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Chapter 1

Introduction

The word “resource” has its linguistic roots in the old French verb “resourdre” which, in turn, is
based on the Latin verb “resurgere” expressing an action of recovery or rising [104, p. 1278]. Ap-
parently, when first used in the early 17th century, the word referred to means of unlimited supply
that inexhaustibly regenerate. In the past 400 years, the initial meaning of the word has turned quite
into the reverse. Today, resources are seen as precious and valuable goods or means. In fact, mod-
ern economic theory relies on the assumption that resources are scarce. As put in Robbins [112],
“economics is the science which studies human behavior as a relationship between ends and scarce
means which have alternative uses”.

One of the earliest reference points of the mathematical treatment of scarcity is the work of
Cournot [27] from the first half of the 19th century. He studied a situation in which two owners of
mineral springs supply a single market with water. He made the observation that the selling price
they can achieve depends on the total quantity offered. If the quantity is small compared to the
demand, the resource water is scarce and its selling price is high, while in situations in which the
supply is large only a small selling price can be achieved. In brief, the market clearing price is a non-
increasing function of the total quantity offered. Given the quantity delivered by her opponent, each
producer strives to maximize her revenue, which is defined as her production quantity multiplied by
the achievable market price. The optimal production quantity of the first producer, in turn, affects
the strategic choice of the production quantity of second producer, which again has influence on the
choice of first producer, and so on. Cournot showed that following such trajectory of reasoning, one
reaches production quantities that are in equilibrium, that is, no producer may increase her profit
switching to a different production size while the other sticks with her offered quantity. Cournot
presumed that the total state of an economy is determined by the stable points of such equilibrium
problems.

A century later, von Neumann and Morgenstern [130, 131], laid the mathematical and concep-
tional foundations of the analysis of such strategic interactions between individuals with possibly
conflicting interests. Their definition of a strategic game contains the essential ingredients of the
Cournot model: a finite set of players (corresponding to the set of producers in Cournot’s model)
with a private set of strategic choices, henceforth called strategies, (corresponding to the feasible
production quantities of each producer in Cournot’s model) who strive to optimize a private objec-
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tive function which depends on the combination of the strategic choices of all players. In his famous
theorem, Nash [101, 102] showed that, for games in which each player has a finite set of strate-
gies, there is always an equilibrium in mixed strategies, that is, an equilibrium in which each player
plays according to a fixed probability distribution over her strategies and no player can improve her
expected profit by unilaterally altering her probability distribution.

Despite its huge success and its enormous influence on economic theory, the concept of a Nash
equilibrium has the drawback that for finite games Nash equilibria are only guaranteed to exist in
mixed strategies. Mixed equilibria rely on the critical assumption that the players are risk-neutral,
that is, they are only interested in maximizing their expected profit regardless of the underlying
variances. This hypothesis has been refuted in experiments; see, e.g., the influential critique pub-
lished by Allais [7]. Risk-neutrality, however, is necessary to obtain Nash’s existence result. For
risk-averse players, for instance, an equilibrium in mixed strategies need not exist; see Fiat and Pa-
padimitriou [48]. For further critics of the mixed Nash equilibrium concept, see also the discussion
by Osborne and Rubinstein in [107, §3.2].

One remedy to overcome these issues related to mixed Nash equilibria is to specifically study
relevant classes of games that admit a Nash equilibrium in pure (deterministic) strategies – as, e.g.,
the Cournot model. Another class of games, called unweighted congestion games, that allows for
pure Nash equilibria was introduced by Rosenthal [114]. In an unweighted congestion game, we
are given a finite set of resources and a finite set of players. Each player is associated with several
subsets of resources available to her. A strategy of each player is to choose one such subset of
resources. The cost of each resource depends on the number of players choosing it, and each player
strives to minimize the sum of the costs incurred on the chosen resources.

Unweighted congestion games provide an elegant model of competition for scarce resources and
have a wide range of applications a few of which we mention here. Consider a finite population of
consumers demanding for bundles of goods available at different markets. The wholesale price of
each product on each market increases as the number of consumers demanding the product on that
market increases. The strategic choice of each consumer is which markets to visit to procure her
bundle of goods. The geographic locations of the consumers and the markets impose restrictions on
the subsets of markets each player can visit. Naturally, every consumer aims to choose a feasible set
of markets that minimizes the sum of the wholesale prices of all products bought. This situation can
be modeled as a congestion game by introducing one resource for each good on each market and one
player for each consumer.

Related to this interpretation are the animal experiments conducted by Milinsky [97] that gave
practical foundation to the pure Nash equilibria in congestion games. He observed that Sticklebacks
locate themselves around feeding patches so as to maximize their individual feeding rate given the
location of their fellows. This situation can be interpreted as an unweighted congestion game in
which the feeding patches are the resources whose attractiveness decreases with a growing number
of adjacent fishes.

As their name suggests, unweighted congestion games also occur naturally in traffic networks.
Here, the resources correspond to the edges of a road network. Each traffic participant chooses a
collection of edges that forms a path from her origin to her destination so as to minimize her total
travel time. The travel time on each street segment depends on the number of other traffic participants
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choosing the same road.
Unweighted congestion games can also be applied to data routing in telecommunication net-

works. Here, the resources are associated with the routers distributed in a network. Each player
controls a certain amount of data that she wishes to be routed from a source to a destination node.
The delay of each router increases as the amount of data routed over it increases. Thus, the players
strive to choose a chain of routers so as to minimize the total delay experienced.

More generally speaking, the class of unweighted congestion games is narrow enough to guar-
antee the existence of a pure Nash equilibrium, but also large enough to capture the main aspects of
many strategic interactions. Interestingly, out of the five finite games mentioned in the introductory
chapter of the standard game theory textbook by Osborne and Rubinstein [107, Chapter 2], four are
congestion games.1 The only exception, the Matching-Pennies-Game (see also Example 2.16), does
not possess a pure Nash equilibrium.

1.1 Weighted Congestion Games

Despite the wide range of applications that can be modeled as unweighted congestion games, many
situations do not exhibit the property that players contribute on equal terms to the cost of the re-
sources. In the examples seen so far, the consumers may have different demands for goods, fish
may vary in their consumption of food, different vehicle categories may have a different impact on
congestion, or sending rates in telecommunication networks may be heterogeneous.

All of the above strategic interactions are captured more realistically by weighted congestion

games. In a weighted congestion game, each player has a strictly positive demand that she places
on the chosen resources.2 The cost of each resource is a function of the aggregated demand of all
players using that resource. Thus, unweighted congestion games are a special case of weighted con-
gestion games in which all players have unit demands. In contrast to unweighted congestion games,
weighted congestion games may fail to admit a pure Nash equilibrium; see the counterexamples
given by Fotakis et al. [51], Goemans et al. [59], and Libman and Orda [88]. On the positive side,
it is known that for affine resource cost functions (Fotakis et al. [51]) or exponential resource cost
functions (Panagopoulou and Spirakis [108], and Harks et al. [67]) a pure Nash equilibrium always
exists.

These positive results establish the existence of a pure Nash equilibrium independent of the un-
derlying structure of the game, i.e., independent of the number of players, the combinatorial structure
of their strategies, and their demands. Such independence is desirable in most applications because
the number of players and their types (expressed in terms of their demands and their strategies) are
only known to the players and subject to frequent changes. In light of the positive results obtained
for affine and exponential cost functions it is a natural open problem to decide which maximal sets
of cost functions actually guarantee the existence of pure Nash equilibria. This is the main question
addressed in Chapter 3.

1To see this, note that the games Bach-or-Stravinsky and Mozart-or-Mahler, the Prisoner’s Dilemma, and the Hawk-

Dove-Game are exact potential games and, thus, isomorphic to unweighted congestion games; see Monderer and Shap-
ley [99].

2Note that the demand of each a player does not depend on the resource; this simplifying assumption will be dropped
in the next section when introducing congestion games with resource-dependent demands.
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Contributions of Chapter 3

To precisely capture the influence of the cost structure on the existence of equilibria in weighted
congestion games, we introduce the notion of consistency. We say that a set C of cost functions is
consistent for weighted congestion games if every weighted congestion game with the property that
the cost function of each resource is contained in C possesses at least one pure Nash equilibrium.

As the main result of Chapter 3, we give a complete characterization of consistency for weighted
congestion games. Specifically, we show that a set C of continuous cost functions is consistent for
weighted congestion games if and only if at least one of the following two cases holds: (i) C only
contains affine functions; (ii) C only contains exponential cost functions with the property that there
is a constant φ ∈R and for each c ∈ C two constants ac,bc ∈R such that c(x) = ac e

φx + bc for all
x ≥ 0. The necessity of these conditions is even valid for games with three players. This implies
that for every non-affine and non-exponential function c there is a three-player weighted congestion
game where all resources have cost function c and that does not possess a pure Nash equilibrium.

Our second main result is a similar characterization for two-player weighted congestion games.
Specifically, we show that a set C of continuous cost functions is consistent for two-player weighted
congestion games if and only if C contains only monotonic functions and each two non-constant
functions c1,c2 ∈ C are linear transformations of each other, that is, there are a,b ∈ R such that
c1(x) = ac2(x)+b for all x ≥ 0.

We further show that these results essentially translate (under mild restrictions on the set of cost
functions) to the special cases in which the resources are associated with the edges of a directed or
undirected graph, players are associated with a source and a sink vertex, and the set of strategies of
each player equals the set of all simple paths connecting that player’s source and sink vertex.

Finally, we examine singleton weighted congestion games. In such a game, every strategy of
each player contains a single resource only. We show that for two-player singleton weighted con-
gestion games the set of monotonic functions is the unique maximal set of consistent cost functions.
This result does not translate to three-player games. We provide an example of a three-player single-
ton weighted congestion game with monotonic (both non-increasing and non-decreasing) resource
cost functions that does not admit a pure Nash equilibrium.

1.2 Congestion Games with Resource-Dependent Demands

In a weighted congestion game, each player has a unique strictly positive demand that she places on
the resources contained in her strategy. Dropping the assumption that the demands are equal for all
resources we obtain congestion games with resource-dependent demands.

As a natural generalization of weighted congestion games, congestion games with resource-
dependent demands allow to model a much broader scope of applications. For illustration, recon-
sider the example in which a finite set of consumers visits local markets where the prices react on
demands. Allowing for resource-dependent demands, we can model the most intuitive situation in
which the players’ have different demands for different goods. Congestion games with resource-
dependent demands also provide a more general model of data routing in telecommunication net-
works. As different routers may have different policies on how the traffic is handled, it is a natural
assumption that the actual workload (or demand) each user imposes depends on the identity of the
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router. Moreover, resource-dependent demands may be used to yield a much more accurate model
of traffic networks that incorporates the fitness of different vehicles types to the physical properties
of road segments, such as slopes, terrain, and so on.

As congestion games with resource-dependent demands contain weighted congestion games as a
special case, necessary conditions for the consistency of cost functions persist, that is, any set of cost
functions that is consistent for games with resource-dependent demands may only contain affine or
exponential functions. In Chapter 4 we explore the equilibrium existence for congestion games with
resource-dependent demands, asking which maximal sets of cost functions are in fact consistent.

Contributions of Chapter 4

We first remark that there are two natural ways of defining the players’ private cost functions. In
the first variant, which we call proportional games, the costs of the resources are interpreted as
monetary per-unit costs. In this regime, it is natural to assume that each player incurs a cost equal
the sum of the costs of the used resources multiplied with her respective demand. We also study
a slightly different class of games, which we call uniform games. They differ from proportional
games solely in the fact that in the definition of the players private costs, the costs of the resources
are not multiplied with the player’s demands. Such cost structure occurs when the resource costs
are interpreted as latencies or travel times and thus are the same for each user, regardless of their
demands.

The distinction between proportional and uniform games is immaterial for the existence of pure
Nash equilibria in weighted congestion games, but matters for games with resource-dependent de-
mands. To characterize the influence of the cost functions on the existence of pure Nash equilibria,
we adapt the notion of consistency. A set C of cost functions is consistent for proportional con-
gestion games with resource-dependent demands (respectively, consistent for uniform congestion
games with resource-dependent demands) if each proportional game (respectively, uniform game)
with cost functions in C possesses a pure Nash equilibrium. As our main result of Chapter 4, we give
a complete characterization of consistency of cost functions for proportional and uniform congestion
games with resource-dependent demands. For a set C of continuous cost functions, we show that C
is consistent for proportional games if and only if C only contains affine functions. Furthermore, C is
consistent for uniform games if and only if C only contains constant functions. This characterization
is even valid for three-player games. Assuming that the cost functions are strictly positive, the above
characterizations also translate to games in which the players’ strategies correspond to directed or
undirected paths in a network.

1.3 Congestion Games with Variable Demands

Most previous work on congestion games has the common feature that the players use the resources
contained in their strategy with a fixed – resource-dependent or resource-independent – demand.
Although these games capture the main features of many interesting applications, they do not take
into account the elasticity of the demand due to price changes. Price elasticity of demand is an
intrinsic property of many applications, such as consumer markets and the flow control problem in
telecommunication networks. In the latter setting, the players strive to establish an unsplittable data
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stream in a network. The sending rate will be reduced if the latency increases and increased if the
latency decreases.

To model elasticity of demands, we study congestion games with variable demands. We assume
that each player is associated with an interval of feasible demands and a non-decreasing and concave
utility function modeling the utility received from satisfying a certain demand. In each strategy
profile, each player chooses both a feasible demand and exactly one feasible subset of resources.
The private payoff of each player then is defined as the difference between the utility received from
the chosen demand and the costs incurred on the used resources. Such payoff structure is also called
quasi-linear; see Mas-Colell et al. [91, Chapter 3].

Contributions of Chapter 5

Our study focuses on the existence of pure Nash equilibria with respect to the cost functions on the
resources. As in the previous chapter we distinguish between proportional and uniform games. In a
proportional game, the private payoff of each player equals her utility received from satisfying her
demand minus the product of the demand and the sum of the costs of the resources. Uniform games
differ from proportional games in the fact that the resource costs are not multiplied with the demand.

Our main result of Chapter 5 is a complete characterization of consistency for congestion games
with variable demands in the proportional and uniform cost model, respectively. Specifically, we
prove that a set C of continuous and non-negative cost functions is consistent for proportional con-
gestion games with variable demands if and only if at least one of the following two cases holds:
(i) there are a constant φ > 0 and for each c ∈ C a constant ac > 0 such that c(x) = ac e

φx for all
x ≥ 0; (ii) for each c ∈ C there are constants ac > 0 and bc ≥ 0 such that c(x) = ac x+bc for all x ≥ 0.
In addition, we prove that C is consistent for uniform congestion games with variable demands if
and only if (i) holds. As in the previous chapters, our result continues to hold for games in which
the resources are associated with the edges of a graph and each player establishes a path from her
source node to her target node.

1.4 Bottleneck Congestion Games

So far, we assumed that the players strive to minimize the sum of the costs on the chosen resources.
In many scenarios, however, sum-objectives do not represent the players’ incentives correctly. An
important example of such a situation is data streaming in telecommunication networks. Here, the
delay of a data stream is restricted by the available bandwidth of the links on the chosen path. The
total delay experienced by a selfish user is closely related to the performance of the link with least
bandwidth; see Banner and Orda [15], Cole et al. [26], Keshav et al. [79], and Qiu et al. [110].
To capture this situation more realistically, Banner and Orda [15] introduced bottleneck congestion

games. They differ from weighted congestion games solely in the fact that in each strategy profile the
private cost of each player is the maximum (instead of the sum) of the costs of all chosen resources.
Banner and Orda [15] proved the existence of a pure Nash equilibrium for non-decreasing cost
functions on the resources.
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Contributions of Chapter 6

As the main result of Chapter 6, we generalize the existence result of Banner and Orda [15]. We
weaken the assumptions on the cost functions, assuming that the costs of the resources may even
depend on the set of players using it. This is more general than the demand-based model studied by
Banner and Orda [15]. Even for these more general cost functions, we are able to prove the exis-
tence of a strong equilibrium for this class of bottleneck congestion games with set-dependent costs.
Strong equilibria are a strengthening of the pure Nash equilibrium concept that is even resilient to
coalition deviations that decrease the private costs of each of its members. Each strong equilibrium
is a pure Nash equilibrium, but not conversely. As a byproduct of our analysis, we further obtain
that bottleneck congestion games with set-dependent costs have the strong finite improvement prop-
erty, that is, every sequence of coalitional deviations that decreases the private costs of each of its
members, is finite.

We further study splittable bottleneck congestion games. In such a game, each player is associ-
ated with a strictly positive demand that she is allowed to split fractionally over the sets of resources
available to her. For continuous and non-decreasing cost functions on the resources, we show that
splittable bottleneck congestion games admit a strong equilibrium as well.

Contributions of Chapter 7

The existence of strong equilibria in bottleneck congestion games raises some important questions
regarding the computability of equilibria in such games. While for unweighted congestion games
with sum-objective the complexity of computing pure Nash equilibria is relatively well understood,
the complexity status of computing equilibria under bottleneck-objectives remains open. In Section 7
we prove first results in this direction.

First, we propose a generic algorithm that computes a strong equilibrium for any unweighted
bottleneck congestion game with non-decreasing costs. Our algorithm crucially relies on a strategy

packing oracle that decides for a given vector of capacities on the resources whether there exists
a strategy profile that obeys the capacity constraint on each resource, and outputs such a strategy
profile if it exists. The running time of our algorithm is essentially determined by the running time
of the oracle. This implies that the problem of computing a strong equilibrium in an unweighted
bottleneck congestion game with non-decreasing costs can be reduced to solving the strategy packing
problem. As a characterization, we also prove the reverse direction, i.e., solving a strategy packing
problem is reducible to computing a strong equilibrium in an unweighted bottleneck congestion
game with non-decreasing costs.

There are a number of important classes of bottleneck congestion games for which a strategy
packing oracle can be implemented in polynomial time, including single-commodity networks,
branchings, and matroids. In all these cases, a strong equilibrium can be determined efficiently
using our generic algorithm. For general games, however, we show that the computation of a strong
equilibrium is NP-hard. This holds even for two-commodity networks.

For unweighted bottleneck congestion games with single-commodity network or matroids strate-
gies we present an interesting dichotomy. Although for both classes of games there exists an efficient
algorithm calculating a strong equilibrium, the recognition of a strong equilibrium is co-NP-hard.
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1.5 Organization of this Thesis

In Chapter 2 we give a short introduction into the most important concepts of game theory and
formally introduce the variants of congestion games examined in this thesis. Section 2.4 contains an
overview on known results on the existence and computability of equilibria in congestion games. In
Chapters 3, 4, and 5 we explore the existence of pure Nash equilibria in weighted congestion games,
congestion games with resource-dependent demands, and congestion games with variable demands,
respectively. The two latter chapters use in part results from the preceding chapters so that we re-
commend the three chapters to be read in the predetermined order. Bottleneck congestion games
are studied in Chapters 6 and 7. They can be read independently from Chapters 3 to 5. Chapter 8
concludes.

In order to make Chapters 3 to 7 as self-contained as possible the most relevant pieces of related
work are reviewed in the introductory section of each chapter. Moreover, most chapters contain a
section “Problem Description” which briefly recapitulates the definition of the class of congestion
games the chapter deals with.



Chapter 2

Preliminaries

In this chapter, we introduce the central concepts used in this thesis. Section 2.1 covers fundamental
elements of game theory. For a comprehensive treatment, see also the textbooks by Fudenberg
and Tirole [52] and Osborne and Rubinstein [107]. Section 2.2 is devoted to the most important
theoretical tools for proving the existence of equilibria in games, that are, potential functions and
fixed points. In Section 2.3, we define the variants of congestion games covered in this thesis.
Finally, we review related work on the existence and computational complexity of equilibria in
congestion games and variants thereof in Section 2.4.

2.1 Strategic Games and Equilibria

The central notion of game theory is that of a strategic game. In a strategic game, we are given
a finite set N = {1, . . . ,n} of n ∈ N>0 players and, for each player i ∈ N, a nonempty set Si of
strategies. The Cartesian product S = S1 × ·· ·× Sn of the players’ strategies is called the strategy

space and an element s ∈ S is called a strategy profile. Each player has a private cost function

πi : S → R assigning to each strategy profile s a private cost value πi(s) that player i strives to
minimize. The function π : S → R

n that maps each strategy profile s to the corresponding private
cost vector π1(s)×·· ·×πn(s) is called the combined private cost function. The fact that the private
cost player i experiences is defined as a function of S rather than Si expresses the fact that each
player may not only care about her own strategic choice but also about the strategic choices of other
players. The set of players, their strategies, and the combined private cost functions define a strategic
minimization game.

Definition 2.1 (Strategic minimization game)

A strategic minimization game is a tuple G = (N,S,π), where N = {1, . . . ,n} is the nonempty and
finite set of players, S = S1×·· ·×Sn is the nonempty strategy space, and π : S →R

n is the combined
private cost function that assigns a private cost vector π(s) to each strategy profile s ∈ S.

In the following we call strategic minimization games simply minimization games. We say that
a minimization game G = (N,S,π) is finite if Si is finite for all i ∈ N, and infinite otherwise. A
nonempty subset /0 6= K ⊆ N of players is called a coalition. For a coalition K = {k1, . . . ,kl} we
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denote by −K = N \K its complement and by SK = Sk1
× ·· · × Skl

the joint strategy space of the
players in K. If K = {i} for some i ∈ N, we write Si and S−i instead of S{i} and S−{i}, respectively.
With a slight abuse of notation, for a strategy profile s and a coalition K, we write s as (sK ,s−K),
which means that s is the strategy profile in which the members of K play sK ∈ SK while all other
players play s−K ∈ S−K .

2.1.1 Equilibrium Concepts

The most important equilibrium concept of game theory is that of a pure Nash equilibrium. In
essence, a strategy profile is called a pure Nash equilibrium if no player can decrease her private cost
by unilaterally deviating to another strategy.

Definition 2.2 (Pure Nash equilibrium)

For a minimization game G = (N,S,π), a strategy profile s ∈ S is called a pure Nash equilibrium if
πi(s)≤ πi(s

′
i,s−i) for all i ∈ N and s

′
i ∈ Si.

We use the word “pure” to emphasize that each player deterministically chooses exactly one
strategy. This is in contrast to a mixed equilibrium, where players are allowed to randomize over
their set of strategies.1 The concept of a mixed equilibrium presumes that players are risk-neutral,
that is, they are only interested in minimizing their expected private costs. This assumption has been
refuted in many experiments; see e.g. Allais [7]. Also, for many games, mixed strategies have no
meaningful physical interpretation; see the discussion by Osborne and Rubinstein in [107, §3.2].
Throughout this thesis, we only consider pure Nash equilibria.

While the pure Nash equilibrium concept excludes the possibility that a single player can unilat-
erally improve her private cost, it does not necessarily imply that a pure Nash equilibrium is stable
against coordinated deviations of a group of players if their joint deviation is profitable for each of its
members. So when coordinated actions are possible, the Nash equilibrium concept is not sufficient
to analyze stable states of a game. To cope with the issue of coordination, Aumann [11] proposed
the solution concept of a strong equilibrium. In a strong equilibrium, no coalition (of any size) can
deviate and strictly improve the utility of each of its members.

Definition 2.3 (Strong equilibrium)

For a minimization game G = (N,S,π), a strategy profile s ∈ S is a strong equilibrium if for all
coalitions K ⊆ N there is a player i ∈ K such that πi(s)≤ πi(s

′
K ,s−K) for all s

′
K ∈ SK .

Throughout this thesis, strong equilibria are only considered in pure strategies.

Approximate Equilibria

Players might be willing to stick with their strategy, if they can decrease their private cost only
slightly when deviating to another strategy. This idea is captured by the notion of a ρ-approximate
equilibrium.

1A mixed Nash equilibrium can be interpreted as the pure Nash equilibrium of another game, called the mixed ex-

tension, in which each player i’s strategy set Si is replaced by the set of probability distributions over Si and where the
players’ new private cost functions are equal to their expected private cost.
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Definition 2.4 (ρ-Approximate pure Nash equilibrium)

For a minimization game G = (N,S,π) and ρ > 0, a strategy profile s ∈ S is a ρ-approximate pure

Nash equilibrium if πi(s)−ρ ≤ πi(s
′
i,s−i) for all i ∈ N and s

′
i ∈ Si.

Accordingly, ρ-approximate strong equilibria are those strategy profiles for which no coalition
may decrease the costs of all of its members by at least ρ .

Definition 2.5 (ρ-Approximate strong equilibrium)

For a minimization game G = (N,S,π) and ρ > 0, a strategy profile s ∈ S is a ρ-approximate strong

equilibrium if for all K ⊆ N there is i ∈ K such that πi(s)−ρ ≤ πi(s
′
K ,s−K) for all s

′
K ∈ SK .

For minimization games with non-negative private costs also multiplicative versions of approxi-
mate equilibria are used frequently in the literature. In this thesis, we only use approximate equilibria
in the additive sense as defined in Definitions 2.4 and 2.5.

Invariance of the Set of Equilibria

It is a useful observation that the sets of pure Nash equilibria and strong equilibria are invariant
under strictly increasing transformations of the players’ private cost functions and renaming of the
players’ strategies. Formally, let G = (N,S,π) and G

′ = (N,S′,π ′) be two minimization games with
the same player set N. We say that G

′ is a monotonic transformation of G, if, for each player i,
there are a bijection Σi : Si → S

′
i and a strictly increasing function Πi : R→ R such that πi(s) =

Πi

(
π ′

i

(
Σ1(s1), . . . ,Σn(sn)

))
for all s ∈ S and i ∈ N. Note that, for each player i, the strictly increasing

function Πi is a bijection (possibly on a subset of R) and hence invertible. This implies that G
′ is a

monotonic transformation of G if and only G is a monotonic transformation of G
′.

Proposition 2.6. Let G = (N,S,π) and G
′ = (N,S′,π ′) be two minimization games such that G

′

is a monotonic transformation of G. Then, G has a pure Nash equilibrium (respectively, a strong

equilibrium) if and only if G
′
has a pure Nash equilibrium (respectively, a strong equilibrium).

Proof. For each player i, let Σi : Si → S
′
i and Πi : R → R be the functions associated with the

monotonic transformation. We claim that a strategy profile s is a pure Nash equilibrium of G if and
only if the strategy profile Σ(s) =

(
Σ1(s1), . . . ,Σn(sn)

)
is a pure Nash equilibrium of G

′.
To see the first part of the claim, let s be a pure Nash equilibrium of G. Then, πi(s) ≤ πi(ti,s−i)

for all i ∈ N, ti ∈ Si. We observe that

π ′
i

(
Σ1(s1), . . . ,Σn(sn)

)
= Π−1

i (πi(s))≤ Π−1
i (πi(ti,s−i)) = π ′

i

(
Σ1(s1), . . . ,Σi(ti), . . . ,Σn(sn)

)

for all i ∈ N and ti ∈ Si and derive that Σ(s) is a pure Nash equilibrium of G
′. The fact that the

monotonic transformation relation is symmetric shows the second part of the claim. The proof for
strong equilibria is analogous and, thus, omitted.

If G
′ is a monotonic transformation of G and Πi(x) = x for all x ∈R and i ∈ N, we say that G and

G
′ are isomorphic. Roughly speaking, two games that are isomorphic have the same private costs,

but their strategies may have different names.
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2.1.2 Convergence to Equilibria

The idea of using learning or adjustment processes in order to substantiate the plausibility of a
predicted outcome dates back to Cournot [27] who proposed a process, called tâtonnement, that
leads the players in a Cournot oligopoly game to play the Nash equilibrium of that game. In the
tâtonnement process the play starts in an arbitrary strategy profile and in each turn one of the players
chooses a best reply to her opponents’ strategy.

In many applications the assumption that the players repeatedly choose a best reply might be too
restrictive since an optimum strategy might be computationally expensive to find. A slightly weaker
assumption is that the players repeatedly choose a better reply (or stick with their strategy if no better
reply exists).

Monderer and Shapley [99] explored the convergence of such myopic improvement processes
based on repeated better replies. Formally, let G = (N,S,π) be a minimization game. We call a
tuple

(
s,(s′i,s−i)

)
∈ S×S an improving move of player i if πi(s)> πi(s

′
i,s−i). A sequence of strategy

profiles γ = (s1,s2, . . . ) is called an improvement path if for every k = 1,2, . . . the tuple (sk,sk+1) is
an improving move for some player i. For a finite improvement path γ = (s1,s2, . . . ,sk) with s

k 6= s
1

the strategy profile s
k is called the endpoint of γ . A closed improvement path (s1,s2, . . . ,sk,s1) is

referred to as an improvement cycle. Closed paths that may not have the property that neighbored
strategy profiles yield an improvement of the deviating player are simply called cycles. The follow-
ing property of a game ensures that every sequence of unilateral improvements converges.

Definition 2.7 (Finite improvement property)

A minimization game G has the finite improvement property if all improvement paths of G are finite.

It is a useful observation that every game with the finite improvement property possesses a pure
Nash equilibrium.

Proposition 2.8. Every game with the finite improvement property possesses a pure Nash equilib-

rium.

Proof. For an arbitrary strategy profile s
0, let Γ denote the set of improvement paths starting in s

0.
We define a partial ordering ⊆ on Γ as follows. For two improvement paths γ = (s0,s1, . . . ,sk) and

γ̃ = (s̃0, s̃1, . . . , s̃k̃) with k ≤ k̃, we say that γ ⊆ γ̃ if s
j = s̃

j for all j ∈ {0, . . . ,k}. We claim that every
totally ordered subset Γ′ ⊆ Γ is finite. Suppose not. Let Γ′ be an infinite totally ordered subset of
Γ. This implies the existence of an infinite sequence γ0 ⊆ γ1 ⊆ . . . of improvement paths, which we
write as

γ1 = (s0,0,s0,1, . . . ,s0,k1)

γ1 = (s1,0,s1,1, . . . ,s1,k1 , . . . ,s1,k1)

...

γm = (sm,0,sm,1, . . . ,sm,k0 , . . . ,sm,k1 , . . . ,sm,km)

...
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By construction, the diagonal sequence γ = (s0,0,s1,1, . . . ) is an improvement path of infinite length
which gives a contradiction to the finite improvement property. We conclude that every totally
ordered subset is finite. Applying Zorn’s Lemma, we obtain the existence of a finite improvement
path γ ′ ∈ Γ with γ ′ 6⊆ γ for all γ ∈ Γ\{γ ′}. Thus, the endpoint of γ ′ is a pure Nash equilibrium.

To get a similar result for ρ-approximate pure Nash equilibria we also consider sequences of
improving moves that improve the cost of each deviating player by at least a fixed strictly positive
parameter ρ . For a minimization game G = (N,S,π), a tuple

(
s,(s′i,s−i)

)
∈ S×S is an ρ-improving

move of player i if πi(s)−ρ > πi(s
′
i,s−i). Analogously, a sequence of ρ-improving moves is called

a ρ-improvement path and closed ρ-improvement path are called ρ-improvement cycles. We define
the approximate finite improvement property as the approximate analog of the finite improvement
property.

Definition 2.9 (Approximate finite improvement property)

A minimization game G has the approximate finite improvement property if, for every ρ > 0, every
ρ-improvement path is finite.

With the same arguments as in the proof of Proposition 2.8, we obtain the following result.

Proposition 2.10. Every game with the approximate finite improvement property possesses a ρ-

approximate pure Nash equilibrium for every ρ > 0.

When coordinated actions of the players are possible, it is natural to consider deviations of
coalitions of players. Let G = (N,S,π) be a minimization game. For a coalition K ⊆ N we say
that

(
s,(s′K ,s−K)

)
is a strong improving move of coalition K if πi(s) > πi(s

′
K ,s−K) for all i ∈ K. A

sequence γ = (s1,s2, . . . ) of strong improving moves will be called a strong improvement path and
closed strong improvement paths will be referred to as strong improvement cycles. The following
property of a game ensures that every sequence of coalitional improvements converges.

Definition 2.11 (Strong finite improvement property)

The game G has the strong finite improvement property if every strong improvement path is finite.

We obtain the following analogue to Proposition 2.8.

Proposition 2.12. Every game with the strong finite improvement property possesses a strong equi-

librium.

To get an equivalent result for approximate strong equilibria, let ρ > 0. We call
(
s,(s′K ,s−K)

)
a

strong ρ-improving move of coalition K ⊆ N if πi(s)−ρ > πi(s
′
K ,s−K) for all i ∈ K. Sequences of

strong ρ-improving moves are called strong ρ-improvement cycles. The following definition of the
approximate strong finite improvement property is straightforward.

Definition 2.13 (Approximate strong finite improvement property)

A game G has the approximate strong finite improvement property if, for every ρ > 0, every strong
ρ-improvement path is finite.

Analogously to Proposition 2.10, we obtain the following result.

Proposition 2.14. Every game with the approximate strong finite improvement property possesses a

ρ-approximate strong equilibrium for every ρ > 0.
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2.1.3 Maximization Games

So far, we assume that each player minimizes a private cost function. Many interactions can be
described more conveniently assuming that the players maximize a private payoff function ϖ(s) that
is associated with each strategy profile s. Exchanging the private cost function π by a private payoff
function ϖ in the definition of a strategic minimization game, we obtain a strategic maximization
game.

Definition 2.15 (Strategic maximization game)

A strategic maximization game is a tuple G = (N,S,ϖ), where N = {1, . . . ,n} is the nonempty and
finite set of players, S = S1×·· ·×Sn is the nonempty strategy space, and ϖ : S →R

n is the combined
private payoff function assigning a private payoff vector ϖ(s) to each s ∈ S.

Throughout this thesis, we call strategic maximization games simply maximization games. For
a maximization game G = (N,S,ϖ), consider the corresponding minimization game G

− = (N,S,π)

with π(s) = −ϖ(s) for all s ∈ S. All notions defined so far translate to maximization games in the
following way. A strategy profile s is a pure Nash equilibrium (respectively, a strong equilibrium, a
ρ-approximate pure Nash equilibrium, a ρ-approximate strong equilibrium) for G if and only if it is
a pure Nash equilibrium (respectively, a strong equilibrium, a ρ-approximate pure Nash equilibrium,
a ρ-approximate strong equilibrium) for G

−. A tuple (s,s′) is an improving move (respectively, a
strong improving move, a ρ-improving move, a strong ρ-improving move) for G if and only it is an
improving move (respectively, a strong improving move, a ρ-improving move, a strong ρ-improving
move) for G

−. The game G has the finite improvement property, if and only if G
− has the finite

improvement property. The strong finite improvement property, the approximate finite improvement
property, and the approximate strong finite improvement property are defined analogously.

2.1.4 Examples

In the following, we discuss the existence of equilibria in some exemplary games.

Example 2.16 (Matching pennies game). In the matching pennies game, there are two players
who both choose simultaneously either “Heads” or “Tails”. If the choices differ, player 1 pays
1 dollar to player 2. If they are the same, player 2 pays 1 dollar to player 1. The private cost of
each player equals the amount of money that she pays to her counterpart, negative cost indicating
a gain of money. We model this situation as the finite minimization game G = (N,S,π), where
N = {1,2}, S1 = S2 = {“Heads”,“Tails”}. The private cost of player 1 is defined as π1(s1,s2) =−1
if s1 = s2 and π1(s1,s2) = 1, otherwise, and the payoff of player 2 equals π2(s1,s2) = 1 if s1 = s2

and π1(s1,s2) = −1, otherwise. We can write this game as the matrix shown in Figure 2.1. Here,
the strategies of player 1 are identified with the rows of the matrix. The strategies of player 2 appear
as the columns. Thus, each cell of the matrix corresponds to a strategy profile s of the game and
shows the corresponding private cost vector. That is, in each cell the first entry equals the private
cost of player 1 and the second entry equals the private cost of player 2 in the corresponding strategy
profile. The matching pennies game has no pure Nash equilibrium as in each strategy profile the
loosing player gains by picking her other strategy.

The following game is a slight modification of a game discussed by Tardos and Vazirani [125].
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Player 2

“Heads” “Tails”

“Heads” −1, 1 1, −1

P
la

ye
r

1
“Tails” 1, −1 −1, 1

Figure 2.1: Matrix representation of the Matching-Pennies-Game (Example 2.16). Rows are associated with
the strategies of player 1 and columns are associated with the strategies of player 2. Each cell of
the matrix is shows the corresponding private cost vector.

Player 2 Player 2

“Pollute” “Restrict” “Pollute” “Restrict”

“Pollute” 3, 3, 3 2, 4, 2 “Pollute” 2, 2, 4 1, 3, 3

P
la

ye
r

1

“Restrict” 4, 2, 2 3, 3, 1 “Restrict” 3, 1, 3 2, 2, 2

“Pollute” “Restrict”

Player 3

Figure 2.2: Matrix representation of the pollution game. The two matrices correspond to the two strategies
of player 3. In each of the two matrices, rows are identified with the strategies of player 1 and
columns are identified with the strategies of player 2. Each cell of a matrix shows the private cost
vector of the corresponding strategy profile.

Example 2.17 (Pollution game). A set of three countries may either pass legislation to restrict
pollution or not. Restricting pollution has a cost of 2 for the country itself, but each polluting country
adds 1 to the cost of all countries. We model this situation as the finite strategic minimization game
G = (N,S,π), where N = {1,2,3} and S1 = S2 = S3 = {“Pollute”,“Restrict”}. The private cost
of each player i ∈ N is defined as πi(s) = 2+ |{ j ∈ N : s j = “Pollute”}| if si = “Restrict”, and
πi(s) = |{ j ∈ N : s j = “Pollute”}| otherwise. A convenient way of describing the game is shown in
Figure 2.2. Here, we have two matrices, one for each strategy of player 3. In each of them, strategies
of players 1 and 2 are identified with the rows and columns of the matrix, respectively. Thus, each
strategy profile s corresponds to exactly one cell in one of the two matrices. Each cell shows the
private cost vector of the corresponding strategy profile.

Each player i is always better off polluting, no matter what the strategies of the other two play-
ers are. Thus, the strategy profile where all three players pollute is the unique pure Nash equi-
librium of the game. The pollution game also has the finite improvement property because ev-
ery improving move involves a player switching from “Restrict” to “Pollute” implying that each
improvement path is finite. The unique pure Nash equilibrium of the pollution game is not a
strong equilibrium as all three players may deviate jointly from (“Pollute”,“Pollute”,“Pollute”) to
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(“Restrict”,“Restrict”,“Restrict”) decreasing the cost for each player. Thus, the pollution game has
no strong equilibrium.

To this point all examples have been finite. The following variant of a Cournot competition
features two players with an infinite set of strategies.

Example 2.18 (Cournot competition). In Cournot’s model of duopoly competition [27] there are
two firms producing a homogeneous good without production cost. Both firms simultaneously
choose their respective production levels. They sell their output on a single market at the market
clearing price p, which is a non-increasing function of the total quantity offered. In this example,
we assume a linear market reaction that equals p(x) = max{0,1− x} for all x ≥ 0. The payoff of
each firm is the profit from selling their goods. This situation can be modeled as the infinite max-
imization game G = (N,S,ϖ), for which N = {1,2}, S1 = S2 = R≥0, ϖ1(s) = s1 · p(s1 + s2) and
ϖ2(s) = s2 · p(s1 + s2). To find a pure Nash equilibrium of that game, we note that the best re-
ply r1(s2) ∈ S1 of player 1 to s2 ∈ S2 satisfies r1(s2) ∈ argmaxs1∈S1

ϖ1(s1,s2). Using the first-order
conditions for optimality, we obtain r1(s2) = (1− s2)/2, if s2 < 1. By symmetry, we also derive
r2(s1) = (1− s1)/2, if s1 < 1 for the best reply of player 2. We obtain two kinds of pure Nash equi-
libria. In the first type, we have s1 < 1 and s2 < 1. The best replies then give rise to s1 = s2 = 1/3,
that is, (1/3,1/3) is a pure Nash equilibrium. Note that this pure Nash equilibrium gives a payoff
of 1/9 to both players. Switching to the strategy profile in which both players choose a demand
equal to 1/4, the payoff of both players increases to 1/8. There is also a second type of pure Nash
equilibrium, in which both players choose a strategy greater or equal 1. Because this type of pure
Nash equilibrium gives a payoff of 0 to each player, it is also not a strong equilibrium. Thus, the
Cournot oligopoly game has no strong equilibrium.

2.2 Sufficient Conditions for the Existence of Equilibria

As seen in the previous examples there are games that lack the existence of pure Nash equilibria or
strong equilibria. In this section, we introduce the most important tools for proving the existence of
equilibria in games – potential functions and fixed points.

2.2.1 Potential Functions

One approach to establish the existence of a pure Nash equilibrium is the potential function method.
Potential functions were introduced in the game theory literature by Rosenthal [114] and further
studied and generalized by Monderer and Shapley [99]. For a minimization game, G = (N,S,π),
a potential function is a real-valued function P : S → R defined on the set of strategy profiles that
decreases along any improvement path. That is, every profitable deviation of a single player strictly
reduces the value of P. A game G that admits a potential function is called a potential game.

Definition 2.19 (Potential function)

For a minimization game G=(N,S,π), a function P : S→R is a potential function if P(s)>P(s′i,s−i)

for all improving moves
(
s,(s′i,s−i)

)
of G.
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Monderer and Shapley [99] call a function as defined above a generalized ordinal potential. To
not overburden terminology, we prefer to call it simply potential. There are several more restrictive
notions of potential functions. For a vector w = (wi)i∈N of weights with wi ∈ R>0, a function
P : S → R is called a w-potential or weighted potential, if π(s)−π(s′i,s−i) = wi

(
P(s)−P(s′i,s−i)

)

for all s ∈ S, i ∈ N and s
′
i ∈ Si. It is called an exact potential, if it is a weighted potential with

wi = 1 for all i ∈ N. A function P : S →R is called an ordinal potential if sgn(π(s)−π(s′i,s−i)) =

sgn(P(s)−P(s′i,s−i)) for all s ∈ S, i ∈ N and s
′
i ∈ Si, where the sign function sgn :R→R is defined

as sgn(x) = 1 if x > 0, sgn(x) = 0 if x = 0, and sgn(x) =−1 otherwise.
It is a useful observation that every finite potential game has the finite improvement property. In

fact, as shown by Monderer and Shapley [99] the existence of a potential function is even necessary
for a finite game to have the finite improvement property. To prove this result, we here use the more
elegant proof due to Milchtaich [94].

Proposition 2.20. A finite game has the finite improvement property if and only if it has a potential.

Proof. We first prove that every finite potential game has the finite improvement property. Suppose
not. Let γ = (s0,s1, . . . ) be an infinite improvement path. The finiteness of the strategy space S

implies that there are k, l ∈N with k < l such that s
k = s

l . This contradicts P(sk)> P(sk+1)> · · ·>
P(sl−1)> P(sl).

For the only if part, consider the function P : S →R defined as

P(s) =−|{t ∈ S : there exists an improvement path starting in t and ending in s}|.

We claim that P is a potential function. Let i ∈ N, s ∈ S, s
′
i ∈ Si with πi(s) > πi(s

′
i,s−i) be arbitrary.

Using that πi(s) > πi(s
′
i,s−i), we observe that for every strategy profile t for which there exists an

improvement path starting in t and ending in s, there is also one starting in t and ending in (s′i,s−i).
In addition, (s,(s′i,s−i)) is an improvement path starting in s and ending in (s′i,s−i). As the game has
the finite improvement property, there is no improvement path starting in (s′i,s−i) and ending in s.
This implies P(s)> P(s′i,s−i).

For infinite games the existence of a potential function is not sufficient for the finite improvement
property. For instance, the one-player minimization game, with S1 = (0,1] and π1(s1) = −1/s1 has
the exact potential function P(s) = πi(s) but the sequence γ = (1/k)k∈N>0

is an infinite improvement
path. This game can be turned into a two-player game by adding a second player whose strategic
choice has no influence on the private cost of player 1.

Using that every game with the finite improvement property possesses a pure Nash equilibrium
(Proposition 2.8), we obtain the following result as an immediate corollary of Proposition 2.20.

Corollary 2.21. Every finite potential game possesses a pure Nash equilibrium.

For the pollution game considered in Example 2.17, the function P : S → R defined as P(s) =

|{i ∈ N : si = “Restrict”}| is an exact potential function implying the existence of a pure Nash equi-
librium. The pollution game does not possess a strong equilibrium, however. To obtain a necessary
condition for the existence of strong equilibria, Holzman and Law-Yone [72] generalized the poten-
tial function concept to strong potential functions. Roughly speaking, P is a strong potential function
if the value of P decreases along every strong improving move.
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Definition 2.22 (Strong potential function)

For a minimization game G = (N,S,π), a function P : S →R is called a strong potential function if
P(s)> P(s′K ,s−K) for all strong improving moves

(
s,(s′K ,s−K)

)
of G.

We obtain the following result analogously to Proposition 2.20.

Proposition 2.23. A finite game has the strong finite improvement property if and only if it has a

strong potential.

Using that every game with the strong finite improvement property possesses a strong equilib-
rium (Proposition 2.12), we obtain the following corollary.

Corollary 2.24. Every finite game with a strong potential possesses a strong equilibrium.

2.2.2 Fixed Points

Nash’s famous theorem [101] for the existence of mixed equilibria in finite games relies on a fixed
point theorem due to Kakutani. The main idea is to consider for each player i the so-called best-reply

correspondence that maps each strategy profile s to the set of strategies that maximize player i’s
payoff when her opponents play s−i. Kakutani’s fixed point theorem [76] then implies the existence
of a fixed point, which is a mixed Nash equilibrium.2

In the following years, many researchers (Debreu [31], Fan [42], Glicksberg [58], Rosen [113])
independently discovered, that Kakutani’s fixed point theorem can in fact be applied in a more gen-
eral context where the strategy set of each player is compact, and the private payoff function ϖi

of each player i has the property that upper-contour levels are convex, that is, for each i ∈ N, each
s−i ∈ S−i and each α > 0 the set {si ∈ Si : ϖi(si,s−i) ≥ α} is convex. Such private payoff unctions
are called quasi-concave. We here state the theorem as it appears in Fudenberg and Tirole [52].

Theorem 2.25. Let G = (N,S,ϖ) be a maximization game. If each strategy set Si is a compact

and convex subset of R
ki , ki ∈N and each payoff function ϖi : S →R is continuous in s and quasi-

concave in si, then G has at least one pure Nash equilibrium.

2.3 Congestion Games

Rosenthal [114] introduced the class of congestion games to the game theory literature and proved
existence of a pure Nash equilibrium in each such game. Based on his pioneering work, many
variants and extensions of congestion games have been discussed and their behavior related to the
existence of equilibria has been analyzed intensively. In this section, we will introduce the class of
congestion games as defined by Rosenthal and the variants thereof covered in this thesis. We slightly
abuse terminology by calling all games introduced in this section simply congestion games. When
referring explicitly to the class of games introduced by Rosenthal, we refer to them as unweighted

congestion games.

2In his thesis Nash [102] uses an alternative proof relying on Brouwer’s fixed point theorem which circumvents dealing
with set-valued functions.
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Congestion games are an elegant model to investigate the effects of resource usage by selfish
users. In such a game, players use several resources from a common pool. The cost that each
player experiences while using a resource depends on the set of users of that resource. Formally,
we are given a finite set N of players and a finite set R of resources. Each player has a set of
subsets of resources Ai ⊆ 2R available to her. The set Ai is called the set of feasible allocations of
player i and the Cartesian product of the players’ feasible allocations A = A1 × ·· ·×An is called
the allocation space. Each resource r ∈ R is endowed with a cost function cr :R≥0 →R. The tuple
M=

(
N,R,(Ai)i∈N ,(cr)r∈R

)
is called a congestion model.

2.3.1 Unweighted Congestion Games

We first define congestion games as they were introduced by Rosenthal [114]. In this class of games,
the cost of each resource depends solely on the number of players using that resource.

Definition 2.26 (Unweighted congestion game)

Let M=
(
N,R,(Ai)i∈N ,(cr)r∈R

)
be a congestion model. The corresponding unweighted congestion

game is the minimization game G= (N,S,π) with Si =Ai and πi(s) =
∑

r∈si
cr(ℓr(s)), where ℓr(s) =

|{ j ∈ N : r ∈ s j}| for all i ∈ N.

For illustration, consider the following example.

Example 2.27 (Unweighted congestion game). There are two players with unit demand. The
resources correspond to the edges of the undirected graph shown in Figure 2.3(a). The cost of each
resource as a function of the aggregated demand x is written beneath the edges. Each player i wants
to establish a simple (ui,vi)-path. That is, A1 =

{
{(u1,u2),(u2,v1)},{(u1,v2),(v1,v2)}

}
and A2 ={

{(u1,u2),(u1,v2)},{(u2,v1),(v1,v2)}
}

. Consider the strategy profile in which player 1 chooses her
upper path {(u1,u2),(u2,v1)} and player 2 chooses her left path {(u1,u2),(u1,v2)}. The upper left
edge is congested with 2 units leading to a cost of 16 to each player. In addition, both the upper
right and the lower left edge are congested with one unit of demand leading to a cost of 8. Thus,
the private cost of each player equals 16+8 = 24. Likewise, the private costs of the remaining three
strategy profiles can be computed; see Figure 2.3(b). The game has two strong equilibria.
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Figure 2.3: (a) Network structure and (b) Private costs of the unweighted network congestion game consid-
ered in Example 2.27.
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2.3.2 Weighted Congestion Games

In a weighted congestion game, each player i has a strictly positive demand di ∈R>0 that she puts on
the chosen resources. The cost of each resource then is a function of the aggregated demand on the
resource. In the congestion games literature, two natural variants have been considered. In the first
variant, which we term proportional games, the cost function of the resources is interpreted as a per-

unit cost. That is, each resource r that is congested with an aggregated demand of x units produces
a cost of xcr(x). These costs are then divided among the users proportionally to their respective
demands on that resource. As a result each user pays for each resource she uses the resource cost
multiplied by her demand.

Definition 2.28 (Proportional weighted congestion game)

Let M =
(
N,R,(Ai)i∈N ,(cr)r∈R

)
be a congestion model and (di)i∈N be a vector of strictly positive

demands. The corresponding proportional weighted congestion game is the minimization game
G = (N,S,π) with Si =Ai and πi(s) =

∑

r∈si
di cr

(
ℓr(s)

)
, where ℓr(s) =

∑

j∈N:r∈s j
d j for all i ∈ N.

Games as in the above definition are often called simply “weighted congestion games” in the
literature; see e.g. Aland et al. [6], Dunkel and Schulz [33], Goemans et al. [59], and Meyers [93].

The second variant which we term uniform games differs from proportional games in the defi-
nition of the players’ payoff functions. In uniform games the cost of a player on a resource is not

multiplied with the demand of that player. Uniform costs are suitable when the resource costs are
interpreted as latencies and thus equal for all users, regardless of their demand. This is a common as-
sumption in scheduling applications where the cost function is frequently used to model the achieved
makespan that is – under round-robin processing – equal for every job on the same resource.

Definition 2.29 (Uniform weighted congestion game)

Let M=
(
N,R,(Ai)i∈N ,(cr)r∈R

)
be a congestion model and (di)i∈N be a vector of positive demands.

The corresponding uniform congestion game is the minimization game G = (N,S,π) with Si = Ai

and πi(s) =
∑

r∈si
cr

(
ℓr(s)

)
for all i ∈ N, where ℓr(s) =

∑

j∈N:r∈s j
d j.

Also, uniform games are often simply called “weighted congestion games”, e.g., in the works
of Ackermann et al. [4], Fotakis et al. [51], and Panagopoulou and Spirakis [108]. We illustrate the
idea of a weighted congestion game with the following example.

Example 2.30 (Weighted congestion game). The set of resources, the set of players and their
feasible allocations are as in the unweighted congestion game of Example 2.27. The only difference
is that the demand of player 2 now equals 2; see Figure 2.4(a). We first consider the corresponding
proportional weighted congestion game. For illustration, we compute the players’ private costs for
the strategy profile in which player 1 chooses her upper path {(u1,u2),(u2,v1)} and player 2 chooses
her left path {(u1,u2),(u1,v2)}. The upper left edge is congested with three units and its cost equals
54. The lower left edge is congested with two units of demand and costs 27. The upper right edge is
congested with one unit of demand and costs 8. The private cost of player 1 thus equals 54+8 = 62
and the private cost of player 2 equals 2 · (54+27) = 162. The private costs experienced in all four
strategy profiles are shown in Figure 2.4(b). None of the strategy profiles constitutes a pure Nash
equilibrium. In the uniform congestion game, the private cost are the same except that the private
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Figure 2.4: (a) Network structure and (b) Private costs of the weighted undirected-network congestion game
considered in Example 2.30.

costs of player 2 are divided by 2. Thus, also in the uniform weighted congestion game no pure Nash
equilibrium exists.

For a congestion model M and a vector of demand (di)i∈N , the private costs of each player i in
the corresponding proportional and uniform weighted congestion games only differ by the strictly
positive factor di. Thus, the games are monotonic transformations of each other and Proposition 2.6
establishes that both games have the same set of pure Nash equilibria. Since we are mainly interested
in the existence of equilibria, it is sufficient to consider only proportional weighted congestion games
as a representative. In the following, we refer to them simply as “weighted congestion games”.

2.3.3 Congestion Games with Resource-Dependent Demands

In a congestion game with resource-dependent demands, we are given for each player i and each
resource r a strictly positive demand di,r . The cost of each resource depends on the aggregated
(resource-dependent) demand on the resource. We first define proportional games, where the cost of
a resource for a player is the product of the resource costs and her demand.

Definition 2.31 (Proportional congestion game with resource-dependent demands)

Let M =
(
N,R,(Ai)i∈N ,(cr)r∈R

)
be a congestion model and

(
di,r

)

i∈N,r∈R be a vector of strictly
positive resource-dependent demands. The corresponding congestion game with resource-dependent

demands is the minimization game G = (N,S,π) with Si =Ai and πi(s) =
∑

r∈si
di,r cr

(
ℓr(s)

)
for all

i ∈ N, where ℓr(s) =
∑

j∈N:r∈s j
d j,r .

Uniform games differ from proportional games solely in the fact that the cost for a player on a
resource is not multiplied with the demand of that player.

Definition 2.32 (Uniform congestion game with resource-dependent demands)

Let M =
(
N,R,(Ai)i∈N ,(cr)r∈R

)
be a congestion model and

(
di,r

)

i∈N,r∈R be a vector of strict
positive resource-dependent demands. The corresponding uniform congestion game with resource-

dependent demands is the minimization game G= (N,S,π) with Si =Ai and πi(s) =
∑

r∈si
cr

(
ℓr(s)

)

for all i ∈ N, where ℓr(s) =
∑

j∈N:r∈s j
d j,r.
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Figure 2.5: (a) Network structure, (b) Private costs of the proportional undirected-network congestion game
with resource-dependent demands, (c) Private costs of the uniform undirected-network congestion
game with resource-dependent demands considered in Example 2.33.

While the distinction between proportional games and uniform is immaterial for the existence
of pure Nash equilibria in weighted congestion games, in the case of resource-dependent demands,
both variants have different sets of equilibria, as shown in the following example.

Example 2.33 (Congestion game with resource-dependent demands). Reconsider the network
congestion model already seen in Examples 2.27 and 2.30. To give a short representation of the
players’ resource-dependent demands we call both the upper left and lower right edge a solid re-

source and all other edges a dashed resource; see Figure 2.5(a). The demand of player 1 equals 2
for all solid resources and 4 for all dashed resources. The demand of player 2 equals 3 for all solid
resources and 1 for all dashed resources. We calculate the private cost of the strategy profile of the
proportional game, in which player 1 uses the upper path and player 2 uses the left path. The upper
left resource is congested with five units of demand, thereof two units from player 1 and three units
from player 2. It produces a cost of 2 · 250 for player 1 and a cost of 3 · 250 for player 2. Player 1
additionally uses the upper right resource with cost 4 · 125 and thus her total private cost equals
2 · 250+ 4 · 125 = 1000. Player 2 additionally uses the lower left resource with cost 8, resulting in
a total private cost of 3 · 250+ 8 = 758. The private cost of all strategy profiles of the proportional
congestion game with resource-dependent demands are given in Figure 2.5(b). The game has two
strong equilibria. For comparison, the private cost of the uniform game are given in Figure 2.5(c).
Unlike the proportional game, the uniform game does not even admit a pure Nash equilibrium.
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Figure 2.6: Undirected-network congestion game with variable demands as discussed in Example 2.36.

2.3.4 Congestion Games with Variable Demands

In a congestion game with variable demands, the players’ demands are not given endogenously but
are subject to the strategic decisions of the players. As usual, every player i is associated with
a nonempty set Ai of feasible allocations which is a set of subsets of resources. In addition, we
are given for each player i a nonempty closed interval [σi,τi] of feasible demands with σi ∈ R≥0,
τi ∈R≥0 ∪{∞}, σi ≤ τi and a utility function Ui : [σi,τi]→R≥0. Technically, is suffices to be given
the utility function for each player because its domain already defines the set of feasible demands.

In each strategy profile each player i chooses both a feasible demand di ∈ [σi,τi] and a feasible
allocation αi ∈Ai. The cost of each resource depends as usual on its aggregated demand. Congestion
game with variable demands are maximization games and the private payoff of each player equals
the utility received from her demand minus the costs of the resources. We first define proportional
games.

Definition 2.34 (Proportional congestion game with variable demands)

Let M=
(
N,R,(Ai)i∈N ,(cr)r∈R

)
be a congestion model and for all i ∈ N let Ui : [σi,τi]→R≥0 be a

utility function with σi ∈R≥0, τi ∈R≥0 ∪{∞}, σi ≤ τi. The corresponding proportional congestion

game with variable demands is the maximization game G = (N,S,ϖ) with Si = Ai × [σi,τi] and
ϖi(α ,d) =Ui(di)−

∑

r∈αi
di cr

(
ℓr(α ,d)

)
for all i ∈ N, where ℓr(α ,d) =

∑

j∈N:r∈α j
d j.

Uniform games differ from proportional games solely in the fact that the resources costs are not

multiplied with the demand.

Definition 2.35 (Uniform congestion game with variable demands)

Let M =
(
N,R,(Ai)i∈N ,(cr)r∈R

)
be a congestion model and for all i ∈ N let Ui : [σi,τi]→R≥0 be

a utility function with σi ∈R≥0, τi ∈ R≥0 ∪{∞}, σi ≤ τi. The corresponding uniform congestion

game with variable demands is the maximization game G = (N,S,ϖ) with Si = Ai × [σi,τi] and
ϖi(α ,d) =Ui(di)−

∑

r∈αi
,cr

(
ℓr(α ,d)

)
for all i ∈ N, where ℓr(α ,d) =

∑

j∈N:r∈α j
d j.

For illustration, consider the following example.

Example 2.36 (Proportional congestion game with variable demands). We reconsider the same
network topology of the previous examples but use different resource cost functions to simplify our
calculations; see Figure 2.6. As in Examples 2.27, 2.30 and 2.33, the set of feasible allocations of
each player i is the set of simple (ui,vi)-paths, i.e., A1 =

{
{(u1,u2),(u2,v1)},{(u1,v2),(v1,v2)}

}
and
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A2 =
{
{(u1,u2),(u1,v2)},{(u2,v1),(v1,v2)}

}
. The set of feasible demands of each player i equals

[σi,τi] =R≥0 and her utility function Ui :R≥0 is defined as Ui(x) = 4x for all x ≥ 0. A strategy of
player i is to choose both a (ui,vi)-path and a non-negative demands, that is, Si = Ai ×R≥0. We
only consider the proportional congestion game with variable demands G. For a strategy profile
(α1,d1,α2,d2) of G with α1 ∈ A1, d1 ∈R≥0, α2 ∈ A2, and d2 ∈R≥0, we observe that

ϖi(αi,di,α−i,d−i) =






4di −2di(di +d−i)−di(di +1) if α1 = {(u1,u2),(u2,v1)},α2 = {(u1,u2),(u1,v2)}
or α1 = {(u1,v2),(v1,v2)},α2 = {(u2,v1),(v1,v2)}

}
,

4di −di(di +d−i +1)−2d
2
i otherwise.

To calculate a pure Nash equilibrium of G, we first assume that player 1 chooses her upper
path {(u1,u2),(u2,v1)} while player 2 chooses her left path {(u1,u2),(u1,v2)}. If a pure Nash
equilibrium exists for this allocation profile, the demands of players 1 and 2 satisfy the first-order
conditions on optimality. We obtain the equations di =

1
2 − 1

3d−i for i = 1,2 which we solve for
d1 = d2 = 3/8. Thus, the strategy profile

(
{(u1,u2),(u2,v1)},3/8,{(u1 ,u2),(u1,v2)},3/8

)
is the

only candidate for a pure Nash equilibrium in which player 1 chooses her upper path and player 2
chooses her lower path. This strategy profile yields a payoff equal to 27/64. However, switching
to the strategy profile

(
{(u1,v2),(v1,v2)},7/16,{(u1 ,u2),(u1,v2)},3/8

)
player 1 improves her pay-

off to 147/256 > 27/64. Thus,
(
{(u1,u2),(u2,v1)},3/8,{(u1 ,u2),(u1,v2)},3/8

)
is not a pure Nash

equilibrium.
Next, let us assume, there is a pure Nash equilibrium in which player 1 chooses her lower path

{(u1,v2),(v1,v2)} while player 2 chooses her left path {(u1,u2),(u1,v2)}. Again using the first-
order conditions, we derive that s

∗ =
(
{(u1,v2),(v1,v2)},3/7,{(u1 ,u2),(u1,v2)},3/7

)
is the unique

candidate strategy profile for a pure Nash equilibrium and yields a payoff of 27/49 to both players.
Because the players’ demands are optimal for s

∗, an improving move from s
∗ (if it exists) necessarily

incorporates a change of the allocation. It can be checked that the maximal payoff player i can
achieve when switching to her other allocation is 675/1764 < 27/49. We conclude that s

∗ is a pure
Nash equilibrium.

2.3.5 Bottleneck Congestion Games

In the congestion games seen so far the private cost of each player is the sum of the costs of all
used resources. In a bottleneck congestion game, the private cost each player experiences equals the
maximum cost among all used resources. We here define them in a more general model in which the
cost of a resource may not only depend on the aggregated demand but instead on the set of players
using it. To this end, let N be a finite set of players and R a finite set of resources. For each player i

we are given a set Ai ⊆ 2R of feasible allocations. For an allocation profile α ∈ A we denote by
Nr(α) = {i ∈ N : r ∈ αi} the set of players using r in α . Every resource r ∈ R has a cost function
cr : A→R≥0 satisfying the following three properties:

Nonnegativity: cr(α)≥ 0 for all α ∈ A.
Independence of Irrelevant Choices: cr(α) = cr(α

′) for all α ,α ′ ∈A with Nr(α) =Nr(α
′).

Monotonicity: cr(α)≤ cr(α
′) for all α ,α ′ ∈ A with Nr(α)⊆Nr(α

′).
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Figure 2.7: (a) Network structure and (b) Private costs of the bottleneck congestion game with set-dependent
costs considered in Example 2.38.

Note that “Monotonicity” implies “Independence of Irrelevant Choices”. We call the tuple M =
(
N,R,(Ai)i∈N ,(cr)r∈R

)
a congestion model with set-dependent costs. We now define bottleneck

congestion games with set-dependent costs relative to a congestion model with set-dependent costs.

Definition 2.37 (Bottleneck congestion game with set-dependent costs)

Let M=
(
N,R,(Ai)i∈N ,(cr)r∈R

)
be a congestion model with set-dependent costs. The correspond-

ing bottleneck congestion game with set-dependent costs is the minimization game G = (N,S,π) in
which Si =Ai and πi(x) = maxr∈si

cr(s) for all i ∈N.

We illustrate this definition with the following example.

Example 2.38 (Bottleneck congestion game). Consider the network shown in Figure 2.7(a). In
contrast to the previous examples, the cost functions of the resources depend on the set of players
using it. The three entries next to each edge indicate the cost of that edge when used only by player 1,
only by player 2, and by both players, respectively. Note that the cost functions are monotonic,
in the sense that the cost does not decrease as the set of players using that edge increases. This
monotonicity requirement is weaker than the monotonicity of the cost functions in demand-based
models since the cost values 1|2|2 of edge (u1,u2) and 2|1|2 of edge (u1,v2) are not representable
in a demand-based model with non-decreasing cost functions. For illustration, we calculate the
players’ private costs for the strategy profile in which the first player uses her upper path and the
second player uses her left path. In this profile, edge (u1,u2) is used by both players and produces a
cost of 2. This is the bottleneck of both players since the edges (u2,v1) and (u1,v2) produce a cost
of 1 each. Thus, the private cost of both players equals 2. Figure 2.7(b) shows the private costs for
all remaining strategy profiles. All strategy profiles in which player 2 uses her left path are a strong
equilibrium.

2.3.6 Special Strategy Spaces

In the above definitions of the variants of congestion games covered in this thesis we did not impose
any particular assumptions on the set Ai ⊆ 2R of feasible allocations of each player i. In most
applications, however, the set Ai has a special structure, implicitly given by a problem-specific
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combinatorial property. For routing applications, for instance, the set of feasible allocations equals
the set of all paths connecting that player’s source and target node. In this section, we review the
most important combinatorial structures imposed on the players’ sets of feasible allocations.

Singleton Congestion Games

A congestion game is called a singleton game, if |αi|= 1 for each player i and each feasible alloca-
tion αi ∈Ai. Singleton games have the common interpretation of selfish load balancing scenarios in
which each player controls a job which she wants to be scheduled on exactly one machine out of a
set of feasible machines.

Network Congestion Games

In a network congestion game, the set of resources corresponds to the set of edges of a directed or
undirected graph G = (V,R). There is a source-sink pair (ui,vi)∈V ×V associated with each player i

and the set of her feasible allocations is equal to the set of simple (ui,vi)-paths. If there are a common
source u = ui and a common sink v = vi for all players i, we say that the game is a single-commodity

network congestion game. Otherwise, we call it a multi-commodity network congestion game.

Matroid Congestion Games

In brief, matroid congestion games are games in which for each player i the set Ai of feasible alloca-
tions is the basis of a matroid. Singleton congestion games are matroid congestion games. Another
prominent example of matroid games are spanning tree games in which the resources correspond the
edges of an undirected graph and the players strive to allocate a spanning tree.

In the following, we give a short introduction to matroids. For a comprehensive treatment we
refer to the textbooks of Korte and Vygen [84, Chapter 13] and Schrijver [120, Chapters 39 – 42].
Let R be a finite set. A tuple M = (R,I) where I ⊂ 2R is called a matroid if the following three
conditions are satisfied:

(1) /0 ∈ I .
(2) If I ∈ I and J ⊆ I, then J ∈ I .
(3) If I,J ∈ I and |J|< |I|, then there exists an i ∈ I \ J with J∪{i} ∈ I .

A set A ⊆ R is called independent if A ∈ I , and dependent otherwise. The set of (inclusion wise)
maximal independent subsets of R is called the basis of M. For given R, a matroid (R,I) may be
of exponential size, thus, one frequently assumes that a matroid comes with an independence oracle

that returns for all sets A ⊆ R whether A ∈ I or not. It shall be noted that for many subclasses of
matroids an independence oracle can be implemented in polynomial time.

Another way of representing matroids is via a rank function rk : 2R →N. Every sub-cardinal,
monotonic and sub-modular function rk : 2R →N gives rise to a matroid whose independent sets then
are defined as {A ⊆ R : rk(A) = |A|}. If the independent sets are known a priori via an independence
oracle the rank function is defined as rk(A) = maxI∈I:I⊆A |I|.
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Symmetric Congestion Games

The allocations space A is called symmetric if Ai = A j for all i, j ∈ N. A prominent example for
symmetric allocations spaces are single-commodity network congestion games.

2.4 Equilibria in Congestion Games

In this section, we review related work congestion games. We focus on the existence of equilibria
and their computational complexity.

2.4.1 Existence of Equilibria

Below, we summarize known results about the existence of equilibria in several variants of conges-
tion games, such as games with unweighted and weighted players, games with resource-dependent
demands, games with bottleneck objectives, and games with player-specific costs.

Unweighted Congestion Games

Rosenthal [114] proved in his seminal work that each unweighted congestion game possesses a pure
Nash equilibrium by providing an exact potential function. In fact, every exact potential game is
isomorphic to a congestion game as shown by Monderer and Shapley [99]. For a simpler proof of
this result, we also refer to the paper by Voorneveld et al. [132].

Although every unweighted congestion games possesses at least one pure Nash equilibrium, a
strong equilibrium need not exist, as shown by Holzman and Law-Yone [72]. They further gave a
structural characterization of the strategy spaces that give rise to a strong equilibrium in unweighted
congestion games with non-decreasing non-positive costs. Their result implies in particular that
each singleton game with such cost functions possesses a strong equilibrium. Rozenfeld and Ten-
nenholtz [118] complemented this result showing that also in singleton games with non-increasing
non-positive costs a strong equilibrium exists.

Anshelevich et al. [9, 10] proposed to study cost sharing games with fair cost allocation. This
class of games corresponds to unweighted multi-commodity network congestion games where the
cost function of each resource r is of the form cr(x) = br/x, br ∈ R≥0. Epstein et al. [36] derive
topological properties of the underlying networks that guarantee the existence of strong equilibria in
this model.

Feldman and Tennenholtz [45, 46] considered a strengthening of the strong equilibrium concept
called super-strong equilibrium. In such an equilibrium, no coalition of any size can deviate without
increasing the private cost of each of its members while for at least one member the private cost
strictly decreases. Under restrictions on the formation of coalitions, they showed the existence of
a super-strong equilibrium in various special cases of singleton congestion games with unweighted
players.
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Weighted Congestion Games

In contrast to unweighted congestion games, games with weighted players need not possess a pure
Nash equilibrium. Even two-player games may fail to admit a pure Nash equilibrium; counterex-
amples were given by Fotakis et al. [51], Goemans et al. [59], and Libman and Orda [88]. On the
positive side, Fotakis et al. [51] and Panagopoulou and Spirakis [108] proved the existence of a pure
Nash equilibrium in weighted congestion games with affine and exponential costs, respectively. An-
shelevich et al. [9, 10] showed that pure Nash equilibria exist in two-player games where all cost
functions are of type cr(x) = br/x, br ∈R≥0. Milchtaich [95, 96] studied topological properties of
the network that guarantee the existence of at least one pure Nash equilibrium.

For singleton games Fotakis et al. [50] showed the existence of a pure Nash equilibrium for lin-
ear cost functions (without a constant). Fabrikant et al. [41] gave a short proof for the existence of
a pure Nash equilibrium in all singleton congestion games where the cost of each resource is a non-
decreasing function depending on the set of its users. This includes singleton weighted congestion
games as a special case. Ackermann et al. [4] extended the positive result for singleton weighted
congestion games with non-decreasing costs to matroids. They also showed that the matroid prop-
erty is the maximal property that gives rise to a pure Nash equilibrium for all non-decreasing cost
functions, that is, for any strategy space not satisfying the matroid property, there is an instance of a
weighted congestion game not having a pure Nash equilibrium.

Kollias and Roughgarden [80] showed that for any game with non-decreasing cost functions it is
possible to distribute the costs incurred on each resource in such a way that the existence of a pure
Nash equilibrium is always guaranteed. Von Falkenhausen and Harks [129] pursued the question
how to distribute the costs incurred in singleton weighted congestion games so as to guarantee the
existence of equilibria with good social costs.

A model related to weighted congestion games has been considered by Rosenthal [115]. He
showed that in weighted congestion games where players are allowed to split their demand integrally,
a pure Nash equilibrium need not exist; see also Tran et al. [126] for further results on this model.

Congestion Games with Resource-Dependent Demands

The above mentioned positive result of Fabrikant et al. [41] for singleton congestion games with set-
dependent costs includes singleton uniform congestion games with resource-dependent demands as a
special case. Independently, Even-Dar et al. [39, 40] proved the existence of pure Nash equilibria for
load balancing games on parallel unrelated machines. This class of games corresponds to uniform
congestion games with resource-dependent demands on singletons where the cost function of each
resource is the identity. Andelman et al. [8] proved even the existence of a strong Nash equilibrium
in scheduling games on unrelated machines. Feldman and Tamir [44] further investigated coalitional
deviations in these games. They gave bounds on the ratio by which an arbitrary coalition may
improve from any (non-strong) pure Nash equilibrium.

Bottleneck Congestion Games

For bottleneck games with strictly increasing costs the existence of a pure Nash equilibrium was
shown by Libman and Orda [88]. Banner and Orda [15] proved the existence of a pure Nash equilib-
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rium both in the unsplittable flow and in the splittable flow setting, respectively. Epstein et al. [35]
study the influence of the network topology on the existence of socially optimal pure Nash equilib-
rium in unsplittable bottleneck congestion games on undirected graphs.

Bottleneck routing with non-atomic players and variable demands has been studied by Cole et
al. [26]. Among other results, they proved the existence of an equilibrium.

Player-Specific Cost Functions

There is a large body of literature concerning congestion games with player-specific cost functions.
In such a game, there are no common cost functions on the resources. Instead, we are given for each
player i and each resource r a player-specific cost function ci,r :R≥0 →R≥0.

Milchtaich [94] showed that unweighted singleton congestion games with player-specific cost
functions possess at least one pure Nash equilibrium. Ackermann et al. [4] extended this positive
result to matroid games. Similar to their result for weighted congestion games, they further showed
that the matroid property is the maximal property that guarantees the existence of a pure Nash equi-
librium for all non-decreasing cost functions. As shown by Voorneveld et al. [132], the model of
Konishi et al. [82] is equivalent to that in [94], which is worth noting as Konishi et al. [82] even
proved the existence of strong equilibria in these games.

Gairing et al. [55] showed that best response dynamics do not cycle if the player-specific cost
functions are linear without a constant term. Milchtaich [95] further showed that general network
games with player-specific costs need not admit a pure Nash equilibrium in general. For the special
case where the player-specific cost functions are all affine and differ only by a player-specific additive
constant, Mavronicolas et al. [92] gave a weighted potential.

Games with weighted players and player-specific costs need not possess a pure Nash equilibrium
even if all strategies are singletons; see the counterexample given by Milchtaich [94].

2.4.2 Computational Complexity of Equilibria

A central challenge in algorithmic game theory is to characterize the computational complexity of
equilibria. There are three main computational problems considered in the literature. First, given
an instance of a class of congestion games, which is guaranteed to possess a pure Nash equilibrium
(respectively, a strong equilibrium), we are interested in calculating such an equilibrium. This com-
putational problem is called the search problem. Determining the computational complexity of the
search problem is an important challenge for two different reasons. On the one hand, efficient algo-
rithms for the computation of equilibria may help to design systems with desirable equilibria. On
the other hand, complexity results yield important indicators for which classes of games, equilibrium
concepts are in fact plausible outcomes of strategic play. In order to determine the computational
complexity of the search problem it is also important to decide for a given instance of a certain class
of congestion games and a given strategy profile whether it is a pure Nash equilibrium (respectively,
a strong equilibrium). We refer to this problem as the recognition problem. The recognition problem
naturally occurs in applications where it is desirable to know whether a certain observed state of the
system is stable against unilateral or coalitional deviations. Another question related to the compu-
tational complexity of equilibria is the existence problem. Given an instance of a class of congestion
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games, which does not admit a pure Nash equilibrium (respectively, a strong equilibrium) in gen-
eral, we like to decide whether the game possesses such an equilibrium. Efficient algorithms for the
existence problem are important for the design of real-world systems for which oscillating behavior
is not desired.

For all three questions, it is important to specify how the instances are encoded. Without im-
posing additional assumptions on the combinatorial structure, the set of feasible allocations of each
player is given explicitly. For network congestion games and matroid congestion games, the set of
feasible allocations of each player is given implicitly by a certain combinatorial property.

Below, we summarize known results on the complexity of these three questions for the variants
of congestion games considered in this thesis.

Unweighted Congestion Games

The complexity of computing a pure Nash equilibrium in an unweighted congestion game is closely
related to the complexity of local search problems. An instance of a local search problem is given
by a set of feasible solutions linked by neighboring conditions, and an objective function defined
on the set of feasible solutions. Given such an instance, we are interested in calculating a locally

optimal solution, that is, a feasible solution that does not have a strictly better neighbor. The class
PLS (polynomial local search) contains those local search problems for which objective function
values can be computed efficiently and the following two problems can be solved in polynomial
time: (i) compute an initial feasible solution; (ii) given an initial feasible solution, compute a strictly
better neighbor or decide that no such neighbor exists.

Fabrikant et al. [41] showed that it is PLS-complete to compute a pure Nash equilibrium of
a multi-commodity network unweighted congestion game with non-decreasing costs. As shown
by Ackermann et al. [3], this holds even if all cost functions are linear (without a constant). The
problem is also PLS-complete for non-increasing cost functions; see Syrgkanis [124]. For single-
commodity network unweighted congestion games with non-decreasing costs, Fabrikant et al. [41]
gave an efficient algorithm computing a pure Nash equilibrium.

Ieong et al. [73] showed that for singleton unweighted congestion games, the length of any every
improvement path can be bounded by a polynomial of the input size. Thus, starting with an arbitrary
strategy profile and following an arbitrary improvement path yields an efficient algorithm computing
a pure Nash equilibrium. Ackermann et al. [3] extended this positive result to matroids. They
also showed that the matroid property is the maximal property that ensures polynomially bounded
improvement paths for arbitrary non-decreasing cost functions.

Hoefer and Skopalik [71] showed that it is strongly co-NP-hard to decide whether an unweighted
congestion games possesses a strong equilibrium, even for games in which the strategy sets are
simultaneously matroids and single-commodity network games. They further proved that deciding
whether a given strategy profile is a strong equilibrium is strongly co-NP-hard. For two-player
games both problems are still weakly co-NP-hard to decide.
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Weighted Congestion Games

The negative result of Ackermann [3] implies PLS-completeness of computing a pure Nash equi-
librium of a multi-commodity weighted congestion game with linear costs. For the special case
of symmetric singleton weighted congestion games in which all cost functions are positive linear
functions (without a constant), Fotakis et al. [50] showed that inserting the players in non-increasing
order of their demands yields a pure Nash equilibrium. Gairing et al. [54] studied games with asym-
metric singleton strategies. They proposed an efficient algorithm computing a pure Nash equilibrium
for the special case in which all cost functions are equal and linear (without a constant).

Allowing for general cost functions and arbitrary strategy spaces, Dunkel and Schulz [33] proved
that it is strongly NP-hard to decide whether a weighted congestion game possesses a pure Nash
equilibrium. As noted in their paper, this negative result translates to the class of integer splittable
congestion games introduced by Rosenthal [115].

Congestion Games with Resource-Dependent Demands

For games with non-singleton strategies, all negative results for weighted congestion games persist.
For singleton congestion games with resource-dependent demands, the complexity of computing a
pure Nash equilibria and strong equilibria are challenging open problems. As the only result is this
direction, Feldman and Tamir [44] showed NP-hardness of the problem to decide for a given pure
Nash equilibrium whether it is a strong equilibrium.

Congestion Games with Player-Specific Costs

For singleton games with unweighted players, the existence proof of Milchtaich [94] gives rise
to an efficient algorithm computing a pure Nash equilibrium. For network congestion games it
is NP-complete to decide whether a pure Nash equilibrium exists, as shown by Ackermann and
Skopalik [5]. They further proved that for the special case in which the player’s cost functions are
identical, but each player may not use a certain subset of edges, a pure Nash equilibrium always
exists, but is PLS-complete to compute.
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Weighted Congestion Games

In an unweighted congestion game the cost of each resource depends only on the number of players
using it. Thus, these games are anonymous in the sense that for every three different players i, j,k

the private cost of player i does not alter when players j and k switch their strategies while all other
players remain using their strategies. This assumption is limiting for many applications. For selfish
flows in telecommunication networks, for instance, the players may control streams with different
sending rates that have different impact on the congestion on the resources. As a better model
of this and many other situations weighted congestion games are studied. In such a game, every
player has a strictly positive demand di ∈ R>0 that she places on the chosen resources. The cost
of a resource is then a function of the aggregated demand of all players using that resource. An
important subclass of weighted congestion games are weighted network congestion games. Here,
every player is associated with a positive demand that she wants to route from her origin to her
destination on a path of minimum cost. In contrast to unweighted congestion games, weighted
congestion games do not always admit a pure Nash equilibrium. Fotakis et al. [51] and Libman and
Orda [88] each constructed a single-commodity network instance with two players having demands
one and two, respectively, and showed that these games do not have a pure Nash equilibrium. Their
instances use different non-decreasing cost values per edge that are defined at the three possible
loads, 1,2,3. Goemans et al. [59] constructed a two-player single-commodity instance without a pure
Nash equilibrium that uses different polynomial cost functions with non-negative coefficients and
degree of at most two. Interestingly, Anshelevich et al. [10] showed that for cost functions of the form
cr(x) = br/x, br ∈R≥0, every two-player game possesses a pure Nash equilibrium. For games with
affine cost functions, Fotakis et al. [51] proved that every weighted congestion game possesses a pure
Nash equilibrium. Later, Panagopoulou and Spirakis [108] proved that pure Nash equilibria always
exist for instances with uniform exponential cost functions (cr(x) = e

x). Harks et al. [67] generalized
this existence result to non-uniform exponential cost functions of the form cr(x) = ar e

φ x + br for
some ar,br,φ ∈ R, where ar and br may depend on the resource r, while φ must be equal for
all resources. These positive results in [51, 67, 108] are particularly important as they establish
the existence of pure Nash equilibria for the respective sets of cost functions independent of the
underlying game structure, that is, independent of the underlying strategy set, demand vector, and
number of players, respectively.



40 Chapter 3. Weighted Congestion Games

In this chapter, we further explore the equilibrium existence problem in weighted congestion
games. Our goal is to precisely characterize which types of cost functions actually guarantee the ex-
istence of a pure Nash equilibrium. To formally capture this issue, we say that a set of cost functions
C is consistent for weighted congestion games if every weighted congestion game with cost functions
in C possesses a pure Nash equilibrium.1 Using this terminology, the results shown in [51, 67, 108]
yield that C is consistent if C consists of either only affine functions or only certain exponential func-
tions. A natural open question is to decide whether there are further consistent functions, that is,
functions guaranteeing the existence of a pure Nash equilibrium. We thus investigate the following
question: How large is the set C of consistent cost functions? We also introduce a stricter notion
of consistency which we term universal consistency. A set C of cost functions is called universally
consistent, if every weighted congestion game with cost functions in C has the finite improvement
property, that is, every sequence of unilateral improvements is finite. As every game with the finite
improvement property possesses a pure Nash equilibrium (Proposition 2.8), universal consistency is
a stronger property than consistency.

3.1 Contributions and Chapter Outline

To obtain a complete characterization of the equilibrium existence problem in weighted congestion
games, we first derive necessary conditions. For a set C of continuous functions, we show that if
C is consistent, then C may only contain monotonic functions. We further show that monotonicity
of cost functions is necessary for consistency even in singleton games with only two players, two
resources, identical cost functions and symmetric strategies. As our first main result we show that a
set of continuous cost functions C is consistent for two-player games if and only if C only contains
monotonic functions and for all non-constant c1,c2 ∈ C, there are constants a,b∈R such that c1(x) =

ac2(x)+b for all x ≥ 0. This characterization precisely explains the seeming dichotomy between the
positive result of Anshelevich et al. [10] for two-player games and the two-player instances without
a pure Nash equilibrium given in [51, 59, 88]. Our second main result establishes a characterization
for the general case. We prove that a set C of continuous functions is consistent for games with at
least three players if and only if exactly one of the following two cases holds: (i) C only contains
affine functions; (ii) C only contains exponential functions c such that c(x) = ac e

φ x + bc for some
ac,bc,φ ∈ R, where ac and bc may depend on c, while φ must be equal for every c ∈ C. This
characterization is even valid for three-player games. We further show that for both two-player
games and games with at least three players, consistency of C is equivalent to universal consistency.

While the above characterizations hold for arbitrary strategy spaces, we also study consistency
of cost functions for restricted strategy spaces. First, we consider weighted network congestion
games. Assuming strictly positive costs, we show that essentially all results translate to directed-
network weighted congestion games. For games on undirected networks, we give respective charac-
terizations for games with two players and at least four players leaving a gap for three-player games.
For singleton weighted congestion games with two players we show that C is consistent if and only
if C only contains monotonic functions. This characterization does not extend to games with three

1The term “consistency” is due to Holzman and Law-Yone [72]. They call an allocation space strongly consistent if
every congestion game derived from it possesses a strong equilibrium.
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players. We give an instance with three players and monotonic cost functions without a pure Nash
equilibrium. For symmetric singleton weighted congestion games, however, we prove that C is
consistent if and only if C only contains monotonic functions. In contrast to the characterizations
for arbitrary strategy spaces, both characterizations do not carry over to universal consistency. We
provide corresponding instances with improvement cycles.

The proofs of our main results essentially rely on two ingredients. First, we derive two neces-
sary conditions in Section 3.3 for continuous and consistent cost functions (Monotonicity Lemma
(Lemma 3.3) and Extended Monotonicity Lemma (Lemma 3.5)). The Monotonicity Lemma states
that any continuous and consistent cost function must be monotonic. The lemma is proved by con-
structing a generic two-player weighted congestion game in which we identify a unique improvement
cycle that contains all strategy profiles. Then, we show that for any non-monotonic cost function,
there is a weighted congestion game with a unique improvement cycle. By adding additional players
and carefully choosing the players’ weights and strategy spaces, we then derive the Extended Mono-
tonicity Lemma, which ensures that the set of cost functions contained in a certain finite integer

linear hull of the considered cost functions must be monotonic. By analyzing functions contained
in the finite integer linear hull corresponding to two-player games, we prove in Section 3.4 that a
set of continuous cost functions is consistent for two-player games if and only if all cost functions
are monotone and every two non-constant cost functions are affine transformations of each other. In
Section 3.5, we consider games with at least three players. We show that the Extended Monotonicity
Lemma for games with at least three players implies that consistent and continuous cost functions
must be either affine or exponential. In Section 3.6 and Section 3.7, we derive characterizations of
consistency and universal consistency of cost functions for games with restricted strategy spaces,
such as weighted network congestion games and weighted singleton congestion games, respectively.

Significance. When designing systems for selfishly acting user, there are two fundamental goals:
(i) the system must be stabilizable, that is, there must exist an equilibrium state from which no player
wants to unilaterally deviate; (ii) myopic play of the players should guide the system to an equilib-
rium. Because the number of players and their types expressed by the demands and the strategy
spaces are only known to the players and not available to the system designer, it is natural to study
the above two issues with respect to the used cost functions. In fact, for most applications, the cost
functions are under control of the system designer since they represent the technology associated
with the resources, e.g., queuing disciplines at routers, latency function in transportation networks,
etc. Therefore, our results may help to predict and explain unstable traffic distributions in telecom-
munication networks and road networks. For instance in telecommunication networks, relevant cost
functions are the so-called M/M/1-delay functions; see Roughgarden and Tardos [117]. These func-
tions are of the form cr(x) = 1/(τr − x), where τr represents the capacity of a resource r. In road
networks the most frequently used functions are monomials of degree four put forward by the US
Bureau of Public Roads [127]. Our results imply that, for these special types of cost functions, there
is always a multi-commodity instance (with three players and identical cost functions) that is unsta-
ble in the sense that a pure Nash equilibrium does not exist. On the other hand, our characterizations
can be used to design a stable system. For instance, uniform M/M/1-delay functions are consistent
for two-player games.
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Our results are also relevant for the large body of work quantifying the worst-case efficiency loss
of pure Nash equilibria for different sets of cost functions; see Aland et al. [6], Awerbuch et al. [12],
and Christodoulou and Koutsoupias [25]. While mixed Nash equilibria are guaranteed to exist,
their use is often unrealistic in practice. On the other hand, our work reveals that for most classes
of cost functions pure Nash equilibria may fail to exist in weighted congestion games. Thus, our
work provides additional justification to study the worst-case efficiency loss for different solution
concepts, such as sink equilibria (Goemans et al. [59]), correlated equilibria, or coarse correlated
equilibria (Bhawalkar et al. [19], Roughgarden [116]).

The consistency approach that we pursue in this chapter is orthogonal to that of Ackermann et
al. [4]. While they characterize the structure of the strategy space guaranteeing the existence of a
pure Nash equilibrium assuming arbitrary positive and non-decreasing costs, we characterize the
structure of cost functions guaranteeing the existence of a pure Nash equilibrium assuming arbitrary
strategy spaces.

Bibliographic Information. The results presented in this chapter are joint work with Tobias Harks.
An extended abstract appeared in the Proceedings of the 37th International Colloquium on Au-

tomata, Languages and Programming, 2010, see [63]. A more extensive version appeared in Math-

ematics of Operations Research; see [65].

3.2 Problem Description

In this section, we briefly recapitulate the most important concepts used in this chapter. For a de-
tailed treatment, see Chapter 2. Let N be a finite set of players and R a finite set of resources.
For each player i, we are given a set Ai ⊆ 2R of feasible allocations and a strictly positive de-
mand di ∈ R>0. Each resource r is endowed with a cost function cr : R≥0 → R. The tuple
M =

(
N,R,(Ai)i∈N ,(cr)r∈R

)
is called a congestion model. The corresponding weighted conges-

tion game is the minimization game with Si =Ai and πi(s) =
∑

r∈si
di cr(ℓr(s)) for all i ∈ N, where

ℓr(s) =
∑

j∈N:r∈s j
d j is the load of resource r under strategy profile s. A set C of functions is called

consistent for weighted congestion games if every weighted congestion game with cost functions in
C possesses a pure Nash equilibrium. C is universally consistent for weighted congestion games if
every weighted congestion game with cost functions in C has the finite improvement property.

3.3 Necessary Conditions for the Existence of a Pure Nash Equilibrium

We start investigating necessary conditions for the consistency of a set of cost functions C. We first
need the following characterizations of continuous monotonic functions.

Lemma 3.1. For a continuous function c :R≥0 →R the following three statements are equivalent:

(1) c is monotonic on R≥0.

(2) c is monotonic on each open interval (a,b) ⊂R≥0 with c(x) 6= c(0) for all x ∈ (a,b).

(3) The following two conditions hold:

(3a) For all x > 0 with c(x)> c(0) there is ε > 0 such that c(y)≥ c(x) for all y ∈ (x,x+ε).

(3b) For all x > 0 with c(x)< c(0) there is ε > 0 such that c(y)≤ c(x) for all y ∈ (x,x+ε).
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Figure 3.1: For every continuous non-monotonic function there are x,y ∈R>0 with x < y such that one of the
following cases holds: (a) c(y− x)< c(y)< c(x); (b) c(y− x)> c(y)> c(x); see Lemma 3.2.

Proof. (1) ⇒ (3): Trivial.
(3) ⇒ (2): Let (a,b) be an open interval with c(x) 6= c(0) for all x ∈ (a,b). The intermediate

value theorem for continuous functions implies that either c(x)> c(0) for all x ∈ (a,b) or c(x)< c(0)
for all x ∈ (a,b). We prove the result only for the first case because the second follows by the same
arguments.

Let c(x) > c(0) for all x ∈ (a,b). We claim that c is non-decreasing on (a,b). Assume not,
for a contradiction. Then, there are p1, p2 ∈ (a,b) with p1 < p2 and c(p1) > c(p2). We define
p
′
1 = max{x ∈ [p1, p2] : c(x) ≥ c(p1)}. Note that the set {x ∈ [p1, p2] : c(x) ≥ c(p1)} is nonempty

because it contains p1 and closed because c is continuous. Using (3a), there is ε = ε(p
′
1) > 0 such

that c(y)≥ c(p
′
1)≥ c(p1) for all y ∈ (p

′
1, p

′
1 + ε), contradicting the maximality of p

′
1.

(2) ⇒ (1): If c is constant, we are done. Otherwise, let a = inf{x > 0 : c(x) 6= c(0)}. Roughly
speaking, a is the largest element in R≥0 such that c(x) = c(0) for all x ∈ [0,a]. We claim that
c(x) 6= c(0) for all x > a. For a contradiction, assume that there is x > a with c(x) = c(0) and let
b = min{x > a : c(x) = c(0)}. By construction, c(x) 6= c(0) for all x ∈ (a,b). Using (2), we derive
that c is monotonic on (a,b). The continuity of c implies that c is monotonic on [a,b]. This is a
contradiction to c(a) = c(b) = c(0) and c(a+b

2 ) 6= c(0). We conclude that c(x) 6= c(0) for all x > a.
Using (2), this however implies that c is monotonic on (a,b′) for all b

′ ≥ b. The fact that c(x) = c(0)
for all x ∈ [0,a] gives the claimed result.

The following existence result for continuous, non-monotonic functions can be derived directly
from Lemma 3.1 and will be very useful in the remainder of this chapter. It states that for each
continuous, non-monotonic function c there are x,y ∈ R>0 with x < y such that either c(y− x) <

c(y)< c(x) or c(y− x)> c(y)> c(x), see Figure 3.1 for an illustration.

Lemma 3.2. For a continuous and non-monotonic function c :R≥0 →R there are x,y ∈R>0 with

x < y such that either c(y− x)< c(y) < c(x) or c(y− x)> c(y) > c(x).

Proof. Using the characterization of monotonic functions of Lemma 3.1, for every continuous non-
monotonic function c, there is x > 0 such that one of the following holds: c(x) > c(0) and for every
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ε > 0 there is y = y(ε) ∈ (x,x+ ε) such that c(y) < c(x); or c(x) < c(0) and for every ε > 0 there
is y = y(ε) ∈ (x,x+ ε) such that c(y) > c(x). Fix such x. Because of the continuity of c, we have
c(y(ε)− x) → c(0) and c(y(ε)) → c(x) for ε → 0. For sufficiently small ε , x and y(ε) have the
desired property.

Now consider a resource r with a non-monotonic cost function c and two players with demands
d1 = y− x and d2 = x, where x and y are as in Lemma 3.2. Clearly, in case c(y− x) < c(y) < c(x)

player 1 prefers to be alone on r since c(y−x)< c(y) while player 2 would like to share the resource
with player 1 since c(y)< c(x). If c(y− x)> c(y)> c(x), player 1 prefers to share the resource with
player 2 while player 2 prefers to be alone. This observation is the key for constructing a two-player
weighted congestion game with singleton strategies that does not admit a pure Nash equilibrium.

Lemma 3.3 (Monotonicity Lemma). Let C be a set of continuous functions. If C is consistent for

weighted congestion games, then every c ∈C is monotonic.

Proof. For a contradiction, suppose that C is consistent but there is a non-monotonic function c ∈ C.
Consider the congestion model M =

(
N,R,(Ai)i∈N ,(cr)r∈R

)
with N = {1,2}, R = {r1,r2}, A1 =

A2 =
{
{r1},{r2}

}
, cr1

= cr2
= c. Applying Lemma 3.2 we find x,y ∈ R>0 with x < y such that

either c(y− x) < c(y) < c(x) or c(y− x) > c(y) > c(x). For the weighted congestion game G with
demands d1 = y− x respectively d2 = x the private costs are shown in Figure 3.2. Calculating the
differences of the deviating players’ private costs along the cycle

γ =
((
{r1},{r1}

)
,
(
{r2},{r1}

)
,
(
{r2},{r2}),

(
{r1},{r2}

)
,
(
{r1},{r1}

))
,

we obtain

π1({r2},{r1})−π1({r1},{r1}) = (y− x)
(
c(y− x)− c(y)

)
, (3.1)

π2({r1},{r2})−π2({r2},{r1}) = x
(
c(y)− c(x)

)
, (3.2)

π1({r1},{r2})−π1({r2},{r2}) = (y− x)
(
c(y− x)− c(x)

)
, (3.3)

π2({r1},{r1})−π2({r1},{r2}) = x
(
c(y)− c(x)

)
. (3.4)

If c(y− x) < c(y) < c(x), the differences (3.1)-(3.4) are negative and γ is an improvement cycle. If
c(y− x) > c(y) > c(x), we can reverse the direction of γ and still get an improvement cycle. Using
that every strategy profile of G is contained in γ , the claimed result follows.

Besides the continuity of the functions in C, the proof of Lemma 3.3 relies on rather mild as-
sumptions and thus, this result can be strengthened in the following way.

Corollary 3.4. Let C be a set of continuous functions. Let G (C) be the set of weighted conges-

tion games with cost functions in C satisfying one or more of the following properties: (i) Each

game G ∈ G (C) has two players; (ii) Each game G ∈ G (C) has two resources; (iii) For each game

G ∈G (C) and each player i∈N, the set of her strategies Si contains a single resource only; (iv) Each

game G ∈ G (C) has symmetric strategies; (v) Cost functions are identical, that is, cr1
= cr2

for all

r1,r2 ∈ R. If C is consistent for G (C), then each c ∈ C is monotonic.
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Player 2

{r1} {r2}

{r1} (y− x)c(y), xc(y) (y− x)c(y− x), xc(x)
P

la
ye

r
1

{r2} (y− x)c(y− x), xc(x) (y− x)c(y), xc(y)

Figure 3.2: Matrix representation of the weighted congestion game constructed in the proof of Lemma 3.3.
Each cell of the matrix shows the private cost vector of the corresponding strategy profile.

We now extend the Monotonicity Lemma to obtain an even stronger result by considering more
players and more complex strategies. To this end, for K ∈N we consider those functions that can be
written as the integral linear combination of K functions in C, possibly with an offset. Formally, we
define the finite integer linear hull of C as

L
Z

(C) =
{

c :R≥0 →R : c(x) =
K∑

k=1

ak ck(x+bk) : K ∈N,ak ∈ Z,bk ∈R≥0,ck ∈ C
}

, (3.5)

and show that consistency of C implies that LZ(C) only contains monotonic functions.

Lemma 3.5 (Extended Monotonicity Lemma). Let C be a set of continuous functions. If C is

consistent, then L
Z

(C) only contains monotonic functions.

Proof. For a contradiction, suppose that C is consistent but there is a function c ∈ L
Z

(C) that is not
monotonic. Using that c ∈ L

Z

(C), we can write c as c(x) =
∑m+

k=1 ck(x+ bk)−
∑m−

k=1 sck(x+sbk) for
some ck,sck ∈ C,m+,m− ∈N, and bk,sbk ∈R≥0. Note that we can omit the integer coefficients ak as
we allow ck = cl for k 6= l.

We define the congestion model M=
(
N,R,(Ai)i∈N ,(cr)r∈R

)
, where N = {1,2}∪N

+∪N
− and

R = R
1∪R

2∪R
3∪R

4. The set of players N
+ contains for each ck, 1 ≤ k ≤ m+, a player with demand

bk and the set of players N
− contains for each sck, 1 ≤ k ≤ m−, a player with demand sbk. We call the

players in N
−∪N

+
offset players. Offset players with demand equal to 0 can be removed from the

game. For ease of exposition, we assume that all offsets bk, k = 1 . . . ,m+, and sbk, k = 1, . . . ,m−, are
strictly positive.

We now explain the strategy spaces and the sets R
1,R2,R3,R4. For each function ck, 1 ≤ k ≤ m+,

we introduce two resources r
2
k ,r

3
k with cost function ck. For each function sck, 1 ≤ k ≤ m−, we

introduce two resources r
1
k ,r

4
k with cost function sck. To model the offsets bk in (3.5), for each

offset player k ∈ N
+, we define Ak =

{
{r

2
k ,r

3
k}
}

. Similarly, for each offset player k ∈ N
−, we

set Ak =
{
{r

1
k ,r

4
k}
}

. The nontrivial players 1 and 2 have strategies A1 = {R
1 ∪R

2,R3 ∪R
4} and

A2 = {R
1∪R

3,R2∪R
4}, where R

1 = {r
1
1, . . . ,r

1
m−}, R

2 = {r
2
1, . . . ,r

2
m+

}, R
3 = {r

3
1, . . . ,r

3
m+

}, and R
4 =

{r
4
1, . . . ,r

4
m−}. As c is assumed to be non-monotonic, by Lemma 3.2, there are x,y ∈R>0 with x < y

such that either c(y−x)< c(y)< c(x) or c(y−x)> c(y)> c(x). We consider the weighted congestion
game G for which the demands of players 1 and 2 equal d1 = y− x and d2 = x, respectively. The
private costs of players 1 and 2 in G are shown in Figure 3.3.
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Player 2

R
1 ∪R

3
R

2 ∪R
4

R
1 ∪R

2 (y−x)
(∑

sck(d1+d2+sbk)+
∑

ck(d1+bk)
)
,

x
(∑

sck(d1+d2+sbk)+
∑

ck(d2+bk)
)

(y−x)
(∑

ck(d1+d2+bk)+
∑

sck(d1+sbk)
)
,

x
(∑

ck(d1+d2+bk)+
∑

sck(d2+sbk)
)

P
la

ye
r

1

R
3 ∪R

4 (y−x)
(∑

ck(d1+d2+bk)+
∑

sck(d1+sbk)
)
,

x
(∑

ck(d1+d2+bk)+
∑

sck(d2+sbk)
)

(y−x)
(∑

sck(d1+d2+sbk)+
∑

ck(d1+bk)
)
,

x
(∑

sck(d1+d2+sbk)+
∑

ck(d2+bk)
)

Figure 3.3: Matrix representation of the weighted congestion game constructed in the proof of Lemma 3.5.
In each cell of the matrix the upper and lower entry correspond the private cost of player 1 and
player 2, respectively. All summations involving ck are from k = 1 to m+; summations involving
sck for are from k = 1 to m−. The strategies and private costs of all offset players are not shown.

All offset players have a single strategy only. Their unique strategy profile is denoted by α−{1,2}.

For the cycle γ =
(
(R1 ∪R

2,R1 ∪R
3,α−{1,2}),(R

3 ∪R
4,R1 ∪R

3,α−{1,2}),(R
3 ∪R

4,R2 ∪R
4,α−{1,2}),

(R1 ∪R
2,R2 ∪R

4,α−{1,2}),(R
1 ∪R

2,R1 ∪R
3,α−{1,2})

)
, it is straightforward to calculate that

π1(R
3 ∪R

4,R1 ∪R
3,α−{1,2})−π1(R

1 ∪R
2,R1 ∪R

3,α−{1,2})

= (y− x)
( m+∑

k=1

ck(d1 +d2 +bk)−
m−∑

k=1

sck(d1 +d2 +sbk)+

m−∑

k=1

sck(d1 +sbk)−
m+∑

k=1

ck(d1 +bk)
)

= (y− x)
(
c(y)− c(y− x)

)
,

π2(R
3 ∪R

4,R2 ∪R
4,α−{1,2})−π2(R

3 ∪R
4,R1 ∪R

3,α−{1,2})

= x
(

−
m+∑

k=1

ck(d1 +d2 +bk)+

m−∑

k=1

sck(d1 +d2 +sbk)+

m+∑

k=1

ck(d2 +bk)−
m−∑

k=1

sck(d2 +sbk)
)

= x
(
c(x)− c(y)

)
,

π1(R
1 ∪R

2,R2 ∪R
4,α−{1,2})−π1(R

3 ∪R
4,R2 ∪R

4,α−{1,2})

= (y− x)
( m+∑

k=1

ck(d1 +d2 +bk)−
m−∑

k=1

sck(d1 +d2 +sbk)+

m−∑

k=1

sck(d1 +sbk)−
m+∑

k=1

ck(d1 +bk)
)

= (y− x)
(
c(y)− c(y− x)

)
,

π2(R
1 ∪R

2,R1 ∪R
3,α−{1,2})−π2(R

1 ∪R
2,R2 ∪R

4,α−{1,2})

= x
(

−
m+∑

k=1

ck(d1 +d2 +bk)+

m−∑

k=1

sck(d1 +d2 +sbk)−
m−∑

k=1

sck(d2 +sbk)+

m+∑

k=1

ck(d2 +bk)
)

= x
(
c(x)− c(y)

)
.
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If c(y− x)> c(y) > c(x), all private cost differences are negative and γ is an improvement cycle; if,
on the other hand, c(y−x)< c(y)< c(x), the 4-cycle in the other direction is an improvement cycle.
Because every strategy combination is contained in γ we get the claimed result.

3.4 A Characterization for Two-Player Games

We start by analyzing implications of the Extended Monotonicity Lemma (Lemma 3.5) for two-
player weighted congestion games. For our analysis, it is sufficient to restrict ourselves to the spe-
cial case K = 2, that is, we only consider those functions that can be written as an integral linear
combination of two functions. We define the following set of functions

L2
Z

(C) =
{

c :R≥0 →R : c(x) = a1 c1(x)+a2 c2(x),a1,a2 ∈Z,c1,c2 ∈ C
}
⊆L

Z

(C).

We remark that by setting all offsets bk in (3.5) equal to zero, the construction in the proof of
Lemma 3.5 only involves two players. Thus, we immediately obtain the following result.

Corollary 3.6 (Extended Monotonicity Lemma for Two-Player Games). Let C be a set of con-

tinuous functions. If C is consistent for two-player weighted congestion games, then L2
Z

(C) contains

only monotonic functions.

We proceed to investigate sets of functions C that guarantee that L
2
Z

(C) only contains monotonic
functions.

Lemma 3.7. Let c1,c2 :R≥0 →R be two continuous, monotonic and non-constant functions. Then,

the following are equivalent:

(1) For all a1,a2 ∈ Z, the function a1 c1 +a2 c2 is monotonic on R≥0.

(2) There are a,b ∈R such that c2(x) = ac1(x)+b for all x ≥ 0.

Proof. (2) ⇒ (1): Calculus.
(1) ⇒ (2): Without loss of generality, we may assume that c1 and c2 are non-decreasing because

multiplying functions with −1 has no impact on the statements (1) and (2). As c1 is non-constant and
non-decreasing, there is x1 ≥ 0 with c1(x1) = c1(0) and c1(x)> c1(0) for all x > x1. Fix such x > x1.
For all a1,a2 ∈ Z, the function a1 c1 + a2 c2 is monotonic. This implies that for every y > x1 and
every µ ∈Q the expressions µ c1(x)+ c2(x)−µ c1(0)− c2(0) and µ c1(y)+ c2(y)−µ c1(0)− c2(0)
have identical signs. Thus, for all y > x1 and all µ ∈Q at least one of the following two cases holds:

µ ≥ max
{

−c2(x)− c2(0)
c1(x)− c1(0)

,−c2(y)− c2(0)
c1(y)− c1(0)

}

or µ ≤ min
{

−c2(x)− c2(0)
c1(x)− c1(0)

,−c2(y)− c2(0)
c1(y)− c1(0)

}

.

This implies

c2(y)− c2(0)
c1(y)− c1(0)

=
c2(x)− c2(0)
c1(x)− c1(0)

(3.6)

for all y > x1, because otherwise any rational

µ ∈
(

min
{

−c2(y)− c2(0)
c1(y)− c1(0)

,−c2(x)− c2(0)
c1(x)− c1(0)

}

,max
{

−c2(y)− c2(0)
c1(y)− c1(0)

,−c2(x)− c2(0)
c1(x)− c1(0)

}
)
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would violate both constraints. From (3.6), we obtain

c2(y) =
c2(x)− c2(0)
c1(x)− c1(0)

· c1(y)−
c2(x)− c2(0)
c1(x)− c1(0)

· c1(0)+ c2(0)

for all y > x1 and fixed x. This shows the existence of a,b ∈ R with c2(x) = ac1(x) + b for all
x > x1. Exchanging the roles of c1 and c2, we may also derive the existence of a

′,b′ ∈R such that
c1(x) = a

′
c2(x)+ b

′ for all x > x2, where x2 is such that c2(x2) = c2(0) and c2(x) > c2(0) for all
x > x2. This implies x1 = x2. Using the fact that c1 and c2 are continuous and constant on [0,x1]

finishes the proof.

We are now ready to prove our first main result.

Theorem 3.8. For a set C of continuous functions the following are equivalent:

(1) C is consistent for two-player weighted congestion games.

(2) C is universally consistent for two-player weighted congestion games.

(3) C only contains monotonic functions and for all non-constant c1,c2 ∈ C, there are constants

a,b ∈R such that c1(x) = ac2(x)+b for all x ≥ 0.

Proof. (2) ⇒ (1) follows because every game with the finite improvement property has a pure Nash
equilibrium (Proposition 2.8).

(1) ⇒ (3): Using Corollary 3.6 we derive that L2
Z

(C) only contains monotonic functions. As
C ⊆ L2

Z

(C), this implies in particular that C only contains monotonic functions. For all non-constant
functions c1,c2 ∈ C and all a1,a2 ∈ Z the function a1 c1 + a2 c2 ∈ L2

Z

(C) is monotonic. Applying
Lemma 3.7 then yields the result.

(3) ⇒ (2): Let C be as specified in (3). Trivially, the claimed result holds if C only contains
constant functions. If C contains a non-constant function c consider the set sC = {ac(x)+ b : a,b ∈
R} ⊇ C. We show that sC is consistent for G

2(sC). To this end, consider an arbitrary two-player game
with costs in sC and demands d1 < d2. We distinguish the following three cases.

First case: c(d1)< c(d2)< c(d1 +d2), or c(d1)> c(d2)> c(d1 +d2). Since c is strictly mono-
tonic with respect to the points d1, d2 and d1 + d2, there is a strictly monotonic function c̃ with
c̃(d1) = c(d1), c̃(d2) = c(d2) and c̃(d1 +d2) = c(d1 +d2). Consequently, we can replace every cost
function c ∈ sC = {ac(x)+ b : a,b ∈R} by a cost function c̃ ∈ C̃ = {ac̃(x)+ b : a,b ∈R} without
changing the players’ private costs. As shown by Harks et al. [67], for any strictly monotonic func-
tion c̃, every weighted congestion game G with two players and cost functions in sC = {ac̃(x)+ b :
a,b ∈R} admits a potential function and thus, has the finite improvement property.

Second case: c(d1) = c(d2). We set d̃1 = d̃2 = 1 and choose for every resource r ∈ R a new cost
function c̃r with c̃r(1) = cr(d1) = cr(d2) and c̃r(2) = cr(d1 + d2). By construction, the unweighted
congestion game with demands d̃1, d̃2 and costs (c̃ f ) f∈F has the same private costs as the original
game. Rosenthal [114] showed the existence of a potential function in all unweighted congestion
games; thus, the game has the finite improvement property.

Third case: c(d2) = c(d1 + d2). We have sc(d2) = sc(d1 + d2) for all sc ∈ sC and thus player 2 is
always indifferent whether player 1 shares a resource with her or not. For the finite improvement
property and the existence of a pure Nash equilibrium, we argue as follows: Consider the vector-
valued function φ : S → R

2, s 7→
(
π2(s),π1(s)

)
which assigns to every strategy profile the vector
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which has the private cost of players 2 and 1 in first and second component, respectively. We claim
that φ decreases lexicographically along any improvement path. This is trivial for improvement
moves of player 2. Since player 2 is indifferent whether player 1 shares with her a resource or not,
every improvement move of player 1 does not affect the private cost of player 2 but decreases the
private cost of player 1. This implies that the lexicographical order of φ(s) decreases along any
improvement path; thus, every such path is cycle-free and thus finite.

3.5 A Characterization for the General Case

We now consider the case n ≥ 3; that is, we consider weighted congestion games with at least three
players. We will show that a set of continuous cost functions is consistent if and only if this set
contains either only linear or only certain exponential functions. For the proof it is sufficient to only
consider three-player games. However, the result easily translates to games with more than three
players by adding additional players whose allocations do not intersect with the first three players.
We proceed to analyze implications of the Extended Monotonicity Lemma (Lemma 3.5) for three-
player weighted congestion games. To this end, we will consider a slightly different set of functions
that is linked to three-player games. Formally, define

L3
Z

(C) =
{

c :R≥0 →R : c(x) = a1 c1(x)+a2 c1(x+δ ),a1,a2 ∈ Z,c1 ∈ C,δ ∈R>0

}
⊆ L

Z

(C).

Note that L3
Z

(C) involves a single offset δ > 0, which requires only three players in the construc-
tion of the proof of the Extended Monotonicity Lemma. However, regarding three-player games in
which the strategy available to the third player does not intersect with the strategies of the first two
players we still get as a necessary condition that L2

Z

(C) may only contain monotonic functions. We,
thus, obtain the following result.

Corollary 3.9 (Extended Monotonicity Lemma for Three-Player Games). Let C be a set of

continuous functions. If C is consistent for three-player weighted congestion games, then both L2
Z

(C)
and L3

Z

(C) contain only monotonic functions.

We proceed to characterize the sets of cost functions C for which L3
Z

(C) only contains monotonic
functions.

Lemma 3.10. For a set C of continuous functions the following two statements are equivalent:

(1) L3
Z

(C) only contains monotonic functions.

(2) For every c ∈ C either c(x) = ae
φ x + b for some a,b,φ ∈ R, or c(x) = ax + b for some

a,b ∈R.

Proof. (2) ⇒ (1): Let c ∈ C be an exponential or an affine function. By simple calculus one can
verify that every function c̃(x) = a1 c(x)+a2 c(x+δ ) with a1,a2 ∈Z, δ ∈R>0 is exponential if c is
exponential and affine if c is affine. Both affine functions and exponential functions are monotonic.

(1) ⇒ (2): For a contradiction, let us assume that L3
Z

(C) only contains monotonic functions but
that there is a function c∈C that is neither affine nor exponential. As L3

Z

(C) only contains monotonic
functions, for all δ > 0 and all a1,a2 ∈ Z the function c̃ : R≥0 → R,x 7→ a1 c(x) + a2 c(x+ δ ) is
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monotonic. Referring to Lemma 3.7, this implies that for all δ > 0 there are a,b ∈R such that for
all x ≥ 0:

c(x+δ ) = ac(x)+b. (3.7)

As c ∈ C is neither affine nor exponential on R≥0, there are four points 0 ≤ p1 < p2 < p3 < p4

following neither an exponential nor an affine law, i.e. there are neither α ,β ,φ ∈ R such that
c(pi) = α e

φ pi + β for all i ∈ {1,2,3,4} nor are there α ,β ∈ R such that c(pi) = α pi + β for all
i ∈ {1,2,3,4}. As c is continuous, we may assume without loss of generality that p1, p2, p3, p4 are
rational and we write them as p1 = 2m1/(2k), . . . , p4 = 2m4/(2k) for some m1,m2,m3,m4,k ∈ N.
For δ = 1/k we derive from (3.7) that there are a,b ∈R such that for all n ∈N:

c
(
(n+1)/k

)
= ac

(
n/k
)
+b, (3.8)

c
(
(n+2)/k

)
= ac

(
(n+1)/k

)
+b. (3.9)

Subtracting (3.8) from (3.9) and rearranging terms, we obtain for all n ∈N:

c
(
(n+2)/k

)
− (a+1)c

(
(n+1)/k

)
+ac

(
n/k)

)
= 0. (3.10)

The above equation defines a second-order linear homogeneous recurrence relation on the sequence
c
(
n/k
)

n∈N. Such recurrence relations can be solved with the method of characteristic equations;
see the textbook of Balakrishnan [14, §3.2] for more details. The characteristic equation of the
recurrence relation equals x

2−(a+1)x+a = (x−1)(x−a). If a 6= 1, then the characteristic equation
has two distinct roots and we obtain for even m that

c
(
m/k

)
= β ·1m +α ·am = β +α · |a|m = α · exp(m ln |a|)+β

for some constants α ,β ∈R. If, on the other hand, a = 1, we can evaluate c
(
m/k

)
as

c
(
m/k

)
= β ·1m +αm ·1m = α ·m+β

for some constants α ,β ∈R.

We are now ready to state our second main theorem.

Theorem 3.11. For a set C of continuous functions the following three statements are equivalent:

(1) C is consistent for weighted congestion games.

(2) C is universally consistent for weighted congestion games.

(3) C only contains affine functions or C only contains functions of type c(x) = ac e
φ x+bc where

ac,bc ∈R may depend on c while φ ∈R is independent of c.

Proof. (2) ⇒ (1) follows because every game with the finite improvement property has a pure Nash
equilibrium (Proposition 2.8).

(3) ⇒ (2) follows because every weighted congestion game with such cost functions possesses
a weighted potential; see Fotakis et al. [51], Harks et al. [67], and Panagopoulou and Spirakis [108].

(1) ⇒ (3): By Corollary 3.9 both L2
Z

(C) and L3
Z

(C) may only contain monotonic functions.
Applying Lemma 3.10 we obtain that every c ∈ C is either affine or exponential. In addition, as
shown in Lemma 3.7 for each two non-constant functions c1,c2 ∈ C, there are a,b ∈ R such that
c2(x) = ac1(x)+b for all x ≥ 0. Both results together imply (3).
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α2,1 α2,2
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1

α1,2 66, 160, 65 62, 162, 35

(c) Private costs

Figure 3.4: Construction of a weighted congestion game without a pure Nash equilibrium in which all re-
sources have the cost function c(x) = x

3, as discussed in Example 3.12. (a) shows the function
c̃(x) = 2x

3 − (x+ 1)3. Note that c̃ is contained in the finite integer linear hull L3
Z

({c}) and non-
monotonic. (b) shows how the players’ strategies are constructed. (c) shows the players’ private
costs in the thus constructed game. Note that in (c) only the strategies of the first two players are
shown as player 3 has a single strategy only.

This results holds even for three-player weighted congestion games.

We conclude this section by giving an example that illustrates the main ideas presented so far.
Recall, that Theorem 3.11 establishes that for each continuous, non-affine and non-exponential cost
function c, there is a weighted congestion game G with uniform cost function c on all resources that
does not admit a pure Nash equilibrium. In the following example, we show how such a game for
c(x) = x

3 is constructed.

Example 3.12. As the function c(x) = x
3 is neither affine nor exponential, we can find a1,a2 ∈ Z

and δ ∈R>0 such that c̃(x) = a1 c(x)+ a2 c(x+ δ ) has a strict local extreme point. In fact, we can
choose a1 = 2,a2 =−1 and δ = 1, that is, the function

c̃(x) = 2c(x)− c(x+1) = 2x
3 − (x+1)3

has a strict local minimum at x0 = 1+
√

2. In particular, we can choose d1 = 1 and d2 = 2 such
that c̃(d1) = −6 > c̃(d1 + d2) = −10 > c̃(d2) = −11, see Figure 3.4(a). The weighted conges-
tion game without a pure Nash equilibrium is now constructed as follows. First, we introduce
2(|a1|+ |a2|) resources r1, . . . ,r6 and the define the following feasible allocations α1,1 = {r1,r2,r3},
α1,2 = {r4,r5,r6}, α2,1 = {r1,r2,r4}, α2,2 = {r3,r5,r6}, and α3,1 = {r3,r4}. We then set A1 =

{α1,1,α1,2}, A2 = {α2,1,α2,2}, and A3,1 = {α3}; see Figure 3.4(b) for an illustration of the strate-

gies. All resources have the cost function c(x) = x
3. Player 3 is an offset player, she has a single

feasible allocation only and the players’ private costs depend only on the strategic choices of play-
ers 1 and 2. We conclude that the corresponding weighted congestion game shown in Figure 3.4(c)
has no pure Nash equilibrium.
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3.6 Weighted Network Congestion Games

In this section, we discuss the implications of our characterizations for the important subclass of
weighted network congestion games. In these games, the resources correspond to edges of a directed
or undirected graph. Every player is associated with a positive demand that she wants to route
from her origin to her destination on a path of minimum cost. We consider directed and undirected
networks separately, starting with directed networks.

3.6.1 Directed Networks

We first give a version of the Extended Monotonicity Lemma for directed networks with two players
and strictly positive costs. Specifically, we prove if a set C of strictly positive positive and contin-
uous functions is consistent for two-player directed-network congestion games, then L2

Z

(C) only
contains monotonic functions. On the one hand, this result is stronger than the Extended Mono-
tonicity Lemma for Two-Player Games (Corollary 3.6) as it requires only that C is consistency for
two-player directed-network congestion games which is a subclass of two-player congestion games.
On the other hand, it is also weaker, since we additionally require that C only contains positive
functions.

Lemma 3.13 (Extended Monotonicity Lemma for Two-Player Directed-Network Games). Let

C be a set of continuous functions that is strictly positive on R>0. If C is consistent for two-player

directed-network weighted congestion games, then L2
Z

(C) only contains monotonic functions.

Proof. Because singleton congestion games are a subclass of directed-network weighted congestion
games, Corollary 3.4 implies that every set C of consistent functions only contains monotonic func-
tions. For a contradiction, assume that there are a1,a2 ∈ Z and monotonic functions c1,c2 ∈ C such
that the function c :R≥0 →R defined as c(x) = a1c1(x)+a2c2(x) is not monotonic. By Lemma 3.2
there are x,y ∈ R>0 with y > x such that either c(y− x) < c(y) < c(x) or c(y− x) > c(y) > c(x).
We choose the demands of players 1 and 2 equal to d1 = y− x and d2 = x, respectively. Note that
c is monotonic if and only if −c is monotonic. Thus, it is without loss of generality to assume that
a2 > 0. To define the players’ strategies we distinguish the following two cases.

First case: a1 < 0. We use a construction similar to the proof of Lemma 3.5. To define the
players’ strategy spaces, consider the network in Figure 3.5(a). The two players are represented by
the two source-terminal pairs (ui,vi), i = 1,2. The set of strategies available to player i equals the set
of directed (ui,vi)-paths. The dashed edges in Figure 3.5(a) correspond to directed paths P1, . . . ,P4,
which we choose as follows: both the directed path P1 from w1 to w2 and the directed path P4 from
w7 to w8 contain |a1| edges with cost function c1 each. Both the directed path P2 from w3 to w4

and the directed path P3 from w5 to w6 contain a2 edges with cost function c2. All other edges are
endowed with the cost function c1. Because all cost functions are strictly positive R>0, for player
1 all strategies except the upper path Pup = {(u1,w1)∪P1 ∪ (w2,w3)∪P2 ∪ (w4,v1)} and the lower
path Pdown = {(u1,w5)∪P3 ∪ (w6,w7)∪P4 ∪ (w8,v1)} are strictly dominated in the sense that they
have strictly higher costs than either Pup or Pdown regardless of the strategy played by player 2. For
player 2, all strategies except the left path Pleft = {(u2,w1)∪P1 ∪ (w2,w5)∪P3 ∪ (w6,v2)} and the
right path Pright = {(u2,w3)∪P2 ∪ (w4,w7)∪P4 ∪ (w8,v2)} are strictly dominated. We consider the
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(a) Case a1 < 0
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(b) Case a1 > 0

Figure 3.5: Directed-network congestion games used in the proof of the Extended Monotonicity Lemma for
Two-Player Directed Networks (Lemma 3.13).

cycle γ =
(
(Pup,Pleft),(Pdown,Pleft),(Pdown,Pright),(Pup,Pright),(Pup,Pleft)

)
, and calculate that

π1(Pdown,Pleft)−π1(Pup,Pleft) = (y− x)
(
c1(y− x)+a2c2(y)+ c1(y− x)−a1c1(y− x)+ c1(y− x)

− c1(y− x)+a1c1(y)− c1(y− x)−a2c2(y− x)− c1(y− x)
)

= (y− x)
(
a1c1(y)+a2c2(y)−a1c1(y− x)−a2c2(y− x)

)

= (y− x)
(
c(y)− c(y− x)

)

Following the same line of argumentation, we obtain that

π2(Pdown,Pright)−π2(Pdown,Pleft) = x
(
c(x)− c(y)

)
,

π1(Pup,Pright)−π1(Pdown,Pright) = (y− x)
(
c(y)− c(y− x)

)
,

π2(Pup,Pleft)−π2(Pup,Pright) = x
(
c(x)− c(y)

)
.

If c(y − x) > c(y) > c(x), then γ is an improvement cycle which gives that none of the strategy
profiles contained in γ is a pure Nash equilibrium. If, on the other hand, c(y− x) < c(y) < c(x), we
can reverse the direction of γ and get an improvement cycle. Because every strategy profile that uses
only non-dominated strategies is contained in γ , the constructed directed network congestion game
does not admit a pure Nash equilibrium.

Second case: a1 > 0. Consider the network shown in Figure 3.5(b). Here, both players want
to route from u to v, that is, S1 = S2 = {P

′
1,P

′
2}. The directed paths P

′
1 as well as P

′
2 each contain

a1 edges with cost function c1 and a2 edges with cost function c2. If c(y− x) < c(y) < c(x), player
1 prefers to be alone on an (u,v)-path while player 2 wants to share the path with player 1. If
c(y− x) > c(y) > c(x), the argumentation works the other way round. We conclude that the game
does not admit a pure Nash equilibrium.

Together with Lemma 3.7 and Theorem 3.8, we obtain the following characterization of consis-
tency for two-player network congestion games on directed networks.
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Theorem 3.14. For a set C of continuous functions that are strictly positive on R>0 the following

three statements are equivalent:

(1) C is consistent for two-player directed-network weighted congestion games.

(2) C is universally consistent for two-player directed-network weighted congestion games.

(3) C only contains monotonic functions and for all non-constant c1,c2 ∈ C, there are constants

a,b ∈R with c1(x) = ac2(x)+b for all x ≥ 0.

Using similar ideas as in the case of two players, we can also prove a version of the Extended
Monotonicity Lemma for directed-network weighted congestion games with three players.

Lemma 3.15 (Extended Monotonicity Lemma for Directed Networks). Let C be a set of contin-

uous functions that are strictly positive on R>0. If C is consistent for three-player directed-network

congestion games, then L3
Z(C) only contains monotonic functions.

Proof. For a contradiction, let us assume that C is consistent but there are a1,a2 ∈ Z, δ ∈R>0 and
a function c1 ∈ C such that the function c : R≥0 → R defined as c(x) = a1c1(x) + a2c1(x+ δ ) is
not monotonic. Because singleton weighted congestion games are a subclass of directed-network
weighted congestion games, Corollary 3.4 implies that c1 is monotonic. Using that c is monotonic
if and only if −c is monotonic, it is without loss of generality to assume that a2 > 0. This implies
a1 < 0.

Consider the network in Figure 3.6 where again the directed paths P1 and P4 contain |a1| edges
each, and the the directed paths P2 and P3 contain a2 edges each. In addition to the players i = 1,2
corresponding to the pairs (ui,vi), i = 1,2 we now have a third player corresponding to the pair
(u3,v3) with a single strategy PQ = {P3 ∪Q∪P2} and demand d3 = δ . Moreover, we define the
demands of players 1 and 2 as d1 = y−x and d2 = x, where x,y ∈R>0 with x< y are chosen such that
either c(y− x) < c(y) < c(x) or c(y− x) > c(y) > c(x) holds. By Lemma 3.2 such values exist. We
design the directed path Q from w6 to w3 so as to contain a sufficiently large number of edges, such
that for players 1 and 2 all (ui,vi)-paths not containing Q are strictly less costly than every path that
contains Q. As every (ui,vi)-path that does not contain Q has costs less than 2(a2 −a1+6)c1(y+δ )

and every edge in Q has cost at least c1(δ ), it is sufficient to let Q contain 2(a2−a1+6)
⌈ c1(y+δ )

c1(δ )

⌉
+1

edges. By construction of Q, for player 1, all strategies except the upper path Pup = {(u1,w1)∪P1∪
(w2,w3)∪ P2 ∪ (v3,v1)} and the lower path Pdown = {(u1,u3)∪ P3 ∪ (w6,w7)∪ P4 ∪ (w8,v1)} are
strictly dominated in the sense that they have strictly higher costs than either Pup or Pdown regardless
of the strategies played by players 2 and 3. For player 2, all strategies except the left path Pleft =

{(u2,w1)∪P1 ∪ (w2,u3)∪P3 ∪ (w6,v2)} and the right path Pright = {(u2,w3)∪P2 ∪ (v3,w7)∪P4 ∪
(w8,v2)} are strictly dominated. With the same calculations as in Lemma 3.13 one can show that
the cycle γ =

(
(Pup,Pleft,PQ),(Pdown,Pleft,PQ),(Pdown,Pright,PQ),(Pup,Pright,PQ),(Pup,Pleft,PQ)

)
is an

improvement cycle when traversed in the right direction. Because every strategy profile that uses
only non-dominated strategies is contained in γ , we conclude that the thus constructed network
congestion game does not admit a pure Nash equilibrium.

Using Lemma 3.10, we obtain the following characterization of cost functions that are consistent
for weighted directed network congestion games.
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Figure 3.6: Directed-network weighted congestion game used in the proof of the Extended Monotonicity
Lemma for Directed Networks (Lemma 3.15).

Theorem 3.16. For a set C of continuous functions that are strictly positive on R>0 the following

three statements are equivalent:

(1) C is consistent for directed-network weighted congestion games.

(2) C is universally consistent for directed-network weighted congestion games.

(3) C only contains affine functions or C only contains functions of type c(x) = ac e
φ x+bc, where

ac,bc ∈R may depend on c while φ ∈R is independent of c.

This characterization is even valid for three-player games.

Remark 3.17. In games with strictly negative costs the players strive to establish long paths.
In this case, our construction does not work because, e.g., player 2 prefers to take the detour
{(w6,w7),(w7,w8),(w8,v2)} instead of the edge (w6,v2).

3.6.2 Undirected Networks

Turning to undirected-network weighted congestion games, we first show that a version of the Ex-
tended Monotonicity Lemma holds also for two-player games on undirected networks. In such a
game, we are given an undirected graph and for each player i, two designated vertices ui and vi. Re-
sources correspond to the edges of the graph and the strategy set of each player i contains all simple
(ui,vi)-paths. Each edge can be traversed in any direction and its cost depends on the aggregated
flow.

Lemma 3.18 (Extended Monotonicity Lemma, Two-Player Undirected-Network Games). Let

C be a set of continuous functions that are strictly positive on R>0. If C is consistent for two-player

undirected-network weighted congestion games, then L2
Z

(C) only contains monotonic functions.
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Figure 3.7: Undirected-network weighted congestion games used in the proof of the Extended Monotonicity
Lemma for Two-Player Undirected Networks (Lemma 3.18).

Proof. For a contradiction, let a1,a2 ∈ Z and c1,c2 ∈ C be such that the function c : R≥0 → R

defined as c(x) = a1 c1(x)+a2 c2(x) is not monotonic. As argued in the previous proofs it is without
loss of generality to assume that a2 > 0. Moreover, let x,y ∈ R>0 with x < y be such that either
c(y− x) < c(y) < c(x) or c(y− x) > c(y) > c(x) holds. We set d1 = y− x, d2 = x and distinguish
the following two cases. If a1 < 0 we consider the network in Figure 3.7(a) where the paths P1 and
P4 each contain |a1| edges with cost function c1 and the paths P2 and P3 each contain a2 edges with
cost function c2. With similar calculations as in the proof of Lemma 3.13 one can verify that the
4-cycle γ =

(
(P1∪P2,P1∪P3),(P3∪P4,P1∪P3),(P3∪P4,P2∪P4), (P1∪P2,P2∪P4),(P1∪P2,P1∪P3)

)

is an improvement cycle if traversed in the right sense. If, on the other hand, a1 > 0 we consider the
undirected network shown in Figure 3.7(b) and obtain the same contradiction as in Lemma 3.13.

Likewise, we obtain the following characterization for two-player games on undirected net-
works.

Theorem 3.19. For a set C of continuous functions that are strictly positive on R>0 the following

three statements are equivalent:

(1) C is consistent for two-player undirected-network weighted congestion games.

(2) C is universally consistent for two-player undirected-network weighted congestion games.

(3) C only contains monotonic functions and for all non-constant c1,c2 ∈ C, there are constants

a,b ∈R with c1(x) = ac2(x)+b for all x ≥ 0.

Turning to games with three players we are not able to characterize the set of consistent cost
functions. However, we can still characterize consistency for games with at least four players.

Lemma 3.20 (Extended Monotonicity Lemma for Undirected Networks). Let C be a set of con-

tinuous functions that are strictly positive onR>0. If C is consistent for undirected-network weighted

congestion games with at least four players, then L3
Z

(C) only contains monotonic functions.

Proof. For a contradiction, suppose that there are a1,a2 ∈ Z, δ ∈ R>0, and a monotonic function
c1 ∈ C such that the function c :R≥0 →R defined as c(x) = a1 c1(x)+a2 c1(x+δ ) is not monotonic.
As argued in the previous proofs it is without loss of generality to assume that c1 is monotonic, a2 > 0
and a1 < 0.
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Figure 3.8: Undirected-network weighted congestion games used in the proof of the Extended Monotonicity
Lemma for Undirected Networks (Lemma 3.20).

Consider the network in Figure 3.8 where the paths P1 and P4 each contain |a1| edges and the
paths P2 and P3 each contain a2 edges. All edges have cost function c1. The players i = 1,2 cor-
respond to the source sink pairs (ui,vi), i = 1,2. Additionally, there are players associated with the
source sink pairs (ui,vi), i = 3,4, and demand d3 = d4 = δ . Moreover, we set the demands of play-
ers 1 and 2 equal to d1 = y− x and d2 = x, where x,y ∈R>0 with x < y are chosen such that either
c(y− x)< c(y)< c(x) or c(y− x)> c(y)> c(x) holds. By Lemma 3.2 such values exist.

We endow every edge in the paths Q1, . . . ,Q8 with cost function c1 and make them sufficiently
long such that players 3 and 4 always prefer to choose a strategy not containing any of these paths.
As the paths P2 and P3 have costs less than a2 c1(y+ 2δ ) and every edge in Qi, i = 1, . . . ,8 used by
players 3 or 4 has cost at least c1(δ ), it suffices for all k = 1, . . . ,8 to let Qk contain a2

⌈ c1(y+2δ )
c1(δ )

⌉
+1

edges each. Then, for player 3, all strategies except P2 are strictly dominated by P2 and for player 4
all strategies except P3 are strictly dominated by P3.

If c1 is non-decreasing, we may assume that players 1 and 2 will not share any of the Qk paths
in equilibrium. Without loss of generality, we assume that player 1 always uses the paths Q1, . . . ,Q4

instead of Q5, . . . ,Q8 while player 2 always uses paths Q5, . . . ,Q8 instead of Q1, . . . ,Q4. If, on the
other hand, c1 is non-increasing, players 1 and 2 can only gain sharing the Qk paths. From there,
it is without loss of generality to assume that only the paths Q1, . . . ,Q4 are used while the paths
Q5, . . . ,Q8 remain unused.

In both cases, the Qk paths raise the cost of any strategy profile by a constant and with the same
calculations as before one can show that there is an improvement cycle γ of the form

γ =
(
(Pup,Pleft,P2,P3),(Pdown,Pleft,P2,P3),(Pdown,Pright,P2,P3),(Pup,Pright,P2,P3),(Pup,Pleft,P2,P3)

)
,

where Pup = P1∪Q1∪Q2∪P2, Pdown = P3∪Q3∪Q4∪P4, Pleft = Q5∪P1∪P3∪Q7, and Pright = Q6 ∪
P2 ∪Q4 ∪Q8. Because every strategy profile that uses only non-dominated strategies is contained in
γ the thus constructed network congestion game does not admit a pure Nash equilibrium.

Using the above Lemma, we obtain the following result.
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Theorem 3.21. For a set C of continuous functions that are strictly positive on R>0 the following

statements are equivalent:

(1) C is consistent for undirected-network weighted congestion.

(2) C is universally consistent for undirected-network weighted congestion.

(3) C only contains affine functions or C only contains functions of type c(x) = ac e
φ x+bc, where

ac,bc ∈R may depend on c while φ ∈R is independent of c.

This characterization is even valid for undirected-network games with four players.
For single-commodity network games (directed or undirected) we are not able to characterize

consistency of cost functions. However, by introducing a super-source and a super-sink to the net-
work constructions used, it follows that the improvement cycles are preserved; thus, all characteri-
zations for universally consistency obtained in this section continue to hold.

3.7 Weighted Singleton Congestion Games

In this section, we consider the case of singleton weighted congestion games. In this class of games,
for every player i, every strategy si ∈ Si contains a single resource only. As mentioned in Corol-
lary 3.4, the construction of the Monotonicity Lemma (Lemma 3.3) is even valid for singleton games,
establishing that every set of continuous cost functions C that is consistent for singleton games may
only contain monotonic functions. Singleton congestion games with weighted players and either
only non-decreasing or only non-increasing cost functions admit a pure Nash equilibrium; see Fab-
rikant [41] for the case on non-decreasing cost functions, and Rozenfeld and Tennenholtz [118] for
the case of non-increasing cost functions. Since the positive result for non-decreasing costs is es-
tablished via a potential function, these games also possess the finite improvement property. With
similar arguments it is not difficult to establish the finite improvement property also for the case
of non-increasing costs.2 To the best of our knowledge it was not known before, whether single-
ton weighted congestion games with both non-decreasing and non-increasing cost functions admit
a pure Nash equilibrium or even the finite improvement property. Regarding the existence of pure
Nash equilibria, for two-player games, we give a positive answer to this question.

Theorem 3.22. A set C of continuous functions is consistent for two-player singleton weighted

congestion games if and only if C only contains monotonic functions.

Proof. The only if part of the statement follows from Corollary 3.4. For the if part let M =
(
N,R,(Ai)i∈N ,(cr)r∈R

)
be a congestion model with |N| = 2. It is without loss of generality to as-

sume that d1 ≤ d2. We partition the set of resources into sets R− and R+, where R+ contains all
resources with non-decreasing cost functions (including all resources with constant functions) and
R− all other resources. It is without loss of generality to assume that both player have access to all
resources in R−, since we can replace the cost function of every resource that is contained in the
strategy space of only one player by a constant function. We initialize the players both playing r

′,
where r

′ = arg minr∈R− cr(d1 +d2). We distinguish two cases.

2Consider the function φ that assigns to each strategy profile the non-decreasingly sorted vector of the scaled players’
private costs (πi/di)i∈N . Then, φ decreases lexicographically along any improvement path, establishing that every such
path is finite.
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First case: Player 1 has an improving move from ({r
′},{r

′}). In this case, we let player 1 move
to one of her best replies {r1} ∈ S1. Using that r

′ = argminr∈R− cr(d1 + d2), we have r1 ∈ R+. If

player 2 does not have an improving move from ({r1},{r
′}), we are done. So, let {r2} be a best

reply of player 2 to ({r1},{r
′}). If r1 6= r2, we claim that ({r1},{r2}) is a pure Nash equilibrium.

To see this, note that if r2 ∈ R+, then player 2 switching from {r
′} to {r2} does not make any of the

resources more attractive to player 1. If on the other hand, r2 ∈ R−, we obtain

π1({r2},{r2})≥ π1({r
′},{r

′})> π1({r1},{r
′}) = π1({r1},{r2}),

where the first inequality follows by the choice of r
′ and the second inequality is due to the fact that

player 1 improved switching from {r
′} to r1. We derive that player 1 does not want to move to r2

and that we have reached an equilibrium.
The only interesting case that remains is r1 = r2. Again, if player 1 does not have an improving

move, there is nothing left to show, so let {r
′
1} 6= {r1} be a best reply of player 1 to ({r1},{r1}). Note

that r
′
1 /∈R− because otherwise we get π2({r1},{r

′
1})/d2 ≤ π1({r

′
1},{r1})/d1 < π1({r1},{r1})/d1 =

π2({r1},{r1})/d2, where the first inequality follows since d2 ≥ d1. This is a contradiction to the fact
that {r1} was a best reply of player 2. As π2({r

′
1},{r1})≤ π2({r1},{r1}), player 2 does not want to

deviate from ({r
′
1},{r2}). Also, player 1 will not deviate from ({r

′
1},{r2}) as {r

′
1} was a best reply.

Second case: Player 1 has no improving move from ({r
′},{r

′}). If, also, player 2 does not
have an improving move from ({r

′},{r
′}), we are done. Otherwise, let {r2} ∈ S2 be a best reply

of player 2. Note that {r2} /∈ S1 because otherwise {r2} would have been an improving move
from ({r

′},{r
′}) of player 1. If player 1 has no improving move from ({r

′},{r2}), we are done.
Otherwise, let {r1} be a best reply of player 1 to ({r

′},{r2}). As {r2} /∈ S1, we have r1 6= r2 and thus
π2({r1},{r2}) = π2({r

′},{r2}). Since player 2 improved switching from ({r
′},{r

′}) to ({r
′},{r2}),

she has no incentive to switch from ({r1},{r2}) and we have reached a pure Nash equilibrium.

Two-player singleton weighted congestion games with monotonic costs need not possess the
finite improvement property as shown in the following example.

Example 3.23. Consider the congestion model M=
(
N,R,(Ai)i∈N ,(cr)r∈R

)
with two players N =

{1,2} who have access to all five resources R = {r
′,r1,r2,r3,r4}. The cost functions of the re-

sources are shown in Table 3.1(a). Note that the cost function of resource r
′ is strictly decreas-

ing while all other cost functions are non-decreasing. The players’ demands are given by d1 = 1
and d2 = 2. It is not hard to verify that γ =

(
({r

′},{r
′}),({r

′},{r1}),({r1},{r1}),({r1},{r2}),
({r3},{r2}),({r3},{r3}),({r4},{r3}),({r4},{r

′}),({r
′},{r

′})
)

is an improvement cycle.

We proceed to show that for singleton games with three players monotonicity of cost functions
alone is not enough for the existence of a pure Nash equilibrium. This is illustrated in the following
example.

Example 3.24. Consider the congestion model M=
(
N,R,(Ai)i∈N ,(cr)r∈R

)
with N = {1,2,3} and

R = {r1,r2,r3}. The used cost functions are given in Table 3.1(b). The private costs of the weighted
congestion game G = (N,S,π) with S1 =

{
{r2},{r3}

}
, S2 =

{
{r1},{r2}

}
, S3 =

{
{r1},{r3}

}
, and

d1 = 1, d2 = 2, d3 = 4 are shown in Figure 3.9. It is easy to verify that G does not possess a pure
Nash equilibrium.
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(a) Cost functions in the game of Example 3.23

resource
cost c(x)

x = 1 x = 2 x = 3

r
′ 10 5 3

r1 2 2 9
r2 8 8 8
r3 1 7 7
r4 6 6 6

(b) Cost functions in the game of Example 3.24

resource
cost c(x)

x = 1 x = 2 x = 3 x = 4 x = 5 x = 6

r1 0 0 2 3 3 3
r2 5 1 1 1 0 0
r3 2 2 2 2 4 4

Table 3.1: (a) Cost functions of the five resources r
′,r1,r2,r3, and r4 in the game of Example 3.23; (b) Cost

functions of the three resources r1,r2, and r3 in the game of Example 3.24.

Player 2 Player 2

{r1} {r2} {r1} {r2}

{r2} 5, 6, 12 1, 2, 12 {r2} 5, 0, 8 1, 2, 8

P
la

ye
r

1

{r3} 2, 6, 12 2, 2, 12 {r3} 4, 0, 16 4, 2, 16

{r1} {r3}
Player 3

Figure 3.9: Private costs in the singleton weighted congestion game G constructed in Example 3.24. Note
that G does not possess a pure Nash equilibrium.

However, we are able to give a positive result for symmetric games in which the players have
access to all resources.

Theorem 3.25. A set C of continuous functions is consistent for symmetric singleton weighted con-

gestion games if and only if C only contains monotonic functions.

Note that the only if part also follows from Corollary 3.4. To prove the if part, we give an
algorithm that computes a pure Nash equilibrium in such games. In the following, we denote by
R+ and R− the set of resources with non-decreasing and non-increasing costs, respectively. To
obtain a partition of R, we introduce the convention, that resources with constant cost functions
are contained in R+ only. The algorithm that we propose (Algorithm 1) initializes all players on
the resource r

′ ∈ R− that minimizes cr
′(
∑

i∈N di). No player has an incentive to switch to another
resource r ∈ R−. The key observation is that, as long as there is at least one player i ∈ N that wants
to switch to a resource r ∈ R+, the player with smallest demand also wants to. We iteratively take
the player with smallest demand on r

′ and let her move to R+. Then, we compute a sequence of
best replies of the players on R+ to assure that none of them has an incentive to deviate to another
resource in R+. During this process the players stay in R+. After that, the players on R− are placed
on the resource minimizing cr(

∑

i∈N:si∈R−
di). Since we can prove that a player on R+ never wants

to move back to a resource in R−, this process stops after a finite number of best-reply computations.
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Algorithm 1: Computation of a pure Nash equilibrium in symmetric singleton weighted congestion

games.

Input: Symmetric singleton weighted congestion game G.
Output: Pure Nash equilibrium s of G.

1 N− := N, N+ := /0 ;
2 Compute r

′ := argminr∈R− cr(
∑

i∈N−
di) and set si := {r

′} for all i ∈ N− ;

3 if k = argmini∈N− di can improve switching to r ∈ R+, then

4 sk := r, N− := N− \ {k}, N+ := N+∪{k} ;
5 Compute a partial pure Nash equilibrium (ti)i∈N+

of N+ on R+ by best replies and set

(si)i∈N+
:= (ti)i∈N+

;

6 Goto line 2;
7 else

8 return s ;
9 end

Lemma 3.26. Algorithm 1 computes a pure Nash equilibrium.

Proof. Let us first remark that the computation of the partial pure Nash equilibrium of players N+

on R+ in line 5 finishes after a finite number of best replies since the cost functions of the resources
in R+ are non-decreasing; see Ackermann et al. [4], and Ieong et al. [73].

Let z denote the outcome of the algorithm. No player j ∈ N+ can improve switching to another
resource r ∈R+ since we always recompute a partial pure Nash equilibrium in line 5. Also, no player
j ∈ N− can improve unilaterally deviating to another resource r ∈ R− since cr(d j)≥ cr(

∑

i∈N−
di)≥

cr
′(
∑

i∈N−
di). In addition, we know that player k = arg mini∈N− di does not improve switching from

resource r
′ to another resource r ∈ R+. In consequence, the same holds for every other player j ∈ N−

since the cost for her on a resource r ∈ R+ is not smaller. Finally, it is left to show that in z no player
j ∈ N+ has an interest to switch to some resource r ∈ R−.

To prove this, let it , t = 1, . . . ,T , T ∈N, denote the player that switches from r
′
t ∈ R− to rt ∈ R+

in the t-th iteration of the algorithm and let z̃
t and z

t denote the corresponding strategy profiles before
and after the re-computation of the partial pure Nash equilibrium on R+ in line 5, respectively. We
claim that

min
r
′∈R−

cr
′(ℓr

′(zt)+dit
)> max

r∈R+:ℓr(z
t)>0

cr

(
ℓr(z

t)
)

for all t = 1, . . . ,T , (3.11)

where ℓr
′(zt) and ℓr(z

t) denote the aggregated demand on resource r
′ (respectively, r) in strategy

profile z
t . For t = 1, the statement holds, since player i1 improves switching from R− to R+. Now,

suppose (3.11) is true for t − 1. In the t-th iteration, player it changes her strategy from r
′
t ∈ R− to

some resource rt ∈ R+, that is,

min
r
′∈R−

cr
′(ℓr

′(zt)+dit
) = cr

′
t

(
ℓr

′
t
(zt)+dit

)
> crt

(
ℓrt
(z̃t)
)
.

Using that fact that the cost functions of the resources in R− are non-increasing we obtain
minr

′∈R−
cr

′
(
ℓr

′(zt)+dit

)
≥ minr

′∈R−
cr

′
(
ℓr

′(zt−1)+dit−1

)
. By the induction hypothesis, this implies
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minr
′∈R−

cr
′
(
ℓr

′(zt)+ dit

)
> cr(ℓr(z̃

t)) for all r ∈ R+ \ {rt} with ℓr(z̃
t) > 0. Thus, we have estab-

lished minr
′∈R−

cr
′
(
ℓg(z

t)+dit

)
> maxr∈R+:ℓr(z̃

t)>0 cr(ℓr(z̃
t)). Since the maximum cost on R+ cannot

increase in the sequence of best-reply steps (c.f. [66]), we obtain

min
r
′∈R−

cr
′
(
ℓr

′(zt)+dit

)
> max

r∈R+:ℓr(z
t)>0

cr(ℓr(z
t))

as claimed.
Because we move the player with the current smallest weight from R− to R+ (line 3) it holds that

diT
= maxi∈N+

di. Thus, minr
′∈R−

cr
′
(
ℓr

′(z)+di

)
≥ minr

′∈R−
cr

′
(
ℓr

′(z)+diT

)
> maxr∈R+

cr(ℓ f (z̃)) for

all i ∈ N+. We conclude that no player i ∈ N+ has an incentive to switch to a resource r
′ ∈ R−.

While the above result implies that the set C of continuous and monotonic cost functions is
consistent for symmetric singleton games, Example 3.23 implies that C is not universally consistent.

3.8 Discussion and Open Problems

In this chapter, we obtained a complete characterization of the existence of pure Nash equilibria
in weighted congestion games with respect to the cost functions of the resources. The following
issues have not been resolved. All of our results require that cost functions are continuous. It would
be interesting to weaken this assumption. For network games we assumed that cost functions are
strictly positive on R>0. Moreover, for single-commodity games we were only able to characterize
the finite improvement property, not consistency. The single-commodity case, however, behaves
completely differently; e.g., every congestion game with positive and non-increasing costs admits
a pure Nash equilibrium in which all players use the socially optimal path (see also Anshelevich et
al. [10] for a similar result in the context of network design games). Finally, it would be interesting
to characterize consistency of cost functions for undirected networks with three players.



Chapter 4

Congestion Games

with Resource-Dependent Demands

In the past, the existence of pure Nash equilibria has been analyzed in many variants of congestion
games. Examples include scheduling games, routing games, network design games, each variant
with weighted and unweighted players. Most of these previous works assumes that each player
has a unique demand di ∈ R>0 that she places on the chosen resources. That is, the demand di is
independent of the chosen resource. However, many real-world problems have the property that the
demand of a player depends on the resource. One prominent example is that of scheduling games
on unrelated machines as studied by Andelman et al. [8], Awerbuch et al. [13] and Even-Dar et
al. [39, 40]. In such a game, each player controls a job that she wishes to be scheduled on exactly
one machine out of a set of feasible machines. The execution time of each job depends on the
machine it is scheduled on. Each player is interested in minimizing the makespan of the chosen
machine which is defined as the sum of execution times of all jobs on the same machine. Even-Dar
et al. [39, 40] showed that in such a game a pure Nash equilibrium always exists. Andelman et al. [8]
strengthened this result showing that scheduling games on unrelated machines even always possess
a strong equilibrium. Feldman and Tamir [44] investigated in how far pure Nash equilibria are good
approximate strong equilibria (in the multiplicative sense). They further show that it is NP-hard to
decide whether a given pure Nash equilibrium is a strong equilibrium.

As noted by Eve-Dar et al. [39, 40], and Awerbuch et al. [13], one major motivation to study
scheduling games on unrelated machines is to model the usage of modern communication infras-
tructures by selfish users. In the absence of a central authority the users decide individually how to
route their traffic. Different routers may have different policies on how the traffic is handled; thus,
it is natural to allow that the actual workload (or the demand) that each user imposes on a certain
router actually depends on the identity of the router. To underline the connection to scheduling on
unrelated machines, Awerbuch et al. [13] called this model the “related link model”. They study,
however, only networks of parallel links where the related link model is equal to scheduling on un-
related machines. Even though congestion games with resource-dependent demands allow to model
a much broader scope of applications than weighted congestion games they not received a similar
attention in the literature, in the past. Most previous work concentrated on the important but still
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limited case of scheduling games. As a model of Internet traffic, for instance, these games have two
shortcomings. First, the players’ strategies contain a single resource only, while file transmission
over the Internet usually incorporates more than one router. Second, in [13, 39, 40, 8] it is assumed
that the private cost of each player equals the load on the chosen machine. This may not reflect the
actual costs perceived by the players, e.g. when the dropping rate of a router increases exponentially
with the load.

Only very recently, Harks et al. [67] studied congestion games with resource-dependent demands
with arbitrary (non-singleton) strategy sets. Specifically, they investigated which maximal sets of
cost functions C guarantee the existence of a weighted potential function in all congestion games
with resource-dependent demands and cost functions in C. It is shown that the set of affine functions
is the unique maximal set C with that property. Finite games with a weighted potential have several
desirable properties. First of all, they have the finite improvement property and possess a pure
Nash equilibrium (Proposition 2.20 and Corollary 2.21). They also have the fictitious play property
(Monderer and Shapley [98]), that is, the process of fictitious play converges to a mixed equilibrium.

In this chapter, we further investigate the equilibrium existence problem in congestion games
with resource-dependent demands. Specifically, we relax the strong requirement of a weighted po-
tential function and instead focus on the existence of a pure Nash equilibrium and the finite im-
provement property. To precisely characterize which maximal sets of cost functions guarantee the
existence of pure Nash equilibria, we use the notion of consistency introduced in Chapter 3. We say
that a set C of cost functions is consistent for congestion games with resource-dependent demands, if
all congestion games with resource-dependent demands and cost functions in C possess a pure Nash
equilibrium. A set C of cost functions is called universally consistent if every congestion game with
resource-dependent demands and cost functions in C has the finite improvement property. The result
of Harks et al. [67] implies that the set of affine functions is consistent and universally consistent.
In this section, we investigate the question whether there are the further sets cost functions that are
consistent for congestion games with resource-dependent demands.

4.1 Contributions and Chapter Outline

First, we observe that there are two natural ways to define the players’ private cost functions. In
a proportional game, the resource costs are interpreted as a per-unit cost; that is, each resource
that is loaded with x units of demand produces a cost of xcr(x), which is then divided among its
users in proportion to their respective demands. In that fashion, each player i pays di,r cr(x) for
each resource r she uses. This is the variant for which Harks et al. [67] proved the existence of
a pure Nash equilibrium when all costs are affine. We also consider a slightly different class of
games known as uniform games. They differ from proportional games solely in the definition of the
players’ private cost functions. In a uniform game, the resource costs are not multiplied with the
players’ demands. As noted by Koutsoupias and Papadimitriou [85], uniform games are motivated
by scheduling applications for which the cost function is used to model the achieved makespan which
is (under round-robin processing) the same for every job on a resource. To precisely understand
the impact of the different definitions of the private cost functions on the equilibrium behavior of
the resulting games, we regard a more general class of games, which we term g-scaled congestion
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Table 4.1: Pure Nash equilibria (PNE) and the finite improvement property (FIP) in proportional and uniform
congestion games with resource-dependent demands. Here, by “exponential”, we denote sets C of
cost functions, such that every c ∈ C is of type c(x) = ac e

φx+bc, where ac,bc ∈R may depend on
c while φ is equal for all c ∈ C. Note the fundamental structural difference to weighted congestion
games (with resource-independent demands) studied in Chapter 3 where games with exponential
costs always possess a pure Nash equilibrium.
Reading example: The set of affine functions is consistent for proportional congestion games with
resource-dependent demands because in each such game a pure Nash equilibrium (PNE) exists.
They are also universally consistent as these games have the finite improvement property (FIP).
They are, however, neither universally consistent nor consistent for uniform congestion games
with resource-dependent demands as these games do in general not have the finite improvement
property or possess a pure Nash equilibrium. For weighted congestion games (where demands are
resource-independent) affine functions are universally consistent and consistent.

res.-dep. demands res.-dep. demands indep. demands
proportional uniform prop. & unif.

costs PNE FIP PNE FIP PNE FIP

constant yes yes yes yes yes yes
affine yes yes no no yes yes
exponential no no no no yes yes
other no no no no no no

games with resource-dependent demands. For a given scaling function g :R≥0 →R≥0, the private
cost function of player i in a g-scaled congestion game with resource-dependent demands is defined
as πi(s) =

∑

r∈si
g(di,r)cr(ℓr(s)), where ℓr(s) =

∑

j∈N:r∈s j
d j,r. We say that a set C of cost functions

is consistent for g-scaled congestion games with resource-dependent demands if each such game
with cost functions in C possesses a pure Nash equilibrium.

Requiring that scaling functions are continuously differentiable, non-decreasing and strictly pos-
itive, our main result is a complete characterization of the consistency of cost functions for g-scaled
congestion games. We show that a set C of continuous cost functions is consistent for g-scaled con-
gestion games with variable demands if and only if at least one of the following three cases holds:
(i) g is arbitrary and C contains only constant functions; (ii) g is linear and C contains only affine
functions; (iii) There is φ ∈ R such that g is of type g(x) = −sgn(φ)β (e−φx − 1), β ∈R>0 and C
contains only functions of type c(x) = ac e

φx + bc where ac,bc ∈ R may depend on c. This result
implies in particular that the set of affine functions is the unique maximal set of cost functions that
is consistent for proportional games. This characterization also reveals that uniform games are only
guaranteed to possess a pure Nash equilibrium in the trivial case where all resource cost functions
are constant. We further show that this characterization is also valid for universal consistency. Our
results are summarized in Table 4.1.

After recalling the most important definitions in Section 4.2, we first study necessary conditions
in Section 4.3. As the main result of this section, we provide the Generalized Monotonicity Lemma
(Lemma 4.5) which gives necessary conditions for the consistency for g-scaled congestion games
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with resource-dependent demands in terms of two inequalities depending on a non-negative parame-
ter µ ≥ 0. For µ = 0, these conditions imply that every consistent cost function must be monotonic.
In that sense this lemma resembles the Monotonicity Lemma (Lemma 3.3) for weighted congestion
games proven in Chapter 3.

Building on the results of Chapter 3, we first observe that every set of consistent cost functions
contains either only affine functions or only exponential functions. In Section 4.4, we study sets
of affine functions and show that they are consistent for g-scaled congestion games with resource-
dependent demands if and only g is linear. In Section 4.5, we prove that exponential cost functions
are consistent for g-scaled congestion games with variable demands if and only if g is of type g(x) =

−sgn(φ)β (e−φx −1), β ∈R>0.
While the above results hold for arbitrary strategy spaces, in Section 4.7 we study the con-

sistency of cost functions in games on directed and undirected networks. Assuming that all cost
functions are strictly positive we are able to translate all results to directed networks. For undirected
networks, however, we need to require additionally that every cost function diverges to ∞ as the
aggregated demand goes to ∞.

Bibliographic Information. An extended abstract with parts of the results contained in this chap-
ter appeared in the Proceedings of the 13th Biennial Conference on Theoretical Aspects of Rational-

ity and Knowledge; see [64].

4.2 Problem Description

First, we recall the most important concepts used in this chapter. For more details, see Chapter 2. Let
N be a finite set of players and R a finite set of resources. For each player, we are given a set Ai ⊆ 2R

of feasible allocations and a vector (di,r)r∈R of strictly positive resource-dependent demands. There
is a cost function cr :R≥0 →R associated with each resource r that maps the aggregated demands
on resource r to a cost value each player perceives. The tuple M=

(
N,R,(Ai)i∈N ,(cr)r∈R

)
is called

a congestion model. The corresponding proportional congestion game with resource-dependent

demands is the minimization game G = (N,S,π) with Si =Ai and πi(s) =
∑

r∈si
di,r cr(ℓr(s)) for all

i ∈ N, where ℓr(s) =
∑

j∈N:r∈s j
d j,r . The corresponding uniform congestion games with resource-

dependent demands has the same strategies but the private cost function of each player i is defined
as πi(s) =

∑

r∈si
cr(ℓr(s)).

To capture both proportional cost games and uniform games simultaneously we define a more
general class of games. For a function g :R≥0 →R≥0 the g-scaled congestion game with resource-

dependent demands is defined as the congestion game in which the private cost of each player equals
the cost of the used resources multiplied with g(di,r).

Definition 4.1 (g-scaled congestion game with resource-dependent demands)

Let M=
(
N,R,(Ai)i∈N ,(cr)r∈R

)
be a congestion model, (di,r)i∈N,r∈R a vector of resource-dependent

demands with di,r ∈ R>0, and g : R≥0 → R>0. The corresponding g-scaled congestion game

with resource-dependent demands is the minimization game G = (N,S,π), where Si = Ai and
πi =

∑

r∈si
g(di,r)cr(ℓr(s)) for all i ∈ N.

Throughout this chapter, we impose the following assumptions on the scaling function g.
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Assumption 4.2. The scaling function g : R≥0 → R≥0 is continuously differentiable and strictly
positive on R>0.

For a set C of cost functions and a scaling function g, we say that C is consistent for g-scaled con-
gestion games with resource-dependent demands if every g-scaled congestion game with resource-
dependent demands and cost functions in C possesses a pure Nash equilibrium. Analogously, C
is universally consistent for g-scaled congestion games with resource-dependent demands if every
g-scaled congestion game with resource-dependent demands and cost functions has the finite im-
provement property. For a cost function c, instead of saying that {c} is consistent (respectively,
universally consistent) for g-scaled congestion games with resource-dependent demands, we simply
say that c is consistent (respectively, universally consistent).

4.3 Necessary Conditions for the Existence of a Pure Nash Equilibrium

Our main result of Chapter 3 establishes that every set C of continuous cost functions that is consis-
tent for weighted congestion games either contains only affine functions or only certain exponential
functions as specified in Theorem 3.11. For any scaling function g, this necessary conditions for con-
sistency can be easily translated to g-scaled congestion games with resource-dependent demands,

Proposition 4.3. Let C be a set of continuous functions and let g be a scaling function. If C is

consistent for g-scaled congestion games with resource-dependent demands, then C satisfies at least

one of the following two conditions:

(1) C only contains affine functions.

(2) C only contains exponential functions of type c(x) = ac e
φx+bc, where ac,bc ∈Rmay depend

on c, while φ is equal for all c ∈ C.

Proof. Theorem 3.11 establishes that for every set C of continuous cost functions that does not
satisfy one of the the required conditions, there is a congestion model M=

(
N,R,(Ai)i∈N ,(cr)r∈R

)

and a vector of resource-independent demands d
w
i such that the corresponding weighted congestion

game G
w = (N,S,πw) does not possess a pure Nash equilibrium. For an arbitrary scaling function g,

let G = (N,S,π) be the corresponding g-scaled congestion game with resource-dependent demands
with di,r = d

w
i for all r ∈ R. We observe that πi(s) =

g(di)
di

πi(s) for all s ∈ S and i ∈ N. Thus, G is

a monotonic transformation of G
w. Referring to Proposition 2.6 we derive that G does not admit a

pure Nash equilibrium.

To further restrict the set of consistent cost functions, we proceed to prove a stronger version
of the Monotonicity Lemma (Lemma 3.3) for games with resource-dependent demands. Recall that
the Monotonicity Lemma states that all continuous cost functions that are consistent for weighted
congestion games are monotonic. Together with the characterization of non-monotonic continuous
functions provided in Lemma 3.2, this implies that for all x,y∈R>0, the following two properties are
satisfied: (i) If c(x) > c(x+ y), then c(y) ≥ c(x+ y). (ii) If c(x) < c(x+ y), then c(y)≤ c(x+ y). As
the first result of this chapter, we show that every cost function that is consistent for g-scaled games
with resource-dependent demands satisfies a stronger condition, termed generalized monotonicity

condition, which is defined below.
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Definition 4.4 (Generalized Monotonicity Condition (GMC))

Let g be a scaling function. A differentiable cost function c satisfies the generalized monotonicity

condition (GMC) for g if for all x,y ∈R>0 with c(x) 6= 0, c(y) 6= 0, and all µ ∈R≥0 the following
two conditions hold:

(GMC 1) If c(x) > c(x+ y)−µc
′(x+ y),

then
(
1−µ g

′(y)
g(y)

)
c(x+ y)−µc

′(x+ y)≤
(
1−µ g

′(y)
g(y)

)
c(y)−µc

′(y).

(GMC 2) If c(x) < c(x+ y)−µc
′(x+ y),

then
(
1−µ g

′(y)
g(y)

)
c(x+ y)−µc

′(x+ y)≥
(
1−µ g

′(y)
g(y)

)
c(y)−µc

′(y).

Note that for µ = 0, the GMC is independent of the scaling function g and ensures only that c

is monotonic. As the first result of this chapter, we show that any differentiable cost function that is
consistent for g-scaled congestion games with resource-dependent demands satisfies the GMC for g.

Lemma 4.5 (Generalized Monotonicity Lemma). Let c be a differentiable function and let g be a

scaling function. If c is consistent for g-scaled congestion games with resource-dependent demands,

then c satisfies the GMC for g.

Proof. We start to show that c satisfies (GMC 1). Suppose not. Then, there are x,y ∈ R>0 with
c(x) 6= 0 and c(y) 6= 0, and µ ∈R≥0 such that the following two inequalities hold:

c(x) > c(x+ y)−µc
′(x+ y), (4.1)

(

µ
g
′(y)

g(y)
−1
)

c(y)+µc
′(y)>

(

µ
g
′(y)

g(y)
−1
)

c(x+ y)+µc
′(x+ y). (4.2)

By continuity, it is without loss of generality to assume that µ is rational and positive; that is, µ = p/q

for some p,q ∈N. Let ε > 0 be such that

c(x) > c(x+ y)−µc
′(x+ y)+ ε ,

(

µ
g
′(y)

g(y)
−1
)

c(y)+µc
′(y)>

(

µ
g
′(y)

g(y)
−1
)

c(x+ y)+µc
′(x+ y)+ ε .

Since the functions c and g are differentiable (and thus also continuous), there is m ∈N such that
for δ = 1

q·m we have

c(y+δ ) 6= 0, (4.3a)
∣
∣
∣µ · c(x+ y+δ )− c(x+ y)

δ
−µ c

′(x+ y)
∣
∣
∣≤ ε

4
, (4.3b)

∣
∣
∣µ · c(y+δ )− c(y)

δ
−µ c

′(y)
∣
∣
∣≤ ε

4
, (4.3c)

∣
∣
∣

µ

g(y)
· g(y+δ )−g(y)

δ
· c(x+ y+δ )−µ · g

′(y)
g(y)

· c(x+ y)
∣
∣
∣≤ ε

4
, (4.3d)

∣
∣
∣

µ

g(y)
· g(y+δ )−g(y)

δ
· c(y+δ )−µ · g

′(y)
g(y)

· c(y)
∣
∣
∣≤ ε

4
. (4.3e)
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Player 2

R1 R2 ∪Q2

R1 ∪R2
ag(x)

(
(p ·m+1)c(x+y)+ p ·mc(x)

)
,

ag(y)
(
(p ·m+1)c(x+y)

)

ag(x)
(
(p ·m+1)c(x)+ p ·mc(x+y+δ )

)
,

ag(y+ δ )p ·mc(x+ y+ δ )+ b2g(z)c(z)

P
la

ye
r

1

Q1
b1 g(x)c(x),

ag(y)(p ·m+1)c(y)

b1 g(x)c(x),

ag(y+δ )p ·mc(y+δ )+ b2 g(z)c(z)
)

Figure 4.1: Matrix representation of the g-scaled congestion game with variable demands constructed in the
proof of Lemma 4.5. Each cell shows the private cost of the respective strategy profile.

Our proof proceeds in two steps. In the first step, we construct a g-scaled congestion game with
resource-dependent demands parametrized by b1,b2 ∈Z, and a ∈N>0. Then, in the second step, we
specify the parameters such that the corresponding game does not possess a pure Nash equilibrium.

For the first step, let the parameters b1,b2 ∈ Z, and a ∈N be fixed. We consider the congestion
model M=

(
N,R,(Ai)i∈N ,(cr)r∈R

)
with two players N={1,2} and resources R = R1∪R2∪Q1∪Q2.

The set R1 contains a(p ·m+1) resources, R2 contains a · p ·m resources, Q1 contains |b1| resources,
and Q2 contains |b2| resources. The players’ sets of feasible allocations depend on the sign of the
parameters b1 and b2. If b1 ≥ 0, we set A1 = {R1∪R2,Q1}, and A1 = {R1∪R2∪Q1, /0}, otherwise.1

If b2 ≥ 0, we set A2 = {R1,R2 ∪Q2}, and A2 = {R1 ∪Q2,R2}, otherwise. The demand of player 1
equals d1,r = x for all resources r ∈ R and the demand of player 2 equals d2,r = y for all r ∈ R1

and d2,r = y+ δ for all r ∈ R2. The demand of player 2 for the resources in Q2 depends on the
sign of b2. We set d2,r = z for all r ∈ Q2, where z = y+ δ if b2 ≥ 0, and z = y, otherwise. For
the b1,b2 ≥ 0, the so-defined game is shown in Figure 4.1. For the case b1,b2 ≥ 0, consider the
cycle γ =

(
(R3,R1),(R1 ∪R2,R1),(R1 ∪R2,R2 ∪Q2),(Q1,R2 ∪Q2),(Q1,R1),(R3,R1)

)
. Calculating

the differences in the private costs of the deviating players, we obtain

π1(R1 ∪R2,R1)−π1(R3,R1) = ag(x)

(

(p ·m+1)c(x+ y)+ p ·m · c(x)− b1

a
c(x)

)

, (4.4a)

π2(R1 ∪R2,R2 ∪Q2)−π2(R1 ∪R2,R1)

= ag(y)

(

g(y+δ )

g(y)

(

p ·m · c(x+ y+δ )
)

+
g(z)

g(y)
· b2

a
c(z)− (p ·m+1)c(x+ y)

)

,
(4.4b)

1To avoid that one strategy of player 1 is empty, we can add two additional resources used with the same demand to
both feasible allocations of player 1. This procedure shifts the private cost of player 1 by a constant and has no influence
on the existence or nonexistence of pure Nash equilibria.
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π1(Q1,R2 ∪Q2)−π1(R1 ∪R2,R2 ∪Q2)

= ag(x)

(

b1

a
c(x)− (p ·m+1)c(x)− p ·m · c(x+ y+δ )

)

,
(4.4c)

π2(Q1,R1)−π2(Q1,R2 ∪Q2)

= ag(y)

(

(p ·m+1)c(y)− g(y+δ )

g(y)

(

p ·m · c(y+δ )
)

− g(z)

g(y)
· b2

a
c(z)

)

.
(4.4d)

For the cases in which at least one parameter bi is negative, the set Qi is contained in the first
allocation of player i instead of the second one. Calculating the private cost differences of player i

in the respective sequence of unilateral deviations of the modified game, bi always appears with
the contrary sign. We conclude that for arbitrary signs of b1 and b2 there is a cycle for which the
differences of the players’ private costs have the same values as in (4.4a) – (4.4d).

We proceed to show that there are b1,b2 ∈ Z, and a ∈ N such that the expressions in (4.4a)–
(4.4d) are negative, implying that the corresponding games does not admit a pure Nash equilibrium.
First, we consider the expressions (4.4a) and (4.4c) associated with the private cost differences along
the deviations of player 1 in γ . We claim that there is β1 ∈R such that

p ·m · c(x+ y+δ )+ (p ·m+1)c(x)> β1 c(x) > p ·m · c(x)+ (p ·m+1)c(x+ y).

To see this, we use the facts that c(x) 6= 0 and c(x)> c(x+y)−µ c
′(x+y)+ε to derive the existence

of β1 ∈R with

c(x) > β1 c(x)− p ·m · c(x+ y+δ )− p ·m · c(x)> c(x+ y)−µc
′(x+ y)+ ε .

Using p ·m = µ/δ this implies

p ·m · c(x+ y+δ )+ (p ·m+1)c(x)> β1 c(x)

> µ
c(x+ y+δ )− c(x+ y)

δ
+µ

c(x+ y)

δ
+ p ·m · c(x)+ c(x+ y)−µc

′(x+ y)+ ε .

Rearranging terms and using (4.3b), we obtain

p ·m · c(x+ y+δ )+ (p ·m+1)c(x)> β1 c(x) > p ·m · c(x)+ (p ·m+1)c(x+ y),

as claimed. We now turn to the private cost differences (4.4b) and (4.4d) of player 2. Recall that

either z = y or z = y+ δ . Using c(y) 6= 0 and(4.3a), we observe c(z) 6= 0. We then use
(
µ g

′(y)
g(y) −

1
)

c(x+ y)+ µc
′(x+ y)+ ε/2 <

(
µ g

′(y)
g(y) − 1

)
c(y)+ µc

′(y)− ε/2 to derive the existence of β2 ∈R
with

(

µ
g
′(y)

g(y)
− 1
)

c(x + y) + µc
′(x + y) +

ε

2
< −β2 c(z)

g(z)

g(y)
<
(

µ
g
′(y)

g(y)
− 1
)

c(y) + µc
′(y)− ε

2
.
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Using (4.3b) and (4.3c), we obtain

µ
g
′(y)

g(y)
c(x+ y)+ p ·m · c(x+ y+δ )− (p ·m+1)c(x+ y)+

ε

4

<−β2 c(z)
g(z)

g(y)
< µ

g
′(y)

g(y)
c(y)+ p ·m · c(y+δ )− (p ·m+1)c(y)− ε

4
.

Together with inequalities (4.3d) and (4.3e) this gives rise to

(

p ·mg(y+δ )

g(y)
− p ·m

)

c(x+ y+δ )+ p ·mc(x+ y+δ )− (p ·m+1)c(x+ y)

<−β2 c(z)
g(z)

g(y)
<
(

p ·mg(y+δ )

g(y+δ )
− p ·m

)

c(y+δ )+ p ·mc(y+δ )− (p ·m+1)c(y).

Rearranging terms, we finally obtain

g(y+δ )

g(y)
p ·m · c(x+ y+δ )− (p ·m+1)c(x+ y)

<−β2 c(z)
g(z)

g(y)
<

g(y+δ )

g(y)
p ·m · c(y+δ )− (p ·m+1)c(y).

As β1 and β2 are rational, we can write them as β1 = b1/a respectively β2 = b2/a for some a ∈N
and b1,b2 ∈ Z. By construction, the private cost differences (4.4a) – (4.4d) are negative and γ is
an improvement cycle. Because every strategy combination is contained in γ , the thus constructed
game does not admit a pure Nash equilibrium, which contradicts the consistency of c. To see that c

also satisfies (GMC 2) we proceed as above, but traverse the cycle γ in the opposite direction.

The games constructed to prove the Generalized Monotonicity Lemma (Lemma 4.5) have a quite
simple structure; each game has only two players with two strategies each. The first player has a
single demand x ∈R>0 that she places on all resources. For some y,δ ∈R>0, the second player’s
demand equals y for all resources contained in her first strategy and y+ δ for all other resources.
With these observations, Lemma 4.5 can be strengthened in the following way.

Corollary 4.6. Let g be a scaling function and let c be a differentiable function not satisfying the

GMC for g. Then, there are x,y,ε ∈R>0 such that for each δ ∈ (0,ε), there is a congestion model

M=
(
N,R,(Ai)i∈N ,(cr)r∈R

)
with the following properties:

(1) N = {1,2};

(2) Each player i has two disjoint allocations, i.e., Ai = {αi,1,αi,2} with αi,1,αi,2 ⊆ R;

(3) All cost functions are equal to c, i.e., cr = c for all r ∈ R;

(4) The corresponding g-scaled congestion game with the resource-dependent demands d1,r = x

for all r ∈ R, d2,r = y for all r ∈ α2,1, and d2,r = y+ δ for all r ∈ α2,2 does not possess a

pure Nash equilibrium.

With other words, for each cost function c not satisfying the GMC for g there is a threshold value
ε > 0 such for all δ ∈ (0,ε) one can construct a quite simple game (two players with two feasible
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allocations each, all costs equal to c) without a pure Nash equilibrium. Moreover, the players’
demands in that game are almost resource-independent, that is, only the demand of the second player
on the resources contained in her second allocation is increased by δ . This insight will be important
in Chapter 5 when characterizing the consistency for congestion games with variable demands.

4.4 Consistency of Affine Functions

As noted in Proposition 4.3, every set of continuous cost functions that is consistent for g-scaled
congestion games with resource-dependent demands contains either only affine or only certain ex-
ponential functions. In this section, we investigate the question whether affine functions are indeed
consistent. While for weighted congestion games the notion of consistency is independent of the
scaling function g, for games with resource-dependent demands the scaling function g has a severe
impact on the consistency of cost functions. As the main result of this section, we show that for
linear scaling functions of type g(x) = βx with β > 0, every set of affine cost functions is consistent.
This is particularly interesting since games with linear scaling functions contain the practically rele-
vant case of proportional games as a special case. We also show that linear scaling functions are the
maximal class of scaling functions with this property. This implies on the negative side that for ev-
ery non-linear scaling function g every set of affine functions that contains at least one non-constant
function is not consistent. In particular, affine cost functions are not consistent for uniform games.

We first show that affine functions are consistent and universally consistent for games with linear
scaling functions.

Theorem 4.7. Let C be a set of affine functions and let g be a linear scaling function of type g(x) =

βx, β > 0. Then, C is consistent and universally consistent for g-scaled congestion games with

resource-dependent demands.

Proof. Let M =
(
N,R,(Ai)i∈N ,(cr)r∈R

)
be a congestion model such that for each resource r ∈ R,

there are ar,br ∈ R with cr(x) = ar x+ br for all x ∈ R>0. For an arbitrary vector (di,r)i∈N,r∈R of
resource-dependent demands, let G be a corresponding congestion game with resource-dependent
demands. We claim that the function P : S →R, s 7→∑

i∈N

∑

r∈si
β di,r

(
ar(
∑

j∈{1,...,i}:r∈s j
d j,r)+br

)

is an exact potential function for G.
To see this, let s ∈ S be arbitrary and consider player i with alternative strategy s

′
i. Calculating

P(s)−P(s′i,s−i) =
∑

j∈{i+1,...,n}

( ∑

r∈si∩s j

β d j,r ar di,r −
∑

r∈s
′
i∩s j

β d j,r ar di,r

)

+
∑

r∈si

β di,r

(

ar

( ∑

j∈{1,...,i}:r∈s j

d j,r

)
+br

)

−
∑

r∈s
′
i

β di,r

(

ar

( ∑

j∈{1,...,i}:r∈x j

d j,r

)
+br

)

= πi(s)−πi(s
′
i,s−i),

we observe that P is an exact potential function. For finite games, the existence of a potential function
is sufficient for the finite improvement property and the existence of a pure Nash equilibrium; see
Proposition 2.20 and Corollary 2.21.
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The potential function used to prove Theorem 4.7 has already given by Harks et al. [67] for the
special case that g(x) = x for all x ≥ 0. We proceed to show that the linearity of g is in fact necessary
for the consistency of affine functions. Specifically, we show that a non-constant affine cost function
satisfies the GMC for g if and only if g is linear.

Theorem 4.8. Let g be a scaling function. A non-constant affine function c satisfies the GMC for g

if and only if g is linear.

Proof. Let a ∈R\{0} and b ∈R be such that c(x) = ax+b for all x ≥ 0. Because c has the GMC
for g if and only if −c has the GMC for g it is without loss of generality to assume a > 0.

For a contradiction, suppose that g is not linear but c satisfies the GMC for g. Because the
differential equation g(x) = x · g

′(x) characterizes linear functions uniquely, the non-linearity of g

implies the existence of y ∈ R>0 such that g(y) 6= y · g
′(y). Let us first assume that there is y > 0

such that g
′(y) = 0. We choose x,y,µ ∈ R>0 such that c(x) 6= 0, c(y) 6= 0, and µ > y. Checking

condition (GMC 1), we observe

c(x)− c(x+ y)+µc
′(x+ y) =−ay+µ a > 0, (4.5)

(

µ
g
′(y)

g(y)
−1
)

c(x+ y)+µc
′(x+ y)−

(

µ
g
′(y)

g(y)
−1
)

c(y)−µc
′(y) = c(y)− c(x+ y)< 0.

Thus, (GMC 1) is violated. We conclude g
′(y) 6= 0 for all y > 0. The non-linearity of g then implies

the existence of y > 0 such that g(y)/g
′(y) 6= y. Using the continuity of g/g

′ and the fact that c has
at most one root, we can choose y such that g(y)/g

′(y) 6= y and c(y) 6= 0. We proceed to distinguish
two cases.

First case: g(y)/g
′(y) > y. We choose µ > 0 such that g(y)/g

′(y) > µ > y and x > 0 such that
c(x) 6= 0. Then, again (4.5) holds because µ > y. Furthermore, we obtain

(

µ
g
′(y)

g(y)
−1
)

c(x+y)+µc
′(x+y)−

(

µ
g
′(y)

g(y)
−1
)

c(y)−µc
′(y) =

(

µ
g
′(y)

g(y)
−1
)

ax < 0,

which violates (GMC 1).
Second case: g(y)/g

′(y) < y. Choosing µ > 0 such g(y)/g
′(y) < µ < y and x > 0 such that

c(x) 6= 0, we obtain

c(x)− c(x+ y)+µc
′(x+ y) =−ay+µ a < 0,

(

µ
g
′(y)

g(y)
−1
)

c(x+ y)+µc
′(x+ y)−

(

µ
g
′(y)

g(y)
−1
)

c(y)−µc
′(y) =

(

µ
g
′(y)

g(y)
−1
)

ax > 0,

violating (GMC 1).

4.5 Consistency of Exponential Functions

We proceed to characterize the set of scaling functions for which exponential functions are consistent
for g-scaled congestion games with resource-dependent demands. As our main result, we show that
exponential functions of the form c(x) = ac e

φx +bc, φ ∈R\{0} are consistent if and only if g is of
the form g(x) = −sgn(φ)β (e−φx −1) with β ∈R>0. For illustration, this type of scaling functions
is shown in Figure 4.2.
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x

g(x)

(a) φ > 0

x

g(x)

(b) φ < 0

Figure 4.2: Schematic illustration of the scaling function g(x) =−sgn(φ)β (e−φx−1), β > 0 that is consistent
for exponential cost functions of type c(x) = ac e

φx +bc, ac,bc ∈R, φ ∈R\{0} for positive and
negative φ , respectively.

Theorem 4.9. Let φ ∈ R \ {0} and let C be a set of cost functions such that for all c ∈ C there

are ac,bc ∈ R with c(x) = ac e
φx + bc for all x ∈ R≥0. Let g be a scaling function of type g(x) =

−sgn(φ)β (e−φx − 1) with β ∈ R>0. Then C is consistent and universally consistent for g-scaled

congestion games with resource-dependent demands.

Proof. Let φ ,β 6= 0 be such that sgn(β ) =−sgn(φ) and let g(x) = β (e−φx −1) for all x ∈R>0. and
let M=

(
N,R,(Ai)i∈N ,(cr)r∈R

)
be a congestion model such that for each resource r ∈ R, there are

ar,br ∈R with c(x) = ar e
φx +br.

For an arbitrary vector (di,r)i∈N,r∈R of resource-dependent demands let G be a corresponding

congestion game. We set ℓi
r(s) =

∑

j∈{1,...,i}:r∈s j
d j,r and claim that the function P : S →R defined

as

P(s) =
∑

i∈N

∑

r∈si

β (e−φdi,r −1)
(
are

φℓi
r(s)+br

)

is a potential function for G. For arbitrary s ∈ S, i ∈ N, and s
′
i ∈ Si, we calculate that

P(s)−P(s′i,si)

=
n∑

j=i+1

( ∑

r∈si∩s j

β (e−φd j,r−1)(1−e
−φdi,r)are

φℓ j
r(s)−

∑

r∈s
′
i∩s j

β (e−φd j,r−1)(1−e
−φdi,r)are

φℓ j
r(s)
)

+
∑

r∈si

β (e−φdi,r −1)(are
φℓi

r(s)+br)−
∑

r∈s
′
i

β (e−φdi,r −1)(are
φℓi

r(s)+br)

=
∑

r∈si

β (e−φdi,r −1)ar

(

br + e
φℓi

r(s)+
∑

j∈{i+1,...,n}:r∈s j

(1− e
−φdr, j)eφℓ j

r(s)
)

−
∑

r∈s
′
i

β (e−φdi,r −1)ar

(

br + e
φℓi

r(s)+
∑

j∈{i+1,...,n}:r∈s j

(1− e
−φdr, j)eφℓ j

r(s)
)

= πi(s)−πi(s
′
i,s−i).
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As every finite potential game has the finite improvement property as well as a pure Nash equilibrium
(Proposition 2.20 and Corollary 2.21), the claimed result follows.

To show that scaling functions of type g(x) = β (e−φx−1) are also necessary for the consistency
of exponential functions, we first need a characterization of these functions in terms of a differential
equation. Such a characterization is provided in the following lemma.

Lemma 4.10. All solutions to the ordinary differential equation

g
′(x) =

φ

e
φx −1

g(x), x > 0 (4.6)

are of the form g(x) = β (e−φx −1) with β ∈R.

Proof. We first consider the case φ > 0. Because φ

e
φx−1

> 0, every solution of (4.6) is monotonic.

Furthermore, we observe that g solves (4.6) if and only if for all λ ∈R the function λg solves (4.6).
Let us assume (4.6) admits a non-constant and non-decreasing solution g and let x0 = sup{x ≥ 0 :
g(x) = 0}. Then, g satisfies the equation (lng(x))′ = φ

e
φx−1

on (x0,∞). Integrating both sides, we

obtain lng(x) = ln(1− e
−φx)+ β̃ for all x ∈ (x0,∞), where β̃ ∈R is an arbitrary constant. Setting

β = e
β̃ and solving for g(x), we finally obtain g(x) = −β (e−φx − 1) on (x0,∞) for some β > 0.

Using that g is continuous, this implies that x0 = 0.
If φ < 0, we use instead that (lng(x))′ = φ

e
φx−1

implies lng(x) = ln(1− e
φx)− φx+ β̃ for all

(x0,∞) and some β̃ ∈R and continue as in the case φ > 0.
The observation that g solves (4.6) if and only if for all λ ∈ R the function λg solves (4.6)

finishes the proof.

We proceed to show that scaling functions of this type are also necessary for the consistency of
exponential function in games with resource-dependent demands.

Theorem 4.11. For φ 6= 0, let g be a scaling function, and let c be a non-constant exponential

function of type c(x) = ae
φx +b, a 6= 0, b ∈R. Then, c satisfies the GMC for g if and only if g is of

the form g(x) =−sgn(φ)β (e−φx −1) with β ∈R>0.

Proof. Let c be of the demanded form. For a contradiction, let us assume that c satisfies the GMC
for g, but g is not as claimed. The GMC implies that for all x,y,µ > 0 with c(x) 6= 0 and c(y) 6= 0
the expressions

c(x)− c(x+ y)+µc
′(x+ y) = ae

φx(1+ e
φy(µφ −1)

)
(4.7)

and

(

µ
g
′(y)

g(y)
−1
)

c(x+ y)+µc
′(x+ y)−

(

µ
g
′(y)

g(y)
−1
)

c(y)−µc
′(y)

= ae
φy
(

e
φx −1

)(

µ
g
′(y)

g(y)
+µφ −1

)
(4.8)
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have equal signs.
We first make the useful observation that c has at most one root. Together with the continuity

of the expressions in (4.7) and (4.8), this implies that if there are x,y ∈ R>0 such that (4.7) and
(4.8) are nonzero and have different signs, then we can choose x and y such that additional c(x) 6= 0
and c(y) 6= 0. Furthermore, we observe that altering the sign of a also alters the sign of the right
hand sides both of (4.7) and (4.8). Form there, it is without loss of generality to assume that a > 0.
Regarding the sign of φ we distinguish two cases.

First case: φ > 0. If there is y > 0 such that g
′(y)/g(y) + φ ≤ 0, we choose µ > 1/φ and

x > 0 arbitrarily. Then, (4.7) is positive while (4.8) is negative, contradiction! We conclude that
g
′(y)/g(y) + φ > 0 for all y > 0. This implies, that (4.8) is positive if and only if µ > g(y)

g
′(y)+φg(y)

while (4.7) is positive if and only if µ > e
φy−1
φe

φy . For every

µ ∈
(

min

{

g(y)

g
′(y)+φg(y)

,
e

φy −1

φe
φy

}

,max

{

g(y)

g
′(y)+φg(y)

,
e

φy −1

φe
φy

})

,

the expressions are nonzero and have different signs. We conclude that g(y)

g
′(y)+φg(y)

= e
φy−1
φe

φy for all

y > 0. Rearranging the terms, we derive that g satisfies the differential equation (4.6). As shown in
Lemma 4.10, this implies that g is of the form g(x) =−sgn(φ)β (e−φx −1), contradiction!

Second case: φ < 0. If there is y > 0 such that g
′(y)/g(y)+ φ ≤ 0, then (4.8) is positive for all

µ > 0. Choosing µ large enough such that (4.7) is negative, we obtain a contradiction. We conclude
that g

′(y)/g(y)+ φ > 0 for all y > 0 and derive that (4.8) is positive if and only if µ < g(y)

g
′(y)+φg(y)

while (4.7) is positive if and only if µ < e
φy−1
φe

φy . As in the first case, we may derive that g solves the
differential equation (4.6), a contradiction.

4.6 A Characterization of Consistency

We are now ready to state the main result of this chapter.

Theorem 4.12. Let C be a set of continuous functions and let g be a scaling function. Then, the

following are equivalent:

(1) C is consistent for g-scaled congestion games with resource-dependent demands.

(2) C is universally consistent for g-scaled congestion games with resource-dependent demands.

(3) At least one of the following three cases holds:

(3a) g is arbitrary and C contains only constant functions.

(3b) g is linear and C contains only affine functions.

(3c) There is φ ∈ R such that g is of type g(x) = −sgn(φ)β (e−φx − 1), β ∈ R>0 and C
contains only functions of type c(x) = ac e

φx +bc where ac,bc ∈R may depend on c.

Proof. (2) ⇒ (1) follows because every game with the finite improvement property has a pure Nash
equilibrium (Proposition 2.8).

(1) ⇒ (3): Referring to Proposition 4.3, consistency of C implies that one of the following two
cases holds: (i) C contains only affine functions; (ii) C contains only exponential functions of type
c(x) = ac e

φx + bc, where ac,bc ∈ R may depend on c while φ ∈ R is equal for all c ∈ C. Let us
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first consider the case that C contains only affine functions. If all functions in C are constant, then
(3a) is satisfied. If C contains a non-constant affine function, the Generalized Monotonicity Lemma
(Lemma 4.5) together with Theorem 4.8 establishes that g is linear and (3b) is satisfied. For the
case that C contains a non-constant exponential function, the Generalized Monotonicity Lemma and
Theorem 4.11 imply (3c).

(3) ⇒ (2): First, we assume (3a). Let G = (N,S,π) be a g-scaled congestion games with
resource-dependent demands where all cost functions are constant. Then, the private cost of each
player i does not depend on the strategies of all other players. We derive that the function P : S →R

defined as P(s) =
∑

i∈N πi(s) for all s ∈ S is an exact potential function of G. Finite potential games
have the finite improvement property as shown in Proposition 2.20). The implications (3b) ⇒ (2)
and (3c) ⇒ (2) are shown in Theorems 4.7 and 4.9, respectively.

The characterization of consistency stated in Theorem 4.12 is even valid for three-player games.

4.7 Network Congestion Games with Resource-Dependent Demands

In this section, we consider congestion games with resource-dependent demands on networks. In
these games, the resources correspond to the edges of a directed (or undirected) graph G = (V,R).
Every player is associated with a source-sink pair (ui,vi) ∈V ×V and wants to establish a directed
(or undirected) path between ui and vi. We first prove a variant of the Generalized Monotonicity
Lemma (Lemma 4.5) for games on directed networks. On the one hand, the result we are going to
prove is stronger than Lemma 4.5 as it requires only consistency for games on directed networks.
On the other hand, it is weaker as we impose the additional assumption that the cost functions are
strictly positive on R>0.

Lemma 4.13 (Generalized Monotonicity Lemma for Directed Networks). Let g be a scaling

functions and let c be a differentiable function that is strictly positive on R>0. If c is consistent for

g-scaled directed-network congestion games with resource-dependent demands, then c satisfies the

GMC for g.

Proof. We show that if c does not satisfy the GMC for g, then there is a g-scaled directed-network
congestion game with resource-dependent demands with costs equal to c that does not admit a pure
Nash equilibrium. Let such c be given. Lemma 4.5 implies the existence of a two-player game G

with costs equal to c that does not admit a pure Nash equilibrium. The construction of G involves
six mutually disjoint sets of resources R1,R2,Q1,Q

′
1,Q2,Q

′
2 ∈ 2R such that A1 = {R1∪R2∪Q1,Q

′
1},

and A2 = {R1 ∪Q2,R2 ∪Q
′
2}, where for i ∈ {1,2} always one of the two sets Qi and Q

′
i is empty. In

addition, there are x,y,δ ∈R>0 such that the players’ demands equal d1,r = x for all r ∈ R, d2,r = y

for r ∈ R1 ∪Q2, and d2,r = y+δ , otherwise.
Because G is finite, there is ρ > 0 such that G does not possess a ρ-approximate pure Nash

equilibrium. To obtain a game with network structure, we slightly modify G by adding additional
resources to each of the players’ strategies without changing the equilibrium structure of the game.
Let k,k′ ∈N>0 be such that

|(k+1)g(y)c(y)− (k′ +1)g(y+δ )c(y+δ )|< ρ/2. (4.9)
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Figure 4.3: Directed-network congestion game with resource-dependent demands as constructed in the proof
of the Generalized Monotonicity Lemma for Directed Networks (Lemma 4.13). Solid lines cor-
respond to single edges while dashed lines correspond to directed paths.)

Such k,k′ exist since c(y)> 0 and c(y+δ )> 0. Let m ∈N be such that

m ·g(y) ·min
{

c(y),c(x+ y)
}
> g(y)c(y). (4.10)

We add k + k
′ + 2m+ 6 new resources with cost function c. We partition k + k

′ + 2m of the new
resources into subsets Pk,P

′
k
′ ,Pm,P

′
m with cardinalities |Pk| = k, |P′

k
′ | = k

′, |Pm| = m, |P′
m| = m. The

additional 6 new resources are called p1, . . . , p6. The demands of player 1 equals x for all new
resources. Player 2 accesses all new resources with demand y except for the resources contained in
P
′
k
′ ∪{p6} which she accesses with demand y+δ .

Consider the network game G
dn shown in Figure 4.3. The feasible allocations equal the sets of

their respective (ui,vi)-paths:

A1 =
{

Q1 ∪{p1}∪R1 ∪Pm∪R2∪{p3}, Q
′
1 ∪{p2}∪P

′
m∪{p4}

}

,

A2 =
{

Q2 ∪Pk∪R1 ∪{p5}, Q
′
2 ∪P

′
k
′ ∪R2∪{p6}, Q2 ∪Pk ∪R1∪Pm ∪R2∪{p6}

}

.

Using (4.10), we observe that the third strategy Q2 ∪Pk ∪R1 ∪Pm ∪R2 ∪{p6} of player 2 is strictly
dominated by her first strategy Q2 ∪Pk∪R1 ∪{p5}. This implies that player 2 does not use her third
strategy in any pure Nash equilibrium. Compared to G, the private cost of player 1 is raised by the
constant mg(x)c(x). The private cost of player 2 for her first allocation is raised by (k+1)g(y)c(y)
while the private cost perceived in her second allocation is raised by (k′+1)g(y+δ )c(y+δ ). Using
(4.9) and the fact that the initial game G does not possess a ρ-approximate pure Nash equilibrium,
we conclude that G

dn does not possess a pure Nash equilibrium.

We proceed to translate this result to undirected networks.

Lemma 4.14 (Generalized Monotonicity Lemma for Undirected Networks). Let c be a differen-

tiable and strictly positive function with c(x) → ∞ as x → ∞ and let g be a scaling function. If c is

consistent for g-scaled congestion games with resource-dependent demands on undirected networks,

then c satisfies the GMC for g.
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Figure 4.4: Undirected-network congestion game with resource-dependent demands as constructed in the
proof of the Generalized Monotonicity Lemma for Directed Networks (Lemma 4.14. Solid lines
correspond to single edges while dashed lines correspond to directed paths.)

Proof. We use the same construction as before but replace directed edges by undirected edges. Us-
ing that c(x) diverges to ∞ for x → ∞, we can choose the demands for player 1 on the resources
contained in Q2 ∪Pk ∪Q

′
2 ∪P

′
k
′ ∪{p5}∪ {p6} large enough such that all strategies containing one

of these resources are strictly dominated. Analogously, we choose the demand of player 2 on the
resources contained in Q1 ∪{p1}∪{p3} large enough such that all strategies involving one or more
of these resources are strictly dominated. The modified network is shown in Figure 4.4. With the
same arguments as in the proof of the Generalized Monotonicity Lemma for Directed Networks
(Lemma 4.13) no pure Nash equilibrium exists.

We are ready to state our characterization theorem for network congestion games with resource-
dependent demands.

Theorem 4.15. Let C be a set of continuous functions that is strictly positive on R>0 and let g be a

scaling function. Then, the following are equivalent:

(1) C is consistent for g-scaled directed-network congestion games with resource-dependent

demands.

(2) C is universally consistent for g-scaled directed-network congestion games with resource-

dependent demands.

(3) One of the following three cases holds:

(3a) g is arbitrary and C contains only constant functions.

(3b) g is linear and C contains only affine functions.

(3c) There is φ ∈ R such that g is of type g(x) = −sgn(φ)β (e−φx − 1), β ∈ R>0 and C
contains only functions of type c(x) = ac e

φx +bc where ac,bc ∈R may depend on c.

If every c ∈C satisfies c(x)→ ∞ as x → ∞, this equivalence is also valid for undirected networks.

Proof. (2) ⇒ (1) follows because every game with the finite improvement property has a pure Nash
equilibrium (Proposition 2.8). (3) ⇒ (2) follows as in Theorem 4.12.
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We proceed to show (1) ⇒ (3) for directed networks. Theorem 3.16 implies that every set of
cost functions C that is consistent for directed-network weighted congestion games satisfies one of
the following three conditions: (i) C contains only affine functions of type c(x) = ac x+ bc with
ac,bc ∈R≥0; (ii) C contains only exponential functions of type c(x) = ac e

φx +bc, where ac,bc ∈R
may depend on c while φ ∈R is equal for all c ∈ C. These necessary conditions are also valid for
consistency for g-scaled congestion games with resource-dependent demands, see Proposition 4.3.

Let us first consider the case that C contains only affine functions. If all functions in C are
constant, then (3a) is satisfied. If C contains a non-constant affine function c(x) = ac x+ bc with
ac ∈ R>0 and bc ∈ R≥0 we apply the Generalized Monotonicity Lemma for Directed Networks
(Lemmas 4.13) and derive that c satisfies the GMC for g. Theorem 4.8 then implies that g is linear
and (3b) is satisfied.

For the case that C contains a non-constant exponential functions, the versions of the Generalized
Monotonicity Lemma for directed or undirected networks (Lemmas 4.13) imply (3c).

To see (1) ⇒ (3) for games on undirected networks, we proceed as in the directed case but
use Theorem 3.21 instead of Theorem 3.16 and Lemma 4.14 instead of Lemma 4.13. Note that
Lemma 4.14 requires that every cost function c ∈ C diverges to ∞.

This characterization of consistency is even valid for games with three-players.

4.8 Discussion and Open Problems

In this chapter, we explored the existence of pure Nash equilibria in congestion games with resource-
dependent demands with respect to the cost functions of the resources. Our results revealed interest-
ing structural differences to the class of weighted congestion games studied in Chapter 3. While the
distinction between proportional games and uniform games (see Section 2.3.2 for the definitions) has
no impact on the existence of pure Nash equilibria for weighted congestion games, it matters for the
consistency of cost functions in congestion games with resource-dependent demands. Specifically,
affine cost functions are consistent for proportional congestion games with resource-dependent de-
mands while they are inconsistent for uniform congestion games with resource-dependent demands.
For both classes of games, exponential cost functions are not consistent, contrasting the positive
result for weighted congestion games with exponential costs.

Our characterizations of the consistency for proportional and uniform congestion games with
resource-dependent demands were proven by carefully constructing generic games that do not admit
a pure Nash equilibrium. Interestingly, these games require only two players and have the addi-
tional property that the demands of the first player are equal for all resources, and the differences
of the demands of the second player can be made arbitrarily small. This fact sheds a new light
on the positive results for weighted congestion games. In fact, every weighted congestion game
with exponential cost functions and every uniform congestion game with affine costs may lack a
pure Nash equilibrium if the players’ demands are perceived at the resources with an arbitrary small
(resource-dependent) error. On the other hand, the consistency of affine cost functions for propor-
tional weighted congestion games is more stable as even misreported or misconceived demands may
not destroy the pure Nash equilibria of the game.
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As in the previous chapter we assumed that cost functions are continuous. It would be interesting
to weaken this assumption.

While our characterizations of consistency are valid for three-games, we leave it as an open
problem to derive a characterization for two-player games. Another interesting research direction
would be to investigate the existence of pure Nash equilibria in games with restricted strategy spaces
such as symmetric strategies, singletons, or matroids.





Chapter 5

Congestion Games with Variable Demands

Most of the previous work on congestion games – including the two preceding chapters – has a com-
mon feature: every player allocates a fixed demand to an available subset of resources. While obvi-
ously important, such models do not take into account a fundamental property of many real-world
applications: the intrinsic coupling between the costs of the resources and the resulting demands.
A prominent example of this coupling is the flow control problem in telecommunication networks.
In this setting, players receive a non-negative utility from sending data and the perceived costs in-
creases with congestion. In this and other examples, the demands will be reduced if the resources are
heavily congested, and increased if the resources are less congested. Allowing for variable demand

is, thus, a natural prerequisite for modeling the tradeoff between the benefit from satisfying a certain
demand, and the costs of the resources.

There is a large body of work addressing the issue of variable demands, e.g. Cole et al. [26],
Kelly et al. [78], Low and Lapsley [90], Shenker [121], and Srikant [123] in the context of telecom-
munication networks and Beckmann et al. [16] and Haurie and Marcotte [69] in the context of traffic
networks. Most of these works assume that the (variable) demand may be fractionally distributed
over the available subsets of resources. This assumption together with convexity assumptions on the
cost and utility functions gives a convex game for which standard fixed point arguments apply; see
Theorem 2.25. Allowing a fractional distribution of the demand, however, is obviously not possible
in many applications. For instance, the standard TCP/IP protocol suite uses single path routing, be-
cause splitting the demand comes with several practical complications, e.g., packets arriving out of
order, packet jitter due to different paths delays etc.

In this chapter, we study congestion games with variable demands where the demand has to be
assigned to exactly one feasible allocation. Formally, we are given for each player a set of feasible
allocations and an interval of feasible demands. In each strategy profile, a strategy of each player is
to choose both a feasible allocation and a feasible demand. We assume that every player is associated
with a non-decreasing and concave utility function measuring the utility for the demand and that the
private payoff of each player is quasi-linear, i.e., the private payoff of each player is defined as the
difference between the utility and the associated congestion cost of the used resources.

To avoid oscillating behavior, it is desirable to design telecommunication and transportation
systems such that a stable state exists and is reached by myopic play. Because the utility functions are
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private information and not available to the system designer (cf. Kelly et al. [78]), it is natural to study
the existence of equilibria and the convergence of selfish behavior with respect to the cost functions

which represent the technology associated with the resources, e.g., queuing disciplines at routers,
latency functions in transportation networks, etc. To this end, we adopt the consistency approach
used in the previous chapters. We say that as set C of cost functions consistent for congestion games
with variable demands if each congestion game with variable demands and costs in C possesses a
pure Nash equilibrium.

Because congestion games with variable demands are infinite games they do have the finite im-
provement property (except for the degenerate case where for each player the private payoff does not
depend on her demand). Thus, we resort to the approximate finite improvement property instead.
Recall that a maximization game has the approximate finite improvement property if for every ρ > 0
all sequences of improvements that add at least ρ to the payoff of the deviating player are finite.
A set C of cost functions is called approximately universally consistent for congestion games with
variable demands if every congestion game with variable demands has the approximately finite im-
provement property. Note that the notions of consistency and approximate universal consistency are
independent: neither does approximate universal consistency imply consistency, nor conversely.

5.1 Contributions and Chapter Outline

Our main results are complete characterizations of the consistency and approximate universal con-
sistency of cost functions for congestion games with variable demands. As for congestion games
with resource-dependent demands it is important to distinguish between proportional games and
uniform games. In a proportional game, the payoff of each player equals her utility for her demand
minus the cost on the used resources multiplied with her demand.

We show that a set C of continuous, non-negative and non-decreasing cost functions is consistent
for proportional congestion games with variable demands if and only if exactly one of the following
cases holds: (i) C only contains affine functions c(x) = ac x+ bc with ac > 0, bc ≥ 0; or (ii) C only
contains homogeneously exponential functions such that c(x) = ac e

φx for some ac,φ > 0, where ac

may depend on c, while φ must be equal for all c ∈ C. Moreover, we prove that C is approximately
universally consistent for proportional congestion games with variable demands if and only if C only
contains affine functions.

Uniform congestion games with variable demands differ from the previously studied games
solely in that fact that in the definition of the players’ payoff functions the cost for a player on a
resource is not multiplied with the demand of that player. Uniform cost structures play a key role in
large-scale telecommunication networks where it is highly desirable to charge every player the same

cost regardless of the actual resource consumption of every player, because every resource needs
only to communicate a single value to the players giving rise to an efficient and scalable implemen-
tation; see Johari and Tsitsiklis [75] and Srikant [123].

Our second main result provides a complete characterization of consistency of a set of cost
functions for uniform congestion games with variable demands. Under the same assumptions on C as
before, we prove that C is consistent for uniform games if and only if C only contains homogeneously
exponential functions such that c(x) = ac e

φx for some ac,φ > 0, where ac may depend on c, while φ



5.1 Contributions and Chapter Outline 85

Table 5.1: Pure Nash equilibria and the approximate finite improvement property (AFIP) in congestion games
with variable demands with proportional costs and uniform costs. Here, by “inhomogeneously ex-
ponential”, we denote sets C of cost functions, such that every c ∈ C is of type c(x) = ac e

φx + bc,
where ac ∈R>0 and bc ≥−ac may depend on c while φ ∈R>0 is equal for all c ∈ C. By “homo-
geneously exponential”, we denote sets of functions that have the additional property that bc = 0
for all c ∈ C. Note the fundamental structural difference to weighted congestion games (with fixed
demands) studied in Chapter 3 where games with inhomogeneously exponential costs always pos-
sess a pure Nash equilibrium.
Reading example: A set of homogeneously exponential functions is both consistent for propor-
tional and uniform congestion games with variable demands because in each such game a pure
Nash equilibrium (PNE) exists. It is, however, neither approximately universally consistent for
proportional games nor for uniform games as these games do not have the approximate finite im-
provement property (AFIP). A weighted congestion games for which all costs are homogeneously
exponential has both a pure Nash equilibrium (PNE) and the finite improvement property (FIP).

var. demands var. demands fix. demands
proportional uniform prop. & unif.

costs PNE AFIP PNE AFIP PNE FIP

affine yes yes no no yes yes
homogeneously exponential yes no yes no yes yes
inhomogeneously exponential no no no no yes yes
other no no no no no no

must be equal for all c ∈ C. Surprisingly, this characterization reveals that uniform games need not
possess a pure Nash equilibrium, even if costs are affine. We also show that there is no nonempty
set of cost functions that is approximately universally consistent for uniform games; that is C is
approximately universally consistent if and only if C = /0. Our results are summarized in Table 5.1.

In Section 5.2, we recall the basic notions used in this chapter. Section 5.3 is devoted to the
case of homogeneously exponential functions. To prove the consistency of homogeneously expo-
nential functions, we introduce a novel concept that we term essential improving moves. A subset
of improving moves is called essential, if for each strategy profile s the fact that there is no essential
improving move from s implies that there is no improving move from s. We show that (propor-
tional and uniform) congestion games with variable demands and homogeneously exponential costs
exhibit a nontrivial subset of essential improving moves. Specifically, we prove that the set of strat-
egy switches in which either only the demand or only the allocation is adapted has this property. We
then use this result to derive the existence of a pure Nash equilibrium in all (proportional or uniform)
congestion games with variable demands and homogeneously exponential costs.

We then study necessary conditions for the existence of a pure Nash equilibrium in Section 5.4.
First, we observe that by restricting for each player the set of feasible demands to singletons, all nec-
essary conditions for the consistency of cost functions from Chapter 3 translate. To further cut down
the set of consistent cost functions, we establish a connection to congestion games with resource-
dependent demands. Roughly speaking, we show that if for a set C of cost functions there is a game
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with resource-dependent demands with cost functions in C not possessing a pure Nash equilibrium
and C contains a function c such that c

′/c is injective on R>0, then there is also a game with vari-
able demands and cost functions in C not possessing a pure Nash equilibrium. This allows us to
translate the results obtained in Chapter 4 in part to the case of variable demands. Note that for any
homogeneously exponential function c the function c

′/c is constant. Thus, the additional condition
that there is c ∈ C such that c

′/c is injective precisely explains why homogeneously exponential cost
functions are consistent for congestion games with variable demands, but not for congestion games
with resource-dependent demands.

The main contributions of this chapter are stated and proven in Section 5.5. Directed-network
congestion games with variable demands are studied in Section 5.6. We prove that for cost functions
that are strictly positive onR>0, the characterization obtained in the last section carries over.

In Section 5.7, we further show that our results obtained in the previous sections remain valid
under the additional assumption, that for each player her set of feasible demands is the set of non-
negative reals and all utility functions are infinitely often differentiable functions.

We conclude the paper in Section 5.8 by presenting new research directions.

Bibliographic Information. Parts of the results presented in this chapter are joint work with To-
bias Harks. An extended abstract appeared in the Proceedings of the 13th Biennial Conference on

Theoretical Aspects of Rationality and Knowledge; see [64].

5.2 Problem Description

We first recall the most important definitions from Chapter 2. Let N be a finite set of players and R a
finite set of resources. For each player i∈N, we are given a set Ai ⊆ 2R\{ /0} of feasible allocations,1

an interval [σi,τi] ⊆R≥0 of feasible demands with σi ∈R≥0, τi ∈R≥0 ∪{∞}, σi ≤ τi and a utility
function Ui : [σi,τi]→R.2 We say that player i has an unrestricted demand if σi = 0 and τi =∞. Each
resource r ∈ R is endowed with a cost function cr :R≥0 → R≥0 that maps the aggregated demand
on r to a cost value each of its users perceives. We call the tuple M =

(
N,R,(Ai)i∈N ,(cr)r∈R

)
a

congestion model.

As for congestion games with resource-dependent demands studied in Chapter 4, we distinguish
between proportional and uniform games. Given a congestion model and the set of utility functions,
the corresponding proportional congestion game with variable demands is the maximization game
G = (N,S,ϖ) with Si =Ai× [σi,τi] and ϖi(α ,d) =Ui(di)−

∑

r∈αi
di cr(ℓr(α ,d)) for all i∈N, where

ℓr(α ,a) =
∑

j∈N:r∈αi
d j. In the corresponding uniform congestion game with variable demands the

private payoff is defined as ϖi(α ,d) = Ui(di)−
∑

r∈αi
cr(ℓr(α ,d)). As in Chapter 4, we want to

treat both classes of games simultaneously. To this end, we define g-scaled congestion games with
variable demands.

1In contrast to the previous chapters we require that each allocation is nonempty. This is necessary since otherwise
players might want to let their demand go to ∞ preventing the existence of a pure Nash equilibrium.

2Technically, it is sufficient to be given the utility function of each player i only since its domain already defines the
set of feasible demands.
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Definition 5.1 (g-scaled congestion game with variable demands)

Let M =
(
N,R,(Ai)i∈N ,(cr)r∈R

)
be a congestion model, g : R≥0 → R≥0 a scaling function and

for all i ∈ N let Ui : [σi,τi] → R≥0 be a utility function. The corresponding g-scaled congestion

game with variable demands is the maximization game G = (N,S,ϖ), where Si = Ai × [σi,τi] and
ϖi(α ,d) =Ui(di)−

∑

r∈αi
g(di)cr(ℓr(α ,d)) for all i ∈ N.

Setting g(x) = x for all x ≥ 0, we obtain proportional games as a special case of g-scaled conges-
tion games with variable demands. For the choice g(x) = 1 for all x ≥ 0, we obtain uniform games.
Throughout this chapter, we impose the following assumption on the scaling function g.

Assumption 5.2. The scaling function g :R≥0 →R≥0 is affine and strictly positive onR>0, that is,
g(x) = β x+η with β ,η ∈R≥0 and η > 0 if β = 0.

Note that this assumption on g is stricter than Assumption 4.2 in Chapter 4. Nonetheless, for
the two practically relevant cases of proportional games and uniform games the assumption is still
satisfied.

Let C be a class of cost functions and let g be a scaling function. We call C consistent for g-

congestion games with variable demands if every g-scaled congestion game with variable demands
and cost functions in C admits a pure Nash equilibrium. We say that C is approximately univer-

sally consistent if every congestion game with variable demands and cost functions in C has the
approximate finite improvement property.

The following two assumptions imposed throughout this chapter contain mild restrictions on
feasible utility functions and cost functions.

Assumption 5.3. For every resource r ∈ R the cost function cr :R≥0 → R≥0 is locally Lipschitz-
continuous and non-decreasing.

Assumption 5.4. For each player i the utility function Ui : [σi,τi] → R≥0 is continuous, non-
decreasing and concave.

Remark 5.5. In contrast to most of the works in the area of congestion games with splittable de-
mands (e.g., Haurie and Marcotte [69], Kelly et al. [78], and Orda et al. [106]), we do not assume
semi-convexity of cost functions.

For each player i with σi < τi, the concavity of Ui already implies that Ui is continuous on (σi,τi).
Moreover, for each x∈ (σi,τi) the left and right derivatives, denoted by ∂−

∂x
Ui(x) respectively ∂+

∂x
Ui(x)

exist. We further obtain the inequalities

∂−

∂x
Ui(x)≥

∂+

∂x
Ui(x)≥

∂−

∂y
Ui(y)≥

∂+

∂y
Ui(y)

for all σi < x < y < τi; see Webster [133, Theorem 5.1.3] for a reference.
Our assumption that each cost function cr is locally Lipschitz continuous is rather weak as,

e.g., every continuously differentiable function has this property. Even without requiring that cost
functions are differentiable, we will see in Theorem 5.9 that every set of consistent cost functions
may only contain infinitely often differentiable cost functions. Hence, the following lemma that
states necessary conditions for a pure Nash equilibrium in games with differentiable cost functions
will be useful in the remainder of this chapter.
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Lemma 5.6. Let G be a g-scaled congestion game with variable demands and differentiable cost

functions. If (α ,d) is a pure Nash equilibrium of G, then for all i ∈ N the following two conditions

hold:

(1) If di < τi, then ∂+

∂ di
Ui(di)≤ ∂

∂di

(
g(di)

∑

r∈αi
cr(ℓr(α ,d))

)
.

(2) If di > σi, then ∂−

∂ di
Ui(di)≥ ∂

∂di

(
g(di)

∑

r∈αi
cr(ℓr(α ,d))

)
.

5.3 Homogeneously Exponential Cost Functions

In this section, we show that for any scaling function g, homogeneously exponential functions are
consistent for g-scaled congestion games with variable demands. To this end, we introduce a novel
concept termed essential improving moves. A subset of improving moves is called essential if every
player that has an improving move from a strategy profile s also has an essential improving move
from s. Formally, let G = (N,S,ϖ) be a maximization game and let I = {

(
s,(s′i,s−i)

)
∈ S × S :

ϖi(s)< ϖi(s
′
i,s−i)} denote the set of improving moves of G. A subset I

′ ⊆ I of improving moves is
called essential if {s

′ : (s,s′) ∈ I
′} = /0 implies {s

′ : (s,s′) ∈ I} = /0 for all s ∈ S. Such subsets exist
since the set of improving moves I itself is essential.

We proceed to show that for congestion games with variable demands in which all cost functions
are homogeneously exponential there is an essential subset of improving moves which is a strict
subset of the set of improving moves. In fact, we will show for every strategy profile s = (α ,d)

that whenever there is a player i who may improve when switching her strategy from si = (αi,di)

to s
′
i = (α ′

i ,d
′
i), then player i may also improve by only adapting her demand or only changing her

allocation. That is, one of the strategies s
′′
i = (αi,d

′
i) or s

′′′
i = (α ′

i ,di) yields also an improvement for
player i.

Lemma 5.7. Let G be a g-scaled congestion game with variable demands such that all cost functions

are of type c(x) = ac e
φx

where ac may depend on c while φ is equal for all c ∈ C. Let I be the set of

improving moves of G. Then, I
′ =
{(

(α ,d),(α ′,d′) ∈ I : α = α ′}∪
{(

(α ,d),(α ′,d′) ∈ I : d = d
′} is

an essential subset of improving moves.

Proof. For a contradiction, let us assume that
(
(α ,d),(α ′

i ,α−i,d
′
i ,d−i)

)
is an improving move of

player i but
(
(α ,d),(α ,d′

i ,d−i)
)

and
(
(α ,d),(α ′

i ,α−i,d)
)

are not. We use ℓr(α−i,d−i) to denote the
aggregated demands of all players j ∈ N \{i} when playing s j = (α j,d j). We obtain

ϖi(α ,d′
i ,d−i)−ϖi(α ,d)

=Ui(d
′
i)−Ui(di)−g(d′

i)e
φd

′
i

∑

r∈αi

ar e
φℓr(α−i,d−i)+g(di)e

φdi

∑

r∈αi

ar e
φℓr(α−i,d−i) ≤ 0, (5.1a)

ϖi

(
α ′

i ,α−i,d
)
−ϖi(α ,d)

= −g(di)e
φdi

∑

r∈α ′
i

ar e
φℓr(d−i,d−i)+g(di)e

φdi

∑

r∈αi

ar e
φℓr(α−i,d−i) ≤ 0, (5.1b)

ϖi(α
′
i ,α−i,d

′
i ,d−i)−ϖi(α ,d)

=Ui(d
′
i)−Ui(di)−g(d′

i)e
φd

′
i

∑

r∈α ′
i

ar e
φℓr(α−i,d−i)+g(di)e

φdi

∑

r∈αi

ar e
φℓr(α−i,d−i) > 0, (5.1c)



5.3 Homogeneously Exponential Cost Functions 89

The last inequality expresses the fact that
(
(α ,d),(α ′

i ,α−i,d
′
i ,d−i)

)
is an improving move for G.

Subtracting (5.1a) from (5.1c), we obtain

−g(d′
i)e

φd
′
i

(
∑

r∈α ′
i

ar e
φℓr(α−i,d−i)−

∑

r∈αi

ar e
φℓr(α−i,d−i)

)

> 0,

a contradiction to (5.1b).

Next, we use the above Lemma to prove that every congestion game with variable demands and
homogeneously exponential costs admits a pure Nash equilibrium.

Theorem 5.8. Let g be a scaling function and C be a set of functions of type c(x) = ac e
φx

, where

ac ∈R>0 may depend on c while φ ∈R>0 is equal for all c ∈ C. Then, C is consistent for g-scaled

congestion games with variable demands.

Proof. Let φ ∈R>0 and let M =
(
N,R,(Ai)i∈N ,(cr)r∈R

)
be a congestion model with the property

that for all r ∈ R, there is ar ∈ R>0 such that cr(x) = ar e
φx for all x ∈ R≥0. Let g be a scaling

function, (Ui)i∈N a set of utility functions, and G a corresponding g-scaled congestion game with
variable demands. Consider the function Φ : S →R defined as

Φ(α ,d) =
∑

i∈N

∫ di

0

∂+
Ui(x)/∂x

g(x)+ 1
φ g

′(x)
dx−

∑

r∈R

cr

(
ℓ(α ,d)

)
.

We first show that for each player i, there is ωi < ∞ such that di ≤ ωi for each pure Nash equilibrium
s = (α ,d) of G. For players with τi < ∞, we set ωi = τi and we are done.

Let i be a player with τi = ∞ and let a = minr∈R ar. (The minimum exists as R is finite.)
The marginal cost of each player i when playing a demand x > 0 can be bounded from below by
g
′(x)ae

φx +g(x)aφ e
φx ≥ g(x)aφ e

φx because each allocation contains at least one resource. Using
that g is non-decreasing, we derive that g(x)aφ e

φx diverges to ∞ as x goes to ∞. This implies that

for each player i there is ωi > σi such that g(x)aφ e
φx > ∂+

∂ di
Ui(0) for all x > ωi. Using Lemma 5.6

together with the fact that utility functions are concave, we obtain that di ≤ ωi for all i ∈ N and each
pure Nash equilibrium s = (α ,d) of G.

Let sS= {(α ,d)∈ S : di ∈ [σi,ωi] for all i∈N}. As sS is compact and Φ is continuous, Φ attains its
maximum and we may choose (α∗,d∗)∈ arg max(α ,d)∈sS : Φ(α ,d). We proceed to show that (α∗,d∗)
is a pure Nash equilibrium. In light of Lemma 5.7 it suffices to show that there is no improving move
from (α∗,d∗) in which exclusively either the demand or the allocation of a single player is adapted.

We first show that there is no improving move from (α∗,d∗) in which a single player only
changes her demand. This is trivial for players with σi = τi. For all other players, the opti-
mality conditions of (α∗,d∗) give rise to ∂Φ(α∗,d∗)/∂d

∗
i ≥ 0 for all i ∈ N with d

∗
i > σi and

∂Φ(α∗,d∗)/∂d
∗
i ≤ 0 for all i ∈ N with d

∗
i < τi. For i ∈ N, we thus obtain the equations

∂+

∂d
∗
i

Ui(d
∗
i )≥

(

g(d∗
i )+

1
φ

g
′(d∗

i )

)
∑

r∈α∗
i

φ ar e
φℓr(α

∗,d∗) =
∂

∂d
∗
i

(

g(d∗
i )
∑

r∈α∗
i

ar e
φℓr(α

∗,d∗)

)

,
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if d
∗
i > σi and

∂+

∂d
∗
i

Ui(d
∗
i )≤

(

g(d∗
i )+

1
φ

g
′(d∗

i )

)
∑

r∈α∗
i

φ ar e
φℓr(α

∗,d∗) =
∂

∂d
∗
i

(

g(d∗
i )
∑

r∈α∗
i

ar e
φℓr(α

∗,d∗)

)

,

if d
∗
i < τi. As the utility functions are concave we further obtain ∂−

Ui(d
∗
i )/∂d

∗
i ≥ ∂+

Ui(d
∗
i )/∂d

∗
i .

Using that the private payoff functions of each player are concave in her demand, this implies that
the demand d

∗
i is optimal for player i when the allocation profile α∗ is played. Thus, there is no

improving move in which player i solely changes her demand.
Next, we prove that there is no improving move from (α∗,d∗) in which a player only changes

her allocation. For a contradiction, suppose there is a player i that deviates profitably from strategy
(α∗

i ,d
∗
i ) to strategy (α ′

i ,d
∗
i ) ∈ Si. If g(d∗

i ) = 0, then player i does not improve switching from
(α∗

i ,d
∗
i ) to (α ′

i ,d
∗
i ). Thus, we may assume that g(d∗

i )> 0. We obtain

Φ(α ′
i ,α

∗
−i,d

∗)−Φ(α∗,d∗)

=
( 1

e
φd

∗
i

−1
)(∑

r∈αi

ar e
φℓr(α

′
i ,α

∗
−i,d

∗)
)

+
(

1− 1

e
φd

∗
i

)(∑

r∈α ′
i

ar e
φℓr(α

∗,d∗)
)

=
1

g(d∗
i )

(

1− 1

e
φd

∗
i

)(

−g(d∗
i )
∑

r∈αi

ar e
φℓr(α

′
i ,α

∗
−i,d

∗)+g(d∗
i )
∑

r∈α∗
i

ar e
φℓr(α

∗,d∗)
)

=
1

g(d∗
i )

(

1− 1

e
φd

∗
i

)(

ϖi(α
′
i ,α

∗
−i,d

∗)−ϖi(α
∗,d∗)

)

> 0.

This is a contradiction to the fact that (α∗,d∗) maximizes Φ. We derive that (α∗,d∗) is a pure Nash
equilibrium.

5.4 Necessary Conditions for the Existence of a Pure Nash Equilibrium

In this section, we derive necessary conditions for the existence of pure Nash equilibria in congestion
games with variable demands. Our conditions are based on connections to weighted congestion
games and congestion games with resource-dependent demands.

5.4.1 A Connection to Weighted Congestion Games

We start with the useful observation that every set of cost functions that is not consistent for weighted
congestion games is not consistent for g-scaled congestion games with variable demands as well for
any scaling function g.

Theorem 5.9. Let M =
(
N,R,(Ai)i∈N ,(cr)r∈R

)
be a congestion model and G

w
a corresponding

weighted congestion game. If G
w

does not possess a pure Nash equilibrium, then, for every scaling

function g, there exists a g-scaled congestion game with variable demands to the same congestion

model that does not possess a pure Nash equilibrium
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Proof. Let M =
(
N,R,(Ai)i∈N ,(cr)r∈R

)
be a congestion model, d

w
i a vector of (fixed) demands

and G
w = (N,Sw,πw) a corresponding weighted congestion game without a pure Nash equilib-

rium. For each player i, we set σi = τi = d
w
i and Ui(d

w
i ) = 0. Let g be an arbitrary scaling

function and G = (N,S,ϖ) a corresponding g-scaled congestion game with variable demands. For
each player i, we define the bijection Σi : S

w → S as Σi(αi) = (αi,d
w
i ). We observe that πw

i (s) =

− d
w
i

g(dw
i )

ϖi

(
Σ1(s1), . . . ,Σn(sn)

)
and conclude that G is a monotonic transformation of G

w. With the

same argumentation as in Proposition 2.6 we obtain that G
w and G have the same set of pure Nash

equilibria.

Building on our characterization of consistency for weighted congestion games obtained in
Chapter 3, we derive the following result.

Theorem 5.10. For an arbitrary scaling function g, let C be consistent for g-scaled congestion

games with variable demands. Then, one of the following two cases holds:

(1) C only contains affine functions of type c(x) = ac x+bc with ac ∈R>0, b ∈R≥0.

(2) C only contains functions of type c(x) = ac e
φ x + bc where ac ∈ R>0 and bc ≥ −ac may

depend on c while φ ∈R>0 is independent of c.

Proof. Fix a scaling function g arbitrarily. Theorem 5.9 establishes that every set C of cost func-
tions that is consistent for g-scaled congestion games with variable demands is also consistent for
weighted congestion games. Theorem 3.11 then implies that C only contains affine functions or C
contains only functions of type c(x) = ac e

φ x+bc where ac,bc ∈R may depend on c while φ ∈R is
independent of c. In the following, we treat both cases individually.

First case: C only contains affine functions. As we consider only non-negative functions (cf. As-
sumption 5.3), we may assume that C only contains affine functions of type c(x) = ac x+ bc with
ac ∈R≥0 and b ∈R≥0. We proceed to show that ac 6= 0 for all c ∈ C. For a contradiction, suppose C
contains a function c̃ with ac̃ = 0, that is, c̃(x) = bc̃ for all x ∈R≥0 and some bc̃ ∈R≥0. Consider the
congestion model M =

(
N,R,(Ai)i∈N ,(cr)r∈R

)
with N = {1}, R = {r}, A1 =

{
{r}
}

, and cr = c̃.
The marginal cost of player 1 when playing a demand of x equals g

′(x)c̃(x)+ g(x)c̃′(x) = g
′(x)bc̃

in any corresponding g-scaled congestion game with variable demands. As g is affine (cf. Assump-
tion 5.2) the marginal cost of player 1 is bounded by a constant µ > 0. We derive that the game in
which [σ1,τ1] =R≥0 and U1(x) = (µ +1)x for all x ≥ 0 does not admit a pure Nash equilibrium as
player 1 always gains by increasing her demand. We conclude that C only contains affine functions
of type c(x) = ac x+bc with ac ∈R>0, b ∈R≥0 and (1) follows.

Second case: C only contains functions of type c(x) = ac e
φ x +bc where ac,bc ∈R may depend

on c while φ ∈R is independent of c. If φ = 0, every function contained in C is constant and we
obtain the same contradiction as in the first case. Next, suppose φ < 0. Let c̃ ∈ C with c̃(x) =

ac̃ e
φx +bc̃ be arbitrary. We distinguish two sub-cases.
First sub-case: ac̃ < 0. The non-negativity of c̃ implies that bc̃ ≥ −ac̃. We regard the same

one-player congestion model as in the first case. The marginal cost of player 1 when playing a de-
mand of x equals g

′(x)c̃(x)+g(x)c̃′(x) in any corresponding g-scaled congestion game with variable
demands. We calculate

g
′(x)c̃(x)+g(x)c̃′(x)≤ g

′(x)bc̃ +g(x)ac̃ φ e
φx.
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Using that g is affine, we derive that the marginal costs of player 1 are bounded by a constant µ > 0
giving the same contradiction as in the first case.

Second sub-case: ac̃ > 0. Using that c̃ is non-negative, we derive that bc̃ ≥ 0. In the same
congestion model as before, we obtain for the marginal cost of player 1 that

g
′(x)c̃(x)+g(x)c̃′(x) = g

′(x)(ac̃ e
φx +bc̃)+g(x)ac̃ φ e

φx ≤ g
′(x)(ac̃ e

φx +bc̃).

Because ac̃e
φx vanishes as x goes to ∞ and g is linear, we conclude that the marginal cost of player 1

is bounded which gives the same contradiction as before. We conclude that φ > 0. As argued before,
C may not contain any constant function. The non-negativity imposed on the cost functions implies
that C only contains functions of type c(x) = ac e

φ x +bc where ac ∈R>0 and bc ≥−ac may depend
on c while φ ∈R>0 is independent of c.

5.4.2 A Connection to Congestion Games with Resource-Dependent Demands

In the last section, we built on our results for weighted congestion games obtained in Chapter 3 to
prove that every set of consistent cost functions either only consist of affine functions or only consists
of exponential functions of type c(x) = ac e

φ + bc where ac ∈R>0 and bc ≥ −ac may depend on c

while φ ∈R>0 is equal for all c ∈ C; see Theorem 5.10. Our positive result obtained in Section 5.3,
however, holds only for homogeneously exponential functions of type c(x) = ac e

φ where ac ∈R>0

may depend on c while φ ∈R>0 is equal for all c ∈ C. This leaves it open whether inhomogeneously
exponential cost functions are constant for (proportional and/or uniform) congestion games with
variable demands. In this section, we will give a negative answer to this question.

In fact, we show a more general result. Recall that our characterizations of consistency for
congestion games with resource-dependent demands given in Chapter 4 are obtained studying the
implications of the generalized monotonicity condition (GMC), which we state again for complete-
ness. For a scaling function g, a cost function c is said to satisfy the generalized monotonicity
condition for g, if for all x,y ∈ R>0 with c(x) 6= 0, c(y) 6= 0, and all µ ∈ R≥0 the following two
conditions hold:

(GMC 1) If c(x) > c(x+ y)−µc
′(x+ y),

then
(
1−µ g

′(y)
g(y)

)
c(x+ y)−µc

′(x+ y)≤
(
1−µ g

′(y)
g(y)

)
c(y)−µc

′(y).

(GMC 2) If c(x) < c(x+ y)−µc
′(x+ y),

then
(
1−µ g

′(y)
g(y)

)
c(x+ y)−µc

′(x+ y)≥
(
1−µ g

′(y)
g(y)

)
c(y)−µc

′(y).

The Generalized Monotonicity Lemma (Lemma 4.5) proven in the previous chapter establishes that
every cost function c that is consistent for g-scaled congestion games with resource-dependent de-
mands satisfies the GMC for g.

Roughly speaking, as the main result of this section we will show that if a cost function c is
consistent for g-scaled congestion games with variable demands and has the property that c

′/c is
injective on R>0, then c satisfies the GMC for g. The additional condition that c

′/c must by in-
jective precisely explains why homogeneously exponential cost functions are consistent for uniform
congestion games with variable demands although they are not consistent for uniform congestion
games with resource-dependent demands.
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Before we give the formal proof of the result we first give some intuition. The proof of the
Generalized Monotonicity Lemma (Lemma 4.5) relies on the construction of prototypical game with
a quite simple structure. As noted in Corollary 4.6, the GMC is still necessary for games with two
players that have two feasible allocations each, that is, Ard

1 = {α rd
1,1,α

rd
2,1}, Ard

2 = {α rd
2,1,α

rd
2,2} with

α rd
i,k ⊆ R, i,k ∈ {1,2}. In addition, there are x,y,z ∈R>0 with y < z such that the demand of player 1

equals d1,r = x for all r ∈ R and the demand of player 2 equals d2,r = y if r ∈ α rd
2,1, and d2,r = z

otherwise.
We strive to design the utility function Ui : [σi,τi]→R≥0 of each player i such that in equilibrium

she uses the (fixed) demand of the game with resource-dependent demands G
rd. That is, player 1

always plays d1 = x and player 2 plays d2 = y when allocated at α rd
2,1 and d2 = z when allocated at

α rd
2,2. If such construction is possible, then the necessary conditions for consistency in the case of

resource-dependent demands translate to the case of variable demands. For player 1, we may simply
set σ1 = τ1 = x and U1(σ1) = 0, that is, we allow player 1 only to use the demand x. For player 2 the
situation is more subtle since we want her to use two distinct demand values depending on which
resources she is allocated at.

We show that player 2 can be forced to use the right equilibrium demands, if c
′/c is injective

on R>0. The main idea of the construction is to add additional resources to each of the allocations
of player 2. The key point is to also introduce an additional third player to the game who has only
a single feasible demand and whose only feasible allocation contains all of the additional resources
added to one of the allocations of player 2. Like this, the demand of player 3 artificially increases
the aggregated demand on some of the additional resources by a certain offset. The condition that
c
′/c is injective ensures that adding an offset to the functional argument has a different impact on the

derivative of the function than scalar multiplication. This can be seen, when considering the extreme
case of a homogeneously exponential function of type c̃(x) = ac̃ e

φx for which c̃
′/c is constant. For

such a function, adding an offset q to the argument has the same effect as multiplying the function
by the constant e

φq. Roughly speaking, the condition that c
′/c is injective ensures that this situation

cannot occur. By carefully choosing the number of supplementary resources added to each of the
allocations of player 2 and the feasible demand of player 3, we can show that the marginal costs of
player 2 can be manipulated as desired.

To illustrate the manipulation of the marginal costs by additional resources, we give a concrete
example. Consider the inhomogeneously exponential function c(x) = e

x + 1. We calculate that
c
′(x)/c(x) = 1

1+e
−x is injective on R>0. When adding two resources with resource-dependent de-

mand 1 and cost function c to the second allocation of player 1 her costs are increased by 2e+ 2
and her marginal costs are increased by 4e+ 2. Adding also one resource with the same resource-
dependent demand and cost function and a trivial player who always plays a demand equal to
ln(2 + e

−1) to the first allocation of player 1 her costs are increased by 2e + 2 as well, but her
marginal costs are increased by 4e+ 3. Using standard continuity arguments, such manipulation is
still feasible when the demand for the resources contained in her second allocation is slightly larger
than the demand in the first allocation. In that fashion, we can increase the marginal costs of one
allocation more than in some other allocation while leaving their cost differences constant.

To prove that such manipulation can always been done, we first need the following technical
lemma.
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Lemma 5.11. Let c :R≥0 →R≥0 be a strictly increasing function that is strictly positive on R>0

and let g be a scaling function. If c
′/c is injective on R>0, then for all y ∈R>0 and δ ∈R>0 there

are θ ,µ ∈R>0 and z ∈ (y,y+δ ) such that one of the following two cases holds:

(1) ∂
∂y

(
g(y)c(y+θ)

)
>

µ g(z)c(z)−g(y)c(y+θ)

z− y
> ∂

∂ z

(
µ g(z)c(z)

)
;

(2) ∂
∂y

(
µ g(y)c(y)

)
>

g(z)c(z+θ)−µ g(y)c(y)

z− y
> ∂

∂ z

(
g(z)c(z+θ)

)
.

Proof. Let c with the demanded properties and y > 0 be given. As c
′/c is injective we can find

θ ∈R>0 such that c
′(y+θ)/c(y+θ) 6= c

′(y)/c(y). We distinguish two cases.
First case: c

′(y+ θ)/c(y + θ) > c
′(y)/c(y). Multiplying with g(y)c(y + θ) and setting µ =

c(y+θ)/c(y) we obtain

g(y)c
′(y+θ)> µ g(y)c′(y)

Adding g
′(y)c(y+θ) to both sides this gives

g
′(y)c(y+θ)+g(y)c

′(y+θ)> µ g
′(y)c(y)+µ g(y)c

′(y). (5.2)

As the expression on the left hand side of (5.2) is continuous in θ , there is θ ′ < θ such that the
inequality

g
′(y)c(y+θ ′)+g(y)c

′(y+θ ′)> µ g
′(y)c(y)+µ g(y)c

′(y). (5.3)

holds. Using the fact that c is strictly increasing, we observe that 0 = µ g(y)c(y)− g(y)c(y+ θ) <

µ g(y)c(y)−g(y)c(y+θ ′) and hence

g(y)c(y+θ ′)< µ g(y)c(y) (5.4)

Because the right hand sides of (5.3) and (5.4) are continuous in y, there is a sequence (zn)n∈N with
zn ∈ (y,y+δ ) for all n ∈N that converges to y and satisfies the inequalities

g
′(y)c(y+θ ′)+g(y)c

′(y+θ ′)> µ g
′(zn)c(zn)+µ g(zn)c

′(zn),

µ g(zn)c(zn)> g(y)c(y+θ ′)

for all n ∈N. This, however, implies the existence of m ∈N such that

g
′(y)c(y+θ ′)+g(y)c

′(y+θ ′)−µ g
′(zm)c(zm)−µ g(zm)c

′(zm)> 0, (5.5)

µ g(zm)c(zm)−g(y)c(y+θ ′)
zm − y

−µ g
′(zm)c(zm)−µ g(zm)c

′(zm)> 0 (5.6)

are satisfied. Note that the left hand side of (5.5) increases as µ decreases. We set ε = g
′(y)c(y+

θ ′)+ g(y)c
′(y+ θ ′)− µ g

′(zm)c(zm)− µ g(zm)c
′(zm). The left hand side of (5.6) is continuous as
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a function of µ and negative for µ = g(y)c(y + θ ′)
/(

g(zm)c(zm)
)
. Thus, there is µ ′ ∈ R>0 with

g(y)c(y+θ ′)
g(zm)c(zm)

≤ µ ′ ≤ c(y+θ )
c(y) such that

0 <
µ ′

g(zm)c(zm)−g(y)c(y+θ ′)
zm − y

−µ ′
g
′(zm)c(zm)−µ ′

g(zm)c
′(zm)< ε .

We have shown that

g
′(y)c(y+θ ′)+g(y)c

′(y+θ ′)>
µ ′

g(zm)c(zm)−g(y)c(y+θ ′)
zm − y

> µ ′
g
′(zm)c(zm)+µ ′

g(zm)c
′(zm),

which finishes the proof of the first case.

Second case: c
′(y+ θ)/c(y + θ) < c

′(y)/c(y). As before, there are µ ,y,θ ∈ R>0 such that
g
′(y)c(y + θ) + g(y)c

′(y+ θ) < µ g
′(y)c(y) + µ g(y)c

′(y). For z > y sufficiently close to y, we
further obtain the inequalities

g
′(z)c(z+θ)+g(z)c

′(z+θ)< µ g
′(y)c(y)+µ g(y)c

′(y)<
g(z)c(z+θ)−µ g(y)c(y)

z− y
.

As we increase µ continuously, we find µ ′ ∈ ( c(y+θ )
c(y) , g(z)c(z+θ )

g(y)c(y) ] such that

g
′(y)c(y+θ)+g(y)c

′(y+θ)<
µ g(z)c(z)−g(y)c(y+θ)

z− y
< µ g

′(y)c(y)+µg(y)c
′(y).

The next lemma establishes a necessary condition on the consistency of cost functions for g-
sclaed congestion games with variable demands.

Lemma 5.12. Let g be a scaling function and let c be a differentiable and convex cost function that

is strictly positive on R>0 and has the property that c
′/c is injective on R>0. If c is consistent for

g-scaled congestion games with variable demands, then c satisfies the GMC for g.

Proof. Suppose not, for a contradiction. Let c be a function with the demanded properties that is
consistent for g-scaled congestion games with variable demands and let us assume that c does not
satisfy the GMC for g. Applying Corollary 4.6 we derive the existence of x,y ∈R>0 and ε > 0 such
that for each δ ∈ (0,ε) there is a congestion model Mrd

δ = (Nrd,Rrd
δ ,(Ard

δ ,i)i∈N
rd ,(c

rd
r )

r∈R
rd
δ
) with two

players that have access to two disjoint allocations each (i.e., N
rd = {1,2}, and Ard

i =
{

α rd
i,1,α

rd
i,2

}

for some α rd
i,1,α

rd
i,2 ⊆ R

rd with α rd
i,1 ∩α rd

i,2 = /0, i ∈ {1,2}). Further there is a corresponding g-scaled

congestion game with variable demands G
rd
δ that does not possess a pure Nash equilibrium and for

which the players’ resource-dependent demands equal d1,r = x for all r ∈ R
rd, d2,r = y if r ∈ α rd

2,1,
and d2,r = y+δ otherwise.
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Let x,y,ε ∈ R>0 be fixed accordingly. Referring to Lemma 5.11, there are z ∈ (y,y+ ε) and
µ ,θ ∈R>0 such that one of the following two cases holds:

∂

∂x

(
g(y)c(y+θ)

)
>

µ g(z)c(z)−g(y)c(y+θ)

z− y
>

∂

∂ z

(
µ g(z)c(z)

)
; (5.7)

∂

∂y

(
µ g(y)c(y)

)
>

g(z)c(z+θ)−µ g(y)c(y)

z− y
>

∂

∂ z

(
g(z)c(z+θ)

)
. (5.8)

We fix such z,µ , and θ and set δ = z−y. In the following, we omit the subscript δ and denote by
Mrd = (Nrd,Rrd,(Ard

i )i∈N
rd ,(c

rd
r )

r∈R
rd) the congestion model and by G

rd the corresponding g-scaled
congestion game with demands x,y, and z not possessing a pure Nash equilibrium.

We proceed to show the proof for the case (5.7), the other case follows along the same lines.
As all expressions occurring in (5.7) are continuous in µ , it is without loss of generality to

assume that µ is positive and rational. Thus, we may write µ = p/q for some p,q ∈N. Multiplying
(5.7) with q, we obtain

∂

∂y

(
qg(y)c(y+θ)

)
>

pg(z)c(z)−qg(y)c(y+θ)

z− y
>

∂

∂ z

(
pg(z)c(z)

)
. (5.9)

For k ∈N we define a new congestion model Mk = (N,Rk,(Ak
i )i∈N ,(cr)r∈R). The set of players

N =N
rd∪{3} contains an additional third player, the set of resources R

k contains additional k(p+q)

resources partitioned into two subsets R
k
1,R

k
2 of cardinality |Rk

1|= kq and |Rk
2|= kp, respectively. We

obtain R
k = R

rd ∪R
k
1 ∪R

k
2. Each resource r ∈ R

rd is endowed with the same cost function as in
Mrd. The new resources are endowed with cost function c. Player 1 has the same set of feasible
allocations as in G

rd, that is, Ak
1 = {α rd

1,1,α
rd
1,2}. For player 2, we add the kq new resources contained

in R
k
1 to the first, and the kp new resources contained in R

k
2 to the second allocation, that is, Ak

2 =

{α rd
2,1 ∪R

k
1,α

rd
2,2 ∪R

k
2}. Player 3 has a single feasible allocation where she uses the kq new resources

contained in R1. As Player 3 has a single allocation only, her only strategic action is to choose the
demand.

The players’ sets of feasible demands are given by σ1 = τ1 = x, σ2 = y, τ2 = z, and σ3 = τ3 = θ .
The utility functions of players 1 and 3 are arbitrary. We may simply define them as U1(σ1) =

U3(σ3) = 0. The utility function U
k
2 : [y,z] → R≥0 of player 2 is the linear function with slope

k
z−y

·
(

pg(z)c(z)−qg(y)c(y+θ )
)

through the point (y,0). The three utility functions are shown in
Figure 5.1.

We claim that there is m ∈N such that d
m
2 = y for each pure Nash equilibrium (αm,dm) of G

m

with αm
2 = α rd

2,1∪R
k
1 and d

m
2 = z for each pure Nash equilibrium (αm,dm) of G

m with αm
2 = α rd

2,2∪R
k
2.

For a contradiction, suppose for each k ∈N, there is a pure Nash equilibrium (αk,dk) such that one
of the following cases holds: (i) αk

2 = α rd
2,1 ∪R

k
1 and d

k
2 ∈ (y,z]; (ii) αk

2 = α rd
2,2 ∪R

k
2 and d

k
2 ∈ [y,z).

Considering sub-sequences, it is without loss of generality to assume that either (i) holds for all
k ∈N or (ii) holds for all k ∈N.

Let us first assume, that (i) holds for all k ∈N. We calculate

∂ϖ2(α
k,dk)

∂d
k
2

= k
( pg(z)c(z)−qg(y)c(y+θ)

z− y
−q

∂

∂d
k
2

g(dk
2)c(d

k
2 +θ)

)

− ∂

∂d
k
2

∑

r∈α rd
2,1

cr

(
ℓr(α

k,dk)
)
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b x

U1(x)

0
σi = τi = x

(a)

x

U2(x)

σi = y τi = z
0

M

(b)

b x

U3(x)

0
σi = τi = θ

(c)

Figure 5.1: The players’ utility functions Ui in the three-player g-scaled congestion game with variable de-
mands constructed in the proof of Lemma 5.12. For the second player’s utility the parameter M

is chosen such that the slope of the function equals k
z−y

·
(

pg(z)c(z)− qg(y)c(y+ θ )
)
, that is,

M = kpg(z)c(z)− kqg(y)c(y+θ ).

Using that d
k
2 > y and that c and g are convex, we obtain

∂ϖ2(α
k,dk)

∂d
k
2

≤ k

(

pg(z)c(z)−qg(y)c(y+θ)

z− y
−q

∂

∂y
g(y)c(y+θ)−1

k
· ∂

∂d
k
2

∑

r∈α rd
2,1

cr

(
ℓr(α

k,dk)
)

)

Form the left inequality of (5.9) we derive limk→∞ ∂ϖ2(α
k,dk)/∂d

k
2 < 0. This implies the existence

of m∈Nwith ∂ϖ2(α
k,dm)/∂d

m
2 < 0, which contradicts the assumption that (αm,dm) is a pure Nash

equilibrium of G
m.

If, on the other hand, (ii) holds for all k ∈N, we calculate

∂ϖ2(α
k,dk)

∂d
k
2

= k
( pg(z)c(z)−qg(y)c(y+θ)

z− y
−p

∂

∂d
k
2

g(dk
2)c(dk

2)−
1
k
· ∂

∂d
k
2

∑

r∈α rd
2,2

cr

(
ℓr(α

k,dk)
))

≥ k

(

pg(z)c(z)−qg(y)c(y+θ)

z− y
− p

∂

∂ z
g(z)c(z)− 1

k
· ∂

∂d
k
2

∑

r∈α rd
2,2

cr

(
ℓr(α

k,dk)
)

)

,

where we use the convexity of c and g and the fact that d
k
2 < z. Using the right inequality of (5.9), we

derive limk→∞ ∂ϖ2(α
k,dk)/∂ d

k
2 > 0. In light of Lemma 5.6, this is a contradiction to the assumption

that (αk,dk) is a pure Nash equilibrium for all k ∈N. We conclude that d
m
2 = y for each pure Nash

equilibrium (αm,dm) of G
m with αm

2 =α rd
2,1∪R

m
1 and d

m
2 = z for each pure Nash equilibrium (αm,dm)

of G
m with αm

2 = α rd
2,2 ∪R

m
2 .

To finish the proof, we show that G
m does not possess a pure Nash equilibrium. For a contra-

diction, let (αm,dm) be a pure Nash equilibrium of G
m. We here show the contradiction only for

the case that each player plays her first allocation, that is, αm
1 = α rd

1,1 and αm
2 = α rd

2,1 ∪R
m
1 . The other

three cases can be treated with the same arguments. Consider the strategy profile (α rd
1,1,α

rd
2,1) of G

rd.

Because G
rd does not admit a pure Nash equilibrium, one of the players 1 or 2 improves switching

to her second allocation. We distinguish two cases.
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First case: π rd
1 (α rd

1,2,α
rd
2,1) < π rd

1 (α rd
1,1,α

rd
2,1). Consider the strategy profile (α rd

1,2,x) ∈ S
m
1 . We

calculate

ϖm
1

(
(α rd

1,2,x),(α
rd
2,1 ∪R

m
1 ,y),(R

m
1 ,θ)

)
−ϖm

1

(
(α rd

1,1,x),(α
rd
2,1 ∪R

m
1 ,y),(R

m
1 ,θ)

)

=−g(x)
∑

r∈α rd
1,2

cr

(

ℓr

(
(α rd

1,2,x),(α
rd
2,1 ∪R

m
1 ,y),(R

m
1 ,θ)

))

+g(x)
∑

r∈α rd
1,1

cr

(

ℓr

(
(α rd

1,1,x),(α
rd
2,1 ∪R

m
1 ,y),(R

m
1 ,θ)

))

= π rd
1 (α rd

1,1,α
rd
2,1)−π rd

1 (α rd
1,2,α

rd
2,1)> 0.

Second case: π rd
2 (α rd

1,1,α
rd
2,2) < π rd

2 (α rd
1,1,α

rd
2,1). Consider the strategy profile (α rd

2,2 ∪ R
m
2 ,z) where

player 2 chooses allocation α rd
2,2 and her demands equals z. We obtain

ϖm
2

(
(α rd

1,1,x),(α
rd
2,2 ∪R

m
2 ,z),(R

m
1 ,θ)

)
−ϖm

2

(
(α rd

1,1,x),(α
rd
2,1 ∪R

m
1 ,z),(R

m
1 ,θ)

)

=U2(z)−g(z)
∑

r∈α rd
2,2

cr

(

ℓr

(
(α rd

1,1,x),(α
rd
2,2 ∪R

m
2 ,z),(R

m
1 ,θ)

))

− kpg(z)c(z)

−U2(y)+g(y)
∑

r∈α rd
2,1

cr

(

ℓr

(
(α rd

1,1,x),(α
rd
2,1 ∪R

m
1 ,z),(R

m
1 ,θ)

))

+ kqg(y)c(y+θ)

=−g(z)
∑

r∈α rd
2,2

cr

(

ℓr

(
(α rd

1,1,x),(α
rd
2,2 ∪R

m
2 ,z),(R

m
1 ,θ)

))

+g(y)
∑

r∈α rd
2,1

cr

(

ℓr

(
(α rd

1,1,x),(α
rd
2,1 ∪R

m
1 ,z),(R

m
1 ,θ)

))

= π rd
2 (α rd

1,1,α
rd
1,1)−π rd

1 (α rd
1,1,α

rd
2,2)> 0.

This is a contradiction to the assumption that (αm,dm) is a pure Nash equilibrium of G
m.

5.5 A Characterization of Consistency

This section contains the two main results of this chapter – a complete characterization of the con-
sistency and approximate universal consistency for games with variable demands, respectively. We
start with a characterization of the approximate universal consistency.

Theorem 5.13. Let C be a set of continuous functions and let g be a scaling function. Then, C is

approximately universally consistent for g-scaled congestion games with variable demands if and

only if the following two conditions are satisfied:

(1) g is linear of type g(x) = β x, β ∈R>0.

(2) C only contains affine functions of type c(x) = ac x+bc where ac ∈R>0 and bc ∈R≥0.

If (1) and (2) are satisfied, then C is even consistent for g-scaled congestion games with variable

demands.
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Proof. We first show that conditions (1) and (2) imply consistency and approximate universal consis-
tency of C. LetM=

(
N,R,(Ai)i∈N ,(cr)r∈R

)
be a congestion model such that for each resource r ∈R,

there are ar ∈R>0 and br ∈R≥0 with cr(x) = ar x+ br for all x ∈R>0. For a set (Ui)i∈N of utility
functions let G be a corresponding g-scaled congestion game with variable.

We claim that for each player i there is ωi ∈ R>0 such that each demand di > ωi is strictly
dominated by the demand d

′
i = ωi, that is, πi(αi,di,α−i,d−i)< πi(αi,d

′
i ,α−i,d−i) for all αi ∈Ai and

(α−i,d−i)∈ S−i. For players with τi < ∞, we simply set ωi = τi. Let i be a player with τi = ∞. We set
a=minr∈R ar. (The minimum exists as R is finite.) For each di ∈ [σi,∞), αi ∈Ai and (α−i,d−i)∈ S−i

the marginal cost of player i can be bounded from below by ag
′(di)di + ag(di) which diverges

monotonically to ∞ as di goes to ∞. We choose ωi such that ag
′(di)di + ag(di) > ∂+

Ui(0)/∂di for
all di ≥ ωi and conclude that the marginal payoff of player i for demands di ∈ [ωi,∞) is negative.
This implies that demands larger than ωi are strictly dominated for player i.

We proceed to show that the function P : S →R defined as

P(α ,d) =
∑

i∈N

(

Ui(di)−β di

∑

r∈αi

ar

( ∑

j∈{1,...,i}:r∈s j

d j

)
+br

)

is an exact potential function for G. To prove this claim, let the strategy (α ,d) ∈ S and the player i

with alternative strategy (α ′
i ,d

′
i) be arbitrary. We calculate

P(α ,d)−P(α ′
i ,d

′
i ,α−i,d−i)

=Ui(di)−Ui(d
′
i)−

n∑

j=i+1

( ∑

r∈αi∩α j

β d j ar di −
∑

r∈α ′
i∩α j

β d j ar di

)

−
∑

r∈αi

β di

(

ar

( ∑

j∈{1,...,i}:r∈α j

d j

)
+br

)

+
∑

r∈α ′
i

β di

(

ar

( ∑

j∈{1,...,i}:r∈α j

d j

)
+br

)

= ϖi(α ,d)−ϖi(α
′
i ,d

′
i ,α−i,d−i).

Let sS = {(α ,d) ∈ S : di ∈ [σi,ωi] for all i ∈ N}. As sS is compact and P is continuous, we may
choose (α∗,d∗) ∈ arg max(α ,d)∈sS P(α ,d). Using that strategies with demands larger than ωi are
strictly dominated we derive that (α∗,d∗) also maximizes P over S. This implies that (α∗,d∗) is
a pure Nash equilibrium. To see that C is also approximately universally consistent, let ρ > 0 and
(α0,d0) ∈ S be arbitrary. As P(α0,d0) is finite and every ρ-improving move increases the value of
P by at least ρ , we conclude that every ρ-improvement path is finite.

We proceed to prove that if C is approximately universally consistent for g-scaled congestion
games with variable demands, then (1) and (2) hold. If C contains a constant function we can
construct a one-player game where player 1 can always improve her payoff by an arbitrary constant
raising her demand.

If C contains a non-affine function c̃ or g is not linear, Theorem 4.12 establishes the existence of
a g-scaled congestion game with resource-dependent demands G

rd that does not possess a pure Nash
equilibrium and has the additional property that cr = c̃ for all r ∈R. In light of Corollary 4.6 the game
G

rd can be chosen such that for each player all resources contained in one allocation are accessed
with the same resource-dependent demand, that is for all i ∈ N and αi ∈ Ai, there is di(αi) such that
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di,r = di(αi) for all r ∈ αi. As G
rd has no pure Nash equilibrium G

rd there is an improvement cycle

γ rd = (α0, . . . ,αk,α0). As γ rd is finite there is ε > 0 such that γ rd is an ε-improvement cycle.
We consider the g-scaled congestion game with variable demands G with the same set of players,

resources, and feasible allocations as G
rd where for all players i we have [σi,τi] =R≥0 and Ui(x) = 0

for all x ≥ 0. By construction the cycle

γ =
((

α0
1 ,d1(α

0
1 ), . . . ,α

0
n ,d1(α

0
n )
)
, . . . ,

(
αk

1 ,d1(α
k
1), . . . ,α

k
n ,d1(α

k
n)
)
,
(
α0

1 ,d1(α
0
1 ), . . . ,α

0
n ,d1(α

0
n )
))

in which each player chooses the demand specified in G
rd is an ε-improvement cycle of G. We

derive that C is not approximately universally consistent.

The following theorem provides a complete characterization of the consistency of cost functions
in g-scaled congestion games with variable demands.

Theorem 5.14. Let C be a set of continuous functions and g a scaling function. Then, the following

are equivalent:

(1) C is consistent for g-scaled congestion games with variable demands;

(2) At least one of the following two holds:

(2a) C only contains homogeneously exponential functions of type c(x) = ac e
φx

, where

ac ∈R>0 may depend on c, while φ ∈R>0 must be equal for all c ∈ C.

(2b) g is linear and C only contains affine functions of type c(x) = ac x+bc, where ac ∈R>0

and bc ∈R≥0.

Proof. (1) ⇒ (2): For a contradiction, suppose there are a scaling function g and a set of cost
functions C that is consistent for g-scaled congestion games with variable demands, but neither (2a)
nor (2b) are satisfied.

Referring to Theorem 5.10, the consistency of C implies that one of the following two cases
holds: (i) C only contains affine functions of type c(x) = ac x+ bc with ac ∈ R>0 and bc ∈ R≥0;
or (ii) C only contains functions of type c(x) = ac e

φx + bc, where ac ∈ R>0 and bc ≥ −ac may
depend on c while φ ∈R>0 is independent of c.

Let us first assume that C only contains affine functions. Because (2a) is not satisfied, at least
one affine function in c ∈ C is not constant. Furthermore, g is not linear since (2b) is violated.
Theorem 4.8 then implies that c does not satisfy the GMC for g. Furthermore, as c is linear but not
constant, we derive that c

′/c is injective on R>0. Applying Lemma 5.12 we derive the existence of
a g-scaled congestion game with variable demands not possessing a pure Nash equilibrium. This is
contradiction to the consistency of C.

For the second case, let us assume that C only contains functions of type c(x) = ac e
φx + bc,

where ac ∈R>0 and bc ≥ −ac may depend on c while φ ∈R>0 is independent of c. Because (2a)
is violated, C contains at least one inhomogeneously exponential function c, that is, a function with
bc 6= 0. Theorem 4.11 implies that c does not satisfy the GMC for g. Using that c is inhomogeneously
exponential, we further see that c

′(x)/c(x) = φ/
(
1+ bc

ac
e
−φx
)

for all x ∈R>0. Thus, c
′/c is injective
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onR>0. Applying Lemma 5.12, the existence of a g-scaled congestion game with variable demands
not possessing a pure Nash equilibrium follows.

(2a) ⇒ (1) and (2b) ⇒ (1) are shown in Theorems 5.8 and 5.13, respectively.

5.6 Network Congestion Games with Variable Demands

In this section, we explore the consistency of cost functions for congestion games with variable
demands on directed networks. In these games, the resources are associated with the edges of a
directed graph G = (V,R). For every player i, we are given a source-sink pair (ui,vi) ∈V ×V . The
set of feasible allocations of player i then equals the set of all simple directed (ui,vi)-paths.

Lemma 5.15. Let g be a scaling function and c be a differentiable and convex cost function that

is strictly positive on R>0 and has the property that c
′/c is injective on R>0. If c is consistent for

g-scaled directed-network congestion game with variable demands, then c satisfies the GMC for g.

Proof. Let g be an arbitrary scaling function and let c be a cost function with the demanded proper-
ties that is consistent for g-scaled congestion games with variable demands. For a contradiction, let
us assume that c does not satisfy the GMC for g. The Generalized Monotonicity Lemma for Directed
Networks (Lemma 4.13) implies the existence of a g-scaled network congestion game with resource-
dependent demands and costs equal c on all resources not possessing a pure Nash equilibrium. We
first briefly recapitulate the construction used in the proof of Lemma 4.13.

Consider the network in Figure 5.2(a). The two players are represented by the two source-sink
pairs (ui,vi), i = 1,2. The set of strategies available to each player i equals the set of directed (ui,vi)-
paths. The dashed lines in Figure 5.2(a) correspond to paths while solid lines correspond to single
edges. For carefully chose x,y,δ ∈R>0, the demand of player 1 equals x on all edges. The demand
of player 2 equals y for the path connecting u2 with w1, the path connecting w1 with w2, and the edge
connecting w2 with v2 (all drawn with bold lines in Figure 5.2(a)). All other edges are accessed with
demand y+ δ by player 2. The directed path Pm connecting w2 and w3 contains m edges with cost
function c where m is chosen large enough such that for player 2 the unique strategy containing Pm

is strictly dominated.
We proceed to modify this construction to obtain a directed network congestion game with

variable demands not possessing a pure Nash equilibrium. First, we define the player’s sets of
feasible demands setting σ1 = τ1 = x, σ2 = y, and τ2 = y+ δ . Next, consider the network game
shown in Figure 5.2(b). Because the cost player 2 experiences on the edge (w2,v2) is bounded by
maxz∈[y,y+δ ] g(z)c(z) and the cost functions are strictly positive, we can make the path Pm

′ sufficiently
long such that the unique strategy of player 2 containing Pm

′ is strictly dominated.
Our goal is to enforce player 2 to use the demand y when on her left path u2 → w1 → w2 → v2

and the demand y+ δ when on her right path u2 → w3 → w4 → v2. As in Lemma 5.12 this can be
achieved by adding additional resources to each strategy of player 2, where the additional resources
contained in the left path are used by an additional third player. Thus, for k ∈N, we add additional
paths R

k
1, R

k
2 containing k additional edges. We also add a third player associated with the source-sink

pair (u3,v3) whose only strategy is to follow the paths u3 → w1 → v3.
Along the same chain of reasoning as in Lemma 5.12, we can choose k large enough and an

appropriate utility function of player 2 such that player 2 always uses the demand y when allocated
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u2

w1 w2 w3 w4

u1 v2 v1

w5 w6

P
m
′

(a) Directed-network congestion game with resource-dependent demands
used in the proof of the Generalized Monotonicity Lemma for Directed Net-
works (Lemma 4.13)

w1 u2,u3

v3 w2 w3 w4

u1 v2 w7 v1

w5 w6

Pm

R
k
2

R
k
1

(b) Directed-network congestion game with variable demands used in the
proof of Lemma 5.15

Figure 5.2: Directed-network congestion games used in the proofs of (a) Lemma 4.13 and (b) Lemma 5.15.
Dashed lines correspond to paths while solid edges correspond to single edges.

on her left path and the demand y+δ when allocated on her right path. Then, using that the network
congestion game with resource-dependent demands has no pure Nash equilibrium implies that also
the network congestion game with variable demands does not possess a pure Nash equilibrium.

We obtain the following result.

Theorem 5.16. Let C be a set of continuous functions that are strictly positive on R>0 and let g be

a scaling function. Then, the following are equivalent:

(1) C is consistent for g-scaled directed-network congestion games with variable demands.

(2) At least one of the following two statements holds:

(2a) C only contains homogeneously exponential functions of type c(x) = ac e
φx

, where

ac ∈R>0 may depend on c, while φ ∈R>0 must be equal for all c ∈ C;

(2b) g is linear and C only contains affine functions of type c(x) = ac x+bc, where ac ∈R>0,

bc ∈R≥0.
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5.7 A Characterization for Unrestricted Demands

In the last sections, we characterized the sets of cost functions that are consistent for g-scaled con-
gestion games with variable demands, both with arbitrary strategy spaces and network strategy
spaces. We assumed that for each player i the set of feasible demands is restricted to an interval
[σi,τi] ⊆ R≥0, with σi ∈ R≥0, τi ∈ R≥0 ∪{∞}, and σi ≤ τi. In particular, we allowed the degen-
erated case σi = τi. This assumption might be too restrictive and to artificially narrow the set of
consistent cost functions. This section is devoted to the case of unrestricted demands, that is, we
consider the case [σi,τi] =R≥0 for all i ∈ N. As the main result, we show that our characterizations
of consistency for the case of restricted demands translate to the case of unrestricted demands.

Theorem 5.17. Let M =
(
N,R,(Ai)i∈N ,(cr)r∈R

)
be a congestion model and for each player i let

U
r
i : [σ r

i ,τ
r
i ] be a utility function with τ r

i < ∞. If the corresponding g-scaled congestion game with

variable demands G
r

does not possess a pure Nash equilibrium, then there is for each player i a

utility function Ui : R≥0 → R≥0 and a corresponding g-scaled congestion game with unrestricted

variable demands that does not admit a pure Nash equilibrium as well.

Proof. We set T =
∑

i∈N τi. For every r ∈ R, the cost function cr :R≥0 →R is locally Lipschitz-
continuous onR≥0 and hence globally Lipschitz-continuous with Lipschitz constant Lr on the com-
pact [0,T ]. We set σmax = maxi∈N σi and L =

∑

r∈R Lr. As g is continuously differentiable, it is
globally Lipschitz-continuous on [0,σmax] and we denote the Lipschitz constant by M. We define

Cmax =
∑

r∈R maxx∈[0,T ] cr(x). For µ > max
{

L · g(σmax) +M ·Cmax,
∂+

U
r
i (σ

r
i )

∂σ r
i

·σ r
i

}
, we define the

utility function of player i as the function Ui :R≥0 →R≥0 where

Ui(x) =







U
r
i (σ

r
i )+µ

σ r
i

· x, if x ∈ [0,σ r
i )

U
r
i (x)+µ , if x ∈ [σ r

i ,τ
r
i ]

U
r
i (τ

r
i )+µ , otherwise.

On [σ r
i ,τ

r
i ], the new utility function equals the old utility function raised by µ , on [τ r

i ,∞) it is constant
and on [0,σ r

i ] it equals the linear function through the origin and the point (σ r
i ,Ui(σ

r
i )+ µ). Note

that Ui is concave as U
r
i is concave and µ > ∂+

U
r
i (σ

r
i )

∂σ r
i

·σ r
i ; see also Figure 5.3 for an illustration.

The new set (Ui)i∈N of utility functions defines a new g-scaled congestion game with variable
demands G. We claim that G does not admit a pure Nash equilibrium. For a contradiction, suppose
(α ,d) is a pure Nash equilibrium of G.

We first show that it is without loss of generality to assume that di ≤ τ r
i for all i ∈ N. Specifi-

cally, we show that if there is a pure Nash equilibrium (α ,d) of G, then there is also a pure Nash
equilibrium (α ,d′) with d

′
i ≤ τ r

i for all i ∈ N. To see this, note that Ui(di) = Ui(τ
r
i ) for all di ≥ τ r

i

and all i ∈ N. If there is a resource r ∈ αi with cr

(
ℓr(α ,d)

)
> cr

(
ℓr(α ,d)−di + τ r

i

)
, we derive that

player i improves lowering her demand from di to τ r
i , which contradicts the fact that (α ,d) is a pure

Nash equilibrium. This implies that cr

(
ℓr(α ,d)

)
= cr

(
ℓr(α ,d)− di + τ r

i

)
for all r ∈ αi and setting

d
′
i = τ r

i we derive that ϖ j(α ,d′
i ,d−i) = ϖ j(α ,d) for all j ∈ N. From there, (α ,d−i,d

′
i) is also a pure

Nash equilibrium. Iterating this argument, we obtain a pure Nash equilibrium (α ,d′) with d
′
i ≤ τ r

i

for all i ∈ N.
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Figure 5.3: Lifting of the players’ utility functions used in the proof of Theorem 5.17. (a) the utility function
U

r
i of player i in the game with restricted demands; (b) the lifted utility function Ui of player i in

the game with unrestricted demands.

Let (α ,d′) be such pure Nash equilibrium. We claim that d
′
i ≥ σ r

i for all i ∈ N. Suppose there is
i ∈ N with d

′
i < σ r

i and consider the strategy where player i plays a demand of d
′′
i = σ r

i instead. We
calculate

ϖi(α ,d′′
i ,d

′
−i)−ϖi(α ,d′

i)

= µ(d′′
i −d

′
i)−g(d′′

i )
∑

r∈αi

cr

(
ℓr(α ,d′)−d

′
i +d

′′
i

)
+g(d′

i)
∑

r∈αi

cr

(
ℓr(α ,d′)

)

≥ µ(d′′
i −d

′
i)−g(d′′

i )L(d
′′
i −d

′
i)− (g(d′′

i )−g(d′
i))
∑

r∈αi

cr

(
ℓr(α ,d′)

)

≥
(
d
′′
i −di

)(
µ −g(σmax)L−M ·Cmax

)
> 0.

Hence, player i improves contradicting the fact that (α ,d′) is a pure Nash equilibrium. To finish the
proof, assume there is a pure Nash equilibrium (α ,d′) with di ∈ [σ r

i ,τ
r
i ] for all i ∈ N. Using the fact

that the new utility function on [σ r
i ,τ

r
i ] equals the old utility function raised by the constant µ , we

derive that (α ,d′) is also a pure Nash equilibrium of G
r, contradiction!

Smooth Utilities. The utility functions constructed in the proof of Theorem 5.17 are not differen-
tiable. We proceed to show that the result continues to hold if we assume that all utility functions
are infinitely often differentiable.

Theorem 5.18. Let M =
(
N,R,(Ai)i∈N ,(cr)r∈R

)
be a congestion model and for each player i let

U
r
i : [σ r

i ,τ
r
i ] be a utility function with τ r

i < ∞. If the corresponding g-scaled congestion game with

variable demands G
r

does not possessing a pure Nash equilibrium, then there is for each player i

an infinitely often differentiable utility function Ui :R≥0 →R≥0 and a corresponding g-scaled con-

gestion game with unrestricted variable demands that does not admit a pure Nash equilibrium as

well.
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Proof. Let Ui denote the piece-wise linear utility function of player i constructed in the proof of
Theorem 5.17. For i ∈ N, we define the improvement function ζi : S → R≥0 as the function that
maps every strategy profile to the value by with each player can maximally improve her utility when
switching to her best reply. Formally,

ζi(s) = max
s
′
i∈Si

ϖi(s
′
i,s−i)−ϖi(s).

Note that for each player, there is ωi ∈R>0 such that Ui is constant on [ωi,∞]. From there, we may
effectively restrict the demand of each player i to [0,ωi]. Setting sSi = {si = (αi,di)∈ Si : di ≤ωi}, we
observe that maxs

′
i∈Si

ϖi(si,s−i) =maxs
′
i=∈sSi

ϖi(si,s−i). Using that ϖi is continuous and sS is compact,
the maximum is attained and thus, ζ is well-defined.

Writing the strategy profile s as s = (α ,d) and using that all private payoff functions are con-
tinuous in d, we observe that ζi(α ,d) is continuous in d as well. Next, we define ζ : S → R≥0 as
ζ (s) = maxi∈N ζi(s). As the maximum of finitely many continuous functions, ζ is continuous in d

as well. As a consequence, ε = mins∈sS ζ (s) = mins∈S ζ (s) is attained and, since G does not admit a
pure Nash equilibrium, ε > 0.

For any δ > 0, the utility function Ui of each player i is infinitely often differentiable except
on δ -balls around σi and τi. Ghomi [57] investigated the problem of approximating convex func-
tions by smooth convex functions such that both functions comply in all regions where the original
function is already smooth. He shows that such function can always be found if the boundaries of
the smooth regions of the original function are compact. Applying this result, we can replace Ui

by an approximation Ũi : R≥0 → R≥0 that is concave, infinitely often differentiable and satisfies
ui(x) = Ũi for all x ∈ [0,σi −δ )∪ (σi+δ ,τi −δ )∪ (τi +δ ,∞). Using that Ui is continuous, we may
choose δ > 0 such that |Ui(x)−Ũi(x)|< ε/2 for all x ∈R≥0. The new set of utility functions (Ũi)i∈N

defines a new g-scaled congestion game with variable demands G̃ = (N,S, ϖ̃). Because ζ (s) ≥ ε

for all s ∈ S, for all s ∈ S there is a player i(s) and an alternative strategy s
′
i(s)(s) ∈ Si(s) such that

ϖi(s)(s) ≤ ϖi(s)(s
′
i(s)(s),s)− ε . Using that |ϖi(s)− ϖ̃i(s)| < ε/2 for all s ∈ S and i ∈ N, we derive

that ϖ̃i(s)(s)< ϖ̃i(s)(s
′
i(s),s−i). Hence, the game G

ε does not admit a pure Nash equilibrium.

We have obtained the following characterization of consistency for congestion games with vari-
able demands.

Theorem 5.19. Let C be a set of continuous functions and g a scaling function. Then, the following

are equivalent:

(1) C is consistent for g-scaled congestion games with unrestricted variable demands and in-

finitely often differentiable utility functions;

(2) At least one of the following two holds:

(2a) C only contains homogeneously exponential functions of type c(x) = ac e
φx

, where

ac ∈R>0 may depend on c, while φ ∈R>0 must be equal for all c ∈ C.

(2b) g is linear and C only contains affine functions of type c(x) = ac x+bc, where ac ∈R>0

and bc ∈R≥0.
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5.8 Discussion and Open Problems

We considered the fundamental problem of the existence of pure Nash equilibria and the approximate
finite improvement property in congestion games with variable demands. Several characterizations
of the cost structure with respect to the existence of pure Nash equilibria and the approximate finite
improvement property have been obtained. Since games with variable demands are general enough
to closely capture many elements of practical applications, we are confident that our results help to
understand the behavior of myopic play in real systems.

While this chapter addressed the existence of pure Nash equilibria and the approximate finite
improvement property with respect to the cost structure (without constraints on the strategy spaces
and the utility functions), it is natural to ask for combinatorial properties of the strategy spaces that
ensure the existence of pure Nash equilibria for general cost functions. In light of the positive result
of Ackermann et al. [4] for matroid weighted congestion games, particularly congestion games with
variable demands where the set of feasible allocations of each player form the basis of a matroid
are a promising avenue for future work. Alternatively, one can restrict the set of feasible utility
functions (e.g., assume linear functions) and ask for the existence of pure Nash equilibria. Also, as
for weighted congestion games, the case of symmetric strategy spaces is not understood.

Another interesting research direction is to investigate the prices of anarchy and stability in
congestion games with variable demands. In particular, it would be very interesting to compare the
prices of anarchy and stability of congestion games with variable demands and unrestricted demands
with known results for weighted congestion games.

As shown in this chapter, the concept of essential improving moves may help to show the exis-
tence of pure Nash equilibria in games that do not admit a potential functions. It would be interesting
to see this technique being applied to further classes of games for which the finite improvement prop-
erty is refuted but it is conjectured that a pure Nash equilibrium exists (as, e.g., in weighted singleton
congestion games with player-specific linear cost functions; see Gairing et al. [55], and Georgiou et
al. [56]).



Chapter 6

Bottleneck Congestion Games

Most of the congestion game literature including Chapters 3, 4, and 5 of this thesis, focuses on
additive private cost structures, i.e., it is assumed that the players strive to minimize the sum of the
costs of the resources contained in her strategy. For such games, the existence of pure Nash equilibria
and strong equilibria in terms of the strategy space and the resource cost functions is relatively well
understood.

In many scenarios, however, sum-objectives capture the incentive structure of the players only
partially. A prominent example of such a situation occurs when selfish users route data in a telecom-
munication network. Here, the delay of a stream of packets is usually restricted by the available
bandwidth (or capacity) of the links on the chosen path. Hence, the total delay experienced by the
player is closely related to the performance of the weakest (or most congested) link; see Banner and
Orda [15], Cole et al. [26], Keshav et al. [79], and Qiu et al. [110]. Another important application is
that of file transmission in mobile wireless networks; see Banner and Orda [15]. In this setting, the
resources have a limited battery lifetime which decreases with the total load. The resource costs are
used to model the loss of battery life due to outgoing traffic. Each user is interested in maintaining a
connection as long as possible and, thus, minimizes the maximum cost among the chosen resources.

A class of games that captures such situations more realistically are bottleneck congestion games
as introduced by Banner and Orda [15]. In a bottleneck congestion game the private cost of a player
is the maximum (instead of the sum) of the resource costs in her strategy. A related class of games
are splittable bottleneck congestion games. They differ from ordinary bottleneck congestion games
solely in the fact that each player may distribute her demand fractionally among her feasible allo-
cations. Banner and Orda [15] investigated the existence of pure Nash equilibria both in bottleneck
congestion games and splittable bottleneck congestion games with weighted players. They observed
that for splittable bottleneck congestion games standard techniques (such as Kakutani’s fixed-point
theorem) for proving existence of a pure Nash equilibrium do not apply as the players’ private cost
functions may be discontinuous. They proved existence of a pure Nash equilibrium by showing
that bottleneck games are better reply secure, quasi-convex, and compact. Under these conditions,
they recalled Reny’s existence theorem [111] to prove the existence of a pure Nash equilibrium in
splittable bottleneck congestion games with weighted players. Banner and Orda [15] also showed
the existence of a pure Nash equilibrium in unsplittable bottleneck congestion games with weighted
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players. For the special case that the players are unweighted and the cost function of each resource
is the identity, Busch and Magdon-Ismail [20] gave a shorter proof for the existence of a pure Nash
equilibrium.

6.1 Contributions and Chapter Outline

In this chapter, we further pursue the equilibrium existence problem for bottleneck congestion
games. We weaken the assumptions on the resource cost functions in that we assume that the re-
source costs may even depend on the set of players using it. Set-dependent cost functions are more
general than the load-based models usually used in the congestion games literature and allow to
model, e.g., interferences among the players. Yet, we are able to prove even the existence of a strong
equilibrium in this (more general) class of games. As a byproduct of our analysis, we further derive
that bottleneck congestion games with set-dependent costs have the strong finite improvement prop-
erty, that is, every sequence of coalitional deviations that decreases the private costs of each of its
members is finite.

Our proofs rely on a novel potential function concept, which we term strong vector-valued po-

tential. For a minimization game G = (N,S,π), we call a function φ : S →R

q
≥0 with q ∈ N>0,

a strong vector-valued potential if every strong improving move1 from s ∈ S strictly reduces φ(s)

with respect to a certain lexicographic order defined on Rq
≥0. Every strong potential is a strong

vector-valued potential, but not conversely.
The main contribution of this chapter is twofold. First, we study general finite games with a

strong vector-valued potential. In Section 6.2, we show that a finite game has a strong vector-valued
potential if and only if it has a strong potential. The proof is constructive, that is, given a game
G with a strong vector-valued potential φ : S → R

q
≥0 for some q ∈ N>0, we explicitly construct a

strong potential P : S →R. We derive that finite games with a strong vector-valued potential have
the strong finite improvement property and possess at least one strong equilibrium. In Section 6.3,
we investigate games for which the vector of the players’ payoff is a strong vector-valued potential.
Specifically, we show that such games always possess a strong equilibrium that is strictly Pareto
efficient and min-max fair. Moreover, tight bounds on the strong price of anarchy and strong price
of stability are given.

As the second main contribution of this chapter, we show in Section 6.4 that bottleneck con-
gestion games have the property that the private cost vector is a strong vector-valued potential and
hence possess strong equilibria with the above mentioned properties.

Note that for congestion games with singleton strategies (where the concepts of standard con-
gestion games and bottleneck congestion games coincide), Even-Dar et al. [39, 40], and Fabrikant
et al. [41] have already proved existence of a pure Nash equilibrium by arguing that the vector of
resource costs decreases lexicographically for every improving move. Andelman et al. [8] used
the same argument to even establish existence of strong equilibria in this case. Our work general-
izes these results to arbitrary strategy spaces and more general resource cost functions. In contrast
to most congestion games considered so far, we require only that the resource cost functions sat-

1A strong improving move is a coalitional deviation that is profitable to each of its members; see Section 2.1.2 for a
formal definition.



6.1 Contributions and Chapter Outline 109

isfy three properties: “Non-negativity”, “Independence of Irrelevant Choices”, and “Monotonicity”.
Roughly speaking, the latter two conditions require that the cost of a resource solely depends on the
set of players using that resource and decreases if some players leave that resource. Thus, this frame-
work extends classical load-based models in which the cost of a resource depends on the number or
aggregated demands of players using it.

In Section 6.5, we study infinite games, that is, games with infinite strategy spaces that can
be described by compact subsets of Rp, p ∈ N>0. We slightly generalize the concept of a strong
vector-valued potential by introducing the notion of a pairwise strong vector-valued potential func-
tion φ : S → R

q
≥0 ×R

q
≥0 with q ∈ N>0. Here, we require that every strong improving move from

s ∈ S strictly reduces a certain lexicographical order of φ(s). We prove that continuity of the pair-
wise strong vector-valued potential φ is sufficient for the existence of a strong equilibrium. We then
introduce splittable bottleneck congestion games. A splittable bottleneck congestion game arises
from a bottleneck congestion game G by allowing players to fractionally distribute a certain demand

over the set of her feasible allocations. We prove that these games have the have a strong pair-
wise vector-valued potential provided that the resource cost functions satisfy the three properties of
“Non-negativity”, “Independence of Irrelevant Choices”, and “Monotonicity”. If the resource cost
functions are also continuous, we obtain a pairwise strong continuous vector-valued potential φ and,
thus, the existence of a strong equilibrium for splittable bottleneck congestion games. For bounded

cost functions on the resources (that may be discontinuous), we show that a ρ-approximate strong
equilibrium exist for every ρ > 0.

Further Related Work. Bottleneck congestion games can be seen in the more general frame-
work of generalized congestion games studied by Kukushkin [86]. A generalized congestion game
differs from an unweighted congestion game with sum-objective solely in the fact that the addi-
tive aggregation of the resource costs in the definition of each player’s private cost is replaced by
an arbitrary aggregation function (that takes the vector of the costs of the chosen resources as in-
put).2 Kukushkin [86] proved that (up to monotonic transformations) additive aggregation is the
only strictly increasing aggregation rule that guarantees the existence of a pure Nash equilibrium
in all games with unweighted players. This characterization, however, requires that the aggregation
function is strictly decreasing in the sense that if the cost of one resource is strictly decreased then
the private cost of each of its users must strictly decrease. This property is violated by bottleneck-
objectives. Moreover, our positive results only holds for monotonic cost functions while in [86] it is
required that a pure Nash equilibrium exists for all (not necessarily monotonic) cost functions.

Bibliographic Information. The results presented in this chapter are joint work with Tobias Harks
and Rolf H. Möhring. An extended abstract appeared in the Proceedings of the 5th International

Workshop on Internet and Network Economics; see [66]. A more extensive version is accepted for
publication in the International Journal of Game Theory; see [68].

2Technically, one has to be given one such aggregation function for each natural number that appears as the cardinality
of a feasible allocation.
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6.2 Strong Vector-Valued Potentials

Before we introduce strong vector-valued potentials, we define the sorted lexicographical order on
non-negative vectors. To this end, let q ∈N>0 and let a,b ∈Rq

≥0. Denote by ã, b̃ ∈Rq
≥0 the sorted

vectors derived from a,b by sorting the entries in non-increasing order, that is, ã1 ≥ ·· · ≥ ãq and
b̃1 ≥ ·· · ≥ b̃q. Then, a is strictly sorted lexicographically smaller than b (written a≺ b) if there exists
an index m such that ãi = b̃i for all i < m, and ãm < b̃m. The vector a is sorted lexicographically

smaller than b (written a � b) if either a ≺ b or ã = b̃. A strong vector-valued potential is a function
φ : S →R

q
≥0 that strictly decreases with respect to the sorted lexicographical order along any strong

improving move.

Definition 6.1 (Strong vector-valued potential)

For a minimization game G = (N,S,π), a function φ : S → R

q
≥0 is called a strong vector-valued

potential if φ(s)≻ φ(s′K ,s−K) for all strong improving moves
(
s,(s′K ,s−K)

)
of G.

A strong vector-valued potential φ is a strong potential if q = 1. The next proposition states that
in finite games the existence of a strong vector-valued strong potential is equivalent to the existence
of a strong potential.

Proposition 6.2. For a finite minimization game G = (N,S,π) the following two statements are

equivalent:

(1) G has a strong vector-valued potential φ : S →R

q
≥0 for some q ∈N>0.

(2) G has a strong potential function P : S →R≥0.

Proof. We only prove (1) ⇒ (2) as the reverse direction is trivial. Let q ∈N and φ : S →R

q
≥0 be a

strong vector-valued potential. We claim that there is µ ∈N such that that Pµ(s) =
∑q

i=1 φi(s)
µ is

a strong potential. To see this, let
(
s,(s′K ,s−K)

)
be an arbitrary strong improving move of coalition

K ⊆ N. We denote by φ̃ (s) and φ̃ (s′K ,s−K) the vectors that arise by sorting φ(s) and φ(s′K ,s−K)

in non-increasing order. As φ(s′K ,s−K) ≺ φ(s), there is an index m ∈ {1, . . . ,q} such that φ̃i(s) =

φ̃i(s
′
K ,s−K) for all i < m and φ̃m(s)< φ̃m(s

′
K ,s−K). We obtain

Pµ(s)−Pµ(s
′
K ,s−K) =

q
∑

i=1

φi(s)
µ −

q
∑

i=1

φi(s
′
K ,s−K)

µ

= φ̃m(s)
µ − φ̃m(s

′
K ,s−K)

µ +

q
∑

i=m+1

φ̃i(s)
µ −

q
∑

i=m+1

φ̃i(s
′
K ,s−K)

µ

≥ φ̃m(s)
µ − φ̃m(s

′
K ,s−K)

µ − (q−m)φ̃m(s
′
K ,s−K)

M
′
≥ φ̃m(s)

µ −q φ̃m(s
′
K ,s−K)

µ . (6.1)

Standard calculus shows that the expression on the right hand side of (6.1) is positive if

µ >
log(q)

log
(
φ̃m(s)

)
− log

(
φ̃m(s

′
K ,s−K)

) > 0.

As the number of improvement steps is finite, we can chose µ sufficiently large to obtain the claimed
result.
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6.3 Efficiency and Fairness of Equilibria

As games with a strong vector-valued potential are guaranteed to possess strong equilibria, it is
natural to investigate efficiency and fairness properties of these strong equilibria. We focus on games
that have the special property that the private cost vector π is a strong vector-valued potential, that
is, the sorted lexicographic order of the private cost vector decreases along any strong improvement
path. We consider strict Pareto efficiency, min-max fairness, strong price of anarchy, and strong
price of stability.

6.3.1 Pareto Efficiency

Pareto efficiency is one of the fundamental concepts studied in the economics literature. For a
minimization game G = (N,S,π), a strategy profile s is called weakly Pareto efficient if there is no
s
′ ∈ S such that πi(s

′)< πi(s) for all i ∈ N. A strategy profile s is strictly Pareto efficient if there is no
s
′ ∈ S such that πi(s

′)≤ πi(s) for all i ∈ N, where at least one inequality is strict. So strictly Pareto
efficient strategy profiles are those for which every improvement of a player is at the expense of at
least one other player. Pareto efficiency has also been studied in the context of standard congestion
games (with sum-objective). Holzman and Law-Yone [72] gave sufficient conditions on the strategy
spaces of congestion games that guarantee the existence of a strong equilibrium which is strictly
Pareto efficient. Chien and Sinclair [23] quantified the social welfare achieved in weakly Pareto
efficient pure Nash equilibria of unweighted congestion games.

Every strong equilibrium is weakly Pareto optimal as it is resilient against a profitable deviation
of the whole player set N. In games with the property that the private cost vector π is a strong vector-
valued potential this result can be strengthened in the sense that there always is a strong equilibrium,
that is even strictly Pareto efficient.

Theorem 6.3. Let G be a finite minimization game with the property that the private cost vector

π is a strong vector-valued potential. Then, there exists a strong equilibrium that is strictly Pareto

optimal.

Proof. The sorted lexicographical minimum s of π is a strong equilibrium. To see that it is also
strictly Pareto efficient, assume by contradiction that there is s

′ ∈ S and a player i such that πi(s
′)<

πi(s) and π j(s
′)≤ π j(s) for all j ∈ N \{i}. Then, s

′ ≺ s, contradicting the minimality of s.

6.3.2 Min-Max Fairness

Min-max fairness is a central topic in the theory of resource allocation in communication networks;
see Srikant [123] for an overview and pointers to the large body of research in this area. While strict
Pareto efficiency requires that there is no alternative profile that improves the cost for a single player
without strictly deteriorating the other players’ costs, the notion of min-max-fairness is stronger. A
profile s is called min-max fair if for any other strategy profile s

′ with πi(s
′)< πi(s) for some i ∈ N,

there either exists j ∈ N \{i} such that π j(s) ≥ πi(s) and π j(s
′) > π j(s), or there exists j ∈ N \{i}

such that π j(s)< πi(s) and π j(s
′)≥ πi(s

′). Note that in contrast to Pareto efficiency, an improvement
that increases the cost of a player with smaller original cost is allowed (up to the threshold πi(s)).
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It is easy to see that every min-max fair strategy profile is a strictly Pareto efficient state, but not
conversely.

Theorem 6.4. Let G be a finite minimization game with the property that the private cost vector π

is a strong vector-valued potential. Then, there exists a strong equilibrium that is min-max fair.

Proof. We show that the strategy profile s minimizing π with respect to the sorted lexicographical
order is min-max fair. Assume by contradiction that there is another strategy profile s

′ such that
πi(s

′)< πi(s) for some i ∈ N and the following two statements hold:
(1) π j(s

′)≤ π j(s) for all j ∈ N \{i} with π j(s)≥ πi(s),
(2) π j(s

′)< πi(s) for all j ∈ N \{i} with π j(s) < πi(s).
We observe that every entry of π(s) that is larger than πi(s) only decreases under s

′, while every
entry strictly smaller than πi(s) may only increase to a value strictly smaller than the threshold πi(s).
Since the value πi(s) strictly decreases under s

′, we obtain π(s′)≺ π(s), contradicting the minimality
of s.

6.3.3 Price of Stability and Price of Anarchy

To quantify the efficiency loss of selfish behavior with respect to a predefined social cost function,
two notions have evolved. The price of anarchy has been introduced by Koutsoupias and Papadim-
itriou [85] in the context of congestion games and is defined as the ratio of the cost of the worst pure
Nash equilibrium and that of a social optimum. A more optimistic performance index, termed the
price of stability, measures the ratio of the cost of the best pure Nash equilibrium and that of a social
optimum; see Anshelevich et al. [9, 10]. Both concepts have been studied extensively in computer
science and operations research; see Nisan et al. [105, Part III] for a survey. More recently, they have
also been studied in economics; see e.g. Johari and Tsitsiklis [74] and Moulin [100].

Andelman et al. [8] propose to study also the worst case ratio of the cost of a strong equilibrium
and that of a social optimum, which they term the strong price of anarchy. Clearly, the strong price
of anarchy is not larger than the price of anarchy. For some classes of games this inequality is strict;
see e.g. the results of Czumaj and Vöcking [29] and Fiat et al. [47] on the price of anarchy and strong
price of anarchy of scheduling games on related machines, respectively. The strong price of anarchy
has been studied recently for standard congestion games by Chien and Sinclair [23]. Andelman et
al. [8] also define the strong price of stability in the obvious way as the ratio of the cost of a best
strong equilibrium and that of a social optimum.

Formally, given a minimization game G = (N,S,π) and a social cost function Π : S → R>0,

whose minimum is attained in a strategy profile smin ∈ S, let E ⊆ S denote the set of strong equi-
libria. Then, the strong price of anarchy for G with respect to Π is defined as sups∈E Π(s)/Π(smin)

and the strong price of stability for G with respect to Π is defined as infs∈E Π(s)/Π(smin). In the
following, we consider the following natural social cost functions: (i) the sum of the players’ pri-
vate costs defined as L1(s) =

∑

i∈N πi(s), (ii) the || · ||p-norm of the players’ private costs defined as

Lp(s) = (
∑

i∈N πi(s)
p)1/p, p ∈ N, (iii) the maximum norm of the players’ private costs defined as

L∞(s) = maxi∈N{πi(s)}.
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Player 2

“left" “right"

“up" 1− ε, 1− ε, 1− ε, . . . , 1− ε 1, 1, 1, . . . , 1

P
la

ye
r

1

“down" 1, 0, 0, . . . , 0 1, ε, 1, . . . , 1

Figure 6.1: Matrix representation of the game considered in Example 6.6. The game has n players. Player 1
has the strategies “up” and “down” identified with the rows of the matrix, player 2 has the strate-
gies “left” and “right” identified with the columns of the matrix, all other players have a single
strategy called “zero” not shown in the figure. Every cell of the matrix shows the private cost
vector of the corresponding strategy profile. The price of stability w.r.t. any Lp-norm approaches
n

1/p as ε goes to 0.

Theorem 6.5. For a finite minimization game for which the private cost vector π is a strong vector-

valued potential, the strong price of stability w.r.t. L∞ is 1, and, for any p ∈N, the strong price of

stability w.r.t. Lp is at most n
1/p

.

Proof. To see that the strong price of stability w.r.t. L∞ is 1, note that a sorted lexicographical mini-
mum s

∗ of π is a strong equilibrium. By construction, s
∗ minimizes L∞. To prove the claimed bound

for Lp, we first show that for arbitrary p,q ∈N with p < q and s ∈ S we have Lp(s)≤ n
1/p−1/q

Lq(s)

and Lp(s)≤ n
1/p

L∞(s). To see the first inequality, let a = q
p
> 1 and b > 0 be such that 1

a
+ 1

b
= 1.

With Hölder’s inequality we obtain

Lp(s) =
( n∑

i=1

πi(s)
p
) 1

p ≤
(
( n∑

i=1

πi(s)
p·a
) 1

a
( n∑

i=1

1
) 1

b

) 1
p

= n
1
pb Lq(s) = n

1
p
− 1

q Lq(s).

For the L∞-norm we have a = ∞ and b = 1, thus, we obtain Lp(s)≤ n
1/p

L∞(s).
Next, let s

∗ be a sorted lexicographical minimum of π . Fix p ∈ N and let smin be a strategy
profile minimizing Lp. We derive Lp(s

∗) ≤ n
1/p

L∞(s
∗) ≤ n

1/p
L∞(smin) ≤ n

1/p
Lp(smin), where for

the second inequality we use that s
∗ minimizes L∞ and for the third inequality we use that the Lp-

norm is decreasing in p.

We now provide an example of a class of games with the property that π is a strong vector-valued
potential and whose parameters can be chosen in such a way that the strong price of stability w.r.t.
Lp is arbitrarily close to n

1/p, implying that the result of Theorem 6.5 is tight.

Example 6.6 (Strong price of stability). For a fixed ε ∈ (0,1), let us consider the minimiza-
tion game G = (N,S,π) with N = {1, . . . ,n}, S1 = {“up”, “down”}, S2 = {“left”, “right”} and
Si = {“zero”} for all i ∈ {3, . . . ,n}. The private costs are shown in Figure 6.1. It is straightfor-
ward to check π is a strong vector-valued potential. The unique strong equilibrium is the strategy
profile (“up”, “left”, “zero”, . . . , “zero”) realizing a private cost vector of (1− ε , . . . ,1− ε). For
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Player 2

“left" “right"

“up" 0, 0 0, k

P
la

ye
r

1

“down" k, k 0, k

Figure 6.2: Matrix representation of the minimization game G with the property that the private cost vector
π is a strong vector-valued potential; see Example 6.7. The price of anarchy w.r.t. any Lp-norm
is unbounded as considered.

any p ∈ N, we can choose ε > 0 sufficiently small such that Lp(·) is minimized in strategy pro-
file (“down”, “left”, “zero”, . . . , “zero”) realizing a cost vector of (1,0, . . . ,0). Hence the price of
stability approaches n

1/p.

So far, our results concern the strong price of stability only. The next example shows that games
for which π is a strong vector-valued potential may have an unbounded strong price of anarchy.

Example 6.7 (Strong price of anarchy). For k > 0, consider the minimization game G = (N,S,π)

with N = {1,2}, S1 = {“up”,“down”}, S2 = {“left”,“right”} and private costs as given in Figure 6.2.
It is straightforward to check that π is a strong vector-valued potential and that both (“up”, “left”)
and (“down”, “right”) are strong equilibria. Hence, the price of anarchy w.r.t. any Lp norm is un-
bounded from above.

6.4 Bottleneck Congestion Games

We now present a rich class of finite games with the property that the private cost vector π is a strong
vector-valued potential. We call these games bottleneck congestion games with set-dependent costs.
They are natural generalizations of variants of congestion games. In contrast to standard congestion
games, we focus on bottleneck-objectives, that is, the cost of a player only depends on the highest
cost of the resources she uses. For the sake of a clean mathematical definition, we introduce the
notion of a congestion model with set-dependent costs.

Definition 6.8 (Congestion model with set-dependent costs)

A tuple M =
(
N,R,(Ai)i∈N ,(cr)r∈R

)
is called a congestion model with set-dependent costs if N =

{1, . . . ,n} is a nonempty, finite set of players, R = {1, . . . ,m} is a nonempty set of resources, and
Ai ⊆ 2R is the set of allocations available to player i. We set A = A1 × ·· · ×An and for each
allocation profile α ∈A, we define Nr(α) = {i ∈ N : r ∈ αi} for all r ∈ R. Every resource r ∈ R has
a cost function cr : A→R≥0 satisfying the following three properties:

Nonnegativity: cr(α)≥ 0 for all α ∈ A,
Independence of Irrelevant Choices: cr(α) = cr(α

′) for all α ,α ′ ∈A with Nr(α) =Nr(α
′),

Monotonicity: cr(α)≤ cr(α
′) for all α ,α ′ ∈ A with Nr(α)⊆Nr(α

′).
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Note that ”monotonicity“ implies ”independence of irrelevant choices“. We now define bottle-
neck congestion games relative to a congestion model with set-dependent costs.

Definition 6.9 (Bottleneck congestion game with set-dependent costs)

Let M=
(
N,R,(Ai)i∈N ,(cr)r∈R

)
be a congestion model with set-dependent costs. The correspond-

ing bottleneck congestion game is the minimization game G = (N,S,π) in which Si = Ai and
πi(s) = maxr∈si

cr(s) for all i ∈ N.

Note that for singleton strategies, congestion games with bottleneck-objective and congestion
games with sum-objective coincide.

Our assumptions on the cost functions are weaker than in the load-based models considered in
Chapters 3, 4 and 5 and frequently used in the congestion games literature as, e.g., in Banner and
Orda [15]. We only require that the cost function cr(s) of resource r for strategy profile s depends on
the set of players using r in s and that costs are increasing with larger sets. Note that this may cover,
e.g., dependencies on the identities of players using r.

The condition “Independence of Irrelevant Choices” already appeared in Konishi et al. [82].3

The authors of [82] impose three additional assumptions that ensure the existence of a pure Nash
equilibrium. Specifically, they require that strategy spaces are symmetric and, given a strategy profile
s = (s1, . . . ,sn), the utility of a player i depends only on her own choice si and the cardinality of the
set of other players who also choose si. On the one hand, our model is more general than that
discussed in [82] as it does neither require symmetry of strategies, nor that the utility of player i only
depends on the set-cardinality of other players who also choose si. On the other hand, the model of
Konishi et al. allows for player-specific resource cost functions, which our model does not.

For the relation between games considered by Konishi et al. [82] and congestion games see the
discussion in Voorneveld et al. [132].

Before we prove that bottleneck congestion games have the property that the private cost vector
π is a strong vector-valued potential and, thus, possess a strong equilibrium with the efficiency and
fairness properties shown in the last section, we give a series of examples of games that fit into the
rich class of bottleneck congestion games and show how they are related to the literature.

Scheduling Games. Scheduling games model situations in which each player controls a task that
needs to be processed by one machine out of a finite number of available machines; see Vöck-
ing [128] for a survey. In each strategy profile every player i ∈ N selects a single machine on which
her job is processed. In the most general machine model of unrelated machines each job is associated
with a machine-dependent weight wi,r ∈R>0. Scheduling games are singleton bottleneck congestion
games where the cost function of machine r is defined as cr(s) =

∑

i∈N:si={r}wi,r. This function sat-
isfies non-negativity, independence of irrelevant choices and monotonicity. The existence of strong
equilibria in scheduling games has been established before by Andelman et al. [8] by arguing that
the lexicographically minimal schedule is a strong equilibrium. They also showed that the strong
price of stability w.r.t. L∞ is 1. Note that our general framework of bottleneck congestion games
allows more complex cost structures on the machines than in these classical load-based models. One
such example are dependencies between the weights of jobs on the same machine.

3In Konishi et al. [81, 83], the very same condition is called “No Spillovers”.
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Resource Allocation in Wireless Networks. The problem of resource allocation in wireless net-
works motivates the study of so-called interference games. Consider a set of n terminals that want
to connect to one out of m available base stations. Terminals assigned to the same base station
impose interferences among each other as they use the same frequency band. We model the inter-
ference relations by an undirected interference graph G = (V,E), where V = {1, . . . ,n} is the set of
vertices/terminals and an edge e = (v,w) between terminals v,w has a non-negative weight we ≥ 0
representing the level of pair-wise interference. We assume that the service quality of a base station j

is proportional to the total interference w( j), which is defined as w( j) =
∑

(v,w)∈E:sv=sw= j w(v,w).

We now obtain an interference game as follows. The nodes of the graph are the players, the set
of strategies is given by Si =

{
{1}, . . . ,{m}

}
, i = 1, . . . ,n, that is, the set of base stations, and the

private cost function for every player is defined as πi(s) = w(si), i = 1, . . . ,n. Interference games fit
into the framework of singleton bottleneck congestion games with m resources.

Note that in interference games, we crucially exploit the property that resource cost functions
depend on the set of players using the resource, that is, their identity determines the resulting cost.
The existence of a strong equilibrium in all interference games follows from our main theorem, while
most previous game-theoretic works addressing wireless networks only considered Nash equilibria;
see for instance Liu and Wu [89] and Etkin et al. [38].

Bottleneck Routing in Networks. A special case of bottleneck congestion games are bottleneck
routing games. Here, the set of resources are the edges of a directed or undirected graph G = (V,R).
Every player is associated with a pair of vertices (ui,vi) ∈ V ×V and a fixed demand di > 0 that
she wishes to send along a path in G connecting ui to vi. Every edge r ∈ R has a cost function
cr depending on the aggregated demand on r. The private cost for every player is the maximum
arc cost along the path, which is a common assumption for data routing in computer networks; see
[79, 15, 26, 110]. The existence of pure Nash equilibria in bottleneck routing games has been studied
before by Banner and Orda [15]. They, however, did not study the existence of strong equilibria. To
the best of our knowledge, our main result (Theorem 6.10) is the first to establish that bottleneck
routing games have the strong finite improvement property, and, thus, also the finite improvement
property. In Banner and Orda [15] it is only proven that best-response dynamics converge.

6.4.1 Existence of Strong Equilibria

We are now ready to state our main result for bottleneck congestion games.

Theorem 6.10. For every bottleneck congestion game G = (N,S,π) the private cost vector π is a

strong vector-valued potential.

Proof. For an arbitrary strong improving move
(
s,(s′K ,s−K)

)
, let j ∈ K be a player with highest

cost before the strong improving move among all players in the coalition, i.e., j ∈ argmaxi∈K πi(s).
We set N

+ = {i ∈ −K : πi(s) ≥ π j(s)} and claim that πi(s) ≥ πi(s
′
K ,s−K) for all i ∈ N

+. For a
contradiction, let us suppose that there is i ∈ N

+ such that πi(s)< πi(s
′
K ,s−K). The independence of

irrelevant choices and the monotonicity of the cost functions imply that there is a member k ∈ K of
the coalition and a resource r ∈ s

′
k ∩ si 6= /0 with cr(s

′
K ,s−K) = πi(s

′
K ,s−K). As r ∈ sk, we derive that
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πk(s
′
K ,s−K)≥ πi(s

′
K ,s−K). We calculate

π j(s)≥ πk(s)> πk(s
′
K ,s−K)≥ πi(s

′
K ,s−K)> πi(s),

where the first inequality stems from the definition of j and the second inequality is due to the fact
that player k improves. We obtain π j(s)> πi(s), which contradicts i ∈ N

+.
Next, we set N

− = {i ∈ −K : πi(s) < π j(s)} and claim that πi(s
′
K ,s−K) < π j(s) for all i ∈ N

−.
For a contradiction, let us suppose that there is i ∈ N

− such that πi(s
′
K ,s−K) ≥ π j(s). Because

π j(s) ≥ πi(s), the independence of irrelevant choices and the monotonicity of the cost functions,
there is a member k ∈ S of the coalition with s

′
k ∩ si 6= /0 and πk(s

′
K ,s−K) ≥ πi(s

′
K ,s−K). With the

same arguments as above we obtain

π j(s)≥ πk(s)> πk(s
′
K ,s−K)≥ πi(s

′
K ,s−K)≥ π j(s),

a contradiction. Note that N = N
+ ∪N

− ∪K and that we have shown πi(s) ≥ πi(s
′
K ,s−K) for all

i ∈ N
+ and πi(s

′
K ,s−K) < π j(s) for all i ∈ N

−. This means that the private cost of the players with
costs larger than π j(s) does not increase, the private cost of player j strictly decreases, and the private
costs of all other players may only increase up to a value strictly smaller than π j(s). Thus, we have
π(s)≻ π(s′K ,s−K) as claimed.

As a corollary of Theorem 6.10 we obtain that bottleneck congestion games possess a strong
equilibrium with the efficiency and fairness properties shown in Section 6.3. Note that our existence
result holds for arbitrary strategy spaces. This contrasts a result of Holzman and Law-Yone [72]
who have shown that, for standard congestion games (with sum-objective), a certain combinatorial
property of the players’ strategy spaces (called good configuration) is necessary and sufficient for
the existence of a strong equilibrium.

In bottleneck congestion games, the vector-valued potential function need not be unique. In fact,
one can prove with similar arguments as in the proof of Theorem 6.10 that the function ψ : S →R

m·n
≥0

defined as ψi,r(s) = cr(s) if r ∈ si, and ψi,r = 0 otherwise, decreases lexicographically along any
improvement path. Moreover, if cost functions are strictly monotonic, one can show along the same
lines that also the function υ : S →R

m
≥0 defined as υ(s) = (cr(s))r∈R has this property. Interestingly,

the sorted lexicographical minima of the functions π,ψ , and υ need not coincide, as illustrated in
the following example.

Example 6.11. Consider the symmetric bottleneck routing game with two players N = {1,2}
depicted in Figure 6.3. Edges correspond to resources; the cost of each edge depends only on
the number of players using it and is given explicitly for the two possible values. The strategy
set Si of each player i ∈ N comprises all paths from u to v, that are P1 = {(u,w1),(w1,v)},P2 =

{(u,w2),(w2,w3),(w3,w4),(w4,v)} and P3 = {(u,w2),(w2,w1),(w1,v)}. There are three types of
strong equilibria. In the first type, one player plays P1 and the other player plays P2. Here, the player
on P1 experiences a cost of 0 while the player on P2 experiences a cost of 1. It is easy to see, that (up
to permutation of the two players) this strategy profile is the unique sorted lexicographical minimum
of π . In the second type, one player chooses P1 while the other player chooses P3. Here, both players
experience a cost of 1, thus this strong equilibrium is not strictly Pareto efficient. It is easy to see that
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v w4 w3

w1 w2

u
0|1

0|1

0|2

1|2

1|21|2

0|2

Figure 6.3: Bottleneck routing game with multiple strong equilibria.

this equilibrium minimizes sorted lexicographically both ψ and ν . There is a third strong equilib-
rium where both players choose P1. This profile minimizes none of the functions π,ψ , and υ . These
different strong equilibria also have different efficiency properties. While the sorted lexicographical
minimum s

π of π is strictly Pareto efficient and min-max fair (as show in Theorems 6.3 and 6.4),
the lexicographical minimum s

υ of υ has the property that it is strictly Pareto efficient with respect
to using the resources, i.e., there is no strategy profile s

′ ∈ S such that cr(s
′) ≤ cr(s

υ ) for all r ∈ R

where at least one of these inequalities is strict.

6.5 Infinite Strategic Games

We now consider infinite strategic games in which the players’ strategy sets are topological spaces
and the private cost functions are defined on the product topology. Formally, an infinite game is
a tuple G = (N,S,π), where N = {1, . . . ,n} is the set of players, and S = S1 × ·· · × Sn is the set
of strategy profiles. For each player i, we assume that her set of strategies Si is a compact subsets
of Rni for some ni ∈ N>0. The cost function of player i is defined by a non-negative real-valued
function πi : S → R≥0, i ∈ N. Turning from finite games to infinite games, it becomes more com-
plicated to characterize structural properties of games with a strong vector-valued potential. First,
Proposition 6.2 is no longer valid, that is, infinite games with a strong vector-valued potential need
not possess a strong potential.4 Also the existence of a strong equilibrium does not follow imme-
diately. The global minimum of the function strong vector valued potential φ need not exist as the
strategy space is not finite. We will show that continuity of φ is sufficient for the existence of a
strong equilibrium. However, this assumption may be too strong for many classes of games. For
instance, the splittable version of bottleneck congestion games (formally defined in Section 6.5.1)
has the property that the private cost vector π is a strong vector-valued potential but the function π

may be discontinuous in general.
To proof the existence of a strong equilibrium in splittable bottleneck congestion games as well,

we slightly generalize the lexicographical improvement property. Let G = (N,S,π) be an infinite
game and let φ : S → R

q
≥0 ×R

q
≥0 be a function that associates with each strategy profile s a pair

4This observation resembles Debreu’s result [32] showing that the lexicographical ordering on an uncountable subset
ofR2 cannot be represented by a real-valued function.
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φ(s) =
(
φ (1)(s),φ (2)(s)

)
. Note that for each s ∈ S both φ (1)(s) and φ (2)(s) are q-dimensional non-

negative vectors. For fixed s ∈ S we want to sort the q entries
(
φ (1)(s),φ (2)(s)

)
with respect to

the ordinary lexicographic order on R2
≥0 (not involving any sorting of the entries), which we de-

note by E. Formally, for two indices i, j ∈ {1, . . . ,q} and s ∈ S, let φi(s) E φ j(s) if and only

if φ
(1)
i (s) < φ

(1)
j (s) or φ

(1)
i (s) = φ

(1)
j (s) and φ

(2)
i (s) ≤ φ

(2)
j (s). Let φi(s) ⊳ φ j(s) if and only if

φi(s)E φ j(s) and φi(s) 6= φ j(s). Moreover, let � denote the sorted lexicographical order, where φi(s)

is sorted according to E in descending order. Then, we say that φ is a pairwise strong vector-valued

potential if φ(s′) ≺ φ(s) for all strong improving moves (s,s′). G has the pairwise lexicographical

improvement property if it admits a pairwise strong vector-valued potential.
Every game with a strong vector-valued potential has a pairwise strong vector-valued potential as

well, since we may simply set the second component of the pairwise strong vector-valued potential
equal to the first component (or, alternatively, equal to zero). We show below that every game with
a continuous pairwise strong vector-valued potential admits a strong equilibrium.

Theorem 6.12. Every infinite game G with a continuous pairwise strong vector-valued potential φ

possesses a strong equilibrium.

Proof. To get the desired result, we show by induction over q ∈N that for each q ∈N, each compact
S 6= /0 and each continuous function φ : S → R

q
≥0 ×R

q
≥0 there is a strategy profile smin ∈ S with

φ(smin)� φ(s) for all s ∈ S.
For the base case q = 1, let T = {s ∈ S : φ (1)(s) = mins∈S φ (1)(s)} be the subset of those s ∈ S

for which the first component φ (1) is minimized. Note that T is nonempty and compact as φ is
continuous and S is compact. Next, let T

′ = {s ∈ T : φ (2)(s) = mins∈T φ (2)(s)}. With the same
arguments, T

′ 6= /0 and by construction, T
′ contains all vectors that minimize φ .

For the inductive step, fix q ≥ 2 and suppose that the statement holds for all continuous func-
tions φ ′ : S

′ →R

q
′

≥0 ×R
q
′

≥0 with q
′ ≤ q−1. We consider an arbitrary compact S and an arbitrary

continuous function φ : S → R

q
≥0 ×R

q
≥0. To construct a lexicographical minimum of φ , we set

Q = {1, . . . ,q} and solve the minimization problem

min
s∈S

max
i∈Q

φ
(1)
i (s) (6.2)

of minimizing the maximum value within the first component of φ . Let µ be the optimal value of
(6.2). For arbitrary /0 6= J ⊆ Q, we set

T
J = {s ∈ S : φ

(1)
i (s)≤ µ ∀i ∈ Q\ J, φ

(1)
j (s) = µ ∀ j ∈ J}.

Then, we define J = {J ⊆ Q : J 6= /0, T
J 6= /0}. Note that because φ is continuous and S is compact,

the optimal value of (6.2) is attained, and thus J is nonempty. For each J ∈ J , we solve the
minimization problem

µJ = min
s∈T

J
max

j∈J
φ
(2)
j (s). (6.3)

For each J ∈ J and j ∈ J, we set

Y
J, j = {s ∈ T

J : φ
(2)
i (s)≤ µJ ∀i ∈ J \{ j}, φ

(2)
j (s) = µJ}.
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We define J ′ = {(J, j) ∈J ×Q : j ∈ J, T
J, j 6= /0}. Again, J ′ is nonempty as φ is continuous and S is

compact. For each pair (J, j) ∈J ′, we consider the function φ J, j : Y
J, j →R

q−1
≥0 that arises from φ by

deleting the j-th index, i.e., φ J, j
i (t) = (φ

(1)
i (t),φ

(2)
i (t)) for all i< j and φ J, j

i (t) = (φ
(1)
i+1(t),φ

(2)
i+1(t)) for

all i ∈ { j, . . . ,q−1}. For all (J, j) ∈ J ′, the function φ J, j is continuous and its domain T
J, j is com-

pact and nonempty. For each (J, j) ∈ J ′, we apply the induction hypothesis and obtain |J ′| vectors
t
J, j
min minimizing φ J, j on T

J, j . We claim that the sorted lexicographically minimal vector among the
vectors

(
(µ ,µJ),φ J, j(tJ, j

min)
)
∈Rq

≥0 ×R
q
≥0 for each pair (J, j) ∈ J ′ is also a sorted lexicographical

minimum of the original function φ on S. For a contradiction, suppose that there is a vector z ∈ S

with φ(z) ≺
(
(µ ,µJ),φ J, j(tJ, j

min)
)

for all (J, j) ∈ J ′. First, we observe that there is a set /0 6= J
∗ ⊆ Q

such that φ
(1)
i (z) = µ for all i ∈ J

∗ and φ
(1)
i (z)< µ for all i ∈ Q\J

∗ as otherwise we obtain a contra-
diction to the fact that µ is the optimal value of (6.2). This implies in particular that J

∗ ∈J . Because

µJ
∗

is the optimal value of (6.3), for at least one index j
∗ ∈ J

∗, we have φ
(2)
j
∗ (z) = µJ

∗
. This fact

together with the induction hypothesis that t
J
∗, j∗

min minimizes φ among the vectors with φ
(1)
i (z) = µ

for all i ∈ J
∗ and φ

(2)
j
∗ = µJ

∗
leads to a contradiction.

6.5.1 Splittable Bottleneck Congestion Games

In this section, we introduce the splittable counterpart of bottleneck congestion games. Let N be a
finite set of players and R be a finite set of resources. Each player i ∈ N is associated with a strictly
positive demand di ∈R>0 and a set Ai = {αi,1, . . . ,αi,ni

} of ni ∈N>0 feasible allocations, where as
usual for each j ∈ {1, . . . ,ni} the allocation αi, j is a subset of resources of R. For i ∈ N, we define

∆i =
{

ξi = (ξi,1, . . . ,ξi,ni
) : ξi,k ≥ 0 ∀k ∈ {1, . . . ,ni},

ni∑

k=1

ξi,k = di

}

.

For each player i, the set ∆i can be interpreted as the set of feasible distributions of her demand di

over her set of feasible allocations Ai. Note that ∆i is a compact subset of Rni

≥0 for all i ∈ N. We
set ∆ = ∆1 ×·· ·×∆n and for a vector ξ = (ξ1, . . . ,ξn) ∈ ∆, we define ℓi,r(ξ ) =

∑

k∈{1,...,ni:r∈αi,k} ξi,k

as the total demand put on resource r by player i. The set of used resources of player i is defined
as Ri(ξ ) = {r ∈ R : ℓi,r(ξ )> 0}. The tuple M̃= (N,R,(Ai)i∈N ,(c̃r)r∈R) is called the corresponding
splittable congestion model with set-dependent costs if for all r ∈ R the cost function c̃r : ∆ →R≥0

satisfies the assumptions:
Nonnegativity: c̃r(ξ )≥ 0 for all ξ ∈ ∆,
Independence of Irrelevant Choices:

c̃r(ξ ) = c̃r(ξ
′) for all ξ ,ξ ′ ∈ ∆ with ℓi,r(ξ ) = ℓi,r(ξ

′) for all i ∈ N,
Monotonicity: c̃r(ξ )≤ c̃r(ξ

′) for all ξ ,ξ ′ ∈ ∆ with ℓi,r(ξ )≤ ℓi,r(ξ
′) for all i ∈ N,

Note that “Monotonicity” implies “Independence of Irrelevant Choices”. We basically impose the
same assumptions as in the case of finite bottleneck congestion games.

We say that a cost function cr is continuous if c̃r(ξ ) is continuous in ξ .

Definition 6.13 (Splittable bottleneck congestion game with set-dependent costs)

For a splittable congestion model M̃ = (N,R,(Ai)i∈N ,(c̃r)r∈R), the corresponding splittable bot-

tleneck congestion game with set-dependent costs is the infinite minimization game G = (N,S,π),
where Si = ∆i and πi(s) = maxr∈Ri(s)

c̃r(s) for all i ∈ N.
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The following examples fit into this model.

Bottleneck routing games with splittable demands. The resources correspond to the edges of a
directed or undirected graph graph G = (V,R). Each player i is associated with a source-sink pair
(ui,vi) ∈ V ×V and a positive demand di that she wishes to route from ui to vi. The private cost
of each player equals the maximum cost over all resources she uses with positive demand. The
fundamental difference to unsplittable bottleneck routing games is that each player i is allowed to
distribute her demand among all paths connecting ui and vi. Thus, bottleneck routing games with
splittable demands serve as a model of multi-path routing protocols in telecommunication networks;
see Banner and Orda [15]. Banner and Orda, however, study only existence of pure Nash equilibria.
In addition to being more general, our result also gives an alternative proof for the existence of
pure Nash equilibrium in bottleneck routing games with splittable demands which is rather concise
compared to the involved proof by Banner and Orda [15] and additionally constructive.

Scheduling of malleable jobs. In the scheduling literature jobs are called malleable if they can
be distributed among multiple machines (see, e.g., Feitelson and Rudolph [43] and Carroll and
Grosu [21]). In a scheduling game with malleable jobs, each player i controls a job with weight
wi that she distributes over an arbitrary subset of allowable machines. The private cost is determined
by the makespan, which is a non-decreasing function of the total load of the machine that finishes
latest among the chosen machines. To the best of our knowledge, our work is the first to investigate
the existence of equilibria (pure Nash equilibria or strong equilibria) in such games.

6.5.2 Existence of Strong Equilibria

As mentioned earlier, using similar arguments as in the proof of Theorem 6.10 one can prove that for
a splittable bottleneck congestion games G = (N,S,π) the private cost vector π is a strong vector-
valued potential. However, the function π may be discontinuous even if cost functions are contin-
uous. To see this, consider the bottleneck congestion game with one player having access to two
resources A1 =

{
{r1},{r2}

}
over which she has to assign a demand of size 1. The resource r1

has a cost function equal to the aggregated demand of all players using r1, while resource r2 has a
constant cost function equal to 2. Let s1,2(ε) = ε > 0 be the demand assigned to resource r2 and
the remaining demand s1,1(ε) = 1− ε be assigned to r1. Then, for any ε > 0 we have π

(
s(ε)

)
= 2,

while π
(
s(0)

)
= 1.

To resolve this difficulty, we first define the load of resource r under strategy profile s as the total
demand put on r by all players, that is, ℓr(s) =

∑

i∈N ℓi,r(s). We processed to show that the function
ν : S →R

m
≥0 ×Rm

≥0,s 7→
(
c̃r(s), ℓr(s)

)

r∈R
is a continuous pairwise strong vector-valued potential.

Theorem 6.14. Every splittable bottleneck congestion game G with continuous cost functions pos-

sesses a strong equilibrium.

Proof. We show that the function ν : S → R

m
≥0 ×Rm

≥0,s 7→
(
c̃r(s), ℓr(s)

)

r∈R
is a pairwise strong

vector-valued potential. Because ν is continuous, Theorem 6.12 then gives the desired result. Let
K ⊆ N be an arbitrary coalition and let

(
s,(s′K ,s−K)

)
be a strong improving move of coalition K.

Choose a deviating player j ∈ arg maxi∈K πi(s) with highest cost before the strong improving move
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and one of the resources r
′ ∈ argmaxr∈R j(s)

c̃r(s) at which π j(s) is attained. Decompose R into R
+

and R
− defined as R

+ = {r ∈ R : c̃r(s)≥ c̃r
′(s)} and R

− = {r ∈ R : c̃r(s)< c̃r
′(s)}.

We first claim that c̃r(s
′
K ,s−K) ≤ c̃r(s) for all r ∈ R

+. Assume by contradiction that there is
r ∈ R

+ with c̃r(s
′
K ,s−K) > c̃r(s). The independence of irrelevant choices and the monotonicity of

the cost functions imply that there is a player k ∈ K with ℓk,r(s
′
K ,s−K)> 0. We obtain πk(s

′
K ,s−K)≥

c̃r(s
′
K ,s−K)> c̃r(s)≥ c̃r

′(s) = π j(s) ≥ πk(s), which contradicts that k must improve.
Next we show that ℓr(s

′
K ,s−K) ≤ ℓr(s) for all resources r ∈ R

+ with c̃r(s
′
K ,s−K) = c̃r(s). For a

contradiction, assume that there is r ∈ R
+ with ℓr(s

′
K ,s−K) > ℓr(s) and c̃r(s

′
K ,s−K) = c̃r(s). Again

this implies the existence of a player k ∈ K with ℓk,r(s
′
K ,s−K) > 0. Using c̃r(s

′
K ,s−K) = c̃r(s), we

obtain the same contradiction to the fact that k improves as before.
Finally, we claim that c̃r(s

′
K ,s−K)< c̃r

′(s) for all r ∈ R
−. To see this, assume that there is r ∈ R

−

with c̃r(s
′
K ,s−K)≥ c̃r

′(s). This again implies that there is a player k ∈ K with ℓk,r(s
′
K ,s−K)> 0, thus,

πk(s
′
K ,s−K)≥ c̃r(s

′
K ,s−K)≥ c̃r

′(s) = π j(s)≥ πk(s), and player k did not improve, contradiction!
To complete the proof, we show that

(
c̃r

′(s′K ,s−K), ℓr
′(s′K ,s−K)

)
<
(
c̃r

′(s), ℓr
′(s)
)
. We distinguish

two cases. If ℓ j,r′(s
′
K ,s−k)> 0, we obtain c̃r

′(s′K ,s−K)< c̃r
′(s) using the fact that player j improves.

For the second case, let s
′
j,r′ = 0 and assume for a contradiction that

(
c̃r

′(s′K ,s−K), ℓr
′(s′K ,s−K)

)
≥

(
c̃r

′(s), ℓr
′(s)
)
. If c̃r

′(s′K ,s−K) > c̃r
′(s), we immediately derive the existence of a player k ∈ K with

s
′
k,r′ > 0. On the other hand, if c̃r

′(s′K ,s−K) = c̃r
′(s) and ℓr

′(s′K ,s−K)≥ ℓr
′(s), we obtain the existence

of k ∈ K with s
′
k,r′ > 0 using that ℓ′

j,r′(s
′
K ,s−K) = 0. In both cases, we calculate πk(s

′
K ,s−K) ≥

c̃r
′(s′K ,s−K)≥ c̃r

′(s) = π j(s) ≥ πk(s), a contradiction to the fact that k improves.

6.5.3 Existence of Approximate Strong Equilibria

We now relax the continuity assumption on the resource cost functions by assuming that they are only
bounded from above. We first prove that bottleneck congestion games with bounded cost functions
have the approximate strong finite improvement property. That is, for each ρ > 0, each sequence of
coalitional deviations that increase the private cost of each of member of the coalition by at least ρ

is finite.

Theorem 6.15. Every splittable bottleneck congestion game G with bounded cost functions has the

approximate strong finite improvement property.

Proof. Consider the function ψ : S → R
m·n
≥0 defined as

ψi,r(s) =

{

c̃r(s), if r ∈ Ri(s)

0, else
for all i ∈ N,r ∈ R.

Fix ρ > 0 arbitrarily. For µ ≥
(

2
ρ · sups∈S,r∈R c̃r(s)+1

)
log(n ·m), define Pµ(s) =

∑

r∈R,i∈N ψi,r(s)
µ .

We claim that Pµ satisfies Pµ(s)−Pµ(s
′
K ,s−K)≥(ρ

2 )
µ for all strong ρ-improving moves

(
s,(s′K ,s−K)

)
.

To see this, let
(
s,(s′K ,s−K)

)
be an arbitrary strong ρ-improving move of a coalition K ⊆ N. We

choose a player j ∈ arg maxi∈K πi(s
′
K ,s−K) with highest costs after the strong ρ-improving move

among all players in the coalition and define the sets Ψ+ = {(i,r) ∈−K×R : ψi,r(s)≥ π j(s
′
K ,s−K)}
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and Ψ− = {(i,r) ∈ −K ×R : ψi,r(s)< π j(s
′
K ,s−K)}. We continue to prove that

ψi,r(s
′
K ,s−K)≤ ψi,r(s) for all (i,r) ∈ Ψ+, (6.4)

ψi,r(s
′
K ,s−K)≤ π j(s

′
K ,s−K) for all (i,r) ∈ Ψ−. (6.5)

To prove (6.4), suppose there is (i,r′) ∈ Ψ+ such that ψi,r′(s) < ψi,r′(s
′
K ,s−K). Because of the

independence of irrelevant choices and the monotonicity of cost functions there exists k ∈ K with
r
′ ∈ Rk(s

′
K ,s−K) implying

π j(s
′
K ,s−K)≤ ψi,r′(s)< ψi,r′(s

′
K ,s−K)≤ πk(s

′
K ,s−K)≤ π j(s

′
K ,s−K),

which is a contradiction. For proving (6.5), suppose there is (i,r′) ∈ Ψ− such that ψi,r′(s
′
K ,s−K) >

π j(s
′
K ,s−K). Again, the independence of irrelevant choices and monotonicity of cost functions imply

that there is k ∈ K with r
′ ∈ Rk(s

′
K ,s−K) giving rise to

πk(s
′
K ,s−K)≥ ψi,r′(s

′
K ,s−K)> π j(s

′
K ,s−K)≥ πk(s

′
K ,s−K),

which is a contradiction. To complete the proof, we observe that N×R = Ψ+∪ Ψ−∪(K×R). Then,

Pµ(s)−Pµ(s
′
K ,s−K) =

∑

(i,r)∈N×R

ψi,r(s)
µ −ψi,r(s

′
K ,s−K)

µ ≥
∑

(i,r)∈Ψ
−∪(K×R)

ψi,r(s)
µ −ψi,r(s

′
K ,s−K)

µ .

The inequality follows from (6.4). We further derive

∑

(i,r)∈Ψ
−∪(K×R)

ψi,r(s)
µ −ψi,r(s

′
K ,s−K)

µ ≥
∑

(i,r)∈(K×R)

ψi,r(s)
µ −

∑

(i,r)∈Ψ
−∪(K×R)

ψi,r(s
′
K ,s−K)

µ

≥
(
π j(s

′
K ,s−K)+ρ

)µ −n ·m ·π j(s
′
K ,s−K)

µ ,

where the first inequality follows from the non-negativity of ψ . The second inequality follows from
π j(s)≥ π j(s

′
S,s−S)+ρ and (6.5). Finally

Pµ(s)−Pµ(s
′
K ,s−K)≥

(ρ

2

)µ
+
(

π j(s
′
K ,s−K)+

ρ

2

)µ
−n ·m ·π j(s

′
K ,s−K)

µ ≥
(ρ

2

)µ
,

where the last inequality follows from the choice of µ . Using that Pµ is bounded on S and that
the value of Pµ decreases along any strong ρ-improving move, we conclude that every strong ρ-
improvement path is finite.

Using that every minimization game with the approximate strong finite improvement property
has a ρ-approximate strong equilibrium for every ρ > 0 (Proposition 2.14), we obtain the following
immediate corollary.

Corollary 6.16. Every splittable bottleneck congestion game with set-dependent and bounded costs

possesses a ρ-approximate strong equilibrium for every ρ > 0.
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6.6 Discussion and Open Problems

As the main result of this section, we proved that bottleneck congestion games with set-dependent
costs possess a strong equilibrium. Set-dependent cost functions are a natural generalization of
the load-based models considered in the previous chapters that allows even to model interferences
between different players. While our result for bottleneck congestion games with set-dependent
costs implies that every singleton congestion game with set-dependent costs admits a pure Nash
equilibrium, it is an interesting open problem whether equilibria exist in standard congestion games
with set-dependent costs and arbitrary strategy spaces.

We proved the existence of a strong equilibrium in bottleneck congestion games by showing that
they admit a strong vector-valued potential – a novel potential function concept, that requires that
a certain lexicographic order of a vector attached to each strategy profile decreases. An important
and fascinating open problem is to find other interesting classes of games for which a strong vector-
valued potential exists.



Chapter 7

Computing Equilibria

in Unweighted Bottleneck Congestion Games

One of the central challenges in algorithmic game theory is to characterize the computational com-
plexity of equilibria. Results in this direction yield important indicators whether game-theoretic
solution concepts are plausible outcomes of competitive environments in practice. Historically, the
focus has been put on the computation of mixed equilibria as their existence is granted in each finite
game. Lemke and Howson [87] proposed an algorithm that finds a mixed Nash equilibrium in any
finite two-player game. However, Savani and von Stengel [119] constructed a class of games for
which the runtime of the Lemke-Howson-Algorithm is exponential in the input size of the game.
Moreover, the problem of computing a mixed Nash equilibrium in finite games is known to be
PPAD-complete, even when payoffs are restricted to be binary; see Abbott et al. [1], Chen and
Deng [22], and Daskalakis et al. [30]. As shown by Etessami and Yannakakis [37], for games with
three or more players, the problem is FIXP-complete, even for zero-sum games. In contrast to these
negative results for mixed equilibria, all computational problems related to pure Nash equilibria are
trivial for general two-player bi-matrix games. For a general |S1|×|S2| two-player game, 2 · |S1| · |S2|
numbers are needed to describe the private cost of all players in all strategy profiles. This huge input
size trivializes both the decision problem whether a pure Nash equilibrium exists as well as the com-
putation of a pure Nash equilibrium – a trivial algorithm for computing all pure Nash equilibria of
such a game simply checks for each strategy profile whether a unilateral deviation exists and outputs
it if this is not the case.

There are, however, important classes of games for which the players’ private costs can be rep-
resented succinctly. That is, the players’ private costs are given implicitly rather than explicitly for
every strategy profile. For such a game, the trivial algorithm sketched above is not efficient as its
runtime might be exponential in then input size. Generally speaking, due to their condensed input
size, deciding the existence of equilibria tends to be harder in games with succinct representation
than in arbitrary games. For graphical games, for instance, deciding the existence of a pure Nash
equilibrium is NP-complete, and deciding the existence of a strong equilibrium in pure strategies is
even ΣP

2 -complete; see Gottlob et al. [60]. A key challenge of algorithmic game theory is to identify
those classes of games for which equilibria can be computed efficiently. One important class of
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succinctly representable games for which the computation of pure Nash equilibria has been under
increased scrutiny is the class of congestion games. For references to further classes of games with
a succinct representation, we refer to Papadimitriou [109, §2.5].

For standard congestion games, the complexity of computing exact and approximate pure Nash
equilibria is now relatively well-understood. A detailed characterization in terms of, e.g., the struc-
ture of strategy spaces (Fabrikant et al. [41], Ackermann et al. [3]) or the cost functions (Chien and
Sinclair [24], Bhalgat et al. [18], Skopalik and Vöcking [122]) has been derived. However, as dis-
cussed in Chapter 6, standard congestion games (with sum-objective) have shortcomings, especially
as models for the prominent application of routing in computer networks. The incentive structure
in selfish routing scenarios is captured more realistically by bottleneck congestion games, in which
the private cost of a player is the maximum (instead of the sum) of the costs of the resources in her
strategy.

The central result of Chapter 6 establishes that bottleneck congestion games always admit a
strong equilibrium – a strengthening of the pure Nash equilibrium concept that is resilient against
coordinated deviations of coalitions of players. The existence of pure Nash equilibria and strong
equilibria in bottleneck congestion games raises a variety of important questions regarding their
computational complexity. In which cases can pure Nash equilibria and strong equilibria be com-
puted efficiently? As the games have the strong finite improvement property, another important issue
is the duration of natural (coalitional) improvement dynamics. More fundamentally, it is not obvious
that even a single such coalitional improving move can be found efficiently. These are the main
questions that we address in this chapter.

7.1 Contributions and Chapter Outline

We examine the computational complexity of pure Nash equilibria and strong equilibria in un-
weighted bottleneck congestion games. In such a game, each player chooses a subset of resources
available to her. The cost of a resource depends on the cardinality of the set of players using it,
and the private cost of each player is defined as the maximum cost among all chosen resources.
In Section 7.3 we focus on computing pure Nash equilibria and strong equilibria using centralized
algorithms. We provide a generic algorithm that computes a strong equilibrium for any unweighted
bottleneck congestion game. The algorithm iteratively decreases capacities on the resources and
relies on a strategy packing oracle. The oracle decides if a given set of capacities allows to pack
a collection of feasible strategies for all players and outputs a feasible packing if one exists. The
running time of the algorithm is essentially determined by the running time of this oracle, i.e., the
problem of computing a strong equilibrium can be reduced to the strategy packing problem. As a
characterization we also prove the reverse direction: the class of set packing problems addressed by
strategy packing oracles can be solved efficiently if we can efficiently compute strong equilibria in
bottleneck congestion games. As a slight drawback, the games constructed in this reduction exhibit
a slightly different combinatorial structure than the packing problem. For the case of two play-
ers we can circumvent this problem and show polynomial equivalence between packing and strong
equilibrium computation even when we fix the underlying combinatorial structure.

In terms of complexity, we prove a number of upper and lower bounds for specific classes of
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games. For upper bounds we focus on three classes of games: single-commodity networks, branch-
ings, and matroids. Single-commodity network games represent a natural and frequently studied
class of network routing. Branchings model a natural scenario when players strive to implement a
broadcast from a set of source nodes to all other nodes in the network. In all three cases, there are
strategy packing oracles that can be implemented in polynomial time. Thus, our generic algorithm
yields an efficient algorithm to compute a strong equilibrium. For general games, however, we show
that the problem of computing a strong equilibrium is NP-hard, even in two-commodity networks.

In Section 7.4 we study the duration and complexity of sequential improvement dynamics that
converge to pure Nash equilibria and strong equilibria. Note that quick convergence (i.e., in a poly-
nomial number of rounds) implies efficient computation if the improving move can be computed
efficiently. Therefore, we focus particularly on these classes of games, for which we found posi-
tive results in terms of computation. We first observe that for every matroid bottleneck congestion
game a variant of best response dynamics presented in Ackermann et al. [3] called “lazy best re-
sponse” converges to a pure Nash equilibrium in polynomial time. In contrast to this positive result
for unilateral dynamics, we show that it is NP-hard to decide if a coalitional improving move ex-
ists, even for matroid and single-commodity network games, and even if the deviating coalition is
fixed a priori. This highlights an interesting contrast for these two classes of games: While there are
polynomial-time algorithms to compute a strong equilibrium, it is impossible to decide efficiently if
a given strategy profile is a strong equilibrium – the decision problem is co-NP-hard.

We conclude in Section 7.5 by outlining some interesting open problems regarding the conver-
gence to approximate equilibria.

Significance. Our work shows an interesting dichotomy for bottleneck congestion games with
matroid and single-commodity strategies, respectively. While in both cases there are polynomial
centralized algorithms that compute a strong equilibrium, it is co-NP-hard to decide in polynomial
time if a given NE is a strong equilibrium. These contrasting results obviously stem from the fact
that for the aforementioned classes of games some strong equilibria are easy to compute while others
are even hard to recognize. As this property is inherent to the strong equilibria themselves and inde-
pendent from the utilized algorithms, this suggests to use computational hardness as an equilibrium

selection tool.

Bibliographic Information. The results presented in this chapter are joint work with Tobias Harks,
Martin Hoefer, and Alexander Skopalik. An extended abstract with parts of the results appeared in
the Proceedings of the 18th Annual European Symposium on Algorithms; see [61]. A more exten-
sive version is accepted for publication in Mathematical Programming; see [62]. The latter work
also contains more results concerning the hardness of computing a pure Nash equilibrium in bot-
tleneck congestion games. Specifically, it is shown, that that the constructions of Skopalik and
Vöcking [122] regarding the hardness of computing a pure Nash equilibrium in ordinary games can
be adjusted to yield similar results for bottleneck games. In particular, in (i) symmetric games with
arbitrary cost functions; and (ii) asymmetric games with bounded-jump cost functions computing a
pure Nash equilibrium is PLS-complete.



128 Chapter 7. Computing Equilibria in Unweighted Bottleneck Congestion Games

7.2 Problem Description

In contrast to the relatively general class of bottleneck congestion games considered in Chapter 6, in
this chapter we restrict ourselves to unweighted bottleneck congestion games. Also unlike in the pre-
vious chapters we assume that all cost values are non-negative integers. Formally, let N = {1, . . . ,n}
be a finite set of players and R = {1, . . . ,m} a finite set of resources. Every player i is associ-
ated with a set Ai ⊆ 2R of feasible allocations, given implicitly by a certain combinatorial property.
Each resource r has a cost functions cr : N→ N. We call the tuple M =

(
N,R,(Ai)i∈N ,(cr)r∈R

)

a congestion model. The corresponding unweighted bottleneck congestion game is the minimiza-
tion game G = (N,S,π) with Si = Ai and πi(s) = maxr∈si

cr

(
ℓr(s)

)
, where the load is defined as

ℓr(s) = |{ j ∈ N : r ∈ s j}| for all i ∈ N. Note that due to our previous assumptions an unweighted
bottleneck congestion game can be described by specifying the combinatorial properties of the play-
ers’ strategy spaces and the |R| · |N| possible cost values of the resources. Throughout this chapter,
we call unweighted bottleneck games congestion simply bottleneck congestion games.

7.3 Computing Strong Equilibria

In this section, we investigate the complexity of computing a strong equilibrium in bottleneck con-
gestion games. We first present a generic algorithm that computes a strong equilibrium for an ar-
bitrary bottleneck congestion game. It uses an oracle that solves a strategy packing problem (see
Definition 7.1), which we term strategy packing oracle. For games in which the strategy packing
oracle can be implemented in polynomial time, we obtain an efficient algorithm computing a strong
equilibrium. We then examine games for which this is the case. On the other hand, we prove that in
general computing a strong equilibrium is NP-hard, even for two-commodity bottleneck congestion
games.

7.3.1 The Dual Greedy

The general approach of our algorithm is to introduce capacities τr on each resource r. The idea is
to iteratively reduce capacities of costly resources as long as the residual capacities admit a feasible
strategy packing; see Definition 7.1 below.

Definition 7.1 (Strategy packing oracle)

INPUT: Finite set of resources R with capacities (τr)r∈R, and n sets S1, . . . ,Sn ⊆ 2R of subsets of R,
given implicitly by a certain combinatorial property.
OUTPUT: Sets s1 ∈ S1, . . . ,sn ∈ Sn such that |{i ∈ {1, . . . ,n} : r ∈ si}| ≤ τr for all r ∈ R, or the
information that no such sets exist.

More specifically, when the algorithm starts, no strategy has been assigned to any player and
each resource can be used by n players, thus, τr = n. If r is used by n players, its cost equals
cr(n). The algorithm now iteratively reduces the maximum resource cost by picking a resource r

′

that maximizes cr(τr) among all resources with τr > 0. The number of players allowed on r
′ is

reduced by one, and the strategy packing oracle checks if there is a feasible strategy profile obeying
the capacity constraints. If the strategy packing oracle outputs such a feasible strategy profile s, the
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Algorithm 2: Dual Greedy

Input: Bottleneck congestion game G to the model M=
(
N,R,(Ai)i∈N ,(cr)r∈R

)
,

pointer to corresponding strategy packing oracle O
Output: Strong equilibrium of G

1 set N
′ = N, τr = n, σr = 0 for all r ∈ R, and s

′ =O(R,S
N
′ ,τr);

2 while {r ∈ R : τr > 0} 6= /0 do

3 choose r
′ ∈ argmaxr∈R:τr>0{cr(τr +σr)} ;

4 τ
r
′ := τ

r
′ − 1 ;

5 if O(R,S
N
′ ,τr) = /0 then

6 τ
r
′ := τ

r
′ + 1 ;

7 foreach j ∈ N
′

with r
′ ∈ s

′
j do

8 s j := s
′
j ;

9 set σr := σr + 1, τr := τr − 1 for all r ∈ s
′
j ;

10 N
′ := N

′ \ { j} ;
11 end

12 end

13 s
′ =O(R,S

N
′ ,τr) ;

14 end

15 return s ;

algorithm reiterates by choosing a (possibly different) resource that has currently maximum cost. If
the strategy packing oracle returns /0 after the capacity of some r

′ ∈ R was reduced to τr
′ −1, we fix

the strategies of those τr
′ many players that used r

′ in the strategy profile the strategy packing oracle
computed in the previous iteration and decrease the bounds τr of all resources used in the strategies
accordingly. This ensures that r

′ is frozen, i.e., there is no residual capacity on r
′ for allocating this

resource in future iterations of the algorithm. The algorithm terminates after at most n ·m calls of
the oracle. For a formal description of the algorithm see Algorithm 2.

Theorem 7.2. Dual Greedy computes a strong equilibrium.

Proof. Let s denote the output of the algorithm. In addition, we denote by Np, p = 1 . . . ,P, the sets
of players whose strategies are determined after the strategy packing oracle O returned /0 for the p-th
time. Clearly, πi(s)≤ π j(s) for all i ∈ Np, j ∈ Nq, with p ≥ q. We show by induction over p that the
players in N1 ∪ ·· ·∪Np will not participate in any strong improving move of any coalition.

We start with the base case p = 1. Let (τr)r∈R be the vector of capacities in the algorithm after
the strategy packing oracle returned /0 in line 5 for the first time and τr

′ is updated in line 6. Suppose
there is a coalition K ⊆ N with K ∩N1 6= /0 that deviates profitably from s to t = (s′K ,s−K). We
distinguish two cases.

First case: ℓr(t)≤ τr for all r ∈ R. Let τ̃r = τr−1 if r = r
′, and τ̃r = τr,else. Since O(R,S, τ̃) = /0,

at least |N1| players use r
′ in t. Using cr

′
(
ℓr(t)

)
≥ cr

(
ℓr(s)

)
for all r ∈ R, we obtain a contradiction

to the fact that every member of K must strictly improve.

Second case: There is r̃ ∈ R such that ℓr̃(t)> τr̃. Using that Dual Greedy iteratively reduces the
capacity of those resources with maximum cost (line 3), we derive that cr̃(ℓr̃(t)) ≥ cr

(
ℓr(s)

)
for all
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r ∈ R. Using ℓr̃(t) > τr̃ and ℓr(s) ≤ τr for all r ∈ R, there is at least one player i ∈ K with r̃ ∈ s
′
i,

hence, this player does not strictly improve.
For the induction step p → p+ 1, suppose the players in N1 ∪ ·· · ∪Np stick to their strategies

and consider the players in Np+1. As the strategies of the players in N1∪·· ·∪Np are fixed, the same
arguments as above imply that no subset of Np+1 will participate in a profitable deviation from s.

It is worth noting that the dual greedy algorithm applies to arbitrary strategy spaces. If the strat-
egy packing problem can be solved in polynomial time, this algorithm computes a strong equilibrium
in polynomial time.

Corollary 7.3. For bottleneck congestion games in which the strategy packing problem is solvable

in polynomial time, Dual Greedy computes a strong equilibrium in polynomial time.

While the problem of computing a strong equilibrium is polynomial-time reducible to the strat-
egy packing problem, for general bottleneck congestion games the converse is also true.

Theorem 7.4. The strategy packing problem is polynomial-time reducible to the problem of com-

puting a strong equilibrium in a bottleneck congestion game.

Proof. Given an instance of the strategy packing problem Π we construct a bottleneck congestion
game GΠ. Let Π be given as set of resources R with capacities (τr)r∈R, and n sets S1, . . . ,Sn ⊆ 2R of
subsets of R. The game GΠ consists of the resources R∪{r1, . . . ,rn} and the players 1, . . . ,n+1. The
set of strategies of player i ∈ {1, . . . ,n} is

{
si ∪{ri} : si ∈ Si

}
. Player n+1 has the strategies R and

{r1, . . . ,rn}. For each resource r ∈ R the cost is 0 if used by at most τr +1 players, and 2 otherwise.
For each resource r ∈ {r1, . . . ,rn} the cost is 0 if used by at most one player and 1 otherwise.

If a strategy profile of players 1, . . . ,n violates a capacity τr on a resource r ∈ R, player n+1 has
cost of 2 if she plays strategy R. If she plays {r1, . . . ,rn}, she and all other players have cost of 1. We
conclude that if there is a feasible strategy packing, every strong equilibrium of the game yields cost
0 for every player. Otherwise, every strong equilibrium yields cost 1 for every player. Therefore, the
strategy profile of the players 1, . . . ,n in a strong equilibrium of GΠ corresponds to a solution for the
strategy packing problem Π, if such a solution exists. On the other hand, if there is no solution for
Π, every player in every strong equilibrium in GΠ has cost of 1.

Note that while the previous theorem establishes a general reduction, the game GΠ constructed
from the instance Π of the packing problem has a different combinatorial structure than Π. More
precisely, GΠ is based on a larger set of resources and different strategy sets than the ones used in Π.
The next theorem shows that for games with two players, we can obtain a stronger equivalence result
without changing the underlying combinatorial structure. It remains an open problem to extend this
to games with an arbitrary number of players and more general packing problems.

Theorem 7.5. Let R be a finite set and S1,S2 ⊆ 2R
two sets of subsets of R. Then the following two

problems are polynomially equivalent:

(1) For an arbitrary set of non-decreasing cost functions (cr)r∈R compute a strong equilibrium

of a bottleneck congestion game G to the congestion model M= ({1,2},R,(Si)i∈N ,(cr)r∈R).

(2) For an arbitrary vector (τr)r∈R ∈ {1,2}m
of capacities compute s1 ∈ S1,s2 ∈ S2 such that

|i ∈ {1,2} : r ∈ si}| ≤ τr or decide that no such strategies exist.
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Proof. (2) ⇒ (1): The dual greedy algorithm computes a strong equilibrium calling the strategy
packing oracle polynomially often. Thus, the first problem is polynomially reducible to the second
one.

(1) ⇒ (2): Suppose we are given an instance
(
R,S,(τr)r∈R

)
of the second problem. We consider

the congestion model M=
(
{1,2},R,S,(cr)r∈R

)
where cr is defined as

cr(ℓ) =

{

0, if ℓ≤ τr

1, otherwise.

Now, let G be a corresponding bottleneck congestion game and let s
∗ be a strong equilibrium of

G. We claim that π1(s
∗) = π2(s

∗) = 0 and s
∗ is a solution of the strategy packing problem if such

a solution exists, and π1(s
∗) = π2(s

∗) = 1 otherwise. At first, note that τr ∈ {1,2}, and therefore
a player gets a cost of 1 if and only if there is r ∈ s

∗
1 ∩ s

∗
2 with τr = 1. In this case, however, both

players have a cost of 1. Therefore, we have either π1(s
∗) = π2(s

∗) = 1 or π1(s
∗) = π2(s

∗) = 0.
Suppose that π1(s

∗) = π2(s
∗) = 1 and assume for a contradiction that there is y solution s

′ =
(s′1,s

′
2) to the strategy packing problem. Then, by the definition of cr we get that π1(s

′) = π2(s
′) = 0

and thus, the deviation from s
∗ to s

′ is profitable both for player 1 and 2. This is a contradiction to
the fact that s

∗ is a strong equilibrium. Hence, no such strategy profile s
′ exists. On the other hand,

π1(s
∗) = π2(s

∗) = 0 only holds if the strategies s
∗
1 and s

∗
2 obey the capacities on each resource.

7.3.2 Complexity of Strategy Packing

In the previous section, we have characterized the computation of strong equilibria in terms of a set
packing problem. In this section, we examine the computational complexity of strategy packing and
strong equilibrium computation. In particular, we consider three classes of games, in which strategy
packing can be done efficiently. For the general case, we show that computation becomes NP-hard.
A more detailed characterization as to which structural properties are crucial for efficient strategy
packing or hardness is an interesting avenue for future work.

Our first result is for matroid games, which represent a natural extension of singleton games.1

In a singleton game we have |si| = 1 for every strategy si ∈ Si of every player i. In such games,
strong equilibria are exactly the pure Nash equilibria and computation of a strong equilibrium can
trivially be done in polynomial time. Also, strategy packing reduces to finding a maximal matching
in a bipartite graph.2 For matroid games, we have to resort to more advanced algorithmic techniques
using matroid unions. This concept has been introduced by Nash-Williams [103] and Edmonds [34].

Definition 7.6 (Matroid union)

Let k ∈N>0 and let M1 = (R1,I1), . . . ,Mk = (Rk,Ik) be k matroids. The matroid union M1∨·· ·∨Mk

of these matroids is defined as M1 ∨ ·· ·∨Mk = (R1 ∪ ·· ·∪Rk,I1 ∨ ·· ·∨Ik) where

I1 ∨ ·· ·∨Ik = {I1 ∪ ·· ·∪ Ik : I1 ∈ I1, . . . , Ik ∈ Ik}.
1Readers not familiar with matroids may consider consulting the short introduction to matroids in Section 2.3.6 first.
2We construct the graph as follows: the first partition contains a node for each player, the second partition contains τr

nodes for each r ∈ R. The node of player i is connected to all nodes r for which {r} ∈ Si.
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Nash-Williams proved that for k matroids M1 = (R1,I1), . . . ,Mk = (Rk,Ik) their matroid union
M1 ∨ ·· · ∨Mk is a matroid again. The maximum cardinality of an independent set in I1 ∨ ·· · ∨ Ik

equals the maximum cardinality of a common independent set of two suitably constructed matroids.
This observation reduces the problem of finding a maximum-size set in I1 ∨ ·· ·∨Ik to the intersec-
tion problem of two matroids, which can be solved in polynomial time; see Cunningham [28].

Theorem 7.7. The strategy packing problem can be solved in polynomial time for matroid bottleneck

congestion games where the strategy set of player i equals the set of bases of a matroid Mi = (R,Ii)

given by a polynomial independence oracle.

Proof. For each matroid Mi = (R,Ii), we construct a matroid M
′
i = (R′,I ′

i) as follows. For each
resource r ∈ R, we introduce τr resources r

1, . . . ,rτr to R
′. We say that r is the representative of

r
1, . . . ,rτr . Then, a set I

′ ⊂ R
′ is independent in M

′
i if the set I that arises from I

′ by replacing
resources by their representatives is independent in Mi. This construction gives rise to a polynomial
independence oracle for M

′
i .

Now, we consider the matroid union M
′ = M

′
1 ∨ ·· · ∨M

′
n, which is again a matroid. Using the

algorithm proposed by Cunningham [28] we can compute a maximum-size set B in I
′
1 ∨ ·· · ∨ I

′
n in

time polynomial in n, m, rk(M), and the maximum complexity of the n independence oracles.
If |B|<∑i∈N rk(Mi), there is no feasible packing of the bases of M1, . . . ,Mn. If, in contrast, |B|=

∑

i∈N rk(Mi), we obtain the corresponding strategies (s1, . . . ,sn) using Cunningham’s algorithm.

Let us now consider the case where the strategy spaces are a-arborescences, which are in general
not matroids. Let D = (V,R) be a directed graph with |R|= m. For a distinguished node a ∈V , we
define an a-arborescence as a directed spanning tree, where a has in-degree zero and every other
vertex has in-degree one. In this case, we can regard a ∈ V as a common source, and each player
strives to make a broadcast with source a by allocating a tree.

Theorem 7.8. The strategy packing problem can be solved in time O(m2
n

4) for a-arborescence

games in which the set of strategies of each player equals the set of a-arborescences in a directed

graph D = (V,R).

Proof. The problem of finding k disjoint a-arborescences in D can be solved in polynomial time
of order O(m2

k
2); see Gabow [53, Theorem 3.1]. Introducing τr copies for each edge r ∈ R, the

problem of finding admissible strategies in the original problem is equivalent to finding n disjoint
a-arborescences. As the modified graph has m ·n edges, the total running time of Gabow’s algorithm
is O(m2

n
4).

Recently, the polynomial packing algorithm for a-arborescences has been extended to branch-
ings. Formally, for each player i we are given a root set Ri ⊆ V and a convex3 set Ui ⊆ V with
Ri ⊆ Ui. For any vector of capacities (τr)r∈R, the polynomial algorithm of Bérczi and Frank [17]
computes for every player a branching which is rooted in Ri and spans Ui, that is, the in-degree of
every vertex v ∈ Ri is zero and the in-degree of every vertex v ∈Ui \Ri is one, such that the capacity
restriction of every edge is satisfied. This more general framework allows to model situations in

3In this context, a subset of vertices U ⊆ V is called convex if there is no vertex v ∈ V \U such that there is both a
directed path from v to some vertex u ∈U and a directed path from some node u

′ ∈U to v.
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which the players wish to broadcast from multiple broadcasting stations and where the broadcasts
need not cover all vertices. It is worth mentioning that the convexity of Ui is necessary for efficient
computation because otherwise, the corresponding decision problem turns out to be NP-complete.

When we turn to single-commodity networks, efficient computation of a strong equilibrium is
possible using well-known flow algorithms to implement the oracle. For more general cases with
two commodities, however, a variety of problems concerning strong equilibria become NP-hard by
a simple construction.

Theorem 7.9. The strategy packing problem can be solved in time O(m3) for single-commodity

network bottleneck congestion games.

Proof. Assigning a capacity of τr to each edge and using the algorithm of Edmonds and Karp we
obtain a maximum flow within O(m3). Clearly, if the value of the flow is smaller than n, no admis-
sible strategies exist and we can return /0. If the flow is n or larger we can decompose it in at least n

unit flows and return n of them.

Theorem 7.10. In two-commodity network bottleneck congestion games the following problems are

strongly NP-hard: (i) compute a strong equilibrium; (ii) decide for a given strategy profile whether

any coalition has a strong improving move; (iii) decide for a given strategy profile and a given

coalition if it has a strong improving move.

Proof. We reduce from the 2 DIRECTED ARC-DISJOINT PATHS (2DADP) problem, which is
strongly NP-hard; see Fortune et al. [49]. The problem is to decide if for a given directed graph
D = (V,A) and two node pairs (u1,v1), (u2,v2) there exist two arc-disjoint (u1,v1)- and (u2,v2)-
paths. For the reduction, we define a corresponding two-commodity bottleneck game by introducing
non-decreasing cost functions on every arc r by cr(x) = 0 if x ≤ 1, and cr(x) = 1 otherwise. We
associate every commodity with a player. For proving (i), we observe that 2DADP is a Yes-instance
if and only if every strong equilibrium provides a payoff of zero to every player. For proving (ii) and
(iii), we greedily construct a solution in which the strategies for both players are not arc-disjoint and
give it as input to the problems.

7.4 Convergence of Improvement Dynamics

In the previous section, we have outlined some prominent classes of games for which a strong equi-
librium can be computed in polynomial time, most notably single-commodity network bottleneck
congestion games and matroid bottleneck congestion games.

Theorem 6.10 together with Proposition 6.2 from the last chapter implies that improvement dy-
namics converge to pure Nash equilibria and strong equilibria. In this section, we consider the
duration of such improvement dynamics in these games. We focus on those classes of games for
which we have shown efficient computation, i.e., matroid and single-commodity network games.
For matroid games we show polynomial-time convergence to a pure Nash equilibrium using uni-
lateral improving moves. For the convergence to a strong equilibrium we have to consider strong
improving moves, but we show that deciding if such a move exists is NP-hard even in matroid
games or single-commodity network games. This implies that even in these specialized classes of
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games with efficient computation of a strong equilibrium, recognition of a strategy profile as a strong
equilibrium is co-NP-hard.

We first observe that bottleneck congestion games can be transformed into ordinary congestion
games while preserving useful properties regarding the convergence to a pure Nash equilibrium.
This allows to show fast convergence to a pure Nash equilibrium in matroid bottleneck games and
mirrors a prominent result for ordinary matroid games of Ackermann et al. [3].

7.4.1 Convergence to Pure Nash Equilibria

The following lemma establishes a connection between bottleneck and ordinary congestion games.
For a bottleneck congestion game G we denote by G

sum the ordinary congestion game with the same
congestion model as G except that we choose c

′
r(S) = m

cr(·) for all r ∈ R.

Lemma 7.11. Every pure Nash equilibrium of G
sum

is a pure Nash equilibrium of G.

Proof. Suppose s is a pure Nash equilibrium of G
sum but not of G. Thus, there is a player i ∈ N

and an alternative strategy s
′
i ∈ Si, such that maxr∈si

cr

(
ℓr(s)

)
> maxr∈s

′
i
cr

(
ℓr(s

′
i,s−i)

)
. We define

sc = maxr∈s
′
i
cr(ℓr(s

′
i,s−i)). This implies maxr∈si

cr(ℓr(s))≥ sc+1. We observe

∑

r∈si

c
′
r

(
ℓr(s)

)
≥ max

r∈si

c
′
r

(
ℓr(s)

)
≥ m

sc+1 > (m−1)m
sc ≥
∑

r∈s
′
i

c
′
r

(
ℓr(s

′
i,s−i)

)
,

a contradiction.

We now analyze the lazy best response dynamics considered for ordinary matroid congestion
games presented in Ackermann et al [3]. Note that in matroid games, a player’s strategy is a basis of
a matroid. A lazy best response means that a player only exchanges a minimum number of resources
that is needed to arrive at a basis representing a best response strategy (for details see [3]). Our
analysis here is quite simple and does not explicitly rely on these details. In particular, we transform
the game to an ordinary game as outlined in Lemma 7.11. Then we use the lazy best response
dynamics in the ordinary game and the convergence result of [3] as a “black box” with the slight
adjustment that we only execute moves yielding a strict improvement in the bottleneck resource of
the moving player. This allows to establish the following result.

Theorem 7.12. Let G be a matroid bottleneck congestion game. Then the lazy best response dynam-

ics converges to a pure Nash equilibrium in at most n
2 ·m ·maxi∈N rk(Mi) steps.

Proof. We consider the lazy best response dynamics in the corresponding game G
sum. In addition,

we suppose that a player accepts a deviation only if his bottleneck value is strictly reduced. This
might lead to even earlier termination of the dynamics. Thus, the number of moves is still bounded
from above by n

2 ·m ·maxi∈N rk(Mi) as shown in Ackermann et al. [3].

7.4.2 Convergence to Strong Equilibria

For matroid bottleneck congestion games we have shown above that there are polynomially long se-
quences of unilateral improving moves to a pure Nash equilibrium from every starting state. While
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our results obtained in Chapter 6 also establish convergence to a strong equilibrium for every se-
quence of coalitional improving moves, it may already be hard to find one such move. In fact, we
show that even a strong ρ-improving move can be strongly NP-hard to find, for any polynomially
encodable ρ , even if strategy spaces have simple matroid structures. This implies that deciding
whether a given strategy profile is a ρ-approximate strong equilibrium is strongly co-NP-hard.

Theorem 7.13. In matroid bottleneck congestion games for every polynomially encodable ρ it is

strongly NP-hard to decide for a given strategy profile s if there is some coalition K ⊆ N that has a

strong ρ-improving move.

Proof. We reduce from SET PACKING. An instance of SET PACKING is given by a set of elements
E , a set U ⊆ 2E of subsets of E , and a number k. The goal is to decide if there are k mutually
disjoint sets in U . SET PACKING is strongly NP-complete; see Karp [77]. Given an instance of
SET PACKING we construct a matroid game G and a strategy profile s such that there is a strong
ρ-improving move for some coalition of players K if and only if the instance of SET PACKING has
a solution.

The game will include |N| = 1+ |U|+ |E|+∑U∈U |U | many players. First, we introduce a
master player p1, which has two possible strategies. She can either pick a coordination resource

rco or the trigger resource rtr. For each set U ∈ U , there is a set player pU . Player pU can either
choose rtr or a set resource rU . For each set U and each element e ∈U , there is an inclusion player

pU,e. Player pU,e can either use the set resource rU or an element resource re. Finally, for each
element e, there is an element player pe that has strategies {rco,re} and {rco,rab} for some absorbing
resource rab. For an overview, see Table 7.1(a).

Consider the strategy profile s in which each player chooses the first strategy in Table 7.1(a). That
is, player p1 uses rco, all set players use rtr, all inclusion players the corresponding set resources rU ,
and all element players the strategies {rco,re}. The coordination resource rco is a bottleneck for
the master player and all element players. The costs are crco

(x) = 1 if x ≤ |E|, and crco
(x) = ρ + 2

otherwise. The trigger resource has cost crtr
(x) = 1 if x ≤ |U|− k+1, and crtr

(x) = ρ +2 otherwise.
For the set resources rU the cost is crU

(x) = 1 if x ≤ 1, and ρ +2 otherwise. Finally, for the element
resources the cost is cre

(x) = 1 if x ≤ 1, and cre
(x) = ρ + 2 otherwise. The cost of the absorbing

resource rab is constantly 1. Note that for all resource cost functions cr, there is a threshold value

θr ∈ N∪ {∞} such that cr is of the form cr(x) = 1 if x < θr, and cr(x) = ρ + 2 otherwise. On
overview of the different threshold values can be found in Table 7.1 (b).

Suppose that the underlying SET PACKING instance is a Yes-instance. Then a strong ρ-improving
move is as follows. The master player moves to rtr, the k set players corresponding to a solution
choose their set resources, the respective inclusion players move to the element resources, and all
element players move to rab. Both the cost of rco and that of rtr reduce from ρ+2 to 1. Thus, the mas-
ter player, all set players, and all element players improve their bottleneck by ρ +1. The migrating
inclusion players do not interfere with each other on the element resources. Thus, they also improve
the cost of their bottleneck resource by ρ +1, and we have constructed a strong ρ-improving move
for the coalition of all migrating players, all set players, and all element players.

Suppose that the underlying SET PACKING instance is a No-instance. For a contradiction, let us
assume that there is a coalition K that has a strong ρ-improving move

(
s,(s′K ,s−K)

)
. We distinguish

two cases.
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(a) Player types

player type 1st strat. 2nd strat.

master player p1 {rco} {rtr}
set player pU , U ∈U {rtr} {rU}
inclusion player pU,e, U ∈U ,e∈E {rU} {re}
element player pe, e∈E {rco,re} {rco,rab}

(b) Resource types

resource type threshold θ

coordination resource rco |E|+1
trigger resource rtr |U|−k+2
set resource rU , U ∈U 2
element resource re, e∈E 2
absorbing resource rab ∞

Table 7.1: (a) Player types and (b) resource types used in the hardness proof of Theorem 7.13. All cost
functions are of the form c(x) = 1 if x < θ , and c(x) = ρ + 2 otherwise. Table (b) shows this
threshold value.

First case: p1 /∈ K. Because the master player stays at the coordination resource rco and all
element players use rco in both strategies available to them, they have a private cost of ρ + 2 in
both their strategies and, thus, will not participate in the deviation. As the set players stay on their
set resources no inclusion player has an incentive to switch from her respective set resource to her
respective element resource. This finally implies that no set player will move from the coordination
resource rco. We derive K = /0, a contradiction.

Second case: p1 ∈ K. A move from the coordination resource rco to the trigger resource rtr is an
improvement for player p1 if and only if at least k set players drop rtr. These players must switch
to the corresponding set resources. However, for a set player pU such a move is an improvement
if and only if all inclusion players on rU drop this resource from their strategy. These inclusion
players must switch to the element resources. An inclusion player pU,e improves by such a move if
and only if the element player drops the resource and pU,e is the only inclusion player moving to re.
This implies that the moving set players must correspond to sets that are mutually disjoint. This is a
contradiction to the fact that we have a No-instance.

Finally, we can add the absorbing resource rab to every strategy of the master, set, and inclusion
players. In this way, the combinatorial structure of all strategy spaces is the same – a partition
matroid M with rk(M) = 2 and partitions of size 1 and 2 – only the mapping to resources is different
for each player.

The previous theorem shows hardness of the problem of finding a suitable coalition and a cor-
responding strong improving move. Even if we specify the coalition in advance and search only for
strategies corresponding to a strong improving move, the problem remains strongly NP-hard.

Corollary 7.14. In matroid bottleneck congestion games, for every polynomially encodable ρ it is

strongly NP-hard to decide for a given strategy profile s and a given coalition K ⊆ N if there is a

strong ρ-improving move for K.

Proof. We will show this corollary using the games constructed in the previous proof by fixing the
coalition K = N. Consider the construction in the previous proof. The coalition that has a strong
improving move for a Yes-instance consists of the master player, all set players, all element players
and the inclusion players that correspond to the sets of the solution to SET PACKING. However, the
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inclusion players are only needed to transfer the chain of dependencies to the element players. We
can set the strategy space of the inclusion player pU,e to

SpU,e
= {rhi,rlo}×{rU ,re}=

{

{rhi,rU},{rhi,re},{rlo,rU},{rlo,re}
}

.

for two additional resources rhi and rlo with constant costs crhi
(x) = ρ + 2 and crlo

(x) = 0 for all
x ∈N. In s we assign the inclusion players to strategies {rhi,rU}. Then a strong improving move
for the inclusion players that remain on rU is to exchange rhi by rlo. Thus, the problem of finding
an arbitrary coalition with a strong improving move becomes trivial. However, we strive to obtain a
strong improving move for K =N, and this must generate improvements for the master player and the
set players. Thus, we still must reassign some inclusion players from the resources rU to the element
resources re. Here we need to resolve conflicts as before, because otherwise inclusion players end
up with a cost of ρ + 2 on re and do not improve. Following the previous reasoning we have a
strong ρ-improving move if and only if the underlying SET PACKING instance is solvable. Finally,
by appropriately adding dummy resources, we can again ensure that the combinatorial structure of
all strategy spaces is the same partition matroid.

We can adjust the previous two hardness results on matroid games to hold for single-commodity
network bottleneck congestion games as well.

Theorem 7.15. in single-commodity network bottleneck congestion games, for every polynomially

computable ρ > 0 the following problems are strongly NP-hard: (i) decide for a given strategy

profile s if there is some coalition K ⊆ N that has a strong ρ-improving move, (ii) decide for a given

strategy profile s if a given coalition K ⊆ N has a strong ρ-improving move.

Proof. We transform the construction of Theorem 7.13 into a symmetric network bottleneck con-
gestion game; see Figure 7.1 for an example. First, we introduce an edge for each resource rco,
rtr, (rU )U∈U and (re)e∈E with the corresponding cost function as before. Additionally, we identify
players with the different player types used in the proof of Theorem 7.13 and their strategies by
routing them through a set of gadgets composed of edges which have capacities. The capacities are
implemented by cost functions that are 1 up to a certain capacity bound sθ and ρ +10 above.

The first gadget is to separate the players into groups. An edge with capacity 1 identifies the
master player, an edge with capacity |U| the set players, an edge with capacity

∑

U∈U |U | the in-
clusion players, and an edge with capacity |E| the element players. The set and inclusion players
are then further divided into their particular identities by edges of capacity 1. The element players
route all over rco. In addition, the master player has the alternative to route over rco or rtr. After the
players have passed rco they again split into specific element players using edges of capacity 1. One
of these player is allowed to route directly to the source v. This is meant to be the master player, but
our argument still works if this is not the case.

After the players have routed through the capacitated gadgets, they reach an identification point
(indicated by gray nodes in Figure 7.1) and can be identified with a player type. They then decide
on a strategy from the previous game by routing over one of two allowed paths. In particular, we can
allow the set players to either route over rtr or the corresponding rU , the inclusion players over rU or
re, and the element players over re or directly to the sink v.
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u
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1
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Figure 7.1: Network construction for a SET PACKING instance with U = {{e1,e2},{e2,e3},{e3,e1}}. Gray
nodes serve as identification of the players with the respective player types (master player, set
players, inclusion players, and element players) as discussed in the text.

We can create the corresponding state s as before by letting the master player route over rco

directly to the sink, the set players over rtr, the inclusion players over rU and the element players
over re. This assignment is such that every player receives one identity (i.e., routes over exactly one
gray node) and every identity is taken (i.e., every gray node is reached by exactly one player). This
property also holds for every strong improving move – with the exception of one element player,
who might route directly from rco to the sink, but as noted before our argument still works if this is
not the case.

Our network structure allows to reconstruct the reasoning as before. Any strong improving
move must include the master player, who improves if and only if she moves together with players
corresponding to a solution to the Set Packing instance. Note that even by switching player identities,
we cannot create a strong improving move when the underlying Set Packing instance is unsolvable.
This proves the first part of the theorem.
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For the second part, we use the same adjustment as in Corollary 7.14 to ensure that inclusion
players can always improve. Directly before the middle fan out (see Figure 7.1) that results in
identification of inclusion players we simply insert a small gadget with 2 parallel edges rlo and rhi.
In this way, all inclusion players must route over one of rlo or rhi and one of their corresponding rU

or re. This resembles the strategy choices in the matroid game and yields hardness of computing a
strong improving move for the coalition K = N.

Remark 7.16. Theorem 7.13, Corollary 7.14, and Theorem 7.15 show that for bottleneck conges-
tion games with matroid or single-commodity strategy spaces, for every polynomially encodable ρ ,
the following problems are NP-hard: (i) given a strategy profile s decide whether there is a strong
ρ-improving move from s; (ii) given a strategy profile s and a coalition K ⊆ N decide whether K

has a strong ρ-improving move from s. The bottleneck congestion games constructed to prove these
result have the property that the strong ρ-improving move decreases the private costs of all mem-
bers of the coalition from ρ + 2 to 1. Thus, all hardness results continue to hold for multiplicative
approximations. That is, in these games, for every polynomially encodable α > 1, the following
problems are strongly NP-hard to decide: (i) given a strategy profile s decide whether there is a
strong improving move from s that decreases the private cost of each member of the coalition by
a factor larger than α ; (ii) given a strategy profile s and a coalition K ⊆ N decide whether K has a
strong improving move from s that decreases the private cost of each member of the coalition by a
factor larger than α .

7.5 Discussion and Open Problems

In this section, we have provided a detailed study of the computational complexity of pure Nash and
strong equilibria in bottleneck congestion games. For more results on the complexity of approximate
pure Nash equilibria, see [62]. Still some important open problems remain. A major open problem is
to find other interesting classes of games, for which efficient computation of and/or fast convergence
to a strong equilibrium can be shown.

In light of the hardness of recognizing a strong equilibrium for games with matroid or single-
commodity structure, it is a major open problem how to augment the concept of a pure Nash equi-
librium with resilience to coalitional deviations and avoid the hardness results we have observed.
It would be interesting to consider computation and convergence characteristics of, e.g., k-strong
equilibria, for 1 < k < n, or equilibrium notions based on player partitions (Feldman and Tennen-
holtz [45, 46]) or social networks (Hoefer et al. [70]).





Chapter 8

Summary and Conclusion

In this thesis we provided a systematic study of the existence of pure Nash equilibria in multiple vari-
ants of congestion games, including games with weighted players, games with resource-dependent
demands, and games with variable demands. Our main focus was to precisely characterize the impact
of the resource cost functions on the existence of pure Nash equilibria in these games. Specifically,
we were interested in the question which maximal sets of cost function we can allow on the re-
sources such that the existence of a pure Nash equilibrium is guaranteed. To formalize this question,
we introduced the notion of consistency. A set C of cost functions is consistent for a certain class
of congestion games if every congestion game of that class with cost functions in C possesses a
pure Nash equilibrium. In Chapters 3, 4, and 5 we gave a complete characterization of the sets of
consistent cost functions for weighted congestion games, congestion games with resource depen-
dent demands, and congestion games with variable demands, respectively. A characterization of the
consistency of cost functions imposes an “if and only if” condition on the existence of pure Nash
equilibria, i.e., for every set of cost functions that is not consistent there is a respective congestion
game without a pure Nash equilibrium.

Building upon previous work we showed in Chapter 3 that for weighted congestion games every
set of consistent cost functions consists either only of affine functions or only of certain exponential
functions. This implies that for any non-affine and non-exponential function c there is a weighted
congestion game with costs identical to c on all resources that does not possess a pure Nash equi-
librium. This negative result includes practical relevant functions used to model congestion effects
in road or telecommunication networks, such as the so-called BPR and M/M/1 functions, and thus
may help to predict oscillating behavior in such systems. We further showed that our characterization
is even valid for weighted congestion games with three players. For weighted congestion games with
two players, we proved that every set of consistent cost functions only contains monotonic functions
that are linear transformations of each other. The latter result reveals the common ground of the
multitude of counterexamples given in the literature: Fotakis et al. [51], Goemans et al. [59], and
Libman and Orda [88] each constructed a two-player congestion game without a pure Nash equilib-
rium. Their counterexamples share the property that the cost functions are not linear transformations
of each other. Our result also explains the seeming dichotomy of the above counterexamples to a re-
sult of Anshelevich et al. [10] who showed that for two-player games for which each cost function is



142 Chapter 8. Summary and Conclusion

of the form cr(x) = br/x with br ∈R≥0 a pure Nash equilibrium always exists. Our characterization
answers an open question posed by Orda et al. [106] in the final section of their paper.

In Chapter 4 we studied a slightly more general class of games termed congestion games with
resource-dependent demands. They generalize weighed congestion games in the fact that the as-
sumption that each player’s demand is equals for all resources is dropped. Interestingly, the equilib-
rium behavior of these games crucially depends on whether the costs on the resources are interpreted
as per-unit costs (and thus multiplied with the demand), or not. This is in contrast to weighted con-
gestion games for which this distinction is immaterial for the existence of pure Nash equilibria. For
the case of per-unit costs we showed that the set of affine functions is the unique maximal set of
consistent cost functions. When costs are not multiplied with the demand only constant functions
are consistent. This characterization is even valid for games with three players whose demands for
the distinct resources differs by at most ε where ε can be made arbitrarily small. This result puts the
results for weighted congestion games obtained in Chapter 3 in a new focus. In weighted conges-
tion game with exponential cost even though a pure Nash equilibrium exists arbitrarily small errors
in the quantification of the demands at the resources may lead to unstable behavior of the system.
Moreover, in the presence of errors, games with affine cost functions are stable against those errors
only if the cost functions on the resources are taken as per-unit costs.

In many situations players will react on high congestion by lowering their demand and vice versa.
To model this effect we initiated the systematic study of congestion games with variable demands
where the variable demand has to be assigned to exactly one subset of resources in Chapter 5. In such
a game each player both chooses her demand out of an interval of feasible demands and a subset of
resources. Congestion games with variable demands thus combine the characteristics of finite games
and infinite games which complicates their analysis. Yet, based on the result in the two preceding
chapters, we gave a complete characterization of consistency. For games in which the costs of the
resources are interpreted as per-unit costs we showed that every set of consistent cost functions either
contains only affine functions or only homogeneously exponential functions. For games in which the
costs of the resources are not multiplied with the players’ demands only homogeneously exponential
functions are consistent.

For all our characterizations of consistency obtained in Chapters 3, 4 and 5, we required that
cost functions are continuous. Although most important classes of cost functions used in the litera-
ture have this property it would be very interesting to obtain a characterization for non-continuous
cost functions as well. Moreover, our characterizations relied on the fact that strategies are non-
symmetric. Symmetric games, however, behave differently as for instance every weighted con-
gestion game with positive and non-increasing costs admits a pure Nash equilibrium (in which all
players choose the same strategy). More generally speaking, the impact of how the single players’
sets of strategies are interweaved on the existence of pure Nash equilibria is not well understood and
desires more attention; see also the discussion in the final section of Ackermann [2].

In Chapters 6 bottleneck congestion games were studied. In a bottleneck congestion game the
private cost of a player is the maximum (rather the sum) of the costs of resources used. For this class
of games we allowed that the costs of a resource may even depend on the set of players using it which
is far more general than the demand-based models studied in Chapters 3, 4, and 5. Nonetheless, they
always possess a strong equilibrium as proven in Chapter 6. Our proof is constructive and uses the
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notion of a vector-valued potential. It would be very interesting to see this technique applied to
further classes of games.

Because congestion games with bottleneck-objectives and congestion games with sum-objective
coincide for singleton strategies, our result of Chapter 6 implies in particular that every singleton
congestion game with set-dependent costs admits a strong equilibrium. As a natural generalization
of the classical demand-based models it would be interesting to better understand congestion games
with set-dependent costs for different (non-singleton) strategy spaces.

The existence of strong equilibria in bottleneck congestion games with set-dependent costs raises
a variety of question related to the complexity of computing equilibria in these games. In Chapter 7
we gave first results in this direction. We showed that the problem of computing a strong equilib-
rium is reducible to solving a certain strategy packing problem. For matroids, single-commodity
networks, and branching we further showed that a solution to the packing problem and, thus, a
strong equilibrium can be found in polynomial time. A major open problem is to find further classes
of games for which this is the case. Furthermore, the complexity of computing equilibria in games
with weighted players is still open.

Furthermore, our results for single-commodity bottleneck congestion games and matroid bot-
tleneck congestion games show an interesting dichotomy. While there is an efficient algorithm
computing a strong equilibrium in these games, it is co-NP-hard to decide whether a given strategy
profile is a strong equilibrium. Thus, these classes of bottleneck congestion games possess strong
equilibria with different computational complexity. This interesting effect suggest to use computa-
tional complexity as an equilibrium selection tool, that is, to select those equilibria of a game that
are easier to compute. It is an interesting question whether this is also possible for further classs of
games.
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