN

x with the pointers p in expression e is denoted by e[p/x]. At
every occurrence of such a substitution we assume implicitly that
Ipl = Ix| holds.

Translating unrestricted functional terms to FUN terms is easy:
if the original term contains complex function or constructor argu-
ments, bind them with A-forms. Constructors and A-expressions
not occurring on the right hand side of local definitions are dealt
with in the same way. An unsaturated constructor C can be
saturated by an m-expansion to Ax.Cx. If this n-expansions
is unwanted in the resulting normal form, it is easy to mark
these expansions and perform a corresponding n-reduction after
normalization, as it has been implemented in our case study.

3.2 NORMAL FORMS

Strong normal forms of FUN expressions are defined in figure
3.2. A normal form is either a constructor with normal forms in
argument position, or a A-abstraction with a normal form in its
body, or an unreducible head.

An unreducible head h is either a plain variable, or an ap-
plication of an unreducible head to a normal form, or a case
discrimination where the scrutinee is not a constructor but an-
other unreducible head.

As an example consider the expression e for computing 141
using church numerals.

e = let
plus =Axysz.let
y'=ysz
inxsy'’

one=Asz.sz

33

DEFINITION OF THE SEMANTICS: S4

Y = Cv

| Ax.v

| h
h = X

| hv

| case hofvalt
valt == Cx->v

Figure 3.2: Strong Normal Forms of Fun

in plus one one

The normal form of e that can be obtained using our system is
v, the church numeral for 2, as expected.

v := As.Az.s(sz)

Maybe surprisingly v does not obey the same syntax as e:
in normal forms, function and constructor arguments are not
restricted to be variables, as is demonstrated by the complex
argument (s z) given to s in v above. Furthermore, A-abstractions
and constructors are not restricted to right-hand sides of local
bindings. While it is somewhat unusual to have normal forms
outside the original language definitions, this is less of an issue
when we consider the intermediate-language character of FuN.
We can think of e as the translation result of e’ given in another
functional language without the restrictions of FUN:

e/ = let
one =Asz.sz
in (Axysz.xs(ysz))oneone

It is easy but unnecessary for this presentation to define such a
language that is a superset of the normal forms given in figure
3.2 together with an appropriate translation.

But another restriction is added to normal forms that is not ap-
plied to FUN expressions. Abstractions may abstract over several
variables at once in FUN, but not in the normal forms. While the
abstract machines defined in the following chapters can enhance
efficiency by considering multiple abstracted variables in one
step, such considerations are not important for normal forms.
Additionally, we can simplify our presentation a little bit by
restricting abstractions in normal forms to single variables.

34

3.3 HEAPS AND ACCUMULATORS

hv == 1If
| %+p
|k

k == (x)
| (pa)
|

(case p of alt)

Figure 3.3: Heap Values and Accumulators for Sgq

3.3 HEAPS AND ACCUMULATORS

Since we want to employ lazy evaluation, we have to implement
sharing to avoid duplicated evaluations of subterms. Thus, we
need a heap, i.e. a mapping form pointers to heap values hv,
according to the grammar in figure 3.3.

In our system sharing is implemented in the same way as
in other implementations of lazy languages: we allocate each
expression on the heap that is bound by let, hence the first kind
of heap values are A-forms.

After an unevaluated expression allocated at p on the heap (a
so-called thunk) is finally evaluated to its wHNF at address q, the
thunk is overwritten with an indirection to q, so in the resulting
heap, we find 3 q at address p.

In addition, we need a representation of free variables and other
subexpressions that are unreducible because they contain free
variables at redex positions. Free variables are inserted to evaluate
expressions under A-abstractions and case discriminations. When
such a free variable is used in a function position or as a scrutinee
of a case discrimination, it collects the context of this occurrence
for later analysis. Thus, this special kind of heap value is called
accumulator, denoted by the meta variable k .

The structure of accumulators is given in figure 3.3. An accu-
mulator k is either a free variable, or a suspended application of
another accumulator to a single argument pointer, or a suspended
case discrimination with another accumulator as scrutinee. The
similarity to unreducible heads from figure 3.2 is not by acci-
dent: accumulators are run time representations of not yet fully
normalized unreducible heads.

To maintain sharing, we only reference accumulators contained
within other accumulators by pointers. Thereby we ensure the
invariant that the heap values referenced in function and scruti-
nee position are only accumulators: when considering all rules
creating new accumulators either during weak evaluation or dur-

35

DEFINITION OF THE SEMANTICS: S4

ing read back, we can easily see that if the function or scrutinee
pointer of all accumulators reference only other accumulators in
the initial heap, this is the case for all intermediate heaps and the
tinal heap, too.

To make the difference between accumulators and usual ex-
pressions visible, we enclose accumulators in angle brackets.

We denote heaps with the meta variables I', A and ©, and use
the following notations for expressing heap allocations.

* I'[p — hv] means that p is bound to the heap value hv
in . So no new allocation takes place here, this is just a
proposition about a particular binding in T.

* 'U[p — hv] means that a new binding is added to I', thus
p is not bound to any heap value in T itself, but is bound to
hv in the resulting new heap (i. e. we use disjoint unions).
Here, a new allocation is performed.

e I'[p +4] means that p is unbound in T.

e The empty heap is denoted as 0.

3.4 NORMALIZING FUN EXPRESSIONS

The normalization of FUN expressions is done with two interact-
ing systems. An evaluator reduces an expression to WHNF, using
a modified version of the sTG machine. The resulting wHNF is
read back, normalizing all redices that may be contained in such a
WHNF.

Thus, the overall system is defined using three relations:

WEAK EVALUATION using semantics s4 is defined by the four
place relation - : - | - : -, where ' : e | A : p means that
expression e evaluates under heap I' to the new heap A that
contains the wHNF of e at address p.

READ BACK is defined by the four place relation - : - 1 - : -, where
I":p 1 A:vmeans that reading back the wHNF located in T’
at address p yields the new heap A and the strong normal
form v.

STRONG NORMALIZATION is defined via weak evaluation and
read back as the four place relation - : - | - : -, where
I': e] A:vmeans that the normal form of e under the
heap I' is v, and the normalization process yields the new
heap A. This is the main relation in our system.

The normalization relation is defined by the single inference
rule given in figure 3.4 as the composition of weak evaluation
and read back, which are defined in the following sections.

36

3.5 EVALUATION TO WHNF

el A:tp A:p 1 O:v
MNel®:v

Norm

Figure 3.4: Normalization by Weak Evaluation and Read Back

While this inference rule and the rules in the following sections
are strictly speaking part of inductively defined relations and
of course have the usual semantics of inference rules, we will
read them in a very operational manner. That is, while e. g. the
two premises of Norm are independent of each other and do
not imply any temporal order, we will say that e is first weakly
reduced and then read back. This is justified by the determination
properties of our rules — building trees of rules, i. e. finding proofs
of the defined relations, is straightforward in a left to right order,
but difficult in any other order. After all, our system defines a
(big-step) operational semantics, and can easily be implemented
by an interpreter, thus the operational reading gives a sound
intuition.

One intended use of our system is to normalize closed expres-
sions that contain no pointers. To accomplish this for a given
expression e, we search for a heap A and a normal form v such
that) : e J A : v holds.

But it is of course possible to normalize expressions containing
free variables, too. For example, to normalize let f = Ax.x in fy,
where y is free, we search for a heap A and a normal form v such
that [p1 — (y)] : let f =Ax.x infp; $ A:vholds.

In both cases, the search for A and v is made easy by the deter-
mination properties of our rules. In fact, A and v are completely
determined up to the choice of bound variable names and fresh
pointers chosen to do allocations during evaluation.”

3.5 EVALUATION TO WHNF

The evaluation relation is defined inductively by the inference
rules in figure 3.5. Rules Lam through Case(!) are the same
as in the semantics S3 defined by de la Encina and Pefa [15],
while we introduced rules Accu, App'3) and Case?) to deal with

A proof proceeds by induction on the size of inference trees built with the rules
defined in figures 3.4, 3.5 and 3.6, followed by a case analysis on the rule used
at the root of the tree. Two scenarios are possible: either the rule is the only
rule matching to the shape of I and e of the conclusion at hand, then A and
v are determined as conjectured. Or there is an ambiguity between the rules
App1), App(?) and App(3), or between Case!!) and Case(?). However, in
each of these two ambiguous situations, the induction hypothesis for the first
premise of the respective rule resolves the ambiguity.

37

DEFINITION OF THE SEMANTICS: S4

accumulators. The latter are especially designed for cooperation
with the read back phase defined in section 3.6.

Rule Lam merely states that a A-abstraction is in wHNF and no
evaluation is necessary. Rule Cons states the same for constructor
values.

Rule Var describes the evaluation of pointers referencing un-
evaluated expressions in the heap. Observe, that p is bound
neither in I nor in A (see our explanation of the operation U
above), thus the evaluation of e in the premise takes place with
unbound p. This is a technique known as blackholing: when the
value of p is needed before a WHNF is reached, the program can-
not terminate. Thus by removing the binding of p we can detect
some simple cases of non-termination. When the wHNF has been
successfully computed, an indirection to this wHNF is added to A
at address p.

When such an indirection is met, rule Ind shows how the re-
sulting wHNF is found by simply dereferencing the indirection.
No further evaluation is necessary, since the indirection is guaran-
teed to point to a wHNF, since only rule Var allocates indirections,
and it does so only after normalizing to WHNEF.?

Unsaturated function application is described with rule App("),
the function e is reduced to a A-abstraction that has more ab-
stracted variables than arguments are given. Thus a new A-
abstraction is allocated at address r with the supplied arguments
substituted in the body.

Saturated function application is posed by rule App(?): all
abstracted variables are replaced by the given arguments, and
the resulting expression e’[p/x] is applied to the remaining argu-
ments.

Local bindings are evaluated as shown in rule Let. All A-forms
of the right hand sides are allocated in the heap, and made
available by substituting the bound variables x with the fresh
pointers p.

Rule Case describes the evaluation of case expressions. When
the scrutinee e evaluates to a constructor expression, the cor-
responding branch of the alternatives is instantiated with the
constructor arguments.

The next three rules define the behavior of accumulators in
different contexts. Rule Accu defines an accumulator as a new
kind of wENF, no further evaluation is required in this situation.

More interesting is rule App(3). When an expression e in
function context is evaluated to an accumulator k, the accumu-
lator grabs the first argument, and the accumulated application

Here we assume that the initial heap we started the normalization with does
not contain indirections to heap values not in waNF. This is not a severe
restriction, since the most useful initial heaps are either the empty heap or
heaps containing only accumulators, as mentioned above.

38

3.5 EVALUATION TO WHNF

Lam

Mp—Ax.el:p | T:p

Cons

FMp—Cplip L T:p

e | A:q
Fulp—el:p | AUlp—%ql:q

Var

Ind
“TTh—aql:p I Mg

lNeJ Alg—Axy.e’l:q rfresh
Miep | AUr—=Ay.e[p/xl]l:r

MeJ] Alg—Ax.e'l:q A:elp/xlp’ | O:r
Mepp’ L ©:r

2)

App!

Frulp— Ulp/xll:elp/x] L A:q p fresh

ket N letx=1Uine | A:q

Mel Alp—Cip'l:p A:ellp//xil | O:q

Case(V)
l:caseeof Cx->e’ | O:q
A
o Mpr—Xk:p L T:p
Ao (3] MNelAlg—kl:q AU[r—={(gqp)l:rp’ | O:s rfresh
PP Mepp’ | ©:s
Casel2) el Alp—kl:p ¢ fresh

lN:caseeofalt | AU[q— (casepofalt)l:q

Figure 3.5: Semantics S4

39

DEFINITION OF THE SEMANTICS: S4

Frulg— (Y)l:pq I A:v q,y fresh
Mp—Ax.el:p T A:Ay.v

Lam,

A g T T v
r][pHCCI]IP T rIqI—H :Cv

Consy

Mk Ty Acv
Mp—X:p 1+ A:v

AccuT

VClTT<>

I: <X> T<> I:x
Mk ty Ath A:q 1 0O:v
A
PP T o K (Pq) Ty ©:hv
Ik T() A1 :h
‘i(:]tl AiUB;:casep’of alt § Aiyq:wi
where alt = Cx-> e, |qil = |yi| = Ixi| and p’, q,y fresh
and ©; = [p’ — Ci qil U [qi — (yi)]
Case%

Mp ~ kI : (case p of alt) T, Ajqiyj41:case hof Cy->v

Figure 3.6: Read Back Definition for S4

is allocated at a fresh address r and applied to the remaining
arguments.

The corresponding situation for case discriminations is found
in rule Case(?). When the scrutinee is evaluated to an accumu-
lator, no branch of the alternatives can be selected, hence the
discrimination is suspended in a newly allocated accumulator,
saving all branches for further analysis by the read back phase.

3.6 READ BACK

The read back relation is inductively defined by the rules in
figure 3.6. It makes use of a four place helper relation - : - 1y - : -
for reading back accumulators: T : k 1, A : h means that th
accumulator k can be read back under the initial heap I' to the
unreducible head h, resulting in the final heap A.

40

3.7 EXAMPLE

Rule Lam; defines read back for A-abstractions. To evaluate
the body under the abstraction, we generate a pseudo-argument,
namely a fresh variable placed as an accumulator (y) onto the
heap. The application of the abstraction to this accumulator is
normalized to a value v that now possibly contains y as a free
variable. To close the resulting expression, we place v below an
abstraction over y in the conclusion. Note that we supply the
pseudo-arguments one at a time, even when more variables are
abstracted. Also, we could substitute q directly into the body.
But in both cases, the implementation of the abstract machines
defined in the following chapters, especially when we finally deal
with compiled code, becomes much simpler when we use Lam;
as it is: we do not need to know how many arguments a compiled
abstraction expects, nor do we have to substitute pointers into
compiled code.

The read back for constructor values is defined by rule Cons;.
We simply normalize all constructor arguments one at a time. The
notation /\qu:\1 is a shorthand to define the individual premises
needed for each constructor argument.

Accumulators are delegated to the helper relation by rule
Accuy.

Free variables need no further normalization, as stated by rule
VGTT 0

Suspended applications are read back by reading back the
function part (pointing always to an accumulator, as stated above),
and normalizing the argument.

Suspended case discriminations are handled by rule Case,.
The scrutinee is read back to value h. Moreover, for each al-
ternative, a new constructor value C; q; is allocated, where the
constructor arguments are pointers to fresh free variable accumu-
lators. Then, this constructor expressions are scrutinized, thereby
passing the accumulators (y;) to the corresponding branch of the
alternative that now can be evaluated.

3.7 EXAMPLE

To show the interplay of the relations defined in the latter sections,
we next give an example of a strong normalization. We restrict
ourselves to the simple example of the identity function, where
only a small amount of weak evaluation is necessary, since our
focus is on the relationship between strong normalization, weak
evaluation and read back.

The identity function id can be given as let f = Ax.x in f
using the syntax of FUN. Its normalization to Ay .y is shown in
figure 3.7.

Since inference trees typically grow very fast for examples of
even small complexity, we use a vertical notation here. Each

41

DEFINITION OF THE SEMANTICS: S4

_(Z):letf:)\x.xinf
[0:letf=Ax.xinf
E § [p1 — Ax.x]:p;
= | Ip1 = Ax.x] 1 py
| [pr = Ax.x]ipy
[[p1 — Ax.x]:pq
[[p1 = Ax.x, p2 = ()] p1pa
| [P1 = Ax.x, p2 = (Y)l 1 p1p2
e | P = Ax.x, p2 = (Y)l:ps
§ 551 3 | [p1 = Axx, 2 ()l
z 1 2| preAxx pae @)lips
:| E < | b1 o Axax, P2 ()] i p2
— | Z | P12 Axx, p2e ()] i p2
b1 = Ax.x, P2 (W) pa
g 8‘2 [p1 = Ax.x, p2 = (Y)l: (y)
<| > | [p1=Ax.x p2=(yl:y
| [pr = Ax.x, pa (Y)l iy
L P12 Axx, P2 (Y)Y
| [p1 = Ax.x, p2 = (Y] Ay.y
I [p1 = Ax.x, p2+— (yY)l:Ay.y

Figure 3.7: Normalization Example

application of an inference rule is depicted with a bracket that
is annotated with the name of the applied rule to the left. The
first two arguments of the conclusion of the rule are found on
the upper right end of the bracket, while the last two arguments
are on the lower right end. The trees for the premises of the rule
are shown between these pairs of arguments.

To normalize id, it first is evaluated under the empty heap to
WHNF, resulting in A x . x allocated at address p7. This heap value
is read back by allocation of a fresh accumulator (y) at address
P2 and normalization of the application p p;. This results in y,
not surprisingly, since p; points to the identity function. Since
we supplied y as a pseudo-argument, we have to abstract over y
to obtain the normal form Ay.y.

42

38 WELL-FORMEDNESS

3.8 WELL-FORMEDNESS

For the following correctness proofs, it will be convenient to
group pointers into two non-overlapping sets P; and P,. We
assume for all rules except App!!) that require fresh pointers, that
these pointers are members of P, and rule App(!) requires fresh
pointers to be members of P,. This can be considered as dividing
the heaps into two segments, where all allocations are performed
in segment Py, with the single exception of allocations done for
partial applications. This segmentation makes the equivalence
proofs for the semantics given in the next chapter easier, because
it deals differently with partial applications.

We define well-formed heaps and judgments using this seg-
mentation. A well-formed heap contains only pointers of P,
in its codomain, except for the destinations of indirections. A
well-formed evaluation judgment requires the initial heap to be
well-formed and the expression considered may only contain
pointers from P;. The function P assigns to a heap value or an
expression all pointers they contain.

DEFINITION 3.1 (Well-formed heaps and judgments) A heap T is
well-formed, if it satisfies following condition.

Vp,hv . Tp — hv] = P(hv) CP;V3Iqhv=9% q

A judgment T : e | A : p is well-formed, if I is well-formed and
P(e) C Py. The same holds for judgments of the normalization and
read back relations.

Note that in the proof tree of a well-formed judgment, all
occurring intermediate judgments are well-formed as well, i.e.
well-formedness is maintained as an invariant in all our rules.
Moreover, the final heap is well-formed, too.

Since the empty heap 0 is well-formed, and all interesting
evaluations start with the empty heap or another well-formed
heap, we will restrict ourselves for the remainder of this thesis to
well-formed heaps and judgments.

43

LINEARIZATION: SSTG1

We next define sstG1, short for strongly normalizing sTG machine.
It is similar to the weakly normalizing semantics stG1 defined by
Encina and Pefia [15], but enhanced with accumulators enabling
read back and strong normalization.

Semantics ssTG1 is a small-step operational semantics, thus it is
a step towards a compiled system: s4 gave the meaning of expres-
sions by relating them to their weak head normal forms, and the
inferences proving this relation had the shape of trees branching
whenever a rule had more than one premise. Semantics ssTG1
is given as a deterministic transition relation on configurations,
thus a linear sequence of configurations models the linear char-
acter of machine computations and states. We have to adapt the
strong normalization and read back relations to the new seman-
tics, paying attention this time not to create new code during the
normalization process.

To ensure the suitability of ssTG1, we have to show the equiv-
alence to s4, asserting that strong normalization gives the same
results with both semantics.

4.1 STACKS AND HEAPS

As usual, to keep track of subexpressions needed for later steps,
we introduce stacks S as sequences of stack values sv, as given
by figure 4.1. A stack value may be a function argument, a
sequence of case alternatives, or an update frame #p, marking
heap locations for later thunk updates.

Besides of breaking the evaluation down in small steps, ssTG1
changes the evaluation of partial applications slightly: instead of
allocating a new abstraction with the supplied arguments substi-
tuted into the body, the arguments are left on the stack. During
thunk update, an application is built instead of a substitution
using a special heap binding denoted by the symbol . This

sv = plalt|#p

Figure 4.1: Stacks for ssTG1

45

LINEARIZATION: SSTGI1

kind of binding does not place update frames onto the stack,
since a potential update would repeatedly overwrite it with the
same partial application.

4.2 WEAK EVALUATION

The weak evaluation is performed using the reduction rules
shown in figure 4.2. A configuration of this reduction system is
given by three components: a heap, a control expression that is
to be evaluated and a stack.

When the evaluation of a thunk is started by rule var(!), an
update frame is put onto the stack to save the address of the
thunk that has to be overwritten by its wHNF after evaluation.
Moreover, the evaluated expression is deallocated from the heap,
again providing the detection of simple loops by blackholing.
The wHNF might be an abstraction, constructor or accumulator,
so these heap values check for update frames and perform the
update by allocating an indirection at the address saved in the

update frame, as stated by rules var(?), var(3) and var(4).

An indirection is evaluated by dereferencing the stored ad-
dress with rule ind(!). Indirections for partial applications, that
is expressions allocated with the spacial heap binding =, are
evaluated by rule ind(?) similar as var(!), but without pushing
an update frame.

The arguments of applications are pushed onto the stack by
rule app!'), and the evaluation continues with the function ex-
pression. When the evaluation of the function expression reaches
a A-abstraction, the arguments are popped from the stack and
substituted into the function body by rule app(?). Otherwise,
when the expression evaluates to an accumulator, app®) grabs
the topmost argument from the stack, allocating a new accumu-
lator representing this application. If more than one argument is
present on the stack, further applications of the same rule will
grab the other arguments in successive steps.

Local bindings are allocated on the heap by rule let, substitut-
ing the fresh addresses for the bound variables.

The evaluation of case expressions is started by rule case(!’,
pushing the alternatives onto the stack until the scrutinee is
evaluated. When the scrutinee evaluates to a constructor expres-
sion, the appropriate branch is selected by rule case(?). And
when the scrutinee evaluates to an accumulator, the branches are
saved by rule case(®) in a freshly allocated case discrimination
accumulator for later normalization.

46

4.2 WEAK EVALUATION

Heap Control Stack Name

FUlp el P S vart!)

r e #p-:S

Ip— Ax.e P p 4+ #q-:S varl?

Frulgepp’l P p'+S

where [p’| < Ix|

I'lp+— Cp’l P #q-:S var(®)

Frulqg— %+ pl P S

I'lp — Kl P #q-:S var®)

rulq— %+ pl P S

I'p— % q P S ind(M

I q S

I'lp = el P S ind(?)

I e S

r ep S app !
I e p+S

Ilp— Ax.el P p' +S app?)
r elp’/xl S

T'p — K P p’ S app®
Frulg— (pp’) q S

where q fresh

r letx=1fine S let

MU lp — Ulp/xl] e[p/x] S

where p fresh

r caseeof alt S case(!
I e alt-:S

I'p — Cip’] P Cx->e-:S casel?
r ei[p’/xi] S

Ip — K P alt S case!3)
IUlq— (case p of alt)] (S

where q fresh

Figure 4.2: Semantics ssTG1

47

LINEARIZATION: SSTGI1

(I e S)="(A p,p) WA p p) A:ip:p' 1 0:v
MNe:S70O:v

Norm

Figure 4.3: Normalization using ssTG1

4.3 NORMALIZATION AND READ BACK

We will reuse the symbols {, 1 and 1y for strong normalization
and read back. It will be clear from the context in most cases
whether the variants of s4 or of ssTG1 are meant. In the remain-
ing cases, we will annotate the symbols with the name of the
semantics.

Strong normalization | and read back 1 are now five-place
relations, taking an initial stack as an additional argument.

The strong normalization using ss1G1 is defined by rule Norm
in figure 4.3. An expression e is evaluated in several steps to
weak head normal form, as usual —* denotes the transitive
and reflexive closure of —. We define a predicate W on ssTtG1
configurations to describe feasible final states.

DEFINTTION 4.1 (Legal final states of sstc1) W(A, p, p’) holds iff
e Alp = Ax.el A |p/l < Ix|, or
e Ap—Cql A p'=9,o0r

e Al[p— k] A p’ =9.

That is, either p points to a A-abstraction with more formal
parameters than actual parameters are present in p’, or p points
to a constructor value or accumulator and the stack is empty.

While other final states are possible, e.g. (Alp — Cql, p, 1),
these do not represent a successful computation and are not
reflected by s4, hence we rule them out by the above definition.

The read back definition for sstG1 is given in figure 4.4. In
contrast to the corresponding definitions for s4, this time we avoid
the generation of new code: while figure 3.6 created applications
in rule Lamy, the pseudo-argument is placed onto the stack in
figure 4.4. Similarly, rule Cases, created case-expressions in
figure 3.6, where we now place the case alternatives onto the
stack, where they will be found by case(?) in the first evaluation
step.

48

4.3 NORMALIZATION AND READ BACK

Frulg— Wl:p:p'::q 3 A:v q,y fresh

L
am Mp—Ax.el:p:p’ T A:Ay.v
c AL g0 3T v
ons
T Mp—=Cql:p: O 1 TNqe1:Cv
Mk Ty Ay
A
T o Kip:0 T Av
\Y
TOTTI) Ty Tix
Nk fty Ath A:q:0 7 O:v
A
PPto Mpr—=k:(pq) Ty O:hv
I:k T<> A] :h
Ii(ﬂ]t‘ AiUB;:p':alt-:O Aiyr:vi
where alt = Cx-> e, |qi| = lyil = [xi| and p’, q,y fresh
and ©; = [p’ = Ci qi] U [qi — (yi)]
CaseT<>

Flp + Kkl : (case p of alt) 1\, Ajqit|41:case hof Cy->v

Figure 4.4: Read Back Definition for ssTtG1

49

LINEARIZATION: SSTGI1

4.4 HEAP CORRESPONDENCE

As mentioned before, the semantics sstG1 handles partial appli-
cations differently than semantics s4: in rule App!1) sq allocates
a new A-abstraction for each partial application after substituting
the given arguments, where the fresh pointer is a member of P;.
ssTG1 does no allocation for partial applications but leaves the
arguments on the stack. Moreover, when a thunk is overwritten
with a partial application, sstG1 allocates an application expres-
sion in rule var(?), using the special binding = that suppresses
update frames upon entering.

Thus, the heaps used in s4 and ssTG1 are not exactly the same
but obey a correspondence relation - ~ - defined as follows.

DEFINITION 4.2 (Corresponding heaps for s4 and sstG1) Suppose
I"is a heap used in s4 and T’ is a heap used in sstG1. Then T' ~ T iff
the following condition™ is met.

Vp . Ip = hv] AT/ [p—hv] A =3ghv =9 q
V' Tlp sl A T'p bl
V Tlhp—=Ax.e]l] AT[ps] ApeP,
V Tlp—%ql ATlg— Ay.elr/x]]
AT'lpe q'vrI AT[q = Axy.e

V Tlp=%ql ATlg— Cp’l
AT'[pr % q]l A T'[q— Cp’]
V Tlp—%ql A Tlq— Kl
AT [p— % ql A T'[q+— K]

The individual constituents of this condition can be read as
follows. The heaps I and '’ are corresponding when one of these
conditions is met:

¢ in both heaps p is bound to the same heap value that is no
indirection,

¢ p is unbound in both heaps,

* p points to a A-abstraction in I' and is unbound in I'’ (this
is the result of the rule App(!), and thus only allowed for
pointers from segment P;),

* p points to an indirection to a A-abstraction in I and a
matching partial application in I/,

in both heaps p is bound to an indirection to a constructor
application, or

1 The free variables in this condition lack existential quantifiers. They are omit-
ted to reduce clutter. The scope of the quantifiers becomes clear from the
description of the constituents.

50

4.5 EQUIVALENCE OF S4 AND SSTGI1

* in both heaps p is bound to an indirection to an accumula-
tor.

4.5 EQUIVALENCE OF S4 AND SSTGI1

The equivalence of s4 and sstG1 is shown in two steps. First, we
show the completeness of ss1G1, i.e. we show that every normal
form obtained with s4 can be obtained with sstG1, too. This
means, that every inference tree of s4 can be linearized to an
ssTG1 reduction sequence. Next, we show the soundness of ssTG1,
i.e. we show that a normal form obtained with ssTG1 can also be
obtained with s4, and the linearization process can be reversed.
Equivalence of s4 and sstG1 then follows as a corollary.

Note that normalization using ssTG1 is as deterministic as it is
using s4: there are no configurations where more than one rule
of the reduction relation matches.

4.5.1 Completeness

LEMMA 4.3 (Completeness of weak evaluation) Whenever we have
I':el A:p,then for any I with T' ~ T/ there is a heap A" with A ~ A’,
a pointer p’ and a sequence of pointers q such that for any stack S
semantics ssTG1 allows the reduction T’ :e:S —=* A :p’ : q+ S
with
3 x,y,e’ . Alp—2Ay.e'lq/x]] N A'lp’ —Axy.e']
VvV 3 Cp” . Ap—=CpTAp=p" ANq=90
Vo3 k . Alp—= kK Ap=p’' AN q=9.

Note that A[p — Cp”] implies A’[p — C p”] in the conclusion,
and Alp — k| implies A’[p + k|, because A ~ A’. That is,
lemma 4.3 states that if e evaluates to a A-abstraction using sg4, it
evaluates to a A-abstraction using sstG1, too, but possibly located
at another address and with some arguments left on the stack
instead of being substituted into the body. And when e evaluates
to a constructor expression or accumulator using s4, it evaluates
to the same constructor expression or accumulator, located at the
same address, with an unmodified stack, using ssTG1.

Proor The proof proceeds by induction on the size of the proof
of ':e | A:p,i.e. on the number of inference rules used. A
case differentiation on the rule used at the root of the derivation
shows that the lemma holds for all derivation trees. The detailed
proof is given in appendix A.1. O

The next step is the completeness of the read back and strong
normalization definitions of ssTG1.

LEmMMA 4.4 (Completeness of read back and normalization) The
following three propositions hold:

51

LINEARIZATION: SSTGI1

o Whenever T' : p 154 A : v, then for any T’ with T ~ T/ there is a
heap A" with A ~ A’ such that

3 y,e . Tlp—Ay.elA
Vq,q’,x,e" .T'[q—~ Axy.e’]
Ne=c¢e'[q'/x]
:r/:q:q/TSSTGI A/l\)
V 3 Cp' . Tlp—=Cp I AT ip: QST Aty
V. 3 k. Tlpe=K AT ip: O A v,
* Whenever ' : k TS("; A :h, then for any T with T' ~ T there is a
heap A" with A ~ A" such that T" : k 1570 A” : .

» Whenever T': e 1 A : v, then for any T' with T ~ T there is a
heap A" with A ~ A’ such that T : e : O 57T A @ v

Proor The proof proceeds by simultaneous induction on the
number of inference rules used for the proofs of the relations 1°4,
154 and T?‘;, followed by a case differentiation on the rule at the
root of the proof tree. The details of the proof can be found in
appendix A.2. O

4.5.2 Soundness

Reduction sequences of ssTG1 are linearizations of deduction
trees of s4. However, not every (part of a) reduction sequence
directly corresponds to a deduction tree. For example, if we
take a deduction and its corresponding reduction sequence, and
we arbitrarily cut out a segment in the middle of the reduction
sequence, we might miss the boundaries of a single subtree of
the deduction. Therefore, we define the concept of a balanced
reduction sequence, and show how these sequences correspond
to deduction trees.

DEFINITION 4.5 (Balanced reduction sequence) A sequence of re-
duction steps (I',e,S) —* (I',e’,S’) is balanced iff the stacks of
all participating configurations end with the initial stack S, i. e.they
have the shape So + S with varying So.

That is, a reduction sequence is balanced if no element of the
initial stack gets popped during reduction. Since we introduced
the stack to remember subexpressions during the linearization of
one subtree of an s4 evaluation for later linearization of another
subtree, this definition nicely allows to separate the different frag-
ments of ssTG1 reduction sequences corresponding to different
subtrees of s4 evaluation trees.

LEMMA 4.6 (Soundness of weak evaluation) For any balanced re-
duction sequence of sstG1 (T, e,S) —=* (A, p,q+ S) with W(A,p, q),

52

4.5 EQUIVALENCE OF S4 AND SSTGI1

for all heaps T" with T ~ T there is a heap A" with A" ~ A and a pointer
p’ such that s4 allows the deduction of T : e | A" : p’ with

x,y,e/ . Alp—=Axy.e'l A Allp’ — Ay.e'lq/x]]
Cp" . Ap—=Cp"l Ap=p’
k

Vv
\Y Alp— Xkl N p=p’

Lol

As in lemma 4.3, Alp — Cp”] implies A’[p — Cp”] in the
conclusion, and Alp +— k] implies A’[p — k], because A’ ~ A.

Thus, either both semantics give a A-abstraction, but while
ssTG1 leaves arguments on the stack, they are substituted into
the body in the case of s4, or e evaluates to the same constructor
expression or accumulator using ssTG1 and s4.

Proor The proof proceeds by induction on the length of the
reduction sequence of ssTG1, assuming the induction hypothesis
for all shorter balanced sequences. The details can be found in
appendix A.3. O

The last missing piece before closing this chapter with the
equivalence of s4 and sstG1 is the soundness of read back and
strong normalization.

LEmMMA 4.7 (Soundness of read back and normalization) The fol-
lowing three propositions hold:

e Whenever T' : p : q' 157" A : v, then for any ' with T' ~ T
there is a heap A" with A" ~ A such that

3 x,y,e . Tp—Axy.el A
Vq.T'lg—Ay.elq’ /x| =T :q14 A" v
V 3 Cp' . Tlp—=CpITAT ipts+A v
VA= k . Tlp—= K AT ip 154 A v,
* Whenever T : K 757" A+ h, then for any T with T ~T there is
a heap A’ with A’ ~ A such that T : kT?‘; A’ :h.

o Whenever T : e : O J57 A v, then for any T with ' ~ T there
is a heap A" with A’ ~ A such that T : e 5 A’ : v.

Proor We prove all three proposition by simultaneous induction

on the number of inference rules used. The details are given in
appendix A 4. O

4.5.3 Correctness

After having shown that normalization by ssTG1 is sound and
complete with respect to s4, we can sum up our results.

53

LINEARIZATION: SSTGI1

COROLLARY 4.8 (Correctness of normalization) For any expression
e and strong normal form v, the following equivalence holds:

JA.D:e Ay & A D:e: Q1A Y

ProoF Simple consequence of lemmas 4.4 and 4.7. Note that
0 ~ 0 holds trivially. O

54

INTRODUCTION OF CLOSURES: SSTG2

In the semantics s4 and ssTG1 substitutions were used, e.g. when
A-abstractions were applied to their arguments in rules App(?)
and app'?), respectively. However, such substitutions are an
obstacle for compiling expressions to machine code, since substi-
tuting some values for variables changes the expression at hand,
while changing the generated machine code for this expression
at run time is something that usually is avoided in compiler
construction.”

The standard approach, that we are following in this chapter
when we define the semantics ss1G2, solves this problem by the
introduction of closures. A closure is a tuple consisting of an
expression that may contain free variables and an environment,
i.e. a finite map from variables to their values. Instead of per-
forming a substitution, for example e[p/x], we now modify the
environment of e, for example E, by adding a value p for variable
x as in EU [x — p]. Thus, ssTG2 brings us a further step closer to
a system using compiled code.

Semantics ssTG2 resembles Encina’s and Pefia’s sTG2, again
with addition of accumulators [15] to represent free variables and
other weak head normal forms during evaluation.

5.1 MODIFICATIONS OF THE SYNTAX

In FuN we allowed pointers to appear in expressions, easing the
presentation of s4 by using substitutions without giving to much
implementation details at this abstraction level. But now we
approach an implementation running on an abstract machine,
so we want to replace substitutions with environment manipu-
lations. Therefore, expressions do not need to contain pointers
any more. Additionally, we do not want to keep environments
unnecessary large by mapping unused variables to otherwise
potentially unreachable pointers, since this would prevent proper
garbage collection.

Thus we introduce the language FuN2 that is a variant of
FUN. The definition is given in figure 5.1. Besides restricting all
occurrences of references in FUN to variables, FUN2 introduces so

Of course, there are exceptions: Prolog implementations allow to add and
remove rules during run time, easing for example some applications in artificial
intelligence, and Erlang implements run time code updates to satisfy very high
uptime requirements. But the effort of run time code generation has to be
justified by some serious advantages of the resulting system, and we certainly
do not want to depend on it just to implement function applications.

55

INTRODUCTION OF CLOSURES: SSTG2

X
ex

letx =1Uf|y ine
case e of alt|;

f
Cx
AX.e where |x| >0

alt Cx->e

hv (1, E)

— i
?
=

k

(x)
(pa)
(case p of (alt,E))

Figure 5.1: Syntax of FUN2, its heap values and its accumulators

called trimmers t. These variable sequences are annotations of let
and case expressions to indicate, which variables are needed for
the evaluation of the bound A-form or the selected case alternative,
respectively. Thus, we make use of trimmers whenever some
subexpression is delayed: either when a A-form is allocated on the
heap for later evaluation, or when case alternatives are delayed
until the evaluation of the scrutinee is finished. Since we do
not want to keep unnecessary large environments during these
delays, we strip all unneeded variables from them.

Note that each binding of a A-form has its own trimmer, while
all alternatives of a case analysis share the same trimmer. This is
because we do not know which alternative is selected when the
evaluation of the scrutinee starts, so we have to keep all variables
that occur in any alternative, thus needing only a single trimmer
for all alternatives.

In the following, we assume that the trimmers contain at least
all free variables of the A-forms or case alternatives they annotate.

To associate A-forms allocated on the heap with the values of
their free variables, heaps for ssTG2 use tuples of a A-form of FuN2
and a suitable environment where ssTtG1 uses simply A-forms of
FUN. For details on environments see the next section.

Accumulators for blocked case analyses have to contain an
environment for the alternatives as well.

56

5.2 ENVIRONMENTS

The normal forms of FuN2 are the same as for FUN, so figure
3.2 still applies.

5.2 ENVIRONMENTS

We denote environments with E, E/ and so on. Moreover, we use
the same notations for environment bindings as for heap bindings,
thus E[x — p] means that E maps x to p, while EU [x — p] means
that a new binding is added to E.

To substitute all variables in an expression e by their value
given in an environment E, we write e[E]. We consider this a
mapping from FUN2 to FUN, throwing away all trimmer annota-
tions.

To restrict an environment E to the variables of a trimmer t we
reuse the trimmer notation from the Fun2 syntax, writing E|;.

5.3 NORMALIZATION

The rules for weak evaluation using ssTG2 are given in figure
5.2. A configuration consists of 4 components: a heap, a control
expression, a current environment binding the free variables of
the control expressions, and a stack.

The rules of ssTG2 correspond one to one to the rules of sstGi.
Every explicit substitution is replaced by a manipulation of an
environment. Moreover, instead of pointers we find variables
in expressions that we have to look up in the corresponding
environment.

In rule var(!) of sstG1 the control expression is a pointer,
while we have a variable with a corresponding binding in the
current environment in sstG2. Moreover, when we switch to the
expression e contained in the thunk, we take the environment E’
of the thunk as our new current environment.

For the allocation of partial applications during updates in rule
var(?) we have to create a new environment E”, since we cannot
place the pointers directly into the partial application expression.

The changes to rules var(3) through app'!) have similar modi-
fications as rules var(!) and var(?).

In rule app(?) the body of a A-abstraction is entered with the
arguments added to the environment of the body. In sstG1, the
arguments were directly substituted into the body.

Rule app®) makes a lookup of the variable in the control
expression in the current environment.

When a local definition is evaluated with rule let, we build a
new environment E’ by adding the heap locations of the bindings
to the current environment E. While E’ is the new current envi-
ronment, it is stripped to each A-form’s trimmer in the allocated
closures. In ssTG1 substitutions were performed instead.

57

INTRODUCTION OF CLOSURES: SSTG2

Heap Control Environment Stack Name
FrUlp — (e E)] X E[x — p] S var()
r e E/ #p :S

Mp— (Ay.e,EN] x Elx — p] p'H#q-:S var?
Nrulge (xx’,E”) x E p' +S

where |p/| < |yland E” := [x — p]U[x’ — p’]

INp+— (Cy,E) X E[x — p] #q-:S var(3)
rulg — % pl X E S

Mp — K X Elx — p] #q-:S var(®)
rulg— %+ pl X E S

Mp — % 4l X Elx — p] S ind(
r x’ [x" — q] S

where x’ fresh

I'p = (e, E')] X Elx — p] S ind(?)
r e E’ S

r ex Elx — pl S app'V
r e E p+S

Mpr (Ay.e EN] x Elx — p] p'+S app(?)
r e E'uly—p’l S

Mp — K X Elx — p] p’ S app 3
rulge (pp’)l x’ [x' — q] S

where x’, q fresh

I letx =1l ine E S let
Fulp— (If,E'l¢)] e E’ S

where E/ ;== EU [x — p] and p fresh

r caseeof altly E S casell)
I e E (alt,El¢) -:S

Ip+— (Ciy,E") X E[x — p] (alt,E’)-:S case?
r ei E'Ulxi—p'l S

where B[y — p’l and alt:=Cx->e

Mp — X X Elx — pl (alt,E’)-:S case(3
rulg — k'] x/ [x" — q] S

where k/ := (case p of (alt,E’)) and x’, q fresh

58

Figure 5.2: Semantics sSTG2

5.4 EQUIVALENCE OF SSTG1 AND SSTG2

Rule case!) stores the alternatives on the stack together with

the current environment. At this, the environment is trimmed
since not all variables bound in E might be needed.
While rule case(?) in sstG1 substituted the arguments of a
constructor into the selected case alternative, sstG2 adds them to
the environment saved on the stack, making it to the new current
environment.

Rule case(®) takes the saved alternatives with their environ-
ment and stores them in a new accumulator.

The changes to the strong normalization and read back rela-
tions (figure 5.3 and 5.4, respectively) are simple, too. Strong nor-
malization now is a five place relation, taking an environment for
the expression to be normalized into account. Correspondingly,
the other rules have to create environments for fresh variables
where pointers were normalized before. The definition of W for
legal final states remains unchanged from sstG1.

5.4 EQUIVALENCE OF SSTGI AND SSTG2

Since the modifications in the step from ssTG1 to ssTG2 are simple,
it is easy to establish an equivalence result. We start with the
definition of corresponding heaps. The symbol ~ is re-used for
this correspondence relation, since no confusion is possible when
considering the context.

DEerINITION 5.1 (Correspondence between sstG1 and sstGz) Two
accumulators k and k' are corresponding, written k ~ k', iff either
k =k’ or k = (case q of alt) and k' = (case q of (alt’,E)) with
alt = alt’[E].

Two heaps T of ss1G1 and '’ of ssTG2 are corresponding, written
'~ T, iff for all pointers p

® I'lp — Ul and T''[p — (1f', B)] with If = Lf'[E], or
* IMp— % qland T'[p — % ql, or
e I'p=elb]]and IM[p = (e, E)], or
® I'lp+— kland T'[p — k'] with k ~ k'.
Two stacks S of ssTG1 and S’ of ssTG2 are corresponding, written
S ~ S’, iff the elements at the same positions are either equal or S
contains alt where S’ contains (alt’, €) with alt = alt’[E].
Two configurations (T, e, S) of sstG1 and (I',e’,E,S) of ssTG2 are

corresponding, written (T',e,S) ~ (I, e’,E,S"), iff T ~T’, e = e'[E]
and S~ S’.

59

INTRODUCTION OF CLOSURES: SSTG2

(T, e, E,S)=* (A, x, E'lx—=pl, p') WA, p,p) A:ip:p’ 1 O:v

N
orm Me:E:S$ O:v
Figure 5.3: Normalization using ssTG2
. Frulg— Yl:z:lz—pl:p'::q T A:v q,y,zfresh
o Mp—Ax.el:p:p’ 1 A:Ay.v
c |1q:\1 riIXiZ[Xini]ZO i FH_] Vi
ons
" Tlp (Cx,x—=gl:ip:O T Ngr:Cv
Mk Ty Ay
A
T o K:ip:0 T Av
\%
TOTTI0) 1 Tix
Mk fty A:h A:x:lx—ql:0 7 ©:v xfresh
A
PPy Mp—=k:(pq) Ty O:hv
Ik T() A] :h
‘iil]tl AU i x X —p'l:(alt,BE) 20 T Aiy1:wi
where alt = Cx->e,
lqil = lyil = Ixi] = |zi| with p’, q,x’,y, z fresh,
and ©; = [p’ = (Cizy, [zi = qil)]UIqi — (Yi)]
Caser,,

I'p — k| : (casep of (alt,E)) T, Ajqit|+1:casehof Cy->v

Figure 5.4: Read Back Definition for sstG2

60

5.4 EQUIVALENCE OF SSTG1 AND SSTG2

LEMMA 5.2 (Equivalence of weak evaluation) Assume two config-
urations C of sstG1 and C’ of sstG2 with C ~ C’. Then we have

vD.C =* D = 3D’.C’ —»* D’ with D ~ D’

SSTG1 SSTG2

and

vD’.C' »* D/ = 3ID.C =* D with D ~ D'.

SSTG2 SSTG1

Proo¥ (Sketch) First, prove that this proposition holds for single
step reductions, by case analysis of the possible rules. Since the
corresponding rules of ssTG1 and ssTG2 are very similar, this is
straightforward.

Next, show that this result carries over to the transitive reflexive
closure of the reduction relations by induction on the length of
the reduction sequence. O

LEMMA 5.3 (Equivalence of read back and strong normalization)
The following three propositions hold:

e Whenever I' ~ T then
FJAT:p:p' 1" Ay & FA T ip:p/ 15 A iy

where A~ A,

e Whenever I' ~ T and k ~ k'’ then

JAT kAT Ah & HA’.F/:k/T’z;Tc’z A':h

where A ~ A,

o Whenever T ~T/, e =e/[Eland S ~ S’ then
JAT:e:ST¥"A:v & FJA' T i/t E:S %" Ay
where A~ A,

ProoF (Sketch) By simultaneous induction on the number of in-
ference rules used, under application of lemma 5.2 in the propo-
sition on the strong normalization relations. O

COROLLARY 5.4 (Correctness of strong normalization) For any ex-
pression e of FUN2 and any normal for v, it holds that

JAD:eld]: 0¥ Ay & FA D:e:0: 0T A v,

Proor Simple consequence of lemma 5.3. O

61

COMPILING TO MACHINE CODE: ISSTG

In this chapter we reach our final goal of this part of the thesis.
We define an abstract machine that executes a sequence of simple
instructions, we show how FUN expressions can be translated to
appropriate instructions, and we give definitions of read back
and strong normalization that use this abstract machine.

The instructions can be translated further to machine code
for physical processors, enhancing the efficiency of interpreted
pseudo instructions. We give some details on this translation in
chapter 8.

Our abstract machine is called 1ssTG machine, short for im-
perative strong normalizing sTG machine, because it is close to
the imperative character of physical processors. It resembles the
weakly normalizing 1sTG machine by Encina and Pefia [15].

6.1 AN EXECUTION ENVIRONMENT FOR ISSTG

A configuration for 1sSTG is a quadruple, consisting of

* an instruction sequence to be executed, replacing the control
expression of ssTG2,

e a stack,

* anode pointer, referring to the currently evaluated closure,
where parts of the current environment of ssTG2 can be
found, and

* a heap, which is a mapping from pointers to pairs of code
pointers and some closure data cd. The closure data may be
a sequences of pointers, replacing the environments stored
in closures of ssTG2, or an accumulator.

The order in which corresponding components in ssTG2 and
IsSTG are given has been changed to reflect the change in the
main component driving rule selection. In sstG2 rule selection
was mostly determined by the kind of heap value referenced by
the variable constituting the control expression, while in 1ssTG the
next instruction in the instruction sequence component is most
influential.

Moreover, we make use of a code store cs and a branch info
table bi. Both are created during compilation and not modified
during normalization, thus we do not include them in the config-
urations but treat them as parameters for all definitions in this
chapter.

63

COMPILING TO MACHINE CODE: ISSTG

ins = ENTER | RETURNCON C

| ARGCHECK n | ALLOCn
| BUILDCLSmpa | BUILDENV a
| PUSHCONT p | UPDMARK
| SLIDEnm | PAP
| ACCU

a = STACKn
| NODEn

is = 1ins

Figure 6.1: Instructions for 1ssTG

* The code store cs maps pointers to code sequences or to
branch tables, implemented as mappings from constructors
to code sequences. Figure 6.1 shows the instructions for
ISSTG, they are discussed in more detail below.

¢ The branch info table bi stores some information unnec-
essary for weak evaluation but needed for strong normal-
ization. It is used by the implementation of accumulators
for case discriminations as well as their read back. We give
details below, too.

For 1ssTG, we use a further restricted variant of FUN: function
positions in applications and scrutinees in case expressions are
restricted to be mere variables, not arbitrary expressions. This
simplifies the stack layout to enable the read back phase of nor-
malization with 1ssTG, but would complicate matters for s4 where
rule App(?) relies on complex function positions.

These restrictions can easily be met by introducing additional
local bindings for function expressions and scrutinees. Proving
the correctness, i.e. the conservation of normal forms, of this
transformation is trivial. The resulting syntax of the language
FUN3 is shown in figure 6.2, the syntax of normal forms remains
unmodified.

In the same figure, we show the modified structure for the heap
values hv of our compiled semantics. Each closure consists of a
pointer to some code fragment, replacing the control expressions
in the closures for sstG2. Moreover, a closure contains a closure
data field cd, which may be a sequence of pointers, replacing the
environments of ssTG2 closures, or an accumulator k. The special,
non-updating heap binding - is not used for 18sTG. Indirections

64

6.2 COMPILATION AND WEAK EVALUATION

e = XY
| letx=1U|¢ine
| casexof alt|t
hv == (p,cd)
cd == plk

(pq)

k == (x)
|
| (casepof (q,7))

Figure 6.2: Expressions, heap values and accumulators of FUN3

% q are represented with an code pointer and a closure data
field, as any other closure.

The structure of accumulators is almost identical to their defi-
nition for ssTG2. Only the variant for stuck case expressions now
captures a code pointer to the continuation code and a sequence
of pointers, replacing the list of alternatives and the continuation
environment, respectively, of ssTG2.

6.2 COMPILATION AND WEAK EVALUATION

Figure 6.3 defines the translation of FUN3 expressions to machine
code.

While in sstG2 all variables where defined in a single environ-
ment, ISSTG environments are split into two parts. One part of the
environment is stored in the closures. This part is accessed not
by a current environment as in ssTGz2, but via the node pointer
referring to the current closure, where the variables’ values can
be found in the closure data field. The second part is located
on the stack. As usual, values on the stack have only static life
time, so this part is only used temporarily. We use the stack envi-
ronment for function arguments and to make the heap locations
of locally bound values available to the body of let expressions.
In these cases the stack environment is cleared when another
closure is entered. Moreover, we continue to use the stack to save
environments for case alternatives. These environments stay on
the stack during evaluation of the scrutinee, and are cleared only
when the selected alternative finally enters another closure.

The translation functions use compile time environments to
keep track where the variables” values can be found. We use a
stack environment p that maps variables to stack indices, and

65

COMPILING TO MACHINE CODE: ISSTG

trE (xy) pm = [BUILDENV (p,n)x-:(p,n)y,
SLIDE (1+yl) (snd p),
ENTER]
trE (letx =1Ufl ine) pnp = [ALLOC [ti] |1+« [x]..T 14
[BUILDCLS i p;y a;i |i+ T.|x| 1+
trEep’n
where p/ = p+xi—1i |1+ T.]x[]
P = trB lﬂt
a = (p/mt
trE (case x of alt|¢) pn = [BUILDENV (p,n)t,

PUSHCONT p,
BUILDENV (p+It|+1,1)x,
SLIDE (2+|t]) (snd p),

ENTER]
& bi[p — (|t[,info alt)]
where p’ = ([ti—1i |1+ 1.0t t)
p = trAsaltp’
info (Cx-> e) = (C,Ix|)
trAs alt p = p
& cs[p— [C— trA alt p]]
where alt = Cx->e
and p fresh
trA (Cx->¢e) p = trEepxi—1i |1+ 1. [x]]
trB (Cx |¢) = p

& cs[p — [RETURNCON CJ]
where p fresh

trB (Ax.e¢) =0p
& cslp — [ARGCHECK [x|] 4 trE e pn]
where p = ([xi—~1 |1+ 1..xl],[x])
n = =i i< 1.0t
and p fresh
trB (e |¢) =P
& cs[p — [UPDMARK] 4 trE e py nl
where py = (0,0)
n = [ti=i|i<T1.0t]
and p fresh

Figure 6.3: Translation of FUN3 to machine
code

66

6.2 COMPILATION AND WEAK EVALUATION

a node environment 1 mapping variables to indices in pointer
sequences in closure data fields of the current closure.

The node environment 1 is just a simple mapping from variable
names to indices. Since the stack environment is cleared before
entering other closures, p is a tuple of a corresponding mapping
from variable names to indices on the stack, and the number of
local variables that have to be cleared.

We write variable lookups in these environments as (p,n)x,
resulting in either STACK n or NODE n, depending on the location
of x on the stack or the heap. We require the domains of p and
7 to be disjoint. This lookup definition is complemented by the
function ptr, used in the definition of the semantics of 1ssTG, with
ptr (STACK i) being the i-th stack element and ptr (NODE i) the
i-th element of the closure environment. We use a Haskell-like
syntax for list comprehensions: [e(i) | i - n..m] binds 1 to all
values from n to m in turn, the result is the list of all values e(1i).

The code store and the branch info table are modified by
operations given after & as monadic side effects of the translation
functions.

The definitions of the translation functions trE for expressions,
trAs and trA for case alternatives and trB for locally bound
A-forms in figure 6.3 are best read together with the definition of
the corresponding transition rules in figure 6.4 of the generated
instructions.

6.2.1 Compilation of Applications

The translation of applications (first rule of trE) first builds a
stack environment containing the function x and all arguments y
using the instruction BUILDENV that simply pushes its arguments
onto the stack. It then removes all local variables from the stack,
using SLIDE. The first argument of this instruction gives the
number of values that have to be kept on top of the stack, in this
case this is one (for the pointer to the function) plus the number
of arguments. The second argument is the number of stack
values to be cleared, stored in the second component of the stack
environment p. Finally, the code resulting from the translation
enters the function via a tail call using ENTER. It takes the topmost
stack element, still our function pointer, as the new pointer to
the current closure and continues execution with the instruction
sequence referred to by the code pointer of this closure.

6.2.2 Compilation of Local Bindings
Local bindings (second rule of trE) are compiled to a sequence of

ALLOC instructions to reserve heap space. This does not modify
the heap as it is modeled in 1ssTG, but in an implementation

67

COMPILING TO MACHINE CODE: ISSTG

Code Stack Node Heap
[ENTER] q-:S P I'g+— (r,7")]
is S q I

where cs[r — 1is]
[RETURNCON C] q-:S P I
is S P r

where cs[q — bt] and bt[C > is]

[RETURNCON C] #q-:S P r'ulq — (pon, 1)l
[RETURNCON C] S P rulq+— (pina,p)l
ARGCHECK n -:1is q+S P r
is q+S P r
where n = (|
ARGCHECK 1 -:1s q+#r-:S p FUlr— (poh,q’)]
ARGCHECK 1. - is q+S p FrUfr— (ppap,p-:q)l
where n > [q|
ALLOC M -:is S P r
is q-:S P I

where q points to a new closure with space for n variables

and I’ is the resulting heap after allocation

BUILDCLSiqa-:is S P r
is S ruiSi — (q,ptr a)l
BUILDENV a -:is S P r
is ptra#+S p I
PUSHCONT q -:is S P r
is q-:S P r
UPDMARK - is S p rulp—(q,q")
is #p S p FUlp = (pon,q’)l
SLIDEn m-:is q+q'+S p r
is q+S P r
where n = |q| and m = |q/|
PAP -:is S P lp—(q,q")]
is q' +S P r
[ACCU] q-:S P I'p = (Paccu, k)]
[ACCU] S T FUlr = (Paccu, (P q))l

where 1 fresh

[ACCU] q-: ql 4+ S P F[P — (paccu/ k)]

[ACCU] S T Frulr— (paccw k)]
where bilq — (|q’|,info)], k' = (case p of (q,q’)) and r fresh,

[ACCU] #q-:S p Frulg— (poh,q")]

[ACCU] S p rulg = (pina,pl

68 Figure 6.4: Semantics 1SSTG

6.2 COMPILATION AND WEAK EVALUATION

that produces machine code for physical processors, as it is our
goal in chapter 8, some memory management is performed with
this instruction. The reserved heap space is in turn filled by a
sequence of BUILDCLS instructions, before the compiled body is
executed. The bound A-forms are compiled by trB.

e Constructors (first rule in the definition of trB) are com-
piled to a single instruction, RETURNCON, that expects a case
continuation on the top of the stack (see the first rule of
the RETURNCON instruction in figure 6.4). It dereferences the
pointer found on the stack, finds a map from constructors to
instruction sequences, and selects the branch corresponding
to the instruction’s argument.

¢ Compiled abstractions (second rule of trB) check whether
enough arguments are present on the stack via ARGCHECK.
When this check is positive (first rule for ARGCHECK in figure
6.4), the body of the abstraction is executed, otherwise
(second rule for ARGCHECK in figure 6.4) an update frame is
expected on the stack and the corresponding closure on the
heap is overwritten by a partial application (pap, see below
for an explanation of ppap).

* The code of other bound expressions (third rule of trB)
starts with UPDMARK that pushes an update frame.

6.2.3 Compilation of Case Discriminations

For case expressions (third rule of trE), we first push the vari-
ables used in the branches and the pointer to the code of the
branches, before entering the scrutinee. We look at the generated
instructions one by one:

e All variables needed in the branches are saved on the stack
first using BUILDENV.

* Then a pointer to the compiled alternatives is left on the
stack using PUSHCONT as a continuation. This pointer is
obtained as the result of trAs with an appropriately con-
structed stack environment p’, describing the locations of
the values pushed by the last BUILDENV instruction.

* Next, a pointer to the scrutinee is pushed, using BUILDENV
again, but the stack environment p is out of date now: we
pushed [t| pointers constituting the continuation environ-
ment and one additional pointer to the alternatives’ code.
Thus we have to add [t| + 1 to the values of p. The notation
p +n used in trE denotes a stack environment where all
indices are incremented by n, thus taking care of the new
stack values.

69

COMPILING TO MACHINE CODE: ISSTG

¢ Afterwards, unneeded arguments are purged from the stack

with a SLIDE instruction. We have to keep the environment,
the code pointer for the alternatives and the scrutinee, sum-
ming up to [t| + 2 stack values. The number of values to
clear is again found as the second component of p.

¢ Finally, the scrutinee, still found topmost on the stack, is

entered with ENTER.

The branch info table bi stores the number of variables saved
on the stack for use by case branches, and records for which
constructors branches exist and how many arguments these con-
structors have. These are used by the ACCU instruction to grab the
right number of pointers from the stack if we reach a stuck case
discrimination (see the second rule of ACCU in figure 6.4), and by
the read back of such discriminations to select the cases that have
to be normalized.

6.2.4 Preallocated Code Sequences

During execution we expect several code sequences preallocated
in the code store.

70

e For indirections, the second rule for RETURNCON and the

third rule for ACCU, respectively, make use of pinq with
cs[pina — [BUILDENV (NODE 1), ENTER]]. This code sequence
pushes the first (and only) pointer of the closure data field
onto the stack and enters it immediately, thus mimicking
the behavior of 3+ q in ssTG2.

When allocating partial applications, the second ARGCHECK
rule uses a pointer ppqp with cs[ppap +— [PAP,ENTER]].
Upon execution, this code sequence will push all point-
ers of the closure data field onto the stack and enter the
topmost pointer, that points to an abstraction taking the
remaining pointers as arguments. This resembles the evalu-
ation of partial applications in ssTG2.

For blackholing, that is for marking expressions under eval-
uation, UPDMARK uses a pointer ppp pointing to an empty
code sequence, i.e. cs[pph — O], such that evaluation gets
stuck when an expression is re-entered before reaching
WHNF.

And finally, for accumulator allocations, the first and second
rule for ACCU use pqccu With cs[paccu = [ACCU]], i.€. Paceu
points to the code that grabs either function arguments or
case alternatives together with their environments from the
stack, using the branch information table where necessary.

63 STRONG NORMALIZATION AND READ BACK

63 STRONG NORMALIZATION AND READ BACK

The normalization rule, given in figure 6.5, now normalizes a
pointer to some heap closure and a stack. The heap closure is
entered, taking the remaining stack values as function arguments
or pointers to case branches. The current closure pointer r in
the initial configuration in the first premise of Norm can be any
pointer, since in the next transition it is replaced by q anyway.
We might even start with q instead of an arbitrary r, but had
to enter q nevertheless to load the right code sequence into our
configuration.

A legal final configuration is defined by W as a state represent-
ing an unsaturated application of an abstraction, a constructor
expression or an accumulator. In the latter two cases, the stack
must be empty after evaluation.

DEerINITION 6.1 (Legal final states of 1ssTG) W(A, p, p’) holds if
and only if Alp — (pc, cd)] and

® cs[pc — [ARGCHECK 1, .. JAlp’| <n, or
® cs[pc — [RETURNCON C] A p’ =0, or

e cs[pe — [ACCU CIA P’ = 0.

This definition translates definition 4.1 of legal ssTG1 states to
1sSTG, without conceptual change in its meaning.

The necessary adoptions for read back are shown in figure 6.6.

To implement the read back rules, it seems necessary to analyze
the first instruction of the sequence r points to, to decide between
rules Lamy, Consy and Accuy. However, this is inconvenient
when machine code for physical processors is generated and
analyzed. This inconvenience is easily avoided by an additional
table created during compilation which records the addresses of
compiled A-abstractions and constructors.

Rule Caser, uses code pointers pc, that are assumed to point
to instruction sequences [RETURNCON C;i]. These can be preal-
located before normalization, after collecting all constructors
occurring in a program by a simple static analysis. This avoids
the need to generate new code during normalization. Moreover,
this rule uses the branch info table to look up for the pointer of
the continuation for the case alternatives, for which constructors
alternatives are defined, and how many arguments each of these
constructors takes.

64 CORRESPONDENCE BETWEEN SSTG2 AND ISSTG

Again, we define a correspondence relation between accumu-
lators, heaps, stacks and whole configurations. Using this cor-

71

COMPILING TO MACHINE CODE: ISSTG

([ENTER], q-:S, v, T) —=* (is, p’/, p, A) WA, p, p/) A:p:p’ 1 O:v

N
orm Mrq:5S30:v
Figure 6.5: Normalization using 1sSTG
q,y fresh
FTulg— (Paccw, Y)l:p:p':-q T A:v cs[r — ARGCHECK 1 -:1is]
L
am Fp— (r,7)]:p:p’ + A:Ay.v
. AL TigiiO T T ivi o eslr— [RETURNCON CJJ
T Mp—=@@l:p:0 1T Nge1:Cv
Mk Ty A:v csfr— [ACCU]]
A
o Mpr—= (r,Kl:p:0 1T A:v
\%
o (x) T Tix
Mk ty A:th A:q:9¢ 1 O:v
A
PPto Mp= (r,k)]:(pq) Ty ©:hv
Ik T() A1 :h
‘S] AyUA:p' :q-1q" T Aigr v
where bi[q — (n,(C,m))], p” =|yil =mi and p’,p”,y fresh
and A{ =[p' (pc, p{’)] U [Pi// = (Paccus (Yi))]
Case»r<>

Flp = (r,k)] : (case p of (q,q")) Ty Ajart|+1:casehof Cy->v

Figure 6.6: Read back definition for 1ssTG

72

64 CORRESPONDENCE BETWEEN SSTG2 AND ISSTG

respondence, it can be shown that for each sstG2 transition se-
quence reaching a legal final state there is an equivalent 1ssTG
transition sequence for each corresponding initial state, reaching
a corresponding final state, and vice versa. This equivalence of
weak evaluation sequences leads to the equivalence of the strong
normalization relations for sstG2 and 1SsTG.

DEFINITION 6.2 (Accumulator correspondence) An accumulator k
of sstG2 and an accumulator k" of 1sSTG are corresponding, written
k ~ k" iff

e k=k'"=(x), or
* k=k'=(pq) or

e k = (case p of (alt,E)) and k' = (case p of (pait,q))
with pqit = trAs alt p and domE = domp = X where
Vx € X.E[X — qp(x)]'

That is, two accumulators are corresponding if they represent
the same free variable, the application of the same function to the
same argument pointers, or stuck case expressions of the same
scrutinee pointer where the code pointer in the 1SSTG variant
refers to the compiled version of the alternatives, and the envi-
ronment E is connected to the pointers q via p: Every variable
is mapped by E to a pointer present in q, with an index given
by p. Here and in the following, dom is a function to obtain the
domain of a mapping.

DEFINITION 6.3 (Stack correspondence) Two stacks S of sstG2 and
S’ of 1sSTG are corresponding, written S ~ S’ iff

* S=p-:Sgand S’ =p -:Sj with Sg ~ Sg, or
o S=#p-:Spand S" =#p -:Si with Sg ~ Sk, or

S = (alt,E)-: Sgand S’ = pait-: q 4 Sk with Sg ~ Sg
and pqir = trAs alt p and domE = domp = X where
Vx € XE[X — qp(x)]'

Thus, corresponding stacks contain the same argument point-
ers and update frames, and case continuations obey the same
relationship as in the accumulator correspondence of stuck case
expressions.

DEFINITION 6.4 (Heap correspondence) A heap T of sstG2 and a
heap T of 1sSTG are corresponding, written T ~ T/, if and only if for all
pointers p

o I'lp v/l and T [p 5], or

* I'lp Aland T'[p — (pon, q)l], or

73

COMPILING TO MACHINE CODE: ISSTG

Ip — (If,E)] and T'[p — (pc, q)] with p. = trB Uf|y and
E=[t— q] or

Flp — Kl and T'[p = (Paccu, k') with k ~ X/, or
Mp +— % qland T'[p — (pina, q)l, or

I'p e (xx/,E)l and T'[p — (Ppap,q-:q’)] with
E=kx—qlUx"— q'l

We look at the definition item by item. The relation I' ~ T/
holds in the following cases:

p is unbound in both heaps.

p is unbound in T and bound to a black hole in I'’. This
happens when a thunk is entered for evaluation: ssTG2
removes the binding completely from the heap, while 15sTG
overwrites the code pointer of the respective closure with

Poh-

p is bound to a regular closure in I" with If as its code part
and environment E, and to a regular closure in I'" with
a code pointer to the compiled instructions of If and a
sequence of pointers q resembling the environment E: each
variable of the trimmer t is mapped to the corresponding
pointer in (.

p is bound to an accumulator in I and to a closure with
code pointer pgccy in ' that contains a closure data field
with a corresponding accumulator.

p is bound to an indirection & q in I and a closure (pina, q)
inT’.

p is bound with a non-updating binding to an application
on I' and a closure with code pointer ppqp in I'". The envi-
ronment E gives the same values as the pointer sequence

q-:q’.

DEFINITION 6.5 (Correspondence of Configurations) Two configu-
rations (T, e, E,S) of ss1G2 and (is,S’,p,T’) of 1sSTG are correspond-
ing, written (T',e, €,S) ~ (is,S’,p, "), iff T ~ T and

74

is=trkepnand S’ =q+ S”" and T[p — (pc,q’)] with
Vx € domp.E[x = q,(x)] and Vx € domn.E[x qT’l(x)}
where domE = domp Udommn and S ~S”, or

e = x with E[x — pl and T'lp — (Uf,)] while T'[p — (pc, q)]
and cslp. — 1is], and moreover S ~ S’, or

e = x with Elx — pl and Tlp — k], and is = [ACCU], and
moreover S ~S’, or

65 EQUIVALENCE OF SSTG2 AND ISSTG

* e = x with E[x — pl and Tp — % ql, for the instruction
sequence is = [BUILDENV (NODE 1), ENTER] holds, and moreover
S~S/ or

e e = x with E[x — pl and T'[p = yy’l, and is = [PAP, ENTER],
and moreover S ~ S’.

Thus, two configurations are corresponding in the following
cases.

* The control expression of sstGz is reflected by the code
sequence of 1ssTG, where the translation was performed by
some p and 1 that allow finding the variables’ values either
in the topmost stack frame or via the current node pointer.

o A A-form If is evaluated, where is of 1SSTG is the result of
trB for lf. To see why this follows from the definition, note
the third case in the definition of ' ~ T"’.

e An accumulator is evaluated, and is = [ACCU]. Note that
I'~ T implies I'[p — k'] with k ~ k’.

¢ An indirection is evaluated, is = [BUILDENV (NODE 1), ENTER],
our code for indirections in 1sSTG located in the code store
at Pind

* A partial application is evaluated, and is = [PAP, ENTER],
our 1SSTG partial applications at ppap.

65 EQUIVALENCE OF SSTG2 AND ISSTG

An equivalence proof of ssTG2 and 1ssT1G is divided into a proof of
the equivalence of weak evaluation and a proof of equivalence of
the read back and strong normalization relations. Each of these
proofs is in turn divided into a completeness and a soundness
part.

LemMA 6.6 (Equivalence of weak evaluation) Assume two corres-
ponding configurations (T, e, E,S) of sstG2 and (is,S’,p,T"’) of 1SSTG.
Then we have

(T, e E,S) SS—>: (A, x, Elx — pl, q) with W(A, p, q)
TG2
is equivalent to
. / / * (2 / . I
(is,8%,p, ") =" (is',q,p, A7) withW(A', p, q)

where (A,x,E,q) ~ (is”, q,p, A").

ProoF (Sketch) If we start with a reduction sequence of either
SSTG2 Or ISSTG, we can partition this sequence into a finite set

75

COMPILING TO MACHINE CODE: ISSTG

of segments C —* D, such that we can find for each segment
a reduction sequence in the other semantics C’ —* D’, where
the configurations C and C’ correspond as well as D and D’.
Taking all segments in the other semantics together, we can form
a reduction sequence reaching the desired legal final state.
Since the partitioning of sequences and the translation into
the other semantics is the most crucial part, we show details in
appendix B. O

LEMMA 6.7 (Equivalence of strong evaluation) The following three
propositions hold.

e For the strong normalization relation:
Mix:Ex—pl:SI*°0:v & T:ip:S' %0 v
whenever T' ~ T and S ~ S’. For the resulting heaps, © ~ ©’
holds.
e For read back:
r:p:p/TSSTGZG:V = r/:p:p/TISSTG@)/:v
whenever T' ~ T''. For the resulting heaps, © ~ ©’ holds.
e For read back of accumulators:
Fktd@e:v o Tk 15’ v
whenever T' ~ T and k ~ k'. For the resulting heaps, © ~ ©’
holds.

ProoF (Sketch) For each direction, i.e. ssTG2 = 1sSTG and ISSTG
= $sTG2, show an implication by induction on the deduction
tree of the premise. For the equivalence of strong normalization,
lemma 6.6 is used. O]

Thus, we get following corollary for strong normalization.

CoRrOLLARY 6.8 (Correctness of strong normalization) For any ex-
pression e that is closed, any pointer p, and any normal form v, it holds
that

JAD:e:0: 07" Ay
& FA . [p (trBely, O):p: O T4 A v

That is, to normalize an expression e, we may either use ssTG2
for normalization, starting with an empty heap, or we may start
with a heap containing a single closure with a pointer to the
compiled code of e, and normalize this closure with an empty
stack using 1SSTG.

Proor Consequence of lemma 6.7. Technically, we need an excep-
tion in definition 6.4 of the heap correspondence relation dealing
with the single preallocated closure bound to p. 0

76

6.6 CORRECTNESS OF COMPILED NORMALIZATION

6.6 CORRECTNESS OF COMPILED NORMALIZATION

We are now ready to prove that the compilation scheme from
figure 6.3 faithfully adheres to the semantics s4 from chapter 3,
which is our main corollary.

COROLLARY 6.9 (Correctness of compilation) A normalization us-
ing semantics s4 leads to the same normal form as the normalization of
the compiled code of this expression using semantics 1sSTG. Formally,
for all closed expressions e, all pointers p and all normal forms v the
following equivalence holds:

AAD:eH Ay
& JA . [p— (trBely, O :p: O A v

Proor Simple consequence of the correctness corollaries 4.8, 5.4
and 6.8 from the previous chapters. O

That is, whenever we can normalize an expression e to a normal
form v using s4, we can obtain the same normal form using 1SSTG.
Therefore, the transformation of s4 via ssTG1 and ssTG2 to our
abstract machine 1ssTG is correct. Now, we may rely on this
correctness result and replace interpreted normalization with the
normalization using compiled code. But this is just the first step
of our way to the goal of this thesis, namely a dependent type
checker using compiled code: showing that the code obtained
by our compilation can indeed be used during dependent type
checking with reasonable performance is subject of the next and
final part of this work.

77

Part III

DEPENDENT TYPE CHECKING

PURE TYPE SYSTEMS

In part 11 we defined a strong normalization system using com-
piled code that implements lazy evaluation. We did this to find a
suitable reduction mechanism for dependent type checkers.

With this chapter we start the final part of our presentation,
and show how our normalization system can be used in this
context, and how it applies to one instance of a dependently
typed system: as an example of a dependent type system, we
elected the pure type systems (pTs for short), as presented by
Barendregt [6].

In this chapter, we give a short introduction into their definition.
The description of pure type systems gives a framework for many
concrete type systems, and can be instantiated by choosing a set
of sorts, a set of axioms and a set of so-called rules. We detail
these degrees of freedom and give an example of a concrete
system in the following.

The choices of the sorts, axioms and rules have crucial con-
sequences for the system. Not only is the set of all well-typed
expressions determined by their specification, but normalizabil-
ity is influenced as well: in certain systems, every well-typed
expression is strongly normalizable, while with other choices
expressions without normal form may exist.

Next, we show how a rTs can be extended by inductive data
types, case analyses and fixed points, as proposed by Paulin-
Mohring [30] and adapted for the use in the proof assistant Coq
[28].

This chapter is meant only as an overview to make it easier for
the reader to follow the implementation description in chapter 8.
A more thorough treatment can be found in the cited literature.

7.1 BASIC TYPING RULES

The specification of a PTs consists of three sets S, A, and R.
e S is the set of all sorts.

¢ A is the set of axioms of the form s; : s where s7 and s>
are elements of S.

¢ Ris the set of rules of the form (s1,s;,s3) where again the
s; are elements from S. As a shorthand notation, we often
use (s1,s2) to stand for (s1,s2,s2) for the common case that
the second and third component of a rule are equal.

81

PURE TYPE SYSTEMS

= x
| s

| ee

| Ax:e.e
| TIx:e.e

Figure 7.1: Syntax of PTs expressions

The meaning of these sets will get clearer when we cover the
typing rules and an example of a rTs below. For a first intuition,
note that a typical choice is S = {*, [0}, where * is the type of all
types, and [is the type of *, thus A = {x : [(}.

7.1.1 Syntax

Before looking at the typing rules for pure type systems, we
introduce the syntax of pTs expressions in figure 7.1.

In the simplest case, an expression is just a variable x.

Next, a sort s is an expression, where s is a member of the set
of all sorts S.

An application is denoted by juxtaposition, and not restricted
to variables in function or argument positions, as it was necessary
in FUN expressions.

Abstractions are another possible case of expressions, where
the type of the abstracted variable has to be annotated.

The last variant of pTs expressions are so-called dependent
products, where TTx : ej . e; is the type of functions taking an
argument x of type e to a result of type e, as for instance A-
abstractions like Ax : e7 . e3 where e3 has type e>. Note however
that x may occur in e, so the type of the resulting value may
depend on the value of the argument. We will use a short-hand
notation e; — e> when x is not free in e, to make the connection
to the ordinary function space clear.

In comparison to other type systems for functional languages it
is remarkable that types and terms are on the same language level:
an expression e might be e.g. an abstraction or a (dependent
product) type. In the following, we use the meta-variable e for
arbitrary expressions, while we use T when an expression is used
as a type. This cannot be a strict dichotomy, since expressions
and types are not syntactically separated. So we just want to aid
intuition into the most prominent role an expression plays in a
given context when we chose between e and T as a meta-variable
name.

82

7.1 BASIC TYPING RULES

S1:82 €A
@l—51282

'ET:s xé&T
Fu{x:TtEx:T

Env

Fr-e:T THT:s x¢gT

Weak
. TU(x:T)Fe:T

F=T:sy TU{X:T}FT :s2 (s7,s2,83) €R

Prod
FE(Mx:T.T'):s3

Fker:(Mx:T.T") Thrkey:T
Iejex:T[ez/x]

App

FTu{x:TtFe:T" TFHIx:T.T'):s
FEAx:T.e): (Mx:T.T")

S

Fke:T THT:s T=T
Fhe:T

Conv

Figure 7.2: Typing rules for pure type systems

7.1.2 Typing

The typing rules for pure type systems are given in figure 7.2,
taken from [6] with only slight changes to the typography. Typing
is a three place relation - - - : - where I' - e : T means that
expression e has type T in environment I'.* A type environment
is a set of type assignments x : T that gives a type T to variable x.

Rule Ax states that the typing of sorts is directly derived from
the set of axioms A specifying a concrete PTs instance: whenever
a matching axiom is contained in A, we can conclude that the
corresponding typing of sorts holds in an empty environment.

Type environments are unrelated to the heaps of our semantics s4 through
1SSTG, we just use the same Greek letter to stick to the conventions in existing
literature. It will be clear from the context the letter I' appears in whether a
heap or a type environment is meant.

83

PURE TYPE SYSTEMS

With rule Env we can conclude that a variable has the type T
given by the environment, provided that T is a legal type, i. e. the
type of T is a sort.

The weakening rule Weak allows us to add unneeded type as-
signments to the environment: if we are able to derive the typing
judgment I' - e : T, we can add an additional type assignment
x : T" to the environment, provided that T’ is a legal type and x
does not occur in T".

The typing of product types uses rule Prod. A dependent
product TTx : T. T’ is well-typed when T and T’ are legal types
with sorts s1 and s;, respectively. Since x may occur in T’, we
add an appropriate type assignment to the environment here.
The product then has sort s3 as a type, if the triple (s7,s2,53)
is in R. Only in this case the product is a legal type. Note that
the specific typings derivable with this rule are dependent on
the specification of the prs instance. Products are the types of
abstractions (see below), so we can influence via a choice of R
which abstractions are possible. We will make this point clearer
in an example given in section 7.1.3.

Rule App describes the typing of applications. Expression e;
in function positions has to have a product type. The type of
argument e, must be the type of the formal argument in this
product type. In the result type of the product, i.e. T/, the formal
argument x may occur, so we replace it with the actual argument
ez in the conclusion. We will justify this substitution in our
example in section 7.1.3.

According to rule Abs, an abstraction Ax : T.e has product
type TTx : T.T/, if the body of the abstraction e has type T/,
where we add an type assignment for x to the environment, and
the product in fact is a legal type of some sort s. To derive this,
rule Prod has to be used, so here the choice of R influences the
abstractions possible.

The last rule Conv is the reason we need a normalization sys-
tem for type checking PTs expressions. It makes use of 3 equiva-
lence, that is equivalence up to -reductions and -expansions.
A B-reduction is defined as usual by the transition

Ax:T.erj)ex — eqlea/x].

We further subsume «-conversion, so that names of bound vari-
ables do not influence the typing judgments, without formally
reflecting this in the typing rules.

If we can derive type T for an expression e, and T is f3-
equivalent to some legal type T’, then we can conclude that
e has type T, too. That means, we treat all 3-convertible types as
identical. To implement this rule, that clearly is undecidable in
general, we may try to reduce T and T’ to strong normal forms
and compare these. As already mentioned, some PTs instances

84

7.1 BASIC TYPING RULES

are strongly normalizing, so for these this would be a complete
strategy. For other instances, this is an incomplete strategy, some-
times failing to accept feasible typings. However, using a lazy
normalization system as developed in part 11 of the present work
maximizes the number of normalizable types.

7.1.3 Example: The Calculus of Constructions

We now consider a specific instance of a P1s to aid the intuition
of the typing rules.

The calculus of constructions, introduced by Coquand and
Huet [10], is the pTs defined by following specification.

S = {0}
{x: 00}
R = {(*/*)/ (DI*)I (*ID)I (D/D)}

So * is the type of all types, with sort [J as its own type.

Let us consider how this choice of R influences the abstractions
possible in this rrs. Recall that (s1,s2) is a shorthand notation
for (s1,s2,82).

The first rule (x,x) lets us build ordinary abstractions. If we
take I' = {x : %}, we may derive

NEAy:x.y):(x = x).

That is, in I' we capture the assumption that x is a type, and
derive under this assumption that Ay : x .y is a function mapping
elements of x to elements of x. In the derivation we have to
check whether TTy : x.x (that is, x — x without our short-hand
notation) is a legal type using rule Prod. Since I' - x : * and
IN'U{y : x} F x: % can be derived, and (%, *) € R, we can conclude
FE(TTy:x.x):x*.

The second rule (0, *) allows us to build polymorphic abstrac-
tions. For example, we can derive

D Ax:x.Ay:x.y): (TTx:x.x = x).

For this derivation, we have to check whether TTx : x.x — x is a
valid type. Since) F «: J and ' F x — x : * as shown above, we
can conclude using rule Prod that

O (TTx:*.x —x):*
since ([J,*) € R. In this example, Ax : *.Ay : x.y is the poly-
morphic identity function taking a type x as an argument and

returning the identity function for this type as a result. Taking
I' to be {t : *} we can derive that monomorphic instances gained

85

PURE TYPE SYSTEMS

by applying the polymorphic function to a type argument are
well-typed:

MEAx:x. Ay:x.y)t: (t —1).

Here, we have to apply rule App, substituting the actual argu-
ment t for the formal argument x in the result type of the product
TTx:*.x = x.

Next we look at an example using the fourth rule (0J,), post-
poning the third rule for a moment. With this rule, we can build
types for polymorphic type constructors, that is for functions
mapping types to types. For example, we can derive

Db (x — %) : O

by rule Prod since @ - * : O and {t : «} - % : O (where t is the
unused variable hidden in our short-hand notation) and we have
(4,0) € R. So * — * is the legal type of all type constructors in
this prs.

The third rule in R, namely (%,), allows dependent types, i.e.
abstractions over values that return types. We can derive a type
for e. g. vectors of fixed length when we assume a type n that
shall play the role of the natural numbers:

MmixtE(n—x—x): 0.

Here, n — % — x is the type of functions taking a natural number
as an argument and returning a type constructor. This typing
is possible because of rule Prod where both typing hypotheses
m:s}Fn:xand {n:% x:n}F % — x: 0 (where again x is a
hidden variable) are derivable, and (x,[) € R.

Our last two examples, for the third and fourth rule in R, have
shown that it is possible to define the types of type constructors
and dependent types, but not how to define values of these types.
We will return to this question in section 7.2.3 where we give
examples for inductive data type definitions.

7.2 INDUCTIVE DATA TYPES

Pure type systems can be extended by the definition of inductive
data types. Such a definition introduces a new type together with
a set of constructors to define values of this type. The type of
constructors can not only use parameters as in the parametric
polymorphism implemented in functional languages, but can
make use of so-called indices, too. The index value can be different
for different constructors of the same inductive type, so it might
be possible to build values with a certain index only with a single
constructor, allowing to conclude that the other constructors
cannot match. We will show an example for this in section 7.2.3.

86

7.2 INDUCTIVE DATA TYPES

dataT (x:Tp): Ty where
C1 ZTC1

CnZTC

n

Figure 7.3: Syntax of inductive definitions

The specification of rTs instances is extended with a further set
I, listing the possible sorts of the defined types. A typical choice
when starting with a p1s specified with S = {*,0} is I = {x}, that
is, all inductively defined types have to have type *.

We need several restrictions for inductive types to avoid the
possibility of non-termination in otherwise strongly normaliz-
ing type systems, and will list them in section 7.2.2, without
going into detail how their violation contributes to possible non-
terminations.

7.2.1 Syntax

An inductive definition of a new data type has the shape shown
in figure 7.3.

This defines a type T, parametrized by Tp, of so-called arity Tj.
Moreover, it defines constructors C; through C,, having types
Tc, through Tc, .

The type parameters Tp are used for parametric polymorphism,
they define type arguments that have to occur unchanged in the
types of the constructors. The following sections will make this
clear.

The arity T, is in the simplest case a sort s, which is the type
of T. In more complex situations, the arity can be a product
type, adding type indices to the type parameters that may change
in the types of subsequent constructors. Again, the following
sections will bring clarification.

7.2.2 Typing

For a type definition to be legal, several restrictions must be met.
First, the parameters Tp must be legal types, making only type
correct usage of the variables x. Thus if we have parameters

(x1:Tp,) oo (X : Tp,)

then we must be able to derive for each index i

{X1 :Tp], D C T | :Tp.li]}l—Tp.l:Si.

87

PURE TYPE SYSTEMS

Next, the arity must be a product type with a sort as a final
result type, i.e. T, must have the shape ITy : Ty . st with possibly
empty sequences Yy and T. The sort st must be contained in the
set I from the prs specification. The complete type of the type
constructor T is then

TT :nX:Tp.Ta

where Tt must be a legal type, i.e. (| - Tt : s must be derivable
for some sort s.

Moreover, each of the constructors’ types has to be a legal type
that may make reference to T and the parameters x. The sort of
the constructors’ type must be the sort st, the final sort of the
arity. Thus we must be able to derive

{X:Tp, T:TT}l—TCiisT.

Another syntactic criterion on the types of the constructors is
that they have to be product types with the final result being T
or an application of T to some arguments. Otherwise it would
not make sense to call C; a constructor of T. If arguments are
present, the first arguments must be exactly the parameters x;
this is called the parametricity constraint.

Finally, all occurrences of T in Tc, must be strictly positive.
This means that if Tc, has the shape TTy : Ty . T e, and any of the
Ty is a product, then T may occur as the product’s result, but not
in its argument.

If all these conditions and restrictions are met, the complete
type of constructor C; then is TTx : Tp . Tc,.

A formal definition of the parametricity constraint and strict
positivity can be found in the literature [28, 30].

7.2.3 Examples

All of the following examples of inductive definitions have to be
seen in the context of the calculus of constructions, as specified
in section 7.1.3. We assume 1 = {x}.

Our very first inductive data type is trivial, defining a type of
Boolean values.

data bool : x where
true: bool
false : bool

Thus bool is a type of sort x, without any parameters, and having
the two obvious constructors for our purposes.

Of course, inductive definitions may be recursive, so our next
example shows the natural numbers in Peano style.

data nat : x where
zero : nat
succ : nat — nat

88

7.2 INDUCTIVE DATA TYPES

The type nat has two constructors: zero is a number, and succ
gives for any number another number: its successor.

For an example using parametric polymorphism, we next con-
sider a type seq for sequences.

data seq (a: *) : * where
nil:seqa
cons:a— seqa— seqa

Here, nil is the empty list and cons takes a new first element
and a tail list to build a resulting list of type seq a. Note that
the parameter a occurs as a first (and only) argument to ev-
ery occurrence of seq in the constructors’ types, fulfilling the
parametricity constraint. The type of seq resulting from this
definition is * — %, i.e. the type of polymorphic type construc-
tors mentioned in section 7.1.3. In a p1s without rule ([J,0), it
would be impossible to define seq. The constructor nil has as
its complete type TTa : *.seq a, the complete type of cons is
ITa:*.a — seqa— seq a.

We consider next the type of vectors, that is of lists of fixed
length, where the length is part of the type. This is accomplished
by the use of an index as follows.

data vector (a: *):nat — * where
nil : vector a zero
cons:a— IIn:nat.vector an — vector a (succn)

We overload constructors nil and cons from the sequences of
the last examples, since they play very similar roles. The type
of vector resulting from this definition is * — nat — %, i.e. a
function taking a type and a number to a new type. Compare
this with our example of dependent types in section 7.1.3: only
the order of the type and length arguments are switched. This is
a legal type because we have (x,) € R, otherwise the definition
of vector would be impossible.

The constructor nil now specifies zero as the length of the
vector, since no elements are present. More interesting is cons,
prepending a first element in front of a vector of length n, result-
ing in a vector of length succ n.

Note that while the first argument to vector is always a in the
constructors’ types, fulfilling again the parametricity constraint,
the second argument has different values at each occurrence. This
is only allowed because the second argument is not introduced
as a parameter but as an index part of the arity.

Now suppose we are given a value of type vector a zero: then
we know that it has to be built with constructor nil, since cons
can only construct values of type vector a (succ n) for some
number n. Thus the index value gives some information about
the constructor used to obtain a value.

89

PURE TYPE SYSTEMS

Accordingly, when we are given a vector a (succ (succ zero)),
we know that is must be built with cons with a tail argument
of type vector a (succ zero). So this tail again has to be built
using cons, this time with a tail of type vector a zero, i.e. the
empty vector. Summing up, we can conclude from the type
vector a (succ (succ zero)) that the vector has length two.

As a final example, we show a type that captures the equality
of two values of the same type.

dataeq (a: %) (x:a):a— xwhere
refl:eqaxx

With this definition, eq has type ITa : x.a — a — . In the
propositions-as-types interpretation, dating back to the work
of Curry [13], the type * can be seen as the type of proposi-
tions. Thus the type of eq can be read as the polymorphic type
parametrized over a of binary functions returning a proposition
on their arguments.

So eq bool true true has type * and can be seen as a propo-
sition on the Boolean arguments true and true, while the ap-
plication eq bool true false is also well-typed and represents
another proposition (a false one, incidentally).

The constructor refl has the full type ITa: *.TTx:a.eqaxx,
so it constructs values of the eq type where both non-type ar-
guments are the same. This corresponds to the reflexivity of
equality: we can obtain a value of type eq bool true true with
refl bool true.

But we cannot construct a value of type eq bool true false
using refl, since the Boolean arguments differ, and refl only
builds values where they coincide. In fact, since the constructors
are the only way to build values of inductive types, it is entirely
impossible to give a value of type eq bool true false. This
is a crucial property in the propositions-as-types interpretation:
while it is possible to give values for types representing true
propositions, it is impossible to give values for false ones.

7.3 CASE ANALYSES

Reasoning about which constructor has been used to build a
given value, as we did in the last section with the length indices
of vectors, is a nice property of indexed data types. However, we
also need a way to reason about constructors programmatically.
Therefore, we add the possibility of case analyses of inductive
data types to a prs. At this, the type of the result of an analysis
may change dependent on the alternative chosen.

The specification of rTs instances is further extended by a set
C of tuples of two sorts each. To scrutinize a value of inductive
type T; with sort sj, resulting in values of type Tg with sort

90

7.3 CASE ANALYSES

case e as x return T of
Ciyi->e

Cn Yn->€n

Figure 7.4: Case analysis for pure type systems

s2, we need the pair (s1,s2) in C. A possible choice for a rts
with S = {x,0}and I = {x} is C = {(x, %)}, so the result of a case
analysis must be a value having a type that in turn has sort *,
i.e. the result must be a regular value. Another possible choice
would be C ={(x,x*), (*,0)}, allowing types as the result values
of analyses, too.

7.3.1 Syntax

The syntax of a case analysis is given in figure 7.4. It looks
very similar to case discriminations in FuUN, the only difference
is the phrase as x return T. Here, T is the return type of the
case analysis, i.e. the type of the e;. However, as mentioned
above, the resulting type may vary depending on the chosen
alternative. Therefore, x is bound in T, representing the scrutinee
e and the chosen constructor pattern. The following sections will
give details on this. If x does not occur in T, we will omit the
phrase as x.

7.3.2 Typing

For a case discrimination to be well-typed, the scrutinee e must
be well-typed, of course. We assume that the type of e is Te. Then,
Te must be an inductively defined type, since it is not possible to
discriminate on e. g. functions.

Moreover, T must be a legal type, and since it may refer to x,
we check this in an type environment augmented with x : T.. The
resulting type of the whole case expression then is T[e/x], that is
we replace x with e in the resulting type.

When we assume that the sort of T, is s; and the sort of T is
s2, then the pair (s, s2) must be an element of the set C from the
PTS specification.

In the alternatives, the variables y; may be used in expression
ei, with types according to the argument types declared in the
inductive definition of T, for the constructor C;i. The type of e;
then must adhere to T, but as we substituted e for x to determine

91

PURE TYPE SYSTEMS

the resulting type of the whole expression, we now use C; y; to
allow the type of the alternative to depend on the constructor
pattern. Thus, e; must have type T[C; yi/x].

For a formal exposition of the typing rules for case expressions,
also known as eliminations, we once again refer to the literature
[28, 30]. Here an additional possibility for dependent types can
be found, too, where the type of an alternative not only depends
on the constructor pattern, but also on the index values of the
scrutinee’s type. We implemented such dependencies in our
prototype described in chapter 8, but do not give a description
here since it is not necessary for our presentation.

7.3.3 Examples

In this examples we again use the setting of the calculus of
constructions as described in 7.1.3, and make use of the inductive
types described in section 7.2.3. We assume C = {(x*, x)}.

It is easy to define a function negating Boolean values.

not = Ab:bool.caseb return bool of
true-> false
false-> true

We now want to show that every Boolean value is equal to its
double negation using the propositions-as-types interpretation.
Under this interpretation, the universal quantifier corresponds to
the pTs product operator. Thus, we need to define a value of type

ITb : bool.eq bool b (not (not b)).

Note that not (not b) does not normalize to b: the case discrimi-
nation of not is on variable b here, so no specific branch can be
selected.

The following expression fulfills our needs.

Ab:bool.case b as x return eq bool x (not (not x)) of
true -> refl bool true
false ->refl bool false

To see why this expression has the desired type, consider the
first alternative. According to the typing rules, it has to have
type eq bool x (not (not x)) as specified after return, but
with x replaced by the constructor pattern true. This gives
eq bool true (not (not true)) that can be normalized to the type
eq bool true true and we can define a value of this type using
refl.

The second alternative is similar. So the type of the whole
case expression is eq bool x (not (not x)) with x replaced by the
scrutinee b, so we get eq bool b (not (not b)) as desired.

92

7.4 DEFINITIONS BY FIXED POINTS

fixf(x:T): Te=e

Figure 7.5: Fixed points in pure type systems

7.4 DEFINITIONS BY FIXED POINTS

It is well known that recursive functions can be defined via fixed
points of higher-order functions. We will now show a language
construct that allows such definitions in our pTs setting.

7.4.1 Syntax

We extend the syntax of pTs expressions as shown in figure 7.5.
The meaning of this expression is the solution of the recursive
equation

f=Ax:T.e

where f occurs free in e. To be precise, it is the least solution
in the sense of Scott’s domain theory [33], as it is used in the
denotational semantics of A-calculi.

We require the sequence of variables x to contain at least one
element (the sequence of types T, too, of course).

7.4.2 Typing

The type of the fixed point, and accordingly the type of f in e is
T¢ defined as TT(x : T) . Te. Of course, Tr must be a legal type, so
I'= T¢ : s must hold for some sort s, where I' gives types for the
free variables occurring in the fixed point.

The type of the body e has to be T.. Since the body may make
use of the parameters x and the recursion variable f, we have to
add them to the environment when checking this:

FTU{f:Te, x: T e: Te.

These two conditions ensure type correctness, so we know
that no run time errors can occur. But we have to add a further
restriction if we want to avoid terms without normal forms in an
otherwise strongly normalizing rrs. We have to assure that at
least one argument gets structurally smaller in every recursion.
In our implementation, we require this to be the last argument
of the argument sequence x. So in every occurrence of f in e,
the last argument must be a value that has to be obtained from

93

PURE TYPE SYSTEMS

one or more pattern matchings using a case analysis of this last
element of x. We make this clear in the next section, giving two
examples.

While it is possible to gain a little bit efficiency by allowing
an arbitrary but fixed argument to structurally decrease, it is
always possible to fulfill our restriction by introducing additional
arguments after the decreasing argument not in the head of
the fixed point, but to start the body of the fixed point with a
A-abstraction instead.

7.4.3 Examples

Using fixed points, we can define the addition of natural numbers
as follows.

add = fix f (x : nat) (y : nat) : nat =
casey of
zero->x
succ y’->succ (fxy’)

This definition is quite unsurprising. Note that the last argument
is indeed structurally decreasing. We perform a case analysis on
the last argument variable y, obtain its predecessor y’ from the
pattern matching, and use y’ as a last argument in the recursive
call to f.

Moreover, we can define a predicate testing for even numbers.

even = fix f (x : nat) : bool =
case x of
zero-> true
succ x'-> case x’ of
zero-> false
succ x> fx"

This example shows that an argument may get structurally smaller
by more than one case analysis. On the path to the recursive call
we perform first a pattern matching on x, obtaining its predeces-
sor x’, and then a second matching on x’, obtaining x”, thereby
decreasing the argument of f by two on each recursive call.

94

NOTES ON THE IMPLEMENTATION

To prove the applicability of our approach to dependent type
checking, we implemented a prototype checker for pure type
systems in Haskell. This chapter describes the implemented
features and the techniques used for the implementation.

8.1 FEATURES OF OUR IMPLEMENTATION

Our rt1s checker implements the basic p1s typing rules, inductive
definitions, case analyses and fixed points as described in the
previous chapter. At this, it is not restricted to a single specific
PTs instance. Instead, it makes use of a configuration file that
lists the sets of

available sorts,

* axioms,

e rules,

¢ allowed sorts of inductive definitions, and
* elimination possibilities.

A specification of the calculus of constructions might look in
the syntax of our implementation as in listing 8.1. This configu-
ration file defines exactly the system used for our examples in
chapter 7.

Listing 8.2 shows a file with some definitions using this config-
uration file. It consists of multiple declarations. We first define
the Peano numbers (lines 1-3), and have the inductively defined
type nat and its constructors zero and succ available in the re-
mainder of the file. Next, addition and multiplication are defined.

sorts: x, #

axioms: * 1 #

rules: (x, %), (#,%), (%, #), (#, #)
idefs: *

cases: (x, %)

Listing 8.1: Specification file for the calculus of constructions

95

11

12

13

14

15

NOTES ON THE IMPLEMENTATION

data nat : * where
zero : nat
succ : nat -> nat

add
= fix f (x : nat) (y : nat) : nat
case y return nat of
zero -> X
succ y’' -> succ (f xy’")

mul : nat -> nat -> nat
= fix f (x : nat) (y : nat) : nat
case y return nat of
zero -> zero
succ y’ -> add x (f xy’")

Listing 8.2: Basic arithmetic in the calculus of constructions

While the definition of mul makes reference to add, it must not use
mul in its own body: recursion must be expressed using explicit
fixed points. It is possible, as done in line 11, to give a type for a
definition, but this is not mandatory, as exemplified by line 5.

Not shown in this example is the possibility to omit not the
type information but the defining right hand side of a declaration.
This introduces a free variable of the given type for the remainder
of the file.

When our implementation is given these two files, it checks
whether all definitions are well-typed according to the prs specifi-
cation file. The type checker is a straightforward implementation
of the typing rules from chapter 7. At its heart lies a function
for the basic rules of figure 7.2, taking the environment and the
expression to check as parameters, and returning either the type
of the expression or an appropriate error message. The only
rule that cannot be directly converted to this functional style is
rule Conv since it would have to guess a type. This rule is not
algorithmic in the sense of Pierce [32]. Thus, instead of checking
B-convertibility in a separate rule, we strongly normalize each
type before adding it to the environment and return only types
in strong normal form.

Before a type is normalized, it is always checked that it is
indeed a legal type, so we don’t need to deal with run time type
errors. Moreover, if the rTs specified in the configuration file is
strongly normalizing, that is, if every expression of the rrs has a
strong normal form, we do not have to fear infinite computations
and non-terminating type checks. It would be easy, but has not
been done, to implement a reduction counter to deal with other
PTs specifications without too long delays for the user of our
system. Instead, normalization continues until either memory is

96

N

w

5

8.2 FIXED POINTS

add: (nat -> (nat -> nat))
mul: (nat -> (nat -> nat))
nat: *

succ: (nat -> nat)

zero: nat

Listing 8.3: Result of type checking arithmetic functions

exhausted or the process is terminated by the user or operating
system.

The normalization during type checking can be done in two
different ways, controlled by command line flags: either by a
byte code interpreter for 1ssTG instructions, or by a translation to
machine code for x86 processors. The machine code generation
is carried out using Harpy [18].

When type checking has finished successfully, the types of all
declared identifiers are printed in alphabetical order. The result
of our running example can be found in listing 8.3.

Some aspects are important for real implementations but un-
necessary for our prototype. So our implementation has neither
a module system nor a garbage collector. Both could be added to
our system.

8.2 FIXED POINTS

Our exposition of pure type systems included fixed points as a
special language construct. This is in contrast to FUN, where we
allowed local bindings to be recursive, but did not have special
syntax to indicate such usage. The consequences are unpleasant:
while it is no problem if the expression to be normalized uses
a recursive definition, we are in trouble when the result of the
expression is itself recursively defined. For example, it is possible
to normalize FUN expressions using a definition of the higher-
order list function map that applies a function pointwise to the
elements of a list. But it is not possible to compute a normal form
for map itself, since the recursive definition would be unfolded
infinitely in this case.

The r1s fixed points have a property that helps us in this
situation: there is a designated argument of the fixed point
— the last one — that must get structurally smaller with each
recursive step. Thus, if this last argument is an accumulator,
further unrolling of the definition does not make sense: the
necessary case analysis on this accumulator would get stuck
anyway. So we unfold fixed points only as long as the last
argument evaluates to a constructor expression.

97

NOTES ON THE IMPLEMENTATION

u == ...
| fixfx=e
k == ...
| (fixpqr)
h == ...
| (fixfx=v) (v’ :-h) v hl = x|
A% = ...
| (fixfx=v)Vv’ | < Ix]|

Figure 8.1: Syntactic changes for fixed points in FUN

We will now show how fixed points can be integrated into
FUN. We introduce new syntax, show how this syntax can be
compiled to 1ssTG code, how the 15sTG evaluation semantics has
to be extended and how fixed points are read back.

8.2.1 New Syntax for FUN

We add fixed points as new A-forms to FUN expressions as shown
in figure 8.1. As all A-forms, these are allocated as closures at run
time.

Moreover, we add fixed points as new 1ssTG accumulators and
new normal forms.

Accumulators for fixed points are built whenever the last argu-
ment supplied to a fixed point is an accumulator. The accumu-
lator built in this situation captures a pointer p to the compiled
code of the fixed point body e, the pointer to the closure of the
tixed point g, and a sequence of argument pointers r. We will
see shortly how these pointers are obtained and used.

A fixed point is an unreducible head when all its arguments
are supplied, the last argument being a head itself. As for all
heads, this forms a normal form, too. But there is a second
kind of normal form for fixed points: an unsaturated fixed point
where not all arguments are supplied. These two kinds of normal
forms are differentiated in syntax, since the former can be used
in function position of applicative normal forms, while the latter
can not.

98

8.2 FIXED POINTS

trB (fix fx=elt) = p

& cs[p — [ARGCHECK x|,
PUSHNODE,
PUSHNODE,
PUSHCONT q
BUILDENV (STACK (3 + [x]))
ENTER 1]

& cslq — [POPNODE] 4 trE e p 1]

& filq — |x|]

where p = (f=1NUMKi—i+1 |1 T x[,1T+x])
n = [ti—=1i]i< 1.0

and p,q fresh

Figure 8.2: Translation of fixed points to 1ssTG

8.2.2 Compilation to 1SSTG

The compilation of fixed points to 1ssTG code is done with the
new clause for trB shown in figure 8.2, extending the definition
of figure 6.3. For the compiled code to work, we add the rules
from figure 8.3 to the transition relation of figure 6.4.

The compiled code for the fixed point first checks whether
all arguments are present with ARGCHECK, just as it is done for
A-abstractions. We then push the current node pointer value
onto the stack for later use in the compiled body e. This saved
pointer has two usages: on the one hand, it is necessary to access
the closure variables t, on the other hand, it is the value of the
recursion variable f. During ordinary evaluation, we can use
the same pointer for both purposes. But during read back, we
will bind f to an accumulator to intercept recursion, while still
needing the fixed point closure pointer to access the closure’s
variables. Thus, we push the node pointer twice using the new
PUSHNODE instruction to be able to exchange one copy during read
back.

The body e gets compiled to a separate code sequence located
at g in the code store, and q is pushed as a continuation. We then
place the last argument of our fixed point, that is found after
three pushes at stack index 3 + [x|, at the top of the stack, and
enter it.

When the last argument evaluates to a constructor, it jumps
to the compiled code of the body e. Since in the original 1ssTG
definition constructors expected pointers to branch tables, and
now find a pointer to a simple code sequence instead, we add a
variant of the RETURNCON transition rule. The code of e is preceded

99

NOTES ON THE IMPLEMENTATION

Code Stack Node Heap
PUSHNODE -:is S P I

— s p-:S P I
POPNODE -:1is q-:S P I

— s S q I
[RETURNCON C] q-:S P r

— s S P I

where cs[q > is]

—

[ACCU] q-:q"-:q"-:q"+S p
— [ACCU] S T r’
where I’ =T U [r —
and filq — |q”[]

(Paccu, (fix q q’ q”))] with r fresh

Figure 8.3: Extension of semantics 1SsTG

with a POPNODE instruction, removing the first of the two copies
of the fixed point closure pointer from the stack and restoring
it as the node pointer for later access to the variables in t via 1.
The second copy stays at the stack and is accessed via p, where
our recursion variable is bound to the topmost stack element,
followed by the arguments x.

When the last argument evaluates not to a constructor, but to
an accumulator, a new rule for the ACCU instruction is used. It
makes use of a new fixed point info table fi, where the number
of the arguments gets stored during compilation. The new rule
then allocates a fresh accumulator, capturing the continuation
address, the fixed point’s node pointer and the arguments for
later read back.

8.2.3 Read Back

For the read back of fixed point accumulators we use rule Fixy,
from figure 8.4 that extends the other read back rules for 1ssTG
from figure 6.6.

We allocate a closure containing only the continuation pointer
to the compiled body, and several fresh variable accumulators for
the recursion variable and the arguments. When the continuation
code at p is executed, it pops the fixed point closure pointer
p’ from the stack, thus gaining access to the closure variables.
Pointer 1 is taken for the recursion variable, thus intercepting all
recursive calls. Here, we have two different pointers, namely p’
and 1, where we had two times the same pointer before, left by the
double PUSHNODE instruction from figure 8.2. The accumulators
located at v’ serve as arguments for the fixed point’s body.

Moreover, we normalize all original arguments p” as usual.

100

83 TRANSLATION FROM PTS TO FUN

Miqep’ v TA:v AP Avipl T AL
F:(fixpp'p”) T Ajpriga = (Fix fx =v)v/

FiXT O

where I'" =T'U [q — (P, Q)][T = (paccu/ <f>ﬂ[1", — (paccu; <X>)]
and q, 1,7/, f,x fresh with |x| = |p”/|

Figure 8.4: Read back of fixed points

Another rule, not shown here, deals with the read back of
unsaturated fixed points. This is done by supplying accumulators
as pseudo-arguments, as it was done for A-abstractions by rule
Lam, in figure 6.6.

83 TRANSLATION FROM PTS TO FUN

The syntax of FUN expressions differs from the pTs syntax in
several aspects. Most superficially, FUN expressions are flat, i. e.
they do not have complex expressions in argument positions, and
constructors and A-abstractions may only occur in the right hand
side of local bindings. However, as already mentioned, it is trivial
to introduce additional local bindings to avoid this limitation.

Another simply solvable problem are the new kinds of names
introduced in rrs definitions. We may find sorts, names of
inductively defined types and variables declared to have certain
types, but given no definition. Fortunately, we are well prepared
for this situation: we allocate an accumulator for each of these
names.

More intricate are the differences regarding two other aspects:
FUN expressions do not have type annotations, while rrs ex-
pressions do. And in FUN expressions, constructors have to be
saturated, while in PTs expressions they do not.

8.3.1 Type Annotations

The first issue is that type annotations may contain an additional
binding construct besides A-expressions, namely dependent prod-
uct types. For the translation of a product ITx : T.T’, we use a
special constructor P with a name that cannot occur in our rrs
files. We then build the constructor expression P (Ax: T.T’) and
translate it as usual. When we face the special constructor P
during read back, we first normalize its argument, yielding the

101

NOTES ON THE IMPLEMENTATION

A-abstraction (Ay : T, . T)}) in strong normal form, and translate
this abstraction back to Ty : T, . T/}

Using this trick we can represent types as FUN expressions. But
we still have to find a way to store them: while it is easy to add
e.g. type annotated abstractions to ssTG2, it is not obvious how
to do this for 1ssTG.

Type annotations occur in the return phrase of case analyses,
at A-abstractions and at fixed points. Each of these corresponds
to a certain kind of wHNF. So we need

* a way to find the compiled type annotation for a given
WHNF, and

* a way to provide an appropriate environment for the type
annotation that may contain free variables as well as vari-
ables bound in the annotation’s context.

For case discriminations, consider as an example the expression
caseeas x return T of ...

where T may contain the free variable x as well as any other vari-
able bound in the context of the expression, that might be used in
the case alternatives as well. When compiling this expression, we
compile T using trE from figure 6.3 with the same stack environ-
ment p’ as the alternatives, and a node environment containing
only x. We then keep a map associating the location of the code
of the translated alternatives with the code of the type annotation.
When we face a stuck case discrimination during read back, we
are confronted with an accumulator (case p of (q,q’)). We then
use a modified version of rule Caseq: besides normalizing p
and the alternatives, it looks up the location of the code sequence
stored for q in our map, builds a closure with a code pointer to
this sequence and a closure data field containing a pointer to a
fresh accumulator (y), and normalizes this closure with a stack
containing q’ to a normal form v. Then the normal form of the
stuck case gets the type annotation as y return v.

For type annotations of abstractions and fixed points we pro-
ceed similarly. Since the bodies of these constructs expect values
for variables in their context in the node environment, we re-use
the node environment of the abstraction’s closure for the type
annotation, providing accumulator values for free variables via
the stack this time.

8.3.2 Constructor Saturation
Regarding constructor saturation, the simplest solution is to n-

expand unsaturated constructors according to their declared type.
However, done without taking some care, this would violate an

102

8.4 TRANSLATION FROM ISSTG TO X86 MACHINE CODE

Register Usage

eax heap pointer

ecx stack pointer

edx stack base

ebx node pointer

esi scratch A and tag return
edi scratch B

Figure 8.5: X86 register usage

important goal of this thesis as described in chapter 1, namely
not to introduce n-expansions during normalization.

Therefore, while we perform an n-expansion, for example from
C to Ax.Cx, we keep track of it by remembering a pointer to
the compiled code for the generated abstraction in a further info
table. When an abstraction is read back, and its code is found
in this table, an n-reduction is performed. Using this table, we
can guarantee that n-redices introduced by a user in his rrs
expressions will be preserved, but no additional n-redices will be
introduced.

8.4 TRANSLATION FROM ISSTG TO X86 MACHINE CODE

As mentioned, our PTs implementation not only can run 1SSTG
instructions using an abstract machine, it also is able to generate
and execute x86 machine code for physical processors. This
section gives some details on the machine code generated from
ISSTG instructions.

8.4.1 Memory Model

During normalization we use one large chunk of main memory.
It consists of 32 bit words aligned at word boundaries. The part
with the lower addresses is used as heap space, while the upper
part contains the stack.

We use six x86 registers as shown in the overview in figure 8.5.
The heap pointer references the next free word of heap storage,
and is incremented at each heap allocation. Closures on the heap
consist of a code pointer for the compiled control expression,
followed by a number of data pointers. Each closure contains at
least one data pointer, using the dummy value zero if none is
needed. Therefore, closures are large enough to be overwritten
by the update routines in the run time system, since indirection
closures need one data pointer to the closure they indirect to.

On the stack, we store pointers to arguments, update frames
and continuations for case discriminations and fixed points. The

103

NOTES ON THE IMPLEMENTATION

topmost element on the stack is referenced via the stack pointer,
decremented at each pushing instruction. This layout allows to
detect memory exhaustion by comparison of the heap and stack
pointer registers.

The stack base register points to the topmost update frame on
the stack. This separates arguments needed for an update from
further arguments to a function.

As in 15STG, the node register references the currently active
closure, allowing access to the free variables” values.

The x86 processor architecture allows no direct memory-to-
memory data transfers. So to push e. g. a value from the current
closure to the stack, we cannot directly copy a pointer within
main memory, but have to load it temporarily into a processor
register. For this, we use two scratch registers. The first of these
serves as a tag return register, too. We will describe in the next
section, what this means.

8.4.2 Translation of Instructions

The 15STG instructions map quite nicely to the x86 architecture
using our memory model. All instructions incrementing the
heap pointer or decrementing the stack pointer have to perform
a check whether this leads to a memory overflow, in addition to
the behavior described below.

ENTER: Three x86 instructions load the topmost stack value into
the node register, increment the stack pointer, and jump to
the code of the entered closure with an indirect jump via
the node register. This is possible because the first pointer
in every closure is the appropriate code pointer.

RETURNCON C: In 15sTG this instruction has three possible con-
sequences. Either an update has to be performed, or the
right branch of a branch table has to be selected, or a code
pointer to a fixed point’s body has to be dereferenced. In
our generated machine code, we collapse these three al-
ternatives. In update frames, we place a code pointer to
an update routine topmost on the stack. Furthermore, we
implement branch tables with code scrutinizing a tag value,
i.e. a small integer. A pointer to this code is pushed as a
case continuation. So in any case, we find a suitable code
pointer on the stack that we can simply jump to. Before we
do this, we only have to load the tag value of the construc-
tor into the tag return register, where it can be found by the
code implementing the branch tables if necessary.

ARGCHECK n: The difference between the stack pointer and the
stack base register is computed. When negative, not enough

104

8.4 TRANSLATION FROM ISSTG TO X86 MACHINE CODE

arguments are present on the stack, and an update is per-
formed.

ALLOC n: The current value of the heap pointer is pushed onto

the stack, and the heap pointer is incremented by n words.

BUILDCLS i p a: The pointer at index i on the stack points to

a freshly allocated closure on the heap. It gets filled with
the code pointer p followed by data pointers found on the
stack or in the current closure as specified by a.

BUILDENV a: The data pointers specified by a are pushed onto

the stack.

PUSHCONT p: Code pointer p is placed onto the stack.

UPDMARK: An update frame is pushed, consisting of three point-

ers. As explained above, the first one is a code pointer to
an update routine for constructors. Moreover, the current
node pointer is placed into the update frame, since this
references the closure that has to be overwritten when an
update is performed. Finally, the stack base register is saved
in the frame, and loaded with the now current stack pointer,
thus referencing the topmost update frame on the stack.
The stack base is later restored from its saved value during
update.

SLIDE n m: We have to keep n stack values that lie atop of m

PAP:

values we want to get rid of. This can be done by a simple
loop moving the kept values by m positions, and a final x86
instruction incrementing the stack pointer.

The update routine of the run time system saves partially
applied functions together with the supplied arguments in
a closure. The machine code for PAP contains a loop to push
all these pointers onto the stack. To determine how often
the loop has to be executed, we save a last pointer with a
numerical value of zero in closures for partial applications.

ACCU: Accumulator closures on the heap contain a code pointer

Paccu pointing to the code sequence [ACCU]. This is the only
place where this instruction is used. When an accumula-
tor is entered, the ACCU instruction stays in control until a
final state is reached: all 1ssTG transition rules keep this
instruction sequence unmodified in the code component of
the configuration. Thus, this instruction builds a kind of a
loop that unwinds the stack and collects the unreducible
expression parts into new accumulators. We implemented
this loop as a recursive Haskell function, and placed a code
sequence at pqccu that ends the execution of the generated

105

NOTES ON THE IMPLEMENTATION

x86 code to start the evaluation of this loop. We chose a
representation for the closure data fields containing accu-
mulators that makes a Haskell implementation as easy as
possible. We use the so-called stable pointers of the Haskell
foreign function interface. We can produce a stable pointer
for any Haskell value, which then can be stored as a 32 bit
word, and which allows to get the original value back. In
our implementation, we represent accumulators as a usual
Haskell data structure, storing their stable pointers after
Paccu in accumulator closures.

PUSHNODE and POPNODE: The current value of the node pointer
register is saved to and restored from the stack, respectively.

85 DESIGN ALTERNATIVES

In an earlier project using our ideas of strongly normalizing
compilation systems, we implemented Ulysses, a dependently
typed programming language [23]. Most aspects of the prs
system presented in this chapter can be found in Ulysses, too.
However, some design decisions were made differently.

In Ulysses we normalized types not to strong normal forms
before adding them to type environments, but to weak head
normal form only. The remaining redices are then normalized
when needed. Such a strategy was used in former literature,
too, see for example Coquand’s description of a dependent type
checking algorithm [9], and allows some failing type checks to be
done faster: when e. g. an inductively defined type is expected,
but a function type is given, the normalization of the function’s
range and domain does not have to be performed. We see no
hindrances to implement this scheme for our rrs checker, too.

Ulysses has no designated fixed point syntax, but uses recur-
sive defining equations instead. Such recursive equations were
also used for the definition of recursive data types. Therefore,
these definitions cannot be strongly normalized. To check recur-
sive definitions for 3-equivalence nevertheless, we implemented a
pointer comparison algorithm for closure graphs based on Park’s
bisimilarity [29]. Closures containing equivalent pointers at cor-
responding positions are guaranteed to evaluate to equivalent
values. However, it was not easily possible to see as a Ulysses
user, whether this algorithm could be employed successfully on
a given type checking problem: while it could detect several
equivalent closure graphs, some equivalent pairs have to remain
undetected in such an approach. Therefore, we judge our explicit
fixed point implementation described here superior.

A third difference between Ulysses and our pTs implementation
is the number of stacks: Ulysses uses two separate stacks, one

106

85 DESIGN ALTERNATIVES

for function arguments and one for continuations and update
frames. This eases the implementation of a garbage collector, but
complicates matters for accumulators considerably. In 1ssTG the
ACCU instruction decides what kind of new accumulator has to be
constructed based on the topmost stack element. With separate
stacks, it is not distinguishable whether a function argument or
a case continuation was pushed last, since they lie on different
stacks. Therefore, the accumulators of Ulysses were annotated
with type information: a function accumulator would grab an
argument from the argument stack while an accumulator for
an inductive data type would look for case continuations. The
freshly constructed accumulator values then had to be given a
appropriate new type annotation.

107

PERFORMANCE EVALUATION

In the preceding chapters we have shown that it is indeed possible
to use our compilation system during the checking of dependent
types for the necessary strong normalizations. In this chapter we
give some performance numbers as an evidence for the efficiency
of our approach. However, our interest here is not a detailed
analysis of performance characteristics, but only an overview
about the order of magnitude of different implementations.

9.1 BENCHMARK SETTING

We measured the running times of three different implementa-
tions of reduction systems.

As our reference for existing checkers for dependent types we
chose Coq. It is a very mature proof assistant with an active
community. Two distinct reduction mechanisms are available to
the user. The default mechanism is an interpreter, in constant
development since the earliest versions of Coq. On user request,
Coq is able to use compiled code for normalizations since version
8.1. This is an implementation based on the ideas of Leroy
and Grégoire [19, 20] which were the inspiration for our work,
too. Here, Coq terms are compiled to instructions for a virtual
machine, which are then interpreted by a routine written in C.
This routine is heavily hand optimized, to the extent that e. g.
annotations assign specific registers for local C variables. The
normalization is done strictly. In the figures of this chapter, we
refer to Coq’s interpreter with the short hand “coq” and to the
virtual machine implementation with “cog-vm”. The version
used for our benchmarks is 8.2pl1.

To give a comparison with a widely used compiler for a lazy
language, we measured run times of Haskell code compiled with
the Glasgow Haskell compiler. This is an optimizing compiler
that uses sTG code as intermediate language, so the generated
machine code is similar to ours, but is not suitable for strong
normalization. We took our timing values using version 6.10.4
and refer to it with “ghc” in the following figures.

The third implementation under test is our own rts checker.
We measured running times using an interpreter of 1SSTG in-
structions as well as x86 machine code generated from these
instructions as detailed before. Both are prototype implementa-
tions lacking two features influencing the benchmarks: as men-
tioned before, a garbage collector is missing, that would add

109

PERFORMANCE EVALUATION

an overhead to the running times. And we implemented no
optimizations, thus losing the opportunity for faster execution.
It is not clear whether the sum of these two effects is positive
or negative. Moreover, the implementation of the 1ssTG code
interpreter was not tuned for performance, so we expect that
it could benefit from a more careful implementation that pays
more attention to efficiency. We refer to our implementations as
“pts-vm” and “pts-x86”, respectively, in the figures.

All timings were done on an AMD Athlon processor, model
4850e, with a clock speed of 2.5 GHz. This is a dual core processor,
but none of the benchmark candidates makes use of more than
one core. The machine was equipped with four Gigabytes of
main memory, running Ubuntu Linux 9.10.

Each implementation was used to run each benchmark ten
times, the times reported in the following sections are the av-
erages of these runs. This was done to cushion the effects of
non-deterministic timings due to e. g. operating system activity.
However, the standard deviations of our measurements show
that these non-deterministic influences were negligible.

Since the measured timings differ drastically between imple-
mentations, we use logarithmic scales in this chapter for graphical
representations.

This chapter gives only short descriptions of the problems used
for benchmarking. For reproducibility the complete source codes
can be found in appendix C.

9.2 PEANO NUMBERS

The first benchmark does some calculations using Peano style
numbers, defined as inductive data types. The source code can
be found in appendix C.1. We define addition and multiplication,
a predecessor function and a higher-order function for iterated
function application. We then build up the number 100 0oo and
compute the 100 oooth predecessor of it. To force the evaluation
in the type checkers of Coq and our pTs implementation, we give
a proof that the result is zero. To verify this, the type checkers
have to normalize the expression for the iterated predecessor
function until they reach zero as a normal form.

The average running times and their standard deviations in
minutes, seconds and hundredths of a second are given in figure
9.1, using the short hand names of the systems as described in the
preceding section. Only the times for the interpreter of Coq are
given in hours, minutes and seconds. Moreover, the figure shows
a visual representation of the measured times on a logarithmic
scale. Our implementations are marked with a shaded bar.

The interpretative approach of Coq is almost prohibitively
slow, taking over four hours. All other implementations are

110

9.3 CHURCH NUMBERS

Name Time 0:00.01 000010 010100 0:10.00 14000 16:4‘0.00 2:4?:40
ghc 0:00.11 —

pts-x86 0:00.11 o

cog-vim 0:00.36 —

pts-vi 1:01.62 o ——

coq 4:16:36 [

Deviation

0:00.01
0:00.01
0:00.04
0:00.18
0:00:48

Figure 9.1: Arithmetic with Peano numbers

very fast in comparison. On the one hand, this is clearly a
weakness of an interpreted implementation. But another design
decision contributes to this long running time: the expressions
are not normalized in one go, but the interpreter of Coq applies
a heuristic to delay the unfolding of definitions, checking for
a-convertibility, and normalizing further if this check fails. Since
this check cannot succeed before the normal form is reached in
this example, this work is in vain.

Equally fast are the machine code implementations of the
Haskell compiler and our pts checker, taking about a tenth of a
second each. This is unsurprising, since the generated code is
similar, and the special provisions for strong normalizations are
not needed in this benchmark.

The Coq checker using the compiled normalization is in the
middle field, clearly outperforming the interpreter.

This test shows that it is indeed beneficial to switch to compiled
code for normalization in dependent type checkers, and that our
approach leads to a competitive candidate for fast implementa-
tions.

9.3 CHURCH NUMBERS

While the previous benchmark focused on the efficiency of in-
ductive data structures, fixed points and case analyses, the next
one focuses on function applications. We again use the iteration
of the predecessor function as a test, but this time numbers are
represented by Church numerals. The source code of the this
benchmarks can be found in appendix C.2.

Since this involves the normalization of abstractions, some-
thing not possible with native Haskell, we implemented untyped
normalization by evaluation for this benchmark. Since the simple
implementations from the literature [2, 16] only deal with the
very restricted syntax of the untyped A-calculus, we mechanically
generated an expression using abstractions as substitutes for lo-

111

PERFORMANCE EVALUATION

Name Time 0:00.01 010010 010100 0710.00 1:40.00 16:4{0.00 2:4?:40 Deviation
pts-x86 0:00.35 [— 0:00.04
cog-vm 0:00.74 — 0:00.06
ghc 0:02.67 — 0:00.02
pts-vm 1:34.15 e 0:00.14
coq 40:46.33 [0:06.55

Figure 9.2: Arithmetic with Church numbers

cal definitions of the arithmetic functions: let x = e in e; is
expressed as (Ax.ez)eq.

The average running times and their standard deviation of the
computation of the 1000th predecessor of 1000 are shown in
figure 9.2.

The interpretative approach of Coq is again slowest, taking
about forty minutes. All other implementations are much faster.

At least in this benchmark, approaches using accumulators
and adapted compilers, namely the virtual machine of Coq and
our x86 machine code generating rrs checker, beat untyped
normalization by evaluation. We suppose that this is due to the
administrative layers needed to discriminate between what is
called syntactic and semantic terms in this approach.

So this test affirms that our approach is viable. For the normal-
ization of church numerals, our implementation of accumulators
was used to be provided as pseudo arguments. Apparently, there
is no large performance penalty in computations employing ac-
cumulators, that could prevent their application.

9.4 INTERPRETATION OF THE RESULTS

These benchmarks show that, while the timings of the interpreter
for 15sTG instructions could benefit from an implementation tak-
ing more care for efficiency, the machine code generated from
ISSTG instructions is very competitive. At least in the two scenar-
ios presented, our approach is significantly faster than the type
checker of Coq.

Of course, these two simple benchmarks cannot give an ex-
haustive comparison of the considered implementations. But
the main focus in these tests were also the main ingredients of
functional languages: with Peano numbers, we tested the effi-
ciency of constructors, case analyses and fixed points, and with
Church numbers, we looked at the performance of function call
implementation. So in the core features of functional languages,
our implementation shows very good first results.

112

9.4 INTERPRETATION OF THE RESULTS

Moreover, the 1ssTG compilation had to sacrifice some clever
implementation opportunities, as e.g. complex expressions in
function or scrutinee position to allow a strong normalization.
The Glasgow Haskell compiler can of course exploit them freely.
Nevertheless, the impact is at least not large enough to show up
in our benchmarks.

The heuristics employed by Coq seem to hinder efficient re-
sults in these two arithmetic scenarios. However, in certain sit-
uations, they prove beneficial as well. It is possible to include
such heuristics in our approach, too, in the same way as they
were included by Grégoire [19]: some defined variables can be
replaced by accumulators to avoid their unfolding. After read
back, an «-conversion check can be performed, and if it fails, the
original definition can be put back into place, performing further
reductions. However, we did not implement any such heuristics.

113

CONCLUSION

It’s been a long journey, but finally we reached our goal. We
have shown that it is possible to construct a compiler that pro-
duces code suitable for strong normalization. The resulting sys-
tem is based on the sTG machine, a standard approach for lazy
functional languages. Since the sTG machine in its original pre-
sentation only performs weak normalization, several problems
had to be solved. Weak normalization does not proceed under
A-abstractions and case analyses, and thus avoids the problem
of free variables in redices altogether. We adopted accumulators
to have a run time representation of free variables and unre-
ducible head values to solve this problem. Moreover, the results
of a weak normalization may contain further redices. Therefore,
we adapted a read back relation that extracts such redices and
normalizes them.

We obtained the compilation system by a derivation involving
several steps. We defined a high level semantics s4 that is easy
to understand, and transformed it via ssTG1 and sSSTG2 to I1SSTG,
a small-step operational semantics using an instruction set for
an abstract machine resembling actual processor hardware. This
derivation allowed us to judge the correctness of our approach.

That our approach is not only correct, but indeed usable for
dependent type checking, has been exemplified by our implemen-
tation of a checker for pure type systems. At this we could show
that compilation does not have to stop at abstract machine code,
but that code for physical processors may be used as well. A first
glance at some performance figures shows that our normalization
system not only fulfills its intended purpose, but it does so with
quite good efficiency.

To our knowledge, we presented the first system using com-
piled code for lazy strong normalization used in a dependent
type checker.

10.1 FUTURE WORK

The foundation of a compiling normalization system has been
set. Now the construction of a whole infrastructure can begin.
We excluded a module system and a garbage collector from our
considerations. Many features of modern functional languages
were ignored: primitive values that provide efficient implemen-
tations of numerical types, type classes that allow more flexible

115

CONCLUSION

definitions, and co-inductive definitions together with co-fixed
points, to name just a few.

Moreover, we were content with a very simple machine code
generation back end. There is a plethora of published optimiza-
tions for sTG code. This extensive literature has to be screened for
optimizations applicable for our strongly normalizing system to
further enhance performance. Another approach to optimizations
can be found in the work of Brady [8], who uses information from
dependent types to produce better code. Our system regards
types merely as annotations, without considering them for code
generation decisions.

So it is not enough to be satisfied with the performance of the
machine code we generated, but it is time now to further connect
the research of dependent type checking with the results of the
field of compiler construction and programming languages.

116

Part IV

APPENDIX

EQUIVALENCE OF S4 AND SSTG1

In this appendix, we give the detailed proofs of the equivalence
of s4 and ssTG1.

A1 COMPLETENESS OF WEAK EVALUATION

We show that sstG1 is complete with respect to s4, i.e. that
whenever some expression e is weakly evaluated to some WHNF
located on the final heap at some address p, then e can be weakly
normalized using ssTG1 to an equivalent WHNF, possibly located
at a different location on the heap in the case of A-abstractions.
For easier reference, we repeat lemma 4.3 (page 51) here.

LemmAa (Completeness of weak evaluation) Whenever I':e | A:p
holds, then for any T’ with T ~ T there is a heap A" with A ~ A/,
a pointer p’ and a sequence of pointers q such that for any stack S
semantics ssTG1 allows the reduction T' :e:S —=* A’ :p’: q+ S
with

x,y,e’ . Alp—Ay.e'lq/x]] N A'lp’ — Axy.e']
P’ Ap = Cp I Ap=p' A q=90
k Alp—Xkl ANp=p" N q=9.

Proor The proof proceeds by induction on the size of the proof
of ':e | A:p,i.e. onthe number of inference rules used. A case
differentiation on the rule used at the root of the derivation tree
gives the following cases.

Lam: We have I' : p | T : p with T'[p — Ax.e]. Because the
judgment is well-formed, we have p € Py, and thus also
I'M[p+— Ax.e] because I' ~T’. Then, ' :p:S =*T":p:S
in zero steps.

Cons: We have I' : p | T : p with T'[p — Cp’] and thus also
I'[p+— Cp'l because I' ~T'. Again, " :p:S —=*T":p:S.

Var: Wehave TU[p — el :p | AU[p — % gl : . Rule var(!
gives "Ulp — el :p:S — T :e:#p-:S. From the
induction hypothesis of the premise I': e | A : q¢ we have
M:e:#p-:S =* A’ : q' : v+ #p-: S with one of the
following three cases.

1. Alq — Ay.elr/x]] A\ A’l[q’ — Axy.e]: then we have
A:q ir4#p-S—>AUlpeq'rl:q i+ Sby
rule var(?).

119

EQUIVALENCE OF S4 AND SSTG1

2. A'lq" = Cp'l A q' =q /A r=90: then the reduction
A':q:#p-:S—A'Ulp— % ql:q:Sis possible by

rule var(3).

3. A'lg' =Kl AN g’ '=q ANr=0: thenA’ : q:#p-:S —
A'Ulp+ 3 ql:q:S by rule var(®.

Ind: Wehave I':p | T': q with I'[p — % ql. From I' ~ T’ we get
three cases.

1. Tl[g—= Ay.elr/x]] AT [p=q'r] AT/[q" — Axy.el:
thenT/:p:S—T':q'r:S—T':q": v+ S by rules
var®) and app!).

2. T[q—= Cp'l AT[p—% ql A T/[q— Cp'l: then we
getl":p:S—T'":q:S from rule ind.

3. T[q— kI AN T/[p— 9% q N T'"[qg — kl: then also
IM:p:S—T’:q:S by rule ind.

App"): Wehave':ep | AU[r— Ay.e’[p/x]] : . Rule app!"
givesT" :ep:S — T :e:p+ S. From the induction
hypothesis for the premise I' : e | A : q we get the reduction
sequence I'" : e : p4# S =* A’ : v/ : p' 4 p+ S with
A'lr = Ax'xy.e”] and e”[p’/x'] =e’. Since A ~ A" and
r€ P, wehave AU[r — Ay.e'[p/x]] ~ A"

App?): We have T': epp’ | © : 1. From rule app'") we have
I":.epp’ :S —=T":e:p+4 p’'# S. The induction
hypothesis for I': e | Alq — Ax.e’] : q gives the reduction
sequence I :e:p+p'+S—=>"A":q :p"+p+p'+S
with A’[q" — Ax'x.e”] and e”[p”/x'] = e’. We next get
Al - q/ . p//_H_ P+ p/_H_ S v A e”[p”/x’][p/x] IPI-H— S
from rule app(?). The induction hypothesis for the second
premise A : e’[p/x] | © : r gives a further ssTG1 sequence
A e[p” /X Np/xIp’:S —=* O :r":rv” 4 S. The first step
in this reduction sequence can only be performed by rule
app'!), and we obtain by stripping this first step the final
reduction A" : e”[p”/x'llp/x] : p" 4+ S =>* O :v':v" 4 S.

Let: We have I' : let x = lf ine | A : g. Rule let gives us
IM:letx=1fine:S — T U[p — Ulp/x]] : e[p/x] : S. The
induction hypothesis for 'U [p — U[p/x]] s elp/x] L A: q
then gives " U [p — Uf[p/x]] s elp/x]: S =* A" :q': v+ S
as needed.

Case!’): We have I' : case e of Cx->e | © : . Rule case(!)
gives " : case e of Cx->e:S - T":e:Cx->e-:S.
Moreover, the induction hypothesis for the first premise
el Ap— Cip'l:pgivesusT’:e: Cx->e-:S —*
A" :p:Cx->e-: S with A'lp — Cip’]l. Then by rule
case? A’ :p: Cx->e-:S = A’ : ei[p’/xi] : S. The

120

A.2 COMPLETENESS OF READ BACK AND NORMALIZATION

induction hypothesis for A : ei[p’/xi] | © : q finally gives
Aeilp’/xil:S—=*0":q": v+ S.

Accu: We have I' : p | T : p with T'[p — k. Since I ~ T’ also
IMp+—klholdsand I'" : p: S —* I : p : S in zero steps.

AppB3): Wehave I': epp’ | © : s. From rule app!') we obtain
IM":epp’:S—=T':e:p-:p + S. The first premise
of App®®) I': e | Alq +— k| : q gives with the induction
hypothesis " : e : p-:p’#+ S =* A" : q :p-:p'# S
with A’[q — k]. Then we have a next sstG1 reduction step
Al:q:pip'+S =AU~ (qp)l : 7: p'+# S by rule
app®). From premise AU[r — (qp)l:vp’ | @ : S we get
with the induction hypothesis a further reduction sequence
AU {(gp)l:rp’:S—=*0O":s":p” + S. Since the first
step in this reduction sequence has to be an application of
rule app(!), we can strip this step and get the remaining
sequence A'U[r— (qp)l:r:p'+S—=*0":s":p”+S.

Case(?): In this final case of our discrimination, we consider
I': case e of alt | AU[q — (case p of alt)] : q. Rule
case(V gives " : case e of alt: S — T :e: alt-:S. The
induction hypothesis for the premise I' : e | Alp — k] : p
gives " :e:alt:S —=* A’ : p:alt-: S with A'l[p — Kkl
Thus A’ :p:alt-:S— A’U[q — (case p of alt)]: q: S by

rule case(3). O

A.2 COMPLETENESS OF READ BACK AND NORMALIZATION

Before proving the completeness of read back and strong normal-
ization, we need to state a helping lemma about the read back of
A-abstractions.

LEMMA A.1 Whenever T'[p — Ax.eland T : p 15% A : v, then there
are T, q,y and v' such that v=Ay.v’ and

rulq— (y)l:elq/x1 3% AV,

and for all T", T'~T" & T ~ T, At this, the normalization in the
conclusion can be done in strictly fewer steps than the read back in the
premise.

ProoF (Sketch) By induction on the length of x. The heaps I'
and I’ differ only by allocations of pointers from P, for par-
tial applications when not enough accumulators are present as
pseudo-arguments. O

Next we show the completeness of read back and strong nor-
malization of ssTG1 with respect to s4, that is, we show that every
strong normal form obtained using s4 can be obtained using

121

EQUIVALENCE OF S4 AND SSTG1

ssTG1 as well. We repeat lemma 4.4 (page 51) here, before giving
the detailed proof.

LEmmMA (Completeness of read back and normalization)
The following three propositions hold:

e Whenever T' : p 1%% A : v, then for any T’ with T ~ T/ there is a
heap A" with A ~ A’ such that

3 y,e . Tlp—Ay.elA
vVq,q’,x,e" .T'[q— Axy.e’]
Ne=c¢e'[q'/x]
:r/:q:q/TsSTGIA/:v

Cp' . Tlp—=CpI AT ip: O™ A 1y

V
\V4 k . Tlp=K AT ip: O A v,

3
3

* Whenever " : k T?‘; A :h, then for any T with T' ~ T there is a
heap A" with A ~ A" such that T : k 1570 A' : h.

* Whenever T : e [5 A : v, then for any T'" with ' ~ T/ there is a
heap A" with A ~ A" such that T : e : § 7571 At v,

Proor The proof proceeds by simultaneous induction on the
number of inference rules used for the proofs of the relations 14,
154 and 15, We focus on 154 first. A case differentiation on the
rule at the root of the proof tree gives following cases.

Lamyss: We have I': p 1% A: Ay.v with T'lp — Ax.e]. Assume
I with ' ~ T'". From lemma A.1 we getI'”, r, y’ and v’ with
Mulr— (yHl:elr/xI 3% A:v' and ' ~ T'. We now get
Mulre (yHl:elr/x]: O % A’ : v/ from the induction
hypothesis. This can only hold because of rule Norm, thus
we also have U [r — (y')] :elr/x] : 0 =* O : v/ : " with
WO :r':r")and © : v/ : v/ 5STCT AT 1/,

Next assume ¢, q’, z and e” with T''[q — Azx.e”] and
e =-¢e"[q'/z]. Thenwe getT"U[r — (y):q:q" 4+ 1 —
rMulr e (y"l:e”lq’/zllr/x] : O by rule app'?). Thus we
have I"U[r— (Y) :q:q' 4 r ¥ A v/,

Finally, applying rules Lam; and Norm [x| times, we get
I":q:q’ 3™ A’ : Ay’ .v/ where Ay’ .v/ = Ay.v due to
the results of lemma A.1.

Consysi: We have T7 @ p 1% Tgq41 @ Cv with Ti[p — Cql.
Applying the induction hypothesis on all premises, and

then rule Consqssic gives 'y 1 p : ¢ 1557 rllql 41:Cwv

Accuyss: We have I' : p 1% A : v with T'lp — k]. Applying the
induction hypothesis on the premises I' : k T?‘; A:v, and
then rule Accuyssiar gives I' :p 0 O 19571 A/ 1y,

122

A3 SOUNDNESS OF WEAK EVALUATION

Focusing on T?‘; next, we have to consider following three cases.

\/arTs4: trivial.
0

Appﬁ?: A simple application of the induction hypotheses gives

the desired result.

C aseqes: The read back of a stuck case discrimination gives

Mp — kl : (case p of alt) T?‘; Ajqrt|+1 : case hof Cy->v.
The first premise I' : k T?‘; A7 : h together with the induction
hypothesis gives I'" : k 17" Af : h.

Then we apply the induction hypothesis on the premises
for the normalization of the case branches, thus obtaining
A{ Uy : case p of alt : ¢ I*7°" A{,; : v;i. Inversion of
Norm gives A/ U®{ : casep of alt: O =* A” :r:v’. The
tirst step of this reduction sequence must be an application
of rule case!l), if we drop it, we get A/U®O! : p: alt-: O —*
A" :r:r"and from this A{UG{ : p: alt = ¢ 57T Al | 1 vy,

Thus T’ : (case p of alt) (i Algigj4q s casehof Cy->v
by rule Caseﬁ?rm.

Finally, we look at normalization 4, where only one rule has to
be considered.

Norm: We have I' : e [* © : v and the premises ': e [A : p

A3

and A : p 1% O : v. From the first premise and lemma 4.3
wegetl:e: 0 —=*A’:p’: qand one of three cases.

e Alp—Ay.elq/x]] and A'[p’ — A.xy.e], or
e Alp— Cp”landp=p’and q = O, or
e Ap—kland p=p’and q = 9.

In each of these cases, W(A’ : p’ : q) holds, and we can
conclude A’ : p’: q 1% © : v from the induction hypothesis
and finally I'" : e : 7%™* @’ : v by rule Norm for ssTG1. [J

SOUNDNESS OF WEAK EVALUATION

In this section we give the proof of soundness of weak evaluation
using ssTG1 with respect to s4, i. e. we show that for each wHNF
reached by weak evaluation with ssTG1, an equivalent WHNF can
be obtained using s4. We repeat lemma 4.6 (page 52) here for
easier reference.

LEmMmA (Soundness of weak evaluation) For any balanced reduc-
tion sequence of sstG1 (I, e,S) —=* (A, p, q+ S) with W(A,p, q), for

123

EQUIVALENCE OF S4 AND SSTG1

all heaps T with T ~ T there is a heap A" with A" ~ A and a pointer
p’ such that s4 allows the deduction of T' : e | A’ : p’ with

3 x,y,e’ . Alp—Axy.e’] AN A'lp’ —Ay.e'lq/x]]
vV 3 Cp” Alp— Cp"l Np=p’
Vo3 k Alp—kl N p=p

Proor The proof proceeds by induction on the length of the
reduction sequence of ssTG1, assuming the induction hypothesis
for all shorter balanced sequences.

We first consider the case of zero step reductions, where we
have (I',p,S) =* (T, p,S). Here, W(T, p, {) gives three subcases.

I'p — Ax.el: We have I'[p — Ax.e] from I'" ~ T, thus we get
I":pl T’ :p from rule Lam.

I'p — Cp”]: same argument using rule Cons.

I'lp — k]: same argument using rule Accu.

For reduction sequences that have at least one step, the first
step must use one of the rules varM, ind(M, ind®, appm,
let or case(!). All other rules remove elements from the stack,
breaking the balancing of the reduction sequence.

vartD: This rule puts an update frame #r onto the stack in the
first step. Since this update frame is not present on the
final stack, there must be an application of one of the rules
var(?), var(®), var®) in the remaining sequence, because
only these rules remove update frames from the stack. The
part of the reduction sequence after pushing and before
popping the update frame is balanced, with a common
stack suffix of #r-:S. We consider the three cases of the
possible rules responsible for popping the update frame.

var(?): The reduction sequence starts with the following
steps, ending with rule var(2):

Fulr—e'], T, S)
T, e/, #r-:S)
O’ — Axy.e"’]l, v/, v"4#r-:S)
QUIre 1’1", ', " 48§).

— — —~

L4

No further steps may follow, since any applicable rule
in the last configuration above would remove elements
from S, making the sequence unbalanced.

The induction hypothesis for the part of the sequence
where #r is present gives I'" : ¢’ | O’ : v/ with
©'[r"" — Ay .e'[r"/x]]. Using rule Var we finally get
Mdr—el:r]lO U],

124

A3 SOUNDNESS OF WEAK EVALUATION

var(3): The reduction sequence starts with the following

steps, ending with rule var(3):
(TUlr—e€l, r, S)
— (T, e/, #r:S)
—* (e’ —Cr"], ~+/, #r:S)
- (OUlr—%1], 1, S).

No further steps may follow, since any applicable rule
in the last configuration above would remove elements
from S, making the sequence unbalanced.

The induction hypothesis for the part of the sequence
where #r is present gives ' : ¢’ | ©" : 1/, and from
rule Varwe get " U[r — el :r @' U[r— %+ 1'] 1.

4)

var®): same argument as in the case of var3®), with an

accumulator in place of the constructor expression.

ind("): The reduction sequence starts with

(Tp—%71l, p, S)
- (T, r, S).

From I'" ~ T we get two cases.

I'lr— Cp”] and I'[r — Cp”]: No further reductions are
possible without making the sequence unbalanced. We
have I'" : p | T : r by rule Ind.

I'r — k| and I'[r — k]: same argument as in the last
case, with an accumulator in place of the constructor
expression.

ind(?): The reduction sequence starts with

(

peel p, S)
— S

p e’,).

From I'" ~ T we get ¢’ = r1’ and I'lr — Ayx.e”], more-
over I'[p — & r’] and T'[v" — Ax.e”[r'/yll. Thus, the
reduction sequence continues with

I
I

(r, rr, S)
- (T, r+S).

No further reductions are possible without making the
sequence unbalanced. We have I'" : p | T : v/ by rule Ind.

app'V: The reduction sequence has the shape

—
-

e'r, S)
e/, r+S)

— T,
=* (A, p, q+S).

125

EQUIVALENCE OF S4 AND SSTG1

126

The function arguments r might stay on the stack during the
whole rest of the reduction, or (parts of) r could be removed
from the stack before reaching the final configuration. The
removal can be done in several chunks, taking the first
arguments from the stack several steps before grabbing
additional arguments. So we can consider r composed of
chunks 1! 4 12 4 ... 4 r™ such that the last chunk stays
on the stack and the other ones, if any, are removed by one
application of rule app?) or app®) per chunk. No other
rule is able to remove function arguments from the stack.
So the reduction sequence after pushing r has the shape

(r, e, rTr 4TS)
= (0, pY, rTartariy 4SS)
- (% e v . T HS)
- Ty e, rtgrttl 4 S)
= (6L, pL, o grtgrttl e S)
— (T et e 4 S)
—=* (er, pt 44)

where the first configuration is equal to (I, e’, v 4 S) and
the last configuration is equal to (A, p, g 4 S).

So in a first multi-step sequence e’ is evaluated in a bal-
anced reduction sequence during which some additional
arguments 1 might get pushed onto the stack. In the next
step, using app(z) or appm, the arguments r’ ! 4 r! are
consumed. The evaluation of e? might in turn push again
some additional arguments, again consumed by app(?) or
app®) together with the next chunk, and so on.

We prove by induction on this structure that when

(1Y et rigrttT 4 S)
—=* (e, pt 4t 4SS)

we have for all 't with T’* ~ Tt some ©'™ and p’™ such that
r/i . eiriri+1 R \L @ln :p/n

and the conclusion of the soundness lemma holds for @™
and p’™. Note that from the result of this inner induction
we directly get "' : e/ | A’ : p’ as required.

In the base case, we consider the last part of above parti-
tioning of the reduction sequence, i.e.

(I, e™, r™m+4S)
=* (e pt, 44 S).

A3 SOUNDNESS OF WEAK EVALUATION

This reduction sequence is balanced, thus the induction
hypothesis of the soundness lemma applies and gives the
desired result.

In the inductive step, the first part of the reduction sequence
from I'* to ©' is balanced. The stack suffix of all intermedi-
ate configurations is r' 4 ...+ r™ + S. Thus, the induction
hypothesis of the soundness lemma gives "'t : et | @t : p't.

The last part of the reduction sequence from I'*! to O™
then gives I'"+1 : ei+1 ¢it1 ¢ | @™ :p/™ by the inner
induction hypothesis.

These two evaluations of s4 can be combined to a bigger
deduction. We consider two cases according to the rule
responsible for the removal of the arguments from the
stack.

app(?): We get '*1 = @, moreover ©![pt — Axy.e't*1]
and e'*! = e/t 1[r’! /x][ri/y]. For the evaluation with
s4 this implies that @'} [p’t — Ay.e’™1[rt/x]] holds.
Thus, rule App(?) is applicable and gives the desired
deduction.

app'3): We have @![p! — ki]. Since 1’ Y4 rtis removed
completely from the stack, it contains only a single
element v/*. Thus, I'*! = @'U [q! — (pr”1)] holds
such that rule App(3) applies and gives the desired
deduction.

let: The reduction sequence has the shape

(T, letx=1fine, S)
— (TUlr— Ur/x]], elr/x], S)
—* (A, P, q+S).

We get I'"U [r — Uf[r/x]] : e[r/x] | A’ : p’ from the induc-
tion hypothesis and then " : let x =1f ine | A’ : p’ from
rule Let.

case!V: The reduction sequence has the shape

(T, caseeofalt, S)
= (T, e alt :S)
=" (A p q+S).

Since the alternative branches alt are not present on the
final stack, there must be some intermediate step where
they are popped. This can be done only by rule case(?) or

casem.

127

EQUIVALENCE OF S4 AND SSTG1

case!?): The last part of the reduction sequence has the

shape
(T, e, alt :S)
=" (O Cir'], T, alt :S)
- (6 ellr’'/xil, S)
= (4, P, q+S)

where alt; = Cix; ->e{. The induction hypothesis
givesT':e | © :rand O : e[r'/xi] | A’ : p’, thus we
get I : case e of alt | A’ : p’ by rule Case(!).

case(®): The last part of the reduction sequence has the

shape
(T e, alt:S)
—* (Olr—Kkl, r, alt-:S)
— (QU+ (caserofalt)], 1/, S)

where the last configuration is equal to (A,p,q + S)
since no further reductions are possible without short-
ening S. The induction hypothesis gives " : e L ©' : 1,
so we can conclude ' : case e of alt | A’ : v/ by rule
Case'?). O

A.4 SOUNDNESS OF READ BACK AND NORMALIZATION

Before we can prove the soundness of the read back and strong
normalization relations for ssTGi, we need to state a helping
lemma on the read back and normalization of A-abstractions.

LEMMA A.2 Whenever T'[p — Axy.eland T : p : p’ 1571 A 1 v,
then there are , z and v’ such that v =Xz .v’ and

rulg— (z)l:elp’/xllq/yl: O 3 A/,

At this, the normalization in the conclusion can be done in strictly fewer
steps than the read back in the premise.

Proor (Sketch) The proof proceeds by induction on [y}, i.e. the
number of missing arguments for the A-abstraction. O

Now we can show the soundness of read back and strong
normalization using ssTG1 with respect to s4, that is, that every
strong normal form obtained using ssTG1 can be obtained with s4
as well. We state lemma 4.7 (page 53) again for easier reference.

LEmMMA (Soundness of read back and normalization) The follow-
ing three propositions hold:

128

A4 SOUNDNESS OF READ BACK AND NORMALIZATION

e Whenever T' : p : q' 157" A : v, then for any " with T' ~ T
there is a heap A" with A" ~ A such that

3 x,ye . Tp—Axy.e A
Vq.T'lg—Ay.elg’ /x| =T :q14 A" v
V 3 Cp' . Tlhp=CpITAT ipts4A v
Vo3 ok L The K AT p14A .
* Whenever T : k 1357 A < h, then for any I with T" ~T there is
a heap A" with A’ ~ A such that T : k 173 A’ h,

® Whenever T : e : O 57 A1 v, then for any T with T' ~ T there
is a heap A" with A" ~ A such that T" : e % A’ : v,

Proor We prove all three proposition by simultaneous induction
on the number of inference rules used.

Starting with the read back relation 1°°™', we consider three
cases for the possible deduction rules.

Lamyssci: We have I'lp — Axy.el :p:q’ 17" A: Az.v, and
lemma A.2 gives TU [r — (z/)] s elq’/x][r/y] : O 57T A v/
withAz.v=Az" V.

Now assume I'" with I’ ~T'and I'[q — Ay .elq’/x]]. We
define I'”’ as

I u [r—(z"]
U [r;—=Ayz...yn.elq’/x][r1/y1]]

U [y = Ayn.elq’/x]lri/yal... Irn—1/yn—1]]

where n = |y| and 1’ fresh from segment P,. That is, I'”
binds the results of partial applications at addresses 1/,
as it is done in s4 evaluation. Now from the induction
hypothesis we get I'’"" : e[q’/x][r/y] {** A’ : v'. By applying
rule Lamys n times and App!!) n— 1 times, we finally get
Ieqtsy A" Az V.

Consyssei: Applying the induction hypothesis to the rule’s
premises and finally rule Consys; gives the desired result.

Accuyssian: Apply the induction hypothesis to the rule’s premise
and finally rule Accuys.

Next, we focus on the read back helper relation for accumula-
tors 1°°7*, considering three cases for three possible deduction
rules.

VaTTssrcl : trivial.
0

Appﬁ?m: A simple application of the induction hypotheses to
the premises gives the desired result.

129

EQUIVALENCE OF S4 AND SSTG1

Cas epssrer For the premises, note that

AU :p:alt-: O iSSTGI Aiy1:vi
implies
A;UB; :case p of alt: O %" Aiiq:vy,

since the beginning of the ssTG1 reduction sequence in-
volved can be extended by a further step using rule case(!):

A;UB;:casepofalt: 0 - A;UB; :p:alt-: 0.

Applying the induction hypothesis to this modified premise
and the premise for the normalization of the scrutinee
gives, together with rule C aseﬁ?, the conclusion of the

proposition.

For the proposition on strong normalization, we use inversion

on the single deduction rule of

issnn

Norm: We have I': e : { 157" A:v and from the premises the

130

reduction sequence (I, e,) —* (0,p, q) with W(O,p, q)
and the read back @ : p: q 15" A: .

Lemma 4.6 gives I'" : e | ©' : p’ and in each of the
three cases for the possible weak normal forms, i.e. A-
abstractions, constructor expressions or accumulators, the
induction hypothesis for the read back applies such that
rule Norm for s4 can be applied. O

PARTITIONING OF SSTGz2 AND ISSTG REDUCTIONS

For the proof of equivalence of the weak evaluation using ssTG2
and 1sSTG we need to assign to each reduction sequence reaching a
legal final state of one of the semantics a corresponding sequence
using the other semantics. In this appendix we give for each
possible corresponding pair of ssTG2 and 1SsTG configurations
a sequence for each semantics, leading to a new corresponding
pair of configurations.

All segments shown are either only one step long or pass
through intermediate configurations that are clearly non-final.
Additionally, all our rules are deterministic. Thus, given a se-
quence reaching a legal final state in one semantics and a cor-
responding initial configuration in the other semantics, we can
divide the sequence along the segments, and build up a sequence
in the other semantics.

We give the segments in the order of the sstGz rules from figure
5.2, listing the ssTG2 segment first, followed by the corresponding
IsSTG segment. Since the 1ssTG configurations consume much
space due to their instruction sequence, we only show the first
instruction of each sequence. The whole instruction sequence
can be reconstructed by considering all configurations shown in
a segment.

It is easy to check that, under the assumption that the initial
configurations in the following segments are corresponding, the
final configurations are corresponding, too. However, one has to
take all side conditions and equations resulting from the transla-
tion from figure 6.3 and the semantics ssTG2 and 1ssTG, given in
figures 5.2 and 6.4, respectively, into account.

B.1 LIST OF SEGMENTS

* When entering a thunk, an update frame is pushed, and
the entered closure is deallocated by ssTG2.

(TUlp— (e, EN], x, Elx — pl, S)
— (T, e, E/, #p-:S)

var(l)
Correspondingly, the code pointer of the current closure
is overwritten with pyn by 1ssTG, while the same update
frame is pushed.
([UPDMARK,...], S/, p, T'Ulp — (pc,q)])
— (trEepgm, #p-:S’, p, T'"Ulp = (por, q)]).

131

PARTITIONING OF SSTG2 AND ISSTG REDUCTIONS

¢ When execution reaches an abstraction, a check is per-

132

formed whether enough arguments are present on the stack.
If this check fails, a non-updating application closure is con-
structed in ssTG2.

We use the abbreviation E” := [x — p] U [x' — p’].

(Tlp— (Ax.e, E')], x, Elx = pl, p’ 4 #q-:S)
— (Tulg= (xx, B, xE,p"+S)

var(2)
In 15sTG the failing check results in overwriting a closure
with code pointer pyy, that must have been created when
pushing the update frame, with a partial application with
code pointer ppqp. Due to the configuration correspon-
dence, we have an instruction sequence
is = [ARGCHECK |x|] 4 trEepn
in this case.
(is, p’ 4+ #q:S’, p, T'UIq = (Pon, T)])
= (s, p'+ S, p, T'Ulg = (Ppap, PP
A constructor finding an update frame instead of a sequence
of alternatives on the stack in ssTG2 creates an indirection
% p.
(Tp — (Cy,E)], x, Elx — pl, #q-:5)
- (Tulg—=%7pl, x E 9S)

var(3)
Compiled constructors in 1SSTG create an indirection using
Pind, again overwriting a closure containing pyr. Due to
the definition of configuration correspondence, we have

is = [RETURNCON C]
in this case.
(:LS, #q ‘:S// P, r/ U [q — (pbh/r)])
— (i‘sl S,I P r, U [CI = (pind/p)])
Accumulators create indirections in ssTG2 using 3 p when
facing an update frame.
(Tlp — kI, x, Elx — pl, #q-:S)
- (Tulg—%7pl, x, E, S)

var®)
In 1SSTG ping is used instead, overwriting a closure contain-
ing Poh.
([accu], #q-:S', p, T'UI[q = (poh,1)])
— ([accu], S/, p, T'Ulg — (pina,P)])

When execution reaches an indirection, the target of the
indirection is entered.

B.1 LIST OF SEGMENTS

(Tlp— % ql, x, Elx —pl, S)

— (I x, x'—dql,9)
ind(

The code sequence allocated at pin g leads to the same effect,
but needs two steps. The instruction sequence is of the final
configuration corresponds to the control expression of the
ssTG2 closure at q due to the heap correspondence I' ~ "',

([BUILDENV (NODE 1),...],
S// p/ r/[p '_> (pind/ q)])
— ([ENTER], q-:S/, p, T)
— (is,S7,q,T)

* A non-updatable binding of a (partial) application is evalu-
ated in two steps in ssTG2.

(Fp= (yy',E"], x, Elx = pl, S)
- (ILyy', E'y' —4q’l, s)

ind(2)

— (I,y, E'ly—ql, q'-:S)

Semantics 1SSTG needs two steps, too, entering the partially
applied function by pushing it temporarily onto the stack.

([PAP,...J, S, p, T'[p = (Ppap, 4 -:q’)])
— ([ENTER], q-:q"+ S/, p,)
— (iS, q,"H_ S,/ q, r,)

* Applications are evaluated in a single step in ssTG2, pushing
the arguments onto the stack.

(T, xy, Ely—ql, S)

— (I, x, Ex—=7p'l, g4+ S)

Evaluation of compiled applications in 1SsTG is more in-
volved, since local variables r might be present on the stack
as run time equivalent to the compile time environment
p, and these local variables have to be slided out before
entering the applied function. Take the definition of trE for
applications in figure 6.3 for reference.

([BUILDENV (p,n)x-:(p,MY,...],
r+S, p, ')
— ([SLIDE (1+y|) (snd p),...],
piq4r+S,p T
— ([ENTER], p’-:q+ S/, p, T')
— (is, q+S’, p’, T)

* An abstraction in ssTG2 that finds all its arguments present
on the stack grabs them, removing them from the stack and

133

PARTITIONING OF SSTG2 AND ISSTG REDUCTIONS

134

adding them to the environment. Execution is continued
with the body of the abstraction.

(FTp+— (Ay.e, E')], x, Elx—pl, p'+S)
— (T, e E'Uy—p1lS)

app@

In 1ssTG the compiled abstraction starts with an ARGCHECK
instruction, followed by the compiled body. The body was
compiled with the abstraction’s arguments added to p, thus
the arguments remain on the stack until another closure
is entered, when they are slided out just before the ENTER
instruction.

([ARGCHECK [p’l,...], p" 4+ S’, p, T)
— (trEepm, p'4+ S, p, T)

An accumulator that finds an argument on top of the stack
allocates a new application accumulator.

(Tlp — k|, x, Elx = pl, p’-:S)

/

— (TUulgr (pp"Hl, ¥/, [x

—ql, S)

The ACCU instruction of 1ssTG behaves exactly in the same
way.

([accul, p’-:S%, p, T'lp = (Pacew k')))
— (lacey], S7, q, T'Ulq = (Pacew (PP"))])

Upon execution of an expression with local bindings, se-
mantics ssTG2 allocates new closures for the A-forms and
adds the pointers to these to the environment.

We use the abbreviation B/ = EU [x — (.

(T, letx =1f]g ine, E, S)
— (FU [q = (lf/El|t)]/ e, l:—// S)

let

The allocation of new closures is done in several steps in
semantics 1ssTG. First, one ALLOC instruction per closure
is executed and reserves heap space. Next, this space is
filled by one BUILDCLS instruction per closure, creating
the closures. Each closure contains a code pointer to the
translated A-form as well as pointers matching E’[¢. The
remainder of the instruction sequence is the translation of
the body, where the fresh pointers are added to p and thus
can be found on the stack. Take the definition of trE for
local bindings in figure 6.3 for reference.

B.1 LIST OF SEGMENTS

([ALLOC [tn],...,ALLOC |tq],...],
r+S, p,)
—* ([BUILDCLS n pJ @n,...,BUILDCLS 1p} aq,...],
q+r+S’, p, T”)
—=* (tEep'm, q+ 1+ S, p, I'Ulg— (p’,p")])

¢ Case discriminations simply push the alternatives together
with the trimmed environment.
(T, case x of alt|¢, E, S)
— (I, x, Elx+—ql, (alt, E[¢):S)

casell

The compiled 1ssTG code for case discriminations pushes
the values used in the case alternatives first, then the pointer
to the compiled alternatives’” code, and finally the pointer
to the scrutinee. Before entering the scrutinee, values for
local variables are slided out. Take the definition of trE for
case discriminations in figure 6.3 for reference.

([BUILDENV (p,m)t,...], 4+ S/, p,)
([PUSHCONT p’,...], pt# 1+ S/, p, T)
([BUILDENV (p + [t/ +1,1)x,..],

ppetr4+ S, p, T
— ([SLIDE (2+t|) (snd p),...],

q-:p iprdr4+S, p)

— ([ENTER], g :p’-:pt + S/, p, T)
— (is, p"ipt+ S, q, T

i

i

e When the evaluation of a scrutinee reaches a constructor
closure, it finds the case alternatives on the stack and selects
the appropriate branch. The constructor arguments are
added to the saved environment for the alternatives.

(Tp = (Ciy, B’y = ql)],
x, Elx = pl, (Cx->¢,E')-:S)
— (r/ €i, E/U [xi — q]/ S)

case(2)

In 15sTG a constructor finds a pointer to the compiled alter-
natives on the stack and selects the appropriate branch, too.
The environment for the selected branch is split into a stack
part, i. e. the values for variables contained in the original
trimmer for the alternatives, and a node part, where the
constructor arguments are reachable via the node pointer,
still pointing to the constructor closure. The stack part is
later slided out before another closure is entered.

([RETURNCON CJ, p’ v+ S/, p, T)
— (tTE eipmn, T4 S// P, r/)

135

PARTITIONING OF SSTG2 AND ISSTG REDUCTIONS

* When case alternatives are found on top of the stack by an
accumulator, it allocates a new accumulator representing a
stuck case discrimination.

(Tlp — kI, x, E[x — p], (alt,E’)-:S)
— (TU[r~ (casepof (alt,E')], y, [y+—r1], S)

case(3)

The ACCU instruction of 1ssTG does the same.
(Accul, p’-:q4S’, p, T')
— ([accu], S, v, T"U[r+— (casep of (p’,q))])

136

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

SOURCE CODE OF BENCHMARKS

This appendix gives the full source code of our benchmark prob-
lems of chapter 9.

C.1 PEANO NUMBERS
C.1.1 PTS

The rTs implementation is straight forward, following the exam-
ples of chapter 7.

data eq (A : *x) (a : A) : A -> x where
refl : eq Aaa

data nat : *x where
z : nat
s : nat -> nat

pred = A n : nat .
case n return nat of
z -> 2z
sp->p

add = A x : nat . fix rec (y : nat) : nat
case y return nat of
z -> X
sy’ ->s (recy’)

mul = A x : nat . fix rec (y : nat) : nat
case y return nat of
z -> 2z
sy’ ->add x (recy’)

ten = s (s (s (s (s (s (s (s (s (s 2)))))))))
hundred = mul ten ten

tenthousend = mul hundred hundred
hundredthousend = mul tenthousend ten

nTimes = A f : (nat -> nat) . A x : nat .
fix rec (n : nat) : nat =
case n return nat of
z -> X
sn" ->f (recn’)

test : eq nat z (nTimes pred hundredthousend hundredthousend)
= refl nat z

137

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

38

39

40

41

SOURCE CODE OF BENCHMARKS

c1.2 Cog

This code can easily be translated to Coq’s syntax. The following
code uses an interpreter for normalization.

Inductive eq (A : Set) (a : A) : A -> Set :=
| refl : eq A a a.

Inductive nat : Set :=
| z : nat
| s : nat -> nat.

Definition pred := A n : nat =>
match n return nat with
| z => 12z
| sp=>p
end.

Definition add := A x : nat => fix rec (y : nat) : nat
match y return nat with
| z => x
| sy’ =>5s (recy’)

end.
Definition mul := A x : nat => fix rec (y : nat) : nat :=
match y return nat with
| z=> 2z
| s y'" =>add x (rec y’)
end.
Definition ten :=s (s (s (s (s (s (s (s (s (s z))))))))).
Definition hundred := mul ten ten.
Definition tenthousend := mul hundred hundred.
Definition hundredthousend := mul tenthousend ten.
Definition nTimes := A f : (nat -> nat) => A x : nat =>

fix rec (n : nat) : nat :=
match n return nat with
| z =>x
| s n" = f (recn’)
end.

Definition test : eq nat z (nTimes pred hundredthousend
hundredthousend)
:= refl nat z.

To use the virtual machine implementation of Coq, only the
last few lines have to be changed.

Theorem test : eq nat z (nTimes pred hundredthousend
hundredthousend) .

vm_compute.

apply (refl nat z).

Qed.

138

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

10

11

12

13

C.2 CHURCH NUMBERS

c.1.3 Haskell

The Haskell code translated by the Glasgow Haskell compiler is
as simple as one would expect.

import Prelude hiding (pred)

data Nat = S Nat | Z
deriving Show

add x Z = x

add x (Sy) =S (add x vy)

mul x Z =12

mul X (S y) = add x (mul x y)

ten =S (S (S (S (S (S(S(S(S(S2)))))N)
hundred = mul ten ten

tenthousend = mul hundred hundred
hundredthousend = mul tenthousend ten

pred Z = Z
pred (S x) = x

nTimes f x Z = x
)

nTimes f x (S y) = f (nTimes f x y)

test

nTimes pred hundredthousend hundredthousend

main = print test

C.2 CHURCH NUMBERS
c.2.1 PTS
The structure of the second benchmark is similar to the first

one, using Church numbers instead of inductively defined Peano
numbers.

data eq (A : *x) (a : A) : A -> x where
refl : eq Aaa

nat : x
=ITA:*x. (A->A) ->A ->A
=AA:*x . As:A->A.ANz:A.z
succ : nat -> nat

=AXx :nat . AA: x .
As:A->A.ANz:A.s (xAs z)

139

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

SOURCE CODE OF BENCHMARKS

add : nat -> nat

= A X : nat
As : A

mul : nat -> nat

= A X : nat

ten = A A @ x

. As

pair : * -> * -> %

=AA: x . A

mkPair : TT A :
=AA: x . A
Af A

fst : TT A : %
=AA: x . A
pAI(A

snd : TT A : %
=AA: x . A
p B (A

predInit :

-> nat
LAY
-> A .

nat . A

-> nat
Ay

Az A

A ox

XxAs (yAs z)

nat . x nat (add y) zero

A -> A .

S (s (s (s (s (s (s (s (s(s2z)))))N))
hundred = mul ten ten
thousend = mul ten hundred

pair nat nat

= mkPair nat nat zero zero

predUpdate :

= A p : pair nat nat .

(A x :
p)

nat

pred : nat -> nat
snd nat nat
(x (pair nat nat) predUpdate predInit)

= A X : nat .

Az A

pair nat nat -> pair nat nat

.AC

B:x*x .ITC:*. (A->B ->0()
* ., IITB:*.A->B ->pair AB
B:*.Aa:A.Ab:B
->B->C. fab
.IITB: * . pair AB -> A
B:*.Ap: pair AB .
a:A.Ab:B. a)
.IIB: * . pair AB ->B
B:*.Ap: pair AB .
a:A.Ab:B.Db)

. mkPair nat nat (succ x) x)

test : eq nat zero (thousend nat pred thousend)

= refl nat ze

ro

-> C

(fst nat nat

c2.2 Cog

The Coq code closely resembles the prs listing above.

Inductive eq (A :

refl : eq A a

Definition nat :

:= forall A :

140

Set) (a : A)
a.

Set
Set, (A -> A)

1 A -> Set :

-=> A -> A,

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

C.2 CHURCH NUMBERS

Definition zero : nat
i=AA:Set=As :A->A=>Az: A=z

Definition succ : nat -> nat
i=AX :nat=AA:Set=As :A->A=Az
s (x As z).

Definition add : nat -> nat -> nat
= A X :nat=>Ay :nat ==AA_: Set =>
As:A->A=>Az:A=>xAs (yAs z).

Definition mul : nat -> nat -> nat
= A Xx : nat == Ay : nat => x nat (add y) zero.

Definition ten := A A : Set == A s : A ->A = Az
s (s (s (s (s (s (s (s (s(s2)))))))).

Definition hundred := mul ten ten.

Definition thousend := mul ten hundred.

Definition pair : Set -> Set -> Set
= A A : Set == A B : Set => forall C : Set,
(A ->B ->C) ->C.

Definition mkPair : forall A : Set, forall B : Set,
A ->B ->pair A B
= A A: Set == A B : Set =>
Aa:A=Ab:B=AC: Set ==
Af:A->B->C=>fab.

Definition fst : forall A : Set, forall B : Set,
pair AB -> A
:=AA:Set=>AB: Set=Ap: pair AB =
pA(Aa:A=>Ab:B=>a).

Definition snd : forall A : Set, forall B : Set,
pair AB -> B
= AA: Set ==AB: Set == Ap: pair AB =
pB(Aa:A=Ab:B=>hb).

Definition predInit : pair nat nat
:= mkPair nat nat zero zero.

Definition predUpdate : pair nat nat -> pair nat nat

:= A p : pair nat nat =>
(A x : nat => mkPair nat nat (succ x) Xx)
(fst nat nat p).

Definition pred : nat -> nat
:= A x : nat => snd nat nat
(x (pair nat nat) predUpdate predInit).

Definition test : eq nat zero (thousend nat pred thousend)

:= refl nat zero.

A=

A =>

141

58

59

60

61

10

11

12

13

14

15

16

17

19

20

22

23

24

25

26

27

28

SOURCE CODE OF BENCHMARKS

To use the virtual machine implementation of Coq, we again
need to change only the last few lines.

Theorem test : eq nat zero (thousend nat pred thousend).
vm_compute.

apply (refl nat zero).

Qed.

c.2.3 Haskell

The first part of the Haskell source code for this benchmark
consists of the normalization by evaluation machinery. Details
can be found in the literature [2, 16].

module Main where

data Term = Var Int
| Lam Int Term
| App Term Term
deriving Show

data Sem = Tm (Int -> Term)
| Fun (Sem -> Sem)

down :: Sem -> Int -> Term
down = \ s -> \ n -> case s of
Tm 1 -> 1n
Fun f -> Lam n (down (f (Tm (\ n’ -> Var n))) (n+l))

eval :: Term -> (Int -> Sem) -> Sem
eval = \ m -> case m of
Var x -=>\ p ->p X
Lam x m@ -> \ p -> Fun (\ d -> eval m0O
(\ x" -> if x == x’' then d else p x'))
App ml1 m2 -> \ p -> case eval ml p of
Tm 1 ->Tm (\ n -> App (1 n) (down (eval m2 p) n))
Fun f -> f (eval m2 p)

norm :: Term -> Term
norm = \ m -> down (eval m (\ x -> Tm (\ _ -> Var x))) 0

main = print $ norm benchmark

142

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

C.2 CHURCH NUMBERS

The second part is the mechanically generated translation of
our benchmark to a data structure of type Term. We use negative
integers for bound variable names. Since proper layout does not
enhance readability of the generated code, we kept the original
version.

benchmark =
(App (Lam

(App (Lam (-12) (App (Lam (-9) (App (Lam (-21)
(
(-2) (App (
(
)

-16) (App (Lam (-17) (App (Lam (-18) (App (Lam

Lam (-8) (App (Lam (-10) (App (Lam (-4) (App
(Lam (-7) (App (Lam (-6) (App (Lam (-3) (App (Lam (-1)
(Var (-1))) (App (App (Var (-2)) (var (-3))) (Var (-2)))))
(Lam (-5) (App (Var (-4)) (App (App (Var (-5)) (Var (-6)))
(Var (-7))))))) (Lam (-11) (App (Lam (-5) (App (App (Var
(-8)) (App (Var (-9)) (Var (-5)))) (Var (-5)))) (App (Var
(-10)) (var (-11))))))) (App (App (Var (-8)) (Var (-12)))
(Var (-12))))) (Lam (-11) (App (Var (-11)) (Lam (-14) (Lam
(-13) (var (-13)))))))) (Lam (-11) (App (Var (-11)) (Lam
(-14) (Lam (-13) (Var (-14)))))))) (Lam (-14) (Lam (-13)
(Lam (-15) (App (App (Var (-15)) (var (-14))) (Var
(-13)))))))) (App (App (Var (-16)) (Var (-17))) (Var
(-18))))) (App (App (Var (-16)) (Var (-17))) (Var
(-17))))) (Lam (-19) (Lam (-20) (App (Var (-19)) (App (Var
(-19)) (App (Var (-19)) (App (Var (-19)) (App (Var (-19))
(App (Var (-19)) (App (var (-19)) (App (Var (-19)) (App
(Var (-19)) (App (Var (-19)) (Var (-20))))))))))))))))
(Lam (-5) (Lam (-22) (App (App (Var (-5)) (App (Var (-21))
(Var (-22)))) (var (-12))))))) (Lam (-5) (Lam (-22) (Lam
(-19) (Lam (-20) (App (App (Var (-5)) (Var (-19))) (App
(App (Var (-22)) (Var (-19))) (Var (-20)))))))))) (Lam
(-5) (Lam (-19) (Lam (-20) (App (Var (-19)) (App (App (Var
(-5)) (var (-19))) (Var (-20))))))))) (Lam (-19) (Lam
(-20) (Var (-20)))))

143

BIBLIOGRAPHY

[1]

[2]

(3]

(4]

(5]

6]

[7]

[8]

[9]

[10]

Andreas Abel, Klaus Aehlig, and Peter Dybjer. Normal-
ization by evaluation for Martin-Lof type theory with one
universe. Electronic Notes in Theoretical Computer Science, 173:
17-39, 2007. (Cited on page 25.)

Klaus Aehlig and Felix Joachimski. Operational aspects of
untyped normalisation by evaluation. Mathematical Struc-
tures in Computer Science, 14(04):587-611, 2004. (Cited on
pages 26, 111, and 142.)

Klaus Aehlig, Florian Haftmann, and Tobias Nipkow. A
compiled implementation of normalization by evaluation. In
Ait Mohamed, Munoz, and Tahar, editors, Theorem Proving
in Higher Order Logics (TPHOLSs 2008), volume 5170 of LNCS,
pages 39-54. Springer, 2008. (Cited on page 26.)

Lennart Augustsson. Cayenne — a language with dependent
types. In ICFP '98: Proceedings of the third ACM SIGPLAN
international conference on Functional programming, pages 239
250. ACM, 1998. (Cited on page 15.)

Henk Barendregt. The Lambda Calculus — Its Syntax and Se-
mantics, volume 103 of Studies in Logic and the Foundations of
Mathematics. North-Holland, 1984. (Cited on page 18.)

Henk Barendregt. Lambda calculi with types. In Handbook of
Logic in Computer Science, Volumes 1 (Background: Mathemati-
cal Structures) and 2 (Background: Computational Structures),
Abramsky & Gabbay & Maibaum (Eds.), Clarendon. Oxford
University Press, 1992. (Cited on pages 16, 19, 81, and 83.)

Ullrich Berger and Helmut Schwichtenberg. An inverse of
the evaluation functional for typed A-calculus. In Proceedings
of the Sixth Annual IEEE Symposium on Logic in Computer
Science, pages 203—211, July 1991. (Cited on page 25.)

Edwin Brady. Practical Implementation of a Dependently Typed
Functional Programming Language. PhD thesis, Durham Uni-
versity, 2005. (Cited on page 116.)

Thierry Coquand. An algorithm for type-checking depen-
dent types. Science of Computer Programming, 26:167-177,
1996. (Cited on page 106.)

Thierry Coquand and Gerard Huet. The calculus of con-
structions. Information and Computation, 76(2-3):95-120, 1988.
(Cited on pages 16 and 85.)

145

Bibliography

[11] Pierre Crégut. An abstract machine for the normalization of
A-terms. In LFP “go: Proceedings of the 1990 ACM conference on
LISP and functional programming, pages 333—340. ACM Press,
1990. (Cited on pages 23 and 24.)

[12] Pierre Crégut. Strongly reducing variants of the Krivine
abstract machine. Higher-Order and Symbolic Computation, 20
(3):209—230, September 2007. (Cited on page 24.)

[13] Haskell Curry. Functionality in combinatory logic. In Pro-
ceedings of the National Academy of Sciences, volume 20, pages

584-590, 1934. (Cited on page 90.)

[14] Olivier Danvy. Type-directed partial evaluation. In POPL "96:
Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 242—257. ACM
Press, 1996. (Cited on page 25.)

[15] Alberto de la Encina and Ricardo Pefia. Formally deriving
an STG machine. In PPDP '03: Proceedings of the 5th ACM
SIGPLAN international conference on Principles and practice of
declaritive programming, pages 102—112. ACM, 2003. (Cited

on pages 20, 31, 37, 45, 55, and 63.)

[16] Andrzej Filinski and Henning Korsholm Rohde. A denota-
tional account of untyped normalization by evaluation. In
Igor Walukiewicz, editor, Foundations of Software Science and
Computation Structures, 7th International Conference, FOSSACS
2004, volume 2987 of LNCS, pages 167-181. Springer, 2004.
(Cited on pages 26, 111, and 142.)

[17] James Gosling, Bill Joy, and Guy Steele. The Java Language
Specification. Addison-Wesley, 1996. (Cited on page 12.)

[18] Martin Grabmiiller and Dirk Kleeblatt. Harpy: Run-time
code generation in Haskell. In Haskell "07: Proceedings of the
ACM SIGPLAN workshop on Haskell, page 94. ACM, 2007.
(Cited on pages 11 and 97.)

[19] Benjamin Grégoire. Compilation des termes de preuves: un
(nouveau) mariage entre Coq et Ocaml. PhD thesis, Université
Paris 7, 2003. (Cited on pages 20, 23, 31, 109, and 113.)

[20] Benjamin Grégoire and Xavier Leroy. A compiled implemen-
tation of strong reduction. In ICFP ‘02: Proceedings of the
seventh ACM SIGPLAN international conference on Functional
programming, pages 235-246. ACM Press, 2002. (Cited on
pages 20, 23, 31, and 109.)

[21] Dietmar Gértner and Werner Kluge. 7-Red+: An interactive
compiling graph reduction system for an applied lambda-

146

[22]

[24]

[25]

[26]

[27]

[28]

[30]

Bibliography

calculus. Journal of Functional Programming, 6(5):723—756,
1996. (Cited on page 24.)

Dirk Kleeblatt. Checking dependent types efficiently. In
W. Dosch et al., editor, Programmiersprachen und Grundlagen
der Programmierung, volume A-o7-07 of Schriftenreihe A der
Institute fiir Informatik und Mathematik. Universitdt zu Liibeck,
2007. (Cited on page 11.)

Dirk Kleeblatt. Checking dependent types using compiled
code. In Implementation and Application of Functional Lan-
guages, 19th International Workshop, IFL 2007. Revised Selected
Papers, volume 5083 of LNCS, pages 165-182. Springer, 2008.
(Cited on pages 11 and 106.)

Dirk Kleeblatt. Deriving a strongly normalizing STG ma-
chine. In Stefan Fischer, Erik Maehle, and Riidiger Reischuk,
editors, INFORMATIK 2009, Im Focus das Leben, volume 154
of Lecture Notes in Informatics. Gesellschaft fiir Informatik,
2009. (Cited on page 11.)

Werner Kluge. Abstract computing machines. Springer, 2004.
(Cited on page 24.)

Jean-Louis Krivine. Un interpréteur du lambda-calcul.
unpublished, 1985. URL http://www.pps.jussieu.fr/
~krivine/articles/interprt.pdf. (Cited on page 23.)

Xavier Leroy. The ZINC experiment: an economical imple-
mentation of the ML language. Technical report 117, INRIA,
1990. (Cited on page 23.)

The Coq development team. The Coq proof assistant reference
manual. LogiCal Project, 2004. URL http://coq.inria.fr.
Version 8.0. (Cited on pages 16, 81, 88, and 92.)

David Park. Concurrency and automata on infinite se-
quences. In Proceedings of the s5th GI-Conference on Theoretical
Computer Science, pages 167-183. Springer, 1981. (Cited on
page 106.)

Christine Paulin-Mohring. Inductive Definitions in the Sys-
tem Coq - Rules and Properties. In M. Bezem and J.-F.
Groote, editors, Proceedings of the conference Typed Lambda
Calculi and Applications, number 664 in LNCS, 1993. (Cited
on pages 81, 88, and 92.)

Simon Peyton Jones and Jon Salkild. The spineless tagless
g-machine. In FPCA "89: Proceedings of the fourth international
conference on Functional programming languages and computer
architecture, pages 184—201. ACM, 1989. (Cited on page 31.)

147

http://www.pps.jussieu.fr/~krivine/articles/interprt.pdf
http://www.pps.jussieu.fr/~krivine/articles/interprt.pdf
http://coq.inria.fr

Bibliography
[32] Benjamin C. Pierce. Types and Programming Languages. MIT
Press, 2002. (Cited on page 96.)

[33] Dana Scott. Continuous lattices. In Toposes, Algebraic Geom-
etry and Logic, volume 274 of Lecture Notes in Mathematics,
pages 97-136. Springer, 1972. (Cited on page 93.)

[34] Niklaus Wirth. The programming language Pascal. Acta
Informatica, 1(1):35-63, May 1971. (Cited on page 12.)

148

	Introduction
	1 Motivation
	1.1 Dependent Types
	1.2 Normalization
	1.3 Normalization for Dependent Type Checking
	1.3.1 Dependently typed languages
	1.3.2 Proof Assistants Based on Dependent Types

	1.4 Laziness
	1.5 Goal of This Thesis
	1.6 Outline

	2 State of the Art
	2.1 The Strongly Normalizing zam
	2.2 The Strongly Normalizing Machine k
	2.3 The -Red System
	2.4 Normalization by Evaluation
	2.4.1 Typed Normalization by Evaluation
	2.4.2 Untyped Normalization by Evaluation

	Normalization Using Compiled Code
	3 Definition of the Semantics: S4
	3.1 Language Syntax
	3.2 Normal Forms
	3.3 Heaps and Accumulators
	3.4 Normalizing fun expressions
	3.5 Evaluation to whnf
	3.6 Read Back
	3.7 Example
	3.8 Well-formedness

	4 Linearization: sstg1
	4.1 Stacks and Heaps
	4.2 Weak Evaluation
	4.3 Normalization and Read Back
	4.4 Heap Correspondence
	4.5 Equivalence of s4 and sstg1
	4.5.1 Completeness
	4.5.2 Soundness
	4.5.3 Correctness

	5 Introduction of Closures: sstg2
	5.1 Modifications of the Syntax
	5.2 Environments
	5.3 Normalization
	5.4 Equivalence of sstg1 and sstg2

	6 Compiling to Machine Code: isstg
	6.1 An Execution Environment for isstg
	6.2 Compilation and Weak Evaluation
	6.2.1 Compilation of Applications
	6.2.2 Compilation of Local Bindings
	6.2.3 Compilation of Case Discriminations
	6.2.4 Preallocated Code Sequences

	6.3 Strong Normalization and Read Back
	6.4 Correspondence Between sstg2 and isstg
	6.5 Equivalence of sstg2 and isstg
	6.6 Correctness of Compiled Normalization

	Dependent Type Checking
	7 Pure Type Systems
	7.1 Basic Typing Rules
	7.1.1 Syntax
	7.1.2 Typing
	7.1.3 Example: The Calculus of Constructions

	7.2 Inductive Data Types
	7.2.1 Syntax
	7.2.2 Typing
	7.2.3 Examples

	7.3 Case Analyses
	7.3.1 Syntax
	7.3.2 Typing
	7.3.3 Examples

	7.4 Definitions by Fixed Points
	7.4.1 Syntax
	7.4.2 Typing
	7.4.3 Examples

	8 Notes on the Implementation
	8.1 Features of our Implementation
	8.2 Fixed Points
	8.2.1 New Syntax for fun
	8.2.2 Compilation to isstg
	8.2.3 Read Back

	8.3 Translation from pts to fun
	8.3.1 Type Annotations
	8.3.2 Constructor Saturation

	8.4 Translation from isstg to x86 Machine Code
	8.4.1 Memory Model
	8.4.2 Translation of Instructions

	8.5 Design Alternatives

	9 Performance Evaluation
	9.1 Benchmark Setting
	9.2 Peano Numbers
	9.3 Church Numbers
	9.4 Interpretation of the Results

	10 Conclusion
	10.1 Future Work

	Appendix
	A Equivalence of s4 and sstg1
	A.1 Completeness of Weak Evaluation
	A.2 Completeness of Read Back and Normalization
	A.3 Soundness of Weak Evaluation
	A.4 Soundness of Read Back and Normalization

	B Partitioning of sstg2 and isstg reductions
	B.1 List of Segments

	C Source Code of Benchmarks
	C.1 Peano Numbers
	C.1.1 pts
	C.1.2 Coq
	C.1.3 Haskell

	C.2 Church Numbers
	C.2.1 pts
	C.2.2 Coq
	C.2.3 Haskell

